ML17326B134: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(4 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 08/07/1984
| issue date = 08/07/1984
| title = Nonproprietary Version of Rev 2 to DC Cook,Unit 2 Cycle 5,5%.Steam Generator Tube Plugging Limiting Break Loca/Eccs Analysis.
| title = Nonproprietary Version of Rev 2 to DC Cook,Unit 2 Cycle 5,5%.Steam Generator Tube Plugging Limiting Break Loca/Eccs Analysis.
| author name = CHANDLER J C, KAYSER W V, STOUT R B
| author name = Chandler J, Kayser W, Stout R
| author affiliation = SIEMENS POWER CORP. (FORMERLY SIEMENS NUCLEAR POWER
| author affiliation = SIEMENS POWER CORP. (FORMERLY SIEMENS NUCLEAR POWER
| addressee name =  
| addressee name =  
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:XN-NF-84-21(NP
{{#Wiki_filter:XN-NF-84-21(NP )
)Revision2IssueDate:8/7/84DONALDC~COOKUNIT2CYCLE5-5/oSTEAMGENERATOR TUBEPLUGGINGLIMITINGBREAKLOCA/ECCS ANALYSISPrepared-by:W.V.ayser,ManagerPWRSafetyAnalysisConcur:.C.Caner,LeangneerReloadFuelLicensing Approve:out,ManagerLicensing
Revision 2 Issue Date: 8/7/84 DONALD C ~ COOK  UNIT 2 CYCLE 5      -   5/o STEAM GENERATOR TUBE PLUGGING LIMITING BREAK LOCA/ECCS ANALYSIS Prepared -by:
&SafetyEngineering CSrConcur:gggg.'.organ,anagrProposals 5CustomerServicesEngineering Approve:87~%/.A.oer,ManagFu1Engineering 8Technical Servicesgf,E3(CGMNU.CLEAR.COMPANY, INC.KNIMIolY-MIlIl'I'.I I.II.f.IlI)I'Y r~}~5F XN-Nf-84-21(NP)
W. V. ayser, Manager PWR  Safety Analysis Concur:
Revision2TABLEOFCONTENTSSection~Pae
                      . C. C an    er, Lea      ng neer Reload Fuel Licensing Approve:                                                   CSr out, Manager Licensing & Safety Engineering ggg g Concur:
                      .'. organ, Proposals anag    r 5 Customer Services      Engineering Approve:                                                 87~%/
                      . A. o  er, Manag Fu  1  Engineering    8  Technical Services gf
  ,E3(CGM NU.CLEAR .COMPANY, INC.
KNIMIolY-MIlIl'I'.II.II.f. IlI)I'Y


==1.0INTRODUCTION==
r
    ~
    ~
    }
5 F


....:..................................
XN-Nf-84-21(NP)
12.0SUMMARYo~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~33.0LIMITINGBREAKLOCAANALYSIS~~~~~~~~~~~~~53.1LOCAANALYSISMODEL...........................
Revision 2 TABLE OF CONTENTS Section                                                                                                  ~Pa  e
53.2RESULTS
 
==1.0    INTRODUCTION==
    ....:..................................                                             1 2.0    S UMMARY o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~      3 3.0    LIMITING BREAK      LOCA ANALYSIS                                  ~ ~  ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~      5
: 3. 1  LOCA ANALYSIS MODEL                ...........................                                5 3 .2  RESULTS                                                                                        7
 
==4.0    CONCLUSION==
S                                    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~    64
 
==5.0    REFERENCES==
  ...............,..........................                                            65
 
~
~
i
~
l i
1
~
~
~
~
~
~
~
 
XN-NF-84-21(NP)
Revision  2 LIST  OF TABLES Parcae Table 2.1  D.C. Cook Unit    2 LOCA/ECCS    Analysis  Summary  ........            4 3.1  Donald C. Cook Unit      2  System Input Parameters    ~ ~ ~ ~ ~ ~      9 3.2  1.0  OECLG  Break Analysis Parameters      ................          10 3.3  D.C. Cook Unit    2  1.0  OECLG  Break Event Times  ... ...
                                                                ~          11 3.4  1.0  OECLG  Break Fuel Response      Results  for C ycle 5  ............................................                12 3.5  1.0  OECLG Break    Fuel Response    Results with an  All  ENC Core  ....................................               13
 
j N
~
I 8
~
~
~
~
~
~
~
~
~
~
~
~
~
 
                                                                                    . XN-NF-84-21(NP)
Revision 2 LIST  OF FIGURES
~Fi ure                                                                            Pacae 3.1  RELAP4/EM Blowdown System      Nodalization for D.C. Cook Unit 2      ....                                                14 3.2  Oowncomer Flow Rate During Blowdown          Period, 1.0  OECLG  Break  ...................................                        15 3.3  Upper Plenum Pressure during Blowdown Period, 1.0 DE(LG Break      .......                                        16 3.4  Average Core    Inlet  Flow during Blowdown Period, 1.0  OECLG  Break  ........                                        17 3.5  Average Core Outlet Flow during Bl owdown Period, 1.0 DECLG Break      .....................                          18 3.6  Total Break Flow during Blowdown Period, 1.0  OECLG  Break  .............................                              19 3.7  Break Flow Enthalpy during Blowdown, 1.0 DECLG Break    ....................................                      20 3.8  Flow from  Intact  Loop Accumulator      during Blowdown  Period, 1.0  OECLG Break    ..................                    21 3.9  Flow from Broken Loop Accumulator during Blowdown Period, 1.0 OECLG Break        ..................                    22 3.10  Pressurizer Surge'ine Flow during          Blowdown Period, 1.0 OECLG Break                ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  23 3.11  Heat Transfer    Coefficient during    Blowdown Period at PCT Node, 1.0      OECLG  Break, 2.0 MWO/kg Case .                                                            24 3.12  Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0  MWD/kg Case  ..........,.        ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  25 3.13  Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0      DECLG  Break, 2.0 MWD/kg Case .                            ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  26
 
iv                          XN-NF-84-21(NP)
Revision  2 LIST  OF FIGURES  (Cont. )
  ~Fi ure                                                                Pa<ac 3.14  Average Fuel Temperature during Bl owdown Period at PCT Location, 1.0    OECLG  Break, 2.0 MWD/kg Case .                                              27 3.15  Hot Assembly  Inlet  Flow during Blowdown Period, 1.0  OECLG  Break, 2.0 MWD/kg Case    ...........      28 3.16  Hot Assembly Outlet Flow during Blowdown Period, 1.0 DECLG Break, 2.0 MWD/kg Case      ...........      29 3.17  Heat Transfer  Coefficient during    Blowdown Period at PCT Node, 1.0    OECLG Break, 10.0 MWO/kg Case  ...................................          30 3.18  Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 10.0 MWD/kg Case  ...................................          31 3.19  Depth  of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 10.0 MWD/kg Case  ..................                          32 3.20  Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 DECLG Break, 10.0 MWD/kg Case  ...................................          33 3.21  Hot Assembly  Inlet  Flow during Blowdown Period, 1.0  OECLG Break,  10.0 MWO/kg Case  ..................        34 3.22  Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 MWD/kg Case    .......;..........        35 3.23  Heat Transfer  Coefficient during    Blowdown Period at PCT Node, 1.0    OECLG Break, 47.0 MWD/kg Case  ..................    . .    . .  ..... 36 3.24  Clad Surface Temperature    during Blowdown Period at PCT Node, 1.0    OECLG Break, 47.0 MWO/kg Case  ...................................          37 3.25  Depth of Metal-Water Reaction during Slowdown Period at PCT Node, 1.0    OECLG Break, 47.0 MWD/kg Case  ....... ..........................          38
 
XN-NF 21( NP )
Revision 2 LIST      OF FIGURES                (Cont.    )
~Fi  ere                                                                                            Pa<ac 3.26  Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 OECLG Break, 47.0  MWO/kg Case  e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~       39 3.27  Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 NWD/kg Case'.......                                                    40 3.28  Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 HWD/kg Case                            ..........            41 3.29  Accumulator Flow during Refill and Ref lood Periods, Broken Loop, 1.0 OECLG Break                          .............                42 3.30  Accumulator Flow during Refill and Ref lood Periods, Intact Loop, 1.0 DECLG Break                          .............                43 3.31  HPSI  8 LPSI Flow during Refill and Ref lood Periodg, Broken Loop, 1.0 OECLG Break                          .............                44 3.32  HPSI  8 LPSI Flow during Refill and Ref lood Periods, Intact Loop, 1.0 DECLG Break                          .............                45 3.33   Containment Back Pressure,              1.0      DECLG      Break ........                  46 3.34  Normalized Power, 1.0        OECLG      Break, 2.0 MWO/kg Case    .....                                                                    47 3.35  Normalized Power, 1.0        DECLG      Break, 10.0 NWD/kg Case    ..............................                                          48 3.36  Normalized Power, 1.0        OECLG      Break, 47.0 NWD/kg Case    .............                                                            49 3.37  Reflood Core Mixture Level, 1.0                    OECLG      Break, C ycle  5 Core ........................                                                      50 3.38  Reflood Downcomer Mixture Level, 1.0 DECLG Break, Cycle 5 Core                  .....................                        51 3.39    Reflood Upper Plenum Pressure,                  1.0    OECLG Break, Cycle 5 Core      ...............................                                    52
 
vi                                                XN-NF-84-21(NP)
Revision    2 LIST      OF FIGURES              (Cont.)
~Fi ure                                                                                                ~Pa    e 3.40  Core Flooding Rate,        1.0    OECLG      Break, Cycle 5 Core                                  ~  ~ ~ ~ ~ ~ ~ ~ ~ e ~         ~ ~ ~ ~ ~ ~      53 3.41  Ref lood Core Mixture Level, 1.0                  OECLG      Break, All  ENC Core  ......................................                                            54 3.42  Reflood Oowncomer Mixture Level, 1.0                        OECLG All ENC Core      ............                                'reak, 55 3.43  Ref lood Upper Plenum Pressure,                  1.0    DECLG Break, All ENC Core        ...............................                                        56 3.44  Core Ref looding Rate,        1.0    OECLG      Break, A 11 ENC Core  ....................-......-....                                      ..          57 3.45  TOODEE2 Cladding    Temperature versus Time, 1.0 OECLG Break,    2. MWO/kg Case, Cycle 5'ore                                    .....        58 3.46  TOOOEE2 Cladding    Temperature versus Time, 1.0 OECLG Break,    10. MWO/kg Case, C ycle 5 Core  ................... -.....          ~                                              59 3.47  TOOOEE2 Cladding    Temperature versus Time, 1.0 OECLG Break,    47. MWO/kg Case, Cycle  5  Core ... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  ~  ~ ~  ~              ~  ~            60 3.48  TOOOEE2 Cladding    Temperature versus Time, 1.0 OECLG Break,    2. MWO/kg Case, All ENC Core                                    .....        61'2 3.49  TOODEE2 Cladding    Temperature versus Time, 1.0 DECLG Break,    10. MWO/kg Case,                All      ENC    Core 3.50  TOOOEE2 Cladding    Temperature versus Time, 1:0 OECLG Break,    47. MWO/kg Case, All ENC Core                                                63
 
XN-NF-84-21(NP )
Revision    2
: 1. 0    I NTRODUCT ION Large break LOCA/ECCS analyses            were performed      in 1982(  ~2)  to support operation of the D.C.        Cook  Unit  2 reactor at    3425 MWt    with  ENC fuel. Reference 1 presented analytical results            for  a spectrum of postulated large break LOCAs.
The  limiting break    was  identified    as  the 1.0 double ended cold line          guillotine (DECLG)    break. Reference    2  presented results for the previously identified limiting break using the        EXEM/PWR(3) ECCS models,          except  GAPEX was  used as the fuel performance      model  in place of      RODEX2. The RODEX2 code was not approved
(
by the      NRC  for  use in    ECCS    analyses    in 1982.      Therefore the NRC-approved GAPEX(4) code was used        to calculate fuel properties at the initialization of the    LOCA    calculation.      The Reference        2  report documented        the results    of calculations with        one  and  two LPSI pumps        operating.      At equivalent core peaking      limits, higher    peak    cladding temperatures          (PCTs) were  calculated in the  LOCA    analysis  when two LPSI pumps were assumed            operating. The Reference 2  analysis with two LPSI        pumps  operating    was  performed    for  Cycle  4  operation of D.C. Cook  Unit 2.
This report documents        the results of        a LOCA/ECCS      analysis to support operation of the D.C.        Cook  Unit  2 reactor for Cycle      5  at a thermal power rating of  3425 MWt,    with  up to  5/. of the steam generator tubes plugged, with              two LPSI pumps    operating,    and  for  ENC  fuel exposed      up  to  a  peak rod average burnup      of 47 MWD/kg.      Results are also reported for the case in which the entire core is ENC    fuel.      The  calculations were performed using the                  EXEM/PWR LOCA/ECCS
 
XN-NF-84-21(NP )
Revision 2 models,  including fuel properties  calculated  at the start of the    LOCA transient with  ENC's generically approved  RODEX2 code.(5)
 
XN-NF-84-21(NP)
Revision    2 2.0 
 
==SUMMARY==
 
LOCA/ECCS    calculations were performed to determine core peaking limits which permit operation of the O.C. Cook Unit              2  reactor within guidelines specified by      10  CFR  50.46 and Appendix K.(6)            The  calculations    assumed operation:
: 1)    At  a  thermal power of 3425 MWt;
: 2)    With  5X  average steam generator tube plugging;
: 3)    With the Cycle      5  core configuration (85/      ENC  fuel);  and
: 4)    With the    entire core    ENC  fuel.
The calculations were performed for the previously identified limiting break, the 1.0  OECLG  break, with    full  ECCS  flow.
The  results of the analysis are        summarized    in Table 2.1. The  analysis supports operation of the O.C. Cook Unit            2  reactor for Cycle 5,      and  future cycles with  ENC  fuel, at  a  total  peak  limit (FqT) of    2.04 and a  corresponding T
F<H  limit of  1.55.
 
XN-NF-84-21(NP)
Revision 2 Table 2. 1  O.C. Cook  Unit 2 LOCA/ECCS  Analysis  Summary Peak Rod Average Burnup (MWO/kg)          2.0        10.0          47.0 FT Q
2.04        2.04          2.04 T
1.55        1.55          1.55 Results for the Cycle  5 Core Confi  uration  (85K ENC  Fuel)
Peak Cladding Temperature (oF)            2007        2014          1993 Maximum Local 2r-H20 Reaction (X)          4.6        4.7          4.5 Total Zr-H20 Reaction                    <1.0      <  1.0        <  1.0 Results with Entire Core of  ENC Fuel Peak Cladding Temperature (oF)            2022        2030          2008 Maximum Local Zr-H20  Reaction  (/)        4.9        5.0          4.7 Total Er-H20 Reaction                    <1.0      < 1.0        < 1.0
 
XN-NF-84-21(NP)
Revision  2 3.0  LIMITING BREAK    LOCA ANALYSIS This report      supplements  previous    LOCA/ECCS    analyses    performed    and documented  for  D.C. Cook Unit 2. A  spectrum of  LOCA breaks was performed and reported in XN-NF-82-35.(1) The limiting LOCA break            was  determined to be the large double-ended guillotine break of the cold leg or reactor vessel                inlet pipe with  a  discharge coefficient of 1.0 (1.0 DECLG). Reference          2 established that for D.C. Cook  Unit  2 it is more    limiting in the  LOCA  analysis to  assume no  failure of    a  LPSI pump. The    analysis performed    and  reported herein considers:
: 1)  That  5X  of the steam generator tubes are plugged;
: 2)  That 85/ of the Cycle      5  core is composed of    ENC  fuel;
: 3)  That both LPSI pumps are operational; and
: 4)  That  ENC  fuel may be exposed    to  a peak average burnup    of  47 MWD/kg.
3.1  LOCA ANALYSIS MODEL The Exxon Nuclear Company EXEM/PWR-ECCS          evaluation model    was used to perform the analyses required.          This model(3) consists of the following computer codes:      RODEX2(5) code  for initial stored energy;        RELAP4-EM(")    for the system blowdown and hot channel blowdown calculations; ICECON(8)              for the computation of the ice condenser        containment backpressure;      REFLEX(3 g)    for computation of system ref lood; and TOODEE2(3~ID~11)            for the calculation of final fuel    rod heatup.
 
XN-NF-84-21(NP )
Revision    2 The  Oonal d    C. Cook  Uni t  2  nuclear    power    pl ant    is  a  4-1 oop Westinghouse    pressurized water reactor with ice condenser containment.                    The reactor  coolant    system    is nodalized into control            volumes    representing reasonably homogeneous regions, interconnected by flow-paths or "junctions".
The system  nodalization is depicted in Figure 3. 1.            The unbroken loops were assumed  symmetrical and modeled as one          intact loop with appropriately scaled input. Pump  performance curves      characteristic of      a Westinghouse      series  93A pump were used    in the analysis.      The  transient behavior      was  determined from the governing conservation equations for mass, energy, and momentum.                      Energy transport, flow rates,        and heat  transfer    were determined      from appropriate correlations.
The Cycle 4 LOCA      analysis(2)    assumed  that lX of the    steam generator tubes were plugged.        In the current analysis, the plant was modeled assuming asymmetric steam generator tube plugging: 3.33/ of the tubes plugged in the intact loops,    and  10.0/ of the tubes plugged in the broken loop.                The  larger plugging in the broken loop results in higher PCTs.              The  primary coolant flow at  full power  was reduced by    1.1/ from the current measured flow at the plant to account for the    assumed average 5X steam      generator plugging. Additionally, the core model assumed        that the core is 85/      ENC  fuel,  whereas    the previous analysis  assumed    the Cycle    4  core configuration.         Calculations were also performed  for the    case  in which the core is all      ENC  fuel, representative of


==74.0CONCLUSION==
S
~~~~~~~~~~~~~~~~~~~~~~~~645.065REFERENCES
...............,..........................
~i~~li1~~~~~~~
XN-NF-84-21(NP)
XN-NF-84-21(NP)
Revision2LISTOFTABLESTableParcae2.1D.C.CookUnit2LOCA/ECCS AnalysisSummary........43.1DonaldC.CookUnit2SystemInputParameters
Revision    2 Cycle 6 and beyond.       ENC  fuel has a smaller rod diameter than the Westinghouse fuel  it replaces.       To  offset the impact of increased flow area          on  the    LOCA analysis results, the core power          was reduced from 3425 MWt    to 3411 NWt. System input parameters are given in Table 3.1.
~~~~~~93.23.33.43.51.0OECLGBreakAnalysisParameters
The  reactor core is modeled with heat generation rates determined from reactor kinetics equations            with reactivity feedback      and  with decay heating    as  required by Appendix      K  of 10 CFR 50. Chopped  cosine axial power profiles are      assumed    with the    maximum  axial peaking factor used in the analysis given in Table 3. 2. The analysis of the loss-of-coolant accident is performed at 102 percent of rated power.           The core power and    other parameters used in the analyses        are given in Table 3. 1.
................
3.2   RESULTS Table 3.3 presents the timing and sequence of events as determined for  the large 'break      guillotine configuration with      a  discharge coefficient of 1.0 for    full  ECCS  operation. Table 3.4 presents the results of the exposure analysis for Cycle      5  composed  of  85K ENC fuel. Table 3.5 presents the results of the exposure analysis for          a  core composed of    all  ENC fuel.
10D.C.CookUnit21.0OECLGBreakEventTimes...~...111.0OECLGBreakFuelResponseResultsforCycle5............................................
Results of the analyses are given in Figures 3.2 to 3.43.               Figures 3.2 to 3. 10 provide plots of key system blowdown parameters                  versus  times.
121.0OECLGBreakFuelResponseResultswithanAllENCCore....................................
Figures 3. 11 to 3.28 provide plots of key core responses            during the blowdown period. Figures 3.29 to 3.32 provide the            ECCS flows in the broken      and  intact loop during the      refill period.     Figure 3.33 presents the containment pressure during the    LOCA. Figures 3.34 to 3.36 present the normalized power during the LOCA  for the three      exposure  cases  analyzed. Figures 3.37 to 3.40 provide results from the reflood portion of the transient for the            case in which 85K      of
13 jN~I8~~~~~~~~~~~~~
.XN-NF-84-21(NP)
Revision2LISTOFFIGURES~FiurePacae3.1RELAP4/EM BlowdownSystemNodalization forD.C.CookUnit2....143.2Oowncomer FlowRateDuringBlowdownPeriod,1.0OECLGBreak...................................
153.33.4UpperPlenumPressureduringBlowdownPeriod,1.0DE(LGBreak.......AverageCoreInletFlowduringBlowdownPeriod,1.0OECLGBreak........16173.53.6AverageCoreOutletFlowduringBlowdownPeriod,1.0DECLGBreak.....................
TotalBreakFlowduringBlowdownPeriod,1.0OECLGBreak.............................
18193.7BreakFlowEnthalpyduringBlowdown, 1.0DECLGBreak....................................
203.8FlowfromIntactLoopAccumulator duringBlowdownPeriod,1.0OECLGBreak..................
213.9FlowfromBrokenLoopAccumulator duringBlowdownPeriod,1.0OECLGBreak..................
223.10Pressurizer Surge'ine FlowduringBlowdownPeriod,1.0OECLGBreak~~~~~~~~~~~~~~~~~~233.113.12HeatTransferCoefficient duringBlowdownPeriodatPCTNode,1.0OECLGBreak,2.0MWO/kgCase.CladSurfaceTemperature duringBlowdownPeriodatPCTNode,1.0OECLGBreak,2.0MWD/kgCase..........,.
~~~~~~~~~~~~~~~~~~24253.13~~~~~~~~~~~~~~~26DepthofMetal-Water ReactionduringBlowdownPeriodatPCTNode,1.0DECLGBreak,2.0MWD/kgCase.
ivXN-NF-84-21(NP)
Revision2LISTOFFIGURES(Cont.)~FiurePa<ac3.14,3.153.163.173.18AverageFuelTemperature duringBlowdownPeriodatPCTLocation, 1.0OECLGBreak,2.0MWD/kgCase.27HotAssemblyInletFlowduringBlowdownPeriod,1.0OECLGBreak,2.0MWD/kgCase...........
28HotAssemblyOutletFlowduringBlowdownPeriod,1.0DECLGBreak,2.0MWD/kgCase...........
29HeatTransferCoefficient duringBlowdownPeriodatPCTNode,1.0OECLGBreak,10.0MWO/kgCase...................................
30CladSurfaceTemperature duringBlowdownPeriodatPCTNode,1.0OECLGBreak,10.0MWD/kgCase...................................
313.19DepthofMetal-Water ReactionduringBlowdownPeriodatPCTNode,1.0DECLGBreak,10.0MWD/kgCase..................
323.203.213.223.233.243.25AverageFuelTemperature duringBlowdownPeriodatPCTLocation, 1.0DECLGBreak,10.0MWD/kgCase...................................
33HotAssemblyInletFlowduringBlowdownPeriod,1.0OECLGBreak,10.0MWO/kgCase..................
34HotAssemblyOutletFlowduringBlowdownPeriod,1.0OECLGBreak,10.0MWD/kgCase.......;..........
35HeatTransferCoefficient duringBlowdownPeriodatPCTNode,1.0OECLGBreak,47.0MWD/kgCase..................
.........36CladSurfaceTemperature duringBlowdownPeriodatPCTNode,1.0OECLGBreak,47.0MWO/kgCase...................................
37DepthofMetal-Water ReactionduringSlowdownPeriodatPCTNode,1.0OECLGBreak,47.0MWD/kgCase.................................
38 XN-NF-84-21(NP)Revision2LISTOFFIGURES(Cont.)~FierePa<ac3.263.273.28AverageFuelTemperature duringBlowdownPeriodatPCTLocation, 1.0OECLGBreak,47.0MWO/kgCasee~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~HotAssemblyInletFlowduringBlowdownPeriod,1.0OECLGBreak,47.0NWD/kgCase'.......
HotAssemblyOutletFlowduringBlowdownPeriod,1.0OECLGBreak,47.0HWD/kgCase..........
3940413.293.303.313.323.33Accumulator FlowduringRefillandRefloodPeriods,BrokenLoop,1.0OECLGBreak.............
42Accumulator FlowduringRefillandRefloodPeriods,IntactLoop,1.0DECLGBreak.............
43HPSI8LPSIFlowduringRefillandRefloodPeriodg,BrokenLoop,1.0OECLGBreak.............
44HPSI8LPSIFlowduringRefillandRefloodPeriods,IntactLoop,1.0DECLGBreak.............
45Containment BackPressure, 1.0DECLGBreak........463.343.353.363.37Normalized Power,1.0OECLGBreak,2.0MWO/kgCase.....Normalized Power,1.0DECLGBreak,10.0NWD/kgCase..............................
Normalized Power,1.0OECLGBreak,47.0NWD/kgCase.............
RefloodCoreMixtureLevel,1.0OECLGBreak,Cycle5Core........................
474849503.383.39RefloodDowncomer MixtureLevel,1.0DECLGBreak,Cycle5Core.....................
51RefloodUpperPlenumPressure, 1.0OECLGBreak,Cycle5Core...............................
52 viXN-NF-84-21(NP)
Revision2LISTOFFIGURES(Cont.)~Fiure~Pae3.40CoreFloodingRate,1.0OECLGBreak,Cycle5Core~~~~~~~~~e~~~~~~~533.41RefloodCoreMixtureLevel,1.0OECLGBreak,54AllENCCore......................................
3.42RefloodOowncomer MixtureLevel,1.0OECLG'reak,AllENCCore............
553.433.44RefloodUpperPlenumPressure, 1.0DECLGBreak,AllENCCore...............................
56CoreRefloodingRate,1.0OECLGBreak,A11ENCCore....................-......-....
..573.453.46TOODEE2CladdingTemperature versusTime,1.0OECLGBreak,2.MWO/kgCase,Cycle5'ore.....58TOOOEE2CladdingTemperature versusTime,1.0OECLGBreak,10.MWO/kgCase,Cycle5Core...................
~-.....593.47TOOOEE2Cladding1.0OECLGBreak,Cycle5Core...Temperature versusTime,47.MWO/kgCase,~~~~~~~~~~~~~~~~~~~~~~~603.483.49TOOOEE2CladdingTemperature versusTime,1.0OECLGBreak,2.MWO/kgCase,AllENCCore.....TOODEE2CladdingTemperature versusTime,1.0DECLGBreak,10.MWO/kgCase,AllENCCore61'23.50TOOOEE2CladdingTemperature versusTime,1:0OECLGBreak,47.MWO/kgCase,AllENCCore63 XN-NF-84-21(NP
)Revision


==21.0INTRODUCTION==
LargebreakLOCA/ECCS analyseswereperformed in1982(~2)tosupportoperation oftheD.C.CookUnit2reactorat3425MWtwithENCfuel.Reference 1presented analytical resultsforaspectrumofpostulated largebreakLOCAs.Thelimitingbreakwasidentified asthe1.0doubleendedcoldlineguillotine (DECLG)break.Reference 2presented resultsforthepreviously identified limitingbreakusingtheEXEM/PWR(3)
ECCSmodels,exceptGAPEXwasusedasthefuelperformance modelinplaceofRODEX2.TheRODEX2codewasnotapproved(bytheNRCforuseinECCSanalysesin1982.Therefore theNRC-approved GAPEX(4)codewasusedtocalculate fuelproperties attheinitialization oftheLOCAcalculation.
TheReference 2reportdocumented theresultsofcalculations withoneandtwoLPSIpumpsoperating.
Atequivalent corepeakinglimits,higherpeakcladdingtemperatures (PCTs)werecalculated intheLOCAanalysiswhentwoLPSIpumpswereassumedoperating.
TheReference 2analysiswithtwoLPSIpumpsoperating wasperformed forCycle4operation ofD.C.CookUnit2.Thisreportdocuments theresultsofaLOCA/ECCS analysistosupportoperation oftheD.C.CookUnit2reactorforCycle5atathermalpowerratingof3425MWt,withupto5/.ofthesteamgenerator tubesplugged,withtwoLPSIpumpsoperating, andforENCfuelexposeduptoapeakrodaverageburnupof47MWD/kg.ResultsarealsoreportedforthecaseinwhichtheentirecoreisENCfuel.Thecalculations wereperformed usingtheEXEM/PWRLOCA/ECCS XN-NF-84-21(NP
)Revision2models,including fuelproperties calculated atthestartoftheLOCAtransient withENC'sgenerically approvedRODEX2code.(5)
XN-NF-84-21(NP)
XN-NF-84-21(NP)
Revision22.0SUMMARYLOCA/ECCS calculations wereperformed todetermine corepeakinglimitswhichpermitoperation oftheO.C.CookUnit2reactorwithinguidelines specified by10CFR50.46andAppendixK.(6)Thecalculations assumedoperation:
Revision  2 the core is  ENC  fuel. Figures  3.41 to 3.44 provide the reflood results    for the case in which the core  is composed  entirely of  ENC  fuel. Finally, Figures    3.45 to 3.50 provide the response of the fuel during the      refill and  reflood periods of the  LOCA  transient for the fuel burnup    cases  'investigated.
1)Atathermalpowerof3425MWt;2)With5Xaveragesteamgenerator tubeplugging; 3)WiththeCycle5coreconfiguration (85/ENCfuel);and4)WiththeentirecoreENCfuel.Thecalculations wereperformed forthepreviously identified limitingbreak,the1.0OECLGbreak,withfullECCSflow.Theresultsoftheanalysisaresummarized inTable2.1.Theanalysissupportsoperation oftheO.C.CookUnit2reactorforCycle5,andfuturecycleswithENCfuel,atatotalpeaklimit(FqT)of2.04andacorresponding F<Hlimitof1.55.T XN-NF-84-21(NP)
 
Revision2Table2.1O.C.CookUnit2LOCA/ECCS AnalysisSummaryPeakRodAverageBurnup(MWO/kg)FTQT2.02.041.5510.02.041.5547.02.041.55ResultsfortheCycle5CoreConfiuration(85KENCFuel)PeakCladdingTemperature (oF)MaximumLocal2r-H20Reaction(X)TotalZr-H20Reaction20074.6<1.020144.7<1.019934.5<1.0ResultswithEntireCoreofENCFuelPeakCladdingTemperature (oF)MaximumLocalZr-H20Reaction(/)TotalEr-H20Reaction20224.9<1.020305.0<1.020084.7<1.0 XN-NF-84-21(NP)
Revision23.0LIMITINGBREAKLOCAANALYSISThisreportsupplements previousLOCA/ECCS analysesperformed anddocumented forD.C.CookUnit2.AspectrumofLOCAbreakswasperformed andreportedinXN-NF-82-35.(1)
ThelimitingLOCAbreakwasdetermined tobethelargedouble-ended guillotine breakofthecoldlegorreactorvesselinletpipewithadischarge coefficient of1.0(1.0DECLG).Reference 2established thatforD.C.CookUnit2itismorelimitingintheLOCAanalysistoassumenofailureofaLPSIpump.Theanalysisperformed andreportedhereinconsiders:
1)That5Xofthesteamgenerator tubesareplugged;2)That85/oftheCycle5coreiscomposedofENCfuel;3)ThatbothLPSIpumpsareoperational; and4)ThatENCfuelmaybeexposedtoapeakaverageburnupof47MWD/kg.3.1LOCAANALYSISMODELTheExxonNuclearCompanyEXEM/PWR-ECCS evaluation modelwasusedtoperformtheanalysesrequired.
Thismodel(3)consistsofthefollowing computercodes:RODEX2(5) codeforinitialstoredenergy;RELAP4-EM(")
forthesystemblowdownandhotchannelblowdowncalculations; ICECON(8) forthecomputation oftheicecondenser containment backpressure; REFLEX(3g)forcomputation ofsystemreflood;andTOODEE2(3~ID~11) forthecalculation offinalfuelrodheatup.
XN-NF-84-21(NP
)Revision2TheOonaldC.CookUnit2nuclearpowerplantisa4-1oopWestinghouse pressurized waterreactorwithicecondenser containment.
Thereactorcoolantsystemisnodalized intocontrolvolumesrepresenting reasonably homogeneous regions,interconnected byflow-paths or"junctions".
Thesystemnodalization isdepictedinFigure3.1.Theunbrokenloopswereassumedsymmetrical andmodeledasoneintactloopwithappropriately scaledinput.Pumpperformance curvescharacteristic ofaWestinghouse series93Apumpwereusedintheanalysis.
Thetransient behaviorwasdetermined fromthegoverning conservation equations formass,energy,andmomentum.
Energytransport, flowrates,andheattransferweredetermined fromappropriate correlations.
TheCycle4LOCAanalysis(2) assumedthatlXofthesteamgenerator tubeswereplugged.Inthecurrentanalysis, theplantwasmodeledassumingasymmetric steamgenerator tubeplugging:
3.33/ofthetubespluggedintheintactloops,and10.0/ofthetubespluggedinthebrokenloop.ThelargerplugginginthebrokenloopresultsinhigherPCTs.Theprimarycoolantflowatfullpowerwasreducedby1.1/fromthecurrentmeasuredflowattheplanttoaccountfortheassumedaverage5Xsteamgenerator plugging.
Additionally, thecoremodelassumedthatthecoreis85/ENCfuel,whereasthepreviousanalysisassumedtheCycle4coreconfiguration.
Calculations werealsoperformed forthecaseinwhichthecoreisallENCfuel,representative of XN-NF-84-21(NP)
Revision2Cycle6andbeyond.ENCfuelhasasmallerroddiameterthantheWestinghouse fuelitreplaces.
Tooffsettheimpactofincreased flowareaontheLOCAanalysisresults,thecorepowerwasreducedfrom3425MWtto3411NWt.Systeminputparameters aregiveninTable3.1.Thereactorcoreismodeledwithheatgeneration ratesdetermined fromreactorkineticsequations withreactivity feedbackandwithdecayheatingasrequiredbyAppendixKof10CFR50.ChoppedcosineaxialpowerprofilesareassumedwiththemaximumaxialpeakingfactorusedintheanalysisgiveninTable3.2.Theanalysisoftheloss-of-coolant accidentisperformed at102percentofratedpower.Thecorepowerandotherparameters usedintheanalysesaregiveninTable3.1.3.2RESULTSTable3.3presentsthetimingandsequenceofeventsasdetermined forthelarge'breakguillotine configuration withadischarge coefficient of1.0forfullECCSoperation.
Table3.4presentstheresultsoftheexposureanalysisforCycle5composedof85KENCfuel.Table3.5presentstheresultsoftheexposureanalysisforacorecomposedofallENCfuel.ResultsoftheanalysesaregiveninFigures3.2to3.43.Figures3.2to3.10provideplotsofkeysystemblowdownparameters versustimes.Figures3.11to3.28provideplotsofkeycoreresponses duringtheblowdownperiod.Figures3.29to3.32providetheECCSflowsinthebrokenandintactloopduringtherefillperiod.Figure3.33presentsthecontainment pressureduringtheLOCA.Figures3.34to3.36presentthenormalized powerduringtheLOCAforthethreeexposurecasesanalyzed.
Figures3.37to3.40provideresultsfromtherefloodportionofthetransient forthecaseinwhich85Kof XN-NF-84-21(NP)
Revision2thecoreisENCfuel.Figures3.41to3.44providetherefloodresultsforthecaseinwhichthecoreiscomposedentirelyofENCfuel.Finally,Figures3.45to3.50providetheresponseofthefuelduringtherefillandrefloodperiodsoftheLOCAtransient forthefuelburnupcases'investigated.
XN-NF-84-21(NP)
XN-NF-84-21(NP)
Revision2Table3.1'DonaldC.CookUnit2SystemInputParameters ThermalPower,MWt*Core,MWtPump,MWtPrimaryCoolantFlow,Mlbm/hrPrimaryCoolantVolume,ft3Operating
Revision 2 Table 3.1     'Donald C. Cook Unit  2  System Input Parameters Thermal Power, MWt*                                                   3425 Core,   MWt                                                      3411 Pump, MWt                                                        14 Primary Coolant Flow, Mlbm/hr                                          143.1 Primary Coolant Volume, ft3                                            11,768 Operating Pressure, psia                                                2250 In,let Coolant Temperature, oF                                        542 Reactor Vessel Volume, ft3                                              4945 Pressurizer Volume, Total, ft3                                          1800 Pressurizer Volume, Liquid, ft3                                        1080 Accumulator Volume, Total, ft3 (each of four)                           1350 Accumulator Volume, Liquid, ft3 (each of four)                         950 Accumulator Pressure, psia                                              636 Steam Generator Heat Transfer Area,         ft2-SG1,   SG2, SG3, SG4                                            11,588, 3(12,446)
: Pressure, psiaIn,letCoolantTemperature, oFReactorVesselVolume,ft3Pressurizer Volume,Total,ft3Pressurizer Volume,Liquid,ft3Accumulator Volume,Total,ft3(eachoffour)Accumulator Volume,Liquid,ft3(eachoffour)Accumulator
Steam Generator    Secondary Flow,     ibm/hr-                       3.505 x 106 S'G1, SG2, SG3,   SG4                                          3(3.764 x 106)
: Pressure, psiaSteamGenerator HeatTransferArea,ft2-SG1,SG2,SG3,SG4SteamGenerator Secondary Flow,ibm/hr-S'G1,SG2,SG3,SG4SteamGenerator Secondary
Steam Generator    Secondary Pressure,     psia                      799 Reactor Coolant    Pump Head,     ft                                  277 Reactor Coolant    Pump    Speed, rpm                                1189 Moment    of Inerti a, bm-f t2 1                                              82,000 Cold Leg Pipe, I.D. in.                                                 27.5 Hot Leg Pipe, I.D. in.                                                 29.0 Pump Suction Pipe, I.D. in.                                             31.0 Fuel Assembly Rod Diameter,         in.                                 0.360 Fuel Assembly Rod      Pitch, in.                                       0.496 Fuel Assembly Pitch, in.                                               8.466 Fueled (Core) Height, in.                                               144.0 Fuel Heat Transfer Area, ft2**                                         57,327 Fuel Total Flow Area, Bare Rod,          ft2**                         53.703 Refueling Water Storage Tank Temperature,         oF                  80 Accumulator Water Temperature,         oF                              120
: Pressure, psiaReactorCoolantPumpHead,ftReactorCoolantPumpSpeed,rpmMomentofInertia,1bm-ft2ColdLegPipe,I.D.in.HotLegPipe,I.D.in.PumpSuctionPipe,I.D.in.FuelAssemblyRodDiameter, in.FuelAssemblyRodPitch,in.FuelAssemblyPitch,in.Fueled(Core)Height,in.FuelHeatTransferArea,ft2**FuelTotalFlowArea,BareRod,ft2**Refueling WaterStorageTankTemperature, oFAccumulator WaterTemperature, oF3425341114143.111,7682250542494518001080135095063611,588,3(12,446) 3.505x1063(3.764x106)799277118982,00027.529.031.00.3600.4968.466144.057,32753.70380120*PrimaryHeatOutputusedinRELAP4-fM Model=1.02x3425=*."ENCFuelParameters.
*Primary Heat Output used in RELAP4-fM Model           = 1.02 x 3425 = 3493.5 Mwt
3493.5Mwt 10XN-NF-84-21(NP)
*."ENC Fuel Parameters.
Revision2Table3.21.0OECLGBreakAnalysisParameters PeakRodAverageBurnup(MWO/kg)TotalCorePower(MWt)*TotalPeaking(F~)TFractionEnergyOeposited inFuel~FullyModerated CoreVoidedCore2.034112.040.9740.95410.034112.040.9740.95447.034112.040.9740.954Cycle5(85/ENCFuel)Peaking'AxialxEngineering
 
~-EnthalpyRise(F~H)T1.3161.551.3161.551.3161.55AllENCCorePeaking.AxialxEngineering
10                      XN-NF-84-21(NP)
.EnthalpyRise(F~H)T1.3161.551.3161.551.3161.55*2%poweruncertainty isaddedtothisvalueintheLOCAanalysis.
Revision  2 Table 3.2    1.0  OECLG Break Analysis Parameters Peak Rod Average Burnup (MWO/kg)                   2.0        10.0          47.0 Total Core Power (MWt)*                           3411        3411          3411 T
Total Peaking (F~)                                 2.04        2.04          2.04 Fraction Energy Oeposited in Fuel
      ~  Fully Moderated  Core                  0.974      0.974          0.974 Voided Core                            0.954      0.954          0.954 Cycle    5  (85/ ENC  Fuel)
Peaking Axial x  Engineering                    1.316      1.316          1.316 T
      ~
Enthalpy Rise (F~H)                     1.55      1.55          1.55 All  ENC  Core Peaking
      . Axial  x  Engineering                    1.316      1.316          1.316 T
      . Enthalpy Rise (F~H)                       1.55      1.55          1.55
*2% power    uncertainty is    added  to this value in the LOCA  analysis.
 
XN-NF-84-21(NP)
XN-NF-84-21(NP)
Revision2Table3.30.C.CookUnit21.0OECLGBreakEventTimesEventTime(sec.)StartBreakInitiation SafetyInjection SignalAccumulator Injection BrokenLoopIntactLoopEndofBypassSafetyPumpInjection StartofRefloodAccumulator EmptyBrokenLoopIntactLoop0.000.050.653.215.524.3125.6540.4844.252.9 12XN-NF-84-21(NP
Revision 2 Table 3.3    0. C. Cook Unit 2 1.0 OECLG Break Event Times Event                                                    Time  (sec.)
)Revision2Table3.41.0DECLGBreakFuelResponseResultsforCycle5.PeakRodAverageBurnup(MWD/kg)InitialPeakFuelAverageTemperature (oF)HotRodBurstTime(sec)Elevation (ft)ChannelBlockageFractionPeakCladTemperature
Start                                                        0.00 Break  Initiation                                            0.05 Safety Injection Signal                                      0.65 Accumulator Injection Broken Loop                                            3.2 Intact  Loop                                          15.5 End of Bypass                                              24.31 Safety  Pump  Injection                                    25.65 Start of  Ref lood                                          40.48 Accumulator Empty Broken Loop                                          44.2 Intact  Loop                                          52.9
.Time(sec)Elevation (ft)'.Temperature (oF)Zr-SteamReaction~LocalMaximumElevation (ft)~LocalMaximum(X)*CoreMaximum2.0215169.57.0.252879.6320079.634.6<1.010.0206070.57.0.282889.6320149.634.7<1.047.0162978.57.75.472699.3819939.384.5<1.0*Values400secintoLOCAtransient.
 
13XN-NF-84-21(NP)
12                        XN-NF-84-21(NP )
Revision2Table3.51.0OECLGBreakFuelResponseResultswithanAllENCCorePeakRodAverage.Burnup(MWO/kg)InitialPeakFuelAverageTemperature (oF)2.0215110.0206047.01629HotRodBurst.Time(sec)Elevation (ft).ChannelBlockageFraction69.17.0.2570.17.0.2878.37.75.47PeakCladTemperature
Revision    2 Table 3.4    1.0  DECLG Break Fuel Response Results  for Cycle  5
.Time(sec).Elevation (ft).Temperature (oF)Zr-SteamReaction.LocalMaximumElevation (ft).LocalMaximum(X)*.CoreMaximum2929.6320229.634.9<1.02929.6320309.625.0<1.02749.3820089.384.7<1.0*Values400secintoLOCAtransient.
. Peak Rod Average Burnup (MWD/kg)               2.0          10. 0          47.0 Initial  Peak Fuel Average Temperature  (oF)                           2151        2060            1629 Hot Rod Burst Time (sec)                             69.5        70.5            78.5 Elevation  (ft)                      7.0          7.0            7.75 Channel  Blockage Fraction              .25          .28            .47 Peak Clad Temperature
0Ep5oe'6erne8K6gONorig5IH~~CI~eRI5QEK]5ogmK CI1~0DCCOOK217X17~DECLBONs57AVEPLUG,10X343~3%PLUGSQOu)S0K~3k-QKC)y4-95KO1R,16zn2.4TAHEAFTERBREAK(SEC)Fiqnre3.PDowncomer FlowRateDnringBlowdownPeriod,1.0DECLGBreak 1.0DCCOOK217X17DECLBDN5XAVE'.PLUG10/3+3-3XPLUG.122DTIHEAFTERBREAKfSEC)3aFigure3.3UpperPlenumPressureDuringOlowdownPeriod,1.0OECLGBreak alDtvUlX'.y1.0DCCOOK217X1'j~DECL8DNi5lAVE.PLUG,10K3+3.31PLUG,4JCKoKgO44JK0QoCXgI1P1C20RATAHEAFTERBREAK(SEC)Figure3.clAverageCoreInletFlowduringBlowdownPeriod,1.0DECLGBreak
        . Time (sec)                             287          288            269 Elevation   (ft)                       9.63        9.63            9.38
~RLUV)Kgg)CI>o10OCCOOK217X17eOECLBONo5XAVEPLUGS10<'+3~3XPLUG>C)pomSQOI-DO4Jy<aDC9Cl121C202$TXMEAFTERBRFAKlSEC)2Ifiqure3.5AverageCoreOutletFlowduringBlowdownPeriod,1.0OCCLGBreak DbioKJ~8wRK10OCCOOK217X17aOECL BONt5~AVE~PLUG~10~3+3~3>PLUGSODg<oRupXDZ12162.0RATXHEAFTERORF"'K(SEC)Figure3.6TotalBreakFlowduringBlowdownPeriod,1.0DECLGBreak 10OCCOOKR1.0OECLGBON<<a8%5IjJwlpVesselSide~PumpSideTIME(SEC)Figure3.7BreakFlowEnthalpyOuringBlowdown, 1.0DECLGBreak tJ4JgCAgCK1.0DCCOOK217X17~DECLBOH.5XAVE.PlUG.10K3'+3-3XPLUGOaQOLoP-8cr.QKOg121C20t4TIHEAFTER8REAK(SEC)Figure3.0FlowfromIntactLoopAccumulator duringBlowdownPeriod,1.0DFCLGBreak tJ4J3CAw~e4Kld$CKfL10DCCOOK217X17rDECLBDNr5>AVEPLUGS1013+33XPLUGSOgK4J.ogKO1-oQOKKOgCK121C202lTXHEAFTERBREAK(SEC)a2Figure3.9F)owfromBrokenl.oopAccumulator duringBlnwdownPeriod,1.0DECLGBreak 1.0DCCOOK217X17~DECLBOND57AVE.PLUGi10l3+3-3XPLUG>lZ162024TAHEAFTERBREAK(SEC)2a32Figure3.10Pressurizer SurgeLineFlowduringBlowdownPeriod,1.0DL'CLGBreak l-0OCCOOKZ10OECLGt0tiTZ~E~SE.C)X8IZVlIOCOIFigure3.11lleatTransferCoefficientduringBlowdownPeriodatPCTNode,1.0DECLGBreak,2.0NHD/kgCase 1.0DCCOOK2.1.0OE'CLGtDZITIVEtSEC)Figure3.12CladSurfaceTemperature duringBlowdownPeriodatPCTNode,1.0DECLGBreak,2.0NWD/kgCase rJo~IMbjm4ggOX.ODCCOOKaa.ODEcLcg4nli1tNROtlTXVEtSEC)Figure3.13OepthofMetal-Water ReactionduringBlowdownPeriodatPCTNode,1.0OECLGBreak,2.0MWO/kgCase CDc4U)3OI10OCCOOKR1.0DECLG5II5oJ8BlSRDTXMElSEC)Figure3.10AverageFuelTemperature duringBlowdownPeriodatPCTLocation, 1.0OECLGBreak,P.UNWO/kgCaseR>c82:(IEAllg0COIa i.OOCCOOKZ.X-0OECLGFigure3.l5Q.&#xc3;NU3f.TIVE(SEC)llotAssemblyInletFlowduringBlowdownPeriod,1.0DECLGBreak,2.0HWD/kgCase 1.0DcCOOK21-0DE'CLG1$t0?ITXHE(SEC)Figure3.16I<otAssemblyOutletIlowduringBlowdownPeriod,1.0DECLGBreak,2.0I'1HD/kqCaseIOR>c82.'pVlOCQIo i.oDCCOOK2.x.oDECL&R924TIME(SEC)3240XlX8ZIEA0COIUFigure3.17lleatTransferCoeffir.ientduringBlowdownPeriodatPCTNode,1.0l)ECLGBreak,10.0MWD/kgCase 1.0DCCOOKZ1.0DECLGZOZLTINE'SEC)Figure3.18CladSurfaceTemperature duringBlowdownI'eriodatPCTNode,1.0DFCLGBreak,l0.0NWD/kgCasel4R7OCIVlOCOIo 1.0OCCOOK21.0OECLGHXz4OoHI-CJCKblI4JCCi8<olYHNoghQgZ.OUTIME(SEC)Figure3.19DepthofMetal-Water ReactionduringBlowdownPeriodatPCTNode,1.0DECLGBreak,10.0HWD/kgCase(0QX8H(IlAI0COIo 1.0DCCOOK21.0DECLGFigure3.20ZOtl3tTINE(SE'C)AverageFuelTeotperature duringBlowdownPeriodatPCTLocation, 1.0DECLGBreak,10.0HWD/kgCase(0QX8IVl0COIo 10OCCOOKR1.0OECLGFigure3.21Lt1CZOR.lTIVE(SE'C))lotRssemblytnletFlawduringOlowdownPeriod,1.0OLCI.Gllreak,10.0llWO/kgCase10KlM8RIVlOCOI 1.0OCCOOK2.10DfCLGzaZ(TINE(SfC)Figure3.22tlotAssemblyOutletFlowduringBlowdownPeriod,1.0OECLGBreak,10.0NHD/kgCase3C10R>C82:ICAOCOIMiMD l-0OCCOOK2=10OECLtFigure3.231klSt0t42$TIvEtSEC)lleatTansferCoefficient duringBlowdownPeriodatPCTNode,1.0DLCLGBreak,47.0MHD/kgCaseZXlDIZVlOCOIMmU 1-0OCCOOKP.1.0QECLGLSzaKlTETE(SE'C)Figure3.24CladSurfaceTemperature duringBlowdownPeriodatPCTNode,1.0DECLGBreak,47.0Hll0/kgCase
      '. Temperature  (oF)                     2007        2014            1993 Zr-Steam Reaction
~N~SQo~8Oo0~skg4JlZgOCI$gpOAJ1-0OCCOOk21.0DECL&R>c8KIVl)000I0lf1SEORltl"3E1TINE(SEC)Figure3.25DepthofMetal-Water ReactionDuringBlowdownPeriodatPCTNode,1.0DECLGBreak,47.0MWD/kgCase 10OCCOOK21.0OECLGFigure3.263R.'3CItLCt0UtlTIt>E(SEC1AverageFuelTemperature duringBlowdownPeriodatPCTLocation, 1.0DECLGBreak,47.0MWO/kgCasel0R>clDMIVl0COIo 10OCCOOK210DE'CLGI1tlS5lRATAHE(SEC)eeFigure3.27(lotAssemblyInletFlowduringBlowdownPeriod,1.0OECLGBreak,47.0MHD/kgCase 1.0OCCOOK2,1~0OCCLGFigure3.28lffOzltlTIvE(SEC)HotAssemblyOutletFlowduringBlowdownPeriod,1.0OECLGBreak,47.0MWD/kgCase
        ~ Local Maximum Elevation    (ft)       9.63        9.63            9.38
~8OyI.igure3.291t15tDZI3aTIMEAFTEREOBY(SEC)Accumulator FlowduringRefillandRefloodPeriods,BrokenLoop,1.0DECLGBreak 1$tD-HElTXHEAFTEREOBY(SEC)-.Figure3.30Rccumulator FlowduringRefillandRefloodPeriods,IntactLoop,1.0OECLGBreak 300250200150-10050-0050100150200Time(sec)After.Start250300350R>cEDMIVlllI0COIFigure3.31IIPSI0LPSIFlowduringRefillandRefloodPeriods,BrokenLoop,1.0OfCLGBreak CV)CQO1000800-600400POO2000050100150200Time(sec)AfterStart300350Iignre3.3?Hi'Sl5I.PSIFlowduringRefillandRefloodPeriods,IntactIoop,1.0I)ECLGllreak 2221PROO20191801615050100150200Time(sec)-After Start250Figure3.33Containment BackPressure, 1.0OECLGBreak300350g)XlDM'CIpUl000Ia CK4JO0a4Jt'4~lKLLoX~4Q(0COl$0200Z40TINE(SECONDS)SRIZVl000IoFigiire3.34Horn"li"edPokier,'.CDECLuBreak,Z.OHl'ID/kgCase ZlX8(IlhOOOIH.O160200210210TINE(SE'CONDS)3203CO100Eigure3.35Normalized Power,1.0BECLGBreak,10.0MWO/kgCase i0320isoQ.ONOZOOZEOTINED(SECONDS)I'igure3.36NormalizedPower,1.0DECLGBreak,47.0NWD/kgCase DCC2REFl000.10OECLGFULLECCSFLOVFQ=2.041553525HMT.HIXCORELESSSPCR40180Z00ZA0Z00TIHEFROMBOCREC(SEC)3ZO400R>cCDIVl0COIPOtVaI=i@ore3.3/lieflooclCoreMixlisreI.evel,1.0OECI.GBreak,Cycle5Core DCC2,REFLOODo1.0DECLGFULLECCSFLOWFQ=2.0$1.553425HWTiHIXCORELESSSPCR40801602002AO280TIHEFROHBOCREC(SEC)<00R>CID(IVlO00IUlinure3.3ARefloodfjowocoioer MixtureLevel,1.0DECLGBreak,Cycle5Core OCC2REFLOOD,1.0DECLGFULLECCSfLOWF9=2.0i1.553425HMT,HIXCORELESSSPCR40ao1602002402SOTIHEFROHBOCREC(SEC)360400R>cCDR(II/l0COIFOfOoIicjur>>3.39Hei'loodtipperPlenumPressure, 1.0OECLGBreak,Cycle5Core OCC2REFLOOD.1.0 OECLGFULLECCSFLOWFQ=2.041.553525HWTiHIXCORELESSSPCR40SO120160200RAO280TIMEFROHBOCREC(SEC)Iignre3.40CoreI-looding Rate,1.0DECI.GBreak,Cycle5Core380400R>C8R(IVl0COI~POa OCC2.REFLOODoAlLENCCORE-FOH=1-554040asozaazoozeaTXHEFROMBOCREC(SEC)3zoeaoIigure3.41lhefloori CoreHixIorel.evel,1.0DECI.GBreak,AllENCCore OCC2.REFLOOO.ALLEHCCORE-FOH=1.55LLJPAXHKoOOa40IO160200240ZIOTIMEFROM80CREC(SEC)360400Iigure3.02RefloorlOnwncomer MixtureLevel,1.0OECLGBreak,AllENCCore OCC2REFLOOOoALLENCCORE-FOH<<155MO$044X60ZaoZ.40nl0TINEFROHBOCREC(SEC)Eigure3.03liefloodUpperVier>iunPressiire, 1.0OECl.GBreak,AllENCCore'360400RX82(I~'I/I0COIa OCC2REFLOOD,ALLEHCCORE-FOH=1.553200126L605)0240TIMEFROMBOCREC(SEC)Iignore3A4CoreRefloodirlgRat.e,1.0DECI.GBreak,AllENCCore360ioo
        ~ Local Maximum (X)*                     4.6          4.7            4.5 Core Maximum                          < 1.0       <1.0            < 1.0
-FQ=2.05-FOH~1.55-2HMtLg5~alIblCLDaK"KtdCL'Kid/C9z,HClQoO1.PCTHOOE(HOOE22ATS-62FT-)2.RUPTUREOHOOE(NOOE11AT7.00FT)CICI%.040.0S0.0I'igure3.45200.0320.0360.0120.0160.0200.0Z(0.0TIME-SECONDSTOOOEE2CladdingTemperature versusTime,1.0DECLGBreak,2.HllD/KgCase,Cycle5Core
  *Values 400 sec into    LOCA transient.
-FQ=2.04-FOH~1.55-10H1-PCTNODE(NODE22AT$.62FT)2..RUPTUREDNODE(NODE11AT1-00FT-)40-0I:ignite3.0680.0ZS0.032,0.0160.0200.0240.0TIME-SECONDSTOODCE2CladdingTemperature versusTime,1.0DECI.GBreak,10.IIWD/KgCase,Cycle5Core360.040.0 N1-PCT)JODO'NODf RlAT$.31FT)(0hJhJKC9~UJ~Qc5I)LJf)'oCJ:LLlLJ0KQJCI)-5C9MClQogD0RUPTUREDHODRl'NODE1<.AT1.15FT-)ClClQ).0210.0320.0360.0120.040.080.0160.0?00'2<0.0TINE-SECONDSIigrrre3.47~l000l.:L2 Claddirrg Temperature versusTime,1.0OECLGBreak,4/.Hll0/KgCase,Cycle5Core40.0RX8RIVl00)I
 
-FQ~R.O{-FOB=1.55"2,HMi.PCTNODE(NODE22AT$.62FT.)2-RUPTUREDNODE(NODE).LAT1.00FT.)40.0I'igure3.0Aa0.0320.0360.0160.0200.02(0-0260.0TIHE-SECONDSTOOOLC2Cli~lrliugTemperaLure versusTime,1.0OLCl.GBreak,2.NWO/KgCase,Alll:NCCorelORO
13                      XN-NF-84-21(NP)
-FQ~L.0$-FOH=155-10H1-PCTNODEtNODE22,AT5.62FT.)RUPTUREDNODEtNODE11AT1.OOFT.)40.0Iigurt3.49320.0ao.o120.0160.0200.02io.o280-0TXHE-SECONDSf00f)EE2Clarlding funperature versus1ime,1.0DECLGBreak,10.NWf)/KgCase,AllENCCore FQ<2.04-FOH3.=1-55-h7M1.PCTHQOE(HOOE21AT031FT)Z.RUPTUREDHOOf(HOOE14AT7.15FT140.0Figure3.50320.080.0120.0160.0200.0240.0280.0TIME-SECONDS100DEE2CladdingTemperature versusTime,1.0DECIGBreak,c17.HWD/KgCase,RllENCCore l
Revision  2 Table 3.5    1.0 OECLG Break Fuel Response Results with an All  ENC Core Peak Rod Average. Burnup (MWO/kg)               2.0        10.0          47.0 Ini ti al  Peak Fuel Average Temperature    (oF)                          2151        2060          1629 Hot Rod Burst
64XN-NF-84-21 (NP)Revision
      . Time (sec)                           69.1        70.1          78.3 Elevation (ft)                       7.0        7.0           7.75
      . Channel Blockage Fraction              .25        .28          .47 Peak Clad Temperature
      . Time (sec)                             292        292          274
      . Elevation (ft)                         9.63        9.63          9.38
      . Temperature (oF)                       2022        2030          2008 Zr-Steam Reaction
      . Local Maximum Elevation    (ft)       9.63        9.62          9.38
      . Local Maximum (X)*                     4.9        5.0          4.7
      . Core Maximum                          <1.0       <1.0          <1.0
*Values 400 sec into      LOCA transient.
 
0 E  p 5 IH~~CI~
eR I5        QEK]5 o gm 5          K o  e' 6
erne 8 K6 g
O  Nor i  g
 
1 ~ 0 DC COOK 2    17X17 ~ DECL BONs    57 AVE    PLUG,10X 343    ~ 3% PLUGS CI QO u)S0 K
~3 k- Q K
C) y 4-9 5K O
1R,     16      zn        2.4 TAHE AFTER BREAK ( SEC)
F iqnre 3.P  Downcomer Flow Rate Dnring Blowdown Period, 1.0 DECLG Break
 
1.0  DC COOK    2 17X17 DECL BDN      5X AVE'. PLUG    10/ 3+3-3X    PLUG.
12                2D                          3a TIHE AFTER BREAK f SEC      )
Figure 3.3  Upper Plenum Pressure During Olowdown Period, 1.0 OECLG Break
 
al 1.0  DC COOK 2    17X1'j DECL 8DNi
                                      ~             5l AVE. PLUG,10K      3+3.31 PLUG, D
tv Ul X'.
y 4J CKo Kg O
4 4J K
0 Qo CXg I
1P      1C        20      RA TAHE AFTER BREAK ( SEC)
Figure 3.cl  Average Core  Inlet Flow during Blowdown Period, 1.0 DECLG Break
 
1 0 OC COOK 2    17X17 e OECL BONo 5X AVE        PLUGS 10  <'+3 ~ 3 X PLUG>
~R LU V)
K gg) CI
>o C) po mS Q  O I-D O
4Jy
<a D
C9 Cl 12      1C        20        2$       2I TXME AFTER BRFAK        l SEC) f iqure  3.5 Average Core Outlet Flow during Blowdown Period, 1.0  OCCLG Break
 
D bio      1 0 OC COOK 2 17X17aOECL BONt        5~ AVE ~ PLUG ~ 10~ 3+3 ~ 3> PLUGS KJ
~8 wR K
O Dg
<o R
up X
D Z
12      16      2.0        RA TXHE AFTER ORF"'K       ( SEC )
Figure 3.6  Total Break Flow during Blowdown Period, 1.0    DECLG Break
 
1 0 OC COOK R    1.0  OECLG BON
<<a8
%5                                          p Vessel Side IjJ wl Pump  Side
                                                    ~
TIME (SEC)
Figure 3.7  Break Flow Enthalpy Ouring Blowdown, 1.0  DECLG  Break
 
tJ          1.0  DC COOK 2 17X17      ~ DECL BOH. 5X AVE. Pl UG.10K          3'+3-3X PLUG 4J CA g g
CK Oa QO L
o P-8 cr. Q K
Og 12        1C        20        t4 TIHE AFTER 8REAK          ( SEC )
Figure 3.0  Flow from Intact  Loop Accumulator  during Blowdown Period, 1.0 DFCLG Break
 
tJ          1 0 DC COOK  2 17X17 r DECL BDNr 5> AVE        PLUGS  101 3+3 3X  PLUGS 4J3 CA  w
~
K e4 ld CK fL Og K
4J.
og K
O 1- o QO K
K Og CK 12      1C      20        2l              a2 TXHE AFTER BREAK ( SEC       )
Figure 3.9 F)ow from Broken l.oop Accumulator during Blnwdown Period, 1.0 DECLG Break
 
1.0  DC COOK 2 17X17 ~ DECL BOND      57 AVE. PLUGi10l 3+3-3X PLUG>
lZ      16      20        24      2a 32 TAHE AFTER BREAK      ( SEC)
Figure 3.10 Pressurizer Surge Line Flow during Blowdown Period, 1.0 DL'CLG Break
 
l- 0 OC COOK Z    1 0 OECLG X
8 Vl ZI I
O  CO I
t0        ti TZ~E   ~ SE.C)
Figure 3.11  lleat Transfer Coeff icient during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 NHD/kg Case
 
1.0  DC COOK 2. 1.0  OE'CLG tD      ZI TIVE t SEC)
Figure 3.12  Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 DECLG  Break, 2.0 NWD/kg Case
 
r          X.O DC COOK a    a.O DEcLc Jo
  ~I M
bjm 4
g gO g 4 nl i                1t        N        RO        tl TXVE t SEC)
Figure 3.13  Oepth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWO/kg Case
 
CD c4 U)3        1 0 OC COOK R    1.0  DECLG OI 5II 5
oJ 8
B R  >c 8 2:I
(
EA  ll g
0  CO I
lS        RD a
TXME    l SEC)
Figure 3.10  Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 OECLG Break, P.U  NWO/kg Case
 
i.O  OC COOK Z. X-0 OECLG Q.       &#xc3;       N        U                  3f.
TIVE (SEC)
Figure 3.l5  llot Assembly Inlet Flow during Blowdown Period, 1.0 DECLG Break, 2.0  HWD/kg Case
 
1.0 Dc  COOK 2    1-0  DE'CLG R
8
                                                                        >c 2.'
Vl p
O  CQ I
1$         t0       ?I            IO    o TXHE ( SEC )
Figure 3.16  I<ot Assembly Outlet  I low during Blowdown Period, 1.0  DECLG Break, 2.0  I'1HD/kq Case
 
i.o    DC COOK 2. x.o DECL&
8 X Xl ZI EA 0  CO I
R9        24                32      40 U
TIME (SEC)
F igure 3.17  lleat Transfer Coeff ir.ient during Blowdown Period at PCT  Node, 1.0 l)ECLG Break, 10.0 MWD/kg Case
 
1.0  DC COOK Z    1.0  DECLG R7 OC I
Vl O  CO I
ZO      ZL                      l4 o
TINE'  SEC )
Figure 3.18  Clad Surface Temperature during Blowdown I'eriod at PCT Node, 1.0 DFCLG  Break, l0.0 NWD/kg Case
 
1.0  OC COOK 2    1.0  OECLG H
X z4 Oo H
I-CJ CK bl I
4J CC i8
<o lY H
N og h
Qg 8QX
( HI lA I
0  CO I
Z.O        U                              (0      o TIME    ( SEC )
Figure 3.19  Depth of Metal-Water Reaction during    Blowdown Period at PCT Node, 1.0 DECLG Break, 10.0 HWD/kg Case
 
1.0  DC COOK 2    1.0  DECLG QX 8 I Vl 0  CO I
ZO        tl                3t        (0    o TINE ( SE'C )
Figure 3.20  Average Fuel Teotperature during Blowdown Period at PCT Location, 1.0 DECLG Break, 10.0 HWD/kg Case
 
1 0 OC COOK R    1.0  OECLG Kl M 8 RI Vl O  CO I
Lt        1C        ZO      R.l        10 TIVE (SE'C)
Figure 3.21 )lot Rssembly tnlet Flaw during Olowdown Period, 1.0 OLCI.G llreak, 10.0 llWO/kg Case
 
1.0  OC COOK 2. 1 0  DfCLG R  >C 8 2:I CA O  CO I
M iM za        Z(           3C 10 D
TINE   (SfC)
Figure 3.22  tlot Assembly Outlet Flow during Blowdown Period, 1.0  OECLG Break, 10.0 NHD/kg Case
 
l-0  OC COOK 2  =
1 0 OECLt Z
lD X
Vl ZI O  CO I
Mm 1k      lS        t0        t4        2$
U TIvE t SEC)
Figure 3.23  lleat Tansfer Coefficient during Blowdown Period at PCT Node, 1.0 DLCLG Break, 47.0 MHD/kg Case
 
1-0  OC COOK  P. 1.0  QECLG LS        za                  Kl TETE (SE'C)
Figure 3.24    Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 DECLG Break, 47.0 Hll0/kg Case
 
  ~ N 1-0  OC COOk  2  1.0  DECL&
~S Qo
~8 Oo 0
~s kg 4J lZ gO CI$
gp O AJ R
8 >c KI Vl
                                                                                              )
0  00 I
0        lf        1S        EO      Rl        tl      "3E        1 TINE (SEC)
Figure 3.25  Depth of Metal-Water Reaction During  Blowdown Period at  PCT Node, 1.0 DECLG Break, 47.0 MWD/kg Case
 
1 0 OC COOK 2    1.0  OECLG R  >c lD M I
Vl 0  CO I
It        LC      t0        U        tl      3R.       '3C l0    o TIt>E ( SEC 1 Figure 3.26 Average Fuel Temperature dur ing Blowdown Period at PCT Location, 1.0 DECLG Break, 47.0 MWO/kg Case
 
1 0 OC COOK 2      1 0 DE'CLG I        1t        lS      5l        RA        ee TAHE (SEC)
Figure 3.27   (lot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 MHD/kg Case
 
1.0  OC COOK 2, 1 ~ 0 OCCLG lf      fO      zl      tl TIvE (SEC)
Figure 3.28  Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG  Break, 47.0  MWD/kg Case
 
  ~
8 Oy 1t        15      tD        ZI                  3a TIME AFTER    EOB Y ( SEC )
I. igure 3.29 Accumulator Flow during Refill and Ref lood Periods, Broken Loop, 1.0 DECLG Break
 
1$       tD     -
H        El TXHE AFTER EOBY ( SEC )-.
Figure 3.30 Rccumulator Flow during Ref ill and Ref lood Periods,   Intact Loop, 1.0 OECLG Break
 
300 250 200 150-100 50-R >c ED M I
0                                                                              Vl  ll 0        50        100        150        200        250          300 350 0 I
CO Time (sec) After. Start                                I Figure 3.31 IIPSI 0 LPSI Flow  during Refill  and Ref lood Periods, Broken Loop, 1.0 OfCLG Break
 
C  1000 V)
CQ 800-O 600 400 P
O O  200 0
0          50        100        150        200                  300 350 Time (sec) After Start I ignre 3.3? Hi'Sl 5 I.PSI Flow during Refill and Reflood Periods, Intact I oop, 1.0 I)ECLG llreak
 
22 21 20 19 P
18 R
0 16 O
O  15 g) X lD M
                                                                        'C Ul pI 0          50        100        150        200        250 300 350  0  00 Time  (sec)-After Start                      I Figure 3.33  Containment Back Pressure, 1.0  OECLG Break                a
 
CK 4J O
0 a
4J t'4
~l K
LL oX SRI Vl Z
0  00 I
    ~4 Q    (0      CO                    l$ 0      200      Z40                o TINE ( SECONDS )
Figiire 3.34  Horn" li"ed Pokier, '.C DECLu Break, Z.O Hl'ID/kg Case
 
Zl X 8
(   I lh O  OO I
H.O      160      200      210        210      320 3CO 100 TINE ( SE'CONDS )
Eigure 3.35 Normalized Power, 1.0  BECLG Break, 10.0  MWO/kg Case
 
i0              Q.O        NO        ZOO      ZEO      iso      320 TINED  ( SECONDS   )
I'igure 3.36 Normal ized Power, 1.0  DECLG Break, 47.0 NWD/kg Case
 
DCC2 REFl    000.1  0 OECLG      FULL ECCS FLOV FQ=2.04            1 55    3525 HMT.HIX CORE LESS SPCR R
CD
                                                                                                    >c I
Vl 0  CO I
PO tV 40                              180        Z00        ZA0      Z00        3ZO            400 TIHE  FROM BOCREC ( SEC )                                           a I=i@ore 3.3/   lief loocl Core Mixlisre I.evel, 1.0  OECI.G Break, Cycle  5 Core
 
DCC2, REFLOODo  1.0  DECLG FULL ECCS FLOW        FQ=2.0$     1.55 3425 HWTiHIX CORE LESS    SPCR R  >C
(
ID I
Vl O 00 I
40        80              160      200      2AO      280                    <00 TIHE    FROH BOCREC ( SEC )                                      U l inure 3.3A Reflood fjowocoioer Mixture Level, 1.0 DECLG  Break, Cycle 5 Core
 
OCC2 REFLOOD,     1.0  DECLG FULL ECCS fLOW          F9=2.0i 1.55 3425 HMT,HIX CORE    LESS SPCR R >cR
(
CD I
I/l 0  CO I
FO  fO 40          ao                160      200      240        2SO                360 400 TIHE  FROH BOCREC ( SEC )                                          o I icjur>> 3.39 Hei'lood tipper Plenum Pressure, 1.0 OECLG  Break, Cycle 5 Core
 
OCC2 REFLOOD.1.0       OECLG FULL ECCS FLOW        FQ=2.04 1.55 3525 HWTiHIX CORE LESS SPCR 8R
                                                                                          >C
( RI Vl 0  CO I
                                                                                      ~  PO 40          SO    120        160      200        RAO      280        380    400 TIME FROH BOCREC        ( SEC)                                a I ignre 3.40 Core I-looding Rate, 1.0  DECI.G Break, Cycle  5 Core
 
OCC2. REFLOODo  Al L ENC CORE  FOH =         1-55 40        40                aso      zaa      zoo        zea      3zo      eao TXHE FROM BOCREC        (SEC)
I igure 3.41 lhefloori Core HixIore l.evel, 1.0  DECI.G Break, All ENC Core
 
OCC2. REFLOOO.     ALL EHC CORE  FOH = 1.55 LLJ PA X
H K
oO O
a 40          IO                  160      200      240      ZIO                360 400 TIME FROM 80CREC ( SEC )
I igure 3.02 Ref loorl Onwncomer Mixture Level, 1.0 OECLG Break, All ENC Core
 
OCC2 REFLOOOo      ALL ENC CORE  FOH           <<1  55 X
8R 2I
(~'
I/I 0  CO I
44        $0                  X60        Zao      Z.40      nl 0      MO      '360 400 TINE FROH BOCREC (SEC)                                             a Eigure 3.03 lief lood Upper Vier>iun Pressiire, 1.0  OECl.G Break, All ENC Core
 
OCC2 REFLOOD,  ALL EHC CORE  FOH = 1.55 0                126        L60        5)0        240                320 360 ioo TIME FROM BOCREC (SEC)
I ignore 3A4 Core Ref loodirlg Rat.e, 1.0 DECI.G  Break, All ENC Core
 
FQ=2.05 FOH ~1.55   - 2 HM
: 1. PCT HOOE (HOOE 22 AT S-62 FT- )
tL g    2. RUPTUREO HOOE (NOOE 11 AT 7.00 FT  )
5~
al I
bl CL Da K"
K td CL
'K id/
C9 z,
H Cl Qo O
CI CI
    %.0 40.0        S0.0      120.0    160.0    200.0  Z(0.0    200.0    320.0      360.0 TIME  SECONDS I'igure 3.45      TOOOEE2 Cladding Temperature versus Time, 1.0 DECLG  Break,
: 2. HllD/Kg Case, Cycle 5 Core
 
FQ=2.04 FOH     ~1.55 10    H 1- PCT NODE (NODE 22 AT $ .62 FT )
2.. RUPTURED NODE (NODE 11 AT 1-00 FT- )
40-0      80.0                160.0    200.0    240.0    ZS0.0      32,0.0 360.0 40 .0 TIME  SECONDS I:ignite 3.06      TOODCE2  Cladding Temperature versus Time, 1.0  DECI.G Break,
: 10. IIWD/Kg Case, Cycle 5 Core
 
N 1- PCT
                          )JODO'NODf Rl AT $ .31 FT  )
RUPTURED HODR (0
hJ                  l'NODE 1<.AT 1.15 FT- )
hJ K
C9~
UJ  ~
Q c5 I
)LJ f)'
o CJ:
LL lLJ 0
K QJ CI
)-5 C9 M
Cl QoD g
0 RX 8 RI Vl 0 0)
I Cl Cl Q).0      40.0            80.0            120.0    160.0      ?00 '    2<0.0    210.0    320.0 360.0 40 .0 TINE      SECONDS I igrrre 3.47  ~
l000l.:L2 Claddirrg Temperature versus Time, 1.0 OECLG Break, 4/. Hll0/Kg Case, Cycle 5 Core
 
                                            - FQ~R.O{  FOB =1.55    "  2, HM
: i. PCT NODE (NODE 22 AT $ .62 FT. )
2-  RUPTURED NODE (NODE ).L AT 1.00 FT. )
40.0      a0.0                    160.0      200.0  2(0-0    260.0      320.0 360.0 lORO TIHE  SECONDS I'igure 3.0A      TOOOLC2  Cl i~lrliug TemperaLure versus Time, 1.0  OLCl.G Break,
: 2. NWO/Kg  Case,   All  l:NC Core
 
FQ~L.0$  FOH =1 55  10 H 1-   PCT NODE t NODE 22, AT 5.62 FT. )
RUPTURED NODE t NODE  11 AT 1.OO  FT. )
40.0        ao.o        120.0    160.0      200.0  2io.o    280-0    320.0 TXHE  SECONDS I i gurt  3.49      f00f)EE2 Clarlding funperature versus 1 ime, 1.0 DECLG Break,
: 10. NWf)/Kg Case,  All  ENC Core


==24.0CONCLUSION==
FQ<2.04  FOH 3.=1-55  -  h7 M
S Forbreaksuptoandincluding thedouble-ended severance ofareactorcoolantpipe,theDonaldC.CookUnit2Emergency CoreCoolingSystemwill.meettheAcceptance Criteriaaspresented in10CFR50.46foroperation withENC17xl/fueloperating inaccordance withtheLHGRlimitsnotedinTable2.1.Thatis:1.Thecalculated peakfuelelementcladtemperature doesnotexceedthe2200oFlimit.2.Theamountoffuelelementcladdingthatreactschemically withwaterorsteamdoesnotexceed1percentofthetotalamountofzircaloyinthereactor.3.Thecladdingtemperature transient isterminated atatimewhenthecoregeometryisstillamenabletocooling.Thehotfuelrodcladdingoxidation limitsof17/arenotexceededduringorafterquenching.
: 1. PCT HQOE (HOOE 21 AT 0 31 FT )
4.Thecoretemperature isreducedanddecayheatisremovedforanextendedperiodoftime,asrequiredbythelong-lived radio-activityremaining inthecore.  
Z. RUPTURED HOOf (HOOE 14 AT 7.15 FT  1
: 40. 0      80.0        120.0      160.0      200.0  240.0      280.0      320.0 TIME  SECONDS Figure 3.50      100DEE2  Cladding Temperature versus Time, 1.0    DECI G Break, c17. HWD/Kg  Case, Rll  ENC Core
 
l 64                            XN-NF-84-21 (NP )
Revision  2
 
==4.0  CONCLUSION==
S For breaks up to and including the double-ended         severance   of a reactor coolant pipe, the Donald      C. Cook  Unit  2 Emergency Core Cooling System          will.
meet the Acceptance    Criteria  as presented  in  10 CFR 50.46 for operation with ENC  17xl/ fuel operating in accordance with the          LHGR  limits  noted in Table 2.1. That  is:
: 1. The  calculated peak fuel element clad temperature does not exceed the 2200oF    limit.
: 2. The amount    of fuel element cladding that reacts chemically with water or steam does not exceed      1  percent of the total amount of zircaloy in the reactor.
: 3. The  cladding temperature transient is terminated at        a  time when the core geometry is    still  amenable    to cooling.     The hot    fuel rod cladding oxidation limits of 17/ are not exceeded during or after quenching.
: 4. The core temperature    is reduced  and decay heat    is  removed  for  an extended    period of time, as required by the long-lived radio-activity  remaining in the core.


XN-NF-84-21(NP)
XN-NF-84-21(NP)
Revision
Revision 2
 
==5.0  REFERENCES==
 
XN-NF-82-35, "Donald C. Cook Unit 2 LOCA ECCS Analysis Using EXEM/PWR Large Break Results," Exxon Nuclear Company, Inc., Rich-land, WA 99352, April 1982.
(2)  XN-NF-82-35, Supplement 1, "Donald C. Cook Unit 2 Cycle 4 Limiting Break LOCA-ECCS Analysis Using EXEM/PWR," Exxon Nuclear Company, Inc., Richland, WA 99352, November 1982.
(3)  XN-NF-82-20(P), Rev. 1, August 1982; and Supplement 4, July 1984, "Exxon Nuclear Company Evaluation Model EXEM/PWR ECCS Model Up-dates," Exxon Nuclear Company, Inc., Richland, WA 99352.
(4)  XN-73-25, "GAPEXX:  A  Computer Program  for Predicting Pellet-to-Cladding Heat Transfer Coefficients," Exxon Nuclear Company, Inc.,
Richland, WA, August 13, 1973.
(5)  XN-NF-81-58(A), Rev. 2, "RODEX2: Fuel Rod Thermal-Mechanical Re-sponse Evaluation Model," Exxon Nuclear Company, Inc., Richland, WA
        . 99352, February 1983.
(6)  "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Cooled Nuclear Power Reactors," 10 CFR 50.46 and Appendix K of 10 CFR 50.
(7)  U.S. Nuclear Regulatory Commission letter, T.A. Ippolito (NRC) to W.S. Nechodom (ENC), "SER for ENC RELAP4-EM Update," March 1979.
(8)  XN-CC-39, Rev. 1, "ICECON: A Computer Program Used    to Calculate Containment Backpressure for LOCA Analysis ( Including Ice Condenser Plants)," Exxon Nuclear Company, Inc., Richland, WA 99352, November 1977.
(9)  XN-NF-78-30(A), "Exxon Nuclear Company WREM-Based Generic    PWR ECCS Evaluation Model Update ENC WREM-IIA," Exxon Nuclear  Company,  Inc.,
Richland, WA 99352. May 1979.
(10)  XN-NF-82-07(A), Rev. 1, "Exxon Nuclear Company ECCS Cladding Swelling and Rupture Model," Exxon Nuclear Company, Inc., Richland, WA 99352, March 1982.
G.N. Lauben,  NRC  Report NUREG-75/057,  "TOODEE2: A Two-Dimensional 1>>
(12)  D.C. Cook Unit 2 Technical Specification, Appendix "A" to License No.
DPR-74, Amendment No. 48.


==25.0REFERENCES==
66                      XN-NF-84-21(NP)
Revision 2 (13)  XN-NF-82-32(P), Supplement 2, "Plant Transient Analysis for the Donald C. Cook Unit 2 Reactor at 3425 MWt: Operation with 5% Steam Generator Tube Plugging," Exxon Nuclear Company, Inc., Richland, WA 99352, February 1984.,
(14)  XN-NF-84-21(P), "Donald C. Cook Unit 2, Cycle 5, 5X Steam Generator Tube Plugging, Limiting Break LOCA/ECCS Analysis," Exxon Nuclear Company, Inc., Richland, WA 99352, February 1984.
( 15) Letter,  H. R. Denton (NRC) from J. C. Chandler (ENC), Re: Support-ing Documentation for Unit 2 Technical Specification Changes for Cycle 5 Reload, dated May 7, 1984 (JCC:076:84).
(16)  XN-NF-84-21(P), Revision 1, "Donald C. Cook Unit 2 Cycle 5 - 5X Steam Generator Tube Plugging, Limiting Break LOCA/ECCS Analysis,"
Exxon Nuclear Company, Inc., Richland, WA 99352, May 1984.


(2)(3)(4)(5)XN-NF-82-35, "DonaldC.CookUnit2LOCAECCSAnalysisUsingEXEM/PWRLargeBreakResults,"
XN-NF-8'4-21(NP )
ExxonNuclearCompany,Inc.,Rich-land,WA99352,April1982.XN-NF-82-35, Supplement 1,"DonaldC.CookUnit2Cycle4LimitingBreakLOCA-ECCS AnalysisUsingEXEM/PWR,"
Revision  2 Issue Date: 8/7/84 DONALD C COOK UNIT 2 CYCLE 5  Sio STEAN, GENERATOR TUBE PLUGGING LIMITING BREAK LOCA/ECCS ANALYSIS Distribution J. C. Chandler W. V. Kayser G. F. Owsley H. G. Shaw T. Tahvili AEP/H.G. Shaw (10)
ExxonNuclearCompany,Inc.,Richland, WA99352,November1982.XN-NF-82-20(P),
USNRC/J.C. Chandler (15)
Rev.1,August1982;andSupplement 4,July1984,"ExxonNuclearCompanyEvaluation ModelEXEM/PWRECCSModelUp-dates,"ExxonNuclearCompany,Inc.,Richland, WA99352.XN-73-25, "GAPEXX:AComputerProgramforPredicting Pellet-to-CladdingHeatTransferCoefficients,"
Document Control (3)}}
ExxonNuclearCompany,Inc.,Richland, WA,August13,1973.XN-NF-81-58(A),
Rev.2,"RODEX2:FuelRodThermal-Mechanical Re-sponseEvaluation Model,"ExxonNuclearCompany,Inc.,Richland, WA.99352,February1983.(6)"Acceptance CriteriaforEmergency CoreCoolingSystemsforLightWaterCooledNuclearPowerReactors,"
10CFR50.46andAppendixKof10CFR50.(7)(8)(9)(10)(12)U.S.NuclearRegulatory Commission letter,T.A.Ippolito(NRC)toW.S.Nechodom(ENC),"SERforENCRELAP4-EM Update,"March1979.XN-CC-39, Rev.1,"ICECON:AComputerProgramUsedtoCalculate Containment Backpressure forLOCAAnalysis(Including IceCondenser Plants),"
ExxonNuclearCompany,Inc.,Richland, WA99352,November1977.XN-NF-78-30(A),
"ExxonNuclearCompanyWREM-Based GenericPWRECCSEvaluation ModelUpdateENCWREM-IIA,"
ExxonNuclearCompany,Inc.,Richland, WA99352.May1979.XN-NF-82-07(A),
Rev.1,"ExxonNuclearCompanyECCSCladdingSwellingandRuptureModel,"ExxonNuclearCompany,Inc.,Richland, WA99352,March1982.G.N.Lauben,NRCReportNUREG-75/057, "TOODEE2:
ATwo-Dimensional 1>>D.C.CookUnit2Technical Specification, Appendix"A"toLicenseNo.DPR-74,Amendment No.48.
66XN-NF-84-21(NP)
Revision2(13)XN-NF-82-32(P),
Supplement 2,"PlantTransient AnalysisfortheDonaldC.CookUnit2Reactorat3425MWt:Operation with5%SteamGenerator TubePlugging,"
ExxonNuclearCompany,Inc.,Richland, WA99352,February1984.,(14)XN-NF-84-21(P),
"DonaldC.CookUnit2,Cycle5,5XSteamGenerator TubePlugging, LimitingBreakLOCA/ECCS Analysis,"
ExxonNuclearCompany,Inc.,Richland, WA99352,February1984.(15)Letter,H.R.Denton(NRC)fromJ.C.Chandler(ENC),Re:Support-ingDocumentation forUnit2Technical Specification ChangesforCycle5Reload,datedMay7,1984(JCC:076:84).
(16)XN-NF-84-21(P),
Revision1,"DonaldC.CookUnit2Cycle5-5XSteamGenerator TubePlugging, LimitingBreakLOCA/ECCS Analysis,"
ExxonNuclearCompany,Inc.,Richland, WA99352,May1984.
XN-NF-8'4-21(NP
)Revision2IssueDate:8/7/84DONALDCCOOKUNIT2CYCLE5SioSTEAN,GENERATOR TUBEPLUGGINGLIMITINGBREAKLOCA/ECCS ANALYSISDistribution J.C.ChandlerW.V.KayserG.F.OwsleyH.G.ShawT.TahviliAEP/H.G.Shaw(10)USNRC/J.C.
Chandler(15)DocumentControl(3)}}

Latest revision as of 01:59, 4 February 2020

Nonproprietary Version of Rev 2 to DC Cook,Unit 2 Cycle 5,5%.Steam Generator Tube Plugging Limiting Break Loca/Eccs Analysis.
ML17326B134
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 08/07/1984
From: Chandler J, Kayser W, Stout R
SIEMENS POWER CORP. (FORMERLY SIEMENS NUCLEAR POWER
To:
Shared Package
ML17326B133 List:
References
XN-NF-84-21-(NP, XN-NF-84-21-(NP)-R02, XN-NF-84-21-(NP)-R2, NUDOCS 8408090209
Download: ML17326B134 (80)


Text

XN-NF-84-21(NP )

Revision 2 Issue Date: 8/7/84 DONALD C ~ COOK UNIT 2 CYCLE 5 - 5/o STEAM GENERATOR TUBE PLUGGING LIMITING BREAK LOCA/ECCS ANALYSIS Prepared -by:

W. V. ayser, Manager PWR Safety Analysis Concur:

. C. C an er, Lea ng neer Reload Fuel Licensing Approve: CSr out, Manager Licensing & Safety Engineering ggg g Concur:

.'. organ, Proposals anag r 5 Customer Services Engineering Approve: 87~%/

. A. o er, Manag Fu 1 Engineering 8 Technical Services gf

,E3(CGM NU.CLEAR .COMPANY, INC.

KNIMIolY-MIlIl'I'.II.II.f. IlI)I'Y

r

~

~

}

5 F

XN-Nf-84-21(NP)

Revision 2 TABLE OF CONTENTS Section ~Pa e

1.0 INTRODUCTION

....:.................................. 1 2.0 S UMMARY o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3 3.0 LIMITING BREAK LOCA ANALYSIS ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 5

3. 1 LOCA ANALYSIS MODEL ........................... 5 3 .2 RESULTS 7

4.0 CONCLUSION

S ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 64

5.0 REFERENCES

...............,.......................... 65

~

~

i

~

l i

1

~

~

~

~

~

~

~

XN-NF-84-21(NP)

Revision 2 LIST OF TABLES Parcae Table 2.1 D.C. Cook Unit 2 LOCA/ECCS Analysis Summary ........ 4 3.1 Donald C. Cook Unit 2 System Input Parameters ~ ~ ~ ~ ~ ~ 9 3.2 1.0 OECLG Break Analysis Parameters ................ 10 3.3 D.C. Cook Unit 2 1.0 OECLG Break Event Times ... ...

~ 11 3.4 1.0 OECLG Break Fuel Response Results for C ycle 5 ............................................ 12 3.5 1.0 OECLG Break Fuel Response Results with an All ENC Core .................................... 13

j N

~

I 8

~

~

~

~

~

~

~

~

~

~

~

~

~

. XN-NF-84-21(NP)

Revision 2 LIST OF FIGURES

~Fi ure Pacae 3.1 RELAP4/EM Blowdown System Nodalization for D.C. Cook Unit 2 .... 14 3.2 Oowncomer Flow Rate During Blowdown Period, 1.0 OECLG Break ................................... 15 3.3 Upper Plenum Pressure during Blowdown Period, 1.0 DE(LG Break ....... 16 3.4 Average Core Inlet Flow during Blowdown Period, 1.0 OECLG Break ........ 17 3.5 Average Core Outlet Flow during Bl owdown Period, 1.0 DECLG Break ..................... 18 3.6 Total Break Flow during Blowdown Period, 1.0 OECLG Break ............................. 19 3.7 Break Flow Enthalpy during Blowdown, 1.0 DECLG Break .................................... 20 3.8 Flow from Intact Loop Accumulator during Blowdown Period, 1.0 OECLG Break .................. 21 3.9 Flow from Broken Loop Accumulator during Blowdown Period, 1.0 OECLG Break .................. 22 3.10 Pressurizer Surge'ine Flow during Blowdown Period, 1.0 OECLG Break ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 23 3.11 Heat Transfer Coefficient during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWO/kg Case . 24 3.12 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWD/kg Case ..........,. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 25 3.13 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 MWD/kg Case . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 26

iv XN-NF-84-21(NP)

Revision 2 LIST OF FIGURES (Cont. )

~Fi ure Pa<ac 3.14 Average Fuel Temperature during Bl owdown Period at PCT Location, 1.0 OECLG Break, 2.0 MWD/kg Case . 27 3.15 Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 2.0 MWD/kg Case ........... 28 3.16 Hot Assembly Outlet Flow during Blowdown Period, 1.0 DECLG Break, 2.0 MWD/kg Case ........... 29 3.17 Heat Transfer Coefficient during Blowdown Period at PCT Node, 1.0 OECLG Break, 10.0 MWO/kg Case ................................... 30 3.18 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 10.0 MWD/kg Case ................................... 31 3.19 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 10.0 MWD/kg Case .................. 32 3.20 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 DECLG Break, 10.0 MWD/kg Case ................................... 33 3.21 Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 MWO/kg Case .................. 34 3.22 Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 MWD/kg Case .......;.......... 35 3.23 Heat Transfer Coefficient during Blowdown Period at PCT Node, 1.0 OECLG Break, 47.0 MWD/kg Case .................. . . . . ..... 36 3.24 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 47.0 MWO/kg Case ................................... 37 3.25 Depth of Metal-Water Reaction during Slowdown Period at PCT Node, 1.0 OECLG Break, 47.0 MWD/kg Case ....... .......................... 38

XN-NF 21( NP )

Revision 2 LIST OF FIGURES (Cont. )

~Fi ere Pa<ac 3.26 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 OECLG Break, 47.0 MWO/kg Case e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 39 3.27 Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 NWD/kg Case'....... 40 3.28 Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 HWD/kg Case .......... 41 3.29 Accumulator Flow during Refill and Ref lood Periods, Broken Loop, 1.0 OECLG Break ............. 42 3.30 Accumulator Flow during Refill and Ref lood Periods, Intact Loop, 1.0 DECLG Break ............. 43 3.31 HPSI 8 LPSI Flow during Refill and Ref lood Periodg, Broken Loop, 1.0 OECLG Break ............. 44 3.32 HPSI 8 LPSI Flow during Refill and Ref lood Periods, Intact Loop, 1.0 DECLG Break ............. 45 3.33 Containment Back Pressure, 1.0 DECLG Break ........ 46 3.34 Normalized Power, 1.0 OECLG Break, 2.0 MWO/kg Case ..... 47 3.35 Normalized Power, 1.0 DECLG Break, 10.0 NWD/kg Case .............................. 48 3.36 Normalized Power, 1.0 OECLG Break, 47.0 NWD/kg Case ............. 49 3.37 Reflood Core Mixture Level, 1.0 OECLG Break, C ycle 5 Core ........................ 50 3.38 Reflood Downcomer Mixture Level, 1.0 DECLG Break, Cycle 5 Core ..................... 51 3.39 Reflood Upper Plenum Pressure, 1.0 OECLG Break, Cycle 5 Core ............................... 52

vi XN-NF-84-21(NP)

Revision 2 LIST OF FIGURES (Cont.)

~Fi ure ~Pa e 3.40 Core Flooding Rate, 1.0 OECLG Break, Cycle 5 Core ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ ~ ~ ~ 53 3.41 Ref lood Core Mixture Level, 1.0 OECLG Break, All ENC Core ...................................... 54 3.42 Reflood Oowncomer Mixture Level, 1.0 OECLG All ENC Core ............ 'reak, 55 3.43 Ref lood Upper Plenum Pressure, 1.0 DECLG Break, All ENC Core ............................... 56 3.44 Core Ref looding Rate, 1.0 OECLG Break, A 11 ENC Core ....................-......-.... .. 57 3.45 TOODEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 2. MWO/kg Case, Cycle 5'ore ..... 58 3.46 TOOOEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 10. MWO/kg Case, C ycle 5 Core ................... -..... ~ 59 3.47 TOOOEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 47. MWO/kg Case, Cycle 5 Core ... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 60 3.48 TOOOEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 2. MWO/kg Case, All ENC Core ..... 61'2 3.49 TOODEE2 Cladding Temperature versus Time, 1.0 DECLG Break, 10. MWO/kg Case, All ENC Core 3.50 TOOOEE2 Cladding Temperature versus Time, 1:0 OECLG Break, 47. MWO/kg Case, All ENC Core 63

XN-NF-84-21(NP )

Revision 2

1. 0 I NTRODUCT ION Large break LOCA/ECCS analyses were performed in 1982( ~2) to support operation of the D.C. Cook Unit 2 reactor at 3425 MWt with ENC fuel. Reference 1 presented analytical results for a spectrum of postulated large break LOCAs.

The limiting break was identified as the 1.0 double ended cold line guillotine (DECLG) break. Reference 2 presented results for the previously identified limiting break using the EXEM/PWR(3) ECCS models, except GAPEX was used as the fuel performance model in place of RODEX2. The RODEX2 code was not approved

(

by the NRC for use in ECCS analyses in 1982. Therefore the NRC-approved GAPEX(4) code was used to calculate fuel properties at the initialization of the LOCA calculation. The Reference 2 report documented the results of calculations with one and two LPSI pumps operating. At equivalent core peaking limits, higher peak cladding temperatures (PCTs) were calculated in the LOCA analysis when two LPSI pumps were assumed operating. The Reference 2 analysis with two LPSI pumps operating was performed for Cycle 4 operation of D.C. Cook Unit 2.

This report documents the results of a LOCA/ECCS analysis to support operation of the D.C. Cook Unit 2 reactor for Cycle 5 at a thermal power rating of 3425 MWt, with up to 5/. of the steam generator tubes plugged, with two LPSI pumps operating, and for ENC fuel exposed up to a peak rod average burnup of 47 MWD/kg. Results are also reported for the case in which the entire core is ENC fuel. The calculations were performed using the EXEM/PWR LOCA/ECCS

XN-NF-84-21(NP )

Revision 2 models, including fuel properties calculated at the start of the LOCA transient with ENC's generically approved RODEX2 code.(5)

XN-NF-84-21(NP)

Revision 2 2.0

SUMMARY

LOCA/ECCS calculations were performed to determine core peaking limits which permit operation of the O.C. Cook Unit 2 reactor within guidelines specified by 10 CFR 50.46 and Appendix K.(6) The calculations assumed operation:

1) At a thermal power of 3425 MWt;
2) With 5X average steam generator tube plugging;
3) With the Cycle 5 core configuration (85/ ENC fuel); and
4) With the entire core ENC fuel.

The calculations were performed for the previously identified limiting break, the 1.0 OECLG break, with full ECCS flow.

The results of the analysis are summarized in Table 2.1. The analysis supports operation of the O.C. Cook Unit 2 reactor for Cycle 5, and future cycles with ENC fuel, at a total peak limit (FqT) of 2.04 and a corresponding T

F<H limit of 1.55.

XN-NF-84-21(NP)

Revision 2 Table 2. 1 O.C. Cook Unit 2 LOCA/ECCS Analysis Summary Peak Rod Average Burnup (MWO/kg) 2.0 10.0 47.0 FT Q

2.04 2.04 2.04 T

1.55 1.55 1.55 Results for the Cycle 5 Core Confi uration (85K ENC Fuel)

Peak Cladding Temperature (oF) 2007 2014 1993 Maximum Local 2r-H20 Reaction (X) 4.6 4.7 4.5 Total Zr-H20 Reaction <1.0 < 1.0 < 1.0 Results with Entire Core of ENC Fuel Peak Cladding Temperature (oF) 2022 2030 2008 Maximum Local Zr-H20 Reaction (/) 4.9 5.0 4.7 Total Er-H20 Reaction <1.0 < 1.0 < 1.0

XN-NF-84-21(NP)

Revision 2 3.0 LIMITING BREAK LOCA ANALYSIS This report supplements previous LOCA/ECCS analyses performed and documented for D.C. Cook Unit 2. A spectrum of LOCA breaks was performed and reported in XN-NF-82-35.(1) The limiting LOCA break was determined to be the large double-ended guillotine break of the cold leg or reactor vessel inlet pipe with a discharge coefficient of 1.0 (1.0 DECLG). Reference 2 established that for D.C. Cook Unit 2 it is more limiting in the LOCA analysis to assume no failure of a LPSI pump. The analysis performed and reported herein considers:

1) That 5X of the steam generator tubes are plugged;
2) That 85/ of the Cycle 5 core is composed of ENC fuel;
3) That both LPSI pumps are operational; and
4) That ENC fuel may be exposed to a peak average burnup of 47 MWD/kg.

3.1 LOCA ANALYSIS MODEL The Exxon Nuclear Company EXEM/PWR-ECCS evaluation model was used to perform the analyses required. This model(3) consists of the following computer codes: RODEX2(5) code for initial stored energy; RELAP4-EM(") for the system blowdown and hot channel blowdown calculations; ICECON(8) for the computation of the ice condenser containment backpressure; REFLEX(3 g) for computation of system ref lood; and TOODEE2(3~ID~11) for the calculation of final fuel rod heatup.

XN-NF-84-21(NP )

Revision 2 The Oonal d C. Cook Uni t 2 nuclear power pl ant is a 4-1 oop Westinghouse pressurized water reactor with ice condenser containment. The reactor coolant system is nodalized into control volumes representing reasonably homogeneous regions, interconnected by flow-paths or "junctions".

The system nodalization is depicted in Figure 3. 1. The unbroken loops were assumed symmetrical and modeled as one intact loop with appropriately scaled input. Pump performance curves characteristic of a Westinghouse series 93A pump were used in the analysis. The transient behavior was determined from the governing conservation equations for mass, energy, and momentum. Energy transport, flow rates, and heat transfer were determined from appropriate correlations.

The Cycle 4 LOCA analysis(2) assumed that lX of the steam generator tubes were plugged. In the current analysis, the plant was modeled assuming asymmetric steam generator tube plugging: 3.33/ of the tubes plugged in the intact loops, and 10.0/ of the tubes plugged in the broken loop. The larger plugging in the broken loop results in higher PCTs. The primary coolant flow at full power was reduced by 1.1/ from the current measured flow at the plant to account for the assumed average 5X steam generator plugging. Additionally, the core model assumed that the core is 85/ ENC fuel, whereas the previous analysis assumed the Cycle 4 core configuration. Calculations were also performed for the case in which the core is all ENC fuel, representative of

XN-NF-84-21(NP)

Revision 2 Cycle 6 and beyond. ENC fuel has a smaller rod diameter than the Westinghouse fuel it replaces. To offset the impact of increased flow area on the LOCA analysis results, the core power was reduced from 3425 MWt to 3411 NWt. System input parameters are given in Table 3.1.

The reactor core is modeled with heat generation rates determined from reactor kinetics equations with reactivity feedback and with decay heating as required by Appendix K of 10 CFR 50. Chopped cosine axial power profiles are assumed with the maximum axial peaking factor used in the analysis given in Table 3. 2. The analysis of the loss-of-coolant accident is performed at 102 percent of rated power. The core power and other parameters used in the analyses are given in Table 3. 1.

3.2 RESULTS Table 3.3 presents the timing and sequence of events as determined for the large 'break guillotine configuration with a discharge coefficient of 1.0 for full ECCS operation. Table 3.4 presents the results of the exposure analysis for Cycle 5 composed of 85K ENC fuel. Table 3.5 presents the results of the exposure analysis for a core composed of all ENC fuel.

Results of the analyses are given in Figures 3.2 to 3.43. Figures 3.2 to 3. 10 provide plots of key system blowdown parameters versus times.

Figures 3. 11 to 3.28 provide plots of key core responses during the blowdown period. Figures 3.29 to 3.32 provide the ECCS flows in the broken and intact loop during the refill period. Figure 3.33 presents the containment pressure during the LOCA. Figures 3.34 to 3.36 present the normalized power during the LOCA for the three exposure cases analyzed. Figures 3.37 to 3.40 provide results from the reflood portion of the transient for the case in which 85K of

XN-NF-84-21(NP)

Revision 2 the core is ENC fuel. Figures 3.41 to 3.44 provide the reflood results for the case in which the core is composed entirely of ENC fuel. Finally, Figures 3.45 to 3.50 provide the response of the fuel during the refill and reflood periods of the LOCA transient for the fuel burnup cases 'investigated.

XN-NF-84-21(NP)

Revision 2 Table 3.1 'Donald C. Cook Unit 2 System Input Parameters Thermal Power, MWt* 3425 Core, MWt 3411 Pump, MWt 14 Primary Coolant Flow, Mlbm/hr 143.1 Primary Coolant Volume, ft3 11,768 Operating Pressure, psia 2250 In,let Coolant Temperature, oF 542 Reactor Vessel Volume, ft3 4945 Pressurizer Volume, Total, ft3 1800 Pressurizer Volume, Liquid, ft3 1080 Accumulator Volume, Total, ft3 (each of four) 1350 Accumulator Volume, Liquid, ft3 (each of four) 950 Accumulator Pressure, psia 636 Steam Generator Heat Transfer Area, ft2-SG1, SG2, SG3, SG4 11,588, 3(12,446)

Steam Generator Secondary Flow, ibm/hr- 3.505 x 106 S'G1, SG2, SG3, SG4 3(3.764 x 106)

Steam Generator Secondary Pressure, psia 799 Reactor Coolant Pump Head, ft 277 Reactor Coolant Pump Speed, rpm 1189 Moment of Inerti a, bm-f t2 1 82,000 Cold Leg Pipe, I.D. in. 27.5 Hot Leg Pipe, I.D. in. 29.0 Pump Suction Pipe, I.D. in. 31.0 Fuel Assembly Rod Diameter, in. 0.360 Fuel Assembly Rod Pitch, in. 0.496 Fuel Assembly Pitch, in. 8.466 Fueled (Core) Height, in. 144.0 Fuel Heat Transfer Area, ft2** 57,327 Fuel Total Flow Area, Bare Rod, ft2** 53.703 Refueling Water Storage Tank Temperature, oF 80 Accumulator Water Temperature, oF 120

  • Primary Heat Output used in RELAP4-fM Model = 1.02 x 3425 = 3493.5 Mwt
  • ."ENC Fuel Parameters.

10 XN-NF-84-21(NP)

Revision 2 Table 3.2 1.0 OECLG Break Analysis Parameters Peak Rod Average Burnup (MWO/kg) 2.0 10.0 47.0 Total Core Power (MWt)* 3411 3411 3411 T

Total Peaking (F~) 2.04 2.04 2.04 Fraction Energy Oeposited in Fuel

~ Fully Moderated Core 0.974 0.974 0.974 Voided Core 0.954 0.954 0.954 Cycle 5 (85/ ENC Fuel)

Peaking Axial x Engineering 1.316 1.316 1.316 T

~

Enthalpy Rise (F~H) 1.55 1.55 1.55 All ENC Core Peaking

. Axial x Engineering 1.316 1.316 1.316 T

. Enthalpy Rise (F~H) 1.55 1.55 1.55

  • 2% power uncertainty is added to this value in the LOCA analysis.

XN-NF-84-21(NP)

Revision 2 Table 3.3 0. C. Cook Unit 2 1.0 OECLG Break Event Times Event Time (sec.)

Start 0.00 Break Initiation 0.05 Safety Injection Signal 0.65 Accumulator Injection Broken Loop 3.2 Intact Loop 15.5 End of Bypass 24.31 Safety Pump Injection 25.65 Start of Ref lood 40.48 Accumulator Empty Broken Loop 44.2 Intact Loop 52.9

12 XN-NF-84-21(NP )

Revision 2 Table 3.4 1.0 DECLG Break Fuel Response Results for Cycle 5

. Peak Rod Average Burnup (MWD/kg) 2.0 10. 0 47.0 Initial Peak Fuel Average Temperature (oF) 2151 2060 1629 Hot Rod Burst Time (sec) 69.5 70.5 78.5 Elevation (ft) 7.0 7.0 7.75 Channel Blockage Fraction .25 .28 .47 Peak Clad Temperature

. Time (sec) 287 288 269 Elevation (ft) 9.63 9.63 9.38

'. Temperature (oF) 2007 2014 1993 Zr-Steam Reaction

~ Local Maximum Elevation (ft) 9.63 9.63 9.38

~ Local Maximum (X)* 4.6 4.7 4.5 Core Maximum < 1.0 <1.0 < 1.0

13 XN-NF-84-21(NP)

Revision 2 Table 3.5 1.0 OECLG Break Fuel Response Results with an All ENC Core Peak Rod Average. Burnup (MWO/kg) 2.0 10.0 47.0 Ini ti al Peak Fuel Average Temperature (oF) 2151 2060 1629 Hot Rod Burst

. Time (sec) 69.1 70.1 78.3 Elevation (ft) 7.0 7.0 7.75

. Channel Blockage Fraction .25 .28 .47 Peak Clad Temperature

. Time (sec) 292 292 274

. Elevation (ft) 9.63 9.63 9.38

. Temperature (oF) 2022 2030 2008 Zr-Steam Reaction

. Local Maximum Elevation (ft) 9.63 9.62 9.38

. Local Maximum (X)* 4.9 5.0 4.7

. Core Maximum <1.0 <1.0 <1.0

0 E p 5 IH~~CI~

eR I5 QEK]5 o gm 5 K o e' 6

erne 8 K6 g

O Nor i g

1 ~ 0 DC COOK 2 17X17 ~ DECL BONs 57 AVE PLUG,10X 343 ~ 3% PLUGS CI QO u)S0 K

~3 k- Q K

C) y 4-9 5K O

1R, 16 zn 2.4 TAHE AFTER BREAK ( SEC)

F iqnre 3.P Downcomer Flow Rate Dnring Blowdown Period, 1.0 DECLG Break

1.0 DC COOK 2 17X17 DECL BDN 5X AVE'. PLUG 10/ 3+3-3X PLUG.

12 2D 3a TIHE AFTER BREAK f SEC )

Figure 3.3 Upper Plenum Pressure During Olowdown Period, 1.0 OECLG Break

al 1.0 DC COOK 2 17X1'j DECL 8DNi

~ 5l AVE. PLUG,10K 3+3.31 PLUG, D

tv Ul X'.

y 4J CKo Kg O

4 4J K

0 Qo CXg I

1P 1C 20 RA TAHE AFTER BREAK ( SEC)

Figure 3.cl Average Core Inlet Flow during Blowdown Period, 1.0 DECLG Break

1 0 OC COOK 2 17X17 e OECL BONo 5X AVE PLUGS 10 <'+3 ~ 3 X PLUG>

~R LU V)

K gg) CI

>o C) po mS Q O I-D O

4Jy

<a D

C9 Cl 12 1C 20 2$ 2I TXME AFTER BRFAK l SEC) f iqure 3.5 Average Core Outlet Flow during Blowdown Period, 1.0 OCCLG Break

D bio 1 0 OC COOK 2 17X17aOECL BONt 5~ AVE ~ PLUG ~ 10~ 3+3 ~ 3> PLUGS KJ

~8 wR K

O Dg

<o R

up X

D Z

12 16 2.0 RA TXHE AFTER ORF"'K ( SEC )

Figure 3.6 Total Break Flow during Blowdown Period, 1.0 DECLG Break

1 0 OC COOK R 1.0 OECLG BON

<<a8

%5 p Vessel Side IjJ wl Pump Side

~

TIME (SEC)

Figure 3.7 Break Flow Enthalpy Ouring Blowdown, 1.0 DECLG Break

tJ 1.0 DC COOK 2 17X17 ~ DECL BOH. 5X AVE. Pl UG.10K 3'+3-3X PLUG 4J CA g g

CK Oa QO L

o P-8 cr. Q K

Og 12 1C 20 t4 TIHE AFTER 8REAK ( SEC )

Figure 3.0 Flow from Intact Loop Accumulator during Blowdown Period, 1.0 DFCLG Break

tJ 1 0 DC COOK 2 17X17 r DECL BDNr 5> AVE PLUGS 101 3+3 3X PLUGS 4J3 CA w

~

K e4 ld CK fL Og K

4J.

og K

O 1- o QO K

K Og CK 12 1C 20 2l a2 TXHE AFTER BREAK ( SEC )

Figure 3.9 F)ow from Broken l.oop Accumulator during Blnwdown Period, 1.0 DECLG Break

1.0 DC COOK 2 17X17 ~ DECL BOND 57 AVE. PLUGi10l 3+3-3X PLUG>

lZ 16 20 24 2a 32 TAHE AFTER BREAK ( SEC)

Figure 3.10 Pressurizer Surge Line Flow during Blowdown Period, 1.0 DL'CLG Break

l- 0 OC COOK Z 1 0 OECLG X

8 Vl ZI I

O CO I

t0 ti TZ~E ~ SE.C)

Figure 3.11 lleat Transfer Coeff icient during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 NHD/kg Case

1.0 DC COOK 2. 1.0 OE'CLG tD ZI TIVE t SEC)

Figure 3.12 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 NWD/kg Case

r X.O DC COOK a a.O DEcLc Jo

~I M

bjm 4

g gO g 4 nl i 1t N RO tl TXVE t SEC)

Figure 3.13 Oepth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWO/kg Case

CD c4 U)3 1 0 OC COOK R 1.0 DECLG OI 5II 5

oJ 8

B R >c 8 2:I

(

EA ll g

0 CO I

lS RD a

TXME l SEC)

Figure 3.10 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 OECLG Break, P.U NWO/kg Case

i.O OC COOK Z. X-0 OECLG Q. Ã N U 3f.

TIVE (SEC)

Figure 3.l5 llot Assembly Inlet Flow during Blowdown Period, 1.0 DECLG Break, 2.0 HWD/kg Case

1.0 Dc COOK 2 1-0 DE'CLG R

8

>c 2.'

Vl p

O CQ I

1$ t0 ?I IO o TXHE ( SEC )

Figure 3.16 I<ot Assembly Outlet I low during Blowdown Period, 1.0 DECLG Break, 2.0 I'1HD/kq Case

i.o DC COOK 2. x.o DECL&

8 X Xl ZI EA 0 CO I

R9 24 32 40 U

TIME (SEC)

F igure 3.17 lleat Transfer Coeff ir.ient during Blowdown Period at PCT Node, 1.0 l)ECLG Break, 10.0 MWD/kg Case

1.0 DC COOK Z 1.0 DECLG R7 OC I

Vl O CO I

ZO ZL l4 o

TINE' SEC )

Figure 3.18 Clad Surface Temperature during Blowdown I'eriod at PCT Node, 1.0 DFCLG Break, l0.0 NWD/kg Case

1.0 OC COOK 2 1.0 OECLG H

X z4 Oo H

I-CJ CK bl I

4J CC i8

<o lY H

N og h

Qg 8QX

( HI lA I

0 CO I

Z.O U (0 o TIME ( SEC )

Figure 3.19 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 10.0 HWD/kg Case

1.0 DC COOK 2 1.0 DECLG QX 8 I Vl 0 CO I

ZO tl 3t (0 o TINE ( SE'C )

Figure 3.20 Average Fuel Teotperature during Blowdown Period at PCT Location, 1.0 DECLG Break, 10.0 HWD/kg Case

1 0 OC COOK R 1.0 OECLG Kl M 8 RI Vl O CO I

Lt 1C ZO R.l 10 TIVE (SE'C)

Figure 3.21 )lot Rssembly tnlet Flaw during Olowdown Period, 1.0 OLCI.G llreak, 10.0 llWO/kg Case

1.0 OC COOK 2. 1 0 DfCLG R >C 8 2:I CA O CO I

M iM za Z( 3C 10 D

TINE (SfC)

Figure 3.22 tlot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 NHD/kg Case

l-0 OC COOK 2 =

1 0 OECLt Z

lD X

Vl ZI O CO I

Mm 1k lS t0 t4 2$

U TIvE t SEC)

Figure 3.23 lleat Tansfer Coefficient during Blowdown Period at PCT Node, 1.0 DLCLG Break, 47.0 MHD/kg Case

1-0 OC COOK P. 1.0 QECLG LS za Kl TETE (SE'C)

Figure 3.24 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 DECLG Break, 47.0 Hll0/kg Case

~ N 1-0 OC COOk 2 1.0 DECL&

~S Qo

~8 Oo 0

~s kg 4J lZ gO CI$

gp O AJ R

8 >c KI Vl

)

0 00 I

0 lf 1S EO Rl tl "3E 1 TINE (SEC)

Figure 3.25 Depth of Metal-Water Reaction During Blowdown Period at PCT Node, 1.0 DECLG Break, 47.0 MWD/kg Case

1 0 OC COOK 2 1.0 OECLG R >c lD M I

Vl 0 CO I

It LC t0 U tl 3R. '3C l0 o TIt>E ( SEC 1 Figure 3.26 Average Fuel Temperature dur ing Blowdown Period at PCT Location, 1.0 DECLG Break, 47.0 MWO/kg Case

1 0 OC COOK 2 1 0 DE'CLG I 1t lS 5l RA ee TAHE (SEC)

Figure 3.27 (lot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 MHD/kg Case

1.0 OC COOK 2, 1 ~ 0 OCCLG lf fO zl tl TIvE (SEC)

Figure 3.28 Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 MWD/kg Case

~

8 Oy 1t 15 tD ZI 3a TIME AFTER EOB Y ( SEC )

I. igure 3.29 Accumulator Flow during Refill and Ref lood Periods, Broken Loop, 1.0 DECLG Break

1$ tD -

H El TXHE AFTER EOBY ( SEC )-.

Figure 3.30 Rccumulator Flow during Ref ill and Ref lood Periods, Intact Loop, 1.0 OECLG Break

300 250 200 150-100 50-R >c ED M I

0 Vl ll 0 50 100 150 200 250 300 350 0 I

CO Time (sec) After. Start I Figure 3.31 IIPSI 0 LPSI Flow during Refill and Ref lood Periods, Broken Loop, 1.0 OfCLG Break

C 1000 V)

CQ 800-O 600 400 P

O O 200 0

0 50 100 150 200 300 350 Time (sec) After Start I ignre 3.3? Hi'Sl 5 I.PSI Flow during Refill and Reflood Periods, Intact I oop, 1.0 I)ECLG llreak

22 21 20 19 P

18 R

0 16 O

O 15 g) X lD M

'C Ul pI 0 50 100 150 200 250 300 350 0 00 Time (sec)-After Start I Figure 3.33 Containment Back Pressure, 1.0 OECLG Break a

CK 4J O

0 a

4J t'4

~l K

LL oX SRI Vl Z

0 00 I

~4 Q (0 CO l$ 0 200 Z40 o TINE ( SECONDS )

Figiire 3.34 Horn" li"ed Pokier, '.C DECLu Break, Z.O Hl'ID/kg Case

Zl X 8

( I lh O OO I

H.O 160 200 210 210 320 3CO 100 TINE ( SE'CONDS )

Eigure 3.35 Normalized Power, 1.0 BECLG Break, 10.0 MWO/kg Case

i0 Q.O NO ZOO ZEO iso 320 TINED ( SECONDS )

I'igure 3.36 Normal ized Power, 1.0 DECLG Break, 47.0 NWD/kg Case

DCC2 REFl 000.1 0 OECLG FULL ECCS FLOV FQ=2.04 1 55 3525 HMT.HIX CORE LESS SPCR R

CD

>c I

Vl 0 CO I

PO tV 40 180 Z00 ZA0 Z00 3ZO 400 TIHE FROM BOCREC ( SEC ) a I=i@ore 3.3/ lief loocl Core Mixlisre I.evel, 1.0 OECI.G Break, Cycle 5 Core

DCC2, REFLOODo 1.0 DECLG FULL ECCS FLOW FQ=2.0$ 1.55 3425 HWTiHIX CORE LESS SPCR R >C

(

ID I

Vl O 00 I

40 80 160 200 2AO 280 <00 TIHE FROH BOCREC ( SEC ) U l inure 3.3A Reflood fjowocoioer Mixture Level, 1.0 DECLG Break, Cycle 5 Core

OCC2 REFLOOD, 1.0 DECLG FULL ECCS fLOW F9=2.0i 1.55 3425 HMT,HIX CORE LESS SPCR R >cR

(

CD I

I/l 0 CO I

FO fO 40 ao 160 200 240 2SO 360 400 TIHE FROH BOCREC ( SEC ) o I icjur>> 3.39 Hei'lood tipper Plenum Pressure, 1.0 OECLG Break, Cycle 5 Core

OCC2 REFLOOD.1.0 OECLG FULL ECCS FLOW FQ=2.04 1.55 3525 HWTiHIX CORE LESS SPCR 8R

>C

( RI Vl 0 CO I

~ PO 40 SO 120 160 200 RAO 280 380 400 TIME FROH BOCREC ( SEC) a I ignre 3.40 Core I-looding Rate, 1.0 DECI.G Break, Cycle 5 Core

OCC2. REFLOODo Al L ENC CORE FOH = 1-55 40 40 aso zaa zoo zea 3zo eao TXHE FROM BOCREC (SEC)

I igure 3.41 lhefloori Core HixIore l.evel, 1.0 DECI.G Break, All ENC Core

OCC2. REFLOOO. ALL EHC CORE FOH = 1.55 LLJ PA X

H K

oO O

a 40 IO 160 200 240 ZIO 360 400 TIME FROM 80CREC ( SEC )

I igure 3.02 Ref loorl Onwncomer Mixture Level, 1.0 OECLG Break, All ENC Core

OCC2 REFLOOOo ALL ENC CORE FOH <<1 55 X

8R 2I

(~'

I/I 0 CO I

44 $0 X60 Zao Z.40 nl 0 MO '360 400 TINE FROH BOCREC (SEC) a Eigure 3.03 lief lood Upper Vier>iun Pressiire, 1.0 OECl.G Break, All ENC Core

OCC2 REFLOOD, ALL EHC CORE FOH = 1.55 0 126 L60 5)0 240 320 360 ioo TIME FROM BOCREC (SEC)

I ignore 3A4 Core Ref loodirlg Rat.e, 1.0 DECI.G Break, All ENC Core

FQ=2.05 FOH ~1.55 - 2 HM

1. PCT HOOE (HOOE 22 AT S-62 FT- )

tL g 2. RUPTUREO HOOE (NOOE 11 AT 7.00 FT )

5~

al I

bl CL Da K"

K td CL

'K id/

C9 z,

H Cl Qo O

CI CI

%.0 40.0 S0.0 120.0 160.0 200.0 Z(0.0 200.0 320.0 360.0 TIME SECONDS I'igure 3.45 TOOOEE2 Cladding Temperature versus Time, 1.0 DECLG Break,

2. HllD/Kg Case, Cycle 5 Core

FQ=2.04 FOH ~1.55 10 H 1- PCT NODE (NODE 22 AT $ .62 FT )

2.. RUPTURED NODE (NODE 11 AT 1-00 FT- )

40-0 80.0 160.0 200.0 240.0 ZS0.0 32,0.0 360.0 40 .0 TIME SECONDS I:ignite 3.06 TOODCE2 Cladding Temperature versus Time, 1.0 DECI.G Break,

10. IIWD/Kg Case, Cycle 5 Core

N 1- PCT

)JODO'NODf Rl AT $ .31 FT )

RUPTURED HODR (0

hJ l'NODE 1<.AT 1.15 FT- )

hJ K

C9~

UJ ~

Q c5 I

)LJ f)'

o CJ:

LL lLJ 0

K QJ CI

)-5 C9 M

Cl QoD g

0 RX 8 RI Vl 0 0)

I Cl Cl Q).0 40.0 80.0 120.0 160.0 ?00 ' 2<0.0 210.0 320.0 360.0 40 .0 TINE SECONDS I igrrre 3.47 ~

l000l.:L2 Claddirrg Temperature versus Time, 1.0 OECLG Break, 4/. Hll0/Kg Case, Cycle 5 Core

- FQ~R.O{ FOB =1.55 " 2, HM

i. PCT NODE (NODE 22 AT $ .62 FT. )

2- RUPTURED NODE (NODE ).L AT 1.00 FT. )

40.0 a0.0 160.0 200.0 2(0-0 260.0 320.0 360.0 lORO TIHE SECONDS I'igure 3.0A TOOOLC2 Cl i~lrliug TemperaLure versus Time, 1.0 OLCl.G Break,

2. NWO/Kg Case, All l:NC Core

FQ~L.0$ FOH =1 55 10 H 1- PCT NODE t NODE 22, AT 5.62 FT. )

RUPTURED NODE t NODE 11 AT 1.OO FT. )

40.0 ao.o 120.0 160.0 200.0 2io.o 280-0 320.0 TXHE SECONDS I i gurt 3.49 f00f)EE2 Clarlding funperature versus 1 ime, 1.0 DECLG Break,

10. NWf)/Kg Case, All ENC Core

FQ<2.04 FOH 3.=1-55 - h7 M

1. PCT HQOE (HOOE 21 AT 0 31 FT )

Z. RUPTURED HOOf (HOOE 14 AT 7.15 FT 1

40. 0 80.0 120.0 160.0 200.0 240.0 280.0 320.0 TIME SECONDS Figure 3.50 100DEE2 Cladding Temperature versus Time, 1.0 DECI G Break, c17. HWD/Kg Case, Rll ENC Core

l 64 XN-NF-84-21 (NP )

Revision 2

4.0 CONCLUSION

S For breaks up to and including the double-ended severance of a reactor coolant pipe, the Donald C. Cook Unit 2 Emergency Core Cooling System will.

meet the Acceptance Criteria as presented in 10 CFR 50.46 for operation with ENC 17xl/ fuel operating in accordance with the LHGR limits noted in Table 2.1. That is:

1. The calculated peak fuel element clad temperature does not exceed the 2200oF limit.
2. The amount of fuel element cladding that reacts chemically with water or steam does not exceed 1 percent of the total amount of zircaloy in the reactor.
3. The cladding temperature transient is terminated at a time when the core geometry is still amenable to cooling. The hot fuel rod cladding oxidation limits of 17/ are not exceeded during or after quenching.
4. The core temperature is reduced and decay heat is removed for an extended period of time, as required by the long-lived radio-activity remaining in the core.

XN-NF-84-21(NP)

Revision 2

5.0 REFERENCES

XN-NF-82-35, "Donald C. Cook Unit 2 LOCA ECCS Analysis Using EXEM/PWR Large Break Results," Exxon Nuclear Company, Inc., Rich-land, WA 99352, April 1982.

(2) XN-NF-82-35, Supplement 1, "Donald C. Cook Unit 2 Cycle 4 Limiting Break LOCA-ECCS Analysis Using EXEM/PWR," Exxon Nuclear Company, Inc., Richland, WA 99352, November 1982.

(3) XN-NF-82-20(P), Rev. 1, August 1982; and Supplement 4, July 1984, "Exxon Nuclear Company Evaluation Model EXEM/PWR ECCS Model Up-dates," Exxon Nuclear Company, Inc., Richland, WA 99352.

(4) XN-73-25, "GAPEXX: A Computer Program for Predicting Pellet-to-Cladding Heat Transfer Coefficients," Exxon Nuclear Company, Inc.,

Richland, WA, August 13, 1973.

(5) XN-NF-81-58(A), Rev. 2, "RODEX2: Fuel Rod Thermal-Mechanical Re-sponse Evaluation Model," Exxon Nuclear Company, Inc., Richland, WA

. 99352, February 1983.

(6) "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Cooled Nuclear Power Reactors," 10 CFR 50.46 and Appendix K of 10 CFR 50.

(7) U.S. Nuclear Regulatory Commission letter, T.A. Ippolito (NRC) to W.S. Nechodom (ENC), "SER for ENC RELAP4-EM Update," March 1979.

(8) XN-CC-39, Rev. 1, "ICECON: A Computer Program Used to Calculate Containment Backpressure for LOCA Analysis ( Including Ice Condenser Plants)," Exxon Nuclear Company, Inc., Richland, WA 99352, November 1977.

(9) XN-NF-78-30(A), "Exxon Nuclear Company WREM-Based Generic PWR ECCS Evaluation Model Update ENC WREM-IIA," Exxon Nuclear Company, Inc.,

Richland, WA 99352. May 1979.

(10) XN-NF-82-07(A), Rev. 1, "Exxon Nuclear Company ECCS Cladding Swelling and Rupture Model," Exxon Nuclear Company, Inc., Richland, WA 99352, March 1982.

G.N. Lauben, NRC Report NUREG-75/057, "TOODEE2: A Two-Dimensional 1>>

(12) D.C. Cook Unit 2 Technical Specification, Appendix "A" to License No.

DPR-74, Amendment No. 48.

66 XN-NF-84-21(NP)

Revision 2 (13) XN-NF-82-32(P), Supplement 2, "Plant Transient Analysis for the Donald C. Cook Unit 2 Reactor at 3425 MWt: Operation with 5% Steam Generator Tube Plugging," Exxon Nuclear Company, Inc., Richland, WA 99352, February 1984.,

(14) XN-NF-84-21(P), "Donald C. Cook Unit 2, Cycle 5, 5X Steam Generator Tube Plugging, Limiting Break LOCA/ECCS Analysis," Exxon Nuclear Company, Inc., Richland, WA 99352, February 1984.

( 15) Letter, H. R. Denton (NRC) from J. C. Chandler (ENC), Re: Support-ing Documentation for Unit 2 Technical Specification Changes for Cycle 5 Reload, dated May 7, 1984 (JCC:076:84).

(16) XN-NF-84-21(P), Revision 1, "Donald C. Cook Unit 2 Cycle 5 - 5X Steam Generator Tube Plugging, Limiting Break LOCA/ECCS Analysis,"

Exxon Nuclear Company, Inc., Richland, WA 99352, May 1984.

XN-NF-8'4-21(NP )

Revision 2 Issue Date: 8/7/84 DONALD C COOK UNIT 2 CYCLE 5 Sio STEAN, GENERATOR TUBE PLUGGING LIMITING BREAK LOCA/ECCS ANALYSIS Distribution J. C. Chandler W. V. Kayser G. F. Owsley H. G. Shaw T. Tahvili AEP/H.G. Shaw (10)

USNRC/J.C. Chandler (15)

Document Control (3)