ML20029B386

From kanterella
Jump to navigation Jump to search
ASME Section Viii Evaluation of Oyster Creek for W/O Sand Case,Part I,Stress Analysis
ML20029B386
Person / Time
Site: Oyster Creek
Issue date: 02/28/1991
From: Contreras G, Fredrickson C, Ranganath S
GENERAL ELECTRIC CO.
To:
Shared Package
ML20029B383 List:
References
DRF-00664, DRF-00664-R00, DRF-664, DRF-664-R, NUDOCS 9103070180
Download: ML20029B386 (159)


Text

_ - _ - _ _ _ _ _ _ _ - - _ _ _ _ _.

ORF # 00664 INDEX Ho. 9 3 l

REV. O AN ASME SECTION Vill EVALUATION i

OF OVSTER CREEK DRYWELL FOR WITHOUT SAND CASE PART I STRESS ANALYSIS February 1991 prepared for CPU Nuclear Corporation Parsippany, New Jersey prepared by GE Nuclear Energy San Jose, California 9103070190 910304 f>DR ADOCK 05000219 PDR

k)bEk Ob9-3, RE'<

p AN ASME SECTION VIII EVALUATION Of OYSTER CREEK ORYWELL FOR WITHOUT SAND CASE PART I STRESS ANALYSIS Prepared by: d d N 4

T C.D. Frederickson, Senior Engineer Materials Monitoring &

Struct" al Analysis Services 6df GWC G. W. Contreras, Engineer Materials Monitoring &

Structural Analysis Servir.es Reviewed by: M hh'

~

H. S. Mehta, Principal Engineer Materials Monitoring &

Structural Analysis Services Approved by:

S. Ranganath, Manager Materials Monitoring &

Structural Analysis Services i

.___________.._________._.._.-____...__________..____m_.m__-_______________.____._.___-.__.____._________________._____._____m

kkbEk hb h 3, REV O I

TABLE OF CONTENTS Pace No.

1. INTRODUCTION 1-1

1.1 Background

11 1.2 Supplementary Code Stress Analyses 1-2 1.3 Scope of Present Analysis 1-3 1.4 Report Outline 1-3 1.5 References 1-3

2. ANALYSIS BASES 2-1 2.1 Drywell Geometry and Materials 2-1 2.2 ASME Code Allowable Values 2-3 2.2.1 Thickness Reductions From local Corrosion 2-4 Effects 2.2.2 Allowable Stresses for Post-Accident 2-5 Condition 2.3 Load Magnitudes and Combinations 2-5 2.4 Temperature Gradients 2-6 9

2.5 References 2-7

3. DRYWELL FINITE ELEMENT ANALYSIS 3-1 3.1 Description of Finite Element Models 3-1 3.1.1 Axisymmetric Model 3.

3.1.2 Pie Slice Finite Element Model 3-1 3.2 Load Application on Pie Slice Model 3-2 3.2.1 Gravity Loads 3-3 3.2.2 Pressure load 3-3 3.2.3 Seismic Loads 3-4 3.3 Stress Results for Various Load Cases and 3-4 Combinations i

_}

)EX b -3, REV. O TABLE OF CONTENTS (CONT'D)

Pace No.

3,4 Temperature Stre ss M.elytis 35 36 3.5 References 41 4, SEISMIC LOAD DEFINITION 4.1 Finite Element Model 4-1 4.2 Dynamic Analysis Methodology and Response Spectra 4-1 4.3 Post-Accident Seismic Analysis 4-2 4,4 Analysis for Relative Support Displacement Effects 4-2 4-3 4.5 References 51

5. CODE STRESS EVALUATION 5,1 Code Stress Evaluation of Regions Above the lower 5-1 Sphere 5.2 Elastic Stress Analysis of Sandbed and Lower 5-2 Sphere 5.2.1 Small Displacement Solution Results 5-2 5,2,2 Large Displacement Solution Results 5-4 5.3 Code Evaluat' ion of the Sandbed and Lower Sphere 5-4 5,3,1 Primary 5 tress Evaluation 5-4 s

5.3.2 Extent of Local Primary Membrane Stress 55 5.3,3 Primary Plus Secondary Stress Evaluation 56 6-1

6.

SUMMARY

AND CONCLUSIONS APPENDIX A DETAILED RESULTS FOR AXISYMMETRIC MODEL TEMPERATURE STRESS ANALYSIS 11

b bEk b.3, REV, O i-LIST OF TABLES Page Table Ti tl e.

flo,

No.

i 2-1 As designed and Projected 95% Confidence 28 thicknesses used in the Code Stress Evaluation 2-2 Allowable Stresses for Drywell Shell in 2-9 Section Vill Analysis 23 Allowable Stresses for Post-Accident Condition 2-10 2-4 Load Combinations specified in the Parsons 2-11 Report (Deference 2-3) 2 12 2-Sa Dead Weight loads 2-13 2-Sb Penetration Loads 2-15 2-5c Live Loads 3-1 Load Cases Considered in the Finite Element 3-7 Analys-is 3-2 Adjusted Weight Densities of Shell to Account 3-8 for Compressible Material Weight 3-3 Oyster Creek Drywell Additional Weights -

39 Refueling Condition 3-10 3-4 Oyster Creek Drywell Additional Weights -

Accident and Post-Accident Condition 3-5 Hydrostatic Pressures for Post-Accident 3-11 Condition ili

D U # 00664 1 OEX NO. 9-3, REV. O LIST OF TABLES (CONT'D)

Page Table Title No.

No.

3-12 Meridional Seismic Stresses at four Sections 3-6 3 13 3-7 Application of loads to Match Seismic Stresses - Accident Condition 3 14 38 Application of loads to Match Seismic Stresses Post-Accident Condition Description of load Combinations in Terms of 3-15 3-9 Unit Load Case Sum 5-7 5-la Comparison of Calculated Stresses to Code Allowable Values (Nominal Drywell Wall Thicknesses Above Lower Sphere) 58 5-lb Comparison of Calculated Stresses to Code Allowable values (957. Projected Drywell Wail Thicknesses Above lower Sphere) 5-9 5 2a Comparison of Calculated Primary Stresses to Code Allowable Values (Small Displacement; Lower Sphere and Sandbed) 5-10 5-2b Comparison of Calculated Primary Stresses to Code Allowable Values (Large Displacement; Lower Sphere and Sandbed)

Comparison of Calculated Primary Plus Secondary 5-11 5-3a Stresses to Code Allowable Values (Small Displacement; Lower Sphere and Sandbed) iv

bEkhb9-3,REV.O

(

LIST OF TABLES (CONT'D)

Page Table No.

Title No.

5-3b Comparison of Calculated Primary Plus Seconda y 5-12 Stresses to Code Allowable Values (large Displacement; Lower Sphere and Sandbed)

k bE$ b 3, REV. 0 l

LIST OF FIGURES Figure Page No.

F IGURE __

No.

11 Drywell Configuration 1-5 31 Complete Axisymmetric Finite Element 3-16 Model of Drywell 32 Sand Bed Region of Drywell Finite Element 3-17 Model 33 Knuckle Region of Drywell Finite Element 3-18 Model 3-4 Cylindrical Region of Drywell Finite 3-19 Element Model 3-5 Upper Cylindrical Region of Drywell 3-20 Finite Element Model 3-6 Oyster Creek Drywell Pie Slice Finite 3-21 Element Model 3-7 Inside Closeup View of Lower Drywell 3-22 Section 3-8 Application of Loading to Simulate 3-23 Seismic Stresses 3-9 Below Curb Drywell Model Nodalization 3-24 for Temperature Analysis During Accident Condition vi 1

kEkh4b-3,REV.O i

l LIST OF FIGURES (CONT'D)

Page Figure FIGURE NL No.

3-10 Example of Calcul.ated Temperature 3 25 Distribution at Various Elapsed Times 3-11 Meridional Stress Distribution in the 3 26 Sand Bed Region from Temperature Distribution at t=210 Seconds 3-12 Circumferential Stress Distribution 3 27 in the Sand Bed Region from Temperature Distribution at t 210 Seconds 51 Circumferential Stresses for Accident 5-13 Condition V-1 in 'With Sand' and 'Without Sand' Cases - Small Displacement 5-2 Plot of Accident Condition V-1 Meridional 5 14 Stresses for 'Without Sand' Case - Small Displacement 5-3 Circumferential Membrane Stress 5-15 Distribution Using Small Displacement Option 5-4 Circumferential Membrane Stress Magnitudes 5-16 at Four Meridional Planes in Sandbed Region Small Displacement 55 Beam With Transverse Plus Axial Loading 5-17 5-6 Circumferential Membrane Stress 5-18 Distribution Using large Displacement Option vii

  1. 00664 AR:EX NO. 9-3, REV. O TN) l LIST OF FIGURES (CONT'D)

'9' Figure No, FIGURE No.

5-7 Comparison of Circumferential Membrane 5-19 Stress Magnitudes With Large and Small Displacement Options 5-8 Circumferential Membrane Stress Magnitudes 5 20 at Four Meridional Planes in Sandbed Region

- Large Displacement viii l

1

EX b -3, REV. 0

1. INTRODUCTION 1,1 Background The Oyster Creek Nuclear Generating station utilizes a GE BWR Nuclear Steam Supply System and a steel Mark I pressure suppression type containment vessel system.

The pressure suppression system consists of a drywell, a pressure suppression chamber (torus) which stores a large volume of water and a connecting vent system between the drywell and the water pool.

The drywell, sometimes referred to as the containment vessel or containment structure, houses the reactor vessel, reactor coolant recirculation loops, and other components associated with the reactor system.

Figure 1-1 shows the drywell along with the pertinent dimensions.

The drywell is a combination of a sphere, cylinder and 2:1 ellipsoidal dome and it resembles an inverted light bulb.

The spherical portion of drywell near the base includes a sandbed region that provides an elastic transition zone which is intended to ameliorate abrupt thermal and mechanical discontinuities.

The pressure suppression system was designed, analyzed and constructed by Chicago Bridge & Iron Company (CBI).

A recent inspection of the steel shell (November 1986) prior to restart from the 11R outage in the sandbed region revealed that some degradation of the shell had taken place during the years since completion of construction.

Subsequent inspections al so indicated minor thir.kness degradations in the upper spherical and cylindrical sections of the drywell.

A detailed description of the previous analyses pertaining to Oyster Creek drywell is given in Reference 1-1.

An ASME Code stress analysis addressing the drywell thickness degradation is documented in Reference 1-2.

The analyses in Referance 1-2 are based on the present configuration in the sandbed region, i.e., it is assumed that the sand is present.

One of the option GPUN is exploring to mitigate further 1-1

Ek b -3, REV. O l-corrosion in the sandbed region, is to remove the sand.

The purpose of the stress analyses presented in this report is to evaluate the drywell per ASME Section VIII for this modification.

1.2 Supplementary Code Stress Analyses The Code of record for the stress analysis of Oyster Creek drywell is Section Vill,1952 Edition and Nuclear case interpretations 1270 N 5, 1274 N-5 and 1272 N-5.

The CBI stress report (Reference 1 3) augmented by the recent GE report (Reference 12) constitutes the Section Vill Code stress report of record for the drywell.

The GE report is a supplementary stress report to the CBI stress report and addresses aspects of Code compliance as they relate to the local wall thinning observed in the Oyster Creek drywell.

The stress analyses in this report as in the previo'Js GE report (1-2] are guided by GPUN Technical Specification for primary containment analysis (1-4).

Based on the ultrasonic (UT) inspection results, the projected 95%

confidence thickness value for the drywell shell in the sandbed region is 0.735 inch.

However, in several previous Oyster Creek drywell analyses, as discussed in Reference 1-1, a conservative thickness value of 0.700 inch was used.

A shell thickness of 0.700 inch in the sandbed region was used in the stress analyses documented in Reference 1-2.

In the first part of the stress analysis report of Reference 1-2, the nominal or as-designed thicknesses were assumed everywhere except in the sand bed region. The thickness in the sand bed region was assumed as 0.700 inch compared to the as-designed thickness of 1.154 inch.

Later, the local thinning in areas other than the sand bed regien of drywell was tddressed.

The second part of Reference 1-2 report addressed the buckling evaluation of drywell shell.

l 1-2

DiF s 00664 LIDEX NO, 9 3, REV. 0 1,3 Scope of Present Analysis The stress analyses described in this report address the case when the sand has been removed from the sandbed region (called the 'without sand case'),

A companion report

[1 5) addresses the buckling evaluation for this case.

The finite element models used in the Reference 1-2 analyses were modified for this case by removing the spring elements representing sand stiffness, it will be shown that this change affects only the stresses in the sandbed and adjacent region.

The stresses in the other regions of the drywell are essentially unaffected.

1,4 Report Outline Section 2 of the report describes the drywell geometry, materi al s,

ASME Code allowables and load combinations used in the evaluation of applied

stresses, Also discussed is the temperature gradient definition in the sand bed region under DBA conditions.

Section 3 includes the details of drywell finite element analysis.

Seismic load analyses are covered in Section 4.

Section 5 presents the Code stress evaluation results to meet the Code criteria.

Finally, the summary and conclusions are discussed in Section 6.

The Appendix includes calculated stresses from some of the unit loao cases.

1.5 References 1-1 Yekta, M.,

"0C Drywell Structural Evaluations," GPUN Technical Data Report No. 926, Rev, 1, February 6,1989, 1-3

bE$ b -3, REV. 0 l

1-2

a. "An ASME Section Vill Evaluation of the Oyster Creek Drywell -

I Part 1

- Stress Analysis," GE Index # 9-1, DRF # 00664 (November 1990).

b. "An ASME Section Vill Evaluation of the Oyster Creek Drywell -

Part 2 - Stability Evaluation," GE Index # 9-2, DRF # 00664 (November 1990).

1-3 " Structural Design of the Pressure Suppression Containment Vessels," by Chicago Bridge & Iron Co., Contract # 9-0971, 1965.

1-4 GPUN Specification SP-1302 53-044, Technical Specification for Primary Containment Analysis - Oyster Creek Nuclear Generating Station; Rev. 2, October 1990.

1-5 "An ASME Section Vill Evaluation of the Oyster Creek Drywell for Without Sand Case - Part 2

- Stability Evaluation," GE Index #

9-4, DRF # 00664 (February 1A91).

14

kbEk h-3,REV.0

" U * )Y '

t o,s\\cd %"

pc...t A-w J

,,,,, g f-o -

Ettv 00 9*

6 id a b "ht'

,g Poiws E g g g y, $ g', q g t h,ieh -

[

p b =' C.,

2 qq,. 9 %

y q'. si Poiw, C '

i Peiw i b d 14 2 7,.

N poi-s t d0 htte v s sci-)) f,l

\\i t u t v SY h"

~

g Weiwv F g v'4 hLstvs ti Gl,'

k Elu IE * ~1 '4 h'

M~

I M ;4g"'"3 "l'

E ut.(o o==t

/

q Ehv,6IN I

tu.

4 1

4

,. m -

O,,@,ttsvarb.%, ayps!Il11tilit t m

t,,g g l, q c _ tu a..., sw im L,)

...o o

.c I

Figure 1-1 Drywell Configuration 1-5

Ek 9-3, REV. 0 1

2.

ANALYSIS BASES 2.1 Orywell Geometry ano Materials The spherical section has an inside diameter of 70 ft, which intersects the 33 ft, diameter cylindrical portion.

A transition knuckle is provided at the connection of the sphere to the cylinder (Figure 1-1).

The drywell i s 10 5'-6" high.

The plate thicknesses vary from a maximum of 2.625 in. at the transition between the sphere The and the cylinder down to a minimum of 0.640 in, in the cylinder.

head wall thickness is 1.188 in.

The head, which is 33 ft. in diameter, is made with a double tongue Ten vent an'd groove seal which permits periodic checks for tightness.

pipes, 6'-6" in diameter, are equally spaced around the circumference to connect the drywell to the vent header inside the pressure suppression chamber.

The drywell interior is filled with concrete to elevation 10'-3" to provide a level floor.

Concrete curbs follow the contour of the vessel up to elevation 12'-3" with cutouts around the vent lines.

On the exterior, the drywell is encapsulated in concrete of varying thickness from the base elevation up to the elevation of the top head.

From there, the concrete continues vertically to the level of the top of the scent fuel pool.

The base of the drywell is supported on a concrete pedestal conforming to the curvature of the vessel.

A structural steel skirt was first installed to provide interim support for the vessel during erection.

A portion of the steel skirt was left in place which serves as one of the shear rings that provides horizontal restraint for the drywell during an earthquake.

The proximity of the biological shield concrete surf ace to the steel shell varies with the elevation. The concrete is in full contact with the shell over the bottom of the sphere at its invert elevation 2'-3" 2-1

-- - --~_

(

I DRF # 00664 INDEX NO. 9-3, REV. 0

(

l up to elevation 8'-11 1/4".

At that point, the concrete is stepped back 15 inches radially to form a pocket which continues up to elevation 12'-3".

That pocket is currently filled with sand which forms a cushion which is intended to smooth the transition of the shell plate from a condition of fully clamped between two concrete masses to a free standing condition.

This sand filled pocket is referred to here as the sanobed, in the analyses described in this report it is assumed that the sand has been removed.

Up from elevation 12' 3" there is a 3 inch gap between the drywell and the concrete biological shield wall which is filled with foam material that provides insulation but no structural support.

An upper lateral seismic restraint, attached to the cylindrical portion of the drywell at elevation B?i 6".

allows for thermal, deadweight, and pressure radial deflection, but not for lateral movement due to seismic excitation.

All penetrations for piping, instrumentation

'l i n e s,

vent

ducts, electrical
lines, equipment 4

accesses, and personnel entrance have expansion joints and double seals where applicable.

The materials of construction for the drywell are given in Specification S 2299-4 (21).

The drywell shell, i.e.,

the sphere, cylinder, dome, and transitions, was constructed from SA-212, Grade B High Tensile Strength Carbor-Silicon Steel Plates for Boilers and other Pressure Vessels ordered to SA-300 specification.

The following steels were used in the construction of penetrations, reinforcements, and appurtenances:

SA-300 Steel Plates for Pressure Vessels for Service at Low Temperatures.

SA-333 Seamless and Welded Steel Pipe for Low Temperature Service.

SA-3SO Forged or Rolled Carbon and Alloy Steel Fl anges,

Forged Fittings, and Valves and Parts for Low Temoerature Service.

2-2

O F # 00664 l'DEX NO, 9-3, REV. O ASTM A-36 Structural Steel.

Table 2-1 shows the as-designed thicknesses used w tho Code s!.ress evaluation of the drywell shell (12).

Also shown in the same Table are the projected 95Y. confidence thickness values hi the locally l

corroded areas (2 2].

These latter thicknesses are used in the primary stress evaluation presented in Subsectio.i 5.2.

1 2.2 ASME Code Allowable Values The Oyster Creek drywell vessel was designed, fabricated and erected in accordance with the 1962 Edition of ASME Code, Section V111 and Code Cases 1270N-5, 1271N and 1272N-5.

1 The Code Case 1272 N-5 limits the general membrane stresses to 1.1 times the allowable stress values given in Table UCS-23 of Section VIII.

The combined general membrane, general bending, and 10 cal membrane stresses are limited to 1.5 times the general membrane stress all owables.

Finally, the Code Case limits the sum of the primary plus secondary stresses to three times the allowable stressas given in i

Table UCS-23.

The allowable stress value given in Table UCS-23 for SA 212,-Grade B is 17500 psi.

Accordingly, the allowable strest values for varipus categories of stresses are shown in Table 2-2.

The original Code of record and the Code Cases do not proviae specific l

guidance in two areas.

The first relates to the sit'e of a regioh of increased membrane stress due to thickness reductions from local or 3

general corrosion effects, and the second pertains to the allowable stresses for service level C or post-acc(dent conditions.

In the first case, guidance was sought from Subsection NE of Section III, The justification for the use of this guidance is provided in a report prepared by Dr. W.E. Cooper of Teledyne [2-5].

In the latter case, the Standard Review Plan document was used as guidance witn detajis discussed in Reference 2-6.

The allowable limits obtained are discussed next.

2-3

DU 0 00664 1 OEX N0. 9-3, REV, 0 Thickness Reductions f rom local Corrosion Effects 2.2.1 Consideration of local corr os t or effects can be achieved by application of the requirements for local Prircary Menbraae Stresses.

A thorough discussion of this is presented in Reference 2-5.

The discussion presented here is extracted froin that reference.

I The NE-3213.10 definition of Local Primary Membrane Stress is:

Cases arise in which a memhtane stress produced by pressure or other mechanical loading and associated r:ith a primary or discontinuity effect produces excessive distortion in the transfer of load to other portions of the structure.

Conservatism requires that such a stress be classified as local primary membrane stress even though it has some characteristics A stress regica may be considered local of a secondary stress.

if the distance over which the membrane stress intensity neeeds extend in the ceriaional direction more than 1.1 S does not mc 1.0/(Rt), where R is the minimum midsurface radius of curvature and t is the minimum thickness in the region considered. Aegions of local primary meurane stress intensity involving nisymrtetric membrane stress distributions which exceed l'.1 S shall not be mc closer in the meridional direction than 2,5/(Rt), whors R (s defined as (R)+R )/2 and t is defined as (t +t )/2, where t3 and 2

i 2 2 are the mirsimum thicknesses at each of the regions considered, t

and Ri and R2 are the minimum midsurface radii of curvature at these regions where the membrane stress intensity exceeds 1.1 Discrete regions of local membranc stress intensity, such S

I mc.

as those resulting from concentrated loads acting on brackets.

where the membrane stress intensity exceeds 1.1 S shall be mc spaced so that there is no overlapping of the areas in which the j

membrane stress intensity exceeds 1.1 Smc' from NE of Section III is equivalent to 1.1 S from The value of Smc Section VIII.

2-4 l

' - - - ~

f:REA) 00664

'J K),

Na, 9 3, REV, O There is no Q limit for the e,'tetit of (M regloi..n which the mer"M R est erads 1.0 S but n Tess than 1, l s,nc.

This 107.

mc vn r auon in the alh Me stress was proviued becmise of the " beam on clas(4c f >mdstWn" af s scts of such heal regions, the stress decays

\\s om Loves awy froni the thin region, but overshoots general membrane stress value by a small amount as the effects dampen out with distance.

Thus, this provision is nyl equivalent to a 10; increase in the allowable stress which cnn be taken advantage of in the original

design, However, given a design which sP,isfies the general Code intent, as the Oyster Creek drywell doer as originally constructed, it i

is not a vioLtion cf Subsection NE requirements for tne membrane j

stress to be between 1.0S a6d 1.lS over significant distances.

ne mc will be used to Based on the preceding discussion, a limit of 1.lSme evaluating the general membrano stresses in areas n b3 drvveU where reduced thicknesses are pecified.

=

2,2.2 Allowable Stresses for Post-Accident Condition i

in the post-accident condition, the drywell is flooded to elevation 7 U - 6".

The allowable stress valucs for this condition are given in Table 3.8.2-1 of Reference 2-4.

Table 2-3 shows the allowable stress values used for the post-accident condition.

2.3 Load Nagnitudes and Combinations The leads to ce considered in the Oystor Creek drywell stress anah s is, and the load combinhticar, are spe:ified in Reference 1-4.

References 2-1 and 2 3 also contain simi' tar descriptions of the loads and load combinations.

Tabic 2 4 stows these load combinations.

The Cases I and 11 pertain to tect loaO imiossad on the drywell prior to plant startup.

Ther.e ' loads are enveloped by tha loads specified in Case V - Accident Cordititn.

Thrrefore, separate calculations were not corjucted for tases I and TI, 2-5 l

EX 3, REV. O A comparison of the load combinations shown in Table 2 4 and those given in Reference 24 is covered in Reference 2 6.

From that comparison it was concluded that the load cotibination's in Table 2 4 essentially envelope those described in Reference 2-4.

Th's dead load, live load and other equipment loads used in the stress calculations were obtained from an earlier study by CBI (Reference No.

2.4.3 of Refrrence 14), und are shown in Tables 2 54 though 2 5c.

In the dead weight loading, the weight of the compressible material attached to the drywell was separately added.

This weight was taken as 10 lbs, per sq. f t. of drywell surf ace (Reference No. 2.4.2 of Reference 1 4).

The additional weight on the cylindrical portion of the drywell during the refueling was obtained from Reference No. 2.4.3 in Reference 14 as 561 lbc/ inch of drywell cylindrical region c'rcumference.

The stresses from seismic loads were ~ separately calculated as described in Section 4.

2.4 Temperature Gradients The drywell shell is essentially at a uniform temperature during all of the operating conditions except the accident condition.

During the accident condition it is assumed that the drywell shell except the region below the curb (i.e., the sand bed region) is at the same temperature as that of the environment inside the drywell.

An analysis of the meridional temperature distribution in the sand bed region during the accident condition was reported in Reference 1 4.

ine meridional temperature results in Reference 1-4 are given as a function of elapsed time from the start of the accident condition to 4500 seconds.

These temperature distributions are used in Section 3 to calculate the stresses.

26

- ~

kfbEX h b 3, REV. 0 2.5 References 21 Technical Specification S 2299 41 Design, Furnishing. Erection and Testing of the Reactor Drywell, and Suppression Chamber Containment Vessels (1964).

22 "Forcasted Drywell Thicknesses to 14R " letter dated October 5, 1990 from S.C. Tumminelli of GPUN to H.S. Mehta of GE, dated.

2-3 " Primary Containment Design Report." prepared by The Ralph M.

d Parsons Company, FSAR Amendment 15.

T 2-4 Nuclear Regulatory Commission Standard Review Plan, Section 3.8.2, Steel Containment, Rev. 1, July 1981.

2-5 " Justification for use of Section Ill, Subsection NE, Guidance in Evaluating the Oyster Creek Drywell," Appendix A to letter dated December 21, 1990 from H.S. Mehta of GE to S.C. Tumminelli of GPUN.

26 " Comparison of FDSAR and SRP Load Combinations," Appendix D to letter dated December 21, 1990 from H.S. Mehta of GE to S.C.

Tumminelli of GPUN.

27

..__.-__._._._____..._____._m_.

. _. _. ~ _. _ _. _. _.... _

bC kb 9 3 REV. O TABLE 2 1 l

As designed and Projected 95% Confidence thicknesses used in the Code i

Stress Evaluation-As designed Projected 95%

Thicknesses 14R Thicknesses Drywell Reaion Lini Lini Cylindrical Region 0.640 0.619*

t Knuckle 2.625 2.625 Upper Spherical Region 0.722 0.677

-Middle Spherical Region 0.770 0.723 Lower Spherical Region 1.154 1.154 Except Sand Bed Area Sand Bed Region 1.154 0.736

  • no on going corrosion L

2-8

i hEk f4 3, REY. O TABLE 2 2 Allowable Stresses for Drywell Shell in Section Vill Analysis (Except Post Accident Condition)

Primary Stresses General membrane 19300 psi General membrane plus bending 29000 psi Primary clus Secondary Stresses Surf ace stresses including 3x17500 or 52500 psi thermal effects NOTE:

The general membrane stress allowable value of 19300 psi is equal to 1.1x17500, where 17500 psi is the allowable stress value for the drywell material in Table UCS 23 of Section Vill.

2-9

khbEkNbh3, REY.0 TABLE 2-3 J

Allowable Stresses for Post Accident Condition Primarv Stresses 1

. General Membrane 38000 psi General Membrane plus 1.5x General membrane or 57000 psi Bending Eggendary Stresses P

Primary plus Secondary 70000 psi NOTE: The above allowable stresses are based Standard Review Plan, Section 3.8.2., Steel Containment 2-10

k)bEX Nb 3, REV. O Tabic 2 4 Load Combinations specified in the Parsons Report (Reference 2 3)

CASE I - INITIAL TEST CONDITION Deadweight + Design Pressure (62 psi) + Seismic (2 x DBE)

CASE II - FINAL TEST CONDITION Deadweight + Design Pressure (35 psi) + Seismic (2 x DBE)

CASE III - NORMAL OPERATING CONDITION Deadweight + Pressure (2 psi external) + Seismic (2 x DBE)

CASE IV - REFUELING CONDITION Deadweight + Pressure (2 psi external) + Water load at water seal 0 118'-3" + Seismic (2 x DBE)

CASE V - ACCIDENT CONDITION Deadweight + Pressure (62 psi A 175 F or 35 psi & 281 F) +

Seismic (2 x DBE)

CASE VI - POST ACCIDENT CONDITION Deadweight + Water Load 0 74' 6" + Seismic (2 x DBE) l Notes: (1) The loads shown above predominate.

Reference 2-3 contains all of the loads.

l (2) DBE is the design basis earthquake.

l 2-11

kkbEkkbI93,REV.O A

TABLE 2.5a Dead Weight Loads 113 3 Elevation (f t.)

Weiaht in 1bs Upper Header 60.00 36000 Lower Header 40.00 41000 Upper held Pads 65.00 40000 Middle Weld Pads 60.00 40000 Lower Weld Pads 56.00 48000 Top Flange 95.75 20100 Bottom Flange 93.75 20700 Stcbilizers 82.17 21650 Upper Beam Seats 50.00 1102000 Lower Beam Seats 22.00 556000 12 Ft Diam. EQ DOOR 30.25 48000 Personnel Lock 30.00 64100 Vents 15.56 50000 13 ft Diam EQ DOOR 30.25 57000 Upper Weld Pads 65.00 12000 Middle Weld Pads 60.00 19200 Lower Weld Pads 56.00 8400 1

2-12 I

kkbEXkbh3,REV.0 TABLE 2 5b l

i Penetration loads Penetration 10

[levation (ft.)

Weicht in lbs x

54A 87.00 1000 x

5 A Thru H 16.00 150000 x6 16,00 6000 x - 7A Thru D 30.00 45600 x-8 26.00 2450 x

9A, 98 34.00 22600 x

10, 11 26.00 8650 x - 12, 45 31.00 16500 x - 13A, 13B 33.00 15450 x

14,15,39B 70.00 5750 x

43. 44 54.00 7850 x - 16A,B 73.00 8850 x

17.

90.00 2750 x - 18, le 20.00 900 x

20,21,22 40.00 850 x - 23,24,34A,8 20.00 6000 x - 25 90.00 3750 x

27 90.00 1000-x 28A-G 34.00 5450 x - 30A8, 32A 16.00 3700 x - 31AB, 53 16.00 3750 x

26 20,00 3900 x + 35A Thru G 16.00 900 l

i 2-13

. -.. - ~.

~

'kb Ek b h-3, REV. O TABLE 2 Sb (Cont'd)

Penetration Loads 1

Penetration JJ}

[.].grttig_r), (f.L.1 Weiaht in 1bs x - 36 60.00 700 x

37 A Thru D 40.00 8100 x - 38A Thru D 40.00 8100 x - 42 20.00 400 x

39A 30.00 850 x

40 AB, 46A 30.00 2400 x - 469, 52 30.00 1650 x

49, 50 35.00 1500 x - 51 32.00 750 x

100AB, 104B 40.00 2500 x

.105A,0+107A 40.00 2500 x - 1000,0,G+104 40.00 4150 x - 105B,C+106B 40.00 2550 x - 100E, 103A,10 40.00 2500 x - 102B 40.00 850 x - 101A-F 40.00 5100 x

104BD 40.00 1650 x

54B 90.00 1000 x

55 A+B 90.00 2000 x - 102.A,104A,10 40.00 2650 x - 100F,1038 40.00 1850 x

29A,B,47,48 90.00 4000 x - 32B.33A,33B 16.00 3750 x - 40C0 36.00 1550 x - 41 90.00 500 2 14

1 I)bEkhb!93,REV.O TABLE 2-Sc Live Loads 1113 Elevation (ft.)

Weicht in 1bs Upper Header 60.00 4200 Lower Header 40.00 7150 Upper Weld Pads 65.00 20000 Middle Weld Pads 60.00 20000 Lower Weld Pads 56.00 24000 Equip Door 30.25 100000 Personnel Lock 30.00 15000 l

- ~..

t Ek b 3, REV. 0

3. ORYWELL FINITE ELEMENT ANALYSIS 3.1 Description of Finite Element Models The drywell was modelled for finite element analysis using the ANSYS computer program (3 1).

Two finite e,ement mode 1 0, an axisymnietric model and a 36' pie slice model, were used in the stress analysis.

Both of these models are essentially the same as those used in the stress analyses (1-2) except that the elements representing sand stiffness were eliminated.

The axisymmetric model was used in determining the stresses for the seismic and the thermal gradient load cases.

The pie slice model was used for dead weight and pressure load cases and to evaluate the stresses for load combinations.

The pie slice model includes the effect of vent pipes and the reinforcing ring on the stress state in the sandbed and adjacent region.

3.1.1 Axisymmetric Model The axisymmetric model is shown in Figures 3-1 through 3 5. where Figure 3 1 is an overview, and Figures 3 2, 3-3, 3 4, and 3 5 show the sand bed, knuckle, cylindrical, and t'aer most cylindrical regions, respectively. The geometry as described in Subsection 2.1, along with References 3 2 and 3 3, was used in generating this model.

The model was developed using axisymmetric solid elementt ($TIF 25),

with the lower most portion being fixed in all directions. This element has asymmetric 1cd capability which was required for the seismic evaluation. Seismic evaluations are discussed in Section 4 3.1.2 Pie Slice finite Element Model Taking advantage of symmetry of the drywell with 10 ventlines, a 36' section was modeled.

Figure 3-6 shows the 36' pie slice finite element model of the drywell.

This model includes the drywell shell 3-1

.m.

d D U d 00664 11DEX NO. 9 3, REV. 0 4

f rom the base of the sandbed region to the top of the elliptical head and the vent and vent header.

The torus is not included in this model because the bellows provide a very flexible connection which does not allow significant structural interaction between the drywell and torus.

The various colors in Figure 3 6 represent the different shell thicknesses of the drywell and ventline.

Figure 3 7 shows the view from the inside of the drywell with the gussets and the vent jet deflector.

The drywell and vent shell are modeled using the 3 dimensional plastic c'Jadrilateral shell (STIF43) element.

At a distance of 76 inches from the dryeell shell, the ventline modeling was simplified by using beam elements.

The transition from shell to beam elements is made by extending rigid beam elements from a node along the centerline of the vent radially outward to each of the shell nodes of the ventline.

ANSYS STif4 beam elements are then connected to this centerline node to model the axial and bending stiffness of the ventline and header.

Spring (STIF14) elements are used to model the vertical header supports inside the torus. ANSYS STIf4 beam elements are also usea to model the stiffeners in the cylindrical region of the drywell.

Symmetric boundary conoitions are defined for both edges of the 36' drywell segment.

This allows the nodes at this boundary to move radialb vutward from the drywell centerline and vertically, but not in the circamferential direction.

Rotations are also fixed in two direction; to prevent the boundary from rotating out of the plane of symmetry.

Nodes at the bottom edge of the drywell are fixed in all directions to simulate the fixity of the shell within the concrete foundation.

3.2 Load Application on Pie Slice Model The loads are applied to the drywell finite element model in the manner which most accurately represents the actual loads anticipated on the drywell.

Details on the application of loads are discussed in the following paragrap.T:.

3-2

Ek b 3, REV. 0 3.2.1 Gravity Loads The gravity loads include dead weight loads of the drywe'.' shAl, weight of the compressible material and penetrations and live loads.

The drywell shell loads are imposed on the model by defining the weight density of the shell material and applying a

vertic61 acceleration of 1.0 g to simulate gravity.

The ANSYS program automatically distributes the loads consistent with the mass and acceleration.

The compressible material weight of 10 lb/f t8 is added by adjusting the weight density of the shell to also include the compressible material.

The adjusted weight densities for the various shell thicknesses are summarized in Table 3 2.

The additional dead weights, penetration weights and live loads are applied as additional nocal masses to the model.

As shown on Table 3 3 for the refueling condition case, the total additional mass is summed for each 5 foot elevation of the drywell.

The total is then divided by 10 ior the 36' section assuming that the mass is evenly distributed arour.d the perimeter of the drywell.

The resulting mass is then applied u.iiformly to a set of nodes at the desired elevation as shown in Table 3 3.

These applied masses automatically impose gravity loads on the drywell model with the defined acceleration of 19 The same method is used to apply the additional masses to the model for the accident and the post-accident conditions as summarized in Table 3 4.

3.2.2 Pressure load The appropriate pressure load is applied to the internal / external faces of all of the drywell and vent shell elements.

The axial stress at the transition from vent - shell to beam elements is simulated by applying equivalent axial forces to the nodes of the shell elements.

In the post-accident condition, the drywell is assumed to be flooded to elevation 74' 6" (S94 inches).

Using a water density of 62.3 3

3 lb/ft (0.0361 lb/in ),

the pressure gradient versus elevation is calculated as shown in Table 3 5.

The hydrostatic pressure at the 3-3

k EX b -3, REV. O I

bottom of the sandbed region is calculated to be 28.3 psi.

According to the elevation of the element centerline, the appropriate pressures are applied to the inside surface of the shell elements.

3.2.3 Seismic Loads Seismic inertia and displacement stresses were first calculated using the axisymmetric model.

The seismic meridional stresses determined from the axisymmetric model were then imposed on the pie siice model by applying downward forces at four elevations of the model (A:

23'-7",B: 37'-3",C: 50'-11" and D: 88' 9") as shown on Figure 3 8.

Using this method, the meridional stresses calculated from the axisymmetric model are duplicated at four sections of the pie slice model including 1) the mid elevation of the sandbed region, 2) 17.25' below the equator, 3) 5.75' above the equator and 4) just above the knuckle region.

These four sections were chosen to most accurately represent the loading in the lower drywell while also providing a reasonably accurate stress distribution in the upper drywell.

Table 3-6 shews the meridional stress magnitudes at the four sections.

Unit loads are then applied to the pie slice model in separate load steps at each elevation shown in Figure 3-8.

The resulting stresses at the four sections of interest are then averaged for each of the applied unit loads.

By solving four equations with four unknowns, the correct loads are determined to match the stresses shown in Table 3-6 at the four sections.

The calculation for the corr *' loads are shown in Tables 3-7 and 3-8 for the accident and post-nt conditions, respectively.

3.3 Stress Results for Various Load Cases and Combinations meridional and Only the two orthogonal stress components circumferential - are significant at the maximum stress locations in the drywell shell.

A review of the component stresses indicated that the calculated shear stress magnitudes are insignificant compared to the values for the total meridional and circumferential stresses.

Therefore, the orthogonal stress magnitudes and the principi stress 34

Ek b 3. REV. O magnitudes were essentially the same.

Also, the maximum stress was couivalent to the stress intensity at the locations evaluated.

i The stresses for the seismic

inertta, sei sinie displacement and temperature load cases (see Table 3-1) were calculated using the axisymmetric model.

The details of the temperature stress analysis is described in the next Subsection and the procedures used in the calculation of the seismic stresses are covered in Section 4.

The calculated values of the membrane and membrane plus bending stresses for temperature case are tabulated in Appendix A.

The seismic stresses were incorporated in the pie slice model to determine the overall stress resultants for the accident and post-accident load combinations.

The temperature stresses determined from the axisymmetric model were separately added to the accident condition stresses obtained from the pie slice model.

The multipliers applied to the various unit load cases (Table 31) to obtain total stresses for a particular load combination are shown in Table 3 9.

The resulting stresses for these load combinations are discussed and compared with the Code allowables in Section S.

3.4 Temperature Stress Analysis The thermal response in the sand bed region to a DBA LOCA has been analyzed by GPU in Reference 1-4 Figure 3 9 shows the meridional nodes below the drywell floor, for which the calculated temperatures as a function of elapsed time are reported in Reference 14 An example cf the calculated temperatures is shown in Figure 310.

From a review of the temperature distributions, two intermediate time steps were identified as possibly yielding the most severe thermal stresses. At 60 seconds, the largest temperature gradient occurs over a two inch meridional length.

At 210 seconds, the maximum temperature is achieved, in addition, a third time step, 690 seconds, was evaluated to verify that a more deeply penetrating temperature condition would not result in higher stresses than the first two cases.

35

kbEkhbIh3,REV.0 i

The predominant stresses for each of these cases occurred near the top of the sand bed region (near the 0.736" to 1.154" transition) and were in the circumferential and meridional directions, it was found that 4

the thermal stresses at 210 seconds yielded the more severe stress condition.

Figures 3 11 and 3-12 show the meridional and circumferential stress distributions in the sand bed region.

3.5 References 31 Gabriel J. DeSalvo, Ph.D. and John A. Swanson, Ph.0, *ANSYS Engineering Analysis System User's Manual," Revision 4.1, Swanson i

Analysis System, Inc. Houston, PA, March 1,1983.

32 CB&! Drwg. 9 0971 sheet number 4, Rev. 1. "Drywell Field Weld Joint" 33 CB&I Drwg. 9 0971 sheet number 7. Rev. 5, "Drywell Cylindrical Shell & Top Head" H

4 d

3-6

kkbEk 9 3, REV. O TABLE 3 1 Load Cases Considered in the Finite Element Analysis Case No.

Leadina 1

Pressure 2

Gravity 1 (Accident Condition) 3 Gravity 2 (Refueling) 4*

Unflooded Seismic 5*

Flooded Seismic 6

Flooded Hydrostatic Pressure 7*

Seismic Relative Support Displacement 8*

Temperature Gradient During DBA Load Cases Analyzed by Axisymmetric Finite Element Model 3-7

l khbEXhbI93,REV.O i

TABLE 3-2 Adjusted Weight Densities of Shell to Account for Compressible Material Weight j

Adjusted Shell Weight Density 3

Thickness (in.)

(lb/in )

1.154 0.343 0.770 0.373 0.722 0.379 2.553 0.310 0.640 0.392 1.250 0.339 T

h i

i i

I 38

b E$ b.3.

REV. O TABl.E 3 3 Oyster Creek Drywell Additional Weights Refueling Condition OEA0 ithtTR.

M150.

TOTAL 5 FOOT LOAD Fil LOAD Pit LOA 0 PU (LIVAT10N vt!GHT o!!Gwi LOA 05 LOAD DAnGC 36 OtG.

f 0F h00t5 0F FULL h00( nALF heet (feet)

(it')

(1tf)

(itf)

(Itf)

LOAD litf)

(LluthT5 APPL 10AT!:N (ibf)

(1tf) 15.56 50000 50000 16 166100 16t100 20 11200 11200

    • 15 20 229300 22530 6

116 119 3622 1911 227 156000 556000 156000 55600 6

161 169 Ell:

3475

" 2125f 26 11100 11100 30 64100 51500 115600 30.25 105000 100000 205000 331700 33170 8

179 167 4146 2073

    • 26 30 31 16500 16500 32 750 750 33 15450 15450 34 18050 26050 15 1500 1500

" 31 35 62250 6225 6

166 196 778 389 36 1550 1550 40 41000 43350 64350

" 36 40 65900 6560 8

197 205 1074 537 50f 1102000 11:2000

"45-50f 1102000 110200 8

418 426 13775 (866 54 7650 7650

" $1 55 7650 765 8

436 444 96 49 56 56400 24000 60400 60 95200 700 20000 115900

" 56 60 196300 19630 8

454 462 2454 1227 65 52000 20000 72000

" 61 65-72000 72**

6 472 480 900 450 70 5750 575D 5750 575 8

508 516 72 36

" 66 70 73 6650 6650 6850 665 8

526 534 til 55

" 71-75 62.17 21650 21650

" 61 65 21650

!!65 8

553 561 271 135 67 1000 1000 90 15000 15000 16000 1600 8

571 579 200 100

" 66 90 93.75 20700 20700 94.75f 696000-606000 1

95.75 20100 20100

" 91 96 738800 736!0 8

589*$97 9235 4616 TOTAL 5:

2164150 386200 BC2000 3434350 3434350 343435

  1. LOAD TO BE APPLIED IN Yt(TIOL ClRECTION ONLY.

& ul50tLLAkt0U5 LCA05 lh0LU0C 696000 L6 VATER VE!GHT AT 94.75 FT. (LtVATION 1

l l

100000 LB (QUIPMthi 000R VI!GHT AT 30.25 FT. (LEVAT!:N dhD VELD PAD LIVE LDA05 0F 24000. 20000 AhD 20000 At 56, 60 AND 65 FT. CitVATIONS

)

REFVGT.VK1 l

\\

l 39 l-

l E$ b.3.

REV. O TABLE 3 4 Oyster Creek Drywell Additional Weights Accident and Post Accident Condition 6

OLA0 P(htTR.

N150.

10TAL

$ 100T LOAD ptR LOA 0 tit LOAD t(t titvAt104 et tb7 el1GHT LOA 05 LOAD

  1. AhGt 36 OtG.
  1. or n00t5 or rg;L 600t wA;r 400g (Itf)

('tf)

L;A0

('t )

(LlwthT1 APPLI:ATION (1tf)

Utf)

(feet) litf)

(1tf) 15.56 50000 50000 16 168100 168100 20 11200 11200

!!93*0 22930 5

116 119 3tt!

1911

" 15 20

!!f

!!6000 156000

!$6000 5f600 6

161 169 6950 3475

" 21 25#

26 11100 11100 30 64100 51500 115600 30.t5 105000 105000 231700 23170 8

179 187 t et t, 1446

" 26 30 31 16500 16500-32 750 750 33 15450 15450 34 20050

!! 50 35 1500 1500 62250 6225 8

188 196 778 369

" 31 35 36 1550 ific 40 41000 43350 f4350 65900 6500 8

197 205 1074 537

" 36 40 50f !!02:00 1101000 1102000 110100 8

418 426 13775 6el6

" 4 5 50f 54 7650 7650 7850 785 8

436 444 9e 49

" 51 55 56 1t400 56400 60 95!00 70S 95900 152300 1!!30 6

454 462 1904 912

" 16-60 65

$2000

!!000 5t000

!!00 8

472 460 650 325

    • 61 65 70 5750 5750 5750 573 8

508 516 72 36

" 56 70 73 8850 6650 6850 tt5 8

526 534 til 55

" 71 75 82.17 21650

!!650 21650 2165 8

553 561 271 135

" B1 t5 t7 1000 1000 90 15000 15000 16 00 1500 8

571 579 200 100

" 66 90 SL75 10700 20700 95.75 20100 20100 40800 4060 8

589 59' 510 255

" 91 96 10Till:

2164150 366200 -

0 2572350 2572350 257235 f. LOA 0 TO BE APPLi(0 Ik YtRT! AL O! RIOT!0h DNLY.

n. h0 w150tLLAht005 LOADS FOR TM!! 00kDIT!0N.

FLOOWGT.hti 3 10

b Ek b -3, REV. 0 k

f TABLE 3 5 l

Hydrostatic Pressures for Post Accident Condition WATER DENSITY:

62.32 lb/ft3 0.03605 lb/in3 FLOODED ELEY:

74 5 ft 894 inches 4

ANGLE ELEMENTS ABOVE 1

ABOVE EQUATOR ELEVATION DEPTH PRESSURE NODES (degrees)

(inch)

(inch)

(psi)

ELEMENTS

..... g.....;....

40 51.97 116.2 777.8 28.1 13 24 h

53 50.62 122.4 771.6 27.8 25 36 66 49.27 128.8 765.2 27.6 37 48 79 47.50 137.3 756.7 27.3 49-51, 61 66.55 57 92 46.20 143.9 750.1 27.1 52-54, 138 141.58 60 102 44.35 153.4 740.6 26.7 142 147, 240 242, 257 259 108 41.89 166.6 727.4 26.2 148 151, 243, 256 j

ll?

39.43 180.2 713.8 25.7 152 155, 244, 255 i

116 36.93 194.6 699.4 25.2 156 159, 245, 254 i

120 34.40 209.7 684.3 24.7 160-165, 246, 253 124 31.87 225.2 668.8 24.1 166 173, 247, 252 130 29.33 241.3 652.7 23.5 174 183, 248 251 138 26.80 257.6 636.4 23.0 184 195 148 24.27 274.4 619.6 22.3 196 207 4

161 20.13 302.5 591.5 21.3 208 215 170 14.38 342.7 551.3 19.9 216 223 179 8.63 384.0 510.0 18.4 224 231 188 2.88 425.9 468.1 16.9 232 239 197 2.88 468.1 425.9 15.4 430 437 400 8.63 510.0 384.0 13.8 438 445 409 14.38

'551.3 342.7 12.4 446 453 418 20.13 591.5 302.5 10.9 454 461 427 25.50 627.8 266.2 9.6 462 469 436 30.50 660.2 233.8 8.4 470-477 1

445 35.50 690.9 203.1 7.3 478 485 454 40.50 719.8 174.2 6.3 486-493 463 45.50 746.6 147.4 5.3 494 501 472 50.50-771.1 122.9 4.4 502 509 481 54.86 790.5 103.5 3.7 510 517 805.6 88.4 3.2 518 525 490 4=

820.7 73.3 2.6 526-533 499 835.7 58.3 2.1 534 541 508 850.8 43.2 1.6 542-549 517 885.3 8.7 0.3 550-557 526 187.3 706.7 25.5 340 399 (Ventline) 4 FLOODP.WK1 3 11 i

il5txn8?59 3, REV. O TABLE 3 6 Meridional Seismic Stresses at Four Sections g

20 Shell Meridional Stresses Elevation Model Accident Post Accident Section finches) 82d2 (DSil ID5il A) Middle of Sandbed 119 32 1258 1288 B) 17.25' Below Equator 323 302 295 585 C) 5.75' Above Equator 489 461 214 616

0) Above Knuckle 1037 1037 216 808 s

W 3-12

N 3, REV. O t

1 TABLE 3 7 Application of Loads to Match Seismic Stresses. Accident Con:!ition 2 0 till*1C LTRI$lti At $ttilth (tst) itti 0h:

1 3

4

!.0 N00t:

32 30!

461 1037 COMPRtillVI ITRt15tl FR0w t 0 8AAttill (LIV:

119.3" 3!!.!"

489.1"

$ 12.3" 7f6.67 155.64 1 3.46

!!.31 0.056" $tism!C OtrLICT!0h:

HORll. PLU$ VIRilCAL 5t!$hl: th!RTIA:

419.ll 139.44 110.13 130.21

!!!!. fi-294.66 !!).!D til.!!

TOT AL $[15MIC COMPRt$11VI liRt55t$

3 0 5tRt15tl AT !!?T!h (tsi) 30 St;TICh:

1 2

3 4

IhPVT 3 0 n0011:

53 t6 110 176 400 406 f.26 534 St0f!0h thPUT 3 0 Uh!T LOAD Ot$0RIPfl04 ILIV:

119.3" 322.t*

489.1" 91f.3" LOAD 85.43 37.94 34.94

$$,13 A

1000 lbs at noces $63 throw 96 569 69.46 39.92 16.16 0.00 6

$00 lbs at 8t16435. 1000 its at 426 434 97.f4 43.37 0.00 0.0*

C 500 its at 197L205, 10C0 les at 196 204 t9.15 0.00 0.00

?.00 0

500 its at 1616169. 1000 its at 162 166 Ott!RIO *0*PRt151YL STRi$$tl (r:1):

litt.22 194.96 211.59 216.52 30 thPut LCAO 8tSVLithG STRtl$t$ Af it: TION (psi) 5tCT10N LCAO TO BE APPLit0 TO MATCH 2 0 $TRI55El 39r.'.!

333.37 146.05 136.34 215.5!

A 166.67 63.69 77.t$

0.00 r 01.4 a463.6 141.93 63.04 0,00 0.00 8

6611.6 94.05 0 00 0.00 0.00 0

l 0

...+........................

SUM:

1256.!!

294.96 213.59 215.52 5t!5Uhrt.W1 i

3-13

bEk kb 9 3 REV. 0 1

TABLE 3 8 J

Application of Loads to Match Seismic Stresses Post-Accident Concition 2 0 ltl$r!C 1TRt11ts et it:11th (tst)

$t:110h:

1 2

3 4

f.0 h00t:

32 302 461 It37 00kttts!!vt sittilts Ft0* t-0 AkALY$11 (LEV:

119.3" 3!!.$"

all.1" lit.)"

0.058" !!!$810 ;!FL!?t:Ch:

768.67 115.54 103.46 85.31

=0R!!. PLU1 YtAT10AL !!!$*1 thitt!A:

499.79 429.39 512.76 723.14 TOTAL 5t!! alt 00NPRt!$1YI 5tttiltti 1!66.46 564.93 (16.!!

6*6.45 3 0 $fRt55tl At it:1!0h (tai) 30 INPUT

$t;t!0N:

1 2

3 4

3 0 h00tli 13 66 170 178 400 406 526 534 LOAD st:T!4 thPUT 3 0 WhlT i:A0 Oti:RlPi!DN (Lty:

119.3" 3tt $"

449.1" 912.3" A

1000 its at moees 163 tt'osch 569 66.43 37.94 34.94 15.23 t

500 its at 4276435, 1;t: its at 420 434 89.66 39.92 36.76

.00 0

$00 its at 167L205, 1;;0 its at 196.t:4 97.64 43.37 0.00 C 00 0

500 't: at 161L169, 1000 its at 162 116 89.fl 0.00 0.00 0.t0 Ot1!Rtt C0*#RI$$1vt $ tit $$ts (pst):

!!86.46 564.93 616.!!

(*8.45 30 1hPut LOAD 5tCT10h LOAD 1 !! APPL!!D 10 >ATCH t 0 STRt15t$

illyLTING $fFll!!! AT 5t:f!Ch (rs1) 14637.9

!!$0.61

!$$.36 511.45 6:8.46 A

B 2050.2

!!6.17 113.76 1Co.77 0.00 C

1941.7 149.56 64.21 0.00 0.00 0

318.8 28,64 0.00 0.00 0.00

$UM :

!!66.46 564.93.616.!!

008.45 5t!1FL.VK1 3-14

h5tx28?'93,REV,0 TABLE 3 9 Description of Load Combinations in Terms of Unit Load Case Sum i

Load Comb.

Load Combination Case (4)

Constituent Load Cases Normal Operating 111

- (Case 1)x0,03226 + Case 2 i Condition (3)

Case 4 i Case 7 Refueling Condition IV

- (Case 1)x0.03226 + Case 3 2 Case 4 i Case 7 Accident Condition 1

V1

+ Case 1 + Case 2 i Case 4 2 Case 7 + Case 8 Accident Condition 2

V2

+ (Case 1)x0,565 + Case 2 2 Case 4 1 Case 7 + Case 8 Post Accident Condition VI

+ Case 2 2 Case 5 + Case 6 i Case 7 Notes: (1) For load combination definition see Reference 2 3.

(2) for unit load case description see Table 3 1, 1

(3) Normal Operation also includes live load due to personnel lock.

(4) Loaa Combination Case Numbers are based on Table 2 44 3-15

t mW

\\

t O

g

,z, La a

Q J G M Ch M LJ U to 6NN

  • in WQC

.-e LA

  • D3 6C O
  • F N. I.* LJ sm

=s "S*EE Haakb8 1

W O

so CI h

/

/

N @o

\\

/

j b

La

.i i

Ls y

.N a

J

.2 l

f.

r e

i a

ti m

cc U

r.

fg d

W e

W a,

o-c 3 16

[

l it s

ST i

G t

E ir M

I E0 L 9 3

0 L05 A

1 94E07 C 9 1

S/2 21 S 3300 Y467=

=

=84 5 0PXXC OtT21 ~

N/.EAAB T

S===

A24RMMD UUIFFTL l

11PXYT AZDXY ed o

M tn

/

eme lE e

t in i

4 F

j 1

1E y-r D

fo

'+

no i

D ge M

R AS de O

B N

d a

S NO 2

I G

3 E

e R

ru D

g E

i B

F DN yA 5,

I YO

[,;.

r :

i' t { !'

! i Ii

!l

i s tiI;!l t![i!

I>

J n

5T r

G f

a i

E r

1f I

ED L 4 0 LD00 A

95ED87 C 9 S/1 E781 S 475 Y537e 22 S12.PXMXr 1

G1T2r r/

EAIAu T S-i tf A03RMMtT AaDXY Us IFF PXYYt 1

I le do M

r tn

.y eme lE e

e t

in i

L F

E l

D l

0 e

1 w

r yr E

D F

f o

n L

o L

i E

g U

e Y

R 2

e G

lk K

c u

E n

E K

RC 3

R 3

ET e

E r

Y ug D1 i

F w*.=

.i ;

l

m Hz e

W Ei La Q tn a

Q J fa S v G

w Ch lD L.J Q W -

U CD N y1 N 00 N Ch *- e in - O tn Finchbuaea nQQ LO " O a. X Z" X E O - H Ne-L4J tN

.*a ct sc Q Humapw JQMWEEET e ra o x L4.Q D 3 H L4 ax> L ta "as uo:c C

Ch S

G

+a C

C 7,

d R

O b

O O

c w"

i i.i l

I l

8 i

s

=>

4 CW

.J Lil3 b

W L

x ta x

1 tal U

fa.

U y

a k

M Lil h

N in a

cn Qe

'e E

3-19

9tiSYS 10/15/90 3.3621 l

PREP 7 ELEMENTS l

XMAX=2DDD YMIN-1064 YMAX-1115 MNUM=1 AUTO SchtING ZU-1 DIST=27.9 Xr=203 YF=1090 Y

I I

DYSTER CREEK DRyuELL - FE MODEL Figure 3-5 Upper Cylindrical Region of Drywell Finite Element Model

i AMSYS 4.4R l

JAM 4 1991 13:33:22 PREP 7 nX*fENTS REAL NUM XU

=1 YU

=-R.9 i

P4S'a68:331 ZF

=639.498 A C -OS CENTRCID HIDDDI 1

i i

i w

i ro I

I i

i

)

t l

I i

e xN l

I I

c? STER CREER DRYHELL ANALYSIS - OYCRIM C MO SA MD, ACCIDENT >

3 Figure 3-6 Cyster Creek Drywell Pie Slice Finite Flemrt Model l

f t

t t

I i

t AMSYS 4.4A i

i A

JAM 4 1991 13:14:29 i s t.r r ELEMENTS T

REAL NUM i

XU

=-1 YU

=-R.8 l

F5tH8:iB

=216.528 t

aw AMC2=99 I

i CENTROID HIDDIN I

l i

l l

\\

t w

h i

.a

?

[

t t

\\'

i I

i i

I OYSTER CREEK DRYHELL ANALYSIS - OYCRIM <NO SAMD. ACCIDEMI) l Figure 3-7 Inside closeup View of Lower Drywell Section

'i 1

1 ANSYS 4.4R JAN 4 1991 13:93:P9 r ru,r i ELEMENTS I

TYPE MUM-FORC XU

=1

=-9 8

NST=714.786 XF

=3W3.831 f

ZT

=639.498 Ah-99

? CENTROID MIDDEN l

1 l

I I

l w

h i

I l

i t

I c'

t OYSTER CREEK DRYMELL ANALYSIS - OYCRIM CNO SAND, ACCIDENT) l Figure 3-8 Application of Loading to Simulate Seismic Stresses j

k kEX b 9o3, REV. 0 i DW Uner i i

i DRYNELL i

A i

ATMOSPHERE l

V l

l

(*i Orywell Ct rb

+g7M Elevation (0")

~

f ll 11 l

?

i l

CONCRETE

./

i

  1. 4 REGION

,,, u, %

l s

y SAND BED REGION A

,./ 45

[

i 47 e We mean sm) l V

v',e

,s,./ 9 3 l

l Figure 3-9 Below Curb Orywell Model Nodalization for Temperature Analysis During Accident Condition 3-24 i

l

,l l l,,

&,">= oo8* m 5>.

< zo E o

E U.f

.3

  • g I.f

.)sI*$.I$II:II;.

ge 3

O

~S e

~?

"R "g

e.Y1*,%,, = Ea5 '

gm

  • g*

~

  • E"

=- - 09 5N ES W4~,

W W

aO W'~ 2 Q o *- ~:.

  • h" O,

4o.7 2t

'n O.,

W o, L*

~:

  • 3*

%. - 37 69

.2 aC
  • m T~n

~U 3"

~~ 3t 57 E*

M2 ~. 3 7

~a E+

~

e ?n

~;C

?.~.*

E.*

C ** -

.g*

it ES E.*

.g~

?~

Ee

f'
  • o. e?.n P. g. 7

+.-

3" e

E*

99 T

.:

  • E9

.gm

.3~

~r

'C

o. m l'

~

.~

3 3"

re r~*

?? 3.*

~C

~R e.. r,

". *. = "

3" 3, -

J.*

?t 9~

~C

~-

=. "

E"

- ~

3~~

?*

~~

n,.,

U~'

=* 9t 7*

0. * ?t 37 a C' Us 2*

E*

7-

0.
  • 6*

~*

.o,

R

... =

?o ~

3" E*

gt 59 3"

..a N.1 0

E*

  • 95

~2 aC p. n,

.n. 3 g.s

- 5

~E g.-

,.
  • E5 99
y

$.c E.**

se ;o *

~r 5.*

.R g.e g.g 2

E*

?,

Su

  • E"

'r

. 3 i*

a g*

B.-

E*

( g.a g.~

s a: dg g.s 3 99 3*

  • g.n
.
=

.a. 0 iG t.e E.c 5"

9*

y go. =
.3 3 d2 E.

N.;

0N 9.*

M g.

go.o. 3, g.S

.a0 i!*

3.:

2.
  • i3 E"

.f

.o~

g.~

.s

  • i3 0.:

F~

iG E3 go. ~

g.z sN dC 7.e J% iE i" 2.yR 9o. -

g.:

gS iO 7.:

O; i; d*

( go.n g.g

.a A sE

.2
  • ~t i2 i3 h go.=

g.s

.s 4 g3 E.=

2. " i% i3 cy

.a g.

.s 2 iO E.r E.3 d% d3

~R go.a g.~

.s 0 i=

g.c

.R iE dE af go.a g.g

.s t pn g.=

s3 i; v

g g.g

.s E is E.=

E.2 i2 iE ay g

g gU 5 E.m g.*

i2 R

g g

g" 53 E.a g.1 iR i%

f g

g gE 53 E.r g.C i; iE g

g gG 53 g.:

g.E iO iR E

g gE 53 g.s g.2 i3 N3 a.yn g

g R 50 E.3 g.3 ih i3 af g

g E 5s E.3 g'

i; iA

?

E g

g 5s E.=

E.t iC N%

gy g

g g

g E.n gE i" i" eR g

g E

g g.s E3 i8 i5 jf g

g 8

g E.a g3 i3 N"

g g

E g s.n E3 iE gy g

g S

g g g; iU NS

R g

g E

g g gs i3 NE gC g

g 8

g e EE i3 E3 2

E g

E g

a g iE E3 g(

g g

g g

e g

E NL eR g

g E

g 8

E E

E jy g

g E

g g

R E

g C

g g

g g

E E

E E

gC g

g E

g s

g E

E eM g

g E

g a

E E

g gC g

g E

g e

E E

E

?

g 8

E g

g g

E E

jC g

8 E

g a

E g

E eM g

g E

g g

g E

g gC g

g E

g g

E g

g G

g g

E g

g g

g E

gC g

g E

g g

E E

E

~R g

8 E

g g

E E

E gQ g

\\,8 g

g e

g g

E g

8 g

g a

E E

E gC g

g g

g g

2 g

E nR g

8 g

g a

R g

E jQ g

8 g

g r

g g

E N

g 8

g g

g g

E E

gC g

8 g

g g

g E

E eR g

8 g

g g

g g

E gQ g

g g\\ g g

g 8

g g

g g

8 g

g E

g g

gC e

g 8

g g

s E

g cU5W Mt ~o m E O% vm s $.o.,*e

  • m "5c o % E. $ 3e oa >m5oom n

o m$Cge, W Ee*

L "7m f!!

lll) j,I Ii lililjl

  • ftsyg s'

14

  1. E

05r 57,:'#'SR 'O s7NESg #Loy Y

sy m?!O s RLZtg 4 '

$lSr, >e vr:aar

!9g 17 % &$-

e O

i Segg

'Seeg

/

,0YSTER CREEK DRYhlELL - THERMAL T=210 5

/

Figure 3-11 Meridional Stress Distribution in the Sand Bed Region From Temperature Distribution at t=210 Seconds

l l

l l

i-l At15YS 1/ 4/91 14.9778 POST 1 l

STEP =1 ITER =10 STRESS PLOT SZ AUTO SCALIrfG ZU-1 DIST=8.78 XF=292 YF=144 MX-13475 MN=-13916

/

-8000 Y

0 0

16000

,0Y5TER CREEK DRYUELL - THERMAL T=210 5 Figure 3-12 Circumferential Stress Distribution in the Sand Bed Region From Temperature Distribution at t-210 Seconds 4

N Ek b -3, REV. 0 4

SEISMIC LOAD DEFINITION This.section briefly describes the general methodology followed in the-seismic evaluation-of the drywell.- A detailed report on the seismic

- analysis. methodology and the results is included in Reference 4-1.

4.1 Finite Element Model The axisymmetric finite element model was used in the seismic analisis.

All of the concentrated -loads-listed in Tables-2 Sa and Sb were -included in both the flooded and unflooded seismic analyses.

Since the lower and upper beams connect to the drywell through pads, the: beam' weights do not act during the horizontal earthquake excitation.

Therefore, the beam weights are active only in the t

' vertical-direction.

In addition, the live loads. listed in Table 2-5c were sincluded.in the unflooded seismic analysis.

The ;drywell is constrained at the " reactor building /drywell/ star truss"' interface at elevation. 82' 6" - and at its - base.

The upper constraint' was implemented in the finite element analysis by restraining-_the middle-node.in the horizontal direction at this elevation. The base-constraint is as before,L i.e., all -nodes fixed.

4'.2 - Dynamic Analysis Methodology and Response Spectra r

LThe seismic input motion spectra were provided by GPUN in Reference 14.

The seismic motion-spectra were for two locations: at the: mat

. foundation -and - at -the upper constraint.

Since the. ANSYS program:can only, accept one input spectrum, the input-spectra 'at the-two

-elevations were enveloped.

The = response spect' rum dynamic : analyses were first conducted =lfo'r frequencies up -to the: ZPA frequencies of the' input motion-' spectra.

'The-response-contributions due to the-truncated higher fre_quency modes-4-1

1 0M # 0066A IhEXNO.9-3,REV.O were calculated by static analyses in which the total model mass is subjected to support accelerations.

These were taken as ZPA accelerations for each of the orthogonal spatial directions.

All colinear modal response contributions were combined by the Double Sum Method and the spatial contributions by the SRSS method.

The response contributions due to the +runcated higher frequency modes were combined with the response totals due to the lower frequency modes included in the analysis by the SRSS method.

The resulting total colinear inertia responses were combined with the corresponding responses due to relative support motion by the absolute sum method.

These stresses were then combined with the stresses from other loads (e.g., pressure, thermal, etc.) for the Code evaluation.

4.3 Post-Accident Seismic Analysis in the post-accident condition, the drywell is flooded to elevation 74'-6".

The weight of the water was lumoed at several elevations along the meridian of the drywell.

Based on previous experience, the fluid-structure interaction effects were assumed as negligible and the hydrodynamic mass of water was assumed as 80?. of the total mass of water which would fill an empty drywell.

This exclusion of 20?. mass reasonably accounts for the volume of RPV, shield wall and pedestal.

4.4 ' Analysis for Relative Support Displacement Effects The drywell is fixed at its base and is laterally constrained by the reactor building at elevation 82'-6".

During seismic excitation, the reactor building wouid experience relative displacement between the drywell constraint elevation and the basemat.

Since the reactor building is much stiffer and much more massive than the drywell, it will take the drywell for a

' ride' during relative support displacement.

Therefore, the stresses in the drywell due to relative support displacement were determined and added to those from the seismic inertia loads.

4-2

DU 6 00664 I DEX NO. 9-3, REV. O The horizontal relative displacement of the dry 1 ell upper support with respect to the drywell at the basemat was specified as 0.058 inch for 2xDBE condition [1 4].

The stresses from this relative displacement were obtained by applying a horizontal displacement of 0.058 inch at the upper support elevation.

4.5 References 4-1

" Seismic Analysis Details," Appendix B of letter dated December 21, 1990 froin H.S. Mehta of GE to S.C. Tumminelli of GPUN.

I 4-3 l

DH # 00664 IDEX NO. 9 3, REV. 0 5.

CODE STRESS EVALUATION Sections 3 and 4 describe the analyses for shell stresses for the various unit load cases and the limiting load combinations V and VI.

The stress analysis for the 'with sand case' in Reference 1-2a has shown that the accident condition, load combination V-1, and the post-accident condition, load combination VI, represent the limiting load combinations for the Code stress evaluation.

This was also determined tc be the case for the 'without sand' configuration considered in this report.

The removal of sand from the sandbed region affects the stresses only in the sandbed and the adjheent lower spherical region.

Therefore, the Code stress evaluation of these regions is described separately from the other regions of the drywell.

5.1 Code Stress Evaluation of Regions Above the Lower Sphere Figure 5-1 shows a

plot of the accident condition membrane circumferential stresses for the 'with' and 'without' sand cases as a function of meridional distanco.

Stresses in both the sandbed and the other drywell regions are included in Figure 5 1.

It is seen that %

the other regions the stress magnituous for the two cases are essentially identical.

From the preceding it is clear that the stresses in the other regions (i

o., other than the sandbed and the adjacent lower spherical region) are unaffectea by removing the sand Nevertheless, for completeness, the calculated stress magnitudes for these regions from Reference 1-2a are repeated in Tables.-la and 5-lb.

The stress magnitudes shown in Tables 5-la and 5-lb are computed using elastic small displacement analysis.

As discussed in Subsection 5.2, the stresses in the sandbed and lower sphere regions were also evaluated using elastic large displacement analysis.

A comparisen of the component stresses from the small and large displacement solutions for the drywell regions above the lower sphere showed insignificant differences.

5-1 I

DRP # 00664 ItdEXNO.9-3,REV.O in order to evaluate the impact on the penetration analyses, a comoarison of the radial and meridional displacements at the equator plane of the sphere (elevation 37' 3") for the with and without sand cases was performed.

The comparison showed that the radial displacements in the two cases were essentially identical but the meridional or vertical displacements differed by = 0.042 inch for load combination V-1.

This difference was judged to be small compared to the calculated vertical thermal displacement of = 0.5 inch for the accident condition load combination V-2.

5,2 Elastic Stress Analysis of Sandbed and Lower Sphere 5.2.1 Small Displacement Solution Results The maximum stresses are along the meridional boundary of the model (i.e., the plane of symmetry between the vents), so the stresses along this boundary will be considered first, Figure 5-2 shows the plot of meridional membrane stress magnitudes for the accident condition V-1 as a function of meridional distance from the bottom of the sandbed.

A comparison of the membrane stress magnitudes in Figures 5-1 'without sand' case and Figure 5-2 shows that the circumferential stress is higher than the meridional stress in both the sandbed region and the lower spherical region.

This is expected since the absence of sand springs allows more' radial displacement of the drywell shell unoer dead weight and internal pressure.

Figura 5-3 shows a plot of the membrane circumferential stress distribution.

The maximum value of the circumferential membrane stress is = 23.0 ksi.

Further, this stress exceeds 1.1 Smc (21.2 ksi) for a meridional distance of = 26 inches (see Figure 5-1).

The Code (NE-3213.10) states that cases arise in which a membrane stress produced by pressure or other mechanical loading and associated with a primary or discontinuity effect produces excessive distortion in the transfer of load to other portions of the structure.

Such a membrane stress is conservatively classified by the Code as local primary membrane stress.

The Code limits the nagnitude of this stress to 1.5 Smc (29.0 ksi).

A stressed region may be considered local if 5-2

DRE s 00664 INDEX No. 9 3, REV. O the distance over which the membrane stress intensity exceeds 1.1 S mc does not extend in the meridional direction more than 1.0/(Rt).

With R=420 in, and t=0.736 inch in the sandbed region,1.0/(Rt) is equal to 17.6 inches.

Thus, the maximum value of the circumferential membrane stress (23.0 ksi) meets the Code stress limit (29.0 ksi) but its meridional extent over 1.1 S is greater than 1.0/(Rt),

mc i

The meridional extent of 26 in, occurs only at the plane of symmetry between the vent lines.

The extent is less at other meridional pl ane s,

Figure 54 shows the meridional extent of circumferential membrane stress above 1.1 S at four meridional pl anes.

Using a mc weighted average over the circumference of the model, the meridional extent was calculated as 14 inches.

This average value is less than 1.0/(Rt) and, thus, meets the meridional extent criterion given in NE-3213.10.

The objective of the Code in limiting the meridional extent and magnitude of the local primary membrane stress is to preclude excessive distortion in the transfer of load to other portions of the structure, since such distortion could invalidate the elastic analysis.

The small displacement results showed that the maximum radial di spl acement in the sandbed region was 0.28 inch for the accident condition V 1.

This is less than half the modeled thickness of the drywell in that region and, therefore, is judged not to be excessive, The small displacement analysis conducted previously is conservative because the stiffening effect of the tensile in-plane stresses is not considered.

This effect would tend to reduce the local radial deflection (thus, also the local circumferential stress) of the drywell shell in the sandbed region.

For example, consider the case of a beam subjected to both transverse and tensile axial loads as shown in Figure 5 5.

A small displacement analysis of this configuration considers the bending moments based on the transverse load only.

The bending stiesses and deflections of the beam are overpredicted based on these bending moments.

In a real structure, tensile axial loads in combination with the deflections of the beam 5-3

.-. _ -... ~.-. -.

D F # 00664-I 'EX:NO. 9 3, REV. O 0

As a produced by transverse loads. creates an opposing bending moment.

result the overall bending moment is reduced, leading to smaller bending deflections-and stresses.

This stiffening effect can be included only by conducting _ a large displacement analysis.

5.2.2-Large Displacement Solution Results Based on~ the preceding discussion, a large displacement analysis was iconducted using-the. same pie slice model and the accident condition-V-1 loads.

A large -displacement analysis can be conducted using the ANSYS code by activating the KM(6) key. When this option is chosen, the - ANSYS - program -first calculates disp 1Leements of the structure based on a. small displacement analysis. The geometry of the structure The loads are

.is then updated-based on the calculated displacements.

-_again applied _to the -structure and the displacements are recalculated.

-The~ geometry of the. structure is continually updated and the displacements are recalculated until the maximum displacement change

~

between-successive iterations is reduced below the-selected convergence criter_ia.

.A convergence criteria of 0.01 inch-was chosen

- for this analysis.

In this manner, the ANSYS code' accurately accounts for.the stiffening 'of_ the structure duo' to in-plane tensile stresses.

Figure 5-6'shows the distribution of membrane circumferential stress,

< Figure 7 shows a' plot of-membrane-circumferential stress as a.

~ function ofL meridional distance when' the 1arge displacement option _ in, g

ANSYS was used.

,For comparison, the. stress results from the small

-It displacement. solution _-(Figure ' 5-1) are also :shown in-- Figure 5-7.

is seen =that the maximum value from the large displacement solution is

~

= 21.5 ksi. (compared to = 23 ksi in the small ~ displacement analysis),.

mc.(21,2 ksi) over a maximum distance of only: 11 Land it exceeds: 1.1 S inches at the' meridional plane between the' vent lines.

This :is clearly less than the -1.0 )(Rt) distance _ of 17.6 in.

Figure 5-8 shows the circumferential membrane stress magnitudes at

.four-different meridional planes based on large displacement solution.

the Using a -weighted average over the circumference of the model, meridional extent was calculated as = 2 in.

g 4 1-

\\

l

k E$ b -3, REV. 0 5.3 Code Evaluation of the Sanabed and Lower Sphere 3

5.3.1 Primary Stress Evaluation Tables 5-2a and 5 2b show the maximum values of primary stresses for the accident condition load combination V-1, and the Code allowable values for the small and large displacement solutions, respectively.

In the primary membrane stress category, the calculated stress intensities for the sandbed region are based on the average values.

The peak value of the circumferential membrane stress in the sandbed region was compared with the local primary membrane stress limits.

As expected, a comparison of Tables 5 2a and 5-2b shows that the calculated stress magnitudes using the large dispiacement option are in general slightly lower than those obtained using the small displacement option.

The differences in the stresses are larger in The the sandbed region where the racial displacements are larger.

calculated primary stress magnitudes in the sandbed region and lower sphere meet the Code stress limits.

5.3.2 Extent of Local Primary Memorane Stress Paragraph NE-3213.10 of the Code states that a stresses region may be considered local if the distance over which the membrane stress does not extend in the meridional direction intensity exceeds 1.1 Smc 17.6 inches.

When the small more than 1.0/(Rt), which is

=

displacement solution is used (5.2.1), the membrane circumferential stress magnitude in the sandbed region exceeds 1.1 S over a mc meridional distance of = 26 inches at the plane of symmetry between the vent lines.

However, this distance was found to be 14 inches using a weighted average considering other meridionals.

Furthermore, this distance of 26 inches at the plane of symmetry between the vent lines was reduced to = 11 inches when the large displacement solution was used in which the stiffness matrix is Therefore, it is concluded that updated based on the deformed shape.

5-5

_ - - _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - " - - - - ~

DR 0 00664 IN0EX NO. 9-3, REV. O the circumferential stress in the sandbed region meets the meridional extent criterion of the Code Paragraph NE-3213.10.

5.3.3 Primary Plus Secondary Stress Evaluation Only two load cases result in significant secondary stresses in the shell.

The first is the temperature gradient (accident condition V-1) which produces secondary stresses in the sandbed and lower sphere.

The second is the post-accident condition which produces discontinuity bending moments in the shell at the bottom of the sandbed.

The post-accident load combination case VI controls.

Tables 5-3a and 5-3b show the calculated values of primary plus secondary stresses and a comparison with the allowable values for small and large displacement solutions, respectively.

All of the calculated primary plus secondary stress values are within the Code allowable values.

5-6

EkI4bb-3,REV.O TABLE 5-la Comparison of Calculated Stresses to Code Allowable Values

( Nominal Drywell Wall Thicknesses Above Lower Sphere)

Limiting Load Combination - V-1 Drywell Region Stress Calc. Stress Allowable Categ.

Magnitude, Max.

Stress (psi)

(psi)

Cylinder Prim. Memb.

19200 19300 (t=0.640 in.)

Prim, Memb. +

20280 29000 Bending Knuckle Prim, Memb.

18430 19300 (t=2.625 in.)

Prim. Memb. +

20620 29000 Bending Upper Sphere Prim. Memb.

19090 19300 (t 0.722 in.)

Prim. Memb. +

26350 29000 Bending Middle Sphere Prim. Memb.

18460 19300 (t=0.770 in.)

Prim. Memb. +

23110 29000 Bending 5-7

bbEkkb9-3,REV0-TABLE 5 lb Comparison of Calculated Stresses to Code Allowable Values

( 95% Projected Drywell Wall Thicknesses Above Lower Sphere) i Limitirig Load Combination V-1 Drywell Region Stress Calc. Stress Allowable l

Categ.

Magnitude, Max.

Stress (psi)

(psi) l t

Cylinder Prim, Memb.

19850 21200 (t=0.619in.)

Prim, Memb +

20970 29000 Bending Upper Sphere Prim Memb.

20360 21200 (t=0.677 in.)

Prim. Memb. +

28100 29000 Bending Middle. Sphere Prim Memb.

19660

- 21200

~(t=0.723 in~.)

Prim. Memo. +

24610 29000 Bending 5-8

QRF 0 00664 tiDEX NO. 9-3, REV. 0 i

l TABLE 5 2a Comparison of Calculated Primary Stresses to Code Allowable Values f

( Small Displacement; lower Sphere and Sandbed )

f Limiting Load Combination V-1 k

)

J g

Drywell Region Stress Calc. Stress Allowable Categ.

Magnitude, Max.

Stress (psi)

(psi) l i

Lower Sphere Prim. Memb.

13800 21200 (t=1.154 in.)

Local Prim. Memb.

17690 29000 Prim. Memb. +

17800 29000 Bending Sandbed Prim Memb.

17430 21200 (t=0.736 in.)

local Prim Memo.

22970 29000 Prim. Memb +

24950 29000 Bending 5-9

EX 9 3, REV. O l

TABLE 5-2b Comparison of Calculated Primary Stresses to Code Allowable Value

( Large Displacement; Lower Sphere and Sandbed )

Limiting Load Combination - V 1 Drywell Region Stress Calc. Stress Allowable Categ.

Magnitude, Max.

Stress (psi)

(psi)

Lower Sphere Prim, Memb.

13940 21200 (t=1.154 in.)

local Prim. Memb.

17530 29000 Prim. Memb. +

17640 29000 Bending Sandbed Prim. Memb.

16540 21200 (t=0.736 in.)

local Prim, Memb.

21540 29000 Prim. Memb. +

23130 29000 Bending i

l 5-10

D U # 00664 I OEX N0. 9-3, REV. O TABLE 5-3a Comparison of Calculated Primary Plus Secondary Stresses to Code Allowable Values

( Small Displacement Lower Sphere and Sandbed )

Drywell Region Stress Calc. Stress Allowable Categ.

Magnitude, Max.

Stress (psi)

(psi)

Lower Sphere Prim. + Sec. 29020 52500 (t=1.154 in.)

(Acc. Load Cond. V-1)

Prim. + Sec. 30280 70000 (Post-Acc. Load Cond, VI)

Sandbed Region Prim. + Sec. 38420 52500 (t=0.736 in.)

(Acc. Load Cond. V-1)

Prim. + Sec. 67020 70000 (Post-Acc. Load Cond. VI) i 5-11

D F 0 00664 1 DEX NO. 9 3, REY. O TABLE 5-3b Comparison of Calculated Primary Plus Secondary Stresses to Code Allowable Values

( Large Displacement -Lower Sphere and Sandbed )

Drywell' Region Stress Cale. Stress Allowable Categ.

Magnitude, Max.

Stress (psi)

(psi) 9 Lower Sphere Prim. + Sec. 28860 52500 (t=1.154in.)

(Acc. Load Cond. V 1)

Prim. + Sec. 30280 70000 (Post-Acc. Load Cond. VI) s Sandbed Region Prim. + Sec. 36600 52500 (t=0.736in.)

(Acc. Load Cond. V-1)

Prim. + Sec. 67020 70000 (Post-Acc. Load Cond, VI) 5 12

nR:

  • 00664 INM.X N0, 9 3 r REV. 0 r

2-iL

^

-m m

1 I

e 1

. g C

N.

sede -

se V

~r

,=e rg 8

r=

e -

ll ir l

y D

.e c

'm'**.

wf,

)

gg

.C Q.

=-4' w

Y W

.C) m,m t

2 WW pne '

i b

g-

, m. -

a

--w n

O

-N i,

w V

9

's'*"

b O

6 4

l a

. = =

C V m

0 W J)

'I T

.A

~

O

.m

~ Q" '

in.

3 U Q V/

~

v R\\

Q, l

1 O

atC

=

m y

h f*.

/

m.

C r4 y

.I..

  • M 5

\\\\

r*q k

J w

+

@ M

~~

.a

  • l

=C y

lll}

A C~

I

. %r'

- 3, l

C N

c

e

.C

-' +=

V O,

Mr I

-o c a g; d; 6

a-

.'v-v

.s i

.#s Nl M;.

c, n p.

a 3 W

u m.

ll l 0'l;

'Y.

-s

- t

=

-N ;,

e+.

O rg c II A

48. m e-

f. -

-o

' bq ii.

ns y

II.

g 1

W' C

+..,

6 e m-

-g 3l 3 q'g

-2 q

7.

y m L

wA

~

. ; -s.

U.,

V'%

,,w

~-

e o

I A

i-h.

- Jll,l

, g ~

"'N :-

~.l. -d,!

m.

-v

~i

.O Q

,6

~

.s w

"li

.v.3 que..*

e== '_

=

f 0-.

i I=

- - - O

?.-

l--

gq

  • = =

f.

f d).-

M A

M

[,

' apes l

.- 6

.m

. y-a.

1 s

t-

. w.

~

.w-f-

f.--

D

3

=

l 0-O y

rm W

L j.

gS

.,O, ' O

-t - u L,,

=

l:

. UG

~"

w m-w rJ,.

  • =

h Inne C.

l m.[.-

4 mop

-.' ***3 O

5 a i-6 6.

I 1

I i

i T-I 3

I-1

-1 1

o e o v - N ; c-r o v

v0 m

o e

N O

O

~3

.N N

N

=N N:

4C

\\

'T I

=

l s

W

' sy) ssMs auCJO' WOW IOpVGJGju.lDCJ!')

y.

5-13

08: # 00064 lhXX NO. 9 3, RlV, 0 l

s.*

A

.2 il i.

E v

.Y m

A N

7, D

L a w l

g/

W C

-C c>

~~

~

L*

y m

s.

w C

U n

N j

Q N f

N v

n

.- n

. -- '_~

~

g

.o.

v v

M uc Q s,

E C

3 C,

me M

~

I 5

T w

> Ei i

V) gi 9

.5 '

, e.2 O

E N-

-e M

c.

g C

T 4

e-C J o

II

<a

~

y m

b ee3 C

?,

(m k

I v

c re v

C QJ M

~

K

^

T.n a

~

Z Q 0 a

T 2

v o fi J.l.*.

""C N

a

.v 7;

O 6.*

g g

7

  • t x

+

C 4

v g

^

.*=

O g i

v m,

T

- o w

w n

u; X

Q.

W m,.

1 y

^

1 3

d m

3 "

h

~

L

.Cn

  • tan %

~

g y

kA.

a T

, a_

^

-3

= t v v N

N Y

N

('.b

=

New N'

%er e;

m r,

~, m m

NY 5

a em f

d l

5-14

i

.[

j' l

i' ME 47 D7 R

S 49 73 D9 41 S 29 6973 I9

,1$

9 E s59 9594. H512ya6$g 49 R s17 88314dD15*g.227$n 17T 2 1.29 R29269I 5}

g 4S E92 1~24 2 O92} 11* i S7*

11

=R

= = = = =2 T Y141== L==

S 5TPR D"

T MN:SEE D NR S

cN E

AA3OTTyMSE UU1FrFME E S g E MM J1PSISM XY0XvZnC

  • Maw g

\\l n

)

i I

s M

U E

n D

o I

i C

tu C

b A

ir t

s D

i M

D A

s S

s p

e g

J S

~

0 r

9 t

g j

n

.,~~ ]*

j; e o g

t~

M n i

,~ M I

r p a t R

b O

~-

~

C m

r 3

Y e t M n 0

O e

l m

s a e EG i c t a 4

S n

l

. ~

S r s I

e p e i Y

f D L

m 2

A ul y

,,7 M

c l r a A

i m 4=

C S gbb 1

2 7

3 jf'd~

5~s M

5 n

t 5

5i 0i Y

1s 3

D

.r g

i

,r 3

F EE RC RE TSYO ll ra-jl

!lll 1!llll lill,l lIt

( Ntt1..ii11ICI UI11it1l ~ '$l! O55'l$)idli il)l.fliOi1-5,nioll Displacernent Accident C6ndition V-1

'30 28 -

  • s -: 2 6 sn<. ht's - >

~

26'-

1go T

74 -

1IS

= 21.2 ksi x

..__.._____..___-...m.c...__..............____......x 22 -

_....__ _........ 0 j2 mw T

20 -

l 3

r 18 -

I e,

G" i

c

[,'

16 -

4 E,

t a

14 -

y a

2 m

_o 12 -

l.'.

l i

'0-Aziniuthol. Angle' f roin Vent: O

}

L

.8 --

.l a

.i 6 -

b P

O i

?

l 4-1 om sn x=

1 I

2 -

  • 8 I

O

.i i

i i

i i

4 o

100 O'

20 40 60 60 o

.L Mefitjh05)dI Disl (Ifl0t* If Ullt b O b O!!iffIl (If t)

A f

1 Circumferential Membrane Stress Magnitudes at Four ACCDrilSA DRW figure 5-4 Meridional Planes in Sandbed Regien - Small Displacement

}

U # 00664 i)EX fi0. 9 3, REV. 0

(

f

~

Lt 4

[

i 1*

i

' -M k

..,7'&, ~*

4

,_R r.... *.., _.... * *" i,-........

4 W

c A.

e,-.

9.;r ~ - a t.:

,\\.

i-

-M

-. e

+

3 _.;

+^^*"t

  • g t.p

_+.

c., 3

-o.,*

.e m

Beam With Transverse Plus Axial Loading Figure 5 5 e

5 17

4.-n-

,-e,.u-am--,, _ -e s.m

_-ns.,

mee 4---esuu.

,-a-_a aem-+>__m J-,m,,emA

-_.a.w--,M-ar,-+K.."*AL-e_sa,-ww-

---wsh

=M.,,awas A

m,sm_,___m,m_,i I

5 9

no a hun % gEng M 4 En eve eg n

v =

d,,s u.. = k =e n.

s n,.,,,,,,,, = ~a n

.t,s.r.m,b SE un m

nI -

tz..td u

"4'2ddEL. Ejggg(.g gg jp o

m e

r u

t 8

,f U

EE!BEf.1!igpm hh ikh['

d N 8 m!,

MEem*L m m

=

m' ;g"{,rn'i iU g

d l!50 e o p".'ra l

gu cm a v.

i 3a ng q

h (tl?

I h E $

2e u

f 5$

h!!,

hMi$$$1 l

$3 l61 %m !i fl! 3 l

F"*%dd

"

u L

u o

j y [e 9

n yh A!

=WiMA=;jg a t s

=

in.

fd g

,u a 2

w A

a "E

e m

0 ac x

da b

a 5-18

lIi lll fIjIII/

[Iilf,1llll) mn'> oSe% ". m2

  • z z

0 9

00 4

s e

d u

l l

t i

n I

g I

aM l

l 0

s

)

0 s

I i

5 er f

t s

I, S n

)

o 5'

n e,

i I

i r t

(

~

a p l

s s

r O m

t i

i s

s s

1 y

y o

r t e n t

la o

M e t

o m

f n

n V

b l

e e

A A

a c i

i a 0

l n

t 5

t l

t i

i n p n

r e

e n

o n

n

.o n

e s r i i

n a D f

t r

u f

r e

i i

d

s. k.

e e

i.

s ml f

c c

u l

n k.

(

a a

w 1

c a:

l r :

o 2

5,..

lp p

n i 5 l

1 s

o C

1-c h

d l

(

t 2

1.

)

t s

f n

l

(

h o a i

t t

n

=

=

!o g

to e g e

t n e

?

e n

n s

t i

d y..

S r

o.

d a.

i i

o I

5. S.

1 i

. i i

a d

0..

a

+

0 i

a c

h l

gt l

1 r

e e

0 o

A s

h 1

1 i

M

.w i

L W 1

e c

l l

h i

r l

c 7

t t

i i

i 6

5 r

f 2

e e

1 r

l 1

u i

=

g

~

t i

l i

F i

t

a..

1

=

i i

t i.

I O

m-(

4 6

4 2

0 8

6 4

2 0 8

6 4

2 0

A T

A w62 2 2 2

1 1

1 1

1 1

I t

iru C

C C o y, E 3, i A ? ? E._ 'E,,

A i

~ 0 a, v F.

oL*

){lI\\lf/ItI!lllIIlr,il;fl;\\

ll[ll,li[-

lIl!,i/IIf

i '.114. Ilii ll t 'l e *ll{ lill ' li + ',,:, I lit;I T il t !!!(T r i l (Ir (}e Oi';Jil(ICOilleill Or Ci< leill (,(ir ttlitiOIl \\/

I

'A p y p, -

11 in u li, s

~

26 -

'a, 24 -

6

~

.'!% 5..

-k o

M 2~

n un P

20 -

T90 u

U) 18 -

c.c o;,

16 -

U*

t Y

y 14 -

~

2 y

12 -

I' 10 -

2',

Azinnuthai Arni e-f r eirn Verrit:

t l',

e t

i g_

[-

6-W rn T.

A ~1 x

zo "1

["

I I

I I

I 5

4 I

I O

20 40 60 80 100 n

Q f.ierichonal [hst< nu e f r oen 1 B Hottern (en) o ACCDM16A DRW Figure 5-8 Circumferential Membrane Stress Magnitudes at four Meridiona! Planes in Sandbed Region - Large Displacement

4 Ek I4b 3, REV. 0 5.

SUMMARY

AND CONCLUSIONS This report is a supplementary report to the Code stress report (Reference 12) of record and adoresses aspects of Code compliance as they relate to the local wall thinning observed and the removal of sand from the sandbed region in the Oyster Creek drywell.

The loads and load combinations usea in the analysis were based on the previous drywell stress analyses and the GPUN technical specification (Reference 1 4),

in developing the allowable stress limits guidance was taken from subsection NE of Section 111, ASME Code where the Code of record,Section VIII and Code Case 1272N $, is not explicit.

The stress anal / sis first considered a model in which everywhere as designed thicknesses were used except in the sandbed region where the thickness was assumed as 0.736 inch.

lhis served as a basis for evaluating the stresser for tha 95% confidence projected thicknesses to 14R.

The highest stresses were determined to be from the Case V 1 and VI load combinations in a*tl the different regions of the drywell.

It was shown that the primary ano secondary stresses are witnin the allowable limits for both conditicns (as designed thicknesses and 95% projected 14R thicknesses).

At the plane of symmetry between the vent lines, the meridional extent of the circumferential membrane stress above 1 lS., was in excess of 1.0/(Rt!

However, using a weighted average r

considaring other maridional planes, this distance was less than 1.0/(Rt).

Furthermore, a 1&rge displacement solution indicated the extent at the symmetry plane to be also less than 1.0/(Rt).

This clearly 2atisfied tae Ccde criterion for the extent of local primary membrane st,e 3.

It is concluded that the Oyster Creek drywell shell will continue to meet the Code of record requirements at least up to 14R with the sand removed from the sandbed region.

The analysis for buckling capability of the dryvell shell without sand is contained in a companion GE report (Reference 1 5).

61

_amJ A,

a m

.ma..

.a=AaAaAm_m Amo_.

am.ea&m.sai

) _h fae M

A_M 4

s

_MW*Aa44-hewe-~4h%.a--a**A+ hts %*h+M44*e-sh h

--eh6w-1h,#

e h eM_m M

h.Me4 44/.%4-h*wAw-.*

b kbCX N 3, REV. 0 l

APPENDIX A DETAlLE0 RESULTS FOR AXISYMMETRIC MODEL TEMPERATURE STRESS ANALYSIS i

5 e

l A1 i

.u._--.___,_ _ _

NbEX b 3. REV. 0 This appendix presents a summary of the finite element analysis results for the temperature stress case (Load Case No. 8 in Table 3-1).

The stresses reported in these tables are the nodal stresses.

Since there are three nodes across the thickness of the drywell shell (e.g., see Figure 3 3), the stress at the center node is essentially a membrane stress.

The difference between the stress at an inner or the outer node and the middle node is indicative of the bending stress at that section.

In each of the stress tables, the second and third columns from the left show the radial and vertical coordinates of the center nodes.

Four stress components (three normal stresses and one shear stress) are listed for each of the inner, middle and the outer nodes.

Table 21 shows the wall thicknesses in the various regions of the drywell.

To help assess the maximum stress levels, the range of node numbers associated with each wall thickness are given below:

Drywell Reaion Node Number Rance Sandbed Region 1 through 96 Lower Spherical Region 100 through 237 except Sandbed Area Middle Spherical Region 241 through 603 Upper Spherical Region 604 through 876 Knuckle 880 through 942 Cylindrical Region 946 through 1449 l

I A2 l-

\\

Oyster Crece Re= Data f or IMnnal Stress at 210 secoruts - No Sami Insioe Aws Mt Mie Modes Redsel me.idional mop Outside Mes Dedial N eedtu al n3op stode X

Y Theta fEa*

54 57 52 547 IMe SR 57 52 5tf 4+

Sa 51 52 5ty n

Redtal Mertd*onal Hoop (anch) ( a nch) (de9 tees) 19s1)

(psi)

(pst)

(pst)

(pst)

(pst)

(pst)

(psil (psi)

(pst) lpst)

(psi) 2 247.08 106.93 36 00 1

226.09 1034.01 360 65

-9 14 2

-6.29

-8 65

-3.20

-6.90 3 -238 43 -1053 61

-387.87

-4 21 5

248.68 108.10 36.27 4

-62.03 985 03 271.56

-8 96 5

3 34

-8 66

-17 63

-6 88 6

18 72 -1004 52

-297.76

-4.42 0

250.28 109.28 36.54 7

18.78 872.26 231.35

-8 94 8

0.65

-8 80

-49 55

-7 00 9

-17.18

-893 83

-331 27

-4.76 11 251.87 110 46 36.81 10

-4.22 143.82 133.30

-9 02 11 1.10

-9 26

-106.80

-1.36 12

6. *;9

-764.10

-347.65

-5.42 le 253.45 111.66 37.08 13 1.69 609.76 23.76

-9 di 14 0 81

-30 17

-182.09

-8.02 15 0.10

~631.47

-388.54

-6.38 17 255 03 112.66 37.35 16

-0.58 459.91

-108.18

-10 20 17 0.64

-11.55

-211.83

-9 07 18 2.00

-494 13

-435 98

-7.76 20 256.61 114.06 37 62 19

-0 61 288.40

-257 49

-11.37 20 0 46

-13 55

-312 39

-10 57 21 1 63

-316 12

-487 59

-9 65 23 258.18 115.28 37.89 22

-I.40 e6.88

-423 52

-12.97 23 0 18

-16.11 473.58

-12.56 24 I 81

-119 42 535 80

-12 09 26 2P 74 116 50 38 16 25

-1.98

-152.76

-603 10

-14 98 26

-0 04

-19.39

-588.56

-15 06 27 1 87 114 41

-573 30

-15 16 29 261.30 117.73 38 43 28

-2 78

-419.18

-793 73 17 41 29

-0 46

-23 16

-693 60

-18 06 30 1 78 393 65

-591.59

-18.81 32 262.85 118.97 38.70 31

-3.42

-780.08

-993.17

-20 13 32

-0. 75

-27 66

-181 92

-21 52 33 1 13 176 JI 581 34

-23 13 35 264.39 120.21 38.98 34

-4 36 -1182.93 -1193.91

-?3.18 35

-1.39

-32.38

-863 45

-25.39 36 1 30 1120 45

-532.04

-27.94 30 265 93 121.46 39 25 37

-4 91 -1652.58 -1387.74

-26 24 38

-1.14

-31.77

-910 48

-29 54 39 1 03 191.18

-431 99

-33 34 41 267.47 122.72 39.52 40

-5 97 -2192 89 -1565 98

-29 41 41

-2 69

-42.79

-918 51

-33 82 42 0 03 2111.54 269 35

-38 90 44 169 00 123.99 39.79 43

-6 20 -2802.51 -1715.52

-32 09 44

-3 01

-48.36

-874.40

-38 02 45

-0 $2 2113 co

-30 40

-44 81 47 270.52 125.26 40.06 46

- 7. 3t, -3478.59 -1822 08

-34 55 47

-4 46

-52 48

-763.87

-41.85 48

-2 62 33e0 10 297 18

-50.23 50 272 03 126.54 40.33 49

-6.85

-4208.92 -1865.70

-35 67 50

-4 49

-57 CS

-571 08

-44 97 51

-3 27 4t06 08 128 07

-55 '6 53 273 54 127.83 40 60 52

-8.24

-4980 26 -1826.71

-36.18 53

-6 E9

-58.39

-218 98

-46 96 54

-6 44 4872 00 1272 68

-59.25 56 275.05 129.13 40 87 55

-6.16

-5763.37 -1676.89

-34 03 56

-5 97

-60 SI 130 60

-47 ??

57

-1.28 5659 le 1944 74

-62.32 59 276 54 130 43 41.14 58

-8.10

-6531.01 -1392 12

-30 95 59

-9 34

-56 II 675 88

-45 39 60

-12 29 6428 10 2748 54

-61 83 62 278 C4 131.74 41.41 61

-3.20

-7230.80

-935.66

-23 08 62

-7.04

-53 90 1374.72

-40 55 61

-12.78 7946 60 3694 30

-60 29 65 279 54 133.07 41.68 64

-6.63

-7818.72

~271.20

-14 20 65

-13.01

-39 78 2254 64

-31 96 66

-21.46 7746 21 47P4 93

-52.12 63 281 03 134.41 41.96 37 3 67 -8200 93 643.46 2.54 68

-6.63

-31.34 3322.91

-18 67 69

-19 12 8171 78 6014 92

-42.49 11 282.52 135.75 42.23 70

-2.54

-8313.58 1828.22 19.01 71

-16.73

-1.40 4587.72 0 07 72 - 33.16 83c8 43 7349.11

-21.43 14 284 01 137.fi 42 50 13 16 71 -8015.78 3341.44 48 55 74

-2.78 13.13 6052 16 25 40 75

-24.45 8091.46 8719 96

-C.36 Il 285.48 138.47 42.78 76 3 35 -7240.63 5179.99 73 93 Ti

-21.43 67.13 7707.77 57.98 18

-48 22 1350.12 10230 17 39.81 00 286 96 139.83 43.05 79 38.01 -5780 88 14C7.65 120 94 80 2 IS 87.33 9530 91 99 05 81

-25 38 6c26 c9 11677

,7 15 06 03 288.42 141.21 43.33 82 12.42 -3599 93 9913.37 153 88 83

-27 11 182 56 18429 45 148 67 84

-67 16 3R65.39 12917 21 142.37 e69 81DFI.I7D 19164 C6 289 BS 182.59 43.60 85 56.15

-427.51 17302.47 221 60 86 23 22 215 99 128a6 15 206 92 87

-10 Il C9 291.33 143.98 43.87 88 52 43 3582 20 17454.55 246 39 89

-16 56 394.14 11868.16 266 24 90

-84 18 -?t47_12 11144 07 287.76 92 29?.77 145.37 44.15 91 -131.59 8527.28 6323.45 306.60 97

-20 60 355.34 4258 37 305 94 93 91.71

-7947.40 2150 06 307.38 95 294.21 145.77 44.42 94 703 92 11000.93 -8125 25 1694.61 95 e6 02

-12.80 -11318.26 -267 26 96 289 00 -9856 70 -13916 42 -182 15 98 294.65

!47.04 44.49 97 1012.89 8080 70 -8625 81 2643 90 98 -131.17 561 36 -10877.87 -727 93 99 200 69 -8526 92 -13138 37 -564 42 101 295 08 147.31 44.56 100 33.35 5771.47 -9376.01 1086.18 ICI -39i.95 974.74 -10499 76 -116 71 102 -253.59 -1181 IF -12462.12 -291.51 104 796 51 148.12 44.83 103 28 09 6870.25 -7417.07 103 83 104 27 27 165 66 -9013 26 105 53 Ins 28 14 -6780 11 -10683 19 109.91 107 297 92 150.14 45.10 106

-5.45 7802.93 -5629.43 32 02 107 17.57 31.99 -75E9 SS 66 31 106 43 I2 -7020 35 -9490 El 103 21 23 Ott-90 h05T210 WI Fage 1

3y;ter Creek Raw Data for thermal Stress et 210 secc-ds - No Sand Middle bles inslo, nnd,s Outside modes Nedlel Merldlonel hwa Radial Merldtonal hep Radlel Merldtonal Hoop made x

y Thete

% 3e 5x 57 52 5xY mode su Sr 52 5xY aw su sr 52 Sn (Inch)

(Inch) (degrees)

(pst)

(pst)

(psi)

Ipsi)

(?st)

(psi)

(pst)

(pst)

(psil (psi)

(pst)

(psG) 110 299.33 151.56 45 31 109

-26.01 8221.45 -4115.90 11.47 110

-13.52 58.61

-6216.64 33.43 til I 82 8219.11 -8352.30 52.51 113 300.74 152.99 45 65

!!2 2.54 fiU5 Ti) -2787.41

-18.71 113 13.59 1.86 -5003.42 6.92 114 2r 62 -8414.57 -72 8.38 35.53 l

116 302.13 154.42 45.92 115

-11.79 6342.41 -1695.31

-33.27 116

-3.55

-2.16

-3923.80

-14.30 117 7.71 -8401.38 -e171.25 7.78 119 303.52 155 87 46.19 118 0.89 8089.45

-119.80

-51.41 119 6.37

-26 18 -2976.28

-30.59 120 14 83 -8161.44 -5180 91

-6.14 122 304.31 157.31 46.41 121

-4.62 7679.44

-47.92

-60 21 122 0.31

-34.03

-2157.55

-42.T2 123 8.31 -1781.18 -4280.01

-22.39 125 306.28 158.11 46.14 124 8.32 1172.89 536.22

-68.36 125 6 23

-43.87 -1458 13

-51.20 126 6.89 -7285.78 -3462.47

-31.40 128 101.65 160.23 47.01 127

-26.26 6591.59 967,44

-71.28 123

-9.85

-47.72

-877.11

-56 F2 129 8 98 -6714 93 -2132.34

-39.T2 131 309.01 161.70 47.2S 130 40.14 5741.73 1255.64

-82 07 131 32 25

-49.25

-371.53

-59 80 132 26.44 -5856 08 -2005.51

-35.38 134 312.35 165.36 41.96 133 23.07 4430.63 1737.09

-83 20 134 32.TT

-44.56 462.63

-58 87 135 44 14 -4536 62

-818 54

-32.85 13?

315.65 169.06 48.64 136 30.11 3020.76 1748.72

-66 92 137 15.95

-39 01 855 05

-50.73 138 3.07 -3109 96

-43.12

-33.40 140 318 91 172.81 49.31 139 21.10 1851.50 1528.91

-49 24 140 11.03

-30.65 966 51

-39,76 141 1.19 -1920 23 a(1.13

-29.58 143 322.12 176.58 49.99 142 16 22 966.99 1213 II

-33.25 143 5.40

-22.34 905 30

-28.61 144

-4 95 -1015 15 596 02

-23 60 146 325.2*

180.4G 50.66 145 10.49 351.91 882 13

-20.01 146 1.83

-14.16 756.51

-18.78 147

-6 62

-383.06 629 61

-17.34 149 328 40 184.25 51.34 148 6.35

-34.83 586 87

-10.24 149

-0 35

-8.94 577.73

-10 92 150

-T.01 67.20 568 64

-11.00 152 331.48 188.14 52.01 151 3.11

-245.84 347.57

-3.43 152

-1.57

-4.54 405 00

-5.17 153

-6.31 231.50 462.71 J

155 334.51 192.0F 52.69 154 0.14

-332.09 110 21 0.76 155

-2.17

-I.71 757.42

-1.31 156

-5.18 330 00 F

-3.41 158 332.49 196.03 53.36 IST

-0 28

-339.77 49 ?!

2 88 158

-1.82 0.14 142 9T I.00 159

-3 41 341.29 a.12

-0 99 161 340.00 199.45 53.94 160

-8 54

-307.07

-14 99 3.56 161

-1.06 0 99 71.33 2 04 162

-1 69 310 L 158.12 0 43 164 342.48 202.89 54 52 163

-0 97

-257.44

-52 87 3.14 164

-I.13 1.39 20 Il 2.49 165

-1 40 261.13 94 e5 3.35 12F 344.93 206.36 55.10 164

-0 94

-202.45

-10 61 3 di 167

-0 81 1.44

-11 90 2.51 168

-0.76 206.13 47.13 1 49 170 347.34 209.85 55.68 169

-0 91

-149.60

-74 54 2.99 170

-0 63 1.35

-30 52 2 29 171

-0.41 152.83 13.72 1.54 173 349.11 213.36 56.25 112

-0.16

-103 09

-63.67 2.40 173

-0.42 1.13

-38 85 1.93 IT4

-0 11 105 77

-7 86 1.43 IT6 352.05 216.90 56.83 175

-0.63

-64 95

-59.99 1.81 176

-0.27 0 91

-40 15 1.53 177 0 06 6F.00

-20 21 1.22 179 354.35 220.46 57.41 178

-0 46

-35 54

-48.29 1.28 179

-0.14 0.67

-37.05 1.13 180 0.17 37.04

-25.75 0.98 182 356.62 224.05 57.99 181

-0.33

-14.29

-36.54 0.83 182

-0.06 0.48

-31.60 0 79 183 0 21 15 29

-26 64 0.73 185 358.85 227.66 55.57 184

-0.21

-0 01

-25 81 0.45 185 0.00 0.31

-25 24 0.50 186 0 22 0.63

-24 61 0.52 188 361.04 231.29 59.14 IBF

-0.13 8.65

-16 90 0 22 188 0.04 0.18

-18 95 0 28 189 0 20

-8.32

-21 01 0.33 l';l 363 20 234.94 59.12 190

-0.06 13.07

-9.82 0.04 191 0 06 0 09

-13 30 0.12 192 0 17

-12 94

-16 79 0.19 194 365.32 238.61 60.30 193

-0.01 14.43

-4.58

-0.07 194 0 06 0 03

-8.59 0 CI 195 0.14

-14.49

-12 62 0 09 191 367.41 242.31 60.88 196 0.02 13.95

-0 96

-0.13 I9T C 06

-0 01

-4 90

-0.06 198 to

-14.02

-8 86 0 31 100 369.45 246.03 61.45 199 0 03 12.28 1.34

-0 16 200 0 05

-0 03

-2.18

-0 09 201 0 07

-12.39

-5.T2

-0 03 203 371.46 249.16 52.03 202 0 04 10.08 2.60

-0.16 203 0.04

-0 04

-0.32

-0.11 204 0 05

-10.20

-3 26

-0 06 206 373 43 253.52 52.61 205 0 34 F.78 3.13

-0.14 206 0 03

-0 04 0 85

-0.10 207 0 03

- T 84

-1.45

-0.06 209 315.36 251.30 63.19 208 0 04 5 64 3.15

-0.12 209 0.02

-0 04 1.48

-0 09 210 0 01

-5.74

-0 20

-0 c6 212 317.26 261.09 63.17 211 0 03 3.81 2 81

-0 09 212 0 02

-0.03 1.73

-0 01 213 0 00

-3 89 0.58

-0.06 215 313.11 264.91 64.34 214 0 02 2.35 2 44

-G 07 215 0 01

-0 02 1 72

-0 06 FIS 0 00

-2 41 0 99

-0 05 23 Ot t - 93

  1. 051210 al Page 2

i F

5338553G3888888888888888888888888888 j

2 ~L aaooaaaaaaoooooo6aaaaaaaaaaaaaaaaaaa

~

C238EE2:233$03CCR2%C8533$$$53EB55588 aaaaaaaaaoaaao6eaaaaaaaaaaeaaaaaaa y

s]

s%8sccmsss33 ssssc;;C::as8ssssstass 1yzg} -aoaaaaaaaavocaaaaaaaaaaaaaaaaocaaaa F

~

l 585888585888888888888888888888888888 aaaaaaaaaeoaaaaaaaaaaaaacaaaaaaaaoaa

}g}

a GE--

85882CE

~~~~~~~RE'RmememenS:m c%C2=%2203C&sf.33ge:22

~~~~~~~~~~~

~

~~

{.

3BBBsssE8888888888888888888888888888 y} aaaoqaca9aaaaaaaaaaaaaaaaaaaaaaaaaaa

$R 3E2$3*?;2=%%**:853333B86393558888 I)5_ ~~~~"******

  • ?"******Y~~*

I-B55588258888888888888888888888888888 A{

ygg}

qaaaaaaaaaaaaa6acaaaaaaaaaaaaaadaaa'a 2l

~

8 '3 8 8 8 8 5 3 5 8 8 8 8 8 8 8 8 8 8 8 8 E 8 8 8 8 8 8 8 8 8 8 8 8 8 8 a

eaa6uc - i aaaaaaa6aaaaaaa6aaaa66a66aae fyi 3

2

=

eg-=~am

.-.~ae#z~%%ECE~ Cgm $e~ee-

~amekgRmAEE44 ee-Z%%%COR~

~2 2%%%222RRR m

9 A

SGu4rsa8G8888888888s8888888888888888 5_5 aaaaaaaaaaaaaaaada6adaadaeaaaadaaaaa

$0%8EC33-4CE:50ss$3:0022538GusB88sss aaadaaaaaaaaaaaaaaaaaaaaaaaaaadaaaaa fy I

i y

}

_ EECEEk%A3233E3838@E09EE98*884@GEME55

~*****?****************?******

$. 5 5 L x

c BE 855888853888888888888888888888888888 E

a6aaaaaaaaaaauocaaaaaaaao6aaaa6aaaaa

~

j

}gi i

~

ee-

~amem~

~amegN 0CC%%%6mge~e2%%%222~RRRRRRA Eg4 ee-w

c~%%gN gme 0~C22

~

i A

kk$$$k$kkkkkkkkkhbEkk$$$kkkkE.hkbk$E" asssssss2222222sssssss22::

22cer::ce 3

2-

~_E *s48"3C8:2%R82Es8822%%

SsssS 028EE$

-j 44W4s;4Wasseaeg assoasaaWWs4ssasaa4 B

3 g%%%%%222222222~

ECCRERREEEM444AEEAA

~

~

~

@EE$.E9EE.EIDEE88EEEESI@@@@SEEEEEECEEE 3

ggggaa-~me e.~.

g-~m.##

.~

ERRERERRERERmmmmKAAARRAAAAAw????????

-j a~m ore as ~

j

~

am eg-w~

C%%%20RNEs%2CC2242%%%222RRR6N e-w ~am@ eN em-w~amWPN@ m-w~am@

RRm m:44 t

A e

a

S 8888888888%8888888888888888888888888 e

y5 ooooooooooooooooooooooooooooooooanoo

~

888888888S88888888888888888888888888 oooooooooooooooocooooooooooooooooooo fN E

E

~

388888888888888888888888888888888888 e

h ~g oooooooooooooooooooooooooooooooooooo 443; 3

IE 888888888888888888888888888888888888 gg eco..........ooooooooooooooooooooooo t R A,t t 4 C S 3 3 8 0 $ $ 2 c e s s t *% n n g k. C. 8. :. :.. R. ". R. R. 2 mm mmmmmmm mmmmmmmmmmm 3,

d 888888888888888888888888888888888888 oooooooooooooooooooo y}

cocoooooooooooo 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 E 8 8' 8 8 8 8 8 8 8 8 8 8 8 8 8 8 i oooooooooooo

?~C oooooooooonsococo' t'E~

e 888888888888888888888888888888888888 A-k[

oooooooooooooooooooooooooooooooooooo y;y

@g 888888888888888888888888888888888888 K K oooooooooooooooooucocoodoooooooooooo

}g5 s

R R M c R

*4 S ? $ $ 3 0 5 0 8 0 8 E *A m m. 3 3 2 0. *. E. R. C. E. :.

CF3 7

mmmmmmmmmmmmmmmenmmmmm 2

3, a

888888888888888888888888888888888888 aooooooooooooooooooooooooooooooooooo

5

'S 588888888888888888888888888888888888

}y} oooooooooooooooooooooos,ooooooooooooo e

7 l

5-5888888888888,88888888888888888888888 p

  • {

oooooooooooooooooooooooooooooooooooo 4 ; ; _;

  • i e

]

81 888888888888888888888888888888888888 gag oo66 ooooososooossoooossosooosoo

..s y

g emw. h e

~

gmggN

.A om@ mN fmm

.h

; ;O000 m4AAAAAAA]m4m**EA444RREAAA.W..

Wgm ee. % em@ m

{W e

4 e

C 2

383$E2CSO33822$d$80EERO$$782" 380$R of "dennindeessississititissisisistiS88s I-I 1

_E meb h

h h

8 N

N uoAji *

?..OG;OOO7003:3C$j sA ANNm$hsgaduaeusesh'~ggAsiaseaddo~u o

N M N m d

n '$

i mAAARRRERR 4800 E;53 30$$$3ARBR$$200ERSERKAAAAR a

gggaaa~WAesassssaa...osesssooosoe'ooo 3

UUU47 07;OG70GUG7G~;G7GUGOUGG77447

.j j

~

N D M -. h om

@ Nf M. h om@ %N f@ M. h om& VN D O*

4mRAAAAA%4mAA*mAAAARRRRRAWO?;;;;O000 t

4 a

2

E I

C88888888888888888888888888888888888 s

.6.

aa6aaoo.666o6 aaso6a6aa66aaaaaae l

I y5 T.

~

888888888888888888888888888888888S88 aaaoaoaaaanoaoaaaaaaaaaaaaaoaacasona l

}y 8888888888888888888088888888.88888888 1[

.ooooaaaaaaaaooooaaaoaoooooooo ooooao 4;;3

-&l 888888888858888888888888888888888888 oaaaaaooooooaaaaaaaaaaaaaaaaoaoaaaoo g}

c, m, : : : S, : s, s,a,s, s,e, :

e,r,s,t,w e r. - S S c r o o m / > =r :e :e :r

~ ecee ~c-C S

5 888888888888888888888888888888888888 oionaoooocacococaa.06ooooooooooooooo h

888888888888888888888888888888888888

&~7 ooooooooooooooooaaoaoaaoooooooaaoooo z# C h l 888888888888888888888888888888888888 oaoooooaaoooaaeooooooaaaoaocaaaaaaaa ygg El 888888888888888888888888888888888888 E

6aaaa6eaaaaaaaaaaaaaaaaaaaaaaoo66ood f.y5 5

2

  1. a-,~om# e 0 0 4 n ; ; y r g
  • g ~4 0 0 0 0 0 : 0 0 0 $

$ $ ~3 3 3 3 2 3 $ 3 2 3 a>

am.,~r.-,-

0

,~,..t e

8

.0, A

888888888888888888888888888888888888 doaoao6aeaoooaoaoaaaaaa6aooaaaaaaaoa y}

888888888888888888888888888888888888 aoseaoaooooooooooooaaaaoooamaoooooao gy33 7

9 j -[

888888888888888888888888888888888888 a

4-g{ 666a66aaaaaa6aaaaaaaaaao6aoaaooaaaaa e

7 888888888888888888888888888888888888 6ao6o6a66eocaaaaaaadaeacoa6aaaaaaaaa t

yQ e--

==

=,a,m,e,c,e,n,s,a,s,: s,s,e,c,e,,z,

: x,s,$ 8 5 = = =# r 3 2 $ =# # #

5 4

C 2

ECS533SOfSoC8~*038$8MCSG8082RCU$$E*O dddddddddd***ddREES$88dssdd3Gddddd88

{

,E

_g 1*

3 Ot*40004:3000$8N$~3333333GG333$$ge~rh

+

=

.~c.-,,,am.om o$$$

a

~j m~re~#.-,~-,-

a 8 8 2 E G"R$ $ A 3 2 2 3 $ $ $ 2 3:5 5 7"5 0 0 8 4 $ 0 3"2 0 3 ug66aan 1

u{

o666666eme

~u666eee,aa~auagggE.EEE%E UUTEGUGG 777000 GGEOGOOOOOOW,..

{

A.-

,~omW g I

00;;;;,0,43*?;;0*S,00CoSo$N233322333#

g-,~gmg 6

, ~ om@ m

-, ~om@ mN@

t 2

o

o i

888888888888888888888888888888888888 l

o 57 soo6eosoooooooosoosooooooooooooooooo C

888888888888888888888888888888888888 oooowooooooooooooooooooooooooooooooo fn:

t*C_

Jl " 888888888888888888888888888888888888 I

cooooooooooooooooooooooooooooooooooo 44p

%T S

888888888888888888888888888888888888 4A oooooooooooooooooooooooooooooooooooo jgi

~

k a

hm 8

3.. m..k.3..

r3rerr$$$ecoc$$3 Gor.SS...

3 a

w 2

888888888888888888888888888888888888 ooosoooooooooooooooooooooooooooooooo y *g 888888888888888888888888888888888888 ooooooooooooooooooooooooooooooooooon kN':

u E

_ 888888888888888888888888888888888888 eE-1[

oooooooooooooooooooooooooooooooooooo 3;g; ET 2

88888888888 it 88888888888888888888888^

sooooooooos g} ocoosooo6.ooooooooosooo s

E r

~re-.~o

$e~co-.~gmgp~eg-.~gm#g~33G333 2

333$$$$$

$333383 rSceSS#333.23.

f

{3 888888888888888888888888888888888888 oooooooooooooooooooooooooooooooooooo 31 888888888888888888888888888888888888

}g5 sooooooeo6ooooosooooosooosoooo6eooo6 3

A I-888888858888888888888888888888888888 g

  • [

.,s o s s s o a s o s a s s s s s s o s s s s s s s s s s o s o s a s s ggy; e

888888888888888888888888888888888888 31 66

.oo6eooooosooooooooooooooooooosoo E

o-.o~m

.-o-.

_. - y $ g o ~,$ 3 3 3 3 R $ $ ~$ $ $ 3 5 S G G G G 3 3 3 G G G 3 3 3

.~e-.

333o c$$$

j s

$$5ES Ek$kkkEEE.Uk*kkkkEkESEkkkkk$kkk t

3388888220 222222 00"03:::cccc222

,I lg' M

o N

~

N awes 333$$$h'eso;~SSh's$3Sh'o444sseo44segGGGG M M N

o sWees a

4 -

GGGGGGG33333.

O

-j

$$$3 S

3 E3:G:0CG*G322 a

333333SSOR003GS$3E3238:

suuss usssscasossggeaugsesesu~uez 3

EEEEEEEEEEEEmmEEEmEEEEEEEEEmASEES n '$

u o $' o SS

{

I S

A

.gNW 3330$$$$$mN$333NSS$$$hNWSS$-wGGG333.GGG333 l

h oM em-w A a-.

N @ m-# -om s

}'

t a

5

I 8

8888888.88888888888888888888888898888 e

4 6

}

,7 aaaaaaaaaaaaaaoaaaaaaaaaaaaaaaaaaaaa O

yg

~

888888888888888888888888888888888888 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa i

}y_

_ 888888888888888888888888888888888888 j

eaoaaaaaaaaaaaaaaaaaaaaaauaaaaaaaaaa J

y43 1

g 8888888888888888888888888S8888888888 ooooaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaao y

)

s. s. m. a s. 3. *$ e. c. e. 3 3 3. S *. s a s s : :~ :~ k m ~

l

---S-

~~~~

j 888888888888888888888888888888888888 acaoaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaao gg 888888888888888888888888888888888888 aaaaaaaaaaaaaaosaaaa6aaaaaaaaaaaaaao

] y :L c

~

_ 888888888888888888888888888888888888 e*-

aoaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

$[

3;g&;

E~h 888888888888888888888888888888888888 i

aaaaadaoaoaaa6aaaaaavaaaa6aaaaaaaaaa 5

y

..-am.eueg 00:::

grC D

. ~am.e m

pageIr$-.~ame0gog2RR

CRks

~

.G.G 333833

.S.

E g

8888888888888888888888988888888888886 aaa6adaeaasa6isa6aaaaaaaaaaaa66aaaa Q-888888888888888888888888888888888888 jy{ a66aaaaaa6aaaaa6aaaaaaaaa6acaoaaaaaa 7

I 88888.88888888.888.88888888888888888888

  1. -l a

acaoaaaaaaaaaaaaaaaaaaaaaaaaaaaaaot.

p

@qyO; O'

h 85 888888888888888888888888888888888888 fg} aadaa66ada66aaosaaaa6aaaaaa6adaadaaa Y

A O - e

@ a-w ~aM.gN

~

a

~R~gN~ :

RRR000~22:CC g

IRIS $$gM w~

eg-W ~amWg S

m3.G.333333.

e Ef

.T suss~m$s8:$s=s8c3azSa asessesseSmes3dddd

-g isssssseesesteedddd---- ------------

I m

M aAsui 4

M GG333333.G.iuaaAJuaaAsusaasu0$$$$$g~R R

M siaAsad.g

$$$$$$$$333333333

~

~$

3 2483350 ACS3:3383#R:523ESCf2232ESZES a

6maaasgg%g54~afaudagg$gsuaaa~aguasa~mEEEEEEEmEEE a

3 e

n}

EEEEE$mm mE44%m4NN$mm

{

R. ?. $. $. "s $. g. *. *s *s *3 g %. $. R. C 3 3 2 0

  • 2 n C R

.I

~

~~~~~~~~~~~~~~~~~

a

- ~

w a

A R

l a

a 888888888888888888888888888888888888 e

s oooooooooooooooooooooooooooooooooooo y}

888888888888888888888888888888888888 sesoooooooooooooooooooooooooooaooooo pyj 888888888888888888888888888888888888 5}

J oooooooooooooooooooooooooooooooooooo

~

zg3 u

w

{>

888888888888888888888888888888888888 t

oooooooooooooooooooooooooooooooooooo

-2%

1-3 S u s s e : u 8 E t E * ' f a. E. t. e. n. t. r. % 6' R.. :. 2. ?. ;. t. c. y s. ?. - t m

i

-~~~~~~~~Rc o

~

B i

888888888888888888888888888888888888 oooococoaooooooooooooooooooooooocooo 9}

888883888888888888888888888888888888 ocoooooooooooooooooooooooooooooooooo y

I_

888888888888888888888888888888888888 J[

oooooooooooooooooooooooooooooooooooo gj

t 888888888888888888888888888888888888 a

~

oo aooooooooooooooooooooooooooooooooo s

5 I"3 ee-w ~om@ eN W O - w ~ om m

2 CR22tOZ E*ECEC88.gNEEE222EEEEEEEECGit omg w s om@ eN et

-w s

=

i A

I 888888888888888888888888888888888888 oooooooooooooooooooooooooooooooooooo

,~

Q 888888888888888888888888888888888888 ooooooooooooooooooo6oooooooooooodooo f~# O t

8 m

e t

a..

888888888888888888888888888888888888 o

oooooooooooooooooooooodooooooooooooo

  • g[gj p

888888888888888888888888888888888888 d.

5 5

{gg ooooooooooooonoooooooooooooooooooooo t

~ 8 8. E E E e % 2 {. E E E E E E G $ p e g

~omW N em-*~om

~

gw oG.

~ o m g e N #. - w ~* o mRR~gN C22~2ROR*R 4

C

.}

C*Rg*R8-*3@ TEA.R8cS8ASERG$2EERSO3:0RE

  • ***%RRAC??

%.A**C44 RR*RRRR R

2 444000

,E

_g' l

m k' i o n e s u e J a e s o u A s i e a 4 s u s o u h' s u o n a u a' a l -

CCRdRRRR ROCCCCCOROROCOCOOCRRZ

.*. rcd 3

0000$0S$8ECOOSE4SERCEAG$C3RERamSGS$7 a

~ usauagaJ45~wass 6gue.auaieseaoguseagkRCCCR~R*RREEERR

-}

EmE44MMMEEEEMEmMEMEm

{

W C-W ~. M @

N A m-w ~ om

  • RORRRR*RRRR88.gN.EEE222EEE.EEEG0213

-amg

~ on@ @ N eW - W

-W t

A

~

7 2

A

R J

l 888888888888888888888888888888888888 o

oooooooooooooooooooooooooooooooooooo 0

31 888888888888888888888888888888888888 oooooooooooooo6aooooooo6aosooooooooo l

pyj s} _ 88888888888888888888888888888888E888o l

4. ;. g ;.

El

~

888888888888888888888888888888888888 4

\\

oooooo6aooooooooo6.ooooooooooooooooo in}

e~

g e. r. e. R. g s. g g g g g g g g e c = c t a c e r u g g y s > 8 s @t s.

a eeeee eeeeeeeeece j

8888888888888888888888888888888888886 ooooooooo6.oooodo6aooooo6ao6acoco o

5}

888888888d88888888888888888888888888 ooooooooooooooooooorooo6oooooooooo6a

[y s

888888888888888888888888888888888888 ig oooooooooooooooooooooooooooooooooooo 3;g; 42 2

888888888888888888888888888888888888 Ek osooooaaooooooo66ooooooo66.ooooooooo s

{g}

S e~ggEE552eeEEEET&eseF8*g3

.~omgg~re-.-3-ge~r 0

e we~e..-.

lO E8e.

9

  • EE EEEE k

888888888888888888888888888888888888 ooooooooooooooooooooooo66cocooooodoo h

888888888888888888888888888888888888 6aooooooooo'oooo6oooooooooooooooooooo y

a 7

I

~

888888888888888888888888888888888888 A

-[

oooooooooooooooooooooooooooooooococo g

4;g_

888888888888888888888888888888888888 8E 6

2.*b ooooooooooooooooooooooooo6ooooooooo l

t

~

u

(

2

\\

og 32EE.0~SE$,8 8KEEE32*EEEEEKKe$g-.~o g-omee~c.-.~omeepo e***2

~

t c

omg 4

. ~

te2 E

Of EEE.8EEE"E.EE4EEEE$E9EEEEENE8

,i

-g:-..-------------------..--------

A M h P.~

d P N gageo JuoueJsgouadeasgORREEEE RRRRR88.EE2.2EE.gggQAases

~

3 AR:E#RE$3820SERM7EEROSAGm M444MM4444 i aigies.sias 1

wNwCNEEEECONOMMECu~REN-QagnaaueueaAssausggJ~ggbSEC CCCCCCCC

-=}

{

.~oM W N M.

-.h e

$@E2222222$$$88.E55533eE22&KEeee$e*63 N @. -. ~oM @ eN#

t 5

o

  • e 888888888888888888888888888808888880 6eaa6 acas6a6eaoassadaaaaaaaaa6aaaaaa C

y}

888888888888888888888888888888888888 6aaaaaaaaaaaasoasacacaoaaaaaaaaaaaaa fm" 2*E

~

l} _ 888888888888888888888888888888888888e ygg E l 888888888888888888888888888888888888 aaaaaa6aaaaaaa6aasaaaaaaaaa66aaaaaaa g}

ces-ag.8ggggge eeggeace:::ggggggge::a8

-oo*a seee-eeeeeee eee j

8888888888888888888888888888888888886 au6aaaaaaaaaaaaaocaaaaaaaaao6aaaaaa

}

888888888888888888888888888888888888 ooaaaaaaaaaaaaaosaaaaaaaaaaaaaaaaaaa fy 2

~

888888888888888888888888888888888888

.5-ssssa6a

ga5 aassaa66aassasa6 esosasaaasas
  1. g gs 888888388888888888888888888888888888 at eas&6aasa6aaaaa6saaaaa6aaaaaaaaosa6a s

2*8 e

a, Neo-w~amee~ra-.~am

. peg-w~aM 2

a E E E E E E S $ $ 'J 8 8 s s s s a a u ; 3 3 3 5 E s a s a 8 8 8 3 3 3 3 eh ts - @ @

r

  • }

888888888888888888888888888888888888 666aaaaa6a66aaaaaaaaaoscadaaaaaaasaa 888888888888888888888888888888888888 yy5 aaaa6aaaaaaaaaaaadaa6aaaaaaaaaaaaaaa 888888888888888888888888888888888888 a i-sassasssacas6sasos6asssssssssss66a6s p g gg3; 888888888888888888888888888888888888 35 6as,aassa6sa6aada6666aaa6a66a6aaaaaa t a -.. ~,8 I $ $ $ 8 $ $ ~5 5 5 2 8 8 8 3 8 8 3 3 E $ $ $ $ $, ~e,B B a_.~am..~ a-w-8 3EE$ a. EEk$$$EE9@NkkkS$$@EEEEEEEEEE.kk$$k$$$ >5 2g-ssssssssssssssssssssssamamamamanasss S[ ,i N N a MA -M uanassasiss~Jup a Nea M Ag EEEEaEE8$'suiad56 888$$$ChEeEEEEEEEEEEGSEEeEE s4Jia&& >{ 3 444444444444444444444444444444444444 a bbbbbbbbbbbbbbbbbbkEbbbbbENbbbbbbbbb 1 aM W m a g-wh w h aM @ @ N eo-wA am@ mN W a-wA O-@ eN # ~ REEEEES$$8885535BBB33855aa86a8883BBB------------------- g t C } a y. s --- -w-m -r ^'e e'--w ,--r -m-+

8 888888888888888888088888888898888888 oooooooooooooodada.coooooooodadocood y} 888888888888888888888888888888888888 oooooooooooooooooooooooooooooooooooo ~.*E ~ e t 888888888888888888888888888888888888 Ej oooooooooooooooooooooooooooooooooooo zy;33 5& 888888888888888888888888888888888888 oooooooooooooooooooooooooooooooooooo = T' a g g g g g g 5 3 3 2 2 C 4 0 2 - : A t' O T C M S $ 3 3 3 2 0 2 R 2 0-----==:

==============

y j 888888888858888888888888888888888888 gj oooooooooooooooooooooooooooooooooooo 888888888888888888888888888888888888 ooocoooooooooooooooooooooooooooooooo pg e 888888888888888888888888888888888888 f[ oooooooooooooooooooooooooooooooooooo y;;; E! 3 E1 888888888888888888888888888888888888 oo6aooooooo6oo 6ao6oooooooooo6aoooo 35 a E oe-.~omeg~ee-g~gege~ee-.~ O 2===22~000 C C 2 2000*** . ~ Ere-.~geg g 885G8 2-2 3 888888888888888888888888888888888888 3_3 ooooooooooooooooooooooooosoooooooooo 888888888888888888888888888888888888 $~C ooooooooooooooooooooooooo66ooooooooo f*E e y 888888888888888888888888888888888888 3 4[gy ooooooooosoooooooooooooooooooooooooo o" g t f 8k 888888888888888888888888888888888888 t ocooooocoooooooooooooooooooooooooooo ~ ~ l ~ i S T *.S ~ -.~om@ .~omoeNA e-.~ m@ eg# 2 g:===20:000:55 ccc 2 02:222 -.~Om@ 8888E80N e -~~----------------------------- 2 y j b 5EEES$$E**$6EoaEESE $EE$$$$$'Y$@EIES $$$SSSS$$SSS$$$$$$$$$$$$$$$$$$$$$$SS 3 ,E _g'------------------------------------ l Ekk~e $~h oo$emeN 8N h-N e a o n $ g $ y e g i f $ $ g s s e s o $ 'f & s a a A J J a e a A a u sm$ N N.' u aa~A u O >{ eSe ei$$$$ &A$$ 2 e a 44AM44MMMM44444444%%AM4444444%%%4444 adige emmee upsidemmeseiend5eeseweemmey$$0$g0$002 C$$$$$$$$$$$$$$CC$$$$$$$- T t ~r$-.~gagg~=ce-.~omee~ee-.~omge~me-.~==0~~00== :=Ccc:2 20: g 2-- 88

  • p t

o

c.V 88%388888888888888888888888888888888 e oodosooooooooooooooooooooooooooooooo tv e u 888888%88888888888888888888888888888 ooo ococoodoooooooooooooooooooooooooo $~

  • )b 8888888M8888888888888888888888888888 ea-ooooooosoooooooooooooooooooooooooooo Ig y

y 8 8 8 8 8 8 8 8 'j 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 o ooooooooooooooooooooooooooooooooooo 7 T"3 Zee a

=2052"2005202:22:0:2520:00:00:2662 b

e W Ghm8o8b - N N mm g 3-888888888888888888888888888888888888 ooo oooooooooooooosoooooooooooooooooo 0; e3 888888888888888888888888888888888888 oooso ooooooooooooooooooooooooooooooo f~~ 1*E-888888888888888888888888888888888888 ooooooooo e ooooooooooooooooooooooosaa Ig g 888888888888888888888888888888888888 E asoooooooooooooooooooooooooooooooooo -27 vr a e w 888EB88:::ERERAGR~~0SG$SS$$ %828Eu{0N2 s 8 t%22 y e= 888888888888888888888888888888888888 ooo ooooooooooooooooooooooooooooooooo 0; w3 888888888888888888888888888888888888 .fy} 6oooosooooooooooooooooooooooosoooooo 888888888888888888888888888888888888 gg 7 ssoassssoossossosssossoossoo. ssso s a g e-888888888888888888888888888888888888 o ooosooooooooooooooooooooooooooooooo 8 jgj g-w oM @ oN @ ~ o S$SERR..~C_COR%%CROZ 00~2ERRR%%2R~RR g- @. - w% oM.mN #. - wA om@ mN @ mN e J, Ek$NESkEkUkkE5$$*$E*kkkkkokk$$$E$$$I SSSSSSSSSSSSSSSSSSSSSSSSS3GG33333:33 3 E 1g" 0 N N N N N u ~as h'asugouNAddJu.sssssu~ad55uasouaEEEEEEEEE h S>{ 888o555555555555- ---- 3 444M%%4444444M444444MM444AM444444444 a -9 aidaiaana di.ead daaea.aaaa. 6.a.a$$$$$C20$$$$$$$$$$$COOECOCEC ( j N gNA oM @ Neg-wh ~ ~ CCEb22~R~c%R%~000%%;C00022~%%%EER~CE-------- oM @ N e.-w h omW @ g-wh g oM. N 4 a t j x

7 888888888888888888888888888098888888 6 ooo ooaaooodooodoooooooooo6 ooooooooo t} 8S88888888888888888888*8888888888888 omoooooo ooooooe6oooooooooooooooooooc f y "3 t 888888888888888888888888888888888888 S}; ooo ooooooooooooo......oooooooooooooo J 4; 3-888888888888888888888888888888888888 l oooo o...ooooooooooooo ....cooooooooo - gj B

    • **~

087ES28E:: 2:#E***5~ EkC8::0 E*0000000000 000 000=00 00000 t' ~00000 4 888888888888888888888888888888888888 oo ooooooo6aoooooooooooooooooo6oooooo

3 888888888888888888888888888888888888 ooo6a66o ooooooooooooaooanoooooooooo

}y 888888888888888888888888888888888888 6aoooooooooooooonosooooooooooooooooo j yyy:E E1 888888888888888888888888888888888888 n jy1 ocoooocoococoooooooooooooooooooooooo 5 2 .~g-0 o- ~omeo~go .~om#o~ry-.~om.egegKA0.0 = RERRE g4 4000AAA%0cm***4mm E----------------- ----------- l g 3 A g 888888888888888888888888888888888888 oooo6oooomoooooooooooooomoc

  1. E ooooooooo 888888888888888888888888888888888888 oo oooooooooooooooooooooooooooooooooo

?~. a"R lI 888888888888888888888888888888888888 ~ g -[$.i55 ***"*"********** g 31 888888888888888888888888888888888888 g 6ooooosooooo6o6eo66o6ooooooooooooooo r j {yi Eh.8 8 o ~ b 0 5E48m 00000000JOCO 00000"0000"000000000000 b N N N - J E 3N$4R82$38G8800**tER*R2EMARA4:00$322 t J a as5 Sag s a------a g~~a a~~g~~ 2 222222022 g~2 22*sagg~2222 222*~2--- 3{. g 3 _{ o 8k'E'sga$'6oa~A6usaAs83333333888 o@ N m o agiaGS$888885'6 anA6

  • s 868

>} gaeussh$ oEEEEc I


444444444444 S

a 444444444444444444444444 "h bbbbbbbbENbbbbbNkbkEENbbNbbbbbbbbbbb M -E % om@ mN eo-*A gM I RRRRm==~44mA20AAAA42m***A444RERAAA.?-- amemN@ o-wN omo NA g 2 t g 5

4. sassassasssss8ssa sv ssasssssssssssses ? y} t ass 8sssss8sssS888 Se f fg{ isasissssasssssss -fi _ 888888888888.8.8.888 Sg } g g;pg aaaaaaaaaaaaaaaaa. 8 Ij 88888888888888888 88 sasasssasaaa6assa g i {g} L ~ = 220**ms n2 224c"::: ::::::: j

  • 1 88888888888888888 REa
} sessssaaa6sssassa t.

~ i 88888888888888888 BC jg{ 4566666saassssssa f~ E-s: E{g{-88888888888888888 \\ ~ seses6sesosasss&& y 3.g a 88R88888888888888 ssa asso666assaa6aaaa A

1.
  • 3 d

ss~ces:4mmRm~ss=s j .88888888888888888 SR5 -y}_sssadessassoaaaaa E r 88888888888888888 8$ sasssessa.ssssssa y g :a 3 lg ~.8888888sB88888888-as gyg ss.sa. ass.ssssssa g s = m l aa 88888888888888888 25 assesssss.ssssses a ~ 2.35 e~ -.-33 -99:.~e.me.e.~.x.::: t = g 2

T ' 5 9 9 8 8 8. 8 : 99999999~

msnusemmos:samass 1g-S. R.m.R.8.8 8. 8. 8 8 8 8.8 8 8.0. R. .h gggEEEE8588888888 -v

==

3 M. E. M. M. M. M. M. M. M. M. M. M. 4. 4 4 0. G. .I RRRRRR..EERRRRRRRRE r l { ~. ,I ~:.. -. _,,0,.,. : 3 0 0

UUU.

.t. ,Y, -w .N-,,,,,n,-,,n..,,, ,,a,,-,,,-n..c.,,n.,,-,----,,,.c... ..,n..,- .. -,.,,..,, - +.,,, - - -.,....,, -,,, -, -,,,.,,,

k)bkX k REV. O AN ASME SECTION Vill EVALVATION OF THE OYSTER CREEK DRYWELL FOR WITHOUT SAND CASE PART 2 STABILITY ANALYSIS February 1991 prepared for GPU Nuclear Corporation Parsippany, New Jersey prepared by GE Nuclear Energy San Jose, California

I $X 0 REV. O AN ASME SECTION Vill EVALVATION OF THE OYSTER CREEK ORYWELL FOR WITHOUT SAND CASE PART 2 STABILITY ANALYSIS Prepared by: Cef. b[d f_ 7 C.D. Frederickson, Senior Engineer Materials Monitoring & Strcetural Analysis Services d% L Reviewed by: H. S. Mehta, Principal Engineer Materials Monitoring & Structural Analysis Services g#4. "'^ ^th ) Approved by: % / S.Ranganath[ Manager Materials Monitoring & Structural Analysis Services i

IbfAhkREV.D i 1 TABLE OF CONTE'i'S flat 1. INTRODUCTION 11 1.1 General ll 1.2 Report Outline 1-1 1.3 References it T. BUCKLikG ANALYSIS METHODOLOGY 2-1 2.1 Basic Approach 21 2.2 Determination of Capacity Reduction f actor 22 2.3 Modification of Capacity Reduction f actor for 23 Hoop Stress 2.4 Determination of Plasticity Recuttion factor 24 2.5 References 25 3. FINITE ELEMENT MODELING AND ANALYS15 31

3.1 Finite

Element Buckling Analysis Methodology 31 3.2 Finite Element Model 3-2 3.3 Orywell Materials 33. 3.4 Boundary-Conditions. 33 3.5 Loads 34 3.6 Stress Results 37 3.~ 7 Theoretical Elastic Buckling Stress Results 39 .3.8; References 3 10 4. ALLOWABLE BUCKLING STRESS EVALVATION 41

5. -

SUMMARY

'AND CONCLUSIONS 51 i li Wr e:-dea aaer tw7ea---we masw=y,m-arwn.ww,ega tawreee--c f ve r er w w ne-se.rswe e w'ev s-s re-F"+-M 'as # -Fw-N1Mf r~ 9 ?3:m pa g e-tr av.=waam p= mag---w-wee mi " rem' iM-ityr94 -p 75 =-p+1-fir M yt P W y9 ' ?'g* T W FF ( *M' S -?**py p Sc ---Mmtret 1

i nRr s M)yo+, RfV. O i INDEX LIST OF TABLES Page i Table Titie No _, 3 11 31 Oyster Creek Drywell Shell Thicknesses 3 12 3-2 Cylinder Stiffener Locations and section Properties 3,3 Material Droperties for SA 212 Grade B Steel 3-12 -1 3 13-34 Oyster Creek Drywell Load Combinations } 3 14 l 3S Adjusted Weight Densities of Shell to Account for i Compressible Material Weight 3 15 36 Oyster Creek Drywell Additional Weights - Refueling i 3 16 37 Oyster Creek Orywell Additional Weights Post.+ Accident 3 17 j 3 8' Hydrostatic Pressures for Post-Accident, flooded Cona. i -t 3 18 3-9 Meridional Seismic Stresses at Four Sections 3 19 1 3 10 Application of Loads to Match-Seismic Stresses - ~ ' Refueling Case 3-20 j l3 11' Application of Loads to Match Seismic Stresses - f Post Accident Case l 41 Calculation of Allowable Buckling Stresses Refueling 4 j -l 4 ~ 2' Calculation of Allowable Buckling Stresses Post-Accu:ent 4 3 5 2-S1 Buckli_ng Analysis Summary - 4y

b[X REV. O LIST OF FIGURES Figure-Page N o._ Title No. l1 Drywell Configuration 1-3 2-1 Capacity Reduction f actors for Local Buckling of-2-7 Stiffened and Unstiffened Spherical Shells 22 Experimental Data showing increase in Compressive 28 Buckling Stress Due to Internal Pressure 23 Design Curve to Account-for increase in Compressive 29 Buckling' Stress due to internal Pressure 24 Plasticity Reduction f actors for inelastic Buck 11ncj 2 10 31 Oyster Creek Drywell Geometry 3 21 32 Oyster Creek Drywell 3-0 Finite Element Model 3 22 33 Closeup of Lower Drywell Section of FEM (Outside View) 3 23 3-4 Clostup of Lower Drywell Section of FEM (Inside View) 3 24 3S Boundary Conditions of Finite Element Model -3 25 36 Application of Loading to Simulate Seismic Bending 3 26-3-7 Meridional' Stresses Refueling Case 3 27 38 Lower Drywell Meridional Stresses. Refueling Case 3 28 ~ v

I DRr*006}4 1N)EX 9 . REV. O i LIST OF FIGURES Page Figure Title 'lo. No, 3-29 3-9 Circumferential Stresses Refueling Case 3 30 3 10 Lower Drywell Circumferential Stresses Refuei ng Case 3 31 3 11 Meridional Stresses Post Accident Case 3 12 Lower Drywell Meridional Stresses Post Accident Case 3 32 3 33 3 13 Circumferential Stresses Pott Accident Case 3 14-Lower Drywell Circumferential Stresses Post Accident 3 34 Case 3 35 3 15 Symmetric and Asyinmetric Buckling Modes 4 3 36 3 16 Symmetric Buckling Mode Shape Refueling Case 3 37 3 17 LAsymmetric Buckling Mode Shape - Refueling Case 3 38 3 18-Buckling Mode Shape - Post Accident Ca3e 4 4 Y t vi ,.,, ~.-.;.a-=..-

t l X REV O

1. INTRODUCTION 1.1 General To address local wall thinning of the Oyster Creek drywell, GPUN has prepared a supplementary report to the Code stress report of record (11] which is divided into two parts.

Part 1 includes all of the Code stress analysis results other than the buckling capability for the drywell shell (12). Part 2 addresses the buckling capability of -the drywell shell shown in Figure 1 1 (13]. The supplementary report f for the degraded drywell is for the present configuration (with sand I . support in the lower sphere). One option which is being considered by I' GPVf0 to mitigate further corrosion in the sandbed region is to remove F the sand. Reference 1 4 and this report evaluate the influence of removing the sand on the code stress analysis and buckling evaluatfon, respectively. Buckling of the entire drywell shell is considered in this analysis with - the sandbed region being the area of primary concern. l L 1,2 Report Outline r Section 2 of this report outlines the-methodology used in the tuckling capability ' evaluation. Finite. element modeling, analysis and results are described in'section 3. Evaluation of the allowable compressive buckling stresses and comparisons with the calculated compressive. stresses for the' limiting load combinations are covered in section'4 Section_5 presents the summary of results and. conclusions. j' i l l 11

EX REV. 0 1.3 References l-1 " Structural Design of the Pressure Suppression Containment Vessels," by Chicago Bridge & Iron Co., Contract

  • 9-0971, 1965.

1-2 "An ASME Section Vll! Evaluation of the Oyster Creek Drywell - Part 1 Stress Analysis," GE Report No. 9-1, DRFs 00664, November 1990, prepared for GPUN, 1-3 " An ASME Section Vill Evuluation of the Oyster Creek Drywell - Part 2 Stability Analysis," GE Report No. 9-2, DRF= 00664, November 1990, prepared for GPUN, 1-4 "An A$ME Section Vill Evaluation of the Oyster Creek Drywell - Part 1 Stress Analysis," GE Report No. 9 3, DRF* 00M4, February 1991, prepared for GPUN, P. 12

EX $ k REV. 0 (st, s joS9" ,,,. i m p,, g A' _.r- " ,,, E tt v 9 0 Y \\$ = 4 ,q tu' Poms B t ((A I E'EV' ~I I '* b,4 p p Nws C, 2g',,qghyq'.sg P* * ' C " I 65 *2 b b.[ Peis 3p x

    • '"E d'

httevsSo'-ilh,'

  • j _

.N M E L. t y = 53'* L 6-. 'c . PeiwT F\\ b 3,iQ_ kg p,Q* s \\.W f_ Yo' h Ela, IS'- 9 Y4 E ut.tb um=1 / g. .. e., cer tu f' _ hv.6I}k I s @tuv8l,'[ fg t u u, z'* s" f t,t st 7 o. S k iA T ( l,) i ie,w l_ _ __ - - 1 - - - - Figure 1-1 Drywell Configuration

OR 4 00664 U dEX 9-4, REV. 0

2. BUCKLING ANALYSIS METHODOLOGi I

2.1 -Basic Approach The basic approach used in the buckling evaluation follows the methodology outlined in the ASMC Code Case N 284 (2-1 and 2-2). Following the procedure of this Code Case, the allowable compressive stress is evaluated in three steps. In the first step, a theoretical elastic buckling stress, ogn, is determined. This value may be calculated either by classical buckling equations or by finite elament analysis. Since the drywell shell geometry is complex, a three dmensional finite element analysis j approach is followed using the eigenvalue extraction technique. More j details on the eigenvalue determiaation are given in Section 3. In thE second step, the theoretical elastic buckling stress is modified by the appropriate capacity and plasticity reduction factors. The capacity reduction factor, 03, accounts for the difference between classical buckling theory and actual tested buckling stresses for fabricated shells. This dif ference is due to imperfections inherent j in f abricated shells, not accounted for in classical buckling theory, which can cause significant reductions in the critical buckling stress. Thus, the elastic buckling stress for fabricated shelle is given by the product of the theoretical elastic buckling stress and the capacity reduction factor, i_.e., aie 1 When the elastic bu:kling 0 stress exceeds the proportional limit of the material, a plasticity reduction factor, nj, is used to account for non-linear material behavior. The inelastic buckling stress for fabricated shells -is given by njojaie-In the final step, the allowable compressive stress u obtained by dividing the buckling stress calculated in the second step by the safety factor, FS: Allowable Compressive Stress - njagog/FS 2-1 l

EX N REV. O l In Reference 21, the safety f actor for the Design and Level A & B service. conditions is specified as 2.0. A safety factor of 1.67 is specified for Level C service conditions -(such as the post accident condition), The aetermination of appropriate values for capacity and plasticity reduction factors is discussed next. 2.2 Determination of Capacity Reduction Factor The capacity reduction factor, aj, is used to account for reductions in at:tual buckling strength due to the existence of geometric imperfections. The capacity reduction factors given in Reference 2 1 are based on extensive cata compiled by Miller (2 3). The factors appropriate for a spherical shell geometry such as that of the drywell in the sandbed region, are shown in Figure 2-1 (Figure 1512-1 of Reference 2-1). The tail (flat) end of the curves are used for unstiffened shells. The curve marked ' Uniaxial compression' is applicable since the stress state in the sandbed region is compressive in the meridional direction but tensile in the circumferential direction. From this curve, aj is determined to be 0.207. The preceding value of the capacity reduction factor is very conservative for two reasons. First, it is based on the assumption that the spherical shell has a uniform thickness equal to the reduced thickness. However, the drywell shell has a greater thickness above the sandbed region which would reinforce the sandbed region.

Second, it is assumed that the circumferential stress is zero.

The tensile circumferential stress has the effect of rounding the shell and reducing the effect of imperfections introduced during the fabrication and construction phase. A modification of the og value to account for the presence of tensile circumferential stress is discussed in Subsection 2.3. The capacity reduction factor values given in Reference 2-1 are applicable to shells which meet the tolerance requirements of NE-4220 2-2

bX REV. O of Section 111 [2-4). Reference 2-5 compares the tolerance requirements of NE-4220 to the requirements to which the Oyster Creek drywell shell was f abricated. The comparison shows that the Oyster Creek drywell shell was erected to the tolerance requirements of NE-4220. Therefore, although the Oyster Creek drywell is not a Section III, NE vessel, it is justified to use the approach outlined in Code Case N-284. 2.3 Modification of Capacity Reduction Factor for Hoop Stress The orthogonal tensile stress has the effect of rounding fabricated shells and reducing the effect of imperfections on the buckling strengtn. The Code Case N-284 [2-1 and 2-2) notes in the last paragraph of Article 1500 that, "The influence of internal pressure on a shell structure may reduce th initial imperfections and therefore higher values of capacity r, 4ct 1 factors may he acceptable. Justification for higher values a$ must be given in the Design report." Haris, et al [2-6) present the most comprehensive set of test data which clearly show that internal pressure in the form of hoop tension, increases the axial buckling stress. Reference 2-6 also contains data from References 2-7 and 2-8. Baker [2-9) and, in a recent book, Bushnell [2-10) also' endorse References 2-6 and 2-7 in discussing the effect of internal pressure on the buckling capability of cylindrical shell s. Based on References 2-6, Johnson [2-11) recommends a The procedure to account for this increase in buckling capability. data reported in Reference 2-6 are first discussed to show the reasonableness of the procedure recommended by Johnson. 2 Figure 2-2 (Figure 13 from Reference 2 6) shows the experimental data from several sources showing the increase in compressive buckling stress due to internal pressure. The curve recommended by Johnson corresponds to the '90*. Probability Curve' in Figure 2-2. As shown later in Tables 4-1 and 4-2, the values of nondimensional pressure parameter (the abscissa in Figure 2 2) in the buckling analysis 2-3 t

X 'REV. O l presented in-this report, are between-0.1 and 1.0. In this range, the '90% _ Probability Curve' in Figure 2 2 is also a lower bound to the experimental data. This clearly shows that the use of Johnson's i l procedure in this report assures conservative results (i.e., the procedure predicts a smaller ire.rease in-- the compressive buckling -stress than that indicated by the experimental data). The implementation of Johnson's procedure in this evaluation is described next. The -buckling stress in uniaxial compression for a sphere of uniform thickness is given by the following: Se = (0.605)(0.207) Et/R Where, 0.605 is a constant, 0.207 is the capacity reduction factor and - E,t and R are Young's

Modulus, wall thickness and
radius,

-respectively, in the presence of a tensile stress such as that produced by an internal pressure, p, the modified buckling stress is -as follows: S mod - ((0.605)(0.207) + AC] Et/R c -Where AC is given-in graphical form in Figure 2-3. As can be seen in Figure 2-3, AC is a function of the parameter X=(p/4E)(2R/t)2 When - the-. tensile stress - magnitude, S,. is known, the equivalent internal pressure can be calculated using the expression: p - 2tS/R The ' AC term is then incorporated in the capacity reduction factor itself by defining a modified capacity reduction factor, oi, mod ai, mod = 0.207 + AC/0.605 2.4 Determination of Plasticity Reduction Factor When the elastic buckling stress exceeds the proportional limit of the 2-4 =

-. ~. - -, - -. - X REV. 0 -material, a plasticity reduction factor, nj, is used to account for I the non-linear material behavior. The inelastic buckling stress for fabricated shells is given by njojoje. Reference 2 2 gives the mathematical expressions shown below (Article -1611 (a)) to calculate the plasticity reduction factor for the meridional direction elastic and o is the material yield buckling stress. A is equal to ajoj,/oy y strength. Figure 2-4 shows the relationship in graphical form, nj = 1.0 if A 5 0.55 = (0.45/A) + 0.18 if 0.55 < 4 s 1.6 = 1.31/(1+1.154) if 1.6 < A s 6.25 = 1/A if 6 > 6.25 2.5 References 21 ASME Boiler and. Pressure Vessel Code Case N 284, " Metal Contti_nment Shell Buckling Design Methods, Section III, Division 1, Class MC", Approved August 25, 1980, 2-2 Letter (1985) from C.D. Miller to P. Raju;

Subject:

Recommended Revisions to ASME Code Case N-284. 23 Miller, C.D., "Comentary on the Metal Containment Shell Buckling Design Methods of the 'ASME Boiler and Pressure Vessel. Code," December 1979. I 24: ASME -Boiler & Pressure --Vessel Code, Section _III, Nuclear Power Plant Components. l- .2-5? " Justification for Use of Section III, -Subsection NE, Guidance in- - Evaluating the Oyster Creek Drywell," Appendix' A to letter dated December 21, 1990 from H.S. Mehta of GE to S.C. -Tuminelli of GPUN. u l f 2-5 .~

bbEXhkfREV.0 26 Harris, L.' et al, "The Stability of Thin Wallec Unstiffened Circular (,.nders Under Axial Compression Includin( the Effects of Internal Pressure," Journal of the Aeronautical Sciences, Vol. 24, No. 8 (August 1957), pp. 587-596. 27 Lo, H., Crate, H., and Schwartz, E.B., " Buck'. ing of Thin-Walled Cylinder Under Axial Compression and Internal Pressure," NACA TN 2021, January 1950, 2-B Fung, Y.C., and Sechler, E.E., " Buckling of Thin Walled Circular Cylinders Under Axial Compression and Internal Pressure," Journal of the Aeronautical Sciences, Vol. 24, No. 5, pp. 351356, May 1957. 2-9 Baker, E.H., et al., "Shell Analysis Manual," NASA, CR-912 (April 1968). 210 Bushnell, D., " Computerized Buckling Analysis of Shells," Kluwer Academic Publishers, 1989 (Chapter 5), 2 11 Johnson, B.G., " Guide to Stability Design Criteria for Metal Structures," Third Edition (1976), John Wiley & Sons. 2-6

-. ~... EXhkfREV.0 0.s 1 I I i j j j \\ 02 w w e mewie ~ GQ L " C6 L ' y 0.4 0.2 A- +i__ Eaua mew som m.m a,.., l I~ l i I i 1 o,o 0 '4 8 12 18 20. 24 23 . M = t ift g 7. Figure 2-1 -Capacity Reduction Factors for Local' Buckling of Stiffened and Unstiffened Spherical Shells 1 2-7 l

048 00664 140EX 9-4, REV. 0 10 el _=r.. 0. 4., '- - - C ' -.l. ' ' ' "

.: :. :i.

~~ 6 . -- - - ^ - - -.. -

  • BUCHY (NAA)

+ ....t. .i ; d:......__ - i.4. o FUNG B SECHLER a. 4 ls ,i .. _.. - l.. i a LO, CRATE 8 SCHWAR TZ -- - -*l --+l+} - l' -. i t I iI.. 2 l l o NAA <*r i i i i ! ll! i ii . i llllll l !ll l!- 1.0 t -t t --- ,1.- .. 2 :'.~..J i,..:. :.4,- e

. BEST FIT CURVE

- - - - - - -H , -.,2r + ^ 6 x 1, gCR - 13,.,- n ~ i-j f n m - - + - + -e - W: -, 1 r 4 g 4mgj p. -j 9E t . - it,+ i ---l'* p g, n, A - ( W,, g r g - __ _ __.1 i i 2 g I j 7' ' e~ l l l l THEORETICAL CURVE .10 e ~~~ N ~ *' # " C *** ~~' ' ' ~ ~ ~ ' ~ ' ' ' ' ' ' - ' ' 90% PROBASILITY CURVE A-~ = 6 /* -

  • a ' ' -

.L... y.-.4 ~ --.. - *t1 - - ~I ! ! - i: - - * - - - - ~ ~ ~ ~ + - - - - - 4 4 EM++--! dY5-d - c i}ii. 6 i itiii ..i i ii i. i .. }. l..........!.. ! i l i.t.i..... i ! I I lll 3 -.....3.. -..a t. .l.'.. 2 l' l U

  • {< > l i ili

'I i i),,, i i i '01 i 2 4 68 2 4 60 2 4 68 2 4 60 2 .01 .10 1.0 10 10 2 _0.r E t Figure 2-2 Experimental Data Showing Increase in Compressive Buckling Stress Oue to Internal Pressure (Reference 2-6) 2-8

EX N REV. O io a i,,'iii . 4 6 i ..i. I I i 1 !II%l I l 4 I I\\l1\\ } l l l l 6ii I i l I I11ll l 1 Ililli I { I i I 11! 4 i 1 i f i 2 = 1.0 8 4 i 4 i i iii. g i < !iii, i i i i i i 1 tii! I i i 6 i i t ii l l l j IllI I l 1l l ) ! I l11 4 i $ 6 6 iii. 'j ,jj 'f 1 / _.L. 0,10 s i r i. i

i if..

6 ,f i, g 7 i { I/ l I\\lII l l $ l l l l iI il 4 If { l f li l l l-l / \\' 'I il l 2 ,/ 2 4 68 2 4 6 6' 2 4 6 6 0.01 0.01 0JO l.0 10 ,2 D p 4E ij g 'J Figure 2-3 Design Curve to Account for increase in Compressive Buckling Stress Due to Internal Pressure (Reference 2-11) 4 2-9

hEXhk1-REV.0 1 i \\.0 l e.% 3 34 A .u y V R e.& $th' .m ~ .t e i , e -6.o 76 a t.s sm Le. 4,, y,g. s xqG Ms i Figure 2 4 Plasticity Reduction Factors for Ir. elastic Buckling 2-10

ORr*006j4 If0EX 9 %, REV. 0

3. FINITE ELEMENT MODELING AND ANALYSIS

./ 3.1 Finite Element Buckling Analysis Methodology This evaluation of the Oyster Creek Drywell buckling capability uses lhe the finite Element Analysis (FEA) program ANSYS { Reference 3-1), ANSYS program uses a two step eigenvalue formulation procedure to The first step is a static perform linear elastic buckling analysis. The analysis of the structure with all anticipated loads applied. structural stiffness matrix, (K), the stress stif fness matrix, (S), are developed and saved from this and the applied stresses, cap, static analysis. A buckling pass is then run to solve for the eigenvalue or load factor,1, for which elastic buckling is predicted using the equation: ( [K) + 1 (S] ) (u) = 0 where: 1 is the eigenvalue or load factor. (u) is the eigenvector representing the buckled shape of the structure. This load factor is a multiplier for the applied stress state at wisich All applied the onset of elastic buckling will theoretically occur. loads (pressures, forces, gravity, etc...) are scaled equally. For example, a load factor of 4 would indicate that the structure would buckle - for a load condition four times that defined in the stross pass. The critical stress, a at a certain location of the ct, structure is thus calculated as: o =1c cr ap This theoretical elastic buckling stress is then modified by the

rmine the predicted capacity and plasticity reduction f actors to,

-buckling stress of the f abricated structure-as aiscussed in Section 2. This stress is further reduced by a f actor of safety to determine the allowable compressive stress. 3-1 0

b REV. 0 3.' 2 Finite Element Model The Oyster Creek drywell has been previously analyzed using a simplified axisymmetric model to evaluate the buckling capability in the sandbed region [ Reference 3 2). This type of analysis conservatively neglects the vents and reinforcements around t",e vents ~ which significantly increase the stiffness of the shell near the sandbea region, in order to more accurately determine the buckling capability of the drywell, a three dimensional finite element model is developed. The geometry of the Oyster Creek drywell-is :hown in figure 3-1. Taking advantage of symmetry of the drywell with 10 vents, a 36' section is _modeled, figure 3 2 illustrates the finite element mudel of-the drywell. This model includes the drywell shell from the base of the sandbed region to the top of the elliptical head and the vent and vent header. The torus is not included in this model because the bellows provide a very flexible connection which does not allow significant structural interaction between the drywell and torus. Figure 3-3 shows _ a more detailed view of the lower section of the dryweil model. The various colors on Figures 3 2 and 3 3 represent the cif ferent shell thicknesses of the drywell and vent. Nominal or as designed thicknesses, summarized in Table 3-1, are usec for the -dryweil shell for all regions other than the sandbed region. The sandbed region shown in-blue in Figure 3-3 is considered to have a thickness of 0.736 inch. This is the 95% confidence crojected [ thickness to outage 14R. _ Figure 3 4 shows the view from the inside of l - the crywell with the gussets and the vent jet deflector. L The crywell and vent shell are modeled using the 3-dimensional plastic quadrilateral shell (STIF43) element. Although this element has l -plastic capabilities, this analysis is conducted using only elastic t behavior. This element type was chosen over the elastic quadrilateral shell (STIF63) element because it is better suited for modeling curved

surfaces, 31 2 l

^ ^ - - - " " A-----

-DRF# 096 IIIDEX eS'4, REV O At a-distance of 76 inches from the drywell shell, the vent is simplified using beam elements. The transition from shelt to beam elements is made by extending rigid beam elements from a noce along the centerline of the vent radially outward to each of the shell nodes of the ver,t. ANSYS ST!F4 beam elements are then connectec to this centerline node-to model the axial and bending stiffness of the vent and header, Spring (ST[F14) elements are used to model the.ertical header supports inside the torus. Af45YS STIF4 beam elements are also used to model the stiffeners in -the cylindrical region of the upper drywell. The section properties of these stiffeners are summarized in Table 3-2, 3.3 Drywell Materials The drywell shell is f abricated from SA 212, Grade 8 high tensile strength carbon-silicon steel plates for boilers and other pressure vessels ordered to SA-300 specifications, The mechanical properties for -tnis material at room temperature.are shown in Table 3-3. These are the properties ~used in the finite element analysis. For the perforated vent jet deflector, the material properties were modified to account for the> reduction in stiffness due to the perforations. 3.4 Soundary Ccnditions Symmetric boundary conditions are defined for both edges of the_ 36' drywell model for ' the ' static stress analysis as _ shown 'on -Figure 3-S. This allows the nodes at this bounoary to-expand radially outward from the orywell centerline and-vertically, but not_ in the circumferential direction. Rotations are also fixed in two directions to prevent _ the boundary from rotating cut _ of the plane-of-symmetry. tiodes at the. bottom edge of the drywell are fixed in all directions to simulate the fixity of the shell_ within the concrete foundation. Nodes at the end of the header support spring elements are also fixed:. 3-3 .m

b REV. 0 I 3.5 Loads The loads' are applied to the drywell finite element model in the manner which most accurately represents the actual loads anticipated on the drywell. Details on the application of loads are discussed in the following paragraphs. 3.5.1 Load combinations All load combinations to be considered on the drywell are summarized on Table 3-4. The most limiting load combinations in terms of possible buckling are those which cause the most compressive stresses in the sandbed region. Many of the design basis load combinations include high internal pressures which would create tensile stresses in the shell and help prevent buckling. The most severe design load combination identified for the buckling analysis of the drywell is the refueling conditiot (Case IV). This load combination consists of_the following loads: . Dead weight of vessel, penetrations, compressible material. ( equipment supports and welding pads. Live loads-of welding pads and equipment door Weight of refueling water i External Pressure of 2 psig Seismic inertia and deflection loads for unflooded condition l l The normal operation condition with seismic is very similar to this condition, however, it will be less severe due to-the absence of the . refueling water and equipment door. weight. The most. severe load combination for t% emergency condition is for the post accident (Case.VI) load comMnation including: 3-4

[X REV. O Dead weight of vessel, penetrations, compressible material and equipment supports Live load of personnel lock Hydrostatic Pressure of _ Water for Drywell Flooded to 74'-6" External Pressure of 2 psig Seismic inertia and deflection loads for flooded condition The application of these loads is described in more detail in the following sections. 3.5.2 Gravity Loads t The gravity loads include dead weight loads of the drywell shell, weight of the compressible _ material and penetrations and live loads. The - drywell shell loads are imposed on -the model by defining the weight density of -the shell material and applying a vertical-acceleration -of 1.0 !g to simulate gravity. The ANSYS program automatically distributes the loads consistent with the mass and acceleration. The compressible material weight of 10 lb/f t2 is added by adjusting the weight - density of the snell to also include the compressible material. The adjusted weight densities for the various -shell thicknesses are summarized in Table 3-5. The compressible 1 material is assumed to cover the entire drywell shell (not including the vent) up-to the elevation of the flange. The additional dead weights, penetration weights and live loads are ~ applied-as additional nodal masses to the model. As shown on-Table 3 6 for the refueling case, the total additional mass is summed for each 5 foot elevation of the drywell. The' total is then divided by 10 for the 3P section assuming: that the mass is evenly distributed around the perimeter of the drywell. The resulting mass is then applied uniformly to a set of nodes at the desired elevation as shown on Table 3-6. These' applied masses ~ automatically impose gravity loads on the drywell model with the defined acceleration of 19 The same method is used to apply the additional masses to the model for the post-accident case as Summarized in Table 3 7. 35

~ 0RF 00664-Ifl0EX 9 4 REV. 0 r 3.5.3-Pressure-Loads The 2 psi external pressure-load for the refueling case is applied to the external f aces of all of the drywell and vent shell elements. The-compressive axial stress at the transition from vent shell to beam elements is simulated by applying equivalent axial forces to the nodes of the shell elements. Considering-the post-accident case, the drywell is assumed to be flooded to elevation 74' 6" (894 inches). Using a water density of 3 lb/in ), the pressure gradient versus elevation is 62.3 lb/ft3 (0.0361 calculated as shown in Table 3_8. The hydrostatic pressure at the bottom of the sandbed region is calculated to be 28.3 psi. According to-the elevation of-the element centerline, the appropriate pressures are applied to the inside surface of the shell elements. 3,5.4 Seismic Loads Seismic stresses have been calculated for the Oyster Creek Orywell in Part 1 of this report, Reference 3-3. Meridional stresses are imposed on the drywell during a_ seismic event due to a 0.058" deflection of the, reactor building and due to horizontal and vertical inertial loads on the drywell. The meridional stresses due to a seismic event are imposed on the 3-D drywell model by applying downward forces at four elevations of the model _(A: 23' -7",B: 37'-3",C: 50'-11" and D: 88' 9") as shown _ on Figure 3 6. Using this method, the meridional stresses calculatea in-Reference 3-3 are duplicated at four sections of the drywell-including

1) the mid-elevation of ~ the.sandbed - region, 2) 17.25' below the equator, 3) 5.75' above the equator and 4) Just above the knuckle region.

These four sections were chosen to most accurately represent the. load distribution in the lower drywell while also providing.a reasonably accurate stress distribution in the upper drywell. .3-6

DRF= 006A4 INDEX 9,4, REV. O To find the ' correct loads to match the seismic stresses, the total seismic stress- (due to reactor building deflection and horizontal and vertical inertia) are obtained from Reference 3-3 at the four_ sections of interest. The four sections and the corresponding meridional stresses for the refueling and post-accident seismic cases are summarized in Table 3-9. Unit loads are then applied to the 3-D model in separate load steps at each elevation shown in Figure 3-6. The resulting stresses at the four sections of interest are then averaged for each of the applied unit loads. By _ solving four equations with four unknowns, the correct loads are determined to match the stresses shown in Table 3 9 at the four sections. The calculation for the correct loads are shown on Tables 3-10 and 3-11 for the refueling and post-accident cases, respectively. -3.6 Stress Results The resulting stressr s for - the two load combinations described in section 3.5 are summarized in this section. 3.6.l_ . Refueling Condition Stress Results The resulting stress distributions for the refueling condition-are -shown in Figures _3-7 through-3-10. The red colors represent the most tensile stresses and the blue colors, the most compressive, f igure s 3-7 and 3-8 show.the meridional stresses for the entire arywell and lower drywell. The circumferential stresses for the same areas are shown on Figures 3-9 and 3-10. The resulting average meridional stress at the mid elevation of the sandbed region was found to bet oRm = -7580 psi 37

f REV. O j The circumferential stress averaged from the bottom to the top of the / sandbed region is; Rc 4490 psi U 3,6,2 Post-Accident Condition Stress Results The application of all of the loads described for the post-accident condition results in the stress distributions shown in Figures 3-11 through 3 14. The red colors represent the most tensile stresses and the blue colors, the most compressive. Figures 3-11 and 3-12 show the meridional stresses for the entire drywell and lower drywell. The circumferential stresses for the same areas are shown on Figures 3-13 The resulting average meridional stress at mid elevation of and 3-14. the sandbed region was found to be; cPAm = 11960 psi The circumferential stress averaged from the bottom to the top of the sandbed region is; pac = +20080 psi O s e 3-B --^-

X REV. 0 3.7 Theoretical Elastic Buckling Stress Results After completion of the stress runs for the Refueling and Post-Accident load combinations, the eigenvalue buckling runs are made as described in Section 3.1. This analysis determines the theoretical elastic buckling loads and buckling mode shapes. 3.7.1 Refueling Condition Buckling Results As shown on Figure 3-15, it is possible for the drywell to buckle in two different. modes, in the case of symmetric buckling shown on Figure 315, each edge of the 36' drywell model experiences radial displacement with no rotation. This mode is simulated by applying symmetric boundary conditions to the 3 D model the same as used for Using these boundary conditions for the refueling the strou run. case, the critical load factor was found to be 7.67 with the critical buckling occurring in the sandbed region. The critical buckling mode The shape is shown in Figure 3-16 for symmetric boundary conditions. red color indicates sections of the shell which displace radially outward and the blue, those areas which displace inward. The. first four buckling modes were computed in this eigenvalue buckling analysis with no buckling modes found outside the sandbed region for a load factor as high as 9.94. Therefore, buckling is not i a concern outside of the sandbed region. It is also possible for the drywell to buckle in the asymmetric manner shown in Figure 3-15. For this mode, the edges of the 3-D model are allowed to rotate but are restrained from expanding radially. This-case is considered by applying asymmetric boundary conditions at the edges of the 3-D model. With-the two pass approach used by ANSYS, it is possible to study asymmetric buckling of the drywell when the stresses are found based on symmetric boundary conditions. The is. resulting -load f actor found using asymmetric boundary conditions 10.13. The mode shape for this case is shown on Figure 3-17. 3-9

ORF8 00664 { INDEX 9-4, REv. O Because the load f actor is lower for symmetric boundary conditions with the same applied stress, the symmetric ouckling condition is more

limiting, Multiplying the load factor of 7.67 by the average meridional stress from section 3.6.1, the theoretical elastic Duckling stress is found to be; oRie = 7.67 x (7580 psi) 58,100 psi 3.7.2 Post-Accident Condition Buckling Results Considering the post-accident case with symn,-?ric boundary conditions, the load f actor was calculated as 5.18.

Multiplying this loac factor by the applied stress from section 3.5.2 results in a theoretical elastic buckling stress of PAie = 5.18 x (11960 psi) 61,950 psi U The critical mode shape for this concition is shown in Figure 318. Again, the critical buckling mode is in the sandbed region. s 3,8 References 3-1 DeSalvo, G.J., Ph.D, and Gorman, R.W., "ANSYS Engineering Swanson Analysis Anaiysis System User's Manual, Revision 4.4," Systems, Inc., May 1, 1989. 3-2 GPUN Specification SP-1302-53-0Aa, Technical Specification for Primary Containment Analysis Oyster Creek Nuclear Generating Station Rev. 2, October 1990. " An ASME Section Vill Evaluation of the Oyster Creek Drywell - 33 Novemoer Part 1 Stress Analysis," GE Report No. 9-1, ORF = 00664 1990, prepared for GPUN. 3-10

DRF* 00664 i INDEX 9-4, REV. O Table 3 1 Oyster Creek Drywell Shell Thicknesses Section Thickness (in.) Sandbed Region 0.736 Lower Sphere 1.154 0.770 Mid Sphere 0.722 Upper Sphere Knuckle 2.5625 0.640 Cylinder Reinforcement Below Flange 1.250 Rainforcement Above flange 1.500 Elliptical Head 1.1875 Ventline Reinforcement 2.875 Gussets 0.s75 Vent Jet Deflector 2.500 Ventline Connection 2.500 0.4375 Upper Ventline Lower Ventline 0.250

  • 95% confidence projected thickness to 14R.

t 3-11 l

bkXhkREV.O Table 3 2 Cylinder Stiffener locations and Section Properties 4 Elevation Height Width Area Bendino Inertia (in ) (in) (in) (in) (in8) Horizontal Vertical 966.3 0.75 6.0 4.5 13,5 0.211 ) 1019.8 0.75 6.0 4.5 13.5 0.211 i 1064.5 0.50 6.0 3.0 9.0 0.063 1113.0(I) 2.75 7.0 26.6 387.5 12.75 1.00 7.38 1131.0 1.0 12.0 12.0 144.0 1.000 This stiffener is made up of 2 beam sections, one (1) 2.75x7" and one 1.0x7.375" Table 3, Material Properties for SA-212 Grade B Steel l Material Property Value 6 Young's Modulus 29.6x10 p3j j Yield Strength 38000 psi Poisson's Ratio 0.3 3 Density 0.283 lb/in l l l l 3-12 1

_ _... _... _. ~ _.. _ NbkXhIREV.O Table 3-4 Oyster Creek Drywell Load Combinations CASE I INITIAL TEST CONDITION Deadweight + Cesign Pressure (62 psi) + Seismic (2 x DBE) CASE 11 - FINAL TEST CONDITION Deadweight + Design Pressure (35 psi) + Seismic (2 x DBE) CASE 111 NORMAL OPERATING CONDITION Deadweight + Pressure (2 psi external) + Seismic (2 x DBE) CASE IV - REFUELING CONDITION Deadweight + Pressure (2 psi external) + Water Load + Seismic (2 x DBE) CASE V ACCIDENT CONDITION Deadweight + Pressure (62 psi @ 175'F or 35 psi 0 281'F) + Seismic (2 x DBE)- CASE 1/I - POST ACCIDENT CONDITION Deadweight + Water Load 9'74'6" + Seismic (2 x DBE) 3-13

nRFa 006Ad L. ThDEX 9 3. REV. O Table 3 5 Adjusted Weight Densities of Snell to Accoutit for i Compressible Mater'a; 'deight Adjusted Shell Weight Density 3 Thickness (in.) ( l b,' i n ) C 1.154 0.343 0.770 0.373 0.722 0.379 2.563 0.310 0.640 0.392 1.250 0.339 su

OfDEX9.{,,REV.0 ts 006 4 I Table 3 6 Oyster Creek Drywell Adcitional Weights - Refueling Condition L 6 DEAD FENETR. MISO. TOTAL 5 FOOT LCAD PER LCAD pea LO40 PER ELEVATION WEIGHT WElGHT LDAD5 LOA 0 RANGE 36 DEG. f Or h00E5 0F rut,L h00E HAtr h00E (feet) libf) (ibf) (1bf) (Ibf) (CAD (itf) (LEMENTS APPLICATION (1tf) ('tf) 15.56 50000 50000 16 168100 168100 20 11200 11200 229300 22930 6 116 119 3822 1911 " 15 2C 22# 556000 556000 556000 55600 8 161 169 6950 3475 i

    • 21 25#

26 11100 11100 30 64100 51500 115600 30.25 105000 100000 205000 331700 33170 8 179 187 4146 2073

    • 26 32 31 26500 16500 32 750 150 33 15450 15450 3J 78050 26050 35 1500 1500 62250 6225 6

188 196 778 389 " 31-35 36 1550 1550 40 41000 43350 84150 8590^ 8590 8 197 205 1074 537 " 36 40 50f 102000 1102000 1102000 H0200 8 418 426 13775 6888 " 45 50f 54 7850 7850 7850 785 8 436-444 98 49 " $155 56 56400 24000 80400 50 95200 700 20000 115S00 19 M00 19630 8 454 4E<2 2454 1227 " 56-60 65 52000 20000 72000 72000 7200 8 472 480 900 450 " 61 65 7' 5750 5750 5750 575 8 508 516 72 36

    • 66,70 73 8850 6850 8850 885 8

526 534 111 55 " 71 75 82.17 21650 21650 21650 2165 8 553 561 271 135 " 81 85 87 4000 1000 90 15000 15000 16000 1600 8 571-579 200 100 " 86 90 9L 75 207C1 20700 94.75# 698000 696000 95.75 20100 20100 738800 73880 8 589 597 9235 4618 " 91-96 TOTALS: 2164150 08J200 86N00 3434350 3434350 343435 i LOAD TO BE APPt.lE0 IN VERT 10AL DIRE 0T;0N CNLY. & - MISCELLAhEQUS LCA05 INCLtfsE 698000 L8 WAT.ER VElGHT AT 94.75 FT. ELEVATION

  • 00000 L8 E0VIPMEPT E6A F.lGHT AT 30.25 FT. ELEVATION AND VELD PA0 LIVE LCA05 0F 24000 20000 Aho l':000 AT 56, 60 AND 65 FT. ELEVATIONS CFVGT.W1 3-15

OR r* 00664 ItOEX 9-4, REV O Table 3 7 Oyster Creek Orywell Additional Weicht5 - Post-Accident Condition 1,- 6 LCA0 PER LOA 0 *ER CEAD PENETR. MISC. ?OTAL 5 FOOT LOAD PER ELEVATION WElGHT WElGHT LCA05 LOAD RANGE 36 DEO.

  1. OF N00E5 0F Fun h00E HALF h00E LOA 0 (Ibf)

ELE Nil APPL.lCATION (Ibf) (lbf) (feet) (1tf) (1bf) (1bf) (ibf) 50000 If 56 50000 16 168100 168100 to M200 11200 229300 22930 6 116 119 3822 1911 " 15 20 556000 556000 55600 8 161 169 6950 3475 22f 556000 " 21 25# 26 11100 M100 30 64100 51500 115600 105000 231700 23170 8 179 187 26M 1 30,25 105000 " 26 30 31 16500 16500 32 750 750 33 15450 15450 34 28050 28050 35 1500 1500 62250 6225 8 168 196 778 389 " 31 35 36 1550 1550 40 41400 43350 61350 85900 8590 8 197 205 1074 537 " 36 40 1102000 1102000 110200 8 418 426 13775 6888 50f 1102000 " 45 50f 54 7850 7850 7850 785 8 436-444 98 49 " 51 55 56400 56 58400 60 95t00 700 95900 152300 15230 6 454 462 1904 952 " 56-60 52000 52000 5200 8 472 480 650 025 65 52000 f- ' " 61-65 70 5750 5750 5750 575 8 508 516 72 36 " $6 70 73 6850 8850 8850 885 8 526 534 111 55 " 71-75 21650 21650 2165 8 553-561 271 135 82.17 21650 " 81 85 87 1000 1000 90 15000 15000 16000 1600 8 571 579 200 100 " 86-90 20700 .93.75 20700 20100 40800 4080 8 589 597 510 255 95.75 20100 " 31 96 total 5: 2184150 388200 0 2572350 2572350 257235 i LOAD TO BE APPLIED IN VERT! AL O!RECTICN ONLY. 6 - NO MISCELLANEOUS LCA0510R N15 CON 0! TION. l FLCC0VGT.VK1 1 3 16

~ X REV. 0 l Tab) 9 Hydrostatic Pressures for r g,...went. Flooded Condition WATER CENSITY: 62.32 lb/f t3 0.03606 lb/in3 FLOODED n.EY: 74.5 ft 894 inches ANGLE ELEMENTS ABOVE 'q ABOVE EQUATE. ELEVATION DEPTH PRES $URE NODES (u;i eed (inch) (inch) (psi) ELEMENTS 27 53.32 110.2 783.8 28.3 1 12 AD -51.97 110.2 777.8 28.1 13 24 53 50.62 122.4 771.6 27.8 25-36 L 66 49.27 128.8 765.2 27.6 37 48 79 47.50 137.3 756.7 27.3 49 51, 61 66.55 57 92 46.20 143.9 750.1 27.1 52 54, 138 141.58 60 102 -44.35 133.4 740.6 26.7 142-147, 240 242, 257 259 103 41.89 166.6 727.4 26.2 148 151, 243, 256 112 39.43 180.2 713.8 25.7 152 155, 244, 255 lu -36.93 194.6 699.4 25.2 156 159, 245, 254 lho 34.40 209.7 684.3 24.7 160 165, 246, 253 124 31.87 225.2 668.8 24.1 166 173. 247, 252 130 -29.33 241.3 652.7 23.5 174 183, 248 251 138 26.80 257.6 636.4 23.0 184 195 148 24.27 274.4 619.6 22.3 196 207 161 20.13 302.5 591.5 21.3 208-215 170 14.38 342.7 551.3 19.9 216 223 179 -8.63 384;0 510.0 18.4 224 231 120 2.88 425.9 468.1 16.9 232 239 197 2.88 468.1 425.9 15.4 430 437 400 8.63 510.0 384.0 13.8 438 445 409 14.38 551.3 342.7 12.4 446 453 418 20.13 591.5 302.5 10.9 454 461 427 25.50 627.8 266.2 9.6 462 469 436 30.50 660.2 333.8 8.4 470 477 445 35.50 690.9 203.1 7.3 478 485 454 40.50 719.8 174.2 6.3 486 493 463 45.50 746.6 147.4 5,3 494 501 472 50,50 771.1 122.0 4.4 502 509 481 54.86 790.5 103.5 3.7 510 517 805.6 88.4 3.2 518 525 490 499 820.7 73.3 2.6 526 533 BA5.7 58.3 2.1 534 541 508 850.8 43.2 1.6 542 549 5,7 885.3 8.7 0.3 550 557 525 187.2 706.7 25.5 340 399 (Ventline) FLOOOPSK1 s 3 17 ~

ibEXhbk) REVS I Table 3-9 Meridional Seismic Stresses at Four Sections 20 Shell Meridional Stresses Elevation Model Refueling Post Accident Section_ (inches) Saga (osi)_ (esi) A) Middle of Sandbed 119 32 1258 1288 B) 17125' Below Equator 323 302 295 585 C) 5,75' Above Equator 489. 461 214 615

0) Above Knuckle 1037 1037 216 808 3 18

DRF# 09664 I INDEX 9 4, REV. O i Tabie 3-10 Application of Loads to Match Seismic Stresses Refueling Case \\\\ 2 0 illlMIC STRt:5t1 At 5tCi10% (tsil f SICTION: 1 2 3 4 t 0 k00t: 32 302 461 1037 ..JRtl51VE ST Att$t$ F10" 2 0 AhAl.111% (LIV: 119.3" 3t!.5" 469.1" 912.3" 788.67 155.54 103.46 85.31 0.0**" $t!!PIC O!FLECT! N: HDRl;. PLE VIRTICAL 5ttlW!t IntRTIt.: 469.55 139.44 110.13 130.21 TOTAL SillMit M Rt151VI litt$$t$: !!58.!! 294.98 213.19 215.!! 3 0 litttill At 5ttitCN (psi) 30 $tCTl0N: 1 2 3 4 lhPQT 3 0 N00ts: 53 65 170 178 400 408 5t6-534 LCAD $tC110N thPUT 3 0 UNIT LCAD Ot$;RIPTION (LEY: 119.3" 322.5" 489.1" 112.3" A 1000 lbs at noces $63 throwth 569 85.43 37.94 3t.94 5L.23 8 500 its at 427L435, 1000 its at 478 434 89.88 39.92 36.76 0.00 C 500 its at 197L205,1000 its at 198 204 97.64 43.37 0.00 0.00 0 500 its at '.616169. 1000 its at 162 168 89.85 0.00 0.00 0.00 Jt51Rio C W at$$1YC STRt55t$ (psi): 1258.!! 294.98 213.59 215.52 30 thPUT LOAD l!C110N LOAD 10 8E APPL 11010 KATCH 2 0 $tRt55t$ RESULTING STRES$t$ AT SECTION (pst) 3902.3 333.37 148.05 136.34 215.52~ A 2101.4 168.87 83.89 77.25 0.00 8 1453.6 44.93 63.04 0.00 0.00 C E611.6 594.05 0.0t 0.00 0.00 0 ...................~........ $UM: 258.!! 204.98 213.59 215.52 [ susut.wi 3-19

IN)(X 9 4, R[V. 0 4 Table 3 11 Application of Loads to Match Seismic Stre$ses Post AC 1 dent Case 2 0 tiltutt STRIS$t$ AT tt*110h (rat) $tCT!04: 1 3 4 2 0 N00t: 3C! 461 103? C0*Pittllvt 11Rt$1($ FROM t 0 2%ALY11$ ELty: 119.3" 322.5" 4tg.1" 912.3" 0 C56" $t!! ult OtFLt;t10N: 7tt.67 15$.$4 103.46 t5.31 MOR ! t PLU$ vt#11 CAL ill5mit thttilA: 499.79

'. 59 lit.76 723 14 TOTAL tillw!C COMPRL11:vt littiltl:

!!68.46 564.93 616.!! 606.45 3 0 STR!$$t$ At 5tC*:0N (5:1) 30 IhPUT $tCTION: 1 2 3 4 LCAD 3 0 h00t$: $3 t5 170 176 40J 408 !!6 534 $tCT!;N thPUT 3 0 Uh!T LCAD Ott:RlPf!Ch (Lty: 1;9.3* 322.5" 469.1* 912.3" A 1000 its at noces 563 through 5(9 t!.43 37.94 34.54 .. 23 6 500 its at 4276436, 1000 its at 426 434 19.66 39.92 36.76 0.00 C 500 its at 197L205. 1000 lts at 196 !?4 97.64 43.37 0.00 0.00 0 500 its at 1616169, 1000 its at 162 166 69.65 0.00 0.00 0.00 Ot$1R(0 COMPRt$51YI 5itt$1t$ (pst): 1266.46 564,93 616.!! 606.45 30 ihPVT LCAD 5tCT!;% LOAD 10 6( APPLit0 TO KATCH 2 01 TRIS $ts AtlVLT!hG 5tRtl%[$ AT SICTI0h (est) A 14637.9 1750.51 555.36 511.45 606.45 B 2650.2 25t.17 113.76 1C4.77 0.00 C 1941.7 169.56 64.!! 0.00 0.00 0 316.6 26.64 0.00 0.00 0.00 $UM: !!68.46 564.93 616.!! 606.45 $t!$FL Al 3-20

-~ Eomt m. o DRYWELL l _wo

R THl'(.640* ).y

g.

ELEV. 87]* 4 g,7,,,,,.. .., g

q. y,,j.,

R.THI '4640' 4 7,'; l36Q.$d $F3h a hb[ IIIi7, \\ tD ELEV. 51' O' ~ i.;['. ;, ]. { ([ffM ~e t ' )4 ,, l > j .-((q,,+.4f) I r '('1 I . '? l7',(4^{' , u... ~ ?.. f f k TT 6... NWS ed *.Vdt/23V g,ha -,,.m x R. T HK,676* Figure 3 1. Oyster Creek Orywell Geometry 3 21 '~--m

8 44 DC < 199, 1 U bT

p3=drs W

=1 l yST=7?y[;yy YU =3a3 est u j'.jj 478 ne % Roxy ngyygg Y O N\\ DRYMELI. Argenyggs, OYCRLO cno gagg-POST-acc., Figure 3-2

~ l ANSYE 4.4 DEC

  • 1999 l1 13:96: 41 PLOT HC.

2 PREF 7 ELEMENTS REAL NUM MU =1 v'J =-9.8 DIST=28H.376 XT =409.452 2T =216.528 nea-?u CINTROID HIDDEM Y O N N 1 I l OYSTER CREEX DRYWELL ANALYSIS - CYCR10 CNO SAND. POST-ACC./ Figure 3-3. Closetc of Lower Drywell Section of FEM (Outside view)

7' ._/ 6 + 9 1 1 I,,Mk ,,4.. I ? f 4 i. 4 o; .N 5 o 3 ./ / s 't n 5 A / 2 3 '5 Q w-1,'. e e-n Q a 1 y. u g .: >~, s .. ; E, s Q $g u. i D C ).2k p/ p-#~_7' p-'-/'

u - - + ANSYS 4.4 DEC 4 1996 1 13:19:37 PLO7 HO. G TYPE NUM PREP 7 ELEMENTS s. 4 BC SYMBOLS k ~ XG =1 YU =-2.E

  • =

DIST=718.786 XT =333.G31 e 2F =639.438 l ANC~e-?G l l CINTROID HIDDEM 3 w U a F w is ~ .3 1 '~ E N N$ \\ s i *" OYSTER CREKX DRTHELL ANALYSIS - OYCR10 (MO SAND, POST-ACC. ) Figure 3-5. Boundary Conditions of Finite Element Model

x ~ ~ ' ~ ~ -_ l ) .R Tg "5 .#.E.p =- e 43 va.E,,Eh,*'39h2 .p w CQIj '2El8 %$ e 5 E 3 s

s I

.a r 2 I I L' A N 5 i Q~ N O E E 3 26 s% ~__

~ ANSYS 4.4 1 NOU 16 1999 9?:33:54 PLOT No. 2 POSTL STRESS

  • g g ST'EP=1 ITER =1 SY (AUC)

MIDDLE ELEM CS DMX =9.221773 Q. SMM =-8174 pWi.,, SMX =635.947 m XU =1 ..., me. e YU =-9.8 ."'m* DIST=710.79G rethmd WT =393.931 $ C -94 478 i 7 =639 l w CINTROID HIDDEM MEBEES -9174 W E -7188 m -6;;g v e c e r ech TM L h 3247 c e r c r e ec. 1276 V Yv >VvWs 635*947 e v v v v eye. > > v v >Vw. m F & > >- mn F 4 4 'r'r 'r'r'c' 'e b 'r ?r'e'r'//. F & 4-b b F>*/ > $ 0 b 'e F r >: r mSAWA a%%%2X2XM $$NN art..aw OYSTER CREEX DRYWELL AMALYSIS - OYCRIS CNO SAND, REFUELINC) Figure 3-7. Meridienal Stresses - Refueling Case

i 5 ?? > .n 8 n u i;U:4 b 4 %g M2 006"asA#A ~iid 5: gg y o d % gud?:,*pr#gitti?f: g ggg,all add $ll'.1 ii ii n i n,ii n iii ils!hed i B B-e a E s e a -- z gl[, iR06l}) 3,. g .... f! bhhlifETgd f M de ........; $ 1IR i i i i ~ .l i p l p.J;qi; Wq'.N s i ,q ....t. l n ,t... '. il ijl ! .!,I tj i t,... j,M,: l !,5 y a H t -- L 4 l- 'd... hi k, f y \\ '+ 2 f N: a D M O A 3 28

ANSYS 44 1 NOU 16 1999 99:55:39 PLOT NO. 1 POSTL STRESS STEP =1 A ITER =1 SX (AUC) MIDDLE ELEM CS DM'< =9.221777 m SMN =-3547 1 game SMX =6754 sumatamme XU =1 m'u'un' YU --g 3 DISTE715.796 M XT =3u3.e31 { g_6g.4?9 magsgy CINT3OID HIDDEN -3547 -2493 gg IMZ 2176 4465 6754 Y 'd ~i OYSTER CREEX DRYWELL ANALYSIS - OYCRis (No SAND. RETIIELI NG) Figure 3-9. Circu=ferential Stresses - Refueling Case

lll lJ'lill)ll( ME 3 D 3S 7 G28 D 4.99 S 4 752 I E ) 97 34. H7 8.998D5N2654 8 49 R C 344 4 5 765 15.T U 155 1oS A S.37 9826I32h147 S6:M 11<EC9 6 1 242 O ~ I246 Y17 1== L======== R S 5TTPR DM UUIFhCM3 T T NU4OSEE DEXNX S M AO9LOTTYILMMM I MGPPSISMEDSS XYDX J* ) W ILE U TE R DM AS e sa O C M g C n i l S e I u f R e C R Y O s e s se S r I tS S Y l L a i A t N ne A re f L m L u E cr W i Y C R l D le w N yr E D E r R e C wo s L e-RET S 0 1 Y C 3 1 e rug i F Y0 f !llili!l[lll i llll(lI!lfl lll ll1 1llIlj l,

E T A t@M n c,4 to Q w TO 4 FM (D N P HMS M 'm ^ en t= 3 T E n @ t @ n et 4 N e te.T Te O IMT to a e *

  • ( c0 H D

TMP

  • CD O f 4 A t1 H r M t kith nM 4 H
  • H ic S e4 3 sHbw etH fM M 5 te Mm **
  • te4 w W V S I (9 *4if*M @l O I l ll 1etti F-I S w it i J il il li ti ll ti ll ill M M MF h AE H

I

    • O kl AWXZM M

4 @ e.1 Pla>M lIK K DDwhh =4ANMwMENAMM XPAXti ^_ d u4 iHH O4 oZ CH 3 o i

c:< ::3: 3:

b. g $ $ :*e :c,,,......, j , g

  • A * :,6.i. -i. -t-a, ;,

s,6 - t ' A* i u tg 4 ,.i.,5-t t-1.. sg:; 5, &,, 6 v 4 -1 4 .t. y h 5 5,.. *

  • I 5,5 4 -> ul 4 4 3

I! :.!'7 9!!!!Ii!UIh:;,. $ * [ 5'''~^"* H 6 S 5tE $ ib iE.E !!! 2 5!E E U$ f[ d E a N s e a c; M Q 8 5 5 t* UH o A ~ a> .E' u. 3 31 1

) 5 X erm a em w ': la EE EyN EE b n? 9 g 9: m a=:: e...5"404,,1,,q,J,,,,ay,,,,'g'jffii?b 3 gag, 3

45!henis!!! nhE8Il' I-4 8

?e 8m d i" E 3 l --i,...., g 9 o 's o [' lfd); t - t ..l," 1 n l-t 'E E ... 1,.,;i .ib ,3:!' 5 5 l t 3 e i" G a U Z l e 5' w 3 32

~ ~x_ 5 m$ v ) -e 2 y. $$f $nh5 .?$!!*ynr a M$ 5R$$lYgphh D ? U e a .E 0 N E M N 5 ~ 8 i s a e o e! 3 33 ~ ' ~ - - - - ~ - ~ N

l j ll/i IlI! I i' l x b k iaU 4a 7 d: DC I ] 9}, 3 k83 $ s,$ ) S 4' 7 B: 2

  • g 1 ?

4f

  • f *.ki U

g* g 3 ?

  • '2 1'g 2 o' h$ 2

$4 11 2 fE

  • ?=

R %E T NWuuIYW R S 77y MS* XYO 11 fS ) C CA -TS OP D e N s A a C S tn O e M d i ( cc 0 A-1 t R so C P Y O se sse S r I t S S Y l L a i A t N ne A re L f L u E cr M i Y C R l D le w X yr E D E r R e C wo L RIT S 4 1 Y O 3 1 eru o i F ?2 /// I l ) / I l I ,' i l l l 'llf

SNxgjREV.O 0 i Center of Drywell ,1 Sphere e' \\ , Planes of ,/ Symmetry b 36' x i ,/ \\ / \\ 4 / T 8 \\ ... y,N t.hibuckled Shape /.... \\ Buckled Shape Vent f Radal Displacement 3 ( No Rotation j Symmetric Buckling of Drywell Center of Drywel M,-s \\ Planes of Sphere / Symmetry gg b 36'Us / '\\ ,/ \\, / \\ s N' Unbuckled Shape / \\ Buckled Shape N Vent f Rotation i (No Radal Disp j' Asymmetric Buckling of Drywell SYM.DRW Figure 3-15. Symetric and Asymetric Buckling Modes 3 35

/p-' e <s - a %p%% 1 .e,u %. p{'d ini e y r .e 4 ,g t % = a 2 #sggt 3 %i .p + D.wer '$tgt, Y ' }' . mv s \\ -Q"{ t &_\\lpAftyG%.%a* ' Q" 1 M. s 4* gg, 1 ( 7 $gQ. yd.j \\ \\_ x" I p% ..d \\ g qf P e N[,h,&f [Q t lf+. ? *y cJ )\\ ..s

t. \\

,(\\ h,Q y 3 \\ }, \\ 1 we a U \\ hY,fQ{\\ a g Q i g. + \\ g g f e 1 '{l*u g w :i a pg '\\j S;, st \\ i 1 q; y no' ~ ' 4 <.x ff,St i e a y ( s s' ) \\q h (Y " , f hi E ',' 4 p 1

  • n o

s, i \\ \\ .+-..-, \\ 9', u \\ s\\' W b, 4 A g b x, e De e O b e $s G 3-)b , / '. p-' f ,-,s- ,/'

-/f~/x-x' X o. h. T. 49 ,, s e 4 0 n,0.d Wd *h, 5 t s,s' g$

s. s..

o 4 \\ J, '. 4[.,,..;/..,, e e..,4

  • t 2 % Y,8 N 6c,wq

? . 4. [. ' d ..i 1A 2 y 6 *,,,,,,,...g, 3. 1 f k'}I M [.,' % dA W ',..,',.., '. '. ~ .,c. v..., ,. q g., p., g i g, g. g g g 0 . f y

  • s.v. ;.

[ .m h )f, :. i,,, y,.;,g' g t .4 '.',,..,'.*'* ?* *

  • wi.

.o 4%q s. i g . * ' ' */ ' I g k.f [,,'.. 'c: g y hg.4**. 4,6,ji i eA**h**N

4..

.. o a p.. ',,...~ b* * * * ' # *

  • Y..; (( t %[$ g h-t
,.0m g

g [..' .,' -.'. s J, 1

  • h sy' A*5 b..

,. 'y k. N,'*4,[ ', ;k E - g ',} '.:.~..,_,'.,"-(l- ' '..,,. k $y. s e e A t w ) 3l i ,-/

/' ~ " " p .. 'g k k* 4 w wd y ,g}} eaax *,e ^ d i t t i \\ ,a t O O \\ \\ k U

  • ?

\\ h 1 1 T k s 1, .s c px p

1 DRf aIf40EXyj4 REv. 0 0Q5 4,

4. ALLOWABLE BULKllt4G STRESS EVALUAT10!1 Applying the methodology described in Section 2 f or the cocification of the theoretical elastic buckling stress, the allowahle :: pressive stresses are now calculated.

Tables 4-1 and 4-2 e marize the calculation of the allowable buckling stresses for the Refueling and Post-Accident conditions, respectively. ihe modified capacity reduction f actors are first calculated as described in sections 2.0 and 2.3. Af ter reducing the theoretical instability stress by this reduction f actor, the pbsticity reduction factor is calculated and applied. The resulting ir, elastic buckling stresses are then divided oy the f actor of safety of 2.0 for the Refueling case and 1.67 f or the Post Accident case to obtain the final allowable compressive stresses. The allowable compressive stress for the Refueling case is 10.65 ksi. Since the applied compressive stress is 7.58 ksi, there is a 4h margin. The allowable compressive stress for the Post-Accident. flooded case is 13.77 ksi. This results in a margin of IP, for the applied compressive stress of 11.96 ksi. 0 4-1

bEXh!kfREV 0 + Table 4 1 Calculation of Allowable Buckling Stresses - Refueling Case Parameter Value Theoretical Elastic Instability Stress, 0, (ksi) 58.10 3 0.207 Capacity Reductic,i ' actor, oj 4.49 Circumferential Stress, oc (ksi) 15.74 Equivalent Pressure, p (psi) 0.173_ "X"-Parameter 0.118-AC 0.402 Modified Capacity Reduction f ac:or, ai, mod ie (ksi) 23.34 Elastic Buckling Stress, a, oi, mod O 0.614 Proportional Limit Ratio, A = o /ay g 0.913 Plasticity Reduction Factor, ng Inelastic Euckling Stress, oj = ngo, (ksi) 21.30 2.0 factor of Safety, FS Allowable Compressive Stress, c ll og/FS (ksi) 10.65 a Applieri Compressive Meridional Stress, om (ksi) 7.58 41% Margin = [(oj/a ) 1] x 100, m 42

t EX REV. O Table 4-2 Calculation of Allowable Buckling Stresses - Post-Accider,t Case Parameter Value Theoretical Elastic Instability Stress, aq, (ksi) 61.95 0.207 Capacity Reduction factor, og 20.03 Circumferential Stress, oc (ksi) 70.38 Equivalent Pressure, p (psi) 0.774 "X" Parameter 0.195 6C 0 529 Modified Capacity Reduction Factor, oi, mod Elastic Buckling Stress, o, = ai, mod Cie (kSi) 32 74 ?.562 Proportional Limit Ratio, 6 = o /oy g 0.702 Flasticity Reduction factor, 93 Inelastic Buckling Stress, oj 9 03 e (ksi) 22.99 !.67 Factor of Safety, FS Allowable Compressive Stress, c ll

  • D /IS (kSI) 13 77 a

i Applied Compressive Meridional Stress, om (ksi) 11.96 15% Margin - ((0 /o )

1) x 100%

4 m 4-3

9 NbEXhkREV.0 5.

SUMMARY

Af4D C0f4CLUS10f4S The results of this buckling analysis for the refueling and post-accident load combinations are summarized in Table 51. The applied and allowable compressive meridional stresses shown in Table 51 are for the sandbed region which is the most limiting region in terms of buckling. This analysis demonstrates that the Oyster Creek drywell has adequate margin against buckling with no sand support for an i assumed sandbed shell thickness of 0.736 inch. This thickness is the 95. confidence projected thickness for the 14R outage. .e J 51

l kbb!xhI!AEV.O Table 5 1 Buckling Analysis Summary toad Combination EthLtDa0 E2st - Aec bigni n Service Condition Design Level C Facter of SaO ty Applied 2.00 1,67 Applied Compressive Meridional Stress (ksi) 7.58 11.96 Allowable Compressive Meridional Stress (ksi) 10.65 13.71 41t; 1% Btckiing Margin + 52}}