ML20085C464
ML20085C464 | |
Person / Time | |
---|---|
Site: | Saxton File:GPU Nuclear icon.png |
Issue date: | 02/01/1960 |
From: | Katz L WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
To: | |
Shared Package | |
ML20083L048 | List:
|
References | |
FOIA-91-17 WCAP-1391, NUDOCS 9110020043 | |
Download: ML20085C464 (31) | |
Text
__-_____ - . - - - -
M Jor Div Of IMI k' CAP-1391 (Bevised Edition)
March 1,1960 M'JLTI-LAYER CONSTRUCTION FOR THE SAXTON REACIOR VESSEL Prepared By:
L. R. Katz February 1, 1960 Approved:_8 [( .Gsd/ s E. A. Goldsmith, Section Manager Primary Systems Section WESTINGHF'E ELECIRIC CORPORATION
' ATO' - PO'n'ER DEPARTMEffI PITISBURGH 30, PENNSYLVANIA 9110020043 910424 PDR FOIA I l DEKOK91-17 PDR
. ..= - . - . .
. . - . . . . . _ . . . . .- - ... _ _=. . -
6 I
l l
ACKNOWLED'WINTS The author wishes to aca.nowledge the invaluable contri-bution esde by Mr. J. J. Maurin of the A. O. Emith Corporation in the preparati:>n of this report. The author also wishes to thank Mr. A. C. Martin of Westinghouse Atomic I'over Department for his help in review and interpretation of the analytical data supplied by A. O. Smith Corporation.
l k
TABLE OF CONTENTS Page No.
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 LIST OF FIGURES............................. ....................... V I INTRODUCTION................................................. 1 II -
ADVANTAGES IN MULTI-LAYER CONSTRUCTION. . . . . . . . . . . . . . . . . . . . . . . 2 III - PROBLEMS IN MULTI-LAYER CONSTRUCTION. . . . . . . . . . . . . . . . . . . . . . . . 4 A. Thermal Stresses in Multi-Lsyer Shells................... 4 B. Thermal Stres ses in the Saxton Ve ssel. . . . . . . . . . . . . . . . . . . . 6 C. Deviation From the ASMS Code............................. 7 D. Pennsylvania "Special" Approval of the Saxton Vessel..... 8 IV -
SUMMARY
...................................................... 9 APPENDIX I -
APPLICATION 07 MULTI-LAYER CONSTRUCIION TO THE SAXTON REACTOR VESSEL......................................
11 A. Technical Description of the Saxton Vessel.............. 11 B. Manufacturing Procedures for the Saxton Vessel.......... 13 C. Inspection Techniques for the Saxton Vcasel. . . . . . . . . . . . . 15 l D. Weld Designs in the Saxton Vessel....................... 16 APPENDIX II - HISTORY OF MULTI-LAYER CONSTRUCTION.................. 17 i
A. Current Commercial Non-Nuclear Applications.............
l 17 B. Current Nuclear Applications............................ 18-C. Expected Future Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 i
l l
- 111 -
LIST OF FIGURES Figure No. Title
, 1 Thermal Conductivity in Stacked Disks
, 2 Therma] Conductivity in a Malti-layer Shell 3 Saxton Reactor Vessel Outline 4 Effect of Gamma Beating Rate on Maximum Tensile Stress in Wall of Saxton Hook-on Reactor Malti-layer Vessel - Cylinder "A" Precompression 5 Effect of Temperature Difference Aeross Wall on Maximum Tensile Stress in Wall of Saxton Hook-on Reactor Malti-layer Vessel-Cylinder "A" Pre-compression 6 Effect of Gamma Heating Rate on Maximum Tensi.1-Stress in Wall of Suton Hook-on Reactor Ma' -
layer Vessel - Zero " recompression 7 Effect of Temperatui '.ference Across Wall on Maximum Tensile Stre tr Wall of Saxton Hook-on Reactor Malti-Layer :*31 - Zero Precompression
.I 6 .
- iv -
e 1
I - INTRODUCTION The Saxton Reactor is an experimental facility to attain lover nuelcar power costs by conducting experiments which vill lead to higher thermal efficiencies and lower capital costs. This reactor is designed to produce 28 thermal megawatts and vill be hooked on to an existing turbine-generator which is part of the Saxton Steam Generating Station of the Pennsylvania Electric Company at Saxton, Pennsylvania. One of the special features to be incorporated into the Saxton Plant is a reactor vessel of multi-layer construction, a type which promises significant advantages and capital cost sav-ings for large size plants.
Malti-layer pressure vessels, which are a specialty of the A. O.
Smith Corporation of Milwaukee, Wisconsin, differ from conventional reactor vessels only in the method of fabrication of the main cylin-drical shell course. The bottom head, removable closure head and main nozzles are identical to those used in conventional reactor vessels. The main shell of a multi-layer vessel is comprised of many layers of relatively thin plate, each separately formed into a barrel, vrapped and velded one to another until the required total thickness is attained. The inner barrel of the multi-layer shell is made from a plate, approximately 1/2 inch thick, which has been clad
! with a thin layer of stainless steel prior to forming. After formin6 l and velding, the inner barrel is stress-relieved and the veld seam is co=pletely'X-rayed in accordance with the ASME Code. Subsequent I
layers, which are 1/4 inch preformed plates, are applied one at a time in three equal segments. Each layer is velded intermittently along the three longitudinal seams to the layer belov vhile the assembly is mounted in a special vrapping machine. After removal from the vrapping machine, the lon61tudinal layer seams are completed, ground flush with the outside diameter of the layer and are magnetic-ally inspected. The next layer is then applied. The vrapping and velding process employed causes a pre-stressin6 in each 1syer result -
ing in a net compressive stress in the int.er layers of the completed shell. The completed multi-layer shell is bored for nozzle insertion and scarfed at each end for velding to the bottom head and bolting flan 6e in the same manner as for solid vall vessels.
, .,.,..,----,e ,,. -n, .,- -,,,.w. ,
,.,----,,,----.--.n.. .
II - ADVANTAGES IN MULTI-LAYER CONSTRUC'IION The use of multi-layer construction for reactor vessels offers several distinct advantages over solid wall construction with respect to safety, overall economy and manufacturing ".exibility. '
The advantage in multi-layer construction are as foll y 3:
- 1. The relatively thin plates used in multi-layer construction exhibit better metallurgical properties than thick plates for the same application. Thin plates can be manufactured without the danger of inclusions and flaws which often occur in thick plates. Better lov temperature impact properties result be.:ause a more uniform quench after heat treatment is lossible.
- 2. The precompression built into the inner layers of a multi'.
layer shell by the combination of vrapping load and weld shrinkage techniques employed in the manufacture of multi-layer shells results in a favorable strere distribution through the vell under internal pressure. In destructive pressure tests on full size multi-layer vessels by A. O.
Smith,100 per cent of the calculated strengths were developed in the shells before failure. The multi-layer shell test failures were in all cases of the ductile-type, without shattering or fragmentation. Similar tests conducted on sclid vall vessels by A. O. Smith showed that the shells developed only approximately 70 to 80 per cent of their full calculated strengths before failure. Likewise, fragmentation at failure was found to be typical of solid vall vessels.
3 In multi-layer construction, only the inner clad barrel serves as the fluid containing portion of the vessel, and therefore is the only layer of the multi-layer shell which must be leak-tight. By means of a simple vent hole running from the outside of the inner barrel through the outer layer wraps,- any fluid which leaks from the inner barrel can be effectively monitored. Thus, any defect in the inner barrel is detectible at a time when' the vessel itself is still l structurally sound. A similar defect in a solid vall vessel vould not be detectible until a complete structural failure of the vessel would occur. This feature is especially impor-tant to multi-layer nuclear vessels since irradiation dama6e which may be imparted to the vessel valls vould most likely-occur in the inner shell only.
- h. Multi layer construction in reactor vessels offers' definite manufacturing flexibility as-to overall size and shell thick-ness as compared to standard solid vall construction. Shell
_ _ _ . _ _ _ _ _ _ _ _ . . _ . . _ _ _ _ . . _ _ . . . .. _. _ _ . _ . . . . _ ~ _ _ _ _ _ _ . _ _ . . _ _
i thickness, limited by roll size and roll capacity in solid
{ vall construction is essentially unlimited in multi-layer l construction since the shell is built up of many layer vraps i of relatively thin material. Also in future large vessels l vhich present a handling and transportation problem because
( of weight and size limitations, multi-layer construction pro-vides a solution. In multi-layer construction, the " thin I plate" metallurgy of the layer wrap material precludes the necessity for stresc relieving the completed vessel. Thus, it is possible to ship multi-layer reactor vessels to the site in sections and perform a field weld vf the sections without the complications involved in solid vall construction.
5 The velds connecting the multi-layer shell to the bottom head and flange forgings are relatively free from veld shrinFq e stresses and do not require stress relief. The elimination of shrinkage stresses in this veld results from the fact that t' individual layer plates are able to expand longitudinally, tLas, stress relieving is un-necessary.
Il I
l s
b
III -
PROBLEMS IN MULTI-LAYER CONSTRUC' TION The use of multi-layer construction for reactor vessels imposes several important problems which are not prevalent in solid vall vessels. These problems are related to the heat tran fer and related thermal stresses in multi-layer shells and ASME Code ap-proval of vessels usirs this type of construction.
A. Thermal Stresses in Malti-Layer Shells The neutron and gn=ma bombardment of a multi-layer reactor vessel causes a temperature gradient in the shell. This te=perature gradient causes a higher temperature at the outer layer vraps and a lover te=perature at the inner vraps, because of the inner vall cooling, resulting in a reduction in the interface pressure between layers. The reduction in interface pressure between layers reduces the effective over-all thermal conductivity of the shell and thus increases the thermal stresses. Several years ago when the need for multi-layer effective thermal conductivity data for reactor vessels became apparent, A. O. Smith conducted a series of tests to determine this parameter.
A laboratory device was designed and built for the determina-tion of the thermal conductivity of multi-stacked discs for various contact pressures. The attached Figure No. 1 gives the thermal conductivity results for contact pressures between discs up to 2000 psi. With the steel in the as received condi-tion, the thermal conductivity varies from h.0 Btu /hr x ft x F at zero contact pressure to 11 3 at 2000 psi. Pickling the layer steel improves the thermal conductivity to 4 3 at zero contact pressure and 14 3 at 2000 psi. The thermal conductivity of solid carbon steel is approximately 26. Pickled steel is used in multi-layer vessels for nuclear applications where thermal conductivity is important.
A simple test was also used to determine the thermal conductivity of a multi-layer shell cade from pickled steel. Heat was transfer-red through a h in, thich ralti-layer shell from hot oil inside to cold water outside with both fluids at atmospheric pressure. The thermal conductivity of the vall was calculated from the measured te=perature drop through the vall and the, amount of heat transfer-red. The attached Figure No. 2 gives the experimental results, the thermal conductivity of the multi-layer shell varies from 8.0 Stu/hr x ft x F to 14 5 as the te=perature drop through the vall increased. This curve illustrates several points.
- 1. The thermal conductivity of the ralti-1syer shell is approxi-mately the same as the thermal conductivity of malti-stacked dises. The co=parison is for pickled steel.
h-
- 2. Since multi-layer shells are manufactured with considerable preco=pression, there is high contact pressure between lay-ers of the manufactured shell. The initial thermal conduc-tivity of multi-layer starts at 8.0 versus 4.0 for multi-stacked discs at zero contact pressure showing the effect of this precompression.
When the resistance to heat conduction between layers of the above mentioned multi-layer shell is used to calculate an air gap between 1ayers with an equivalent resistance, the calculated air gap is very small and averages .00028 in. The average gap was calculated from the measured initial value of thermal conductivity (8.0 Btu /hr x ft x F).
The Franklin Institute in con, junction with A. O. Smith has made an analytical study of the multi-1syer design for pressure and thermal stresses found in nuclear reactor _ vessels. In setting up equations for multi-layer, it was necessary to take into consideration pre-compression during manufacture, internal operating pressure and the temperature distribution in the vall. The temperature distribution is affected by the amount and type of internal heat generation and.
the thermal conductivity of the vall. These equations have been programmed on the A. O. Smith IBM 704 computer to solve multi-layer vall problems for steady state conditions.
Wherever possible, the theoretical assu=ptions for the analyses are realistic or on the conservative side. The value of thermal conduc-tivity for multi-layer used in these equations is the lover line on Figure No.1 for the "as received" taaterial even though pickled steel is used for layer construction. The amount of precompression used in the equations can be varied but a conservative value called " Cylinder A" precompression is generally used. " Cylinder A" precompression represents values of precompression determined by actual strain gage measurements on the inner shell by A. O. Smith during the shell layer wrapping process on multi-layer shells. These values of precompres-sion can be built into a completed multi-1syer shell by close control during the vrapping process.
Two multi-layer reactor. vessels, SPERT III and HTTF (non-nuclear) previously manufactured by A. O. Smith have been in operation since early 1960. A. O. Smith has conduett:d a cooldown test on the HITF simulating the temperature gradient in the shell similar to that which will be expected in a reactor application. The experimental data from HTTF 'is presently being analyzed by A. O. Smith. _ This data vill serve as a positive check on the accuracy of the analytical methods e= ployed by A. O. S=ith in the design of the Saxton vessel.
Similar tests on the SPERT III vessel vill also serve as a check on analytical methods e= ployed by A. O. Smith. Details _of the' design, operating conditions, and test results expected on both EITF and SPERI III are givcn in APPENDIX II - HISTORY OF MULTI-LAYER CCNSTRUC-TION.
B. Tnermal Stresses in the Sexton Vessel The results of the applicati6n of these general equations to the multi-layer vessel for Saxton for both 28 bis and possible k0 bis operation of the Saxton Plant are d r.dicated on Figures k, 5, 6 and 7 The ASME Code in its ruling on Oase 1273N, states that the combination of pressure and thermal stresses at any level of steady power operation shall not - exceed 1 1/2 times the allow-able code design stress. The allovable code design stress for layer steel (A. O. Smith VMS W1350 Special Grade A) is 18,750 psi at 650 F design temperature. Therefore, the total shell stresses should not exceed 28,125 psi during the steady state power operation. The calculated stresees for the multi-layer shell of the Saxton reactor vessel are within code limits.
The maximum internal heat generation at the inner surface of the vessel vall is 15,600 Btu /hr x ft3 for 28 hta (thermal) power operation in Saxton. The linear absorptfon coefficient for steel is 0 50/in. Using these values of internal heat generation at the design pressure _of 2500 psi for pressurized water operation, the maximum stress in the vessel vall is 19,500 psi and the calculated temperature drop through the vall is 260F as shown on Figures 4 and 5 Figures k and 5 also in-the maximum dicate internalthat forgeneration heat future operation vill beat h0 FMBtu 20,300 (thermal)3
/hr x ft The maximum stress in the vessel vall is then 20,500 pei and the calculated temperature drop through the wall is 34 F. These stresses are well below the allowable of 28,125 psi. It would be necessary toincreasethegammaheatingrateto54.500 Btu /hrxft3toreach
, the allowable stress of 28,125--then, the te=perature drop would <
be 95 5 F. Therefore, there is a safety factor of 3.k at steady state on the analysis used for the multi-layer-design at 28 Fra (thermal). The allowable cooling rate vill be set to permit an appreciable safety factor even during transient conditions.
If, for some unknown reason, the multi-layer vall should lose its precompression, the vessel vould still operate satisfactorily.
It vould be necessp to increase the gamma heating rate to 52,200 Btu /hr x ft to reach the allovable stress of 28,125...
then the temperature drop would be 970F. as shown on Figures 6 and '(.
The effect of local gaps on the temperature distribution in the Saxton reactor multi-layer vessel was also calculated and was found to have no detrimental effect. - Extreme or limit'ng assurrp-tions were made to simplify the calculations and obtain the vorst possible temperature drop across the gap.
l t
i
A complete circumferential gap of .002 in, between the inner shell and the first layer results in a temperature drop of 16.50F across the gap. This is calculated at the specified maximum heating rate of 28 MW (thermal) for the Saxton reactor.
The corresponding temperature drop across a .002 in. gap between the two outermost layers is .29 0F.
An area 6 in. in diameter is assumed to have a gap so thick that no heat is transferred across the gap but must flow to the edges of the loose area. This is an impossible and therefore a con-servative assumption. For such a gap between the inner shell and the first layer, the calculated te=perature rise at the mid-point of the first layer above the gap is only 7.8 F. A similar calcu-lation for such a gap between the outermost layer gives a tempera-ture rise of only 0.60F.
The area of an assumed circular gap between the inner shell and the first layer vrap under internal pressure is limited by the flexibility of the inner shell. For the Saxton application, under 3750 psi internal pressure at hydro-test, the 1/2 in. thick inner shell vould yield and close any built in gap which is over 4 in.
in diameter. This estimate is based upon the conss"vative assurp-tion tha' the inner shell above the built-in gap behaves as a circular plate with clamped edces.
C. Deviation' Prom the ASME Code The techniques employed in multi-layer construction impose two specific deviations on the rules and requirements of either Section I or Section VIII of the ASME Code. These are the inability to interpret radiographs of the girth seam velds, and elimination of final stress relief of the finished vessel. Since the definitive radiographic examination of girth seam velds-for Section I or Section VIE Code approval is not possible-because of the influence of the seteus between layers in a multi-layer shell, A. O. Smith is currently developing an ultrasonic technique. This development is currently in progress on the CCTV multi-layer vessel being manufac-tured for Westinghouse Bettis. In case the ultrasonic inspection technique- for girth seam velds does not prove satisfactory, radio-graphic examination is possible using a betatron. Although A. O.
Smith does not have a betatron at this time, use of the Allis Chalmers betatron has been arranged for the Saxton vessel if required. The ultresonic technique for inspecting the nozzle to multi-layer shell velds has been previously perfected by i A. O. Smith, and has been found to be more accurate than radio-graphy.
The final stress relief of all pressure velds required in Section I and Section VIII of the ASME Code,1s purposely eliminated in multi-layer construction. This stress relief would tend to remove the desirable precompressive stresses built into the shell layers, with
the resulting loss of interface pressure between layers which reduces the overall thermal conductivity of the chell. The elimination of final stree relief on the multi-layer shell to forging velds does not, b <er, compromise the safety of multi-layer constru tion. 8- < ' n sees are applied in the veld groove, each layer pl -
1 s ex.pand longitudinally, re-sulting in a veld whi - >
, f.lt-in stresses. Stress relief, therefore, is t F11 ccmponents in the Saxton vessel, including the mal- hve been designed for size and thickness in st: ' - Metion I of the ASME Code assuming no credit for .
. > condition. All components in the Saxton vesaw t
.-S 3iti-layer shell vill also be manufactured and L pecter <
ectordance with Section I of the Code.
D. Pennsylvania "Special" Approval of the Saxton Vessel The description of the Saxton vessel, including design calcu-lations has been transmitted to the Pennsylvania Bureau of Inspection, Department of Labor and Industry by A. O. Smith Corporation for approval for operation in the State of Pennsylvania. State approval in the form of a "special" pressure vessel #1469 has since been issued for the Saxton vessel after a detailed review of proposed fabrication and-inspection procedures. The design of the Saxton vessel has also been reviewed and approved by the Saxton Safety Committee.
This co=mittee has responsibility for review of all Saxton systems and components with respect to overall plant safety.
1
, _ . _ _ _ _ _ _ ~_ _ __ _ __ _ __ . _ _ _ _ _ _ _ _ _
IV - SUMb'ARY A comprehensive review of the engineering analysis, fabrication methods and quality control techniques used by A. O. Smith Corp.
in the manufacture of multi-layer vessels provides adequate assurance that this type of construction is both safe and reliable for the Saxton application. The following listing summarizes the conclusions on the safety of multi-layer construction for Saxton,
- 1. The use of thin plates in the manufacture of the multi-layer shells insures metallurgical soundness and improved impact properties of the shell material as compared to thick plates for the same application.
- 2. An independent analysis by Westinghouse APD of the stresses due to gamma heating and internal pressure in the Saxton multi-layer reactor vessel indicates safe operation at both 28 Mw and k0 Mw operation. This analysis given in WCAP-1506 " Investigation of Service Stresses in Malti-Layer Nuclear Reactor Vessels", pre-sents results which compare favorably with the original anslysis conducted by Franklin Institute in con, junction with the A. G. Smith Corporation.
3 The determination of the heat transfer through multi-layer shells, used both by A. O. Smith Corporation and Westinghouse AFD in the stress analysis of the Sarton vessel are based upon reliable laboratory experiments conducted by the A. O. Smith Corporation.
- 4. All deviacions from the ASME Code required in the manufacture of multi-layer vessels are substituted by equally reliable alternate techniques and procedures to assure that the safety, integrity, and quality control are preserved in the final product. . A complete listing of the manufacturing procedures and non-destructive testir4 techniques to be employed on the Saxton vessel are given in APPENDIX I - APPLICATION OF MULTI-LAYER CONSTRUCTION TO THE SAXTON REACTOR VESSEL.
l 5 Multi-layer vessels for commercial, non-nuclear applications have been used safely in high pressure service for many years. -A list-in6 of typical currently operating multi-1syer vessels in the same temperature and pressure range as Saxton is given in APPENDIX II -
HISTORY OF MULTI-LAYER CONSTRUCTION.
- 6. 'The detailed design and fabrication techniques proposed for the Saxton reactor vessel has been approved by the Bureau of Inspection of the Department of Labor and Industry, State of Pennsylvania.
This approval was confirmed by the issuance of a "Special" Penn-sylvania pressure vessel number to be stamped on the completed Saxton vessel. The vessel design has also received the approval j of the Saxton Safety Committee.
5
7 Operating data from the HTTF and SPERT III multi-layer nuclear reactor vessels, previously manufactured by A. O. Smith Corp.,
have and/or vill provide a confirmation of the analytical deter-mination of thermal Gradients and thermal stresses in multi-layer vessels.
I N
e 4
1
- .. -. . = - -- - . - . . . . _ . - . - - -
APPENDIX I - APPLICATION OF MJLTI-LAYER CONSTRUCTION TO TEE SAXTON REACTOR VESSEL A. Technice.1 Description of Saxton Vessel
- 1. Rinctional Specification The Saxton vessel shown on Figure No. 3 is a nuclear reactor of the combined pressurized water and boiling water type.
During normal pressurized water operation, the reactor vill produce 28 Ms (thermal). At a later date, a redesigned core may be added to produce 40 Mu (thermal).
1 Design Specification Pressure 2500 psig Temperature 650 F Rydrostatic lest Pressu*e 3750 psig Heating and Cooling Rate 2000F/hr (design objective)
Internal Diameter >8 in.
- Malti-Layer Wall Thickness 5 in.
Inside Vessel Length 15 ft. 7 1/2 in.
! FBQ backing material and l 1/8 in. nominal, Type 30h stainless steel cladding-Shell Layers ASTM A-212 B modified per Code Case 1056-5 which is equivalent to A. 0. Smith VMS W135G Special Grade A material.
Physicals Tensile Strength, Min. 75,000 psi Yield Point, Min. 41,250 psi Elongation in 2 in., Min. 26.0%
Chemistry l
l Carbon 0.22 to 0 30%
t Manganese 0.85 to 1.15%
Phosphorus 0.045% Max.
Sulphur 0.050%-Max.
Silicon 0.10 % Max.
? - _ , _ . --- . -
. _ - . - . . - - . - . - _ . . . - - . _ . _ . . ._- = - - . - __ . - - - - - - -
Heads ASTM A-2125 FBQ plate clad with type 308 L; veld deposit applied by the submerged automatic " Twin Are" method.
Deposited cladding to have a 250 RMS surface finish.
Forged Flanges ASTM A-350 Orade LF-1 which is equiva-and Nozzles lent to A. O. Smith VMS 5000.
Physicals Tensile Strength, Min. 65,000 poi Yield Point, Min. 33,000 psi Elongation in 2 in., Min. 23 0%
Reduction of area, Min. 34.0%
Chemistry Carbon 0.21 to 0.28%
Manganese 0.61 to 0 90%
Phosphorus 0.0k% Max.
Sulphur 0.05% Max.
Silicon 0.15 to 0 30%
All primary fluid contact surfaces to by Type 308 L deposit clad and have a 250 RMS finish.
Studs and Nuts AISI-4340 to ASTM A-193 Threads to be treated with magnesium phosphate to prevent galling. Bolting
' material shall have Charpy V notch in-pact value of 35 ft. lbs. at + lo or.
Control Rod Parts ASTM A-2kO, Type 304, stainless steel Access Ports ASTM A-2kO, Type 304, stainless steel Thermal Shields ASTM A-240, Type 304, stainless steel Support Skirt ASTM A-212 3 FBQ carbon steel Insulation Canning A$IM A-283 D or equal Closure Gasket Flexitallic, Type 304, stainless steel l NOTE: All pressure containing carbon steel plate and forging material including the support skirt shall have a.Charpy V notch impact value of 15 ft lbs. at + 10 F. Material that is too thin for ste:Ihrd size Charpy specimens will be tested using subsize C'arpy specimens.
3 Nozzles The shell has two 10 1/2 in. I.D. inlet and two 10 1/2 in. I.D.
ot.tlet connections attached to the vall with full penetration 5: elds . Each connection is integrally reinforced.
4 .ead Penetrations Thereactorhastwentyheadpenetrations,nine21/2in.I.D.
control rod mechanism adaptors in the bottom head and eleven in the top head. Of the eleven access and instrumentation connections in the top head, six are 3 in. I.D., and five are 2 in. 1.D.
All reinforcement for these connections are calculated to be in the excess head thickness. The ports for the control rod drive mechanism are capable of withstanding of momentary im-pact load of 2000 lbs per rod due to dropping of the control rods.
Due to the difference in expansion of the head penetration connections and the head material, the connections are velded on the inside face of the head only and are allowed to expand along the axis of the connection.
5 Design Criteria The vessel is to be constructed in accordance with A. O. Smith High Pressure multi-layer specification MLS-30A, Rules and Regulations of the Pennsylvania Department of 1. abor and Industry and vill receive a Pennsylvania "Special" number and stamping.
Design is in accordance with the ASME Power Boiler Code, Sectior I, where applicable.
Design stresses resulting from a combination of thermal and pres-sure stresses during steady state operation shall be in accordance with ASME Code Case 1273N and shall be limited to 1 1/2 times the ASME Code allovable value.
B. Manufacturing Procedure For Saxton Vessel
- 1. Cleanliness of Layer Plates
- a. Layer plates to be_ pickled and alkaline rinsed on a basis of two layers at a time. Care to be exercised by covering the layer plates to protect them from grease, dirt and other foreign material.
- b. Clean tne inner shell of all grease, dirt and foreign material before commencing the wrapping operation.
1
, + - - - . - , -- ,,,n-. ..--e - - . - e ,
~
I
- 2. Fabrication of Layer Shell
- a. Install layer plate on inner shell in vrapping machine,
- b. Weld layer long seams in accordance with veld procedure,
- c. Contour grind the long ceams to template.
- d. 3emmer test layer for tightness.
- e. Proceed with the balance of the vrapping operation under the same procedure as above,
- f. Scarf ends of shell section for circular scam velds.
Etch inner surface of weld scarf to be sure all alloy is removed from carbon steel velding surface ,
- g. Layout shell for connection openings. All nozzle open-ings to be laid out for machining to final diameter.
- h. Inspect for vessel assembly.
3 Stress Relieving Stress relieving of the clad inner shell shall be performed prior to wrapping the multi-layer shell. The completed re-actor vessel vill not be stress relieved.
Heads, nozzles and flanges shall be stress relieved before they are attached to the multi-layer shell.
- 4. Welding All velding vill be performed in accordance with procedures and by velders qualified in accordance with Section IX of the ASME Code.
5 surface Finish All surfaces in contact with the process fluid shall have a 250 RMS surface finish or better.
- 6. Tolerances The vessel tolerances shall be in accordance with A. O. Smith Drawin6 AES-Q573, Revision 2.
Tolerances that are not specifically stated shall be in accor-dance with the ASME Code.
i
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ d
. - - - . _ - _ . . . - ~ - - - - .- - _.- _ - . , .. . - - .
C. Inspection Techniques For Saxton Vessel
- 1. Radiography The following veld seams shall be radiographed in accordance with Section I of the ASME Code for acceptance or rejection.
- a. The longitudinal seam of the clad inner shell before l application of the layers and after alloy deposit.
l
- b. The circumferential seam in the top spherical head.
- c. The circumferential seatts attaching the stainless steel nozzle stub ends to the stainless steel lined connections,
- d. The vessel circular seams joining the inner barrel to the bottom head and top flange forging.
- 2. Magnetic Particle Inspection A.C. magnetic particle incpection shall be performed on the following --
The longitudinal seam veldo of each applied layer
, plate after contour grfnding.
l 3 Ultrasonic Inspection
- a. All forging material vill be ultrcsonically tested for information purposes only,
- b. All integrally clad plate vill be subjected to ultra-sonic inspection prior to rolling or forming in order to determine the degree of bond. Ultrasonic testing is for information purposes only and major defects vill be repaired prior to rolling and minor defects vill be rechecked after rolling.
- c. Layer to solid vall seams (heads and flange forgin6s) shall be ultrasonically tested at full thickness in accordance with a technique that A. O. Smith is at present developing. In case tha ultrasonic technique for layer to solid vs11 veld seams does not prove satis-factory, radiographic . inspections vill be done on these velds using a betatron.
- d. All nozzle attachment velds in the multi-1syer shell sectior. shall be inspected ultrasonically by the immer-sior. method developed by A. O. Smith.
__--._..,_ _ _ . . , . . , m,.. ,,-_ ,.... ,. .,,_ ,- .
l k.
Dve penetrant Inspection Dye penetrant examination shall be performed on the following areas:
- a. Stainless steel deposited surfaces after the last layer of veld deposit. This includes stainless overlay of carbon steel velds.
- b. All gasket surfaces after final machining.
5 Hydrostatic Testing The completed reactor including head shall be given a hydro-static test of 3750 psig for a duration of two hours.
D. Weld Designs in the Saxton Vessel
- 1. All longitudinal and circular seams on the velded inner shell vill be of the double butt velded type.
- 2. All longitudinal and circular seams on the multi-layer shell vill be manual are velded to A. O. Smith production engineer-ing design standards.
3 All nozzle attachment velds in the multi-layer shell vill conforu to A. O. Smith production engineering design standards.
- k. All other velds vill be in accordance with ASME Code practice.
1 APPENDIX II - HISTORY OF MULTI-LAYER CONSTRUCTION i
A. Current Commercial Non-Nuclear Applications l The use of multi-layer shells for pressure vessels came about l
through A. O. Smith's efforts to find a safer and more economic construction that would be particularly effective where thick valls were involved.
l The early development work was carried out in 1930 and a patent was granted Mr. R. Stresau, the inventor, in 1933 Many patents have been granted since that time and some are still in effect.
In the same year, a thick valled multi-layer vessel was built for testing to destruction--the first of many full scale vessels built and tested to destruction in the most comprehensive and thorough research program of its kind ever undertaken. As well as deriving a vast amount of design information from these tests and verifica-tion in actual operation, multi-layer vessels draw heavily on the accumulated knowledge of materials and methods of fabrication gained by the A. O. Smith Corporation from building some 8,000 multi-layer petroleum and chemical vessels up to 35,000 psi design pressure of every variety and description.
The following listing is typ3 cal of the non-nuclear multi-layer vessels manufactured by A. O. Smith Corporation which are currently-( in service. Included also is the customer, service, approximate l
size and operating te=perature and pressure for each installation.
l ID Press. Temp. When Customer Service (in) (psi) (OF) Installed Hydro Press, Inc. Accumulator 42 2850 650 1954 1mperial Chem. Co. Converter 59 k800 650 1940 Calco Chem. Co. Autoclave 48 2000 482 1941 Atmospheric Nitrogen .
Company Converter 45 3150 650 1942 Rohm and Haas Co. Reactor 36 5000 650 1950 Solvay Process Co. Converter 45 3150 650 1951 Spencar Chem. Co. Converter 36 4000_ 675 1953 M. W. Kellog Co. Converter 50 5000 475 1955 Borreguard Co. Reactor 71 2300 665 1956 Escambia Bay Chem.
Company Converter 455/16 _5200 482 _1957 Texas Eastman Co. Reactor 70 2000 630 1958 l
l
The demando for multi-layer vessels in recent years have been very great and the design flexibility of layer construction has lent itself admirably to th9 solution of specific vessel designs for many purposes. The designs of such vessels has met the re-quirements of safety in accordance with regulations of Federal and State Laws, U.S. Armed Services, Lloyds Register of Shipping (Board of Trade Requirements) and other world-wide regulatory bodies.
B. Current Nuclear Applications To date, the following multi-layer vessels for nuclear applica-tions have been supplied by the A. O. Smith Corporation:
- 1. High Temperature Test Facility (H.T.T.F.)
Westinghouse-Bettis - Pittsburgh, Pennsylvania The H.T.T.F. Reactor is designed for operation at 650 psi and 5000F, with no gamma heating. It has been in operation since November 1959 The vessel 18 82 in. I.D. vith a con-siderable number of shell openings in the vessel vall. Using multi-layerconstruction,thevallsare21/2in, thick,made up of seven 1/4 in thick layers with a 3/4 in. thick inner shell. Layer material is A. O. Smith VMS W1350 Special Grade A, having an allovable stress of 18,750 psi at 500 0F, and the inner shell is clad with 1/8 in, thick, Type 304, stainless steel.
The top hemispherical head is 2 1/2 in thick, ASTM A-212 B FBQ materia.L clad with 1/8 in, minimum thick, Type 308 L, stainless steel deposited by the automatic submerged " Twin-Are" method. Thebottomellipsoidalheadisalso21/2in, thick of the same material and cladding.
The design specificatiog calls for 2000 cooling cycles, each cycle from 4720 F to 200 F in two hours (136 F/hr) which is a l moderately severe cooling rate. However, vith the strain j gage readings, it y be safe to exceed this cool-down rate, l thereby improvina the vessel performance and increasing the range of strain gage information.
- 2. Special Power Excursion Reactor Test (SPERT III) l National Reactor Testing Station
! 'Phillips Petroleum Company, Idaho l
The SPERT III Reactor is a pressurized water reactor deeigned 0
for2500psiat700Fmtaltemperature,vitg)expectedgamma heat 1ngof.56vatts/cm (54,100 Btu /hr x ft . This vessel i
l has been in operation since late 1958, Using multi-layer construction, the vessel I.D. is 48 in. and shellthicknessis31/4in(eleven 1/4in.thicklayers) witha1/2in,shellcladwith1/8in, thick, Type 30kELC
stainless steel. The shell material is A. O. St.ith VMS 1146 having an allowable stress of 22,800 psi at the de-sign te=perature. The bottom head is a layer head, the same thickness as the shell but using A. O. Smith WS W135G Special Grade A material, which has an allovable stress of 17,800 psi at the design temperature. The top hemispherical head is forged steel per A. O. Smith VMS 5002 mod., 3 -1/2 in, thick, clad with type 309 CB stain-less steel veld deposit.
Various tests vill be performed on this reactor to deter-mine its nuclear stability and performance--for example, one test is a " cold water accident" test during which a sudden flow of 4000F vater vill be introduced in the reactor while it is operatin6 at 6000F. In addition to the high thermal shock stresses induced into the reactor vessel and its components by such an experiment, there vill be a major surge in pressure due to increased nuclear acti-vity.
3 core co=ponent Test Vessel (c.c.T.V.)
Westinghouse-Bettis - Pittsburgh, Pennsylvania Core component Test Vessel is designed for 2580 psi at 650 F an/_ is used to investigate feasibility of various core co=ponent designs under actual conditions of pressure, tempera-ture and flow. The vessel vill not be used as a reactor vessel and vill not be subjected to nuclear radiation. It is at pre-sent being fabricated.
Using multi-layer construction, the vessel I.D. is 47 in, and the shell thickness is 4 1/8 in. (thirteen 1/4 in, thick layers) with a 7/8 in. inner shell clad with 0.109 in. minimum thickness, type 304, staialess steel. The shell material is A. O. Smith VMS 11350 Special Grade A material, having an allowable stress of 18,750 psi at 650 0F. The bottom hemis-pherical head is ASTM A-212 B FBQ material clad with 1/8 in.
minimum thick, Type 308 L stainless steel deposited by the automatic submerged " Twin-Are" method.
l The removable top head has a bolted closvre with a 15 in. I.D.
vesse2 mottnted on the main vessel h3ad. The 15 in. I.D. top vessel has a quick-opening closure with a control rod align-ment mechanism.
The design specification calls for the vessel to withstand as a minimum requirement, a heat-up rate of 3 3 F/ min, from 700F to550Fandacool-downrateof30F/ min.-from550Fto70F vith a corresponding pressure cycle during these transients from O psig to 2000 psig.
19 -
, y ,
y w .c- - - - , . m,s-y.-,._--,,m.n.. , - , , . - - ~ a -
- - ._ .- - - -.. . __ . =. . ..- - _- -. -.- - -
- 4. Fuel Element Test Autoclave Westinghouse-Bettis - Pittsburgh, Pennsylvania This is a small multi-layer autoclave designed for 3000 pois at 700 F, 16 in. I.D. vith a shell thickness of 2 in. (six 1/4 in, thick layers) and a 1/2 in. inner shell clad with 1/8 in, nominal, Type 304 stainless steel. The shell material is A. O, Smith VMS 1135G Special Grade A, which has an allow-able stress of 17,600 psi at 7000F.
Tne top and bottom heads are both flat. The top head is 6 in.
thick, ASTM A-212 B FBQ material with 1/8 in. minimum thich, type 309, stcinless steel veld deposit. The bottom head is 91/4 in. thick, ASTM A-105 Grade 2 mod. material with 1/8 in, minimum thick, type 309 stainic ss steel veld deposit. This vessel has been in operation since the spring of 1959 Reactors 2, 3, and k have State of Pennsylvania "Special" design approval and are stamped accordingly.
C. Expected Future Application
- 1. Commercial Application Unprecedented extension of the rrontiers of chemical engineer-ing processing is calling for equipment to resist higher pres-sures and higher temperatures of operation. A. O. S~ith has fabricated vessels for pressures up to 22,500 psi for the process industries and is at present designing and vill fabri-cate multi-layer vessels for 35,000 pai on an order recently received. Commercial multi-layer vessels have been fabricated .
up to 120-in. in diameter and 1h in, vall thickness.
With continued research and development of_high strength steels, these pressures and dimensions can be exceeded to meet industry increasing demands.
- 2. Nuclear Application The current and particularly the future application of multi-l layer to nuclear reactor vessels is for high pressure and/or large diameter vessels. The extension of the present_ boiling water reactor technology to the supercritical temperature l
region vill call for ten foot diameter vessels designed for 5000 psig pressure and elevated temperatures. This is a feasible design w ing multi-layer.
Economical power from nuclear sources appears to be possible for large power plants. If there is sufficient demand for large reactors, it would be feasible to shop fabricate large diameter multi-layer vessels up to 12 ft. in diameter and .
larger vessels in the range of 16 ft. to 18 ft. diameter by a combinat1on of shop and field assembly to overcome shipping limitations.
- . 20 .
1
.-~. . . ~ , , -- - ,. , .
A.
"j m .
- n; !Ur l;h m y ji9 a ;gli lu
- ' V !iil ini u! h !n ;W
~
e 1 m ; 3 H.
Q
'i% ki['h 'iII $i[y 'I h i} ! N' ] ] h
[. .
! @Il ]4 3'l M [}I]II P y d%MF M 3.n. i d $ M I MN[jU0 i
' .! . h lii II -
i i !!h ;H1 11I i-l !j l!- iil!: ? r m!t u1 i
.. m :
nii h.,i .-1.:_ih.a_iL .i.lm. .11 5. 3 .l ! 1 , -( M Mi :ir H: # 1, i i ? , li i II H! i0 l llh dh Hj i1 ii.! a- !! ! q > n i
.g A ws . . . _ . y ta .t. h.: 3 d.l.!!!! it}"!u. '!!!, _.1_ i .A IT h!!
I H nl ll! 4! ih!- W .q!M.
- 1 gaj.gigi n l l
- p. - - -
g ;. g
! ll lippi . -yi ; y; e , ;g .JJ 3, B ni .
t T 1 m a. a"i t tit .h : pi! l'ii i. il i!h 4 ! ' ! Ui ! i. i? "r l Gil-
'ii; .' i_MJ.
i.i.i
,i d, :!
y
- .b i
!p q. _ i~ !.] ! lji. y!.
I; j- i i. i.j p,~! {c. fl.h. j _
). f !. i.N i.t.t Hl, . "iii i iI a -j ri ki !Ll lL ;J. @
j
.. F(
rF r n; ji;; n n S jn n .! .i.l.il"t 2 ?!i ! li if!i ,d Ih i i ! !
'i l !
ild rt g@i I
.l i! ili-z ll Ib' I I l l I @ ! Il i
g g. E .
.i An3 LN!!i d! d. !$ 1h nd!.UU h ! hh b l fd 0 $i ksil ~ ~ $ lI IL . .yi pwp ri ny p N@ im M l p lg st JJ jj'i pq y i igj up ! ) gt
[1a - li l il j i ! if ti li ! ! i tj- . f iM di hh 4 :li; :ii ;!! $ i "i ! r t g'! i b ;hi in HN!iii tit
-li92 il]I ii ni ilil i L li I II r i l P 1 i bs t ?! ild EHi liii k'l mi l1 F !' i i 1- Lti !iiL # 4L i iiiid m L Hi iin pi!L iii! lh ni! I! I i,I F i ji !4iisMi (MS h Yi is! HTiH DI di lili lili iW "i! II. 4? i 0 c: 3 # " .m . .. . te vi Ei hi "
F.!! j i f; fl' '[ ii af
- i-
"H I ji i *: ti d + -
wd' md-fi: 'i ai e MT itn M -
"alili4!Ew nmE. al W t
[l : r - - qim s $:q i il 4 0 ill; ijg g
'~ ;.4 lil;i jy- li
- " 2. : i i !! II'! iDi d in i' UU 4 Hi .I ,
!i ! ! f ! i ni ti iU iM blif 11HI u -
I M 0l: ! dh di! Ol lili f {!1i M !ji @[ ! 4 2 i- Pd! iii "H I!d iiii !A i! : i. $p! i i i i j St j fit i it i# M ijf ilij n ei M I!il Cii
) "ii 10 :ir J.!! HH iMMHD f! MHuM 1[gilHM gj iii. HR (E!) H $liip V 4 ily "U L' iiii ili !S ii!dji .i" gliii :il lil! iH lil !!ii T ui! fti % i4 M Lii : :D lij Q l ' ' ! .} (( t tg$ !p Ri j!]sy t P: n:. .. !H h!! !! i !i: x!'? i! ! .P lNi H, id 4! :
1I i . mn j 'l i. tJ 1M (#d i ill iiliR
.e 7 7 !n .'
N :! i iiii 91i it i i! ri HH j il pq 4 HH h (i .
.!!!!Oh .+ ..+ .!.!.!.:.&s!Iii iin ilii d ;(( j'i j; F' ..( .l l.! dll ! lj id y $ life i!)9 i) in! ,o " !!]gg. ,(n. i y gg ; MM Hij i oi! .+ .!d- l7g j anlgi gg gp gg .g d ! i B i i ': * ;in dii l10 !H 0ll 11! Ai j i!h dulihJ !. f ilb:i i!# lid Rii iki .lli, hit ik 61 ^ ?!h !
3i! . ai: r :;h m. mi lig in !!g ll l y !!!! iii! l![ !y Q! i$ ij!i {!i i . 1 Hi 4i 40 1:!i d4 In- tili !!i!ik iMh!! Hii
. . . . . . . m.. ....
y
- y. i F r. ; l.i .tii in .H .}i. ny m: mt ;{n i n_m. . . ..g
.. e d!jlii i Hi !iii ...
iin i...
!!L ~ '# ; Hi; 9! !!!! it!! i!!! U!! lili ! }! lii! p[ ifi E lil i i il iu il!! i i1@ !!!i lig !Eii!p @gr Efi
- n :iji 1 ni! !F :di tip fik !@ il !11 !iiili .!k i i oi l 1!! i!!! i 9.
i 1 Mj Mi si g! iinig.-@~ i N);f i ! i i i t if i.h 'lH F- Di! @i #j ini !!U tii 6g iiH lit f!" !!i! ifil hil !U !iii fi
, i- Wi- ii!! iiii !Ui dd Oli iHi l!' 11i li!! till lii! i!! M ili 9iB B i ! ;illt LthlR d!!' if! illiti !Hi -j!! l#! nim Ei .
ii! iii! nli !!!: -i! iiii ini Vii ill 0l lill i.!i ini;il ihlRHlf k ! 1 i i !!i ;liiid !n i i tidii!;l .!E !i% [!j !!!i di; iniili idii ij pHiGEM
!!i. !% du ini iih li!i !!!t !!ii!!!i ! O i!!1 iH ilii *i % @ 4i! !!!! I!dri m !!hM/nial in!lin i k HNii!. pi' y gretWii!!i iiiiaitW!i4i utii i!ing-Wi inEG1di M3Md.tii 7~ !90lMS kMit ?@ fH j ti!N si 4!!triti!!!!iiIll init#! '
V3MOl! Mld1T @WB.In !ith $ilittiiti!lisii!!ityilitjgji@g o 3 0 $ o e e 8 e c
- M N - O e
s i
-, _ . _ - . . . . . . . - - -. ~ . .- .~ .. . _ . . . -. . _ _
e
==. 'I ',' !!! .; -lf: i}I !b '
_.. .:n' d .j ' MI: i
- 5. ~th. 4 i[i 1.*
h 'l L,al ' - p " a. ". 2' ._ ~-
- a. '
} I U Uf -
h N ! E 'i:' O. q c ,E + t LQ
,n m. iw !b % yltl ie s Njj ii W h. a .i;c p!i en ai F W.9 . m ;
L
. : !.1. .:ti. J, W: M n.W@
I. n, , .
- r. n ;,
y, M;,r: 4. . N ; p. t Wr. M.p. i. "a. t i .Qd
. , J. i. n. . ,. , s, . o j I ;~ 2 L .1 . , ,, r.
C
... 5..:.-, . .I ..
- b. . .~
!!! .i.b,.id .- i ...; !
g' Il
. .'..I a , b.4 !! l. ! .. s. - - . '1 i ' ; t. $$ - '
- I!! . . ,
1 . I la W . t' ; 1; j
- i. j
.b; - j. * .[ .1 .6, ; 4I, 4.i. Q; .o ..
y Lg dd.d'.I yY' @ h. . 16 1: ,;.! .
'T - .J I: 4 43 M ' <
a - mI- * ' l fy ' ! 4- ~ P, : +- g
.i i i ~'! ii 'ft: !:1: ': p" j .f let '- '- S ,9 @* ~1i- :?l' *10
- T. '_ >i m
. .MB ei n.: - .- - ra ,? w:gn ni: ip:o 91- ji it PC L gf 3t ; a . - ...
2 :p;- ijlw' !I ' '
% d !F* aj, L m !.i-'
- t
%.h- @; - m n.it!. . de.. "m +,, .! r ;; . ~ ; t q i i 1- - -
an a'H og - - J.
. ': i, t, i!p-,h o - e ri i -np n; . :ii. ,
m - -
- t, - ; f l .h ( "!! b dh !' ! -. i.d :. ! l1 .ii.
- N.!l . fk .!!!$ .!
_ t.:. I .l
-.. f..- - 4 - . ' .. . , i.. i. - .- .. z -
4 p, u n- p- m M g g te
=9 au mt iI .! t h5 *m .p !y i--n . ! . ..n I p' ' : .: !*! :;h ti ,I ':
I in --
'tu"! ' i - :
k( i p
. . LJ O ;
g h; ap A p': .;p ': ".' j :lh h' .;;. iigj f ' t ;.. :p-
.._a ;a. t.. q E,
M. ; a C m mi '.i - -
;d;U ' .W 'i ;. :;i! .,:i 3:
- h. !. i...b. : l :. O. !.f c. 4::P.
'1 r" ;
- d. i. 4n F. ii! iip. p. i. !.::mb
- . o k.1.! . .c.t =
s s. n u m g; im ::j a :;n - -
.jy :
u t.;- ..h y). h.; . 1:
.f: fle a: :: ,
hr n i ul : ? . *;l;: !j .,,yi. : c: U i :. 1 :1 n.n :: '. ,i. . .; a!- n 4 . 1
. iI k) b b!3 hd $ U llh !N! EI Nb ! lN hl b ii NN !bI i i' !I IN!SiH -
d b$
--+--
1 .li- @d !Hi :-:i! fi!! 20i -- E!. 'm !B i4 i lih Vii ii ! ijk- hip- d4 ' m: lik w i N
.; ". :;; d. '
t- --- - m. t- :- e! n1
. . . t..
- h ,.
.;11 :;:.:
- . i.--
- a. ..:d.: : p.
1
.p . u. . ..:n , h. .r . p. .d. - o. . n. . : .p ' ; i ;j .:: :Q j l
- 4. :-: I : 4 :{ :. h't Il8 -1: '0- .t:, : " ,- Lj j- ::H t P
c i p- *' i .j1' "N . -j *l .
- ! s :l .
n.N :ac
.! H !{ji . - U. .
g
..-. 4.. ;-.
9 :.....g. .- m- e ,-
.47 .j i - . 1. _, : i.r . i.nu..t. ctd.1"1:. ,. .F.t.. ' . t- ....
- . 4.. :.."l ;. .. .n. ."t: . . u. . .: 1. 5, 9, :. pq 9-
- 1. . . .
.. f. . 1 . . s t: 1.1:. . I t, .. ; 1I :.. . .. h. . 21 : u. n. !b:. ;i . dn .! n.
di: ~bOI Nii !!!! di! Oli i!h $ i.i! ;N} O ! il" L i ,: i Nl ilH ' iili iS !iii "U i'. .i5-m a - : Ni Nh !N HN j a j . .a .,
': ;. .;il.j .;h.
3,
.j.i .j a
- 3.. h.d.,. j ..:. j.t..}.
t .t.l.;)
!;t.
j: I. :r . .f ..I
.U h.' d '}.. b., .t!. ! .r. !! ..!!!. :..r. e ::. . h.
- 't .p. !. }.M. ; ;
- o . . .
. ... ,.. . .{ . . :t. :. :
Uli N!2 . b i~kh ! NN i,fh! i h !i h , hh
- N!! Ih! i
~ 'p: .% 'ut r
- jdk :nj: t. 2 :n. :r
- n[ :n: rm h'a. :tu, :u tU u ylJ a.. ;u: ;p:
g!; *
- A
. . . . h. .,t- . {':: :
1111 : .
- s t t:c e "e 4 i g;i. '-
e- n 4 g 4: . ..::tn. w
- a. ; . : m c: n ; -. c. a, r: : : .
n, .1. 3 ;
- i i il*r .
q*tt, :;j.
.n:
n:. 2 m
- n 't .
2 t 3
, .I 1: ; '. r ;
4 ll. U 'I :e! :. f:p
- n in. ; ",.
.:t; I". . . . ::
lIlIN! h k ilN if NN I' !!N NI !!N i.t IN f- ! tN! $.! hN Ni h AN dh !ii! g 1 hi! :ii.' !!!! iiii ;R iiGHf ni! Mi iiH Wi in i i .p. q. .. : g.,
^ FH 1i h. L ii hil i !!D !!!! !4 kV % m> s n -
2 - n- Pl' :it i:d W d. g ij .. . .- g e i . g.- ... .. ;i idG Li M !Hi iH d Lt . j ..dHl W,, y. , du A y S
! W! !!O d. - ..:n . +
h-- 9! :..! !)! ON NE ! S e .dNN ik i@ lih I h.E! .!h }t}} , N.] lif I'!iin i.E id! N!! hh ijd '- :dil t! q. -- .
..L- P :i p r u. .n :. . . ..: :. ., . .t r.il .:-
1:. - _,o tr- ;m
- n. ::,.i! .:. ): , n::
.~
- n. .i
... n
- tu . . _ n. .
1.i..P.. H. ! !1.! . , m. ,1 .i .,:t .p!
. a . h. .i.1-. ' il .p._t.. . .. . u-. . . . ..-
g u.. o,
~..
n u. . n.. ~.;,* . : n. .... '. .n.. ;14; :. . .:;
- n
. . f' !. _t .: . . :.lr. o .
t'. t .
- 9. .; .t.I,rl 4' ; . .,.
.q: ... u. .
i, n :
~ ~
- .:N Nl! IlN !N! FIN I Mh bl liff !Ill iN li! lIl lN.fIN k! NN lbi T !M 'Hl' !NE ! hF! !I! '
9 hi! Wi 1.9lin !i i hifii tif $f !! 4!i lh ni iH Lil IIi r i iii !h Pn 0 :iH ih! iH! ii! i He -
- d. '"" E i!H iii: ih!illi iLi fib dWHW!Ni !Hi-H-! NN1B id u h! 4 ih!!i ; i! di:
!Hi OH :ii! ! .. # Hi !!ii ,
ui Hi! Nii W! Si s!Lil flii lii@ !!Riif i i i itt 4 !! ,il E
~ ..H.. li !!!h!!I N.iF..'...i "i ;i". ;iii . . pl y- .i . :. .i .:. r.ti .q. : f .g p: ;. ' ,tf .- g g ! lif, :.n , I. ;. j. ..H ini .. . . . . . . . o c 4 . . 4 .. u -
li.t. ;. H. :.t :: : ::. l M. .,.u. p.'.M. U M!h
- f. p. f.
- i., n . .a . .t. G. i.: t;;
.y
- r. .:n .,
!N 00 INI dii-iliiiiE WI NO IN!llU ME Ifd lNI ' N1.E i Ii Id Ih.' !!E iiU Ni Ei! l@ 1
- i" ! O C INI IIN I5h- !N! i!!I !NIN Nk!iNfN!! N Eh$N [!N .IINM I,Id !! [UI !!N !!N bi i ** I'f
- E ih p::q d:j un ri -
un uti'at; W k
. .g ts: iip.: .::h ::na rg ::h ut:
uit mi.l!nt:: . in. 1 -n t: n- ..n. n: r ig un y gli o . y g g1 g . an '
.: p,--
E E! M@dM$DN N -
!% DCINM M MNM .O e.n. 9 M O e e%* t to T - - en M N -
O
., ,. _ . - - . - - ~ ,
y,_ . , , , . , . . ,--..,-we v., ,-r. - - - , , - - y m - --y+.
a I . l_ i.,'8 l' a ! . I - l l' .. _I' i .
/ . +.:
V'
) /
4 . .) N l, ,
.?$ .
4 %~ l e**,Myp % u _. u m - f -wfa 9,
- s. 6 *Qm N s ,,,
m,n ,
,- t . -*p -y . . . - . _ ACCESS AND JNSTRUMENTATION g ,
HEAD t.OAPTERS I I UllirRH -
. 21 13 er u n !
y-
~- .L . -~++. - , 'N';f : 1. : &--- s.
i l d.~ --
-......_..c. . .. t. . s. _ .. . (g ell'-s f : .. . 5..%... ** ! g, i t s ]- - ... a:- 4 j, -, I Q} u; '. , - - ._. . .A_. a o .: V- + 'l [:_n Ib l U \ -
m + i MKTI-LAYEP SHELL -- p:' 2
,q u- .,g ., e
- i
__ . :lli INSULATION CAN [v b g :a
, +. + r _ ' e h o TkEEMAL 5HIELD '
b :! I
.. s i n.. .. .i ' e 4, .\. % . ., ,.c m ,.i. .'- g - ..-- p .
x - J . .k *s e l MECHANISM HEAD ADWTERS i 3~ ' v.
?. ? . .. . ' m.- \J '
y
^
w
. s 4 ** I, i t . _n .--
ci i c T
! 2 . .- ...- .
( j iot i n m s
.;}..
l y j 9 ll ll g ,o
.. g r4,i O a,,,,.,,
l u ..
.. i , . y, ,,. ,
J u . I. ,. N 4 a i '- s a ,' 4 t ,
- w r -s 1 .
g; r. r '- g !Il'i i is\Yxy c , i c.//./ ./ - , th1.. .
- h. l c. t $-
' l; ;d p'-" " . , .
K . m' ,..r.7 . ..' W
~.
- D i1,. , I 4 t ><1 e .v ..,. % , .i .
. 4 -
.a ...i.~ . .. .
S n 0 00 . . . . . . . . . - .. .... . . . . . .-. .. no FH'G' MN An: !!h EMth .G.ilSAT..O:y; hul.. !HFHi
~~
iii . . .iii
- . $.. . ..in Wi!inEE EEC tjp'h'n- a ..,m n ~ " . p" .ui n"ON4p.a%pd: :,fik w .;: . ~
mt "n u" u : u 1%puSEh'" L
- rr
au "" p"n an: . :n ;, " ', 2 tat ? pm :n ;i nu :+r #
n M:ml4S4r:. tn 4 p: :"tp u " " BU np n: d e :j<? s uz:.: M ".i .h ht y 9. n
. um}I '..g}u}(.;h @l r uu.= A"1. . . -b .
w i itn un g;f
.J M ;:t l.o .. . .
o: I"hi , x :. .; : ; . 1. i(1t: nn un ... e c: +H,. n t- w wnr em. c j tt tt. tut r n tr att nr. d_u.. t
.M ! .lj}[l..h. ..D,D, ..L..L..i, i.ji. !. . Hj mi g1g..
- d. . i.!h !. n. .!.!.h . !.it.i m.. b.1. 7W.Q.. . I,M..w.... @!,%.. <. .L.l.%. .
Tr%. i
. .m.M,.iy. .,w. .... . ....
mi 1 . _
...o... .u . .. a,.. o.. .t. nu m 3.,
al. il!+ ti;f 3 .. R iT Hi F" 11 TN iBTEe DV LETNTEU 2RE55JRL DHi W+I ER10F ERha..T.10k.. Mi aii n:
.o .. .. . . . . . . . . a... .
3..
- m ni -
lDE$mt, iiti ..li N.h; .!!.,[I i,
!!h. in 9. p". mi AT IBE.UR E:id.-.WJ !!T d...........fROITE !!H .Di " . . .j . . - . . .-p . . ..i.~J a.4 ~
[*g '. 0 . . . . .6 .. . . . .. , ;
!N4 T!Iliy r N !l @3' ttt
- -{*g A iW.lN W N. r+P REC DN Rk. BE i6b..G:
. , , . m.. .. ^~3 i [Ot '$i ; !ii: * #0 !. N"i.p.u..i. !$t.iii, it.a un
- y. u.~ni~
m.- m. . a. n. i A. t.i.a. i.!.r.. dyi. i. f..t U. i.4. ft ii 1"3.i t. n..u. d"i,!i}:a..!..l.iu.. tip .F";.y". O lu y N"h, a.. ".: .it 5. .
- t. t ,ft
. . h. . a. . .it .g . 1 q3 ...in.. . . . -
- 6. . . .. . . . .
9 .i.. . . . . . . . . . . . . E;-.
.L , COOL ANTHURCS$UH d. h, . -2 5.bCd;.PSIGid..! ;dEGCCLAdi OilMFERm. Rd. 1500, .4 4- Ig}
t
,p. .-g ..., .a .+ ., .. .... o .l. u iiN,i: f si Fdi'iIf iiff i.}N iHi iirr!!!! ull-iiphi !!!! !!iiiiH IH k. .i N!*3 H. . Uli Ii hli F1F 5 lU fill .-jfN. !h.
m 2+
. 1 p m. .m .r -m t;il} H !!' "j inX eM:W. .ji M W..I M "k!. @ Ti.
l li!
.i . . . . ..,.
h.1irht! !!E .mNil i.ld E ,:FiNt: 3s il...i !.t M r+ n- n y in - - - nit u u
.t g.$F;. nn nu.. 'r + . r.y:- 9.n4 ilt' .. Im1gj n: n ((.E.. d Nu uh rd"i y: . n, e Rh di}. nh rdi: hh: THI Fui t.M" tih :rUj Ng . m ... .tt.t . .
l " im".
+- . . . .n E .m p.a:a-m i- n- i d 'i g- ij .; ,-{ij .:iJ - . .n; . 9- H.. c m_ t :
n:. . :p_ w. .lu.. . . n. . a.. v.H.3. c:!. r :
- n. ., d. . . .:in, ..i
- t. :.m. !.t.y. F,t.t {*m. n y. +u. [u.4 ..l E.n-
. . . i.itl. *- -.in- . . ., -jb.. _
1 m
. .,.t u, n.,r--.
h~; - : t:,n"..nt. d.....n.t c. H a . .g ~-q, . .t i.n-r. , 2-
<tt .n. ,t t r.t. :s.W.p.+i "n. ;t .h. m c1. ot . ,2 .i. n.. t.1 :. t. m 1.. E..
- u. a .r :r.:jt.:
.. t. -.. . t.r.t m.. . s.l.i.t. . ,. .4 In tt.. f.i .' 41. m..'-..a 3e 3 ..- o . . . . . . . ... .. ,H .. 2 nt;.
- o 't r. d1 -.. i. .t-
. G. [. +t ;j -*f.t t t. . . !. 4. 1 . U i. 'f t. !. 't1. :.1 f . h.t..:1.} } .i1.3
- ef7 :"t!
-t .i trt 3, ..t.i. U tit'.. !. t y. tit.. ...
1111 int c ,,: - - 30,000 . , 4. ..;- :.g! e: ..,
.m . . . . . . . . - , .
jt.. .at a: . . _- 1 .... ..
== n tu; = . : E. ;.:;,,: :. h.r .tp J. S. . ;tii ::Jp g.:li n. - itt gp m,..{ i... - 4 tu}. - ,;). .,att.u -
m :pn m :yp1 vt,;4_ 2 .}n. a
..r . . , . " .# .-
- . x. .. - . . . u n
. m.n. . .n. . a. 1 . ....' ..7..., . . .r -
a.m.;.. . .+. f. .
. ;{.l @ t. ::!.p. i. t.{q} [n *. 7,i g!- ++++g. - * . . g. 4". *+ + M.. .45 n: ',n U. _f4.M ... - [. . . a_ t fn..'. [4. , lt,ti t.+jt.. : y.,} t. i.t. .^t.1,+. .M.... +w . m h
Iir N': hi} b Ii !i _h:$hNI Ub Nh kNi N t bk h, +h hNi !![1 iNI hN NNi}N !! in
.I !p! di gi;.
- 71 0
- 1. y. 21.. .1' 1 ;gj. :u .;g lj' 3t hg,.ppFi;;L Ti b; tm. uf{.-3.n-4 :.n ih';,; [.. ;7 :nr n{.{. htt
=- m e . 1;;;
t . p- -r 1h . . . un u.. 'f r.i it"i rd - a rt I:n ru :c +i., nu nh e.
- : Cp ga $ 'i im . l M.,;qi aH up a; itjr cr J +I 1 tt
;;.;t-- *m r.: . .r yh r- :::en.: :m n.t f '.,f%:{j}n m. n air!jli utt :a: ::" .:. tr a u.: "[ij: tm f;t:: ;;t"ii}}l.
1.m
.; un:
mt :d.{_tp{ :a. se
^- TUi h Nb 5 N{I i ith.M h 2 . .u hb hlhi d!Ilb !Nh [! I N!$ NIh .-NI INf . [!S .. , . . .__, $N $!! hit rkhf NN - .. ; ,e. .;it! .. , t ..! g} 'm .!f... t.p lJ. -:: ':": *.g.
- . E.- ,4 nt: ,fq .d4
., ha , :h..t, d. YkU,:!.}.J i ; : . . .t t' [ :t 't .,t.TI,3 n}i. 7.Iht.!.(( !. *t'.T.*t1 . .}i. ;. . ; ;h. ;yh. .ul g ,,
u_.: mr;u , ,m ;f.y. tt.e .f.h. .- } .. r y - y i
..~
n . 1p1rq< pn un.... aqng :p - ut mr sn ;m un uti ;iu'.:
!il 3, . ,; ;q:;pn 2 qu. h:n 1 im tm aly --Da :-- fin .u n m- ,, l 20'000 nam.t < ;.o a:.
- n. v : an cu m. :. mt t{ar ni:na.u t.
m m t.p1 H I1:. . er-t n nu
. . . unr.t -
a in Lg
- a. ; : . ...:!u ru a r;
nt- t- .: 't 1
- w- m nr - r nnun du ni;: g.. .uq . m. ;;i 4{j 1 ;.lf.: .: t. !!h :d"! un !n:ntmi ni
.. nl:sdu Qp!ul:: .,
l Rh!!I El $5 "5IIl !!E SE IEi NI!is !E !!!!!!![! nI
!NI IN!Sii lNi iSiijN,f!EIi[$N t :;;.p p ; u..p:qu ru n - c .n i N!i !
p n- : tm ::gt ne
)! ki 5i y
g
- .u a
=w -- t m.ni ;n,2" nr. :Inuq -. ea
- m. nr q:.p;;;p: y,nnr:
2,.
.i.ga . c . . . t.. th M un H:: "a3p :t,b: a utm ..: mt d SOiii lii !!!i !$ lib li!! !!N Mi d!i Illiill! !iE fill illiN f ia]Mt$fIlli iN! Nidi!iiINi Ei Eli jiE fiE iEi !!Iiifi si! !W IMJIM !! nim !It' Rl! !!!iis ERilnlsi Pii Mi h,{ M n, . : Wi irti hit ill! EiHiii $!!Liih . . . . . . . .n.
t, ..d F. 71 t.r:'a
, y t'. ..# n. .. i s 43J Mum." -
9nI.t't. a tt.a.-t :. m,' .. E p.:.
.p h, .1. . n. 4 = . . !.]{ . .. .. .4 d. . .a a u'. d ".a..l. 3. . -,n..
m I.,3t.+-+.+ . . . E..!! . 'h. **.t
- t. :"n
. 't. l'- t .tt..
M_i. .. E. .i. E..I.lH.. .i. I.I.N_4 II.Ui. E.E.I.f,D.p N., .I.Ni.M.. E..lO! ji_U rs t<Ill P.n.i.il,E. Y,i.i." t n E. . . H; , .}f. W, . i . 3i.i..fiW.4'UE..U.. i.li.i.jp.d..i.#}N. .iiji.i.E.i. [i. H..il.,liH..jiu.. NK, l.'.y.dj}i. E. .!.,i gji.n.m.. ;.t.;i i_!K.i.gi i.i.i.j u..n.
%.i.m jE.i. !!.!! i.H.i qp .. i.l.l.{!. .#. .l.ii.i. .
u- c m; :n igg . - tm mr unua uiq. m :r- uu .:p; n_ ia w-n.Wqt.. un m. ::un..tJr p-.ti 3.q:.p .-: a ,a 21g..:11: tm : HI ;.g; 13.p:qu . a .:tmr iu!s n tm 1..i.pr. men
- m m 3 .y. . . . . ...
ir .;f h im.
.. m i!OORpn RW.nk m... -.. ... . , ..
alls,. EE_, . _na i.Et,zurh. . .nunhdi, in .E..in. ... ti fi
- .utnti ::"- -E-
- 4. . in im gg un i '1 n n,,t af murrt at: mtun un u:rtmatu un m: :m 3.Jta,..: :n:
r:
= - 1... un m;.F::nt i.p: at an annn unun al.P, n 2,E. .:ti.84H.. mrplai nt:r nrL-tm .r ..c.; ng mj mu up t.u +
ttgan .. r g.r unilti :qnp; n micn an en t.9: - a m= m. ::e na mr at m..m tl+tm =e:r.g ;J;.;. n, ..mr g.i n t .. . . ur8-)w: in u.r:q2.1I.uli;liU. n int rEt mt
- n. ..;:.n.d. -;jm. . - . h.
_ . . . . . . _ . . . .". t.
!!.m., ) .H2i.q..g 2 .f..i.t7. m. .d. tp .....,
ji. {g. p.a. .y.i.) gp... .. h g_=~m;u:n.!.Pn n,
,u m. . 11:. S. h..n.n d,1. . . . d.p. . . u.in.i ..p. i.p.t tgr..d. . ... ..... _
im m. m; un n n pu n:. gp r- ~~ - - e m - r:.7.i:u .pt :ri.n en :,n 3 7arat: :ntw: mj;tE'! n:n:gt t g nn a mt = mtwr ::.. : m .m u i:t }:.E."t .rud if .~1!!Elh++ +tt : tt:nt!!!!::- o .... 4m - - u,
..1.- .n 2 - i ett- -7m ;;- r n .,n.. w+ ;- ++ 3 ~ ..; dy r v+ . n. -::::t ti1*+
- h. .e.--h' t ire ~n fin H- .n..
ut: d~r m,h h. .. A: ti N:. - - :.t.rr-: %. W- t 4, II'9 # t.:4- - - .i . n
- 1 .
+~
TIN w til H UHi-1I Y. . n-"r & w n .a:v it;;tm tE: 5 :n hUnn t.nhH{I in iC
- m nn m
- tau:m mt :utn: :: nmr nu v nu!!tu md:qJq: .at anm. t!y1am; gal t[U 10,000 20,000 30,000 4C,000 50,000 60,000 70,000 80,000 0
4
. E, /
50,000 n W , +;
. . . . . i . . . . m : : m , .
F ME. , .CW:O H.T.BMPERATURE DINE RdA ;E:it; tihp. M E.3_ Oh,E. M.ME.. ,l,U.M.s.kX.IS.dh,1. m .
+S,,N,SO,1 c _
a .n mS $,5 1.1 ,,,y 5 7 b.u Pilt h..aW:M.,F ij . .
'iiboAXTC N TNODIQi.
O y % :g e g@! q REACTOR- .JU LKli 4AYER M.ESSEiL# n s
. i T*. , ... . i . c. . . t- .. ..I. --. -. . , ,
i, L.
- r. . , n~.r ....v.n o . . ,.
e--i-:i ii lu :s-Tz ny Mi rATro sRttc inl7Fi@wAT' M :ntrR itl 1N ic
! 'N hI 'b .
MihNhEkE'l ht 4n LD h RdTbh ! t
, t :_ 'q; .. ; up;- i... zi; 't.' ' ;: 1:. :n . :: ,j :.. . : ty * * -t"; " ;, ,'
t g a :I
'; . p; VIT44 ' EYIlINI TF:11 ::P MfOWPN 19105 '*~
- 1. .
i .! , : 't:
!. . , h~~: . .h 4 P ^' RP N-b IN!
fI dl- 'fN 't N $ lil! $N'NE: NI k P .~ H. I '
'il! .- :q l'5 , . ..MOU Mfi 1 ;- n en pr" ~: :n - . . . .r 19 p. i-d': ER iTt MF ..90 C r' ,m. ..o [
cent AIU_RELES WAF F00CLA yt Ti d.i' i.9 d. , '! r~ if i:b Fi '_ ! lii !id Mi idi di Oh .P!.I.l 'it! O . Ei hc#j fi i , .jp ;i. .!i .ip ., M %; tid d i
- i. iis [B W! pj; ;!!: li: . jp i
X .;t.
, e :l, i. ' ;ji. . - Eii. H. j. :iti s. ..j :!!Qi.! q. 7 .. it. ;ili m !!.f f.j .ll.i. i H. C. : ..!i..Fi.j i !;ti 1;i. , c -
bi :p , i.g q;; ii[ ji , l g pi; pi g .p. ., ji- '; , t -li je t t ft. ti" + i:f. :tB *j j?i ,
~m .4,~. :1 , :1 w m. n. : .' . . . .d u ..
4 30,000 -' f' +x y-- /
..I* a r: . -[u- r J~ .
c ..m e
.:- -c.
- m. %> <.(. =4astutt cc)i;.
.y__try* . :-- .
A.
- 2: .a....' --...-. :
- I .
.~,-_...I 4 -
m.u ., ,m- -at- h= er
--u a '
- p. . . . .. , - - - , . .
. I '... ' :! 11, ' . . . . .$i d in 4 28i 12%P 4 . i.z*_ x4: .
y T_ri
' I"- 7 p@ ' ;' . f. h . , fi' %_ .. . rI:
- $ . .i . +
y .b. . 4 . . . - _ i;i.._ ._ _.. : :.q,. :._ ._ e . -x y , .I . ,
.t t.
c"' it ! , e I l ..' M' ,," ' . .l F i
. ..'I -
_ J ._
- 'l-
} /. . _ . .7 .]4 j .i o^ . I - !) .i 20,000 q a t- p ,. .g ,
[ a ._. 5_ :_ m _ _:_a _ , __ L . (f)!, lJ :!l. ._! _ .._ } -
!y;[ _}_ ; .~ , ' ~
c;l ;' L. ._]..._ y 0.]'
]- . j /r ' .[ _i . L. ..__ .: .
U). ; ll - [ p .--
..q !
To p ;' _Mi_ i. ., i-4 <.-
'- ' ,: " '. ,~. .j.! .., i;._d 2_.
[ d .h: h. [._, 1i .-
,1 i .' . - i' Fl y)p. :. H
- 1. @' :_.
- ift. -r, i : 8 g ..;_
7 J-j,.h, 10,000
/ / p 1 .
i.lt+ a
- g-$# .
- j. ' f,: !a'i
..;; m p; ;g .;;; a*
d;g;l iji .a o - 1 i no - A w:iWWCORPORAT idN PH
.. .., . . , . i,. .a .. . .- , , , - .-n... .. :n , , _ ,,,,,,,,,, ,,,,,,,( g' - ~. .I AI MiB.. FoifiPlA F P17,,,, bz . . .Il gg 1@. ,
i i ;,,a p fi}'. - y' 1a-' :.c 7 ;a q q;; .g g: p :ng , ;3 ;ji; ;q;
- ' :' n- . .P. .t '
gp *
- p r!ji ." ' j. L; !gi 18h jh- gi ny ap 'i,j fj!
li!:l ' . in N ., ,. :i4 'i;: !j! ii!. ti lji- :iy j.!! iiii @ 8!![ lfij r> a - - i e- - : -- a a nu a
-61ff ii-T;EM :a . m Pl .ERT JRE .,--
ERENCE M m :R-os$mi aaj..n Wm.f::tti0Ep;mln 51 e :.:
- .u n nrt.
'eO - 30 40 50 60 70 80 90 - 10 0 11 0 .20 13 0: 14 0 15 0 160 At
7' s ,r .rt' .. !; MHE'OT10EGAMMAMEAT HG!.RATf.1 K m
.!! .hM. ;i 4 )(11 .TENShr s we_*_ ' -i "-
_.-.,} __. _- QN. tW6 FW h
.. REG DR $op$
INl.WAL.l. OF. .pK' ION.a. @ '- '
- i @i t,, i @ t M dl; in clH 4p FM M W t
id lit @'i ANhMIrbbkTIN iN h"
' * "i . .p %. .." i!f5T1MY:rJrTAf$ DPI.NLTdh - AttMMNLEf;i!h.R2.hhlt) N#f.fM ? ?' N # 9: V b )
EfTH ,2NL7NE-WItEld tj N1 bh $ h 1 h.! ..i _ . _ . 9 l $h.
.._)s . 1. ,i ! , , 'e ; A 0 y y W. 94 g $r { s : 4 m ilp i :. . docLMK PItr.!$U4C. E!co PSIG M.. AGMfdMEO#.- M b $ h,: M v !"U .l , a , .e v i. .
4 -lp .u-dy 0 4"7 . 1 r. 'n- ..
.. QprQ y g'O M o .- . y ).., . .
M
. k- - ...
r 1
+
I!
. . !N Ha .+ ':]
t 7 1 7- gy h b' Le. - no c y u 4 b iv j ip .n hi ip
.p a; _ .n .. .. . .e . :.2 4' .
p 4g . .%
- . . + o.p ...h . . .x p.- . : n g, :'. - 1 ? I~. ep . .t n .1 4 4. ** ' .. : As . ,- .E,d jjj HF JE ., e, .. .r.y. -9.[.n i: F @
d.i{1p: -7 .! .i.!.Ih i u .c.h.;- g. F. f. ,iy a@. - i
.i ! .i.l.
y, r/. u,n a. q- m;p
.- . 1
- n. .g e .j p ..
.v!n.jlm 1s i n. t d. :l a p. i.
4 i f) nI n.;
. i. n, A .-
g
- p. ;F u- ..j im :h A8M C00C; p ._ i;.i ..,i.L _. n,.p. .m.L .L,. ../.L h l
- p. ... .i. ]. r! C 4.. .di m- -
y . .*a _. . cg y . . _
/r f.-P.)_. 1 :gi g i.!- :n . r m # .- y e p_% . .
F. I.. .: du ia
- n. i a!.; .. f qn :j .
34 25 PSI.6 4iii a ca. .m .4 . .: J. :u .~.;r ;p
]3. .g .. pg . .
1p".b. .
- .i.e.
p- r: w r* .q}i m i
- t. .
q3, ,
+ e !ik ;- n .a e 3 ,
c. m - , 1 e
- 2. c .
e tio .g" .,;d' i i n.. w E 1, : < t J9- .pLjy. i
,. SP".Wa , ;ah: l.;.{ a:.tk". a.. .i]! ,L. mn .v;;. hn. np a v@4 an u. .s q a .pu d .c .m .
I,i "u. _ rif c.1 '.j p J n. F
.o "4 jii- '.g t, f: r4 f. (ip t 7 !G ;i.n W. a Z 'ry IEil "o 4. ,
y' '#. . < . g .g .@yo %" he m L Mrh dt. .lF du f,p t!F .? y!. ilh H q:
.;. ." p.c +n pi + + !n i- r: ;al w :!r! ,u. .A .a 4 .2 Zan,n. a -- "' 4 5 ". m r; . "q-J. /.:. . - 3. .. == .' a, i :.u p. .*1 . . . g. p:.. .g s :.. .. .g; .
m aq . -
/. m m -
r Art".
'4000 e r4 !.c "r ,p ap p gr }r nc n: up an at e q p p } ,. a: + , . . ia. ,m#ya.aa :4 .a. uap; an .g: .u.;
a .a n
@(O..g::.. . y . .t . a. .gu. 'ta .:p .a. n .m ,p . ,
ij .
'; g[a .}4 .! : ,'. ' f. l14 '6,; *}l u*.. ... '. . ' { ., 1".- 4 u. . l. : . L. .
yl , 1 _ .4 fD b !N . L
. ' ..Ji. .
N.g lI o g: i
.g: a t y- ....;t, ' 1 .;.:u .o...M.q n 1*. : i .
r. _. . . . . , . 1 r z ..
, ,3 r i .,e 1.' . 7 ..
Wi Hli '!O U. . d. ill lf-B P F h,.Mi! yr 'i ' '! ! I l' hh , h, t _ y d!; M-c : a.
;!!~ . ..n . .u , p.
_d I nm,. "" y g n;. .a ..- ,.a .a. g. . ..,. :y. _i.. p g.., e, , ,, o, m i J. 4 r o o n P:
- n. J u m n -- IM. s
*n -r- .', .e"r - ~-
j,I[
- n. . .u .
r>- *3 h
.I.*:. ily' . . .. i!p d.hi N, bI: '. !i . .*
- k. . l h.
.. . . f. . h-t. h.;{1 !i. . ,. : i!,l p;I . . . , M. ..."M. . t. . _ . :.[d. ;J. i .' j :. M
- p. *.! . :q ...
'M. .[;' .t._-
i - q; -
- g.. .t G
. . ! r. * ' ". ! :I .9" ' 2 '.d _y .::. ..'.a ' ...
l..". .L': .h.1.' 1
' .' _T .! .u.
g,;y'v . gi in u y g
.'._.!. q'. g-- j.; .
nh i 4 yp !;g a. p. d.' ;il 0,.: . !4 4 . . ~ ,; a* s ..
-- t . ,. .. ..
IQOOC un. y. w
..id.i,t !i.li ~a,r .da aat:. %. m d4 h + t., %. m w- m; :P !i" ;:10 :0.1 d! :!.s 9.n aj. .. -- -
- a. ..ig.i. ,- i u.. .. ,.,.E
- u. . a.s .a. .pi .i w- g. 496 98 n.a. . E, , p. in. i. cp. . ; h. p,1 i. p. : q, i. p.b. .in. . p.e t.i. ini l.u. i uc :- ~
a.. t. i. ; .i . s W 1 A hh @.M_ _ ,nh !!" j' a?! l t Tiy:- H. ; Pt hy !!!! i@ !bsihjH Bi: !Ei liF iM W.ip g m m. :. . . . . . 4h>r.
, . . Im. r tm, dn.. k.E. u.~. @. . . !.
r- 1, ::a imn c: t ". .1 .8: n.:
, &e u "1 : , an in. nu t l 9 - i1:. a.> f. S.h t 1+ .
I. ;.p.t. i -
.i. i- - US. 1<
i ". - h.- .- n.o.
>a . .1 t i- +
w .2
. , . a. w ..- c m c at o 1
- r. :h s.i.h..h. _.- . .r. ..c. .i.lae.u
.- p". . .a.- t il .r q H. , 1. td h.
W.". 03 EE. N, 3.i.l . _: r! h,h d,n.a
.1 r lip p : l iFit n,S y Of !.n 1.
9 4 ri! % il i ih,e. ; hi yh ,4 iWMt00PWN rnlSCT10K E!M 3 2 a qp 1F iin :m i- up- dr 9p #+ :!l) jpi .i.;h id. Hi; n;tUpp'ilRIMIqt "n - ' - gh " - "" 4l ibi. u4. a@t:" a:
. " t - +- -
2 .. : L. "- .: f . . ew o . N ooo aovoo 5 000 sgooo equoo mooo k l I l
.$"a l !- j,; EpFT.CT OF*a."EMEfMEpR E DFF W N'C E %CNMS. WAl.L w ' + 'ON_MAXIWh TEJJu r ATprm '
iN ..WA.L DE SAXM HbCHrOMhRE ACThFLMULThlAYER Vmm e . p n. 3 m n .m m w g y i, y ,e 3 ,,. c f 1 ..
.' ' . ..S. O !. .iH isresor.sMi.McnnuEn hard.mmix' Ct i: db $ # 4 b F ':
elmsdased 49n reumtw
.. .. . ..: . . .... .. ._ _ . .... WITH :zitn.imtatieasos -- ;!! .1 .O. 0.2 .L ,- ;' * . ] i COCLMT. IYT.55l.HE. .2.900 PalG. ..L .
CCO.AT TEAV'ERAruf tEi $d).{s. !.' ... _ . . .'.. 1 y , , ge , 3 .
..e . ,
n a, .-. y a-
. .u.. ;i p. .. . .., ._ .- ~
7 . i.'. g-- 4
. .i. 1 , L, - . . , . . .. . ~ .. .. ... .. .i.u 9 .. - ... .d ,
i :. 'Ii *iI --
;l 4: , ,4 ,1 + 8 il. I f- ,
q . . . .. . . . o . . . y . .- . p *
,,a*
1 50,00( ,
- . ? '
n ' #.p.
- A5ME tCOE
,n . . . . . . . n .n ss,.s.
f 1 f . gm7 i
/
p r -. . . ,. . _ . . . _: .._ A.f..25 P.SI...
~_' *
- 4. 9 i
,_ U,. n i .a'. *p o m :- .. . . .. 5 ._ .i i .2. . .. .. .,... ' e.a.. - ' p;., .p.x .: .'.:.. 7.;
e
$ l ' .y -
t ,t .1 lp p ry p_. 1 a
. $. 4 ,. ,a .
g 4 yp, .. . .. a ._ .. . L.. - p B000( 6 f l i ,- 1 f , , f .,
. . . . .. .a e . . . . .. . . . . . . 1. . :.
j V 4.,.-, 4 m 44 p
.. a .a..L 4
_ g - - ILh Lh p[. al. . . .. . . .!. .. . _a . ._._ i .a. , _ = w i
. .. j [ _
- . . .. _.. ... .. .h '
u.... .._ a
. L /
I -j.
,.,e .; ; =..
n g:. .
./ . . . .g. . . . . . . . . . .. .. .. .. ..... . . . . . .a ... ;._ . . . ..u. .. _: .._ . ._ a m ,
9 . .c m ,
-n ..i er n. a un t.a L a. i.y .. . 7..... . . . .a .. .i .. a . .:2. .. j. .a. 9, . . . . . . , .. . . ... , .. . . . A O. SMrl.H ..C ORPDFLATION . . ATUMC EQUHdt'lff 80M : 7 t 'IG UME 7 ... .. . . _ ... .. . . . m. ... a .. ~
iTEMPEAATURE D FTERD4CE ACBOSOWAL(.- DEG.E~ ..h. . 0 10 20 ~ 30 ~ 40 50 eo ao so KO 110 100 IJO l@ lb0 A
-- - - - , ., -- . , , -}}