ML20210D354

From kanterella
Jump to navigation Jump to search
Summary of 860806 Meeting W/Util,Yankee Atomic,Bg&E,Pickard Lowe & Garrick & BNL in Bethesda,Md Re Risk Mgt & Emergency Planning Study.List of Attendees & Viewgraphs Encl
ML20210D354
Person / Time
Site: Seabrook NextEra Energy icon.png
Issue date: 09/08/1986
From: Doolittle E
Office of Nuclear Reactor Regulation
To:
Office of Nuclear Reactor Regulation
References
NUDOCS 8609190160
Download: ML20210D354 (6)


Text

{{#Wiki_filter:. _ _ _ .e o = [j ' 'o, UNITED STATES (,g NUCLEAR REGULATORY COMMISSION y % g' FL:. E WASHINGTON, D. C. 20S55 3l\\f' / j o e G4 SEi' m.o Docket No. 50-443 APPLICANT: Public Service Company of New Hampshire FACILITY: Seabrook Station, Unit 1

SUBJECT:

SUMMARY

OF MEETING WITH PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE TO DISCUSS SEABROOK RISK MANAGEMENT AND EMERGENCY PLANNING STUDY A meeting was held with Public Service Company of New Hampshire on August 6, 1986 at NRC Headquarters in Bethesda, Maryland. The NRC staff was represented by members of the Office of Nuclear Reactor Regulation; Divison of PWR Licensing-A, Division of PWR Licensing-B, Division of Safety Review and Oversite, Office of Inspection and Enforcement; Division of Emergency Preparedness and Engineering Response, Office of Nuclear Regulatory Research; Division of Risk Analysis and Operations and Division of Radiation Programs and Earth Sciences, Office of the General Counsel and Executive Director for Operations, Regio.nal Operations and Generic Requirements. The applicant was represented by members of Public Service Company of New Hampshire, New Hampshire Yankee Division and Pickard, Lowe and Garrick. Also, staff representing Baltimore Gas & Electric were present. A list'of attendees is included as Enclosure 1. The purpose of this meeting was for the NRC staff to hear a presentation by Public Service Company of New Hampshire and discuss the Seabrook Risk Management and Emergency Planning Study. A copy of the meeting notice is included as Enclosure 2. Mr. W. Derrickson, Senior Vice President, New Hampshire Yankee began the applicant's presentation by reviewing the objectives of the meeting. Their intention, he stated, was to first provide an overview of the Seabrook Station PSA, describe its updates, present results of risk evaluations with emergency planning options and finally determine the requirements to support the review. A copy of the slides used during the presentation is included as. Mr. Jim Moody continued the applicant's presentation with a review of the Seabrook Station Risk Model contained in.the original probabilistic safety analysis submitted in January 1984, then discussed the Risk Management and Emergency Planning study (RMEPS) and the emergency planning sensitivity study. Mr. Moody noted that new information contained in the RMEPS concerns a more effective containment building and updated information on interfacing 1 systems LOCA. In response to a question from Mr. Len Soffer of the NRC staff, Mr. Moody stated that the objective of the applicant's work was to obtain an enhanced methodology for site specific emergency planning as they are examining the j ri".k impact of different options. 8609190160 860908 PDR ADOCK 0500 3 F j

r i o Mr. Moody also addressed treatment of interfacing systems LOCA. Mr. Fred Torri from Pickard Lowe and Garrick (FL&G) continued the applicant's presentation with a discussion of the updated Containment Response and Source Term Analysis. Mr. Torri's discussion included information on containment modeling, containment transient response and uncertainties, containment failure and uncertainties and source-terms and uncertainties. He mentioned that his work on the Seabrook Station Emergency Planaf ng Sensitivity Study included reevaluation of the seismic capacity of key c mponents. He said that although new fragility work had been submitted with the report the new submittal did not take this work into account. Mr. Keith Woodard (PL&G) finished the presentation with a discussion of consequence analyses. He addressed differences in the consequence analysis in the original SSPA and the updated study. Mr. Derrickson concluded the applicant's presentation by saying that PSNH is requesting the staff to review this study to determine its technical merit: does the staff believe the methodology, assumptions, and are they supportive of the risk profile. Since there are existing problems with emergency planning efforts near the Seabrook site, the utility is in the process of investigating some options. Mr. Derrickson stated that if, based on the results of the staff's review of their submittal, there exists a basis for request.ing a change in the Seabrook emergency planning process, they may pursue this option at that time. The meeting was adjourned at 5:00 p.m. /' J/\\ Elizabet Doolittle, Project Manager PWR Project Directorate #5 Division of PWR Licensing-A Enclosures 1

~ ~ m P Mr. Robert J. Harrison Public Service Company of New Hampshire Seabrook Nuclear Power Station i l CC. Thomas Dignan, Esq. E. Tupper Kinder, Esq. John A. Ritscher, Esq. G. Dana Bisbee, Esq. Ropes and Gray Assistant Attorney General 225 Franklin Street Office of Attorney General Boston, Massachusetts 02110 208 State Hosue Annex Concord, New Hampshire 03301 Mr. Bruce B. Beckley, Project Manager Public Service Company of New Hampshire Resident Inspector Post Office Box 330 Seabrook Nuclear Power Station Manchester, New Hampshire 03105 c/o US Nuclear. Regulatory Commission Post.0ffice Box 700 Dr. Mauray Tye, President Seabrook, New Hampshire 03874 Sun Valley Association 209 Summer Street Mr. John DeVincentis, Director Haverhill, Massachusetts 01839 Engineering and t.icensing Yankee Atomic Electric Company Robert A. Backus, Esq. 1671 Worchester Road O'Neil, Backus and Spielman Framingham, Massachusetts 01701 116 1.owell Street Manchester, New Hampshire 03105 Mr. A. M. Ebner, Project Manager United Engineers & Constructors William S. Jordan, III 30 South 17th Street Diane Curran Post Office Box 8223 Harmon, Weiss & Jordan Philadelphia, Pennsylvania 19101 20001 S Street, NW Suite 430 Wcshington, D.C. 20009 Mr. Philip Ahrens, Esq. Assistant Attorney General State House, Station #6 Augusta, Maine 04333 -Jo Ann Shotwell, Esq. Office of the Assistant Attorney General Environmental Protection Division Mr. Warren Hall One Ashburton Place Public Service Company of Boston, Massachusetts 02108 New Hampshire

  • Post Office Box 330 D. Pierre G. Cameron, Jr., Esq.

Seabrook, New Hampshire 03874 General Counsel Public Service Company of New Hampshire Seacoast Anti-Pollution t.eague Post Office Box 330 Ms. Jane Doughty Manchester, New Hampshire 03105 5 Market Street Portsmouth, New Hampshire 03801 Regional Administrator, Region I U.S. Nuclear Regulatory Comission Mr. Diana P. Randall 631 Park Avenue 70 Collins Street King of Prussia, Pennsylvania 19406 Seabrook, New Hampshire 03874 Richard Hampe, Esq. New Hampshire Civil Defense Agency i 107 Pleasant Street Concord, New Hampshire 03301 4

^ o Public Service Company of Seabrook Nuclear Power Station New Hampshire ~ cc: Mr. Calvin A. Canney, City Manager Mr. Alfred V. Sargent, City Hall Chairman 126 Daniel Street Board of Selectmen Portsmouth, New Fainpshire 03801 Town of Salisbury, MA 01950 Ms. I.etty Pett Senator Gordon J. Humphrey Town of Brentwood ATTN: Tom Burack RFD Dalton Road U.S. Senate Brentwood, New Hampshire 03833 Washington, D.C. 20510 i Ms. Roberta C. Pevear Mr. Owen B. Durgin, Chairman { Town of Hampton Falls, New Hampshire Durham Board of Selectmen e Drinkwater Road Town of Durham j Fampton Falls, New Hampshire 03844 Durham, New Hampshire 03824 Ms. Sandra Gavutis Charles Cross, Esq. ~ l Town of Kensington, New Hampshire Shaines, Mardrigan and RDF 1 McEaschern East Kingston, New Fampshire 03827 25 Maplewood Avenue j Post Office Box 366 Chairman, Board of Selectmen RFD 2 South Hampton, New Hampshire 03827 Mr. Guy Chichester, Chaiman Rye Nuclear Intervention Mr. Angie'Machiros, Chairman Committee Board of Selectmen c/o Rye Town Hall for the Town of Newbury 10 Central Road Newbury, Massachusetts 01950 Rye, New Fampshire 03870 Ms. Cashman, Chairman . Jane Spector Board of Selectmen Federal Energy Regulatory Town of Amesbury Commission Town Hall 825 North Capital Street, NE Amesbury, Massachusetts 01913 Room 8105 l Ponorable Peter J. Matthews ~ Mayor, City of Newburyport Mr. R. Sweeney Office of the Mayor New Hampshire Yankee Division i City Hall Public Service of New Fampshire Newburyport, Massachusetts 01950 Company 7910 Woodmont Avenue i-Mr. Donald E. Chick, Town Manager Bethesda, Maryland 20814 Town of Exeter 10 Front Street Mr. William B. Derrickson Exeter, New Hampshire 03823 Senior Vice President l Public Service Company of New Hampshire Post Office Box 700, Route 1 i Seabrook, New Hampshire 03874 \\ ,y m c -i-c-y r

f '.s. n -. n..... . :a.. P ATTENDANCE SEABROOK PSA MEETING 8/6/86 l E. Doolittle NRC/PWRA Steve Long NRC/PWRA Don How ' Harmon & Weiss Karl R. Goller NRC/RES/DRA Len Soffer NRC/NRR/ DERO Warren C. Lyon NRC/NRR/PWRA T. M. Novak - NRC/NRR/PWR-A Vincent S. Noonan-NRC/NRR/PWR-A-Ernie Rossi NRC/NRR/PWR-A Themis P. Spels NRC/NRR/DSRO Zoltan R. Rosztoczy NRC/NRR/DSRO Trevor Fratt BNL Charles Hofmayer BNL Goutam Bagchi NRC/NRR/PWR-A/EB Victor Benaroya NRC/NRR/PAFO Falk Kantor NRC/IE/EPB Ed Jordan NRC/IE-Robert E. Sweeney NHY - Bethesda Office John DeVincentis NHY Keith Woodard PLG Alfred Torri -FLG Milliam B. Derrickson Sr. V.P. New Hampshire Yankee David A. Maidrand Asst. Proj. Mngr. YNSD Peter S. Littlefield Yankee Atomic Stephor. P. Schultz Yankee Atomic Frank Schroedor NRC/NRR/DPL-B M. S. Ernst NRC/RES: Bob Perlis NRC/OGC Sherwin Turk NRC/OGC Jay White ' REA Brent Clayton NRC/NRR Ed Podolak IE John Stewart NRC/RES J. A. Norberg NRC/RES Bruce B. Beckley PSNH Edwin J. Reis NRC/OGC Joe Scinto NRC/OGC William McCaughey BGEE. M. Taylor NRC/ROGR Staff, EDO --a n.

. ~ _.. 3 2 9 JUL N06 Meeting Notice Distribution b Docket Files NRC Participants NRC PDR T. Novak local PDR V. Noonan PD#5 R/F E. Doolittle ORAS S. l.ong H. Denton R. Bernero T. Novak D. Ross Project Manager E. Jordan OELD T. Speis E. Jordan J. Myers B. Grimes S. Israel J. Partlow T. Murley Receptionist (Phillips Building) ACRS (10) OPA PPAS/TOSB Resident Inspector ~' Regional Administrator MRushbrook cc: Licensee / applicant & Service list p ~ J

g UNITED STATES [ g NUCLEAR REGULATORY COMMISSION y 'j WASHINGTON, D. C. 20555 %,*****/ 2 9 JUL 1906 Docket No.: 50-443 MEMORANDUM FOR: Vincent S. Noonan, Director PWR Pro. ject. Directorate #5 Division of PWR I.icensing-A FROM: Elizabeth I. Doolittle, Pro. ject Manager PWR Project Directorate #5 Division of PWR I.icensing-A

SUBJECT:

FORTHCOMING MEETING WITH PUBl.!C SERVICE COMPANY OF NEW HAMPSHIRE TO DISCUSS SEABROOK RISK MANAGEMENT AND EMERGENCY PLANNING STUDY DATE & TIME: Wednesday, August 6, 1986 - 1:00 - 5:00 pm

1.0 CATION

Phillips Building Room P-118 7920 Norfolk Avenue Bethesda, Maryland PURPOSE: To hear presentation by Public Service Company of New Hampshire on information contained in Seabrook Station Risk Management and Emergency Planning Study and Emergency Planning Sensitivity Study. PARTICIPANTS: NRC PSNP T. Novak W. Derrickson ) V. Noonan J. DeVincentis and other E. Doolittle representatives of the S. l.ong applicant S. Israel R. Bernero D. Ross E. Jordan T. Speis J. Myers T. Murley ] 3 /. ( Elizabeth I., Doolittle, Project Manager PWR Pr ct Directorate #5 Division of PWR licensing-A We hTre-

Mr. Robert J. Harrison Public Service Company of New Hampshire Seabrook Nuclear Power Station cc: Thomas Dignan, Esq. E. Tupper Kinder, Esq. John A. Ritscher, Esq. G. Dana Bisbee, Esq. Ropes and Gray Assistant Attorney General 225 Franklin Street Office of Attorney General l Boston, Massachusetts 02110 208 State Fosue Annex Concord, New Hampshire 03301 Mr. Bruce B. Beckley, Project Manager 2 Public Service Company of New Hampshire Resident Inspector Post Office Box 330 Seabrook Nuclear Power Station Manchester, New Hampshire 03105 c/o US Nuclear Regulatory Commission Post Office Box 700 Dr. Mauray Tye, President Seabrook, New Hampshire 03874 Sun Valley Association 209 Summer Street Mr. John DeVincentis, Director Haverhill, Massachusetts 01839 Engineering and I.icensing Yankee Atomic Electric Company Robert A. Backus, Esq. 1671 Worchester Road O'Neil, Backus and Spielman Framingham, Massachusetts 01701 116 lowell Street Manchester, New Hampshire 03105 Mr. A'. M. Ebner, Project Manager United Engineers & Constructors William 5. Jordan, III 30 South 17th Street i Diane Curran Post Office Box 8223 Harmon, Weiss & Jordan Philadelphia, Pennsylvania 19101 20001 S Street, NW Suite 430 l Washington, D.C. 20009 Mr. Philip Ahrens, Esq. Assistant-Attorney General State House, Station #6 Augusta, Maine 04333 Jo Ann Shotwell, Esq. Office of the Assistant Attorney General Environmental Protection Division 3 Mr. Warren Fall One Ashburton Place Public Service Company of Boston, Massachusetts 02108 New Hampshire Post Office Box 330 D. Pierre G. Cameron, Jr., Esq. Seabrook, New Hampshire 03874 General Counsel Public Service Company of New Hampshire m Seacoast Anti-Pollution leaaue Post Office Box 330 Ms. Jane Doughty ' Manchester, New Hampshire 03105 5 Market Street' Portsmouth, New Hampshire 03801 Regional Administrator, Region I 1 U.S. Nuclear Regulatory Commission Mr. Diana P. Randall 631 Park Avenue 70 Collins Street King of Prussia, Pennsylvania 19406 Seabrook, New Hampshire 03874 Richard Hampe. Esq. New Hampshire Civil Defense Agency

I 107 Pleasant Street

' Concord, New Hampshire 03301 s v

Public Service Company of Seabrook Nuclear Power Station New Hampshire CC: Mr. Calvin A. Canney, City Manager Mr. Alfred V. Sargent, City Pall Chairman 126 Daniel Street Board of Selectmen Portsmouth, New Hampshire 03801 Town of Salisbury, MA 01950 Ms. letty Hett Senator Gordon J. Fumphrey Town of Brentwood ATTN: Tom Burack RFD Dalton Road U.S. Senate Brentwood, New Hampshire 03833 Washington, D.C. 20510 Ms. Roberta C. Pevear Mr. Owen B. Durgin, Chairman Town of Pampton Falls, New Hampshire Durham Board of Selectmen Drinkwater Road Town of Durham P~ mpton Falls, New Hampshire 03844 Durham, New Hampshire 03824 a Ms. Sandra Gavutis Charles Cross, Esq. Town of Kensington, New Hampshire Shaines, Mardrigan and RDF 1 McEaschern East Kingston, New Hampshire. 03827 25 Maplewood Avenue Post Office Box 366 Portsmouth, New Hampshire 03801 Chairwan, Board of Selectmen RFD 2 South Pampton, New Hampshire 03827 Mr. Guy Chichester, Chaiman Rye. Nuclear Intervention Mr. Angie Machiros, Chairman Committee Board of Selectmen c/o Rye Town Hall for the Town of Newbury 10 Central Road Newbury, Massachusetts 01950 Rye, New Hampshire 03870 Ms. Cashman, Chairman Jane Spector Board of Selectmen Federal Energy Regulatory Town of Amesbury Commission Town Pall 825 North Capital Street, NE Amesbury, Massachusetts 01913 Room 8105 Washington, D. C. 20426 Ponorable Peter J. Matthews Mayor, City of Newburyport Mr. R. Sweeney Office of the Mayor New Hampshire Yankee Division City Fall Public Service of New Hampshire Newburyport, Massachusetts 01950 Company 7910 Woodmont Avenue Mr. Donald E. Chick, Town Manager Bethesda, Maryland 20814 Town of Exeter 10 Front Street Mr. William B. Derrickson Exeter, New Hampshire 03823 Senior Vice President Public Service Company of New Hampshire Post Office Box 700, Route 1 Seabrook, New Fampshire- 03874 m_

e ~ MEETING OBJECTIVES ~ PROVIDE OVERVIEW OF SEABR00lt STATION PSA W DESCRIBE PSA UPDATES t PRESENT RESULTS OF RISK EVAI.UATIONS WITH EMERGENCY PLANNING OPTIONS DETERMINE REQUIREMENTS TO SUPPORT REVIEW e h O O a

PRESENTATION OUTLINE

  • BACKGROUND e SEABROOK STATION RISK MODEL AND RESULTS (1983) e RMEPS OVERVIEW AND RESULTS (1985) e PEER REVIEW GROUP 2

l 2 i e EMERGENCY PLANNING SENSITIVITY STUDY (1986) e SSPSA PLANT MODEL UPDATE i e CONTAINMENT MODEL j t e SOURCE TERMS e SITE MODEL f

  • DISCUSSION I

1 1 i

+. 4 m .5 e -.m a e e b o e S

  • 6
  • 6 e

4 0 I OO \\ t b b I g er l 9 9* ee** O - Z D O. cc GM O i m I 1 1 ^ 6 i l S I 9 e 9 e O O e i l l l i _I

PROBABILISTIC SAFETY ASSESSMENT e FULL-SCOPE LEVEL 3 PSA e PUBLISHED DECEMBER 1983 e PRINCIPAL CONTRIBUTORS - YAEC - UTILITY PROJECT MANAGEMENT AND REVIEW - PICKARD, LOWE AND GARRICK, INC. - PRA CONSULTANT

  • NRC REVIEW

- LAWRENCE LIVERMORE - PLANT MODEL - (RESPONDED MAY 1986) - BROOKHAVEN - CONTAINMENT CAPABILITY NUREG/CR-4540 (FEBRUARY 1986) t D

SSPSA KEY DATES 4/82 SSPSA STARTED 12/83 SSPSA PUBLISHED 4/84 SSPSA ACTIVITIES ON HOLD 3/85 SSPSA ACTIVITIES RESTART (RMEPS) 1 6/85 TECHNICAL SPECIFICATION OPTIMlZATION EFFORT STARTS 10/85 PEER REVIEW OF RMEPS 11/85 PEER REVIEW GROUP RESPONSE TO RMEPS 12/85 FINAL RMEPS PUBLISHED 4/86 FINAL SENSITIVITY STUDY PUBLISHED 4/86 PEER REVIEW GR.OUP RESPONSE TO SENSITIVITY STUDY 6/86 RISK AND RELIABILITY ACTION . PLAN: ESTABLISHED i 6 O s-

CURRENT RISK MANAGEMENT ACTIVITIES

  • RISK BASIS FOR TECHNICAL SPECIFICATIONS e CONTINUAL REASSESSMENT OF PUBLIC HEALTH RISK

- RMEPS - SENSITIVITY STUDY - SEISMIC CAPACITY UPDATE e ESTABLISHED RELIABILITY AND SAFETY ENGINEERING GROUP - MAINTAIN CURRENT RISK MODEL - PART OF CHANGE REVIEW PROCESS - EVALUATE IMPACT OF REGULATORY CHANGES - PLANT RELIABILITY RESPONSIBILITIES O

SEABROOK STATION PSA UPDATE SUBMITTAL DOCUMENTS PLG-0432 SEABROOK STATION RISK MANAGEMENT AND EMERGENCY PLANNING STUDY, DECEMBER 1985 PLG-0465 SEAEROOK STATION EMERGENCY PLANNING SENSITIVITY STUDY, APRIL 1986 ~ t SMA 12911.01 SEISMIC FRAGILITIES OF STRUCTURES REV.1/NTS AND COMPONENTS AT THE SEABROOK 1589.01 GENERATING STATION, UNITS 1 AND 2, JUNE 1986 0 f t e m e a---. m n 21 9

9 SUPPORTING DOCUMENTS PLG-0300 SEABROOK STATION PROBABILISTIC SAFETY ASSESSMENT, DECEMBER 1983 NUREG/CR-4540 NRC/BNL REVIEW OF SSPSA CORE AND CONTAINMENT ANALYSIS, FEBRUARY 1986 4 NRC/LLNL DRAFT REVIEW OF SSPSA PLANT AND SYSTEMS ANALYSIS, APRIL 1985 SBN-1053 NHY RESPONSE TO NBC/LLNL DRAFT REVIEW, MAY 1986 PLG-0223 PLG QUALITY ASSURANCE MANUAL, JULY 1983

4 e e 9 SEABROOK STATION RISK MODEL AND RESULTS-(1983) G 9 9 9 e I 9 9

l SSPSA SCOPE AND COVERAGE OF ~ i ACCIDENT SEQUENCES j e COMPREHENSIVE COVERAGE OF ACCIDENT SEQUENCES - 58 DISTINCT INITIATING EVENT CATEGORIES - 39 PLANT DAMAGE STATES (" BINS") - 14 RELEASE CATEGORIES - 16 MODULARIZED EVENT TREES f a FULL TREATMENT OF DEPENDENT EVENTS - COMMON CAUSE FAILURES (SYSTEM LEV.EL) - EXTERNAL EVENTS - INTERNAL PLANT HAZARDS ) - EXPLICIT MODELING OF FUNCTIONAL DEPENDENCIES l e PLANT-SPECIFIC AND ENHANCED CONTAINMENT MOD'EL - ASSESSMENT OF CONTAINMENT FAILURE MODES - QUANTIFICATION OF SOURCE TERM UNCERTAINTIES i - ENHANCED METHODOLOGY l e SITE-SPECIFIC CONSEQUENCE MODEL - MULTIPUFF RELEASE TREATMENT - ACTUAL SITE CHARACTERISTICS - QUANTIFICATION OF UNCERTAINTY ~

e e BLOCK DIAGRAM STRUCTURE OF SEABROOK RISK MODEL r r r l CON 1 AsNut NT $8T NSEI f8VEN EVIN JihCE 4 W NCg '///// //////' e 4 AOsOL OGICAL sussius 6 MAN REitSNAL CONI A4NMENI ACCIDE NT gCONOueC T W pApuy ,, #/ -p gu y 4 g pap 00 # f LJAI 4 s8Mt3 IION -p / glNI M00645

  • ~

888 8 "*C 3 4080 ini m/ .00,,, PLANI gagg ,r"it!.

,2'It'2'"AU"!,,,:

wassa CONTAINMENT MODEL j ( SITE MODEL PLANT MODEL y ( j ( LEGEND ORIGINAL SSPSA MODEL RMEPS UPDATED MODEL Q

SUMMARY

OF PRINCIPAL CONTRIBUTORS TO RISK IN TERMS OF ACCIDENT SEQUENCE GROUPS AND INITIATING EVENTS'FROM TIIE SSPSA Containment Response - Group Group Fraction of l Accident Contributing contribution Frequency Total Release Sequence b,roup Initiating Events Percent (meanvalues) Frequency Group I Early Containment Failure 2.4 x 10-6 per " .01 Interfacing LOCA 76 Reactor Year or' Early llealth Seismic 24 Once in 410,000 Effects 4 i' Illif' Reactor Years Grougi 11 Delayed containment Failure 1.7 x 10-4 per .73 Loss of Offsite Power 40 Reactor Year or Latent llealth i Effects. - Transients 19 Once in 6,000 - Fires 15 Reactor Years Seismic 15 Others 11 100 1 ) Group Ill Containment Intact S7 S.0 x 10-5 per .26 - Transients flo llealth Effects - SLOCA 29 Reactor Year or - Others 14 Once in 17,000 i IIill Reactor Years Total 2.3 x 10-4 per 1.00 Reactor Year or Unce in 4,300 Reactor Years l y

I O e e e f C D 9 U CO ig3 T* v p.. _.I "3 C/) LU C O Z <C 3 m E LU> O en D. LU2 C 9 j l \\ \\ e 0 ,-.n- -. - - -.,, -. -, -. -. -, -._,w,

PRINCIPAL INVESTIGATORS l; i KARL N. FLEMING PLG ~ l ALFRED TORRI PLG 1 ROBERT J. LUTZ WESTINGHOUSE s ROBERT E. HENRY FAI j R. KENNETH DEREMER PLG KEITH WOODARD PLG ( \\ 4 j i j l

j ~ w BACKGROUND I L a l e EMERGENCY PLANNING BASIS (NUREG-0396) t 1 -- TEN YEAR OLD PRA ON SURRY 1 i -- OBSOLETE SOURCE TERM TECHNOLOGY i - RISK ACCEPTANCE CRITERIA PRESENTS X DEFACTO LIMIT 1 OF RISK ACCEPTABILITY l OR EMERGENCY PLANNING i [ l e SEABROOK SAFETY ASSESSMENT (PRA) CONTAINMENT EFFECTIVEN5SS i - ADVANCED PRA TECHNOLOGY il e ADVANCES IN SOURCE TERM TECHNOLOGY - IDCOR PROGRAM - NRC PROGRAM l ( i i ~

~ [ l OBJECTIVES i 4 j 1 e REEXAMINE TECHNICAL BASIS OF THE 10-MILE EPZ (NUREG-0396) ON A PLANT-SPECIFIC BASIS j e DEVELOP AN ENHANCED PRA METHODOLOGY FOR ~ 4 j ESTABLISHING A PLANT AND SITE-SPECIFIC EPZ e APPLY THIS METHODOLOGY TO SEABROOK STATION ) - UPDATE SSPSA RISK MODEL (1983 - 1985) l -- DETERMINE RISK IMPACT OF EMERGENCY PLAN OPTIONS c i e ADDRESS UNCERTAINTIES AND SENSITIVITIES e PROVIDE DOCUMENTATION AND PEER REVIEW I i j l t l i

~ ENHANCED METHODOLOGY FOR EPZ DETERMINATION e DEVELOP NUREG-0396 RISK.OF DOSE VERSUS DISTANCE l CURVES BASED ON PLANT / SITE-SPECIFIC RISK MODEL \\ e CHARACTERIZE TOTAL POTENTIAL FOR RISK REDUCTION i i l e QUANTIFY SPATIAL DISTRIBUTION OF NONEVAC ATION ~ RISK I e CALCULATE ACTUAL RISK REDUCTION FOR PROTECTIVE I ACTION STRATEGIES l , MILE EVACUATION i ! MILE EVACUATION i 4 10-MILE EVACUATION j MILE EVACUATION AND SHELTERING OUT TO 10 MILES.- I e EVALUATE UNCERTAINTIES AND SENSITIVITIES j j e COMPARE RESULTS WITH ALL AVAILABLE RISK. i ' ACCEPTANCE CRITERIA j

s UPDATE OF SSPSA RISK MODEL i i l e UPDATED SSPSA PLANT MODEL q - ENHANCED V-SEQUENCE MODEL l - ENHANCED SEISMIC ANALYSIS - CONTAINMENT RECOVERY MODEL - ENHANCED TREATMENT OF COMMON CAUSE FAILURES L

  • UPDATED SSPSA SOURCE TERMS i

- EXISTING SSPSA SOURCE TERMS INCORPORATED SOME ZION IDCOR RESULTS l PERFORMED SEABROOK/ ZION DESIGN COMPARISON I DEVELOPED SOME SEABROOK RESULTS WITH MAAP i i l - REASSESSED UNCERTAINTIES EXAMINED SENSITIVITIES ( a l

RISK ACCEPTANCE CRITERIA UTILIZED ) l \\ I j e NUREG-0396 DOSE VERSUS DISTANCE CURVES FOR 1,5, 50, AND 200-REM WHOLE-BODY DOSES t l e WASH-1400 RISK CURVES FOR EARLY FATALITIES AND 1 LATENT CANCER FATALITIES (MEAN AND M.EDIAN l RESULTS) r t e NRC INDIVIDUAL AND SOCIETAi_ RISK SAFETY GOALS l 4 e SPATIAL DISTRIBUTION OF RESIDUAL RISK 4 i I 1 1 I j-e l l

l i m j KEY RESULTS l l-i l e EARLY HEALTH RISK WITH NO EVACUATION IS: - f - LESS THAN WASH-1400 WITH 25-MILE EVACUATION 1 l - MEETS NRC SAFETY GOAL WITH WlDE MARGIN '- - CONFINED TO AREA CLOSE TO THE SITE e VERY SMALL RISK REDUCTl' N BY ANY EVACUATION O I e ALL NUREG-0396 DOSE VERSOS DISTANCE CRITERIA i SATISFIED AT 1 MILE OR LESS e LATENT HEALTH RISK INSENSITIVE TO ASSUMPTIONS }- REGARDING EVACUATION - i ( l. + s i i

I i 4 j RESULTS FOR NO EVACUATION l EARLY HEALTH RISK AT SEABROOK S'TATION IS: e MORE THAN FACTOR OF 10 LESS THAN WASH-1400 WITH 2'5-MILE i EVACUATION i

== 1 I e 4 Q. E g ,,4 g / 1 O + i /~ ara,, a,,., I e i ,...um. i i i

RESULTS FOR NO EVACUATION 1 EARLY HEALTH RISK AT SEABROOK STATION IS: .o MORE THAN FACTOR OF 10 LESS THAN WASH-1400 WITH 25-MILE EVACUATION t j I 5 5 5 i d a i is g r he S! a wase-semamman $w S ~ B?Bi%?=== g-e t t t t n' m' m8 se* m' se' j E AALY FATAUTE S e

l UPDATED RESULTS FOR NO IMMEDIATE PROTECTIVE ACTIONS EARLY HEALTH RISK AT SEABROOK STATION IS:

  • ABOUT TWO ORDERS OF MAGNITUDE LESS THAN NRC SAFETY GOAL ir2 S

9ACKGROUND ACCIDENTAL FATALITY RISK 3 10-3 (5 FATALITIES PER 10,000 POPULATION PER YEAR) 9 $Md 4 g l 2 j,. m i b9 SAFETY GOAL (.001 TIMES s 8ACKGROUND RISK) O .g :;: kN

A;:i!. s

~ j -::+:9 g [ SEABROOK STATION .s (NO IMMEDIATE $ 10-8 PROTECTIVE ACTIONI h 10~, I

1 i UPDATED RESULTS FOR NO IMMEDIATE PROTECTIVE ACTIONS 1 1' EARLY HEALTH RISK AT SEABROOK STATION IS: o SPATIALLY LOCATED VERY CLOSE TO THE PLANT SITE ) I i 5 I I I I j l nn i y as M 5 17 5 l e.s i = 9 l g as O K4 1 e u 4 e ti g u Et I N t t 1 g o, 0 00 2m 4m soo em inoo 12m 14m stoo OtSTANCE IMILESI

f 1 THE BENEFITS OF RISK REDUCTION BY EVACUATION OR' SHELTERING ARE: ) e VERY SMALL DUE TO VERY LOW INHERENT PLANT RISK 3 i e FULLY REALIZED BY CLOSE-IN EVACUATION j - e NOT NEEDED TO MEET NRC SAFETY GOALS j 1 M.~~'L. ~ g

T.=".'-'""

i. 1

e 1

g i 3 I I i s 1 \\ h i ) s 5.E.~o., Is."..'Em. u ...u ~ r .. = o evacuariou owrance sisteen

i l s g S SE L R I ~ i 7. i:; o. O n i t N E I e e O T L s A e T e 5 n. I K M O 8 i a O; m. A eA E 1 l l S e A O i 8 T e N A i M M D A S u. A e E E a E R M e t S A O D E s I M 4 o E F n l s 1 o S o\\ g\\ a s s%g \\o a I T a \\ e O O \\ A o \\ \\ s O \\ g O \\g s S g t O %O g 6 ,O O N 9 7.^ ' $' 1;.- 3 1 1 i i t S e s s s o s 0 a ce E5G 4 3 2 $o,5 E= S 50 p. s u< 5>3 d Eo BgzEo"3IoE$8 G ER U N 1 l !i i 1! ,l i l; ,l

e U) LLI summl E _I. 2.... p..... i....., O Lu I I i ,a -E as ~ .i I T" k h . R 5 li

i 3

o I Lu R E i ammen O l LL-8 8 i 03 E !!. 1 =ab. >= RIB 5 - (f) or -e k g \\ po g ] p CD i, i,,,,,, JT i,,4, CO ~ C = a g 4 I IN10133v 111W IW03 Y N1 AID '51f 00 ACOS 37 CHM CNIQ133X3 dQ A3NIMOIWd 1VNQlitCNO3 LU E D Z 9 e 9 e A --w,, ,,, - - -,. - -. - - ~

1 RESULTS FOR NO EVACUATION T l LATENT HEALTH RISK AT SEABROOK STATION IS: l e MORE THAN A FACTOR OF 250 LESS THAN NRC SAFETY GOAL i e COMPARABLE TO WASH-1400 L e INSENSITIVE TO ASSUMPTIONS ABOUT EVACUATION i i i i E ee' 1 g G~ = = =T O. 1 g ir* i _.. N[a _ i e .s._ -. l h h j- =:=.:=~~- g \\ \\ \\ i i i t, ,,s. a a a s aatswe camera ravaurv aare svama-8

  • Tame CWews 8sef Seesssitwt To tvaCunisDes Assumurtstmus i

SENSITIVITY ANALYSIS OF EARLY FATALITY RISK / SAFETY GOAL RATIO FOR NO. IMMEDIATE PROTEOTIVE ACTIONS 1 Treatment of Source Term and Site ", f ' fann Exbued All Releases Include.d Model Uncertainties BEST ESTIMATE AND CONSERVATIVE SOURCE TERMS Probabilistically .0043 .0048 Weighted (mean)* Probability [B,M] = 1 .0002 .0002 i All Weight Placed on Best Estimate Source / Term and Site Model Assumptioits Probability [C,H] = 1 .062 .092 All Weight Placed on Conservative Source Term and Site Model Assumptions ^ ENVEl.0 PING SOURCE TERMS SUBSTITUTED Probabilistically .0074 .0079 Weighted (mean)* Probability [C.H] = 1 .15 .18 J All Weight Placed on Conservative Source Term and Site Model Assumptions

  • Weights of.9 and.1 placed on the best estimate (B) and conservative (C) ',

source terms, respectively; weights of.8 and.2 placed on the best estimate (M) and conservative (H) site model assumptions, respectively. I O

l 1 FAVORABLE RESULTS DUE TO l ~ 4 i 1 l e CONTAINMENT EFFECTIVENESS 1 l s i e ENHANCED V-SEQUENCE MODEL i i i 1 e SOURCE TERMS l l 1 4 4. ( t 9 i l ) I. i i l f

i i Safety Study Results. l CONTAINMENT EFFECTIVENESS (Percent of Accident Scenarios) 1 i 1 } 66% 99% 99.9 % i l l 9l $!N 34 % 1%. 51% i i. a h WASH-1400 (1975) SEABROOK STATION (1983) SEABROOK STATION i IMPROVED LOCA DUTSIDE ~ CONTAINMENT MODEL(1985) t EARLY DEGRADED CONTAINMENT CONTAINMENT OR FAILURE CONTAINMENTINTACT l 1

A g e 9 9 4 e S e 9 9 e W e e 4 e { J e I . e D e u& l D l 0 cr O e w W W E Lu LLI Q. I I t I I 8 e e e 4 } 9 6 4 e a 5 e i o y- ._,_t

i PEER REVIEW GROUP ) i 1 e ROBERT BUDNITZ, CHAIRMAN, FUTURE RESOURCES l ASSOCIATES, INC. e DAVID ALDRICH, SCIENCE APPLICATIONS INCORPORATED l ~~ e JOSEPH HENDRIE, CONSULTANT 1 e NORMAN RASMUSSEN, MASSdCHUSETTS INSTITUTE OF TECHNCl.DGY I e ROBERT RITZMAN, ELECTRIC POWER RESEARCH 1 INSTITUTE j e V/fLLIAM STRATTON, CGNSULTANT i l l e RICHARD WILSON, HARVARD UNIVERSITY e

l i l-i 4 i OBJECTIVES FOR PEER REVIEW ) i e PROVIDE REVIEW OF PROJECT DOCUMENTS ) I, i e ACQUIRE BASIC UNDERSTANDING OF APPROAC}I, ) ASSUMPTIONS, AND MO'DELS ~ ). e PROVIDE INDEPENDENT ASSESSMENT OF PRINCIPAL ~ [ RESULTS AND CONCLUSIONS / i. l e CONSIDER SENSITIVITY OF CONCLUSIONS TO f L UNDERLYING UNCERTAINTIES f i l f )

l PEER REVIEW FINDINGS i i 3

  • CONCURRED WITH PRINCIPAL STUDY FINDINGS i

j - OVERALL OFFSITE RISKS VERY SMALL - EARLY HEALTH RISK LOWER THAN THOUGHT TO EXIST WHEN GENERAL EPZ ESTABLISHED ~ l - EARLY HEALTH RISK CONFINED TO AREAS VERY CLOSE TO REACTOR i-' e CONCLUSION ROBUST EVEN IN LIGHT OF UNCERTAINTIES j e BELIEVE THE "BEST ESTIMATE" PROBABLY i OVER-ESTIMATES ACTUAL CONS.EQUENCES l i i e SEABROOK CONTAINMENT MAJOR FACTOR I l

__.a-- a e---___. .g A-w-.m _-p ._u a__aw ~* sa,-* e b 5 e y e O 4 9 e 9 O O H l i Z m (D n J e O CO Z c> r Zw l Zp 4 Q $D >W O Z W O cc l W E W l 4 e l 4 l i I i = .o.

1 EMERGENCY PLANNING SENSITIVITY STUDY I L METHODOLOGY 4 i. l e PURPOSE: DETERMINE IMPORTANCE OF SOURCE TERMS [ VERSUS PLANT-SPECIFIC FEATURES AND l ENHANCED PRA TECHNOLOGY j j e APPROACH: RMEPS CALCULATIONS REDONE USING: WASH-1400 SOURCE TERM METHODOLOGY BEST ESTIMATE ASSUMPTIONS ON ALL OTHER UNCERTAIN l RISK PARAMETERS i 1 I O

RESULTS AND CONCLUSIONS OF SENSITIVITY STUDY e WASH-1400 EARLY FATALITY RISK APPROXIMATELY MET WITH 1-MILE EVACUATION e NRCs PROPOSED INDIVIDUAL RISK SAFETY GOAL MET l WITH NO IMMEDIATE PROTECTIVE ACTIONS ~1 e CONDITIONAL FREQUENCY OF EXCEEDING WHOLE-BODY DOSE VERSUS DISTANCE LOWER FOR ALL CASES SEABROOK NUREG-O'396 STATION 10 MILES 1 MILE 200 REM .03 .02 50 REM .12 .03 .30 .06 1 REM e 1-MILE EPZ JUSTIFIED EVEN ASSUMING WASH-1400 SOURCE TERM METHODOLOGY I me e

COMPARISON OF MEDI N RISK OF EARLY FATALITIES AT SEABROOK STATION FOR DIFFERENT EMERGENCY"PLANNfNG OPTIONS 10-3 s' 10~4 --- SEABROOK STATION PER RMEPS AND WASH-1400 SOURCE E TERM METHODOLOGY - y . (MEDIAN RESULTS) d: 10~5 WASH-1400 0 (MEDIAN RESULTS) u d= NO IMMEDIATE PROTECTIVE y N ACTIONS 3 N g 10 c 1-MILE N EVACUATION s \\ 10-7 \\ s 1 \\ \\ g \\ g 10-8 2 - MILE \\ EVACUATION \\ { RMEPS RESULTS N \\ /OFF SCALE N } I I \\ l \\ i 10'9 I 0 1 2 3 4 10 10 10 10 10 105 EARLY FATALITIES e m

COMPARISON OF SEABROOK STATION SENSITIVITY RESULTS USING WASH-1400 SOURCE TERM METHODOLOGY WITH BACKGROUND, SAFETY GOAL INDIVIDUAL AND RMEPS RISK LEVELS 10-2 Y o BACKOROUND ACCIDENTAL FATALITY RISK > 10-3 (5 FATALITIES PER 10.000 POPULATION PER YEAR) t s O ~ h 104 t g 10-5 SAFETY GOAL (.001 TIMES 9 BACKGROUND RISK) 8 THIS STtJDY FOR 4 10-0 SEABROOK STATION u. WITH NO IMMEDIATE 0 PROTECTIVE ACTIONS 3 7 k 10~I / j WITH 1 MILE g EVACUATION N RMEPS RESULTS g 10~8 ~ WITil NO IMMEDIATE i z PROTECTIVE ACTIONS 4 ~ N 10-8 g e e G \\

l 6 9 3 0 O G N E 0 .[ ~ RR0 UO 4 O e N 1 NF I RT SK OA T H FT LO HS 9 Y U O S S 6 TT 3 D K SR A 0 U O EB I O G TO RAN WLWY EO SR S R SB P SI E S P G T IA ER A U HE MOT DO N T S. RFS TENL M L (l SAO I U O D S D N M E O O MM E \\lts! S ) E E R E RYI H L RR 1\\ I \\ i D T T \\ 1 B \\ M ( N CE \\ O \\ e E C O A M- \\ B \\ N A \\ 1lg{l T ITE \\ i A E M s IS S OT E i N g\\ V I D LI R \\ M \\ \\ T \\ I E M R E 0 HC T 5 R l 1

  • .*,'i KWE 1

i O T E Y \\. \\..' i 'r. OMOC ~~ RE R R .* \\s, **. s,' M AE O ~~ .~\\,i BR P U E R i's- ~~ S 5 S T., .i E T g SDA g F NI D

- ' I 7-

- - : - ~, ~ ~ O A E 1 i 1 i 1 NMM 0 o. 0 o 0 OEM 0 gm984 bm # wgu 4 z o,u5t58E"Sh s$o i Sl I gi8 >0Os o( o2E n o0h5a

g9 a ou I

R1 A ~ P M O C 1 1,! l j -l I

COMPARISON OF SEABROOK STATION RESULTS IN THIS STUDY l AND RMEPS WITH NUREG-0396 - 200-RE'M AND 50-REM WHOLE-i BODY DOSE PLOTS FOR NO lMMEDIATE PROTECTIVE ACTIONS i ......i ......i ~ NUREG-0396


THIS STUDY FOR gg SEABROOK STATION

] ~ ................ RMEPS ft ESUt.TS FOR o< SEABROOK STATION @b

(200 REM CURVE OFF sm

~ SCALE) a2 Q e E4 ~ 85 y$ 77 -g \\ og N \\ s0 REM >r 200 09 . k REM E8 \\ \\ 0.01 \\ \\ SS i \\- 934 I \\ EE l \\ ei! I I c OS l .'\\ ll /t D \\ 50 REM 200 REM V, ,, !,,, i t 10 100 1,000 DISTANCE (Mil.ES)

Safety Study Results: CONTAINMENT EFFECTIVENESS (Percent of Accident Scenarios) l 66% 99 % 99.9 % 4,May, i s 1 t .,f4 6 t l 34 % 1%. ,1 % .q l] t j j I WASH-1400 (1975) SEABROOK STATION (1983) SEABROOK STATION IMPROVED LOCA OUTSIDE CONTAINMENT MODEL(1985) j EARLY DEGRADED CONTAINMENT CONTAINMENT OR FAILURE CONTAINMENTINTACT 4

,n w ,4,, a a 4 m g 4 a 9 0 e o O 9 0 0 e e e O

  • O O

5 y e-I- o 0 D J W Qo E 1-Z J O l m O V) y) e 8 e I h a ,..y-. ae..e%e w ,-p+- -9 9_--

O SSPSA PLANT MODEL UPDATE i l e REASSESSED INTERFACING SYSTEM LOCA MODEL

  • REASSESSED BEHAVIOR OF AOVs DURING SEISMid SEQUENCES e INCORPORATED CONTAINMENT RECOVERY O'F STATION BLACKOUT e ENHANCED TREATMENT OF COMMON CAUSE FAILURES 1

g k C e

1 i i INTERFACING SYSTEMS LOCA i BACKGROUND i l i e WASH-1400 AND SSPSA i - FAILURE OF TWO SERIES VALVES l - RHR FAILURE AND CONTAINMENT BYPASS - LEADS DIRECTLY TO CORE MELT - NO CREDIT FOR THE OPERATOR / .t e LOW FREQUENCY BUT DOMINANT CONTRIBUTOR TO EARLY HEALTH RISK ,l e ANALYSIS BELIEVED TO BE CONSERVATIVE - RHR PIPING FAILURE NOT GUARANTEED - RHR RELIEF VALVES MAY MITIGATE SOME SEQUENCES l - RHR PUMP SEALS MOST PROBABLE POINT OF FAILURE a j - RHR VAULT FLOODING LIKELY - OPERATOR CAN ISOLATE AND RECOVER MANY SEQUENCES, e POTENTIAL NONCONSERVATISMS 1 i. - NEED TO REDEFINE INITIATING EVENT AS ANY VALVE FAILURES THAT LEAD TO RHR SYSTEM PRESSURIZATION - LEADS TO INCREASE IN INITIATING EVENT FREQUENCY

j ENHANCED TREATMENT dF INTERFACING SYSTEMS LOCA i e MORE COMPLETE MODELING OF VALVE FAILURE MODES e NEW DATA ON CHECK VALVE FAILURES VERSUS LEAK SIZE c e MORE REALISTIC TREATMENT OF DYNAMIC PRESSURE l PULSE e EXPLICIT MDDELING OF RHR RELIEF VALVES 4 l e QUANTIFICATION OF RHR PIPING FRAGILITIES T6 ~ OVERPRESSURE e MODELING OF RHR PUMP ~ SEAL LEAKAGE e OPERATOR ACTIONS TO PREVENT MELT CONSIDERED e THERMAL HYDRAULIC AND SOURCE TERM FACTORS MODELED USING MAAP 4 .e UNCERTAINTIES QUANTIFIED t

COLD LEG INJECTION PATH ARRANGEMENT ACC L SI-v2: 1 HIGH LOW M SIV17 PRESSURE, PRESSURE ', l /, N '/, R A A SIV20 RilV61 RH V31 LPl SYSTEM C T ACC TRAIN A j4 .A l ,I RH V14 SI-V5 Ril-59 RH V15 ACC l l M M v < f SI-V50 RH-V65 RH-V30

LPl SYSTEM S

ACC I TRAINB E t 4 g g RH-v2s g g l SIV35 RH-V83 RH-29 I INSIDE l CONTAINMENT PIPE TUNNEL RHR VAULT 4_ I f

4 g e-9 9 .e 9 $ D. 9. b g 2 2 g E W = = = ,z a O o m0 p = s 2 C m E E 9P z ~ A co A. ce 3 m o > o g 2 >- o >lo mm z E ..V

  • 3E Eg I

Z a az .z g H M[$= _. i _ _ M[ $ .r. =__ ~ 0. ,e O a av > v >n sg -6 WJLz JL z a C m O W M S S a a ew<osce >wmmws 1 o 5 9

SIMPLIFIED MODEL Leakage Leakage RHR RHR Plant > l50gom < RV Can. Pjoing seats Doerator Impact LOCA i l LOCA I I I I. I LOCA/ 1 i BYPASS I I I I MELT I I l MELT P + ,,+---..n-,

~ INTERFACING SYSTEMS LOCA KEY RES'ULTS 1 FREQUENCY (PER REACTOR-YEAR) EVENT UPDATED SSPSA ANALYSIS -6 VALVE RUPTURES, LOCA 1.8 x.10 7.8 x 10-8 -6 x 10-7 VALVE RUPTURES. LOCA, 1.8 x 10 7.3 CONTAINNENT BYPASS -6 VALVE RUPTURES. LOCA. 1.8 x 10 4,4 x 10-8 ConTAINHENT BYPASS. MELT 4 ( e

j EMERGENCY PLANNING' STUDY ~ FOR SEABROOK STATION ~ f CONTAINMENT RESPONSE AND SOURCE TERMS BY ALFRED TORRI ? PICKARD, LOWE AND GARRICK, INC. l PRESENTED TO TliE i U. S. NUCLEAR REGULATORY. COMMISSION ~ AUGUST 6, 1986 ( 9 b t

CONTAINMENT RESPONSE, SOURCE TERMS, CONSEQUENCES OVERVIEW e CONTAINMENT MODELING e CONTAINMENT TRANSIENT RESPONSE AND UNCERTAllfTIES e CONTAINMENT FAILURE AND UNCERTAINTIES e SOURCE TERMS AND UNGERTAINTIES 9 I Pickard Lowe and Garrick. Inc.

UNCERTAINTY DISTRIBUTIONS FOR DECISION PARAMETERS AND EVENT PROBABILITY u PEAK y PRESSURE 5 R E i 2 E >-b

  1. T E

/ \\ / \\ r P'RESSURE CAPACITY \\ / 2! / \\ \\ / N a. N / N / N N [ 15 i i 5 10 0 PHYSICAL PARAMETER,.X- (E.G., PRESSURE) Pickard, Lowe and Garrick, Inc. =

KEY PARAMETER PAIRS FOR CONTAINMENT EVENT TREE UNCERTAINTY ANALYSIS 1.a Containment Failure Pressure 1.b Peak Containment Pressure l 2.a llydrogen Concentration (flame temperature) 2.b Flamability Limit 3.a Containinent Failure Time (late overpressure) 3.b Basemat Penetration Time 4.a Debris Fragment Size .4.b Coolable Debris Particle Size S.a Water Supply Rate 5.b Water Cooling Requirement i 1 i ( f Pickard, Lowe and Garrick, Inc. i

DECISION TREE FOR DEBRIS COOLING IN Tile CONTAINMENT I.. ~ 1 Debris Cooled-8 in Containment J I i Debris in Debris on Reactor Cavity Containment Cooled Floor Cooled 1 I 2. Debris dispersed Cebrfs Debris from Cavtty (b. Fragmented Cooled and Quenched Containment Floor Radiation and Convection Cooling is Sufficient i i Debris Debris Fragmented Cooled and Quenched by Debris Water Layer Thickness d < h 'Y 1 man g Debris Sufficient Removed from tevel Reactor Containment Cavity Floor Area Pickard, Lowe and Garrick, Inc. i

~ ~ DEFINITI0fl 0F RELEASE CATEGORY SETS BASED O!! C0!!TAINMENT FAILURE N0 DES Relcase Ca tegory Description Set S1 Airborne release dtie to early containment failure. Includes oxidation release from 50% of core inventory. 52 Early increase in airborne leak rate (from 0.1% per day to40%perday) S3 Airborne release due to. late overpressure failure. 54 Ground release due to concrete basemat melt-through prior to aboveground containment shell failure. SS Containment integrity is inaintained. S6 Containment not isolated or bypassed. 'I Pickard, Lowe and Garrick, Inc.

1 i FOURRELEASECATEGORIESINEACilRELEASECATEGORYSET EXAMPLE: LATE OVERPRESSURE FAILURE RELEASE ACTIVE FISSION CORE DEBRIS CATEGORY PRODUCT REMOVAL. COOLED ~ S3 YES YES ~ S3 NO YES S3V YES' NO S3V NO NO ( Pickard, Lowe and Garrick, Inc. t Q

1 t ) OBJECTIVE FOR CONTAINMENT. FAILURE ANALYSIS: i

  • DETERMINE THE~ FAILURE MODE AND FAILURE' i

PRESSURE WHE9.E THE CONTAINMENT IS REALLY I EXPECTED TO Fall

  • QUANTIFY THE UNCERTAINTIES IN THE FAILURE MODE AND FAILURE PRESSURE, UTILIZING THE BAYESIAN 2

~ i INTERPRETATION OF PROBABlLITY l e 1 l I Pickard, Lowe and Garrick Inc. ~

REACTOR BUILDING .i

  • s t

e O I a s t a (, S .1 ' y'. s

\\

l .E N. s. s' .t 8 [ 1 t y .a. .m m 4. ~., o, t. 2.< ? Rt %( 4,t L i m crw ~. *, - i 1, - ji 'l y '.0 <":.m c }. o s

a.,.

4 e'

i.,.

u. c c f.s Mkf\\UO f []r o

. a.,

.x ?-

  • c

(- ,g a h'Mi N,> 'J.O.. i ,q ~

  • S o'.'

D' u.. oT Vo,t i f i 3 ~ -p-/ : s. u. e. o e.' o '.G' Q I,e.'.' n':

.W /

f (*. *cs.' 8 Wh # g lN CORE N r.EACTOR CAVITY 1NSTRUMENT TUNNEL (,,_ g I Pickard, Lowe and Garrick, Inc. i 1 A A a e si

~ CONTAINMENT FAILURE TYPES i i I i A. SMALL LEAK (0.02 SQ. INCHES TO 6 SQ. INCHES) PRESSURE RISE CONTINUES LOCAL FAILURE (6 SQ. INCHES TO 60 SO'. INCHES) i B. PRESSURE RISE CONTINUES LEAK RATE INCRIASES UNTIL PRESSURE RISE STOPS ~ C. GROSS FAILURE ( > 60 SQ'. INCHES) RAPID CONTAINMENT BLOWDOWN ( < 1 HOUR) I e Pickard, Lows and Garrick, Inc. 4 I

LOCAL CONTAIMMENT FAILURE MODES CONSIDERED ( = o FLilID SYSTEMS PENETRATION 0 HIGH ENERGY PENETRATION o FUEL TRANSFER TUBE o ELECTRICAL PENETRATION o PURGE LINE PENETRATION o PURGE VALVE SEALS 0 EQUIPMENT HATCH o PERSONNEL LOCK ~ o OTHER PENETRATIONS o LINER TEARING o WELD IMPERFECTIONS ^ ~ 4 I PIcKARD. LOWE AND GARRICK. INC. 7

,s 2 8 n o O s H j Si e w E ao I z O P 00 =. h O sti " N5s 5 14 as = 1-sis = 4 /] [x CC .%wm:::..e.8~.n.: .m ..s + ow .-me.40.a,g.=.me.gn M.gg%sa ;tfira;g.f..- f-93.6 9 o..g:4s.s.g,& o W

% s.=

?.4. n. *gi:. go:: ai

.iBj?;% F.

e z +ok., e - ..e.s.; w

c-

, 98.1 0 .a Ei.Y!*O.Y$SA No 9 l E 'g f ,,,1 4 3 i O E!9$, !s. !aN 2 2 ( I o ol f_a I k S OO 'e A W O Zi l j l

,l l: .cn I kc i r r a G d n a 3 \\ e w o L // // dr a k c i p P D A EH EU ( LF l T t 0 N T E N I M E T N H E I N P = A A I I R T A P T N T E O N C O C E P E D I D S A TU E l O l EUL F YG R E N E l iG I I I

.s. e e i G eM3 t a i ~_ 3 .a x l T j \\/ 3 E i 1 O u 5 h E 2 N 8.L. / \\ I \\ g t2 15 5 W E 5 g g J d B E s

d5

\\ esse N daE .c 'EEE b O b M I

e g .c .3C 2t mO

  • tsCe 43$

a o C d - g TU=<w$h 'N E ii s.

  • 4 h aC c

+ # E e 3.7,38=>> 3C 3,w u O $ m m h a. C ~ cc E w. z.- <<cw-5 <gDU ~'I wwQat gQdw -'I g gus3 O wwCs w o O whCC m w E wamu s z - <C v. "M so D Og 5 4D <%c - -C E-s ~ j gG Z ,zws ww-Wc ow a s' $$oo-g-QQ wh3 n mummme C ogGr = m e. O m A ggj:g o a OE3y p td cuyt --o y og w sa g! w *C 3* OZ O PD

  • C W

( g. M Z Oc =< MJ 4 58 '= ee s s Zw _ egl5 ow <Cw3 LLI 3uc. um o g 6

m.,8 g

= w Z ce g2 "3 Ig> we gM (M h

in 8Uta 1

= w., >s .= g wwo <<w a mo" UG -Z - 6h m c w g e gs<g C_ l ww E e N g4 = = c 0650 c - ha o=s ws-ws< y e. mmm s e. \\ 1 o }% - e 3 - s. b c ~ 9i ~, e-C

i l CONDITIONAL CUMULATIVE PROBABILITY DISTRIBUTIONS FOR FEEDWATER PENETRATION FAILURE (FLUEHEAD OR l PIPE CRUSHING) BEFORE HOOP FAILURE AS A FUNCTION OF FAILURE PRESSURE 1.o. ~ CURVE 1 2 3 4 8 to y ~ e g<<' = CURVE A) Al PRO esL IV 3

n i

i 10 I 3 I 1I i.it T ~ I i C' 1 ,0* = I FLUE PtPE = F Lunt A un r s I t f f I I I f-5 88, i 540 160 tot 300 320 240 360 f AttuRE Pft($$URE IP50A) Pickard, Lowe and Garrick, Inc. i 1-

COMPOSITE CONTAINMENT FAl' LURE PROBABILITY l: DISTRIBUTIONS FOR TYPE B (LEAK) FAILURE, TYPE C (GROSS) FAILURE, AND TOTAL FAILURE o i._ 22'?** yQ ~

: g m..-

f p TYPE S (LEAN) / WET E ENCES e / / / se ,/ / / TYPt C 10ROSSI. d = f / wt NCf3 l / 1 e 1: 1 / /

ie r :

/ i 3 / ~ 3 / ~ l 5 I 1 E I 1 I I 1 3 I 'e' 1 e i 1 B 1 - as : l I h I a 'g I ..- = i y 1 I 5 g j na m y ( 1 -i i i i to, 340 160 teo 200 22e 240 260 g PAISSURE qPSIA) Pickard, t. owe and Garrick, Inc. 1

CONTAINMENT FAILURE MODES AND TYPE i Median Lognormal Hedlan Failure Failure Fallure Standard l'8 Mode Pressure Type Deviation A (pstal 8 Structural Failure Itodes Cylinder Wall llo'on 231 Largea C .12 Dome Hoop or Merldlonal ' 238 Largea C .12 Wall lierldlonal 296 Larges C .12 Base Slab Shear 338 Large8 C .23 Base Stab Flemure 415 Larges C .25 Vall Shear at Oa'se 423 Large,a p .30 Local Failure Modes Feedwater Penetration 194 Self-Regulatingb a o.g Flue Head Feedwater Pipe Crushing 231 Self-Regulatingb 8 .12 h 'g d Fuel Transfer Tube > 260c seir-Regulating Bellows Penetrations X-25, Y-26, 181 0.5 Square Inch A 0.16 X-21 Each All otherse > 231C Sel f-Regula tingb a d aHuch larger than 0.5 square foot, bleat area is self-adlusting to stop pressure rise. Probability of f ailure is less than 50% at uitleate sta11 heop capacity. C dFallure presstre model not lognormal. ' Composite estleate of Ifner adhesion, microcracks, weld faults,

  • t equlonent hatch, other mechanical penetrations, and electrical penetrations.

Pickard, Lowe and Garrick, Inc.

1 4 4 f* l d CONTAINMENT FAILURE MODE AND, TIME 9 b u t 4 6 2 t I i + 4 PICKARD. LOWE AND GARRICK. INC. N b t

j i. CONTAINMENT PRESSURE VS TIME FOR A TOTAL STATION BLACKOUT WITH NO EMERGENCY FEED WATER AT SEABROOK STATION [ .t I CONTAINMENT PRESSURE (PSIA) 200 MEDIAN CONTAINMENT FAILURE PRESSURE i f 175 CONTAINMENT j FLOOR DRYOUT

  • i 150

=#-#"%="'****"""~' 'g;,, ,,,.,,,mmm: i .125 l 1 HEACTOR CAVITY 100

y. ,g.

. FLOOR DRYOUT-75 CORE I f: UNCOVERS VESSEL 50 MELTTHROuoH l l l l 25 STEAM GEN,ERATOR PORV OPENS UNCOVERS.I ] O O 5 10 15 20 25 TIME (H.RS) Pickard, Lowe and Garrick, Inc. / Seabrook Station Probabilistic Risk Assessment ( i i 1 i

LATE OVERPRESSURE FAILURE TIME VARIATIO!1 FOR ACCIDEllT SEQUENCE TE (DRY) Structural Uncertainty Thermal flydraulic Uncertainty (110%) P ressure Percentile 10 50 90 ~ Percentile Probabfifty P (psla) P robability .2 .6 .2 1.0 .01 163 17.6.' 19.6 21.6 50 .19 179 Eatlure 20.0 22.2 24.4 - Time 50 .6 211 (hours) 24.5 27.2 30.0 90 .2 245 29.2 32.5 35.8 ( Pickard, Lowe and Garrick, Inc.

CUMULATIVE PROBABILITY DISTRIBUTIONS FOR LATE OVERPRESSURE FAILURE TI!1E IN DRY SEQUENCES 1D \\II If O.S '#I TEA % 0.2 0.1 d I TE SEST ESTIMATE $TATION RLACKOUT ~ E TEA STATION 88 ACKOuT wlTH a

  • FENETRATION ANO CONSERVATIVE CONCRETE WATE S CONT ENT E

Sg $M AL t. LOCA. NO SAFETY INECTION 3 AE L ARGE'LOCA. NO 3 SAFETY 1NJECTION o e.o2 1 .nas .002 Act I l i e I I I O 20 40 to 30 100 l20 140 TIME OF RELEASE eHOunst ( Pickard, Lowe and Garrick, Inc.

~ UNCERTAINTIES IN THE TIME OF BASEMAT MELT-THROUGH FOR PLANT STATE 3D/7D Accident Sequence: AE TEA TE l' Weight: 0.1 0.3 0.6 ~- Concrete Penetration Itodel Time (hours) of Dasemat fielt-Through . Rapid Penetration (weight = 0.2) ~ Ilinimum Tine Pr = 0.2 15 31 62 Expected Time Pr = 0.6 20 38 76 Itaximum Time Pr = 0.2 29 52 104-Expected Penetration (weight = 0.6)' liinimum Time Pr = 0.2 3 2 '- 62 124 Expected Time Pr = 0.6 51 90 180 Itaximum Time Pr = 0.2 C6 141 282 Slow Penetration (weight = 0.2) l Minimum Time Pr = 0.2 60 90 180 l Expected Time Pr = 0.6 79 118 236 i Maximum Time Pr = 0.2 114 169 338 t Pickard, Lowe and Garrick, Inc.

i i .l 4 PROBABILITY DISTRIBUTIONS FOR CONTAINMENT FAILURE TIME DUE TO LATE OVERPRESSURE AND BASEMAT PENETRATION PROBABILITY CUMULATIVE l 1 0.5 - PRODADILITY naa'**pw.nmae DISTRIBUTION FOR:. LATE OVERPRESSURE e

  • g,,,.cr*

Pr(t o,< tl 0.2 t gg d PR BADILITY I O*1 / l DISTRIBUTION FOR r B ASEMAT MEl.T-THROUGH O.05 / Pr[teur< t) /g PROBABILITY f. $S "' j O.02 R ATE ~~ Pri'c'~t)(hr-8) I t O.005 l { j Pr[teur< t op) = 0.22 t l 0.002 / i O.001 O 20 40 60 80 100 120 140 FAILURE TIME t[ HOURS) i j Pickard, Lowe and Garrick, Inc. Seabrook Station Probabilistic Risk Assessment - I l I.

  • e SEABROOK PLANT-SPECIFIC RELEASE CATEGORIES Category

-Definition 51 Early Containment failure with Caldation Release, Spray Operating 52 Early Increase in Containment Leak Rate, llo oxidation Release Sprays Operating 53 Late overpressure Failure, sprays Operating 55 Containment Intact. Sprays Operating, Enclosure Dullding Fans Operating 56 Failure to Isolate Containment. Sprays Operating IT Early Containment Failure, with 0xidation Release, Sprays tiot Operating 52 Early Increase in Containment Leak Rate No Caldation Release, Sprays flot Operating, !!o Vaporization Release Tlv 5fallar to 37 but with a Yaporization Release U Late Overpressure Failure, Sprays Not Operating. Vaporization Release t 5fallar to U but with a Vaporization Release ITV Basemat Penetration Failure, Sprays flot Operating. with a Vaporization Release 55 Containment Intact, Sprays Operating. Enclosure Building Fans IJot Operating Tif Failure to Isolite Containment, Sprays 11ot Operating, with a Vaporization Release t Pickard, Lowe and Garrick, Inc.

~ r i METHODS FOR ACCIDENT PROGRESSION AND SOURCE TERM ANALYSIS e 1974 - 1984 MARCH AND CORRAL e 1984 BMI-2104 CODES (STCP) MAAP 4 e FUTURE EPRI CODE MELCOR ~ MAAP, EPR! CODE AND MELCORE INTEGRATE ANALYSIS 0F ACCIDENT PROGRESSION AND RADIONUCLIDE SOURCE TERM t ALL CODES ARE DETERMINISTIC AND PROVIDE POINT ESTIMATE ANSWERS I Pickard, Lowe and Garrick, Inc.

~ l SOURCE TERM UNCERTAINTIES f' l RELEASE TIME i CONTAIMENT FAILURE PRESSURE l ACCIDENT SEQUENCES l PRESSURE INCREASE WITH TIME ~ RELEASE DURATION i CONTAINMENT FAILURE MODE I RELEASE HISTORY FROM RCS i j ~ WARNING TIME ~ .j GENERAL EMERGENCY DECLARATION 1 i RELEASE TIME i I ^ ENERGY RELEASE i i CONTAI MENT FAILURE MODE l RELEASE HEIGHT t i LOCATION OF CONTAINMENT FAILURE f i RADIONUCLIDE RELEASE FRACTION I ACCIDENT SEQUENCE RELEASE TIME N ar, and Garrfd. Inc. RADIONUCLIDE TRANSPORT q 4 m ,,-.--,-,m-mn a e

e .i ~ ACCIDENT SEQUENCE CONTRIBUTIONS TO DOMINANT RELEASE CATEGORIES k 1 i ~ A proximate Plant P Release . Percent Accident Sequence State Category Contribution 4 56v 40 Y. Sequence, Cold Leg AllR Break IF 40 V Sequence, llot Leg RilR Break IF i 20 Transients or Small LOCA, 8-Inch Vent Line Open', No EFW, No HPI 3F/7F i l T7V 60 Station Blackout Transient, with EFW, Seal Return Open 7FP i 35 -Station Blackout Transient, no EFW, Seal Return Open 3FP ' i z l_ SJy, T4 80 Station Blackout Transient, with EFW 70 i 20 Station Blackout Transient, no EFW 30 i SJ 95 Transient, No HPI, Spray Falls at Switchover, with EFW 80 l l 5 Transient, No HPI, Spray Falls at Switchover, No EFW 40 i s i 1 1 1 5 { i i 4 i I f Pickard, Lowe and Garrick, Inc. l ? I i ~_

o UNCERTAINTIES IN RADIONUCLIDE TRANSPORT e REACTOR SYSTEM TRANSPORT LARGE LOCA - HOT / COLD LEG BREAK .V - SEQUENCE - HOT / COLD LEG BREAK SMALL LOCA - HOT / COLD LEG BREAK l TRANSIENTS - PtmP SEAL FAILURE - PORV VENTING l CONTAI19 TENT TRANSPORT - EARLY CONTAINMENT FAILURE LATE CONTAINMENT FAILURE CONTAlfetENT ISOLATION FAILURE AUXILIARY BUILDING RETENTION l 7 t -i l l Pickard, Lowe and Garrick, Inc. l

- _ _ _. _ _ _. _ _ _.... _. _... _. _ _... _ _ _ _. _. - -. _. ~... _. _ _ _. _. _ _ _ _ _. _ _ _ _. _ _ _ _ _.. _ _ _. _. _ _. _ _ _... -.. _ 1 CUMULATIVE PROBABILITY DISTRIBUTION FOR PARTICULATE RELEASE FACTOR r i i l i i. .e 2 e.2e i s.s l i i i nn i 4 n2 $W-3 6 -SW g z O e.: 2 ) 7 a ? em i a u aos a i s es t i I I ' I I I I as, sees sees aos asa em aie em ase i.e 88ULTIPLBER F04 PAmiscutATE RELEASE F A004 COARAL-I g Pickard, Lowe and Garrick, Inc. e ..w.

~ SEABROOK RELEASE CATEGORIES 33V AND IT WITH UNCERTAINTY I ~ Release Warning Release Energy Release Fractions ~ Probability Time Time Height Release Category (hours)* (hours) (meters) 106 cal /sec Xe. Cs Te 8a Ru La lEIV-a .02 28 18 10 < 10 1.0 .015 .019 1.6-3 1.5-3 2.5-4 '53V-b .08 36 24 10 210 .9 5.3-3 6.6-3 5.7-4 5.1-4 8.6-5 Iiv-c .30 54 42 10 < 10 .8 1.6-3 2.0-3 1.7-4 1.5-4 2.5-5 Ilv-d .60 89 74 10 210 .7 5.0-4 6.3-4 5.5-5 4.8-5 8,.2-6 37-a .02 22 19 10 < 10 1.0 .026 4.9-3 3.3-3 9.7-4 9.7-5 33-b .08 28 24 10 210 .9 8.5-3 1.6-3 1.1-3 3.1-4 3.1-5 33-c .30 34 30 10 < 10 .8 2.9-3 5.3-4 3.6-4 1.1-4 1.1-5 3.1-5 3.1-6 1[I-d .60 53 40 10 210 .7 8.5-4 1.6-4 1.1-4

  • All release durations are less than I hour.

Exponential notation is shown in abbreviated form; f.e.,1.6-3 = 1.6 x 10-3, i:0TE: l Pickard, Lowe and Garrick,' Inc. 1-J --r* -r-- w e ---4

l j NEW SOURCE TERM INFORMATION l i i i j e.lDCOR REFERENCE PLANTS: ZION, SEQUOYAH, GRAND GULF, PEACH BOTTOM t i l e NRC SOURCE TERM RESEARCH PROGRAM: BMI-2104, NUREG-0956 e SEABROdK STATION PRA: ACCOUNTED FOR SOURCE TERM UNCERTAINTIES i j i t. t t l \\

l 4

I ~ Pickard, Lowe and Garrick, Inc. k -. ~,

a ~ SEABROOK - ZION COMPARIS0N TABLES (EXAMPLE) Seabrook Station Zion Station Source Value c. Containment interspace (annulus) width (ft). FT 6.2-82 4.5 to 5.5 Not Appifcable 3 d. Containment interspace volume (f t ). FS 6.2.3.1 524,344 Not Appifcable e. Containment interspace pressure FS 6.2.3.1 -0.25 Not Applicable (psid or inches of water). f. Containment enclosure emergency exhaust flitration system: Status during normal operation SD No. 53 Standby Not Applicable (1) (2) Maximum exhaust flow rate (cfm}. SD No. 53 2x2000 ifot Applicable (3) Exhaust filtration. SD No. 53 HEPA Moisture Not Applicable See FSAR See FSAR

15. Containment Penetrations Table 6.2-83 Table 6.6.5-1 Containment atmospheric purge line diameter 8

10 (inches).

16. Auxfitary Butiding Data 3

a. RHR cubicle volume (f t ). 133,208 1,465,400 b. Elevation of lowest opening (feet). (-) 31 feet 342 feet 10 inches 3

c. Water fill volume to elevation in (b) (ft ).

49,860 0 d. Water level af ter RCS injection (feet). 6.7 -O e. Water level after RCS and RWST injection (feet). 31 feet -0 10 inches f. Elevation of RHR pumps (feet). (-) 56 feet 342 feet 4 inches g. Elevation of pressure relief valve (s) (feet). (-) 18 feet Not Available 5 inches I NOTE: FT = FSAR table; FS = FSAR section; SD = system description; FF = FSAR figure; 580 = f atercompany memorandum from UEAC to Seabrook; N/C = not calculated; N/A = not available. Pickard, Lowe and Garrick, Inc.

i CONCLUSION FROM SEABROOK-ZION i DESIGN COMPARISON 4 ~ j i e SEVERAL DESIGN DIFFERENCES AFFECT FREQUENCY OF l ACCIDENT SEQUENCES h l' e ONLY DIFFERENCES IMPORTANT FOR THE V-SEQUENCE ARE SIGNIFICANT FOR SOURCE TERMS i L ~ i e PERFORM SEABROOK-SPECIFIC SOURCE TERM ANALYSIS 1 I l .\\ j [ t Ickard, Lowe and Garrick, Inc. i

SEhBROOK STATION SOURCE TERMS o SIX MAJOR SOURCE TERM CATEGORIES: FREQUENCY ACCIDENT SEQUENCE CONTAINMENT FAILURE _(PER YEAR) S3 STATION BLACKOUT LATE OVEHPRESSURE (LOP) 1.6 x 10 4 7.7 x 10 5 SS SMALL LOCA, NO ECCS INTACT (INT) S2 STATION BLACKOUT INCR$ASED LEAKAGE (IL) 2.0 x 10 5 . S7 V SEQUENCE, SEAL FAILURE BYPASSED (BYP) 3.1 x 10.a SG TRANSIENT, NO AFW, NO ECCS UNISOLATED PURGE (UP) 3.2 x 1047 S1 V SEQUENCE, PIPE FAILURE LARGE BYPASS 3.9 x 10 8 o TWO SOURCE TERMS FOR EACH CATEGORY: BEST ESTIMATE CONSERVATIVE ESTIMATE t Pickard, Lowe and Garrick,Inc.

l SEABROOK V-SEQUENCE ANALYSIS e INITIAL CONDITION; 100% FbLL POWER

  • INITIATING EVENT:

f SIMULTANEOUS FAILURE OF BOTH MOVs IN RHR SUCTION PATH - LEAK RATE EXCEEDS CAPACITY OF REllEF, VALVES AT i ); DESIGN PRESSURE e ACCIDENT PROGRESSION: i - RELIEF VALVES OPEN TO PRT 4 ' PUMP SEALS Fall ON BOTH RHR PUMPS I I ECCS AND CONTAINMENT SYSTEMS AVAILABLE - AFW AVAILABLE ~ l NO OPERATOR ACTION TO DEPRESSURIZE SECONDARY SIDE - RHR PUMPS FAIL (NO RECIRCULATION COOLING) r i Pickard, Lowe and Garr,ick, Inc. f

V ERTI. CAL' SECTIO N TEROUGH RF R.VAUL-S .o-I ,,s. s t '~~~"'~_~~_~_~~.,e s ?., g-e 4 e e s 8 3 I rie,.w. ... r m.1 = i 8 si s l (v.arsa n l' e e.-- 1 . t,w, *p, J

== -3

,...s. ec.. p [7 Ol / e.o.num l i Ia

5

/,se.: M W. /.v. \\ ,C 4.s : g.\\ 6 i s.- l !.. _ __ _ ___ _ _- J '_.w/ A gp_---MQ..h.i___.. uu; J... .=... I ,=2 g I. I c.&...,- t.

==: v 8 32 N I EE! 1..7.'ON+p.,,l m 4_=a j /- i i e i , :.a. - r ', "EE 4 .u.r c v,77."i,,g s =d=. J., k /pl rup.r %* e j A i c 1M 3..*i Jy , I .... c i n

== e g., 4 1 .a __e i .e s, a "Q d '. / E='t k a-a 1 y [u.s.u

==-' ,1

4.. % : p 3

/\\ Gl C 'I j s;) m' l l

==.

1 IAY p i P us an.

a u......

t .c.tssc d....r, 7 :;9 /i@',ll JY,. I 1 ..a.. } d 2, i F r.= i,2... = .ij 1 11 s/ Es =a c. 6' r-i f 5; / 1 =1=. et.., g r . 1 t = -i 's p t, 3,(.5,

g-rw

,x., g J.. 4 .m. f _, n a -~ 4 . 2,: 3_ "i Jl 1 .1...1 d I L-'k~ M e qA w

  • W-p
t. ",

.s .C=, , 4-3 ~. q.,.,,g-c"'"" ..., ;J j.4 ( .,2-(, g 4=-I -c. .y f.ue s L _,.. :.: ,y g s u.m Pi:kard, Lowe and Garrick. Inc. rt ryATPy A 4' t ~ M ?'t.3 t.t**** O

j SEABROOK V-SEQUENCE CHRONOLOGY TIME EVE,IIT, RllR Pump Sea) Fat 1ure 0.0 0.0 Rl!3 Safcty Valves Lift 5 Seconds itPI On Pressurizer Relief Tank Rupture Dtsk Falls 27 Seconds 29 Seconds Reactor. Coolant System Solid 7.6 tilnutes Accu::iulator Discharge Begins 12.2 Minutes RilR Safety Valves Begin to Modulate f < 30 Hinutes Spray Pumps Flood < 1.3 hr RilR Pumps Flood l Accuculator Water Depleted 1.0 llaur 2.8 Ilours liPI Ficoded in Equip.snt Vault ( I 6.4 liours RWST Water Depleted ~ 6.4 : fours ECCS Rectreulation Fatis* ( 9 teak Uncovered i 7.4 llours 8.1 tcurs Core Uncovery Begins i 8.5 Ilours Zircalloy-Water Reaction Begins' 10.0 Ilours Core Melting Degins 11.5 Ifours Reac'tcr Core Support Flate Falls 11.5 Ifours Reactor Vessel Falls 11.5 lleurs Reactor Cavity' Dries Out; Core-Concrete Interaction Degins l 24 t!ours End of Analysts ( Pickard, Lowe and Garrick, Inc. l

~ l SEABROOK V-SEC UENCE RADIONUCLIDES ' RELEASED TO RHR VAULT 1 RELEASE (PERCENT)* GROUP. FISSION PRODUCT 1 1 NOBLE GASES .93 33 f 2 CESIUM IODlDE l '3 TELLURIUM . 20 1.5 4 STRONTIUM 2.9 ~ 5 RUTHENIUM I 4 6 CESIUM HYDROXibE 28 1

  • OF CORE INVENTORY I

~ Pickard, Lowe and Garrick, Inc. 1

j SEABROOK V-SEQUENCE SOURCE TERMS l I o BEST ESTIMATE: - RHR SEALS SUBMERGED DEEP SUPPRESSION POOL DECONTAMINATION FACTOR o CONSERVATIVE ESTIMATE: - RHR SEAL ~ LEAK = SUMP POMP CAPACITY NO RWST MAKEUP l i RHR SEALS NOT FLOODED j DEPOSITION IN RHR VAULT 4 Pickard, Lowe and Garrick, Inc. I. ~ l i

EARLY CONTAINMENT FAILURE e ease hacdons Release Time (hours) Energy Release Source 6 Category Start Duration Warning 10 cal /sec XE I CS .TE SR RU LA This Study .51B 2 12 1 < 10 1 .052 052 0I3 0062 .005 2.-4 This Study SIC 1 14 .S < 10 1 135' 135 032 016 0056 6.-4 ~ fitJREG-0956 TMLB'6 2.5 10 5 < 10 .85 .07 058 .055 01 0013 2.-4 WA511-1400 PWR-2 2.5 5 1 12 .9 7 .5 .3 06* 02 004 e 9 e I Pickard, Lowe and Garrick, Inc. l

m_ _m__ .y o CONTAINMENT PURGE ISOLATION FAILURE m ~ Release Time (hours) elease ractions Energy Release Source 10gcal/sec XE I CS TE SR RU LA Category Start Duration Warning -This' Study 568 4 16 3 < 10 1 .01 .01 3.-4 6.-4 6.-5 6j-5 < 10 1 052 .052 033 .0062 .005 2.-4 This Study S6C 2 12 1 3.5 < 10 1 .01 01 3.-4 6.-4 6.-5 6.-5 ~ IDCOR-Zion ID-IMP 4 .NUREG-0956 THLB'8 2 10 0 < 10 1 022 013 11 058 0053 2.-4 WASH-1400 PWR-4 2 3 2 < 10 6 09 04 03 005 .003 4'. " 4 I 9 Pickard, Lowgand Garrick, Inc.

UNCERTAINTIES SOURCE PROBABILITY o SOURCE TERMS: BEST ESTIMATE (B) 0.9 CONSERVATIVE ESTIMATE (C) 0.1

  • METEOROLOGICAL MODEL:-

~ -- MEDIUM ESTIMATE (M) ~ 0.8 HIGH ESTIMATE (H) 0.2 i 4 f l Pickard, Lowe and Garrick, Inc. I _ j [

t SENSITIVITY STUDY: ENVELOPING SOURCE TERMS e CONSTRUCT ENVELOPING SOURCE TERMS FROM ALL SOURCE TERMS EVALUATED IDCOR NUREG-0956 BEST ESTIMATE SOURCE TERMS ~ ~ CONSERVATIVE ESTIMATE SOURCE TERMS e REANALYZE EPZ STRATEGIES e ' COMPARE / EVALUATE EFFECT ON CONCLUSIONS Pickard, Lowe and Garrick, Inc. I 1 g

WASH-1400 METHODOLOGY BASED SOURCE TERMS e TEST ROBUSTNESS OF CONCLUSIONS e USE MARCH / CORRAL METHODOLOGY e MODEL SEABROOK SPECIFIC DESIGN FEATURES e MODEL 24-HOUR ACUTE ACCIDENT TIME MODELDOMINANTACCIDENTSEDUENCEFOR e EACH SOURCE TERM w ~ Pickard, Lowe and Garrick, Inc. e

CONSEQUENCE ANALYSIS OBJECTIVES e PROVIDE A REALISTIC ASSESSMENT OF CONSEQUENCES e ACCOUNT FOR PLANT AND SITE SPECIFIC CHARACTERISTICS e ADJUST ACCIDENT RELEASE CHARACTERISTICS TO ACCOU.NT FOR RESULTS OF PLANT CONTAINMENT ANALYSIS e PRODUCE CONDITIONAL Risk CURVES FOR EACH O'F FIVE HEALTH EFFECTS e ESTIMATE UNCERTAINTIES TOOLS e USED REACTOR SAFETY STUDY METHODS WHERE APPLICABLE e MODIFIED CRACIT COMPUTER PROG' RAM FOR SITE SPECIFIC ANALYSIS e COLLECT PLANT-SITE SPECIFIC DATA BASES FOR INPUT TO CRACIT ~ Pickard, Lowe and Garrick, Inc.

CONSEQUENCE METHODOLOGY ...USE.THE CRAC PROGRAM WHERE APPROPRIATE e FOR SITE SPECIFIC CALCULATIONS, DEVELOPED CRACIT - MODIFIED VERSION OF THE CRAC PROGRAM e MUST ACCOUNT FOR ACTUAL SITE CHARACTERISTICS - NIETEOROLOGY ', - POPULATION EVACUATION ROUTES AND TIMES - POTENTIAL MITIGATIVE FEATU' RES eSPEdidiEFFECTS - TERRAIN INDUCED FLOW PATTERNS l - LAKE EFFECTS - MULTIPHASED RELEASES e AP. PLICATION'TO. EMERGENCY PLANNING - UNDERSTAND PLUME BEHAVIOR IN EMERGENCY PLANNING 0 IIZONES ~ - POSSIBLE INCORPORATION OF MODEL;RESULTS INTO i EMERGENCY PLANS Pickard, Lowe and Garrick, Inc.

f .k 3 ~. WEATHER CATA 4 RELEASE ATMOSPHERIC 4 CATEGORIES DISPERSION 1 l y j CLouc HEALTH DOS! METRY DEPLETION EFFECTS + v GROUND PROPERTY t POPULATION y DAMAGE CONTAMINATION 4k EVACUATION e e W e e e i i FIGURE 6-1. SCHEMATIC' DIAGRAM OF CONSEQUENCE PROGRAM

6 j =m m-so STRAIGHT LINE HR NO.1 HR NO. 2 HR NO.3 HR NO.4 HR NO. 5 I g i .i g j PLANT l I I i l i 1 1 I i I g g 4 l s a y 10 ['. l. 8 yy I 12 13 14 CASE B - CRACIT' STRAIGHT LINE l ~ HR HR NO.1 HR NO.2 HR NO.4 M NO. S NO. 3 1 r 8 4 3 I I t I 8 I i 11 e t 1. t 4 0 !'-! ! I !! 8 8 8' 8 12345 I .1516' e j q gg 17 '18 22 . 23 24 SPhTIAL INTERVAL NUMBER i PLANT CASE C - CRACIT TRAJECTORY HR NO.1 HR NO. 2 METEOROLOGICALSEQUENCE HR NO. 5 ~~ HR U STABILITY DIR 1' 1 1.0 6 8 g' \\ 2 2.5 ,2 7 3 0.9 2 9 HR NO.3 ~~ \\ ~ 4 1.9 2 4 \\ HR NO.4 10 MILES 2.0 4 1 I 5 AREA OF OVERLAP SCALE FIGURE 6-6. EXAMPLE OF SPATIAL INTERVAL DISTANCES FOR TYPICAL WEATHER SEQUENCE --,a_ .m.. .-.7-y'h-- U. ,,-,_.m. .,y-

~ ILLUSTRATION OF PLUME AND EVACUATION PATHS ON ) FINE GRID (DOSE CALCULATIONS MADE IN SHADED FINE GRID AREAS) PLANT FINE GRID ELEMENTS l I l [ .. i i l 2 EVACUATION I PATH THROUGH POPULATION GRID i 1 C -~~ PLUME PATH 2 Iaaa aaaaI a 2.25MI Pickenf, Lowe and Garrick, Inc.

.x,

  • ' :-. ' aa.

.%. j ..\\,4. * / '.s seehe , : y-

  • ..., g,_g

.*rd J4.:. 1 c= t %., h,.,

  • _..,. f.g.,.

0--e ,.r.- e, .. u.. s-gge. _.? b ..,6

  • 'a====

C .s. 8......F g .p. l .*..,,. ~ ~ v.*.,. m ' .o s . c ~'M; ~~ e,... .a -v.=:.;f: 3, y. z. g. 9. y / '.,-2 g.g..- --.s . '.3 2.L s. .a OO e s... o..... ).u...... .(. A. ,.,,1., so-?."' '*444.. G,w, N.j. y., d.s../.{ v. ~ J. '. -/ " 8. '/.,', ').. - i.' ...L. s- -.r. f :' A-5. ..1,.I <\\ /. 1 l ~~ ...,,... >..~....t w . I.. /.. /.t .. - t,\\s. C. 5 p E p>>.r cN / W~ \\ % 3.. a+, s6 g.l.k.-,gW h.- 4.g. c;s.).. c.,.,n', .".}2 x...'i.s.- \\ n..h.=

. :.+. N., a

+.. i u. . ^...W.i:I ,,,.--. -k' w.... .s s... C l.'. ) #,, e:r,*'$.-l'<p..---] n.n. .g, i k, &..'v'N ?.',% ' )*s'U.,.,p'$.'.t%.1.'s..,.'1;.s.m.., ~ <,. a = = * * * 'E. e, -.-lr..., ,..,s. 4. ..,..,sy -r_g n..., 'N.p -,.R/ l &s f..y,b &.., 1f. saser.hf% f.., j f .e-4 k e ef

e. y f

W,g s q ~ ! 5'y y,, 4lL-4.', .1j

Q.hp '

g /-Q+a..p N. c4. /*.. S f@e. yQ p h Q%. m m r ~, 4. ..s f..,..-., e: e __/ i

s s

.w-s i ala -.' ' N.s s f -AX.'.. y...g,'% i-y'- -s + . %. t,~ - @,,.2. f,:,3

p s

s. 2<....,.,.r. ... -,. k. >'s. W1,s. s: aW, %.- . \\,. ~ r 2s e ~ m.. f <, y., - . s. N

c-e,.

A

l. (

_f 9 a ..,.G : r).$7' 9,mL. x:r g! I,. p.y 4\\ \\ e f.:L..n b-F % - Jy.-N-I / t -'l h-T -

t.w. d D,.. l l

,1, 1 77 e 9 u? r =.v. > ::.*n.1 j%& .ji . 2a ~i 2 ,LJgg l., -- P+.2 2 , g,p,_3,,g .x 7, j " h ' L-(+ .G'- g $:.k,..:#.$. rN:f'sQ m;l, '.k - /~ h '\\', ,Q l'. 't 2 s,. N./.</Z. b * / l -; ~ 1.)f;.A.W: .I! / ' Y t T./. L. <c .u, ; t, r g I - ~ K ' ' g. -. fg g\\. ? 3- ,,L l.; " *'Q ' ',: \\ \\a -(%'%w.

  1. ~.

s . %,,c.._,,,._

.. e". ' i.N M,,, g 8i

,k s

..% Q.,,21 t i... f ni

(, 4.. 0, p. -.. A ;. >, s s, ,y;..p.. i ._.a...3. c 5,. i. s i s b f.'. o -K . f I'l' l J k. 'b_f' %. n.h ~\\ ' I \\ Y. / ' $%. f.,. /* l :0l'o N. ',7 :. -~' t$ 's

  1. *.z i f

, -..,.: - - i % ',s h.s.' 1,i. 9,,/ l}r.,,eo .. -u s 4-i . p tv.,..?.%. -w, p u a,g s T..:.%y.: l r, H 7 ' -.. l ,f, i-r a (f _ -.f.,o s.w., u.. 15 i. rs s 17 36 Frc;tE 12.3-6. PCM 5;'* ER hEEKEN3 CASE: EVA C U :0*: CORRI:CR BCUN: ARIES A 3 GRIO ELEME'tT DACUATIC!i 10;TNS

v. DIFFERENCESBETWEENCbNSEQUENCE ASSUMPTIONS IN PHASE II VS SSPSA e UNCERTAINTY TREATMENT 2 SITE CATEGORIES "MED" AND "HIGH" (SSPSA HAD 3) f 2 SOURCE TERM CATEGORIES "BEST ESTIMATE" AND " CONSERVATIVE" (SSPSA HAD 4) e' MORE MULTI-PHASE RELEASES l 80 P'ERCENT VS 50 PERCENT OF CASES e REMOVAL OF 2000 ON-SITE WORKERS FROM POPULATION TABLES e EVACUATION AND SHELTER ZONES VARIED ASSUMED NORMAL ACTIVITIES BEYOND EVACUATION ZONE. EXCEPTIONS WERE SHELTER 2-10 MILE CASES e OUTPUT ROUTINES CHANGED'TO PROVIDE DOSE VS DISTANCE PLOTS RISK VS DISTANCE PLOTS i e 4 m -s

iIl !ll1j, 9 i 1 a s 4 8 8 e 82 1 1 1 t 13 1 H C 6 S YR \\ O G E t T A C E S A )6 E 7 L 1 E 1 R R 8 >'t E R B i O M F U ) N S E E V N L R U I UC (R 1t ( E N E C O 1. C N N I A T AT T A S S U I I C D D A V S E 8 U e S O 't R N EV R O E F S O D l 1 111.l 1 EEEE RRRR A 686 'E 0.46 R 68 4 U 00.. G 25S.1 1 I x# F e t a. 4 s-0 6 6 e g 1 1 1 1 1 3Eu.wo$ E o s 3 ,r cw od g 3es,_" a 8 a:n. 2

r

- i ,,4

-. ~. _ I w w w O m M = o . o Z m a w m w o e > > v. w :.-.l. g a g a o e. w w-o w "iGI5,_l. o ~ m w i, w o .:_. o a l w: w' = E 8d

w E'33 ga$ -

O a = l o I w w s w w: > l -i wl r. r w = w:a.l i w:l. i .- w w =:. v = v. w Q = w_ YD / l I =0 .J 8e = I / m .J,-

u. e

.I ma .i / I. we a-1 ). =- .~ v= l :, x I / Id **"" Ww .i l i. - < <m I l-. s. .m _ g I ./ u j. I w Q *- o a 1 / /. m . =. - = <- = m / a= / .w u m< / u / E l g uw m e_ / a- / -x / po .t _, u. / l.* 5 / / = j , / *.. /,- / Y / m .= x _-=.5 5&,= = = = = = = =.......

  • j /-

~ s f p-3.,,. g 8 u ~ r = ~ ~. O M g 33HUISIG W3 AID 301S100 )lSIM 3D HDI130MJ B-12

8 188........u.*w.s e t.............. i:,j e2 -w.:_g;+je3

,j e 4
,J e5 te s

N., N ~ w E ACUTE FATALITIES c \\ $ w" '\\, A.C.U..T. E....I.l.l.J.U. R..I. E.S.. a E g t e,. N,N ..t e, TOTAL LATEttT EFF E= "e '\\ tig i i i g l5 y gll te __ -a -a c __te j mu \\. o ? no n. w= 2 = m, ~ l TJ M w s =g 3 _te 2: -3 o :, t e.. ,_ w wJ g o U -4 4 18 le 16 e..

l 61
l 02

. :l el.

l g4
g e 5 ggG
+m4 1

1 t i flu!18ER OF HEALTH EFFECTS e e FIGURE C-11. COMPLEMENTARY CUMULATIVE DISTRIBUTION FUNCTIONS FOR llEALTH EFFECTS RISK FOR RELEASE CATEGORY 56-CH FOR NO EVACUATION (Rutt NUMBER ;76) 9 I e n

O l CONSEQUENCE ANALYSIS OBJECTIVES 3 e PROVIDE A REALISTIC ASSESSMENT OF CONSEQUENCES j e ACCOUNT FOR PLANT AND SITE SPECIFIC CHARACTERISTICS 1 l e ADJUST ACCIDENT RELEASE CHARACTERISTICS TO ACCOllNT FOR RESULTS OF PLANT-CONTAINMENT ANALYSIS e PRODUCE CONDITIONAL RISK CURVES FOR EACH DF FIVE HEALTH EFFECTS o ESTIMATE UNCERTAINTIES TOOLS ~ e USED REACTOR SAFETY STUDY METHODS WHERE APPLICABLE e MODIFIED CRACIT COMPUTER PROG' RAM FOR SITE SPECIFIC ANALYSIS e COLLECT PLANT-SITE SPECIFIC DATA BASES FOR INPUT TO CRACIT ( .,.,, = 4 Pickard, Lowe and Garrick, Inc. i

1 L CONSEQUENCE METHODOLOGY USE.THE CRAC PROGRAM W.HERE APPROPRIATE l l e FOR SITE SPECIFIC CALCULATIONS, DEVELOPED l CRACIT - MODIFIED VERSION OF THE CRAC PROGRAM e MUST ACCOUNT FOR ACTUAL SITE CHARACTERISTICS i - METEOROLOGY ~ - POPULATION g - EVACUATION ROUTES AND TIMES I - POTENTIAL MITIGATIVE FEATUilES I e SPECiAl EFFECTS t ' q - TERRAIN INDUCED FLOW PATTERNS i - LAKE EFFECTS l - MULTIPHASED RE' LEASES e APPLICATION TO EMERGENCY PLANNING \\ ~ - UNDERSTAND PLUME BEHAVIOR IN EMERGENCY PLANNING " ZONES - POSSIBLE INCORP' ORATION OF 'MODEL RESULTS INTO EMERGENCY PLANS l ~- ~ ~~ Pickard, Lowe and Garrick, Inc. i 1

g. ~ ,r i t WEATHER DATA l

  • i 1

l V ATMOSPHERIC RELEASE 4 CATEGORIES DISPERSION t t lf l HEALTH j CLOUD DOSIMETRY DEPLETION EFFECTS + v GROUND

  • POPULATION CONTAMINATION DAMAGE A

EVACUATION FIGURE 6-1. SCHEMATIC DIAGRAM OF CONSEQUENCE PROGRAM I e O w I W ,e g

i l e i USING THE CONDITIONAL RISK CURVES 1.0 I e 10-l \\: \\ \\ n k 10-2 e \\ tc \\ \\ WASH -1400 CUT i 10-3 g \\ TAILS k (SEARCH) NO EFFECT (THRESHOLD EFFECT) \\ i t t 10-4 NUMBER OF EFFECTS I s ..,.s Pickard, Lowe and Gerrick, Inc.

.c. DIFFERENCES BETWEEN CONSEQUENCE ASSUMPTIONS IN PHASE II VS SSPSA e UNCERTAINTY TREATMENT 2 SITE CATEGORIES MED" AND "HIGH" (SSPSA HAD 3) 2 SOURCE TERM CATEGORIES "BEST ESTIMATE" AND " CONSERVATIVE" (SSPSA HAD 4) e MORE MULTI-PHASE RELEASES 80 PERCENT VS 50 PERCENT OF CASES e REMOVAL OF 2000 ON-SITE WORKERS FROM POPULATION TABLES e EVACUATION AND SHELTER ZONES VARIED ASSUMED NORMAL ACTIVITIES BEYOND EVACUATION ZONE EXCEPTIONS WERE SHELTER 2-10 MILE CASES e OUTPUT ROUTINES CHANGED TO PROVIDE DOSE VS DISTANCE PLOTS ~ i RISK VS DISTANCE PLOTS 's e e . -.. ~..... ,y ~

l '- ~ v + .....,...~.:.A. -,.,. g., f. w. w ,'F - 4 4.i.: s-- y y. =v.~...,st a. :,-. c. :, =~ =.. ,,,,..,,8,,...-


c,

( ,./ ~. s s y.s,.. 2.=::i. .r s ~~.,...ao,.. .e.

  • .*./
  • s.'

3.y,, y as -. s t 00 ....,...,,......s,,..... ,r.- , /3 2.* -.. - s,Qw...',J,,'--{l' - $_,.,' s, o, )..,..,..,. 31.* .s P.- '2

r : < *.-

oo

m..,.

,. e g -j .o '... r -s :. g. 4!..-.,5:-- I. 3 g,,..,' 5.ane*W.

  • ?'-~ ~.'s*l M. A,***g','.-l. -

o p'. 1 5.2 '\\y \\. \\.. s ,o */.t- ./ . p. i. i . N, - f,\\,.T.. *gs,1, e . t:. .~. s o .g l

-- -.:-~

J . c.s.. " w.<2 :. een- ~, - ~ g.. . :.., y l.-{ ,/ . t 5.-)s. -F s.

l..'.i.-,=.

.d. l \\.. t,i,..,. ~. ) ...,5,,.- .s.. -s ..,j ..u. .4. ;.... -.. l-t l. L f2,.,.

i. s. }, d '

n. ' 4 --,.:. : y. s,,

  • ' ' %.,;/ M __..K

. 9, ,k**'*.'

6. -%g '=.

.}.y. s' eV ',.:-- s.?h' -{^p , ~,'.y' j

.M-

.\\ 1 ^ A 4', '.# fp.[2... L..,-.-W,%,. N' /.' h...?7..w r -,,/ 4 i? \\ i,. m r.! A f.',\\, A.. 7..1, g. e.. Ak ' ?

g...

...-j,,:.h..f..,.. u. % /.,.(,8/. - f'.

=== ** y..$s 1 1- ~ . 3.. v .%./ v. a ~.. ; 9.} ' g \\.,.tT....k'0?i.b-l[bi,*:s'/ .R W s'W.niN f.. r- .n. i 4 L o-i. -. / / rl. ~.s - S,i',- ,_. 5 v, n sy e p .n,. /,-

g. -

- ~ < .i y's. s* st' 1-2 . %) - = -- , J +s NM'.h.[;.f-{+. -u u., .. },h) 26 ' '. 1 V,'g. ;sCO %r . Y'M.. M Y.:. \\ . x. a k,c %s h. ~ '2sp;-q'el g :.hI[b$k.,,,,4-,giy

e. ! G m: -

h 2 - 4 \\g - q 1 n \\ -. gg 75 7 t W y p q yf_ gp gj;,;.y-9 ,yB g, p .q \\ .o.. a. m;\\-. .N& 'pa,-

f. t..}1;g '. ;;:^~:.Q..,;~ l:

T w' T -M.'4-M -n~ - my 4o y, I, bA' L T'

c. t } :

24 x w. ,N,, - 4 .,e' Yw:q&p...,.n......,.-: _ s. y :: =n -i . n:n M.,.- .a-, r.. c.r g. K. 1,j \\,svv's (v

  • f.

w 'O i j ,: % ~. u~ 'n' m={&}. 'g.q-Q. u' ','V gA / :j, -. s - v, v, /ti s. M'L" Q.?g..# %.O" N hv N N 'h.I 'Ni h0

4. %

W

-%2
s. 'Q ~^

Mc%&'q- ~,.ia g !.yUW,,f.,.. &... 2 2 r. s.. #,.v :.. u~. - -- 4...e, r'$. - fq.' N,,,7 p' j i r, 3. s.s,y<. r il 4 r 2W~ -r..,.$.fM,v.%.y ,n< -y W =1 ' T 4.,i s.4_.a\\/h f.

== g,, .s ?( af l.#N / .- u s-4.,S * , K.> s.m s!. s

..... t.m e

\\ ..si! 7. ,hj,- ---- N l _j, ',/ N s.. g..- e,-. so. s g. g s: \\ .13 1 ~. . 2. h.r* -y..+.:.2",- po...<-n.x.t..[q...~g...,/. - L. (s. ~ ..,,,, s, , N,,. ~w. p,, -m s- ...-y. .q. ;,,,,a. r.j. %...e.b..>, w % ,( y s s .\\ O

iI k-

'? - g/;ey N.s.7 :!,g/..r.L %).i. i.g- ~qw..:.i

f6r

- e,.:.o-...r,. h. s... s t i.d p*..,., f '&'._.c..m,1... '. y e=+=.;...T~~y'\\ ,a ? " l 9 ~ ~ 4 '-.L ~. ,.i p a .s z 1., ,is d e,.3s... m.. 15 . i. i 17 16 FIGURE 1Z.3-6. PIAK sa-Et WEEi!-Q CA$Z: c' q tar :.: c m a g.g.U ES M GU3 ELEI.'.T EVACUAT:::: t: gigas b ~

= 7 ~ ~~~ ' ~ ~ " ~ CASE A CRAC STRAIGHT LINE I HR NO.1 HR NO. 2 HR NO.3 HR NO. 4 HR NO. 5 l I I I "I I I I I I I Pt. ANT I I I I I I l l I I g i i i i I g g g A'5 s l 2 s I I g-to I g 12 13 14 GMT " k HR HR NO.4 - gg NO.5 HR NO.1 HR NO.2 80.2 ( I g g 5 g j t. i , t 11 j 1 1 i I g 1 .I I. g g it - ; U g 1 I i I. t i 1,2345 678 L L k g 910gtt2 k k, L 13,14,15 16 I t 19 20 it

2 23 24 17 18 SphMA1.gNTERN goggER q

CASE C - CRACIT TRMECOW HR NO.1 HR NO.2 METEOROLOGICAL SECUENCE HR NO.5 ~ ~" -~~ HR U STABILITY DIR_ 1 1.0 6 8 g \\ 2 2.5 2 7 3 0.9 2 9 HR NO.3 ~~ \\ ~ \\ HR NO.4 4 1.9 2 4 10 MILES I 5 2.0 4 1 AREA OF OVERLAP SCALE FIGURE 6-6. EXAMPLE OF SPATIAL INTERVAL DISTANCES FDR TXPICALRE.3THER _ SEQUENCE x I 7 '+= ' --

  • w
  • a

-e. e-

ILLUSTRATION OF PLUME AND EVACUATION PATHS ON i FINE GRID (DOSE CALCULATIONS MADE IN SHADED FINE GRID AREAS) 7 PLANT FINE GRID ELEMENTS / / C i [_ l g._ _ ~~ l g l. ~_ ~ .J s f '$If 'l', ;; y ~ O. h C", 1 , ' ' j - (,t /,o I r / C C ' !) f / / EVACUATION ,/ PATH TilROUGH ~ ~ ' / POPULATION y / -~~ GRID / x= / A j / / / ls' ^'~~ PLUME PATli ~ /W//Nl l:2.25 min:N::::{ t I, Pickard, Lowe and Garrick, Inc. weo e c-e- . c

9 KEEP 1366 .2-Mr. Moody also addressed treatment of interfacing systems LOCA. Mr. Fred Torri from Pickaro Lowe ar.d Garrick (PL&G) continued the applicant's presentation with a distussion of the updated Contairment Response and Source T.erm Analysis. Mr.. Torri's discussion included iinfor1natica on containn'ent modelins, containment transient response and uncertainties, containment failure and uncertainties and source-terns and unccrtainties. He nentioned that his work on the Seabrook Station Emergency Planning Sensitivity Study. included reevaluation of tha seisnic capacity of key ccmpenents. He said that althougn new fragility work had been submitted with the report the new ~ submittal did not take this work into account. L t Mr. Keith Wcadard (PL&G) finished the presentation with a discussion of consequence. analyses. He addressed differences in the consequence analysis in the origfnal SSPA and the updated study. Mr. D,frrickson concluded the applicant's presentation by saying that PSNH is regt:esting the staff to review this study to determine its technical merit: does the staff believe t1e methodclogy, assumptions, and are they supportive of the risk profile. Gince there are existinc problems with emergenef planning efforts near the Seabrook site, the utility is in tre prccess of investigating sone options. Mr. Derrickson stated that if, based on the results of the staff's. review of-their submittal, there exfsts a basis for requesting a change in the Seabrook emerger.cy planting process, they may pursue this cption at that tine. The meeting was adjourned at 5:00 c.m. h,/' / 1 Elizabeth Doolittle, Project Manager PWR Project Directorate #5 Division of PWR Licensinc-A ~ \\ Enclosure.s i i I 0FC t ~: ~ hAME :EL olitt}e : DA1E :S/,/86 OFFICi/J. RECORD COPY --}}