ML20238F626
| ML20238F626 | |
| Person / Time | |
|---|---|
| Site: | 05200003 |
| Issue date: | 06/30/1998 |
| From: | WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
| To: | |
| Shared Package | |
| ML20238F623 | List: |
| References | |
| WCAP-14953-ERR, WCAP-14953-ERR-R02, WCAP-14953-ERR-R2, NUDOCS 9809040146 | |
| Download: ML20238F626 (12) | |
Text
{{#Wiki_filter:_ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ 4-27 mixing within the CMT, The CMT test and the AP600 plant CMT were modeled using a fine mesh a such that the convective mixing effects could be accurately calculated and displayed. The FLOW 3D CFD code was used for these calculations. Hot water, with the same momentum flux, which would be expected to be injected, was simulated as a boundary condition in the calculation. The FLOW 3D code solves the single-phase Navier-Stokes equations with a k-c turbulence model to represent the turbulence mixing and diffusion effects in the flow. Since the CFD calculation models the full momentum equation, the buoyant effects were modeled as well as the inertia effect of the injection flow. Both the CMT test calculation and the AP600 plant calculation indicated that the hot inlet liquid jets from the CMT diffuser were quickly mixed and dissipated, resulting in an overall recirculating flow in the CMT. The induced recirculation was responsible for the observed mixing within the CMT. It was observed that the momentum flux basis for scaling and establishing the diffuser radial flow area did result in consistent predicted recirculation flow patterns for the test CMT and the AP600 CMT. It was also observed that the buoyant effects of the hotter injected flow resulted in a flow pattern in which the hot injected flow would rise to the top of the CMT and create local hot pockets of fluid, which would then flow downward along the top inside surface of the CMT dome region. Figures 4.3-5 through 4.3-10 show the calculated recirculation flow pattern for the CMT test. The calculated axial temperature distribution for the tests is shown in Figure 4.3-11 and indicates that a stable mixing layer is developed, due to the injected fluid buoyancy, which flows downward as the hot s Q fluid displaces the colder fluid in the CMT. As a result, there is no interaction of the injected flow with the CMT walls since the buoyancy of the injected flow will quickly dominate over the inenia effects. Figures 4.3-12 through 4.3-15 show the calculated results of the AP600 CMT recirculation behavior. As the figures indicate, the same mixing and buoyancy effects are predicted for the plant CMT as for the CMT test. The calculated axial temperature profiles for the AP600 plant CMT are shown in Figure 4.3-11, which is very similar to Figure 4.3-16 for the CMT test. Therefore, the recirculation flow pattern and mixing was shown to be very similar in the scaled CMT SET and the AP600 CMT predictions. Since the same scaling approach was used for all the experiments, the resulting recirculation and mixing behavior is also expected to be very similar such .that this particular PIRT item is captured in the tests and preserved for computer code validation. The CMT tests were successful in achieving the thermal-hydraulic data for the CMT circulation period { to examine the key phenomena identified in the PIRT. 4.3.3 CMT Draindown Behavior 1 ( As the CMT drains, steam flows from the CLBL into the vapor space created at the top of the CMT. . Q The amount of steam that flows into this vapor space is a result of the volume displacement as the liquid drains, the wall condensation which occurs, and the interfacial condensation from the steam to CMT SET & Analysis Revision 2 - June 1998 9909040146 980828 PDR ADOCK 05200003 A PDR
4-28 l g 8.8.8.8.8. 8.8.8. 8 ^ .,385848RR8 an v m N s i iil s s' L' ?. e ik,s Jr g;f:f% L, ^ ,y'ff }. ;'
- l.
.g }? y}[ .p (!' 4, ;- e
- e.
e I. k ' c. i. M e; !.,.i ;n...m, _' h,;, f es, O,!!!Dilf't4:?43ri:.0.1yr'i:!,ttil.gii a. $ !! 5ij(f.T'..i ;:!::i:$$yi! n:!q ii: ip'gh,, J-a 6 it 8 liY!.!T! 'If.!$iit0.id l} i 0 s i
- s
+
- p 9
E D Q ~ Figure 4,3 5 Test CMT-Model Results at 2 sec, Temperature Contours CMT SET & Analysis Revision 2 - June 1998 oA3520wnon4wpf:Ib472798
4-29 2 8. 8.8. 8.8. 8. 8. 8. 8 3RR$82RRE e E I E W [ ""***"""""""""""" "==== . ;/ ;; j?... )::h ' {'N .4
- l)
,?- . lf fi-y il
- t; p
d; - ['[ b M; s;:;; :;.M_'1 L. 4l' 7, .'::. i/. z:'. .. Q l,:! ... 1 g. A !? i
- q,
i, x: .' ?lQ "' ll j i':. 'I', !!??f . ' 'r g,v. .lf. O uni.': .J-y OV;%.9,. : -l>lk!'. 'i ,aaas ..i '?. S
- ii g
N N h h e a Figure 4.3 6 Test CMT Model Results at 6 sec, Temperature Contours i CMT SET & Analysis Revision 2 - June 1998 o:\\3520wnon-4.wpf:Ib472798
4-30 0 8.8.8.8.8.8.8.8.8 2 h to k 8h8 88 s w mo NN w2 a::: P 4/- y: / + .e 'y!Il ' W .? 'j:il. '_j j ::' %,jf Is hIj f's
- .. e.
h!.i
- pg4 f
.}'i '.~,:. .L.. t. .:j :l : [
- :i:
s. l i h.. 4p '$ ; J s.,ii t [ ) j.: -) r .4' 7.? N f:f,':: '~ h :: l.:' h,' ?Q' as:.
- qj t :.e
~ h:f(jf.~ j i; : I ~ y:(id::: ,g.1 ::,,' de@f*iN.'. rijp f i J $.!... . 2k;k:$'$^ a!!ik.'n.. @g e[ : J IiF'l li JGby M&m', a ! Ilipil% 1!Mi!E:idlii[l$!i@il!'; j Q. j dl0!$jlt:sN!!!Mjkl[l.I'~ C 1 N1,. 3 ~ O w M M E d e Figure 4.3-7 Test CMT Model Results at 12 sec, Temperature Contours CMT SET & Analysis Revision 2 - June 1998 o:\\3520wnon-4.wpf.1b-072798
g00000000 00000000 ) K ( 00000000 50505050 er 55443322 u t r a ^ e .s p s ,s m T g. Q. e A ~. h. e. v, k e A . v 7',,,', e o 5 @ : m, 1 t. g ~ f s 'w h = = v v = M 4. ~ w W ~ '-W ~ I P ,=.' O^ .~ mm - n>'- rnr. '2 r.u::m x- 5 wp2M~-. ~*# m 9' ns= Mn: ~- 4 S:%@g+.:.. M,. 4
- s 4
s m:agF M '; d eeMgg;,.? n ? o e c uy& Igg-{. y.ga[ e s z r S f v,s. 6 y g, d gg=.?g,_.. 1 pq g Mh t
- e a
l w-s. s g.. t use re R s 8 u f 0 if ts D e t , gca g* gg nv4., 2c atCXm 9s M@ m@ n"%o5y oC3 Cc] r I e nv NH & > vn.= l 0e "c3 Cnb5o3 9 o GmtFgi 4~ aas" d
4-32 O B B 7 6
- G O
~10> ? N.= o2 g= g n e. ng.g.ya--u m ggggggggg g ggggg .~
- n un
=%* 35& NRM :# :::::gr,,;ry=. :g:u... ;"M "" MtieEma ::::: L .u ~
- -% = =www==.nww
~~~m zw - 3 -
== 4 "E 223 """ ,1
==## " & g #. C""""" W "
== cere:#g J"5:=::e=n=: n:: p .02 = E..mm a """""E #"n"n MMM O kne.Q #22 ::: ccausj#- 2""."". L" E;. W w l 1*M.LM2 JtNew.gg:=g2Enre ;"j$jJEERRE"*';s . = #g& J t:MEEg x d Pge4!sst+rs = h2 W hyf$MWMMasa "**== : " $h $5 EENh" cub
- NEj hhEh 2
==c=ua,.,,.,hyggjijp=$ fat se
mw num gg;;sgs. fs % mp m- ,,,. ::::D3RRFn swdg$=4[." *M = : = J" EEE $n$"$ t"Mi' r m y y ,, ~ *E%W (W gt$5E36c6EEEEEEEEBB & e#;d i gM g t*Mk EDO*=E=EEE3 E n +t+ M .:ieMfEBi s w ivat w v
- +r n+
u M E5 0 c 1 b V) oe Jo3 0 C4 o '.3 0 O Figure 4.3-9 Test CMT Model Results at 40 sec, Normalized Velocity Vectors CMT SET & Analysis Revision 2 - June 1998 c:\\3520w-4 anon.wpf:Ib-072798 _j
b O K
- 0. M.0 0 0 0 0 0 0
) 0 0000000 ( 0%05 0000 00 655465050 0 e 3322 ru t a r e p
- l m'
eT O [ j + r esu ff iD s d noce S 0 4 ta s t luseR 0 2 tse t O E! Cg f5 2Cmo.1 i P. s aa.
- i f
45i5 9iE-i nKH $H k i x3rO 7 ro 99M1s5 A g l ll l
eecccccc c eccceeeeeeee*e eeeessssSssSSS sssS 02460000 0 24s81 1 1 1 2345S7 ~ 9 r-r '2 , i ff t 'ii - j - i ./ i $._ i. % '. \\ \\
- ~~ f*.
- 'f
- li!l
- /r g l
e l li !j iai i e.J/l:l-lil
- i
8 lllll:l !c
- j : :: j. ! *;s
' 2 r 'ool'Il=l!l gq! l I,l i I ,l l; I'*!l $l,l jil . - l l! e$l: j e. l n I' I,u l,g! ! '/- g" fll e;,
- l I
~ r/ ' 7 2 ) C. m ( n o 6 i t ' 2 i s .I o !'i P !lil ! !ll l i. !l a '!:l* l!r ' 5 i i 2 x ll -'s- A !. ll :.: ^ ' 4 2 3 '2 2 - - - - - - - - ~ - - - ~ - - - - - - - 0 9 8 7 6 5 4 3 2 1 0 12 1 0 0 0 0 g' 0 o' 0 0 0 0 aU+G'GkEQW OG!.REuoz ) ) ) )S C mTEn u.E H3~ neH ?E.2 =$E* ?E 8nBm4iau, e nKa r.mH P ?E7" x".. ;9 bC n n J eu c 9.aW AEE EA5
000000000 )K 0 0,0 0,0 0 0 0 0 N ( 000000000 r 6_35443322 N 0_30505050 e u t ,A a h~- ~ r e p m T g e ~. ?
- 3. '. '
%wfE. - _ s'. a ug _...
- u. su. _ y=.
%nm.- =_.. .-. ;.n - =. .c h;g:n.= c.n:~~<@a J.r' ' =.. c ~ s d 7. no .+ s s L1 -.. w.. ~ s:3? + - 1 ce g S _ y,:a &rmg_w._y pmNwei ys$ i EwTW s._. s 2 a e&3 n s [s l s t t e - s vv e$Fi a c _ ge. w*mE.;;;_ q _m_pIwFgp.g, E v S @b M t Hi s g - f n !. 2m _ ;+. e B t li=_.* Y n- _=g wE lu s n - ~
- =
a. e R re 1 s 0 u t f m if c D , g.O =.wg m E ngA xayy E u N4h. q"
- ge3 CE2.
a1 nwaJ.Ame k 3eg~. 7. xaSrE u e %C3 = : e r c cwJF=?# s19 t
4-36 I O 6 sassa as in 6 in c in to o 4 to in v v m NN ,/. 2 w sw m: w cc k k'.
- l 'y. :
E, P L
- m
, N[,. _
- f., s,
hl - y ~.. 1,'. .N. :i., I . ;. 4., y v. v.,. ,.'l; j[. 6 ' ,pf.' f , l7 :,[.[ ' i J gf:.gly ;, ? "'n
- j.,
[ !!,. ' t.,.,. i.... p' ,'l _, _
- ,. i (
.?.. /,; : ) 'e r g(..); !' ; l' f::l ; } g;.. ...;) h { f. ' i ['.."'\\ 2.Mhi.. T-S'Y ! '. c %.q%tj; v N.;.w;;,.....? ; b va ,m. i.a, ;c.. w.:.. v e.~ n. ar n a . : unmn ' Y< > ' +<... o o b g .-Q u O Figure 4.313 Plant CMT Results at 12 sec, Temperature Contours CMT SET & Analysis Revision 2 - June 1998 oA3520wnon-46.wpf:lb-072798
3~ T ) 000000000 g' 4 K 000000000 000000000 N ( 050505050 \\ e 655443322 ru t %D' " a q r ^ ep
- x.'.
m ~ r" T e,;
- J e
V.. ' ?" .m = y u 9 x, .-o m: ..... ~ e z,- ~ ' .= . w; 3 y -_m = -e ] y. 7 ~. m' = = a s - ~ d ~ n .i
- ~
o i 35. i c e i ,e0d .j3': 'i: - S 3 0 s _ 2s a s = Eg a3 m "%Eea gm;x gn N' - =. E 3atggge=mEaes3s&"*?Wae. 3 fg m4 ?r t E-e a e ;.g. m a =.Eg s3w$MW EL g_ yg', g g s t i l a S.+ us ~ e R L C 2 S 1 U t ff m iD c 3,eE C.r 3g n9q Mge ,. y gP .eS nC3 Ce n2y mg * {:a S!c8 u
- b o e 6 ?8A" f9g-
bcoc A e O - - i. .,;w w f. 3._ ) 000 0 n}1 K 000 0, nl - *W.n6~. Q. M.Q t g e ( 000 0 aM g 505 5 L e u 3 W%-l 554 3 r e%L t ' 3 M a d am 4 . -,g:; / e r
- s u%
.g 'l' e .,g J p . f s. r e '- W.%g, U m ?
- s
.%.w-; T 1 .'M_ 1 ' M. Ay,. . v-.- m
- . y.
' a J. 1 4mp. " A +., ' s- .-t ' h.b, ,h ,_wb..y _ s ~_. .e .d '.m%k,. a h' f ? ' Y.,,e s.O [v+ - ~ @4J,h g . g ' ,,0 k. ,1, i.@ - ,{'. as,- s. ,N "q.(a ,' d
- y(
h' ,Y n *4, 6 'j17.; =.. ' J Y wmA.6 . ut 2 a A y. w.4m# O 4 5 ,~. gN e x[l._n. "f.. -j .wf-z'3 rom i _;,:5 nr~. z :' i '. f.:."4-3 - ~ 'e 'g 2 t. .'Q.#' %&aEm hey, :: . ]: h1. _ ' ", ' ~ ' = weW: 3 -.m* w <~ =. 'y. w g_z 7 .Q>, hm:w. n .a __~2 _,g}.- 1 .)*. _s 'i. m_ n ;:uMu., ; ;. ' e gi'. %. +,. ..+,g .^ ' *, k' .:p2 N M. _ +: _ ' 's ~ ' 5 t.g4e,v .=. ge; r.w;
- -W _^.
s : -,\\ y%,N e. ,3 v b. g. 1 p 4, ex9 , ~ =. .1 : g/, I'1 s ' s r... mg_.#. p. c - .f., 4* 4 d M,:;.:i _. _t p. _ ~l.n R a.. 1: -. c , e ~9 -:. pz. g .g' n f f. y K c., o c s a . ?p== .,.." 3'-, e ~.n
- .i ei
._~ S + y...
- {]' p#
I u ~ ,= ml> g - - a%. 'J.w., 0 2 1 a_ _'% fmEeM .a1 Ia:yym^- 3 QggtJ.. 3'. .
- y n*EQ-t c
l a i =I w; My,. 2 s p mkg~ m$ N7t 3. ~ _- s
- [
t awuW':y'i a gm i ~= t l ~s u hw l. s 4 k A e R r e 2 s 2 u t f f m i c D O g,e a 9.
- g. gym Oym gyR.
,np da g.c,*,ypOEg NN rmH , p-Wn<7eOs 9t n e O QC O - OC n 3 Gv. W8?Aj.."Q E -}}