ML20099A622

From kanterella
Jump to navigation Jump to search
Rev 1 to SAR for Low Enriched Fuel of Rhode Island Nuclear Science Ctr Research Reactor
ML20099A622
Person / Time
Site: Rhode Island Atomic Energy Commission
Issue date: 07/23/1992
From:
RHODE ISLAND, STATE OF
To:
Shared Package
ML20099A620 List:
References
NUDOCS 9207290315
Download: ML20099A622 (9)


Text

.__ _ -. . ._ . _- - ._

4

. . l 4

i 1

REVISION (1) TO SAFETY ANALYSIS REPORT (SAR)

FOR LOW ENRICHED FUEL OF THE RHODE ISLAND NUCLEAR SCIENCE CENTER RESEARCH REACTOR 4

4 4

B f

i i

ACTTON:,

j 1) Replace pages 17 and 18 of the original document with

," new pages 17 and 18 CH-1

2) Replace Appendix C, pages 25 and 26, with new pages 25 through 30 CH-1

) 3) Delete Appendix D, pages 28 through 32.

1 1

5 l

i w

l l- -9207290315 920723 3 DR ADOCK 0500

... _. . . ._.m._.__ .. _ _ _ ._ . _ . . _ . _ . . . _ . _ _ . _ _ _ . _ _ . . _ _ _ _ . . _ . _

)

Cil l 1

l -

i LOSS OF COOLANT ANALYSIS Beamoorts There are four six-inch diameter, two eight-inch I diameter aluminum beamports and one tangential through port.

I The beamport s penetrate the pool wall liner at the mid level of the reactor core. The through port is below and off-center of the reactor core. If the >ool water level reached the lowest elevation of a beamport, active fuel would remain  !

! immersed in approximately 8 inches of water. >

, A typical beamport da shown in figure 1-23. Four barriers to Joss of coolant can be provided; not all beamports have all four barriers. The first barrier is the ,

beamtube itself. The fixed experiment barriers (one on each ,

ond) limit any leakage area such that a beamport failure will ,

. be 2ess than the pool makeup fill rate of the hydraulic head impoced by the pool The beamport shutter serves as another barrier, but the shutter is raised when a beamport is in use wh2 ch elimates its utility. Finally the flanged cover plate serves as a fourth barrier.

At the RI Reactor, every beamport or through tube is contigured with at least two of the barriers. The through ,

tube has-two of the barriers; the through tube itsd f and a flange at each end. There are three six-inch beampo- ; not in use having three of the barriers; the beantube, the shutter I in closed pcsition, and a f)ange installed. The three remaininq beamposts have a minimum of two barriers; the .

beamtube itself and the experimental ba rrier (s )- .

described.

above.

Aopendix A shows the calculations 'J eading to - the result that no experiment will be - approved or installed -with. a barrier having as opening greater than the equilvalent area of a 1/? inch diameter hole. The fixed experiment also implies that it shall be designed and installed to withstand the backpressure equivalent of - the hydraulic head of the '

pool, or a minimum of 25.09 feet of water pressu:ce.

17 1

1 i

- _ . . - ,._ ._.- - - , - _ . . _ . m...__.-._- _ _ . - _ - . .~..,_ _ .- . _ , _ - _ ~ .,_ _ -, _ _

I l'

Of-1 i

. j 1

1 i

Pool Make-Un Water l The RI Reactor has a pool fill nake-up system consisting 1

j of a 2" water line from a mnke-up demineralizer which a provides a normal flow of 20 gallons per minute. An automatic fill is initiated w3th a 1" drop in pool water level. A 2" drop in pool water level scrams the reactor. Manual filling of the pool is possible at 25 gallons per minute. The reliabiliti of the water supply cyctem has been described in Part B,Section VIII of this SAR.

LDCA conclusions Abnormal loss of coolant from the RI Reactor pool that could recult in partial uncovering of the core can be caused by a rupture in or damage to a beamport. The maximum loss of coolant flow rate is 20 gallons per minute. The normal pool r

make-up system exceeds the loss of coolant flow rate, If pool make-up water is not available, the reactor core would remain completely covered for more than 35 hours4.050926e-4 days <br />0.00972 hours <br />5.787037e-5 weeks <br />1.33175e-5 months <br /> subsequent to a low water level scram at which time the fission product heat would have decayed to less than 1/2 percent of the two megawatt normal operating power level (see Table 5.1). Based upon this analysis, the most severe abnormel loss of coolant

. event at the RI Reactor would not cause core damage, l

1 I I 1

18

Cll-1 AP P E!4 DIX C LOSS Or.COOLAUI_ ..

_ . . . - - ~ . ~ ~ ~ _ n. iw a n

. IM tLD TIIC I e n a_. ro . .. too 1-y- - u .ut. m c owe. _ tA . h + 1 H.

c" * -

[}t-""~ u. a4. %

q, y.. us.m t 3. _ , ,, ,

$1Luf.14E APEAS (FPIE FLOW ARET.)

Area of entire pool surface -

150 ft2 Area of core box  : 5.06 ft 2. ,

Area of core (loaded)  : .917 ft2 Area of 1/2 diameter hole in .: ore box : .00136 ft2 Area of 8" pipe  : .349 ft2 APPENDIX C

aximuta Aperture Size for a Bearport Experiment ASSIRi?TIONS (1) A postulated pool leak which could drain from a beam port and subsequently throup,h an experiment shal' 1 limited-such that (A) the total leakage rate is less than the minimum pool fill rate. 20 gpm (B) the hydraulic head providing gravity ' low is based upon the normal pool level less 2" for a low Acvel scram point. The datum elevation for d'.schargc is the centerline elevation of an 8" beau tube (E1.114.16).

25

,- Cll-1 COMPUTATIONAL METHOD Discharge through an orifice (11 e

Q = Ca ( 2 gH) 1/2 c

where Q = flow rate, CFS C-+ coefficient of dischargo; .6 A = Aperture opening of a fixed beamport experiment, FPT2 H = head (datum is el .114.16, beamport center line)

Calculations: (Minimum Aperture Size)

Assumptions: Neglecting En<.*rgy Lonses Flow Rate: 20 gallons per minute (minim m makeup flow)-

Head: A 2" lever drop scram, pool water elevation 139.417-(2/12) = 139.25 and the discharge head = 139.2S-114.16 = 25.09 feet s

O = 20 gal / min x 7.48 gal /ft3 x 1 min /60 sec =.04456 CFS Solving for a a=0 a

.04451_ =a= .04456 = 00184 ft2 C (2gH) 3 /2 . 6 - (64. 4 x25. 0 9)1/2 24.118 Equivalent Diameter .58" mHandbook of Hydraulics, Ernest F. Brader, 6th Edition, McGraw-Hill Book' Company, 1976 26

t i

j ,

CH-1 1 ,

) '

J l ,

t

, Drain tima for a 1/2" diameur hole __with no make-up water

?

l Prom Referencc #1

I t= 2A [ (H;) s /2 .

(n3 ) :/2 ]

i Ca (29)1/2 i

A = 150 square feet (pool surface area) i l

a = .00184 srluate feet (opening for 1/2" hole)

I e= .6 (coefficient) d i H2 = 25.09 (head above core box) ,

! . H1 = 1.27 (head over beamport) 4 i

i t= 2 x 150 [(25.09)1/2 -

(1. 27 ) 1/2 )

{

.6 x .00184 x (64.4)1/2 1

j- t = 127751 seconds = 35.49 hours5.671296e-4 days <br />0.0136 hours <br />8.101852e-5 weeks <br />1.86445e-5 months <br /> i

j Do"ay 11 eat

i i

From Table 5.1

! P. = .0046 (less than 1/2. percent) .

l Pr. 7 4

P= .0046 x 2000 kw (operating power level) -,

P =.9.2 kw i This is less than the RI limit for natural convection-(100kw) and '

is therefore conservative.

l i

i I

i 4 .

27 4-

  • I

_ _ _ . _ _ _ . _ _ . _ _ _ _ _ _ _ _ . _ _ . - - ___ - _ _ _ _ _ . _ _ _ . _ , . . _ . . . _ . . _ . . . . . , _ . . , _ . . _ . . . , . , , , _ . _ , . _ _ _ . . . . , . . . . . , , _ _ ,_,,,,_.,,.,,_,,_,,,_,g

REFERENCE (1) Cll-1

<  :-c., st Bitbalg e v.se r f e.hsg }{es J Ogure 4 3 de s s s ' tnel *er.m yrd ini.sf.r,Q,,;f "PT**"$ u.g g 1

- 41.s e v. .it t r t o 3 dt pa A . Tre t.me repred to 40wer tre . -; r .o psf ) tph .j e 40 /il/pi i ster smtMe tA A depth As il fif)ultf d 0 in the trei of CJIfare. pil/'epWe*J6L4/h 3 t' O '08hIf h d A.a the ates of water turisce for a depth p C is t he ~ Q M/ e h p i .* , , , A cehent of discharte The merement cf time c. seped to lou tr the M atet the 10f.0itesim61 t

M e Jtd.M AB

,,, j 2 ipyflj,[g

) ,,._.,

jgQJg{g i distante dy is a; ,,0 4, yfg m _ e m- -~

- - - ~ - ~ -

di e a g,

=r WM w nm. 10614Wh 9 Cd V 291

, it s

'".*1"*1 P!2 *.ht [Pt'.!b? *hMJ a:;-

  • g.yj.$rggze;g Frem (410, if .4 ceti be enreutd / -' v . 0 95 h'y 4 j ,png

""]" in terms of y. by m.egenti:g 4 ' ]1 SQp,,g.q,y,g n r tween firmts 4 and Av. the t;me A fy/40At4@

' b ,cA rt m er/

}[ gm/ngy* mwQ tierded to los er the e ster r,ttface ' }i,hr7~e . e.p p n g

t the distance A. - 4: f a11 he gotteA MI ~ Jedet $ 'a L "-+_r *'

9 I

i

-\:!.2rcJ.=,

Maurig A, - O gis e.s the time of emi't y in g the teuel. Equation (b)

.h

' *i Ifl

5 N f 415) apphes t0 heri+cetal or in- ,, p, . f.% .
  • g ,. f.

fio 41 DMarp unde. choed or fi.es p0vided the w6ter ,

_ f; v.or/Dyh p ng ;.t,dj g ,g g f aM 8 h e.g. surf 6ce dees Oct f6U beirm the top q .- - f; y,jg. o pfj )g ~ - - g j , gj g

-U d# A '"* *"#

of t he orifu e. l'or a cylimler e.r prim with g ertical ny., t 1.

%s,.4 H L, stud 1<q. ( 1,l%), af t e r n,te grat o n, lme. unum l ** 3 onitclerD D I a n f h.;yyyy*W - 1 r "" *; %;r $m

.g

-- .. 2 r- ~. .. :. pg*M-. ; n - .

I- *i a sQ ( t.19) .. O.i n.- .hg".

  • Jif Og ; ' '

Ca V ;g(s 5 ~m r. -

4 Arts A: ronwnd g (g) ** Je tW 8-b Ori6ce Coemriense one nf S. entliiat npernutnters en Wir pw. lg.,1 ne. fin , u. I f,in..It..n t mith. J r,i t ii, tabw ..f t he i udlu n nt of dhi lmrre for ruumi aml -tunre utilnw nro art wM f 7,gj

"W"'h O fe m ym[i h(ftul, V 7 ' 'S f'?
  • # ~ 4 ' W* > ' ,U.

/2 en en m Table 4. t~ p' Pro A reewed "h ~.! dg9)alq y h  ; 1%

=b~b qd t

--.c.$-%7,$

r,, ,y .--- a . .TD. ,. ,,W.k.p.a (UG$ii$ ?E g $d 1

1,. 'YhyEf

_,,J , _ _ _ --a hond m$sverd g4} M JonenB-B L

Table 13. Smith's Coefficients of Discharge for Circular and Squ6te Orifices with Full Contr6ttico l

Iw.w .I sieevier .n6e . Ini SW..t.o m .ea .rui l

_, _ lI**d.

Ins 0.02 0.04 0 of 0.1 0.2 0$ l.0 0 02 0 04 0.or 0.1 0,1 06 1.0 0.437 0.0 4 0 616 0.4 .... 0 643 0.426 0,621 0.6S3 0.610 0 618 0.613 0 601 0 593 0.6 0 660 0.6.36 6 613 0.647 0.60s 0 See l 0.646 0 616 0.315 0 610 0.601 0 694 0,890 0.8 0 641 0 641 0,620 0.618 0 605 0,600 0 467 0 644 0. !!3 0 612 0.60C 0 600 0.505 0 301 1 0.64 8 0.628 0 618 0 413 0.603 0 60 0 506 0 637 0 416 0 004 0.6n5 0.600 0.596 0 863 1.4 0.641 0.423 0.614 0.610 0.604 3.602 0 604 0 632 0 614 0. Gte 0 tot 0.!99 0 567 0 804 2 0.637 0 416 0 ott 0.606 0.605 0.604 0.602 .

0 626 0.611 0 00$ 0.603 0.594 0 498 0 106 1.8 0.634 0.617 0 610 0.607 0 404 0,604 0 6(n 0 627 9 Sit 0 r.04 0. r,03 0.894 0 598 0 497 3 0.63 2 0.416 0.606 0.607 0.601 0 604 0 ocs 04*3 0 609 0 603 0 002 0.199 0 397 0 506 4 0 e.18 0 614 0. r46 0.606 0 60$ 0 603 ' 0 out 0 018 0 60F 0 (C2 0 600 0 $08 0 567 0.694 4 0.6*3 0 612 0.607 0.604 0 604 0 603 0 601 0 614 0,6ca 0,eot 0 600 0.506 0 566 0 Soo 6 0.619 0.610 0.606 0.606 0 604 0 603 0 603 0 Att e ntn a r00 0.59s 0.507 0 $96 0 f.01 to 0 616 0 606 0.60$ 0.6n4 0 603 0 601 0 tot 0 6J4 059 0 597 0.406 0 f.00 0 594 0 894 20 0.606 0 GN 0 602 0 601 0 tot 0 601 0 6es 0 406 0.495 0 194 0 604 0.?p4 0 594 0.&c3 f.0 0 601 0 601 0 601 0.600 0.600 0 Set 0 496 0 563 0 891 0 592 0 Sul 0 avl 0.avW 0 SV2 400 0 av9 0 498 0.496 0.596 0.198 0 ses 0 498 W

28

filfllj l,\ iti ,

, '1 l,flI

=,-

R E

A C

a'- T O

R P

O

~

O N,# .

w C(T 4:

4e0 L

e. 6  ;

p s

N

$ uN h 3i.,

E R \

uU T '

s S

_  : E D .

., R! .

Vn L?g

e. F I

c A

I N y ,.

  • G S U H R U E T 1

T E

- F V 2 E

  • 3 S N H T 6'T T\ /

U b

B E

}

  • ~.

A 'E M R _

P A ' e O

  • R bSr $

T uMOL s- J

' g4 br

-' C 6

U h

  • 9 T ?
- E $

c e R $

?

r P #f.

s. T U

].

) L /J B .

L G

I N /', E S

T R

U M '/

E{I N t,

^ T T

/

6 U / ~ M .

8 B A 7 E N

- JtD 1 t 5 . L -

y Ag{j s i e ,s i P.

y',;,

ey4x

~ h'..

c.". d k- A C

?'_ T

['

O R

4 R

r O

Y O M

u m

"m I

7 -

ii,!: I i lll 'l

J _.. . _ - . ,, - - .- - - .- -.- ~. - ~-~._~. _ .-

i Cll-1

]*'

4 n e w s_ 1 1

i The Ratio, P(ts) / L, of the Finaion Product Decay Power to Reactor Operating Power as a i t,nction ot; i

l Time, tn, A f t e r Sh u t:icw., ( A!JS , 1968).  !

1

, Time After Time After Shutdown, t Power Ratio Shutdown, t g Power Ratio l 3 P(tn) / Pn i ( r.econds) P(td _/ Pn _( seconds) _

l 1 X 10-1 0.0675 6X 104 0.00566 0.00505 e

3 1X 100 0.0625 8 l

2 0.0590 1 X 10 5 0.00475 t

I 4 0.0552 2 0.00400 6 0.0533 4 0.00339 j i .

i i 8 0.0512 6 0.00310 ]

1 X 101 0.0500 8 0.00282 l 2 0.0450 1 X 106 0.00267 l

I 4 0.0396 2 0.00215 3

! 6 0.0365 4 0.00166 ,

0.00143 1

l 3 0.034f 6 i

1 X 10 2 0.0331 8 0.00130 2 0.0275 1 X 10 7 0.00117 ,

i i- 4 0.0235 2 0.00089 l 6 0.0211 4 0.00068  ;

l 8 0.0196 6 0.00062 f '

1 X 10 3 0.0185 8 0.00057 f

2 0.0157' 1 X 10 8 0.000550 i

! 4 0.0123 2 0.000485 l

1 6 0.0112 4 0.000415 l- 0 0.0105 6 0.000360 1 X 10 4 0.00965 8 0.000303 f

1 X 10 9 0.000267 '

f 2 0.00795-

!, 4 0.000625 t

h o

t-s' d 30 1

i

- - _ _ _ _ _ - _..--_ __-e. u.-.+.e.,e-- ,,..r_=s#.w e n.-ww'm-+-#.---a..w,-..-%,a,ww-ve,-.n,3 -w, .a  %~r,ww... ,ns, ,,-,-.-%,-, ,,,c-- ,w,-y ,-7ym-.~.- .- ,