ML20198J165

From kanterella
Jump to navigation Jump to search
Summary of 981118 Meeting with Util in Rockville,Md Re Ampacity Validation Analyses.List of Attendees & Handouts Provided by Util Encl
ML20198J165
Person / Time
Site: Peach Bottom, Limerick  Constellation icon.png
Issue date: 12/15/1998
From: Buckley B
NRC (Affiliation Not Assigned)
To:
NRC (Affiliation Not Assigned)
References
NUDOCS 9812300103
Download: ML20198J165 (18)


Text

_ _ . _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ . _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ _ _ _ . _ _ _ . _ _ _ -

YO E$

.: . y *g*%-4 SD .352/2G "y UNITED STATES

'2 j NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20666-0001 k.....,/ December 15, 1998 LICENSEE: PECO Energy Company FACILITIES: Limerick Generating Station, Units,1 and 2 Peach Bottom Atomic Power Station, Units 2 and 3

SUBJECT:

SUMMARY

OF NOVEMBER 18,1998, MEETING WITH PECO ENERGY l

COMPANY REGARDING AMPACITY VALIDATION ANALYSES l On November 18,1998, representatives of the PECO Energy Company (PECO, the licensee)

I met with members of the NRC staff in Rockville, Maryland. PECO requested this meeting as a follow-up to the telephone conference held on August 27,1998, in order to resolve outstanding staff concems on the use of their ampacity derating methodology for Thermo-Lag fire barriers of the Limerick and Peach Bottom Stations. A list of attendees is given in Enclosure 1. Copies l of the handouts provided by PECO are given in Enclosure 2.

l l The NRC staff's concems that pertained to the use of the PECO methodology for Thermo-Lag enclosed conduits were as follows: (1) Licensee model validation results did not appear to be conservative and consistent and (2) Licensee methodology did not appear to be consistent with the methodology for the industry standard procedure IEEE P848. PECO representatives discussed their heat transfer model validation efforts, which were based upon the Tennessee l Valley Authority (TVA) ampacity derating tests. The licensee pointed out the differences l

between the Limerick and Peach Bottom installed configurations and the TVA tested configurations. They stated that their ampacity derating methodology models the IPCEA/NEC industry standard calculated values for a given configuration to both cladded (with Thermo-Lag) and baseline (without Thermo-Lag) conditions. They presented new validation results (Table 2 of Enclosure 2) for the subject TVA tested configuration's iisiiid their methodology on a consistent basis to develop the ampacity dorating factor (ADF). The TVA validation results, which were previously submitted by PECO, used actual ampacity derating test results for the baseline configurations and estimated ampacity derating values based on their model for the cladded configurations to calculate the ADF values.

The licensee informed the NRC staff that they plan to extend the use of their methodology to Darmatt fire barriers, assuming the resolution of the staff's concems regarding implementation.

The NRC staff requested written confirmation of the new validation results for the TVA-tested l

t j 9812300103 981215 g

. PDR ADOCK 05000277 P PDR g

\

jW NBC RiE FadM MPV

! s ,

~

l 2-l l

l configurations and a detailed description of the licensee's ampacity methodology from PECO.

i Based on the information presented at the meeting, the NRC staff finds that, subject to submittal and verification of the requested information, the licensee's approach to resolving the NRC's concems appears reasonable.

LC Bartholomew C. Buckley, Senior Project Manager Project Directorate 1-2 Division of Reactor Projects - 1/11 Office of Nuclear Reactor Regulation Docket Nos. 50-352,50-353,50-277 )

and 50 278 I L

l

Enclosures:

1. List of Attendees
2. Licensee's Handouts cc w/encis: See next page

a.'

configurations and a detailed description of the licensee's ampacity methodology from PECO.

~

Based on the information presented at the meeting, the NRC staff finds that, subject to submittal and verification of the requested information, the licensee's approach to resolving the NRC's concems appears reasonable, original signed by:

Bartholomew C. Buckley, Senior Project Manager Project Directorate 1-2 Division of Reactor Projects - 1/11 Office of Nuclear Reactor Regulation Docket Nos. 50-352,50-353,50-277 and 50-278

Enclosures:

1. List of Attendees
2. Licensee's Handouts cc w/encis: See next page DISTRIBUTION Hard Coov Docket File PUBLIC PDI-2 Reading BBuckley OGC ACRS E-Mail SCollins/RZimmerman BBoger

- JZwolinski RCapra '

MO'Brien TMartin (e-mail SLM3)

JCalvo RJenkins BMcCabe CAnderson, RGN-l OFFICE PDI-2/PM2 % PDb2!LAYI PDI-2/D NAME BBucklehrh 'M RCapra #

DATE /21 7/98 /k/98 11/15/98 OFFICIAL RECORD COPY t j DOCUMENT NAME: Ll11-18.MTS

[ -

l .

t .

PECO Energy Company Limerick Generating Station, Units 1 & 2 l

CC:

I J. W. Durham, Sr., Esquire Chief Division of Nuclear Safety Sr. V.P. & General Counsel PA Dept. of Environmental Resources PECO Energy Company P.O. Box 8469 2301 Market Street Harrisburg, PA 17105-8469 Philadelphia, PA 19101 1

Manager-Limerick Licensing,62A-1 Director-Site Engineering PECO Energy Company Limerick Generating Station 965 Chesterbrook Boulevard P.O. Box A Wayne, PA 19087-5691 Sanatoga, PA 19464 Mr. James D. von Suskil, Vice President Limerick Generating Station I Manager-Experience Assessment l Post Office Box A Limerick Generating Statior Sanatoga, PA 19464 P.O. Box A l Sanatoga, PA 19464 Plant Manager Limerick Generating Station Library P.O. Box A U.S. Nuclear Regulatory Commission Sanatoga, PA 19464 Region 1 475 Allendale Road Regional Administrator, Region i King of Prussia, PA 19406 U.S. Nuclear Regulatory Commission l

475 Allendale Road Senior Manager-Operations King of Prussia, PA 19406 Limerick Generating Station P.O. Box A Senior Resident inspector Sanatoga, PA 19464 U.S. Nuclear Regulatory Commission Limerick Generating Station Dr. Judith Johnsrud P.O. Box 596 National Energy Committee Pottstown, PA 19464 Sierra Club 433 Orlando Avenue Director-Site Support Services State College, PA 16803 Limerick Generating Station P.O. Box A Mr. Garrett D. Edwards Sanatoga, PA 19464 - Director-Licensing, MC 62A-1 PECO Energy Company Chairman Nuclear Group Headquarters Board of Supervisors Correspondence Control Desk j' of LimerickTownship P. O. Box No.195 646 West Ridge Pike Wayne, PA 19087-0195 Linfield, PA 19468

. - ~ . _ . - . - - . . . . ~ . . - . . . - . . - - - ._- .-. . -. . ~. _ - _-- - -. .._ - - - .

4 l

LIST OF ATTENDEES MEETING BETWEEN NRC AND PECO ENERGY COMPANY REGARDING AMPACITYVAllDATION ANALYSES LIMERICK GENERATING STATION, UNITS 1 AND 2 PEACH BOTTOM ATOMIC POWER STATION, UNITS 2 AND 3 NAME ORGANIZATION B. Buckley NRC/NRR J. Calvo NRC/NRR R. Jenkins NRC/NRR T.Dogan PECO E. Sproat PECO D. Neff PECO l S. Thakur PECO W. Boyer PECO l J. Hufnagel PECO  !

J. Hearn PECO S. Nowlen Sandia Laboratories l

l 4

9

)

! ENCLOSURE 1 4

e 1

)

4 i

AMPACITY DERATING METHODOLOGY

Presented to
The U.S. Nuclear Regulatory Commission
Presented by: PECO Energy Company l, Limerick Generating Station Peach Bottom Atomic Power Station l

, November 18,1998 J

Attendees: E. F. Sproat W. J. Boyer l D. B. Neff I

S.Thakur 1

T. Dogan i

}.~ ,

ENCMSURE 2

4 l

Purpose - Address XRC Comments

- Protected Cable Modelfor Ampacity Derating Not Conservative in Some Conduit Cases

- Method to Determine Ampacity Derating Factor Not Consistent withIEEE 848 Methodologyfor Conduit 1

2 i

~

i .

i 2 +

i l Heat Transfer Model Validation Seven Test Cases Modeled

{ - TVA Watts Bar Tests l-l Unistrut Frame Design not Used at PB or LGS i

4

- Cases 7.7a & 7.7b l Cases 7.7a & 7.7b Modeled Using Simplifying i Assumption

- Excluded Unistrut Frame Results Appear Non-conservative Based on ADF

'~

. 3

m_a- .,A_.,-4 .

. ad iw h m me a weh-w+umq O

$0 g e e

d

  • t i

Y.

C m

O 1

O rA i

e

m w

b O 4

J L 4 m

i H

M H

> m j C H >< l

m n sM j

Q O i m 2

  • m t H i

4 $ n e

1

- E <s J L W 4 i $ 0 *

2 7 [

5 i

e

i Heat Transfer Model Validation

=

Protected Ampacity (I) Comparison

! - Critical Parameter of Concern i - I, Conservatively Calculated by Model Based on Industry l Standards When Compared to Test Results 4

i Ampacity Derating Factor

! - ADF = (I 34 py I 3 X 100 Baseline Ampacity minus Protected Ampacity divided by Baseline Ampacity & Converted to %

- ADF sensitive to values of both I 3& Ip i Model vs. Test

- IEEE 848 Requires Measurement of1 3

- Model Uses I from 3 Industry Standards to Calculate Unprotected

Heat Transfer Parameter Values 5

_______________m._..- ___ . _ _ _ _ _ . _ -_ _ _ __ _ _ _ _ _ - _ _ _ _ _ _ _ _ . _ _ . - _ _ _ _ _ . _ . _ _ _ _ . _ _ _ _ . . . _ _ . _ _ _ _ _ _ _ _ _ - _ - _ . _ _ _ . . . . _ _ _ _ - _ _ . _ _ . _ _ _ . _ _ _ _ _ - . _ _ _ --__-_____._.________._______-.____________-.-__m- w 4 -

w-_ _ _ __ _ _ _ _ _ _ _ _

Table 1 - Comparison of Results of the Heat Transfer Model with Test Data (BaselineAmpacityfrom Tests)

Small Conduit in Large Conduit Three Conduits in Six Conduits in Six Conduits in Small Conduit in Small Conduit in Test Description a Round Enct in a Round Enct a Tight Box Enct a Tight Box Enct a Large Box Enct a Small Box Encl a Large Box Enct Test Case TVA7.6a TVA7.6b TVA7.4 TVA7.5 TVA7.8 I'VA7.7a TVA7.7b Raceway Size 1"RGS 4" RGS 1"RGS 1"RGS 1"RGS 1"RGS 1"RGS Raceway Emissivity 0.48 0.69 0.78/0.34/0.33 0.32/0.55/0.48/ 0.47/0.69/0.18 0.59 0.59 Cable Size 4/C #10 3/C #6 4/C #10 4/C #10 4/C #10 4/C #10 4/C #10 Percent Fill 33 % 40% 33 % 33 % 33 % 33 % 33 %

Bamer Thickne:,s (in) 2.90 2.60 1.00 0.94 0.99 1.00 1.00 Bamer Emissivity 0.99 0.99 0.99 0.99 1.00 0.99 0.99 Test Results Im.. 32.7 29.2 31.7 31.I 31.I 33.0 33.0 I-s 29.7 25.6 29.2 23.2 28.3 29.3 31.3 ADF l9.2% 12.5 % 7.7% 25.5 % 9.0% i1.3 % 5.2%

ModelResults with Imliased on Tests Iwa. 32.7 29.2 31.7 31.1 31.I 33.0 33.0 I-s 28.1 23.3 23.6 20.5 25.8 29.7 31.4 ADF 13.9 % 20.2 % 25.5 % 34.1 % 17.1 % 10.0 % 4.8%

Deviation (I-s) 5.3% 9.0% 19.2% 11.6% 8.8% -1.4 % -0.3%

Deviation (ADF) 4.7% point 7.7% point 17.8% point 8.6% point 8.1% point -1.3% point -0.4% point Deviation (I,.w) = Lma. - I,..w a x 100 Ip .a . .

Deviation (ADF)= ADFa - ADF.

. 6 e

4

l Table 2 - Comparison of Results of the Heat Transfer Model with Test Data 6

(Baseline Ampacity from industry Standards)

Small Large Three Six Conduits Six Conduits Small Conduit Small Conduit Test Description Conduit in Conduit in a Conduits in a in in in in l a Round Round Encl. Tght Box a Tight Box a Large Box a Small Box a Large Box Encl. Encl. Encl. Encl. Encl. Encl.

Test Case TVA7.6a WA7 6b TVA7.4 TVA7.5 TVA7.8 TVA7.7a TVA7.7b Test Results _

/m 32.7 29.2 31.7 31.1 31.1 3:.7 33.0

/m 29.7 25.6 29.2 23.2 28.3 29.3 31.3 ADF 9.2% 12.5 % 7.7 % 25.5% 9.0% 11.3 % 5.2%

Model Results with twua,. Based on Industry Stendards 1,xm,m, 40 69 40 40 40 40 40 ATCF 0.91 1.0 0.91 0.91 0.91 0.91 0.91 MCCF 0.80 0.40 0.80 0.80 0.80 0.80 0.80 CGF 1.0 1.0 0.91 0.84 0.84 1.0 1.0

/w,,, 29.1 27.6 26.5 24.4 24.5 29.1 29.1

/m 25.9 22.5 21.2 18.1 21.6 26.7 28.0 ADF 11.2 % 18.5 % 20.1 % !26.0% 11.9 % 8.2% 4.0%

Deviation (Im) 12.8 % 12.0 % 27.5% 21.9 % 23.9% 8.3% 10.6%

Deviation (ADF) 2.0% point 6.0% point 12.4% point 0 5% point 2.9% puint -3.2% point -1.2% point im Nominal Ampacity of the Cable (IPCEA P-46-426 for 3/C #6, NEC Table 310-16 for 4/C #10)

ATCF Ambient Temperature Correction Factor (NEC Table 310-16)

MCCF Multiple Conductor Corcection Factor (MEC Article 310-15, Paragraph 8a)

CGF Conduit Grouping Factor (IPCEA) 1% = ImX ATCF X MCCF X CGF

~

.- ]

. t

~

'*O e s'i

1 4 .

t i

i 9

1 5

Table 3 - Test vs. Model Comparison ofI,/(ADF) t Small Conduit in Large Conduit 11ure Conduits in Six Conduits in Six Conduits in Small Conduit in Small Conduit in Test Description a Round Encl. in a Round Enct a Tight Box Encl. a Tight Box Enct a Large Box Encl a Small Box Encl. a Lag
e Box Enct 4

Test Case TVA7.6a TVA7.6b TVA7.4 TVA7.5 TVA7.8 TVA7.7a TVA7.7b 4

Test Results 29.7 /(9.2%) 25.6 /(12.5%) 29.2 /(7.7%) 23.2 /(25.5%) 28.3 /(9.0%) 29.3 /(11.3%) 31.3 /(5.2%)

4 ModelResults(4 based 28.1 /(13.9%) 23.3 /(20.2%)' 23.6 /(25.5%) 20.5 /(34.1%) 25.8 /(17.1%) 29.7 /(10.0%) 31.4 /(4.8%)

on Tests)

I ModelResults(4 based 25.9 /(11.2%) 22.5 /(18.5%) 21.2 /(20.1%) 18.1 /(26.0%) 21.6 /(11.9%) 26.7 /(8.2%) 28.0 /(4.0%)

on IndustryStandasds 1

1 W

. . 8 9

j .

. ~ _ . . . . ..~. -. _ _ . . - - . . . . _ _ - ~ . .. _.-._- --

l Heat Transfer Model Validation

=

Sigmficance ofLower ADFfor Calculated vs.

i Test Cases 4

l - Not Significant ifI p Resulting from Application of i

ADF is Conservative i

4

!.. 9

  • 9

i l Installed Design i

i i

TVA Case 7.4 Most Closely Aligns With Installed Design

-I p Moc el vs. Test

! 21.2 vs. 29.2 amps

! - ADF Model vs. Test j 20.1 vs. 7.7%

i l

a

.- . 10

__._[___..,--__~ . _ _ . - , _ . - . , . . _ . . , _ . . _ _ . - _ , _ _ . , - . _ , , , _ _ _

i Figure -Test Case 7.4 1" CONDUIT

! l 1.315" AVAW///////////AM

<= 4.95" => <>-- 1 "

<- 6.95" =>

TVA TEST CASE 7.4 ADF (MODEL) = 20.1%

ADF (TEST) = 7.7%

I1

.j .

1 l .

Conclusion

=

Use ofIndustry Standards for Baseline j Ampacity to Model- Results in Conservative Protected Ampacities (Ip) i for Cables

- Applies to all test configurations l

Ip the Significant Parameter of Concern i

Model Calculates Conservative ADFs l When Compared to Tests for Applicable l -

Configurations

. 12 4

1 .j .

~

l Conclusion

! (Continued) l Use ofindustry Standards for Baseline l Ampacity Consistent with Standard Industry Practice for Ampacity Rating of

! Unprotected Raceways l

- Use ofIndustry Standards is Appropriate as a Model
Input i

=

Extend Use of Model to Darmat Model l Based on Validation Results 9

13 l; -

. . .