ML20090A951

From kanterella
Jump to navigation Jump to search
Full Structural Weld Overlay Design for Oyster Creek Shutdown Cooling & Core Spray Sys
ML20090A951
Person / Time
Site: Oyster Creek
Issue date: 06/30/1991
From: Branlund B, Mehta H, Ranganath S
GENERAL ELECTRIC CO.
To:
Shared Package
ML20090A904 List:
References
GE-NE-523-41-06, GE-NE-523-41-0691, GE-NE-523-41-6, GE-NE-523-41-691, NUDOCS 9203030150
Download: ML20090A951 (44)


Text

_ - _ - _ .

l CE .Vuelear Energy CE.SE.523 41 0691 3*='R Technology DRF 137 0010 Class II June 1991 FULL STAUCTURAL '.JELD OVERLAY DESIGN FCR THE OYSTER CREEK SHUTDC'a'N COOLING AND CORE SPRAY SYSTEM Prepared By:

  • b Ihu i B.J . Branlund, Engineer, Structural Analysis Services Verified By:
  • __

H.S. Mehta. Principal Engineer, Structural Analysis Services Approved By: <W ** -

A75. Ran6anath, Manager, Structural Analysis Services 9203030150 920226 PDR ADOCK 05000219 p PDR

t IMFORTANT NOTICE RECARDING ,

t CONTEtiTS OF THIS REPORT  ;

Please Road Carefully  !

The only undertakings of Ceneral Electric Company respecting information in this document are contained in the contract between the customer and General Electric Company, as identified in the purchase order for this report and nothing contained in this document shall be construed as changing the contract. The use uf this information by anyone other than the customer or for any purpose other than that for which it is intended, is not

  • authorized; and with respect to any unauthorized use, General Electric  ;

company makes no representation or warranty, and assumes no liability as to the completeness, accuracy, or usefulness of the information contained in this document. >

k I

r l

i i

, ,- r.--r , , . - - , , , ,.,-w ~~-r e-, .,,--,,,..w-wn. --n n ---,.--nmm-+=~.. .-w~~ ~--+-~-~-~;-~*.~~---'~"-~+~---~-~*'"--~

l 1

I ABSTRACT This report documents the technical basis for the design of weld overlays l for the Oyster Creek Shutdown Cooling and Core Spray Systems and the subsequent shrinkage analysis. The two following analyses were performed:

  • A shrinkage analysis was performed to determine the effect of the shrinkage from one overlay on the Shutdown Cooling System and the three overlays on the Core Spray Systems.

The overlay designs are consistent with the requirements of the ASME Code Section XI, !(UREG 0313, and the NRC's Generic 1.etter 88 01. The results verify that the weld overlay designs are acceptable for at least one more operating cycle. The NRC has granted approval for plants to operate for more than one cycle on a case by. case basis, however, from ar ICSCC viewpoint, full structural overlays have no inherent limitation as to length of service.

Since there are no specific ASME Code requirements regarding shrinkage stresses, the magnitude of the stress was compared to th material yield strength. Since the shrinkage stresses are well below the material yield strength the stresses are judged to be acceptable and will not influence stress improvement. High stresses in the 1 inch sockolet pipe section were anticipated and the sockolet was uncoupled from the bracket during the application of the overlay, thus precluding high stresses in this section of pipe.

l r

In a recent letter distributed by hTTECH, an issue of air gap and set point changes due to piping repairs or stress improvement was raised. An out of tolerance condition can be avoided by perforrsing a piping system support walkdown and resetting air gaps and set points to the or181nal specifications.

TABLE Of CCNTENTS SECTION ufg

1. INTRODUCTION AND

SUMMARY

I

2. VELD OVERLAY DESIGN . .

. 3 2.1. Veld Overlay Process . . . . 3 2.2. Veld Overlay Desi n6 Methodology . . .. .. . . 3 2.2.1. Veld Overlay Thickness .. . ... ... . 4 2.2.2. Weld Overlay Vidth . ... . . . . 5

3. VELD OVERLAY DESIGN .. . . . .. .. . . 7 3.1. Veld Overlay Thickness . . .... .. .... ... 7 3.1.1. Applied Stresses . . . . . ..... . 7 3.1.2. Net Section Collapse Stresses ........ . .. . . 12 3.1.3. Factor of Safety to Net Section Collapse . ... . . 13 3.2. Veld Overlay Vidth ... ... . .. .. ... ...... 13
4. VELD OVERLAY SHRINKAGE . ,, . . .. . . . . 14 4.1, Method . .. . . .. . .. . 14 4.2. Assumptions . ... .. . ... . . . . ..... . 14 4.3. Results ..... . . .. . .. . .......... ...... 14 9
5. CONCLLsIONS ... .. . . . . .. .. . ... ... . 18
6. REFERENCES .......... . . .. .. . . . 24 APPENDIX A . LOADS USED IN THE VELD OVERLAY DESIGN ANALYSIS APPENDIX B PIPING C09 FIGURATIONS FOR THE THREE SHRI!EACE ANALYSES
1. INTRODUCTICN AND SUM.%RY

, I During the 1990 in. service inspection of the oyster Creek Unit 1 Shutdown l

Cooling fystem and Core Spray Systems, four welds were found that had l indications exceeding the ASME acceptance standards. Table 1 contains a summary of the indications for each System. Each of the velds were repaired with a full structural overlay; the overlay designs are shown in Figures 1 {

through 4.

This report documents the technical basis for the design of the veld overlays and determination of the shrinkage stresses.

Veld overisys were designed to support the entire pressure, dead weight and ,

seismie loading in the pipe with the conservative assumption that the crack  :

extends through the wall of the original pipe for the entire circumference.

Therefore, uncertainty in flaw sizing does not influence the weld overlay design. The thickness is specified after the application of the first layer, however, the first layer may be included in the total thickness if the ferrite content is shown to be greater than 8FN. The veld overlay -

designs are consistent with paragraph IVB 3642 in Section XI of the ASME Code, NUREG 0313, and the NRC's Generic Letter 88 01.

Ehrinkass. Strest analyses modeled the local axial shrinkage that results from application of the weld overlay. This induced axial shrinkage will produce : stresses throu6 h out the piping system up to the first fixed support on either side of the veld. These stresses were reviewed to determine that yield is, not exceeded.

l The results of the analyses verify that the veld overlay designs are

! acceptable for at least one more operating cycle. The NRC has granted h

approval for plants to operate for more than one cycle on a case by case I

basis, however, from an ICSCC viewpoint, full structural overlays have no inherent limitation as to length of service.

l l R41 0691.WP 1-l

. ~ - . -- - . _ _ - . . - . ~ .- - . . . - - - . - - . . - - - . . - _ - - . - _ - - -

TABLE 1

SUMMARY

OF THE INDICATICNS AT OYSTER CREEP. UNIT 1 INDICATICN TOTAL INDICATION LCCATICN LENGTH DEPTH WELD

  • SYSTEM __.f i rghl_. finch) (inch) 11pI HII**

Shutdown Cooling NU 3 5 1) 1.70 5.20 0.22 upst cire

2) 8.00 1.80 0.34 upst circ Five Axials Max. LenSth and Depth 3) 3.25 0.50 0.38 upst axial Core Spray . NZ 3 43 '. ) 11.60 0.30 0.12 dnst axial
2) 12,90 C.30 0.10 dnst axial Four Axials Max. Length and Depth 6) 0.20 0.48 0.22 dnst axial Core Spray NZ-3 44 1) 0.70 0.80 0.10 upst cire
2) 25.20 2.40 0.22 dnst cire Twenty Axials Max. Length Downstream 4) 6.10 0.68 0.28 dnst axial Max. Depth Downstream 3) 0,70 0.44 0.30 dnat oxial Max. Length Upstream 13) 11.90 0.72 0.18 upst axial Max. Depth Upstream 15) 15.20 0.40 0.24 upst axial Core Spray NZ.3 95 1) 22.50 1.00 0.10 d..s t cire Four Axials Max. Length Downstream 3) 2.85 0.35 0.15 dnst axial Max. Depth Downstream 4) 25.40 0.30 0.25 dnst axial Max. Length and Depth 5) 26.50 0.25 0.20 upst axial Upstream
  • upst - Indication is upstream of the 5 eld centerline dnst - Indication is downstream of the weld centerline
    • cire - The indication is a circumferential flaw axial - The indication is an axial flaw R41 0691.VP 2- yt

_ . < _ . . _ . . _ . . _ . . _.__ _ ._ _ _ _ . _. _ .m. - - _ _ -- . . _ _ _ . . _ _ . _ . _ _ .

2. WE13 OVERIAY DESIGN 2.1. Veld overlav Process The veld overlay design consists of a continuous 360' band of weld metal deposited over the outside surface of the pipe directly over the indication.

The overlay weld metal is Type 308L stainless steel containing low carbon and high ferrite. This material has a very high toughness and is resistant  ;

to Intergranular Stress Corrosion Cracking (IGSCC). The veld metal is deposited using an automatic gas tungsten are welding (CTAV) technique with stagnant water on the inside surface of the pipe. The procedure for application of the overlay is described in Reference 1.

2.2 Veld Overlav Desirn Methodoloty  ;

In designing a full structural weld overlay, the crack is conservatively assumed to extend through the original pipe wall thickness for the full circumference of the pipe. Making this assumption, the veld overlay design is independent of the size of the indication.

The weld overlay effectively increases the pipe wall thickness with Type 308L stain 1 ens steel veld material that is resistant to ICSCC. Therefore, a '

crack growing through the wall of the pipe is unlikely to extend into the overlay. Growth of the crack into the overlay is also mitigated by assuring that the first layer meets a ferrite content greater than SFN. If the first layer fails to meet the ferrite requirement, additional layers are deposited until the required ferrite content is obtained. The layers that have a ferrite content less than SFN are excluded from the overlay minimum thickness requirement. Mitigation of crack growth into the vold overlay will be confirmed by future inspections.

The overlay thickness is designed so that a factor of safety of 3.0 is maintained against net section collapse for normal and upset load condition R41 0691.VP 1

- - - . . . - . r - . ,a - - . , , , , . _ . - ,,_ , _ _ . , . _ , ,

-- g V

(per Paragraph IVB 3642 of Reference 2). A factor of safety of 1.5 must also be met for emergency and faulted load condition. In addition to IVB 3642, the overlay is designed to meet the requirements of NUREG 0313 and Generic Letter 88 01 (Reference 2).

2.2.1. Veld Overlay Thickness An iterative process is used to determine the required weld overlay -

thickness. An initial overlay thickness. T, is first assumed. Considering the pressure, deadweight and seismic loading on the pipe, the membrane (Pm) and bending (Pb ) stresses on the uncracked, overlaid section (Section A A of Figure 5) are then calculated. The bending stress (Pb c) in the uncracked, overlaid rection of the pipe (Section A A) at the point of net section collapse of the cracked section of the overlay (Section B 8) is next calculated using the methodology described in Ref erence 3. The stress distribution shown for Section B B of Figure 5 is assumed at collapse. The flow stress, q , is defined as 3 Sm as in Appendix C of Reference 2. For the membrane stress calculated previously, the neutral axis angle is deterinined by Equation 3 of Reference 3 as B - r ( 1 d/t -

Pm/of / ( 2 d/t )

The bending stress in the uncracked section (A A) at net section collapse of the cracked section (B B) is then calculated according to Equation 4 of Reference 3

l The pressure for this piping is 1,275 psig, the dead weight axial load is 0 lbs (F d), and the OBE axial load is 0 lbs ( Fs ) -. The loads were supplied  ;

by GPU Nuclear (Appendix A). Therefore, the primary membrane overlay stress is thus i

Pm - P

  • Ro / 2t + (Fd + Is)/ A -

- (1275 psig)(7.225 in) / 2(0.985 in) + 0 - 4,676 psi R41 0691.VP 7-l I'

- - - - - , - , , - - - . - , - ,--,---,,,-,~--,-,-,--.-nn,,-,~----,,--~n.n,n,~,--,----nn,,-,,..-.-,,---,,-.,-,-,--,,-r,-----

I r

Table 2 . Oyster Creek Shutdown Cooling Systern Pipe.to Elbow Veld NU.3 5 l

...****..... *****e.*******.....*********....*****.,****,............

1

  • * {
  • PLANT ID: OYSTER CREEK
  • l
  • VELD ID: NU 3 5
  • c
  • . i
  • P!PE THICKNESS - 0.76 INCH *
  • PIPE DIAMETER - 14.00 INCH *
  • PRIMARY STRESSES:
  • PRESSURE - 5.87 KS! f DEAD VEICHT MEMBRANE - 0.00 KSI *
  • DEAD VEICHT BENDINO - 1.65 KS! * '
  • SEISMIC MEMBRANE - 0.00 KS! *
  • SEISMIC BENDING = 0.21 KS! * ,
  • SM VE13 MATERIAL - 16.95 KSI
  • r
  • SM PIPE MATERIAL - 16.95 KSI *  !
  • T PB (KSI) PM+PS PM+PB/3
  • PM ........ ....... r
  • VOT T+VOT (KSI) REMOTE VOT (REMOTE) (VOT) *
  • 0,225 0.772 4.676 1,402 13.599 6.078 6.092 *  :
  • PRIMARY STRESSES: *  ;
  • PM - 4.676 * ,
  • PM+PS - 6,078 *
  • MINIMUM REQUIRED VELA OVER!AY THICKNESS - 0.225 INCH
  • MINIMUM REQUIRED vel. OVERIAY VIDTH = 2.3 INCH
  • 44 MM4444 4444M4+M&444M+M4 M 44M+M M#M+M+M '**+MM*+''"

I R41 0691,VP 8

Tabl. 3 Oyster Creek Core Spray Systern Pipe.co. Elbow Veld NZ 3 43

  • PLANT ID1 OYSTER CREEK +
  • WELD 101 NZ-3-43 .

F.PE THICKNESS = 0.53 INCH

  • PIPE DIAMETER = 8.63 INCH *
  • PRIMARY STRESSES: *
  • PRESSURE = $.09 KSI
  • DEAD WEIGHT MEMBRANE = 0.00 KS! *
  • DEAD WEIGHT BENDING =
  • 1.06 KSI
  • SEISMIC MEMBRANE = 0.00 KSI
  • SEISMIC BENDING = 0.31 KS!
  • SH WELD MATERIAL
  • 16.95 KSI *
  • SM PIPE MATERIAL = 16.95 KSI *
  • T
  • PB (KSI) PM+PB PM+PB/3 PM -------------- -------- ------- *
  • WOT T+WOT (KSI) REMOTE WOT (REMOTE) (WOT)
  • 9 .
  • L.135 0.797 4.180 1.072 12.083 5.252 5.421 *
  • PRIMARY STRESSES: *
  • PM = 4.180 *
  • PM+PB = 5.252 *
  • MINIMUM REQUIRED WE!.D OVERLAY THICKNESS = 0.135 INCH

e.9644999999966664444994494849 eeteetetete664666444966999tet.494tettet I

{

I I

R41 0691.VP 9-l I

Table 4 Oyster Creek Core Spray Systern Pipe to Reducer eld NZ 3.(*4

.......................................e.............................

  • PLANT ID OYSTER CREEK e
  • WELD ID NZ-3-44 .
  • PIPE THICKNESS = 0.53 INCH +

. PIPE DIAMETER = 8.63 INCH .

  • PRIKARY STRESSES: .
  • PRESSURE = 5.09 KSI *
  • DEAD WEIGHT MEMBRANE = 0.00 KSI *

. DEAD WEIGHT BENDING = 3.13 KSI *

  • SEISMIC ME.13RANE = 0.00 KSI *
  • SEISMIC BENDING = 0.72 KSI
  • w
  • SM WELD MATERIAL = 16.95 KSI *
  • SM PIPE MATERIAL = 16.95 KSI *
  • T PB (KSI) PM+PB PM+PB/3
  • e ..... pg .............. ........ ....... *
  • WOT T+WOT (KSI) REMOTE WOT (REMOTE) (WOT)
  • e ........................................................... .

e *

  • 0.175 0.752 3.978 2.813 16.765 6.791 6.915
  • e e e *
  • PRIMARY STRESSES: *
  • PM = 3.978 *
  • PM+PB = 6.791
  • 4 *
  • MINIMUM REQUIRED WELD OVERIAY WIDTH = 1.5 INCH
  • e
  • e estetteetteetteteetteeeeeeeeeestettetteeeeeeeeeeeeeeeeeeeeeeeeet.e.44 R41 0691.WP 10 -

TableL5 -Oyster Creek Core Spray System ,

Pipe to Reducer Veld NZ 3 95

..e..................................................................

PLANT 19: OYSTER CREEK .

WELD ID NI-3-95 .

PIPE THICKNESS = 0.53 INCH .

  • PIPE DIAMETER = 8.63 INCH .

PRIMARY STRESSES: .

  • PRESSURE = 5.09 KSI
  • DEAD WEIGHT MEMBRANE = 0.00 KSI
  • a DEAD WEIGHT . BINDING = 2.47 KSI
  • SEISMIC MEMBRANE = 0.00 KSY
  • SEISMIC BENDING e 2.85 KSI .

SM WELD MATERIAL = 16.95 KS! *

a. SM PIPE MATERIAL = 16.95 KSI
  • e .
  • T PE ( r.s' ) Pr+PB PM+>5/3 * '

9 ..... pg .............. ........ ........ .

  • WOT T+WOT (KSI) REMOTE WOT (REMOTE) (WOT) *
  • 0.200 0.726 3.863- 3.742 19.346 7.605 7.736
  • 9 .

' a PRIMARY STRESSES: *

  • PM- = 3.863 *
  • - PM+P3 = 7.605
  • 9 =

! MINIMUM REQUIRED WELD OVERLAY THICKNESS = 0.200 INCH MINIMUM-REQUIRED. WELD OVERLAY WIDTH = 1.5 INCH

  • 9
  • 3 #

.. 99 99 999 9999999999999 999999999999999999988889999999***88*******

R41-0691.WP -

11 -

l l

w g+rr v=vm-*--w --r' =+w'v- e -

srw *-vierv ww or

l

The normal and. upset deadweight moment is 163,667 in lbs (M d) and the OBE seismic moment is 20,534 in lbs (Ms) as shown in Appendix A. The re fo re , the primary bending stress is thus Pd - (M d + Ms ) Ro / I -

(163667 in lbs + 20534 in lbs)7.225 in / 949.365 in 4

- 1,402 psi  ;

i The dimensions and cross sectional properties for the original pipe are as follows:

'l l

Pipe Wall Th!.ekness, d - 0.760 inches.

Pipe Inside Diameter, ID - 12.48 inches, Pipe Outside Diameter, OD - 14.00 inches, Pipe Cross Sectional Area, Ap - 31.612 inches 2, and 1 Pipe Bending Inertia, Ip - 694.970 inch'.

3.1.2. Net Section Collapse Stresses The design stress intensity for the base material for Type 308L stainless steel at 550*F is given in Table I-1.2 of Reference 5 as r.

Sm - 16,950 psi Since the Type 30sL stainless steel weld material has a greater strength, the pipe material properties will conservatively be used. The flow-stress is defined as three times the design stress intensity, or i

1 ag - 3 S - 50,850 psi For the 4,676 psi _ membrane stress calculated above. the neutral axis angle l 1s calculated as

  1. - r( 1 - 0,760/0.985 4676/50850 ) / ( 2 - 0.760/0.985 ) - 0.3490 rad R41-0691.WP- - 12 L __ . -_ __ __.___ __ ______ -- _ _ _ _ _ _ - _ _ _ _ _ - -

_ _ . ._ - _ . - ~. __ _ _ _ -- __ _ - _ _ _ - . __ _

as described in Section 3.1. The bending stress in the overlaid ptpe at net section collapse of the cracked section is Pge = ( 2 (50850) / w ] ( 2 0.760/0.985 ) sin (0.3490) - 13599 psi 3 't.3. Factor of Safety to Set Section Collapse The ratio of net section collapra stresses in the uncracked, overlaid pipe over the applied stresses due to pressure, deadweight and OBE seismic loads, yields the factor of safety of (Pm + bP c) / (Pm+P)b - (ae76 + 13599) / (4676 + 1402) - 3.01 This factor of safety meets the required factor of safety of 3.0 for normal operating and upset condition per Paragraph IVB.3642 of Reference 2.

Similarly, a factor of safety of 1.5 was met for the emergency and faulted condition. Therefore, the minimum weld overlay thickness of 0.23 inch excluding the first layer is sufficient. The weld overlay repairs for each weld are shown on Figures 1 through 4.

3.2, Weld Overlay Width As described in Section 3.2, the overlay must be applied for a width of at least 1.0 /(RC) or 0.5/(Rt) on each side of the weld centerline. Therefore, L - 0.5 f (Rt) - 0.5 / ((7.00 inch)*(0.760 inch)) - 1.15 inches on each side of the weld centerline to meet structural requirements.

However, to ensure the ability to conduct UT inspection of the indication l after the overlay is made, an overlay width of 6.23 inches is specified.

The minimum thickness requirement is applied only over the width that is required for structural reinforcement. For the width outside of 1.15 inches on each side of the weld centerline the minimum overlay thickness is optional, however a flat surface for UT inspection is required.

R41-0691.VP 13 -

l

, 4. WELD OVERLAY SHRISTAGE Shrinkage analyses were performed to simulate the local axial shrinkage that results from application of the weld overlay. This induced axial shrinkage will produce stresses through the piping systern.

4.1. Method The analysis was performed using the piping analysis code, PISYS.

(Reference 7). Three shrinkage analyses were performed; one for the Shutdown Cooling System and two for the Core Spray Systems (one for each system). These four cases are shown in Table 6 (see Appendix B for piping configurations and weld locations).

4.2. Assumotions The_ weld overlay shrinkage values are based on measured shrinkages for each weld overlay. The shrinkage values and welds analyzed for each case are summarized in Table 6. The width in Table 6 is the distance along the pipe over which the shrinkage is applied in the model. This distance is the width of the overlay excluding the one-to one transition on each end of the overlay. The stresses are summarized in Table 7.

4.3. Results Currently, there are no specific ASME Code requirements regarding shrinkage stress. However, weld shrinkage stress is similar to cold spring stress and a measure.of acceptability is that the stress be below the material yield strength. The shrinkage stresses shown in Table 7 are acceptable since the stresses are well below the material yield strength. The weld shrinkage stress, which could be considered a sustained stress, only requires special evaluation for crack indications that are recommended for operation "as is" or for welds on which stress improvement has been applied.- However, there l are no indications that are operating "as is" at Oyster Creek and the I

stresses are to small to influence stress improvement.

R41-0691.WP ,

l l

r

It should be .noted that the shrinkage stresses in the 1 inch sockolet. pipe section in the Core Spray Systems 1 and 2 were quite large. However, this condition was anticipated and the sockolet was uncoupled from the bracket during the application of the overlay. thus precluding high stresses in this section of pipe.

In a recent letter distributed by NUTECH, an issue of air gap and set point changes due to piping repairs or stress improvenent was raised. The issue was motivated by the observation of an out ot tolerance condition for air gaps and set points at two nuclear power stations. A root cause analysis concluded that the out-of-tolerance was possibly caused by axial shrinkage ,

on vertical risers. This situation can be avoided by performing a piping system support walkdown and resetting. air gaps and set points to the original specifications.

p 9

L l

1 R41-0691 WP l

Table 6 Weld Overlay Shrinkage Cases Case 1: A shrinkage analysis of the Shutdown Cooling System with shrinkages on the pipe to elbow we',d NU 3 5 SHRINKAGE WIDTH WELD (inch) (inch)

NU-3 $ 0.21 6.25 Case 2: A shrinkage analysis of the Core Spray System 1 with shrinkages on the pipe.co elbow weld NZ 3 43 and the pipe to reducer weld NZ-3 44 SHRINFJCE WIDTH WELD (inch) (inch)

NZ 3 43 0.23 4.27 NZ 3 44 0.33 5.01 Case 3: A shrinkage analysis of the Core Spray System 2 with shrinkages on the pipe to reducer veld NZ-3 95 SHRINKAGE WIDTH WELD (inch) (inch)

NZ-3 95 0.34 5,03 R41 0691.WP - . - . - . - - . - .

_ _ _._. -- . . . . - _ . . ..- _. - ._ -__ _ _ _.m . ._ _ _ . . . . _ . . _ _ . _ _ _ _ _ . . _

l 4

.. . i Table-7 Sumary of Shrinkage Stresses Case 1: A shrinkage analysis of the Shutdown Cooling-System with shtinkages on the pipe to elbow weld NU 3 5 SHRINKAGE STRE.SS VEL.D NODE (ksi)

NU 3-5 222 0.4 MAXIMUM 30 0.6 Case 2: A shrinkage analysis of the Core Spray System 1 with shrinkages on the pipe to elbow weld NZ-3 43 and the pipe-to-reducer weld NZ-3 44 SHRINKAGE STRESS WELD NODE (ksi)

NZ-3 43 15 1,5 NZ-3 44 13 1.7 MAXIMUM 10 2.3 l~

Case 3: A shrinkage analysis of the Core Spray System 2 with shrinkages on the pipe to reducer weld NZ 3 95 SHRINKAGE STRESS WELD NODE (ksi)

NZ 3-95 13 1.1 o-l MAXIMUM 7 1.7 l

, -R41 0691.WP 17 -

I L

5. CONCLUSIONS The. weld overlays showp in Figures 1 through 4 are full structural weld overlays-and are designed consistent with Section XI of the ASME Code, NUREC 0313, and the NRC's Generic Letter 88 01. The weld overlay designs are acce, table for a least one more operating cycle. The NRC has granted approval for plants to operate for more than one cycle on a case-by case basis, however, from an IGSCC viewpoint, full structural weld overlays have no inherent limitation as to length of service, Since there are no specific ASME Code requirements regarding shrinkage stress, the magnitude of the stress was compared to the material yield strength. Since the shrinkage stresses are well below the material yield strength the stresses are judged to be acceptable and will not influence stress improvement. High stresses in the 1 inch sockolet pipe section were anticipated and the sockolet was uncoupled from the bracket during the application of the overlay, thus precluding high stresses in this section of pipe.

In a recent letter distributed by NUTECH, an issue of air gap and set-point changes due to piping repairs or stress. improvement was raised. An out of tolerance condition can be avoided by performing a piping _ system support walkdown and resetting air gaps and set points to the. original specifications, l

l l

! R41-0691.WP

+

i i 0 23" Min averlay Thickness

. / Excluding first layer 3 1/8" Min _l. 3 1/8 Min l 2 Note: A 1

I I

,v s .

f k a First Layer of Overlay # s wgtp i sx '  %/

sk, i $/ -

P!PE s- i / elbow N I /

\ a j

(

i 6

4 I

i i

Flow Notes: A. 2 6" min. width required for structural reinforcement:

minimum overlay thickness is required for this section, B '.inimum overlay thickness is optional outside the minimum width:

however. a flat surface for UT inspection is required Figure 1 - Oyster Creek Shutdown Cooling System Pipe-to-Elbow Weld NU-3 5 i

t l

R41-0691.WP

/

0.135" Min Overlay Thickness

/ Excluding First Layer Q t.5" Min 035" Min 3

! Q_ote: A l N -[4, WELD I'

,t,' first Layer of overlay '

['

' s',

[ ,e' PIPE Notes: A. I.6" min width required for structural reinforcement; minimum overlay thickness is required for this section, D. Minimum overlay thickness is optional outside the minimum width; however, a flat surface for UT inspection is required.

Figure 2 Oyster Creek Core Spray System Pipe-to Elbow Weld NZ 3 43 R41 0691.WP 0.175" Min overlay Thickness l

/ Excluding First Layer m 2.5" Min m l--

2.5" Min l4

  • p  %

b /

First Layer of Overla[

'sp htD jr  %  % i PIPE 's l ,

w J -

REDUCER Nk l

i Notes: A. l.7" min. width required for structural reinforcement; minimum overlay thickness is required for this section.

B. Minimum overnay thickness is optional outside the minimum width; however, a flat surface for UT inspection is required.

Figure 3 Oyster Creek Core Spray System Pipe to Reducer Veld NZ-3-44 R41 0691.WP _ ._ _ __

O,20" Min Overlay Thickness l

/ Excluding First Layer 2.5" Min m l- 2.5" Min

!-c p  % 4

'VQFMWE&fg7 First Layer of overin[ \+ WC1.D '\, P

, w )i N] REDUCER i

Notes: A. 1.7" min, width required for structural reinforcement; minimum overlay thickness is required for this section.

B. Mir.imum overlay thickness is optional outside the minimum width; however, a flat surface for (JT inspection is required.

l 1

l l

Figure 4 - Oyster Creek Core Spray System Pipe to Reducer Weld NZ 3 95 l

R41-0691.WP l l

l l

ti 2.>  ;.

, >/..e, t . j.

/ <.N g sx s ss ss s s

, s,,ss x b,K, smsss

. s s x xx,s s ,s',

s 4

b

~4 ....

.. . :: /.. i 6

l i l

a ... . -

~

(--- g----.. -- -.

l .

. , 1 .-

i -

t --

n NNN'\'2NNN'\'l'Ax'N, .'\N$$N$'h

v x_ -s 4 m i I

-\\

IT .y A-> = ce Stress C str t;:ns 7- g 3 'a-. - g at Net Ee:t :n .:'005e m c .. *w ==

W x dh -

C'N'I 'Q'x ss F7

.sks . .

/

W . . .

/

Neute : kN .f. Q>p %Aos

'g;3 xe

\\ , '

,*/ l s

sNyexx' /g- ,

N 4--

I 5e:t4:n a- A ( Uncrc: ec Sect:co)- y i

s

.p. '\

' N >

s a

/

R x >

s ;. ,+

x -cf >-

4 >

N ' Y' A Z

\p' .NN, l $ \ . "3 s

g 's -

! O Se:t:On 8-9 (Cra:Wec Section)

Figure 5 - Weld Overlay Stress Distributions at Net-Section Collapse R41-0691.WP

6. REFERENCES 1)' CPU Docusent <>0C IS 402 585-001, Rev. 4, " Installation Specification for Repair and Replacement of Reactor Coolant System Piping"
2) e 1986 ASME Boiler and Pressure Vessel Code,Section XI.

e V.S. Hazelton, " Technical Report on Material Selection and Processing Guidelines for BVR Coolant Pressure Soundary Piping," Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, (NUREG 0313, Rev. 2).

  • US NRC Ceneric Letter 88 01, "NRC Position on ICSCC in BVR Austenitic Stainless Steel Piping (Generic Letter 88 01)," US NRC, Washington, D.C., Jan. 25, 1988.
3) S. Ranganach and H.S. Mehta, " Engineering Methods for the Assessment of Ductile Fracture Margin in Nuclear Power Plant Piping, "Elastie Plastic Fracture- Second Svmoosium. Volume II. Fracture Resistance Curves and Encineerine Applications," 1983, (ASTM STP 803), pp. 309 330.
4) M.L. Herrera, " Optimization of Veld Overlay Width for Peach Bottom 2 Recirculation Piping," GE NE, San Jose, Ca., September 1983, (DRF-137-0010, RSFA 83-58).
5) ASME Boiler and Pressure Vessel Code,Section III, 1986 Edition.
6) PISYS05, GE Piping System Analysis Computer Program, NEDE-24077, April

.1979.

I l

R41-0691.VP l l

l

. _ _ - _ . - _ _ . _ .- _ _. . _ _ . _ . _ . - .- . , , - - ~ . - _ _

I

-4 e

t t-APPENDIX A LOADd 'J9ED IN THE k' ELD OVERLAY DESIGN ANALYSIS l

e i

q l

l

[; ,

l l

- LOADS FOR THE SHUTDOWN COOLING WELD NU-3-5 l

^

l

(~

o i

N T 6- he->Mwev. .e- - e- ,ee,.ee e- e%,.- w ey r-+--r u A& me s - +.4y, *tg, w --g-ye-g g-.m .e eqqf--v.+Leeg, -r.g., , ,,_ ,ywW.-9,

  • e,9 y g .-$-

q31 - p ry---y

($

ENuslear ceicuiction shoot .. 53 C-1302-214 5320-014 a.go Cak N s,wiso s ** ' Oyster Creek '45R Piping Analysis 9hutdown Coolinq (Inside Devwell .

o';-

. . . . . p.

o. .. o... g ,

,,,...., M, gM 8-19.RS- g s

c e ........<,., ,  ::: . 1 ,- - s

. ( t 9,,,, , . c.,

d-

\e .*

, .. .~ 45 - ,

s ...,

n. ,,

< ,. ,o . .

e mo /. . . . .

,3 .. .

.... N. . . . .

~ s ,

s.

.. ........~.

i ,, e< +3 a . .. , 3 , ,.....

s

, ,,w ,,. . .... .

s.:., .

g v ,p..,c 7,.. , . . . . . . . .

e m ,,,.. .

,,a . , .. .. ., ,...... ... ... . . . . ,

...=.

v......

~ . . /g/ t/ .., g ,

s ,...

98

, O , / ','/

C' ,. ,{,

N ,,y __ _ sp. was.es (.Y) .g

, . - .- %,,, s av a4Hae w g ys tr a cast s. g g s ste 4 c..t . L ..es s seu.a e ese.3 ,

ga t v. 4 T. ..a eF st8 F8

  • t Mt ** T <* y Aa w, v. .'1 31 b

.=- - NU-3 .5

t , l (: '; - I I ,;  !

? u . .;. . .,N ,;"";.:,

.< . .: Oo"

- j

_ 3 i _

- s

_ _ _9 - _

e _ _ _

mN

_9 w* _ C _

gs,_ 'i

_ 4_ _ _ _ _

.- I

_A _ _ _ _

_ tt

_ E _ _ _ - _ _

L

_N

.O I !

_ _ _ ga_ N _ _

_ _ D

?

_TE l

I

] EU 9UM

_95.. _ . . ._ ._

9 O.

R 5 p._B9 7N I 5 9 o 9 5: 3 96 i. 9

_ 2_ ETf S _239 1 1

- 9 3 A M 29 _ 7s5 9 5 1 '1 3 7_

1 E 7 3 7 PSC P i 1

_ _ 3Of (

_8 B 8 8 8 3 "B 8' 9 g Mm .

9 9 1 1 8J 5-

1 3

1_. _P TR NS

_ _ O N

j RI .O _

_ _ E_ ES _ _ _ - _ _ _

P . )

O U 2 UMM4 P 1

I S

_2 a _

9 5 5'

3 6 g 9 8 E1 2 9 3c_

9 ~_

R 1 1 JX6 P _60 0 0 0 3 .c 3 2 7 1 6 4 e 9 ~ '

G 1_

1 SEF i 1 1 1 2 27 7 1 g, 0 9 9o- 7 2 o

6 E. 5  ;

_ _ 9_

I A _8 E 8 8 8E 8 9 .

9 8 8f 0 t t 83 2 T

E N

F_

f-N _ _ _ ~ ~-

DS

~

_ _. N 2 _ _ _- -

F 1

F 1

Q IS SE3 NR1 I

)

_ .m 3 3 37

. m .' "

7 3 4 9 9* o.

6 91 BT S 1 R

f PSO P _535 't 9 7 77 7 8 - _ 0 9

  • o 83 97 '

- 8

_ _ O . y F (

_2 l_ 1 1 1 3 .5 8 - 0

  • f3 3 2 9 61 1E._

5 3 2

t 1 I 1 1 1 3 1 1 2 1 1 i

  • 1

_ h _. F 3* E_ _ _ _

- _ _ 'e Q

2 ._ RI t

0 D _ _ _C. - _. _

1

_E O 3_ b_T LF ) _. _ , _ . . u. . .

St2 O 0 Of'0 O O O 0f O O _O 0 3 d O

E _ 'P E QA1 I

S _ O 0_ ,

E E

2 1, @F G P( _

B 1 E _ _ - _

O :_ R Q -

& _ E J '"

E _ -

~

tY i

. E S d [C ~.

N. . . . . ..

BNF g . . . .

S )

2 _ S i TE? I .L 8 5 5 L 4 5 1 3 34 65

_2 1_ 1 2

_33B 0 7 1 8 I SGI S 8 8 8S .5 6 o 3 7 70 68 2 9_

T 2_

E J uR . P 3 3 3t . 9 7E 3 2 7 7 23 7 7 7

27 7 8 O_

E R .

?_ SEQ LME

(

_7..7 7 7 7 J~ 7 -

77_ 7

'1

- 7_

E _

7 l %E t l

_ 1_ _- - _ _ _

S S _ 5 2 @

1

(

_ b I ST2 ) _ . u . .' . u , _ - ,.

i E1 2 1 2 .? 6 ,, 3 1 13 2 1 08 8 9 7 7 3_

I 1 T

R _ 7 f GS _

S _69 9 2: 9 2 2 . .? 1 8 3 36 7 55 8 36 23.1 9 7_ N-11 1 O _ 9 , CPO P _1 1 1 2 _

1 77 1 1 7 7_

1_

7 7 7 7_ 7 3:

P _ 1 0_ QUE ( _7 7_ 7 7 E _

R .

3 1

i_ - _ ~ 77.W- _ -

S _ 1-1 7_ _ _ _ - _. _ _ _ _

_M*~.

l S _ _ D - _ ~

_ 3 E ) . . . . . . . . . . . . .

B 7,_Ch l

tS1 11..

7L 7 1_ 62 7 2

3 ._ 5 3 9

_ f _. lS1 I

_ 1 S 3 '3 7 ._- 1 5 9 2 7 900_

55 g7_ 6 6

._ J eE TRO P _.903  % 0 677 L _7 2 g 09 33 7 7 9_ 9 6 8 1

_1 - _ J F

STE US

_6 6_

6 7 -

~

m 7 7 7

_7 6 6 7- o 6_

_3 1 _

. S. _ _ - - _ - _

S _

_B _ E _ _ ?c - o 5 't C.

. 50 0 5 S0 0 E 05 5 M_ .:

900_

_5 6 - -

_ "J 1 40 4 . .

6 6 E7 '

7 7 8 8

- 8~_

a 9

_ 1_

6 1 '

r

LOADS FOR THE CORE SPRAY WELD NZ-o 13 SND NZ-3-44 9

~*

, ,. Nueloor coicui., ion snoo, . se s w o;,neraroea na essa.pauens c.o. ... ~ '

enra br .n.- (Incide Dr rren ) C-1302-212-5320-024 2 ov 0

~,.,7 p a

o...,,,,,,,, q.... j o.,. y g

am h ,(

\

kSh ., k

,;l i5  ;

u$ -, < -

a?

w 5

5 o-,- @ t.  ;

$ a s.-$3 4 * " s

\- ,

s w 4 4 $_

~

\ '$ .

  1. e

,,,,, kg 1

. . . s g ,

\ $ a _ A.

eo Dr.A r a s s s '

g ,

e e <,

M M \'

d d 5 g,N Og '@ _t

e a .;

u -

2

-Ns f ,,

g,wpe s:

, s, . . _ __

ad T g T yS e,"' U U ., j Y .- g\ *

6 o

y 1 2 n

_- b e w a 3, h- '

y e, ,

,?- n b @., -  ;

1 i ,i ~

sse. 24 r,

t?_ '\ g

-ag :ti / N  % v k *C. o T-r I

f

=

--- g ,g -.~. -

g Tg } 4 0) q' 2 -

(,@ @- e = ' s ;. JoaI Q}'1

,t* s-f

. s

-w *S ,

't o

'

  • 4-s 62 33 0

,ae2

@ b b

~ -'*~

  • t 1 6 L e p~4 ' *

.s 4

(jj) /z sv 1c- l ' n1

-i y

j:.

. 20 s .v s .h,

' #*i. '",s '@ l .I m,* ,.,

e o

  • gr .--

0 Y

l g =a c ao 3-s

3 , ,  ;

G g3 <

3 Q a4 4 4

. s ~

l. - A0000016 5 84 1 -- . . . , ... ..

Nuelmr- w Calculction Shost 80 S**'

O,"~ te ." C re e k .i.3?. }'i, it.j . n:.i;ty.G Caic No , new No i Smeet No~

, . , . .,. ,. n .n .n n., e .- a o . x,- m, 0 "9 **

g, Osv me .e eo -

g, NODE x F0 ACE Y FeetCE 2 FORCE XX W N1 YY WNT 22 MCMENT NO. (LB) (LB) (LB) (F1 L8) (FT LB) (ff LB)

'5 155.16 82.25 135.90 361.02 284.01 280.62 1 95 305.39 61.08 107.35 211.32 217.02 200.52 70 0.00 174.50 0.00 0.00 0.00 0.00 75 173.17 0.00 99.98 0.00 0.00 0.00 200 34. 73 387.29 85. 73 0.00 0.00 0.00

.. EOR *-

831-1 1977 $1RE5$ R E P Q R 1 FOR ELEMENT GROUP NO. 1 ALLOWABLES EQ.11 17250. EQ.12U 20700. EQ.12E 31050. EQ.12F 41400. EQ.13 27813. [0.14 45063.

ELEM NODE SUSTAlhED (OCCA$10NAL&SU$TAthED LOADS) EXPAN510N $U$fAlhED BREAK NO. No. STRESS UPSET EMERGEhCY FAULIED STRESS ExPAN$10N POSTULAtl0N A0D1110NAL 1 EG.11 EQ.12 EQ.12E EQ.12F EQ.13 E0.14 Stress (sig)

(PSI) (PSI) (P$l) (P5l) (PSI) (P$1) (PSI)

<0VER>

1 5 8559, 9088. 9487, O. 2307. 10866. 11395, 1 10 8287. 8807. 9198. O. 2448. 10734 11255.

N 5ET3. N25l 9979 0, $$ bE. 153N. r e 3

3 15 20 6681.

6230.

6931 6478.

7115 6661.

D.

D.

1470.

im-8150.

8025, 8400.

8273.

pJ2 3-M f 20 6504, 6832. 7075 D. 3173. 9676. 10005.

5 25 6261. 6431 6565. O. 2791. 9052. 9221 g-/ W # #c 5 30 6269 6348, 6419 O. 3613. 9882. 9961.

6 30 6269. 6348. 6419. O. 3613, 9882. 996).

6. 35 6290. 6455. 6582. D. 4653, 10943. 11108. //2 ,3 f3 7 35 6952. 7239, 7459 D. 10774 17726, 18013, 7 45- 6353, 6705. 6961. O. 11429. 17782, 18154, 8 45 5945 6147. 6295. O. 4936, 10881. 11083.

8 50 -5848, 6050. 6194 O. 4879, 10727, 10929, 9 50 6185. 6535. 6786. O. 11297. 17483, 17833, 9 55- 6474 6767 6978. O. 10276, 16750, 17044 l

10 55 6014 6183. 6304 O. 4438.- 10452. 10621 10 60 5873. 5959. 6043. D. 2439 8311. 8398.

11 60 5873. 5959, 6043. O. 2439 8311. 8398.

11 65 5766. 5934, 6090. O. 434 6200. 6369, 12 65 5766. 5934 6090. O. 434 6200, 6369, 12 70 5786. 6003. 6186. O. 2492. 8278. 8495.

13 70 5786. 6003. 6186. O. 2492. 8278. 8495, 13 75 5849 6J93. 6289 O. 3813. 9662. 9905.

14 75 5849 6093. 6289 O. 3813. 9662. 9905.

14 80 6002. 6150. 6278. O. 5932. 11934. 12082, 15 80 6436. 6692. 6912. O. 13736. 20172. 20428, 15 85 6490. 6774 7003. D. 14249, 20739, 21023.

l 1 WUCLEAR POWER SERVICES JOB 5000 OYSTER CREEK BY SAG CHKD DE "OtN APO4, v5.3 Mot 1

CORE SPRAY 8'YSTEM (1kSIDE DRYVELL) PEN.X 128(NORTH) 01302 22 5320 024, system #1,REV.2 l

l B31.1 STRESS REPORT (5tE=EQ. 12E & OBE=EQ. 12U) 831-1 1977 5 IRE 55 R E P Q R i FOR ELEMENT Croup No. 1

  • ALLOWABLES- EQ.11 17250. EQ.12U 20700. EQ.12E 31050. EQ.12F 41400. EQ.13 27813. EQ.14 45063.

A - . . - _ . A~A 4.A-

-. .. l l

l LOADS FOR THE CORE SPRAY WELD NZ-3-95

.m y Nuclocr ccicuiction snoor--

- 20 Sveiect;oy:ter Cree % .ida Pi?ini AnalyJia caic No ., ,aev No sneet No

- A, 9- :nrw f T r.ci d_s Jr".rell) * ',' ,"

2 - o' -

or ginator osie a *v'** *d

_ cai ja a

( 1 od r

sL s 4i/4 18-3 g - "'

ONN%

2

}l 5 ( ' % q l '+. 4
T6 8ng')

s g3.ae m

y =x

,j s,

/- N oi+t o 5

'o .

$32 l

T a

m t =

4

@ s 1

E

.i .a h.l

~  : @ ~

"#; A ,

j1 1 a g a

~

=

t  %

N @.

v /q \ G s n t a

, n

_/

.a g g \

ed V - u /-

\ , 0 54'// w\

W-E u: $ & . ----

o . g C 4

! @f y@ @ @

l '

-% J

/ss x. f.

. -s  ;- a 9  :

~

1 T 4 a

, =  ?

' @g ^i L it

/ { ~

.g i s  ?

M; . ..s i5_K gg @\ %

,u,.

f s p \ ~. ,

9 y' -s N'

^ '"'

p ,

g @ ,

N s i4'g' @ /@ DA / @/ '

J , .@ S/

)

o

- ,. i ; .,p. a

. u. 9 ,

9 , ;~.n c -

K

/

1 o

-T s

@@@ @ \@ 2 /  : g

/

/

/ ,>

/ 499' >

/ '_ _o

/ 4*6 '[

-.a i

2, ,

/ a 4 ,& (

ET9' y-

.- ~

c

) .3 d N* w k=

zd e- a

< ii ' \'

sg i, at T

d i i 4P AOOOOO166 84

Nucloor coicuiation shoot 262 S*0 M C" te: Oreen JU F1:17 3 A:n.1,/n; Caw: No E rn ;rre fIncide br" ell) C 1302-212-5320-u22

. [* [

- Q_...

0...,, .,.,,

5 164.38 317.48 125.22 849.93 867.28 1885.43 190 452.49 688.67 196.42 902.67 4%6.85 3301.05 105 0.00 0.00 271.13 0.00 0.00 0.00 130 300.07 251.89 0.00 0.00 0.00 0.00 160 318.65 0.00 355.96 0.00 0.00 0.00 NUCLEAR POWER SERVICES .ios 0 OYSTER CREEK BY SAO ter0 OE "0Th APO4, v5.3 mac CORE SFRAY SYS.(IkSIDE DRfWELL) SYSTEM #2,50UTH REAC100 02ZLE h6A,C 1302-212-5320 024,REv.2 B31.1 STRESS REPORT (SSE=EQ, 12E & OBE*EQ. 12V) 831 1 1977 STRESS R E P Q R T FOR ELEMENT CROUP h0. 1

-ALLOWABLES- EQ.11 17250. EQ.12U 20700. EQ.12E 31050. EQ.12F 41400. EQ.13 27813. EQ.14 45063.

ELEM N00E SuSTAthED (OCCAS10hAL&SUSTAthED LOADS) EXPAhSION SUSTAINED BREAK kO. No. STRESS UPSE1 ENERCENCY FAULIED STRESS EXPAkSION POSTULAilch A0D1i10NAL 1 EQ.11 EQ.12 EQ.12E EQ.127 EQ.13 EQ.14 STRESS ($1E)

(PSI) (PSI) (PSI) (PSI) (PSI) (P$1) (PSI) 1 5 7986. 10184 11783. O. 2706. 10692. '2890.

1 10 7735. 9884, 11445. O. 2735, 10470. 12619.

, _ ,,_, __ ._ _ .. . . ,_s 15 7984. 10 69 13129. 0, 5686, 1[671. 16655.

3 15 6452, 7444. 8162. O. 1418, 7869 8862. .

  1. MC 3 20 5761. 6532. 7089. O. 1634 7395. 8166. [Or NE-3-95 -

4 20 5761. 6532. 7089. O. 1634, 7395. 8166.

4 25 5995. 6691. 7200. O. P34, 7729, 8425, 5 25 6192. 7114, 7789. O. 3064. 9256, 10179.

5 30 6963. 7660. 8180. O. 2949. 9912, 10609.

6 30 6577. 7103. 7495. O. 1669. 8245, 8771.

  • 8094.

35 6448. 6878. 7192. O. 1216. 7663.

7 35 6448, 6878. 7192. O. 1216. 7663. 8094.

7 40 6317. 6712. 7005. O. 799. 7116. 7511.

8 40 6999 7670. 8169 O. 1850. 8549, 9520.

8 42 7133. 7794. 8287. O. 1853. 8986. 9647.

9 42 7133, 7794. 8287. O. 1853. 898o. 9647.

9 45 7682. 8328. 8807. O. 2113. 9795. 10441.

10 - 45 6710. 7082. 7358. O. 913. 7622. 7994 10 47 6287. 6672. 6961. O. 743. 7030. 7415.

11 47 6579. 7089. 74 72. O. 1314 7893. 8402.

11 50 7375. 7893. 8277. O. 1719. 9094. 9612.

a..us wmmu waa m sm 4,m.w mam -. - -as-m--+ - -

- m s. .a. m.m - -- - - -- -----

-m wm.--an-am 1

-I

. .. e

=-

4 .- g

- I

, i m -

4 6

4 i

1

._ .- i I

i

~I 1i l c

a*'9

{ APPENDIX B PIPING CONFIGURATIONS FOR THE THREE SHRINKACE ANALYSES p ,

1 h

i

..m 1

I b<

a t

~

- -(

e y

+

1' o

h I

) . ..

j .-

?

r

[

)

_ - , . -. _ , - - -- , _ _ . . . , , - . _ . . .-. - . r - ,m -, , __. ,-.

.u w -m- _% ,,..w. .e_,..<-m..

9 4 1

W W

W A

V W

[w C\'s

$, M m

M ms s

W

'A C e A

=- - -.,

M .- -

w$,

N n *'* .-

ng .-

N O Nr C n -

Y U

M N

d-yL w

M sesr su.8 W

a e.v.ee At V

e W

C

  • _5 i
  • g U

M ar V

M

'A c ^

O I

Winmud

- _____ - .u - _ ,

W du'd e se W

% (-

we 4 uut Yw W

e &

C

\ 'O

~, e m

Le W papag

, " w 9%

V tuume w

Ann M

hae 4..

W w]

T 4

[.'

~

ww e

M A

>=ese w

,.*)

M A

V e -

s>

6 Y

  • s W

e Ane e

.mC

'j"

  • a s, M

~

Z C c-,

  • O w5}O m V

A) ww I

W

" C" C e m CC "

c C c C ,s

)L **

) :) n
  • f **
  • e., - e -

c e e_

-K- u -. -

y est mg W

M, F.

.sse .m' uses *

?2 n

) (w . '

  • y m We t' M

g 84 g M

M w

O V

tree w-",

w

' m ?1

?*

%9 g

  • p.8 OJ Z _- ,

ec o M M

_ u. 00 = OJ. .

  • e O,

w

-_ 7

_m 2.

-~- -

?L e -

_J C- ' 4- ,[i J

CJ .J " N_, A

~ C my w E

J OJ 02 e

01 N. U. >.

m

. =v e

M F ~,

n.  ; A.en e

, u

.o M

.O.

. 1C U v

sj Ar w

N a, w

a b

c C C

  • w I

b "

O C J

~

'A g

C Ce_ -Q C' OL wO l m

D.m.4 b -

C ..

Y M

M kr wh 9M I,

W m I

4 AllAURiUILJ Cast Stainless Steel Components Carbon and ferrite Analysis A documentation review was performed to determine the carbon content and ferrite number of the five recirculation pump casings and their connecting suction elbows. The welding records of the five joints between the casings and suction elbows were reviewed to see if welding repairs had been done on these welds. The carbon content of all pump casings and elbows are above 0.035% (see attached Table 1). Ihree out of five pump casings have reported ferrite numbers higher than 7.5% ferrite numbers of the remaining two pump casings along with the five elbows are not reported in the material test reports. However, calculations based on figure NB 2433.1 1, delta ferrite content, of ASML 111 were performed and it was determined that all ferrite contents are above 7.5% Additionally, there were no repairs done on the joints between pump casings and elbows.

Therefore, f avorable residual stress can be expected at these weld joints.

Based on the above findings and paragraph 2 of "Staf f Position on Inspection Schedules" of Generic letter 80 01, all recirculation pump casing to suction elbow welds (five total) will be upgraded from IGSCC category G to A.

u mu,

TABLE 1 CARBON CONTENTS AND FERRITE NUMBERS OF RECIRC PUMP CASINGS AND SUCTION ELBOWS i

ITEM HEAT NO CARBON (%) FERRITE (%) NOTE

PUMP CASE 1634-1 0.08 12 1 PUMP CASE 1695-1 0.05 ' 13 2 PUMP CASE 1661 0.05 12 1 PUMP CASE , 3011-3 0.06 14 2 PUMP CASE 1819-2 0.06 9 2 SUC ELBOW 2417 0.04 >13.8 1 SUC ELBOW 2436 0.04 >13.8 1 SUC ELBOW 2411 0.04 >13.8 1 SUC ELBOW 2316 0.06 >13.8 ' 1 SUC ELBOW 2427 0.04 >' 3.8 1 l NOTES
1. CALCULATED FROM FIG.NB-2433.1-1 OF ASME 111
2. VALUE FROM MATERIAL TEST REPORTS

- -.m --___._____ _ _ _ - - . - - - . . _ . _ _ _ .