ML20085C152

From kanterella
Jump to navigation Jump to search
Heatup & Cooldown Limit Curves for Normal Operation Callaway Unit 1 (Capsule Y)
ML20085C152
Person / Time
Site: Callaway Ameren icon.png
Issue date: 05/31/1991
From: Chicots J, Meyer T, Ray N
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20085C142 List:
References
WCAP-12949, NUDOCS 9108300038
Download: ML20085C152 (27)


Text

e . -

), ,

. '. , ., q . .

<l ,

) ,'

'\ l '

e

v" s

e, .

-. , s s .. : . .

\ , .

y ~ +

  • ' Q ,

f_. ' ; ' . .. ,

._,V .

. , .-. : - . ' , . . . . *(

e , .

s - , .$ .

. _. *y -

._. I. . . . ; ,

.:t

~

' ' ' ~ '

.y ,

.s .e.

. : . .. - . . . 6, , . . i;, . . .p ',,

. 4 .

,rv ,

4 y : . .. - -

.y,,

s , . . . , , , ,- A u. . . . . p . * ,

,4 ,..,

. 'm , .

w

, ,,r 9.-

, , ,. a. , . ,..

z,a

,3 1y, ..,...

, ,, , .. . . , s

-s..g.. e .e

.'p'.,..,. s.

e 3 ,. s qg '. .- . ,

n l. ' ? .. g, .,4. , .. , '., ' .s . , i, ,i,,: - ' -

1,

. " , - . - , . .., . c. ,

a ..

- i .

't , ,, . . . . <

c

..: .

  • 4

, ',, A . . ,,1,...

..8

<i

^ ..

,f , ., ,4,y, . . . -

+ ,, , )- 4 , , ii. w

.r....? ......,a,

.j, ,.,

, ., v . c .,,,,7,

,.' -tg k .

e, . . ,.

t.'  % .;e . < *

.. g . ". i -+ , l : -4% ). j ' >,A Q ' n '. 3 .s

y. .

4y^.,

3 ,,, . , . .

..5.  % r '.

's +. . ; a :.i, , ' '

4

,, q ,, , ,h -

, , ; . * ,..5 g i ql7 9 ; w, pa y,/'i %e y'. p l %p .P f s..... p g. i. y ..A , e. .fo.,9.'./.3W - ; ,4

i. a e j %.n % ,

A ,,'A , , ..

3,-f c f. u4 ..p. v. ..,e es *

q

...g M ,4 , p :v. . .o s,. , , . . . 'e. t < ,b -

.,.__..._.3_.--..- 4 eg s. 1 s -

. w. ,

s ,.g .,

. . ,, , z

, d. .

s t

, t.

: . 4

. ; .. s .. *

, , y .o - - * . ...

. . f. . .s. . . -..- ., * . . , . . .

4 i .. .

q.=..4 e

t

.i

.> . .,. - m'- .i j , , , . . , * .

Al,.

.. i.

s .,-

' . . ,; , ', ,sM s

.'i pp

y. -

9

).....

. ,. - .. . c. t

. , i ,. ., . .

a 9 -

{'l .7

's.... ,'- ' . ,s ' . . , .

1 y

,' ah , 7 k1 .; -

3;

.y .

,.s

- '. , .,4... .",

w .. 'c

.. .t.  :, .

,t ,d . '. .,p..

f c..., ,

. i 4i' ' .

4 .. .g .

..6

., A ;' . . m g:, , l .g

. . u :i . < ;*

- .;(, l ji, f, I. .

, j' . . , -

'1

'.- p < ; / 'I. ,

, / '. i

- A , - is . <

' d ;, - j $..

',y ,(

1,0 '. '

s

[- '.

] . h f '. ' 3 [ ., ..?. '

1-p .; ,

g,f .,

,, k # '

} 4. ' W e] ,

~

. v.., ,.

.. u.r /,,r.w,.mma. . -. . m.. j ..; , . . . .. , . , . , .,> > w ~ . ..

. . i : .- .

,1 .9 ,. ,

g 3. , .

3 . . ' " , , ,# , . ' 4 ,0 . y . '

, ,, .t:

4, , , . . .. . ' . ,,. - 1 /

,. .~:M...

q. ,",- ,

,E .

. ,

  • i

, , ., . .'A ,

. *. 3. ,s , .

t.... . .,

.g .c, ,

.x n  ? ., - y, .

. , - <.  ; ....N . '

'. ./ n - ; Vi

.l, , t JE q

.}{

't, c.*'

,*n .,

s

. .Q , ,

- g:/

,t

,
\.

.t ,,.

r, .ga,.

~ . . _ _ . * / - ',

e 4

. . ,.L. _ y . ;A t

.'?s

,.g h . ~,

,?

"**( , . ;

.p , , . i

.'[, g $f, , , '. .[ ' , .

. , . - -N

,s. ,

.n .; * - ..: . - . . . ~ , . .. . . .;.

s og c . . .. .,, - w

3. ' ...- .,-.. . .

. . . , . , . L '. ..

' .$te.; . < , ' , .. 2.- ec3 e . , , . . , ,-

' t .

' ^ ^ ' . .

s y - ' . J *

~. ' . . . - = . -.,.. - ' . , -,\ ;. ' .. - -

-s  %

i

- - . , ., ..g, .

. g .' #

....m.#..+.o+,rm.y..-..............'........c.4%,.....:...*' ' .' ' ' ' .p ,. ,.

4 -

e -

T,k: *.N*P'". ."M,"'"I,["',"' """. .* l'TY 9..

I..*

.( .

. . r. , - - , . , - , , , q ,, . . . , .

, - ..,,i.,*.,.,;.c.

. . - ' ,I. f

_.y ,. A.*.-. y

...,g,

,, =9

.l' j*f ,,.y

' J' g ..

t

. . -' p

i. ,,..

. , . , , . ,,-. et .' . . ,j

, ,-l ,, .._,4. , , ), .

'. j .'. ; y, . " . . , .jo . ,, i K

,W .,, , .~

. s 'u

~ ,;

. , . ., ga ' -'

, ., - * , , . . ,. . . . , ' ,'.c . . , . .

, ~ .' , 9 . . .; t si

  • y. ae' . . ,, . , , ..

,e

.. d e; jg..

( . ,, . i'%,. *f. !., ,.4,'-[; , , ' ' - i' d.. f.(.*' ;.,' ;,,,. r- [,

Tx " - ., *. ~ ~t' ~y ( , *

  • l i,.

. . s.. * . . . .j. . . - ,r

,t .

,.y,(

,3

, g ., t.. . . . , - .y ,-

,,, . ., -5.. - - - , - . .

, .. ., ,.... .. .',., ..v e.* 'J A . ' ..*' , < <. .s., . - ' .s,..'.

g

.,*..$**f's as , ', .. . . . . . , * .,, ' ., ,1. l. i,

. 4 [q ' ,,j. , f 8

. - ,. . .. 9e

,# ;i , ,i

( ' '19 , , . . ', I , #

4

',,J.'

., . g '.'2, A ']' '

.,..- }... .

.. - ' . i ,? n

-<.,.~l

.y

. .'(..,

a. * -.3 p

, ' . ' ' . . ' .. D 4 ' '

n'

,.'..j,,p -

8 1 ,.

.-\ ', . . " . ' ' , g

' (t '- ' .. . . . * . , , -*g . .

. . ~ . . ,' ',(':

. * . ',i, a . . ', ,' '

.,,- y . * . ,'

  • . f d

g.

g . - ,'.. . . - [. g *

' . g43g---.,',

g '.....

. , . ,.} .f .'

. s , s .' . * ,N, .

'. . /,. ,(},

s , ,

l g - ' , s

.'..s'~..-(a*;,',.,'",,

^

Ji g*)

,c, l',- g d- .

.:. g - : . ::.',.... .' ,- *

.'M'.

,r

'..,'[*

t  ;. .'-

s . .

,t- . - -

,.e 4 p.

+ L.. .y* -

9- :s,-

,}. :g' :; ,f 7$'.

- a,%. ... ." . [ ,I .e II I'.[ e.. 3[:, *[y b r 4 jj 4

g

, ;- ( . '. , -[0

~' 3 ,

o .

L[ [.h.,..., .n p.

..; ., . y. 5 f.

~

  • (,' '. ' N] ,. g., l

..m..:,..

,, 4 ~,m , .

.' .. .~: ... ,. . . . L . . ' . y . L

  • h . ' ., ;. : - .. o-.: .. . . s 7.c, b u" u. -u M Q :.g og

[. . g

.a n.L . ;: .g w wumuma m

'pu y;; 1 h ;j'.,,,e' V f . T : >:. ' .;' mm + ., p . . . R e y' $9 ;y' , .g4 . .s j . m y J .. a f/ ,

e: v, [.

f.;,_;.:fiQ@i:Y;m ' , 7 .: y. . :.; .gy

%:.% Di '

.,3i Q ' ,

.:- , Q ,. ',..!. ; - l. f f, w. } y &.,.~ ,y g- %lhp' s; :Wf,p;.M y . w. . , . c.ylQi GM:: '.t:% & i; 9.9 ' '

%:yy .y; ..; . '. .F.%

c . .

.t.y.'.'x;'j g , .49%,;. u.4y'- hJ,? ..t w 3% i

. h.va[);n f, . \

. ' ..[ j A. - : .; ti .,k g.. L'.." ~ . . .,' fj>. W,j;('..I'[vh. >. y;.'; i.. * / ,X$Q.gm. .; t M ..e,

. , r.'. . '

I c

bg;'&.;.V'%

- n ~ 7[.ydgi'ff...j}l.";,.N,D,t

 %, . 4 .c

+

e.. ~, 'v ,

m.hN. , , C;t . .

k @ A'y +X Q, n J, N. .v si

+ '. s ,F . r+

+t d.c

.. U? e*' i. a. ~.

M w&;O o... ..

l.ti .., t . # y.. . . ;.d.;N 5 a ..,e. ;;,- e.

l% j.

[> . 4;" a; j :y . . .;'M .%y

' i t

' - ' . .I i }Q '

_V,1, s % ..

.%.' h . +%-

[. .- . .. ,Q "*.yy9 f.j j h p,.'.h( .. ."u Q . j'h '~.m[

. e . .'. , m q[&.

hh., . ' . g <] ,E.k.b L ,g.' ...um ' h.h , y%.M,w,

. ,l

..z(l#

.A,-

. .. w. . .w . ..a y.

[? k,h h'M ;N '

  • . .' [ . e N M, ' Y.k, h .

_.m .3) .

WCAP-12949 HEATUP AND COOLDOWN LIMIT CURVES FOR NORKAL OPERATION CALLAWAY UNIT 1 (Capsule Y)

J. H. Chicots N. K. Ray May 1991 Work Performed Under Shop Order VMSP-139 Prepared by Westinghouse Electric Corporation for the Union Electric Company Approved by: -

A T. A. Meyer, Manager Structural Reliability & Plant Life Optimization WESTINGHOUSE ELECTRIC CORPORATION Huclear and Advanced Technology Division P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355 0 1991 Westinghouse Electric Corp.

TABLE OF C0flTENTS 12111911 1111C h3R 1 INTRODUC110f4 1 2 FRAC 1URE 10VGHt4ESS PROPER 11ES 1 3 CR11ERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELA 110!dSHIPS 2 4 HEATUP A!40 000lDOWil LIMll CURVES S 5 ADJUSTED REFERE!4CE TEMPERATURE 6 6 REFERENCES 14 i

LIST Of ILLUSTRAT10!iS f.19ER lith PIE 1 Callaway Unit 1 Reactor Coolant System Heatup Limitations 12 (Heat up rate up to 60'f/hr and 100*f/hr) Applicable for the First 17 EfPY (With Margins 10'f and 60 psig for Instrumentation Errors) 2 Callaway Unit 1 Reactor Coolant System Cooldown (Cooldown 13 Rates up to 100'f/hr) Limitations Applicable for the first 17 EfPY (With Margins 10'f and 60 psig for Instrumentation Errors)

LIST Of TABLES Mh Title Eaag 1 Callaway Unit 1 Reactor vessel Toughness Table 8 (Unirradiated) 2 Summary of Adjusted Reference Temperature (ART) at 1/4T 9 and 3/4T Location 3 Calculation of Adjusted Reference Temperatures for 10 Limiting Callaway Unit 1 Reactor Vessel Material -

Lower Shell Plate, R2708-1 4 Calculation of Adjusted Reference Temperatures for 11 Limiting Callaway Unit 1 Reactor Vessel Material -

Lower Shell Plate, R2708-3 ii

l. !!iTRODUCT10ti i

Heatup and cooldown limit curves are calculated using the most limiting value of RTf4DT (reference nil-ductility temperature) for the reactor vessel. The most limiting RTliDT of the material in the core region of the reactor vessel is determir.ed by using the preservice reactor vessel material fracture toughness properties cnd estimating the radiation-induced ARiliDI -

RTt4DT is designated as the higher of either the drop weight nil-ductility transition temperature (liDTT) or the temperature at which the material exhibit:

at least 50 ft-lb of impact energy and 35-mil lateral expansion (normal to the major working direction) minus 60*f.

RTiiDT increases as the material is exposed to f ast-neutron radiation.

Therefore, to find the most limiting RTl401 at any time period in the reactor's life, ARil4DT due to the radiation exposure associated with that time period must be added to the original unirradiated RTilDT . The extent of the shift in RTt4DT is enhanced by certain chemical elements (such as copper and nickel) present in reactor vessel steels. The fluclear Regulatory Commission (f4RC) has publithed a method for predicting radiation embrittlement in Regulatory Guide 1.99 Rev. 2 (Radiation Embrittlement of Reactor Vessel Materials)lll. Regulatory Guide 1.99, Revision 2 is used for the calculation of RTt4DT values at 1/4T and 3/41 locations (T is the thirkness of the vessel it the beltline region).

2. FRACTURE TOUGHtiESS PROPERTIES The fracture-toughness properties of the ferritic material in the reactor coolant pressure boundary are determined in accordance with the t4RC Regulatory Standard Review Plan (2). The pre-irradiation fracture-toughness properties of the Callaway reactor vessel are presented in Table 1.

I

i 3. CRITERI A FOR ALLOWABLE PRESSURE-1EMPERA1URE REL AT10llSHIPS l

The ASME approach for calculating the allowable limit curves for various heatup and cooldown rates specifies that the total stress intensity factor, K; for the combined thermal and pressure stresses at any time during heatup or cooldown cannot be greater than the reference stress intensity f actor, K;g, for the metal temperature at that time. K lR is obtaitted from the reference fracture toughness curve, defined in Appendix G to the ASME CodeI33 The KIR curve is given by the following equation:

Ki g - 26.78 4 1.223 exp [0.0145 (1-RTl4DT + 160)] (1) where Kjp reference stress intensity factor as a function of the metal temperature 1 and the metal reference nil-ductility temperature Rit4DT Therefore, the governing equation for the heatup-cooldown analysis is defined in Appendix G of the ASME Codel33 as follows:

CKIM + KIT 5KIR (2) where Ki g stress intensity factor caused by membrane (pressure) stress KIT = stress intensity factor caused by the thermal gradients KIR - function of temperature relative to the RTl4DT of the material C - 2.0 for Level A and Level B service limits C 1.5 for hydrostatic and leak test conditions during which the reactor core is r.ot critical 2

At any time during the heatup or cooldown transient, K;g is determined by the nietal temperature at the tip of the postulated flaw, the appropriate value for RTNDT, and the reference fracture toughness curve. The thermal stresses resulting from the temperature gradients through the vessel wall are calculated and then the corresponding (thermal) stress intensity f actors, Kli, f r the reference flaw are computed. from equation 2, the pressure stress intensity factors are obtained and, from these, the allowable pressures are calculated, for the calculation of the allowable pressure versus coolant temperature during cooldown, the reference flaw of Appendix G to the ASME Code is assumed to exist at the inside of the vessel wall. During cooldown, the controlling location of the flaw is always at the inside of the wall because the thermal gradients produce tensile stresses at the inside, which increase with increasing cooldown rates. Allowable pressure-temperature relations are generated for both steady-state and finite cooldown rate situations. from these relations, composite limit curves are constracted for each cooldown rate of interest.

The use of the composite curve in the cooldown analysis is necessary because control of the cooldown procedure is based on the measurement of reactor coolant temperature, whereas the limiting pressure is actually dependent on the material temperature at the tip of the assumed flaw.

During cooldown, the 1/4 T vessel location is at a higher temperature than the fluid adjacent to the vessel 10. This condition, of course, is not true for the steady-state situation. It follows that, at any given reactor coolant temperature, the AT developed during cooldown results in a higher value of KIR at the 1/4 T location for finite cooldown rates than for steady-state operation. Furthermore, if conditions exist so that the increase in KIR exceeds KIT, the calculated allowable pressure during cooldown will be greater than the stcady-state value.

The above procedures are needed because there is no direct control on temperature at the 1/4 T location and, therefore, allowable pressures may unknowingly be violated if the rate of cooling is decreased at various 3

intervals along a cooldown mmp. The use of the composite curve eliminates this problem and ensures conservative operation of the system for the entire cooldown period.

Three separate calculations are required to determine the limit curves for finite heatup rates. As is done in the cooldown analysis, allowabic pressure-temperature relationships are developed for steady-state conditions as well as finite heatup rate conditions assuming the presence of a 1/4 T defect at the inside of the wall that alleviate the tensile stresses produced by internal pressure. The metal temperature at the crack tip lags the coolant '.emperature; therefore, the K1R for the 1/41 crack during heatup is lower than the KIR for the 1/4 T crack during steady-state conditions at the same coolant temperature. During heatup, especially at the end of the transient, conditions may exist so that the effects of compressive thermal stresses and lower KIR'S do not offset each other, and the pressure-temperature curve based on steady-state conditions no longer represents a lower bound of all similar curves for finite heatup rates when the 1/4 1 flew is considered. Therefore, both cases have to be analyzed in order to ensure that at any coolant temperature the lower value of the allowable pressure calculated for steady-state and finite heatup rates is obtained.

The second portion of the heatup analysis concerns the calculation of the pressure-tr perature limitations for the case in which a 1/4 T deep outside surface fluw is assumed. Unlike the situation at the vessel inside surface, the thermal gradients established at the outside surface during heatup produce stresses which are tensile in nature and therefore tend to reinforce any pressure stresses present. These thermal stresses are dependent on both the rate of heatup and the time (or coolant temperature) along the heatup ramp.

Since the thermal stresses at the outside are tensile and increase with increasing heatup rates, each heatup rate must be analyzed on an individual basis.

Following the generation of pressure-temperature curves for both the steady state and finite heatup rate situations, the final limit curves are produced by constructing a composite curve based on a point-by-point comparison of the steady-state and finite heatup rate data. At any given temperature, the 4

allowable pressure is taken to be the lesser of the three values taken from the curves under consideratton. The use of the composite curve is necessary to set conservative heatup limitations because it is possible for conditinns to exist wherein, over the course of the heatup ramp, the controlling condition switches from the inside to the outside, and the pressure limit must at all times be based on analysis of the most critical criterion.

Finally, the 1983 Amendment to 10CfR50l4) has a rule which addresses the metal temperature of the closure head flange and vessel flange regions. This rule states that the metal temperature of the closure flange regions must exceed the material RTNOT by at least 120*f for normal operation when the pressure exceeds 20 percent of the preservice hydrostatic test pressure.

Table 1 indicates that the initial RTND7 of 40'I occurs in the vessel flange of Callaway, so the minimum allowable temperature of this region is 160'f. These limits are shown in figures 1 and 2 whenever applicable.

4. HEATUP AND COOLDOWN LIMIT CURVES Limit curves for normal heatup and cooldown of the primary reactor pressure vessel have been calculated using the methods discussed in Section 3. Figure 1 contains the heatup curves for 60*F/hr and 100*f/hr. Figure 2 co'itains the cooldown curves up to 100'F/hr. Both figures 1 and 2 are applicable for the first 17 EfPY of operation. Margins of 10'f and 60 psig are included in the development of heatup and tooldown curves to allow for possible instrumentation errors.

Allowable conc.binations of temperature and pressure for specific temperature change rates are below and to the right of the limit lines shown in figures 1 and 2. This is in addition to other criteria which must be met before the reactor is made critical.

The leak limit curve shown in figure 1 represents minimum temperature requirements at the leak test pressure specified by applicable codesI2'33 5

The leak test limit curve was determined by methods of References 2 and 4.

The criticality limit curve shown in Figure 1, specifies pressure-temperature limits for core operation to provido additional inargir during actual power production as specified in Reftrence 4, lhe pressure-ten.perature limits for core operation (except for low power physics tests) are that the reactor vessel must be at a temperature equil to or higher than the minimum terrperature required for the inservice hydrostatic test, and at least 40'f higher than the minimum pressure-temperature curve for heatup and cooldown calculated as described in Section 3 The maximum temperature for the inservice hydrostatic test for the Callaway Unit I reactor vessel is 240'f. A vertical line at 240*F on the pressure-temperature curve, intersecting a curve 40'f higher than the pressure-temperature limit curve, constitutes the 1101t for csre operation for the reactor vessel, figures 1 and 2 define limits for ensuring prevention of nonductile failure for the Callaway reactor vessel.

5. ADJUSTED RErr.REtKE TEMPERATURE from Regulatory Guide 1.99 Rev. 2 {l) the adjusted reference temperature (AR1) for each material in the beltline is given by the following expression:

ART Initial RTilDT 4 ARTtJDT 4 Margin (3)

In'tial RTl1DT is the reference temperature for the unirradiated material as defined in paragraph l182331 of Section 111 of the ASME Boiler and Pressure Vessel Code. If measured values of initial RTilDT for the material in question are not available, generic mean values for that class of material may be used if there are sufficient test results to establish a mean and standard deviation for the class.

ARTt1DT is the mean value of the adjustment in reference temperature caused by irradiation and should be calculated as follows:

6

ARTNDT = [CF]f(0.28-0.10 log f) (4)

To calculate ARTNDT at any depth (e.g., at 1/4T or 3/41), the following formula must first be used to attenuate the fluence at the specific depth.

f(depth X) " Isurface(' ' ) (6) where x (in inches) is the depth into the vessel wall measured from the vessel clad / base metal interface. The resultant fluence is then put into equation (4) to calculate ARTNDT at the specific depth.

CF ('F) is the chemistry factor, obtained from Reference 1. All materials in the beltline region of Callaway were considered for the limiting material.

From Table 2, it can be RTND7 at 1/4T and 3/4T are summarized in Table 2.

seen that the limiting material is lower shell for heatup and cooldown curves applicable up to 17 EFPY. Sample calculations for the RTNDT for 17 EfPY are shown in Tables 3 and 4.

7

iABLE 1 CALLAWAY UNil 1 REACTOR VESSEL TOUGHNESS TABLE (Untrradiated)

CU N1 1-Ril4D1 (a)

Material Description (%) (%) (*f)

Closure Head flange, R2704-1 -- --

30 (b)

Vessel flange, R2701-1 -- --

40 (b)

Intermediate Shell, R2707-1 0.04 0.57 40 Intermediate Shell, R?707-2 0.05 0.59 10 Intermediate Shell, R2707-3 0.06 0.61 -10 Lower Shell, R2708-1 0.07 0.59 50 Lower Shell, R2708-2 0.05 0.57 10 Lower Shell, R2708-3 0.07 0.59 20 Intermediate and Lower Shell 0.04 0.06 -60 Longitudinal Welds, C2.03 Circumferential Weld 0.07 -60 l0.06

a. The initial RTHDT (I) values for the plates and welds are measured values,
b. To be used for considering flange requirements for heatup/cooldown curvesI43 8

TABLE 2

SUMMARY

Of ADJUS1ED REFERENCE TEMPERATURL (ART) AT 1/4T and 3/41 LOCA110l1 17 EfPY RifiDT at COE20Atal 1/4I !*fi 3/4I f*fi intermediate Shell Plate, R2707-1 88 73 Intermediate Shell Plate, R2707-2 67 50 Intermediate Shell Plate, R2707-3 58 38 Lower Shell Plate, R2708-1 125 (91) 107 (84)*

Lower Shell Plate, R2708-2 67 50 Lower Shell Plate, R2708-3 95* 77 Longitudinal Welds -5 -22 Circumferentiti Weld 2 (20) -:2 (4) 0, RTNDT numbers within ( ) are based on chemistry factor calculated using capsule data.

  • These RTNDT numbers used to generate heatup and cooldown curves applicable up to 17 EfPY 9

TABLE 3 CALCULATION Of ADJUS1ED REFERENCE TEMPERA 1URES FOR LIMITING CALLAWAY UNIT 1 REAC10R VES$El MATERIAL - LOWER $ HELL PLAIE, R2708-1

.ELqulatory Guide 1.99 - Revision 2 17 ffPY Paramettt 1/4 T 3/4 1 Chemistry factor, CF (*f) 44 (26) 44 (26)

Fluence, f (10 19 n/cm2 )(a) .7567 .2686 fluence factor, if .922 .642 ARTNDT - CF x ff (*f) 41 (24) 28.3 (17)

Initial R1NDT, I (*F) 50 50 Margin, H ('f) (b) 34 (17) 28.3 (17)

Revision 2 to Regulatory Guide 1.99 Adjusted Reference Temperature, 125 (91) 107 (84)

ART Initial RTNDT 4 ARTNDT ' Margin (a) fluence, f, is based upon fsurf (10 I9 n/cm2 , E>l Mev) 1.27(5) at 17 EFPY. The Callaway reactor vessel wall thickness is 8.63 inches at the beltline region.

(b) Margin is calculated as, M 2 ( oj2,a 230.5 The standard deviation for the initial RTyg3 margin term, og, is assumed to be 0*f since the initial RTNDT is a measured value. The standard deviation for ARTNDT term, oA, is 17'f for the plate, except that oA need not exceed 0.5 times the mean value of ARTNDT- DA, is 8.5'i for the plate (cut in half) when surveillance data is used.

The numbers within ( ) are calculated using surveillance capsule data.

10

i TABLE 4 CALCULATION Of ADJUSTED REFLRENCE 1EMPERATURES IOR LIMITING CALLAWAY UNIT 1 REACTOR VLSSEL MATERIAL - LOWER SHELL PLATE, R2708-3 Rt9ulttnr.rlutde_ld9 - ReyiElon 2.

11.1f PY bramele.t _1/4 1 3/4 T Chemistry factor, Cf ('f) 44 44 fluence, f (10 19 n/cm2 )(a) .7567 .2686 fluence factor, ff .922 .642 ARTNDT - CF x ff ('f) 41 28.3 Initial RTNDT, I ('f) 20 20 Margin, M ('f) (b) 34 28.3 Revision 2 to Regulatory Guide 1.99 Adjusted Reference Temperature, 95 77 ART - Initial RTHDT + ARTNDT + Margin (a) fluence, f, is based upon fsurf (10 19 n/cm2 , E>l Mov) - 1.27 at 17 EfPY, The Callaway reactor vessel wall thickness is 8.63 inches at the beltline region.

(b) Margin is calculated as, M = 2 [ 03 2 + oA l .5 The standard deviation for the initial RTHDT margin term, aj, is assumed to be 0*f since the initial RTNDT is a measured value. The standard deviation for ARTNDT term, 0 4, is 17'f for the plate, except that oA need not exceed 0.5 times the mean value of ARTHDT-The numbers within ( ) are calculated using surveillance capsule data, 11

tiderial ProMr1Y_Ealh 1/41 Limiting Material: Plate, R2708-3 3/41 Limiting Haterial: Plate. R2708-1 Cop >er Content: 0.07 wt. % Copper Content: 0.07 wt. t Nickel Content: 0.59 wt. % Nickel Content: 0.59 wt. %

Initial RTNDT: 20'f Initial RINDT- 50'f Limiting ART after 17 EfPY: 1/41, 95'r 3/4T, 84*f 2 U ^ my- . - - -

i , .

-1 -

.. i

-~+-

r LEAK T:ST LIMIT  ; I I  %

~

. . , , i n- :

i ii  ;

t~j- ir- : ;1ii ' i4 i

~

r *- , i-+-~f n i , : f ,< r * -T-

,, i , , , .

, , j ; i ; :- r* f j , ,

  • ^~

i

.... i  ! i I  : .I i 11 I . < '

~ '

  • / b / I

d' d, .lH U!i

!![! i!-W- f H -t- lm , ,
  • 7* 1

, >!  ! i

'! ! CRITICAllTYLlHliBASEDl i !- .i L1-41 " )i

! '.: '!' 1  !

._L . ON HEATUP CURVE UP TO J t

,ll i,

i
-+

!l ,,

',f i

_f q!i[" Mm H *

,>iii 60*I/HR i ,i4 i

9

^

u - _.a u UNACCEPTABLE 7 T  ! t '

'i'i 1

'1 -li,iaI 4

3 #

~~

l: 'l OPERATION  ; i  !' ,

ACCEPTABLE i - ib

$ A4 iy l7 OPERAT10N .!,  ;

w cc

  • g.c i

4

!'ii u

~!Li.' 1~ j_4 .I7_ > 1;; / /

i 4

1

"~~M i  !'! 1 D 1 /!!l7..I! ! i  !! '. <

i  ! +

'1  !

_ i t t  ! !

N i_ ' '

Li  !.

il

!/i l

! /l I ' ' i i I!i  !

! d'

/'

.j! --J W l!'  !' CRITICAllTY LIMIT BASE 0 - l

' I M '. [ ,

1 W . ' HEATUP RATES

-. ON HEATUP CURVE UP TO " *-* C g t t UP TO  ; g' yif 't.i I- ~Q m *0'F/HR 10 ,j

,j!,,, ,

l ,, ,

{

60'F/HR - w7 - lM ~ .fi i i i T i:/ / i!' -

!  ! i i ' i iT' E

u s:

i i 1! 100'F/,HR

,! , N/n f r  ! i <

i

, i , , ,

! lYi!l .

i !N  !'I !M_i l

~

i

! ._n'

_W .

l:  ; OrV .,  !  ;',iii  :; i

! i , _ ;i i,,1 ,i ,

j

^

i ^l' l{~'l j! l CRITICAll'if LIMIT BASED ON !J i i i IN5ERVICE HYDROSTATIC 1EST  ! i

~~0 2i

i!  ! 1'! TEMPERATURE (240'F) FOR THE  : i

~~

+

~i

.l'i t i i t i l' lll i'i i  ! !

SERVICE PERIOD UP TO 17 EFPY i!  !  ! I I I TI !II j

i i I I , i I i ,

i ,

i i i i !ii i i i i .

g i i j , , ,

i  ! <

i i , >

1+! 1ii  !  !

O 50 100 150 E00 E50 300 350 400 450 500 INDICATED TCWPERATURE (DEC r)

Figure 1. Callaway Unit 1 Reactor Coolant System Heatup Limitations (Heat up rates up to 60'F/hr and 100'F/hr) Applicable for the first 17 EFPY (With Margins 10*f and 60 psig for Instrumentation Errors) 12

tigurial ProAtr.ly Basis 1/41 Limiting Material: Plate, R2708-3 3/41 Limiting Material: Plate. R2708-1 Copper Content: 0.07 wt, % Copper Content: 0.07 wt. %

i Nickel Content: 0.59 wt. % liickel Content: 0.59 wt. %

20'r Initial Rit4DT: 50'F Initial RTND1:

Limiting ART af ter 17 EFPY: 1/41, 95'F 3/4T, 84*F 2500: ._.:. r m i , , i 1 i .. ii,i i! i +t  !  !  ! I iiiii' i! i i j . i i i ,j i ie  ! i !I i ! . i

] i .

! r i

! i i ! l , i ie i ,J i  ! i 1 ,

i4  !

, . . , , , , i ; ,  !  ! ! ! ,

ii , , , , , , ,  ! , , ,

c n .' , , ,i, , i i i iii! , , ,

.i !1 , , , , , , . , ,

j  ! <j i i !l . ! i i . i if i i ., , ie i i i  !

i e . ,

i.ii.ii  ! ii ! f i I i i fi i i i ! e i i i i e i  ! ! ' ' i ! i 4

. 4

!i. ii , , i is i i . , , i i

-y g), , , , ,,, i , ! !.! ! , i !

!, i r i

, i , ,

. . . . 4 i

, , i , .  !  ! i 1

! i i i , , i i ! i

' i i i ,

i 4 i i  ! ! i  !

' ' i 1 r i e ! !  ! i ! i i i i .

i  ! ,i, 4 i 8  !  ! i! >

i !

! 8 i i ! ! .

j  !  ! i jf iii,, ,

i i i i < i i I

.,i , i i i 3., iii _j . i i  !

i .

!f 4 i 6 e i . . i  !  ! I

.':D i! ,jiii  ! i i I i  ; i i ! i i ! i i i e i i i, ,

i i

, , , ! , , , , , , i , ; , , ,

. . /

, ,' . i i . ....! , i i . 1 / i i3 i i ; i . i , , 4 _ ;u.

, ,i ,i,  ! .I , , . . 3 , , , , i

  • i

! ;i! UNACCEPTABLE i ! r i .41!i , , i i; , , , i , . .

,'-c q- L>t 4

' ' i+ ' ' '

2

> , !, , ', ' ', OPERATION !I it i 1 1 . ! ,.

i , ,.

i i i i . . . . i

,3 a . ,.,, ,

! ! i ,

r , ,

. !i , i i , , , , i , , ,

-- . 1 , ,  ! i i i  ! e i 4 i ,

i i ! . i i i y .g g  !.4 i + ' i  ! 't ACCEPTABLE ' '

p '

! i g .

. ' ' +

', t if OPERATION ,.

', i ,

i I i 1 , e i i I ' / . I i i i I i  !  ! i  ! 4 1 't i

, j l , , i i i / I . i i i i i . , , i i. . ! . .

g 2  !  ! !/ 1 ' I . i i ' I I I l i i' ' i !  !

ge$nt ', i t 6 e e i i , i i i i  ! , i . ,

4 4kvVf i i , j i 6 if i i !

s i i i i i i g i i . i ji  ! _'f' i t i ! i !

w , , , ,! , r ri i i

, i i !

, i i . ! , i .

i , , i .

, i i . ,

i , ,
, , , i i i . . . . i . .

3 .)g i  ! i ' t  ! ' ' ' ' '

L e-  ;

COOLD.OWN RATES F/HR,ii ,

i', , '. 'i' , '

i .

Oc- ,

-,: 20 Q+yI ,v;/

i ' i i'ii'i'ii! l .

' i > i<

!_! >! ii :i i - i . . ..i i

-, 40 e i6 a i i ! !  !

i i , i e i i.,i i 9 4 .

i !

.e , ,  ! i 60A . ,i f,i i,, iii , , i i , i , , ,,,,,, , , ,

100 ,,, i i i  ! i ! i i i , . .i , ... , , , , ,, , i

  • i

? i

  • I 6 i i , ji i . I i ! i i i t i ! ! i i i i . . . , i i i
00) , i ; i  ; i i i i ii i , i , . I j i . , i e . 1 ; 6

, i i i i ! ! i i ) i , . . ! i ! . ;Ti . i , .. . i ,

i , , , , ,

i i ii ; , , , , , ! , i , , , ,

i . i i a  ! i  ! 4 i I e i  ! t i i , i i e i .+i  !

3 ,i . , 6 . . i , , i i , , , , , , ,

1

, , i , i j ,,i i 7 400 450 500 0 50 100 150 200 250 300 350 INDICATCD TCWPERATURE (DEC.F) 1 SCP C00LD0*H CURVES RCC. CUIDE 1.99, REY 2 #1TH uARCIN Figure 2. Callaway Unit 1 Reactor Coolant System Cooldown (Cooldown rates up to 100'F/hr) Limitations Applicable for the first 17 EFPY (With Margins 10*F and 60 psig For Instrumentation Errors) 13

6. REFERENCES 1 Regulatory Guide 1.99, Revision 2 " Radiation Embrittlement of Reactor Vessel Haterials," U.S. Nuclear Regulatory Commission, May,1988, 2 " Fracture Toughness Requirements," Branch Technical Position MTEB 5-2, Chapter 5.3.2 in Standard _.R,eview Plan for the Review of Safety Analysis Reports for Nuclear Power Plants, LWR Edition, NUREG-0800,1981.

3 65ME Boiler and Pressure Vessel Code, Section Ill, Division 1 -

Appendixes, " Rules for Construction of Nuclear Power Plant Components.

Appendix G. Protection Against Nonductile Failure," pp. 558-563, 1986 Edition, American Society of Mechanical Engineers, New York,1986.

4 Code of Federal Regulations,10CFR50, Appendix G, " Fracture Toughness Requirements," U.S. Nuclear Regulatory Commission, Washington, D.C.,

Federal Register, Vol. 48 No.104, May 27,1983.

5 WCAP-12946, " Analysis of Capsule Y from the Union Electric Company Callaway Unit 1 Reactor Vessel Radiation Surveillance Program *, E. Terek, et. al., June 1991.

Sb 14 l

1

ATTACHMENT 1 DATA P0lllTS FOR HEATUP Al40 000LDOWri CURVES (With Margina 10*f and 60 psig for instrumentation Errors) 15

N, D

O

_ ,, ,@ , ,, , ,e @ m -

+ c1 = 4 th n. Q Os N. *t, J h, eu t4 @

qpw . . .

u@O w O N 7x O m m 9 N h e N w e th  % @ n Q Os h b H tD Q 94 4%

g w -- (4


f*a w 0 e t_r b_ t.o m.. O. . e4 N.M,

-m m

w O tt b b 8s u=O

    • w w 0 0 @ O O O O O c oh0@ Lf10 0 D O. G O e e N N M M *'er'g'6r< tS t.

O ZXw NNNNNNNr U ** w r

W s.

M e O @ b et m O

  • fN f4 *t O tb M (g re fi ts f1 m M m M M M M ,6 d

o 4

E O

w ww ><1iitsi$<>1<ee@@me W l'1 i '

'i i I e@O@

qg(i m. .

00@ i il,'ri  : si 'OMOOMN

  • - weA i *i ). i l' GD N b re b FS 2

w Qw-

,a i~.Liri. i4.(h O O e e N ee-ee O .J wa 3

M w

h$

E o w (L O CK U $

Oud W 2

.4 O

O www OQeOOOOOO 4t O ' d'

.J 0

SuO ww aw - O. .d L.D b. b.--CD . 10 @ n y y

w Q @ M W

h o a 4

M- (Y w U

\

(5 O w ta at c @ b et en O e N m

  • d w -
  • e- e e= w e N EN fN rv N
  • 4 <

w Q

w w w

s f

O >

Q r O *.

8 8 ^ W a O b ww so t.=rf.( ( <3tnsit' tit- ..

O w e >= Ct a f4(-(: 6 1'  ! a +1.s 1 a p

w a 43- -

<r< g tg u upp @c.< > q,, tii t .

Ja e t.- %e4 4s.<'<< < .1 .< ')i it a r

. i,1 ; s > t ; S ? l Qww cii6 1 - f 0 -

w 4 0Z .c Cr J

> > de ma (r 4 == 1 Q GO O

3 O 4 w et w O Cr g

Q D * * - U Cx 0 J .J e t. . ww c 0 :n mOeOcOmO O

O

.J O wa 4w pAQ 2 ;y w an & c O ee e e .-- Ne N. m ewen r U w 0 ** w et B &

4 kJ C1 4E U 1 2 .J

@ t- me w e N .4 4 c @ b e m O e N 16

-~.

)

1 9

/

2 2

/

4 0

D .

EE - ^ - 252 TR) -

' 303 AUI CSS - 299 ISP ' _1 71A DE( 7- ^ mr9o0t 1 NR IP I

E DR M EU) 0000000 W TTF. 0000000 C AA 0000000 CRG - -

J' IEE 50505O5 C DPD 56677f*8 D NM( 11 1 11f 1 C IE T

R H

/ 5678901 11 11122 F

G E

D .$

0 )

2 D

( EE . T - --

TR) ' " C -T AUI 2

CSS ^

ISP 75 Y^

N DE( .'

- 7T -

E NP w

I G L IP R I A

I F t C O E H

R F

DR EU) 0000O00 s t t

T TTF. 0000C00 .

N AA I

W W CRG 0 0 0 0.O.0 0 e O 1EE 0505050 r 2 D 2233445 L d. P DM( 11 11111 e V O .E E

R.

9 C S C R R

A E

1 8901234 q

9 1

O F

P Y

111 1 1 k

D F E. E E j D T W

p i

I T 0 U O 0 G L 0 P D 7 EE 3 3 2 4 O :- 5 i G E 1 TR) 3940C'  ?

0 E R AUI CSS 9150~,.:' -

R E W *T -

ISP 1 346-5555;"

' 5 S DEI '

E V

A DN T O1 NR IP

  • R A Iw U D RO C EA E G P DR

_ N = EU) 0000000 W I M T AAT F.

0000000 O W CH 0000000 D O IT CRG L L TP IEE 5050505 O L AE DPD 899001 1 1 11 1

. O O ID NM(

_ C F D IE AW T P E RA C H EL S T IF 1234567 ~

- M

,j

ft FW N

O O

ww o c M cn e- Q

  • 1 .

40 4 at O w '

uee t t- 6

.mA i eif e gwm sh t , IL v> O wk e

w OQ .

2 O 2 w D. we i

w. p C 44
  • V D U it O ~

.J o

www 00'0000 Q 04O gg O 4e W e- er' o= 6.edee-u ww e-N N N b N he h e == e e rv 4

4 d

o k Y.-

O

- wm m , ,

..44, ,

-u -- ,

i g'

4DM uom I , ,t- I 4 M -ea i +. r c i., .,

2

~ w Qwwu 4)L.i(>g I 1 l' j O J mk  %,

u m g W W y X o w is ou O 1 4 w3*

t)

C g && . O' ' f s a > uue O

a www dMdMON

  • c9 a o 23tx o Ne N, M g- .-ne g ** e * #

> 0 mw O-w Q e e-a v cr 4

01* fE W O m o g

w emoenne eeece p

  • (L 0 w 4 w w w Q >= *
  • e p J 3 35, u O k y) 6 ww tp M b N tD
  • l' O w
  • e- Q ^ f O c m (3w V. M. b M. 04. O. i p

($ e* U@@ CG D D"Ol,'

a 6-

  • e ra ao 0) Ng@'

O QWw 9 V d O @ @ tb w 4 O2 Z (E

> t O~ =4 u 4 og )

D Q 20 V we w Q h. Oa

~ . ws-A M 1 MH6 0 3s 01 < at -

C Q w> U u ($ - . - - -

.s J >- 4 =ww mom Oc O .J *t w OGO to llh (A e

  • O o O Z5w eee-U 6 O ** w 4> M*

A w C4 4 O 1 uJ o H ee w e N M 4 m t.0 6 i IB

,,,..e.

) ]. I1 I 1

/

2 2

/

4 E 0

D EE -- " 54 TC) - 80 AUI C5S ' 50 I5F E2 E- 90 DE( ~

NR 1 IP B

E DC J

EO)

TT Oo0000 Cc0000

? F, .

h C

AA CRG OO.0000 O !EL 505050 O

L C o9(

f t 566779 1 1 ? ' 1 '

C iK C T W

/

F 5m7890 1 11 12 G

2 D

0 g O 6 , E D ' .

EE ^ '

(

TR'

- .' b AUI b C5S .-

' I 4 I5F . -

N OE(

~

"'t -

I E P P k G L IP O R I b

A F

  • O E I R DP e H F EU) 00000)0 S T

I N T AA! F.

00000O0 00000C0 W = CRG - 1g O IEE 0505050 2233445 k J D OPD L P M( 1 11 1 1 1 1 V O iE E C S T Q C R A

9. R E 9 O V 69o1 2J4 t4 1 11 F

1 P D F E E E D T I T 0 U C 0 G L 0 P D 7 EE 0207755 G E 1 TRl 4604363 E R AUi . .

D E CSS 4840878 t

r *T ISP 4579024 S DE( 4444555 E A DN NR V T OI IP Q A IW U D RO C EA E G P DR N N = EU) 0000000 W I N TTF. 0000000 O W OH AA 0000000 D O IT CRG L L TP IEE 5050505 O

O L

O AE ID OPD P M( G99001 1 1 1 1 1

C F D IE AW T P E RA C H QL S T IF i234567 we 1 -

l < t 1IIlii<1l lll[ , 11 ,

e-N) rA N

h o

ww e-j 1- 1 +

,um s\ ,

.N

=4 D d u t's O I. :M M64 (L 1. S w mer &'f> I

-a m

w Z O w {)f*

s --*

4 g g Q' Q M.

g V6!O qx L, wQ

,, .- w w ococos p ,O,,

A b @ @ b o Q. k ----- t.*.

O dw e

.r.s..

O w

o .k g & <

~

o M

- u e.

use 6- w.x  %

M-- ..

.y-g4 .* A a

  • 4* .

2 Qww e4;'

y

~u m b*i 6 4

>< w O .J ** 4 4 k

at 4

, 4 E O w T.

e 4

c6 Ou w3*

> >+ 4 '

'k me * <t 4 - )

'$ 2 U Lt @ o' e, o' c' o' e' -

. ww N.

8w 9 k,. Q..

(* N l'1 M 4 et k

> NW w v4 > OD R N *m

  • 4 @
O =.l> @ O ** N M 4 W ----

D w

Q w w H

h

    • H ^

g a

'- z' g a 4 b ww t+

  • 4 e N f M O w e e tg * 5 Oi N b C4 @

w CT et D ** - *

  • Cs w U#0 7 3 t> om @ Q, @

t te 'a)ONN** w*wMem S O Oww M M M 4 4 57 9 w

4

> u >=

QZ ZW

    • 4 tr e == 3 3 Q 4K C U w es w g
g. G.

O te ws-A ee 7 www O D dI et et +

g g ws ygg ,.-,..-

w .,i r et *= w w mOoOmom

,J es w nc Q *c $ 01 O O

  • e 8 O ** C ZEw "**"

u w a *~ w A JE &

A W 2 et U 1 Ew ehMMC@b 20 m . ..> e

, ,, ,, . ., . y _ - - - - . .

04/72/91 SCP GO DEG-F/HR HEATOP CURVE REG. GUIDE 1.99.REV.2 WITH MARGIN IHE FOLLOWING DATA WERE CALCULATEDFOR THE INSERVICE HrDROSTATIC LEAK TEST.

MINIMUM INSERVICE LEA; TEST T EMPER A Tt.!RE ( 17.000 ErPV)

PRESSURE IPSI) TEMPERATURE (n a.F l 2000 219 2485 240

'RESSURE STRESS 1,5 K12 PRESSURE (PSI) (PSI) (PSI SQ.RT.IN.)

2000 21764 91819 2485 26888 114449

[

i

h6 1

9

/

2 2

/

4 0

D EE 443811 49034441 IR) 05572227276624 AUI CSS 60933896121 848 ISP 74096433457937 DE( 1 2334567890134 NR 1111 1 111'12222 O. IP O

S E

DR EU) 00000000000000 T 00000000000000 AAT F. 00000000000000

= CRG IEE 50505050505050

) DPD 233445566778P3 R NM( 22222222222222 H IE

/ T F.

G E 90123456789012 D 23333333333444

(

)

S N (

,M.

I E G

R A

T A

R D

EE C aO0278022501 1 Ae C

9934434908.-

M TR) 9 P AUI m H U CSS  ; :'

0s'

- 2373249705 3693715061 c

T I

T A

ISP DE( - a'_ 7778899001 c W NR 2.

E H IP 11 1 g

c V

E e E DR r R, EU) 00000000000000 TTF. 00000000000000 .

9 9

2 AA CRG 00000000000000 y 9 E IEE 50505050505050 1 L DPD 56G778899001 12 I NM( 1 111111 1 122222 E F IE D

I O S R R T

9 U P A G

P E

Y 56789012345678 hj U 1111122222222 e s

G. T P E A F b p R E E 3 H 4 E

V R

R 0 O 0 0 1 --

5 g

g u

s U F D

?

)-

O26741227 :2 C 7 - EE - -

D 2cS23573235 e

1T TR) 7 -

P E ) AUI . . -

U T N CSS C' 0? 4473110 70 T T =I ISP 5' 02222345C 70 A O W DE( 6555555555535 _

E L OO NR -

H. -

P CA I -

IP R E R1 H V E1 E

/ R P DR 5 U = EU) 00000000000000

- C N T 00000000000c00 G OH AAT F. 00000000000000 E E IT CRG D T TP IEE 50505050505050 I AE DPD 899O01

  • 1111 1 11112233445 1

0 S ID NM( 1 6 O D IE P AW T P M RA C O RL S C IF 1234567d9o1234 t 1111 m~

e m.

N N

N N

=t O

bw 1*aceNSe6OtD*@N9 ~

m. m . . s. e. n. r N. o. @. . ,, .~. .

-u-4am -

UAM

  • N m 0 5 0 co m v N co *- N o t wea 5m-ebecc@ bomb 9 g;;"c*:*2 =**R"
o. mg 8

- m Ou e ugo . ........ . . .

    • w s CoOOOmOOOOOm O a Qao , or o o @ @ b r- to e m m -

Of ZEw N N N tN N N N N N N EN N M M M A.

-O .

w N m w m @ t- e m O e N m e C W Q MMMMMMMM4444444 w

0%

2E W

~ w 0 w b.

m 4

4 O T

E E ww 'c ' m c N O O c co m O m e c N

g W3^ set W ED O @ = N b @ *
  • M ID O W n'

- ,- -en u b ei

'NNbb

-m-nee-nc-co,s e ib O (D A t y

D 4 QW= 0Ln O @ G @ @ P- b b (O to m o @ -

N N w w *s d

cc . oa. -

@ H 3 ugg . ...... . . . . ... y e w -ww cococon monocon Oe*NNmm w

J w QAQ uEw Whbecem

  • --ee-**NNNNNNNN Q w ** w

~ O @ w Q k 2 v Q. 4 CL 5 CD m O

  • N n v m @ r- to e O
  • O 3 **er1NNNNNNNNNMM e

2 4 w w s a-h w '. I > Q m

3 W

OO h 4 6' bw in m

  • O b *- M N

~'

O.

a Q *> a w

>aa 4-jm tim'c)rsu>*

. t - N b, N. W. @. @. n. CC.

)

O

, w & 2 uem (it>= cyc

,l Cei e t i

r w O Cn n e O

  • m 4 e n=e- ** m cL us-'t>= C i m m tn O
  • N M w Q ww uiL'tSU )'ul WI N T 4 T 4 0 @ @ d O .

.- A Q4 w Q.

I- W &~

1 % > ww w

. m 2 A OE .

o w w- oac . O. ...........

- -a -mw ***g O 0m0 0 0 0 0 8

~

  • E ens *9;;""0022**2 ea O O mw k 43 >

CL 7 34 U U ud-M O w6

  • N M v tn @ 6 co m 0 - N M g m g 23

-.--