ML20214B638

From kanterella
Jump to navigation Jump to search
Exam Rept 50-155/OL-87-01 on 870414-16.Exam Results:One Reactor Operator & Two Senior Reactor Operators Passed Written & Oral Exams.Exam & Answers Keys Encl
ML20214B638
Person / Time
Site: Big Rock Point File:Consumers Energy icon.png
Issue date: 05/13/1987
From: Miller R
NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION III)
To:
Shared Package
ML20214B609 List:
References
50-155-OL-87-01, 50-155-OL-87-1, NUDOCS 8705200348
Download: ML20214B638 (154)


Text

)

l U.S. NUCLEAR REGULATORY COMMISSION REGION III Repor_t No. 50-155/0L-87-01

' Docket No. 50-155 License No. DPR-6 Licensee: Consumers Power Company 212 West Michigan Avenue Jackson, MI 49201 Facility Name: Big Rock Point Nuclear Plant Examination Administered At: Big Rock Point Nuclear Plant Examination Conducted: April 14-16, 1987 Q

Examiner:

. Mill i

GllblO Date.

Approved By:

k, Chief f//1[d Operating Licensing Section Datd

/

Examination Summary Examination administered on April 14-16, 1987 (Report No.50-155/0L-87-01)

Written and oral examinations were administered to one Reactor Operator (RO) and two Senior Reactor Operator (SRO) candidates.

Results: All three candidates passed the examinations.

8705200348 870514 E

?

PDR ADOCK 05000155, V

_PDR

REPORT DETAILS 1.

Examiners R. K. Miller, Sonalysts 2.

Examination Review Meeting Copies of the written examination and answer key were given to the facility personnel for review at the conclusion of the written examination.

Facility personnel provided their comments to the examiners on April 16, 1987. Their comments as well as the resolutions are enclosed as a Attachment to this report.

3.

Exit Meeting On April 16, 1987, an Exit Meeting was held. The following personnel were present at this meeting:

Consumers Power:

W. Trubilowicz, Operations Supervisor A. Thier, Training Instructor NRC:

R. K. Miller, Examiner (Sonalysts)

The exarainer noted that no generic weakness's with the candidates were identified during the operating exams.

ATTACHMENT

^

i

)L

. a.

RESPONSE TO OPERATOR AND SENIOR OPERATOR WRITTEN EXAM COMMENTS Exams Administered at Big Rock Point on April 14, 1987

'* ~

~ Comment:

1.10b Big Rock Point does not pull rods in groups per se, the Big Rock Point rod groups are pulled in sequence with a maximum of two notch difference, therefore worths remain relatively the same.

Response: Comment not accepted. Answer key not modified. Although Big Rock Point may not refer to rod withdrawal / insertion in groups, per the Technical Data Book rods are pulled in a pattern during Reactor Startup which results in a grouping of control rods.

Peripheral

- rods are withdrawn followed by central rods followed by the center group,of four to six power rods; therefore, the concept still applies. (Most of the larger BWR's also maintain less than two notches between rods of a particular group.)

Comment: 1.14 C Question asks whether reactor period will be shorter or longer at beginning of life - therefore for reason ' stated, the answer is longer at BOL than at EOL for some reactivity addition.

Response: Comment accepted. Answer key modified.

Comment: 2.01 The two minute timer is to allow containment evacuat' ion and incorporation of operator input to system logic (RDS Bases in II Tech. Spec. page 140).

i

(:

The function of the two minute timer must therefore be to delay the operation of RDS for two minutes following a small to intermediate break LOCA.

I, i

1 ed ew

..,_,,__-__m__...

Response: Comment accepted. Answer key modified to include the facility's comment as an alternate answer.

Comment: 2.05a Asks for the six valves which close automatically and the answer key lists six groups of valves for a total of eleven valves that close. Any six valves listed of the eleven should be given full credit. Also, CV 4049 treated waste to sphere should be added.

Response: Comment accepted. Answer key modified. The treated waste isolation valve to the sphere (CV-4049) has been added to the answer key. The examiner also agrees that the question could be stated clearer; however; all of the candidates clearly understood the intent of the question.

Comment: 2.10b The examiner asks how the operator knows there is leakage.

The operator knows because he has an alarm in the control room indicating leakage. The answer key discusses the design of the alarm, this was not asked for in the question, and should not be required.

Response: Comment partially accepted. Answer key not modified. The question may need further clarification; however, a point value of 1.50 should imply that more than just the annunciation of an alarm is required as an explanation.

Comment: 2.14 b4 Explanation not covered in any reference. The reason the valve fails closed is because it is an air to open valve (ref. S.D.M. Chpt. 16 page 4 of 16.).

In General the

} question asks why they fail the way they do.

Not why they tiere designed to fail the way they do.

So if the candidate I

answers that they fail closed because it takes air to open

,i a

{

or vice versa this should be considered a correct response.

2

_~.. -

Response: Comment not accepted. Answer not modified.

In general, the stem question asks how the valves fail on a loss of air, or in other words, how is the valve designed to f ail. Therefore, EXPLAIN WHY requires an explanation of why the valve fails to a - particular position. Although the explanation for part b4 will not be found

" word for word" in the S.D.M., use of the given reference in combination with the feedwater_ prints and engineering practice will.

provide the given train of reasoning.

Comment: 3.04 b The candidates may answer:

1. M.G. sets 120 volts
2. lY 120 volts There are two feede (with an A.B.T.) to IY but they are not considered alternate power supplies to the R.P.S. in Ref.

S.D.M. pg. 1-3 and 1-7 also see ref. R.P.S. drawing 0740G30743 Shl Rev. E.

IY is the only alternate power supply to the R.P.S. busses.

Response: Comment partially accepted. Answer key modified.

lY, 120 volts,.

has been added as an alternate power supply.

In addition, it is recommended that the S.D.M. be revised to eliminate the confusion as to what is considered an alternate power supply to RPS.

Comment:

3.05a Part (a) should be thrown out as there is only one alternate power supply to the R.P.S busses lY.

Ref. S.D.M. Pg 1-3 and drawing 0740G30743 Shl Rev. E.

Response: Comment accepted. Answer key modified. Part "a" of question 3.05 has been deleted. Again, revision of the S.D.M. is recommended for the same reason as in the previous response.

3

-Comment: 3.05b Regardless of the information given in the S.D.M.

The single channel trip from neutron high flux, short period and manual trip, would be annunciated as to the cause. Therefore the answer should be false.

See Reference drawings 0740G30743 Sh2 Rev J and G30734 Shl 4

Response: Comment accepted. Answer key modified. The facility should con-sider revision of the S.D.M. to clarify this response of the alarm system since S.D.M. pg 1-7 incorrectly provides an explanation for a response contrary to the above.

Comment:

3.08a Include standby diesel generator.

I t

Response: Comment accepted. Answer key modified.

T

-Comment:

3.08c Local is local.

Response: Comment partially accepted. Answer key modified. An answer reflecting the ability to start the fire pump at the local control panel has been added as an alternate answer.

Comment: 3.10a The answer "OPEN" should also be acceptable as the question is stated you've asked for the position, it would be open at the start and after the loss of vacuum.

Response: Comment accepted. Answer key modified.

"OPEN" is an acceptable equivalent answer to " REMAINS AS IS."

l 4

n 4

Comment: 3.11a Referring to S.D.M.13-46 these actions are not separate actions.

All of the below occur.

I.P.R. trips (solenoid energized)

Speed control solenoid energizes (this is what repositions the outerbushings)

Reference S.D.M. 13-46 and turbine manual.

Response: Comment partially accepted. Answer key modified. The I.P.R. trip and the speed control solenoid energization have been added as equivalent alternate answers. However, whether the response of the turbine generator on a load rejection is in separate actions or not is not important. The candidate should be able to demonstrate a thorough knowledge of the turbine control system response to a load rejection. Requiring a specific number of actions is intended to guide the candidate in determining when he has suf ficiently answered the question.

Comment: 3.13c The reference used by the examiner does not give the answer used by the examiner.

It does not say that 120 psig is the maximum discharge pressure of the fire pumps.

vl50 psig is max discharge pressure. The correct answer is flow starts when Rx pressure drops below fire system pressure.

Response: Comment accepted. Answer key modified. The intent of the question is (1) to identify the reactor pressure at which core spray begins injecting to the vessel and (2) to identify that reactor pressure is less than fire system pressure when core spray injection occurs.

Comment: 5.01 Depending on Bef f used answer to question can vary - therefore l

l if math is correct, answer b or c would appear to be correct.

l

\\

l 5

\\

Response: Comment not accepted. Answer key not modified. In order to obtain "b", 218*F, as the answer the candidate would have to assume Beta equal to.0088.

The expected range of Beta is from.0072 to

.0052.

Comment: 5.02 See question 1.01b or RO.

Response: No comment was made against question 1.0lb.

Comment: 5.12c See question 1.14c of RO.

Response: See response to comment 1.14c.

Comment:

6. 04 See question 3.08a and c of RO.

Response: See response to comment 3.08a and c.

Conment: 6.05 See question 3.11a of RO.

Response: See response to comment 3.11a.

Comment: 6.07 Question does not ask how can MSlV be opened only whether it can be opened.

Response: Comment partially accepted. Answer key modified. The description of the switch positions available on the motor controller in the Alternate Shutdown Building so as to explain that the open position is not available was added as an alternate answer.

Comment: 6.12 See question 2.05a of R0.

Response: See response to comment 2.05a.

6

\\

~

Comment: 6.14 f Recently converted to open dry pipe.

See A.L.P. 1.6.16, therefore (2) is correct answer.

Response: Comment accepted. Answer key modified.

Comment: 6.15a R.D.S. 1 solation valve low pressure alarm not directly related to loss of instrument air system.

See S.O.P. 18 Backup Nitrogen Supply.

Response: Comment not accepted. Answer key not modified. Although this alarm may indicate a loss of both instrument air and the backup nitrogen supply, it is clear f rom the context of the question that the candidate should select the correct alarm setpoint.

Comment: 6.15b See question 2.14b of RO.

Response

See response to comment 2.14b.

Comment: 8.03 Students may use escalation rates which are f.47 mwt/hr up to 133.5 mwt and 4.7 mwt/hr there after. See Tech Data book Rev.

71 for cycle 22.

Response : Comment accepted. Answer key modified. The materials provided to the examiner included revision 66 of the Technical Data Book instead of the most recent revision (Rev. 71).

Comment: 8.05a On Call Technical Advisor not required on site. See Tech Spec Table 6.2-1 page 106.

Response: Comment not accepted. Answer key not modified. The Technical Advisor is a member of the required minimum crew as defined by Technical Specifications (page 106), even though he is not required to be on site.

In addition, the question does not limit the answer to those crew members required to be on site.

7

Comment: 8.14 d Volume 9 Chpt 3 (pg 5 of 10) Table 2 states that E.O.F. is initially staffed, Table 3 (pg 7 of 10) states e 2, augment resources by activating...... and near-site E.O.F. under Site Area Emergency.

Response: Comment partially accepted. Answer key modified. Activation of the EOF for either the ALERT or SITE AREA emergency classifications has been added to the answer key. The examiner did not have Volume 9 Chapter 3 and had based the answer solely on Volume 9A EPIP 4A (page 2).

It may prove advantageous to the f acility to revise Volume 9 Chapt,er 3 and EPIP 4A so as to clarify the difference I!

between " staffing" and " activation" of the EOF. This clarification F

could prevent future confusion as to when EOF " activation" is required.

el d

8

c s

(

U. B. NUCLEAR REGULATORY COMMISSION REACTOR OPERATDR LICENSE EXAMINATION r-a FACILITY:

_ Big _BQQg_PQ1NI_

l.i h

sk b

REACTOR TYPE:

_gWB-ggl_

DATE ADMINISTERED:_gZ493fl3

~

EXAMINER:

_MILLEB2_Bz_ _ __

CANDIDATE:

INgIBQQIlgNg_IQ_Q@NQ1pBIgs, Une separate paper for the answers.

Write answers on one side only.

Staple question sheet on top of the answer sheets.

Points for each question are indicated in parentheses after the question.

The passing trade requires at least 70% in each category and a final grade of at 1 cast 80%.

Examination papers will be picked up six (6) hours after the examination starts.

X OF CATEGORY

% OF CANDIDATE *S CATEGORY

_YBLUE_ _IQIeL

___ECQBE___

_MeLUE__ ______________CGIgggRY

_2Ez99__ _2Ez99

_______ 1.

PRINCIPLES DF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW M _ _2Ez99

____ 2.

PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS 4

_2Ez99__ _2Ez99 3.

INSTRUMENTS AND CONTROLS t

_22z99__ _2Ez99

_______ 4.

PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND RADIOLOGICAL CONTROL i

199299__

Totals Final Grade l

All work done on this examination is my own.

I have neither given nor received aid.

l l

Candidate's Signature n

~.

(;

' :?

%.. 'L._k l

l

)

I.

NRC RULES AND GUIDELINES FOR LICENSE EXAMINATIONS During the administration of this examination the f ollowing rules apply:

1.

Cheating on the examination means an automatic denial of your application and could result in more severe penalties.

2.

Restroom trips are to be limited and only one candidate at a time may leave.

You must avoid all contacts with anyone outside the examination room to avoid even the appearance or possibility of cheating.

3.

Use black ink or dark pencil gely to facilitate legible reproductions.

4.

Print your name in the blank provided on the cover sheet of the examination.

5.

Fill in the date on the cover sheet of the examination (if necessary).

6.

Use only the paper provided for answers.

7.

Print your name in the upper right-hand corner of the first page of gach section of the answer sheet.

O.

Consecutively number each answer sheet, write "End of Category __" as appropriate, start each category on a Ogg page, write gely gg gag gidg of the paper, and write "Last Page" on the last answer sheet.

9.

Number each answer as to category and number, for example, 1.4, 6.3.

10. Skip at least th gg lines between each answer.

t

11. Separate answer sheets from pad and place finished answer sheets face down on your desk or table.
12. Use abbreviations only if they are commonly used in facility litstatutg.
13. The point value for each question is indicated in parentheses af ter the question and can be used as a guide for the deptn of answer required.
14. Show all calculations, methods, or assumptions used to obtain an answer to mathematical problems whether indicated in the question or not.
15. Partial credit may be given.

Therefore, ANSWER ALL PARTS OF THE QUESTION AND DO NOT LEAVE ANY ANSWER BLANK.

l

16. If parts of the examination are not clear as to intent, ask questions of the ggamingt only.

l

17. You must sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in completing the examination.

This must be done after the examination has been completed.

9 er I

10. When you croplate your examination, you shall a.

Assemb1e your examination as fallows:

(1)

Exam questions on top.

(2)

Exam aids - figures, tables, etc.

(3)

An swer pages including figures which are part of the answer.

b.

Turn in your copy of the examination and all pages used to answer the exatsination questions.

c.

Turn in all scrap paper and the balance of the paper that you did not use for answering the questions.

d.

Leave the examinat enn are% es defined by the examiner.

If after leaving, you are f ou--* in this area while the examination is still in progress, your lis a e "ay tm danawd or revoked.

4 i

i i

l i

i s=

i l

1

'1x__EBING1ELES_DE_NUGLE0B_EDWEB_ELONI_DEEBBIIDN, PAGE 2

I M BUDQYN051GS4_ M 8I_ISBUSEEB_9ND_ELUID_EL9W QUESTION 1.01 (2.00) 1 For each of the pairs of conditions listed below, state WHICH condition would have the GREATER differential rod worth and EXPLAIN WHY.

a.

Reactor moderator temperature of 150 deg F or 500 deg F.

(1.00) 08 20 For a rod at position g or position g of a core operating b.

at 100% power.

(1.00)

QUESTION 1.02 (2.50)

For each of the following events, state which COEFFICIENT of reactivity would act FIRST to change reactivity AND state whether POSITIVE or NEGATIVE reactivity is added due to the coefficient.

c. Control rod drop at power 4

b.

SRV opening at power

c. Loss of shutdown cooling when shutdown
d. The MSIV closes at 20% reactor power
o. Loss of one feedwater heater (extraction steam isolated) l 4

l

~.

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

.. _ - = _ _ _ _

i

~

is-EBINGIELES_DE NWGLEGB_EONEB EL8NI DEEBBI1QN2 PAGE 3

IHEBUQQXNOMIGS4 UEGI IB0NSEEB 0ND ELUID ELQW b

QUESTION 1.03 (3.00)

MATCH the appropriate Thermal Limit (a-c),

a. Linear Heat Generation Rate (LHGR)
b. Average Planar Linear Heat Generation Rate (APLHGR)
c. Minimum Critical Power Ratio (MCPR) to its FAILURE MECHANISM AND to its LIMITING CDNDITION, given below:

FAILURE MECHANISM LIMITING CONDITIDN F1.

Clad melting caused by L1.

Stable film boiling decay heat & stored heat occurs following a LOCA F2.

Clad cracking from the surface L2.

Clad plastic strain becoming vapor " blanketed"

< 1%

4 F3.

Clad cracking caused by L3.

Maximum clad temperature high stress from pellet of 2200 deg. F expansion 4

F4.

Gross cladding failure due to L4.

The onset of transition j

high stress from the production boiling i

of fission product gases QUESTION 1.04 (2.00)

HOW does the magnitude of the Doppler coefficient change with respect to the following conditions:

(More Negative, Less Negative, DR Remains the Same).

EXPLAIN WHY.

a.

Void fraction DECREASE b.

Core age INCREASE QUESTION 1.05 (1.00)

The reactor is operating at 100% power and flow.

EXPLAIN what happens to core flow, and WHY, with a reduction in power by control rod insertion.

(ASSUME: The operator makes no changes in the recirculation system.)

J 6

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

m..

r

-.-n-g-y,<p-,,,v w

,m,,,w-,-

--,-n--,--,.,

-,----,,w-,yw-mg m-~~----y,,-,rn,myw,,qy,p.y-a,4-cy w

y-

--weo mw~w.m,v-ww-vo--,-wwwemw-w,wwwpw-m

h kB D_

QUESTION 1.06 (1.50)

During a reactor startup, Keff is.95 when the SRM channels read 100 cps,.

What will the new Keff be when the SRM channel reads 270 cps?

i QUESTIDN 1.07 (1.00) l Concerning control rod worth during a reactor startup with 100X peak Xenon versus a startup with Xenon free conditions, which otatement below is correct?

a.

Peripheral control rod worth will be lower during the 100%

peak Xenon startup than during the Xenon free startup.

b.

Central control rod worth will be higher during the 100% peak Xenon startup than during the Xenon free startup.

c. Peripheral control rod worth will be higher during the 100%

peak Xenon startup than during the Xenon free startup.

d.

Both central.and peripheral control rod worth will be the'same regardless of core Xenon concentration.

QUESTIDN 1.08 (1.00) t Answer the following questions as TRUE or FALSE, given that the unit is at rated conditions and a Reactor Scram occurs.

a.

If'the reactor is started up at the time of peak Xenon i

conditions, then the neutron thermal flux level will be located HIGHER in the core than if Xenon free conditions existed. (Assume a bottom peaked axial flux distribution during previous power operation.)

i b.

At the time of peak Xenon conditions, the core is free of I-135.

DUESTION 1.09 (1.50)

Calculate the reactor cooldown rate for reactor pressure decreasing from 885 psig to 485 psig in one half hour. Show ALL work.

i

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

l

IA__EBINGIELES_DE_HUGLE86_EDHEB_EL8HI_DEEBeI1ON PAGE 5

IHEBUQDYN851G84_NE8I_IB9NSEEB_8HD_ELUID_ELDH QUESTION 1.10 (1.50)

c. During a reactor startup, what three indications / items are used (0.75) by the operator to determine when criticality is achieved?
b. Fill in the blanks During a reactor startup, the FIRST rods (0.75) in a new rod group have ___________ (HIGHER, LOWER, or THE SAME) rod worths than the LAST rods in that group.

EXPLAIN your answer.

QUESTION 1.11 (1.50)

With respect to subcritical multiplication, Answer the following statements TRUE or FALSE:

a. As Keff approaches unity, a larger change in neutron level occurs for a given change in Keff.
b. When Keff=0.95 and the neutron source = 100 n/sec.,

CR will equal 1500.

c. The closer Keff is to unity, the longer it takes for neutron level to reach equilibrium for a given change in Keff.

QUESTION 1.12 (1.00)

For the following situations, will the Net Positive Buction Head (NPSH) for recirculation pump Increase, Decrease, DR Remain the Same?

EXPLAIN WHY.

a.

The temperature of the feedwater entering the Steam Drum DECREASES.

b.

The operator throttles DPEN the recirculation pump discharge valve.

(***** CATEGDRY 01 CONTINUED DN NEXT PAGE *****)

9 la__EBINGIELER_DE_NWGLE88_EDWEB_EL8HI QEEB8IION, PAGE 6

It!EBUDDYUedlGH3_UE8I_IB8NSEEB_8HD_ ELWIR_ELOW DUESTIDN 1.13 (3.00)

Following a normal reduction in power from 90% to 70% with control rod _

insertion, how will the following change (increase, decrease or remain the same) and EXPLAIN WHY7 a.

The pressure difference between the reactor and the turbine steam chest.

(1.00) b.

Condensate depression at the exit of the condenser.

(1.00) c.

Feedwater temperature entering the Steam Drum.

(1.00)

DUESTIDN 1.14 (2.50)

Answer the f ollowing questions concerning delayed neutrons a.

Define the term BETA with regard to delayed neutrons?

(1.00) b.

When comparing the individual BETA's from thermal fission 'cuF U-235, Pu-239 and fast fission of U-238, which BETA is largest?

(0.50) c.

Will the reactor period resulting f rom the addition of

.0001 delta K/K be (LONGER, SHORTER, or THE SAME) in the Beginning of Life (BOL) core as it is at the End of Life (EDL) core?

EXPLAIN YOUR ANSWER.

(1.00)

(***** END OF CATEGORY 01

          • )

\\

Za.__tNetlI_ DEB 19tLIELUDitfG_SeEEILet99_Et!E80EELEYSIEt3B PAGE 7

DUESTION 2.01 (1.50)

There are two (2) timers in each Sensor Channel of the RDS (Reactor Depressurization System).

STATE the SETPOINT f or each of these timers AND STATE the basic FUNCTIDN provided by each timer.

QUESTION 2.02

(.75)

In order to inject liquid poison into the Reactor Vessel, the discharge f rom the liquid poison tank passes through ___(a)___

squibb valves, each of which are ___(b)___ percent capacity valves and the nitrogen bottle bank discharges to the liquid poison tank through c)___ squibb valves.

(

CNOTE:

(a) and (c) require the number of valves]

QUESTION 2.03 (1.00)

List the TWO (2) possible paths (entry points) for injection of liquid poison into the Reactor Vessel from the Liquid Poison tank.

DOESTIDN 2.04 (1.00)

If power to the RDS (Reactor Depressurization System) Actuation Cabinet AC3 is interrupted, which of the following occurs?

a.

The electric fire pump becomes inoperable f or starting from RDS.

b.

The electric fire pump receives an automatic start signal.

The diesel. fire pump becomes inoperable f or starting f rom RDS.

c.

d.

The diesel fire pump receives an automatic start signal.

(*****

CATEGORY 02 CONTINUED ON NEXT PAGE *****)

2t__ELONI_DESIDN_INGLWDING_SOEEIY_0ND_EDESDENGY_HYSIEME PAGE O

DUESTION 2.05 (2.50)

O.

List the SIX (6) Containment ISOLATION valves that AUTOMATICALLY close on a Low Reactor Water Level.

(1.50) b.

State TWO (2) Reactor Scram trip f unctions, in addition to Low Reactor Water Level, which will initiate the automatic closure of the containment isolation valves.

(SETPOINTS NOT REQUIRED)

(1.00)

DUESTION 2.06 (1.00)

List FOUR (4) of the five emergency devices (TRIPS) which will initiate closure of the Main Turbine Control Valves.

QUESTION 2.07

(.50)

The Main Steam Bypass Valve Hydraulic System (Rucker) is normally operated with one pump in standby.

Select the system oil pressure at which the standby pump will automatically start.

a.

1500 psig b.

2400 psig c.

2500 psig d.

2700 psig e.

3000 psig

(***** CATEGORY 02 CONTINUED ON NEXT PAGE

          • )

_ _ _. _ _. _ _. _ _ _ _ ~ _ _

Ei__t18tfI_DE819tf_ItG.WDitfE_B8EEIY_8tfD_Et!EBGElfGY_BYSIEt!B PAGE 9

i QUESTION 2.08 (1.00)

Choose the statement which best describes the Reactor Clean-up System (RCS) flow path.

a.

The RCS consists of a loop taking its suction from the discharge of the Number 2 Reactor Recirculation pump and discharges to the suction side of the Number 1 and Number 2 Reactor Recirculation pumps.

b.

The RCS consists of a loop taking its suction from the suction of the Number 2 Reactor Recirculation pump and discharges to the i

discharge side of the Number 2 Reactor Recirculation pump.

i c.

The RCS consists of a loop taking its suction from the discharge of the Number 1 Reactor Recirculation pump and discharges to the suction side of the Number 1 and Number 2 Reactor Recirculation pump.

4 d.

The RCS consists of a loop taking its suction from the auction of the Number 1 Reactor Recirculation pump and discharges to the i

discharge side of the Number 1 Reactor Recirculation pumps.

QUESTION 2.09 (1.25) l Consider the Service and Instrument Air Systems a.

Downstream of the instrument air dryer, the instrument air header divides into six sections.

NAME FIVE (5) of these sections.

i i

l QUESTION 2.10 (2.50) i l

c.

During a normal shutdown after sustained power operation, WHY must the shutdown cooling system be placed in service BEFORE reactor pressure i

decreases to 150 psig?

(1.00)

I b.

The shutdown cooling system is isolated during normal operation by double motor operated block valves at both the inlet to the i

reactor vessel and return connections to the Recirculation lines

(

because it is rated at a lower pressurL than the reactor.. EXPLAIN HOW l

l an operator knows if an inboard block valve is not properly seated even though it indicates shut.

(1.50) i' i

1 l

l l

(*We** CATEGORY 02 CONTINUED,ON NEXT PAGE *****)

l l

r.

-.,,._-,_,r-,--___..,___,,

23.__P(gtfl_QEE19tLit!GLWQ1NQ_B6EEIY_6t!D_Et!ESQEh!GY_BYSIEt!S PAGE 10 QUESTION 2.11 (3.00)

List SIX (6) of the ten COMPONENTS supplied by the Reactor Cooling Water Cystem.

QUESTION 2.12

(.75)

List THREE (3) of the four conditions that will AUTOMATICALLY mhut down the Emergency Diesel Generator.

(Setpointr. not required.)

QUESTION 2.13 (2.00)

WHAT action occurs (or SHOULD occur) at each of the following reactor pressures a.

1535 psig b.

1435 psig c.

1385 psig d.

1360 psig

(***** CATEGORY O2 CONTINUED ON NEXT PAGE *****)

2a__EL9NI_DEH196_ItfGLUDIND_E9EEIY_9tfD_Et!EBGENGY_SYSIEt!B PAGE 11 QUESTIDN 2.14 (3.25)

With regard to a LDSS of pressure in the Service and Instrument Air Systems a.

Match the events (lef t-hand column) with the air pressure (right-hand column) at which each event occurs.

(0.75)

(a)

PCV 4502 (Service Air Isolation) 1.

64 psig automatic closure 2.

70 psig (b)

Service air low pressure alarm 3.

74 psig (c)

Air compressor Auto-Start 4.

80 psig 5.

85 psig 6.

90 psig b.

How would the following valves FAIL on a LDSS of air.

(Dpen, Closed, Remains as Is)

EXPLAIN WHY.

(2.50) 1.

Main feedwater valve 2.

Scram valves 3.

Scram dump tank vent valves 4.

Feedwater bypass valve 5.

Reactor cooling water regulating valve to the Shutdown Cooling system heat exchanger DUESTIDN 2.15

(.75)

What are THREE (3) sources of priming water available for the Emergency Diesel Generator cooling water pump?

DUESTIDN 2.16 (1.25)

Answer the following questions concerning the Turbine Bypass System.

a.

What is the primary system pressure range for Bypass Valve control?

(0.50) b.

What is the normal pressure setting of the controller for Bypass Valve DPENING7 (0.25) c.

List the NORMAL and ALTERNATE power supplies to the Bypass Valve Control Circuit.

(0.50)

(***** CATEGORY O2 CONTINUED ON NEXT PAGE *****)

Z u_% ANT p{gigN_INGLQQ1NQ_g@EgIY_gNQ_gd[BQgNQY_HYSIgd3 PAGE 12 QUESTION 2.17 (1.00)

~

In addition to the High and Low Level Alarms, LIST FOUR (4) functions provided by the condenser level transmitters / level switches.

1

(***** END OF CATEGORY O2 *****)

3-INDIBut!gNIg_gNQ_GQUIBQL3 PAGE 13 QUESTIDN 3.01 (1.50)

List ALL of the automatic actions and alarms provided by the Intermediate Range Nuclear Instruments (INCLUDE SETPOINTS).

QUESTION 3.02 (1.25)

List the power supplies to the following Nuclear Instruments (BE SPECIFIC).

a.

Startup Range (Channels 6 and 7) b.

Power Range (Channels 1 and 3)

QUESTION 3.03 (1.50)

Match the Nuclear Instruments (in the lef t-hand column) with the type of detector (in the right-hand column).

NUCLEAR INSTRUMENT TYPE DF DETECTOR m.

Startup Range 1.

Geiger-Muller b.

Intermediate Range 2.

Uncompensated Ion Chamber c.

Power Range 3.

Proportional 4.

Compensated Ion Chamber QUESTION 3.04 (1.00)

Answer the fullowing questions concerning RPS power supplies, a.

List the normal power supply to RPS MG set number one and to RPS MG set number two.

(INCLUDE Bus Number and Voltage) b.

List the TWO (2) ALTERNATE power supplies to RPS.

l (INCLUDE Bus Number and Voltage) l

(***** CATEGORY '03 CONTINUED ON NEXT r r-GE

><xx*-

~_-

  • 3-I.NE18UMENIg_8h2_QQUI6QL3 PAGE 14 QUESTION 3.06

~

Answ.ir en=

m. 4,1.. : TN2 Or FALSE.

7.~

r ~

v TERNATE power supply to tbn RPS busses is lost, s..

the operator must MANUALLY r -ym;f

'an a throwaver switch in-order to align the ott.ar alternate power supply to nF.

b.

A P'JGLE RPS channel scram will alarm a channel scram but will ot alarm the causes while, if a RPS scram is initiated the station annunciator will alarm the scram and indicate the cause of the scram.

QUN5TIDN 3.06 (3.50)

Complete the following Table by listing the SETPOINTS and ALL the BYPASSES for each of the following Reactor Scram trip functions.

SCRAM FUNCTION SETPOINT BYPASSES a.

Low Steam Drum Water Level b.

High Scram Dump Tank Level c.

Loss of Auxiliary Power Supply d.

High Condenser Pressure e.

Steam Line Backup Isolation Valve Closed QUESTION 3.07 (1.00)

Depressing the Manual Scram Switch provides a reactor scram by opening

)

contacts in each Reactor Protection Channel.

Answer the following True OR False.

EXPLAIN YOUR ANSWER.

l If the manual scram contacts in either protection channel fail to open when the manual scram switch is depressed, the manual scram ewitch WILL still initiate a reactor scram.

5 J

(*****-

CATEGORY 03 CONTINUED CN NEXT PAGE *****)

- 2

,..____..__m,_,

,,,m-

-.-___.,-_-,,_.__,m

i 3-

.INSIBWHENID_9ND_GDNIBDLE PAGE 15 QUESTIDN 3.08 (3.50)

. Answer the following questions concerning the Fire Protection System.

a.

The Electric Fire Pump is fed by Bus 2B.

List TWO (2) of the three sources of power which may feed Bus 2B.

(1.00) b.

List the TWO (2) AUTOMATIC start signals for the Electric Fire Pump.

(INCLUDE SETPOINTS)

(1.50) c.

List TWO (2) of the three locations where the Electric Fire Pump can be MANUALLY started.

(1.00)

QUESTION 3.09 (1.00)

Select the statement which best describes the response of the MSIV if it.is STROKING DPEN when a MSIV Safety System CLOSURE signal is initiated to the valve AND EXPLAIN WHY.

(Assume No Operator Actions Taken) a.

The MSIV will continue to open and stop in the fully open,

position.

b.

The MSIV will automatically stop opening and begin closing.

c.

The MSIV will continue to open until fully open and then close.

d.

The MSIV will stop opening and remain in the midposition.

QUESTION 3.10 (1.50)

Initially the Reactor Plant is operating at 100% rated thermal power with the Main Turbine on line.

State the position (DPEN, CLOSED, REMAINS AS IS) of the following valves after a complete loss of condenser vacuum.

i a.

MSIV b.

Main Steam hydraulically operated Bypass Valve c.

Motor operated isolation valve for the Main Steam Bypass Valve i

4

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

L.__ItlEIBWHENIH AND_QQNIB%g PAGE 16 QUESTIDN 3.11 (2.00) 1 m.

State TWO (2) of the three automatic Turbine Generator

)

^

control actions (protective relaying) that occur upon a sudden loss of load to the Main Turbine Generator..

b.

HOW is the Turbine Generator system designed to prevent frequent operating upsets (turbine trips) during lightning storms?

4 DUESTION 3.12 (1.50)

Select the best response f or the following question.

How does the control of the Emergency Condenser outlet valve (MOV 7053) change when its motor starter transfer switch, located in the ASB (Alternate Shutdown Building), is placed into the ASB position?

EXPLAIN WHY7 a.

The emergency condenser outlet valve may be controlled from either the ASB starter control switch or the control room hand switch and the automatic operation of the valve is prevent,ed.

b.

The manual control of the emergency condenser outlet valve'is transferred to the ASB and the automatic operation of the valve remains operable.

c.

The manual control of the emergency condenser valve is transferred to the ASB and the automatic operation of the valve is prevented.

d.

The manual control of the valve is prevented, while the automatic operation of the valve remains operable.

QUESTIDN 3.13 (2.50)

During accident conditions, the Core Spray system has received automatic initiation signals.

4 m.

List the TWO (2) signals required to AUTDMATICALLY open the Core Spray injection valves (MOV's 7051, 7061, 7070, and 7071).

(INCLUDE SETPOINTS) b.

State the type of logic (coincidence) used to actuate the Core Spray injection valves.

State the ReactAr Pressure at which Core Spray begins injecting c.

(actual flow occurs) into the reactor pressure vessel and EXPLAIN WHY.

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

i

.. _.. ~., _. _ _ _.,. _... _ _ _ _ _. _. _

L._INSIBut!ENIE_9ND_GDNIBQLE PAGE 17 QUESTION 3.14 (1.50)

~

WHAT THREE (3) valve position interlocks must be satisfied in order to start e reactor recirculating pump?

DUESTION 3.15

(.75) a.

List the SOURCE of power for the Number 7 Station Power Transformer.

(0.25) b.

List the TWO (2) locations from which the Station Power Regulator can be operated.

(0.50) l l

l l

4

(***** END OF CATEGORY 03 *****)

l

SA MQQgggBgg - NQBM&a_63_NQBM&2_EMgBQENQY_ AND PAGE 18 B0Q1DLQQ1G%_GQNIB%

QUESTION 4.01 (1.50)

List the Federal Radiation Dose Limits per calendar quarter WITHOUT a NRC Form 4 on file f or a radiation worker (age 21 years).

QUESTION 4.02 (1.00)

A man receives the following exposures Gamma 0.02 RAD Detas 0.05 RAD Thermal neutron:

0.03 RAD What is his whole body dose?

(Select the correct answer) a.

O.10 REM b.

O.14 REM c.

O.16 REM d.

O.20 REM QUESTION 4.03 (3.00)

Answer the following questions concerning SDP 1.0, Reactor Operation.

a.

Condenser vacuum must be greater than (1)___ inches Hg before reactor pressure is ___(2) ___ psig to prevent a reactor scram.

(0.50) b.

A licensed operator shall be present at the controls in the Control Room during ___(1) ___ mode (s) of plant operation when (2)

(0.50)

(NOTE:

Blanks may require more than one wnrd) c.

List the THREE (3) conditions when at least TWO (2) Licensad Operators SHALL be in the Control Room.

(1.50) d.

WHY must the Reactor Engineer be present during an approach to criticality?

(0.50)

(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)

is.__EBQGEDUBER_:_HQBt!&a_88HQB50La_EUEBGENGY_9ND PAGE 19 8801EQGIGGL_GQUIBE i

-QUESTION 4.04 (1.00)

In accordance with Administrative Procedure 2.1.1, Shift Dperations, I

all Core Alterations af ter the initial fuel loading shall be performed by (Select one of the following.)

a.

A licensed operator or a non-licensed operator under the direct supervision of a licensed operator.

b.

A licensed operator under the supervision of a licensed senior operator.

c.

A non-licensed operator under the supervision of a licensed Senior Dperator with concurrent responsibilities for coordinating outage activities.

j d.

Any licensed control room operator.

QUESTIDN 4.05 (1.25)

In accordance with.EPIP 4.0, BRP Nucimar Plant Site Area Plan, SHOULD the plant siren be sounded f or the following situations?

If so, HOW is it sounded for each event?

(BE SPECIFIC) l a.

Alert Emergency b.

Fire i

l c.

Bomb Threat QUESTION 4.06

(.50)

During a Reactor.STARTUP, the oncoming shift control room operator has just relieved the shift and discovers one control rod to be withdrawn two notches out of sequence.

List TWO (2) of the three IMMEDIATE operator actions per DNP 2.7, Mispositioned Control Rods.

QUESTION 4.07 (1.00)

Why does SDP 34, Stack Gas Monitoring System, CAUTION the operator NOT to leave the stack gas Grab Sample Switch DN indefinitely?

(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)

S.

EBDGEQUBES - NDBt!Ea_8BNDBUE4_EtlEBSENGL8HD PAGE 20 B001%DDIGE_GDNIBA QUESTION 4.09 (2.50)

~

In accordance with GOP 1.0 (Plant Startup From Cold Shutdown),

GOP 5.0 (Power Operation), and GOP 6.0 (Plant Shutdown to Hot Shutdown),

STATE the following LIMITS.

a.

Reactor period b.

The steam drum temperature differential of any two points c.

The number of people allowed in the containment building during reactor power operation d.

The MAXIMUM reactor power change allowed when ONE (1) of the three i

power range flux monitors is out of service.

t e.

Normal load (MWe) reduction rate i

QUESTION 4.09 (1.50)

With regard to GDP 4.0, Reactor Trip Recovery, answer the following questions.

{

a.

Following a Reactor Scram, WHY does GOP 4.0 recommend NOT RESETTING either RPS channel until both channels can be reset?

(1.00) b.

If steam pressure should reach 100 psig prior to recovery from the l

reactor trip, what action must the operator take.

(0.50)

)

I QUESTION 4.10 (1.00)

Consider EMP 3.10, Fire in Turbina/ Service Building or Exterior or Interior l

Cable Penetration Areas 1

If control of the Emergency Condenser Outlet Valves is transferred to the ASB (Alternate Shutdown Building), WHY does a note in EMP 3.10 direct the 1

operator to CRACK OPEN these valves immediately.

I l

4

(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)

f.

PBQGggyBEg_ _NQBdg(3_9BNQBMGL3_EMEBGENGY_8MD PAGE 21 senioLoniceL_couIsot DUESTIDN 4.11 (1.50)

With regard to EMP 3.1, Loss of DC Power' System, answer the f ollowing questions TRUE or FALBE.

a.

On a loss of DC power, Reactor Feed Pumps may be SHUTDOWN and STARTED by operating the " TRIP" rods in the appropriate Reactor Feed Pump 2.4 KV ACB.

EXPLAIN YOUR ANSWER.

(1.00) b.

If a Reactor Scram occurs concurrently with a LDSS of DC power, the turbine generator WILL NOT trip.

(0.50)

QUESTION 4.12 (1.50)

State THREE (3) of the four IMMEDI A TE operator actions upon a Turbine Generator Trip per DNP 2.15 (Turbine Generator Trip Procedure).

QUESTION 4.13 (1.00)

If the EDG (Emergency Diesel Generator) Engine Start Failure alarm is on cnd the EDG did not start, WHY do Big Rock Point Dperating Procedures direct the operator to place the EDG control switch to "DFF" for TWO (2) cinutes prior to attempting another engine start.

QUESTION 4.14 (1.50)

State the THREE (3) IMMEDIATE operator actions upon a Loss of Condensate Pump (with TWO-PUMP Operation) in accordance with DNP 2.3, Loss of Condensate System.

i i.

QUESTION 4.15 (2.00)

State the FOUR (4) IMMEDIATE operator actions for a LOSS of Control Air to the Feedwater Control Valve per DNP 2.20, Loss of Feedwater.

QUESTION 4.16

(.1. 50)

In accordance with ONP 2.31, Reactor Scrams, state SIX (6) AUTOMATIC cctions that the operator should verify on every scram.

(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)

r._.-

..___--,._...__.,___-.-___,_c_.__._,,.__.

.f.

PBQGEQQBgg_ _NQBM&,_8DNQBdg,_gggBggggy._869 PAGE 22 88D1%DQ1G&_GDMIBE QUESTION 4.17 (1.75)

In accordance with DNP 2.23, Malfunction of Pressure Control (IPR and B/,P),

State the FOUR (4) IMMEDIATE operator actions for an IPR malfunction which CLOSES the Turbine Admission Valves.

i 1

4

~.

(***** END OF CATEGORY 04 *****)

(************* END OF EXAMINATION ***************)

+

MASTER

~

00?Y ANSWER KEY e

$8 Mg 1.

,..-.s.

f Os' en m

1 EBING1ELEH_DE_NWGLEAR__PQWEB_EL9NI_QEEB811QNa PAGE 23 IHEBUQDYN851GBa_UEGI_IB0NSEEB_8ND_ELUID_ELDW ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 1.01 (2.00) m.

At 500 deg F.

(0.50),

As moderator temperature increases, neutron thermal diffusion length increases, thus the control rod's area of influence has increased, thus increasing rod worth. (0.50)

-OR-(kod// ave)**2 CRW proportional to:

Lt b.

At.Mr (0. 50), The deep control rod withdrawal adds coupling to cells in the core (substantially affecting radial flux) thus producing a large yeactivity worth.

(0.25)

Whereas, shallow rod withdrawal (position 8% has a smal ffect on reactivity addition due to the shadowing of nearby rod

, thereby reducing the radial effect. (or shallow rods are shapin ods not produging large av 11 core power changes)

(0.25)

(OR. % M0 A;r $9 5 bn S

' m g & c / x.t,

w REFERENCE ve U iNM BRP LP # BQR-O (R

TIVITY VARI

) OBJ #11.

GE BWR ACADEMIC SERIES ON REACTOR THEORY PG 5-12, -13, -21, -22, AND -25.

201003K507 292OO5K104 292OO5K109 292OO5K112

...(KA*S)

ANSWER 1.02 (2.50) a.

Doppler or fuel temperature, negative b.

Void, negative c.

Moderator temperature, negative

d. Void, positive e.

Moderator temperature, positive (0.25 per coefficient, and 0.25 per sign of reactivity)

REFERENCE GE BWR ACADEMIC BERIES ON REACTOR THEORY CHAPTER 4.

295014K203 295014K206

..(KA*S) l l

l l

.,..._--_,,......,,.m.,

m.y._,_,._,,_.._m,.,,_,__,,_,.,.,___,_,,

l 1

PRiglPLEE_QE_NUGLE98_EQWEB_EL8tlLQEEB6Ilgtfa PAGE 24 ItfEBUDDYt!0t!1GHa_tfE8T TReqEEgB_0t!D_ELUID_EL9W ANSWERS -- BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 1.03 (3.00)

F1.

b F2.

c a.

F3, L2 F3.

a OR b.

F1, L3 L2.

a c.

F2, L4 L3.

b L4.

c.

(0.50 per match)

REFERENCE GE BWR ACADEMIC SERIES ON HTFF PG 9-15.

BRP LP # BTM-20 (FUEL / CORE DAMAGE / INADEQUATE COOLING) ENABLING OBJ.

A.

295014KA4

...(KA'S)

ANSWER 1.04 (2.00) c.

l.ess Negative (0.50).

As voids decrease, the amount of moderator in the core increases: therefore, the neutrons are thermalized faster (slowing down length is shorter) thus reducing susceptibility to resonance capture.

(0.50) b.

More Negative (0.50).

Over core life Pu-240 builds up in the core.

l Pu-240 has a large resonance capture region so more neutrons are removed by resonance capture.

(0.50)

REFERENCE BRP QUESTION BANK QUESTION 7 0F BEC 5.

GE BWR ACADEMICS ON REACTOR THEORY.

292004K107 292OO4K109

...(KA'S)

ANSWER 1.05 (1.00)

Core flow would increase (0.50) due to a decrease in two phase flow resistance (0.50).

REFERENCE GE BWR ACADEMIC SERIES DN HTFF CHAPTER 6 AND B.

BRP LP# BRT-13 (FLOW AND FLUID FRICTION) OBJ. 2010100101 293000K128

...(KA'S)


_-,,..-.-..._-_____..-_,_____,.....m-m, m,..,_,,

.,m,_,r___.,--,_.,._

~,

=

1 PRINGlELgS_gF NyGLges_egygg_eLeNI_geggeIlgg, PAsE 25 IMEBt!9EXMet!1GEi_ MEAT TBONSEEB 9ND_ELUID_EL9H ANSWERS -- BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 1.06 (1.50)

CR2(1 - Keff2)

(0.50)

CR1(1 - Keff1)

=

= (1 - Keff2)

CR1/CR2(1 - Kaff1)

= (1 - Keff2)

(0.50) 100/270(1

.95)

.0185 = (1 - Keff2)

Kaff2 = 0.9815

(+/-.002)

(0.50)

REFERENCE GE BWR ACADEMIC SERIES ON REACTOR THEORY CHAPTER 3.

292OO3K101

...(KA*S)

ANSWER 1.07 (1.00) c.

REFERENCE GE BWR ACADEMIC SERIES ON REACTOR THEORY CHAPTER 7.

~

292OO6K108

....(KA ' S)

ANSWER 1.08 (1.00) c.

TRUE b.

FALSE (0.50 ed.)

REFERENCE GE BWR ACADEMIC SERIES ON REACTOR THEORY CHAPTER 7.

292OO6K103 292OO6K107

...(KA*S) 4

-,.---,--n----..---

1.

PRINCIPLEg_QF_MEAR PQWER P(.MT_QPERATIQN PAGE 26 2

IHEBt!QRYNet!1GH4_UEAT TRMEEER_MQ_ELUID_ELQW ANSWERS -- BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 1.09 (1.50) c.

1.

Convert pressure to psias (0.25) 885 + 14.7 = 900 psia and 485 + 14.7 = 500 psia 2.

Obtain corresponding temperatures froe steam tables:

(1.00) 900 psia -> 532 F and 500 psia -> 467 F 3.

Determine temperature change:

(C.25) 532-467 = 65 F in one half hour (or 130 deg F/hr cooldown rate)

REFERENCE Caturated Steam Tables.

292OOBK114

...(KA'S)

ANSWER 1.10 (1.50) c.

1. positive stable period 2.

constantly increasing count rate

3. no rod motion (0.25 ea.)
b. HIGHER (0.25) because of the relation:

CRW proportional to

(/ rod // ave)**2.

(0.5)

The local flux is higher for the first rods in a group. The average flux is also lower for the first rods in a group.

REFERENCE BWR ACADEMIC SERIES ON REACTOR THEORY CHAPTER 5 AND PG 7-7.

292OOOK107

...(KA*S) i ANSWER 1.11 (1.50) c.

True b.

False c.

True (0.50 ea.)

t i

i I

l

  • 1 EBING1ELER_DE_NWGLE88_EDNEB_ELONI_DEEBeligs, PAGE 27 INEBUQQYNed1GEa_HEGI_IBeNSEEB_eND_ELula_ELQN ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

REFERENCE GE BWR ACADEMIC SERIES ON REACTOR THEORY PG 3-8,'3 '9, 3-12.

292OOSK104

...(KA*S)

ANSWER 1.12 (1.00) a.

Increase.

The temperature at the pump suction decreases, thus the saturation pressure at the eye of the pump decreases (OR the density of the water in the pump suction line increases, thus increasing the suction head to the pump, increasing available NPSH).

b.

Decrease.

The pressure at the eye of the pump decreases. (causing pressure at the eye of the pump to approach saturation pressure, decreasing available NPSH).

(0.25 per change and 0.25 per explanation)

REFERENCE BRP SDP 29 PG 3 AND LP # BRT-15 (CENTRIFUGAL PUMP OPERATION) OBJ D.

GE BWR ACADEMICS ON HTT&FF.

202OO1K402

...(KA*S)

ANSWER 1.13 (3.00) a.

Decreases (0.50).

There is less steam flow, therefore, less pressure j

drop through the main steam lines (0.50).

b.

Increases (0.50).

With the same amount of cooling water through the condenser and less of a heat load, condensate depression will increase (0.50).

l

c. Decreases (0.50).

Less extraction steam from the turbine to heat the feedwater (0.50).

REFERENCE GE BWR ACADEMIC SERIES ON HTFF CHAPTER 5 AND 6.

241000K504 245000A106 245000K105

...(KA*S) l t

.,-w-n

,w_,,,.,,.___

c,-.

. = - -.

,,.-r,,.,-,.,--_,..,,,,,--..-.c

' 6

^

~

^

' ~

L.__PBINQ1E(gg_QF NQQ(EAR PQWER P(8NI_QEERAllgNa PAGE 23 IHEBBQDYNet!1GHa_ME8I IB8MBEEB_9ND_ELWID_ELQW ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

l i

ANSWER 1.14 (2.50)

c. The delayed neutron fraction is the percentage of fission neutrons that are born delayed.

(1.00)

b. U-238 (0.50)

LON4EA

c. N (0.50) As Pu-239 increases, and U-235 (fuel) decreases or burns out the core average Beta will decrease due to Pu-239's Beta being so much smaller resulting in a shorter period (0.50).

ET = Beta /(Lambda

  • Rho) + Rho 3 4

d.h ECL.,

REFERENCE GE BWR ACADEMIC SERIES ON REACTOR THEORY CHAPTER 3.

292OO3K104 292OO3K106

...(KA*S) i e

0 i

i i

l l

o a

e

---.--vw nn.r---

m

- - - - - -ww --

w

--+n,-e--

,.,-.7w.--e

,,~_e--m------,www.wn-m

,,,e

-w---

2 ELONI_ggnigN_INGLyg1Ng_geEgIy_eNg_gt!ERggNQY_gyEIgt!g PAGE 29 ANSWERS -- BIG ROCK POINT

-87/04/14-MILLER, R.

7[Al60 I ANJkha L

ma: aw ANSWER 2.01 (1.50)

,_,}

my,

1.

TWO minute timer (+ 10, -20 sec),

trips the RDS to commence depressurization (if all other required conditions are met).

2.

90 second timer

(+ 10, -20 sec), provides "30 sec to trip" alarm (for RDS initiation of depressurization.)

(also accept explanation of timer set to indicate 30 seconds prior to commencement of depressurization for setpoint).

(0.25 each setpoint, 0.50 each function)

REFERENCE BRP SDM (RDS) PG 18-14.

21BOOOK403 21BOOOK501

...(KA*S)

ANSWER 2.02

(.75) a.

3 b.

50 (percent) c.

2 (0.25 ea.)

REFERENCE BRP SDM PG 4-2.

211000A104 211000KA7

...(KA*S)

ANSWER 2.03 (1.00) 1.

Directly into the bottom of the RPV 2.

To the suction of both recirculation pumps (0.50 ea.)

REFERENCE BRP SDM PG 4-3.

21100K105

...(KA*S)

ANSWER 2.04 (1.00) d.

REFERENCE BRP SDM CHAPTER 18 AN'D SDP 18 PG 2.

218000A402 218000K501

...(KA*S)

,..___,,,e

__.~..,-,m-

e 2

PLet!I_ggigt!_1g(UDitig_S8EEILet!D_Et!ERgt!GY_SYSIEtjg PAGE 30 i

ANSWERS -- BIS ROCK POINT

-87/04/14-MILLER, R.

ANSWER 2.05 (2.50) a.

1.

Main steam isolation valve (M07050) 2.

Main steam bypass isolation valve (MO-7067) 3.

Clean-up domineralizer isolation valves (CV-4091, 4092, 4093) 4.

_ Reactor and fuel pit drain isolation valves (CV-4027, 4102) 5.

Reactor enclosure clean sump isolation valves (CV-4031, 4103) 6.

Reactor enclosure dir sum (CV-4025, 4103)

7. 7 4 m " "ty &p isolation valves (0.25 ea., valve numbers quired b.

1.

Loss of auxiliary power supply 2.

High enclosure pressure (0.50 ea.)

REFERENCE BRP SDM CHAPTER 18 AND SDP 18 PG 2.

223001K101 223001K403

...(KA'S)

ANSWER 2.06 (1.00) 1.

011 tripped overspeed (emergency governor) 2.

Hand trip (local manual) 3.

Solenoid trip (remote manual) 4.

Low vacuum trip d

5.

Thrust bearing failure trip.

(any 4, 0.25 ea.)

REFERENCE BRP SDM PG 13-9.

245000K405 245000K409

...(KA*S)

ANSWER 2.07

(.50) b.

REFERENCE BRP SDM PG 17-1.

241000K415 245000A401

...(KA'S) 4

2 __%MI_ DEB 19tLIblGLUDItfE_B8EEIY_MD_Et!EBSEtfGY_BYSIEt!E PAGE 31 ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 2.OS (1.00)

C.

REFERENCE BRP SDM PG 23-7.

259002K108

...(KA*S)

ANSWER 2.09 (1.25) c..

1.

Screenhouse

2. Chemical Lab
3. Reactor Containment Building
4. Ventilation Room and Stack
5. Turbine and Service Building
6. Control Room main control panel reducing station
7. Reactor Depressurization System (any 5, 0.25 each)

REFERENCE BRP LP PG 27-6 and Service and Instrument Air P&ID.

21BOOOK404 223OO1K110 239002K106

...(KA*S)

ANSWER 2.10 (2.50) c.

Because the SJAEs are ineffective below this pressure and the condenser can no longer be used f or cooling the reactor.

(1.00) b.

A bleed-off orifice C.753 with a pressure switch between each pair of valves C.753 provides indication of leakage.

REFERENCE BRP SDM PG 5-1 AND 5-5.

205000KA10 205000KA7

...(KA'S) 9%

2 tieNI_MB10tl_It!GWQ1NG_BeEEIY_8tfD_Et!EBGEtfGY_BYSI5t!E PAGE 32 ANSWERS - SIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 2.11 (3.00) 1.

Shutdown system heat exchangers 2.

Shutdown system pump gland coolers 3.

Fuel Pit Heat exchangers 4.

Reactor Recirculation pump bearings and glands 5.

Reactor Recirculation pump meal coolers 6.

Reactor Bhield cooling panels 7.

Clean Up System Non Regenerative Heat Exchanger S.

Clean Up sample cooler 9.

Steam Drum sample cooler 10.

Radiolytic Gas sample cooler (0.50 ea., any 6)

REFERENCE I

BRP LP NO. 7 AND RCS P&ID'S 5001-8 AND B007.

ANSWER 2.12

(.75) 1.

Overspeed 2.

High water jacket temperature l

3.

Low lube oil pressure O.

Out of fuel (0.25 ma., any 3)

REFERENCE BRP ALP 1.12 PG 2 AND 3.

264000K401 264000K402

...(KA*S)

ANSWER 2.13 (2.00)

c. one SRV actuates (the first SRV)
b. emergency condenser initiates (DR reactor very high pressure alarm)
c. reactor scram
d. reactor high pressure alarm (0.50 wa.)

REFERENCE BRP ALP 1.2, EMP 3.5A, AND TECH SPECS PG 43, 51, 52, AND 53.

295025A107 295025A201 295025KA5 295025M202 295025K205

...(KA*S)

2a.__t18tiLDEE19tLitEWDitfE 56EEIY_8t90_EDEBGEtELEYSIEt!E PAGE 33 ANSWERS - DIS ROCK POINT

-87/04/14-MILLER, R.

ANSWER 2.14 (3.25)

~

a.

(a) 4 (b) 3 (c) 5 (0.25 ea.)

D.

1.

Remains as is, since it is designed to lock up on a loss of air (or to aid in maintaining vessel coolant inventory) 2.

Open, fail safe position to ensure a scram.

3.

Closed, fail safe position to ensure isolation of primary coolant.

4.

Closed, to allow manual f eeding through the f eed regulating valve (the bypass valve has no manual positioning capability).

5.

Open, fails open to provide a method of reactor cooling.

(0.25 per position and 0.25 per explanation)

REFERENCE BRP BDM PG 27-4,

~6, AND -9 DNP 2.2 PG 1 AND LP PG 5-5.

201001K109 207000K110 212000K115 259001K601

...(KA*B)

ANSWER 2.15

(.75) 1.

Service Water System 2.

Fire Protection Bystem 3.

Domestic (well) Water System (0.25 ea.)

REFERENCE BRP BOP 23 AND QUESTION BANK QUESTION # 84 DF BEC 2, 3, AND 6.

26400K104

...(KA'B)

ANSWER 2.16 (1.25) s.

1000 to 1500 psig C+ or - 100 psig3 (0.25 per pressure) b.

15 psig above turbine inlet pressure C+ or - 5 psigJ (0.25) c.

Normal - #1 RPS MG set (RPS Bus 1)

(0.25)

Alternate - #2 RPS MG set (RPS Bus 2)

(0.25)

1 1

l Es__t18tfI_NSIM_1ELURitfG 58EEIY_8tlD_EtfEBGEKY_BYRIEt!E PAGE 34 ANSWERS -- BIS ROCK POINT

-87/04/14-MILLER, R.

l REFERENCE BRP QUESTION BANK OUESTION 19 0F BECTION 2, 3, AND 6.

239001K127 241000K106 241000K419

...(KA'5) i l

I ANSWER 2.17 (1.00) l l

1.

Reject valve operation l

2.

Makeup valve operation l

3.

Hotwell level recorder indication l

C.

Reject valve high level override l

C.

Fill valve operation 6.

Condensate pump low level trip (any 4, 0.25 ea.)

REFERENCE BRP OUESTION BANK QUESTION 31 0F BEC 2, 3, AND 6.

239001KAG 256000K403

...(KA'B) l l

4 1

t t

n i

Es.__ItfEIBWEff1E_8tm_GQtilBOLE PAGE 35 ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

l ANSWER 3.01 (1.50)

~

1.

Short period meram,

+10 seconds.

2.

Short period alarm,

+15 seconds.

(0.50 per function, 0.25 per setpoint)

REFERENCE DRP SDM PG 31-3 AND 31-4.

215003A106 215003A405 215003K402

...(KA'B)

ANSWER 3.02 (1.25) a.

Channel 6:

RPG MG number 2 l

Channel 7s RPS MG number 1 b.

Channel la RPS MG number 1 Channel 3:

Station Battery (through inverter)

(O.25 es.)

REFERENCE

~

DRP SDN PG 31-1.

215004K201 215005K202

...(KA*B)

ANSWER 3.03 (1.50) a.

3.

b.

4.

c.

4.

(0.50 ea.)

REFERENCE DRP SDM PG 31-2,

-4, anti ~6.

215003K501 215004K501

...(KA'8)

7 l

a l

L._ ItfEIBut!EtfIB_8tfG_GQtlIBQLH PAGE 36 ANSWERS -- BIG ROCK POINT

-87/04/14-MILLER, R.

l ANSWER 3.04 (1.00) c.

RPS MG set number 1 400 volt Bus 1A.

RPS MG set number 2:

400 volt Bus 2A.

b.

480 volt Bus 1A or 480 volt Bus 28.

(OR 480/120 volt Instrument and Control Transformers 1A or 28)

IYs I20 O

(M 044'f.A W a /. h p M y v ( /Jt

)

  1. AJ i

(0..., per power supply)

REFERENCE BRP SDM PG 1-3.

l 212000K201

...(KA'B) l ANSWER 3.05 (1.00) 7;;;;

$+AsNA

6. Arwe-F*ak (0.50 ea.)

REFERENCE l

BRP SDM PG 1-3, AND 1-7.

212000A111 212000K401

...(KA'B) i l

l i

{

l i

l l

l

L.__1HEIBWUENIE_8HE_GQNIBQLE PAGE 37 ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 3.06 (3.50)

SETPOINT BYPASSES a.

-8

(+ or - 2) inches below Mode Selector Switch (MSS) in the steam drum centerline Bypass Dump Tank position (0.25)

MSS in Refuel (0.25) b.

5/16

(+ or - 1/2) inch MSS in Bypass Dump Tank (0.25) below tank centerline c.'

52

(+ or - 20) volts None (0.25) d.

8

(+ or - 0.5) inches of Hg MSS in Bypass Dump Tank (0.25)

(or ~22 inches Hg Vacuum)

MSS in Refumi (0.25)

Steam Drum pressure < 500 psig (or4450p4Q$ byALPl,g)(0.25) e.

50

(+ nr - 5) percent MSS in Bypass Dump Tank (0.25) of full closure MSS in Refuel (0.25)

(0.25 ma. setpoint, 0.25 ma. bypass as indicated)

REFERENCE 51, 52, 53, AND 55, AND AL[ h A [p /he BRP TECH SPECS PG.

212000X104 212000K111 212000K114 212000K412

...(KA'S)

ANSWER

'3.07 (1.00)

True (0.50)

Depressing the manual scram switch also doenergizes the two RPS bus undervoltage relays.

(OR Deanergizes both RPS bussus.)

(0.50)

REFERENCE BRP SDM PG 1-12.

212000K401 212000K402 212000K407

...(KA'G)

L__INBIBWHEMIB_8HD_GONIBOLE PAGE 38 ANSWERS -- BIS ROCK POINT

-87/04/14-MILLER, R.

ANSWER 3.08 (3.50) a.

1.'

Bus 1A 2.

Bus 2A 3.

Emergency Diesel Generator (on loss of off site power) s%<rm v h,5 % ~)

b.

1.

Fire header low pressure, 70 psig 2.

Steam drum low level,

-17" below centerline (0.50 per signal, 0.25 per setpoint) c.

1.

RDS panel in the control room 2.

Local control panel in screenhouse 3.

Mechanical lever on local panel

'*"Y (e

, E

  • 1 ***' p g m a,m L 2L / % &

REFERENCE BRP SDM PG 26-2, AND 26 286000KA9 286000K202 296000K412

...(KA'S)

ANSWER 3.09 (1.00) c.

(0.50)

The MSIV continues to the full open position before closing because it is a DC motor operated limitorque valve whose logic / control system will not allow closure until the valve cycles fully open OR the valve motion has been stopped via the hand control switch. (0.50)

REFERENCE BRP EDM PG 17-2.

239001A301 239001K401

...(KA*S)

ANSWER 3.10 (1.50)

C[>CAJ) a.

Remains as in Al$ts Acc.c, b.

Closed c.

Closed (0.50 ea.)

REFERENCE BRP BDM PG 17-1,

-3, AND

-5.

239001A301 239001K401 241000A107 241000K419

...(KA*S)

3 Itf9IBWt!EtfIE_8tlE_GDtilBOLE PAGE 39

  • ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 3.11 (2.00) c.

1.

The turbine generator is separated from the line 2.

Control is transferred from the initial pressu e regulator to the speed governor (or IPR Q er qQ M M

)

3.

The governor outer bushing is repositioned to the value of house loads (repositioned to a setpoint approximately equal to house loads) 4' D @ (0.E0 ma., any 2) i i

Vd,L4 W.

b.

The generator line breaker is fitted with an automatic device to reclose the breaker after a few cycles (0.50) and a time delay is installed to prevent control transfer under this circumstance (0.50)

REFERENCE BRP SDM PG 13-46.

245000K409

...(KA'S)

ANSWER 3.12 (1.50) a c.

(1.00)

This control change is caused by the disconnection of all circuitry going to the control room when the switch is placed to the ASB position (0.50) (The pressure switch contacts for automatic operation of the valve are tied into the circuit in the l

control room position)

REFERENCE BRP SDM PG 36-B AND 36-9.

207000KA9

...(KA*S)

ANSWER 3.13 (2.50) c.

1.

Low reactor water levels 2 ft 9 inches above the core 2.

Low reactor pressures 200 psig (0.50 per signal, 0.25 per setpoint) l b.

two-out-of-two-once (0.50) i c.

120

(+ or - 20 psig)

(0.25)

This is the maximum discharge provided by a fire pump.

(0.25)

(ALw ate k#

hM.l>tllsa Y AYQ jv'd W q % P @@

L.__INSIBUDENIB_8HE_G9NIBQLB PAGE 40

  • ANSWERS - BIS ROCK POINT

-87/04/14-MILLER, R.

REFERENCE BRP SDM PG B-2 AND B-3.

209001K105 209001K408

...(KA*S)

ANSWER 3.14 (1.50)

1. suction valve must be open (0.50)
2. discharge valve must be closed (0.50)
3. discharge bypass valve must be open (0.50)

REFERENCE l

BRP QUESTION BANK, SEC 3, #81.

l 202OO1K410

...(KA*S) l ANSWER 3.15

(.75) c.

46 KV Charlevoix Line (0.25) b.

1.

Remote from the Control Room consolo 2.

Local from the regulator control cabinet (0.25 ea.)

REFERENCE BRP QUESTION BANK QUESTION # 59 AND 60 DF SEC 2, 3, AND 6.

262OO1A405 262OO1K103 262OO1K201

...(KA*S)

I 1

I

j 1

ESQGEQUBER___NQBdeLa_eRNQBdeLa_EUEBGENGLeNQ PAGE 41 BeQ1DLoolceL_cQUIBob ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 4.01 (1.50) 1.

Whole body:

1.25 rem 2.

Skin of the whole body 7.5 ren:

3.

Extremities:

18.75 rem (0.50 ca.)

REFERENCE 10 CFR 20.101(A) AND QUESTION BANK QUESTICN 7 OF SEC 4 & 7.

294001K103

...(KA*S)

ANSWER 4.02 (1.00) c.

REFERENCE BRP OUESTION BANK NO. 77 OF SEC 4 AND 7.

294001K103

...(KA*S) k ANSWER 4.03 (3.00) a.

1.

26 2.

450 (0.25 ea.)

e b.

1.

all 2.

fuel is in the reactor (0.25 ea.)

c.

1.

Plant Startup 2.

Scheduled Plant Shutdown 3.

Recovery from rea_ tor trips (0.50 ea.)

d.

To ascertein that no anomalous reactivity conditions exist.

(0.50)

REFERENCE BRP SDP 1.0 PG 1, 4, AND 5.

212OOOKA10 212OOCKA13 292OOOKA10

...(KA*S)

.r..

f.

POQGggyBEg_ - HQsueL,_egNQBueL,_geggggNGLeNQ PAGE 42 e

B001DLQU1GGL_GQNIBQL ANSWOAS - BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 4.04 (1.00) b.

REFERENCE BRP ADMIN PROCEDURE 2.1.1 PG 2.

REFERENCE 290002KA10

...(KA'S)

ANSWER 4.05 (1.25) a.

Yes (0.25), Continuous 2 minute blast (0.25) b.

Yes (0.25), Series of short blasts for 30 seconds (0.25) c.

No (0.25)

(PA announcement only - not required)

REFERENCE BRP EPIP 4.0 PG 4B1 AND EPIP 4A PG 4.

294001A116

...(KA*S)

ANSWER 4.06

(.50) 1.

The drive shall be returned to its intended position.

2.

The rod withdrawal shall be terminated.

3.

The Shift Supervisor shall be notified.

(any 2, 0.25 ea.)

. REFERENCE BRP QUESTION BANK QUESTION 34 OF SEC 4 AND 7.

ONP 2.7 PG 2.

201005KA14

...(KA*S) 1 ANSWER 4.07 (1.00)

In the DN position, the stack gas sample switch prevents the system automatic switch to the high range.

REFERENCE BRP SOP 34 PG 7.

271000KA10

...(KA*S)

I

-. ~-... - _ -. - -. - - _ - - - - - - _ - - _ - - - - -. -. _ - - - - _ -, - - - - - - _.

Sm.__EBQGEQQBEE_ _HQBUn a_eEHQBUna_EMEBQgNQY_eND BeQ1DLQGIGE _GONIBQL PAGE 43 ANSWERS -- BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 4.06 (2.50) a.

Not less than 30 seconds b.

Less than 150 degrees F c.

12 d.

Not to exceed 15 MWt e.

1 MWe/ min (0.50 ea.)

REFERENCE A.

BRP GOP 1.0 PG 5 AND GOP 5.0 PG 3 l

B, BRP GOP 1.0 PG 5 C.

BRP GOP 5.0 PG 3 D.

BRP 5.0 PG 2 E.

BRP 6.0 PG 2 212000KA5 2230001KA5

...(KA*S)

ANSWER 4.09 (1.50) l c.

To minimize the possibility of the scram valves failing to close (0.50) when the scram dump tank vent and drain valves open upon resetting of j

the RPS scram.

(0.50) b.

Deenergize the Yarway Temperature Control circuit (by opening supply breaker on 2B Bus)

(0.50)

REFERENCE i

BRP GOP 4.O PG 2.

212000KA10 216000A211 216000KA10

...(KA*S)

ANSWER 4.10 (1.00)

To prevent any chance of overpressurizing the primary system (also accept, the condenser outlet valves will not auto open on high reactor pressure when control is transferred to the ASB)

REFERENCE l

BRP EMP 3.10 207000KA10

...(KA*S)

St-_EBQGEEUBEE - NQRMA(a_ggNQBM6La_EMEBQENQY_9NQ PAGE 44 BOD 10LQQ1GOL_GQNISQL ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 4.11 (1.50) c.

False (0.50)

DC power is required to close the 2.4 KV ACB to power the RFP. (0.50) b.

True (0.50)

REFERENCE BRP EMP 3.1.

245000K409 259001K612

...(KA*S)

ANSWER 4.12 (1.50) 1.

Monitor turbine bypass valve and/or the emergency condenser for proper operation 2.

Reduce BPV setting to 1235 psig 3.

Reduce reactor power to 200,000 lb/hr steam flow (if reactor has not scrammed) 4.

If reactor scrams, perform the scram procedure (ONP 2.31) concurrently.

(0.50 ea., any 3)

REFERENCE BRP DNP 2.14 PG 1 AND 2.

245000KA14

...(KA*S)

ANSWER

' 4.13 (1.00)

To allow the engine starter to cool.

REFERENCE BRP ALP 1.12 AND ONP 2.14 PG 1.

264000KA10

...(KA*S) l

,v-

-e

,na-

-,--n-.

L.__EBQGEDUBEE_ _NQBt!Gla_899QBN6Laa_ENEBGENgy_eNQ PAGE 45 i

BeDIDLOGIGel._GQUIBQL ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

j l

~

l ANSWER 4.14 (1.50) 1.

Trip one reactor recirculation pump (to lower reactor power and water demand) 2.

Restart the condensate pump 3.

Restart one RFP (0.50 ea)

REFERENCE BRP DNP 2.3 PG 2.

256000KA14

...(KA*S)

ANSWER 4.15 (2.00) a 1.

Place the feedwater control valve in "Hanual" control at the valve operator.

2.

(With radio control), reduce f eedwater flow to approximately 10,000 lb/hr less than steam flow.

3.

Control steam drum level with feedwater bypass valve (CV 4012) 4.

If control air is lost to both the feedwater regulating valve (CV 4000) and the bypass valve (CV 4012) scram the reactor.

(0.50 ea.)

REFERENCE BRP DNP 2.20 PG 5.

259001KA14

...(KA*S)

ANSWER 4.16 (1.50) 1.

Out of core instrumentation decay.

2.

Scram valves.open.

gg 3.

Dump tank isolation valves 4.

All control rods fully inserted as indicated by 00 (or green bull) 5.

Ventilation system exhaust and supply valves close.

6.

Turbine trip.

7.

116 DCB opens.

8.

Second rod drive pump starts.

(any 6, 0.25 ea.)

REFERENCE BRP DNP 2.31.

201001A204 212OOOKA14 212OOOKA15

...(KA'S)

Sa._ EBQGEDUBEE_2_UQBM&A_9BNQBBh a_EMER@gNCY AND PAGE 46 l

BSDIADEIG & _GONIB A ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 4.17 (1.75) 1.

Check turbine BPV for normal operation (0.25) 2.

Trip a reactor recirculation pump (0.25) if two pumps are operating (O.25) 3.

Operate synchronous governor control in the decrease direction (0.25) to control turbine admission valves (0.25) 4.

Trip IPR at control transfer mechanism (0.25) and load turbine with the synchronizing governor until turbine BPV closes (0.25)

REFERENCE BRP DNP 2.23 PG 2.

241000KA14

...(KA'S) e l

b O

b e

ATTActt4ENTS e

l EQUATION SHEET j

l 1

f = ma v = s/t Cycle efficiency = (.1et work out)/(Energy in) l 2

w = og s = V,t + 1/2 at 2

E = ac KE = 1/2 av a=(Vf - V,)/t A = AN A a A,e" PE = agn Vf = V, + at w = e/t 1 = an2/t1/2 = 0.693/t1/2 y. y 3p.

nD 1/2#*MMbN 2

[(e/2)*I*bIl A=

l aE = 931 an m = V,yAo

-Ex O

Q = mCpat Q = UAa T' I = I,e~"*

I = I,10~*/U '

Pwe = W ah g

TVL = 1.3/v P = P 10'""III HVL = -0.693/n p = p e /T t

o SUR = 26.06/T SCR = S/(1 - K,ff)

CR,= S/(1 - K,ffx)

CR (1 - K,ff)) = CR II ~ "eff2I SUR = 26s/t* + (s - o)T j

2 T = (1*/s ) + [(s - o V io]

M = 1/(1 - K,ff) = CR)/CR, T = s/(o - s)

M = (1 - K,ff,)/(1 - K,ff))

T = (s - o)/(Io)

SOM = ( - K,ff)/K,ff a=(K,ff-1)/K,ff=aK,fgK,ff t' = 10 seconds4 I = 0.1 seconds o = [(**/(T K,ff)] + [T,ff (1 + IT)]

/

=Id I d) 2,2 2 j

i P = (24V)/(3 x 1010)

Id gd i

22 2

I = eN R/nr = (0.5 CE)/d (meters)

R/hr = 6 CE/d2 (feet)

Water Paraneters Miscellaneous Conversions 1 gal. = 8.345 lem.

1 curie = 3.7 x 1010dps 1ga].=3.78 liters

} kg = 2.21 lbm 3 Stu/hr 1 fta = 7.48 gal.

1 np = 2.54 x 10 Density = 62.4 lbgi/f t3 1 mw = 3.41 x 106 Stu/hr Oensity = 1 gm/cW lin = 2.54 cm Heat of vaporization = 970 Stu/lom

  • F = 9/5'C + 32 Hest of fusion = 144 Btu /lem

'C = 5/9 (*F-32) 1 Atm = 14.7 psi = 29.9 in. Hg.

1 BTU = 778 ft-lbf 1 ft. H O = 0.4335 lbf/in.

2

4 Table 1.

Saturated Steam: Temperature Table Abs Press.

Specific Volume Enthalpy Entropy Temp I.b per Sat.

Sat.

Sat.

Sat.

Sat.

Sat.

Temp Fahr SqIn.

Liquid Evap Vapor Lic vid Evap Vapor Liquid Evap Vapor Fahr t

p vg vtg vg if

. h fg ha s,

sig sg t

32.0 0 08859 0.016022 3304.7 3304.7 0.0179 1075.5 1075.5 0.0000 2.1873 2.1873 32.0 34.8 0 09600 0 016021 3061.9 3061.9 1.996 1074.8 1076.4 0.0041 2.1762 2.1802 34.0 35 I 0.10395 0.016020 2839.0 2839.0 4.008 1073.2' 1077.2 0.0081 2.1651 2.1732 35.0 38.0 0.11249 0.016019 2634.1 2634.2 6.018 1072.1 1078.1 0.0122 2.154I 2.1663 30.0 40 I 1.12163 0.016019 2445.8 2445.8 8.027 1071.0 1079.0 0.0162 2.1432 2.1594 40.0 42.0 0.13143 0 016019 2272.4 2272.4 10 035 1069.8 1079.9 0.0202 2.1325 2.1527 42.0 44 5 0 14192 0.016019 2112.8 2112.8 12.041 1068.7 1080.7 0.0242 2.1217 2.1459 44.0 l

4E 5 0.15314 0.016020 1965.7 1%5.7 14.047 1067.6 1081.6 0.0282 2.1111 2.1393

- 48.0

)

48.0 0.16514 0.016021 1830.0 1830.0 16.051 1066.4 1082.5 0.0321 2.1006 2.1327 40.0 j

58 8 0.17796 0 016023 1704.8 1704.8 18.054 10653 1083.4 0.0361 2.0901 2.1262 30.0 I

52.0 0.19165 0.016024 1589.2 1589.2 20.057 1064.2 1084.2 0.0400 2.0790 2.1197 52.0 l

54.0 0.20625 0 016026 1482.4 1482.4 22.058 1063.1 1085.1 0 0439 2.0695 2.1134 54.0 56 0 0 22183 0.016028 1383.6 1383.6 24.059 1061.9 1086.0 0.0478 2.0593 2.1070 56.0 l

58.0 0.23843 0.016031 1292.2 1292.2 26.060 1060.8 1086.9 0.0516 2.0491 2.1008 58.0 g

l seI 0.25611 0.016033 1207.6 1207.6 28.060 1059.7 1087.7 0.0555 2.0391 ' 2.0946 88.8

$2.8 0.27494 0.016036 1129.2 1129.2 30.059 1058.5 1088.6 0.0593 2.0291 2.0885 62.0 64.8 0.29497 0 016039 1056.5 1056.5 32.058 1057.4 1089.5 0.0632 2.0192 2.0824 64.0 66.8 0 31626 0 016043 989.0 989.1 34.056 1056.3 1090.4 0.0670 2.0094 2.0764 68.0

$8.8 0.33889 0.016046 926.5 926.5 36.054 1055.2 1091.2 0.0708 1.9996 2.0704 68.0 70.8 0 36292 0.016050 868.3 868.4 38.052 1054.0 1092.1 0.0745 1.9900 2.0645 10.0 l

72 I 038844 0.016054 8143 8143 40.049 1052.9 1993.0 0.0783 1.9804 2.0587 72.5 l

74.8 0.41550 0.016058 764.1 764.1 42.046 1051.8 1093.8 0.0821 1.9708 2.0529 74.0 1

78 8 0.44420 0.016063 717.4 717.4 44.043 1050.7 1094.7 0.0858 1.9614 2.0472 15.0 l

78.0 0.47461 0.016067 673.8 673.9 46.040 1049.5 1095.6 0.0895 1.9520 2.0415 78.0 l

88.8 0.50683 0.016072 6333 6333 48.037 1048.4 1096.4 0.0932 1.9426 2.0959 10.0 82.0 0.54093 0.016077 595.5 595.5 50.033

.10473 10973 0.0969 1.9334 2.0303 82.0 l

84.0 0.57702 0 016082 560.3 560.3 52.029 1046.1 1098.2 0.1006 1:9242 2.0248 84.0 86.0 061518 0 016087 227.5 527.5 54.026 1045.0 1099 0 0.1043 1.9151 2.0193 86.0 88 8 0.65551 0.016093 496.8 496.8 56.2,22 1043.9 1099.9 0.1079,1.9060 2.0139 80.0 90.0 0 69813 0.016099 468.1 468.1 58 018 1042.7

!!00 8 0.1115 1.8970 2.0006 90.0 32 8 0.74313 0.016105 4413 4413 60 014 1041.6 1101 6 0.1152 1.8881 2.G033 92.0 54 0 0 79062 0.016111

-4163 416 3 62.010 1040.5 1102 5 01188 1.8792 1.9980 94.8 96 8 084072 0 016117 392.8 392.9 64.006 1039.3 1103.3 0 1224 1.8704 1.9928 SE 8 38 0 0 89356 0 016123 370.9 370.9 66 003.

10382 1104 2 0 1260 ' l.8617 1.9876 98.0 i

~

l

~~

Abs Press.

Specific Volume Enthalpy Entropy Temp tb per Sat.

Sat.

Sat.

Sat.

Sat.

Sat.

Temp Fahr SqIn.

Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr j

t p

vg vgg vg hg h ig h

sg sig s

i g

g 100 0 0.94924 0 016130 350.4 350.4 67.999 1037.1 1105.1 R1295 1.8530 1.9825 100.0 102.0 1.00789 0.016137 331.1 331.1 69.995 1035.9 1105.9

&l331 1.8444 1.9775 102.0 104 8 1.06 % 5 0.016144 313.1 313.1 71.992 1034.8 1106.8 0.1366 1.8358 1.9725 100.0 les s 1.1347 0 016151 296.16 296.18 73.99 1033 6

!!07.6 0.1402 13273 1.9675 198 0 100 0 1.2030 0 016158 280.28 280.30 75.98 1032.5 1108.5 0.1437 1.8188 1.9626 10E0 I

lite 1.2750 0.016165 26537 26539 77.98 1031.4 11093.

0.1472 1.8105 1.9571 110A 112.0 1.3505 0 016173 25137 251J8 79.98 1030.2 1130.2 0.1507 1.8021 1.9528 112.0 114 I 1.4299 0.016180 238.21 238.22 81.97 1029.1 1II1.0 0.1542 13938 1.9480 114A ill.I 1.5133 0.016188 225 84 225.85 83.97 1027.9 1111.9 0.1577 1.7856 1.9433 116A 110.0 1.6009 0 0161 %

214.20 214.21 85.97 1026.8 1112.7 0.1611 1.7774 1.9306 1110 i

120 I 1.6927 0.016204 203.25 203.26 87.97 1025.6 1113.6

&l646 1.7693 1.9339 1310 i

122.8 1.7891 0 016213 192.94 192.95 89.96 1024.5 1114.4 0.1680 1.7613* 1.9293 122.0 1

124 8 1.8901 0 016221 183.23 183.24 91.96 1023.3 11153 0.1715 1.7533 1.9247 124.0 126.0 1.9959 0 016229 174.08 174.09 93.%

1022.2 1116.1 0.P49 1.7453 1.9202 128.0 128 9 2.1068 0 016238 165.45 165.47 95.96 1021.0 1117.0 0.1/83 1.7374 1.9157 120.0 130.0 2.2230 0.016247 15732 15723 97.96 1019.8 1117.8 0.1817 1.7295 1.9112 130.0 132.s 23445 0 016256 149.64 149.66 99.95 1018.7 1118.6 0.1851 1.7217 1.9068 132.0 134.8 2.4717 0 016265 142.40 142.41 101.95 1017.5 1119.5 0.1884 1.7140 1.9024 134.0 l

1 135 8 2.6047 0 016274 135.55 135.57 103.95 1016.4 1120.3 0.1918 1.7063 1.8900 135.0 130 B 2.7438 0 016284 129.09 129.11 105.95 1015.2 1121.1 0.1951 1.6986 1.8937 130A 140 8 2.8892 0 016293 122.98 123.00 107.95 1014.0 1122.0 0.1985 1.6910 1.8895 140A 142.0 3.0411 0.016303 117.21 117.22 109.95 1012.9 1122.8 0.2018 1.6534 1.8852 142.0 144.0 3.1997 0 016312 11134 111.76 111.95 1011.7 1123.6 0.2051 1.6759 1.8810 144.0 14E.8 33653 0.016322 106.58 106.59 113.95 1010.5 1124.5 0.2004 1.6604 1.8769 148.0 148 0 3.5381 0.016332 101.68 101.70 115.95 1009.3 ~ 1125.3 0.2117 1.6610 - 1.8727 140.0 150 I 33184 0.016343 97.05 97.07 117.95 1000.2. 1126.1 0.2150 1.6536 1.8606 150A 152 8 3.9065 0.016353 92.66 92.68 119.95 1001.0 1126.9 0.2183 1.6463 1.8646 152.0 154.8 4.1025 0.016363 88.50 88.52 121.95 1005.8 1127.7 0.2216 1.6390 1.8606 154.0 i

156 8 4 3068 0.016374 84.56 84.57 123.95 1004.6 1128.6 0.2248 1.6318 1.8566 158.0 1

158I 4.5197 0.016384 80 82 80.83 125.96 1003.4 1129.4 0.2281 1.6245 1.8526 150.0 I

168 8 4.7414 0 0!6395 77.27 77.29 127.96 1002.2 1130.2 0.2313 1.6174 1.8487 180.0 162.5 4.9722 0.016406 73.90 73.92 129.96 1001.0 1131.0 0.2345 1.6103 1.8448 162.0 164 8 5.2124 0.016417 7030 7032 131.96 999.8 1131.8 0.2377 1.6032 1.8409 164.0 IEE S 54623 0 016428 67.67 67.68 133 97 998 6 1132.6 0.2409 1.5961 1.8371 180.0 135.97 997.4 1133.4 0.2441 1.5892 1.8333 180.0 j

168 8 5 7223 0.016440 6438 64.80 l

170 0 5.9926 0 016451 62.04 62.06 137.97 996.2 1134.2 0.2473 1.5822 1.8295 1710 l

172.0 6 2736 0.016463 5943 59.45 139.98 995.0 1135.0 0.2505 1.5753 1.8258 172.0 174.8 6.5656 0 016474 56.95 56.97 141.98,

993.8 1135.8 0.2537 1.5684 1.8221 174A-176.8 6 8690 0 016486 54.59 54 61 143.99 992.6 1136.6 0.2568 1.5616 1.8184 175.0 il 8 7.1840 0 016498 5235 5236 5.99 991.4 1137.4 0.2600 1.5548 1.8147

"*I

c.

i i

i Abs Press.

Specific Volume Enthalpy Entropy l

Temp Lb per Sat.

Sat.

Sat.

Sat.

Sat.

Sat.

Temp Fahr SqIn.

Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr I

p V:

vfg vg hi h ig h

s, sgg s8 I

g

'100 0 7.5110 0.016510 50.21 50.22 148 00 990.2 1138.2 0.2631 1.5480 1.8111 180.0 182.8 7.850 0.016522 48.172 18.189 150 01 989.0 1139.0 0.2662 1.5413 1.8075-182.8 l

184.8 8.203 0 016534 46.232 46.249 152.01 987.8 1139.8 03694 1.5346 1.8040 104.0 1

ISE 8 8.568 0 016547 44383 44.400 154.02 986.5 1140.5 0.2725 1.5279 1.8004 185.0 i

188.0 8.947 0.016559 42.621 42.638 156.03 9853 1141.3 0.2756 1.5213 IJ969 188.8 190 I 9.340 0.016572 40.941 40.957 158.04 984.1 1142.1 0.2787 15148 1.7934 190.8 i

1928 9.747 0.016585 39337 39354 160.05 982.8 1142.9 02818 1.5082 13900 192.8 4

194O 10.168 0.016598 37.808 37.824 162.05 981.6 11433 0 2848 1.5017 13865 194.5 l

196 8 10.605 0.016611 36.348 36364 164.06 980.4 1144.4 0.2879 1.4952 13831 195.0 198.I 11.058 0.016624 34.954

'34.970 166.08 979.1 1145.2 0.25i1 0 1.4888 13798 198.0 l

l 200 0 11.526 0.016637 33.622 33.639 168.09 977.9 1146 0 0.2940 1.4824 11764 200.0 284 8 12.512 0 016664 31.135 31.151 172.11 975.4 11415 0 3001 1.4697 13698

' 204.0 288 8 13.568 0.016691 28.862 28.878 176.14 372.8 1149.0 0 3061 1.4571 13632 200.0 i

212 0 14.6 %

0.016719 26.782 26199 180.17 970 3 1150.5 03121 1.4447 13568 212.0 l

J, 216 8 15.901 0.016747 24.878 24.894 184.20 967.8 1152.0 03181 1.4323 13505 216.0 l

220.8 17.186 0.016775 23.131 23.148 188.23 965.2 1153.4 03241 1.4201 13442 220.0 224.I 18.556 0.016805 21.529 21.545 192.27 962.6 1154.9 03300 1.4081 11380 224.8 228 8 20.015 0 016834 20.056 20.073 19631 960 0 1156.3 0 3359 13 % I 13320.

228.0 232.I 21.567 0.016864 18.701 18318 20035 957.4 1157.8 03417 13842 I.7260 232.8 l

236 I 23.216 0.016895 17.454 17.471 M.;3 954.8 1159.2 03476 1J725 1.7201 236.8 I

i 240.0 24.968 0.016926 16304 16.321 208.45 952.1 1160.6 03533 13609 1.7142 240.0 -

244.0 26.826 0.016958 15.243 15.260 212.50 949.5 1162.0 03591 13494 13085 244.8 2488 283 %

0.016990 14.264 14.281 216.56 946.8 1163.4 0.3649 1 3379 11028 2488 252.0 30.883 0.017022 13.358 13375 220.62 944.1 1164J 03706 13266 1.6972 252.0 255.0 33.091 0.017055 12.520 12.538 224.69 941.4 1166.1 03163 13154 1.6917 256.8 260.0 35.427 0.017009 11.745 11.762 22836 938.6 1167.4 03819 13043 1.6862 260.0 l

264 8 37.894 0.017123 11.025 11.042 232.83 935 9 11683 03876 1.2933-1.6808 264.0 i

l 268.0 40.500 0.017157 10.358 10.375 23631 9331 1170 0 0 3932 1.2823 1.6755 268.8 l

272.8 43.249 0 017193 9.738 9 755 240 99 930 3 11713 03987 1.2715 1.6702 272.0 216.8 46.147 0.017228 9.162-9.160 245.08 927.5 1172.5 0.4043 1.2607 1.6650 276.8 288 8 49.200 0.017264 8.627 8.644 249.17 924.6 1I73.8 0.4098 1.2501 1.6599 280.0 284 8 52.41 A 0.01730 8.1280 8.1453 253 3 9213 1175.0 0.4154 1.2395 1.6548 284.0 288 1 55 ;u 0.01734 7.6634 7.6807 257.4 91d.8 1176.2 0 4208 1.2290 1.6498 288.I 2928 59 350 0.01738 7.2301 7.2475 261.5 915.9 1177.4 0.4263 1.2186 1.6449 292.0 265.6 913.0 1178.6 0.4317 1.2082 1.6400 296.0 29E O S3.084 0.01741 6.8259 6.8433 l

4 i

i Abs Press.

Specific Volume Enthalpy Entropy Temp tb per Sat.

Sat.

Sat.

Sat.

Sat.

Sat.

Temp Fahr SqIn.

Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr t

p vg vgg V8 hg h ig h

sg seg sg

(

g SIO.B 67.005 0.01745 6.4483 6.4658 269.7 910.0 1179.7 0.4372 1.1979 1.6351 300.0 384 5 71.119 0.01749 6 0955 6.1130 273.8 907.0 1180.9 0.4426 1.1877 1.6303 304 8 2

l 388.8 75.433 0.01753 5.7655 5.7830 278.0 904.0 1182.0 0.4479 1.1776 1.6256 300 0 i

312.0 79 953 0.01757 5.4566 5.4742 282.1 901.0 1183.1 0.4533 1.1676 1.6209 312.8 316.0 84.688 0.01761 5.1673 5.1849 2863 897.9 1184.1 0.4586 1.1576 1.616 315.8 320.9 89 F43 0.01766 4.8961 4.9138 290.4 894.8 1185.2 0.4640 1.1477 1.6116 329.9 324.8 94E2u 0 01770 4 6418 4.6595 294.6 891.6 1186.2 0.4692 1.1378 1.6071 324.0 l

328 0 100 245 0.01174 4.4030 4.4208 298.7 8883 1187.2 0.4745 1.1280 1.6025 328.0 1

332.0 105.907 0.01779 4.1788 4.1%6 302.9 885.3 1188.2 0.4798 1.1183 1.5981 332.0 j

33EI 111.820 0.01783 3.9681 3.9859 307.1 882.1 1189.1 0.4850 1.1086, 1.5936 336.I 348 8 117.992 0.01787 3.7699 3.7878 3113 878.8 1190.1 0.4902 1.0990 13892 340.8 I

344.0 124 430 0.01792 35834 3.6013 3153 875.5 1191.0 0.49'4 1.C894 1.5849 344.0 I

348.8 131.142 0.01797 3 4078 3.4258 319.7 872.2 1191.1 05006 1.0799 1.5806 348.8 i

352.0 138.138 0.01801 3.2423 3.2603 323.9 868.9 1192.7 0.5058 1.0705 1.5763 352.0 358.0 145.424 0 01806 3.0863 3.1044 328.1 865.5 1193.6 0.511G 1.0611 1.5721 356.0 388.8 153.010 0.01811 2.9392 2.9573 3323 862.1 1194.4 05161 1.0517 1.5678 30s.0 a

364.0 160 903 0.01816 2.8002 2.8184 336.5 858.6 1195.2 0.5212 1.0424 1.5637 364.0 368.8 169.113 0.01821 2.6691 2.6873 340.8 855.1 1195.9 05263 1.0332 15595 36s.0 372.0 177.648 0.01826 25451 2.5633 345 0 851.6 1196.7 05314 1.0240 1.5554 372.0 375.8 186317 0.01831 2.4279 2.4462 349.3 848.1

!!97.4 0.5365 1.0148 1.5513 375.0 300.8 195.729 0.01836 2.3170 2.3353 353 6 8445 1198.0 0.5416 1.0057 1.5473 388.8 384 8 205 294 0 01842 2.2120 2.2304 357.9 840.8 1198.7 0.5466 0.9966 13432 384.0 388 0 215.220 0 01847 2.1126 2.1311 362.2 837.2 11993 0.5516 0.9876 1.5392 388.0 392.0 225 516 0.01853 2.0184 2.0369 366 5 833.4 1199.9 03567 0.9786 1.5352 392.0 370.8 829.7 1200.4 0.5617 0.9696. 1.5313 395.5 398.0 236.193 0.01858 I.9291 1.9477 480.0 247.259 0.01864 1.8444 1.8630 375.1 825.9 1201.0 0.5667 0.9607 1.5274.

400.0

)

484.8 258.725 0.01870 1.7640 1.7827 379.4 822.0 1201.5 0.5717 0.9518 1.5234 484.0 480.0 270 600 0.01875 1.6877 1.7064 383.5 818.2 1201.9 0.5766 0.9429 1.5195 488.8 412.0 282.894 0.01881 1.6152 1.6340 388I 814.2 1202.4 0.5816 0.9341 1.5157 412.0 4

415.0 295 617 0.01887 1.5463 1.5651 392.5 810.2 1202.8 0.5866 0.9253 1.5118 416.5 428.8 308.780 0.01894 1.4808 1.4997 396.9 806.2 1203.1 03915 0.9165 1.5080 420.0 4013 802.2 1203.5 0.5964 0.9077 1.5042 424.8 J

424.0 322391 0.01900 1.4184 1.4374

. 405.7 798.0 1203.7 0.6014 0.8990 1.5004 428.8 i

428.0 336.463 0 01906 1.3591 1.3782 i

4328 351 00 0 01913 130266 1J2179 410.1 793.9 1204.0 0.6063 0.8903 1.4966 432.5 435 I 366 03 0.01919 1.24887 1.26806 414 6 789.7 1204.2 0.6112 0.8816, 1.4928 435.0 440.0 381.54 0 01926 1.19761 1.21687 419.0 785.4 1204.4 0.6161 0.8729 1.4890 440.8 '

  • 4.8 397.56 0.01933 1.14874 1.16806 35 781.1 1204.6 0.6210 0 8643 1.4853 0

776.7 1204.7 0 6259 0 8557 I.g i

II 414.09 0 01940 1.10212 1.12152

v.

e i

e Abs Press.

Specific Volume Enthalpy Entropy Temp lb pu Sat.

Sat.

Sat.

Sat.

Sat.

Sat.

Temp Fahr SqIn.

Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr

]

t p

vg vig vg he h ig h

s, sig se g

t 468.0 466.87 0.01 % 1 0.97463 0.99424 441.5 763.2 ~ 1204.8 0.6405 0.8299 1.4704 400.8 e

i 464.0 485.56 0 01969 0.93588 0.95557 446.1 7584 1204.7 0.6454 0.8213 1.4667 464.0 1

468.8 504.83 0.01976 0.89885 0.91862 450.7 754.0 1204.6 0.6502 0.8127 1.4629 468.0 -

472.8 524.67 0.01984 0 86345 0.88329 455.2 749J 1204.5 0.6551 0.8042 1.4592 472.0 476.8 545.11 0.01992 0.82958 0.84950 459.9 744.5 12043 0.6599 0.7956 1.4555 476.8 488.8 566.15 0.02000 0.79716 0.81717 464.5 739.6 1204.1 0.6648 0.7871 1.4518 400.8 i

i 484.0 587.81 0.02009 0.76613 0.78622 469.1 734.7 1203.8 0.6696 0.7785 1.4481 484.8 i

488 8 610.10 0.02017 0.73641 0.75658 473.8 729.7 1203.5 0.6745 0.7700 1.4444 480.0 452.0 633 03 0.02026 0.70794 0.72820 4785 724.6 1203.1 0.6793 0.7614 1.4407 492.0

)

496 8 656.61 0 02034 0.68065 0.70100 483.2 719.5 1202.7 0.6842 0.7528 1.4370 496.0 4

500 0 680.06 0.02043 0.65448 0.67492 487.9 7143 1202.2 0.6890 0.7443 1.4333 50s.O

$84.0 105.78 0.02053 0.62938 0.64991 492.7 7090 1201.7 0.6939 0.7357 1.4296 504.5 i

588.8 731.40 0.02062 0.60530 0.62592 497.5 703.7 1201.1 0 6987 0.7271 1.4258 588.0 i

y 512.0 757.72 0.02072 0.58218 0.60289 5023 698.2.

1200.5 0.7036 0.7185 1.4221 512.0 516.8 784.76 0.02081 0.55997 0.58079 507.1 692.7 1199,8 0.7085 0.7099 1.4183 518.0 l

{

4 528.I 812.53 0.02091 0.53864 0.55956 512.0 687.0 1199.0 0.7133 0.7013 1.4146 520.0 l

524I 841.04 0.02102 0.51814 0.53916 516.9 6813 1198.2 0.7182 0.6926 1.4100 524.0 i

528 8 870.31 0.02112 0.49843 0.51955 521.8 675.5 11973 0.7231 0.6839 1.4070 528.0 l

536.8 931.17 0.02134 0.46123 ~ 0.50070 526.8 669.6 11 % 4 0.7280 0.6752 1.4032 532.8 532 O 900.34 0.02123 0.47947 0.48257 531.7 663.6 1195.4 0.7329 0.6665 13993 536.0 540.0 962.79 0.02146 0.44367 0.46513 536.8 657.5 - 1194J 0.7378 0.6577 1J954 540.0 544.8 995.22 0.02157 0.42677 0.44834 541.8 6513 1193.1 0.7427 0.6489 IJ915 544.0 548.0 1028.49 0 02169 0.41048 0.43217 546.9 645.0 1191.S 0.7476 0.6400 1.3876 548.0 l

552.8 1062.59 0 02182 039479 0.41660 552.0 638.5 1190.6 0.7525 0.6311 1.3837 552.8 556.8 1097.55 0.02194 0.37966 0.40160 557.2 632.0 1189.2 0.7575 0.6222 1.3797 556.8 560.0 1133.38 0.02207 036507 038714 562.4 625.3 1187.7 0.7625 0.6132 1.3757 500.8 a

564 8 1170.10 0.02221 0 35099 0 37320 567.6 618.5 1186.1 0 7674 0.6041 1.3716 564 0 l

568 8 1207.72 0 02235. 033741 0.35975 572.9 61).5 1184.5 0 7725 0.5950 13675 568.0 572.0 1246.26 0.02249 032429 034678 578.3 604.5'

!!82.7 0 7775 0.5859 13634 572.0 l

576 0 1285.74 0.02264 0.31162 0.33426 583.7 597.2 1180.9 0.7825 0.5766 13592 576.8 500.0 1326.17 0.02279 0.29937 032216 589.1 589.9 '1179.0 0.7876 0.5673 1.3550 500.0 584 I 1367.7 0 02295 0 28753 0.31048 594.6 582.4 1175.9 0.7927 0.5580 13507 584.0 510.0 1410 0 0.02311 0.27608 0.29919 600 1 574.7 1174.8 0.7978 0.5485 13464 580.0 l

592.0 1453 3 0.02328 0.26499 0.28827 605.7 566.8 1172.6 0.8030 0.5390 1.3420 592.0 596.0 1497.8 0.02345 0.25425 0.27770 611.4 558.8 1170.2 0.8082 0.5293 1.3375 596.0 4

i

4 t

i Abs Press.

Specific Volume Enthalpy Entropy j

Temp tbper Sat.

Sat.

Sat.

. Sat.

Sat.

Sat.

Temp Fahr Sqin.

Liquid Evap Vapor liquid Evap Vapor liquid. Evap Vapor Fahr l

t p

vg vig vg hr h ig h

sg sig sg t

g

, 500 I 1543.2 0.02364 0.24384 0.26747 617.1 550.6 1167.7 0.8134 0.5196 1.3330 E85.5 d

504.0 15893 0.02382 0.23374 0.25757 622.9 542.2 1165.1 0 8187 0.5097 1.3284 000.0

$48I 16373 0.02402 0.22394 0.24796 628.8 533.6 1162.4 0.8240 0.4997 13238 000.8 i

512.0 1686.1 0.02422 0.21442 0.23865 634.8 5243

!!59.5 0.8294 0.4896 1.3190 812.8 515.5 1735.9 0.02444 0.20516 0.22960 640.8 515.6 1156.4 0.8348 0.4794 1.3141 816.0 520 0 1786.9 0.02466 0.19615 0.22081 646.9 506J

!!53.2 0.8403 ' O.4689 1.3092 830.8 524.8 1839 0 0.02489 0.18737 0.21226 653.1 4?6.6 1149.8 0.8458 0.4583 1.3041 824.8 l

528 8 1892.4 0.02514 0.17880 0.20394 659.5 4863 1146.1 0.8514 0.4474 1.2988 528.0 1

632 8 1947.0 0.02539 0.17044 0.19583 665.9 476.4 1142.2 0.8571 0.4364 1.2934 832.0 535.8 2002.8 0.02566 0.16226 0.!3792 672.4 4653 1138.1 0.8628 0.4251 1.2879 835.0 I

SeeI 2059.9 0.02595 0.15427 0.18021 679.1 454.6 11333 0.8686 0.4134 1.2821 540.0 l

544 0 21183 0.02625 0.14644 0.17269 685.9 443.1 1129.0 0.8746 0.4015 1.2761 644.0 i

lesI 2178.1 0.02657 0.13876 0.16534 692.9 431.1 1124.0 0.8806 03893 1.2699 848.0 1

552.8 2239.2 0.02691 0.13124 0.15816 700.0 4183 11183 0.8868 0J767 1.2634 052.0 3

555.8 23011 0 02728 0.12387 0.15115 707.4 405J 1113.1 0.8931 03637 1.2567 856.8

$600 23653 0.02768 0.11663 0.14431 714.9 392.1 1107.0 0.8995 03502 1.2498 000.6 554.8 2431.1 0.02811 0.10947 0.13757 722.9 3773 1100.6 0.9064 0J361 1.2425 884.0 558.8 2498.1 0.02858 0.10229 0.13087 731.5 362.1 1093.5 0.9137 03210 1.2347

$$8.0 572.I 2566.6 0 02911 0.09514 0.12424 740.2 3453 1085.9 0.9212 03054 1.2266 572.8 i

675.I 2636 8 0.02970 0.08799 0.11769 749.2 328.5 1077.6 0.9287 0.2892 1.2179 876.8 i

j Sgt.I 2708.6 0.03037 0.00080 0.11117 758.5 310.1 1068.5 0.9365 0.2720 1.2006 000.0 584.8 2782.1 0.03114 0.07349 0.10463 768.2 290.2 1058.4 0.9447. 0.2537 1.1984 E84.0 778.8 268.2 1047.0 0.9535 0.2337 1.1872 888.8 688 8 2857.4 0.03204 0.06595 0.09799 l

592.8 2934.5 0.03313 0.05797 0.09110 790.5 243.1 1033.6 0.9634 0.2110 1.1744 002.0

]

595.0 3013.4 0.03455 0.04916 0.08371 804.4 212.8 1017.2 0.9749 0.1841 1.1591 606.0 i

100.0 30943 0.03662 0.03857 0.07519 822.4 172.7 995.2 0.9901 0.1490 1.1390 100 0 702 0 3135.5 003824 0.03173 0.06997 835.0 1441 9793 1.0006 0.1246 1.1252 702.0 4

l 784.8 3177.2 0 04108 0.02192 0.06300 854.2 102.0 956.2 1.0169 0.0876 1.1046 704.0 785 8 31983 0 04427 0.01304 005730 873 0 61.4 934.4 1.0329 0.0527 1.0856 105.0 i

705.47*

3208.2 0.05078 0.00000 0.05078 906 0 0.0 906.0 1.0612 0.0000 1.0612 105.47*

j Critical temperature

[

f

o.; o,

i l

Tabie 2: Saturated Steam: Pressure Table i

i Specific Volume

~

Enthalpy Entropy i

Abs Press.

Temp Sat.

Sat.

Sat.

Sat.

Sat.

Sat.

Abs Press.

tb/Sq in.

Fahr Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Lb(Sq In.

j p

t vg vgg v

hg hgg h

sg s gg s

g g

g p

(

i 000005 32.018 0.016022 3302.4 3302.4 0 0003 1075.5 1075.5 0.0000 2.1872 2.1872 0.00005 I 25 59.323 0.016032 1235.5 1235.5 27.382 1060.1 1087.4 0.0542 2.0425 2.0967 0.25 j

0 50 79 586 0.016071 641.5 641.5 47.623 1048.6 1096.3 0.0925 1.9446 2.0370 0.50 le 101.74 0 016136 333.59 333.60 6933 1036.1 1105.8 0.1326 1.8455 1.9781 1.0 t

50 162.24 0.016407 73.515 73.532 130.20 1000.9 1131.1 0.2349 1.6094 1.8443 50 10 0 193 21 0.016592 38.404 38.420 161.26 982.1 1143.3 0.2836 1.5043 13879 10 0 l

14 ISO 212.00 0.016719 26 782 26399 180.17 970.3 1150.5 0.3121 1.4447 1.7568 14 090 15.0 213.03 0 016726 26.274 26.290 181.21 9691 1150.9 0.3137 1.4415 1.1552 15.0 20 0 227.96 0.016834 20.070 20.087 19627 9601 1156.3 0.3358 1.3962 1.7320 20.0 30.0 250 34 0.017009 133266 133436 218 9 945.2 1164.1 0.368' l.3313 1.6995 30.0 1

40 0 267.25 0.017151 10.4794 10.4965 236.1 933 6 1169 8 0.3921 1.2844 1.6765 40.0 I

50 0 281.02 0 017274 8.4%7 8.5140 250.2 923.9 1174.1 0.4112 1.2474 1.6586 50.0 50 0 29231 0 017383 7.1562 7.1736 262.2 915.4 1I77.6 0 4273 1.2167 1.6440 00.0 70 0 302.93 0.017482 6.1875 6.2050 2723 907.8 1180.6 0.4411 1.1905 1.6316 70.0 00 0 312 04 0 017573 5.4536 5.4711 282.1 900.9 1183.1 0.4534 1.1675 1.6208 00 0 E

50 0 320.28 0 017659 4.8779 4.8953 290.7 894.6 1185.3 0.4643 1.1470 1.6113 90.0 i

100 0 327.82 0.017740 4.4133 4.4310 298.5 888.6 1187.2 0.4743 1.1284 1.6027 100.0 110.3 334.79 0 01782 4.0306 4.0484 305.8 883.1 1188.9 0.4834 1.1115 1.5950 110.0

?

120 0 341.27 0.01789 33097 3.7275 312.6 877.8 1190.4 0.4919 1.0960 1.5879 120 0 130 0 347.33 0.01796 3.4364 3.4544 -

319.0 872.8 1191.7 0.4998 1.0815 1.5813 130.0 140 0 353.04 0 01803 3.2010 3.2190 325.0 868.0 1193.0 0.5071 1.0681 1.5752 140.0 l

150 0 358.43 0.01809 2.9958 3.0139 330.6 863.4 1194.1 0.5141 1.0554 1.5695 150 0 100 0 363.55 0 01815 2.8155 2.8336 336.1 859.0 1195.1 0.5206 1.0435 1.5641 100.0 170.0 368.42 0 01821 2.6556 2.6738 341.2 854.8 1196.0 0.5269 1.0322 1.5591 170.0 i

100.0 373.08 0.01827 2.5129 2.5312 346.2 8501 1196.9 0.5328 1.0Il5 1.5543 100 0 i

190.0 377.53 0.01833 2.3847 2.4030 350.9 8461 1197.6 0.5384 1.0113 1.5498 190.0 200.0 381.80 0.01839 2.2689 2.2873 355.5 842.8 1198.3 0.5438 1.0016 1.5454 200.0 210 0 385.91 0 01844 2.16373 2.18217 359.9 839.1 1199.0 0 5490 0.9923 1.5413 2I00 l

220 0 389 88 0 01850 2.06779 2.08629 364.2 835.4 1199.6 0.5540 0.9834 1.5374 220 0 1

230.0 39330 0 01855 1.97991 1.99846 368.3 831.8 1200.1 0.5588 0 9748 1.5336 230.0 i

240 0 397.39 0 01860 1.89909 1.91769 372.3 828.4 1200.6 0.5634 0.9665 1.5299 240.0 250 0 400.97 0 01865 1.82452 1.84317 376.1 825.0 1201.1 0.5679 0.9585 1.5264 250 0 i

250 0 404.44 0 01870 135548 137418 3 79.9 821.6 1201.5 0.5722 0 9508 1.5230 250 0 270 0 407.80 0 01875 1.69137 131013 383 6 818.3 1201.9 0.5764 0 9433 1.5197 270 0 2000 411.07 0 01880 1.63169 1.65049 387.1 815.1 1202.3 0 5805 0 9361 1.5166 2000 290.0 414.25 0.01885 1.57597 1.59482 390.6 812.0 1202.6 0.5844 0.9291 1.5135 290.0 i

300 0 417.35 0 01889 1.52384 1.54274 394.0 808.9 1202.9 0.5882 0 9223 1.5105 300.0 350 0 431.73 0 01912 1.30642 1.32554 409.8 794.2 1204 0 0 6059 0.8909 1.4968 350.0 naa un en nnieu II4167 116095 474 2 780 4 1204 6 0 6217 0 8630 l.4847 400 0

l 1

i j

Specific Voimne Enthalpy Entropy j

Abs Press.

Temp Sat.

Sat.

Sat.

Sat.

Sat..

Sat.

Abs Press.

tblSq In.

Fahr Liquid Evap Vapor Li vid Evap Vapor Liquid Evap -

Vapor.

Lb/Sg in.

j P

I V I ig g

i hgg h

sg' s gg s

p V

V g

g 450.0 456 28 0.01954 1.01224 - 1.03179 4373 767.5 1204.8 0.6360 0.8378 1.4738 450.0 500 0 467.01 0 01975 0.90787 0.92762 449.5 755.1 12043 0.6490 0.8148 1.4639 500.0 558 9 476.94 001994 0.82183 0.84177 460.9 7433 1204.3 0.6611 03936 1.4547 550 I 600 0 486 20 0 02013 034962 036975 4713 732.0 12033 0.6723 01738 1.4461 000 0 558 9 494.89 0 02032 0.68811 030843 481.9 720.9 1202.8 0.6828 01552 1.4381 650.0 1

700 8 503 08 0.02050 0.63505 0.65556 491.6 710.2 1201.8 0.6928 01377 1.4304 700.8 758 I 510 84 0.02069 0.58880 0.60949 500.9 699.8 12003 0.7022 0.7210 1.4232 750 0 800 0 518 21 0 02087 0.54809 0.568 %

509.8 689.6 1199.4 03111 01051 1.4163 Sees ISO e 525.24 0.02105 0.51197 0.53302 518.4 679.5 1198.0 03197 0.6899 1.4096 850.0 90sI 531.95 0.02123 0.47968 0.50091 5263 6691 1196 4 0.7279 06753 1.4032 90s.0 l

958 8 53839 0 02141 0.45064 0.47205 5341 660.0 11941 0.7358 0.6612 IJ970 950.0 1988 I 544.58 0 02159 0.42436 0.445 %

542.6 650.4 1192.9 03434 0.6476 13910 1988.8 l

1950 8 550 53 0 02177 0.40047 0.42224 550.1 640.9 1191.0 01507 0 6344 13851 1950 0 1100 0 556 28 0.02195 03 7863 0.40058 557.5 631.5 1189.1 03578 0.6216.

13794 1988.0 1

1158I 561.82 0 02214 035859 0.38073 564.8 622.2 1187.0 03647 0.6091 1.3738 1150 0 l

12000 567.19 0.02232 034013 036245 571.9 613.0 1I84.8 0.7714 0.5%9 13683 1200 0 l

12588 57238 0.02250 0 32306 034556 578.8 603.8 1182.6 03780 0.5850 13630 1250.0 1

1300 0 577.42 0 02269 030722 0 32991 585.6 594.6 1180.2 01843 0 5733 13577 13ste i

13500 582.32 0 02288 0.29250 0 31537 5923 585.4 1177.8 03906 0.5620 13525 13500 1400 0 587.07 0 02307 0.27871 030178 598.8 576.5 11753 0.7966 0.5507 1.3474 1400.0 14508 59130 0.02327 0.26584 0 28911 605.3 567.4 1172.8 0.8026 0.5397 13423 I450.0 1

1508 8 596.20 0.02346 025372 0 27719 6113 558.4 1170.1 0.8085 0.5288 13373 1500.0 o

1550 0 600.59 0.02366 0.24235 0 26601 618.0 549.4 1167.4 0.8142 0.5182 13324 1550.0 1680 0 604.87 0.02387 0.23159 0.25545 624.2 540.3 1164.5 0.8199 05076 13274 1500 0 16508 609.05 0 02407 0.22143 024551 630.4 5313 1161.6 0.8254 0 4971 13225 1850 I l

17000 613.13 0.02428 0.21178 0.23607 636.5 522.2 1158.6 0.8309 0.4867 13176 1780.0 I

1758.8 617.12 0.02450 0.20263 0.22713 642.5 513.1 1155.6 0.8363 0.4765 13128 1750.0 l

1800 8 621.02 0.02472 0.19390 0.21861 648.5 503.8 1152.3 0.8417 0.4662 13079 lessI 185g a 624.83 0.02495 0.18558 0.21052 654.5 494.6 1149.0 0.8470 0.4561 13030 1850.0 i

1988,0 628.56 0.02517 0.17761 0.20278 660.4 485.2 1145.6 0.8522 0.4459 1.2981 190s.O i

1958e 632.22 0.02541 0.16999 0.19540 E66.3 475.8 1142.0 0.8574 0.4358

  • 1.2931 1950.0 2003I 635.80 0.02565 0.16266 0.18831 672.1 466.2 11383 0 8625 0.4256 11881 2g000 l

2100.s 642.76 0.02615 0.14885 0.17501 683.8 4463 1J30.5 0 8727 04053 1.2780 2100.0 1

2200I 649.45 0 02669 0.13603 0.16272 695.5 4263 1122.2 0.8828 03848 1.2676 2200.0 1

2300 0 655 89 0 02727 0.12406 0.15133 707.2 4060 1113.2 0.8929 0.3640 11569 2333.8 l

2400 g 662.11 002790 0.11287 0.14076 719 0 384.8 11033 0.9031 03430 1.2460 2400.0 2500.0 668.11 0.02859 0.10209 0.13068 731.7 361.6 1093.3 0.9139 0.3206 1.2345 2500.0 2500 5 673 91 0 02938 0.09172 0.12110 744.5 337.6 1082.0 0.9247 0.2977 1.2225 2000.0 27000 679 53 0 03029 0.08165 0.I1194 757.3 3123 1069 7 0.9356 0.2741 1.2097 2700.0 l

2000 0 684.96 0 03134 0.07171 0.10305 7703 285.1 1055.8 0.9468 0.2491 1.1958 2333 g t

2908 0 690 22 0.03262 0.06158 0 09420 785.1 2541 1039.8 0.M88 0 2215 1.1803 29000 3000 0 69533 0 03428 0.05073 0 08500 801.8 218.4 1020.3 0 9728 0.1891 1.1619 3000 3 3100 g 700 28 0 03681 0 03771 0.07452 824.0 169.3 993.3 0.9914 0.1460' 1.1373 3 ag.t.

3700 0 705 08 0 04472 0.01191 0.05663 875.5 56.1 931.6 1.0351 0 0482 1.0832

, 3200.8'

[O8.2 705.47 0 05078 0.00000 0.05078 0.0 906.0 1.0612 -

0 0000 1.0612

.2*

4 O

e 4

Table 3. Superheeled Sleem Obs Press W$4 le Sel Sal Temportiere-Det'ee9 Fehrenheit 1541. 80mtl Wetee $leam 300 350 300 330 000 est 500 000 100 ut Me ime 1900 3200 g

D WM 140M IW 36 300 M #98 M 3et M MG M 400 M $80 M 000 36 PIS M SIS M 908 16 1000 M INI NI e 0 41614 333 4 302 5 422 4 4tt 3 402 I til 9 Sol 7 571 5 638 I ett 7 710 3 000 0 Sie a 9790 tes 6 t

00 73 115 0 18802 5872 9 8195 F 1210 7 IMle IMSI 1208 6 IBM I 8304 5 14H F 3883 0 llM 9 Sta t l6M 7 6 k!3M 1 9708 2 E00 28081 2.Ilt! 2 8489 2178 21985 IJ2H 22700 2 3144 22MI 22M 2 4296 f eet 1 8969 36 3F M GF M llP M 197 M 237 M MFM 337 4 437 76 $37M SN M F37 M 437 4 9W M 30N M I

4 01641 F353 70 le esil 90 M 96 75 ter to ISS 73 Ile 73 IM ll 138 08 19001 MI N IF3 M leb 70 197 70 e

N 288 6 INN ll3t l 1840 6 18 F17 1994 0 1250 0 IM13 1264 7 1200 7 13M 9 late s 84336 1483 7 ISM P 1986 7 luto a 42M9 88e43 1A746 4354 1 9300 89k. l.99e3 2 0200 20eed 29832 2.lMS 28D6 I2IM 22521 2JOH 2 3894 Sh 4 79 96 79 M6 79 IM 79 MS 79 MS 79 306 79 del 79 SSS 79 ens 79 M6 M 006 79 906 M le36 79 Ig e 3016M 3842 38 Os el 93 4e 90 40 02 $183 Se to $7 es 63 03 0000 Te 90 ste u ti 9 87 w ee II#III h

nel M 8843 3 8846 6 Il42 8193 7 1717 I I200 6 1264 I 1207 0 IBM S 4540 54334 4463 5 llas 6 I106 4 109S e SJ836 l) 679 8.7028 14273 4508 13002 1 9473 1309 8 592 24N6 2A508 1 8018 21304 2.Hlf 22808 224Je D

mm 3 00 INm 198 00 25 00 NB 00 300 00 400 00 let te 000 00 N808 0500 900 W 88 # 8 e

8#7 M 399 N el Nlt 37 00 se 67 NU 30 n 47 06 46 93 61 00 61 #

19 93 61 59 67 M 1282 N7 h

1g 87 1318 5 lies t le97 6 1216 3 IPM 9 1363 6 IMP 4 IIM P 1801 8 14117 1403 e ISM S lis t 16M 4 s

Jllt 1 7168 Isla 10:w l3899 gena 5 9010 19MS 197M 20in 2 0106 200e8 2 8332 2MM 220g Sh 36 97 08 97 IN 97 19697 2M 97 20697 30697 40697 S46 97 60697 70697 00697 90697 9 01673 M 790 pf al7 pg egg 319M n 963 36 977 p TBS 41906 46 978 49 964 H M6 579M 61 906 66002 e

  1. 13 038 h

lel 24 lite 9 lige 7 1692 S 8216 2 12M 9 IM36 82073 SMy 13838 1433 2 1483 e llH l 195 5 t4M e 8

S 3337 3122 875D ItaM 43832 8 07M 1m08 19M2 8 971s 2 0155 2263 1 8086 2.1309 flM3 2 8982 Sh gy gg 73gg Ipg gg 377 30 yyy gg 373ge 37p ge 472 0s S7784 672 Se 777 08 072 0s 972 to e 9 01403 M OBF 20 7W 72 3M 23 90c 75 478 M ee6 M eSF 34 se6 38 465 3r eM 40 e47 43 eM e6470 89 405 M 967 h. IM P7 lit 6 3 19671 Iltr e 1716 e 12M 2 IMIS 8206 9 13M 9 1383 5 1432 9 1403 7 894 3 JiE 3 14M 3 s 4 3350 1 7320 S M7t 17mg s till leMF 10M6 8 0078 4.9M7 198M 2 0744 20WG 20MI f l3M lle6%

th gg3 gg3 gggg) ggg3 pgg gy gg g) ggg g3 ggg g) gggg ggg g3 pgg g3 gyg3 gegj g

e 3 01693 16 100 46 HO 17 079 190M 70 in7 pa g77 7t Fat pg lg3 7; ggi 79 944 3p ist M ies p lig n,w s gi4 II# 8#1 h 75 %7 llen 6 Il6g 6 live r 3714 % 3714 % IMPS 174r.4 lie 4 6 limi t 1417 7 leein Igl4 7 0%eL 7 es t

8Ah 8 7148 8 7717 I Fisi 8 7en Islag 1 telg 1 067; I gleg I 9gne I gigi 7 mgan 7 0444 p igre 7 1414 9

4966 to M I49 M 199 M M9 M M9 44 est 66 Set M Se946 749 H 089H 989 H E

e 00170t 13 744 14 810 ISIS 9 16 092 17914 18 979 20446 77 951 749g2 76 489 20 483 2 916 N e'7 1710 3e1 h 218 97 1864 8 3109 0 1211 6 82U8 BMit 8246 0 1847 IM30 14325 1462 8 1534 8 1586 3 16M O t

43M2 1 6995 3 73M 1 7647 8 7937 102 0 14867 1 9946 1996 1 9795 2 0171 20b43 FM 28217 y.

D 40 71 95 78 140 71 190 78 200 71 308 71 440 78 $4071 640 71 MO FI 080 71 980 71 gggg gg, e telFOS 11 096 12 664 13 MP la all 15 334 16207 17 939 19 M7 28 379 23 007 M 003 M 587 78 UO h 22003 BNFL 8107 8 Ul2 7 12371 IMB) lleS S 13H 9 1302 8 18323 1482 7 1533 9 155 0 Isnt 8 4 3009 IMi2 174$7 i M60 llMI 83035 10M4 1 8774 8 9214 8 9624 2 0009 20H2 2 0737 2 1086 Sh 3r 75 0F FS 132 PS Of PS 237 PS 337 75 432 FS S32 75 632 FS 732 FS 837 FS 932 FS 88 3 01715 19 897 11 036 II SM 12 674 3MO 14 45 15485 17895 18 699 20 199 216H 2319e M 689 e

NII8 h 236 14 1169 8 1806 6 1711 7 12M 4 260 8 1705 0 IH36 1382 5 1432 8 1442 5 11337 8505 8 MMS S-0 3828 1 6766 4 0092 8 7312 8 MOS I 70 0 1 0143 3 0624 8 tell I ee7h I950 202M 2560 2sett al Sei M 96 PS W 125 M IPS 56 225 M 325 W 425 M SPS W 62S M 725 56 875 M 975 $4 IIM 44a e Getnl 9 399 4 n; le 497 112nl 18 092 12 5H B3 932 15 276 16 lie 87 910 19 702 M613 Il 983

& N3 49 1872 1 1985 4 1210 e sin 7 IMO2 820e 6 1333 3 1382 3 1438 9 1882 3 B533 6 lies P I438 7 8 0 4823 8 0678 8 00e8 8J373 4 7471 8.H48 I Nie 8 0e92 3.00M l.0MS 83730 2 0003 2 00M 2 0160 38 30 90 00 3 118 98 300 98 218 90 318 90 410 90 Sle tt $1090 718 90 010 90 988 90 808 8Il Sh, 0 01773 ello 0 769 94M 90 062 80 608 18 306 12 H9 13 NI 14 947 M lle IP M8 IS tat 19 N6 h Me ll life l llee l BM99 12M 9 3769 6 170s 1 1332 9 1382 0 1431 7 lett i ISH 4 1905 6 lH86 6 44612 1 6606 1 6720 130e8 8.7309 4.M20 87000 193M 8 0886 8 9227 8 9613 INN 2 0322 2 0652 5

Sh 42 93 67 93 lit 9l 162 93 217 93 31293 482 93 582 93 612 93 712 93 012 93 912 93 9 87 076 e 0 01733 7 946 0 646 9 130 9 707 10 MP ll 301 12 set 13 503 le til IS 769 N 859 17 940 h M6 43 1187 9 1208 9 1234 2 1259 1 1283 6 13H 6 1381 8 1831 1 1887 0 1533 I IMSS stle $

8 8 46 %

l.0008 i W33 1 Ulf 8 Flie iHel 182M i 8710 8 9128 1 9607 8 987 2 ett 2 Ott 80 Sh 7 39 57 79 19729 ISP79 M779 307 N #7M 907 79 N7 29 707 M NF 79 90F 79 992 Fil e 4 01730 7 174 7 FSF F ell 8 M4 0 001 9400 le 475 II eM i74e6 13 ele 14sS2 Iloil 96 age h M2 21 lin6 8101 & 1700 0 1233 5 IFS 8 } 1203 2 8332 3 IMil 1431 3 1481 8 15332 5505 3 MM4 8 44H3 1 6440 1 6s92 1 5679 IllM I Mir 1 7603 1 8160 1 8612 late 1 9s10 1944 2 0120 teste D

2 07 St GF ISP07 ISP 02 M202 302 07 402O2 lef02 007 02 707 02 Wit? 902 02 e 9 01743 6453 6 67S 7196 7 697 0 106 0 e67 9 615 le H7 la 404 17 412 1333F 14 M1 In 133 EU #1 h M7 63 1879 1100 3 17070 IFU 7 87579 1782 7 1331 9 IMI3 44318 8401 4 1533 0 lies 7 M30 3 5 04M4 4SMS I 6390 8 6738 8 7000 8 7324 8FM0 1 SON 4 0622 1 SSM i9MI I 9605 2W31 2 oms Sh 47 07 9707 147 07 19707 29707 M707 497 07 M7 07 49707 M707 M707 75 e $31748 6 735 G Me 7 03 7590 0 039 0 972 9 793 19659 til27 17382 13780 la ati 002 9J7 h {F2 74 lison 3206 0 1232 0 17573 1287 2 1331 6 IMIO 1430 9 1481 5 ISut 150$ 1 n!s t e w4 ell 8 6316 4 Met i 6951 17237 8 7304 1 7993 8 84M 8 N52 iHM i 9603 199e9 20U9 34 47 M 97it 147 M 192 M 297 M M2 39 492 39 M2 M 492 M 797 M 997 M 88 e 8 03713 5 914 6 70s 6 6a5 7074 7 494 G HO tlH 99e5 19 750 ti SH 17 7 % 13 1 %

N 6tl b 277 % lill 9 120g 0 12312 12 % 7 1701 7 1331 3 1190 7 1430 7 1801 3 ISD 7 ISIS 0 4185 4 044N 8 6260 16%e 1 6068 8 7856 4 7424 3 7915 88MB 88N4 1 9168 BMM 1984 2 02H

$h = Superheat. F h = efilhalpy Stu pet Ib 9 = specific 90lume. cu il per Ib s = entropy. Blu per R per Ib 8 -3

O 4

F Table 3.

SupePheeled Steam-Contine7eef Ae6 Prest.

LW54 8n

$48 Set Itaitseeleet-Deteeelfelweeneet ISel lamel teater Sleem 350 AN ' 450 tu MS MS SW W

WB 1m lin 13W 1an ugg D

SP N 0796 137 M 19798 337 t* M7M 3706 40P M SSIN 3796 2796 5796 57W $80716 m

e 8 03757 left $ml 6 718 6 677 3 018 7 404 7 79e 8 100 9 359 19 075 10 879 19 986 87 333 13 088 13 4M 082 tel h N7 il 1183 4 120e 0 5230 1 1716 I 1701 3 13e6 7 1330 t 1300 l 1438 % 7488 i stat & Ilest 8438e lette IM60 s $494 14208 leen 14700 IJg80 l t3eg S pest IJss; latte 137st 1339 43864 8 9000 24834 feest teFle h

33 M 93 74 133 M 133 74 F33 74 303 F4 383 74 48374 983 M 003 74 763 74 5374 903 M 1903 M N

e 8 01767 5147 3 est te 6 N3 6n.

6 966 7 330 0 #F $ F68 9 age leste seSie Ilsee 82 310 13014 086 Jet 6 {06 $2 lies 2 12e3e 127,st7 IMst 370ss 13m0 1330 6 last leJO 3 leale 16324 lies # Mart lett t 1746 e a 34400 latit 8 6306 1 6764 5 70m $1279 1 7632 SPH2 BATIS laue istil 1.836 13F33 2Amt 2 8379 2Wat

$h M ?! 79 73 139 77 87g 72 739 77 379 ?! 379 72 479 73 $79 73 gM 73 779 77 $79 ft tilPt igMF3 m

  • 081H6 sett lire S teg lett 4 271 6 577 4 917 7 000 8 777 ese stil 90 700 Betta 1867% litte Of0ft h HSH 1905 3 1207 4 IHet 175e 9 tree s 13064 1330 2 130B0 l4N I 14808 Itata fles6 0437 8 M9i t IM67 e $ 4643 44443 1 6823 Ins 6 letne 4.812 4.M67 IJ707 lalM 1870 18067 1A333 83849 28000 24386 2A689 38

' D 75 87 75 87 17987 17587 FF567 77587 37407 4M tr 17587 675 87 77507 075 6F 975 67 1975 67 e 0 01770 4 651 e est 5 706 5 %I lett ont 6%et FIM PON 84H 9 153 9 MF 10 300 18 017 li es3 0 24 131 6 peo 70 limi 12m e life i 17%s 3 1375 a 130s 0 13799 ISPs F I479 9 les t 8532 8 lies 1 tant F 8691 7 17e 6 5 Sette 14eH IAll3 4 6500 1 6476 8 7449 8 Het B Mel 180De i RSI l 8007 l 914F 8 9000 iteet ISM 6 30%9 Sh 22 18 77 18 12718 172le 272It Nt18 377 18 472 18 SFtla SitIS 77719 072la 972le 307210 100

  • SGIFM 4 ell 4 900 4 936 6 M6 5 608 6 tes 6 216 6 633 744 Ong 05% 9Me 9ese M40s Ilese 1987 823 h Ste 64 1947 2 litt9 17274 IPH F 1279 3 Iles 6 I3M 6 1379 5 1479 7 6448 4 Itate Blesa 16376 1691 6 1846 5 s $4M3 14027 lA447 4 6616 1 0884 SJets $1M4 I M86 18036 1 8861 844M 83106 43t62 8 0083 2 4399 Imer th 80 63 68 43 510 63 M443 710 63 Mall 380 53 464 63 96063 080 63 M643 088 43 95063 lettu tu e 80lM8 4 731 4 369 4 600 5 007 5 315 5 687 5 915 Slee 7 006 7465 S MI S til 9 309 t ml lenu 038JF8 4 38224 time litet 87M 6 12S3 8 1278 8 130s ! 13M P 1379 2 44M 4 lee 0 3 4131 6 lles t 8687 % IMit lle64 8 44790 13906 141H (Sett llMS 4 7631 I Uet 8 7530 1 7958 1 8306 laitt illH llees 43020 24845 # eses 16 71 69 71 11% 71 IM PI 789 78 78471 36% 78 469 78 906 79 Outt 356 78 5471 5678 3069 78 lie e 0 91787 4 ese 4 let a na 470 t #4 5 %# leet 6 Peg 6 MI # 314 # EE% eall Gul 9 %er seen OM it t 3 % 80 1108 9 1197 7 IPM 8 17 9 % 177s 3 1381 8 IDet 13Me 1479 7 lea l Illi F ISea l M37 4 1491 4 17e64 6 044M litb6 44 ell 1 6396 lute I H11 1 7233 8 7476 1792e 18M4 1678 leget Beau 19H7 feels 20M7 D

ll 92 6192 til 97 16197 til92 NI92 all 92 46197 161 97 ISItt Mi92 861 92 96197 196897 Sts e 8 0170S Sul 3 MP 4MS 4 15s d ast list S M2 StM 4 465 6 994 7 978 80s4 8 570 9 003 9 615 03000 6

309 75 Seen ' llM 6 1196 7 1275 0 82 8 12779 1883 3 1329 4 1378 7 leM S 1479 9 1531 6 ltes t 16372 169:4 17a6 3 13913 laml 14MO 8444 1 6922 8 2848 I H21 416U I Ne8 latet imot 8 9306 4 9727 2 00s4 24M7 s

Sh I 73 58 F3 808 F3 158 73 200 73 250 73 M4 73 4%8 73 558 73 Gle 73 750 73 One 73 954 73 1954 73 IM e teltet !?!?S 3 7tli 4 0F06 e Mit 4 63a1 4 9009 5 1437 5 6413 6 1978 6 7006 7 2064 7 7096 8 7119 8 71M t ?IM 041JP) b 312 $4 lito e llM 6 3274 I 175! I til? 4 >302 9 1370 2 1378 4 1470 8 laPt 4 1531 4 15639 16378 8691 3 liet 7 s Set:t 8 5679 430s3 162e6 IMt2 8 6872 Illu IJ376 5 7029 182e6 laul steen ltast 196e0 1 9996 2 830s D

2 67 5767 187 67 15267 792 67 35767 35247 M7 67 H267 06f 67 F5767 05267 952 67 105767 130 v 9 01796 38584 3 4699 3 74st s ci;9 4 M7: 4 5151 4 75e9 523s4 1 7118 t iste 46a06 7 1140 757s1 soall s te33 047Ja 6 all95 Il917 lit 3 4 1222 S 1249 9 1276 4 1387 l 1327 5 43779 1476 4 la 79 4 1531 8 1683 6 8636 9 IHIl BMGI s $4904 13813 83633 14867 4 6e13 IANS IJ037 4J283 IJ7N lallt ISMS INil IJM9 43608 4 9007 3 0313 m

46 M 96 M lesM 196 M 3e6 M M696 444 96 546 96 608 96 706 96 es6M 98696 leal 96 See v Selm3 3 7190 34468 37141 3 9576 e ntse dalle 48544 179t$ SFM4 4 1799 66eM Penst leH2 7 0646 063 tel b

R4_M ll13 0 BM0O B2e8 7 12FS 3 4301 3 13M 0 1377 4 1479 4 14791 8130 8 lit) 4 8636 7 16e 9 IFag 9 e ase71 837W 4A005 8 6800 1 6406 Intet 81896 41662 8 4078 lassi laste 4tlM legal lierg 308n m

ell? 9157 14157 19157 38857 3 ell? 4s457 141 57 tellF MilF 041 57 tellt tesig7 990 e 8 03800 791M 3 7208 38M5 3 6799 3 8978 4 117 a nMe 49 ell 5 3987 SPMS 8 1612 SMU 69661 7 3 Ell Onesa a 33e H lies i 1219 8 1247 4 1274 3 IMO5 lan I 3376 9 6477 6 1476 7 ISM S ls43 I stl6 5 160s a 1745 7 s ellet 13695 13913 1 4313 I N02 It067 t illt 1 7573 8 7957 18M3 1 8758 lent IM38 leMe test D

9645 06 45 IM45 19845 fM al SM el 4M el SM al 63645 73645 83645 9364% It3s eg 500 e OGlell 3 53M 3 0060 32788 5 4413 3 taH 3 0ae0 4 7470 4 6795 l 0132 l Mel l 7 Pol 6 1577 65793 6 SOM 9 63 556 6 3M 07 lits :

12174 12e6 0 12n 3 4299 6 8171 4 1376 4 1427 2 14F8 4 ISM 3 8582 9 4636 4 8450 1 174$ 6 s 9 6206 lust 4 H06 4 6233 8 6522 44790 SJ2M 3 7499 8 7919 1 8310 BA678 430tl llMt is6M 8 9000 th 31 54 81 58 131 50 18: 58 231 52 331 58 431 58 131 54 631 58 F3158 831 58 93353 103 g3 110 v 0 9182: 3 6738 7 0162 30786 3 2306 3 arn 3 s154 3 9473 4396 4 Flu 19749 lasts SFOst 6 8ase 649e3 06442) h Mlle 4196 0 l2tl6 12ae 7 12722 1294 8 4324 7 1375 8 leM S 1470 0 1430 0 IS57 6 16M I 1690 4 17454 0 0 5259 ISM 4 13423 4 6152 B H47 16FIF 16964 37426 1 7060 4 824l 34610 lath ltMI 8 9408 S M13 sh Mtf 74 17 174 97 17497 274 9? 3N t? eMt2 SM 97 6M tf FM tf $F692 9M 97 leM sg let e 4 01427 73317 3 6sta 7 0$0e 3 es33 3 7;M 3 acts 3 Foi 41ese s atte 4 7907 litet $ 46%7 lease 61M3 07303 e He at 1896 9 1213 8 1243 4 1271 7 17979 1374 0 8375 3 84M 3 14 F7 7 ISM P Ite? 4 463% 9 lem # 174) 3 3 0 1328 19643 5 5743 1 6078 1 6376 1 6647 I H00 IPMF 1 7754 18176 iShe$ 3 0004 Ill27 l ttel S test th

??dF 7747 12247 17747 ??? 47 3M 47 4H 87 SFF 87 6M 47 M747 ON 47 97747 14U 47 190 e 0 91833 7 4030 1 8961 7891S 787% 3 0%71 3 2746 3 % 01 3 M09 4 7140 4tMS 4 05F3 5 8766 5 4989 S el?e 017331 h

194 94 liti$

8212 9 1247 0 1270 1 12971 1373 3 1374 8 lezil 14774 15794 1547 1 16M F 1990 0 174S t 4 0 1344 4 lett i M47 1 4006 8 6307 i H88 8 6435 i F299 8 FFil l Sill Ieste iSu4 i 9166 I tes4 I tJH h

19 70 6a ?O 118 20 160 70 118 70 318 70 418 70 110 70 618 39 716 70 816 70 914 70 1914 70 000 e SGIOM !?t?)

7 3%98 7 5480 7 487 7001 30543 33793 3691$ 4 000s 4 M77 4617e elin 17891 $ 5709 1308 SS h

3%ll litt 3 1210 1 824e 6 1749 0 1796 7 13n 6 13 F43 se?)t le7ie 1579 8 Igal 9 361s a 1649 8 87as e t

8 M34 i SaS4 iSH3 1 6938 I 6742 i ell 8 i6H3 1 7219 87463 1 8067 iMM i 8776 4 SIM I 94 8 81F32 Sh = superheat. I h = enthalpy. Stu pet Ib 9 = Specific volume, cu f t per Ib l = eritropF, Blu per F pet Ib B -4

_m.

.- - o b

4 Tatie 3.

Seepetheateel Sleem-Ceeinmeest kN set s.1 10messeles-Detsees tesweaneet I i

,0

-e.

ile.

.. i. i t.

1.

i. 1 00 1MB leM 8400 ll4 M 104 00 Fle et fleet 414 00 lle M 684 09 FleM 014 00 91400191400 Illan

~

940 e 4 01084 fl0rt 92M4 2 4608 1 0000 # Fles 2 0078 371H 3 5170 38100 4157 4 Mil 4 4418 4 9005 SMll lla40 ING943 h Meet litt0 INGOf 1730 2 SMS0 8295 3 1371 9 IN37 1425 1 1447 1520 0 1588 6 16M t lost 6 1748 8 1000 t t 4S400 13883 43622 13072 ISIN 1 6400 86Fil 1 7407 8 7007 Iml IANI 18721 1 9864 1.0372 1968 19870 h

Mit telt $1017 Welt tit ti 38017 410 12 Stelt 68017 71012 01017 910 12 1910 82 1110 17 IN e 8 08050 7 0563 (253 1780 IJtet 2 4630 2 6199 I Hit 306st 3 310s 34327 S tlM 4 1905 4 4678 4 7426 1 0173 S Mll (MS 6 No I7 litt 6 3

173Fe llu9 IMe5 INII IH32 1874 7 1476 3 1528 5 litt 4 16M 0 1609 e IM47 1000 6 e thet 1SIM 4Asu 13mt 86tN 3 4400 I MSS 8 7870 11963 1 7980 14340 180M 1 9I02 1 9320 ItWS 1 9819 h

438 16 30 tel30 IM 30 N6 M 3B6 M 406 M tes 30 006 30 M6 30 IB6 M SSE M 1995 M lies 30 35 e 601056 1 9105 8 0712 title 22903 2 9000 2 6461 2 9776 323r0 34FM 3 M06 40E0 42717 4 6355 4 7964 5 e606 IN370 t MS N lle I lies 4 1236 3 1866 7 IN36 lHe4 4372 7 1474 2 le740 life 2 1981 1 143s 0 86M i 174a l lege5 8 SMet 81336 IS306 ISMP 1ANI 14344 1 8004 IJ075 8 7te! IJOB7 ISMS l#le 19962 1 9270 1 9676 1 9869 h

3 61 Stel IN SI 167 61 30761 307 61 43r 48 letti 0026l Mill 807 41 90761 8007 61 1802 61 Sel e emme 39177 ltfte 200F0 27e67 P Mil 7 5316 2 0074 3 0061 3 3750 3 5031 30M5 4 0476 4 M56 4 M7) d ealt IBB7 301 h 37727 lle06 83W 4 IIM 9 1768 6 179P 7 1319 7 1372 1 1423 0 le764 ISU t 1500 t 16M 6 lest i IMa3 lege 4 4 43M4 43299 ISBN I 1887 88086 lefti iul2 17trl 8 74U l 7080 1 till 1 0570 IStes a 92H Ititt i 9872 h

atta Mel 840 03 19903 PMG3 309 03 409 03 309 03 00003 799 03 000 03 SM03 809003 300 e 8 00055 l es37 '

{ 0016 litte # 2909 14M2 3 6872 1 9830 3 1999 3aM2 360H 39H8 e llet 8 4131 e ne6 OW 971 4 3M 14 INI1 sa33 4 IN35 1791 0 1319 0 4379 6 143e MFS 3 1527 6 199 6 16M 4 lem t IMe2 IMO2 s 43679 13M4 83629 13thi letM 1400F IH4 IJett 1788 14173 18624 latte 1818 1 9882 8974 h

elm til6 14% N IM M 301M 385 M 4tt M SOS M 005 W 796 H OSS M 995 W tett M III e 0 05070 17M2 1 9173 70619 2 1988 1 3709 flees 24756 3 0863 3 30s4 3 1800 a nts 40007 4 7427 a ar$4 tese 440 b 379 90 INIl 8233 9 IM74 1200 9 laiti 1378 I 84H e 8474 9 1527 3 1980 4 1634 2 lett 7 9944 0 1000 4 a S &722 latat 83673 IJNO Istat leeH 1 8030 8 73b9 8 7756 IAIN 8 0800 1 9314 8.9433 IMM 1 9732 h

et pe erN 342 3 197 N 392 3 3etM 4tt 30 tot N 082 N Ptr 30 00F ft get 70 lett te 780 e 8 00075 I Plel ISMI 19799 3 1170 17MS 2 e474 2 7106 2 9999 3 1006 34ete 3saat 3 0803 49est 4 3est 4007 3 3 h M3 M INil 1230 4 IMit 4290 0 1317 6 1370 % 4477 6 14M 6 IWil 198 1 163s 0 8488 5 17e3 9 1000 0 s & &764 13197 8 Mit Itest IA140 16ee6 iMOS I 731% 8 Ul3 1 0005 i M37 iSFFI l 9000 1 9396 I 9690 at93 IS93 13893 let93 30s 93 308 tl 40893 Set 93 000 93 Pee 93 00s 93 90013 lete93 Me v 8 40000 Irel Sput 1989 263n flHI 2 Met 2 6194 204H 3 8655 32065 350st a unt 3 9304 e lla) till til t 30712 820F 3 1720 0 IMOO lift i 1386 8 1370 0 8472 l le74 2 ISM 8 1979 9 IU38 1400 4 3743 7 iPts 0 s $3006 ISIM 43464 13790 1J083 IANI letal l>U3 11678 lagel IA30% 147M 1 9000 State 19649 h

36 7% en Mn 10ln teln sein Wl.rl 50ln %75 705 75 esi.n ultl lesln W

e 80 int ilM.

inn inn MM 20n2 INN f un 2 M 0 ftHS 3MM n 3 00it. 0io6 1814fli 6 30060 Inf6 INF3 IMO9 70s 1 8316 0 BMSS 1421 7 le73 9 ISMi 1579 6 1035 1608 2 1743 6 1799 7 e EM44 ISIM 43412 43F50 Gest I MIF 16799 1 7232 I M30 13803 143t6 1 0000 I NIO 1 9316 I M10 h

32 65 It 65 13745 10245 letil 307 65 40!SS 107 65 ter65 Mt 65 NF El 982 45 1982 65 W

e 801000 I M77 ISM 4 1 7966 latB3 2 0084 22M3 2 4867 2 6500 2 0tti 30M3 3 M08 3 4721 3 6744 3 8764 IslFJll b 303 99 1202 9 Stil 7 IMPP 1207 2 1315 2 IMS9 1421 3 le73 6 ISM i 1979 4 9433 3 1600 0 17434 1Mt6 0 6952 83606 R&M1 83708 lama l&He ISMS IJit! IMen 1J984 1A387 lent 18972 lent 1954 300-2 MM NM INN 879 64 779 44 379 44 479M SM M 679M 77tM 37t M 97964 10 Flu e 0 0000s Iseat t $763 1 70s4 I3r33 ISM 3 2 1570 2 3800 2lue 2Mle ttese 3lut 3JSte 3 6555 3 F509 GIISMI h #7N 8203 2 82N I IMS5 trol 3 late l latt 4 M20 t 14732 ISM 9 4579 7 1633 1 MSP e 1743 3 17994 0

SSSIS 43076 13318 1J067 83000 1 6133 4 6719 11183 8 7968 81987 44300 latil ISB35 I tpel INN N 00 MM lMH IMM F4H 3MM eMM SM H SMN FMH 076H SMH leMM NO e Ettept ledes I gg7 1 e462 3 7673 latt) 20073 12003 2 4028 26He 2 0700 asut 3 7534 1seM ault tel3Jil b 40013 82e3 4 8272 5 82M ! IPOS 3 1813 7 1578 leM S )472 9 1525 6 8570t 1637 9 16876 IM31 1799 3 8 SMh6 IJete ISNI 33612 13044 14492. LA400 1 7816 sJll6 IJ000 1 8343 lapt lastl 4 9306 8 9500 D

2302 738f 123 02 873 87 !?3 82 373 02 47382 $73 N 473 02 H342 07387 973 8F 1673 82 MB e 90123 l 40s0 l eats i Stil 1 Pete i SIPS telee 2#133 3este 2SMO 2Pett iMt2 315e5 333st 3 lin 9036le b 40370 lle3 6 8720 t Ifle e lite 4 1313 0 IMF3 147ee le77% lin 3 1678 F 1027 1607$ l742 9 5799 2 8 4954 ISOf t 84243 IStet 1384 lait 3 IM43 8 70F9 41400 11061 13398 lense lame 3 9175 lleH h

ti tt 71 01 171 01 17: 01 771 08 375 01 471 01 578 01 471 01 771 01 071 01 971 01 1071 01 900 e 901988 I Met latti 1 5399 t ellt 1 7961 95$2 71463 2 33H tilFS 2 7000 2 0011 3 0611 3 740? 3 4186 000901 6 406 et 1703 s Stat t 1792 g IN3e 1817 2 M67 lait 6 le??! 1675 0 1178 4 1632 5 16e F 3 1742 8 IFM 0 e

s 84026 lette ill65 1312S 1.3036 1 6844 MOS 8 7084 I Mel IJ839 ISIM 8 4l10 8 0438 1 9:30 8 9432 j

ih le f 7 64 77 11877 140 77 Me t? M0 tt 46a PF $64 7F ene tt 788 77 060 7F 96477 leas tF He v 9 01917 13755 13775 18913 1 6007 Itare lette Iss37 2 7657 2 4485 2 6719 fitte 19730 3 1471 3 2705 Mal 72 h 40903 470s e 1717 5 Illi $ litt 4 1318 4 IM62 1419 2 leil 8 lHe7 ISPS I 1632 3 16a71 17e2 4 879s 9 s 400H I 4966 43819 1 9463 83797 46077 ISUS 83000 4 7488 1 7787 13448 18e4 1 8798 1 9405 l leet h

19 59 tilt tillt 45 59 Milt Milt Mill MS $9 Milt Mllo 06159 Milt 194559 He v 9 01917 1 7091 I Mel l eale Ill21

6%n
0878 2079 ftcet 2 37 % 2 5482 # FIM f tMe 30592 init 4834 411 h attel 170s 1 litl e 1250 3 1791 5 180 6 Mit 1418 7 1471 1 152e 4 ISU t 16M I 1606 9 IFas t 1794 0 0 0 6002 1 4941 8 507J 8 5441 13T54 leest 6636 IM16 4 7379 IJ754 8 0100 18 eel 187M I W13 4tM4 h

10 M 60 M ll6 M

'40 29 700 M 300 M 46. 19 ten M te0 M MG M WO M 980 39 1960 M 300 e 9 01975 j ult 1 7477 1 3406 lean lite t rait 1 9139 toen 274s4 3 4174 3 5750 27M6 3 8973 3 0577 94Mlit t als 59 820s 4 1217 4 1247 7 13 Fti Mt0 1364 5 1417 9 1470 0 1573 I llH 4 1016 1606 S I F47 7 1*94 5 s 0 61 % leste 44902 IlJ60 I NG3 11969 16aF0 Intti 1 734% IPH2 18087 10M4 1 8705 1 9012 1 9307 i

l-Sh = luterheat. F h = enthalpy. B!u pe* lb y = specific totume, tu fl pet Ib s = entropy. Stu per R per Ib D -5

O i.

Yetnie 3. Supertiested steam-Consa. sed

~

tt.T e

ie-er

.e e,

~ tuo tsee use isee S.e Im.i iw m as ese ee see see a

ese ese sees itse

~

i. 'Ma i.t."1 i.st.121 '?"d"t n#! l."."I 1.*"! !.!.!i !!#!

'.""i P,.i !=f E*

J.

li l

!=

u I

l

'T

.!, ".#.,"!in.!

im u

inn

. n, i.i.M, i?4. I?4. 'Y.e. !".A.. ft: "12f ?.4.. !?2, N. f.I.t.! fM.174. 'f?J.! -

u. n. i i=..

um i=

un I.

i.,

n.1% lm= i ni i

?iti i?.!! ?J; i M f"J

  • WJ i?!J li?/4 Ifui in! l'?4 !".!! !"4!

14! X f 2 M '?4 t

.*.g ii?4 s 1%l Iful 2,1 l'44 I?.! l'a

?.'4 2 iM "!?/J iE 15'J Pe 12: N Peu u,A,J P4af 41M M T3

!.!!j"" M !M 12 1%It M "j

... i g

int! 121 PJ Mi I""'174 ini l"jJi it!l' M ful! !%lt t'""' jf'i,lj !".!l lsi "J.!

E i?e lyill ed17', 'et1"4 MiIfl = E M N'.'J1

.g gg i.n

't.. IE 9,e;ft iM?J I?A ".t! "'A iM !"J fM I"J [J IM '*J 1%'

fia 121 t'd N%! 174 M! 1f4 34

! !!".i M

  • M i

M it!!

"J! I?J!

J ??J IP.1 In "4 l's !"J !".?! "lal 1%l !"" !%:l !".Jl "Ji 'j?4 lui Pet IE E E 'atiM

! M 12J "J."J 1"J

?J! Ya !?J! t"4 ??J! tu! it:I M TJ "

t M I?.t R! 1f! 174 El al l'al 131 Mi I?e M! Int '#i! l?.#

=

.....n 2;

n i. n i.

tu a ni.. a. a.n i. u n..

n.

n...

I J.

i. 'M t"".,

"E"! is.i 2;

'".", si 10; la'! li.i.., IMt !!," !=1

,*.n! im n

un

lin, nn i i

im in..

...unn,.,..

i,o. o

.n o.,

i.i,o

'l ! iM ta.l !=

p,. g!!!. lMn lO! iMi !!.!n. lei !=l im.n

  1. in
i. 'M is!

M i

ist i i

n inn a i

n im.

inn i.n i

':..n.

.M.?4 2 in !A 'l3! Int P//J Piel 174 !TJ IM Int M 1212 tM jun fM iM 'tM t in!! I?4 Ps41"4 Ifni if.!

"dJ

't*EIh,

.!J,."4!

"J!

",4! I"J} Te "!?af

'al l=f l"RI 1"4 l'at !?/.;

di ?,'d *

.J! !?d! M "?.!!

.t lae 17.1 mi M 1% St a'.

..,.,,i.,.,..,.,..,..,..,-,,.,

J.,

I. ' M.r. ?!"1 t#!.! 12.. != tK.!.12.i 's !=! l=1 !=1 iM is..! '=

l : i

n. v in iu.,

i

.n

.g

.R!!.?>il !?dj !?4 I?4 f?dt !"iit !?d! !?4 !?Ji 'l'#4 l?.it

?dt '

M i==

l'#4 l'#J 1% Mi 11! 1%! Pe MI 1"4 Mi M

.t!!.M i%!] iM M M t'a?. IM iM M "lE'" li.!J t'!

I?Ji l'ai l'ai IM la IM 11"4 l'#i! Mi 21 Mi Mi

"...n...

.M..".4, iM. i.M. I.M. i.M.. M.. I.M, !"4. P/J..i "/J,t f."J n.

un... n.I,.

,i mi un i nn i n.,.. > = i.i i.

i nu i.

n

i. iu n

i,

.h

1..S

.M ii.M i. M M iM M

M M M.H

.H.5

i. '.a.'il ??n!

iM.mi ta! !!.#: fMt !!#! !!?! f,'#( tm. lti.!! !.'t,"! !.#.l ll.#!

i i

. iun ion i.o n

nn im in..

..r n..atui,,. ii.

m.

V

  • Sp.Cd.C w.lunt., CW 11 per lti

. =.fitt.py, Stu per f p.t ih B-6

e 0

I faille 3.

Superflected Steam-Conehetest f"lI Su 5g lesiegralere.Dryees Isteenheit

. salDem.1 welee steen see ses see Ice tes ese ses see less it.

ine sees i.e ute n,.nu.61u. f n.a.i.u en.u niu Inu.o.u..i,n

. u u m.u.i.n.nui no.

in S

.e..iu,4 in"f!. 4eMi3 nM3 mi,. nn..

.. u.. ten i.l i.n, l l

.I ne

i. i

.3 p.

i. i l.9 4 7966 4 SMF nu3 mi t

.F304 IJ97 1 00 1 92I IWM i H00 1 5748 IMD ISita 44406 1406s 8FHF l7 iat

.,==

..i't.

e. n.o"1

'i m., m n 4, n n.,.

4, inn inn iun

.,..,1.Mu,...

. m n..,..

S

.o ul f.=.

ni..mn i I i 1 1.. i.ee,

1 l.im 1".4 i.

6 im.

40 im

n. imi im4m

,n 3 i.

6n l.,3 iM iM

..n t o.i o.m.e, 1 n.,.4,

..iio.n, l."n.i6.u l...,

..li.l.m.,4 4 inn.

n

.4, 4,

e, m u

..in...

i) Imu.

I".34 1 I i=4

....u inni o,

.e ni 6

I.

lw un m I

it.i im i. 6 4.

i i

i n.7 4

==

i In 43.?? 93 ?I.143 F.7 M.S F.F L'6.77 I'.3 'I 48,3 77. m.s3 7i.M3'l te.lif te.n.77 193 77 3

943 77.

..,8..l'Ai l'ui I".'6! l'a 1"! Iti lui l'."! IWii IW lii4! lYai l'A! 31

=.

m 93i

.M

.000 e

i l',

l

.Ii. I'3.IMil ni l'.M lui l'al.mi$

.=m=6.n.G a

, a.

i.

a I"no.8oun a.m n

.M.a, m

n.

o

..M3 l','/3..nuIW.! I".1 IW'ai iV41 l'A! iE!

l in! IWri

. ei

.n.u,

.in.u, f3 w

lm

.u. in.u.n.em lnu

.i I"ul.i n l )..

i.u...a. 1.. Im.iu 1"Mf4, i

i.mu.ou ui in..m. l.

i.i e

8m

.e

i.,.n.n un i luu I 0 et.

ISne l?A4 i,.6 u nt n

.m i nn i

.$.7.$8ini.in.e%8..u. 18 98 sh ifl0

.F7Fl4n,.n !.".$.$.ff.lg.O.f l0,

$f.f.l38 I.St,}lgIm.

3,7 5 j

7 4 3F.).l$un,.u.lg g

..M

. 3.,

==

u 0

1.,1

.e in 4

i.

6 8.e

1. i ie. 3 l0 n.6 3 n.

a s 7083 sMH BJ.0 g 438 147t h lleP7 1 6796 196e4 ISH) 1 61. 40 1 037 17HS 5 7906 1 7987 litt 67 93 112 93 867 93 71795 76793 31793 41793 51793 417 91 787 91 81793 917 91 o. 307. 3010 034M 0 3467 4069 4400 estil s teet tis? 5000. 6368. 4798 0774 G H37 0 6lM

.sett 1863 i IMI4 test 9 1660 0 iFM 3 1 70% 0 108 11M 3 1898 1 17S6 4 l7M i 133 1M93 latl 0 44.H f 37 pl b

u P.83 8 4.8 $

6 BMM sJ062 l etti s 4676 1 4 14006 4 404 16046 liitt ines I Mil 0 1 9882 I W36 j

e

.3.

. 00.seGn.==

. e Me.m. = =.3.

sn 3.

n. m. m. = 00 0 %869 eUn 06H3 0FNO 0 76M 9100 e. 386.7D7

. 7076 0 3378 0 3717.aost O.SM4 4679 e deM 1

1W97 1607 7 16M t 1948 n03 7 NI 4 681 60 1870 0 l176 3 1740 7 17879 1370 0 theO IMP 4 len t 0

4004 63373 sMH 14022 34448 44767 1 9073 4 5333 llW2 34.01 4 16M6 167H 83801 I MPS SHM Je% I) 79% l3 Itlo.9913 $$$l) 09% B) 79% I) 894 83 th 4513 9513 1451) 19%.l) g $es?.wls es3M e nt) ans et.ess e.6744 0008 e. 30 7. Fin S JeP6 O Mit 3741 4H 04m8 le lete 3 8 t 17073 len 2 la t I646 6 I.en 4 1779e im a I 4.e $

lat 8397 8 te Sh h 674 70 lite t lH.e 3 14332 14467 78 iPen iFM7 4 76bi 4 iHM iSHS 4 Wlo 1 W12 e

.0899 1 N14 13 4 19887 70607 30647 40657 60607 00607 796 87 04 87

.h M07 0607.IM 87

.FM IF 6MI OM74 4

47 % 4701.use 0$%57 e.m!

51.

e. 48 SPMI 0 7764 9 3187 pne 0351 13.011 0 1897 He3 0 loe. leela 0 7% INIF 1783 0 88313 h SN el 1898 6 1714 3 17M S 1314 ) 839 9 4 0 8309 8 3tM iMel I 8883 IeMS I ettf I Slet i Slet 8SN3 167M iNel 4 087 iNM i MOS PG $$ 170 gg 170 90 7 778 $$ 3F990 470 $$ 570 t$ 678%$ 778 98 SFS 90 Sh

.M.gg Un 01%$e.73gg S M06 pt? S M00 4U4 geen eg??g steet este0.6MI f

9.

e.0P472. 7106 1.71 80 8001 17i9 7 1741 1 IM IM P 2 1383 3 64l71 1400 6 IWie Itgl i 1.40 7 GilAfl h 488 49 nU3 7

B 40be 14.P a 76 I Het 8 7116 e6 1444 1 9889 I H07 1943 1 61 % 166M 8

Seit IJ079 l anM 171 44 In 44 PH 44 til 44 371 44 47184 SFl 44 671 44

.IFl 44 SFl 44 31 44

.FI 44 Me7 gsse 3 3775 stut g 3749 e4171 gaul g ets0 05103 MW 00nrP 9.

e.0PilF $ Pert 3 7774 GF8 Mi t See M lie)6 lies i ini3 ime7 IMI4 1370 4 6413 9 14H e 1910 B lb 14%8 4 1710 6 lHS4 1.99 8 6

.8WI BFMI 13M6 SMM lent l e677 lette 15719 IMU 1 6004

$4 1 6000 litle I MSI 364 70 444 70 9470 46470 Me n tu 7e lla ps.164 70 Plate.36479 14 7.

.M e nt!

3%M 9394 04U0 ga6to eleti 01165 G Mtt 1

3000 e

..W1 G las) 0 7e0$

MF7 7

e reet 11.0 %

3 Irac t 1797 6 lin e 1373 5 l404 7 1474 1 ISM P l.9 165F 0 IHF0 init SM 006 6

47761 Inal t

08N) 1 7801 1 3854 137M 1438 1 4678 1 4474 IllJ8 l M03 1 6014 16MI 16743 4 797% 1 849

.MI P4 4%7F4 MF 74 4%7 24 7%734. 9 74 th 7 74 1774 19774 1U 74 M7 74 79 74 31 e 80P61% G IFSO O ln* 7 O nos e rr.?e sitte 03173 0 019 tru g avet g ese) 4778 e 5101 e nsis 11 4%%87 iM%7 1715 4 ptg 7 8.316 34 7W h 40379 Ilmt 1844 $ 173 8 1744 9 53M 3 1%As 1440 0 1470 9 8 16327 1 9641 litle IHN 8

4777 I N90 litsJ I M61 l oin 14e86 14/90 1 9460 I S$37 i

M e n u e rm e nM e ?.w.7%4 H.MG M

%8 % 10p % 1%8% Nell 4%4 % SM S% MG M 7% % 0%0 %

uni m 0 i con. awl esau ems net

..0P06,.un e im Set e$a b

69% 44 11?? ?

lin t 17ta t 1774 0 13731 1343 3 1s10 0 184 6 1H09 1%9.' l16H 3 8713 9 1H44 16 I t477 1 69 % 1 7773 2

s 9 0078 i M76 4 7691 83W3 1 4070 1439% 14700 14W4 15461 1 6003 444 01 See ll 411 s4a ti i

Sn se ll te ll latti 19e ll 74411

.Ma ll

. Pee lt P300 e.tPFFF G l%Il OH4 4 71o% 0 7%A6 0 7P91 S ?999 3377 01ne 8 881% G elee e&O t oen 1965 096 h

M? 18 til17 IM49 178.8 4 nt4 7 1844 I tm7 6444 ) 1941 IWt IMIg 0 07 ) 17H 3 e 9 9929 17M9 I H01 l iete l a gog love t ell 0 llDP 1 %4N 06707 16%% 16101 1 41%

sh. Sv.eeheatJ li = e.nllialpy Blu per Ib-V.' 500Cilst v.lWWie. CU 11 per lb 8e fttropy. Stu per R per Ib e

B -7 l

Teiile 3.

Superhesied Siesm-Centh,ved A.s Pre S.,5e,s S

5.,

I."

'.l.e.. Dr.<ees F.swen.e.

W e len.:

W,les Si..e IN

)

m 3.

.W N.

iM 93.

iin liN UW Im SW im D,....,.=,.9.,.M.

u. im., M i.no, 3,M in u m..

.i., M.

,1,.9 M,M 33,M N,M

.3, M

,M u,M

,3,.9

.3, n

=

imi 1S.w..

..,.u.i..., um. u

.,..m...

.un.

n>

.m i.

m um i i.u, nniMir u um imu um n. m.. i m i in..,

im i

i o.

inu h,.

. i=>.Si.n

.i H

.m. n.o n ) um...ill M

.i.i n..in,n1 u.n.13 M.

M Mi

.Mi n

.3 M um n

u. i m. 13.in,.u.i MumI.. 3Mi== n,

i 9 in 3

..m.3 ni mn i.nu, um, u n

i. m m

iw. i=

im.,i im 1

m..

um um um i.in i a-i..

i i ni.

1 h.

NW M

..m e.n.n. e.nu, e n.n, u.,M iM iMM 7,.

,M M n= i.. i Mn.i im,.3N 34 N M,.M SN.

=n an, n.M en.

i ium i o = iu.r non. n,

.N M,,.FM,Mn.., M

.13".

n n um, u um u3 u.

m.

owo imi 11. um n

im i

. n= 1m.i i

=

c

.1;'!.

m..

. m.,.n.n u

no. u.a

.m.n.,

u m.m.e.,.m.a.,.m,.e.,

.m,.m a..m.a. u m.u a.

n a.

ma ma n

m n= im. Im. 1.. l.n. u n I m.,.

.n

>=

m i i.

lm.i un. i. n.

m..

um imi.

o.

n n

mi 3.

mi i i

..n u n.,...it1" 1m1 lm..ii.l

.S n.1 n.

Ii,l.W.

.i.l.

MSN MS 3.lW.

S um..i.le. alm. uiu

.i.l.

.i.le,.

7n

.i.t

==

nN io., nn

.m,i.

,3

.iw, u.m..

.m M n i 1.n. i imiin a=

i=.3 i.

-3 nn n

. 2

=.

i=

iun imu i.n

m..,..,. n =.

u

.u,

u. u.
n. u.m..o n,n n
n. uin..e n.M.n.

n, on

...d..,i m,, ion mu. m.n l n

.13.

m n.

nu.an.

.mn 3

m m.

um i.m i nm i= iu

, a.n..,,. hm m.,n, um u.

n W..a..

.o i m.

, b.,n o.n.o o.

o

., o.u.

o. u.u.

o o, u o o.

u

.. im.

i n,,.

..m.

m m

n.n..

o, n.m..,

.m.

3 m. nu.

n.i. n.u,,

i.n.

im i= nm inu i

iun io i,

.. ivi. n.

n.

D.

9,7

,7 o n.,.M,0.u., i. i u.n..

.it.,7 9,7, 3

,7 m >f M9,, 3M,7

,7

,7 9

,7.M,7 P

. n nn. u.,.nn.

n..=>

.w. um

.M n

..n.u,

..m m

..nn.

un inu.

n..

n

n. o im 3niu u

. nn = > i n mn n.

inn i

in

. i= n ain am nw 3.

9..

97 U

.. n..

e n, ? e n.?

,it,. 97, o, 17,.M. 97wu

.7 7m..?.m 97. n,.n

.S 97i s

.M.1,6.m.,

.9. t.,

1 w u m.9 i.n.

i,m.

SI 1% %

Sn.

iii.n om o.h t i n..). inM i.i.l i nn. it.3. inn a m n m nin i w, n.1, 3 inn n

..H,

iSp it 3 M.

t

. nm inn u

m i

. n n. m.n.. n n..,.,m. n u,. =. n.o.. n u. =,. m,...

Inu nnu u m l=an> i.nm nw I.,n i.n i.a i.. ium> i m i.

l. im n.,.lm.

i..

y uu 5

=

ni.0 n!).

.nu. f m.

.m.., nn =.

3.

m im J.

i SiM i3

.im.4 M i m.,

1.n. s.ui.

m u

m, i

4 l

i un t.

...nu..no,.i"1.

.r.,.,.,,..,.n.n..n,.,

3,n,.,

n.i., m 3 Mil n uu nnisi m,..

im i., i.

iu.s im.

.n l i.n. n.

i3 u iEM s.ii 3 i ill I Mi iM

. m,,

. n=. nu. nn. u M., =.

ii. in.n i N i i.

in.. m.U.

im. i=1 mn nn n im).

im i22.i i) i 4

i.t.

iMI ilm iba IMM i u iW i.t.

e i.

..,,,. n,,. n,,i. n,.. m.,

u. n.,..,.nn..n,u.

.n...,,=,..

.n i,9ti m., i Ma s.op. i.lW i.

n nn.

iu i m. io.n i., in.bn i..

iAi l

s li g

t..

i 67 W95 Bt iu.

i

.im.,

.i....,o.,. o.,

. m..

.nM. m,,., n.. n...,.i,. m. 3 m,b.

.i n i.

in i.

io

. i i.,n n,. 11,.i no n..,

i t in in 3Jn i3 i.it.

3 i i,g.

1 3

N it 17 in i.ti.

..,.o.. n.n.. no.. nn om.. im..,n

. mi..,. m..,.a!!

.,,m..

n.

m in.i ? im....

.m 93 nin l.m.n i n inn iM.

i n.

.i.6.M i li.

i.4 s lin inHi i t,4 i.IM h.

..n.

.in I'M I"J.! I'd l'a 1"'n;..o 9%IWel iW.! IW,1 l's I,3 im im. m u n. n.

.ni um,

iT,2 l'il:1 l'!.',1 on

$h ** Suptthe.i, F Big per lb-h a. nth.jpy,Siu pet R ptf ih V = Spettlet v.lvm., tu ll ptf ID 5 m.fitf 0py.

B-8

O Table 3. Superheated Siesm-coniinued

.i Ps.,5 A.

1.t IM e.iesse-De.'ees t wen.eit

./$. In ii m.

si.-

=

= m n.

im n.

un i. im i. i., n.

..m..

,..n.

nn.

1m.1 mJ

.im. en!i..i.im.

i.

u...... n,

.,,.1 i a l. Im m

imi ion 1.u. lm,.

= 1m i., m nu, n

a.

nn 3

.n.

i..

.iu.

~

..m.., f m, in,. ns,. im...... i#1. i.. i"f. im. n.,

. n.,

n

m. I.n! n imi mn 1m nn. i.. 4 iun m.

non mn n.

m um um iw i.i inn iuu i u imi iun

. m.n.3 i.i.i.

...,.n..n.i.,.im.,.nn..

.in..i

....,m,.i un.. m. in.

mn im i m).

m.M. n.u i am nu

.1.

in iMi2 i.3,.,

i3 i

i M2 3.

it !

. it u iui

.m im....

n m l....m..i.n..u..im..nu.n.u. =.,.nn.im,.

.,n..,

u n n., im. i.uim iun i n. nmu 1u io.n. lmo i in i=

io io imi

. u n. =. >..in, nin m. l m i.

.n..u.

. m,. m2

..i >>. n w i, ion 1

.nn..n..,n..

. =

un

. nu mn n n in im.n tuu. lon u

mn mi ion

. nui a

om

. i

. nu,. im.

n.n. im. i.,,. n.,... im,.,

.m n

ni..

m nin la.. im., m.e um io. 1m. i i== m i.

i m

nu n nn w in

.iw n

,3 i.l.i..,

..n..,

. i,.. n n.. m... im...,,,. i.m.,. m.si.a m.

1.n,u. e n.s..

o.

7 f

n i.t.m u i n illi = i i.7ius n 1.l.e 110 I 13 iW 3 17 is 4

.- n

... m.,.

... n,. un.

. n.,.i

. i

. no..,. im.,

.m.

mi... nu n.n im mn n.

no. nu in nm inn m. im nni n i on n..io om na..m m

=

. n.

..m..

.i.ir.nn..n.,

i.m im ennn.n i n u. im.

.m non imi i.

nu n nui m on lno imun inn nm mu n nm n.n n.

.in i.

u iun i=

.. in no

=

... u w....n...,...m,..m..,..,. n.. u n. n.... nu,

. i.n

..inu l=n.

iu nin imi im. io i.. iun. n ni.n um mn inn im iu.

nin on H

no un

..li....

..,i1.

..,n...n...

. i.. n...,. n.n.. im..

io im nm l.n mi mu mi 1m. m nin nui = i n m., m

... m mn nn io un in m

in

.un.=>..n.;;.5..

.i

.nn.n.

n=

.7,1 iTri i= IW l'!/,1 l'n 1 17.! ITJ I?/.i I".41 l'".! IW 1721 l

1">48 17.1 1 ;} 9..i enu.imi?id IWJ l'#4 IM

.; e n..m

..n en

..n

.mi

=

..u eg

.".4, iW iild I?.'J l'#J l'#J IT,!

. u n.. o.. u..

..,. m. m..

. c.n...m..,. m.n, i

m im im mn i.

o.

nn.l. m i im,n i3323..

im,7.i n.2u iMlf n.,

6 i 13 ii2 5 ii iJ i2 i J.,

iJ i

i t)

. =,..,

..I.,..o.. e....

..,..m. i m.. n,.n.

..n un i n. i.

n.

im ni nn.

.m.

mn nin i-i.

....m i.m niu um um um um um um nin om om iuu 5:

..u

.m..ua,.uu..m,

..n. -

.m>

..n.

. u.

==

.,m nin. inn io.J,

n mn iniu i $1 3

..s.n.2.m32 i 4.n i u.34 i,n..

i m. i n.n.) i Hn i 37..

i.i n

n.n 3% e M ii 11 inu i3 27

..fH.i nn i.0.im in.n.n.l

.,M

.Ml

.l I

..f.i.,

.,.?..

..,,i..M.1

..M.,....,. M.n.

..,S.,

H i

I.,

1.u i

.i.

.23 i c.i io.l.3 l i,...

i22 i2, inII 1 61

. u12.i i niW i.M i ini I no in2. i t.

i3ni lJ

$h e.uperbe... F h =.nthaipy. Blu pet ID v = specific lume, tu 11 per Ib s =.ntr py,8tu pet I per ID D -9

O en Table 3.

Superheeled Sleem-Continued Ass Press tw$e la.

Set sel I*asseatpe.Deseees teneenheil Set lemel wetee Steam tes See ele ese ese less 1884 Ilse late Stes lies 1300 1000 ties llees e

seen ee67 ears esa sales esses emes enti ceue emi6 seitr seim esses sent t

7P9 6 ese t till tet t lett lle6 8 littl lite t 13MI IMee 44e46 latin Ilitt lese 6 e

stim este lee lasta llelt lites basis IMu 137se l anes 13 ear Belli l ettb lien lites e

eero sepal seres eeM seHe eas73 eteFe eens enes eebel testi seFM can esses t

HF7 es3 e til4 900 $ iste llM9 1704 3 lMe7 337e e 13ee e 14M S 14037 8571e 46%e F s

0 9163 emes lePN 1 9777 1 8386, liese lijn lirti l ais? lass lains le875 lasti l etet glas e

eseal twee seres sest? Den? steen seem seps emes eule este eePee eerte seest 6

H61 est e telt 177e INS IIM S ll13 7 IMee 18186 1874 7 14M 6 1475 8 196e 9 lease s

eglas eup iein ie7el i12M i 87e Inot iMn IJsle Ianl I seet IJesl Iosa iest7 these e

cess earts etPM seus seps eeMe eesp ease se6n eau saut en n serm ee n t

H47 ese6 SN S te l t leell til%3 llee l IMPS llee t inte leise 1477 letti les3 B s

etiel e mie iell7 1EM i alli i 1653 1 till I FSM iJtle 13M4 854 Iasse 44361 8 esas seems e

een ewSi eert ester een eeus ses7e esses esla enge emet eenes eers sette 6

7719 eM I 1004 %As leMP lle& f III4s IPMS 17m t IMS leut6 14 % 4 l%I6 1U74 e

eall emer ium imis Ileft I litt B 745 1 7441 8.7 ell 8 38M i Sete i37el IeMI I 47el iam e

een een een een emM eau eum ess.

een enn emit eum stru a

H73 SM4 mst enti leMe leell litel l!MP Inte lhel tell lette IM17 86389 e

etest e9Me ies37 ImM i 1984 8 1896 8.8988 8tal IJ7ee iJoel 1Jait iJ7en Iont i e675 lesse seru een ee767 earti eone eone eeMr tesu eesa emis eeats emet eeste esteo e

HI1 ett 6 ets I tsee IWei in?3 Inei INIe IM3e IMe# IM3e lesea li3ee 1674i

)

etelt e 9613 39 06 I se73 iSeS3 8 1426 1 1877 1!?st IJtFI B 3071 133M i M3l I ell 3 8 all leses e

ear 31 seres ee768 se767 telle se385 es3m easie teste esses enM em73 esses sorte a

Hos elle att i eb4 3 lent 6 leen t llSl 4 lin 38 4275 4 13H 9 13864 le37 3 ISU 6 167 1 4

eone etsee e m57 lWM i sett i 8362 Ileel i17ee !JHF l 1989 8 37e4 13tes 440e7 I atti sense e

e e'3e eePee cell ee787 eales gesp ee3st essen esse) eens esas ent2 essM este 6

Mts EMS all tha t lent i 1000 6 1848 9 13ese lael 1376 0 137t e 1003 ISM 4 1689 9 4

emis eesW eSNe i N67 1 me6 8 1307 l 1FN 128M B252% !2ess Ial97 IJeti iesit i eett lease o

e4PN eGP47 6eMe eeTe eeter ee3M eeles eeni eseM esees eesos emM emes ee66e e

Mee ss7 et77 tote letiI lett i llMe I;en3 SMII 13nt 6 IUPe 44736 lt7e 4 1610 e a

e he6 8989 eteen I eJeg 10797 l 1747 I 1614 1 MP3 1 Sel? 1 MI$ I 3ill I M74 83Mt i een

$n = espeeheel. F h = entheley. Stu per Rb e = epeclisc volume, tu fl per it s = entsopy, Blu per R per Ib 4

e 4

i i

B-10

~--.----__ --_. _ _ _ _. _ - -

l G. 4f;l,y.,,.

'M..=;

t.

.. mwr

,. t.~.k 0

i.

A

?

=

  • i

=

r

>.T. o

q w t d. d.

3

.ra d,

=

U p p+r

-r

x R

=

n::

. =

r f,

p k... jdh.pp. g-.'d N--.YM.~. "..

r triI E

=.

, p.~.gf #..

,.,,m f.,..

.m : nf

.. c.

mw

=

.w.x..,. h..

.=.m,, w kx$ _~..

~

=

2, r

,.g' 3

'- 'E l#

.1_F4 I I LT JhD'T EL#W U-E

.:IJ"IJ

.K-h1 BI T LIFM E

A

.e 11 g

3 E

FL.

  • if' i& ' Q-QW'

$4lE?.'

p

~_& ':afth.hhWfSfik

~

ym-.Mb Q..

n n.

. w;p ~ V

=

mtml&

"zw*.

G.nyj p -p

.H=

m *- ' l --l 5 6

,;t e + 1ng 4 f ~r W -~ m m_f, r#a4-W af I@!DN k-rN

', ',. _ '.% ' --a

=

N, m.yg;ghigtq: p:;g Qi; m 1 : ww a

=r l=+

,,s e.wm=

n,._ :

Y h

.~v

w. = - n.

n~

nm

[Wai-.HsdiP3).

RWih

%.+HW,

'q' N'

  • E 1l WWW'. iqi.f=WrN %

~.L' '- J.' e"s g

,p.

1.

. ~., -

.m' 'N,, ^ /.~ '-,4,Jkg

,, -..,y,7 m

r

W Qt K..:7

p g

W +"M';7' '/,' l # ' 1rD

,,n. s,.,r,_,

c r..-

, -Jr "?r -- -

r

.s.,.7

- r a

,,.1.1r.

~,

W T. _ '

~u

[ w" 1. '...", - -'

_U S

~, - -. _ -

^

'^

~-

E, ' % $,2A *ON D

' d.,'l. n. c. ' ~ Q

-ig, -

2 J y

c ne

- ~

gy-

~,

lm.. 69f 'l ', l.'* %,fllN."-' K j'^1'D ce k,l '--,_s y.

ii r - t*"

- 2 7

.I

=

f 77._.1. a.1 :

.,_i

_1 -s g ly' **

m-s

..,2 e.

-- n

. - - _Z.'-'*-

,.m

.. D w.g

~-_u-7n.

r_,

> r&

. l-' > l

,.:?~-

^~

_4 _. *r s

s,

^

1_ ^ j ~

~.

..P &m3, --r+,._,r

._~l x.. m,,:

X

.r-,, P.m,a:

_m

,, g,. ~., - ~ _,-...

n 1 - ~

., ~

..m:n....

no

w. _. -

!-' 5 N "'r^ L l:

I?!K

^

u-M

!. ' * - ~ ~ ~.. ~'

'^M ET.t.ur r.

1 1 so.-

&W

&,e-M,,% w,2lJ', L,l ':,1h. ~3_, ' '.; J- -;,' w yno M.it,M, 1,-r r_n.z 1

  • r1 _

<,s v

~.

.a --2 x.-

, < ~,.

-,,. -..,.- _. _ ~ ~,q

~

,,,.ms.?,

n

- l=

1 r..

r

~

N-m l u

-;_,s M -w.%:' : i c

f r--f^4i, ~' h.l. Ws.,,

- c 3,. '.J %. ~r',W h m'e.

' '. -. L' :

wW'";'.

,.m ru.

~ - - - - -, - - - -

m

" Ew s.e :... -'

. : cm.!. nn : :: n,N

_:P i."l W.

^

e

'1.7,1. 'r~h" U,c 1,.nR-L'.'n 1'-L'. sL ' %' N,., 'n.,."'%

~

w%"

f wWht#e%- w,.w,w.x,m 2lu m-x;m e

. n

- r. - -

c -

~

.u s'"'% '.h*4 r% Qam M,"-L. 'Y i "'.: : w;'%;

fM

en

"-%.' ' 'M %r 4 -++

MNi, NM% 'J. M. L'M..

=

w. n:w

-,1

, -. - r--

=

t c

x w-y~

r_u.

_J

.r-

~,_....ww.

~.n

- w.. _ -

is; m.,J.

I77

,4 eg 7w

-1 1

', =. 1,=.~

...=, -- - -,-

i;

..mi s

w_ 3.32 g,-pgw..,.

w

- =r.,-wax W-a.,n*r Pw...~~'L:

, x _

e,-.

x

u g *=

=+M WF.W 4r "

a 1

I-h--Hl

- =c.w; 2

-W*-+ -J

. m':'j., E

- M+ =

~tM. r l.

nlsm yya u

L :;*,, yz,w - w,

~ ;.Fe Y: '.,

a g.s.,-p,.x

  • ?~~ !. fi^^' h*'

g l

i Eb,i44 A: /r$M'+'"~it' L. >.._

/

.W' 7'Mi x.,; ;ie my eg=**sg.m.f, :$y17- - p*..p..p,.p.

. y+,-

. g :::y m

.g y-

" hf f..e.fr.~r.+,C5

- I,"

M.

^

M.; g#'

3

.=

-~

/M,g,_, _

-.:, =

amm-NmIpi"

.n e w*j i n

'D

/@

l

=

.f/;. z ':1:M+ @mn

'/.

.:,r-

~-*

=

{ 5,...z%.. -

=

< m..

r e n"

/

...,. ;s,,,., 9%.m,u a+,.-

?.~

.. a.

.. i.

r,,

r.

s..

....,.... s. g -g=.~

~... y...y.<=

Np

.......,,,{r.11.s:1..

n. :.

.* r,s

~.

- r*

.. >. * =

.,ty

....m.

J..

r. <.,-

.,7t '1.t

s.,III.s..

..... +

e.r.

.f.

.y

+.,

[,d.k'...!*,.h,.

.a h$h1h[kjd $fkb h ;.'t +,.s

. r/ta.,..

1,.. A f,. n..e.

,. ;., 6.I;.,.. J,....... b-o'- 4

.'.. w 'c "

...,~e.

eJ. fr,.

...f. I. J.N:.r. -,.*

'-

  • r 7

a *k..L,.+.

  • a

. I.,

-.,. t o,.

.a apL'1

  • f, t...' ;, : ;*2.. i,,!;!Ji. z' ;.

n <

.1, a 3, (*;

,u:J',P

+

M... av

.g [,-

.efe..,.....o r * :4

  • r r A

e 2 -

=s fMacPT l

r s

U. B. NUCLEAR REGULATORY COMMISSION SENIOR REACTOR OPERATOR LICENSE EXAMINATION FACILITY:

_ gig _BQQg_EQ1NI_________

REACTOR TYPE:

_BWB-SEl__

DATE ADMINISTERED:_SZl96/1$

A EXAMINER:

_dlLLEBa_Bz______________

CANDIDA'.

INDIBUGI1QNg_IQ_G9NDID9IE1.

Use separate paper for the answers.

Nrite answers on one side only.

Staple question sheet on top of the answer sheets.

Points for each question are indicated in parentheses after the question.

The passing Crade requires at Iwast 70% in each category and a final grade of at 1 cast 80%.

Examination papers will be picked up six (6) hours after the examination starts.

X 08:

CATEGORY

% OF CANDIDATE'S CATEGORY

__YBLUE_ _IQIe6 BGQBE__

_Y9LUE__

___________G01EQQRY

_25z99__ _23z99

________ 5.

THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND THERMODYNAMICS

_25z99__ _20t99 6.

PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION

_2Dx99__ _25299 7.

PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND RADIOLOGICAL l

CONTROL 2Ez99__ _2Ez99

_______ S.

ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS l

199299__

Totals i

Final Grade i

All work done on this examination is ey own.

I have neither given nor received aid.

Candidate's Signature

]

L. 0 0 P. Y 1

i

l NRC RULES AND GUIDELINES FOR LICENSE EXAMINATIONS Dur$ 1g the administration of this examination the f ollowing rules apply:

1.

Cheating on the examination means an automatic denial of your application and could result in more severe penalties.

2.

Restroom trips are to be limited and only one candidate at a time may leave.

You must avoid all contacts with anyone outside the examination room to avoid even the appearance or possibility of cheating.

3.

Use black ink or dark pencil gely ' o f acilitate legible reproductions.

4.

Print your name in the blank provitad on the cover sheet of the ex ami nati on.

5.

Fill in the date on the cover sheet of the examination (if necessary).

6.

Use only the paper provided f or answers.

7.

Print your name in the upper right-hand corner of the first page of gach section of the answer sheet.

B.

Consecutively number each answer sheet, write "End of Category __" as appropriate, start each category on a agw page, write gely go gag side of the paper, and write "Last Page" on the l ast answer sheet.

9.

Number each answer as to category and number, for example, 1.4, 6.3.

10. Skip at least ibtgg linen between each answer.
11. Separate answer sheets from pad and place finished answer sheets face down on your desk or table.
12. Use abbreviations only if they are commonly used in facility liigtgiutg.

1

13. The point value f or each question is indicated in parentheses af ter the question and can be used as a guide for the depth of answer required.
14. Show all calculations, methods, or assumptions used to obtain an answer to mathematical problems whether indicated in the question or not.
15. Partial credit may be given.

Therefore, ANSWER ALL PARTS OF THE QUESTION AND DO NOT LEAVE ANY ANSWER BLANK.

16. If parts of the examination are not clear as to intent, ask questions of the gggmingt only.
17. You must sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in completing the examination.

This must be done after the examination has been completed.

t s

- 10. Imen you complete your examination, you shells a.

Assemble your examination as follows:

(1)

Exam questions on top.

(2)

Exam aids - figures, tables, etc.

(3)

Answer pages including figures which are part of the answer.

b.

Turn in your copy of the exami stion and all pages used to answer the examination questions.

c.

Turn in all scrap paper and tha salance of the paper that you did not use for answering the questions.

d.

Leave the examination area, as defined by the examiner.

If after

~

leaving, you are found in this area while the examination is still in progress, your license may be denied or revoked.

1

-,,,-----..,-,,n---,

-,------,-----,,,_---n.

4 L.__ItfEDBY_DE_NWGLE98_EDNEB_ELBNI_QEEB0110 tim _ELWIDHm_0ND PAGE 2

ItfEBUDQYN8 DIGS QUESTION 5.01 (1.00)

During a Reactor Startup, a 100 second period is attained.

INITIAL CONDITIONS:

The reactor is at beginning of life (BOL)

Reactor Coolant torporature is 210 deg. F Initial Reactor Portott is 100 seconds The reactor is adding heat to the coolant With no operator action, WHAT will the moderator temperature be wi#n the reactor is again on an infinite period?

(Belect correct answer)

,a.

222.O deg. F b.

218.0 deg. F c.

216.5 deg. F d.

210.7 deg. F QUESTION 5.02 (2.00)

For each of the pairs of conditions listed below, state WHICH condition would have the GREATER differential rod worth and EXPLAIN WHY.

a.

Reactor moderator temperature of 150 dog F or 500 deg F.

(1.00) 09 2.0 b.

For a rod at position g or position g of a core operating at 100% power.

-(1.00)

QUESTION 5.03 (2.00)

For-each of the following events, state which COEFFICIENT of reactivity would act FIRST to change reactivity AND state whether POSITIVE or NEGATIVE reactivity is added due to the coefficient.

a.

Control rod drop at power

b. SRV opening at power c.

The MSIV closes at 20% reactor power d.

Loss of one feedwater heater (extraction steam isolated)

(*=*** CATEGORY 05 CONTINUED ON NEXT PAGE *****)

l 3,.

TtfEQBY_DE_tfWGLE98_EQtfEB_Eket!I_DEEBel1Qt!x_ELWIDEa_9t!D PAGE 3

It!EBOQQYtdet!1EE QUESTION 5.04 (3.00)

MATCH the appropriate Thermal Limit (a-c),

a. Linear Heat Ger. oration Rate (LHGR)
b. Average Planar Linear Heat Generation Rate (APLHGR)
c. Minimum Critical Power Rati (MCPR) to its FAILURE MECHANISM AND to its L IMITING CONDITION, given below:

FAILURE MECHANISM LIMITING CONDITION F1.

Clad melting caused by L1.

Stable film boiling decay heat & stored heat occurs fol3owing a LOCA F2.

Clad cracking from the surface L2.

Clad plastic strain becoming vapor " blanketed"

< 1%

F3.

Clad cracking caused by L.3.

Maximum clad temperature high stress from pellet of 2200 deg. F expansion F4.

Gross cladding failure due to L4.

The onset of transition high stress from the production boiling of fission product gases l

l

(***** CATEGORY 05 CO.NTINUED ON NEXT PAGE *****)

41.__ItjggRY_Qg_NWQLgAR PQWER_PL8NT OPERAIlg!!,_ gluing,_8 tsp PAGE 4

It!EBt!QDY!!st!1GS QUESTIDN 5.05 (1.00)

A reactor heat balance was performed (by hand) during the 00-08 shift due to the Process Computer being out of service.

The GAF's (Gain Ad.justment Factors) were computed, but the M RM GAIN ADJUSTMENTS HAVE NOT BEEN MADE.

(Power Ran$e MnM Which DNE of the f ollowing statemen' s is TRUE concerning reactor power?

a.

If the f eedwater flow rate uset in the heat balance calculation was LOWER than the actual feedw.;er flow rate, then the currently calculated power in LOWER than the actual power.

b.

If the RWCU return temperature used in the heat balance calculation-was LOWER than the actual RWCU return temperature, then the currently calculated power is LOWER than the actual yower.

c.

If the steam flow used in the heat balance calculation was LOWER than the actual steam flow, then the currently calculated power is HIGHER than the actual powr.

d.

If the reactor recirculation pump heat input used in the heat balance calculation was DMITTED, then the currently calculated power is HIGHER than the actual power.

QUESTION 5.06 (1.00)

List FOUR (4) factors which affect the Pellet Cladding Interaction (PCI) mechanism.

QUESTION 5.07 (2.00)

HOW does the magnitude of the Doppler coefficient change with respect to the f ollowing conditions:

(More Negative, Less Negative, OR Remains the Same).

EXPLAIN WHY.

a.

Void fraction DECREASE b.

Core age INCREASE QUESTION 5.08 (1.50)

During a reactor star $up, Keff is.95 when the SRM channels read 100 cps.

What will the new Keff be when the SRM channel reads 270 cps?

(***** CATEGORY 05 CDblTINUED ON NEXT PAGE *****)

PAGE 5

3 THEQBY_QE_UUGLE88_EQtfEB_ELANT OggggIlgtj,_E(ylgg2_ggg ItfEBt!DDYt!9d1GB QUESTION 5.09 (1.00)

Concerning control rod worth during a reactor startup with 100%

peak Xenon versus a startup with Xenon free conditions, which ctatement below is correct?

a. Peripheral control rod worth will be lower during the 100%

peak Xenon startup than during the Xenon free startup.

b. Central control rod worth will be higher during the 100% peak Xenon startup than during the Xenon free startup.
c. Peripheral control rod worth will be higher during the 100%

peak Xenon startup than during the Xenon free startup.

d.

Both central and peripheral control rod worth will be the same regardless of core Xenon concentration.

QUESTION 5.10 (1.00)

Answer the following questions as TRUE or FALSE, given that the unit is at rated conditions and a Reactor Scram occurs.

a.

If the reactor is started up at the time of peak Xenon conditions, then the neutron thermal flux level will be located HIGHER in the core than if Xenon free conditions existed. (Assume a bottom peaked axial flux distribution during previous power operation.)

b. At the time of peak Xenon conditions, the core is free of I135.

QUESTION 5.11 (1.50)

Calculate the reactor cooldown rate for reactor pressure decreasing from 885 psig to 485 psig in one-half hour. Show ALL work.

(***** CATEGORY 05 CD'NTIhsUED GN NEXT PAGE *****)

Dt__ItfEDBY_DE_CUGLE88_EQtfEB_EL8t!I_DENB8IIDtia_ELUIDE2_8tfD PAGE a

It!EBt!DDYtfet!1GB QUESTION 5.12 (2.50)

Answer the following questions concerning delayed neutrons

o. Define the term BETA with regard to delayed neutrons?

(1.00)

b. When comparing the individual BETA's from thermal fission of U-235, Pu-239 and fast fission of U-238, which BETA is largest?

(0.50) c.

Will the reactor period resulting from the addition of

.0001 delta K/K be (LONGER, SHORTER, or THE SAME) in the Beginning of Life (BOL) core as it is at the End of Life (EOL) core?

EXPLAIN YOUR ANSWER.

(1.00)

QUESTION 5.13 (1.50) c.

What is the thermal time constant?

(0.50) b.

How does the thermal time constant affect the response time of the doppler (f uel) and void coef ficients f or a reactor power increase?

(Increase, Decrease, OR No Affect)

EXPLAIN WHY.

(1.00)

QUESTION 5.14 (1.00)

Answer the following concerning heat transfer in a Boiling Water Reactors a.

Define departure from nucleate boiling (DNB).

b.

Define critical power ratio (CPR).

l l

t i

i i

(***** CATEGORY 05 CONTINUED DN NEXT PAGE *****)

u

(

PAGE 7

IEs._ _ Tt!ggBy_gE_i!yQLE@R_Pgt!gR PLANT _gPERATIQt!2_E(WIQS2_9NQ ItfEBt!QQYN9tjlGH QUESTIDN 5.15 (3.00)

Following a normal reduction in power from 90% to 70% with control rod insertion, how will the f ollowing change (Increase, Decrease or Remain the Same) and EXPLAIN WHY?

The pressure difference between the reactor and the turbine steam a.

chest.

(1.00) b.

Condensate depression at the exit of the condenser.

(1.00) c.

Feedwater temperature entering the Steam Drum.

(1.00)

(***** END DF CATEGORY 05 *****)

', h_ fleNI EYEIs55 DEH19N2_GDNIBDLa_BND_INEIBWHENIBI19N

~PAGE O

I

\\

QUESTION 6.01

(.75)

Match the Nuclear Instruments (in the lef t-hand column) with the type of detector (in the right-hand column).

NUCLEAR INSTRUMENT TYPE OF DETECTOR a.

Startup Range 1

Geiger-Muller b.

Intermediate Range Uncompensated Ion Chamber c.

Power Range 3

Proportional 4.

Compensated Ion Chamber GUE!STION 6.02 (1.50)

Ctate the SETPOINTS and the COINCIDENCE in each channel of the following Reactor Scram trip functions.

a.

High Reactor Pressure b.

High Scram Dump Tank Level c.

Loss of Auxiliary power supply QUESTION 6.03 (1.00)

Depressing the Manual Scram Switch provides a reactor scram by opening contacts in each Reactor Protection Channel.

j Answer the fallowing True OR False.

EXPLAIN YOUR ANSWER.

h If the manual scram contacts in either protection channel fail to open, the reactor will NOT scram.

i

(***** CATEGORY 06 CONTINUED'ON NEXT PAGE *****)

h__t10NI_SYEIEt!E_DEH195_GQUIBQLa_0ND_INEIBWt!ENI8IlgM PAGE 9

QUESTION 6.04 (3.50)

Answer the following questions concerning the Fire Protection System.

a.

The Electric Fire Pump is fed by Bus 28.

List TWO (2) of the three sources of power which may feed Bus 2B.

(1.00) b.

List the TWO (2) AUTOMATIC start signals for the Electric Fire Pump.

(INCLUDE SETPOINTS)

(1.50) c.

List TWO (2) of the three locaMons where the Electric Fire Pump can be MANUALLY started.

(1.00)

QUESTION 6.05 (2.00) o.

State TWO (2) of the three automatic Turbine Generator control actions (protective relaying) that occur upon a sudden loss of load to the Main Turbine Generator.

(1.00) l.

b.

HOW is the Turbine Generator system designed to prevent frequent operating upsets (turbine trips) during lightning storms?

(1.00)

QUESTION 6.06 (1.00)

Select the best response f or the following question.

How does the control of the Emergency Condenser outlet valve (MOV 7053) change when its motor starter transfer switch, located in the ASB (Alternate Shutdown Building), is placed into the ABB position?

a.

The emergency condenser outlet valve may be controlled from either the ASB starter control switch or the control room hand switch and the automatic operation of the valve is prevented.

b.

The manual control of the emergency condenser outlet valve is transferred to the ASB and the automatic operation of the valve remains operable.

c.

The manual control of the emergency condenser valve is transferred to l

the ASB and the automatic operation of the valve is prevented.

l l

d.

The manual control of the valve is prevented, while the automatic operation of the valve remains operable.

(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)

l l

,,-,----nn,

-n,-w

,,,,--,-,n..nnn,,w,,-.

...nn

......n----,n_,

n,---,---a-,

,.e e - - - - - - -

PAGE 10 Mi__f18HI_BYBIEBB_ DEB 19N4_GQtlIBQLa_8HD_INEIBUUEtlIBI1ON QUESTION 6.07 (1.00)

Answer the following True OR False.

EXPLAIN YOUR ANSWER.

(BE SPECIFIC)

The MSIV (Main Steam Isolation Valve) can be opened from the ASB (Alternate Shutdown Building).

QUESTION 6.08 (1.50)

WHAT THREE (3) valve position interlocks must be satisfied in order to ctart a reactor recirculating pump?

QUESTION 6.09 (1.50)

Concerning the Nuclear Instrumentation Systems WHAT does the YELLOW light on the Log-N amplifier unit a.

indicate?

(0.50) b.

WHEN is the period scram function of the Log-N amplifier BYPASSED 7 (1.00)

QUESTION 6.10 (1.00)

List the TWO (2) possible paths (entry points) for injection of liquid poison into the Reactor Vessel from the Liquid Poison tank.

QUESTION 6.11 (1.00)

I If power to the RDS (Reactor Depressurization System) Actuation Cabinet AC3 is interrupted, which of the following occurs?

The electric fire pump becomes inoperable for starting from RDS.

a.

b.

The electric fire pump receives an automatic start signal.

c.

The diesel fire pump becomes inoperable for starting from RDS.

d.

The diesel fire, pump receives an automatic start signal.

l

(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)

'. h__t10MI_ SYHIEUS_DEH19tf2_GDt!IBDL_8HQ_ItfSIBut!EMIBI19tf PAGE 11 QUESTION 6.12 (2.50) c.

List the SIX (6) Containment ISOLATION valves that AUTOMATICALLY close on a Low Reactor Water Level.

(1.50) b.

List TWO (2) Reactor Scram trip functions, in addition to Low Reactor Water Level, which will initiate the automatic closure of the containment isolation valves.

(Setpoints not required)

(1.00)

I QUESTION 6.13 (1.25)

Answer the following questions concerning the Turbine Bypass System.

a.

What is the primary system pressure range for Bypass Valve control?

(0.50) i b.

What is the normal pressure setting of the controller for Bypass Valve OPENING 7 (0.25) c.

List the NORMAL and ALTERNATE power supplies to the Bypass Valve Control Circuit.

(0.50)

GUESTIDN 6.14 (1.50)

Match the Sprinkler System (in the lef t-hand column) with the type of fire system (in the right-hand column) which best describes that sprinkler system.

(Items in right-hand column may be used more than once.)

a.

Reactor Feed Pump lube 1.

Wet pipe systen, with heat i

oil tank sprinklers sensitive sprinkler heads b.

Hydrogen control cabinet sprays 2.

Dry pipe system, with open j

sprinkler heads c.

UPS Battery Room sprinklers 3.

Dry pipe system, with heat sensitiva sprinkler heads d.

Substation transformer and i

Station Power Regulator sprays e.

Hydrogen Seal Oil Unit sprinklers f.

Cable Spreading Area sprinklers i

l I

i l

(***** CATEGORY 06 CONTINUED DN NEXT PAGE

          • )

~,.. _ - -..... _ _

Am.__t18HI_BYSIEt!E_DEH19di_GQNIBQLa_0HQ_INSIBut!EMIGI1Qti PAGE 12 QUESTION 6.15 (3.25)

With regard to a LOSS of pressure in the Service and Instrument Air Systems a.

Match the evente. (in the lef t-hand column) with the air pressure (in the right-hand column) at which each event occurs.

(0.75)

(a)

RDS isolation valve low pr essure alarm 1.

64 psig (b)

Air compressor Auto-Start 2.

70 psig (c)

Service air low pressure alarm 3.

74 psig 4.

80 psig 5.

85 psig 6.

90 psig b.

How would the following valves FAIL on a LOSS of air.

(Dpen, Closed, Remains as Is)

EXPLAIN WHY.

(2.50) 1.

Main feedwater valve 2.

Scram valves 3.

Scrae dump tank vent valves 4.

Feedwater bypass valve 5.

Reactor cooling water regulating valve to the Shutdown Cooling system heat exchanger GUESTION 6.16

(.75)

List TWtEE (3) of the four conditions that will AUTOMATICALLY shut down the Emergency Diesel Generator.

(***** END DF CATEGORY 06 *****)

PAGE 13

' A__PBggggyBgg_ _!!gBt!sL,_egt!gBBeh,_Et!gBGEtfGL9 tid B8 Dig 6991G86_GQt!IBQL QUESTION 7.01

(.50)

In accordance with ONP 2.27, Loss of Reactor Recirculation Flow, f or DNE recirculation pump trip reactor power will DECREASE by ___(a)___ percent and when both pumps trip, reactor power will DECREASE by ___(b)___ percent.

QUESTION 7.02 (1.00)

Why does SOP 34, Stack Gas Monitoring System, CAUTION the operator NOT to leave the stack gas Grab Sample Switch ON indefinitely?

QUESTION 7.03 (2.50)

In accordance with GOP 1.0 (Plant Startup From Cold Shutdown),

GOP 5.0 (Power Operation), and GOP 6.0 (Plant Shutdown to Hot Shutdown),

CTATE the following LIMITS.

a.

Reactor period b.

The steam drum temperature differential of any two points The number of people allowed in the containment building during c.

reactor power operation d.

The MAXIMUM reactor power change allowed when DNE (1) of the three power range flux monitors is out of service.

e.

Normal load (MWe) reduction rate QUESTION 7.04 (1.50) l With regard to GOP 4.0, Reactor Trip Recovery, answer the following questions.

a.

Following a Reactor Scram, WHY does GOP 4.0 recommend NOT RESETTING either RPS channel until both channels can be reset?

(1.00) b.

If steam pressure should reach 100 psig prior to recovery from the reactor trip, what action must the operator take.

(0.50)

(***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)

~. Zu_EBDGEDuBES_:_NDBL%_9BNDBt!862_EtlEB9ENRY_8HD PAGE 14 BeDIED01G86_GDNIBA QUESTION 7.05 (1.00)

Consider EMP 3.10, Fire in Turbine / Service Building or Exterior or Interior Cable Penetration Areas If control of the Emergency Condenser Outlet Valves is transferred to the ASB (Alternate Shutdown Building), WHY does a note in EMP 3.10 direct the operator to CRACK OPEN these valves immediately.

QUESTION 7.06 (2.00)

Answer the following questions concerning FLOODING in the Plant Equipment Rocm, EMP 3.9.

a.

What equipment loss is threatened when wester level reaches elevation 591.6 (approximately 6 inches deep in the Heating and Boiling Roon)?

(0.50) b.

State the IMMEDIATE operator actions if water level reaches elevation 593.6 (approximately 6 inches deep in the Plant Equipment Room) and is not diminishing.

(1.50)

OUESTION 7.07 (1.00)

In the event of a DEGRADED containment, in accordance with EMP 3.3, Loss of Reactor Coolant, the instrument and service air will be isolated before containment pressure reaches a.

1.0 psig b.

2.2 psig i

c.

10 psig d.

27 psig i

t i

(***z* CATEGORY 07 CONTINUED ON NEXT PAGE *****)

.Zz__EBDGEDUBEB_ _NDBt%_8BtfDBt!864_Et!EBGEtfGY_etgl PAGE 15 88DIDLDDIG86_GDtfIBDL QUESTION 7.08 (1.50)

Concerning EMP 3.3, Loss of Reactor Coolant, answer the following questions about the Yarway Steam Drum Level Indicators (LI RE19A and B) DURING LOCA CONDITIONS.

a.

The Yarway Steam Drum Level Ir'dicators (WILL/WILL NOT) perform their safety related functions.

(0.50) b.

The INDICATED water level may be (Choose ONE of the following)

(1.00) 1.

failed low 2.

erroneously low 3.

failed as is 4

4.

failed high 5.

erroneously high i

QUESTION 7.09 (1.00)

Answer the following in accordance with EMP 3.2, Loss of Neutron Flux Indication.

During a reactor STARTUP, if BOTH Startup nuclear instrument channels are LOST while APPROACHING CRITICALITY, the operator shall a.

fully insert all control rods in reverse order.

f b.

scram the reactor.

c.

not move any rods until one Startup channel is restored to service.

d.

place the reactor in Cold Shutdown within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

QUESTION 7.10 (1.50)

With regard to EMP 3.1, Loss of DC Power System, answer the following questions TRUE or FALSE.

i a.

On a loss of DC power, Reactor Feed Pumps may be BHUTDOWN and STARTED t

l by operating the " TRIP" rods in the appropriate Reactor Feed Pump I

2.4 KV ACE.

EXPLAIN YOUR ANSWER.

(1.00) f b.

If a Reactor Scram occurs concurrently with a LOSS of DC power, the l

turbine generator WILL NOT trip.

(0.50) l

(***** CATEGORY 07 CONTINUED ON PEXT PAGE *****)

-Z __ESQGEDQBER - tf0Bt!h_98t!QBt!A_Et!EBGEtfGY_8HQ PAGE 16 8601DLQQ1G86_GQt!IBQL l

QUESTION 7.11 (1.50)

Ctate THREE (3) of the four IMMEDIATE operator actions upon a Turbine Generator Trip per DNP 2.15 (Turbine Generator Trip Procedure).

QUESTION 7.12 (1.50)

Answer the f ollowing questions in ac. ordance with DNP 2.6, Loss of Control Rod Drive Position Indication.

a.

WHY is the proper functioning of the control rod position indication MANDATORY 7 (0.50) b.

Answer the fallowing TRUE or FALSE.

1.

A control rod may be allowed to remain in a position where no indication is present if the rod has been inserted one notch to verify its position by an operable adjacent position switch and subsequently withdrawn one notch.

(0.50) 2.

If ALL position indication for a control rod is lost the operator shall immediately drive the rod to the full in position.

(0.50)

GUESTION 7.13 (1.00)

If the EDG (Emergency Diesel Generator) Engine Start Failure alarm is on cnd the EDG did not start, WHY do Big Rock Point Operating Procedures direct the operator to place the EDG control switch to "DFF" for TWO (2) cinutes prior to attempting another engine start.

QUESTIDN 7.14 (1.50)

Ctate the THREE (3) IMr1EDIATE operator actions upon a Loss o$ woncer.u te Pump (with TWO-PUMP Operation) in accordance with DNP.f. ',, Losw v4 Condensato System.

(***** CATEGUbr C7 LJ ANL,f.

vn in.

.r

.Z.n.__EBMWm_:_U9 L18 C_ss!uebh.cu _. m__ cn

/GE 17 66ki6eex2w:u_==u..

1. t 5 (3.56) m.

Considering the operatiott of the Liquid Poison 5. tem, answer the (o t 1.wi ng t a.

State TWO (2) of the three conditions which REQUIRE the liquid poison to be injected?

(Include requirements from all three procedures addressing liquid poison injection:

SOP 4, ONP 2.21, and EMP 3.5)

I b.

When can the liquid poison injection be terminated?

(Include both INADVERTENT and INTENTIONAL initiation conditions.)

c.

State the,THREE (3) IMMEDIATE operator actions for initiation of liquid poison injection per DNP 2.21, Conditions Requiring Liquid Poison System.

QUESTION 7.16 (1.00)

Answer the following in accordance with DNP 2.28, Abnormal Water Quality:

For a high equilibrium halogen radioactivity and high dose equivalent I-131 conditions, if a sustained offgas release rate of greater than or equal to 50,000 uc/sec exists, the operator shall (select one of the following) a.

initiate an orderly reactor shutdown.

b.

reduce plant load to reduce offgas activity.

c.

place the plant in the shutdown condition with the MSIV closed within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

i d.

immediately scram the reactor.

1 i

QUESTION 7.17 (1.50)

In accordance with DNP 2.31, Reactor Scrams, state BIX (6) AUTOMATIC cctions that the operator should verify on every scram.

J i

I

(***** END OF CATEGORY O'l *****)

_,. - ~ _ _. _ _ _ _., _ _. _ _, _, _. _ _. _ _

t PAGE 10

,Ba.__8951NISIB8IIW_ESDGEDUBES2_GUND1I1QUHa_8t9_LIMIIBI19tMi QUESTION B.01 (1.50)

List the Federal Radiation Dose Limits per calendar quarter WITHOUT a NRC Form 4 on file.

QUESTION B.02 (1.00)

A man receives the following exposure Samma O.02 RAD Betas 0.05 RAD Thermal neutron O.03 RAD What is his whole body dose?

(Select the correct answer) a.

O.10 REM b.

O.14 REM c.

O.16 REM d.

O.20 REM QUESTION S.03 (2.00)

Reactor power was reduced to 50% of rated thermal power (120 MWt) for required maintenance.

What is the MINIMUM amount of time that will be required to return to 100% rated thermal power (240 MWt) following completion of the maintenance?

(SHOW ALL WORK AND STATE POWER ESCALATION RATES AND LIMITS APPLIED)

QUESTION B.04 (1.00)

What are the TWO (2) Technical Specification primary coolant system leakage limits?

(***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)

. 9t__8Dt!1N15IB9I1YE_EB9GEDUBEBa_G9BD1IIDNH2_9ND_LINII9IIDNE PAGE 19 I

QUESTION B.05 (2.00)

Answer the following in accordance with BRP Technical Specifications:

c.

List the MININUM crew composition required for REFUELING operations.

(1.00) b.

State the conditions.under which the shift crew complement may be below the minimum required.

(ItJCLUDE:

Number of crew members below the minimum allowed, Time allowed, and the Situation preventing crew member's presence.)

(1.00)

QUESTION B.06 (3.00)

Answer the following questions concerning SDP 1.0, Heactor Operation.

a.

Condenser vacuum must be greater than ___(1) ___ inches Hg before reactor pressure is ___(2) ___ psig to prevent a reactor scram.

(0.50) b.

A licensed operator shall be present at the controls in the Control Room during ___(1) ___ mode (s) of plant operation when ___(2)

(0.50)

(NOTE:

Blanks may require MORE than one word) c.

State the THREE (3) conditions when at least TWO (2) Licensed Operators SHALL be in the Control Room.

(1.50) d.

WHY must the Reactor Engineer be present during an approach to criticality?

(0.50) l l

l

(*****

CATEGORY 08 CONTINUED DN NEXT PAGE *****)

Es.__80HINIBIB8IIVE_ESQGEDUBEBa GQtNt1Il0NEa_8HD_L151IGIlGNE PAGE 20 outSTION B.07 (1.00)

Select the statement which DEST describes the Technical Specification l

definition of a CHANNEL CHECK for a radiation monitor.

l a.

The qualitative assessment of channel response when the channel j

sensor is exposed to a source of increased reactivity.

i b.

The injection of a signal into the channel as close to the radiation sensor as possible to verify operability including alarm and/or trip functions.

c.

The comparison by visual observation of one radiation monitoring channel to two other independent radiation monitoring channels j

measuring the same parameter.

d.

Adjustment of the radiation monitoring channel such that it responds with the necessary range and accuracy to known values of the radiation which the channel monitors.

QUESTION B.08 (1.00)

Select the st atement which BEST describes the actions required to be taken per Technical Specifications in the event of a SAFETY LIMIT l

VIOLATION.

a.

The reactor shall be shutdown immediatelys the violation shall be reported within one hour to the Commission, Vice President -

Nuclear Operations, and Chairman - NSBs and a report will be submitted c:ithin 14 days to the Commission, Vice President - Nuclear Operations, cnd Chairman - NSB.

b.

The reactor shall be shutdown imme'diatelyg the violation shall j

be reported within one hour to the Commissions and a report will be Cubmitted within 30 days to the Commission, Vice President - Nuclear l

Operations, and Chairman - NSB.

i c.

The reactor shall be placed in Hot Shutdown within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> the l

violation shall be reported within one hour to the Commission, Vice

{

President - Nuclear Operations, and Chairman - NSBs and a report will be submitted within 14 days to the Commission, Vice President -

Nuclear Operations, and Chairman - NSB.

I d.

The reactor shall be placed in Hot Shutdown within 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />sg the

[

violation shall be reported within one hour to the Commissions and a report will be submitted within 30 days to the Commission, Vice l

l President - Nuclear Operations, and Chairman - NBB.

I l

(*****

CATEGORY 08 CONTINUED ON NEXT PAGE *****)

. Eu_egt!1t!1HIB8IIK EBQGEDUBE84_GQNQ1IIGNEo_eNG_L151IGI10NE PAGE 21 QUESTION B.09 (1.00)

As the Shift Supervisor, you have.fust received a report that OUTPUT CHANNEL II of the Reactor Depressurization System (RDS) has failed the monthly channel trip test.

INITIAL CONDITIONS:

- Reactor power is at 1007 rated thermal power

- RDS Relief Valve (SV 4986) failed closed 2 days ago l

- RDS Dutput Channel II has.just fmiled the monthly channel trip test.

- The remainder of the RDS components are operable SELECT the statement below which describes the actions required by Technical Specifications.

NOTE:

USE ATTACHED FIGURE AND *.cCHNICAL SPECIFICATIONS l

a.

The reactor may remain in operation for 5 more days.

The remaining RDS valves and actuating circuitry shall be demonstrated to be operable within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> and once each 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> until the system is restored to an operable status.

b.

The reactor may remain in operation for 7 more days.

The remaining channels shall be demonstrated to be operable within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> and once each 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> until output channel II is restored.

p c.

A normal orderly Shutdown shall be initiated within one hour and the reactor shall be shutdown with all (or all but one) of the control rods inserted within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and primary coolant water temperature less than 212 degrees F within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

d.

The plant shall be brought to the Shutdown condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and to the Cold Shutdown condition within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

QUESTION B.10 (1.50)

Answer the following question in accordance with Administrative Procedure 2.0, Production and Performance and Organization and Responsibilities.

Outside of the normal working hours, State S!X (6) conditions when the Shift Supervisor should call the On-Duty Superintendent for review, counsel, and followup action.

(*****

CATEBORY 08 CONTINUED ON NEXT PAGE *****)

,B u 8051NIBIB8II N_ESQGEDUBEBa_GOND1IIDNBa_8HD_l.151I8IIDMS PAGE 22 QUESTION B.11 (1.00)

In accordance with Administrative Procedure 2.1.1, Shift Operations, all Core Alterations after the initial fuel loading shall be performed (Dy (Select DNE of the following) a.

A licensed operator or a non-licensed operator under the direct supe. vision of a licensed operator.

b.

A licensed operator under the supervision of a licensed senior operator.

c.

A non-licensed operator under the supervision of a licensed Senior Operator with concurrent responsibilities for coordinating outage activities.

d.

Any licensed control room operator.

QUESTIDN 8.12

(.75)

The Fire Brigade shall consist of at least ___(a),,__ members.

It Shall not include ___(b)___ members of the minimum shift crew necessary for the ___(c)

__ of the plant and any personnel required for other essential functions during a fire emergency.

(NOTE:

More than one word may be required to complete a blank.)

QUESTION B.13 (2.00)

In accordance with EPIP 4.0, BRP Nuclear Plant Site Emergency Plan, COMPLETE the following table for radiation exposure limits.

LIFE SAVING LESS URGENT EMERGENCIES Whole Body (a)

(c)

Thyroid (b)

(d)

(***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)

'g __6DUIU1EIB8I1YE_EBQGEDUBEE2_GQND1I195Ec_9BD_LIBIIBI1993 PAGE 23 auESTION S.14 (1.50)

Complete the following table by stating the location of the meergency support facility and the LONEST emergency classification requiring its activation.

SUPPORT FACILITY LOCATION ACTIVATED FOR TBC (Technical Support Center)

(a)

OSC (Operations Support Center)

(b)

(c)

EOF (Emergency Operating Facility)

(d) l GUESTION B.15 (1.25)

In accordance with EPIP 4.0, BRP Nuclear Plant Site Area Plan, SHOULD the plant stren be sounded for the following situations?

If so, HON is it sounded for each event?

(BE SPECIFIC) a.

Alert Emergency b.

Fire c.

Bomb Threat QUESTION S.16 (1.00)

In accordance with EPIP ATTACHMENT 6F, Emergency Notifications, If an cvent has been classified as an emergency, the Sheriff and the State Police shall be notified within:

a.

15 minutes b.

30 minutes c.

1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> d.

4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />

(*****

CATEGORY 08 CDNTINUED ON NEXT PAGE *****)

.o Ga.__8DDINIBIB8I1YE_EBDGEDUBES2_GDHD1I19tma_8tfD_(IU1I8I19tg PAGE 24 QUESTION B.17 (1.50)

Concerning shift relief, in accordance with Administrative Procedure 2.1.1, Shift Operation, STATE THREE (3) activities (duties) that the Shiit Supervisor wi11 periora soon after assuming the shift responsibility.

QUESTION B.18 (1.00)

List FOUR (4) of the five locations where a power failure phone would be found.

J

(***** END OF CATEGORY 00 *****)

(************* END OF EXAMINAT!DN ***************)

~

MASTER

~

COPY ANSWER KEY TV 5g O

y

~

1

.L.__ItfEQBY_QE_9UGLE88_EQWE8_EL8HI_QEEB8IIDHa_ELUIREa_8HE PAGE 25 ItfE850DYH8HIGR ANSWERS -- BIS ROCK POINT

-87/04/14-MILLER, R.

ANSWER 5.01 (1.00) c.

REFERENCE GE BWR ACADEMIC SERIES ON REACTOR THIORY.

292000K115

...(KA'S)

ANSWER 5.02 (2.00) c.

At 500 dog F.

(0.50),

As moderator temperature increases, neutron thereal diffusion length increases, thus the control rod's area of influence has increased, thus increasing rod worth. (0.50)

_on.

CRW proportional tos Lt (Orod/0 ave)**2 of b.

At,HT (0.50), The deep control rod withdrawal adds coupling to cells in the core (substantially affecting radial flux) thus producing a large reactivity worth.

(0.25)

Whereas, shallow rod withdrawal (position SO.AOf has a seal fact on reactivity addition due to the shadowing of nearby rods, thereby reducing the radial effect. (or shallow rods are shaping rods not producing large overall core power changes)

(0.25) b b O h M 4 %g}^ r/ b W V M f u '

[dR. 4kr Ad 0 s /c 944 M af g REFERENCE pf,.,

g is DRP LP # DOR-09 (REACT ITYg,VARIATI

) DBJ #11.

GE BWR ACADEMIC SERIES ON REACTOR THEORY PG 5-12, -13, -21, -22, AND -25.

201003K507 292005K104 292005K109 292005K112

...(KA*B)

ANSWER 5.03 (2.00)

c. Doppler or fuel toeperature, negative
b. Void, negative
c. Void, positive
d. Moderator temperature, positive (0.25 per coefficient, and 0.25 per sign nt reactivity)

REFERENCE GE BWR ACADEMIC SERIES ON REACTOR THEORY CHAPTER 4.

295014K203 295014K204 295014K206

...(KA'8) i J

-n, o,-,n nn,-,_

-._,,n.,, - -,,., _,,, -,, -., _

,,,,n,,.,,.-

5 __IHEQBY_QE_tfuGLE88_EQtfEB_EL8HI_DEEB8I19tla_ELW1REa_8tR)

PAGE 26 IMEBUQGYtlet$1G8 ANSWERS -- BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 5.04 (3.00)

F1.

b F2.

c a.

F3, L2 F3.

a OR b.

F1, L3 L2.

a c.

F2, L4 L3.

b L4.

c.

(0.50 per eatch)

REFERENCE GE BWR ACADEMIC BERIES ON HTFF PG 9-15.

BRP LP O BTM-20 (FUEL / CORE DAMAGE / INADEQUATE COOLING) ENABLING OBJ. A.

295014KA4

...(KA*S)

ANSWER 5.05 (1.00) d.

REFERENCE BRP LP # BRT-07 PG 7 AND LPG BRT-10 (THERMAL LIMITS) OBJ. 2990201201.

293007K111

...(KA'S)

ANSWER 5.06 (1.00)

Fuel rod power level Fuel rod exposure Rate of power increase Fuel pellet design Previous power history Presence of embrittling agent Duration of power increase (any 4, 0.25 ea.)

REFERENCE GE BWR ACADEMIC SERIES ON HTFF 9-47, -48, AND -49.

293009K132

...(KA'S)

' L.__IL498Y_QE_t!QGLEe6_EQtfEB_ELet!I_QEEBel1Qtfi_ELUIMa_et!Q PAGE 27 ItfEBt!QDYt!st!1GB ANSWERS - BIS ROCK POINT

-87/04/14-MILLER, R.

ANSWER 5.07 (2.00) o.

Less Negative (0.50).

As voids decrease, the amount of moderator in the core increases; therefore, the neutrons are therealized faster (the slowing down length is shorter) thus reducing susceptibility to resonance capture.

(0.50) b.

More Negative (0.50).

Over core life Pu-240 builds up in the core.

Pu-240 has a large resonance capture region so more neutrons are removed by resonance capture.

(0.50)

REFERENCE BRP QUESTION BANK QUESTION 7 OF SEC 5.

GE BWR ACADEMICS ON REACTOR THEORY.

292OO4K107 292OO4K109

...(KA*S)

ANSWER 5.08 (1.50)

CR1(1 - Keff1) = CR2(1 - Keff2)

(0.50)

= (1 - Keff2)

CR1/CR2(1 - Keff1)

(1 - Keff2)

(0.50) 100/270(1

.95)

=

.0185 = (1 - Kaff2)

Kaff2 = 0.9815

(+/-.002)

(0.50)

REFERENCE GE BWR ACADENIC SERIES ON REACTOR THEORY CHAPTER 3.

292OO3K101

...(KA*S) f ANSWER 5.09 (1.00) l c.

REFERENCE GE BWR ACADEMIC SERIES ON REACTOR THEORY CHAPTER 7.

292OO6K108

...(KA*S) i i

l Da.__ItfEQBY_QE_NWGLE88_EQWEB_EL8HI_QEEBeIlDh_ELUIRL._eHQ PAGE 28 ItfEBUQEYN8t! IGE ANSWERS -- BIS ROCK POINT

-87/04/14-MILLER, R.

ANSWER 5.10 (1.00) i c.

TRUE b.

FALSE (0.50 ea.)

REFERENCE j

GE BWR ACADEMIC SERIES ON REACTOR THEi.lRY CHAPTER 7.

292006K103 292006K107

...(KA'S) t ANSWER 5.11 (1.50) c.'1. Convert pressure to psia:

(0.25) 885 + 14.7 = 900 psia and 485 + 14.7 = 500 psia g

2. Obtain corresponding temperatures from steam tables:

(1.00) 900 psia -> 532 F and 500 psia -> 467 F

3. Determine temperature changes (0.25) 532-467 = 65 F in one half hour (or 130 dog F/hr cooldown rate)

REFERENCE Saturatud Steam Tables.

i 29200BK114

...(KA*S) l ANSWER 5.12 (2.50)

c. The delayed neutron fraction is the percentage of fission neutrons that are born delayed.

(1.00)

b. U-238 (0.50)
c. 6o214fTA (0.50)

J._.._.,

As Pu-239 increases, and U-235 (f uel) decreases or burns out the core average Beta will decrease due to Pu-239's Beta being so much smaller resulting in a shorter period (0.50).

CT = Beta /(Lambda e Rho) + Rho]

g REFERENCE GE BWR ACADEMIC SERIES ON REACTOR THEORY CHAPTER 3.

292003K104 292003K106

...(KA*S)

{

  • Es.__ItfEQBY_QE_tMM88_EQEB_tNetfI_QEEB8I1ONa_ELU1GEa_8tIQ PAGE 29 ItfEBUQQYN851GE ANSWERS -- BIS ROCK POINT

-87/04/14-MILLER, R.

ANSWER 5.13 (1.50) o.

The thermal time constant is the time required for the cladding temperature to change due to an instantaneous change in the fuel temperature.

(0.50)

-OR-The time required for the clad t v erature to reach 63% of the increase / decrease resulting from an instantaneous change in fuel temperature.

b.

Void - Increase (0.33)

Doppler - No affoct (O.33)

The fuel temperature increase results in an immediate addition of reactivity for a power / fuel temperature change while the time lag for the energy transfer to the moderator delays the production of more voids.

(0.34) i REFERENCE GE BWR ACADEMIC SERIES ON REACTOR THEORY PG 9-42, -43, AND -44.

1 292009K129 293009K130

...(KA*S)

ANSWER 5.14 (1.00) o.

The phenomena where the heat transfer coefficient / delta T deviates from i

a straight-line function.

-OR-f The point at which nucleate boiling ceases and transition (or film) l boiling occurs.

b.

CRITICAL BUNDLE POWER / ACTUAL BUNDL POWER (0.50)

-OR-The ratio of bundle power required to produce DNB (onset of transition boiling), somewhere in the bundle, to actual bundle power.

REFERENCE GE BWR ACADEMICS ON REACTOR THEORY PG 9-33 BRP LP # BRT-08 (BOILING HEAT TRANSFER) PG 5.

293009K118

...(KA'S)

O

  • Es__ItfEQBY_DE_NWGLE88_EQtfEB_t19NI_QEEB8I1ONs_ELUIDBa_9ND PAGE 30 ItfEBUQDYN051GH ANSWERS -- BIS ROCK POINT

-87/04/14-MILLER, R.

ANSWER 5.15 (3.00)

c. Decreases (0.50).

There is less steam flow, therefore, less pressure drop through the main steam lines (0.50).

b.

Increases (0.50).

With the same.ieount of cooling water through the condenser and less of a heat load condensate depression will increase (0.50).

c. Decreases (0.50).

Less extraction steam from the turbine to heat the feedwater (0.50).

REFERENCE GE BWR ACADEMIC SERIES ON HTFF CHAPTER 5 AND 6.

241000K504 245000A106 245000K105

...(KA*8) l l

l.

l

[

~.

.h__t18NI_gygIgt!g_DESIgh_GQtlIBh_8NQ_ItlgISytjgNIBIIQtl PAGE 31 ANSWERS - BIG ROCK POINT

-B'//04/14-MILLER, R.

ANSWER 6.01

(.75) c.

3.

b.

4.

c.

4.

(0.25 ea.)

REFERENCE BRP SDM PG 31-2, -4, and -6.

215003K501 215004K501

...(KA*S)

ANSWER 6.02 (1.50)

SETPOINT COINCIDENCE c.

50

(+ or - 5) psi above reactor 1 out of 2 operating pressure b.

5/16

(+ or - 1/2) inch below tank 1 out of 2 centerline c.

52

(+ or - 20) volts 1 out of 1 (NOTE:

Nominal reactor pressure = 1335 psig)

(0.25 ea. setpoint, 0.25 ea. coincidence)

REFERENCE BRP TECHNICAL SPECIFICATIONS PG. 51, 52, AND 53.

212OOOK502

...(KA'S)

ANSWER 6.03 (1.00)

False (0.50) l Depressing the manual scram switch also deenergizes the two RPS bus undervoltage relays.

(DR Deenergizes both RPS busses.)

(0.50)

REFERENCE BRP SDM PG 1-12.

212OOOK402 212OOOK407 212000401

...(KA*S) 1 s

.fu.__t10NI_BYSI t _E f5 DEH10Hz GQNIB9L:2_950_INEIBut!Et!IGIIDt!

PAGE 32 ANSWERS -- BIG ROCK POINT

-87/04/14-ftILLER, R.

ANSWER 6.04 (3.50) c.

1.

Bus 1A 2.

Bus 2A 3.

Emergency Diesel Generator (on loss of off site power)

SW8 (any 2, 0.50 ea. )E' w m T>a:. sal 6 m & WA'** Q ED 4.

3 b.

1.

Fire hdador low pressure, 70 psig 2.

Steam drue low level,

-17" below centerline (0.50 per signal, 0.25 per setpoint) c.

1.

RDS panel in the control room 2,

Local control panel in screenhouse 3.

Mechanical lever on local panel (a

2, 0.50 ea.)

g4Q

,s.aluta p tw~f w l" 26-3.)

REFERENCE BRP SDM PG 26-2, 286000KA9 286000K202 206000K402

...(KA*S)

ANSWER 6.05 (2.00) c.

1.

The turbine generator is separated from the line 2.

Control is transfer ed from the initial pressure re ulator to the speed governor or IFR t g 3or 44wM Qwgp) 3.

The governor outer bushing is repositioned to the value of house loads (repositioned to a setpoint approximately equal to house loads)

4. 3 p (0.50 ea.,

any 2) v'aja.t pw b.

The generator line breaker is fitted with an automatic device to reclose the breaker after a few cycles (0.50) and a time delay is installed to prevent control transfer under this circumstance I

(0.50) l REFERENCE BRP SDM PG 13-46.

245000K409

...(KA*S)

ANSWER 6.06 (1.00)

C.

s

(b.__L%8NI_SIBIEtjf_ DEB 10Nz_GQNIBQLa_8NQ_lNEIByt!ENIGI19N PAGE 33 ANStGERS - BIG ROCK POINT

-87/04/14-MILLER, R.

REFERENCE BRP SDM PG 36-8 AND 36-9.

207000KA9

...(KA'S)

Cnuouuel;,

Su Mo (1.00 ANSWER 6.07 s

False (0.50) fThe motor ' starter cont-ol switch for the MSIV has only close and pull-to-stop oositions)

Control must be transferred back to tne control room (0.25) and the control room hand switch must be used (placed to open position) (0.25)

REFERENCE BRP SDM PG 36-9.

239001KA9

...(KA*S)

ANSWER 6.08 (1.50)

1. suction valve must be open

'O.50)

2. discharge valve must be closed (0.50)
3. discharge bypass valve must be open (0.50)

REFERENCE BRP Question Bank, Sec. 3, #81 202OO1K410

...(KA*S)

ANSWER 6.09 (1.50) c.

Reactor period of < OR = +15 seconds (0.50) j b.

Two of the three remote range switches (0.25) associated with the l

power range instrumentation (0.25) are in the 4% full scale position l

(O.25) or higher (O.25).

I i

REFERENCE i

BRP BDM PG 31-4 and 31-5.

215003A106 215003K402

...(KA*S) l l

ins.__L%8NI_HYSIEt!E_DESIGNi_GQNIBQLx_MD_INSIBut!KNIGI1QN PAGE 34 ANSWERS -- BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 6.10 (1.00) 1.

Directly into the bottom of the RPV 2.

To the suction of both recirculation pumps (0.50 ea.)

REFERENCE BRP SDM PG 4-3.

211000K105

...(KA*S)

ANSWER 6.11 (1.00) d.

REFERENCE BRP SDM CHAPTER 18 AND SOP 18 PG 2.

218000A402 218000K501

...(KA*S)

ANSWER 6.12 (2.50) a.

1.

Main steam isolation valve (MO7050) 2.

Main steam bypass isolation valve (MO7067) 3.

Clean-up domineralizer isolation valves (CV4091, 4092, 4093) 4.

Reactor and fuel pit drain isolation valves (CV-4027, 4102) 5.

Reactor enclosure clean sump isolation valves (CV-4031, 4103)

T& A u.4 iao).oxe-vab>< 4 & Lc V-4049), 4103)

Reactor enclosure dirty sump isolatiop valves (CV-4025 6.

l r).

(0.25 ea., valve numbers not required) b.

1.

Loss of auxiliary power supply 2.

High enclosure pressure (0.50 ea.)

REFERENCE BRP SDM CHAPTER 18 AND SOP 18 PG 2.

223OO1K101 223OO1K403

...(KA*S) w----

,,--,-,-w-gg,,,-,,,-,vg-g, ev-n---- - - -,,,

,-,-,--+,-,,_gw-w----,,---,r-, - - - - -

,-m ao-,r,-

,,-en-e-

~,

. 61.__P(ANT _gY__Igt!g_QgSigN. CQNTRQ62_A_t!Q_INSIRQtgNTATIQN PAGE 35 S

ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 6.13 (1.25) c.

1000 to 1500 psig [+ or - 100 psig3 (0.25 per pressure) b.

15 psig above turbine inlet pressure C+ or - 5 psig3 (0.25) c.

Normal - #1 RPS MG set (RPS Bus 1)

(0.25)

Alternate - #2 RPS MG set (RPS Na 2)

(0.25)

REFERENCE BRP QUESTION BANK DUESTION 19 OF SECTION 2, 3, AND 6.

239001K127 241000K106 241000K419

...(KA*S)

ANSWER 6.14 (1.50) c.

1 b.

2 c.

1 d.

2 c.

2 f- /M (0.25 ea.)

REFERENCE BRP SDM PG 26-5, AND 26-11.

286000KA7 286000K402

...(KA*S) 1 4

e.

,,w-,

..r--

~,,., -,,,, -. -, - - - - -, - - -, - - -, - - -

a~-, - -..,,,.

4a.__t10N1_EYSIENE_DEE10N4_GQNIBQLa_0ND_INEIBut!ENIBIIQH PAGE 36 ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 6.15 (3.25) c.

(a) 4 (b) 5 (c) 3 (0.25 ea.)

b.

1.

Remains as is, since it is dasigned to lock up on a loss of air (or to aid in mai-taining vessel coolant inventory) 2.

Open, fail safe position to ensure a scram.

3.

Closed, fail safe position to ensure isolation of primary coolant.

4.

Closed, to allow manual feeding through the feed regulating valve (the bypass valve has no manual positioning capability).

5.

Open, fails open to provide a method of reactor cooling.

(0.25 per position and 0.25 per explanation)

REFERENCE BRP SDM PG 27-A,

-6, AND -9 ONP 2.2 PG 1 AND LP PG 5-5.

201001K109 207000K110 212OOOK115 259001K601

...(KA*S)

AN3WER 6.16

(.75) 1.

Overspeed 2.

High water. jacket temperature 3.

Low lube oil pressure 4.

Out of fuel (0.25 ea., any 3)

REFERENCE BRP ALP 1.12 PG 2 AND 3.

264000K401 264000K402

...(KA*S) 1 1

I

Z:.__EB9GERLA?EE_- NQRth_8gt!gRWh_Et!EBGENGY_9tlE PAGE 37 bed 1 % QQ1G86_GQtfIB A ANSWERS -- BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 7.01

(.50) o.

33

(+ or - 3%)

b.

50

(+ nr - 5%)

(0.25 ea.)

REFERENCE BRP DNP 2.27.

202OO1A204 202OO1A203

...(KA'S)

ANSWER 7.02 (1.00)

In the ON position, the stack gas sample switch prevents the system automatic switch to the high range.

REFERENCE D.'4P SOP 34 PG 7.

271000KA10

...(KA*S)

ANSWER 7.03 (2.50) o.

Not less than 30 seconds b.

Less than 150 degrees F c.

12 d.

-Not to exceed 15 MWt o.

1 MWe/ein (0.30 ea.)

REFERENCE A.

BRP GOP 1.O PG 5 AND GOP 5.O PG 3 D.

BRP GOP 1.O PG 5 C.

BRP GOP 5.O PG 3 D.

BRP 5.O PG 2 E.

BRP 6.O PG 2 223OO1KA5 212OOOKA5

...(KA*S) i

+,e-,

,,._._n_.,-.

-...,e,,._,-e.,,,,.

Z,.__EBDGEDUBES_:_NDBth_8B!NBt!862_E!!EBGENEY_8HD PAGE 38 B8DIDLQ01G86_GONIBDL ANSWERS - BIG ROCK POINT

-97/04/14-MILLER, R.

ANSWER 7.04 (1.50) c.

To minimize the possibility of the scram valves failing to close (0.50) when the scram dump tank vent and drain valves open upon resetting of the RPS scram.

(0.50) b.

Deenergize the Yarway Temperaturr* Control circuit (by opening supply breaker on 2B Bus)

(0.50)

REFERENCE CRP GOP 4.O PG 2.

216000KA10 216000A211 212OOOKA10

...(KA'S)

ANSWER 7.05 (1.00)

To prevent any chance of overpressurizing the primary system (also accept, the condenser outlet valves will not auto open on high reactor pressure when control is transferred to the ASB)

REFERENCE BRP EMP 3.10 207000KA10

...(KA'S) l l

ANSWER 7.06 (2.00) c.

Plant exhaust fans (0.50) l b.

1.

Sc.am the reactor 2.

Initiate emergency condenser 3.

Close MSIV (0.50 ea)

REFERENCE BRP EMP 3.9 PG 2.

295036KA10

...(KA'S)

ANSWER 7.07 (1.00) c.

REFERENCE

(

BRP EMP 3.3 PG 3.

223OO1K110

...(KA'S) l i

-. _, _. _ _ _. - ~. _ - - _. _ _ -,,,. _ _ _ _ _, - - - _. _ _

7.

PRQQEQWRgg_ _NQBU&a_6BHQBU &a_EMESQENQY_6NQ PAGE 39 BeDIE QGIG&_GQWIBE ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

i

~

ANSWER 7.08 (1.50) c.

Will (0.50) b.

5 (1.00)

REFERENCE BRP EMP 3.3 PG 2 AND B.

216000A210

...(KA*S)

ANSWER 7.09 (1.00) b.

REFERENCE BRP EMP 3.2 PG 2.

215004KA14

...(KA'S)

ANSWER 7.10 (1.50) c.

False (0.50)

DC power is required to close the 2.4 KV ACB to power the RFP. (0.50) b.

True (0.50)

REFERENCE BRP EMP 3.1.

259001K612 245000K409

...(KA'S)

ANSWER 7.11 (1.50) 1.

Monitor turbine bypass valve and/or the emergency condenser for proper operation 2.

Reduce BPV setting to 1235 psig 3.

Reduce reactor power to 200,000 lb/hr steam flow (if reactor has not serammed) 4.

If reactor scrams, perform the scram procedure (ONP 2.31) concurrently.

(0.50 ea., any 3)

REFERENCE BRP DNP 2.14 PG 1 AND 2.

245000KA14

...(KA*S) l L

-Z.

EBQGEDWBES - NgBueL,_egNgene L_gegBggtcy_ egg PAGE 40 BeDIEQGIG8L_GQtfIBA ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 7.12 (1.50) o.

So that compliance with rod withdrawal procedures can be verified.

(0.50) b.

1.

False 2.

False (0.50 ea.)

REFEFENCE DRP DNP 7c6 PG 1.

201002KA4 201002KA10

...(KA*S)

Al49WER 7.13 (1.00)

To allow the engine starter to cool.

REFERENCE BRP ALP 1.12 AND ONP 2.14 PG 1.

264000KA10

...(KA*B)

ANSWER 7.14 (1.50) l 1.

Trip one reactor recirculation pump (to lower reactor power and water demand) 2.

Rastart the condensate pump 3.

Restart one RFP (0.50 ea)

REFERENCE BRP DNP 2.3 PG 2.

256000KA14

...(KA*S)

I t

' 7.

PRCCEDURES - NQRtjAL3_AgNQR!jA(2_gt*[RggNQy_AND PAGE 41 BAD 1%QU1 gel _GQtf1BE ANSWERS -- BIG ROCK POINT

-97/04/14-MILLER, R.

ANSWER 7.15 (3.50) c.

1.

Anytime the control operator believes it is necessary to maintain the plant in a safe condition.

2.

Anytime reactor subcriticalfty cannot be assured, due to failure of normal shutdown mechanisms, 3.

Anytime reactor pressure is nreater than 1360 psig and not decreasing.

(any 2, 0.50 ea.)

b.

1.

Inadvertent Anytime /immediately 2.

Intentional:

DNLY after ALL the poison has been injected.

(0.50 ea.)

c.

1.

Stop the cleanup system flow 2.

Actuate the liquid poison system by simultaneously operating the injection hand switches (HS 7008 and HS 700?)

3.

Non'. tor nuclear instrumentation f or power decrease (0.50 ea.)

REFERENCE BRP SDP 4.O SEC 2.2, DNP 2.21, EMP 3.5.

211000KA14 211000KA13

...(KA*S)

ANSWER 7.16 (1.00) c.

REFERENCE ONP 2.28 PG 5.

REFERENCE 271000KA14

...(KA*S) i

. Z,.__EB9CEDWBER_ _NQBMBLa_eBNQBt!eL2_ENEBGENCY_0ND PAGE 42 1

B8DIAQQ1G86_GQNIBA ANSWERS -- BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 7.17 (1.50) 1.

Out of core instrun.entation decay.

2.

Scram valves open.

3.

Dump t 4.nk i solation valves e close 1.

Al' c c.r 1. r o ! t oda tot t u i nserted as i.ndicated by 00 (or green bull) 5 Ven; 1

  • at i on system e>'haust and supply valves

.ose.

6.

Turbi.me trip.

7, 116 OCB opens.

O.

Second rod drive pump ni. is.

(any 6,

,.25 mm.)

REFERENCE BRP Ott 2.31.

'42OOOKA15 212OOOKA14 201001A204

...(KA*S) 4%

. Bi__BDUINIBIB8I1Yg_PBQQEQ('Bgga_GQNQ1I.IQUE,_9NQ_LIMIIGIlQUE PAGE 43

" ANSWERS -- BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 8.01 (1.50) 1.

Whola body:

1.25 rem 2.

Skin of the whole body 7.5 rum 3.

Extremities:

18.75 rem (0.50 ea.)

REFERENCE 10 CFR 20.101(A) AND QUESTION BANK DUESTION 7 OF BEC 4 ts 7.

294001K103

...(KA*S)

ANSWER 8.02 (1.00) c.

REFERENCE BRP QUESTION BANK NO. 77 0F SEC 4 AND 7.

294000K103

...(KA*S)

ANSWER 8.03 (2.00)

Power escalation limits:

133.5~

120 to t99 MWt (0.25):

less than or equal to 47 MWt/hr (0.50)

.tSO-to 240 MWt (0.25):

less than or equ;l to # MWt/hr (0.50) ll.1 o33.5

,, y z MWt / 47 MWt/hr =1.4428 hr or m /7,2 mE

[f 33,5.neer - 120)

(240

.sem MWt /#M'dt/hr = ?. = ;.,

445.7 nin n (,Sf t, Ae or / 3ff,6 b.

13f,5~

4,7

(-O,

+0.1 hr, +6 min) g//-

ein = 53t:5~'mi n

,JHr:1T~ min + W(s hr)

(-O, +0.2 hr, +12 min) n. Z.-

  1. 354

/57t,,(

22,9 CNotes if minimum time is less than thee above calculated then the power escalation limitations are exceeded!3 REFERENCE Rev '7 /,

BRP GOP 1.0 AND TECHNICAL DATA BOOK 15.5. A.5,"O o ;.

290002K504 290002KA10

...(KA*S) j

-n- - -,.,.. - -

En.__89t!1NIBIB8I1YE_ESQGEQUBEHa_G9901110t&_eWQ_Lin1I8110NE PAes c4 ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER B. 04 (1.00) 1.

1 gpm unidentified l

2.

10 gpm total (0.50 ea.)

REFERENCE BRP TECH SPEC 4.1.2.C.

223000KA5

...(KA*S)

ANSWER 8.05 (2.00) c.

Shift Supervisor 1

Licensed Operators:

1 Non-licensed Operators (AO):

2 i

On Call Technical Advisor 1

(0.25 ea.)

b.

Shift crew may be one less than the minimum (0.33) for a maximum of 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> (0.34) in the event that any member of the minimum shif t crew is absent or incapacitated due to illness or in. jury.

(0.33)

REFERENCE I

BRP TECH SPEC TABLE 6.2-1 PG 106.

290002KA10 212000KA13 212000KA10

...(KA*S) l l

l l

l l

r

. E,___00dlN1HIB0I1YE_EBQGEDUBEEa_GQND1IlDNEi_eNQ_LitilIGIlQNE PAGE 45 ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER B.06 (3.00) c.

1.

26 2.

450 (0.25 ea.)

b.

1.

all 2.

fuel is in the reactor (0.25 ma.)

c.

1.

Plant Startup 2.

Scheduled Plant Shutdown 3.

Recovery from reactor trips (0.50 aa.)

d.

To ascertain that no anomalous reactivity conditions exist.

(0.50)

REFERENCE BRP SOP 1.0 PG 1, 4, AND 5.

290002KA10 212OOOKA13 212OOOKA10

...(KA*S)

ANSWER B.07 (1.00) c.

BRP TECH SPEC DEFINITIONS PG 2A.

REFERENCE 272OOOKA1 272OOOKA12 272OOOA402 272OOOA401

...(KA*S)

ANSWER B.08 (1.00) c.

REFERENCE BRP TECH SPEC PG 113.

295009KA3 295007KA3

...(KA*S)

. - =..

Ba__8901NIBIB8IIME_EBDGEDUBEE4_GOND1IIDNE4_8HD_L151IGIIDNE PAGE 46 ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER 8.09 (1.00) 4 d.

REFERENCE BRP TECH SPEC 3.1.5 PG 136 AND 137 AND P & ID S009.

REFERENCE 218000KA5

...(KA*S)

ANSWER 8.10 (1.50) 1.

Emergency conditions as defined in Volume 9A 2.

Reportable occurrences as defined by Technical Specifications 3.

Events have occurred which are considered potentially reportable to the IWtC.

4.

Intended deviation from approved procedures related to nuclear safety.

5.

Abnormal condition of equipment that could jeopardize the facility's capacity to continue operation.

6.

Inspections by regulatory agencies (NRC, MIDSHA, state inspectors, etc.)

7.

Problems related to other departments when attempts to contact j

the appropriate supervisor have failed.

8.

Accidents or serious employee injury occurring on site, including reportable overexposure to radioactivity.

9.

Problems with outside contractors.

10.

Upon initiation of the Site Emergency Plan.

l (any 6, 0.25 ea.)

REFERENCE BRP ADMIN PROCEDURE 2.0 PG 16.

294001A116

...(KA*S)

ANSWER 8.11 (1.00)

I b.

t REFERENCE BRP ADMIN PROCEDURE 2.1.1 PG 2.

I REFERENCE 290002KA10

...(KA*S)

--,----.-----.-r,-,,

-,--n--

,. - - -- - - - --.-nn,-

e,-,-,._.-,m

.,w--

,,,,_,,,-w,,-,,-,,-,,n_,,,see,,-----

-m

=.

E,.__eDt!1NIRIBOI1YE_EBQGEDUBEHi_GQND1Il0Naa_8HD_ Lit!1IGIlDNE PAGE 47 ANSWERS -- BIG ROCK POINT

-87/04/14-MILLER, R.

ANSWER B.12

(.75) c.

5 b.

2 c.

safe shutdown (0.25 ea.)

REFERENCE BRP ADMIN PROCEDURE 2.1.1 PG 2.

294001K116

...(KA'S)

ANSWER B.13 (2.00) c.

75 rem b.

No limit c.

25 rem d.

125 rem (0.50 ea.)

REFERENCE BRP EPIP 4A PG 5.

294001K103

...(KA'S)

ANSWER 8.14 (1.50) c.

Ad.jacent corridor outside of the Control Room (Assembly area I on the third floor) b.

Air compressor room off the machine shop (first floor) c.

Alert (,Also Acc. M T b d e )

d.

Alert BRP EPIP 3A, 3B, AND 3C AND EPIP 4A PG 2) \\[ol9A 3 f,.ble 2.j,3,i} k /

REFERENCE REFERENCE 294001A116

...(KA*S)

ANSWER 8.15 (1.25) c.

Yes (0.25), Continuous 2 minute blast (0.25) b.

Yes (0.25), Series of short blasts f or 30 seconds (0.25) c.

No (0.25)

(PA announcement only - not required)

E.

8Dt!1NISIBeII_VE_EBDGEDUBEEm_GOND1IIDNE2_8HD_L15110IIDNE PAGE 48 ANSWERS - BIG ROCK POINT

-87/04/14-MILLER, R.

REFERENCE BRP EPIP 4.0 PG 4B-1 AND EPIP 4A PG 4.

294001A116

...(KA'S)

ANSWER B.16 (1.00) c.

REFERENCE BRP EPIP 6F PG 2 AND EPIP 4A PG 1.

294001A116

...(KA*S)

ANSWER 8.17 (1.50) 1.

Review the Control Room Log Book 2.

Review the Reactor Log Book 3.

Review any special operating procedures in progress.

4.

Passes on significant plans to Control Operators (any 3, 0.50 ea.)

~

REFERENCE BRP ADMIN PROCEDURE 2.1.1 PG 8.

294001A106

...(KA*S)

ANSWER S.18 (1.00) 1.

Control Room 2.

Shift Supervisor's office CAS i

OSC (or Air Compressor room)

'J.

Plant Superintendent *s office 7#4 A

  1. fk O'/ A

/ &" 4'2 fer.+r N#* /

[ Alse act o p ere.kr #5 d 64 M A5

'f-WO h 8 'd d P S )

REFERENCE l

EPIP 3A PG 7 AND EPIP 3B PG 5.

294001A112 294001A110

...(KA'S)

I l

e L

4 ATTACINENTS

)

l, 4

I h

1

EQUATION SHEET o

f = ma v = s/t Cycle efficiency = (Met work out)/(Energy in) 2 w = og s = V,t + 1/2 at 2

E = mc A=Ae"*

KE = 1/2 av a=(Vf - V,)/t A = AN g

PE = agn Vf = V, + at w = e/t A = an2/t1/2 = 0.693/t1/2 1/2*ff*E(*1nII*b)3 2

t y., 3p.

n0 A=

[(tjjg) + (t )]

g d = 931 am a = V,yAo

~

I=IeO Q = g pat.

6 = UAaT' I = I,e~ "*

I = I,10~"/ M J

Pwr = W ah f

TVL = 1.3/u P = P 10 "'I*I HVL = -0.693/u 8

p = p e /I t

o SUR = 26.06/T SCR = S/(1 - K,ff)

CR,= S/(1 - K,ff,) '

CR (1 - K,ffj) = CR I ~ eff2)

SUR = 26s/a* + (s - o)T j

2 T = (1*/s) + ((s - o)/Is]

M = 1/(1 - K,ff) = CR /CR, j

T = s/(o - s)

M = (1 - K,ff,)/(1 - K,ffj)

T=(a-e)/(Is)

SDM = (1 - K,ff)/K,ff a = (K,ff-l)/K,ff = AK,ff/K,ff 1* = 10 seconds I = 0.1 seconds ~I e = ((**/(T K,ff)] + [a,ff (1 + IT)]

/

Ijj=Id d

2,2 2 P = (tov)/(3 x 1010)

Id gd j

22 2

I = eN R/hr = (0.5 CE)/d (meters)

R/hr = 6 CE/d2 (feet)

Water Parameters Miscellaneous Conversions 1 gal. = 8.345 10m.

1 curie = 3.7 x 1010dps 1 gal. = 3.78 liters 1 kg = 2.21 lba 3 Stu/hr 1 ft" = 7.48 gal.

1 hp = 2.54 x 10 Density = 62.4 lbg/ft3 1 mw = 3.41 x 106 5tu/hr 3

lin = 2.54 cm Density = 1 gm/ent Heat of vaporization = 970 3tu/lem

  • F = 9/5'C + 32 Heat of fusion = 144 Stu/lbm

'C = 5/9 (*F-32) 1 Atm = 14.7 psi = 29.9 in. Hg.

1 BTU = 778 ft-lbf I ft. H O = 0.4335 lbf/in.

2

o Table 1.

Saturated Steam: Temperature Table Abs Press.

Specific Volume Enthalpy Entropy Temp tb per Sat.

Sat.

Sat.

Sat.

Sat.

Sat.

Temp Fahr SqIn.

Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr i

t p

vg veg vg hg h fg hr sg sig sg t

32 8 0 08859 0 016022 3304.7 3304.7 0.0179 10755 10755 0.0000 2.1873 2.1873 32.0 2

34.8 0 09600 0 016021 3061.9 3061.9 1.996 1074.4 1076.4 0 0341 2.1762 2.1802-34 O i

36 0 0.10395 0.016020 2839 0 2839.0 4.008 1073.2 1077.2 0.0081 2.1651 2.1732 35.0 38 8 0.11249 0.016019 2634.1 2634.2 6.018 1072.1 1078.1 0.0122 2.1541 2.1663 38.8

]

48 I 1.12163 0 016019 2445.8 2445.8 8.027 1071.0 1079.0 0.0162 2.1432 2.1594 40.8 42 0 0.13143 0.016019 2272.4 2272.4 10 035 1069 8 1079.9 0.0202 2.1325 2.1527 42.0 44 0 0 14192 0.016019 2112.8 2112.8 12.041 10683 10803 0.0242 2.1217. 2.1459 44.8 46 8 0.15314 0.016020 19653 1965.7 14.047 1067.6 1081.6 0.0282 2.1111 2.1393 48.8 48 8 0.16514 0 016021 1830.0 1830.0 16.051 1066.4 1082.5 0.0321 2.1006 2.1327 48.0 50 0 0.177 %

0 016023 1704.8 1704.8 18.054 10653 1083.4 0.0361 2.0901 2.1262 50.0 52.8 019165 0.016024 1589.2 1589.2 20 057 10642 1084.2 0.0400 2.0798 2.1197 52.0 54 5 0.20625 0 016026 1482.4 1482.4 22.058 1063.1 1085.1 0.0439 2.0695 2.1134 54.0 56 5 0 22183 0 016028 1383.6 1383.6 24.059 1061.9 1086.0 0 0478 2.0593 2.1070 56.8 58 0 0.23843 0.016031 1292.2 1292.2 26 060 1060.8 1086.9 0.0516 2.0491 2.1008 58.0 g

$8.8 0.25611 0 016033 1207.6 1207.6 28.060 10591 1087.7 0.0555 2.0391 ' 2.0946 00.0 I

E2.0 0 27494 0 016036 1129.2 1129.2 30.059 1058.5 1088.6 0.0593 2.0291 2.0885 62.0 64 0 0 29497 0 016039 1056.5 1056 5 32.058 1057.4 10895 00632 2.0192 2.0824

$4.5 i

SE O 0 31626 0 016043 989.0 989.1 34.056 10563 1090.4 0 0670 2.0094 2.0764 SE.O l

58 8 0.33889 0 016046 926.5 926.5 36.054 1055.2 1091.2 0.0708 1.9996 2.0704 58 8 78 0 0 36292 0 016050 8683 868.4 38.052 1054.0 1092.1 0.0745 1.9900 2.0645 10.0 72 0 0 38844 0 016054 8143 8143 40.049 1052.9 1093.0 0.0783 1.9804 2.0587 72.0 74.5 0 41550 0 016058 764.1 764.1 42.046 1051.8 1093.8 0.0821 1.9708 2.0529 74.8 4

76 0 0 44420 0 016063 717.4 717.4 44.043 10501 10941 0.0858 1.9614 2.0472 75.0 78 I 0 41461 0.016067 673.8 673.9 46.040 1049.5 1095.6 0.0895 1.9520 2.9415 7I.0 10.8 0 50683 0.016072 6333 6333 48.037 1048.4 1096.4 0.0932 1.9426 2.0959 80.I i

82.8 0.54093 0.016077 595.5 595.5 50.033

.10473 10973 0.0969 1.9334 2.0303 82.0 84 8 0 57702 0 016082 560.3 560 3 52.029 1046.1 1098.2 0.1006 1.9242 2.0248 M.I i

SE E 0 61518 0 016087 227.5 527.5 54.026 1045 0 1099 0 0.1043 1.9151 2.0193 86.8 88 8 0 65551 0 016093 496 8 496.8 56.022 1043 9 1099.9 0.1079,1.9060 2.0139 88.0 4

l 90 8 0 69813 0 016099 468.1 468.1 58 018 10423

!!00.8 0.1115 1.8970 2.0086 90.8 92 8 034313 0 016105

.4413 441.3 60 014 1041.6 1101 6 0.1152 1.8881 2.0033 92.0 94 8 0 79062 0 016111 4163 4163 62.010 1040.5

!!02 5 0.1188 1.8792 1.9980 94 0 SE O O84012 0 016117 392 8 392.9 64.006 1039.3 1103.3 0 1224 I.8704 1.9928 96 8 98 0 0 89356 0 016123 370.9 370.9 66 003 10382 1104 2 0 1260 1.8617 1.9876 98 0

Abs Press.

Specific Volume Enthalpy Entropy Temp Lbper Sat.

Sat.

Sat.

Sat.

Sat.

Sat.

Temp Fahr SqIn.

Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr t

p v,

vrg vg hg h ig h

s, sig s

t g

g les 8 0.94924 0 016130 350.4 350.4 67.999 1037.1 1105.1 0.1295 1.8530 1.9825 1918 102 3 100789 0.016137 331.1 331.1 69 995 1035.9 1105.9 0.1331 13444 1.9775 102.0 IM 8 1 06 % 5 0 016144 313.1 313.1 71.992 1034.8 1106.8 0.1366 12358 1.9725 100.0 185 0 1.1347 0 016151 296.16 296.18 73.99 1033 6

!!07.6 0.1402 12273 1.9675 IISA

' ISE I 1.2030 0 016158 280.28 28030 75 98 10325 1108.5 0.1437 1.8188 1.9626 198A 110 8 1.2750 0 016165 265J7 26539 77.98 1031.4 11093 0.1472 1.8105 1.9577 litt 1128 13505 0 016113 25137 25138 79.98 1030.2 1110.2 0.1507 1.8021 1.9528 112.0 184 8 1.4299 0 016180 238 21 23822 81.97 1029.1 1111.0 0.1542 1.7938 1.9480 114A 115 8 1.5133 0 016188 225 84 225.85 83.97 1027.9

!!!!.9 0 1577 11856 1.9433 IISA 111 8 1.6009 0 0161 %

214.20 21421 85.97 1026.8 1112.7 0.1611 1.7774 1.9386 110.0 120 8 1.6927 0 016204 203.25 203.26 87.97 1025.6 1113.6 0.1646 1.7693 1.9339 1210 122.5 1.7891 0 016213 192.94 192.95 89.96 1024.5 1114.4 0.1680 11613 ' l.9293 122.0 1248 1.8901 0 016221 183.23 18324 91.96 10233 11153 0.1715 11533 1.9247 1240 12E I 1.9959 0 016229 174.08 174.09 93.%

1022.2 1116.1 0.7749 1.7453 1.9202 128.0 1288 2 1068 0 016238 165.45 165.47 95.96 1021.0 1117.0 0.1783 11374 1.9157 1210 130 0 2.2230 0 016247 15732 15733 97.96 1019.8 1117.8 0.1817 11295 1.9112 1318 1328 2.3445 0 016256 149.64 149.66 99 95 10183 Il18.6 0.1851 13217 1.9068 132.0 1348 2.4717 0 016265 142.40 142.41 101.95 1017.5 1119.5 0.1884 13140 1.9024 134.0 1

13E I 2.6047 0 016274 13555 13557 103.95 1016.4 1120 3 0.1918 IJ063 1.8980 13EA 138 8 2.7438 0 016284 129.09 129.11 105.95 1015.2 1121.1 0.1951 1.6986 1A937 130.0 140 8 2.8892 0 016293 122.98 123.00 107.95 1014.0 1122.0 0.1985 1.6910 1.8495 140.0 1428 3 0411 0 016303 117.21 117.22 109.95 1012.9 1122.8 0.2018 1.6534 12852 142.0 1448 3.1997 0 016312 11134 111.76 111.95 1011.7 1123.6 0.2051 1.6759 1.8810 144.0 146 8 3 3653 0 016322 106.58 10659 113.95 1010.5

!!24.5 02084 1.6684 1.8769 148A 148 8 3.5381 0 016332 101.68 101.70 115.95 1009.3 1125.3 0.2117 1.6610 1.8727 140 0 150 I 3 7184 0.016343 97.05 97.07 117.95 1008.2 1126.1 0.2150 1.6536 1.0606 ISES 152 8 3.9065 0 016353 92.66 92.68 119.95 1007.0 1126.9 0.2183 1.6463 1.8646 152.0 154 8 4.1025 0 016363 88 50 8852 121.95 1005.8 11273 0.2216 1.6390 1.8606 154.0 155 I 4.3068 0 016374 8456 84.57 123.95 1004.6 1128.6 0.2248 1.6318 1.8566 156.0 158.I 4.5197 0 016384 80 82 80.83 125.96 1003.4 1129.4 0.2281 1.6245 1.8526 150.0 1

158 8 41414 0 0!6395 77.27 77.29 127.96 1002.2 1130.2 0.2313 1.6174 1A487 1910 152.8 4.9722 0 016406 73.90 73.92 129 96 1001.0 1131.0 0.2345 1.6103 1.8448 152.0 154 8 5 2124 0 016417 7010 7012 131.96 999.8 1131.8 0.2377 1.6032 1.8409 164.0 155 I 54623 0 016428 67.67 67.68 13397 998 6 1132.6 02409 1.5961 1.8371 158.0 135.97 997.4 1133.4 0.2441 1.5892 1.8333 168.0 158 8 51223 0 016440 6438 64.80 178 s 5 9926 0 016451 62.04 62.06 137.97 996.2 1134.2 0.2473 15822 1.8295 1710 172 8 6 2736 0 016463 5943 59.45 139.98 995.0 1135 0 0.2505 15753 1.8258 172A 114 8 6 5656 0 016474 56 95 56.97 141.98 <

993.8 1135.8 0.2537 1.5684 1.8221 174.0.

UE8 6 8690 0 016486 5459 54 61 143.99 992.6 1136.6 0.2568 1.5616 1.8184 1N.8 70 0 7.1840 0 016498 5235 52.36 199 991.4 1137.4 0 2600 15548 1.8147

"*0

4

l l

4 Abs Press.

Specific Volume Enthalpy Entropy Temp Lb per Sat.

Sat.

Sat.

Sat.

Sat.

Sat.

Tem Fahr Sqin.

Liquid Evap Vapor Liquid Evap Vapor Liquid Evan Vapor Fahr t

p v,

vig vg hg h,g h

s, sig sg i

g 180 0 7.5110 0.016510 50.21 50.22 148 00 990.2 1138.2 0.2631 1.5480 1.8111 100.0 1820 7.850 0 016522 40.172 18.189 150 01 989.0 1139 0 01662 1.5413 1.8075 182.8 r

les O 8.203 0 016534 46.232 46.249 152.01 987.8 1139.8 0.2694 1.5346 1.8040 104.0 185 8 8 568 0016547 44383 44.400 154 02 986.5 1140.5 0.2725 1.5279 1.8004 186.0 185 0 8 947 0.016559 42.621 42.638 156.03 985.3 11413 0.2756 1.5213 13969 100.0 J

ISO O 9340 0.016572 40.941 40.957 158.04.

984.1 1142.1 0.2787 1.5148 13934 190 0 i

192 8 9347 0 016585 39331 39354 160.05 982.8 1142.9 0 2818 1.5082 13900 192.0 l

194 I 10.168 0 016598 37.808 37.824 162.05 981.6 11433 0.2848 1.5017 11865 194.0 i

196 8 10 605 0.016611 36348 36364 164.06 900.4 1144.4 0.2879 1.4952 1J831 195.0 l

190 I 11.058 0 016624 34.954 34.970 166.08 979.1 1145.2 0.2910 1.4888 1.7798 190.0 J

200 O 11.526 0016637 33.622 33.639 168.09 977.9 1146.0 0.2940 1.4824 11764 200.0 284 8 12.512 0 016664 31.135 31.151 172.11 975.4 11475 0 3001 1.4697 1.7698 204 0 -

i 200 8 13.568 0.016691 28.862 28 878 176.14 972.8 1149 0 0 3061 1.4571 11632 200.0 212 O 14.6%

0.016719 26182 26199 180.17 970.3 1150.5 0 3121 1.4447 11568 212.0 l

J, 215.0 15.901 0.016747 24.878 24.894 18420 967.8 1152.0 0 3181 1.4323 13505 216.0 l

220.0 17.186 0.016775 23.131 23.148 188.23 965.2 1153.4 03241 1.4201 1.7442 220.0 224.0 18.556 0.016805 21.529 21.545 192.27 962.6 1154.9 03300 1.4001 13380 224.0 228 8 20.015 0016834 20.056 20.073 1% 31 960.0 11563 03359 13 % I 13320 228 8 232.0 21.567 0 016864 18301 18.718 20035 957.4 1157.8 03417 13842 13260 232.8 236 8 23.216 0.016895 17.454 17.471 HUS 954.8 1159.2 03476 1.3725 1.7201 235.0 l

1 240 0 24.968 0.016926 16.304 16.321 200.45 952.1 1160.6 03533 13609 13142 240.0 i

1 2448 26.826 0.016958 15.243 15.260 212.50 949.5 1162.0 03591 1.3494 13085 244 0 l

2488 28.796 0.016990 14.264 14.281 216.56 946.8 1163.4 03649 1J379 1.7028 2488 i

252.0 30.883 0.017022 13.358 13.375 220.62 944.1 11643 03706 13266 1.6972 252.0 1

256.0 33.091 0.017055 12.520 12.538

' 224.69 941.4 1166.1 03763 13154 1.6917.

255.0 2

l 280 8 35.427 0.017089 11345 11362 22836 938.6 1167.4 03819 13043 1.6862 200.0 i

254 0 37.894 0.017123 11.025 11.042 232.83 935.9 11683 0 3876 1.2933 1.6808 264.0 j

268 0 40.500 0.017157 10.358 10375 236.91 933.1 1170 0 0 3932 1.2823 1.6755 260 e i

272 8 43.249 0017193 9 738 9355 240 99 9303 11713 03987 1.2715 1.6702 272.0 f

1 216 0 46.147 0.017228 9.162 9.180 245.08 927.5 1172.5 0.4043 1.2607 I.6650 276 e i

200 8 49.200 0 017264 8.627 8.644 249.17 924.6 1173.8 0.4098 1.2501 1.6599 200.0 4

284 I 52.414 0.01730 8.1280 8.1453 253 3 9211 1175.0 0 4154 1.2395 1.6548 284.0 288 I 55 795 0 01734 7.6634 7.6807 257 4 918.8 1176.2 04208 1.2290 1.6498 200.0 2928 59 350 0 01738 7.2301 7 2475 261.5 915.9 1177.4 0.4263 1.2186 1.6449 292.0 265.6 913.0 1178.6 0 4317 1.20t2 1.6400 295.0 296 I 63.084 0.01741 6.8259 6.8433 i

1 4

1 i

I

\\

Abs Press.

Specific Volume Enthalpy Entropy Temp tb per Sat.

Sat.

Sat.

Sat.

Sat.

Sat.

Temp Fahr Sq in, tiquid Evap Vapor Lic vid Evap Vapor Liquid Evap Vapor Fahr

{

l t

p VI vtg V8

  1. f hig hg sg seg s

t e

}

3 ISO 67.005 0.01745 6.4483 6.4658 2693 910.0 1179.7 0.4372 1.1979 1.6351 300.0 1

384 0 71.119 0.01749 6.0955 6.1130 273.8 907.0

!!80.9 0.4426 1.1877 1.6303 304 0 l

, 308 O 75.433 001753 53655 5 7830 278.0 904.0 1182.0 0.4479 1.1776 1.6256 300.0 l

'312 0 79 953 0 01757 5.4566 5.4742 282.1 901.0 1183.1 0.4533 1.1676 1.6209 312.0 I

i 316.8 84 688 0.01761 5.1673 5.1849 2863 897.9 1184.1 0.4586 1.1576 1.6162 316.0 320 0 89 643 0.01766 4A961 4.9138 290.4 894.8 - 1185.2 0.4640 1.1477 1.6116 320A j

324.0 94 826 0 01770 4 6418 4 6595 294.6 891.6 1186.2 0.4692 1.1378 1.6071 324.0

+

320 8 100 245 00l??4 4.4030 4.4208 298.7 888.5 1187.2 0.4745 1.1280 1.6025 328.0 l

332 0 105 907 0.01779 4.1788 4.1966 302.9 885.3 1188.2 0.4798 1.1183 1.5981 332.0

{

335.8 111.820 0 01783 3.9681 3.9859 307.1 882.1 1189.1 0.4850 1.1086, 1.5936 336.8 300 0 117.992 0.01787 33699 33878 3113 878 8 1190.1 0.4902 1.0990 1.5892 340A 1

3448 124.430 0.01792 35834 3.6013 315.5 875.5 1191.0 0.49'4 1.0894 15849 344A 1

348I 131.142 0.01797 3.4018 3 4258 3193 8 72.2 1191.1 05006 1.0799 15806 348.0 i

i 3520 138.138 0.01801 3.2423 3.2603 323.9 868.9 11923 0.5058 1.0705 1.5763 352.0 l

355.0 145 424 0 01806 3.0063 3.1044 328.1 865.5 1193.6 0.5110 1.0611 1.5721 356A i

j 300 0 153.010 0.01811 2.9392 2.9573 3323 862.1 1194.4 0.5161 1.0517 1.5678 388.8 i

A 364 0 160 903 001816 2.8002 2.8184 336.5 858.6 1195.2 0.5212 1.0424 1.5637 354.0 l

l 358.0 169.113 0 01821 2.6691 2.6873 340 8 855.1 1195.9 0.5263 1.0332 1.5595 368.8 372.5 177.648 0.01826 23451 2.5633 345 0 851.6 IIS6 7 05314 1.0240 1.5554 372.0 376 8 186.517 0.01831 2.4279 2.4462 349 3 848.1 1197.4 0.5365 1.0148 1.5513 375.0 300.0 195329 0A1836 2.3170 23353 353 6 844.5 1190.0 0.5416 1.0057 1.5473 30s.8 l

304 0 205 294 001842 2.2120 2.2304 357.9 8408 11983 0.5466 0.9966 1.5432 304.0 300 0 215.220 0 01847 2.1126 2.1311 362.2 837.2 1199.3 0.5516 0.9876 1.5392 388.8 392.0 225 516 0.01853 2.0184 2.0369 366.5 833.4 1199.9 0.5567 0.9786 1.5352 392.0 l

395.8 236.193 0.01858 I.9291 1.9477 370 8 8293 1200.4 0.5617 0.9696. I.5313 396.0 400 0 247.259 0.01864 I.8444 1.8630 375.1 825.9 1201.0 0.5667 09607 1.5274 400.0 i

404 8 258325 0 0l870 13640 1.7827 37'J 4 822.0 1201.5 0.5717 0.9518 1.5234 404.0 l

400 0 270 600 R01875 1.6877 1.7064 383.8 818.2 1201.9 :

0.5766 0.9429 1.5195 400.5 4120 282 894 0 01881 1.6152 1.6340 388.1 814.2 1202.4 0.5816 0.9341 1.5157 412.0 l

416.8 295 617 0 01887 15463 1.5651 392.5 810.2 1202.8 0.5866 0.9253.1.5118 415.8 l

420 0 308380 0.01894 1.4808 1.4997 396.9 006.2 1203.1 0.5915 0.9165 1.5000 420.0 4240 322391 0 01900 1.4184 1.4374 4013 802.2 1203.5 0.5964 0.9077 1.5042 424I t

428.0 336.463 0 01906 13591 1.3782 4053 798.0 12033 0.6014 0.8990 1.5004 428.0 j

4320 351.00 0 01913 130266 132179 410.1 793.9 1204.0 0.6063 0.8903 1.4966 432.0 435 0 366.03 0.01919 1.24887 1.26806 4I46 789 3 1204.2 0.6112 0.8816, 1.4928 435.0 l

440 8 381.54 001926 1.19761 1.21687 419.0 785.4 1204.4 0.6161 0.8729 1.4890 440 0 -

l C4.6 397.56 0 01933 1.14874 1.16806 3.5 781.1 1204.6 0 6210 0 8643 1.4853 j

[

lt 414.09 0 01940 1.10212 1.1,21g 0

776 3 3

Og I.

15

Abs Press.

Specific Volume Enthalpy Entropy Temp tb per Sat.

Sat.

Sat.

Sat.

Sat.

Sat.

Temp Fahr SqIn.

Liquid Evan Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr-t p

v, veg vg he h eg h

s, sig s

t g

g A60.0 466.87 0.01961 0.97463 0.99424 441.5 763.2 1204.8 0.6405 0.8299 1.4704 400.0 464.0 485 56 0 01 % 9 0.93588 0.95557 446.1 758.6 1204.7 0.6454 0.8213 1.4667' 464A 468.0 504.83 0 01976 0.89885 0.91862 4503 754.0 1204.6 0.6502 0.8127 1.4629 468 0 472.8 524 67 001984 0 86345 0.88329 455.2 7493 1204.5 Q.6551 0 8042 1.4592 472.0 476.0 545.11 0.01992 0.82958 0.84950 459.9 744.5 1204J 0.6599 0.7956 1.4555 476.0 488.8 566.15 0.02000 039716 0.81717 464.5 739.6 1204.1 0.6648 03871 1.4518 48eA 484.0 587.81 0.02009 036613 0.78622 469.1 7343 1203.8 0.6696 03785 1.4481 484A -

408 8 610.10 0 02017 033641 035658 473.8 7293 1203.5 0.6745 03700 1.4444 480A 492.0 633 03 0.02026 030794 0.72820 478.5 724.6 1203.1 0.6793 01614 1.4407 492.0 496.8 656.61 0.02034 0.68065 030100 483.2 719.5 12021 0.6842 01528 1.4370 495.0 500 0 680.86 0.02043 0.65448 0.67492 487.9 7143 1202.2 0.6890 03443 1.4333 500.0 584.0 70538 0.02053 0.62938 064991 4923 709.0 12011 0.6939 01357 1.4296 504.0 508 I 731.40 0.02062 0.60530 0.62592 497.5 7033 1201.1 0.6987 03271 1.4258 500.0 y

512.0 757.72 0.02072 0.58218 0.60289 5023 698.2 1200.5 03036 03185 1.4221 5I2A 516.0 784.76 0.02081 0.55997 0.58079 507.1 692.7 1199,8 03085 03099 1.4183 515.0 4

520 0 812.53 0.02091 0.53864 0.55956 512.0

' 687.0 1199.0 01133 01013 1.4146 520A 524.5 841.04 0.02102 0.51814 0.53916 516.9 6813 1198.2 0.7182 0.6926 1.4108 524A 528 I 870.31 0.02112 0.49843 0.51955 521.8 675.5 1197.3 03231 0.6839 1.4070 528.8 532.0 90034 0 02123 0.47947 0.50070 526.8 669.6 1196.4 03280 0.6752 1.4032 532.0 53EJ 931.17 0.02134 0.46123 0.48257 5313 663.6 1195.4 01329 0.6665 1.3993 536.0 540.0

% 2.79 0.02146 0.44367 0.46513 536.8 657.5 11943 01378 0.6577 1.3954 540.0 541.8 6513 1193.1 03427 0.6489 13915 544.0 544.8 995.22 0.02157 0.42677 0.44834 548 8 1028.49 0 02169 0.41048 0.43217 546.9 645.0 1191.9 0.7476 0.6400 1.3876 540A 5523 1062.59 0 02182 039479 0.41660 552.0 638.5 1190.6 01525 0.6311 1.3837 552A 556 I 1097.55 0.02194 037966 0.40160 557.2 632.0 1189.2 0.7575 0.6222 1.3197 556.0 580.0 1133.38 0.02207 036507 038714 562.4 6253 1187.7 03625 0.6132 1.3757 550.0 554.0 1170.10 0.02221 0.35099 037320 567.6 618.5 1186.1 03674 0.6041 1.3716 554.8 568 0 120732 0 02235 033741 0.35975 572.9 611.5 1184.5 0.7725 0.5950 13675 568A.

572.0 1246.26 0.02249 032429 034678 5783 604.5 1182.7 0.7775 0.5859 13634 572.0 576 0 1285.74 0.02264 031162 0.33426 583.7 597.2 1180.9 01825 0.5766 13592 578.8 580.0 1326.17 0.02279 0.29937 0.32216 589.1 589.9 *1179.0 0.7876 0.5673 1.3550 500.0 584 8 13673 0 02295 0.28753 031048 594.6 582.4 1176.9 0.7927 ' 0 5580 1.3507 504.8 588.0 1410 0 0.02311 0.27608 029919 600.1 5743 1174.8 03978 0.5485 1.3464 588.8 592.0 1453 3 0.02328 0.26499 0.28827 6053 566.8 1172.6 0.8030 0.5390 1.3420 552.0 596I 1497.8 0.02345 0.25425 0.27770 611.4 558.8 1170.2 0.8082_ 0.5293 1.3375 596 0

i i

I l

Abs Press.

Specific Volume Enthalpy Entropy l

Temp tbper Sat.

Sat.

Sat.

. Sat.

Sat.

Sat.

Temp Fahr SqIn.

Liquid Evap Vapor Liquid Evap Vapor Liquid. Evap Vapor Fahr

{

t p

vg vig vg hl h gg h

sg sie s

t g

g l

', its I 1543 2 0.02364 0.24384 0.26747 617.1 550.6 1167.7 0.8134 0.5196 13330 III.0 i

604 I 1589 7 0 02382 0.23374 0.25757 622.9 542.2 1165.1-0.8187 0.5097 13284 804.0 EOSI 16373 0.02402 0.22394 0.24796 628.8 533.6 1162.4 0.8240 0.4997 13238 800.0 512.0 1686.1 0 02422 0.21442 0.23865 634.8 5241 1159.5 0.8294 0.4896 1.3190

$12.0 i

515.5 1735.9 0.02444 0.20516 0.22960 640.8 515.6 1156.4 0.8348 0.4794 13141 616.0 520 I 1786.9 0.02466 0.19615 0.22081 646.9 5063 1153.2 0.8403 0.4689 1.3092 620.0 824.8 1839 0 0 02489 0.18737 021226 653.1 4?6.6 1149.8 0.8458 0.4583 13041 624.5 -

E28.0 1892.4 0.02514 0.17880 0.20394 659.5 4863 1146.1 0.8514 0.4474 1.2988 620.0 1

632.0 1947.0 0.02539 0.17044 0.19583 665.9 476.4 1142.2 0.8571 0.4364 1.2934 532.0

{

53E I 2002.8 0.02566 0.16226 0.18792 672.4 4651 1138.1 0.8628 0.4251 1.2879 535.0 S40 0 2059.9 0.02595 0.15427 0.18021 679.1 454.6 11333 0.8686 0.4134 1.2321 600.0 l

544 0 21183 0.02625 0.14644 0.17269 685.9 443.1 1129.0 0.8746 0.4015 1.2761 644.0 l

648 8 2178.1 0.02657 0.13876 0.16534 692.9 431.1 1124.0 0.8806 03893 1.2699 548.0 552.I 2239.2 0.02691 0.13124 0.15816 700.0 4183 11181 0.8868 03767 1.2634 052.0

),,

555 0 23011 0.02728 0.12387 0.15115 707.4 4051 1113.1 0.8931 03637 1.2567 556.0

)

.co f

$50.0 23653 0.02768 0.11663 0.14431 714.9 392.1 1107.0 0.8995 03502 1.2498 000.0 564 8 2431.1 0.02811 0.10947 0.13757 722.9 3773 1100.6 0.9064 03361 1.2425 584.0

$68.8 2498.1 0.02858 0.10229 0.13087 731.5 362.1 1093.5 0.9137 03210 1.2347 650.0 572.0 2566.6 0 02911 0.09514 0.12424 740.2 3453 1085.9 0.9212- 03054 1.2266 672.0 t

l 575.I 2636.8 0.02970 0.08799 0.11769 749.2 328.5 1077.6 0.9287 0.2892 1.2179 576.0 1

set.0 2708.6 0.03037 0.00080 0.11117 758.5 310.1 1068.5 0.9365 0.2720 1.2006 800.0 I

E84.0 2782.1 0 03114 0.07349 0.10463 768.2 290.2 1058.4 0.9447 0.2537 1.1984 584.0 I

$48 8 2857.4 0.03204 0.06595 0.09799 778.8 268.2 1047.0 0.9535 0.233F 1.1872 508.0 E92.8 2934.5 0.03313 0.05797 0.09110 790.5 243.1 1033.6 0.9634 0,2110 1.1744 002.0 i

{~

$96.8 3013.4 0.03455 0.04916 0.08371 804.4 212.8 1017.2 0.9749 0.1841 1.1591 806.0 708.0 30943 0 03662 0.03857 0.07519 822.4 1723 995.2 09901 0.1490 1.1390 700.0 702.5 3135.5 0.03824 0.03173 0.06997 835.0 144 7 9793 1.% 06 0.1246 1.1252 702.0 7M.I 3177.2 0 04108 0.02192 0.06300 854.2 102.0 956.2 1.0169 0.0876 1.1046 704.0 705 8 31983 0 04427 0.01304 0.05730 873.0 61.4 934.4 1.0329 0.0527 1.0056 105.0 -

l 705.47*

3208.2 0 05078 0.00000 0.05078 906.0 0.0 906.0 1.0612 0.0000 1.0612 705.47*

i f

e hCritical temperature

[

M

~-&

.s Table 2: Saturated Steam: Pressure Table J

Specific Volume Enthalpy' Entropy Abs Press.

Temp Sat.

Sat.

Sat.

Sat.

Sat.

Sat.

Abs Press.

LIlSq In.

Fahr Liquid Evap Vapor Liquid

. Evap Vapor Liquid Evap Vapor LbISq In.

V V

h i hgg h

sg s gg sg p

p i

V I Ig g

g 800865 32.018 0.016022 3302.4 3302.4 0 0003 1075.5 1075.5 0.0000 2.1872 2.1872 081055 l

8 25 59.323 0.016032 1235.5 1235.5 27.382 1060.1 1087.4 0.0542 2.0425 2.0967 8.25 l

8 58 79.586 0 016071 641.5 641.5 47.623 1048.6 1096.3 0.0925 1.9446 2.0370 0.50 1.8 101.74 0 016136 333.59 333.60 69.73 1036.1 1105.8 0.1326 1.8455 1.9781 1.0 5.0 162.24 0.016107 73.515 73.532 130.20 1000.9 1131.1 0.2349 1.6094 1.8443 58 III 193.21 0 016592 38.404 38.420 161.26 982.1 11433 0.2836 1.5043 1.7879 10 0 14$9E 212.00 0 016719 26.782 26.799 180.17 9703 1150.5 0.3121 1.4447 1.7568 14.895 15.8 213.03 0 016726 26.274 26.290 18121 96S 1 1I50.9 0.3137 1.4415 1.7552 15.8 20 8 227.96 0.016834 20.070 20.087 19627 9601 11563 0.3358 13962 1.7320 N.0 38 8

-C4 0 017009 13.7266 13.7436 218.9 945.2 1164.1 0368' 13313 1.6995 30.8

~

. 48 8 N 7 Pi 0.017151 10.4794 10.4 % 5 236.1 933.6 1169 8 0 3921 1.2844 1.6765 48 8 58 8 WV 0 017274 8.4967 8.5140 250.2 923.9 1174.1 0.4112 1.2474 1.6586 50.0 58 8 0 017383 7.1562 7.1736 262.2 915.4 1177.6 0.4273 1.2167 1.6440 00 0 70 g NI 0.017482 6.1875 6.2050 272.7 907.8 1180 6 0.4411 1.1905 1.6316 70.0 80 I h9 0.017573 5.4536 5.4711 282.1 900.9 1183.1 0.4534 1.1675 1.6208 88.8 a

see Jeu a 0.017659 4.8779 4.8953 290.7 894.6 11833 0.4643 1.1470

-1.6113 90.0 198 5 327.82 0.017740 4.4133 4.4310 298.5 888.6 1187.2 0.4743 1.1284 1.6027 100.0 110.0 334.79 0 01782 4.0306 4.0484 305.8 883.1 1188.9 0.4834 1.1115 1.5950 118.0 128 8 341.27 0.01789 3.7097 3.7275 312.6 877.8 1190.4 0.4919 1.0960 1.5879 120.0 130 0 34733 0.01796 3.4364 3.4544 319.0 872.8 1191.7 0.4998 1.0815 1.5813 130.0 140 8 353.04 0.01803 3.2010 3.2190 325.0 868.0 1193.0 0.5071 1.0681 1.5752 148.8 150 0 358.43 0.01809 2.9958 3.0139 330.6 863.4 1194.1 0.5141.

1.0554 1.5695 150.0 150 3 363.55 0.01815 2.8155 2.8336 336.1 859 0 1195.1 0.5206 1.0435 1.5641 100.0 170.g 368.42 0 01821 2.6556 2.6738

' 341.2 854.8 1196.0 0.5269 1.0322 1.5591 178.0 13e 3 313.08 0.01827 2.5129 2.5312 346.2 850.7 1196.9 0 5328 1.0215 1.5543 100 0 198.8 377.53 0.01833 23847 2.4030 350.9 -

846.7 1197.6 0.5384 1.0113 1.5498 ISSO 290.0 381.80 0.01839 2.2689 2.2873 355.5 842.8 1198.3 0.5438 1.0016 1.5454 200.0 21s e 385.91 0.01844 2.16373 2.18217 359.9 839.1

!!99.0.

0 5490 0.9923 1.5413 218.0 22g 3 389.88 0 01850 2.06779 2.08629 364.2 8354 1199.6 0.5540 0.9834 1.5374 228.8 230 0 393.70 0 01855 1.97991 1.99846 368 3 831.8 1200.1 0.5588 0.9748 1.5336 230.8 240 8 39139 0 01860 1.89909 1.91769 3723 828.4 1200.6 0.5634 0.9665 1.5299 240 0 250 8 400.97 001865 1.82452 1.84317 376.1 825.0 1201.1 0.5679 0.9585 1.5264 250.0 260 g 404.44 001870 1.75548 1.774I8 379 9 821.6 1201.5 0.5722 0.9508 1.5230, 260 8 270 8 407.80 0 01875 1.69137 1.71013 383 6 8183 1201.9 0.5764 0 9433 1.5197 270 0 280 s 411 07 0 01880 1.63169 1.65049 387.1 815.1 1202.3 0 5805 0 9361 1.5166 2000 290.0 414.25 0.01885 1.57597 1.59482 390.6 812.0 1202.6 0.5844 0.9291 1.5135 290.8 j

300 8 41735 0 01889 1.52384 1.54274 394.0 808.9 1202.9 0.5882 0 9223 1.5105 300.0 35s s 431.73 0 01912 130642 1.32554 409 8 794.2 1204.0 0.6059 0 8909 1.4968 3500 naa Ma nn nn104 114167 1 160 %

474 2 780 4 1204.6 0.6217 0 8630 1.4847 400 0

l Specific Volume Enthalpy Entropy Abs Press.

Temp Sat.

Sat.

Sat.

Sat.

Sat..

Sat.

Abs Press.

l tblSq In.

Fahr Liquid Evap Vapor Li uid Evap Vapor Liquid Evap Vapor.

Lb/Sg in.

P t

V I ig g

i hgg h

s,'

s gg s

p V

v g

g i

450.0 45628 0.01954 1.01224 1.03179 437.3 767.5 1204.8 0.6360 0.8378 1.4738 450.0 580 8 467.01 0.01975 0.90787 0.92762 449.5 755.1 1204.7 0.6490 0.8148 1.4639 500.0 5500 476.94 0.01994 0.82183 0.84171 460.9 7433 1204.3 0.6611 03936 1.4547 550 0 i

500 8 486 20 0 02013 034 %2 0.76975 4713 732.0 12031 0.6723 03738 1.4461 sege 558 8 494 89 0 02032 0.68811 030843 481.9 720.9 1202.8 0.6828 03552 1.4381 658.8 i

708 I 503.08 0.02050 0.63505 0.65556 491.6 710.2 1201.8 0.6928 03377 1.4304 730.0

' 758 0 510.84 0 02069 0.58880 0 60949 500.9 699.8 1200.7 03022 01210 1.4232 150 0 i

800 0 518.21 0.02087 0.54809 0.568 %

509.8 689.6 1199.4 03111 03051 1.4163 000.3 1

85I 8 525.24 0 02105 0.51197 0.53302 518.4 679.5 1198.0 0.7197 0.6899 1.4096 850.0 900 0 531.95 0 02123 0.47968 0.50091 5263 6693 1196.4 03279 0 6753 1.4032 gas.g i

958 I 53839 0.02141 0.45064 0.47205 5343 660.0 11941 0.7358 0.6612 13970 350 0 180s O 544.58 0 02159 0.42436 0.44596 542.6 650.4 1192.9 01434 0.6476 IJ910 Iges.g i

1950 8 550 53 0.02177 0.40047 042224 550.1 640 9 1191.0 03507 0.6344 13851 letee i

11008 556.28 0.02195 037863 0 40058 557.5 631.5 1189.1 0.7578 0.6216.

13794 1900.0 11580 561.82 0 02214 035859 0 38073 564.8 622.7 1187.0 03647 0.6091 13738 II500 1200 8 567.19 0.02232 034013 036245 571.9 613.0 1184.8 0.7714 0.5%9 13683 1200.0 i

1258 8 572J8 0 02250 032306 034556 578.8 603.8 1182.6 03780 0.5850 13630 1250.8 13088 577.42 0 02269 0 30722 032991 585.6 594 6 1180.2 03843 0 5733 13577 130s.8 13500 58232 0 02288 0.29250 0 31537 592.3 585.4 1177.8 03906 0.5620 13525 13580 1400 0 587.07 0 02307 0.27871 030178 598.8 576.5 11753 03966 0.5507 13474 1480.0 14508 59130 0 02327 0.26584 0.28911 605 3 567.4 1172.8 0 8026 0.5397 13423 1450.0 i

1 150s 8 596.20 0.02346 0.25372 0 27119 6113 558.4 1170.1 0.8085 0.5288 13373 1500.0 o

15558 600.59 002366 0.24235 0.26601 618.0 549.4 1167.4 0.8142 0.5182 13324 1558.8 15000 604 87 0.02387 0.23159 0.25545 624.2 5403 1164.5 0.8199 05076 13274 1688 0 165D8 609.05 0.02407 0.22143 0.24551 630.4 531 3 1161.6 0.8254 0.4971 13225 1850.8 lies O 613.13 0.02428 0.21178 0.23607 636.5 522.2 1158.6 0.8309 0.4867 1.3176 lies.I

)

1750.8 617.12 0.02450 0.20263 0.22713 642.5 513.1 1155.6 0.8363 0.4765 13128 1750.8 a

1000a 621.02 0.02472 0.19390 0.21861 648.5 503 8 11523 0 8417 0.4662 13079 IgesI i

1850 0 624.83 0 02495 0.18558 0.21052 654.5 494.6 1149.0 0.8470 0.4561 13030 1858 8 l

1900.0 628.56 0.02517 0.17761 0.20278 660.4 485.2 1145.6 0.8522 0.4459

  • 1.2981 1900.8 J

1958.B 632.22 0.02541 0.16999 0.19540 E663 475.8 1142.0 0 8574 0.4358 1.2931 1958.0 1

20008 635.80 0.02565 0.16266 0.18831 672.1 466.2 1138 3 0.8625 0.4256 1.2881 20050 1

2100.0 64236 0.02615 0.14885 0.17501 683.8 4463 14 30.5 0.8727 0 4053 1.2780 2100 0 i

2200 8 649.45 0 02669 0.13603 0.16272 695 5 4263 1122.2 0.8828 03848 1.2676 2200.0 23eg e 655 89 0.02727 0.12406 0.15133 707.2 406.0 1113.2 0.8929 03640 1.2569 2300.0 24000 662.11 0.02790 0.11287 0.14076 719.0 384.8, 11031 0.9031 03430 1.2460 2400.0 25000 668.11 0.02859 0.10209 0.13068 7313 361.6 10933 0.9139 0.3206 1.2345 2500.0

{

2600 s 673 91 0.02938 0.09172 0.12110 744.5 337.6 1082.0 0.9247 0.2977 1.2225 2500.0 4

2700 0 679 53 0 03029 0.08165 0.11194 7573 3123 1069.7 0.9356 03741 1.2097 2700.0 4

20000 684.96 0.03134 0 07171 0.10305 7703 285.1 1055 8 0.9468 0.2491 1.1958 2808 I l

29000 690 22 0.03262 0.06158 0 09420 785.1 2541 1039.8 0.9588 0.2215 1.1803 29000 30008 695 33 0 03428 0 05073 0.08500 801.8 218.4 10203 0.9728 0.1891 1.1619 3000 0 3100 0 70028 0 03681 0.03771 0.07452 824.0 1693 993.3 0.9914 0.1460' l.1373 3108.8.

32000 705 08 0 04472 0.01191 0.05663 875.5 56.1 931.6 1.0351 0.0482 1.0832 3200.0 f08.2*

705.47 0 05078 0.00000 0 05078 y

0.0 906.0 1.0612 0.0000 1.0612

.2

  • 1 0

s S

Table 3.

Superheated Steam tes Press w$e la 1st 548 1esigeralere-Deteers Felsenheel 648. tend water sleem tes tse 30s sie aos als See see tes see tot less lite lleg g

th WM 548M 198 N 30sM tet M Ms M MG M ett M St0 M 000 M 790 M 010 M 900 M 1810 M e 8 01614 333 6 3B2 5 4224 4S73 40r l Sill Sel f 578 5 Ull 800 F MS3 000 8 In e s7te t006 II# Jg, h

N f3 1t5 8 18S0 2 1874 9 1995 7 1288 7 IMIS IMSI 1280 6 IIM I IMel 84H 7 1483 8 1534 9 1906 8 16M 7 s S!3M 83768 ImW 2288 IllSF 2 144S 2 1722 #1905 21237 22700 2.3148 2 3654 2MM 247m fees f e969 37 4 SP M 197 M 10P M 237 4 M7 76 337 76 437 M S37 M 837 M 737 M B37 4 937 M 14H M 36, 0 41641 73 53 30 14 So f t SO M 96 75 19224 108 73 114 71 IM IS IM OS H00s lei te 173 M 18 78 897 70 8

Il&IMI h

130 M 1933 8 1848 6 IlFI P 1898 8 8218 0 1748 3 IMAP I288 2 IHS9 IM43 84334 1483 7 ISM F Heti IUt6 8

4 2389 a ges3 lEM 1334 ISMS itk. l.gl43 2 3708 2040 ISBN 2 4300 2 3776 2 JIM 2 2S28 2284 2 38M gg 6 79 14 79 tel 79 IM 79 1st M 256 79 306 79 del 79 506 79 ats 79 706 79 006 79 tel79 1808 79 e GSMM 3047 38 88 48 93 es te 44 s7 Tl e3 Se es 5:o4 63 03 60 00 T4 90 m 9e at ti tF e7 es os II#III h

16f M 1643 3 1146 6 8870 2 8193 7 3217 8.lM0 4 1268 8 INFS 1335 % IM40 14334 1483 5 ISM 6 1986 6 lutS s SJSM 43679 1 7434 842F3 8203 IM 8944 1 9439 1969 2 4154 2mel 19011 2 1304 18757 IJISI 2J4JO Sb 30 00 mIt laset Mees 33 set 300 es 300 et 400 et 300 et att 40 70ses Mem 900 et le del gigy M pH 30 47 30 57 37 el N 67 MM M 77 47 N es 93 51 et He6 18 la el19 67 PS OSI887 h

l # 17 Ilie $

lies e litt 6 1214 3 87M 9 IM36 INF4 13M 7 BMI8 14ID F $483 4 Ille $ 115 5 16M 4 s

JL78 1 7104 1 3043 1 3I54 1 3830 igm 3 1 9060 19MS 197M 2084 2 0106 2200 2 8333 2 3676 2 300%

D, 0 01673 M 790 27 637 29 009 319M 33 963 M 977 37 905 41906 45 978 49 964 53 984 $7 9M 68 905 65 007 1697 08 97 436 97 18697 PM 9F 20697 306 97 40697 $3697 60697 796 9F N697 90697 OIIIII b

883 71 1850 9 IMep IlsF S 8286 7 17M 9 iM36 IM73 133$ 2 1383 8 1433 7 8483 4 ISM S 195 5 MM4 s SJ137 11562 SM3 138M issp Ig7M las igm 2 1 9717 231M #4tti 2 0006 2 1300 23463 final Sh 723d 73 0s 173 0s Inge FFlgs 27tes 340s 4FPM SU te GU te 750s 477 0s 977 04 38 e 8 08683 30 e87 3 73 77 3 % 33 400 73 470 M ee6 70437 314e6 M 865 37458 40 447 434M 46 470 e9405 9 27 968 h

IM 77 11 % 3 Il67 I 1891 4 1715 4 12M F IM10 1786 9 13M 9 IMI5 1437 9 1463 2 IS34 3 JS06 3 i4M 3 s &3MS I 7320 i MPS I Feel l till 86MF l 0646 i Otti I9M7 iS&M 2 8744 24679 20MI 2 63M 2l#S Sh gg3 ggg3 ge g3 ggggy pgg gy py g3 3gg gy egg gy ggg g3 ggg g3 39g g3 gggg3 96993 35

, 8 08693 16 108 le SSG 17 a79 19eM 7e iht 7897 77 Fee 751%) 77 W 799%e 37 we M 7e9 37 I.ie M gie O# ##8 h

7W 57 Ilen 6 8M%6 81917 1714 % 171e % ipr.p g lper 4 It e4 6 tim e s 1417 ; 14ein Igle r 1%a6; nwp s SMM 1 7148 i nl7 1 7%47 IMu 1884% 1 e415 B R677 1 9649 8 9%es 1 9997 Itial 7 0/44 Fles Flees

$h gg66 98 M 149 64 94 66 M946 349 66 489 66 SM M 689 M F49 % Ge966 949%

8

  • 0 01701 13 N4 d ele IS OM 16 097 7 914 18 979 20*45 27 951 N99 26 *e9 78 *e3 30 *
  • 32 4';
  1. 98 388 h fl8 93 1164 1 300 0 6713 6 17378 Mit 17e6 0 lH47 IN30 leu S 14s2 0 ISM O IStr l 16M O 5

&M82 I H95 73M I M47 8 7937

,8210 14s67 1 9946 19M6 1 9795 2 0179 2 543 FM 28287 40 FI 90 FI 140 73 Me FI 240 71 380 FI 440 FI Ss071 See FI No 71 See 78 toe 71 D,

0 01708 il 096 17 He 13567 le 453 is H4 le 70F 17939 19 # 7 FI179 23 092 7e 803 M Sl? 78 270 3,

9 68 291 t N0 03 1167 1 1837 3 8717 7 1237 8 IMl3 1205 5 I)D 9 1382 8 4432 3 1442 7 15339 1586 0 1618 9 s $3000 1 6872 5 7857 1 7464 87MI 1 8035 1 8794 18H4 1 9284 196N 2500 2 0372 2 0787 7 10s6 th 3r 75 Of FS 132 PS 82 PS 232 FS 337 75 432 75 532 75 632 TS 737 75 837 FS SU FS 80 9 01785 14 497 IleM li tM 12 U4 3 390 84 MS IS 685 li ttl 19 699 M it9 21 697 23 19s 74 685 067258 g gM 14 IIMI Il46 6 Illi F 12M 4 360 8 I?tS 0 1333 6 last S Ben i 1482 S 1533 7 3505 8 16M 8 s 0 30!! l6MS I Ntt 8 7382 i Met i 7083 1 8843 4EM i 9066 1 esM ithe 2OfM 2569 2 9999 48 Sh PS W PS W 25 W 175 S6 775 M 32$ H 425 M SFS M 625 M Film BFS W MS W GM 448 e 4 01728 9 399 9 H7 le 497 1 208 II 092 12 SH B3 932 ll176 16 684 47 950 19 787 N 613 Il 983 h le) 49 1872 8 1886 4 124e e 2n7 1780 2 3284 6 13H 3 1382 3 1431 9 1482 3 1S33 6 ISGS 7 1H87 6 0 4028 i M75 8 dest 838F3 13478 83748 i NIO I telt 8.80M ISMS I 0730 2 NO3 2.0430 2 0768

$h I$st $$ 90 18890 M8 90 21090 310 90 410 90 518 90 618 98 718 90 Sitte 91098 00l eft

, 3 01777 8 S14 e M9 94M lem7 196a8 18 306 17 529 13741 le MP 86 150 17 He 18 589 19 746 t 210il IlF41 lies a INI9 IfM 9 8759 4 1798 1 1332 9 1387 0 143t 7 1882 2 ISH 4 ISAS 6 16M 6 e tell! 1 6606 867N 8 3One IJ3e9 1.M28 8 7000 18H4 8 8016 ISt27 8 9613 190H ftRN 2 0652 90 Sh II93 67 93 112 93 167 93 287 93 31293 412 93. 512 93 lif 93 fit 93 812 93 til93 96J Oft v 8 01733 7 94S I Se6 9 IM' 9 707 80 M7 il 388 IF 43% 13 S03 14 6H 15769 16 eM IF 984 h 2% al nsF 9 IMS9 1234 2 IMSI 1243 6 13N 6 8381 8 8431 S 8482 0 IH33 ISOS S 1634 S I

s 0 elm 8 6est 3 00H I 7237 i PSl4 5 Het 8 82M I SHe 8 9121 1 9507 8 987 2GH 2 055 l

90 th, 7 pg I7 79 84779 ISP 79 N7 29 30729 4779 507 79 M7 79 797 ft N7 79 90729 esiFM flN FM7 nWin nS e M4 Sui 9 =0 M en n 4M ir 44 H 4SO 9 457 n 457 M ete l

6 M2 Il 11F F 6 Illi 6 1700 0 1233 S 12$4 $ l?$3 2 1332 3 1341 5 1431 3 leal s 1037 1585 3 1634 e s $4273 1 6440 5 6492 1 6829 t ilM 1 7417 I Mal 5 4164 I M12 IBM 1 9419 19He 2 0129 20eSe Sh 3 g; SF St 34702 IS7 87 M702 307 07 402 Of 507 of 90792 7tf 02 08207 907 07 e 9 01743 6 453 4 67$ 7895 7447 0106 s ett 9685 10 % 7 ll eet 17 412 13 H7 le MI n is3 0 91 888 h M163 1879 8 n80 3 17970 IPN 7 lMF9 1782 7 IHit IMI) 14316 1481 6 ISHS 15e5 7 1634 3 a $ 4344 IAJ75 8 6390 1 6738 4 7064 1 7324 47MS l # 77 4 8522 les)$ 1 9321 I Mel lessa teMI Sh 4737 9707 54707 19707 29'07 39707 497 07 $9707 H7 07 79707 RF07 30 o 0 01744 6 70S E Ms 7 133 7 S90 8 039 Stn 9 793 19 6S9 n S77 47 387 13 740 80 sie 7 l

83er SJ 6 272 74 ns36 1206 0 pre inr3 12s7 2 IHI6 13:10 14:09 14al l nut nsSt 10 7 8 0 4814 8 6316 8 Me0 8 6958 4 437 8 7504 1 7993 8 84M i 0817 89H6 8 9663 1 9989 2 0279 Sh 47 39 297 39 30P M 492 39 597 M $9? M 797 M MP 39 97 39, 14,7 M,.19,2 39 M

..Onu S tie G M4 GM 0

494

. uc tin 99e5 1 F50 nm um n nS t

007618 h 2H M list 9 120% 0 lHe2 IPM 7 1781 7 IHl3 IHO7 1430 F 144l 3 ISU 7 IS8s e M!s I e 4 4474 16M4 36%4 1 6064 4 HS6 i M24 3 798$ 48MB iBH4 1 9143 19tM i M77 2 O207 Sh = Superheat. F h = erithalpy. Stu per Ib J = Specific volume.tu ft per Ib S = entr0py. Stu per R per Ib B -3

Table 3.

Superheeled Steam-Coritinued Att hell.

Wle la Set Set Irewelure-Degrees felwe; aiset llet lemel Wales $leam 350 800 alt 500 550 000 300 000 000 1000 1100 3200 liet 1400

~

h 3796 0796 13796 18796 full 30796 30796 4796 19796 007 96 707 M 887 96 5 796 198796 GB e $$l79 lef t S SDI 6 714 luf 7 010 7 e00 7 794 4 tte 9 339 19 075 It 029 18 S41 I!J38 13 008 13 479 Ol2 Sei 4 262Il ll43 I IMe0 12Ml IFM i 1701 3 1306 7 13JO 9 1300 5 54Je & leti 1 1532 6 1994 9 86M 0 M920 I7e60 s t4lle 14208 8644 34790 IJ000 1 7349 1 7402 8 7042 14200 1A702 1 9009 83894 5 9000 28434 246e6 2 0710 h

3374 03 74 113 74 103 74 233 74 303 F4 303 F4 443 N 343 74 003 74 703 74 003 F4 983 N 3083 74 el e SolM2 5 167 % est t est 6Pn 6L.

4 964 7ne s 067 8 MS 9 ett le 190 le Ott II804 32 310 13 014 OneMB 6 206 52 lite 7 1703 0 ItM F IPH S 1700 8 1305 s 1330 4 1300 t 1430 3 848 0 liara Inte a lur9 369: 9 874s 8 s talte ts!H Iue6 14716 4 7008 1.nn 11w2 inn lane Isus 1 3023 13306 13733 240u 24479 2m02 h

M F2 7972 IM 72 379 U FM n FM 72 379 77 4M 72 579 ?! 079 77 F79 72 879 ?! 979 4 8079 77 90 e 3 01786 4 095 5 179 1 905 SSH SPD 6 tF7 6 987 7000 8 777 OMS 9 428 M 790 40 960 11 675 32 290 08024 6 M069 1905 3 lagr e 1278 9 154 9 1200 3 1305 4 1330 2 1300 0 14M 1 64s0 4 IS37 3 85e4 6 8637 8 1491 0 IN67 3 0 4643 14113 1 6323 lees 6 149e0 IJ212 l H67 IJM7 14156 8 0370 13957 13023 IJtH 2A000 24416 2A6tt t

75 47 75 47 IMO I?ssi r7587 FM 87 m 47 en t7 $7587 63 07 FM 07 OM 07 97587 1975 8F 98 e 0 01770 4 653 4 0e5 5 706 5 %I left 6 nt 4 %44 7 396 ISM san till 9 747 10 300 88 017 18 683 0 74 131 h 294 70 Itas 2 12e 9 Inti 87%s 3 1279 8 130S 0 1329 9 1379 7 1479 9 3446 1532 I ISH l 16377 seti 7 1746 6 8 046M iHH I Alla a 8000 8 6476 8 7849 8 7404 1 7645 I 8094 I met I 8097 Istt 8 9609 iWet 2 0256 2029 Sh

!!]8 7210 1M 10 !?218 2{218 27788 3418 4U 18 57713 67230 FF!!4 0Filt 97214 197F it 108 e $ 31774 4 438 4 900 4 035 6 764 5 588 5 904 6 714 66H F a83 $ G60 Sal 9 750 9 000 19 440 81 000 1927 all b 790 54 lit? 2 1899 9 1777 4 12S3 7 12793 1304 6 13M 6 1379 S 14M P 8400 4 1532 0 lies a 16376 IHI6 1746 S s $4M3 14027 BAl07 1 6516 llele IJ058 l>M4 4J506 18M6 leell SASM IJ005 1 9962 4 9083 24899 imer

$h 19 63 Sell llell 168 63 fl863 M863 asell 46043 96463 GM43 M643 5881 960 63 1968 0 let e $ 81770 4 731 4 3$9 4690 5807 6 31S $ 617 S til 4 50s 7 006 7 46% SMB 8 416 9 309 9 968 It tu 031J71 h 302 74 IBM 0 lits 0 82M 6 ltS3 5 3273 0 130s 2 1379 f IN97 14M 4 1480 3 Ital 4 Iles i 14JF S lett i 17e6 a s 0 4790 83954 8618 (64H BlMS 8 7931 luta 17530 41988 1 8396 13705 4 9158 4 9000 ISBN 24145 2 0s48 h

1978 HP1 11% F1 IH FI 78% F1 Mtti 3H FI 4H FI t'4 FI GH 21 365 71 5% F8 9H P1 10Hil fit e 8 01797 40s8 e let s ets e n; 5 868 $%7 $ 447 6 70% 6 MI tte FMS t el) 4 468 9 %87 19 e%9 OM 79 6 B% 00 IIIs 9 19977 177% 8 17%7 5 1778 3 13018 1378 9 IBM 0 4479 7

,4 h I IMI7 ISM 4 36M 4 1691 4 IM44 4

5 044M iHb6 BAml I ut6 4 M90 I HFS I1233 L 7416 179M ISM 4 8 87M i 9999 8 9886 3 9777 28013 203H II t2 li tt lil t? 161 97 till? M192 361 92 48197 96197 068 92 Mi tt Mi t? 96192 196197 lit e 9 01705 3 001 3MP 4 265 4 H4 4 6el litt S M7 9 937 64H 6 998 F 521 80s4 8 570 9093 9 615 0 30 001 6 309 FS 8109 6 1896 7 1275 0 17s1 0 12779 IM33 137 6 1378 7 1429 0 1479 9 l$35 6 ISO 4 0 86u 2 t498 4 t 746 3 a $40M 4 5933 14001 1&M0 8 M44 349N lital 11425,1384 18M4 84602 13089 4.9J96 IS47 24084 20M7 Sh 8 73 58 73 108 73 158 F'1 208 73 758 73 ISS F3 458 F3 lit 73 ges 73 750 73 050 73 958 73 1958 73 IM e 3 01789 S7MS 3 7815 4 07M 4 M10 4 6343 4 9009 5 1637 5 6413 6 1970 6 7006 7 2060 7 7896 8 7119 4 7130 9 71M 041278 h 312 $8 1190 4 IIM & 1274 I I?SI 2 17774 1302 9 IMS2 1378 4 1879 8 leM 0 15314 1563 9 16378 1691 3 1744 2 8 4 4919 1 5479 43943 ISM 6 B6H2 I H72 8 7132 1 7376 5 7029 8 8te6 1 9635 1951 1.9M9 1 9600 1 9996 20M8

,g m

267 utf ier 67 iu S7 20:47 nr t? 3sr67 4s 47 n267 e6267 M267 0u 67 95 67 inr67 130 e 0 01796 3 4S44 34699 3 7409 4 0179 e MF7 4 S158 e Me9 17M4 1 7818 6 1814 6 6446 7 8140 75701 S telt 3 5033

' 007J3 6 318 95 litt 7 lit)4 1222 S 12499 1276 4 1307 1 3327 $ IDF9 left 4 14 M 4 8531 1 1583 6 16M t 1691 1 IM6i S 64994 83813 13433 8 6182 1A4H 1 6775 I M37 13283 1J737 IJill 18S45 IJ913 13259 IJMt 89W7 2 0288 D

44 M 96 M 144 M IM M 344 M 3e6 M 444 96 544 M MG M MG M es4 M ta6 M 3086 96 let e 8 01003 3 7190 3 4448 37843 39W6 41M4 4 4119 4 8S64 5 2995 SPMe 68709 6 60M 7 03s1 74H7 7 0ta6 01104) t 324 M lit) 0 12M 8 1248 7 127S 3 1301 3 13M t 13H 4 8478 0 left t 853B 8 IS83 4 8635 7 169B 9 1 74 S 9 e L4078 13752 laul 16e00 l H06 8 6949 IJIM I Mll 1 8878 1 9861 1520 1 9876 8 9508 13B2S 2 0lM D

4857 9157 141$7 19157 34157 34157 44117 54157 Milf 741 57 estli Osl57 leellF f

190 v 0 01009 3 0139 3 M00 3sHS 3 6799 38978 4 3112 4 5298 4 9871 53907 5 7168 6 1412 S M87 69648 7 M78 Ob8431 h

330 H lits i 1219 1 8247 4 IU43 8300 5 13M i 1376 9 len 6 14 F8 7 ISM S ti4] I 16Mi 1690 7 3 74 S 7 4

0 3143 13695 53993 18313 1 6402 16067 Illil 3 7573 IFMJ 1 8383 88758 89H9 434M 1 9748 2 WS2 3

M 45 08 81 IM 45 10645 2M 45 3M AS alf 'S SM al lasel FM 45 SM 45 9M8$ IcMal les e 0 01015 233M 3 0060 3 N80 3 4413 3 6469 3 6s00 474M 4 679) 5 0132 5 39st 5 7744 6 1572 6 993 6 90H 063 SSI h 3M t? lits I 1287 4 8246 0 IU33 1299 6 137% 4 1376 e 1427 2 8478 4 ISM 3 1542 9 16M 3 1990 $ pal 6 s SW06 l Mel 13906 1 6234 ISSU laMO 330M 13499 8 7919 1 8310 1J618 83027 19M9 1 9676 4 9000

$h 31 58 01 58 13158 18' 14 73158 33154 431 S8 53158 631 58 731 50 831 54 938 58 1031 54 lit

, 4 01821 7 6730 7 8167 3 0784 3 D06 34MS 3 6168 3 9879 43H6 4 FISS 50749 lsUS 5 7888 4 84e0 6 ste3 06842) t Mlle 1196 0 1215 6 1244 7 8272 2 IM48 3374 7 137$ 8 leM S 8478 0 ISJO O 1547 6 16M B 1690 4 17464 s 0 5269 t uli 13423 1 6152 1 6447 8 6717 16M4 4 7428 liste 18248 18610 149$9 19MI 19eot 1 983 3a 76 97 M 97 17417 IM97 !?4 97 3M97 4M 97 526 97 696 97 PM 92 SM 97 9M 97 10M 97 III v 8 01877 19317 3 6474 2 0S08 3 0s33 3 7706 34093 3 7678 4 1064 4 4500 4 79BF 5 8.09 3 46S7 1 8014 elm) 0 73 001 h

386 I9 1896 9 1213 8 1243 4 12712 8297 9 IH40 13?S I 14M 3 le77 7 l%M F 8587 4 163) 9 1690 7 178% 3 s OSN8 ISM 3 15143 1 6018 1 6376 lust 1 6900 17M2 1 7704 4 4176 label 1 8094 1 6227 1 9545 1 9049 gn 2747 7747 IN47 17747 M2 47 3N 47 4M 47 12747 6H 47 MP47 0??47 97747 19 8 47 let e 4 01833 7 8030 3 4961 2 6915 7 8756 3 052% 3 n46 3 % 01 3 8459 4 7840 45MS 4 0S72 S IFM $ 4989 5 8174 07733 4

JSO N 8197 6 12:2 0 8242 0 1270 8 17978 IH33 13F4 8 len t sene IS79 4 1582 1 863S F B690 0 I F4S I s SSM4 I S464 iM47 1 6006 44307 4 H88 B H3) 1 7799 3778 1 8115 I Mes $ 4434 1 9164 1 9464 1 9709 18 70 64 70 118 70 168 20 210 20 31870 418 70 110 M 618 70 #10 70 $10 70 918 M 1018 70 Me e 8 01939 2 7373 2 3%90 7 5480 2 U87 7 8939 Ins) 3 3783 3691% 4 0004 4 M77 4 6574 4 91H $ 7191 1 909 00100 h

3His I198 3 1710 1 1280 4 1749 0 82947 1177 6 1374 3 147S S 84770 IS79 8 ISall 16144 1659 8 178S O t

0 $438 l $464 13H3 i H38 1 6742 IHI8 8 6713 4 439 IMH I 8057 1 M76 84H6 9 91M 1 9427 8 9737 Sh = Superbe3f. I h = tr'thalpy. Stu per Ib v = SptCalic volume, tu fl per lb 5 = entropy, Blu per F per Ib B -4

l d

l Table 3.

Supertiested Slesm-ContinueJ A66 Press L0t$0 le-

$40 Sol featersin-Detesiewafel 340. Iem0)

Walet 5 teen 4m egg gas gas gag fee 30s ses legg Ilse 130s 133e 140s 1500

~~

D le M $400 114 00 Ma tt 214 00 314 00 414 00 Sle tt 484 00 Fleet 014 09 $140s 191401 18140s 200 e 8 08044 21072 2236e 24188 2 6800 2 7504 2 0078 3 7837 3 5120 SONO 4 1007 4 MIS 4 6011 4 9695 S 2573 S $s40 006sti t 50si 18900 170s02 12M 2 125e 0 179S 3 1323e in37 1425 I lam F IS2ss 11016 leS2 1688 6 IF44 4 1000 0 e 45800 13453 13522 15672 14880 1 8458 1 6715 13882 I NSF 1951 14378 14721 1 9064 1 9372 196n l9970 m

Mlf 00 f t 11012 lest! fielt 31012 41012 51012 61012 21s t! Stelt tielt 301012 I19012 330 e SetMS 20h3 f ilet 2J999 3800 2 6199 2 H10 3 0682 3 3504 3 6327 3 9125 4 1905 4 4671 eMM $ 0173 5 2913 0000h 8 M4li litt 6 12063 1237 8 1796 9 129s S 1321 2 13732 1424 7 tem 3 1520 S ISet 4 1635 0 s6at 4 1744 7 10006 s Smet 13374 13453 8500s alife IAest i e6St a 7828 IJM3 1 7944 8A318 ise60 I 9002 4 9320 8 9625 I felt S 30 M 30 806 M i96 30 208 30 306 30 406 30 Set 30 006 10 M6 30 005 30 SOS 30 1906 30 1106 30 238 e 0 01055 1 9995 2 0712 litit IM03 2 5008 7 6s68 2 9276 320F0 3 47M 3 M06 4 0060 4 2717 4 6355 4 7164 5 0606 15478 h MS 20 12e I 120e 4 12M 3 SM57 1793 6 1320 4 1372 7 147e 2 1440 1520 2 1581 1 1634 8 len 3 1744 5 1000 $

9 tates talas $3305 IAMP 84062 IAM4 leete 13075 11592 lin7 LAM 0 1868a 10n2 13270 8 9576 1.9069 Sh 2 68 S2 61 ter48 152 61 202 68 302 61 40268 502 61 002 61 702 61 302 61 10261 19026 1802 41 300 e 80150 1 9177 1 9268 2 0070 2 Pe62 2 3915 2 5316 2 0024 30861 33Mt 3 5431 3 830% 4 0476 4 34 % 4HH e ast?

0073R h 37227 8200 6 1747 4 1238 9 IM46 17t? 7 1319 7 1372 1 1423 8 1475 6 1527 9 ISN 9 M34 6 1609 1 1744 3 18D0 4 0 64H4 13290 8.h320 53667 IIms t4298 8 SSM i 70FS IHW l10s8 8 8219 IAS70 1Alle I 9223 iSS?t i M22 m

49 03 90 03 149 03 letti 29t 03 399 03 49903 309 03 Ones 79903 Stets en03199903 HB e 0918H 1 9833 '

2 0016 2 1104 2 2909 24M2 2 6812 2 9810 3 1909 3 4382 36637 3 9278 41709 4 4131 4 6546 l

9N975 h 34 le 1291 8 4233 4 1863 5 1791 8 1319 0 1371 6 8423 a left 3 1527 6 1580 6 1634 4 1600 9 1744 2 1800 2

&$679 lasse IMFt Isni 8 62M later 1994 5 7401 t rags 14173 lebte 3306s Itin itest 4.97 M h

45 M 95 M 145 S4 ISS SE 29S $$ stS $6 enM telS4 005 M 796 56 095 M 905 56 1995 56 ISO e 8 01070 17Mr 19173 2 0619 2 8908 2 3789 2 5006 28M6 3 0643 3Jese 3 Se06 3 7758 4 0007 42427 4 4750 tete del h 379 90 IMIS 1231 9 IMP 4 1298 9 1316 2 1378 1 1473 0 1474 9 1973 IS804 1638 f 1680 7 1944 0 1000 i S 44722 13I30 13673 13000 14109 14e53 14030 IJ3H 8 7756 IAIM 1 8480 1 9814 1 9133 1 9439 1 9732 h

of 70 9720 lof M iet M 292 PO 392 70 elt 70 M2 70 082 M Pl? 70 002 20 902 M 1997 20 290 v 8 01075 1 7101 88Mt 197t9 2 1178 2 2308 P 4074 2 7186 2 9509 3 0806 3 400s 343et 3 0A03 4 00st 4 3007 0007A3 h MIM 1201 9 12M 4 IM12 1790 0 1317 5 1370 1 ten t 1474 6 IS271 ISN I 1634 0 1648 5 1743 9 10000 s 65764 13897 8 HIS I 5084 44840 i H06 8 6805 l 7315 81713 8 000S 1 M37 iAni I 9003 I tJt6 89690 h

38 93 8093 IMil 808 93 200 $3 30893 40893 500 93 00893 790 93 00093 test) 100813 g

300 e teltt0 16 SOS I M66 19037 2 0322 23551 2 3109 2 6894 2 3437 38655 314SS $ $082 3 F217 StM4 4 1543 Mll075 h 30712 1282 3 5220 4 IM00 4209 L 1316 8 1370 0 1422 1 1474 2 ISM 8 1579 9 1633 8 1680 4 1743 7 17994 e $5005 13&M 43464 13798 14003 44363 lAtal 1 7273 11671 83083 143% IA7M lano 193M 1 9645 m

nn n n nS n In n 20S n MS n

=S n MS n ul n M$ n mS n mS n iHS n 700 e 4 01005 3 5948 l H04 1 4327 8 9570 2 0772 2 3054 2SMt 2 Ma0 2 9505 3 iFil 33874 3 St26 3 sol 9 4 0106 1814 211 h 300 40 1202 6 12273 IPSS 9 I?It i 1316 0 BMSS 1421 7 1473 9 ISM S 1579 6 1633 5 16a4 2 IF43 6 litt F s SM64 13135 13412 13710 liese 16317 14799 1 7232 I M30 13003 183M 18H0 1 9010 19316 1 9610 Sh 32 65 BIGS 13261 182 65 20265 302 65 482 65 502 65 002 65 M265 0526$ 982 65 1082 65 300 v 80100t 15427 36M6 I Fen 1 9083 2 00s4 22M3 24e07 2650s 2050$ 3 0643 3 Mas 34721 3 6746 3 0764 MiFJSI b 303 99 1202 9 122S 7 IMFF 1207 2 1315 2 IMS9 1428 3 1473 6 ISM 7 1579 4 16333 1648 0 iF43 4 1799 6 s ases2 13405 ISMI 13703 LAtta 14274 56n4 11192 ints 1J964 34317 Is6S2 43972 lens Inn 300-S ft 64 79 64 129 H 17964 279W 379 64 479 H 579 64 479 M 279 64 079 64 979 64 1871 64 v 901894 IatM iS43 1 70s4 I A233 I9M3 2 ISM 2 3000 2MM 2 MSO 2 9644 3 16?S 3J594 3 5555 37%0s 903t350 h 397 N 82032 1274 I 1756 5 1786 3 1884 5 Itse a 14M 9 18732 8525 9 8679 7 1633 1 8407 a 1743 3 17994 8 44020 13076 14381 4.5867 liete 16233 1 6789 1 2153 83613 IJeff Islet IMll 1J535 1 9748 IMM h

MH MH IMH IMH 2M H 3M H 4M H SM H $76H 276 69 0469 SM H 10M H 310 v 8 01099 18e00 1 5707 16e62 1 7673 187n testa 21083 2 4023 26ne Is70s 3067s 3M3s 3443s 36332 9023Jll b 400 $3 lM34 4222 S 12SS 2 12M 3 1313 7 IMFS 84M S 5472 $ 1525 6 IS789 4432 9 364F 6 U43 I IF99 3 s SSOM IJsse 13Mi 13612 !)tl8 14392 RA600 1 7846 IJS16 1J000 10M3 IA679 lAtte 19206 l.9500 Sh 23 82 n et 12382 inat 273 82 In et en 82 Sn 82 673 s2 n182 en 87 tn 32 lef t 52 l

300 e 301903 l eest lasse I Sell IFebe 18175 2 016s 2 2132 3 4054 2 5950 # FsFs 2Mt! 31586 33Mt 3Sn1 4026It b 483 70 IM36 12M 9 125e 0 IPte 4 1313 0 1367 3 1420 0 le72 5 1575 3 ISPs F 1632 7 1687 5 IF42 9 1799 2 0

03001 15021 8.S233 13568 13076 1 8113 I M43 13079 13400 13855 44308 l ebt4 IA064 1.9171 I tsu fi el Fl et 121 01 171 91 271 01 371 01 47101 571 01 671 01 771 01 87101 971 08 10?l 01 h,

S eltet 136a0 latti 1 5399 1 4518 IFMI 1 9552 21463 2 3333 2 517S 2 7000 2 Mil 3 0611 3 2402 3 4186 300 M28908 h 406 00 1203 8 trif f 12$2 0 1783 e 1312 2 13H F I419 6 14722 4575 0 1570 4 1632 5 56473 1742 8 1719 0 s 840M l ette Illn IM2% 136M 3 6144 l H06 130s4 17445 43820 1 8474 IJS10 1 8631 1 9:34 l es32

  • m 19 27 San 11:27 16a r7 76s 37 Mari M427 Me r7 Sta f f Ma tt 06:27 96a n 10sa r7 300 e 8 01912 13MS 13nt 14913 16c02 1 7078 1 9170 20sn 2MS2 2 448S 2 6719 2 7ta0 29730 31478 3 270S M3t F3 h 4H 03 820s 0 12875 1251 1 1282 8 1311 4 IM62 1419 2 14710 IS24 7 1578 2 1632 3 1647 f 9426 p99 9 s 840H 14M6 ISilt IS403 ! ) 19 7 184H IM71 1 7000 1 7418 13787 1A148 lAen IJ198 1 9405 1 9400 D

15 St 6559

ll59 145 St MS 59 MS St allSt MS 59 665 St FelSt MS St MS 59 104$ 59

. S$24 16525 1 8478 2 0237 2 2009 2 3FSS 2 $442 I FIM 2 8498 3 0597 32nt

(

308 e tellif 17sti 3295 l ease

',281 S i

M34 419 h ett Il 120s i IIS 8 1210 3 1310 6 IMS6 1414 7 1414 S 1524 4 1577 9 1632 3 1686 9 p42 S pte 8 s $6052 14943 M13 1 5448 5FS4 1 4040 16SM 1 6976 1 7379 IJ154 191H 1 0845 187M 1 9073 ItMa D

le 39 60 39 ' le 39 60 39 Me M 360 39 460 31 M0 It Get M Me 31 080 39 96019 IMO 39 See v 9 01925 ' ?til 8 2472 I M06 ' 8635 Sitt 1 7410 1913t 208n 2 7'64 2 4174 2 SPM 2FM6 2 0973 3 05F2 MM 615 h 414 59 Jos 4 1217 4 12eF F.279 $

309 0 1364 S 1417 9 1470 4 Id6 ISPF 4 1631 6 16M S 0477 1794 5 6 866M i4894 14M2 ISMO

S683 LSMS 4 6470 1 6918 i n!S 1 7612 13087 18M4 18701 1 9012 1 9307 Sh = Sweetheat.F h = enthalpy 8tu pet tb v = Specific 90 fume. cu f t pe7 lb s = entt0py. Btu pet R per 10 B -5

Talite 3. Sesportiested Seestii-Conedeseed a

mse in.

s se later

-ees.:4.sen.0it s.e 1.mte w ei.

si e.

e at ses ses ese ens see see ese sees sees ins 13es sees esse

..... -.. m.0 m.0 m.

6

= >

m :=

m.0

= =..

. m uen uu, m

=n >

,. 9.,..,

0.

=

..n m = m imoim.i in.n.

m ai n inn im. uu nen.t n

e um 6

.i n

im n.

3 inn i.n im.,.

i, ni 7 0

. n n

m u0 7 i m.

i.,7n n.ef.fimt

==...

mn m,. l, =.= m.

m,,

. i.00 0.

n, n

=

nm i i

i t.

n, m.

..n

.4 6.

. n.

. n. inn. =., inn um u 4

=.

i

=

l0 i6

==

. su,

=0 0

=

i um i====

.me.

=0i n.

.m n u

. I".n3u m

.m m.,

.em = w I"=.w,m.=e =,ua,,

. an.

um i=

imi i

i => i =0 n= n= n.304

=

ette 4s4 77 8200 8 arm.P

? 13 4 130s, 131 m n it.32 IN.I.I mm 1*=7 l.IS 3 1122 1 MPst iG0bi 1741, tMi7

.== nm m i==

i 0

um um m i== inn i.=

3.

.5 90 ti

.n u in.=.

nm, n le i4190,I.= lt.ilt, l

308 10 Sel um n le.elle 141.. i.nn.m 00110Sm. nm, 0

MI t0 81 90

.,elle ite.il.e 0.

=

i =

=

m>,

0= =

im 4 9.n nn8 i=0.

m 9 t&784 IJett 1 4,30 1 00 BJ.0 IJete IJBN iS806 18000 14797 I SOH i

==

i=.

n.,.

457 l#tt 63 0 t

0

=

lt wi.

0==

ui't,.

u.000

.m = = f'ni, l.'.n. = =. w iton. m

== n0 it.n.

In n0 n.

1;=n.6

,l im

==

i=0 i n.3 la.1 =,. nin, a Meat 1.

m.B u

i i= t

=n an

. im W7 A

14388 ij067 63 I44 4 1 9830 8 7010 B Mt P 181 4 9 14700 8.e5 9.

4 8 m

..n, fu.f95 I

Of.

IOf'l log

.n.99 32 31't M99 037 99 i4n, m

$3799 it..i.f.,

L. N,37.

73 l imi m

n i=> i.m,e 4.m in.

e n imt

.n

. imi 00 1869 1 9988 13306 M06 13071 16123im, im.70. 6 im 3 p=PN S

8 8 000 81371 sJ SM 8 4303 8 0702 4 0998 4

au 0.

u..

. !=e.n n.m.

m.n nu mu. m.n. =.=. mu.. mn.

4.u ii e im lm.

ne

. imi n w.

n.=0, n.0

, n.n n,

.n.

in.10,n i e,3 mn m,

im

=48 7 0 s S. 80 3

i.3 SM ISul 9613 8 00F, leMS 4 0004 1 7336 SJ80s i=M 8 8300 sh7 100W

]

S.h M 99 7 iM ni..wl um 0.499mn n 99 lM99im %to 374,.99n.,

24 99 m, 574 99 St.e tt 798 99 Spe 924 99 1874 99 n=, n tt nm, n n it

.n n.

pn3

, nai i=>

i.483 mu im ime

=0 i 6 un ime S

S.Or l4MS sA M ISIM 1945 n4s s43 1

1 6097 8 73. 1 480 I MSI.02 1 9635 l etti 0.ntim, 0 m i ni., u.n6, nm, met i

na ma un6 nn6, m a, m u, en m,u. ni.a noin.nt wi. n.

3 im i..

i im m 4.m4 n. n. 3 i8

.n. n.on lane Ill.3 4

im m

me Im. Sm.

no. imi 8.M l 179 IM38 4 5757 1397S 4HM e 4063 I FFH 8J900 1 7939 88M3 1 8173 8 0870 8

no un n.,o ic.o m, un. mu.no m.mo mo.3 o

mo Ono,n.o im,,.o S.m.,

O.nn.

em. 7m,$mt imi Ime um, iun I 0 4 n6 m.

. n um n n.m. noi i m.n, 08 m

. um i

n. i=0 inn mu 8.n im.e ime i= = m im.

inn i=0 nn mu im3 i 4

n. en. m. m in
m. Sim 9n..n.

.n u

I'.n. u, n.l.

0 0n 0 =>

m a. n = 1 6 08 inn =. 11> m.ue im. n. m,n. um im...im 6 1

n,0

.==. inn.

n i= 0 me i

i.o.t n

i=>

um imi n.. m. m.t nn ion no 1

0 l

Onl3 0 m.l 0.411 t o AII em n 11 l1 SS i 19 illli

. 13.06 90511 00

3. il. 581 om t.ll.i 9.li lef,tll Sr.

.. um I t'.'!i I"!

I": l'.".I IW 12 liN *! IM IE IW IW 1".lit l'#0! J,'0!Im 6 ti 98 97 its97 ett 92 39697.96 97 9989t Otl97 79

.i44 9, Sm Osen seier incis estn Inst nese 8.692 006 97 996 97 10s 0000 Ossu nn O rtrl m

lue,r usu

$03 00)

S.i 60 8.S 6 9

1701 8 IN34 IMIO 631s 4 IM 1803 7 16 Isle e 4.94

.iM9 4 No.t 7 1624 8 1737 1794 3 s

til 1 430s 147M 13000 1 1399 73 1 6154 00 14070 7336 i M79 13 6 1 8318 4 0517 39 14 ents.iM14 etit 9 16.00 14 309 16 0916 90914 00516 70916 009le 90916 fit 00MH SGSD)

W6 7083 S pot 0.401 %

pte,1 9M leM 1 1195 IM6 iJett 137%9 istet l %sts

$lem 100 4700 7 12 4 l 1310 7 iM25 6

47 2 3 4232 82.M 9 I tte I 9n 13296 IS'77 8 0063 16.76 lit 2 9 45 1623 0 lut8 17M e 17936 04 5 6806 51362 81998 IJ0f6 402M l&M t.h 31 pg 01 79 Ill 79 lel 79 781 79 8.I 79 ott 79 101 79 N

00,1 79 ett 79 001 79. I 79 OIS 00N07 094 0 Setti 06774 e n?) 0 7070 087$9 34 i teFO 8 8709 1 083 4 7001 30 l.au Snen

. 40D91 pt94 I se7,8 n30 17Fi l 130E.0 ilege i H00 l pl3 13M3 1399 8 845$ 8 lil flee t 8 6.l e 7 illFS 4152,F l678 9 1735 7 n979

.6H e 4lill 3 4tu isent ill a7 4 IAM4 4 0864 th N Pg N 76 l24 76 l74 76 $74 76 374 F4 474 ?$ $N ?$ $P4 76

??,4 74 07,4 ?$ 974 76 008 002 05 OlD0 0 M83 0 6296 0 6879 S HIS 9 H05 090N 0900 f eest 1 8386 1 111 1 065 13% s S 36,4)

Silet litIO 1830 IMS9 i H.4 i307 nMS IJM S 84%e t 1910

.Mii.471 5 1610 0 Irmg e sg7 3

(

8 0 7897 4 4096 84M7 4470 2 13396 4lett iMM ien3 4 nel 8 7410 4 n00 100D4 1 8396 Sh 1005

.O litet 140 05 360 el 360 05.60 05 560 SS tes M M405 tea 05

.0 OS.

080 0 0?!!3 0 $009 0 5763 S te69 Sust 0 6654 O nt) 0 8504 09M7 0 9990 1 8'20 ilet 4FM I 213 Ii8n St& M)

Si4 F0 ilM 4 17tt i 12to t 8798 6 1332 7 i'94 4 1457 2 1500,6 17936 IMe4 NJ0 6 It'F I 4 0 n19 9 den Ien3 i 4659 Il 10 1 6311 1342, a 6263 16u t 7033 1732 I nl3 8 6.20.8nt i

Sh = superheat. F h = enthalpy. Stu per ib-9 = Specihc welume, cv f t per Ib s = entropy, Stu per F per 16 l

l l

B -6

1 i,

9 Tallie 3.

Superheelect Sleem-Continued Si 3 00 g,

10appalwe-000'ees telweene.t

  1. f0 6, 10 ii.

m 8.

m

= =

=

=0 n.

im im M.

n.

~

D ll61 48 68 til 61 141 68 til 61 NI 65 lil61 El 61 all SI MI SI Elel 161 68 at El 961 68 We o SWWI S 4721 9853 89805 0 9993 Suet 0 6073 9 472 SMM $8030 0 0753 stell teler 19s17 1 8404 12:43 4

SEMI h S34 74 li9s F 83876 litt 1 Uts 4 3379 3 IM15 1997 0 1421 5 lett 3 1987 0 IM32 1689 5 W76 2 17H 3 1791 0 6 SFNO IJ070 SANS $ 8067 latil 1 6770 13000 1 9740 13077 - 84I93 IMI6 IA067 83387 I Met 179p*30M7 D

l 48 M47 50542 IM et 30542 tilof 30647 386 47 45647 165 4F telat 755 42 GH 42 msof ISO e SWilt 0 4800 94535 tilu 896M 0 6000 DM09 9 607% S Uel 0 7003 setti 0 0986 0960 1 9766 1 0001 1 8579 Getis b

jelH 1997 9 1890 3 1889 3 1290 I l375 9 IMS7 l3006 3419 4 6480 t 1986 4 1961 9 6610 e 5675 3 1732 5 17903 6 mM34 8J000 IJ073 I 4857 4 4833 : 5649 8 SeN e3677 13900 1SIM i 4630 14006 11296 1 7909 81905 4 0797 9

4047 9047 pee 7 19547 3e947 39047 30047 40947 19947 68947 pe947 Se947 9e947 150 e SWIFF $47FF 040FI SU12 OSPel 0 6847 Spil 0 4072 O ult 0 7003 SanM 0 9151 69MF 1 9373 1973 00$ HB b 900 45 litl e 1383 4 175 7 1372 8 IMll INFP 1417 3 1446 6 49039 1900 7 MIF 4 1674 4 IHIS 17096 s $7187 IJBt laat0 4 4740 IJ012 15394 1 9000 13083 Ital leelt leest 8 7897 # 1638 81086 B llH 9

43 77 93 4 183 4 193 4 M372 N3 f f 443 72 943 77 043F?. M377 083 72 983 77 Ils e SW195 0 8086 04534 0901F Smet S M76 0 6:00 44SH 07tn 00171 98773 0 9313 09004 l ee64 8 06 300 t j6755 IIM I 8217 3 pel f $310 0 8317 9 130s 7 1415 7 l444 l9117 e l1994 l616 3 16735 IFU G 17090 e s 7570 1 3708 8 475; I 40M i 4906 15798 i M42 iSU9 :GNO Seit 6MF s1848 4Mn I7M3 i N97 9

M10 0910 IM10 IM 80 fal18 300IS 339le 430le 13010 $3018 FM 10 SM10 9M 10 1990 e g SMDF -

3 04746 0 5162 SMN 0 1000 06273 Ottee 0 7160 0 7754 083H 0 0099 9 9966 B 0007 968.0FI h

187 0 9 1276 6 1315 7 IM99 1302 2 14 30 M42 8 4159 litt l 1615 2 1646 lJM8 INel 7N 2 1700 3 lJ738 elle 14902 lA9H IS216 s M70 1 5717 4 9048 3658 14732 1757 i Mit e

s D

38 01 87 01 832 01 187 01 T3231 18f OI 337 GI 432 01 132II 637 SI 732el SH 81 9U GI I

tem e GWft? 036N 0 416 04897 0 4905 OSH3 SMll SMM 96M6 Steel 0 7810 079F4 0 0519 $9055 G M48 1

0 67.891 h }Fi tt 1888 8 1734 2 IUl0 illi t IM69 IHt7 1410 0 Hast lett e ills t M14 7 14716 8729,4 l7076 i

e 5U84 IJ003 1858 letti 14064 1 6150 I Mil 8980 1JB3 1 8298 IM79 17N6 31378 livel s)MS Ob 77 90 77 50 177 10 177 50 227 90 FFilt 3rtle aftle St2H 6ttle 73790 0Ft M tr? te i

130 e 40PM9 037M 90570 9 4067 geall Sette 0 6179 glass 05779 06707 0604 0 73sl 0 fos 7 esMS SSBN gn art b jelle l19 2 189 9 IMit 1303 9 IMOS 1378 6 Hele NNI 1896 3 1998 3 1617 0 16H S 1727 9.I'06 3 e s7083. lJ677 1350 143e0 1 4748 19077 1 5796 8 9684 ISPF3 1 6194 I M70 1 6037 412F5 8 7596 1 7907 D

If 93 67 93 187 93 16793 217 93 367 93 117 93 41793 617 93 Sl? t3 FIP93 01293 917 93 tem e GW307 0 3010 0 3876 0 3067 Gent 0 e400 te787 0 500s 0 5:02 0500g 0 6318 0 6790 0 477 0 FF37 0 8195 307 gFl b 108 03 11FS 3 Ilts i 1751 4 4796 l 13M S IMe3 1407 0 leu! 8493 2 till l Het 9 Met e IFM 3 17elt t.

- 440sl 13806 8 7600 4 7015 S u 7906 iJ8M IJIS2 8 e168 847% 8450 isle! l 9436 8 3670 BASH 84884

  • *D 3 80 ll80 103 80 15300 N3 80 753m 303II 403 80 103 W 003 80 703to 53to 90300 1000 e 0 W306 0PHf 8 7070 0 M70 0 pl7 040e9 0 EMS 0 4679 08094 0539e $ $369 06M7 06778 0 410 0 76M SR 308 h Sil te 1170 I l176 3 1740 7 17879 13M O IMe0 IMF4 H29 7 84W I list ? IMF7 16M 7 IUdI 1703 P S SONS I 3373 s 3831 14022 iM43 14782 I HP3 1 5333 424 law 8 1635 8 6759 IJtel i Fen I 77M D

ells Ml3 laill IM il 28513 19913 39513 80583 99513 09513 79513 SM ll 1000 e 90F307 SPHS 8 3076 GMil GDel 0 4032 08301 teMS 05031 Olet? 0 6915 063M 96740 0 Flu A00010 h We 20 lite 5 12M 3 47794 INI4 1350 l 1392 8 147% ! 140b 9 8546 6 leen 6 1664 3 1432 1702 3 s Sal 9s IatN 8353 14112 34067 4 4950 1 5235 1 $478 8 9966 8 6312 1 # 10 170F2 iFM7 87H7 D

3687 0A 07 IMSF ISA SF 7547 30607 30507 40687 90687 00687 M6 07 en607 las e 0W470 SPMI 077M 03te7 S Mne S ull seen tem 047:1 elies SHl2 eMll 06MI 96ne Stala b Galet til06 8715 3 1745 1314 5 839 9 135 1 6471 7 6403 8 194s 0 14034 18679 1771 7 4781 0 t SSNt 131M 8 3007 18843 leMS 4 406F 1 5140 1 6300 19033 16F32 1 0001 lets7 I FfM 37M6 Oh 30 90 70 00 170 90 870 90 770 90 278 90 370 90 47098 $7098 SFO 90 7FG 98 6FB 98 W

e 0W477 0 7106 O MDb 9 7406 0 U23 0 3900 S Ulf S M00 9 4476 040M 95??9 elect 0 4900 4 6343 SflAll b 040 49 til? 3 170s P 1741 1 1574 IMF7 136:3 HiFI tem 6 IMIe 1601 7 luo7 IFM I IF39 7 6 Sett F 4 J079 13h76 8 4054 Iese6 84168 I test 1 5302 19753 161M 1 6578 1 6076 I 4 00 1 7516 D

Pt 44 f t 44 121 44 871 44 778 44 i71 44 371 44 478 as 571 44 SFI e4 771 e4 371 as i

tm o 09517'07We 077F4 $Me7 03g4 0 3775 e n?1 03789 0 4173 S4MS 6 8980 0 5103 title 04fl0?

s

. Sf0 H6 h WO M 1145 6 5105 7 1758 3 13e 7 IMIe Inte 6412 9 8 774 1510 8 Il991 16Se t 1710 6 6770 4 I

s tell! 1 2908 13M6 1 3975 143M i 46 4 lette Illit iMU 188e i M50 IGNS IIIM lPMB D

14 PS 64 70 114 70 164 70 fle 70 364 20 364 70 444 70 He 70 - 864 20 Me M Gad 30 s000 e SWMS t ite) 070M 07 0: 0 7805 0304 O nli enM Omi 04n0 0 4600 Sten Olist 0 %,5 GBlen h Gull 1138 3 Blu 3 tree t 1797 6 83M e 13F3 9 1404 7 1478 1 1936 7 1996 9 1657 0 1747 0 1771 8 8

$525 17#1 13tp 1379e 1 734 14570 1 4074 1 9430 1 9403 I Mie 16MI 1 6743 1 7075 8 7300 i

i Sh 7 74 SP N leffe 1974 30774 7%7 74 MF 74 e5774 HP P4 6U 24 75774 0U 74 7000 e 0 07615 0 l750 G lad; 0FNs 0 7t?4 0 7006 0 3173 0 i3it alne teet O saal teng $1101 Glelt 942 MI h 40379 timt s tee n 17?9 0 17es t 13M 3 Itse e lens e 147h t ISH 6 1987 16 % 7 1715 4 17757 6

0 0727 12700 1 2983 B M61 14115 1 4406 18790 liste 19532 Iltal 86N7 I Hel 1 7084 1 830 to il le H 19R H lie H 300 % 7% SS 34 % e4il SM $5 6%6 %

0.4 H 7%

Sie %

F300 e 0 07069 S t4U 0 14*4 0 7114 0 ?e' 4 0 7770 0 7*50 0 1165 0 3%el 0 1097 Gent 0891 an7 t ilag G89456 h

09986 It?? P 11?) 9 12 40 1774 0 IH31 IM33 1490 0 le47 6 pl30 9 199' $ 6663 3 1713 9 IH44 s 8 0870 iM76 iM91 8 3523 4 4010 1aMS I 4700 I ste4 I 5463 1 M63 16M6 i M27 1 6956 L UF)

Sh se il 44 ll tot 18 19e 11 tse il Me 18 444 11 See il 6s4 11 744 Il Gas 11 r:80 e SWUF 0 613 01675 07 tel essee 07F93 0 7999 O nit 017:e Genn Deus Oeus Sam nu tti h

M71s 1111 7 17m 1 IFu e 1314 7 IBAI Imf 14t.4 7 194) IWi l tell 1F0 3 IFFil s 8 0929 llM9 I Del I I*t s b elos le476 14910 ISM 7 8 5423 1 4797 16%S 1 6101 1 419 Sh e-seperheat. I h = enthalpy. Stu pef lb-0 = specific teleme, cu it per Ib s - entF0py. Stu per R pef lb l

B -7

Talpie 3.

Superhealed Steam-Continveef M.est.

W5 le 1 41 Sal lem.eestwo-Orrees hkener t 1548 l.m.)

welee $ seam M.

19.

m.

l l

II ut. 13 83 H

n D.

37.H 7 M 137 9 179.F37 9 437 H.5 279 337 M 37M 47M

.S37 mis.m.s.mM

.Pn.,a.n

.37 M

. W 79.. 14 l 74 7164 9.e,.

74 7M.

131.N 54.214 n.2 76.

3 37 3

M 34 1957.3 3

86.155 4

17

.l. n.o e

fill 71 95 1244.7 18 3 17914 1719 7 1 13W. 1991 7 leM S 9 1893 7 llnl I

4 69.6 9

1771 Mll IJ232 IJW i 4717 546 9 I 4 37 iS l 83MI ISul 13El 83 9.

13849 9 I6 7 I F167 1

D.

um

.S.I M

.l Ill.* l.l. 731 99 n9129.n u.m on 9 un, 2.I.n.331 9.NI H449.u.31 Hun um.131 1 631 H.

4 4.I n

.F31 M4m 31 9 im i

4 n

n m

St.in

.In n I 3 3 184 7 6 13 34 IM74 IH67 1423 1 14 9 nm um im,% mn um um m.9 897 7 8517 9 8%46 15 5 17M 2 In.4 nN im i= um um to-i um ini6 u m..M.M..M.M n9 IM M 14

.FM Mn 2M M.nn.3MM=n.4M M&H.u um.MM

.=n..FM 9 3M M 4M M S SMet M.9 m.

uin

.m n

n os.

Sinil a

4.a.7 M

5 7 II ita I 1796 5 I lett t MF 8222$ uW.7 IJ.l.I

.IMI.t 1387.6 t4M 1467 7 I SM.i IM22 H.3 7 led 6 17 77 l49.e 14 2 43 5 14 lette IMM IM.6 BBM IA.

isen ilu6 s M6 D.

.m..P 47.n.7 47 nn.n 47.th 4F um

.7 47.Ft 47 17 47 17 47 37 47 37 u m et en47 17 47 6

.f 47 une..

n.

m.

S7t WB 7b.7 M iJ.9 7 IJni BJ.t.l l.6 1147. If3 I?.t t 1343 13Fn 14157 149.

n6 nlF S B6 9 4 614.7 193M IMll 8379 IWi.l 16 41 n 68 i M.r.

N6 F

I IJ9be 14NS 8 462. 149 6

13.. 1426 I.7 17 25 i

&....iu... 85im.SS.,..IM um.MS.4 Mn.365 4 nin n N til,Mn u.m 11 14 5 ftSM 365 4 4,l M 4.l N $15 fil.a m.

n m

l.=>

n.2 2 BMS.. iln ? 12M6 12G i33 7 137 141 2 64472 1514 WM tal 77 69 um ulu um u 2, iam n2. nm i =. 14 16n m m n 164732Mr l6793= um mu 1M.m 16 i? sl an

.==

,n

. n =.M n a n

.m.F.

um.,

um..un un..une.nn, n mn an.m.n.a.o mn n

.m a..M.,.m.n. 1.n ie.u inu m.

i.u,n.

nN m..

ulo..pn m n m.a.,

m.,,4 lm9 un 6

m n

2 a, n

um um um nm 8.u n m i.n,i4=5iWM un.

mu mM im m

m l nm

m..

..e.n

m. m.u n b.n m u,.m u m,,e.m,m.n.u

.M,.e. du e..u.u..w u.M.u..n.o e.

u u

o 3 m.

im u-u

.n.n. u, 14 1 m.,

im..m m, >

.n.

.B.m.I n.n m

u B.

no, im.

Im

.e 4 nm ion, nm ma iuM im.e,

. mi4

.e.

Im nm in i

D.

4,9 ??

n.m.M FFan.let 77m>.199 77 Mt Ft PM 77 n n e nn. um

.3i.9 72 nn.399 77.um 0 Ff vin um. 799 F2 est 73 4 99 ?? 699 n 4m

..ml..us n

m7 Mn 25 7397 M33 S4 12H is inn i m, > =.I 13.t.3.

335 4 1399 i m.7 nm n66 14 M 14n 3 n.

15M t 15776 16M F 1699 IF 4 in um ma um i.un 4 n6s o

D...un

..u 148 M.,19,4 W,.M4 97, 294 U, ur.394 W 44 W 98 97 M4 97

  1. 4 97 494 97

.m. r.5 4 97nn.94 97 794 97 6

U.a u m u m.9 m

n.

n.69 7 nF6.n.

ml w nl

.n.m Se till 1177 3 In 130 9 in 139 9 la i

iMu um inn imi i4.34 i.33 8 8

16 3. 153F 4 IS7 3 16M. 169 3 1 76

. M nn nm nm um mM m n n.12

. n.n. m.21

..m,n

.nu.ns?. u.e..

.Mu.nN

.,..nu

.M.

In P 12 m a n.n Im.)nn inn om n.95n 14641 i m, ISM 9 m1.Bl.u t.

1696 7 + 1739 9 Busa 139 7 54?

ii IM4

=>

m mu fl.'n. t>'ln fM., iM f3' :

n 1 M 'imlt. *l.31 *IM.1 *l

'l

'lu. fCt 2

al MMM iM sum i nia iam W

mM i.

.i

. nu.. n.o,. an,. m6,., =,.nN.un,.m3.rm,.,. =.,

nn.1.i

m. 6 Im lu i.

nu Sent im 149n im i=6

. 36 m.691 82 1324 BJFM 8 4l12 44 3.

s 1 44 6 llM nell 8 961.

f 163M l

t.

.n..i

.m.,7....nse...nn,.nu.nn..

.,m

.n.

um,.

mn. n.u B 3 in un, l.i.6 i. mn nn iMn 13 16u.

nie 33 t i 43u l e64 1 4914 1 6!49 1 53 I SSM ll.W Im. m g

127 1 G ute i,

m.

m.,. n 6, u m.,,u.

. mt,

...,9

.i,lui. l.

.,nl..nu. u,M...,. m6,. n,1,m I le I,

Iml Im. 149 I 4.u m>

nn s

n 6.

m I.

n i Ma i S.n.6 I 2955 i 3687

$ M2 I4MS I4%

21 1 M68 I hfM 8 W47 4644 4.,,

. Mn..,.. im.....

. m, 8.n 8.i.m...n

.n.,

.nu,.n.n..,,

Ilib.8 m.i.t n.

im u mn. i.so mn.3 im m

..s Im6 I 3378 83 7 ielW i # 68 s

I non 8 e73 i.et4 8W 86 47 1 M17 Ilin in!6 4.

,6

. n n m,. n n,. an.. im o.,n,

. mi.

,6.no. m.

,,m..

n.

une ml n. m.i

.Im g.n i m.93 nin n.

.mn 1 6 lu l.95 i n44 IJn3 iMM 14 53 4JM s 64 14 I l!N llut 57 4 64M 164W

..,n, 6nn3 4

.m,

,,n.. m..,.i.an..nu, um..

.nu.m,4,. w, n im. im.9 1.in 1 3% l 4417

. im m

.m.5% I 13n i M73 im.i iMi. mn so 4 n.n 0 3SM I 39 I

IS I W6. i MP3 16 1 6389 Sh a supe heat.F h = enthalpy. Blu per Ib-v = sgcific v. fume, cu f t per Ib s = entropy. 8tu per R per tb B-8

Table 3.

Supe 7 heeled Slesm-ConNaePed Ans Press SW$g le Sal Sal losgeselere-Dee'ees f alwealml Sal. IemSt Watee $leam 750 WO Ole 300 gg8 1000 1960 1100 1150 ING 1250 1300 lett lHO Sh eggs e

84MB SOMI 01005 Siles Ol3M 01445 O ISt{ OlH1 0 1792 0 8800 S ite? 03071 97NP 0 7404 h

538 1300 0 IM73 !!77 2 13376 1300 5 1473 r 44639 1901 9 ISM 4 16730 1608 5 1674 3 8747 7 s

I N38 4 3004 1 2922 IJ846 IJ047 1 4148 4 4472 3 47M I 4974 i $197 3 3407 8 3607 I 9907. I WM 4.

e 00m.

. tin tiin ein? Sim t il..i.. im. it. Sins Sitn 07:4, O net b

054 9 l07li 8190 7 INSI lN31 4372 6 14170 8464 0 1496 7 15338 1%97 140s f 1673 8 17400 s

I titt e.len 12M8 IJ3H IJ74$ 8 4000 14MS I 4467 1 4908 1 6428 8 Hel l S$43 8 $921 I W72 D

sale v

9WM S # 98 00BS$ 0 ISM 0Ilm 01312 014PS 9 ISM e16M S 8750 eless elett 0 7050 en03 h

549 19879 1873 4 1752 9 47135 IM46 14:07 1852 1 8498 5 8 leu lMll 15791 1400 9 4670 0 17374 s

1 0070 8.lH3 IJ612 IJIS7 8 3646 1 4501 1 4300 4 4902 3 4043 7 52H IMen I.30 0 I Wie Sh OIBO e

08BN 0 0538 ettel 8 0873 91stt stM4 GIMS 9 8450 0 1553 9 3642 Olne state Slee6 S tile h

085 0 1984 9 llMe IMee 1303 7 IM46 1403 4 lee 67 1486 3 35745 IMI) IM72 Ite64 8734 7 0

4995 8 4370 t tem IM iJhel 8 3044 142M I 4000 4 4762 8 4995 i W14 8 Mia l tem 8 6161 Sh Oset e

SWIF 00e03 0000 tell title Otter 01797 4 1302 tiets etS77 0 64M 8 1736 8 1200 emt b

' GM S 998 3 llM l 17277 17937 IM84 1996 5 1440 3 1401 3 1589 5 11671 19934 IM37 17M 1 S

&#46 88375 s 2296 IJON IJe46 1327 lelli 1 4437 1 4604 8.4538 IJIS3 ISMF 1 990 1 6105 D

that e

Steet 0 0847 0064 0 0096 0 1001 Olite 017U elut 9 1472 9 1100 e ttet 0567 0 1015 elme h

G24 975 0 1819 9 12:40 17837 IM07 IN96 14M 3 l475 9 1515 2 In579 IM94 lesel 1779 5 0

8W86 im 12I37 IJete IJMS IJ742 1 4076 4 4306 s 4620 8459 45003 lues ISH7 1 4090 D

One O'Mn een geen tem seco Giin e87M elm 9 447 Giv7 eien Sin? Siu, sees e

b G77 3 9ba 4 1101 0 1701 8 17?16 8317 0 las76 1474 3 4470 4 Ising Its4 7 Itag s IM74 17x s 9

4W BM7 8INI 12732 8 3tte i N60 1 1999 8 4797 44M4 4 40N I telt I W44 1SM4 8 toen Sh WII e

0079B 0 0397 8M79 0 0757 0 0900 0 1970 t llM S I??1 0 1309 0IMI O lett 0 1544 0 1644 0 1817 6

022 9 tell leta l 1188 8 IM34 1323 6 1375 7 14273 1465 4 890S 9 IM46 150; 0 1654 2 1774 7 8

9 9710 1 9746 8 8833 125tl IJIM IJlle IJ025 1 4229 4 4600 1 4748 1 4178 IJate ItH3 8J960 m

0008 e

8 0297 00HG 0 0895 O n6SS 0 0793 0 0009 0 1017 0 1108 t ilat $ 1206 OIMO tiell 0 l$44 8 1649 h

013 9 919 % 1984 7 11 % 3 1237 8 1307 7 IM81 14073 1452 7 1494 2 IlM I 1577 5 16a64 17176 5

eM61 1 815 1855 IJN8 IJ987 8.3HO 1 3743 8 40M 1 4347 1 4804 l eed! I t062 I Mil Inke to 1980 s

0 0779 003M 90sM $ m73 0 070: Smi6 tells altad e ttes ellet e1718 0 1740 tien 01547 h

Ges t tels letti 1874 9 I!!? S lill i IMel IM77 14M t 1482 6 IW37 1%31 16:s 6 171s t t

S 9602 8 8100 8.IN3 IJ0bt i Net I 3171 83M7 IJ90s lA2WI I 4e# 4 elle i etM iun !$73%

$h IIII e

800FF tels 00390 Seit ets): 9 0737 0 0833 0 0010 Sent title 911M 9 1700 0 8371 014D h

563 #98 997 9 l#77 1108 3 IMit IU79 83H P lent 1471 0 1613 3 1553 7 16M 8 1704 6 8

8964 8.5 24 1 9833 1.1888 1 2473 IJtet IJ397 1 3758 1.4005 8.43M l.4006 lett S Wet I M32 Sh Gelt e

3 0767 ees6 0 WFI 9 Gool 0out c 0671 0 0762 0 0045 eM70 00e00 eleM e1115 017M 011M h

70s 6 479 1 974 4 1e74 3 ll654 1248 0 136 6 IM72 14 30 34S9 6 1903 8 ISta t IWit 1690 8 s

Sten 10122 ISM 4 8.4613 I F278 1 2790 8J233 4 3603 IJt24 8 4208 1.4e67 5475 1 6840 8.M33 th Stel o

0 076{ 9 0795 0 0350 0 0a?9 405n 00615 0 07M 0 0780 0 0053 8 0919 0 0807 8 8041 0 1151 9 t?$4 t

797 7 871 2 959 0 8054 ) 8144 0 8221 9 lise n IMPS 1400 2 leas t 1497 9 ISM I 16t % 4 16917 i

e Statt I m3) 1 0727 1.84 3i IJ00s i 26H I 1976 lJeee 4379J 8.4087 4 4352 4 4597 I test iMM Sh I

IIII

.e 007$4 0 0708 003M 00407 0 0483 0 0%e 0 0649 0 0774 0 0794 0 8054 0 0910 0 0075 3 1081 0 1179 i

h 798 3 SM P 944 0 10374 IIM4 12048 174 8 1333 0 13875 18378 1487 9 15:4 3 1407 9 16M 3 t

9 9354 09tM IMl3 8 8785 1 8918 12468 8 29M 4 3323 IJ647 1 3970 84243 1 4492 1 4944 ISM 9 Sh Sett o

007$4 0 0797 00177 003a0 004tl eng7s ger,43 0 0675 0 0747 00A04 0 0867 Smit 0 1019 S till b

706 4 M97 930 3 10H 4 1104 9 81877 IM66 13:0 9 1375 84761 64711 still IMne 667e 9 s

0 9380 0 9900 1 0516 t ill3 8.lHI 12320 12781 1 3194 13$46 1 3068 18137 14392 1 40%I 1W63 i

th les00 e

007$1 0 0776 0 0312 00M2 0 0875 0 0895 00W5 0 0833 0 0s97 0 0757 0 0817 0 006S 9 0963 0 1054 l

t 1830 814 9 930 7 10:13 30947 1846 8747 0 13053 1381 9 1411 3 1463 4 IMe6 IS931 1677 8 e

0In0 0 tes? I 0832 1 1839 8 1638 1 2485 i Mll 8300 i M7S 13749 4 4035 8 4ttl I 4763 1 1883 l

M

'9000 e

0 0749 0 0771 0 0303 0 0147 0 0s 08 0 5:47 0 0SH 0 0495 0 06 % 0 0718 0 9764 Smit 8 0913 0 1001 h

701 % MOS 973 4 1001 0 10813 8150 9 Inte 87974 33581 1404 7 14%3 9 IM00 ISPS G IM47 s

0 9232 0 9790 ithe i OlM i 1519 1 1060 1 2529 1 2946 83H1 lJM4 1 2937 1 4102 1 8477 1 1800 e

$h = luptthtal, f h = enttialpy. Stu pe7 lb 9 = Specific volume,eu ft pe7 lb t = ent10py, Stu pe7 f pe7 lb D -9

Table 3.

Superheated Steam-Continued AS: Press' W$0 ta Sal Sal Imteraldse-Dagent fahenineet Sat. Iem0)

Italer Steam 100 000 Gle 800 080 1000 1950 1100 1100 1700 list 1300 1400 1500 tiene e

teres Ser67 S etts 9 336 0 0186 00s*3 $me3 90W7 Sout GesM 0 0777 S e7M Seese 009$7 b

PMS tes t 9175 997 1 ten 19 1846 3 litt9 6795 7 13M P IM44 1444 6 1891 % 1674 7 leal 6

0 9195 09MF 1 W9P I WS8 8 8487 I test i 2414 3 M33 1 3309 13H4 1 3s42 l 4887 44Hb i 5813 Intes e

SW43 Se763 SeMS Song 0034 SW73 0 0s73 GEM 00M8 0 e648 0 598 Stim Des 27 0 0000 t

777 7 083 8 917 4 9ss % lente llM 9 17043 l360 7 INet 83844 leM S 84037 15748 8654 7 s

0 9861 0#N 8 SP37 1 0172 81346 - 4 leet iJ3W 82727 8 3107 8344 1 3790 1 407% 8 abil I 4989 90108 e

8 0001 SWet 00 Pee 0e317 0 0357 0 0s95 Stew 00we Stut Ogle teste $$7es SO7ge Geest h

776 1 Osl e 1979 977 8 10be 9 1174 6 18937 IMet 131s t 1378 7 1476 6 14758 1968 9 leas t 3

0 9133 0 557 1 9877 1 9784 l l2M 3 1742 IJ70B IMii IAlt 1 3363 4 Mel IJtel 1 4830 1 4477 93100 SWN SeP% O tPM 9 6309 SeMs 00MB 00837 00 sal 0535 00bt3 006M 9E73 007M Ges17 6

774 7 434 6 903 9 978 9 les31 tilS2 llee t 17479 130e e Inna 1414 0 14672 1964 7 16831 s

0 9101 0 Ele 80127 8 537 1 Illi l 8613 1 2187 1MM iJ980 8 3764 8MM iMee 1443 8 4000 tam 0e735 0951 teP75 Stier 001M 0014 0e84 08806 0 517 00Me testP 9th45 0 0775 0 0799 6

Fill SM S 9ene 9sa t ISM P lles t 1174 8 173e) 17M 4 IM66 leu 96 8499 4 l%I6 16374 e

0973 09h0F IM IM10 l leM 8 1%78 8M5 1 7s45 1 7833 8 3t M laste 1 3701 14Mt 1 4741 93 5 3

00PM te?ti S EP71 Sert 7 SeDS 9036s 00s05 00s40 0 0s97 SMM tee 77 00619 0 05 % 007M h

777 3 SM 4 Stil 952 7 1030 0 19991 alu 3 IfM P IMit IMel 1801 5 1864 8 BMSP 16Ji 9 s

0Wel 09ba8 8 00H I#N 4 1934 I left 1.Itst 8FMI IJ740 123 BJsil 8.3705 4 4228 Ie67%

leseg 08F33 S ePe8 08P67 00Fl! 00U0 0 0354 00M7 Ges32 State SMll GMS$ 00H5 S N70 8 0740 h

Ill 3 632 6 Ste 3 the 0 1874 % IM78 IlSe$ 17784 IN30 BMs! IM38 lose 4 51388 1676 5

)

GW19 S Mll 8 9996 1 0873 1 9013 B leM lleil 11282 IJ671 IJSFI 133M 8 M38 1485J 1 4612 leses 0 8231 t eP46 0 8764 0 0787 Se3:4 003eg Selm 00st8 0 0s50 tests GMM Sm73 0 06e6 0 0714 6

770 4 Sal t MIF 9W 3 1489 4 leas t title title 137% 4 13329 13e6 a 14D 3 ISH 4 16?ll s

O M98 0esed 0 9957 i OsM i 0097

l. int 1.1003 117e8 iM97 8 7949 43N6 IMet ! 8087 I 4551 teme

$ W30 Stree 00P68 0 0787 Sales 00337 00M9 00ses 90843 00AM Omit GM17 Se5N G asto a

M96 879 5 353 the 9 1915 1 1800 6 1844 9 IJss e INGI 13N G 1379 e 14M 3 lim 4 I615 9 s

0 0570 0982 0 9070 193st l ess6 1830r 1872 IJIM IJSil 8 2000 IJit? IJett !aer: 1.4898 gente SW70 0eper 00Ma eer70 0smP G e3M 0GM9 0eM3 0 esM 0Osu 0Oset 8 # 34 0 mas 6aus t

449 rep m77 tsia teill len t IIMS 170n 3 lail 1319 4 13770 14736 1n784 8610 s e

09:46 e tsN 0 gBeb ISM 0 I 0797 I I747 8 1674 1 MP3 i NSF 1 Mit i 3131 3MM I 3999 I 4813 Sh = superheal. I h = enthalpy. Otg ter Ib e - specille niemt.tu fl per it s = enlF0py. Blu per R per Ib 1

l i

B -10

enman i.

i.

a n,,

" iui La

[ '~~dH'WQ4[ jggf lg1 S T 1-me o

4 drip.

1'; y M; ! * -h!

t

$ 6 r;. g Np (S D--

..: I N..I M

_o..

T

=

a...

.mh2 m

A 5

f..

T %s 5

  • 7-p, de.

a.6

.*4.a.*

==

.4

. 1pu: &,.

'.f H

.a

=

2

. - $., $..=

~

=

  • q*,.r,,, e,.ind.

J. TT, -. m. u.

--+

=

,*<1 4,.' O.

..,'v_p~..,N, 4 M, - m,n as Y

lI' e

A an

,,gw..y-..

n 1

. M.r L.~'A.; ' r c -- -

>,f,,. n. S,.-

-h ;qr; f'r.p ';,

an

.m.

=,

.1

-:w,,

:c,, rF:-:.:=,','. :Fe. m,. art r%,.s... -

1 m

c,,

c x-

.: u I '/

O,,p. y '< ' L. w.:'

. e

. -. W/,'W+r i+

g

=

=

g %..

~, ^ l ' ( l. f] &.{4QQ w

man m

R:.,rgy pg-W+==

myMy

=

-a+

,c

+},t-- A=tfxpy; 3 Q j:q

g
2. h,7S

=

/ nia4 rfwN4 ww-a

KD427crinihta;f* gy' ; ; ".

umMM d#r-4t#UMH, r a im m

1

+-r Y,- $., $

Y'"

bb,b$$,

S 1.

aMWM4k E- %<-.xMM:=MWN===

g w,

w'n

. m

-g

&'/ =kwi5. 4ppy crWpww a.

usr r,' l-

"WPh f_rW~ M*3 t

lcw,!....

w... m.+,2:n,'t e,,

=I

=$f's,. -,:-'.m%mwiw yw

-m,. x.. =

  • 1 m.m

,r

w rM
=

p.1

, -.- m,u ea

< i.,

-.~.y, m...

.ri-sp.

~.._

~

wi

. sr.-

[*+..d*f-tr,k' Lg1 - ?, '

L',_'. $*1nN;'

' ?g*'? W W-_ *

,..s,g, ~, ~]

=

y'"'#'

'./

['--

"],

??:

,li--W ; AR-nsm h ' M,' t-De

F.v, ' f Tp_

gg

+.

y

.F

=

?lK l" ~l'

,-E Y-L ' ' JugyQ*T'

.f- =.

rgn - J'., m,r c; en w- 'u+

$r.,_ ~

-.g&.'.l L...'__l.,-P.3,,u m-ao r,w r, u "

$1.Y/4Qi~j:t;*h~4;;6%%ir&W r ;.;.C' (_Mi

~

w ww -w ws;mc mm.

==:

v

,,njy H+::

y;' -l l w.,q ',: l%

,, n '.

w - --_;; 7 ;z a

i. fr,W, 6, A W 7._,o,%.:,, v,.,WNN-r...a-u _

/

- ~ -

. ~_

n.

1r

,1

,r.z jWH*Hi M'Q

'+-l h

", j N

,T ' ~ re-n,tn

s ~

s-P.; rfr'_,; ', ; ' ' L..,,,',' i c w ' ;~'sM,, n;y.-m, _,, n *o u

c_

1 1,_ -

n

,4n J

n mg.s

=,

,. A,.:x;n > #, u,, x,,,'- -- w. v,:,.

~,. i.. - -,., - _

a L,

s >

1

'L t..

- 2

=a-Yl.

'[_'

I IE-J k.

\\.

,,f 1 G,, ',/ N.R mr p

.y-

'J:, : %,Ihr-.-M,&,--N, 4 ' - e.

dy:,,M I ".~/*/N.=. J. "

N_

W. W/ M-T se w

a

~ -.

WC M

[hY9'NaNS,m??d l

$& l-

.l--

. I &o,.r'

?W

~

,, p, w=,r +. -

, mz_ 2 :, _,.

,=__v..

+w

.r. %

y:: M :%g :

1 z

_v 1.

M,,

  • r d,.; %f+'*++w' - - -;%7. ;.,.

m.

m m

.t_MM, ~.4.

,,,l,f.f, n

ne

~

_~

' ~ ~ ' ':'v,,-i+'l ' ', l,w, x,, y

. ~

.w o

4'

.,i K.

' '; &,..,f, f.--4 %'

==

~

,c 1

.,u

,", $M :y 9- -. *gQ+ x, 7 'yj ?,i

~=

.-a

--s* e 1

1.

d=p *.* xW vPJ

' stem :-.g.qr.fi AW=

, --n ew:nv ?;,e

Ms-g- ': w;

~+s.,

e J

Jr%m i+i r-

~

,7

'zy;"

=rUdn&&Q* D +./L'Y,4' 'n '" M

'f

__?

^Q j W:.$r =,

9:::a l /,T'M 't.g

-+r-,.

- M?

+

n $... tC't*/.f-W a. :'..

=

r 1

m i

.,r M4NMd/

wr.A"m!' = "

[nNiw%. n"p.e;hM.M

=

, m

=.

. n

=

ht

.in

.. Wnt :'m W-- ua a

*; m, r rc 'A GWm//W r,, $. 2;es;%;.r[i....

r X _ /=-

i

.s, =

a.zm. u.a r.--...;.a.1'..,.,..,..,..x.,..ng jae

... u

..r

..~...

...... ~.

~.,. -, ~.-

n

._7

$..if$557G*/

.5

,Y.'N' b

,9 _ _

=

=

....r;.,.. a,.......t..,.g/.

- w

....,... 't,.'. ' U..*l : f.,

.f. '.t..,I. ;. y l

%3 4.."}It '

,,,f.,.,_

f.......,.,

. L..y

,.2

'.' L

  • r ' ' 4 * "..

.s,......,.......,.,

g... t3...
  • r
  • f r*.

. a. *

.., a v

tr vr s.

SWTtGM i

e 4

9 e

SELECTED TECHNICAL SPECIFICATIONS

9 1

1.2 DEFINITIONS Various provisions of these Technical Specifications set forth limitations and restrictions which depend upon modes ~of operation.

The following modes of operations (1.2.1 through 1.2.6) are defined to clarify the intent of such provisions, and are not the same as, nor should they be confused with, the positions of the mode selector switch described in Section 6.1.3.

1.2.1 Power Operation - is any operation other than shutdown or cold shutdown with the reactor vessel closure bolted in place.

1.2.2 Core Alteration - is any completed planned sequence of movements or core components resulting in either a not change in the config-uration of the reactor core or a not gain in core reactivity.

1.2.3 Refuelins operation - is any operation with any of the reactor vessel closures open during which a core alteration, or other operation which might increase core reactivity, is in progress.

1.2.4 Major Refuelins - is any refueling operatida with the head off during which four or more fuel bundles are added, exchanged or repositioned in the reactor core.

1.2.5 Shutdown - is any reactor condition meeti,ng the following requirements:

(a) All or all but one of the control rods are fully inserted in the reactor core; and (b) Primary system coolant water temperature is less than 212*F.

1.2.6 Cold Shutdown - is a reactor condition involving no fuel in the core, or a reactor condition meeting with the following requirements.

(a) All of the control rods are fully inserted in the core and withdrawal prevented by means of the keylock selector switch, the key to which is in the possession of the Shift Supervisor; and (b) The reactor coolant system is at atmospheric pressure.

(c)

(DELETED) 1.2.7 DOSE EQUIVALENT I-131 - Is that concentration of I-131 microcuries per milliliter, which alone would produce the same thyroid dose as the quantity and isotopic mixture of I-131, 1-132, I-133, I-134, and 1-135 actually present. The thyroid dose conversion factors used for this calculation shall be those listed in Table III of TID-14844, " Calculation of Distance Factors for Power and Test Reactor, Sites."

Amendment No. 68, 77 August 26, 1985 i

TSB1184-00818-NLO4 i

.., _. _ _ _ _ _ _ _. _ _ _ _. _ _ _ _ _ _. ~. _

8 i

(note: This is the new formet of the Specifications to be isewed in the future. W refore.'the numberlag system may conflict with existing sections.

Both are ett11 applicable.)

+

Liettina Condittene for operation Surveillance Requirement 1.1.5 REACTOR DEPRESSURIZATION SYSTBE 4.t.5 REACTOR DEPRESSURIZATION SYSTBt Applicability:

Applicability:

i Applies to periodic testing requiremente for i

Applieb to the operating status of the Reactor Depressurization System (RDS) and the attached the RDS and the attached mechanical sambbers.

i eschemical enubbers.

]

l Objective:

Objective:

i To assure the operability of the RDS and when To verify operability of the RDS.

working in conjunction with the emergency core cooltag system to allow cooling of the reactor Specification:

M 1 in the event of a Loos of Coolant Accident.

A.

h isolation valves shall be test-operated Specification:

at least once every three sonths.

A.

The RDS ehall be operable at all power R.

h depressurizing valves shall be test-levels and when the reactor is critical operated during each cold shutdoun; however, with the liead on or when in hot shutdown in the case of frequent cold shutdonne.

these valves need act be esercised more conditions.-

often them once every three months per R.

h limiting conditions for operation of Section IWW-3410 Summer 1973 Addenda of the the instrumentation and actusting circuitry ASME R&FV Code Section It.

which initiates and controle the RDS are gives ip Table 3.5.2.h.

C.

h instrumentation shall be functionally tested, calibrated and checked as indicated Aettom in Table 4.5.2.h.

I.

Should one depreneurizing valve or feelation valve become inoperable in the closed poettion. the reactor may reesta in operation for a period not to exceed seven (7) days. The reestning valves and 136 Amendment No. Gd. 78 October 7.1955

1 t.seitina Conditions far Operction Surveillanco Requineemt s

l 3.1.5 CEACTOR DEPRESSURIZATION SYSTEM (Contd) 4.1.5 REACTea DEPatSSuaIZATION SYSTW1 (2estd) actuating circuitry shall be demonstrated D.

System Imgic shall ateo be functionally l

to be operable within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> and at least tested as indicated la Table 4.5.2.h.

once each 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> until the systee is

{

restored to operable status.

E.

Should one input or output chemmel fail, j

the reesiming three chaemets shall be l

2.

Should one isolation valve or depressurizing tested within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> and at least once I

valve become inoperable in the open position each 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> metil the system is restored I

during power operation, the plant will be to moraal.

)

brought to the cold shutdown condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

F.

The UPS battery surveillance la 3

described in Section 11.4.5.3..

I 3.

Only one RDS valve train, one input channel.

one output channel and one UPS power supply C.

The RDS costalament penetraties assemblies j

may be out of service at any one time.

If seal pressure shall be esamined at these components are not returned to six-month intervals.

i operable status within seven (7) days, a 1

norest orderly shutdown shall be initiated R.

A visual inspection of 10% *(2) of the within one (1) hour and the reactor shall thirteen mechanical snubbers se the BDS be shutdown as described in Section 1.2.5(a) shall be performed at each refueling outage within twelve (12) hours and shutdown as but not to exceed 18 months. Visual described in Section 1.2.5(a) and (b) within inspections shal) be used to verify that

)

the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

there are no visible indications of damage or impaired operability to the 4

4.

If the RDS is declared inoperable because of a sembbers or their attachusets.

snubber defect and is not returned to an operable status within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />, the plant shall I.

A functional test of 101 (2) of the be brought in a normal and orderly manner to a thirteen mechanical sembbers on the RDS cold shutdown condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and be shall be performed at each refueling outage maintained in cold shutdown until RDS can be but not to exceed 18 moethe. Functional l

declared operable. If the plant is already in tests shall be used to verify that the j

a cold shutdown condition. it shall not be force that initiates free movement of the i

started up until all snubbers are cperable, snobber rod. In temelou and compreseien, j

is less than the vender specified 5.

Shoald two or more RDS valve traine become assimum drag force. Activattee restraining inoperable the plant shall be brought to the action shall be achieved within the vendor shutdown condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and to specified range of velocity or acceleration the cold shutdown condition within the in both tension and compression following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

137 Amendment No. H 78 4

l October 2. 1985 Corrected 4/8/86

}!

TSall84-OOOlB-NI.04 i

i 1

,s Liettian Conditions for Operation Surveillance Requirement l

11.3.3.4 CONTAINMENT SPRAY SYSTEM 11.4.3.4 CONTAIW WNT SPRAY SYSTWE 1

]

Applicability:

Applicability:

i

)

Applies to the operating status of the Applies to.'he testing of the contaisosat j

containment spray system.

" spray systoa.

j Objective:

Objectives i

i To assure the capability of the To verify the operability of the contaissent

]

, containment spray systes to reduce spray systse.

j containment pressure in the event of a j

Ioss of Coolant Accident.

Specificattom:

Specification:

A.

Once each operating cycle, the I

following shall be performed:

A.

During power operation, both of the j

two containment spray systems shall 1.

Automatic actuation of the j

be operable, contatasset spray valve MD-7064 B.

If Specification A is not est, a mores 1 orderly shutdown shall be lattisted within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> and the reactor shall 2.

Calibrettom of flow instrumentation.

1 he shut down as described in Section B.

At least once every refueling outage.

I 1.2.5(a) within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and shut down not to exceed eighteen (18) esoths, I

as described in Section 1.2.5(a) and (b) the following shall be performed prior within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

to start-up.

C.

Operability of the fire water supply Verify operability of power-operated

{

anet recirculation systems if governed valves required for proper systen j

by Specification 11.3.1.4.

actuation.

1 i

D.

If both containment spray systems become C.

Surveillance of fire water supply and l

inoperable the plant shall be brought recirculation systems is governed by to shutdown condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Specification 11.4.1.4.

and to the cold shutdown condition within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

D.

Instrument channels shall be tested and calibrated as listed in Table 11.4.3.4(a).

E.

(Deleted) t 143 Amendment No. 37, 78 October 2.

1***

TSI 0002A-Nt.04 1

gL,T_gg 0l346 d ai s

ll

[f 4 dl r--- - - H

'J.c@.

u m

-.j-T.

8 g

g-u; th

'i i

g a

m i I,-

d i

+2 0

r f,.

u_

t

.. 1

, I. t a,ny q

t, n ___

m i W," @'4 r"

CM

,Il y $

0 9

g{!

t~r: t['U F-ll ll g'la rr.!

5a m'

r!

'g.

K t,1- --

'T I

l T~"

l

/r-

! y 'p'

  • y ~

yf ERE{

ED l

t u

4

,.c g.

4.',&

'f:r*."***--- u--

.=.)...J J

F...

A tv p y

.,ftr-----

i t

l i

'.E=i 4 i
>!. R.
::::.:gg.... 4........w:t.m,1::li:

i (gi cn,a p:n > '

v i

i,

u i a

- - ~~ ::. : :..~....z i R--l i

?..p;&:g:' :.-.= "-E==e==-R_;.~.;::.._.:,.gl l Ln

[

g g

,,r,...... =....

lll

-___ ' ' $* '1

.. _ J,

_ _ ! ! ! - - - ---, -- w -.....

i n,.- T t e

[

I i

?

-y, Md d,,

y

-o

> =. a l

..>.El

i

[

U: td 1,

p[

f' ::

s E,.: ;.! E k :.. "....;

, es.,u.2g;

.L

'l

.:S 9

  • i

=

t i.'.

-QII

,u.:

s 4.3 Q

I

.._ t e

1 1

m.-- -f b I rq.

s q

  • s,,,.

,e gr

'i T

h>f :,-

I.

ER i

  • g I

1 4 :llAW-e o

g

.g Q]l El

{

=

$ i 4 iG l in t si o

c l

a e

n y i gl :

J h

3 e

t i

i r

1 3-a v

gu._.,g--

i) ty :

,,f g.

{.

j t

...1 1

y'j:.,

, g-

. o-8 1 h,.. r

.g i

p:

4

"i i

s t

u:,

Nc j

e s

1-e

.' l l

's s

g s

,i,i v..g;
t fw!, t.eW d ta L

n A-p T [I_r _

h,_-M j l l, y

.Jlll

.s ;,

r'

. a m. __... _

3 y

3, i.

b.

.5 i

m -

i m

t

'iii F-@F F-@m-i

" F --O+--

f

r"sh l t3 1

i:

1 t

"h.

-@5:: e

-@e:: y;

mi i

t@r-e oi:

i......... _...!...

v.e-

_ ;c_

q.

y>

i L

yp

,:=t in=t

=

l i

i tt t

l l, i

L..i.

i L i.

i-lil l.

t....g 5 t.......... g5_ 4:.........q% @:_..--.qsw r

t v...g v...e v...e v...g p--s-g -s-w--s-m--s-yl

,s

, _._ __.~.- _

_