ML20206D034
ML20206D034 | |
Person / Time | |
---|---|
Site: | Diablo Canyon |
Issue date: | 06/12/1986 |
From: | Giesekoch G Office of Nuclear Reactor Regulation |
To: | Schierling H Office of Nuclear Reactor Regulation |
Shared Package | |
ML17083B841 | List: |
References | |
NUDOCS 8606190628 | |
Download: ML20206D034 (3) | |
Text
{{#Wiki_filter:_ _ . . . _ _ _ _ . _ _ . . ___ . _ _ _ _ _ _ . _ _ _ . . _ _ _ _ m . _ _ __ _
/ 'g UNITED STATES k C!O3 6.Yb E NUCLEAR REGULATORY COMMISSION $ : , WASHING ton, D. c. 20SSS JM 131995 MEMORANDUM FOR: Hans Schierling, Senior Project Manager 1
PWR Project Directorate #3 ) Division of PWR Licensing-A _,, i FROM: i Gus Giese-Koch, Contract Management and Oversight Engineering Branch j Division of PWR Licensing-A 1 SU8 JECT: ComENTS ON THE DIA8LO CANYON LONG TERM SEISMIC PROGRAM SITE VISIT AND TECHNICAL MEETINGS DATED l APRIL 14, 15, and 16 The purpose of the site visit was to familiarize those on the NRC - Long i Tern Seismic Program (LTSP) review team and on the NRC - Advisory Panels l on numerical ground motion modeling (NGM) and on soil-structure interaction l (SSI) with the Diablo Canyon Power Plant site, its topography, and general i layout. The subsequent technical meetings dealt with the progress made by the Pacific Gas and Electric Company's (PG&E) LTSP team on the several I phases of the program. That portion of the site visit dealing with general topography of the site l and the location of seismic strong motion monitoring instrumentation was very informative in that, while showing the exact locations of the instrumentation inside the plant the guides pointed out the seismic restraints , j and seismic reinforcements which were visible throughout the plant. The seismic instruments outside the plant structures are located such that i variations in ground motion as a result of local topography can be observed. !' Two instruments are located on (surface) rock out croppings on the hillside northwest of the plant site. One instrument is located on a cliff overlook-
! =,
ing the cooling-water-intake cove southeast of the plant site. Records t ._
- obtained from these instruments can be compared to those located on the i
foundation of the plant foundations to gain further insight in the soil-structure interaction phenomenon. j The remainder of the visit was devoted to a discussion of work accomplished
} and a presentation of the planned integration of the several phases of the i
1 program and the particular types of analyses planned to satisfy the objective. i The discussions on the results obtained to date and the approaches planned to accomplish the several objectives were comprehensive and covered l a large amount of material. In particular, the accomplishments in the NGM i modeling program were commendable. In general the NRC staff and its j consultants concluded that the site visit and subsequent presentations gave structure to the NGM and SSI aspects of the program and laid out in j j detail the approaches contemplated to satisfy the license condition imposed upon the Diablo Canyon Power Plant. e s
~
[ i y #P _
l ,
#/ f JUN 121985 . D1 Hans Schierling
[ 's, s Howeverthestaffdidvoiceconcernincertainarevsof'theprogYam,
; specifically: . '/'I>
i. Thestudiescontemplatedwhichwoukd'utilizeregionalgeology, {! historic seismicity, and geotectonics to Structure"the ground _.. i motion modeling appeared to be ambitious to tre poht\vhere the (extensive) theoretical analyses contemplated, would yield data i which may not lend itself to verification by empiri n) results and 4 therefore may be of limited use. ,t' <,-
/ ,en s ;
For instance because of uncertaintivsl in tr.e soil-structure 4 interaction parameters, the error bamf; aisociated with. these uncertainties have to be considered.' visia vis the lack of empirical verification. Hence, these e: rcr bands' may be of such magnitude as to offset any refinements #.n theoretiral models and render them significant. ' i
- a ; i 1
Attenuation relationships for small earthquakes are not
- i necessarily the same as those for large earthquakes (m 5).
!l That is, near source nonlinam behavior has been obserIe>rt in j data from earthe,uakes of signifcantly different uagnitudes, Hence, the use of local seismic not work data from small earthquakes should be s.ccompanied by realistic ansessments of this apparent nonlinea. behavior.
}
j
- In refining the soll structure interaction models and the subsequent analyses of the response to earthquake motion, the i' ultimate goal of these studies should be kept in mind, that is, the data to be obtained will be used in part to.1 verify the original design paramete;s. Thus the parameters to be obtained 4,
i: a should compatible with those used in the'ceiginal design. There should be a high degree of interaction between those delegated with the specialized studies which are the backbone of i the program to ascertain that the independently obtained results j can be readily aggregated into the overall prograin. Individual comments of NRC's consultants are attached as noted, ho s I ' Gus Giese-Koch, Cont-act Management and Oversight . i Engincering Branch ; Division of.PWR Licensing-A 1 ] 1 cc: See next page ,
JUN 121985 Hans Schierling - cc: C. Rossi R. Ballard S. Varga D. Jeng G. Giese-Koch L. Reiter --- N. Chokshi l E 9
s BROWN & ROOT PROFESSOR e DEPARTMENT OF CIVIL ENGINEERING. RICE UNIVERs!TY e HOUSTON. TEXAS 77001 e (713) 527 8101. EXT. 2388 CONSULTANT e 5211 PA!sLEY e HOUSTON. TEXAS 77o9,6 e (713) 729 4348 May 19,1986 Dr. Morris Reich Division Head Structural Analysis Division Brookhaven National Laboratory ' Department of Nuclear Energy Upton, Long Island, New York 11973
Dear Dr.-Reich:
Following is my report on our visit to the Diablo Canyon Nuclear Power Plant site on April 14 and 15, the associated presentations, and the meeting of the Soil-Structure Interaction Panel with representatives of PG8E on April 16,1986: Coments on Visit and Presentations of April 14 and 15
- 1. The visit to the plant site and the progress reports on the various studies being carried out were highly instructive. They provided valuable insights into the nature of the problem and into several ,
of the issues involved.
- 2. The work now in progress is quite comprehensive and its objectives are significantly better defined than in the past. However, the component studies still are not sufficiently well coordinated, and the relationship of these studies to the ultimate needs of the project do not appear to be as clearly defined as would be desired at this stage of the effort.
6 Some of the studies on geology and ground motion impressed me - to be in the nature of basic research projects which, while of interest in themselves, do not give promise of proving of value to the early definition of the ground motions needed for the soil-structure and fragility avlyses. Furthemore, some of these studies appear to be carried out without the benefit of interaction with the groups responsible for closely related phases of the project. I believe that increased attention need be given to coordinating the component studies and to focusing their objectives more sharply to the ultimate project goal. Priority in the future should be given to those studies which offer the greatest potential of yielding results of value to the project. Unless this is done at an early date, valuable time may be wasted, and it may prove impossible to address adequately all important aspects of the problem within the specified period.
- 3. For the soil-structure. interaction studies, an early definition is needed of all the factors that may affect significantly the
~
characteristics of the anticipated ground motions at the plant site, and of the effects and relative importance of these factors.
- 4. Several members of the Soil-Structure Interaction Advitory Panel ;
had suggested that local topography might influence significantly l the characteristics of the ground motions at the plant site. While ' this matter has not been addressed to specifically in the studies conducted so far, in response to personal inquiries, two memberrr - l of the Advisory Panel on the Ground Motion Studies expressed the view that local topography is unlikely to be an important factor in this case. An early resolution of this issue is recomended.
- 5. The ground motion requirements for soil-structure interaction and fragility analyses are not clear, and should be clarified. The
~~ raticnale fcr using different ground motions for the two studies simply escapes me.
- 6. I believe that improved interaction must be established between the Advisory Panels on Ground Motion and Geology and between the Panels on Ground Motion and Soil-Structure Interaction. This would require occasional meetings of the respective panels, or the participation by members of one panel in meetings of the other panel and of its working groups.
- 7. The planned installation of additional instrumentation to record future earthquake ground motions at the site is welcome. Consideration may also be given to the installation of downhole instrumentation, which would yield information on the attenuation of the ground motion with depth, the propagation path of the seismic waves, and further data on the depthwise variation of the properties of the rock deposits.
Coments on Soil-Structure Interaction Studies
~
- 8. The progress of the work on soil-structure interaction since the first meeting of the relevant Advisory Panel has been impressive.
! E The work has been well thought out and executed, and the plans for the imediate future are reasonable and proper. The studies aimed at assessing the accuracy and reliability of the CU.SSI and SASSI computer programs were particularly well implemented, although the interrelationship of the results that can generally be obtained by the two approaches has not been fully established yet. Subject to the qualifications noted in the following paragraphs, there is no need for changing the imediate course of the planned effort. l
- 9. Notwithstanding the satisfactory progress of the effort to date, the long-range objectives of the soil-structure interaction studies are not clear. I consider it of the utmost importance that definite answers be provided at an early date to the following fundamental questions:
What response quantities are of interest in these studies? How will the results of this effort be used? What is the relationship of the soil-structure interaction studies ' to the fragility studies and why are the ground motion requirements in the two cases different?
- - - - - - , . - - ,.,--,.-e-,, , -- -- , , , - , ,n ,n- , - , - , _ , , , -,.w e - ---,-n - - , - - - , - ,
More specifically, will the results of the soil-structure interaction analyses be used to fomulate design criteria for comparison with those used in the original design of the project, or is it intended to evaluate the maximum forces or motions at selected sections or elements of the various structures and then compare them with the
, levels deemed to be pemissible? If neither of these, then precisely :
how will the results be employed? The answers to these questions ' given at the April 16 meeting were not satisfactory in my view. _,. The nature and scope of the future studies and the degree of sophistication that would be warranted in the analyses will clearly depend on how the results will ultimately be used. Without a clear definition of the ultimate intent, it would be impossible to plan intelligently the longer term course of this effort.
- 10. As already noted under item 6 there is a need for closer interaction between the Advisory Panels for Soil-Structure Interaction and Ground Motion studies.
- 11. The final stages of the planned work on soil-structure interaction involve response history analyses for highly sophisticated and complex structural models. It is planned that these analyses be carried out for a single earthquake ground motion record, which will presumably possess all important characteristics of those expected at the plant site. The use of a single ground motion for this purpose is considered to be inadequate. It is reconnended that a minimum of three such records be employed, even if it becomes necessary to simplify the modeling of the structures. Alternatively, the natural frequencies of the structures should be varied over frequency ranges that are representative of those associated with the inherent uncertainties of the problem, and the structures reanalyzed for the modified properties. The first approach is clearly preferable.
- 12. The analyses involving complex mathematical representations of the
=. structures should be supplemented by studies involving simpler, " approximate methods of analysis. To quote from my report of November 26, 1985: "Provided they capture the essential elements of the problems, these simpler approaches may be used in the initial stages of the project to make rapid estimates of the effects and relative importance of the multitude of parameters that influence the response, and in later stages, to help guide the planning of the more elaborate analyses and the interpretation of the resulting data. The all-too-comon tendency of unduly complicating the modeling and analysis of the structure-foundation-soil system and of relying totally on seemingly precise, highly complex analyses, should be resisted".
The promise to include such approaches in future studies should be monitored on a regular basis.
- 13. I had the opportunity to review briefly the design procedure used for the tanks at the plant site. I was advised that these tanks are anchored at the base, and that the impulsive components of the hydrodynamic effects *.were evaluated from the rigid tank solution -
a
oy replacing the maximum ground a'cceleration in the expressions for - tne various response quantities by the spectral value of the pseudo-acceleration corresponding to the natural frequency of the fundamental antisymmetric mode of vibration of the tank-liquid system. I was further advised that the maximum hydrodynamic effects due to the vertical component of ground shaking were taken equal to the hydrostatic effects. This method of analysis is satisfactory and
. apatible with the latest available information on the subject.
- 14. The seminar-like meeting in San Francisco was highly fruitful. -and it is suggested that similar meetings be held periodically in the future. For improved effectiveness, it is suggested that
- a. Copies of all material presented at the meeting be distributed several days ahead of the meeting; and
- b. The meetin' g preferably be held over parts of a two-day period to provide the participants the, cpportunity to reflect overnight over the items covered during the first day and, if necessary, to discuss them further the following day.
- 15. Considering the complexity of the analyses planned in this phase of the work..I believe that an independent check of some of the results would be desirable, and recomend that consideration be given to means of obtaining such spot checks. Rather than reproducing specific avlyses, it is suggested that alternative, simpler procedures be employed to obtain order of magnitude estimates of critical response quantities and to assess the sensitivity of the results to the uncer-tainties that are inherent in the problem.
In closing, I wish to note that I regard the questions raised under item 9 to represent my most important contribution to the deliberations of the groups responsible for the soil-structure interaction studies. Yours sincerely,
- 7 ;16 -;s'( '/'*-/ A
=.
E A. S. Veletsos ASV:rc l
~
- f l_ _ __
.('
r . l ' y i - 3 DEPARTMENT OF CIYil ENGINEERING - I THE CITY COLLEGE OF THE i . CITY UNIVERSITY OF NEW YORK NEW YORK, NEW YORK 10031 -- 212-690-4228 4 21 April,1986 ll Dr. Morris Reich
} Head, Structural Analysis Division 4
_. Department of NuclearEnergy , Brookhaven National Laboratory y Upton, Long Island, New York 11973 i . . Re: Comments on Meeting of 14-16 April,1986 with ( SSI Penel on Long Term Seismic Program for the Diablo Canyon Nuclear Power Plant Deer Dr. Reich:
, This letter report presents e summary of my comments on the ' ! presentations made by the DCLTSP Project Team on the Phase 11 and Phase ill l
aspects of the program for DCNPP. As you are aware, I had made many of these i - comments to the verlous Project Team members et the time of their
, presentations. =.
s (1) Empirical Ground Motion Study: The program presented by the Project Team, although in a preliminary I stage, appears reasonable end well thought out. The results from this. study will probaby pleg a major role in the SSI and structural phases of the project it s'li3uTd be mentionedWt the planned response spectre enterie being used to scale oli the empirical motions (frequency range end emplification factors) are relatively arbitrary in naturo end will drive the deterministic and stochastic phases of the structural response studies. It is not clear how the results of the numerical ground motion studies are to be married to the empirical program. In l i eddition, it is unclear how the site specific spectre so determined, which presumebig will be different from the one being used et this time, will be
. i )
( incorporated into the program. - (2) Numerical Ground Motion Study: It seems that the current ground motion calculations being contempleted - will enig be capable of producing results below I hertz, while the structure 1 frequencies of interest are in the range of 2 - 20 hertz. No disc'ussion was presented e't the workshop as to how this discrepency will be resolved. _ The onig numerical technique suggested to treet the impact of local rock legering effects on site response is the two-dimensional computer code based
' on the finite element method.The computer code presented is a temporal code, - that is, one in which the-solution is merched out in time from specified ' disturbances input to the finite element mesh at orbitrary locations relatively for from the site. However these finite element program inputs presumably will be obtelned from the outputs of the numerical rey-tracing solutions generated from assumed specified faulting conditions.There is existing in the 11terature a long history of simlier " rock-island' calculations, in which the
{ output from e neer-fleid calculation is used as input to e far-field calculation which is based on a different numerical method. Such studies have primarily been associated with weapons studies associated with the SSI problem. A problem that is often encountered in these type calculations is the development l of serious spurious numerical signals generated at the finite element boundaries, since the two computer opproaches are fundamentally different in
=_
cherecter. It is not clearif the Project Team has considered how the different s numerical approaches are to be merried to yield reesonable numerical predictions of ground motions et the site. The only two-dimensional finite element computer program mentioned ; which is capable of treating the fer-fleid problem does not include meterial ceniping lii'ils current formuTeIlon 1T demping is to De mcluded, the form of the demping model used will not coincide with the demping models incorporated into the SSI computer codes (CLASSI end SASSI). Both of these letter codes are frequency domain solutions and use two-dimensional Yoigt demping models in their meterial formulation. If this demping formulation is corried over into the time domain computer program proposed for the finite element ground molfori study, numerical instabilities will develop since these formulations leed to ya 4
O b infinite wave speeds. It is important for the SSI calculations which are typicalig sensitive to demping formulations that the two meterial de'scriptions be made compatible. It is requested that the Project Team provide information
.' to the SSI Penel members on the specific formulations currentig contempleted for use in the rag-tracing and finite element formulations, with specific --
emphasis being given to meteriel descriptions to be used. (3) SSI Stuify:
~ The general comment concerning this phase of the program is that the procedures currentig envisaged appear to be well thought out and complete. I ~
have some relativeig minor questions and seek clarification.
, The coherence date presented by the Project Team for the low level site-measured accelerograms indicate that significant discrepencies occur above ebout 8 hertz. It is not clear to me that these discrepencies indicate noise in the system at these low acceleration levels, or rather inadequecies in the structural models being used in the SSI study et the higher frequency i
i ( ranges of interest.These inadequecies,if they exist, would have serious impact on equipment and piping responses. Presumably, model improvements could be determined using system identification techniques.The question then would be how to determine model improvements appitceble to the higher ecceleration
- levels of interest.
in all of the structural calculations being made, model demping ta cherecteristics are being assumed for the structure. Con these low level-measurements be used to eyeluate the edequacy of the structural demping models contempleted for future use. I recommend that reports end computer user menuels of the NASSI computer cote be pTov1Tiif to BNL for furTFilir' study.This would De importent to assist in the evoluotion of the significent effort being made by the Project Team to correlate the results of the CLASSI and SASSI studies. Nonlineer effects in the SSI program (particularly those arising from lif toff and nonlineer structural response) cannot now be considered by eithir of the computer programs mentioned above. It is not clear how these will be L . l l r
( incorporated into the program. Obvious 1g,if these are significant effect,s, there meg not be any point in conducting complicated SSI calculations for the Ifneer
- problem. In addition, the DC plant site is not a uniform, horizontally bedded site, as is being considered in the SSI calculations. The effects of the verletions in the rock surfaces on the input ground motions used in the ~
calculations meg be es significent on structural response es the SSI effects themselves. A final comment concerns the currently planned program to locate _ seismic instrumentation et the site. All current plans presented to us consider ~ onig surface mounted instrumentation. It is clear that these instruments will be seriously influenced by local topographic features, making their output difficult to interpret. However, it is my sense that the response of the plant facilities will not be influenced so much by local topography but rather by local geologic features, such as legering, fracturing, etc. It is my opinion that deep instrumentation is more importent then surface instrumentation. This is porticularly true if significant wave types and incidence engles (which are of concern to the SSI problem) are to be determined. It is clear that the numerical ( grcund motion study will not be able to provide significent input into this espect. Considering these comments, my recommendations to the Project Team are as follows:
* (e) Prior to the development of the full computer production runs, the Team should present their detailed plans to the SSI Penel for i
review. These piens should include e discussion of which effect is to be eyelueted by which set of computer runs. (b) Early in the program, the Team should eyeluate whether liftoff is e concern. TriI ts important, if may completely modify the - program plan. (c) Obvious 1g, our SSI panel should closely interact with the Ground ! Motion Penel, as the adequacy of the inputs generated may be more , l important to the computed responses then the SSI effects. - ~ I s.. .
(
, in closing, I would like to emphasize that the SSI Penel members oli endorsed the requirement that we should continue to be kept intimately aware of the detailed developments being made on the Ground Motion progrem. I=personelly found the presentations being made in the other eress iof 'the problem extremely-helpful. I would like to take this opportunity to thank the members of the Project Team for the effort they made in their presentations. Finally, I would like to reiterate my request to the Team to provide information to us on the details of the numerical methods being contempleted in the numerical ground
_ motion studies.
~
Respectfully submitted, Carl J. Obstantino Professor of Civil Engineering E
~ '
I ~~ 14tc D:partment of Cnn! Engineenng Telephone - (518) 266-6360
\. ,4 >
- d. i.
Rensselaer Polytechnic Institute Troy, New York 12180 3590 - April 18, 1986 Dr. Morris Reich, Head Structural Analysis Division Brookhaven National Laboratory Department of Nuclear Energy __ Building 129 Upton, long Island, N.Y. , RE: NRC Panel for LTSP of Diablo Canyon Power Plant Soil Structure Interaction Program
Dear Dr. Reich:
Following the visit of the Panel at DCPP (14 April 1986) and the meetings with PG&E (14-16 April 1986), and after carefully studying all the produced documents, I would like to make some comments and offer some suggestions regarding the Soil _ Structure Interaction (SSI) Program.
- - The overall progress made by PG & E and its consultants since our first meeting (October 1985) appears to be satisfactory. The program is fairly well focused, an amount of preliminary work has been done, and the plans for future work are well thought out. It seems to me that the SSI program is ahead of the Geology / Seismology / Ground Motions studies.
i I have the following suggestions:
- 1. I strongly believe in the benefits of a multi-step approach to soil-struc-ture interaction analysis, especially for situations involving complex geometries and through-soil structure-to-structure interaction, as is th'e case with DCPP. Thus, I would like to suggest that for each structure (reactor containae.nt building, turbine building, auxiliary building) CLASSI or SASSI (as appropriate) be used to compute:
(a) the impedance functions of the foundation-soil system ,
! (b) the " effective" foundation input motion considering solely kinematic 0, interaction effects (scattering analysis) . ,d (c) the seismic response of the structure _
l l t Tasks (a) and (b) are intermediate steps in the computation of (c). The i results of these two steps can be, at least roughly, checkd either against known published solutions from the literature, or against approximately f -- derived results. Such comparisons will build confidence on the soil-founda-l tion models before the latter can be used in final comprehensive seismic time-I history analyses. Moreover, through such comparisons, an improved understand-l' l ing of the mechanics of soil-foundation-structure interaction will undoubtedly l develop; such an understanding would be useful in properly interpreting the Il finalrfsultsoftheSSIProgram. 4
.a !, 2.
For getting a hedge on the importance of structure-to-structure interac-tion it might be a good idea to analyze two closely spaced structures (e.g. t reactor-containment and auxiliary buildings) for kinematic and inertial l interaction effects. The work already done in testing the impedance j predictions of CLASSI and SASSI for two square neighboring foundations (task 3.1 of Work Plan) must be considered as a first step in this direction. If it
- t turns out that structure-to-structure interaction plays only a marginal role.
EE it may be advantageous to limit the number of final naismic analyses of the
'l
- whole plant.
l i 3. An important task of the " Ground Motions" Program is to develop a suite of I . 10 realistic acceleration histories, using available accelerograms recorded on rock sites during shallow-crustal M>6.5 earthquakes at distances R<10km.
- These accelerograms will be applicable to the DCPP site subjected to a strong i
earthquake originating at the Hosgri fault. These 10 empirical ground I , excitations are scheduled to be delivered very soon. I suggest that at least two such histories be used in the final seismic SSI analysis. The first may-be selected to give a response spectrum that falls near the average of the 10 v. I
, - - - - - - , -- - - - - - - - - - ~ - - w..,,,------,-e-~m - , - , , , , - - - , , - - - - - ,- - - - - r----,,w,, -----,w--
response spectra. The second may be chosen as the accelerogram whose response spectrum shows the largest differences in frequency content with the first history. The results of the corresponding two SSI seismic analyses are not to be treated statistically. Instead, they sould be viewed as a parametric study, in which the characteristics of the excitation is the variable parameter. This is as important as the studies in which S-wave velocity.ds the parameter. *
- 4. In modeling the superstructure of the turbine building attention should be paid in properly reproducing the effects of the four reinforced-concrete buttresses along the long sides of the building.
Concluding, I would like to endorse the format of the one-day workshop between PG&E representatives and NRC and its consultants. The San Francisco i 4/16/86'SSI workshop proved very successful. It may be a good idea that the next such workshop takes place after one complete set of analyses has been performed by the PG&E group and a summary of the findings has reached the NRC consultants. Respectfully, l 3 Ge rge Gazetas
=.
l _ GG:djr
=-
4
+
- mg I
l
l DEPARTMENT OF CEOLOGICAL SCIENCES h TuaPHoNIL (213) 743-2717 *
}
17 April 1986 Dr. Jean Savy MS L-196 Lawrence Livermore Laboratory
~
P.O. Box 808 Livermore, CA 94550
Dear Jean:
This letter report contains my comments on the presentations made by personnel of P.G.&E. during the 14-15 April meeting at the Diablo Canyon Power Plant site, and specific recommendations on the agenda for the proposed workshop on ground motions. 4 My general impressions on the P.G.&E. presentation was favorable. Since the December meeting, on which I expressed strong disappointment, major efforts have been spent in defining their specific tasks and initiating work toward completing them. In the presentation by Yi-Ben Tsai, our comments on the December meeting were adequately summarized and the issues raised by us were addressed seriously. In particular, I am in favor of the balanced approach in which the advantages of both empirical and numerical methods are exploited for the best possible estimation of ground motions. E Among our comments as summarized in Tsai's presentation, however, the third item, namely, "For high frequency range (2 to 20HZ), a sound physical model for earthquake is still lacking. Stochastic modeling is needed", was not addressed satisfactorily in the present meeting. The introduction of statistical fluctuation in the time of slip in Somerville's presentation affect the high frequency excitation in an ad-hoc arbitrary manner because the size of sub-event and consequently the size of sub segment size was arbitrarily chosen. The segment size appears to play the same role as the barrier interval as used by Papageorgiou and Irikura, but the physical and geological meaning 4 was absent. I had a general feeling that the P.G.&E. ground motions personnel and consultants are in general pessimistic about the possibility of defining the heterogeneity of fault plane (which is most crucial for the estimation of acceleration in the 2-20HZ frequency range) from geological, seismological and geophysical (GSG) data. I felt that Kevin Coppersmith who works an the ' area of GSG is more optimistic about the possibility. There is a need for closer interface between geologists and the ground motion program. ~ To my knowledge there are at leascitwo approaches published in estimating ~ the heterogeneity size of the fault from observable. Papageorgiou and Aki (BSSA, 1983) showed an empirical relation between the maximu= slip and barrier interral for five major California earthquakes. If Coppers =ith can evaluate UNIVERSITY OF SOUTHERN CAUFORNIA, UNIVERSITY PARK. LOS ANCELES, CALIFORNIA 90089-0741~
Savy ler Page 2 of 2 the characteristic slip of the Hosgri fault segment near Diablo Canyon, we can une the empirical relation to estimate the barrier interval for the Hosgri fault. The other method is based on the agreement between the barrier interval estimated frcs strong motion data and the average length of fault segmentation observed by geologists. Coppersmith mentioned recent advances in estimating quantitatively segmentation of fault in the meeting. I feel strongly that this is the area where a significant progress can be made in the present project. Another important parameter in strong motion prediction which was totally
~~ neglected is the upperbound of frequency call f f is a controversial subject because it may be attributed to source,*pEth oE*Iite effects or their combinations, but is an important factor in controlling the peak acceleration.
It should be the subject of study. I believe that the f for major California earthquakes is caused by the smearing effect of finite wide 8*of fault zone. If so, the f of large earthquakes can be infered from the departure of self-similarity *In either the corner
, frequency vs seismic moment relation or the frequency vs magnitude relation for small earthquakes. Both relations can be obtained from the local station network data which are about to be collected. .
I Another deficiency in the P.C.&E. presentation is the study of Q. Effective methods are now available for determining the apparent Q for high' frequencies and have been applied to various regions of the Earth. In seismically active regions like California, Q is found to be strongly frequency dependent, and exceeds 1000 for frequencies higher than 10HZ. A serious effort must be made to measure frequency dependent Q for the region surrounding the Diablo Canyon site.
~
EE I am willing to participate in the workshop proposed in the end of our meeting to discuss the issues I have raised above, and also other important issues such as the site effect (topography and 3-D geological heterogeneity) to be understood from the analysis of data to be collected by the proposed array
- of seismographs in the Diablo Canyon site.
, Sincerely yours.
l . t -4 *. ls J "' k,- r
\!
Keiiti Aki i I
~
r
REPORT ON SITE REVIEW OF DCPP AND PG&E LTSP April 14 and 15,1986 , Dr. Ralph J. Archuleta Department of Geological Sciences University of California, Santa Barbara _.. Santa Barbara, CA 93106 Cleariy the addition of Dr. Y. Ben Tsal and Dr. William Savage to the PG&E staff has made for a more focused seismological program than what was presented _. In December 1985. During these two days we were given a lot of information as to how PG&E is proceeding with implementation of its LTSP. I have two major concems around which most of my comments are centered. First, the seismological studies are not that site specific. Second, the source description for the Hosgri fault and perhaps the San Miguelito fault was so vague that it is impossible to say how or if an earthquake on either will be modeled. Consider the first site specific studies. There has been minimal analysis of the Nov.12,1984 accelerograms. This earthquake is the prototype Green's function for DCPP. Is the currently accepted velocity structure between the Hosgri and DCPP consistent with phases on the accelerograms? Do the SWSH and P/SV amplitude ratios agree with predicted values based on the local velocity structure? How does one explain the amplitude variation among the various stations? The focal mechanism clearly shows oblique slip, rake angle - 450. How is this reconciled with assumptions that Hosgri is to be modeled as strike slip? _ Suppose we assume that the Hosgri fault is the dominant fault in the area. [ Let's further suppose we can subdivide the fault plane into smaller subelements.
=
Each subelement contributes to the total ground motion of DCPP. For each of these subelements what is the tradeoff between attenuation (O), geometrical spread (~1/R) and the velocity structure (reflection and transmission coefficients)? In brief, we were given information that indicated how Q, dipping velocity structures, enclosed basins affect the ground motion. What I would like to know is how important are these factors to the ground motion estimate at DCPP. Which factors are most important? How does one decide on the ranking of importance? How tightly constrained by data are the numerical values for these factors? l A directly related question concems the site response itself. What is the effect of DCPP being located on the edge of a basin. The cross section of the velocity stnJcture indicates a syncline beneath the plant, in essence, a. basin. What controlis there on the velocity contrast between the basin and the host rock? Will the location of DCPP be more susceptible to amplification of high frequency waves trapped in this basin? I do think that the proposed installation of more 1
/
accelerometers and seismometers at DCPP wil , of instruments which I will discuss below. l My second major concem is the vagueness of PG&E's approachl modeling the source. The reports on the use of empirical Green's provide me a sense of correctness. I am skeptical that recordin ImperialValley can be used to simulate an earthquake on the Ho whole purpose of using an empirical Green's function is to includ effects, especially for high frequencies,in calculating the expected g The empirical Green's function is particularly useful when the vel not well determined or when the velocity structure has obvious lateral heterogeneities which cannot be easily,if ever, modeled by compute Simply correcting for the surface velocity bet ground motion at DCPP. Although numerical modeling of ground motion plays a significa
~ PG&E's LTSP, there was almost no discussion of how synthetic seismogr would be computed. The impression I had was that every variable wou random. Why? This randomization may be necessary for high frequ low frequencies I doubt that this is appropriate forthe phase? forthe rake angle? forthe strike? What geologicalcon there on rake or strike of the fault? How are these to be incorpora the assumed slip time function on the fault? The partitioning betw and stochastic processes is critical in the generation of synthetics.
of how the numerical modeling of the earthquake process was to be done never addressed in this meeting. I
' In brief, how is PG&E going to take the site specific faults, the loca E effects, the intervening velocity and Q structure and combine this ! , representation of an earthquake to produce puzzle. However, unless the strategy for putti
' most scrutiny. Specific Comments Instrumentation l Although the everyday activities of DCPP generate alot of ba i noise, I think that the DCPP location needs more than one 3-co transducer. A M 2.5 only 10 km from the plant managed to tr I instruments. However,if that M 2.5 had occurred 30 km from t
; would probably not trigger the accelerometers. For the empirc 2
l I a s--, ,. - - - - - - - - - - , ,w,- - , - ,-e-y-,-y----- -------- -T-- - - -- -- - - - --- --- -- - - - - -
approach, which is heavily emphasized by PG&E, nothing is more imp - recording small earthquakes at DCPP. I think that the proposed accelerometers along AA' and BB' are worthwhile. The four accelerometers at the comers turbine building may provide the necessary information coherence and direc arrival. I am not sure what preliminary analysis has been done as to thaadequac i of this array for the above mentioned pupose. It may become necessary to supplement these four with a downhole instrument. d
)f Velocity Structure 4
The velocity structure at the plant site and in the region is obviously l j important. The local velocity structure of DCPP to depths of 2 or 3 km s unknown. The accelerograms recorded from the Nov.12,1984, earthquake sh { a lot of variation over a small distance. This distance is comparable to the dista from the cooling intake water supply to the reactors themselves. How much ll differential motion can be sustained along those pipelines? y Although Trehu an.d Wheeler (1986) present their interpretation for a refraction profile from San Simeon to the Great Valley, this data should be examined independently. The velocity model given by Trehu and Wheeler has d some rather striking features that deserve close attention. What velocity mod F going to be used when the numerical modeling is being done? How we the S-wave velocity structure? 1 Wh6n the offshore refraction profiles are being shot, every effort should be b made to get S wave data, especially at the DCPP site itself.
,jl id
[ 3 d e I I M 3 ,l
/ " .e 's Q -
Vfl$ S-CUBED y - A otaston or usaoa wratorus, inc. 3g yay 399g
. 32.n Savy Lawrence Livermore National Laboratory _,,
P. C. Cox 808 Mail Stop L-106 Livermore, California 94550
Dear Jean:
The following is my report on the meeting between the NRC staff and P.G. and E., held on April 14 and 15,1986, at the Diablo Canyon power plant. With respect to the work plan for ground motion, my overall impression is that the plan now envisioned has a good balance between empirical and l theoretical approaches. The proposed methodologies are well matched to the e-i.9..wenng objectives. An appropriate set of tools (empirical Green's functions, numerical Green's functions via ray and finite differenca methods, etc.) are available to the research team. The need for new data frorn closely spaced i struments at the site is being addressed (through the proposed spatial coherency array). The plan calls for a phased introduction of modeling results of increasing complexity into the engineering analyses, and is, I think, highly responsive to tne comments made by the ground motion consultants last I December. l
- I , The need now is for the consultants to receive rather detailed information about the proposed modeling methods, and I believe that the planned workshop will be an excellent vehicle for this. The following is a list of comments and questions which I would like to see addressed in such a workshop:
- 1. The empirical Green's function method. This approach appears to be an attractive means for getting the numerical modeling program off the ground quickly, and the preliminary !
results shown at the meeting looked promising, i.e., the Parkfield spectral shapes were well reproduced by this scheme, even using Imperial Valley recordings as Green's functions. As an aside, I think the method as proposed (using imperial Valley recordings) is really more of an Pn
- v ?n L e .% Califoma 920381620 3398 CarmelMountain Road. San bego. CaWoma 92121 1095 Tel:(619) 453-0060 TWX: 910-3371253 Telecopter:(6191755-0.174
- - ... Jean Sovy 16 May 1986 ,
Page 2 empirical source function method than an empirical Green's function method, in that recordings from rather inappropriate (compared to DCPP) paths are being used, as a price for exploiting the high frequency source information contained in the Imperial Valley recordings. I would like further details about the path corrections applied to the Imperial Valley -- recordings, including any correction for the difference in O between Imperial Valley and DCPP paths. I would also like to see a detailed description of any randomization procedures employed in the Green's function summation. Validation studies of the method need to be presented in detail, including comparisons to recorded time histories and response spectra with absolute amplitudes shown.
- 2. NumericalGreen's function method. Parameterization of the slip function as well as randomization applied to rupture velocity and slip function need to be spelled out in detail, since seemingly minor features of the slip function and rupture velocity can have a drastic effect on the computed ground motion at the very high frequencies of interest in the study. Which data for which events will provide the basis for validation of the source and path modeling? -
- 3. Array recordings at Diablo Canyon. How will the spatial coherency array be configured and how will the observations
' be used in concert with the numerical ground motion procedures to provide realistic S.S.I. input? Signal coherence s at the site is obviously of importance in evaluating the reality of the base-averaging (r) effect, and I think some combination of array recordings and numerical modeling may be required to quantify the coherence of ground motion to be expected from a large earthquake. Sincerely, A*B $ Steven M. Day Program Manager Theoretical Geophysics SMD:et - - S CUBED Y
,-,,.--.,-.,,.-,w-, ~ - - . . . _ . - , , . - - . - - - - - - - - - - . . . - - . -
G ENCLOSURE 4 PG&E VIEWGRAPHS l (13 SECTIONS) l l l l 1 E M
O ENCL SURE 4 SECTION 1
~ =
- 6 h
~
DIABLO CANYON LONG TERM SEISMIC PROGRAM PLANT SITE VISIT MONDAY, APRIL 14, 1986 9:15 A.M. INTRODUCTORY C0lWENTS - NRC INTRODUCTORY C0fMENTS - PGandE TOUR OF PLANT STRUCTURES DESCRIPTION OF SITE GEOLOGY AND TOPOGRAP LUNCH TOUR OF PLANT SITE AREA s OVERVIEW OF RELATED GEOLOGY, SEISMOLOGY AND GEOPHYSICS ACTIVITIES OF LTSP LSC:rle 4/11/86 e
t DIABLO CANYON LONG TERM SEISMIC PROGRAM i i PLANT SITE VISIT l! TUESDAY, APRIL 15, 1986 _. d j . I 8:45 A.M. REQUIREMENTS FOR GROUND MOTION PRODUCTS h ll OVERVIEW OF GROUND MOTION TASKS yl A. MAY 1986 B. JUNE 1986 d C. SEPTEMBER 1986
! D. FEBRUARY 1987 j E. JULY 1987 l . DISCUSSION WORK TO DATE LUNCH =.
GROUND MOTION MODELING TECHNIQUES
- I s DISCUSSION ill SOIL / STRUCTURE INTERACTION ANALYSIS i'
DISCUSSION ll I NRC CAUCUS /SUMARY i LSC:rle
! 4/11/86 I. -
9
O ENCLOSURE 4 SECTION 2 =
+ .
M
BACKGROUND LONG TERM SEISMIC PROGRAM (LTSP) PHASE I DEVELOPMENT OF PROGRAM PLAN e Program based on Diablo Canyon Operating License Condition. e Developed from four planning meetings with NRC staff and their advisors and consultants. e LTSP submitted, January 30, 1985. o Program review by NRC staff, consultants and . advisors. e NRC staff written comments, May 9, 1985. Some elements overly ambitious - may require modifications to allow Program completion within three years. Maintain flexible program to accommodate new
= developments as Program progresses.
w l - While Program is comprehensive: l e Lacks clear definition of topics to be addressed. l e Lacks sense of priorities for evaluating topics. e Lacks specific plans about content and extent of studies to gather new data to
- evaluate specific topics.
LSC - 3/11/86 - l l e
PHASE I DEVELOPMENT OF PROGRAM PLAN (CONTINUED): e Meeting (May 22,1985) with NRC staff to respond and discuss written comments. e PGandE submitted written response, June 11, 1985, i consisting of supplemental clarifying information for items discussed in Program Plan. Studies and investigations have not been deleted from Program. Program will include seismic recording stations supplemental to the existing USGS stations. 1 Also, evaluating feasibility of installing - instruments in the offshore area. PGandE agrees - some elements were overly ambitious and will consider this during the l =. Phase II Scoping Study. Allow appropriate 3 modifications to complete Program within three l years while maintaining Program objectives. I ' The Phase II Scoping Study will develop scope of work for Phase III. e Program Plan approved by NRC, July 31, 1985. LSC - 3/11/86 l l
's 4
DIABLO CANYON LONG TERM SEISMIC PROGRAM CONSULTING BOARD . Clarence R. Allen Seismic. Geology and Tectonics Bruce A. Bolt Seismology and G'round Motions C. Allin Cornell Probability / Risk Assessment Thomas M. Leps Engineering Cole R. McClure Geology H. Bolton Seed Ground Motions and Soil /
. Structure Interaction BOARD FORMED OCTOBER 1984 e Advise and provide guidance =- e Review Program Plan n
e Have strong influence on Program Development l e Significantly involved in Phase II activities in establishing priorities and scope of work LSC - 3/11/86 l
=~
l
I l l l CONSULTING BOARD MEETING SCHEDULE
- 1. October 25, 1984
- 2. January 7, 1985
- 3. January 21, 1985
- 4. March 7, 1985 J
- 5. June 12, 1985
- 6. July 17, 1985
- 7. September 26, 1985
- 8. November 1, 1985
=. 9. January 21, 1986 LSC - 3/11/86
i . I _.. I i DYNAMIC CHARACTER OF LONG TERM SEISMIC PROGRAM e Program must be flexible to achieve successful completion of Program objectives. e Elements of Program Plan must not be viewed as absolutes. e To be successful, Program must be structured
. to accommodate change.
i e Program evolves as work progresses within framework of approved Plan. LSC - 3/11/86 e
- - , - - -s-,, ,e - . - . .-, , - - . - - . . - - . . - -
1
~"
LTSP PHASE II SCOPING STUDY PURPOSE Develop Scope of Work for Phase III e Balanced l e Integrated a Focused on Important Topics e Clear Sense of Priorities -
~
e Realistic Schedule E LSC:rle 4/11/86
. - - , - - . . . - , - - , . ..---.n- -,e.. . - , . , ,.n,, , - ....,, - --- .g--.._
l 1 l PHASE II GROUND MOTIONS EFFORTS _.. e Provide closer tie between engineering requirements and Ground Motions Program e Define schedule for Ground Motions requirements and structural program in accordance with their requirements
=
5 e Provide balanced, integrated program utilizing both empirical and numerical methods LSC:rle 4/11/86 4 0 6h l e---.--.-- , - . _ _ - - - - . , . - , - ,.- _, _ . . .- -, - . - . - . . ..,.
t THIS MEETING PURPOSE e To provide an opportunity for members of the Soil / Structure Interaction Panel and the Ground Motions Panel to visit the Diablo Canyon Plant ' Site e To discuss the Phase III Ground Motions and Soil /
=
Structure Interaction Programs
=
! LSC:rle 4/11/86 N l
--, - -. . .,-- , ---v,--.- w,y ,, , . -
5-
.i ENCLOSURE 4 !
SECTION 3 L E
OVERVIEW OF LTSP GEOLOGY / SEISMOLOGY / GEOPHYSICS ACTIVITIES PURPOSE: To summarize those aspects of the GSG activities that are related to the ground motion program o Summary of aims of GSG scope of work e Emphasis on seismic source characteristics and methods to assess them
=
E
=
1
, , , , , . , , . ,-_, ~n . -.- , , .._.-..- . ,,._. _ _ _ . . , _.-, .. . . . - , .,
DCPP LICENSE CONDITION _,,
- 1. "... update the geology, seismology, and tectonics in the
, region. . ."
- 2. "...re-evaluate the magnitude of the earthquake used to determine the design basis..."
- 3. "...re-evaluate the ground motion at the site..."
- 4. . .. assess the significance of conclusions. . .to assure adequacy of seismic margins."
E i 'l 1 l
GEOLOGY / SEISMOLOGY / GEOPHYSICS SIGNIFICANT CONSIDERATIONS e "Significant considerations" are those technical factors that make a major contribution to the engineering impact at DCPP of potential earthquakesand thus are evaluated to be important to one or more elements of the license condition. Examples: Sense of slip, maximum magnitude, and slip rate on a nearby capable fault.
=
E i
, - - - - - , . . - - . . - - - - - , - . . . - . . , - . - - - , - . - , . , , - . _ , . , - , - - . - ------.-----------.m., , . . . -- - - - ---..- - - - , -, , , - ,,----
l METHODS USED TO IDENTIFY -- SIGNIFICANT TECHNICAL CONSIDERATIONS e Fault-specific seismic sources e Logic trees e Analytical Techniques
- Relative hazard values - Relative deterministic ground motions - Contributions to uncertainty - Relative magnitude contribution - Scenario testing e Judgmental Approaches - Historical significance z - NRC staf f considerations s - LTSP Consulting Board suggestions l
i l l l l l
i l I GEOLOGY / SEISMOLOGY /CEOPHYSICS t SIGNIFICANT CONSIDERATIONS (cont'd) t Task Where i Consideration Significance Addresse:d - - 'l l WEST HUASNA, RINCONADA, NACIMENTO e Sense of Slip e Tectonic model 2,3,6,8 e Slip Rate e Kinematic relationship 2,6,8 e Earthquake recurrence 1927 EARTHQUAKE
. e Location, Size, o Association with fault 1, 3 Tocal Mechanism e Tectonic model UNKNOWN RELEVANT FAULTS AND FOLDS i
[ e Existence and o Existence as seismic sources 2, 4 Capability e Physical Charac- e Maximum magnitude and earth- 2, 4 teristics quake recurrence i TECTONIC MODEL e Development of e Distribution of interplate 8 Integrated Model strain e Consideration of tectonic hypotheses (listric faulting. decollement, etc.) e Implications to seismic sources and seismicity SOURCE CHARACTERISTICS e Deterministic ground motions 9 e Probabilistic risk assessment
GEOLOGY /SEISMDLOGY/ GEOPHYSICS
~
SIGNIFICANT CONSIDERATIONS Task Where Consideration Significance Addressed BOSGRI FAULT e Sense of Slip e Tectonic model/ kinematic 1, 2 , 3 , 8 _ . . relationships e Dip / Downdip Width e Tectonic model 1,3,7,8 e Proximity to site e Total Length /Seg- e Maximum magnitude 1, 3, 8 mentation e Tectonic Model e Slip Rate e Earthquake recurrence 1, 2, 8 e Kinematic relationship EDNA and SAN MIGUELITO FAULTS e Capability e Existence as seismic source 2, 4 e Sense of Slip e Tectonic model 2,4,8 e Total Length e Maximum magnitude 2, 4 e Slip Rate e Earthquake recurrence 2,4,8 I LITTLE PINE - FOXEN CANYON FAULT _ e capability e Existence as seismic source 2, 3, 5 E e Sense of Slip e Tectonic model 2,3,5,7,8 e Total Length e Proximity to site 2,5,7,8 l l P i e N
,v,i'co.s'N ss \ s' .(- - ) -
res N e .. N. ' s r, e s\ 9, ,4 \ 'ggs N$M'MA NA '%%
; $:hgg ?kk . I \, #e,
- r. *
*\ \
k IN ~k
\ h m...hl:. y, '\ % .s g'
- t s. s* -
s:
!!i.Oi &- s.... -
esi: n e.4E '
. :. 4*4 s s i , % s,3 - %\
2l; -- :M!.! g .g \ gl
, sd b.Di -
A\t x .4 % \\ \s s s'y \l j '\
; % le '6
~ h $2b g ,,
'5\,
1 . . . . . . . . . , 'sS' I %
;! Offshore Santa!! %'s$f. -
e w s.N(*gQ' s* ag;A p- w *y ^"" . . 8""." 1
.. s, , .x '\.,
kNk,,N... '
- k. h '
; h(YWi w
p W g$ Fq w y\ yo.,.r .- ?x. NN ~. Ae agg Mlgy... s.,,,, 7 :. 9 s-gss jg- - 3
- s:4. . .:.
(:
;;; c::2 %'s,q.g* - ' . = . - .;8s. , . .:gy; g; Western '-Transverse s - ~' ?* ' t h.k.y) . . .. . . u.;G < as.uha.;u. Gas . u . S~ El ~ wq 0 10 . 20I 30 km.' 'Aaq r , t I I ., 4 ::l'(.r g a. -
f_.
]O 10 2,0 30 ml.: -*Q g 7 :.-.., -::::.cf. --
u .: c, - / - lL. h.h l[. :I ---- ' '~ Map Symbols Fault Data Sources
... Mapped f ault, dotted where concealed. Jennings (COMG),1975 Hall,1977 (Santa Maria River F. (?)) ~.- - Trend of proposed subsurface fault. McCulloch et. al. (USGS),1980 (Santa Lucia Bank areal Sylvester and Darrow 1928 g Anticlinal fold, expressed as (Santa Yner River F. (?))
topographic feature of the Ogre.1985 (Southern Offshore sea floor. Santa Maria Basin) SANTA MARIA BASIN REGK
SUBTASK 9.1 SPECIFICATION OF SEISMIC SOURCES e Identification of capable and potentially capable seismic
. sources e Parameters in logic trees for each source:
e Capability: recency of slip association with seismicity structural association e Geome try: fault dip downdip width total length { e Maximum Magnitude:
=
sense of slip. segmentation rupture length 4 displacement per event slip rate maximum historical
- e Earthquake Recurrence slip rate size distribution model recurrence model
DOMINANT GSG CONTRIBUTORS TO UPPER HAZARD CURVES IDENTIFIED IN PHASE II SCOPING STUDIES e Hosgri fault e Strike-slip fault type e Distances less than 6 km e Mmaxru 7 Magnitudes 6-7 e e Slip rate 6 mm/yr . E
~ , , _ _ , . . _ . _ _ , _ . . - - - , . . . - + - - - - - ~ - ' - ' - - - ' ~ " ' - ' ' ' " ~
SEISMIC SOURCE CHARACTERISTICS HOSGRI FAULT Cnnsideration Significance How Assessed in LTSP R cancy of slip e Capability e Onshore neotectonics and Quaternary Sanse of slip e Tectonic model e Offshore geophysics e Mmax estimates e Structural contour e Implications to slip rate and isopach mapping e Ground motion estimates e Focal mechanisms
- analysis Downdip geometry e Tectonic model e Offshore geophysics l e Focal depth analysis e Mmax estimates e Ground motion modeling e Regional tectonic considerations g
e Hazard modeling i s I
Consideration Significance How Assessed in LTSP S:gmentation e Mmax estimates e Detailed fault mapping e Ground motion modeling onshore and offshore e Hazard modeling e Considerations of
! geologic complexities e Patterns of seismicity Maxirum Magnitude e Deterministic ground e Detailed fault mapping -(rupture, length motions onshore and offshore e Hazard modeling e Onshore neotectonics i croc, d/c) studies i
^ Slip Rate e Tectonic model e Onshore neotectonics and e Recurrence rate Quaternary geology i e Hazard modeling studies e Regional tectonic l considerations e Geodetic data i R:purrence Models e Hazard modeling e Onshore neotectonics and (siza; spatial / Quaternary geology dtsporal) studies e Seismicity analysis l i I
- e N
O ENCLOSURE 4 SECTION 4 O e e
. ;.),.;,- .3 C: .
g a, n. rse.
\ * , .- ' h' *,# .g g\, 4 ' . ,.:.g . .,: i
_ jjj ., ,
- .:. - 'X -
s, .: * ^ . . .; :.. *
*y ('f gf ,'q-Q r - ,;,.. ,l1 ., ';jjjl;, g, . ~, ..'. ' ::j. 5 s 'sV'%'~ J#
sI \ . . .
. . .^ 1. +:- *. t.
2 snh I. Oi. \ -
'~r C. s% %. pI --
N. .. . + ., : Q s.,
- e. ~ -
... .... - ; 2.1 ...q -- % \
n - se Wifii:.::: * . .. ..
\ ,
y \ :' '
- !:N&.%. .liy!!: '\
L . .- -Y'%' ' . 'k,l.'y' ki
\ \{\ 's , ..g *::if.:.:; :
T . . ic N ,:. ..
' As % ' g ..,yi.kIhty,~ .'-
- ?::;
'a '
swa 's g* q ' ;..e
" .R.{.^ . _ .t. :. :. ,, ^^ ;^ jjg a ~ 'f.Q ~
v:;.:
. g,:
Diablo Canyon .. *ty- s.
. Power Plant .4.
- O's*. - -
*~.. .
i g s, '
' .';M ...,,s v . yer feelfle Cecen 4 4 7.".f [- ' % 's. 4 '5Nr .' .) * <, . y'.': r .n '> \
eresu< ewrs C N % . a#
- errs.ent enn.ent a n ne Q ,
**~~
nm. .r.,,u rs e m u \y\ n - -
-- % s 4
_ i i n.em.=_ wa - m.- i s* g xs , a, ,I I.e4 @ f.o. - g
-- s,,,,
m es*< m n 4 h~
=. w-- -
a - .. E 06serM ' '%
, .,p m.w.r ,,4 =r.w w mu %
e-.- o 4 %.s N
- ... s .i , 8------ ,=%,,,,7 m ,
a .r .. rm a,. * , a y sfa,. . ~, wravenue< mn ' * ' '
,r - ra n. u f'e \
n ere.< mn e e
~f \ s, trousu ey=a _"
e e...e.m w -. Geology of the Region
*nu* * * ' " " * . * . " . " ~ ~ of the a
e
==- , Diabio Canyon Power Plant , . ,a - .
_ 0
.. .s . . .-
J . A. #a 6 . 8 ,. .aeee.n w a= a e ae
..-.,y-y, , - . , . - . - . , - -.- ,_~--_------.----------__---,--------,-----------c,- , . - - - - . _ , - - - - -.- - - - -
!!t !!!!!
I Il MW ~f.5% i seg\#-gc',' re :
' 'I ' ~ i l '4,!.4( ! --
i(' ' ,'Lbk$$ i .. f ~.t,i'Ij' oc . - s '- gI !
' ' is Ig s
l \v'\h (f ( -
.: r] ,
hl alir
) ) i d L JL 111t !. i - o ! a, I i"ijjjl ___E -- , , , . - - . . _ . . . - - - - - . - - - - . . - - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ~ , - - - - - ~ - - - - ~
- tif Ie l
l 1 GEOt.OGIC UNITS I V -*g j \ i, W"gC, g/N'/ ,
, 4: r ./FQ E Enginewedfa, ggmm.
1 f ' ?<- ;* g r ., W T_c'- S [ 65.
'/ / j ED '---
ij. XW;:y/s-$ e N .. /.Y ! ;\ c; .> ."'" f - . t,> s .. d .u. -:+
.._l. .' I, ~f 4'd- k ( ',s.,
c.. u\t. . g Obispo and monterey F- n.etions,on ided. Sandstone and
'
- d'[ lt\
~
[. -- , siltstone. f'f f'-
.;7 ~h' / g k d ' '[* g ,: E~'$f [. -- _. . /
I
/
- T\,
e' ) // ,. shale with thin
,.'h- - ~~_ undstone intwbeds.
k/ [J
,s> -,,. , ~ , ~. - ,M, - k .r, s :N', .,/y v.y ,-
f g 'Resistantintrosi,e
/ V; L_._ ' "~'\
if 7 x,,,: .), ' b f M - @C yl ~._ - m 'N 4 h'/ [ ' (/~f . -l
~
1
'p ~
l," 7g V.. . V 7.. ~ ~- M L
~ x~ , lW.e .f . -3 f ^xf [\r\ ' hl-. \ v L
q.
- e. A =
s s f A. . :... s+e. f[' MN..- 1
*~-
M h k ] /' 'lf- .
'-O'/\
x..gMYdPL4.g%. . ~ d-j
.' .+4 w x l .x. -- s.
5:.- ; -
.~
n:
,s w epf ' ) . -
j - O *N .. & un hE s !.di. encerst eram. LTU-T- g ) I g i \ "" l Area of Detailed Site Geologic Map GENERALIZED GEOLOGIC MAP PERMANEN1 FACILITIES MAP i : 6 I b .
a .u2 1 tl-g g.
,.- [. s . ./ 4. 3 s
y , ,,, N y.:. .
\, ,;r . ,, g t , . , . g 4
fit ,
'L. ~
gA.. . .
. , b ..
8 8
, s.4 -
w .,
- 9. f
\ * '
j- . * , k.A- A !.3 %, '#' ' 3 s . ,
)
3 ,, . ~. I s i' N
\ 8 g % ..' ,, y ,/ - , .
Y. ' j8 :
,: s jg, r i... , ,,; . < . . c ,8 .; i \ =
1 .,,
=\ [\, , . \ : , ;.. fn. d<p t.
3* m f.., 1 .
)
s i J J? ' <- 1 /
}'
k,1l.( 4 ' ,. *1 + j 's .j Ja 4 i
;/1 ~ . (e J. ,, p i - . c , e; w. w4,. - ,/ e-
, . . ~ .
, ,s, .
[';:- l I/, 'y, ,
. t+t: //.hT. f .. \'
L
/s.A , i N'\.
A
, j \. .) 3:A ' , , ,\
i , k .h \'\'\ . lc' uh. .. ,
~.
i a
,,-----n , ---n----
6.... _ - - ett la l' l 1
~
- g. / y' , _, - ., \
j j ,l, ,l ifi, y / .. - . ~_i'[ i,j : r i ,q._ Q. a g Ni jV -
) ,I , { \
j
' ^ . , : .. . , }., . // /
w, ,9 , w/ / ,# ,=- - s~\ .\ j i
,, L- , ' ~ - yJ W\
- l l- . %;~
( yg- yy , ~f k' 'r .~. - ,"N m \, 'N f I'
;V, %.,[ 'x, :j N > S ,w K'- /,r l -(-[. ' ' - c,-m {s
\
\ ~
- 1- s y #-\ u ./I %
*. .~ ---- ~ * %d G, r - .O 'M '
d x. % N .%,
}\ 4.., ,& x- - q ./
s ,. _ ._ , .
-g, Nk . 'J ' ' g ,, l-fi- ,~ A - 1,j ,,( _ -6 - g. n N
_s ~' y . 1 _, ,, ,q?* w ,' A 4 -
' ~-
g * ,
** \ E / \ ** e =,
MAP SHOWING LOCATIONS OF PROFILES AND STRONG MOTION ACCELEROGRAPH SITES PERMANENT {FACILITIESMAP
ieiiiiiie !j b .
- ieieiie j g '
i 88i
- g (' f
~: .
l
'l '\ iD 'N i g \s ..
q \ lA% . li,,,i:jl;x s ,;Q, lg x i up, 1i i .c -4 7 ya
! \ t l g '~1 \
, )
~
b'r
,\ ! .s ,i .\ a '\.i s- \ \<
s \
' \
E'
\ \ ~ .= \s \ .s. \
A 3 >k
- 11 j (Lg '\
x u \' I$ t:- 3 III j' c\, a ya g jl b? : ,
.1. ii f
g\\
- In ~ ~ ~ ~ :: e,,ff W meme f i8 I- fiI 8 .II .-,.__._.._m- . - _ ._
me menese s 4MY h, I b . ( 6 ss66 -
.t t .: 6 .l' < j I ,h s.
O 48 SClf l 1i ) l l:! aL
., /se .
y . Q l}i _
~
e *
'I iIf [$3 ; . E .- lv SP E< .':
NU l' Q 'TS q W e IW!
- 1: cc
- s ,_ L:::r l' 55:.
M' - d I: t P' i! \ 3 w % i N h'
\ $ s/
I 1%\ A'\\\ w g l l N['
! [ Y.
h I t.O- NN[ N. L(i A
. .s j, \ i: M. i\ \1, \ \ 3 11> j' d s i D
t
\ 'N '
IIk}
.= S, l
l 1V N is.
's , N )l) e= j, ' b-
- b. 1
, l ' '~ } .,a, l ~ ,.
ii l :r. l::- Ii =e%
/ s\
- )/
. . N O
m $$ 0 ! 9 a t I't I 8 t , 8-l l k!!$ t
c Ns
- s sch:W ' -
"q . ~
i@d DATA FOR DEEP CRUSTAL STUDIESj
' $ik%*b,, s ' 'g\ ,. ~f gs ,, OFFSHORE DEEP SEISMIC TASK 1. 4. 6, s s9 N. ' , \ ", s.hs "ag s' \s,\ DATA ACQUISITION je p ., .,]8 ,
T .; ,ys p%. w, / ,, i. e {,, t , h w ' N g,r s
,g d. . . / 1 1yJ p ' .: " 1p M.
s
- s. 4 t.
.s g/
y \. s s M'
'i 13 :
s'
$:!! Q,0*.[.
- 4. 'j:m. .
,Y , {.{$.% 'T7.
s
.r /
k**r g s
%[s d\ %,'o i \ \ !ik:.Yis, ;!:sd[sI!kl.:::.:it.f.f kip %.
I:![ re i ;j;;;;: 24km a j,st s\,, gIh
\ '
fj! 10 O*tg!"y,7 t d_ . . , ,
% g sy De \[
g
+s " " " ' ' ~
4 v [' 7-f w s.vu.*
, :;;g;;. Diablo #y?% 4, t A t %,8,,,,, g,\t,,o, \ ,
g s
,4 "4..l..,,a t +
s,,
- p. . . vw ;
0g'N s % .
- i
'k. .fCenyon$,' . ' l.s. eh', .e \ ~$ .
s% \ he. ...W ^ 8%:;Site W +.. ,
. :..ys; k. as p h .
D [o , .;'re% 'i;; . 4 S, 3 'e lgr s , ,. ,, *O :ih L.f.,dLui:w-h; N-it i ' N. #
\#v% g
- 0. . '4:!s. 's X
s I 2 :ar 74 j"g;,g,, jf U, ffs)l,0rC Santa f !.N.n.$. 5 '*s*o,+
,r O[ ~ . 3 . seu,.. j't: g.x . a..psw 6N T*,,. 4 J ,.
4'"*.s *:i. Maria;Basinj ;:4
, y g;N "3: -
pg o - g , %' n, uY . .. . . . . . t \,..% 8 ,- w 9,; %* si
~
y; d"$ -
's: .
k .. . L VN j. \- \
\ h.,-
s p; s
- m , ~; . N \ .*s. ,. s ns
, i C *i $ .j C} gNdk (*~*--A N.
h 7; s 9,Oh .Y Nk Ynet 4 N d :[n'!![ks - Wh _.__.Santam- --.,g - e/ve, r. g._. .,, -
@w p i
i ,
- -s._
k{w' "'* (.c q. , i .. .J = ~ p - s WC3tCrn
" % gD,erse gg 3
l 1 > A., a ., .a &- A-.* Ranyes_
- ^30-km.' .' G4 --~~~~'w 1.34* k > 0 10 20 ; Sarg - "/ , i0 ., t,o 2,0 , .a s ;.;,s ,..~~ -y";~ (--- ::4 .,. '.s,,. ,,..=_ :.. ,- .
w i .
~
> q; s. ,,.n.. ., ,
;..:,.c.
e v;wwy v mwsevfrNAv;,As(u v J. A ^ (3 vv$ s le w * . . .G.- h, ,J , .; <4 , .V < 4 Map Symbols Fault Data Sources i u Mappsd fault. dotted where concealed. . Jennings (COMG),1975 Hall 1977 (Santa Maria' -' River F. (?))
--- Trend of proposed subsurface fault. McCulloch et. al. (USGS),1980 (Santa 1.ucia Bank areal Sylvester and Darrow.1978 l , Anticlinal fold espressed as (Santa Ynet River F. (?ll topographic feature of the Ogle,1985 (Southern Offshore ' ses floor. Santa Maria Basin) i S.\NTA MARIA BASIN REGION
6 ENCLOSURE 4 SECTION 5 S 6 I eq e.-, _ -- ~ -
Diablo Canyon Long Term Seismic Program Location Map WP Sig Pine
'C Ceae, ares S Elunare I e sirman GA Groomme GV Green Vaney & Concord H Heyword ,. MG Henri %, I buyerW e M Masemma 6 4dC MaJibu Ceest MR LAl Med RWLake MtA til hommer 4ngloweed A flinannada pet Aegers Desh44emidsburg SA San Aneens . SGA. $sn Gaarise 4 SG San Gregere SJ San Jusante SLS Santa Ltman lenk Ses ses Hashwasnee SS San $ semen SY Sente Ynes ww w.e won w wwi , . +
5 9
- Se i+
i DIABLO
- E CANYON ,,
f 1 ,, g , ) 4 1 i i W % 4 k
,\
t 8 h Nu l i e
l
. . , .) . i' t% %% ,..
97y 121'00-(s' - fgg.3gTASK 1 s *. . 9 w-( A,,, 7 .
%ps,eg,s -
s w +,g., w, s - t Osen..
' w; k Ys 's.
ss s \s,. . l .' s *i. (Q y k
,. *o g';y . , ~ ,--
t, ,
~,# .:, 's .
[ii.J#;; " , \ o,e *4 i.3 . \* . .
~ q=&: ggi 3 '
g ( y _)g g'- , s
*s ._
E.!!$. p'4 s
" ~ \ + .c g !g .l' :i: hs p - *sf \ s'oh \ !;,fii du.. M1 3:. :.... % g%g \gl % "j.,ds. . ~S MG . . '* \h,R... g ., g N, Q h ;4 M.! %, \g
- l. J - 3 g:g:3 %.,,) \l
. % . s <. 5.[
h':- t
, ' '^ '
3% t. A g -p 5 0, h Qs 4 N,.1y'N. ,,, l n 18 ' Ee -\ *%\ '
- f. ,
sa- __s :::.:: ::: gp 's N 2 ' g e$No.,, p.::. .. ., ... :% (Offshore Santaj ,.
'r.,%
N.\$ tA of,4,,,Y, N Wp+- , . . . . ...-:,. 6
. N. % 'e '
4 lit:x c. % k.: :iMaria Basin? b}::]t:Sm. * -)> ..
..N ., h g
s (,
' ~
hi . .m.; j;p ko/g .
= N - -
t 'g .s l~*, h: E=:: L w. . NN 4 k[.k
.96 s.,
5 n ; Qyi 4.0 > -
$ ... Santa Ynez 'Ti Dh "N*
Epi :!:!::\ f git \ j! I3f;i!:7
,% W ' - - # gkF. fg s ,y- s ~ ~ ~ ' '
- - :)!
p> -[.3 4 - g.
- 4::,
-Q .t - ^
p*%;: (
, Western s Transverse .% r 4- 3, Ranyet hM'M 0 10 20 y km. ag - "f-- -l 0 1,0 2,0 30 mi.I li:h.:.::. ...y
- . -.I:.
-,/..,. "P :._d. , .; g l Si -,.e ~; p/ ::;j. - -: :c,g- .2 ~~ ' ,; ,, ~ ---.- - ' ~
s . . . .N 55i[!! $.l:! Map Symbols Fault Data Sources
... Mapped f ault, dotted where concealed. ~
Jennings (CDMG).1975 Hall.1977 (Santa Maria River F. (?))
- - - Trend of proposed subsurface fault. McCulloch et. al. (USGS).1980 (Santa Lucia Bank area) Sylvester and Darrow,1978 , Anticlinal fold. expressed as (Santa Yner River F. (?))
topographic feature of the Ogle 1985 (Southern Offshore 4 sea floor. Santa Maria Basin) SANTA MARIA BASIN REGION
'g \ :-} ,,$ ,. R ' y ' * . "q ~
h k 'gg,s k
$k$h;ds'h'*$
h!h! \..*. l ! (s jys, J s. N::,
.m . .;.. s .3:, . ,s 'gs ..
s 4 (; - -
. s .
g s 'N 4. _ . . Es s3.x :!N@s.. 2 .;4.x$i.~. . -
'# *\. . N ' 'l E!!hiN:. - !!!dhb:;i 3. ' 's. 5(
r-sqip tg
--& 4.
s
.s
($,\ k4*'#') T' l p.:. iivwt ii;h
'd . i.
s!! N!gits xss '
% <[/'ts % \
se sr T. Nit .. -lgsg. .:s g $.,,,, g jgs. \ly ,q {h l
~
(
, . .m x:
8 D, o % % # '* .. Diablo :.: s of, , s -
**+ 4 ! Canyon { ~ . .. (.3 . op'NEef}'/ ~p s46\
i{i. : Site n!! 76-12 N ~ A;i ** . N. g ,b.!! ,
"35:
{
'\ '<,[o*o, Fj: s j ....Aw... " ' !! ~ % .-k!!
kl. ig g y....,. : { Offshore Santa il ~@(;sQi.[ g ;9; .%*+'
. s. \ %' . \. y X
ssb ;c u.a.:. .s Man. a Basm1n., m -n A
.N,,<<.. *# W , jyj;i eg'...s,,,. ., N $ q q g .
s,E i;.Cgi:4.:.y , N .:
. . . . . ;, y ... ., w ,
s
.1.: . ;s ~...r.y. . . . ..% > -
4 s B
"3QM ;j s !!( s. i \+@,.g ( 'c, i ^$ ,
fij; '76i 76 dos N4 '-'-
. . :: 1.. , drze s%g$s\.N its ::t 9:g r.
- s. \ \s *-
p" < csw . ,, %
's. j:;;[p. t3 g N. h .N. 4 . .:: 2.+ . s:t:e .: < , \( = et:(1 : :1.~ti:
N j.h ns2 ..;'$
- s - ~-.N.'-
piistN, .
- t. .: ?I55" .. iiie i \
siti i.: p. s!:.s );ig. .\. s,,
- 2. zs t? 's,ysz.,g
!ss.A ., ., c .m.. . ; :
- ct .
- s. s s
- MMS D. R. . . ' s sss.
es O':!.. 3 Ei."4* .q3" rsl *.m. .iq;..g ... Santa Ynez - a s "
,i{S. 2:it ' "; psi! *C'~
- R iv ,, [ /7)
'CGI $stlii i!$ ' si:
g:T!:r+$ 55W13:; gts + , , -
. I24 i::?
ss
- c w$ - unes v.Ny 4:0.
ysm:. . fik A
'--,,s--.-*-
e:.,,f.t g.;;
?!!j ' i.*- i;
- .; . .+ :. ^v e s issc. -
Wgggggg
- IMnsycrse pet ]
y h$$k.... hs4* 30'si N? !=*aM* MGi555= ins &Ga as*=3% 0 10 20 30 krn. ii?g[eq:
# j NDjeS i8s - " - ' ess;;.;;;; e I I i 4ws:;i y s ris -
- . . . .: M ....s ..
!is ;:O 10 20 30 rni.<i g;3. , . . . -:
- .sf - =fg y- .
-:::* F@,.::: g,;+f m . . . :. . .-.;. ,m !I I i 1 ^~ ;;:e;,...% .. m :n--
eis s
,... - s ..: .s: s* J s ,j ~-- .+..,..eu - ! ,,, ,h!b - ! s . , . 4;;2::,! [iii:3- -
- m .h ~~~
Map Syrnbols Fault Data Sources
... Mapped fault. dotted where concealed. Jennings (CDMG).1975 Hall,1977 (Santa Maria River F. (?)) --- Trend of proposed subsurface fault. McCulloch et. al. (USGS).1980 (Santa Lucia Bank areal Sylvester and Darrow.1978 Anticlinal fold, expressed as (Santa Ynez River F. (?))
6 topographic feature of the Ogle,1985 (Southern Offshore I sea floor. Santa Maria Basin)
$- Wells SANTA MARIA BASIN REGION
TIME,
, secenc .._....._.._.......,.u_w . . .... . . . . ._ .. . 0.C ^ ^ ^
- _ _ _ _ _ _ - - - - . ~ . - -
- 7. - " - - .~~;_
o.~,~e .. ~.. ae. ,;.u ,:. v. .,.s. r. :. .- r..: e ..cr. -yn.,,,. r
.,,.,,-,,..n.# s .- j'.v < M .,_;
- w. .- .,.2-: -p., w., _ = .- =c. .. ::::::: 2e
-~
- 7. 4 '.<,..,A -
- r. _
m
.-, -- . ...r.. . , .r - .m ._- .., :.
b .- .,.j;,sh.b 5'h~-k j?Y C. ~^
~~' - -- '_-:n $- k-~s art':s._W' h* k. .4~ l_.~ E.?' .&.:::5.6 + 5.*4?* /.C-ir,?$' :"O g -&-P M ;- 5 * [,h_ - ' $'" h/ h};'8it.? ab,*[h::..f 'h*$ M&'.;*f.jhh.h,'ff,ff f $'.y ).
M Ptlocene b=-- *~': e- ' . P.f;; 4 P-- =====E Unconf. r- - / Md hdh; .t . f-=__ : ,__._-.3 -^, _h j.[#)#Y.W.th;i5[NINkg.ghf.k'hj.W'e$'y
,.m.. dy Q . ;tj aQ'h4 .s . m, . I9 *n ..f .g..<.*,. . ,. r.p.g.,.c 4'~
p,. g N,~ ? h.
,. j.' .
- ==~~~ -
^~~ ; j' y ,; W y.' & ,*.';p..p ,7,';?,h & W,,; y& h, Nt@ p ;y 41-.
j
. _ - - _. Early e z- d 7dC
__ PIiocene ". -~' _ f. -7.'..#dMT..f,,s^ '- 3 f'.i ~ t$s.'c.;-Q,.,u,Pg,%g,,,M,.'%.,%' W. *
,a s '.* . 3 .s $i . s.n.. , V.Y.r'm -.-= y;w~ u [ Q. ag;. c,..;. 4 "M'wW;,n... y s ,;;:' t r
_=~_ .
...-- . - - U n c.o.n .~. ,.
ce4 ',,7 eQ,,e~;w.:,
. .p .:..., ,,. n ... . . . .e p* . ..
6."."~e---.-..
- _ _ - ^ ' % **=a N * ~~ /.a. :h. . ..' , s y,,[.b~
4
*. m.e .as.M.w"'E W... , .-% t .M w ,E,,7., a .g.c.. '74-[' a.:E.#.
- w. -
-.g . .. f.e.~ %.. M.'?hmL -: 4 0.. -c- . j -.
D h. . --= .3~ b ;'"" - -
. v.- ::'.F";,.M.:-*. e,.,-/ ,bM $',/.;hT.Yd,'YR.*M-Q V h*'[
i.".~i,$.::$:9s':'W9.'...M... a
-'.- . . , ' . '5 F4 t '..,'"--:' "~ :m- =r:77 -e. -..-*% --".~M'..y--:"M(,5.W4,'dg#@N ':::- . 6*~.k.% ." >" g.'d'e v .g,95XcW2;4eyW a.' .;.q .Q,.=-- ' .: - ::'iGP.i. . . " ' ' a.G ~";.;.5= ,_ - E.,,$. ,".;;~p.-' ..;;e- = - *7 * ;[2.6gs.k g'lvt" ~ ~. ~~~. m El,, %.
- C' -G".=.L
..- :::-c 2 .%**~J~* ":: . .#*' E &:.c 'a ., T ' . .ea#T.* . ;T- ,
N6'f~Mh. ,;E.(@--[,M:'kg... .h,h. em1'i.d'. g *y.g s-
$."*'= ..S*=e' .d. 0% s2.. 4.. . ..D, . ~. .,7h ~. - *w . p we,k., **
7Du*f.:.:.D+C.:.
...- ,. .h. . .
4
.~:~_a,-.-.. ., ~g . - -:: .-g. .w. ._ ~: .r q- ,a w %.b *M. . . .'. .,.M. . ..v y4:.g.;..:,:; .w . ty.Q.. >,a:y .q. - . . , . , .%(.TN-Y 5MTM .
Vertical Exaggerstion 1.5 1.75 X
. s. - . . . ..-......_.,*f"r**--"-'- * ;= =--- -s-- -.=._- - ..--~.u- ..v>-e-m~. =. = _ w _ AEM M Y.-, M" 3.@ Ff.5N.-..w.:.- '5jff.T.T.C'5Y 9p, ~ x._- ..;=~m. . -- w, ., f,7, .... y y;2.:.. .p...; . ..n: n,,,... . Mitm__M,, aL :w..:2.,y: ;%. +.w m.. .w%=.- .~,.~ g; . . . .~ = :www. m 2-- .
d . N-r.;;-e M [ .E 74 Yn n -Y5
- .- ---:::=" n - /.y su~p m ,'M. e[.3.n.m - .s.M.. y .w'.M'E~$'h.E.i;k.M u " - ~ " - . * *
- $ .s >;V *" / '
@t;* p .c~*.-5 ~ * .s art- --r - -- a . .
sa- #s e ~. T y.* . E'*
- e. r
%p.s .<~~MWp-A' ? ~ . .- , - * * ,4*st _ ,., sy*..&g/s e.;,.
- . _ am.9 .* v ? :YWWib
-a*.'.# ... ,.k)d .w.
k,Egb&"~ e4,%,,& ~{~ N*.T2* ?*$ ?.s.h .. %.;---{** *
~~~~~ ";& -~- ' 5 *j ~
[, ..
- f. l
_ -~ *,','7,R. , ;., t.'.,s g.;<r
. __ _ _ .u- -
_. ~~"~ .~--- - m .a.a.,.,,c,.r.* - , W., .r _p! * "f.i w, g.
~ . .>,.r. . . . . ea. . .'.".&,..h. .~.{u,*&*f. . , . ,. < *EVf* #%. . .*[ . ; s.s,;nm,s. ;s, ...a s.. . . . ., . w.,X.w --...e--- _-- - - - =.,-*'- - -=-e . .* * ,#.6 , .
f. s . ,.6 ,,srn r s p. p v*m.n,,,=.. _w , . v. W y.s,. *'* ,, * *
.' # a..rs'.,,e. " '*=
c _.- _~._ v,.
~-- --. ,_=_ _..._- - .~.,.,%..~.*.* . ,,. . .. . ..m. m. .',. .=. ...
_..s. i.a .
. . . , . . .n .*n.
p.
~%ChT==
2-w :;==-v.M.=D%wnw='.yhMdWMd-$;m@m-e0:w):nMM 67 NB' .WT
- 2' m M s.
~.---'*:..,-~.30~E.5, :-x"E~." -,'..J.: ' . -.-- .....--..w--. .'.c.':.f"l: :.;, . . T' - .,- ..3. :..% 7. .::: ,_ .o u.M. - ,., 5N.3. , ... D-h",*y'"S/NI.
rec .u, W. tn p . . - .'...liu.cd,
, .tE'W.
g 5f.:.S._%., r , M. ., . '. .[/ ' ; p . - ,v m;.-r,r g .. , < . - . . . ' . . . . .r..,, M.'.'g. .8...n.., v , '; y'.-'
.: .,. : . , . . . ..---s,, ,4. % s w. .
h--;,' M '.5;.,;.;.,y er . -- 7,,,",,"~,'
. .,. .,.::g:5...,.t..6 a.: --=% . ^ . . e w- . -/,-Q~x~ - .-l. *= c. $.-- .~h:
s ,." ,. -- - . . . - - , - , g.s** . .'. .g.);
? c .4 bL .:';:-. . - uM@,':b:.a: *4
- ,b.: .;c ;:
V =~
. .: :: .,".
- T* ~**.
- c. .'":-W - *"_ -
.r ,*..'.".- .,W.F.?4 --~ --::$. -Z_'":*lll ""-Cll9".
2
. ';M,G- ~. ~~- s "r:~f.,..eic:"5'.% .. m . <
J: b.s
.e . e.Q..'7.<*Q'e 6:'2.: . .
W.C'
.tcJ..i4- n
- t.:6' :.
c,,,o ..#.,~m.:% 7-7'[++n"7
%n.;;V g* P. . ..-a + ::l'C ~-Or: >-t 8a."'?.t ;-f r {c", '.,x~ t,.m ., r*. :,c * ';* . ev.hT . . :W .- C,: ."W. Mr - . ~":*.y . --
r t'nl I ina "JR.1')
I D b.}r,,.e . x , . ii n 9.rdhm ,.S h q. Pl 04 r-
.!._ .i mal M1 : E,-
MT i3 4 . >..M @%.? k.8 1 g 9@ rn
-!!, ling M &.b,. ,Q g. dQ .yNM. 2.;.;s!st@
M E-- S' S b'hs R g.e[p(. ' k khk
~
b h h,hY
!i y \ A .% g M' 4.9g.\fs..
a -{.gh_...., &c.v.=m. m.pn.- 3h$$ {t .YU-- i. 'v .ik
.= ' 1 n 1 --'
l
- I=- 2h.b. l % g.4-4 '\'D)tt.k. 't m . % g fPI Wr pr_c>MWSWT-@ Wyti! ! .b:).5 25 '
M 4?D.Qfp p2 QU o .c W E-i=-j=3 1 -Sc:L i
.S I n: NIF2 - r. i. 4 %wq F E,[.;(!
1 < g --m;Q=; o- . E in W W=.NW, ' m 0
=s.
dw '4rw N ' cf.b.d .lf.9 ..w ~pf1f- 4.r.7 f n
==u!
r
=g a s .
t.. EE==1 i:
\s.s-( ~ /C .%e ~ = = .g i i R i !:@it ME %,3.ya. Tc_
m: V. Ef4Kg as. . d.-;
.e.
en *s-S!
@%"%8Mg :
w.4..>o$':
= == m .
E_s E= -t -
<t p s - rw ym j 3 _.m::a; I ;;;;;;;. 'i N,h. .. *,, ',3'w.Y - WTf5 .';E =ta-
- imd 4"tEK. ,
9-4 $r4(% *6_ . . ~ -q85- ._ . : 4 I I,_,_ y .m Q3d.-p3--_==-< f gip _-g = Sh<
,, wf 6n o ,s asa j = aq -d.m - t. _:-
g , v. ' n B~@ lja j$k M"N ? s F
~~
M Mis FL i
- =.TMLf@4ikT 0 m
,f.-m: Q-M2@9.Wh +p,$ :a . - _ %g[.,.3,w .13 a h Af6-d,-mo r.M ===! ps- 3. Di m s A-Q, wis o~
o
=
- , x ss c .
e 9=. ".( 4r n
- -a ~ --- *iSC-;. -M , 6 6,t s ~ -2 Y sy q)ppi,m. _%
e = -
.t5i .m Y, -Y R .-
y? ' G' PM -,, ~i$$b Y Y a k.. p d.s u$" s r q Tw w- -* o~ .. . prc;. , k h. @4 . = e % Q =n v. B =? i_g.g frA y'm.
} V_m m=Wn i 1
e A _' $ m _,h_ e!?f'tm %= W i DB .
?.
y%n 'T,KMj uxA y
;l' V -- e *'*
- i $l!i M 4 i'Y . i VT 4
n=-
=... # ;2sa n.n i,.1 W- wj - m %m w. o .- %p r. =, a =3 Tsi g @. T i . -= .
pet i\ g m g- :h
.=. -m. - . y~- % .g@E t _ tyi.j',= h f .g^ r .1- ' 0 wwt Ey=
J 1%_ gx r I I s.. . r 4- h.e p __. r, ?: ' W ht p i .lM n
- ~1 W :-=
= :c.
- p4 4 ) d')t:4'& y E 4 [m
=
- Ei ? j u il s i pics.Q s
Q
.i _ ~
Essi .rt! ' ii.ap u s
.4 rr=Wi1G , ==
0 , 3 4 :w.g..r._f.4p __ a 6= _ - kh1 P r- .Jii M*- TJ.3 ariM
. , . ..- @%.g a f. 1 at /
- s. :-
$ i:-R-f
- ,. 4
-G ,- w d J " ^
l i g&k 1 0= = fi [$ k%c s' $f ^ 2%~
= ==.
e }.a. ne q u %*:> ,N.&. .Um 1[%) 3 iaa4 mb. .. p . eW r. y% z\.1%[L:. t.,.: .
. .=E f
u y:., M i i ." i'!wji 1 LEU == -0=M m.==n h a$ .da u l s 1' [ r 1 e
= . v. tg @Qvm-]g] g
- I' i a a a a a a a a O g -IN
.= 'j o
o o o N o o n o o v o o to o o e o o es o o co 1%b.mMl 4 - Q;'t i lF_ h .a
;y ..-
l
@, .L: %"-
- m x'g n,,g 1
a = -:
TIME,
,seconc , ' 1 - .. . : -- -4 _-m :-- - - - ; =G:=.__ _.:. z. . ; . . .w - ---- 0.0 t;;*- . . , ,- v_ _ .,u -..;g n,-__-- .w.---.,-,, - .. c, ~, - em_ ., . . . =--5. r ..;a: ,;=s --l .. .,
_.__n
- _ . . _ _- , . , , - ~ _ -
x___-,._. M---- .r-.---_ b _- E'-* *DI' ~- - yd; g* f'C5" [
. m.p .qg,c --W<"Ey _. =--_.- - . - , - - - -
Pg . ,.2 '.. .
-'. ,.'f _ g~::AC.d@[_. ~_4:.w ~ _ _ :-$ w g.u.p;e F.y' . ' ,- ,;y,- 3'6 j .s.r , ,. .a 1 . -
ar-e- 1
.,,,.-"s-7 W' ,,,d (,:f ,M 3*4 ^ ~**-. - -..: :'.,s.e . < 2'W.- &&.-*"
o~ $*-. eb '.*'.c/ .'..6 i
. .- - a A .- . %.:%dssp: * - '
g '5 d
- f4f+j%f[2 C
3 ['d' ? Y4 / m-=R~ - &[C-&'.,. '^ k
~
l
- ,--..-f- .
- ..P- - -z.::d(Em =@'G.;'.
9 - 1.d= ~. m;. :c . g; .%. p : -
-r.g
- w. ;;hh,,,
>= -
y p . p: s3 -- . n: s.*- - w_;:e v x:@,w.=
'+::n'n'w . .r ,.y, %,g.ag ,1.0 , g.. .,g., _ ~
E -Y::'F[.__, bc:'::Ser::G5"d'Eh N:ce-@e:: . .,%%e..r?-McM.'*C-r#3er'15 - cuyGs w-
z 3s==Ms===pess..,W.-n&y.-ses?e@EWWW:Ba.s.,rstM
- fS.Sy::::'R:#M--<..::: - Y% -sr.s ~#S.M-/' y~av. .s- -
'::'s.'$5: :
di' 20.M. MM S.9/M" .,. - r h. p3'Q , * ;,4 ..s: r,:::k e ..e%W&;:. s a& . ... M4 c.n Vertical Exeggerstion 1.5 1.75 X
. . l ..
- ;.-1_ z_ -
= ---._-------.-- --- . ; ;~ -- . . - . y-u - --_ --
Gi. +_ <_ :-2._ Q@:;~:.__-~~ T -~ it.-"%_:3
.- '::-:72 s- ~ - - ' ~ ~ ~ ^ ~
_.n - -
, _ . _ . . . ~ - - . -
_ _ , .: _==-'~"__~- w,-,---.m-~---__
- - --u . + -.,--.---=w. _ _ ~- f,-M *'-!C 4,- . = . - ___ - , -. __ m m,. , . ; *- ___ ; x -,=f., 5-tC @ - . , . . /.,- - . = ~ . - <M Q'T.;V-='~w- ." --- W 2 =;" "2W W R*.
t -
, O' V,s ,2,- l .,0,i;;'?;l:#WW:m. * ~- .,w,, ~
t :;; .. f 7pe:;;"i::: :: ,,,, M,:::p,, - y..-i, .5-- -: r :.:.,'w--w.y: s: <. ,i,s.
;rksh s u
W w m w - - vae
- @m$;'~%.-W.6.,,,P &'a m r w a$$
E'.
= a ~A'.: 5-m =g.?. cc-m E'. Cr$
e a d %i-c$ W % Wr-= * =,$.
~.-
_T Ea.m--a~ ,r. .ms Y~ -
~:~;;u V.c. xcp::w$$,k.25~,L&:.-5,?m$.,,,@.e .,;-:,6%E5 . . ~a.--.w .; -- . + . . ,,.<v w ., 5a y . n~~.?c ,. . Mg. ..w< os.~-:. ~* a,- -
- - ' A' a 4,-
h=:' ":.p:,.w;:,.,, -:: . -4x:-==ce -- *~*-.<- e - ::'%_~W,.- @..m.-
";~;.. ~.:.;-.$.
oee
- 7. ,... ,~ s.:. :,:w;.=, <,
.~;: ~ - ., ,n... .. +. .: a # . :"%; a. ,. _ ::,y,. r;;:;*M5'i
_N :,o_.NN:
$:c.= ,
- . :5 ^
M. N'F--NN'
-;:';=%, U. .,t' ..;o .n-y mehs t."MA'q,~.uv . .61',n...!.$$E8$d-N35.
e;:4. -:.. -: ::. .: .e,..YD.?n I@-N 'M' ~:;<I6'.,.:- ps M .51.NA) 21M,.,~, 3.r,$ -- . a .-:. ,. o. ., _.%
- . f.:: .
_ :;e . J -<&. ,' h.:.0. ms <--s I - CGI Line 76-6
1 1 AUly/Ns#4/poNAy No,,,, fWr y%o ~
~ / hhf W ~m b.~ %. ,- ,
242 ,,s a .r yn'Wn, w b w ~
. :'sw c. '~.nQ%. s ' %: :r n.4 4.%
p m.% '+.,x.
~4 :
- s i : g<4 gy g-
~% n~ g. c*~ M..
dgg c %
- N M
M*MmM..&e..,r,aig'p'; - s.rtl%,+? y.
- 3 n .g asy .
D M Vs:re.. dww%s?e.Fd::?+?:.l..pt.i::g.sn. [ ... c - n mwn ea
% r.,,,
a !!a, u q,. ? wg x:p}. 3 . .
$',i %m, w
f- h .,/ %,,,,; m..
.- m.ge!p . % 2yg ll' ,. a,,-
wr a . i .
- .; .j.
st;3a
? : : .~ .?
y
.!y Y .
f yt. I !? gpKE
.A s '4. :, - r. .**.7- * . * *s yf u:$-;:
4 'T '*- '.. ,,,l ~F :' -
~ $$~.'
g .' C'
' f!'
9
$' .f*e *** ' ..~m '
e , *- s:1= e. -
. t- ? .* - - ;;,.' 3:?4 .i 5 ' ' .*.' f. .~ / R~J ! ... ,r rQ4 f lylf;f.f
( e.'u .x
. ~
x - . e
.s:W. e,.. '
4 c sY .f.* . ..
/ ?.W'O . r- .~' ,f ~ . m-SW.a -. .s ^* '5 .;'EYb' '
es-A.hQ.Wa: , * ' *iV:^ .
!~* .? .' A '
E t a.:, ag'54 ,
&k ,. .r d' .
4~$ x % $*
.i #
S$.7 y
^ -l 2fESY. .
t.Y..
*y . Nfg g_
O So,,
^'.-
5yi,>+P.-&1,f,fi[., . e ./.%.. *%[. . .
. i .
f *
.# **a *g ., ;,
- 5. ., . .r.
$ . e.,[ 3. .T. ~ '34E.. ~ . 4. L' ., r*~ .::.
r z.&yi
,p . ?.. g: JJ. .g j.*G,..cs .2 q l.4syi .;
- r. :: e ,+$. C""Y:i :
..,.,g' :
d/ s..:w s
? , ,'*?.
vy;li;;~ I 5~y
- l*;, +., ,-
A-4' m. . ,
.l. m.
- .a
.-,: s.;. .'1 .
s*: * , E2 O W:. i h.h . ~
- f. =^ :
-!. a
- Y. ~; we .
's, '
ro 4D'%i O!O y*!! icy, {. . G #Sfer UOrg , 'er s i i
HOSGRIFAULT *
/
PT. SAN LUIS - PT. SAL 3 MMS Line 170 i
-J . _.
Hosgr.a Fault N!!!EE. Zo,ne me ,,-:==== - e 5s .. g. I ,
,,, meen .-@m.r;n. Er~.?:-r%"r_c . . .
- l. . g' g 9E.'e . _
h p l
- h. ih-l MN S.
-- -. .-w W k h $ h $[ kh 5_h'QYh ~" - /s r ~
g 7 M Qk;f::$n>n n w:
..= - ,:tn?.pe~QU we..m%. :m
- MM cin.g; # r.,2.c @@s@i=\n.-cmic -
- 2P.q .
0Ds
- m. -
'~ =
r F'Fljl4,5:y-M.s
.;>t. %.1 '4
- Q>.. e..s)Wi.4?. .n .
W
- 4 m%).>%.W.R.
. .m n ..- .a ,gd.;y&
m g .oge,- 0n.< ,.s. . . c, .i.- ' c. s .:n. yr s., 4;. g n;;+i .iw;>n.'
- y. v. y p.y
. .h; .~. yg.,.g+
r .ih..* y< e --f. ..,v .: , L H'
.i- 1. _. .. e y+'r. r,%x. ,,p?;v ...-- -
W!2'.f.2
. - t ,.. . p ~~.#. 1.:- sooo rm y p:i i.'T=;,:, + . - .s3?? .e ~.;p:5%.4:p a r.W:
- 3. .. *./ Jr t J:r. , s .
,~*<:'.
p *; . , MS * :lT *
; s.. . .y .: g.i - =j , _ e..*
l1' . !/ MMS Line 120 . Hosgr.i Fault r -) Purisima Fault ,
~g .m g,h ~. .. n.
zone -, . ew.: we.x.:-e : .. b M cr WP$h r= u- .:p w14.aQ, .F;. &'.- . 7,. ,p.~
- ~~ *'=..:
m e ._ 2,. . . .
. ..; . y. . w .:3 _'M=.n,g.v. W.o.evr .e c:.c ,:g - ~ *'
C N' = . - -**' % A1 5 ;y. w ty'y--%**'QL 3 g P* RI97 W:Q. F-Q . k.:
;:t a; 4? :.s '
i . * ~ .-
- f--'.@VMrlq.: ;s; kq?hww .
>:Y .rs! i &.
i
~ ~
Yb.'
'c d:... y ;?)- -Q 2:-, . .R.w,,, W Y$5i 'oM &- R.n:pr LY.h - ,;.h:'k - ?'
ic: k..
- 2 g :.a.1 w x.iW ,y 1 e kI' f
'(E
- v. ..
a:.f :n
#z.gh:3.x.-%p -n wc#p; :- .
s s.e s; e
;;fe; -" . 'E g'.*: . * . . .%' kU '~ '- 1=*r
i " r Q y-W H "a.< r--
.%^w.U ~:A'n u. g n'.'::: *-u: .h; :;;r, .%,; g.+g V?, T pi- , 9;. .w.: . ; ,, . .. s,s
- s j /g.4i hM s t n..
n .,..
-a. .,, .
- n. .. . . :...,. m. , x s'. .
g Dmbio Canyon t... . . . g-r .?
'DW,y . . ' r . .. f. '..:.D . (;
p aA.
. . . 2,6 a.. ,.. . :;- -; .P. 1r'as W- ..w-1.::.., .;19 ., 8 70 -- "~'"
T..< N
. .,c 's Approximate Vertical sao Exaggeration = 18x r N
. y ' ::)., ,,1 X :W ' _ ' "'4 hk *** 'p['g,[N h,,,'T*. . 'k(g,\s "
q TASK 6 ,,).% . SAN
,v g_. m t' s ,
- s. .
'i0k;t: ,L,.
yc my+icygn :c. q s* . N s. N l --- i ,\ e m, s
% " , (, ~
ae ay ay g
.s yx qh .
fi! i;; , hhk - 'ss \g\ )s
= .w ^ ne.q, -s-s, s , , g, s,(
wu g, g. s., p* TASK 41gsig:: c.s s %, q.9N
- i
- ; m i , , *,
s g
,,,3 Diablo Tse cif 4 -v \ ' ~ , 4 ! Canyon ' #
s%\
%"S.1 it , Site i ~-
l; o g.; s$ ..g :: #8 qe\, c ;m.u~ . ~s u - X
........,, ~ ii. Offshore SantaI S)p@;;;.
it:WSi - U[~. N
.igt y,p .c gA ti " ^
- 8*g> '
- w 'sg k.. -2 -
n
.k,e, Wii $\ mljt@em ~
W b.o's . .,, sNS_ "; m % a TASK 51gAyg s. - II. f !?: A a::::.: y .: . w:
!!!sTs:iiij. ;s> .g. > < N<. : :;i- "'
Western s "~ O'* g N34'W:j 0 10 20 30 km. s:7 4 bO805._
'} - " / - -- ::
10 20 30 mi.i jys. . h-- a f.dh l5[$i
' v. 5M ./--
IIIl$ ti: -= s:4;: "',
~~~ ~
Map Symbols Fault Data Sources
... Mapped fault, dotted where concealed. Jennings (CDMG).1975 Hall.1977 (Santa Maria River F. (?)) --- Trend of proposed subsurface fault. ' McCulloch et. al. (USGS),1980 -
(Santa Lucia Bank areal Sylvester and Darrow,1978
, Anticlinal fold, expressed as (Santa Ynez River F. (?))
topographic feature of the Ogle 1985 (Southern Offshore sea floor. Santa Maria Basin) l l SANTA MARIA BASIN REGION
O ENCLOSURE 4 SECTION 6 E
..s.
i2i- _
- i20- " ~ ~ ~
N[ 36*~ 's., \ - O*
- #77- , . oF C oO o
- o .ooO
/ 6 - O d ., ' ' Q. ** * '(
O. Oo
" e@%
e os - i O ' 0* 0 d"'s .- u-0' 6' g) a
,S '4 -
s s
%= o .' .
s
\- '
o 'x s s.c .. o jNi t
'\'s 's _
a , sk )N ,, g -Q o s, - s s~ ,' s - 4 no G[ o o 1s{:,s s t _p s ,m D(f
, o , ',s b -y1 s s a s,'. ,s N I
O s ,Q) . s , O o o = s,s %op
'Q0 3 s,-- 's, N 's 0 \-
(\ 0 's { O \,s
'N. '\Q k'N '
A\ 1 O -
= cp < k ok s \ '-
s, g a ()
\a's. . 10 %
s
- o o o"B' 63, s .s s \
g \ .t- , f O O \ t 8---.- -\. k _, l OO o 20::" ' ' O ' oG O' ) O O ','s'h ,
,~ ~ G - _ ___
MGNIMDE O OO O 'D!N - o_i o ; O 2-3 0 3-4 g O 4-s usasi i-isso rsau iz-ises O s_s CALTECH: 1-l 980 THRU 6-l 985 0 3OKM g l l l
g -
::f , ,,$}Q~' M '* "Q d + h'4 , o*/
d
'h '*. Dehlinger and ':h \ s Bolt (1985) N i 5'. ~.
1
\
s, ' *- o g 'g -
' g % ..x'*4N s#? ,. e 4 .'s '; ( g g'
1 i 4 s N. . . g , u ks,A , \,, De, .,*\ \ \, _b. O'; M>.
- . - s \ 1 't*% ?<g .s i ! %(w;, e l [ 50. .t : 4, g *s I $\ Y.'[,
['t $- .' ' s
'{ .. )'.s gh ,.h yss kg s.ss Nk r i.O'; , '\s , t < % \s% 's, sY -
s's\, gi 3 j. gs h g S' t, i; v, n
'NE,f, -p **;.
- .,...,,..+
K *-
'\
s4 4,, s ,,o, '
+ N' , s . . . ... ,, . s D*4 \\ , , 'e . Offshore Santa i s.N(*o, -\ \q- - - \,. \ ' cakhrop.'
j
+ %,ko,;?~
X' l *c;. (- iMan. aBa+sm: .
. 4 ig75 .,
4 'o,,, h x '}, j - s c' Y7 As .3 Q, ...I%g \\ h' DQ,,,[y g' s
- a. .. k.@,3 t.A 'O '-S '-
l'Qs.s,, .#. s. s,
- '- s
- i s..nton, . . -
p x r (1.y s s.<, m5o.4 ) \s N.- N.q. ,,
' \ g%s .\s '\--A s,
N \L\. Qe . 1 ~ N :::
.* . . \ N,,._.2"c=_T?*U!he,1?z m:
N. '
& t , 7!i -
asc *Jo- EY, Y i 0 10 20
"' y km. , ' (Jg - "f--
s g : - ._.... . .. . W
. 0 10 20 30 m,i. !I s h*.9: ..
e .,,c s 'i;. . . .
. - p 4: ':::.
I I l c:?' $... ..e-e:.::f
- - -$s" ' .L.l.. 3.
b k es:y c:s : 3:
- g~
*:v;::
Map Symbols Fault Data Sources Mapped fault, dotted where concealed. Jennings (CDMG),1975
- Hall,1977 (Santa Maria
- - - Trend of proposed subsurface fault.
River F. (?)) McCulloch et. al. (USGS).1980 , Anticlinal fold, expressed as (Santa Lucia Bank area) Sylvester and Darrow,1978 1 g topographic feature of the (Sants Yner River F. (7}) l
, Ogle,1985 (Southern Offshore sea floor. ,
Santa Maria Basin) 1 Epicenters of 1927 and 1952 Earthquakes ' SANTA MARIA BASIN REGIOh
m e e e O W I I I l I l I I I
=0: 1,n sys=0=v mg * #*g.9.,..
- y */ =
~ , ,, t es j g j u e *
- o
/
t o I * ~ ' i
~ ;
e I i b :
. ./ F :
e / 3 g -
/' 8 e / -
E s=0r 4,nes _ , f i V0VNO3N1W
' e Iw IE R
yN
-3 - , a f
f EN0Z.110VJ W
~ *4 e / '
Oin3mi3vn - n
,= *in /e < IN e -
E
/& . ,*f .
- fI
*s EN0Z 11GVA sues 0M , /e b *f o _.
J
- lN
- k . /i sg 9' S I? $
o
- - I$ k " " YYe t e '$ Y S ' f vg, IdI*3vg / I" o -
I
? o j . .e<ee I
I e l / I I l l
*8 + * * ' , , 2 ff
- RN'Mid30
FOCAL MECHANISMS SELECTED CENTRAL C0AST RANGE QUAKES 1 38 0.00 38 0.00
$ .- ~~ o G_ . .
e s
.e g .
Ig
, m o. -
20 1
+ . .mi . + ** '8 2"
- u. .m N, ,m. [ ..,
~" s .. '"'g- %, c.us-enni 4 , .30 2 F I1. **" . 0.tv Cor0 BITE l
l r p ['Cff
. + " "'I .30 33 .00929 ru - 'u' ,.
c G o lG OA 34 0.00 39 .0.00 Figure 4 - taten (1985)
1 CENTRAL COAST SEISMIC NETWORK Objectives Acquire data for further understanding of the tectonic model and seismic potential of coastal central California o Hypocentral locations o Focal Mechanisms o Magnitudes and seismic moments o Crustal structure ( Design Considerations l
=
o High credibility of data o Allow independent analyses o Reliable, efficient operation i
~ '
CENTRAL COAST SEISMIC NETWORK A. Field Stations ---
- 1. 13 vertical-component, 5 three-component stations !
l
- 2. One-Hertz seismometers, calibration coils
- 3. 60-db dynamic range using FM telemetry
- 4. increase to more than 100-db dynamic range using analog or digital telemetry alternative !
s B. Central Recording System
- 1. Data acquisition computer o event detection in real time e preliminary location and magnitude e alarm notification
- 2. Visual Drum Recorders
- 3. Seismic Work Station e finalize analysis from on-line system e prepare routine and special reports e serve as host for receiving data from I
other institutions e l
I21, i20* I I se'- p:ss, s \.
.\. - K, s . g, n* ,y '\I e v. %
laid [q -
, ss,s .,
x s. gy N,% s g , ' ,3
' s . s . \'g%(c,,.s- s, g"\xx-e s
s (s-s ,, / \ 2
\.\ .h.. , y s - - sss s ,, -.-
Pt. Piedrh B ,e . *' - s - s - e s .,
., s. .g ,
s \'s s
\ ;s % 'd fe ), ,' s E s.gg 'g\\
s e t
't s's s .',N,S I-k-
N \l% .i' 9'
\ '(d%' <s u m \'%,s,' S s ,' n, . ,ou , 1s, s A g . J N s ss -b " s.
i u
, N.'-, , .g \ s,, a s ,, N, t Ns -
s h'
- s Ng ,,
35*- -
\'\ I s s N. D \ 'N k'N '
k'N.,b.s[*"x,', s -
\ ' s\
ys\ '
/ . 'C' s. u s t s
- - s \ \ N ' -'
g\ g\ \
\s s,gY \y *
( \. Ns 's
- s ss
\h\g t1s\ s\{s\ \ 'N.A ' s g's '.s, -
s. CE RAL O SK El{MIC NETWORK g N q s,' \ s,(~:- -.. . - s . _. . . --. . ; 3 VE TIC OMPONENT, A s,
-3 ' $ s COMPO ENT Pt. Artmil. ', n- . , . ~ g/ ~ - ' N , , . ~~~/.- - a c - y - w %
USGS STATlONS
~~ _ _ ,, ,,, _
T_ - A VERTICAL C NT _ Z 2 OR 3 COMPONENT i . . . -
. 0 50KM
NETWORK CALIBRATION OBJECTIVES OF CALIBRATION _,, o Improve velocity modg1 o Determine station corrections for network RELATED OBJECTIVES o Study deep Hosgri zone structure o Study site wave propagation properties PLANNING FOR NETWORK CALIBRATION
' CALIBRATION SOURCES o onshore explosions (quarries, calibration shots) o offshore airgun shooting o earthquakes in onshore and offshore areas i
RECORDING SYSTEMS I o Central Coast Seismic Network, USGS & other stations o pop-up OBS's o DCPP site recorders (permanent and temporary) o offshore deep reflection line ANTICIPATED RESULTS o improved onshore and offshore velocity model, including S-wave velocities o station corrections for PG&E, USGS networks o deep crustal data in Hosgri zone o data on seismic wave propagation at DCPP J
Of p I l SAN S8 EON TERRANE SALINIAN BLOCK SAN ANDREAS FAULT ZONE
. r1 SPl
- SP2* SP3* SP4
- 1 0 . . -~ .. - - ~ , , , . . : , ,,,, , ,, ,, ,
, ,oy i 1 , , , ' " 'r .- ^* Y .o l .. f y _
e _
////////
\ /////////// / - l _ ////// /// .
... ) 6.0 j
12
*** f Ss sa 16
- LOW VELOClTY
* ( .\-]= . WEDGE
- 20 -
s.o . 8.0 **....*~ 24 - Dio VE=2X KM l l l l l l l l l 10 20 30 40 50 60 70 80 90 KM TREHU AND WHEELER (1986) , 0
m.. - - O 9r. (o TO l8 I
.h*
t Q M en O A C $ w
- k 2
o u W/ '* 4 a d fkh Y g E
- Y u :.
fw 'e,f*gE l a g w, af a . a s n! !. n:m . u . \-
- s. .y24 w 0.-
... . . , 4,. ** }, ,,[kf;]}.f =
gg n ,
~ ~
y, i Q.,f':f:il; e
\ nl wlbk ^ \ *:~ .~ $'.s.ii' " " s. '
yfn
, ,,*)l*
L2l m g
.._" s z f.. ,. m](j_g;.
c.c,, m l
,{
f g l . .D:;Q_ ..
... uly: ;
s I ,
- s..: .
~~ ,f * ' ? , s ,.. . 'e -
- 5. 4 ' ;,<y%.
'p
- s-fyg:pg,s"
;.;;, b *,* , g v?^},.:gg:::. >: s :f:2 4
- 9f g g >,
;;N f VG , - g- - W) 1 d.gp!ie *
- bg**/
4 e i n;, j ::e L'? + y ' ";igl
.mc ' .., &g' ^ y.. . * / &j,y$. b yfy;.' ,x - 4.a * * '9 n u: ' w!;>Mi* , s & /L f* - b .
f). '. 9 /< T ;, .
= * $fb$ : 'j{5,;v.n:. ,:fw
- h
.s# w %q,yq % g ,.-
n a;.g.gwe... .. g ft' g . - o,rs ww m e2 % 7. M 5$ M 3f[ l ,*$ ~ a ,.~;g f0;f' 'a d'[.1 w..
' ,Y 3, $- ' '
g:f@. :2!S.ag..
- . : +;:.
' i$ %y:L;v_.
4
, .x
[ r I f l* *
* ,?* ' ' g;$ % $ ;::lk:,g . '%:.n .$?::.: :. ,.g.3]y ~
o
, f, ., )'
r:Q:sn. .{- h
. as%i;[L.jl% ^
1
,p * ~~
- k.W
- :l, ,
a :.: ' ( l
" t g ar s .. ,*,3,so N kbh4%k(j A ~ '
- v. .
= ~.=,.
CUSP /GRCPE 0.0 EVECT lif JI 58261. PROCESSED C6-NOV-85 SIS IGREENWICH TIMEl. CELPRIT :D_H. PAGE e I t e.................... ..... ................. ORIG s IS OCTOBER 1985 e m e e e e e e e e e e e e e e e e 527 e e e 2. e e e .e e e.e e e . 8e 16.G.M. T. .I SA. .T UR SAY S LATITUDE LONGITUDE DEPTN ORICIN HYP0 CENTER e 34 56.91 -128 43.84 f.54 KM 28.16 5
, g 34.94844 -128.71732 '
STATISTICS PtMS ERLAT ERLON ERZ ERT gap DMIN NPM NORM 3 l s.25 5.27 1.43 1.65 S.se 174 !! 12 L2 I SRC NET DEV SEKIES i ECL-l CAL ECL e50CT!9.527stss9/IsS9 l SRC STA C DIST TOA A2M ONSET PICK Toes -TCAL *DLY =RES ECL-1 PML V II.6 92 128 PIUt 31.86 2.98 2.98 S.SS 8.85 (5.15) 295.1 av/se ==> 3354. owpp i f( ) =. - :=. - =; -: ECL-l PAR V 24.3 42 le PIDI 3:.19 5.83 5.31 5.88 -5.28 (8.15) 176.5 ew/se ==> 2882. evpp WY ',^!,^&Y l': %^ * % - -^,=l-- : :- ^^ ECL-1 PSI V 32.4 42 43 PIDI 34.03 6.67 .68 S.88 -5.82 (s.16) 66.0 aw/me ==> 835. evpp
! ECL-l PPS V 37.8 42 336 PE3 35.49 7.33 7.65 S.s F -S.27 (S.25) '
58.5 mw/me ==> 542. mvpp
' ^ ' ~
v '. . -
~ ^ /y' , '," ,', g#^[d v';"" ',- fy,f,/V ECL-1 PTO V 42.9 42b62PIDs 36.62 0.46 8.45 S.85 S.51 (5.16) 26.5 ev/me ==> 312. evpp BIN $ ^ M ,I^$ ^ ^
y y,-h
^
r .?"h
! ECL-l SCC V 49.8 42 I PE3 37.64 9.45 9.63 S.SS -S.15 (8.26) 1 -
31.4 av/se ==> 371. evpp
^^ - = ^ ^. ,, f &
1 j I .
ENCLOSURE 7 SECTION 7 L f
^
I I I f
Il0MINANT FEQLDCY OF STRUCTURES AND COWONENTS ITEM FEQlBCY (CPS) - CONTAlffEtR SEU. 14 CONTAIPfENT INTERIOR 10 AUXILIARY BUILDING 3 4 INTAKE STRUCTURE 15 OLTTD00R TANKS 7 RCL PRIP%RY EQUIPMENT 6 PIPING 3-20 TURBINE BUILDING CONCRETE DIAPHRAGMS 6 wAu.s E STEEL SUPERSTRUCTURES 2 s l 1
IMPORTANT CHARACTERISTICS OF TIME HISTORIES 0 FREQUENCY RANGE OF INTEREST, 2 - 20 Hz O DURATION y O VARIATION IN FREQUENCY CONTENT AND INTENSITY WITH TIME. O PHASING BETWEEN HORIZONTAL AND VERTICAL COMPONENTS OF THE EARTHQUAKES. O COHERENT / INCOHERENT COMPOSITION OF MOTION AS A FUNCTION OF FREQUENCY. , =- 1
l GROWD l0 Tim [OUIEENTS FOR SSI ANALYSIS -
- 1) HORIZONTAL AND VERTICAL PEAK GROUND ACCELERATION, y VELOCITIESANDDISPLACEMENTS(HOSGRI,M)6.5)
- 2) SITE SPECIFIC RESPONSE SPECTRA, HORIZONTAL AND VERTICAL
- 3) TE SUITE OF REALISTIC TIE HISTORIES WHICH ARE THE BASES OF TlE SITE SPECIFIC RESPONSE SPECTRA 10 REALISTIC TOTAL DURATION AND STRONG POTION DURATION
- 5) WAVE CD 9OSITION OF THE FREE-FIELD GROUND MOTION (P, Sy, Sw RAYLEIGH, ETC) AND ORIEM ATION OF THE INCOMING WAVES
_[ 6) SPATIAL COHERENCY OF FREE-FIELD GROUND MOTION VS. FREQUENCY
^
GR0thD KITim E0ulEENTS FOR FPAGillTY ANALYSIS . A SUITE OF REALISTIC TIE HISTORIES WHICH HAVE 3 l TE FOLLOWING CHARACTERISTICS: l
- l. 0 ' Aa0ui 10 TIME' HISTORIES O BOTH HORIZONTAL NO VERTICAL COPf0NENTS 0 AN AVERAGE 5% DAPPED SPECTRAL ACCELERATION LEVELOF2.25GBETWEEN3.0AND8.5HZ AVERAGED OVER TWO HORIZONTAL COPPONENTS ON i
A LOGARIT}tt!C FREQUENCY SCALE - 0 AILIUSTED MAGNITUDES )6.5 M O HYP0 CENTRAL DISTANCES AnJUSTED To HOSGRI CONDITIONS
~=.~
0 CORRECTED FOR SITE CONDITIONS
- - - - . - _ , . - . , . . - - . . _, , , - . . - - , - ~ . - - , _ , . . . - - - - - - , . - - - - , . . - - - _ - . - - . - , . - , .
D ENCLOSURE 4 SECTION 8 ( 1 E l 4 i
1 THE LTSP GROUND MOTIONS WORK PLAN , . I. OBJECTIVES II. SIGNIFICANT CONSIDERATIONS III. ENGINEERING REQUIREMENTS IV. SCOPE OF WORK AND SCHEDULE i ! V. TASK DESCRIPTIONS
=
YBT - 3/11/86
OBJECTIVES OF THE WORK PLAN FOR GROUND MOTIONS ,
- 1. TO UPDATE THE ASSESSMENT OF SEISMIC GROUND MOTIONS AT THE SITE o USE REFINED GE0 LOGY / SEISM 0 LOGY /GE0 PHYSICS INFORMATION.
e USE RECENT EARTHQUAKE DATA e USE SITE RECORDS. e INTEGRATE RESULTS FROM EMPIRICAL APPROACH AND NUMERICAL MODE
.2. TO PROVIDE GROUND MOTION INPUT DATA FOR ENGINEERING ANALYSE LTSP e TIME HISTORIES .
e PEAK VALUES
= e RESPONSE SPECTRA -s a WAVE TYPES ,
e INCIDENCE ANGLE e SPATIAL C0HERENCE YBT - 3/11/86
O
*e m aoee DEVELOPMENT OF THE PHASE III WORK PLAN FOR GROUND MOTIONS 9
NRC APPROVED PROGRAM PLAN FOR GROUND MOTIONS ADDITIONAL SCOPING ACTIVITIES
=. ~ =
PHASE III WORK PLAN FOR GROUND MOTIONS
.=
YBT - 3/11/86
1 1
)
ACTIVITIES LEADING TO SIGNIFICANT - CONSIDERATIONS AND WORK PLAN:
- 1. IN-HOUSE GROUND MOTION WORKSHOPS:
o IDENTIFY SIGNIFICANT CONSIDERATIONS FOR GROUND MOTIONS. o REVIEW RECENT ADVANCES IN GROUND MOTION STUDIES. o DEVELOP GJOUND MOTION TASKS. 3
- 2. ANALYSES OF GROUND MOTION CONTRIBUTIONS TO THE UNCERTAINTY IN SEISMIC HAZARD CURVES.
o IDENTIFY SIGNIFICANT GROUND HOTION CONTRIBUTORS TO THE UNCERTAINTY IN PROBALISTIC SEISMIC HAZARD.
- 3. INPUT TO ENGINEERING ANALYSES IN THE LTSP.
-b o DEVELOP A WORK PLAN TO MEET APPLICATION REQUIREMENTS.
o SET PROGRAM SCHEDULE.
- 4. CONSULTATION WITH GROUND MOTION SPECIALISTS.
o ENSURE ADEQUACY OF THE WORK PLAN. o DISCUSS TECHNICAL ISSUES RELATED TO GROUND MOTION CHARACTERIZATION.
SIGNIFICANT CONSIDERATIONS FOR GROUND MOTIONS-
- 1. EMPIRICAL GROUND MOTION MODELS e PROVIDE A REASONABLE BASIS TO BEGIN TO ESTIMATE GROUND MOTIONS
- 2. INCORPORATION OF RECENT DATA e AUGMENT EXISTING EMPIRICAL GROUND MOTION MODELS
- 3. EVALUATION OF DISPERSION, TRUNCATION, AND SATURATION EFFECTS e PROVIDE INPUT NEEDED FOR SEISMIC HAZARD ANALYSIS ,
- 4. WAVE PROPAGATION AND SITE EFFECTS s
e PROVIDE INPUT NEEDED FOR SOIL-STRUCTURE INTERACTION ANALYSIS
- 5. NUMERICAL METHODS e EXTEND BEYOND EMPIRICAL GROUND MOTION MODELS o ENABLE PARAMETRIC ASSESSMENTS l YBT - 3/11/86 l
l s
l CDMMENTS BY NRC GROUND MOTION PANEL o NUMERICAL MODELING APPROACH IS IMPORTANT. o CREDIBLE THEORETICAL PREDICTIONS FOR LOW FREQUENCY COMPONENTS OF GROUND MOTION CAN BE OBTAINED IN 3-6 MONTHS BY INCORPORATING UP-TO-DATE OBSERVATIONAL AND THEORETICAL UNDERSTANDING OF EARTHQUAKE SOURCE INTO PROVEN NUMERICAL PROCEDURES. o FOR HIGH FREQUENCY RANGE (2-20 H ), A SOUND PHYSICAL MODEL FOR EARTHQUAKE SOURCE IS STILL LACKING. STOCHASTIC MODELING IS NEEDED. o DATA FROM SMALL EARTHQUAKES MAY BE USED AS GREEN'S FUNCTIONS FOR MODELING HIGH FREQUENCY COMPONENTS. o DCPP SITE RECORDS MAY BE USED TO DERIVE TRANSFER FUNCTIONS AND TO CALIBRATE THE NUMERICAL MODELS. o NUMERICAL MODELING CAN P'ROVIDE RELIABLE CHARACTERIZATION OF WAVE TYPE AND ANGLE OF INCIDENCE. IT MAY'BE SUPPLEMENTED BY FIELD EXPERIMENTS USING ARTIFICAL SOURCES. o THREE-COMPONENT SEISM 0 METERS ARE USEFUL IN THE PLANNED SEISMIC NETWORK TO PROVIDE BETTER HYP0 CENTER LOCATION, BETTER S WAVE VELOCITY AND Q STRUCTURE, AND POTENTIAL EMPIRICAL GREEN'S FUNCTIONS FOR NUi1ERICAL MODELING.
,6 o THERE IS A NEED TO INSTALL A SMALL APE 0'URE GROUND MOTION ARRAY AT THE PLANT SITE TO STUDY LOCAL SITE EFFECTS.
o THERE IS A NEED FOR CLOSER INTERFACE BETWEEN ENGINEERING REQUIREMENTS AND THE GROUND MOTION PROGRAM. o TIME MAY NOT BE ENOUGH FOR ALL PLANNED WORK. l l
I C0ffiENTS BY NRC SOIL STRUCTURE INTERACTION PANEL o TOPOGRAPHIC EFFECTS SHOULD BE ACCOUNTED FOR IN DEFINING THE FREE-FIELD GROUND MOTIONS BY USING RECORDS OBTAINED AT THE PLANT SITE AND BY NUMERICAL MODELING. o CLOSE INTERACTION BETWEEN GROUND MOTION AND SOIL STRUCTURE INTERACTION EFFORTS IS IMPORTANT. =.
~
CRITERIA FOR GROUND MOTION INPUT TO FRAGILITY ANALYSIS A SUITE OF REALISTIC TIME HISTORIES WHICH HAVE THE FOLLOWING CHARACTERISTICS: -- o ABOUT 10 TIME HISTORIES o BOTH HORIZONTAL AND VERTICAL COMPONENTS o AN AVERAGE 5% DAMPED-SPECTRAL ACCELERATION LEVEL OF 2.25 g FOR FREQUENCY BETWEEN 3.0 AND 8.5 Hz AVERAGED OVER TWO HORIZONTAL COMPONENTS ON A LOGARITHMIC FREQUENCY SCALE o ADJUSTED TO MAGNITUDES GREATER THAN 6.5. o HYP0 CENTRAL DISTANCES ADJUSTED TO HOSGRI CONDITIONS 2.
-iE o CORRECTED FOR SITE CONDITIONS m
YBT:rle 4/10/86
GROUND MOTION INPUT FOR SOIL / STRUCTURE INTERACTION ANALYSIS
- 1. HORIZONTAL AND VERTICAL PEAK GROUND ACCELERATIONS, VELOCITIES,
~"
AND DISPLACEMENTS CORRESPONDING TO ASSUMED M> 6.5 EARTHQUAKES OCCURING AT THE HOSGRI FAULT.
- 2. HORIZONTAL AND VERTICAL SITE SPECIFIC RESPONSE SPECTRA ASSOCIATED WITH THE GROUND MOTION PARAMENTERS IN ITEM 1.
- 3. TOTAL DURATION AND.THE DURATION OF STRONG PHASE OF SHAKING OF
. THE EXPECTED TIME HISTORIES ASSOCIATED WITH THE SITE SPECIFIC SPECTRA IN ITEM 2.
- 4. A SUITE OF PROPERLY SCALED REAL AND/OR SIMULATED TIME HISTORIES WHICH ARE THE BASIS OF SITE SPECIFIC SPECTRA 0F ITEM 2.
- 5. WAVE COMPOSITION OF THE FREE-FIELD GROUND MOTIONS (P, SV, SH, RAYLEIGH WAVES, ETC.) AND ORIENTATION OF THE INCOMING WAVES.
. 6. SPATIAL COHERENCY OF FREE-FIELD GROUND MOTIONS AS A FUNCTION OF FREQUENCY.
YBT:rle 4/11/86
s MAJOR GROUND MOTION TASKS TASK 1 SELECTION OF ATTENUATION RELATIONSHIPS FOR PEAK GROUND
~* ACCELERATION AND VELOCITY FOR THE SITE TASK 2 ASSESSMENT OF RESPONSE SPECTRA FOR THE SITE s.
g3, DEVELOPMENT OF ACCELERATION TIME HISTORIES FOR THE SITE gK4 ASSESSMENT OF SITE-SPECIFIC GROUND MOTION CHARACTERISTICS TASK 5 APPLICATION OF NUMERICAL MODELING OF GROUND MOTIONS
.= -_
YBT - 3/11/86 e M
l TASK 1 SELECTION OF ATTENUATION RELATIONSHIPS FOR PEAK GROUND ACCELERATION AND VELOCITY . 1.1 SELECT APPROPRIATE ATTENUATION RELATIONSHIPS FOR HORIZONTA AND VERTICAL PEAK GROUND ACCELERATIONS AND VELOCITY FOR R SITE. 1.2 , REFINE ATTENUATION RELATIONSHIPS WITH RECENT EARTHQUA AND EVALUATE STATISTICAL DISPERSION AND UPPER BOUND CO e EMPIRICAL e NUMERICAL MODELING
= ~ =
YBT - 3/11/86 l
4 TASK 2 ASSESSMENT OF RESPONSE SPECTRA, y SELECT APPROPRIATE HORIZONTAL AND VERTICAL RESPONSE SPECTRA FOR ROCK SITE 2.2 REFINE RESPONSE SPECTRA WITH RECENT EARTHQUAKE D STATISTICAL DISPERSION AND UPPER BOUND CONSTRAINTS ' e EMPRIRICAL APPROACH e NUMERICAL MODELING YBT - 3/11/86 , =. k s i
~
I i TASK 3. DEVELOPMENT OF ACCELERATION TIME HISTORIES. . _,, 3.1 SELECT REPRESENTATIVE HORIZONTAL AND VERTICAL ACCELERATION TIME HISTORIES FOR ROCK SITE FROM EXISTING ACCELER0 GRAMS e NEAR-SOURCE RECORDS FROM EARTHQUAKES OF KNOWN SOURCE MECHANISMS 4 -
,3. 2 GENERATE REALISTIC ARTIFICIAL ACCELERATION TIME HISTORIES FOR ROCK SITE e EMPIRICAL APPROACH e NUMERICAL MODELING ,
J j[.j3 ASSESS AMPLIFICATION FACTOR FOR SPECTRAL ACCELERATION AND EVALUATE DURATION OF STRONG MOTION
- as I
e CHARACTERISTICS OF GENERATED TIME HISTORIES. YBT - 3/11/86 t I l
TASK 4 ASSESSMENT OF SITE-SPECIFIC GROUND MOTION CHARACTERISTICS 11,ASSESSGROUNDMOTIONVARIABILITYATTHESITE e RECORDS OF EARTHQUAKES AND SITE EXPERIMENTS , e NUMERICAL MODELING 4.2 IDENTIFY WAVE TYPES AND ASSESS SPATIAL COHERENCY AT THE SITE e SITE RECORDS r e ARTIFICIAL TIME HISTORIES 4.3 INSTALL ADDITIONAL GROUND MOTION INSTRUMENTS AT THE SITE e WITH CLOSER SPACINGS
=. -b YBT - 3/11/86 O
h
l l . i TASK 5 APPLICATION OF NUMERICAL MODELING OF GROUND MOTIONS 5.1 EVALUATE THE SELECTED ATTENUATION RELATIONSHIPS, RESPONSE SPECTRA, AND TIME HISTORIES e LEVEL AND SHAPE e DISPERSION, SATURATION AND TRUNCATION 5.2 ASSESS EFFECTS OF ALTERNATIVE FAULT TYPES, FAULT GEOMETRY, AND RUPTURE PROCESS FOR NEAR-SITE SOURCES e DIRECTIVITY e HIGH FREQUENCY RADIATION 5.3 ASSESS LOCAL SITE EFFECTS e WAVE TYPES u o INCIDENCE ANGLE e SPATIAL COHERENCE YBT:rle 4/11/86
I tit D - Figure 3-1 GROUND HOTION PROGRAM TASK STRUCTURE ) J I
- INPUT DATA HETHODOLOGIES PRODUCTS APPLICATIONS l
- ATTENUATION . HAZARDS
! RELATIONSHIPS SSI i GEOLOGY /SEISH0 LOGY / GEOPHYSICS EMPIRICAL APPROACHES RESPONSE FRAGILITY ! + SPECTRA > HAZARDS ! GLOBAL DATA BASE
- AND 4 SSI
- DCPP SITE RECORDS NUMERICAL H0DELINGS
, TIME . FRAGILITY , HISTORIES SSI i
i LOCAL SITE HAZARDS
* ?
l EFFECTS SSI I l l 3-11 ! i 3 00 1 e 1
itb p i I SCHEDULE FOR GROUND MOTION OUTPUT DATE FRAGILITY SOIL-STRUCTURE INTERACTION SEISMIC HAZARDS MAY ,1986 SUITE OF REALISTIC TIME HISTORIES JUNE , 1986 PRELIMINARY PGA, PGV, PGD,
- RESPONSE SPECTRA, TIME HISTORIES; BOUNDING
! INFORMATION OF WAVE j . CHARACTERISTICS. j SEPTEMBER , 1986 REFINED PGA, PGV, PGD, RESPONSE SPECTRA, TIME HISTORIES; PRELIMINARY REFINED RESPONSE WAVE CHARACTERISTICS. SPECTRA. FEBRUARY , 1987 NEAR-FINAL PGA, PGV, PGD, < RESPONSE SPECTRA TIME ) HISTORIES; FURTHER REFINED j WAVE CHARACTERISTICS;
- INITIAL INFORMATION OF l SPATIAL COHERENCY.
i l JULY . 19 87 FINAL PGA, PGV, PGD,
! RESPONSE SPECTRA, TIME l HISTORIES, WAVE FINAL RESPONSE SPECTRA.
j CHARACTERISTICS, SPATIAL i COHERENCY. t
Itl p 1 A SUPNARY OF GROUND MOTIONS APPROACH TO MEET ENGINEERING REQUIREMENTS i . l i
- ENGINEERING APPROACH i
REQUIREMENT EMPIRICAL NUMERICAL SITE RECORDINGS i l
- 1. PEAK VALUES [ !
- 2. RESPONSE SPECTRA [ [
- 3. REALISTIC TIME p f [
l HISTORIES
- 4. WAVE TYPES /
- 5. INCIDENCE ANGLE [
- 6. COHERENCE / / [
! @ PRIMAR'Y APPROACH ! YBT:rle i
- 4/9/86
Of D GROUND MOTION OUTPUT BY MAY, 1986 OUTPUT APPLICATION GM TASK INPUT DATA APPROACH TIME HISTORIES FRAGILITY 3.1, 3.2, 3.3 ACTUAL RECORDS THEORETICAL (H AND V) FOR MODERATE TO AND EMPIRICAL SPECTRAL LARGE EARTHQUAKES SCALINGS VERIFICATION AND SELECTION ACTUAL RECORDS FOR SEMI-EMPIRICAL NUMERICAL SMALL EARTHQUAKES MODELING VERIFICATION AND SELECTION v8T:rie l 4/9/86 l l
s DEVELOPMENT OF REALISTIC TIME HISTORIES FROM ACTUAL RECORDS NO SCALING , o DIRECT USE OF ACTUAL RECORDS CONSTANT SCALING e TIME HISTORIES OR SPECTRAL AMPLITULES SCALING ACCORDING SOURCE SPECTRA 0F P OR S WAVES o THEORETICAL OR EMPIRICAL SOURCE SPECTRAL RATIO
=.
s EMPIRICAL GREEN'S FUNCTION SUMMATION e ACTUAL RECORDS AS GREEN'S FUNCTION YBT - 3/11/86 1
Ih - lt I 4 i GROUND MOTION OUTPUT BY JUNE, 1986 I, OUTPUT APPLICATION GM TASK INPUT DATA APPROACH PRELIMINARY SSI 1.1 EXISTING ATTENUATION LITERATURE l PEAK VALUES RELATIONSHIPS FOR REVIEW { (H AND V) ROCK SITE PRELIMINARY SSI 2.1 EXISTING RESPONSE LITERATURE i RESPONSE SPECTRAL SPECTRA FOR ROCK REVIEW i VALUES SITE j (H AND V) ) TIME HISTORIES SSI 3.1, 3.2 ACTUAL RECORDS OF SPECTRAL SCALING; l (H AND V) EARTHQUAKES EMPIRICAL GREEN'S 1 FUNCTION SUMMATION I BOUNDING VALUES SSI 3.1, 3.2 ACTUAL AND SYNTHETIC i TIME-DOMAIN ON WAVE TIME HISTORIES ANALYSIS CHARACTERISTICS 1 j 1 1 ' I YBT:rle ' 4/9/86 l * .
PARTIAL LIST OF POST 1979 GROUND MOTION RELATIONSHIPS RELATIONSHIPS BY GROUND MOTION PARAMETER DATA BASE CAMPBELL (1981, PEAK GROUND ACCELERATION PRIMARILY WESTERN 82,83,84) PEAK GROUND VELOCITY UNITED STATES RESPONSE SPECTRAL ORDINATES CUT-0FF DATE OF DATA : OCTOBER 1979 IMPERIAL VALLEY JOYNER, ET. AL. PEAK GROUND ACCELERATION PRIMARILY WESTERN (1981,82A,82B,85) PEAK GROUND VELOCITY UNITED STATES RESPONSE SPECTRAL ORDINATES CUT-OFF DATE OF DATA: FEBRUARY 1980 SADIGH, ET. AL. PEAK GROUND ACCELERATION PRIMARILY WESTERN (1983,84,86) PEAK GROUND VELOCITY UNITED STATES CUT-OFF PEAK GROUND DISPLACEMENT DATES OF DATA FOR RESPONSE SPECTRAL ORDINATES 1983, '84 STUDIES: DEC. 1980; FOR 1986 STUDY: APRIL 1984 5 9 8
nf-p . l GROUND MOTION OUTPUT BY SEPTEMBER, 1986 0UTPUT APPLICATION GM TASK INPUT DATA APPROACH REFINED PEAK SSI 1.2, 4.1 RECENT STRONG MOTION COMPARISDN WITH THE VALUES (H AND V) RECORDS AT ROCK SITES SELECTED ATTENUATION RELATIONSHIPS FOR DCPP FREE-FIELD POSSIBLE REFINEMENT RECORDS REFINED RESPONSE SSI, SHA 2.2 RECENT STRONG MOTION COMPARISDN WITH THE , SPECTRA (H AND V) RECORDS AT ROCK SITES SELECTED RESPONSE SPECTRA FOR POSSIBLE REFINEMENT i
- PRELIMINARY SSI 4.2 DCPP FREE-FIELD TIME-DOMAIN ANALYSIS OF RESULTS ON WAVE CECORDS FOR LOCAL WAVE TYPES AND INCIDENCE CHARACTERISTICS EARTHQUAKES ANGLES
- TIME HISTORIES SSI 3.2 EXISTING GEOLOGY / NUMERICAL MODELING (H AND V) SEISMOLOGY / GEOPHYSICS BASED ON PRELIMINARY INFORMATION SOURCE, PATH, AND SITE 1 MODELS l
l t YBT:rle 4/9/86 i
t\{ lt . 500 kV SWITCHYARD -~ f s'\ N
' \ ' \
f \ : DIABLO \
/ CREEK \
PLANT BONARY : [ ,~ \ i '
/ ' \ . \ ' %rq l l \ /
f 230 kV
/ \* PLANT \ BOUtOARY / SWITCHYARD 2 };k K \ / RESERVOIR Q \ . :. . / .
3 \ , s,. ,3 I:.X' ":~..',g.
\-
p 1 \ 2- i 6-I \ 7 .M g
. . ' . .,i .s.: i.-l'ti -i.3, : POWER e CONSTRUCTION \ ~- ' C. DIABLO s ANT A M N SE s COVE N ," . 6,t e . .c' 73 ...
T
- g. s !;:. ..q,:.J." '
METEOROLOGICAL m , --
% ,,,\'..
3 ? .? *t. . z? > TOWER NO. I 5-4 - e. _...s-
. . . U.: -
- INT AkE.i - 't:#
- p. g .: -
- 1 rw mn % ,%, g PACIFIC OCEAN
) FIGURE 3 . SUPPLEMENTAL SEISMIC INSTRUMENTATION i IN FREE FIELD l DIABLO CANYON POWER PLANT 1 I l : : l
a ____.a _ = _ _ _ . _ _ _ . _ _ __ D e e f h. o
~\... ~ , , , ,e s .. ,, .
o,
;~, . .4. .,. ,. r cc 'o" .
4,% .,V N. - .. ,
\.T x ,
g
,. g ,N . % m, r , ., ...' $ hf .. h - g.f_ , ..
ki} .
- w. s,
.?. .. _ r .s -, ,. o .Q .
- J ,s ,_
- 4g;h- J' pp.%
l :. %-- .' 'iq. -
"<,y N .' / ,,L g%e\,,'
Q' ,,t e g 's 'e
, %s '\(, . \. g* ' ~
w-
.-4 . ,. Y-s, . .3 % . . . .
t ,, j!bN' $k '
- ?.f k' [N 2 oc,g3-as, i s, ,. _ - .
.s .- ; \ '
{. " 4 3, _-,ge- '7- , j'
'f(i(-( . Tkl.'.[ph ~ , .s. . s . - m .
7A 1
\
y g% ,, , 4
' *( =- t N., e \. \ , \ \ (t'. ~E I
- DATA
,s i \ s *\ g A t N \-- s' v / - 47 *M(
I 35 o \ \\ * \' \ gg sg s_ ; h 's \ g,sD
- 5 !
i
\\g s/20/84 .
s,, 4[ santa Marfag%O ; 4 s 5/29/80 s ..'"' u~
.N 1 \.,g ,\, \s *[ N ,.A_p s ' v 12io 1 s 120o 4 5' _ _ .. . . . ' _ . .' g.: d4 , %
l - b
Table 3-1 GROUNO MOTION RECORDS OBTAINED AT DCPP SITE Peak Ground Acceleration (c) Free-Field Site No. -.. Q&If Q JM DEPTH (km) 1-1 1-4 6-1 5/29/80 4.9 30 6.0 -- -- 0.0097 0.0118 0.0120
'5/2/83 6.7 110 8.4 0.0112 --
0.0096 0.0095 - 0.0139 0.0134 -- 0.0111 6/20/84 4.7 30 9.4 -- 0.0035 -- 0.0106 -- 0.0109
- -b 11/12/84 2.4 5 4.9 0.0050 0.0186 0.0099 0.0058 0.0088 0.0267 i -
i 0.0078 0.0161 0.0118 Tr g .,. i ,
's,\ so i -
75 - in l \s,'(8
'N scN r - . h.':, , \. ..,,
SS . \
^' .i s '3; A Fuf ostat mas Figure taken from Campbell (1981a).
e w w w N ' N l N l q
. N l . N . N N N N J,
1' , I i P l> i
', > . o I , . o . o N 1 N N , l d
I j i i
.. < r . e == di. . e Il .
e.e
== , lL 1L II I
d
, I, i ' i I . m ' * . m , . e h I l
l'l i , d I I I E " b
. . . . 1, , < . 'i I 'S 8 I 3 '
P 18 t <' t d t t 1 C c P f I e C <' s
- u o c e
& W e a'
- o. ' I, e.
N. in a. g
. Nv == rn.
N.* .7 N r es M , e s 1
- w F
- S
= > G. e .$ * . > m.
- W.
m Nl
- t. m
. O e . o 4 m . o -o .o. ==
Q g y
.u . . .
6 o 6 as 6 o L. w1L - t t 6 ; r 6 w ar
= ;
4,
. l - = . s 1 1 3 -
- s. N . -
.e: e ,o L e a - S _ .e a =
- w % w b .i 8a 4' i3 2. 1 t -
3; l l
. ! 9 =,-
o o a. m, a u - t d l ' [ l, o , N g 4 V N. ,It
,1 <
m> ,
- J qj a 3
- N 3 ii -
N 3 i5
=B 5
B 5 B o u o 23*0 03*0- f 3
- 0- r3 *3 03*0- 23'0- to 0 00*O* to '0-0 - 60 4o.o;esob 0 - wo.aoselessb C - woeansele*Je
[
r
. -. e e
m
- L3 L3
- M m M
. m . M . M M M M ,O , g . O ~**
n m %
~ "N
- N N
]e-N *N N %& e. N N "
N N 1 1h p '4 V 1- V C C C e C c C U y u N
., -. J e, . _., J I
e. N D . .J f N
& g- W G g C 1 -
g - 1 - I b .N** $ @ Y N . M e e e
=. *
- O eg ga U Q o Q g 8 g S g o n 6 e 6 o l l L g L 9 g C b b b
'C e .N , . N 8' 9 .N e i G .= g g = .e: o s a s - ~ n - m 4 %
a = a - a
-w w g < %. i 5 a I l:
w e e = a- . m s- -e u 5s - o, E e.
~ e e
O b g .. .
. e E
u om , ,,, , m ,
-
- m , . - a t 1m ; -
, m e ; - m
- a -m
- = u i r o , = o e w se. u e w ,
y s n s e. u a a a a a a , g s O ^ g E3 'O 00'0- CD '0- go o 00 0 to 0 go 0 00 c.' go 0 0 - WO 8 4Dda g soob g . co r so.,s t s oe b 0 - 'O'3Ddersosb i
tt! p .
- GROUND MOTION OUTPUT BY FEBRUARY, 1987 OUTPUT APPLICATION GM TASKS INPUT DATA APPROACH NEAR-FINAL SSI 1.2, 4.1, REFINED G/S/G NUMERICAL MODELING PEAK VALUES 5.1 INFORMATION TO EVALUATE ATTENUATION (H AND V) RELATIONSHIPS AND TO DATA FROM FIELD ASSESS STATISTICAL . EXPERIMENTS DISPERSION AND UPPER BOUND CONSTRAINTS NEAR-FINAL SSI 2.2, 4.1, NUMERICAL MODELING RESPONSE SPECTRA 5.1 TO EVALUATE RESPONSE (H AND V) SPECTRA AND TO ASSESS STATISTICAL DISPERSION AND UPPER BOUND CONSTRAINTS NEAR-FINAL SSI 3.2, 5.1 NUMERICAL MODELING BASED TIME HISTORIES ON REFINED PATH AND SITE (H AND V) MODELS REFINED RESULTS ON SSI 4.2, 5.3 WAVE CHARACTERISTICS INITIAL RESULTS SSI 4.2, 5.3 DCPP FREE-FIELD CROSS-CORRELATION ANALYSIS ON WAVE COHERENCY RECORDS FOR LOCAL EARTHQUAKES ARRAY PROCESSING DATA FROM FIELD EXPERIMENTS YBT:rle 4/9/86
\
SAN LUIS 0815P0 h0VEMsEM 22 twe4 g DECK 5--3 CHANNEL 1 .* e ok Value = 'O.0050 at D.680
'o .
Co 0o Q
$ % : ,_- : := _
I L o .. om uo i o. g cp i , , , , i 0 2 4 6 8 JC 12 14 Time - Seconds t a E DECK 5--3 CHANNEL 2 Peat Value = 0.0058 at 2.110 oO eo oo fL 9 :. -&; ::= - 0 om oo i u.o e , i i i . . 0 2 4 6 8 10 12 14
- = Time Seconds
-b i $ DECK 5--3 CHANNEL 3 Peak Value = ' 0.0078 at .
2.180 o 4 : i ca 0u
~
c fL .i L::,- ;'y?,17:::. ::-_ _- = G 4 om . uo u. gg , , , . - i i l 0 2 4 6 8. 10 12 14 Tsme Secohds -
' r . . , _ . _ . . - , - - . . - - . . . , _ , - _ , , . , , - , , _ , - , . , . . . -._ . - , . , , ,n,,,-,- _
SAN LUIS CBlSPC NOVENBER J2 1984
$ DECM S--4 CHANNEL 2 P e ak Value = 0.C186 at C.510 .
e o- . i co , Oo l I a o i u . .La ~ . L F1 - --- ~ - - , a r sp ' > i' f" ' I"' g ' t _. . U om OO i jy , i i i i i 0 2 4 6 8 10 22 24 Time - Seconds 8 DECK 5--d CHANNEL 2 P e at Value = 0.0088 at 2.170 ec co Qo k "'.%?4, he,v:- - -- L o m om oo O - c9 ' ' ' ' ' ' O 2 4 6 8 10 12 14
=
Ismc - Seconds
$ CECK S--4 CHANNEL 3 P e at value = 0.0161 at 2.870 0 0 co ou k ;;;:-,I <:.
L o Om uo gu-g .
, . . i i -
C 2 4 C 8 s- 10 12 14 Tsme - Seconds
SAN LUIS CSISPD NOVEMBER 12 1984
. l DECK 6--J CHANNEL 1 . Pear Voluc . 0.0099 at 0.670 8 ,
O . I Co Oo Y U L SI g [ ' - o m Um uo y6 , , e i i i a 2 4 6 8 10 12 14 I me - Seconds 8 DECK 6--! CHANNEL 2 P e ak Ya!ue = 0.0267 at 2.110 e Q co ! Oo h j;;b; - ,z :---_--- .--- L e om oo
$d , , . . . .
0 2 4 6 8 10 12 14
= Time -
Seconds
'b $ DECK 6--I CHANNEL 5, Peat Value = 0. 0118 at 2.030 e
co Oo
~d .i ,la, .
g* , n 3 ~. 9gi
,_ -_-is--
L c um - uo u-eo , , , , . . 0 2 4 6 8, 10 12 14 T ime - Seconds l
t{t p < ADDITIONAL FREE-FIELD INSTRUMENTS AT DIABLO CANYON LOCAL SITE EFFECTS POSSIBLE CAUSES ADDITIONAL INSTRUMENTS FOCUSING /DEFOCUSING TOPOGRAPHIC RELIEF LINEAR TOPOGRAPHIC ARRAYS SCATTERING GEOLOGIC CONDITIONS SPATIAL COHERENCE ARRAY
- TWO LINEAR TOPOGRAPHIC ARRAYS ALONG PROFILES AA' AND BB' AND FOUR ALTERNATIVE CANDIDATE SITES
- FOR THE SPATIAL COHERENCE ARRAY ARE BEING CONSIDERED.
YBT:rle 4/9/86 i e .
ilf p GROUND MOTION OUTPUT BY .]ULY, 1987 OUTPUT APPLICATION GM TASK INPUT DATA APPROACH FINAL PEAK SSI 1.2, 4.1, FURTHER REFINED NUMERICAL MODELING BASED 5.1, 5.2 G/S/G INFORMATION ON FINAL SOURCE, PATH AND VALUES (H AND V) SITE MODELS FINAL RESPONSE SSI, SHA 2.2, 4.1, SPECTRA (H AND V) 5.1, 5.2 FINAL TIME " " " " HISTORIES (H AND V) SSI 3.2, 5.1, 5.2 FINAL RESULTS ON SSI 4.2, 5.2, WAVE CHARACTERISTICS 5.3 FINAL RESULTS ON SSI 4.2, 5.2, WAVE COHERENCY 5.3 YBT:rle '
TASK 5 APPL 7. CATION OF NUMERICAL MODELING OF GROUND MOTIONS 5.1 EVALUATE THE SELECTED ATTENUATION RELATIONSHIPS, RESPONSE SPECTRA, AND TIME HISTORIES e LEVEL AND SHAPE e DISPERSION, SATURATION AND TRUNCATION 5.2 ASSESS EFFECTS OF ALTERNATIVE FAULT TYPES, FAULT GEOMETRY, AND RUPTURE PROCESS FOR NEAR-SITE SOURCES e DIRECTIVITY e HIGH FREQUENCY RADIATION 5.3 ASSESS LOCAL SITE EFFECTS [ e WAVE TYPES e INCIDENCE ANGLE e SPATIAL C0HERENCE YBT:rle 4/11/86 l e
-l I
SIMUL ATED ACCELEROGRAM (formed by summation of contributions from each fault segment, as modified by - --- propogotion path and site response.) j M pi,l i d 4
$1; ~ ~ -
SITE SITE
RESPONSE
FAULT SEGMENTS (. / 8 # 9 /
/ /. / - a y / / PATH / / PAT H (d (Green's f unction ;.N representing effect ~
of wave propagation). SOURCE FUNCTION (representing seismic radiation from o l fault segment). l s t
GROUND MOTION MODELING PROGRAM STAGE I ASSEMBLE, MODIFY AND CALIBRATE EXISTING COMPUTER (4/86 - 8/86) PROGRAMS; DEVELOP PRELIMINARY SOURCE, PATH, SITE MODELS FROM EXISTING INFORMATION. STAGE II IMPROVE PATH AND SITE MODELS USING RESULTS OF SITE (9/86 - 1/87) EXPERIMENTS; PRODUCE TIME HISTORIES, WAVE CHARACTERISTICS AND SPATIAL COHERENCY DATA BY FEBRUARY 1987. STAGE III UPCATE SOURCE AND PATH MODELS USING ADDITIONAL (2/87 - 6/87)
- . GEOLOGY / SEISMOLOGY / GEOPHYSICS RESULTS; PRODUCE FINAL TIME HISTORIES, WAVE CHARACTERISTICS AND SPATIAL COHERENCY DATA BY JULY 1987.
ASSESS ElFECTS OF ALTERNATIVE FAULT TYPES, FAULT I GEOMETRY AND RUPTURE PROCESS BY JULY 1987. YBT - 4/9/86 l l
^'
l on.414Tios cowes5lON . a e a . e N IS* W u* Ne g e O A e a o 0 i r ! w- $ -E NM E e 56' s T
+
e O ee
=- %g 4 P 6 0 + a e e
l l s l FOCAL MECHANISM REPRESENTAT!ON (UPPER WMISPERE PROJECTION) OF NOVEMBER 12,1984 EARTHQUAKE. TE SIZE OF SYMBOLS IS INDICATIVE OF THE
. CERTAINTY OF THE P POLARITY. ,
lit n -
, 36* . REFRACTION O OM l , , . . /V r .? . . ' .- W !; m^ /
_% .e
/ 'r . .a - , > \% ,' i ;* , *] '-
g
~^
9
- m , ,> ?5, iCholame'
/< , 's REFLECTION . , n ,, .. ; W.
_~
, . :gyn g g ey__ <, 3. - ,:, ' ' c. 7. .,:, .r. , . ;e'
- ,5_"? e ,,. .
y::;. -. ~- PLIO-PLEIS. SED.
..,; ; 'l<'.: '- , j 7;I ' ,.,.,3:.;; .,,
s Ml0CEE N ED. I v GREAT-VALLEY
' TYPE SED.
s
'.'y:
- s. , - '
~
558 FRANCISCAN. - N 3 ,' f
. s:., - :.. ,, L' ; ' '... w. TERT. VOLCANIC ..m' . . . ~~,, , q# ; ;y . ". 3' c .- :-.': . xp~ A:: ' '-
Br:..~s. .;s; ~'
' '
- MESO. GRANITE
. ,c 'l(,M'-
s
' D::ff y.).]'
- g ': g :s\ MESO. ULTRABASIC y, , h t .. , . ;(
-i '., :: '\ ,
o
. , 1 .- .1,.;p.p;s '*:.: : >'s>- v. m , G 's . . , .- :i j/ ' ,y : f .,' ];p j 'f, ' j)"; . :l . :,- ", _L: q' ' 'y ~
Y , ? 'l_';; ; ~ Y :k. s ,r, , s.: -
- v. , , g ^
9. x g
- t. .
44qL.:p-
- 4. .
e ;,
.; m g :/ . .. :af ' *% // f %w ' '
- //\ -
121a 120*30' 120* l TREHU AND WHEELER (1986)
ht p . i SAN SEEON TERRANE SALINIAN BLDCK SAN ANDREA3 rAULT ZONE n SP2* SP3* SP4* SPl*
- iri n ur 11 i
, 3_oy ii, i1 O - - - - ~ n 1 - - -
EO Y . -
^* ao a "O 5.5 8 - ~'- IWll / ///H///// l - //// / /// s.o ... )
12 f 5.s _ *..=*,.. l s.o ,, 16
- LOW VELOCITY - .
. WEDGE .
20 - s.0 ,
* ~~~~
24 ga vE=2x KM l l l l l l l l l 40 50 60 70 80 - 90 KM 10 20 30 TREHU AND WHEEi.ER (1986)
@ g
hfP - CEDAR Min SE
,e_. . . r, B)
A) f,, 3
=
wp.f7Q.e. .#.QfF;f,t
- enasc a ,,
J ;iif i s --
?
t
" 3 '~ l),' N VELOCITY (KM/S) @J 4 if H*i ; q.j . n i
8.0 9.0
'1 ' -
j{ 7 V - ]. , 1 g': ' 3.o 4.0 5.0 6.0 7.0 I. ';3 y ,l, 3 Je : l h - r c , 0... - -
;a . .i i l y4 -- , , se . .e i .l -
se g -- se e Se e se e 3e.e 2ee le s ' CALAVERA FAULT REGION 1 < ; .[,L f. . [i y,k Co h Min 4.e- ;l ;;j. > , ' l , G_ t . 3 '
, 10 -
i
- w. p}[ '
< 4. ;*' . ,' h , *' ' l ' ' ~
P""SE " ; - f .';>c f ,h , g TNe $% % ' h
' 2.0 -
I '
;l l' g' .': E -
l I _J
< , /,P , '{..3 Z a i .e . w. t w
c------ .,
! l- o ~
i . O se
'$o s sie si.e 4d e se e too si.e Coloveros- i i ! SHOT l- THIS STUDY 20 -mu Re@n i .
O 8.0 ' , p l g' ] K , 7,o. f ile . L--.---; - , u o > j l 6.0 - 1 e
-d. '
5.0-
+ e : i 'T -
d pg[ j E. 4.0 - ' SE A < N]F < p - - , u 73.0- ' j 30
, . . . . <l e- J :
d . g. 2.0 - . , ,, .. .
'~ ' " # '
i 1.0- .. ll { ' l i 00- ' 1
; I - 1.0 . . . . -10 0 0.0 10 0 200 30 0 40.0 SOD 60.0 70.0 ,
DISTANCE (KM) TREHU AND WHEELER (1986) I M
h SHEARWAVEVELOCITY(FPS) 100 10M 2000 30M 4000 5000 H00 7M0 8000 g i i I I I I I 80 - i SITE SHEAR WAVE
+505 l -505 VELOCITY VARIATION 60 -
l-33g +333l 63 L__q 40 - I I e i i 1 , 20 - l l 1 I 1 l 0 - 1 -301 +305 l i I I i
-20 - 1 I l ^ LGdER I MEAN I -40 UPPER h
C 80VNO I I 800N0 Q l
! -60 -
- 1 5 8 1 l
! -80 - L-- I 1 '1 l l I -100 - ! I = i ! -
i i i 120 == 1-255 +255 I I I i i I l -140 - l l 1 1
-160 '
l l I I I I
-180 - -200 -
1000 2000 3000 4000 5000 6000 7000 8000 SHEARWAVEVELOCITY(FPS) SHEAR WAVE VELOCITY PROFILE l l . - _ __ _ -
O ENCLOSURE 4 SECTION 9 = ~ = a 4
t Y f SEISMIC MONITORING SYSTEMS AT DIABLO CANYON POWER PLANT i o BASIC SEISMIC SYSTEM o SUPPLEMENTAL SEISMIC SYSTEM j i .i l t d
- e A
i
. _ _ _ , . - r--_.-_ . . _ __ ___ . _ . _ ,,,_.___.
BASIC SEISMIC MONITORING SYSTEM INSTRUMENTATION - y V f INSTRUMENT VENDOR LOCATION 3 Acceleration Sensors Kinemetrics (FBA-3) See Fig. 1.1.1
- (Triaxials) 1 Control Recorder Kinemetrics (SMA-3) Control room
( Analog) 1 Playback Unit Kinemetrics (SMP-1) Control room (Analog) 6 Peak Accelographs Engdahl Technology See Fig.1.1.5 (PAR-400) ) 1 Response Spectrum Engdahl (PSR 1200) See Fig.1.1.5
$ Recorder 1 Earthquake Force Kinemetrics (EFM-1) Control room Monitor (Triaxial) .
1 Trigger (Starter) Kinemetrics (TS-1) See Fig.1.1.5 I
a DCPP BASIC SEISMIC SYSTEM INSTRUMENTS AND SENSOR LOCATIONS h Triaxial Strong Motion Accelerometers Containment Base Slab, EL 89, 1800 s Top Unit 1 Containment, EL 303.5, 2250 Aux Building, EL 64 Triaxial Peak Accolographs Containment Base Slab, EL 89, 1800 Top Unit 1 Containment, EL 303.5, 2250 f- Intake near ASW Pump 1-2 Bay, El 2 Turbine Building, El 85, Machine Shop Aux Building, EL 140, Hot Shop Roll Up Door Aux Building, EL 140, Near Control Room Door Triaxial Response-Spectrum Recorders Contain-ent Base Slab, EL 89, 1800 Seismic Trigger Contaiment Base Slab, EL 89
~ ~
A DCPP SUPPLEMENTAL SEISMIC SYSTEM INSTRUMENTATION 9
# INSTRUMENT VENDOR LOCATION 61 Acceleration sensors Terra Technology (SSA 302) See Figure 1.1.1 2 un- 16 triaxial; used) 6-biaxial; 1 uniaxial 7 Peak recording Engdahl (PAR 400) See Figure 1.1.5 accelerographs 1 Seismograph recorder Terra Technology (DCS 302) Aux. Bldg Area GW (Digital) Unit 1 Elev. 100 1 Playback plotter Terra Technology (SMR 102) Aux. Bldg Area GW (Analog) Unit 1 Elev. 100 1 WWVB Radio Clock Kinematics Roof of Unit 1 >
(Receiver & Antenna Control Room
'm= Nat. Bureau of Standards
kt SUPPLEENTAL SEISHIC SYSTEM SENSOR LOCATIONS AND ORIENTATIONS l Sensor Location t Trpe Channel Orientotion DCS. (See No, (See Notes 3 ord 4) i Deck Note (See Mou Elev. l Nos. 1) Note 2) G (fel Unii Deseription Ch I Ch2 Ch3
*TR I 89 I Outside Contoinment - Bose, Bosic (SMA 3) System & Trigger (See Note 5) 180 270 Vere j TR 3 303.5 1 Top of Contoloment, Bosic (SMA 3) System (See Note 5) 180 270 Vert TR I 64 1,2 Aou. Building (U) - (IM, bsic (SMA 3) System (See Note 5) 180 270 Vere j i-l TR I 89 i Outside Contoinment - Base, NW Sector
- 1-2 Vert 118 28 TR I 89 I 1 Outside Contoirwnent - Bose - M 5ector Vert 240 150 j 2-4 Single 3 1 91 i Containment - Near Reactor, Beiween SG I-3 and SC I-4 1-3 TR
-- -- Vere
) 2 140 1 Contoinment - Operating Deck, Near Steam Generator No.1-l Vert 180 90 1-4 TR 2 140 I Containment - Operating Deck, Near Steam Generator No.1-3 Vert 0 270 l 24 'B I&2 2 140 1 Contoinment - Operoting Deck, Armulus-South (See Note 6) 90 180 See Deck 24 3-1 B l&2 2 140 I Contoinment - Operating Deck, Annulus West 180 90 Blore 2-2 TR 3 231 I Contoinment Liner, Dome Springline - E Sector Vert 60 330 1 2-3 TR 3 231 1 Contninment Liner, Dome Springline - 5 Sector Vert 180 90 3-2 TR 3 231 1 Contoinment Liner, Dome Springline - NW Sector Ver 300 219
- 4-3 8 I&2 1 89 2 OJtside Containment - Bose, N 5ector Vert 90 See Dech 4-3 4-4 and 44 8 i&2 1 89 2 Outside Cantoinment - Bose, SE Sector Vert 200 See Deck 4-3 and 4-4 5-1 B 1&2 89
] 1 2 Outside Cantoinment - Bose, SW Sector - Trigger "A" Vert 328 Bkmk j 3-3 TR I 100 l Aou. Bldg. - (Fuel Handling), Between SPT Fuel Pool & HVAC Filter Room Vert 0 270 1
3-4 TR I 100 1, 2 Auu. Bidg. (H) - (lW, Woll Next lo stoirs - W End 4-l Vert 270 180 TR I 100 f. 2 Auu. Bldg. M - (Im, E end nest to field hol&p tores - Trigger 'B" Vert 90 0 5-3 TR I -- -- Free Field, Near Reservoir Veri I 271 5-2 TR I 85 1 Turbine Building, N End, Swlich Gear Room
" ' Vert 0 270 B 3 140 1 1 Turbine Building, N End Turbine Deck -- --
O'*
- g 4-2 TR I 85 2 Turbine Building,5 Ervt, Stairs 2-1 1R Vert Illo 90 I 89 1 Outside Contoinment Rose,5 Seefor 6-l TR ver 0 270 I -- --
Free Field, Neor Warehouse (See Note 7) 5-4 Ver 176 86 TR I -- -- Free Ficid, Neor Meteorological Tower 4 Ver 84 354 e g
m
- Ik If E '
d E n:: Egd
/-I g
i **'[* LEGEND g=g!
>E / ^Y 1 VERTICAL Ig 1 [AJ R y ) \
N f j/ k + BIAXAL m \ @ TRIAXAL
/ ,, g P PRA I - # R RSR J swiECwv4Ro \
uutis Of FILL T TRIGGER
\ / ,s. '- / #NiE5vARo s ',. \ " "L \
uusrsOFFILL~ f n \ i l 1 i
/ / '
nEsEnvoin
\ \
uutT i CONSTRUCTION g g WAnEHOUSE
\
F0WER PLANT @ [dYr [ e.s McLes COOLING WAT +' AVILA BEACH --= DISCHARGE OIABLO COVE METEOROLOGICAL" TOWER ] g"' -COOLING WATEn INTAME p p BREAKWATERS ^
#^CIFlc 0CEAN , a ,,, , , ,,,,
SCALE IN FEET UNITS l AND 2 DIABLO CANYON SITE
, SEISMIC i
INSTRUMENTATION I
L R R R . AO O LO R CS LS AS E IN AN XN I I G oTE n RS E XE AE AS I R S A R G R S R I g I B P R T V T a, t i + @ P R T
+, / + \ NE 2
2 T OR& I N T U1 I
+ ,
A U TCS T T N UI E RN
'5 '
1 '0 '9 M STU U N 2 3 3 4 8 0 2 1 . RTO 3
. l E
l E
. l E TN Y l
E SE N NM A I P CIN C R@ 1 I AO . g T MT L N SN B I
+m I a
U E OA S CID
* / @ g @
P I
\
g ?
.L l LEGEND y i VERTICAL + BIAXIAL @ TRIAXIAL P PRA ,
SPENT I R RSR U, g g' FUEL T TRIGGER POOL
, P l ",,- "] g SPENT s FUEL I
B.100' ,-t"- POOL I
,- l
_e.sm' ( - l UNIT 2 i i s .
'k g g CONTROL UNIT 1 ROOM g
s \ N g.j 00', s X l m-s / s[ x SEISMIC INSTRUMENTATION AUXILIARY Hull.DitJG DIABLO CAflYON UNITS 1 & 2. -
An -
,s' I '/- '/
fIs
. x ',- 'y '
y l 1N. N
/ .g l 'N g p s4{% - x '- N q<47,,
7' . .c::N$s o#3
<ez G sig.
s+
-x /S MQe , %. .G / - s4e s, 's - c C ,'
s'i ,, s s P sP x -g<-( N -M -
-x x 3 -ez # h ,h' LEGEND g -
1 VERTICAL SENSOR
+ BlAXIAL SENSOR @ TRIAXIAL SENSOR SEISMIC INSTRUMENTATION P PRA TURBINE BUILDING R RSR DIABLO CANYON UNITS 1 & 2 T TRIGGER 4
ENCLOSURE 4 I SECTION 10
= =
l t I f l I
, - - - , ,y, y- -..-y- - - - - - - - -
. GENERATION OF REALISTIC ACCELERATION TIME HISTORIES BY SPECTRAL SCALING OF EARTHQUAKE RECORDINGS Product: A Suite of Acceleration Time Histories criteria: Time histories appropriate and representative of: e Magnitude M >6.5 e Distance R <10 km
'e Site Condition Rock /Very Stiff Soil e Shallow Crustal Earthquakes General Approach: Empirical in nature e Use of natural earthquake ground motion recordings e Intent is to satisfy the above-specified criteria e Pr?ference given to candidate records I which require minimal scaling adjustments E
Scaling Categories: , e No scaling required e Constant (rigid body) scaling e Frequency dependent scaling l l l l
FREQUENCY DEPENDENT SCALING PROCEDURE e METHODS OF SCALING: (a) Take Fourier transform of original time history (b) Scale Fourier amplitude spectrum using both empirical and theoretical scaling relations (c) Combine scaled amplitude spectrum with original phase spectrum, and (d) Take inverse Fourier transform of the combined
- complex spectrum to obtain scaled time history i
e CALIBRATION OF SCALING METHODS: (a) Apply various scaling relations to scale selected accelerograms: magnitude range below 6.5 Compare original and scaled accelerograms: both (b) in time domain and frequency domain
- - (c) Decide on the scaling relation (s) to be used 5:
e GENERATION OF REALISTIC TIME HISTORIES: (a) Select condidate recordings based on prescribed l selection criteria (b) Adjust recordings to required magnitude, distances and site conditions using selected spectral scaling method
SPECTRAL SCALING RELATIONS e THEORETICAL SCALING RELATIONS: (1) Brune's model (e.g. see Boore '83) i (2) Joyner's model (e.g. see Joyner '84, Boore, '85)
. e EMPIRICAL SCALING RELATIONS:
Fourier Amplitude Spectra: (1) Trifunac (1976) (2) McGuire (1978) g Response Spectral Ordinates: (1) Joyner and Boore (1982) (2) Sadigh (' 83)/Sadigh, Egan, Youngs ('86) 1 b 1
ne se i.ases 99 949 9 5 38808% M ee gan IseffS CANDIDATE GROUND MOTION . .. RECORDNGS FOR EMPIRICAL APPROACH N am Wes. tion Cr teria Fa tiquke M Stut.on Site (k*, Class. (p) .M,. De t.t
-. ~ . - . 'aita S.6 FeAer e t teil d..,. i EtM. O. i h e e 48utIMO He'.er. a . Munt .
Co. . ir anc.;xo 5.3 G t ri. . C. ara Ib.s 9 Rea o. s.7 e e
.O Mrs. i957, ;o o. 6 38 O' S O..
uso r tws Koyn , b .d.._ - 6.o
. 84 3. = h - - . u .a. %. .. .. . . . . , . . _ ..
e o 467 0 C
;.:7 .%.s iSw F' ,, {.ed s4 Chs.t .. Sh 4 85 .. .
5 v.St.(( Lit CNia e - Sha.Jac86 9 V. StiU Sal o.279 e e O
- %.k.c to A.,w o.4ii G e 9 a5 O
iZ hy 1910 L.ytte Orcek ; e.4 *weigntwee _ v.St'.(( 5i.lj o.tos _ 22 ha o.tT9 . tevils Co. 3.n All n Rei. ch 21 La o oeo e -
. 9 Rock 8. 87.) e e e o>6.t,rni Sn..Fe.. .do 6.6 i taw.s .s I a... .3 Gr.H;tir. Forn.as. 17 Roa i o.tss e e P<.,cw o.374 e e Lake Rep.es dit to ei Ak o.2oo e .
We %s 24 24 RoA o.447 9 e
.. Lake %hes*9 ..
e O uv.ta <*., v.56ff %i o.33 s e
=. .
V.56H 5 3 o.390 O O
.!.* D u. i9 fa Mo p (. . z Esso R4<.e, y */
Roc.k o. sos e e 56 c,. oi.it e I.o r. . to _o n. .A.. ce s,v. tti. . . .. . . . _ .
. y ..19 7 ..
j 4 u.6e e e O
- 7 May s9% Go td . oss e 7.o Kar.ayr Fe..r t y.c Gotet. 9 v.st;(( L.i o.285 e O
, s.C A.u3 197s So. t.. fu. b . s.6 3 i o.sl e e O aw 75 Tatat .
l -
-w e. n97 b Tnus. .. .I.. a . . . . .. _
e e E Co,,.te Creau. 8 3 ha e o.25o o6 A .1979 Coy te towe s.6 s . i 9 e.a , o. i i e. . S ca..,
- i ,
= .._._..7 3..
d Roa o.422 0 e G ieo1 6_. .q.4 3 - -. .. . ._ 4 . Cwep %d o.bi9 9 e iO c.st 1979 "Jeaperic.i Waney 6.9 El Car tre 8 6 El Oes tso 6 4 4 o;t o.d at, e e om o.,se,e,a u,,, y t.ee a . . _ . _
. O ~,....e r. .. . % e.a. o.2,,
Ic. .p. .c.t F.F. 8 Tsep N'.I o.237 9 e I Et .V. ti., 8 eo 9 teep S.;( o.23i e e e e l 9 teep 5..t o.222 1 Bia-.<y A <vo t Red c, . 202 e e Syst.h. .. Mtn 25 l
- a we au.-- .. . .6 e . ..D.-
t x s i t I
. se s sa as ess.enese s sers * \ -
3 see see s sers esis i
.. r... . isso Li v < < . . ..e c e.o Es. . s c.w. . F 3 , . 4 v.et.g . i . o. 4.,4 g Q M* 44.."*re ;..y 8 R@ O.277. 9 3 = . . .. -.: t ,M . I he:, (. . I V St.t4 t c . 4.;, g Q g M3 19 A s W O,. ,;c t Cr g. ~ *s Q ; L., 3 Na ...f I . .. N ! EL.L.A Q t 0.437 .. ,f .. G l .
4 VI . /s .. .; I s.. l s t, K . r .,% r., . I s *= 0 ; A i ' i'S t/.g l'.s k 2 t. . . ..... 6.4 '.b,.* *.s s < 1/ . V. St t{ %.i o.2 3:. O . i O
^ ~
- u. d. e , I .s . . Pr. (e.gg . /.6 t f . 'M C -
g L. J . . . ., L .. . 2o R.w . hu o. e s: O #
# e
- 1. 8#. =n.) 19 N r. . th 6.s.e. c./ .. ct Oi :cas LC V f t.G $,'.! O. 4 M , , g Q f .; hitty lu e. . .o E ca . / L.,t rs. 492 ' l g
i L.n.; htte, T.a.o .n 1r,. L.L,. 6 o.ots? l g
."/kby I's.' 3 M.*. wtt L.tLa<, 6." C.s ...
- Cear r.k IL ,V .$t.(( #o'.h G.!24 O O
-Lo. .sy 40 a c ; L... I6 L. Ab t 1. 3 *,: 4 3 $
g f n..,t ,., .6 e.m. t_ 2,9 0 . P.raa sa Lc.sga a 4.x o. sis O l e t')B Muy 196? Co l .f. Aft- 5.3 Anh.c.t e 13 Rouc I ."'.29o S
.a Eci p 5.9 4 c v.
- L 8 je l' J l b^ C 040 5 8 8 om,. , <,u c.. .c .. . . -7 l
-,o I e
- I l
l , h 8 6 l 9 I l ' l * . I i
. . p I. . a e
l h I I 1 i I
~
i i i - l I
DEVELOPMENT OF INPUT TIME HISTORIES FOR FRAGILITY ANALYSES
~
For selected ground motion recording: e evaluate 5% damped response spectrum for each component e calculate mean spectral level for both horizontal components within frequency range of 3 to 8h H, e define scaling factor to obtain mean spectral level of 2.25 g within frequency range of 3 to 8 H' z i'** 2.25 3=_ n, be n , H e scale each time history component of the recording
=_ by the scaling factor 5=
a,(t) =S ao(t) l l l l
i PRELIMINARY INPUT TIME HISTORIES FOR
* ~"
SOIL-STRUCTURE INTERACTION ANALYSES From the selected groun'd motion recordings, define a limited group that best captures the preliminary ground motion characteristics to be empirically estimated for the DCPP site, including: o Peak Ground Acceleration e Peak Ground Velocity e Peak Ground Displacement e Response Spectral Content e Relationship Between Horizontal and Vertical Compenents
=.
b I l
O ILLUSTRATIVE EXAMPLES OF GENERATING REALISTIC TIME HISTORIES USING EMPIRICAL APPROACH
~"
e Calibration of scaling procedure e Adjustment for Magnitude / Distance e Adjustment for Site Condition O e Supplemental scaling required to develop time histories o for fragility analyses
=
s' ENCLOSURE 4 SECTION 11
~ =
e
NUMERICAL GROUND MOTION MODELING - STATUS OF PRE
~
OBJECTIVE - PROVIDE PRELIMINARY INPUTS INTO SSI AND FRAGILITY ANALYSES - MAY-JUNE 1986 e PRINCIPLES OF GROUND MOTION SIMULATIONS USING EMPIRICAL GREEN'S FUNCTIONS e PROPERTIES OF SIMULATED GROUND MOTIONS e EXAMPLES OF PRELIMIN RY SIMULATIONS
=.
s e GROUND MOTION INPUTS INTO SSI AND FRAGILITY AN
6 11f D a i SCHEDULE FOR DELIVERY OF GROUND MOTION PRODUCTS i FRAGILITY SOIL-STRUCTURE INTERACTION SEISMIC HAZARDS j DATE MAY , 1986 $UITE OF REALISTIC TIME HISTORIES JUNE , 1986 PRELIMINARY PGA, PGV, PGD, RESPONSE SPECTRA, TIME j HISTORIES; BOUNDING r INFORMATION OF WAVE CHARACTERISTICS. SEPTEMBER , 1986 REFINED PGA, PGV, PGO, l' RESPONSE SPECTRA, TIME HISTORIES; PRELIMINARY REFINED RESPONSE l WAVE CHARACTERISTICS. SPECTRA. FEBRUARY , 1987 NEAR-FINAL PGA, PGV, PGD, RESPONSE SPECTRA, TIME HISTORIES; FURTHER REFINED WAVE CHARACTERISTICS; INITIAL INFORMATION OF SPATIAL C0HERENCY. l
, 19 87 FINAL PGA, PGV, PGD, JULY f RESPONSE SPECTRA, TIME l HISTORIES, WAVE FINAL RESPONSE SPECTRA.
l CHARACTERISTICS, SPATIAL li COHERENCY. l l l l @ ,
EMPIRICAL GREEN'S FUNCTION APPROACH (HADLEY AND HELMBERGER, 1980) SIMUL ATED ACCELEROGRAM --- (formed by summation of contributions from each fault l segment) I
-5YA ^ w -"--
RECORDING SITE FAULT SEGMENTS l
## 4 k/' S R , / , / /
4l l/ i:5 g-__ EMPIRICAL GREEN'S FUNCTION (representing seismic radiation f, rom a fault segment and
~
propagation over' distance R ) .
SCALING PROCEDURE . Segmentation of Fault Slip Function ;. nL b A - h 7; D W n w nT7/ { 9 w A i c.d y I r time
- L = +--T -+
mo (subevent) = x dlw Mo (large event) =,x DLW
= c M o /m o nL ' "W' "T mo-* 1 x w rn a known; I,w known or assumed from scaling =
r relation
* '#I nL n w = W/w nT =
T/r = L/I dynamic similarity condition T = TR /8 TR = rupture time (Kanamori 8 Anderson)'
~
c = constant required to preserve moment . ratio
1 l l CRITERIA FOR SELECTION OF EMPIRICAL GREEN'S FUNCTIONS CRITERION ADEQUACY OF I.V. '79 23:19'AFTERSH0CK. SOURCE PARAMETERS: 24 KNOWN SEISMIC MOMENT, LESS THAN 10 dyne.cm / (restrict dimensions to a few km)
/
KNOWN HYP0 CENTER KNOWN FOCAL MECHANISM
/
PATH, SITE AND 0 STRUCTURE: A) SIMILAR TO THAT FOR DCPP, or B) DIFFERENT BUT WELL EN0 UGH KNOWN TO ALLOW SITE TRANSFER CRUSTAL STRUCTURE:
/(B)
SITE STRUCTURE:
/(B) b /(B)
Q STRUCTURE: STRONG MOTION RECORDINGS:
/
THREE COMPONENTS l 1 ' / WIDE RANGE OF DISTANCES
/
WIDE RANGE OF AZIMUTHS L
- 7. -
PROCESSING 0F EMPIRICAL GREEN'S FUNCTIONS no 1. ROTATION OF HORIZONTAL RECORDS TO RADIAL AND TRANSVERSE MOTION.
- 2. CORRECTION OF S WAVES FOR RADIATION PATTERN.
(LIU AND HELMBERGER, 1985 SOLUTION)
- 3. SITE TRANSFER FROM IMPERIAL VALLEY CRUST TO DIABLO CANYON CRUST.
A. ROTATION OF THE RADIAL S WAVES TO CORRECT FOR SHALLOWER ANGLE l OF EMERGENCE AT DIABLO.
=
B. SITE HARDNESS CORRECTION. i i (IHE MAGNITUDE OF THE SITE TRANSFER CORRECTIONS WAS COMPUTED FROM THE l CRUST MODELS OF FUIS ET AL. (1981) AND EATON ET AL. (1970) USING A GENERALIZED RAY THEORY ALGORITHM.) 4 _ _ _ _ _ . - . _ , _ _ , _ _ . _ _ .-y -_ . _
--__m- .. , - , - . _ _ _ . . -,-
i l HOLTVIIlE POST OFFICE ; BEFORE SITE TRANSFER '" 47.1
~
I
;^ 5 ^ ^, ^ ^.?M 151.1 RADIAL .-- l l . =N& ^
274.5 TRANSVERSE A ,% % W :_^;==, W- ::.-y,= - : I
; i 3 sec.
AFTER SITE TRANSFER 107.4 VERTICAL i i 227.4 RADIAL
,?,$ ,' ^.1 ',' ; . ^- :=:M 138.'8 TRANSVERSE
- -';A', W =,-y,-:
.----..we-.-w, , , _ - , . . - . - -,._ _,___._, _ -, _ _ _ _ , , _ _ _ _ _ , , , _ - - -
PROPERTIES OF SIMULATED GROUND MOTIONS
~"
e SHEAR DISLOCATION SOURCE - RADIATION PATTERN, RATIOS OF COMPONENTS AND WAVE TYPES CORRECT e SOURCE FINITENESS - REALISTIC REPRESENTATION OF EXTENDED SOURCE e DISTANCE FROM SOURCE - REPRESENTED EMPIRICALLY WITH THEORETICAL CORRECTIONS e WAVE PROPAGATION EFFECTS - INCLUDED EMPIRICALLY IN THE GREEN'S FUNCTIONS e SITE RESPONSE - CORRECT ANGLE OF EMERGENCE AND VELOCITY STRUCTURE ll e l % s
-,-_,,m . - - , _ _ - - , ,,.,,----,c.--_-,_v ,_,-_.,-m,
REPRESENTATION OF HIGH FREQUENCIES DETERMINISTIC MODELS: ABOVE ABOUT 2 HZ, DET ILS OF THE SOURCE AND PROPAGATION PATHkREDIFFICULTTODESCRIBEUSINGDETERMINISTICMODELS STOCHASTIC MODELS: e RUPTURE VELOCITY - RAND 0MIZE NUCLEATION TIME OF EACH E e SLIP TIME FUNCTION - RAND 0MIZE NUCLEATION OF SUBEVENTS WITHIN EACH ELEMENT e SLIP DISTRIBUTION - RAND 0MlZE AMOUNT OF SLIP ON EACH ELE e RADIATION PATTERN - RAND 0MIZE RADIATION PATTERN OF HIGH [
- FREQUENCY ENERGY - CAN DO EMPIRICALLY e WAVE PROPAGATION - RAND 0MIZE ELASTIC PROPERTIES OF SITE
] STRUCTURE
- TO BE [MPLEMENTED LATER 1
1 f
- --- -----,--,,------..w .. ,...-,-----,---,----,,n - , - - - , - -- - -,----n. - . ---- r,- , -
R4 A/DOMII ATIOh/ OF SLif TIME Fua/C.TIoAl MND RuPTUR L VELO &lTY A i , 5% : , l l ' l I l
- I t 8 y
' *
- e t
- e3 e T = b ' ' "')
L i
\'
3 4 '
) -fau(I Sej MfA C \/ ,+e =
e -
\
w~
\ -
_. ,.,3 7
\s - - - -C (
vupture h0M A 4 (+<.,46) 6, = qy) - n A.m uba, Waan xandg _
- . - . . - - -.---.---_-,.-----,.-,---n,- - - , - - , - - - - ~ , - . , . , . - - , , , , , . , - - - - - , . , - - - - - - , , _ , - - . _ . --- - . , - - - - , . ,. --- - - - _ ,
I GROUND MOTION INPUTS INTO SSI AN - 3 - COMPONENT ACCELERATION TIME HISTO RESPONSE SPECTRA
~
WAVE CHARACTERIZATION: , e WAVE TYPES - P, SV, SH',' R, L e BODY WAVES - REPRESENTED BY PLAN e TOTAL DURATION AND DURATION OF S r , =. lb
- e SPATIAL C0HERENCE AND ITS FREQU "Il
- TO BE IMPLEMENTED LATER t
b 6 e -
CRITERIA FOR TIME HISTORIES AS REALISTIC INPUTS INTO FRAGILITY AND SSI ANALYSES e SEISMIC PHASES (SH, SV, L, R) ARRIVING AT APPROPRIATE TIMES e SEISMIC PHASES HAVING APPROPRIATE AMPLITUDE AND ON THE THREE COMPONENTS e DURATION OF STRONG SHAKING AND OVERALL DURATION AGREEMENT WITH APPROPRIATE EMPIRICAL DATA e RESPONSE SPECTRAL SHAPE IN AGREEMENT WITH APPRO EMPIRICAL DATA
=.
E l 9
i
PARKFIELD EARTHQUAKE NA 04 26 GMT JUNE 28,1966 EPICENTER \, 10km Parkfield N \, '\
S. N Surface Crocks Projected Surface Tro:e of Model Fault Plane N
=. L #2
- Temblor
.; e s#5 i
MODIFIED FROM ARCHULETA AND DAY G980)
J COMPARISON OF YAVEFORM CHARACTERISTICS M=6.5 STRIKE SLIP VERTICAL Simulauon- _sa _utuuuu_. m __v n ' a ' " ' ' " ' ' ~ ~ ~ ' ~ Test m e ' m , '- ' ' r
' ~ - d Eeld RADIAL l
l _w
**~ - l- cit. e. vc.v =.w_- - _- "- ~-
h arbold { l TANGENTIAL ShnulaUon- ___.a) _..m,_
' " ~ ~
T t cas. -'-1q
~" '~ ~ ~
beld 1 10.0 15.0 %0 0.0 5.0 TIME (sec)
ES - M=6.5 STRIKE SLIP . l 3-8.5 Hz COMPARISON Scaled to 2.25g mean horizontal spectral acce . OF RESPONSE SPECTRAL SH TANGENTIAL SIMULATION - TEST CASE
--- DATA - PARKFIELD TEMBLOR . . >>..
i
. . . ....g .
1000. r- - cst a
. # 'g i s r\ ~ \, \ t n -i 100. 7 ' , - ,!1J '
i .
/ v i~% %,' s b - / N-5 . 's g -
er) 7 E: g l .
..Il -- ,
- 10. i .
' ' o - - - 10. >>.a .1 - - - 1. 0
- 1. 0 L 0.1 0.01 .
PERIOD (sec) .
l 1 COMPARISON OF RESPONSE SPECTRAL SHAPES - M=6.5 STRIKE SLIP - Scaled to 2.25g mean horizontal spectral accel. 3-8.5 Hz RADIAL SIMULATION - TEST CASE
----- DATA - PARKFIELD TEMBLOR . . .....g . . . . . . ..
1000. .
~
4* .
~ ~ \' -
100. - e is E i 1 I \ i e l 's
's i
j A. . i 8 's g t i g . 9 A
'y',1/ s .
l ' ' \ kt i s c - I
%~s i % .,
L
= l / --
10.
. /
s .
/
i 1
- 1. 0 * * ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
- 1. 0 10.
O.01 0.1 PERIOD (sec)
- - . - - . - - . _ , , . . - ..------..--.---,--------.n.,.---n,.. , , . . - -.-,-.--,--n.-._,-----,-- .
COMPARISON OF RESPONSE SPECTRAL SHAPES - M=8.5 . Scaled to 2.25g mean horizontal spectral accel. 3-8.5 Hz VERTICAL SIMULATION - TEST CASE
----- DATA - PARKFIELD TEMBLOR , , , ,,,g , , , , ,,,,, ,
1000. ,
~
100. ~ 0, g : es ' O .
\
it p , ' ' ' . ' ' ,I s e '., , . , ,- ~. I's, 4' ',,s sf
's ,- , ,
t ,r'f \ r Q > L'.\ 10.
- i f,/ (-
s 2 r s' \,:
. / h t' . - o . / - / * /
t
! a' - ..f . . . ..... ....I . . . . . .
- 1. 0 10.
0.1 1. 0 0.01 PERIOD (sec) l I - -- . ~ - - - - - .__.~ ,,,-.-- -__-, . . , _ . , . - _ - _ . - - _ - - - . . - , _ , - - _ _ _-..---. . -- ~. _ ,_--_-_- -
F i I 8
'-d j q 1
3 c, t
' > 1 i ! $ 8 4 ; ' 4 f- "k (b + _.. ? $ o L - r E
I
-g 1 -
c C
-d ..g o e- --- _
e
*:s e $ - e o '$ ;E
! P & N l Z, . _ _ e
- > ~ w I
8
~3? w 3r - -s q g se u 4 k l i 1 1
E T !*g ] a l u e
- y jb m 1[
m . . __
. 1 _......_ _ _. _ _.;
x e s x .
- .__.,_.,v, ,, , - - - , _ . . , , _ . ,
111
- lt l
l l BIIATERAL VERTICAL STRIKE-SLIP SIMULATION (M 6.5) 6
^
i , I
' $ N" V "
i N -_ _ ;-g ; I pi g yy- g M - y ..^g l , ^/ ,- v - - i l ,i l E t , p '" ._ .__ J1),28
,, = L ,A lj pdlpgifyff,Na#ampf_,Ajg,y_-
k i ,l 12.00 15.00 18.00 21.00 24.00 27.00 ! 0.00 3.00 6.00 9.00 1
- TIME (S ec) -
ENCLOSURE 4 SECTION 12 E
e NUMERICAL GROUND MOTION MODELING SOURCE - PRELIMINARY STUDY - UNIFORM SOURCE MODELS REFINEMENT - INTRODUCE ASPERITIES, B/RRIERS, DEPTH DEPENDENCE i 3 - RETAIN LOW FREQ. C0HERENCE/ HIGH FREQ. INC0HERENCE , 0F EMPIRICAL SOURCE FUNCTIONS PATH 4 PRELIMINARY STUDY - EMPIRICAL GREEN'S FUNCTIONS REPRESENT PATH 4 REFINEMENT - INCLUDE SPECIFIC PROPAGATION CHARACTERISTICS IN THE SITE VICINITY
- - (CALCULATE GREEN'S FUNCTIONS FROM STRUCTURE l MODELS DEVELOPED USING GSG SITE EXPERIMENTS) f SITE
! PRELIMINARY STUDY - SITE TRANSFER TECHNIQUE l ! REFINEMENT - INCLUDE SPECIFIC SITE RESPONSE CHARACTERISTICS (CALCULATE GREEN'S FUNCTIONS FROM SITE MdDELS DEVELOPED USING GSG StTE EXPERIMENTS)
F' e'
. 2 -
SIMUL ATED ACCELEROGRAM (formed by summation of contributions from each fault -" segment, as modified by propogotion path and site
'l response.)
1hll i 4 ' SITE
~
SITE
RESPONSE
FAULT - SEGMENTS s # 4/
/ / #
y /
/
[/.>
/
PATH 1 Inf' PATH
@a1 / # (Green,s function Si representing ef fect of wave propagation). ~
SOURCE FUNCTION (representing seismic radiction from a fault segment). 9
. . , , . , . - - , , - - , - - - . . . - - , . -----.,---.--------------,,-----.-.-----,,-,----,----,--a
3 - 4 SOURCE CHARACTERISTICS LARGE EARTHQUAKE SOURCE CHARACTERISTICS f e HOW TO MODEL THEM J SMALL EARTHQUAKE SOURCE CHARACTERISTICS
! e HOW TO USE THEM AS EMPIRICAL SOURCE FUNCTIONS 5
i 5 4 J \ I
i t
\ 4 .
IMPERIAL VALLEY MAIN SHOCK Model 9WM Strhe 143130130143 f55 M3
'Ml' o',
J h"' - ' 4 - (a) **
/f(str , - -"
r g _ HARTZELL AND HELMBERGER
* ~
os 3ars
,7 , 1 , , , f" ELNHwy 80 MEL 80C 1 -Border N '
S
, s s\ . ** 35 -
o o Strong Motion 6 Teleseismic _ c M, -~ , , in g, _- g t #
* / ) n ! l +
o
~
r
** ? P i. ? T ? ? t% e ~nw :
O 7 4 d. L w x 4 .. i
=
l l I l
5 . MAINSHOCK AR5 230 ACC 367 cm/sec2
~ ]
H T --+l VEL 86 cm/sec
=.
b DIS Si cm O (sec) 5 i . , , , i
uav AR4 349.(cm/seca) w4h/i d i % % - AR5 367.
?, ;
ff ')
\
AR6 424, i f!'bi l di hMV h
= , =
AR7 j j 453. n%I p %pv4 AR8 4 457. ligy j' ([D , 9 (seo . ?
FAU LT SURFACE WElGHTING FACTORS M = 6. 5 Simulation 'l
.356 1.87- 1.87 .356 .270 .985 .985 .270 - x I CL e N-t i .19 8 .512 .512 .198 i
i
.200 .354 .354 .200 We length 16 km . 4
0
)
e 9 3, 4 7 5 9 2 0 A c r o A y[ p [ t u 'B-R l 9 o 2 s- l E N\ e _ ( n o [ 5l A
' b L\ /\
s
$c i
e 3 3 8 )c t 0 A t e i c I s l o e 41 T A b ( V
/
l 1 8 a 5 i d a l ^ l 9 A s,[f F R
/ * \ 3 0
ii a I ' gE 3 ^ I 4 2 l 2 A
)
e 6 3
$,'4 A H I D c r
W J u J_' R tt i o s-B _ 7 8 l 3 A e n \ ( i s o e L S I' i 5 A / " ,9 b, 5
)
c a t A e i c ( s l o T o e 2. A
=
V L 7,Ihs,$h e _ s r 8 A T, e 4 _ v 4 9 9 _ s 2 A i 8 _ n - 1 T ar g g f r
- re 4^t
- I!lll
i AR3 AR4 ARS ACC t 135.O(cm/sec ) 161.73 202.51 "l!+ f 2I f% 2: - l VEL ) 9.60(cm/sec ) 12.6 4 r- & & 14.62 DlS f f 1.09 (cm) 0.95 f - ~ 0.96
-Radical-AR3 AR4 AR5 ACC .
Il8,5 194 q v,,b -, =; :
, y .21 e Jy .41 247 VEL 9.44 ~
9.07 12.5 4 w = = l DIS 0.98 f 0.68 0.78
- Transverse -
9 2 4 (sec)
~
I. 3 a0
10 ' DATA Peak _f
~
T Ampf. MR2+Taj Acc. g bP e SYNTHETICS Two Sources 1 J e e s Acc. (0.5 sec)
- 9 A 3 e J. % V i )
One Source U e e Acc. (1.0 sec) ' m *
.. '.
- l l V
d i2a i l l l l
]
TIEORETICAL RADIATION PATTERN CORRECTION - PRELIMINARY STUDY gg
- l. CORRECT SMALL EVENT RECORDS FOR ESTIMATED $ WAVE RADIATION PATTERN. SH N
N-- . ,
,g ,e . -..
3
- 2. CONSTRUCT RADIATION-CORRECTEo - e.4 4 4 4 4 .4.
DISTANCE SECTION OF GREEN's FUNCTIONS. _ .,. g',';=,,,,,,,,,,,,,,,,,,,,,,
, as ife a .. 2 s.
ElTI' r
- 3. SELECT RECORDS FOR SIMULATION 2]LR,[LY W $U%!'f- Y ON THE SASIS OF RANGE AND THEORETICALLY ,'l , , , , _ _ , ,
CORRECT FOR. RADIATION PATTERN OF THE l=.
" I t " '" '
LARGE EVENT. J,
= s. .p - -
R:: , t x;,.u
.. e, -
- 44er SEMI-EMPIRICAL RADIATION PATTERN CORRECTION - REFINED STUDY
- 1. BACK-PROJECT OSSERVED RECORDS THROUGH I A'CM'*"' I'*C'I THE CRUSTAL STRUCTURE TO THE SV AND SH FOCAL SPHERE 3.
g' "'4' ; . 48 9 -f-- m- e'ss at
+
3w
't.
i t-@as %
,h, '} \ v han 4 "4+ ac ='
e ( c3 4
- 2. SELECT RECORDS FOR SIMULATION ON THE SASIS OF LOCATION ON THE FOCAL $PHERE.
Trinewese Accelerotions (twesowce) PRostCT THEn THROUGH THE NEW STRUCTURE AND $1MULATE THE LARGE EVENT. MAKE No THEORETICAL RADIATION PLTTERN CORRECTION. e4
'4 y
h Q a e a .e g 9F 9 64 W - e n
-t/ .I %*4 %. ~
l "t '"4-V i A 4 a 4
12 PATH CHARACTERISTICS INFLUENCE OF CRUSTAL STRUCTURE ON GROUND MOTION CHARACTERISTICS e SHADOW ZONE FROM PROPOSED LOW VELOCITY LAYER e POST-CRITICAL REFLECTI0llS FROM THE M0HO PATH MODELS
=.
s e PLANE HORIZONTAL LAYERS e PLANE DIPPING LAYERS e LAYERS HAVING IRREGULAR BOUNDARIES l l
- - - - - - - - . . . ,r-, --. .._ - _ _---- _,
'3 Velocity (km /sec)
I 2 3 4 5 6 ~ l l l l l l --- 2-4- 6-8- Source Depth 10 - % _ 12 - ,- E - i x I w 14 - ' EG l C 16 - ' l Eaton (E) 7
=
s & 18 - 8 Trehu (T) i
%l '
20 - I
- l 1
22 - '--< ---, 1 l 24 - : 8 26 -
Ic. Model E Model T A, , km li- - 25 1 - n 1 30 % A , 35 ', 4 r 40 ', 45 ' i 50 5
=
55 'L 1 U 60 j (T - A / 3.) I 1.O s ec'
/r ,, Source Depth = IO km e' \ Dip-Slip ,' s = , s e o r ,
t , s 3 '
- s
= ' s
- o. s E
s q _ ,
# \ ~ \
C g o - s
- - s o - '
2 - Ns
=. t 's, b 5 ~ ' DS (E) u o ._
l I DS (T)
= I I I I i i 10 20 30 4.0 50 60 70 :
Epicentral Distance (km) ; a 1 1 j I 3<
d v v Vfff##//////A low 7 _.. O) frequency surface waves i high frequency N body wavet Y / P v v
/'///////EF f M/////5 /
b) / / ( N
)
5: i
. Figure 2: Schematic diagram displaying energy paths for a) flat-layered model versus b) laterally varying structure. The model is two-dimensional or constant proper-ties into and out of the plane of the paper.
(
i 17 m AAA AMAM AAWW AA AAAA/
$ lO ! !i 0 - 2O 2S 3O 3S 4O 45 50 55 6OSEC . 15 -
~ 30 '- 1.1 x102 Wo . 1.16x102 45 - WP 60 L
, ,, ,"- 8.15 x10 1 75-gg .JL 1, . , '_ 5. 48 x10 1 105-y 120 J hlh I.' k 3. 52 x10 1 3 y .
135-150 " #~' ,
- 3. 79 x101 7 v r' -
165- I 180 ' i 'A<
- 2. 34 x101 1.
grfty v 195- l 210 a L .
- 1. 79x10 1-
% 1' myyr '
225- ! 240 -
; 1. 39 x10 1 255-KH ' ' ' ' ' ' ' k I L I i
SH VSS AZ=30 N.H.SRC M0=1xE24 (MB=5.5) g 0 0 m N 0 - C o
,- y g B.S NQ e 1 -
tO O
=.
m ls y A a.s a
- o. _
- s.s ze i
10 lb0 1000 l l Hypocentral Distance, km e
- . - - - - - - - - - , , , , _ . - _ - - . - , ..--,_,...m..-m-m___---,.--.. .- .. -- . - - . - _ _ . - - - - - . - - - - - - - - - - - - , , , - - - - . - - - -
IYNW
~
es i - BrOOdbond i
\
i Filtered L2,2,2) F f f h I f - 4 Finite y Difference ,
]
5 see , Figure 26 Vidale et'al.,1985). Companson of GRT results with Snite difference calculations (aher - 9
g ,.-,~.,-,...,..,.,..,.....,.,..,..,.,....,.
$ _ _i ges 20 $ 21 ~ l
- s O _ = ; !
2: p a
- 3 , > c .
o 8 32V t> k - o L_ := . 1
- o. . .s. -
-R e e 3 -
E 3 $ A< . - e
.:.go .H - ,z ] .
e ,. . o La3 u x - ,- o 8a3 a, e 2: m . . . . . ,.,,,,,,,,* se ce oc oc sa os si os , g. (3**/uss) 4);soga4 quad o e
- g m 7.i t' ,
m,
, \- -
n' i o .
,o - g =
n u - \ u - - 56 El o i I t I m
.. . , o.
I -
, a o . : .E_
- e'. / ,
,' a 4 e3 $H E o '
I > 1
* . al ,O ? N ' .e.
3 o \
, o u - m , m .e E
Ga o .2
. o N
1 A -E t
- p i o
E w . I 2 8 ZE 2820 3 "0 I
- 3 o
$ 8 * . mu .wania O
eO _f3rr.s y-i ';..,.. e 3 $ $ h
,g .
y 1 ~e e - pc IX j W $
.t. y =
- b E t ' * :
?E >J ? \ i j i 5 > .I.
g e .
*e .
i , m .<
} .
du"'t,. O
ll SITE CHARACTERISTICS EFFECTS OF SITE ON STRONG GROUND N0TIONS e C0HERENT EFFECTS - FOCUSING / DEFOCUSING e INC0HERENT EFFECTS - SCATTERING e SPATIAL INC0HERENCE s METHODS FOR MODELING SITE EFFECTS I e KIRCHH0FF
=.
5-
~ -
. e 3-D WKBJ e FINITE DIFFERENCE i 4 I
I 1 500 kV SWRCHYARD TANGEN TI AL
-\ '
i
/ \
_ 9,,g
- ,= W,~ ::= =
/ , cRtex i i 5-3 PLANT BOUtOARY :
f ,' I q44y /, / l I g 9IS /
/
l I
- y 30 kV ,
SWITCHYARD j,,, v
;[/ - -u er -
i g_.___ ! / RESERVOIR : 5-3 ' 5-4 i
/ 3' l 1 " / I 1
l v,. ,,. ../. ;.,6N i.-l. q.. l I 8 :. l l {- 1 2 6-1 1
] *.' , ; . G;? * \ ., wet y;ft :s,w '!.i D AD O ~ ,; ; ; ; 6_l METEOROLOGICAL '"' I ' '
} N . . #h" ' h .3.2
~
TOWER NO. I . .). . . . . ' ' ' e ! INT AKE. - p: . w .
, % , i.3 I I 2 sec b.
ll . ill 4
r 23 l l l Exponential a=80m 4.2 km i s w_ _ _:e;_- - 4 w
._w -
I
- n c_m- -A . - -
e es n g -- 1 - g
,& w s=t; % ~_s= wg._ N~ - -s_.L W M,g - _ =_u=r e= -_ ~
C_- - m .,
~L y~- q_ q,2 m_.-_LQ=K -
__w- _ E_$e_.-- & EN$u_o _ ,,- g e
' m~ -m --i_5=;;;;:.4 TW ~
_--a K [ 1__
- M h;r- p , E_r--- - * ~-
e f"-
- s=22_X_ ;- .~._ . C-g m - , n --- - , , ~ w v= w === =--mmp -- ymg= -n %g-w - - _-x - # Mm_m w .
n= -.~ %_,_
^ -L m-
_a=- c -
- _ --_- c y ,
a ;_ -: z_z _ g -- _ we _ - - - -_
. w -
g
=m w _ _-- r_ && ~
W =mii m=-- - - M- $9= _ rm- - + _ , . - i 2M+ -M~-r' M LwAFw
- -.x pg 12'-- -rww: _ = =w --
wi _
- ~ _ - _ _
W-2-k%"fWrm_ wou g . _- -=wy _- K . bi WWt---25&i4bA. -Jw w - _--
- K9 %-
V W' % V J.m= 6p=%"_~_.=MJ=5 [ 1 g _ a _ 2 =~ -- _--- maz -- s----
-- m-t-
_ - m_
~% ~wnw. .
m g -
= - - - -n ~ -~ ;y - ~
aC 3 = m, - m@ f,-+mr
~
m a= 3m =-=
-W I ____ _ w.w .' ' - "n ,-n-- =_
mp=?% -- y ~" ?3 f& C
~
Figure 6: Typical velocity model used for random medis studies. The star denotes the location of the explosion snnree and the triangles are the receivers. The medium has an exponential correlation function with a correlation distance of 80
- m. The velocity variation are 10'~o.
l l 1
24-P-Wave (Divergence) SV-Wave (Curi) 4y = % ~-- ee:-E
+-v e.Y-.YL- --+
e: .-;- T.6. .3.
.064 see - -e aa see ...A, . . . w 7.
_w_jgpr.aggnepg -- WM
. p-3,p
_+ . m ., .m. ,. +a
. r
l 5 m -c2 4., s .% -:.ea:: w l w_ e .,y c ,. , m w. c
.w. -.a p .. 5 P_F~bn I ** .M~M M 192 see h
r E%r w Tm
, . z a .m hw.
1 .+t.M wa= e_% m m ,
=s-',
i t [ # E =# b er. w-w, @ ~ ,- l
,,4 -
ysr&.- l,
.320see M,Ab \ ' - ..~ d I
y
* <2 , M" '. = '. M- 4 l
i -
. L 2KWA =
es.. r~%_-- hti kT-T-A - r .512 see my Figure 7: Time slices of the divergence (P waves) and curl (SV waves) for a waveSeld propagating through the medium shown in Figure 6. l i
2r
. l Finite -element 2 D I .~ _.. ~
Source 5
=
al :
/\/\./\fv V F.\/\/_ .
10 .. . I
~
Recei' vers .i Kirchof f 3 D
.i +#MIONt!+fk,INg % ' ~
sec
'.5' t
I
2N 1 l GEOMETRIC RAY PATHS Source A Receiver 8 , CLVZ _ Shallow Roy of time t First Arrival Deep Roy of time t SOURCE PULSE
- f PHASE IIME 5
STANDARD DEVIATION 0.1 SEC
}
Iwe STANDARD DEVIATION 0.5 SEC. Figure 2. Degradation of a pulse by scattering of the phase. c
17
SUMMARY
SOURCE e INCLUDE ASPERITIES, BARRIERS, DEPTH DEPENDENCE e RETAIN LOW FREQ. C0HERENCE/ HIGH FREQ. INC0HERENCE 0FEMPIRICALSOURCEFUNCTIONS PATH e INCLUDE SPECIFIC PROPAGATION CHARACTERISTICS IN THE SITE VICINITY - CALCULATE GREEN'S FUNCTIONS FROM iE STRUCTURE MODELS DEVELOPED USING GSG SITE EXPERIMENTS-SITE e INCLUDE SPECIFIC SITE RESPONSE CHARACTERISTICS CALCULATE GREEN'S FUNCTIONS FROM SITE MODELS DEVELOPED USING GSG SITE EXPERIMENTS 4
l ENCLOSURE 4 SECTION 13 E e
- g
~.
.o PACIFIC GAS AND ELECTRIC COMPANY DIABLO CANYON LONG TERM SEISMIC PROGRAM --- EVALUATION OF SOIL-STRUCTURE INTERACTION EFFECTS I ~ FREE- FI E LD GROUND MOTION o SOIL-STRUCTURE INTERACTION o E PLANT
RESPONSE
. _ - - _ _ - _ . _ - _ . . ~ . . _ . - . _ _ _ _ - _ - . - _ _ - _ - - -
DUTLINE OF ANALYTICAL AP? ROACH o THREE-DIMENSIONAL (3-D) SOIL-STRUCTURE INTERACTION ANALYSIS METHODS WILL BE EMPLOYED. - o ALL COMPONENTS OF NEAR-FIELD STRONG GROUND MOTION WILL BE INCLUDED IN THE ANALYSIS SIMULTANEOUSLY. o ANALYSES WILL CONSIDER SEISMIC WAVE INCIDENCE CHARAC-TERISTICS INCLUDING INCLINED BODY WAVES AND SURFACE WAVES. o ANALYSES WILL CONSIDER THE EFFECT OF INELASTIC RESPONSE. IF SIGNIFICANT OF THE PLANT STRUCTURES UNDER THE STRONG EARTHQUAKE GROUND MOTION. o AVAILABLE RECORDED EARTHQUAKE DATA AT THE DIABLO CANYON PLANT SITE WILL BE UTILIZED TO ASSIST IN CALIBRATING THE LOW AMPLITUDE DYNAMIC CHARACTERISTICS OF THE SOIL-STRUCTURE DYNAMIC MODEL. o PARAMETRIC STUDIES WILL BE MADE BY APPLYING SIMULTANEOUSLY THE HALF-SPACE APPROACH USING THE " CLASS!" COMPUTER PROGRAM E AND THE FINITE-ELEMENT APPROACH USING THE "SASSI" COMPUTER PROGRAM.
SOIL-STRUCTURE INTERACTION , WORK PLAN TASK 1. ASSEMBLAGE AND REVIEW OF SITE ROCK DATA TASK 2. DEVELOPMENT OF FREE-FIELD INPUT MOTIONS FOR SSI ANALYSIS 2.1 EVALUATION OF LITERATURE ON SPATIAL COHERENCY OF GROUND MOTIONS 2.2 REVIEW OF RESULTS OF GROUND MOTION STUDIES 2.3 DEVELOPMENT OF FREE-FIELD INPUT MOTIONS FOR SSI ANALYSES TASK 3. IMPLEMENTATION OF CLASSI AND SASSI COMPUTER PROGRAMS IMPLEMENTATION AND TESTING OF CLASSI AND SASSI 3.[ PROGRAMS 3.2 VERIFICATION AND DOCUMENTATION OF CLASSI AND SASSI PROGRAMS TASK 4. DEVELOPMENT OF SSI ANALYTICAL MODELS 4.1 REVIEW OF EXISTING DYNAMIC MODELS OF POWER BLOCK
~~
STRUCTURES
? 4.2 DEVELOPMENT OF 3-D STRUCTURAL DYNAMIC MODELS E
4.3 DEVELOPMENT OF 3-D FOUNDATION MODELS TASK 5. CORRELATION WITH RECORDED DATA 5.1 ANALYSES OF RECORDED DATA 5.2 CORRELATION BETWEEN ANALYTICAL MODELS *.MD RECORDED ! DATA l l l
TASK 6. PARAMETRIC STUDIES 6.1 RECONCILIATION OF CLASSI AND SASSI SOLUTIONS 6.2 BASEMAT FLEXIBIL: TIES 6.3 FOUNDATION EMBEDMENT 6.4 VARIATIONS OF SOIL / STRUCTURE PROPERTIES . 6.5 VARIATIONS OF INPUT MOTIONS 6.6 SOIL / STRUCTURE NONLINEARITIES TASK 7. GENERATION OF SSI RESPONSES TASK 8. DOCU!!ENTATION AND PREPARATION OF REPORTS 1 E l - c i I (
O TASK 1: ASSEMBLAGE AND REVIEW OF SITE ROCK DATA (1) ASSEMBLAGE OF THE EXISTING SITE ROCK
~"
DATA. (2) DEVELOPMENT OF SITE ROCK PROPERTY PROFILES AND RANGE OF VARIATIONS. (3) SSI RESPONSE SENSITIVITY STUDY. (4) CONFIRMATION USING EARTHQUAKE DATA RECORDED AT THE SITE. N
=.
o D
s
%, ,,* ' -~ */ - * ~ ~ /h,.*",,*.sa .
s
~ ~ ~ ~ ~Kx,y' ,
l , A s.- .
~-
e v y. s g s. 2
%q . ~ ~ . I -
o y n 2._
- l r - . ' . c E ,u Q< .l- . .g \ )"n p s N; =
E
?
f 7 F t' - s-l E_ ny-}gvs" r-qE l m i
' q ,, $. >.n Y' t w (,% .Q, c.y O C
A - _- e-
- f 1 , .
r a:1 3! 1
~
a x o. a a se ,-7 ,f 5 wu- m t 1 '8. /. I g
~~
t t e E
=: N ~
k-- a 5'r 1
] -}o ,4 gs1j,,u Ms i ~~.
r _. ., , - g , N - r
'_ g, W ? ; U G"(
3
'A-y~y 6 8
8' f i 8 _ Jg a v , 8[ _
..f -
h
=- , , ^:- 1 f' = - - - ' w W.
T' o -
, a E , z .,.
t
- o -
f u' - f f 1 f
'l _ = ~ ,~
N' ,, s s ,',- /
% , f, ' ,\'
sN _ ' ,' ' . n \ ,'
,s %f x\'
s' %.Nk
. s (N s .1)
Ws gg '\ ' k s s , N s \ s }y' s. ..
\
1
\
s,.
\ 'sr . 'g .~- $l' \ ,;.' \ -
s
. l
. SHEAR WAVE VELOCITY (FPS) ~
1000 2000 3000 4000 5000 6000 7000 , 8000 100 , , , , , , g SITE SHEAR W YE - l 80 -
! -50% +50% i VELOCITY VAh!ATION i e ' ~ ~l '1 Fos.6 d s e, s ,
60 - l-33% +33%l -
. q t__,
I 40 - 1 I I I I 20 l l I I I I O - I -30% +30% 8 I i I I
-20 -
l l I LSIER I MEAN 8 UPPER C
~4 ~
BOUND 8 h l BOUND Q l I
^* -60 - 1 s
g e
-80 - 7 ~1 I I I I - I g -100 - l 5 -l l25%
t= -120 - l-1
+251l I
I I
-140 - g i i l 1 -160 -
g i i 1 I
-180 - -200 1000 2000 3000 4000 5000 6000 7000 8000 SHEAR WAVE VELOCITY (FPS) f
0 '-
. E1. 291.25' 4 p 1 O
E1. 263.37'qp 2
~
h _ . . E1. 247.27' qp 3 2 CONTAINMEllT
, @ STRUCTURE E1. 220.00' < p4 E1.194.58' < p 5-El .170.0S' q p6 E1.127.5't p 12 @. - INTERNALS E1. 144.83 't >7 h - . E1. 100.63'y , 11 =. '
s E1.119.58' t>8' '@ g
@~ .,
E1. 98.67' <p9
. E1. 80.00'A,,,,#
o
..10 23 \ = JL J
L - 153.0 r I SSI ANALYSIS MODEL USED. III CLASSI AND SASSI ANALYSES AND IN SITE ' ROCK SENSITIVITY STUDIES i
= l - 1 1
I I eo m m Le . _.. 34-82E ' 3
%2 2 "I~f . e , # 1= l g
5 [
- 2 L ll
~
I f & _. .*/ e 5 L4 a ( ..b' * **,N) L i r -+g. - N# u W
._ M_ D_ %gg -
U
'g . Z w , .
O i -. < a
,w I a:
k u. p . et t, ti e
$g => - z m
I w m 8 8 s o
*g gg Z =. .
(D) NOI1VH31333y
~ . - - , , , - , , - - - - - - ,, _. , . . - - . , , - - - - - - - - - - - . - . . - - - , - - - - - - - - , . , ., - . - - - - - . , - . - , -
EARTHQUAKES FOR WHICH RECORDED DATA ANALYSED:
~"
- 1. SANTA MARIA 0FFSHORE EARTHQUAKE OF JUNE 20, 1984 Mt = 4.3 max! mum HORIZONTAL GROUND ACCELERATION = 0.011a
- 2. COALINGA EARTHQUAKE OF MAY 2, 1983 Me = 6.5 max!Mun HORIZONTAL GROUND ACCELERATION = 0.012s
- 3. POINT SAL EARTHQUAKE OF MAY 28,1980 Mg = 4.6 max! MUM HORIZONTAL GROUND ACCELERATION = 0.012s O
= -
O t
CB/FF I I l- .
.I 1 -
I- ..
. .. .. .. u,_..-.-~.. . ..
maa rr4*JrJ:? "'"" = = " = * =ca it#' 1,;s::= "*" = = a = 'a
~"
CS/FF I ... I l .
.I .I I I I- I. * . .. .. u w .,_.. .
_,._. u maa="J'irJ:? == = = a =
- 2 A1;ili,:s := == = a =
- CS/CB I I l .
. I - .I I I .. =
g 1- ,, i
. .. u -~
2:A=TJm;:? == = "=
- maa 1 II,;s::= == = - " = * -
CS/TI I y I .
.a !
y I j l'
. - .. u .,j. Z u . .. ..
maa-vara == = = a - - =ca- .= :s:;- a- = = a =
- CS: Containment 9 Springline CB: Containment Base FF: Free field
CS/CB .. I AtlALYTICAL I Is l -E I I I. l- I
~ -
a =
- m;;A9-c.r.::= "'- = a =
- m;;."vt.TJ:? == =
- CS/CB -
S A'lTA !'AT.I A br i (
- i. l ..
I
.I ... I. I f
I I. I Iw ... I .. l .. s
. .. .. . . ., g . .. .. . .. .. .. u.., g.
a = a m;;a t=c.,;m:= = = = a = a m;;." T r.74:? = = =
- D 9
,' NIALYTICAL y" l l.
I . !- i j I . I-e 1
,,y~ == ~ ~ \
m;;.7 par,;:r == = = a = * =;*."1 #1,;5: - "" = = a "
- I CS/TI '
- SN TA ;'.V.I A . ~
I I i- .. j i i 4 j~ ! .. I
- l. ! ..
'........M * = a m;;A== tare? == = = a = a m;;avit.;s::= == = ~~ ~
r CS/TI
... C0ALINGA .
1
- 1. !
_ i r s
. .I I I ~
l** j
/
- V m ;;.7 7.3=4:? = = = * = a m;;A==.=1,;m:'-= = = a = a CS/TI POINT SAL . j 1 ...
l l .. I !
- i. ;-
l t
~
- J . . . . ~
=;;a- J'.*ra:t ='- = = a = a m;;AT 1 ;m:'= ='== = = a = a
TASK 2.1 EVALUATION OF LITERATURE ON SPATIAL COHERENCY OF GROUND MOTIONS (1) SURVEY AND REVIEW OF LITERATURE _,, o ELbENTRODIFFERENTIALARRAY(SMITH, KING) o TAIWAN SMART-1 ARRAY (PENZIEN, BOLT, VANMARCKE, HARADA) o CHUSAL DIFFERENTIAL ARRAY (KING) . (2) CHARACTERIZATION OF SPATIAL COHERENCY OF RECORDED MOTIONS o RESPONSE RATIO METHOD (SMITH, KING,, PENZIEN, BOLT) o CROSS-CORRELATION METHOD (SMITH, KING, PENZIEN, BOLT, VANMARCKE) (3) MODELS FOR CHARACTERIZATION OF SPATIAL COHERENCY o COVARIANCE MODEL (LOH, HARADA) i~ o COHERENCY MODEL (LOH, VANMARCKE, LUCO) (4) INCORPORATION OF SPATI AL COHERENCY OF INPUT MOTIONS FOR SSI ANALYSES o DETERMINISTIC - TIME-HISTORY ANALYSIS WITH MULTIPLE GROUND MOTION INPUTS (CLASSI) o PROBABILISTIC - RANDOM VIBRATION ANALYSIS WITH COVARIANCE MATRIX INPUT (LUCO)
TASK 3.1 IMPLEMENTATION AND TESTING OF CLASSI AND SASSI PROGRAMS (1) ACQUISITION AND INSTALLATION OF THE CODES o CLASSI - NEW VERSION ON UNIVAC-1110 AND VAX-780 _,, o SASSI, - NEW PROGRAM ON UNIVAC-1110 AND CDC/UIS CRAY (2) ARRANGEMENT OF TECHNICAL SUPPORTS TO THE CODES-o CLASSI - PROFS. J. E. LUC 0 AND H. L. WONG o SASSI - PROF. JOHN LYSMER (3) BENCHMARK TESTING OF THE CODES o CLASSI - 6 TEST PPOBLE :0MPARING WITH 7 BENCHMARK SOLUTIONS o SASSI - 9 TEST PROBLEMS COMPARING WITH 12 BENCHMARK SOLUTIONS
~ * = .t 4
e e
- 6
l l l l LIST OF TEST P,ROBLEMS FOR CLASSI AND SASSI COMPUTER PROGR Benchmark Test Problem No. Solution CLASSI_ 5 A55I_ Reference Capabilities to be Tested
- 1. Impedance Analysis 1.1 Surface foundation on uniform 1 7 7(a) halfspace 1.2 Surface foundation on two-2 3 2 layered system .
1.3 Rigid-flexible surface
- 5 5 foundation -
5 8 1.4 Multiple surface foundation
- 2. Scattering Analysis 2.1 Vertically propagating body waves
- 1 1 2.1.1 Free-field motions - 4 4 2.1.2 Embedded Fcundation 5' 2.2 Inclined body waves 3 6 6 2.2.1 Surface foundation - - 4 I 2.2.2 Embedded foundation -
6 9 2.3 Surface Waves
- 3. SSI Analysis 1, 4 7, 10 7(b) 3.1 Seismic response 3 3 3.2 Forced excitation response -
C
.i ~ ~ - - - - - - - - - + - ,,-__.,_ -__ _ __ , __
CONTAINMENT STRUCTURE EL.201' ln . (> U, .. EL19sy 10 EL 184.4' 9 (i 8 ( EL 165.3' l 7 'll EL143X 62' - ~ 3% 6 (p EL123X 8 INTERNALS 5 4) EL103r 18 - -
- EL93*
4 (p l"*l 8 EL 835 8 l 8 l e EL. 61' EL 635 3 48 r- r.( b l 1 881 1 EL 49' ( - EL 43X 2 () EL 33.5' (P15 *
' 14_
EL 22' EL 23S 1 (B -L EL 13'
\ q i R "o13
- H2= EL 8' EL 0 I
l ( Vs = 2000 ft/sec f V = 4000 ft/sec l j P Soil Y = .130 Kcf I i B = .05 Fig.7.7(a) SSI Analysis tiodel of the Containment and Internal Structure (SASSI Test Problem No. 7)
k 3 0 2
)
i z . l
. 3( f 1
f l I I S 6 o S S 1 c u S A A L 1 L S C g X ) 6 4 7 1 9 1 o c u -. . L
- (
2 1 t n R . i e i c f) f7 e 0 o . A 1 Co N s sm ee nl fb f o ir
. 8 tP S
- t l s ae tT n
f t oI zS 6 iS f l f e , rA l oS l(
)
b (
, 4 7 7
g i
- F . 2 - - 0 ._ 0 5 0 5 5 3 . 5 4 4 5 .
gwz o " M*M es i ,li:- 1l]ilIii!I' : I\j1 1'l)!! , ij ll,!!ll4
0 2) i z l ( f a - 8 1 X l I I S o S S - c S A 6 u A S L C 1 L e X -
.4 )
1 6 7 9 1 o c u
- 2 L 1 (
, t n
e i i f c )7 0 f . 1 e oN o C g em nl b i p o
- 8 m Pr a
D t l s a Te P t n I ll o z S I S
-6 i r A . lo (S l * )
( c
- 4 7 7
g i F 2 0 9 2 1 0 4 3 1 1 1 # I _ 1 y uw N8?2u. =l >~
- l .lj
)
0 z l 2 I ( f 8
- 1 eX i:
I ' 6 I S o S S ,x 1 c S A A u L L S C e X 4 1
)
eX 6 7 9
. 1 o - 2 c 1 u .x (
L a t n e i) c7
' 0 i
- 1 f .
fo eN o Cm e sl sb eo 8 fP nr
- f i t ts SeT 1
8 g
- nI 6 iS f1 1 kS cA oS R( )
4 d g ( 7 7 g i F 2 e
' 0 0 5 O 0 5 ' ' 5 2 l 1 2 ^
1
,.tCaI
_'o x J i l I 4 il'f ; ,
,I' .1Il! ,
,'I ;
1 M)z . i l ( - f W I S o I S S M C S A U A L L S C eX b x )
. 6 7
9 1 2 , 1 o c x i u. ( t n 0 1 i e )7 X i c . f o f N e m C oe l 8 g b o x i n r p P mt Da s e p g T t nI n 6 i S k S cA J. o R (S _ ) 4 ( e 7 7 g i F - 2 0 5 0 5 0 0 2 1 1 3 2 - o*'D:y a.5
- 7 2~8u l 1 ! 3 1! l i I l \l,l\ 1 1 !i ) 1 ' ,-ji
( 1 2 t
= '
g I n - i SI p ' _ SSS m g ' SAS n ALA a i FCS D d _ l x, A i B u Wo c. ot t i n e m n a
%ll I t
n
<e C o
S i#m P f o p
.k o b C T . . e c ( h t <e x t . a N [
Y m A C t u r c x N p e
/ E es S
n U o) p o O s7 e R . l e
- n. E nNo i
- Y ; o ll i
j R im te
," F rb al i
l e or l eP i c ct F As e t eT l uIS l oM s b A (S a'
)
h
< t 7
J - 7 g i F o o 9 o s0 W. o1 g o T c. s zo""g a W : J_ moOg
. nac -
e
;ii! '1 l;I{!i!! ;;l ;
1{<!1! ! 1iE
C 0 3 a 3
- j
( j (- j j 2 I
=
g I S i n { I S p S A S S L S m e AC A a r F S D u t X e c u r t S
. 0 l 0 , ,]
0 1 a n r t e 1 n 2 S I f o
- P p o
T C e
. h , ( t t
a 1 m Y
/
- u r t C
- c , e p
N S E es n U o p) s7 0 O e l f _ I I l o
- 0. E 1
o nf f C im U'ni R teal rb
,f F elo r h eP c t c
l d i As e l t eT d uIS
' l - oS sA b S A(
m
)
l ( 7 t~ - 7 g i r
. . o 0 9 o 0g 0 c. g 0 0.k ~
r 4 - M O43 w 1 t ZC3 w get i l I I L Uu1 _ iI l
3 4> w 2 - 104' .__.
<r l j l r i e ,' /
Shear Wave Velocity = 2000 fps Mass Density = .004 kip-sec2 ffg Poisson's Ratio = .33 Damping Ratio = .L 21 E~ i i I Tig. l. 2-3.1 Square Foundation on Elastic Half.-space
. e D
4 Py , .1, M ,. @, M,, C y P,,.1, - n v - C) Mr .C: . 1 P . . .^ . i ' 0.75 -la) p $__ E 0.50 - -
/
Y :] -
/ c:i. ~ ) 0.25 / g/c = 0.707 (6, = 45')
j'77 /Q Int a
~
s x-
%T l0 /. a /
y ---
-0.25 E-8 / aM j \'
5 0.010 g 1
--2 ~~% ',#_ _ @- 'st M i
0, E. 0.01 - P a* -0.02 im Re i Q ~ - ,
" - 0.03 ;
i Z , SH,P,SV 3 4 l =: 0.040- 2 4 t 1.00;- -- I i
}~ ' -
[Re
~ $/c = 0 70
- SASSI 0.75 -
g' g5*) X CLASSI g s _ f = ~ { 0.50 -
's g% ..... WONG & LUC 0 (Ref. 5) 8 0.25,-
m
< 'N ,,,, , + ~ %4-0 .
x, y, i ' 3 4
-0.25 2 1
0
,713
- I"3'2 I
TASK 4.1 REVIEW 0F EXISTING DYNAMIC MODELS OF POWER BLOCK STRUCTURES (1) REVIEW OF EXISTING DCPP STRUCTURAL MODELS OF POWER BLOCK STRUCTURES _.. (2) DEVELOPMENT OF CONCEPTUAL MODELS (3) IDENTIFICATION OF WORK REQUIRED YO COMPLETE THE MODEL DEVELOPMENT o CONTAINMENT MODEL o AUXILIARY BUILDING o TURBINE BUILDING AND TURBINE PEDESTAL E m 0 9
- !f le i =
i . N4L_ i i , 504 f t : ! h L Au) iliary Rulldi ig EI;fo g t [1. t s ~ _ { ] - t 85 ft
= 3 ft E1. 60 ft i
e J " Unit 1 hit 2 i - g, 3 r,- Containment l , Containment
- J E1. 90 ft , E1. 90 ft ;
l i M t = 14.5 ft t = 14.5 ft i j E1. 8 j 1 t = 3 ft 1 3
-d i
118 ft 89 ft U Turbine Building E t = 3 ft (except turbine pedestal supporting areas where o t = 10 ft - 29 ft) 1
, 2l Note: All elevations are at top of mat. J < rig. 1.1 roundation fiats of power Block Structures
,i !.
- a. - _.
4 e WORK REQUIRED TO COMPLETE THE MODEL DEVELOPMENT CONTAINMENT STRUCTURES (1) , RECONSTRUCT THE AXISYMMETRIC DOME MODEL FOR THE' , , , DOME PORTION OF CONTAINMENT AND CALCULATE THE MODAL PROPERTIES. (2) CALCULATE THE 3-D 9-MASS MODEL PROPERTIES FROM THE EXISTING MODEL AND THE DOME MODEL. (3) CONSTRUCT A 3-D MULTIPLE-STICK MODEL FOR THE INTERNAL STRUCTURE FROM THE EXISTING MODEL. (4) EVALUATE THE ECCENTRICITIES OF THE INTERNAL STRUCTURE. =. a
1 5
~ ~
f t;
. \
l 1 ExrERIOM ! ZTMUCT;/.%E f'O JPMtWG EL. t B I'- C" LlHE y__ _ 70*- O' 3'B' LINEA S I t
=====
p'O.t IMinMIDF sinucrung
,,,,,, ses E.w d W. t .rscitous .
2(le){t(c) FIGURS HQs. i n EL.67!0 f SL.MI' o' .:., (gg,gg o
? , ; ;m - = .;s...............***
Y .; . . : .. 1 .. . .; 6- W JECTION 1 CIAlblO CANYON NUCLE AR POWEA PL, ANT UNIT NO.I
- CONTAINMtN7 37,tuC7U.2 5 pla u.< a n o. 4 - IS sacrion s ,
Fi g.' 2.1 E-W Section 'of Containment Structure (Ref.1) c.
' ' 5' "' "'
O l El. 279.42 ft
- El . 255.25 ft O Mass Nodes El. 231'.08 ft Spring Line
(.) El. 205.83 ft El .180.58 ft i El. 155.33 ft 7 1 .
=
3X El .130.13 ft l b l 2 El .109.33 ft E1. 8S.58 ft To'p,of Mat Fig. 2.7 9-Mass Stick Model for Exterior Shell (Ref. 2)
1b COMTA/MMaur
.traucruns . /WTrnton .tinucrung
_ - _ ._ _ e . . Ie o '. o ' _., e.._____-_____,p.-
.-. _ - 4 - - aucro., llll .
i sit MGutt (4-19 FOR ? , et.tte*d' l I i: g l I a 1 dx7Ek/oe 17.tuCTU.tt EL. . CA / ,' llii l
, m e, M. 3 - 1. .s.c,.9/:o-i /ss . . , .
I t- - i txn..\ . I 3 ._ LINGM Y rw-M I ' .. l? f tL.G4'.0" i.": I
=.
i E=W f f C TIO N l l I I ( CIA SLO CA NYCM NUCl G AR pow 2 A Pt.,sNT UNIT NO, i
- CONTAINMENT JTRUCTURG FIGUME NC.d-20 Jec 71ON 3 Fig. 2.2 E-W Section of' Internal Structure (Ref.1) C i
l l
@ . l r ANNULu/ JTRUCTU.ft )
L / G' l ./ s
.i \ ' GL.H6'* 4* . ' ~' .,.'G f o
{
!gl'g Iy L'fDL- r @ )1 -4 " *g' ~
l eu/5' o'
= \
eL.pr.o* m c:= = m j y-INTGM/C.1 sinuerune ,%
/
GXTtMIDA 37AUCTUAE P t.A A! A 7 24. 9/' 0* , ,., PLAN AT GL./ts'=0* t
\ - - - - -- - s u a l i
- f~f ULUS \
),jyg7ygy .
l T C.J. saW tl.140' O'\ ' aun ior ,3 1 g .. g_
\~
NOTS N/ ANNULVJ MLOCitZ Alti AT C L tVATIONJ 10l ** 4 t* IOG' e *, llG *e lO S4 ' AN *J
. PLAW At /40'. O
- Is9 '.10 CIASLO CA N Y'O N HUCL E A.t P O W L*lt Pl. A NT lJNii NO. /
- C CNT t lN M SNT .f*.QU CTU.t t M:. A N .5 FIG URE H0.4~2_*
Fig. 2.4 Plan View of Containment Structure (Ref.1)
~
e 26 q) E1.183.0 ft 25'q) 23 (p 24 O E1.175.0 ft 20 gp 22 () 21 () Pressurizer Wall Staat Canerator Wall. ja (p 17 (p 19 d) Stears Generator Wall El .151.0 ft 15 16 i) is 13 () 14 () 12 o El.138.5 ft G Mass Nodes 10( > b E1.111.63 ft ' - 9 4> .. . b 7(p 5q) O 3() 4gg Sh eld Wall 1(p 21) E1. 91. 0 f t I/////o// ////// // ///// / /// // ///////// Fig. 2.8 2-D 26-Mass Multiple-Stick Model for Internal Structure (Ref. 3) o
e s WORK REQUIRED TO COMPLETE THE MODEL DEVELOPMENT AUXILIARY BUILDING (1) EVALUATE THE MODEL PROPERTIES FOR THE N-S
. DIRECTION USING THE EXISTING 3-D FEM MODEL RESULTS.
(2) CALCULATE THE IN-PLANE DIAPHRAGM STIFFNESSES FROM THE EXISTING 3-D FEM MODEL RESULTS. (3) EVALUATE THE ECCENTRICITIES. (4) CALCULATE THE EFFECTIVE MASS-AND-SPRING SYSTEMS FOR THE VERTICAL FLOOR FLEXIBILITIES FROM THE EXISTING FLOOR MODELS. (5) DEVELOP A 3-D LUMPED-MASS MULTIPLE-STICK MODEL.
=.
F h i l i i q
~ ~ ' ~ - - ~ - . . . , __,, _ .w. . .
I -
* ~" @m @ CD @ @ @ @ @@
J
~
O' . e je gL
- = ,
. / r LJ...,
e(.... . &
,A_ " Jb 1.1.o0-t L 8 .I T' V,a i .;1 I #e o j f. i P /P90LN
{ ' b Q\'q)si// '. l
.l" - C" g s'M-i IJ gg ,
v
... w U
e CONCRETE 3,5
.__l_ ! ~ ,I 3 l - l e ll x _ ,_ =- ,
Ifb i I ,E M_li i
.E, 6.- .
e6l J 71sunt un a g Di&BLO CANTON POWER PLANT UNIT l o AUXILIARY BADING FLOOR PLAN AT EL I40'+0" ,
,enap.
1 e-Fig. 3.1 Auxiliary Building, Floor Plan at El.140 ft (Ref. 4) i
&SSE3W:
I 3 -31004In4ASER
@ -EL8assNT 8MAISSA l -ROTATIONAL MGAEE OF FRtE00ed - . . / -TRA8eSLATIONAL MGAtE OF FREEDOM e -asAsspoiwr
_:La* e5 F sir __ ,
- j o e t s et ter 4'>s EL tar 1 ,",F, } / I" p' 1
~
d '
* % @ j ,
1 I, EL ter I.
*** "" M i.I) $ [* gyp, f 1 m ' =- ,,,,,,. r ao . d# aos6 armies 4 7 j / T 4, ,
mu ur
,dh fEin r . ,$e p hy e ! en t _
l E W 4800tL vtRTICAL WCDEL N5he00tL (NOSGRI ONLY) L l I f ! Pt3Voff9?9L
- masLO CAmvens 80erta PLA8tf Wr51 AleO S AUXILIARY SUILDING
' bdATHEMATICAL PAODELS FOR TAAMSLATIONAL.103580 MAL AND VERTICAL ANALYSES wwe_
Fig. 3.8 5-Mass Stick Models for Auxiliary Building (Ref. 4)
~
wr ... f r' p at ,
. h ! ;(7, A.
v
-- i L'
- z .
- m- .a h- ,
d
,- 4 1 ,i,a g.s ~
2 - 6 l& a 3 . 4 w
-. . . s s Y~ - ':*!. * : {
5 m.
- . . ;;. -.....? -
a ,
- rr. ..
m, e.
. ,- :. ,Sa umm - .' .. , . ' .; ;d ' t 1
l
. .. v. c .& ')
t WQ 1 . i 5 .d;Ii h ' U . N#_ _ _
- y @ f i , , g,- --
{ f * ' ~X " ,- . s cs:t @ 1 4 m s= a z . g g g g. rieuse m osast.O CANYOM POWER M. ANT
" ~
untf I Auxii. tant suit.nine sectioN C C Fig. 3.7 Auxiliary Building Section C-C (Ref. 4) v- -- m~~, ,---,,e -,--nm.,--a_-.-w ,-ra- ,, v .------..w,-.,,-n- ,v.-- w-. --, - -- --w . --
j 1 l'
'I I .'at,a[.e* ' ,s ...
ett ver.a* , c- = % ma . rs *
- F. e* f N i
~ -. "" - 1 se,+f,_=:. a a Sil e > .. L. . '
muumms s _g
====>.= ,
i 1I r
,Lled.f i - .
A__ X
- : il~
2
~ ,< .,. - Ef .
RNI
? % j ^
X E , __ li @'RI '_ __ dk ) se ,,.e ld X .it ; tes .e.<l L
'jf ,,...
a l w c n
] ----- 5.Mi-
, E i M e 9880et tt2.st DIABLO CANY0l' PC%ER PLANT UNIT l _ AUXILIARY SUILDING SECTION A.A Fig. 3.5 Auxiliary Suilding. Section A-A (Ref. 4) c
- - - _ _ . - - , .-. . - - . , . . . , _ . - . . _ . . . . _ - . . . - , _ _ _ . -.. __, .__..----.--__-,:, - _ - - _ - . _ . . . . _ _ _ - - ~ _ , . _ - - - -
a
. FAN ROOM ROOF AT ELE 4 864' . I.
s N- . le . UNIT I - I u S 18 CONTROLROOM ROOF s '
- N.
- AT EL.144' s.M f
N .. l
., qji UNG 2 '\
W
'
- FAN ROOM ROOF attotv.164'7 M. *?. -
- 4. '
o
/ ..
ANN o , .
% . w- %
un e s
, s ;,
a ./ . b ELEVI40' N '
' p' * * . ELE v.lis'
- ELEv.100*
ELEv. BS'tr.xtD) 4, ser. sniisss,
- r. H AT tsty 100 w .
FUEL MANDUNS SulLDING , NOT INCLUDED 88 MODEL f l Ficustt 2.f.2 *80 DIABLD CANYON PCMER PLANT
.WTT518 2 l
3*DIMEN$10Nat *M ACRO
- 3 STATIC MODEL l
ymg 1 Fig. 3.9 3-D Detailed FEM Model for Auxiliary Building (Ref. 4) C
5 0 WORK REQUIRED TO COMPLETE THE MODEL DEVELOPMENT TURBINE BUILDING (1) DEVELOP APPROPRIATE STICK MODEL REPRESENTATIONS. --
.FROM THE STATIC DISPLACEMENTS OF THE EXISTING 3-D MODELS.
(2) DETERMINE THE STRUCTURAL PROPERTIES OF STICKS AND CONNECTING BEAMS. (3) CALCULATE THE LUMPED MASSES FROM THE EXISTING MODELS. (4) EVALUATE THE ECCENTRICITIES (S) CALCULATE THE EFFECTIVE MASS-AND-SPRING SYSTEMS FOR THE VERTICAL FLOOR FLEXIBILITIES FROM THE EXISTING FLOOR MODELS. 4 (6) DEVELOP A 3-D LUMPED-MASS MULTIPLE-STICK MODEL. l t . r l 9
3 e . f \. i, ., a
@ ..,...r .. . . .
c." . "~
. C . .s.. c.'*. r,p m - > maam.m w ... .w , =.s...s.....,..g~ . . . ,w ;' ,.
s c=..== .y - =* y
.s . . - ;'.3 . =l.s.: ,7 ,
i,.k. x T
.y 4 . ;4,.),,
- n
.y,, x ,::b:mn . :s ' 7 -% I .d; yi . ,=am'& @ c... 5 1 xE nt@y ..~.
1 7[9 e .5 w[/ g;;:thih< ',.h,~. h *L V ., W:' l- *- y:. 4.:qb.,*t*:'il @WJ . === % 8 ; C. ... l.
- s. .
. v., :; M :.,: . 4. ,
8.z
<m' : . d to . lf, *.. ; i. = ===i= . r ..., .e n s .- . .v- =
uns.. '..* . g<w g m. y, s".v. o==
.< .. ;&m g - . , .. . ..g.;. > . .
Ig .,
- m. .. - ; - p- - -
q . .. , j: O .i.:.: *. . .;.. C :. , , " * " - QQ
. .:. e. . h. ;.::.,,s. J.= .~. .,. . ' . . . . < - @ . . . . ... a *. - ..'..u.
m., ed .t .s.. . . ..m.
... .~..M...... % :.. y *. :.). Q .t , . . . e.Mg G G ....m simo cmo . wr umT1 TURSINE SutLDING PLAN AT EL 104- .
es nvt Fig. 4.2 Unit 1 Turbine Building Floor Plant at E1.104 ft (Ref. 4) e
m - O O W N//p~4, ~
- /S>
r -..
.c mit . . .
PLATECDL. f CONCRETSwALL EflEL LODR cEHeCARTg 86As \ f 33tL38Aus PLAQ.TYP. " '"' comen Te
/ (I '
o Dewsav
/ /,'
l E h /suttatas c,o=L,.... a svmu 7ane =i g j y stauCTWat g ,, :/
/ PIDt3TJL n N AT Co6. Ll#E11 Far '*Hg4 i - nocasoLT W.,'$ coa.w c.cmmons , g 7 1 .
4 E WICUAf f i 697 De&aLO CAnvens Pouvi A PLA47 West? 1 TunstNE SulLDING typic 4L sacn0N Fig. 4.6' Unit 1 Turbine Building. Transverse Section (Ref. 4) C e
l 4 k [ kk , \\/\ \ \ \
- b. X\ \NV\
'hh l
- s. UNr
! VO %iL
- ggg.. \ \
gyggu s \ l\N\
.r.
4 i
\ meu \ .
M4Al'
- MMJM \
\ mf\, uuA
)/
\ Y U\/ j
\ %%^ ' ' s '
i hk\__ ./
- m,xaa -
M W .aMr(_ i pl6Ust t i e is j
. m. .g , . 6-TunstmesuitoiNo MRIZONTAL 00005L Fig. 4.7 3-D Detailed FEM Model for Unit 1 Turbine Building (Ref. 4) t
e
./
N ,, s E E I
. m. 5 a
a N 1
'w :-
3
</- N L
N E . Picunt 2.1631 teasLO CANYO*e powIe PLAh? use T 1 TURetNE PEDESTAL MODEL non: ogi,y twa pioust Nvusta NA8 CHANGID
, Fig. 4.19 Turbine Pedestal Model (Ref. 4)
__ _}}