ML20217K248

From kanterella
Jump to navigation Jump to search
Non-proprietary Callaway Unit 1 Heatup & Cooldown Limit Curves for Normal Operation
ML20217K248
Person / Time
Site: Callaway Ameren icon.png
Issue date: 07/31/1997
From: Christopher Boyd, Howell D, Laubham T
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20217K233 List:
References
WCAP-14894, NUDOCS 9710240086
Download: ML20217K248 (24)


Text

'

h n.*yTj 9 Qb MM ' ', it , aa Jw;.p NM1., e#d'?q hfY v A{iO'*,y,a y-@an$"W )Q J.8% $g.>,nff '%W %;1 > t; ?

ip,f 4S

'.Q,j'D&y!,RW..

b I t MMNyM ein,~.s/,a{i}1,

,rW. aW+h.tQAh$

n M e

d.6'

_. r,

~s!.vn[g3 Y

w;'e p !,.M;

' t i, .

A M*

a'yO. $, V.,k&,

\$%.

f:a. .)h' t

, .'t.&,t$hiN, i ,

<.g%gWo*J!Testingho,m)e:

etary CNon Propn;:aty ,lm M < n . lr.' T. c p:/ p h.N s

. .4 nk.fy n.,.Mi,y " si . ~s.W , ,h.e .

q to -

3- .

m. '. A. .Y y ,, 6

%. ,M@ui . M,.. p, y ' .\ .e:}c>.&m.,.. , ..p 1 3. . + y;y. r,,9,, .. ),;

s

,?, sty ,t ;

J'Ny(WQ...,

  • 2 n* 9 :' y .

h! s,n. D, w$. $ ,{

n<r, t,

'th,' .b.I b;*

k W y W[e I. d b M h-h '3 '

3, 4

' +k [.M 3+t+hh # M,. ,-

khh,m;c.h+4+,M.

ha

.% %v o.

s ww t b . y, .f~. p.3~-,; a:. c u.

.a 7,3

.hM

,. c .

+ & k.rt,1y%

a + .

Y. h 9.n%g%.,..L,:w .

ce

%  %,e r%a%

w ~A'%~ 'i' o

, %( e.

ge: J ..asM. - W, .:.berP ,,

W p,q,f,a,#n,v.n%m.Me6,nvvg[RU N ITe1 4 .< C;.. u W @ycG;ALWAW<A wy: pt v.m'n sw.

.n w n m R.w:

u py g-n p

WW,. p,H EA< TUPi w.a 4MND  ;. i,amo wyn E

&W  %

.:,W< v 'Qy %1&f 9.,; F y-

$.WRGEOEDOWN  % kw wwwwqm &LIMIT. 'M pen w.A % w@E F

  1. n

& #$GURVES e%!abe#muh m o n a w? FaMM O, R N @ m WW q

@exkm%

PS NORM;AIMORERATION% m%yIl.n 6 % QER W

[U. n. $7 h,.v%..?m?..$@i,M69%:64.j'M,$%@kWX% ,

- k. m i YM., et 7.h N ,

h yl%9N,$s.%. !f.M.M /

%f;$/ hkhhN[' C.U.~k. yi/*\

b,%,1[.3hhhb h

.M/ S / C 3h. a/* f!M{l f h , h k j h '

k I 1

\ VM9M,M$),4Wwm.x.%QQ.QtWym.W:'6MM $Q, h[g%'%..

g&./,e c w,'* M O;b w:qp hif.+.e.~,A gi, v

y m' IAm n 1 -

i. . ~J AyQ..

v* n* .' g .cfo'

. w . w+r"

.s z.*a .w M L.*,a. N

  • s ,;; 'ei; M_',*w.ed .a k ; i J .4s,, ; < ;

_,P.9 '. . -

<a1. .a.;{, $,f-j. ,.. . .w. ', m. , . y' y

. .. ci ..,.i n- . .

a.#A,A

,*,C g.c. ,g ! . J ..( b.

g[,._ %. #.

g% .

q>

,f* c. t . p. " i, 1 , ., . .

e , ,g 3;gp$s p .g' 7 'w .w. . , . 4' ' f c.

q +.,f ,. + g., p 6 t.; _

, . n q,s n %*t.

gtyyq.p g y' 6 s d ,s w _ .s ,,

' S@4 Miy&')GM7.c. d9 g . 4.ty':"

N h.w,h'hhk er a w , %s[. .v,aAqc;h v..v.,1 , .1 f)9.yq'l..J, N . d .~.;h,: !kw,h p

v p#o%w.m,c.q/:m;mW.t.

Qg~ n:p c3g hhks'. .y y w ,ym, r'm.+. ~. w ,,- .m

.. - , , dl&, <y 4 . -

. %.k.

byg ,

N

.}.,. y' [s. R, f 'M. % Q 4 y.

e .e s w[tc@4' M.. ~

4,ta, 7 G iDn g,h o,.u s e,. E,c n e.r g , S y%yk;p.s.

e s t e mg..

16 M P i ~ , *f A P'/T )1 oJ N * '6 '

y x .

W vW:n .

.W7 M@b i

,y w ni:7.,4, W;f;t y -

(a,cj. g?

. n s Q w. ..x . .,g 7 , ' ' ..

r

.s %wY:e

%,y m, A. , ,'. x x '* ..

y y n q ,

r ., t .

3 s . .;*'

} I ". Y[, * ','% 4 k [t* . (( . "i(

  • N * *4 E., v.,', ... .a g

',,' k'eS[%s.. '

, g e, ,

s

'1( ' 4 (n qi . /'1O1' ~ ' r'h,

  • 9 'I

-p i

~

b 'eic T' '. ,

I m .& , x x w b.  :

M g ' ^ ,s t

~

, Ola; _

i i **

, s

,% 4 'g.

f

,4 , '; . *p) , . ,h .

i t

(' N *N . .'- ( -

d.,[.?,/,.}.'i.'.. h '.tfh .

.w

. ,[ggg., , . .

s i l . 9  !

. , . ;p l

), ,

.. . u.c.

A

_ g\l q'g l *_Ty';l4 l

,fl[ ft, ,

'r i ,' ,

,)

-[* ;f [

... .. . , . ' .  ; e .

, v ~.

. y ' . 9, o,9 {.. w-s ,

y ;x 4 < s.

. . y. e; r .:1 -

. v weiw 1ama t:v . .- v. yo, .:

.\. - > . fq r .

e '

f' '/ _

Q' .'; } ',, , .l*@  ?.

< .u s =.

. s-

u

.k '%i

,s c, q

k, .+

s .. - . ;fs v. .p;

. ~. ,

- ' ' ;. '"9,

, , . c' ff ,

-' ' C.;7. . ; .'( a. ,, .

w 3 . a7' 8 n:p ' g^fgg: ..-

i

.. . . +.- . .

y.4.. f.

4. g

.* . , u .

N. *f $ ) __

hh1k

\..

D M /A N /' N ._ ,

- . , .. s . .. .

e 4'

, , {

'.C)0}C)L(D 0fyk, jQ[,

t .

i& $ C h<. .l Q _ : ; r.) Ns

$ h, ,

p *.

l t

j ; >

y t ,

. c .s

.et;> .. ,,4.  :

l

! .t > _-

6 . g i-

,+- {t 6 .' s ., pp 4+

.. ' - . ' ( j..f , , , .

'.,'3

.s f .

I

, y .,

. -l 'g ,?.., .,

,' ,",(

4

.,- 1 y l 4;,* '.. j ,

l . -

4' i ,, ,

,, k f

t

" ' h),g' ., y, 4 .) *

,. I',

W . ,'

y.

. . a. l .. g . ..

y

~__ :e} . .- _ 3 (, ( . , . : ,.

l_,c,g.'

b JV! h}.y c,:ff' ' ^ Q

;
y. . a,

' b.;4g, ,

g_ ;; %  ; ;*y<

Qi mjpgg~,h.3.$g&' '. (  ?,.1 i .

l t

'. n..u; i

s.. . q. ,

+-

.v, (f , -

g .. - . - bj.. f.;,m f.w , -y p< ,%.

c .9,a >

l. .'I I Ik ']

'  ?

' tl.(f l p a. .g '

,,.. l ,

s  ?... ., . . . / :.. 4;};' ; p t .. Q e. -

.r.c

'?

.o .

, ,, i .. l t , .

/g* M .,

.',! Lf ;. A b e'f  ;

Q [ ee

,$ .I -

s . r.m . , - . ,

pT -

m

  • I 179 pW. g p...a.:.&,6%,'gg &- 74 ..

\ .% . W k,..,j,.

%,1 3 .

&,p.;3

- - *; . # ^ OoryYS;.,,n .m* ' +[#

>;&m: .

  1. ,3-e, 9710240086 971017 7%g " , ,- -

4 S -  !

PDR ADOCK 05000403 ;q)*dj/Mg% ,

Ci y M,0 l usadenewwgS"fagr$MSMMD48i@{p$,.OMLdS !

WESTINGHOUSE NON PROPRIETARY CLASS 3 i

WC AP.14894 CALLAWAY UNIT 1 HEATUP AND COOLDOWN LIMIT CURVES FOR NORMAL OPERATION T. J. Laubham July 1997 Work Performed Under Shop Order URKP-139 Prepared by Westinghouse Electric Corporation for Union Electric Company Approved: . 64 C. H. Boy'd, Manaher Engineering & Materials Technology Approved: .

A t D. A. Howell, Eia~na'ger Mechanical Systems Integration WESTINGHOUSE ELECTRIC CORPORATION Nuclear Service Division P.O. Box 355 Pittsburgh, Pennsylvania 15230 0355 C 1997 Westinghouse Electric Corporation All Rights Reserved 757

i PREFACE This report has been technically reviewed and verified.

Verified By:

, E. Terek l

{

i Callaway Unit 1 Heatup and Cooldown Lima C "*, for Normal Operation 7/97

= _

Y

li

-TABLE OF CONTENTS LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , , , , , , , , , , , iji l

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , , . . . . , . . , , jy 1 INTRODU CTI ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , _ , . . . . , _ 1 2 FRACTURE TOUGHNESS PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 CRITERIA FOR ALLOWABLE PRESSURE TEMPERATURE RELATIONSHIPS - . . . . . . . 6 4 CALCbtATION OF ADJUSTED REFERENCE TEMPERATURE , . . . . . . . . . . . . . . . . . 9 5 HEATUP AND COOLDOWi! PRESSURE TEMPERATURE LIMIT CURVES . . . . . . . . . . 13 6 REFERENCES ................................................. 18 Callaway Unit 1 Heatup and Cooldown Umit Curves for Normal Operation 7/97

,% =--- --3-- - =2-:_ =- = = =

__m

n,

\

LIST OF TABLES I Table 1 Calculation of Average Cu and Ni Weight Percent Values for Beltline Region M a te rials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... 3 Table 2 Interpolation of Chemistry Factors from Regulatory Guide 1.99, Revision 2. Position 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Table 3 Calculation of Chemistry Factors Using Surveillance Capsule Data per Regulatory Guide 1.99. Revision 2, Position 2.1 . . . . . . . . . . . . . . ........ 5 Table 4 Fluence (10" n/cm', E > 1.0 MeV) on the Pressure Vessel Clad / Base Metal l Interface for Callaway Unit 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 5 Margins for Adjusted Reference Temperature (ART) Calculations per Regulatory Guide 1.99. Revision 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 6 Calculation of ART Values for the Limiting Callaway Unit i Reactor Vessel Material - Lower Shell Plate R2708-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 7 Summary of ART Values at the 1/4T and 3/4T Locations . . . . . . . . . . . . . . . 12 Table 8 20 EFPY Heatup Curve Data Points (With instrumentation Error Margins) . . . . . 16 Table 9 20 EFPY Cooldowi, Curve Data Points (With Instrumentation Error Margins) .. 17 Callaway Unit i Heatup and Cooldown Limit Curves for Normal Operation 7/97

LIST OF FIGURES i

Figure 1 Callaway Unit 1 Reactor Coolant System Heatup Umitatens (Heatup Rates of 60 and 100'F/hr) Applicable for the First 20 EFPY (Without Margins for instrumentation Errors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 2 Callaway Unit 1 Reactor Coolant System Cooldown Umitations (Cooldown Rates of 0,20,40,60 and 100'F/hr) Applicable for the First 20 EFPY (Without Margins for Instrumentation Errors) . . . , , . , , . . . . . . . . . . . . . . . . . . . . . . . 15 8

i 4

l 1 --INTRODUCTION Heatop and cooldown limit curves are calculated using the adjusted RTe, (reference nil-ductilny temperature) i conesponding to the limiting beltline region material of the reactor vessel. The adjusted RT,e, of the limiting l rnatorial in the enre region of the reactor vessel is determined by using the unitradiated reactor vessel material fracture tougnross properties, estimating the radiation induced ART,es, and adding a margin. The unirradiated RT, , is designated as the higher of either the drop weight hil-ductility transiten temperature (NDTT) or the temperature at which the material exhibits at least 50 fi-lb of impact energy and 35 mit lateral expansion (normal to the major working directon) minus 60'F.

- RT, , increases as the material is exposed to fast neutron radiation. Therefore, to find the most limiting RT,,,

- at any time period in the reactor's life, ART,e, due to the radiation exposure associated with that time period must be added to the unirradiated RT, ,(IRT,e,) The extent of the shift in RT,ei is enhanced by certain chemical elements (such as copper and nickel) present in reactor vessel steels. The Nucisar Regulatory Commission (NRC) has published a rnethod for predicting radiation embnttlement in Regulatory Guide 1,99 Revision 2, ' Radiation Embrittienent of Reactor Vessel Matenals". Regulatory Guide 1.99, Revisk,n 2, is used for the calculaton of Adjusted Reference Temperature (ART) values (IRT,e, + ART,e, + margins for uncertaintes) at the il4T and 3/4T locations, where T is the thickness of the vessel at the beltline region measured from the clad / base metal interface The most limiting ART values are used in the generation of j heatup and cooldown pressure temperature limit curves.

Cauaway. Unit i He up a CooM wn]mit Curves for Nortnal praton 7/97

2

.)

2 FRACTURE TOUGHNESS PROPERTIES l

The fracture-toughness properties of the femte material in the reactor coolant pressure boundary are determined in accordance with the NRC Standard Review Plan

  • The beltline matenal oroperties of the Caleway Unit i reactor vessel presented in Table i are from References 3 through 7, 1

The average Cu and Ni values were used to calculate chemistry factor (CF) values per Tables 1 and 2 of Regulatory Guide 1.99, Revision 2. (See Table 2.) Additonelly, surveillance capsule data is available for three capsules (Capsules V, Y and V) already removed from the Callaway Unit i reactor vessel. This surveillance capsule data is credible (See Appendix D in WCAP 14895) and was used to calculate chemistry factor (CF) l

- values (Table 3) in addition to_ those calculated per Tables 1 and 2 of Re9ulatory Guide 1.99. Revision 2.

i _

Callaway Unit i Heatup and Cooldown Limit Curves for Normal Operation 7/97

_. .-  : = =

3 Table 1 Calculation of Average Cu and Ni Weight Percent Values for Deltline Region Muterials Meterial Cu1%) Ni (%) Average Reference Description Cu % Ni %

Intermediate Shell 0 06 0 58 0.05 0.58* 3a Plate R27071 0 04 0 57 Intermed. ate $ hell 0 07 0 62 0 06 0.61'* 3b Plate R2707 2 0.05 0.59 Intermediate Shell 0 06 0.62 0.06 0.62* Sc Plate R2707 3 0.06 0.61 Lower Shell 0.08 0.60 0.07 0.58 3d

~~~~~~~~~ ~ ~ ~ ~ ~ ~ ' - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Plate R27081*

0.07 0.59 3d & 4 0.06 0.55 5 Lower Shell 0.06 0.56 0.06* 0 57

  • 3e Plate R2708-2 0.05 0.57 Lower Shell 0.08 0 64 0,08* 0.62* 3f Plate R2708 3 0.07 0.59

) Belthne Weld Metaf" 0.04 0.06 0.44'* 0.06'* 6 0.04 0 04 7 0 045 0.065 4 & 5"'

tm LL (a) survemance pogrrn tase mew maienal

@) Tne temme weid new incuoes tre su aual wees (101124 A. B & C and 101142A B & C) and t e orth weid (101171).

(c) Trese cremstry values re tre tesi estrnate tot the survesave wed new and consdeod one sinse cata sant The cremsty that was used was taken kom References 1 & 6 Note that the sunresarce meld has the toentcal heat (90077) anf Bun (Linae 124. Lot 1061) as the geth we6d 101 171.

(d) Rounded to two decanal conts l

\

~

Caltw<ay Unit 1 Heatup and Cooldown Limit Curves for Norma! Operation 7/97

4 Table 2 Interpolation of Chemistry Factors From Regulatory Guide 1,99, Revision 2, Position 1.1 Material Ni, wt % Chemistry Factor, 'F tream^'a thab Ptale R270M 0.68 31.0 Gwee Cu at% o 0.05

!!aamsdealt.$balthels.B2Z9L2 0 61 37.0 Cmn Cu wt% = 0 06 luitmadale that hate R270M 0 $2 37.0 Gwn Cu wt%

  • 0.06 Ltwer that hate Pl700' O.68 44 0 Geen Cu wt % = 0.07 Lpett.fibelLBatall2706 2 0.57 37.0 Gwee Cu wt % = 0.06 Lower _Shan Ptate n2700 0 62 51.0 Gwen Cu wt % = 0 03

[algine Raaen Weld Melal 0.06 29.7 Gwen Cu wt % = 0.04 Suneitarce r-* PmoMakudela!

0.065 31.6 Gwen Cu wt % = 0 045 Surve4ance Pmgram Matenal.

Canaway Ur.it 1 Heatap and Cooldown Umit Curves for Normal Operation 7/97

b 4

Table 3 Calculation of Chemistry Factors Using Surveillance Capstlo Data Per Regulatory Culde 1.99, Revision 2, Position 2.1 Matenal Capsuie Capsule f FF*' ART,") FF' ART, FF' Lower Shell Rate U 0.3342 0 698 7.33 $.12 0 487 R27081 (Longitudinal) Y 1.237 1.059 25.15 26 63 - 1.121 V 2.359 1.232 16.45 20.27 1.518 Lowr Shell Plate U 03342 0 698 25 66 18.05 0 487 R270M Y 1.237 1 059 46.39 49.13 1.121 (Transveiw) l V 2.359 1.232 44.82 55.22 1.518 SUM 164.18 6.252 l CF u 3 E(FF

  • ART,) + E(FF') = (164.18) + (6 252) = 26 3'F Vessel Weld Metal U 0.3342 0.698 64.01 44.68 0.487 Based on Surveillance Program Weld Metat Y 1.237 1.059 34 48 36.51 1.121 Results*

V 2.359 1.232 45.03 55 48 1.518 SUM 136.67 3.126 CF. s E(FF ' ART ) + Z(FF') = (136 07) + (3.126) = 43.7'F NOIEL (a) f a fluence (10" rvem', E > 1.0 MeV). M updated fluence values were taken from the Capsule V analpis (Table 6-12 of WCAP 14895"").

(b) FF = fluence factor a f 8'N' (c) ART, values were obtained from the Capsule V analysis"3 (d) The surveillance weld metal ART, values have been adjusted by a ratio of 0.934 (CF.,,,+ CF,,, a 29.7 +

31.8 = 0 934).

Callaway Unit I*atup and Cooldown Limit Curves for Normal Operation 7/97

6 3 CRITERIA FOR ALLOWABLE PRESSURE TEMPERATURE RELATIONSHIPS

( .-

Appendix G to 10 CFR Part 50, ' Fracture Toughness Requirements

  • specifes fracture toughness requirements

- for ferritic rnatorials of pressure retaining compon*o of the reactor coolant pressure boundary of light water nuclear power reactors to provide adequate margins of salety during any condition of tr.rmal operation, including anticiptsted operational occurrences and system hydrostatic tests, to which the pressure boundary may be subjected over its service Irletime. The ASME Boller and Pressure Vessel Code forms the basis for these 4 requirements.Section XI, Division 1, ' Rues for Inservice inspection of Nuclear Power Plant Comporents*,

contains the conservative methods of analysis.

l The ASME approach for calculating the allowable limit curves for various hvatup and cooldown rates spe4es i

that the total stress intensity factor, K,, for the combined thermal and pressure stresses at any time during l heatup or cooldown cannot be greater than the reference stress intensity factor, K , for the metal temperature j at that time. K,, is obtained from the reference fracture toughness curve, defined in Appendix G of Section XI t of the ASME Code. The Vg curve is given by the following equation:

I io m r ar.r. m n K. 26.78+1.233.e {3) where, K, = ' reference stress intensity factor as a function cf the metal temperature T and the metal reference nil 4uctility temperature RT,,m Therefore, the goveming equation for the heatup-cooldown analysis is defined in ppendix G of the ASME Code as follows:

C* KgKfKu zg; where, K= stress intensity factor caused by membrane (pressure) stress K,i a stress intensity factor caused by the thermal gradients

- K,i = function of temperature relative to the RT,,a of the material C a 2.0 for Level A and Level B service limits C = 1.5 for hydrostatic and leak test conditions during which the reactor core is not critical At any time during the heatup or cooldown transient, K,, is determined by the metal temperature at the tip of a postulated flaw at the il4T and 3/4T location, the appropriate value for RT,,m, and the reference fracture toughness curve. The thermal stresses resulting from the temperature gratents through the vessel wall are calculated and then the corresponding (thermal) stress intensity factors, K,, for the reference flaw are computed, From Equation 2. the pressure stress intensity factors are obtained and, from these, the allowable pressures are calculated.

d Callaway t) nit i Heatup and Cooldown L.imit Curves for Normal Operation 7/97

- = = = = = =_

.. s ..

?

For the calculabon of the allowable pressure versus coolant temperature dunng cooldown, the reference flaw of Appendix G to the ASME Code is assumed to exist at the inside of the vessel wall. Dunng cooldown, the contro!kng location of the flaw is always at the inside of the 'vall because the thermal grad ents produce tensile stresses at the inside, which increase with increasing cooldcwn rates Allowable pressure temperature relations are generated for both steady state and f. nite C oldown rate situabons. From these relat ons, composite limit curves are constructed for each cooldown rate of interest.

The use of the composite curve in the cooldown analysis is necessary because control of the cooldown procedure is based on the measurement of rear: tor coolant temperature, whereas the I:miting pressure is actually dependent on the material temperature at the tip of th6 assumed flaw Dunng cooldown, the il4T vessel location is at a higher temperature than the fluid adjacent to the vessel inner diameter This condition, of couree, is not true for the steady state situabon. It follows that, at any given reactor coolant temperature, the AT (temperature) developed dunng cooldown results in a higher value of K, at the 1/4T locabon for finite cooldown rates than for steady state operation. Furthermore, if conditions exist so that the increase in K, '

exceeds K,, the calculated allowable pressure during cooldown will be greater than the steady state value.

The above procedures are needed because there is no direct control on temperature at the il4T location and, therefore, a!Iowable pressures may unknowingly be violated if the rate of coohng is decreased at various intervals along a cooldown ramp. The use of the composite curve eliminates this problem and ensures conservative operabon of the system for the entire cooldown period.

l Three separate calculations are required to determine the limit curves for finite heatup rates. As is done in the cooldown analysis, allowable pressure temperature relationships are developed for steady state conditions as well as finite heatup rate conditions assum,. g the presence of a il4T defect at the inside of the wall. The heatup results in compressive stresses at the inside surface that alleviate the tensile stresses produced by intemal pressure. The metal temperature at the crack tip lags the coolant temperature; therefore, the K, for the il4T crack during heatup is lower than the K, for the il4T crack dunng steady state conditions at the same coolant temperature. Dunng heatup, especially at the end of the transient, conditions may exist so that the effects of compressive thennal stresses and lower K, values do not offset each other, and the pressure-temperature curve based on steady state conditions no longer represents a lower bound of all similar curves for Saite heatup rates when the il4T flaw is considered. Therefore, both cases have to be analyzed in order to ensure that at any coolant temperature the lower value of the allowable pressure calculated for steady state and finite heatup rates is obtained.

The second portion of the heatup analysis concems the calculation of the pressure- temperature hmitations for the case in wtwh a 1/4T f!aw located at the il4T location from the outside surface is assumed. Unlike the situation at the vessel inside surface, the thermal gradients established at the outside surface dunng heatup produce stresses which are tensile in nature and therefore tend to reinforce any pressure stresses present.

These thermal stresses are dependent on both the rate of heatup and the time (or coolant temperature) along the heatup ramp. Since the thermal stresses at the outside are tensile and increase w"h increasing heatup rates, each heatup rate must be analyzed on an individual basis.

Following the generation of pressure temperature curves for both the steady state und finite heatup rate situations, the final hmit curves are produced by constructing a composite curve 'Jased on a point by point comparison of the steady state and finite heatup rate data At any given temF.rature, the allowable pressure is taken to be the lesser of the three values taken from the curves under consideration. The use of the composite curve is necessary to set conservative heatup limitations tecause it is possible for condit ons to exist wherein, over the course of the heatup ramp, the controlling condition switches from the inside to the outside, and the pressure kmit must at all times be based on analysis of the most critical criterion.

Callaway Unit 1 Heatup and Cooldown Umit Curves for Normal Operation 7/97

8 10 CFR Part 50, Appendix G Pdd' esses the metal temperature of the closure head flange and vessel flange regions This rule states that it., metal femperature of the closure flange tsgions must exceed the matenal unirradiated RT,n by at least 120'F for normal operation when the pressure exceeds 20 percent of the preservice bydrostatic test pressure (3100 psig), which is 621 psi for Callaway Unit 1, The limiting unitradiated RT., of 40'F occurs in the closurchead/ vessel flange of the Callaway Unit i reactor vessel, so the minimum allowable temperature of this region is 170'F (includes 10'F margin) at pressures greater than $61 psi (includes 60 psi margin). This limit (where the horizontal line indicates that the pressure shall not exceed 621 psi for temp 3ratures less than 170'F) is shown as a notch in the cun,0s, presented whentver applicable in Figures 1 and 2.

l Callaway Unit i Heatop and Cooldown Limit Curves for Normal Operation 7/97

__ _._ _ = __.

e

9 4 CALCULATION OF ADJUSTED REFERENCE TEMPERATURE From Regulatory Guide 1.99, Revision 2, the adjusted reference temperature (ART) for each rnatorial in the belthne region is given by the following expression:

ART.InMalRTwr* A RTw7< Margin (3y initial RT., is the reference temperature for the unirradiated material as defined in paragraph NB 2331 of Seebon lil of the ASME Boiler and Pressure Vessel Code *, If measured values of initial RT., for the material in question are not available, generic r.wan values for that class of material may be used if there are suffcient test results to estabish a mean and standard deviaton for the class.

ART., is the nean value of the adjustment in reference temperature caused by irradiation and should be calculated as follows:

A BTer" CF* l'*** (4) l To calculate ART., at any depth (e.g., at il4T or 3/4T), the following formula must first be used to attenuate the fluence at the specific depth.

Im/e %.eMM (5) where x inches (vessel beltline thickness is 8.63 inches) is the depth into the vessel wall measured from the vessel clad / base metal interface. The resultant fluence is then placed in Equaton 4 to calculate the ART., at the specife depth. The fluence (E > 1.0 MeV) values on the pressure vessel clad / base metal interface for the Callaway Unit i reactor vessel are presented in Table 4 Callaway Unit i Heatup and Cooldown Limit Curves for Normal Operation 7/97

10 Table 4 Fluence (10" n/cm 8, E > 1.0 MeV) on the Pressure Vessel Clad /Dase Metal interf ace for Callaway Unit 1

imummmmmmmuummmu-mammmmuummusma EFPY O' 15' 30' 45' 9.85 0.2;1 0.514 0.601 0.619 17 0.564 0.857 1.01 1.03 20 0.682 (a) 1.182 1.204 32 1.07 1.57 1.87 1.90 NOTES.

(a) Fluence values for 15' are not needed for this evaluation.

The chemistry factor values obtained from Tables 1 and 2 of Regulatory Guide 1.99, Revision 2, were determined in Table 2 using the copper and nickel content values reported in Tables 1 and 2 of this report.

Chemistry factors were also calculated using surveillance capsut cata as shown in Table 3.

Margin is calculated as, M = 2 Io/ + c/. The standard deviation for the initial RTei .nargin term, o,, is O'F when the initial RTo, is a measured value, and 17'F when a generic value is available,. The standard deviation for the ARTe, margin term, o , is 17'F for plates or forgings, and 8.5'F for plates o' forgings (half the value) when surveillance data is used. For welds, o, is equal to 28'F when surveillance <,apsule data is not used, and is 14'F (half the value) when surveil lance capsule dtta is used. o, need rn r eed one-half the mean value of ARTei. See Table 5.

Table 5 Margins for Adjusted Reference Temperature (ART) Calculations per Regulatory Guide 1.99, Revisit . 2 Material Properties Surv. Capsule Data NOT Used Surv. Capsule Data Used PLATES or FORGINGS Measured IRT, 34 17 Genenc IRT, 48 38 WELD METAL 56 28 Measured IRT.

66 44 Generic IRT.

Callaway Unit i Heatup and Cooldown Umit Curves for Norma! Operation 7/97

11 All materials in the beltline res;on of the Callaway Unit i reactor vessel were considered in determining the hmiting matenal. Cample calculations to determine the ART values for the Circumferential Weld are shown in l Table 6. The resulting ART values for all beltline matenals at the 1/41 and 3/4T locations are summarized in Table 7. From Table 7, it can be seen that the hmiting material is the lower shell plate R2708 4, Therefore, the il4T and 3/4T ART values ic,r the lower shell plate R2708 3 will be used in the generation of the heatup and cooldown curves.

Table 6 Calculation of ART Values for the Limiting Callaway Unit 1 Reactor Vessel Material .. Lower Shell Plate R2708 3 Parameter Operabng Time 20 EFPY Location 1/4T 34T t

Chemistry Factor CF ('F) 51.0 $1.0 Fluence, f (10" nicm') O.7174 0.2547 Fluence Factor. FF 0.91 0 63 ART,c, s CF x FF (*F) 464 32.1 h tial FJ,c,, I (*F) 20 20 t

Margin, M ('F) 34 32.1 t.djusted Reference Temperature"' (ART), ('F) 100 4 84.2 H31LL (a) Fkence, f, a baud upon f,(10" ten'. E*1.0 MeV)

  • 1204 at 20 fFPY, (b) The Canaway Una 1 tsador vessel wat thdness s 8 63 metes s' tre telthne regert (c) Per Ragdatory Guce 1.99, Revnen 2 Callaway Unit 1 Heatup and Cooidown Limit Curves for Normat Operation 7/97

12 r

Table 7 Summary of ART Values et the 1/4T and 3/4T Locations 20 ErPY ildT ART 3/4T ART Matenal ('F) ('F)

Intermed. ate Shell Rate R27071 96.4 79.0 intermediate Shell Rate R2707 2 77.4 56.6 Intermediate Shell Rate R2707 3 57.4 36.6 Lower Snell Rate R27081 124.0 105.4 J

Using Surveillance Capsule Data 90.9 83 2 Lower Shell Rate R2708 2 77.4 56.6 Lower Shell Rate R2708 3 100.4 84.2 Intermediate & Lower Shall 15.4 30.8 Longitudinal Weld Seams 101124A

& 101142A (90 Azimuth) . . . . . . . . . . . . . . . . ... ........

Using Surveillance Capsule Data 0.8 17.2 Intermediate & Lower Shell -6.6 23.2 Longitudinal Weld Seams 101124B&C and 101142880

. .(210

. . &. 330

. ' '.Azimuth)

Using Surveillance Capsulo Data 7.3 5.8 Intermediate to Lower Shell -6.0 22.6 Circumferential Weld Seam 101171 Using Surveillance Capsule Data 7.8 5.0 (Note: When two or mo e credible survoillance data sets become available, the data sets may be used to determine ART values as described in Regulatory Guide 1.90, Revision 2. Position 2.1. If the ART values based on surveillance capsule data are larger than those calculated per Regulatory Guide 1.99, Revision 2 Position 1.1, the surveillance data must be used. If the surveillance capsule dcta gives lower values, either may be used.)

Callaway Unit i Heatup and Cooldown Limit Curves for Normal Operatior' 7/97

13 5 HEATUP AND COOLDOWN PRESSURE TEMPERATURE LIMIT CURVES Pressure temperature limit curves for normal heatup ard cooldown of the pnmary reactor coolant system have been calculated for the pressure and terryrature in the reactor vessel belthne region using the methods" discussed in $ecton 3 and 4 of this report. Since indicaton of reactor vessel belthne pressure is not available on the plant, the pressure difference between the wide range pressure transmitte' and the limiting belthne region must be accounted for when using the pressure-temperature kmits presented h, , .sures i and 2.

Figure i presents the heatup curves with margins of 10*F and 60 psi for possible instrumentation errors using heatup rates of 60 and 100'F/hr applicable for the first 20 EFPY. Figure 2 presents the cooldown curves also with margins of 10*F and 60 psi for possible instrumentation errors osing cooldown rates of 0,20,40,60 and 100*F/hr applicable for 20 EFPY. Allowable combinations of temperature and pressure for specific temocrature l change rates are below and to the right of the hmit lines shown in Figures 1 and 2. This is in addition to other entena which must be met before the reactor is made entical, as discussed below in the following paragraphs.

The reactor must not be made critical until pressure-temperature combinations are to the right of the enticality linit kne shown in Figure 1. Tne straight-line portion of the criticality hmit is at the minimum permissible temperature for the 2485 psig insewice hydrostatic test as required by Appendix G to 10 CFR Part 50. The goveming equation for the hydrostatic test is defined in Appendix G to Section XI of the ASME Code as follows:

1.5K <Ku (6) where, K,,,, is the stress intensity factor covered by membrane (pressure) stress, Kj 26.78 + 1.233 e """"*" * "N, T is the minimum permissible metal temperature, and RT, is the metal reference nil-ductility temperature.

The enticahty limit curve specifies pressure-temperature limits for core operation to provide additional margin during actual power production as specified in Refsrence 8. The pressure-temperature limits for core operation (except for low power physics tests) are that the reactor vessel must be at a temperature equal to or higher than the minimum temperature required for the inservice hydrostatic test, and at least 40'F higher than the minimum permissible temperature in the corresponding pressure-temperature curve for heatup and couldown calculated as described in Section 3 of this report. The minimum temperatures for the inservice hydrostatic leak tests for the Callaway Unit i reactor vessel at 20 EFPY is 245'F. The vertical kne drawn from these points on the pressure temperature curve, intersecting a curve 40'F higher than the pressure temperature limit curve, constitutes the hmit for core operation for the reactor vessel.

Figures 1 and 2 defne i all of the above kmits for ensuring prevention of nonductile failure for the Callaway Unit i reactor vessel.

The data points used for the bestup and cooldown pressure-temperature limit curves shown in Figures 1 and 2 are presented in Table 8.

Callaway Unit 1 tieatup and Cooldown Umit Curves for Normal Operaton 7/97

~

14

- MATERIAL PROPERTY BASIS LIMITING MATERIAL: LOWER SHELL PLATE R270B 3 LIMITING ART VALUES AT 20 EFPY: il4T,1014'F 3/4T, 84.2 'F 2500 .

, 1 , , , ,

. ........ .. i 1 -

~

I I *

, e i it i i I J I i I me 2250 + ' '

r

, ,/ / l l l  : l L8AE TRST LIMIT I

~

I L 1  ; i i r r I I j gg I  ! I 1 I J I J il 1 2 2000 l / / / l  ;

w .

}  ? l  ?

I I J / J 1750 l / l

, uMAccEPTAstE __

OPERATION i r i r

"  ; I l l l C ' '

1500 ', / ,

/

in i i i i i i f4 E E A T ti ? RATB / r / r UP Tu se F/Er. ,/

%cm /

c 1250 .

,/ ,

,/ ACCEPTABLE "_,[

w ..____ ,,,,,, ,,,, ,e , ,/ /

0PIRATION 4 m UP To aos F/ar. s 71 f

e f 1000 M i

/

/

? W / f f f y i / / <

s 750 / ',f

/

g1ll r

' 500 , .

, m  ;- N ' '

c 250 '

' ' "*'*P t

= fli!!?!!!'Iv'!!!Mt!'id; i

!!!?it9:li!!'t,'s.'t!.i",,,

0 0 50 100 150 200 250 300 350 400 450 500 Indicated Temperature (Deg.F) 4 FIGURE 1 Callaway Unit 1 Reactor Coolant System Heatup Limitations (Heatup Rates of 60 and 100'F/hr)

Applicable for the First 20 EFPY (With Margins for instrumentation Errors)

Indudes Vouellarge requrerrents of 170*F a2 $61 gag per 10CFR50, AAenda G Callaway Unit i Heatup and Cooldown Limit Curves for Normal Operation 7/97

- " r -----d-w e---- -w*-- -

15 1

MATERIAL PROPERTY BAS [S LIMITING MATERIAL: LOWER SHELL PLATE R2708-3 LIMITING ART VALUES AT 20 EFPY: il4T,100.4'F I

3/4T, 84.2 'F 2500 , , ,

y , , . , ,,

.............  ; -l; f  ; i

! t ii! t i  ! 7 ! 1  ! ! I

^ ' ' ' '

2250 ll ',! -

.i l ,

i

, ;l '

. i ,

.. I l

  • 2000 . l . i l

% . 1 .

i i

/ ll 1750 UNACCEPTABLE i i O OPERATION I ' '

w , , , l  ;

o 1500-m

/ -

l m , i / I  ; ,lil

/

0 1250 l ACCEPTAstE i Ii L J 0PERATION I ,

b f 4 1 /

. i ii 1000 /

's O

'l -

s 750 -- c o o r. n o u x i

~

RATES i ,

^

CC -

F/5r. i ,

~

O , ,,,,. , . > l . .

.- 500 o -

-o f , . . .

e e

r ":

I w

1 4 ' i'

_ 250 , . i . 4 i, ..,

i I i

@ Boltup Temp.

i .

' i ' ' ' '

i 0 i 0 50 100 150 200 250 300 350 400 450 500 Indicated Temperature (Deg.F)

FIGURE 2 Callaway Unit 1 Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0,20,40,60 and 100*F/hr) Applicable for the First 20 EFPY (With Margins for instrumentation Errors) includes vusel nave req 4ements of 170*F and $61 p6g per 10CFR50. Amends G.

Callaway Unit i Heatup and Cooldown Limit Curves for Normal Operation 7/97

- ~ . . - - _

- - ... - . - - ... - - ._. - . . . . . . - - - .~.-.- .- - . . . .-- - . - -

16 1

e-TABLE 8 ,

20 EFPY Heatup Curve Data Points (With Instrumentation Error Margins) 60 FMr Cescany Ltnk 103 FiHr Crtcany Lrna Luk Test Lenit Temp PreasJ Temp Press lemp. Press. Temp Press Temp. Pres..

(DEG. F) (peg) (DEG F) - (pra) (dig. F) (psgi (DEG. F) (pos) (DEG F) (peg) '

60 0 NS 0 60 0 245 0 225 2000 60 500 N5 - $44 60 4M N5 546 - N5 2485 65 507 N5 - 533 ' 61. 4M 245 531 70 516 24! M7 10 4M H5 519 75 524 245- 524 75 4M 245 509 80 SN N5 524 80 4M 245 502 85 $N 245 527 85 4M 245 497 to ' $N NS $33 90 AM N5 4M

-M 5N 245. 541 95 4M N5 4M s 100 SN N5 551 100 4M N5 495 105 SN 245 553 105 4M 245 499 110 524 N5 577 110 4M N5 104 115 527 N5' 593 115 4M 245 511 120 . 533 N5 611 120 494 N5 520 125 541 245 831 125 4M N5 531 130 551 NS 653 130 495 245 543 135 561 245 677 135 499 H5 557 140 F41 245 703 140 504 N5 574 145 561 N5 732 145 511 - 245 592 150 561 245 763. 150 $20 245 612 c- 155 561 N5 796 155 531 -N5 634 160 561 N5 832 160 543 N5 658 .

165 561 245 871 165 557 N5 685

. 170 561 N5 912' 170 561 245 714 170 703 245 957 170 574 N5 745 175 732 250 1006 175 592 250 779

. 180 763 255 1058- 180 - 6t2 255 816 185 796 260 11:3 185 634 260 856

+ WA - 832 265 1173 190 658 265 899 w5 871 270 -1238 195 645 270 M6 4

200 912 275 1306 200 714 275 996 205 05) 280 1381 205 745. 250 1049 210 1006- 285 -1460 210 779 285 1107 215 1058 290 1544 215 816 290 1169 220 1113 205 1636 220 856 - 295 1236 225 1173 300 1732 225 899 300 1307 230 1736 305 1837 230 946 305 1384 235- 1306 310 1948 235- 996 310 1467 b0 1381 315 2066 240 1049 315 1555 N5: 1460 320 2193 ';45 1107 '320 1649 250 1544 325 2328 250- 1169 325 1750 255 1636 330 2472 255 1236 330 1858 260 1732. 260 1307 335 1973 265 1837 265. 1384 340 2096 270- 1948 270 1467 345 2227 275 2066 275 1555 350 2367 28C 2193- 280 if19 285 2328 285 1750 290 2472 290 1858 295 1973 i

300 2096 305 2227 310 2367 4

s Callaway Unit 1 Heatup and Cooldown Limit Curves for Norma! Operation 7/97

17 i-TABLE 9 20 EFPY Cooldown Curve Data Points-(With Instrumentation Error Margins)

Steady State 20 FMr. 40 FMr 60 FMr 100 FMr Temp,- Press. lemp. Press. Temp Press Temp. Press. Temp Press (DEG. F) (seg) (DEG. F) (pag) (DEG. F) . (pag) (DEG F) (pag) (DEG. F) (peg) 80 0 80 0 60 0 60 0 60- 0 to = 500 80 4M 60 -427 60 386 60 302 65' 507 65 468 65 427 65 386 F5 302 1

70 516 70 476 - 70 436 70 396 70 313  :

75 525 = 75 - 4H 75 446 75 406 75 325 1 80 ' 534 80 AM 80 457 80 418 80 336 I 85 544 85 506 85 468 85 430 45 351 90 555 90 513 90 481 90 443 90 366 95 561 - 95 531 95 494 95 4 57 95 362 100 M1 100 544 - 100 508 100 472 100 400 105 MI 105 559 105 524 105 489 105 419 110 $61 110 561 110 540 110- 500 110 439

-115 Mt 115 561 115 558 115 526 115 461 120 561 120 '561 120 $61 120 546 120 485 125 561 125 561 125 561 125 561 125 511 130 561 130 561 130 561 130 561 130 539

-135-. 561 135 561 135 561 135 561 135~ 561 140 561 140 ' 561 140 561 - 140 561 140 561 145 561 145 561 145 561 145 661 145 561 150 561 150 561 150 561 150 561 150 561 155 561 - 155 561 155 561 155 561 155 561 160 561 160 561 163 561 160 561  % 561 165 561 165 561 165 561 165 561 165 561 170 561 170 561 170 561 170 561 170 561-170 899 170 885 170 8 73 170 864 170 856 175 937 175 $25 175 917 175 911 175 910 100 = 977 .. 180 M9 180 M3 130 M1 180 M9 185 - -1020 - 145 - 1015 165 1014 185 1016 190- 1066 190. 1065 195- -1116 200 1170 205- -1228 210 1289 215 1355 2*3 1426

-225 1503 230- 1584 235 1672 240 1766 245'. 1866 250- -1973 255 .2068 260 2211

--265 2342 270 2482 Callaway Unit i Heatup and Cooldown Limit Curves for Normal Operation 7/97

l

-- 18 e

i -

6- REFERENCES i

1. Reguistory Guide 1.99, Revision 2, ' Radiation Embrittlement of Reactor Vessel Materials', U.S. Nuclear Regulatory Commission, May,1988.

2.~

  • Fracture Toughness Requirements *, Branch Technical Position MTEB 5-2, Chapter 5.3.2 in Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants, LWR Edition, NUREG-0800,1981,
3. !N-P3 F19, Contract No.11173, 'Maiorial Specification for intermediate & Lower Shell Plates *,

J. M Amold,1/29f/5.

a.) Job No. 736124-001: Heat No, C43441, Plate No. R27071 (Inter. Shell Plate),

b.) Job No. 736124-003: Heat No. C43831 Plate No. R2707 2 (Inter. Shell Plate).

c.) Job No. 736124-005: Heat No. C4383-2, Plate No. R2707 3 (Inter, Shell Plate).

d.) Jr.o. 736142-001: Heat No. C4499-2 Plate No. R2708-1 (Lower Shell Plate).

e.) - Jou Wo. 736142-003: Heat No. C44721, Plate No. R2708-2 (Lower Shell Plate),

f.) Job No. 736142-005: Heat No. C4499-1, Plate No. R2708 3 (Lower Shell Plate).

4.- WCAP 9842 Rev.0, " Union Electric Company Callaway Unit No.1 Reactor Vessel Radiation Surveillance Program *, L. R. Singer, May 1981.

5. WCAP 11374 Rev.1, ' Analysis of Capsule U From the Union Electric Company Callaway Unit No.1 Re r or Vessel Radiation Surveillance Program *, R. G. Lott, et.al., June 1987,
6. G2.03, Lab # D19781, CE Power System Welding Mateiial Certification and Release for ASME Section Ill", 3/10/75.
7. E3.14, Lab # D28222, CE Power System Welding Materia! Certification and Release for ASME Section lil", 4/18177,
8. 10 CFR Part 50, Appendix G, ' Fracture Toughness Requirements *, Federal Register, Volume 60, No.

243, dated December 19,.1995,

9. 1992 Section XI, Division 1, of the ASME Boiler and Pressure Vessel Code, Appendix G, ' Vessels'.
10. 1989 Section Ill, Division 1 of the ASME Boiler and Pressure Vessel Code, Paragraph NB-2331,

' Material for Vessels *.

11. WCAP 14040-NP A, ' Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and -

RCS Heatup and Cooldewn Limit Curves', J. D. Andrachek, et al., January 1996.

12 WCAP-14895, 'Analpis of Capsule V From the Union Electric Company Callaway Unit No.1 Reactor Vessel Radiation Surveillance Program', E. Terek, et.al., May 1997.

Callavay Unit i Heatup and Cooldown Umit Curves for Normal Operation 7/97

N h bfNANY N

@RfM@hhh &'$M W N. 4 M N @h%m&@

g (y N $o y ,,S' & . M .: W&NW &W

, 4 f.w# .

JelM:bL Westmghouse y A 3mm . c hMM D,D Non. Proprietary 'ClusEllMl . ~a \ ?N,; W g@w f

w p y 4 w w w w w?  ? w&e k@.

hh q 7*. . e g y :. w v. c e,4<s.k w. xu Qy 3 ~. L... . ,.

., ' - ~

s's,'s xM. yh~ np v. n.' * .}; .

+j+uM.f 5a ' > y g;j,q;y; kig : // $ ' i. s ..- .

.s w;&O,@_4',

WQ + *l pQ,!" D : - & ~ t 's, O b; W"n,~q. -Q;V %M f. ,

rp i

, 7 l-

  • a G; .

as\

'. r ;

' i ^g;;;r . *

  • . y.

VQ

,y ; y

.*.2 .g& ya -

,, t .

5. dhf k .m ,

" ^

f- 19. . 'G h ) .

%m% h AR. e o V.

yn MW Mfff Q.r$.m%p@

W i d. o.$#d6.nQ.l 1)sre 4- ,#q.

W h

s f ~, d ', N. W n'*%+ M. ~P 4 t.,,

W@M.VO - 2 J M h W%, VQ N

.n,,c.

bjJ d Q 4gg i. t c.

.v. 4 i s- .

-- 4.,- . , ... g , g,.

i 81 .*o lgWt.' ' r s ' ., ,d

-t g . t t y

.t h ,! .

g f,

% g. h p f(Q *yp +IWta ;n s:*4f f , Wh'h * \

i Y f'

',C, ,

h'!~~  ; .i t ,'q M Q o 4- ,

+

  • p j-. g .5, M.

7'. h f* N j % . 3> N. h M R N $ M $ b f T Y; W .$

W(M@@,#dk./M't th,va M EM@db[

.3 ' .1

'  % n% Ff e ! N l'" r w w.es alium nn. m L;

o 7

j W.~q . w %.e;mm.

Wy.. w . m mo %,.w m.v. w~ m p ZED e. a m .,

w~ e+.a M n: a u

,UlO BNL g

S;.a O w4 4..m,$n$p$,1ERMAl4(SHOCKW..w P4y t y m M (@em m$

aq W k Mg@ e EOR w g$w Alll  % g AWAM  ! e . w N w w w  %

ky h,AMfs h p tg J: ~- > &SW emW S NUN M rDM&hh MlA, 4 W b @vOJ8 . y %.r 4 , WYAn p  ?'c.?C ';

W&%g,pJC z .&

&yG l g?.h. 9 Q. , , ..- W'W.3 :, - , e

+%dp @xb A {y. !&: +s%v'-

dgfW Myr M @j% ?m%n.,f: y^ n'.'.af N>

g j

NO C . PS ,g < p QW IW * , l 0' A%g%

N' y*  ; s e oW+V '$mL.Q

-g. -W n .f :qt Je L0 t

c. <

A.

. T W,'i 0

'm:4,&;P'W @g'Q; 4 .A:<U ;

  • s ay ,. p&ww

.. e

. ,p, c. bW %v@a a w.c Jh, q 4,  %:prxqs s .dW

. : a.

f.%ev;f:a

.' p.< . .a vv ~ ,D s vg 7~

& a, i

., sw m &M w", n.

,sy.e ~

h iki b" 'l 'Y M [

dA%M Mh*1*.8 W4A  % i, D[%y& .N! 4 WJy;h &

. 9'*

n W fMV

% IW[-

bjMN M)u%,*MA Qh M3M k n $peqdM*"M.&p M 9

9 ' ~ M @T.

'p h" .'q.['.Wh W N;MWCTotN

~c p o cy  % e s)4 g.

. . m.o - *

  • w m g .%q,.m g A.c.,e: v, p%,z %u. a . mf L .' h.a W% W g9J p 4 &g Q i .bM~g

%, V65 + d,. u w cWIW . ;g

.k,,, , ,r .a .WH m@,M ay. ,\@ 9y

. ; ym. C. tl. .

AQpg i .

z, up g,..,yQ e , C,

.x v w . 4,; m,y ;p.y ,*, &s .* .

.,.wA 1 $w q.hy?Q q, c4 %r.m 4:[. c a% ,gr  :

~4' ' p q ~;M.

. . . , .t .. .

.,c%xN 7

w-  ;

c4M'6, n

hq?ht;'. g%W;W' NGQ!Q&a Aghq N p u% . i MQ;f,_H &@ &&yg&g y, WlM&

/ ,; a 3 gm pF qU2:

wwdk M4hM^ 7,hQ t W(3MW6 sp w L x - . r m,m. . . bw . 5n ,

'- y? v-e ' h l l [ M.j w .m& @ W w,.; a Q ry . r - MN

.h 4 t @Sl v.

a. .

'gge-  : w s v, q? <u n <.

+. g , r ne % <,t-m b, . mp

th Q .. I i ?t C 4-(b G m.

&.:$qf %wfy4@&gl$,. ', ', ?.gy?lk'l fib,:'J ,g y,'g?.,,

.s.< gr; .cw b,.&&

p ?sw 6.:w w 9 d. Qw s.Y$?.  :

.p,. pt g.Y:W p$. + %.1 lW'.. g ,,.q D. e ve. ng. j[N. 'Qy,,..Y m v y An,.r' ..  :~ , a - ;. n t

-b: , yw gW ..e g.s2.-1 .q?.c.v- - . . m.e, c.. ,

d>pQ. r e p > y; trcA ,rpa r: -mo.o g 9 . ,3 .

m Wg..%m 0

. c vg S

o:u s e E n e.rg s v ,g. ,S .y m

% , .. .4 A;, p m %q

[df%,h g o + . V,r.~gg.,g hw..A'<a 'm.

A e*W@9,4  % ec M TI.An'..i y g p:a. M,w 9 .

w .w i , p. . i . yM,

.  : .' s t e. m> -

m s'>.g -

~i. <

4W.M7tp.p n

g e..'y a z< k j N$ ll l N '. , ' '

D.* ' l.,

f? ' ' ;hl ' "  ?{* b, , - -

r o.'.:q sig.v , q. . a. m v- s.N.m@;,1 %pw fh,%ry .

w.  :
v. yaav ;f

.~.

,$ t. .. coo.A .A5, m m. k.>q. r . . . , . . .

C. r. s-v

'[f ' d j O b'i 7 G ' { '; } } 'l ' ) b ,' l w

} r[

p y, ~ cy r cc ;i c a ,c; g' %Q'. ,-[. ~ i. ~ ,

Q; 6 ' -

p. pg ' e-.

i, j y P, . ,

  • * \'*

_ ._