ML20044G360
ML20044G360 | |
Person / Time | |
---|---|
Site: | 05200003 |
Issue date: | 05/31/1993 |
From: | WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
To: | |
Shared Package | |
ML19311B061 | List: |
References | |
WCAP-13735, NUDOCS 9306020399 | |
Download: ML20044G360 (74) | |
Text
.. .~.,n ,.g ,...n. a'...m,...
.,,,s . ~,,.. ' , ,- , w; , ...,(, ,. .&p.p:3p.. yyn,gy: : w:q ,,s a :ew:; . a.m.nn.a; x w ' ~
yn~per m.m f + g .g -
., -,m.m n
, n y : ,y v...yn.m u sm.q;;dg, m~.p.v.-Wy n.*u: n. gym Q, ';3,
- . )^ t c ,<
,m; -
- q$
. s .3 : q
~ syc., ,-
9 y 3 y ; s
,?
y' f'v.Q ffa ~; A n, , i r,~ _y*- ,.c
> $ "k h' t Q~;>?_$ ?
,p n: .m.h )
. $ - , i ' ' u _ ;g [g; s p'y 9:w:, , ,
, 3. }:: , f$"n'CM'x L e ;; p; +.
v . , +' :s
- " j (b
[;f. ;. *
- v. < ; ' * (
n' JG'O '" " N'g(d.
1 23,
+
y; +; <
%.'a'1 .g, f s.P ;p , 51' 4 d, *. '-
W; v q G, :'
'k J, M t t: * % ' ' J; ~"? .
.s :"wA. ,
-.'N~l' >
ts.' r $ . v. ,;
i j i C.V y
'1
- m -v % . wh ww~ . ' %, i:i.7
. , a M.1 "s o
.m s
.#e S A. .. '. -J
- x. i n! w 4 -
' &Y';: M y e - o
'. a p +
, e
,C> '
O <
@; y h
f, ,i ----:s v+ s
. , , . u; 4
, . , u r f5 y r,
e' . *N qU<
e V 1"f' } ;? V.ij g;. )> :'[. ^:.y ' a j -_},_
p ,
_Mc, . ?(_
s%,w ~ w,m w m,c , tc w >.' l
- s. j.:: ..p,,. s
(
y i.,A. . .. $ # -. .c s.~. ,,. p s . .- ( z, .
',i , , .
4-(Q k
g {"q.-
'1.,
k.
g, ' , y gm qQ 4r ,g g'c ,f'sg'g. .g r ,
.c
, ~,p, s ..>
, (#_., p ,q,
.,.~,t I i f . vj
, .f
-I% y- #
j 7 ' I Il 1
'N74 Y
(
g 6
..JJ ff'.#' y' { l _1 k
-w (v
ys J, '
b.' 4j,.,
44 ' ;y -
i af4/"* ,
y ,
9-7 3 -
< s
, s .
,g,n p
4 i jts 4, . ; . ..
r g p i
~ g ,
}
.. , ni .
' .' (.
- s. j;
$ ew hy<-
8 f ;_, " ud .: 1 A:;'
1 h
>j
. ' un ' ' .
1 m .
C '> e xm, x ; n .,.tm, a .,
y, , , . t b -W m,, ,
VM+ u M.S L MGM eM-M a Md%Mjut:MG% ug@.
(g g, y ,..,"
er#j ' a Q
.y U ryi ,a , ,1 y whA _. 2 f p~~
n w.e.. # + r. j g , n4@ , . .g .;;,
i.34
- a r 7.
u.3 sy ~. ; o ,- - _ , .
- nu .t; (, .
9 ,u ,
N
-~ , ' k, . 3
>p *
., g h; y r.
.:3 ., y 3 ' ,
4a s a 3 , $ ~
cq yg > m> , ',n s g.
j . m , , : ..
1,m ;q
~
, c y [\ (T . . , . .:%
1
^
A '
(.' Sk
& h.+e, m
., .z,~'y ..
f:
~> ^ ' "
m...,'t '
m
' ,k U4 p b:k ' , T t
E _p .3,. y
'y r.y: ;.a V
. L$
.,c
,'i
't x , ,
- q m:-
y[. , , .,. m f
g t qm e 2
t ::y lq - -
s t
c 0: , ~ ,n-g ,Je
~~r_._,
,?,-
a
- n. 39. ;
k'y v:.
f(, >
+
., r" ~Q, -
2
\ -t t_
[ -j*' '9. . ,.
3 1
I ev f ;,1 J 1 5 ,
r, n'"&t L DW q..-
yu. a ',.,
- 1 d . 4, m . , ..
o.
s ij
, - l3
, g
?
. , . v. : 2
%,y r.< e
,s ,
3
+ . >.
- m. >
y ,. i, . n.
~ .,
?[,,
s,,9 O [f-[ r O i)
.d A. b L' g ' fri w . . , - ' . ,
r l $.
+:
t
,3- , o
, s;
+
y,s r,
z
, o@ ,+
s . m. p4 ;4
%e - ? , ,
<m 1.- N..
s
.e$ o . , .y o
,,3, " A,- , ~
v"7 "P"PW N'v"#g' 1
, , + , e N; ' W, , y
..;.s j # '
W" 8 s #
- ?
S M_ k.. N y s
- F ~ "
4 /
1 f "4 1 s.
, m s.
.;'v-.n >'x\ 1v 4
t 1 ,- <g r i ,. ,
, o ru 9 ;
- i 4 Y / k$3 . I
, ,( ,h
,'h. U., .' py_> F y s e "0s%. m' ,j
, i y
< t
- l}l:r
(' t r
.+ v 9 1 4 4
s ,
. M , .F.3' '; f
.g :l.. -
( .[.y ' L , . j h y i ,Q)5 P. )
fr g q, { . -- g; + .g g
.'i 4 i w . <
o-- 5 r.,.;-g g
, , ,, gj ,
h ,4.Nq* qS s ,
a .w t
' (
. '*' J r sc ',. ':;' i r
b Q :' . /. '
V7, t C
' * # 4 nb., 4 ;(< y[: zj.
.di 3 / .,y s ,
go ' 39'3 r.vy p
' 4 e- s Srn >
p; t-l ,,3 ,
q i, r , ,- ,
, tp (
s uv c
q# -. n:q 1 ":' ,
g- st. -
J ,
,. ' :n.
n , ;-
. p, v.m- y s i
.qt~p.
-m :* i ,g ;
t i
,. ~ g.
, .> 9.u > f "s
3 1 , ' a
,y'}y ., 4 v . ., ~ n ,s y ' m,% ; . . < ,
x , ,
w,-w s-
~
q . y ~ aAnn sy
.~ , ,-
gy'
+.
> +
, , gy - ,
, ~y 3 8
+
.n. r , g+a; .
r
.-' > , '; m 7 ,
o < ; 3 g~.}[%
,EQ' s' f.
j g fhy, s g,_,, gggy < -
K , T, .
n-4 c ,
r J:a . -
.4 1
~ , 4.x- '
+
-t . . .w
< ;J . <
n.s h.
t ^da f iy r . . , .
a .. o
- R.h,
- , . , g
- A L: ,'W':. > n *
.Qn' 1
'b n.,,Y [, ,f .a'l x,( j.
y' g_, .; f';.; ,;g
,f -[Ky .* gj > Q ) {l g y T.' s'- -';-f g r_ k, ,T j. { 'q . K y; q b' 47 34
._ .y s g.'~- p, e'.[g. y : ; +o yg , , - i
, i, . ,
y >
y g,g . o j ", /
- 7 F
1
- / h <* ' ' y@\ .
y y
O * '
3- J 2,J Y ,e. t
- .
- 3s;" u s,D .? M i
y'% k.fl ..Wry / o > .?<
f~ . e 1.
w
' k, .~g:n:q v ,' s
-u u , 4y,t ; .g a
.Q lL5 f (tp y yay ~
6.,r 6 . .T. M .wv uy,, '.v \ q ,V ~
e
,8+
.J , ; ..
- g, e n[4,f;
- vv r ;i.. , ;y.y p :;;,y y,g ' y vqe'.1
+
z&yp :. g,y ., g; M
e
+
' m t gl e ; n s r i,, , ,
.rgp .,yg . 7
( - ,
.^ u .s< .m.
, .., , n, e sw n ,i
. , , e n -< . -
e ' v: - , f:W, s ) , t w
.p. m :. ~
< l'n ::
&m lt; ,a ', .<, %. ,
n :-
,- " % yl f.w., n gn. j.
- .3 , %m t y u: .s ,
.n e
- A. _" 's sy /
s
' W,pp.
a s y%r.q ;r,; u g< x, > - - a3p
%w; ,' -. , , , N ,
,e '; J
. . j e
+
1 , 5 a
fy >
v,;-; ., y;Q. w ,. , :s , ;1
.;,, r -;s
- .g, 9', .-
^
s <
V,f :v . Q;> v y :., ;
n)
,. a t ;e.;.
- k , u ..q.; y ,
t
, - +
r,' n ,
6; v , ,
m r
- p. . . , 4 #
Mrn1
> W.e nc q
_ r n ( ~. ~
e
.e m w su n.q,3. N w';E. -
-i ,
4 Mn y
.,J 7 1 7v g.,m,. .q
<, e.
,,r
,,f.
.7: 4,
+s "' - A y ,
r y:r,, 4.. S4W q r uu , ,
h U @'y M.. , cy , -%:;; y ; p 1, ,g~ y,7 ,y 3 l j.
, , t y , # w 4 .g;;,43jr , 3 s .u
,.,,,v.gs .
7
, < u ,
y n.- ma 4
'wo :p;:t , v7 ; a
,,.vm , .
m'
- p av . c ,
,m, +
s ' I,
'"
- 5 5; s
E.[d, 1 *',
4 s
-.1 -@ M, y M;. ' ' "
,#r e d. . 4. 4
' i ,.o' 3
, ,y) s , ,9
?J F .h 49 + e.t d i' d
y 3
4*! ,#b, 5% h~. .
( -n
's
', ; ih!l y ,oi[ }
, f
- hk. t. j
.h. %-, ' %. w .q, )$ ' %,k
- : p ,- ;M. .h se. ,
@. j m
5
.m s 3
, s ,- . . , ,
- os o,
- u.{ _ At>s
% , f , n f :%Q 2.c.N af 1 +' ^ ' ,
y_fN QO + + , e
.o
,< 4 as3 e .
-b syr,w . . -
" y s" ,y' {y d
-)r .",.-,;'n-a , . e Yb' ,,y'
'.y, v. ,sv.a '
2',Q -'f
,.i ng#,. , s
- <m- ,
,,.,ji,2"-'_~' ,-',"fr
.3 s . e j,d , .l..tc.' -l t J ,.h
,>$ : 'l jf .
, s ,- ,
. gS p) f 6,"nm ,
g
- 4~ W' _
3 z . e , i ,' 4 y ;e , ' ;,ms m,,..
f_ -
A.,.o;m4<
--c . /a. n...; e ,u ,,e,,, 4 e
4
, p&,. !
.o m....,p ,.
r .~ ,..,z
=,q ,.3 a4,,1.w -
<4
-- s
- m. .o.g. m g.., -
g
, ,w. . , . .- y .<s ; 4...--gm y
+- e,,, ".% # ,A s,4/9 c 7; n .bua
- e. p e jn
, p:.h. - rf ..
W(~ d % a
%'*1 --
o s t t m e ,\
- My <
- . : .?"
- 3'
- k +
i:% ,
- '.t0 'v ~
g y.
- ",f' j @H ,
Q.J <w ,g. ') ? s ?n
.fk. .. p ,
- y4 3;f, 7~ gp- Q.
- y s
f3 +:
w n-- (e s
' t s, , ,
i - m cn.>
qg,w;r
,, n , , ,
c A
ye +s
- 4
.x;pp % ,.
s". . _p . >
';- Ar n 4' A;
- 1 ,
$; y > ?: x sn.
W ^7,(. c$,; i ~
- qo.w 1
- T, 4
x '.:Q jf ; r;i "f .'y ' .- .
- $v ; s ., s s , f;&o; . ,l "& .$ yQ v q M, -n'4
, , %*. D.
1 i
W,. , E., n e> -
M$ 1:; L. # :b?Q~L.ZQ. ,n_ fc, A i< -^ "ve :M.
t ~,' n1 6
6 .1.(. Je <' ," .,v
', w& w.4 +'.4....4' m@.*'f . !4,1
? - , , .
c N O'--f s ( w l+; >l 5 t i ,. I
' "' i '
-.. .f; < .Ce s :N. ' c'o' -
f'N r i F-s',, s
. w '- .mm41
- U I i 's* k'.
L 1
"4
- ,"(.'[/ 5' . 'W
- I e.b.;-i 5'
.[ f 1' h' 1 j '>/'"'
N' 5.J.p.,.
Y
')-1t'., dir t @, ,
- ..4% e
,m. " ,,u.o s./, ';. f U.h,M ,, ...?. .. +%sq.,
5g
.a. ,s - : + y.7 o g ..
o
,.,v.-
.; a , - 4' 5'.4t ,'ff * '
N'y n 7 e W._'...
pe i.
- 4s
. ~ <.- ,
9
- . a ~. ., , - . , . , .
<;y.- ,
y,
,, y ,,ry ,i ,e v y
- e. g%, v.; ag . g . .,s4.y g,_% > ,;, .
,p
-Ae a ...s ,
- h n; a , - p. i , u7 , ,
e c% a
...'y..,v ; v , q v. a l:t 4u , , e a ,r i o &.s
.' ,,, , .y. -1. iy.
.-.;J ;b .s ; i
.i k y 4f '
l,.
W 4.. n f( ,
. . & r {
- ,y a g l f '
@'Sp '
&,?%*
hN' SpQ
.fg 9306020399 930524 PDR ADDCK 05200003 %d "M d '. /' .6, N >
o
. .. - W V E,D sly M<E 4
A w m y : . g n, m y. m p g.,
PDR A4 Wls ;;gg A g: [y % y f 3 Q. G @A i ,' % W s3 3 Q g g Q g v
' ,':. *. ..:f .. [ r[ ; , . _ . ~_4.D- ;( /_: ; - ';??.,,'. s.. " ;: . ' ,_
.. ; ' .. ; L,
, * . . ' ., . y. : . ,_ , , ,. ;..,
,.,'..; . ,.'.;.',,*..y
.. .,,~ ,
s.: . :. . ..,.:
..r..
.. ' , ,.v*...,"..','.s .,
t
. -' 4 ' ..
i
.s: ; , ' . ': ' ',' '-+ L% ?
.,.,..4 . .'.'., '?..N
+, , _ .' *, *. e' 4'#4.4..-
o.
.p . -
._e. . . . , , .
. _.,, a s-
. ' .L...,J',.~~..~~.
- ,c,-,;-
m.
..p',.,',':,- ..
,,3..c.
^ .. I . .
.,'. rl
_1;.; .c 'g( .1-.'ll *;:.. . : .. ?,' , [ . : ', Gr {.'::.
, '.*..^
- ll he ,. y&, _ ' . 3 f ;c e < -f,;*'{: '. ;. .J s. ' _ , * ' , , . ' . *
. ,;. ^ W . ";' :.l.;.", ' *.s,,...
'.A',L .:<'
. ::').
, 7 p.; ;l'. t1 l.:. A,~^ R_'0_ ,1 :' . ll ' ',, '% ', ;.
- * .c,' .1 L' o - ., ; ' '-
7,g,, u .- . c,- ,, . .. ..
. ,_i; , ;; ;'1,:. y. . l ^, ;. ? ,f'." ' $? .".' i:l;', j',N j.l .. : h ..& *f.l ^ lj, ' *.[ . i. r '
'l- 'b., o,' ;j ? -ec,.', ..c'", ',. ' , - { Q '.. . ,l
^ '
- . , - f.. ' 'l , '.; '
.};;, G:, '?& hl,,..lf*'OO S' "M : N I;i
^I: T.^. :'0 ;i. : U?** '
~-b^ ':0.'? A ' 2 ? b Y: ' ." \ ' U ' * \?l
.: I: <
l"; . y ; J l' $ ,' :~. ,lx
';t;' ';d,_e.:(fg,
'; ;, [ ,.(% ' , ' .*}*' .Y ' < 4'?.'s
- ';Q.'. . . . - 3l?.,l'l d.' .-l ^ . 'v % "' d.
- &% ',l:g'
_ ? ;,g..7 l' l'Ylls }e. q,,} ..*:,,; z'. "' J.,-.78 , ', ' ,\,. '.l,f;?,'; f, *f
,D.-l9 k .h,:,,.L 'y
^
. =fi;tA ce! ^^
~
- '., . , .,. L , . ' lb; .S'q' ; .','^;e.*,.,. ' , ' ,, .,.f..,.:. ,
Q' . "; ,
- .L K- ., ,. ,' ; ;, - e , , , ' . ' . , ;.': , . . . .,.s..,,,
aj :
. .,; .i,",
. * .4 , l .
3,:; 7;, . ,.; p ., . 9 .;. .p..,.-
.' .- , 2
?. r ,- * 'd ^u
.,.".4- 8 - . . , . . . *
.? , +;
,. . g, ,7,;
. , :: .f.'..n. y .. .
,: [ ,%.; . ..:l. /.. .;.. N.$ ',M,4
,gO ( ^'
^ ' '
Q1Q:t:[i. Q::? :e ., L.E -
v s. -. l..- . . . , .
. .~ s
.. : , . . .s *m >.9 - . : w- ,.
n - ' . ' - . . ..< _.
- o. .+-- c . ?.:
.f,;nv a ":s:.u - e , . .; . . , , . . .; 1,
.g...,. ;..,, . .a\. .<
.:5. ; .. . . .. .. x % .. i. . . . . ..n c. g , m.: y, . . . , . . s. . ; a.
. ,:..... y;,:.,......
4 .
_. v.\ 1 .a.g'
.c e ,
- .7 ,,7 .e y y% . v 1,yy s . . .e.e : n'n. ;T.. .vs ' N' .c.- a t: :. -
.t.+ ,.nv y. .::p. ~ . . ". n.v .J ,: .. ,,.. .v.: ,... ** y:.:..
.. . ,s.:..gt'".. .p.tx:.
, ., ,. s.
. .t,z
. , ~ :
1.
,. ..c. . . . -
- , .~...; . r.
.;;r .. .?
f f ,h kyff lf
, ;, .b'; f ; * ' f?^
- .!') ,3
. ' s- ( lb'; i . . . *
r "
^*
?.; ' ' . '. N' .. *' . '
4 am. ' Q.,[W;.:;/y.:.M.;.f,.fy;;:Q7.j;qQ',QQ,gQ4
'M :, ;,'[: f'
'l :. l l . *
+ c.:s.:. W M'z 9 c.'.':,h . ;,'" u,'m,M);&yW:r:.w.y.,g;'i.n.
,: ,'$l.lyf, ,
'+;y;.%g:.,f.:.f;l q;y:..g: .;hyg+:::y%'!
,: :. \;.: *7:M;q .
- 3. ;; .; ; y. j,.jy$y)[s:..;.n. .; Q. .;{,
, ;:r . ~.. ..f:,:,'9J.[,_ ;;.;K.'..: ,y...p::!;
.- 1 's' ..'..,
. g G, b ., .8..', .*e,"5 ;
- 4, :. , .,
,.f r ,' s -- 7.!'a. . , , ,',445, . ",1, . . ; . . . " - . ; y . *,;*, ,
'!',,* :.; j. [;Q ". i.g,b", %*
- y : j ,, . ., ..;,'.,g%,f, ^.' ' , j' '.-, e; 'j a
. , t =;, M .R..c.;4 o.:7 - i.;;,p,::'. *.:.%. '.e.x:g$ wj,'gg.l. \;,- G *k '. . J 'y .,;Y . . .
l
~ .:.. ;< .. t...:. ~ . ;... . .r.. , .
.u : . ,a Q.- . i .
- J *w e.c ,.' .: .s. :: . .:
. ~ . ..g.r.g.. ::;:e : e s, t .& .: y ,;r.1
~
+ .n..
- . .;,:q. ::-
-r .?: ev , , : : ; * .:. .: :. -.m ,:.R,,
y'. .% l.)q. . g'\ V '.Q ::.%:f't ;. .;. ;h .d.q' . . :.. .m
- 2. 5 ;: ?.:,.,, '.T.::.Q;e:.f..,Q..,. l . .l['j;.7.gJ. ml P. . !; . . - *!.. . 7 ;l% . .,;L...,...
.,........, .g. . . ; . n/ ,s.%.-..
- .q? ?.- .w,s
. . . . . 7 ., ;.c . .
. ,, ' '/ S
't l . -.. , . ;-[. o ' .c 3 ,ff .; ' -'. ' 6' { , ' . .; . j n,, '
( '.q,7;, 4 d, 4 , .,is*;"
,3,'j # ,, ?Q lj%' ,.
, . . , . ,>.. . ,. .. ' ;. .;.' T,w. *. ' .~:f < ,':,ly -leN:y l* *.t
",,$~,*t.',,
- s
..s,
., ', .: l * ' 7.f, ' ;s. '.;r ': ; ., ; '..,';... g,,.
n .
,[g 7 J'eN .
...} . l . .H.
. . ;' , 2:
,['.,.g'#'
. ., 't { . '
+.
r =., 7.
,..,y' -
. , . - < 1. . t g A4.. q..e{.
- sn .. . ,,
t . ' ,l; : gf'. ..g' .. .p , ...
.'.-l.'._=,.,.'. . ge ,. ;.'J.. r.f. %wy;s ; .& ^ ?. . '. , T~ < '
- .; :: ' . . .! . ;'e.-e , ~ * .: , . - ' , '
..,:'.-*.u';, . . : ?
- c
- - - .. 3
,.. -. *; M ;. .: ' n . . < .
yy._l,> :;. ;. *p, '
t .
1.4,;.;4.;.:.,. [%r . l :_, - . , . , . ,;y!, . ., , ..
.'..,.t;.4......_:.,...C.....'
.Y. .. .q '. . 4.*l . ,, ..?. <
- .'..
- 'j;;,:l%*f,' ,.* *.'.?.n %m,,q,
).lls:1,^ .
- ) ';;'- '. .:r' *- .-, ,. .; '. *: +,*T. :
J, .
*.. .. '..' .; , ..x: .
,,. 3 .
' : . . l ' *.:T., . .' .,'> :. v.Y. .,.'.. o~ n. :. : .*;.u: i .? ,,-s.* . . ' ' 'r an .?. ur%; ,:es . - 2
..n,... : ; ;
- > . : .9 ;y
. p. ,?. i-Lf p u . e , e.:.$. .-Qnf. ._ ;' . .. .,;. . _ ...
. .; . y %;;
v .. . . ..h.'s...
A c..,c.' ,:).; . *.'.,,: ;9.7 7. ".9, , ,, h, v.y ,_c. e' f '. '., ' .. Q .. . ;r .C 4..: ,'.<m . .,' '. . .*.F.f ...?., :
g ., y(ti.,;s,. f... ... .Qr.,., g9,. .iu . g b.- .4 b.- -, %' .**,
gis
, . ( % . , :.- ,' ,
n m
- '_ . . ' . .;;' '. _; ^: '_. . .w. , ;. <
s t -
- . - ;} c.. -
c .s.
. :h..l.-l f.].h n ..' R.l;,&.;,j I.
?.9l.': , , _ y . . ..n . t.} y;,f.f;f f.. . :.' ,( fl* .; ::l' .5 ' l, l f .$.,
. :, . .o <<'%
r.:t
.a
- u. . .; , - ..: , .:.
,.A Y . f. t - .p L. :ygy
'W.,< ;
. . - y g....:...,i.,'
..f_' . . y;; 1,.t.~,.
,, r ., ) 3 y u . ,. T.g~.t...,. .-.-t... . > .'
3 t. . y .
': . e . c. ;
% syyn! V..nf ps.: A, .n% ..p :' ! .. *
. . .y
.:- c;
,%V 4.. .J. ]
- . :4
, P.c :n 'p ..q,%.- ...-
.,,.- + . . . . : ;;;. .
. ' - s, : ,.g -
. . .. . ij 'p',9 re :3;
@;;s.;
- ..r +i g.g 4
- t.;.e . g, a i . y.~- ?. y;;.
..g.
ic..i.. ,9 ',gl q, c.r- -$ .~:,<....'.;,'.:.~,^.
,; ; - . 4 . . , - *
""#. ?.'. - . et' , ((. ,b I .[: .. : '.P '
I,.$ U, (( , k *,h ; / . . .w 3,'. k. ..% . . d .f.f.M 5/ , ?? -
- f. r ; , '
. ..+ ' '. _ ;.;;. . .'
-(,., ; *f/,#
a ; .. ... , . . - .._;_ 6
, ..f ( . ' , . - y 9 ,g en ya . u, Sp.
4.e*V.y+ .Q ,l, ..- .,. f. ~.,,r..; . . qQ.. g. ;: y .. . ' , .,;
u ' - ..:. . .
$s .o,;; gQ
.'. . ,y) , ' , ~~*.:. ]y;,* ,W:54 :);3 l y.'E. : _,':g ;*R ':,(' ,,&l:.Q s . A,,
' .y.; e _: : :;.h , . ',;. . f .' l. J. ; , ' ".f ' ', ~ 'l:- -
- l.i .
I.' , ,_
?l.. ?! . ,. * "', [: * ', ' 4 ' j,J' l.l_;:, 'h.. ,,.,'f fU
- 'y~.. n..:l'l *..
l* . :....%'.'.r, ....
.i .:..f. l ..-a f... .;
..,u.
- , y '. ' . .. >;. u
.:,?;_; -
.. .. :: . _ p
.. f,,
. ta n ;.-, ;
- 1 ,
~
'sl.'fb.?,O:?Y.yf)
,..d g. i.r.:
u .
.,g,u o. ,,.s
- ',.u.' ; , +. ...
- .( :w
, l ,q.u,-'.:,,, f.; .n.n ,..,;;.
.. ;::we L
dy.;&,Q,c:%,,.r[:?. ;,N a n".;
- r . . Yv>.
f.k: v . c..-.-., q h..f.N
... . ,. q ;:. ;.c.;..;;.r.. . :q.y_-... ; ~ . . . ,. . . ~ > *. - . ,-ty:.. - p 3
.3 '.. . ,. ;. ;. ..;' . , . . . . . _ - . q... c. -
- ; j i.; ' , ..,.;-
s.t .-
- . ,. . , ' , , .., + , . ... ..
7
. .,/,>. , , . :.G:'yr..-;q
- .-* . -o.-' .*..
?
. 3 1,o .? .. . *:;: . : . ' t .n . : .,;; . 3 ....;A"..s,'..,..~;. u. , y, ., * . .. .y : . ; : ':, o. . . . . ; .
. , .:s .a:.p ...-y .~ ; ' ..:'. ,..' ,' . :; '.::
.~,g. :r..", ..
.. 7. . .- ',*.. ' ,;,
.' w
.e. -
.- e
- 'I3****'..'..E*
. .. .?-l.':.:, '.<wio . :W D' :' ;;* ','-'..'..:..: ' -.k.. : ' '
- w. as. T%*- on' t . . ' . ' '.s ... :. ; . * ; . ';: .,f ?; .
.t .
.~.t.^ ;"*'.,
- ' .: . . .? : '9- .
'. .';.. .n.y:*
\**'-
., i ?- ',:
. > ; ?: * :.,,.' ' . ' ' . -
. . ' [' . . l a
- %.%' ? '.q')'.'J..l .' .t
- U.M,'.'.".',,*a't.'.'*.'."
.s 3 '.W ' ':'..:'l.'
' f l h .[? .-$- ,!s @.,'., .Wi ;t. .,, ,N';. O. :,'. ~, ?,.. . . i." '.M '.:I W: :.....L.. .' r. M
< ".4. . f. : . l ,/. k. . . '" 3 ' :
,I
-* Y: ' . . . - _ , : * ' ; '
.JJ
-.,, . . _ . . - ;.... . ~2 ; ,s ...' '*
.. . ..*.' ....u e < .;;3._. .;%..;,.,,.......,
- s.- s'. ; - .,,-.;;r*,..,._,.).., . . . *
..,',?",;
, . ; . L, '. . _ . . . y J, . *. . . .. a. t . . %.
,.- s '.
~. 3.. : :.. -.:P.
' . , W: ' '. ..l:
. . n ..::... .
? .. ," .
.__m. ..
' .' c..: . . :.- ~i' ..*. ':. . -.* ;; '- n ..:.jv1a M
- '.<, ; - : ' n' : . .: 4.s *' . .L;"* . 'i: . :. ~~ '.L
'-V. .;..; *:.:; .... .s: ;. . !,7.,.;, r. >. ...,';nc; .:.. . , . , ,; . .:
. ,:e . ru ^ :. :
x .. .
-I . . ;. '
i.. .? . : M.f.:' i i. :l ;l J ' ' ', ?:. 'l . !*: ", '.' "' ~.l lF.. ' r ^..','...,,.t'.', -?lI.,.'.' . . . . .',' .._-
- T . ::. ;;'-'*- : ' :'
?*% ,.!'.:
. . . . .*} . . ., , { , . - f, /* a.' -' ,'-' 4 - f- 2. .. .' ..g,,.;*s..i."'4/..
- . *: .:. , ; y
. , . ;',tw- ; .,s. . - ,,s. . , . - . . .,. . .; .a .-
..s a y.
a' .- .' -
. s t"
' ...=.;e ..
- f. -..s * ;
U .[ ":-: f , ' l..,,r .,'. ( **-(,.c
. . , . , /.', ,l. . ' , N *;,- '
- 3. - - ,- [ '.:" - .l.,', ', ', j ;i :*"'l, <
- T,
..;i,'...e' s . 4,I ['.!t ...,6' * .-,.; (:.<;.,
' *, /.- ~ .h .l. , 'I . , . 'n 9 .\8y
' ':-', ,f f.s i.
' S.-
- c3,....'... *,.s, j . .
g l- ., ... ,
s'.?,',....J.._ ...._...,?..?
, , , .' ...,s.,.r,**
..t
- . . . . , , . ,.'. - -.,' :,; -. . . * , , , ., !, . ,. . , , , ., ~, ... ;
+
. . , . ..,... ,, . - .. ,s,
..-. :s.:,. ..
3 .
.$ .ay ', g. ,. s..r.'.S. .f , , . --",,;'... ,-- c,...-, . .k,,. o.,., .'.
, ' ,', ' '[. .
. .,,.?...,,9.'f..s.' .-. ;.:'-, .':.. -*.
..gi,
. . . .. ... . . .; .m[. ::. , '. -' :;' 'ee . ' " .".. , ~ . . 3:
v . :. . : c
- , . , - . . . 5 ', , ,,
y
. . . , ' . . - . ' .*. - . ', .p , ._
-.- %.. :- ~ - :
- - . '- , ,l.
_1 ',' : < :; ;..*p.. .,:..:<* ;n ' :l;RL ,M:l,.
i :'r , ,: .. . . , .
(
.'.S...:. r. . ~
y.. ...f, " 1 4 . ' 3' '.,,?..,:.
-'.s.
... s . 5 3. , c .., .,<.c
., .j ; -
- c. .,f,.'.. ,., ., y,.
- '. g
,s . ,. . ., :.. .. .. ". .,, .. ... -. .;,.. . . -,~r . . . . .s..
f.-
.' . , . .<..:.-' ._ . ;.',. .,~,- ,;:. ,.; ;;.,.. , , f...
.;. ,.,m..
- g 1 . - -
- . - . - :-^ v,
. , 3
,.?- ;-
..,t : r .:
,,c .*
t . . :<,W '< ", s . :
.a.).,..,.1 . ...."c.,.- .-
g; ....)
...,,.',."....s. .. .-. .. .e,..-m.u.. '. . o.p
. .- w
..t.. .r.....,;..
,;, ., .. .: . . .. ,,4.s...,...,.j.-.:
- ,,
- i .~- .. . . ,: <
s
- c. .c. .. .;< :: u .
,s.. .
.p... .. , . , v,,.,.p .s
. ~ ~ .n<,,.-
c .. ., .
' L . ' . ':! ; i * -.. :-. .~ . ;..-M..'*,. .- , .-. ..v.... . . :. ..
,,,,.ys.. .
,r ., ... c.
. . . . , ~s . , . . , . , .
k.;4:: 3. .....;P:q'3 . ; ..
s
. .*v : . ;~ c& . %,v
- . w ,,.
- 3 ?
'*' ' ; s.,w)
'f: ' . M' .'..rq.'..' L
- r,T d. l"y.h - .<.*
'i % . .D ' t*- ,o'. .' .'.:.b. :. ~. ** *: .
. ; A.-f - h v,. . .%:'Q~: ';C"',,_ ';.l.. G ~'...u . .*:. .? h**r :,- . .
- .^
z i .; . ,.
- ;".',e.'.- 1 ;y'. ..ll~ ,
- ,V
-...%.. - :.$. v c .. .2 :, *L. > ?;, ':
...q','.
'c~--
.i.'.. -': .-:. .. '. ; , , ' * 'h& (. . : ),
E.
._~*.,.......fj'r s.
^
v;; z(; ; , . ., ' , .
Ur ;,;'* '. . . l.,.'..'a'. _, ,.- ,, . .; . _ G.'; * ..';.'.' - +......._.:..,.,..'.-
..y r -
. : . iQi?" .l j.,' .l ' . : ,
- . . . . . . y...s,
- .*' .z ~.f.u . , '- . .:v g ,. ; c . _. ; .p.,_._,.. .- ,.
9 -,,
o; ,; .; ' g
- ^
, \- . n. ' . .,. . +.;,
. ,..o. . . - ...:._ . . ' . - .c.'e~,.
, . . , . . ' .. .:,,. ..,. . .'. .*.%,..e. .'- . , . ~.. '. . - *.
s
.. ; ;. . v. a:
, . . . ,.' : . .g ' ,: :.
- .....,> .e ._.,
- ; . . . , ,'1,-
- ,, . . . , .; . v. . .. . ' :. : : _ ,- ,. ._ . ._ ..-,...
..' ., , . . . v.
, ;. >: ;;;.7..; y -+.:...'.....:.y..'..v.s' .- , ,: , .
-u. y . . . .,<.: - J ;
. . . . .. ';;. : ,../.;;r.. ..?.::. ~
, : v
, .. .. . .' . +, . ... ~;, ,,. ..g..
...e,.. .
. . 3. ..:, . . _. - .c- .
- - e . , ._ .,. .. . - .. 49 _ . . _
- '*
- . N ,,.*.w,., e. .a .
- .9..,.,.n,,.
? , 7 3 . ;' - .
.;._ ;;; ) ^-. :. ..a, ..-,.,,: :
'. . .p .
. ,.;.,., .;.; - n: ; s L . _ -,w, .y . . . - *: .< -
.; - . s ,. u t" . , - - . . . . -
. .< :y,._..- ,
a , .. ; . . ,:._ ; ,; _ _
- ... , . - ,, . , , -o . . . . ,, , . . .j ,. . y ~ ; . ; ,, . ;,
.r ;
u,. ..; ; . .. :
.. .'. Y.n **; .i.'. C ~ .;' ; . * : < f .1.:- ;.: * .< z y'~l'..:j_'.' M
^
'. ' *~ '
- ' ' -l ;* ; .
. ' ' ':. .,:. : .:.-^' .i: ' ' lv 2
-s . . ' . q.r..:. '. _ <; ....'..:.....;,.
- 1-~,~
- c,.. , ..;;...w/l.?.;_ ._;v . . .;. i , -,. . .
- .
. . . .L. .:: c.,;
., . . . . . . .. . . , .;.x
.r ..
._ ., - , e
.,..c.. . . < -
. f . .. . ,'y :; . -. :;: ". .,',;_ ;; , '. (._.....;
. .. . .< (,g .o s . . . -, .
.~ ,, .- . . . . -
. . .. y
. . . ;:n -
. . v. . . y; . ~ s. . . .: - ,
, . * ~: ' ..
,_ .. :. :: ,"..,,_;, [ . .- 7_ . . , _ , _ _: : , _ <
- .<' , ...,;~ ... .) .,, ;., .: .,.e
- ,. tr [
- . :. .-' ,. ,.. ,
. . ,:. .;;;,; } ., ;. .} ' A.v }.. ' c ; . ':.
- f '..' . ,L y. . . . .., K * [ .: .: .
- - . :? _' :
J ('.! ...,
c; - p .s;. w;., ., ,. +
- . - -. r 4-
..,. * .. . .. ..+e.. , ; ;<. . _ . '2
- ., y ..;. ., ;... .
..,'.S,., ., 7
_ . , . ; . . - -- . .: ' . , ...s.
- .a
-. *h . ..,. - + .. . , (,c, . .- . * * . .s:
. ' . ,.,..;.s.
- 2 . . ,s . . :,. - q, ,:o, . . .
,.4 . . :, .,,/.a, -
t ,; . ,q ^
y ., .- .p': ; "3. ",.s:. s '.s.*'.'ns.
, L rj,,+..- . . , , . .; . . .. _
j ' ..,.,y.,re c, r . .
, .. . ; ;;s , 7,,, j ,.t'j ' ; : . . .,, .. . ,, . , . . . . -}.j.,..
,u;. _ _> ., ,
. , , . . '..j g
- .,.-..-,:- .. .,.y._,.',, .,...
,.o
.e
- ..'*.'.[ 7 ~ ~ . * . . ',-u . * , , , , * , -$- , *,,. .,- .
.- r .s. . ,, _ ,_ ; ;
%s;. . ;- . ,. *: * . . - _ : ,, . ' . -.' '
- s. ;
.*;.,,.;..,,:,^ " }.'S .. * ,;
.'. ,a - . .
r: .; :s. , _ _.'.'.:. . .. ., .,, , t: .' ...; +. *a.' ';* ..,.,.;,-- *_' _ ' , , -" ..
' .: ,l. . . ..t* .A *,y~ . ; :,_
"_ ; *: y p ;:., ,'. p'. ; . .
,; r.:-. * .. ? :,. , ... ; ..' .,, ;;* :,' .y,,, . V q :: , . ..s. .f. .;;- .,, ...,;4. ,,.(.):.
_ . .y;. . '
- .'.. . . . - .. p. .. .
- :.: =.:;..._,..,_,2,,,,;, . u'?.; <
. - .,. y, J r - -
.; , ,a.', , .,
,.',,'r.4'.,.._ ,,,'*.
- ,., .
- * . Y. /.: ,:n. :* :' "n c:a
, : . e . G. . : i . ;h
' . :.* ' y' ' .; * ,.i'.,- .:.- *. '.' . . .,
.~.',:,e.I'*,..- b- '. +*- - ., - ' + , ' ' '. . '- -o". .-
- . ~ . . - -
.,r.
...s_ ' . . '~.,,.'.,...t..,--
.n - . , :: > 4 : l:..L.. -*: . . ' . * ' - -
, *'y .y :4.:.+ ~'. . ',.&.'.~:Wu.i. :m, .':, '..,:.';;. ;,". \.. ; :.;** ' ? .v.v .: ;* -. w.;%., - ': y ,( ;*.
.n:v '4.s,;:l.:... ;,:.% ^y... ( <* J ,? i_; l
.: ,. G:
, . .l + ,.
".';;,:1 w . . - *:v.;s,.,....- . q.. . . .
.p . ._ ..
- t. :- . , . .,r.
- g"...
t & .
. - . . ., . . .} ,.3:.
.i ;
\,
.... ... . - g' m ,. . < .. . . .;. .. ^ c. .
.r:... m . . . . . . .. . . ....t*.
3 ', .
';n:),.,'
- .5 4 s .:%vl Qi. .r .i ..! .'. '~. , l ?.V,jl.) } g ' . ,' , : ..'.v Nl . {. ;e :! ^.g .: ..'. vn'."'....-.k* .*., .. -;4' ' ./_..:.', '. .... .. *: :g
. . ;s #.~1: ~
T.TV. xE ? ~ 9 n. '. . . W 5 e.< ee 'W ...N.E t " . '.Y / >. .L.m: .
- " .i - 9306020399 930524 :' J.:' '
PDR ADDCK 05200003 'W .T ;. N ' ; M2' h. . . : ; . ' &l;': 7. W M,' [ .P y.:, (f. ' 4 _: 5_: . . W::" c. F . . < < l 5 3 ?
.:;. ! A PDR- .
[ ; :, ;,;.,,,,.f
WESTINGHOUSE CLASS 3 (Non-Proprietary)
WCAP-13735 STRUCTURAL ANALYSIS
SUMMARY
FOR THE AP600 REACTOR COOLANT PUMP HIGH INERTIA FLYWHEEL 1
May, 1993 l
l l
l WESTINGHOUSE ELECTRIC CORPORATION Energy Systems Business Unit P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355
- 1993 Westinghouse Electric Corporation All Rights Reserved l
___ 1
ABSTRACT This report summarizes the analysis of the flywheel design for the AP600 Reactor Coolant Pump. Dimensions used in the evaluation are shown in Section 3.0. Overall lengths and diameters were derived from the . current.
assembly drawing and are consistent with the design represented in the AP600 Standard Safety Analysis Report.
The flywheel meets specific limits given in Section III, Subsection NG of the ASME Code, Regulatory Guide 1.14, and the Standard Review Plan Section 5.4.1.1. The evaluated loadings were based on the' Reactor Coolant Pump Design Specification. The results presented in this report are in conformance with the discussion of flywheel integrity found in the AP600 Standard Safety Analysis Report.
t l
l
\
s
)
l WPF1852D:1D/051793 i
TABLE OF CONTENTS Page ABSTRACT ....................... ......... i LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
1.0 INTRODUCTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 2.0
SUMMARY
OF RESULTS . . . . . . . . . . . . . . . . . . . . . . . . 2-1
3.0 DESCRIPTION
OF COMPONENTS . . . . ................ 3-1 4.0 DESIGN REQUIREMENTS ....................... 4-1 4.1 Loading Conditions . . . . . . . . . . . . . . . . . . . . . 4-1 4.2 Material Properties .... ................ 4-2 4.3 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 4.3.1 ASME Code . . .. . ................ 4-4 4.3.2 Regulatory Guide 1.14 ............... 4-4 4.3.3 Standard Review Plan ................ 4-8 5.0 ANALYTICAL METHODS . . . . . . . . . . . . . . . . . . . . . . . 5-1 6.0 ANALYSIS AND EVALUATION . .. . .... ............. 6-1 6.1 ASME Code Subsection NG Criteria . . . . . . . . . . . . . . 6-1 6.1.1 Design Conditions ..... ............ 6-1 6.1.2 Operating Conditions ................ 6-4 6.1.2.1 Primary Plus Secondary Stress Intensity . . 6-4 6.1.2.2 Primary Plus Secondary Stress Intensity Range . . . . . . . . . . . . . . . . . . . 6-4 6.1.2.2.1 Simplified Elastic-Plastic Analysis . . . . . . . . . . 6-11 6.1.2.3 Fatigue Usage . . . . . . . . . . . . . . 6-13 6.1.2.4 Thermal Stress Ratchet . . . . . . . . . 6-14 6.1.2.5 Average Bearing Stress . . . . . . . . . 6-14 6.2 Regul atory Guide 1.14 Criteria . . . . . . . . . . . . . . 6-14 6.3 Standard Review Plan Criteria . . . . . . . . . . . . . . 6-16 6.4 Fracture Mechanics Evaluation . . . . . . . . . . . . . . 6-18 6.5 Torque Capacity . . . . . . . . . . . . . . . . . . . . . 6-22 6.6 Pressure Boundary Containment of a Burst Uranium Flywheel . 6-23 6.6.1 Assumptions .. . .. . . . . . . . . . . . . . . 6-24 6.6.2 Energy Analysis . . . . . . . . . . . . . . . . . 6-25 6.6.3 Conclusions . .. . . . . . . . . . . . . . . . . 6-36
7.0 REFERENCES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 APPENDIX A - Thermal Analysis ... ............... A-1 WPF1852D:lD/051893 ii
LIST OF FIGURES Figure No. Title Page l 1-1 AP600 Canned-Motor Reactor Coolant Pump . . ... . . . .. . . . 1-2 l
3-1 Flywheel Components ........ ... . . . .. . . .. . .. 3-2 3-2 Flywheel Geometry ........................ 3-3 3-3 Typical Flex Foot and Weld Geometry .. . . .. . . . . .. . .. 3-4 5-1 2-D Finite Element Model . . . . . . . . . . . . . . . . . . . . . 5-2 5-2 Analysis Section Numbers (ASN) Away from Flex Foot Areas . . . . . 5-4 5-3 Analysis Section Numbers (ASN) at Flex Foot and Weld Areas . . . . 5-5 l 6-1 Flywheel Containment Model Thickness Assumptions . . . . . . . . 6-27 l
l l
WPF1852D:lD/051793 iii i
.I
l LIST OF TABLES Table No. Title Page 2-1 Evaluated Maximum and Minimum Radial Interferences for Assembly (Inches) .......... .............. 2-3 2-2 Primary Stress Summary for Design Conditions (ksi) . . . . . . . . 2-3 2-3 Stress Summary for Operating Conditions (ksi) .......... 2-4 2-4 Primary Stress Summary for Uranium Insert at Design Speed (ksi) . 2-5 1 2-5 Maximum Stress Intensities for Uranium Insert for Operating and Design Speeds (ksi) ...... ................. 2-5 1
4-1 Material Properties .. ..................... 4-3 4-2 Summary of Applicable ASME Code Subsection NG Stress Limits for Design and Operating Conditions ................. 4-5 4-3 Summary of Applicable ASME Code Appendix F Stress Limits for Overspeed Conditions . . . . . . . . . . . . . . . . . . . . . . . 4-7 6-la Summary of Linearized Stress Intensities (ksi) for Design Conditions for Minimum Shrink Fit Conditions . . . . . . . . . . . 6-2 6-lb Summary of Linearized Stress Intensities (ksi) for Design Conditions for Maximum Shrink Fit Conditions . . . . . . . . . . . 6-2 1 ;
l 6-2 Primary Stress Summary for Design Conditions (ksi) . . . . . . . . 6-3 6-3a Maximum Linearized Stress Intensities Under Minimum Shrink Fit Conditions at the Shrink Fit Areas of the Model ......... 6-5 6-3b Maximum Linearized Stress Intensities Under Maximum Shrink Fit Conditions at the Shrink Fit Areas of the Model ......... 6-5 6-4 Maximum Primary Plus Secondary Stress Intensity Range Values for Minimum Shrink Fit Conditions Away from Flex Foot Areas ..... 6-6 6-5 Maximum Primary Plus Secondary Stress Intensity Range Values for !
Maximum Shrink Fit Conditions Away from Flex Foot Areas ..... 6-7 1 6-6 Maximum Primary Plus Secondary Stress Intensity Range Values for ;
Minimum Shrink Fit Conditions in the Flex Foot Areas . . . . . . .
6-8 WPF1852D:1D/051793 iv
LIST OF TABLES (Continued)
Table No. Title Page i
6-7 Maximum Primary Plus Secondary Stress Intensity Range Values for !
Maximum Shrink Fit Conditions in the Flex Foot Areas . . . . . . . 6-9 6-8 Maximum Primary Plus Secondary Stress Intensity Range Summary (psi) ... . . . . . . . . . . . . . . . . . . . . . . 6-10 6-9 Primary Plus Secondary Stress Intensity Range with and Without Thermal Bending at Locations Which Exceed 3S, (ksi) . . . . . . 6-12 6-10 Fatigue Usage in the Flex Foot Areas . . . . . . . . . . . . . . 6-15 6-11 Contact Areas for Bearing Stress Calculations . . . . . . . . . 6-15
. 6-12 Summary of Linearized Stress Intensities for the Uranium Insert I for Design Speed . . . . . . . . . . . . . . . . . . . . . . . . 6-17 6-13 Maximum Stress Intensities for Uranium Insert Away From !
Shrink Bands for Normal Speed 6-19
(
6-14 Maximum Stress Intensities for Uranium Insert Away From Shrink Bands for Design Speed .. . . . . . . . . . . . . . . . 6-19 6-15 Flywheel Operational- and Design Stress Range Values . . . . . . 6-20 1
I i
I
)
WPF18520:1D/051793 v l
1.0 INTRODUCTION
This report summarizes the analysis of the design of the high inertia flywheel assembly for the AP600 Reactor Coolant Pump. The geometry analyzed is based on the overall lengths and diameters derived from the current assembly drawing. The flywheel assembly design consists of a depleted uranium alloy flywheel (or insert) encased in an nickel-chromium-iron Alloy (Inconel) 600 enclosure. The dimensions used in this analysis are shown in Section 3.0.
Radial shrink fits are imposed at assembly to prevent slippage due to motor torque between the shaft, the enclosure, and the uranium flywheel during pump operation. The detailed structural analysis results are documented in an Engineering Memorandum prepared by Westinghouse Electro-Mechanical Division (Reference 1).
The reactor coolant pump in the AP600 design is a single stage, hermetically sealed, high-inertia, centrifugal canned-motor pump. A canned motor pump contains the motor and all rotating components inside a pressure vessel. The pressure vessel consists of the pump casing, thermal barrier, stator shell, and stator cap, which are designed for full reactor coolant system pressure.
The flywheel assembly is located between the moter and pump impeller' and provides rotating inertia that increases the coastdown time for the pump.
Surrounding the flywheel assembly is the heavy wall of the motor end closure, stator shell, and flange. The design of the reactor coolant pump is shown in Figure 1-1.
The canned-motor reactor coolant pump in the AP600 complies with the re-quirement of General Design Criterion (GDC) Number 4 that components important to safety be protected against the effects of missiles. The basis for providing that the flywheel design is in compliance with the requirement of GDC 4 is outlined in Subsection 5.4.1 of the AP600 Standard Safety Analysis Report (SSAR) (Reference 2). The licensing basis requirements include evaluation criteria for stress levels in the flywheel assembly at normal and design speeds and for retention of the fragments by the structure of the pump following a postulated flywheel fracture. This report uses the licensing basis outlined in the SSAR to establish evaluation criteria for the analysis of the flywheel .
WPF18520:1D/051793 1-1
,' D
.d j/ / [ CASING h '
f y-- iunetten 9
a
)
s' ;
,/ ', e THEAMAL f2AAAIEn
,3, e I
%*'A ;/'
- sounNAt se^a ' m
'.b ,_ rn 764 i
q l- Avfj 8l;; AE) i E_ IM&-;-
fd- Y1 0%1 Y> 'V[eNn [cs a
l .I kN sTATon g y}l,' q FLA %E aO E
w x \ rev.seet Asseuety
. ._ g 7
EU-[i G d C*
N$ i 3$Ily ,cT**
iii Q :e Q:o g k ;aI sTAron WINDINGS y gg kB,8 x;
I wSi8 "
$k!2 $^,3 o l L,
$$""5
); gm3w; MOT OA
- 'masat .g
,: - Dr- 1 TEAMANAL$
G u
FIGURE 1-1 AP600 Canned-Motor Reactor Coolant Pump WPF18520:1D/051793 1-2
2.0
SUMMARY
OF RESULTS The detailed summary of the results of the stress analysis of the high inertia flywheel assembly is contained in Section 6.0. The evaluated maximum and minimum shrink fits for all locations are given in Table 2-1. Tables 2-2 and 2-3 address the limits given in the ASME Code,Section III, Subsection NG (Reference 3) for Level A loadings. Table 2-2 provides a summary of the primary stresses for design conditions. Table 2-3 summarizes the calculated stresses for operating conditions. All stresses are within the allowable limits.
The design basis for the AP600 presented in the Ap600 Standard Safety Analysis Report (SSAR) (Reference 2) is that the lowest of the critical speeds for j ductile failure, nonductile failure, and for excessive deformation limits be greater than the design speed of 125 percent of operating speed. This report verifies that the modes of ductile fracture, nonductile fracture, and for failure due to excessive deformations will not occur at the design speed of 125 percent of the operating speed. Table 2-4 demonstrates that the linearized stresses in the uranium flywheel are well below the faulted stress criteria given in the ASME Code,Section III, Appendix F (Reference 4).
Therefore, ductile failure will not occur.
Flaw size and crack growth calculations are contained in the fracture mechanics evaluation in Section 6.4 for design speed as well as for the postulated load cycles for the life of the pump. The evaluation determined a critical radius of 3.28 inches for a semi-elliptical arial flaw and a depth of 1.25 inches for a full length axial flaw. These values may be used to support fracture toughness and inspection requirements for the uranium alloy material.
Section 6.5 concludes that failure due to excessive deformation will not occur by demonstrating that some amount of interference fit will remain at all contact areas for all load conditions including design speed.
WpF18520:lD/051793 2-1
The design basis includes the requirement that the pump provides protection against missiles in the event of a postulated flywheel failure. Satisfaction of this requirement is demonstrated in Section 6.6 where it is shown that the stator shell and flange will, by a large margin, contain the energy of the fragments of a fractured flywheel without causing a rupture of the pressure boundary.
Paragraphs 4.a and 4.c of the Standard Review Plan 5.4.1.1 (Reference 6) recommended limits on the maximum stress in the flywheel at operating and i design speeds. These limits are shown to be satisfied in Table 2-5 for the uranium flywheel away from localized areas around the shrink bands located on the inside diameter. The shrink fit bands have high localized stresses which are evaluated to the ASME Code,Section III, Subsection NG limits in .
Table 2-3.
The results for the evaluation of the torque carrying capacity for the three interface locations show that sufficient capacity remains to resist the maximum motor torque under all loading conditions including the loss of cooling water transient for slightly over 10 minutes. This satisfies the design specification requirement which states that the pump shall be designed for operation without cooling water for a minimum of 10 minutes without damage. Note that the torque carrying capacity between the uranium and the outer shell increases for all loading conditions.
WPF1852D:1D/051793 2-2
TABLE 2-1 Evaluated Maximum and Minimum Radial Interferences for Assembly (Inches)
Minimum Radial Maximum Radial Location Interference Interference Shaft to Inner Shell [
1 Inner Shell to Uranium (Lower and Upper Fits)
Uranium to Outer Shell ]'#
l TABLE 2-2 Primary Stress Summary for Design Conditions (ksi)
Primary Membrane Primary Mem. + Bend.
Component Allowable Allowable Calculated Sm Calculated 1.5Sm Shaft 5.61 23.30 8.85 34.95 Uranium 3.27 36.67 5.81 55.00 Inner Shell 8.46 23.30 9.38 34.95 (Away from Flex Foot)
Outer Shell 3.67 23.30 6.39 34.95 (Away from Flex Foot)
Flex Foot and Weld Areas 21.92 23.30 33.32 34.95 WPF1852D:lD/051793 2-3 L____
TABLE 2-3 Stress Summary for Operating Conditions (ksi)
PL+Pb+Q (PL+Pb + Q) Range Average Bearing Stress Fatigue Usage Calc. Allow. Calc. Allow. Calc. Allow Calc. Allow.
Component Sy 3Sm Sy Shaft 26.09 38.8 26.87 69.9 19.42 38.8 (2) 1.0 Uranium 28.81 55.0 17.77 110.0 29.93 55.0 (2) 1.0 Inner Shell 34.62 35.0 30.20 69.9 29.93 33.5 (2) 1.0 (Away from Flex Feet)
Outer Shell 30.25 33.50 36.55 69.9 4.17 33.5 (2) 1.0 (Away from Flex Feet)
Flex Foot and Weld NA NA 95.15(1) 69.9 NA NA 0.2413 1.0 Areas (1) Satisfies Requirements of NG-3228.3.
(2) Fatigue usage values at these locations are negligible.
WPF1852D:lD/051793 2-4 I
TABLE 2-4 Primary Stress Summary (l) for Uranium Insert at Design Speed (ksi)
Primary Membrane Primary Memb. + Bend.
Calculated Allowable 0.7Su Calculated Allowable 1.05Su 14.35 77.0 19.06 115.5 (1) Addresses the requirement that the flywheel not fail by ductile fracture up to the design speed TABLE 2-5 Maximum Stress Intensities for Uranium Insert for Operating and Design Speeds (ksi)
Operating Speed Design Speed Calculated Allowable 1/3Sy Calculated Allowable 2/3Sy 15.75 18.33 17.66 36.67 4
(1) Addresses the positions of Paragraphs 4.a and 4.c of the Standard Review Plan.
I l
WPF1852D:1D/051793 2-5 i
3.0 DESCRIPTION
OF COMPONENTS The AP600 flywheel assembly design evaluated herein is based on the current reactor coolant pump assembly drawing. The flywheel assembly components are identified in Figure 3-1. The critical dimensions assumed in the evaluation are shown in Figures 3-2 and 3-3. The flywheel assembly is fabricated by first shrinking the uranium insert onto the inner shell. Next the outer shell is shrunk fit to the outside diameter of the uranium. The cover plates are then slipped into place and the partial penetration welds are made at the four flex foot areas to complete the enclosure. Finally, the flywheel assembly is shrunk fit onto the tapered shaft. The analysis in this report is based on the presence of no key or keyway between the shaft and flywheel assembly.
The inner and outer shells of the enclosure along with the cover plates are fabricated from nickel-iron-chromium alloy (Inconel) 600. The shaft is Type 403 or 410 stainless steel. The flywheel insert material used for the report is depleted uranium alloy with 2 percent molybdenum (U-2Mo). Physical properties for these materials are given in Section 4.2. As the first time engineering is completed and the pump flywheel design is optimized and finalized a different uranium alloy such as uranium-titanium alloy (U-0.75 Ti) may be used. Any alternate alloy used will be compatible with the methods of this report and the final structural analysis will be documented in the
~ ~ ~ ~ ~ ~ ~
reactor coolant pump stress report.
l l
WPF1852D:lD/051793 3-1
Upper Cover Plate l J{U N d'L o
i Inner Shell -
~~ N #
l 3
Outer Shell Uranium i insert Flex Foot
[ and Weld c [ ,
V1 m ( fV~
\ \ L ower Cover Plate
- Shaft
/
Q_
FIGURE 3-1 Flywheel Components WPF18520:1D/051793 3-2
p
- (a,c) i i
i T
4 i
E Er i
FIGURE 3-2 Flywheel Geometry ,
WPF1852D:lD/051793 3-3 ;
i
- (a,c,e) :
t k
t s
h t
h t
b t
- i t
FIGURE 3-3 Typical . Flex Foot and Weld Geometry i
WPF1852D:1D/051793 3-4 k
-i 1
4.0 DESIGN REQUIREMENTS i
The design requirements for the flywheel are based on the current AP600 Reactor Coolant Pump Design Specification and the requirements outlined in the -
AP600 Standard Safety Analysis Report (Reference 2). ;
4.1 LOADING CONDITIONS The loading conditions identified in the Reactor Coolant Pump Design Specification that are applicable to the flywheel are summarized below.
Design Pressure: 2500 psi Design Temperature: 650"F for primary coolant water 165"F assumed for bearing water Design Speed: 2250 RPM Operating Pressure: 2250 psi Operating Temperature: 529af for primary coolant water 165'F maximum for bearing water Normal Operatina Speed: 1800 RPM Transients:
The design specification requires that the reactor coolant pump be capable of withstanding all of the primary coolant transients listed-in the specification. The flywheel operates in the bearing water environment which is isolated from the primary coolant by the RCP thermal barrier. With the exception of the start-up and shutdown transients, it is assumed that the primary coolant transients will have ,
a negligible affect on the flywheel. The specifications requires that l 3000 start-up/ shutdown cycles shall be considered.
The specification requires that the reactor coolant pump be designed for )
i operation without cooling water for a minimum of 10 minutes without any i damage. This requirement is to satisfy the safety-related coastdown function. For investment protection the pump must operate without i WPF1852D:1D/051793 4-1
cooling water for 30 minutes before total failure requiring replacement of the motor occurs. The time without cooling water that the flywheel :
can withstand without damage is demonstrated in Section 6.0. The estimated time without damage is 10 minutes. The threshold for damage l which could adversely affect coastdown is 12 minutes. ,
o Desian Mechanical Loads:
The specification lists the motor speed at 1800 rpm. The specification requires that the pump be capable of speeds up to 1.25 times the normal operating speed or 2250 rpm. The thrust bearings are assumed to apply vertical loads of 10,000 pounds to the upper cover plate. This load is !
small compared to the applied force on- the flywheel assembly enclosure due to the 2250 psi pump internal pressure and is ignored in the l analysis of stress on the flywheel. -
4.2 MATERIAL PROPERTIES !
The inner shell, outer shell, and cover plates of the enclosure are fabricated I from nickel-chromium-iron Alloy 600 material. The ASME material specification for use in the analysis is SB 564 Type N06600. The pump shaft is either-type 403 or type 410 high alloy stainless steel (13 Cr). The ASME material ,
specification is SA-182 F6a Class 1. The high density flywheel is annealed depleted uranium alloy (U-2Mo). Physical properties for these materials are listed in Table 4-1. Properties for the nickel-chromium-iron alloy and -
stainless steel are taken from the 1989 Edition of the ASME Code (Reference 4). As first time engineering is completed and the pump flywheel design is optimized and finalized different flywheel enclosure and pump shaft material may be selected. Any alternate material will be compatible with the ,
methods of this report and the final structural analysis will be documented in the Reactor Coolant Pump Stress Report. Properties for the depleted uranium alloy are based on the test data reported in Reference 5. The properties in the test data are consistent with information on annealed uranium alloys in published technical literature. The minimum mechanical properties and alloy chemistry limits for the uranium alloy are specified when ordering material.
WPF1852D:1D/051793 4-2
i TABLE 4-1 Material Properties (l)
Component Property 100*F 200*F 300*F 400*F 500*F 600*F Units ,
Pump Shaft Sm 23.3 23.3 23.3 22.8 22.0 21.2 103 psi 403/410 Stainless Steel Sy 40.0 38.1 36.8 35.6 34.7 33.6 103 psi ASME Code Section II Su 70.0 70.0 68.5 67.5 66.3 64.6 103 psi SA-182 F6a Cl. I am 5.98 6.15 6.30 6.40 6.48 6.53 10-6/*F E 29.2 28.5 27.9 27.3 26.7 26.1 106 psi o 0.280 lbs/in3 Enclosure Sm 23.3 23.3 23.3 23.3 23.3 23.3 103 psi Nickel-Chromium-Iron Sy 35.0 32.7 31.0 29.8 28.8 27.9 103 psi Alloy 600 Su 80.0 80.0 80.0 80.0 80.0 80.0 103 psi ASME Code, Section 11 S8-564 Type N06600 am 6.90 7.20 7.40 7.57 7.70 7.82 10-6/*F E 31.0 30.2 29.9 29.5 29.0 28.7 106 psi o 0.304 lbs/in3 Uranium Insert Sy 55,000 min 103 psi Depleted Uranium Alloy Su 110,000 min. 103 psi U-2Mo am 8.3 10-6/oF E 21.5 106 psi o 0.688' lbs/in3 (1) Properties for 403/410 and nickel-chromium-iron Alloy 600 are taken from the 1989 Edition of the ASME code.
(2) Properties for the depleted uranium are taken from the test data of Reference 5. Sy and Su are minimum values to be specified when orderina uranium.
WPF1852D:lD/051793 4-3
1 i
4.3 CRITERIA The design criteria for the flywheel assembly is outlined in l Section 5.4.1.3.6.3 of the SSAR (Reference 2). The applicable stress limits are derived from the ASME Code,Section III (Reference 3), the Standard Review Plan 5.4.1.1 (Reference 6), and Regulatory Guide 1.14 (Reference 7). These limits are addressed in the.following subsections.
In addition to the above criteria, the flywheel complies with the requirement of Genera' Design Criterion Number 4 which requires that components important to safety be protected against the effects of missiles. It is demonstrated in Section 6.6 that in the event of a postulated worst case failure, the energy of the flywheel fragments is contained by the wall of the stator shell and fl ange. .
4.3.1 ASME Code The Level A stress limits of the ASME Code,Section III, Subsection NG (Reference 3) are used as evaluation criteria for the components of the flywheel assembly. Subsection NG rules and limits apply to reactor core support structures. The use of core support limits are considered appropriate for the flywheel assembly components since both the core supports and flywheel assembly operate in the reactor water environment and neither is a reactor coolant pressure boundary. An additional acceptance criteria is a limit for the primary plus secondary membrane plus bending stress intensities in the main shrink fit areas of S y. This provides that the flywheel will remain elastic in these areas and prevent a loss of shrink fit due to gross yielding. <
Table 4-2 contains a summary of the applicable ASME Code,Section III, Subsection NG stress limits. ,
4.3.2 Regulatory Guide 1.14 The application of the guidance of Regulatory Guide 1.14 for the analysis of the flywheel is addressed in the SSAR. The critical flywheel failure speed WPF1852D:10/051793 4-4
. . . .~. -- ~.
t TABLE 4-2 ,
Summary of Applicable ASME Code,Section III, Subsection NG Stress Limits for Design and Operating Conditions Condition Stress Category Allowable Reference Paragraph (1)
Design Primary Membrane Stress Sm NG-3221.1 Intensity Primary Membrane Plus 1.5Sm NG-3221.2 Bending Stress Intensity Operating Average Bearing Stress Sy NG-3227.1(a) !
Primary Plus Secondary S y See Text Stress Intensity Primary Plus Secondary 3Sm NG-3222.2 Stress Intensity Range ,
Fatigue Usage U < 1.0 NG-3222.4 '
(1) From Reference 3.
i WPF1852D:1D/051793 4-5 r
w
evaluations for the three failure modes discussed in the SSAR are addressed in-1 the following.
The analysis performed to evaluate the failure by ductile fracture uses the faulted stress limits in Appendix F of Section III of the ASME Code as acceptance criteria. The applicable limits, taken from paragraph F-1331.1 of Reference 4 are summarized in Table 4-3 for the uranium insert.
The enclosure and welds are evaluated at normal operating and design speed ;
using the ASME Code,Section III Subsection NG limits described in Section 4.3.I. The nickel-chromium-iron alloy enclosure is not evaluated for r critical failure speed. The function of the enclosure is to prevent contact I of coolant with the uranium flywheel. No credit is taken in the evaluation of missiles from a postulated flywheel fracture for the containment of fragments by the enclosure. In addition, the enclosure contributes only a small portion of the total energy in the rotating assembly. l The analysis performed to evaluate the potential for nonductile fracture of the uranium flywheel considers the estimate of flaw size, location, flaw growth in service, and the values of fracture toughness assumed for the ,
material. An evaluation of nonductile fracture for the uranium alloy flywheel is provided in Section 6.4 and determines critical flaw size and predicted growth rate.
Failure by excessive deformation is defined as any deformation such as an enlargement of the bore that could cause separation directly or could cause an unbalance of the flywheel. The evaluation of excessive deformation verify that the components of the flywheel assembly remain in contact at the design-speed. I As outlined in the SSAR, the flywheel assembly is evaluated for three critical ;
flywheel failure modes. This report demonstrates that the failure modes of ductile fracture, non-ductile fracture, and excessive preformation will not '
occur at the design speed (125 percent normal speed). The design speed envelopes all expected and postulated overspeed conditions including overspeeds due to postulated pipe ruptures.
t WPF18520:1D/051793 4-6 w
P' W
TABLE 4-3 Summary of Applicable ASME Code,Section III, Appendix F Stress Limits for Overspeed Conditions Stress Category Allowable Reference Paragraph (1)
Primary Membrane Stress Lesser of 2.4Sm and F-1331.1(a)
Intensity 0.7Su Primary Membrane Plus Lesser of 3.6Sm and F-1331.l(c)(1)
Bending Stress 1.05Su Intensity (1) from Reference 4.
i i
WPF1852D:lD/051793 4-7
4.3.3 Standard Review Plan :
The uranium alloy flywheel is evaluated using the stress limits given in paragraphs 4.a and 4.c of the Standard Review Plan Section 5.4.1.1 (Reference 6) for normal and design speed. Paragraph 4.a recommends that the ,
combined stresses at normal operating speed due to centrifugal forces and interference fits should not exceed 1/3 of the minimum yield strength.
Paragraph 4.c recommends that the combined stresses at design overspeed (125 percent normal speed) due to centrifugal forces and interference fit '.
should not exceed 2/3 of the minimum specified yield strength. These limits l are satisfied for the uranium alloy flywheel away from localized areas at the shrink fit bands on the inside diameter. The shrink fit band areas have high localized stresses which are evaluated to the ASME Code,Section III, i Subsection NG limits described in Section 4.3.1. The Standard Review Plan ,
limits do not apply to the nickel-chromium-iron alloy enclosure.
l
?
i L
b i
l l
l
)
1 4
WPF18520:1D/051793 4-8
f 5.0 ANALYTICAL METHODS All stresses evaluated in Section 6.0 are calculated by the finite element method using the WECAN computer code (Reference 8). The finite element model is shown in Figure 5-1. The model is axisymmetric and nonlinear.
In order to simplify the analysis, certain assumptions are made. These assumptions include the following:
- 1. An elastic analysis is performed. 't
- 2. All components, other than those affected by shrink fit are initially stress free. i
- 3. Nominal dimensions given in Section 3.0 are used at all locations. .
- 4. Friction coefficients of 0.4 are assumed at all interface locations. A friction coefficient of 0.15 is assumed for motor '
torque carrying calculations. !
Finite element runs are made for the maximum and minimum radial interference fits listed below.
l Location Minimum Maximum j Shaft / Inner Shell* [ ;
Inner Shell/ Uranium ;
I Uranium /0 uter Shell ]l'A*)
i
- Based on an axial advance of [0.135 i .005 inches for a 1.25 in/ft]I'M taper i on the diameter. j i
WPF18520:1D/051793 5 :
i
.[
i
- (a,c,e) t i.
?
t i
e i
~!
'I r
?
P i
i i
~
FIGURE 5-1 2-D Finite Element Model WPF18520:lD/051793 5-2 ,
1 l
Initial shrink fit runs are made without the shaft or cover plates. The j average radial displacement of the inside diameter of the inner shell is calculated from this run and is subtracted from the radial interference fits noted above for the shaft to inner shell. The displacements of the flex feet at the welds are noted and constraint equations are written to attach the t cover plates to the model in an initial stress free condition. Final assembly runs are made with the shaft and cover plates included. The modified interference fit at the shaft and the constraint equations at the welds are employed.
Start-up, shutdown, and loss of cooling water transients were run. Critical times for the stress solution were determined by a tit analysis that calculates the temperature difference at the center of each component versus time. Critical times are chosen to either maximize stresses or minimize the shrink fit.
During operation the shaft rotates at 1800 rpm. To simulate this, a rotational velocity of 30 rev./sec. about the Y axis is specified in all WECAN runs other than assembly.
The stresses generated by the finite element models are evaluated with the help of a post-processor program. The post-processor program performs ASME Code evaluations. The evaluations are performed at cuts through the thickness of the model called analysis sections (ASN's). These sections are defined by specifying node numbers in sequence along a line from the inside to the outside surface. Stresses at each node are the average of the nodal stress components from all of the elements attached to that node. The location of ;
the analysis sections are shown in Figures 5-2 and 5-3. <
i WPF1852D:1D/051793 5-3 i
- (a,c,e) i i
i P
t i
F i
i F
4 !
i
- FIGURE 5-2 Analyssis Section Numbers (ASN) Away from Flex Foot Areas i
i WPF18520:lD/051793 5-4 ;
e i
__(a,c,e) t i
I i
t I
)
5 i
FIGURE 5-3 Analysis Section Numbers (ASN) at Flex Foot and Weld ~ Areas .!
WPF1852D:1D/051793 5-5 !
i
- 6.0 ANALYSIS AND EVALUATION ~
This section presents a comparison of calculated stresses to the allowables given in Section 4.3. Stresses are calculated by the finite element model shown in Figure 5-1 following the procedure outlined in Section 5.0. Stress evaluations are performed for maximum shrink and minimum shrink fit conditions.
6.1 ASME CODE, SECTION III, SUBSECTION NG CRITERIA As stated in Section 4.3.1, all of the components of the flywheel assembly will be shown to satisfy the Level A stress limits of the ASME Code,Section III, Subsection NG (Reference 3).
i 6.1.1 Design Conditions Design conditions consist of a uniform temperature of 165*F and a pressure loading of 2500 psi. The evaluation consists of a demonstration of conformance on 1) general primary membrane stress intensities and 2) primary membrane plus primary bending stress intensities. ;
Linearized stress intensities for design conditions are calculated. The highest values are summarized here in Tables 6-la and 6-lb for minimum and .
maximum shrink fit conditions. Values are shown with and without shrink fit stresses included. Since shrink fit stresses are secondary in nature, the values with shrink fit stresses removed will be used for the evaluation.
These values are compared to their limits in Table 6-2. While.some of the stresses could be classified as secondary (the gap between the flex feet could eventually close and limit further deformations), all stresses are shown to meet the primary stress limits.
1 1
)
4 WPF18520:1D/051793 6-1
TABLE 6-la Summary of Linearized Stress Intensities (ksi) for Design Conditions for Minimum Shrink Fit Conditions Shrink Fit Included Shrink Fit Removed Component Membrane Memb + Bend Membrane Memb + Bend Shaft 10.77 16.72 5.61 8.85 j Uranium 13.86 24.42 3.10 5.81 Inner Shell 25.46 28.65 8.46 9.21 Outer Shell 20.17 26.54 3.67 6.39 Flex Foot Areas 23.17 39.86 20.07 33.32 TABLE 6-lb Summary of Linearized Stress Intensities (ksi).
for Design Conditions for Maximum Shrink Fit Conditions Shrink Fit Included Shrink Fit Removed ' i Component Membrane Memb + Bend Membrane Memb + Bend l Shaft 12.05 18.57 5.01 7.85 Uranium 16.29 29.00 3.27 5.34 Inner Shell 22.86 23.63 7.59 9.38 Outer Shell 25.88 33.26 3.65 6.37
\
Flex Foot Areas 24.15 47.24 21.92 33.15 ,
I
-]
l WPF18520:10/051793 6-2 I
1
TABLE 6-2 Primary Stress Summary for Design Conditions (ksi)
Primary Membrane Primary Memb. + Bend.
Component Calculated (l) Allowable (2) Calculated (l) Allowable (2)
Sm 1.5Sm Shaft 5.61 23.30 8.85 34.95 Uranium 3.27 36.67 5.81 55.00 Inner Shell 8.46 23.30 9.38 34.95 (Away from Flex Foot)
Outer Shell 3.67 23.30 6.39 34.95 (Away from Flex Foot) :
Flex Foot and 21.92 23.30 33.32 34.95 Weld Areas (1) Values shown represent the higher of the values given in Tables 6-la and 6-lb with shrink fit stresses removed.
(2) All allowables are taken from Table 4-1 at 165*F. The Sm value for uranium is taken as 2/3 Sy.
i i
-i b
l BPF18520:1D/051793 6-3 ,
6.1.2 Operatina Conditions Normal steady state operating conditions consist of an internal pressure of 2250 psi and a temperature of 165*F. Temperature distributions for the-start-up, shutdown, and loss of cooling water transients are taken from the thermal analysis outlined in Appendix A. The evaluation for operating conditions demonstrate conformance with limits on the following:
- 1) primary plus secondary stress intensity
- 2) primary plus secondary stress intensity range
- 3) fatigue evaluations
- 4) bearing stress limits 6.1.2.1 Primary Plus Secondary Stress Intensity In order to prevent a loss of shrink. fit due to gross yielding, the maximum primary plus secondary stress intensities is limited to the material yield strength in the shrink fit areas of the model. The maximum linearized stress intensities calculated are summarized in Tables 6-3a and 6-3b .for the various loads under minimum and maximum shrink fit conditions. The results show that all values remain below the material yield strength.
6.1.2.2 Primary Plus Secondar.s 5 tress Intensity-Range i
The maximum linearized stress intensity range calculations are summarized in Tables 6-4 through 6-7. Table 6-8 gives a summary of the highest value for each component. All values are within the 3Sm limit except at the flex foot ,
and weld locations. Paragraph NG-3228.3 of the Code allows the 3Sm limit to be exceeded provided that the requirements of Paragraphs NG-3228.3(a) through NG-3228.3(f) are met. These requirements are evaluated in the following section.
i WPF18520:1D/051793 6-4 l
i
TABLE 6-3a Maximum Linearized Stress Intensities (l) Under Minimum Shrink Fit Conditions at the Shrink Fit Areas of the Model
)
Component Assembly Steady Startup Shutdown loss of Cooling Sy State at 20 Min. at 20 Min. Water at 10 Min. at 165aF Shaft 24,934 15,136 14,512 20,484 11,263 38,800 Uranium 25,015 19,637 22,579 27,078 18,931 55,000 Inner Shell 34,623(2) 25,718 23,824 23,130 22,357 33,500 Outer Shell 17,364 22,477 25,809 30,254 16,969 33,500 (1) All values are in psi.
(2) Satisfies Sy - 35,000 psi at 100"F.
TABLE 6-3b Maximum Linearized Stress Intensities (l) Under Maximum Shrink Fit Conditions at the Shrink Fit Areas of the Model Component Assembly Steady Startup Shutdown loss of Cooling Sy State at 20 Min. at 20 Min. Water at 10 Min. at 155af Shaft 26,090 17,157 14,390 20,402 12,903 38,800 Uranium 28,805 24,156 22,610 27,082 21,753 55,000 Inner Shell 29,471 21,551 23,750 24,930 22,688 33,500 Outer Shell 23,465 28,615 25,718 30,159 17,762 33,500 (1) All values are in psi.
WPF18520:1D/051793 6-5
i TABLE 6-4 Maximum Primary Plus Secondary Stress Intensity t Range Values for Minimum Shrink Fit Conditions Away from Flex Foot Areas Component Analysis Surface Load Condition SI Range +
Section Combination (ksi) r Shaft 1 INSIDE SHUTDOWN - LCW 15.15 2 INSIDE SHUTDOWN - LCW 14.77 3 OUTSIDE ASSEMBLY - LCW 26.87 4 0UTSIDE ASSEMBLY - LCW 25.95 5 0UTSIDE SHUTDOWN - LCW 9.82 6 INSIDE ASSEMBLY - LCW 9.83 Uranium 7 INSIDE ASSEMBLY - LCW 16.14 8 INSIDE ASSEMBLY - LCW 14.97 9 INSIDE ASSEMBLY - LCW 14.15 10 INSIDE ASSEMBLY - LCW 15.94 21 OUTSIDE E0 RCD - LCW 12.37 ;
22 OUTSIDE E0 RCD - LCW 12.02 .
23 OUTSIDE E0 RCD - LCW 12.00 Inner Shell 11 OUTSIDE ASSEMBLY - LCW 24.50 12 OUTSIDE ASSEMBLY - LCW 30.20 13 OUTSIDE ASSEMBLY - LCW 27.51
- 14 0UTSIDE SHUTDOWN - LCW 13.12 '
15 0UTSIDE ASSEMBLY - LCW 29.27 16 0UTSIDE ASSEMBLY - LCW 27.37 17 OUTSIDE SHUTDOWN - LCW 17.31 ,
Outer Shell 18 OUTSIDE SHUTDOWN - LCW 35.46-19 OUTSIDE SHUTDOWN - LCW 36.55 '
20 OUTSIDE SHUTDOWN - LCW 31.54 f
e I
I WPF1852D:lD/051793 6-6 l
'I i
l i
TABLE 6-5 l l
Maximum Primary Plus Secondary Stress Intensity '
Range Values for Maximum Shrink Fit Conditions Away from Flex Foot Areas Component Analysis Surface Load Condition SI Range !
Section Combination (ksi)
Shaft 1 INSIDE SHUTDOWN - LCW 15.13 2 INSIDE SHUTDOWN - LCW 14.92 3 OUTSIDE ASSEMBLY - LCW 25.32 ,
4 OUTSIDE ASSEMBLY - LCW 24.65 5 0UTSIDE SHUTDOWN - LCW 9.81 6 INSIDE ASSEMBLY - LCW 9.71 Uranium 7 INSIDE ASSEMBLY - LCW 15.99 8 INSIDE ASSEMBLY - LCW 17.26 9 INSIDE A5SEMBLY - LCW 17.77 ,
10 INSIDE ASSEMBLY - LCW 16.35 21 OUTSIDE E0 RCD - LCW 11.34 22 OUTSIDE E0 RCD - LCW 10.91 23 OUTSIDE E0 RCD - LCW 10.94 Inner Shell 11 OUTSIDE SHUTDOWN - LCW 27.31 12 OUTSIDE ASSEMBLY - LCW 30.03 13 OUTSIDE ASSEMBLY - LCW 28.16 14 0UTSIDE ASSEMBLY - LCW 9.69 15 0UTSIDE ASSEMBLY - LCW 29.66 16 0UTSIDE ASSEMBLY - LCW 26.21 17 0UTSIDE SHUTDOWN - LCW 20.67 Outer Shell 18 OUTSIDE SHUTDOWN - LCW 30.81 19 OUTSIDE SHUTDOWN - LCW 31.67 20 OUTSIDE SHUTDOWN - LCW 26.76 7
WPF18520:1D/051793 6-7
TABLE 6-6 Maximum Primary Plus Secondary Stress Intensity Range Values for Minimum Shrink Fit Conditions in the Flex Foot Area Analysis Surface Load Condition SI Range Section Combination (ksi) 31 INSIDE SHUTDOWN - LCW 46.65 32 INSIDE SHUTDOWN - LCW 41.55 '
33 INSIDE SHUTDOWN - LCW 13.59 34 OUTSIDE SHUTDOWN - LCW 46.39 35 INSIDE SHUTDOWN - LCW 67.14 41 INSIDE SHUTDOWN - LCW 47.21 42 OUTSIDE SHUTDOWN - LCW 70.14 43 OUTSIDE SHUTDOWN - LCW 48.54 44 OUTSIDE SHUTDOWN - LCW 33.91 51 OUTSIDE SHUTDOWN - LCW 80.78 52 OUTSIDE SHUTDOWN - LCW 37.40 53 INSIDE SHUTDOWN - LCW 40.35 54 INSIDE SHUTDOWN - LCW 84.40 55 INSIDE SHUTDOWN - LCW 95.15 69.03 61 OUTSIDE SHUTDOWN - LCW 62 INSIDE SHUTDOWN - LCW 34.13 63 INSIDE SHUTDOWN - LCW 34.68 ,.
64 INSIDE SHUTDOWN - LCW 72.45 65 0UTSIDE SHUTDOWN - LCW 80.01 P
i-WPF1852D:1D/051793 6-8
TABLE 6-7 r
Maximum Primary Plus Secondary Stress Intensity Range Values for Maximum Shrink Fit Conditions in the Flex Foot Area Analysis Surface Load Condition SI Range Section Combination (ksi) 31 INSIDE SHUTDOWN - LCW 43.82 32 INSIDE SHUTDOWN - LCW 41.18 33 INSIDE SHUTDOWN - LCW 13.47 34 OUTSIDE SHUTDOWN - LCW 43.77 35 INSIDE SHUTDOWN - LCW 66.63 41 INSIDE SHUTDOWN - LCW 42.59 42 OUTSIDE SHUTDOWN - LCW- 63.01 43 OUTSIDE SHUTDOWN - LCW 43.37 44 OUTSIDE SHUTDOWN - LCW 32.53 51 OUTSIDE SHUTDOWN - LCW 68.92 52 OUTSIDE SHUTDOWN - LCW 34.10 53 INSIDE SHUTDOWN - LCW 34.70 54 INSIDE SHUTDOWN - LCW 72.44 55 INSIDE SHUTDOWN - LCW 79.60 61 OUTSIDE SHUTDOWN - LCW 57.11 62 INSIDE SHUTDOWN - LCW 31.05-63 INSIDE SHUTDOWN - LCW 29.53 64 INSIDE SHUTDOWN - LCW 60.59 65 INSIDE SHUTDOWN - LCW 64.60 b
L I
WPF1852D:lD/051793 6-9
TABLE 6-8 Maximum Primary Plus Secondary Stress Intensity Range Summary (psi)
Stress Intensity Range Component 3Sm at 165'F Shrink ' Shrink Shaft 26,870 25,320 69,900 Uranium 16,140 17,770 110,000(1)
Inner Shell Away 30,200 30,030 69,900 from Flex Feet Outer Shell Away 36,550 31,670 69,900 from Flex Feet Flex Foot and 95,150(2) 79,600(2) 69,900 Weld Areas (1) smtaken as Su/3 for the uranium insert. '
(2) Satisfies the requirements of NG-3228.3.
i 4
l WPF1852D:lD/051793 6-10
l 6.1.2.2.1 Simplified Elastic-Plastic Analysis
]
1 In localized areas of the flex feet the 3Sm criteria for stress intensity range is exceeded. The ASME Code provides an alternate criteria for the 3Sm limit on the primary plus secondary stress range provided that the requirements of Paragraphs NG-3228.3(a) through (f) are satisfied. These requirements are addressed below.
(a) The range of primary plus secondary membrane plus bending stress intensity, excluding thermal bending stresses shall be less than or equal to 3Sm. Table 6-9 summarizes the results of the stress intensity range calculations with thermal bending removed. Values are shown for all locations where the 35m limit is exceeded with thermal bending -
included. The highest stress of 38.66 ksi with thermal bending stresses removed occurs on the inside su'rface of ASN 54. This value is well within the limit of 35m = 69.90 ksi.
(b) In the fatigue evaluation the value of Sa used for entering the design fatigue curve is multiplied by the fatigue penalty factor Ke, where:
K, = 1.0, for S, :s 3S,
~" "
K, = 1. 0 + -1 , for 3S, < S, <3m S,
, n(m-1) 35, K, = 1, for S,2:3m S, D i where:
Sn = range of primary.plus secondary stress intensity, psi m = 1.7 for nickel-chromium-iron alloy n = 0.3 for nickel-chromium-iron alloy l
WPF18520:1D/051793 6-11 ;
TABLE 6-9 Primary Plus Secondary Stress Intensity Range With and Without Thermal Bending at Locations Which Exceed 3Sm (ksi)
Minimum Shrink Maximum Shrink Allowable 3Sm Load Condition ASN Surface Combination With Without With Without Thermal Thermal Thermal Thermal Bending Bending Bending Bending 42 OUTSIDE SHUTDOWN - LCW 70.14 12.37 (1) --
69.90 51 OUTSIDE SHUTDOWN - LCW 80.78 34.93 (1) --
69.90 54 INSIDE SHUTDOWN - LCW 84.40 38.66 72.44 34.52 69.90 55 INSIDE SHUTDOWN - LCW 95.15 14.06 79.60 13.86 69.90 OUTSIDE SHUTDOWN - LCW 94.57 18.19 79.27 16.87 69.90 64 INSIDE SHUTDOWN - LCW 72.45 35.89 (1) --
69.90 65 INSIDE SHUTDOWN - LCW 79.93 19.31 (1) -
69.90 OUTSIDE SHUTDOWN - LCW 80.01 14.85 (1) --
69.90 (1) Stress ranges with thermal bending are less than 3Sm at these locations and all other locations not shown.
WPF18520:lD/051793 6-12
. _ - = . . - .. , . .- . .., . - . . - . . -
The fatigue penalty factors (Ke) are calculated for use in the fatigue evaluation. ,
(c) The rest of the fatigue evaluation stays the same as required in !
NG-3222.4 except that the procedure of NG-3227.6 need not be used.
(d) The component must meet the thermal ratcheting requirements of -
NG-3222.5. Compliance with the NG-3222.5 requirements is demonstrated in Section 6.1.2.4.
(e) The temperature must not exceed those listed in Paragraph NG-3228.3(b) for the various materials. This paragraph gives an allowable >
temperature of 800aF for nickel-chromium-iron alloy which is well above any temperature in which the flywheel will operate.
(f) The material must have a specified minimum yield strength to specified minimum tensile strength ratio of less than 0.80. ' Referring to f Table 4-1, this condition is satisfied at all temperatures.
With demonstration of compliance with fatigue limits in Section 6.1.2.3 and thermal ratcheting limits in Section 6.1.2.4, all requirements of NG-3228.3 are met.
6.1.2.3 Fatigue Usage Fatigue calculations were performed for all four of the weld and flex foot ,
locations. A total of 3000 start-up/ shutdown cycles and 200 occurrences of the loss of cooling water transient
- were evaluated. The fatigue curve assumed in the analysis was taken from Figure I-9.2-1 of the ASME Code, ,
Section III, Appendix I (Reference 4). The highest usage occurs under minimum shrink fit conditions at ASN 55 which is located on the outer flex foot of the t
- Loss of Cooling Water Stresses at 10 minutes used. Stresses associated with the restoration of cooling water were not considered. ,
i i
I WPF1852D:1D/051793 6-13
lower cover plate. The calculated usage of 0.2413 is well below the limit of 1.0. The resulting usage factors are summarized in Table 6-10.
6.1.2.4 Thermal Stress Ratchet Under certain cortbinations of steady state and cyclic loadings, a pressure vessel could cyclically distort as a result of thermal ratcheting. .To address this potential, Paragraph NG-3222.5 of the Code gives rules which limit the maximum thermal stress range in any portion of a shell which is loaded by steady state internal pressure. These limits are checked for minimum shrink fit conditions and for maximum shrink fit conditions for all areas of the flex feet. All values are within the limits.
l l
6.1.2.5 Average Bearing Stress The average bearing stress values at the three shrink fit locations are calculated by dividing the sum of the normal reaction forces (I Fn) for the interface elements by the contact areas. Contact areas calculated and reported in Table 6-11 are based on the dimensions used in the finite element model. The highest bearing stress is 29,934 psi and occurs at the inner shell to uranium interface at assembly with maximum shrink fits. Since this stress is below the minimum material yield of 33,500 psi at 165'F, no significant loss of shrink fit occurs due to excessive bearing loads.
6.2 REGULATORY GUIDE 1.14 CRITERIA As described in Section 4.3.2, the critical flywheel failure speed failure modes defined in Regulatory Guide 1.14 (Reference 7) are evaluated at the design speed. Thir condition assumes normal operating conditions of 165* and 2250 psi, along with a rotational speed of 125 percent of normal speed (2250 rpm). Both maximum and minimum shrink conditions are considered. The evaluation of critical flywheel failure modes addresses the Regulatory Guide 1.14 positions C.2.c, C.2.d, and C.2.e.
WPF1852D:1D/051793 6-14
TABLE 6-10 Fatigue Usage in the Flex Foot Areas Total Usage Factor Analysis Node Section Surface Number Kf Min. Shrink- Max. Shrink 31 OUTSIDE 4005 4.0 .1248 .1179 32 OUTSIDE 3366 1.0 .0032 .0032 33 OUTSIDE 3484 1.0 .0032 .0032 34 INSIDE 3216 4.0 .0510 .0500 35 INSIDE 3260 1.0 .0054 .0053 j
( 41 OUTSIDE 4004 4.0 .0280 .0252 !
42 OUTSIDE 1927 1.0 .0047 .0041 43 INSIDE 1690 4.0 .0138 .0086 44 OUTSIDE 1734 1.0 .0032 .0032 51 INSIDE 4015 4.0 .0721 .0555
.0032 .0032 52 INSIDE 3080 1.0 53 INSIDE 3111 1.0 .0032 .0032 54 0UTSIDE 2824 4.0 .0198 .0136 55 INSIDE 2863 1.0 .2413 .0315 61 INSIDE 4014 4.0 .0536 .0398 l 62 INSIDE 1016 1.0 .0032 .0032 l 63 INSIDE 1174 1.0 .0032 .0032 I
64 OUTSIDE 381 4.0 .0127 .0110 65 0UTSIDE 681 1.0 .0337 .0051 l
TABLE 6-11 Contact Areas for Bearing Stress Calculations Location Average Contact Contact Radius (in) Length (in) Area (in2)
Shaft to Inner Shell [
Inner Shell to Uranium i
i <
Uranium to Outer Shell ]M l l
WPF18520:1D/051793 6-15 l
The applicable stress limits for evaluation of ductile failure are shown in Table 4-3. The linearized stress intensities for design speed are summarized in Table 6-12 for minimum and maximum shrink fit conditions. While some of the stresses could be classified as secondary, all stresses are shown to meet the primary stress limits.
p Flaw size and crack growth calculations for nonductile fracture analysis for the uranium flywheel are discussed in Section 6.4 for-design speed as well as for the postulated load cycles for the life of the pump. The evaluation .
determined a critical radius of 3.28 inches for a semi-elliptical axial flaw and a depth of 1.25 inches for a full length axial flaw. These values may be i used to support fracture toughness and inspection requirements for the uranium j alloy material.
l The flywheel is evaluated for excessive deformation. Excessive deformation is defined as any deformation such as an enlargement of the bore that could cause separation directly or could cause an unbalance of the flywheel. All shrink fit locations remain in contact for design speed as well as for all of the )
other load conditions evaluated. Therefore, the deformation requirement is satisfied. The results of the evaluation performed to show that the shrink fit remain in contact is discussed in Section 6.5.
6.3 STANDARD REVIEW PLAN CRITERIA As described in Section 4.3.3, the recommended stress limits at normal and design speed given in paragraphs 4.a and 4.c of the Standard Review Plan 5.4.1.1 (Reference 6) are addressed. These limits are satisfied for the uranium flywheel away from the two shrink fit bands located on the inside
]
diameter. The shrink band areas are excluded since the localized stresses in j these areas are satisfied to other criteria shown in Section 6.1. I Paragraph 4.a of the Standard Review Plan, 5.4.1.1 recommends that the combined stresses at normal operating speed be less than 1/3 of the minimum yield strength. Paragraph 4.c limits the combined stresses at design overspeed to 2/3 of the minimum yield strength. Stress intensities are WPF1852D-1:lD/051793 6-16
TABLE 6-12 Summary of Linearized Stress Intensities for the Uranium Insert for Design Speed Min. Shrink Max. Shrink Allowable (l)
ASN Surface SI (ksi) SI (ksi) (ksi) 7 IN .19.06 23.62 115.5 MID 11.98 14.35 77.0 OUT 6.30 6.63 115.5 8 IN 18.78 23.26 115.5 MID 11.78 14.08 77.0 OUT 6.89 7.48 115.5 9 IN 18.51 23.07 115.5 MID 11.53 13.89 77.0 OUT 7.00 7.63 115.5 10 IN 17.95 22.73 115.5 !
MID 11.49 13.98 77.0 OUT 6.39 6.76 115.5 21 IN 15.88 18.72 115.5 MID 10.98 10.03 77.0 OUT 6.74 7.34 115.5 22 IN 13.61 14.93 115.5 MID 10.41 11.43 77.0 OUT 7.22 7.93 115.5:
23 IN 15.69 18.61 115.5 MID 10.77 12.40 77.0 OUT 6.85 7.51 115.5 (1) Membrane Allowable - 0.7Su = 77.0 ksi Membrane Plus Bending Allowable = 1.05Su - 115.5 ksi.
t WPF1852D-1:1D/051793 6-17 n e
evaluated as the combined stresses. The maximum stress intensities in the uranium insert away from the shrink bands are summarized in Tables 6-13 and 6-14 for normal and operating sraeds, respectively. Steady state temperatures and pressures are assumed. All values are within the recommended limits.
6.4 FRACTURE MECHANICS EVALUATION The following discussion considers the effect of flaws in the uranium flywheel on the fracture toughness. The program NASCRAC (from NASA Crack Analysis Code by Failure Analysis Associates, Inc., of Palo Alto, California) is used to study the uranium thick-walled shell for brittle fracture. First note the uranium alloy material is not considered very brittle with a reduction in area value of 12% and a fracture toughness K, - 50 ksidin. Also, due to the method used to fabricate the uranium alloy flywheel no significant flaws are expected in the uranium flywheel. Because of the large size of the flywheel, the material will contain phases of carbide, microsegregation and some oxides at the edges of casting voids. The voids are usually less than 0.0005 inch diameter. The material is considered isotropic on a gross scale.
The controlling stress is hoop tension to fracture the flywheel in operation.
For the cases considered, the maximum hoop stress is about 21 ksi. For an operational cycle, the cyclic value is always less than Loss of Cooling Water transient. The stress differences from assembly to the case listed is shown in Table 6-15. Since the number of plant cooldown events is 200, the number of cycles for the assembly condition stress state is limited to 200. 200 loss of cooling water transients (LOCW) are also assumed. Therefore, a cycle of each defines a loading block for 200 cycles.
The sudden rupture of the uranium flywheel is governed by the critical mode I (tensile) fracture toughness of the material, namely K,e - 50 ksidin ,
per Oak Ridge test data. The threshold stress intensity is taken as AK, -
4.8 ksidin. The flywheel hoop stresses vary somewhat with axial position due to the shrink bands, and tend to decrease radially. Consideration of the combined loading is complex since there are three different shrink-fit ,
WPF1852D-1:10/051793 6-18
TABLE 6-13 Maximum Stress Intensities for Uranium Insert Away From Shrink Bands for Normal Speed Min. Shrink Max. Shrink Allowable ASN Surface SI (ksi) SI (ksi) 1/3S, (ksi) 21 IN 13.34 15.75 18.33 OUT 6.14 6.89 18.33 22 IN 12.06 14.41 18.33 OUT 6.16 6.92 18.33 23 IN 13.37 15.75 18.33 OUT 6.27 7.26 18.33 TABLE 6-14 Maximum Stress Intensities for Uranium Insert Away From Shrink Bands for Design Speed Min. Shrink Max. Shrink Allowable ASN Surface SI (ksi) SI (ksi) 2/3S, (ksi) 21 IN 15.28 17.66 36.67 OUT 7.66 8.41 36.67 22 IN 14.36 16.70 36.67 OUT 7.67 8.43 36.67 23 IN 15.27 17.65 36.67 OUT 7.65 8.59 36.67
)
i WPF1852D-1:lD/051793 6-19
TABLE 6-15 Flywheel Operational and Design Stress Range Values From Assembly Conditions ,
Minimum Shrink-Fit Values Case ASN 7(l) 8 9 10 21 22 23 S.S.(2) 3829 2678 2507 3062 2723- 1690 2859 H.U. 4577 7926 7544 2978 462 1429 722 C.D. 7485 3138 3369 7101 4705 4025 '4973 LOCW 10641 19597 19742 8047 2359 5808 2458 l 125% 0.S. 9007 8184 8003 7942 733 714 883 l Maximum Shrink-Fit Values Case ASN 7 8 9 10 21 22 23 S.S. 3752 2707 2531 3121 2232 1288 2383 H.U. 6234 8614 8167 4448 2718 366~ 3077 C.D. 9226 3802 3964 8565 2471 2229 2632 LOCW 10222 20994 21471 6594 1738 5431- 1560 125% 0.S. 8930 8213 8028 8001 242 1121 407 NOTES:
i
- 1. ASN's 7, 8, 9, and 10 are at the shrink band ends; ASN's 21, 22, and 23 are in the center, away from the two shrink bands. See Figure 5-2 for ASN locations.
- 2. S.S. - Steady state operation with pressure, rotation and uniform temperature H.U. - End of ramp - pump startup l C.D. - End of ramp - pump shutdown LOCW = Loss of Cooling Water transient 125% 0.S. - 125% overspeed, a design case but not an operational case WPF1852D-1:1D/051793 6-20
._ _ ____ _ _____ _ ----_----- _ -- _ __--_----.-_-- -___--__-__ --__---.------ -- _ --_- a
m locations, various pressures, min-max shrink-fit cases, rotational stresses, as well as various temperature cases. Most operation of the flywheel is _at 165'F and 1800 rpm.
Since the hoop tensile stresses away from the shrink band areas are the ;
highest at the ID of the flywheel, two types of ID flaws were considered as ,
representing the worst cases. One case represents a full axial length ID ,
fl aw. The second case represents a semi-elliptical ID axial orientated fla.
Two axial locations are considered. At the shrink band locations a localized small compressive stress is listed but is neglected and a zero minimum stress ,
state is considered. The center portion of the flywheel is also evaluated. :
The input stresses are summarized below. :
i Stress (ksi)
Arer of Flywheel Case Cycles Max. !! inh Range
- 1. Shrink-bands Operational 200 9 0 9 i
LOCW 200 21 0 21 l
- 2. Center Portion Operational 200 21 18 3 LOCW 200 21 15 6 The following critical flaw sizes 'are obtained.
Flaw Type Critical Flywheel Location Flaw Size (in.)
Semi-elliptical-axial - At Shrink-band 3.28 radius Case 704 or Center Full length-axial - Entire length 1.25 Case 205 Using a threshold stress intensity factor of 4.8 ksidin gives the following !
flaw growth results for the imposed cyclic values previously stated. A Paris law flaw growth is assumed with C = 5(104) inch / cycle and m = 1.4.
I WPF18520-1:10/051793 6-21
Flaw Type- Flywheel location Flaw Growth Semi-elliptical-axial - At Shrink-band A 50 mil flaw grows Case 704 < 1 mil in 200 cycles Center A 50 mil flaw won't grow, a 0.40 in, flaw required for cyclic growth Full length-axial - At Shrink-band A 50 mil flaw grows Case 205 < 1 mil in 200 cycles -
Center A 50 mil flaw here won't grow; 0.19 in, required for' growth In summary, this evaluation determines that in the uranium alloy flywheel small flaws won't grow. Those cracks that will grow with cyclic loading do not grow significantly in 200 cycles. A large flaw is required for sudden .
fracture.
6.5 TORQUE CAPACITY In order to prevent slippage between components which could change the balance F of the flywheel, sufficient shrink fit must be maintained to carry the maximum rotational acceleration of the flywheel. Rather than calculate loads due to j flywheel accelerations, it is conservative to use the torque of the motor. A maximum motor torque of 248,000 in-lbs. is assumed. The torque carrying capacity at the shrink fit locations is determined as follows.
T = p EFn r,,
where:
T= Torque capacity p= Coefficient of friction (0.15 assumed)
Ifn - Sum of the normal reactions for the interface elements ,
along the contact surface r,,, = Average radius of the contact surface ;
i l
WPF1852D-1:lD/051793 6-22
r The results of the torque carrying capacity calculations demonstrate that sufficient capacity exists for all conditions required to support the statements in the SSAR including the loss of cooling water transient at 10 minutes with minimum shrink fits. This satisfies the design specification requirement which states that the pump shall be designed for operation without cooling water for a minimum of 10 minutes without damage. The results of the torque carrying capacity calculations at design speed demonstrate conformance with the Regulatory Guide 1.14 recommenda+. ion relative to the excessive deformation failure mode.
6.6 PRESSURE BOUNDARY CONTAINMENT OF A BURST URANIUM FLYWHEEL The canned-motor reactor coolant pump in the AP600 complies with the requirement of GDC 4 that components important to safety be protected against the effects of missiles. Compliance with this requirement is demonstrated by showing containment within the pump pressure boundary of the fragments of a
- postulated fracture of the flywheel. The flywt eel is located within and surrounded by the heavy wall of the stator shell and flange. In the event of a postulated worst-case flywheel failure, the surrounding structure can, by a large margin, contain the energy of the fragments without causing a rupture of the pressure boundary. The analysis of the capacity of the pressure boundary component to contain the fragments of the flywheel is outlined in the following information.
The analysis herein follows the same procedure previously used for flywheel and turbine disk fractures; i.e., the semi-empirical energy absorption i equations of Hagg and Sankey (Reference 9). Although no significant flaws are ,
expected in the uranium, and the material is not considered brittle (K g - 50 ksi Vin per Reference 10), the analysis herein postulates that a fracture has occurred and shows that the energy of the fragments are insufficient to penetrate the pressure boundary. The flywheel assembly is located on the pump shaft at the elevation of the motor end closure and the l thick-walled stator flange, see Figure 1-1).
t i
WPF18520-1:lD/051793 6-23 l
6.6.1 Assumptions ,
The method of analysis of Reference 9, which was developed from scale tests of r turbine disks, is considered applicable herein with the following conservative assumptions used.
- 1. The outer enclosure of the flywheel assembly is neglected. This enclosure might contain the fragments in the postulated event of a fracture in the uranium flywheel. However, this analysis ignores the l enclosure components.
- 2. The enclosure end plates and welds and the surrounding water are neglected from the energy absorption calculations.
L
- 3. The joint closure bolts, their clamping load, and consequent joint friction are ignored by the calculational method applied.
- 4. Minimum material properties are used.
- 5. A one-piece uranium flywheel disk is considered herein.
- 6. No secondary effect of the shrink fit of thc uranium flywheel to the shaft is considered.
1
- 7. The pump shell and flange containment in line with the flywheel are considered as the only containment material, as discussed later.
- 8. The design speed of 125% times the operating speed of 1800 rpm is used.
These assumptions result in the approach that only the pressure boundary stator shell with the shrunk-in thrust bearing support, also referred to as the motor end closure and shown in Figure 1-1, are used to contain the energy of the postulated uranium alloy flywheel fragmen.ts.
WPF1852D-1:1D/051793 6-24
l l
6.6.2 Energy Analysis 1 The containment of the postulated uranium alloy flywheel fragments by the motor end closure and stator pressure boundary shell is nearly identical to ;
the cases given in Reference 9. The following considerations are noted.
i
- 1. The end closure and stator shell are assembled with a shrink-fit and are l considered herein as single cylindrical thick-walled 304 stainless steel .l containment shell. .
- 2. Although the stainless steel stator shell is the ultimate pressure -
boundary, in operation the stator can/ punching assembly contains the l pressure. Only in the event of a can failure is the stator shell pressurized. Thus the inside diameter of the stator shell does not 7
normally see direct pressure loading. '
- 3. The surrounding nickel-chromium-iron alloy enclosure may contain the uranium in the event of a flywheel fracture, and the stainless steel ,
stator shell may not be affected. However, all of the enclosure is j neglected in this analysis.
The containment of disk fragments by a cylindrical shell is a two-stage process, per Reference 9. The first stage involves inelastic impact and transfer of momentum to the containment cylinder. If the energy dissipated in j plastic compression and shear strain is sufficient to accommodate the loss of l kinetic energy of the flywheel, there is no shear perforation of the shell.
The process then enters Stage 2, which involves dissipation of energy in plastic tensile strain in the shell. For containment, the energy dissipated in plastic tensile strain must accommodate the residual kinetic energy of the ,
flywheel. Note that this procedure has experimental verification of the !
analytical techniques, see Reference 9. I The kinetic energy of a fragment is 1/2 MV , where M = Mass of Fragment and 2
l V - Fragment Velocity after rupture. Fragment rotational considerations can be neglected per Reference 9. The flywheel could burst into halves, thirds, I
~!
i WPF1852D-1:10/051793 6-25
quarter fragments, or even pieces. Reference 9 typically used quarter fragments in testing, but for penetration consideration, it was shown that-the kinetic energy is a maximum value for a 134* sector. This results from 1/2 M(rw)2 As the fragment mass increases, the radius (r) to the fragment center of gravity decreases. Since a 134* mass would represent the maximum energy case for penetration, this is taken as the limiting case herein.
Two cases of the containment shell model are considered, Case A neglects the closure flange material (see Figure 6-1) and Case B accounts for the flange material. The two cases are given by the following analysis models representing the lower and upper limits of containment thickness.
G if_A - Lower Bounds Case B - Upper Bounds
! "1 Flywheel 304 U-2M 304 Flyw eel Shell h Mg a "1 2A g _, ,. M 2B - .
J_ (6,c.e)
=,-
s
--e
-+
- ~~ ~~~* T
- -
- T B A
r :
The energy of a 134* flywheel fragment at fracture is:
E=1_ mv 2 2
( r,w):
29, WPF18520-1:lD/051793 6-26
f '
h//S/// //h/// \ . l
/ kSM r V-s- 6 s
A M%
R
?k /
-s
/
[ /qL +f ) l I!q fk /
'7\ n\'
-(2[
=
4 P7775r
%'uJGsA
- \
- 2_3
(\ \
w_f u=
~
2-gggg h_S$, l ! j * '
gr , -- N d rueu FLYWHEEL ASSEMBLY y\ \ h YtiD$AP Case B includes area marked Case A FIGURE 6-1 Flywheel Containment Model Thickness Assumptions WPF18520-1:lD/051793 6-27
_. . - . . _ . . . ~ . _ . - - _ _ . . . , . . . - _ - _ _ - - -
_..-.-..._a. .. .-_2_ . ., _ . . _ _ _ . - - . . - .-
.i
.i where: :
' r min.
Rotational Speed = w - (1800 min. . )( 277 rev. radian ) 60 sec. )(125%)
t rad.
w - 236 '
sec.-
See Figure 3-2 for flywheel dimensions.
I34 Fragment Weight = W = pri(R*2 - R8)h 360 p = 0.688 lb/in' (Ref.10) t
[ ]*
-i w
or ,
i le.c,sl f.
Radius to the center of gravity of the fragment = r, ;
WPfl852D-1:1D/051893 6-28 ,
f
3-i 1
r* = 2R 3a sina(1 - C + 2 - C) !
1
~'
R-R C= :.
R. ,
i w :
i f
i tr a=
134(
2 180)
.I a - 1.17 rad.
Thus:
[( )]" I
.Thus, the fragment energy is: .
1 E = 1M,V,2 .i 2
E = .1 W (r,w)2 2 g, 6-29 I WPF1852D-1:1D/051893:
1540 ,,,,,
=
2(386.1)
E = 7.33 x 10' in. lb. ,
or 6.11 x 10 ft. Ib.
5 s
The energy for Stage 1 per Reference H.1 is:
M, AE,=3M,y,2 i_
2 M, + M, 2 1
where M 2 is the mass of the containment shell 1
~
134 .29 Case A: M3 =
360 ( 386.1)n L 1
i lb.sec.2 M3- 3.6 in.
hui 134 .29 Case B: M3- 360 { 386.1 lb.sec.2 M3- 12.8 in. .
i s
WPF1852D-1:1D/051893 6-30
Thus: '
In.csl ,
i AE,= i j
Case A: AE,, - 3.48 x 10' in.lb.
Case B: AE,, = 5.59 x 10' in.lb.
The Stage 1 (shear) criterion for_nonperformation is: -;
?
E, + E, > AE i where: ;
Shear Energy Capacity - E, = Kr,PT' 1
Compressive Energy Capacity = E, - ATeo, I
and per Reference 9:
Kr, = 0.27o, l r, = dynamic plastic shear flow stress -
K = experimental constant ,
o, = average dynamic plastic flow stress for 304 S.S. in compression :
a, = .1.25(o,) = 1.25(75,000) = 93,750 psi !
l where the 1.25 factor for dynamic strength comes form Figure.17 of l Reference 9, and ,
o, = ultimate tensile strength (75 ksi min.) ,
I I MPF1852D-1:1D/051893 6-31 l
i A = contact area i
134
= rr(2R,h) 360 ,
, 134 ) )"'"'
360 2h A = 473 in:
T = shell thickness .
e uun i
e - Unit plastic strain 1
e = 0.07 in/in (Ref. 9, per test)
P = Perimeter of sheared area 134 '
- 2h + 2nR*
360 ,
134
=2[( )]""' + 360 2n)h d""'
~
WPF18520-1:1D/051893 6-32 1
-. - . . . ~.
P = 61.5 in. ,
For Case A: E, = Kr,PT r = 0.27o,PT :
En = 0.27(93,750)[( )]"
Ey = 8.43 x 10 in.lb.
7 Eg = ATeg, E,=((
c )]"##'( .07) (93750) l E
n = 2.28 x 10 7 in.lb.
So nonperformation of Stage 1 results since:
8 Eu + E,, = 1.07 x 10' > AEu = 3.48 x 10 And for Case B:
E, = 0.27(93750)[( ) ]"
E, = 5. 93 x 10' i n . l b. !
E,=[(
t )]"##( .07)(93750) ,
7 Ec , = 6.06 x 10 in.lb.
E + E c, = 6.54 x 10' > AE i, = 5.59 x 10' Since nonperformation in Stage 1 occurred, the residual energy (AEr ) 'of the initial energy of the fragment is used to consider tensile performation of the containment shell (Stage 2). The criteria for nonperformation (i.e.,. l containment) in Stage 2 is i
r
- WPF18520-1:1D/051893 6-33 4
~
E, > A E, E, - Tensile Energy Capacity AE, = Stage 2 Kinetic Energy OT:
-1 M'
Qeg,>( M,V,8) ( M, + M,) ,
u.a AE,=
Case A: H2A = 3.6 AE , = 3.84 x 10' in.lb. - E- AE i ,
2 Case B: Mrs = 12.79 AE , - 1.74 x 10 in.lb. - E- AE i ,
2 8
and: 0 - Volume of containment shell strained in tension; for a cylindrical shell at the same height as the flywheel the entire volume is strained. ;
134 q, ri(Rr_.R2)h i
360 134 Case A: y qw i -l Q, = 360 F
WPF1852D-1:1D/051893 6-34
Q, - 4810 in' Case B: Q, = 360n[( } )'"# j t Q, = 17,000 in' Now: c,= 0.1 in/in (Ref. 9) cr, = 93750 psi So the tensile energy capacity of the containment is: I Case A: E,, = Q,cg, ,
= 4810(0.1)(93,750) -
E,, - 4.51 x 10 in.lb.
7 1
Case B: E,, = 17,000(0,1)(93,750)
E,, = 1. 60 x 10' i n . l b . :
Thus tensile containment of the fragment also occurs for Stage 2 -since:
Case A: E,4 > AE ra 4.51 x 10' >> 3.84 x 10' (in.lb. )
Case B: E,, > AE 2s i 1.60 x 10' >> 1.74 x 10' (in.lb. ) l 1
Summary Pressure boundary containment of the uranium flywheel fragment with the largest energy is demonstrated. Any other. size fragments are contained also .
since the case considered has the largest fragment kinetic energy.
WPF1852D-1:lD/051893 6-35 ;
.i I
6.6.3 Conclusions A verified semi-empirical method (see. Reference 9) is used to show that any improbable flywheel fracture will not penetrate the stator shell assembly which surrounds the flywheel OD. Two limiting cases were considered to :
represent the surrounding pressure boundary stator shell. Case'A represents a
[ ]"' thick shell while Case B represents a [ ]**' t h i c k shell. These are illustrated by Figure 6-1. Fragment size represents the case with the largest fragment energy.
Energy available for the Stage 1 (shear) penetration and for the Stage 2 (tensile) penetration are listed below and compared to that required for penetration of the containment shell.
Fragment Required for Energy Penetration (ft.lb.) (ft.lb.) % of Capacity .
I Case A - Stage 1 2.91 x 10 5 8.93 x 10' 3.2
- Stage 2 3.20 x 10' 3.76 x 10' _8.5
- Total 6.11 x 10 5 1.27 x 10 7 4.8 Case B - Stage 1 4.66 x 10 5 5.45 x 10 7 0.9 '
- Stage 2 1.45 x 10 5 1.33 x 10 7 1.1
- Total 6.11 x 10' 6.78 x 10 7 0.9 Therefore, only a very small amount of the containment capacity is utilized to contain the flywheel fragments.
WPF18520-1:1D/051893 6-36
9
7.0 REFERENCES
- 1. WEMD E.M. 6558, " Preliminary Structural Analysis of a High Inertia Flywheel for the Reactor Coolant Pump," Westinghouse Electric Corporation, Electro-Mechanical Division, Cheswick,. PA.
2-. "AP600 Standard Safety Analysis Report," Revision 0, Volumes 1 through 11, Westinghouse Electric Corporation, Pittsburgh, PA, June 26, 1992.
- 3. "ASME Boiler and Pressure Vessel Code,"Section III, Subsection NG, 1989 Edition, American Society of Mechanical Engineers, New York, N.Y.
- 4. "ASME Boiler and Pressure Vessel Code,"Section III Appendices, 1989 Edition, American Society of Mechanical Engineering, New York, N.Y.
- 5. Test data for depleted uranium provided under Work Request No.1351, Mechanical Properties Laboratory Physical Testing Department, Y-12 Plant, Oak Ridge, TN.
- 6. NUREG-0800, " Standard Review Plan," Revision 1, Section 5.4.1.1, U.S. t Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, ,
Washington, D.C., July, 1981.
- 7. Regulatory Guide 1.14, Revision 1, " Reactor Coolant Pump Flywheel +
Integrity," U.S. Nuclear Regulatory Commission, Office of Standard Development, Washington, D.C., August, 1975.
- 8. )!estinghouse Electric Computer Analysis (WECAN), User's Manual, Volumes I, IV, Third Edition, Revision Y, Westinghouse Electric Corporation, Pittsburgh, PA, June 1, 1989.
- 9. Hagg, A. C., and Sankey, G. 0., "The Containment of Disk Burst Fragments by Cylindrical Shells," ASME Paper 73-WA-Pwr-2,11/73; also in ASME Journal of Engineering for Power, 4/74, pg. 114-123. ,
WPF1852D-1:1D/051893 7-1
i j
- 10. Deel, O. L., and Burian, R. J., "The Mechanical Properties of Depleted Uranium -2% Molybdenum Alloy," Battelle Lab Report BMI-2032 (UC-71), J July 16, 1979.
t f
i b
WPF1852D-1:lD/051893 7-2
APPENDIX A Thermal Analysis The purpose of this analysis is to determine the response of the AP600 reactor coolant pump flywheel to thermal transients including Normal Pump Startup, Normal Pump Cooldown, and Loss of Component Cooling Water.
The loss of cooling water condition is a situation in which there.is an abrupt loss of cooling water flow while the pump is operating at normal reactor system conditions. This analysis is performed to show that the pump will not ,
be damaged if it is operated for 6 minutes after the 230*F pump bearing temperature alarm has sounded. The following describes the loss of coolant water transient that has been determined to be the worst case. This transient is used as the reference case for loss of cooling water transients.
With the pump operating on the 4-pole winding at normal system conditions with cooling water at 200 gpm flow and 110*F inlet temperature, the cooling water i flow is stopped while pump operation continues. Four minutes after the cooling water flow is stopped, the pump bearing. water temperature reaches the temperature alarm setting of 230*F. Pump operation without cooling water flow is continued for six minutes after the bearing water temperature reaches the alarm setting; then, the pump is de-energized, and cooling water is restored at 200 gpm flow and 110*F inlet temperature. Ten minutes after the pump is de-energized and the cooling water is restored, the pump bearing water temperature is cooled to less than 230*F and the pump is re-energized. Pump operation continues and all pump internal temperatures stabilize.
i Curve A-1 shows the pump bearing water temperature during loss of cooling water condition.
In order, to determine the effect of thermal transients on the pump flywheel, the flywheel is evaluated for the loss of cooling water temperature transient.
Rapid heatup of the flywheel occurs as the hot bearing water flows over the ;
surfaces. The less exposed shaft heats at a slower rate. The differential !
expansion of the two parts thus results in a reduction of shrink fit. )
i l
WPF1852D-1:1D/051893 A-1
1 The analysis to determine the transient temperature distribution is based on a i two-dimensional isoparametric beat conduction solid, of the flywheel assembly and shaft.
For the normal startup transient, the initial thermal condition is 110*F bearing water temperature prior to pump energization. The bearing water temperature is raised from 110*F to 165"F in 3 minutes upon pump startup. The ;
normal shutdown transient is from 165'F to 110"F using the initial temperature of 165'F bearing water temperature prior to pump de-energization.
For the loss of cooling water transient, the initial thermal condition is 165'F bearing water temperature. The bearing water temperature is raised from 165'F to 421*F in 16 minutes upon loss of cooling water flow.
For the normal shutdown transient, the maximum At, for a hot shaft and a cold ,
flywheel is -25'F at 20 minutes.
For the loss of cooling water transient, the max 1.,um AT for a cold shaft and a hot flywheel is +70*F at 16 minutes.
For the normal startup transient AT for a cold shaft and hot flywheel is !
+25'F.
t L
i l
WPF1852D-1:lD/051893 A .- _. - ___. . . . .-
l 1
1 r
i AP600 LOSS OF COOLING WATER TEMPERATURE V5 TIME l
~ .
400 350 . (
300 ) .
T 5 250 f P
- z 't .,
T 200 \ '
R
/ .= =-
150 l r i 100 '
50 l ON : : CW O FF : : 5W ON + ,
PL MP ON : ' PUMP OFF : : PUMP ON+ '
0
-5 0 5 10 15 20 25 30 35 1 TIME - MINUTE 5 i l
=
BEARING WATER i
l CURVE A-1 I
i
.. I l
WPF1852D-1:lD/051893 A-3 l
)