ML17326B134: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(2 intermediate revisions by the same user not shown)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:XN-NF-84-21(NP
{{#Wiki_filter:XN-NF-84-21(NP )
)Revision 2 Issue Date: 8/7/84 DONALD C~COOK UNIT 2 CYCLE 5-5/o STEAM GENERATOR TUBE PLUGGING LIMITING BREAK LOCA/ECCS ANALYSIS Prepared-by: W.V.ayser, Manager PWR Safety Analysis Concur:.C.C an er, Lea ng neer Reload Fuel Licensing Approve: out, Manager Licensing&Safety Engineering CSr Concur: ggg g.'.organ, anag r Proposals 5 Customer Services Engineering Approve: 87~%/.A.o er, Manag Fu 1 Engineering 8 Technical Services gf ,E3(CGM NU.CLEAR.COMPANY, INC.KNIMIolY-MIlIl'I'.I I.II.f.IlI)I'Y r~}~5 F XN-Nf-84-21(NP)
Revision 2 Issue Date: 8/7/84 DONALD C ~ COOK UNIT 2 CYCLE 5     -   5/o STEAM GENERATOR TUBE PLUGGING LIMITING BREAK LOCA/ECCS ANALYSIS Prepared -by:
Revision 2 TABLE OF CONTENTS Section~Pa e
W. V. ayser, Manager PWR   Safety Analysis Concur:
                      . C. C an     er, Lea       ng neer Reload Fuel Licensing Approve:                                                   CSr out, Manager Licensing & Safety Engineering ggg g Concur:
                      .'. organ, Proposals anag   r 5 Customer Services       Engineering Approve:                                                 87~%/
                      . A. o er, Manag Fu 1 Engineering     8   Technical Services gf
  ,E3(CGM NU.CLEAR .COMPANY, INC.
KNIMIolY-MIlIl'I'.II.II.f. IlI)I'Y


==1.0 INTRODUCTION==
r
    ~
    ~
    }
5 F


....:..................................
XN-Nf-84-21(NP)
1 2.0 S UMMARY o~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~3 3.0 LIMITING BREAK LOCA ANALYSIS~~~~~~~~~~~~~5 3.1 LOCA ANALYSIS MODEL...........................
Revision 2 TABLE OF CONTENTS Section                                                                                                  ~Pa  e
5 3.2 RESULTS 7  
 
==1.0    INTRODUCTION==
    ....:..................................                                             1 2.0   S UMMARY o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~       3 3.0   LIMITING BREAK     LOCA ANALYSIS                                 ~ ~   ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~       5
: 3. 1 LOCA ANALYSIS MODEL               ...........................                                 5 3 .2 RESULTS                                                                                       7
 
==4.0    CONCLUSION==
S                                    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~    64
 
==5.0    REFERENCES==
  ...............,..........................                                            65
 
~
~
i
~
l i
1
~
~
~
~
~
~
~


==4.0 CONCLUSION==
S
~~~~~~~~~~~~~~~~~~~~~~~~64 5.0 65 REFERENCES
...............,..........................
~i~~l i 1~~~~~~~
XN-NF-84-21(NP)
XN-NF-84-21(NP)
Revision 2 LIST OF TABLES Table Parcae 2.1 D.C.Cook Unit 2 LOCA/ECCS Analysis Summary........4 3.1 Donald C.Cook Unit 2 System Input Parameters
Revision   2 LIST   OF TABLES Parcae Table 2.1 D.C. Cook Unit   2 LOCA/ECCS     Analysis Summary ........           4 3.1 Donald C. Cook Unit     2 System Input Parameters   ~ ~ ~ ~ ~ ~       9 3.2 1.0 OECLG Break Analysis Parameters       ................           10 3.3  D.C. Cook Unit   2 1.0   OECLG Break Event Times   ... ...
~~~~~~9 3.2 3.3 3.4 3.5 1.0 OECLG Break Analysis Parameters
                                                                ~          11 3.4  1.0 OECLG Break Fuel Response     Results for C ycle 5 ............................................                 12 3.5  1.0 OECLG Break   Fuel Response   Results with an All ENC Core   ....................................               13
................
 
10 D.C.Cook Unit 2 1.0 OECLG Break Event Times...~...11 1.0 OECLG Break Fuel Response Results for C ycle 5............................................
j N
12 1.0 OECLG Break Fuel Response Results with an All ENC Core....................................
~
13 j N~I 8~~~~~~~~~~~~~  
I 8
.XN-NF-84-21(NP)
~
Revision 2 LIST OF FIGURES~Fi ure Pacae 3.1 RELAP4/EM Blowdown System Nodalization for D.C.Cook Unit 2....14 3.2 Oowncomer Flow Rate During Blowdown Period, 1.0 OECLG Break...................................
~
15 3.3 3.4 Upper Plenum Pressure during Blowdown Period, 1.0 DE(LG Break.......Average Core Inlet Flow during Blowdown Period, 1.0 OECLG Break........16 17 3.5 3.6 Average Core Outlet Flow during Bl owdown Period, 1.0 DECLG Break.....................
~
Total Break Flow during Blowdown Period, 1.0 OECLG Break.............................
~
18 19 3.7 Break Flow Enthalpy during Blowdown, 1.0 DECLG Break....................................
~
20 3.8 Flow from Intact Loop Accumulator during Blowdown Period, 1.0 OECLG Break..................
~
21 3.9 Flow from Broken Loop Accumulator during Blowdown Period, 1.0 OECLG Break..................
~
22 3.10 Pressurizer Surge'ine Flow during Blowdown Period, 1.0 OECLG Break~~~~~~~~~~~~~~~~~~23 3.11 3.12 Heat Transfer Coefficient during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWO/kg Case.Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWD/kg Case..........,.
~
~~~~~~~~~~~~~~~~~~24 25 3.13~~~~~~~~~~~~~~~26 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 MWD/kg Case.
~
iv XN-NF-84-21(NP)
~
Revision 2 LIST OF FIGURES (Cont.)~Fi ure Pa<ac 3.14 , 3.15 3.16 3.17 3.18 Average Fuel Temperature during Bl owdown Period at PCT Location, 1.0 OECLG Break, 2.0 MWD/kg Case.27 Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 2.0 MWD/kg Case...........
~
28 Hot Assembly Outlet Flow during Blowdown Period, 1.0 DECLG Break, 2.0 MWD/kg Case...........
~
29 Heat Transfer Coefficient during Blowdown Period at PCT Node, 1.0 OECLG Break, 10.0 MWO/kg Case...................................
~
30 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 10.0 MWD/kg Case...................................
 
31 3.19 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 10.0 MWD/kg Case..................
                                                                                    . XN-NF-84-21(NP)
32 3.20 3.21 3.22 3.23 3.24 3.25 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 DECLG Break, 10.0 MWD/kg Case...................................
Revision 2 LIST   OF FIGURES
33 Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 MWO/kg Case..................
~Fi ure                                                                             Pacae 3.1   RELAP4/EM Blowdown System       Nodalization for D.C. Cook Unit 2     ....                                               14 3.2   Oowncomer Flow Rate During Blowdown           Period, 1.0 OECLG Break ...................................                       15 3.3   Upper Plenum Pressure during Blowdown Period, 1.0 DE(LG Break       .......                                         16 3.4  Average Core   Inlet Flow during Blowdown Period, 1.0   OECLG   Break   ........                                       17 3.5   Average Core Outlet Flow during Bl owdown Period, 1.0 DECLG Break       .....................                           18 3.Total Break Flow during Blowdown Period, 1.0 OECLG Break .............................                             19 3.7   Break Flow Enthalpy during Blowdown, 1.0 DECLG Break   ....................................                       20 3.8   Flow from   Intact Loop Accumulator     during Blowdown   Period, 1.0   OECLG Break   ..................                   21 3.9   Flow from Broken Loop Accumulator during Blowdown Period, 1.0 OECLG Break       ..................                   22 3.10 Pressurizer Surge'ine Flow during           Blowdown Period, 1.0 OECLG Break                 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~   23 3.11 Heat Transfer   Coefficient during     Blowdown Period at PCT Node, 1.0     OECLG   Break, 2.0 MWO/kg Case .                                                             24 3.12  Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWD/kg Case   ..........,.         ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~   25 3.13 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0     DECLG   Break, 2.0 MWD/kg Case .                             ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  26
34 Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 MWD/kg Case.......;..........
 
35 Heat Transfer Coefficient during Blowdown Period at PCT Node, 1.0 OECLG Break, 47.0 MWD/kg Case..................
iv                          XN-NF-84-21(NP)
.........36 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 47.0 MWO/kg Case...................................
Revision 2 LIST OF FIGURES   (Cont. )
37 Depth of Metal-Water Reaction during Slowdown Period at PCT Node, 1.0 OECLG Break, 47.0 MWD/kg Case.................................
  ~Fi ure                                                               Pa<ac 3.14 Average Fuel Temperature during Bl owdown Period at PCT Location, 1.0   OECLG Break, 2.0 MWD/kg Case .                                               27 3.15  Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 2.0 MWD/kg Case     ...........     28 3.16  Hot Assembly Outlet Flow during Blowdown Period, 1.0 DECLG Break, 2.0 MWD/kg Case       ...........     29 3.17  Heat Transfer Coefficient during   Blowdown Period at PCT Node, 1.0   OECLG Break, 10.0 MWO/kg Case   ...................................         30 3.18  Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 10.0 MWD/kg Case   ...................................         31 3.19 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 10.0 MWD/kg Case   ..................                           32 3.20 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 DECLG Break, 10.0 MWD/kg Case   ...................................         33 3.21  Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 MWO/kg Case   ..................       34 3.22  Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 MWD/kg Case     .......;..........       35 3.23  Heat Transfer Coefficient during   Blowdown Period at PCT Node, 1.0   OECLG Break, 47.0 MWD/kg Case   ..................   . .   . .   ..... 36 3.24  Clad Surface Temperature   during Blowdown Period at PCT Node, 1.0   OECLG Break, 47.0 MWO/kg Case   ...................................         37 3.25  Depth of Metal-Water Reaction during Slowdown Period at PCT Node, 1.0   OECLG Break, 47.0 MWD/kg Case   ....... ..........................           38
38 XN-NF-84-21(NP)Revision 2 LIST OF FIGURES (Cont.)~Fi ere Pa<ac 3.26 3.27 3.28 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 OECLG Break, 47.0 MWO/kg Case e~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 NWD/kg Case'.......
 
Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 HWD/kg Case..........
XN-NF 21( NP )
39 40 41 3.29 3.30 3.31 3.32 3.33 Accumulator Flow during Refill and Ref lood Periods, Broken Loop, 1.0 OECLG Break.............
Revision 2 LIST     OF FIGURES               (Cont.   )
42 Accumulator Flow during Refill and Ref lood Periods, Intact Loop, 1.0 DECLG Break.............
~Fi ere                                                                                             Pa<ac 3.26   Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 OECLG Break, 47.0   MWO/kg Case e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~       39 3.27  Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 NWD/kg Case'.......                                                   40 3.28  Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 HWD/kg Case                             ..........             41 3.29   Accumulator Flow during Refill and Ref lood Periods, Broken Loop, 1.0 OECLG Break                           .............               42 3.30  Accumulator Flow during Refill and Ref lood Periods, Intact Loop, 1.0 DECLG Break                           .............               43 3.31  HPSI   8 LPSI Flow during Refill and Ref lood Periodg, Broken Loop, 1.0 OECLG Break                           .............               44 3.32  HPSI   8 LPSI Flow during Refill and Ref lood Periods, Intact Loop, 1.0 DECLG Break                           .............               45 3.33  Containment Back Pressure,             1.0     DECLG       Break ........                 46 3.34   Normalized Power, 1.0         OECLG       Break, 2.0 MWO/kg Case   .....                                                                     47 3.35  Normalized Power, 1.0         DECLG       Break, 10.0 NWD/kg Case   ..............................                                           48 3.36  Normalized Power, 1.0         OECLG       Break, 47.0 NWD/kg Case   .............                                                           49 3.37  Reflood Core Mixture Level, 1.0                   OECLG       Break, C ycle 5 Core ........................                                                     50 3.38   Reflood Downcomer Mixture Level, 1.0 DECLG Break, Cycle 5 Core                 .....................                         51 3.39    Reflood Upper Plenum Pressure,                   1.0     OECLG Break, Cycle 5 Core       ...............................                                   52
43 HPSI 8 LPSI Flow during Refill and Ref lood Periodg, Broken Loop, 1.0 OECLG Break.............
 
44 HPSI 8 LPSI Flow during Refill and Ref lood Periods, Intact Loop, 1.0 DECLG Break.............
vi                                                 XN-NF-84-21(NP)
45 Containment Back Pressure, 1.0 DECLG Break........46 3.34 3.35 3.36 3.37 Normalized Power, 1.0 OECLG Break, 2.0 MWO/kg Case.....Normalized Power, 1.0 DECLG Break, 10.0 NWD/kg Case..............................
Revision     2 LIST     OF FIGURES             (Cont.)
Normalized Power, 1.0 OECLG Break, 47.0 NWD/kg Case.............
~Fi ure                                                                                                 ~Pa   e 3.40 Core Flooding Rate,       1.0     OECLG       Break, Cycle 5 Core                                   ~   ~ ~ ~ ~ ~ ~ ~ ~ e ~         ~ ~ ~ ~ ~ ~       53 3.41 Ref lood Core Mixture Level, 1.0                   OECLG       Break, All ENC Core ......................................                                             54 3.42 Reflood Oowncomer Mixture Level, 1.0                         OECLG All ENC Core     ............                                 'reak, 55 3.43 Ref lood Upper Plenum Pressure,                 1.0     DECLG Break, All ENC Core       ...............................                                       56 3.44  Core Ref looding Rate,         1.0     OECLG       Break, A 11 ENC Core ....................-......-....                                     ..           57 3.45 TOODEE2 Cladding   Temperature versus Time, 1.0 OECLG Break,     2. MWO/kg Case, Cycle 5'ore                                     .....       58 3.46  TOOOEE2 Cladding   Temperature versus Time, 1.0 OECLG Break,     10. MWO/kg Case, C ycle 5 Core ................... -.....         ~                                              59 3.47 TOOOEE2 Cladding   Temperature versus Time, 1.0 OECLG Break,    47. MWO/kg Case, Cycle 5 Core ... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~   ~   ~ ~   ~               ~   ~           60 3.48 TOOOEE2 Cladding   Temperature versus Time, 1.0 OECLG Break,     2. MWO/kg Case, All ENC Core                                   .....       61'2 3.49  TOODEE2 Cladding   Temperature versus Time, 1.0 DECLG Break,     10. MWO/kg Case,                 All     ENC     Core 3.50 TOOOEE2 Cladding   Temperature versus Time, 1:0 OECLG Break,     47. MWO/kg Case, All ENC Core                                               63
Reflood Core Mixture Level, 1.0 OECLG Break, C ycle 5 Core........................
 
47 48 49 50 3.38 3.39 Reflood Downcomer Mixture Level, 1.0 DECLG Break, Cycle 5 Core.....................
XN-NF-84-21(NP )
51 Reflood Upper Plenum Pressure, 1.0 OECLG Break, Cycle 5 Core...............................
Revision   2
52 vi XN-NF-84-21(NP)
: 1. 0   I NTRODUCT ION Large break LOCA/ECCS analyses             were performed       in 1982(   ~2)   to support operation of the D.C.       Cook Unit   2 reactor at   3425 MWt     with ENC fuel. Reference 1 presented analytical results           for a spectrum of postulated large break LOCAs.
Revision 2 LIST OF FIGURES (Cont.)~Fi ure~Pa e 3.40 Core Flooding Rate, 1.0 OECLG Break, Cycle 5 Core~~~~~~~~~e~~~~~~~53 3.41 Ref lood Core Mixture Level, 1.0 OECLG Break, 54 All ENC Core......................................
The   limiting break     was identified     as the 1.0 double ended cold line         guillotine (DECLG)     break. Reference     2 presented results for the previously identified limiting break using the         EXEM/PWR(3) ECCS models,         except   GAPEX was   used as the fuel performance       model   in place of     RODEX2. The RODEX2 code was not approved
3.42 Reflood Oowncomer Mixture Level, 1.0 OECLG'reak, All ENC Core............
(
55 3.43 3.44 Ref lood Upper Plenum Pressure, 1.0 DECLG Break, All ENC Core...............................
by the     NRC for use in   ECCS   analyses   in 1982.       Therefore the NRC-approved GAPEX(4) code was used         to calculate fuel properties at the initialization of the   LOCA   calculation.     The Reference       2 report documented       the results     of calculations with         one   and   two LPSI pumps         operating.       At equivalent core peaking     limits, higher   peak   cladding temperatures         (PCTs) were   calculated in the   LOCA   analysis   when two LPSI pumps were assumed             operating. The Reference 2 analysis with two LPSI         pumps   operating     was performed     for Cycle 4 operation of D.C. Cook   Unit 2.
56 Core Ref looding Rate, 1.0 OECLG Break, A 11 ENC Core....................-......-....
This report documents         the results of       a LOCA/ECCS     analysis to support operation of the D.C.       Cook Unit   2 reactor for Cycle       5 at a thermal power rating of   3425 MWt,   with up to 5/. of the steam generator tubes plugged, with             two LPSI pumps   operating,   and   for ENC fuel exposed     up to a peak rod average burnup       of 47 MWD/kg.       Results are also reported for the case in which the entire core is ENC   fuel.     The calculations were performed using the                 EXEM/PWR LOCA/ECCS
..57 3.45 3.46 TOODEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 2.MWO/kg Case, Cycle 5'ore.....58 TOOOEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 10.MWO/kg Case, C ycle 5 Core...................
 
~-.....59 3.47 TOOOEE2 Cladding 1.0 OECLG Break, Cycle 5 Core...Temperature versus Time, 47.MWO/kg Case,~~~~~~~~~~~~~~~~~~~~~~~60 3.48 3.49 TOOOEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 2.MWO/kg Case, All ENC Core.....TOODEE2 Cladding Temperature versus Time, 1.0 DECLG Break, 10.MWO/kg Case, All ENC Core 61'2 3.50 TOOOEE2 Cladding Temperature versus Time, 1:0 OECLG Break, 47.MWO/kg Case, All ENC Core 63 XN-NF-84-21(NP
XN-NF-84-21(NP )
)Revision 2 1.0 I NTRODUCT ION Large break LOCA/ECCS analyses were performed in 1982(~2)to support operation of the D.C.Cook Unit 2 reactor at 3425 MWt with ENC fuel.Reference 1 presented analytical results for a spectrum of postulated large break LOCAs.The limiting break was identified as the 1.0 double ended cold line guillotine (DECLG)break.Reference 2 presented results for the previously identified limiting break using the EXEM/PWR(3)
Revision 2 models, including fuel properties   calculated   at the start of the   LOCA transient with ENC's generically approved   RODEX2 code.(5)
ECCS models, except GAPEX was used as the fuel performance model in place of RODEX2.The RODEX2 code was not approved (by the NRC for use in ECCS analyses in 1982.Therefore the NRC-approved GAPEX(4)code was used to calculate fuel properties at the initialization of the LOCA calculation.
 
The Reference 2 report documented the results of calculations with one and two LPSI pumps operating.
At equivalent core peaking limits, higher peak cladding temperatures (PCTs)were calculated in the LOCA analysis when two LPSI pumps were assumed operating.
The Reference 2 analysis with two LPSI pumps operating was performed for Cycle 4 operation of D.C.Cook Unit 2.This report documents the results of a LOCA/ECCS analysis to support operation of the D.C.Cook Unit 2 reactor for Cycle 5 at a thermal power rating of 3425 MWt, with up to 5/.of the steam generator tubes plugged, with two LPSI pumps operating, and for ENC fuel exposed up to a peak rod average burnup of 47 MWD/kg.Results are also reported for the case in which the entire core is ENC fuel.The calculations were performed using the EXEM/PWR LOCA/ECCS XN-NF-84-21(NP
)Revision 2 models, including fuel properties calculated at the start of the LOCA transient with ENC's generically approved RODEX2 code.(5)
XN-NF-84-21(NP)
XN-NF-84-21(NP)
Revision 2 2.0  
Revision   2 2.0  


==SUMMARY==
==SUMMARY==
LOCA/ECCS calculations were performed to determine core peaking limits which permit operation of the O.C.Cook Unit 2 reactor within guidelines specified by 10 CFR 50.46 and Appendix K.(6)The calculations assumed operation:
 
1)At a thermal power of 3425 MWt;2)With 5X average steam generator tube plugging;3)With the Cycle 5 core configuration (85/ENC fuel);and 4)With the entire core ENC fuel.The calculations were performed for the previously identified limiting break, the 1.0 OECLG break, with full ECCS flow.The results of the analysis are summarized in Table 2.1.The analysis supports operation of the O.C.Cook Unit 2 reactor for Cycle 5, and future cycles with ENC fuel, at a total peak limit (FqT)of 2.04 and a corresponding F<H limit of 1.55.T XN-NF-84-21(NP)
LOCA/ECCS   calculations were performed to determine core peaking limits which permit operation of the O.C. Cook Unit               2   reactor within guidelines specified by     10 CFR   50.46 and Appendix K.(6)           The calculations     assumed operation:
Revision 2 Table 2.1 O.C.Cook Unit 2 LOCA/ECCS Analysis Summary Peak Rod Average Burnup (MWO/kg)FT Q T 2.0 2.04 1.55 10.0 2.04 1.55 47.0 2.04 1.55 Results for the Cycle 5 Core Confi uration (85K ENC Fuel)Peak Cladding Temperature (oF)Maximum Local 2r-H20 Reaction (X)Total Zr-H20 Reaction 2007 4.6<1.0 2014 4.7<1.0 1993 4.5<1.0 Results with Entire Core of ENC Fuel Peak Cladding Temperature (oF)Maximum Local Zr-H20 Reaction (/)Total Er-H20 Reaction 2022 4.9<1.0 2030 5.0<1.0 2008 4.7<1.0 XN-NF-84-21(NP)
: 1)   At a thermal power of 3425 MWt;
Revision 2 3.0 LIMITING BREAK LOCA ANALYSIS This report supplements previous LOCA/ECCS analyses performed and documented for D.C.Cook Unit 2.A spectrum of LOCA breaks was performed and reported in XN-NF-82-35.(1)
: 2)   With   5X average steam generator tube plugging;
The limiting LOCA break was determined to be the large double-ended guillotine break of the cold leg or reactor vessel inlet pipe with a discharge coefficient of 1.0 (1.0 DECLG).Reference 2 established that for D.C.Cook Unit 2 it is more limiting in the LOCA analysis to assume no failure of a LPSI pump.The analysis performed and reported herein considers:
: 3)   With the Cycle     5 core configuration (85/       ENC fuel); and
1)That 5X of the steam generator tubes are plugged;2)That 85/of the Cycle 5 core is composed of ENC fuel;3)That both LPSI pumps are operational; and 4)That ENC fuel may be exposed to a peak average burnup of 47 MWD/kg.3.1 LOCA ANALYSIS MODEL The Exxon Nuclear Company EXEM/PWR-ECCS evaluation model was used to perform the analyses required.This model(3)consists of the following computer codes: RODEX2(5)code for initial stored energy;RELAP4-EM(")
: 4)   With the   entire core     ENC fuel.
for the system blowdown and hot channel blowdown calculations; ICECON(8)for the computation of the ice condenser containment backpressure; REFLEX(3 g)for computation of system ref lood;and TOODEE2(3~ID~11) for the calculation of final fuel rod heatup.
The calculations were performed for the previously identified limiting break, the 1.0   OECLG   break, with     full ECCS flow.
XN-NF-84-21(NP
The results of the analysis are         summarized   in Table 2.1. The   analysis supports operation of the O.C. Cook Unit           2 reactor for Cycle 5,       and future cycles with   ENC   fuel, at   a total peak   limit (FqT) of   2.04 and a corresponding T
)Revision 2 The Oonal d C.Cook Uni t 2 nuclear power pl ant i s a 4-1 oop Westinghouse pressurized water reactor with ice condenser containment.
F<H limit of   1.55.
The reactor coolant system is nodalized into control volumes representing reasonably homogeneous regions, interconnected by flow-paths or"junctions".
 
The system nodalization is depicted in Figure 3.1.The unbroken loops were assumed symmetrical and modeled as one intact loop with appropriately scaled input.Pump performance curves characteristic of a Westinghouse series 93A pump were used in the analysis.The transient behavior was determined from the governing conservation equations for mass, energy, and momentum.Energy transport, flow rates, and heat transfer were determined from appropriate correlations.
XN-NF-84-21(NP)
The Cycle 4 LOCA analysis(2) assumed that lX of the steam generator tubes were plugged.In the current analysis, the plant was modeled assuming asymmetric steam generator tube plugging: 3.33/of the tubes plugged in the intact loops, and 10.0/of the tubes plugged in the broken loop.The larger plugging in the broken loop results in higher PCTs.The primary coolant flow at full power was reduced by 1.1/from the current measured flow at the plant to account for the assumed average 5X steam generator plugging.Additionally, the core model assumed that the core is 85/ENC fuel, whereas the previous analysis assumed the Cycle 4 core configuration.
Revision 2 Table 2. 1   O.C. Cook Unit 2 LOCA/ECCS   Analysis Summary Peak Rod Average Burnup (MWO/kg)           2.0        10.0          47.0 FT Q
Calculations were also performed for the case in which the core is all ENC fuel, representative of XN-NF-84-21(NP)
2.04        2.04         2.04 T
Revision 2 Cycle 6 and beyond.ENC fuel has a smaller rod diameter than the Westinghouse fuel it replaces.To offset the impact of increased flow area on the LOCA analysis results, the core power was reduced from 3425 MWt to 3411 NWt.System input parameters are given in Table 3.1.The reactor core is modeled with heat generation rates determined from reactor kinetics equations with reactivity feedback and with decay heating as required by Appendix K of 10 CFR 50.Chopped cosine axial power profiles are assumed with the maximum axial peaking factor used in the analysis given in Table 3.2.The analysis of the loss-of-coolant accident is performed at 102 percent of rated power.The core power and other parameters used in the analyses are given in Table 3.1.3.2 RESULTS Table 3.3 presents the timing and sequence of events as determined for the large'break guillotine configuration with a discharge coefficient of 1.0 for full ECCS operation.
1.55       1.55          1.55 Results for the Cycle 5 Core Confi uration   (85K ENC Fuel)
Table 3.4 presents the results of the exposure analysis for Cycle 5 composed of 85K ENC fuel.Table 3.5 presents the results of the exposure analysis for a core composed of all ENC fuel.Results of the analyses are given in Figures 3.2 to 3.43.Figures 3.2 to 3.10 provide plots of key system blowdown parameters versus times.Figures 3.11 to 3.28 provide plots of key core responses during the blowdown period.Figures 3.29 to 3.32 provide the ECCS flows in the broken and intact loop during the refill period.Figure 3.33 presents the containment pressure during the LOCA.Figures 3.34 to 3.36 present the normalized power during the LOCA for the three exposure cases analyzed.Figures 3.37 to 3.40 provide results from the reflood portion of the transient for the case in which 85K of XN-NF-84-21(NP)
Peak Cladding Temperature (oF)             2007        2014          1993 Maximum Local 2r-H20 Reaction (X)         4.6        4.7          4.5 Total Zr-H20 Reaction                   <1.0       < 1.0       < 1.0 Results with Entire Core of   ENC Fuel Peak Cladding Temperature (oF)             2022        2030          2008 Maximum Local Zr-H20 Reaction (/)       4.9        5.0          4.7 Total Er-H20 Reaction                     <1.0       < 1.0         < 1.0
Revision 2 the core is ENC fuel.Figures 3.41 to 3.44 provide the reflood results for the case in which the core is composed entirely of ENC fuel.Finally, Figures 3.45 to 3.50 provide the response of the fuel during the refill and reflood periods of the LOCA transient for the fuel burnup cases'investigated.
 
XN-NF-84-21(NP)
Revision   2 3.0   LIMITING BREAK     LOCA ANALYSIS This report     supplements   previous     LOCA/ECCS   analyses   performed   and documented   for D.C. Cook Unit 2. A spectrum of   LOCA breaks was performed and reported in XN-NF-82-35.(1) The limiting LOCA break           was determined to be the large double-ended guillotine break of the cold leg or reactor vessel               inlet pipe with a discharge coefficient of 1.0 (1.0 DECLG). Reference           2 established that for D.C. Cook Unit 2 it is more   limiting in the   LOCA   analysis to   assume no failure of     a LPSI pump. The   analysis performed     and   reported herein considers:
: 1)   That   5X   of the steam generator tubes are plugged;
: 2)   That 85/ of the Cycle       5 core is composed of     ENC fuel;
: 3)   That both LPSI pumps are operational; and
: 4)   That   ENC   fuel may be exposed   to a peak average burnup   of 47 MWD/kg.
3.1 LOCA ANALYSIS MODEL The Exxon Nuclear Company EXEM/PWR-ECCS           evaluation model     was used to perform the analyses required.           This model(3) consists of the following computer codes:     RODEX2(5) code   for initial stored energy;       RELAP4-EM(")   for the system blowdown and hot channel blowdown calculations; ICECON(8)               for the computation of the ice condenser         containment backpressure;       REFLEX(3 g)   for computation of system ref lood; and TOODEE2(3~ID~11)           for the calculation of final fuel   rod heatup.
 
XN-NF-84-21(NP )
Revision   2 The   Oonal d   C. Cook   Uni t 2   nuclear   power   pl ant   is  a 4-1 oop Westinghouse   pressurized water reactor with ice condenser containment.                     The reactor   coolant     system     is nodalized into control           volumes     representing reasonably homogeneous regions, interconnected by flow-paths or "junctions".
The system   nodalization is depicted in Figure 3. 1.             The unbroken loops were assumed symmetrical and modeled as one         intact loop with appropriately scaled input. Pump   performance curves       characteristic of     a Westinghouse       series   93A pump were used     in the analysis.       The transient behavior       was   determined from the governing conservation equations for mass, energy, and momentum.                     Energy transport, flow rates,         and heat   transfer   were determined       from appropriate correlations.
The Cycle 4 LOCA     analysis(2)   assumed   that lX of the     steam generator tubes were plugged.       In the current analysis, the plant was modeled assuming asymmetric steam generator tube plugging: 3.33/ of the tubes plugged in the intact loops,   and 10.0/ of the tubes plugged in the broken loop.                 The larger plugging in the broken loop results in higher PCTs.               The primary coolant flow at full power was reduced by     1.1/ from the current measured flow at the plant to account for the     assumed average 5X steam     generator plugging. Additionally, the core model assumed       that the core is 85/       ENC fuel,   whereas     the previous analysis   assumed   the Cycle     4 core configuration.         Calculations were also performed   for the   case   in which the core is all       ENC fuel, representative of
 
XN-NF-84-21(NP)
Revision   2 Cycle 6 and beyond.       ENC fuel has a smaller rod diameter than the Westinghouse fuel   it replaces.       To offset the impact of increased flow area         on the   LOCA analysis results, the core power         was reduced from 3425 MWt   to 3411 NWt. System input parameters are given in Table 3.1.
The reactor core is modeled with heat generation rates determined from reactor kinetics equations             with reactivity feedback       and   with decay heating   as required by Appendix       K of 10 CFR 50. Chopped   cosine axial power profiles are       assumed   with the   maximum   axial peaking factor used in the analysis given in Table 3. 2. The analysis of the loss-of-coolant accident is performed at 102 percent of rated power.           The core power and   other parameters used in the analyses         are given in Table 3. 1.
3.2   RESULTS Table 3.3 presents the timing and sequence of events as determined for the large 'break     guillotine configuration with     a discharge coefficient of 1.0 for   full   ECCS operation. Table 3.4 presents the results of the exposure analysis for Cycle       5 composed of 85K ENC fuel. Table 3.5 presents the results of the exposure analysis for         a core composed of   all ENC fuel.
Results of the analyses are given in Figures 3.2 to 3.43.               Figures 3.2 to 3. 10 provide plots of key system blowdown parameters                 versus   times.
Figures 3. 11 to 3.28 provide plots of key core responses             during the blowdown period. Figures 3.29 to 3.32 provide the           ECCS flows in the broken     and intact loop during the     refill period.     Figure 3.33 presents the containment pressure during the   LOCA. Figures 3.34 to 3.36 present the normalized power during the LOCA   for the three       exposure   cases   analyzed. Figures 3.37 to 3.40 provide results from the reflood portion of the transient for the             case in which 85K     of
 
XN-NF-84-21(NP)
XN-NF-84-21(NP)
Revision 2 Table 3.1'Donald C.Cook Unit 2 System Input Parameters Thermal Power, MWt*Core, MWt Pump, MWt Primary Coolant Flow, Mlbm/hr Primary Coolant Volume, ft3 Operating Pressure, psia In,let Coolant Temperature, oF Reactor Vessel Volume, ft3 Pressurizer Volume, Total, ft3 Pressurizer Volume, Liquid, ft3 Accumulator Volume, Total, ft3 (each of four)Accumulator Volume, Liquid, ft3 (each of four)Accumulator Pressure, psia Steam Generator Heat Transfer Area, ft2-SG1, SG2, SG3, SG4 Steam Generator Secondary Flow, ibm/hr-S'G1, SG2, SG3, SG4 Steam Generator Secondary Pressure, psia Reactor Coolant Pump Head, ft Reactor Coolant Pump Speed, rpm Moment of Inerti a, 1 bm-f t2 Cold Leg Pipe, I.D.in.Hot Leg Pipe, I.D.in.Pump Suction Pipe, I.D.in.Fuel Assembly Rod Diameter, in.Fuel Assembly Rod Pitch, in.Fuel Assembly Pitch, in.Fueled (Core)Height, in.Fuel Heat Transfer Area, ft2**Fuel Total Flow Area, Bare Rod, ft2**Refueling Water Storage Tank Temperature, oF Accumulator Water Temperature, oF 3425 3411 14 143.1 11,768 2250 542 4945 1800 1080 1350 950 636 11,588, 3(12,446)3.505 x 106 3(3.764 x 106)799 277 1189 82,000 27.5 29.0 31.0 0.360 0.496 8.466 144.0 57,327 53.703 80 120*Primary Heat Output used in RELAP4-fM Model=1.02 x 3425=*."ENC Fuel Parameters.
Revision  2 the core is  ENC  fuel. Figures  3.41 to 3.44 provide the reflood results    for the case in which the core  is composed  entirely of  ENC  fuel. Finally, Figures    3.45 to 3.50 provide the response of the fuel during the      refill and  reflood periods of the  LOCA  transient for the fuel burnup    cases  'investigated.
3493.5 Mwt 10 XN-NF-84-21(NP)
 
Revision 2 Table 3.2 1.0 OECLG Break Analysis Parameters Peak Rod Average Burnup (MWO/kg)Total Core Power (MWt)*Total Peaking (F~)T Fraction Energy Oeposited in Fuel~Fully Moderated Core Voided Core 2.0 3411 2.04 0.974 0.954 10.0 3411 2.04 0.974 0.954 47.0 3411 2.04 0.974 0.954 Cycle 5 (85/ENC Fuel)Peaking'Axial x Engineering
XN-NF-84-21(NP)
~-Enthalpy Rise (F~H)T 1.316 1.55 1.316 1.55 1.316 1.55 All ENC Core Peaking.Axial x Engineering
Revision 2 Table 3.1     'Donald C. Cook Unit   2 System Input Parameters Thermal Power, MWt*                                                   3425 Core,   MWt                                                     3411 Pump, MWt                                                       14 Primary Coolant Flow, Mlbm/hr                                         143.1 Primary Coolant Volume, ft3                                           11,768 Operating Pressure, psia                                               2250 In,let Coolant Temperature, oF                                         542 Reactor Vessel Volume, ft3                                             4945 Pressurizer Volume, Total, ft3                                         1800 Pressurizer Volume, Liquid, ft3                                         1080 Accumulator Volume, Total, ft3 (each of four)                           1350 Accumulator Volume, Liquid, ft3 (each of four)                         950 Accumulator Pressure, psia                                             636 Steam Generator Heat Transfer Area,         ft2-SG1,   SG2, SG3, SG4                                             11,588, 3(12,446)
.Enthalpy Rise (F~H)T 1.316 1.55 1.316 1.55 1.316 1.55*2%power uncertainty is added to this value in the LOCA analysis.
Steam Generator     Secondary Flow,     ibm/hr-                       3.505 x 106 S'G1, SG2, SG3,   SG4                                           3(3.764 x 106)
Steam Generator     Secondary Pressure,     psia                       799 Reactor Coolant     Pump Head,     ft                                   277 Reactor Coolant     Pump   Speed, rpm                                 1189 Moment   of Inerti a, bm-f t2 1                                              82,000 Cold Leg Pipe, I.D. in.                                                 27.5 Hot Leg Pipe, I.D. in.                                                 29.0 Pump Suction Pipe, I.D. in.                                             31.0 Fuel Assembly Rod Diameter,         in.                                 0.360 Fuel Assembly Rod     Pitch, in.                                       0.496 Fuel Assembly Pitch, in.                                               8.466 Fueled (Core) Height, in.                                               144.0 Fuel Heat Transfer Area, ft2**                                         57,327 Fuel Total Flow Area, Bare Rod,         ft2**                         53.703 Refueling Water Storage Tank Temperature,         oF                   80 Accumulator Water Temperature,         oF                             120
*Primary Heat Output used in RELAP4-fM Model           = 1.02 x 3425 = 3493.5 Mwt
*."ENC Fuel Parameters.
 
10                       XN-NF-84-21(NP)
Revision 2 Table 3.2     1.0 OECLG Break Analysis Parameters Peak Rod Average Burnup (MWO/kg)                   2.0        10.0          47.0 Total Core Power (MWt)*                           3411        3411          3411 T
Total Peaking (F~)                                 2.04        2.04          2.04 Fraction Energy Oeposited in Fuel
      ~   Fully Moderated   Core                 0.974      0.974         0.974 Voided Core                            0.954       0.954          0.954 Cycle   5 (85/ ENC   Fuel)
Peaking Axial x Engineering                   1.316      1.316          1.316 T
      ~
Enthalpy Rise (F~H)                     1.55       1.55           1.55 All   ENC   Core Peaking
      . Axial   x Engineering                     1.316      1.316          1.316 T
      . Enthalpy Rise (F~H)                       1.55       1.55           1.55
*2% power     uncertainty is   added to this value in the LOCA analysis.
 
XN-NF-84-21(NP)
XN-NF-84-21(NP)
Revision 2 Table 3.3 0.C.Cook Unit 2 1.0 OECLG Break Event Times Event Time (sec.)Start Break Initiation Safety Injection Signal Accumulator Injection Broken Loop Intact Loop End of Bypass Safety Pump Injection Start of Ref lood Accumulator Empty Broken Loop Intact Loop 0.00 0.05 0.65 3.2 15.5 24.31 25.65 40.48 44.2 52.9 12 XN-NF-84-21(NP
Revision 2 Table 3.3     0. C. Cook Unit 2 1.0 OECLG Break Event Times Event                                                     Time (sec.)
)Revision 2 Table 3.4 1.0 DECLG Break Fuel Response Results for Cycle 5.Peak Rod Average Burnup (MWD/kg)Initial Peak Fuel Average Temperature (oF)Hot Rod Burst Time (sec)Elevation (ft)Channel Blockage Fraction Peak Clad Temperature
Start                                                       0.00 Break Initiation                                           0.05 Safety Injection Signal                                     0.65 Accumulator Injection Broken Loop                                           3.2 Intact Loop                                         15.5 End of Bypass                                               24.31 Safety Pump Injection                                     25.65 Start of Ref lood                                         40.48 Accumulator Empty Broken Loop                                           44.2 Intact Loop                                         52.9
.Time (sec)Elevation (ft)'.Temperature (oF)Zr-Steam Reaction~Local Maximum Elevation (ft)~Local Maximum (X)*Core Maximum 2.0 2151 69.5 7.0.25 287 9.63 2007 9.63 4.6<1.0 10.0 2060 70.5 7.0.28 288 9.63 2014 9.63 4.7<1.0 47.0 1629 78.5 7.75.47 269 9.38 1993 9.38 4.5<1.0*Values 400 sec into LOCA transient.
 
13 XN-NF-84-21(NP)
12                        XN-NF-84-21(NP )
Revision 2 Table 3.5 1.0 OECLG Break Fuel Response Results with an All ENC Core Peak Rod Average.Burnup (MWO/kg)Ini ti al Peak Fuel Average Temperature (oF)2.0 2151 10.0 2060 47.0 1629 Hot Rod Burst.Time (sec)Elevation (ft).Channel Blockage Fraction 69.1 7.0.25 70.1 7.0.28 78.3 7.75.47 Peak Clad Temperature
Revision   2 Table 3.4     1.0 DECLG Break Fuel Response Results   for Cycle 5
.Time (sec).Elevation (ft).Temperature (oF)Zr-Steam Reaction.Local Maximum Elevation (ft).Local Maximum (X)*.Core Maximum 292 9.63 2022 9.63 4.9<1.0 292 9.63 2030 9.62 5.0<1.0 274 9.38 2008 9.38 4.7<1.0*Values 400 sec into LOCA transient.
. Peak Rod Average Burnup (MWD/kg)               2.0          10. 0          47.0 Initial Peak Fuel Average Temperature   (oF)                           2151        2060            1629 Hot Rod Burst Time (sec)                             69.5        70.5            78.5 Elevation   (ft)                       7.0          7.0            7.75 Channel Blockage Fraction             .25          .28            .47 Peak Clad Temperature
0 E p 5 o e'6erne 8 K6g O Nor i g5 IH~~CI~eR I 5 QEK]5 o gmK CI 1~0 DC COOK 2 17X17~DECL BONs 57 AVE PLUG,10X 343~3%PLUGS Q O u)S 0 K~3 k-Q K C)y 4-9 5 K O 1R, 16 zn 2.4 TAHE AFTER BREAK (SEC)F iqnre 3.P Downcomer Flow Rate Dnring Blowdown Period, 1.0 DECLG Break 1.0 DC COOK 2 17X17 DECL BDN 5X AVE'.PLUG 10/3+3-3X PLUG.12 2D TIHE AFTER BREAK f SEC)3a Figure 3.3 Upper Plenum Pressure During Olowdown Period, 1.0 OECLG Break al D tv Ul X'.y 1.0 DC COOK 2 17X1'j~DECL 8DNi 5l AVE.PLUG,10K 3+3.31 PLUG, 4J CKo Kg O 4 4J K 0 Qo CXg I 1P 1C 20 RA TAHE AFTER BREAK (SEC)Figure 3.cl Average Core Inlet Flow during Blowdown Period, 1.0 DECLG Break  
        . Time (sec)                             287          288            269 Elevation   (ft)                       9.63        9.63            9.38
~R LU V)K gg)CI>o 1 0 OC COOK 2 17X17 e OECL BONo 5X AVE PLUGS 10<'+3~3 X PLUG>C)po mS Q O I-D O 4Jy<a D C9 Cl 12 1C 20 2$TXME AFTER BRFAK l SEC)2I f iqure 3.5 Average Core Outlet Flow during Blowdown Period, 1.0 OCCLG Break D bio K J~8 wR K 1 0 OC COOK 2 17X17aOECL BONt 5~AVE~PLUG~10~3+3~3>PLUGS O Dg<o R up X D Z 12 16 2.0 RA TXHE AFTER ORF"'K (SEC)Figure 3.6 Total Break Flow during Blowdown Period, 1.0 DECLG Break 1 0 OC COOK R 1.0 OECLG BON<<a8%5 IjJ wl p Vessel Side~Pump Side TIME (SEC)Figure 3.7 Break Flow Enthalpy Ouring Blowdown, 1.0 DECLG Break tJ 4J g CA g CK 1.0 DC COOK 2 17X17~DECL BOH.5X AVE.Pl UG.10K 3'+3-3X PLUG Oa QO L o P-8 cr.Q K Og 12 1C 20 t4 TIHE AFTER 8REAK (SEC)Figure 3.0 Flow from Intact Loop Accumulator during Blowdown Period, 1.0 DFCLG Break tJ 4J3 CA w~e4 K ld$CK fL 1 0 DC COOK 2 17X17 r DECL BDNr 5>AVE PLUGS 101 3+3 3X PLUGS Og K 4J.og K O 1-o Q O K K Og CK 12 1C 20 2l TXHE AFTER BREAK (SEC)a2 Figure 3.9 F)ow from Broken l.oop Accumulator during Blnwdown Period, 1.0 DECLG Break 1.0 DC COOK 2 17X17~DECL BOND 57 AVE.PLUGi10l 3+3-3X PLUG>lZ 16 20 24 TAHE AFTER BREAK (SEC)2a 32 Figure 3.10 Pressurizer Surge Line Flow during Blowdown Period, 1.0 DL'CLG Break l-0 OC COOK Z 1 0 OECLG t0 ti TZ~E~SE.C)X 8 I Z Vl I O CO I Figure 3.11 lleat Transfer Coeff icient during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 NHD/kg Case 1.0 DC COOK 2.1.0 OE'CLG tD ZI TIVE t SEC)Figure 3.12 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 NWD/kg Case r Jo~I M bjm 4 g gO X.O DC COOK a a.O DEcLc g 4 nl i 1t N RO tl TXVE t SEC)Figure 3.13 Oepth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWO/kg Case CD c4 U)3 OI 1 0 OC COOK R 1.0 DECLG 5II 5 oJ 8 B lS RD TXME l SEC)Figure 3.10 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 OECLG Break, P.U NWO/kg Case R>c 8 2: (I EA ll g 0 CO I a i.O OC COOK Z.X-0 OECLG Figure 3.l5 Q.&#xc3;N U 3f.TIVE (SEC)llot Assembly Inlet Flow during Blowdown Period, 1.0 DECLG Break, 2.0 HWD/kg Case 1.0 Dc COOK 2 1-0 DE'CLG 1$t0?I TXHE (SEC)Figure 3.16 I<ot Assembly Outlet I low during Blowdown Period, 1.0 DECLG Break, 2.0 I'1HD/kq Case IO R>c 8 2.'p Vl O CQ I o i.o DC COOK 2.x.o DECL&R9 24 TIME (SEC)32 40 Xl X 8 Z I EA 0 CO I U F igure 3.17 lleat Transfer Coeff ir.ient during Blowdown Period at PCT Node, 1.0 l)ECLG Break, 10.0 MWD/kg Case 1.0 DC COOK Z 1.0 DECLG ZO ZL TINE'SEC)Figure 3.18 Clad Surface Temperature during Blowdown I'eriod at PCT Node, 1.0 DFCLG Break, l0.0 NWD/kg Case l4 R7 OC I Vl O CO I o 1.0 OC COOK 2 1.0 OECLG H X z4 Oo H I-CJ CK bl I 4J CC i8<o lY H N og h Qg Z.O U TIME (SEC)Figure 3.19 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 10.0 HWD/kg Case (0 QX 8 H (I lA I 0 CO I o 1.0 DC COOK 2 1.0 DECLG Figure 3.20 ZO tl 3t TINE (SE'C)Average Fuel Teotperature during Blowdown Period at PCT Location, 1.0 DECLG Break, 10.0 HWD/kg Case (0 Q X 8 I Vl 0 CO I o 1 0 OC COOK R 1.0 OECLG Figure 3.21 Lt 1C ZO R.l TIVE (SE'C))lot Rssembly tnlet Flaw during Olowdown Period, 1.0 OLCI.G llreak, 10.0 llWO/kg Case 10 Kl M 8 R I Vl O CO I 1.0 OC COOK 2.1 0 DfCLG za Z(TINE (SfC)Figure 3.22 tlot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 NHD/kg Case 3C 10 R>C 8 2: I CA O CO I M iM D l-0 OC COOK 2=1 0 OECLt Figure 3.23 1k lS t0 t4 2$TIvE t SEC)lleat Tansfer Coefficient during Blowdown Period at PCT Node, 1.0 DLCLG Break, 47.0 MHD/kg Case Z X lD I Z Vl O CO I Mm U 1-0 OC COOK P.1.0 QECLG LS za Kl TETE (SE'C)Figure 3.24 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 DECLG Break, 47.0 Hll0/kg Case  
      '. Temperature   (oF)                     2007        2014            1993 Zr-Steam Reaction
~N~S Qo~8 Oo 0~s kg 4J lZ gO CI$gp O AJ 1-0 OC COOk 2 1.0 DECL&R>c 8 K I Vl)0 00 I 0 lf 1S EO Rl tl"3E 1 TINE (SEC)Figure 3.25 Depth of Metal-Water Reaction During Blowdown Period at PCT Node, 1.0 DECLG Break, 47.0 MWD/kg Case 1 0 OC COOK 2 1.0 OECLG Figure 3.26 3R.'3C It LC t0 U tl TIt>E (SEC 1 Average Fuel Temperature dur ing Blowdown Period at PCT Location, 1.0 DECLG Break, 47.0 MWO/kg Case l0 R>c lD M I Vl 0 CO I o 1 0 OC COOK 2 1 0 DE'CLG I 1t lS 5l RA TAHE (SEC)ee Figure 3.27 (lot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 MHD/kg Case 1.0 OC COOK 2, 1~0 OCCLG Figure 3.28 lf fO zl tl TIvE (SEC)Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 MWD/kg Case  
        ~ Local Maximum Elevation   (ft)       9.63        9.63            9.38
~8 Oy I.igure 3.29 1t 15 tD ZI 3a TIME AFTER EOB Y (SEC)Accumulator Flow during Refill and Ref lood Periods, Broken Loop, 1.0 DECLG Break 1$tD-H El TXHE AFTER EOBY (SEC)-.Figure 3.30 Rccumulator Flow during Ref ill and Ref lood Periods, Intact Loop, 1.0 OECLG Break 300 250 200 150-100 50-0 0 50 100 150 200 Time (sec)After.Start 250 300 350 R>c ED M I Vl ll I 0 CO I Figure 3.31 IIPSI 0 LPSI Flow during Refill and Ref lood Periods, Broken Loop, 1.0 OfCLG Break C V)CQ O 1000 800-600 400 P O O 200 0 0 50 100 150 200 Time (sec)After Start 300 350 I ignre 3.3?Hi'Sl 5 I.PSI Flow during Refill and Reflood Periods, Intact I oop, 1.0 I)ECLG llreak 22 21 P R O O 20 19 18 0 16 15 0 50 100 150 200 Time (sec)-After Start 250 Figure 3.33 Containment Back Pressure, 1.0 OECLG Break 300 350 g)X lD M'C I p Ul 0 00 I a CK 4J O 0 a 4J t'4~l K LL o X~4 Q (0 CO l$0 200 Z40 TINE (SECONDS)SR I Z Vl 0 00 I o Figiire 3.34 Horn" li"ed Pokier,'.C DECLu Break, Z.O Hl'ID/kg Case Zl X 8 (I lh O OO I H.O 160 200 210 210 TINE (SE'CONDS)320 3CO 100 Eigure 3.35 Normalized Power, 1.0 BECLG Break, 10.0 MWO/kg Case i0 320 iso Q.O NO ZOO ZEO TINED (SECONDS)I'igure 3.36 Normal ized Power, 1.0 DECLG Break, 47.0 NWD/kg Case DCC2 REFl 000.1 0 OECLG FULL ECCS FLOV FQ=2.04 1 55 3525 HMT.HIX CORE LESS SPCR 40 180 Z00 ZA0 Z00 TIHE FROM BOCREC (SEC)3ZO 400 R>c CD I Vl 0 CO I PO tV a I=i@ore 3.3/lief loocl Core Mixlisre I.evel, 1.0 OECI.G Break, Cycle 5 Core DCC2, REFLOODo 1.0 DECLG FULL ECCS FLOW FQ=2.0$1.55 3425 HWTiHIX CORE LESS SPCR 40 80 160 200 2AO 280 TIHE FROH BOCREC (SEC)<00 R>C ID (I Vl O 00 I U l inure 3.3A Reflood fjowocoioer Mixture Level, 1.0 DECLG Break, Cycle 5 Core OCC2 REFLOOD, 1.0 DECLG FULL ECCS fLOW F9=2.0i 1.55 3425 HMT,HIX CORE LESS SPCR 40 ao 160 200 240 2SO TIHE FROH BOCREC (SEC)360 400 R>c CD R (I I/l 0 CO I FO fO o I icjur>>3.39 Hei'lood tipper Plenum Pressure, 1.0 OECLG Break, Cycle 5 Core OCC2 REFLOOD.1.0 OECLG FULL ECCS FLOW FQ=2.04 1.55 3525 HWTiHIX CORE LESS SPCR 40 SO 120 160 200 RAO 280 TIME FROH BOCREC (SEC)I ignre 3.40 Core I-looding Rate, 1.0 DECI.G Break, Cycle 5 Core 380 400 R>C 8 R (I Vl 0 CO I~PO a OCC2.REFLOODo Al L ENC CORE-FOH=1-55 40 40 aso zaa zoo zea TXHE FROM BOCREC (SEC)3zo eao I igure 3.41 lhefloori Core HixIore l.evel, 1.0 DECI.G Break, All ENC Core OCC2.REFLOOO.ALL EHC CORE-FOH=1.55 LLJ PA X H K o O O a 40 IO 160 200 240 ZIO TIME FROM 80CREC (SEC)360 400 I igure 3.02 Ref loorl Onwncomer Mixture Level, 1.0 OECLG Break, All ENC Core OCC2 REFLOOOo ALL ENC CORE-FOH<<1 55 MO$0 44 X60 Zao Z.40 nl 0 TINE FROH BOCREC (SEC)Eigure 3.03 lief lood Upper Vier>iun Pressiire, 1.0 OECl.G Break, All ENC Core'360 400 R X 8 2 (I~'I/I 0 CO I a OCC2 REFLOOD, ALL EHC CORE-FOH=1.55 320 0 126 L60 5)0 240 TIME FROM BOCREC (SEC)I ignore 3A4 Core Ref loodirlg Rat.e, 1.0 DECI.G Break, All ENC Core 360 ioo
        ~ Local Maximum (X)*                     4.6          4.7             4.5 Core Maximum                          < 1.0       <1.0           < 1.0
-FQ=2.05-FOH~1.55-2 HM tL g 5~al I bl CL Da K" K td CL'K id/C9 z, H Cl Qo O 1.PCT HOOE (HOOE 22 AT S-62 FT-)2.RUPTUREO HOOE (NOOE 11 AT 7.00 FT)CI CI%.0 40.0 S0.0 I'igure 3.45 200.0 320.0 360.0 120.0 160.0 200.0 Z(0.0 TIME-SECONDS TOOOEE2 Cladding Temperature versus Time, 1.0 DECLG Break, 2.HllD/Kg Case, Cycle 5 Core  
  *Values 400 sec into    LOCA transient.
-FQ=2.04-FOH~1.55-10 H 1-PCT NODE (NODE 22 AT$.62 FT)2..RUPTURED NODE (NODE 11 AT 1-00 FT-)40-0 I:ignite 3.06 80.0 ZS0.0 32,0.0 160.0 200.0 240.0 TIME-SECONDS TOODCE2 Cladding Temperature versus Time, 1.0 DECI.G Break, 10.IIWD/Kg Case, Cycle 5 Core 360.0 40.0 N 1-PCT)JODO'NODf Rl AT$.31 FT)(0 hJ hJ K C9~UJ~Q c5 I)LJ f)'o CJ: LL lLJ 0 K QJ CI)-5 C9 M Cl Qo g D 0 RUPTURED HODR l'NODE 1<.AT 1.15 FT-)Cl Cl Q).0 210.0 320.0 360.0 120.0 40.0 80.0 160.0?00'2<0.0 TINE-SECONDS I igrrre 3.47~l000l.:L2 Claddirrg Temperature versus Time, 1.0 OECLG Break, 4/.Hll0/Kg Case, Cycle 5 Core 40.0 RX 8 R I Vl 0 0)I
 
-FQ~R.O{-FOB=1.55" 2, HM i.PCT NODE (NODE 22 AT$.62 FT.)2-RUPTURED NODE (NODE).L AT 1.00 FT.)40.0 I'igure 3.0A a0.0 320.0 360.0 160.0 200.0 2(0-0 260.0 TIHE-SECONDS TOOOLC2 Cl i~lrliug TemperaLure versus Time, 1.0 OLCl.G Break, 2.NWO/Kg Case, All l:NC Core lORO
13                      XN-NF-84-21(NP)
-FQ~L.0$-FOH=1 55-10 H 1-PCT NODE t NODE 22, AT 5.62 FT.)RUPTURED NODE t NODE 11 AT 1.OO FT.)40.0 I i gurt 3.49 320.0 ao.o 120.0 160.0 200.0 2io.o 280-0 TXHE-SECONDS f00f)EE2 Clarlding funperature versus 1 ime, 1.0 DECLG Break, 10.NWf)/Kg Case, All ENC Core FQ<2.04-FOH 3.=1-55-h7 M 1.PCT HQOE (HOOE 21 AT 0 31 FT)Z.RUPTURED HOOf (HOOE 14 AT 7.15 FT 1 40.0 Figure 3.50 320.0 80.0 120.0 160.0 200.0 240.0 280.0 TIME-SECONDS 100DEE2 Cladding Temperature versus Time, 1.0 DECI G Break, c17.HWD/Kg Case, Rll ENC Core l
Revision   2 Table 3.5     1.0 OECLG Break Fuel Response Results with an All ENC Core Peak Rod Average. Burnup (MWO/kg)               2.0        10.0          47.0 Ini ti al  Peak Fuel Average Temperature     (oF)                         2151       2060         1629 Hot Rod Burst
64 XN-NF-84-21 (NP)Revision 2
      . Time (sec)                           69.1        70.1          78.3 Elevation (ft)                       7.0         7.0           7.75
      . Channel Blockage Fraction              .25        .28          .47 Peak Clad Temperature
      . Time (sec)                             292        292          274
      . Elevation (ft)                         9.63        9.63          9.38
      . Temperature (oF)                       2022        2030          2008 Zr-Steam Reaction
      . Local Maximum Elevation     (ft)       9.63        9.62          9.38
      . Local Maximum (X)*                    4.9         5.0           4.7
      . Core Maximum                          <1.0       <1.0         <1.0
*Values 400 sec into     LOCA transient.
 
0 E p 5 IH~~CI~
eR I5        QEK]5 o gm 5          K o  e' 6
erne 8 K6 g
O  Nor i  g
 
1 ~ 0 DC COOK 2   17X17 ~ DECL BONs   57 AVE     PLUG,10X 343   ~ 3% PLUGS CI QO u)S0 K
~3 k- Q K
C) y 4-9 5K O
1R,     16       zn       2.4 TAHE AFTER BREAK ( SEC)
F iqnre 3.P   Downcomer Flow Rate Dnring Blowdown Period, 1.0 DECLG Break
 
1.0 DC COOK   2 17X17 DECL BDN       5X AVE'. PLUG   10/ 3+3-3X     PLUG.
12                 2D                         3a TIHE AFTER BREAK f SEC     )
Figure 3.3 Upper Plenum Pressure During Olowdown Period, 1.0 OECLG Break
 
al 1.0 DC COOK 2     17X1'j DECL 8DNi
                                      ~              5l AVE. PLUG,10K     3+3.31 PLUG, D
tv Ul X'.
y 4J CKo Kg O
4 4J K
0 Qo CXg I
1P       1C       20       RA TAHE AFTER BREAK ( SEC)
Figure 3.cl Average Core Inlet Flow during Blowdown Period, 1.0 DECLG Break
 
1 0 OC COOK 2   17X17 e OECL BONo 5X AVE         PLUGS 10 <'+3 ~ 3 X PLUG>
~R LU V)
K gg) CI
>o C) po mS Q   O I-D O
4Jy
<a D
C9 Cl 12       1C       20       2$       2I TXME AFTER BRFAK       l SEC) f iqure 3.5 Average Core Outlet Flow during Blowdown Period, 1.0   OCCLG Break
 
D bio       1 0 OC COOK 2 17X17aOECL BONt         5~ AVE ~ PLUG ~ 10~ 3+3 ~ 3> PLUGS KJ
~8 wR K
O Dg
<o R
up X
D Z
12       16       2.0         RA TXHE AFTER ORF"'K       ( SEC )
Figure 3.6 Total Break Flow during Blowdown Period, 1.0   DECLG Break
 
1 0 OC COOK R     1.0 OECLG BON
<<a8
%5                                           p Vessel Side IjJ wl Pump Side
                                                    ~
TIME (SEC)
Figure 3.7   Break Flow Enthalpy Ouring Blowdown, 1.0 DECLG Break
 
tJ         1.0 DC COOK 2 17X17     ~ DECL BOH. 5X AVE. Pl UG.10K         3'+3-3X PLUG 4J CA g g
CK Oa QO L
o P-8 cr. Q K
Og 12       1C       20         t4 TIHE AFTER 8REAK         ( SEC )
Figure 3.0 Flow from Intact   Loop Accumulator during Blowdown Period, 1.0 DFCLG Break
 
tJ         1 0 DC COOK   2 17X17 r DECL BDNr 5> AVE         PLUGS 101 3+3 3X PLUGS 4J3 CA  w
~
K e4 ld CK fL Og K
4J.
og K
O 1- o QO K
K Og CK 12       1C       20       2l             a2 TXHE AFTER BREAK ( SEC       )
Figure 3.9 F)ow from Broken l.oop Accumulator during Blnwdown Period, 1.0 DECLG Break
 
1.0 DC COOK 2 17X17 ~ DECL BOND     57 AVE. PLUGi10l 3+3-3X PLUG>
lZ       16       20       24       2a 32 TAHE AFTER BREAK       ( SEC)
Figure 3.10 Pressurizer Surge Line Flow during Blowdown Period, 1.0 DL'CLG Break
 
l- 0 OC COOK Z     1 0 OECLG X
8 Vl ZI I
O  CO I
t0         ti TZ~E   ~ SE.C)
Figure 3.11 lleat Transfer Coeff icient during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 NHD/kg Case
 
1.0   DC COOK 2. 1.0   OE'CLG tD       ZI TIVE t SEC)
Figure 3.12 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 NWD/kg Case
 
r           X.O DC COOK a     a.O DEcLc Jo
  ~I M
bjm 4
g gO g 4 nl i               1t       N       RO       tl TXVE t SEC)
Figure 3.13 Oepth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWO/kg Case
 
CD c4 U)3       1 0 OC COOK R     1.0 DECLG OI 5II 5
oJ 8
B R  >c 8 2:I
(
EA  ll g
0  CO I
lS        RD a
TXME    l SEC)
Figure 3.10 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 OECLG Break, P.U NWO/kg Case
 
i.O   OC COOK Z. X-0 OECLG Q.       &#xc3;       N       U                 3f.
TIVE (SEC)
Figure 3.l5  llot Assembly Inlet Flow during Blowdown Period, 1.0 DECLG Break, 2.0 HWD/kg Case
 
1.0 Dc   COOK 2   1-0 DE'CLG R
8
                                                                        >c 2.'
Vl p
O  CQ I
1$         t0       ?I           IO    o TXHE ( SEC )
Figure 3.16 I<ot Assembly Outlet I low during Blowdown Period, 1.0 DECLG Break, 2.0   I'1HD/kq Case
 
i.o   DC COOK 2. x.o DECL&
8 X Xl ZI EA 0  CO I
R9       24               32      40 U
TIME (SEC)
F igure 3.17 lleat Transfer Coeff ir.ient during Blowdown Period at PCT Node, 1.0 l)ECLG Break, 10.0 MWD/kg Case
 
1.0 DC COOK Z   1.0 DECLG R7 OC I
Vl O  CO I
ZO       ZL                       l4 o
TINE'   SEC )
Figure 3.18 Clad Surface Temperature during Blowdown I'eriod at PCT Node, 1.0 DFCLG Break, l0.0 NWD/kg Case
 
1.0 OC COOK 2   1.0 OECLG H
X z4 Oo H
I-CJ CK bl I
4J CC i8
<o lY H
N og h
Qg 8QX
( HI lA I
0  CO I
Z.O         U                             (0      o TIME     ( SEC )
Figure 3.19 Depth of Metal-Water Reaction during   Blowdown Period at PCT Node, 1.0 DECLG Break, 10.0 HWD/kg Case
 
1.0 DC COOK 2   1.0 DECLG QX 8 I Vl 0  CO I
ZO       tl               3t       (0    o TINE ( SE'C )
Figure 3.20  Average Fuel Teotperature during Blowdown Period at PCT Location, 1.0 DECLG Break, 10.0 HWD/kg Case
 
1 0 OC COOK R     1.0   OECLG Kl M 8 RI Vl O  CO I
Lt         1C       ZO     R.l       10 TIVE (SE'C)
Figure 3.21 )lot Rssembly tnlet Flaw during Olowdown Period, 1.0 OLCI.G llreak, 10.0 llWO/kg Case
 
1.0  OC COOK 2. 1 0   DfCLG R  >C 8 2:I CA O  CO I
M iM za       Z(           3C 10 D
TINE   (SfC)
Figure 3.22 tlot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 NHD/kg Case
 
l-0  OC COOK 2 =
1 0 OECLt Z
lD X
Vl ZI O  CO I
Mm 1k       lS       t0       t4       2$
U TIvE t SEC)
Figure 3.23  lleat Tansfer Coefficient during Blowdown Period at PCT Node, 1.0 DLCLG Break, 47.0 MHD/kg Case
 
1-0 OC COOK P. 1.0 QECLG LS       za                 Kl TETE (SE'C)
Figure 3.24   Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 DECLG Break, 47.0 Hll0/kg Case
 
  ~ N 1-0  OC COOk  2  1.0  DECL&
~S Qo
~8 Oo 0
~s kg 4J lZ gO CI$
gp O AJ R
8 >c KI Vl
                                                                                              )
0 00 I
0       lf       1S       EO       Rl       tl       "3E         1 TINE (SEC)
Figure 3.25   Depth of Metal-Water Reaction During Blowdown Period at PCT Node, 1.0 DECLG Break, 47.0 MWD/kg Case
 
1 0 OC COOK 2   1.0 OECLG >c lD M I
Vl 0  CO I
It        LC      t0        U        tl      3R.      '3C l0    o TIt>E  ( SEC 1 Figure 3.26 Average Fuel Temperature dur ing Blowdown Period at PCT Location, 1.0 DECLG Break, 47.0 MWO/kg Case
 
1 0 OC COOK 2       1 0 DE'CLG I       1t       lS       5l       RA       ee TAHE (SEC)
Figure 3.27   (lot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 MHD/kg Case
 
1.0   OC COOK 2, 1 ~ 0 OCCLG lf       fO       zl       tl TIvE (SEC)
Figure 3.28  Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 MWD/kg Case
 
  ~
8 Oy 1t       15     tD       ZI                   3a TIME AFTER   EOB Y ( SEC )
I. igure 3.29 Accumulator Flow during Refill and Ref lood Periods, Broken Loop, 1.0 DECLG Break
 
1$       tD     -
H         El TXHE AFTER EOBY ( SEC )-.
Figure 3.30 Rccumulator Flow during Ref ill and Ref lood Periods,   Intact Loop, 1.0 OECLG Break
 
300 250 200 150-100 50-R >c ED M I
0                                                                             Vl  ll 0         50       100         150         200       250          300 350 0 I
CO Time (sec) After. Start                               I Figure 3.31 IIPSI 0 LPSI Flow during Refill   and Ref lood Periods, Broken Loop, 1.0 OfCLG Break
 
C 1000 V)
CQ 800-O 600 400 P
O O   200 0
0         50         100         150       200                 300 350 Time (sec) After Start I ignre 3.3? Hi'Sl 5 I.PSI Flow during Refill and Reflood Periods, Intact I oop, 1.0 I)ECLG llreak
 
22 21 20 19 P
18 R
0 16 O
15 g) X lD M
                                                                        'C Ul pI 0         50       100       150         200       250 300 350  0  00 Time (sec)-After Start                       I Figure 3.33 Containment Back Pressure, 1.0 OECLG Break               a
 
CK 4J O
0 a
4J t'4
~l K
LL oX SRI Vl Z
0  00 I
    ~4 Q     (0       CO                   l$ 0     200     Z40                 o TINE ( SECONDS )
Figiire 3.34   Horn" li"ed Pokier, '.C DECLu Break, Z.O Hl'ID/kg Case
 
Zl X 8
(   I lh O OO I
H.O       160     200       210       210     320 3CO 100 TINE ( SE'CONDS )
Eigure 3.35 Normalized Power, 1.0 BECLG Break, 10.0 MWO/kg Case
 
i0               Q.O       NO         ZOO       ZEO       iso      320 TINED ( SECONDS   )
I'igure 3.36 Normal ized Power, 1.0 DECLG Break, 47.0 NWD/kg Case
 
DCC2 REFl     000.1   0 OECLG     FULL ECCS FLOV FQ=2.04             1 55   3525 HMT.HIX CORE LESS SPCR R
CD
                                                                                                    >c I
Vl 0  CO I
PO tV 40                               180       Z00       ZA0       Z00       3ZO            400 TIHE   FROM BOCREC ( SEC )                                           a I=i@ore 3.3/   lief loocl Core Mixlisre I.evel, 1.0 OECI.G Break, Cycle   5 Core
 
DCC2, REFLOODo 1.0   DECLG FULL ECCS FLOW         FQ=2.0$     1.55 3425 HWTiHIX CORE LESS   SPCR R  >C
(
ID I
Vl O 00 I
40         80               160       200       2AO       280                     <00 TIHE   FROH BOCREC ( SEC )                                     U l inure 3.3A Reflood fjowocoioer Mixture Level, 1.0 DECLG   Break, Cycle 5 Core
 
OCC2 REFLOOD,     1.0   DECLG FULL ECCS fLOW         F9=2.0i 1.55 3425 HMT,HIX CORE     LESS SPCR R >cR
(
CD I
I/l 0  CO I
FO  fO 40           ao               160     200       240       2SO               360 400 TIHE   FROH BOCREC ( SEC )                                         o I icjur>> 3.39 Hei'lood tipper Plenum Pressure, 1.0 OECLG Break, Cycle 5 Core
 
OCC2 REFLOOD.1.0       OECLG FULL ECCS FLOW         FQ=2.04 1.55 3525 HWTiHIX CORE LESS SPCR 8R
                                                                                          >C
( RI Vl 0  CO I
                                                                                      ~  PO 40         SO   120       160     200       RAO       280         380    400 TIME FROH BOCREC         ( SEC)                                 a I ignre 3.40 Core I-looding Rate, 1.0 DECI.G Break, Cycle 5 Core
 
OCC2. REFLOODo   Al L ENC CORE FOH =         1-55 40         40                 aso     zaa       zoo       zea       3zo      eao TXHE FROM BOCREC       (SEC)
I igure 3.41 lhefloori Core HixIore l.evel, 1.0 DECI.G Break, All ENC Core
 
OCC2. REFLOOO.     ALL EHC CORE FOH = 1.55 LLJ PA X
H K
oO O
a 40         IO                 160     200       240     ZIO               360 400 TIME FROM 80CREC ( SEC )
I igure 3.02 Ref loorl Onwncomer Mixture Level, 1.0 OECLG Break, All ENC Core
 
OCC2 REFLOOOo     ALL ENC CORE FOH           <<1   55 X
8R 2I
(~'
I/I 0  CO I
44        $0                 X60       Zao       Z.40       nl 0     MO      '360 400 TINE FROH BOCREC (SEC)                                             a Eigure 3.03 lief lood Upper Vier>iun Pressiire, 1.0 OECl.G Break, All ENC Core
 
OCC2 REFLOOD,   ALL EHC CORE FOH = 1.55 0               126       L60       5)0         240               320 360 ioo TIME FROM BOCREC (SEC)
I ignore 3A4 Core Ref loodirlg Rat.e, 1.0 DECI.G Break, All ENC Core
 
FQ=2.05 FOH ~1.55   - 2 HM
: 1. PCT HOOE (HOOE 22 AT S-62 FT- )
tL g    2. RUPTUREO HOOE (NOOE 11 AT 7.00 FT   )
5~
al I
bl CL Da K"
K td CL
'K id/
C9 z,
H Cl Qo O
CI CI
    %.0 40.0         S0.0       120.0     160.0     200.0   Z(0.0   200.0     320.0       360.0 TIME SECONDS I'igure 3.45      TOOOEE2 Cladding Temperature versus Time, 1.0 DECLG   Break,
: 2. HllD/Kg Case, Cycle 5 Core
 
FQ=2.04 FOH     ~1.55 10   H 1- PCT NODE (NODE 22 AT $ .62 FT )
2.. RUPTURED NODE (NODE 11 AT 1-00 FT- )
40-0       80.0                 160.0     200.0    240.0     ZS0.0     32,0.0 360.0 40 .0 TIME SECONDS I:ignite 3.06      TOODCE2 Cladding Temperature versus Time, 1.0 DECI.G Break,
: 10. IIWD/Kg Case, Cycle 5 Core
 
N 1- PCT
                          )JODO'NODf Rl AT $ .31 FT   )
RUPTURED HODR (0
hJ                   l'NODE 1<.AT 1.15 FT- )
hJ K
C9~
UJ ~
Q c5 I
)LJ f)'
o CJ:
LL lLJ 0
K QJ CI
)-5 C9 M
Cl QoD g
0 RX 8 RI Vl 0 0)
I Cl Cl Q).0       40.0             80.0           120.0   160.0     ?00 '   2<0.0    210.0    320.0 360.0 40 .0 TINE     SECONDS I igrrre 3.47 ~
l000l.:L2 Claddirrg Temperature versus Time, 1.0 OECLG Break, 4/. Hll0/Kg Case, Cycle 5 Core
 
                                            -  FQ~R.O{ FOB =1.55   " 2, HM
: i. PCT NODE (NODE 22 AT $ .62 FT. )
2- RUPTURED NODE (NODE ).L AT 1.00 FT. )
40.0       a0.0                   160.0     200.0   2(0-0     260.0     320.0 360.0 lORO TIHE SECONDS I'igure 3.0A      TOOOLC2  Cl i~lrliug TemperaLure versus Time, 1.0 OLCl.G Break,
: 2. NWO/Kg Case,   All l:NC Core
 
FQ~L.0$ FOH =1 55 10 H 1-   PCT NODE t NODE 22, AT 5.62 FT. )
RUPTURED NODE t NODE 11 AT 1.OO FT. )
40.0         ao.o         120.0   160.0     200.0   2io.o   280-0    320.0 TXHE SECONDS I i gurt  3.49      f00f)EE2 Clarlding funperature versus 1 ime, 1.0 DECLG Break,
: 10. NWf)/Kg Case,   All ENC Core


==4.0 CONCLUSION==
FQ<2.04  FOH 3.=1-55  -  h7 M
S For breaks up to and including the double-ended severance of a reactor coolant pipe, the Donald C.Cook Unit 2 Emergency Core Cooling System will.meet the Acceptance Criteria as presented in 10 CFR 50.46 for operation with ENC 17xl/fuel operating in accordance with the LHGR limits noted in Table 2.1.That is: 1.The calculated peak fuel element clad temperature does not exceed the 2200oF limit.2.The amount of fuel element cladding that reacts chemically with water or steam does not exceed 1 percent of the total amount of zircaloy in the reactor.3.The cladding temperature transient is terminated at a time when the core geometry is still amenable to cooling.The hot fuel rod cladding oxidation limits of 17/are not exceeded during or after quenching.
: 1. PCT HQOE (HOOE 21 AT 0 31 FT )
4.The core temperature is reduced and decay heat is removed for an extended period of time, as required by the long-lived radio-activity remaining in the core.  
Z. RUPTURED HOOf (HOOE 14 AT 7.15 FT  1
: 40. 0      80.0        120.0      160.0      200.0  240.0      280.0      320.0 TIME  SECONDS Figure 3.50      100DEE2  Cladding Temperature versus Time, 1.0    DECI G Break, c17. HWD/Kg  Case, Rll  ENC Core
 
l 64                            XN-NF-84-21 (NP )
Revision  2
 
==4.0   CONCLUSION==
S For breaks up to and including the double-ended         severance   of a reactor coolant pipe, the Donald     C. Cook Unit 2 Emergency Core Cooling System         will.
meet the Acceptance     Criteria as presented   in   10 CFR 50.46 for operation with ENC 17xl/ fuel operating in accordance with the         LHGR limits noted in Table 2.1. That is:
: 1. The calculated peak fuel element clad temperature does not exceed the 2200oF   limit.
: 2. The amount     of fuel element cladding that reacts chemically with water or steam does not exceed       1   percent of the total amount of zircaloy in the reactor.
: 3. The cladding temperature transient is terminated at       a time when the core geometry is     still amenable   to cooling.     The hot   fuel rod cladding oxidation limits of 17/ are not exceeded during or after quenching.
: 4. The core temperature     is reduced   and decay heat     is removed for an extended   period of time, as required by the long-lived radio-activity   remaining in the core.


XN-NF-84-21(NP)
XN-NF-84-21(NP)
Revision 2  
Revision 2
 
==5.0  REFERENCES==
 
XN-NF-82-35, "Donald C. Cook Unit 2 LOCA ECCS Analysis Using EXEM/PWR Large Break Results," Exxon Nuclear Company, Inc., Rich-land, WA 99352, April 1982.
(2)  XN-NF-82-35, Supplement 1, "Donald C. Cook Unit 2 Cycle 4 Limiting Break LOCA-ECCS Analysis Using EXEM/PWR," Exxon Nuclear Company, Inc., Richland, WA 99352, November 1982.
(3)  XN-NF-82-20(P), Rev. 1, August 1982; and Supplement 4, July 1984, "Exxon Nuclear Company Evaluation Model EXEM/PWR ECCS Model Up-dates," Exxon Nuclear Company, Inc., Richland, WA 99352.
(4)  XN-73-25, "GAPEXX:  A  Computer Program  for Predicting Pellet-to-Cladding Heat Transfer Coefficients," Exxon Nuclear Company, Inc.,
Richland, WA, August 13, 1973.
(5)  XN-NF-81-58(A), Rev. 2, "RODEX2: Fuel Rod Thermal-Mechanical Re-sponse Evaluation Model," Exxon Nuclear Company, Inc., Richland, WA
        . 99352, February 1983.
(6)  "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Cooled Nuclear Power Reactors," 10 CFR 50.46 and Appendix K of 10 CFR 50.
(7)  U.S. Nuclear Regulatory Commission letter, T.A. Ippolito (NRC) to W.S. Nechodom (ENC), "SER for ENC RELAP4-EM Update," March 1979.
(8)  XN-CC-39, Rev. 1, "ICECON: A Computer Program Used    to Calculate Containment Backpressure for LOCA Analysis ( Including Ice Condenser Plants)," Exxon Nuclear Company, Inc., Richland, WA 99352, November 1977.
(9)  XN-NF-78-30(A), "Exxon Nuclear Company WREM-Based Generic    PWR ECCS Evaluation Model Update ENC WREM-IIA," Exxon Nuclear  Company,  Inc.,
Richland, WA 99352. May 1979.
(10)  XN-NF-82-07(A), Rev. 1, "Exxon Nuclear Company ECCS Cladding Swelling and Rupture Model," Exxon Nuclear Company, Inc., Richland, WA 99352, March 1982.
G.N. Lauben,  NRC  Report NUREG-75/057,  "TOODEE2: A Two-Dimensional 1>>
(12)  D.C. Cook Unit 2 Technical Specification, Appendix "A" to License No.
DPR-74, Amendment No. 48.


==5.0 REFERENCES==
66                      XN-NF-84-21(NP)
Revision 2 (13)  XN-NF-82-32(P), Supplement 2, "Plant Transient Analysis for the Donald C. Cook Unit 2 Reactor at 3425 MWt: Operation with 5% Steam Generator Tube Plugging," Exxon Nuclear Company, Inc., Richland, WA 99352, February 1984.,
(14)  XN-NF-84-21(P), "Donald C. Cook Unit 2, Cycle 5, 5X Steam Generator Tube Plugging, Limiting Break LOCA/ECCS Analysis," Exxon Nuclear Company, Inc., Richland, WA 99352, February 1984.
( 15) Letter,  H. R. Denton (NRC) from J. C. Chandler (ENC), Re: Support-ing Documentation for Unit 2 Technical Specification Changes for Cycle 5 Reload, dated May 7, 1984 (JCC:076:84).
(16)  XN-NF-84-21(P), Revision 1, "Donald C. Cook Unit 2 Cycle 5 - 5X Steam Generator Tube Plugging, Limiting Break LOCA/ECCS Analysis,"
Exxon Nuclear Company, Inc., Richland, WA 99352, May 1984.


(2)(3)(4)(5)XN-NF-82-35,"Donald C.Cook Unit 2 LOCA ECCS Analysis Using EXEM/PWR Large Break Results," Exxon Nuclear Company, Inc., Rich-land, WA 99352, April 1982.XN-NF-82-35, Supplement 1,"Donald C.Cook Unit 2 Cycle 4 Limiting Break LOCA-ECCS Analysis Using EXEM/PWR," Exxon Nuclear Company, Inc., Richland, WA 99352, November 1982.XN-NF-82-20(P), Rev.1, August 1982;and Supplement 4, July 1984,"Exxon Nuclear Company Evaluation Model EXEM/PWR ECCS Model Up-dates," Exxon Nuclear Company, Inc., Richland, WA 99352.XN-73-25,"GAPEXX: A Computer Program for Predicting Pellet-to-Cladding Heat Transfer Coefficients," Exxon Nuclear Company, Inc., Richland, WA, August 13, 1973.XN-NF-81-58(A), Rev.2,"RODEX2: Fuel Rod Thermal-Mechanical Re-sponse Evaluation Model," Exxon Nuclear Company, Inc., Richland, WA.99352, February 1983.(6)"Acceptance Criteria for Emergency Core Cooling Systems for Light Water Cooled Nuclear Power Reactors," 10 CFR 50.46 and Appendix K of 10 CFR 50.(7)(8)(9)(10)(12)U.S.Nuclear Regulatory Commission letter, T.A.Ippolito (NRC)to W.S.Nechodom (ENC),"SER for ENC RELAP4-EM Update," March 1979.XN-CC-39, Rev.1,"ICECON: A Computer Program Used to Calculate Containment Backpressure for LOCA Analysis (Including Ice Condenser Plants)," Exxon Nuclear Company, Inc., Richland, WA 99352, November 1977.XN-NF-78-30(A),"Exxon Nuclear Company WREM-Based Generic PWR ECCS Evaluation Model Update ENC WREM-IIA," Exxon Nuclear Company, Inc., Richland, WA 99352.May 1979.XN-NF-82-07(A), Rev.1,"Exxon Nuclear Company ECCS Cladding Swelling and Rupture Model," Exxon Nuclear Company, Inc., Richland, WA 99352, March 1982.G.N.Lauben, NRC Report NUREG-75/057,"TOODEE2: A Two-Dimensional 1>>D.C.Cook Unit 2 Technical Specification, Appendix"A" to License No.DPR-74, Amendment No.48.
XN-NF-8'4-21(NP )
66 XN-NF-84-21(NP)
Revision 2 Issue Date: 8/7/84 DONALD C COOK UNIT 2 CYCLE 5 Sio STEAN, GENERATOR TUBE PLUGGING LIMITING BREAK LOCA/ECCS ANALYSIS Distribution J. C. Chandler W. V. Kayser G. F. Owsley H. G. Shaw T. Tahvili AEP/H.G. Shaw (10)
Revision 2 (13)XN-NF-82-32(P), Supplement 2,"Plant Transient Analysis for the Donald C.Cook Unit 2 Reactor at 3425 MWt: Operation with 5%Steam Generator Tube Plugging," Exxon Nuclear Company, Inc., Richland, WA 99352, February 1984., (14)XN-NF-84-21(P),"Donald C.Cook Unit 2, Cycle 5, 5X Steam Generator Tube Plugging, Limiting Break LOCA/ECCS Analysis," Exxon Nuclear Company, Inc., Richland, WA 99352, February 1984.(15)Letter, H.R.Denton (NRC)from J.C.Chandler (ENC), Re: Support-ing Documentation for Unit 2 Technical Specification Changes for Cycle 5 Reload, dated May 7, 1984 (JCC:076:84).
USNRC/J.C. Chandler (15)
(16)XN-NF-84-21(P), Revision 1,"Donald C.Cook Unit 2 Cycle 5-5X Steam Generator Tube Plugging, Limiting Break LOCA/ECCS Analysis," Exxon Nuclear Company, Inc., Richland, WA 99352, May 1984.
Document Control (3)}}
XN-NF-8'4-21(NP
)Revision 2 Issue Date: 8/7/84 DONALD C COOK UNIT 2 CYCLE 5 Sio STEAN, GENERATOR TUBE PLUGGING LIMITING BREAK LOCA/ECCS ANALYSIS Distribution J.C.Chandler W.V.Kayser G.F.Owsley H.G.Shaw T.Tahvili AEP/H.G.Shaw (10)USNRC/J.C.
Chandler (15)Document Control (3)}}

Latest revision as of 01:59, 4 February 2020

Nonproprietary Version of Rev 2 to DC Cook,Unit 2 Cycle 5,5%.Steam Generator Tube Plugging Limiting Break Loca/Eccs Analysis.
ML17326B134
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 08/07/1984
From: Chandler J, Kayser W, Stout R
SIEMENS POWER CORP. (FORMERLY SIEMENS NUCLEAR POWER
To:
Shared Package
ML17326B133 List:
References
XN-NF-84-21-(NP, XN-NF-84-21-(NP)-R02, XN-NF-84-21-(NP)-R2, NUDOCS 8408090209
Download: ML17326B134 (80)


Text

XN-NF-84-21(NP )

Revision 2 Issue Date: 8/7/84 DONALD C ~ COOK UNIT 2 CYCLE 5 - 5/o STEAM GENERATOR TUBE PLUGGING LIMITING BREAK LOCA/ECCS ANALYSIS Prepared -by:

W. V. ayser, Manager PWR Safety Analysis Concur:

. C. C an er, Lea ng neer Reload Fuel Licensing Approve: CSr out, Manager Licensing & Safety Engineering ggg g Concur:

.'. organ, Proposals anag r 5 Customer Services Engineering Approve: 87~%/

. A. o er, Manag Fu 1 Engineering 8 Technical Services gf

,E3(CGM NU.CLEAR .COMPANY, INC.

KNIMIolY-MIlIl'I'.II.II.f. IlI)I'Y

r

~

~

}

5 F

XN-Nf-84-21(NP)

Revision 2 TABLE OF CONTENTS Section ~Pa e

1.0 INTRODUCTION

....:.................................. 1 2.0 S UMMARY o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3 3.0 LIMITING BREAK LOCA ANALYSIS ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 5

3. 1 LOCA ANALYSIS MODEL ........................... 5 3 .2 RESULTS 7

4.0 CONCLUSION

S ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 64

5.0 REFERENCES

...............,.......................... 65

~

~

i

~

l i

1

~

~

~

~

~

~

~

XN-NF-84-21(NP)

Revision 2 LIST OF TABLES Parcae Table 2.1 D.C. Cook Unit 2 LOCA/ECCS Analysis Summary ........ 4 3.1 Donald C. Cook Unit 2 System Input Parameters ~ ~ ~ ~ ~ ~ 9 3.2 1.0 OECLG Break Analysis Parameters ................ 10 3.3 D.C. Cook Unit 2 1.0 OECLG Break Event Times ... ...

~ 11 3.4 1.0 OECLG Break Fuel Response Results for C ycle 5 ............................................ 12 3.5 1.0 OECLG Break Fuel Response Results with an All ENC Core .................................... 13

j N

~

I 8

~

~

~

~

~

~

~

~

~

~

~

~

~

. XN-NF-84-21(NP)

Revision 2 LIST OF FIGURES

~Fi ure Pacae 3.1 RELAP4/EM Blowdown System Nodalization for D.C. Cook Unit 2 .... 14 3.2 Oowncomer Flow Rate During Blowdown Period, 1.0 OECLG Break ................................... 15 3.3 Upper Plenum Pressure during Blowdown Period, 1.0 DE(LG Break ....... 16 3.4 Average Core Inlet Flow during Blowdown Period, 1.0 OECLG Break ........ 17 3.5 Average Core Outlet Flow during Bl owdown Period, 1.0 DECLG Break ..................... 18 3.6 Total Break Flow during Blowdown Period, 1.0 OECLG Break ............................. 19 3.7 Break Flow Enthalpy during Blowdown, 1.0 DECLG Break .................................... 20 3.8 Flow from Intact Loop Accumulator during Blowdown Period, 1.0 OECLG Break .................. 21 3.9 Flow from Broken Loop Accumulator during Blowdown Period, 1.0 OECLG Break .................. 22 3.10 Pressurizer Surge'ine Flow during Blowdown Period, 1.0 OECLG Break ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 23 3.11 Heat Transfer Coefficient during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWO/kg Case . 24 3.12 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWD/kg Case ..........,. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 25 3.13 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 MWD/kg Case . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 26

iv XN-NF-84-21(NP)

Revision 2 LIST OF FIGURES (Cont. )

~Fi ure Pa<ac 3.14 Average Fuel Temperature during Bl owdown Period at PCT Location, 1.0 OECLG Break, 2.0 MWD/kg Case . 27 3.15 Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 2.0 MWD/kg Case ........... 28 3.16 Hot Assembly Outlet Flow during Blowdown Period, 1.0 DECLG Break, 2.0 MWD/kg Case ........... 29 3.17 Heat Transfer Coefficient during Blowdown Period at PCT Node, 1.0 OECLG Break, 10.0 MWO/kg Case ................................... 30 3.18 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 10.0 MWD/kg Case ................................... 31 3.19 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 10.0 MWD/kg Case .................. 32 3.20 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 DECLG Break, 10.0 MWD/kg Case ................................... 33 3.21 Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 MWO/kg Case .................. 34 3.22 Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 MWD/kg Case .......;.......... 35 3.23 Heat Transfer Coefficient during Blowdown Period at PCT Node, 1.0 OECLG Break, 47.0 MWD/kg Case .................. . . . . ..... 36 3.24 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 OECLG Break, 47.0 MWO/kg Case ................................... 37 3.25 Depth of Metal-Water Reaction during Slowdown Period at PCT Node, 1.0 OECLG Break, 47.0 MWD/kg Case ....... .......................... 38

XN-NF 21( NP )

Revision 2 LIST OF FIGURES (Cont. )

~Fi ere Pa<ac 3.26 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 OECLG Break, 47.0 MWO/kg Case e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 39 3.27 Hot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 NWD/kg Case'....... 40 3.28 Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 HWD/kg Case .......... 41 3.29 Accumulator Flow during Refill and Ref lood Periods, Broken Loop, 1.0 OECLG Break ............. 42 3.30 Accumulator Flow during Refill and Ref lood Periods, Intact Loop, 1.0 DECLG Break ............. 43 3.31 HPSI 8 LPSI Flow during Refill and Ref lood Periodg, Broken Loop, 1.0 OECLG Break ............. 44 3.32 HPSI 8 LPSI Flow during Refill and Ref lood Periods, Intact Loop, 1.0 DECLG Break ............. 45 3.33 Containment Back Pressure, 1.0 DECLG Break ........ 46 3.34 Normalized Power, 1.0 OECLG Break, 2.0 MWO/kg Case ..... 47 3.35 Normalized Power, 1.0 DECLG Break, 10.0 NWD/kg Case .............................. 48 3.36 Normalized Power, 1.0 OECLG Break, 47.0 NWD/kg Case ............. 49 3.37 Reflood Core Mixture Level, 1.0 OECLG Break, C ycle 5 Core ........................ 50 3.38 Reflood Downcomer Mixture Level, 1.0 DECLG Break, Cycle 5 Core ..................... 51 3.39 Reflood Upper Plenum Pressure, 1.0 OECLG Break, Cycle 5 Core ............................... 52

vi XN-NF-84-21(NP)

Revision 2 LIST OF FIGURES (Cont.)

~Fi ure ~Pa e 3.40 Core Flooding Rate, 1.0 OECLG Break, Cycle 5 Core ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ ~ ~ ~ 53 3.41 Ref lood Core Mixture Level, 1.0 OECLG Break, All ENC Core ...................................... 54 3.42 Reflood Oowncomer Mixture Level, 1.0 OECLG All ENC Core ............ 'reak, 55 3.43 Ref lood Upper Plenum Pressure, 1.0 DECLG Break, All ENC Core ............................... 56 3.44 Core Ref looding Rate, 1.0 OECLG Break, A 11 ENC Core ....................-......-.... .. 57 3.45 TOODEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 2. MWO/kg Case, Cycle 5'ore ..... 58 3.46 TOOOEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 10. MWO/kg Case, C ycle 5 Core ................... -..... ~ 59 3.47 TOOOEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 47. MWO/kg Case, Cycle 5 Core ... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 60 3.48 TOOOEE2 Cladding Temperature versus Time, 1.0 OECLG Break, 2. MWO/kg Case, All ENC Core ..... 61'2 3.49 TOODEE2 Cladding Temperature versus Time, 1.0 DECLG Break, 10. MWO/kg Case, All ENC Core 3.50 TOOOEE2 Cladding Temperature versus Time, 1:0 OECLG Break, 47. MWO/kg Case, All ENC Core 63

XN-NF-84-21(NP )

Revision 2

1. 0 I NTRODUCT ION Large break LOCA/ECCS analyses were performed in 1982( ~2) to support operation of the D.C. Cook Unit 2 reactor at 3425 MWt with ENC fuel. Reference 1 presented analytical results for a spectrum of postulated large break LOCAs.

The limiting break was identified as the 1.0 double ended cold line guillotine (DECLG) break. Reference 2 presented results for the previously identified limiting break using the EXEM/PWR(3) ECCS models, except GAPEX was used as the fuel performance model in place of RODEX2. The RODEX2 code was not approved

(

by the NRC for use in ECCS analyses in 1982. Therefore the NRC-approved GAPEX(4) code was used to calculate fuel properties at the initialization of the LOCA calculation. The Reference 2 report documented the results of calculations with one and two LPSI pumps operating. At equivalent core peaking limits, higher peak cladding temperatures (PCTs) were calculated in the LOCA analysis when two LPSI pumps were assumed operating. The Reference 2 analysis with two LPSI pumps operating was performed for Cycle 4 operation of D.C. Cook Unit 2.

This report documents the results of a LOCA/ECCS analysis to support operation of the D.C. Cook Unit 2 reactor for Cycle 5 at a thermal power rating of 3425 MWt, with up to 5/. of the steam generator tubes plugged, with two LPSI pumps operating, and for ENC fuel exposed up to a peak rod average burnup of 47 MWD/kg. Results are also reported for the case in which the entire core is ENC fuel. The calculations were performed using the EXEM/PWR LOCA/ECCS

XN-NF-84-21(NP )

Revision 2 models, including fuel properties calculated at the start of the LOCA transient with ENC's generically approved RODEX2 code.(5)

XN-NF-84-21(NP)

Revision 2 2.0

SUMMARY

LOCA/ECCS calculations were performed to determine core peaking limits which permit operation of the O.C. Cook Unit 2 reactor within guidelines specified by 10 CFR 50.46 and Appendix K.(6) The calculations assumed operation:

1) At a thermal power of 3425 MWt;
2) With 5X average steam generator tube plugging;
3) With the Cycle 5 core configuration (85/ ENC fuel); and
4) With the entire core ENC fuel.

The calculations were performed for the previously identified limiting break, the 1.0 OECLG break, with full ECCS flow.

The results of the analysis are summarized in Table 2.1. The analysis supports operation of the O.C. Cook Unit 2 reactor for Cycle 5, and future cycles with ENC fuel, at a total peak limit (FqT) of 2.04 and a corresponding T

F<H limit of 1.55.

XN-NF-84-21(NP)

Revision 2 Table 2. 1 O.C. Cook Unit 2 LOCA/ECCS Analysis Summary Peak Rod Average Burnup (MWO/kg) 2.0 10.0 47.0 FT Q

2.04 2.04 2.04 T

1.55 1.55 1.55 Results for the Cycle 5 Core Confi uration (85K ENC Fuel)

Peak Cladding Temperature (oF) 2007 2014 1993 Maximum Local 2r-H20 Reaction (X) 4.6 4.7 4.5 Total Zr-H20 Reaction <1.0 < 1.0 < 1.0 Results with Entire Core of ENC Fuel Peak Cladding Temperature (oF) 2022 2030 2008 Maximum Local Zr-H20 Reaction (/) 4.9 5.0 4.7 Total Er-H20 Reaction <1.0 < 1.0 < 1.0

XN-NF-84-21(NP)

Revision 2 3.0 LIMITING BREAK LOCA ANALYSIS This report supplements previous LOCA/ECCS analyses performed and documented for D.C. Cook Unit 2. A spectrum of LOCA breaks was performed and reported in XN-NF-82-35.(1) The limiting LOCA break was determined to be the large double-ended guillotine break of the cold leg or reactor vessel inlet pipe with a discharge coefficient of 1.0 (1.0 DECLG). Reference 2 established that for D.C. Cook Unit 2 it is more limiting in the LOCA analysis to assume no failure of a LPSI pump. The analysis performed and reported herein considers:

1) That 5X of the steam generator tubes are plugged;
2) That 85/ of the Cycle 5 core is composed of ENC fuel;
3) That both LPSI pumps are operational; and
4) That ENC fuel may be exposed to a peak average burnup of 47 MWD/kg.

3.1 LOCA ANALYSIS MODEL The Exxon Nuclear Company EXEM/PWR-ECCS evaluation model was used to perform the analyses required. This model(3) consists of the following computer codes: RODEX2(5) code for initial stored energy; RELAP4-EM(") for the system blowdown and hot channel blowdown calculations; ICECON(8) for the computation of the ice condenser containment backpressure; REFLEX(3 g) for computation of system ref lood; and TOODEE2(3~ID~11) for the calculation of final fuel rod heatup.

XN-NF-84-21(NP )

Revision 2 The Oonal d C. Cook Uni t 2 nuclear power pl ant is a 4-1 oop Westinghouse pressurized water reactor with ice condenser containment. The reactor coolant system is nodalized into control volumes representing reasonably homogeneous regions, interconnected by flow-paths or "junctions".

The system nodalization is depicted in Figure 3. 1. The unbroken loops were assumed symmetrical and modeled as one intact loop with appropriately scaled input. Pump performance curves characteristic of a Westinghouse series 93A pump were used in the analysis. The transient behavior was determined from the governing conservation equations for mass, energy, and momentum. Energy transport, flow rates, and heat transfer were determined from appropriate correlations.

The Cycle 4 LOCA analysis(2) assumed that lX of the steam generator tubes were plugged. In the current analysis, the plant was modeled assuming asymmetric steam generator tube plugging: 3.33/ of the tubes plugged in the intact loops, and 10.0/ of the tubes plugged in the broken loop. The larger plugging in the broken loop results in higher PCTs. The primary coolant flow at full power was reduced by 1.1/ from the current measured flow at the plant to account for the assumed average 5X steam generator plugging. Additionally, the core model assumed that the core is 85/ ENC fuel, whereas the previous analysis assumed the Cycle 4 core configuration. Calculations were also performed for the case in which the core is all ENC fuel, representative of

XN-NF-84-21(NP)

Revision 2 Cycle 6 and beyond. ENC fuel has a smaller rod diameter than the Westinghouse fuel it replaces. To offset the impact of increased flow area on the LOCA analysis results, the core power was reduced from 3425 MWt to 3411 NWt. System input parameters are given in Table 3.1.

The reactor core is modeled with heat generation rates determined from reactor kinetics equations with reactivity feedback and with decay heating as required by Appendix K of 10 CFR 50. Chopped cosine axial power profiles are assumed with the maximum axial peaking factor used in the analysis given in Table 3. 2. The analysis of the loss-of-coolant accident is performed at 102 percent of rated power. The core power and other parameters used in the analyses are given in Table 3. 1.

3.2 RESULTS Table 3.3 presents the timing and sequence of events as determined for the large 'break guillotine configuration with a discharge coefficient of 1.0 for full ECCS operation. Table 3.4 presents the results of the exposure analysis for Cycle 5 composed of 85K ENC fuel. Table 3.5 presents the results of the exposure analysis for a core composed of all ENC fuel.

Results of the analyses are given in Figures 3.2 to 3.43. Figures 3.2 to 3. 10 provide plots of key system blowdown parameters versus times.

Figures 3. 11 to 3.28 provide plots of key core responses during the blowdown period. Figures 3.29 to 3.32 provide the ECCS flows in the broken and intact loop during the refill period. Figure 3.33 presents the containment pressure during the LOCA. Figures 3.34 to 3.36 present the normalized power during the LOCA for the three exposure cases analyzed. Figures 3.37 to 3.40 provide results from the reflood portion of the transient for the case in which 85K of

XN-NF-84-21(NP)

Revision 2 the core is ENC fuel. Figures 3.41 to 3.44 provide the reflood results for the case in which the core is composed entirely of ENC fuel. Finally, Figures 3.45 to 3.50 provide the response of the fuel during the refill and reflood periods of the LOCA transient for the fuel burnup cases 'investigated.

XN-NF-84-21(NP)

Revision 2 Table 3.1 'Donald C. Cook Unit 2 System Input Parameters Thermal Power, MWt* 3425 Core, MWt 3411 Pump, MWt 14 Primary Coolant Flow, Mlbm/hr 143.1 Primary Coolant Volume, ft3 11,768 Operating Pressure, psia 2250 In,let Coolant Temperature, oF 542 Reactor Vessel Volume, ft3 4945 Pressurizer Volume, Total, ft3 1800 Pressurizer Volume, Liquid, ft3 1080 Accumulator Volume, Total, ft3 (each of four) 1350 Accumulator Volume, Liquid, ft3 (each of four) 950 Accumulator Pressure, psia 636 Steam Generator Heat Transfer Area, ft2-SG1, SG2, SG3, SG4 11,588, 3(12,446)

Steam Generator Secondary Flow, ibm/hr- 3.505 x 106 S'G1, SG2, SG3, SG4 3(3.764 x 106)

Steam Generator Secondary Pressure, psia 799 Reactor Coolant Pump Head, ft 277 Reactor Coolant Pump Speed, rpm 1189 Moment of Inerti a, bm-f t2 1 82,000 Cold Leg Pipe, I.D. in. 27.5 Hot Leg Pipe, I.D. in. 29.0 Pump Suction Pipe, I.D. in. 31.0 Fuel Assembly Rod Diameter, in. 0.360 Fuel Assembly Rod Pitch, in. 0.496 Fuel Assembly Pitch, in. 8.466 Fueled (Core) Height, in. 144.0 Fuel Heat Transfer Area, ft2** 57,327 Fuel Total Flow Area, Bare Rod, ft2** 53.703 Refueling Water Storage Tank Temperature, oF 80 Accumulator Water Temperature, oF 120

  • Primary Heat Output used in RELAP4-fM Model = 1.02 x 3425 = 3493.5 Mwt
  • ."ENC Fuel Parameters.

10 XN-NF-84-21(NP)

Revision 2 Table 3.2 1.0 OECLG Break Analysis Parameters Peak Rod Average Burnup (MWO/kg) 2.0 10.0 47.0 Total Core Power (MWt)* 3411 3411 3411 T

Total Peaking (F~) 2.04 2.04 2.04 Fraction Energy Oeposited in Fuel

~ Fully Moderated Core 0.974 0.974 0.974 Voided Core 0.954 0.954 0.954 Cycle 5 (85/ ENC Fuel)

Peaking Axial x Engineering 1.316 1.316 1.316 T

~

Enthalpy Rise (F~H) 1.55 1.55 1.55 All ENC Core Peaking

. Axial x Engineering 1.316 1.316 1.316 T

. Enthalpy Rise (F~H) 1.55 1.55 1.55

  • 2% power uncertainty is added to this value in the LOCA analysis.

XN-NF-84-21(NP)

Revision 2 Table 3.3 0. C. Cook Unit 2 1.0 OECLG Break Event Times Event Time (sec.)

Start 0.00 Break Initiation 0.05 Safety Injection Signal 0.65 Accumulator Injection Broken Loop 3.2 Intact Loop 15.5 End of Bypass 24.31 Safety Pump Injection 25.65 Start of Ref lood 40.48 Accumulator Empty Broken Loop 44.2 Intact Loop 52.9

12 XN-NF-84-21(NP )

Revision 2 Table 3.4 1.0 DECLG Break Fuel Response Results for Cycle 5

. Peak Rod Average Burnup (MWD/kg) 2.0 10. 0 47.0 Initial Peak Fuel Average Temperature (oF) 2151 2060 1629 Hot Rod Burst Time (sec) 69.5 70.5 78.5 Elevation (ft) 7.0 7.0 7.75 Channel Blockage Fraction .25 .28 .47 Peak Clad Temperature

. Time (sec) 287 288 269 Elevation (ft) 9.63 9.63 9.38

'. Temperature (oF) 2007 2014 1993 Zr-Steam Reaction

~ Local Maximum Elevation (ft) 9.63 9.63 9.38

~ Local Maximum (X)* 4.6 4.7 4.5 Core Maximum < 1.0 <1.0 < 1.0

13 XN-NF-84-21(NP)

Revision 2 Table 3.5 1.0 OECLG Break Fuel Response Results with an All ENC Core Peak Rod Average. Burnup (MWO/kg) 2.0 10.0 47.0 Ini ti al Peak Fuel Average Temperature (oF) 2151 2060 1629 Hot Rod Burst

. Time (sec) 69.1 70.1 78.3 Elevation (ft) 7.0 7.0 7.75

. Channel Blockage Fraction .25 .28 .47 Peak Clad Temperature

. Time (sec) 292 292 274

. Elevation (ft) 9.63 9.63 9.38

. Temperature (oF) 2022 2030 2008 Zr-Steam Reaction

. Local Maximum Elevation (ft) 9.63 9.62 9.38

. Local Maximum (X)* 4.9 5.0 4.7

. Core Maximum <1.0 <1.0 <1.0

0 E p 5 IH~~CI~

eR I5 QEK]5 o gm 5 K o e' 6

erne 8 K6 g

O Nor i g

1 ~ 0 DC COOK 2 17X17 ~ DECL BONs 57 AVE PLUG,10X 343 ~ 3% PLUGS CI QO u)S0 K

~3 k- Q K

C) y 4-9 5K O

1R, 16 zn 2.4 TAHE AFTER BREAK ( SEC)

F iqnre 3.P Downcomer Flow Rate Dnring Blowdown Period, 1.0 DECLG Break

1.0 DC COOK 2 17X17 DECL BDN 5X AVE'. PLUG 10/ 3+3-3X PLUG.

12 2D 3a TIHE AFTER BREAK f SEC )

Figure 3.3 Upper Plenum Pressure During Olowdown Period, 1.0 OECLG Break

al 1.0 DC COOK 2 17X1'j DECL 8DNi

~ 5l AVE. PLUG,10K 3+3.31 PLUG, D

tv Ul X'.

y 4J CKo Kg O

4 4J K

0 Qo CXg I

1P 1C 20 RA TAHE AFTER BREAK ( SEC)

Figure 3.cl Average Core Inlet Flow during Blowdown Period, 1.0 DECLG Break

1 0 OC COOK 2 17X17 e OECL BONo 5X AVE PLUGS 10 <'+3 ~ 3 X PLUG>

~R LU V)

K gg) CI

>o C) po mS Q O I-D O

4Jy

<a D

C9 Cl 12 1C 20 2$ 2I TXME AFTER BRFAK l SEC) f iqure 3.5 Average Core Outlet Flow during Blowdown Period, 1.0 OCCLG Break

D bio 1 0 OC COOK 2 17X17aOECL BONt 5~ AVE ~ PLUG ~ 10~ 3+3 ~ 3> PLUGS KJ

~8 wR K

O Dg

<o R

up X

D Z

12 16 2.0 RA TXHE AFTER ORF"'K ( SEC )

Figure 3.6 Total Break Flow during Blowdown Period, 1.0 DECLG Break

1 0 OC COOK R 1.0 OECLG BON

<<a8

%5 p Vessel Side IjJ wl Pump Side

~

TIME (SEC)

Figure 3.7 Break Flow Enthalpy Ouring Blowdown, 1.0 DECLG Break

tJ 1.0 DC COOK 2 17X17 ~ DECL BOH. 5X AVE. Pl UG.10K 3'+3-3X PLUG 4J CA g g

CK Oa QO L

o P-8 cr. Q K

Og 12 1C 20 t4 TIHE AFTER 8REAK ( SEC )

Figure 3.0 Flow from Intact Loop Accumulator during Blowdown Period, 1.0 DFCLG Break

tJ 1 0 DC COOK 2 17X17 r DECL BDNr 5> AVE PLUGS 101 3+3 3X PLUGS 4J3 CA w

~

K e4 ld CK fL Og K

4J.

og K

O 1- o QO K

K Og CK 12 1C 20 2l a2 TXHE AFTER BREAK ( SEC )

Figure 3.9 F)ow from Broken l.oop Accumulator during Blnwdown Period, 1.0 DECLG Break

1.0 DC COOK 2 17X17 ~ DECL BOND 57 AVE. PLUGi10l 3+3-3X PLUG>

lZ 16 20 24 2a 32 TAHE AFTER BREAK ( SEC)

Figure 3.10 Pressurizer Surge Line Flow during Blowdown Period, 1.0 DL'CLG Break

l- 0 OC COOK Z 1 0 OECLG X

8 Vl ZI I

O CO I

t0 ti TZ~E ~ SE.C)

Figure 3.11 lleat Transfer Coeff icient during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 NHD/kg Case

1.0 DC COOK 2. 1.0 OE'CLG tD ZI TIVE t SEC)

Figure 3.12 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 DECLG Break, 2.0 NWD/kg Case

r X.O DC COOK a a.O DEcLc Jo

~I M

bjm 4

g gO g 4 nl i 1t N RO tl TXVE t SEC)

Figure 3.13 Oepth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 OECLG Break, 2.0 MWO/kg Case

CD c4 U)3 1 0 OC COOK R 1.0 DECLG OI 5II 5

oJ 8

B R >c 8 2:I

(

EA ll g

0 CO I

lS RD a

TXME l SEC)

Figure 3.10 Average Fuel Temperature during Blowdown Period at PCT Location, 1.0 OECLG Break, P.U NWO/kg Case

i.O OC COOK Z. X-0 OECLG Q. Ã N U 3f.

TIVE (SEC)

Figure 3.l5 llot Assembly Inlet Flow during Blowdown Period, 1.0 DECLG Break, 2.0 HWD/kg Case

1.0 Dc COOK 2 1-0 DE'CLG R

8

>c 2.'

Vl p

O CQ I

1$ t0 ?I IO o TXHE ( SEC )

Figure 3.16 I<ot Assembly Outlet I low during Blowdown Period, 1.0 DECLG Break, 2.0 I'1HD/kq Case

i.o DC COOK 2. x.o DECL&

8 X Xl ZI EA 0 CO I

R9 24 32 40 U

TIME (SEC)

F igure 3.17 lleat Transfer Coeff ir.ient during Blowdown Period at PCT Node, 1.0 l)ECLG Break, 10.0 MWD/kg Case

1.0 DC COOK Z 1.0 DECLG R7 OC I

Vl O CO I

ZO ZL l4 o

TINE' SEC )

Figure 3.18 Clad Surface Temperature during Blowdown I'eriod at PCT Node, 1.0 DFCLG Break, l0.0 NWD/kg Case

1.0 OC COOK 2 1.0 OECLG H

X z4 Oo H

I-CJ CK bl I

4J CC i8

<o lY H

N og h

Qg 8QX

( HI lA I

0 CO I

Z.O U (0 o TIME ( SEC )

Figure 3.19 Depth of Metal-Water Reaction during Blowdown Period at PCT Node, 1.0 DECLG Break, 10.0 HWD/kg Case

1.0 DC COOK 2 1.0 DECLG QX 8 I Vl 0 CO I

ZO tl 3t (0 o TINE ( SE'C )

Figure 3.20 Average Fuel Teotperature during Blowdown Period at PCT Location, 1.0 DECLG Break, 10.0 HWD/kg Case

1 0 OC COOK R 1.0 OECLG Kl M 8 RI Vl O CO I

Lt 1C ZO R.l 10 TIVE (SE'C)

Figure 3.21 )lot Rssembly tnlet Flaw during Olowdown Period, 1.0 OLCI.G llreak, 10.0 llWO/kg Case

1.0 OC COOK 2. 1 0 DfCLG R >C 8 2:I CA O CO I

M iM za Z( 3C 10 D

TINE (SfC)

Figure 3.22 tlot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 10.0 NHD/kg Case

l-0 OC COOK 2 =

1 0 OECLt Z

lD X

Vl ZI O CO I

Mm 1k lS t0 t4 2$

U TIvE t SEC)

Figure 3.23 lleat Tansfer Coefficient during Blowdown Period at PCT Node, 1.0 DLCLG Break, 47.0 MHD/kg Case

1-0 OC COOK P. 1.0 QECLG LS za Kl TETE (SE'C)

Figure 3.24 Clad Surface Temperature during Blowdown Period at PCT Node, 1.0 DECLG Break, 47.0 Hll0/kg Case

~ N 1-0 OC COOk 2 1.0 DECL&

~S Qo

~8 Oo 0

~s kg 4J lZ gO CI$

gp O AJ R

8 >c KI Vl

)

0 00 I

0 lf 1S EO Rl tl "3E 1 TINE (SEC)

Figure 3.25 Depth of Metal-Water Reaction During Blowdown Period at PCT Node, 1.0 DECLG Break, 47.0 MWD/kg Case

1 0 OC COOK 2 1.0 OECLG R >c lD M I

Vl 0 CO I

It LC t0 U tl 3R. '3C l0 o TIt>E ( SEC 1 Figure 3.26 Average Fuel Temperature dur ing Blowdown Period at PCT Location, 1.0 DECLG Break, 47.0 MWO/kg Case

1 0 OC COOK 2 1 0 DE'CLG I 1t lS 5l RA ee TAHE (SEC)

Figure 3.27 (lot Assembly Inlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 MHD/kg Case

1.0 OC COOK 2, 1 ~ 0 OCCLG lf fO zl tl TIvE (SEC)

Figure 3.28 Hot Assembly Outlet Flow during Blowdown Period, 1.0 OECLG Break, 47.0 MWD/kg Case

~

8 Oy 1t 15 tD ZI 3a TIME AFTER EOB Y ( SEC )

I. igure 3.29 Accumulator Flow during Refill and Ref lood Periods, Broken Loop, 1.0 DECLG Break

1$ tD -

H El TXHE AFTER EOBY ( SEC )-.

Figure 3.30 Rccumulator Flow during Ref ill and Ref lood Periods, Intact Loop, 1.0 OECLG Break

300 250 200 150-100 50-R >c ED M I

0 Vl ll 0 50 100 150 200 250 300 350 0 I

CO Time (sec) After. Start I Figure 3.31 IIPSI 0 LPSI Flow during Refill and Ref lood Periods, Broken Loop, 1.0 OfCLG Break

C 1000 V)

CQ 800-O 600 400 P

O O 200 0

0 50 100 150 200 300 350 Time (sec) After Start I ignre 3.3? Hi'Sl 5 I.PSI Flow during Refill and Reflood Periods, Intact I oop, 1.0 I)ECLG llreak

22 21 20 19 P

18 R

0 16 O

O 15 g) X lD M

'C Ul pI 0 50 100 150 200 250 300 350 0 00 Time (sec)-After Start I Figure 3.33 Containment Back Pressure, 1.0 OECLG Break a

CK 4J O

0 a

4J t'4

~l K

LL oX SRI Vl Z

0 00 I

~4 Q (0 CO l$ 0 200 Z40 o TINE ( SECONDS )

Figiire 3.34 Horn" li"ed Pokier, '.C DECLu Break, Z.O Hl'ID/kg Case

Zl X 8

( I lh O OO I

H.O 160 200 210 210 320 3CO 100 TINE ( SE'CONDS )

Eigure 3.35 Normalized Power, 1.0 BECLG Break, 10.0 MWO/kg Case

i0 Q.O NO ZOO ZEO iso 320 TINED ( SECONDS )

I'igure 3.36 Normal ized Power, 1.0 DECLG Break, 47.0 NWD/kg Case

DCC2 REFl 000.1 0 OECLG FULL ECCS FLOV FQ=2.04 1 55 3525 HMT.HIX CORE LESS SPCR R

CD

>c I

Vl 0 CO I

PO tV 40 180 Z00 ZA0 Z00 3ZO 400 TIHE FROM BOCREC ( SEC ) a I=i@ore 3.3/ lief loocl Core Mixlisre I.evel, 1.0 OECI.G Break, Cycle 5 Core

DCC2, REFLOODo 1.0 DECLG FULL ECCS FLOW FQ=2.0$ 1.55 3425 HWTiHIX CORE LESS SPCR R >C

(

ID I

Vl O 00 I

40 80 160 200 2AO 280 <00 TIHE FROH BOCREC ( SEC ) U l inure 3.3A Reflood fjowocoioer Mixture Level, 1.0 DECLG Break, Cycle 5 Core

OCC2 REFLOOD, 1.0 DECLG FULL ECCS fLOW F9=2.0i 1.55 3425 HMT,HIX CORE LESS SPCR R >cR

(

CD I

I/l 0 CO I

FO fO 40 ao 160 200 240 2SO 360 400 TIHE FROH BOCREC ( SEC ) o I icjur>> 3.39 Hei'lood tipper Plenum Pressure, 1.0 OECLG Break, Cycle 5 Core

OCC2 REFLOOD.1.0 OECLG FULL ECCS FLOW FQ=2.04 1.55 3525 HWTiHIX CORE LESS SPCR 8R

>C

( RI Vl 0 CO I

~ PO 40 SO 120 160 200 RAO 280 380 400 TIME FROH BOCREC ( SEC) a I ignre 3.40 Core I-looding Rate, 1.0 DECI.G Break, Cycle 5 Core

OCC2. REFLOODo Al L ENC CORE FOH = 1-55 40 40 aso zaa zoo zea 3zo eao TXHE FROM BOCREC (SEC)

I igure 3.41 lhefloori Core HixIore l.evel, 1.0 DECI.G Break, All ENC Core

OCC2. REFLOOO. ALL EHC CORE FOH = 1.55 LLJ PA X

H K

oO O

a 40 IO 160 200 240 ZIO 360 400 TIME FROM 80CREC ( SEC )

I igure 3.02 Ref loorl Onwncomer Mixture Level, 1.0 OECLG Break, All ENC Core

OCC2 REFLOOOo ALL ENC CORE FOH <<1 55 X

8R 2I

(~'

I/I 0 CO I

44 $0 X60 Zao Z.40 nl 0 MO '360 400 TINE FROH BOCREC (SEC) a Eigure 3.03 lief lood Upper Vier>iun Pressiire, 1.0 OECl.G Break, All ENC Core

OCC2 REFLOOD, ALL EHC CORE FOH = 1.55 0 126 L60 5)0 240 320 360 ioo TIME FROM BOCREC (SEC)

I ignore 3A4 Core Ref loodirlg Rat.e, 1.0 DECI.G Break, All ENC Core

FQ=2.05 FOH ~1.55 - 2 HM

1. PCT HOOE (HOOE 22 AT S-62 FT- )

tL g 2. RUPTUREO HOOE (NOOE 11 AT 7.00 FT )

5~

al I

bl CL Da K"

K td CL

'K id/

C9 z,

H Cl Qo O

CI CI

%.0 40.0 S0.0 120.0 160.0 200.0 Z(0.0 200.0 320.0 360.0 TIME SECONDS I'igure 3.45 TOOOEE2 Cladding Temperature versus Time, 1.0 DECLG Break,

2. HllD/Kg Case, Cycle 5 Core

FQ=2.04 FOH ~1.55 10 H 1- PCT NODE (NODE 22 AT $ .62 FT )

2.. RUPTURED NODE (NODE 11 AT 1-00 FT- )

40-0 80.0 160.0 200.0 240.0 ZS0.0 32,0.0 360.0 40 .0 TIME SECONDS I:ignite 3.06 TOODCE2 Cladding Temperature versus Time, 1.0 DECI.G Break,

10. IIWD/Kg Case, Cycle 5 Core

N 1- PCT

)JODO'NODf Rl AT $ .31 FT )

RUPTURED HODR (0

hJ l'NODE 1<.AT 1.15 FT- )

hJ K

C9~

UJ ~

Q c5 I

)LJ f)'

o CJ:

LL lLJ 0

K QJ CI

)-5 C9 M

Cl QoD g

0 RX 8 RI Vl 0 0)

I Cl Cl Q).0 40.0 80.0 120.0 160.0 ?00 ' 2<0.0 210.0 320.0 360.0 40 .0 TINE SECONDS I igrrre 3.47 ~

l000l.:L2 Claddirrg Temperature versus Time, 1.0 OECLG Break, 4/. Hll0/Kg Case, Cycle 5 Core

- FQ~R.O{ FOB =1.55 " 2, HM

i. PCT NODE (NODE 22 AT $ .62 FT. )

2- RUPTURED NODE (NODE ).L AT 1.00 FT. )

40.0 a0.0 160.0 200.0 2(0-0 260.0 320.0 360.0 lORO TIHE SECONDS I'igure 3.0A TOOOLC2 Cl i~lrliug TemperaLure versus Time, 1.0 OLCl.G Break,

2. NWO/Kg Case, All l:NC Core

FQ~L.0$ FOH =1 55 10 H 1- PCT NODE t NODE 22, AT 5.62 FT. )

RUPTURED NODE t NODE 11 AT 1.OO FT. )

40.0 ao.o 120.0 160.0 200.0 2io.o 280-0 320.0 TXHE SECONDS I i gurt 3.49 f00f)EE2 Clarlding funperature versus 1 ime, 1.0 DECLG Break,

10. NWf)/Kg Case, All ENC Core

FQ<2.04 FOH 3.=1-55 - h7 M

1. PCT HQOE (HOOE 21 AT 0 31 FT )

Z. RUPTURED HOOf (HOOE 14 AT 7.15 FT 1

40. 0 80.0 120.0 160.0 200.0 240.0 280.0 320.0 TIME SECONDS Figure 3.50 100DEE2 Cladding Temperature versus Time, 1.0 DECI G Break, c17. HWD/Kg Case, Rll ENC Core

l 64 XN-NF-84-21 (NP )

Revision 2

4.0 CONCLUSION

S For breaks up to and including the double-ended severance of a reactor coolant pipe, the Donald C. Cook Unit 2 Emergency Core Cooling System will.

meet the Acceptance Criteria as presented in 10 CFR 50.46 for operation with ENC 17xl/ fuel operating in accordance with the LHGR limits noted in Table 2.1. That is:

1. The calculated peak fuel element clad temperature does not exceed the 2200oF limit.
2. The amount of fuel element cladding that reacts chemically with water or steam does not exceed 1 percent of the total amount of zircaloy in the reactor.
3. The cladding temperature transient is terminated at a time when the core geometry is still amenable to cooling. The hot fuel rod cladding oxidation limits of 17/ are not exceeded during or after quenching.
4. The core temperature is reduced and decay heat is removed for an extended period of time, as required by the long-lived radio-activity remaining in the core.

XN-NF-84-21(NP)

Revision 2

5.0 REFERENCES

XN-NF-82-35, "Donald C. Cook Unit 2 LOCA ECCS Analysis Using EXEM/PWR Large Break Results," Exxon Nuclear Company, Inc., Rich-land, WA 99352, April 1982.

(2) XN-NF-82-35, Supplement 1, "Donald C. Cook Unit 2 Cycle 4 Limiting Break LOCA-ECCS Analysis Using EXEM/PWR," Exxon Nuclear Company, Inc., Richland, WA 99352, November 1982.

(3) XN-NF-82-20(P), Rev. 1, August 1982; and Supplement 4, July 1984, "Exxon Nuclear Company Evaluation Model EXEM/PWR ECCS Model Up-dates," Exxon Nuclear Company, Inc., Richland, WA 99352.

(4) XN-73-25, "GAPEXX: A Computer Program for Predicting Pellet-to-Cladding Heat Transfer Coefficients," Exxon Nuclear Company, Inc.,

Richland, WA, August 13, 1973.

(5) XN-NF-81-58(A), Rev. 2, "RODEX2: Fuel Rod Thermal-Mechanical Re-sponse Evaluation Model," Exxon Nuclear Company, Inc., Richland, WA

. 99352, February 1983.

(6) "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Cooled Nuclear Power Reactors," 10 CFR 50.46 and Appendix K of 10 CFR 50.

(7) U.S. Nuclear Regulatory Commission letter, T.A. Ippolito (NRC) to W.S. Nechodom (ENC), "SER for ENC RELAP4-EM Update," March 1979.

(8) XN-CC-39, Rev. 1, "ICECON: A Computer Program Used to Calculate Containment Backpressure for LOCA Analysis ( Including Ice Condenser Plants)," Exxon Nuclear Company, Inc., Richland, WA 99352, November 1977.

(9) XN-NF-78-30(A), "Exxon Nuclear Company WREM-Based Generic PWR ECCS Evaluation Model Update ENC WREM-IIA," Exxon Nuclear Company, Inc.,

Richland, WA 99352. May 1979.

(10) XN-NF-82-07(A), Rev. 1, "Exxon Nuclear Company ECCS Cladding Swelling and Rupture Model," Exxon Nuclear Company, Inc., Richland, WA 99352, March 1982.

G.N. Lauben, NRC Report NUREG-75/057, "TOODEE2: A Two-Dimensional 1>>

(12) D.C. Cook Unit 2 Technical Specification, Appendix "A" to License No.

DPR-74, Amendment No. 48.

66 XN-NF-84-21(NP)

Revision 2 (13) XN-NF-82-32(P), Supplement 2, "Plant Transient Analysis for the Donald C. Cook Unit 2 Reactor at 3425 MWt: Operation with 5% Steam Generator Tube Plugging," Exxon Nuclear Company, Inc., Richland, WA 99352, February 1984.,

(14) XN-NF-84-21(P), "Donald C. Cook Unit 2, Cycle 5, 5X Steam Generator Tube Plugging, Limiting Break LOCA/ECCS Analysis," Exxon Nuclear Company, Inc., Richland, WA 99352, February 1984.

( 15) Letter, H. R. Denton (NRC) from J. C. Chandler (ENC), Re: Support-ing Documentation for Unit 2 Technical Specification Changes for Cycle 5 Reload, dated May 7, 1984 (JCC:076:84).

(16) XN-NF-84-21(P), Revision 1, "Donald C. Cook Unit 2 Cycle 5 - 5X Steam Generator Tube Plugging, Limiting Break LOCA/ECCS Analysis,"

Exxon Nuclear Company, Inc., Richland, WA 99352, May 1984.

XN-NF-8'4-21(NP )

Revision 2 Issue Date: 8/7/84 DONALD C COOK UNIT 2 CYCLE 5 Sio STEAN, GENERATOR TUBE PLUGGING LIMITING BREAK LOCA/ECCS ANALYSIS Distribution J. C. Chandler W. V. Kayser G. F. Owsley H. G. Shaw T. Tahvili AEP/H.G. Shaw (10)

USNRC/J.C. Chandler (15)

Document Control (3)