ML20059H958

From kanterella
Jump to navigation Jump to search
Design Criteria for Soil-Structure Interaction Analysis of Reactor/Containment Bldg at Gpun Oyster Creek Nuclear Generating Station
ML20059H958
Person / Time
Site: Oyster Creek
Issue date: 06/30/1993
From:
EQE INTERNATIONAL
To:
Shared Package
ML20059H927 List:
References
NUDOCS 9401310252
Download: ML20059H958 (248)


Text

.

I(dU /[Y r INTIAN ATION AL 7//o/p DESIGN CRITERIA FOR SOIL-STRUCTURE INTERACTION ANALYSIS OF THE REACTOR / CONTAINMENT BUILDING AT GPUN OYSTER CREEK NUCLEAR GENERATING STATION June 1993

(

/

Prepared for:

GENERAL PUBLIC UTILITIES NUCLEAR CORPORATION

,EQE INTERNATIONAL

22 188M Zia88B19 P PDR a

pq l Attachment 1 s;tmg A Dithion of EQE International June 3,1992 EQE Correspondence NO. 50069.00-0-024 Mr. Kenneth L. Whitmore Civil / Structural Manager GPU NUCLEAR CORPORATION 1 Upper Pond Road Parsippany, NJ 07054

Subject:

Transmittal of " Design Criteria for Soil-Structure interaction Analysis of the Reactor / Containment Building at GPUN Oyster Creek Nuclear Generating Station."

Dear Ken:

l Attached please find the subject document for the SSI analysis of the reactor building at OCNGs. This version of the report incorporated your final comments to make it appropriate for GPUN internal documentation and NRC submittal.

It is a pleasure to continue supporting you in this effort.

Sincerely, j%" =

Dr. Alejandro P. Asfura Project Manager EQE Engineering Consultants San Francisco, CA APA: neb Enclosures CC: Dr. S.C.. Tumminelli /

Dr. R.P. Kennedy EQE Engmeenng Consultants 44 Montgomery Street. Smte 3200 . San Francisco, CA 94104 . Telephone (415) 989-2000 . FAX (415) 362-0130

e TABLE OF CONTENTS Paae .

1. INTRODUCTION . .. .. ... .. .. .... . . . . . . . . . . . . . . . . . 1-1
2. SEISMIC INPUT .. . . . .. . . . . . . . . . 2-1
3. SOIL PROFILES . . . .... . . . . ...... . . 3-1
4. STRUCTURAL MODEL .. .. . .. . .. . 4-1 +
5. SSI MODEL AND ANALYSES . . . .. 5-1 5.1 Sensitivity Analyses .. . . 51 5.1.1 Soil Layer Discretization . . . . . . . . . 5-9 5.1.2 Foundation Rigidity . . . . . .. 5-13  ;

5.1.3 Unbonding of Soil and Structure / Foundations .. 5-18 5.1.4 Variation of Soil Properties . .. .. . . . . .. .. 5-23  ;

5.2 SSI Model . . .. . . .. . . . ... 5-27 5.3 SSI Analysis Typical Results . . . . . . . . 5-27 ,

6. GENERATION OF IN-STRUCTURE RESPONSE SPECTRA . .. . ... .. 6-1
7. REFERENCES .. . . . . . . . .. . . . .. 7-1  ;

i TABLES Pace 2-1 Site Specific Response Spectrum, 5% Damping.. . . . . . . . . . . . . . . . . . 2-5  ;

2-2 OCNGS Ground Motion. Power Spectral Density (PSD) Functions.. . . 2-9 2-3 Frequencies for Ground Motion Response Spectra Comparison . . . . . . 2-19 2-4 Comparison of Response Spectra, Horizontal Component 1, 5% Damping.. .. 2-20 2-5 Comparison of Response Spectra. Horizontal Component 2, 5% Damping... . 2-21 ,

2-6 Comparison of Response Spectra, Vertical, 5% Damping. . .. . ... .. 2-22 2-7 Correlation Coefficients.. .. . . .. .. . 2-23 2-8 Strong-motion Duration... . . . .. ... ... . 2-24 2-9 Comparison of PSD Functions. Horizontal Components 1 and 2 .... .. . .. 2-25 2-10 Comparison of PSD Functions. Vertical Component . . .. . . . 2-27 31 Best Estimate of Low Strain Soil Properties .. . .. ... . .. . 3-3 Soo69 o3/oCNGS tc iii

r 8- 5 TABLES (Cont.)

i, 3-2 Shear Modulus Reductions and Equivalent Damping Ratios =

at Selected Strain Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 .

4-1 Damping Ratios of P.,ruons of the OCNGS Reactor Building .. . . . . . . . . . . 4-2 4-2 Composite Modal E,amping Ratios . .... . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 5-1 High-strain Shear Moduli (Ksf) for the OCNGS Site l r

SHAKE Results for Sensitivity Analyses .. ... . . . . . . . . . . . . . . . . 5-3 5-2 High-strain Material Damping Ratio for the OCNGS Site  ;

SHAKE Results for Sensitivity Analyses . . . . . . . . . . . . .. 5-4 6-1 Locations for Floor Response Spectra Generation . . . . . . . . . . . . . 6-3 i

FIGURES ,

2-1 OCNGS Site Specific Response Spectra, Horizontal Component, 5% Damping . . . . . . . . . . . . . . . .... . . . .. . . 2-29 t

2-2 OCNGS Site Specific Response Spectra, Vertical Component, 5% Damping . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30 e 2-3 OCNGS Ground Motion, Power Spectral Density Function, i

Horizontal Component, 84% NEP . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31 2-4 OCNGS Ground Motion, Power Spectral Density Function, [

Horizontal Component, 84% NEP . ... ....... . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32 2-5 lliustration of Procedure of Determining Equivalent Stationary Duration.. .. 2-33 2-6 Artificial Acceleration Time History, Horizontal Component 1. . ... ... ... .... 2-34

{

2-7 Artificial Acceleration Time History, Horizontal Component 2..... ............... 2-35 j 28 Artificial Acceleration Time History, Horizontal Component .. . .... . . . . 2 36' 2-9 Comparison of Response Spectra, Horizontal 1, 5% Damping.... 2-37 l

2-10 Comparisor' c' Response Spectra, Horizontal 2, 5% Damping......

. . . . . . 2-38  !

i 2-11 Comparison of Response Spectra. Vertical. E 1 'ampinc . . . . . . . . . . . . . . . . . . 2-39 2-12 Arias intensity, Horizontal 1. . . . .. . . . . . . .. . . . . . . . . . . . 2-40 $

2 13 Arias Intensity, Horizontal 2 .. .. . .... .... . . . .. .... . . .... ..... 2-41 2-14 Arias intensity, Vertical., ... .. . . . . . . . . . . . . ,. . ... .. . ... .. .. ...... 2 42 2-15 Comparison of PSD Functions, Horizontal Compor, int 1. . . . . . . . . . . . . . . 2-43 .t 2-16 Comparison of PSD Functions, Horizontal Component 2 . . . . . . . . . . . . . . . . 2-44 i 50069-03/oCNGS tc iv Ib b h Sh

FIGURES (Cont.)

2-17 Comparison of PSD Functions, Vertical ... ... . . . ... .... . . .. ... ... . .. 2-45 3-1 General Soil Profile at the Reactor Building Site.  ;

Low Strain Properties ... .. . . . . . . . . . . . . . . . . . . . . . 3-5 i t

3-2 Recommended Shear Modulus Reduction and Damping Curves. ... ... .. .... . 3-6 ,

4-1 3-D Coupled Model. Oyster Creek Reactor Building . . . . . . .... ... 4-4 '

5-1 Comparison of SSE Ground Response Spectra: Sensitivity Studies vs.

Approved SSRS . . . . . . . . .... .. .. . . . . . . . . . . . . . . . . 5-5 5-2 Comparison of in-structure Response Spectra,3-D vs. 2-D Analysis a) Node 4 . .. .. .. . . . . . .. . .. .. 5-6 *

(b) Node 7 .. . . .. . . . . . . , . .. . . . . 5-7 (c) Node 58 . . . . . . . .. . . . . . . . .. ... .. ... . . . . . . . . . . . . 5-8 ,

5-3 Comparison of in-structure Response Spectra, Soit Discretization Study.

a) Node 4 . .. .. . . . . . . .. .. ... . .. 5-10 b) Node 7 . . . . . . . . . . . . . . 5-11 c) Node 58 . . . . . . . . .. . .. .. 5-12  !

5-4 Flexible and Rigid Foundation Models . . .. . ........ . . . . ... .... 5-14 5-5 Comparison of in-structure Response Spectra, Flexible vs.  ;

i Rigid Foundation  :

a) Node 4 ... .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . 5-15 '

b) Node 7 .. . ... .. . .. . . . . . .. ...... . . . . .. . 5-16  !

c) Nod e 5 8 . . ... . .. .. .... . . . . . . . . .. .... . . . . . . . 5-17 5-6 Models for Foundation Unbonding Study . . . . . . . . . . . . . . . . . . . . . . . . . 5-19 5-7 Comparison of in-structure Response Spectra, Foundation Bonding a) Node 4 .. . . . . .. . . . . . . . . . . . . . . . . .... .... 5-20  ;

b) Node 7 . . . . . . ... . . . . . . . .. . 5-21 f

c) Node 58 . ... .. . . . . . . .. . . . . . . . . . . 5-22 5-8 Comparison of in-structure Response Spectra. Soil Property Variations '

and Fully Unbonded Case  :

a) Node 4 . . . . . . . . . . . . . . . . .. . . . . . . ... . . . ... . 5-24 b) Node 7 . . . . . . . . . .. . . . .. . . . .. 5-25 l c) Node 58.. . . . . . . . . . . . . . . ... . .. . ... .. . . . . . . . 5-26 59 in-structure Spectra from Recommended SSI Model . . . . . 5-28 1

l g.. .no Soo69 o3/oCNGs-tc V g

t ,

f APPENDICES A. 3D LUMPED MASS STRUCTUF AL MODEL ,

B. CONFORMANCE TO REGULATORY REQUIREMENTS ,

C. COMPUTER PROGRAMS  !

4 i

I t

d 1 ,

s I

I l

l 1

1 50069-03 /OCNGS-tc vi %29 e518 9

7

,-.---.r- - , , -

1. INTRODUCTION The approach to generate in-structure response spectra for the Oyster Creek Nuclear Generating Station (OCNGS) reactor building is presented here, in broad terms, the approach is to perform three-dimensional soil-structure interaction (SSI) analyses of the building. To do so entails:  ;

1

= Modelina the Seismic Inout. Site specific response spectra (SSRS) have been developed (Reference 1) and approved I (Reference 2) for the Oyster Creek site. The SSRS define three  ;

components of motion (two horizontal and the vertical direction). The SSI analysis proceeds by developing artificial ,

t time histories whose response spectra envelop the SSRS, are statistically independent, and whose power spectral density functions exceed those of the recorded motions from which the site specific response spectra were developed.

= Modelino the Soil. Low strain soil properties were derived based on soil boring data at the site. The high strain soil profile was calculated based on those low strain properties. Input  ;

data for the calculation of the high strain properties is comprised of the seismic input described above, the low strain soil profile, and relationships between shear strain and shear  ;

modulus, and material damping. Uncertainty in the soil profile was taken into account by considering a range of low strain soil properties, calculating lower bound and upper bound high l strain soil profiles, and performing SSI analyses for all three  !

(best estimate, lower bound, and upper bound).

= Modelino the Structure. A detailed lumped mass model of the l OCNGS reactor building was constructed and used in the SSI analyses.

= Modelina the SSI. The SSI model is developed from the soil profile, foundation geometry and stiffness, and structure model. Several sensitivity studies were performed to make modeling decisions including foundation rigidity, soil-50069-03/oCNGS-1 1-1

1 structure / foundation separation, finite element discretization, and frequently cutoff.

= Performino SSI Analyses. SSI analyses are performed for the tiiies soil profiles (best estimate, lower bound, and upper bound). Time history analyses are performed. in-structure responses (time histories) are calculated at floor centers of mass and extreme locations, e.g., at the four corners, in-structure response spectra are calculated, enveloped, and peak broadened.

This report documents the approach including assumptions, input data, SSI methodology, sensitivity studies, and final SSI models selected. In-structure response spectra at selected locations are presented as representative results. All work is performed in compliance with the US Nuclear Regulatory Commission (NRC) requirements.

This report is organized as follows. Section 2 describes the seismic input. Section 3 describes modeling the soil profile (Iow strain, high strain, and variability). Section 4 presents the structure model. Section 5 presents the SSI model, sensitivity studies, and representative in-structure response spectra. Section 6 itemizes the two phases of the program. Appendix A contains details concerning the structure model. Appendix B itemizes conformance to regulatory requirements. Appendix C presents computer programs used.

Before proceeding, it is important to note that the seismic input presented in Section 2 is derived for the final approved site specific response spectra for the Oyster Creek site. It will be used in the final SSI analyses unless it requires slight increases to meet the 60% rule as described in Sections 2 and 3. Development of the high strain soil profiles using SHAKE, performance of the sensitivity studies, and calculation of representative in-structure response spectra were done with a minimally different definition of the site specific response spectra. This slightly different SSRS was used to maintain schedule while the Oyster Creek SSRS were being reviewed by

, NRC. The development of high strain soil profiles will be re-performed for the final SSRS. However, the results of the sensitivity studies are considered final since the minimal difference in the site specific response spectra will have no effects on the conclusions of the sensitivity studies. Finally, the representative in-structure response spectra are, also, for the earlier site specific response spectra. However, only minor changes are expected for the final SSI analyses.

50069-03/oCNGs-1 1-2

i l

l l

l

2. SEISMIC INPUT Site specific response spectra (SSRS) developed by Weston Geophysical Corp. ]

(Reference 1) and approved by US NRC (Reference 2) define the safe shutdown earthquake (SSE) at the Oyster Creek site. i The 84% nonexceedance probability (NEP) horizontal and vertical site specific response spectra at 5% damping define the SSE. The horizontal SSRS is based on a 67 record data set; the vertical SSRS is based on the corresponding 34 record data set, as described in Reference 1. Three components of motion, two horizontal and i the vertical, define the SSE. Figures 2-1 and 2-2 show the SSE design ground response spectra for the horizontal directions and the vertical direction, respectively.

The peak ground accelerations (PGAs), noted on Figures 2-1 and 2-2, correspond to the 84% NEP of the data sets. Digitized values of the SSRS are contained in Table 2-1. Companion to the response spectra are the 84% NEP power spectral density (PSD) functions of the data (Reference 1). The PSD functions are plotted in Figures  ;

2-3 and 2 4. Table 2-2 contains the digitized values.

i Three artificial time histories (two horizontal components and the vertical  !

component) are generated for the SSI analyses. The response spectra.of the

{

artificial time histories envelop the SSE target spectra in compliance with the USNRC Standard Review Plan (SRP) Revision 2 Section 3.7.1., (Reference 3). The response spectra are calculated at frequencies, which comply with the SRP's recommendation that any given frequency is within 10% of the previous one. Table 2-3 itemizes  ;

='

these frequencies. The SRP enveloping criteria states that no more than five points shall f all below, and no more than 10% below the design response spectrum. The .

response spectra generated from the artificial time histories meet this criteria. The time histories are shown in Figures 2-6 to 2-8. The comparisons of their spectra to  ;

the target spectra are shown in Figures 2-9 to 2-11 and the numerical comparison in Tables 2-4 to 2-6.

L The three components of the artificial earthquake are statistically independent.

Statistical independence is measured by correlation coefficients calculated for pairs of time histories. A correlation coefficient equal to or less than 0.16 demonstrates l 1

i S0069 03/oCNGs-2 2-1

- statistical independence (Reference 3). The correlation coefficient (normalized '

covariance) is defined as: i t

Cij = El(ai-m;) (aj-mj)]/S;S, Where: Cji = Cross correlation coefficient El ] = Denotes expectation f

a;,aj = Acceleration time history i, j mi,mj = Mean of all acceleration points in time history i, j Si,Sj = Standard deviation of all acceleration points in time history i, j n

mi = 1/n P aj(k)  !

k=1 n

Si = 11/n (a;(k)-mi)231/2 i

n El(ai-mi)(aj-mj)] = 11/n T (a;(k)-mi)(aj(k)-mj)]  !

Where ai(k) denotes the acceleration values for time history i, and n is the number of time points in the time history. The correlation coefficients calculated between the components of the artificial time histories developed for OCNGS are given in i Table 2-7. '

The total duration of the artificial time histories is equal to 15 seconds with strong-motion durations of about 10 to 12 seconds (Table 2-8). A time step of 0.01 second is chosen in the generation of these time histories. This corresponds to a i Nyquist frequency of 50 Hz, which accurately represents earthquake input and

  • 5 response.

The smooth PSD functions of the horizontal and vertical components of the artificial time histories are not lower than 80% of the 84% NEP of the corresponding PSD functions. This criteria conforms to Appendix A of the SRP Revision 2 Section  !

t 3.7.1, (Reference 3) for the verification of PSD functions. '

So069-03/oCNGs-2 2-2 .

-I

.. l PSD functions are defined as (Reference 4):

Sj(f) = l Aj(f)j 2/Td iI

)

Where l Aj(f)] is the amplitude of the Fourier spectrum of the time history and Td is the strong-motion duration. The PSD functions obtained by the expression given above are srnoothed by calculating at each frequency the average of the PSD ordinates in the frequency range 20% of the frequency of interest.

l Aj(f)is defined by T

Aj(f) = aj(t) e -i2 tr ft dt  !

O where T is the total duration of the time history a j (t). The equivalent stationary (strong motion) duration T d or f the time history a j(t) is calculated using the ,

following equations: .

Ej(ti)=

p a 2(t)dt (Arias' intensity) 0 Td= (ti p2 - t i p1)/(p2 ' P1) where Ej (t ip) is denotes the Arias intensity, p1 and p2, pi < p2, are the ratios of -

the cumulative energies Ei (t'p1 ) and F3 (f p2) to the total cumulative energy of the  ;

I I i I entire time history; and t p1 and t p2, t pt < t p2, are the times at which the ratios I

p1 and p2 are reached. The ratios pi and p2 and the corresponding times I p1 and  ;

I i t p2 are selected in such a manner that the cumulative energy function Ej (t p ) over the duration t s = t 'p2 - t'p1 can best be fitted by a straight line (i.e., constant 8

energy buildup) having a constant slope S = [Ei (tI p2 ) - Ej (tI p1/(t I p2 - tI q ). The equivalent stationary duration Td for the entire time history as determined from the equation above is, thus, the duration over which the total energy of the time  ! history is built up from 0 to 100% with the constant slope S. This procedure for calculating Td si illustrated in Figure 2-5. The Arias' intensity and the Tds calculated for each artificial time history are shown in Figures 2-12 to 2-14. The comparison l between the PSD functions calculated for the artificial time histories and the target 50069 03/oCNGs-2 2-3 { {h ,

       . . . -           . _ . . .  . _ . .    = -            .   .       .                .           .-
                                                                                                                )

i

                                                                                                              .)

PSD functions is given in Tables 2-9 and 2-10 and in Figures 2-15 to 2-17. This comparison shows that the PSD functions of the artificial time history generally envelop the target PSD functions and that they are higher than 80% of the target in j all frequency ranges. Thereby, it is demonstrated that the artificial time histories have the proper energy content at all frequencies of interest. .; The time histories calculated for OCNGS using the procedure described in this i section may be modified to meet the requirement that the deconvolved time histories at the foundation level produce response spectra that are not less than 60% of the target surface response spectra (Reference 3). These modified time histories, if  ! created, will meet all the applicable regulatory criteria. i f b

                                                                                                               )

i t l 3 i I f L

1. >

50069-03/oCNGs-2 2-4 ,

Tabla 2-1

,                     Site Specific Response Spectrum,5% Damping 5

(a) Horizontal Component Frequency Acceleration Hz g , 0.50000 0.03361 0.52632 0.03705 , 0.55556 0.04012 0.58824 0.04483 0.62500 0.04994 0.66667 0.05574 0.71429 0.06574 0.76923 0.07747 0.83333 0.08481 0.90909 0.09173 1.00000 0.10772 1.05263 0.11875 1.11111 0.12877 1.17647 0.13953 1.25000 0.15251 1.33333 0.16732 1.42857 0.17838 1.53846 0.19702 1.66667 0.21462 . 1.81818 0.24000 2.00000 0.26636 2.08333 0.27578 > 2.17391 0.28359 2.27273 0.28776 ' 2.38095 0.28764 2.50000 0.29304 l 2.63158 0.31213  ; 2.77778 0.33616 2.94118 0.35395 3.12500 0,36626 3.33333 0.38183 3.57143 0.39737 3.84615 0.40914 4.16667 0.41016 4,54545 0.42174 5.00000 0.43667 5.26316 0.44175 5.55556 0.43561 5.88235 0.42979 6.25000 0.43320 6.66667 0.43520 7.14286 0.41074 7.69231 0.39588 8.33333 0.37658 9.09091 0.37065 50069-03/OCNGS-2 2-5

Tebla 2-1 Site Specific Response Spectrum,5% Damping (Cont.) . i I (a) Horizontal Component Frequency Acceleration Hz g 10.00000 0.36028 10.52632 0.34893 ' 11.11111 0.33566 11.76471 0.31780  ; 12.50000 0.30503 13.33333 0.28578 14.28571 0.26956 , 15.38462 0.25825 16.66667 0.24375 18.18192 0.22989 > 20.00000 0.21676 20.B3333 0.21198 21.73913 0.20778 22.72727 0.20397 23.80952 0.20019 25.00000 0.19771 r 5 i t f I 2-6 50069-03/OCNGS-2

                                                                          \

i e

p ,- l Tcbla 2-1

 .                     Site Specific Response Spectrum,5% Damping (Cont.)

(b) Vertical Component 1 Frequency Acceleration Hz g 0.27778 0.00567 0.29412 0.00626 0.31250 0.00684 0.33333 0.00774 , 0.35714 0.00893 1 0.38462 0.00981 0.41667 0.01140 > 0.45455 0 01259 0.50000 0.01423 0.52632 0.01527 ) 0.55556 0.01673 0.5P824 0.01817 0.62500 0.01962 j 0.66667 0.02248 0.71429 0.02524 l 0.76923 0.03095 i 0.83333 0.03757 0.00909 0.04399 1.00000 0.05090 1.05263 0.05386 , 1.11111 0.05750 i 1.17647 0.06150  ; 1.25000 0.06198 1.33333 0.06497 1.42857 0.06920 . 1.53846 0.07119

1. E i.6 67 0.06862 1.81913 0.06715 2.00000 0.07318
                                . 09333                    0.07751 2.'7391                    0.08584 2.27273                    0.09743 2.3E095                    0.10417            i 2.50000                    0.10950 2.*'.3158                  0.12023 2 77779                    0.13092 2.04118                    0.13621 2.12500                   0.14174 J.33333                   0.15438            .

2.57143 0.15704 3.84f15 0.15672 e i 166e~ 0.16607 41 E 0.17098 5.00000 0.18075 5.26316 0.18284 55556 0.18671 5.83235 0.19298 6.25000 0.19834

  • t.66667 0.20681 SOO69-03/OCNG5 2 2-7

4 Tcbla 2-1 Site Specific Response Spectrum,5% Damping (Cont.) - t (b) Vertical Component i Frequency Acceleration ' Hz g 7.14286 0.22389 7.69231 0.25358 ' 9.33333 0.24901

                                   .09091             0.23101
                            '0.00000
                             .                        0.21148
                            .0.52632                  0.20475
                            ... 1111                  0.19203                i
                            .1.70471                  0.17886                f 12.50000                  0.17523 13.33333                  0.17829 14.28571                  0.16808 15.38462                  0.15810 0.15373
                            '6.66667 18.18182                  0.15148                ,

20.00000 0.14044 20.83333 0.13798 ,

                             ^1.73913
0.13482 22.72727 0.13182 ,

23.80952 0.12992

  • 25.00000 0.12842 i

{ 5 t i ~ SOO69-03/OCNGS 2 2-8  ! l f I i

l 1 l i i Table 2-2

    .                    OCNGS Ground Motion, Power Spectral Density (PSD) Functions (1 of 5)

(a) . Florizontal C:ornponerrt , I (Logcmbsec1 3 2 (1.00 cm /sec 1 3 (Log cm 2/sec 1 3 Rog em Ilsec 3) Frequency Fre quenc y Frequency Frequency H2 H2 84% NEP Hz 84% NEP H2 84% NEP l 84 % NEP

            .?44i        -0.'72355           4 t .; ,      . 23o3         3.02134               4963     4.-u53.                 1236
        ^ 04883
          .              -0.55887         1. a s e;6           OS99:         3,0h!76         ,   . cit 7    4.6;42t            2.01078          i
        . 07324          -0.39430           .5136;         e 0t Ue           1. 0 7 t 17     2.14416        4.439t'            2.01018 O.09766          -0.29445         1.53e;9          2.07496           3.1005v         2.14358        4.66307            2,0082*

0.1220' -0.21851 1.567'. 2.18195 3. 25.' 2.14334 4.te 0 7 2.00569 C.14t48 +0.02457 1.58f41 2.06982 3.14941 2.14452 4. 71;9; 2.0020I 0.17090 D.14946 1.61133 . 09348 3.11381 2.14656 4.7363.1 1.99?56 i C.19531 C.28600 1.63$14 2.10460 3.19524 2.14891 4. >60 74 1.94367

 'I G.21973          0.34978         1.66G16          2.10956           3.227te         2.15111        4.78516            1.99861        [

L.24414 0.38124 1.664t7 2.;;200 3.24707 2.15310 4.80957 1.98344 0.26455 c.4:994 1.70e98 2,11943 3.27146 2,15a05 4.83398 1,97923 C.29291 0.53754 1.73340 2.12396 3.29590 2.15174 4.6S840 1.97300 0.31738 0.64842 1,75731 2.12654 3.32031 2.15069 4.es291 1.90849 3.34180 0.76347 1.78221 . 13070 3.34473  ;.1493s 4.90123 1.96312 C.36621 C.85062 1.02664 2.136?? 3.36914 2.14771 4.91164 T.95795 L.39063 0.92727 1.e;1c5 2.13501 3.39355 2.14587 4.95605 1.95362 C.41504 0.99210 1, g5. 4 t 2.13813 3.41797  ;.14566 4.98047 1.94957 9.43945 1.05647 . 879e8 2.14020 3.44238 2.14420 3.c049e 1.94615 0.46387 1.12106 1.90430 2.13852 3.46680 2.14217 5.02930 1.94265 0.48828 1.19569 1,9267; 2.13520 3.49121 2.1t867 5.05171 1.93942 0.51270 .25631 1.9:313 2.14050 3.51563 203438 5.07111 1.93576 0.53711 .31768 1.97754 2.14.14 3.54004 2.11215 5.10254 1.93146 0.56152 .36944 2.00.95 2.14504 3.56445 2.12941 5.12692 1.92690 . C.59594 ,40858 2 ;2e37 2,14772 3.58887 2.12777 5.15.37 1.92160 0.61035 . 44679 2.C3078 2.34871 3.61328 1.12667 5.17578 . 91632 0.63477 1.49710 2.015;0 2.14626 3.63710 2.12515 5.200;0 1.91121 0.65919 1.)(413 2,0 age 1 2.14611 3.6621'. 2.;2233 5.224f1 1. 9C 615 0.68350 1.39092 2,17 4r 2 2.14401 3.66652 2.?1960 5.249J2 1.90256 0.70801 1.62752 9.3e=44 2.13953 3.71094 2.A1372 5.27141 1.89865 r C.73242 3.64101 3.73535 2.172as 2.3342; 2..C851 5.29783 1.89482 O.75684 1.67134 2.19!27 2.12840 3.75977 2.10359 5.32221 1.89122 0.78125 1.69693 2 2216s 2.12461 3.78418 2.09989 5. 34 6+ 8 1.86609  ; 0.00566 1.71980 2.'4(09 2.12229 3.90859 2.09492 5.37109 1.68570 ' O.93D09 1.74120 2.2,*51 2.12014 3.83301 2.J8986 5.395'1 1.86309 0.85449 1.75942 2.29492 2.11861 3.85742 2.08273 5.41992 1.88046 6 0.e7891 1.77651 2.31934 2.12196 3.88184 2,07794 5.44434 1.s77s4 0.90332 1.79770 2.34375 2.12273 3.90625 2.07559 5.46875 1.87531 O.92773 1.91092 2.36816 2.12005 3.93066 2.07.302 5,49316 1.87512 j O.95215 1.82264 2.39250 2.1157C 3.95500 2.01C55 5.51758 1.67320 . 0.97656 1.84517 2.41699 2.11031 3.97949 2.06152 5.54199 1.07161  ! 1.00098 1.96132 2.44141 2. 1070 4.00391 2.06468 5.56641 1,07037 1.02539 1.87300 2.s6582 2.10182 4.02832 2.06301 5.59082 1.66831 t 1.04980 1.09860 2.490;) 2.10569 4.C5273 2.06133 5.61523 1.86573 1.07422 1.90458 2,51465 2.10599 4.07715 - 2.05986 5.63945 ~ 1.66267 i 1.09863 1.91464 2,53906 2.10713 4.10356 2.05634 5.66406 1.95945 1.12305 1.93316 2.56148 2.11349 4.12598 2.D5438 5.66048 1 85650 [ 1.24746 '.94662 2.58789 2.11457 4.15039 2.05451 5.71289 1.85421 1.17186 1.96420 2.61230 2.11456 4.11400 2.05272 5.73130 1.85222 . . 1.19629 1.97238 2.636?? 2.11603 4.19922 2.05072 5.76172 3.85035 [ ] 1.22070 1.96916 2.66113 2.11921 4.22363 2.04823 5.18613 1.84845 1.24512 1.97633 2.68555 ' 12429 4.24805 2.04505 5.e1055 1. g i f.2 5 1.26953 1.93812 2.70996 2.1'702 4.27246 2.04309 5.83446 1.84349 1.29395 2.00311 2.7343g 2.13006 4.29688 2.04029 5.85936 1.84068 i 1.31836 2.01607 2.75619 2,13359 4.32129 2.03767 5.46179 1.83732 1.34277 2.02522 2.78320 2.13709 4.34570 2.03545 5.90820 1.03322 [ 1.36719 2.02894 2.60762 2.14026 4.37012 2.03307 5,93262 1.82892 1.391f0 2.03293 2.83203 2.14404 4.39453 2,03241 5.95703 1.82481 t 1.41602 2.03943 2.95645 2.14780 4.41895 2.02913 5.98145 1.82221 1.44043 2.04716 2.88086 2.15:2? 4.44336 2.02566 6.00586 1.01800 2.90527 2.15105 4.46777 2.02256 6.03027 1.01382 2.92969 2.15328 4.49219 2.01964 6.C5469 1.80930 2.95410 2,15252 4.51660 2.01926 6.C791D 1.80407 l 2.97332 2.15045 4.54102 2.01695 6.10352 1.80073 3.00293 2.14752 4.56543 2.01441 6.12?93 1.19529 k I m t

Tebla 2-2 OCNGS Ground Motion, Power Spectral Density (PSD) Functions (2 of 5) . (a) Horizontal Component 1 Log cm2 !ser38 (Log cm 2/sec 31 l Log em2 /sec3) (Log em 2/sec 3) Frequency Freauency Frequency Frequency H2 84 % NEP HZ 84% NEP Hz B4 % NE P H2 84% NEP t.?t>u 79239 7. 7; 4s4 >> 077it i 34324 10.s3st4 1.14449 t , M 76 7.'3926 . ' 127 ,301/6 1.14070 10.86426 1.3419I i.79tti 7.7E367 1.54945 f.32617 1.13809 10.96Rt7 1.13889 o.20ll' 78116 7.7se09 '.54773 v.35059 1.33145 10.91309 1.13581 6.27tt9 1.17714 7.6;250 1.54:t1 .375.0 1.33260 10.937tc 1.13261 6.25000 1.77272 7.83691 1.54339 v.19941 1.32994 10.96191 1.12970 6.21441 1.76869 1.12699 6.29883 16562 7.06133 1.14140 v 42383 1.32651 10.9st33 7.88674 1.53671 9.44924 a.32307 11.01074 1.12320 6.32324 1.76259 1.11903 6.34766 1. 7 $ 928 7.91016 1.53593 9.47266 1.31950 11,03516 7.93457 1.$1291 9.49707 1.31597 11.05957 1.11468 6.37201 1.75637 7.95B9P 1.52988 9.52148 1.31272 11.C0399 1.110S4 6.3'9649 1.15286 7.48140 1.52661 9.54590 1.30872 11.1C640 1.10794 6.42090 1.74881 ~ 8.00181 1.32289 9.57031 1.30490 11.13281 1.10432 6.44531 1.14474 6.46973 1.74171 e,c322) 1.51096 9.59473 1.30129 11.15723 1.10092 6.49414 1.73779 p.03664 1.51571 9.61914 1.29175 11.18164 1.09735 6.51655 1.13332 8.0810$ i.21163 9.6435$ 1.29509 11.2060% 1.09364 6.54291 . 72979 9.10h41 1.10714 9.66797 1.29205 11.23047 1.09068 6.56738 1.72402 0.124eg 1.50230 9.69238 1.29901 11,25438 1.08691 6.59150 1.72055 p.15430 1.49734 9.116sa 1.28597 11.27930 1.00326 6.61621 . 13627 8.17571 1.49516 9. 4121 . 28304 11.30371 1.07974 t.64063 1.71233 8.23313 1.49039 9.76563 1.26090 11.32813 1.07617 6.66574 1.70062 6.2/154 1.48hS4 9.t9004 1.27821 11,35254 1.07321 6.68945 1.70523 8.25195 1.48055 9.8144$ 1.27572 11.37 95 1.06948 6./1387 1.70229 8.21637 1.47539 9. 918t 7 1.27322 11.40137 1.06564 6.13928 1.69841 8.30C10 1.47310 9.96328 1.??046 11.42578 1.06169 4.76270 1.69377 8.32520 4.46742 L99770 1.26841 11,45023 1.05764 6.78721 1.60830 0.34961 1.46319 9.91211 1.26604 11.47461 1.05479 6.811t2 1.68279 0.37402 1.45898 9.93652 1.26315 11.49902 1.05074 4.83594 1.67950 8.39544 1.45500 9.96044 1.2596S 11.$234a 1.04640 6.96035 1.67402 9.422s3 1.45260 9.98535 1.25599 11.54733 1.04185 6.90477 1.66043 8.44727 1.44927 10.00917 1.25411 11.57227 1.03663 6.90915 1.66260 S.4716s 2.44641 10.03418 1.25030 11.59669 1.03393 4.93359 1.65671 3.49609 1.44325 10.05859 1.24672 11.62109 1.02861 6.95801 1.65376 B.52051 1.43935 10.03301 1.243Se 11.64S51 1.02357 6.98242 1.64795 e.54492 1.43663 10.10742 1.24069 11.66992 1.01875 1.00604 1.64242 8.56934 1.43206 10.13104 1.23839 11.69434 1.01421 7.03125 1.63747 8.59375 1.42725 10.15625 1.23549 11.71e75 1.01213 1.0$$66 1.63334 8.61816 1.42269 10.18066 1.23300 11.74316 1.00907 7.00000 1.63014 e.64250 1.41831 10.2050s 1.23056 11.16759 1.00449 1.1C 4 4 9 1.62605 8.66699 1.41605 10.22649 1.22700 11,79199 1.00122 7.12691 1.62219 8.69141 1.41224 10.25391 1.22493 11.81641 0.99805 7.15332 1.61842 8.11582 1.46864 10.27832 1.72206 11.04082 0.99549 7.17773 1.61463 6.74023 1.40532 10.30273 1.21997 11.66523 0.99193 7.20215 1.61014 8.76465 1.40219 10.32715 1.21555 11.se96S 0.98818 7.22656 1.60726 a . 78 90 6 1.40080 10.15156 1.211BS 11.91406 0.96447 7.25090 1.60397 8.81348 1.39730 10,31$9e 1.20964 11.g3848 0.98009 1.27539 1.60057 s.s3789 1.39336 1c.40039 1.20570 11.962s9 0.97796 7.29960 1.59606 0.86230 1.38912 1L.42400 1.20155 11.90730 0.97453 7.32422 1.59412 8.09672 1.38*97 IP.44922 1.19734 12.01172 0.97109 1.34063 1.59086 8.91113 1.38303 10.47363 1.19304 12.03613 0.96775 7.37305 1.18612 8.93555 1.31928 10.49805 1.19054 12.0605$ c.96468 7.39746 1.58575 8.9$996 1 37599 10.S2246 1.1'623. . 12.00496 0.96249 7.42186 1.58332 0.99438 1.37272 10.$4688 1.1919 V 12.1093e 0.95951 7.44629 4.59146 9.00879 1.36969 10.b7129 1.17754 12.13319 0.95616 7.47070 1.57637 9.0332D 1.36804 10.59570 1.17331 12.15920 0.95244 7.49512 1.51460 9.05762 1.36497 10.62012 1.17101 12.13262 0.94849 7.51953 1.b7059 9.08203 1.36204 10.64453 1.16729 12.23703 0.94658 7.54395 1.56694 9.10645 1.35918 10.66875 1.16421 12.24.es 0.94232 7.56836 1.56444 9.13086 1.35640 10.69336 1.16145 12.25506 0.93775 1.3$464 10.71177 1.15882 12.28027 0,93320 7.69277 1.56132 9.15527 7.61719 1.55950 9.17969 1.35222 10.74219 1.15637 12.3D469 0.92888 1.64160 1.55632 9.20410 1.34906 10.16660 1.15372 12.32910 0.92643 7.66602 1.55466 9.22BS2 1.34746 10.79102 1.15070 12.35352 0.92175 7.69043 1.55321 9.25293 1.34493 10.81543 1.24757 12.37793 0.91109 soocs wocncsa 2-10 [B g 5l l

                                                                                                                                              .    ..     \

9 l Table 2-2 l' . OCNGS Ground Motion, Power Spectral Density (PSD) Functions (3 of 5) (a) Horizontal Component (Log cm 2/sec 3) (loo cm2/sec ) (Log cm2 /sech (Log cm 2/sec 3) Fre quency Frequency f re quency Frequency H2 84% NEP H2 84% NEP H2 B4 % NEP H2 84% NEP

2. W 3C . 0 2 6L I n n c. , . , , ,
                                                                                       'a n     0.4eL i      11.,,3,4           -.2'988 4 7 t> # t         . d ?}     13.9892*                             It 5:11t      0.476i7      g7,;;4pg           ..D6%

2.43117 . 90562 14, c l it? .'eiq3 33;g 15 3)t; 0,473* 17,13967 0 27434

         .2.475t9             3 v;137        14,c39:9     ;[ ,g, 9 9 :            15. 6 L :9    0.469t4      17.16309           0*27105 4 53000            3.89755       14.0011           6Wg                i t .05 00    C . 4 615 *. 17,13753           0.26941
         '.2.52441             0,89416       14.0869'     O. N 6)                 15 64941       0 46371     17,;1191           L26751 12.54693              0.69391       14.11131      ,.65940                25.67383       0.45985     17.23633           0.26486 12.51324              0.8eB69       ;4.13574     g , m; ,                15,69824      0.4 % 27     17.26:34           0.26222
         '2.59766 g.gs557       14.16016      g,g5359                15.72266       C.02H       1 L26516           0 + 2M I?.62207              0.08???       14.19457      g,gg;3g                15.74707       3.451C5     17,30957           0.25716 j         I L 6%48              0.g7643       14,;;g99      0.64?t6                1L 71148       C.44758     17.33390           025528 12.67090              0.8 423       14.23340                             IL 79590       0415     17 35343           0.25264 i

C.64416 l 12. 6 M 31 0.8*212 14.25791 15.82031 0.44080 17.36281 0.2 4 H1 0.64151 12.11973 0.86757 14.26223 g ' g g g4 7 15.84473 0.43718 11.40723 0.24700 l 12.74414 C.86318 14.30664 - 15.66914 0.43541 17.41164 0.24413 12.16835 0.85024 14.331C5 [6368, 15 89355 0'43159 17.456C5 0 24207 63449-12.79297 ': . 8 5 % 8 14.33541 g,g3135 15.91797 0.42771 17.46047 0.23 % 6 12.81730 0.35330 34,379qe ggg IL 94738 0.42392 17.50469 0.235M 12.84160 0. 34 9 7a 34,4:430 15.96680 0.42051 17.5293C 0.23208 0'62659 0:228M l 12.86621 C.e4632 14.42871 15.99121 0.41840 17.55311 ! 2. e 900 C.e4296 14.n ),1 n] g 4 62,38 n, 5 16.01563 C.usC4 I L 578u 0.22614 l 12.91504 0.63948 14.47754 18 04004 0*4118: 17.60254 CJ2225

         ;2.93945                                           0.61843                                                              0.21032 0.66733      14.5C19:       D . 615 %             16.06445       0.4085*      17.62695 2.96387              0 81362     14.52637       g , p 3 71            16.08997       0.4049'      17.65137           0.21449 12.98928                0 82969     14.55;73                             le.1132e       t.40264       17.67519          0.21104 0.0 012                                                              02O 13.C1270                0.82550     14.57520                              16. 0770       C . 3 H13    1b70020 0.60733                                                              0.20651
13. D 3 711 0.82096 14.59961 0.60363 16.16211 C.39587 1*l.72461 13.06152 0,g*880 14.424:2 16.19652 0.39296 17.74902 0.20398 0.59999 13.09594 C.81391 14.648.4 0.59781 16.21094 0.38991 17.77344 Di20179 13.11035 C.60871 14.67245 0.59446 16.23535 0.38771 17.79795 0.19914 13.13477 0.60372 14.69727 16.25971 C.38452 17.92227 0.19796 0.59121 U 15918 0.79900 14.72169 g, $gg ( 16.28415 0.38131 17.8466g 0.19502 13.18359 0.7949 14.14t09 0.58476 16.30859 0.37793 11.87109 Da183*8 i 13.20801 0.79700 14.17051 0.58233 16.3 D01 0.31436 17.69 % 1 0.WH -l 13.23242 0.79759 14.79492 16.35742 0.37217 17.91992 0.18932  :

j 0.57899 13.25684 0.18301 14.81934 16.30184 0.36836 gy,94434 0,18716 0.57528 I L 20125 0.76058 14.84375 g ,5 73 3g 16.40625 0.36450 17.96875 0.18505 13.30%6 0.77925 14.et816 g ,9 7o 9 16.43066 0,36014 M.99316 0.10294  ; 13.33008 0.77534 14.89258 0.56472 16.45505 0.35739 18.01750 0.19074 J 13.35449 0.77234 14.91699 0.56058 16.47949 0.35528 16.04199 0.17826 13.37891 0.16919 14.94141 0.5 % 30 16.50391 0.35231 18.06641 0.17622 13.40312 0.16578 14.96502 16.52912 0.34951 18.09082 0. M 366 0.55157 13 42??3 0.76373 14.9902) e,$ng 16.55273 0.34671 le.DL23. 0.17096 l 13.45215 0.15999 15.02465 16.57115 C.34383 18.13965 0.16801 13.476 % 0.54423 l 0.1 % 22 15.039';6 0,53946 16,60156 0.34151 10.16406 0.16418 I L SM98 0.75258 15.06348 g,5349g 16.62598 0.33837 18.1884g 0.16292 13.52539 0.74937 15.05199 c,g3371 16.65039 0.33505 18.21289 0.15 H 7 l I L 54 96 0 0.15622 0.14706 15.11230 g,5;cjg 16.67460 0.33145 18.23730 [ 13.57422 0.74365 15.13f77 g,gy423 16.69922 0.32766 10.26172 0.15252  ; 13.t950 c.74013 15.16113 0.51986 16.72363 0.32536 16.29613 0.14927 j 13.62305 0.13646 15.135 % 16.74805 0.32189 13.31055 0.14747

0. 51 %e 13.64746 0.73254 15.20996 g,532:4 16.77246 0.31845 18.33496 0.14366 .

13.61188 C.73011 1L23439 c,Soggt 16.79666 0.31519 18.35938 0.13982 13.6 % 29 0.72592 IL 25879 16.62129 0.31202 1g.3831g 0.13621 0.50696 I L 72070 C.72161 15.28320 o,$ogge 16.84570 0.30947 18.40820 0. 0278 13.14512 0.11709 15.30162 g,5ct}i 16.87012 0.30623 16.43262 0.13083 13.76953 0.71233 15.33203 0.49846 16.89453 0.30292 16.45703 0.12751 1 L 7919 5 0.70983 1L35645 0.49611 16.91995 0.29966 1g,4g145 0.1265 13.21936 0.70511 15.39086 c,49439 16.94336 0.29657 1s.50586 0.12169 13.44271 0.70073 15.40527 g ,4 9314 16.9077 0. W 31 16.53027 0. H W 13.96719 0,69620 15.42969 c,493;5 16.99219 0.29133 18.55469 0.11698 13.89163 0.69137 15.45410 g,gg775 17.01660 0.28825 19.57910 0 31432 D 91602 C.65897 15.47852 2004102 0.28520 19.60352 - 0. U 16 3  ; 0.48481 I L 94043 0.68429 15.50293 c.4t306 ILc6543 L 28215 10.62 W 0. W 82 ) l l \ j 1 l 50069403/OCNG5 2 2-11 y:g RMh u.-. l l l-l- l

C' 4 Table 2-2 OCNGS Ground Motion, Power Spectral DensityiPSD) Functions (4 of 5) , (a) Horizontal Component (Loo cm2 /sec3) (Log cm2 /sec3) (Log cm 2f,,c 3) (Loo cm2/sec 31 Frequency Frequency Frequency Frequency H2 84 % NEP H2 84% NEP H2 H2 84% NEP 84 % NEP

     ;8.tt234          P    0012          20 21484                       -0.c9180        a .7 7i34   -0.25049         ;3.339a4      -0.36945 10 . t 4 76        0. 0406            20.23926                       -0,gg570        21.80176    4 .26304         23.36426       -0.37183 18.1011?          0.10129            20.26367                       -0.09790        21.02617    -0.26647         23.38867      -0.37398 18.72559          0.09825            20.28809                       -0.10175        21.85059     -0.26647        23.41339      -0,31597 18.75000           0.09509            20.31250                       -0.10560        21.87500    -0.26968        23.43750       -0,37597 18.F1441          0.09195            20.33691                         0.10943       21.89941    -0.27258         23.46191      -0.37811 18.'99?1           0.08987            20.36133                       -0.11341        21.92333    -0.27521        23.48633       -0.38066 18 82324           0.08664            20.38574                       -0.11561        21.94824    *C.27764        23.51074       -0.38341 18.94760           0.C832t            20.41016                      -0.11964         21.97266    -0.27764        23.53516       -0.38629 19.87207           0.07971            20.43457                       -0.12362        21.99707    -0.28019        23.55957       -0.38629 18.99640           0.07590            20.45898                      -0.12751         12.02148    -0.28278        23.58398       -0.38906 18.9390           0.07385            20.48340                      -0.13116         22.04590    -0.28504        23.60040       -0.39176 18.94531           0.07007            20.50761                         0.13327       22.07031    -0.28692        23.63281       -0.39445 18.96973           0,06643            20.53223                         0,13664       22.09473    -0.28692        23.65723       -0.39705 18.99414           D.06280            20.55664                      -0,13904         22.11914    -0.28857        23.68164       -0.39705 19.01855           0.05933            20.58105                      -0.14285         22.14355    -0.2901)        23.70605       -0.39966 19.04297           0.05723            20.60547                      -0.14500         22.16797    -0.29176        23.73047       -0.40249       I l    19.06738           0.05395            20.62989                         0.14796       22.19238    -0.29327        23.75489      -0.40538 l    19.09180           0.05112            20.65430                      -0.15123         22.21680    -0.29327        23.77930      -0.40008 i

19.11621 0.04863 20.67871 -0.15477 22.24121 -0.29476 23.80311 -0.40808 19.14363 0. C 4 62 4 20.70311 -0.15836 22.26163 -0.29619 23.82813 -0.41043 I I. :6504 3.04119 20.72154 0.16190 22 29004 -0.29755 23.85254 -0.41272 19.18945 0.04169 20.75195 -0.16408 22.31445 -0.29910 23.87695 -0.41491 19.21387 0.03697 20.77631 0.16752 22.33867 -0.29910 23.90137 -0.41708 19.23828 0.03616 20.80078 -0.17087 22.36328 -0.30087 23.92578 -0.41708 19.26270 0.03325 20.82520 -0.17405 22.38710 -A 30271 23.95020 -0.41905 l9.28711 0.03111 20.84961 0.17726 22.41211 -0.30447 23.97461 -0.42077 19.31152 0.02807 20.87402 0.17726 22.43652 -0.30583 23.99902 -0,42243 19.33594 0.t2478 20.89844 0.17953 22.46094 -0.30583 24.02344 -0.42399 19.36035 0.02130 20.92285 0.18201 22.48535 -0.30616 24.04785 -0.42399 19.38477 0.01794 20.94727 0.19412 22.50977 -0.30788 24.07227 -0.42573 19.40918 0.01583 20.97168 0.18147 22.5J418 -0.30941 24.09668 -0.42766 19.43359 0.01253 20.99609 0.18747 22.55859 -0.31110 24.12109 -0.42963 19.45801 0.00928 21.02051 0.19046 22.58301 -0.31110 24.14551 0.43117 19.48242 0.00597 21.04492 0.19330 22.60742 -0.31289 24,16992 -0.43111 19.50684 0.00236 21.06934 -0.19572 22.63184 -0.31460 24.19434 -0.43220 0.00033 29.53125 21.09375 0.19776 22.65625 -0.31621 24.21875 -0.43326 19.55566 -0.00339 21.11816 -0.19776 22.68066 -0.31788 24.24316 -0.43469 19.58006 -0.00711 21.14258 -0.19971 22.70508 -0.31788 24.26758 -0.43632 19.60449 -0.01063 21.16699 -0.20165 22.72949 -0.31950 24,29199 -0.43632 19.62891 -0.01392 21.19141 -0.20374 22.75391 -0.32098 24.31641 -0.43794 19.65332 -0.01604 21.21582 0.20595 22.17832 -0.32258 24.34082 *0.43924 19.67773 -0.01947 21.24023 0.20595 22.90273 -0.32439 24.36523 -0.44066 19.70215 -0.02295 21.26465 . 0.20825 22.82715 -0.32439 24.38965 -0.44235 19.72656 -0.02649 21.28906 0.21050 22.85156 -0.32665 24.41406 -0.44235 19.75098 -0.03002 21.31348 0.21268 22.87598 -0.32902 24.43848 -0.44412 19,77539 -0.03205 21.33789 0.21511 22.90039 -0.33150 24.46289 -0.44611 19.79980 -0.03543 21.36230 0.21511 22.92480 -0.33448 24.48730 -0.44815 19.92422 -0.03846 21.38672 0,21784 22.94922 -0.33448 24.51172 ,-0.45016 19.84863 -0.04146 21.41113 -0.22087 22.97363 -0.33766 24.53613 -0,45016  ! 19.87305 -0.04450 21.43555 0.22398 22 99805 -0.34084 24.56055 -0.45181 19.89746 -0.04657 21.45996 -0.22702 23.02246 -0,34390 24.58496 -0.45338 19.92188 -0.04976 21.48438 -0.2270; 23.04688 -0.34693 24.60936 -0.45532 19.94629 -0.05328 21.50879 -0.23009 23.07129 -0.34693 24.63379 -0.45750 19,97070 -0.05687 21.53320 -0.23335 23.09570 -0.34986 24.65820 -0.45750 6 19.99512 -0.06075 21.15762 -0.23682 23.12012 -0.35249 24.68262 -0.45991 I 20.01953 -0.06294 21.58203 23.14453 -0.35530

                                                                        -0.24026                                     24.70703       -0.46230

( 20.04395 -0,06693 21.60645 -0.24026 23.16895 -0.35746 24.73145 -0.46438 20.06836 -0.07078 21.63086 0,24349 23.19336 -0.35746 24.75586 =0.46623 20.09277 -0.07450 21.65527 0.24635 23.21777 -0.35942 24.78027 -0.46623 20.11719 -0.07814 21.67969 0.24922 23.24219 -0.36160 24.80469 -0.46793 20.14160 -0.08040 21.70410 -0.25243 23.26660 -0.36415 24.82910 -0.46927 20.16602 -0.08408 21.72852 -0.25243 23.29102 -0.36682 24.85352 -0.47048 20.19013 -0.08788 21.75293 0.25588 23.31543 -0.36682 24.87793 -0.47178 2-12 50069-03/OCNG S-2 f}

4 Tcbla 2-2 OCNGS Ground Motion, Power Spectral Density (PSD) Functions (5 of 5)

    - (a)            Horizontal Component (Log cm2/sec3)

Frequency H2 84 % NE P 74- '3'- .;,4 7. v3 2 3. ! >s + 3,473)) N nl #

                               .;.47426 24.9' :*               -C ,4 75 $ 7 23       C
                               -3,4713; L

f 9 l l i l 1 I i l LOO 69-03/OCNGS 2 2-13 dpg

                                                                                                      .i
                                     ,       .     .~                    ..              -           -              .

s Tabla 2-2 OCNGS Ground Motion, Power Spectral Density (PSD) Functions (1 of 5) . (b) Vertical Component ILog em2/sec3, gg,g em 2 j,,c3) (Log cm2 j,,,33 ILog cm2/sec 3, Frequency Frequency Frequency Frequency Hz B4% NEP Hz 84% NEP H2 84 % NEP Hz 84 % NEP w.44.i 1.0794) . 46484 O B 18 t,  ;,2734 $,23235 4.58994 ' + ! '$ 4 b I C.0488) 0.92628 1.48926 1.06325 1,0517e i.24937 4.61426

  • 15312 0.07324 *0.91325 1.51367 1.0519) 3.0761 1.24702 4.63867 4.1 W 7 0.09766 -0.81730 1. 5 3 M 9 i.04479 3.10059 1.24448 4.6009 ..HW 0.12207 -0.73808 1.56250 1.02980 3.12500 1.24234 4.68750 1.1460 0.14648 -0.61908 1.58t i 1.01864 3,14941 1.24061 4.71191 I*I4*I7 0.17092 D.53430 ,.61143 1.0050) 3. 7383 1.24132 4.73633 1.141M 0.19531 -0.40455 1.63574 0.99826 3,19324 1.24204 4.76074 1.13663 0.21973 -0.29746 1.66016 0.99230 3.22266 1.24496 4.78516 1.13162 0.24414 -0.19415 1.68457 0.98723 3.24707 4.30957 1.12694 0.26855 -0.11589 1.70898 0.91892 3,27148 1.24174- 4.g3393 1.12345 1.25141 0.29297 -0.06383 1.73340 0.97970 3.29590 1.24986 4.g5340 1.12056 0.31738 0.03092 1.75701 0.98161 3.32031 1.24920 4.88281 1.12157 0.34180 0.13629 1.78223 0.99563 3.34473 1.246,9 4.90723 1.ll W 0.36621 0.24103 1.80664 0.99515 3.36914 1.24323 4.93164 I'II'84 0.39063 0.29898 1.83105 1.01831 3.39355 1.24112 4.95605 1.31562 J 41504 0.327J1 1.85547 1.03154 3.41797 1,24233 4.98047 1.11621
  '3.43945               0.37261        1.87988         1.04063               3,4423e        1,24373        5.004g3      1.11664
  *1. 4 6 3 E 7          0.4273e       1.90430          1.04651               3.46680         1.24112       5.02930      1.11813 0.48828                0.41761        1.92871         1.04071               3.49121         1.24148       5.05371      1.11893 7.51270                C.41990       1.95313          1.C6530               3.51563        1.24440        5.07813      3.11844             t 0.53711                 0.42563       1.97754          1.06109               3.54004        1.25155       5.10254       1.11703 0.56152                 0.44455       2.00195          1.06065               3.56445        1.25049       5.12695       1.11634 0.59594                 0.47406       2.02637          1.06430               3.58887        1.24922       5.15137       1.11422 0.61035                 0.52942       2.05078          1.07032               3.61328        1.24779       5.1757s       1.11127 0.63477                 0.55446       2.07520          1.C7914               3.63770        1.24645       5.20020       1.10760 0.65918                 0.58504       2.09961          1.C8053               3.66211        1.24260       5.22461       1.10243 0.68359                 0.62136       2.12402          1.00157               3.68652        1.24028       5.24902       1.09945 0.70801                 0.65836       2.14844          1.08179               3.71094        1.23886       5.27344       I*"3I4 0.73242                 0.72424       2.17285          1.00266               3.73535        1.23817       5.29785       1.08737 0,75684                 0.78206       2.19727          1.08264                                                         1.08312 3.75977        1.23822       5.32227 0.78125                 0.e5060       2.22160          1.0882'               3.7s418        1.23603       5.3466e       1.08002 0.00566                 0.906e3       2.24609          1.10133               3.s0859        1.23651       L 3710t      1.07e23 C.83000                 0.93592       2.27051          1.11334               3.83301                      5.39551      1.07557 1.23549 0.e5449                 0.93624       2.29492          1.}2533               3.85742        1.23413       5,41992      1.07307 0.07891                 0.96030       2.31934           1.1444,              3.estet        1,23225       5.44434      1.07100              '

O.90332 0.99418 2.34375 1,15652 3.90625 1.22819 5.46875 1.06987 0.92773 1.03362 2.36814 1.16995 3.93066 1.22726 5.49336 1.07110 0.95215 1.07522 2.39258 - 1.18204 3.9550s 1.227Je 5.5175 1.07157 C.91656 1.10026 2.41699 1.19524 3.97949 5.54199 1.07200 1.22854 1.00098 1.11132 2.44141 1.20191 i4.00391 1.2291g 5.56641 1.07438 1.02539 1.12132 2.46*82 1.20880 4.02832 1.23055 5.59052 1.0759e 1.04980 1.13209 2.49043 1,21394 4.05273 1.22960 5.61523 1.07136 1.07422 1.13693 2.51465 1.21733 4.07715 1.22806 5.63965 1.07819 1.098 0 1.12557 2.53906 1.22116 4.10156 1.2250s 5.66406 1.07037 1.12305 1.12599 2.56348 1.21949 4,12598 1,2214g 5.6404g 1.07854 1.14746 1.12155 2.58189 1.22199 4.15039 1.21767 5.71289 1.07917-1.17 08 1.11680 2.61230 1.22344 4.17480 1.21494 5.73730 1.08289 1.19f29 1.1120e 2.63672 1.22310 4.19922 1.21271 5.76172 1,08410 1.22070 1.11340 2.66113 1.22390 4.22363 1.21005 5.78613 1.05507 1.24512 1.11746 2.68555 1.23095 4.24805 1.20651 5.81055 1. 08 5H 1.26953 1.13116 2.70996 1.23869 4.27246 1.20169 5.s3496 1.08569 1.29395 1.14560 2.73438 1.24657 4.29600 5 g593g 1.08511 1.19724 1.31036 1.14930 2.75819 1.25219 4.32129 1.19336 5.88379 1.08370 1.34277 1.14095 2.78320 1.25310 4.34570 1,19037 5.90020 1.06169 1,36719 1.13262 2.90762 1.25515 4.37012 1.13749 5.93262 1.07972 1.39160 1.12293 2.83203 1.25109 4.39453 5.95703 1.07724 1.41602 1.13261 1.10958 2.65645 1.24755 4.41995 1,1773g 5.98145 1.07852 1.44043 1.09207 2.65086 1.24327 4.44336 1.07710 1.17201 4.00586 2.90527 1.24184 4.46177 1.16576 6.03027 1.07705 2.92949 1.24222 4.49219 1.16119 6.05469 1.07810 2.95410 1.24391 4.51660 1.15957 6.07910 1.07950 2.97852 1.24867 4.54102 1.15711 6.10352 1.08500 3.00293 1.25257 4.56543 1.15579 6.12793 1.08470 50069 03/oCNGS.2 2-14 b

Table 2-2

   ,                     OCNGS Ground Motion, Power Spectral Density (PSD) Functions (2 of 5)                                          ,

(b) Vertical Component 3 (Loo cm2 /sec ) { Log em2 /sech (Log cm2 j,,,33 gt,g ,,2 f,,,3g Frequency Frequency Frequency Frequency HZ 84% NEP HZ 64 % NEP H2 84 % NEP NZ 84 % NLP

        *,.15274            1.08489       7.71484       1.12582         9,;7734       0.9ss75       10, e 19s 4      c.79665 t .17 6 7 s         1.08560        7.73926       1,gy493         9. 3M 76       P,98506      10.86426         0.79607 6.20!!i              1.08679       7,76367      1.12393          9.32617       c.9609a       10. sea 67       0.79483 6.22559              1.09191       7.78809      1.12272          9.35059       C.97629       10.91339         0.79369 6.25000             1.09445        7.81250      1.11950          9.37500       0.97144       10.93750         0.79241 6.27441             1.09616        7.83691      1.11766          9.39941       0.96879       10.96191         0.79067 6.29883             1.09112        7.86133      1,115g5          9.423 3       0.96432       10.9s633         0.76099 6.32324             1.09936        7. M 5 7 4   1,1g411          9.44824       0.96023       11.01074         0.78607 6.34766             1.10397        7.91016      1.11240          9.0 266       0.MW          11. M 6          0.WM 6.37207             1.106)3        7.93457                       9.49707       0.95234       11.05957         0 77939 1.10691                         0.Hm                          OM 6.39648              1.10925       7.95898      1,10743          tm                          it. M 6.42090              1.11245       7.98340      1.10602                                                                         '

0 1 e 7 69 6.44531 1.11634 8.00781 1,1g473 9.59t73 0.93806 11.15723 0.16a52 6.46973 1.12269 8.03223 1.10384 0.93512 0.76477 1.12713 9.61914 11.ts164 6.49414 8.05664 1.10105 9.64355 0.93315 11.20605 0,76046 6.51855 1.13063 e 08105 1.10009 0.93047 11.23347 0.75869 9.66797 6.54297 1.13379 8.10547 1.09678 9.69238 0.92744 11.25488 0.75431 6.56738 1.13632 8.12988 1.09694 9.71640 0.92375 11.279.30 0.75006 6.59180 1.13762 8.15430 1.09464 9.74121 0.91970 11,30371 0.74610 6.61621 1.13901 8.17871 1,09057 9.76563 0.91771 11.32813 0.74221 6.64063 1.13979 8.20313 1,ggg4; 9.79004 0.91348 11.35254 0.74256 6.66504 1.13989 3,22754 1.08451 9,s1445 0.90940 11.37695 0.73861 6.68945 1.13954 8.25195 1.06191 '38'7 6.71367 1.13894 8.27637 1.07976 .86328 9 0'.9O 0 902167S II 11'.4257p 4n 21 0'.7S459 0 13080 t 6.73929 1.13879 8.30078 b U'O

  • 1.07739 9.91211 0.e9610 11.47461 0.72454 6.76270 .. 3893 8.32520 1.07618 0.89295 0.12350 6.78711 1.13953 8.34961 9.93652 11.4t902 g,gy5g4 9.96094 0.89041 0.12078 11.52344 6.81152 1.14025 8.37402 1.07374 0.88316 0.71787 9.98535 11.547e5 6.83594 1.14005 8,39044 1.07235 10.00917 0.s s 513 11.57227 0.71500 6.86035 1.14053 8.42295 1.07065 10.03413 0.se261 11.5966e 0.71348 6.98477 1.14061 8.44727 1.06932 10.05859 0.87979 11.62109 0.71111 6.90913 1.14081 8.47169 1.06795 10.08301 0.87679 11.64551 0.70881 6.93359 1.14141 8.49609 1.06664 10.10742 0.87394 11.66992 0.70658 6.95801 1.14058 8.52051 1.06528 10.13164 0.87204 11.69434 0.70466 6.98242 1.14110 8.54492 10.15625 0.86949 11.71875 0.70406 1.06342 MW 0. 6 7.00684 1.14171 8.56934 1.06178 0.18066 u . N 316 7.03125 1.14255 s.59375 10.205cs 0.86341 11.7675s 0.70078 1.05975 10.22949 0.86020 11.19199 0.69915 7.05566 1.14341 6.61016 1.05149 1.14216 10.25391 0.85791 11.81641 0.69716 7.08008 8.64258 1.05540 0.85473 0.69519 1.14249 8.66699 10.27832 11,84092 7.10449 1.05388 10.30273 0.85155 11.86523 0.69245 1.12891 1.14284 6.69141 1.05243 0.84650 0.68970 10.32715 11.ss965 7.15332 1.14320 0.71582 1.05116 10.35156 0.84555 11.91406 0.6e702 '

7.17773 1.14339 e.74023 1.04991 10.3759e 0.e4370 11.9364e 0.68420 ' 7.20215 1.14089 0.76465 1.04875 10.40039 0.94085 11.96209 0.69224-7.22656 1.14063 8.78906 1.04720 10.42400 0.83e06 11.9s730 0.61962 7.25098 1.13967 8.81346 1.04610 10,44922 0.83554 12.01172 0.67695 # 7.27539 1.13847 8. 8 P3 9 1.04499 10.47363 0.03308 12.03613 0.67436 7.29980 1.13706 8.66?)0 1.04371 10. .8 12.0 W 5 0 6W 7.32422 1.13520 8.88672 1.04209 10.52246 0.82941 12.04496 0.67073 7,34863 1.13408 8.91113 1,03943 n.u m 0. m u,m 0. N 1.13288 8.93555 10.57129 0.82389 12.13379 0.66640 7.373 5 1.0371e 0.82105 0.66440 1.39746 1.13158 8.95996 10.5957D 12.15e20 1.03457 10.62012 0 e1961 12.le262 0.66270 7.4218g 1.13062 8.98438 1.01170 0.01442 10,64453 12.20703 0.66115 7.44629 1.12959 9.00879 1.02867 10.66495 0.81311 12.23145 0.65942 7.47070 1.12966 9.03320 1.02535 10.69336 0.80984 12.25586 0.65soe 7.49512 1.12981 9.05762 1.02231 10 71777 0.00691 12.28021 0.65746 7.51953 1.12978 9.08203 1.01893 10.74219 0.e0502 12.30469 0.65737 7,54395 1.12955 9.10645 1.01514 10.76660 0.80274 12.32910 0.65566 7.56836 1.12939 9.13086 3,g1134 10.79102 0.80054 12.35352 0.65564 7.59277 1.12916 9.15527 1,037s5 10.s m ) 0.mes 12. 3 W 0.6W 7.61719 1.12894 9 17969 1.00366 7.64160 1.12871 9.20410 g,g9971 7.666c2 1.12844 9.22852 0.99571 7.69043 . 12647 9.25793 0.99169 i so069-03/OCNG5-2 2-15  ?>g] sm

Tabla 2 2 OCNGS Ground Motion, Power Spectral Density (PSD) Functions (3 of 5) , (b) Vertical Component 7 2 (LoQ cm2 /sec3, ggag ,,2j ,,c 3 3 gg,g ,,2/sec 31 (LoQ cm /sech Frequency Frequency . Frequency Frequency Hr H2 84% NEP HZ 84% NEP Hz B4 % NEP 84% NEP 12.40234 0.65449 . .h

  • 8 4 0. 2 943 33 $y734 0.40816 17.06984 0. 2 90 D 12.42676 0.65295 13,48926
  • 50155 it.H176 0.40659 17.1.426 0.23737 12.45117 C.65146 14."1367 0.50605 15.51617 0.40492 11.13867 0.29488 12.47559 0.64939 14.03B09 0.50393 lb.6005, 0.40100 17.16309 0.20250 12.50000 0,646s5 14.:.6250 0.50259 15.62500 0.40141 17.18750 0.28025 12.52441 0.64401 14.08691 0.50117 15.64941 0.3995C 17.21191 0.27870 0.64019 14.11133 0,49916 0.39766 17.23633 0.21649 12.54983 15.61383 12.57324 0.63929 14.13574 0.49841 nmg 0.39561 17.26074 0.21443 12.59766 0.63590 14.:6016 0.49709 n.nM6 0.39353 17.28516 L M262 0.63287 14.18457 0.49581 35,74731 0.39320 g7,3o957 0.27089 12.62201 12.64648 0.63020 14.20998 0.49441 gg,33343 0.39093 37,333,8 0.26908 12.67090 0.62794 14.23340 0.49214 g $ ,9,no 0.39812 37.35g40 0.26724 12.69531 0.62669 14.2576. 0.48992 gg31 0.33502 17.30281 0 m 523 12.71973 0.62435 14.28223 0.4e837 15.e4473 0.38213 17.4072' O.26325 12.74414 0.62221 14.30664 0.48634 gg,gggge 0.38223 17.43164 0.24103 12.76855 0.61992 14.33105 0.48449 mn 0.37933 17.45605 0.25956 14.35547 0.48249 0.37655 p.4eo47 0. WM j, 12.79291 12.91730 0.61740 0.61530 14.3790s 0.46032 99,7 33,,,,3, g,3341g 17.50488 0.25482 12.84180 0.61269 14.40430 0.47017 15.96680 0.37227 17.52930 0.25236 12.86621 0.60996 14.42871 0.47663 5.99*.21 0.37134 17.55371 0'24989 12.99063 0.60712 14.45313 0.41435 16. 0 M6 3 0.3697' 17.57813 0 24934 12.9s504 0.60414 14.47754 0.47196 gg geges 0.36860 17.60254 0 24712-12.93945 0.60217 14.50195 0.46941 16.06445 0.36753 17.62695 0 24502 12.96347 0.59929 14.52637 0.46842 jg,ogggt 0.36596 11.65137 0 24310 12.9882e 0.59635 14.55074 0.46586 mn 0.36468 mWe hp 13.01270 0.59329 14.57520 0.46310 gg, 3370 0.36265 17.70020 13.03711 0.59016 14.59961 0.46s35 g m 0.36070 NN 61 0[24118 14.62402 0.45776 0.35899 p q9p h'. m 0nmp 1 13.06152 0.5eg28 0.45678 n

13.08594 0.58552 14.64844 16.2 W 4 0 35719 D.WH 13.11035 0.58301 14.67285 0.45437 I 3 C 3$534

  • 13.13477 0.58048 .4.69727 0.45208 I '* ## 0 35336 *
  • 13.15918 0.57775 14.72168 0.44988, 16.26418 0 35114 17.84668 0.23487 13.18359 0.57607 14.74609 0.4477 U* UN 13.20801 0.57300 14.77051 0.44102 f'*3 c'3,5,4
                                                                            *3 # I
  • 13.23242 0.56992 14.19492 0.44516 16. 3m 2 0'34455
                                                                                              +              D.W2                     0. 231H 13.25684          0.56612       14.81934         0.44368              I30 #

3q p U* MM 0.56361 14.84375 0.44262 o'33,74 13.28125 16.406M

  • 13.30566 0.56143 14.t6816 0.44161 n'33774 O

13.33050 0.55814 14.89258 0.44137 ', 0$33622 18* 58 0 5' 13.35449 0.55645 14.91699 0.44021 16.47949 0.335J4 gg oggtt c'21427 13.37991 0.55435 14.94141 0.43866 gg,$g3pg 0.33406 18.06641 0'22317 13.40332 0.55221 14.96582 0.43105 16.52832 0.33344 18.09082 0'22160 13.42773 0.55008 14.99023 0.43564 16.55213 0.33325 18.11523 0'22016 m 13.452t$ 0.54794 15.01465 0.43530 16.57715 0.33312 1a.13965 0 21865 13.47656 0.54591 15.03906 0.43431 10 60n6 0.33233 gg.16406 0.21705 13.50098 0.54309 15.06348 0.43376 16.62596 0.33182 18.18848 0 21615 13.52539 0.54197 15.08789 0.43335 16.65039 0.3 m 8 10.21299 0 21460 13.54900 0.53955 15.11230 0.43295 16.61480 0.32H2 18.23730 0$21317 13.51422 0.53742 15.13672 0.43352 16.69022 0.3M58 18.26112 0'21158 13.59963 0.53505 15.16113 0.43281 16.72363 0.32591 18.28613 0'20900 13.42305 0.53248 15.18555 0.43181 16.74805 0.32430 18.31055 0'20845 13.64746 0.53009 15.20996 0.43063 16 M 46 0.32301 18.33496 C*20687 13.67108 0.52007 15.23438 0.42904 16.79683 0.32191 go 3393e g 20546 13.69629 0.52616 15.25979 0.42832 16.02129 0.32076 18.38379 0'20406 13.72070 0.52462 15.28320 0.42634 16.84570 0.31874 18.40820 0 20241

        '13.74512        0.52330        15.30762         0.42458              16.87012       0.31721          18.43262                 0'20083 13.76953         0.52222        15.33203         0.42282              16.09453       0.3M33            18.45703                0*19871 13.19195         0.52106        15.35645         0.42094              16,91895       0.31283           3g,43345                g 19615 13.81836         0.52025        15.38086         0.41911              16.94336       0.30969           18.50586                0'19340 13.84277        0.51926        15.40547          0.41690             16.96777       0.30773           18.53027                0'19051 13.46719         0.51135        15.42969          0.41486             16.9921,       0.303H            18.55449                 0*18916 13.99160        0.51597        15.45410          0.41305             37.01660       0.2 m 3           18.57910                 0 1g 622 13.91602        0.51387        15.47852          0.41158                    102     0.29503           18.60352                 0 18350 13.94043        0.51164        15.50293          0.40963             17.06543       0.29207           10.62793                 0 18112 50069-03/OCNGS-2                                2-16                                                                         EQ$

r ,

i 4  ? Table 2-2 j , OCNGS Ground Motion, Power Spectral Density (PSD) Functions (4 of 5) l (b). Vertical Component i l (Loo cm 2j,,e 3 3 (Loo em21sec 3 3 gg,,, em2 f ,eg gtog cm 2j,,c 3l Frequency Frequency Frequency Frequency i hr 04% NEP H2 B4 % NEP HZ B4 % NEP HZ 84% NEP i 20.214H 0.pt489 21.17 94 -0.00568 23.33984 -0.45t53 , 18.65234 0.17891 ' 20.23926 0.06317 2'..E176 -0.00732 23 36426 -D J8695 18.67676 0.'7685 23,38867 -0.08761 18.70117 0.17483 20.26367 0.06168 2;.82617 -0.00892 0.17296 20.28809 0.06005 21.850t9 -0.00892 23.41309 -0.08833  ; 18.725t9 0.08832 O.!7110 20.31250 0.05849 21.87500 -0.01047 23.43750 18 . 7 50 0 t' 0.05699 24.89941 -0.01203 23.46191 -0.09916 18.77441 0.16916 20.33691

                                                                                                                    -0.08997 0.16775      20.36133    0.0$534        21.92383       -0.01359          23.48633                           ;

18.19861 23.51074 -0.09099 - 18.92324 0.16581 20.38574 0.05329 21.94824 -0.01509 0.0b178 21.97266 -0.01509 23.53516 -0.09263  ;

  '18.84766                0.16410      20.41016 0.05053        21.99707       -0.01641          23.55957        -0.09263 18.87207               0.16270      20.43457 0.04937        22.02148       -0.01778           23.58398       *C.09490 18.89648                0.16125     20.45898                                                                     -0.09742 0.16042     20.48340    0.04819        22.04590       -0.01915           23.60940 18.92090                                                                                         23.63281        -0.10099 18.94531                0.15881     20.50781    0.04657        22.07031        -0.02031 20.53223    0.04545        22.09473        -0.02031          23.65723       -0.10430           >

18.96973 0.15691 23,68164 -0.10430 18,99414 0.15463 20.55664 0.04436 22.11914 -0.02157 22.14355 -0.02306 23.70605 -0.10792 19.01855 0.15222 20.58105 0.04308 22.16797 -0.02449 23.73047 -0.11164 19.04297 0.15081 20.6054' O.04145

                                                                                                                     -0.11541
  • 0.14837 20.6298.1 0.04018 22.19238 -0.02573 23.75488 19.06738 23.77930 -0.I1903 19.09180 0.14599 20.65430 0.03814 22.21680 -0.02573 20.61871 0.03573 22.24121 -0.02699 23.83371 -0.11903 19.11621 0.14344 0.14111 20.10313 0.03300 22.26563 -0.02832 23.82813 -0.12237 f 19.14063 -0.12517 19.16504 0.13970 20.72754 0.03026 22.2:004 -0.02998 23.85254 0.13798 20.75195 0.02910 22.31445 -0.03191 23.87695 -0.12754 19.18945 23.90131 -0.12960 19,21387 0.13659 20,77637 0.02686 22.33887 -0.03191 20.80078 0.02496 22.36328 -0.03366 23.92578 -0.12960 19.23828 0.13520 20.82520 0.02333 22.38770 -0.03499 23.95020 -0.13153 {

19.24270 0.13317 -0.13359 23.97461 19.28711 0.13264 20.84961 0.02210 22.41211 -0.03611 0.13105 20.87402 0.02210 22.43652 -0.03736 23.99902 -0.13579 19.31152 -0.13764 0.12927 20.89844 0.02169 22.46094 -0.03736 24.02344 19.33594 -0.13764 19,36035 0.12726 20.92285 0.02144 22.48535 -0.03893 24.04785 19,38471 0 12491 20.94727 0.02114 22.50977 -0.04082 24.07221 -0.13933 0.12306 20.97168 0.02013 22.53418 -0.04288 24.09068 -0.14102 19.40918 -0.14281 19.41359 0.12060 20.99609 0.02073 22.55859 -0.04490 24.12109 0.11825 21.02051 0.02021 22.58301 -0.04490 24.14551 -0.14478 g 19.45801 -0.14478 19 48242 0.11600 21.04492 0.01979 22.60742 -0.04729 24.16992 0.11306 21.06934 0.01947 22.63194- -0.05011 24.19434 -0.14672 19.50684 -0.14851 19.53125 0.11207 21.J9375 0.01918 22.65f75 -0,05337 24.21875 0.11007 21.11816 0.01918 22.68066 -0.05664 24.24316 -0.14981 19.55566 -0.15079 19,58008 0.10822 21.14258 0.01859 22.70508 -0.05664 24.26758 0.10635 21,16699 0.01770 22.12949 -0.05986 24.29199 -0.15079 19.60449 -0.15152 19.62691 0.10447 21.19141 0.01650 22.15391 -0.06300 24.31641 0.10311 21.21582 0.01515 22.17832 -0.06593 24.34082 -0.15209 y 19.65332 -0.15281 19.67773 0.10115 21.24023 0.01515 22.80273 -0.06885 24.36523 0.09924 21.26465 0.01367 22.82715 -0.068P5 24.38965- -0.15350 19.70215 -0.15350

  • 19.72656 0.09752 21.28906 0.01222 22.85156 -0.01174 24.41406 0.09598 21.31348 0.01098 22.87598 -0.6'426 24.43848 -0.15397 19.75099 0.09473 21.33789 0.01005 22.90039 ." *'t? 24,46289 -0.15461 19.77539 -0.15587 19.79980 0.09344 21.36230 0.01C05 22.92480 24.48730 0.09199 21.38672 D 00936 22.94922 .3 24.51172 -0.15743 19.82422 19.94863 0.09:31 21.41113 0.00881 22.eM 63 c.M e 24.53613 ' -0.15741 y 0.08864 21.43555 0.00827 22.99915 .e 9 24.56055 -0.15920 e 19.87305 -0.16112 19.89146 0.08675 21.45996 0. 00 7h 23.32/96 .rr 34 24.58496 0.08534 21.48438 0.00755 2h '
                                                                                            .4275      24.60938        -0.16299 19.92180                                                                                                        -0,16468 19.94629                0.08396    21.50879    0.00666         23.071.e            J.06275       24.63379                        y 0.08244    21.53320    0.00555          23.09580         -0.08342        24.65820        -0.16468 19.97070                                                                                                        -0.16640 0.08075 -  21.55762    0,00419          23.12012         -0.08376        24.68262 19.99512                                                                                          24.70703       -0.16855 20.11953               0.07881    21.58203    0.00275          23.14453         -0.08401                                        .

0.07688 21.60645 0.00275 23.16895 -0.08440 24.73145 -0.17112.' 20.04395 -0.17373 0.01513 21.63086 0.00145 23.19336 -0.08440 24.75586 20.06836 24.78027 -0.17373 20.09277 0.07359 21.65527 -0.00001 23.21177 -0.08478 21.67969 -0.00133 23.24219 -0.08527 24.80469 -0.11620 - 20.11719 0.07198 -0.17905-20,14160 0,07006 21.10410 -0.00266 23.26660 -0.08583 24.82910 , 0.06843 21.72852 -0.00266 23.29102 -0.08619 2f.85352- 0.1c213 '! 20.16602 24.87793 -',18560 20.19043 0.06669 21.75293 -0.00412 23.31543 -0.04619

                                                                                                                                     'i I

i i P SOO69-03/OCNGS 2 2-17

P d Tabla 2-2 OCNGS Ground Motion, Power Spectral Density (PSD) Functions (5 of_5) , (b) Vertical Component (Log cm2/sec 3 3 F requency H2 84 % NEP i r 24,90 34 -0,16560 } 24.924>> -0.18917 24.9 .17 + 0.19 2 4 6 24,97 $9 -0.19556 2h.000C0 -0.19839  ; l

                                                                                                                                                                                                                                   - I e

b Y f b r

                                                                                                                                                                                                                                     ?

4 scoss-o3/oCNGS-2 2-18

Tabla 2-3

    ' FREQUENCIES FOR GROUND MOTION RESPONSE SPECTRA COMPARISON:           f ARTIFICIAL TIME HISTORY VS. TARGET (Hz.)               ,

OCNGS-RB for Ground Motion Comparison (55 frequencies I equally spaced in a logarithmic scale) i i 0.200 4.199 0.220 4.614 0.242 5.074. 0.266 5.581 , 0.293 6.138 i 0.322 6.750 0.354 7.423 0.389 8.164 ' O.428 8.979 0.471 9.879 0.518 10.860 0.569 11.943 0.629 13.135 0.689 14.446

  • 0.757 15.887 0.833 17.472 0.916 19.219 ,

1.007 21.133 1.108 23.241 1.218 25.560 1.340 28.111 1.474 30.919

  • 1.621 34.000 1.783 1.960 '

2.156 2.371  ; 2.608 2.868 3.154 . 3.469 3.815 i J

                                                                           )

l 5 I i l 50069-03/OCNos 2 2-19 3 i

Ttblo 2-4 Comparison of Response Spectra Horizontal Component 1,5% D:mping, ' Artificial Time History vs. Target Frequency Target Comp.1 Ratio 0.2000 0.0054 0.0161 2.98 1.2200 0.0065 0.0181 2.77 0.2419 0.0079 0.0184 2.33 0.2660 0.0095 0.0184 1.93 0.2926 0.0115 0.0161 1.40 0.3218 0.0139 0.0194 1.39 J.3539 0.0168 0.0245 1.46 0.3892 0.0204 0.0221 1.09 0.4280 0.0246 0.0258 1.05 0.4707 0.0298 0.0362 1.22 0.5177 0.0359 0.0410 1.14 0.5694 0.0421 0.0430 1.02 0.6262 0.0501 0.0459 0.92 0.6886 0.0602 0.0614 1.02 0.7573 0.0749 0.0759 1.01 0.8329 0.0848 0.0876 1.03 0.9160 0.0929 0.0961 1.03 1.0074 0.1092 0.1114 1.02 1.1079 0.1283 0.1213 0.95 1.2185 0.1469 0.1413 0.96 1.3401 0.1681 0.1802 1.07

                       ;.4738       0.1860     0.1874                      1.01 1.6208       0.2083     0.2141                      1.03 1.7825       0.2340     0.2343                      1.00 1.9604       0.2606     0.2564                      0.98 2.1560       C.2821     0.2925                      1.04 2.3711       0.2876     0.2989                      1.04 2.6077       0.3086     0.3154                      1.02 2.8679       0.3460     0.3595                      1.04 3.1540       0.3685     0.3825                      1.04 3.4687       0.3907     0.4150                      1.06 3.8148       0.4078     0.4241                      1.04 4.1954       0.4111     0.4076                      0.99 4.6140       0.4240     0.4407                      1.04 5.0744       0.4382     0.4626                      1.06 5.5807       0.4351     0.4588                      1.05 6.1376       0.4322     0.4511                       1.04 6.7499       0.4307     0.4609                       1.07 7.4234       0.4029     0.4153                       1.03 8.1641        0.3814    0.3969                       1.04 8.9787        0.3715    0.3742                       1.01 9.8746        0.3617    0.3604                       1.00 10.8598        0.3412     0.3445                      1.01 11.9434        0.3146     0.3223                      1.02 13.1351        0.2901     0.2972                      1.02 14.4456        0.2679     0.2812                      1.05 15.8870        0.2524     0.2674                      1.06 17.4721        0.2362     0.2359                      1.00 19.2155        0.2222     0.2228                      1.00 21.1327        0.2106     0.2137                      1.01 23.2413        0.2022     0.2077                      1.03 25.5602        0.1966     0.2052                      1.04 28.1105        0.1918     0.1987                      1.04 30.9153        0.1871     0.1950                      1.04 33.9999        0.1840     0.1922                      1.04 50069-03/OCNGS 2                           2-20

Tebla 2-5 Comprrison of Rssponts Spectra, Horizontal Component 2,5% Damping, j Artificial Time History vs. Target  : i Frequency Target Comp. 2 Ratio

.2000 0.0054 0.0129 2.39
                             ;.2200       0.0065      0.0154      2.36                  :
.2419 0.0079 0.0171 2.16  !

3.2660 0.0095 0.0177 1.85 0.2926 0.0115 0.0219 1.90 9.3218 0.0139 0.0246 1.77 ( 9.3539 0.0168 0.0272 1.62 0.3892 0.0204 0.0261 1.28 0.4280 0.0246 0.0262 1.06 0.4707 0.0298 0.0269 0.90 0.5177 0.0359 0.0377 1.05 0.5694 0.0421 0.0475 1.13 0.6262 0.0501 0.0482 0.96 0.6886 0.0602 0.0682 1.13 0.7573 0.0749 0.0731 0.98 0.8329 0.0848 0.0B09 0.95 0.9160 0.0929 0.0939 1.01 1.0074 0.1092 0.1101 1.01 1.1079 0.1283 0.1296 1.01 1.2185 0.1469 0.1474 1.00 1.3401 0.1681 0.1757 1.05 1.4738 0.1860 0.1874 1.01 1.6208. 0.2083 0.2156 1.04 1.7925 0.2340 0.2461 1.05 1.9604 0.2606 0.2670 1.02 ' 2.1560 0.2821 0.2859 1.01 2.3711 0.2876 0.2950 1.03 , 2.6077 0.3086 0.3149 1.02 f 2.8679 0.3460 0.3620 1.05 ': 3.1540 0.3685 0.3759 1.02 t 3.4687 0.3907 0.4060 1.04  ! 3.8148 0.4078 0.4177 1.02 4.1954 0.4111 0.4345 1.06 , 4.6140 0.4240 0.4454 1.05 .; 5.0744 0.4382 0.4573 1.04 ' 5.5807 0.4351 0.4460 1.02 l' 6.1376 0.4322 0.4411 1.02 6.7499 0.4307 0.4550 1.06 7.4234 0.4029 0.4118 1.02 i 9.1641 0.3814 0.3996 1.05 j B.9787 0.3715 0.3733 1 00 i 9.8746 0.3617 0.3755 1.04  ! 10.8598 0.3412 0.3537 1.04 ' 11.9434 0.3146 0.3331 1.06 13.1351 0.2901 0.3042 1.05 14.4456 0.2679 0.2939 1.10 15.8870 0.2524 0.2639 1.05 > 17.4721 0.2362 0.2460 1.04 19.2155 0.2222 0.2336 1.05 21.1327 0.2106 0.2233 1.06 23.2413 0.2022 0.2270 1.12 l 25.5602 0.1966 0.2109 1.07  ; 28,1105 0.1918 0.2069 1.08' 30.9153 0.1871 0.2075 1.11 f 33.9999 0.1840 0'.2052 1.12  ! 50069-03/OCNGS-? 2-21 3 u i

                                                                                   ~
  . ~ .

d b Tebis 2-6 Comparison of Response Spectra, Vertical,5% Damping, .  ; Artificial Time History vs. Target , Frequency Target Vert. Ratio 0.2000 0.0030 0.0045 1.51

.2200 0.0036 0.0041 1.15
.2419 0.0043 0.0057 1.32 0.2660 0.0052 0.0085 1.62-S.2926 0.0062 0.0081 1.30-0.3218 0.0072 0.0089 1.24 7.3539 0.0087 0.0110 1.26 0.3892 0.0100 0.0109 1.09 0.4280 0.0118 0.0126 1.07 ,

0.4707 0.0132 0.0139 1.06 0.5177 0.0149 0.0154 1.03 0.5694 0.0173 0.0170 0.98 ' 0.6262 0.0197 0.0201 1.02 O.2386 0.0237 0.0258 1.09 + 0.7573 0.0296 0.0295 1.00 0.8329 0.0376 0.0383 1.02 0.9160 0.0445 0.0473 1.06 1.0074 0.0513 0.0541 1.05 1.1079 0.0573 0.0628 1.10 1.2185 0.0618 0.0616 '.00 1.3401 0,0653 0.0653  ;.00 1.4738 0.0700 0.0759 1.08 1.6208 0.0695 0.0716 1.03 1.7825 0.0674 0.0695 1.03 1.9604 0.0719 0.0732 1.02 2.1560 0.0841 0.0858 1.02 > 2.3711 0.1036 0.1082 1.04 2.6077 0.1182 0.1209 1.02 2.8679 0.1338 0.1323 0.99 3.1540 0.1435 0.1527 1.06 , 3.4687 0.1559 0.1553 1.00 , 3.8148 0.1567 0.1599 1.02  ; 4.1954 0.1665 0.1682 1.01 4.6140 0.1725 0.1697 0.98 - 5.0744 0.1814 0.1944 1.07

  • 5.5807 0.1872 0.1845 0.99 6.1376 0.1967 0.2033 '1.03 '

6.7499 0.2098 0.2134- 1.02 7.4234 0.2389 0.2407- 1.01 8.1641 0.2502 0.2637 1.05 , 8.9787 0.2335 0.2431 1.04 9.8746 0.2140 0.2239 1.05  ; 10.8598 0.1973 0.2040 1.03 11.9434 0.1780 0.1852 1.04 13.1351 0.1776 0.1853 1.04 14.4456 0.1666 0.1780 1.07 e i- 15.8870 0.1563 0.1640 1.05 l 17.4721 0.1525 0.1581 1.04  ! 19.2155 0.1450 0.1476 1.02 21.1327 0.1369 0.1441 1.05 23.2413 0.1309 0.1377 1.05 25.5602 0.1276 0.1395 1.09 , 28.1105 0.1240 0.1302 1.05 30.9153 0.1206 0.1261 1.05 23.9999 0.1168 0.1225 1.05 2 i 50069-03/OCNGS-2 2-22 Y i gn l.

                                                                           .t m
                                                                     )

p Table 2-7 Correlation Coefficients Horizontal Horizontal .  : Vertical: , Component _1 Component 2 Component . Hor. Comp.1 -- 0.032 0.031 , Hor. Comp. 2 -- --

                                                          -0.098     '

Vert. Comp. -- -- -- i

                                                                     ?

o

                                                                     +

1 6 e sooss-osioCNGS-2 2-23 f

Table 2 8 '~ Strong-motion Duration

                        . Component                  ' Duration Td (sec)

Horizontal 1 10.16 Horizontal 2 10.58 Vertical 11.67 scoss ostocNos 2 2-24 F i

j Ttbla 2 9  ! Comparison of PSD Functions, Horizontal Components 1 and 2, - Artificial Time Histories vs. Target Frequency Target PSD Ratio PSD Ratio Hz PSD Hor.1 (H1) H1/ Target Hor. 2 (H2) H2/ Target

       .3000         3.7355          9.9313        2.6586       24.3574    6.5205
       .3216         4.6835         12.0813        2.5795       24.6780    5.2691
       .3448         5.9578         14.6504        2.4590       24.3529    4.0876
       .3696         7.2809         18.2411        2.5053       21.3594    2.9336
       .3962         8.7725         20.2510        2.3085       16.7257    1.9066
       .4248        10.4483         22.3401        2.1382       14.9921    1.4349
       .4554        12.5793         26.9080        2.1391       16.3583    1.3004
       .4882        15.6797         26.6268         1.6982      22.1348    1.4117
       .5233        19.2386         26.6644        1.3860       27.1440    1.4109
       .5610        23.3622         23.0392           .9862     27.0169    1.1564
       .6014        27.1975         23.8840           .8782     34.8722    1.2822
       .6448        32.8808         40.0392        1.2177        40.0368   1.2176
       .6912        40.0572         49.0383         1.2242       47.9896   1.1980 7410        44.8696         47.8990         1.0675       42.9529      .9573 7944        51.2086         49.9284           .9750      43.4919      .8493
       .8516        57.1870         83.2647         1.4560      72.7158    1.2715
       .9129        63.5295         93.0232         1.4643       80.5413   1.2678
       .9787        70.2409         78.8910         1.1231       95.4206   1.3585 1.0492         77.3086         82.8496         1.0717       89.3715   1.1560 1.1248         85.9617       119.7916          1.3935     106.9180    1.2438 1.2058         93.5683       148.7249          1.5895     124.0379     1.3256 1.2927       100.5453        145.3599          1.4457     147.8927    1.4709 1.3858       107.6418        124.2419          1.1542     153.0760     1.4221 1.4856       114.5401        130.1097          1.1359     141.6327     1.2365 1.5926       123.3531         182.7353         1.4814     176.1381     1.4279 1.7073       131.4994        222.2395          1.6900     169.2340     1.2870 1.8303        136.4743       222.9579          1.6337     203.3858     1.4903 1.9621        138.2730        220.8259         1.5970     164.8265     1.1920 2.1035        139.8867        210.2877         1.5033     173.0336     1.2370        t 2.2550        132.2838        188.5050         1.4250     167.8596     1.2689 2.4174        128.9191        204.7860         1.5885     169.0352     1.3112 2.5916        130.1872        153.3148         1.1776     159.9123     1.'2283 2.7782        136.8925        134.4361            .9821   180.2084     1.3164 2.9784        141.4039        231.2145         1.6351     244.7087     1.7306 3.1929       140.7361        227.8867         1.6192     232.0894     1.6491 3.4229       139.7550        2B4.8549         2.0382     238.7619     1.7084 3.6695       132.1931        247.1438         1.8696     215.8639     1.6329 3.9338       118.2251        246.0092         2.0809     215.0502     1.8190 4.2171       111.9158        238.5940         2.1319      198.3204    1.7720       {

4.5209 104.4368 160.2503 1.5344 158.4488 1.5172 4.8466 94.5251 192.2745 2.0341 153.1300 1.6200 5.1957 81.6894 129.1586 1.5811 156.9882 1.9218 5.5699 74.1451 146.9173 1.9815 167.9232 2.2648 5.9711 66.5753 146.9713 2.2076 148.6088 2.2322 .; 6.4012 56.5037 121.2483 2.1458 127.7440 2.2608 6.8623 47.1607 88.5343 1.8773 109.5574 2.3231 ' 7.3566 38.9011 76.6546 1.9705 111.5810 2.8683 7.8866 34.5629 70.6964 2.0454 77.5124 2.2426 8.4546 28.0809 52.6515 1.8750 56.1166 1.9984 9.0636 23.1337 35.0476 1.5150 50.7623 2.1943

  • 9.7165 19.3199 32.5191 1.6832 43.0619 2.2289 50069-03/OCNGS-2 2-25 g

Tcbla 2-9 (Cent.) Comparison of PSD Functions, Horizontal Components 1 and 2, . Artificial Time Histories vs. Target FreyJency Target PSD Ratio PSD Ratio

      !!z        PSD         Hor.1 (H1)      H1/ Target   Hor. 2 (H2) H2/ Target 10.4164       15.9580       30.5499          1.9144      35.4642    4.44ea 11.1667       12.5756       25.3302          2.0142      23.8869    1.8995 11.9711        9.4801       18.7705          1.9800      20.8743    2.2019 12.8334        7.0957       10.5032          1.4802      12.7583    1.7980 13.7578        5.1834         7.7256         1.4905       7.4814    1.4433 14.7488        3.8414         8.4610         2.2026        4.1282   1.0747 15.8112        2.7673         5.1801         1.8719        3.6962   1.3357 16.9501        1.9768         3.2528         1.6455       2.8333    1.4333 18.1711        1.4596         2.3932         1.6396       2.9121    1.9951 19.4800        1.0146        2.8582         2.8171        2.9826    2.9397 20.8832         .6636        2.4429         3.6814        2.2285    3.3583 22.3874         .4981         1.4910        2.9933         1.8574   3.7287 24.0000         .3780         1.7825         4.7151       2.0658    5.4644 P

h e 50069 03/oCNGS 2 2-26 Y

Tsbla 2-10 Comparison of PSD Functions, Vertical Component, Artificial Time History vs. Target Frequency Target PSD Ratio Hz PSD Vert. (V) V/ Target

                      .3000         .8370         4.8023        5.7372
                      .3216        1.0147         4.6273        4.5602
                      .3448        1.2732         4.0632        3.1913
                      .3696        1.6140        3.2290         2.0007
                      .3962        1.8075        2.9009         1.6049
                      .4248        1.9755        3.3432         1.6923
                      .4554       2.2920         3.4263         1.4949
                      .4882       2.3360         2.6987         1.1553
                      .5233       2.3620         3.8441         1.6275
                      .5610       2.4778         4.5311         1.8287
                      .6014       2.8947         4.7083         1.6265
                      .6448       3.3148         6.2452         1.8840
                      .6912       3.8654         6.4846         1.6776
                     .7410        5.0431         9.2553         1.8352 7944       6.9125        11.9172         1.7240
                     .8516        7.8471        15.1981         1.9368
                     .9129        9.3458        19.3343        2.0688
                     .9787      11.5a45         19.0960         1.6527 1.0492       12.4331         17.1257         1.3774 1.1248       12.2395         17.7408         1.4495 1.2058       11.8864         18.3069         1.5402 1.2927       12.8259         18.3837         1.4333 1.3858       12.2742         16.7448         1.3642 1.4856       10.7224         15.5762         1.4527 1.5926         9.5333        14.4273         1.5134      ,

1.7073 8.7751 13.4889 1.5372 1.8303 9.6467 18.6989 1.9384 1.9621 10.7711 14.5124 1.3473 2.1035 11.1303 11.6675 1.0483 2.2550 11.7193 18.3523 1.5660 2.4174 14.2992 21.6173 1.5118 2.5916 15.1913 30.6175 2.0155 2.7782 16.2956 26.3281 1.6157 - 2.9784 16.0025 42.1087 2.6314 3.1929 15.6793 41.7925 2.6655 3.4229 15.6994 34.2016 2.1785 3.6695 15.6747 36.2547 2.3129 3.9338 15.1469 28.7852 1.9004 4.2171 14.5588 30.5592 2.0990 4.5209 12.9583 17.0911 1.3189 4.8466 11.9424 18.7600 1.5709 5.1957 11.5957 31.3545 2.7040 5.5699 10.7834 28.5262 2.6454 5.9711 10.9119 26.3283 2.4128 6.4012 11.6842 28.4315 2.4333 6.8623 12.4793 28.7287 2.3021 7.3566 12.2862 32.5497 2.6493 7.8866 11.7035 20.2030 2.4098 2-27 SOO69-03/OCNGS 2 BQ

Tgbla 2-10 (C:nt.) I Comparison of PSD Functions, Vertical Component, Artificial Time History vs. Target l 1 i Frequency Target PSD Ratio Hz PSD Vert. (V) V/ Target 8.4546 10.5306 26.8079 2.5457 9.0636 9.4404 26.8242 2.8414 9.7165 7.5523 20.1011 2.6616 10.4164 6.2387 15.2950 2.4516 11.1667 5.3061 9.1359 1.7218 11.9711 4.3981 6.2472 1.4204 l 12.8334 3.7752 5.0688 1.3426 13.7578 3.0590 3.8060 1.2442 14.7488 2.5753 4.0789 1.5838 15.8112 2.2415 3.6541 1.6302 16.9501 1.8773 3.0629 1.6316 18.1711 1.5198 2.3893 1.5721 19.4800 1.2114 1.7440 1.4396 20.8832 .9851- 1.3688 1.3895 22.3874 .8642 .8830 1.0217 24.0000 .6854 .8964 1.3079 t b 50069 03/OCNGS-2 2-28 Y

i 4

                                                                                                      't i

x 10.0 i 0.5 ,

0. 4-c .
     .S     0.3-.-
   . a
    - ns W

W e-4 O o , y 0.2--  ! i i i 0.1- t l l

                                       /

0.0 4 . 1 .0 10 2 l 16 10 10 t Frequency (Hz) f Notes: Accelerations in g's , Spectral Damping 5% i PGA = 0.184g l 4 e Figure 2-1: ' OCNGS Site Specific Response Spectra, Horizontal Component, 5% Damping.  ; i SOO69 03/OCNGS 2 2-29 , _,s

                                                                                  -          n

X 10 -2  ; 3.0

  • 2.5--
2. 0--

c

   .O a                                                                                                                                                  ,

4)

e. ,
    $     1. 5--

as U ' O ac , t

1. 0-- .

0.b ' 0.0

                            /                                                                                                                          *
                                                                                                    -r4 16 I                          .0                                                           1 2~

10 10 10 - Frequency (Hz)

                                                                                                                                                      .[

s Notes: Accelerations in g's Spectral Damping 5% PGA = 0.0952g , i i Figure 2-2:' OCNGS Site Specific Response Spectra, Vertical Component, .[ 5% Damping ' I ! I sooss-oatocnos 2 2-30 ' t'

                  *   ~      ~      ..wr.          --     _ = _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _       __.________l_______.__________._______'_
        . . . .   .  - ~ . .                -.                         .-          .     -
                                                                                                  )
 .                                                                                                 l
I 1

d I i Horizontal Component 4 i h i 2-p O e e-v> N E 0- f.- - - - - . . . - P.L Q in 1 i c) O _a e

       -4                    .            .                  .             .

0 5 -10 15 20 25 -l Frequency (hz)  : f i 5 Figure 2-3: OCNGS Ground Motion, Power Spectral Density (PSD) Function,  ; Horizontal Component,84% NEP 50069-03/DCNGS-2 2-31 3

                                              .=    _          ..,   .                 _   ,

r n s Vertical Component 4 _ 2- > P o C) u) N S E o- -.- - .- .. O u)  ; Q. cn , o . J t

         -4                  ,              ,             ,           ,

O 5 10 15 20 25 Frequency (hz)' 9 I i i- , Figure 2-4: OCNGS Ground Motion,' Power Spectral Density (PSD) Function, Vertical Component,84% NEP-l 50069-03/OCNGS 2 2-32 , 1.

NORMALIZED CUMULATIVE ENERGY I i i i i t 6 6 i i 1.0---------------------------------------------g----------

                                                                                              /
                                                                                           / .
       'g. _

_2_9._____________________ ,_ {________ P y - e l l w .8- - Z '

  • W ,'

w

                                                                            /          .
      . -) ._                                                                                                      _.
  *                                                                       /            .         .

F- . .

  <     6, _                TIME HISTORY .i                                            *         .                 ..

J / l l 3 . . I . . ' d .5' -

                                                                    ,                  l         l o                                                               /                    .         .

W / l l N .4' - M e . J / ' '

  <                                                     /                               l        l r   .3<-                                                                              .        .                 --

1 / * . O / l l a ., . .

      'g.  .                                                                            .
                                              /                                                   l
                                           /
      .1--                        g i/                                           gi     '.        l
                                                                                                                    ~

j p2 l l _ _P d _ _ . - - _______________l___l___ __

                                                                                                                       )
                     !           /: 1                I           !      e      t            !            t  i
      'O 0         2      4          5              8          10     12     14           16          18  20       22 TIME (see)            '

ti s-Td 2 L Figure 2 5: Illustration of the Procedure of Deterrnining Equivalent Stationary - Duration (After Dr. Robert P. Kennedy) r sooss-o3/oCNGS 2 2 33 -

o 8 ,i

        !o k O

Y M

        "                         aseHne Conected                                                                                                                          amax:

in

           "             0 c , t eu X 10                                                                                                                                                    tsax:                e .6 300 0.2            - ' - ~ ~ ~ - ^ - ~ - - - - - -                      - - ' - - -                        --      -     - - -               ---

s 9. 9. N 0.1 l ar I l g 3 5 I ' L i j ll , g 0.0 f 4 j  ; L l l h l f!l ( . A 3 " + P i i i l j Ij O b  !

                                                                        \ {                             ,

i r l l i

                                                                                                                                                                     ' l  '

5i 8 f , l

                     -0.1                                                          i{

d 5 B- e O O 4 -0. __ , _ _ _ _ _ _ ..

                                                                                            -.._4                - . _ . -                              _ __                . _ _ _             ,

h Time (Sec) 8 b m.--. _m I

- o O l k!! 4;, > o r ~d

                                                    %                                          ~

C

               ....'                                         ~
               - -                                             n i                                     %

l _f i s_ - . o.

                                                           -                               .~            ,

f ,- e i

                     '                            ~~

o

                                               ,.                                              O
                                                             ~

e

                                                       ~
                     !                                                                     (o m

i

                      '                             "-                                     ;         g
                                                        --,e---                                      $

w i Q i -m l E

                                                  =.-                                      !o
                      ,                                                                   Y
                                                                 ?
                                                                      -                    l
                                                                           -               i
                                                      ~=.=---
                                                                                          ,to    .

I - sw

                       ,                                             -                     i'
                                                                                                         ~

e i e a u j u I , O l u m e "

               .3
                                                          %+

o m m i m . I i

                                                                            ,                fo g
                 ~         ^    o   -          e.              o.        o.         o. o.

r

                   #       -    -              o               o         o          -  _
                   -                                                                    (

x (s,5) uoTae2aTacey Figure 2-7: Artificial Acceleration Time History, Horizontal Component 2 50069-03/OCNGS-2 2-35 h

h w - C E 5 y X 10 , Baseline Corrected aman: o.0984 m tman: 7.6100 - S. O a i g 0.5

                                            ~                                                                 l l

l g h o.o-. b - j L r l f j i

                                                                                                                                                                  )        { j      t y[I
                   -                        e.

2 r e ht ,  ; . 1 1 1

                                                                                                                                                                              \

I- $ -o.3 E  % 5 t

                                            &     E
                                                        -2 o g     a                                    _. . _ g,             g . _ . _g                  ,g,                                    ,g,
                                                              . . _ - . _ _g4
                                                                                                                                                              ._g Time (Sec)

E a a _ __ue

      -   -. - _+.+*-             w -. . --          ~w       e                      v                 n                -,r --            --W--   '%,e-
  • w w t 3 i=, ,
                                                                                                                       .j 4

h

                                                                                                                       'h i

s 0 X 10 0.5 5

                                                                             / r v\

0.4-

                                                                         /           \                                   '

j

                                                                    /                                                    :

h C \

     .3     0.1-                                                                              ,

p \ <

                                                                                                 .\

0

      -A O

O y 0. 2-- N s E 0.1-- t k

                           -~~                                                                                           ;

0.0 f .

                                                                     .     .     +-4   :+           l 1                                      .0                               I                     10 2

16 10 10 i Frequency (Hz) Legend: Notes: > Target _ . Accelerations in g's Horizontal 1 _ _ _ _ . _ _ _ Specitral Damping 51 .l Target.-PGA_= 0.184g  ! SRP-Frequencies Baseline Corrected  !

                                                                                                                       'i Figure 2-9:       Comparison of Response Spectra, Horizontal 1,5% Damping'-                                   .

Artificial Time History vs. Target { i 50069 03/OCNGS-2 2-37 i 1

                                                                                                                           )

i

t

                                                                                                                                                                    . t i

P i 0 X 10 - - - - - - O.5 - -- - 7 ~J  :)

                                                                                         /          \
0. 4--
                                                                                     /                 .\ -

1

                                                                                   /                         ~\.
                                                                                                                \                                                       i c           -                                                                                              \                                                     !

r 0.3 3

  • a .

m \

                                                                                                                       \                                                >

k4 N  ; 3c) - f v 1 U y 0.2--

                                                                                                                                 \ ^

j

                                                                                                                                                                      -6 0.1                                                                                                                                                     :

i r

                                                                                                                           -i           -o i tae.                       l 0.0                        -i + - t i++
                                                                                             +-oi-eii                                                         .

2 1 0 10 1 10 16 10 l Frequency (Ez) , Legend: Notes: i Target Accelerations in g's l Horizontal 2 _ _ _ _ _ . _ Spect.ral Damping 5't i Target PGA = 0.184g { SRP Frequencies j Baseline Corrected , i Figure 2-10: Comparison of Response Spectra, Horizontal 2,5% Damping .i Artificial Time History vs. Target l i t i sooss-o3/ocucs-2 2-38 g '

      .... ,.                                               -                         ,.               . - ,          ,        -   . -~      - - , - . .

i

   =                                                                                                                                                              i I

X 10 -I 3.0 , l 2.5-- / ,

                                                                                                            \                                                     ,

2.0 /

                                                                                                               \'
                                                                                                                 \

j a > >

                 .S                                                                                                 s a                                                                                                                                              i m

La k c) 1.5 /

                    -4                                                                                                   N                                    ;.

o T > 0 N .i

                 <                                                                                                                                                t 1.0                                                                                                                               .;
                                                                                                                                                               't m                                                                                       :

0.5-- y /f y

                                                                                                                                                              'l 0.0          ,        :--+,-F.-t-,-----,                i - + --t -- + H -H - -            i - -+--- H + ,w                     :

1 0 1 2 16 10 10 10 l Frequency (Hz)  ! L Legend: IJot es :  ! Target Accelerations in g's l Vertical - Spectral Damping-51 i Target PGA = 0.09529  ; SRP Frequencies ' j Baseline Corrected  ! I t I Figure 2-11: Comparison of Response Spectra, Vertical,5% Damping. Artificial -i Time History vs. Target i l I i SOO69-03/DCNGS 2 2-39 - l 1

r 1OC gy . , . . . . . . . . . . . . s>. . . . . . . . . 70 .. . . . . . .. . . . . . . . . . . . . . . . .. . . . .. 7 so_.. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . ~ . . . . . . .3

5 So. . . . . . . . . . . . . .. . .. . . .

e 43 . . . . . . . ..... . . . . . 30- . . . . . . . . . . . . . . . - . . . . . . . . . . . . . . . . . . . . . . - . -.. - 20- .- - -- - - - - . - - - -- . - - - - . . - . . - . to_. . . . . . . . . . . . . . . . . . . . . . . . .. .

       ;)                             A                      A                      8                             h                 1b                        f2                            1'4                   16 Time (sec.)

Figure 2-12: Arias Intensity, Horizontal 1 SOO69 03/OCNGS-2 2-40

f 100 n . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 84 --. . . .. - . . . . . . - 73 . . . . .. .. . d so.. . . . . . . 3 ib - - - - - - - - - - - - - - - - - - - - - n 54 - - - - - - - - - -- - - - - - - -

 -.E f 40
            . . .    ..       . . . . . . _ _                                      =

3o- - - - - - 20- . . . .. .. . t o_ . . . .. . 0

           )                     I                          A                          8                  b                    1b                          f2                     1'4              16 Time (sec.)

Figure 2-13: Arias intensity, Horizontal 2 l I 50069-03/OCNGS-2 2-41 1 l i

too n ... . . . . . . . . . . . . . . , . . . ... . . . . . . . 80- -. -- -- -- ---- - -- - - - * - - - - - - - - 74 - - - - -- - - - so. . .. . . . . . . . . .. . . . . . . . . . . . . .. .. ... . ... . .. . . 3 g;5 n .. .. . . . . . .. . . . . . . . .. . . .. . ..

 -_ t f43         . .           .             . . . .                                . . . .          . . . . . . . . . . . .                 ..         . . . . .       ...          .                           .

n . . . , . . . . . . W. . .. . . . . . . . . . . . . . . , . . . . . . . . . i o_ . . . . . . ... . ..

1) I A 8 b 1D (2 l'4 16 Time (sec.)

Figure 2-14: Arias intensity, Vertical sooss.o3/OCNGS-2 2-42

I

 +                                                                                                                                                     ,

I l l . l i

                                                                                                                                                     ~1 l

1 100c I

            ~
                                 ,.,%                                                                                                                  I s

s%su# t 4 v s pi wa s ,' 100-- 8 s

            -          a                             % s .,                                                                                            i j

a s <

            -                                                 \                                                                                       i
           .                                                    s,                                                                                    1 m

s

                                                                           's, b       -
l. ,

s, g ,,

   <    14                                                                        's
                                                                                      's - s, 8

k o [ u)

           ~

N,

n. - s, s
                                                                                                                ~~._, ~... ,

1: l 01

4) $ 1b f5 do ;5 Frequency (Hz) i l- Target --- Hor. Component 1 l Figure 2-15: Comparison of PSD Functions, Horizontal Component 1 Artificial Time History vs. Target 50069-03/oCNGS-2 2-43 E
                                                                                                                                                                                   'l 1000_

i

                        ./ ~'m                                                    \.. s
                                                                                            ~.

100: /  %,

/ \
                                                                                                      'u ' ,.
s. ,

n L o

                                                                                                                   ' .s
                                                                                                                    ~
                                                                                                                            's -                                                     ;

is i g  :

                                                                                                                                 '. s O
              ~
                                                                                                                                      's ~

v> '

a. -
              -                                                                                                                               ..s'~

1: i 01

                ')                                                                      b                   Ib                               15            20              E5 l                                                                                                                   Frequency (Hz) l- Target            -- Hor. component 2 l Figure 2-16:                                                   Comparison of PSD Functions, Horizontal Component '2, Artificial Time History vs. Target 50069-03/OCNGS-2                                                                                      2                                                                                                                                                                                  ..

t 10C_ i i n e vi fl ' o,s's J N ..., '.

                                    '^                                                                                                 ;
         ~

i Mst 'yJ - a

                    ! \s,'

i

                                                               '\ g g
                                                                                                                                     'I It                                                              \                                                                ,

_ ,I - ,

         ~

R l ',

                                                                           -                                                           i

__ s' i I' -  ; g , g - l

                                                                                                          ,,'~~ '

e 1- .....

                                                                                                                                     . i i
                                                                                                                                       .i i

U^

) b ib f5 d0 15 f

Frequercy (Hz) L l- T arget --- vencaiconponent l I P f 1 Figure 2-17: Comparison of PSD Functions, Vertical, Artificial Time History vs. Target i sooss-ostocnos.2 2-45 r l n e

i I

3. SOIL PROFILES The soil profile for the Oyster Creek site was established based on site specific data (borings, etc.) (Reference 5). Best estimate low strain soil properties, including soil layering, are presented in Table 3-1 and Figure 3-1. In addition to the low strain properties, the variation in soil shear modulus and soil material damping as a function of strain level is necessary to calculate high strain equivalent linear properties. Table 3-2 and Figure 3-2 present these strain dependent relationships (Reference 5). The low strain soil profile and the strain dependent variations are the bases for calculating the high strain soil profiles for the SSE and OBE analyses.

The top 3-foot thick soil layer shown in Table 3-1 and Figure 31 is removed from all analyses of the OCNGS reactor building due to its low stiffness. In this manner, potential concerns regarding ground motion characteristics and the effectiveness of this layer in providing stiffness and radiation damping effects are addressed conservatively. The overburden mass effect of this layer is included in the analyses. All further discussions ignore this layer. The ground motion is applied at the top of i the second layer (elevation + 20 feet) as a free surface. Equivalent linear high strain soil properties are calculated using the computer program SHAKE. Input data is comprised of the seismic input (Section 2), low strain profiles (best estimate, lower bound, and upper bound); and the strain dependent variations of soil shear modulus and soil material damping of Table 3-2 and Figure 3-

2. Three low strain soil profiles are analyzed to calculate three high strain soil profiles to be used in the SSI analyses. The lower bound low strain profile is taken as one-half of the best estimate and the upper bound is taken as two times the best estimate. The high strain soil properties adhere to two limitations (Reference 3), i.e.,

the high strr 1 upper bound shear modulus should be greater than the low strain best estimate shear modulus and the high strain soil material damping should not exceed 15% of entical. Three parameters define material stiffness behavior for soil: shear modulus, Young's modulus, and Poisson's ratio. Only two of the three are independent. Also, shear modulus is directly related to shear wave velocity (Vs), and Young's rnodulus and shear modulus to compressional wave velocity (V p ). The procedure med to , calculate the high strain properties is as follows. High-strain shear moduli are 50069 03/oCNGs-3 3-1 g]

a. a_ _ q a ...a. . . +
                                                                                                              ?

calculated using SHA.KE. An equivalent linear shear modulus is calculated. For j layers above the water table, Poisson's ratio is held constant, and equivalent linear  ! Young's moduli are calculated, For layers below the water table, % tends to be constant with strain since it is principally controlled by the velocity of waves in water (Reference 5). Therefore, below the water table, the compressional wave velocity is held constant and aqual to the value in saturated soils. if this leads to a - Poisson's ratio greater than 0.5, an added restriction of Poisson's ratio equal to 0.49 l is enforced. For the Oyster Creek site, the water table varies between elevations  !

    + 3 feet and + 10 feet. For the SSI analyses, the water table is placed at elevation                     !
    + 5 feet.                                                                                               _

Section 3.7.2 of the SRP (Reference 3) requires the envelope free-field ground motion at foundation level to be greater than or equal to 60% of the free-field i surface motion. When soil property variations are included, this criteria may be satisfied by the envelope of the three free field ground motions at foundation level. l For the OCNGS reactor building SSI analyses, the following approach is taken. Acceleration time histories and associated response spectra at 5% damping are , calculated at the foundation level for the three high strain soil profiles. These spectra are enveloped for the three soil conditions and the envelope compared with 60% of the free-field surface response spectrum. If,in any frequency range, the - T enveloped spectrum is less than 60% of the free-field response spectrum at the j surface, then the surface time histories are modified to increase the power in the frequency range of deficiency. The computer program SHAKE is used to calculate the deconvolved time histories at foundation level for the high strain soil profiles. The soil profile model for the SHAKE analyses consists of the layers shown in Table i 3-1, beginning at elevation + 20 feet (ignoring the top 3 feet) and continuing to a depth of 108 feet (elevation -85 feet) overlying a homogeneous half-space with properties equal to those defined for the layer beneath elevation -85 feet. } a 50069 03toCNGs-3 3-2 g i

l' 1 Table 3-1 BEST ESTIMATE LOW STRAIN SOIL PROPERTIES (Reference 4) Shear Wave C%7pressional Total Depth Elevation Velocity Wave Poisson's Unit Weight Soil (ft) (fps) \ elocity (fps) Ratio (pcf) Type (ft) 0.0 - 3.0 +23 +20 310 730 0.39 120 Sand 3.0 - 10.5 +20 + 12.5 600 1,413 0.39 120 Sand 10.5 - 18.0 + 12.5 +5 660 1,554 0.39 120 Sand 18.0 - 26.0 +5 -3 735 5,200 0.49 115 Clay 26.0 - 34.0 3 -11 810 5,200 0.49 115 Clay _ 34.0 - 43.0 -11 -20 930 5,600 0.49 125 Sand 43.0 - 52,0 -20 -29 985 5,600 0.48 125 Sand 52.0 - 55.0 -29 -32 1,170 5,600 0.48 125 Sand 8i50 - 61.5 32 -38.5 1,270 5,600 0.47 125 Sand 61.5 - 68.0 -38.5 -45 1.145 5,600 0.48 125 Sand 68.0 - 78.0 -45 -55 1,130 5,600 0.48 125 Sand 78.0 - 80.0 -55 57 1.260 5,600 0.47 125 Sand 80.0 - 85.0 -57 -62 1,415 5,600 0.47 125 Sand 85.0 - 92.5 -65 -69.5 1,455 5,600 0.46 125 Sand 92.5 - 100.0 -69.5 -77 1,400 5,600 0.47 125 Sand 100.0 - 108.0 -77 -85 1,185 5,600 0.48 125 Clay Below 108.0 Below -85 1,550 5,900 0.46 125 Sand (VpNsl -2 Note: Poisson's Ratio calculated as = 1/2 s O.49 (see text) (VpN sl -1 50069 03/OCNGS 3 3-3 {

Table 3-2 SHEAR MODULUS REDUCTIONS AND EQUIVALENT DAMPING RATIOS AT SELECTED STRAIN LEVELS (Reference 4) (A) ' SHEAR MODULUS REDUCTIONS ' Shear Modulus Reduction Strain (%) Clay Sand 0.000100 1.000 1.000 0.000316 0.999 0.985 0.001000 0.997 0.961 0.003162 0.972 0.897 0.010000 0.903 0.791 0.031623 0.772 0.600 0.100000 0.535 0.372 0.316228 0.293 0.206 1.000000 0.134 0.087 (B) EQUIV/ ENT DAMPING RATIOS Equivalent Darroing Ratios (%) Strain (%) Clay Sand 0.000100 2.0 0.9 0.000316 2.3 1.0 t 0.001000 2.7 1.4 0.003162 3.3 2.2 0.010000 4.3 4.1 0.031623 6.0 7.5 0.100000 8.6 11.9 0.316228 13.7 18.3 1.000000 20.2 22.8 I l 50069 -03 /OCNGS-3 3-4 g j

Ve (fps) w (pef) - 0 surface Deonens *## 8 310 120

                                                                                                +20 600      120
         ~

Cape May Formation - .ta s 660 120 20 -

                                                                                                +5 735      115
  • Upper Clay 4
        ~

810 115 -

                                                                                                -11 40   -                                                                930      125 ~

Upper Cohansey Formation ao 985 125 1170 125 go _ 1270 125 asJ 1145 125 4s

,                           Lower Cohansey Formation                    1130      125                g a

80 - 1260 1415 125 125

                                                                                               )f
&                                                                                              -a2   2 w
       -                                                                1455     125 _

ees 1400 125 100 .n Lower Clay 1185 125 1550 125 - 120 - Kirkwood Formation 140 - 160 emmew, e iw, Figure 3-1: General soil profile at the Reactor Building site. Low strain properties (Reference 4). 50069-03/oCNGS-3 3-5

40 .. ., ., ., i n i

     /,

30 -

                                                                                                                                                      ~

O

     =n                                                                                                                                                      !

c: ( cm E , 5 20 - c , 2e

  • o 3
  • cr
  • w ,

a so -

  • f O
                                 '                        f                                     I                                ..I                        I to
                     - ... ,, .                                                                 i                                -i x     os   -

e . o E B E S 06 - ' ti

  • o '

v ' o

  • c:

e '. + n . 3 os - V O . g 3e for Clay 's , o . i

  .C                                                                                                         .

M - --------- i o.2 for Sand 's, - i

                                                                                                                             ,                              )

ao 0001 0002 0005

                              .i 001       ~DC2    005
                                                       .i 01        02            .05 i

t 2 5

                                                                                                                               .i       '.. -

1 2 5 to moa oa. - v.m strain (%) i i Figure 3-2: Recommended shear modulus reduction and damping curves (Reference 4) l l 50069-03/OCNGS 3 3-6 {'@ i 1 i i

1

4. STRUCTURAL MODEL A three-dimensional lumped-mass dynamic model of the OCNGS reactor building is used in the SSI analysis. Appendix A describes the model in detail including the geometry, material properties, and mass information (Reference 6). The model includes the reactor building, drywell vessel, drywell shield wall, biological shield wall, and reactor pressure vessel.

Fixed-base modal pt,operties are incorporated into the SSI analysis. Modal damping models energy dissipation of the structure. US NRC Regulatory Guide 1.61 (Reference 7) damping values for concrete and structural steel are used. Since the reactor building is comprised of elements of differing material, stiffness proportional composite damping values are calculated for the fixed-base structure (Reference 8) and used in the SSI analyses. Table 4-1 itemizes damping values by element for the SSE and OBE. Element numbers correspond to those of Figure 4-1. Table 4-2 contains the fixed-base structure frequencies and composite modal damping values used to model the structure. Massless rigid links are added to the lumped-mass model connecting the center of mass to the extreme locations of the floors in order to generate in-structure response spectra including rocking and torsional effects. soo69-o3/oCNGs-4 4-1

Table 4-1 1 DAMPING RATIOS OF PORTIONS OF THE OCNGS REACTOR BUILDING i l Element Nos.* Material SSE Damping OBE Damping 1,2,9 Reinforced Concrete 7% 4% 3,4,5,6,10 Reinforced Concrete 7% 4% 7, 8 Bolted Steel 7% 4% 20 thru 27 Welded Steel 4% 2% 17,18,19 Welded Steel 4% 2% 16 Welded Steel 4% 2% 11,12,13,14,15 Reinforced Concrete 7% 4% Springs -- 7% 4% I Refer to Figure 4-1. t e I sooss 03/oCNGS-4 4-2

Table 4-2 COMPOSITE MODAL DAMPING RATIOS Frequency Damping Damping Mode # Hz SSE OBE 1 5.01500 0.06398 0.03599 2 5.04500 0.06351 0.03568 3 5.68600 0.06657 0.03771 4 5.72500 0.06715 0.03810 5 7.14700 0.06974 0.03983 6 7.88900 0.06990 0.03993 7 9.23200 0.06993 0.03995 8 10.24000 0.06999 0.04000 9 12.22000 0.04876 0.02584 10 13.48000 0.05537 0.03025 11 13.50000 0.05445 0.02964 , 12 14.03000 0.06871 0.03914 13 14.79000 0.06998 0.03998 14 15.69000 0.06945 0.03964 15 16.42000 0.06945 0.03964 16 18.45000 0.05356 0.02904 17 18.81000 0.06999 0.03999 18 19.47000 0.06999 0.03999 19 20.42000 0.05277 0.02851 20 20.42000 0.05280 0.02853 21 22.98000 0.06943 0.03962 22 23.78000 0.06925 0.03950 23 24.91000 0.06451 0.03634 24 25.34000 0.05680 0.03120 25 27.82000 0.06192 0.03462 26 27.96000 0.04948 0.02632 27 27.98000 0.05751 0.05;t' 28 28.75000 0.05880 0.03234 29 28.79000 0.05787 0.03192 30 29.49000 0.05067 0.02712 31 29.73000 0.05328 0.02885 32 30.76000 0.06878 0.03919 33 31.99000 0.06978 0.03986 34 33.02000 0.06379 0.03586 35 33.21000 0.06272 0.03515 36 34.31000 0.06600 0.03733 37 35.44000 0.06283 0.03522 38 35.73000 0.05125 0.02750 39 36.97000 0.06604 0.03736 40 37.27000 0 04315 0.02210 41 41.11000 0.05161 0.02774 42 41.45000 0.04145 0.02097 43 41.45000 0.04145 0.02097 44 42.79000 0.06988 0.03992 45 44.12000 0.06927 0.03951 46 44.40000 0.06597 0.03731 47 44.81000 0.06994 0.03996 48 46.06000 0.06982 0*.03988 49 48.21000 0.06976 0.03984 50 49.04000 0.05189 0.02793 EOO69 03/OCNGS-4 4-3 F

REACTOR BUILDING , EL.156*-9" ggg EL.138'-0" gg O EL.119'-3" 27 di 17 DRYWELL

                       /A i* _ /
                                                   ^

(j) 60 RECTOR g @ PRESSURE VESSEL L. 95'-3" SHIELD s p {q,5 WALL Aq, Et 93.5-7 o 9/ Q 61 i EL. 82'-2* 3 EL. 82'-9" 12 e iM 0 ' ' ' N ' 7 f 36 % , EL. 75'.3" ] 62 h gs (57)

                                                                                         >@hgq      "'       C18

{qps 5 p p EL. 71 *-5" h II 43 h EL. 51'-3" 54 " g q 0 b 4># kt> EL. 49'-5" , d", ,

                                                              ,9            #UN'3                            @               .
                                                                              '5#I                               EL . 38'-5" 28                  e    o.--..-<          ,32 g                      [4>                      #1
                                                                                 @ 32                A1 o h               .

EL. 23'-6" kgp49-g gy EL. 24'-4"

                              ;                                                                 18         '29   EL. 22'-6" 23 ' '13                               g                                39
                                  @                             I                                @       " @EL 10'-3" 11 33 o                                . _ _ _ . . . . _ . . . - - - .                     .

L 48 2 y

                                                                                        @ 3D BEAM ELEMENT g                                                     h 3D MASS ELEMENT A                                              x (N/S)          @ 1D SPRING ELEMENT EL. -19'-0"
                         <<i<<<

n i  ! 9 MASS POINTS [

           ' = """"*** "

e NODES i~ Figure 4-1: 3-D coupled model. Oyster Creek Reactor Building. I 50069-03/OCNGS-4 4-4 .,

I

l i
5. SSI MODEL AND ANALYSES 5.1 SENSITIVITY ANALYSES A series of sensitivity analyses were performed to verify modeling assumptions and to incorporate any additional features deemed appropriate for modeling the OCNGS reactor building. The sensitivity studies were performed for the SSE. However, the-results and conclusions are applicable to both the OBE and SSE. The phenomena studied were either relatively insensitive to excitation level or the effect is more significant for the SSE than it would be for the OBE.

A brief description of each element of the model and analyses is presented before describing the sensitivity studies. Seismic Inout. The ground motion used in the sensitivity studies approximates the final site specific response spectra (SSRS) described in Section 2. Slight differences in the ground motion definition were due to lack of final NRC approval of the SSRS prior to performing the sensitivity studies. Figure 5-1 compares the two spectral shapes. The small differences shown in the figures have no effect on the conclusions of these sensitivity studies. Artificial acceleration time histories were generated to envelope the target ground response spectra. Their response spectra met the enveloping and statisticalindependence criteria of the SRP. The target PSD functions were unavailable at the time of performance of the sensitivity studies; hence, no check was made. This has no effect on the conclusions since meeting the PSD criteria for time histories developed to envelop the NRC approved SSRS as demonstrated in Section 2 was easily accomplished. Soil Model. The best-estimate low strain soit profile and the specified variations in , soil shear modulus and soil material damping with strain level described in Section 3 were used to generate three high strain soil profiles. The computer prograrn SHAKE was used. The procedure of Section 3 was followed. Tables 5-1 and S-2 itemize the calculated values of shear moduli and damping values, respectively, for the three > soil profiles: best estimate, lower bound, and upper bound. For the sensitivity studies. the envelope of the deconvolved free-field motion at foundation level was verified to exceed 60% of the surface ground response spectra. 50069 03/oCNGs 5 5-1 (({

i

  . The seismic input and soil properties used in the sensitivity studies are virtually the same as will be used in the SSI analyses.                                                         ;

Foundation Model. The foundation is modeled as a 10-foot-thick square foundation l with horizontal dimensions of 147 by 147 feet. The bottom of the basemat is located at elevation -29.5 feet. Embedment of the structure with the foundation is 49.5 feet. Structure Model. The structure model is the model described in Section 4. Three , node points were selected, for response comparison purposes, to represent structure response: nodes 4 and 7 in the reactor building and node 58 in the drywell (Figure , f 4-1). in-structure response spectra,5% damping, were calculated at these locations - to evaluate sensitivity. Sensitivity analyses were performed to evJuate soil layer discretization, foundation rigidity, unbonding of soil and structure / foundation, and the effects of soit property variations on in-structure response. The conclusions drawn for each sensitivity study were incorporated in subsequent sensitivity studies.

  • Two-dimensional SSI Models. Selected sensitivity studies were performed using an equivalent two-dimensional SSI model which adequately models all aspects of SSI for the sensitivity studies. Using the two-dimensional models allows computational efficiency in evaluating modeling issues for which three dimensionality is not important. Figure 5-2 compares in-structure response spectra at nodes 4,7, and 58 .

for the two- and three-dimensional models. The frequency characteristics of the response spectra are identical. Therefore, the overall behavior of.the models is the > same. Small differences in the peak spectral accelerations are obserud. However, these differences do not affect the conclusions from the sensitivity analyses. The . final SSI analyses will be three dimensional, in the ensuing discussion, use of the - two-dimensional model will be identified. I I 50069 IO3/oCNGs-5 5-2 g]

Table 5-1 HIGH-STRAIN SHEAR MODULI (Ksf) FOR THE OCNGS SITE SHAKE RESULTS FOR SENSITIVITY ANALYSES Layer Best Lower Ratio Upper Ratio Thickness Estimate Bound L/B Bound U/B 7.5' 1085 466 0.429 2350 2.166 7.5' ~210 535 0.442 2685 2.219 8.0' 1717 800 0.466 3570 2.079 8.0' 2097 982 0.468 4345 2.072 9.0' 2662 1194 0.449 5664 2.128 9.0' 2989 1320 0.442 6340 2.121 3.0' 4386 2013 0.459 9235 2.106 6.5' 5248 2446 0.466 11012 2.098 6.5' 4122 1854 0.450 8664 2.102 10.0' 3951 1762 0.446 8347 2.113 2.0* 5007 2287 0.457 10602 2.117 5.0' 6474 3041 0.470 13712 2.118 7.5' 6847 3208 0.469 14541 2.124 , 7.5' 6236 2882 0.462 *

                                                     . 272    2.128 8.0'          4931        2323          0.471    10218     2.072 half space       9326        4663          0.500    18652     2.000 f

500S9 03iOCNG5-5 5-3 {'s

Table 5-2 HIGH STRAIN MATERIAL DAMPING RATIO FOR THE OCNGS SITE SHAKE RESULTS FOR SENSITIVITY ANALYSES Layer' Best - Lower Upper Thickness Estimate Bound Bound 7.5* 0.038 0.058 0.026 7.5' O.049 0.064 0.035 8.0' O.045 0.053 0.040 8.0' O.044 0.052 0.040 9.O' O.041 0.055 0.032 9.0' O.041 0.057 0.032 3.0* 0.035 0.047 0.027 6.5' O.033 0.043 0.025 6.5' O.038 0.052 0.030 10.0' O.040 0.055 0.032 2.0' O.037 0.050 0.029 5.0' O.034 0.043 0.025 7.5' O.034 0.043 0.024 7.5' O.036 0.047 0.027 8.C' O.043 0.050 0.038 Half Ss, ace 0.020 0.020 0.020 1 50069 03/OCNGS-5 5-4 Fg

4 2 - , s 6 i i X 10 0 - 0.5 7

                                                                       ^m                                           ,
                                                                     /
0. &- /  ;

p g N

                                                               /                 \

c

                                                             /                     \

0 . 3-- d , .S a / \  ;

                                                                                        \

g / 'g i

                                                    /-                                    \-            s           .

8 u

                                                                                             \

t

0. 2-- / 2 y
                                                /
                                              /
                                            /                                                         -n 0.1--                             /                                                                            '
                                      /                                                                 5..         r
                                  /                                                                     O
                               /                                                                                    ;
                                                                                                                   .i 0.0 1                               0                                   1 16                              10                                  10                     2 10
a. 1 Frequency (Hz) 8 Legend: , Notes:
                                                                                                      'N.

Approved SSRS Accelerations in g's

  • Sensitivity Studies - - - - - - Spectral Damping 5%

m . U n. I2 s Figure 5-1: Comparison of SSE Ground Response Spectra: Sensitivity Studies - vs. Approved SSRS. 50069-03/OCNGs 5 5-5 B ,

                          .          .          _            _           ~_ _                             ..

i a

                                                                                                             't i

6 X 10 ~1 s? 4.c .. ; I A

                                                                /t f

I\ ' 3 . 0-- i

                                                                    \

i e \n i O tm 1 ~. 1 j R

   $      2.0--                                                                                          L'       ,
  ~

e \ ~. i U C  !

   ,o::                                             r                     \                                       i
                                                                                \                        -        ,

N O f 1.0-- N  ; b - a >

                                   .                                                                     q        >
                     ~ ~ _ _ -                                                                           ,.       .

O OC' 2' 15 1 10 0 10 1 10 }. n i; Frequency (Hz) t Legend: Notes: ". 2-D Model Accelerations in g's [ 5% Spectral Damping. '! 3-D Model _ . _ _ _ _ _ _ _ $ U i m , e t e T

                                                                                                                  +

Figure 5-2: Comparison of in-structure Response Spectra,3-D vs. 2-D Analysis.  ; i a) Node 4  ! SOO69-03/OCNGS-5 5-6

i 0 X 10 0.C

                                                                                                                                                               ;J\
                                                                                                                                                              \\                                                                                      j
0. 5-- l l s I l
                                                                                                                                                           )

0.4-- 8 s

            ~j                                                                                                                                                            l                                                 u a                                                                                                                                                           1-                                              R
           -y              0.5-                                                                                                                                              g                                              g
               $                                                                                                                                                               \                                            3 N.fi 0 . 2--

(" , m-i

                                                                                                                                                                                             ~

k n 0.1-- N 9 0.0

                                     ' --- ' ~                                                                                                                                                                             'E 15 1

10 0 10 1 2 10 y N Frequency (Hz) Legend: Notes:  ; 2-D Model Accelerations in g's = 3-D Model _ _ . . _ . _ _ 5% Spectral Damping 8

                                                                                                                                                                                                                            !3 0;

a Figure 5-2: Comparison of in-structure Response Spectra,3-D vs. 2-D Analysis. (b) Node 7 , 50069-03/OCNGS-5 5-7 m _-m ____ _ ____ _ - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __________ --___ __ _ _. __mmm___ ._. _

l l d i 0 j X 10 0.5 .

                                                                   '\ 4                                             I I\

I\ \

0. 4-- l*
                                                                        \
                                                               )         J
                                                                          \
                                                                           \

c l

 .      0. 3--

a 3 N E-m 8

                                                                               \                             R      r j     0 . 2--                                                                  \                           3      >

N

                                                                                       \                     g O .1--                                                                                               b,     i
                  ~__                                                                                        $

a

                                                                                                                 ~'

0.0 15 1 10 0 10 1 10 2 g 7 Frequency (Hz) . Legend: Notes: , 2-D Model Accelerations in g's g-  ; 3-D Model _ _ _ . . _ _ _ _ . _ 5% Spectral Damping - i E s d E . l Figure 5-2: Comparison of in-structure Response Spectra,3-D vs. 2-D Analysis. ] J (c) Node 58 l l 50069-03/oCNGS-5 5 4 I

                                                                                                 ,        l 5.1.1 Soil Laver Discretization                                                                      I

. . i The soil layer discretization for the SSI analyses is selected such that seismic waves with frequencies affecting the response of the soil-structure system can be accurately transmitted through the soil. To determine the discretization adequate for the Oyster Creek site, five two-dimensional SSI analyses were performed. One with a refined mesh capable of transmitting waves with frequencies higher than 33 Hz, I one with a mesh' capable of transmitting waves with frequencies up to about 25 Hz, i one with a mesh capable of transmitting waves with frequencies up to about 12.5 i Hz, one with a mesh capable of transmitting waves with frequencies up to about [ 7.0 Hz, and one with a mesh capable of transmitting waves with frequencies to  ! about 2.0 Hz. High-strain best-estimate soil properties were used. The in-structure _j response spectra at nodes 4,7, and 58 for these five cases were compared. This comparison is shown in Figure 5-3. The in-structure spectra calculated for meshes transmitting 33 Hz,25 Hz,12.5 Hz, and 7.0 Hz are equal for all practical purposes.  ; For the SSI model, the soil will be discretized such that frequencies up to 12 Hz will be accurately modeled for the high strain best estimate soil profile. The SSI analysis [ will include response calculations to 25 Hz.  ! 4 c F t t b i i e scoss-catocNGs-5 5-9 Ff_/~p

                                                                                          -. x i

I I X 10'1 { 40 ' 1 l I I i i

                                 ! I                    I l

3.0 i c ,

                                       ! ;               I                                             i              >

o i I i

  --                        i          i a                        i           I h
  • l l 2.0 3
                            ~

e ,

  ~                                                                                                               n
                                                                                      /

8 I  : o o  ;

  <                           >    l                                              \r              A      :
                                                          !                               \                           t 1.0, i

i i \I G_

                                                                                                         ! ,      E"  ;

l l,

                                                                                                                  ?.
                              .              l                                l
                                         ,i          ';

e

n. w i / ,
                              ;                                                                                   M 0.0 3

a { 2 g 1 0 1 16 10 10 10 O f G Frequency (Hz) ' i Legend: Notes: q 2.0 H:. Model 5% Spectral damping C 7.0 H . Mocel Accelerations in g's g  ? 12.5 Hz. Model _____ ___ 25.0 H . Model . .. k 33.0 H:. Model __ ___ E , Figure 5-3: Comparison of in-structure Response Spectra, Soil Discretization Study. I a) Node 4 sooes-ostocnos-s 5-10 I

l 1 i 0 X 10 0.0 I , 0.; ,, t

                                                                   /       !

l 0." .- , c O

                                                               /          V1 A                                                              /                                                       t a                                                             d 0
h. E I 0.,

3 ' 8 l C o .y o < l ) T E ' M ' 0.2' i 2 Vi $% ' l

                                    . Ii                             l            1             g ii          !                          j            j                            5 0.1-                                 -

ij / J

           -               -_. /                                                                                  a O.c.                    '                                                                                    %,

0 1 2 g 16 10 10 10 E c Frequency (Hz) Legend: Notes: 2.0 H:. Model 5% Spectral damping y ,

   ~1.0 H . Model                  _______ _ _                                      Accelerations in g's          =

o m 12.5 H:. Model _________ 2'5.0 H:. Model . .. !3  ! 33.0 H:. Model __ ___ @ Figure 5-3: Comparison of in-structure Response Spectra, Soil Discretization  : Study. b) Node 7 50069-03/oCNGS-5 5-11 i

i 0 X 10 ' 0.L. , l l 0.0 I N +

                                                                           $   t l_

t l

                                 \

j(

- j4f -

o 0**'

   .s                                                               ri r   i a

m U M s . c) o- > U . m U r r  %

   <      Q "s
                                              !ll l/ \

E-

                                                      )*

l  ! t l  ! l l

               !              i  i ij                                       i l                   Y                 $

0.I' # I # E5 i [ 7. 2  ?

                                    /)

i - o 0.0 - 1 0 16 10 10 1 10 2 9 e Frequency (Hz) y Legend: Notes-  ! 2.0 Hz. Model 5% Spectral dampina 9 i 7.0 Hr. Model _____ Accelerations in g's > 12.5 H:. Model _________ g 25.0 H:. Model . .. e 33.0 Hz. Model __ _ _ _ d E Figure 5-3: Comparison of in-structure Response Spectra, Soil Discretization , Study. c) Node 58 50069-03/oCNGS 5 5-12 raq , EG ._b I 1

                                                                                                                            ?

5.1.2 Foundation Riaidity Considering the foundation structural design and the increased effective stiffness of the foundation due to the interconnecting shear walls,it is expected that the l foundation can be considered to behave rigidly with six degrees-of-freedom . describing its motion. To verify this assumption, two SSI analyses were performed. . One allowing the foundation system its own flexibility, and one with a rigid  ! foundation system. Figure 5-4 shows the two SSI models used for this study. Both are two-dimensional. The in-structure response spectra from these two analyses -y were compared and are shown in Figure 5-5. As expected, the comparison of the two sets of responses confirms the assumption of a rigid foundation. The rigid foundation assumption is used for the SSI analyses. '

                                                                                                ?

h 4 9 9

                                                                                                ?

E i i 50069 03/OCNGS 5 5-13 E

l

                                                  =                 ;;  =

f T  ! i i i lllll}llll'llIIII Rigid Flexible Figure 5-4: Flexible and Rigid Foundation Models. 5-14 scoss-caiocnos-s y0 9%

         ~1 X 10 4.0 3.0--

l

                                                                                                  ~

8 e a m 0 R v 2.w- o

  ~

8 e 5 1.0-- y S

                                                                                                  -9 w      <
             ~                                                                                    o 0.0                                                                1                    2 g
  • 1 0 10 16 10 10 Frequency (Hz)

A Legend: Notes: > z Flexible Fdn. Accelerations in g's 3-Rigid Fdn. __ _ _ _ _ 5% Spectral Damping g w E l l' l l Figure 5-5: Cornparison of in-structure Response Spectra, Flexible vs. Rigid Foundation. a) Node 4 soo69 03/OCNGS.5 5-15

i. P./g~
.. -l 1

0 X 10 0.5 4 I

                                                                                                               -l h
0. &-

c o 0.1- g is M 0 0 e U y 0.2-

                                                                                                         '1 0      '
                                                                                                         .:s
                                                                                                         "   +

O.1-- , M o..

                              .-                                                                         d u

O.0 - 1 0 1 2 10 10 10 10 Frequency (Hz) Legend: Notes: E l Flexible Fdn. Accelerations in c_'s 5~ m-i Rigid Fdn. _ _ _ _ _ _ _ _ _ 5% Spectral Damping g

                                                                                                          ,a m

P Figure 5-5: Comparison of In-structure Response Spectra, Flexible vs. Rigid Foundation. b) Node 7 50069-03/OCNGS 5 5-16 ys , 4

                                                                                                                 )

X 10 0 0.5 0.4-- i 0 E . 0.3-- g-a n 3 7o o e-4 o O y 0.2-- ,. v. 5 5 0.1+ d 9 5 w 0.0 E. 1 .0 ,1 2 16 10 10 10 Frequency (Hz) ". E Legend: Notes: e a Flexible Fdn. Rigid Fdn. _ _ _ _ . _ _ _ Accelerations in g's 5% Spectral Damping j [ E Figure 5 5: Comparison of f a-structure Response Spectra, Flexible vs. Rigid Foundation. c) Node 58 SOO69-03/oCNGS-5 5-17

5.1.3 Unbondina of Soil and Structure / Foundations A sensitivity study was performed to invest; gate the effect of potential separation between the reactor building structure / foundation and the upper layers of soil. This study also addressed, implicitly, the potential effect of lack of full soil around the reactor building due to the excavation for adjacent building foundations. Three t analyses were performed to investigate the phenomenon of unbonding: (a) fully unbonded side walls, (b) partially unbonded side walls to a depth of 7.5 feet, and (c) partially unbonded side walls to a depth of 15 feet. The models are shown in Figure 5-6. The results from the three unbonded cases and the rigid and flexible foundation cases (Section 5.1.2) are compared in Figure 5-7. The following observations and conclusions are made.

         =       The two partially bonded cases match closely the fully bonded case. The effects of reduced effective input motion and                  !

reduced radiation damping offset each other and the response is relatively unchanged from the fully bonded case. '

         =       The fully unbonded case leads to reduced peak spectral accelerations which is due to the reduced effective input motion to the system. Some relatively small exceedances in the 4-9 Hz range are observed. Two points relative to these              f exceedances are important. First, this is an extreme unlikely case where no side so!! contact is assumed. By the nature of this assumption, it represents an unrealistic extreme. Second, even though this represents an extreme case, these in-structure          ,

response spectra are enveloped when considering soil property variations, enveloping, and peak broadening, Figure 5-8. l Therefore, the fully bonded case including soil property variations, enveloping, and peak broadening properly accounts  ; for the possibility of unbonded side soil. i So069-03/oCNGs 5 5-18 [ ;

I@ I6

            $                  #           a                                                    l f                  E           5 F
                                           =;                                       I
            !!ii!!!illti!!!!il                             !t!ililll!I!illIi Fully Bonded                                 Fully Unbonded IW

_I_ r- - -

                                                                               +      -

i 2 - 1 5 i 1 i11111111 iiililli liiiiiiiisiiiti!! Unbonded 7.5 ft. Unbonded 15 ft. t l Figure 5-6: Models for Foundation Unbonding Study. 50069 03/OCNGS-5 5-19 3

9 4 X 10 -1 4.0 - i L

                                                                                                                            'I 3.0--                                                                                                            i gh                                                           ,

c t[1 \ m u I i R  ! ro ./ 1 i .o u N i o 2.0- l i 1 o"

     ~                                                                                                                        ,

o N u u j/ JggIt,g

     <                                                                               1        -

s w / ' h, ' 1 *l ' s__ w  : d 9 i 0.0 o

                  -1                                  0                                                           '     C     i 1

10 10 10 10' i Frequency (Hz) m  : A

  • Legend: Notes: " >-

g i Rigid 5% Spectral damping us - Flex. Fdn. _ _ . _ _ _ _ _ _ Accelerations in g's b  : Unbonded _________ y i Partially Unbonded . .. 7 ft. , Partially Unbonded -- - - _ 15 h. , i Figure 5-7: Comparison of in-structure Response Spectra, Foundation Bonding. ' a) Node 4 I SOO69 03/OCNGS-5 5-20 l l l

                                                                                                                  . l 0

X 10 0.5 3

                                                                    \

0.&- t' Y

                                                           \!\l, t

c i i

                                                                          '   It

. 0.> 1 a m e 1a s i'f\ C \ E s y / V t t@ Q > g (\* 3 O O y 0.h w w

                                                                                          \" /'g              N,
                                                                                                 \f s- .

g 0.1-- O  ! N"* 0.0: - 1 0 .1 2 15 10 10 10 Frequency (Hz) N Legend: Notes: - 3

                                                                                                               >     r Rigid                                                                        5% Spectral damping            2 Flex. Fdn.                   _ _ . _ _ _ _ _ _                              Accelerations in g's.           S     r U.nbonded                    _________                                                                      U     ;

a, , Parcially Unbonded . .. 7 ft. p Partially Unbonded -- - - - 15 ft. Figure 5-7: Comparison of in-structure Response Spectra, Foundation Bonding. b) Node 7 50069-03/OCNGS-5 5-21

B

                                                                                                                                   )

0 X 10 0.5 I 0 . 4--

                                                                         \                                                         ,

t 3 c V\6j; s h 0 0.3-- i _ l g

   %u                                                                   i                                                   E      >

i . s .; N ft\ ii \ k 8 b s  ; y 0.2-- , g

                                                                                     \s/
                                                                                       /\                                   w N
                                                                                              'i b"

0 .1-- N. [ 0.C

                           ._]                                                                                              M C*

16 I 10 0 10 1 10 2 g c Frequency (H:) Legend: Notes: , Rigid Plex. Fdn. 5% Spectral damping Accelerations in. g's [8  ! Unbonded _________ g Partially Unbonded . .. 7 ft. 0; e Partially Unbonded __ ___ 15 h. 3 i Figure 5 Comparison of in-structure Response Spectra, Foundation Bonding. > c) Node 58 60069-03/DCNGS S 5-22 W6 P  !

                                                                                                                     ,g JvA

[

5.1.4 Variation of Soil Procerties A sensitivity study was conducted to quantify the effect of soil property variations > on in-structure response spectra. The 3-D fully bonded rigid foundation model was , analyzed for the best-estimate soil profile and for two variations in soil properties-- the lower and upper bound soil profiles. The SSI parameters calculated for the high- ' strain best-estimate soil profile were modified for the lower and upper bound profiles. , i i The resulting raw in-structure response spectra are over-plotted, Figure 5-8. The , - upper bound soil profile produces highest in-structure response as expected. In fact, l the upper bound soil profile responses envelop the best estimate and lower bound , cases. Figure 5-8 also superimposes the fully unbonded case to demonstrate that it is enveloped by the three soil cases. l I t i

                                                                                               'l F

i I i i l t i i i i So069-03/oCNGs-5 5-23 .

                  , _ . _ . . . , . . - . . .  .                                   ,          -f

1

                                                                                                                                 )
                                                                                                                                 )

0 X 10 0.0 l

              !,                                                                 /V l

0.5 ! d[ g t i 1 I t I t I 0.' f , l i g

    @                                                                I_                   \                                %
  .a a                                                                //<L                  \                                g     :

0 !I \ N o

  • 0 .,

p , 8 1 ;s I1 , o l ,i $. C.e ' n i iI' C i

                               ;                  i Vl T% . b,<j,A.
                                                                               ,            ~

w.s N !v' 9, m. O.1

                                                     ,5                                     ,      D    Nr-h%                   '
                                               )-

s w ,- ~ '

                                        &                                                                                   =
                                                                                                                             =
                                    /                                                                                      g 0.0:
               %-          _A                                                                                               c 1                                        0                                                  1            2 10                                      10                                                  10           10        ,

Frequency (Hz) m 5  ; Legend: Notes: 2 , o a Lower Bound Accelerations in g's

  • Best Estimate _ _ _ _ _ _ _ 5% Spectral Damping y l Upper Bound _________ E Unbonded . ..

I i i 1

           . Figure 5-8:         Comparison of in-structure Response Spectra, Soil Property Variations and Fully Unbonded Case, a) Node 4 SOO69 03/oCNGS-5                                      5-24                                               - u

4 i 4 f X 10 0 .l 1.0 i

                                                         ,                               s l \

j t t l . 0.0 , , t

                                                                                  .,           '6 I          \

f I i

                                                                                                  \                                                                                                                                                                \

c l l 'I O! 0.0 , 3 o g or-\ \ , u l/ i g . e i* r e-< II '

                                                                                                                      \

0 // 1 ,

                                                                                                                               ,\                                                                                                                                  i U        '

9

                                                                                              \.                                                                                                                                                 m ac n,I                     .

I

                                                                                                                                                                                                                                                 .n
                                                   .:              [^'}                         '
                                                                                                 \ - "i n s                                                                                                                                      s..i .            ;
                                      !-                       e                                                   \h                                                                 I %

0.2 Ill !i , 9n w -_ i l +

                                                                                                                                                 ~                                                                                 6             a.          ..    ;
                                                   /                                                                                                           \/%_ ' ~                                                                          Q                 f
                                                                                                                                                                                                                                                 ,?

0.0: _ _g jl l o C~

                                                                                                                                                                                                                                                             -l i^

1 0 1 2 16 10 10 10 l Frequency (Hz) et j E i Leoend: Notes: 2 o i Lower Bound Accelerations in g's Best Estimate _ _ _ _ _ 5% Spectral Damping i m . Upper Bound _________ m j Unbonded . ..  ! I L i

                                                                                                                                                                                                                                                                'l Figure 5-8:      Comparison of in-structure Response Spectra, Soil Property -                                                                                                                                                                       [

Variations and Fully Unbonded Case. -! b) Node 7 , 002-03MCNGS-5 5-25 7 , ._ - . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ . _ _ _ . _ _ . _ . - - - _ _ _ _ _ _ _ _ . - _ _ . _ _ _ _ _ . . _ _ _ _ _ . ._.

t l

                                                                                                                                                 .i 0

X 10 0.0 1 ,

                                   '3 i i             t                                    j i                                                             II l                                                  # I l            !         I                                                1
                !                       !                                              I      i                                                    ,
                                        '                                                     I l
                             ,     4 f

t I 1 1 O.0 I i! ,

                                                                                  /             i I                  \

l \ E. 8 1 2 o a i t/ g .'

                                                                                                                                            ,n .

o e il \ \ m 1 l I) 6 \

                                                                                                          \

l e  ; - i

                                                                                                           \

l sn u I l (2) y  ! ' vy \ \ 2-r-

                                                                                                                                                   +

l \ t \ . 2 U l i YU'th '.'h I l 1 0~~? j , vy y ~ vq , l 8

                                                         /                                    \ \r               N                           a    t
                                                  ,)/                                                              C'YR.
                                                                                                                \- m           ,

E f. M $c i 0.c

                    .- --        /            l                                   )

1 0 1 2 16 10 10 10 m Frequency (Hz) J l z Legend: Notes: g Lower Bound Accelerations in g's 3 l Best Estimate ----- 5% Spectral Damping Di a: Upper Bound --------- Unbonded - -- i Figure 5-8: Comparison of in-structure Response Spectra, Soil Property Variations and Fully Unbonded Case. I c) Node 58 50069-03/OCNGS 5 5-26 s

i 5.2 SSI MODEL The SSI modelis comprised of the elements discussed above and the results of the sensitivity studies. The key features are:

        =       Fully three-dimensional models of the soil and structure are used.
        =       The foundation / structure in contact with soil below grade behaves rigidly.
        =       The soil rnodel is discretized to accurately model frequencies of 12 Hz and below based on the high strain best estimate soil profile. Sensitivity study results demonstrate that accurate in-                     ,

structure response spectra are calculated for soil model discretization accurate to 7 Hz and below.

        =      The structure / foundation is fully bonded to the soil. The fully bonded case envelopes, in general, possible partial unbonding during a seismic event.

i

        =      Three soil profiles will be analyzed: best estimate, lower bound, and upper bound.
        =       Enveloping of the results for the three soil profiles and broadening of in-structure response spectra accounts for uncertainties in properties, behavior, and modeling. The upper and lower bound soil cases are broadened            10% and the best y

estimate soil case is broadened 115% before enveloping 5.3 SSI ANALYSIS TYPICAL RESULTS Typicalin-structure response spectra for design purposes are presented in Figure 5-9 for the fully three-dimensional SSI model. As noted in Section 1, slight differences between these in-structure response spectra and those denoted final will occur. These differences will be a result of the slight change in the definition of the seismic input and its cascading effect on the high strain soil profiles and the SSI analyses. The in-structure response spectra of Figure 5-9 are the result of applying the SSI. y model as described in Section 5.2. 60069--o3/oCNGS 5 5-27 P

t I X'10 0 , 1.0 l [)

  • I \
0. hl
            )

i

                                                                         /   -i r                                                                i \\

YI h y c

                                                                       //        is i                                                m.

i a O 0.% ll r

                                                                                   \\\                                             X o

l 2 i li / 'd ' iu l

                                                                   !                   \\
                                                               /lf                   1\
                                                                                                                                   '1 -
                                                            /'f                         \ \                                        @       ;
                                                          /,-                            N ,-                                      -
                                                          ,                               s
                                                                                            \     s\
                                                                                              's
                                                                                                            \. s -                 d 0.2-                                                                                       \      -                         0-s_.                 ;       e i                      ,,,r
                                          /'                                                                   \                   5 A       I 0.0-I
                           /                                                                                                               !

10 1 0 1 2 10 10 10 N , A Frequency (Hz) > 5 Legend: Notes: U > Node 4 Accelerations in g's- g i Node 7 5% Spectral Damping

  • Node 58 _________

l r Broadened and Enveloped Spectra, Upper and Lower 10%, Best 15%  ; Nodes 4, 7, and 58, X Direction  !

t h

Figure 5-9: In-structure Spectra from Recommended SSI Model. j t P sooes ostocuos-s 5 28 3 m  ; i j

6. GENERATION OF IN STRUCTURE RESPONSE SPECTRA The OCNGS reactor building seismic analysis is separated into two phases. This report documents completion of Phase 1. Development of the SSI model (soil, foundation, structure), including sensitivity studies, is complete. Typical responses in the form of in-structure response spectra have been calculated and presented.

PMse 11 will proceed with the input motions and SSI models developed a:id presented here. in structure response spectra for the OBE and SSE will be calculated following the Phase I approach. Acceleration time histories will be calculated at mass points and extreme floor locations where applicable. In-structure response spectra will be calculated at 1 %, 2%, 4%, 7% 10%, and ASME Code Case N411 damping for the OBE and 2%, 3%, 4%, 5 %, 7 %,10 %, ASME Code Case N411 damping for the SSE. At locations where applicable, the envelope of the spectra at the center of mass and extreme floor locations will be generated. The 1 frequencies for in-structure response spectra calculation are uniformly distributed on a logarithmic scale between 0.2 and 50 Hz, i.e., 200 frequency points. For this I approach, each frequency is within 2.8% of the previous one. The calculation procedure follows that presented in Section 5. Three soil cases are analyzed. The individualin-structure response spectra for each case are smoothed and broadened. The broadening of the peaks is i10% for the lower and upper bound soil cases and i15% for the best estimate soil case. The in-structure response spectra for the three soil cases are then enveloped. In addition to in-structure response spectra, the following nodal responses will be calculated at the center of mass at the requested locations for the six degrees-of-freedorn:

                                    =     Acceleration time histories.
                                    =     Relative displacement time histories (with respect to a line perpendicular to the building foundation).
                                    =     Maximum accelerations.

So069-03/oCNGs-6 6-1 F./

f a Maximum relative displacements (with respect to a line perpendicular to the building foundation).

            =

Maximum relative velocities (consistent with relative i displacements). . The requested locations are given in Table 6-1. t 4 i. h E E i f

                                                                                                                .I l

i I 1 1 50069-03/oCNGS-6 6-2 FJ - I 4 s- * - __ ____.__ _ _._- ___- - - _ _ _ . _ _ _ _ _ - - ---

Table 6-1 LOCATIONS FOR FLOOR RESPONSE SPECTRA GENERATION , Node Number ! Component . Elevation . 1 Building Foundation -19 ft. 6 in. 2 Intermediate Elevation O 3 First Floor Slab 23 ft. 6 in. 4 Second Floor Slab 51 f t. 3 in. 5 Third Floor Slab 75 f t. 3 in. 6 Fourth Floor Stab 95 f t. 3 in. 7 Refueling Floor 119 ft. 3 in. 8 Crane Rail 138 ft. O in. 9 Roof 156 4t. 9 in. 11 Drywell Concrete Floor 10 ft. 3 in. . 29,49 Lower Tier Radial Support Steel 22 ft.1 39,51 Upper Tier Radial Support Steel 44 ft. t 50 Drywell 37 ft. 3 in. 52 Drywell 47 ft. 9 in. 53 Drywell 49 ft. 3 in. 55 Drywell 65 ft. 6 in. 56 Drywell 71 f t. 6 in. ' 57 Drywell 82 f t. 9 in.  ; 59 Drywell 94 ft. 9 in. 60 Drywell 107 ft. 9 in. 51 Drywell Penetration X7 42 ft. O in. 54 Drywell Penetration X8 58 f t. 3 in. 58 Drywell Penetrations X5A, X58 87 f t. 5 in. 33 Reactor Pressure Vessel 49 f t. 5 in. 34 Reactor Pressure Vessel 71 f t. 5 in. , 35 Reactor Pressure Vessel 82 ft. 9 in. 38 Reactor Pressure Vessel 93 f t. 5 in. soo69 03/oCNGS-6 6-3 Q i

Table 6-1 (Cont.) LOCATIONS FOR FLOOR RESPONSE SPECTRA GENERATION Node Number - Component Elevation 28 Reactor Pedestal 14 ft.11 in. 30 Reactor Pedestal 24 ft. 4 in. 31 Reactor Pedestal 29 f t. 5 in. 42 Biological Shield Wall 47 ft. 6 in. 43 Biological Shield Wall 56 f t. O in. 44 Biological Shield Wall 70 ft. O in. 45 Biological Shleid Wall 76 ft. O in. 46 Biological Shield Wall 82 ft. 2 in. l S 50069 01/OCNGS-6 6-4 3Q EGL

7. REFERENCES
1. Letter, G.C. Klimkiewicz, Weston Geophysical, Corp., to A.P. Asfura, EQE,
         " Site-specific Response Spectra, Oyster Creek Nuclear Generating Station,"

October 14,1992.

2. Letter, A. Dromerick, NRC, to J.J. Barton, GPUN, " Review and Evaluation of the Site Specific Response Spectra - Oyster Creek Nuclear Generating Station (M68217)," Docket No. 50-219, March 18,1992.
3. US NRC, " Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants (SRP) " Washington, D.C., NUREG-0800, Rev. 2, 1989.
4. Letter, G.C. Klimkiewicz, Weston Geophysical, Corp., to A.P. Asfura, EQE,
         " Power Spectral Density Analyses of 67 Horizontal Component l

Accelerograms," September 2,1992.

5. Geomatrix Consultants, "Soit Profile and Dynamic Soil Properties for Soil-Structure Interaction Analysis of Reactor Building, Oyster Creek Nuclear Generating Station, New Jersey." Report No.1957-1. Rev. O. October, 1991.
6. Letter from K.L. Whitmore to A. P. Asfura, GPUN Letter No. 5320-92-118 September 18,1992. .
7. U.S. Atomic Energy Commission, " Damping Values for Seismic Design of -

Nuclear Power Plants," Regulatory Guide 1.61,1973.

8. ASCE, ASCE Standard, ASCE 4-86. Seismic Analysis of Safety-Related Nuclear Structures and Commentary on Standard for Seismic Analysis of j Safety Related Nuclear Structures,1986.

So069-03!oCNGs-7 7-1 _

c . 1 l I f i APPENDIX A 3D LUMPED MASS STRUCTURAL MODEL- -

                                        ==                                    I
                                                                          -i I

u 9

                                                                             ?

i 1 I

                                                             -                j

Page 1 of 10 1.0 SCOPE The scope of this Appendix is to present the three dimensional (JD) lumped mass structural model of the OCNGS Reactor Building (RB) to be utilized in the generation of Floor Response Spectra (FRS) using a Soil Structure

neraction (SSI) analysis. The mass and stiffness properties of the 3D model are also provided.

2.0 DESCRIPTION

OF THE REACTOR BUILDING AND ITS COMPONENTS 2.1 The RB is a reinforced concrete structure up to the refueling floor level at Elev. 119' 3". Above the refueling floor, the structure is , a steel frame with insulated metal siding. The foundation mat is 146 f eet square about 10 feet thick, with the finished top surface at Elev. - 19' 6". The RB is rectangular for the remainder of its height consisting of a grid of walls and columns. Grade is approximately at elevation 23'6". The drywell containment vessul, wnich is an axisymmetric steel structure is surrounded by a heavy eencrete shield wall which follows the contour of the vessel frem the foundation of the drywell up to the operating . floor (Elev. 119' 3"). The drywell shield wall is an integral part of the building structure. The upper part of the building does not extend to the West wall of the basement; thus the drywell is closer to the west wall of the upper structure than it is to the other walls. 2.2 A typical cross section of the RB indicates the following portions of the structures Reactor Building (RB) Drywell Vessel Drywell Shield Wall Biological Shield Wall (BSW) l Reactor Pressure Vessel (RPV) The interf ace between the RB, Drywell, BSW and RPV includes the RPV stabilizer, the Star Truss and the Drywell lugs. In addition, the radial support beams of two steel platforms at elevations 46'0" and 23'41" also provide an interface between the BSW and the Drywell vessel. 3.0 MODEL REPRESENTATION OF DIFFERENT COMPONENTS OF THE RB The detailed 3D lumped mass model representation of the different components of the RB is shown in FialTure 1. 3.1 Stiffness Determinations 3.1.1 Reinforced concrete Many interior walls other than the drywell concrete shield are not continuous for the full height. The stiffness of these interior walls is impaired due to the fact that these walls are not continuous over the full height of the building. The floors are not stiff enough to prevent rotation at the top and bottom of these interior walls. Therefore, only interior walls which are attached to either the exterior walls or to the drywell 010/145

l Page 2 of 10 concrete shield wall are effective in shear resistance. The effect of other interior walls was therefore neglected. The shear resistance of columns was also neglected. 3.1.2 Structural Steel Frame The structural steel East and West wall frames above Elev. 119' 0" consist of 6 bays with two braced bays at each end (North and South), 'and two interior bays unbraced. Therefore, the bending stiffness in the North-South direction is' calculated as the eum of moments of inertia of the two independently responding sets of end bays. The North and South wall frames are fully braced, therefore, the bending stiffness in the East-West j direction is calculated as the sum of moments of inertia of all bays. I 1 3.1.3 Drvwell vessel ) l The stiffness of the steel shell is calculated assuming that it consists of cylindrical sections. This simplification will not affect the response of the structural elements of the RB where FRS are being generated. Therefore, this approximation is considered adequate. 3.1.4 Uorer and Lower Tier Radial S uncert Steel Platforms The supports for both platforms are designed and detailed to eliminate radial restraint. The upper tier at Elev. 46'0" is supported from the drywell vessel by hangers, detailed to act as hinged which provide no radial or tangential restraint. The lower tier at Elev. 23'4h" is supported on the drywell vessel by brackets with connections designed to permit radial movement. While there may be some marginal tangential restraint, it is minimal because 1) the Lubrite bearing pads permit relatively free movement of the structure; 2) the width of the slotted holes is %" larger than the bolt diameter and previous analysis shows that the expected relativo deflections are very small and 3) the hori: ental bracAng is relatively light. Therefore, tangential and radial stiffness of the radial support steel is determined to be zero for this analysis. 3.1.5 star Truss at Elev. 82' 2" The star truss connects the top of the BSW to the drywell vessel. A review of the drywell connection indicates that local radial displacement of the drywell at the i connection would reduce the effective radial stiffness of ] the star truss. Therefore, the stiffness of the star l I truss is based on tangential stiffness only. 010/145 i 1 I

Page 3 of 1: 3.1.6 Orywell _2a surrer s , These lug supports connect the drywell /essel and the i reinforced concrete snield at elevation 82* 2". Due to a 0.01" gap hetween the vessel and the truss legs, a weighted value of the lug stiffness is calculated. 3.1.7 FPV Stabili er The RPV stabilizer is comprised of eight pretensioned rod systems f astened to RPV lugs and to plates welded to the , top of the BSW). The spring constant used in the i original structural model was investigated (Reference 4.4) and found to be appropriate. 3.2 Summary of Model Properties The properties of the 3D lumped mass structural model are provided in the following Tables: Table 1. Nodal C: ordinates Table 2. Element Types Table 3. Material Types Table 4. 3D Mass Elements - Mass and Mass Moments of ::nertia Table 5. 3D Beam Elements - Areas, Moments of Inertia and Shear Factors Table 6. Spring Elements - Spring Constants 3.3 rixed Base Dynamic Properties of the Model The dynamic properties of the fixed base 3D lumped mass structural model are provided in Appendix 2 (Ref erence 4.2) . These properties were determined using a 3D ANSYS Model with the properties listed in Tables 1 - 6. 4.O REFERENCES 4.1 GPUN V-1302-153-081, Review of 3D Coupled Model, Rev. 0 4.2 GPUN C-1302-153-5320-063, Reactor Building 3D Modal Analysis, Rev. 1. 4.3 GPUN V-1302-153-080, Independent Verification of C-1302-53-5320-063, Rev. 1. 4.4 GPUN V-1302-153-082, Verification of Review of 3D Seismic Model, Rev. O. 010/145 i

l i Faga 4 of 12 l REACTOR BUILDING J Et us =- ,Q m b Et t es -o- gg v_ m . ,- 017,/ DRYWELL ,

                 '/327
                'E'                    /    L 8                                        REACTOR                            '
                                   .g                     gl' PRESSURE' VESSEL s                  SHIELD gs . -C8'y
  =, o c..

WALL A,3h =t gg. s-. y *ee n> / 4- > n58 e g,

                                                           % EL E2*-2_*                   -

w27 c) 19 E1  %- ,A 35) 44) e.5

                                                                               - -y 35
                                                                                          -~

s ) :: c 2*-9" 124 yQO) , p '1, 35 , shtf Q) m of >$ '* d

                                                                                                           @rI A_ ~ ' '3*                                 -            -

gdLi

                 ,/{'5gp/ 18'"g g bg Ei85,                  3
                                                  =,,m
                                                   ,ss 54 d' mi a                          @

O4 3 ) EL si'-3* ,,] 3 ,33 ' p_ 49. .g.

               ,/24.l e 9 SV.'

4 si E Ih; d a" - I e q>

             /                                       51
m =2 is.c-
                                                                      er /.l 20)

B) ---- .o32 ~ - - Egod>~ :2 31 o QS)

                           @                                           - (41 )
                                                                                         ,,@g                   EL 24*.4*

E L 23'-6*  ; ,

                                        ^

{qp4g 18 629 CL 22 ~8

              /
                /           e ~ o7 23 " ' 13 /                           6 q

19 3 m o sam  ; 11 lib c:-

  • o'.*3* l i

11 o - - - - - - - - - - - - - - - - - - - - - - - - - - - EL 0*-c* i' 2 Y h 3DBEAM AeMENT h 3D MASS ELEMENT j

                      ^                                        = nes)          ' E) 10 SPRING ELEMENT et .s o*.c<<r<<<     h    m i

[

(E/W) i l e MASS PO!NTS I
     '"""**" " *""                                                                  e      NODES i

Figure 1: 3-D couoted mocei. Ovster Creen Reacter Building. , 6

                                                                       .aga 5 cf 10 4

7able 1

                                             !;0DAL COORDINATES (Feet)                                    _

Node Point l X l Y l "

1. l .000 l -19.000  ! .000 l
2. l .000 l .000 l .000
3. l -1.170 l 23.500 l -2.950
4. l -4.470 l 51.250 l 1.730
5. 3.560 l 75.250 l 5.960
6. 7.140 l 95.250 6.240
7. 7.950 l 119.250' 8.350
8. .000 l 138.000 15.500
9. l .000 l 156.750 l 15.500 l l l l _

l

11. .000 l 10.25,0 .000
12. -6.350 l P .750 3.600
13. .000 l 23.500 .000
14. -2.500 l 51.250 3.400
15. -7.500 l 75.250 10.700
16. -8.350 95.250 3.600
17. 1.700 119.250 7.700
18. l -1.000 1 21.583 .000
19. .000 l 21.583 -1.000 l

l 23. l -2.500 23.500 3.400

24. -7.500 51.250 10.700
25. -8.350 75.250 3.600
26. 1.700 95.250 7.700
27. .000 119.250 15.500
28. .000 14.917 .000
29. .000 21.583 .000
30. .000 24.333 .000
31. l .000 l 29.417 .000
32. .000 l 38.417 .000
33. l
                                        .000          l     49.417       l                           .000 010/145 l

Pags 6 of 10 e NodePointl X l Y l l

34.  ! .000 l 71.417 l .000 l
35.  ! .000 l 82.750 l .000 l
36. l -1.000 l 82.750 .000 l
37. l .000 i 82.750 -1.000 -l
38. l .000 93.417 .000
39. l .000 44.250 .000  ;
40. -1.000 44.250 .000
41. .000 44.250 -1.000
42. l .000 47.500 .000
43. l .000 56.000 .000
44. l .000 l 70.000 l .000
45. l .000 l 76.000 .000 l .
46. k- .000 l 82.167 .000-
47. l -1.000 l S2.167 .000
48. l .000 82.167 -1.000
49. l .000 22.500 .000
50. I .000 37.250 .000 i  !
51. l .000 42.000 .000
52. l .000 47.833 .000
53. l .000 49.250 .000
54. l .000 58.250 .000 I
55. l .000 65.474 .000 .f
56. l .000 71.523 .000
57. l .000 82.750 .000
58. l .000 87.417 .000 ,
59.  ! .000 94.750 .000
60. .000 107.750 .000
61. -1.000 82.750 .000 47-  ! .000 a9,750 _1.000 t

e 010/145 ,, l 1

                                                                 'I

Page 7 ef 12 Table 2 ELEMEf!T TYJIK MT 1, 4 = 3D Beams (Elements 1 througn 37) i:T 2,14, ,1 = 1D Spring (Kx) (Elements 38, 40, 42, 44, 46) ET 3,14, ,3 = 1D Spring (Kz) (Elements 39, 41, 43, 45, 47) EI 4,21 = 3D Mass (Elementa 48 through 72) h Table 3

                                                                                                                                                                                                  .vATEPIAL TYPES Haterial No.                      Youno's Modulus                                                                                                Poison's Ratio                                 Elements
1. .5521E6 .166 1, 2 , 9
2. .4782E6 .166 3, 4, 5, 6, 10
3. .4176E7 .250 7, 8, 20 thru 37
4. .374E7 .265 17, 18,.19
5. .406E7 .
                                                                                                                                                                                                                                           .265  16
6. .432E6 .166 11, 12, 13, 14, 15 i

T 010/145 b a ~ - - . . _ _ _ _ < _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . _ . _ _ _ . _ _ _ _ _ . . _ _ _ _ _ _ _ _

Page 8 of 10 Table 4 3D MASS ELEMENTS MASS & MASS MOMENT OF INERTIA (GLOBAL COORDINATES) NODE ELEMENT NO. MMixx MMIvy MMizz 3 8 NO. (REAL NO.) Mz My Mz x10 x10 8 x10 UNT13 l K sec2 #: K Sec2 /f K See2 /ft K Sec2 ft K Sec2 ft K Sec2 g 1 48 (R59) 1660. ) 1660. 1660. 2640. 5220. 2640. 2 49 (R25) f47. 607. 607. 800. 1590. 800. 3 50 (R26) 715. 7 15. 715. 1020. 1920. 990. 4 51 (R27) 527. 527. 527. 560, 1480. 750. 5 52 (R28) 543. f543. f 543. 490. 1210. 750. 9 53 (R29) l474. l474. l474. 440. 1114. 750. l 7 54 (R30) 270. 270. 273. 280. 670. - l 380, 8 l 55 (R31) ' 2515 25.85 25.85 10.46 27.7 17. 9 56 (R32) 1634 1634 1634 17, 45. 28. 30 57 (R33) 43.76 43.76 43.76 2.74 5.48 2.74 33 38 (R34) 3839 3839 3839 1378 2.735 1378 34 59 (R35) 36.49 3649 36.49 1.546 3.093 1.546 38 60 (R36) 2134 2134 21.34 0.904 1308 0.904 42 61 (R37) 13.25 1335 1335 0295 1.791 0.895 43 62 (R38) 11.49 11.49 11.49 0.77 1.54 0.77 44 63 (R39) l 9.94 9.94 9.94 0.665 1331 0 665 45 64 (R40) 8.11 8.11 8.11 0.543 1.087 0.543 49 65 (R41) 11.985 11.985 IL985 3.457 6.914 3.457 50 66 (R42) 5.716 5.716 5.716 1.693 3.387 1.693 52 67 (R43) 5.047 5.047 5447 1.107 2.216 1.107 55 68 (R44) 4.182 4.182 4.182 0.696 1393 0.696 56 69 (R45) 1.84 1.84 1.84 0.306 0.613 0306 57 70 (R46) 1.197 1.177 1.197 0.163 0325 0.163 59 71 (R47) 2.451 2.451 2.451 0.333 0 666 0333 to '2 (R48) 1.771 1.771 1.771 0311 0.421 0.211 010/145

r. Page 9 cf 10 , Table 5 2D BEAM ELEMENTS AREA MOMENIS OF INERTIA. SHEAR FACTORS (EI.EMENT COORDINATES) REAL NO. lE!IM.NO. AREA Izz Iyy 1xx Shear Z l Shear Y l UNIT fr2 l fe' ' ft* l ft* Factor l Factor 1 1 5364. 9.17 E6 9.17 E4 12.4 E6 1.559 1359 2 2 5447. 7.48 E6 7.48 E6 10.2 E6 1.43 1.43 l 3 l3 2124. 33 E6 f 238 E6 438 E6 2.099 l 2.099 f 4 4 23 2. 3.72 E6 l 2.46 E6 434 E6 2.09 l 2.09 l 5 l 5.10 l2597. 4.51 E6 231 E6 4.3 E6 1.954 l 1.954 l 6 l6 l 20m l 3.12 E6 l 2.04 E6 l 3.49 E6 l 1.849 l1.M9 l 7 l7 10.58 l .11 E4 ."*E3 E4 1.011 E4 a.138 l 8.138 8 l8 6.06 .09 E4

                                                                 .413 E4            1.011 E4      4329    l 4329 9      9               4245.         8.02 E6          8.02 E6            10E E6          2.542   l 2.542 10     17.18.19            37.9        .1606 E4          .1606 E4           3212 E4       2.      l  2.

11 16 6.66 .239 E3 .239 E3 .478 E3 2. 2. 12 11.12.13.14.15 276. .1728 ES .1728 E3 .3456 E5 2. 2. 13 23,25 29.9 .2003 E4 .2003 E4 .4006 E4 2. 2. 14 24 21.9 .1466 E4 .1466 E4 .2932 E4 2, 2. l l 15 22 21. .14M EA .14M E4 .2814 E4 2. 2. 16 l20.21 22.5 .1509 E4 .1509 E4 3018 E4 2. 2. l 17 37 934 .111 E4 .111 E4 .222 E4 2. 2. l 18.19 34,35.36 532 .75 E3 .75 E3 .15 E4 2. 2. l 20 33 24.68 .4109 E4 .4109 E4 J218 E4 2. 2. I 21 30,31.32 10.64 .4671 E4 .4671 E4 .9342 E4 2. 2. 22 28,29 13.88 .8224 E4 2224 E4 .1645 E5 2. 2. 11 27 13.68 .7892 E4 .7892 E4 .1578 E5 2. 2. 24 26 1637 .6787 E4 .6787 E4 .1357 E3 2. 2. 010/145 i

Page 10 of 10 Tabic 6 SPRING ELEMENTS SPRING CONSTANTS (GLOBAL COORDINATES) REAL NO. ELEMENT NO. km (K/ft) k2 (K/ft) l 49 38 uy 10. - 30 40 ny 10. - 31 42 48000. -

                                 $2               44             222360.         -

53 46 626000. - f uy 10, 54 39 l . 55 41 uy 10. l 56 l 43 . 48000. l 57 45 . 22:360. , 58 47 i

                                                                    .         626000.

l l l I l l l 1 010/145

i i i

i.  ;
            . APPENDIX B               ,

CONFORMANCE TO REGULATORY REQUIREMENTS l I l l 9 e k 9 i

4 APPENDIX B CONFORMANCE TO REGULATORY REQUIREMENTS r All work is in compliance with regulatory requirements. 3.7.1-11 ACCEPTANCE CRITERIA .

                                                                                    ?

Section 3.7.1 of the Standard Review Plan (Reference 3) is complied with as follows:

1. Design Ground Motion
a. The design response spectra are presented in Reference 1.
b. The duration of design time historiet is 15 seconds with a strong-motion duration of 10-12 seconds, depending on component.

The spectra from the artificial time histories envelop the free-field design spectra at the 5% structural damping value. The PSD functions of the artificial time histories are larger than 80% of the 84th percentile of the smooth PSD functions of the time histories used to develop the design response spectra.

2. Percentage of Critical Damping Values Damping values are in accordance with the U.S. NRC Regulatory Guide 1.61 (Reference 7).  !
3. Supporting Media for Category i Structures A complete description of the supporting media is given i.)

Reference 5. scoss-03/oCNGs B 8-l

I 3.7.2-11 ACCEPTANCE CRITERIA Referring to Section 3.7.2 of the Standard Review Plan (Reference 3), compliance is achieved as follows:

1. Seismic Analysis Methods
a. Elastic time-history analyses are performed. These analyses explicitly account for effects of soil-structure interaction, and torsional, rocking, and translational structure and foundation responses. The structural l

model is given in Reference 6 and is detailed enough to capture the main dynamic behavior of the structures and , components. A sufficient number of modes is included in the SSI analysis to account for the structure responses associated with the high-frequency modes. The rigid body effect of the structure on the foundation is treated exactly by the SSI codes used in the analyses. ,

b. Equivalent Static Load Method 1

N/A

2. Natural Frequencies and Response Loads
a. Fixed-base natural frequencies, modal participation ,

factors, and mode shapes will be included in a final i report. The maximum dynamic responses at the , locations specified in this document will also be given.

b. Response spectra will be generated at the locations and elevations specified in this document. These locations cover the major equipment elevations and points of I support.

l

c. N/A e

50069-03/oCNGs B B-2

                                                                                        -)

i

               ?      Procedures Used for Analytical Modeling                                    ,
a. SSI analyses are performed, thus the structure,its f foundations, and the supporting media are considered as  !

a seismic system.

                                                                                                'I
b. Subsystems heavy or rigid enough to affect the dynamic  ! >

behavior of the seismic system are explicitly modeled as ' a part of the seismic system.

  • i
c. Lumped mass definition agrees with criteria under  !

II.1.a.fiii) of Section 3.7.2 Reference 3.

d. The seismic system is a three-dimensional model with .i six degrees-of-freedom at each node.
4. Soil-structure interaction .!

I

a. The model of the structure complies with Subsection i 11.3 of Section 3.7.2 Reference 3.  ;

t

b. The SSI analyses are performed using the substructure  ;

approaches in the industry standard codes SASSI and CLASSI. The input motion is applied at the free surface l of the layered soil profile in the free field (finished grade:  !

                               + 20 feet). The SSI model is developed according to                 !

the results of the sensitivity studies described in Section l 5 of this document. -

c. The envelope of the spectra of the input time histories i deconvolved to the foundation level for the three soil l

conditions envelops 60% of the design input spectra. l

5. Development of Floor Response Spectra The SSI analyses are performed applying simultaneously the three statistically independent components of the input motion.

Thus, the floor response spectra automatically account for all  ! I t i SOO69-03 foCNGs-B B-3 q l

.. _~ ~. .- - - .- b components of the earthquake and the three-dimensional effects of the structural responses,

6. Three Components of Earthquake Motion
                   ' Same as (5)
7. Combination of Modal Responses N/A
8. Interaction of Ncn-category l Structures with Category I '

Structures i i N/A

9. Effects of Parameter Variations on Floor Response Spectra  !

1 Soil property variations are accounted for by performing three SSI analyses for three soil conditions. The structure properties variation and additional uncertainties are accounted for by .! broadening the floor response spectra by_ 10% for the upper and lower bound soil cases and by 15% for the best-estimate soil case. These three broadened spectra are enveloped.

10. Use of Equivalent Vertical Static Factors N/A l
11. Methods Used to Account for Torsional Effects i

The structural modelincludes nodes at the extreme locations of the floors. Thus, the torsional and rocking effects will be  : directly included in the dynamic responses.

12. Comparison of Responses  ;

1 N/A i 7 h Soo69 03/OCNGs B 8-4

                                                     . . = . . .                           _. _ _
13. Analysis Procedure for Damping -  :

i Composite modal damping is calculated using the stiffness- , i weighted approach described in Reference 8.

14. Determination of Category i Structure Overturning Moments N/A [

1 I D a I t 50069-03/oCNGS-B B-5 l i

c, i i

                                                 'i i

i t

                                                 ?

APPENDIX C  ! I

   .       COMPUTER PROGRAMS                     .

t

                                               -i
                                                 +

f r i I i b a i. I t b e 4 i I

4 h APPENDIX C COMPUTER PROGRAMS The following is a i st and a short description of the computer programs used in this analysis. SASSI The computer code SASSI (A System for Analysis of Soil-structure Interaction) represents a type of substructure approach for analyzing the effect of soil-structure interaction on the response of structures, it has been termed the " flexible volume substructure method" and is based on the concept of partitioning the total soil-structure system into two substructure systems. The substructure systems consist of a system of original site without any structure, as well as a system of the structure above the ground and the basement minus the excavated soil which is replaced with the basement. The two substructure systems are then combined to form the complete SSI system. The equations of motion for the total SSI system are formulated for the substructure of the structural portion in combination with the solution obtained from the substructure of the site portion. The computational steps of the SASSI procedure are briefly described as follows:

a. Solve the site response problem. This step involves determining the free-field displacement amplitude for the interacting nodes within the excavated volume of foundation soil. For each frequency of analysis, the free-field displacement vector is a function of the specified wave field and location of a control point in the free-field system.
b. Determination of frequency-dependent impedance functions.

This step involves computing the impedance matrix which is a complex stiffness matrix corresponding to interacting nodes in free-field.

c. Form the load vector. The load vector for the seismic excitation can be obtained from the multiplications of the free-field displacement vector calculated from (a) and the impedance matrix calculated from (b).

50069 03/oCNGs-C C-1

y

                                                                                              ;i
d. Form the complex stiffness matrix. This step involves forming the complex stiffness matrix for the soil-structure system. q i'
e. Solve the system oflinear equations of motion for the system for specified frequencies. Interpolation is performed to have  ;

the amplification for each frequency. The complete responses are obtained from superposition, and the time domain solutions -; are obtained from the Fast Fourier Transform algorithm. i The SASSI code consists of a set of subprograms. Each subprogram does a different part of the calculation at various i stages and saves calculation data on tapes for the input of the subsequential calculations. The generallayout of the SASSIis ' shown in Figure C-1. A brief description of each subprogram is  ; presented below:

a. SITE. The subprogram SITE solves the site response problem according to the control motion and the ,

specified soil properties. Tape 1 saves the calculated l free-field mode shapes for later earthquake analysis. Only the composition of wave types causing the motion ' are required to be specified. The program provides the information required to compute the transmitting' t boundaries on Tape 2 which will be used in solving the impedance problems.

b. POINT. The point load solution needed for computing the flexibility matrix for the interacting nodes is obtained by the subprogram POINT for each frequency and the matrices are stored on Tape 3. Tape 2 is required as .:

the input file of POINT.

c. HOUSE. The subprogram forms the basis frequency-independent stiffness and mass matrices Tor the  !

structure and excavated soil. The data are stored in  ;

                                                                                              -r Tape 4.
d. MOTOR. The subprogram forms elements of the load

( vector which correspond to the external forces such as l t soo69 03/oCNos-c C-2 E

impact forces acting on the structure of forces'from rotatint, machinery within the structure. The load vectors are stored on Tape 9.

e. ANALYS. The subprogram drives the three subprograms, MATRIX, LOADS, and SOLVE. It is the  ;

core portion part of the program SASSI. The restart mode of SASSI is controlled by ANALYS. t MATRIX: The subprogram forms the impedance matrices for each frequency. Tapes 3 and , 4 are required as input of this subprogram. The impedance matrices are written on Tape 5. The complex stiffness matrices are triangularized and are stored on Tape 6. j LOADS: This subprogram computes the load vector for each frequency and stores them on Tape 7. SOLVE: This subprogram reads the reduced

  • stiffness matrices from Tape 6 and load j vector from Tape 7 and solves the system  ;

of linear equations to obtain the total displacement amplitudes. These amplitudes are actually transfer functions from the control motion to the final motion. The results are stored on Tape 8.

f. COMBIN. This subprogram makes a combination of two sets of calculations for each frequency. It takes two '

Tape 8s and combines them into a new Tape 8 which includes the solution of the two frequency sets.

g. MOTION. This subprogram produces time histories of output acceleration, velocities, and displacements for t

selected nodes. scoss-o3/oCNas-c C-3 f

r- ,

                                                                                                 .i 1
h. STRESS. The subprogram STRESS is a postprocessor which can be used to evaluate maximum stresses and strains in structural elements and/or to approximate values of maximum shear strain in soil through evaluation of maximum octahedral strain in the center of each soil element. Tapes 4 and 8 and the time history -

of control motion are required input files to this program. CLASSI The computer code CLASSI (Continuum Linear Analysis for Soil-structure interaction) ] consists of a set of subprograms for analyzing the effect of soil-structure interaction on the response of structures. Basically, the CLASSI program may be divided into two parts, CLAN and SSIN, using a special substructure method developed by Wong and Luco. The CLAN portion applies the theory of linear continuum mechanics to analyze the harmonic interaction between the rigid foundation mat and the  ; underlying soil medium. The information generated by CLAN is the impedance and + scattering matrices. The impedance matrix describes the harmonic force-

  • displacement relationship of the foundation while the scattering matrix describes the
                                                                                       ~

massless foundation response to incident waves. The SSIN part of the program completes the substructuring process by combining the stiffness matrix of the l structure at the base level and the impedance matrix to determine the unknown 1 foundation motions and structural responses. - Figure C-2 shows the data flow diagram for generation of impedance functions from  ! the program CLAN. The figure also shows the names of the input and output files t of the programs, GLAY and CLAN. Through GLAY, CLAN represents the underlying , soil medium as a system of horizontallayers over a half space. The material properties of the soil are assumed to be visco-elastic. CLAN analyzes the scattering f of plane waves of arbitrary direction and amplitude. CLAN uses the bonded I boundary conditions for the foundation, and yields coupling terms for all six degrees-of-freedom for each foundation. The structural modelis analyzed by any structural analysis computer code. The file SSINST, which is used as input for SSIN, contains the model frequencies and damping ratios, modal participation factors, the mass matrix at foundation, and model geometric data for response locations. The program SSIN performs the final calculation of the responses of major structures and f 50069-03/oCNGS C C-4

q 9, .D~ . I subsystems. The output of SSIN contains the maximum values of acceleration, l force, and moment for any specified output nodes and elements. The time histories -) of the acceleration, force, and moment are stored in data files. The response spectra and time histories can be' plotted through the post-processing programs such as RSPEC.' 3

   -SHAKE SHAKE, one of the most well-known and widely used program in the engineering community, computes the response in a system of homogeneous, visco-elastic layers of infinite horizontal extent subjected to vertically propagating shear waves.

The program is based on the continuous solution to the wave-equation adapted for l. use with transient motions through the Fast Fourier algorithm. The nonlinearity of' . the shear modulus and damping is accounted for by the use of an equivalent linear technique and iterative procedure to obtain values for modulus and damping compatible with the effective strains in each layer. t The program can handle site systems with variations in both soil moduli and damping and takes into account the effect of the visco-elastic base. The controlled motion used as a basis for the analysis can be given in any one layer in the system f and new motions can be computed in any other layer. The output quantities include maximum stresses and strains in the middle of each sublayer, as well as maximum .; acceleration at the top of each layer. Response spectra and acceleration time histories of each layer are computed. The time histories of the stress and strain of each layer are also given. FIT , FIT is a UNIX C-shell script program that will run successive iterations of a spectrum , fitting procedure designed to tailor an input time history such that its response spectrum matches a target spectrum, it operates by a frequency-by-frequency basis. The modification is made to the amp!itude of each component frequency of the transform, with the magnitude of the adjustment being calculated as the ratio of .. the target spectrum to the time history's spectrum at the given frequency. After the l modification, the time history is recovered by performing an inverse Fourier transform. At the end of each iteration, the response spectrum of the reconstruct

  • time history is calculated and overplotted with the target spectrum. l 50069-03/oCNGs-c C-5 cg'- ] _

1 FOURIER / ARIAS The Fourier program calculates the power spectral density function of a given time history according to the expression in Sec. 2. The duration of the strong-motion part of the time history is calculated by the ARIAS program, based on the energy distribution of the earthquake on the total duration of the motion. MODSAP MODSAP is a modified and expanded EOE version of the program SAP-IV that was originally developed at the University of California, Berkeley MODSAP contains additional finite elements, time integration operators, and other options for user convenience, in addition, MODSAP permits the economical analysis of structures with localized nonlinearities. MODSAP includes an extensive finite element library for structural modeling. RSPEC Program RSPEC calculates response spectra of acceleration time histories using the Nigam-Jennings exact integration method. The time histories must be digitized at a constant time interval and must all be in the same format. Scaling of acceleration values can be performed. The frequencies at which the spectra are calculated are either generated by applying a constant logarithmic increment specified by the user or are read in from a user-specified list. Multiple time histories may be processed, but all spectra must have the same damping ratio. Multiple damping ratios for the same time history are not possible in this version. Time histories are either processed sequentially or according to a user-specified list. The format for reading the time histories can be specified by the user, or a default format may be used, or the format of the SSINP data file produced by program SSIN may be specified. The user can request absolute acceleration, relative velocity, relative displacement, or Fourier amplitude spectra, as desired. The integration time step for the spectra calculations is automatically set to less than one-tenth the period of each spectral oscillator. This ensures that the maximum possible error for any spectral frequency is less than 5%. SOO69 03/oCNGS-C C-6 '

i

                                                                                                          )

i l 6 Tp __ y, ________3 . house - 4 ANALYS k Tw l Ty t MATRIX { j . m es. . m,e 'T i i a 1 l u

      'T                                l         N     r   soevs I

7 7 consem '7 Monow ~f i h

                                      .l        'T)                   ,                                   ,

l .! I  : i snt  : 'T " l- 'j T. Te LOADS 'F 8

                                                                                                       s moron                     'T L---------i i

1__ enames rieme i P i i I i f Figure C-1: SASSI program modulus

                                                                                                     ~

1 sooss43/oCNGS-C C-7 ,

jCLANIN l

                                                                        + Frequency List
  • Incident Wave Parameters ,

lGLAYIN !

                                + Definition of Layered Haltspace
                                + Freauency List l CLAN I lGLAYl IIMPFN l l                                "

elmpedance Mainces iGLAYO I + Scarienng vectors

                                                                                           ~
  • Execution Log D^ *D""*****'"2 + Green's Functions
                                                                                               !CLANO l
                                                                                             + Execution Log i

TO SSIN l l I l Figure C-2: Data flow through program CLAN 1 l l l

                                                                                                           ~

50069-03/OCNGS-C C-8

Attachment 2 [ l

  %?        h Weston Geophysica.o=l                         co-oau December 20,1991 Mr. Kenneth Whitmore, Task Manager GENERAL PUBLIC UTILITIES NUCLEAR CORPORATION 1 Upper Pond Road Parsippany, NJ 07054                                                                                                                   >

Subject:

Transmittal of Final Report on ' Revised Site Specific Response Spectra for Oyster Creek and Sensitivity to Usage of NRC-Recommended Accelerograms Dear Mr. Whitmore; As authorized by GPUNC, a final report on additional analyses of Site Specific Response Spectra for the Oyster Creek site is herein submitted. These additional analyses were authorized in Change Notice #7 to Contract PC-065216. This report describes the impact of using the accelerogram . records recommended by the NRC in a teleconference held on May 8,1991. In addition, certain sensitivity analyses were performed to determine the impact of deleting certain records from the set that was recommended by the U.S NRC for derivation of the Site Specific  ; Response Spectra (SSRS) for Oyster Creek. Both horizontal and vertical component SSRS are updated in this report through incorporation of the records preferred by the NRC. , I We appreciate the opportunity to provide our continued support on this project. ' Sincerely, WESTON GEOPHYSICAL CORPORATION

                                                                                               )% cd z George C. Klimkiewicz N Manager, Seismology Department                   ,

4% Dr. Gabriel Leblanc, Reviewer i Senior Staff Consulting Seismologist l attachment cc: Mr. Steve Tumminelli i GEOLOGY GEOPHYSICS HYDROGEOLOGY SEISMOLOGY Lyons Street. Bos 550. Westnoro MA 01581-0550. Tel (508) 366-9191. (800) 334 8011. FAX (508) 36&9197

1fo Dl89 TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES SECTION 1 INTRODUCTION SECTION 2

SUMMARY

OF RESULTS FROM THE 1989 SSRS REPORT SECTION 3 REVISIONS TO SSRS PROPOSED BY THE U.S. NRC SECTION 4 ADDITIONAL SSRS SENSITIVITY ANALYSES Discussion SECTION 5 VERTICAL COMPONEhT SSRS Results From the 1989 SSRS Report -' Results For the NRC Recommended Data Set TABLES FIGURES 1 l l

                                                                                -l i

i Weston Geophysical

t LIST OF TABLES TABLE 1 Response Spectrum Statistics - NRC Recommended Data Set 72 Horizontal Component Accelerograms TABLE 2 Response Spectrum Statistics - Sensisivity Analysis 71 Horizontal Component Accelerograms TABLE 3 Response Spectrum Statistics - Sensitivity Analysis 67 Horizontal Component Accelerograms TABLE 4 Digitized Horizontal Component SSRS - 72 Component Data Set TABLE 5 Digitized Horizontal Component SSRS - 71 Component Data Set TABLE 6 Digitized Horizontal Component SSRS - 67 Component Data Set TABLE 7 Statistics of 9 Horizontal Components Recommended to be Included in the Oyster Creek SSRS TABLE 8 Response Spectrum Statistics - NRC Recommended Data Set 36 Vertical Component Accelerograms TABLE 9 Response Spectrum Statistics - Sensitivity Analysis 34 Horizontal Components, Magnitude 5.9 Mt Records Removed TABLE 10 Digitized Vertical Component SSRS - 36 Component Data Set TABLE 11 - Digitized Vertical Component SSRS - 34 Component Data Set ii Weston Geophysical

LIST OF FIGURES FIGURE 1 SSRS - Complete Data Set - 73 Components FIGURE 2 SSRS - Irw-Rise Structures & Free Field - 63 Components 3 FIGURE 3 SSRS - 73 Components, Spectral Acceleration vs. Frequency FIGURE 4 SSRS - 63 Components, Spectral Acceleration vs. Frequency FIGURE S Overplot of Response Spectra,9 Horizontal Components Recommended by the US NRC FIGURE 6 SSRS - Data Set Recommended by the NRC,72 Components FIGURE 7 Comparison of SSRS 84th Percentile Spectra vs. OCNGS SEP Spectrum FIGURE 8 Comparison of SSRS 84th Percentile Spectra vs. OCNGS SEP Spectrum Spectral Acceleration vs. Frequency FIGURE 9 Three Component Accelerogram for the Imperial Valley Eanhquake 13-JUN-1953 FIGURE 10 SSRS - 71 Component Data Set, Imperial Valley 1953 North Component Deleted from the NRC-Recommended 72 Component Data Set. FIGURE 11 SSRS - 67 Com mnent Data Set, Santa Barbara ('41), Imperial Valley ('53) Palm Springs ('36) Records Deleted from 72 Component Data Set FIGURE 12 Comparison of 84th Percentile SSRS - 72,71, and 67 Component Data Sets vs. OCNGS SEP Spectrum, Spectral Acceleration vs. Frequency FIGURE 13 Comparison of Venical Component SSRS Submitted in 1989 Report FIGURE 14 4 Venical Components in the NRC Recommended Data Set FIGURE 15 Venical Component SSRS, NRC Recommended Data Set 36 Venical Components FIGURE 16 Comparison of Venical Component SSRS and the OCNGS Vertical Component SEP Spectrum l l l iii Wesbn Geophysical )

6 SECTION 1 INTRODUCTION A conference call was held on Wednesday, May 8,1991 to discuss Site Specific Response Spectra (SSRS) prepared for the Oyster Creek Nuclear Generating Station (WGC, September,1989). Personnel from General Public Utilities Nuclear Corporation (GPUNC), the US Nuclear Regulatory Commission (NRC), and Weston Geophysical Corporation (WGC) participated in the teleconference. Upon review of the WGC (September,1989) report which recommended a SSRS to be used for engineering analyses at Oyster Creek, the NRC communicated that a SSRS would - be acceptable to them subsequent to making the following revisions:

1. Removal of the 10 horizontal components recorded in buildings taller than 4 stories.
2. Incorporation of accelerograms recordedfor thefollowing earthquakes.

O Coalinga, CA Earthquake Aftershock,25-July-1983, recorded at station CHP O Hollister, CA Earthquake,26-Jan-1986, recorded at Glorietta Warehouse o Palm Springs, CA Earthquake,08-Jul-1986, recorded at Palm Springs Airport o Imperial Valley, CA Earthquake,13-Jun-1953, recorded at Imperial Valley Irrigation District a Santa Barbara, CA Earthquake,30-Jun-1941, recorded at Santa Barbara Courthouse Accelerogram data associated witn the 5 carthquakes listed above include 9 horizontal components. One component of the 1953 Imperial Valley earthquake (North component) was not used in the , WGC (1989) report on the basis of the very low amplitude of 0.6% g. This low amplitude was 1619M)7 11/91 1 Weston Geophysical

i t attributed to a sensor malfunction. The East component for the 1953 Imperial Valley earthquake, however, was used in the 1989 SSRS computations. The NRC's request is to include the North l component of the 1953 earthquake despite the spurious nature of'the recording. Accelerograms l for the remaining 4 earthquakes listed above were not used in the SSRS presented in the September l 1989 report for reasons of inappropriate magnitude, recording distance, and/or site foundation properties. The work described in this report complies with the NRC's requested modifications described above in points 1 and 2. Upon making the recommended accelerogram substitutions, revised SSRS were computed. These SSRS are displayed in a format identical to that used in the 1989 report. Minimum and maximum bounds are plotted along with the statistical median and 84th percentile spectra. The 84th percentile statistical spectrum is normally taken to represent the SSRS for the plant site. All spectra illustrated in this report are-displayed for a critical damping ratio of 5%, following the precedent established in the 1989 report. Site Specific Response Spectra have been derived in all previous reports using a standard method of assuming a lognormal distribution of response spectral ordinates. The same assumption of a lognormal distribution of spectral ordinates is applied in these additional SSRS computations. Finally, two formats are used to illustrate and compare response spectra. These include: (a) log-log plots of Pseudo-Relative Velocity (inches /second) vs. oscillator period (seconds), and (b) linearly scaled plots of spectral acceleration (g-units) vs. oscillator frequency (hz). 1 16190-07 11/91 2

                                                                                                                  -?

Weston Geophysical  ;

l SECTION 2

SUMMARY

OF RESULTS FROM THE 1989 SSRS REPORT The SSRS recommended for use at Oyster Creek (WGC, September,1989) was derived from 73 horizontal components. In the referenced report, a sensitivity calculation was made using 63 horizontal component accelerograms, upon elimination of 10 records made at the base level of taller  ! structures, greater than 4 stories in height. As noted in Section 1, Item 1, the NRC recommended j that 10 horizontal component accelerograms recorded in taller structures be removed for the SSRS derivation. The result of this modification of the data set to include only records obtained in the free-field or at ground / basement levels of low-rise structures is reproduced from the 1989 SSRS  ! report. Figure 1 illustrates the SSRS for the 73 component data set. Figure 2 shows the SSRS resulting from the 63 component data set, upon elimination of the 10 accelerograms recorded in taller structures. These figures include median and 84th percentile response spectra derived using an assumption that the spectral ordinates are lognormally distributed. Also included on the plots are minimum and maximum bounding spectra associated with the particular data set, as well as the  ! Oyster Creek SEP response spectrum (OCNGS SEP) plotted as a dotted curve. Tables 3.1 and 3.2 included in the WGC (Sep.1989) report provided attributes of the 73 and 63 component data sets, respectively. These tables are not reproduced in this report. Instead. results of statistical processing of these data sets are summarized below to demonstrate the impact of removal of 10 components recorded in taller structures. Parameter 73 Component 63 Component Data Set Data Set

  • Magnitude: 5.3 7 0.3 M t 5.3 7 0.3 Mo
  • Epicentral Distance (km) 15.079.2 14.479.4
 ~e Focal Depth (km)                            10.875.5                10.475.8
  • Peak Ground Acceleration 69.86 (.071g) 75.85 (.077g)

Median (cm/sec/sec)

  • Peak Ground Acceleration 149.78 (.153g) 158.13 (.161g) - i 84th Percentile (cm/sec/sec) 16190-07 11/91 3 l

Weston Geophysical

4 4 Figures 1 and 2 (log-log plots) illustrate that the 84th percentile SSRS exceed the OCNGS SEP. spectrum at higher frequencies. At lower frequencies (i.e. s 5 hz) the SSRS lies below the OCNGS SEP spectrum. Comparisons of these SSRS (73 vs. 63 component data sets) with the SEP spectrum is more easily observed on Figures 3 and 4. These figures show comparisons of 84th percentile SSRS with the SEP spectrum on a linearly scaled plot of Spectral Acceleration (g) vs. Frequency (hz). In approximate terms, the maximum exceedance of the SEP spectrum by the 73 component SSRS is 30 %. For the case of the 63 component data set, the maximum exceedance is about 40

     %. These maximum exceedances occur at frequencies near 10 hz.

l l l l 16190 07 11/91 4 l Weston Geophysical l [_. ._ _ _ _ _ _ . . ______ _________ - _ - -

1 SECTION 3 REVISIONS TO SSRS PROPOSED BY THE US. NRC As introduced in Section 1, the U.S. NRC proposed that 9 horizontal component accelerograms be incorporated into the OCNGS SSRS subsequent to removal of 10 components recorded in taller structures. Figure 5 shows an overplot of the 9 additional accelerograms that the NRC recommended be included to derive the SSRS for Oyster Creek. Parameters and statistics of this data set are summarized in Table 7; this table will again be referred to in the Discussion Section of this report. Two components that substantially exceed the SEP spectrum, shown as the dotted  ! curve on Figure 5, were recorded at station CHP for a magnitude 5.1 aftershock of the Coalinga Earthquake. Response spectra for this aftershock which occurred on July 25,1983 are identified on Figure 5. Telephone discussions were made with Dr. Chris Cramer (California Division of Mines and Geology) and with Dr. Robert Uhrhammer (University of California, Berkeley, Seismological Observatory) to determine if the low magnitude assigned to this Coatinga aftershock could possibly be underestimated, or conceivably typographically misprinted in catalogs. Results , of these communications lead to the conclusion that the magnitude of this particular aftershock was based on a two station average. Using 2 additional, more distant stations, resulted in a slightly higher magnitude of 5.3, based on information supplied by Dr. Uhrhammer, the analyst who investigated the Coalinga sequence of seismic activity. In summary, the event cannot be climinated on the basis of a misrepresented magnitude. These accelerograms are thus included in the SSRS , recomputations despite the high peak acceleration in excess of 0.66g and high spectral velocity peak [ of 36 inches /second at a frequency of about 3 hz. Including this record should be recocnized as an extremely conservative measure on the basis that response spectra for several eastern U.S. magnitude 5.0 earthquakes (e.g. New Brunswick,1981 aftershocks; N.E. Ohio,1986) attained a i maximum spectral velocity of about 2 to 3 inches /sec; 12 to 16 times lower in amplitude than the peak spectral velocity produced by the July 25,1983 Coalinga aftershock. Shown on Figure 6 is the result of recomputation of the OCNGS SSRS using the 72 component NRC-recommended data set. Included on the figure in comparison to the OCNGS SEP spectrum are minimum and maximum bounding spectra, and the statistical median and 84th percentile spectra. The SEP spectrum is plotted as the dashed curve. Additional spectral comparisons are illustrated on Figure 7. Shown on this figure are 84th percentile SSRS derived using the original 1989 data set (73 components), the data set excluding records from taller structures (63 16190-07 11/91 5 t t Weston Geophysical.

components), and the data set recommended by the U.S. NRC (72 components). The SSRS derived from the NRC-recommended data set significantly exceeds both the SSRS computed on the bases i of the original 73 and 63 component data sets. Again, to facilitate the spectral comparisons,84th percentile response spectra are linearly plotted on Figure 8. The greatest exceedance of the 73 and t 63 component SSRS by the NRC-recommended 72 component SSRS ranges from about 25 to 30

    %. This greatest exceedance occurs at low to intermediate frequencies in the range of 3 to 8 hz and likely can be attributed to the high amplitude peak that exists in the Coalinga Aftershock (Aug.

25,1983) response spectrum. In relationship to the OCNGS SEP spectrum, the NRC-recommended SSRS produces a maximum exceedance of about 60 to 70 % in the frequency band near 10 hz. 5 b i 1619CK17 11/91 6 Weston Geophysical

1 SECTION 4 ADDITIONAL SSRS SENSITIVITY ANALYSES - In addition to the August 25, 1983 Coalinga aftershock (note: this record is considered to be questionable, but nonetheless was used), included among the 9 accelerogram components are 5 records that are judged to be inappropriate for usage in development of a SSRS for the Oyster Creek site. The first of these is the North component of the Imperial Valley earthquake of June 13,1953, recorded at the Imperial Valley Irrigation District. The three component accelerogram recorded at this station is plotted on Figure 9. Examination of this record shows a dramatic difference in amplitude between the East component (top trace) and the North component (bottom trace). The low amplitude of the North component is attributed to a possible instrument malfunction, or data correction error. A plot of the response spectrum for the North component is shown on Figure 5. The exact cause of the low amplitude response of the North component likely cannot be pinpointed. However,it is contended on the basis of the unrealistic appearance of this component that it should not be included in the SSRS derivation. A SSRS was recomputed upon deletion of the Imperial Valley 1953 North component record. He resulting SSRS, derived on the basis of 71 components,is plotted on Figure 10 in comparison to the OCNGS SEP spectrum. Also included in the set of 9 components recommended by the NRC are 4 records obtained for earthquakes of magnitude 5.9 Mt. Dese earthquakes include the Santa Barbara event of June 30, 1941 and the Palm Springs earthquake of July 8,1986. A magnitude of 5.9 is outside of the range originally established for the Oyster Creek SSRS, i.e. a magnitude of 5.3 5 0.5, or less. Giving due consideration to this original SSRS specification, the 4 components recorded for the two magnitude 5.9 earthquakes were deleted for the purpose of performance of an additional sensitivity computation. The resulting SSRS derived using a 67 component data set is illustrated on Figure

11. As in previous log-log illustrations, the figure includes minimum and maximum bounds, median, and 84th percentile statistical spectra, all campared to the OCNGS SEP spectrum.

Results of the sensitivity computations are summarized on Figure 12, a linearly scaled plot of 84th percentile response spectra. The first observation taken from this figure is that inclusion of the spuriously low amplitude Imperial Valley record (i.e. 72 component data set) slightly increased the SSRS. Because the record and its spectrum were low outliers, the standard error was increased, thus slightly raising the level of the 84th percentile SSRS. Although the differences between SSRS 16190-07 11/91 7 Weston Geophysical

e derived for the 72 and 71 component data sets are small,it is viewed to be technically correct to eliminate the Imperial Valley North component. A second observation obtained from the sensitivity analyses summarized on Figure 12 is that deletion of the 4 components from the magnitude 5.9 earthquakes produced a small reduction of about 5 % in the 84th percentile spectrum, relative to the 71 component 84th percentile SSRS. Although the impact of deleting records for the magnitude 5.9 earthquakes is relatively small, including these records in the Oyster Creek SSRS clearly disregards the initial criteria, which is to model the target magnitude of 53 as closely as is feasible. Given that the assemblage of records for the Oyster Creek SSRS is a relatively large one compared to most previous SSRS studies for other sites,it is viewed that deleting the Santa Barbara and Palm Springs earthquakes is a valid procedure. Parameters of the 72 component, NRC-recommended data set for computation of the Oyster Creek SSRS are listed in Table 1. A summary of results of statistical analyses is given on page 6 of Table

1. Similar tables are provided for the 71 component and 67 component data sets used in the sensitivity analyses described above and their results are compared on Figure 12. Tables 2 and 3 refer to the 71 and 67 component data sets, respectively. Compared below are certain statistics derived for the 72,71, and 67 component data sets.

Parameter 72 Component 71 Component 67 Component Data Set Data Set Data Set

  • Magnitude: 53 5 03 M t 53 7 03 Mt 53
  • 03 Mo
  • Epicentral Distance (km) 14.5
  • 9.0 143 T 9.0 14.279.2
  • Focal Depth (km) 10.675.5 10.6
  • 5.5 10.475.6
  • Peak Ground Acceleration 82.28 (.084g) 85.15 (.087g) 81.58 (.083g)

Median (cm/sec/sec)

  • Peak Ground Acceleration 190.02 (.194g) 187.70 (.191g) 180.13 (.184g) 84th Percentile (cm/sec/sec) 1619M7 11jgg 8 Weston Geophysical

f Digitized response spectral ordinates for SSRS computed for the 72,71, and 67 component data sets are listed in Tables 4,5, and 6 respectively. These SSRS data points are given in terms of Pseudo-Rela'ive Velocities (inches /sec) at a damping ratio of 5 % vs. Period (seconds). Spectral ordinates are given for the statistical median and 84th percentile (assumed legnormal distribution), . as well as for the minimum and maximum bounding response spectra. Finally, certain 84th percentile SSRS parameters derived in the original WGC (Sep 1989) report are compared to those associated with the NRC-recommended data set and certain subsets of the NRC's preferred data set. Peak Acceleration > Pseudo-Relative Velocity (in/sec)

  • Data Set em/sec/see 25 bz 10 hz 1 bz WGC (1989) Report e 73 Components 149.78 (.153g) 0.40 1.84 5.69
  • 63 Components 158.13 (.161g) 0.42 1.95 6.09 NRC-Data Sets; Subsets e 72 Components 190.02 (.194g) 0.52 236 7.22
  • 71 Components 187.70 (.191g) 0.51 2.31 7.27
  • 67 Components 180.13 (.184g) 0.49 2.22 6.62 16190 07 11/91 9 Weston Geophysical

h i 4 Discussion , Focusing attention on the original 63 component data set (i.e. records from taller structures , deleted), initially developed in the WGC (1989) report, and on the NRC-recommended 72  ! component data set, the computed differences in peak acceleration and spectral velocities range from about 19 to 24 E On the basis of results of sensitivity analyses described above for the 71 and 67 component NRC data subsets, which resulted in relatively small reductions in the NRC-~ [ recommended SSRS (see Figure 12), it is concluded that the controlling reason that the NRC's f' preferred 72 component SSRS cxceeds the WGC (1989) 63 component SSRS is incorporation of accelerograms for the July 25,1983 Coalinga aftershock into the 72 component NRC data set. These questionable Coalinga aftershock components produced a significantly higher (= factor of

3) spectral response at a frequency of 3 hz than did a larger magnitude 6.0 Coalinga aftershock recorded at the same station, CHP, several days earlier on July 21,1983 at 19:40 PDT. The legitimate, but unresolved, questions regarding the suitability of accelerograms produced by the Coatinga, July 25th event, given that they dominate the resulting SSRS, should be given proper  ;

attention during teview and evaluation of adequacy of previously developed SSRS, such as the one derived on the basis of the 63 component data set. Finally,in order to place the NRC's recommended data set in proper perspective, statistics were  ; performed on the 9 components advised to be included in the development of an Oyster Creek  ; SSRS. 'Ihese 84th percentile statistics are summarized below and are included in Table 7. > Peak Acceleration > Pseudo Relative Velocity (in/see) < Data Set em/sec/see 25 hz 10 hr 1 bz NRC Recommended Data Revision

  • 9 Components 518.82 (.529g) 1.50 6.84 16.39 In addition to the extremely high response spcetral parameters listed above (again showing the large '

influence of the 2 components of the Coalinga aftershock), the statistical magnitude of the 9 i components is 5.6 03, a value larger than the target SSRS magnitude of 53. Again, this conservatism should be recognized during review of SSRS proposed for the Oyster Creek site. , a 18190 07 11/91 10  ; Weston Geophysical

l l SECTION 5 VERTICAL COMPONENT SSRS Results from the 1989 SSRS Report The 1989 Report on SSRS for the Oyster Crec., suelear Generating Station included derivations of vertical component SSRS for the " original data set' (i.e. referred to as the 73 horizontal component data set). His vertical component data set included 37 components. Also, the 1989 report included the vertical component SSRS for the 'orid'ial data set' minus accelerograms recorded in taller structures. This data set consisted of  : cal component accelerograms. Discussion of these vertical component SSRS is located in m .n 3 of the 1989 report, beginning on page 3-22. Included as Figure 13 in this repon is a comparison of vertical component response spectra for the 37 and 32 componcat data sets, respectively. Rese vertical SSRS are compared to the OCNGS vertical SSRS, which had been defined in the 1989 report as being scaled to %'s of the horizontal component SEP spectrum. Results For the NRC Recommended Data Set As discussed in Section 1 of this report, the Oyster Creek SSRS data set preferred by the NRC would include the addition of 9 horizontal component accelerograms subsequent to the removal of 10 accelerograms obtained from strong motion instrumentation located in taller structures. The corresponding vertical component SSRS would include an additional 4 components on the basis that I vertical component, that for the 13-June-1953 Imperial Valley carthquake,is already a part of the original data set, nese 4 additional vertical component accelerograms are illustrated on Figure 14 3 in comparison to the OCNGS vertical mmponent SEP spectrum. Bree of these additional spectra l exhibit relatively high peak accelerations (0.18g to 0.32g) and high spectral accelerations at frequencies greater than 5 Hz. Results of statistical analyses on the 36 vertical component NRC recommended data set are shown , on Figure 15. This figure includes minimum and maximum bounding spectra, as well as the statistical median (50th percentile) and median + 1 standard error (84th percentile) response 16190-07 11/91 Il Weston Geophysical. i

5 i spectra. Statistical response spectra were derived using an assumption that the vertical component { spectral ordinates are lognormally distributed. A summary of parameters of the 36 vertical  ; components and results of statistical analyses are included in Table 8. For reasons outlined in Section 4, an additional vertical component SSRS was computed upon deletion of the 2 components recorded for magnitude 5.9 Mt earthquakes (i.e. Santa Barbara,30-June-1941; Palm Springs,08-July-1986). To reiterate the reasoning for elimination of these records, - the magnitude of 5.9 lies outside the bounds of 5.3 0.5, or less, specified for the derivation of the Oyster Creek SSRS. Results of computation of a vertical component SSRS upon deletion of the higher magnitude records are provided in Table 9. Sensitivity to elimination of vertical component accelerograms for the higher magnitude earthquakes is shown on Figure 16. Plotted on this figure are three vertical component SSRS. The first is the 32 component SSRS originally included in the 1989 report; this SSRS corresponds to the original data set minus accelerograms obtained in taller structures. This 1989 SSRS provides a pod fit to the OCNGS SEP spectrum at frequencies greater than 7 Hz, and underlies the SEP rpectrum at lower frequencies. The remaining two vertical component SSRS include the NRC remmmended data set (36 components), and the NRC data set minus the accelerograms acquired from the magnitude 5.9 carthquakes (34 components). Both of  ; these spectra exceed the OCNGS SEP vertical spectrum at frequencies greater than 6 Hz. Removal of accelerograms associated with the two magnitude 5.9 earthquakes produce a reduction of about 10% in spectral acceleration relative to the 36 component NRC recommended data set. At , frequencies just less than 10 Hz, the vertical SSRS derived from the NRC recommended data set exceeds the SEP vertical spectrum by about 40%. Tables 10 and 11 list digitized spectral ordinates l for the vertical SSRS derived from the 36 and 34 component data sets, respectively. i t 1619047 11/91 12 i Weston Geophysical l

1 TABLES Weston Geophysical

Tcble 1

 . PROG R AM AVGRS: R esponse Spec trus Statis tics                                                       .
 .      DUTPUT FILE: HNRCSET.0UT                                                                            .
 .                    DATE: 24-MOV-91                     TIME: 13:25:38                    PAGE 1          .
 ...............................s.......................

RUN DESCRIPTION..: Oyster Creek 55R5 - NRC-Recommend ed Date 5et 72 Components File Earthquake Identification Component Magnitude Distance Depth PGA P$RV (in/sec) ML km km en/sec/sec 25 10 1 H2 l WU301H1.050 U301 PUBLIC LIBRARY, HOLLISTER, C ALI F N89W 5.2 29.3 16.0 193.61 0.51 1.43 7.76 NORTHERN CALIFORNIA EARTH 3UAKE MAR 9, WU 301 H 2. 0 5 0 U301 PUBLIC LIBRART, HOLLISTER, CALIF 501W 5.2 29.3 16.0 119.44 0.30 0.92 5.95 NORTHERN CALIFORNIA EARTHQUAKE MAR 9. W T 2 87 H 1. 0 5 0 T287 EL CENTRO, IMPERI AL VALLET IRRIG NORTH 5.6 27.5 16.0 30.35 0.08 0.30 2.49 IMPERIAL VALLEY EARTHQUAKE JAN 23,195 WT287H2.050 T287 EL CENTRO, IMPE RI AL VALLET IRRIG EAST 5.6 27.5 16.0 27.56 0.07 0.26 2.52 IMPERIAL VALLEY EARTHQUAKE JAN 23, 195 uu305H1.050 U305 PUBLIC LIBRARY, HOLLISTER, CALIF N89W 5.4 36.2 16.0 52.02 0.13 0.40 1.91 CENTRAL CALIFORNIA EARTHQUAKE APR 25, WU305H2.050 U305 PUBLIC LIBRARY, HOLLISTER, CALIF 501W 5.4 36.2 16.0 48.94 0.12 0.42 3.66 CENTRAL CALIFORNIA EARTHQUAKE APR 2 5, HA015H1.050 A018 HOLLISTER CITY HALL $01W 5.7 40.0 11.0 63.41 0.17 0.56 7.39

  • HOLLISTER EA,RTHQUAKE APR B, 1961 - 23 u A 018 H 2. 0 5 0 A018 HOLLISTER CITY HALL N89W 5.T 40.0 11 0 115.68 0.45 1.39 8.07 HOLLISTER EARTHQUAKE APR 8, 1961 - 23 WU 312 H 1. 0 5 0 U312 CITT HALL, FERNDALE, C AL IF O R NI A N46W 5.8 30.6 15.0 103.07 0.28 1.31 7.72 FERNDALE, CALIFORNIA, EARTHQUAKE DEC WU 312 H 2. 0 5 0 U312 CITT HALL, FERNOALE, CALIFORNIA 544W 5.8 30.6 15.0 232.07 0.61 2.34 5.57 FERNOALE, CALIFORNIA, EARTHQU4KE DEC W V 316 H 1. 0 5 0 V316 PUBLIC UTILITIE5 BLOG., LONG SE A NORTH 5.5 5.0 16.0 39.73 0.10 0.31 5.63 TORRANCE-GARDENA EARTHOUAKE NOV 14, W V 316 H 2. 0 5 0 V316 PUBLIC UTILITIES BLDC., LONG BE A EAST 5.5 5.0 16.0 53.70 0.14 0.34 7.17 T3RRANCE-GARDENA EARTHQUAKE NOV 14, WT288H2.050 T288 EL CENTRO, IMPERIAL VALLEY IRtIG EAST 5.5 23.6 16.0 35.85 0.09 0.33 3.07 IMPERIAL VALLEY EARTHQUAKE- JUN 13, 195 WT 2 92 H 1. 0 5 0 T292 EL CENTRO, INPERIAL VALLET IC41G NORTH 5.4 23.2' 16.0 (2.52 0.21 0.83 2.14 IMPERIAL COUNTY EARTHQUAKE DEC 16,195 m

Tc.bla 1 (continuId)

             .       PROGR AM AVGR5: R e spon s e Spectrus Statistics                                                  .
             .              DUTPUT FILE: HNRCSET.UUT                      ,                                            .
             .                     DATE       24-NOV-91                TINE 13:25:38                   PAGE        2.

RUN DE SCRIPTION.. ! Dyster Creek 55R5 - NRC-Recossend ed Data Set 72 Components File E ar thquake Iden tification Component Hegnitude Distance Depth PGA PSRV (in/sec) ML km km ce/sec/sec 25 10 1 Hz T297 *L CENTRO, IMPERI AL VALLET IRRIG EAST 5.4 23.2 16.0 11.06 0.24 0.81 2.39 WT292H2.050

                                          *nPERIAL COUNTT EARTHQUAKE DEC 16, 195 WU307H1.c s0                  U307 PU8LIC LIBRARY, HOLLISTER, C ALI F                                         N89W          5.0        8.0     24.0    55.52   0.14    0.40    2.61 CENTRAL CALIFORNIA EARTHQUAKE                                  JAN 19, U30T PUBLIC LIBRARY, HOLLISTER, CALIF                                            501W         5.0        8.0     24.0    35.34   0.11    0.35    2.09 WU307H2.050 CENTRAL CALIFORNIA EARTHQUAKE                                  J AN 19, WME CA1 H 1. 0 50             NED A1 MANAGUA NICARAGUA E550 REFINERT                                          SOUTH         5.0        5.7      5.0   171.77   0.43    1.31    3.65 MANAGUA AFTERSHOCK OEC 23, 1972 - 3718 EAST          5.0        5.7      5.0   120.32   0.31    1.07    4.56 WME041H2.050                  MEDA1 MANAGUA NICARAGUA E550 REFINERT NANAGUA AFTERSHOCK DEC 23, 1972 - 3718 W 5JNT 4 H 1. 0 5 0           5JN74 SAN JUAN BAUTISTA CALIFORNIA 24                                           557E          5.2        8.0      9.0   112.05   0.28    1.37    3 53 SAN JUAN 8AUTISTA EARTHQUAKE NOV 28, 1 N33E          5.2        8.0      9.0    43.94   0 11    1.15    1.26 W5JNT 4 H2.0 50               SJN74 5AN JU,AN BAUTISTA CALIFORNIA 24 5AN JUAN 8AUTISTA EARTHQUAKE NOV 28, 1 WHN 74 H 1. 0 5 0             HN7 4 HOLLIST ER C ALIFORNI A CITT HALL                                         501W          5.2       10.0      9.0    69.17   0 23    1.06    2.30 HOLLISTER EARTHQUAKE NOV 28, 1974 - 230 N89W          52        10.0      9.0   162.76   0.41    1.51    6.14 UHN74H2.050                   HN74 HOLLISTER CALIFORNIA CITT HALL HDLLISTER EARTHQUAKE NOV 28, 1974 - 230 PG675 PETROLI A C ALIFORNI A GENERAL STO R                                      N75E          5.7       24.0     21.0   158.51   0.45    2.08    4.44 W P G 675 H1. 0 50 FERNOALE EARTHQUAKE                         JUN 7, 1975 - 084 PG675 PETROLI A CALIFORNI A GENER AL STOR                                       N15E          5.7       24.0     21 0   128.06   c.34     2.41   3 29 WPG675H2.050 FERNOALE EARTHQUAKE                         JUN 7, 1975 - 084 544W         5.7        5.0     21.0   174.84   0.45     2.47    6.55 WFC 67 5 H1.0 50              FC675 FERNOALE CALIFORNIA CITT MALL FERNDALE EARTHQUAKE JUNE 7,197 5 '- 0 84 N46W         5.7        5.0     21.0   159.37    0.58    4.02    5.49 WFC 67 5 H 2.0 50             FC675 FERNOALE CALIFORNI A CITT HALL FERNDALE EARTHQUAKE JUNE 7,1975 - 0 84 N90E          5.1       12.5      4.0    28.50    0.07    0.24    2.29 W 10 22H1. 0 5 0              COMG STATION 1 OROVILLE AFTERSHOCK EARTHQUAKE                                       AUG.

T __ _ _ _ - - - _ - _ ---- --_ -- _- -- ~ ~

Tabla 1 (continued)

. PROG R AM AVGR5: Response Spectrum statistics                                                          .
.      DUTPUT FILE: HNRCSET.0UT                                                                            .
.                     DATE: 2 4-NO V- 91                  TIME: 13:25:38                   PAGE          3.

4 RUN DE SCRI PTION.. : Oyster Creek SSR$ - NRC-Recommesd ed Data set 72 Components File E ar thqu ak e Iden tifica tion Component Megnitude Distance Depth PGA P5RV (in/sec) ML km km en/sec/sec 25 10 1 Hz


 :------------------------------------_----..---= .

ul0 22 H 2.0 5 0 COMG ST ATION 1 NOCE 5.1 12.5 4.0 29.50 0.08 0.28 1 41 OROVILLE AFTERSHOCK EARTHOUARE LUG. W O O 59 H 1. 0 5 0 OROVILLE AIRPORT N90W 5.2 12.6 5.0 24.00 0.09 0.31 0 34 OROVILLE AFTERSHOCK E ARTHOUAKE LUG. W O O 59 H 2. 0 5 0 OROVILLE AIRPORT 500E 5.2 12.6 5.0 17.00 0.06 0.29 1.66 OROVILLE AFTERSHOCK EARTHOUAKE LUG. u0022H1.0$0 OROVILLE AIRPORT N90W 5.1 14.2 0.0 15.60 0.05 0.25 1.43 OROVILLE AFTERSHOCK EARTHOUAKE LUG. WQ0 22H 2.0 5 0 OROVILLE AIRPORT 500E 5.1 14.2 0.0 35.80 0.09 0.43 1.52 OROVILLE AFTERSHOCK EARTHQUAKE LUG. ul0 59 H 1.0 5 0 COMG STATION 1 M90E 5.2 9.5 5.0 - 40.70 0.10 0.84 1 83 OROVILLE AFTERSHOCK E ARTHQUAKE LUG. COMG STATION 1 N00E 5.2 9.5 50 55.50 0.16 0.96 1.42 W 10 59 H 2. Q 5 0 OROVILLE AFTERSHOCK EARTHQUAKE LUG. W E 700 H 1. 0 5 0 EARL BROA08ECK ST. N90E 4.9 7.0 9.0 106.00 0.28 1.37 1.52 OROWILLE AFTERSHOCK EARTMQUAKE EUG. CE 700 H 2. 05 0 EARL BROA08ECK ST. N00E 4.9 7.0 9.0 148.00 0.41 2.36 1.21 OROVILLE AFTER5 HOCK EARTHQUAKE LUG. t0700 H 1. 0 5 0 OROVILLE AIRPORT N90W 4.9 8.9 9.0 61.60 0.20 0.83 1 12 OROVILLE AFTERSHOCK EARTHQUAKE tug. WO70JH 2.0 5 0 GROVILLE AIRPORT 500E 4.9 8.9 9.0 48.40 0.14 0.92 0.30 OROVILLE AFTERSHOCK EARTHQUAKE LUG. W 1700 H 1. 0 5 0 COHG STATION 1 N90E 4.9 11.0 9.0 77.80 0.25 0.82 2 21 OROVILLE AFTERSHOCK E ARTHQUAKE tu G. W 1700 H 2. 0 5 0 COMG STATION 1 N00E 4.9 11.0 9.0 123.00 0.33 1.84 1.00 OROVILLE AFTERSHOCK EARTHQUAKE tug. W 5 700 H 1. 0 5 0 COMG STATION 5 500E 4.9 8.2 9.0 63.10 0.22 0.81 0.98 OROVILLE AFTERSHOCK E ARTHQUAKE SUG. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---- ==--.---.---------.---------------.--------------------------------------------

                                                                                                                                                                      ---a--   w_ - - --   ---a

Tchla 1 (continued) a

            . . PR3G R AM AVGR51 Response Spectrum Statistics                                                                    .
            . DUTP4T FILE: HNRCSET.0UT                                                                                       .
            .                  DATE: 24-Nov-91                                    TIME: 13:25:38                        PAGE 4 .

RUN DE SCRIPTION.. : Dyster Creek 55R$ - NRC-Recommend ed Data Set 72 Components Component Magnitude 01stante Depth PGA PSRV (In/sec) File E ar th ev ak e Identification km km en/sec/sec 25 10 1 Hz ML

           .... ....__. ..._- ...___....__.__.__ .... . ___. ;....... ......                                                                      s_....................-                         ---

N90E 4.9 8,2 9.0 62.00 0.20 1.02 1 38 .

          ~ u 57 00H 2.05 0            COMG STATICM 3                                                                                                                                                                                                                    !

OROVILLE AFTERSHOCK E ARTHQUAKE -LUG. N35W 4.9 9.4 9.0 61.30 0.17 0.60 0.51 u 47 00H 1. 05 0 COMG STATION 4 OROVILLE AFTERSHOCK EARTHQUAKE auG. 555W 4.9 9.4 9.0 62.80 0.18 0.83 1 92 W 4700 H 2. 0 5 0 COMG STATION 4 DROVILLE AFTERSHOCK EARTHQUAKE AUG. NS 5.5 10.3 9.0 48.10 0.12 0.40 1.63 UF 8911 H 1. 0 50 8UIA 135 FRIULI EARTMQUAKE, ITALT SEPT 11. EW 5.5 10.3 9.0 29.20 0.11 0.56 1.98 W F 8911 H 2. 0 50 BUIA i 135 FRIULI EARTHQUAKE, ITALT SEPT 11, 90 DE 5.7 18.7 4.0 159.00 0.45 2.03 3.22 W NIL 81 H1. 0 50 NIL ANO WESTMORL AND (T APE FILE 6) WESTMORL AND -E ARTHQUAKE APRIL 26, 1981 00 DE 5.7 18.7 4.0 84.60 0.28 1.19 2 13 W N I L81 H 2.10 50 NIL AND WE STMORL AND CT APE FILE 6) . 5 WESTMORLAN0' E ARTMQUAKE APRIL 26, 1981 180 DE 5.4 8.9 5.0 63.86 0.36 1.76 5.97 WC O N83 8 H1. 0 50 CONVICT CREEK MAMMOTH LAKES EARTHQUAKE JANUARY 6, 198 i 180 DE 54 8.9 50 140.03 0.22 1.06 9.32 WCON8 3 8 H2. 0 50 CONVICT CREEK MAMMOTH L AKE5 ' E ARTHQU AKE J ANUART 6,'198 180 CE 5.2 8.9 30 151.04 0.40 1.58 10.70 WCON8 3 AH1.0 50 CONVICT CREEK MAMMOTH L AKE5 ' E ARTHOU AKE JANUARV . 6, 198  : 90~ 0E : :5.2 8.9- 3.0 155.62- 0.40 2.06 11 30 WCON83 AH2.0 50 CONVICT CREEK MAMMOTH L AKES E ARTHQUAKE JANUART 6, 198 00 CE 5.1 13.5 5.0 55.78 0 15 0.76 4.89 WCHPEV 3H1.050. CDALINGA- CD ALING AFTERSHOCK A CMPCEvent CTAPE

83) FILEJ26)' . JUNE 10 50 54.97 0.15- 0.76 4.89 WCHPEV 3H2.0 50. CDALINGA-CMPL CTAPE FILE.26). 90 DE 5.1 13.5 C0ALINGA AFTERSHOCK CEvent s3) JUNE 10..

90 DE 5.3 11.1 10 0 153.45- 0.42 .3.46 1.36

           - W C H PE V 4 H1. 0 5 0 CDALINGA CHP-(TAPE FILE 28)'

CDALINGA;AFTER5 MOCK CEvent 84) JULT. 9,

 ~ . . - .                   . . _ _ .     . _ . . . , _ - _ . _ _ . . _ _ . _ _ . . _ . . _ - . - _ . . - . _ .                                     _ . _ . . _ . - - .            , - . - . _ .           4    ~ ~ , _ _                     - - - - - _ _ - - ~ . .

Tcbis 1 (centinued)

   .' PROG R AM AVGR5: R esponse Spec trum Statistics                                                          .
   .       DUTPUT FILE: HNRCSET.0UT                                                                            .
   .                     DATE: 24.NOV-91                         TIME: 13:25:38                  PAGE $.

RUN DE SCRIPTION.. : Dyster Creek SSR$ - NRC-Recommemd ed Deta set 72 Components File E ar thavak e Identification Component Magnitude Distance Depth PGA P5RY (in/sec) ML km km en/sec/sec 25 10 1 Hz WCH PE V 4H2. 050 COALINGA CHP (TAPE FILE 28) 00 DE 5.3 11.1 10.0 172.24 0.44 2.39 2 21 COALINGA AFTERSH0CK (Event 84) JULT 9 L, 90 DE 5.0 8.3 10.0 205.65 0.55 3.04 3.49 WC H PE V 6 H1. 0 5 0 COALINGA CHP (TAPE FILE 32) CDALINGA AFTERSHOCK (Event #6) JULY 21

 . WCHPE V 6H2. 0 50 COALINGA CHP (TAPE. FILE 32)                                                                  00 OE                   5.0       8.3       10.0           115.99      0.33       1.21      1.75 COALINGA AFTERSHOCK (Event 86) JULY 21 WCHPEV8H1.050 COALINGA CHP (TAPE FILE 36)                                                                       90 DE                   5.3       9.3        70             32.04      0.08       0.46      0.81 CDALINGA AFTERSHOCK (Event 88) SEPTEMBE 00 CE                   5.3       9.3        7.0            21.12      0.06       0.41      0.73 WCHPEV 8H2. 0 50 COALINGA CHP (TAPE FILE 36)

COALINGA AFTERSHOCK (Event 88) SEPTEM8E WO B PK 3 60. 0 5 0 COMG.24400 Los Angeles Obregon Park 360 5.3 8.4 14.0 3G8.62 0.80- 2.42 12 47 ' Whi ttier Aftershock Oc t 0 4, CDMG 24400 L os Angeles obregon P ark 270 5.3 8.4 14.0 333.28 0.86 3.27 5.12 WO 8 PK2 70. 8 50 Whittier Af tershock Oct 04 90 DE 5.1 9.2 10.0 653.93 1.91 7.49 11.20 WCHPE V 7H1. 05 0 COALINGA CHS (TAPE FILE 34) COALINGA AFTERSHOCK (Event #7) JULY 2 5 WCHPEV 7H2.05 0 COALINGA CHP (TAPE FILE 34) 00 OE 5.1 9. 2 10.0 453 06 1.30 5.23 6.30 COALINGA AFTERSHOCK (Event #T) JULY 2 5. 90 DE 5.5 12.0 8.0 1C9.60 0.29 1.45 6.86 WGLOR86H1.050 HOLLISTER - GLORIETTA WAREHOUSE HOLLISTER E ARTHQUAKE JANUARY 26, 1986 00 DE 5.5 12.0 8.0 114.44 0.34 1.83 8.62 WGLOR 8 6H 2. 050 HOLLISTER - GLORIETTA WAREHOUSE HOLLISTER E AR THQUAKE. JANUAR Y 26, 1986 90 OE 5.9 20.9 12.0 1E8.35 0.51 2 86 9.41 WP 5486 H1.0 50 . PALM SPRINGS AIRPORT ' PALM $PRINGS EARIHQUAKE JULT 8 1986 - , 00 DE 5.9 20.9 12.0 136.41 0.42 2 55 11.40 WPS A86 H 2.0 50 PALM $PRINGS AIRPORT P AL M .5PRING5 .E ARTHQUA KE JULY 8, 1985 -

                                                                                                                  'N45E                    5.9-     12.0       16.0           233.78       0.66      1.80      8.35 WU299H1.050                   U299 SANTA B ARSARA COURT' HOUSE. C ALI F                                                                                                                                  *                   '

SANTA BARBARA EARTHQUAKE JUN 30, 194

4 Tcbla 1 (continued)

 . PROGRAM AVGRS: Response Spectrue Statistics                         .
 . QQTPUT FILE: HNRC5ET.0UT                                        .
 .                 DATE: 2 6- NO V- 91    TIME: 12:16:12    PAGE    &.

j RUN DE SCRIPTION..: Dyster Creek 55R5: NRC Recommende d Data Set. 72 Components Earthquake Identification Component Moonitude Distance Depth PGA P5RY (in/sec) File km 25 10 1 H2 ML i.= cm/sec/sec ___=---- WU 299H 2. 05 0 U299 SAN 1m BAR8AAA COURT HOUSE, CALIF $45E 5.9 12.0 16.0 112.31 0.47 1.48 9.94 5ANTA PAR 8 ARA EARTHQUAKE JUN 30. 194 T288 EL CENTRO, IMPERI AL Y ALLER IRt!G NORTH 5.5 23.6 16 0 7.21 0.02 0.06 0.61 WT 2 88H 1. 0 5 0 IMPERIAL VALLEY EARTHOUAKE JUN 13. 195 median values 5.3 14. 5 10.6 62.25 0.23 0.98 2.97 standard deviations .86th percentiles 0.3 9.0 5.5 150.02 0.52 2.36 7.22 _ r e w - g y -- v- - -,

  • e -- -_. - _ .-__----------u-_----_. _ . - - - -

y Tabla 2

          . P ROG4 AM AVGR53 Retponse Spectrua Statistics                                                   .
          . . 0UTPUT FILE: HNRC71.0UT
          .                     DATE: 24-Nov-91                TIME: 13:31:53                  PAGE 1 .

RUN DE SCRIPTION.. : Dyster Creek $525 - NRC Data set minus Imperial Valley 1953, North Component E ar thqu ak e Identification Component MeOnitude Distance Depth PGA PSRY tin /sec) File km km en/sec/sec 25 10 1 H2 ML 5.2 29.3 16.0 113.61 0.51 1.43 7.76 WU301H1.050 U301 PUBLIC LIBRARY, HOLLISTER, C ALI F N89W i NORTHERN CALIFORNIA EARTH 3UAKE MAR 9 29.3 16.0 119.44 0 30 0.92 5.95 WU 301 H 2. 0 5 0 U301 PUBLIC LIBRART, HOLLISTER, CALIF 501W 5.2 NORTHERN CALIFORNIA EARTHQUAKE HAR 9, 5.6 27.5 16.0 30.35 0.03 0.30 2.49 W T 287 H1. 0 5 0 T287 EL CENTRO, IMPERIAL V A LL E Y InaIG NORTH IMPERIAL VALLEY EARTHQUAKE JAN 23, 195 27.5 16.0 27.56 0.07 0.26 2.52 WT28TH2.050 T287 EL' CENTRO, IMPERI AL VALLEY IRRIG EAST 5.6 IMPERI AL VALLET EARTHQUAKE JAN 23,195 5.4 36.2 16.0 52.02 0.13 0.40 1 91 W U 30$ H 1. 0 5 0 U305 PUBLIC LIBRARY, HOLLISTER, C ALI F M89W CENTRAL CALIFORNIA EARTHQUAKE APR 2 5. 5.4 36.2 16 0 48.94 0.12 0.42 3 66 WU 305 H 2.0 5 0 U305 PUBLIC LIBRART, HOLLISTE R, C A'. I F $01W ' CENTRAL CALIFORNIA EARTHQUAKE ' APR 2 5, 5.7 40.0 11.0 63.41 0.17 0.56 7.39 W A 018 H 1. 0 5 0 A018 HOLLISTER CITT HALL' 501W HOLLISTER EARTHQU4KE 1APR 8, 1961 - 23 l l 5.7 40.0 11.0 175.68 0.45 1.39 8.07 W A 018 H 2. 0 5 0 A018 MOLLISTER CITT HALL M89W I HOLLISTER EARTHQUAKE APR 8, 1961 - :2 3 30.6 15.0 103.07 0 28 1.31 7.72 , U312 CITT HALL, FERNDALE, C ALIFORNI A M46W 5.8 WU 312 H 1. 0 5 0 FERNOALE, CALIFORNIA, EARTHOU4KE DEC 5.8 30.6 15 0 232.07 0 61 2.34 5.57 WU 312 H 2. 0 5 0 U312 CITT HALL, FERNDALE, C ALIFORNI A 544W

                                       ' FERNDALE, CALIFORNIA, E ARTHQUAK E                           DEC V316' PU8LIC UTILITIES BLDG., LONG SE A                                   NORTH                 55        5.0       16.0       39.73    0.10     0.31         5.63 uv 316H1.0 5 0 '                                                                                                                                                                                                       .i T OR R AN CE-G A R DE N A EARTHQUAKE                  NOV 14 .                                                                                                                          r 5.0       16.0-      53.70    0 14     0.34         7.17 W V 316 H 2. 0 50               V316' PUBLIC UTILITIES BLDG., LONG SE A                                   EAST                  5.5 TOR R ANCE-G A R DE N A EARTHQUAKE                    NOV 14, 23.6       16.0        35.85   0.09     0.33.        3 07 WT 2 89H 2.0 5 0            ' T288 EL CENTRO, IMPERI AL YALLEY -IttIG                                    EAST                  5.5 IMPERI AL VALLET EARTHQUAKE- JUN 13, 195 l

NORTH 5.4 23.2 16.0 62.52- 0.21 0.83 2.14 W T 292 H 1. 0 5 0 T292 ~ EL CENTRO, IMPERI AL VALLEY IRRIG IMPERIAL COUNTY EARTHQUAKE DEC 16, 195 iny,-w- bw3-y w ,s_ chg' *- + ,.mmr= b 3tv- t' g-i-v e gy yi ntg4-j-w +--e-+- --.4--+Y- ,-r- g -- - +- r-i s-V- e = w se, - - - - m- u-- ------__--.a

Tr.bla 2 (continued'

. P ROG R AM AVGR$2 Response Spectrum Statistics                                                         .
.      DUTPUT FILE: HNRC71.0UT                                                                             .
.                     DATE        24-NOV-91               TIHE: 13:31*53                   PAGE 2          .

RUN DE SCRIPTION.. : Dyster Creek $5RS - NRC Data set minus Imperial volley 1953, North Component File Earthquake Iden ti fic a tion Component Magnitude utstence Depth PGA P$RV (in/sec) ML km km cm/sec/see 25 10 1 Hr WT 2 92 H 2. 0 5 0 T292 EL CENTRO, IMPE RI AL V ALL5' IRRIG EAST 5.4 23.2 16.0 ,71.06 0.24 0.91 2.39 IMPERIAL COUNTY EARTHQUAKE DEC 16, !?* WU 30TH 1. 0 5 0 U307 PUBLIC LIBRARY, HOL LI S TE R, C ALI F N89W 5.0 8.0 24.0 55.52 0.14 0.40 2.61 CENTRAL CALIFORNIA EARTHQUAKE JAN 19, WU 307H 2. 0 5 0 U307 PUBLIC LIBRARY, HOLLISTER, CALIF $01W 5.0 8.0 24 0 35.34 0.11 0.35 2.09 CENTRAL CALIFORNIA EARTHQUAKE JAN 19, W M E DA 1 H 1. 0 50 HED A1 M AN AGUA NICARAGUA E550 REFINERT 5OUTH 5.0 5.7 5.0 171.77 0.43 1.31 3 65 MANAGUA AFTERSHOCK DEC 23, 1972 - 3718 WM E DA 1 H 2. 0 5 0 MEDA1 MANAGUA NICARAGUA E550 REFINERY EAST 5.0 5.7 5.0 120.32 0 31 1.07 4.56 HANAGUA AFTERSHOCK DEC 23, 1972 - 3718 W5JNT4H1.050 SJN74 5AN JUAN 8AUTISTA CALIFORMIA 24 557E 5.2 8.0 9.0 112.05 0 28 1.37 3.53 SAN JUAN BAUTISTA EARTHQUAKE NOV 28, 1 WS JN74 H2. 0 50 SJN74 $AN JyAN BAUTISTA CALIFORNIA 24 N33E 5.2 8.0 9.0 43.94 0 11 1.15 1.26 SAN' JUAN BAUTISTA EARTHQUAKE NOV 28, 1 W H N 74 H 1. 0 5 0 HN74 HOLLISTER CALIFORNIA CITY HALL $01W 5.2 10.0 90 E9.17 0.23 1.06 2.30 HOLLISTER EARTHQUAKE NOV 28, 1974 - 230 MHN74H2.050 HN74 HOLLISTER CALIFORNIA CITY HALL N89W 5.2 10.0 9.0 162.76 0.41 1.51 6.14 HOLLISTER EARTHQUAKE NOV 28, 1974 - 2 30 W P G675 H 1. 0 50 PG675 PETROLIA C ALIFORNI A GENERAL STO R NT5E 5.7 24.0 21.0 159.51 0.45 2.08 4.44 FERNDALE E ARTHQUAKE JUN 7, 1975 - 0 84 WPG6TSH2.050 PG675 PETROLIA CALIFORNIA GENER AL STO R N15E 5.7 24.0 21 0 128.06 0.34 2.41 3.29 FERNDALE EARTHQUAKE JUN 7, 1975 - 084 WF C 67 5 H 1. 0 50 FC675 FERNDALE CALIFORNIA CITY MALL $44W 5.7 5.0 21 0 174.84 0.45 2.47 6.55 FERNDALE E ARTHQUAKE JUNE 7,1975 - 0 84 UFC67 5 H2. 0 50 FC675 FERNDALE CALIFORNIA CITT HALL N46W 5.7 5.0 21.0 199.37 0.58 4.02 5.49 FERNDALE EARTHQUAKE JUNE 7, 1975 - 084 W1022 H 1.0 5 0 CDMG STATION 1 N90E 5.1 12.5 4.0 28.50 0.07 0.24 2 29 OROVILLE AFTERSHOCK E ARTHQUAKE AUG.

Tcbla 2 (centinued)

....................................................r...
. PROG R AM AVGR5: R espons e Spec trum Statistics                                                       .
.      DUTPUT FILE: HNRCT1.00T                                                                             .
.                     DATE: 24-NOV-91                     TIME: 13:31:53                   PAGE        3.

RUN DE SCRIPTION.. : Dyster Creek SSR$ - HRC Date set minus Imperial Valley 1953, North Component File E ar thquak e Iden ti fic a t ion Component MaOnitude Distance Depth PGA P5RV (in/sec) HL km km en/sec/sec 25 10 1 Hz

--.---..----2-----.--..---.---------..--......-:--4------.~...-.....---..-----------...-

W10 22 H 2. 0 5 0 COMG STATION 1 N00E 5.1 12.5 4.0 29.50 0.08 0.28 1.41 OROVILLE AFTERSHOCK E ARTHQUAKE AUG. WOO 59H1.0 5 0 CROVILLE AIRPORT N90W 5.2 12.6 5.0 24.00 0.09 0.31 0.34 OROVILLE AFTERSHOCK E ARTHQUAKE LUG. WOO 59H 2. 0 5 0 OROVILLE AIRPORT 500E 5.2 12.6 5.0 1T.00 0.06 0.29 1 66 OROVILLE AFTER5HDCK E ARTHOU4KE LUG. WO O 22 H 1.0 50 OROVILLE AIRPORT M90N 5.1 14.2 0.0 15.60 0.05 0.25 1.43 GROVILLE AFTERSHOCK EARTHQUAKE EUG. W00 22H 2.0 5 0 - OROVILLE AIRPORT 500E 5.1 14.2 00 35.80 0.09 0.43 1.52 OROVILLE AFTERSHOCK E A R THQUAKE EUG. W10 59 H 1. 0 5 0 CONG STATION 1 N90E 5.2 9.5 5.0 40.T0 0.10 0.84 1.83 OROVILLE AFTERSHOCK E ARTHQU AKE tug. W 10 59H 2.0 5 0 CONG STATION 1 N00E 5.2 9.5 5.0 55.50 0.16 0.96 1 42 DROVILLE AFTER5 HOCK EARTHQUAKE tug. W E T 00 H 1.0 5 0 EARL BROA0 BECK ST. N90E 4.9 T.0 90 106.00 0.28 1.3T 1.52 OROVILLE AFTERSHOCK E ARTHQU4KE LUG. WET 00H2.050 EARL 8ROA08ECK ST. MODE 4.9 T.0 9.0 148.00 0.41 2.36 1 21 OROVILLE AFTERSHOCK E ARTHQU AKE LUG. WC T 00 H 1. 0 5 0 OROVILLE AIRPORT N90W 4.9 8.9 9.0 61.60 0.20 0.83 1 12 OROVILLE AFTERSHOCK E ARTHQUAKE LUG. WOT00 H 2. 0 5 0 OROVILLE AIRPORT 500E 4.9 8.9 90 48.40 0.14 0.92 0.30 CROVILLE AFTERSHOCK E ARTHQUAKE AUG. WIT 00 H 1. 0 5 0 CDMG STATION 1 M90E 4.9 11.0 9.0 TT.90 0.25 0.82 2.21 OROVILLE AFTERSHOCK E ARTHQUAKE LUG. WI T 00H 2. 0 5 0 COMG'5TATION 1 N00E 4.9 11.0 9.0 123.00 0.33 1.84 1.00 OROVILLE AFTERSHOCK EARTHQUAKE LUG. W 5 T 03 H 1. 0 5 0 COMG STATION 5 500E 4.9 8.2 9.0 E 3.10 0 22 0.81 0.98 OROVILLE AFTER5 HOCK EARTHQUAKE 4UG.

                         ,                                                                                    --                                                       _    __    __    __.-_____m

Tcbla 2 (c:ntinued)

   . PROG A AM AVGR5: Response Spectrum Statistics                                                           .
   .      DUTPUT FILE: HNRCT1.0UT                                                                              .

, . DATE: 24-NOV-91 TIME: 13:31:53 PAGE 4 . l ....................................................... RUN DE SCRI PTION..: Dyster Creek 55R$ - NRC Data set minus Imperial Valley 1953. North Component l I File E ar thqu ak e Identification Component Magnitude Distance Depth PGA PSRV (in/sec) ML km km en/sec/sec 25 to 1 Hr W 5 T 00 H 2. 0 5 0 COMG STATION 5 N90E 4.9 8.2 9.0 62.00 0.20 1.02 1.38 OROVILLE AFTER$ HOCK EARTHQUAKE AUG. COMG STATION 4 N35W 4.9 9.4 9.0 61.30 0.1T 0.60 0.51 W 4700 H 1. 0 5 0 CR0VILLE AFTER5 HOCK EARTHQUAKE LUG. 4.9 9.4 9.0 E2.80 0.18 0.83 1.92 i u4700H 2. 0 5 0 CDMG STATION 4 555W OROVILLE AFTERSHOCK EARTHQUAKE LUG. WF B911 H1. 0 5 0 BUIA NS 5.5 10.3 9.0 48.10 0.12 0.40 1.63 135 FRIULI EARTHQUAKE. ITALT SEPT 11, t SUIA EW 5.5 10.3 9.0 39.20 0.11 0.56 1 98 W F 0911 N 2. 0 5 0 135 FRIULI EARTHQUAKE. ITALT SEPT 11. W N IL8191. 0 50 NIL AND WE STMORL AND (TAPE FILE 6) 90 DE 5.T 18.T 4.0 119.00 0.45 2.03 3.22 WESTMORLAND EARTHQUAKE APRIL 26, 1981 WNILS1H2.050 NILAND WESTMORLAND (T APE FILE 6) 00 DE 5.T 18.T 4.0 84.60 0.28 1.19 2 13 WESTMORLAN0' EARTHQUAKE APRIL 26, 1981 180 DE 5.4 8.9 5.0 63.86 0.36 1.76 5.97 W C O N9 3 8 H1. 0 50 CONVICT CREEK MAMMOTH L AKES E ARTHQUAKE JANUART 6. 198 WCON8 3 8 H2. 0 $ 0 CONVICT CREEK 180 CE 5.4 8.9 5.0 140.03 0.22 1.06 9 32 MAMMOTH L AKE S . E ARTHQU AKE J ANUART 6. 198 180 DE 5.2 8.9 3.0 151.04 0.40 1.58 10.70 uCON3 3 AH1. 050 CONVICT CREEK MAMMOTH L AKE 5 E ARTHQUAKE J ANUART 6, 198 WC0%9 3 AH2.050 CONVICT CREEK 90 DE 5.2 8.9 30 155.62 0.40 2.06 11 30 MAMMOTH L AKE 5 E ARTHQUAKE JANUART 6. 198 00 DE 5.1 13.5 50 55.78 0.15 0.76 4.89 WCH PE V 3H1. 0 50 COALINGA CHP (TAPE FILE 26) COALINGA AFTER$ HOCK (Event #3) JUNE 10 90 CE 5.1 13.5 50 54.97 0.15 0.76 4.89 WC M PE V 3 H2. 050 CDALINGA CHP (TAPE FILE 26) CDALINGA AFTER$ HOCK (Event 83) JUNE 10. 90 DE 5.3 11.1 10.0 153.45 0.42 3.46 1.36 WCHPEV4H1.050 COALINGA CHP (TAPE FILE 28) CDALINGA AFTER$ HOCK CEvent 84) JULT 9, _.....__...........__.__....__...--_.--.....-_.--.......--..---...---_---=-- .---._-.._--...-- __. .._.

 ,            -                                 -,                                                                               - ~ -       -.                       __a        -_._-__2.i      m__ _ _ _ . _ _ _ _ - . - _ _ .

Tchte 2 (continued) ,

    ...................e...................................

a '. P RO G R AM AVGRS: R e spon s e Spectrum Statistics .

    . DUTPUT FILE: H N RC T 1. 0 UT                                                                .
   .                 DATE:-24-NOV-91                         TIME 1 13:31253               PAGE 5 .
    ...............................i.......................

RUN DE SCRIPTION.. : Oyster Creek 55RS - NRC Data Set minus Imperial valley 1953. North Component File E arthquak e Id en ti fic a tion Component Magnitude Distance Depth PGA PSRV (in/sec) . ____.___..a....__...____....__......__...p...______.__.- . WCHPE W 4 H2. 0 5 0 CDALINGA CHP (TAPE FILE 28) 00 DE 5.3 11.1 10.0 '172.24 0.44 2.39 2.21 COALINGA AFTERSHOCK (Event so) JULY 9, WCHPE V 6H1. 0 50 COALINGA CHP (TAPE FILE 32) 90 DE 5.0 8.3 10.0 205.65 0.55 3.04 3.49 CDALINGA AFTERSHOCK (Event 86) JULY 21.

                                                                                                                                                                                                   ~t

, WCHP!V5H2.050 COALINGA CHP (TAPE FILE 32) 00 DE 5.0 8.3 10.0 125.99 0.33 1.21 1 75 COALINGA AFTERSHOCK (Event s6) JULY 21. WCHPfv8H1.050 COALINGA CHP (TAPE FILE 36) 90 DE 5.3 1.3 T.0 32.04 0.08 0.46 0.81 COALINGA AFTERSHOCK (Event 88) SEPTEMBE WCHPfV8H2.050 CDALINGA CMP (TAPE FILE 36) 00 DE 5.3 9.3 T.0 21.12 0.06 0.41 0.T3 CDALINGA AFTERSHOCK (Event s8) SEPTEM8E W O B P% 3 60. 0 50 CDMG 24400 Los Angeles Obregon Park 360 5.3 8.4 14.0 3GB.62 0.80 2.42 12.47 Whi ttier Af tershock Oct 04 u08 PE 2 7 0. 0 5 0 COMG 24400 Los Angeles Obregon Park 270 5.3 8.4 14.0 333.28 0.86 3. 27 5.12 Whittier . Af tershock Oct 04 WCHPE V 7H1. 0 50 C04LINGA CHP (TAPE FILE 34) 90 DE 5.1 92 10.0 653.93 1.91 7.49 11.20 CDALINGA AFTERSHOCK (Event sT) JULY 2 5 WC HPEV 7H2. 050 COALINGA CHP (TAPE FILE 34) 00 DE 5.1 9.2 10.0 453.06 1.30 5.23 6.30 COA LI NG A AFTER5h0CK (Event sT) JULY 25 MGLD2 8 6H1. 0 50 HOLLISTER - GLORIETTA WAREHOUSE 90 CE 5.5 12.0 8.0 109.60 0.29 1.45 6.86 HOLLISTER E ARTHQUAKE JANUARY 26, 1986 WGLO48 6H 2. 0 5 0 HOLLISTER - GLORIETTA WAREHOUSE 00 DE 5.5 12.0 8.0 134.44 0.34 1.83 8.62 HOLLISTER E ARTHOUAKE JANUARY 26, 1986 WP 5 A86 H1.0 50 PALM SPRINGS AIRPORT 90 DE 5.9 20.9 12.0 168.35 0.51 2.96 9.41 PALM SPRINGS EARTHQUAKE JULY 8. 1986 - EP5A86 H2.0 50 - - P AL M SPRING 5 AIRPORT 00 DE 5.9 20.9 12.0 136.41 -0.42 2.55 11.40 PAL M SPRINGS EARTHOUAKE JULY 8. 1985 -

 - WU 291H 1. 0 5 0            U299 SANTA BARBARA C OURT HOUSE. CALIF                                    N45E         5.9         12.0  ~ 16.0   233.78        0.66    1.80         8.35
                             ' 5ANTA BARSARA EARTHQUAKE                                JUN 30. 194 we  e- ws6-      .ea-w    e .+yec  m mew +s're----

a

                                                          +-    m-wm+ --

r ai.y4 e,w-m -- e- = y .- .m- , - , . ,e.. e--n. , e , e%,

Tcbla 2 (continued)

          . PROG R AM AVGRS: R espons e Sp ec trum Statistics                                                      .                                                                             !
          .      DUTPUT FILE: H NRCT 1. 0UT                          ,                                               .                                                                            f
          .                     DATE: 2 4-NO V- 91                  TIME: 13:31:53                   PAGE        6   .

RUN DE SCRI PTION.. ! Dyster Creek 55R$ - NRC Data set minus Imperial Valley 1953, North Component f 1 i File Earthauske Identification Component Magnitude Distance Depth PGA P$2V (in/sec) ML km km en/sec/sec 25 10 1 Hz WU2 99H 2. 0 5 0 U299 $ANTA 84RB ARA COURT HOUSE, C ALI F $45E 5.9 12.0 16.0 17 2.31 0.47 1.48 9.94

                                       $ANTA BARBARA EARTHOUAKE                                  JUN 30, 194 median walues        5.3       14.3   10.6     E5.15   0.23   1.02   3.03 standard de v i at ion s : .84t h percent 11es                       0.3        9.0     5.5   leT.70   0.51   2 31   7.27 l

l l l l I i I f

f ....................................................... j . PROG R AM AVGRS: R esponse Spec trua S tatistics . . DUTPUT FILE: H NRC6 7. 0UT . . DATE 24-NOV-91 TIHE: 13*43:31 PAGE 1 . , RUN DE SCRIPTION.. : Dyster Creek 5525 - NRC Set, almu s 6/41, 6/53. L 7/86 records: 67 components i E ar thqu ak e Id en ti fic a tion Component Magnitude Distance Depth PGA PSRV (in/sec) File km cm/sec/sec 25 10 1 H2 ML km , ... ._ -........._ ..___.---- __= , 29.3 16.0 153.61 0.51 1.43 7.76 WU 301 H 1. 0 5 0 U301 PUBLIC LIBRARY, HOLLISTER, C ALI F NS9W 5.2 NORTHERN CALIFORNIA EARTHOUAKE MAR 9, 29.3 16.0 119.44 0.30 0.92 5.95 WU301H2.050 U301 PUBLIC LIBRARY, HOLLIS TE R , CALIF 501W 5.2 NORTHERN CALIFORNIA E ARTHQUAKE HAR 9, T287 EL CENTRO, IMPE RI AL VALLEY IRRIG NORTH 5.6 27.5 16 0 20.35 0.09 0.30 2.49 WT287H1.050 IMPERIAL VALLEY EARTHQU4KE JAN 23, 195 27.5 16.0 17.56 0.07 0.26 2.52 WT 2 C7H 2.0 5 0 T28T EL CENTRO, IMPERI AL VALLET IRtIG EAST 5.6 IMPERIAL VALLEY EARTHQUAKE JAN 23,195 36.2 16.0 52.02 0.13 0.40 1.91 WU305H1.0$0 U305 PUBLIC LIBRARY, HOLLISTER, CALIF N99W 5.4 CENTRAL CALIFORNIA EARTHOUAKE APR 25, 36.2 16.0 48.94 0.12 0.42 3 66 WU 305H 2. 0 5 0 U305 PUBLIC LIBRARY. HOLLISTER, CALIF $01W 5.4 CENTRAL CALIFORNIA EARTHQUAKE APR 2 5 501W 5.7 40.0 11.0 63.41 0.17 0.56 7.39 W A 013 H 1. 0 5 0 A018 HOLLISTER CITY HALL HOLLISTER E,A R TH QU A K E APR 8, 1961 - 23 N89W 5.7 40.0 11.0 115.68 0 45 1.39 8.07 W A019 H 2. 0 5 0 A018 HOLLISTER CITY HALL HOLLISTER EARTHQUAKE APR 8, 1961 - 23 5.8 30.6 15.0 103.07 0.28 1.31 7.72 WU 312 H 1. 0 5 0 U312 CITY HALL, FERNDALE, CALIFORNI A N46W FERNDALE, CALIFORNIA, EARTHQUAKE DEC 5.8 30.6 15.0 232.07 0.61 2.34 5.57 WU 312 H 2. 0 5 0 U312 CITT H ALL, FERNDALE, C ALIFORNI A $44W FERNDALE, CALIFORNIA, EARTHQUAKE DEC 5.0 16.0 39.73 0.10 0.31 5.63 W V 316H 1. 0 5 0 V316 PUBLIC UTILITIES BLDG., LONG BE A NORTH 5.5 TORRANCE-GARDENA EARTH 3UAKE NOV 14, 5.0 16.0 53.70 0.14 0.34 7.17 W V 315 H 2. 0 $ 0 V316 PUBLIC UTILITIES BLOG., LONG SE A EAST 5.5 TORRANCE-GARDENA EARTHQUAKE HOV 14, 5.5 23.6 16.0 25.85 0.09 0.33 3 07 WT 2 83H 2.0 5 0 TZB8 EL CENTRO, IMPERI AL VALLEr IRRIG EAST IMPERIAL VALLEY EARTHQUAKE JUN 13, 195 5.4 23.2 16.0 62.52 0.21 0.83 2.16 W T 292 H 1. 0 5 0 T292 EL CENTRO, IMPERI AL VALLEY IRRIG NORTH IMPERIAL COUNTY EARTHQUAKE DEC 16, 195 __. ....................... ....... _ ................==---

                                                                                                                                                               -=___m _

TEbla 3 (continued)

          . P ROG R AN AVGR$3 R espon s o Spectrum Statistics                                                          .
          .       DUTPUT FILE: HNRC67.0UT _                                                                              .
          .                     DATE: 24-Nov-91                     TIME: 13:43:31                    PAGE            2.

RUN DESCRIPTION..: Oyster Creek 55RS - NRC Se t, minu s 6/41, 6/53, 4 7/86 records: 67 components t

                                                                                                                                                                                                                                                 't A

e File E ar thqu ak e Iden ti fic a tion Component Magnitude 01 stance Depth PGA PSRY (in/sec) ML km km cs/sec/sec 25 10 1 Hz k T292 EL CENTRO, IMPERIAL VALLEY IRRIG 5.4 23.2 16.0 71.06 0.24 0.91 2.39 4 W T 292H 2. 05 0 EAST IMPERIAL COUNTT EARTHQUAKE DEC 16, 195 WU 307H 1. 0 5 0 U307 PU8LIC LIBRARY, HOLLIST!R, CALIF N89W 5. 0 - 8.0 24.0 55.52 0.14 0.40 2.61 CENTRAL CALIFORNIA EARTHQUAKE J AN 19. W U307H 2.0 5 0 U307 PUBLIC LIBRARY, HOLLISTER, CALIF $01W 5.0 8.0 24.0 35.34 0.11 0.35' 2 09 CENTRAL CALIFORNIA ~ EARTHQUAKE J AN 19 uM E CA1 H 1. 0 5 0 MEDA1 NANAGUA NICARAGUA ES$0 REFINERY $0UTH 5.0 5.7 5.0 171.77 0.43 1.31 3.65 MANAGUA AFTER$ HOCK OEC 23, 1972 - 3718 WM E D41 H 2. 0 50 MEDA1 MANAGUA NICARAGUA E550 REFINEtY EAST 5.0 5.7 5.0 120.32 0 31 1.07 4.56 MANAGUA AFTERSHOCK DEC 23, 1972 - 0718 W5 J N74 H1. 0 50 SJN74 $4N JUAN 8AUTISTA CALIFORNIA 24 557E 5.2 8.0 9.0 112.05 0 28 1.37 3.53

                                        $AN. JUAN 8AUTISTA EARTHQUAKE NOV 28, i U$ JNT4 H 2. 0 50              $JN74 $AN JUAN BAUTISTA CALIFORNIA 24                                               N33E             5.2                8.0      9.0      43.94          0.11          1.15     1.26
                                       $AN JUAN 8AUTISTA' EARTHQUAKE NOV 28, 1 W HN T4 H 1. 0 5 0            'HN74 HOLLISTER CALIFORNIA CITY HALL'                                                501W             5.2              10.0       9.0      69.17          0.23          1.06     2.30                         i HOLLISTER EARTHQUAKE NOV 28, 1974 - 230 WHN74H2.050                    HN74 HOLLISTER CALIFORNIA CITY MALL                                                 M89W             5.2              10.0       9.0     162.76          0.41          1.51     6.14 HOLLISTER EARTH 3UAKE'NOV 28, 1974 - 230
    - WP G67 5 H1.0 5 0                PG675 PETROLI A C ALIFORNI A GENER AL STO R                                         N75E             5.7              24.0-     21.0     158.51          0.45          2.08     4.44 FERNDALE EARTHQUAKE                          JUN T 1975 - 0 84 WPG 67 5 H2. 0 50              PG675 PETROLIA CALIFORNIA GENERAL STOR                                              N15E             5.7              24.0      21.0     128.06          0.34          2.41     3.29                        ,

FERNOALE EARTHQUAKE JUN T, '1975 - 0 84 W F C 675 H1. 0 50 - FC675 FERNOALE C ALIFORNIA CITY' HALL $44W 5.7 5.0 21.0 174.34 0.45 2.47 6.55 FERNDALE EARTHQUAKE . JUNE 7,1975 - 0 84 WFC 67 5 H2. 0 50 FC675 FERNOALE CALIFORNIA CITY HALL N46W 5.7 5.0 21 0 199.37 0.58 4.02 5.48 FERNOALE EARTHQUAKE JUNE T,1975 - 0 84 . W 10 22 H 1. 0 5 0 ' CDMG STATION l' N90E 5.1 12.5 -4.0 23.50 0.07; 0.24 ~2.29 OROVILLE AFTER$ HOCK EARTHQUAKE ..4UG. _ m_ . -_t u_ - w _w- _ __

  • e ea e w -*ew= w
  • 4 wws e =w- * - w + - e- wm * -_ e _, ______u-_ _ . _ _a,
                                                                                                                                                                                                                    ]-

TC,bb 3 (ccntinued)

   . PROGRAM AVGRS: R e spons e Spectrue Statistics                                                         .
   .       DUTPUT FILE: HNRC67.0UT                                                                             .
   .                     DATE: 24.N0v-91                     TIME: 13:43:31                    PAGE         3  .

RUN DE SCRIPTION..: Dyster Creek $$R$ NRC $s t e simu s 6/41. 6/53. C 7/86 records: 67 components File Earthauske Identification Component Magnitude Distence Depth PGA PSRV (in/sec) ML ke he en/sec/see 25 10 1 Hz W 10 22 H 2. 0 5 0 COMG STATION 1 N00E 5.1 12.5 4.0 29.50 0.08 0.26 1.41 OROVILLE AFTER$ HOCK EARTHQUAKE tug. W O O 59 H 1. 0 5 0 OROVILLE AIRPORT N90W 5.2 12.6 5.0 24.00 0.09 0.31 0.34 OROVILLE AFTER$ HOCK EARTHQUAKE LUG. WOO 59H 2. 0 50 CROVILLE AIRPORT 500E 5.2 12.6 5.0 17.00 0.06 0.29 1.66 OROVILLE AFTERSHOCK EARTHQUAKE AUG. WO O 22 H 1. 0 5 0 OR0f!LLE AIRPORT N90W 5.1 14.2 0.0 15.60 0.05 0.25 1.43 OROVILLE AFTERSHOCK E ARTHQUAKE LUG. ! WO O 22 H 2. 0 5 0 OROVILLE AIRPORT $00E 5.1 14.2 0.0 35.50 0.09 0.43 1 52 l- OROVILLE AFTERSHOCK E A RTHQUAKE LUG. W 10 59 H 1. 0 5 0 COMG STATION 1 N90E 5.2 9.5 5.0 40.70 0.10 0.84 1.83 l OROVILLE AFTERSHOCK EARTHQUAKE AUG. l 1 W10 59 H 2. 0 5 0 COMG STATIDM 1 N00E 5.2 9.5 5.0 55.50 0.16 0.96 1.42 OROVILLE'AF'TER$ HOCK EARTHQUAKE 40G. W E 700 H 1. 0 5 0 EARL 8ROA08ECK ST. N90E 4.9 T.0 9.0 1C6.00 0.28 1.37 1.52 OROVILLE AFTER$ HOCK EARTH 3UAKE AUG. UE T00 H 2.0 5 0 EARL BROA08ECK ST. N00E 4.9 7.0 9.0 148.00 0.41 2.36 1.21 l OROVILLE AFTERSHOCK EARTH 3UAKE LUG. ! WO700 H 1. 0 5 0 OROVILLE AIRPORT N90W 4.9 8.9 9.0 61.60 0.20 0.83 1.12 OROVILLE AFTER$ HOCK EARTHQUAKE SUG. l 1 WD 700H 2. 0 $ 0 OROVILLE AIRPORT 500E 4.9 8.9 9.0 48.40 0.14 0.92 0 30 OROVILLE AFTERSHOCK E ARTHQUAKE tug. U1700 H 1. 0 5 0 COMG STATION 1 N90E 4.9 11.0 9.0 77.80 0.25 0.82 2.21 OROVILLE AFTERSHOCK EARTHQUAKE 40G. I W 1700 H 2.0 5 0 COMG STATION 1 N00E 4.9 11.0 9.0 123.00 0.33 1.84 1.00 OROVILLE AFTER$ HOCK E ARTHQUAKE AUG. W 5700 H1.0 5 0 COMG STATION $ . 500E 4.9 8.2- 9.0 63.10 0 22 0.81 0.98 OROVILLE AFTER5HDCK E ARTHQUAKE 1U G.

                                                                                                                         --.....-=-                                           .--..   ............_.....
l. . . . . ____..... ..__.... . .......... .. . ........- _

i

                                                                                                                                                                                                                                           <-l Tcbla 3 (continued)                                                                                          {,
              . PROGR AM AVGR5: R esponse Spec true Statistics                                                             .
              .'           DUTPUT FILE: HNRC67.00T                                -
              .                    DATE: 24-NOV-91                     TIME: 13:43:31                    PAGE           4  .

s/ RUN DE SC RI PTION..: Dyster Creek 55RS - NRC 5et, minus 6/41, 6/53, t 7/86 records: 67 components File . Earthquake Identification Component Magnitude Distence Depth PGA PSRY (in/sec) ML km km cm/sec/sec 25 -10 1 HZ W 57 00 H 2. 05 0 COMG STATION 5 N90E 4.9 8.2 9.0 62.00 0.20 1.02 1.38 OROVILLE AFTER5 HOCK EARTHOUAKE AUG.

            'W 4700 H 1. 0 5 0                COMG STATION 4                                                                      N35W          4.9           9.4         9.0             61.30          0.17          0.60    0.51 OROVILLE AFTER5 HOCK EARTHOUAKE                                         AUG.

W4 700 H 2. 0 5 0 COMG STATION 4 555W 4.9 9.4 9.0 62.80 0.18 0.83 1 92 OROVILLE AFTERSHOCK E ARTHQUAKE LUG. W F B 911 H1. 0 50 BUIA N5 5.5 10.3 9.0 48.10 0.12 0.40 1.63 135 FRIULI EARTHQUAKE, ITALT SEPT 11, WF B 911 H 2. 0 50 BUIA EW 5.5 10.3 9.0 39.20 0.11 0.56 1.98 135 FRIULI EARTHQUAKE, ITALT SEPT 11. W NIL 81 H 1. 0 50 NILANO WESTMORLAND (TAPE FILE 6) 90 CE 5.7 18.7 4.0 159.00 0.45 2.03 3.22 WESTMORLAND EARTHQUAKE APRIL 26, 1991 I WNIL81 H2.0 50 ' NIL AND WESTMORL AND (T APE FILE' 6) 00 DE 5.7 18.7 4.0 E4.60' ' O.28 1.19 2 13 WE STMORLAN0' E ARTHQUAKE APRIL 26, 1981 i W C O NS 3 8 H1. 0 50 CONVICT CREEK 180 CE 5.4 8.9 5. 0 E3.86 0.36 1.76 5.97 MAMMOTH L AKES E ARTHQUAKE JANUARf 6, 1 98 WCON9 3 8H2. 05 0 CONVICT CREEK. . 180 CE 5.4 8.9 5.0 140.03 - 0.22 1.06- 9.32 MAMMOTH L AKE S E ARTHQUAK E -J ANUART 6, 198

            -WC O NS 3 4 H1. 0 5 0 . CONVICT CREEK                                             .

180 DE 5.2 8.9 30- 151.04 0.40 1.58 10 70 MAMMOTH L AKES E ARTHQU AKE JANUARf 6e 198 WCON8 3 AH2. 0 50 . CONVICT CREEK- 90 DE 5.2 8.9 3.0' 155.62 0.40 2.06 11 30-MAMMOTH L AKES E ARTHQUAKE JANUART 6, 198 00 CE 5.1- 13.5 5.0 :55.78 0.15 0.76 4.89 WC H PE V 3 H1. 0 50 CDALINGA CHP (TAPE FILE 26) COALINGA AFTER$ HOCK CEvent 83) JUNE 10,

<             WCHPE V 3H2. 0 50 CDALINGA.CHP (TAPE FILE 26)                                                                      ,90 CE         5.1          13.5.        5.0               54.97         0.15        ' O.76   4.89 COALINGA AFTER$ HOCK CEvent 83) JUNE 10, 1-90.0E        .5.3          11.1        10.0-          153.45-           0.42.         3.46   1.36
            . W CM PE V 4 M1. 0 50 .COALINGA CMP (TAPE FILE 28)
4. COALINGA-AFTERSHOCK CEvent 84) JULY 9,
              --------------------------------------------------.------------------------------------------------------------------==

m..m_..-._ ________m _ _ _ _ - _ w y 2 ym , 4.m-e++s -4 .---- e -4aw-.* u 4e-- * =-m- e tw--- -w e,v,+ w,-- v w an,%r-

Tebla 3 (ccntinued)

                 . PROGRAM'AVGR5: Response spectrum Statistics                                                          .
                 .           001PUT FILE! HNRC6T.0UT                                                                        .
                .                                    DATE*'24.MOV-91                     TIMEt 13:43131        PAGE     5.                                                                                                                                  ,

RUN DE SCRIPTION..: Dyster Creek SSR$ - NRC 5et, minus 6/41, 6/53. L T/86 records: 6T components File Earthquake Identification Component Magnitude Distance Depth PGA PSRV (in/sec) ML km km en/sec/sec 25 10 1 He W C H PE V 4 H2. 050 CD A L ING A CHP--(TAPE FILE 28) 00 CE 5.3 11.1 10.0 1T2.24 0.45 2.39 2.21 COALINGA AFTERSHOCK (Event 84) JULY- 9

              ' W C H PE V 6 H1. 0 50 COALINGA CHP (TAPE FILE 32)                                                                  90 DE             5.0                8.3             10 0         205.65    0.55        3.04         3 49 COALINGA AFTERSHOCK (Event 86) JULY 21.

WCH PE V 6H2. 0 50 COALINGA CHP (TAPE FILE 32) 00 DE 5.0 8.3 10.0 125.99 0.33 1.21 1.75 CDALINGA AFTERSHOCK (Event e6) JULY 21. WCHPE v 8H1. 05 0 ' CD A LING A CHP (TAPE FILE 36) 90 CE 5.3 9.3 T.0 32.04 0.08 0.46 0.81 COALINGA AFTERSHOCK (Event 88) SEPTEMBE WCHPE V 8H2. 050 CDs . NG A CHP-(TAPE FILE 36) 00 DE 5.3 9.3 T.0 21.12 0.06 0.41 0.T3 COALINGA AFTERSHOCK (Event 88) SEPTEMBE WO 8 PK 3 60. 0 50 COMG 24400 Los-Angeles Obregon Park 360 5.3 8.4 14.0 368.62 0.80 2.42 12.4T Whi ttier Af tershock ' Oct 0 4 WOO PK 2 T O.0 50 CDMG 24400 , Los Angeles Obregen Park 270 5.3 8.4 14.0 333.28' O.86 3.2T '5.12 Whittier Af tershock Oct 04 WC HPEV TH1. 050 COALINGA CHP (TAPE FILE 34) 90 CE 5.1 9.2 10.0 653.93 1.91 T.49 11.20' COALINGA AFTERSHOCK CEvent 8T) JULY 2 5, WCHPEV TH2. 050 COALING A CMP (TAPE FILE 34) 00 CE 5.1 9.2 10.0 453.06 1.30 5.23 6.30 CDALINGA AFTERSH0CK CEvent.sT) JULT 2 5 WGLOR86H1.050 HOLLISTER - GLORIETTA WAREHOUSE 90 CE 5.5 12.0 8.0 109.60 0.29 1.45 6.86 HOLLISTER E ARTHQUAKE JANUARY 26, 1986 WGLO486H2.050 HOL LI ST ER - GLORIETTA W AR EHOUS E ' 00 DE' '5.5 12.0 8.0 134.44 0.34 1.83 8.62 HOLLISTER EARTHQUAKE JANUARY 26. 1986 median values 5.3 14.2 10.4- E1.58 0.22 0.9T 2.83

                                                                                   -standard deviations 3 .84th percentiles                          0.3                9.2               5.6         150.13    0.41        2.22        6.62
 . . _ _ _ _ _ _ _ _ _ _ _ _ . . ~ . _ . _ _ _ . _ _ _ , _ _ - - . . _                       .       _ . _ .__       _.2-_-          . . _         -       _
                                                                                                                                                                  . . . . . -  , . _ - .        _ . .   -_-_.c__...  . . . _ _ _ . . _            . _ . n. _ ,s

s.~ Tebla 4

 . . NRC Recommended Data Set; 72 Horizontal Components Statis tical Re sponse Spectra PSRY (51 damping ratio) in/ sec t lognormal assumption P erio d             median          84th            ei n. bound    max. bound 0.04000000      0.22628592       0.51791358       3.01900000       1.90999997 0.04200000      0.24012519      0.55068952        3.01990000      2.03999996 0.04400000      0 25582084      0.58677125        3.02100000      2.17000008 0.04600000      0.27279352      0.62396991        0.02220000      2.30999994 0.04800000      0.29145423      0.66672230        3.02340000      2.46000004 0.05000000      0.30950579      0.70853895        3.02450000      2.61999989 0.05500000       0.35847405      0.82398814        3.02770000      3.07999992 0.06000000      0.41412348      0.96372569        0.03020000      3.42000008 0.06500000      0.47123504      1.10637486        3.03140000      3.67000008 0.07000000      0.52429819      1.24810541        3.03070000      4.36000013 0.07500000      0.59647328      1.42204154        2.03410000      4.69999981 0.08000000       0.67625546      1.61833513        3.03820000      4.55999994 0.08500000      0.74605918      1.77969491        3.04240000      4.92999983 0.09000000      0.81914878      1.98065138        0.04720000      6.00000000 0.09500000       0.89151829      2.16950107        0.05150000      6.96999979 0.10000000       0.97712016      2.36287880     ' 3.05590000       7.48999977 0.11000000       1.10537708      2.64593220        3.06380000      9.13000011 0.12000000       1.24989247      2.93946052        0.07890000     11.00000000 0.13000000       1.40240598      3.31834602        3.10200000     12.80000019 0.14000000       1.57187200      3.69588256        3.13200000     13.50000000 0.15000001       1.74150908      4.19977188        3.17200001     13.60000038 0.16000000       1.84407401      4.43191910        3. 21200000    14.50000000 0.17000000      1.98437548      4.67074013        0.24699999     14.50000000 0.18000001       2.10904098       5.01049566       3.25900000     15.30000019 0.19000000       2.24130154      3.35180283        3.25999999     16.29999924 0.20000000       2.32831025      5.55569363        3.24400000     18.39999962 0.22000000       2.45443797      6.00836277        0.22200000     24.50000000 0.23999999       2.52943427      6.34085321        0.22000000     30.20000076 0.25999999       2.68067789      6.88475132        3.21699999     33.90000153 0.28000000       2.80682564      7.20082426        3.20600000     35.59999847 0.30000001       2.92871261      7.53468800        3.17800000     35.90000153 0.31999999       3.06321740      7.80987120        0.19900000     35.40000153 0.34000000       3.14630628      8.01177120        3 20299999. 35.40000153 0.36000001       3.20358205      8.10677433        3.21799999     34.79999924 0.38000000       3.21818924      7.95384216        3.27100000     34.20000076 0.40000001       3.19216299      7.77558661        3.37500000     33.50000000 0.41 999999      3.18624330 7.96586275        0.42800000     32.90000153 0.44 0 0C 00     3.24439621      8.31121826        3.41800001     31.10000038 0.46000001       3.23009229      8.53823948        3.41100001     30.00000000 0.47999999      3.24222517       8.66361237        3.45019114     28.10000038 0.50000000       3.28697371      8.74659061        3.44486338     26.20000076 0.55000001      3.30336738       8.68896484        3 53710747     26.20000076 0.60000002       3.30305791      8.52729225        3.53322864     25.20000076 0.64999998       3.35989904      8.58028412        3.54092568     23.7000007o 0.69999999      3.35228252       8.42094898        3.45199999 21.79999924 0.75000000      3.39280295       8.44360065        0.38499999     19.89999962 0.80000001      3.31493711       8.21211147        0.39136907     18.00000000   '

O.85000002 3.25867653 7.93582869 3.35124066 16.00000000 0.89999998 3.18342733 7.79700756. 3.30299243 13.89999962 0.94999999 3.08444238 7.55614948' 3.28627476 12.89024353 1.00000000 2.96630168 7.21544981 0.29969847 12.47018051 1.10000002 2.80967283 6.86457396 3 32639021 12.60000038 1.20000005 2.73371100 6.81407833 3.33443743 12.30000019 1.29999995 2.63072896 6.65010786 3.34482738 14.30000019 1.39999998 2.45591116 6.09476900 D.28931329 10.60000038 1.50000000 2.30656934 5.55577374 3.22593150 9.65999985 1.60000002 2.18978739 5.35994482 3.47997642 9.13000011 1.70000005 2.10877419 5.14986420 0.16462217 9.75000000 1.79999995 2.01035380 4.94740582 3.15598963 10.10000038 1.89999998 1.92526317 4.79013205 3.14819586 9.88000011 2.00000000 1.84070814 4.57912397 3.14827733 9.22999954

Tcbb 5 NRC Recommended Oate Set; minus Imperial Valley 1953 Nor th Comp.; 71 Components Statistical Response Spectra PSRV (5% damping ratio) in/ s ec ; lognormal assumption P erio d median 84th ei n. bound amm. bound 0.04000000 0.23432095 0.51053631 0.04756333 1.90999997 0.04200000 0.24869746 0.54270315 3.04885432 2.03999996 0.04400000 0.26498890 0.57809073 3.05287366 2.17000008 0.04600000 0.28260446 0.61442965 3.05731612 2.30999994 0.04800000 0.30199373 0.65624237 3.06169346 2.46000004 0.05000000 0.32076201 0.69711685 3.06564215 2.61999989 0.05500000 0.37163734 0.81032503 3.07580950 3.07999992 0.06000000 0.42968053 0.94687396 0.08473225 3.42000008 0.06500000 0.48955926 1 08446968 0.09365319 3.67000008 0.07000000 0.54567826 1.21923041 3.10168760 4.36000013 0.07500000 0.62100589 1.38810074 3.12388527 4.69999981 0.08000000 0.70418853 1.57956827 3.13694532 4.55999994 0.08500000 0.77680898 1.73692799 0. 14841820 4.92999983 0.09000000 0.85274547 1.93649590 0.14206634 6.00000000 0.09500000 0.92805016 2.12256837 3.18227796 6.96999979 0.10000000 1.01729870 2.30962276 3.24237518 7.48999977 0.11000000 1.15068579 2.58468318 3.25594556 9.13000011 0.12000000 1.29948461 2 87612915 0.25016215 11.00000000 0.13000000 1.45514321 3.26452041 3.31649598 12.80000019 0.14000000 1.62768328 3.65071368 3.35542917 13.50000000 0.15000001 1.79922831 4.17441988 3.36289012 13.6000003C 0.16000000 1.90112135 4.42065477 1.37708971 14.50000000 0.17000000 2.04347467 4.66212940 3.41166675 14.50000000 0.18000001 2.17226577 5.00218153 3.41004145 15.30000019 0.19000000 2.31034422 5.33744144 3.41030392 16.29999924 0.20000000 2.40347028 5.52697659 3.41665897 18.39999962 0.22000000 2.53892946 5.96387672 0.49798515 24.50000000 0.23999999 2.61800313 6.29675484 3.50941634 30.20000076 0.25999999 2.77729416 6.83428764 3. 53659111 33.90000153 0.28000000 2.91200519 7.12845850 3.46321392 35.59999047 0.30000001 3.04654169 7.41861820 3.48942247 35.90000153 0.31999999 3.18346953 7.70024872 3.53022492 35.40000153 0.34000000 3.27013612 7.89690828 0.55000573 35 40000153 0.36000001 3.32716990 7.99987030 3.51330197 34.79999924 0.38000000 3.33232498 7.88453865 3.51076293 34.20000076 0.40000001 3.28991294 7.76510286 3.52671385 33.50000000 0.41999999 3.27761769 7.98662901 0.52316695 32.90000153 0.44000000 3.33940077 8.33524895 0.50811702 31.10000038 0.46000001 3.32526159 8.57232571 3.47771329 30.00000000 0.47999999 3.33253551 8.71769810 3.45019114 28.10000038 0.50000000 3.37264013 8.81560040 3.44486338 26.20000076 0.55000001 3.38596988 8.76259613 0. 53710747 26.20000076

  -      0.60000002     3.37762117     8.61152935        3.53322864       25.20000076 0.64999998     3.44699621     8.63699913        3.54092568       23.70000076 0.69999999      3.44823599     8.44522285        3.45313781       21.79999924 0.75000000     3.49840331      8.43507671       3.43270451       19.89999962 0.80000001     3.41600657      8.20964336       0.39136907       18.00000000 0.85000002     3.3445534'     7.97040892        3.35124066       16.00000000
  • 0.89999998 3.27026749 7.82418633 3.30299243 13.89999962 0.94999999 3.16259050 7.59934187 3.28627476 12.89024353 1.00000000 3.03347230 7.27361393 3.29969847 12.47018051 1.10000002 2.88628817 6.88788080 0. 32639021 12.60000038 1.20000005 2.80679321 6.84703445 3.33443743 12.30000019 1.29999995 2.70442128 6.67606211 3.34482738 14.30000019 1.39999998 2.52423739 6.11530590 3.28931329 10.60000038 1.50000000 2.36469936 5.58483171 3.22593150 9.65999985 1.60000002 2.24497867 5.39116621 0.17997642 9.13000011 1.70000005 2.15370488 5.19748163 3.16462217 9.75000000 1.79999995 2.04478788 5.00565815 0.15598963 10.10000038 1.89999998 1.95632422 4.84915400 3.14819586 9.88000011 2.00000000 1.86713576 4.63728666 3.14827733 9.22999954

Tcbla 6 NRC Recommended Data Set; sinus '41, ~53, t '86 EQ's; 57 Components Statis tica l Re sponse Spectra PSRY (5% damping ratio) in/ sec ; legnormal assumption P erio d median 84th ei n. bound max. bound 0.04000000 0.22371884 0.48633704 3.04756333 1.90999997 0.04200000 0.23743190 0.51707047 0.04885432 2.03999996 0.04400000 0.25322896 0.55191809 3.05287366 2.17000008 < 0.04600000 0.27033430 0.58779633 3.05731612 2.30999994 J 0.04800000 0.28840318 0.62572956 3.06169346 2.46000004 0.05000000 0.30672374 0.66652417 3.06564215 2.61999989 0.05500000 0.35598156 0.77758276 3.07580950 3.07999992 0.06000000 0.40951383 0.89940447 3.08473225 3.42000008 0.06500000 0.46727902 1.03231835 0.09365319 3.67000008 0.07000000 0.52057201 1.16040838 3.10168760 4.36000013 0.07500000 0.59191066 1.31808567 3.12388527 4.69999981 0.08000000 0.67157066 1.50070941 3.13694532 4.55999994 0.08500000 0.74308634 1.66122735 3.14841820 4.92999983 0.09000000 0.81649727 1.85782838 0.14206634 6.00000000 0.09500000 0.88888693 2.03853989 3.18227796 6.96999979 0.10000000 0.97423273 2.21562195 3.24237518 7.48999977 0.11 000000 1.10870612 2.50737405 0.25594556 9.13000011 0.12000000 1.25064445 2.77905941 0.25016215 11.00000000 0.13000000 1.40322530 3.16495275 3. 31649598 .12.80000019 0.14000000 1.56903946 3.53629661 3.35542917 13.50000000 0.15000001 1.72331583 4.01459694 3.36289012 13.60000038 0.16000000 1.82231688 4.26255560 3.37708971 14.50000000 0.17000000 1.96012974 4.49325466 3.41166675 14.50000000 0.18000001 2.08286285 4.8219695i 0.41004145 15.30000019 0.19000000 2.21919823 5.16167831 3.41030392 16.29999924 0.20000000 2.31582689 5.37085104 3.41665897 18.39999962 0.22000000 2.42737651 5.70591640 3.49798515 24.50000000 0.23999999 2.50576711 6.05364084 3.50941634 30.20000076 0.25999999 2.64939094 6.54180288 3.53659111 33.90000153 0.28000000 2.78491330 6.84236288 3.46321392 35.59999847 0.30000001 2.89903903 7.04448652 3.48942247 35.90000153 0.31999999 3.00904727 7.20774460 3.53022492 35.40000153 0.34000000 3.09493327 7.40086889 0.55000573 35.40000153 0.36000001 3.13935184 7.44235325 3.51330197 34.79999924 0.38000000 3.13729835 7.29428005 3.51076293 34.20000076 0.40000001 3.10514259 7.20857286 3.52671385 33.50000000 0.41 999999 3.09568906 7.42938328 3.52316695 32.90000153 0.44000000 3.15841532 7.78633690 0.50811702 31 10000038 0.46000001 3.14525914 8.02252674 3.47771329 30 00000000 0.47999999 3.14586306 8.14068604 3.45019114 28.10000038 0.50000000 3.17267251 8.19022179 3.44486338 26.20000076 0.55000001 3.17991328 8.11763000 0.53710747 26 20000076 0.60000002 3.16273618 7.91901112 3.53322864 25.20000076 0.64999998 3.21681762 7.87549639 0.54092568 23.70000076 0.69999939 3.21551824 7.67893219 3. 45313781 21.79999924 0.75 000000 3.27144384 7.71744251 0.43270451 19.89999962 0.80000001 3.19233251 7.50311756 3.39136907 18.00000000 1 0.85000002 3.12748742 7.29369926 3.35124066 16.00000000 O.89999998 3.05136347 7.12706852 3.30299243 13.89999962 0.94999999 2.95316482 6.93776560- 0.28627476 12.89024353 1.00000000 2.82985234 6.62447977 3.29969847 12.47018051 l 1.10000002 2.68210721 6.20531797 3.32639021 11.60000038 1.20000005 2.62072396 6.25851250 3.33443743 12.30000019 1.29999995 2.53980613 6.19309855 3.34482738 14.30000019 1.39999998 2.36961198 5.66018295 0.28931329 10.60000038 1.50000000 2.21687746 5.14176321 3. 22593150 9.65999985 1.60000002 2.09512115 4.91391659 3.17997642 9.06999969 , 1.70000005 2.00144124 4.68727827 3.16462217 8.89000034 ! 1.79999995 1.88745570 4.44129992 S.15598963 8.60999166 1.89999998 1.80897903 4.32902431 3.14819586 9.39000034 2.00000000 1.72526348 4.13388395 3.14827733 8.47000027

Tcbis 7

 . P ROG R A M AVGRS: Response Spectrue S tatistics                                                         .
 .      OUTPUT FILE: HNRC.0UT                                                                                 .
 .                    DATE1 26-NOT-91                      TIME: 11:37:28                    PAGE 1           .

RUN DE SCRI PTION.. ' 9 Horizontal Components Recommended to be Included in Oyster Creek 55R5 File E arthquake Identification Component HaOnitude Distance Depth PGA PSRV (in/sec) ML km km en/sec/sec 25 to 1 Hz WCMPEV TH 1. 05 0 CDALINGA CHP (TAPE FILE 34) 90 DE 5.1 9.2 10.0 653.93 1.91 T.49 11.20 CDALINGA A F T E R 5 H CC f. (Event 87) JULY 25 WCHPE V TH2. 0 5 0 COALINGA CHP (TAPE FILE 34) 00 DE 5.1 9.2 10.0 453.06 1.30 5.23 6.30 . COALINGA AFTERSHOCK CEwent 87) JULY 2 5, WGLOR86H1.050 HOLLISTER - GLORIETTA W A R EHOUS E 90 DE 5.5 12.0 8.0 109.60 0.29 1.45 6.86 HOLLISTER EARTHQUAKE JANUARY 26, 1906 WGLO286H2.050 HOLLISTER - GLORIETTA WA R EHOUS E 00 DE 5.5 12.0 8.0 134.44 0.34 1.83 8.62 HOLLISTER EARTHQUAKE JANUARY 26, 1986 WPSA86H1.050 PALM SPRINGS AIRPORT 90 DE 5.9 20.9 12.0 168.35 0.51 2.86 9.41 l PALM SPRINGS E ARTHQUAKE JULY 8 1985 - . UPS A86H2.0 50 PALM SPRINGS AIRPORT 00 DE 5.9 20.9 12.0 136.41 0.42 2.55 11.40 PALM SPRINGS EARTHQUAKE JULY 8. 1985 - WU 2 99 H 1. 0 5 0 U299 5ANTA BARBARA COURT H3USE. CALIF N45E 5.9 12.0 16.0 23 3.T 8 0.66 1.80 8.35 SANTA SAR8 ARA EARTHOUAKE JUN 30 194 WU 299 H 2. 05 0 U299 SANTA B ARBARA COURT HOUSEe CALIF 545E 5.9 12.0 16.0 172.31 0.4T 1.48 9.94 SANTA BARBARA EARTHQUAKE JUN 30, 194 UT 2 88H 1. 0 5 0 T288 EL CENTRO. IMPERIAL VALLEY IR81G NORTH 5.5 23.6 16.0 T.21 0.02 0.06 0.61 IMPERIAL VALLEY EARTHQUAKE JUN 13, 195

 -------------------------------------------------.------------------------------------------=

medien values 5.6 14.6 12 0 145.45 0.41 1.69 6.56 standard deviationsi .84th percent 11es 0.3 5.5 3.3 518.82 1.50 6.84 16.39

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....           Tcbb 8
 . PROGR An AVGRS: Reepense Spectrua Statistics                                                            .
 .        DUTPUT FILE: v5ET2A.00T                                                                             .
 .                     DATE:         6-0 E C- 91           TIMER 18:17:17                    PAGE 1           .

RUN DE SCRIPTION.. : ALL VERTIC AL ACCELEROGR AMS MINUS THOSE FROM TALL () 4 STORIES) STRUCTURES File Earthquake Identification Component Magnitude Distance Depth PGA PSRV (in/sec) ML km km en/sec/sec 25 10 1 Hz

- - - - - - - - - .          _ - - -       -- =------                          ---
                                                                                                 - - - - - - - - _ _ -   --- _ _=                                    _-        __....---------------.-------

WV316v1.050 V316 PUBLIC UTILITIES BLDG.. LONG SE A UP 5.5 5.0 16.0 8.48 0.02 0.11 0.92 TORRANCE-GARDENA EARTHQUAKE NOV 14, WU301V1.050 U301 PUBLIC LIBRART. HOLLISTER. CALIF UP 5.2 29.3 16.0 69.51 0.17 0.71 1.46 NORTHERN CALIFORNIA EARTHQUAKE MAR 9, U T 2 87 v 1. 0 5 0 T287 EL CENTRO, IMPERI AL VALLEY IRRIG UP 5.6 27.5 16.0 13.27 0.04 0.25 0.52 IMPERIAL VALLEY EARTHOUAKE JAN 23,195 WT288V1.050 T288 EL CENTRO. IMPERI AL VALLEY IRRIG UP 5.5 23.6 16.0 16.86 0.06 0.26 0.60 IMPERIAL VALLEY EARTHQUAKE JUN 13, 195 WU305V1.050 U30 5 PUBLIC LIBRART. HOLLISTER, C ALI F UP 5.4 36.2 16.0 23.11 0.05 0.29 1.24 CENTRAL CALIFORNIA EARTHQUAKE APR 2 5. WT 2 92 V 1. 0 50 1292 EL CENTRO. IMPERI AL V ALLEY IRtIG UP 5.4 23.2 16.0 56.49 0 18 0.61 0.45 IMPERIAL COUNTY EARTHQUAKE CEC 16,195 WU 307 V 1. 0 5 0 U307 PUBLIC LIBRARY. HOLLISTER, CALIF UP 5.0 8.0 24.0 23.64 0.06 0.26 2.27 CENTRAL CA,LIFORNIA EARTHQUAKE J AN 19. WA01SV1.050 A018 HOLLISTER CITT HALL YERT 5.7 40.0 11.0 49.14 0 12 0.32 3.00 H3LLISTER EARTHQUAKE APR 8, 1961 - 23 WU312 V 1. 0 5 0 U312 CITY HALL FERNDALE. CALIFORNIA UP 5.8 30.6 15.0 32.42 0.08 0.26 3.49 FERNDALE, CALIFORNIA. E ART H QUA KE DEC WMEDA1V1.050 HEDA1 MANAGUA NICARAGUA E550 REFINERY YERT 5.0 5.7 5.0 61.31 0.16 1.08 1.57 MANAGUA AFTERSHOCK DEC 23 1972 - 3718 WSJ K74 V1. 0 50 SJN74 SAN JUAN BAUTISTA CALIFORNIA 24 DOWN 52 8.0 9.0 45.59 0 13 1.07 0.61 SAN JUAN 8AUTISTA EARTHQUAKE NDY 29. 1 WHN74V1.050 HN74 HOLLISTER CALIFORNI A CITY HALL UP 5.2 10.0 9.0 (6.19 0.18 0.80 1.14 HOLLISTER EARTHQUAKE NOV 28. 1974 - 230 WPG67 5 V1. 0 50 PG675 PETROLI A CALIFORNI A GENER AL STOR 00WN 5.7 24.0 21.0 38.71 0.10 0.49 1.33 fERNDALE EARTHQUAKE 'JUN 7, 1975 - 0 84 WFC675 V 1.0 50 FC675 FERNOALE CALIFORMIA CITT HALL UP 5.7 5.0 21 0 42.37 0.11 0.48 1.93 FERNOALE EARTHQUAKE JUNE 7.1975 - 0 84 . - - - - - - . . - - - - - - . - - - - - - - - - - - - - - - - - - - - - - - . . . . . . . - - - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - _ . = _ _ . _ _ - - _: -_. _ _ _ _ _ _ _ _ _ _ _--____-_________m _ _ _ _ _ _ _ _ - _ _ _ _ . _ _ _ _ _ _

                                                                                                                            . Tabla 8 (continued)
     . PROGRAM AVGRS: Response Spectrum Statistics                                                             .
     .         OUTPUT FILE: VSET2A.0UT                                                                            .
    .                      DATE: 6-DEC-91                      TIME: 18:17:17                    PAGE           2.

RUN DE SCaIPTION..: ALL VERTICAL ACCELEROGR AMS NINUS THOSE FROM TALL () 4 STORIES) STRUCTURES File E ar thqu ak e Id en t i fic a tion Component Magnitude Distance Depth PGA PSRV Cin/sec) ML km km en/sec/ sac 25 10 1 Hz

,   _____..             .___.. -                   - __...._               ==......-___ ....:_-- -==-                _           ==-

W1022 V 1. 05 0 CDMG STATION 1 DOWN 5.1 12.5 4.0 21.10 0.06 0.21 1.35 OROVILLE AFTERSHOCK EARTHQUAKE EUG. W OO 59 V 1. 05 0 OROVILLE AIRPORT DOWN 5.2 12.6 5.0 20.40 0.09 0.35 1.98 OROVILLE AFTERSHOCK EARTHQUAKE SUG. WOO 22 V 1.0 5 0 OROVILLE AIRPORT DOWN 5.1 14.2 0.0 13.70 0.04 0.30 1.68 OROVILLE AFTERSHDCK EARTHQUAKE tug. W10 59 V 1. 0 5 0 CDMG STATION 1 DOWN 5.2 9.5 5.0 42.80 0.20 0.48 1.68 OROVILLE AFTER5 MOCK EARTHOUAKE LUG. W E 700 V 1. 0 5 0 . EARL BROAD 8ECK ST. DOWN 4.9 7.0 9.0 59.70 0.28 1.18 0.32 OROVILLE AFTERSHOCK E ARTHQUAK4 tug. W O 7 00 V 1. 0 5 0 OROVILLE AIRPORT DOWN 4.9 8.9 9.0 48.70 0.29 0.56 0.86 OROVILLE AFTERSHOCK EARTHQUAKE tug. W 1700 V 1.D 5 0 ' COMG STATION '1 DOWN 4.9 11.0 9.0 43.60 0.21 0.42 1.47 DROVILLE AFTERSHOCK E ARTHQUAKE LUG. W 5700V 1.0 5 0 COMG STATION 5 DOWN 4.9 8.2 9.0 35.60 0.17 0.70 0.38

                                 'OROVILLE AFTERSHDCK EARTHQUAKE                                           LUG.

W4700V1.050 .COMG STATION 4 DOWN 4.9 9.4 9.0 29.60 0.19 0.32 1.10 l OROVILLE AFTERSHOCK EARTHQUAKE AUG. l WF 8911 V1. 0 50 BUIA . VERT 5.5 10.3 9.0 21.60 0.06 0.27 0.86

135 FRIULI EARTHQUAKE, ITALY SEPT II, WNILS 1 V1. 0 50 MILAND WESTMORLAND CTAPE FILE 6) ~ UP DE 5.7 18.7 4.0 127.50 0.45 1.66 1 13 WESTMORLAND EARTHQUAKE APRIL 26, 1981 UCON8 3 8 V1. 0 50 CONVICT CREEK - . .

UP DE 5.4 8.9 5. 0 61.88 0.19 0.86 6.58 MAMMOT H LAKES EARTHQUAKE JANUARY 6, 198 WCON83 AY1.050 CONVICT CREEK UP DE 5.2 8.9 3.0 90.07 0.27- 1.13 8.11 MAMNOTH L AKE5 E ARTHQU4KE JANUARY 6, 198

  - WCHPEV 3 V1. 0 5 0 COALINGA CHP (TAPE FILE 26)                                                                     UP DE          5.1               13.5          5.0     26.89       0.07       0.32       5.51 CDALINGA AFTERSHOCK CEvent 83) JUNE 10
                                                                                                            . __. --                  ___.___.___ .....--_- - - - - -            =.....==      - .__________...
       . _ , ,                      <_         , ,.                                               a_     4                                                                          _

Tcbb 8 (centinued)

                           . ergbKAM AVGR$2 R e spons e Spec trum $tatistics                                                         .
                           .      DUTPUT FILE: VSET2A.0UT                                                                              .
                           .                     DATE: 6-DEC_91                      TIME: 18:17:1T                   PAGE 3           .

RUN DESCRIPTION.. : ALL VERTICAL ACCELER0 GRAMS MINUS THOSE FROM TALL () 4 STORIES) STRUCTURES File E ar thqu ak e Identification Component Magnitude Distance Depth PGA PSRV (in/sec) ML km km cm/sec/sec 25 10 1 Hz

                           -=        _ ___               ____ .___________ ___-                                  - ..___.;_______-                  _

7_._____ --- ___ __________..______________________..___ W C HPE Y 4 V1. 0 50 CDALINGA CHP (TAPE FILE 28) -UP DE 5.3 11.1 10.0 T6.16 0.22 1.36 1.15 COALINGA AFTER$HCCE CEvent e4) JULT 9. WC H PE V 6 V1. 0 50 COALINGA CHP (TAPE FILE 32) UP DE 5.0 8.3 10.0 E6.03 0.34 0.93 0.98 CDALINGA AFTERSHOCK (Event e6) JULY 21 WC H PE Y 8 V1. 0 50 CDALINGA CHP (TAPE FILE 36) UP DE 5.3 9.3 T. 0 24.13 0.03 0.37 0.67 CDALINGA AFTERSHOCK CEvent 88) SEPTEMBE WO B PK U P. 0 5 0 CDMG 24400 Los Angeles Obregos Park UP 53 8.4 14.0 E5.6T 0.23 1.63 2.13 Whi ttier Af tershock Oct 0 4 EC HPE V T V1. 0 50 COALINGA CHP (TAPE FILE 34) UP DE 5.1 9. 2 10.0 319.59 0.84 3.02 3.13 CDA LING A AFTERSHOCK (Event 87) JULT 2 5. WGLOR 8 6V1. 0 50 HOLLISTER - GLORIETTA WAREHOUSE UP DE 5.5 12.0 8.0 255.64 0.88 5.4 4.82 HOLLISTER EARTHQUAKE JANUARY 26. 1986 WP S A8 6 V1J0 50 PALM SPRINGS AIRPORT UP DE 5.9 20.9 12.0 IE1.97 0.87 2.19 5.22 PALM SPRINGS EARTHQUAKE JULT 8, 1985 - WU 299 V 1. 05 0 U299 5ANTA B ARB ARA COURT HOUSE, CALI F UP 5.9 12.0 16.0 68.52 0.21 1.04 2.25 SANTA SARSARA EARTHQUAKE JUN 30,19 4 _ _ _ _ _ _ _ _ _ _ _ _ - - - - _ _ _ _ . _ _ = . - - - - . _ _ _ _ _ - - - _ _ _ _ - - - - - - - - - - - _ _ _ - - - - - - . _ - . - - - - - . - - _ - - - median values 5.3 14.5 10.6 4 5.1 E 0.15 0.60 1.49 standard deviations 3 .84th percentiles 0.3 9.1 5.6 100.94 0.35 1.39 3.32

        .......................................................                                                              Tchl3 9
     . . PROG R AM AVGRS: R esponse Spec true Statistics                                                           .
        .      DUTPUT FILE! VSET3A.0UT                                                                              .
        .                    DATE*          9-DEC 91              TIME: 12:07:22                   PAGE 1           .

RUN DE SCRIPTION..: ALL VERTIC AL ACCELEROGR AMS (MINJ5 TALL STRUCTURES AND mag. 5.9 EVENTS) File E ar th qu ak e Identification Component Magnitude Distance Depth PGA P5RV (in/sec) ML km km cm/sec/sec 25 10 1 Mr l-uv 316 Y 1.0 5 0 V316 PUBLIC UTILITIES BLDG., LONG SE A UP 5.5 5.0 16.0 8.48 0.02 0.11 0.92  ! TOR R ANC E-G ARDEN A EARTHQUAKE NOV 14 WU301Y1.050 U301 PUBLIC LIBRART, H9LL IS TER, CA'IF . UP 5.2 29.3 16.0 (9.51 0.17 0.71 1 46 NORTHERN CALIFORNIA EAR.HQUAKE MAR 9, WT 2 87 V 1. 0 5 0 T287 EL CENTRO, IMPERI AL VALLET IRIIG UP 5.6 27.5 16.0 13.27 0.04 0.25 0.52 IMPERIAL VALLET EARTHQUAKE JAN 23, 195 wf 2 83V1.0 5 0 T285 EL CENTRO, IM*ERIAL VALLET IRRIG UP 5.5 23.6 16 0 16.86 0.06 0.26 0.60 IMPERIAt VALLEY EARTHOUAKE JUN 13, 195 WU 305 Y 1.0 5 0 U303 PUBLIC LIBRART, H OL L I S TE R , C ALI F UP 5.4 36.2 16.0 23.11 0.08 0.29 1.26 CENTRAL CALIFORNIA EARTHQUAKE APR 25, WT 2 92 V 1.0 5 0 T292 EL CENTRO, IMPERI AL VALLET IRt1G UP 5.4 23.2 16.0  !$.49 0 19 0.61 0.45 IMPERIAL COUNTY EARTHQUAKE DE C 16, 195 wu30fv1.050 U307 PU8LIC LIBRART, MOLLISTYR. CALIF UP 5.0 8.0 24.0 23.64 0.06 0.26 2.27 5 CENTRAL CALIFORNIA EARTHQUAKE J AN 19. WA018V1.050 A018 HOLLISTER CITY HALL VERT 5.7 40.0 11 0 49.14 0.12 0.32 3.00 HOLLISTER EARTHQUAKE APR 8, 1961 - 23 EU 312 Y 1. 0 5 0 U312 CIT T HALL, FERND ALE, CALIFORNIA UP 5.8 30.6 15.0 32.42 0.09 0.26 3.49 FERNDALE, CALIFORNIAo EARTHQudKE DEC WM E C A 1 Y1. 0 5 0 MEDA1 MANAGUA NICARAGUA E550 REFINEtY VERT 5.0 5.7 5.0 61.31 0.16 1.08 1.57 MANAGUA AFTERSHOCK DEC 23, 1972 - 3718 W 5J NT4 Y1. 0 5 0 5JN74 SAN JUAN SAUTISTA CALIFORNIA 24 DOWN 5.2 8.0 9.0 45.59 0.13 1.07 0.61 SAN JUAN BAUTISTA EARTHQUAKE NOV 25. 1 WNn74Y1.050 MNT 4 HOLLISTER CALIFORNI A CITT HALL UP 5.2 10.0 9.0 66.19 0.18 0.80 1.14 HOLLISTER EARTHQUAKE NOV 28, 1974 - 230 WPG 67 5 V1. 0 5 0 PG675 PETROLI A C ALIFORNI A GENER AL St0R 00WN 5.7 24.0 21.0 38.71 0.10 0.49 1 33 FERNDALE EARTHQUAKE JUN T 1975 - 0 84 WFC 67 5 Y 1. 0 $ 0 FC675 FERNDALE CALIFORNIA CITT HALL UP 5.7 5.0 21.0 42.37 0.11 0.48 1.93 FERNDALE EARTHQUAKE JUNE T. 1975 - 084 ,r.,- . ~ w - , m ~

  • e - , ,-w,

Tcbla 9 (centinued)

                    . PROGRAM AVGR5: R esponse Spectrum Statistics                                                         .
                 ..            DUTPUT FILE: VSET3A.UUT                                                                         .
                   .                     DATE:          9-DEC-91                TIME: 12:07:22                 PAGE 2          .

RUN DE SCRIPTION.. : ALL WERTIC AL ACCELEROGR AMs (MINJs T ALL STRUCTURES AND MAG. 5.9 EVENTS) File E ar thquak e Identifica tion Component. Magnitude Distance Depth PGA P5RY'Cin/sec) ML km km en/sec/sec 25 10 1 H , _= , W10 22 V 1.0 5 0 COMG STATION 1 DOWN 5.1 12.5 4.0 21.10 0.06 0.21 1.35 OROVILLE AFTER5 HOCK E ARTHQUAKE AUG. WOO 59 V 1. 0 5 0 OROVILLE AIRPORT DOWN 5.2 12.6 5.0 20.40 0.09 0.35 1 98

i. DROVILLE AFTERSHOCK EARTHQUAKE AUG.

K0022 V 1.0 5 0 CROVILLE AIRPORT DOWN 5.1 14.2 0.0 13.70 0 04 0.30 1.68 OROVILLE AFTER5 HOCK E ARTHQUAKE LUG. ul059V1.050 .'COMG STATION 1 DOWN 5.2 9.5 5.0 42.80 0 20 0.48. 1.68 OROVILLE AFTERSHOCK EARTHQUAKE 4UG. I W E 700 V 1. 0 5 0 EARL BROA08ECK ST. DOWN 4.9 7.0 90 59.70 0.28 1.18 0 32 -l OROVILLE AFTERSHCCK E ARTH3UAKE AU G. WO 700 V 1.0 5 0 OROVILLE AIRPORT DOWN 4.9 8.9 9.0 48.70 0.29 0.56 0.86 OROVILLE AFTERSHOCK EARTHQUAAE LU G. W1700 V 1.8 5 0 COMG STATIQN 1 DOWN 4.9 11.0 9.0 43.60 0.21 0.42 1 47 OROVILLE AFTER5 HOCK EARTHQUAKE LUG. 1.. W5700V1.050 COMG STATION 5 00WN 4.9 8.2 9.0 25.60 0.17 0.70 0.38 OROVILLE AFTER5HDCK E ARTHQUAKE LUG. I W4700 v 1. 0 5 0 COMG STATION 4 00WN 4.9 9.4 9.0 29.60 0.19 0.32 1.10

                                               . OROVILLE AFTER5 HOCK EARTHQUAKE                                      LUG.

WF 8911 Y1. 0 50 8UIA VERT 5.5 10.3 9.0 I1.60 0.06 0.27 0.86 135 FRIULI E ARTHQUAKE. ITALT SEPT 11, WNIL81V1.050 .NILAND WESTMORLAND (TAPE FILE 6) UP DE 5.7 18.7 4.0 12T.50 0 45 1.66 1.13 wtSTMORL AND E ARTHQUAKE APRIL 26, 1981 WC ON83 8 V1. 050 . CONVICT-CREEK UP DE- 54 8.9 50 61.88 0.19 0.86 6.59- +

y. .-MAMMOTH LAKE 5 EARTH 3UAKE JANUART 6e 198.

WC ON8 3 AV1. 0 50 CONVICT CREEK UP DE 5.2- 8.9 3.0 90.07 0.27 1.13 8.11. MAMMOTH L AKES E ARTHQU AKE. JANUARY 6. 198 WCHPE V 3V1. 0 50 COALINGA CHP (T APE : FI' E - 263 UP DE- 5.1 .13.5 5.0 26.89 0.07 0.32 5.51 COALINGA AFTERSHOCK 6 Event 83) JUNE 10,

 . . . . . _ . _ , _ . - ~ . -                      _
                                                            - . . . - - . - . .     -..._,_.,i.--,,.~s.                          -m.--.       .,-._~,-;m ..-._m._-       -. - _ . .   .,.,L.-,'._..--..
                                                                                                                                                                                                  .          _    ~ ~ . . - , _ .
  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .            Tcbis 9 (continued)
  . P RJG R AM AVGRS: Response Spectrue Statistics                                                           .
  .      JUTPUT FILE: VSET34.0UT                              .                                                .
  .                     DATE:         9-0 E C- 91             TIME: 12:0T:22                    PAGE        3.

RUN DE SCRIPTION.. : ALL VERTICAL ACCELER0 GRAMS (MINJ5 TALL STRUCTURES AND MAG. 5.9 EVENTS) File E ar thouak e Iden ti fica tion Component Magnitude Distence Depth PGA P5RV (in/sec) ML km km cm/sec/sec 25 10 1 Hz W C H PE V 4 V 1. 0 5 0 CDALINGA CHP (TAPE FILE 28) UP DE 5.3 11.1 10.0 T6.16 0.22 1.36 1 15 COALINGA AFTERSHOCK Cfvent 84) JULY 9. W C H PE V 6 V1. 0 50 CDALINGA CHP (TAPE FILE 32) UP DE 5.0 8.3 10 0 E6.03 0.34 0.93 0.98 COALINGA APTER $ HOCK (Event 86) JULY 21, W C M PE V 8 V1. 0 5 0 COALINGA CHP (TAPE FILE 36) UP DE 5.3 9.3 T.0 24.13 0.08 0.37 0.67 CDALINGA AFTERSHOCK CEvent 88) SEPTEMBE W OS PR U P . 0 5 0 COMG 24400 Los Angeles obregon Park UP 5.3 8.4 14.0 85.6T 0.23 1.63 2.13 Whittier Aftershock Oct 0 4, WC HPE v iVI . 0 5 0 CDALINGA CHP (TAPE FILE 34) UP DE 5.1 9. 2 10.0 319.59 0.84 3.02 3.13 CDALINGA AFTER$ HOCK (Event sT) JULY 25, WGLO2 8 6V1. 0 50 HOLLISTER - GLORIETTA WAREHOUSE UP DE 5.5 12.0 8.0 255.64 0.88 5.40 4.82 HOLLISTER EARTHQUAKE JANUARY 26, 1986 median values 5.3 14.4 10.4 42.83 0.14 0.5T 1.42 j standard deviatiensi .86th percontiles 0.3 9.3 5.T 54.05 0 32 1.30 3.13 l i F l

                                                                                                     .       ,        ,         ,--                      _        ._          - -   . _ , .-                     ,-    m  ___ _ - ..

- Table 10 NRC Recommended Cata $stl Los Rise or F re e-Field Co mpon en ts; 36 Components Statistic al Response Spectra P5RY (5% damping ratio) in /sec t lognormel assumption Period median 84th ei n. bound man. bound 0.34000000 0.14879215 0.34785077 3.02440000 0 87500000 0.04200000 0.15670430 0.37164748 3.02460000 0.99100000 0.04400000 0.16550612 0.38965821 0.02620000 1.00000000 0.04600000 0.17608854 0.41806638 9.02690000 1.09000003 0.04800000 0.18723749 0.44561931 3.02750000 1.23000002 0.05000000 0.19859421 0.47498557 3.02810000 1.30999994 0.05500000 0.23350064 0.56434035 3.03410000 1.41999996 0.06000000 0.26409379 0.62500864 3.04060000 1 60000002 0.06500000 0.29467356 0.69659001 0.04290000 1.79999995 0.07000000 0.34371740 0.77836847 3.06310000 2.11999989 0.07500000 0.38784257 0.88111007 3.06330000 2.55999994 0.08000000 0.42112166 0.93789959 3.07710000 2.78999996 0.08500000 0.46854791 1.05040693 0.10100000 2.68000007 0.09000000 0.51335955 1.16736746 3.09880000 3.41000009 0.09500000 0.56020617 1.29606974 3.10600000 4.38999987 0.10000000 0.60073805 1.38975799 3.11000000 5.40000010 0.11 000000 0 68425173 1.63501191 0.11900000 6.96999979 0.12000000 0.78892565 1.93265581 3.16396098 7.55000019 0.13000000 0.91791254 2.15402293 3.20800000 7.44999981 0.14000000 0.91615123 2.04214978 3.26300001 9.06000042 0.15000001 0.90304208 1.99919868 3.23199999 8.97000027 0.16000000 0.93833870 2.04922533 3.26699999 7.92000008 0.17000000 0.94708812 2.10307479 3.23899999 7.09999990 0.18000001 0.98707211 2.14405465 0.22030953 6.09999990 0.19000000 1.01322246 2.18933868 3.20946629 6.19000006 0.20000000 1.06658375 2.30155206 3.19412106 7.03999996 0.22000000 1.12325418 2 39008522 0.21862623 7 30000019 0.23999999 1.14658785 2.49399114 3.20857067 7.11999989 0.25999999 1.16404164 2.55298972 3.19265297 7.07000017 0.28000000 1.22526872 2.76379323 3.19884926 7.42000006 0.30000001 1.26769710 2.91308618 3.20784657 6.59999990 0.31999999 1.24779963 2.88714314 3.22290480 6.26000023 0.34000000 1.27319169 2.95577288 3.20071630 6.13000011 0.36000001 1.32665110 3.02536297 3.21822216 5.92000008 0.38000000 1.31878650 2.95790815 3.25462070 5.80000019 0.40000001 1.28457856 2.82781482 3.24041210 4.78000021 0.41 999999 1.28850079 2.81730747 3.23960458 5.01000023 0.44000000 1.27869010 2.77851295 3.26145446 5.80000019 0.46000001 1.22932887 2.58636308 0.28229427 5.09999990 0.47999999 1.17186868 2.44871354 3.30227211 4.26000023 0.50000000 1.15453911 2.40064526 3.32208988 3.70000005 0.55000001 1.15659332 2.43174410 O.35987794 4 15999985 0.60000002 1.24016511 2.66714025 3.39294103 4.46000004 0.64999998 1.33392930 2.92585826 3.38851091 5.46000004 0.69999999 1.40519869 3.09688902 3.40393063 5.84000015 0.75000000 1.47486961 3.14430618 0.38120136 6.15000010 0.80000001 1.50591540 3.20607400 3.36794695 7.48000002 0.85000002 1.49951231 3.35799646 3.32619303 8 14000034 0.89999998 1.48872769 3.28184032 0.32722786 8.31999969 0.94999999 1.48927724 3.26379752 3.32223502 8.51000023 1.00000000 1.48795474 3.32177019 0.31821045 8.10999966 1.10000002 1.44357979 3.25683212 3.33406910 6.78999996 1.20000005 1.31096923 3.04143691 3.29240710 6.78000021 1.29999995 1.22461390 2.77661180 3.32379717 6.96000004 1.39999998 1 13489425 2.58049488 d.37338528 10.50000000 1.50000000 1 07366621 2.47627926 0.36490780 11.50000000 1.60000002 1.01855445 2.27673626 3.34029007 10.00000000 1.70000005 0.98124194 2.13966036 3.30512547 6.88999987 1.79999995 0.95166230 2.07520270 3.25988793 6.28999996 1.89999998 0.93069804 2.00926948 3.26800835 6.38999987 2.00000000 0.91216397 1.96900606 3.27591166 6.19000006 2.20000005 0.85766810 1.92092216 3 25507098 6.53999996 2.40000010 0.84889287 1.87372077 3.23596680 5.45000002 2.59999990 0.80960810 1.70355499 3.22808820 4.82000017 2.79999995 0.78711063 1.63848770 3.21112595 4.13000011 3.00000000 0.74656963 1.51580989 3.18197231 4.03999996 3.20000005 0.72678870 1.44031632 3.18000653 4.09999990 3.40000010 0.71389920 1.40684998 3.18422753 3.93000007 3.59999990 0.68463308 1.34769642 3.18638441 3.43000007

4 Table 11 NRC Recommended Data Sett L on-Ris e or F re e-Field Minus Meg. 5.9 Eventsi 34 Components S tatistic el R esponse Spectra PSAY (5% damping ratto) in/ sect legnormal assumption Period median 84th ei n. bound mes. bound 0.34000000 0.13991603 0.31591183 3.02440000 0 37500000 0.04200000 0.14705636 0.33558044 3.02460000 0.94000000 0.04400000 0.15590723 0.35669345 3.02620000 1.00000000 0.04600000 0.16560648 0.38139993 3.02690000 1.09000003 0.04800000 0.17629868 0.40731326 3.02750000 1.23000002 0.05000000 0.18652679 0.43183953 3.02810000 1.30999994 0.05500000 0.21932326 0.51237512 3.03410000 1.35000002 0.06000000 0.24751526 0.56724203 3 04060000 1.60000002 0.06500000 0.27575380 0.63199013 3.04290000 1.79999995 0.07000000 0.32511574 0.72356230 3.06310000 2.11999989 0.07500000 0.36785528 0.82234460 3.06330000 2.55999994 0.08000000 0.39743525 0.66211401 0.07710000 2.78999996 0.08500000 0.43625337 0.93494409 3.10100000 2.68000007 0.09000000 0.48120496 1.06282343 3.09880000 3.41000009 0.09500000 0.52748388 1.19623029 3.10600000 4.38999987 0.10000000 0.56905276 1.30056965 0.11000000 5.40000010 0.11000000 0.65439588 1.56269646 3.11900000 6.96999979 0.12000000 0.75277117 1.83758378 3.16396098 7.55000019 0.13000000 0.87074095 2.02731037 D.20800000 7.44999981 0.14000000 0.87126476 1.92761135 3.26300001 9.06000042 0.15000001 0.86268711 1.90775716 3.23199999 8.97000027 0.16000000 0.89630139 1.95162594 3.26699999 7.92000008 0.17000000 0.90727460 2.01749730 3.23899999 7.09999990 0.18000001 0.94837660 2.06682038 3.22030953 6.09999990 0.19000000 0.98002839 2.13642168 3.20946629 6.19000006 0.20000000 1.02638781 2.22315049 0. 19412106 7.03999996 0.22000000 1.08188009 2.31324768 3.21862623 7.30000019 0.23999999 1.11696649 2.45112944 3.20857067 7.11999989 0.25999999 1.13002193 2.50588131 3.19265297 7.07000017 0.28000000 1.18775260 2.70412827 3.19884926 7.42000008 0.30000001 1.22786140 2.84814501 3.20784657 6.59999990 0.31999999 1.20107508 2.78935194 3.22290480 6.26000023 0.34000000 1.22136998 2.84805346 3.20071630 6.13000011 0.36000001 1.26946998 2.89846134 ).216:2216 5.92000008 0.38000000 1.25838649 2.80962634 3.25462070 5.80000019 0.40000001 1.22832525 2.69370604 3.24041210 4.78000021 0.41999999 1.23398697 2.69050503 3.23960458 5.01000023 0.44000000 1.22144294 2.63642502 3.26145446 5.80000019 0.46000001 1.16975760 2.42824721 3.28229427 5.09999990 0.67999999 1.11336529 2.28794241 0.30227211 4.26000023 0.50000000 1.09693754 2.25032306 0.32208988 3.70000005 0.55000001 1.09588456 2.27118111 3.35987794 4.15999985 0.60000002 1.18244123 2.53193855 3.39294103 4.46000004 0.64999998 1.28660965 2.84573793 3.38851091 5.46000004 0.69999999 1.34747624 2.97883415 0.40393063 5.84000015 0.75000000 1 4091807, 2.99677992 0.38120136 6.15000010 0.80000001 1.43752635 3.04931164 3.36794695 7.48000002 1 0.85000002 1.43382323 3.21494746 3.32619303 8.14000034 0.89999998 1.43472075 3.18225789 3.32722786 8.31999969 0.94999999 1.43181705 3.14653850 0. 32223502 8.51000023 1.00000000 1.416693Z1 3.13052630 3.31821045 8.10999966  ! 1.10000002 1.35552764 2.97568321 3.33406910 6.78999996 l 1.20000005 1.23158300 2.77225828 .3.29240710 6.71999979 ' 1.29999995 1.14038539 2.47396088 3. 32379717 6.34000015 1.39999998 1.04075503 2.17347860 3. 37338528 5.73999977 1.50000000 0.98528361 2.07337070 3.36490780 5.17000008 1.60000002 0.94086397 1.93029904 3.34029007 5.44000006 1.70000005 0.92088199 1.89922929 3.30512547 5.07999992 1.79999995 0.89369112 1.85156322 3.25988793 5.13000011 1.89999998 0.87352908 1.78408444 3.26800835 5.19999981 2.00000000 0.85635537 1.75041223 3.27591166 5.01999998 l 2.20000005 0.80590051 1.70361614 3.25507098 4.67999983 ) 2.40000010 0.79925615 1.68322206 3.23596680 4.73999977 2.59999990 0.76725268 1.56897974 3.22808820 4.82000017 2.79999995 0.74950141 1.53829551 3.21112595 4.13000017 3.00000000 0.71164560 1.42775917 0.18197231 4.0399999) 3.20000005 0.69113618 1.34562135 3.1800065.' 4.09999990 3.40000010 0.67812109 1.30888331 3.184227f- 3.93000007 3.59999990 0.65035230 1.25453162 3.18638441 3.43000007

. iN t 1 i L h i i i L FIGURES i i l i L A i

                                     -1 Weston Geophysical        .

l

                 . - . . - .               ... -                    ..                      . .                      =   -

s I 2 8' - s ' 10 o-su-so i i 19 " ,l i i i i e i i i e i i ii . s. a y 3 - as - _ Q , CCNGS SE . _ o\o m ' 3 10

                                                                                                   /
                                                                                                                                                              *~'
                                                                                                 ?                             M**                          **

fE #

                                                                                       ,/
   .z                     -
                          ~
                                                                                                                               .84
   .b
                                                                                  ,f g

j  : l' *00 t E W 10 /

                                                                ,f'                                                                                      .o         y e,                    :\                                                                                                                         :               :

O "O i "3

    $                                                                                                                      Min                                      !

Q. -1 , , j 10 e i i i sie i e ie' sei i , , i ei, t

                               -2                                              -1                                       0-                                  1       .

10 10 10 10:

                                                                                                                                                                    \

Period (sec) i SITE SPECIFIC RESPONSE SPECTRA plrecredby { ut or i r cr..k suci ar c a ra'tas 'a'iaa s Complete Data Set ' checked by Response to NRC Ouestions

             /p Q                                      dated May 8,1991                                      73 Components revi wed by                                    prepared for General Public Utilities Nucleor' Corporation                                 Weston Geophysical                 Fig.      1 16190-07.                                                                                                                          Nov 1991
                                                                                                                                                                  'l l

2 p~ ,o. ,. 10 .o-ste-e.

                               , i2 or-w.                                        iii               i      i iii
                                                 . .                 .         .                                               e
                                                                                                                          , .s ct.             _

E _ m Q _ g _ OCNGS' SE _ m '

   '&     ,g l

A/

                   /                                  \                   ,
                                                                            ,[\               [ uax              y        o.o#
                                                                       /                                              _

A .84 -

    ;3            _-                                             ,e                   m                               -
                   ~                                                                                                  ~

j .5

    >     10 0
                                                       /

b. g f l / / _ 6 -

   ~O             .                                                                                                   _

m e _ _ m uin o.

             ~'
  • iO , , , , ,, , , ,' -
                                                                                        ,,,       ,      ,  ,  h,,,
                         -2                                   -1                                0                          1 10                                        10                                10                         10-1 Period (sec)                                                      :
                                                                                                                                    \
                                                                                                                                   \

prepored by SITE SPECIFIC RESPONSE SPECTRA NCM Oyster Creek Nuclear Generoting Station l_Ow-Rise Structures checked by Response to NRC Ouestions Or Free-Field Ag dated May 8,199 63 Components roiewed by prepored for General Public Utilities Weston Geophysical Fig. 2

                       .              Nuclear Corporation l

16190-07 Nov.1991

   . 4_ l
                                                                                                                                                       ~[

t

 ~
   ~?.
                -0 5       lo-sta-e*           'o ss ir i                          i                   ,               i                                :

en.

          .c. .

Em O.4 _ N

                                              !T'A N, i, y\,

l' O l' '. i

e.  :)
                                                              \,.. .,

g

                          ~
                                    ,.i                            \l\
                                                                                                           .84 SSRS
                                                                                                                                            ~

l , O  :

         ?                       !                                                     '. 
                                                                                          .     ~.                                                     .;

2 'O. 2  ! OCNGS SEP l.'. ' g  : _ i o: . o  :

q. ,

_ a g 0.i _

                                                                                                                                           .-          o
u. i o

o. vs  ; 0.0 ' ' ' ' O 5 10 15 20. 25  ! Frequency (hz) l I l l 1 I l

                                                                                                      .                                                : .1 i

1 prepored by SITE SPECIFIC RESPONSE SPECTRA Jgcg o,. ., c,..w no i.., c.o.roiim, s'a"aa Compiete Dota Set

                                                                         "' uestions 3d'"
                      '"'* * " bY
                                                 " * " " o" " *e 'u ," 8. W 9                              73 Components Genero$
  • Pub c'bfilities Weston Geophysical Fig.3 Nuclear Corporation 16190-07 . Nov. 1991 j

L .

                                                                                                                                                       -)

i , 1. 05 'o-ste-e* '3 io re i i 4 i Oy  ;:

        .c.

Q. . E 04 _ lf'.il'i -

         =-
                                             ,e v :..

O / i, fw> ,y

                                         ,                    (,,.
                                                                                              .84 SSRS t                            s
        %       0.3      _            :                             :.,
        %                          j$                                ' \.)..,

e- l \,

        *O                     l b                     i                      OCNGS SEP
                                                                                /. . . . . ' .
                                                                                            .                                                i o      0.2     -c                                                                          .                                 _

7, . c  : o  ; 9 l 0.1 _ -

       .}~

o  ; M i q- -t 0.0 ' ' ' ' 0 5 10 15 20. 25. ' Frequency (bz) }

e I

pr pored by SITE SPECIFIC RESPONSE SPECTRA M Oysler Creek Nuclear Generating Stahon low-Rise Structures  : checked by Response to NRC Ouestions or Free-F. ie _ld  ! [ dated May 8,1991 prepared for 63 Components l

                           **d D#                                                                                                          >

General Public Utilities Weston Geophysical . Fig. 4 Nuclear Corporation a 16190-07 .Now,1991 ! l

4

                    -2             8                                            #                                            "                                              .
                ~10     -?s-wov-oi      ar'dr 4      i       i   6 6                       1      4          4 4 I                     i  3   8    6 8                    e
                                                                                                                                                              ,s
            .h
                           ~                                                                                                                           _                   (
o.  :

g- ._ - Coatinga Aftershock ' g _ auiy 25,1963 %=5.1 OCNGS SEP - m 30 1

                                                                                                          . g                                                          l y
                                                                                                   ~
                                                                      /                      .

f1 N M sm

  • comp. -  :
          - -h           -

U l'  ? O - - l

           @       0                    North l i
          . (*  jQ                      Comp.                      ]f;                                                                                                      !
                         /                                                                                                                                                 ;
                                                                                                                                                      ~
                                                                                                           'N hO                                         /

E l a - f - O' / g - imperial Valley - , g June 13,1953 l North - 4

            %                                                                                            comp.                                                             :

k

                  -1                                      ,                                            6,                         '
                                                                                                                                        .,                               j 10                 '      '         ' '       '               '       '          ' '                    '  '    '       '                          -
                             -2                                         -1                                          0                                       1            1 10                                          10                                           10                                      10
  • Period (sec) l :

I 1! prepared by SITE SPECIFIC RESPONSE SPECTRA Overplot of Response Spectro: JQ Oys'er Creek Nuclear Generating Slo' ion 9 Hon,zontal Components - . checked by Response to NRC Ouestions j fj,Q doted May 8,1991 Recommended by the NRC rev. wed by prepared for General Public Utilities Nuclear Corporation - Weston Geophysical Fig. 5 g g_,, Nov. 199' -- 1

2 / ' # i 10 n-~ov-ni i 42** i i ii e i 4 ' i - i i i

    .3-Q..      k

_N l E l O ~

                                                                                                                                             ~
    $e I
           '                                                                                       '"  a y9                                                          /                           _,...",        \

g / f' ' Max o o# 2

   .'C        -
                                                                           ,/
                                                                      /OCNGS SEP
                                                                                                                                             ~

i

                                                                  /                                                   .84                     _
     -                                                        ,.4                                    ,                                        _

1 3- /

                                                           !                                           \              .so k,

g ,0 t / . t

              /

_ /

j. \  %
                                                                                                                                           /

o #'. S / O -

                                    /                                                                                                       .-

nm

                                                                                                                                                               ?

O M _ Q. i

           ~

Min - 10 i i i e'ii, i i ie'iii /i i i e' tii

                 -2
                                                           -1                                             0                                         1 10                                      10                                               1.0                                       10 Period (sec)                                                                                    1 pr pored by Q

SITE SPECIFIC RESPONSE Sf'ECTRA Oyster Creek Nuclear Generating Station SSRS for Dota Set. . checked by Response to NRC Ouestions Recommended by the- NRC i [Q dated May 8,1991 72 Components 4 prepared for

              '    "* DY            General Public Utilities
                    .                 Nuclear Corporation Weston Geophysical Fig. 6 15190-07                                                                                                                .Nov. 1991 i

i 1 I 2 / p ,~ - 10 ' " ' "

                                  ,      i         , i ,                           i        ,  i , i                                                                                                           ,   i     i i i                 ,
   .c h
                                                                                                                                                                                                                                         ~

m - Q _

  $to                                                                                           , OCNGS SEP                                                                                                                                        -

i g , .;" . ~ y c:

                      /                                      \                         ..
                                                                                            ./

uRcps y f c _ s r am h ~

                                                                               ,                                                                                                                                    Removed
                                                                                                                                                                                                                                        ~

g m,ior _ o ""= s"

  ~.                                                                      <.t' D       D                                                     '.:

h 10 / CCB

                    ~
                                                          /  '\                                                   \                                                             -

O .- i - y . O e - O O o

           -1                                          o, ,

s. 10 i ' i i 'is i i i i iii , i . i isi

                         -2                                             -1                                                                                                             0                                                     1     .

10 10 10 10 I _ Period (sec) pr cred by Q SITE SPECinC RESPONSE SPECTRA Oyster Creek Nuclear Generating Slotion Comparison of SSRS checked by Response to NRC Ouestions 84th Percentile Spectro

               /d CA                                  dated May 8.1991                             vs. OCNGS SEP Spectrum re ewed by                                  prepared for i PuMic' Utilities Nuclear Corporation                            Weston Geophysical                                                                                                    Fig. 7 16190-07                                                                                                                                                                                                         Nov. 1991

I 4

                                                                                                                                                                                '}

Q .' $ ' , $.w - W n aos,3 *'

                                                            ,                                i                               .,                  i                                 .

f D C D. O  ? \. l',. f5 o.4 . h j" S.' z, , , S

                                                                                                                                                                                .1 h

10 I

                                                        /      \
                                                                          \                                                                                                       f
                                       .N.       1 i
                                                                 \. 4 s
        %                             j        i                     \                   ~

g NRC-Recommended - CD 0. 3 _  : i is ss 3 ,, 3,, - - 6 1 0 ' <. N C

~.,  %
                                                                                                               \                                           natse                 ;

ll ~ w 6  : l \,,- ,, ' 's 80.2 '

                                                                                                                                       ~,[

_lf g  ; OCNGS SkP'""~~~ -%- - t U m ,,,

      'Y
       %                                                                                                                                                      Dana set

[U0.1 _ W 1

      - Q.                                                                                                                                                                     :;

00 - 0.0 i i i ' O 5 10- 15, 20 25 9 Frequency (hz)  ; t i 1

                                                                                                                                                                               . t..

i prepored by SITE SPECIFIC RESPONSE SPECTRA Oyster Creek Nuclear Generating Station Comparison ofJSSRS-checked by Response to NRC Questions 84th Percentile Spectro ~I dated May 8,1991 vs. OCNGS SEP' Spectrum

                    "* * *d bY Genero$'EuSfe'dtilities
                                         ,             Nuclear Corporation                                      Weston Geophysical                     Fig. 8 16190-07 Nov.1991            j l

e. laper.el Valley'Eerthquake. 13 lun-53. 5 5 ML. 23,6 km T288 El Centro. leperial Volley ler. set;on D tr.et (2 S t o r . e s ) 'i i

                    ... 7,     7      y.      .3       ,.c        T'     i-     T-      'T-   'T'             'T'    'T'      I' ' ' i'     ' T'      -

7- 'T' T' "'t 40.0 - 90

                                                                                                                                                                                    ~
                                                                                                                                                                                       .- 3s.82-7 i
    -N k-            y- (MHNh                                                     f$                                            \      N% y l
    .b.40.0          -                                                                                                                                       n tase.w2              _
                                                                                                                                                                                      *   -36 02     ,

t 40.0 - UP o - - is.53 j

      ~
            '0-hTNkMM
                                                                                                                                                                                      += -12 96 E

o.40,0 _ woraso.2 _ 40 0 - 0

                                                                                                                                                                                   ~
      .                                                                                                                                                                                             i
    <        0.              cw=                      - -
                                                                      =- e ~- 6                                                                                                       [.';"',        ;

e  :

      *-40.0       -

wcT2ss.wi _. t., ,,t.. ,,,tz, ,,t,,,,,,,r.,,,,,,,t,.,,,,,i.....,,,,,,,,,,,,t,,1.t.,,, m t . . . . , , ,i , , ..#., ...,,,,v,, ..,,,mi.....,,,i,, ,,,i,,, ,,i.,,,,,,,i-0 2 4. 6 8 10 12 14. - 16 18 20. TIME (s e c ond s) 1 i prepored by SITE SPECIFIC RESPONSE SPECTRA M Oyster Creek Nuclear Generating Stofson Three Cornponent Accelerogram checked by Response to'NRC Ouestions Imperial Valley Earthquake ' M - dated May 8.1991 propored for 13-JUN-1953  !

                       '*"'**d        DY                                                                                                                                                            .

General Public Utilities

                          /(. '                        Nuclear Corporation                                              Weston Geophysical                           Fig .9                         !-

16190-07 Nov.1991

2 &*' ~*' - 10 u- ov-91 o 53 n i I i i i 8 i e i i  ! l 3 ii s o Q 6 m x x\ -

                                                                                                                                      ~
              ~
 $                                                                                       k h.. -d_ ' MAX he    ij
                    ,/                                            /'                    ,,/ '

s 4, - , .o 4C 7' ~ N D K

              ~

s

                                                                           ,/OCNGS SEP /
                                                                                                     ,/

84th j _ N ,/ - m

                                                                    ,I g
                                                                  /                                              50th o
 *>:l; 10 0
                         ..                                  /
                                                              ,.l
                                                                                                            /

f s.

 .;          _         /                                   <                                                                    v, _          oo g           _
                                                                                                                                         . o-G                                               ..'

q _

                                               ,/                                                                                     -

O -

                                             /                                                                                        -

3 _ _ Q in _ _ Q. _j , MIN , 10 i i i i i t i i iiiti

                                                                                                            /        i  i   s'   iit
                   -2                                                -1                                   0                                 1      ,

10 10 10 10 Period (sec)

?l:"l;
CPUH28f!:n!

050 prepared by SITE SPECIFIC RESPONSE SPECTRA

             //jf/C                 Oyster Creek Nuclear Generating Station                         71 COmDOnentsr checked by                  Response to NRC Ouestions                              imperiOI Valley 1953 M                                     dated May 8,1991                             North Component Deleted prepared for General Public Utilities                           Weston Geophysical        Fig. 10
             '***{*dDY      -

Nuclear Corporation 16190-07 Nov. 1991

                                                                                                                                                                    -i
   ~..                                                                                                                                                                 ;

p so' o s'o s-

    -         ;10        74-aov-oi- "'ada i      i         i i i                       i       i     i ii               1          i  i ii                     s-1e            :N                                        /

m - Q , g - a 10 / -)

          .k                                                             /                /                            MAX                             =-

o

          *C                                                                                                                                                           -

c - i - A /OCNGS SEP 84th - M l- ^ ll! i _ U - - j -

                                                                         /                                             50th
          .!  30 o-
                                   /                       x .r!                                                   /                                          ,

1

         .~
                                                            ,/

Qt . - </ -

       .O              _
                                                   ./                                                                                                                1
        'O                                    -
s -- -

e .

          =                                                                                                                                                             ,

q - - MIN.

                  -j 5'                             's, 10                     i      '          i '                      '       '      ' '              '        '          ' ' '                      ;
                              -2                                           -1                                   0                                         1            ;

i 10 10 10 10 Period (sec)

                            "":!!?:"1"
                            ""!!?:!!!

CPUM.050 t pr pored by SITE SPECIFIC RESPONSE SPECTRA g7 {gg gggg{g l l Oyster Creek Nuclear Generating Stofion Santa Barbara, '41-checked by Response to NRC Ouestions Imperial Valley,53  : M doted May 8.1991 prepored for pglm ' SprinQS, '86 Deleted re d by General Public Utilities Weston Geophysical Fig. 11 l , Nuclear- Corporation l isigo-o7 N**  ; i

a l I - 0.5 u-aov-n ' o o8 " ' 4 i I , l 72 - NRC Recommended Data Set D . C

  **                                                                                                              71 - minus imperial Valley Q                                   .-                        '.                                                    1953 North Component                     '

l 6 0.4  !

                                      ?   .f
                                                                      ' ,..' 7 2 67 - minus imperial Valley '53 i ,i ca                              [J                                           .,                                     minus Santa Barbara '41 Q                               j        '
                                                ' ' '. ,                            'N,                                minus Palm Springs '86
                                !                     'i                 71              's LR                            !                        '.

N. no n v. ' ~.'

                                                              \                                      ~.

h O*3 -

                            ,\

l'

                                                               \{\v-,'s 67
                                                                                                        ~
                                                                                                          ~~..,'-
                                                                                                                                                         ~

C i N yo .'.,'.- l '.,

                                                                            ~.
                                                                               ~~

g  ! \ , o 0.2 _l y  : OCNGS SE .V ~ ' ~ ~~ - ---- --- --- --- .......... o o 9

  @   0.1      ..

o O Q M 0.0 t ' ' ' 0 5 10 15 20 25 HNRC12A.084 Frequency (bz) MNRC71A 084 HNRC67A 084 CPUHA 050 prepored by SITE SPECIRC RESPONSE SPECTRA Comparison of 84th Percentile SSRS Oyster Creek Nuclear Generating Stofion checked by Response to NRC Ouestions 72, 71, & 67 Components

           ,6Q4                                     dated May 8,1991                                         VS. OCNGS SEP Spectrum r viewed by                                      prepared for General Public Utilities Nuclear Corporation                                         Weston Geophysical             Fig. 12 16190-07                                                                                                                              Nov,1991
 .                                                                                                                                 i

.s. < 0.5 '9me-u is=o* n t 6 4 i li tn-  :

    *C -

E  ! 6 0.4 . _ m ,

   .Q                                                                                                                              ;

8 m 1 OCNGS SEP- l

  • 0.3 3 -

Vertical Component c- ,!P l'\.

    .9
                               /       -

x. i ' Q (') '

    .g   0.2     _

l \,,,,, 1989 Data From Tall Structures - O l' Removed  : 0  ! U i >

   .q                l 2 0.I
                                                                                                                       ~"

_ 1989 _ o Complete Data Set. O

   .- Q                                                                                                                            ,

i 1  : 0.0 i i 0 5 10 15 20 .25 > Frequency (bz) 1 5 prepored by SITE SPECIFIC RESPONSE SPECTRA ' fg oyst.r creek Nuclear Generating Stolion Comparison of. Vertical SSRS check'ed by Response to NRC Ouestions doted May 8,1991 Submitted in 1989 ' Report re iewed by propored for General Public Utilities Weston Geophysical F.ig. 13 - Nuclear Corporation 16190-07 - Nov.1991 - , r

n

6' # s #

2-10 ,, m e-,, io rs,ss i i i e ii e i e i i iii e s. g 3 X _ l e - m _- _ Q N ~ OCNGS SEP \

                                                                                                                        ~

I D Vertical Component O 10 A/ '\ k [ 2

                                                 \                          jk                                    \         
    'C.

c - ,. "

                                                                          ~
    .N O
                 ~
                 ~

l I'  ?

                                                                                                                       ~
    .O          -                                             <                                                        -               ,

G I 't 0 - 3 10 a , , g - f ,/  ;

                                        /                                                                              -

3 '

                                      /

V) Q.

          -1             /                                                      i 10              /i       i        i i    sii             '      +ie'      iii         i   i    i i         iii
                     -2                                  -1                             0                                   1 10                                     10                              10                                  10 Period (sec) prepored by      SITE SPECIMC RESPONSE SPECTRA ff checked by orsi.e cr..k wuci.or c.n. rating siation          4 VerticaI Components-                                      '

Response to NRC Ouestions doted May 8.1991 NRC Recommended Data -Set

         '"I'**d DY                         propored for General Public Utilities                       Weston Geophysical
                   .            Nuclear Corporofton                                                   Fig. 14                          -

16190-07 Nov 1991 l

s

 .; et .                                                                                                                                                               $
                                    ,os                                            y                                            ,.                                  .1 10         *-ore-    '5" 5 5"
                                                                                    '        '  ' '  ii                       i  i    i   ii'd'                      t
                                           '         i i i i
                                                                            /                                                                                 o '-

C q ~

         .E                                              -

n ..

                                                                                                                                                                       ~

O OCNGS SEP - '

                         ~

bt Vertical Component I n/ \ O c ,,- Max . - J C

                         ~
                         .                                                             ,~-
                                                                                          /                                                             -

b ~ ,

         'O                                                                     t                                                                                    .

O - i [ / ' [ 0 / 84'

                                                                       /                                                                                             l
         ~

l

                                                           /
                                                               /

I f \ \ .50

                                                                                                                                                  \      ~

l R. _ O / -

         'n 1

i Min f4 o-CL, 1 c,o l 10 i * ' ' * ' ' ' ' ' ' ' ' ' ' ' ' l 2 -1 0 1 10 10 10 10 t Period (sec) l , T i o prepored by SITE SPECIFIC RESPONSE SPECTRA i fg oyst.r Creek Nuclear Generating Station Vertical ~ Component SSRS. j checIed by Response to NRC Ouestions NRC Recommended Data Set' i y . doted May 8,1991 propored for 36 Components rev ewed by General Public Utilities Weston Geophysical F.ig.15 ,

                            .               Nuclear Corporation 16196-07                                                                                                                          Nov. 1 <,i91 t

re--

                                                                                                                                                   .j
     .c.
                   ' 0. 5          *-ore-,i       is no'
                                                          ,                        ,                      ,             ,                         j CD.                                                                                                                                    $
          . ..c
q. .
           .m-E'O4               .
                                                                                                                                                 .L
          .Q                                                                                                                                          -

D OCNGS SEP 0.3 - Vertical Component _

             ^&

C ,[' 1/, f NRC Recommended Data Set .!

             .9                              r           ~ \.,                               36 Components                                          :

gj .. . NRC Data - 5.9 Mt Records

             }
           - p3     0.2        -

l .f,. Removed - 34 Components ._ g j 4 q l M - l

                                                                                                                          ~~~~""'"

g 1989 - D

                               ~

Tall Structures Rem'oved  ! 32 Components .l f3

            %r 0.0                                  i 0                          5                         10                      15           20                   25     !

Frequency (bz) i i r i f i prepared by SITE SPECIFIC RESPONSE SPECTRA Comparison of Vertical SSRS i g Oyster Creek Nuclear Generating Stolion and checked by Response to NRC Ouestions 1 OCNGS Vertical SEP Spectrum [Q doted May 8.1991 - Prepored for j reiiewed by General Public Utilit,ies l-j i Nuclear Corporation Weston Geophysical Fin. v -1'6  : 16190-07 Nov.1991. j.

                                                                                                                                                    ~

gj_o u nnen o a  ;

                                                                                                                 -ffo      c2 /f o .  !
  - whh          Weston Geophysicgl                                                                                                    !

i y.g i September 2,1992 Dr. Alejandro P. Asfura Technical Manager EQE Engineering Consultants 44 Montgomery Street 32nd Floor. Suite 3200 - San Francisco, CA 94104 -i

Subject:

Transmittal of Results of Power Spectral Density Analyses  ! of 67 Horizontal Component Accelerograms 4 q

Dear Dr. Asfura,

5 As requested by Mr. Kenneth Whitmore of General Public Utilities Nuclear-Corporation (GPUNC), attached are results of PSD analyses performed on the suite of horizontal component accelerograms previously used to derive a Site Specific Response i Spectrum for the Oyster Creek facility. Digitized PSD functions are included on a PC  ; diskette. Two files are included; the first contains statistical PSD's for raw ' not smoothed) data, the second contains PSD's for smoothed data using a moving ave over a +/- 20 % frequency bandwidth. These files include: Filename Comments PSD67.DAT Statistical PSD's, not smoothed PSD67S.DAT Statistical PSD's, smoothed I i l Please call if you have any questions on the enclosed data or if you require additional Information. I Sincerely, WESTON GEOPIWSICAL CORPORATION j b

                                                                                                       -l..

Geor C. imkiewicz Manager, Seismology Department i cc: Kenneth Whitmore, GPUNC GEOLOGY GEOPHYSICS HYDROGEOLOGY SEISMOLOGY Lyons Sveet. Box 550. Westboro MA 01581-0550, Tel. (508) 366-9191. (800) 334-8011. FAX (508) 366-9197

Power Spectral Density Analyses Oyster Creek Nuclear Generating Station Introduction Power Spectral Density Functions (PSDF) were computed for the suite of 67 horizontal component accelerograms previously used to derive a Site Specific Response Spectrum (SSRS) for the Oyster Creek site. Determination of PSDF included a prior determination of strong motion duration, T,, using the methodology outlined by Dr. R. P. Kennedy.' In addition, statistical PSDF's were computed using an assumption that the spectral ordinates at each frequency are lognormally distributed. Statistical spectra were computed for both smoothed (+/- 20% frequency bandwidth) and unsmoothed power spectra. Derivation of Strong Motion, T, Equivalent Stationary Durations, T., were derived for each of the 67 horizontal components using the technique defined in Reference 1. This method requires computation of a cumulative energy function for the entire accelerogram record and then fitting a line through that region of the cumulative energy function that exhibits a constant energy buildup. Projection of this line from 0 to 100% energy defines the equivalent duration, T,. Figures 1, 2, and 3 illustrate determination of T,'s for three accelerograms. Shown on Figure 1 is the cumulative energy function computed for a magnitude 5.3 aftershock of the Coalinga, CA earthquake. Overlaid on this cumulative energy plot is a best-fit line (diagonal line) through the time segment representing constant energy buildup. Horizontal line segments represent 0 and 100% of total energy. Duration, T,, is equal to the length of the diagonal line projected to the time scale (x-axis). For this record, the duration is 8.20 seconds. Figures 2 and 3 illustrate determinations of T,'s for 2 aftershocks of the Oroville, CA earthquake. Durations for these records are 2.80 and 8 July 7,1991 Letter from Dr. Kennedy to Kenneth Whitmore, GPUNC Weston Geophysical

\ 1.52 seconds, respectively. Durations computed for the 67 horizontal components are shown in histogram format on Figure 4. These durations range from 0.50 second to 24.48 seconds. The median T, is 2.80 seconds; 0.15 and 0.85 fractile T,'s are 1.52 and 8.20 seconds, respectively. Itis noted that records shown on Figures 1, 2, and 3 were selected on the basis that they corresponded to the 0.85, 0.50, and 0.15 fractile T,'s. The magnitude range for the suite of 67 records is 4.9 to 5.8. The distribution of T,'s vs. magnitude is shown on Figure 5. Asterisks represent computed durations for each record. Horizontal line segments indicate arithmetic means of durations for each magnitude increment of 0.1 magnitude units. Figure 6 shows a plot of duration vs. peak horizontal ground acceleration. Sixty-three of the 67 records have durations less than 10 seconds. The 4 records with longer durations have relatively low peak accelerations, have magnitudes of 5.5 to 5.7, and were recorded at epicentral distances ranging from 24 to 40 km. Horizontal PSDF Results Each of the 67 horizontal component accelerograms, obtained from the U.S. Geological Survey or the California Division of Mines and Geology, were digitized by these agencies at a time interval of 0.02 second (i.e. 50 samples per second). This digitization interval thus establishes a maximum resolvable frequency of 25 hertz. A Fast Fourier Transform algorithm was used to compute Fourier Amplitude Spectra (FAS) for each component. A common record length of 2048 samples was used in order to obtain spectral ordinates at 1024 identical frequencies for each record. Subsequent statistical processing of PSDF ordinates is facilitated by having identical record lengths. Accelerograms shorter than 2048 data samples were extended by padding the tail of the record wi$ zeros, as required by the FFT algorithm. Longer records were truncated to 2048 data samples. 1 l Weston Geophysical I

PSDFs were computed using the equation given in Reference 1. In brief, the PSDF is determined by squaring the FAS and dividing by the equivalent duration, T,. The equation used to derive PSDFs is taken from NUREG/CR-5347, Appendix A.2 Figure 7 illustrates results of statistical analyses performed on PSDFs for the 67 horizontal components. These results are for raw data; no smoothing of the PSDFs was applied. Shown on the figure are minimum and maximum PSD ordinates at each of 1024 sampled frequencies. Also shown are lognormal median, mean, and 84th percentile PSDFs. It was proposed in Reference 1 that PSDFs be smoothed using a moving average over a frequency bandwidth of +/- 20% of the central frequency. For example, the PSDF at a frequency of 0.5 hertz would be the average of PSDF ordinates in the frequency bandwidth of 0.4 to 0.6 hertz. At higher frequencies, the PSDF at 10 hertz would be the average of ordinates in a 4 hertz band from 8 to 12 hz. At the highest frequency end, the value at 21 hertz would be determined over the band from about 17 hz to 25 hz. At frequencies higher than 21 hertz, the full bandwidth of +/- 20% around the central frequency cannot be applied. At frequencies greater than 21 hertz, the moving average window extends from -20% of the central frequency to a maximum of 25 hertz at which spectral ordinates exist. Figure 8 illustrates results of statistical analyses performed on the smoothed PSDFs. Minimum and maximum PSD ordinates are plotted along with lognormal median, mean, and 84th percentile PSDFs. 2 Recommendations for Resolution of Public Comments on USI A-40, eismic Design Criteria', NUREG/CR-5347, Feb.1989, Appendix A, Equation 2.2a, p. A . Weston Geophysical

Rec ord WGCHPE8.H2 - Coel inea Af tershock, Station CHP l

                                                                                                                .j Y                                                                                     e.e3e e.e2e-
e. ele l
                          ;      ki i
                                                                                   --e . el e
                                                                                   --e . e 20
                                                                                   --0. 03e 4.e      9.0        12.e    id.e Sec 20.0     24.0       28.e Duration, Ts, and Arias Intensitu Function! Record WGCHPEB.H2
                                                                                - e.eee5e
                                                                                - e.eee4e
                                                                                - e.eesse . f
                                                                                                .               g I
                                                                                - e.eeeze       "g Ts = 8.28 see L
                                                                                - e.eeele                        ,
                                                                                - e.eeese
                                                                                -e.eeele 4.e      e.e     12.s      16.e     28.e     24.e     20.e sec Figure 1.

Weston Geophysical- .

It -c ord WOO 22. H1 - Oroville A-nboc k s A1ygt 3 Stelion 0.010 I I 4 \ Q, \] #p 3' f/ >f i l

                                                                        --0.010
                                                                        --0.020 1.0     2.0    3.0     4.0      0    6.0    7.0     8.0   9.0 Duration, Ts, and Arias Intensitu Function: Record WOO 22.H1
                                                                      - 0.00015
                                                                      - 0.00010 A

T 1

                                                                      - 0.00005 Ta = 2.80 sec f.

{ w

 /
                                                                      - 0.00000 1.0    2.0    3.0    4.0    50     6.0     7.0   0.' O  9.0 Figure 2 Weston Geophysical

l Fecord WG4700.H2 - Oroville A-sh Ek2 St? tion .i r I O.05 l l , d , [' "%$ f @@M~wv -" i I

                                                                                                                                                                                                                                                             -0.05 l

i 1.0 2.0 3.e 4.0 0 6.8 7.0 0.0 9.8 i l l Duration, Ts, and Arias Intensitu Function: Record WG4700.H2

                                                                                                                                                                                                                                                          - 0.0015 f

e.0010 A f Ts = 1.52 sec f

                                                                                                                                                                                                                                                          - e.0005 g Iw
                                                                                                                                                                                                                                                          - e. eeee z.a                                      2.a   a .'s      4.e                                                 s.e                          s.e  v.e  s.e  9.o C.seC Figure 3 Weston Geophysical

Duration, Ts for 67 Horizontal Records 30 25 20-m MC 0.85. t

                     -3 15 g                                            0.50       8.20 a                      0.15 10-2.80 1.52 5

5 8 5m 0 ""PPP llll.I , 1 4'7 1013161922252831343740434649525558616467 j 12

{ l Record Number

s. 25.00 :_ 20.00 5-en - P 15.00 5 _ c: _ o  : 3 _ cc  : L a 10.00 5 a _ . 5.00 : .

                                             +       .
+ 1 .

2

                                                                                   +

4 l l 0.00 _ iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii>>iiiiiiiiiiiiiii

 !               4.60       4.80       5.00      5.20      5.40      5.60        5.80    6.00 8                                                  Magnitude R .m. .

~ 8 a { a E 'A

                            ~

0 - I 8 e c - O

    *C o

m D Wo 3o O 8 U 3D , ok am

                                                      ?E S      !

O _ 0 C d 0 gb

       >                                              e$
       =                                                  8
                                                    ~
                                                         .d 0           O     ;

g" et 8I 1

    .o -                                              m 0    0         _

p o 0r _ 0 @0 "g 0 00 0 O pjtk0 ' 0 00 0 0 8 *

  • o N e S si'uoneana Figure 6 Weston Geophysical
                                                                                                           /.
                                                                                                                ~

11 54 39 Statistical PSDF (Not Smoothed) 4 4 4 - 5 2

                            -8                      '

Mean N 0

                                                                % + % g )\ %
                                                                                'O.84            '

1 dk 0.50 g. [.2 i ..

                   -6                                              1
                                                                     )           1,1 pay           .

0 5 15 20 1 8 e m Frequency (hz) hI - (3 $$$II.Eso Ei$$5Y$ 8

i Statistical PSDF (Smoothed 20% on f) c i i i 4 _ E. I

                              ,               2            :

o ' -

                             ~                      ,s' x

l Mean E O 0.84 _ f b O , Af 0.50 o-I f: o> ff C l

                                              .- 2 J                      ,

i

                                              ~4                                't     i                i          i 0                              5     10               15        20                25 e

8 m Frequency (hz) SPVC.NIN B i;3:82 {a a m i;3:"!?

  • lvSo W Attachment 4 j g
        - , / li     Weston Geophysical                             componanow September 25,1992 Dr. Alejandro P. Asfura Technical Manager EQE Engineering Consultants 44 Montgomery Street 32nd Floor, Suite 3200 San Francisco, CA 94104

Subject:

Transmittal of Results of Power Spectral Density Analyses of 34 Vertical Component Accelerograms

Dear Dr. Asfura,

Enclosed is a PC diskette containing results of PSDF analyses performed on the 34 vertical component accelerograms that correspond to the 67 horizontal component records used to derive PSDFs which were transmitted on September 2,1992. One file is included; this file contains statistical PSDFs for smoothed data using a moving average over a +/- 20 % frequency bandwidth. Filename Comments PSDV34.DAT Statistical vertical component PSDFs, smoothed Data included on the diskette are plotted on the attached Figure 1. Lognormal median, mean, and 84th percentile vertical PSDFs are illustrated. Also, minimum and maximum bounding PSDFs at each frequency are plotted. Figure 2 is a plot of strong motion durations, T,, computed for the 34 vertical records. Please call if you have any questions on the enclosed data or if you require additionalinformation. Sincerely, WESTON GEOPHYSICAL CORPORATION {. - George C. Klimkiewicz , - Manager, Seismology Department cc: Kenneth Whitmore, GPUNC Dr. Robert P. Kennedy 16190-09 GPUNC R2,9/92 i GEOLOGY GEOPHY SICS HYDROGEOLOGY SEISMOLOGY Lyons Street, Box 550. Westboro MA 015814550. Tel. (508) 366-9191. (800) 334-8011, F AX (508) 366-9197

                                                                                                                                                  ~    ..          .

Statistical-PSDF (Smoothed 20 % on f)

                        ?4-SEP 16i57t06                                                                        ;

Vertical ~ Component ' 4

                                                                                                                                                                .(

g 7-

             ",     2                 ,W                                                                                                 -

o x o _,,)QI ~ t n , . s  :

                             ,-               %             ~

m -- Mean

  • I
              .            i                    ~
E  !

O 0.84 o ' 0.50

$ t j /,%  %

a o 8

                    -2          !

I p -

                     -4 E                      0                                      10                 15                           20                         25 x.g -

m Frequency (bz) 8Rj' ia ini:B!s K.- jjjj:$ '

          ..      .   - - .          - . - - _ .- _ = .   .    -           -.   = . .    ..- --          . . . .       . .-        .       . ..     ..    . . .

Duration, Ts, for 34 Vertical Records 20

                              .15                        .50                      .85 13.82 15_

TP e S m I-- 10-C

          .9 16 l           5                                              4.32 l          -o                                                      ~

5 - - --. - - - .- - .- - l l

                                                       ~

l 1.90 2 - -

g g o m o ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

j g- 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 l "l 8 Record Number 'g- w

-r e W Nsb yr "s a Weston Geophys_ica_l

                                                                                                                                      ^"ach=" 5 l

October 14, 1992 Dr. Alejandro P. Asfura Technical Manager EQE Engineering Consultants 44 Montgomery Street 32nd Floor, Suite 3200 San Francisco, CA 94104

Subject:

Transmittal of Final Results for the Oyster Creek Site: Horizontal and Vertical Site Specific Response Spectra Horizontal and Vertical Power Spectral Density Functions

Dear Dr. Asfura,

Included in this transmittal are all final results of Site Specific Response Spectrum (SSRS) analyses and Power Spectral Density Function computations (PSDF) for the Oyster Creek Nuclear Generating Station. These final results have been derived and validated in accordance with our Quality Assurance program which has been reviewed and approved by General Public Utilities Nuclear Corporation's quality auditors. Enclosed final results - thereby are released for further engineering analyses including decivation of design time histcries, floor response spectra, or other related analysis prod ucts, locluded is a PC diskette containing all final results of SSRS and PSDF analyses performed on the 67 horizontal and 34 vertical component accelerograms approved by the NRC/NRR staff for application to the Oyster Creek site. In addition to the digital files, attached are tables that summarize parameters of the horizontal and vertical component data sets, and plots of the horizontal and vertical SSRS and PSDF's. Please call if you require additional details on the enclosed final results of our analyses. Sincerely, T ON GEOPHYSICAL RPORATION [ George Klim ewicz ' Manager, Seismology Department cc: Kenneth Whitmoa, GPUNC GPUNC 16190-09 Final /10/14/92 GEOLOGY GEOPHYSICS HYDROGEOLOGY SEISMOLOGY Lyons Street. Box 550. Westboro MA 015814550. Tot (508) 366-9191, (800) 334-8011. FAX (508) 366-9197

~*. .. PC Diskette Files Filename Content SSRSII67.DAT Final Horizontal Component Site Specific Response Spectra SSRSV34.DAT Final Vertical Component Site Specific Response Spectra PSDH67S.DAT Final Horizontal Component Smoothed Power Spectral Density Functions PSDV34S.DAT Final Vertical Component Smoothed Power Spectral Density Functions l GPUNC 16190-09 Final /10/14/92 Weston Geophysical  !

Table 1

                . PROG R AM PVGR$1 P owe r $pectrue S tat istics                           .
                . OUTPUT FILE! TESTM.0UT.                                               .
                .                  DATE:       6-0CT*92    TIME: 14:02:33      PAGE 1       .

RUN DE SCRIPTION..! Oyster Creek - NRC-Recommended 3sta Set 67 Her12 ental Components Earthquake Iden tifica tion Component Magnitude Distance Depth PGA Log case 2/secee) Pile ML km km en/sec/sec 25 10 1 Hz P S V 316. $H 1 V316 PU8LIC UTILITIES 8 LOG., L3NG 'SE A NORTH 5.5 5.0 16.0 29.6E -2.17 -1.53 1.15 TOR R ANCE-GARDEN A EARTHCUAK! NOV 14, V316 PU8LIC UTILITIES SLOG., LONG SE A EAST 5.5 5.0- 16.0 $3.T1 -2.49 -1.67 1.56 P$V 316. 5H 2 TORRANCE-GARDENA EARTHQUAKE NOV 14 U301 PUBLIC LIBRART, HOLLISTER, CALIF N89W 5.2 29.3 16.0 154.00 -1.TS 0.10 2.30 P $U 301. $H 1 N3R THERN C ALIFORNI A F. ARTH3UAKE MAR 9, U301 PUBLIC LIBRART, HOLLI$fER, CALIF $01W 5.2 29.3 16.0 120.10 -2.53 -0.35 1.44 P $U 301. $H 2 N3RTHERN CALIFORNIA EARTHQUAKE- MAR 9, PST287.$H1 -T287 EL CENTRO, IMPERI AL V ALLET IR 41 G NORTH 5.6 27.5 16.0 20.5E -2.65 -1.42 0.34 IMPERIAL VALLEY EARTHQUAKE JAN 23,195 T287. EL CENTRO, IMPERI AL VALLET IntIG EAST 5.6 27.5 16.0 27.54 -3.17 -1.26 0.18 P $7 237. $H 2 IMPERIAL VALLEY EARTHQU4KE JAN- 2 3,19 5 .. T283 EL CENTRO, IMPERI AL V ALLET IRtIG EAST 5.5 23.6 16.0 36.02 -3.86 -1.38 0.56 P ST 28 8. $H2

                                       . IMPERIAL VALLEY EARTHQUAKE JUN 13, 195
  • P SU 30 5. $H1 U305 PUBLIC LIBRART, HOLLISTER, CALIF N89W 5.4 ' 36.2 16.0 12.71 -3.40 -1.20 0.48 CENTRAL CALIFORNIA EARTHQUAKE APR 25, I

U30 5 PUSLIC LIBRARY, HOLLISTER, CALIP $01W 5.4 36.2 16.0 48.55 -3.11_ -1.35 0.88 P 5030 5. 5M 2 C!NTRAL CALIFORNIA EARTHQUAKE APR 25, j j 'T 212 EL CENTRO, IMPERI AL VALLET ' IRt! G NORTH 5.4 23.2 16.0 E2.90 -1.54 -0.15 0.44 P ST 29 2. $H1 I IMPERIAL COUNTY EARTHQUAKE DEC 16,195 i

  • T292 - EL CENTRO, -IMPERI AL V ALLET ItaIG EA$T 5.4 23.2 16.0 10.22 -1.30 -0.26 0.69

, P $T 29 2. 3H 2 IMPERI AL COUNTY EARTHQUAK! DEC 16, 195 P $U 30 7.1H1 U307' PUBLIC LIBRARY, HOLLISTER, C ALI F N89W 5.0 8.0 24.0 56.05' -2.31 -1.10 0.92-l ' '

       ;E                               CENTRAL CALIFORNIA EARTHQU4KE- J AN 19, e                                                                                                                                            34.94   -2.53             -0.80  0.88 U307 PUBLIC LIBRARY, HOLLISTER, CA.IF                   $01W                   5.0       8.0      24.0
  .'i l}        P $ U 30 7. $H 2 --

CENTRAL CALIFORNIA EARTHQUAKE- - J AN 19, 3 a Gl - N89W 5.T . 40.0 11.0 175.70 -2.89 -0.94 1.72 a4 P $ A018. $H1 - A018 MOLLISTER CITY HALL HOLLI$TER EARTHOUAKE 'APR 8, 1961 - 23 f$ l J [5 l- GL - _ . - . _ . _-__ . . _. _ ._ . ~ . - _ . . _ _ ._. _ _ . . _ . _ . - _ - _ _ _ _ _ _

Table 1 (continued)

      . PROG R AM PvGR$2 Poser Spectrum Statistics                            .
      .      DUTPUT FILE: TESTH.0UT                                            .
      .                  DATE:  6-0CT-92     TIMEt 14:02:33       PAGE 2 .

RUN DE SCRIPTION.. ! Oyster Creek - NRC-Reconeended 3ata $st 67 Horizontal Components Earthquake Iden ti fic a tion Component Magnitude Distance Depth PGA Log cate2/sece*3 File 25 1 Ha ML km km en/sec/sec to

                                                                                   $01W            5.7       40.0      11.0      (3.47   -2.15    -0.68     1.71 P $ A018. 5 H 2        A018 HOLLISTER CITT HALL HOLLISTER EARTHQUAKE       APR  8,  1961  . 23 M46W            5.8        30.6     15.0     1(3.10   -2.19     0.59     2.19 P S U312. 5 N1         U312 CIT Y MALL. F E AND ALE. C ALIFORNI A FERNDALE, CALIFORNIA. EARTHQUAKE            OEC U312 CIT T H ALL. FERNO ALE, C ALIFORNI A             $44W            5.8        30.6     15.0     221.90   -1.73     0.68     2.19 P SU 312. 5H 2 FERNDALE. CALIFORNIA, EARTHQUAKE            DEC SOUTH           5.0         5.7       5.0    171.80   -1.26     0.72     1.61 P 5 M ED A 1. 5 H1     MEDA1 MANAGUA NICARAGUA ESSO REFINEtf MANAGUA AFTER$ HOCK OEC 23, 1972 - 3718 EAST            5.0         5.7       5.0    120.30   -1.92     0.33     1.54 P 5 MED A 1.1H 2       MEDA1 MANAGUA NICARAGUA Esso REFINE 2Y MANAGUA AFTER$ HOCK DEC 23, 1972 - 3718
                             $JN74 $AN JUAH BAUTISTA CALIF 3RNZA I4                557E            5.2         8.0       9.0    112.1C   -1.63     0.55     1.65 P $ $ JN 7 4. 5H 1
                             $AN JUAN 8AUTISTA EARTHQUAKE NOV 28, 1 N33E            5.2         8.0       9.0     43.94   -1.92     0.47     0.22 PS$JN74.5H2            $JN74 $AN JUAN BAUTISTA CALIFORNIA 24 SAN JUAN 8AUTISTA EARTHQUAKE NOV 29, 1 HN74 HOLLI$tER CALIFORNIA CITT HALL                   501W            5.2        10.0       9.0     11.17   -2.14     0.16     0.82 P 5HK7 4. 5H 1 HOLLISTER EARTHQUAKE NOV 28, 1974 - 230 HS9W            5.2        10.0       9.0    1(2.80   -1.67     0.77     1.64 P $HN7 4. $H 2         HNT4 HOLLISTER CALIFORNIA CITT HALL HOLLISTER EARTHQUAKE NOV 28, 1974 - 230 PG675 PETROLI A CALIFORNIA GENER AL $iOR              N75E            5.7        24.0      21.0    119.50   -0.31     1.00     0.96 P 5PG6 7 5.5H1 FERNOALE EARTHQUAKE       JUN 7,19 7 5 - 0 8 4-N15W            5.7        24.0      21.0    128.10   -0.36      1.49    1.19 P SPG57 5. $H Z        PG675 PETROLIA CALIFORNIA GENERAt !!O2 FERNDALE EARTHQUAKC       JUN Ts 1975 - 084
                                                                                   $44W            5.7          5.0     21.0    114.90    -1.21     1.12    1.87 P 5FC6 7 5.5HI         FC675 FERNOALE CALIFORNIA CITT HALL FERNOALE EARTHQUAKE JUNE 7,19 75 ' - 0 8 4 O~

FC675 FERNDALE C ALIFORNIA CITY MALL N46W 5.7 5.0 21.0 159.40 -1.00 1.36 1.97 J P$FC575.5H2 G1 FERNOALE E ARTHQUAKE JUNE 7,197 5 - 0 84 39 CDMG STATION 1 N90E 5.1 12.5 4.0 28.46 -2.41 -0.70 0.77 - h:r PS1022.5H1 020VILLE AFTER$ HOCK E ARTH3UAKE tU G. Y __________________________== -- - =_____________________ _- -- . g'm _____._________________________________________ ___.______-- . .

          --                                   a                    +      o--        n  s                                                                              .

4 Table 1 (continued)

   . PCCG R A M PVGR$: Poner 5pectrum Statistics                                                               .
   .       3UTPUI FILE! TESTH.0UT                                                                                 .
   .                      DATEt         6-0CT_92              TIMEt 14202133                    PAGE 3            .

auN DESCRIPTION..: Cyster Creek . NRC-Recommended 3sta set 67 Horizontal Components File E ar thqu ak e Identification Component Magnitude Distence Depth PGA Los es**2/sec**3 ML km km cm/sec/sec 25 to 1 Hr P $ 102 2. 5 H 2 COHG STATION 1 N00E 5.1 12.5 4.0 11.49 -2.49 -0.56 0.60 020 VIL LE AFTER5 HOCK EARTHQUAKE tug. P50059.5H1 OROVILLE AIRPORT N90W 5.2 12.6 5.0 14.04 -1.73 -0.17 -0.37 OROVILLE AFTERSHOCK EARTHQUAKE EUG. P50059.5H2 OROVILLE AIRPORT 500E 5.2 12.6 5.0 17.00 -2.13 -0.61 0.45 OROVILLE AFTERSHOCK EARTHQUAKE AUG. P 5002 2. 5H1 OROV1LLE AIRPORT N90W 5.1 14.2 0.0 15.61 -2.10 -0.38 0.36 OROVILLE AFTERSHOCK EARTHQUAKE tug. P50022.5H2 OROVILLE AIRPORT 500E 5.1 14.2 0.0 25.79 -2.12 -0.45 0.72 OROVILLE AFTERSHOCK EARTHQUAKE SUG. P 5105 9. $H 1 COHG STAT 10M 1 N90E 5.2 9.5 5.0 40.66 -1.01 0.45 0.85 OROVILLE AFTERSHOCK EARTHQUAKE LUG. PS1059.5H2 COHG STATION 1 N00E 5.2 9.5 5.0 15.47 -0.99 0.55 0.19 OROVILLE AFTERSHOCK EARTHQUAKE tug. P 5 E 70 0. 5 H 1 EARL 8R0408ECK ST. N90E 4.9 7.0 9.0 106.10 -0.80 1.02 0.49 OROVILLE AFTERSHOCK E ARTHQUAKE tug. P 5 E 70 0. 5H 2 EARL BRCA08ECK ST. N00E 4.9 7.0 9.0 147.90 -0.53 1.37 0.43 OROVILLE AFTERSHOCK EARTHQUAKE LUG. P 5 070 0. 5H 1 OROVILLE AIRPORT N90W 4.9 8.9 9.0 (1.59 -0.60 0.77 0.58 OROVILLE AFTERSHOCK EARTHQUAKE LUG. P 5 070 0. 5 H 2 OROVILLE AIRPORT $00E 4.9 8.9 9.0 48.44 -0.65 0.48 -0.75 OROVILLE AFTER5 HOCK E ARTHQUAKE LUG. P51700.5H1 COHG ST ATION 1 N90E 4.9 11.0 9.0 77.35 -0.45 0.39 0.97

$                                 OROVILLE AFTERSHOCK E ARTHQUAKE                                        tug.

O~ 3 P 5170 0. 5H 2 COHG STATION 1 N00E 4.9 11.0 9.0 112.60 0.02 1.13 0.49 G) CROVILLE AFTERSHOCK E ARTHQUAKE EUG. a 500E 4.9 9.0 (3.14 -1.04 0.40 0.31 h3 P 5 5 70 0. 5H1 COHG STATION $ OROVILLE AFTERSHOCK EARTHQUAKE tug. 8.2 Io __________________________________________ _______________________________________________________________________________ 9

Table 1 (continued)

    . PROG R AM PvGR5: Power Spectrum Statistics                      .
    . OUTPUT FILE: T E 5f H.00f                                    .

DATE: 6-0CT-92 TIM!: 14:02:33 PAGE 4 . RUN DE SCRI PTION..: Dyster Creek - NRC-Recommended 3ata Set 67 Horizontal Components E ar thouake Identification Component Magnitude Distance Depth PG4 Loa ce**2/sec**3 File ML km km cm/s ec/sec 25 10 1 Hr 4.9 8.2 9.0 (1.98 -0.T7 1.03 0.75 CDMG STATION 5 M90E P 55 70 0. 5H2 OROVILLE AFTERSHOCK EARTHQUAKE SUG. N35W 4.9 9.4 9.0 (1.35 -0.59 0.15 -0.26 P 54 70 0. 5H 1 COMG STATION 4 OROVILLE AFTERSHOCK EARTNQUAKE LUG. 4.9 9.4 9.0 (2.76 -1.06 0.22 0.88 COMG STATION 4 555W P 54 70 0. 5H 2 OROVILLE AFTERSHOCK EARTHQUAKE AUG. 5.5 10.3 9.0 45.74 -2.03 -0.48 0.72 BUIA N1 P5FR$911.5H1 135 FRIULI EARTHOUAKE, ITALY SEPT 11, 5.5 10.3 9.0 37.86 -2.01 -0.66 0.78 8014 EW P5FR3911.5H2 135 FRIUL I E ARTHQU4KE, ITALY SEPT 11, , m -1.17 0.72 0.76 NORT 5.T 18.T 4.0 56.63 P 5N IL 81. 5 H 1 NI002 NILAND WESTMORELAND EARTHQUAKE, CALIFORNIA A 5.T 18.7 40 168.90 -1.05 0.87 1.02 NID02 NILAND EAST P 5 N IL 81. 5H 2 WESTMORELAND E ARTHQUAKE, C ALIFORNI A A C 5.4 8.9 5.0 63.86 -0.50 0.54 2.04 180 0 P 5C ON V 8 38. 5 H1 54099 CONVICT CREEK MAMMOTH LAKES EARTHQUAKE JAN 6, 1983 5.4 8.9 5.0 140.00 -0.60 1.11 1.74 90 0 P 5C ON V 8 38. 5 H 2 54099 CONVICT CREEK MAMMOTH LAKES EARTHQUAKE JAN 6, 1983 ( 5.2 8.9 3.0 111.00 0.43 1.25 2.64 180 0 P 5C ON V 8 3 A. 5 H1 54099 CONVICT CREEK MAMMOTH LAKES EARTHQUAKE JAN 6, 1983 5.2 8.9 3.0 155.60 -0.13 0.94 2.28 90 0 P 5 C ON V 8 3 A. 5 H 2 54099 CONVICT CREEK MAMMOTH LAKES EARTHQUAKE JAN 6, 1983 90 DE 5.1 13.5 5.0 54.97 -2.5T -0.18 1.34 $ P 5CHP 8 3 E 3. 5H1 46704 CDALINGA - CHP CDALINGA AFTERSHOCK (EYS3) JUNE 10, 6e 3 O DEG 5.1 13.5 5.0 15.78 -2.69 -0.34 1.03 P 5C HP 8 3E 3. 5H2 46704 COALINGA - CHP G) COALINGA AFTERSHOCK (EYs3) JUNE 10. O -1.09 1.61 0.15 o( PSCHP8 3E4. 5H1 46T04 COALINGA - CHP 90 0 5.3 11.1 10.0 153.40 . I) JULY 1, 1 d[ COALINGA AFTERSHOCK (EV84) e, (( < sum. .

f. Table 1 (continued) .

     . PROGRAM PvGR$t Power spectrum Statistics                                                               .
     .      DUTPUT FILET TESTH.0UT                                                                              .
     .                     DATEt        6-0CT-92              TIME 14102:33                     PAGE 5          .

RUN OESCRIPTION..t Oyster Creek - NRC-Recommended 3ata set 67 Horizontal Components File Earthauake Identification Component Hasnitude Distance Depth PGA Log emet 2/sece*3 ML km km cm/sec/sec 25 10 1 H2

                                                                                                                                     ,- -_=------------------------- ....-----------------

P5CHP83E4.5H2 45T04 COALINGA - CHP 0 DEG 5.3 11.1 10.0 172.20 -0.69 1.57 1.43 COALINGA AFTERSHOCK (EVt4) JULY 3, 1 P5CHP 8 3E6. 5H1 46T04 COALINGA - CHP 90 0 5.0 8.3 10.0 2C5.70 -0.92 2.09 1.79 COALINGA AFTER5 HOCK (Eve 6) JULT 21. P 5C HP 8 3 E 6. 5H2 4$T04 COALINGA - CHP 0D 5.0 8.3 10.0 115.00 -0.41 0.97 1.20 COALINGA AFTERSHOCK (EVf6) J3LY 21. P5 CMP 83ES.5H1 46T04 C0ALINGA - CHP 90 0 5.3 9.3 7.0 22.03 -2.65 -0.21 -0.31 COALINGA AFTERSHOCK (Eve 8) SEPT 9, 1 P SCHP 8 3 E S. 5H2 46T04 COALINGA - CHP 00 5.3 9.3 7.0 11.12 -2.63 -0.49 -0.73 COALINGA AFTERSHOCK (EV88) SEPT 7, 1 P5 0 BPK 3 60. 5H1 COMG 24400 Los An0eles Obr.egon Park 360 5.3 8.4 14.0 3CS.62 -0.26 1.55 2.38 Whi t ti e r Aftershock Oct 04 P SO8PK 27 0. 5H 2 COMG 24400 Los An0eles Obregon Park 270 5.3 8.4 14.0 333.30 -0.12 1.49 1.43 Whittler Af tershock Oct 04 4 P5CHP 8 3E 7. 5H1 46704 C0 ALING A - CHP 90 0 5.1 9.2 10.0 613.90 0.70 2.52 3.04 COALINGA AFTERSHOCK CEV87) JULT 25, e P5CHP 8 3E 7.5H2 46T04 C0ALINGA - CHP OO 5.1 9. 2 10.0 453.10 0.75 2.09 1.92 CDALINGA AFTER5 HOCK (EVs7) JULY 25. t PSGLOR 86 5H1 HOLLISTER - GLORIETTA WAREHOUSE 10 DE 5.5 12.0 8.0 114.40 -1.73 0.66 1.76 HOLLISTER EARTHOUAKE JANUART 26, 1996 I HOLLISTER - GLORIETTA WAREHOUSE 00 DE 5.5 12.0 8.0 109.60 -1.98 0.64 1.91 P5 GLOR 86. 5 H2 HOLLISTER E ARTHOU AKE JANUAR Y 26, 1986 t T

#9 median values        5.3               14.2             10.4            E1.72  -1.49    0.27    1.80 Ei standard deviationst .84th percentiles                                 0.3                9.2              5.6           160.82  -0.48     1.25   1.86 O

ei O U 3 ik ( Q

Table 2

      . PROGRAH PVGR$2 P oser Spectrum Statistics                                       .
      .      DUTPUT FILE: PVG1.0UT                                                      .
      .                    DATE:         5-0CT-92    TIHE: 13:32:34           PAGE 1 .

RUN DE SCRIPTION.. : Dyster Creek $$R$ - NRC-Recommeid ed Oate $et 34 Consonants Earthauske I den t i fic a t io n Component Hagnitude Distance Depth PGA Los ce**2/sec*e3 File ke km cm/sec/sec 25 10 1 H2 HL l i ___________.____________________.___...___ .....__ .. ....._.______..________....___... _____________._____________.--_-_____ V316 PUBLIC UTILITIE S 8 LOG., LONG SEA UP 5.5 5.0 16.0 3.31 -3.13 -2.03 -0.37 P S V 316. $H Z TJR R ANCE-G A ADEN A EARTHQUAKE NOV 14, ! -0.01 29.3 16.0 (1.75 -1.79 -0.21 , PSU331.$HI U301 PU8LIC LIBRARY, HOLLISTER, CA.IF UP 5.2 I NORTHERN CALIPORNIA EARTHQUAKE HAR 9, 5.6 27.5 16.0 13.63 -2.77 -0.93 -0.85 PST287.$HL T287 EL CENTRO, IMPERI AL V ALLET IRtIG UP IMPERIAL VALLET EARTHQUAKE JAN 23,195 . 5.5 23.6 16.0 16.53 -3.20 -0.89 -0.74 PST288.$HZ T288 EL CENTRO, IMPERI AL V ALL ET IRtIG UP IMPERIAL YALLET EARTHQUAKE JUN 13, 195 5.4 36.2 16.0 ~1.93 -2.63 -1.02 -0.33 P SU 30 5. $H Z U305 PUBLIC LIBRART, HOLLISTER, C A *. I F UP C!NTRAL CALIFORNIA EARTHQUAKE APR 25. 23.2 16.0 16.28 -1.13 0.11 -0.21 P ST 29 2. 5H Z T292 EL CENTRO, IMPERIAL VALLET IRRIG UP 5.4 IMPERIAL COUNTY EARTHCUAKE DEC 16, 195 8.0 24.0 13.79 -3.62 -1.02 0.46 P SU 30 7. $H Z U307 PUBLIC LIBRART, HOLLISTER, CA.IF UP 5.0 CENTRAL CALIFORNIA EARTHQUAKE J AN 19. 5.7 40.0 11.0 49.26 -3.30 -1.23 0.65 A018 HOLLISTER CITY HALL VERT P 5 4018. $H Z HOLLISTER EARTHQUAKE APR 8, 1961 - 23 5.8 30.6 15.0 32.18 -3.Z1 -0.95 1.23 P S U 312. $H 1 U312 CIT Y H ALL, FERNO ALE, C ALIFORNI A UP FERNDALE, CALIFORNIA, EARTHQUAKE DEC 5.0 5.7 5.0 (1.31 -2.36 0.61 0.65 HED A1 HAN AGUA NICARAGUA ES$0 AEFINE2Y COWN

    -  P5HE0A1.5H2 NANAGUA AFTER$ HOCK OEC 23, 1972 - 2718 5.2         8.0        9.0     65.59   -1.76    0.50   -0.35 P$$JN74.$HZ                  $JNT4 $AN JUAN BAUTISTA CALIFORNIA 24                    00WN
                                    $AN JUAN 84UTISTA EARTHQUAKE NOV 28, 1 5.2        10.0        9.0     (6.19   -2.32    0.16   -0.18 HNT4 HOLLISTER CALIFORNIA CITY HALL                      UP P $HN7 4. $H Z HOLLISTER EARTHQUAKE N0Y 28, 1974 - 230 ff e                                                                                                                            21.0     28.71   -1.35    0.04    0.19 DOWN       5.7        24.0 0-     PSPG57 5.$H Z               PG675 PETROLIA CALIFORNIA GENERAL $ TOR 3                                  FERNOALE EARTHQUAKE          JUN 7, 1975 - 084 O                                                                                                                  5.0       21.0     42.37   -2.38   -0.76    0.44 FC675 FERNDALE CALIFORNIA CITT HALL                     UP         5.7 8*     P$FC675.SHZ FERNDALE EARTHQUAKE JUNE 7,1975 - 0 84 pj s     - - - - - - - - - - - - - - - - - -    ------------------------------------------------------

65 9_ 4'

g , 4 Table 2 (continued)

                     . PRJG R AM PVGR$ Poser Spectrum Statistics                                                            .
                     .       DUTPUT FILE: PVGl.0UT                                                                              .
                     .                     DATE:         5-0CT-92             TIMEt 13:32:34                     PAGE       2.

RUN 3E SCRIPTION..! Oyster Creek 3545 - NRC-Recommeided Osta set 34 Components >

                            ' File                             E ar thquak e Iden ti fic a tion                                 Component              Magnitude Distance Depth                                    PGA           Loo ce**2/sec**3 ML              km             km         cm/sec/sec                   25            10        1 He           i P S 102 2. 5H Z                 CDMG STATION 1                                                                    00WN                5.1            12.5             4.0                  11.12         -2.13       -0.TT      -0.34 OROVILLE AFTERSHOCK E ARTHQUAKE                                    LUG.
P50059.5HZ OROVILLE AIRPORT 00WN 5.2 12.6 5.0 20.39 -1.58 -0.58 0.45 ,

040 VILL! AFTERSHOCK EARTHOUAKE SU G. P 5 002 2. 5H Z ' OROVILLE AIRPORT 00WN 5.1 14.2 0.0 13.73 -2.30 -0.69 0.56 OROVILLE AFTERSHOCK EARTHQUAKE tug. P51059.5HZ~ COMG STATION 1 00WN 5.2 9.5 5.0 42.80 -0.40 0.05 0.43 OROVILLE AFTERSHOCK EARTHQUAKE LUG. P S E 70 0. 5H Z EARL BROA08ECK ST. 00WN 4.9 T.0 9.0 59.73 0 01 0.98 -0.88 CROVILLE AF1ERSHOCK EARTHQUAKE %UG. P50f00.5HZ OROVILLE AIRPORT 00WN 4.9 8.9 9.0 48.69 0.23 0.57 0.63 . , OROVILLE AFTERSHOCK EARTHQUAKE LUG.

         .                                                 ~

P S170 0. 5H1 ' COMG STATION 1 DOWN 4.9 11.0 9.0 43.63 -0.20 -0.33 0.79 ORO VILL E AFTERSHOCK EARTHOUAKE SU G. P 5 5 70 0. 5H Z COMG STATION 5 00WN 4.9 8.2 9.0 35.58 -0.30- 0.51 -0.92 OROVILLE AFTERSHOCK EARTHQUAKE tug. P 5470 0. 5 H Z CDMG STATION 4 . DOWN 4.9 9.4 9.0 'I9.63 -0.84 0.01 0.39 OROVILLE AFTERSHOCK EARTHQUAKE SUG. P5FR8911.5HZ BUIA . VERT 5.5 10.3 9.0 21.27 -1.68 -0.80' -0.16 135 FRIULI EARTHOUAKE, ITALY, SEPT 11. i P 5 NIL 81. 5 H Z NID02 ' NILANO . UP 5.T 18.7 4.0 169.30 0.03 0.98 0 20 WESTMORELANO EARTHQUAKE. CALIFORNIA A i .

                  ' P5CONv 838. 5HZ ' 54099 CONVICT CREEK                                                                              UP-                 5.4              8.9-           5.0                  (1.88          -0.09        0.18'      1.85 I jf                                         ~ MAMMCTH LAKES EARTHOUAKE'                               JAN 6.-1983.

g O i

    ' 32            PSCONV 8 3 A.5HZ . 54099 CONVICT CREEK                                                                             UP                  5.2              8.9            3.0                  55.07           0.16        0.23       1.83
6) - MAMMOTH LAKES EARTH 3UAKE. JAN 6, 1983-n' O

UP. 5.1 13.5- 5.0 26.89 -2.80 -0.93 1.14 O P5CHP3 3E3 5HI 46T04 .CDALINGA - CHP. d[ - COALINGA AFTERSHOCK CEV83) JGNE 10. u , Q .. . . . . . . . - - . . . . . . . . . - - - . . . - - - - - - - - - - . . - - - - - . _

 ,w   . m..%-e     .**n        me+           ,--e              e r  e [ -, -r w #M-        --  +w.. r+,w-      ~

e . E. ,e , .-n- . + +- .+ . - v - *~. <_. . _ . - _ - _ ___.+_m v__._._a_m _ -

Table 2 (continued)

                            . PROGRAN PVGR$1 Poser Spectrum Statistics                         .
                            . DUTPUT FILE: PVGl.0UT                                         .
                            .                DATE:  5-0CT-92     TIMEt 13:32:34      PAGE 3 .

RUN DE SCRIPTION.. ! Oyster Creek 55R5 - NRC-Recommend ed Date 5et 34 Components Component Magnitude Distance Depth PGA Log cm**2/tece*3 File E ar thau sk e Identification km km cm/sec/sec 25 10 1 Hz HL UP 5.3 11.1 10.0 7 6.16 -0.51 0.68 -0.20 P SCHP8 3 E 4. 5H Z 46T04 C0ALINGA - CHP COALINGA AFTERSHOCK (EV84) JULY 7 1 UP 5.0 8.3 10.0 E5.03 -0.49 0.37 0.10 P5CHP83E6.5HZ 46T04 COALINGA = CHP COALINGA APTER $ HOCK (Eve 6) JULY 21. UP 5.3 9.3 7.0 24.13 -1.97 -0.20 -0.31 P SCHP 8 3 E 8. 5H1 46704 COALINGA - CHP CDALINGA APTERSH0CK (Evst) SEPT 7, 1 UP 5.3 8.4 14.0 E5.67 -0.60 1.30 0.94 P 50 BP K . 5H 2 COHG 24400 Les Angeles Obregon P ark Whi t tier Aftershock Oct 04 5.1 9.2 10.0 319.60 0.18 2.08 1.65 P SCHP 8 3E T. 5HZ 46704 COALINGA - CHP UP COALINGA APTER 5H0CK (Evef) JUL Y 25. UP DE 5.5 12.0 8.0 255.60 0.04 2.26 1.93 PSGLOR86.5HI HOLLISTER - GLORIETTA W AREHOUSE HOLLISTER EARTHQUAKE JANUARY 26, 1986 median values 53 14.4 10.4 4 2.61 -1.46 -0.05 1.03 5.7 53.37 -0.20 0.89 1.11 standard deviations 3 .84th percent 11em a 0.3 9.3 1 I e O w~ O 3 ( O o O g U 3 M &( O_ dk. '

                                                                                                                  +

Statistical PSDF (Smoothed - 20% on f,) t l l } 4 _ Horizontal Component _ R 2- j _ u

  • _

o N ' Mean l ., E O 0.84 - o Ot, i C d 0.50 u) k O.  !! o> f o -2 _J l 1-l i i i i l -4 L 0 5 10 15 20 25 N 8 ie Frequency (hz) SPVG.NIN O Y il?!:8ii [ i;i8:lle

Statistical PSDF (Smoothed 20 % on f,) 7-0C7-92 11:35s34 g i Vertical Component _ 4 -

   .           m.                 ^
                                                                                  ~

w { f Mean m , -_ - l i 0.84 E n' 3 . 0.50 8 tj^% r ~

o. -

en o hl J

       -2        L!

l I i I t' ~ I i i I

       - 4.

10 15 20 25 0 5 e e 8 Frequency (hz) E' O TESTZ, MIN j iiill:8ii g  !!!!i:llen - .

2 s' ' # 10 u-ev-9i 'a *'34 i i i i i i i i i i i i i i i s.

 .s Q.

E N - (U - Q _

                ~

w> m 1 ,f' , o 10  ::

 .[
                ~
                                                                              /                            MAX                     *'
 .C
 "-             ~

e _

                                                                       /OCNGS SEP A            _                                                     e f               84th                -

1 / y _ f -- 3 _ ( -

                                                            /                                              50th 10                  /                             .'

h f l \ *

 'O
                 ~
                                          /
                                               /      l                                                                         ~

l3 - O to Q - ~ o o

                                                                                                       - MIN          o
        .;                                       *o,                                    i,                             %,

10 ' ' ' ' ' ' ' ' ' ' ' '

                      -2                                         -1                                  0                               1 10                                         10                                     10                             10    ;

Period (sec)

l3:!?:"U ,
                     "":!!?:8it                                                                                                         :

CPUH.050 I g prepared by SITE SPECIFIC _ RESPONSE SPECTRA oyst.r cr..k noci.or c.n.coiin, sioi;*" 67 Components Santa Barbara, '41 checked by ' Response to NRC Ouestions Imperial Valley, '53 doted May 8,1991 Palm Sprinas, '86 Deleted reviewed by prepared for General Public Utilities Weston Geophysical Fig. 1 1 Nuclear Corporation 16190-07 "* Weston Geophysical l

i Q 9 1 0.5 u- e -Si " ' o ' " ,' , i i

72. NRC Recommended Data Set 01 -

71 - minus Imperial Valley g 1953 North Component q . ',

                                                          ~

6 g 0.4 _

                          ,.g I'.!sI'
                                   ! t* ' ,
                                                             ' 's' 72    .,

67 minus Imperial Valley '53 minus Santa Barbara '41 I minus Palm Springs '86 g j , , 'N, so .!

                                              .                 71               ,

os - i ',' , to ['l v., , i \ ~~ g v 0.3 _ j ,.as, [i y. s 67 c  ; 's

                                                                                                    ..' ..~~..

O i ~ N.- s, .;;;  ; ~ y l

                                                                              ',e...'......,'                                      .... _

Q) O.2 _ : 'c)  ! OCNGS SEP -----~~------------....... O O T ~

 $  0.1     _

O Q) (4 O 0.0 ' ' ' ' O 5 10 15 20 25 i Frequency (bz) HNRC72A.084 HNRCTlA.084 HNRC6?A.084 CPUH A.050 prepored by SITE SPECIFIC RESPONSE SPECTRA Comparison of-84th Percentile SSRS Oyster Creek Nuclear Generating Stolion 72, 71, & 67 Components  ; checked by Response to NRC Ouestions M . dated May 8,1991 prepored for vs. OCNGS SEP Spectrum , r viewed by General Public Utilities Nuclear Corporation Weston Geophysical Fig. 12

                                                                                                                                     "' ' 8 9 '

16190-07 Weston Geophysical '

1:

          .Q,5    9-Orc.g        is 89$ '                                         6            4 i

CD

 ,g.                                                                                                                           .

Q. -

E 0 4 -
 - as
 -Q
  $ 10                                      OCNGS SEP Vertical Component                                                  -

g 0.3 -

  .c                                                                   NRC Recommended Data Set
    ,9                        ,/[ 1l,' ' ' . . ,
                                             -                         36 Components -
    **                       ,J '                \.                          'NRC Data - 5.9.ML Records Rernoved - 34 Components             _

O.2 _ f g,,,, ~~ h ,f ,

                                                                ' N...
                                                                        .~~.                                     _
                        .                                                                                  ""~

1989 - Tall Structures Rem'o ved

                    ~

32 Components o 1 u) 0.0 - 5 10 15- 20 25 0 , Frequency (bz)' ,

                                                                                                                             -1
                                                                                    ..                                         s prepored by         SITE SPECIFIC RESPONSE SPECTRA              Cornporison of Vertical SSRS-                 ;

g oyster creek Huclear Generating Stolion checked by Response to NRC Ouestions OCNGS Vertical SEP Spectrum -) Jg doted May 8.1991

                 "'t ewed i       by                    prepared for                                                               !

General Public Utilities Weston Geophysical Fig. 16

                   . h.

16190-07 Nuclear Corporation -i i Weston Geophysicall I

Attachment 6 L%Cl%Ei9l%G A Dit'ision of EQE International CONSU LT A NTS October 22, 1991 EQE Correspondence No. 50069.00-0-008 Mr. Kenneth Whitmore Civil / Structural Manager GPU Nuclear Corporation 1 Upper Pond Road Parssipany, NJ 07054

Subject:

Transmittal of Geomatrix Final Report on Soil Properties for OCNGS

Dear Ken:

Attached please find Geomatrix Report No. 1957-1 Rev. O,

               " Soil Profile and Dynamic Soil Properties for Soil-Structure Interaction Analysis of Reactor Building, Oyster Creek Nuclear Generating Station, New Jersey".

If you have any questions please do not hesitate to call me. Sincerely,

                 &                  N-Alejandro P. Asfura Technical Manager EQE Engineering Consultants San Francisco, CA APA: neb cc:     Robert P. Kennedy (w encl.)

Stephen C. Tummminelli (w. encl.) James J. Johnson (w/o encl.) Paul D. Baughman (w/o encl.) Job File (w. encl.) EQE Ensoneenng Consultants 44 Montgomery Street. Suite 3200 . San Francisco, CA 941N . Telephone (415) 989-2000 . FAX (415) 362-0130

i GEOMATRIX FINAL REPORT , Soil Profile and Dynamic Soil Properties for Soil-Structure Interaction Analysis of Reactor Building Oyster Creek Nuclear Generating Station New Jersey Prepared for EQE Engineering Consultants San Francisco, California I October 1991 Project No.1957 Report No.1957-1 Rev. O i Geomatrix Consultants

  *~

Report No.1957-1 Rev. 0 . Page 2 of 32 APPROVAL COVER SHEET

Title:

Soil Profile and Dynimic Soil Properties for Soil-Structure , Interaction Analysis of Reactor Building, Oyster Creek Nuclear Generating Station, New Jersey  ; Beport No.: 1957-1 Rev. O Client: EQE Engineering Consultants Project No.: 1957 , REVISION RECORD Rev. No. Date Prepared , Reviewed Approved 0 10/11/91 kk. hTof C.' hNhh i[@ , i e f T i

     . COVfRil957 RM. TOC                                                                                ,
                                                                                                        'k

Report No 1957-1 Rev. O GEOMATAlX TABLE OF REVISIONS No. of Revision Descriotion of Revision Date 0 Original issue October 11,1991 COWTR 1051 RN TOC

i l Re rt No 1957-1 Rev. 0 l GEOMATAIX TABLE OF CONTENTS P12% APPkfNAL COVER SHEET 2 TABLE OF REVISIONS 3 TABLE OF CONTENTS ~4

1.0 INTRODUCTION

7 2.0 SITE SUBSURFACE CONDITIONS 7 2.1 Cape May Formation Fine Sand 7 2.2 Upper Clay 8 2.3 Upper Cohansey Formation Fine to Coarse Sand 8 2.4 bwer Cohansey Formation Medium Sand 8 2.5 Lower Clay 8 2.6 Kirkwood Formation Fine to Medium Sand 9 2.7 Groundwater Conditions 9 3.0 SHEAR WAVE VELOCITY PROFILE 9 4.0 MODULUS REDUCTION AND DAMPING CURVES 13 5.0 COMPRESSION WAVE VELOCITIES AND POISSON'S RATIOS 13

6.0 REFERENCES

14 LIST OF TABLES Table 1 Best Estimates of Average Soil Properties for Discrete Soil I.ayers Table 2 Shear Modulus Reductions and Equivalent Damping Ratios at Selected Strain Levels COWTRu95' 8 FT TOC

Report No.1957-1 Rev. O p Page 5 of 32 ocouarnix TABLE OF CONTENTS (continued) LIST OF FIGURES Figure 1 General Soil Profile at the Reactor Building Site Figure 2 Location of Borings Figure 3 Energy Corrected SPT Blow Counts at the Reactor Building Site Figure 4 SPT (N,). Profile at the Reactor Building Site Figure 5 Energy Corrected SPT Blow Counts at Hole 57 Figure 6 SPT (N,). Profile at Hole 57 Figure 7 Calculated Shear Wave Velocity Profile at the Reactor Building Site Based on Ohta and Goto (1978) Figure 8 Calculated Shear Wave Velocity Profile at the Reactor Building Site Based on Seed et al. (1984) Figure 9 Calculated Shear Wave Velocity Profile at the Reactor Building Site Based on Sykora and Stokoe (1983) Figure 10 Comparison of Calculated Shear Wave Velocities at the Reactor Building Si'e Figure i1 Best Estimates and Uncertainty Bounds of Shear Wave Velocity Profile at the Reactor Building Site ( surface to 100 feet below ground ) Figure 12 Calculated Shear Wave Velocity Profile at Hole 57 Based on Ohta and Goto (1978) Figure 13 Best Estimates and Uncertainty Bounds of Shear Wave Velocity Profile at the Reactor Building Site ( surface to 150 feet below ground )

                                                                                                        -l COM E .it" R PT. TOC i

P Report No.1957-1 Rev. O p Page 6 of 32 ocoy,rn,x TABLE OF CONTENTS (concluded) Figure 14 Recommended Shear Modulus Reduction and Damping Curves Figure 15 Assignment of Shear Modulus Reduction and Damping Curves to Soil 12yers at the Reactor Building Site i CONT 2 ilt37 B PT TOC

4 1 Report No.1957-1 Rev. O p Page 7 of 32 o,ommy a 3 SOIL PROFILE AND DYNAMIC SOIL PROPERTIES l FOR SOII STRUCTURE INTERACTION ANALYSIS OF REACTOR BUILDING' I OYSTER CREEK NUCLEAR GENERATING STATION, NEW JERSEY:  !

                                                                                                          }

1.0 INTRODUCTION

i The objective of this study is to develop the soil profile and corresponding dynamic soil' properties to be used by EQE Engineering in a soil-structure interaction analysis of the  ; reactor building at the Oyster Creek Nuclear Generating Station, New Jersey. - The - j dynamic soil properties assessed include shear wave velocities, shear modulus versus strain and damping versus strain curves, and compression wave velocities and Poisson's ratios. , l t The assessments made in this study are based on our review of a number of reports describing the site subsurface conditions. These reports were provided to us by EQE and are listed in the attached reference list as References 1 through 7.  ; 2.0 SITE SUBSURFACE CONDITIONS-A soil profile showing the major soil units at the reactor building site is presented in - .I Figure 1. Below a very thin (approximately 3 feet thick) surficial layer of fine sand, the -  ! major soil units are: Cape May Formation fine sand; upper clay; Upper Cohansey q Formation fine to coarse sand: Lower Cohansey Formation medium sand; lower clay; and . Kirkwood Formation fine to medium sand. These soil units are briefly described below. f 2.1 CAPE MAY FORMATION FINE SASV j The Cape May Formation is believed to represent an interglacial, warm water-beach and terrace deposit along the coast and a fluvial and marsh deposit inland. It is believed to-have been deposited approximately 35.000 years B.P. (Epoch: Late Pleistocene; Period-I Quaternary). It consists of medium to fine sand (predominantly fine sand) with coarse '; I sand occasionally.12nses of silt and silty clay are also present. t I l

Report No.1957-1 Rev. O fy Page 8 of 32 oyoy,7,,,x 2.2 UPPER CLAY The upper clay is a layered deposit, containing bands of stiff to very stiff organic clay, silty clay and clayey silt with lenses of thin fine sand. The clay is overconsolidated by desiccation caused by groundwater fluctuation. The age of this layer is approximately 35,000 to 10,000,000 years B.P. (Epoch: Late Pleistocene to l2te Miocene; Period: Quaternary to Tertiary). Water content of the clay typically ranges between 41 and 47 percent. The plasticity index is typically in the range of 25 to 40. The overconsolidation ratio typically ranges from 8 to 17 and the undrained shear strength from I to 2 tsf. 2.3 UPPER COHANSEY FORMATION FINE TO COARSE SAND The Cohansey Formation is generally believed to represent a transitional marine environment which existed along the coast of New Jersey during late Miocene time (Age: 10.000.000 + years B.P.; Period: Tertiary). The Upper Cohansey Formation was apparently deposited by fluvial processes. The sar.d grains range from well rounded to very angular in :hape and are about 95 percent quartz. 2.4 LOWER COHANSEY FORMATION MEDIUM SAND The penetration resistance in borings at the site increases signincantly below the interface of the Upper and Lower Cohansey Formations. This is indicative of a higher relative density in the deeper 1.4wer Cohansey Formation. The higher density may be attributed to wave action associated with a beach or barrier bar depositional environment for the Lower Cohansey Fermation. The sand grains are subangular to angular and are about 99 percent quartz. 2.5 LOWER CLAY The " lower clay" consists primarily of medium to fine sand containing traces of organic silt layers or inclusions of very stiff to hard organic clay. Clay lenses generally range in thickness from a fraction of an inch to a few inches. The clay layers are overconsolidated, apparently by groundwater Ductuation. The shear strength of clays is greater than 5.5 tsf.

Report No.1957-1 Rev. O Page 9 of 32 GEOMATA8X . 2.6 KIRKWOOD FORMATION FINE TO MEDIUM SAND This formation consists primarily of fine to medium sand extending to a depth of about 350 feet. 2.7 GROUNDWATER CONDITIONS In the spring of 1964, the groundwater level was found to be at a depth of 3 feet. It was believed to be perched on the upper clay stratum. Both the Cohansey and Kirkwood Formations are recognized as aquifers with artisian heads. Measurements made in 1974 indicated a piezometric level of about 11 feet below the ground surface in the Cape May Formation and about 17 feet below the ground surface in the Cohansey Formation. 3.0 SHEAR WAVE VELOCITY PROFILE Our interpretation of the shear wave velocity profile at the reactor building site was based primarily on a foundation soils evaluation report prepared by Burns and Roe, Inc. in 1964 (Reference 2). Five soil borings, numbered 51,52,56,57 and 58, were drilled in the vicini'ty of the reactor building. Their locations are shown in Figure 2. Hole 56 is located at the center and the remaining four holes are near the corners of the reactor building. Hole 57 was drilled ta a depth of 150 feet and the others were drilled to a depth of 100 feet below the ground surface. Standard penetration tests (SPT's) were performed above a depth of 50 feet in the borings using the standard 140-lb hammer falling 30 inches. Below a depth of 50 feet, a 300-lb hammer falling 20 inches was used, resulting in an approximately 40 percent increase in the driving energy. We made an approximate conversion of blow counts below 50 feet depth to SPT blow counts by multiplying these blow counts by a factor of 1.4. The resulting blow counts (N-values) to a depth of approximately 100 feet are shown in Figure

3. We also estimated the normalized blow count, (N i a (the N-value. adjusted to a common effective overburden pressure of 1 tsf) using the procedure of Seed el at. (1985) and assuming a groundwater depth of 3 feet and a soil total unit weight of 120 pcf. These .

I

Report No.1957-1 Rev. O g  ! Page 10 of 32 ,,,,,r,, l (N,). values are shown in Figure 4. The SPT N-values and (N,).-values below a depth of ] 100 feet (obtained from Hole 57) are shown in Figure 5 and 6. l i l Several empirical relationships were utilized to estimate the shear wave velocity of the soil at the site using the N- and (N,).-values, as well as other available data for the clay strata. These relations include Ohta and Goto (1978), Sakora and Stokoe (1983), Seed et al. (1984), and Hardin and Drnevich (1972). The relationships are summarized below. Ohta and Goto (1978): Shear wave velocities of soil are computed by V, = 68.79 x N "i x H" x Fac tx Fac, (3-1) where H = depth in meters ' V, = shear wave velocity in meters /second Fact = 1.000 for alluvium

                               =      1.303 for diluvium (used for this study)

Fac, = 1.000 for clay

                               =      1.086 for fine sand
                               =      1.066 for medium sand
                               =      1.135 for coarse sand
                               =      1.153 for sand and gravel
                               =      1.448 for gravel N       =      standard Blow Counts without correction for overburden Sr.e4 et al. (1984):

Shear Moduli of cohesionless soils are computed by G, = 20000 (N )[ (o,)o3 (3-2) 3 where p = mass density in Ib-sec;/ft' y

Report No.1957-1 Rev. O Page 11 of 32 o,o _ , V, = y/G,/ p V, = shear wave velocity in fps

o. = mean effective. stress in psf G,,,, = shear modulus in psf Equation (3-2) was developed for granular soils with (N,). between 40 to 60 and is used herein for a wider range of (N,). values.

Svkora and Stokoe (1983): Shear wave velocities of cohesionless soils are computed by V, - 330 Na2' (3-4) where V. = shear wave velocity in fps N = standard blow count without correction for overburden Hardin and Drnevich (1972): G_ = 1230 (2.973-ef (OCR)k (o,)o5 (3-5) 1+e where G., = shear modulus in psi e = void ratio OCR = overconsolidation ratio

a. = mean effective stress in psi k = a function of Plasticity Index i

i l i

Report No.1957-1 Rev. O gC Page 12 of 32 aso-m , The shear wave velocities to a depth of 100 feet obtained using the Ohta and Goto (1978) relationship are shown in Figure 7. Similar results using the Seed et al. (1984) and the Sykora and Stokoe (1983) relationships for sands and the Hardin and Drnevich (1972) relationships for the upper clay layer are shown in Figures 8 and 9. The results from Figures 7 through 9 are compared in Figure 10. It is judged that the Ohta and Goto (1978) relationship provides the best estimate for the shear wave velocity profile of the site soils. The other relationships provide an indication of the uncertainty in this estimate. From these results, we consider that a reasonable estimate of the uncertainty in the shear wave velocity is represented by the Ohta and Goto (1978) results multiplied and divided by a factor of 1.15. The resulting best estimates and uncenainty bounds are shown in Figure 11. Similarly, we estimated the shear wave velocity profile between depths of 100 and 150 f-:t below the ground surface. The resulting estimates are shown in Figure 12. The best estimates and uncertainty bounds of shear wave velocity from the surface down to a depth of 150 feet are shown in Figure 13. It is noted that the estimates presented above are for free-field conditions. Using the building weight provided by EQE Engineering Consultants, the effective stress immediately beneath the reactor basemat is greater than the effective stress in the free field. It is expected that the higher effective stress would increase the shear wave velocity by 10 percent or less. Because this increase in shear wave velocity applies only in a localized region beneath the basemat and is within the estimated uncertainty band discussed above, it is judged that it is unnecessary to make a local adjustment in the shear wave velocities. The best estimates of shear wave velocities for discrete soil layers are tabulated in Table 1. Estimates of total unit weights of soils are also included in Table 1. f i j l l l i

ge Report No.1957-1 Rev. O g Page 13 of 32 m m, 4.0 MODULUS REDUCTION AND DAMPING CURVES Shear modulus vs. strain curves (i.e. modulus reduction curves) and damping vs. strain curves were estimated for the respective layers on the basis of the general characteristics of the layers (i.e. sand or clay, plasticity index of clay, depth of layer), published relationships, and experience. The recommended modulus reduction and damping curves are shown in Figure 14 and the layers to which these curves apply are shown in Figure 15. The applicable soil layers are also identified in Table 1. Shear modulus reduction values and damping values r.t selected strain levels are tabulated in Table 2. 5.0 COMPRESSION WAVE VELOCITIES AND POISSON'S RATIOS Estimates of compression wave velocities. V,, and Poisson's ratios, p, are also needed foF the soil-structure interaction analysis. For saturated soils below the groundwakr table, compression wave velocities should be equal to or greater than the comp 7ession wave velocity of water, approximately 5000 fps. Compression wave velocities reported in Reference 1 range from 5200 to 5900 fps below a depth of approximately 15 feet. In the upper 15 feet, which was apparently not saturated at the time of measurements, a compression wave velocity of 1400 fps was reported. It appears reasonable to assume that the soils may be saturated to the ground surface. In this case, the compression wave velocities in Reference 1 may be used, with the value of V, in the upper 15 feet adjusted upward to 5000 to 5200 fps. The value of V, above the Upper Clay (above 18 feet depth) could also be assumed equal to 1400 fps as reported in Reference 1. It is suggested that values of V, used in the analysis be taken as constant (strain-independent) values. Therefore, values of Poisson's ratios, y, can be calculated using constant values for V, and strain-compatible values for V, in the fol!owing equation: 1

                                                                                                                                        ]

1 l

i< Report No.1957-1 Rev. 0 Page 14 of 32 GEOMATAIX t '(V)V,)*-2' (3-6) p = _2 (yjy,)2-1

6.0 REFERENCES

1. ' Draft Repon, Site Specific Response Spectra, Oyster Creek Nuclear Generating Station' by Weston Geophysical Corporation, September 1989.
2. ' Foundation Soils Evaluation for Jersey Central Power and Light Company, Oyster Creek, New Jersey' by Burns and Roe, Inc., November 1964.
3. 'Repon, Geotechnical Investigation, Geophysical Study and Foundation Recommendations, Proposed Office Building Extension Site for Oyster Creek Nuclear Generating Station' by Woodward-Clyde Consultants, Inc., April 1982.
4. 'Geotechnical Study for Proposed Radwaste and Off-Gas Buildings, Oyster Creek '

Nuclear Power Station' by Woodward-Moorhouse and Associates, Inc., Februar 1975.

5. ' Preliminary Safeguard's Summary Report, Application to the United States Atomic Energy Commission for Construction Permit and Operating License, Oyster Creek Nuclear Power Plant Unit 1, Pan B' by Jersey Central Power and Light Company.
6. ' Oyster Creek - FDSAR Section 5, Geology and Seismology'.
7. ' Fork River - PSAR Section 2, Soil Investigation Summary Repon', revised May 26, 1972).
8. Ohta, Y., and Goto, N., (1978), ' Empirical Shear Wave Velocity Equations in Terms of Characteristic Soil Indexes', Earthquake Engineering and Structural Dynamics, Volume 6, pp.167-187.
9. Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M. (1985), ' Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations', Journal of Geotechnical Engineering, Vol. I11, No.12, December 1985, pp.1425-1445.
10. Seed, H.B., Wong, R.T., Idriss, I.M., and Tokimatsu, K (1984), ' Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils', Repon No.

UCB/EERC-84/14, Eanhquake Engineering Research Center, University of Calfornia at Berkeley, Berkeley, California.

Report No.1957-1 Rev. O  ! Page 15 of 32 ,,,,,, x

11. Sykora, D.W. and Stokoe, K.H., II (1983), ' Correlations of In-situ Measurements in Sands with Shear Wave Velocity', Geotechnical Engineering Report GB83-33.

The University of Texas at Austin, Austin, Texas.

12. Hardin, B. and Drnevich V. (1972), ' Shear Modulus and Damping in Soils:

Design Equations and Curves', Journal.of Geotechnical Engineenng Division, ASCE, Vol. 98, No. 7, pp. 667-691. l t l

r Report No.1957-1 Rev. 0 - Page 16 of 32 ,,a y,7,, x TABLE 1 Best Estimates of Soil Propenies for Dis: rete Soil Layers Shear Wave Total Unit Deoth (ft) Velocity (fos) Weicht (oef) Soil Tvoe 0.0 - 3.0 310 120 Sand 3.0 - 10.5 600 120' Sand 10.5 - 18.0 660 120 Sand 18.0 - 26.0 735 115 Clay 26.0 - 34.0 810 115 Clay 34.0 - 43.0 930 125 Sand 43.0 - 52.0 985 125 Sand 52.0 - 55.0 1170 125 Sand 55.0 - 61.5 1270 125 Sand 61.5 - 68.0 1145 125 Sand 68.0 - 78.0 1130 125 Sand 78.0 - 80.0 1260 125 Sand 80.0 - 85.0 1415 125 Sand 85.0 - 92.5 1455 125 Sand 92.5 - 100.0 1400 125 Sand 100.0 - 108.0 1185 125 Clay 108.0 - 150.0 1550 125 Sand l 1 l l i

   .                                                                                         :q
     .-                                                   Report No.1957-1 Rev. O Page 17 of 32-                  ,,     j TABLE 2                                                  ,

Shear Modulus Reductions and Equivalent Damping Ratios i at Selected Strain Levels (a) Shear Modulus Reductions Strain (%) Shear Modulus Reduction , Cay Sand (0-50 ft deoth) . Sand (50-150 ft death)  ! l I 0.000100 1.000 1.000 1.000 0.000316 0.999 0.989 0.985 0.001000 0.997 0.965 0.%1 1 0.003162 0.972 0.877 0.897 0.010000 0.903 0.719 0.791 0.031623 0.772 0.515 0.600 O.100000 0.535 0.300 0.372  ! 0.316228 0.293 0.137 0.206 1.000000 . 0.134 0.047 0.087 1 4 i (b) Equivalent Damping Ratios. Strain (%) Eauivalent Damoine Ratios (%) Gay Sand (0-50 ft deoth) Sand (50-150 ft deoth) O.000100 2.0 0.9 . 0.9  ;

                                                                                                 ~

0.000316 2.3 1.0- 1.0 ' 0.001000 2.7 1.6 1.4 O.003162 3.3 3.2 2.2 j 0.010000 4.3 5.6 4.1 0.031623 6.0 9.6 7.5 - 0.100000 8.6 14.8 11.9 0.316228 13.7 20.6 18.3 1.000000 20.2 24.3 22.8 > 1 e 4 i 4 t

Kcpon No 1y3 /-1 Mcy, c Pag: 18 of 32 - k surf ace Deposits Cape .\ lay Formation

                                                                                  ~

20 - Upper Clay - 4 ~ Epper Cohansey Formation

                                                                                    ~

60 - 5 Lower Cohansey Formation 80 - U

 =           .

100 Lower Clay

                                                                                                  )

123 -

                                                                                           ~
               ~

Kirkwood Formation l

                                                                                        ~

140 - 1 160 Figure 1. General Soil Profile at the Reactor Building Site

e  ;

4. % ',_ .

i il e d IIs.IIll i I i . ,li  ?? 1 J.' .lji I* ' li t En p

                                                                                     .                       .                            I             .

a

                                                                                    !-l !,,!!rl l                            jlj j.ij;          i             ia              :

il i si l. ;Pl'. - 3 r-

                 }
               }e.                                                                  Ii.Illit 1.                          .
g. -

g!!::Hmilllil. g  ; i

                                                                                                                        }!) ll, L .J          J

[' ' ~ I f1 ( i 11 .f ,

                                            .                                    1 11
                                          't{                           yI r, ._. 9 o
                                                    .                      .          'll._                       I j;_

li oo

i. ..

il 8i11O[!l- .g L_liryli i i 11 - ,

                                            .     -                            i-                                                                                     ..

g . i ,

                                                                                                                   - 1. _ h gl ._    f. .                               -

s 5 I

                                                                                                                                         .lll-
                                                                                                           .                                                            3 a                3                                           *
                                                                                                               .tig.

1Ig .. i i L-  ! s' *3

                             *g                              i t

s .;

                                                           ,                                                                                                i           t i                                                                                                                                                             l i

I s I h . .i 1 e

                                                                                                                                                            . Y'        *
                                                                                                                                                      - Report No.1957-1 Rev. (

Page 20 of 32 1 0 ,, , , , i u, s 5 - - e". 'a' +

                         ,4.,'
                             /,

10 , , , t e- e liole 51 15 ,,,

                                                                                                         , . . .a Hole 52 9                                                                                             A--A Hole 56
            '0
  • m' A+\'.,
                                                                                                          +-- -+ Hole 57                                                        ,

N o,

            -a  _              s
                                                                                                          -            Hole 58                                            _

30 - o er' o ar A . a**,*. '.Oi '.~A-s. ';. i 35 - n'~ W W .." ~ _ ~ ~ .: - $ 40 - n* -s .

5. ,* + e a ,A- e -a e e  ;

45 -

                               * -                      m                                                                                                                 -

e r, + A. i-.s-- m _ e ..

        -   u0  -

s - pm. . --l' ' e . &~. ~~~'

                                                                                                               - , + _.
55 -

e . . __ _.__-~s- _. _ - R y t.-- - - m ___ _e ,._..,- { 60

                                                                                             *e-;.4- '

m o

                                                                   -.                    s W                      -~ a 65  --

m ~p __ ___.W_g-. =A - A- ::wr .- 70 - y l ,:

                                                ^ *p4h~

75 -

                                      . e n-                     -

s _ve. m' ' ' 'e .

                                                                                       .. ~'+                                                 *#=

80 - - 85 - s - -

                                                                                                                                                     .e              .
                                                                                                                 .o    r:

90 se '. .A i

                                                                                                                                                  -s ew
                                                                                                       ..-                                            4        s.

l .- &~- c' -~ g _* ~ ~ ~ - g. - l 95 - a ., ,

                                                                                        . . : a ~ * ~. -, - %._-'~%

d- _- __. ~ . 100 - - ~

                                                                                                           -s
                                           ,N              t.                                               I                                      1

,- 105 0 100 200 300 400 , Energy Corrected SPT Blow Count Figure 3. Energy Corrected SPT Blow Counts at the Reactor Building Site-

                                                                                                                                                     . .          .   ~ -            .-

b

                                                                                                                                                           -Repon No.1957-1 Rev. 0 :

Page 21 of 32 . - E O s* e . . , i r i 1 5 - - e a,  ! 10 -

                                        *A             am                                                                                                                                  ;

e- e Hole 51 " 15 - *a A e r - -a liole 52

                                                                                                                              *--* Hole 56                                                 :
                        ,0 _                                                                                                                                                .
                                                                                                                              +- -+ Hole 57 25 -                                                                                                  *~~ '
  • Hole 58 _

30 - - n. 35 - e ,'A E ._,,f;; .u _ - - - ew &,4 ~ ~* ne '.u . 40 - m*rs

                                              ,- . g.,~g 1
                            -                     +>        .e 40       -
  • E -
e. , . AA
  • c ,

a0

                                        *. g ' 3-                                                                                                                               -

1 4, s.,

         -                                     e         +- ~
       =

jN . g : : = = _. %,. m i ps -

                                                                                                       ~~~

60 - e' -

                                                         .c a L .e
                                                                                       ..-s')p       -

65 - s- f;-*g m-4 es/AE [*

                                                   ~ pc a  0    -                                                                                                                                              -

gA ' n* '%  : a 5 -

                                                * .+.s-   -g/e                           .
                                                   +       aC;'%

a' ~ + g- .. 80 -

                                                                                       -e'--

e ./s .

                                                                                                                                                                                          -l 85       -
                                                                                           +--s       - - -a,cip N"- .~J:-as s?. ;f4.'                                                              -       -;
                                                                                                    *;f         g-:e        ._
                                                                                                                                  -.A                                                       '

90 -

e. ~~: :: a
                                                                                                                                    ~

A g>' *

                                                                                                   - 3 ..: 1~~j 95       -

m-w ' m,,.

                                                                                      . m*.Q4
                                                                                           +-                           ~ , - .

t00 - 105 0 ~100 200 300 400. (N1 )60 Figure 4. SPT (N1)60-Profile. at the Reactor Building Site i i

 + ,    , , _ , , , _ .                 _ _                   _ _ _ . _ _ - . . _                                    _ _,,                    .,.,r-          r ,       _ ,
     ~   ~

Report No.1957-1 Rev. ( Page 22 of 32 :

0. i , , i i  :

s S O O ' 20 -e - O 40 -

                        *~~~ #

q ~ ' e.4 ~

                     -                                                                                  ~
                            ~._

60 - *~~ ~ 9S Ox, - O u O'

           .::    60 -

ge - W

           ~

e b . e/ , - O W 100 - We -

                              #w,                                                                                .i Of
                     .                             -- e                                                 -

8 120 - N.* - y O'1

  • O ~

G ,

                                                         ~

140 -

                                                                                -4                   ~

i _ e - 160 0 100 200 300 400 500- 600- . Energy Corrected SPT Blow Count Figure 5. Energy Corrected SPT Blow Counts at Hole 57  !

Report No.1957-1 Rev. O i j_ Page 23 of 32- , f 0 , , , ,_

                             ,.e
       ~                                                                                                         ,

W - { 20 - e e

                                                                                            ' .                 I

_e 40 - y e 3 -

k. - -

60 - e, - . =

           .               e<e' e'*

b i

                                  ~,                                                           -

i .-. 80 - g '

=                                           "             -.
                                                     ~.

t 100 - ed* ---e . i e'e 120 - _y< - 140 - e. 160 400 O 100 200 300 (Ni)60 Figure 6. SPT (N1160 Profile at Hole 57

                                                                                                                  . Report No.1957-1 Rev. C   '1 Page 24 of 32 0

3 5 - - s, i, 10 -

                                     . up e i                                        Estimated Average I_ -                                                                                                                     -
                                     *a e e                          e-         e Hole 51
m ---s Hole 52 20 - ~
                                                 ^                   A---*            Hole 56                                                   ;

25 -

                                                                     +- -+ Hole 57                                                  _
                                                              ~
                                                             ,           --
  • Hole 58 30 - I-
                                                    ;aA J'                                                                     -
                                                    ?_ in._
                                                                    , '.. s .

35 - g, -

                                                                          ~.

40 -

                                                       "           We                                                               -

i n '. , 45 b 50 -

                                                                *b. s.'e                                                            -
      ~~
. 55 -
5. -
      $                                                                               Ved*                                                      1 60  -

E it

                                                                                            . 's                                    -
                                                                                                   ,e
                                                                                       ,sj ,

65 - V' 's e y s- , e. A

  • 70
               -                                                            s                e-                                     -

5 .

           ,a  -

6.' lnnMe e

                                                                             -6~              %.
                                                                                         ~ _         -

80 - e - t

                                                                                             .s.        .

A < 65 - r3 s . - >

                                                                                                        -     Ae                                 -
                                                                                                     **
  • h e  ;

90 -

                                                                                                   a' 'a         -

A, I? ' 'e

                                                                                                    ,-      +*          e 95  -                                                                                a +, ..                              -
                                                                                                                        .o
                                                                                               . " si                 .
                                                                                                              'A*

100 - - e ,J y" 105 0 500 '1000 1500 2000 Shear Wave Velocity (fps) . Figure 7. Calculated Shear Wave Velocity Profile at the Reactor Building Site Based on Ohta and Goto (1978) i

Repon No. l'957-1 Rev. i , Page 25 of 32. O i i s e,e . e 5 - 10 - . m Estimated Average ~ 15 - nu e ---- Hardin and Drnevich (1972)

                                        \                              e-
  • Hole 51
                                          '                                                                                      ~

20 - s -- -u Hole 52

  ,,5
  ~      -
                                            ',                          A--*             Hole 56                                  _

e --+ Hole 57 >

                                               '            "            ~~
  • Hole 58 -

30 -

  • a i

i a 35 -

                                                    ,g       ,
                                                                ,' :,u           .                                                 -

p ~+ ' 40 -

                                                            +'-                                                                   -

e 45 , +., 'A e e C 50 -

                                                            .,x, 5                                                                                   a u 0  55     -                                                                        .

P s. W + 2 - . /

                                                                            *           /

60 - 65 - u-

                                                                                '*   .t.A                                           -

A-

                                                                ,/'~:           ,     .*

70 - g - 75 -

                                                                     . +. A'   '

A' - -

                                                                            +~ s %

80 -

                                                                                         .. ,      9,                                 -
                                                                                             *~      i8 i

85 - a g -

                                                                                                      /                                    i 90       -                                                                                      e      a                          -

l T' , n +M, p' 95 -

g. -

100 -

                                                                                              !' f      '"                             -

105 O 500 1000 1500 2000 , 1 Shear Wave Velocity (fps) Figure 8. Calculated Shear Wave Velocity Profile at the Reactor Building Site Based on Seed et al. (1984) l 1 1

Report No.1957-1 Rev. 0 Page 26 of 32

   ,                                                                                                                                           1 0

m A+ e . i i l l 5 - 10 - 15 -

                                            ,, i             g                                                                        -

i 20 - 25 -

                                                                                   'a 30  -

i s . 35 - e A ' _J -s_ - - tte n.e

  • r a 'it _-,  :

40 -

                                                                            . e e_                                                     -

Ne ..e*R A

                                                                          <            e 45  -

A- s - y -..m,

                                                               ..              A                                                              .

e . 5 50 -

                                                                 ' *e , ys ,                                                          -
       ~                                                            *              '
                                                                                            ~

n 0-. 55 -

  • 3,
                                                                                                               ',54
                                                                                                                             '   3 -

di

                                                                                        =,2             1
                                                                                                                 , . :s -

60 ' , . ,. A-e , m ' . 'n . y' 65 - m ~' e

                                                                               / '                   e'
           ,o                                                        +:c                a                                                   :
                                                                                ~

As %' .f - - s y,S n k.s 75 - Jt. - 1 - f G ~ . -+- W B0 9 /*

                                                                                                     *~~ -

e- e Hole 51 's _ *~ s ~.s _~.e 85 - m ---a Hole 02 c .* A

                    *---A   Hole 56                                                                             d-p A, 90   - +- --+ Hole 57                                                                               'Ar 4         'J-*-       ,

A Hole 58 ' ~ ..; h ~ ' ~' p& , - 95 - - Estirnated AveraEe liardin and Drnevich (1970) u'

                                                                                                 ' '  _sc.~'(.e
                                                                                                              +~
                                                                                                                   ~-
                                                                                                                         'T.

100 - - 105 O 500 1000 1500 2000 Shear Wave Velocity (fps) Figure 9. Calculated Shear Wave Velocity Profile at the Reactor Building Site Based on Sykora and Stokoe (1983)

Repon No.1957-1 Rev. C Page 27 of 32 , 0 . i

                           ,   ,i 5   -

l a i 10 - l 15 - s i l

                                          \

20 - 25 - 30 - 35 - , l

                                                '                      e i                     i 40 -                                            ,

j

                                                                          \

45 - ', i i l i c 00 - i 1 - t ' I 6 '

                                                                               .'~~~'-/       >
- 55 -

a ' i / 60 - ,' / -

                                                                                  ,'                         /

65 -

                                                                             ,                    j s'                    (

70 -

                                                                           's                    g
                                                                                                   \

75 - g 80 - s

                                                                                                         '~_'~ \                           -

Ohta and Goto (1978) 's

                                                                                                         ',                    \

65 - ---- Seed et al. (1984) ' j Hardin and Drnevich (1972) ,

                                                                                                           /                   j 90      - - - Sykora and Stokoe (1983)                                                           l                    /

l / aa. - 100 - 105 O 500 1000 1500 2000 Shear Wave Velocity (fpsi Figure 10. Comparison of Calculated Shear Wave Velocities at the Reactor Building Site

Repon No.1957-1 Rev. 0

     ,                                                                                                                                                         Page 28 of 32 0
                          .l ,

i i i 5 - i '

                                     \_

10 - '\ i -

                                          \                    '

Estimated Average 15 -

                                            \                      i
                                                                                                     - - - - Estimated Average
  • 1.15 -

g , -- Estimated berage / 1.15 20 -

                                                \                           ,
                                                  \                             ,

25 's

                                                    \                                 ,
                                                        \                               '

30 - g ', -

                                                              \      1
                                                                                                   -i 35  -
                                                                         \                                '.

40 -

                                                                           \                               ',                                                                          -
                                                                            \

45 - ', - g

         =                                                                        \

5 50 - ', -

                                                                                    \                                  ,

5 N

2. 55 - ~~. -

E / 60 - / , -

                                                                                                        /                                     ,

05 - / , -

                                                                                                 /                                 ,

70 -

                                                                                              \                                  '
                                                                                                 \                                  ',

75 - \ i

                                                                                                      \s                                    ,

80 - '- - -- N 's N 's ' B5 - y - - 1 I o 90 - j o l -

I '

95 - - l I l 100 - l ' - 105 O 500 1000 1500 2000 Shear Wave Velocity (fps) l Figure 11. Best Estimates and Uncertainty Bounds of Shear Wave Velocity Profile at the Reactor Building Site (surface to 100 feet below ground)

Repon Ns.1957-1 'Rev. O Page 29_ of 32 0 , , i . e . e i e - 20 - * - 1 - e k,

        ~

e~e 40 -

                                              *[
                                                                                                                                                         ~
                                                ,e ~ e                                                                                                                .

60 - e'e

                                                                                                  ,e                                                     _           v
                                                         ,e
                                                                                                                                                                    -l
                                                 *(e                                                                                                                  ;

e

          ~

C ~ gN o _ .: 80 - o -!

e
 ~J                                                                                                  m*
  • i

= . k, -

                                                                                                      ,q*

e'.. e e 100 - o e=-

                                                                                                                     -e         .

r e--e Hole 57 I Estimat.ed Average _ e . t e eL

                                                                                                                                                            ~

140 - et t

                                                                                                                                                                ~
                               ,                       i                                                                            i ISO 0                  500               1000                                                                            1500                   2000 Shear Wave Velocity (fps)

Figure 12. Calculated Shear Wave Velocity Profile at Hole 57 Based on Ohta and Goto (1978)

A . Repon No.1957-1 Rev. ( Page 30 of 32 0 ' ' ' lI __

                                   \         s s
                 .                               s
                                     \
                                                   ',                                             Estimated Average
                                                      ',                  - - - - Estimated Average
  • 1.15 90
                                                                           -- Esumated Amage / 1.15                                                                           _
                                         \                   's~
                                           \                    's
                                               \                     \

u s..

                                                        \                        ',

40 -

                                                           \                          s
                                                             \                            s s
                 -                                             \                              ',                                                                                 _
                                                                 ~    ~~~
                                                                                            /

60 -

                                                                                   /                                ,-                                                         _
                                                                             /                             ,-
                                                                       /                                ,'
                                                                      \                               ',

s c

        ~
                                                                        \                                 \
                                                                            \                                 . '
        .O   80  -

T N , E ) '

                                                                                                                                                     ~

l , I ,' 100 -

                                                                                                   /               _ _ _ _ _ _ ,

I -- i i 1 1

                                                                                                            \                                               '

120 -

                                                                                                              \                                              i                 _

i

                                                                                                                \                                                ',

I _______'s p- , i . 140 - \ ' s _

                                                                                                                         \                                              ',
                                                                                                                           \                                               ',       i
                  -                                                                                                                                                           s     !

l 160 0 500 1000 1500 2000 i l Shear Wave Velocity (fps) i Figure 13. Best Estimates and Uncertainty Bounds of Shear Wave Velocity Profile at the Reactor Building Site (surface to 150 feet below ground) J _ __ ]

                                                                                                                                                                                      ~N Report No.1957-1 Rev. O Page 31 of 32            .

40 ,

 ;?

L

   -      30     -

E . LC ,

                                                                                                                                             *  */
                                                                                                                                   , '/
                                                                                                                                     '       /

20 - ,' e' - 5 ,' /

                                                                                                                          /
      ;           .                                                                                         ,e' /                                                             .
                                                                                                                   /

i:- ,' /

                                                                                             ,' /
  -: 10           -
                                                                                         ,e j                                                                             -
   -~
                                                                                           /

2; ,- /

                                                                    ,-         /                                                                                              .

g 9 -~ ~" Y , ,i ,i , , t , , 1 . ,, i , , , ii

                            ~y,v1
                                     ~ g,   .

t, .,

                                              'N
                    .                             'N
    ,6                                               ' , %,
                                                          ,s
   .~ a    .
                                                                -   \                                                                                                      -

N ' N

   .-                                                                 's      \                                                                                                -
                                                                           ',N 3                                                                          's N
   '~.6
                                                                                   ', N e                                                                                 s
   %                                                                                     ', \

g . s

                                                                                                 \                                                                              .
's ,g n r
             .4       -                                                                              s    \                                                                 -
's \

s s, N . 4 g ,2 - for Clay 's \ g i - - - - for Sand between 0 to 50 f t ', N

    'n                      - - for Sand between 50 to 150 ft                                                                      ' ,N                                          .
                                                                                                                                          '    N s
                                                                                                                                                     ,,s
                                        ,,,i                  ,          ,i          ,             ,          ,i               , ,               .i         T, 0
                .0001.0002          .0005 .001 .002        .005           01       .02          .05             .1        2            .5          1     0        5              10 Strain Fe)

Figure 14. Recommended Shear .\iodulus Reduction and Damping Curves E

1 Repon No.1957-1 Rev. 0 Page 32 of 32 l

                                                                                                       -1 Surf ace Deposits 10-50 f t Sand Cunes
             .                     Cape \.lav Formation                                         .

(0-50 ft' Sand Curves) 20 - Upper Clay  :

              .                    (Clay Curves)                                                 .

40 - U.,per Cohansev Formation ~ (C -50 ft Sand t'urves) 60 - O Lower Cohansev Formation b (50-150 ft San'd Curves)

     .= na -
      ~J
                ~

t 100 Lower Clay (Clay Curves) 120 - Kirkwood Formation - (50-150 ft Sand Curves) 140 - l 160 Figure 15. Assignment of Shear .\1odulus Reduction and Damping Curves  ; to Soil Layers at the Reactor Building Site e i}}