ML20077E100

From kanterella
Jump to navigation Jump to search
Rev 0 to Core Operating Limits Rept for Cycle 9
ML20077E100
Person / Time
Site: Summer South Carolina Electric & Gas Company icon.png
Issue date: 11/30/1994
From:
SOUTH CAROLINA ELECTRIC & GAS CO.
To:
Shared Package
ML20077E093 List:
References
NUDOCS 9412120120
Download: ML20077E100 (34)


Text

.

-o SOUTH CAROLINA ELECTRIC & GAS COMPANY VIRGIL C. SUMMER NUCLEAR STATION

- CORE OPERATING LIMITS REPORT FOR CYCLE 9 REVISION 0 l NOVEMBER 30,1994 I

9412120120 94120, DR ADOCK 0500o395 PDR

.4a- a e & an -- 4 a g , ed LIST OF EFFECTIVE PAGES PAGE REVISION i 0 ll 0 111 0 iv O' 1 0 2 0 .

3 0 4 0 5 0 6 0 7 0 8 0 9z O 10 0 11 0 12 0 13 0 14 0

, 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 REVISION 0

,, ,, Table of Contents Section Title Page i

1.0 Core Operatinu L8m i ts R e p o rt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.0 O pe ra t i n g Li m i ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 Stoderator Temperature Coeilicient (Specification 3.1.1.3) . . . . . . . . . . 2.

2.2 Shutdown Rod Insertion Limits (Specification 3.1.3.5) . . . . . . . . . . . . . 2 2.3 Control Rod insertion 1,imits tSpecification 3.1.3.6) . . . . . . . . . . . . . . . 2-2.4 A xial Flux Dit1'erence (Specification 3.2.1) . . . . . . . . . . . . . . . . . . . . . . 5 2.5 lleat Flux flot Channel Factor - F (Z) 9 (Specification 3.2.2) .........'7 2.6 RCS Flow Rate and Nuclear Enthalpy Rise flot Channel . . . . . . . . . . 33 Factor - 1%,, (Specification 3.2.3) l i

l I

REVISION 0

List of Tables l

Table Title Page j 1

I i

-1 RA O C W(Z) a t 150 M W D/MT U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 V. C. Summer - Cycle 9 i 1

1 2 RA O C W(Z) a t 1,100 M W D/M TU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  !

V. C. Summer - Cycle 9 3 RAOC W(Z) at 4,0(X) M WD/MTU . . . . . . . . . . . . ..... ............ 14 V. C. Summer - Cycle 9 4 RA O C W(Z) at 10.00() M WD/MTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 ,

V. C. Summer - Cycle 9 5 RA OC W(Z) at 16.000 M WD/MTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V. C. Summer - Cycle 9 6 RA O C W(Z) at 20.000 M WD/M TU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V. C. Summer - Cycle 9 7 Ilaseload W(Z) at 150 M WD/MTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V. C. Summer - Cycle 9 S liaseload W(Z) at 800 M WD/MTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 V. C. Summer . Cycle 9

, 9 liaseload W(Z) at 4.000 MWD /MTU .............................. 26 V. C. Summer - Cycle 9 10 liaseload W(Z) at 10.000 M WD/MTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 V. C. Summer - Cycle 9 11 llaseload W(Z) at 16,000 MWD /MTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V. C. Summer - Cycle 9 i l

12 Itaseload W(Z) at 18.0(X) MWD /MTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 V. C. Summer - Cycle 9 REVISION 0 ii

4 .

List of Figures Figure Title Page-I .\1oderator Temperature Collicient vs. Power f.evel . . . . . . . . . -. . . . . . . . . . . 3 V. C. Summer - C.vele 9 2 Rod Group insertion 1.imits vs. Thermal Power for Three 1 oop Operation . . . 4 V. C. Summer Cycle 9 3 Axial Flux Difference 1.imits as a Function of Rated Thermal Power . . . . . . . . 6 V. C. Summer Cycle 9 4 K(Z) - Normalized F9 (7) as a Function of Core Height . . . . . . . . . . . . . . . . . . M V. C. Summer - Cycle 9 5 RA O C W(Z) at 150 h1W DSITU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Y. C. Summer - Cycle 9 6 RA O C W(Z) at 1.100 N1 W DSI TU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 V. C. Summer - Cycle 9 7 RA O C W(Z) at 4,000 NI WDSITU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 V. C. Summer - Cycle 9 S

RA O C W(Z) at 10.000 SI WDSITU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 V. C. Summer - Cycle 9 9

RAOC W(Z) at 16.000 51 WD/51 TU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 V. C. Summer - Cycle 9 10 RA OC W(Z) at 20.000 S1 WD/AITU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 I V. C. Summer - Cycle 9 I 11 liaseload W(Z) at 150 A1WDSITU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 V. C. Summer - Cycle 9 12 Itaseload W(Z) at 800 hlWDS1TU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 V. C. Summer - Cycle 9 REVISION 0 iii

List of Figures Figure Title Page 13 liaseload W(Z) at 4.tHH) A1WD/31TU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 V. C. Summer - Cycle 9 14 Itaseload W(Z) at 10.(HH) N1WD/NITU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 V. C. Summer - Cycle 9 15 Itaseload W(Z) at 16 (HM) 51WD/AITU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Y. C. Summer - Cycle 9 16 ilaseload W(Z) at 18.(HH) 51WD/A1TU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 V. C. Summer - Cycle 9 17 RCS Total Flow Rate vs. Three 1.oop Operation . . . . . . . . . . . . . . . . . . . . . . 34.

V. C. Summer - Cycle 9 REVISION 0 iv

l l

O, scy

v. C.

SUMMER CYCLE 9 1.0 Core Operating Limits Report This Core Operating Limits Report (COLR) for V. C. Summer Station Cycle 9 has been prepared in accordance with the requirements of Technical Specification 6,9.1.11. -

The Technical Specifications affected by this report are listed below:

3.1.1.3 Moderator Temperature Coefficient 3.1.3.5 Shutdown Rod Inseruon Limit 3.1.3.6 Control Rod inseruon Limits 3.2.1 Axial Flux Difference 3.2.2 IIcat Flux Hot Channel Factor 3.2.3 RCS Flow Rate and Nuclear Enthalpy Rise flot Channel Factor REVISION 0 1

l l

d V. C. SUMMER CYCLE 9

=e . ..

2.0 Operating Limits The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the subsections which follow. These limits have been developed using the NRC-approved methodologies specitled in Technical Specificadon 6.9.1.11.

2.1 N1oderator Temrierature Coefficient (Specificadon 3.1.1.3):

2.1.1 The bloderator Temperature Coefficient (NITC) and hioderator Density Coefficient

( A1DC) limits are:

The BOIJARO41TC shall be less positive than the limits shown in Figure l.

The EOlJARO/RTP-N1DC shall be less positive than -40 Ak/gm/ce.

2.1.2 The h1TC Surveillance limit is:

The 300 ppm /ARO/RTP41TC should be less negadve than or equal to -4.1x10" ak/k/ F.

where: 13OL stands for Beginning-of-Cycle-Life ARO stands for All-Rods-Out RTP stands for RATED THERNIAL POWER EOL stands for End-of-Cycle Life 2.2 Shutdown Rod Insertion Limits (Specitication 3.1.3.5):

The shutdown rods shall be withdrawn to at least 225 steps.

2.3 Control Rod Insertion Limits (Specification 3.1.3.6):

The Control Bank Insertion Limits are specified by Figure 2.

REVISION 0 2

b \ . C C'JNt\tER CTLE V l

- $Ct&G Figure 1 Moderator Temperature Coeilicient vs. l'ower Level V. C. Summer C.scle 9 1.0 t

i 0.9

_  ! l Unacceptacte

,' Coeration l

l 0.8 0.7 l

i 0.6 l C  !

l O... Acceotaole ,

I x operanon i 1 I'

M 0.5

! i C t i  :

o i .

1 H

l '

I 0.4 -

1 0.3 \

l  :

\

i

~

0.2 i ' < 1

[

0.1 ,

I I

  • I 0.0 I  !

O 20 40 60 80 100 Percent of Rated Thermat Power REVISION 0 3

b V C. SL'MMER CYCLE 9 SCE4 2 Figure 2 Rod Group insertion Limits vs. Thermal Power for Three Loop Operation V. C. Summer Cycle 9 225 ,

/ >

I . i i i , i ,

f, l 0.525.225 l l 210 4 . , e i fi >

1 6

, , , , j , , , , , 3 i i  ! i i / t t i  ! i 195 # '

20194!

i i i ,

/ I <

/

! i i i

/ j i i i i  !  :/

i i i i if Controi j , i

, i j 180 eank c i i i i / t i  ! ,

t/ i

! l  ! l/ I 6 1 t I i i i / i 165 i i i / i i i 6 t i i t t/ i i

, , , j, , , , , , , , , j , ,

i i f I i i i i i i i i i /i > '

7 , , , ,

r j

/ 97 Step '/

/

'/ '

\

Overlao d

/t 135 ,j, , , , , , , ,

j , , ,

5 / t 1 i t i  ! i i/i i i I 3o , i

/

<f i i

, i i , i i i i 120

0. 1 0.0.118 ! ' 3 ' '

/! ' ' '

o.  ; i I 6

! 6 i  ! i

/ i i i i

! i 2 i i i i i i  ! i if m 105 controi

, t a I i

! i '

i i

/ BankD  !

8  ! i i i i i l i/l i  ! i i i 3 i i i i  ! I i

/ i i i i i i n i I  ! i i I/I I l  !

y  ! . I

< i +

i i i / i i i i i i I 75

. ' i

/i i i i i

j i , , , , ,

i

/ i

/

/!

i

/

45 i

/i ,

i , i ,

, j , ,

i i i /t t i i i t i e i i i i i / r i i  !  :

i i i -

30 7 , ,

i

! / 1 i i i i i i i i i i i /r i i i i i i i i i 15 7 ,

/! , , i i i i i i 0 / 1 0 04a.0 i ,  !  ! , i 4 , i 0.0 0.2 0.4 0.6 0.8 1.0 l

Fraction of Rated Thermal Power l 1

l l

REVISION 0 1

4

1

, 1 1

b V. C, SUMMER CYCLE 9

,sceso ..

2.4 Axial Flux Difference (Specification 3.2.11:

2.4.1 The Axial Flux Difference ( AFD) Limits for RAOC operation for Cycle 9 are shown in Figure 3. ,

2.4.2 The Axial Flux Difference i AFD) target band during base load operations for Cycle 9 is:

BOL - EOL (0 - 20,000 MWD /MTU): + or - 5c7c about a measured target value.

2.4.3 The minimum allowable power level for base load operation, APL" , is 85?c of RATED THERMAL POWER.

l 1

l I

REVISION 0 ,

5

^ b SCE40 V. C. SUMMER CYCLE 9

, 1 Figure 3 Axial Flux DilTerence Limits as n Function of itated Thermal l'ower V. C. Summer - Cycle 9 i I I l I i l l l  !

I J l 110 I  !

l  ! l i l

, l l l l (-10.100) . l (+8.100) [

100 I Unacceptable I

j t / . 4

\ <  ! -

j Unacceptable l

90

!/  ! l \!  ! I 80 l / ' '

\i

! /l i \:

! l l .

! i i j  !/! F ^ccoot  :

ii  !

s~ i I/ l l 1 i t\ l

/ i\

s I  !

I I  !  ! I i a 60 , ,

- i  !  !

I u -

i cc 50 /  ! i i  !

\  : i s I t-24.50) l l t  ! l 920.s0)  ! l

= .

I  !

N l l >

f

  • l 5 40 l l  ! l l l l l  ! I l l l l l i 30 I

l  ! i  ! l  !  !  !

20 I I I i i l <

l i l l l l  !

.  !. f I

I i l I 1 l

10 I

l I f 1 i

! I 0 I

-40 -30 -20 -10 0 10 20 30 40 Axial Flux Difference (% al)

REVISION 0 6

, i bscup V. C. SilMMER CYCLE 9 l i

2.5 Heat Flux Hot Channel Factor - F JZ) (Specitication 3.2.2):

RTP Fn(Z) s =KiZ) for P > 0.5 F"

F9 (Z)s * -K(Z) forP10.5 0.5 l

where: P , ermal Power Rated Thermal Power 2.5.1 F,/"' = 2.45 2.5.2 K(Z) is provided in Figure 4 2.5.3 Elevation dependent W(Z) values for RAOC operation at 150, 1.100, 4,(XX). 10.000, 16,0(X) and 20.(XX) N1WD/N1TU are shown in Figures 5 through 10. respectively. Ris information is sufficient to determine W(Z) versus core height in the range of 0 N1WD/N1TU to EOL burnup. Erce point interpolation of the data in Figures 5 through 7 is sutticient to determine RAOC W(Z) versus core height between a Cycle burnup of a to 1,1(X) MWD /NITU. For Cycle burnups between 1,1(X) MWD /NITU and 4.(XX)

.\1WD/N1TU. W(Z) versus core height may be obtained through three point interpolation of the data in Figures 6 duough 8. For Cycle burnups between 4.(XX) N1WD/NITU and 10,(X X) N1WD/NITU, W(Z) versus core height may be obtained through three point interpolation of the data in Figures 7 through 9 For Cycle burnups between 10.(X.x)

N1WD/N1TU and EOL burnup, W(Z) versus core height may be obtained through duce point interpolation of the data in Figures 8 through 10.

2.5.4 Elevation dependent W(z)n values for base load operation between S5 and itXF7e of rated thermal power with the item 2.4.2 specified target band about a measured target value at 150. MX),4.(XX).10.(XX),16,000 and 18,(XX) N1WD/NITU are shown in Figures 1 I through l6. respectively. This information is sufficient to determine W(z)n versus core height for burnups in the range ot 0 N1WD/NITU to EOL burnup through the use of three point interpolation.

REVISION 0 7

l I

V. C 3' CMMER CYCLE 9 SCE&O Figttre 4 Kb.) - Normalized F,,(z) as a Function of Core lleight V. C. Summer Cycle 9 1.2 1.1  :

] 0.0.1.0 j l 6. 0. 1.0 l 1.0  %

l

)  %

g i 12.0.0.925 l 0.8 i I

l l 0.7 tt O

u.

2 0.6 2

2 5 -

2' O.5 2

2 0,4 i i l l I

! l 03 i  ; . t l

0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 Core Height (Feet)

REVISION O s

b, w \ . C. SatMER CYCLE 9 Figure 5 RAOC Win at 150 MWD /MTU V. C. Summer - Cycle 9 1.30 i l

1.25 l '

^l A 6

a 1.20 I k b

a a A a

^ ^(gaaag

, "A, a

^ 'l

$ 1.15 a a ^

a a of

^

s ag daA&dAAAA gg ,

1.10 I

< l 1.05 1.00 0 1 2 3 4 5 6 7 8 9 10 11 12 Core Height (Feet) l l

l l

9 REVISION 0 i

d mp V. C. SUMMER CYCLE 9 Table 1 IIAOC W(z) at 150 AlWD/MTU V. C. Summer Cycle 9 Core Heicht (ft) W(Z) Core Heieht (ft) W(Z) 0.GXX) 1.0000 6.0800 1.1354 0.I600 1.00X) 6.2400 I.1423 0.3200 1.(XXX) 6.*000 1.1487 0.4800 1.0000 6.5600 1.1542 0.6400 1.0000 6.7200 1.1590 0.8000 1.0000 6.8800 1.1630 0.9600 1.0000 7.(M00 1.I661 1.1200 1.(XXX) 7.2000 1.1684 1.2800 1.(XX X) 7.3600 1.I697 1.4400 l .(XXX) '5200 1.1701 1.6(X X) 1.0000 7.6800 1.I695 1.7600 1.2187 7.8400 1.1680 1.9200 1.2056 8.(XXX) 1.1656 2.08(X) 1.1921 8.1600 1.1621 2.2400 1.1784 8.3200 1.1577 2.4(XX) 1.1641 8.4800 1.1527 2.5600 1.I495 8.6400 1.1462 2.7200 1.1383 8.8000 1.1387 2.88(X) 1.1306 8.9600 1.1402 3.0400 1.1238 9.1200 1.1518 3.2(X X) 1.I186 9.2800 1.I621 3.3600 1.I154 4.4400 1.1709 3.5200 l.I131 9.6(X X) 1.1797 2.68(X) 1.I107 9.7600 1.IS75 3.84t X) 1.1079 9.9200 1.1949 4.( X X X) 1.1063 10.0800 1.2032 4.16(X) 1.1062 10.24(X) 1.2151 4.32(X) 1.1073 10.4(XX) 1.(XXX) 4.4800 1.1083 10.5600 1.uxX) 4.644 x) 1.1086 10.7200 1.GX)0 4.8(X X) 1.1085 10.8800 1.(XXX) 4.9600 1.1082 11.(M00 1.uXX) 5.1200 1.1073 11.2000 1.(X)00 5.2800 1.1052 11.3600 1.0000 5.44(X) 1.1056 11.5200 1.GX)0 5.6(X X) 1.I108 11.6800 1.(XXX) 5.7600 1.I190 11.8400 1.0(XX) 5.9200 1.1277 12.00(X) 1.lXXX)

REVISION 0 10

l b

gees,e V. C. SUMMER CYCLE 9 1

Figure 6 IIAOC W(7) at 1.100 MWI)/MTU V. C, Summer Cycle 9 1.30 1.25 o

^ a a

a A

^ ,

1.20 4 A a

A g A6aA u a A A

^

1.15 ,

a s 6 a 6 4 s d 1.10 '"A^^^^daAA 1.05 1.00 0 1 2 3 4 5 6 7 8 9 10 11 12 Core Height (Feet) gj REVISION 0

d v. c. suuMen cyct.E 9

.sce, e .

Table 2 RAOC W(o at 1,100 N1WD/ SITU V. C. Summer Cycle 9 Core Heicht att) W(Z) Core Heicht 00 , W(Z) 0.0fXX) 1.(XXX) 6.0800 1.1333 0.1600 1.(XO) 6.2400 1.1408 0.3200 1.(XXX) 6.4000 1.1478 0.4800 1.0)00 6.5600 1.1540 0.6400 1.0(X X) 6.7200 1.1596 0.8(XX) 1.0(XX) 6.8800 1.1644 0.9600 1.0000 7.0400 1.I684 1.1200 1.0(XX) 7.2000 1.1716 1.2800 l .00(X) 7.36(X) 1.1739 1.44(X) 1.0(X)0 7.5200 1.1753 1.6(XX) 1.(X O) 7.68(X) 1.1758 1.76(X) 1.2342 7.8400 1.I754 1.9200 1.2193 8.0(O) 1.174:

2.0800 1.2038 8.1600 1.1718 2.2400 I.I883 8.3200 1.I685 2.40X1 1.I721 8.4800 1.I647 2.5t: 50 I.1554 8.6400 I.1594 2.7200 1.1419 8.8(XX) 1.1522 2.8800 1.1318 8.9600 1.I537 3.04(X) 1.I220 9.1200 1.I655 3.20(X) 1.I148 9.2800 1.1779 3.3600 1.1111 9.4400 1.I896 3.5200 1.1093 9.6(XX) 1.2013 3.6800 1.1076 9.7600 1.2124 3.8400 1.1055 9.9200 1.2233 4.( x X X) l .1(MO 10.0800 1.2350

4. I 6(X) 1.1037 10.24(X) 1.2489 4.3200 1. l(M3 10.4000 l .(XXX) 4.48(X) 1.1047 10.5600 1.(XXX) 4.64fX) 1. l(M7 10.7200 1.lXXX) 4.8000 1.1(M4 10.8800 1.0(XX) 4.96(X) 1.1(M i 11.0400 1.(XXX)
5. I 2(X) 1.1032 11.2000 1.0(X10 5.2800 1.1013 11.3600 1.0(XX) 5.44(X) 1.1020 11.5200 I .(XXX) 5.6(XX) 1.1074 11.6800 1.0(XX) 5.760) 1.I159 11.8400 1.(XX)0 5.9200 1.I251 12.(XXX) 1.0000 12 REVISION 0

, ._.m . . ~ , ~ . - . _ .,m, ....._m . m_. . . _ . .~_m._ . - _ . _ . _ _ . ..

V C, SUMMER CYCLE 9

$CE4G

  • , .s e

Figure 7 RAOC W(z) at 4.000 MWD /MTU l V. C. Summer - Cycle 9

): .-

i l 1.30 -

! i 1 l

. A l

l a

l 1.25 "

l 0 a

\  ! ..l t

M a l '

' 1.20 l

,a a a A y a 44d'A&g

.A A 1,15 .

3: .,-

A a A

A A a

4 a a

, 1.10 ^

1 s j 9 g .

l g a s .-

0666 0 4 "0A6664g44 1.05 1.00 0 1 2 3 4 5 6 7 8 9 10 11 12 Core Height (Feet)

REVISION 0 13

d v. c. SUMMER CYCLE 9 3CO3 Table 3 RAOC W0r.) at 4.000 51WD/AITU V. C. Summer - Cycle 9 Core Heicht f ft) W(Z) Core Heicht (ft) W(2) tuXX)0 1.0000 6.0800 1.1035 O.I600 1.0000 0.2400 1.I117 0.3200 1.0000 0.4ax) 1.I196 0.4800 1.00X) 6.5600 1.1268 0.6400 1.OuX) 6.7200 1.1335 0.8000 1.0000 6.8800 1.1396 0.9600 1.0000 7.0400 1.1450 1.1200 1.0000 7.2000 1.1497 1.2S00 1.(XXX) '.3600  !.1537 1.444 X) 1.(XXX) 7.5200 1.1568 1.6000 1.(XXX) 7.68(X) 1.1592 1.7600 1.2306 7.8400 1.1607 1.9200 1.2130 8.aX)O 1.I614 2.0800 1.1948 8.1600 1.1612 2.24(X) 1.I765 8.3200 1.160) 2.4uX) 1.1578 8.480) 1.1584 2.5600 1.1389 8.6400 I.1552 2.7200 1.I230 8.8000 1.1496 2.880) 1.1092 8.9600 1.1515 3.044 x) 1.0951 ()I200 1.I639 3.2(XX) 1.0849 9.2800 1.1801 3.360) 1.0806 t) 444x) 1.1973 3.5200 1.0796 9.6u X) 1.2146 1680) 1.0793 9.7600 1.2321 1.844 X ) 1.0784 9.9200 1.2498 -

4.( X X X) 1.0772 10.080) 1.2676 4.160) 1.0760 10.2400 1.2851 4.3200 1.0751 10.4a x) 1.Uu X) 4.4800 1.0742 10.5600 1.Ou X) 4.64u) 1.0736 10.7200 1.00 X) 4.8(XX) 1.0732 10.8800 1.00X) 4.96u) 1.0729 11.lMW) 1.U(x x) 5.1200 1.0723 11.2000 1.OuX) 5.28u) 1.0711 11.3600 1.0000 5.444 X) 1.0718 11.5200 1.u) H )

5.6(X)U l.0766 11.6800 1.lXXX )

5.7600 1.0851 11.8400 1.(XXX) 5.9200 1.0948 12.OlXX) 1.0000 REVISION 0 14

~

d V. C. SUMMER CYCLE 9 sc o Figure 8 RAOC W(z) at 10.000 MWD /MTU V. C. Summer - Cycle 9 1.30 1.25 6

i a

! 6 1.20 l .

a 6

A a q ^

! ^

g 1.15 ,

344a3 3 a' a s

6 O O a 4-s a "a )

Aa a A Sa c) .

1.10 "a i i saa*- s3 ; ,

i l '

t l i

l I

I i '

, i 1.05 i

1.00 0 1 2 3 4 5 6 7 8 9 10 11 12 Core Height (Feen REVISION 0 15

O v. c. stuuen cycts v 3CEAG e

Table 4 RAOC W(z) at 10.000 MWD /MTU l

V. C. Summer - Cycle 9  !

Core Heicht (fil W(Z) Core Heicht (ft) W(Z) 0.00(X) 1.lXXX) 6.0800 1.I158 0.1600 1.(XXX) 6.2400 1.1219 0.3200 1.MX)0 6.40(X) 1.1275 0.4800 1.0(XX) 6.5600 1.1324 0.64tX) 1.0000 6.7200 1.1366 0.8000 1.0(XX) 6.8800 1.1400 0.9600 1.0000 7.0400 1.1427 1.1200 1.0000 7.2000 1.1446 1.2800 1.0(XX) '.3600 1.1457 1.44 X) 1.(XX)0 ~.5200 1.1459 1.6(XX) 1.0(XX) 7.6800 1.1453 1.7600 1.I811 7.8400 1.1438 1.9200 1.I697 S.(XXX) 1.I415 2.080) 1.1579 S.1600 1.1385 2.24(X) 1.1446 S.3200 1.I346 2.40'X) 1.1338 S.4800 1.1296 2.56(X) 1.1296 M.64tX) 1.1245 2.7200 1.1268 S.8000 1.1225 2.880) 1.I230 S.9600 1.I292 3.(Mt X) 1.I193 9.I200 1.1440 3.2000 1.I169 9.2800 1.!584 3.3600 1.I156 9.44(W) 1.1721 3.5200 1.1141 0.6(X X ) l.1866 3.6M(X) 1.1120 4.760) 1.2011 3.S4t H) 1.1097 u.92(X) 1.2158 --

4.0 X X) 1.1071 10.0800 1.2305 4.I600 1.1039 10.2400 l.2448 4.3200 1.10(X) 10.44XX) 1.(XXX) 4.4XIX) 1.0981 10.5600 1.0 x X) 4.64(X) 1.0984 10.7200 1.(XXX) 4.SM X) 1.0903 10.8800 1.0(XX) 4.9600 1.0998 11.lM(X) 1.00 X) 5.120) 1.0998 11.2000 1.00 X)  !

5.2800 1.0996 11.3600 1.0(XX)  !

5.44X) 1.0980 l1.5200 1.(XXX) l 5.60x) 1.0964 11.6800 1.OuX)  !

5.7600 1.1010 11.8400 1.0000 5.92(X) 1.1090 12.0(XX) 1.00 X) l REVISION 0 16

b V C. SUMMER CYCLE V 5CtbG Figure 9 RAOC W(a at 16.000 MWD /MTU V. C. Summer - Cycle 9 1.30  ;

' i 1.25 ,

I l l' a

^!

l ^

6 ,

I a 1.20 m I

4

  • 6 a a ^

a 6 d 4aaiai l ,,a g 1.15 -

,a

^ 6 6

a ^

i6 6 1.10 i .

l .

[

1 05 I

i I

1 l i

1.00 0 1 2 3 4 5 6 7 8 9 10 11 12 Core Height (Feet) l I

l l

l 37 REVISION 0 )

1

E C. SL'Nthf ER CYCLE 9 SCt&G Table 5 RAOC W(z) at 16,000 AlWD/A1TU V. C. Summer Cycle 9

' l

\

Core Heicht ito W(Z) Core Heicht f fu W(2)

U.(XXX) 1(XXX) fLOS(X) 1.1677 0.16(X) 1.(XXX) 0.2400 1.1744  !

U.3200 1.(XXX) riatxx1 1.1797 l

0.4SfX) 1.00X) n.5600 1.1840 )

0.6400 1.0(XX) 6.7200 1.I872 0.8000 1.0000 6.S800 1.1893 l 0.9600 1.0000 7.04(X) 1.1903 l 1.1200 1.0000 7.2000 1.1901 1.2S00 1.00X) '.1600 l.ISS7 '

l .444 x) 1.(X XX) '.5200 1.1862 1.60 X) l .(XXX) 7.6S(X) 1.1826 1.7600 1.2274 7 S 44)0 1.1778 1.9200 1.2136 S.t x x)O l.1722 2.08(X) 1.I992 SI600 1.I652 2.240) 1.I843 S.3200 1.I570 2.4(X X) 1.1692 x 4xtX) 1.1512 2.56(x) 1.1539 X.644 X ) 1.1501 2.7200 1.1380 X.X(X)O 1.1536 2.880) I,1228 S.9600 1.1577 3.(WM) 1.1117 4 l200 1.1605 3.2000 1.1086 9.2StX) 1.I643 3 360) 1.I121 0.444 x) 1.1738 3.5200 1.I148 u 6(xx) 1.1S9x 3.6SM) 1.I162 4 76(K) 1.2059 3.S4t x 1 1.I176 u.02(X) 1.2211 -

4.i x x X1 1.I207 iO.0x00 1.2365 4.1600 1.1257 10 2400 1.2517 4.3200 1.1318 lo.4mx) 1.(X x x) 4.4x00 1.1374 105600 1.0 X X) 4.6401 1.1420 10.7200 1.(XX X )

4.8000 1.1458 IO.8800 1.0 X XI 4.96u) l.148X I I nit x) 1.tx X XI 5.1200 l.1510 11.2(XX) 1.uX)0 5.2S(x) 1.1524 11.3600 1.uXX) 5.444X) 1.lf22 Il.5200 1.tXX x )

5.6(x x) 1.1515 11.6x0) 1.un) 5.7600 1.1542 11.84(X) 1.(XXX) 5.92(X) 1.I602 12.(XXX1 1(XXX) 13 REVISION 0 1

1

b SCLAG V. C. SUMMER CYCLE 9 Figure 10 RAOC W(z) at 20,000 MWD /MTU V. C. Summer - Cycle 9 1 30 A

g iaa a a a A ^ ^

1.25 a

l a 0

, , 1

' A i a y a a 1 20 a 4 a 3

0 z, 4

a AA A 4

a fi a s g 1.15 ,

a n a

a A a

^ a 10 mo I l l

1 05 l

1.00 l 0 1 2 3 4 5 6 7 8 9 10 11 12 Core Height (Feet) l l

l

g REVISION O I

d V C. S'_'MMER CYCLE 9

. 3CE&G Table 6 RAOC W(z) at 20.000 MWD /MTU V. C. Summer - Cycle 9 Core Heicht (ft) W(Z) Core Heicht (to W(Z) 0.uXX) 1.0(XX) 6.0800 1.2281 U.16( x) 1.uXX) 6.24(X) 1.2374 0.3200 1.0XX) 6.40 X) 1.2454 0.48(X) 1.00X) 6.5600 1.2522 0.6400 1.lXXX) 6.7200 1.2576 U.80(X) 1.00(X) 6.8800 1.2616 0.9600 1.(XXX) 7.0400 1.2642 1.I200 1.(XX10 7.2000 1.2653 1.2S00 1.00 X) ".3600 1.2649 I .444 X ) I .0( X X) 7.5200 1.2629 1.6u X) 1 JXXX) 7.6800 1.2595 1.7600 1.2091 7.8400 1.2545 1.9200 l . I 958 x.tXXX) 1.2480 2.0800 l ._1 H 22 4.I6(X) 1.2 44)I 2.24(X) 1.1682 8.3200 1.2309 2.4(X X) 1.1540 S.4800 1.2202 2.5600 1.1:-97 S.6-#)0 1.2087 2.7200 I.I252 8.80X) 1.1966 2.8800 1.I109 8.9600 1.!815 1.(4(X) 1.0994 9.1200 1.I687 3.20 0 ) 1.0990 9.2800 1.1717 3.36fM ) 1.1091 4.44t X) 1.1857 3.5200 1.I186 9.6aX) l.2033 3.6800 1.1266 0.7600 1.2210 2 S44 x) I.1346 0.9200 1.23S3 -

41X X10 1.I420 10.080) 1.2559 4.16( H ) 1.1485 10.2400 1.2732 4.32(X) 1.1543 10.4000 1.00X) 44x00 1.1592 10.5600 1.0)( X 1 4.641x ) I.I632 10.72(X) 1.0000 4 x(xxl l.1662 10.8800 1.W X XI 4.964 X ) 1.1682 11.(M(M) 1.(K X X )

<1200 1.I693 11.2000 1.00 X) 4.2800 1.1704 11.3600 1.00(X) 5.444 x i 1.1786 11.5200 1.(XX X) 4.Du H I 1.1932 11.680) 1.( X U )

5.76(M) 1.2065 11.8400 1.(XX)0 5.9200 1.2177 12.(XXX) 1.(X X X }

g REVISION 0

C, SUMMER C'iCl.E Y

  • SCEOG Figure i1 Haseload W(z) at 150 MWD /MTU V. C. Summer - Cycle 9 l

1.30 -

l I I

i 1.25 I

i l l 1.20 -

\ I l  ;

l l '

i  !

S I '

f

)

F.1.15 i  !'

1.10

  • *]a i "A a ,

l l A."

. s -

.a a i

a^^^4 m f I naa^4a4 a'a

' ^^a 3 ,j ,a I "%, a aaa 'g

' 05 s_ ^ ^ m "as

_a em i

1 l

1 I

1 00 0 - -

1 2 3 4 5 ' ' 8 9 10 11 12 l Core Height (Feet)

I l

1 21 REVISION 0

i V. C. SUMMER CYC1.E u SCLAG l

l l

Table 7 liaseload W(z) at 150 MWD /MTU V. C. Summer - Cycle 9 Core Heicht (fn W(7J Core Heicht (It) W(7.)

0.uXX) 1.uXX) 6.0800 1.0574 0.1600 1.00X) 6.2400 1.0549 0.3200 1.u K)0 n.4(XX) 1.0523 0.4800 1.(XX)O 6.5600 1.(M95 0.6400 1.uXX) 6.7200 1.0465 0.8(X)0 1.0000 6.8800 1.0446 0.9600 1.0000 7.(M00 1.(M59 1.1200 1.0000 7.2000 1.0480 1.2800 I.IXXX1 ~.3600 1.0495 1.4400 1.M XX) 7.5200 1.0509 1.6(X)0 1.uXX) 7.6800 1.0524 1.7600 1.1(M5 7.8400 1.0537 1.9200 1.1028 S.uX X) 1.0549 2.0800 1.l(X)8 8.1600 1.0561 2.2400 1.0987 8.3200 1.0572 2.4(X)0 1.0963 S.4800 1.0580 2.56(X) l.0937 8.6400 1.0591 2.7200 1.0910 8.8'.XX) 1.0617 2.8800 1.088i 8.9600 1.0646 3.04U) 1.0850 9.I200 1.0672 3.2000 1.0818 9.2800 1.0697 3.3600 1.0789 9.4400 1.0721 3.5200 1.0776 0.6uX) 1.0745 3.6800 1.0772 4.7600 1.0767 3.8400 1.0767 09200 1.0788 --

4 O(XXI l.0760 10.0800 1.0808 4.1600 1.0753 10.24(X) 1.0826 4.3200 1.0745 10.40 X) 1.00)0 4.4800 1.0736 10.560) 1.0 x XI 4.64 0) 1.0726 10.7200 1.ux X) 4 8UX) 1.0714 10.8800 1.00 X) 4.960) 1.0702 11.(M00 1.u x X) 5.1200 1.0688 11.2000 1.0M X) 5.28tX) 1.0672 11.360) 1JXXX) 5.44a) 1.0656 l1.5200 1MXX) 5.60X) 1.0638 11.68u) 1.0M M) 5.7600 1.0618 11.8400 1.uxx) 5.9200 1.0597 12.(XX X)  ! .0 XX)

,, REVISION 0 4

l

\ C. SUMMER CYCLE Y

. SC2&G Figure 12 Ilaseload W(z) at M(X) MWD /MTU

\'. C. Summer - Cycle 9 l

l l

l l

l 1 30 .

i i

i 1.25 ,

I l

+ ,

4 1

1.20 i

l I i

! I i .

l rU l 5

1.15 dg d

a^A ,

"A 1 10 ^^^^- -

j  ; a a . .

ig a ^^ ,

!ag^AJ aa #aj t -

l i

%3

~

an A ar a 1 05 e

l

i. I l

i 1.00 0 1 2 3 4 5 6 7 8 9 10 11 12 Core Height (Feet) l

3 REVISION 0 l l

1

V. C. SUMMER CYc:.E o

, 3CE&G Table 8 Ilaseload W(n at 800 MWD /MTU V. C. Summer - Cycle 9 Core Heicht (ft) W(7.) Core Heieht (tt) W(Z) 0.0000 1.(XW) 6.0800 1.0859 0.1600 1.tXX X) 6.2400 1.0834 U.3200 1.(XX)0 ti.4(YX) 1.0807 U.4800 1.(XXX) 6.5600 1.0779 U.6400 1.lXXX) 6.7200 1.0748 0.8000 1.00fX) 6.8800 1.0727 0.9600 1.0000 7.(M00 1.0740 1.1200 1.0000 7.2000 1.0763 1.28(X) 1.(X X X) ".3600 1.0778 1.441 X ) 1.t XD ) '.5200 i.0793 1.6(X X) 1.lXM) 7.6800 1.0809 1.7600 1.I341 7.84(X) 1.0823 1.9200 1.1325 S.00fX) 1.0835 2.0S00 1.1306 S.1600 1.0848 2.24f X) 1.1285 S.3200 t.0860 2.4(X X) 1.1262 S.4800 1.0869 2.56rX) 1.I237 S.6400 1.0881 2.7200 1.1210 S.8(XX) 1.0905 2.8800 1.I182 S.96(X) 1.0932 3.(Mt X) 1.I152 9.1200 1.0955 3.2(X X) 1.1120 9.2800 1.0979 3.3600 1.1090 9.44(X) 1.l(X)2 3.5200 1.1075 9.60tX) 1.1023 3.6S(X) 1.1068 9.76(X) 1.l(44 2.S4( X ) 1.1061 9.9200 1.1063 _

4.( X X X) I.1053 10.08(X) 1.1082

4. I 6(X) 1.1(44 10.24(X) 1.1099 4.3200 1.1034 10.4t W X) 1.lX X)O 4 4S(X) 1.1023 10.56tX ) 1.U( X X )

4.644X) 1.1011 10.7200 1.U(X X) 4 S(XX) l. l(XX) 10.8800 1.(XXX) 4,96( X ) 1.0987 l 1.041 X) 1.(X XX )

5. I 2(X) 1.0973 11.2000 1.0(XX) 5.28(X) 1.0958 11.3600 1.(XXX) 5.444 k ) 1.0941 11.5200 1.0(XX1  ;

5.6(X X) 1.0923 11.6800 1.0(X X) 1 5.76(X) 1.0903 11.84(X) 1.(XXX) 5.92(X) 1.0882 12.lXXX) 1.(XXX) '

REVISION 0 24 l

l I

\ C. 3JMMER CYCLE 9

+ SCEAG Figure 13 I!aseload W(z) at 4.000 MWD /MTU V. C. Summer Cycle 9 1.30 ,

I I

1 25 l

i 1.20 I i l

l' l l

l R I '

g 1.15

\

g %D 3 9b bb b, g

s

\

\ \'

e ,

\ ,,b \

\ bb b abbb bd bbb t

b6b6 bb g 06 bh.b.

b g M bbV.

,3 4[

I 1 00 0 1 2 3 4 5 6 7 8 9 10 *1 12 Core Height (Feet) g REVISION 0

d V C S*.:MMER CYCLE 9 CCE&G Table 9 Ilaseload W(z) at 4.000 MWD /MTU V. C. Summer - Cycle 9 Core licicht (tt) W(7) Core Heicht tft) W(Z) 0.(XXX) 1.(XX)0 6.0800 1.0536 4.16(X) 1.(XXX) 6.2400 1.0514 0.3200  ! .lxXX) 6.4(XX) 1.0490 -

0.4800 1.(XXX) 6.5600 1.(M66 0.64(X) 1.(XXX) 6.7200 1.(434 0.8(XX) 1.0000 6.8800 1.0409 0.9600 1.0(XX) 7 (M00 1.(M22 1.1200 1.(XXX) 7.2000 1.(M46 1.2S00 1.(X)( X) ~.36(X) 1.0463 1.4400 l.mXX) 7.5200 l.0479 1.6(X X) 1.(XX)0 7.68(X) 1.lM96 1.7600 1.0997 7.84(X) 1.0511 1.9200 1.0987 8.lXXX) 1.0526 2.0800 1.0976 8.16(X) 1.0540 2.2400 1.0962 8.3200 1.0554 2.4(XHI l.0947 S.48(X) 1.0567 2.56(X) 1.0929 8.64(X) 1.0580 2.7200 1.0910 8.8(XX) 1.0591 2.88(X) 1.0888 8.9600 1.0603 3.04(X) 1.0865 9.1200 1.0614 3.2(XX) 1.0840 4.2800 1.0624 3.3600 1.0814 9.44(X) 1.0634 3.5200 1.0789 4.6(X X) 1.0M3 2.68(H) 1.0768 4.7600 1.0652 3.844 X ) 1.0752 0.9200 1.0661 -

4.( X X X) 1.0737 10.08(X) 1.0669 4.1600 1.0720 10.24(H) 1.0677 4.32(X) 1.0703 10.4(H )O l .0( X X )

4.48(X ) 1.0684 10.560) 1.0(XX) 4.644 X ) 1.0669 10.7200 1.(X X X)

4. 8(X X) 1.0658 10.88(X) 1.(X X)0 4.96( H ) 1.0649 l1.(M(H) 1.mXX) 5.I200 1.0636 11.2(XX) 1.lXXX) 5.2800 1.0623 11.3600 1.0(XX) 5.441 K) 1.0608 11.5200 1.(X X X) 5.6(xX) 1.0593 11.6800 1.0(X X) 5.76(H) 1.0575 11.8400 1.0000 5.9200 1.0556 12.(XX H) 1.(XX X1 REVISION 0 26

O v c. scMMER cyc:s v SCt&G e

Figure 14 Haseload wiz) at 10.000 51WD/ SITU V. C. Summer - Cycle 9 1.30 i

i 1.25 f

(

l I

1.20

~

ri g 1.15 al a

'4^

  • 1 10 i

"a '  ;

s -l '

^ .a a l s o-a^^6 i

t maaa a a aa

,0

6 6 f

I l A

a^a _,_ _ 6a a' a "saa 'A 1 05 i l

i l

i 1.00 I 3 4 5 6 7 8 9 10 11 12 Core Height (Feet) 27 REVISION 0

V. C. SUMMER CYCLE u l 3Ct&O I

, , '

  • 1 Table 10 Ihtseload W(z) at 10.000 MWDSITU I V. C. Summer Cycle 9 l Core Heicht (ft) W(7) Core licicht a fti W(Z) 0.(XXX) 1.f XXX) 6.0800 1.0540 0.16(X) 1.tXXX) 02400 1.0512

< >. 3 200 1.(XXX) 4 4(XX) 1.lMS5 0.4S(X) 1.(X XX) n.5600 1.0468 0.6* X) 1.0(XX) 0.7200 1.0474 0.8000 1.(XXX) 6.8800 1.0496 0.9600 1.0(XX) 7.(M00 1.0514 1.1200 1.(XXX) 7.2000 1.0529 1.2S(X) 1.( X) K ) 36(X) l.0544 1.44 X ) l .t.X X)O /5200 1.0558 1.6(XX) 1.0(X X ) /.6S(X) 1.0570 1.7600 1.1105 7 S4(X) 1.0581 1.9200 1.1087 xiXXX) 1.0591 2.08(X) I.1066 X l6(x) 1.0599 2.24(X) 1. !(42 x3200 1.0605 2.4(XX) 1.1015 x 4S00 1.0618 2.56(X) 1.0986 x6400 1.0639 2.7200 1.0954 X S(XX) 1.0668 2.SS(X) 1.0919 X.9600 l.0698 3.04( X) 1.0883 9.1200 1.0725 3.2(X)0 1.0842 9 28(X) 1.0752 3.3600 1.0803 9.44 X ) 1.0778 3.5200 1.0778 9.6000 1.0803 2.6800 1.0766 97600 1.(1826

1. S4( X) 1.0760 49200 1.0847 -

4.(X X )0 1.0752 10.0800 1.0867

4. I 6(X ) 1.(1743 Io.2400 1.0S85 4.3200 1.0733 l o.44 X)0 1.( X XX) 4 4StX) 1.0722 10.56(X)  ! .0(X X i 4.444 X ) 1.0710 10.7200 1.(X X X )

4, SIX X ) 1.0697 IoS800 1.(X O )

4.96( X ) 1.06S2 11,(4(X) 1.(X X X )

5.1200 1.0666 11.2000 1.t X XX) 4.2S(X) 1.0648 l 1. 36(.X ) 1.O(XX) 5.44X) 1.0630 Il.5200 1.0(X X) 5.6( X X ) I.0609 Il.6S(X) 1.lX X X )

5.76(X) 1.0587 I1.84(X) 1.(XXX) 5.92(X) 1.0564 12.(XXX) 1.00( X1 REVISION 0 3

-V, C SUMMER CYCLE o

. SCE&G l

Figure 15 l I

liaseload W(z) at 16.000 MWD /MTU V. C. Summer - Cycle 9 ' 1 l

1 1

1 30 1.25 l

I l f l I

i 5

1.20 l l l l l

. c i G l g 1.15 I l l

A t 6

A a a

A l 6 6 '

a 0

1.10 x A , e a l .

^

e a

a r 0

0A4"6 66 I a t' 6 daqa a aaaAA,a 04 0 g4 i

f  ;

1 05 i

i l

1 00 0 1 2 3 4 5 6 7 8 9 10 11 12 I Core Height (Feet) l l

1

,o REVISION 0 l

d V C. SUMMER CYCLE 9 ICt&G Table 11 liaseload W(n at 16.000 51WD/NITU V. C. Summer - Cycle 9

(' ore Heicht (fu W(7) Core Heicht (ft) W(Z) 0.(XX X) 1.(XXX) 6.0800 1.0537 0.I600 1.(XXX) 6.2400 I.0548 0.3200 1.(XXX) 6.4(XX) 1.0573 0.4800 1.0(X X) 6.5600 I.0592 0.64(X) 1.0(XX) 6.7200 1.0607 0.8000 1.0(XX) 6.8800 1.0621 0.9N)0 1.0(XX) 7.04X) 1.0633 1.1200 1.(XXX) 7.2000 1.0643 1.2S(X1 1.O(X)0 ~.3600  !.0651 1.44 x) l.UlXH) ~.5200 1.0657 1.6(XX) 1.(XXX) 6800

. 1.0662 1.7600 1.1270 7.8400 1.0665 1.9200 1.1236 S.(XXX) 1.0662 2.08(x) 1.I197 M.1600 1.0667 2.2400 1.I154 8.3200 1.0695 2.4f X X) 1.I107 S.4800 I.0740 2.5600 1.1056 s.64(x) 1.0791 2.7200 1.1(X)2 S.8(XX) 1.0840 2.8800 1.0946 8.96(X) 1.0887 3.0400 1.0887 9.I200 1.09.32 3.2(Xx> 1.0823 0.2800 1.0976 3.3600 1.0770 0.4400 1.1017 3.5200 1.0757 4.6(XX) 1.1056 3.68(x) 1.0758 u.76(X) 1.1092 3.8SXi 1.0751 9.9200 1. I 1" 4.1 X X X) 1.0743 10.0800 1.I154 4.1(X X ) 1.0735 10.2400 1.I180 4.3200 1.0725 10.4(X X) 1.( O X )

4.4800 1.0713 10.5600 1.U() x )

Jh4t x) 1.0701 10.7200 1.00(X) 4 8(xx1 1.0687 lo.88(X) 1.tXX X) 4.964 x) 1.0672 11.tM(H) 1.(D x) 5.1200 1.0655 11.2000 l .0(XX) 5.28(X) 1.0636 11.3600 1.0(X)0 5.44( x) 1.0616 11.5200 1.(XXX) 4.6(x x) 1.0595 11.6800 1.(X o j 5.76(x) 1.0571 11.8400 1.(XXX) 5.9200 1.0548 12.(XXX) 1.(XXX) l l

3o REVISION 0 l 1

d

4 Y C SUMMER CYCLE 9

. 3CEAG Figure 16 liaseload W(z) at 18.000 SIWD/5tTU V. C. Summer - Cycle 9 1 30  ;

1.25 l

t 1 20 N~

g 1.15 a

al A

A A

A a

^ I ^

c 1.10 a a i

l I ,a s

l ,a _

l 4,A 3 a3

'a gAAAanaAaa

^^ ^^^^^^aa l 1 05 '

l l

l I

1.00 0 1 2 3 4 5 6 7 8 9 10 11 12 Core Height (Feet)

REVISION O 31

X. C. SL'MMER CYCLE 9

, 3CE43 l

Table 12 l Ilaseload W(z) at 18,000 MWD /MTU V. C. Summer Cycle 9 l

Core Heicht (ft) W(7) Core Heleht (ft) W/Z) 0.(XXX) 1.lXX)0 6.0800 1.0534 I 0.1600 1.(XXX) 6.24(X) 1.0552 0.3200 1.(XXX) 6.4(XX) 1.0583 0.4800 1.(XXX) 6.5600 1.0606 0.64(X) 1.0000 6.7200 1.0626 0.8000 1.0000 6.8800 1.0644 0.9600 1.0(XX) 7.(M00 1.0659 1.1200 1.0000 7.2000 1.0671 1.2800 1.(X X )() 7.36()0 1.1)(iS I 1.441X ) l .(XXX) 7.5200 1.0689 1.6(XX) 1.0(XX) 7.6800 1.0695 1.7600 1.1363 7.8400 1.0698 1.9200 1.1318 8.(XX)0 1.0699 2.08(X) 1.1269 8.16(X) 1.0699 2.24(X) 1.1215 8.3200 1.0699 2.4(X)0 1.1156 8.48(X) 1.0688 2.56(X) 1.1093 8.64(X1 1.0690 2.7200 1.1026 8.8(XX) 1.0735 2.88(X) 1.0957 8.96(X) 1.0791 3.0400 1.0885 9.I200 1.0838 3.2(XX) 1.08I8 9.28(X) 1.0884 3.3600 1.0768 9.44(X) 1.0929 3.5200 1.0741 9.6(XX) 1.0971 3.68(X) 1.0722 0.76(X) 1.l(X)9 3.844 X) 1.0697 9.92(X) 1.1( m 4.(XXX) 1.0672 10.08(X) 1.1077 4.16(X) 1.0 M 7 10.2400 1.I105 4.3200 1.0620 10.4(X)0 1.(X X X )

4.4800 l.0593 10.5600 l.(X n )

4.64(X) 1.0566 10.7200 1.0(XX) 4.8(X X) 1.0542 lu.88tX) 1.(XX)O 4.96(X1 1.0535 11.0400 1.(X X X )

5.1200 1.0542 11.2(X X) 1.0(X X) 5.28(X) 1.0545 11.3600 1.0(X)O 5.444 X) 1.0545 11.52(X) 1.0(X X) 5.6( K X) 1.0544 11.6800 1.(X X X) 5.7600 1.0542 11.84(X) 1.0(XXI 5.9200 1.0537 12.(X X)0 1.0(XX) 1 y REVISION 0 l 1

l I

l l

b '. C. SUMMER CYCLE 9

, sceso

".6 RCS Flow Rate and Nuclear Enthainv Rise Hot Channel Factor - F'u, (Specification 3.2.3):

x R=

F3u"-(1 - PF3y

- (1 -P))

ye,,. p , Thermal Power Rated Thermal Power 2.6.I F3s"" = 1.56 16.2 PFu, = 0.3 2.6.3 The Acceptante Operauon Region from me comninauon of' Reactor Coolant System total flow and R is provided in Figure 17.

33 REVISION 0

_. ~ - -

T C; $l'MMER CYCLE 9

, SCE&G .

..<r.-

Figure 17 RCS Total Flow Rate vs. Tliree Loop Operation

. V. C. Summer Cycle 9 Stensurement Uncertamties of 2.1% for Flow tincludes o.1% for feedwater tenturi foulings and .8.0% for incore N!easurement of I*.3 are included in this figure.

28.9 28.7 m ACCtVI ABt.E i l UNACUtPIABLE 2 l OPERAT10N REG I l 10N i OPERATION REGION I

C 29.5 "o

C, e

% i 9 00. 2836p !

l g 28.3 2!!

O l 8 cc 28.1 27.9 _

27.7 0.90 0.95 1.00 1.05 1.10 R=FN aH /1.56 [1.0 + 0.3 (1.0 - P)]

34 REVISION 0

._ . _.