ML20094N846

From kanterella
Jump to navigation Jump to search
JFP-3A - Analysis of Geodetic Data. W/Two Oversize Graphs. Aperture Cards in PDR
ML20094N846
Person / Time
Site: Satsop
Issue date: 05/25/1983
From: Pelton J
PELTON, J.R.
To:
Shared Package
ML20094N819 List:
References
NUDOCS 8408160414
Download: ML20094N846 (150)


Text

- . . . - .. . . - - . . _ .

  1. 4

. :JFP-3A - Analysis of Geodetic-Data-4 May 25 1983

  • 4 4

J. R. Pelton 4

4 4

4 4

4 l

1 1

l l

8408160414 840008

PDR ADOCK 05000 A

J I

i -

e,- -

,g w ,e-- - vve,-,-- < - , , .v,.-eee-,-----e,- -~re--,*v,v----,m,- -,---~->w------ --- - - - - - - - . - - - - - - - - - - - ' - = -

l 1

COSTERTS ,

1 l

Scope of Work . . . ... . . ... .... . . . . . . . . . . . 1 Procedure ... ... .. .. ............... . .

3 Calculation of Net Relative Vertical Displacements . . . 3 Levei-Collimation Correction .. . . .. . . . . . . . . 4 Rod-Temperature Correction .. . .. . . . . . . . . . . 4 Rod-Scale Correction . . . ... ... . . . . . . . . . 5 Coarse rod calibration . .. . .... . . . . . . . . 5 Nominal index length to graduation format . . . . . . 5 Zero to graduation format . . .. . . . . . . . . . . 6 Index error .. . . . .. .... . . . . . . . . . . 7 i Residual rod-scale error .. .. . . . . . . . . . . 7 Detailed rod calibration . . . . ... . . . . . . . . . 9 Refraction Correction . . . . . ... . . . . . . . . . . 9 Astronomic Correction . . . .. . ... . . . . . . . . 10 Nagnetic Error .. . . . . .. ... . . . . - . . . . . 11 Benchmark Stability . . . . ... .. .. . . . . . . . . 11 Regression .. .. . . . . .. . .. . . . . . . . . . 12 Trilateration/Triang ulation .. . .. ... . . . . . . 13 Discussion ... ..... . ...................

. . . 14 Individual Profiles . . . . . . . .. ... . . . . . . 14 Profile 1 . . .. . . .... . .. .. . . . . . . . 14 Profile 2 .. . . . . . . ... .... . . . . . . . 14 Profile 3 . . . . . . . . .. . .. .. . . . . . . . 15 Profile 4 .. . . .. .. . . . ... . . . . . . . . 15 Profile 5 .. ... . ... . . . . . . . . . . . . . 15 ,

Profile 6 .. . . . . .... ...... . . . . . . 15 Profile 7 .. .. . . . . .. . .... . . . . . . . 16 Profile 8 .. . . . . .. . .. ..... . . . . . . 16 Profile 9 . . . . . . . . .. . . . . . . . . . . . . 16 Profile 10 . .. . . . . .. . .. . . . . . . . . . 17 Profile 11 . .. . . . ... . .. .. . . . . . . . 17 Profile 12 . .. . . . . .. . ... . . . . . . . . 17 Profile 13 . . . . . . . . . . ... . . . . . . . . 18 Profile 14 . . . . . . . .. . . . . . . . . . . . . 18 Profile 15 . . . . . . . .. . .. . . . . . . . . . 18 Profile 16 . .. . . . . .. . ..... . . . . . . 19 Profile 17 . . . . . . .. . .... . . . . . . . . 19 Profile 18 . . . . . . . ...... . . . . . . . . 19 Profile 19 . . . . . .. ... .. . . . . . . . . . 20 Profile 20 . .. . . .. .. . ... . . . . . . . . 20 Profile 21 . . . . . . . .. . .. . . . . . . . . . 20 Profile 22 . . . . . .. .. . .... . . . . . . . 20 Profile Suasary . .. . . . .. . .. . . . . . . . . . 21 Sassary . ... . ....... . . .~. . . . . . . . . . . . . 22 References .. .. ....................

. . . . 24 l Appendix 1 . Analysis of Rod Calibration Data '

Appendix 2 - Profiles l l

Contents 11 l b

_, - ., , . - - - - - - . , . _ - , - , _.__,,.,__,.._,_._,,,m-._,,, . . , , , . ,,,...__,._,...,r

SCOPE OF WORE i The scope of work defined by the WPPSS Geotechnical Advisory Panel for task JFP-31 is as f ollows:

1. Available geodetic leveling data in western Washington and western Oregon used by Ando and Balazs (1979) and Reilinger and Adams (1982) are to be analyzed to deter-aine their reliability. Depending on the results of the data reliability analysis, further analysis to the extent necessary is to be effected tnat will support the conclusions of Ando and Balazs (1979) and Bellinger and Adams (1982), o$r provide qualitative alternative inter-pretations of the data.
2. Available geodetic trilateration and triangulatics data acquired in western Washington by the USGS and reported

-by Savage et al. (1981) is to be analyzed separately to determine its reliability.- Depending on the results of the data reliability analysis, further data analysis to-the extent . necessary to either support or refute the position taken by Savage et 41. (1981) shall be provided. If applicable, alternative qualitative models to explain the data shall be provided.

In order to carry out task JFP-3A according to the outline just given, the following work was done:

Geodetic Leveling Data

1. Corrections for level-co111mation error, rod-temperature variations, rod-scale error, refraction error, and tidal acceleration variations were applied to the observed height data for the level lines under consideration:
a. Ando and Balasz (1979) ;
b. Reilinger and Adams (1982), except for the Bandon to Coquille (Oregon) line;
c. eastward extensions at 2 east-west lines in western Washington and 1 east-west line in western Oregon.
2. Ne t relative vertical displacements (i. e. , the dDh val-ues discussed below) were computed using the corrected observed height data f or 15 east-west profiles in west-een Washington, 5 east-west profiles in western Oregon, and 2 north-south profiles on the Olympic peninsula.
3. The estimated standard deviation of the random error for each dDh value on each profile was computed.

Scope of Work 1

l

4. Bench mark descriptions for the profiles were searched to identity individual bench mark types and those bench

! marks suspected to be disturned by vandalism, con-struction projects, and other non-tectonic processes.

5. An unweighted linear least squares regression of dDh on
- distance along the level line was calculated for each profile to provide some quan tification of apparent regional tilt.
6. The poten tial for systema tic accumulation of residual rod-scale error on uniform slopes was calculated for each rod pair used in the levelings under consideration.
7. The available literature on magnetic error was investi-gated to determine which levelingu used in this study say be adversely affected.

Geodetic Trilateration/ Triangulation Data

8. The procedures of Savage et al. (1981) were investigated to make sure that adequate corrections were applied to trilateration data for atmospheric refraction.
9. The NGS horizontal data base was searched for additional triangulation or trilateration data in western Washing-ton and western Oregon that could be used to determine crustal strain.

Scope of Work 2

PROCEDURE CALCULATION OF BET BELATIVE VERTIC&L DISPLACE 8EETS A net relative vertical displacement is equivalent to a ner rela tive change in orthometric height difference, and a net rela tive change in orthometric height difference is equiv-alent to a net relative change in observed height dif terence (Yanicek et al., 1980; Pelton and Smith, 1982). Therefore:

dDh (B5, R EF , t2-t 1) = Di(B5,REF,t2) -

Di (B5,R EF , t 1) ( 1) i where dDh (B5, R EF , t2- t 1) is the net relative vertical dis-placement - of B5 relative to REF between times t1 and t2 >

t1, and D1 ( B 5, REF, ti) is the (corrected) observed height difference of B5 relative to REF at -time ti. ,

All dDh values presented in this report have been calculated with (1) . Thus it is important .to know what corrections Te been applied to the D1 data. The following corrections le been applied (with a few exceptions documented in appendix 2) to each D1 datus before substitution in (1) :

1. level-collina tion
2. rod-temperature
3. rod-scale
4. refraction
5. astroncaic.

The corrections were computed and applied by an NGS computer program referred to as REDUC 4.

Most leveling done to high orders of precision involves a forward and backward running of each section. The D1 values so determined are averaged af ter application of the above sentioned corrections. This averaging serves to reduce the randon error and to eliminate some types of systematic error.

The standard deviation of the random error in a dDh value is given by the square root of the sua of the sguares of the standard deviations of the D1 values, assuming that the D1 values are independent. The standard statistical model for randon leveling error predicts that the standard deviation of a D1 value is given by s s/L ,. vnere s is a' constant. The parameter s may be estima ted from discrepancies between for-vard and backward levelings of sections, or from circuit closures. The experience of the NGS in computing s for lev-Procedure J

_ _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , - . . . . ~ _ _ _ . - _ . . _ . . . _ . _ . . , _ _ _ _ _ . . , ..._. ,. ,__..~. m. , ,._____.y..

I elings of different vintages and orders is suasarized by Yanicek et 41. (1980). Standard deviations of all dDh val-ues presented in this study have been computed as described above using the .sussary in Vanicek et 41. (1980) as a source for a values.

i LEVEL-COLLIB&TIO5 CORRECTION Level-collination error results when the optical axis of the tele scope is not exactly aligned in a horizontal plane.

This error is minimized by using balanced sights and by application of a level- collimation correction to the D1 da ta. The level-collina tion correction Cc added with the resultant algebraic sign to the section D1 data of this stu-dy was computed in REDUC 4 according to the procedure described in Balazs and Young (1982):

Cc (am) = -(k) (SDS) (2) where k is the collination error constant in as/a and SDS is the accumulated difference in sight lengths for the section in meters (backsight-foresight). The basic assumptions here are that k is correctly determined and unchanging during leveling over the section.

300-TB8PERATUEE CORSECTION The calibration procedure f or a leveling rod results in the de termination of errors in the placement of graduations along the rod scale at the standardization temperature (see next section) . Since corrections for these errors are designed for application to ooservations adde at the scand-ardiza tion temperature, it is first necessary to reduce a given D1 value to the value it would have if the rod pair was at the standardization temperature. The correction which reduces a D1 value to its value at the standardization temperature is called the rod-temperature correction. The rod-temperature correc tion Ct added with the resultant alge-braic sign to the section D1 data of this study was computed in REDUC 4 according to the procedure described in Balazs and l Young (1982):

Ct= (Ta-TS) (D1) (CE) (3) where Ta is the mean ooserved temperature of the scale (be-gining and end of the section) , Ts is the standardization temperature (described below), and CE is the coefficient of thermal expansion for the scale per unit temerature. The unit of Ct is the same as that of Dl. The basic assumptions Procedure 4

here' are that CE is accurately known (this is debatable f or some scales where CE is simply assumed) , that CE is inde-pendent of temperature over .the range encountered during

! leveling, and that CE is independent of position along the

- scale. The erfect of an incorrect temperature correction is to add an unknown component to the residual rod-scale error (see discussion belov) . -

ROD-3CALE CORRECTION 1 graduation on the rod-scale is related to tne_ nominal length of its distance from the bottom of the rod base. The rod- error at a graduation is this nominal length minus the corresponding true leng th. Because of thermal expansion, red error is a function not only of the graduation (i. e. ,

the nominal length to the gradua tion) , but also of the tea-perature. The temperature at which rod error is determined is called the standardization tem pera ture. During cali-b ra tion , the true length is measured either by comparison with a length standard (usually an invar bar) which has its true length at the standardization temperature (coarse cali-bration -

before la te 1980), or by laser interferometry (detailed calibration - since late 1980).

Coarse rod calibration Before late 1980, the calibration procedure for NGS leveling rods resulted in the de termina tion of rod error at only three or four graduations. The rod error for these " coarse-ly" calib rated rods was broken down into two parts: the index error and the rod-scale error. Currently, the NGS uses two different methods to de termine the index error and -

a lihearized rod-scale error f rom the coarse calibration da ta. The same method is used for both rods in any given rod pair.

Bonimal indez iength to graduation format Refer to figure 1 for the definition of symbols. The rod error a t graduation g is given by:

RE (Ln) = Ln-Lt

=

(In-l t) + (In-It) (La > In) (4)

= E (Ln) +I (La > In)

Procedure 5 e

.--,,.,,.-.w--.,,,-,---r.*w--m--+w ----,-o---

-Top graduation Jl

-g Jl i l LN It In 't l n

1f 4

"--Bottom graduation It In Jr y Rod Base i l O Ground subscript n indicates nominal length subscript t indicates true length LN is the nominal length of the distance from the bottom of the

  • rod base to the top graduation e

1

where the E (Ln) =1n-It is the rod-scale error at 9 and I=In-It is index error. 3 (La) =0 for Ln=In because in=lt=0 there, and E(La) need not be defined for La<In because no cali-bra. tion measurements or observations are ever made there. A linearized rod-scale error at g is defined by:

E(Ln) = - (e) (Ln-In) (5) where e is a constant called the " excess". The excess for a particular rod is now computed by the NGS by a linear least squares regression of -E(Ln) in an on (Ln-In) in meters with the constraint that the regression line goes through the origin (Ln=In) . Previously, the NGS would have determined e for a single rod as follows:

e as/a = -E (LN) a s/ (L N-In) a (6) where LN and In were usually 3.~2 m and 0.2 m, respectively.

Zero to graduation format Again, RE(La) = In - Lt. Now define a linearized rod error at g:

RE (Ln) = - (e) (Ln) - Ic

~ (7)

= E (La) - Ic where e is a constant called the " excess", E (Ln) = - (e) (Ln) is the linearized rod-scale error, and Ic is constant called

. the index correction. Constan ts e and Ic are found by a linear least squares regression of -BE(La) in sa on La in meters. With Ic determined, tne true rod-scale error E (In) at g is logically defined by:

E(La) = RE (La) + Ic (8)

Thus:

RE (Ln) = E (Ln) +I (9) as before where I = -Ic is the index error. The basic dif-ference between this format and the preceding one is that E is defined for all positive Ln<LN even though no cali-beations measurements or observations are ever made for auf-ficiently small In. Notice that at the laaginary zero graduation where La = 0, I corresponds to the difference between the imaginary zero graduation and the bottom of the rod base it we define E(0) to be zero in both formats.

Procedure 6 1

\

I

. _ __ , _ . _ _ . _ _ _ . _ . _ . _ , _ . _ _ . _ ~ - - _ . _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ - _ . _ .

Index error

.c l

The index error may be neglected f or three reasons:

! 1. it is generally less than 0.1 ma, 4

2. a pair of rods having nearly equal index errors is used

, so that a backsight - foresigat dif ference alaost can-cela the not inder error at each setup,

3. the rods of the pair are leapfrogged to elisinate accu-mulation of the net index error.

- Besidual rod-scale error For coarsely calibrated rods, the NGS assumes that for both rods of a rod pair, E is given by an average linearized rod-scale error, where the average excess is that or the two individual rods. The rod-scale correction Cr to be added

with its algebraic sign to a section D1 value then becomes

Cr na = (e as/s) (D1 m) (10)

J where e is the average excess in as/a (Balazs and Young, 1982). This procedure is implemented in REDUC 4 and was used i to correct all of tae D1 data used in this study except for two lines -whose rods underwent detailed calibration:

L-24471/2 and L-24471/3 run in 1982, see profiles 11 and 15.

In f act, it is quite possible that E for both rods of a pair is not adequately represented by a single linear function.

The difference between E for a rod and the average linear-

, ized rod-scale error for the pair of which it is a member may bs called the residual rod-scale error:

ER (Ln) = E (In) - Ea (Ln) (11)

where is the residual rod-scale error at Lu, and ER (La) 4' Ea (Ln) is the average 11aearized cod-scale error at La and is computed with the average excess II and wither (e).(Ln-In) or (e) (Ln) depending on the calibration format. An observed height difference at a singel setup will be in error by the backsight -

foresight difference in residual rod-scale errors:

! Tij = ER (BS)i - E3 (FS) j (12) where the nota tion means that rod i is used on the backsight and rod j is used on the foresight, and Tij is the residual rod-scale error in the observed height difference at the se tu p. For two consecutive setups with rods 1 and 2 on a Procedure 7 i

uniform slope with uniform sight lengths, the residual rod-scale error-S in the observed height ditterence for the l two setups will be:

S = T21 + T12 (13) assuming that the rods are leapfrogged which is standard practice. If . S does not equal zero and leveling continues on a uniform slope with uniform sight 11engths 4nd leaptrog-ging of rods, then a significant systematic error accumu-lates in the observed. height difference; this is a direct

. result of the fact tha t the same graduation is used every.

time for the backsight, and similarly for the foresight, so j .that the 'same S error occurs every two setups.

For this report, a matrix of S values have been computed for every rod- pair used in the levelings under consideration

~

(see Appendix 1) . Each value in the matrix pertains to a backsight -

foresight pair of graduations at which cali-bration measurements were made. In other words, tne matrix (usually either 3x3 or 4x4) represents a digitized version of S which is better visualized as a continuous f unction defined in the backsight - foresight graduation plane. All values in the S natrix are scaled by 50 to give the systen-atic error after 100 setups (about 5-10 km) on a uniform

. slope with uniform sight lengths and leapfrogging of rods.

A casual study of the S natrices in Appendix 1 will reveal that residual rod-scale error is worse in older rods than in

more modern rods which is to be expected. For example, the average aariaua accumulated (100 setups) residual rod-scale error for code 312 rod pairs is 6.6 as (maximum = 14. 4 mm) ;

for the never code 316 rods it is 3 na (maximum = 3.7 mm) .

This is only a general observation and does not mean tnat residual rod-scale error cannot be large in the newer rods.

It should be emphasized that the S values of Appendix 1 for

, a particular rod pair may not necessarily retlect the true accumulation of residual rod-scale error for that pair.

There are three reasons for this:

1. The calibration of the invar scale can change with time.

Some NGS rods vece used for long periods (say 10 years) between calibrations. It seems probable to the author that the invar scale in these cases was subject to con-ditions capable of changing the calibration.

2. Errors in the rod-temperature correction add an unknown component to the residual rod-scale error. This compo-neat may or may not cancel when backsight and foresight are differenced at a setup.
3. The snape of the residual rod-scale error function i between the videly spaced calibrated graduations is not known. If_it changes randomly tron graduation to adja-Procedure 8

- - -- . . .. ~ .. - -- .

l

~

cent graduation, then realistic leveling (even on a uni-fora slope) will not result in accumulation of error.

On the other mand, sonotonic behavior between the widely I spaced calibrated graduations would imply accumulation j on uniform slopes.

' Despite these uncertainties, the S data set is usef ul because~ it provides us with estimates of what an average or ma riana residual rod-scale error can be like if it is allowed to accumulate on a uniform slope. For example, an apparent tilt of up to 2.9 ma/km could be developed on a unif orm slope from residual rod-scale error in a -code 312 l rod pair, whereas that for a code 316 rod pair could be as auch as-0.7 as/ka.

Detailed rod cmHhration 1

i Begining with late 1980, all graduations on NGS leveling rods were calibrated with a new seasuring device using laser interferometry. According to Balazs and Young (1982), the observed graduation is converted to its true distance above the bottom of the rod base and then the micrometer reading is converted to the p rope r units and added on. This is accomplished during computer processing by accessing the pertinent rod calibration file. Rod error should be virtu-ally ellainated in this method unless the rod calibration changes with time and/or errors in the rod-temperature cor-rection do not cancel.

REFRACTIO5 CORREQTION Refraction error contaminates an observed height difference at a setup if there is unequal refraction of light on the foresight and backsight. Even for balanced sights this can occur if the refractive index functions along the paths 4

traversed by tne foresigat and backsight differ, a condition believed to be primarily a result of temperature-induced air density variations. Refraction error is most likely to arise and accumulate when leveling on a uniform slope waere i the foresight and backsight pass through consistently ~ dif-ferent (non-linear) te mpera ture distributions. In this situa tion the refraction error in the observed height.dif-ference for a section is approximately proportional to a near-surface vertical temperature difference parameter dt, the. observed height dif ference D1 for the section, and the sight length a squared. Because of the proportionality to D1, the refraction error is not nocaally subject to cancel-lation when forward and backward D1 seasurements are averaged. When D1 seasurements from two levelings separated Procedure 9

~ in ' tlae are 'dif ferenced to obtain d3h, the ref raction errors should cancel if both levelings were carried out along tne I saae route with similar sight lengths and atmospheric condi-tions.- However, experience has proven that it is not safe to assume cancellation or refraction error in dDh computa-tions. .For example,-sodern sight length maximuss are mark-

.edly smaller than those in the past, and level line. routes have shif ted away tros railroad tracks which are cnaracter-ized by abnormally hig h d t parame ters. Recent references are Bonford (19 71) , S trange (1981) , Holdahl(1982) ,' and S toin et al. (1982). .

I The formulas for .the refraction correction. which we re '

applied to the D1 data of this study are relatively complex; Balasz and Young (1982) and Holdahl (1982) may-be consulted J for details. However, it is important to point out that the i field tem perature observations secessary to obtain the dt parame ter at each setup have only been made since the fall

, of .1980 by the NGS. Thus the D1 data from only two lines used in this study were ref raction-corrected with observed temperature -data: L-24471/2 and L-24471/3 run in 1982, see profiles 11 and 15. The remaining D1 data used in this stu-dy are ref raction-corrected , but at parameters have been j predicted from the temperature stratification model of Hol-1 6ah1(1981) . .The model as implemented via REDUC 4 requires as J input the latitude and longitude of the bench marks defining

each section. Becau se of time restrictions, the latitude and longitude of a limited set of bench marks was determined by the NGS; the remaining bench mark positions were interpo-lated from these by an option available in REDUC 4 Field ex perimen ts s uggest that.the procedures used by the f NGS to apply refraction corrections are successtui in remov-ing most of the refraction error (Strange, 1981; Holdahl, 1982; Stein et al., 1982). This statement 4pplies whether the dt parameter is taken f rom observed data or is predicted by the Holdahl (1981) aodel. However, field testing is still in progress and there is some indication that the dt parameters predicted by the Holdahl (1981) model say be too large in some cases (Boss Stein, USGS, personal communi-cation, 1983). In addition, it is known that the surtace over which leve1 Lag proceeds can have a profound ef tect on i the at parameter; thus surfaces of unusually hign or low dt are a source of incompatibility with the Holdahl (1981) tes-perature stratitication model.

13fE050RIC COREBCTION 1,

The tidal distortions of the Earth's equipotential surfaces causes the measurement of a D1 value to be time-dependent.

! The purpose of the astronomic correction is to remove this tise-dependency. The equations for tse astronoalc cor-

.i Procedure 10 i

rection which was applied to the D1 data used in this study are complex; Salazs and Young (1982) should be consulted tor d e tails. The correction is only significant for north-south lines and at most amounts to 0.1 as/ka.

B&G5 ETIC ERROR The 'effect of the Earth's magnetic field on compensator lev-I els, particularly the Zeiss NI1 and NI2, was discovered'in.

l the Federal Rep ublic of Germany during releveling of that co untry 's first-order network. The magnetic error can be quite large, requiring corrections of up to 1.5 as/ka, and l 1s most evident in levelings oriented in the magnetic aeri-

! -dian, with observed height differences seasured to magnetic north being too small (Ruapf and seurisch, 1981).

All 1973 and 1974 levelings used in this study were carried out with Zeiss MI1 compensator instruments. These lines are: L-23453, L-23514, L-23456, L-23140, L-23136, L-23117, and L- 23527. The affected profiles are 1, 5, 2, 8, 7, 10, 14, 21, and 22, all located in the Puget Sound area. In addition, the two 1982 le vel lines used in this study, L-24471/2 and L-24471/3, were carried out with Zeiss NI2 compensator instruments. The affected profiles are 11 and 15, both located east of Puget Sound. The magnetic declina-tion in Washington is about 23 degrees east of true north.

Any of the above mentioned protiles whica have a significant component of length in that direction saould be interpreted

  • with caution because of the potential rapid accumulation of the augnetic error.

At this time it is not possible to correct the D1 data used in this study for magnetic error. The NGS is constructing a calibration facility to calibrate the response of their coa-pensator levels to magnetic fields, but the f acility is not yet in operation (Charles Whalen, NGS, personal coasuni-ca tion, May 1983). Even when it becomes operational, it may be that some instruments cannot be directly calibrated because the compensator mechanisms have been changed and the exact configuration used in the field is thus not recovera-ble. -

l Bascaa&BK STABILITY l Karcz et al. (1976) has shown that a correlation exists l between benchmark type and the magnitude of net relative

! vertical displacement inferred from repeat levelings. Boa-ford (1971) sta tes tha t the only benchmarks suitable for i determination of vertical crustal novements are those l Procedure 11 l

l;

anchored to bedrock. Benchmark types were identified from the _ benchmark descriptions tur tne level lines used in this study. It was discovered that very few dDh values are tor

rock-anchored benchmarks. The remainder are in concre te

, posts, metal pipes and rods, boulders, buildings, and other structures such as bridges and culverts. Data from Karcz et

.al. (1976) suggests that rock-anchcored benchmarks are the most likely to be stable, followed in descending order by buildings, bridges and culverts, and concrete posts. Bench-sarks on setal pipes and rods or in boulders were not included in the Karca et al. (1976) study.

REGRESSICE since most of the profiles contain a linear trend over their length (approzinately 20 to 180 km), it seems reasonable to suppose that this linear trend may in soae cases be an indi-cation of regional tilt, in others, the result of systematic error. To provide some quantification of apparent regional tilt, ,a n unweighted linear least squares regression of dDh on distance along the level line was run for each profile.

The regression line was constrained to go througn the origin because dDh is necessarily zero there. Obviously bad data poin ts were removed before the regression. Each regression provided a statistical T test of the null hypothesis: the slope of the regression line is zero. The usefulness of this simple test in what is actually a very complex situ-a tion is open to question, but the T test information is included fo'r the sake of completeness.

The purpose of the ragression is to provide some quantifica-tion of apparent regional tilt in the dDh profiles. If western Eashington and Oregon are indeed tilting in a regional manner either east or west, and the tilting is rap-id enough to overcome noise (random error and bench mark instabilities) in the dDh data, then the number, length, and areal distribution of east-west profiles compiled zor this study should be sufficient to define the regional tilt in an uneq uivocal way. This statement assumes that systematic errors have been eliminated to an extent that they can be discounted as a source of apparent tilt. Although there are many sources of systematic error in levellag, it can proba-bly be stated that the most serious, most coanon, and most difficult to deal with when using pre-1980 leveling data in the United States are retraction error and residual rod-scale error, and, in the case of lines carried out with compensator levels as late as 1982, the magnetic error. In the author's opinion, refraction error in the D1 data used for this study has been adequately corrected except for those situations where the leveling may have progressed over surfaces of unusually high or low dt parameter. This opin-lon is based on the field tests (referenced above) of the Procedure 12 i

NGS ref raction-corroctio n p roced ure. There is no reliable

, correction for residual rod-scale error for levelings car-ried out with coarsely calibrated rods. To make satters worse, this type of systematic error may not even reveal itself as 4 correla tion .with topograph y; the S satrices clearly show that in some cases the error can be of the same algebraic sign when leveling up a unifrom slope and down a uniform slope, as long as the slope ' gradients or sight lengths are dif ferent so that certain pairs of graduations are used. Another complication arises because the erfect of residual = rod-scale error will either be reinforced or can-celled largely by chance unen a dDh value is computed.

There is also ao reliable way to correct NGS D1 data obtained with compensator levels for magnetic error. Tnere-fore, it is probably imprudent to interpret as tectonic tilt any dDa profiles with significant components of length in l the magnetic aeridian.

s TRILATERATIOE/TEI&BGULATION The program outlined in Savage and Prescott (1973) toe the i

analysis of error associa ted with trilateration seasurements

is adequate in the sense that it takes into account all known systema tic errors (i.e., those associated with atmo-spheric refraction) and provides an estimate or randos error. Recent questions concerning the effects of these systematic errors on the determination of crustal dilatation 4

(Cheng et 41., 1981; Cheng and Jackson, 1982) were auccess-fully addressed by Savage and Prescott (1982) and Prescott l et al. (1982). There is no reason to demand an error analy-sis in addition to tnat presented by Savage et al. (1981).

A better way to check the conclusions of Savage et al.

(1981) is to analyze additional trilateration/ triangulation data from western Washington and western Oregon. However, a search of the NGS data base shows that no additional data exists (Richard Snay, NGS, personal communication, 1983).

l 1

I

)

Procedure 13 l

l

,, - - - - - , - - ,- - -. , , - - - - , - , . - . - - c -- -- -

AIE EEEL91 The objective is to find evidence in the profiles for regional tilt. Therefore the discussion is limited to that these. All straight line distances 1 are given to the near-est 5'ka. All tilts are taken tros tne regression data (see A p pendix 2) , and are smaller than values that would be obtained if the regression had been done on straight line distance rather than distance along the level line (the lat-ter is greater).

1 IEDIVIDUAL PROFILES Profile 1

, Nean Bay to 5.6 mi SE of Clallan Bay (1 = 35 km) 1974-1942 Despite the small number ot bench marks there is evidence for down to the southeast tilt of 0.4 as/ka. The 1974 lev-eling is subject to adgnetic error, but the line is primari-ly perpendicular to magnetic north. The last four points follow the topography, but this is too small a sample to make a strong case for topo9raphy-dependent systematic error, and the relief is only SC neters. No evidence froa benchmark descriptions for disturbed benchmarks.

Profile 2 11.4 mi W of Joyce to alyn (1 = 70 km) 1974-1931 Strong evidence for down to the east tilt of 1.0 as/km. The 1974 leveling is subject to magnetic error, but the direc-tion of the profile is about 80 degrees to magnetic north.

No obvious correla tio n with topography. Benchmark de scriptions indicate that N 14 and T 14 have been autilated, the concrete post at Z 13 has been chipped, and TIDAL 8 has new concrete work around it but is presumed undisturbed.

! Discussion 14 i

l

Profile 3 1.5 mi 2 of Bay City to 0.3 31 NE of Aberdeen (1 = 25 km) 1968-1947 There is evidence for down to the northeast tilt of 0.8 as/ka.- No magnetic error. Topograpaic relief is only 26 a over- the western 13 km of tne profile. yo evidence from benchmark descriptions for disturbed benchmarks.

Profile 4 Bay City to Bontesano (1 = 35 km) 1947-1920 There is no evidence of significant tilt. No magnetic error. No obvious correla tion with topography which has only 18 a relief. Benchaark descriptions indicate that G 12 may have settled, that most of the disk of S 12 has been torn oft, and that 5 12 has been obliterated so that the stamping cannot be read.

Profile 5 4.3 mi U of 3ontesano to Elma (1 = 20 km) 1974-1920 The last four benchmarks of this short line show tilt of about 2.9 ma/km down to the east, but tne interpretation of this in terms of regional tilt is not warranted because it occurs over a short distance (less than 15 km) . Ihe 1974 leveling is subject to zagnetic error, and the. direction of the profile is within 55 degrees of magnetic norta. Topo-graphic relief is only 18 a over 20 km. No evidence from j benchmark descriptions for disturbed benchmarks.

J Profile 6 Olympia to Auburn (1 = 60 km) 1928-1920 The estimated standard deviations are large relative to tne dDh values, but there is some indication for tilt down to the northeant. The upward trend from Tacoma to Auburn is consistent with a closed vertical velocity low between Taco-na and Seattle in figures 4 and 6 in Holdahl and Hardy (1979). Savage et a l. (1981) suggested that this low is the result of the 1965 Ms 6.5 Seattle earthquake; this pro-4 Discussion 13

file indica tes tha t the low may have been developing prior ,

to the earthquake. No magnetic error. The two additional '

benchmarks at 0 km.are on a spur from the reference. Bench-mark descriptions indicate that 0 10 is set on an iron pipe that is leaning and shows aorasion on the side opposite to the direction of lean.

Profile 7 Olympia to Tacoma (i = 40 km) 1973-1920 There is evidence for tilt ot 1.7 ma/km down to the north-east. The 1973 leveling is subject to magnetic error. The direction of this profile is close to that of magnetic north, and the direction of downward tilt is in the direc-tion expected for magnetic error. Therefore the tilt should not be regarded as real vertical movement. This profile en ters the velocity low ot Holdahl and Hardy (1979) which was interpreted by Savage e t al. (1981) to be a result of the 1965 Seattle earthquake (see discussion of profile 6) .

Another possibility is that the velocity low is a result of magnetic error in the 1973-74 surveys, and has nothing to do with the Sea ttle ea rthqua ke. The two bench marks at 0 km are on a spur from the reference. There is very little topographic relief (about 15 m) along this profile to gener-ate a topography-dependent systematic error. No evidence from benchmark descriptions for disturbed benchmarks.

Profile 8 Olympia to Tacoma (1 = 40 km) 1973-1928 This profile is simply profile 7 minus profile 6. There is evidence for tilt of 1.4 ma/km down to the nortaeast as in profile 7, and the remarks made taere concerning magnetic error also pertain to this protile. Therefore the tilt should not be regarded as real vertical movement. There is mo re topograpnic relief along this profile than in profile  !

7, but there is no obvious correl s. tion with the dDh values. l Bencamark descriptions indicate that TIDAL 6 is badly weath- l ered.

Profile 9 Auburn to Ellensburg (1 = 130 km) 1944-1904 Discussion 16

-. _ _ . - - - _ . _ - -~ -

,Tais profile suggests tha t the reference benchadrk N at Auburn has subsided relative to the rest ot the benchmarks. ,

If benchmark P had been chosen as reference, tilt down to' I the . east would be int erpre ted. The 1904 leveling was observed with paraffin rods of unknown calibration. No mag-netic error. There is nothing in the benchmark descriptions that . indicates that E has subsided, but 5 and W were repocted loose in the ground, El and F1 are corroded (F1 badly) , and part of the cement has been chipped f rom around the disk of E1.

Profile 10 East Auburn to 3.3 mi NE of Eagle Gorge (1 = 30 km) 1973-1944 The estimated standard deviations of the dDh values are too large relative to the dDh . values to permit an interpretation of real vertical movement. The 1973 leveling is subject to magnetic . error but the direction of this profile is roughly

. perpendicular to magnetic north. The topography is ideal

-for accumulation- of topograpay-dependent systematic error, l but there is no obvious correlation. No evidence from benchmark descriptions for disturbed benchmarks.

Profile 11 4

3.6 mi MW of Eagle Gorge to Cle Elum (1 = 70 km)

L 1982-1944 Tae estimated standard deviations are too large relative to the dDh values to permit an interpretation of real vertical movement, although there does appear to be a tilt of 0.1 ma/km up to the east. Possible magnetic error in the 1982 le veling. Ideal topography for the accumulation of topogra-phy-dependent systema tic error, but there is no obvious correlation. Benchmark descriptions indicate that 2103 T USGS is slightly loose in the ground, and that the top of the cap (disk) has been hit.

Profile 12 Anacortes to Burlington (1 = 20 km) 1952-1922 There is evidence for a tilt of 1.7 am/km down to the east.

No magnetic error. Very little topographic relief. Bench-Discussion 17 i

,-e- - ,- . - - , .c + , - , - , , - . , - - - - , , , - ,

w-,,-- , , - - , - . - - - - ~ , , . , , . , , -----~~-,,,,,,-,-,,~n, ----

mark _ descriptions indicate tha t TIDAL 4 is in a building that has settled, and that TIDAL 10 is in a building whose foundation has. cracked. If TIDAL 4 which is the referenca for this prottle has really settled, taen the tilt may be greater than indicated.

Profile 13 Sedro Woolley to 7.6 mi SE of concrete (1 = 45 km) 1958-1934 There is evidence for a tilt of 1.6 ma/km up to the east.

No magnetic error; perha ps a negative correlation with topography. The other teachsark at D = 0 ka is on a spur from the reference. If this benchmark was chosen as the reference, a tilt- of up to the east would still be inter-preted. Benchmark descriptions indicate that Q 61 which is the reterence is sutilated.

Profile 14 Sedro Woolley to 1.45 mi NE of Hockport (1 = 45 km) 1973-1953 There is good evidence for a tilt of 1.2 as/km down to the

, east. However, the 1973 leveling is subject to magnetic

, error and a substan tia l portion of tne profile is at 60 degrees to magnetic north. A negative correlation with topography exists, suggesting that topography-dependent sys-tema tic error may be an alternative interpretation of the tilt, but the topographic relief over the distance is guite small. No indication of disturbed benchmarks from benchmark descriptions.

Profile Il 0.75 mi ME of Rockport to Winthrop (1 = 105 ka) 1982-1958 The first portion of the profile shows good evidence for a tilt of 1.0 mm/km up to the northeast. The middle part or the profile has no benchmarks common to both levelings. The last portion of the profile suggests a down to the southeast tilt. The overall regression line is not signiticantly dit-ferent from zero, but this is aisleading. The possibility of magnetic error in the 1982 leveling exists, but it would Discussion 18

be expected to act opposite to the upward tilt. The topog-raphy over the middle portion of the profile is not

, 4ccurately represented because only eleva tions of benchmarks with dDh values are used to construct the topography pro-files in this report. No indication of disturbed benchmarks from henchmark descriptions.

Profile 16 Astoria to Portland (1 = 115 km) 1941-1920 This profile shows good evidence for a tilt of 0.7 as/km down to the southeast. The first half of the profile is east-west and tae second half of the profile is north-south.

No magnetic error. Very little topographic relief because the profile follows the Columbia river. Denchmark descriptions indicate that in Septseber 1934 2 14 was reported to be covered vita a steel plate; the concrete post at K 30 was found broken off in 1925, but the dist was replaced in its original position with new concrete cast a round the mark; the foundation block at Q 30 was reported in February 1935 to be se ttling ; the cap at 7 30 was reported in October 1940 to be autilated.

Profile 17 Portland to approx. 5 mi W of Quinton (1 = 170 k m).

1941/42-1921 This profile shows good evidence for a tilt of 0.6 na/km down to the east. No magnetic error. The topographic relief is quite small f or a profile ot this length because it follows the Columbia river. No evidence of disturbed benchmarks from benchmark descriptions.

Proffde 18 Hebo to Salen (1 = 75 km) 1941-1930 There is some indication of short wavelength vertical nove-ment along this profile, but no evidence for a regional l tilt. The standard deviations are large relative to many of j the dDh values. No magnetic error. A slight suggestion of negative correla tion with topography. No evidence of dis-turbed benchmarks from benchmark descriptions.

Discussion 19 i

__ _ _ _ _ _ _ _ _ . _ . _ . . _ _ , . _ _ _ _. -__.__...-_.m____ . . . _ . . _ , - . _ _

i Profile 19 Newport to Albany (1 = 80 km) 1941-1930 There is some . evidence for a tilt of 0.2 ma/km down to' the east. .However, the standard deviations are large relative to many of the dDh values and the plot does not give the ap pearance of a progressive increase in tilt down to the east. No magnetic error. A slight suggestion of negative correlation with . topography. No- evidence of disturbed benchmarks from benenmark descriptions.

Profile _20 Reedsport to Drain (1 = e5 km) 1941-1930 This profile shows some evidence for a tilt of 0.2 as/km down to the east. The estimated standard . deviations are large relative to many of the dDh values. There is a sug-gestion of a negative topogra phic correlation, but the relief is only 100 m over 85 km. No magnetic error. No evidence of disturbed benchmarks from benchmark descriptions.

Profile 21 Aberdeen to 0.5 mi S of Sappho (1 = 130 km) 1974-1933 Yery little evidence for tilt in the first nalf of the pro-file; the second half shows tilt down to the norta. The direction of this profile is north-northeast, so that the magnetic error in the 1974 leveling may have an effect on the overall tilt of 0.4 ma/km down to the north. There is no consistent correlation with topography. No evidence of disturbed benchmarks from benchmark descriptions.

Profile 22 Clympia to 1.7 mi N of Eldon (1 = 60 km) 1973-1931 )

l The standard de via tions are large relative to many of the dDh values. Thus vertical sovements probably should not be interpreted from this profile. The 1973 leveling is subject to magnetic error; since the direction of the profile is Discussion 20 l

north, . thia say explain tha tendency of the data to indicate a tilt of down to the north.- Benchmark descriptions indi-cate .tnat Y 16 may have settled with the bridge in which it is se t.

PROFILE SUREAST The profiles may be viewed as a set of apparent regional  ;

tilt indicators discretized in space and time. The tilt i (slope of the regression line). for each profile was divided by the number of years between the constituent levelings co give' a tilt rate in as per ka-year. The tilt rates have been plotted near their profiles in figures 2 through 5 to

give an indication of the areal distribution of tilt. (The tilt rates in as per ka-year have been scaled by 100,000 in the figures ror convenience; negative numbers mean tilt down to the east and positive numbers mean tilt up to the east for east-west profiles; the two north-south profiles on the Olympic peninsula are down to the north.) In figures 2 and i 3, tilt rates for all 22 profiles are represented; in fig- i ures 4 and 5, the only tilt rates represented are those froa
profiles which in the author's judgment provide real indi-

! ca tions of regional tilt. Both sets of figures show the same taing: down to the east tilting of western Washington and western Oregon and up to the east tilting farther to the east in Washington. Figure 2 suggests that the change tron i negative to positive tilt takes place about 200 km inland

from the coast in Washington, but we can only conclude this for northern Washington if we restrict attention to figures 4 and 5. Again refering only to tigures 4 and 5, the tilt rate appears to be a factor of three greater near Aberdeen, Astoria, and Portland than in areas a few hundred kilometers to the north and south along tne coast. However, the hign-est consistent tilt rate is observed in northern Washington between Anacortes and Burling ton. Between Burlington and
Rockport there are conflicting indications of the direction j of tilt and no conclusions can be drawn there, except that
the area appears to straddle the divide between negative tilt to the west and positive tilt to the east.

If a further reduction is made in the protiles considered reliable by eliminating those associated with compensator levels, then only profilss 3, 12, 13, 16, 17, and 20 are left (see Appendiz 2). These remaining profiles still indi- '

cate the features already interpreted.

Discussion 21

-- ----w - --, p 1

1

=

4 1

a a s

  • O n

j x

k M

N, J' a

e

$ fe; ' x, .

J

?

~5 5

. ;1 I \

s ,

Bl .

  • I 2 $ 5, 7 .t I .
s

?

i E

.! w. ..

s 5??

r. .

$ i O

}

g> b y

= c y i No i155!

W j' -,

~

Q

!  !.j 7U l .

2

i 3

24

\* i 3 .,

i .,

l'r h -

}

h ,d * .

a. 4 '%

. .!. 6

~

.I,

.e 5 , .

. 1 v 6

  • g

' b c) .

~ 4

$\

k v

s ?c

\*)

no

- ' \ .

3 1, -

i .

1 re

% __ a N

. T.

w

.m=* i 3

i I

t l

d I 1

s s

2 4 j IL z<

J.::

  • ) *?

, a 5 3 .

E^

l I 1

- 1

<( WJ' 1 i.

. n f

'k $  ?

1 I,fdjd 4

4 I

\

1 I

> I

( .

t g

\

2 .,

l

\

t i I

\

1, 1 n

e l s e 3 -

\

} .

as j

x ., . -j-I e

l i

5

,. . _ _ . , . - - . - - . , - --- - -- - , - - . - n. -- - - - --

L sussaar l

~ 1. Ref raction' error has probably been adequately removed from the .D1 data used in this report.by application of the -NGS refraction correction. This conclusion is based on.Lthe results of recent-field tests (referenced aoove) l of the NGS refraction-correction procedure. It is pos-sible that at least some of- the pre-1980 _ leveling was carried out ;ove surfaces of unusually high or low val-ues of the temperature difference parameter. In this situation the predicted values from the Holdahl (1981)

, temperature stratification model- might result in too much or too little correction. Nonetheless, it is prob-ably true that most of the leveling is adequately corrected so that refraction error is not expected to be 4

a serious probles in the dDh data.

2. Residual rod-scale error may be a component of the D1 data used in this report. Analysis of all pertinent rod pairs indica tes tha t if residual rod-scale error is allowed to accumulate on a uniform slope, it may do so at a rate of up to 2.9 ma/km for a code 312 cod pair, and up to 0.7 am/km for a code 31o rod pair. There is no fully adegua te method for correcting for residual 3 rod-scale error, or even for detecting its existence.

Thus the possibility of apparent regional tilt from this single source of systematic error cannot ' be eliminated.

3. Magnetic error may be a component of the 1973, 1974, and
1982 D1 data used in this report. There is no way at L present to correct tais error because the compensator

+

levels involved nave not yet been calibrated by tne NGS.

l However, we at least know which levelings are affected and vaat the effect is lixely to be on the dDh data: a

! tilt down in tue direction of a4gnetic north of up to 1.5 as/ka.

4. A synthesis ot the dDh data for 22 profiles suggests tha t a regional tilt down to the east of rate 0.01-0.06 "

au per ks year affects the western Oregon-Washington area. These tilt rate estimates are probaoly low rela-tive to their actual values because tney were determined by regression on level line length which is larger than straight-line distance. The direction of tilt may l' change to up to the east in Washington at a distance of about 200 km inland from tae coast. No auch change is

observed in Oregon even though one profile does extend a similar distance to the east.
5. The error analysis done by Savage et al. (1981) on the trilateration data from the Puget Sound area is adequate in the sense that all known systematic errors are cor-1 rected and random error is estimated. A check was made j Susaary- 22

-- a -.---,,,,.._.,.--,.--,,,---,,--__.,.,.,._..n.,,n-,, ..,_- ,,,.__,.-- , ,,n.,-,,-- ,.,n n e,,

l at the -NGS for additional trilateration/ triangulation I data but none :das ~ discovered that was suitalile for a

-crustal strain determination .in eitner Washington or Oregon.

4 k

4 4

Summary 23

REFERENCES 1

Ando and Balazs, Geodetic evidence for aseismic subduction of the Juan de Fuca plate, JGR, 84, 3023-3028, 1979.

Balazs and Young, Corrections applied by the National 1 Geodetic Survey to precise leveling observations,  !

NOAA Technical Memorandua NOS NGS 34, 12 pp.,

1982.

Bonford, Geodesy, Oxford University Press, 3rd ed.,

731 pp., 1971.

Cheng, Jackson, and Davis, Apparent instrument offset, refraction and tectonic dilatation near Paladale, California,-Eos, 62, 1051, 1981.

Cheng and Jackson, Dilatations in California: Tectonic deformation or systematic error?, Eos, 63, 430, 1982.

Holdahl and Hardy, Solvabilitp and multiguadric analysis as applied to investigations of vertical crustal movements, Tectonophysics, 52, 139-155, 1979.

Holdahl, A model of temperature stratification for correction of leveling refraction, NOAA Technical Memorandua NOS NGS 31, 27 pp., 1981.

Holdahl, Recomputation of vertical crustal motions near Paladale, California, 1959- 1975, JGR, 87, 9374-9388, 1982. .

Karcz, 30ereale, and Porebski, Assessment of benchmark credibility in the study of recent vertical crustal movements, Tectonophysics, 33, T1-T6, 1976.

Pelton and Smith, Contemporary vertical surf ace displacaments in Yellowstone National Park, JGR, 87, 2745-2761, 1982. e Prescott, Savage, and Lisowski, Results and implications of one year of biweekly geodolite distance seasurements, Eos, 63, 1106, 1982.

Hellinger and Adams, Geodetic evidence for active landward tilting ot the Oregon and Washington coastal ranges, Geophysical Research Letters, 9, 401-403, 1982.

Rumpf and Meurisch, Systematische anderungen der ziellinie eines prazisions kompensator-nivelliers -- insbesondere des Zeiss H11 -- durch magnetische gleich - und References 24

l L l

vechselfelder, Federation Internationale de Geometres, IYI International Congress, Switzerland, 1981.

Savage and Prescott, Precision of geodolite distance measurements for determining fault movements, JGR, 78, 6001-6008, 1973.

Savage, Lisowski, and Prescott, Geodetic strain seasurements '

in Washington, JGE, 86, 4929-4940, 1981.

Savage and Prescott, Reply to Cheng and Jackson, Eos, 63, 1106,-1982.

Stein, Thatcher, Strange, Holdahl, and Whalen, Field test for refraction in leveling, southern California, Eos, 63, 4 1106, 1982.

Strange, The impact of refraction correction on leveling-

. interpretations in southern California, 86, 2809-2824, i-1981. %R Vanicek, Castle, and Balazs, Geodetic leveling and its l applications, Reviews-of Geophysics and Space Physics, '

18, 505-524, 1980.

I l

l References 25

l -

DOCU V EN-~

PAGE PU _ E D _

AkO. msnom NO. OF PAGES O-REASON-O PAGE ILLEGIBLE:

PDR CF O HARD COPY FILED AT:

OTHER

/ /

O BETTER COPY REQUESTED ON E TOO LARGE TO FILM:

[

HARD COW FILED AT: PDR

/ OTHER O FILMED ON APERTURE CARD NO.

ObYObh[ Y- O[

%ru-04

l l

I APPENDIX 1 l

ANALYSIS OF R00 CALIBRATION DATA i

1 e

. INPUT .

NO CALIBRATION DATA NO OF CAL MEAS = 0 NO3INAL LENGTH OF 700TPIECE =

2001 30D2 NGS CODE 311 311 SERIAL NO V W CAL DATE 19020322 19020326 LABORATORY STD TEMP 0.0C 0.0C EIP COEF 4. 0 0x10 (-6) /C 4.00I10 (-6)/C EXCESS 0.3933 55/5 0.5433 H5/5 INDEI Coa 0.0000 55 0.0000 MM AVG FOR 57499 PAIR 1 0.0C 4. 00I10 (- 6) /C 0.4683 HM/n NOTE: THE RODS OF THIS PAIR ARE PARAFFIN.

THERE IS NO CALI3 RATION DATA FOR THEM IN THE NGS ROD AND INSTRUMENT FILE.

V ALUES FOR STD. T EMP. , EIP. COEF. , AND EXCESS ARE IN THE FILE. THEIR ULTIMATE SOURCE IS THE ARCHIVAL RECORDS.

i

)

I Page 1

, .- . , . , - . . -,,.--.e- . ,v- - - - - , _ , , _ , _ . - , ~ . , . . , - , . . . .e--,m.. - . - . - - --m

PAGE 2 l

l INPUT CAL. DATA 315 (IN-G R AD) FORMAT NO OF CAL HEAS =-3 NOMINAL LENGTR OF FOOTPIECE = 20.0 C5 ROD 1 RCD 2 NGS CODE 3 12 312 SERIAL NO 201 202 ,

l CAL DATE 19201127 19201127 LABORATORY NGS NGS STD TEMP 0.0C 0.0C EIP COEF 1. 00110 (-6) /C 1. 00110 (-G) /C EXCESS 0.0623 55/5 0.1810 55/5 INDEI COR -0.1770 55 0.0770 55 AVG FOR 82270 PAIR 2 0.0C 1. 00110 (- 6) /C 0.1216 MM/5 NOR. LENGTH OF INTERVALS CH 100.0000 200.0000 300.0000 NEAS. LEN. OF INTER. 8001 CH 100.0007 200.0104 300.0187 5EAS. LEN. OF INTER. R002 CH 100.0109 200.0257 300.0543 OUTPUT ROD-SCALE ZR. (ROD 1) 55 -0.0070 -0.1040 -0.1870 R ES. ROD-SCALE BR. (ROD 1) 55 0.1146 0.1392 0.1778 ROD-SC ALE EE. (2002) 55 -0.1090 -0.2570 -0.5430 RES. ROD-SCALE ER. (ROD 2) 55 0.0126 -0.0138 -0.1782 120.0000 220.0000 320.0000 RES ROD-SCALE ERROR 55 FS= ROD 2 320.0000 0.2928 0.3174 0.3560 220.0000 0.1284 0.1530 0.1916 120.0000 0.1020 0.1266 0.1652 120.0000 220.0000 320.0000 BS= ROD 1 RES ROD-SCALE ERROR 55 FS= ROD 1 320.0000 -0.1652 -0.1916 -0.3560 220.0000 -0.1256 -0.1530 -0.3174 120.0000 -0.1020 -0.1284 -0.2928 120.0000 220.0000 320.0000 BS= ROD 2 RES ROD-SCALE ERROR (100 SETUPS) 55 FS du ,s . pyx j , a 320.0000 6.3800 6.290 j0r01D0 220.0000 0.0900 <00UU D ', b ' ?

120.0000 0.

-6.2900 ,i- jf , r.;.

-0.0900 -6.3800 t

12 .0000 220.0000 320.0000 BS' Page 2

PAGE J t 1 INPUT.

CAL. DATA HAS (IN-GR AD) FORMAT NO OF CAL MEAS = 3 NOMINAL LENGTH OF FOOTPIECE = 20.0 C5 ROD 1 ROD 2 NGS CODE 312 312 SERIAL NO 204 206 CAL DATE 19200812 19200812 LABORATORY NGS NGS

. STD TEMP 0.0C 0.0C EIP COEF 1.00110 (-6) /C 1.00I10 (-6) /C EXCESS 0.1757 as/n 0.0993 as/s INDEI COR -0.3180 53 -0.2920 MM AVG FOR 74223 PAIR 2 0.0c 1. 00I10 (-6) /C 0.1375 HM/M N05. LENGTH OF INTERY ALS CH 100.0000 200.0000 300.0000 5 EA S. LEN. OF INTER. ROD 1 CM 100.0184 200.0584 300.0527 3 EA S. LEN. OF INTER. ROD 2 C3 100.0260 200.0254 300.0298 OUTPUT ROD-SCALE ER. (ROD 1) Ms -0.1840 -0.5840 -0.5270 R ES. ROD-SC ALE E2. (ROD 1) aa -0.0465 -0.3090 -0.1145 ROD-SCALE ER. (ROD 2) M5 -0.2600 -0.2540 -0.2980 RES. 20D-SC ALE ER. (ROD 2) 55 -0.1225 0.0210 0.1145 120.0000 220.0000 320.0000 RES ROD-SCALE ERROR 55 FS= ROD 2 320.0000 -0.1610 -0.4235 -0.2290 220.0000 -0.0675 -0.3300 -0.1355 120.0000 0.0760 -0.1865 0.0080 120.0000 220.0000 320.0000 BS=RODI RES ROD-SCALE BEROR 55 FS=R001 320.0000 -0.0080 0.1355 0.2290 220.0000 0.1865 0.3300 0.4235

. 120.0000 -0.0760 0.0675 0.1610 120.0000 220.0000 320.0000 BS= ROD 2 RES ROD-SCALE ERROR (100 SETUPS) 53 PS 320.0000 -8.4500 -14.4000 0.0000 I 220.0000 5.9500 0.0000 14.4000 120.0000 0.0000 -5.9500 8.4500 120.0000 220.0000 320.0000 BS l

Page 3

)

~_ ._- _ _ _ _ _ - _ .

_ _ _ _ _ _ _ _ _ , _ _ - _ ____ i

1 PAGE 4 IMPUT CAL. D ATA HaS (IN-GR AD) FORMAT 50 0F CAL HEAS = 3 NOMINAL LENGTH OF FOOTPIECE = 20.0 C3 20D1 ROD 2 NGS CODE 312 312 SERIAL Mo 208 209 i CAL DATE 19200325 19200325 LABORATORY .NGS 3GS STD TEEP 0.0C 0.0C EIP COEF 1. 00110 (-6) /C 1. 00110 (-6) /C EXCESS 0.0497 55/5 0.1687 55/5 INDEI COR 0.1300 53 0.1100 55 AVG FOR 82195 PAIR 1 0.0C 1.00110 (-6) /C 0.1092 53/5 505. LENGTH OF INTERYALS C3 100.0000 200.0000 J00.0000

' 5 EAS. LEN. OF INTER. ROD 1 CH 100.0003 200.0197 300.0149 EEAS. LEN. OF INTER. ROD 2 C5 100.0168 200.0363 300.0506 OUTPUT ROD-SCALE ER. (ROD 1) 53 -0.0030 -0.1970 -0.1490 RES. ROD-SCALE ER. (ROD 1) 55 0.1062 0.0214 0.1786 ROD-SCALE ER. (ROD 2) 55 -0.1680 -0.3630 -0.5060 R ES. ROD-SCALE ER. (ROD 2) 35 -0.0588 -0.1446 -0.1784 120.0000 220.0000 320.0000 RES ROD-SCALE ERROR 55 FS= ROD 2 320.0000 0.2846 0.1998 0.3570 220.0000 0.2508 0.1660 0.3232 120.0000 0.1650 0.0802 0.2374 120.0000 220.0000 320.0000 SS=RODI RES ROD-SCALE ERROR 35 FS= ROD 1 320.0000 -0.2374 -0.3232 -0.3570 220.0000 -0.0802 -0.1660 -0.1998 120.0000 -0.1650 -0.2508 -0.2846 120.0000 220.0000 320.0000 dS= ROD 2 RES ROD-SCALE ERROR (100 SETUPS) 35 FS 320.0000 2.3600 -6.1700 0.0000 220.0000 8.5300 0.0000 6.1700 120.0000 0.0000 -8.5300 -2.3600 120.0000 220.0000 320.0000 BS Page 4

PAGE a

~

INPDT CAL. DATA HAS (IE-GRAD) FOR8AT MO OF CAL MEAS = 3 NOMINAL LENGTH OF FOOTPIECE = 20.0 Cs ROD 1 ROD 2 NGS CODE 3 12 312 SERIAL MO 212 213 CAL DATE 19200527 19200527 LABORATORY NGS NGS SID TERP 0.0c 0.0C EIP COEF 11.40110 (-6) /C 11. 40110 (-6) /C EXCESS -0.1287 55/5 -0.1200 55/5 INDEI COR -0.1390 as 0.1270 35 AVG FOR 74223 PAIR 1 0.0C 11.40I10 (-6)/C -0.1243 aM/M MON. LENGTH OF INTERYALS C5 100.0000 200.0000 300.0000 H EAS. LEN. OF INTER. 2001 Cs 99.9735 199.9713 299.9614 HEAS. LEN. OF INTER. ROD 2 C3 99.9812 199.9701 299.9640 OUTPUT ROD-SCALE ER. (ROD 1) HM 0.2650 0.2870 0.3860 RES. HOD-SC ALE ER. (2001) 55 0.1407, 0.0384 0.0131 ROD-SCALE Zi. (ROD 2) HM 0.1880 0.2990 0.3000 RES. ROD-SCALE ER. [30D2) HM 0.0637 0.0504 -0.0129 120.0000 220.0000 320.0000 RES ROD-SCALE ERROR 53 FS= ROD 2 320.0000 0.1536 0.0513 0.0260 220.0000 0.0903 -0.0120 -0.0373 120.0000 0.0770 -0.0253 -0.0506 120.0000 220.0000 320.0000 BS=RODI RES ROD-SCALE ERROR HM FS= ROD 1 320.0000 0.0506 0.0373 -0.0260 220.0000 0.0253 0.0120 -0.0513 120.0000 -0.0770 -0.0903 -0.1536 120.0000 220.0000 320.0000 BS=R002 R ES ROD-SCALE ERROR (100 SEIUPS) 55 PS 320.0000 10.2100 4.4300 0.0000 220.0000 5.7800 0.0000 -4.4300 120.0000 0.0000 -5.7800 -10.2100 120.0000 220.0000 320.0000 BS Page 5 f

c PAGE 6 INPOT' CAL. DATA RAS (IN-G R AD) FOR5AT 50 0F CAL MEAS = 3 NORINAL LE3GTH OF FOOTPIECE = 20.0 C5 l ROD 1 ROD 2 '

MCS CODE 312 312 SERIAL NO 222 223 CAL DATE 19220223 19220223 LABORATORY NGS NGS STD TE5P 0.0C 0.0c ZIP COEF 1. 00110 (-6) /C 1.00110 (-6) /C EXCESS 0.0367 55/5 0.0493 53/5 INDEI COR -0.0250 55 0.0250 35 AVG FOR 82315 PAIR 1 0.0c 1. 00110 (- 6) /C 0.0430 35/5 505. LENGTH OF INTERVALS CM 100.0000 200.0000 300.0000 REAS. LEN. OF INTER. ROD 1 C5 100.0024 200.0023 300.0110 NEAS. LEN. OF INTER. ROD 2 CM 100.0074 200.0086 300.0148 OUTPUT ROD-SCALE ER. (ROD 1) 55 -0.0240 -0.0230 -

0.1100 R ES. ROD-SCALE ER. (ROD 1) 55 0.0190 0.0630 0.0190 SOD-SCALE ER. (20D2) 55 -0.0740 -0.0860 -0.1480 R ES. ROD-SCALE ER. (ROD 2) 55 -0.0310 -

0.0000 - 0.0190 120.0000 220.0000 320.0000 RES ROD-SCALE ZEROR 55 FS= ROD 2

. 320.0000 0.0380 0.0820 0.0380 220.0000 0.0190 0.0630 0.0190 120.0000 0.0500 0.0940 0.0500

120.0000 220.0000 J20.0000 BS= BOD 1 RES ROD-SCALE ERECE 55
FS= ROD 1 l

320.0000 -0.0500 -0.0190 -0.03d0 220.0000 -0.0940 -0.0630 -0.0820 I 120.0000 -0.0500 -0.0190 -0.0380 120.0000 220.0000 320.0000 BS= ROD 2 i RES ROD-SCALE ERROR (100 SETUPS) 55 FS i 320.0000 -0.6000 3.1500 0.0000 i 220.0000 -3.7500 0.0000 -3.1500 120.0000 0.0000 3.7500 0.6000 120.0000 220.0000 320.0000 BS i

l I

Page 6

- - , , , . ----,,-n-n. ,n-----c,,--n e ,vn- - - - -n e,---,n-o-m-e----,-,,m.m.,en-- --~-v-,, -ma-

PAGE 7 INPUT CAL. DATA HAS (IN-G R AD) FORMAT NO OF CAL 3EAS = 3 NOMINAL LENGTH OF FOOTPIECE = 20.0 C5 2001 ROD 2 NGS CODE 312 312 SERIAL NO 224 225 CAL DATE 19210429 19210429 LABORATORI NGS NGS STD TE5P 0. 0C 0.0C EIP COEF 0.10110 (-6) /C 0.10110 (- 6) /C 2

EXCESS 0.0330 as/n 0.0377 55/M INDEI COR 0.1400 M5 0.1150 na AVG FOR 82270 PAIR 1 0.0C 0.10110 (-6) /C 0.0353 MN/M N05. LENGTH OF INTERY ALS CM 100.0000 200.0000 300.0000 3EAS. LEN. OF INTER. ROD 1 C5 100.0046 200.0066 300.0099 REAS. LEF.-0F INTER. ROD 2 C5 100.0059 200.0067 300.0113 OUTPUT ROD-SCALE ER. (ROD 1) 55 -0.0460 -0.0660 -0.0990 R ES. ROD-SCALE ER. (ROD 1) 55 -0.0107 0.0046 0.0069 ROD-SCALE ER. (ROD 2) 53' -0.0590 -0.0670 -0.1130 RES. ROD-SC ALE BR. (ROD 2) an -0.0237 0.0036 -0.0071 120.0000 220.0000 J20.0000 RES ROD-SCALE ERROR MM FS= ROD 2 320.0000 -0.0036 0.0117 0.0140 220.0000 -0.0143 0.0010 0.0033 120.0000 0.0130 0.0283 0.0306 120.0000 220.0000 320.0000 BS=RODI .

RES ROD-SCALE ERROR M5 FS= RO D I 320.0000 -0.0306 -0.0033 -0.0140 220.0000 -0.0283 -0.0010 -0.0117 120.0000 -0.0130 0.0143 0.0036 120.0000 220.0000 320.0000 85= ROD 2 RES ROD-SCALE ERROR (100 SETUPS) 55 FS 320.0000 -1.7100 0.4200 0.0000 220.0000 -2.1300 0.0000 -0.4200 120.0000 0.0000 2.1300 ,1.7100 120.0000 220.0000 320.00.00 BS l

l 4

i Page 7

- ._ _,..-_ _. - ,..r_ . . _ . _ ~ --.7 , . , . - - , _ , , _ _ _ . _ _ - , , , -

..---...,y~-....,..-.-_--.m_,,, --y-w

l PAGE d INPUT CAL. DATA HAS (IN-G R AD) FORMAT NO OF CAL MEAS = 3 NOMINAL LENGTM OF FOOIPIECE = 20.0 C3 RODI ROD 2 NGS CODE 312 312 SERIAL MO 228 229 CAL DATE 19280720 19280720 LABORATORY NBS NBS STD TEMP 28.7C 28.9C EIP COEF 1. 4 0I10 (-6) /C 1. 40110 (-6) /C EXC ESS 0.0267 MM/M 0.0067 55/3 INDRI COR 0.1000 M5 -0.1000 an AVG FOR L-163 PAIR 2 28.8C 1. 40I10 (- 6) /C 0.0167 HM/3 MOM. LENGTH OF INTERVALS Ca 100.0000 200.0000 300.0000 3EAS. LEN. OF INTER. ROD 1 C3 99.9980 200.0040 300.0080 N EA S. LEN. OF INTER. ROD 2 C3 99.9960 200.0000 300.0020 OUTPUT ROD-SC ALE EE. (ROD 1) 53 0.0200 -0.0400 -0.0890 B RS. ROD-SCALE EE. (ROD 1) MM 0.0367 -0.0066 -0.0299 ROD-SCALE ER. (ROD 2) 55 0.0400 0.0000 -0.0200 R ES. ROD-SCALE ER. (ROD 2) an 0.0567 0.0334 0.0301 120.0000 220.0000 320.0000 RES ROD-SCALE ERHOB M5 FS= ROD 2 320.0000 0.0066 -0.0367 -0.0600 220.0000 0.0033 -0.0400 -0.0633 120.0000 -0.0200 -0.0633 -0.0866

, 120.0000 220.0000 320.0000 BS= ROD 1

  • RES ROD-SCALE ERROR 33 FS= ROD 1 320.0000 0.0866 0.0633 0.0600 220.0000 0.0633 0.0400 0.0367 120.0000 0.0200 -0.0033 -0.0066 120.0000 220.0000 320.0000 BS=R002 RES ROD-SCALE 2RROS (100 SETUPS) 3M PS 320.0000 4.6600 1.3300 0.0000 220.0000 3.3300 0.0000 -1.3300 120.0000 0.0000 -3.3300 -4.6600 120.0000 220.0000 320.0000 as Page 8

PAGE 9 INPUT CAL. DATA HAS (IN-G R A D) FORMAT NO OF CAL MEAS = 3 NOMINAL LENGTH OF FOOTPIECE = 20.0 C3

'iOD 1 80D2 NGS CODE 312 312 SERIAL NO 229 230 CAL DATE 19280720 19301003 LADORATORY NBS NBS STD TE3P 28.9C 20.0C EIP COEF 1.4 0 X10 (-6) /C 1. 4 0110 (-6) /C EXCESS 0.0067 MH/3 -0.0643 as/3 INDEI COR -0.1000 M3 -0.1000 MN AVG FOR L-751 PAIR 3 24.4C 1.40110 (-6) /C -0. 028d 53/3 NO3. LENGTH OF INTERYALS C3 100.0000 200.0000 300.0000 NEAS. LEN. OF INTER. ROD 1 C3 99.9960 200.0000 300.0020 M EA S. LEN. OF INTER. ROD 2 C3 99.9900 199.9900 299.9800 OUTPUT ROD-SC ALE ZR. (ROD 1) as 0.0400 0.0000 -0.0200 R ES. ROD-SCALE ER. (ROD 1) 35 0.0112 -0.0576 -0.1064 ROD-SCALE 23. (R0D2) 55 0.1000 0.1000 0.2000 R ES . ROD-SCALE ER. (ROD 2) 33 0.0712 0.04j4 0.1136 120.0000 220.0000 320.0000 RES 80D-SCALE ZR003 N3 FS= ROD 2 320.0000 -0.1024 -0.1712 -0.2200 220.0000 -0.0312 -0.1000 -0.1488 120.0000 -0.0600 -0.1288 -0.1776 120.0000 220.0000 320.0000 BS= ROD 1 RES ROD-SCALE ERROR 3M FS= ROD 1 320.0000 0.1776 0.1488 0.2200 220.0000 0.1288 0.1000 0.1712 120.0000 0.0600 0.0312 0.1024 120.0000 220.0000 320.0000 BS= RO D2 RSS ROD-SCALE ERRO2 (100 SETUPS) 55 FS 320.0000 3.7600 -1.1200 0.0000 220.0000 4.8800 0.0000 1.1200 120.0000 0.0000 -4.8800 -3.7600 120.0000 220.0000 320.0000 BS Page 9 O

l PAGE 10 INPUT CAL. DATA HAS (0-G R A D) FORMAT NO OF CAL 3EAS = 3 EOMINAL LENGTH OF FOOTPIECE = 0.0 CM 30D1 R002 NGS CODE 312 3 12 SERIAL NO 243 244 CAL DATE 19270610 19270610 LA80BATORY NBS 583 STD TEMP 21.6C 21.7C EIP CORE 2.50110 (-6) /C 2.50 E 10 (-6) /C EXCESS 0.2000 as/M 0.1500 3M/M INDEI COR -0.2000 ns -0.1500 as AVG FOR L-13 PAIR 1 21.6C 2. 50X 10 (- 6) /C 0.1750 33/a nod. LENGTH OF INTERVALS C5 100.0000 200.0000 300.0000 R EA S. LEN. OF INTER. ROD 1 C3 100.0000 200.0200 300.0400 REAS. LEN. OF INTER. BOD 2 CM 100.0000 200.0200 300.0300 OUTPUT ROD ER. (ROD 1) 35 0.0000 -0.2000 -0.4000 i

ROD-SCALE ER. (ROD 1) 55 -0.2000 -0.4000 -0.6000 RES. SOD-SCALE ER. (ROD 1) 55 -0.0250 -0.0500 -0.0750 i ROD ER.(ROD 2) HM 0.0000 -0.2000 -0.3000 ROD-SCALE ER. (ROD 2) HM -0.1500 -0.3500 -0.4500 R ES. ROD-SCALE EE. (ROD 2) M3 0.0250 0.0000 0.0750

100.0000 200.0000 300.0000 RES ROD-SCALE ERROR HH PS= ROD 2 300.0000 -0.1000 -0.1250 -0.1500 200.0000 -0.0250 -0.0500 -0.0750 100.0000 -0.0500 -0.0750 -0.1000 100.0000 200.0000 300.0000 B5=30D1 RES ROD-SCALE ERROR MM FS=RODI 300.0000 0.1000 0.0750 0.1500 i 200.0000 0.0750 0.0500 0.1250 .

100.0000 0.0500 0.0250 0.1000 100.0000 200.0000 300.0000 BS= RO D2 R ES - ROD-SCALE ERROR (100 SETUPS) 58 ,

FS 300.0000 -0.0000 -2.5000 0.0000 200.0000 2.5000 0.0000 2.5000 100.0000 0.0000 -2.5000 0.0000 100.0000 200.0000 300.0000 BS Page 10

)

PAGE 11 INPUT CAL. DATA HAS (0-G R AD) FORMAT 30 0F CAL 3EAS = 4 NOMINAL LENGTH OF F0072IEC2 = 0.0 C3 )

ROD 1 ROD 2 NGS CODE 312 312 SERIAL 30 243 256 CAL DATE 19450504 19450614 LABORATORY MBS MBS STD TE3P 28.5C 28.5C EXP COEF 2.50110 (-6) /C 2. 50110 (- 6) /C ZICESS -0.0373 as/n -0.0373 55/3 INDEI COR 0.0115 55 0.0115 an AVG FOR L-14696 PAIR 2 28.5C 2.50x10 (-6) /C -0.0373 MM/s MON. LENGTH OF IETERYALS C3 20.0000 120.0000 220.0000 320.0000 3 EAS. LEN. OF INTER. ROD 1 CM 20.0000 120.0000 219.9900 319.9900 5EAS. LEN. OF INTER. ROD 2.CM 20.0000 120.0000 219.9900 J19.9900 OUTPUT ROD ER. (ROD 1) 55 0.0000 0.0000 0.1000 0.1000 SOD-SCALE ER. (ROD 1) 35 0.0115 0.0115 0.1115 0.1115 R ES . ROD-SCALE ER. (ROD 1) MM 0.0040 -

0.0333 0.0294 -0.0079 ROD ER. (8002) 55 0.0000 0.0000 0.1000 0.1000 ROD-SCALE ER. (ROD 2) HM 0.0115 0.0115 0.1115 0.1115 R ES. ROD-SCALE ER. (ROD 2) 33 0.0040 -

0.0333 0.0294 -0.0079 20.0000 120.0000 220.0000 320.0000 RES ROD-SCALE ERROR 55 FS= ROD 2 320.0000 0.0119 -0.0254 0.0373 0.0000 220.0000 -0.0254 -0.0627 0.0000 -0.0373 120.0000 0.0373 0.0000 0.0627 0.0254 20.0000 0.0000 -0.0373 0.0254 -0.0119 20.0000 120.0000 220.0000 J20.0000 BS= ROD 1 RES ROD-SCALE ERROR 55 FS= ROD 1 320.0000 0.0119 -0.0254 0.0373 0.0000 220.0000 -0.0254 -0.0627 0.0000 -

0.0373 120.0000 0.0373 0.0000 0.0627 0.0254 20.0000 0.0000 -0.0373 0.0254 -0.0119 20.0000 120.0000 220.0000 320.0000 BS= ROD 2 RES ROD-SCALE ZRROR (100 SETUPS) 53 FS 320.0000 1.1900 -2.5400 3.7300 0.0000 220.0000 -2.5400 -6.2700 0.0000 -3.7300 120.0000 3.7300 0.0000 6.2700 2.5400 20.0000 0.0000 -3.7300 2.5400 -1.1900 20.0000 120.0000 220.0000 320.0000 BS l

I i

Page 11 i

. , . - - , . , , . , . , _ . _ . . . _ _ , . _ - . - ..,--.-_,m. .,-,m- - . - , , . _ , . _ _ _ . . . - . ~ , ,

PAGE 12 INPUT CAL. DATA HAS (IN-G 3 AD) FORMAT NO OF CAL HEAS = 3 ,

N05INAL LENGTH OF FOOTPIECE = 20.0 CM ,

2001 ROD 2 NGS CODE 312 312

'SELIAL NO 247 -252 CAL DATE 19300627 19300627 LABORATORY NBS NBS STD TEMP 28.0C 31.0C EYP COEF 2. 50I10 (-6) /C 2.50110 (-6) /C EXCESS -0.0071 sa/s -0.0214 SM/5 INDEI COR 0.0000 55 0.0000 55 AVG FOR L-163 PAIR 1 29.5C 2.50x 10 (-6) /C -0.0142 33/3 NON. LENGTH OF INTERVALS Ca 100.0000 200.0000 300.0000 NEAS. LEN. OF INIER. ROD 1 C3 99.9900 200.0000 300.0000 N EA S. LEN. OF INTER. ROD 2 C5 99.9900 199.9900 300.0000 OUTPUT ROD-SCALE ER. (ROD 1) HM 0.1000 0.0000 0.0000 R ES. ROD-SCALE ER. (ROD 1) 58 0.0858 -0.0284 -0.0426 ROD-SCALE ER. (ROD 2) as 0.1000 0.1000 0.0000 R ES. ROD-SCALE ER.(ROD 2) 53 0.0858 0.0716 - 0.0426 120.0000 220.0000 320.0000 RES ROD-SCALE ERROR HM FS= ROD 2 320.0000 0.1284 0.0142 0.0000 220.0000 0.0142 -0.1000 -0.1142 120.0000 0.0000 -0.1142 -0.1284 120.0000 220.0000 320.0000 BS= ROD 1 RES ROD-SCALZ ERROR HM

. FS= ROD 1 320.0000 0.1284 0.1142 0.0000 220.0000 0.1142 0.1000 -0.0142 j 120.0000 0.0000 -0.0142 -0.1284 120.0000 220.0000 320.0000 BS= ROD 2 RES ROD-SCALE ERROR (100 SETUPS) MM FS 320.0000 12.8400 6.4200 0.0000 220.0000 6.4200 0.0000 -6.4200 120.0000 0.0000 -6.4200 -12.d400 120.0000 220.0000 320.0000 BS Page 12 t

, . - - _ _ - . . .-,,,--.,.,,.-...-n,,,,..,._.,,,,.,ng. -

e-v_-. ._-n, - - , . - ,,--n .,c.,-..

PAGE 13

. INPUT CAL. DATA HAS (IN-G R A D) FORMAT 50 0F CAL MEAS = 3 NOEINAL LENGTH OF.FOOTPIECE = 20.0 CM ROD 1 ROD 2 NGS CODE 312 312 SERIAL NO 248 254 CAL DATE 19310117 19450115 LABORATORY NBS MBS STD TEMP 24.0c 23.0c EIP COEF 2. 50110 (-6) /C 2.50110 (-6) /C EXCESS -0.0429 NE/a -0.0293 53/3 INDEI COR 0.0000 na -0.0266 an AVG FOR L-17026 PAIR 5 23.5C 2.50I10 (-6) /C -0.0J61 MM/M N05. LENGTH OF INTERTALS CM 100.0000 200.0000 300.0000 REAS. LEN. OF INTER. 2001 CM 99.9900 199.9900 299.9900 5213. LEN. OF INTER. BOD 2 C3 99.9900 199.9900 299.9900 ODIPUT ROD-SCALE ER. (ROD 1) 35 0.1000 0.1000 0.1000 R ES . ROD-SCALE ER. (ROD 1) 35 0.0639 0.0278 -0.0083 ROD-SCALE ER. (ROD 2) 35 0.1000 0.1000 0.1000 RES. ROD-SCALE ER. (ROD 2) 55 0.0639 0.0278 -0.0083 i

120.0000 220.0000 320.0000 i

RES ROD-SCALE ERROR 55 '

FS= BOD 2 320.0000 0.0722 0.0361 0.0000 220.0000 0.0361 0.0000 -0.0361 120.0000 0.0000 -0.0361 -0.0722 120.0000 220.0000 320.0000 BS=RODI RES ROD-SCALE ERROR M5 FS= ROD 1 320.0000 0.0722 0.0361 0.0000 220.0000 0.0361 0.0000 -0.0361 120.0000 0.0000 -0.0361 -0.0722 120.0000 220.0000 320.0000 BS=2002 RES ROD-SCALE ERROR -(100 SETUPS) HM

! FS 320.0000 7.2200 3.6100 0.0000 220.0000 3.4100 0.0000 -3.6100 120.0000 0.0000 -3.6100 -7.2200 120.0000 220.0000 320.0000 US NOTE: THIS PAIR HAD MIIED FOREAT.

ROD 254 NAS CONVERTED TO IN-GRAD FORMAT.

Page 13 i .

4

l PAGE 14 l

1 IMPUT CAL. DATA HAS (IN-G R AD) FCRMAT -

NO OF CAL MEAS = 3 30MINAL LENGTH OF FOOTPIECE = 20.0 CM RODI 2002 NGS CODZ 312 312 SERIAL 50 248 261 CAL DATE 19310117 19301231 LABORATORY NBS MBS STD~ TEMP 24.0C 23.0c EXP COEY 2. 50 X 10 (-6) /C 2. 50110 (-6) /C EXCESS -0.0429 55/5 -0.0643 MM/s INDEX COR 0.0000 M5 0.0000 55 AVG FOR L-293 PAIR 1 23.5C 2.50110 (-6) /C -0.0536 MM/M N05. LENGTH OF INTERYALS CM 100.0000 200.0000 300.0000 3 EA S. LEN. OF INTER. ROD 1 CM 99.9900 199.9900 299.9900 NEAS. LEN. OF INTER. BOD 2 CN 99.9900 199.9900 299.9800 OUTPUT ROD-SCALE ER. (R001) HM 0.1000 0.1000 0.1000 R ES. ROD-SC ALE E R. (ROD 1) HM 0.0464 -0.0072 -

0.0608 ROD-SCALE ER. (ROD 2) MM 0.1000 0.1000 0.2000 R ES . ROD-SCALE ER. (ROD 2) 55 0.0464 -0.0072 0.0392 120.0000 220.0000 320.0000 RES ROD-SCALE ERROR HM FS= ROD 2 320.0000 0.0072 -

0.0464 -0.1000 ,

220.0000 0.0536 0.0000 -0.0536 120.0000 0.0000 -

0.0536 -0.1072 120.0000 220.0000 320.0000 BS= ROD 1 RES ROD-SCALE ERROR 85 FS= ROD 1 320.0000 0.1072 0.0536 0.1000 220.0000 0.0536 0.0000 0.0464 120.0000 0.0000 -

0.0536 -0.0072 120.0000 220.0000 320.0000 BS= BOD 2 RES ROD-SCALE ERROR (100 SETUPS) MM FS 320.0000 5.7200 0.3600 0.0000 220.0000 5.3600 0.0000 -0.3600 120.0000 0.0000 -

5.3600 -5.7200 120.0000 220.0000 320.0000 BS 4

, Page 14 I

- . , -,-r . - - - - - - + - . - - - r m ,--..-e-.-- - - , - - - - - . - ~ . ~ - - - e,. . - - , - , - . , . - , , - - , - - , ,-%,.---.r - . . . . . . ~ - - - + . , - , . - - , . _ _ - - - - _ . - . - - -

I PAGE 15 INPUT CAL. DATA HAS (IX-G R AD) FORMAT 1 NO OF CAL REAS = 3 '

NOBINAL LENGTH OF FOOTPIECE' = 20.0 CM 30D1 2002 NGS CODE 312 312 SERIAL No 249 250 CAL DATE 19280720 19280720 LABORATORY NRS NBS STD TERP 28.4C 28.1C i

IIP COEF 2.50110 (-6) /C 2.50x 10 (-6) /C EXCESS 0.0133 5a/8 -0.0033 as/5 INDEX COR -0.1000 55 -0.1000 an AVG FOR L-293 PAIR 2 28.2C 2. 50 K 10 (- 6) /C 0.0050 as/M i NON. LENGTH OF INTERY ALS C3 100.0000 200.0000 300.0000 HEAS. LEE. OF INTER. BOD 1 CR 100.0030 200.0030 300.0040 3 E15. LEN. OF INTER. ROD 2 CR 100.0000 200.0000 299.9990 OUTPUT ROD-SCALE ER. (ROD 1) 55 -0.0300 -0.0300 -0.0400 R ES. ROD-SCALE EE. (ROD 1) 55 -0.0250 -0.0200 -0.0250 ROD-SCALE ER. (20D2) an 0.0000 0.0000 0.0100 R ES. . ROD-SCALE EE. (ROD 2) en 0.0050 0.0100 0.0250 120.0000 220.0000 320.0000 RES ROD-SCALE ERROR 55 '

FS= ROD 2

.320.0000 -0.0500 -0.0450 -0.0500 1 220.0000 -0.0350 -0.0300 -0.0350 120.0000 -0.0300 -0.0250 -0.0300 120.0000 220.0000 320.0000 BS=2001 '

RES ROD-SCALE ERROR M5 FS= ROD 1 320.0000 0.0300 0.0350 0.0500 i 220.0000 0.0250 0.0300 0.0450 120.0000 0.0300 0.0350 0.0500

120.0000 220.0000 320.0000 BS=20D2 RES ROD-SCALE ERROR (100 SETUPS) EM  !

FS 320.0000 -1.0000 -0.5000 0.0000 220.0000 -0.5000 0.0000 0.5000 120.0000 0.0000 0.5000 1.0000 120.0000 220.0000 320.0000 BS i

I Page 15 l'

l

-. . . - - - - - . - . - _ - . - - . . - - - ,,- a u, u - -.- -

PAGE 10

. INPUT CAL. DATA HAS (0-GR A D) FORMAT NO OF CAL MEAS = 4 30HINAL LENGTH OF FOOTPIECE = 0.0 C5 2001 ROD 2 NGS CODE 312 312 SERIAL No 251 310 CAL DATE 19530130 19530130 LABORATORY N ES M8S STD TE8P 25.0c 25.0c EIP COEF 2. 50110 (-6) /C 1.00110 (-6) /C EXCESS 0.0000 55/M 0.0000 MM/5 INDEI COR 0.0000 as 0.0000 58 AVG FOR L-17026 PAIR 4 25.0C 1. 75 Z10 (-6) /C . 0.0000 M3/3 N05. LENGTH OF INTERY ALS CR 20.0000 120.0000 220.0000 320.0000 REAS. LEN. OF INTER. 2001 C5 20.0000 120.0000 220.0000 320.0000 NEAS. LEN. OF INTER. ROD 2'C3 20.0000 120.0000 220.0000 320.0000 OUIPUT ROD ER. (ROD 1) 35 0.0000 0.0000 0.0000 0.0000 ROD-SCALE ER. (ROD 1) HM 0.0000 0.0000 0.0000 0.0000 R ES. ROD-SCALE EE. (ROD 1) 35 0.0000 0.0000 0.0000 0.0000

, ROD ER. (ROD 2) an 0.0000 0.0000 0.0000 0.0000 ROD-SCALE ER. (ROD 2) MN 0.0000 0.0000 0.0000 0.0000 R ES. ROD-SCALE ER. (ROD 2) HM 0.0000 0.0000 0.0000 0.0000 20.0000 120.0000 220.0000 320.0000 RES ROD-SCALE ERROR 55 FS= ROD 2 320.0000 0.0000 0.0000 0.0000 0.0000 220.0000 0.0000 0.0000 0.0000 0.0000 120.0000 0.0000 0.0000 0.0000 0.0000 20.0000 0.0000 0.0000 0.0000 0.0000 20.0000 120.0000 220.0000 320.0000 BSma001 RES ROD-SCALE ERROR 3R FS= ROD 1 320.0000 0.0000 0.0000 0.0000 0.0000 220.0000 0.0000 0.0000 0.0000 0.0000 1 120.0000 0.0000 0.0000 0.0000 0.0000 20.0000 0.0000 0.0000 0.0000 0.0000 20.0000 120.0000 220.0000 320.0000 BS=n0D2 RES ROD-SCALE ERROR (100 SETUPS) HM FS 320.0000 0.0000 0.0000 0.0000 0.0000

220.0000 0.0000 0.0000 0.0000 0.0000 120.0000 0.0000 0.0000 0.0000 0.0000 20.0000 0.0000 0.0000 0.0000 0.0000 20.0000 120.0000 220.0000 J20.0000 DS l

Page 16

, - , - , . - ~ , m--- -._,_n -


n_ _ . , , - . ,pwe.m -v.v.. ._.w.--.,----.,.,,,-_,.,,,-,w.,y,,,w,- -

,,,-g - - - -

,7,-

PAGE 17 i

INPUT CAL. DATA HAS (IN-GRAD) FORMAT NO OF. CAL HEAS = 3 NOMINAL LENGTH OF FOOTPIECE = 20.0 CM ROD 1 ROD 2 NGS CODE 312 312 SERIAL No 254 263 CAL DATE 19300627 19300627 LABORATORY NBS NBS STD TEMP 31. 0 C 31.0C EIP COEF 2.50I10(-6)/C 2. 50X 10 (-6) /C EXCESS 0.0214 an/a 0.0571 an/a INDEX COR 0.1000 as 0.1000 as AVG FOR L-751 PAIR 2 31.0c 2. 50110 (-6) /C 0.0392 M3/M 305. LENGTH OF INTERVALS CN 100.0000 200.0000 300.0000 N EAS. LEN. OF INTER. ROD 1 CB 100.0000 200.0000 300.0100 MEAS. LEN. OF INTER. BOD 2 C5 100.0000 200.0100 300.0200 OUTPUT ROD-SCALE ER. (ROD 1) 55 0.0000 0.0000 -0.1000 RES. ROD-SCALE ER. (ROD 1) 55 0.0392 0.0784 0.0176 ROD-SCALE ER. (ROD 2) 53 0.0000 -0.1000 -0.2000 RES. ROD-SCALE ER. (ROD 2) 55 0.0392 -0.0216 -0.0824 120.0000 220.0000 320.0000 RES ROD-SCALE ERROR MM FS= ROD 2 320.0000 0.1216 0.1608 0.1000 220.0000 0.0608 0.1000 0.0392 120.0000 0.0000 0.0392 -0.0216 120.0000 220.0000 320.0000 85= ROD 1 RES ROD-SCALE ERROR M5 FS= ROD 1 320.0000 0.0216 -0.0392 -0.1000 220.0000 -0.0392 -0.1000 -0.1608 120.0000 0.0000 -0.0608 -0.1216 120.0000 220.0000 320.0000 BS= ROD 2 RES ROD-SCALE ERROR (100 SETUPS) MM FS 320.0000 7.1600 6.0800 0.0000 220.0000 1.0800 0.0000 -6.0800 120.0000 0.0000 -1.0800 -7.1600 120.0000 220.0000 320.0000 BS Page 17 l

l

._. . . . -- . - - - _ - -- . . . u- - . - . . -_

t- PAus lo INPUT CAL. DATA HAS (IN-G RAD) FOR5AT NO OF CAL MEAS = 3 NOMINAL LENGTE OF F00IPIECE = 20.0 C5.

RODI ROD 2 NGS CODE 312 312 SERIAL NO 264 287  !

CAL DATE 19301003 19330817 LABORATORY NBS NDS

- STD TE5P 20.0C 27.0C EIP COEF 2.50110 (-6) /C 1.00K 10 (- 6) /C EXCESS 0.0000 55/5 0.0000 55/5 INDEI COR 0.0000 55 0.0000 55 AVG FOR L-751 PAIR 1 23.5C 1. 75I10 (-6) /C 0.0000 55/5 MO5. LENGTE OF INTERYALS C5 100.0000 200.0000 300.0000

, REAS. LEN. OF INTER. 30D1 CM 100.0000 200.0000 300.0000 NEAS. LEN. OF INTER. ROD 2 CR 100.0000 200.0000 300.0000 OUTPUT ROD-SCALE EE. (ROD 1) 55 0.0000 0.0000 0.0000

, RES. ROD-SCALE ER. (20D1) 55 0.0000 0.0000 0.0000

' ROD-SCALE ER. (ROD 2) 55 0.0000 0.0000 0.0000 R ES. ROD-SCALE 23.(2002) 55 0.0000 0.0000 0.0000 120.0000 220.0000 320.0000

~

RES BOD-SCALE ERROR 55 1 FS= ROD 2 320.0000 0.0000 0.0000 0.0000 220.0000 0.0000 0.0000 0.0000 120.0000 0.0000 0.0000 0.0000 120.0000 220.0000 320.0000 BS=R001 RES ROD-SCALE ERROR 55 '

FS=RODI 320.0000 0.0000 0.0000 0.0000 220.0000 0.0000 0.0000 0.0000 120.0000 0.0000 0.0000 0.0000 2

120.0000 220.0000 320.0000 SS= ROD 2 RES BOD-SCALE ERROR (100 SETOPS) 55 '

FS 320.0000 0.0000 0.0000 0.0000 220.0000 0.0000 0.0000 0.0000 '

120.0000 0.0000 0.0000 0.0000 120.0000 220.0000 320.0000 BS 4

i 1

Page 18 i

I i I

t

, - , - , _ , , _ , . _-...._,.~_._,.,_._.,,._,,___.,-._-,.m._,~._.,.___,,__.,-,,._.___,,____.. __.m,.m,

PAGE 19 INPUT CAL. DATA NAS (IN-GB AD) FOR5AT NO OF CAL 3EAS = 3 505INAL LENGTd 0F FOOTPIECE = 20.0 CM 8001 ROD 2 l NGS CODE 312 312 '

SERIAL N0 267 274 CAL DATE 19341003 19321101 LABORATORY NBS NAS STD TEMP 20.0C 23.0C EXP COEF 2. 5 0110 (-6) /C 2. 50X 10 (-6) /C EXCESS -0.0670 BM/s -0.0452 Ma/a INDEE.COR 0.0000 RN 0.0000 MN AVG FOR L-9402 PAIR 2 21.5C 2.50Il0 (-6) /C -0.0561 35/3 505. LENGTR OF INTERT ALS Ca 100.0000 200.0000 280.0000 NEAS. LEN. OF INTZ2. ROD 1 C5 99.9900 199.9900 279.9800 REAS. LEN. OF INTER. ROD 2 Ca 99.9900 199.9900 279.9900 OUTPUT ROD-SCALE ER. (ROD 1) MM 0.1000 0.1000 0.2000 RES. ROD-SCALE ER. (ROD 1) nn 0.0439 -0.0122 0.0429 F0D-SCALE ER. (ROD 2) 55 0.1000 0.1000 0.1000 R ES. ROD-SCALE ER. (ROD 2) 55 0.0439 -0.0122 -0.0571 4

120.0000 220.0000 300.0000 RES ROD-SCALE ERROR N3 FS= BOD 2 300.0000 0.1010 0.0449 0.1000 220.0000 0.0561 0.0000 0.0551 120.0000 0.0000 -0.0561 -0.0010 120.0000 220.0000 300.0000 85=2001 RES ROD-SCALE ERdOR H5 FS= BOD 1 300.0000 0.0010 -0.0551 -0.1000 220.0000 0.0561 0.0000 -0.0449 120.0000 0.0000 -0.0561 -0.1010 120.0000 220.0000 300.0000 83=R002 RES ROD-SCALE ERROR (100 SETUPS) 55 FS 300.0000 5.0980 -0.5120 0.0000 220.0000 5.6100 0.0000 0.5120 120.0000 0.0000 -5.6100 -5.0980 120.0000 220.0000 300.0000 as Page 19

- . .. . . . -. .. - . -_ _ - __.  ?! ~~ ? '... . - ._-_

rcus du INPUT CAL. DATA HAS (IN-G R A D) 70281T 50 0F CAL MEAS = 3 NOMINAL LENGTH OF FOOTPIECE = 20.0 C3 3001 R002 NGS CODE 312 312 SERIAL NO *270 275 CAL DATE 19321101 19321101 LABORATORY N85 N8S STD TEMP 23.0c 23.0C REP COEF 2. 50E 10 (-6) /C 2.50E10 (- 6) /C RECESS -0.0470 NN/A -0.0826 MJ/N INDRE COR 0.0000 as , 0.0000 as AVG FOR L-11184 PAIR 2 23.0c 2.50 E10 (-6)/C -0.0748 MJ/3 NOR. LENGTR OF INTERYALS CM 100.0000 200.0000 280.0000 S EA S. LIN. OF INTER. 2001 CN 99.9900 199.9900 279.9800 NEAS. LES. OF INTER. 2002 CM 99.9900 199.9800 279.9800 00770T ROD-SCALE ER. (20D1) 55 0.1000 0.1000 0.2000 RES. ROD-SCALE ER. (ROD I) Rs 0.0252 -0.0496 -0.0094 ROD-SCALE EE. (ROD 2) an 0.1000 0.2000 0.2000 RIS. ROD-SCALE EE. (ROD 2) NN 0.0252 0.0504 -0.0094 120.0000 220.0000 300.0000 RES ROD-SCALE ERROR NN FS= ROD 2 300.0000 0.0346 -0.0402 0.0000 220.0000 -0.0252 -0.1000 -0.0598 120.0000 0.0000 -0.0748 -0.0346 120,.0000 220.0000 300.0000 83= 20 D 1 RES ROD-SCALE ERROR MM FS= ROD 1 300.0000 0.0346 0.0598 0.0000 220.0000 0.0748 0.1000 0.0402 120.0000 0.0000 0.0252 -0.0J46 120.0000 220.0000 300.0000 83= 2002 RES ROD-SCALE ERROR (100 SEIUPS) MM FS 300.0000 3.4640 0.9840 0.0000 220.0000 2.4800 0.0000 -0.9840 120.0000 0.0000 -2.4800 -3.4640 120.0000 220.0000 300.0000 83

. Page 20

b I

  • dveF FI 1 402 l 391* ev&v ses )ts-0svO( 40suva sO 04 sti tsvs = t 80N7891 13sD&R 04 doO&disos = E0 0 oN 1 soOL toor ees oces rit rte .

stsiv1 no tot ret sti evas tettoLLE tstr0LLE >

! its0:tsoca ses ses '

j s&O ssed tt*03 t t* 03  !

sad 30:4 t*00:60)-9(/3 t*00:60)-9(/3 sasses -0*09LL su/W 0 0000 ww/v  ;

l 18052 303 -0*L000 55 -0*L000 WW teD 408 1-tttt9 defI t tt*03 L

  • 007 80)-9( /3 -0* 00CS NN/N s09' iseD&B od I#&88 Avis 3N 600'0000 t00'0000 t00*0000 5 37 s its* od IR13t* 5008 3R 66*6600 E00'0000 t00'0000 ests'* 1BN* od IN15s* 8002 3W 600*0000 F00*0000 C00'0000 0A&d01 s00-s3913 ts* )soeL( NN 0*l000 0*0000 0'0000  :

ass

  • s00-s371s se* )s00 t( su 0'0695 -0*0040 -0'0 05 l 500-sD913 ER* )5002( WW 0*0000 0'0000 0'0000 1 l s ts* 800-53913 tE* )t002( EN -0'00tS -0'0010 -0'0805 i

tf0'0000 tf0*0000 CE0'0000 555 500-53913 35505 WW i ises002 l ttO*0000 0 6040 0'0005 0'0000  ;

tf0*0000 0*t0fE 0*0000 -0'00fS i tt0*0000 0*L000 -0*00CS -0'0040 ttO*0000 ft0*0000 tf0'0006 trotoCL i 53s 500=s3713 35808 RN i

) esesoet j CE0'0000 0*0040 0'00ff 0'0000 tf0'0000 0*00CS 0'0000 -0'00tS i tt0*0000 -0*t000 -0*LOCS -0*l040 J

3 ttO*0000 tf 0*0000 CE0'0000 ssaB00E 4 sus soc-sstta resos )600 szzods( ew j is ttO*0000 S*t000 0*t500 0'0000 1 tE0'0000 5*t$00 C*0000 -0*t500  :

lt0*0000 C*0000 -S*t500 -S* L 00 0 '

lt0*0000 rf0'0000 CE0'0000 WS 2 j

t

. s. ;,  ;

1

}

  • i

_ ____ _ _ -_ w ,_ _ _ _ _ _ ____ -

ecua ed INPUT CAL. DATA NAS (I N-G R A D) FORNAT NO 0F CAL NEAS a 3 NOMINAL LINGTN OF 700ff!ECE = 20.0 CR 3001 2002 NOS CODE 312 312 SERIAL NC 313 316 CAL DATE 19330712 19J30712 LA505&f0RT N Bs Nas 3fD TEMP 23.0C 2J.0c EEP COE1 1.00E 10 (-6) /C 1.00510 (- 6) /C EXCRES -0.0429 Na/N -0.0429 NN/N INDEX COR 0.0000 NN 0.0000 NR AVO Foa L-9052/4 FAtt 2 23.0C 1.00I10 (-6)/C -0.0429 NN/N NON. LINGTH OF INIE8V4LS CN 100.0000 J00.0000 300.0000 NEA3. LIN. OF INT 35. 8001 CA 99.9900 199.9900 299.9900 NEAS. LIN. OF INTR 3. 8002 CA 99.9900 199.9900 299.9900 00frUT ROO-SCALE ER. (ROD 1) NN 0.1000 0.1000 0.1000 5 35. 203-SCALE 53. (R001) MN 0.0571 0.0142 -0.0287 200-3CALE E5. (8002) NE 0.1000 0.1000 0.1000 R85. 200-3CALE ER. (3002) NN 0.0571 0.0142 -0.0247 120.0000 220.0000 J20.0000 RBS 300-SCALE EE805 NN FJeR002 320.0000 0.0858 0.0429 0.0000 220.0000 0.0429 0.0000 -0.0429 120.0000 0.0000 -0.0429 -0.0858 120.0000 220.0000 320.0000 8JaROD1 RE3 ROD-SCALE ESSOR MN l Ps.AOD1 J20.0000 0.0858 0.34J9 0.0000 l 220.0000 0.0429 0.0000 -0.0429

120.0000 0.0000 -0.0429 --0.065d i

120.0000 220.0000 320.0000 83=2002 ABS R00-3C ALE Itact (100 SETUF3) AM Ps i J20.0000 8.5800 4.2900 0.0000 l

220.0000 4.2900 0.0000 -4.2900 IJ0.0000 0.0000 -4.2900 -0.5000 120.0000 220.0000 320.0000 33 Page 22 1

l 1

PAGE 23 INPUT CAL. DATA HAS (IN-G R A D) FORMAT NO OF CAL NEAS = 3 303IMAL LENGTH OF FOOTPIECE = 20.0 CM ROD 1 ROD 2

- MGS CODE 312 312 SERIAL NO 3 23 376 CAL DATE 19520826 19450115 LABORATORY NBS. NBS STD TEMP 25.0c 25.0C EIP COEF 1. 0 0110 (-6) /C 1.00I10 (-6) /C EXCESS -0.0214 Ms/n -0.0195 3M/s INDEI COR 0.0000 MB -0.0178 58 AVG FOR L-17026 PAIR 2 25.0C 1. 00Z 10 (-6) /C -0.0204 ad/M NON. LENGTH OF INTERT ALS CB 100.0000 200.0000 300.0000 5EAS. LEN. OF INTER. ROD 1 CH 100.0000 200.0000 299.9900 NEAS. LEN. OF INTER. 30D2 C5 -99.9900 200.0000 299.9900 OUTPUT BOD-SCALE ER. (ROD 1) 55 0.0000 0.0000 0.1000 R ES. ROD-SCALE ER. (ROD 1) 35 -0.0204 -0.0408 0.0388 BOD-SC ALE ZR. (ROD 2) 55 0.1000 0.0000 0.1000 R ES. ROD-SCALE ER. (ROD 2) HM 0.0796 -0.0408 0.0388 120.0000 220.0000 320.0000 RES HOD-SCALE ERROR 55 FS= ROD 2 320.0000 -0.0592 -0.0796 0.0000 220.0000 0.0204 0.0000 0.0796 120.0000 -G.1000 -0.1204 -0.0408 120.0000 220.0000 320.0000 BS= ROD 1 RES ROD-SCALE ERROR 55 FS= ROD 1 320.0000 0.0408 -0.0796 0.0000 220.0000 0.1204 0.0000 0.0796 120.0000 0.1000 -0.0204 0.0592 120.0000 220.0000 320.0000 BS= ROD 2 RES ROD-SC ALE ZHROR (100 SETUPS) M3 FS 320.0000 -0.9200 -7.9600 0.0000 220.0000 7.0400 0.0000 7.9600 120.0000 0.0000 -7.0400 0.9200 120.0000 220.0000 320.0000 BS NOTE: THIS . PAIR HAD MIIED FORMAT. ROD 376 EAS CONVERTED TO IN-GRAD FORBAT.

e Page 23

___ _ _ _ . ~

. , T .1~_. Z . _ ._.__.__

rouc zu l

l INPUT CAL. DATA HAS (IN-GR AD) F025AT N0'0F CAL HEAS = 3 N05INAL LENGTH OF FOOTPIECE = 20.0 C5 2001 BCD2 NGS CODE 312 312 SERIAL NO 336 346 CAL DhTE 19510521 19510521 LABORATORY NBS MBS STD T25P 25.0C 25.0c EIP COEF 1. 00110 (-6) /C 1.00I10 (-6) /C EXCESS 0.0214 55/5 0.0429 55/5 INDEI COR 0.0000 55 0.0000 55 AYG FOR L-14696: PAIR 1 25.0c 1. 00I10 (- 6) /C 0.0321 55/5 N05. LENGTH OF INTERV ALS CH 100.0000 200.0000 300.0000 NEAS. LEN. OF INTER. ROD 1 CH 100.0100 200.0100.300.0000 N EAS. LEN. OF INTER. BOD 2 C5 100.0100 200.0100 300.0100 OUTPUT E00-SCALE ER. (ROD 1) 55 -0.1000 -0.1000 0.0000 R ES. ROD-SC ALE ER. (20D1) 55 -0.0679 -0.0358 0.0963

. ROD-SCALE ER. (ROD 2) 55 -0.1000 -0.1000 -0.1000 R ES. ROD-SCALE ER. (ROD 2) 55 -0.0679 -0.0358 -0.0037 120.0000 220.0000 320.0000 RES DOD-SCALE ERROR 55 FS= ROD 2 320.0000 -0.0642 -0.0321 0.1000 220.0000 -0.0321 0.0000 0.1321 120.0000 0.0000 0.0321 0.1642 120.0000 220.0000 320.0000 SS= HOD 1 RES ROD-SCALE ERROH H5 FS= ROD 1 320.0000 -0.1642 -0.1321 -0.1000 220.0000 -0.0321 0.0000 0.0321 120.0000 0.0000 0.0321 0.0642 120.0000 220.0000 320.0000 BS= ROD 2 RES ROD-SCALE ERROR (100 SETUPS) 55 FS 320.0000 -11.4200 -8.2100 0.0000 220.0000 -3.2100 0.0000 8.2100 120.0000 0.0000 3.2100 11.4200 120.0000 220.0000 320.0000- BS A

Page 24

?

, .._.r . . . _ . . , ,._r, , - . ,- ,, __.,, , , . - , , . , ,

PAGE 25 r

INPUT CAL. DATA HAS (IN-G R A D) FORMAT -

30 OF CAL MEAS = 3 NOEINAL LENGTH OF 700TPIECE = 20.0 C5 ROD 1 ROD 2 NGS CODE 312 312 SERIAL N0 344 345 CAL DATE 19330811 19330809 LABORATORY NBS NBS STD TEMP 24.0C 27.0C EIP COEP 1. 00110 (-6) /C 1.00110 (-6) /C EICESS -0.0429 MM/3 -0.0429 M5/5 INDEI CO2 0.0000 un 0.0000 3M

  • AYG FOR L-2396-PAIR 1 25.5C 1.00I10 (-6) /C -0.0429 35/5 NON. LENGTH OF INTERY ALS C5 100.0000 200.0000 300.0000 NEAS. LEN. OF INTER. ROD 1 C3 99.9900 199.9900 299.9900 R EAS. ' LEN. OF INTER. ROD 2 CM 99.9900 199.9900 299.9900 OUTPUT HOD-SCALE ER. (ROD 1) 55 0.1000 0.1000 0.1000 R ES. ROD-SCALE ER. (ROD 1) HM 0.0571 0.0142 -0.0287 ROD-SC&LE ER. (ROD 2) 55 0.1000 0.1000 0.1000 RES. ROD-SCALE ER. (ROD 2) HM 0.0571 0.0142 -0.0287 120.0000 220.0000 320.0000 RES ROD-SCALE ERROR HM PS= ROD 2 320.0000 0.0858 0.0429 0.0000 220.0000 0.0429' O.0000 -0.0429 120.0000 0.0000 -0.0429 -0.0858 120.0000 220.0000 320.0000 BS= ROD 1 RES ROD-SCALE ERROR 53 FS= ROD 1 320.0000 0.0858 0.0429 0.0000 220.0000 0.0429 0.0000 -0.0429 120.0000 0.0000 -0.0429 -0.0858 120.0000 220.0000 320.0000 BS= ROD 2 RES ROD-SCALZ ERROR (100 SETUPS) 55 FS 320.0000 8.5800 4.2900 0.0000 220,0000 4.2900 0.0000 -4.2900 120.0000 0.0000 -4.2900 -8.5800 120.0000 220.0000 320.0000 85 Page 25 1

l l

PAGE Jo l INPUT CAL.* DATA HAS (IN-G R AD) FORMAT -

No OF CAL HEAS = 3 NOMINAL LENGTH OF.F00TPIECE = 20.0 CH RODI ROD 2 NGS CODE 312 312 SERIAL NO 368 387 CAL DATE 19330809 19450115 LABORATORY NBS NBS STD TEMP 27.0C 23.0c EIP COE7 1. 00110 (-6) /C 1. 00110 (- 6) /C EXCESS -0.0214 55/5 -0.0275 55/5 INDEI COR 0.0000 55 0.0204 55 AVG FOR L-17026 PAIR 3 25.0C 1.00I10 (-6) /C -0. 0244 55/5 N05. LENGTH OF INTERV ALS C5 100.0000 200.0000 300.0000 N EA S. LEN. OF INTER. ROD 1 C5 100.0000 200.0000 299.9900 NEAS. LEN. OF INTER. H0D2 CH 100.0000 200.0000 299.9900 OUTPUT ROD-SCALE ER. (ROD 1) 55 0.0000 0.0000 0.1000 RES. ROD-SC ALE ER. (ROD 1) 55 -0.0244 -0.0488 0.0268 ROD-SCALE ER. (ROD 2) ,

55 0.0000 0.0000 0.1000 RES. ROD-SCALE ER. (ROD 2) 55 -0.02n4 -0.0488 0.0268 120.0000 220.0000 320.0000 RES ROD-SCALE ERROR 55 FS= ROD 2 320.0000 -0.0512 -0.0756 0.0000 220.0000 0.0244 0.0000 0.0756 120.0000 0.0000 -0.0244 0.0512 120.0000 220.0000 320.0000 BS=RODI RES ROD-SCALE ER ROR 55 FS= ROD 1 320.0000 -0.0512 -0.0756 0.0000 220.0000 0.0244 0.0000 0.0756 120.0000 0.0000 -0.0244 0.0512 120.0000 220.0000 320.0000 BS= ROD 2 RES ROD-SCALE ERROR (100 SETUPS) 55 FS 320.0000 -5.1200 -7.5600 0.0000 220.0000 2.4400 0.0000 7.5600 120.0000 0.0000 -2.4400 5.1200 120.0000 220.0000 320.0000 BS NOTE: THIS PAIR HAS HIIED FOR5AT.

BOD 387 WAS CONVERTED TO IN-GHAD FORMAT.

Page 26

l PAGE 27 INPUT CAL. DATA HAS (IN-G R AD) FOR5AT NO OF CAL HEAS = 3 NOMINAL LENGTH OF FOOTPIECE = 20.0 C5 2001 ROD 2 EGS CODE 3 12 312 SERIAL NO 397 398 CAL DATE 19331215 19331215 LABORATORY NBS NBS STD TE5P 25.0C 25.0c EIP COEF 1.00110 (-6) /C 1.00I10 (-6) /C EXCESS -0.0286 55/5 -0.0071 55/5 INDEI COR -0.1000 55 -0.1000 55 AVG FOR L-10017 PAIR 1 25.0C 1. 00I10 (-6) /C -0.0178 55/5 N05. LENGTH OF INTERY ALS C5 100.0000 200.0000 300.0000 3EAS. LEN. OF INTER. 2001 C5 99.9900 200.0000 299.9900 3 EAS. LEN. OF INTER. R002 C5 99.9900 200.0000 300.0000 OUTPUT ROD-SCALE ER. (20D1) 55 0.1000 0.0000 0.1000 RES. ROD-SCALE ER. (ROD 1) 55 0.0822 -0.0356 0.0466 ROD-SCALE ER. (ROD 2) 55 0.1000 0.0000 0.0000 R ES. ROD-SCALE ER. (ROD 2) 55 0.0822 -0.0356 -0.0534 120.0000 220.0000 320.0000 RES ROD-SCALE ERROR 55 FS= ROD 2 320.0000 0.1356 .0.0178 0.1000 220.0000 0.1178 0.0000 0.0822 120.0000 0.0000 -0.1178 -0.0356 120.0000 220.0000 320.0000 BS= ROD 1 2ES ROD-SCALE ERROR 55 FS= ROD 1.

320.0000 0.0356 -0.0822 -0.1000 220.0000 0.1178 0.0000 -0.0178 120.0000 0.0000 -0.1178 -0.1356 120.0000 220.0000 320.0000 BS= ROD 2 RES ROD-SCALE ERROR (100 SETUPS) 55 FS 320.0000 8.5600 -3.2200 0.0000 220.0000 11.7800 0.0000 3.2200 120.0000 0.0000 -11.7800 -8.5600 120.0000 220.0000 320.0000 BS Page 27

P6GE 23 INPUT

[ CAL. DATA HAS (IN-GRAD) FORMAT l NO OF CAL MEAS = 3 i

NO31NAL LESGTH OF FOOTPIECE = 20.0 C3 ROD 1 20D2 NGS CODE 312 312 i SERIAL NO 408 410 1 CAL DATE 19331215 19331215 LABORATORY NBS NBS STD TEMP 25.0c 25.0C EIP COEF 1. 00I10 (-6) /C 1. 00110 (-6) /C EXCESS -0.0429 ME/a -0.0429 M3/s INDEI COR 0.0000 55 0.0000 BM AVG FOR L-9155 PAIR 1 25.0C 1. 00I10 (-6) /C -0.0429 MM/M NOM. LENGTH OF INTERYALS C3 100.0000 200.0000 300.0000 MEAS. LEN. OF INTER. ROD 1 CM 99.9900 199.9900 299.9900 MEAS. LEN. OF INTER. ROD 2 C5 '99.9900 199.9900 299.9900 OUTPUT ROD-SCALE ER. (ROD 1) MM 0.1000 0.1000 0.1000 RES. ROD-SCALE ER. (ROD 1) HM 0.0571 0.0142 -0.0287 ROD-SCALE ER. (ROD 2) 55 0.1000 0.1000 0.1000 ,

RES. 30D-SCALE EE. (ROD 2) 35 0.0571 0.0142 -0.0287 120.0000 220.0000 320.0000 R ES ROD-SCALE ERROR MM FS= ROD 2 320.0000 0.0858 0.0429 0.0000 220.0000 0.0429 0.0000 -0.0429 120.0000 0.0000 -0.0429 -0.0858 120.0000 220.0000 320.0000 BS= ROD 1 RES ROD-SCALE ERROR Md FS= ROD 1 320.0000 0.0858 0.0429 0.0000 220.0000 0.0429 0.0000 -0.0429 120.0000 0.0000 -0.0429 -0.0858 120.0000 220.0000 320.0000 BS= ROD 2 RES ROD-SCALE ERROR (100 SETUPS) HM FS 320.0000 8.5800 4.2900 0.0000 220.0000 4.2900 0.0000 -4.2900 120.0000 0.0000 -4.2900 -8.5800 120.0000 220.0000 J20.0000 BS Page 28  :

PAGE 29 INPUT CAL. DATA HAS (IN-G R AD) FORMAT 30 0F CAL MEAS = 3 NOMINAL LEMGTH OF FOOTPIECE = 20.0 CM RODI ROD 2 NGS CODE 312 312 SERIAL NO 422 438 CAL DATE 19510521 19510521 LABORATORY N BS NBS STD TERP 25.0C 25.0C EIP COEF 0.50I10 (-6) /C 0.50I10 (-6) /C EXCESS 0.0214 RM/s 0.0000 as/s INDEI COR 0.0000 3M 0.0000 M5 AVG FOR L-17026 PAIR 1 25.0c 0. 50Il 0 (-6) /C 0.0107 55/3 N05. LENGTH OF INTERYALS CH 100.0000 200.0000 300.0000 H EA S. LEN. OF INTE2. BOD 1 CM 100.0000 200.0000 300.0100 NEAS. LEN. OF INTER. 20D2 CM 100.0000 200.0000 300.0000 OUTPUT ROD-SCALE ER. (ROD 1) 55 0.0000 0.0000 -0.1000 RES. ROD-SCALE ER. (20D1) 55 0.0107 0.0214 -0.0679 ROD-SCALE ER. (ROD 2) 55 0.0000 0.000'0 0.0000 RES. ROD-SCALE ER. (ROD 2) HM 0.0107 0.0214 0.0J21 120.0000 220.0000 320.0000 RES ROD-SCALE ERROR 55 PS= ROD 2 320.0000 -0.0214 -0.0107 -0.1000 220.0000 -0.0107 0.0000 -0.0893 120.0000 0.0000 0.0107 -0.0786 120.0000 220.0000 320.0000 BS=E001 R ES ROD-SCALE ERROR 55 FS=EOD1 320.0000 0.0786 0.0893 0.1000 220.0000 -0.0107 0.0000 0.0107 120.0000 0.0000 0.0107 0.0214 120.0000 220.0000 320.0000 BS= ROD 2 RES ROD-SCALE ERROR (100 SETUPS) MM FS 320.0000 2.8600 3.9300 0.0000 220.0000 -1.0700 0.0000 -3.9300 120.0000 0.0000 1.0700 -2.8600 120.0000 220.0000 320.0000 BS L

Page 29 1

l

PAGE JO INPUT CAL. DATA RAS (IN-G R AD) FORMAT NO OF CAL MEAS = 3 NOMINAL LENGTH OF F00TPIECE = 20.0 CM 20D1 RCD 2 NGS CODE 312 312 SERIAL NO 433 436 .

CAL DATE 19350402 19350402 LABORATORY NBS NBS STD TEMP 22.3c 22.3C EIP COEF 0. 50I10 (-6) /C 0. 50I10 (-6) /C EXCESS -0.0429 55/5 -0.0429 55/3 INDEI COR 0.0000 55 0.0000 MM AVG FOR L-9052/4 PAIR 1 22.3C 0. 50x 10 (-6) /C -0.0429 MM/M N05. LENGTH OF INTERVALS C5 100.0000 200.0000 300.0000 MEAS. LEN. OF INTER. ROD 1 CM 99.9900 199.9900 299.9900 M EA S. LEN. OF INTER. ROD 2 CM 99.9900 199.9900 299.9900 OUTPUT ROD-SCALE ER. (ROD 1) H5 0.1000 0.1000 0.1000 R ES . ROD-SCALE ER. (ROD 1) HR 0.0571 0.0142 -0.0287 ROD-SCALE ER. (ROD 2) M5 0.1000 0.1000 0.1000 RES. ROD-SCALE ER. (ROD 2) MM 0.0571 0.0142 -0.0287 120.0000 220.0000 320.0000 RES ROD-SCALE ERROR 53 FS= ROD 2 320.0000 0.0858 0.0429 0.0000 220.0000 0.0429 0.0000 -0.0429 120.0000 0.0000 -0.0429 -0.0858 120.0000 220.0000 320.0000 BS= ROD 1 RES ROD-SCALE ERROR 53 FS= ROD 1 320.0000 0.0858 0.0429 0.0000 220.0000 0.0429 0.0000 -0.0429 120.0000 0.0000 -0.0429 -0.0853 120.0000 220.0000 320.0000 BS= ROD 2 RES HOD-SCALE ERROR (100 SETUPS) 3M FS 320.0000 8.5800 4.2900 0.0000 220.0000 4.2900 0.0000 -4.2900 120.0000 0.0000 -4.2900 -8.5800 120.0000 220.0000 320.0000 BS l

Page 30

PAGE 31 INPUT d (IM-GRAD) - FOR3 AT CAL.. DATA 'AS NO OF CAL MEAS = 3 NOMINAL LENGTH OF FOOTPIECE = 20.0 CM 20D1 ROD 2 NGS CODE. 312 312 SE2IAL No 452 456 CAL DATE 19350402 19350402 LABORATORY NBS NBS STD TE3P 22.3C 22.3C EXP COEF 0. 50 X10 (-6) /C - 0.50 X10 (-6) /C EICESS -0.0429 HM/s -0.0429 MH/3 INDEI COR 0.0000 55 0.0000 H5 AVG FOR L-10017 . PAIR 2 22.3C 0.50X10 (-6) /C -0.0429 33/5 N05. LENGTH OF INTERYALS CM 100.0000 200.0000 300.0000 NEAS. LEN. OF INTER. ROD 1 C5 99.9900 199.9900 299.9900 MEAS. LEN. OF INTER. 2002 C3 99.9900 199.9900 299.9900 OUTPUT

. ROD-SCALE ER. (ROD 1) H5 0.1000 0.1000 0.1000 R ES. ROD-SCALE ER. (ROD 1) MM 0.0571 0.0142 -0.0287 BOD-SCALE ER. (ROD 2) HM 0.1000 0.1000 0.1000 R ES . ROD-SC ALE ER. (ROD 2) 55 0.0571 0.0142 -0.0287 120.0000 220.0000 320.0000 1 RES ROD-SCALE ERROR 55 FS= ROD 2 320.0000 0.0858 0.0429 0.0000 220.0000 0.0429 0.0000 -0.0429 120.0000 0.0000 -0.0429 -0.0858 120.0000 220.0000 320.0000 BS= ROD 1 RES ROD-SCALE ERROR MM FS= ROD 1 320.0000 0.0858 0.0429 0.0000 220.0000 0.0429 0.0000 -0.0429 120.0000 0.0000 -0.0429 -0.0858 120.0000 220.0000 320.0000 BS= ROD 2 RES ROD-SCALE ERROR (100 SETUPS) 55

FS 320.0000 8.5800 4.2900 0.0000 220.0000 4.2900 0.0000 -4.2900 1 120.0000 0.0000 -4.2900 -8.5800 120.0000 220.0030 320.0000 BS ,

Page 31

l 1

PAGE J2 INPUT CAL.. DATA HAS (0-GR AD) FORMAT NO OF CAL HEAS = 4

-MO5IMAL LENGTH OF FOOTPIECE = 0.0 C5 ROD 1 ROD 2 MGS CODE 316 316 SERIAL No 87839 121177 CAL DATE 19660912 19660912 LABORATORY. NBS NBS STD TEMP 25.0C 25.0C EIP COEF 1. 4 3I10 (-6) /C 1. 56I10 (-6) /C EXCESS -0.0070 55/5 -0.0010 55/5 INDEI COR -0.0720 55 -0 . 0810 55 AVG FOR L-21396 PAIR 1 25.0C 1.49I10 (-6)/C -0.0040 55/5 505. LENGTR OF INTER 7 ALS CE 20.0000 100.0000 200.0000 300.0000 N EA S. LEN. OF INTER. ROD 1 CH 19.9920 99.9940 199.9900 299.9910 SEA S. LEN. OF INTER. ROD 2 CH 19.9920 99.9930 199.9890 299.9930 OUTPUT ROD ER. (ROD 1) 55 0.0800 0.0600 0.1000 0.0900 ROD-SCALE ER. (ROD 1) 55 0.0080 -0.0120 0.0280 0.0180 R ES . ROD-SCALE E2. (ROD 1) 55 0.0072 -0.0160 0.0200 0.0060 RCD ER. (ROD 2) 55 0.0800 0.0700 0.1100 0.0700 ROD-SC ALE ER. (ROD 2) 55 -0.0010 -0.0110 0.0290 -0.0110 RES. HOD-SC ALE ER. (ROD 2) 55 -0.0018 -0.0150 0.0210 -0.0230 20.0000 100.0000 200.0000 300.0000 R ES ROD-SCALE ERROR 55 FS=20D2 300.0000 0.0302 0.0070 0.0430 0.0290 200.0000 -0.0138 -0.0370 -0.0010 -0.0150 100.0000 0.0222 -0.0010 0.0350 0.0210 20.0000 0.0090 -0.0142 0.0218 0.0070 20.0000 100.0000 200.0000 300.0000 BS=R001 4

RES ROD-SCALE ERROR 55 FS= ROD 1 300.0000 -0.0078 -0.0210 G.0150 -0.0290 200.0000 -0.0218 -0.0350 0.0010 -0.0430 100.0000 0.0142 0.0010 0.0370 -0.0070 20.0000 -0.0090 -0.0222 0.0138 -0.0302 5 20.0000 100.0000 200.0000 300.0000 BS= ROD 2 RES ROD-SCALE ERR 02 (100 SETUPS) 55

. FS 300.0000 1.1200 -0.7000 2.9000 0.0000 .

200.0000 -1.7800 -3.6000 0.0000 -2.9000

, 100.0000 1.8200 0.0000 3.6000 0.7000 20.0000 0.0000 -1.8200 1.7800 -1.1200 20.0000 100.0000 200.0000 300.0000 BS l

Page 32 l

l

l PAGE J3 INPUT CAL. DATA HAS (0-GRAD) FORMAT NO OF CAL BEAS = 4

' NOMINAL LENGTH OF FOOTPIECE = 0.0 CM 20D1 20D2 NGS CODE 316 316 SERIAL NO 87849 121178 CAL DATE 19660912 19660912

~ LABORATORY NBS NBS

.STD TEMP 25.0C 25.0c EIP COEF 0.80I10(-6)/C 0. 8 0I10 (-6) /C EXCESS -0.0220 55/3 -0.0130 as/s INDEI COR 0.0480 HM 0.0120 53 AVG FOR L-21396 PAIR 2 25.0C 0.80I10 (-6)/C -0.0175 Ma/M N05. LENGTH OF INTERV ALS C3 20.0000 100.0000 200.0000 300.0000 N EAS. LEN. OF INTER. ROD 1 Ca 20.0040 100.0040 200.0000 299.9980 NEAS. LEN. OF INTER. ROD 2 C3 20.0000 100.0020 199.9980 299.9970 OUTPUT ROD ER. (ROD 1) M5 -0.0400 -0.0400 0.0000 0.0200 ROD-SCALE ER. (ROD 1) HR 0.0080 0.0080 0.0480 0.0680 RES. ROD-SCALE ER. (ROD 1) 55 0.0045 -0.0095 0.0130 0.0155 ROD ER. (20D2) 55 0.0000 -0.0200 0.0200 0.0300 ROD-SCALE ER. (ROD 2) 55 0.0120 -0.0080 0.0320 0.0420 R ES . HOD-SCALE ER. (ROD 2) HM 0.0085 -0.0255 -0.0030 -0.0105 20.0000 100.0000 200.0000 300.0000 RES ROD-SCALE ERROR MH FS= ROD 2 300.0000 0.0150 0.0010 0.0235 0.0260 200.0000 0.0075 -0.0065 0.0160 0.0185 100.0000 0.0300 0.0160 0.0385 0.0410 20.0000 -0.0040 -0.0180 0.0045 0.0070 20.0000 100.0000 200.0000 300.00C0 BS= ROD 1 RES ROD-SCAL 2 ERRO3 55 FS= ROD 1 300.0000 -0.0070 -0.0410 -0.0185 -0.0260 200.0000 -0.0045 -0.0385 -0.0160 -0.0235 100.0000 0.0180 -0.0160 0.0065 -0.0010 20.0000 0.0040 -0.0300 -0.0075 -0.0150 20.0000 100.0000 200.0000 300.0000 BS=20D2 R ES ROD-SCALE ERROR (100 SETUPS) HM FS 300.0000 0.4000 -2.0000 0.2500 0.0000 200.0000 0.1500 -2.2500 0.0000 -0.2500 100.0000 2.4000 0.0000 2.2500 2.0000 20.0000 0.0000 -2.4000 -0.1500 -0.4000 20.0000 100.0000 200.0000 300.0000 BS Page 33

.-- _ _ _ . . - - .,_._m.. _.m , . _ . . _ - _ , - - - . - _ , - . - . , _ _ , . - - . . . . . . ,...-m

1 P6GE 34 INPUT CAL. DATA HAS (0-GR A D) ?ORMAT NO OF CAL MEAS = 3 N05INAL LENGTH OF FOOTPIECE = 0.0 C5 ROD 1 ROD 2 NGS CODE 316 3 16 SERIAL NO 119358 119362 CAL DATE 19660609 19660609 LABORATORY NBS NBS STD TEMP 25.0C 25.0C EIP COEF 0. 80110 (-6) /C 0.80110 (-6) /C EXCESS -0.0250 55/M -0.0150 as/s INDEI COR -0.0067 55 0.0333 3M AVG FOR L-23140 PAIR 2 25.0C 0. 80I10 (-6) /C -0.0200 BM/M N05. LENGTH OF INTERVALS CM 100.0000 200.0000 300.0000 MEAS. LEN. OF INFER. ROD 1 C3 99.9970 199.9940 299.9920 MEAS. LEN. OF INTER. ROD 2 C5 100.0020 200.0000 299.9990 OUTPUT ROD ER. (ROD 1) 35 0.0300 0.0600 0.0800 ROD-SCALE ER. (ROD 1) MM 0.0233 0.0533 0.0733 RES. ROD-SCALE ER. (ROD 1) MM 0.0033 0.0133 0.0133 RCD ER. (ROD 2) MM -0.0200 0.0000 0.0100 ROD-SCALE ER. (ROD 2) 53 0.0133 0.0333 0.0433 R ES. ROD-SCALE ER. (ROD 2) 55 -0.0067 -0.0067 -0.0167 100.0000 200.0000 300.0000 RES BOD-SCALE ERROR 55 FS= ROD 2 300.0000 0.0200 0.0300 0.0300 200.0000 0.0100 0.0200 0.0200 100.0000 0.0100 0.0200 0.0200 100.0000 200.0000 300.0000 BS= ROD 1 RES POD-SOAL2 ERSOR 55 FS=RODI 300.0000 -0.0200 -0.0200 -0.0300 200.0000 -0.0200 -0.0200 -0.0300 100.0000 -0.0100 -0.0100 -0.0200 100.0000 200.0000 300.0000 BS= ROD 2 RES 300-SCALE EBROR (100 SETUPS) HM FS 300.0000 0.0000 0.5000 0.0000 200.0000 -0.5000 0.0000 -0.5000 100.0000 0.0000 0.5000 -0.0000 100.0000 200.0000 300.0000 BS Page 34

- c , , , , , , , - - - . . - - - . . . , . , -

PAGE J5 l

INPUT CAL. DATA'HAS (0-GRAD) F035AT NO OF CAL 5EAS = 4 N05INAL LENGTH OF FOOTPIECE = 0.0 C5 ROD 1 ROD 2

-NGS CODE. 316 316 SERIAL NO 120898 120899 i CAL DATE 19670408 19670408

-LABORATORY NBS NBS STD TEMP 25.0C 25. 0c -

EIP COEF 5. 47I10 (-6) /C 0.80I10 (-6) /C EXCESS -0.0120 55/5 0.0000 55/5

~INDEI COR -0.0570 55 -0.0300 55 AVG FOR L-23453 PAIR 2 25.0C 3.13110 (-6) /C -0.0060 EM/5 i N05.-LENGTH OF INTERVALS CE 20.0000 100.0000 200.0000 300.0000 HEAS. LEN. OF INTER, RODI C5 19.9940 99.9940 199.9910 299.9910 HEAS. LEN. OF 13TER. ROD 2 C5 19.9960 99.9990 199.9960 299.9970 OUTPUT ROD ER. (ROD 1) 55 0.0600 0.0600 0.0900 0.0900 ROD-SCALE ER. (ROD 1) 55 0.0030 0.0030 0.0330 0.0330 RES. . ROD-SCALE ER. (2001) 55 0.0018 -0.0030 0.0210 0.0150 RCD ER. (ROD 2) 35 0.0400 0.0100 0.0400 0.0300 ROD-SCALE ER. (ROD 2) 55 0.0100 -0.0200 0.0100 -0.0000 R ES. ROD-SCALE ER. (ROD 2) 55 0.0088 -0.0260 -0.0020 -0.0180 20.0000 100.0000 200.0000 300.0000 RES ROD-SCALE ERROR 55 PS= ROD 2 I 300.0000 0.0198 0.0150 0.0390 0.0330 200.0000 0.0038 -0.0010 0.0230 0.0170 100.0000 0.0278 0.0230 0.0470 0.0410 20.0000 -0.0070 -0.0118 0.0122 0.0062 23.0000 130.0000 200.0000 300.0000 BS= ROD 1 RES ROD-SCALE ERdOA 55 FS= ROD 1 300.0000 -0.0062 -0.0410 -0.0170 -0.0330 200.0000 -0.0122 -0.0470 -0.0230 -0.0390 '

100.0000 0.0!18 -0.0230 0.0010 -0.0150 20.0000 0.0070 -0.0278 -0.0038 -0.0198 20.0000 100.0000 200.0000 300.0000 BS= ROD 2 RES ROD-SCALE ERROR (100 SETUPS) 55 FS 300.0000 0.6800 -1.3000 1.1000 0.0000 200.0000 -0.4200 -2.4000 0.0000 -1.1000 100.0000 1.9800 0.0000 2.4000 1.3000 20.0000 0.0000 -1.9800 0.4200 -0.6800 20.0000 100.0000 200.0000 300.0000 BS Page 35

. L , - .- . .

PAGE J6 INPUT CAL. DATA HAS (0-G R AD) FORMAT .

NO OF CAL HEAS = 4 NOEINAL LENGTH OF FOOTPIECE = 0. 0 CM ROD 1 20D2 NGS CODE 316 316 SERIAL NO 124734 124735 CAL DATE 19670408 19670408 l LABORATORY NBS NBS '

l STD TERP 25. 0 C 25.0c EIP COEF 0. 8 0110 (-6) /C 0.80I10 (-6) /C EXCESS -0.0140 35/M 0.0100 H5/n INDEI COR -0.0140 MM 0.0000 MM AYG FOR L-23514 PAIR 1 25.0C 0. 80I10 (-6) /C -0. 0020 MM/3 N05. LENGTH OF INTERVALS C5 20.0000 100.0000 200.0000 300.0000 MEAS. LEN. SF IST"S. 20D1 CM 19.9980 99.9990 199.9940 499.9950 ,

3 EA S. LEN. OF INTE9s RG12 C3 20.0010 100.0010 199.9990 300.0050 ]

OUTPUT ROD ER. (30D1) HM 0.0200 0.0100 0.0600 0.0500 ROD-SCALE id. (ROD 1) 55 0.0060 -0.0040 0.0460 0.0360 RES. HOD-SC ALE ER. (ROD 1) 55 0.0056 -0.0060 0.0420 0.0300 ROD ER. (R002) 55 -0.0100 -0.0100 0.0100 -0.0500 ROD-SCALE 39. { ROD 2) 35 -0.0100 -0.0100 0.0100 -0.0500 R ES. ROD-SCALE ER. (ROD 2) HM -0.0104 -0.0120 0.0060 -0.0560 20.0000 100.0000 200.0000 300.0000 RES ROD-SCALE ERROR MM FS= ROD 2 300.0000 0.0616 0.0500 0.0980 0.0860 200.0000 -0.0004 -0.0120 0.0360 0.0240 100.0000 0.0176 0.0060 0.0540 0.0420 20.0000 0.0160 0.0044 0.0524 0.0404 20.0000 100.0000 200.0030 300.0000 BS=EOD1 EES ROD-SCAL 3 EH;0R 53 FS= ROD 1 300.0000 -0.0404 -0.0420 -0.0240 -0.0860 200.0000 -0.0524 -0.0540 -0.0360 -0.0900 100.0000 -0.0044 -0.0060 0.0120 -0.0500 20.0000 -0.0160 -0.0176 0.0004 -0.0616 20.0000 100.0000 200.0000 300.0000 ES= HOD 2 RES ROD-SCALE ERROR (100 SETUPS) M5 FS .

300.0000 1.0600 0.4000 3.7000 0.0000 200.0000 -2.6400 -3.3000 0.0000 -3.7000 100.0000 0.6600 0.0000 3.3000 -0.4000 20.0000 0.0000 -0.6600 2.6400 -1.0600 20.0000 100.0000 200.0000 300.0000 BS Page 36

PAGE 37 INPUT ,

CAL. DATA HAS (0-GaAD) FORMAT NO OF CAL HEAS = 3 NORINAL LENGTH OF FOOTPIECE = 0.0 C5 ROD 1 ROD 2 NGS CODE 316 316 SERIAL NO 141351 141353 CAL DATE 19690515 19690515 LABORATORY NBS NBS STD TEMP 25.0c 25.0C EIP COEF 1. 20I10 (-6) /C 1.00x 10 (- 6) /C ZICESS 0.0175 55/5 0.0212 55/5 INDEI COR 0.0583 55 0.0308 55 AYG FOR L-23514 PAIR 2 25.0C 1.10I10 (-6) /C 0.0193 55/5 N O R. LENGTH OF INTERVALS CH 100.0000 200.0000 300.0000 NEAS. LEN. OF INTER. ROD 1 C5 100.0060 200.0100 300.0080 HEAS. LEN. OF INTER. ROD 2 CH 100.0040 200.0080 300.0080 OUTPUT ROD ER. (ROD 1) 55 -0.0600 -0.1000 -0.0800 ROD-SCALE ER. (ROD 1) 55 -0.0017 -0.0417 -0.0217 RES. ROD-SCALE EE. (ROD 1) 55 0.0176 -0.0031 0.0362 ROD ER. (ROD 2) 55 -0.0400 -0.0800 -0.0800 ROD-SCALE ER. (ROD 2) 55 -0.0092 -0.0492 -0.0492 RES. ROD-SCALE ER. (ROD 2) 55 0.0101 -0.0106 0.0087 100.0000 200.0000 300.0000 RES ROD-SCALE ERROR 55 FS= ROD 2 300.0000 0.0089 -0.0118 0.0275 200.0000 0.0282 0.0075 0.0468 100.0000 0.0075 -0.0132 0.0261 100.0000 200.0000 300.0000 BS= ROD 1 RES ROD-SCALE ERROR 55 FS= ROD 1 300.0000 -0.0261 -0.0468 -0.0275 200.0000 0.0132 -0.0075 0.0118 100.0000 -0.0075 -0.0282 -0.0089 100.0000 200.0000 300.0000 BS= ROD 2

' RES ROD-SCALE ERROH (100 SETUPS) 55 -

FS 300.0000 -0.8600 -2.9300 0.0000 200.0000 2.0700 0.0000 2.9300 100.0000 0.0000 -2.0700 0.c600 100.0000 200.0000 300.0000 BS Page 37

_ - - _ _ - _ . _ . _ _ _ - _ . _ . _ _ _ . _ _ - . _ . , , . . _ _ _ _ - ~ , _ _

n. - .~
  • i I

a

, l l

1 i.

3~

3

s. I

? s 3

4 e APPENDIX 2 a

1 PROFILES 4

O

(

)

t- . _. _ _ _ .,

l KEY TO BENCHMARK TYp3 SY3BOLS i

r . l l tilled circle: concrete post or stone post cpen circle: metal pipe or metal rod or metal plug, possibly concrete-filled and/or encased in concrete and/or in a street or sidewalk filled square: building (wall, step, floor, window ledge, i en trance) open sguare: other structure (bridge, culvert, curb, retaining wall, sidewalk, water tank foundation, misc.)

filled triangle: bedrock open triangle:,

boulder cross bar: unknown (an unknown benchmark type is indicated in the data listings by IIIIIIII) e e o g M

, . _ - , , + - . , y.-,e - - - , , _ . - , .,-, .,. m- n , e ,, e-w-a

BM POS OHT2 (M) OHT1 (5) DLT2 (5) DLT1 (M) DDH (M5)

NE(1) P1P2 5.02442 4.88774 0.00000 0.00000 0.00 1 13 USE 4.98036 4.83010 -0.04406 -0.05764 13.58 2 242 5.34828 5.21940 0.32386 0.33166 -7.80 TIDAL 3 13.22193 13.09086 6.19751 8.20312 -5.61 PTS (2) 4.97745 4.86715 -0.04697 -0.02059 -26.38 F 242 P1P2 56.82552 56.70472 51.80110 51.81698 -15.88

'LINE 1 OH D AT A FROM REDUC 4 OUTPUT: WASHOR07 L-13017 1942 13T LIN E 2 OH DATA F205 REDUC 4 OUTPUT: WASHOR01 L-23453 1974 ISI e

f I

I l

l e

1

BH DDH (35) SD (35) D (K5) DSD (KB)- TYPE N E(1) 0.00 0.00 0.00 0.00 SET PIPE A 13 USE 13.58 4.85 7.22 7.22 CON POST R 242 ~-7.80 8.42 21.78 21.78 CON POST TIDAL 3 -5.61 9.73 29.02 29.12 BUILDING S I PTS (2) -26.38 10.32 32.76 32.76 HET PIPE F 242 -15.88 11.65 41.75 41.75 CON POST SD =.1.803

  • SQRT(DSD) MM
  1. B5 NOT PLOTTED ON PROFILE 7 BM NOT USED IN REGRESSION 3 BN ON SPUR DS DSD CALC. FROM REDUC 4 OUTPUT: NASHOR07 L-10017 1942 IST O.

i 1

I i i

3 i

S 5 w

.G LD e

5

/ m l

'l

. G I w l

I -

/

CLALLAM BAY O 5 / _ G s M i

io l

I

=m I -

q . G K ' N I

a :8 I

~

2 I re  :

' l 2

5  ? /

5 I ~

~~

wl: 9 .

/

  1. n- c -

l 1 2 +' '

/

w5*

  • iA " C j [
  • NEAH BAY e'2 * /

g h oS, k I I I d i I I m o .c m e 3

c 2 Ei bi G G G G

<w ea G G G -

N g) y W"fri M N -

G l l l l ,

i 1

l I BM POS OHT2 (5) OHT1 (5) DLT2 (M) DLT1 (3)

U 13 DDH (33)

.P1P2 53.59360 53.54422 0.00000 0.00000 0.00 W 13 42.04816 42.00208 -11.54544 -11.54214 -3.30 L I 13 86.76380 86.71985 33.17020 33.17563 -5.43 Y 13 114.29907 114.26854 60.70547 60.72432- -18.85 1 Z 13 108.32839 108.30103 54.73479 54.75681 -22.02 TIDAL 3 1.64458 1.61148 -51.94902 -51.93274 -16.28 B 14 76.08996 76.06216 22.49636 22.51794 -21.58 C 14 117.85309 117.82797 64.25949 64.28375 -24.26 F 14 91.61697 91.60642 38.02337 38.06220 -38.83 G 14 62.53813 62.55200 8.94453 9.00778 -63.25 i H 14 5.92795 5.92849 -47.66565 -47.61573 -49.92 '

TIDAL 6 6.12164 6.29400 -47.47196 -47.25022 -

221.74 TIDAL 8 9.79732 9.79564 -43.79628 -43.74858 -47.70 J 14 24.83265 24.82754 -28.76095 -28.71668 -44.27 N 14 64.23713 64.24567 10.64353 10.70145 -57.92 P 14- 58.32137 58.33695 4.72777 4.79273 -64.96 R 14 51.34856 51.37605 -2.24504 -2.16817 -76.87 T 14 P1P2 57.26030 57.28805 3.66670 3.74383 -77.13 J 3 USGS P2 55.77338 55.80302 2.17978 2.25880 -79.02 V 14 28.60788 28.63066 -24.98572 -24.91356 -72.lo N 14 , 5.86575 5.88143 -47.72785 -47.66279 -65.06 LINE 108 DATA FROM REDUC 4 OUTPUT: NASHOR11 L-293 1931 IST LINE 2 OH DATA FROM REDUC 4 OUTPUT: WASHORO1 L-2345366 1974 IST 6

f 2

- - - ,e.- ---,-----,.,r ,- - - . ~ . - - - - - - - - ----- .,- ---,w wm--- ,.---,-.,--,--,r-- , - - , - -

j BM DDH (55) SD (33) D (KM) DSD (KB) TYPE U 13 0.00 0.00 0.00 0.00 CON POST H 13 -3.30 5.80 10.36 10.36 CON POST I 13 -5.43 6.80 14.21 14.21 CON POST Y 13 -18.85 7.75 18.48 18.48 BUILDING l

3 13 -22.02 7.96 19.50 19.50 COM POST TIDAL 3 -16.28 8.69 19.50 23.24 IIIIIIII# 3 8 14 -21.58 8.77 23.66 23.66 CON POST C 14 -24.26 9.47 27.57 27.57 CON POST F 14 -38.83 11.49 40.59 40.59 CON POST i G 14 -63.25 11.79 42.78 42.78 BUILDING l H 14 -49.92 12.12 45.16 45.16 BUILDING TIDAL 6 -221.74 12.12 45.21 45.21 BUILDING 8?

TIDAL 8 -47.70 12.14 45.34 45.34 IIIIIIIIs J 14 -44.27 12.19 45.72 45.72 BUILDING N 14 -57.92 13.73 58.02 58.02 CON POST P 14 - 64. 96 14.17 61.79 61.79 CCN POST R 14 -76.87 15.02 69.43 69.43 CON POST T 14 -77.13 15.70 75.32 75.80 CON POST S J 3 USGS -79.02 15.72 75.32 75.99 BUILDINGd J V 14 -72.16 16.31 81.83 81.83 CON POST W 14 -65.06 16.73 86.06 86.06 CON POST SD = 1.803

  • SQHT(DSD) 55
  1. B5 NOT PLOTTED ON PROFILE

? BM NOT USED IN REGRESSION

& B5 ON SPUR D& DSD CALC. FROM HEDUC4 OUTPUT: WASHOR11 L-293 1931 1ST 4

4 e

2

l l

11.4 ci W of JOYCE to BLYN 1974 - 1931 -0.985 an/km refraction - corrected length of bars = +1 standard deviation .

T= -26.74 Pr greater abs T = 0.0001 20 _

l2 dDh(mm) 0  :

(s ELEV.(m) o o N

! N N

-20 _

hlg(, N

, 5

N l -40 _

1(

8 i

il 's.

< N

-60 _ R h ~ ;

it oN I o N

\ s 4>

-80 _

s

N i

j -100 ' ' ' ' '

O 20 40 60 80 100 D(km) 1

}

I l

i B5 PO S. ORT 2 (5) OHT1 (5) DLT2 (5) DLT1 (5) DDH (53)

E 295 2.78400 2.77844 0.00000 0.00000 0.00 G252 4.22512 4.22591 1.44112 1.44747 -6.35 GUNYILLE 3.82610 3.82655 1.04210 1.04811 -6.01 GR51 3.44514 3.44017 0.66114 0.66173 -0.59 KR32 11.25584 11.24685 8.47184 8.46841 3.43 KR51 11.25720 11.24801 8.47320 8.46957 3.63 KITZ 10.90995 10.90020 8.12595 8.12176 4.19 D 295 P1P2 11.88948 11.88303 9.10548 9.10459 0.89 C 295 4.87544 4.86697 2.09144 2.08853 2.91 B 295 1.48525 1.51647 -1.29875 - 1.26197 -36.78 Y 285 27.11121 27.10215 24.32721 24.32371 3.50 S2R32 2.88791 2.93027 0.10391 0.15183 -47.92 S2H51 2.55842 2.61555 -0.22558 -0.16289 -62.69 I 285 2.94851 2.95597 0.16451 0.17753 -13.02 UALTZ 3.89800 4.17635 1.11400 1.39791 -283.91 T 285 4.39610 4.39578 1.61210 1.61734 -5.24 S 285 2.19708 2.19769 -0.58692 -0.58075 -6.17 Q 12 P1P2 2.10050 2.10060 -0.68350 -0.67784 -5.66 R 285 2.19251 2.20469 -0.59149 -0.57375 -17.74 NEWS 2.16656 2.17117 -0.61744 -0.60727 -10.17 NR51 2.27941 2.28316 -0.50459 -0.49528 -9.31 NR52 2.16692 2.17201 -0.61708 -0.60643 -10.65 Q 285 1.86955 1.89218 -0.91445 -0.88626 -28.19 N 285 2.30110 2.55442 -0.48290 -0.22402 -258.88 E 285 P1 3.11516 3.12104 0.33116 0.34260 -11.44 LINE 1 OH DATA FROM REDUC 4 OUTPUT: W ASHOR12 L-12216 1947 IST LINE 2 OH DATA FROM REDUC 4 OUTPUT: WASHOR07 L-21396 1968 1ST l

3

- BR DDR (5M) SD (RM) D (K3) DSD (KB) TYPE E 295 0.00 0.00 0.00 0.00 CON POST GRH 2 (1) -6.35 2.30 1.63 1.63 CON POSI8 GUNVILLE -6.01 2.31 1.64 1.64 CON POST .

Gan 1 (2) -0.59 2.32 1.66 1.66 CON POST 8 KRM2 (3) 3.43 3.04 2.67 2.85 COM POST 8 &

KR51(4) 3.63 3.05 2.67 2.86 CON POST 8 4 KITE 4.19 3.06 2.67 2.89 CON POST 4 D 295 0.89 3.39 3.53 3.53 COM POST

. C 295 2.91 3.95 4.81 4.81 COM POST B 295 -36.78 4.62 6.56 6.56 CCN POST Y 285 3.50 5.61 9.68 9.68 COM POST S2RH 2 (5) -47.92 6.65 13.59 13.61 CON POST 4 S2H51 (6) -62.69 6.66 13.59 13.64 CON POST B I 285 - 13.02 6.79 14.19 14.19 COM POST NALTZ -283.91 7.28 16.29 16.29 BOULDER #?

T 285 -5.24 7.38 16.75 16.75 BOULDER S 285 -6.17 7.96 19.49 19.49 CON POST i

Q 12 -5.66 8.30 21.18 21.18 OTHER ST R 285 - 17.74 8.60 22.74 22.74 COM POST NEWS -10.17 8.93 24.28 24.52 MET PIPE &

NEM 1 (7) -9.31 8.94 24.28 24.56 HET PIPE 8 8 NRM 2 (8) -10.65 8.93 24.28 24.55 HET PIPE 8 3 Q 285 -28.19 9.16 25.83 25.83 CON POST N 285 -258.88 9.51 27.83 27.83 COM POST 8?

E 285 -11.44 9.89 29.52 30.08 OTHER ST &

SD = 1.803

  • SQRT (DS D) HM 8 BH NOT PLOTTED ON PROFILE

? BH NOT USED IN REGRESSION a BH ON SPUR D& DSD CALC. FROM EEDUC4 OUTPUT: W AS20312 L-12216 1947 1ST 1

0 3

t' i. i !1 ,;l: I ll  !

I I

0 E 3 -

n 0 4

% )

m k

(

N D

N a 0 a

3 _

m ' g;E2 _

k

/

m m ~ I I

1 7 ~

7 >

0 7

4 0

9 1

8

- > i 0 6 a N 2 -

9 1

N E

F a

D .

R E

B A

f i n

o 3, )

4 4

o t E i a -

v l

N c

d e ' i 0 3

d r

a 4

s 1 0 d 7 _

n 2 ~

o a 0 -

tdt 0 es -

Yt 0 T c1 I

e1 =

  • C r r T Y o= 1 Acs B

- a r b s

a 4

f onof0 b

r p 5 .,. ~

  • e _

Wt i o 4. at _ c - - _ _ -

t ch3e aat rg

- r g 0 _

0 0 0 0 ee=r

5. f. n 1 rl TP 0

2 O) 2 4

8 8 .

m

(

m h

D -

d u

l l

l BN POS OET2 (N) OET1 (M) DLT2 (3) DLT1 (3) DDH (3N)

U 12 P1P2 8.37771 8.63317 0.00000 0.00000 0.00 S 12 3.46227 3.697,85 -4.91544 -4.93532 19.88 N 12 2.87101 3.13125 -5.50670 -5.50192 -4.78 Q 12 P1P2 2.10060 2.31605 -6.27711 -6.31712 40.01 L 12 P1P2 3.72400 4.12823 -4.65371 -4.50494 -148.77 K 12 4.02494 4.28441 -4.35277 -4.34876 -4.01 J 12 3.22763 3.48843 -5.15008 -5.14474 -5.34 1 12 4.90060 5.12285 -3.47711 -3.51032 33.21 G 12 P1P2 2.59223 2.87656 -5.78548 -5.756n1 -28.87 F 12 8.80797 9.07206 0.43026 0.43889 -d.63  !

D 12 P1P2 20.02085 20.28990 11.64314 11.65673 -13.59 LINE 1 08 D AT A FRON REDUC 4 OUTPUT: BASHOR18 74223 1920 IST LINE 2 OH DATA FRON REDUC 4 OUTPUT: WASHOR12 L-12216 1947 IST Note: 74223 was not corrected for level collination error.

i i

4

BR DDH (M5) SD (NH) D (KR) DSD (KH) TYPE

, U 12 0.00 0.00 0.00 0.00 CON POST l 3 12 -19.8d 5.64 7.07 7.07 OTHER ST i 5 12 -4.78 5.89 7.07 7.71 BOULDER S Q 12 40.01 8.79 17.18 17.18 OTHER ST L 12 -148.77 10.65 25. 22 25.22 CTHER ST ?

. K 12 -4.01 10.79 25.22 25.87 BUILDING e J 12 -5.34 10.80 25.22 25.93 BUILDING 8 4 1 12 33.21 11.07 27.25 27.25 OTHER ST G 12 -28.87 12.67 35.70 35.70 OTHER ST F 12 -8.63 13.51 40.56 40.56 OTHER ST D 12 -13.59 13 88 42.20 42.81 SUILDING &

SD = 2.121

  • SQRT (DSD) 55 e BM NOT PLOTTED ON PROFILE 7 BN NOT USED IN REGRESSION i & 88 ON SPUR D G DSD CALC.'FRon REDUC 4 OUTPUT: VASHOR18 74223 1920 IST I

m i

t 4

l BAY CITY to MONTESANO 1947-1920 -0.069 mm/km (regression lina not shown) refraction-corrected length of bars = + 1 standard deviation i T = -0.25 Pr greater abs T = 0.8064 50 _

c) '

o g ELEV..(m)

N O - -

dDh (mm)

O II

[]

ll

[]

-50 _

-100 _

e g a

'i

-150 _h t) $

l

-200 8 8 8 8 8 0 10 20 30 40 50 D (km) i A 1

l

-B3 POS OHT2 (H) OHT1 (M) DLT2 (3) DLT1 (M) DDH (33) l l G 12 P1P2 2.65749 2.87656 0.00000 0.00000 0.00 i F 12 P1P2 8.88228 9.07206 6.22479 6.19550 29.29 i

D 12 P1P2 20.08961 20.28990 17.43212 17.41334 18.78 o C 12 16.52407 16.74295 13.86658 13.86639 0.19 l B 12 P1P2 20.80275 21.03893 18.14526 18.16237 -17.11 LINE 1 OH DATA FROM REDUC 4 OUTPUT: HASHOR18 74223 1920 1ST LINE 2 OH DATA 2 ROM REDUC 4 OUTPUI: WASHOR03 1-23514 1974 IST Note: 74223 was not corrected f or level collimation error.

5 r

B5 DDH (55) SD (55) D (K5) DSD (K5) TYPE G 12 0.00 0.00 0.00 0.00 OTHER ST F 12 29.29 3.97 4.86 4.86 OTHER ST D 12 18.78 4.81 6.50 7.11 BUILDING S C 12 0.19 6.47 12.89 12.89 OTHZH ST S 12 -17.11 8.34 21.39 21.39 OTHER SI SD = 1.803

  • SQRT(DSD) 55 8 B5 NOT PLOTTED ON PROFILE

? BH NOT USED IN REGRESSION 4 85 ON SPUR D & DSD CALC. F205 REDUC 4 OUTPUT: BASHOR18 74223 1920 1ST e

1 l

l l

5

4.3 mi W of MONTESANO to ELMA 1974 - 1920 -0.144 mm/km refraction - corrected length of bars = t1 standard deviation T = -0.17 Pr greater abs T = 0.8763 40 _

3o 30 _

g 4

20 _

n

, 10 _ g i

0 t

' ELEV. (m) dDh (mm)

~~~~~~ "' _ _ _

-10 _

i 5

'i 0: o

-20 =

o 1

1 -30 . . . , ,

j 0 10 20 30 40 50 D (km) 4 i

k U i

BM POS OHT2 _(R) OHT1 (5) DLT2 (H) DLT1 (H) DDH (BM)

-5 10 P1P2 8.55166 8.54o12 0.00000 0.00000 0.00 TIDAL 7 8.33663 8.32961 -0.21503 -0.21651 1.48 TIDAL 6 8.33933 8.31095 -0.21233 -0.23517 22.84 TIDAL 5 7.71559 7.70872 -

0.83607 -0.83740 1.33 N 10 62.11415 62.13093 53.56249 53.58481 -22.32 )

0 10 56.57289 56.58688 48.02123 48.04076 -19.53 Q 10 . 33.27808 33.28942 24.72642 24.74330 -16.88 R 10 26.62943 26.63497 - 18.07777 18.08885 -11.08 S 10 4.84007 4.83939 -

3.71159 -3.70673 -4.86 TIDAL 1 4.87855 4.90394 -

3.67311 -3.64218 -30.93

TIDAL 4 5.57996 5.60583 -2.97170 -2.94029 -31.41 T 10 3.60521 3.59928 -

4.94645 -4.94684 0.39 E 10 .

14.70271 14.71654 6.15105 6.17042 -19.37 I 10 P1P2 17.37419 17.38791 8.82253 8.84179 -19.26 3 10 11.94569 11.95898 3.39403 3.41286 -18.83 Y 10 10.04156 10.05233 1.48990 1.50621 -16.31 G 11 5.62401 5.62576 -

2.92765 -2.92035 -7.29 F 11 8.28836 8.29031 -

0.26330 -0.25581 -

7.49 H 11 4.59574 4.60098 -3.95592 -3.94514 -10.78 I 11 .5.10847 5.11203 -

3.44319 -3.43409 -

9.10 J 11 7.17591 7.17649 -

1.37575 -1.36963 -6.12 P 11 9.86531 9.71883 1.31365 1.17271 140.94 L 11 21.51245 21.50927 12.96079 12.96315 -2.3o M 11 23.19399 23.21282 14.64233 14.66670 -24.37 N 11 21.23254 21.22279 12.68088 12.67667 4.21 0 11 P1P2 30.78865 30.78001 22.23699 22.23389 3.10 M 22.84060 22.83176 14.28894 14.28564 3.30 LINE 1 OH D ATA FROM REDUC 4 OUTPUT: W ASHOR 14 74216/C 1920 IST LINE 2 OH DATA FROM REDUC 4 OUTPUT: WASHOR15 L-13 1928 2ND Note: 74216/C is not corrected for level collisation error.

L-13 is only about 50% double-run.

i 6

<w a - y. e -, - - . - - -p .. ,.

. . - . - - . _ _ , y ,,,..-m,_-w ,y..e p ,m ,,r., e,.,, ,,e.-- --. ,,w.egy,ar e ,$in--y- -

38 DDH (MM) SD (55) D (KM) DSD (KB) TYPE 5 10 0.00 0.00 0.00 0.00 BUILDING S TIDAL 7 1.48 0.00 0.00 0.00 BUILDING W TID AL 6 22.84 0.00 0.00 0.00 BUILDING a TIDAL 5 1.33 1.50 0.00 0.20 OTHER STt &

N 10 -22.32 8.36 5.90 6.21 MET PIPE O 10 -19.53 9.49 7.70 8.01 HET PIPE Q 10 -16.88 14.16 17.52 17.83 OTHER ST R 10 11.08 15.41 20.80 21.11 IIIIIIII S 10 -4.86 18.44 29.92 30.23 OTHER ST TID AL 1 -30.93 19.81 34.59 34.90 BUILDING d i TIDAL 4 -31.41 19.81 34.59 34.90 BUILDINGS S  !

T 10 0.39 21.04 39.06 39.37 OTHER ST W 10 -19.37 23.68 49.53 49.84 OTHER ST I 10 -19.26 23.99 50.87 51.18 OTHER ST Z 10 -18.83 25.05 55.46 55.77 MET PIPE Y 10 -16.31 25.06 55.51 55.82 BUILDING G 11 -7.29 25.94 59.50 59.81 OTHER ST F 11 -7.49 26.04 59.96 60.27 BUILDING H 11 -10.78 26.61 62.64 62.95 OTHER ST I 11 -9.10 26.73 63.21 63.52 IIIIIIII J 11 -6.12 27.31 65.98 66.29 BOULDER P 11 140.94 28.04 69.56 69.87 XXIIIIIId?

L 11 -2.36 29.51 77.10 77.41 OTHER ST 3 11 -24.37 29.68 77.99 78.30 SUI 1 DING N 11 4.21 30.47 82.24 82.55 OTHER ST O 11 3.10 31.01 85.16 85.~47 OTHER ST 5 3.30 31.89 90.08 90.39 IIIIIIII SD = 3.354

  • SQRT(DSD) HM 8 85 NOT PLOTTED ON PROFILE

? BM NOT USED IN REGRESSICN

D& DS CL. FRO 5 REDUC 4 dDTPUT
WASHOR14 74216/C 1920 IST d

6

OLYMPIA to AUBURN 1928 - 1920 -0.152 nun /km refraction - corrected length of bart = 11 standard deviation T = -2.9A

  • i Pr greater abs T = 0.0071 40 -_

- 80

~ /\

0 1 1 ri

' ' t)!3 -

ELEV. (m) o 1._ _

-<s_. .- - ,, a

.t - -

! t)

O (I) O O

11 11 l

1 -40 _

I >

P 5 i 4 C =

E

< 3 8

. > g

-80 I I I I l 0 20 40 60 80 100

! c)

BH .POS OHT2 (5) OHT1 (5) DLT2 (5) DLT1 (5) DDH (35) 5 10 P1P2- 8.30113 8.54612 0.00000 0.00000 0.00 TIDAL 6 8.09073 8.31095 -0.21040 -0.23517 24.77 TIDAL 5 7.46874 7.70872 -0.83239 -0.83740 5.01 S 10 4.55236 4.83939 -3.74877 -3.70673 -42.04 TIDAL 1 4.52443 4.90394 -3.77670 -3.64218 -134.52 TIDAL 2 19.80276 20.09304 11.50163 11.54692 -45.29 TIDAL 3 15.48682 15.77927 7.18569 7.23315 -47.46 E 10 14.40268 14.71654 6.10155 6.17042 -68.87 I 10 P1P2 17.06830 17.38791 8.76717 8.84179 -74.62 LINE 1 OH DATA FR05 2EDUC4 OUIPUT: RASHOR14 74216/C 1920 IST LINE 2 OH DATA FROM REDUC 4 OUTPUT: NASHOR19 L-23140 1973 1ST Note: 74216/C is not corrected for level collination error.

7

35 DDH (ME) SD (MM) D (KM) DSD (KB) TYPE N 10 0.00 0.00 0.00 0.00 BUILDING S TIDAL 6 24.77 0.00 0.00 0.00 BUILDING 3 I TIDAL 5 5.01 0.81 0.00 0.20 OTHER ST d S 10 -42.04 '9.91 29.92 30.23 OTHER ST l TIDAL 1 -134.52 10.65 34.59 34.90 BUILDING &

TIDAL 2 -45.29 10.65 34.59 34.90 BOULDER S TIDAL 3 -47.46 10.65 34.59 34.90 CON POSTS &

V 10 -68.87 12.73 49.53 49.84 OTHER ST I 10 -74.62 12.90 50.87 51.18 OTHER ST SD = 1.803

  • SQRT (DSD) M5 8 BM NOT PLOTTED ON PROFILE 7 B5 NOT USED IN REGRESSION 4 B3 ON SPOR D & DSD CALC. FR05 REDUC 4 OUTPUT: VASHOR14 74216/C 1920 IST i

e 7

OLYMPIA to TACOMA 1973 - 1920 -1.714 nun /km refraction - corrected length of bars = +1 standard deviation T = -5.24 Pr greater abs T = 0.0012 dDh (nun) 30 _ - 20

si /

j 0  ![ ELEV. (m)

, s s N

N

-30 _ N-s

. ' s. N tJ js s

-80 N s'N  %

( 1 4 []

li N

! -90 _d 's 5:

)

i 8'

! -l20 _ g i

li

! -150 e i i e i O 10 20 30 40 50 60 i D (km) i i N I.

l

B5 POS OHT2 (5) OHT1 (5) DLT2 (3) DLT1 (5) DDH (53) 5 10 P1P2 8.30113 8.55166 0.00000 0.00000 0.00

. TIDAL 6 8.09073 8.33933' -0.21040 -0.21233 1.93

-TIDAL 5. 7.46874 7.71559 -0.83239 -0.83607 3.68 Q 13 58.98427 59.24441 50.68314' 50.69275 -9.61 DUP BB 1 13.59500 13.86643 5.29387 5.31477 -20.90 DUP 13.73868 14.01396 5.43755 5.46230 -24.75 DOP B5 2 13.91779 14.19498 5.61666 5.64332 -26.66 S 10 4.55236 4.84007 -3.74877 -3.71159 -37.18 TIDAL 1 4.52443 4.87855 -3.77670 -3.67311 -103.59 N 13 4.10923 4.41489 -4.19190 -4.13677 -55.13 0 13 4.19963 4.55653 -4.10150 -3.99513 -106.37 W 10 14.40268 14.70271 6.10155 6.15105 -49.50 I 10 P1P2 17.06830 17.37419 8.76717 8.82253 -55.36 LINE 1 OH DATA FROH REDUC 4 OUTPUT: WASHOB15 L-13 1928 2ND

~ LINE 2 OB DATA FROH REDUC 4 OUTPUT: H ASHOR19 L-23140 1973 IST Note: L-13 is only about 50% double-run.

+

6 f

8 ,

l 1

1

B3 DDR (MM) SD (55) D (KB) DSD (KM) TYPE M 10 0.00 0.00 0.00 0.00 BUILDING d TIDAL 6 1.93 0.94 0.00 0.09 BUILDING 4 3 TIDAL 5 3.68 1.21 0.00 0.15 OTHER STs a Q 13 -9.61 10.78 11.61 11.61 BOULDER DUP H5 1 -20.90 16.49 27.20 27.20 CON POST DUP -24.75 16.50 27.20 27.22 CON POST 8 8 DUP RH 2 -26.66 16.51 27.20 27.25 CON POST 8 8 S 10 -37.18 17.50 30.64 30.64 OTHER ST TIDAL 1 -103.59 18.81 35.38 35.38 -BUILDING N 13 -55.13 20.85 43.46 43.46 OTHER ST 0 13 -106.37 21.29 45.14 45.35 CON POST d W 10 -49.50 22.45 50.42 50.42 OTHER ST I 10 -55.36 22.76 51.82 51.82 OTHER ST SD = 3.162

  • SQRT (DSD) 53 i BM NOT PLOTTED ON PROFILE 7 BH NOT USED IN REGRESSION 4 BM ON SPUR D & DSD CALC. FROM REDUC 4 OUTPUT: WASHOR15 L-13 1928 2ND 8

OLYWIA to TACOMA 1973 - 1928 -1.419 nin/la refraction - corrected i

length of bars = +1 standard deviation T = -6.97 Pr greater abs T = 0.0001 ,

1 e

i 20 _ -

I

~

dOh (aun) g , ,

ELEV. (m)

N l

N

-20 _ ~

s o 4 N i

N N

i g

-40 N []

I s i N s ()

N () (1

-60 s

_ N i o ~

) N Q s ~

-80 _4 ,

i 5:

4

-100 _

i, 8 o y

, -120 _

1

_jfg a a e a a a 0 10 20 30 40 50- 60 i,

a D(km) 1 I

i

i I

BM POS OHT2 (5) OHT1 (H) DLT2 (5) DLT1 (M) DDH (HM)

N P1P2 25.38044 25.51599 0.00000 0.00000 0.00 P P1P2 100.78663 100.81155 75.40619 75.29556 110.63 I Q P1 105.52275 105.55066 80.14231 80.03467 107.64 E P1P2 175.70658 175.74512 150.32614 150.22913 97.01 S 188.20168 188.55099 162.82124 163.03500 -213.76 T P1 198.43000 198.47291 173.04956 172.95692 92.64 Y P1 258.43973 258.46228 233.05929 232.94629 113.00 E P1 261.57573 261.59765 236.19529 236.08166 113.63 1046 T 319.02034 319.05370 293.63990 293.53771 102.19 Y P1 329.23563 329.26576 303.85519 303.74977 105.42 1205 T P1P2 367.58912 367.63799 342.20868 342.12200 86.68 1335 T P1 407.18072 407.23998 381.80028 381.72399 76.29 A1 462.74376 462.79475 437.36332 437.27876 84.56 E1 P1 856.50948 856.60249 831.12904 831.08650 42.54 F1 P1 868.47727 868.55731 843.09683 843.04132 55.51 I1 P1 661.45204 661.15865 636.07160 635.64266 428.94 J1 P1P2 632.15958 632.20938 606.77914 606.69339 85.75

2030 T P1P2 619.16807 619.21810 593.78763 593.70211 85.52 1838 T P1P2 560.28327 560.35617 534.90283 534.84018 62.65 1 0 1 P1 521.63863 521.71467 496.25819 496.19868 59.51 1658 T P1 505.65521 505.67699 480.27477 480.16100 113.77 1634 T P1 498.19228 498.12915 472.81184 472.61316' 198.68 P1 P1 497.77586 497.86763 472.39542 472.35164 43.78 1571 T P1 478.92460*478.99375 453.54416 453.47776 66.40 R1 P1P2 468.33313 468.39769 442.95269 442.88170 70.99 S1 P1 461.65226 461.73165 436.27182 436.21566 56.16 s

LINE 1 OH DATA FR05 REDUC 4 OUTPUT: 57499 1904 IST-LINE 2 OH DATA 7R05 REDUC 4 OUTPUT: L-11184 1944 IST Note: Paraffin rods were used on 57499.

a e

i 1

i 9

, , - , - ,- .,----,,,,..,---,,--,-r --,,--.----y---+-----,4%w -,-e+- _w n - - m m t--,----+-,-ve-v-+---mm-&-- w w---v+=--e--+'me- e-

l

B5 DDH (55) SD (MR) D (K3) DSD (K3) TYPE i ,

N 0.00 0.00 0.00 0.00 BUILDING i P 110.63 8.82 12.45 12.45 OTHER ST Q 107.64 9.14 13.38 13.38 CON POST 8 E 97.01 11.81 22.33 22.33 OTHER ST S -213.76 12.32 24.29 24.29 CON POSTe7 T 92.64 12.75 26.02 26.02 OTHER ST V- 113.00 14.64 34.31 34.31 OTHER ST W 113.63 14.74 34.77 34.77 COM POSTS 104 T 102.19 16.53 43.70 43.70 OTRER ST Y' 105.42- 16.78 45.04 45.04 OTHER ST 1205 T 86.68 17.98 51.71 51.71 NET PIPE 1335 T 76.29 19.07 56.21 58.21 aET PIPE A1 84.56 20.39 66.25 66.54 CON POST &

E1 42.54 22.95 84.25 84.25 OTHER ST F1 55.51 23.16 85.82 85.85 OTHER ST &

I1 428.94 25.16 101.27 101.27 IIIIIIII47 J1 85.75 26.18 109.6C 109.66 OTHER ST 2030 T 85.52 26.43 111.78 111.78 HET PIPE 1838 T 62.65 28.42 129.21 129.21 NET PIPE O 1 59.51 30.09 144.90 144.90 IIIIIIII 1658 : 113.77 30.40 147.85 147.85 -IIIIIIII 1634 T 198.68 30.66 150.37 150.37 HET PIPE P1 43.78 30.68 150.37 150.56 NET PIPE @

1571 T 66.40 31.95 163.30 163.30 OTHER ST R1 70.99 32.02 164.06 164.06 111111118 S1 56.16 32.08 164.68 164.68 NET PIPE SD = 2.500

  • SQRT (DSD) MM 8 BN NOT PLOTTED ON PROFILE 7 BH NOT USED IN REGRESSION d B5 ON SPUR D S DSD CALC. FROM REDUC 4 OUTPUT - 57499 1904 1ST 9

3 8* i$

' deG)

~ l i

\ ^

2 6

J ELLENSBURG

\  ;.;

m e

\ m e

s _

~

\ ,

\

\ _

\

~

e

\ _ u

~

_\

=\ 1 l

\

\m _

e e

rR 3

s \ l a

8

_ \

9 o

8 _ _ e

\ c

, .2 -

Bi _\~

='

\

2 \

$ii9 \

a~*

C \- e*

E t +' *s C \

G8* .

\

a " t.

\

]g[ g AUBURN

\

~; os - 1 I i i L

$$$A5 e e o o '*

ETE'u m o m e e

<m--a m u - _

m ,

E 9

BM POS 0H22 (3) OHT1 (M) DLT2 (3) DLT1 (3) DDH (53)

ZZ 249 P1P2 27.98517 27.98511 0.00000 0.00000 0.00 Y 249 21.50872 21.51377 -6.47645 -6.47134 -5.11 Q 252 26.57093, 26.55648 -1.41424 -1.42863 14.39 P 252 52.18909 52.19492 24.20392 24.20981 -5.89 M 252 89.40870 89.46214 61.42353 61.47703 -53.50

. P P1P2 100.78445 100.78663 72.79928 72.80152 -2.24 K 252 128.96587 128.96884 100.98070 100.98373 -3.03 J 252 151.36326 151.36681 123.37809 123.38170 -3.61 Z 253 172.08537 172.08004 144.10020 144.09493 5.27 Y 253 175.91531 175.91237 147.93014 147.92726 2.88 R P1P2 175.70984 175.70658 147.72467 147.72147 3.20 W 253 198.35915 198.36366 170.37398 170.37855 -4.57 U 253 225.48757 225.49491 197.50240 197.50980 -7.40 I 249 241.38099 241.40801 213.39582 213.42290 -27.08 j W 249 255.09612 255.10138 227.11095 227.11627 -5.32 BM 3 271.82610 271.82602 243.84093 243.84091 0.02 L 249 P1 282.83356 282.82969 254.84839 254.84458 3.81 KK 249 285.18607 285.18335 257.20090 257.19824 2.66 K 249 P1P2 294.18678 294.18403 266.20161 266.19892 2.69 LINE 1 OH D AT A FROM REDUC 4 OUTPUT: L-11184 1944 1ST LINE 2 OH DATA PROM EEDUC4 OUTPUT: L-23136 1973 IST 10

- , - - , - - - - , . , . - , - - , , - - n---. - - - + - - - - - - - - - - - - . - - - - ,

35- DDR (55) SD (55) D (KM) DSD (KM) TIPE ZZ 249 0.00 0.00 0.00 0.00 IIIIIIII Y 249 -5.11 2.32 1.66 1.66 COM POST- I Q 252 14.39 3.12 2.99 2.99 OTHER ST I P 252 -5.89 4.26 5.59 5.59 OTHER ST I 5 252 -53.50 5.55 9.48 9.48 OTHER ST P -2.24 5.92 10.78 10.78 OTHER ST K 252 -3.03 6.83 14.35 14.35 CON POST J 252 -3.61 7.36 16.64 16.64 COM POST Z 253 5.27 7.93 19.34 19.34 OTHER ST Y 253 2.88 8.19 20.66 20.66 OTHER ST R 3.20 8.20 20.68 20.68 OTHER STs V 253 -4.57 8.89 24.33 24.33 OTHER ST U 253 -7.40 9.36 26.93 26.93 COM POST I 249 -27.08 9.66 28.72 28.72 COM POST W 249 -5.32 9.93 30.31 30.31 COM POST B5 3 0.02 10.75 35.48 35.54 OTHER ST &

L 249 3.81 10.94 36.79 36.79 OTHER ST KK 249 2.66 11.11 37.95 37.97 BEDROCK 4 K 249 2.69 11.17 38.39 38.39 BED 30CK SD = 1. 803

  • SQRT (DSD) 55 8 DH N9T PLOTTED ON PROFILE 7 B5 NOT USED IN REGRESSION 3 B5 ON SPUR D D DSD CALC. FROM REDUC 4 OUTPUT: L- 11184 1944 1ST 0

10

4 EAST AUGURN to 3.3 mi Int cf EAGLE GORGE 1973 - 1944 -0.124.au/km refraction - corrected

! length of bars = 11 standard deviation T = -0.84 j Pr greater abs T = 0.4118 i

l 20 _

3o0 f I) 1 II dDh (=) !3 'd k 0  :: ELEV. (m)

,c -

, r-

, <, y 7__

l N

j -20 _

l 4

i I I a

ST9 (T1 1 g >

-< P

-40 _g

= 8 E

x R" l

II

-60 I I I i O le 20 30 40 0 (km) l.

i 1 o I

i .

I 1

83 POS OHT2 (5) OHT1 (5) DLT2 (3) DLT1 (d) DDH (M3)

KK 249 285.19600 285.18335 0.00000 0.00000 0.00 K 249 294.19646 294.18403 9.00006 9.00068 -0.22 T 248 418.49131 418.47570 133.29531 133.29235 2.96 {

1373 418.48970 418.47255 133.29370 133.28920 4.50 l S 248 426.93127 426.91387 141.73527 141.73052 4.75 i N 248 480.88048 480.86260 195.68448 195.67925 5.23 K 248 501.23472 501.21872 216.03872 216.03537 3.35 i I 247 665.67371 665.64405 380.47771 380.46070 17.01 2 247 665.17328 665.14701 379.97728 379.96366 13.62 K 244 663.79278 663.76763 378.59678 378.58428 12.50 0 247 644.75477 644.73084 359.55877 359.54749 11.28 T 247 636.56914 636.55649 351.37314 351.37314 0.00 S 247 640.30531 640.29068 355.10931 355.10733 1.98 2103 T 641.51857 641.50154 356.32257 356.J1819 4.38 R 247 636.58724 636.57799 351.39124 351.39464 -3.40 J 1 632.17504 632.15958 J46.97904 346.97623 2.81 0 247 628.08471 628.07056 342.88871 342.88731 1.40 2030 T 619.18234 619.16807 333.98634 333.98472 1.62 P 247 616.29784 616.26948 331.10184 331.08613 15.71 N 247 605.18241 605.16938 319.98641 319.98603 0.38 l 5 17 581.66921 581.64259 296.47321 296.45924 13.97 LINE 1 OH DATA FROM REDUC 4 OUTPUT: L-11184 1944 1ST LINE 2 OH DATA FR05 REDUC 4 OUTPUT: L-24471/2 1982 IST Note: No interpolated positions were used on this profile.

L-24471/2 is almost entirely single-run.

I1

BR DDH (35) SD (55) D (KM) DSD (Kd) TYPE KK 249 0.00 0.00 0.00 0.00 B EDROC K' 4 K 249 -0.22 1.13 0.45 0.47 BEDROCK T 243 2.96 7.43 20.13 20.15 OTHER ST 1373 4.50 7.43 20.14 20.16 OTHE2 STs S 248 4.75 7.64 21.26 21.28 OTHER ST 5 248 5.23 8.79 28.18 28.20 OTHER ST K 248 3.35 9. 17 30.67 30.69 OTHER ST I 247 17.01 13.15 63.13 63.14 OTHER ST W 247 13.62 13.16 63.13 63.23 BEDROCK 8 4 K 244 12.50 13.23 63.72 63.86 OTHER STS d O 247 11.28 13.52 66.68 66.70 OTHER ST T 247 0.00 13.69 68.42 68.44 CON POST S 247 1.98 13.83 69.85 69.87 OTHER ST 2103 T 4.38 13.84 69.96 69.98 aET PIPE 8 R 247 -3.40 13.99 71.47 71.49 CON POST J 1 2.81 14.10 72.55 72.61 OTHER ST# 3 Q 247 1.40 14.14 72.98 73.00 CON P0ST 2030 T 1.62 14.30 74.68 74.70 NET PIPE P 247 15.71 14.43 76.04 76.06 OTHER ST N 247 0.33 14.54 77.11 77.19 CON POST &

5 17 13.97 15.27 85.11 85.13 IIIII4XI SD = 1.655

  • SQRT(DSD) 35 ,

8 BH NOT PLOTTED ON PROFILE 7 BM NOT USED IM REGRESSION 3 Bd ON SPUR D & DSD CALC. FE05 BEDUC4 OUTPUT: L-11184 1944 IST 11

4

~

T \

\

$w

.-. 8

^

i 3

I I CLE ELUM i

~

i m_

= t a

! 1

) W I Jk M l

~

1 - e

}

s 4

fn 1 c.

o i I l E '

i N I I

v 8 I E  :*

d  :::

w . J d D u I

~

o  ? ml j ,

o T - S 0.: v 8* i b g j

' I J w v8- -

wo. . l 6 ,a O

EAGLE GORGE E$b $ I

-* gw.c%*7e,: :l g

M HU @ *

  • . I n

E e

.C 11

+

as POS OHT2 (3) OHT1 (5) DLT2 (3) DLT1 (3) DDH (3M)

TIDAL 4 7.399o3 7.47476 0.00000 0.00000 0.00 TIDAL 10P1P2 3.62503 3.74257 -3.77460 -3.73219 -42.41 TIDAL 9 P1P2 18.83585 18.91137 11.43622 11.43661 -0.39 TIDAL 8 P1P2 10.97775 11.05740 3.57812 3.58264 -4.52 TIDAL 6 P1P2 5.66388 5.74350 -1.73575 -1.73126 -4.49 K 13 P2 13.42861 13.52773 6.02898 6.05297 -23.99 J 13 P2 1.86663 2.03485 -5.53300 -5.43991 -93.09 G 13 P1P2 4.03986 4.15011 -3.35977 -3.32465 -35.12 F 73 P1P2 6.35443 6.47061 -1.04520 -1.00415 -41.05 E 13 PIP 2 10.20059 10.32129 2.80096 2.84653 -45.57 I6 USGSP1P2 10.92830 11.02548 3.52867 3.55072 -22.05 LINE 1 OH DATA FROM REDUC 4 OUTPUT: 82315 1922 IST LINE 2 OH DATA 7R05 REDUC 4 OUTPUT: L-14696 1952 IST l

l

\

l 12

]

BM DDH (35) SD (MH) D (KM) DSD (KB) TYPE TIDAL 4 0.00 0.00 0.00 0.00 BUILDING TIDAL 10 -42.41 2.15 1.03 1.03 BUILDING TIDAL 9 -0.39 2.41 1.29 1.29 BUILDING TIDAL a -4.52 2.75 1.69 1.69 BUILDING i TIDAL 6 -4.49 3.13 2.25 2.25 BUILDING

' K 13 -23.99 6.41 9.13 9.13 CON POST J 13 -93.09 8.00 14.21 14.21 OTHER ST G 13 -35.12 9.79 21.29 21.29 COM POST F 13 -41.05 10.52 24.62 24.62 COM POST E 13 -45.57 11.45 29.16 29.16 BUILDING I 6 USGS -22.05 11.52 29.48 29.48 HET PIPE SD = 2.121

  • SQRT (DSD) 55 8 BM NOT PLOTTED ON PROFILE

? B5 NOT USED IN REGR ESSION 3 B5 ON SPUR D 6 DSD CALC. Pros REDUC 4 OUTPUT: 82315 1922 IST 4

9 12

_ . . . . - - . . ,______-_.._,,.,,._._,____.m,,,___m._. _ __. _ . . . . . . . _ - . . _ _ , . . -

l 9

3 i

_ / -g

-) BURLINGTON

/

l -

/

J 7 3

/ o

_/

7 . .

N

/

./

/

/

.i / =

1 /

n ,

N. /

4 I 8 I . e E3 '

/+

l.

E ?

E s

l

. - /

8=

"S*

5I /

1: . d. /

gt.

"O C .

8'. 4 ANACORTES ch=s

,4 : 7:t: l' 2E'A S S g g h h li L . 7 i i i i i 1

12

i 85 POS 05T2 (R) OHT1 (N) DLT2 (3) DLT1 (5) DDH (MM)

Q 61 P1 16.67967 16.76653 0.00000 0.00000 0.00 I 5e USGS P1P2 16.98080 17.03058 0.30113 0.26405 37.08 P 61 19.85423 19.89274 3.17456 3.12621 48.35 N 61 22.24946 22.31992 5.56979 5.55339 16.40 5 61 23.91154 23.94563 7.23187 7.17910 52.77 L 61 21.60879 21.63700 4.92912 4.87047 58.65 K 61 26.28439 26.30933 9.60472 9.54280 61.92 J 61 26.11341 26.14016 9.43374 9.37363 60.11 H 61 28.79032 28.81385 12.11065 12.04732 63.33 F 61 42.85712 42.87639 26.17745 26.109d6 67.59 C 61 72.63864 72.67186 55.95897 55.90533 53.64 8 61 e5.43294 65.45031 48.75327 48.68378 69.49 A 61 P1P2 61.48294 61.46436 44.80327 44.69783 105.44 Y 60 P1P2 66.49097 66.62308 49.81130 49.85655 -45.25 X 60 68.88910 68.89746 52.20943 52.13093 78.50 LINE 1 OH DATA FROM REDUC 4 OUTPUT: WASHOR16 L-2396 1934 2ND I LINE 2 08 DATA }AON REDUC 4 OUTPUT: L-17026 1958 IST Note: L-2396 is only about 20% double-run.

0 13

BA DDN . (33) SD (88) D (K3) DSD (KB) TYP3 Q 61 0.00 0.00 0.00 0.00 CON POGT Se USG3 37.08 0.97 0.00 0.10 BUILDING &

P 61 48.35 5.47 2.98 3.00 OTNER SI A N 61 16.40 7.37 5.43 5.43 CON FOST N 61 52.77 8.85 7.83 7.83. CON PO3T L 61 58.65 10.79 11.64 11.64 CON POST K 61 61.9J 11.75 IJ.80 13.80 CON POST J 61 o0.11 12.70 16.12 16.12 CON POST M 61 63.33 I J. 81 19.04 19.08 OTNER ST F 61 67.59 15.41 23.75 23.75 CON POST C 61 53.64 18.25 33.30 33.30 CON POST a 61 69.49 19.39 37.60 37.60 CON POST A 61 105.44 20.12 40.48 40.48 CON POST Y 60 -45.25 21.54 Go.42 46.42 CON POST X 60 78.50 22.34 49.90 49.90 COM POST SD = 3.162

  • SQRT (DSD) NN 0 B5 NOT PLOTTED ON PROFILE 7 BN NOT US$D IN RE0ERSSION 4 EM ON SPUR

. D6 DSD CALC. FRoa IIDUC4 OUTPurs NASNOR16 L-2396 1934 2ND 13

3 4

! \_ 5

] -3

\  : -

\ a

~

\

\ CONCRETE t

\.

l

.!i \ -

g 1 \

\

4 \

\

e g \ -

g i8 ,h. \

w= -

5~I \

*  ?
  • \ + f

\

= ~

1 ,8 l \ - .

1

  • \
  • 1

~~+1 .

0E8 * ,

Ohh $ 9-Y g, g SEDRO WOOLLEY .I 1

on- 1 l ~

g 5 f "d ! g

$, [ ' .*.

8 .

4 13

I B3 POS OHT2 (M) OHT1 (5) DLT2 (3) DLT1 (5) DDH (38) 56,0SGS P1P2 17.06858 16.98080 0.00000 0.00000 0.00 P 61 19.93062 19.85423 2.86204 2.87343 -11.39 3 374 20.16763 20.08371 3.09905 3.10291 -3.86 N 61 22.33004 22.24946 5.26146 5.26866 -7.20 V 374 21.17585 21.09536 4.10727 4.11456 -7.29 M 61 23.98619 23.91154 6.91761 6.93074 -13.13 U 374 24.52174 24.44620 7.45316 7.46540 -12.24 L 61 21.68318 21.60879 4.61460 4.62799 -13.39 K 61 26.35833 26.28439 9.28975 9.30359 -13.84 S 374 24.80666 24.73583 7.73808 7.75503 -16.95 J 61 26.17048 26.11341 9.10190 9.13261 -30.71 R 374 28.09315 28.02550 11.02457 11.04470 -20.13 H 61 28.85841 28.79032 11.78983 11.80952 -19.69 G 61 (1) 31.72718 31.65983 14.65860 14.67903 -20.43 P 374 37.62621 37.55919 20.55763 20.57839 -20.76 F 61 42.91852 42.85712 25.84994 25.87632 -26.38

  • N 374 43.56481 43.50930 26.49623 26.52850 -32.27 5 374 60.06387 60.01859 42.99529 43.03779 -42.50 K 374 61.28436 61.23529 44.21578 44.25449 -38.71 3 61 (2) 63.53196 63.48720 46.46338 46.50640 -43.02 J 374 67.13207 67.08964 50.06349 50.10884 -45.35 C 61 72.68112 72.63864 55.61254 55.65784 -45.30 H 374 60.78229 60.74231 43.71371 43.76151 -47.80 D 374 66.36369 66.32112 49.29511 49.34032 -45.21 Z 374 71.36511 71.32344 54.29653 54.34264 -46.11 F 374 78.11882 78.07730 61.05024 61.09650 -46.26 G 374 78.18548 78.14359 61.11690 61.16279 -45.89 263.7 80.33121 80.29422 63.26263 63.31342 -50.79 A 61 P1P2 61.51793 61.48294 44.44935 44.50214 -52.79 3 374 65.41480 65.37800 48.34622 48.39720 -50.98 A 380 67.05653 67.02129 49.98795 50.04049 -52.54 B 380 65.56783 65.53263 48.49925 48.55183 -52.58 Y 60 P1P2 66.52817 66.49097 49.45959 49.51017 -50.58 E 380 P1 81.96343 81.93890 64.89485 64.95810 -63.25 F 380 P1P2 83.28508 83.25838 66.21650 66.27758 -61.08 LINE 1 OH DATA FROM HEDUC4 OUTPUT: L-17026 1958 IST LINE 2 OH DATA FRO 3 REDUC 4 OUTPUT: WASHOR18 L-23117 1973 1ST 14

s 85 DDH (55) SD (55) D (K5) DSD (KM) TYPE 56 USGS 0.00 0.00 0.00 0.00 EUILDING --

P 61 -11.39 2.49 3.10 3.10 OTHER SI W 374 -3.86 2.83 4.00 4.00 CON POST N'61 -7.20 3.33 5.56 5.56 COM POST Y 374 -7.29 3.52 6.19 6.19 CON POST _

3 61 -13.13 3.98 7.93 7.93 CON POST U 374 - 12.24 4.08 8.33 8.33 CON POST L 61 -13.39 4.84 11.72 11.72 CON POST K 61 -13.84 5.27 13.87 13.87 CON POST -

S 374 -16.95 5.49 15.10 15.10 OTHER ST -

J 61 -30.71 5.69 16.18 16.18 CON POST H 374 -20.13 5.96 17.79 17.79 CON POST H 61 -19.69 6.18 19.10 19.10 OTHER ST G 61 (1) -20.43 6.41 20.53 20.53 CON POST P 374 -20.76 6.62 21.95 21.95 OTHER ST -

F 61 -26.38 6.90 23.79 23.79 CON POSI N 374 -32.27- 7.13 25.40 25.40 CON POST 5 374 -42.50 7.33 26.84 26.84 OTHER ST -

K 374 -38.71 7.59 28.83 28.83 CON POST D 61 (2) -43.02 7.78 30.28 30.28 CON POST J 374 -45.35 7.99 31.94 31.94 CON POST C 61 -45.30 8.16 33.32 33.32 CON POST H 374 -47.80 8.37 35.02 35.02 CON POST D 374 -45.21 8.56 36.68 36.68 OTHER ST E 374 -46.11 8.62 36.68 37.17 OTHER ST8 8 -

F 374 -46.26 8.64 36.68 37.35 CON POST 8 s G 374 -45.89 8.65 36.68 37.43 CON POSTd 3 "7 263.7 -50.79 8.67 36.68 37.60 BOULDER 8a __'

A 61 -52.79 9.00 40.48 40.48 CON POST B 374 -50.98 9.24 42.75 42.75 CON POST A'380 -52.54 9.35 43.69 43.69 BEDROCK __

B 380 -52.58 9.44 44.55 44.55 CON POST Y 60 -50.58 9.63 46.38 46.38 CON POST 53.54 E 380 -63.25 10.35 53.54 BEDROCK -

F 380 -61.08 10.46 54.70 54.70 BEDHOCK SD = 1.414

  • SQRT (DSD) 55 8 B5 NOT PLOTTED ON PROFILE

? B5 NOT USED IN HEGRESSION --

3 B5 ON SPUR D & DSD CALC. FB05 REDUC 4 OUIPUT: L-17026 1958 IST

~

-2

.=

14 _

w S u _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . _ _ _ _ _ _ . _ _ _ _ _ _ _

f

Y -

E

w e

I J

E w

G O

m Y

/ 3

~

ROCKPORT 7 G

/

m@

7- -

e n a l M N

$~

R 9

-y s

=

c 2"

h-en

~

k i

h o 4 -

= 4

%!4 9 -

e s -

e .. =. 6 oo' I

wuo y I b'i le o8m2t l l SEDRO WOOLLEY 9; g~ -

e85-72* en CD CD EEF e G

  • 83sI -

'CD 7 1

i, 14 1

BH POS OHT2 (5) O HT 1 (H) DLT2 (M) DLT1 (5) DDH (H M)

E 380 82.11663 81.93890 0.00000 0.00000 0.00 F 380- 83.43787 83.25838 1.32124 1.31948 1.76 G 380 81.85053 81.72420 -0.26610 -0.21470 -51.40 GA ST' 78.15724 77.97180 -3.95939 -3.96710 7.71 J 380 108.34161 108.15599 26.22498 26.21709 7.89 K 380 89.31881 89.12612 7.20218 7.18722 14.96 L 380 91.54030 91.34358 9.42367 9.40468 18.99 5 380 94.76580 94.56904 12.64917 12.63014 19.03 N 380 95.86567 95.67033 13.74904 13.73143 17.61 C 1 USE 99.72929 99.53206 17.61266 17.59316 19.50 P 380 97.63188 97.46377 15.51525 15.52487 -9.62 Y 375 106.39996 106.20551 24.28333 24.26661 16.72 R 375 108.10874 107.91897 25.99211 25.98007 12.04 S 375 113.87400 113.68021 31.75737 31.74131 16.06 T 375 122.39062 122.19174 40.27399 40.25284 21.15 0 375 127.15278 126.93769 45.03615 44.99879 37.36 V 375 132.01278 131.79968 49.89615 49.86078 35.37 W 375 131.37592 131.16696 49.25929 49.22806 31.23 Q 375 137.85716 137.64414 55.74053 55.70524 35.29 P 375 138.05817 137.84163 55.94154 55.90273 38.81 N 375 139.23542 139.02191 57.11879 57.08301 35.78 5 375 148.94968 148.74236 66.83305 66.80346 29.59 H 375 153.44778 153.24148 71.33115 71.30258 28.57 L 375 334.30593 334.08822 252.18930 252.14932 39.98 A 375 274.14370 273.92891 192.02707 191.99001 37.06 B 379 658.58099 658.39216 576.46436 576.45326 11.10 W 376 634.31036 634.12807 552.19373 552.18917 4.56 I 376 632.13549 631.97545 550.01886 550.03655 -17.69 Y 376 625.60691 625.42776 543.49028 543.48886 1.42 Z 376 605.97302 605.84187 523.85639 523.90297 -46.58 8 377 590.07245 589.89337 507.95582 507.95447 1.35 U 378 584.06030 583.88159 501.94367 501.94269 0.98 T 378 579.78868 579.62876 497.67205 497.68986 -17.81 S 378 571.28984 571.11698 489.17321 489.17808 -4.87 3 378 583.82353 583.64870 501.70690 501.70980 -2.90 Q 378 555.11652 554.95651 472.99989 473.01761 -17.72 P 378 548.64529 548.47210 466.52866 466.53320 -4.54 l

N 378 541.19025 541.01618 459.07362 459.07728 -3.66 2 M USGS 537.04622 536.87862 454.92959 454.93972 -10.13 L 378 534.64369 534.47424 452.52706 452.53534 -8.28 LINE 1 OH DATA FROM REDUC 4 OUTPUT: L-17026 1958 IST LINE 2 08 DATA FROM REDUC 4 OUTPUT: L-24471/3 1982 ISI '

Note: This profile has no interpolated positions (except GA SI on L- 17026) .

L-24471/3 is almost entirely single-run. =

15 .

I

B5 DDH (M5) SD (MM) D (K5) DSD (KM) TYPE E 380 0.00 0.00 s.00 0.00 BEDROCK F 380 1.76 1.31 l.15 1.15 BEDROCK G 380 -51.40 2.03 2.75 2.75 OTHER ST, GA ST 7.71 2.78 5.17 5. 17 BEDROCK J 380' 7.89 3.23 7.00 7.00 OTHER ST K 380 14.96 3.49 8.16 8. 16 CON POST L 380 18.99 3.73 9.36 9.36 COM POST M 380 19.03 4.01 10.79 10.79 CON POST N 380 17.61 4.26 12.16 12.16 CON POST C 1 USE 19.50 4.43 13.14 13.14 OTHER ST P 380 -9.62 4.67 14.61 14.61 CON POST Y 375 16.72 5.28 18.67 18.67 CON POSI R 375 12.04 5.47 20.10 20.10 OTHER ST S 375 16.06 5.77 22.35 22.35 CON POSI T 375 21.15 5.99 24.03 24.03 CON POST U 375 37.36 6.28 26.49 26.49 BEDROCK V 375 35.37 6.46 28.00 28.00 BEDROCK U 375 31.23 6.63 29.51 29.51 B EDR OC K Q 375 35.29 6.79 30.91 30.91 BOULDER P 375 38.81 6.88 31.74 31.74 OTHER ST H 375 35.78 7.05 33.36 33.36 OTHER ST H 375 29.59 7.23 35.03 35.03 OTHER ST H 375 28.57 7.36 36.36 36.36 OTHER ST L 375 39.98 7.84 41.28 41.28 OTHER ST A 375 37.06 8.27 45.93 45.93 BEDBOCK B 379 11.10 13.71 125.21 126.12 CON POST S U 376 4.56 13.91 129.77 129.77 CON POST I 376 -17.69 13.99 131.23 131.23 CON POST Y 376 1.42 14.07 132.85 132.85 CON POST 2 376 -46.58 14.16 134.49 134.49 CON POST B 377 1.35 14.32 137.57 137.57 CON POST U 378 0.98 14.37 138.47 138.47 CON POST T 378 -17.81 14.44 139.94 139.94 CON POST S 378 -4.87 14.53 141.62 141.62 CON POST R 378 -2.90 14.61 143.20 143.20 BOULDER Q 378 -17.72 14.70 145.00 145.00 CON POSI P 378 -4.54 14.78 146.50 146.50 CON POST N 378 -3.66 14.85 147.98 147.98 CON POST 2d USGS -10.13 14.93 149.59 149.59 CON POST L 378 -8.28 14.98 150.44 150.44 OTHER ST SD = 1.221

  • SQRT (DSD) MM 8 BM NOT PLOTTED ON PROFILE

? BM NOT USED IN REGRESSION

& B5 ON SPUR DS DSD CALC. FROM REDUC 4 OUTPUT: L-17026 1958 1ST 15 l . -

1

l 1:

liI ) '

)

(

m V

0 E 0 L 7 E 0

i 6 I

l i 8o pt s

) O n

w O(

o ' O h '

s '

t " "

o O g n O e

n i 0 l

I 2 n 1 i

o s

s1 e0 r0 g0 e

r0

(

=

kmT

/s mb m a 7

r 0 e

0. at l 0 0 e r 8

- g r

8 P 5

9 ,

1 1 5

2 8 8=

9 T n 1 o

, i t

Pm a 7a k

O / i R m v l

i n e I T r d N 9 I

W6 d

r

/ l 0 4

9, a o 0 d 0 t n 0 a 7 T

R n es

d t 8 O o t 0 P i c1 K s e+ =

s r C

O R e r=o T

r y f gcs r s b

o r eab a E f n r N l of6e a it o 1. at

/ I i

mh ch0e r _ P J

g e92?

tat rg 5 s r f n=

g 00 7

iee r 0 0 0 0 f rlTP 5 5 1

)

O - -

n u

n

(

h D

d -

lll

& L ..

C E

=

k HE BM POS OHT2 (H) OHT1 (5) DLT2 (M) DLT1 (3) DDH (MM)

T D 31 P1P2 3.36590 3.28025 0.00000 0.00000 0.00 El E 31 P1P2 3.86625 3.79367 0.50035 0.51342 -13.07

$ F 31 P1P2 5.79329 5.75271 2.42739 2.47246 -45.07 Eh H 31 P1P2 6.08789 6.30074 2.72199 2.72049 1.50 E P 31 P1P2 2.78380 2.75372 -0.58210 -0.52653 -55.57

$ J 31 P1P2 3.62818 3.55999 0.26228 0.27974 -17.46 i

K 31 P1P2 2.86217 2.80768 -0.50373 -0.47257 -31.16 E L 31 P1P2 3.75670 3.72544 0.39280 0.44519 -52.39 K T 31 4.87504 4.77237 1.50914 1.49212 17.02

% 0 31 6.34455 6.30346 2.97865 3.02321 -44.56 .

W V 31 P2 9.80318 9.75425 6.43728 6.47400 -36.72 "'

Y Y 31 P1P2 4.75106 4.70937 1.38516 1.42912 -43.96 b I 30 P1P2 5.40796 5.41012 2.04206 2.12987 -87.81 1 V 30 P1P2 5.61919 5.58222 2.25329 2.30197 -48.68 U 30 5.70416 5.66629 2.33826 2.38604 -47.78 g T 30 P1P2 6.35445 6.31640 2.98855 3.03615 -47.60 K E= Z 30 P2 7.13157 7.08712 3.76567 3.80687 -41.20 Q 30 P1P2 6.46520 6.50274 3.09930 3.22249 -123.19 0 30 P1P2 9.20688 9.19777 5.84098 5.91752 -76.54 M L 30 P1P2 8.99427 8.96873 5.62837 5.68848 -60.11 K 30 14.70050 14.68762 11.33460 11.40737 -72.77

$ J 30 P1P2 23.74664 23.73689 20.36074 20.45664 -75.90 H 30 P1P2 19.73344 19.71517 16.36754 16.43492 -67.38 -

E G 30 14.79172 14.77583 11.42582 11.49558 -69.76 y F 30 P1P2 15.18099 15.17019 11.81509 11.88994 - 74. 85 F C 30 9.68471 9.68486 6.31881 6.40461 -85.80 B 30 10.36897 10.35765 7.00307 7.07740 -74.33 A 30 PIP 2 9.71895 9.71439 6.35305 6.43414 -81.09

_ Y 14 P1P2 10.34416 10.35209 6.97826 7.07184 -93.58 E I 14 12.37290 12.38737 9.00700 9.10712 -

100.12 #%p W 14 P1P2 11.12462 11.15279 7.75872 7.87254 -

113.82 is i 7 Y 14 P1P2 11.57111 11.61581 8.20521 8.33556 -

130.35 ' *J ^

E Q 14 P1P2 9.45065 9.53589 6.08475 6.25564 -

170.89 a P 14 P1 9.29731 9.49280 5.93141 6.21255 -281.14 LINE 1 OH DATA FROM REDUC 4 OUTPUT: 82195 1920 1ST LINE 2 OH DATA FR03 REDUC 4 OUIPUT: L-9052/4 1941 IST Note: 82195 was not corrected f or level co111ma tion error.

s L

K 16 ..

6 9 G6 O

B5 DDH (55) SD (55) D (K5) DSD (K5) TYPE D 31 0.00 0.00 0.00 0.00 OTHER ST S E 31 -13.07 3.89 3.19 3.37 CON POST &

F 31 -45.07 5.01 5.59 5.59 BUILDING H 31 1.50 6.69 9.95 9.95 CON POST &

P 31 -55.57 10.35 23.80 23.80 HET PIPE J 31 -17.46 11.72 30.53 30.53 CON POST

' K 31 -31.16 11.73 30.53 30.58 HET PIPES a L 31 -52.39 13.21 38.81 38.81 BOULDER T 31 17.02 15.30 52.02 52.02 BEDROCK 0 31 -44.56 15.75 55.14 55.14 HET PIPE V 31 -36.72 15.77 55.14 55.28 OTHER STt a Y 31 -43.96 16.73 62.25 62.25 5ET PIPE I 30 -87.81 18.33 74.65 74.65 OTHER ST V 30 -48.68 18.88 79.27 79.27 5ET PIPE U 30 -47.78 19.29 82.70 82.70 CON POST T 30 -47.60 19.60 85.39 85.39 CON POST Z 30 -41.20 20.79 96.04 96.04 OTHER ST 3 Q 30 -123.19 21.06 98.60 98.60 OTHER ST 7 0 30 -76.54 21.78 105.48 105.48 HET PIPE L 30 -60.11 22.48 112.37 112.37 OTHER ST K 30 -72.77 22.67 114.23 114.23 CON POST J 30 -75.90 23.01 117.69 117.69 HET PIPE H 30 -67.38 23.73 125.13 125.13 CON POST G 30 -69.76 23.96 127.64 127.64 HET PIPE F 30 -74.85 24.27 130.89 130.89 OTHER ST C 30 -85.80 25.01 138.99 138.99 OTHER ST B 30 -74.33 25.17 140.87 140.87 OTHED ST#

A 30 -81.09 25.21 141.31 141.31 OTHER ST Y 14 -93.58 26.10 151.40 151.'40 CON POST I 14 -100.12 26.28 153.50 153.50 IIIIIIII E 14 -113.82 26.50 156.10 156.10 OTHER ST V 14 -130.35 26.71 158.58 158.58 OTHER ST Q 14 -170.89 27.24 164.91 164.91 CON POST P 14 -281.14 27.27 165.32 165.32 OTHER ST SD = 2.121

  • SQRT (DSD) 55 8 B5 NOT PLOTTED ON PROFILE

? B5 NOT USED IN REGRESSION

& B5 ON SPUR DS DSD CALC. FROM REDUC 4 OUTPUT: 82195 1920 1ST 16 m - - _ - - _ _ _ _ _ - - _ _ _ _ - - - . _ _ - - - - _ _ - - -

w s

G B .G-R d

/ "

0 G f PORTLAND f-

~~

. O n

h T 5

. j-ci

- / G w , . T I llI A'

x I CD

,/ . N R W D

." / -

G I, 7 - . G

= j - -

k a

d ^ f

~l ,

. G G

G

$ l

~ c m I

o Y . G

% 1 O

~

o 4 -

- 4e - / - - G

-r o T Co0 **

8 c'

E e7 a f --e-3En s . G M8. . / N

.% i oe'

-osse u

O f g a:: ~.

- u

~%

.c m o

, Id*

m i , , , ASToplA '

$ E ET h G G G G G GG n-e, G G w G w G w

  • G Y Y I 1

2o i 16 r

BM POS OHT2 (5) OHT1 (5) DLT2 (M) DLT1 (3) DDH (MM) 0 14 P1 9.91010 9.99476 0.00000 0.00000 0.00 K 23 P1P2 40.24128 40.33141 30.33118 30.33665 -5.47 L 23 P1P2 67.30807 67.40900 57.39797 57.41424 -16.27 T 23 62.47994 62.58134 52.56984 52.58658 -16.74 0 23 46.83303 46.97486 36.92293 36.98010 -57.17 P 23 33.70842 33.83442 23.79832 23.83966 -41.34 Q 23 14.36849 14.49896 4.45839 4.50420 -45.81 S 23 12.09498 12.22794 2.18488 2.23318 -48.30 0 23 P1 12.38047 12.49923 2.47037 2.50447 -34.10 7 23 17.58198 17.71242 7.67188 7.71766 -4S.78 W 23 12.69884 12.82514 2.78874 2.83038 -41.64 2 23 12.71478 12.85766 2.80468 2.86290 -58.22 A 24 P1 18.75439 18.88947 8.84429 8.89471 -50.42 B 24 21.85415 22.03534 11.94405 12.04058 -96.53 P 24 37.24743 37.39386 27.33733 27.39910 -61.77 H 24 29.76876 29.92091 19.85866 19.92615 -67.49 I 24 30.36190 30.49648 20.45180 20.50172 -49.92 L 24 31.16409 31.31330 21.25399 21.31854 -64.55 K 24 P1 29.13460 29.29292 19.22450 19.29816 -73.66 N 24 36.07511 36.18785 26.16501 26.19309 -28.08 P 24 P1P2 30.75733 30.91729 20.84723 20.92253 -75.30 0 24 35. 16081 35.32578 25.25071 25.33102 -80.31 Q 24 P1P2 30.37990 30.53808 20.46980 20.54332 -73.52 V 24 29.36442 29.53521 19.45432 19.54045 -86.13 I 24 P1P2 31.69725 31.86567 21.78715 21.87091 -83.76 Y 24 P1P2 38.64504 38.80378 28.73494 28.80902 -74.08 A 25 30.94019 31.12671 21.03009 21.13195 -101.86 8 25 29.66901 29.83386 19.75891 19.83910 -80.19 C 25 31.96586 32.12061 22.05576 22.12585 -70.09 E 25 P1P2 34.29305 34.44659 24.38295 24.45183 -68.88 F 25 P1P2 41.25833 41.41371 31.34923 31.41895 -70.72 G 25 41.35624 41.50994 31.44614 31.51518 -69.04 J 25 P1P2 48.93425 49.08895 39.02415 39.09419 -70.04 K 25 53.19794 53.35165 43.28784 43.35689 -69.05 P 25 P1P2 48.66894 48.83722 38.75884 38.84246 -83.62 L 25 46.04671 46.20971 36.13661 36.21495 -78.34 3 25 50.84254 51.00964 40.93244 41.01488 -82.44 N 25 49.41588 49.58950 39.50578 39.59474

-88.96 0 25 P1P2 52.34128 52.51905 42.43118 42.52429 -93.11 Y 25 P1P2 54.72951 54.90543 44.81941 44.91067 -91.26 LINE 1 OH DATA FROM HEDUC4 OUTPUT: 82270 1921 IST LINE 2 OH D ATA FROM REDUC 4 OUTPUT: L-9402 1941/42 1ST Note: 82270 was not corrected for level co111mation error.

17

l __

BM DDB (MM) SD (MM) D (KM) DSD (KM) TYPE O 14 0.00 0.00 0.00 0.00 IIIIIIII K 23 -5.47 4.09 3.71 3.71 OTHER ST L 23 -16.27 5.94 7.84 7.84 OTHER ST T 23 -16.74 7.11 11.24 11.24 MET PIPE d O 23 -57.17 8.74 16.97 16.97 IIIIIIII P 23 -41.34 9.61 20.51 20.51 OTHER ST Q 23 -45.81 10.50 24.50 24.50 OTHER ST S 23 -48.30 11.28 28.26 28.26 OTHER ST U 23 -34.10 12.03 32.15 32.15 OTHER ST V 23 -45.78 12.97 37.40 37.40 MET PIPE E 23 -41.64 13.57 40.91 40.91 OIHER ST Z 23 -58.22 15.10 50.70 50.70 OTHER ST A 24 -50.42 15.56 53.85 53.85 CON POST B 24 -96.53 16.11 57.71 57.71 IIIIIIII F 24 -61.77 17.84 70.71 70.71 OTHER ST H 24 -67.49 18.81 78.66 78.66 IIIIIIII I 24 -

-49.92 19.08 80.95 80.95 CON POST L 24 -64.55 19.87 87.74 87.74 MET PIPE K 24 -73.66 20.01 89.02 89.02 BEDROCK N 24 -28.08 20.65 94.82 94.82 BEDROCK P 24 -75.30 21.24 100.25 100.25 MET PIP 3 l

0 24 -80.31 21.24 100.25 100.29 OTHER ST4 &

Q 24 -73.52 21.28 100.63 100.63 OTHER ST V 24 -86.13 23.17 119.29 119.29 BOULDER I 24 - -83.76 23.79 125.76 125.76 BEDROC K Y 24 -74.08 24.14 129.58 129.58 OTHER ST A 25 -101.86 24.54 133.87 133.87 BUILDING B 25 -80.19 24.55 134.01 134.01 BUILDING C 25 -70.09 24.60 134.57 134.57 IIIIIIIIe E 25 -68.88 24.90 137.77 137.77 OTHER ST F 25 -70.72 25.07 139.70 139.70 OTHER ST G 25 -69.04 25.21 141.23 141.30 OTHER ST S J 25 -70.04 25.71 146.89 146.89 BEDROCK K 25 -69.05 25.81 148.06 148.06  ???????

P 25 -83.62 26.30 153.70 153.70 MET P1PE L 25 -78.34 26.31 153.88 153.88 OTHER STt M 25 -82.44 26.74 158.91 158.91 OTHER ST H 25 -88.96 26.98 161.76 161.76 OTHER ST O 25 -93.11 27.38 166.66 166.66 MET PIPE Y 25 -91.26 28.03 174.68 174.68 IIIIIIII SD = 2.121

  • SQRT (DSD) MM
  1. BM NOT PLOTTED ON PROFILE

? BM NOT USED IN REGRESSION S BM ON SPUR D G DSD CALC. FROM REDUC 4 OUTPUT: 82270 1921 1ST 17 i

3 o b d QUINTON e

_m 1 ,I I -

}

-r

~

3

-a j o

\

m m

e/ .

_ m

/

w" /

a

~

I .

"/ -

e y e

I ^

~

_ N

~

e e /

E

/

o

! O

  • ,a

> I a _ o E C' m

, m

/ .

F N I

< / =

c l

=

- .8 / _ m e

a

=

cr .

.e> / -

w o

?= /_ -

e r

1a 5 o /% -

mi e

  • / -

_ e D

8 e +' s [ -

ka sb. .'

/ ~

I n Y 8 e 'mmu /+ PORTLAND E ~o - cn a6" I @ l I l 3Ef72 G e se et T,

  • G N e ceo u G V m

-HL T C I l g

.c O

  • U 17

33 POS OHT2 (5) OST1 (5)' DLT2 (3) DLT1 (5) DDH (55)

K 49 P1P2~ 16.46336 16.30420 0.00000 0.00000 0.00 J 49 24.82319 24.66779 8.35983 8.36359 -3.76 H 50 37.66983 37.50981 21.20647 21.20561 0.86 J 50 5'0.13251 49.97279 33.66915 33.66859 0.56 K 50 66.40546 66.24895 49.94210 49.94475 -2.65 L 50 81.51730 81.35953 65.05394 65.05533 -1.39 S 50 130.13446 129.97687 113.67110 113.67267 -1.57 T 50 167.40603 167.25645 150.94267 150.95225 -9.58 0 50 204.68473 204.53828 188.22137 188.23408 -12.71 W 50 137.84154 137.70495 121.37838 121.40075 -22.57 I 50 122.69864 122.55020 106.23528 106.24600 -10.72 Y 50 107.80411 107.67319 91.34075 91.36899 -28.24 Z 50 P1P2 108.27904 108.13767 91.81568 91.83347 -17.79 A 51 109.99246 109.83274 93.52910 93.52854 J.56 B 51 90.98643 90.84691 74.52307 74.54271 -19.64 D 51 82.71030 82.56539 66.24694 66.26119 -14.25 E 51 79.24131 79.09691 62.77795 62.79271 -14.76 G 51 75.75844 75.60834 59.29508 59.30414 -9.06 F 51 72.59162 72.45228 56.12826 56.14808 -19.82 H 51 108.10640 107.95630 91.64304 91.65210 -9.06 J 51 115.45191 115.32206 98.98855 99.01786 -29.31 K 51 196.85086 196.71743 180.38750 180.41323 -25.73 L 51 73.42173 73.26793 56.95837 56.96373 -5.36 5 51 76.18697 76.03243 59.72361 59.72823 -4.62 N 51 100.65763 100.49724 84.19427 84.19304 1.23 P 51 P1P2 105.33838 105.17225 88.87502 88.86805 6.97 8 51 95.76838 95.60672 79.30502 79.30252 2.50 MAG STA P1P2 97.60782 97.42704 81.14446 81.12284 21.62 5 51 80.79842 80.62990 64.33506 64.32570 9.36 T 51 60.77619 60.58778 44.31283 44.28358 29.25 U 51 58.52490 58.34818 42.06154 42.04398 17.56 Y 51 50.66366 50.49098 34.20030 34.18678 13.52 I 51 42.71171 42.54637 26.24835 26.24217 6.18 Y 51 47.04370 46.88338 30.58034 30.57918 1.16 Z 51 44.46241 44.29902 27.99905 27.99482 4.23 A 52 P1P2 52.79645 52.62856 36.33309 36.32436 8.73 LIN E 1 OH DATA FROM REDUC 4 OUTPUT: L- 16 3 1930 IST LINE 2 OH DATA FROM HEDUC4 OUTPUT: L-9155 1941 1ST 18

BH DDH (MM) SD (55) D (KH) DSD (KM) TYPE K 49 0.00 0.00 0.00 0.00 IIIIIIII J 49 -3.76 1.66 0.61 0.61 CON POST H 50 0.8o 3.33 2.47 2.47 OTHER ST ~

J SO 0.56 4.26 4.03 4.03 CON POST K 50 -2.65 5. 07 5.71 5.71 OTHER ST L 50- -1.39 5.74 7.33 7.33 OTHER ST S 50 -1.57 8.86 17.45 17.45 CON POST T 50 -9.58 9.44 19.79 19.79 CON POST U 50 - 12. 71 10.15 22.90 22.90 CON POST H 50 -22.57 11.24 28.10 28.10 OTHER ST I 50 - 10.72 11.73 30.56 30.56 OTHER ST Y 50 -28.24 12.34 33.86 33.86 OTHER ST Z 50 - 17.79 12.70 35.85 35.85 OTHER ST A 51 0.56 13.14 38.36 38.36 CON POST B 51 -19.64 13.57 40.92 40.92 OTHER ST D 51 -14.25 14.01 43.66 43.66 CON POST E 51 -14.76 14.33 45.62 45.62 OTHER ST G 51 -9.06 14.60 47.37 47.37 CON POST F 51 - 19.82 14.68 47.37 47.90 OTHER ST# 3 H 51 -9.06 15.18 51.19 51.19 CON POST J 51 -29.31 15.75 55.15 55.15 CON POST K 51 -25.73 16.34 59.36 59.36 CON POST L 51 -5.36 16.76 62.45 62.45 CON POST H 51 -4.62 17.28 66.37 66.37 CON POST N 51 1.23 17.67 69.37 69.37 CON POST P 51 6.97 18.12 73.02 73.02 IIIIIIII B 51 2.50 18.20 73.02 73.60 OTHER STd S HAG STA 21.62 18.29 73.02 74.33 CON POST # a S 51 9.36 18.59 76.82 76.82 CON POST T 51 29.25 19.04 80.58 80.58 CON POST U 51 17.56 19.10 81.12 81.12 OTHER ST V 51 13.52 19.54 84.86 84.86 OTHER ST I 51 6.18 20.70 95.21 95.21 OTHER ST Y 51 1.16 20.77 95.87 95.87 OTHER ST Z 51 4.23 20.78 95.87 95.98 OTHER ST8 3 A 52 8.73 20.94 97.47 97.47 BUILDING SD = 2.121

  • SQRT (DSD) HM
  1. BM NOT PLOTTED ON PROFILE 7 BB NOT USED IN REGRESSION a BH ON SP08 D & DSD CALC. FROM REDUC 4 OUTPUT- L-163 1930 IST 18

w e

o m 4 W

N J w G G

SALEM -

Y= -

!w

.5 w

a

_ c)

CO t

c O 2

.8 1

0

- G o

O e

c) e O e

C -

m -

E

5. O cn

$ i

- - G T

E w a c -

w N O

~

w s .m -

O > w C

C. "O

o. O -

u w m

m O e - .

m m w . N

,w. .

, e m.

w- o

- u+e 4 4> N O6 8

- u oe n

ou . .,

r . .o o WB J

.O m w"

< cw u ~4~

  • o Ne HEB0 C 0w.- o . w w U .C O O m l 4 mw a L o u en en m n2 % C E m bW W G G

= u-sa L %W m g &

- 1 S

c

= 18

- - , . =. __

85 POS CHT2 (M) OHT1 (M) DLT2 (5) DLT1 (5) DDH (55)

S 52 P1P2 42.81330 42.68970 0.00000 0.00000 0.00 0 52 102.74629 102.63550 59.93299 59.94580 -12.81 V 52 3.13582 3.01783 -39.67748 -39.67187 -5.61 T 52 4.33156 4.25854 -38.48174 -38.43116 -50.58 I 52 19.43787 19.33637 -23.37543 -23.35333 -22.10 Y 52 9.49303 9.38531 -33.32027 -33.30439 -15.88 Z 52 7.19115 7.11223 -35.62215 -35.57747 -44.68 A 53 21.67436 21.57634 -21.13894 -21.11336 -25.58 B 53 P1P2 127.17785 127.07356 84.36455 84.38386 -19.31 C 53 37.69749 37.59197 -5.11581 -5.09773 -18.08 D 53 12.09158 11.98116 -30.72172 -30.70854 -13.18 F 53 18.55477 18.44363 -24.25853 -24.24607 -12.46 G 53 25.24470 25.12848 -17.56860 -17.56122 -7.38 H 53 28.03702 27.93862 -14.77628 -14.75108 -25.20 J 53 27.88429 27.76979 -14.92901 -14.91991 -9.10 K 53 30.93550 30.84030 -11.87780 -11.84940 -28.40 L 53 44.35069 44.23905 1.53739 1.54935 -11.96 5 53 60.23065 60.12639 17.41735 17.43669 -19.34 N 53 86.23729 86.12661 43.42399 43.43691 -12.92 P 53- 245.13223 245.02445 202.31893 202.33475 -15.82 U 53 205.92323 205.82777 163.10993 163.13807 -28.14 Y 53 202.18845 202.09255 159.37515 159.40285 -27.70 W 53 199.67838 199.57634 156.86508 156.88664 -21.56 I 53 228.39103 228.28236 185.57773 185.59266 -14.93 Y 53 230.18180 230.07759 187.36850 187.38789 -19.39 Z 53 192.72891 192.63672 149.91561 149.94702 -31.41 A 54 216.97778 216.86664 174.16448 174.17694 -12.46 B 54 243.03507 242.93114 200.22177 200.24144 -19.67 C 54 177.50837 177.39686 134.69507 134.70716 -12.09 D 54 135.16049 135.04920 92.34719 92.35950 - 12. 31 E 54 131.33074 131.21798 88.51744 88.52828 -10.84 F 54 P1P2 156.06856 155.95764 113.25526 113.26794 -12.68 G 54 210.47564 210.35760 167.66234 167.66790 -5.56 H 54 95.07272 94.92859 52.25942 52.23889 20.53 W 54 87.37336 87.25471 44.56006 44.56501 -4.95 J 54 85.05466 84.91928 42.24136 42.22958 11.78 T 54 76.48229 76.38354 33.66899 33.69384 -24.85 U 54 76.54958 76.44191 33.73628 33.75221 - 15. 93 Y 54 72.35250 72.24225 29.53920 29.55255 -13.35 235 USGS 71.62467 71.51486 28.81137 28.82516 -13.79 MAG STA 68.84501 68.71942 26.03171 26.02972 1.99 K 54 68.42282 68.31647 25.60952 25.62677 -17.25 L 54 61.67263 61.57318 18.85933 18.88348 -24.15 5 54 69.19281 69.08105 26.37951 26.39135 -11.84 N 54 58.59030 58.48897 15.77700 15.79927 -22.27 5 54 P1P2 63.36898 63.26453 20.55568 20.57483 -19.15 P 54 P1P2 63.03266 62.93222 20.21936 20.24252 -23.16 B 54 62.20718 62.10791 19.39388 19.41821 -24.33 0 12 P1P2 65.10957 65.00992 22.29627 22.32022 -23.95 LINE 1 OH DATA FROM HEDUC4 OUTPUT: L-176 1930 1ST LINE 2 OH DATA FR05 3EDUC4 OUTPUT: L-9145 1941 IST 19

B5 DDH (53) SD (H5) D (K3) DSD (KM) TYPE S 52 0.00 0.00 0.00 0.00 IIIIIIII U 52 -12.81 3.97 3.51 3.51 IIIIXXIX Y 52 -5.61 6.01 7.99 8.02 IIIIXXII &

W 52 -50.58 6.87 10.49 10.49 XXXIIIII I 52 -22.10 7.53 12.62 12.62 OTHER ST I 52 -15.88 7.61 12.62 12.87 BUILDING 4 8 Z 52 -44.68 9.00 18.00 18.00 OTHER ST A 53 -25.58 9.57 20.36 20.36 OTHER ST B 53 -19.31 10.04 22.39 22.39 IIIIIIII C 53 -18.08 - 10.49 24.46 24.46 IIIIIIII D 53 -13.18 11.02 27.02 27.02 OTHER ST F 53 -12.46- 11.89 31.44 31,.44 OTHER ST G 53 -7.38 12.47 34.54 34.54 IIIIIIII H 53 -25.20 12.98 37.45 37.45 OTHER ST J 53 -9.10 13.42 40.04 40.04 OTHER ST K 53 -28.40 13.66 41.50 41.50 OTHE3 ST L 53 -11.96 14.17 -

44.65 44.65 CON POST M 53 -19.34 14.67 47.85 47.85 OTHER ST N 53 -12.92 14.97 49.82 49.82 CON POST P 53 - 15. 82 15.35 52.39 52.39 CON POST U 53 -28.14 16.00 56.93 56.93 OTHER ST V 53 -27.70 16.25 58.73 58.73 IIIIIIII W 53 -21.56 16.47 60.31 60.31 CON POST I 53 -14.93 16.99 64.18 64.18 IIIXXXIX Y 53 -19.39 17.20 65.74 65.74 CON POST Z 53 -31.41 17.35 66.88 66.88 OTHER ST A 54 -12.46 17.72 69.76 69.76 CON POST B 54 -19.67 17.85 70.86 70.86 CON POST C 54 -12.09 18.06 72.51 72.51 CON POST D 54 -12.31 18.26 74.14 74,14 OTHER ST E 54 -10.84 18.32 74.59 74.59 OTHER ST8 F 54 -12.68 18.47 75.87 75.87 OTHER ST G 54 -5.56 18.64 77.23 77.23 IXXXIIII H 54 20.53 19.14 81.42 81.42 CON POST W 54 -4.95 19.35 82.30 83.27 IIIZXIXX &

J 54 11.78 19.77 86.91 86.91 CON POST T 54 -24.85 20.34 91.98 91.98 BUILDING U 54 -15.93 20.37 91.98 92.23 BUILDINGd 8 Y 54 -13.35 20.41 91.98 92.59 BUILDING 8 &

235 USGS -13.79 20.40 92.49 92.52 BET PIPE 8 3 MAG STA 1.99 20.41 92.62 92.62 IIIIIIIIs K 54 -17.25 20.74 95.64 95.64 CON POST L 54 -24.15 21.02 98.17 98.17 OTHER ST 5 54 -11.84 21.39 101.72 101.72 CON POST N 54 -22.27 22.05 108.06 108.06 OTHER ST S 54 -19.15 22.28 110.32 110.32 OTHER ST P 54 -23.16 22.32 110.69 110.69 OTHER ST#

R 54 -24.33 22.32 110.69 110.72 OTHER STs a 0 12 -23.95 22.41 111.59 111.59 IXIIIIII SD = 2.121

  • SQRT (DSD) 35 8 B3 NOT PLOITED ON PROFILE 7 BM NOT USED IN REGRESSION 19 %.

gm-l

.,__ , , , [N, . -

5

-- r r - -

gr -

gu "

a r n-s

& BH ON SPUR D& DSD CALC. FROM REDUC 4 OUTPUT: L-176 1930 1ST O

19 m- - _ _ . _ _ _ _ _ _ _ _ _ _ __ _ . _ _ _ __

o m 4 W

N J W h N

ALBANY m.'I }

x -

F o

. / .

1 - e c -

m

=

I~ .

i .

mi

. w M3 w.

-l .

"l_ m

,; m I

, = e I_

e m

w O

I. -

3 ,-

3 5 l.

s-m c ( "

m O @

c* , _

. l m T

\ l

> g o e c E2-  ;

I- -

C o

=, 3 8 I = c

  • 2* U=

a l c N

> m gga s m

=, o u. .  ;

- o 41 4

]

38%, t NEWPORT [

to7% 8 Eef?E e st F.

  • m G

$ E. E n t D e j

.c .

O 7

19

83 POS OHT2 (M) OHT1 (M) DLT2 (M) DLT1 (M) DDH (MM)

C 56 P1P2 3.66821 3.64094 0.00000 0.00000 0.00 A 56 P1P2 30.28117 30.25582 26.61296 26.61488 -1.92 Z 55 3.59700 3.65045 -0.07121 0.00951 -80.72 Y 55 2.37852 2.37872 -1.28969 -1.26222 -27.47 I 55 5.65833 5.63219 1.99012 1.99125 -1.13 V 55 5.24884 5.27193 1.58063 1.63099 -50.36 Y 55 6.57293 6.55632 2.90472 2.91538 -10.66 0 55 10.18896 10.15855 6.52075 6.51761 3.14 T 55 13.26364 13.22521 9.59543 9.58427 11.16 32 USGS 9.76404 9.72347 6.09583 6.08253 13.30 40 USGS 12.13347 12.09335 8.46526 8.45241 12.85 S 55 14.03209 13.99345 10.36388 10.35251 11.37 2 55 17.08920 17.05950 13.42099 13.41856 2.43 P 55 16.68587 16.65097 13.01766 13.01003 7.63 N 55 13.91209 13.88151 10.24388 10.24057 3.31 65 USGS 19.79272 19.76039 16.12451 16.11945 5.06 L 55 27.30423 27.27945 23.63602 23.63851 -2.49 K 55 36.43808 36.39955 32.76987 32.75861 11.26 133 USGS 40.50477 40.48551 36.83656 36.84457 -8.01 118 USGS 35.68592 35.66743 32.01771 32.02649 -8.78 J 55 34.60072 34.58293 30.93251 30.94199 -9.48 E 55 54.81584 54.80887 51.14763 51.16793 -20.30 A 55 68.64726 68.64325 64.97905 65.00231 -23.26 Z 54 74.93662 74.93721 71.26841 71.29627 -27.86 Y 54 76.72024 76.71933 73.05203 73.07839 -26.36 I 54 P1P2 88.70751 88.70213 85.03930 85.06119 -21.89 T 10 90.95762 90.95408 87.28941 87.31314 -2J.73 U 10 PIP 2 95.72920 95.72200 92.06099 92.08106 -20.07 LINE 1 OH DATA FROM REDUC 4 OUTPUT: L-188 1930 IS T LINE 2 OH DATA FROM REDUC 4 OUIPUT: L-9117 1941 ISI l 20

BM DDB (MM) SD (MM) D (KM) DSD (KM) TYPE C 56 0.00 0.00 0.00 0.00 IIIIIIII A 56 -1.92 3.87 3.33 3.33 OTFE2 ST Z 55 -80.72 5.76 7.39 7.39 COM POST Y 55 -27.47 7.03 10.99 10.99 BOULDER I 55 -1.1J 7.63 12.95 12.95 CON POST W 55 -50.36 8.74 16.97 16.97 IIIIIIII Y 55 -10.66 9.70 20.93 20.93 OTHER ST U 55 3.14 10.41 24.11 24.11 D00LDE3 T 55 11.16 11.04 27.09 27.09 OTHER ST 32 USGS 13.30 11.21 27.91 27.91 BOULDER s 40 USGS 12.85 11.21 27.94 27.94 BOULDER 8 S 55 11.37 11.23 28.01 28.01 CON POST R 55 2.43 11.93 31.66 31.66 OTHER ST P 55 7.63 12.50 34.72 34.72 CON POST N 55 3.31 13.07 37.99 37.99 CON POST 65 USGS 5.06 13.69 41.69 41.69 BOULDER L 55 -2.49 14.75 48.35 48.35 CON POST K 55 11.26 15.34 52.30 52.30 CON POST 133 USGS -0.01 15.83 55.70 55.70 BOULDER 118 USGS -8.78 16.41 59.88 59.88 BOULDER #

J 55 -9.48 16.45 60.17 60.17 OTHER ST E 55 -20.30 18.00 72.02 72.02 CON POST A 55 ~23.26 18.85 78.96 78.96 OTHER ST Z 54 -27.86 19.15 81.51 81.51 OTHER ST Y 54 -26.36 19.24 82.26 82.26 OTHER ST I 54 -21.89 19.68 86.05 86.05 OHTER ST T 10 -23.73 19.76 86.79 86.79 IIIIIIII U 10 -20.07 20.06 89.49 89.49 IIIIIIII SD = 2.121

  • SCHT (DSD) MM d BM NOT PLOTTED ON PROFILE

? BM NOT USED IN REGRESSION 3 DM ON SPUR D & DSD CALC. FROM REDUC 4 OUTPUT: L-188 1930 IST E

4 20

r.. '

s .

t, -_. : ,_

s'-*'

,q

.p 7 -

V

= .

o w o

a w g

.f 4- . .

_G .a.

.w -

s

. s ;, ,

7 ,. - :

l -

DRAIN 3

.' 'T

/ .

W .; - * .?.-

y y==g . , . . ,, 'g

_ g .c._- ' - ( _

co

, m .

r .- i j ., .:'t .~ '

t -

c.I -

g - s ..

.: r . .

l ,

. . ..a i

a e

I .

. . .g  ;

, G [ - ., . ,

I D  :: g. . .

^f l

Ni l .. ' '- 4'y

+

I c'.

>s .

- ,I , -.

I . .

E '

R { l o ,

g ,_

v . ,

F i n

m e -

'^

. .O.

u w i :-. , , 2

o. .e i I

- . ] l . . -

o . m . -

4.- c. .

mm m

j 9.p, i e ] l - .: ...

==

% m "

, O ', . . ';,

.:r .c .m. N mmu '.*9  %

- um ~

O.

o l  : - . . , _.

U- ' '

= e +i n

,]m ,

-

I N 4 4 -

ooe e I oe m u .o e

--o-. -

I .s u .D 1

,_ g o t e-o,-

+ REEDSPORT ,

.~

ou .m l l I G. U.C N U .**e to 9 w I u @ . -..

o6 en cn G

G e s --

. E'u CO O c) i

= u - >- a. co e i , .

= . .

5 g

a ,

s, m -. . . . , .

20 d';f.,

a, e

"* 'd ' -'

O

m. =

s BH POS OHT2 (5) OHT1 (5) DLT2 (5) DLT1 (H) DDH- (MH)

ABERDEENP1P2 5.88815 6.03216 0.00000 0.00000 0.00 TIDAL 2 3.18168 3.55953 -2.70647 -2.47263 -233.84 I 25 P1P2 3.40738 3.60373 -2.48077 -2.42843 -52.34 Y 25 3.83938 3.98051 -2.04877 -2.05165 2.88 .

Z 25 P1P2 3.08767 3.23343 -2.80048 -2.79873 -1.75 1 26 5.57999 5.73445 -0.30816 -0.29771 -10.45 B 26 21.56128 21.70329 15.67313 15.67113 2.00 E 26 60.47808 60.62508 54.58993 54.59292 -2.99 G 26 67.11135 67.22077 61.22320 61.10861 34.59 L 8 USGS 40.03291 40.17344 34.14476 34.14128 3.48 K 26 106.04090 106.18324 100.15275 100.15108 1.67 N 26 P1P2 147.25830 147.41596 141.37015 141.38380 -13.65 Q 26 66.85395 66.99206 60.96580 60.95990 5.90 T 26 154.56386 154.70325 148.67571 148.67109 4.62 0 26 150.23073 150.37184 144.34258 144.33968 2.90 2 26 161.79545 161.95153 155.90730 155.91937 -12.07 1 26 -

132.80403 132.97059 126.91588 126.93843 -22.55 Y 26 131.19998 131.43409 125.31183 125.40193 -90.10 D 27 13.64364 13.90367 7.75549 7.87151 -116.02 H 27 P1P2 36.40142 36.67470 30.51327 30.64254 -129.27 L 27 54.44200 54.73265 48.55385 48.70049 -146.64 5 27 26.75473 26.97307 20.86658 20.94091 -74.33 N 27 33.13869 33.33828 27.25054 27.30612 -55.58 H 27 72.58898 72.75503 66.70083 66.72287 -22.04 7 27 62.05168 62.21294 56.16353 56.18078 -17.25 Y 27 87.24926 87.50883 81.36111 81.47667 -115.56 Z 27 92.67128 92.84030 86.78313 86.80814 -25.01 H 28 P1P2 127.40897 127.55323 121.52082 121.52107 -0.25 LINE 1 OH DATA FROM REDUC 4 OUTPUT- WASHOa6 L-751 1933 IST LINE 2 OH DATA FHOM 2EDUC4 OUTPUT: BASHOR2 L-23527 1974 1ST

/

s 21

B5 DDR (55) SD (55) D (K5) DSD (KB) TYPE ABERDEEN 0.00 0.00 0.00 0.00 CON POST &

TIDAL 2 -233.84 3.54 3.48 3.86 OTHER SId73 I 25 -52.34 4.77 6.66 6.99 BUILDING Y 25 2.88 5.31 8.34 8.68 BUILDING Z 25 -1.75 6.42 12.34 12.68 CON POST A 26 -10.45 7.41 16.55 16.89 CON POST B 26 2.00 8.10 19.84 20.17 CON POST E 26 -2.99 9.93 29.99 30.32 CON POST G 26 34.59 11.52 40.52 40.85 CON POST L 8 USGS 3.48 11.83 42.75 43.08 CON POST K 26 1.67 13.06 51.95 52.48 IIIIIIII a N 26 -13.65 14.68 65.98 66.31 CON POST Q 26 5.90 15.52 73.74 74.07 CON POST T 26 4.62 16.38 82.21 82.55 CON POST U 26 2.90 16.69 85.40 85.73 CON POST W 26 -12.07 17.31 91.79 92.13 CON POSI I 26 -22.55 17.61 95.02 95.36 CON POST  :

Y 26 -90.10 17.90 98.26 98.59 CON POST D 27 -116.02 19.33 114.60 114.94 OTHER ST H 27 -129.27 20.41 127.16 128.09 CON POST L 27 -146.64 21.19 137.79 138.13 CON POST 5 27 -74.33 21.46 141.31 141.65 OTHER ST H 27 -55.58 21.65 143.78 144.12 OTHER ST R 27 -22.04 22.37 153.64 153.97 OTHER ST '

2 27 -17.25 23.43 168.61 168.94 OTHER ST

, Y 27 -115.56 24.02 176.72 177.52 CON POST @

Z 27 -25.01 24.10 178.07 178.60 BUILDING S H 28 -0.25 25.36 197.52 197.86 OIHER ST SD = 1.803

  • SQRT (DSD) 55 8 BM NOT PLOTTED ON PROFILE 7 B5 NOT USED IN REGRESSION 3 B5 ON SPUR D & DSD CALC. FRos REDUC 4 OUTPUT: WASHOR6 L-751 1933 IST A

21  ;

w,, _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ - - - - - - . - - - - - - - - - - - - - -

E v

O >

N d w

' G

,, , G

/ SAPPHO N

/ -

.5 l w l C O

i -

[ -

l

= -

I -

~

I

/ e N

/ C Ji

~ l

= -

9

- =/

t j

E

\ _' .

/

E R B l E 2 i E I e m j EE /

Di 4 -

+1 m

?

4

=t- o -

gg+ a mo" e;

  • C .8 o .
s'2 ;

f+ aseaoceu I

00 42 ,

I I I e2%'s e o es wucu G G W G

@ E.f r E O M N W _G I I I I E

8 21

BM POS OHT2 (H) OHT1 (3) DLT2 (M) DLT1 (M) DDB (MM)

K 17 35.14813 35.14062 0.00000 0.00000 0.00 J 17 34.59440 34.59330 -0.55373 -0.54732 -6.41 H 17 29.24774 29.25117 -5.90039 -5.88945 - 10.94 5 10 P1P2 8.30113 8.30399 -26.84700 -26.83663 -10.37' G 17 10.66304 10.66493 -24.48509 -24.47569 -9.40 F 17 59.58528 59.58275 24.43715 24.44213 -4.98 E 17 4.73833 4.73254 -30.40980 -30.40808 -1.72 C 17 P1P2 21.44547 21.45159 -13.70266 -13.68903 -13.63 B 17 12.48393 12.47791 -22.66420 -22.66271 -1.49 A 17 49.24881 49.24431 14.10068 14.10369 -3.01 TIDAL 1 12.44550 12.46440 -22.70263 -22.67622 -26.41 TIDAL 2 9.36829 9.36739 -25.77984 -25.77323 -6.61 Y 16 8.55179 8.54043 -26.59634 -26.60019 3.85 I 16 30.76866 30.76075 -4.37947 -4.37987 0.40 Y 16 33.47568 33.46097 -1.67245 -1.67965 7.20 0 16 5.63216 5.65970 -29.51597 -29.48092 -35.05 T 16 11.39892 11.41612 -23.74921 -23.72450 -24.71 S 16 15.56115 15.56248 -19.58698 -19.57814 -0.84 R 16 84.37968 84.38187 49.23155 49.24125 -9.70 N 16 14.38913 14.38339 -20.75900 -20.75723 -1.77 n 16 11.14544 11.14423 -24.00269 -23.99639 -6.30 L 16 6.39440 6.38369 -28.75373 -28.75693 3.20 K 16 5.60294 5.59758 -29.54519 -29.54304 -2.15 J 16 2.15361 2.16332 -32.99452 -32.97730 -17.22 H 16 5.17487 5.18157 -29.97326 -29.95905 -14.21 G 16 2.79106 2.79826 -32.35707 -32.34236 -14.71 F 16 4.58897 4.59370 -30.55916 -30.54692 -12.24 E 16 4.17061 4.17268 -30.97752 -30.96794 -9.58 D 16 7.76993 7.77156 -27.37820 -27.36906 -9.14 C 16 5.87050 5.87698 -29.27763 -29.26364 -13.99 Y 15 5.66406 5.66480 -29.48407 -29.47582 -8.25 X 15 P1P2 4.02593 4.02141 -31.12220 -31.11921 -2.99 LINE 1 OH DATA FB05 REDUC 4 OUTPUT: WASH 0311 L-293 1931 13T LINE 2 OH DATA FH03 HEDUC4 OUTPUT: W ASH 0H19 L-23140 1973 IST 22

. . ' . 7, .

. n '

. ;y;,

B5 DDR (55) SD (55) D (KB) DSD (KM) TYPE - "

K 17 0.00 0.00 0.00 0.00 BUILDIEG - 'd '

J 17 -6.41 0.48 0.07 0.07 BUILDING 8 - l.'

H 17 -10.94 1.19 0.43 0.43 BUILDING 'W 5 10 -10.37 1.99 1.22 1.22 XXXXXXXX >

G 17 -9.40 2.73 2.29 2.29 OTHER ST '

'\.

F 17 -4.98 3.75 4.32 4.32 CON POST ',,.

E 17 -1.72 5.24 8.43 8.43 OTHER ST  :/ .-

C 17 -13.63 5.72 10.05 10.05 OTHER ST *i,' .

B 17 -1.49 6.13 11.55 11.55 CON POSI  :- " '

A 17 -3.01 7.15 15.74 15.74 CON POST * y TIDAL 1 -26.41 9.00 21.93 24.94 XXXXIIXX 4 TIDAL 2 -6.61 9.02 21.93 25.02 XXXXXXXX a . " ;' .

Y 16 3.85 8.83 23.97 23.97 OTHER ST X 16 0.40 9.09 25.40 25.40 OTHER ST ',~ ,

V 16 7.20 10.15 31.71 31.71 OTHER ST -

L' U 16 -35.05 10.54 34.15 34.15 OTHER ST 3~

  • ~

H' T 16 -24.71 10.69 35.17 35.17 BUILDING S 16 -0.84 10.74 35.49 35.49 BUILDING [h . ;.

B 16 -9.70 11.32 39.42 39.42 CON POST ., , .

N 16 -1.77 12.60 48.88 48.88 OTHER ST .

'? ,

M 16 -6.30 13.01 52.09 52.09 CON POST , -l )  ;

L 16 3.20 13.50 56.05 56.05 OTHER ST i , tw /  :

K 16 -2.15 13.65 57.29 57.29 CON POST ' ..

s J 16 -17.22 14.01 60.38 60.38 OTHER SI .I -

H 16 -14.21 14.04 60.68 60.68 OTHER ST8 G 16 - 14.71 14.14 61.55 61.55 OTHER ST ' '

F 16 - 12.24 14.38 63.60 63.60 OTHER ST E 16 -9.58 14.53 64.97 64.97 OTHER ST

D 16 -9.14 14.67 66.19 66.19 BEDROCK ~

C 16 -13.99 14.86 67.94 67.94 OTHED ST 'h Y 15 16.14

~

-8.25 80.14 80.14 OTHER ST '4'*

X 15 -2.99 16.33 82.03 82.03 UTHER ST ,

SD = 1.803

  • SQaT (DSD) 55 ' - { a.'

8 B5 NOT PLOTTED ON PROFILE  ! - *'

? B5 NOT USED IN REGRESSION ..

3 B5 03 SPUR .,

D & DSD CALC. FROM REDUC 4 OUTPUT: VASHOR11 L-293 1931 IST -

. ,k . s *

- '.~ V, ..

Is e-

. .. r

?d 4

x 4

3 , ,.

v, h, b h .

f r.

't. -

l l

I w

a s

8

'iw e

_G 3

r C i C / ELDON l

i m, El, t

'"O _ CD

-, ,/ n l (0 E "I C I l a f S I

~ l

  • I. _ e I- v A I= -

e g , , .

? I~ ~

a 7

R 3

$ ,$ w,

,f E 7 I .

sv3 8 1 -

~

  • h* d T Ys u J ega + ( 1Y C M*C 2n -

~en oe" i.

I *--

OLYMPIA

  1. 3oES C1C eJ e n l
  • f l l

~85T2 kum o e m e e o E 5 Ma " s.

CD N v (o N e l 3 n

t

= .

22

_ _ _ . _ _ _ _ _ _ _