ML18232A172: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
Line 25: Line 25:


Watts Bar Nuclear Plant, Unit 1, Cycle 15 Core Operating Limits Report, Revision 1, January 2018 Watts Bar Nuclear Plant, Unit 2, Cycle 2 Core Operating Limits Report, Revision 1, January 2018 cc (Enclosure):
Watts Bar Nuclear Plant, Unit 1, Cycle 15 Core Operating Limits Report, Revision 1, January 2018 Watts Bar Nuclear Plant, Unit 2, Cycle 2 Core Operating Limits Report, Revision 1, January 2018 cc (Enclosure):
NRC Regional Administrator - Region ll NRR Project Manager NRC Senior Resident lnspector ENCLOSURE 1 Watts Bar Nuclear Plant, Unit 1, Cycle 15 Core Operating Limits Report Revision 1 January 2018 Unil I WATTS BAR OAR*cord 130 tEolt8 800 WATTg BAR I{UCLEAR PIANT, UNIT I. CYCTE 15 CORE OPERATIiIO LIMITS REPORT Rolslon 1 January 2m8 Clcle tS Rcvlsion I Unnc Veillled by: A. Rlbh6, nllln Fuol Engln*orlrrg gf-3r1lpcr]!!C conrrnnminr i isr eozao lL 171ltE 00lt^ Renrih*ra G! a-*rdr Pags I of l0 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Watts Bar Unit I Cycle 15 has been prepared in accordance with the requirements of the Technical specification (TS) 5.9.5.The Technical Specifications affected by this report are listed below: 3.1.4 Moderator Temperature Coefficient (MTC)3.1.5 Rod Group Alignment Limits 3.1.6 Shutdown Bank lnsertion Limits 3.1.7 Control Bank Insertion Limits 3.2.1 Heat Flux Hot Channel Factor (Fq(Z))3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (F**)3.2.3 Axial Flux Difference (AFD)3.9.1 BoronConcentration 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in section 1.0 are presented in the following subsections.
NRC Regional Administrator - Region ll NRR Project Manager NRC Senior Resident lnspector ENCLOSURE 1 Watts Bar Nuclear Plant, Unit 1, Cycle 15 Core Operating Limits Report Revision 1 January 2018 Unil I WATTS BAR OAR*cord 130 tEolt8 800 WATTg BAR I{UCLEAR PIANT, UNIT I. CYCTE 15 CORE OPERATIiIO LIMITS REPORT Rolslon 1 January 2m8 Clcle tS Rcvlsion I Unnc Veillled by: A. Rlbh6, nllln Fuol Engln*orlrrg gf-3r1lpcr]!!C conrrnnminr i isr eozao lL 171ltE 00lt^ Renrih*ra G! a-*rdr Pags I of l0 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Watts Bar Unit I Cycle 15 has been prepared in accordance with the requirements of the Technical specification (TS) 5.9.5.The Technical Specifications affected by this report are listed below: 3.1.4 Moderator Temperature Coefficient (MTC)3.1.5 Rod Group Alignment Limits 3.1.6 Shutdown Bank lnsertion Limits 3.1.7 Control Bank Insertion Limits 3.2.1 Heat Flux Hot Channel Factor (Fq(Z))3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (F**)3.2.3 Axial Flux Difference (AFD)3.9.1 BoronConcentration
These limits have been developed using the NRC approved methodologies specified in the Technical Specifications Section 5.9.5.The following abbreviations are used in this section: BOL Beginning of Cycte Life ARO All Rods Out HZP Hot Zero Thermal Power EOL End of Cycle Life RTP Rated Thermal Power Unit I WATTS BAR Cycle l5 Revision I Page 2 of l0 2.1 MODERATOR TEMPERATURE COEFFICTENT - MTC (LCO 3.1.4)2. l.l The MTC limits are: The ARO/HZP - MTC shall be less positive than or equal to 0 Ak/lJ'F (upper limit).With the measured BOL/ARO/HZP - MTC more positive than -1.30 x lo-s Ak/ldoF (as-measured MTC limiO, establish control rod withdrawal limits to ensure the MTC remains less positive than or equal to 0 Ak/ld"F (upper limit) for all times in core life.The EOL/AROiRTP - MTC shall be less negative than or equal to 4.5 x lOa Aldk/.F (lower limit).2.1.2 The 300 ppm surveillance limit is: The measured 300 ppm /ARO/RTP-MTC should be less negative than or equal to-3.75 x l0-4 ak/ld"F.2.1.3 The 60 ppm surveillance limit is: The measured 60 ppm /ARO/RTP-MTC should be less negative than or equal to 4.2g x 104 al/ld.F.2.2 SHUTDOWN MARGIN - SDM (LCO 3.1.5,3.1.6,3.1.7) 2.2.1 For TS 3.1.5, SDM shall be Z 1.6% Aklk in MODE I and MODE 2" 2.2.2 For TS 3.1.6, SDM shall be 2 1.6% Aklk in MODE I and MODE 2.2.2.3 For TS 3 .L .7 , SDM shall be > I .6% Al/k in MODE I and MODE 2 with h*r > 1,0.2.3 SHUTDOWIY BAIYK IIYSERTION LIMITS (LCO 3.1.6)2 .3 . I The shutdown banks shall be withdrawn to a position greater than or equal to 225 steps withdrawn.
 
2.4 CONTROL BAIIK TNSERTTON LTMTTS (LCO 3.1.7)2.4.1 The control banks are fully withdrawn or shall be limited in physical insertion as shown in Figure l.2.4.2 Each control bank shall be considered frrlly withdrawn from the core at greater than or equal to 225 steps.2.4.3 The control banks shall be operated in sequence by withdrawal of Bank A, Bank B, Bank C, and Bank D. The control banks shall be sequenced in reverse order upon insertion.
===2.0 OPERATING===
 
LIMITS The cycle-specific parameter limits for the specifications listed in section 1.0 are presented in the following subsections.
These limits have been developed using the NRC approved methodologies specified in the Technical Specifications Section 5.9.5.The following abbreviations are used in this section: BOL Beginning of Cycte Life ARO All Rods Out HZP Hot Zero Thermal Power EOL End of Cycle Life RTP Rated Thermal Power Unit I WATTS BAR Cycle l5 Revision I Page 2 of l0  
 
===2.1 MODERATOR===
 
TEMPERATURE COEFFICTENT - MTC (LCO 3.1.4)2. l.l The MTC limits are: The ARO/HZP - MTC shall be less positive than or equal to 0 Ak/lJ'F (upper limit).With the measured BOL/ARO/HZP - MTC more positive than -1.30 x lo-s Ak/ldoF (as-measured MTC limiO, establish control rod withdrawal limits to ensure the MTC remains less positive than or equal to 0 Ak/ld"F (upper limit) for all times in core life.The EOL/AROiRTP - MTC shall be less negative than or equal to 4.5 x lOa Aldk/.F (lower limit).2.1.2 The 300 ppm surveillance limit is: The measured 300 ppm /ARO/RTP-MTC should be less negative than or equal to-3.75 x l0-4 ak/ld"F.2.1.3 The 60 ppm surveillance limit is: The measured 60 ppm /ARO/RTP-MTC should be less negative than or equal to 4.2g x 104 al/ld.F.2.2 SHUTDOWN MARGIN - SDM (LCO 3.1.5,3.1.6,3.1.7) 2.2.1 For TS 3.1.5, SDM shall be Z 1.6% Aklk in MODE I and MODE 2" 2.2.2 For TS 3.1.6, SDM shall be 2 1.6% Aklk in MODE I and MODE 2.2.2.3 For TS 3 .L .7 , SDM shall be > I .6% Al/k in MODE I and MODE 2 with h*r > 1,0.2.3 SHUTDOWIY BAIYK IIYSERTION LIMITS (LCO 3.1.6)2 .3 . I The shutdown banks shall be withdrawn to a position greater than or equal to 225 steps withdrawn.
 
===2.4 CONTROL===
BAIIK TNSERTTON LTMTTS (LCO 3.1.7)2.4.1 The control banks are fully withdrawn or shall be limited in physical insertion as shown in Figure l.2.4.2 Each control bank shall be considered frrlly withdrawn from the core at greater than or equal to 225 steps.2.4.3 The control banks shall be operated in sequence by withdrawal of Bank A, Bank B, Bank C, and Bank D. The control banks shall be sequenced in reverse order upon insertion.
Unit I WATTS BAR Cycle l5 Revision I Page 3 of l0 2.4.4Eachcontrol bank not fully withdrawn from the core shall be operated with the following overlap as a function of park position.Park Position (steps) Bank overlap (steps) Bank Difference (steps)225 109 116 226 ll0 lt6 227 ill il6 228 rr2 116 229 ll3 116 230 l 14 n6 23t lt5 116 2.5 HEAT FLUX HOT CHANNEL FACTOR- Fq(Z) (LCO 3.2.1)Fq(Z) < [CFQ I Pl* K(Z) for P > 0.5 Fq(Z)< ICFQ l0.s]
Unit I WATTS BAR Cycle l5 Revision I Page 3 of l0 2.4.4Eachcontrol bank not fully withdrawn from the core shall be operated with the following overlap as a function of park position.Park Position (steps) Bank overlap (steps) Bank Difference (steps)225 109 116 226 ll0 lt6 227 ill il6 228 rr2 116 229 ll3 116 230 l 14 n6 23t lt5 116 2.5 HEAT FLUX HOT CHANNEL FACTOR- Fq(Z) (LCO 3.2.1)Fq(Z) < [CFQ I Pl* K(Z) for P > 0.5 Fq(Z)< ICFQ l0.s]
* K(Z) forP<0.5 Unit I WATTS BAR Where P = Thermal Power / Rated Thermal Power 2.5.1 CFQ =2.50 2.5.2 K(Z) is provided in Figure 2.z.ss rr*127= Fo'(Z)
* K(Z) forP<0.5 Unit I WATTS BAR Where P = Thermal Power / Rated Thermal Power 2.5.1 CFQ =2.50 2.5.2 K(Z) is provided in Figure 2.z.ss rr*127= Fo'(Z)
* w(z)tP for P > 0.5 Fq*(Z) = Fq"(Z)
* w(z)tP for P > 0.5 Fq*(Z) = Fq"(Z)
* W(2y0.5 for P < 0.5 where: w(Z) values are provided in Table A.l. The table provides suffrcient information to determine w(Z) versus core height for all cycle burnups.2.5.4Part power W(Z) values are only required to be used when the part power surveillance is performed using the moveable incore detector system.2.5.5 Faw(Z) Penalty Factor the FqwlZ; penalty factor is provided in Table A.2.Cycle 15 Revision I Page 4 of l0 2.6 NUCLEAR ENTIIALPY RISE HOT CHANI\EL F'ACTOR - F'&{N (LCO 3.2,2)F** S F*** * ( I + pF * ( l-p))where P = Thermal Power / Rated Thermal power For* : 1.65 forRFA-2 fuel, and PF = 0.3 2.7 AXrAL FLIX DTFFERENCE - AFD (LCO 3.2.3)2.7.1 The AFD limits for Cycle 15 are provided in Figure 3.2.8 REFUELTNG BORON CONCENTRATTON (LCO 3.e.1)2.8.1 The refueling boron concentration shall be > 2000 ppm.3.0 NUMBER OF TPBARS rN REACTOR CORE (TS 4.2.1)3.0.1 There are I 104 tritium producing burnable absorber rods (TPBARs) in the reactor core for Cycle 15.Unit I WATTS BAR Cycle 15 Revision I Page 5 of l0 250 225 200 t75 150 L25 100 75 o,4 0.6 FRACTION OF RATED THERMAL POWER Figure I Control Bank Insertion Limits Versus Thermal power Four Loop Operation Note: Fully withdrawn region shall be the condition where shutdown and control banks are at a position within the interval of >_225 and323l steps withdrawn.
* W(2y0.5 for P < 0.5 where: w(Z) values are provided in Table A.l. The table provides suffrcient information to determine w(Z) versus core height for all cycle burnups.2.5.4Part power W(Z) values are only required to be used when the part power surveillance is performed using the moveable incore detector system.2.5.5 Faw(Z) Penalty Factor the FqwlZ; penalty factor is provided in Table A.2.Cycle 15 Revision I Page 4 of l0  
 
===2.6 NUCLEAR===
ENTIIALPY RISE HOT CHANI\EL F'ACTOR - F'&{N (LCO 3.2,2)F** S F*** * ( I + pF * ( l-p))where P = Thermal Power / Rated Thermal power For* : 1.65 forRFA-2 fuel, and PF = 0.3 2.7 AXrAL FLIX DTFFERENCE - AFD (LCO 3.2.3)2.7.1 The AFD limits for Cycle 15 are provided in Figure 3.2.8 REFUELTNG BORON CONCENTRATTON (LCO 3.e.1)2.8.1 The refueling boron concentration shall be > 2000 ppm.3.0 NUMBER OF TPBARS rN REACTOR CORE (TS 4.2.1)3.0.1 There are I 104 tritium producing burnable absorber rods (TPBARs) in the reactor core for Cycle 15.Unit I WATTS BAR Cycle 15 Revision I Page 5 of l0 250 225 200 t75 150 L25 100 75 o,4 0.6 FRACTION OF RATED THERMAL POWER Figure I Control Bank Insertion Limits Versus Thermal power Four Loop Operation Note: Fully withdrawn region shall be the condition where shutdown and control banks are at a position within the interval of >_225 and323l steps withdrawn.
z 3&, a-I E=ln o, UI F 9 z o-F a o A E UJ F ttl Y z o o o G, Unit I WATTS BAR Cycle l5 Revision I (ALL POWERS, 2251 (a.Lg7, 225l, (0.703, 225l, BANK B (0.0, 190)BANK C (0.0, 64l, (0.227, 0)Page 6 of l0 t-(1)=o o_*o LL'r()o.N (u E L o z.1.2 1.1 1.0 0.9 0.8 o.7 0.6 0.5 o,4 0.3 o-2 0.1 o o 468 Core Height (feet)10 12 Cycle 15 Revision I Unit I WATTS BAR Figure 2 K(Z) - Normalizetl Fq(Z) as a Function of Core Height-, E-L--- r i co..Heioht K(7\I o ooo 1.ooo-1 6.000 1.000 i i 12.000 0.92s6 i Page 7 of l0 120 110 100 90 80 70 60 50 40 30 20 10 0 Unit I WATTS BAR o=o o-(tr E lb o F E o (I, E l{-o s-50 40-30-20-10 0 10 Flux Difference (A l) %20 30 40 50 Cycle l5 Revision 1 Figure 3 Axial Flux Difference Acceptable Operation Limits as a function of Rated Thermal Power (RAOC)(-12, 1 00)(7, 10 0)Acceptable Operation Unaccepta Operatio tacceptal Coeratior I\r-l\I\I\I I I\ter Page 8 of l0 Unit I WATTS BAR Table A.l RAOC W(Z) Surveillance Factors Cycle l5 Revision I Height ( ft)IIax \\'(z)at 150}I\ITDAITT' (30%Porver)\Iax \\'(z)at 150\I\\'DAITIT (7s%Porver)\Iar \\I(z)at 150\I\\'DAITTT (1009'0 Polver)\Ias \Y(z)at 2000\,I\\'DI}TTI.I (lo0%Polyer')Nlax \\'(z)at 4000}T\\DAITT" (r00%Power)Ilax 11I(z)at 8000 NI\\lDAITT' (100%Power)NIax \Y(z)at 12000 NI\\'Dr\ITLr (100%Power)Ilax \1'(z)at 16000}t\\.DAITTT (100%Pow,er)\Iax \\I(z)at 18000 Nt\\.DI}TTTI (r00%Pon'er)07.1 t.i)000 I 0000 1.0000 1.0000 1.0000 1 0000 L0000 1 0000 I 0000 I 8713 I 000r)1.0.000 L0000 I 0000 1.0000 I 00{)0 I.0000 1.0000 I 0t)00 1 6720 I 0000 I 00r)0 I 0000 1.0000 1 000t)t 000r)1.0000 1.0000 I "0000 L-1r08 L0000 1.0000 I 0000 t 0000 L000(l 1.0000 1.0()0r)1.0000 I.0000 1.169 I 0000 1.0000 i 0000 1 0000 1 0000 I 0000 I t)000 1 0000 1 0000 1.068-1 1.0000 r 0000 1.0000 1.0000 1.000t)i 0000 I 0000 I 0000 1 0000 0 8671 1.3719 I 356.1 1.2i6 t.l5-t 1 I 2t86 t.1040 I 924 I 75-l I 7-r6 0 66-i8 l -1(106 t 33.tl I2t-14 I 2;i.99 l.l l7q LlOl _1 i 917 I 7t4 65.1 0.+646 I -l-[7 115 I 2081 l 2417 l.l t4f)96t I 877 I 708 t 98 0.16-l-1 l.-1201 r ?9-t5 l 2tl07 1237.x 1 1094 891 I I l_l I 619 5.17 fi 06l t t.30ll t l69q 94-1 l .l_1 17 I 10_16 I.S l6 I 11 I 561 48_1 e 8608 l.l87e 1 l-169 I 9ll I .21-l7 I 9,s?10 I 705 I 517 I 47-l 9.6-i9(r t.l7 I 7 I 9l l :180 I 876 I 6.{I 6l I 509 58 e.-158-l 5 I l9r t I 89-5 l.l I CrS I s67 I 6 I-5-s6 I 590 I fi60 9 l57l t 116l I 1777 I 9-l t tIle I 87Cr I 6,59 I 57i I 6,17 I I 9.055e I.t 186 I I 667 I 970 I t08l I B7 I 6-5-t I 585 I 66.1 I 785 8 85.ltr I . 19.t7 I I _s37 I 960 I 1998 I 846 I 659 I 59r I j17 I 8_r0 8.651"1 r.17t.1 I i43e I 95.+I le-16 t 8l-l i 704 I 644 I 8lr I 881 8,45t1 1.1579 L 1.136 1 2020 I . l9.q_l 878 I 771 I 74e I 949 I 205 8 :509 t.141_l i . 1.151 1.2083 1.202-s 89.q I 810 I 868 I 208 I 2207 8.0-197 I r17 t I l4-\0 L2 r 2-5 l :041 8e8 I 8+l I 9fr9 I tt04 l.l-l-1 7.8484 L 1095 I 14.15 I lt4e 1 2046 I 871 857 1.1046 t 2297 1.24,16 7,6+72 1.0916 I . l'1-ll I 1-s3 I 20-rl I 8.r8 850 l.: 102 l.ti66 1.2514 7.-+459 1.0795 l t4ll I .2138 1.1001 I 866 815 t.: I_15 l.l4 t0 1 1565 7.14-17 1.0666 I i -t8-s I 106 I 9-s-l I 869 I 776 I II47 l.t4l0 i.2591 7 043 1.0561 I lll9 L20-52 I 894 I 84e I 756 I 137 I 42fi 1,259 r 6 8411 I.0-t97 I I lt)r{1.2009 I 848 I 817 I 751 I 2108 I.tt99 1.2567 6.6-+ l0 l.ru7l L l-105 I 99t)I 817 I 77 I 7tl r t06_3 l 2r5l l.2,sl0 6 "1i97 L0.1-+4 L llS I 949 166 I 7ll I 691 1.2003 l.lle0 l.?4,s6 61,18 L0"l]]L 1t58 I 89,3 l.696 (}+l I 6.10 9t5 1 2207 l.l37l 6.0173 1.0_196 l l]19 I 816 6l-t I 587 I 8I I 83 I 2105 I 2164 8-160 I 0388 l. I 190 I 74tl 578 1-1 I_il9 I 7t8 982 L21-17 6.1"18 1 0400 II 75 t.684 I 520 1.-t66 I Jt9-t I 601 846 I 99 5 .$t-5 I,0417 I I l6l I 6-13 I 4?4 I 431 I 469 I 5_3.1 719 847 5 trls 1.045_l t ll-58 I-59-5 I 446.ll8 4.19 I 515 I 6t9 749 5.t)-t l0 L0-s07 I l7l I 56.{I 4,r I I r11+_1 ', 4-56 I 5t0 I 612 72{)-1 8198 I "057_1 I I t89 515 I 418 I.115 476 I 504 I 610 I 71-t 4 6186 1.06-j8 l ttge I 50t)I 399 I.l3l I.+8 I 500 I 594 I 688 4".t]73 I.070: I Il0-l I-15e I 37-1 I+10 I-189 I 488 I 7l I 6_s4 4:t6l t.0766 I I t99 I 4ll ,14 I 40-1 I 48 t.470 I-54.1 I 6ll 4.01.t8 t.0818 Lll93 I-j60 I-106 I l8-l I 481 I"159 I 5ll I-5(r3 8ll6 l.t)88tr l. I I77 I.l0t)168 I 154 I 468 I 461 I 468 I 504-1 62t,l 1.0951 tl 70 I 247 I?7 ils I 461 I 507 4_17 I 4-56 l4llt t 1060 I l20i I 2-l,l 184_i4!)I 496 I 56.r I 449 I 448 l lt9e LIl9l I l2-58 I 241 te3 38-5 I 550 I 620 469 I 454 1.0186 L l3e5 I tiE I 12l I t8l l.,+75 I 6-17 I 685 521 I 504 8174 l. I69e t. I 5e9 I 497 I-lfr9 I 6-11 I 795 I 802 I 65_l 6_16 2,616t LtOr 7 1. 1 836 l.683 I 669 I 85-l I .t0l l I!)71 I 8.1-l t 828 1.il.19 l.t-l4l t 2067 t 870 I 873 I t060 I 2220 I 2128 L202-l L2008 l lI-17 I.:67-s 1.2-108 L2057 t 207'v 1.226{1.2.l]4 I .1281 I Ile8 LI t84 I0ll4 l.l02l 1.2547 1.224t)t.2271 I 146l l.t6t2 I.:427 I 2367 I.2-l-54 t,8l t I " jj79 1.2781 t,2-+17 I 1469 l l6+e t.ts09 1.256-l l.t-518 l 2-5l6 I 6099 I_174 I 100.1 1 1.58 I 650 I "281-1 Ll98 l t t6e2 L?677 1.1666 L.t08r l.4l t0 I.3110 t.27?6 I 1808 I 2e74 1 3130 I 816 I 2805 I.2795 1.1075 1.446(r i.-3-18-j I 18-1,1 1 2913 I 087 l.-i239 I.2904 I 894 1.288s I 00Cr 1.0000 1.0000 1 000t1 l.000rl I 0000 l.t)000 l,0000 I 00fx)L0000 0.8050 Lt1000 l.00fi0 1.0000 I 000n L0000 1.0000 r.0000 t 0000 L0000 0.(r0i7 1.0000 1.0(J00 1.0000 1 0000 1.0000 1.0000 r.0000 I 0000 1.0000 0 4015 i "0000 1.0000 l.00fit)I 0000 I 0000 1.0000 I.0000 t.0000 L0000 0.20r 1 I.0000 L00t)0 1.0000 1.0000 1 0000 L0000 r.0000 1.0000 t.0000 0.0000 I t)000 l.0rl00 I 0000 I 0000 I 0000 I.0000 1.0000 1 0000 L0000 Page 9 of 10 Table A.2 Fq*(Z) Penalty Factor Core Burnup MVyD/IUTU)
z 3&, a-I E=ln o, UI F 9 z o-F a o A E UJ F ttl Y z o o o G, Unit I WATTS BAR Cycle l5 Revision I (ALL POWERS, 2251 (a.Lg7, 225l, (0.703, 225l, BANK B (0.0, 190)BANK C (0.0, 64l, (0.227, 0)Page 6 of l0 t-(1)=o o_*o LL'r()o.N (u E L o z.1.2 1.1 1.0 0.9 0.8 o.7 0.6 0.5 o,4 0.3 o-2 0.1 o o 468 Core Height (feet)10 12 Cycle 15 Revision I Unit I WATTS BAR Figure 2 K(Z) - Normalizetl Fq(Z) as a Function of Core Height-, E-L--- r i co..Heioht K(7\I o ooo 1.ooo-1 6.000 1.000 i i 12.000 0.92s6 i Page 7 of l0 120 110 100 90 80 70 60 50 40 30 20 10 0 Unit I WATTS BAR o=o o-(tr E lb o F E o (I, E l{-o s-50 40-30-20-10 0 10 Flux Difference (A l) %20 30 40 50 Cycle l5 Revision 1 Figure 3 Axial Flux Difference Acceptable Operation Limits as a function of Rated Thermal Power (RAOC)(-12, 1 00)(7, 10 0)Acceptable Operation Unaccepta Operatio tacceptal Coeratior I\r-l\I\I\I I I\ter Page 8 of l0 Unit I WATTS BAR Table A.l RAOC W(Z) Surveillance Factors Cycle l5 Revision I Height ( ft)IIax \\'(z)at 150}I\ITDAITT' (30%Porver)\Iax \\'(z)at 150\I\\'DAITIT (7s%Porver)\Iar \\I(z)at 150\I\\'DAITTT (1009'0 Polver)\Ias \Y(z)at 2000\,I\\'DI}TTI.I (lo0%Polyer')Nlax \\'(z)at 4000}T\\DAITT" (r00%Power)Ilax 11I(z)at 8000 NI\\lDAITT' (100%Power)NIax \Y(z)at 12000 NI\\'Dr\ITLr (100%Power)Ilax \1'(z)at 16000}t\\.DAITTT (100%Pow,er)\Iax \\I(z)at 18000 Nt\\.DI}TTTI (r00%Pon'er)07.1 t.i)000 I 0000 1.0000 1.0000 1.0000 1 0000 L0000 1 0000 I 0000 I 8713 I 000r)1.0.000 L0000 I 0000 1.0000 I 00{)0 I.0000 1.0000 I 0t)00 1 6720 I 0000 I 00r)0 I 0000 1.0000 1 000t)t 000r)1.0000 1.0000 I "0000 L-1r08 L0000 1.0000 I 0000 t 0000 L000(l 1.0000 1.0()0r)1.0000 I.0000 1.169 I 0000 1.0000 i 0000 1 0000 1 0000 I 0000 I t)000 1 0000 1 0000 1.068-1 1.0000 r 0000 1.0000 1.0000 1.000t)i 0000 I 0000 I 0000 1 0000 0 8671 1.3719 I 356.1 1.2i6 t.l5-t 1 I 2t86 t.1040 I 924 I 75-l I 7-r6 0 66-i8 l -1(106 t 33.tl I2t-14 I 2;i.99 l.l l7q LlOl _1 i 917 I 7t4 65.1 0.+646 I -l-[7 115 I 2081 l 2417 l.l t4f)96t I 877 I 708 t 98 0.16-l-1 l.-1201 r ?9-t5 l 2tl07 1237.x 1 1094 891 I I l_l I 619 5.17 fi 06l t t.30ll t l69q 94-1 l .l_1 17 I 10_16 I.S l6 I 11 I 561 48_1 e 8608 l.l87e 1 l-169 I 9ll I .21-l7 I 9,s?10 I 705 I 517 I 47-l 9.6-i9(r t.l7 I 7 I 9l l :180 I 876 I 6.{I 6l I 509 58 e.-158-l 5 I l9r t I 89-5 l.l I CrS I s67 I 6 I-5-s6 I 590 I fi60 9 l57l t 116l I 1777 I 9-l t tIle I 87Cr I 6,59 I 57i I 6,17 I I 9.055e I.t 186 I I 667 I 970 I t08l I B7 I 6-5-t I 585 I 66.1 I 785 8 85.ltr I . 19.t7 I I _s37 I 960 I 1998 I 846 I 659 I 59r I j17 I 8_r0 8.651"1 r.17t.1 I i43e I 95.+I le-16 t 8l-l i 704 I 644 I 8lr I 881 8,45t1 1.1579 L 1.136 1 2020 I . l9.q_l 878 I 771 I 74e I 949 I 205 8 :509 t.141_l i . 1.151 1.2083 1.202-s 89.q I 810 I 868 I 208 I 2207 8.0-197 I r17 t I l4-\0 L2 r 2-5 l :041 8e8 I 8+l I 9fr9 I tt04 l.l-l-1 7.8484 L 1095 I 14.15 I lt4e 1 2046 I 871 857 1.1046 t 2297 1.24,16 7,6+72 1.0916 I . l'1-ll I 1-s3 I 20-rl I 8.r8 850 l.: 102 l.ti66 1.2514 7.-+459 1.0795 l t4ll I .2138 1.1001 I 866 815 t.: I_15 l.l4 t0 1 1565 7.14-17 1.0666 I i -t8-s I 106 I 9-s-l I 869 I 776 I II47 l.t4l0 i.2591 7 043 1.0561 I lll9 L20-52 I 894 I 84e I 756 I 137 I 42fi 1,259 r 6 8411 I.0-t97 I I lt)r{1.2009 I 848 I 817 I 751 I 2108 I.tt99 1.2567 6.6-+ l0 l.ru7l L l-105 I 99t)I 817 I 77 I 7tl r t06_3 l 2r5l l.2,sl0 6 "1i97 L0.1-+4 L llS I 949 166 I 7ll I 691 1.2003 l.lle0 l.?4,s6 61,18 L0"l]]L 1t58 I 89,3 l.696 (}+l I 6.10 9t5 1 2207 l.l37l 6.0173 1.0_196 l l]19 I 816 6l-t I 587 I 8I I 83 I 2105 I 2164 8-160 I 0388 l. I 190 I 74tl 578 1-1 I_il9 I 7t8 982 L21-17 6.1"18 1 0400 II 75 t.684 I 520 1.-t66 I Jt9-t I 601 846 I 99 5 .$t-5 I,0417 I I l6l I 6-13 I 4?4 I 431 I 469 I 5_3.1 719 847 5 trls 1.045_l t ll-58 I-59-5 I 446.ll8 4.19 I 515 I 6t9 749 5.t)-t l0 L0-s07 I l7l I 56.{I 4,r I I r11+_1 ', 4-56 I 5t0 I 612 72{)-1 8198 I "057_1 I I t89 515 I 418 I.115 476 I 504 I 610 I 71-t 4 6186 1.06-j8 l ttge I 50t)I 399 I.l3l I.+8 I 500 I 594 I 688 4".t]73 I.070: I Il0-l I-15e I 37-1 I+10 I-189 I 488 I 7l I 6_s4 4:t6l t.0766 I I t99 I 4ll ,14 I 40-1 I 48 t.470 I-54.1 I 6ll 4.01.t8 t.0818 Lll93 I-j60 I-106 I l8-l I 481 I"159 I 5ll I-5(r3 8ll6 l.t)88tr l. I I77 I.l0t)168 I 154 I 468 I 461 I 468 I 504-1 62t,l 1.0951 tl 70 I 247 I?7 ils I 461 I 507 4_17 I 4-56 l4llt t 1060 I l20i I 2-l,l 184_i4!)I 496 I 56.r I 449 I 448 l lt9e LIl9l I l2-58 I 241 te3 38-5 I 550 I 620 469 I 454 1.0186 L l3e5 I tiE I 12l I t8l l.,+75 I 6-17 I 685 521 I 504 8174 l. I69e t. I 5e9 I 497 I-lfr9 I 6-11 I 795 I 802 I 65_l 6_16 2,616t LtOr 7 1. 1 836 l.683 I 669 I 85-l I .t0l l I!)71 I 8.1-l t 828 1.il.19 l.t-l4l t 2067 t 870 I 873 I t060 I 2220 I 2128 L202-l L2008 l lI-17 I.:67-s 1.2-108 L2057 t 207'v 1.226{1.2.l]4 I .1281 I Ile8 LI t84 I0ll4 l.l02l 1.2547 1.224t)t.2271 I 146l l.t6t2 I.:427 I 2367 I.2-l-54 t,8l t I " jj79 1.2781 t,2-+17 I 1469 l l6+e t.ts09 1.256-l l.t-518 l 2-5l6 I 6099 I_174 I 100.1 1 1.58 I 650 I "281-1 Ll98 l t t6e2 L?677 1.1666 L.t08r l.4l t0 I.3110 t.27?6 I 1808 I 2e74 1 3130 I 816 I 2805 I.2795 1.1075 1.446(r i.-3-18-j I 18-1,1 1 2913 I 087 l.-i239 I.2904 I 894 1.288s I 00Cr 1.0000 1.0000 1 000t1 l.000rl I 0000 l.t)000 l,0000 I 00fx)L0000 0.8050 Lt1000 l.00fi0 1.0000 I 000n L0000 1.0000 r.0000 t 0000 L0000 0.(r0i7 1.0000 1.0(J00 1.0000 1 0000 1.0000 1.0000 r.0000 I 0000 1.0000 0 4015 i "0000 1.0000 l.00fit)I 0000 I 0000 1.0000 I.0000 t.0000 L0000 0.20r 1 I.0000 L00t)0 1.0000 1.0000 1 0000 L0000 r.0000 1.0000 t.0000 0.0000 I t)000 l.0rl00 I 0000 I 0000 I 0000 I.0000 1.0000 1 0000 L0000 Page 9 of 10 Table A.2 Fq*(Z) Penalty Factor Core Burnup MVyD/IUTU)
Fq*(z)Penalty Factor All Burnups I,0200 Note: l. The Penalty Factor, which is applied to Fq*(4 for compliance with Surveillance Requirement 3.2.1.2, is the maximum factor by which Fo*(Z) is expected to incr@se per 3l Effective Full Power Days (EFPD) starting from the burnup at which the fqwlZ; was determined.
Fq*(z)Penalty Factor All Burnups I,0200 Note: l. The Penalty Factor, which is applied to Fq*(4 for compliance with Surveillance Requirement 3.2.1.2, is the maximum factor by which Fo*(Z) is expected to incr@se per 3l Effective Full Power Days (EFPD) starting from the burnup at which the fqwlZ; was determined.
Unit I WATTS BAR Cycle 15 Revision I Page l0 of l0 ENCLOSURE 2 Watts Bar Nuclear Plant, Un,t2, Cycle 2 Gore Operating Limits Report Revision 1 January 201 8 QA Rscord ul8 190t 18 801 WATTS BAR NUCLEAR PI.AiIT, UNIT 2, CYCLE 2 CORE OPERATING LIiIITS REPORT RwEhn I Jentnry 2018 Gz/z'/g Unlt 2 WATTSBAR Cycle 2 Revisim I W. AndrauwhfrE Rihhle, nlrR Fuat Englncerlng Added st and 3,1.7 per NRC Cornmllrnent f lglg0rcal PagB I of lo I.O CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Watts Bar Unit 2 Cycle 2 has been prepared in accordance with the requirements of the Technical Specification (TS) 5.9.5.The Technical Specifications affected by this report are listed below: 3.1.4 Moderator Temperature Coefficient (MTC)3.1.5 Rod Group Alignment Limits 3.1.6 Shutdown Bank Insertion Limits 3.1.7 Control Bank Insertion Limits 3.2.1 Heat Flux Hot Channel Factor (Fq(Z))3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (F**)3.2.3 Axial Flux Difference (AFD)3.9.1 BoronConcentration 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in section 1.0 are presented in the following subsections.
Unit I WATTS BAR Cycle 15 Revision I Page l0 of l0 ENCLOSURE 2 Watts Bar Nuclear Plant, Un,t2, Cycle 2 Gore Operating Limits Report Revision 1 January 201 8 QA Rscord ul8 190t 18 801 WATTS BAR NUCLEAR PI.AiIT, UNIT 2, CYCLE 2 CORE OPERATING LIiIITS REPORT RwEhn I Jentnry 2018 Gz/z'/g Unlt 2 WATTSBAR Cycle 2 Revisim I W. AndrauwhfrE Rihhle, nlrR Fuat Englncerlng Added st and 3,1.7 per NRC Cornmllrnent f lglg0rcal PagB I of lo I.O CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Watts Bar Unit 2 Cycle 2 has been prepared in accordance with the requirements of the Technical Specification (TS) 5.9.5.The Technical Specifications affected by this report are listed below: 3.1.4 Moderator Temperature Coefficient (MTC)3.1.5 Rod Group Alignment Limits 3.1.6 Shutdown Bank Insertion Limits 3.1.7 Control Bank Insertion Limits 3.2.1 Heat Flux Hot Channel Factor (Fq(Z))3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (F**)3.2.3 Axial Flux Difference (AFD)3.9.1 BoronConcentration
These limits have been developed using the NRC approved methodologies specified in the Technical Specifications Section 5.9.5.The following abbreviations are used in this section: BOL Beginning of Cycle Life ARO All Rods Out HZP Hot Zero Thermal Power EOL End of Cycle Life RTP Rated Thermal Power Unit 2 WATTS BAR Cycle 2 Revision I Page 2 of l0 2.1 MODERATOR TEMPERATURE COEFFTCTENT - MTC (LCO 3.1.4)2.1.1 The MTC limits are: The ARO/HZP - MTC shall be less positive than or equal to 0 Ak/l/oF (upper limit).With the measured BOL/ARO/HZP - MTC more positive than -2.25 x l0-s Ak&/oF (as-measured MTC limit), establish control rod withdrawal limits to ensure the MTC remains less positive than or equal to 0 Ak/ld"F (upper limit) for all times in core life.The EOL/ARO/RTP - MTC shall be less negative than or equal to 4.50 x 104 Ak/ldoF (lower limit).2.1.2 The 300 ppm surveillance limit is: The measur.ed 300 ppm /ARO/RTP-MTC should be less negative than or equal to-3.65 x 104 Ak/ldoF.2.1.3 The 60 ppm surveillance limit is: The measured 60 ppm /ARO/RTP-MTC should be less negative than or equal to-4.1g x 104 ak/v"F.2.2 SHUTDOWN MARGIN - SDM (LCO 3.1.5,3.1.6, 3.1.7)2.2.1 For TS 3.1.5, SDM shall be Z 1.6% Ak&in MODE I and MODE 2.2.2.2 For TS 3.1.6, SDM shall be 2 1.6% Ak&in MODE I and MODE 2.2.2.3 For TS 3.1.7, SDM shall be 2 1.6% Ak&inMODE I andMODE2withhr>
 
===2.0 OPERATING===
 
LIMITS The cycle-specific parameter limits for the specifications listed in section 1.0 are presented in the following subsections.
These limits have been developed using the NRC approved methodologies specified in the Technical Specifications Section 5.9.5.The following abbreviations are used in this section: BOL Beginning of Cycle Life ARO All Rods Out HZP Hot Zero Thermal Power EOL End of Cycle Life RTP Rated Thermal Power Unit 2 WATTS BAR Cycle 2 Revision I Page 2 of l0  
 
===2.1 MODERATOR===
 
TEMPERATURE COEFFTCTENT - MTC (LCO 3.1.4)2.1.1 The MTC limits are: The ARO/HZP - MTC shall be less positive than or equal to 0 Ak/l/oF (upper limit).With the measured BOL/ARO/HZP - MTC more positive than -2.25 x l0-s Ak&/oF (as-measured MTC limit), establish control rod withdrawal limits to ensure the MTC remains less positive than or equal to 0 Ak/ld"F (upper limit) for all times in core life.The EOL/ARO/RTP - MTC shall be less negative than or equal to 4.50 x 104 Ak/ldoF (lower limit).2.1.2 The 300 ppm surveillance limit is: The measur.ed 300 ppm /ARO/RTP-MTC should be less negative than or equal to-3.65 x 104 Ak/ldoF.2.1.3 The 60 ppm surveillance limit is: The measured 60 ppm /ARO/RTP-MTC should be less negative than or equal to-4.1g x 104 ak/v"F.2.2 SHUTDOWN MARGIN - SDM (LCO 3.1.5,3.1.6, 3.1.7)2.2.1 For TS 3.1.5, SDM shall be Z 1.6% Ak&in MODE I and MODE 2.2.2.2 For TS 3.1.6, SDM shall be 2 1.6% Ak&in MODE I and MODE 2.2.2.3 For TS 3.1.7, SDM shall be 2 1.6% Ak&inMODE I andMODE2withhr>
1.0.2.3 SHUTDOWN BAI\TKINSERTION LIMITS (LCO 3.1.6)2.3.1 The shutdown banks shall be withdrawn to a position greater than or equal to 225 steps withdrawn.
1.0.2.3 SHUTDOWN BAI\TKINSERTION LIMITS (LCO 3.1.6)2.3.1 The shutdown banks shall be withdrawn to a position greater than or equal to 225 steps withdrawn.
2.4 CONTROL BAI\IK INSERTION LII\{ITS (LCO 3.1.7)2.4.1 The control banls are fully withdrawn or shall be limited in physical insertion as shown in Figure l.2.4.2Each control bank shall be considered fully withdrawn from the core at greater than or equal to 225 steps.2.4.3 The control banks shall be operated in sequence by withdrawal of Bank A, Bank B, Bank C, and Bank D. The control banks shall be sequenced in reverse order upon insertion.
 
===2.4 CONTROL===
BAI\IK INSERTION LII\{ITS (LCO 3.1.7)2.4.1 The control banls are fully withdrawn or shall be limited in physical insertion as shown in Figure l.2.4.2Each control bank shall be considered fully withdrawn from the core at greater than or equal to 225 steps.2.4.3 The control banks shall be operated in sequence by withdrawal of Bank A, Bank B, Bank C, and Bank D. The control banks shall be sequenced in reverse order upon insertion.
Unit2 WATTS BAR Cycle 2 Revision I Page 3 of 10 2.4.4Each control bank not fully withdrawn from the core shall be operated with the following overlap as a function of park position.Park Position (steps) Bank overlap (steps) Bank Difference (steps)225 226 227 228 229 na 23t 109 ll0 nl lt2 l3 t4 l5 t l6 I l6 ll6 ll6 l6 t6 t6 2.5 HEAT FLUX HOT CHANI\IEL FACTOR -Fq(Z) (tCO 3.2.1)Fq(Z) < [CFQ/ P]
Unit2 WATTS BAR Cycle 2 Revision I Page 3 of 10 2.4.4Each control bank not fully withdrawn from the core shall be operated with the following overlap as a function of park position.Park Position (steps) Bank overlap (steps) Bank Difference (steps)225 226 227 228 229 na 23t 109 ll0 nl lt2 l3 t4 l5 t l6 I l6 ll6 ll6 l6 t6 t6 2.5 HEAT FLUX HOT CHANI\IEL FACTOR -Fq(Z) (tCO 3.2.1)Fq(Z) < [CFQ/ P]
* K(Z) for P > 0.5 Fq(z) < [CFQ/ 0.5J
* K(Z) for P > 0.5 Fq(z) < [CFQ/ 0.5J
* K(Z) for P < 0.5 Where P - Thermal Power lRated rhermal Power Unit2 WATTS BAR 2.5.1 CFQ:2.50 2.5.2 K(Z) is provided in Figure 2.z.s.: ro*14 : Fo"(z)
* K(Z) for P < 0.5 Where P - Thermal Power lRated rhermal Power Unit2 WATTS BAR 2.5.1 CFQ:2.50 2.5.2 K(Z) is provided in Figure 2.z.s.: ro*14 : Fo"(z)
* W(Z)lp for p > 0.5 Fo*(Z): Fo"(Z)
* W(Z)lp for p > 0.5 Fo*(Z): Fo"(Z)
* W(2y0.5 for P < 0.5 where: w(Q values are provided in Table A.l. The table provides suflicient inforrnation to determine w(Z) versus core height for all cycle burnups.2.5.4Partpower W(Z) values are only required to be used when the part power surveillance is perfomred using the fixed incore detector system.Z.S.S f o*121Penalty Factor The fowlz; penalty factor is provided in Table A.2.Cycle 2 Revision I Page 4 of l0 2.6 NUCLEAR ENTHALPY RISE HOT CHAI\INEL FACTOR - F*N (tCO 3'.2)F**s F*** * ( I +PF + ( l-P))where P = Therrral Power/ Rated Thermal Power F*** = 1.65 forMA-2 fuel, and PF - 0.3 2.7 AXIAL FLTIXIIIFFERENCE - AFD (LCO 3.2"3)2.7 .l The AFD limits for Cycle 2 are provided in Figure 3.2.8 REFUELINGBORONCONCBNTRATION (LCO3.9.1) 2.8. t The refueling boron concentration shall be 2 2000 ppm.Unit 2 WATTS BAR Cycle 2 Revision I Page 5 of l0 250 225 200 175 150 L25 100 75 0.0 o.2 0.4 0.5 0.8 1.0 FRACTION OF RATED THERMAT POWER Figure I Control Bank Insertion Limits Versus Thermal power Four Loop Operation Fully withdrawn region shall be the condition where shutdown and control banks are at a position within the interval of >225 and<231steps withdrawn.
* W(2y0.5 for P < 0.5 where: w(Q values are provided in Table A.l. The table provides suflicient inforrnation to determine w(Z) versus core height for all cycle burnups.2.5.4Partpower W(Z) values are only required to be used when the part power surveillance is perfomred using the fixed incore detector system.Z.S.S f o*121Penalty Factor The fowlz; penalty factor is provided in Table A.2.Cycle 2 Revision I Page 4 of l0  
 
===2.6 NUCLEAR===
ENTHALPY RISE HOT CHAI\INEL FACTOR - F*N (tCO 3'.2)F**s F*** * ( I +PF + ( l-P))where P = Therrral Power/ Rated Thermal Power F*** = 1.65 forMA-2 fuel, and PF - 0.3 2.7 AXIAL FLTIXIIIFFERENCE - AFD (LCO 3.2"3)2.7 .l The AFD limits for Cycle 2 are provided in Figure 3.2.8 REFUELINGBORONCONCBNTRATION (LCO3.9.1) 2.8. t The refueling boron concentration shall be 2 2000 ppm.Unit 2 WATTS BAR Cycle 2 Revision I Page 5 of l0 250 225 200 175 150 L25 100 75 0.0 o.2 0.4 0.5 0.8 1.0 FRACTION OF RATED THERMAT POWER Figure I Control Bank Insertion Limits Versus Thermal power Four Loop Operation Fully withdrawn region shall be the condition where shutdown and control banks are at a position within the interval of >225 and<231steps withdrawn.
z 3 oc o I ts 3 Itt a.UJ F 9 2 o-F U;o a.o.UI F ln v z o o o G, Unit 2 WATTS BAR Cycle 2 Revision 1 (ALL POWERS, 225]l(o.tg7, 225',)(0.703, 225ll BANK B (0.0, 190)BANK C (0.0, 64)(0.227 , o)Page 6 of 10 L,2 1.1 0.9 0.8 0.4 0.3 0.2 0.1 Unit 2 WATTS BAR L o o.*c, ll.=, 0.6 o e (E tr t o.s o z 10 LL 12 Core Height (feet)Figure 2 K(Z) - Normalized Fq(Z) as a Function of Core Height Cycle 2 Revision I K(z)L.00(L.00()))LOre Hetgnt 0.000 6.000 L2.000 1.00 Page 7 of l0 124 110 100 90 80 40 30 20-50 40-30 -2A -10 0 10 20 30 40 50 Flux Difference (A l) %Figure 3 Axial Flux Difference Acceptable Operation Limits as a function of Rated Thermal Power (RAOC)b=o o- 70 6 E o Foo lC o#.$E, r.- 50 o be 10 Unit 2 WATTS BAR Cycle 2 Revision 1 b-l- r, 10 I\\Acceptable Operation I t racceptabNel-Operation I\-. Unaccepta, I Ooeratiol I\F-t\I\I\I I I\@Page 8 of l0 Unit 2 WATTS BAR Table A.l RAOC W(Z) Suryeillance Factors Cycle 2 Revision I Heieht (ft\Iax \\'(z Nlar \\:(z\Iax \\'(z llar \\r(z\[ar !1-(z\Iax \\'(z\Iar \\'(z\Iax \\'{z at 150 at 150 at 150 at 2000 at 6000 at 10000 at 14000 at 16000 NI\\'D,&IT['
z 3 oc o I ts 3 Itt a.UJ F 9 2 o-F U;o a.o.UI F ln v z o o o G, Unit 2 WATTS BAR Cycle 2 Revision 1 (ALL POWERS, 225]l(o.tg7, 225',)(0.703, 225ll BANK B (0.0, 190)BANK C (0.0, 64)(0.227 , o)Page 6 of 10 L,2 1.1 0.9 0.8 0.4 0.3 0.2 0.1 Unit 2 WATTS BAR L o o.*c, ll.=, 0.6 o e (E tr t o.s o z 10 LL 12 Core Height (feet)Figure 2 K(Z) - Normalized Fq(Z) as a Function of Core Height Cycle 2 Revision I K(z)L.00(L.00()))LOre Hetgnt 0.000 6.000 L2.000 1.00 Page 7 of l0 124 110 100 90 80 40 30 20-50 40-30 -2A -10 0 10 20 30 40 50 Flux Difference (A l) %Figure 3 Axial Flux Difference Acceptable Operation Limits as a function of Rated Thermal Power (RAOC)b=o o- 70 6 E o Foo lC o#.$E, r.- 50 o be 10 Unit 2 WATTS BAR Cycle 2 Revision 1 b-l- r, 10 I\\Acceptable Operation I t racceptabNel-Operation I\-. Unaccepta, I Ooeratiol I\F-t\I\I\I I I\@Page 8 of l0 Unit 2 WATTS BAR Table A.l RAOC W(Z) Suryeillance Factors Cycle 2 Revision I Heieht (ft\Iax \\'(z Nlar \\:(z\Iax \\'(z llar \\r(z\[ar !1-(z\Iax \\'(z\Iar \\'(z\Iax \\'{z at 150 at 150 at 150 at 2000 at 6000 at 10000 at 14000 at 16000 NI\\'D,&IT['
NI\\IDAITI.]
NI\\IDAITI.]

Revision as of 21:19, 17 October 2018

Watts Bar Nuclear Plant, Units 1 and 2 - Unit 1 Revision 1 of the Cycle 15 Core Operating Limits Report (Colr) and Unit 2 Revision 1 of the Cycle 2 Core Operating Limits Report (Colr)
ML18232A172
Person / Time
Site: Watts Bar  Tennessee Valley Authority icon.png
Issue date: 08/20/2018
From: Simmons P
Tennessee Valley Authority
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML18232A172 (24)


Text

TennesSeeValleyAuthority,PostofficeBox2000,Sprin August 20,2018 10 cFR 50.4 ATTN: Document Control Desk U. S. Nuclear Regulatory Commission Washington, D.C. 20555-0001

Subject:

Watts Bar Nuclear Plant, Units 1 and2 Facility Operating License Nos. NPF-90 and NPF-96 NRC Docket Nos. 50-390 and 50-391 UNIT 1 REVISION 1 OF THE CYCLE 15 CORE OPERATING LIMITS REPORT (COLR) and UNIT 2 REVISION I OF THE CYCLE 2 CORE OPERATING LTMTTS REPORT (COLR)Pursuant to Watts Bar Nuclear Plant Technical Specifications (Tech Spec) Section 5.9.5.d, Tennessee Valley Authority (TVA) has enclosed Revision 1 of the Unit 1 Cycle 15 COLR and Revision 1 of the Unit 2 Cycle 2 COLR. This revision added shutdown margin limits for Tech Spec 3.1.5, 3.1.6, and 3.1.7 per a NRC Commitment.

The analytical methods used to determine the core operating limits were previously reviewed and approved by the NRC.There are no regulatory commitments contained in this letter or the enclosure.

Should you have questions regarding this submittal, please contact Kim Hulvey at (423) 365-7720.Respectfully, Paul Simmons Site Vice President Watts Bar Nuclear Plant U.S. Regulatory Commission Page2 August 20,2018

Enclosures:

Watts Bar Nuclear Plant, Unit 1, Cycle 15 Core Operating Limits Report, Revision 1, January 2018 Watts Bar Nuclear Plant, Unit 2, Cycle 2 Core Operating Limits Report, Revision 1, January 2018 cc (Enclosure):

NRC Regional Administrator - Region ll NRR Project Manager NRC Senior Resident lnspector ENCLOSURE 1 Watts Bar Nuclear Plant, Unit 1, Cycle 15 Core Operating Limits Report Revision 1 January 2018 Unil I WATTS BAR OAR*cord 130 tEolt8 800 WATTg BAR I{UCLEAR PIANT, UNIT I. CYCTE 15 CORE OPERATIiIO LIMITS REPORT Rolslon 1 January 2m8 Clcle tS Rcvlsion I Unnc Veillled by: A. Rlbh6, nllln Fuol Engln*orlrrg gf-3r1lpcr]!!C conrrnnminr i isr eozao lL 171ltE 00lt^ Renrih*ra G! a-*rdr Pags I of l0 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Watts Bar Unit I Cycle 15 has been prepared in accordance with the requirements of the Technical specification (TS) 5.9.5.The Technical Specifications affected by this report are listed below: 3.1.4 Moderator Temperature Coefficient (MTC)3.1.5 Rod Group Alignment Limits 3.1.6 Shutdown Bank lnsertion Limits 3.1.7 Control Bank Insertion Limits 3.2.1 Heat Flux Hot Channel Factor (Fq(Z))3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (F**)3.2.3 Axial Flux Difference (AFD)3.9.1 BoronConcentration

2.0 OPERATING

LIMITS The cycle-specific parameter limits for the specifications listed in section 1.0 are presented in the following subsections.

These limits have been developed using the NRC approved methodologies specified in the Technical Specifications Section 5.9.5.The following abbreviations are used in this section: BOL Beginning of Cycte Life ARO All Rods Out HZP Hot Zero Thermal Power EOL End of Cycle Life RTP Rated Thermal Power Unit I WATTS BAR Cycle l5 Revision I Page 2 of l0

2.1 MODERATOR

TEMPERATURE COEFFICTENT - MTC (LCO 3.1.4)2. l.l The MTC limits are: The ARO/HZP - MTC shall be less positive than or equal to 0 Ak/lJ'F (upper limit).With the measured BOL/ARO/HZP - MTC more positive than -1.30 x lo-s Ak/ldoF (as-measured MTC limiO, establish control rod withdrawal limits to ensure the MTC remains less positive than or equal to 0 Ak/ld"F (upper limit) for all times in core life.The EOL/AROiRTP - MTC shall be less negative than or equal to 4.5 x lOa Aldk/.F (lower limit).2.1.2 The 300 ppm surveillance limit is: The measured 300 ppm /ARO/RTP-MTC should be less negative than or equal to-3.75 x l0-4 ak/ld"F.2.1.3 The 60 ppm surveillance limit is: The measured 60 ppm /ARO/RTP-MTC should be less negative than or equal to 4.2g x 104 al/ld.F.2.2 SHUTDOWN MARGIN - SDM (LCO 3.1.5,3.1.6,3.1.7) 2.2.1 For TS 3.1.5, SDM shall be Z 1.6% Aklk in MODE I and MODE 2" 2.2.2 For TS 3.1.6, SDM shall be 2 1.6% Aklk in MODE I and MODE 2.2.2.3 For TS 3 .L .7 , SDM shall be > I .6% Al/k in MODE I and MODE 2 with h*r > 1,0.2.3 SHUTDOWIY BAIYK IIYSERTION LIMITS (LCO 3.1.6)2 .3 . I The shutdown banks shall be withdrawn to a position greater than or equal to 225 steps withdrawn.

2.4 CONTROL

BAIIK TNSERTTON LTMTTS (LCO 3.1.7)2.4.1 The control banks are fully withdrawn or shall be limited in physical insertion as shown in Figure l.2.4.2 Each control bank shall be considered frrlly withdrawn from the core at greater than or equal to 225 steps.2.4.3 The control banks shall be operated in sequence by withdrawal of Bank A, Bank B, Bank C, and Bank D. The control banks shall be sequenced in reverse order upon insertion.

Unit I WATTS BAR Cycle l5 Revision I Page 3 of l0 2.4.4Eachcontrol bank not fully withdrawn from the core shall be operated with the following overlap as a function of park position.Park Position (steps) Bank overlap (steps) Bank Difference (steps)225 109 116 226 ll0 lt6 227 ill il6 228 rr2 116 229 ll3 116 230 l 14 n6 23t lt5 116 2.5 HEAT FLUX HOT CHANNEL FACTOR- Fq(Z) (LCO 3.2.1)Fq(Z) < [CFQ I Pl* K(Z) for P > 0.5 Fq(Z)< ICFQ l0.s]

  • K(Z) forP<0.5 Unit I WATTS BAR Where P = Thermal Power / Rated Thermal Power 2.5.1 CFQ =2.50 2.5.2 K(Z) is provided in Figure 2.z.ss rr*127= Fo'(Z)
  • w(z)tP for P > 0.5 Fq*(Z) = Fq"(Z)
  • W(2y0.5 for P < 0.5 where: w(Z) values are provided in Table A.l. The table provides suffrcient information to determine w(Z) versus core height for all cycle burnups.2.5.4Part power W(Z) values are only required to be used when the part power surveillance is performed using the moveable incore detector system.2.5.5 Faw(Z) Penalty Factor the FqwlZ; penalty factor is provided in Table A.2.Cycle 15 Revision I Page 4 of l0

2.6 NUCLEAR

ENTIIALPY RISE HOT CHANI\EL F'ACTOR - F'&{N (LCO 3.2,2)F** S F*** * ( I + pF * ( l-p))where P = Thermal Power / Rated Thermal power For* : 1.65 forRFA-2 fuel, and PF = 0.3 2.7 AXrAL FLIX DTFFERENCE - AFD (LCO 3.2.3)2.7.1 The AFD limits for Cycle 15 are provided in Figure 3.2.8 REFUELTNG BORON CONCENTRATTON (LCO 3.e.1)2.8.1 The refueling boron concentration shall be > 2000 ppm.3.0 NUMBER OF TPBARS rN REACTOR CORE (TS 4.2.1)3.0.1 There are I 104 tritium producing burnable absorber rods (TPBARs) in the reactor core for Cycle 15.Unit I WATTS BAR Cycle 15 Revision I Page 5 of l0 250 225 200 t75 150 L25 100 75 o,4 0.6 FRACTION OF RATED THERMAL POWER Figure I Control Bank Insertion Limits Versus Thermal power Four Loop Operation Note: Fully withdrawn region shall be the condition where shutdown and control banks are at a position within the interval of >_225 and323l steps withdrawn.

z 3&, a-I E=ln o, UI F 9 z o-F a o A E UJ F ttl Y z o o o G, Unit I WATTS BAR Cycle l5 Revision I (ALL POWERS, 2251 (a.Lg7, 225l, (0.703, 225l, BANK B (0.0, 190)BANK C (0.0, 64l, (0.227, 0)Page 6 of l0 t-(1)=o o_*o LL'r()o.N (u E L o z.1.2 1.1 1.0 0.9 0.8 o.7 0.6 0.5 o,4 0.3 o-2 0.1 o o 468 Core Height (feet)10 12 Cycle 15 Revision I Unit I WATTS BAR Figure 2 K(Z) - Normalizetl Fq(Z) as a Function of Core Height-, E-L--- r i co..Heioht K(7\I o ooo 1.ooo-1 6.000 1.000 i i 12.000 0.92s6 i Page 7 of l0 120 110 100 90 80 70 60 50 40 30 20 10 0 Unit I WATTS BAR o=o o-(tr E lb o F E o (I, E l{-o s-50 40-30-20-10 0 10 Flux Difference (A l) %20 30 40 50 Cycle l5 Revision 1 Figure 3 Axial Flux Difference Acceptable Operation Limits as a function of Rated Thermal Power (RAOC)(-12, 1 00)(7, 10 0)Acceptable Operation Unaccepta Operatio tacceptal Coeratior I\r-l\I\I\I I I\ter Page 8 of l0 Unit I WATTS BAR Table A.l RAOC W(Z) Surveillance Factors Cycle l5 Revision I Height ( ft)IIax \\'(z)at 150}I\ITDAITT' (30%Porver)\Iax \\'(z)at 150\I\\'DAITIT (7s%Porver)\Iar \\I(z)at 150\I\\'DAITTT (1009'0 Polver)\Ias \Y(z)at 2000\,I\\'DI}TTI.I (lo0%Polyer')Nlax \\'(z)at 4000}T\\DAITT" (r00%Power)Ilax 11I(z)at 8000 NI\\lDAITT' (100%Power)NIax \Y(z)at 12000 NI\\'Dr\ITLr (100%Power)Ilax \1'(z)at 16000}t\\.DAITTT (100%Pow,er)\Iax \\I(z)at 18000 Nt\\.DI}TTTI (r00%Pon'er)07.1 t.i)000 I 0000 1.0000 1.0000 1.0000 1 0000 L0000 1 0000 I 0000 I 8713 I 000r)1.0.000 L0000 I 0000 1.0000 I 00{)0 I.0000 1.0000 I 0t)00 1 6720 I 0000 I 00r)0 I 0000 1.0000 1 000t)t 000r)1.0000 1.0000 I "0000 L-1r08 L0000 1.0000 I 0000 t 0000 L000(l 1.0000 1.0()0r)1.0000 I.0000 1.169 I 0000 1.0000 i 0000 1 0000 1 0000 I 0000 I t)000 1 0000 1 0000 1.068-1 1.0000 r 0000 1.0000 1.0000 1.000t)i 0000 I 0000 I 0000 1 0000 0 8671 1.3719 I 356.1 1.2i6 t.l5-t 1 I 2t86 t.1040 I 924 I 75-l I 7-r6 0 66-i8 l -1(106 t 33.tl I2t-14 I 2;i.99 l.l l7q LlOl _1 i 917 I 7t4 65.1 0.+646 I -l-[7 115 I 2081 l 2417 l.l t4f)96t I 877 I 708 t 98 0.16-l-1 l.-1201 r ?9-t5 l 2tl07 1237.x 1 1094 891 I I l_l I 619 5.17 fi 06l t t.30ll t l69q 94-1 l .l_1 17 I 10_16 I.S l6 I 11 I 561 48_1 e 8608 l.l87e 1 l-169 I 9ll I .21-l7 I 9,s?10 I 705 I 517 I 47-l 9.6-i9(r t.l7 I 7 I 9l l :180 I 876 I 6.{I 6l I 509 58 e.-158-l 5 I l9r t I 89-5 l.l I CrS I s67 I 6 I-5-s6 I 590 I fi60 9 l57l t 116l I 1777 I 9-l t tIle I 87Cr I 6,59 I 57i I 6,17 I I 9.055e I.t 186 I I 667 I 970 I t08l I B7 I 6-5-t I 585 I 66.1 I 785 8 85.ltr I . 19.t7 I I _s37 I 960 I 1998 I 846 I 659 I 59r I j17 I 8_r0 8.651"1 r.17t.1 I i43e I 95.+I le-16 t 8l-l i 704 I 644 I 8lr I 881 8,45t1 1.1579 L 1.136 1 2020 I . l9.q_l 878 I 771 I 74e I 949 I 205 8 :509 t.141_l i . 1.151 1.2083 1.202-s 89.q I 810 I 868 I 208 I 2207 8.0-197 I r17 t I l4-\0 L2 r 2-5 l :041 8e8 I 8+l I 9fr9 I tt04 l.l-l-1 7.8484 L 1095 I 14.15 I lt4e 1 2046 I 871 857 1.1046 t 2297 1.24,16 7,6+72 1.0916 I . l'1-ll I 1-s3 I 20-rl I 8.r8 850 l.: 102 l.ti66 1.2514 7.-+459 1.0795 l t4ll I .2138 1.1001 I 866 815 t.: I_15 l.l4 t0 1 1565 7.14-17 1.0666 I i -t8-s I 106 I 9-s-l I 869 I 776 I II47 l.t4l0 i.2591 7 043 1.0561 I lll9 L20-52 I 894 I 84e I 756 I 137 I 42fi 1,259 r 6 8411 I.0-t97 I I lt)r{1.2009 I 848 I 817 I 751 I 2108 I.tt99 1.2567 6.6-+ l0 l.ru7l L l-105 I 99t)I 817 I 77 I 7tl r t06_3 l 2r5l l.2,sl0 6 "1i97 L0.1-+4 L llS I 949 166 I 7ll I 691 1.2003 l.lle0 l.?4,s6 61,18 L0"l]]L 1t58 I 89,3 l.696 (}+l I 6.10 9t5 1 2207 l.l37l 6.0173 1.0_196 l l]19 I 816 6l-t I 587 I 8I I 83 I 2105 I 2164 8-160 I 0388 l. I 190 I 74tl 578 1-1 I_il9 I 7t8 982 L21-17 6.1"18 1 0400 II 75 t.684 I 520 1.-t66 I Jt9-t I 601 846 I 99 5 .$t-5 I,0417 I I l6l I 6-13 I 4?4 I 431 I 469 I 5_3.1 719 847 5 trls 1.045_l t ll-58 I-59-5 I 446.ll8 4.19 I 515 I 6t9 749 5.t)-t l0 L0-s07 I l7l I 56.{I 4,r I I r11+_1 ', 4-56 I 5t0 I 612 72{)-1 8198 I "057_1 I I t89 515 I 418 I.115 476 I 504 I 610 I 71-t 4 6186 1.06-j8 l ttge I 50t)I 399 I.l3l I.+8 I 500 I 594 I 688 4".t]73 I.070: I Il0-l I-15e I 37-1 I+10 I-189 I 488 I 7l I 6_s4 4:t6l t.0766 I I t99 I 4ll ,14 I 40-1 I 48 t.470 I-54.1 I 6ll 4.01.t8 t.0818 Lll93 I-j60 I-106 I l8-l I 481 I"159 I 5ll I-5(r3 8ll6 l.t)88tr l. I I77 I.l0t)168 I 154 I 468 I 461 I 468 I 504-1 62t,l 1.0951 tl 70 I 247 I?7 ils I 461 I 507 4_17 I 4-56 l4llt t 1060 I l20i I 2-l,l 184_i4!)I 496 I 56.r I 449 I 448 l lt9e LIl9l I l2-58 I 241 te3 38-5 I 550 I 620 469 I 454 1.0186 L l3e5 I tiE I 12l I t8l l.,+75 I 6-17 I 685 521 I 504 8174 l. I69e t. I 5e9 I 497 I-lfr9 I 6-11 I 795 I 802 I 65_l 6_16 2,616t LtOr 7 1. 1 836 l.683 I 669 I 85-l I .t0l l I!)71 I 8.1-l t 828 1.il.19 l.t-l4l t 2067 t 870 I 873 I t060 I 2220 I 2128 L202-l L2008 l lI-17 I.:67-s 1.2-108 L2057 t 207'v 1.226{1.2.l]4 I .1281 I Ile8 LI t84 I0ll4 l.l02l 1.2547 1.224t)t.2271 I 146l l.t6t2 I.:427 I 2367 I.2-l-54 t,8l t I " jj79 1.2781 t,2-+17 I 1469 l l6+e t.ts09 1.256-l l.t-518 l 2-5l6 I 6099 I_174 I 100.1 1 1.58 I 650 I "281-1 Ll98 l t t6e2 L?677 1.1666 L.t08r l.4l t0 I.3110 t.27?6 I 1808 I 2e74 1 3130 I 816 I 2805 I.2795 1.1075 1.446(r i.-3-18-j I 18-1,1 1 2913 I 087 l.-i239 I.2904 I 894 1.288s I 00Cr 1.0000 1.0000 1 000t1 l.000rl I 0000 l.t)000 l,0000 I 00fx)L0000 0.8050 Lt1000 l.00fi0 1.0000 I 000n L0000 1.0000 r.0000 t 0000 L0000 0.(r0i7 1.0000 1.0(J00 1.0000 1 0000 1.0000 1.0000 r.0000 I 0000 1.0000 0 4015 i "0000 1.0000 l.00fit)I 0000 I 0000 1.0000 I.0000 t.0000 L0000 0.20r 1 I.0000 L00t)0 1.0000 1.0000 1 0000 L0000 r.0000 1.0000 t.0000 0.0000 I t)000 l.0rl00 I 0000 I 0000 I 0000 I.0000 1.0000 1 0000 L0000 Page 9 of 10 Table A.2 Fq*(Z) Penalty Factor Core Burnup MVyD/IUTU)

Fq*(z)Penalty Factor All Burnups I,0200 Note: l. The Penalty Factor, which is applied to Fq*(4 for compliance with Surveillance Requirement 3.2.1.2, is the maximum factor by which Fo*(Z) is expected to incr@se per 3l Effective Full Power Days (EFPD) starting from the burnup at which the fqwlZ; was determined.

Unit I WATTS BAR Cycle 15 Revision I Page l0 of l0 ENCLOSURE 2 Watts Bar Nuclear Plant, Un,t2, Cycle 2 Gore Operating Limits Report Revision 1 January 201 8 QA Rscord ul8 190t 18 801 WATTS BAR NUCLEAR PI.AiIT, UNIT 2, CYCLE 2 CORE OPERATING LIiIITS REPORT RwEhn I Jentnry 2018 Gz/z'/g Unlt 2 WATTSBAR Cycle 2 Revisim I W. AndrauwhfrE Rihhle, nlrR Fuat Englncerlng Added st and 3,1.7 per NRC Cornmllrnent f lglg0rcal PagB I of lo I.O CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Watts Bar Unit 2 Cycle 2 has been prepared in accordance with the requirements of the Technical Specification (TS) 5.9.5.The Technical Specifications affected by this report are listed below: 3.1.4 Moderator Temperature Coefficient (MTC)3.1.5 Rod Group Alignment Limits 3.1.6 Shutdown Bank Insertion Limits 3.1.7 Control Bank Insertion Limits 3.2.1 Heat Flux Hot Channel Factor (Fq(Z))3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (F**)3.2.3 Axial Flux Difference (AFD)3.9.1 BoronConcentration

2.0 OPERATING

LIMITS The cycle-specific parameter limits for the specifications listed in section 1.0 are presented in the following subsections.

These limits have been developed using the NRC approved methodologies specified in the Technical Specifications Section 5.9.5.The following abbreviations are used in this section: BOL Beginning of Cycle Life ARO All Rods Out HZP Hot Zero Thermal Power EOL End of Cycle Life RTP Rated Thermal Power Unit 2 WATTS BAR Cycle 2 Revision I Page 2 of l0

2.1 MODERATOR

TEMPERATURE COEFFTCTENT - MTC (LCO 3.1.4)2.1.1 The MTC limits are: The ARO/HZP - MTC shall be less positive than or equal to 0 Ak/l/oF (upper limit).With the measured BOL/ARO/HZP - MTC more positive than -2.25 x l0-s Ak&/oF (as-measured MTC limit), establish control rod withdrawal limits to ensure the MTC remains less positive than or equal to 0 Ak/ld"F (upper limit) for all times in core life.The EOL/ARO/RTP - MTC shall be less negative than or equal to 4.50 x 104 Ak/ldoF (lower limit).2.1.2 The 300 ppm surveillance limit is: The measur.ed 300 ppm /ARO/RTP-MTC should be less negative than or equal to-3.65 x 104 Ak/ldoF.2.1.3 The 60 ppm surveillance limit is: The measured 60 ppm /ARO/RTP-MTC should be less negative than or equal to-4.1g x 104 ak/v"F.2.2 SHUTDOWN MARGIN - SDM (LCO 3.1.5,3.1.6, 3.1.7)2.2.1 For TS 3.1.5, SDM shall be Z 1.6% Ak&in MODE I and MODE 2.2.2.2 For TS 3.1.6, SDM shall be 2 1.6% Ak&in MODE I and MODE 2.2.2.3 For TS 3.1.7, SDM shall be 2 1.6% Ak&inMODE I andMODE2withhr>

1.0.2.3 SHUTDOWN BAI\TKINSERTION LIMITS (LCO 3.1.6)2.3.1 The shutdown banks shall be withdrawn to a position greater than or equal to 225 steps withdrawn.

2.4 CONTROL

BAI\IK INSERTION LII\{ITS (LCO 3.1.7)2.4.1 The control banls are fully withdrawn or shall be limited in physical insertion as shown in Figure l.2.4.2Each control bank shall be considered fully withdrawn from the core at greater than or equal to 225 steps.2.4.3 The control banks shall be operated in sequence by withdrawal of Bank A, Bank B, Bank C, and Bank D. The control banks shall be sequenced in reverse order upon insertion.

Unit2 WATTS BAR Cycle 2 Revision I Page 3 of 10 2.4.4Each control bank not fully withdrawn from the core shall be operated with the following overlap as a function of park position.Park Position (steps) Bank overlap (steps) Bank Difference (steps)225 226 227 228 229 na 23t 109 ll0 nl lt2 l3 t4 l5 t l6 I l6 ll6 ll6 l6 t6 t6 2.5 HEAT FLUX HOT CHANI\IEL FACTOR -Fq(Z) (tCO 3.2.1)Fq(Z) < [CFQ/ P]

  • K(Z) for P > 0.5 Fq(z) < [CFQ/ 0.5J
  • K(Z) for P < 0.5 Where P - Thermal Power lRated rhermal Power Unit2 WATTS BAR 2.5.1 CFQ:2.50 2.5.2 K(Z) is provided in Figure 2.z.s.: ro*14 : Fo"(z)
  • W(Z)lp for p > 0.5 Fo*(Z): Fo"(Z)
  • W(2y0.5 for P < 0.5 where: w(Q values are provided in Table A.l. The table provides suflicient inforrnation to determine w(Z) versus core height for all cycle burnups.2.5.4Partpower W(Z) values are only required to be used when the part power surveillance is perfomred using the fixed incore detector system.Z.S.S f o*121Penalty Factor The fowlz; penalty factor is provided in Table A.2.Cycle 2 Revision I Page 4 of l0

2.6 NUCLEAR

ENTHALPY RISE HOT CHAI\INEL FACTOR - F*N (tCO 3'.2)F**s F*** * ( I +PF + ( l-P))where P = Therrral Power/ Rated Thermal Power F*** = 1.65 forMA-2 fuel, and PF - 0.3 2.7 AXIAL FLTIXIIIFFERENCE - AFD (LCO 3.2"3)2.7 .l The AFD limits for Cycle 2 are provided in Figure 3.2.8 REFUELINGBORONCONCBNTRATION (LCO3.9.1) 2.8. t The refueling boron concentration shall be 2 2000 ppm.Unit 2 WATTS BAR Cycle 2 Revision I Page 5 of l0 250 225 200 175 150 L25 100 75 0.0 o.2 0.4 0.5 0.8 1.0 FRACTION OF RATED THERMAT POWER Figure I Control Bank Insertion Limits Versus Thermal power Four Loop Operation Fully withdrawn region shall be the condition where shutdown and control banks are at a position within the interval of >225 and<231steps withdrawn.

z 3 oc o I ts 3 Itt a.UJ F 9 2 o-F U;o a.o.UI F ln v z o o o G, Unit 2 WATTS BAR Cycle 2 Revision 1 (ALL POWERS, 225]l(o.tg7, 225',)(0.703, 225ll BANK B (0.0, 190)BANK C (0.0, 64)(0.227 , o)Page 6 of 10 L,2 1.1 0.9 0.8 0.4 0.3 0.2 0.1 Unit 2 WATTS BAR L o o.*c, ll.=, 0.6 o e (E tr t o.s o z 10 LL 12 Core Height (feet)Figure 2 K(Z) - Normalized Fq(Z) as a Function of Core Height Cycle 2 Revision I K(z)L.00(L.00()))LOre Hetgnt 0.000 6.000 L2.000 1.00 Page 7 of l0 124 110 100 90 80 40 30 20-50 40-30 -2A -10 0 10 20 30 40 50 Flux Difference (A l) %Figure 3 Axial Flux Difference Acceptable Operation Limits as a function of Rated Thermal Power (RAOC)b=o o- 70 6 E o Foo lC o#.$E, r.- 50 o be 10 Unit 2 WATTS BAR Cycle 2 Revision 1 b-l- r, 10 I\\Acceptable Operation I t racceptabNel-Operation I\-. Unaccepta, I Ooeratiol I\F-t\I\I\I I I\@Page 8 of l0 Unit 2 WATTS BAR Table A.l RAOC W(Z) Suryeillance Factors Cycle 2 Revision I Heieht (ft\Iax \\'(z Nlar \\:(z\Iax \\'(z llar \\r(z\[ar !1-(z\Iax \\'(z\Iar \\'(z\Iax \\'{z at 150 at 150 at 150 at 2000 at 6000 at 10000 at 14000 at 16000 NI\\'D,&IT['

NI\\IDAITI.]

NI\\'D/NITII

\T\VD/},TTT:

\I\\'D/}tTI.'

}T\I'DAITTI NI\\'DA[TTT II\YD^mrr (30o/o Pon'er (75o/o Power)(I00% Porver)(100% Poryer)fiD0oh Power)(l00o/o Power)(100% Pou'er)(100% Pon'er)12.0720 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 11.8708 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 11.6696 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 11.468{1.0000 r.0000 1.0000 1.0000 1.0000 1.000t)1.0000 1.0000 tL.2672 1.0000 1,0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 r1.0660 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10.8648 1.4084 1.4571 1.3286 1.3235 1.3275 1.1820 1.1574 l.r53l 10.66J6 1.3886 1.4287 l.t22l l.Jl85 1.3127 1.t77i 1.1526 1.1487 10.4624 1.3626 1.J906 1.J150 1.3166 1.2897 1.17r8 1.1469 1.r435 10.2612 t.3419 1.3633 1.3060 t.Jl l4 1.2662 1.165r 1.1,105 1.1378 10.0600 r.3171 1.3310 r.2952 1.3032 1.2594 1.1574 1.13t2 r.1363 9.8588 1.2934 1,3014 1.2819 I.2941 1.2318 1.1495 1.1255 1.r340 9.6576 1.2771 r.2876 1.2822 1.284-l 1.22J0 t.t1t7 t.l17J l.l31l 9.4564 1.2529 1.26J6 t.2716 t.2128 t.2229 1.1387 1.1180 t.1292 9.2552 r.2254 1.2J44 1.2653 1.25e9 l.22ll 1.1456 r.126{1.1386 9.05{0 1.2019 1.2085 1.2586 1.2507 1.2188 r.r508 1.1370 l.l,165 8.8S28 1.1866 r.21JJ 1.2640 1.2580 1.2t26 1.1532 1.1444 l. I 529 8.6516 1.1766 t.2t7t 1.2719 1.2614 1.2lJl 1.r557 1.t584 1.1655 8.4504 1.r639 1.2139 1.2763 1.2628 t.2261 l.t62r r.1803 1.r847 8.2492 1.1554 1.1989 1.2784 1.2662 r.2317 1.r704 1.1991 r.2052 8.0480 1.1440 1.2r13 1.2858 1.2751 1.2461 1.r778 1.2156 1.2244 7.8468 1.1366 1.2222 1.2939 1.2809 1.2525 1.1881 t.22e7 1.24t0 7.6456 1.1296 1.2185 1.2967 1.2824 1.2547 1.1955 1.2,105 1.2542 7.4444 1.1238 t.2126 1.2968 l.28lJ 1.2548 1.2012 1.2494 1.2654 7.2432 1.1152 L2474 1.2936 1.2771)1.2517 1.2042 1.2549 1.2729 7.0420 1.1046 1.205s 1.2883 1.2706 1.2465 1.2053 1.2577 1.2775 6.8408 1.095J 1.1977 1.2801 1.2616 t.2392 1.204J 1.2581 1.2794 6.6396 1.0883 1.1873 t-2687 1.2500 1.2298 1.2015 1.2561 r.2785 6.4t84 l.08,lJ l. I 782 1.256r 1.2i70 1.2189 1.1976 1.2523 1.2760 6.2372 1.0678 1.1667 r.2420 1.2227 r.2065 1.1922 1.2464 1.2709 6.0J60 1.0577 l.l5.l3 1.2259 1.2066 1.1924 1.1851 1.238J 1.263.1 5.8J48 1.0505 1.1407 1.207s 1.1885 1.1768 1.1765 r.2280 1.2535 5.6J36 1.0458 1.1274 1.1880 1.1695 1.1602 1.1667 1.2157 1.2414 5.4J24 1.0318 1.1132 r.1695 1.1537 r.1485 1.1599 1.2051 1.2294 5.2312 1.0266 1.1062 1.1585 t.1462 l.l4rJ 1.1591 1.2067 r.2304 5.0300 1.0316 1.1052 1.1528 1.1403 1.1J82 1.1599 1.2081 1.2J0r 4.8288 1.0351 1.1029 1.r455 l.1JJ4 1.1372 1.16J6 1.2083 r.2281 4.6216 1.0375 1.1001 1.1376 1.1251 1.135,1 1.1660 1.2079 1.224,1 4.4264 1.0J9I 1.0962 r.1288 1.1173 l.lt29 1.1677 1.206.1 l.2l8e 4.2252 1.0397 1.0907 1.1I90 1.1081 1.1297 1.1684 r.2035 1.2t27 4.0240 1.0455 1.0861 r.1084 1.0982 1.1257 1.1683 1.1993 1.2060 3.8228 1.0506 1.081r 1.0973 1.0875 1.1210 t.1674 1.1936 1.1975 3.62r6 1.0439 1.4727 1.0860 1.0789 t.ll59 l.l65l 1.1862 1.1870 3.4204 r.0456 r.0669 1.0758 1.0775 r.1109 l.r682 1.1844 1.1797 3.2192 1.0556 1.066r t.069E 1.0174 l.lllr 1.r71{l.r85l r.r760 3.0180 1.0666 1.0694 1.0685 1.079e 1.1150 1.1777 1.t882 1.r773 2.8168 1.0865 1.0820 1.0766 1.0958 t.1296 1.1880 1.2031 1.1943 2.6156 l.ll58 r.1038 1.0937 1.1178 1.1542 1.203s 1.2225 1.2124 2.4144 1.1444 1.1246 l.l0e7 1.1J87 1.t777 t.2252 1.2405 r.230J 2.2132 1.1803 t.t476 Ll26t 1.1604 r.2020 1.2484 1.2586 r.2.t82 2.0120 1.2165 1.r715 l.r12e 1.1824 1.2265 1.27fi 1.27s8 1.2652 1.8r08 1.2460 1.r940 1.r596 1.2043 1.2505 1.2927 1.29t9 1.2811 1.6096 1.2780 t.2149 1.175?t.224e 1.2732 1.3130 1.3072 1.2962 1.4084 1.3122 1.2J44 1.1897 1.2439 1.2941 1.JJr8 1.3219 1.3108 1.2072 l.J4Jl 1.2528 r.20J0 1.261.1 1.J1J2 r.J488 1.3355 1.J246 1.0060 1.0000 1.0000 1.0000 r.0000 1.0000 1.0000 1.0000 1.0000 0.8048 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6036 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.4024 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 r.0000 r.0000 0.2012 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 r.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Page 9 of 10 Table A.2 Fq*(Z) Penalty Factor Burnup (MWD/I\,ITU)

Penalty Factor 150 t.0237 300 1.0244 45t 1.0250 60 I t.0254 751 t.0253 902 t.0248 I 052 l.an7 1203 t.0221 I 353 1.0201 I 503 1.0200 Lt7 t5 1.0200 11863 1.0203 t20t2 t.0206 t2160 I .0210 I 2308 1.0209 12456 1.0205 t2605 I .0201 12753 1.0200 Note: 1. The Penalty Factor, which is applied to fow1zl for compliance with Surveillance Requirement 3.2.1.2, is the maximum factor by which Fq*(Z) is expected to increase per 3l Effective Full power Days (EFPD) starting from the bumup at which the rowlz; was determined.

Unit 2 WATTS BAR Cycle 2 Revision I Page l0 of 10