ML20217M973

From kanterella
Jump to navigation Jump to search
Non-proprietary,Rev 1 to WCAP-14942, AP600 Accident Analyses - Evaluation Models
ML20217M973
Person / Time
Site: 05200003
Issue date: 08/15/1997
From: Kemper R, Mcintyre B
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20217M971 List:
References
WCAP-14942, WCAP-14942-R01, WCAP-14942-R1, NUDOCS 9708250404
Download: ML20217M973 (91)


Text

%

.p ' . . .,.I ' . . ....C

. *, % . ,' ' .: - ' :. . '-5.,,' - .' M. Ni. . e., t'.fi *

.k- ? ,.b't ,,ir.g. 'tP.\ ..+ :.E.f y' .,'h[ ('... ['*, c ha h' f

... , .. - t 4  :

.,- .- .g* .

p.

}'

p f#. tu v u ,.

3 r ,. - i

. ...  ;. : ,,f.,...- i. .,*.. ' .\ " % ,. ?. / ' . '% $ .. '. - .,g'

'..6.. -)

. . ' , ;,.. ,i ..*. ... e. a,,, %p , h.s....Vgi. , A >

.; i >, f

, f.d.* ,t.'.gN, ., 3. .>8f r . . bf ., " , ". a.

.: . . 3'f ,.. <, , -

1 .

...,2'.'t.e . .* .'

f.

'. * ' 7 '. . J, ' p % '.,s-.. *

.. .)iv'. ':,;'g%s

.f. ;..R.f',. l i,j. ;[. l .%g8 ,$Q, AOC *

& {,.lY *:f", , knl

  • N,gi.'f', j,3, ,N ' g;. }y '.','l i g-tl,,, , ' l. g. . ,, * # , G, * . ,'l} .

. . G. ;.' ln _ [ ) *.a ., ,; $_.,.

, , , , a ; , .. *\ .

,h f;s

  1. ' .'. s' .1*: j) q <. %l,[

.'  % {*

.. e ,ny '

t s $; ;,

,. ,,.i.- z. . . . ', m.t+ ..s .g. e

.,.a. . ,.,\s.,..,.,,.

.t

. g,,( , , . .-

n.
  • ..ofYo .S ,.!*t tp %s

...oe s .ql...g. .' . ;.

y Rf.j,,'*'14,-

. ,g a

's *a, . v .

, '. ,. - i .:**J. -, *, . . .... ..'- .o , . .,,  :.f s_ f e 4. ,. .M .',. L 1' J"' p< s 8

,.T. .- 1! ;,* V9 ;, i .s/ . - '

' .(*,

A

',.1.,l{ ...

-(,7.' '-....'f..*c.., , . .Q .f , . ;f* . $ .A. Jc ,,; tf.: *. :'/'s*/s9,'.i ..14:

,,y. e.' V' . e'..y...

',f4.,. , _ :. ' ' , " - ' -

,. i.-( ,. g , . . .g * " . ,. ( g , . . , c

., " 6, l-

,_ ,) . ; ,':, , ._;..

.*n,-

p . h. . ej.; y y*; ,L,

~' - ** '- * ,

,. ." - Y.* i~,A.,,,.. , . ; .9 ' .. .. , : .?

.'% .-' ; . ; ' ;. .,; r ,.' , ^ < ,l . 4.',,

+ t

.s. i z sl ,

- +l

'..b **, .

  • t '. i . .'1"  :.'.'.s','s '*

... ]  :.

.J. .g* ,.*; r..,

. ' ,.:. .*,,_; n. *. , ' -,.) ;m. ~ * '

,1 ')~,Q,::. .e.Vq

' ?,L-;. -

+

y V +f h ,.. ;.'m .%:;3

'. .. {,.- . . , ,c . y _ , ;;. .,'T:

~

  • h... ,b.lq g ,, $yo

'. .? .;" g ' ; n .; 4". .l;. '..; .y :L, :}.:

".c , ' g .- ',;

, l -Q e

\

.f . . ,. ,.....,5... , ., -

. v.' g , .: ., g..,

. i 1 ,' .2,. *
*. ' .. . . l ; ; . l '. . .
' a:?
. ,; . E. ",.r.
..,: , '; : - p: t. g . Q. .y..g'_~,.,.
a. g .. . ..'s, ,
y, . . ; - b.*' f' T .
  • .8:. ,,

. . p .

3 * ,.s y ;4 .. . ll.f.a,

. 3,

. (. " "' g * ; f- { , . ., .. *f' ,,e,d,c..,.,. .'

?

  • .....'l.

7,,

,i*.,3 ,;# s. ,

8..

',e.

_, 3 's . j ,.q ;?. } l , '.j'.. !* g. ',; .y.,

g=, *h, .' +f. '. . '. 't..-

C.

44 i ~ ' , - *p 4,: ',~%.. ,n;y4yg.3 , ..l j . < t, y ,2

.; . : :' s '. . . . , , s,. ' g'.,m -

,::, 'a'j; ,%,,,'.;,1 g

.;u i,. .. <

<.. 4. .- .u. .s' S

l

? .7..  %. . ge ' 4..

,. 1  ; . -q q' '.t- ...

s

..:.- . .v.'. ' 's

__ .. : . ., _. .(L:- ,% ' -

. . .1s g,..l..q~ , 3 . by - t. l,.

. , {1. . .. ."

': , y , y,..%4;t _ .  ; 4

.: ..~ j-.:;u_ ]: .,%vy:(.y' c q ..

..'.s.,.... .

J; , ..

Q:g ..- ;@.

.;- Q. };.p.;;p.

% a ,  :. ,;a . .. 'rk..f.* 3. .

a, ,I..- n,: , . t .. '

i . . = . . - s ,. - .

- 4 , i '- m ; ,8. .n..*',. , (

..,..s . . . .

..,.- . . . g j .

'S ,,6 .:. .r."l: ?. c=.:,r.' -

.,.,,,.i*.s.,-,,.<,...t u,' a g(,,;*..,.8... ..,*t <L V.. .:- , si,9 or.< r,". .4 . ~. ; 4. . *- $,, *;, 0.;g ~s ~)t l'..,..'..r,... ,,.e

+ -

y a

.i

.,.,u, 4. ( sg- t. g.-

  • a =
s. ., ,

.. ..+ .;

A- 'p, . .s ap . w6

.= ,n.

.i ,,

e. . f,.g ; 4s .e....- f. r .s

... . ;r ;. . 4 o. + en . _ . p A : .,.. n.. .- .

. . . e.r. ..

... .' 4.' ,

.p : % .s. <.: -.9.;,

y . .:(' g g ' ,. ', '-

,, g. .f' g b' .

  • i (,',.

.. s f

. - ' e.

. ;~l

,p-

. ;[lr.

'f d'L: * . / q

  • g,t s

'\ $l;< ' ,. p. . f .. . .

.. c

., , g 1.;

': ~.. ;;. :,.S.'-j;f.T

.LJ' J, . ^ $, , . i. M. .,%; / %.< . . . ',y:5.I *Ik M*i 4 ,- .s q..',

e ,- .. = s . , .q4... . J. 3 ,,'b , ,b., M, / ; 3. f 24; Q..,, ,.y.N[.[?,', A

/ * * ' ;'Q N f, .. + .3 ;.;.J g % .i , ': *. R 4

, v ..i _ ' .;;;, , ; i ,. ,. y *l ,,ay. ** * . . t, f -

S a. 4 .

.m ) jr g , y. ,yf ;;f. * ; 9,. .

  • U, :j ,

f . ' ; ,s

. V-lc - . ,' J A:d t: 4.rt.he '

'...A.

c*

a v. 4*.

  • 3 .'

I'7*._

_ , 3:, 3, .;.. ;.en. , .?.  :,. ; +;.....,.  %-

',ll, y 4*. ,,. O, . . .

T.

.,; ,. ',,lp 3,y4. ,s +g,.

' , ' , , - qs; ;,. . Je -) *r;;gg., .) ,i . );,t. . 4 .i, ..

, . fg. f, .. &,s; .; $. :. ( 8.,., J... p pp&, ,hy;l %;J.*,. .%

( .. c.,. c. , . ,.p.,n,_.,  ?, ;. y e yz.} ,".

, s. .,q..',y '.- ,j.. '

e;

..e..

' u, . ,

v -*

  • ~.

., .', ;*r/,..;

  • ;; s-.yp, 6, *,.,;:l 3 :;.g,e

,, ,; y ,s,..y o ; tl s_f. #'

, r ,,, . ,6. ,

.. . . . . (. '. .. ..* ',r..*. <g .. .g .* m .,..-

/ ... .'

t./g -y i. .r: e..,.,,..

Af..ir i,.L, i ..  ;.-

1. ,r v, . ..

. co.g+.  ; . ~ g 9. . , a .

,,m ..~ %s..i ,.1 ';ge. f*(., . , ~ .i 5 r

.,p. <,-,!.,.4; 3., .. . . . ,, ". . . .

-

  • r * -' - . . . , .. ., '
p, ,i,.; p t4 .y.., . , , ' - u% p, .

. . . *. . .. *.p,.i .. , i - u,. '< y . . ' q f ., : , c*. v. .-w

...e

... s. . m. .i. ,r.,.

v,f '

' /. #. ,-',Cy

,F..sr: * .

"..h . r! ' .: e. , .'i,..k....* 3_y , = e. < ' y 1 ,.. a .

  • s. ,. .. . .' .'h.,:,.e-,&. s.4 . '; .. . 1 id*' f. , :+t~n '.,y

%,3 p :A . v. , . f . v . .m * ..s ,lmJl? 7

~ -

g
.} ' .f> W '; Q '); ,s?.
,e. - }, '? e ?.q; }.'.fa h, f .% ' .. .. A%i" Q . .j.s t.Y ; '.. ?,!Q

-L.'. '~ *t s: .

.. . ;f ms ,: g -

'f . t , q ., . .,.,v . - . .

. . e. 4 ':.* . f.,. lqn

. ?' 'e

,t,  %

.'....':.',',.T...4.h..*...d,*s. ' "

- ( . .' *? >:

. .g. .- p.'.hlv ... .c. .::1

  • se

, . , . . :.k ,s.p6 .

. .c. . .,; . *Jf w.....n .

- . .g a,..3,.,. .. - ,-

..,r...... s

. .; . 4

..ni..,... .... , . . . ., .l ,.,. .,..e.f, . ... c, ,3- , t; .- ', .y r; [ .q. .jr;;

a,

( :. + .g ,g%.V, .. " z. , , 4. .; . . ..z' '. ,gJ,3 t.

.. 0, . .

6 . g ..Y

.. .,- . .s

- .: c

.ia. - .- * . . , . . , , , .,. ., . o.. *  % . .,: . g;.s. . ,  :. .,L  ;;

. ,;,, ..s.

- x. t .L..,. . ' , ,;.,9, qm J 7 f,a. f ':,4'.. . '.1. '. :. .j. ,. J,yc'. . . . . .g,... i '

6... . - . .

.!*S *'. ..,h. .,'3 1 '- j. . '/* * ,'r. p( , . $. , s; W;, . g ' .,. l, .[.' is [ '.' =

(3-O ' ": . [.,

.,,,.a,  : " l ., 'D' rif:

t. [ ,a . . (. .h.. .

t

..4*

'. t. . . . . - .. - , - .,
  • ' l ., .'eg, 7 :,* $. ,.Y ' p. ,

, w.r; %. . 6 ,. ,'k; * .. ;,s h'..3....  ; .",a ..

+..

^

-l 3 - 4 , ' ^ * , '

,,E. ; .

t. g .y :.4 ,, *,o ....

'.,\......,'.-

.; . .. g, 4 .' , *

a. . .,. .. , ,

,a {.

6:

...,.-l.'%' * . . .

..:f ^ f _.A?e *,. .. : .;..,.,1 .} j. . . :Oy';r. . .' &,3<y' ... ... ,p s. , ,.. . . .s.,,-

't q * .4 .c -

,. ;.i ..s '. ' .ol. ' . ' . .. . , .. . *;

  • n .\ ' ' v. .n i ." b . ' ' ,. % '.::. g't,

. : ,n. '.Y

s. :, * -;!Q'

,....? . o

. * 'NY

. . . -l ';; *f ' %.

. . . . . a - ... %w .asi . , .:,.. .. 'l?; M:f:!j. * - /A,*.F g". '.,*i.j' . .'

,".. . O s, . , s' . j '.s " . j ' l . '? . .' '  % );% .'?. ':9*: Ym ' -..

.. ).

p L % ,;, g;'. .*%l*".'

3, a

  • f,'.*i ,

" .* < g.,, ,

1

, :!,*Y.,.-  :. * ; y'i 1. :.;s '

',. -l9 g.. \ .a l.::.,...g.',,e

,. t - * . ; ., r -

  • 4 ; .

.' '.. , ;. .. 5, s', ^ ,

i gS 9g . . ,. . . ., r . ,.. ,a J '-

t,,, ,. , , f *I' .*4, .. 4. '.:; . , .&' 'al g; l%./'* . <.:

h * ,,',.,';4., .% e *s g.

- [ s , 9. k . .%e

,, 'p'p; 4 ,, ! ;;* ,

. s.. ,, p. c. .p ;-70.

.'..',Q,....i+,

f 3.,. g . . . '.,. ,*

. n l.. : . L.j- l .j ' ; ; ..G. ,s :r .a,'... >

. . ' - s Q. :;. 7,; :.fao f ikW ;.

,',. ,  ; y '; ', %y. is.'.-y^, . .'. , -

0 -

.;c ...[.-
, .. ,.r. ;3. .-= ;.. . , =,, ',c. '. 5 '
- .; S V' , ;p ;

, . "; ' .. n .g  : ,'; ^ ,.

.f;; .g',; Y,(.,. i.i q .f '; '.,' l q ,.,g 'f 't; .

': *... ', g-

,f. ; ' ~ _. , . y. _ j y k. ~:"_ ye j,' ,,

..,.,y_

J.;K,. . ,, p '?(;f 4, :.g. ,

.\.< .r. sp. _ j,.
,-.\ .'n, . '.

.. .. .., S.- ...

.~. A. , r. . ,,' ', 3,. A .. ;, .

.,c.,...

.,p .f-. .m.

-4 A, . .' .: .. .

y .( . f;. .. s::..u:;: . . - . . . c. ,. . . , . . .

?...._._.. , f .f , f. .f, ' .' ^.'p:7 . e;;;.? g . . . f,:() . ,.-:,: ';_ '..y;.l 8- .s g.L.-... ( ' f W, m'.L.L.,

'.w.) ~ .. ;. 4 :>.'. Y a: 7. . r. "...' K.$ '.' . ,.s

. . . .y R*,%

.~,~.r. ': ,

b4

, ..t ., . .:e<...,,

l J  ;.: ':, Y '.b.J %. : n 3.y:. :(A. ' '.: h *. '.,3, . 9 *, .2:"

'. . '., . 9. :s ': .* a:.d. .. . _ : ; . . W:. ::,

. S.  ; .

..*u,~.. .

..G.

$7. , M , '.  ::' ' . -;; .:.

.i +

'. e s

, . , . %V:: .

Ar

{ g. ,.: ...3 ,, ..; ; . - < u,.. .-... . .. . . : . ; t . ...,..s ,. ,y:. 3 v. .s .. . . . -:::  :: . %  ? G:.:'.v

, .; , . M . .

. .p. ,. o. , ;-

r s; a . ; ,.c

.. . . , ., :. . , ...,L. . < . ,: /u. - . ..i w . J, .

g . ,,9 , . .

..c.,c..,t..<*,..,.  :

gc. . . . * . 3-, , . . . ,

,..7,.s  ; . ,c. ,4, .,. e vs ,,

.. ,,... . n-...,s....

. e . ~c. ..: ,.; y ; . v .. . .

.g. -

,.f.,.n.e..n., e,. +..y,. .

. ..,. . .V

.',n'-..

s.y

.?. .

u. b. . , ., .- .,,4 e .;-.u.,. . t,$'- v . . . .

J.,

. . u.. . .

. . .,....c.....,%. m ,e <5

'a,..

be.

, . .. . . -,..., ff ']3 .. ,1,. ., f.

,'I' d.

. . . . F ",a. , , ,s E. b[

e

..[: . . . . ,  : 7; .} -l ry

.P., (. '. ' . . . kJ .

1 ..

(: . '.4 .

. ,k . %. . k ,. .,* .

.t'g. ' f y* v , t.,'

)p" p y i d..

., %y'y.i 4 p.c -y . A. O, + . w. :y, j ,t c.g h ,9. j .,m, , , . cp ^,' *, ( :.g ;. '. :.%,/,,:..' ,:,..,...\, ':: ,.

4 :.p  ; n: -,.: ' : , f.

, ': i.. C .. , i '.,

.lq ..,sl.m. ,k.,b.?.:,?.;.f..,f,fh'$.f,y q'; % ~4,.'.f.h..:'l:-l_l;'.. ~ ~;; . w:' .1;.- ',..:/ p~. i:,, ' ,-l?<f$

. Y-b. ). h.. .fl  ?

.n c ,:.? ,l:t

,4.. . ' . ..; y. +, ..L.".:..t . *c :. a . . . ;,y. 3v J ,y. ,. 'g... . . .: . ::.". cc n. . . s. s,- h.fll'.0. 'k.-. . ,,!.4'3~?:k.  ;~ G.'

q f  :. - y , .;- .. s

,, .. r . ,s . ; ;, h ;. . .. . .. ..
j. '*:'. . : [';$ f,s fS : [ ) f j, Y,

.. n ,47 . . . . ; .,. 3: .,.( g.h.k:T'M[;,%.,[g,'a$.[h..,..'k. ,s :.y..,; ,- 7 3. cc >. : i., . : ,,I' .

- : . T.h ,((:h[ -

]3/i;': M Is '

-e.. .3.

q

. .a.

. . l. ..

  • s
.. x t,.

. v ...  :*

.: ;;..] * , ;;A

- - . .L . T ., -t%, -; ss s.

. c.

w,.,t' f , , +. ,.

,.(.'1 : :.4 s 4

  • i.
e. . A .

. . ?.c

. ,/  ; j.g

.. .,.- L . c.. .. .e -

.. . ; v ,c. :.**s

. $. -,...e:,;

j%, -

4~.

4

$. r.:,

';u.u;..; .. , . ..

s-. p  ;, . %.I_ g; . ' . p <' :M ,. , % ', . . .m -; ,--,.*4~.\.j . ,#., .9.. .;i .y'., ,,7  :: ,;,.,..yjt;[  ; .i , ._.,.f.-

( ' . '; q. . . . .,'.

. . . '.. ;. .: r: .;_',  ; ,; ,.. .*,. ;. ,

.. '.;, , f, .

iP - . .

.:<p; :n b c.. A ~Q. . %:'q.c, a . gpk.

4

. 7;,.

?..

l: p.:~

. ,,,3

. , y.k,,, s e - 3

.,;o\.6 ' T n

. 7::l S,:N< . g.9 ;:g',,.::4 .. O. ;. ..; L ., ,..

. ~ Q :k .; '. ':i. .i .

..,.";.d.- a: :., , . ,. . .: $. ,._ ..'..7,  ! . n. ,. A, *; t.:d - sn .,.,.u .u : . . ?p . ..>.! ':V. . .+y'-- . w

. . 1 k,.e*. *. .,4.3. O. . y ; *. . ,;. .

. p. l.*..s c .. '. . . . ..'....-  ; *%,, .: .. . . *:*,.s...s. ..,

. ' ' - 'C

. 4 . .j . ..

g* y f,. + [;,

  • j f .- , ,, h *.:C ' i[.ki***' g'. ,'p L ; y e ,* ' : Jk,D ': *g [. [ y"\.lw( *. ... . c. . ,. .,f,,

. . v. .. . . ,

Zh.&.n .f. .,2. :

..n, ,

, y$ ' .: ,,:{. . . (,f { .%.,~'].Q-m',[ ,.,*g

. ' c f ';..~,. .: .t;. ..'. , p; .:,..y:.

i. . . m 2'
y':. 9 % < .* c

. o . ..;

w; .* y ., .,.g.i:%; w' , _.?:,./ w.a ,y  ::. .: .:. :s:. .; 4 n. . =  ::'zyb.ly,P y' p .:'.. f;.:

.q:y  ;; o , , q, s - ..'N '

'.g Q* X % ', * '

~. -

.. #;::'; M ,i.:%: :s y .:.;:..';* .* .6.)M i t: %.4:yf: .:

. i y;d*%;m .;k 4-4

. u . 1/. "*

y

' ' .1 / '.;

n
; h.p;'

p; :,P  : ..# . ::q[y$,

c-9.a {.n. +:s %. , Q):p.

O .'$ * ..*f 3,#S N . .. # ' 'R' ;.m.d y, :- *: i b. ".

.. ,. ,. :  :&.*: r .i.}d.y,q :q::::' .:,8 py;Fr yf O. .n'(f. . %.' -

.W'yf'
(V;';,

':.d q?%m;, 44.%;9: ,.% T ..\ g6g  : .

!' he: 'tt ..  ; ' . '.3NB ,' 7 . $ 'e. d M' "s h'7:. "'E :- u l '. N * '* ; M'a' k fM\

\.

. . .. ' . s. '.-- .... :..,c,-

h

, , :n

. .a:<.ie: ..> ~%. s. ., '.g.w.

i...,t

, ,;, n ,

. %..a

.n .

. ..\.

l

~- -

i v.. .. 'e.

    • ' <.; <s. r

.:[-  : . . . . . .. . . ..

. . . ... m . q. $,~

. - : . y 14 ... ,;, ..y :y :x ,

' ;, . .,. .~?. .. ' r4... ... uA oe f

. cIg m, . .+ ,-. m::., .41 .m .

t 't a, &.zv ..: s'.

w.r . .* .5+.

' < [. h. .' . gi , ' '

j. . r -

v(I{$m v:~

s..g e,m. p+m.+n . v.,5 .'. my.m.x;. ' 3%. m.., , . .m.:. m. m. e, n.h,*;

.y . .

T' g .

,.c . [,  ?

$, .*.f ;

k ;.+r .sr. m. , ' e.r: .y. :,.y:s f . . . .ffp 3 - ?

  • r ' g' 1.,-. r. :a ,,.- e a - .

. n.c m r.... ., .

A: yec;y w  :

A, s w;w.p 1 /,J'  %

'  %. p. . . ,. .g.. ..,g (f W.' yy. e p, -g . = 6 4- 4., .

.m . [r c py .h~?.'I' ** fs .. ..pg. i:

T,7 jp [,,, y,j.y.D::*.'?*TQdp,p,,'dg .;[c.T9 '. . D, ,

4 Y [@n.,, . .(,

f .,. y

.k' .h.;, - b.-!'. si.h,";. igh."'hf"$ ,. 8. hh e .. " .m e,. , '8. kYh L p 4*g.e.i ,f '.i ,,. 9 r . .L' .i A .,, d' . .f,,y

. ' ,4j,%.<.Q.. *[. *:.l#*;

, ~n.'y.Q..,~~ i,.. '..a?f. E p ; g,i, a y 5#

i ,.

g .- h3>.- A,p,7 , ,w x'

, '. g ,.f,1.f

, D c.'s.. ..  ?- - 4

,t gD.,"#.f.

C'ef' ,

kj g .*'^h.' hn.,h.M gp T%.NA a W.s,'f w>/. g $k Y.g 3,' . 'if'

~

.  : ,

  • W.: & A..+.. 44.'h  :

W . w. rg;,er'

- 4, k]*hh.v

- 4 d

a . k + - .:. . r *v. n*' . + '. .c;< . - 'c . '- x ;. " - j

1 '

  1. Tr fi te . ' ., .

hgW D'i "v, 4 3

. g t$g. mh'A / .'n'4, s; M-Y? 3..

g.

s

.,y g.,  ; I.

"+:[Y.*

lh.

MMhb%q%:dM,f*gh

e. mn.an..a e ~

"ae)f [f+ . 7i *JM N.. .'

'. vnNY  ;:

. .U

. kl:jk -

-G Y y, r^  %

e n ' .A S a AM)):- ny 4h. ..

.p ~s A* l M

L3

" 1hk ' Ihf B @a %,d,M8,%N % M .-4ek k u x A] $ $ ,L-L~ b;:.a

b Westinghouse Non-Proprietary Class 3

++++++.++

+

AP600 Accident I Analyses -

Evaluation Models

-W e s tin g h o u s e E n e r g y .S y s t e m s ll;mQs@$M38hgg3

-)

AP600 DOCUMENT COVER SHEET TDC: IDS: I S Form 68202O($/94)[o:\36 Son-2.wpt:1x] AP600 CENTRAL Fid USE ONLY:

0058.FRM RFS#: RFS ITEM #:

, AP600 DOCUMENT NO. REVISION NO. AS$lGNED TO GW GL 031 1 Page 1 of 1-ALTERNATE DOCUMENT NUMBER: WCAP 14942 WORK BREAKDOWN #: 3.2,3 DESIGN AGENT ORGANIZATION: Westinghouse PROJECT: AP600 TITLE: AP600 Accident Analyses - Evaluation Mode!S ATTACHMENTS: DCP #/REV. INCORPORATED IN THIS DOCUMENT REVISION:

None N/A CALCULATION / ANALYSIS

REFERENCE:

None ELECTRONIC FILENAME ELECTRONIC FILE FORMAT ELECTRONIC FILE DESCRIPTION 3680w.wpf Word Perfect 5.1 (C) WESTINGHOUSE ELECTRIC CORPORATION 1997 OWESTINGHOUSE PROPRIETARY CLASS 2 This document contains information proprietary to Westinghouse Electric Corporation; it is sutwnitted in confidence and is to be used solely for the purpose for which it is fumished and retumed upon request. This document and such information is not to be reproduced, transmitted, disclosed or used otherwise in whole or in part without prior written author;zation of Westinghouse Electric Corporation, Energy Systems Business Unit, sutiect to the legends contained hereof.

OWESTINGHOUSE PROPRIETARY CLASS 2C This document is the property of and contains Proprietary Informaton owned by Westinghouse Electric Corporation and/or its subcontractors and suppliers, it is transmitted to you in confKfence and trust, and you agree to treat this document in strict accordance with the terms and conditions of the agreement under which it was provided to you.

EWESTINGHOUSE CLASS 3 (NON PROPRIETARY)

- COMPLETE 1 IF WORK PERFORMED UNDER DESIGN CERTIFICATION QB COMPLETE 2 IF WORK PERFORMED UNDER FOAKE, EDOE DESIGN CERTIFICATION PROGRAM GOVERNMENT LIMITED RIGHTS STATEMENT [See page 2)

Copyright statement: A license is reserved to the U.S. Govemment under contract DE ACO3-POSF18495.

CDOE CONTRACT DELIVERABLES (DELIVERED DATA)

Sutiect to specifnd exceptions, disclosure of this data is restricted until September 30,1995 or Design Certification under DOE contract DE-ACO3-90SF18495, whichever is later.

~

EPRI CONFIDENTIAL: NOTICE: 10 2 0 3 0 4 O s O CATEGORY: AOBDCODD EO FO-OARC FOAKE PROGRAM - ARC LIMITED RIGHTS STATEMENT [See page 2]

2 Copyright statement: A license is reserved to the U.S. Govemment under contract DE-FC02 NE34267 and subcontract ARC-93-3-SC-001, OARC CONTRACT DELIVERABLES (CONTRACT DATA)

Subject to specified exceptions, disclosure of this data is restricted under ARC Subcontract ARC-93-3 SC 001.

ORIGINATOR SIGNATURE /DAT,.

Robert Kemper /((

AP600 RESPONSIBLE MANAGER SIGNA RE*

/ Q APPROVAL DATE Brian A. McIntyre w /g'V h.;/O

' Approval of tne responsible manager signifies that document is complete, all required reviews are complete, electronic fue'is attached and document is released for use.

cosapew arm 1

AP600 DOCUMENT C3VER SHEET Rge 2 Form 68202O(5/94) LIMITED RIGHTS STATEMENTS DOE GOVERNMENT UMITED RIGHTS STATEMENT (A) These data are submitted with hmited nghts under govemment contract No. DE ACo3-90SF18495. These data may be reproduced and used by the govemment with the express limitation that they will not, without written permission of the contractor, be used for purposes of manufacturer nor d sclosed outside the govemment; except that the govemment may disclose these data outside the government -

for the following purposes, if any, provided that the govemment makes such disclosure subject to prohibihon agamst further use and disclosure:

(1) This ' Proprietary Data' may be disclosed for evaluation purposes under the restrictions above.

(ll) The 'Propnetary Data' may be desciosed to the Electne Power Research Institute (EPRi), electric utility representatives and their direct consultants, excluding direct commercial competitors, and the DOE Nabonal Laboratones under the prohibitions ar"l restrnctions above-(B) This notice shall be marked on any reproduction of these data, in whole or in part.

ARC UMITED RIGHTS STATEMENT:

This proprietary data, fumished under Subcontract Number ARC-93-3-SC 001 with ARC may be duphcated and used by the govemment and ARC, subject to the hmitabons of Article H 17 F. of that submntract, with the express limitabons that the propnetary data may not be disdosed outside the Dovemment or ARC, or ARC's Class 1 & 3 members or EPRI or be used for purposes of manufacture without prior permission of the Subcontractor, except that further disclosure or use may be made solely for the following purposes:

This propnetary data may be disclosed to other than commercial compettors of Subcontractor for eval *ation purposes of this subcontract under the restnction that the propnetary data be retained in conf dence and not be further disclosed, and subject to the terms of a non-d;sclosure agreement between the Subcontractor and that organization, excluding DOE and its contractors.

DEFINITIONS CONTRACT / DELIVERED DATA - Consists of documents (e.g. specifications, drawings, reports) which are generated under the DOE or ARC contracts which contain no background proprietary data.

EPRI CONFIDENTIALITY / OBLIGATION NOTICES NOTICE 1: The data in this document is subject to no confidentality obligations.

NOTICE 2: The data in this document is proprietary and confidenbal to Westinghouse Electric Corporation and/or its Contractors. It is forwarded to recipient under an obhgation of Confidence and Trust for kmited purposes only. Any use, disclosure to unauthortzed persons, or copytng of this document or parts thereol 6s prohibited except as agreed to in advance by the Electnc Power Research Institute (EPRI) and Westinohouse Electnc Corporation. Recipient of this data has a duty to inquire of EPRI and/or Westinghouse as to the uses of the intormation containedherem that are permitted.

NOTICE 3: The data in this document is propnetary and confidential to Westnghouse Electric Corporation and/or its Contractors. It is forwarded to reopient under an obhgation of Confidence and Trust for use only in evaluabon tasks specifically authorized the Electric Power Research institute (EPR!). Any use, disclosure to unauthorized persons, or copying this document or parts thereo!is ted except as agreed to in advance by EPRI and Weshnghouse Electnc Corporation. Recipient of this data has a duty to inquire of EP l and/or Westnghouse as to the uses of the information contained herein that are permitted. This document and any copies or excerpts thereof that may have been generated are to be retumed to Westinghouse, directly or through EPRI, when requested to do so, NOTICE 4: The data in this document is proprietry and confidential to Westinghouse Electric Corporation and/or its Contractors. It is being revealed in confidence and trust only to Employees of EPRI and to certain contractors of EPRI for hmited evaluation tasks authorized by EPRL Any use, disclosure to unauthonzed persons, or copytng of this document or parts thereof is prohibited. This Document and any copies or excerpts thereof that may have been generated are to be retumed to Westinghouse, directly or through EPRI, when requested to do so.

NOTICE 5: The data in this document is propnetary and confidential to Westinghouse Electne Corporation and/or its Contractors. Access to this data is given in Conhdence and Trust only at Wesbnghouse facihties for hmited evaluation tasks assigned by EPRI. Any use, disclosure to unauthonzed persons, or copying of this document or parts thereof is prohibited. Neither this document nor any excerpts therefrom are to be removed from Wostinghouse fac:lities.

EPRI CONFIDENTIALITY / OBLIGATION CATEGORIES CATEGORY "A"- (See Deliverud Data) Consists of CONTRACTOR Foreground Data that is contained in an issued reported.

CATEGORY 'B"- (See Delivered Data) Consists of CONTRACTOR Foreground Data that is not contained in an issued report, except for computer programs.

CATEGORY "C*- Consists of CONTRACTOR Background Data except for computer programs.

CATEGORY 'D"- Consists of computer programs developed in the course of performing the Work, CATEGORY "E"- Consists of computer programs developed prior to the Effective Date or after the Effective Date but outside the scope of tne Work.

CATEGORY "F"- Consists of administrative plans and administrative reports.

cess.m um

WESTINGHOUSE NON PROPRIETARY CLASS 3 WCAP-14942 AP600 ACCIDENT ANALYSES-EVALUATION MODELS i l'

WESTINGHOUSE ELECTRIC CORPORATION Energy Systems Business Unit P.O. Box 355 -

Pittsburgh, PA 15230 C1997 Westinghouse Electric Corporation All Rights Reserved

. o:\3680n.wpf;1b;081897

. COPYRIGHT NOTICE The reports transmitted herewith each bear a Westinghouse copyright notice. The NRC is permitted to make the number of copies of the information contained in these reports which are necessary for its internal use in connection with generic and plant-specific reviews and approvals as well as the issuance,

, denial, amendment, transfer, renewal, modification, suspension, revocation, or violation of a license, permit, order, or regulation subject to the requirements of 10 CFR 2.790 regarding restrictions on public  ;

disclosure to the extent such information has been identified as proprietary by Westinghouse, copyright L protection notwithstanding. With respect to the non proprietary versions of these reports, the NRC is permitted to make the number of copies beyond those necessary for its internal use which are necessary in order to have one copy available for public viewing in the appropriate docket files in the public document room in Washington, D.C., and in local public document rooms as may be required by NRC l r:gulations if the number of copies submitted is insufficient for this purpose. Copies made by the NRC must include the copyright notice in all instances and the proprietary notice if the original was identified as proprietary.

4 6

ill -

i j,  : TABLE OF CONTENTS

. Section L Title - Page-i 1.0 . INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . , . . . , , , , , , , , , , 1 1 -

. 2.0 : LOFTRAN CODE MODIFICATION AND VERIFICATION , . . . . . . . . . . . . 2-1

2.1 REFERENCES

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.0 LAP 600 ECOBRA/ TRAC VESSEL AND LOOP MODELS FOR LARGE BREAK LOCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

3.1 REFERENCES

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 i

,L - 4.0 ' AP600 NOTRUMP MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4

4.1 REFERENCES

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 5.0' LONG-TERM 'OOLING (LTC) ANALYSES METHODOLOGY , . . . . . . . . . 5-1 ,

5.1 DESCRIPTION

OF THE ECOBRA/ TRAC NODING FOR THE i AP600 LONG-TERM COOLING ANALYSIS . . . . . . . . . . . . . .. . . . . . . . 5-1 ,

! 5.2 - COMPLTTATION OF BOUNDARY CONDITIONS FOR THE

} AP600 EMERGENCY CORE COOLING SYSTEM i

ECOBRA/ TRAC ANALYSIS WINDOWS . . . . . . . . . . . . . . . . . . . . . , 5-6 5.2.1 - IRWST Draindown and Core Boiloff Calculations to  ;

Establish Mass / Energy Releases . . . . . . . . . . . . . . . . . . . . . . . . 5-6  !

5.2.2 .EGOTHIC Containment Pressure Computation . . . . . . . . . . . . . 8 5.3 CONSIDERATIONS IN LONG-TERM COOLING EMERGENCY :

- CORE COOLING SYSTEM PERFORMANCE CALCULATIONS . . . . . . 5-10

5.4 REFERENCES

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 s-I 6.0 TRANSIENT MASS DISTRIBUTION (TMD) CODE FOR AP600 SUBCOMPARTMENT MODEL _ . . . . ._ . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

6.1 REFERENCES

, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 '

J 4

4 a

August 1997 c:\3680n.wpf:lt481397

iv LIST OF a* ABLES ,

Table Title Page ,

6-1 H oop Flow Pa th Da ta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 6-2 Radial Flow Pa th Da ta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7 6-3 Axial Flow Pa th Da ta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11 6-4 TMD Model Node Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15 i

l August 1997 c:\3680n wpf-1b-081897

v LIST OF FIGURES Figure 'Iltle Page  ;

3-1 AP600 ECOBRA/ TRAC Vessel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 3-2 ECOBRA/TRA' Vessel Model (Section 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12 33 ECOBRA/ TRAC bsel Medel (Section 2) . . . . . . . . . . . . . . . . . . . . . . . . . 3-13 3-4 ECOBRA/ TRAC Vessel Model (Section 3) . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 3-5 ECOBRA/ TRAC Vessel Model (Section 4) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 3-6 ECOBRA/ TRAC Vessel Model (Section 5) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 i 37.

ECOBRA/ TRAC Vessel Model (Section 6) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17

! 3-8 ECOBRA/ TRAC Vessel Model (Section 7) . . . . . . . . . . . . . . . . . . . . . . . . . . 318 3-9 ECOBRA/ TRAC Vessel Model (Section 8) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 3-10 WCOBRA/ TRAC Vessel Model (Section 9) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 3 11 ECOBRA/ TRAC Vessel Model (Section 10) . . . . . . . . . . . . . . . . . . . . . . . . . 3-21 3-12 Vessel Noding Diagram for Guide Tube Hot Assembly Location . . . . . . . . . 3-22

! 3-13 ECOBRA / TRAC Loop Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 3-23 l

4-1 Base Noding Scheme Used for the AP600 Fluid Nodes and Flow Links . . . . 4-3 5-1 Elevation of the Vessel for LTC Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 5-2 Coarse Noding Plan View (Sheets 1 tc 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14 5-3 Cold Leg Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20 5-4 Hot Leg Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21 5-5 ECOBRA/ TRAC Loop Model for DEDVI Break LTC Analysis . . . . . . . . . . . 5-22 5-6 Small Break LOCA IRWST Drain Boiloff Calculation . . . . . . . . . . . . . . . . . . . 5-23 5-7 Small Break LOCA IRWST Drain Boiloff Calculation . . . . . . . . . . . . . . . . . . . 5-24 5-8 Small-Break LOCA LTC Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .- 5-25 5-9. Simplified AP600 Internal Containment Flow Network . . . . . . . . . . . . . . . . . 5-26 6-1 TMD Model Noding Diagram (Sheets 1 through 12) . . . . . . . . . . . . . . . . . . . 6-18 August 1997 c:\3680n.wpf:1b-081897

l 11 t LO INTRODUCTION

[, This document discusses the evaluation models and parameters used in the AP600 Accident Analyses completed for Design Certification. Information corresponding to that in Sections 2

  • through 5 was previously documented in Chapter 15, Appendices B through E, of the AP600

, Standard Safety Analysis Report (SSAR)(Revision 4). Note that Appendix 15A still exists at

the end of SSAR Chapter 15, Revision 13. Information corresponding to that in Section 6 was
previously documented in Chapter 6 of the AP600 SSAR (Revision 5),

j l

j 4

1 i

i 4

4 f.

i ll Introduction - August 1%7 o:\M80n.wpf.lbel397

1

% 2.0 LOFTRAN CODE MODIFICATION AND VERIFICATION LOFTRAN (Reference 1) is a code developed by Westinghouse which is used for studies of the transient response of a pressurized water reactor (PWR) system to specified perturbations in process parameters. LOFTRAN simulates a multilnop system and models the reactor vessel, hot and cold leg piping, steam generators (tube and shell side), and the precsurizer.

The pressurizer heaters, spray, and safety valves are also modeled in the program. Point kinetics and the reactivity effects of moderator, fuel, boron, and rods are included. The

secondary side of the steam generator utilizes a homogeneous, saturated mixture for the thermal transients and a water level correlation for indication and control. Reactor protection system signals, such as reactor trip, neutron flux, high and low pressure, low flow, and low l steam generator water level, are modeled.

1 Control systems are also simulated, including rod control, steam dump, and feedwater

- control. Standard emergency core cooling systems, such as pumped safety injection and accumulators, are modeled.

The original LOFTRAN verification includes fourteen tran lents and consists of a comparison of LOFTRAN results to actual plant data and to other similar thermal-hydraulic programs.

The U.S. Nuclear Regulatory Commission (NRC) determined that the datt comparisons and the computer program results comparisons demonstrate the ability of LOFTRAN to analyze the types of events which has been used in licensee safety analyses, and that the verification for LOFTRAN is judged to be adequate.

The LOFTRAN code is modified to allow the modeling of the AP600-specific systems. In particular, models for the passive residual heat removal (PRHR) and core makeup tank (CMT) are included in the program. A description of the modifications made to LOFTRAN is contained in Reference 2.

2.1 REFERENCES

1.

Bumett, T.W.T. et al., "LOFTRAN Code Description," WCAP-7907-P-A (Proprietary) and WCAP-7907-A (Nonproprietary), April 1984.

2. Carlin, E.L., Bachrach, U., I.0FTRAN & LOFITR2 AP600 Code Applicability

- Document," WCAP-14234, Revision 1 (Proprietary), June,1997.

LOFTRAN Code Modification and Verification August IW7 c:\3680n.wpf:1b 081397

3-1 3.0 AP600.liCOBRA/ TRAC VESSEL AND LOOP MODELS FOR LARGE BREAK LOCA

. A major portion of a .WCOBRA/ TRAC (References 1 and 2) analysis involves generating the

- plant-specific vessel, loop model, and the appropriate geometric inputs to that model to properly describe the plant. The vessel model, in particular, requires detailed information a

regarding the vessel internals.

Design drawings for the plant are used to define the inputs to the model. For the AP600, the process of developing the model, and inputs to the model, begins with the elevation layout of

i. the vessel and its internals and the creation of vessel component input.

f Figure 3-1 shows the elevation layout of the vessel for the AP600. The elevations shown are relative to the inside bottom of the vessel. This elevation layout contains most of the information needed to dhide the vessel into ten vertical sections. This number of vessel sections is consistent with the detail in ECOBRA/ TRAC input nodalization being implemented in the best-estimate large break loss-of coolant-accident (LOCA) model analyses at Westinghouse.

I a,C 4

4 4

(

4 i

AP600 }XCOBRA/ TRAC Vessel and Loop Models for Large Break LOCA August 1997 o:\3680n.wpf:1b481397

2 8,C *-

I The input to }yCOBRA/ TRAC includes variation tables for several geometric / thermal hydraulic inputs. Through the use of these variation tables, parameters such as continuity area, momentum area, wetted perimeter, hydraulic diameter, and gap size (for horizontal flow paths), can be varied from cell to cell. This is useful for channels that vary in geometry

' from bottom to top or for gap flow paths which are blocked over some portion of a channel (for example, gaps 7 through 12 in Section 2, Figure 3-1).

Venel Section 1: Lower Head Region a,c l

- Vessel Sections 2 and 3: Lower Plenum Region and Bottom Nozzle Region a,c AP600 }yCOBRA/ TRAC Vessel and Loop Models for Large Break LOCA August 1997 o:\368thwpf:1b-081397

3-3

.. a,c Vessel Section 4: Core Active Fuel Region _

a,c i

I l

l

~

l AP600 WCOBRA/ TRAC Vessel and Loop Models for Large Break LOCA Auguat 1997 c:\3680n.wpf:1b-081397

- - . . . . .- .. . .....- - .. . . . . . , . .... ..- -..- - ~.~ -.. - --.... - ..-. . - .

1 34

- A,C - .

i-4 d.

4 e,

4 s.

, Vessel Section 5: Counter-Current Flow limitation (CCFL) Region 1 a,c -

)

1 .-

b e

d 4

i.

..i.- .

4 a

m d_

i 4

I. i

. AP600 )V_ COBRA / TRAC Vessel and Loop Models for Large Break LOCA August 1997 o:\3680n.wpf 1b-081397

s 3-5 e

a,C

- 1 4

1 Assemblics entering a guide tube at the upper core plate have a flow area through the top of the section. The area is somewhat larger than the other channels. The guide tule assemblies account for 61 of the 145 assemblies in the core.

Vessel Section 6: Bottom of Upper Plenum (3 levels) a,C I

l l

Vessel Section 7: Upper Plenum Nozzle Region (Two Levels) a,c AP600 }VCOBRA/ TRAC Vessel and Loop Models for Large Break LOCA August 1997 o:\3680n wpf:1b-081397

.g 4

h ,

a,c L

l: _

Figures 3-1 and 3-8 show the vertical and radial representations of this section of the vessel model.

a,C -

. e Vessel Section 8: Upper Dowacomer/ Bottom of Upper Head -

a,C AP600 WCOBRA/ TRAC Vessel and Loop Models for Large Break LOCA August 1997 o \3680n.wpf:1b-081397

.'3-7

~

'^ a,c Vessel Sections 9 and 10: Upper Head a,c AP600.WCOBRA/ TRAC Core Power ~~

- To model stored energy heat sources in MCOBRA/ TRAC, code input allows for the

- modeling of both heated conductor geometries and the unheated conductor input.- Unheated conductors are simply the typical heat slab inputs for components, such as the vessel wall and the lower core support plate, typical in most thermal / hydraulic computer codes. For the --

L special case of heated conductors, the code allows for detailed radial and axial noding and l

- other fuel rod related inputs, such as rod internal pressure, fuel rod gas molar fractions, clad thickness, and fuel theoretical density.

~

a,c I

Reference 4 presents the axial power shapes modeled in the ECOBRA/ TRAC SSAR analysis to bound the axial

power distribution. The axial profils selected for an analysis is applied to fuel rods at differing total power levels.

ac r

AP600 WCOBRA/ TRAC Vessel and Loop Models for Large Break LOCA August 1997 o:\3680n.wpf:1b 081397

3-f, a,C

  • For cases in which the hot assembly is assumed to reside beneath a guide tube, slight modifications to the Vessel model of Figure 3-1 are necessary. Figure 3-12 depicts the revised nodalization, which includes the addition of Channels 81 and 82.

a,c AP600 }YCOBRA/ TRAC Loop Model The input to ECOBRA/ TRAC allows the user to invoke several different modules through use of a descriptive identifier. These modules recognize the need for varying inputs to describe the geometry and function of various components in the reactor coolant system (RCS). The largest of these modules is the VESSEL module. The vessel inputs are distinguished in the ECOBRA/ TRAC input since the VESSEL module is the only recognized three-dimensional component The one-dimensional modules used to describe the various components are listed in the SSAR, subsection 15.6.5.4A.2.3.

As with the vessel inputs, each comportent in the one-dimensional loop model can have various cells to allow for modeling changes in geometry along the component. In the input structure each component is identified by a module title, a unique component number, and connections to numbered junctions betweat components. In addition, a descriptive text title '

can be used to uniquely identify each component.

a,C

~

AP600 3'COURA/ TRAC Vessel and Loop Models for Large Break LOCA August 1997 o:\3630n.wptib-081397  ;

i

3-9 a,C 4 -

\. .

l-L

-1 3.1- REFERENCES'

1. . Dederer, S. I., Hochreiter, L. E., Schwarz, W. R., Stucker, D. L, Tsai, C. K.,~ and -

Young, M. Y., " Westinghouse Large Break Best Estimate Methodology, Volume 1 Model Description rad Validation, Volume 2, Revision 2,' Application to Two-Loop PWRs Equipped with Upper Plenum Injection," WCAP-1092&P-A (Proprietary),

December 1988.

AP600 WCOBRA/ TRAC Vessel and Loop Models for Large Br ak LOCA August 1997 o;\3680n.wpf:1b 081397

3-10

2. Bajorek, S. M., Hochreiter, L. E., Young, M. Y., Dederer, S. I., Nissley, hi. E., Tsai, .

C. K., Yeh, H. C., Chow, S. K., Takeuchi, K., Cunningham, J. P., and Stucker, D. L.,

" Code Qualification Document for Best Estimate LOCA Analysis," Volumes 1 through 5, .

WCAP-12945-P (Proprietary),1992 and 1993.

3. Letter, R. C. Jones, Jr. (USNRC) to N. J. Liparulo (W), " Acceptance for Referencing of the Topical Report, WCAP-12945 (P), Westinghouse Code Qualification Document for Best-Estimate Loss-of-Coolant Analysis," June 28,1996.
4. NTD-NRC-95-4575, Letter from N. J. Liparulo (W) to R. C. Jones, Jr. (USNRC),

" Revisions to Westinghouse Best-Estimate Uncertainty Report," October 13,1995.

5. Haberstroh, R. C., Hochreiter, L. E., and Monahan, E. M., "WCOBRA/ TRAC Core Makeup Tank Preliminary Validation Report," MT01-GSR-003, Westinghouse Electric Corporation, February 1995.

l AP600 }YCOBRA/ TRAC Vessel and Loop Models for Large Break LOCA August 1997 o:\3 Glen.wpf:lt>.081397

3-11

~

a,c i

l I

Figure 3-1 AP600 WCOBRA/ TRAC Vessel Model i

AP600 }yCOBRA/ TRAC Vessel and Loop Models for Large Break LOCA August 1997 o:\3680n.wpf:Ib481397

3-12

~

a,c i

Figure 3-2 HCOBRA/ TRAC Vessel Model AP600 lyCOBRA/ TRAC Vessel and Loop Models for Large Break LOCA August 1997 o:\3680n.wpf;1b41397

3-13 ac r

i

l 4

Figure 3-3 WCOBRAARAC Vessel Model

'AP600 WCOBRA/ TRAC Vessel and Loop Models for Large Break LOCA August IW7 o:\3680n.wpf;1M)81397

3-14 8,C l

t

- Figure 3 HCOBRA/ TRAC Vessel Model 1

- AP600 WCOBRA/ TRAC Vessel and Loop Models for Large Break LOCA August 1997

- o \'J680n.wpf lb-061397

T

.I 3 15 ),

9

  • 1 i

A,C i

i h

[

t h

r i

-i t

i i

+

- r

~

1

. Figure 3-5 HCOBRA/ TRAC Vessel Model AP600 WCOBRA/ TRAC Vessel and Loop Models for Large Break LOCA Augmt 1997 9

a:\3680n.wptib 081397 t

1 l

3 16 i

i

. 1 A,C Figure 3-6 1YCOBRA/ TRAC Vessel Model AP600 }yCOBRA/ TRAC Vessel and Loop Models for Large Break LOCA August 1997 c:\3680n.wpf:lN21397

3 17 l

0 a,c Figure 3 7 lYCOBPA/ TRAC Vessel Model AP600 lyCOBRA/ TRAC Vessel and loop Models for Large Break 'OCA August 1997 o:\3680n wpf;1bO81397

So10 l

l. -

4,C a

'e Figure 3-8 HCOBRA/ TRAC Vessel Model AP600 b' COBRA / TRAC Vew! and Loop Models for Large Break LOCA August 1997 c:\3680n.wpf:1M21397

3 li P

e a

I a,c i

l i

1 Figure 3 9 lyCOBRA/ TRAC Vessel Model AP600 lyCOBRA/ TRAC Vessel and Loop Models for Large Break LOC'A August 1997 o:\3680n.wpf;1b-081397

3 20 t i

i

  • i -

t i

a,c i f

?

i

.b t

P 1

t i

i I

i-i I

~

Figure 310. ECOBRA/ TRAC Vessel Model -t 1

- AP600 WCOBRA/ TRAC Vessel and Loop Models for Large Break LOCA Auget 1997 oA3680 wpf;1b41397

. . _ , - . . . , _ _ . . . , , ..;._ - -....._.._-._.__..:-..-_-_...-.2._._.,-._-.-..-__;2__-_.__.---__..,._....._.,.

3021 4

3 4,C i

t t

i 1,

t i

1 i

i E-t

' Figure 3-11.WCOBRAfrRAC Vessel Model .

AP600 ECOBRA/ TRAC Vessel and Loop Models for Large Break LOCA Auget 1997 -

o;\3680n.wpf.1b 061397

!l l

l ,

. . _ . . _ . _ . ~ _ . . _ . _ _ _ _ . . _ - . . . . _ . . _ . _ _ _ . . . _ . . - . . _ _ _ . _ . _ _ _ _ . _

' 3 22 i

4 e

i 1

a,c J

i i

A t

1 r

J, f

'l 5

i t

i i

i 3

i, f

-,F t

t I

f u -

Figure 312 Vessel Noding Diagram for Guide Tube Hot Assembly Location- i P

AP600 ECOBRA/ TRAC Vessel and Loop Models for Large Break LOCA August 1997 ]

a\3Niortwpt.1M181397 -

i 1

. - . , . , - - , . . _ . . . . . , , _ . - , _ , . - . . . , . . . - . , , . . . . _ . . _ - . , - . _.-._.._,_..,_-,..,..-..-...,-...-.~_-w...,-.- _ - .. ....r ,.m,,,,,_.-

l 3 23 p.

I

~

8,C I

Figure 313 ECOBRAfrRAC Loop Model AP600 ECOBRA/ TRAC Vesul and Loop Models for Large Break LOCA August tw7.

cA3680narf.lb.081397

41 4.0 AP600 NOTRUMP MODEL The AP600 nodalization is consistent in approach with the noding used in the NOTRUMP models of the AP600 integral and component test facilities (Reference 1). The noding scheme is based on the NRC approved NOTRUMP evaluation model (Reference 2) and, when possible, follows the evaluation model methodology. The noding scheme used for this analysis s given in Figure 4-1. Details of the noding for the CMTs are presented in Reference 1. Note that paths identified as " critical flow links" are those with a user-specified boundary condition flow rate.

Other features specific to the modeling of the AP600 augment the NRC approved NOTRUMP evaluation model noding, according to the test facility sirrulations, as follows: I Wherever possible, flow links with elevation changes are avoided. Instead, fluid nodes connected precisely at node boundaries or at horizontal flow links are used.

The principal exception to this is the flow link representing the guide tubes.

Both of the reactor coolant loops are modeled in full The PRHR heat exchanger is modeled using metal nodes and heat links connecting the metal nodes to the reactor coolant system and to the in containment refueling water storage tank. The noding applied is consistent with the simulation of the PRHR in Reference 1.

  • ] metal nodes joined by heat links The reflector metal mass is modeled as [

to the core fluid nodes and the downcomer fluid node.

  • The automatic depressurization system (ADS) is modeled in full, with fluid nodes and flow links representing the pipework between the first through third stage valves and the sparger. The Hemy Fauske and HEM critical flow models are used to calculate the critical flow through ADS valve flow links 58,184, and 185. The NRC approved evaluation model break flow model is used for the postulated break.

[

ja,c Only safcty-related systems are modeled, with the single active failure of one ADS Stage 4 valve as stated in the text of the SSAR Chapter 15.6.5.4B.

AP600 NOTRUMP Model Augmt 1997 oA3680n wpf.1b441397

. _ . . _ - . _ _ _ _ . _ _ . , _ . - . _ . _ - . _ . - - _ , _ . _ , - . _ _ . _ . - . . ~._ a _

42

[ jax .

To better represent phenomena associated with flow through the ADS stages, fluid .;

nodes are placed upstream from the ADS valve locations.

As in the NRC approved evaluation model, steady-state controller fluid nodes and flow links are employed to initially assist in establishing a steady 102 percent power plant condition at the time of the LOCA. >

  • When pressure upstream of potential ADS critical flow locations is reduced to the  ;

I i

]'# Containment pressure is set at 14.7 psia as a boundary condition for NOTRUMP, ,

4.1 REFERENCES

1,. Fittante, R. L., et. al., "NOTRUMP Final Validation Report for AP600," WCAP-14807, ,

Revision 1 (Proprietary), January 1997.

2. USNRC, Letter from Cecil O. Thomas to E. P, Rahe, Jr., Westinghouse, " Acceptance for  ;

Referencing of Licensing Topical Report WCAP 10079(P), 'NOTRUMP, a Nodal Transient Small Break and General Network Code'," May 1985.

AP600 NOTRUMP Model August 1997

. o:\3680n.wpt1W1397

43 I

1*

BrC l

I Figure 41 Base Noding Scheme Used for the AP600 Fluid Nodes and Flow Links APM0_NOTRUMP Model August 1997 a\3680n.wi flb-081397

51-4 5.0 LONG TERM COOLING (LTC) ANALYSES METilODOLOGY To confirm the successful amergency core cooling system (ECCS) perfonnance of the AP600 plant during the long term cooling (LTC) phase of postulated LOCA events, window rnode

[

calculations are perfonned as described in References 1 and 2. The windows selected for the AP600 are at limiting times during LTC as judged by the prevailing core decay power, sump level, water temperature, and other conditions. A spectrum of LOCA break enes is l

provided, and the stipulation of conservative assumptions provides confidence in the  ;

capability of the plant. In particular, the long term core cooling analyses in AP600 SSAR l subsection 15.6.5Ac are performed in comphance with the conservatisms outlined in l

10 CFR 50 Appendix K.

5.1 DESCRIPTION

OF T11E ECOBRA/ TRAC NODING FOR Tile AP600 LONG-TERM COOLING ANALYSIS  :

f.

The WCOBRA/ TRAC vessel noding used for the long term cooling analyses of the AP600 is f simplified from those used for the AP600 and cc,nventional three and four loop plant large 4 break LOCA analysis. In a large break analysis, the AP600 is modeled from the time of the break for a period of up to 120 seconds. After this time, the core is fully quenched and the analysis of the core can be concluded. In LTC analysis, the ob}ective is to show that the passive safety systems are adequate in the long term to maintain core recovery and that boron precipitation is not a problem. It may be necessary to consider times days after the break to show this. In order to carry out a calculation over such long periods of time,it is necessary to make simplifications to vessel noding to reduce ecmputation time to a practical amount.

The number of sections in the vessel has been reduced, ed the number of channels within each section has also been reduced. This results in a corresponding reduction in the number of cross flow gaps. The number of sections, channels, and gaps in the reactor vessel is reduced from [ ]"# respectively, in Section 3 to [ ]*# in the LTC noding scheme. The number of axial levels in each section is reduced; the total number of levels in the vessel is reduced from [ l'# Figure 51 shows the elevation of the vessel for LTC analysis. The section boundary heights are relative to the inside of the bottom of the ves3cl. Figure 5-2 shows plan views of the vessel sections. Values within squares are channel numbers and values within circles are gap numbers. ECOBRA/ TRAC assumes that a flow path exists between vertically connected channels, unless otherwise specified in the input. Transverse flow between :hannels in the sanie section only exists if they are specified as connected by gaps.

The volume, axial flow area, and wetted perimeter of each channel is specified in the code input. There is also the capability to vary these quantities within a channel; for example, in Long Term Coohng (LTC) Analyses Methodology August 1997 c:\3680n.wpl:u41M7

l 53 Channel 10, representing the core, the axial flow area at the top of the core is lower than .

within the core, becaure of the flow obstruction caused by the upper core plate. ,

For the LTC analysis, the cold legs and horizontal portions of the hot legs are also represented by vessel channels; whereas in the large break analysis, all of the loops up to the vessel wall are represented by onedimensional components. In long term cooling there is potential for significant counter-current flow in the horizontal portion of the hot and cold legs. The drift flux model in WCOBRA/ TRAC used for one-dimensional components is not adequate for this type of flow; thus,it is necessary to use vessel channels, which treat the liquid and vapor as t.eparate phases permitting interphase slip. The loop one-dimensional components begin at the point where the loop elevation begins to rir.e for the hot legs and at the reactor coolant pump (RCP) outlet for the cold legs. The hot and cold legs are modeled in vessel Section 4, which is described later -

Vessel Section 1: Lower Head, Lower Plenum, and Bottom Nonle Regions a,c Vessel Section 2: Core Active Fuel Region -

a,c Long Term Cooling (LTC) Analyses Methodology Augusi lm -

on%scawpHbalm -

)


,----a-.

1 t

l I

l 53  !

t a,C T 1

r f

l t

Venel Section 3: Counter Current Flow Region and Lower Portion of Upper Plenum [

A,C l ,

i 1

l  ;

5 i

l l

i .

i r

I  !

I i

I 1  ;

' Vessel Section 4:- Loop Region ,

t A,C L- '

i i

i L

i-Long-Term Cooling (LTC) Analyses Methodology August 1997 o:\3680n.wpf.lb 081397

i 54 .

-w unne r s,c .:

.:I i

y t

-_ .t Vessel Section 5: Lower Portion of Upper Head 6nd Top of Downcomer ,

_ +

A,c ,

r h

Vessel Section 6: Top Portion of Upper. Head acr ,

1 AP600 Core Power- .

- a,e 1 i

i Long Term Cooling (LTC) Analyses Methodoiogy Augmt 1997 -1 o;\%80n.wyL1W1397 1

9 q,gp-ww--- -p-se,w;-y.ga9-.s,9 m,yA . .*,=4 7- .a5%.-> = ,,,p., yg .y gq,-w,wwys-. --+weey., pe ,,,.cv--, ,-.w--.gewww , y y-e ,-eew y--y-

. . _ . . . - ... ._ _ ._. _ _ ..__~_ _ __________-___._ .. _ _ - _ _ _

55

~

a,c o

Modeling of Loop Components ,

a,c I

la c'

l

~~

L Long Term Cooling (LTC) Analyses Methodology Augu,i3997 oA3680n wpf.lb-08:397

i 5-6

~

5.2 COMPUTATION OF BOUNDARY CONDITIONS FOR THE AP600 o EMERGENCY CORE COOLING SYSTEM HCOBRA/ TRAC ANALYSIS ,

WINDOWS .

Large and small break LOCA events are analyzed in the short term using computer

, codes specifically designed for each break category. Large break LOCA events (SSAR submetion 15.6.5.4A) are analyzed by applying the ECOBRA/ TRAC best estimate methodology to the AP600 to analyze the core response witil total fuel rod quench is predicted. The small break LOCA events of <1.0 ft.2 in area (SSAR subsection 15.6.5.4B) are analyzed, using a NOTRUMP version specifically created and validated for AP600, to perform an Appendix K analysis until the steady, continuous injection of water from the IRWST is established. The time of completion of the short term ECCS analyses provides information needed to establish the boundary conditions for the LTC window mede analyses.

5,2.1 IRW5T Draindown and Core Bolloff Calculations to Establish Mass / Energy Releases The containment rnass and energy releases for the short term analysis of an SSAR LOCA transient are supplied to HGOTHIC (Reference 3). In addition, the mass and energy releases during the IRWST injection period must also be determined. To accomplish this, first the drain rate of the IRWST is computed based on the minimum initial inventory and the tank ,

condition at the initiation of IRWST injection.

a,c e

A NOTRUMP model of the IRWST, and the passive safety system piping cormecting it to the reactor vessel, is used to compute the draining of the IRWST during a double-ended DVI line break. The method is a simplified application of the NOTRUMP modeling which has been qualified for the AP600 in the code validation effort; [

Long Tenn Cooling (LTC) Analyses Methodology Auset 1997 on3680nwpf Ib 081397

f 5J  ;

- I

- c A,C t

i I

i I

f f

i I

L l

.- +

1 i

1 i

i i

I

'I bg Tem Coohng (LTC) Analyres Methodology' - August 1997 0A3bKhwpf:1b441397

  • -U-.,i,->..._,,,,,,,

58

~

]" '

5.2.2 HGOTIIIC Containment Pressure Computation Removal of decay heat from the AP600 in the long term occurs via the condensation of steam on the inside of the containment shell The AP600 is equipped with gutters to return condensate formed on the containment shell as a result of heat transfer to the emironment and back irto the IRWST.

The AP600 SSAR, subsection 15.6.5.4C, analysis of post LOCA LTC does not credit condensate return into the IRWST, except for one sensitivity large break LOCA case. When the gutter retum is presumed, condensate returning to the IRWST maintains the water level therein to some extent and extends the IRWST drain period. The increase in the hydrostatic head from the retumed condensate increases the rate of IRWST injection into the reactor vessel through the DVI lines at any given time during the IRWST drain period. Furthermore, when the gutters are assumed to be effective in retutaing condensate to the IRWST, injection from the containment sump with its lower liquid head is delayed by several hours during a LOCA LTC transient. The " gutters unavailable" scenario is the more limiting case, and it was the scenario simulated in the Oregon State University LTC tests (Reference 4).

For the SSAR LTC analysis, the ECOURA/ TRAC calculation of ECCS performance is interfaced with the EGOTHIC prediction of AP600 containment response during postulated LOCA events. EGOTHIC is a well benclunarked, state-of the-art containment analysis computer code that is suited to the AP600 passive systems application, in the SSAR LTC analysis methodology, a EGOTHIC analysis is performed using the mass / energy releases defined as indicated above. This provides boundary condition information to the ECOBRA/ TRAC long term ECCS perforrnance analysis window mode calculations such as containment pressure, sump levels in the various containment compartments, and the liquid temperatures within those compartments. EGOTHIC is executed from time zero of the LOCA event using mass / energy releases, as indicated in Figure 5-8 for the small break LOCA cases, to generate the subject information for use in WCOBRA/ TRAC. The two 1 computer codes are interfaced as shown in Figure 5-8 to accomplish the analysis of breaks postulated to occur in AP600 piping.

EGOTHIC is applied in such a manner that it provides a conservative boundary condition for the ECOBRA/ TRAC computation. The noding of the hunped parameter AP600 '

EGOTHIC containment evaluation model is applied to compute not only the containment pressure transient but also the filling of the sump with liquid. The SSAR subsection 15.6.5C l

LTC ECCS performance analysis use of EGOTHIC involves only containment phenomena for I which EGOTHIC is already validated; the code version employed is the one used for the Long Term Coohng (LIC) Analyses Methodology August 1997 o:\3680n wpf.It@81397

-. _ _ _ _ __ - _ _ - - _ _ _ _ _ . _ _ _ - _ - - _ _ - _ . _ _ - ~ - .- - _ - - _ _ _ _ _ . _ _ - _ _ . _ _ - _ . . . - - . _ .

_ 5-9

. AP600 S5AR Section 6.2 analyses, llowever, in contrast with the AP600 containment integrity analysis, no penalties in heat transfer or in mixing / stratification modeling are

. included for titis application. The initial and boundary conditions for WGOTHIC are conservatively established as follows to minimize the computed pressure in a manner comparable with that of other 10 CFR 50, Appendix K, analyses:

s a,C I

a i

Long Term Cooling (LTC) Analyses Methodology August 1997 c:\3680n.wpf:1W1397

5 10 ja.c 5.3 CONSIDERATIONS IN LONG-TERM COOLING EMERGENCY CORE COOLING SYSTEM PERFORMANCE CALCULATIONS The ECOBRA/ TRAC nodalization of the AP600 is consistent with the modeling of the OSU Test Facility presented in the I.TC validation report (Reference 1). In particular, the RCS hot legs and cold legs are modeled using the COBRA VESSEL component channels to make use of its two-fluid, three-field capability. A simplified reactor vessel noding that is consistent with that of Reference I is employed. The PXS and RCS loops are also modeled consistent with the Reference 1 test simulations.

Initial conditions are specified consistent with the input boundary conditions that were established in the EGOTHIC analysis. Among the conservatisms imposed for compliance with 10 CFR 50 Appendix K are the following:

ANS-1971 standard decay heat with +20 percent uncertainty Use of the locked rotor reactor coolant pump K factor Computation and use of a low containment pressure Also, maximum design resistances for the DVI lines and ADS Stage 4 flowpaths are input to ECODRA/ TRAC for LTC window mode calculations.

The cases presented in the SS AR address the spectrum of possible LOCA break sizes and the issues of adverse nonsafety related system operation interacnons, potential passive failure (s) in the long-term that degrade the available sump liquid head, and identified Draft Safety Evaluation Report (DSER) open items. Reference 2 provides further information about the cases chosen for the SSAR LTC analysis.

L% JE BREAK LOCA EVENIS In sulcsection 15.6.5.4C of the AP600 SSAR, Revision 13, results of three ECOBRA/ TRAC -

analyses are reported. As discussed in the SSAR, the extended large break LOCA calculation of CMT injection that is presented is bounding for the initiation of IRWST injection. The two window mode analysis results presented for the large break LOCA (SSAR subsections

_15.6.5.4C.3.2 and 3) are for the IRWST injection time period; ,_

a,C Long-Term Cooling (LTC) Analyses Methodology August 1997 c:\3680rtwpf.1M81397

5 11 '

% k a,C I

i i

SUMMARY

To establish that a margin comparable to that exhibited by current generation PWRs exists in the post LOCA LTC performance of the AP600, SSAR subsection 15.6.5.4C prewnts a spectrum of window mode methodology analyses. These windows are performed with the Long Term Cooling (LTC) Analyses Methodology August 1997 o,\3680n.wpElb-081397

5 12 ECOURA/ TRAC computer code using a nodalization which has been validated by the simulation of pertinent OSU facility tests. Among the many conservatisms applied are the ,

use of 10 CFR 50, Appendix K, decay heat, use of design maximum flow path resistances, ,

definition of boundary conditions by a conservative WGOTHIC containment simulation, and identification of early timing of occurrence for the minimum hydraulic head conditions. The LTC calculations presented in subsection 15.6.5.4C of the AP600 SSAR show that the 10 CFR 50.46 requirement for long term core decay heat removalis met because the core remains covered, and an adequate flushing flow exists to prevent boron precipitation on the fuel rods.

5.4 REFERENCES

1. Garner, D. C., et al., ".WCOURA/ TRAC Long Term Cooling Final Wlidation Report,"

WCAP 14776, November 1996 (Proprietary).

2. Garner, D. C., et, al., "AP600 Long Term Core Cooling Summary Report,"

WCAP 14857, March 1997 (Non Proprietary).

3. Forgie, A., et al., "EGOTHIC Applicadon to AP600," WCAP-14407, September 1996.
4. Andreychek, T. S., et al., "AP600 Low Pressure Integral Systems Test at Oregon State University Test Analysis Report," WCAP 14292, Revision 1, September 1995.

Long Term Cooling (LTC) Analyses Methodology August 19n o:\w0itwp61t>081397 a-.--- - - ----v - -

5 13 1*

l a,c l.

)

I t 1 I

l l

l l

l t

i

+

4 Figure 5-1 Elevation of the Vessel for LTC Analysis Long-Term Cooling (LTC) Analyses Methodology August 1997 0:\A9twpf Ib091397

5 14 r

I i

i

+

i' r

+

l

- - a,c j l'

T t

i h

t-i t

1 l

t I

I l

i I

l ,

i I

4 L

i i

i I

..{

Figure 5 2 coarse Noding Plan View (Sheet 1 of 6) ,

~

Lung-Tenn Cooling (LTC) Analyses Methodology Auswt 1997 l o:\3680n.wpf.1N21397

. . , . . - . . . . - - _ , ~ . - . . - . . . . - . . _ _ . , . - . . , . .

5 15 h

~

~ a,c j

i Figure 5-2 Coarse Noding Plan View (Sheet 2 of 6)

Long Te.m Cooling (LTC) Analyses Methodology August 1997 c:\3680n wpf.lM*1397

5 16

~

~ a,C Figure 5 2 Coarse Noding Plan View (Sheet 3 of 6)

Long-Term Caeling (LTC) Analyses Methodology August 1997 oA3610n.wbM1397

4 5-17

. .t 4-d 1

a,c 1

9 3

i L

3 5

r.

i-i i

t o

i

+

s 5

a 4

d t- -.

1~

i 4

5 h

Figure 5-2 Coarse Noding Plan View (Sheet 4 of 6) i Eng-Term Cooling (LTC) Analyses Methodology August 1997 c:\3680n.wphlb 081397 a

d

-w~ - - -

w s. , - n ,. - . - . , --,..e,.- ,,,,- em- . . e , e ----n-,, -

.- . . - . . . . - -. . . - . . - - . . . - , . . - . . . - . . . . ~ - . - . . . . . . . . . . ~ . . - . _ . - . - . .

I

' 5 . ]

4:

I.

4 e $

1  !

.a

..s

i e

8 I -

- 8,C j 1-1  ;

. i s

s e

l' I,

t 4.

t '

i b

i I

x. -

Figure 5 2. Coarse Noding Plan View (Sheet 5 of 6)-

Long-Term Cooling (LTC) Analyses Methodology August 1997 o ' 3680n.wpf:1b-081397

1 5 19

. i f

i A,C I

t i

i l

i 1

l Figure 5-2 Coarse Noding Plan View (Sheet 6 of 6)

Long-Term Cooling (LTC) Analyses Methodology . August 1997 o:\3680rtwpf:1b-081397

} S- j

-i

5-20 A,C Figure 5-3 Ccid Leg Modeling Long-Term Cooling (LTC) Analyses Methodology August 1997 o:N 3680n.wpf:lb-081397

5-21 A,C Figure 5-4 Hot Leg Modeling Long-Term Cooling (LTC) Analyses Methodology August 1997 cA3650n.wpf:1b-081397

l 5-22

-l 4

o l

~

~

a,c [

l 1

i m

. Figure 5-5 HCOBRA/ TRAC Loop Model for DEDVI Break LTC Analysis Long-Term Cooling (LTC) Analyses Methodology August 1997 c:\3680n.wpf:1M81397 4

,- _ u.-,4.m., , . ,, , -

c.,_-.... . . . - ~.e

5 23

- a,c 1

1 1

Figure 5-6 Small Break LOCA IRWST Drain Rate Calculation Long Term Cooling (LTC) Analyses Methodology August 1997 c:\3680n.wpf;1M81397

5-24 -

-I ac a

f i

Figure 5-7 Small Break LOCA IRWST Drain Boiloff Calculation

~

Long-Term Cooling (LTC) Analyses Methodology August 1997

- o:\3680n.wpf:1b 081397

~. . . . . ~ . . . . - . -~- . . . - _ . - . _ . _ . . . - . . . - . . - .. .. . . . - . . . . . . . - - . . - -

53 )

~

a,c c

t i

P i

i i

i P

4 T

Figure 5-8 Small-Break LOCA LTC Calculation Long-Term Cooling (LTC) Analyses Methouology August 1997 o:\3680n.wpf:1W1397 I

l

5-26 4

C ess-y g atrsauna N /

m.  !

I- u 1 I l e,, ,,

I invst i

wr V nv mi".c -

JL JC E--

= vm .

es StS ACCU.U* 4 'i

- cvc

.... . urm ,. .

< w ..

../

W*

.c .c

,, m... ,,.

,. - *. j a' '..**

t 8 . ,. .

. - _y

  • . .; s s .* s. . .

ss.

. . . . .. ^* * *- -

e ne.,s t.a. . , , . .. .

.. = . . .. .. .. .. . ,.

Figure 5-9 Simpli6ed AP600 Internal Containment Flow Network Long-Term Cooling (LTC) Analyses Methodology August 1997 )

o:\3680rtwpf:1b-081397

6-1 6.0 TRANSIENT MASS DISTRIBUTION (TMD) CODE FOR AP600

., SUBCOMPARTMENT MODEL The Transient Mass Distribution (TMD) code (References 1 and 2) is a mathematical model developed by Westinghouse to simulate the pressure transients subsequent to a LOCA or a main steamline break (MSLB) inside the containment. This code is utilized to calculate the pressure transient for a very short time period during the irdtial blowdown of the transient.

The peak pressure differences on various structures occur within the first few seconds of these transients.

The pressure and temperature transients inside the containment are calculated for the postulated breaks using the TMD code. In order to model the various compartments of a containment, a control volume technique is used to spatially represent these regions. The conservation of mass, momentum, energy and the equation of state are solved within each control volume as a function of time and space. The model includes moisture entrainment effects in the momentum and energy equations. The peak pressures in each element, and the peak differential pressures across structures within the containment, are determined from

-- these calculations. The pressure differentials occur because of the propagation of the pressure disturbance around the containment subsequent to the pipe break. The TMD code has been reviewed by the NRC and approved for use in subcompartment differential pressure analyses.

SSAR Section 6.2.1.2 prmides the maximum differential pressure results for postulated breaks in the AP600 containment subcompartments. The break sizes and locations are defined by the leak before break criteria described in SSAR Section 3.6.

The TMD model of the AP600 subcompartments is represented by [ l separate control volumes with a flow path network that is designated by " hoop", " radial", and " axial" flow paths. The designation of hoop, radial, or axial is of no physical importance for subcompartment analyses (it simply facilitates the ability to model a maximum of three flow paths from one control volume). The specific geometric and friction factor data for the " hoop" flow paths is shown in Table 6-1 (sheets 1 through 4). The data for the " radial" flow paths is

. shown in Table 6-2 (sheets 1 through 4) and the data for the " axial" paths is shmyn Table 6-3 (sheets 1 through 4).

The free volume of each of the [ ]* c nodes, and the respective initial conditions, is shown in Table 6-4 (sheets 1 through 3).

The control volume and flow path network for the [ ] 'C TMD model is shown in Figure 6-1 (sheets 1 through 12)

IMD Code for AP600 Subcompartment Model August 1997 oA3680n-1.wpf:lt>480797 2

6-2 The following pipmg la postulated to break:

9 4-inch SG Blowdown Line

  • 4-inch Pressurizer Spray Line

=

3-inch RCS branch lines from the Hot Leg or Cold Leg

. 1.0-ft2 MSLB These breaks can be postulated to occur in the following AP600 compartments:

Steam Generator Compartment Pressurizer Compartment Pressurizer Valve Room Chemical and Volume Control System (CVS) Room CVS Pipe Tunnel

  • Pipe Penetration Area

6.1 REFERENCES

1. Bordelon, F. M., Colenbrander, H. G. C., WCAP-7548, " Analysis of the Transient Flow Distribution During Blowdown in the Ice Condenser Reactor Containment (TMD Code)," July 1970 (Westinghouse Proprietary)
2. " Ice Condenser Containment Pressure Transient Analysis Methods," WCAP-8077, March 1973 (Westinghouse Proprietary)

TMD Code for AP600 Subcompartment Model August 1997 o:\3680n-1.wpf:1b.080797

6-3 Table 6-1 (Sheet 1 of 4)

IiOOP FLOW PATil DATA Inertial  ;

Length Ilydr. D Flow A Equi. L Element K Factor F Factor (ft.) (ft.) (sq. ft.) (ft.) A1A a,c TMD Code for AP600 Subcompartment Model August 1997 o:\3630n-1.wpf:1t>-080797

. . . . . . . . _ . _ . ~ . _ . . . _ . . _ . . . _ _ _ . _ . _ _ . . . . . _

6-4 i Table 6-1 (Sheet 2 of 4)' 1 HOOP FLOW PA'!H DATA - -

Inertial I Length Hydr. D Flow A EqrL L  !

Element - K FacUr F Factor (ft.) (it.) _ - (sq. h.) (h.) . AfA '

~

~

a,c j t

1 W

i TMD Code for AP600 Subcompartment Model August 1997 o:\3680n-1.wpf:lt>480797 l

I 65  :

)

Table 6-1 (Sheet 3 of 4)

HOOP FLOW Pani DATA '

Inertial Length . Hydr. D Flow A EquL L E Element - K-Factor - F Factor- (ftJ (ft.) (sq. A.) (R.) AIA a4 r

I l

' TMD Code for AP600 Subcompartment Model August 1997 o:\3680n-1.wpf:1b41397

' 6-6:

Table 6-1 (Sheet 4 of 4)

HOOP FLOW PATH DATA. -

5

_ inertla!  !

Length Hydr. D - Flow A ' Equi. L Eleanent : K Factor F. Factor (ft.) . (dt.) (sq. ft.) (tt.) AJA

~~- ~

a,c i:

W 4

(

4 k'

4 i

1 i:

i:

1 t -.

i~

i i ;.

J ..

j s

i

' TMD Code for AP600 Subcompartment Model August 1997 i- o
\3680n-1.wpf 1b-080797

6-7 i-Table 6 2 (Sheet 1 of 4)

RADIAL FLOW PATH DATA Inertial Length Hydr. D Flow A EquL L Element K Factor F Factor (ft.) (ft.) (sq. ft.) (ft.) AIA

~

~

a,c TMD Code for AP600 Subcompartment Model August 1997 o:\3680n-1.wpf:1b-080797

6-8 Table 6-2 (Sheet 2 of 4)

RADIAL FLOW PATH DATA *-

x Inertial (Length) - Hydr. D Flow A EquL L

- Element ' K Factor F Factor (A.) (ft.) (eq. ft.) (it.) AIA

~

~

4,C E

H i

m _

l TMD Code for AP600 Subcompa ent Model August 1997 4-

- o:\3680n-1.wpf:1b-080797

6-9 l 1

Table 6-2 (Sheet 3 of 4)

4 RADIAL FLOW PATH DATA f

. Inertial-Length - Hydr. D Flow A - Equi. L j ~ Element X Factor F Factor- (ft.) (ft.) (sq. ft.)

, (ft.) AIA gg i

4 i

i 4

I' P

1 4

1 1MD Code for AP600 Subcompartment Model August 1997 o:\3o80n.1.wpf;1b-080797

. . _.... _ . . _ ..._._ = _ - - - - . - - - . - . - - - - - .

6-10 l Table 6-2 (Sheet 4 of 4)

RADIAL FLOW PA'IH DATA -

Inertial Length Hydr. D Flow A EquL L Element K Factor - F Factor . (ft.) (it.) (eq. A.) - (A.) AIA '

~

a,c r

M k

J TMD Code for AP600 Subcompartment Model August 1997 c:\3680n-1.wpf:1b 080797

6-11 Table 6-3 (Sheet 1 of 4) >

AXIAL FLOW PATH DATA Inertial-Length Hydr.D Flow A Equi.L Element X Factor - F Factor '(it.) (ft.) (sq. ft.) . (ft.) AIA g,e t f

h 1

i TMD Code for AP600 Subcompartment Model August 1997 -

o:\3680n 1.wpf:1b 080797 j.

6 Table 6-3 (Sheet 2 of 4) - -

AXIAL FLOW PATH DATA .

Inctial Length- Hydr. D Flow A EquL L Element X Factor F Factor (it.) (ft.) (ft.) - AIA (s1. ft.)

.o g,c l-TMD Code for AP600 Subcompartment Model August 1997 i o:\3680n 1.wpf:1b-080797

. 6-13 Table 6-3 (Sheet 3 of 4)

AXIAL FLOW PATH DATA Inertial l Length Ilydr.D Flow A EquL L Element K Factor F-Factor (ft.) (ft.) (sq. ft.) (ft.) AIA

~

~

a,c l

TMD Code for AP600 Subcompartment Model August 1997 o:\3680n-1.wpf lb-080797

6-14 Table 6-3 (Sheet 4 of 4) '

AXIAL FLOW Pani DATA --

5 Inertial Length Hydr. D Flow A . Equi. L Element ' K Factor ~ F-Factor (ft.) (ft.) ' (sq. ft.) (ft.) AfA

~-

=_

g,c i

1 4

l j

-l l

- TMD Code for AP600 Subcompartment Model Augmt 1997 o:\3680n-1,wpf:1b-080797

6 15' Table 6-4 (Sheet 1 of 3)

TMD MODEL NODE INFORMATION

- Volume Steam Pressure Air Pressure Temperatne Element Number (cu. ft.) (psig) (psia)- (F)

~

~

n,C i

I I

1 1

i t

i

.i k-TMD Code for AP600 Subcompartment Model August 1997

- o \3680n4.wph1t> 080797 F

I

616 ~

Table 6-4 (Sheet 2 of 3) .

1

'IMD MODEL NODE INFORMNT10N .. l

- Volume Steam Pressure Air Pressure Temperature (cu. ft.) ; ]

Element Number - (psis) '(psia)- (F)- 1

~

~

a,c f

i i

i j

TMD Code for AP600 Subcompartment Model August 1997 o;\%80n-1.wpf:1b-080797

6-17 Table 6-4 (Sheet 3 of 3) 4 TMD MODEL NODE INFORMATION Volume Steam Pressure Air Pressure Temperature Element Nr s'ber (cu. ft.) (psla) (psla) (F)

~

~

a,c i

n TMD Code for AP600 Subcompartment Model August 1997 o:\3680n-1.wptit>-080797

6-18 ac r

1 Figure 6-1 TMD Model Noding Diagram 6 f of 12)

TMD Code for AP600 Subcompartment Model August 1997 c:\3690n-1.wpf;1b-080797

6 19 1 .

l h>C t

l l

Figure 61 TMD Model Noding Diagram (Sheet 2 of 12)

TMD Code for AP600 Subcompartment Model August 1997 c:\.VADn 1.wpf.1M*0797

6-20 a,c Figure 61 TMD Model Noding DiaBram (Sheet 3 of 12) u1D Code for AP600 Subcompartment Model Augmt 1997 o.\3680n 1.wpf:114W97

6 21 A,C w

Figure 6-1 TMD Model Noding Diagram (Sheet 4 of 12)

TMD Code for AP600 Subcompartment Model August 1997 c:\3680n-1.wpf.lb4LVI?97

6 22 I

i a,C I

I Figure 61 TMD Model Noding Diagram (Sheet 5 of 12)

TMD Code for AP600 Subcompartment Model August 1997 c:\%h-1 wpf:1b4As0797

6 23 l

a,C Figure 6-1 TMD Model Noding Diagram (Sheet 6 of 12)

TMD Code for AP600 Subcompartment Model August 1997 o:\3680n-1.wyf:1t@797

6 24 A,C Figure 6-1 TMD Model Noding Diagram (Sheet 7 of 12)

Th1D Code for AP600 Subcompartment hiodel August 1997 c:\M60:v1.wpf.It>450797

6-25 a,c i

l l

Figure 61 TMD Model Noding Diagram (Sheet 8 of 12)

TMD Code for Al'600 Subcompartment Model August 1997 c:\3eA% 1.wpf Ib460797

6 26 A,C l

l Figure 61 TMD Model Noding Diagram (Sheet 9 of 12)

TMD Code for AP600 Subcompartment Model August 1997 c:\3680n 1.wpf:1t>4180797

6-27 8,C Figure 6-1 TMD Model Noding Diagram (Sheet 10 of 12)

TMD Code for AP600 Sukompartment Model August 1997 o:\3680n-1.wpf;1b-080M

6 28 -

A,C l

Figure 61 TMD Model Noding Diagram (Sheet 11 of 12)

IMD Code for AP600 Subcompartment Model - August 1997 o:\3680na.wpf;1M180797

6 29 a,C l

l i

Figure 61 TMD Model Noding Diagram (Sheet 12 of 12)

ThiD Code for AP600 Subcompartment Model August 1997 o \3680n 1wpHM97

. . . . _ _