ML20216J379

From kanterella
Jump to navigation Jump to search
Rev 11 to AP600 PRA Rept
ML20216J379
Person / Time
Site: 05200003
Issue date: 03/10/1998
From: Haag C, Mcintyre B
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20216J351 List:
References
NUDOCS 9803230430
Download: ML20216J379 (550)


Text

{{#Wiki_filter:- A AP600 DOCUMENT COVER SHEET

 #                                                                                                  TDC:                              IDS: 1                S Form 58202G(5/94)(t:\xxxx.wpf:tx)

AP600 CENTRAL FILE USE ONLY:

    /      . 0058.FRM                                                                                          RFS#:                      RFS ITEM #:

V ' AP600 DOCUMENT NO. REVISION NO. ASSIGNED TO GWGLO22 11 Page 1 of 2 ALTERNATE DOCUMENT NUMBER: WORK BREAKDOWN #: 3.2.4 DESIGN AGENT ORGANIZATION: Westinghouse TITLE: AP600 Probabilistic Risk Assessment ATTACHMENTS: DCP #/REV. INCORPORATED IN THIS DOCUMENT REVISION: CALCULATION / ANALYSIS

REFERENCE:

ELECTRONIC FILENAME ELECTRONIC FILE FORMAT ELECTRONIC FILE DESCRIPTION (C) WESTINGHOUSE ELECTRIC COMPANY 1998 0 WESTINGHOUSE PROPRIETARY CLASS 2 This document contains information proprietary to Westinghouse Electric Company, a division of CBS Cc poration; it is submitted in confidence and is to be used solely for the purpose for which it is fumished and retumed upon request. This document and such informatP.a is not to be reproduced, transmitted, disclosed or used otherwise in whole or in part without prior written authortzation of Westinghouse Electric Company, subject to the legends contained hereof. O WESTINGHOUSE PRCPRIETARY CLASS 2C This document is the property of and contains Proprietary Information owned oy Westinghouse Electric Company and/or its subcontractors and suppliers. It is transmitted to you in confidence and trust, and you agree to treat this document in strict accordance with the terms and conditions of the agreement u'vjer which it was provided to you.

              @ WESTINGHOUSE CLASS 3 (NON PROPRIETARY)

COMPLETE 1 IF WORK PERFORMED UNDER DESIGN CERTIFICATION gg COMPLETE 2 IF WORK PERFORMED UNDER FOAKE. 1 O DOE DESIGN CERTIFICATION PROGRAM - GOVERNMENT LIMITED RIGHTS STATEMENT [See page 2) Copyright statement: A license is reserved to the U.S. Govemment under contract DE AC03-90SF18495.

              @ DOE CONTRACT DELIVERABLES (DELIVERED DATA)

Subject to specified exceptions, disclosure of this data is restricted until September 30,1995 or Design Certification under DOE contract DE-ACO3-90SFtB495, whichever is later. EPRI CONFIDENTIAL: NOTICE: 1E203 4 5 CATEGORY: A N B C D E F 2 O ARC FOAKE PROGRAM - ARC LIMITED RIGHTS STATEMENT ISee page 2) Copyright statement: A license is reserved to the U.S. Govemment under contract DE-FCO2-NE34267 and subcontract ARC-93-3-SC-001. O ARC CONTRACT DELIVERABLES (CONTRACT DATA) Subject to specsfied exceptions, disclosure of this data is restr6cted under ARC Subcontract ARC-93 3-SC-001. ORIGINATOR SIGNATUR DA E ,

                  **Q AP600 RESPONSIBLE MAhAGER                           SIG
                                                                           <PY                     Jf98                                                             .

URI: ' APPROVAL DATE B. A. McIntyre w y y gf Ammal of the responsible ir.sr.i.ger signehes that document is complete, all reqGred reviews are complete, electronse file is attached and document is ro6 eased for use. 9003230430 990316 PDR ADOCK 05200003 - E PDR ,

                                                 \

AP600 DOCUMENT COVER SHEET Page 2 Form 58202G(5/94) - LIMITED RIGHTS STATEMENTS DOE GOVERNMENT UMITED RIGHTS STATEMENT (A) These data are submitted with hmited rights under govemrnent contract No. DE AC03-90SF18495. These data may be reproduced and used by the govemment with the express hmitat on that they will not, without wntten permission of the contractor, be used for purposes of manufacturer nor disclosed outside the govemment; except that the govemment may disclose these data outside the govemment for the following purposes, if any, provided that the govemment makes such disclosure subject to prohibition against further use and disdosure: (1) This ' Proprietary Data' may be disclosed for evaluation purposes under the restrictions above. (11) The 'Propnetary Data" may be disdosed to the Electnc Power Research Institute (EPRI), electric utility representatives and their direct consultants, exduding direct commercial competitors, and the DOE National Laboratones under the prohibitions and restrictions above. (B) This notice shall be marked on any reproduction of these data, in whole or in part. ARC UMITED RIGHTS STATEMENT: This proprietary data, fumished under Subcontract Number ARC-93-3-SC-001 with ARC may be duphcated and used by the govemment and ARC, subject to the hmitations of Artido H-17.F. of that subcontract, with the express hmitations that the propnetary data may not be disclosed outside the govemment or ARC, or ARC's Class 1 & 3 members or EPRI or be used for purposes of manufacture without prior permission of the Subcontractor, except that further disclosure or use may be made solely for the following purposes: This proprietary data may be disclosed to other than commercial competitors of Subcontractor for evaluation purposes of this subcontract under the restnction Inst the proprietary data be retained in confidence and not be further disdosed, and subject to the terms of a non-disclosure agreement between the Subcontractor and that organization, exduding DOE and its contractors. DEFINITIONS CONTRACT /DEUVERED DATA - Consists of docurnents (e.g. specifications, drawings, reports) which are generated under the DOE or ARC contracts which contain no background proprietary data. EPRI CONFIDENTIALITY / OBLIGATION NOTICES NOTICE 1: The data in this document is subject to no confidentiality obligations. NOTICE 2: The data in this document is proprietary and confidential to Westinghouse Electric Company and/or its Contractors. It is forwarded to recipient under an obligation of Confidence and Trust for hmited purposes only. Any use, disdosure to unauthorized persons, or copying of this document or parts thereof is prohibited except as agreed to in advance by the Electric Power Research Institute (EPRI) and Westinghouse Electnc Company. Recipient of this data has a duty to inquire of EPRI and/or Westinghouse as to the uses of the information contained herein that are permitted. NOTICE 3: The data in this document is proprietary and confidential to Westinghouse Company and/or its Contractors. It is forwarded to recipient under an obligation of Confidence and Trust for use only in evaluation tasks specifically authorized by the Electnc Pcwer Research Institute (EPRI). Any use, disclosure to unauthorized persons, or copying this document or parts thereof is prohibited except as agreed to in advance by EPRI and Westinghouse Electric Company. Recipient of this data has a duty to inquire of EPRI and/or Westinghouse as to the uses of the information contained herein that are permitted. This document and any copies or excerpts thereof that may have been generated are to be retumed to Westinghouse, directly or through EPRI, when requested to do so. J NOTICE 4: The data in this document is proprietary and confidential to Westinghouse Electnc Company and/or its Contractors. ft is being revealed in confidence and trust only to Employees of EPRI and to certain contractors of EPRI for hmited evaluation tasks authonzed by EPRI. Any use, disclosure to unauthorized persons, or copying of this document or parts thereof is prohibited. This Document and any copies or ' excerpts thereof that may have been generated are to be retumed to Westinghouse, directly or through EPRI, when requested to do so. NOTICE 5: The data in this document is propnetary and confidential to Westinghouse Electric Company and/or its Contractors. Access to this data is given in Confidence and Trust only at Westinghouse fadhties for hmited evaluation tasks assigned by EPRI. Any use, disclosure to unauthonzed persons, or copying of this document or parts thereof is prohibited. Neither this document nor any excerpts therefrom are to be removed from Westinghouse facilities. EPRI CONFIDENTIALITY / OBLIGATION CATEGORIES CATEGORY "A'-(See Delivered Data) Consists of CONTRACTOR Foreground Data that is contained in an issued reported. CATEGORY T -(See Dehver(d Data) Consists of CONTRACTOR Foreground Data that is not contained in an issued report, except for computer programs. CATEGORY 't"- Consists of CONTRACTOR Background Data except for computer programs. CATEGORY 'D"- Consists of computer programs developed in the course of performing the Work. CATEGORY T- Consists of computer programs developed prior to the Effective Date or after the Effective Date but outside tho scope of the Work. CATEGORY 7*- Consists of administrative plans and administrative reports. l 9'

                                                                                                                                                    )

a=ansm: List of ENectiva Fcges f /N U .. AP600 PRA List of Effective Pages - Volume 1 Page Revision Page Revision Page Revision. Page Revision

1. 8 2-9 8 2-32 7 2-55 7 1-2 8 2-10 7 2-33 7 2-56 7 1-3 8 2-11 7 2-34 7 2-57 7 1 -4 8 2-12 7 2-35 7 2-58 7 1-5 8 2-13 7 2-36 7 2-59 7 1-6 8 2-14 7 2-37 7 2-60 7 1-7 8 2-15 7 2-38 7 2-61 7 1-8 8 2-16 7 2-39 7 2A-1 7 1-9 8 2 17 7 2-40 7 2A-2 7 1-10 8 2-18 7 2-41 7 2A-3 7

(~'3 1-11 8 2-19 7 2-42 7 2A-4 7 z'; m l-12 8 2-20 8 2-43 7 2A-5 7 1-13 8 2-21 7 2-44 7 2A-6 7 1-14 8 2-22 7 2-45 7 2A 7 7 2-23 7 2-46 7 2A-8 7 2-1 7 2-24 7 2-47 7 2A-9 7 2-2 7 2-25 7 2-48 7 2A-10 7 2-3 7 2-26 7 2-49 7 2A-11 7 2-4 7 2-27 7 2-50 7 2A-12 7 2-5 8 2-28 7 2-51 7 2A-13 7 2-6 8 2-29 7 2-52 7 2A-14 7 2-7 8 2-30 7 2-53 7 2A-15 7 2-8 8 2-31 7 2-54 8 2A-16 7

 ,n.

b) ENE Revision: 11 3 Westinghouse L?rJOL March 1998

                                                     }                     oNp0lWWy.llW-loe.wpf:lb

mans j List cf Effectiva Pages O AP600 PRA List of Effective Pages - Volume 1 Page Revision Page Revision Page Revision Page Revision 2A 17 7 2A-38 7 3-10 7 5-1 7 2A-18 7 2A-39 7 3-11 7 5-2 7 2A-19 7 2A-40 7 3-12 7 5-3 7 2A-20 7 2A-41 7 3-13 7 5-4 7 2A-21 7 2A-42 7 3-14 7 5-5 7 2A-22 7 2A-43 7 3-15 7 5-6 7 2A-23 8 2A-44 7 3-16 7 5-7 7 2A-24 7 2A-45 7 5-8 7 2A-25 7 2A-46 7 4-1 7 5-9 7 through 4-147 2A-26 7 2A-47 7 5-10 7 2A-27 7 4A-1 7 5-11 7 2A-28 7 4A-2 7 5-12 7 2A-29 7 3-1 7 4A-3 7 5-13 7 2A-30 7 3-2 7 4A-4 7 5-14 7 2A 31 7 3-3 7 4A-5 7 5-15 7 2A-32 7 3-4 7 4A-6 7 5-16 7 2A-33 7 3-5 7 4A-7 7 5-17 7 2A-34 7 3-6 7 4A-8 7 5-18 7 2A-35 7 3-7 7 4A-9 7 5-19 7 2A-36 7 3-8 9 5-20 7 2A-37 7 3-9 7 5-21 7 9 hla h 998 6 W85tingh0USe oNpolNwaWy.llkra-loe.wpf.lb 2

List of Effectiva Pages

                   )

U AP600 FRA List of Effective Pages - Volume 1 Page Revision Page Revision Page Revision Page Revision 5-22 7 6-8 9 7-17 2 7-38 2 5-23 7 6-9 7 7-18 2 7-39 2 through 6-44 5 24 7 6-45 9 7-19 2 7-40 2 5-25 7 6-46 7 7-20 2 7-41 2 through 6-147 5-26 7 7-21 2 7-42 2 5-27 7 7-1 2 7-22 2 5-28 7 7-2 2 7-23 2 8-1 7 5-29 7 7-3 2 7-24 2 8-2 7 f3 5-30 7 7-4 2 7-25 2 8-3 7 ( 5-31 7 7-5 2 7-26 2 8-4 7 1 5-32 7 7-6 2 7-27 2 8-5 7 5-33 7 7-7 2 7-28 2 8-6 7 5-34 7 78 2 7-29 2 8-7 7 7-9 2 7-30 2 8-8 7 6-1 7 7-10 2 7-31 2 8-9 7 6-2 7 7-11 2 7-32 2 8 10 7 6-3 7 7-12 2 7 33 2 8-11 7 6-4 7 7-13 2 7-34 2 8-12 7 6-5 7 7-14 2 7-35 2 8-13 7 6-6 7 7-15 2 7-36 2 8-14 7 6-7 7 7-16 2 7-37 2 8 15 7 _n

   /*%
  'w./

ENE Revision: 11 Mil 1@ilse WA=6 March 1998 3 oNPOIW\rev i1W-toe wpf:1b

List cf Effective Pages e AP600 PRA List of Effective Pages - Volume 1 Page Revision Page Revision Page Revision Page Revision 8-16 7 9-14 7 10-10 7 11-19 7 8 17 7 9-15 7 10-11 7 11-20 7 8 18 7 9-16 7 10-12 7 11-21 7 8 19 7 9-17 8 10-13 7 11-22 7 8-20 7 9-18 8 11-23 7 8-21 7 9-19 8 11-24 7 8-22 7 9-20 8 11-1 7 11-25 7 8 23 7 9-21 8 11-2 7 11-26 7 8-25 7 9-22 8 11-3 7 11-27 7 9-23 8 11-4 7 11-28 7 9-24 8 11-5 7 11-29 7 9-1 7 9-25 8 11-6 7 11-30 7 9-2 7 9-27 8 11-7 7 11-31 7 9-3 7 11-8 7 11-32 7 9-4 7 11-9 7 11-33 7 9-5 7 10-1 7 11-10 7 11-34 7 9-6 7 10-2 7 11-11 7 11-35 7 9-7 8 10-3 7 11-12 7 11-36 7 9-8 8 10-4 7 11-13 7 11-37 7 9-9 8 10-5 7 11-14 7 11-38 7 9-10 7 10-6 7 11-15 7 11-39 7 9-11 7 10-7 7 11-16 7 11-40 7 9-12 7 10-8 7 11-17 7 11-41 7 9-13 7 10-9 7 11-18 7 11-42 7 l Revision: 11 i March 1998 ENEL.

                                                              ---        W Westinghouse            I c:vpoiwsr v_1:w-loe.wpr.lb                         4 l

I

List of Effective Pages () AP600 PRA List of Effective Pages - Volume 1 Page Revision Page Revislor. Page Revision Page Revision 11-43 7 12 21 7 13-5 2 14-15 2 11-44 7 12 22 8 13-6 2 14-16 2 12-23 8 13-7 2 14-17 3 12-1 7 12-24 8 13-8 2 14-18 2 12-2 7 12-25 7 13-9 2 14-19 2 12-3 7 12-26 7 13-10 2 14-20 2 12-4 7 12-27 7 13-11 2 14-21 2 12-5 7 12-28 7 13-12 2 14-22 2 12-6 7 12-29 7 14-23 2 12-7 7 12-30 7 14 1 2 14-25 2

    /7       12-8       7              12-31     7                14-2     2        14 27    2 L'")     12-9       7              12-32     7                14-3     2        14-29    2 12-10     7               12-33     7                14-4     2        14-31    2 12-11     7               12-34    7                 14-5     2        14-32    2 12-12     7               12-35    7                 14-6     2        14-33    3 12-13     7               12-36    7                 14-7     2        14-34    3 12-14     7               12-37    7                 14-8     2        14-35    3 12-15     7               12-38    7                 14-9     2        14-36    3 12-16     7                                          14-10  2          14-37    3 12-17     7               13-1     2                 14-11  2          14-38    3 12-18     7               13-2     2                 14-12  2          14-39    3 12-19     7               13-3     2                 14-13  2          14-40    3 12-20     7               13-4     2                 14-14  2          14-41    3
    ,y 1

v' ENEL Revision: 11 T Westinghouse ext =b March 1998 5 a:Vro lWa*v.11Wixwpf:Ib

un. ,

      ,                                                                                         l List c'"Wetiva Pages   )

1 O i AP600 PRA i List of Effective Pages - Volume 1 Page Revision Page Revision Page Revision Page Revision 14-42 3 15-11 7 16-6 3 17-21 7 14-43 3 15-12 7 16-7 2 14-44 3 15 13 7 16-8 2 18-1 2 14-45 3 15-14 7 18-2 2 14-47 3 15-15 7 17-1 7 18-3 2 14-49 3 15-16 7 17-2 7 18-4 2 14-51 3 15-17 7 17-3 7 18-5 2 14-53 3 15-18 7 17-4 7 18-6 2 14-55 3 15-19 7 17-5 7 18-7 2 14-57 3 15-20 7 17-6 7 18-8 2 14-59 3 15-21 7 17-7 7 18-9 2 14-61 3 15-22 7 17-8 7 18-10 2 15-23 7 17-9 7 18-11 2 15-1 7 15-24 7 17-10 7 18-12 2 15-2 7 15-25 7 17-11 7 18-13 2 15-3 7 15-27 7 17-12 7 15-4 7 15-29 7 17-13 7 19-1 7 15-5 7 17-14 7 19-2 7 15-6 7 16-1 2 17-15 7 19-3 7 15-7 7 16-2 2 17-16 7 19-4 7 15-8 7 16-3 2 17-17 7 19-5 7 15-9 7 16-4 2 17-18 7 19-6 7 15-10 7 16-5 3 17-19 7 19-7 7 Revision: 11 O March 1998 Wd W Westingh00SS onip0lWrev_1151oe.wpf:Ib 6

List of Effective Pages ,/~ b AP600 PRA List of Effective Pages - Volume 1 Page Revision Page Revision Page Revisica Page Revision 19-8 7 21-23 2 21-46 7 19-9 7 21-1 2 21-24 2 21-47 7 19-10 7 21-2 2 21-25 2 21-48 7 19-11 7 21 3 2 21-26 2 21-49 7 19-12 7 21-4 2 21-27 2 21-50 7 19-13 7 21-5 7 21-28 2 21-51 7 19-14 7 21-6 7 21-29 2 21-52 7 15 7 21-7 3 21-30 2 21-53 7 19-17 7 21-8 3 21-31 2 21-54 7 21-9 2 21-32 2 21-55 7 m 20-1 2 21-10 2 21-33 7 21 56 7 20-2 2 21-11 2 21-34 7 21-57 7 20-3 2 21-12 2 21-35 7 21-58 7 20-4 2 21-13 2 21-36 7 21-59 7 20-5 2 21-14 2 21-37 7 21-61 7 l 20-6 2 21 15 2 21-38 7 21-63 7 , l 20-7 2 21-16 2 21-39 7 20-8 2 21 17 2 21-40 7 22 1 2 l 20-9 2 21 18 2 21-41 7 22-2 2 20-10 2 21 19 2 21-42 7 22-3 2 20-11 2 21-20 2 21-43 7 22-4 2 20-13 2 21 21 2 21-44 7 22-5 2 20-15 2 21 22 2 21-45 7 22-6 2 ENEL Revision: 11 MDM muh March 1998 7 oNp01MWv.llW-tw.wptib l 1

i List of Effectiv2 Pages e AP600 PRA List of Effective Pages Volume 1 Page Revision Page Revision Page Revision Page Revision 22-7 2 22-30 7 22-55 7 23-21 2 22-8 2 22-31 7 22-57 7 23-22 2 22 9 2 22-32 7 23-23 7 22-10 2 22 33 7 23-1 2 23-24 7 22-11 2 22-34 7 23-2 2 23-25 7 22-12 2 22-35 7 23-3 8 23-26 7 22-13 2 22 36 7 23-4 2 23-27 7 22 14 2 22-37 7 23-5 2 23-28 7 22-15 2 22 38 7 23-6 2 23-29 7 22-16 2 22 39 7 23-7 2 23-30 7 22-17 2 22-40 7 23-8 2 23-31 7 22-18 2 22-41 7 23-9 2 23-32 7 22-19 2 22-42 7 23-10 2 23-33 7 22-20 2 22-43 7 23-11 2 23-34 7 22-21 2 22-44 7 23-12 2 23-35 7 22-22 2 22-45 7 23-13 2 23-36 7 22-23 2 22-46 7 23-14 2 23-37 7 22-24 2 22-47 7 23-15 2 23-38 7 22-25 2 22-48 7 23-16 2 23-39 7 22-26 2 2249 7 23-17 2 23-40 7 22-27 2 22-50 7 23-18 2 23-41 7 22-28 2 22-51 7 23-19 2 23-42 7 22-29 7 22-53 7 23-20 2 23-43 7 Revision: 11 O March 1998 o:\ip0lWa\rev.llipra-loe.wpf:Ib 8 hhw 3 Westingh0Use

List of Effectiv2 Pages \_/ AP600 PRA List of Effective Pages - Volume 1 Page Revision Page Revision Page Revision Page Revision 23-45 7 24-22 2 23-47 7 24-23 2 23-48 7 24-24 2 23-49 7 24-25 2 23-50 7 24-26 2 24-27 2 24-1 2 24-28 2 24-2 2 24-29 2 24-3 2 24-30 2 24-4 2 24-31 2 /~N 24-5 2 24-32 2 24-6 2 24-7 2 24-9 2 j l 24-11 2 ' 24-13 2 24-15 2 24-16 2 24-17 2 24-18 2 24-19 2 24 4'0 2 24-21 2 ,.n .

%_/

ENE Revision: 11 T Westinghouse a

                              ' xh                                                   March 1998 9                   oNp0lphev.llWa-loc.wpf:Ib
 =

E3 List of Effective Pcges O AP600 PRA List of Eff'ective Pages - Volume 2 Page Revision Page Revision Page Revision Page Revision 25-1 2 26-1 7 26-21 10 27-12 7 25-2 2 26-2 10 26-22 10 27-13 7 25-3 2 26-3 10 26-23 10 25-4 2 26-4 10 26-24 10 28-1 7 through 28-140 25-5 2 26-5 10 26-25 10 25-6 2 26-6 10 26-26 10 25-7 2 26-7 10 26-27 10 29-1 7 25-8 2 26-8 10 26-28 7 29-2 l7 through 26-232' 25-9 2 26-9 10 29-3 7 25-10 2 26-10 10 27-1 7 29-4 7 25-11 2 26-11 10 27-2 7 29-5 7 25-12 2 26-12 10 27-3 7 29-6 7 25-13 2 26-13 10 27-4 7 29-7 7 25-14 2 26-14 10 27-5 7 29-8 7 25-15 2 26-15 10 27-6 7 29-9 7 25-16 2 26-16 10 27-7 7 29-10 7 25-17 2 26-17 10 27-8 7 29-11 7 25-18 2 26-18 10 27-9 7 29-12 7 25-19 2 26-19 10 27-10 7 29-13 7 26-20 10 27-11 7 29-14 7 O h1a 1998 oNpoIWwv.1151oe.wpt.ib W W Westkigh00S8 10

List of Eft:ctiwa Pages (

-v AP600 PRA List of Effective Pages - Volume 2 Page          Revision Page        Revision      Page    Revision Page    Revision 29-15        7         30A-11      2             31-14   7        32-18   7 29-16        7         30A-12      2             31-15   7        32-19   7 29-17        7         30A-13      2             31-16   7        32-20   10 29 18        7         30A-14      2             31-17   7        32-21   7 29-19        7         30A-15      2                              32-22   7 29-20        7         30A-16      2             32-1    7        32-23   7 29-21        7         30A-17      2             32-2    7        32-24   7 29-22        7         30A-18      2             32-3    7        32-25   7 29-23        7                                   32-4    7        32-26   7 31-1        7             32-5    7        32-27   7 rw                   7         31-2        7             32-6    7        32-28   7 (j.       30-1 through 30-115 31 3        7             32-7    7        32-29   7 30A-1        2         31-4        7             32-8    7        32-30   7 30A 2        2         31-5        7             32-9    7        32-31   7 30A-3        2         31-6        7             32-10   7        32 32   7 30A-4        2         31-7        7             32-11   7        32-33   7 30A-5        2         31-8        7             32-12   7        32-34   7               j l'

30A-6 2 31-9 7 32-13 10 32-35 7 30A-7 2 31-10 7 32-14 7 32-36 7 30A-8 2 31-11 7 32-15 7 32-37 7 30A-9 2 31-12 7 32 16 7 32-38 7 30A-10 2 31-13 7 32-17 7 32-39 7 i

   ~

ENE Revision: 11 UIN8 w= h ' March 1998 11 oVlWVev ilWa-loc =pf Ib

List cf Effectiv2 Pages e AP600 PRA List of Effective Pages Volume 2 Page Revision Page Revision Page Revision Page Revision 32-40 7 35-1 8 35-20 8 36-1 8 3241 7 35-2 8 35-21 8 36-2 8 32-42 7 35-3 8 35-22 8 36-3 8 32-43 7 35-4 8 35-23 8 36-4 8 32-44 7 35-5 8 35-24 8 36-5 8 32-45 7 35-6 8 35-25 8 36-6 9 32-46 7 35-7 8 35-26 8 36-7 10 32-47 7 35-8 8 35-27 8 36-8 8 35-9 8 35-28 8 36-9 8 33-1 7 35-10 8 35-29 10 36-10 $ through 33-17 33-18 8 35-11 8 35-30 8 33-19 7 35-12 8 through 33-66 35-13 8 34-1 8 35-14 10 l through 34-487 35-15 8 35-16 8 35-17 8 35-18 8 35 19 8

                                 =

l l l l O I Revision: 11 ENEL March 1998 nrAr=L 3 Westingh00S8 oNp01\prairev.llipra-loc wpf.lb ]2 u

                                                                                                         ]

List of Effective Pages ,O V , AP600 PIM List of E&ctive Pages Volume 3 Page Revision Page Revision P. age Revision Page Revision . 37 1 8 39-6 8 39-25 8 42-1 8 37-2 8 39-7 8 42-2 8 37-3 10 39-8 8 40-1 8 42-3 8 37-4 8 39-9 8 40-2 11 42-4 8 37-5 10 39-10 8 40-3 8 42 5 8 39 11 8 40-4 11 42-6 8 38 1 8 39-12 8 40-5 8 42-7 8 38 2 8 39-13 8 42-8 8 38-3 8 39-14 11 41-1 8 42-9 8 38-4 10 39-15 8 41-2 8 42-10 8 /O 38-5 10 39-16 8 41-3 8 42-11 8 38-6 10 39-17 8 41-4 8 42-12 8 38-7 10 39-18 8 41-5 10 42-13 8 39-19 8 41-6 8 42-14 8 through 41-123 39-1 8 39-20 8 39-2 8 39-21 8 41 A 1 8 43-1 8 through through 41 A-375 43-162 39-3 11 39-22 8 41B-1 8 through 41B-120 39-4 8 39-23 8 __ 39-5 10 39-24 8 ENE Revision: 11 3 Westinghouse mmt, March 1998 13 onipoivr=wv 115ra-loe.wpf:Ib

e-: =- 5 List of Effective Pages er O\ AP600 PRA List of Effective Pages - Volume 3 Page Revision Page Revision Page Revision Page Revision 44-1 5 49-15 8 44-2 8 46-1 8 49-16 8 44-3 8 49-17 8 44-4 8 47-1 8 49-18 8 44-5 8 49-19 9 44-6 8 48-1 8 49-20 8 through 49-47 44-7 8 49-48 11 44-8 8 49-1 8 44-9 8 49 2 8 44-10 8 49-3 8 44-11 8 49-4 8 44-12 9 49-5 8 49-6 8 45-1 8 49-7 8 45-2 8 49-8 9 45-3 8 49-9 8 45-4 8 49-10 8 45-5 8 49-11 8 45-6 8 49-12 8 45-7 9 49-13 8 45-8 8 49-14 8 through 45-136 O Revision: 11 ENEL March 1998 ' a -- W Westingh0USB oNp01\prahv.,Ilipra-lotypf.lb 14

List of Effective Pages , f

   /*

AP600 PRA List of Effective Pages - Volume 4 Page Revision Page Revision Page Revision Page Revision 50-1 8 54-10 8 54C-1 11 56-1 8 through through and through 50-76 54-32 54C-4 56-11 54-33 9 50A- 1 11 54-34 8 55-1 9 56-12 5 through through through through 50A-3 54-39 55-6 56-111 54-40 9 55-7 10 51-1 8 54-41 8 55-8 9 through through through 51-21 54-97 55-72 54-98 9 55-73 10 g 52-1 8 54-99 9 55-74 9 57-1 9 i f through through through

  \

52-30 55-75 57-156 52-31 9 54-100 8 55-76 10 through 54-319 52-32 8 54A-1 9 55-77 9 57A-1 9 through through through through 52-156 54A-5 55-140 57A-4 l 54A-6 11 i 53-1 8 54A-7 9 55A-1 9 57B-1 11 through through through 54A-154 55A-31 57B-18 54-1 8 54B-1 11 55B-1 9 through thro Igh through 54-8 54B-248 55B 104

                                                                                                              ]

54-9 9 55C-1 11 58-1 4 through through 55C-6 58-3 m l

    .,-                                                                                                       I ENEL                                                      Revision: 11 UDM               Eh                                                         March 1998 c:Vr01W*ev.11Wa-lEwPf :Ib i

15

$2 WE                                                                        List cf Effectiv2 Pages O

AP600 PRA List of Effective Pages - Volume 4 , Page Revision Page Revision Page Revision Page Revision 59 1 8 59-104 8 D-1 11 through through through 59-36 59-203 D-108 59-37 9 59-204 11 59-38 9 59-205 8 59 39 8 59-206 8 59-40 8 59-207 11 through 59-236 59-41 9 59-42 8 A-1 2 through through 59-68 A-296 , 59-69 11 59-70 8 through 59-74 59-75 11 B-1 11 through througii 59-82 B-36 59-83 8 through 59-86 59-87 9 59-88 8 C-1 9 through th:ough 59-100 C-10

   $9-101     9              C-11        11 59-102     9 59-103      11 O

Revison: 11 ENEL March 1998 cfh,o 3 Westinghouse o spolyavevJ twa-loc.wpf:1b 16 1

                                                                          ---__________-_-_A

i O i ) V TABLE OF CONTENTS (Cont.) Section 11111 EBER CHAPTERS 46 THROUGH 48 DELETED CHAPTER 49 OFFSITE DOSE EVALUATION 49.1 Introduction ............................................. . 49-1 49.2 Conformance with Regulatory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 49-1 49.3 Assu mptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9-2 49.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9-2 49.5 Dose Evaluation Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-6 49.6 Quantification of Site Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-7 49.7 Risk Quantification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-7 49.8 References ................................................ 49-8 CHAlrTER 50 IMPORTANCE AND SENSITIVITY ANALYSIS 50.1 Introduction ...............................................50-1 50.2 Importance Analyses for Core Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 50.2.1 Initiating Event Importances (Case 1) . . . . . . . . . . . . . . . . . . . . . . 5 0-2 50.2.2 Common Cause Failure Importances (Case 2) . . . . . . . . . . . . . .. . 50-3 p 50.2.3 Human Error Importances (Case 3) . . . . . . . . . . . . . . . . . . . . . . . . 50-5 V 50.2.4 Component Importances (Case 4) . . . . . . . . . . . . . . . . . . . . . . . . . . 50-6 50.3 System Importances for Core Damage .............................50-7 50.4 Human Error Sensitivity Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-9 50.4.1 Set Human Error Probabilities to 1.0 (Failure) in Core Damage Results (Case 25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-9 50.4.2 Set Human Error Probabilities to 0.0 (Success) in Core Damage Results (Case 26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50- 10  ; 50.4.3 Assess Importance of Increasing Human Error Probabilities by a Factor of 10 (Case 27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-10 50.5 Other Sensitivity Analyses for Core Damage . . . . . . . . . . . . . . . . . . . . . . . . 50-11 1 50.5.1 Diesel Generator Mission Time (Case 28) . . . . . . . . . . . . . . . . . . 50- 1 1 50.5.2 Impact of Passive System Check Valves on Core Damage Frequency (Case 29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-12 50.5.3 Instmmentation and Control Cutoff Probability (Case 30) . . . . . . . . 50-12 50.5.4 Containment Rectreulation After Safety Injection Line Break Event (Case 3 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 0- 12 50.5.5 Quantification Truncation Probability (Case 32) . . . . . . . . . . . . . . . 50-13 50.5.6 Sensitivity to ADS Stage 4 Success Criteria (Case 33) . . . . . . . . . . 50-13 50.5.7 Squib Valve Failure Probability (Case 34) . . . . . . . . . . . . . . . . . . . 50-13 50.5.8 Circuit Breaker Failure Probability (Case 35) . . . . . . . . . . . . . . . . . 50-14 50.5.9 End-State Importances (Case 36) . . . . . . . . . . . . . . . . . . . . . . . . . 5 0- 14 m) ( N/ r.rm. April l xxxl oAap600$ra\rev.9 pre-toc.wpf.lb i 1

u B.t=

O TABLE OF CONTENTS (Cont.) Section Title Page 50.6 Sensitivity and Importance Analyses For Large Release Frequency . . . . . . . . 50- 15 50.6.1 Importance Analyses For Large Release Frequency . . . . . . . . . . . . 50- 15 50.6.2 Sensitivity Analyses For Large Release Frequency . . . . . . . . . . . . . 50-21

         $0.7        Sensitivity Analysis for Offsite Dose Risk . . . . . . . . .......                          . . . . . . . . . 50-22 50.8        Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-23 Attachment SOA         ATWS PRA Sensitivity Case .                  .. ........ ....... ......                              50A-1 CHAPTER 51 UNCERTAINTY ANALYSIS 51.1        Introduction    ............................. .........                                           ....... 51-1 51.2        Methodology . . . . . . . . . . . . . ................. .....                                 ......... 51-1 51.3        Summary of Results . . . . . . . . . . . .............. . ............                                          . 51-3 51.4        Sensitivity Studies for the Uncertainty Calculations ........                             . . . . . . . . . . . 51 -4 51.4.1     Uncenainty in the Cutoff Frequency . . . . . . . . . . .                     ........          ... 51-4 51.4.2     Uncertainty in the Number of Cutsets Sampled . . . . . . . . . . . . . . . . 51-4 51.4.3     Uncertainty in the Mean Failure Probability for Basic Events . . . . . . . 51-4 51.4.4     Sensitivity to the Random Number Input for Sampling . . . . . . . . . . .51-5 51.5        Re ferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....            ........... 51-6 l

CHAPTER 52 RTNSS - FOCUSED PRA SENSITIVITY STUDY 52.1 Focused PRA Sensitivity Study Analysis Method . . . . . . . . . . . . . . . . . . . . . . 52-1 52.1.1 Core Damage Frequency Calculation . . . . . . . . . . . . . . . . . . . . . 5 2 -2 52.1.2 Release Frequency Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2-5 52.2 At-Power Focused PRA Sensitivity Study . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2-5 52.2.1 At-Power Focused PRA Sensitivity Study Core Damage Frequency Quantification . ....... ..... ............... 52-6 52.2.2 At-Power Focused PRA Sensitivity Study Release Frequency Quantification .. ............. ...... . . . . 52-11 52.3 Shutdown Focused PRA Sensitivity Study . . .......................52-16 52.3.1 Shutdown Focused PRA Sensitivity Study Core Damage Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2- 1 6 52.3.2 Shutdown Focused PRA Sensitivity Study Release Frequency Calculation .... .............. . , . . . . 52-19 52.4 Focused PRA Sensitivity Fire Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2-21 52.5 Focused PRA Sensitivity Study Flooding Analysis . . . . . . . . . . . . . . . . . . . . 52-21 52.5.1 At-Power Focused PRA Sensitivity Study Flooding Scenarios . . . . . 52 21 52.5.2 Shutdown Focused PRA Sensitivity Study Flooding Scenarios . . . . . 52-22 52.5.3 Focused PRA Sensitivity Study Flooding Analysis Results S u m mary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2-23 52.6 Focused PRA Sensitivity Study Results and Conclusions . . ... . ....... 52-23 52.7 References .................................... . .. ..... 52-24 O Revision: 11 ENEL March 1998 wxas T Westinghouse 04ra\revj!4ra-toc.wpf:lb xxxii w.

1 i I { g t W l I l TABLE OF CONTENTS (Cont.) Section Title Egge

        -CHAPTER 53 DELETED CHAITER 54 LOW-POWER AND SHUTDOWN RISK ASSESSMENT 54.1   Introduction     ....      ........................................54-1 54.2   Initiating Events ............................................ 54-1 54.2.1     Identification . . . . . . . .... ....................                                  ..... 54-2 54.2.2     Events Modeled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-2 54.2.3     Shutdown Phases Summary Description . . . . . . . . . . . . . . . ..... 54-3 54.2.4     Initiating Events for Operaung Modes . . . . . . . . . . . . . . . . . . . . . . . 54-4 54.2.5     Actuanng Signals and Systems Available ................... 54-15 54.2.6     Scenarios for Detailed Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 54-16 54.1.7     Summary of Initiating Events Analyzed . . . . . . . . . . . . . . . . . . . . 54-21 54.3   Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-22 54.3.1     Shutdown Frequency . . . . . . . . . . . . . . . . . . . . ..... .                      .... 54-22      j 54.3.2     Mission Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-25 54.4   Event Tree Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-28 54.4.1     Event Tree LOSP-ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-30
 *q   r               54.4.2     Event Tree RNS-ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4-3 3 V

54.4.3 Event Tree CCW-ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-3 3 54.4.4 Event Tree LOCA-PR-ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-33 54.4.5 Event Tree LOCA-V24-ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-34 54.4.6 Event Tree RCS-OD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-36 54.4.7 Event Tree LOSP-D . ................................54-38 54.4.8 Event Tree RNS-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-40 54.4.9 Event Tree CCW-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-40 54.4.10 Event Tree LOCA-V24-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-40 54.4.11 Boron Dilution Events (Reactivity Events) . . . . . . . . . . . . . . . . . . . 54-41 54.4.12 Boron Dilution Events Due to Chemical and Volume Control System Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-45 54.4.13 Endstates Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-48 54.5 Fault Tree Models for Shutdown and Low-Power Events . . . . . . . . . . . . . . . 54 48 54.5.1 Insuumentation and Control Modeling for Shutdown (Level 1) .... 54-48 54.5.2 Instrumentation and Control Modeling for Shutdown (Level 2) .... 54-51 54.6 Success Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-51 54.6.1 MAAP4 Code Analysis for Shutdown Success Criteria . . . . . . . . . . 54-52  ! 54.6.2 ~ MAAP4 Pammeter File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-52 54.6.3 MAAP4 Input Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-54

                     '54.6.4     Definition of MAAP4 Cases From Event Trws . . . . . . . . . . . . . . . 54-55 54.6.5     Results From MAAP4 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 54-57 n r 54.7   Common Cause Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-57 i

(

  \-)                                                                                                            w g                                                                                      Revision: 9 MIDH88             lir.Wh                                                                            April 11,1997 KXKiii                           0:WW.99rHOC *PLlb a

w = 1M11 O TABLE OF CONTENTS (Cont.) Section Title }_' age 54.8 Human Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-57 54.8.1 Operator Actions Calculated . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-5 8 54.8.2 Conditional Human Error Probabilities . . . . . . . . . . . . ...... . 54-64 54.9 Fault Tree Quantification ....................... ..... ...... . 54-64 54.10 Level 1 Core Damage Frequency Quantification . . . . . . . . . . . . . . . . . .... 54-67 54.10.1 Core Damage Quantification Method . . . . . . . . . . . . . . . . . . . . . 54-68 54.10.2 Quantification Inputs . . . . . . .......................... 54-69 54.10.3 Level 1 Shutdown Core Damage Frequency Results . . . . . . . . . . . . 54-70 54.11 Shutdown and Low-Power Release Category Quantification . . . . . . . . . . . . . . 54-71 54.12 Shutdown Assessment Importance and Sensitivity Analyses . . . . . . . . . . . . . . 54-71 54.12.1 importance Analyses for Core Damage at Shutdown . . . . . . . . . . . . 54-72 54.12.2 Other Sensitivity Analyses for Shutdown Core Damage . . . . . . . . . 54-77 54.13 Summary of Shutdown Izvel 1 Results ........................... 54-81 54.14 Re ferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 54-87 Attachment 54A Design Change Impact on Low-Power and Shutdown Risk Assessment ............... ................... 54A-1 Attachment 54B Surge Line Flooding Effect on Low-Power and Shutdown , Risk Assessment .. ............. ......... ....... 54B-1 Attachment 54C Effect of Modifications to Safe / Cold Shutdown PRA . . . . . . .. 54C-1 CHAPTER 55 SEISMIC MARGIN ANALYSIS . . . . . . . . .. ........... . . 55-1 55.1 Introduction ........................ ...................... 55-1 55.2 Calculation of HCLPF Values . ... ...... .. ............ ... . 55-2 55.2.1 Seismic Margin HCLPF Methodology . ... ............ ... 55-2 55.2.2 Calculation of HCLPF Values . . . . . . . . . . . . . . . . . . . . . ...... 55-2 55.3 Seismic Margin Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5- 12 55.3.1 SMA Model and Assumptions . . . . . . . . . . . . . . . . . . . . ...... 55-14 55.3.2 Seismic Initiating Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-16 55.3.3 Initiating Event Category HCLPFs . . . . ................. . 55-17 55.3.4 Event Tree Models . . . . . . . . . . . . . . .................. . 55-20 55.3.5 Fault Tree Modeling and Quantification . . . . . . . . . . . . . . ..... 55-28 55.3.6 Seismic Event Core Damage Sequence Evaluation . . . . . ....... 55-36 55.3.7 Containment Performance Model . . . . . . . . . . . . . . . . . . . . .... 55-37 55.4 Calculation of Sequence and Plant HCLPF . . . . . . . . ............... . 55-38 55.4.1 HCLPFs for Easic Events . . . . . . . . . . . . . . . . .... . . . . . . 5 5-39 55.4.2 Calculation of Initiating Event HCLPFs . . . . . . . . . . . . . . . . . . . 55-39 i 55.4.3 Calculation of System Fault Tree HCLPFs ....... .......... 55-39 55.4.4 Calculation of Sequence HCLPFs . . ........ ............ 55-40 55.4.5 Calculation of Plant HCLPF . . . . . . . . . ..... . . . . . . . . . . . . 5 5-4 3 55.4.6 Large Release HCLPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-43 Revision: ' 11 e ENEL March 1998 mg_ [ WestighollS8 o$prsWy.,mpra-toc.wpf:Ib xxxiv

i

=

\ l TABLE OF CONTENTS (Cont.) Section Title _Page 55.5 Sensitivity Analyses . . . . . . . . . . . . . .. ... ..... ... . .... ' 5-46 5 55.5.1 Robust Fuel and Core Assembly . .. ..... .... .. .. . 55-48 55.5.2 Credit for Operator Actions . .. . ......... . . . 55-49 55.5.3 Less Credit for Operator Actions in LOSP Event at 0.09g ... . . . 55-52 55.5.4 72-Hour Mission Time . . .... ..... ... . . . . . . . 5 5-53 55.5.5 Containment Isolation - Smaller Size Valves . . . . . . . . . . . . . 55-56 55.5.6 Steam Generator Tube Rupture Success Criteria . . . . . .. .. .. 55-57 55.5.7 Steam Line Break Suecess Criteria . ..... . ... . . . . . . 55-5 8 55.5.8 Seismic Interaction Between Turbine and Auxiliary Buildings . .. 55-59 55.6 SMA Results and Insights . . . . . . . .. ...... ... . .. . 55-63 55.9.6 AP600 SMA Results ... . ... ........ .. .. .. . 55-63 55.9.6 AP600 SMA Insights . . ... . .. .... ........ .... 55-68 55.7 References ..... ..... .. ....... ... . ........ . .. . 55-70 Attachment 55A System HCLPF Calculations . . .. .. ... . ...... .. 55A-1 Attachment SSB Sequence HCLPF Calculations . ... .. .. . ... . . 55B-1 n Attachment 55C Seismic Margin Analysis HCLPF Sensitivity Study . ... 55C-1 CHAPTER 56 PRA INTERNAL FLOODING ANALYSIS 56.1 Introduction . ... .... .... ..... .............. .. . 56-1 56.1.1 Definitions . ..... . ..... .. . . ..... . . . . 56-1 56.2 Methodoloi,y . ........... .. . .. .............. ..... . . 56-1 56.2.1 Summary of Methodology . . . . . ............ .. . . . 56- 1 56.2.2 information Collection . . . . . . ... .. .... ... .... .... 56-2 56.2.3 Initial Screening Assessment ... ......... ..... . . . . . 56-3 56.2.4 Detailed Screening Assessment . . ........... .. . . . . . 56-4 56.2.5 Identification of Flood-Induced Initiating Events .... . .... . . 56-6 56.2.6 Initiating Event Frequencies ............. .. ......... . 56-7 56.3 Assumptions . . . . . . . . . . . . . . . . . . . . ................ . . . . . 5 6-7 56.3.1 General Flooding Analysis Assumptions and Engineering Judgments . 56-7 56.3.2 AP600-Specific Assumptions . . . . . . . . . . . . .. . . . . . . . . . 5 6-9 56.4 Information Collection . . . . . . . . . .. ... . . . ... .. .. 56-11 56.4.1 PRA-Modeled Equipment and Locations . . . . . . . . . . . .... . . 56-11 56.4.2 Identification of Areas for Flooding Evaluation .... ... .. .. 56-11 56.5 At-Power Operations . ........ .. . .. ............. .. . . . 56-12 56.5.1 Initial Screening Assessment ... ....... . ....... . . 56-12 56.5.2 Detailed Screening Assessment ............. ...... . . . . . 56-12 56.5.3 Identification of Flood-Induced Initiating Events .... . .... . 56-28 56.5.4 Calculation of Flood-Induced Initiating Event Frequencies . .... 56-32 56.5.5 Quantification of At-Power Flood-Induced Events ......... . . 56-39 m a

    )

J ENEL Revision: 11 W8@ me W.=:b March 1998 XXXV o:\pra\rev Ilipra-toc.wpf.lb

O TABLE OF CONTENTS (Cont.) Section I!!)e P. age 56.6 Shutdown Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56-41 56.6.1 Detailed Screening Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6-41 56.6.2 Identification of Flood. Induced Initiating Events . . . . . . . . . . . . . . 56-42 56.6.3 Calculation of Flood. Induced Initiating Event Frequencies . . . . . . . . 56-43 56.6.4 Shutdown Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 48 56.7 Seismically Induced Flooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 51 56.8 Flooding Hazards During Refueling Outages . . . . . . . . . . . . . . . . . . . . . . . . 56-52 56.9 Flooding Sensitivity Study .... ...............................56-52 56.9.1 Flooding Human Error Probabilities Sensitivity Study . . . . . . . . . . . 56 52 56.10 Summary of Findings . . . . . . . ................................5653 CHAFTER 57 INTERNAL FIRE AN#1YSIS 57.1 Introduction ............................................ . 57-1 57.2 Qualitative Analysis Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2 57.3 Quantitative Methodology of Fire Area Frequency . . . . . . . . . . . . . . . . . . . . . 57 6 57.3.1 Fire Frequency Calculations . . . . . . . . . . . . . . . . . . . . . . . .. . . 57-6 57.3.2 Fire Damage Category Quantification . . . . . . . . . . . . . . . . . . . . . . . 57-7 57.4 Core Damage Quantification Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 5 7 10 57.5 Fire Analysis Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-12 57.5.1 Qualitative Analysis Assumptions and Other Modeling Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 12 57.5.2 Quantification Assumptions And Modeling Considerations . . . . . . . 57-14 57.6 At. Power Qualitative Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-17 57.7 At-Power Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 19 57.7.1 Fire Ignition Frequencies for Qunntitative Analysis . . . . . . . . . . . . 57-19 57.7.2 Fire Damage Category Quantification . . . . . . . . . . . . . . . . . . . . . . 5719 57.7.3 Individual Area PRA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 19 1 57.8 Control Room Fire Analysis - Power Operation . . . . . . . . . . . . . . . . . . . . . 5 7 22 57.8.1 Description of the Control Room and AsWA Fire Protection . . . 57 22 57.8.2 Alternate Shutdown Capability . . . . . . . . . . . . . . . . . . . . . . . . . . 57 23 57.8.3 Fire Hazard Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7-24 57.8.4 AP600 Control Room Fire Evaluation . . . . . . . . . . . . . . . . . . . . . . 57-25 57.8.5 Fire Scenario Identification and Frequency Determination . . . . . . . . , 57 29 57.8.6 Control Room Fire Scenario Quantification and Results . . . . . . . . . 57 32 1 57.9 Shutdown Fire Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-33 l 57.9.1 Fire Ignition Frequencies during Shutdown Modes of Operation . . . . 57-33 { 57.9.2 Fire Damage Category Quantification . . . . . . . . . . . . . . . . . . . . . . 57-34 i 57.9.3 Individual Area PRA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 34 57.9.4 Fire Analysis for Safe Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . 57-34 57.9.5 Fire Analysis for Mid-Loop Cperation . . . . . . . . . . . . . . . . . . . . . 5 7-41 e Revision: 9 April 11,1997 W85tiligh0llS8 oAap60oprs\rev 9Wtoe.wpf.lb xxxvi

I i g\ bl TABLE OF CONTENTS (Cont.) Section Title _P_ age 57.10 Summary and Conclusions . . . . . . . . . .. . ....... .. ... . . . . 57-42 57.10.1 At-Power Analysis . . . . ...... ... .. .. . .. . 57-42 57.10.2 Shutdown Fire Analysis . . ..... .... .. ... .... . 57 45 57.10.3 Conclusions . . . . . . . . . .. ..... ................. .. 57-47 57.11 References .. . .... ..... .. . ... ... . .. . ...... . 57-48 ATTACHMENT 57A DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57A-1 ATTACHMENT 57B DESIGN CHANGE EFFECT ON INTERNAL FIRE ANALYSIS . . 57B-1 CHAPTER 58 WINDS, FLOODS, AND OTHER EXTERNAL EVENTS 58.1 Introduction ..... . .................. .... ....... ... . 58-1 58.2 Extemal Events Analysis . .......... .......... ... .. 58-1 58.2.1 Severe Winds and Tomadoes . . . . ..... ........ . . . . . . . . . 5 8- 1 58.2.2 External Floods .. ... ........ ........ . ... . . . . . 5 8-2 58.2.3 Tr=nsportation and Nearby Facility Accidents .. .. ... . . . 58-2 58.3 Conclusion . . . . . . .. ......... ...... ......... . . ... 58-3 58.4 References ... . . .......... . .. .. . .. .. ..... . 58-3 m CHAPTER 59 PRA RESULTS AND INSIGHTS (V) 59.1 Introduction . . ....... ..... .. ... .. . . . . 59-1 59.2 Use of PRA in the Design Process . .. .. . ..... . ........ . 59-3 59.2.1 Stage 1 - Use of PRA During the Early Design Stage . . . . .... 59-4 j

                $9.2.2    Stage 2 - Preliminary PRA . .                    .       . . ....... ...                                ..             . . 59-5         l 59.2.3    Stage 3 - AP600 PRA Submittal to NRC (1992) .. .                                                     . . .                 . 59-7 59.2.4    Stage 4 - PRA Revision 1 (1994) . . .                           ... .. . . ... .. .                                          . 59-8 59.2.5    Stage 5 - PRA Revisions 2-8 (1995-1996) .                               .        ...... ......                             . 59-8      i 59.3   Core Damage Frequency from Internal Initiating Events at Power                                             . . . . . . . . 5 9- 10                !

59.3.1 Dominant Core Damage Sequences .... . . .... . . . 59-12 l 59.3.2 Component Importances for At-Power Core Damage Frequency . . 59-44 ) 59.3.3 System Importances for At-Power Core Damage . . . .... . 59-44 ' 59.3.4 System Failure Probabilities for At-Power Core Damage . . . . . . . 5 9-4 5 59.3.5 Common Cause Failure Importances for At-Power Core Damage . 59-45 59.3.6 Human Error Importances for At-Power Core Damage ... . 59-45 59.3.7 Accident Class Importances . . . .. . . . . . ........... . . . . . . . 5 9-4 7 59.3.8 Sensitivity Analyses Summary for At-Power Core Damage . . . . . . 59-47 59.3.9 Summary of Important Level 1 At-Power Results . . . . . . .. . . 59-48 59.4 Large Release Frequency for Internal Initiating Events at Power . . ... .. . 59-51 59.4.1 Dominant Large Release Frequency Sequences ......... . . . . 59-52 59.4.2 Sensitivity Analyses for Containment Response . . . . ... ... .. 59-72 l l l

 ')                                                                                                                                                               l
I

\ _) ENEl. Revision: 11 I T W8Stingh0DS8 k?a:L- March 1998 XXXVii OSPraTrev_1lipra-toc.wpf.lb i

=    n=

O TABLE OF CONTENTS (Cont.) Section Title Page 59.4.3 Comparison of Initiating Event Importances for Core Damage Frequency and Large Release Frequency . . . . . . . . . . ...... 59-72 59.4.4 Summary of Important Level 2 At-Power Results . . . . . . . . . . . . . 59-73 59.5 Core Damage and Severe Release Frequency from Events at S hutdo wn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 59-75 59.5.1 Summary of Shutdown Level 1 Results . . . . . . . . . . . . . . . . . . . . . 59-75 59.5.2 Large Release Frequency for Shutdown and Low-Power Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 9- 81 59.5.3 Shutdown Resub Summary . . ............. . . . . . . . . . 59-82 59.6 Results from Intemal Flooding, Intemal Fire, and Seismic Margin Analyses . . . . . . . ........ ....... ........ ............... 59-82 59.6.1 Results of Intemal Flooding Assessment .. . . ...... .. 59-82 59.6.2 Results of 7'temal Fire Assessment ...................... 59-83 59.6.3 Results of seismic Margin Analysis . . . . . . . . .............. 59-87 59.7 Plant Dose Risk from Release of Fission Products . . . . ....... ..... 59-87 59.8 Overall Plant Risk Results . . . . . . . . . . ........... .. ... . . . . . . 59-88 59.9 Plant Features Important to Reducing Risk . .................. ... . 59-89 59.9.1 keactor Design .......... . .... .. ...... ... .... 59-90 59.9.2 Systems Design . . . . . . . . . . . . ............ .. ........ 59-91 59.9.3 Instrumentation and Control Design . . . . . . ..... . . . . . . . 59-94 59.9.4 Plant Layout .. . . .. ...... ... .... . .... 59-95 59.9.5 Plant Structures . . . . . .. ... .... ... . ....... . 59-96 59.9.6 Containment Design . . . .. .. ............. ....... . 59-96 59.10 PRA Input to the Design Certification Process . .. ............ .. 59-101 59.10.1 PRA Input to Reliability Assurance Program . . . . . . . . . 59-102 59.10.2 PRA Input to Certified Design Material ........... . . . . . . 59-102 59.10.3 PRA Input to the Technical Specifications . . .... ..... . .. 59-102 59.10.4 PRA Input to MMI/ Human Factors / Emergency Response Guidelines . . . . . . . ...... ......... . .. .... . . . . 59-102 59.10.5 Summary of PRA-Based Insights .... ..... .. .. ... 59-103 59.10.6 Combined License Information . . . . . . . . . ...... . . . . . . . . 59-103 APPENDIX A MAAP4 ANALYSIS TO SUPPORT SUCCESS CRITERIA .. ... .. A-1 APPENDIX B EX-VESSEL SEVERE ACCIDENT PHENOMENA ..... ... .... . . . . B- 1 APPENDIX C DESIGN CHANGES THAT OCCURRED AFTER THE PRA ANALYSES WERE COMPLETED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . C- 1 APPENDIX D EQUIPMENT SURVIVABILITY ASSESSMENT . . . . . ... . . . . . . . . . . . . D- 1 O Revision: 11 ENEL [ W85tingh00S8 March 1998 mg_ oNravev liwa. toe.wpr.ib xxxviii

                                                                                                                     -. ._ m o

G LIST OF TABLES (Cont.) Table No. Title P., age 57-25 Quantitative Summary - Control Room Fires Dunng Safe Shutdown ... ................ .. ................ .. 57-138 57-26 Summary of Qualitative Evaluation Results - Mid-Loop Operation . . . . . . . . . . . . . . . . . . . . ... ....... ... . . 57-139 57-27 Summary of Quantitative Results - Mid-Loop Operation . . . . . . . . . . . . . 57-146 57-28 Quantitative Summary - Control Room Fires During Mid-Loop Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 57-154 57-29 Safe Shutdown Containment Single-Hot-Shnrt LOCA Sensitivity . . . . . . . . 57-155 59-1 Contnbution of Initiating Events to Core Damage . . . . . . . . . . . . .. . 59-104 59-2 Conditional Core Damage Probability of Initiatmg Events . . . . . . . . . . . . . 59-105 59-3 Internal Initiating Events at Power Dominant Core Damage Sequences . .. 59-106 59-4 Sequence 1 - Safety Injection Line Break Dominant Cutsets (SI-LB-02) . . . . 59-108 59-5 Sequence 2 - Intermediate LOCA Dominant Cutsets (NLOCA-03) ... ... 59-113 59-6 Sequence 3 - Large LOCA Dominant Cutsets (LLOCA-06) . . . . . -. . . . . . . 59-118 59-7 Sequence 4 - Large LOCA Dominant Cutsets (LLOCA-03) . . . . . . . . . . . 59-124 59-8 Sequence 5 - Reactor Vessel Rupture Cutset (RV-RP-02) . . . . . . . . . 59-130 em 59-9 Sequence 6 - Large LOCA Dominant Cutsets (LLOCA-11) . . ..... . . 59-131 ( ) 59-10 Sequence / - ATWS Dominant Cutsets (ATWS-28) . . .. ....... . .. 59-133 59-11 Sequence 8 - Medium LOCA Dominant Cutsets (MLOCA-03) .. .. 59-141 59-12 Sequence 9 - ATWS Dominant Cm: K (ATWS-13) . . . . .... . .. .. 59-146 59-13 Sequence 10 - Intermediate LOCA Do.ninant Cutsets (NLOCA-04) . .. 59-151 59-14 Sequence 11 - Safety Injection Line Break Dominant Cutsets (SI-LB 03) . 59-156 59-15 Sequence 12 - Small LOCA Dominant Cutts (SLOCA-03) . . ........ . 59-160 59-16 Sequence 13 - Core Makeup Tank Line Break Dominant Cutsets (CMTLB-03) 59-165 59-17 Sequence 14 - Steam Generator Tube Rupture Dominant Cutsets (SGTR-07) . 59-170 59-18 Sequence 15 - Steam Generator Tube Rupture Dominant Cutsets (SGTR-23) . 59-171 59-19 Sequence 16 - Large LOCA Dominant Cutsets (LLOCA-02) . . . . . . . . . . . . 59-177 59-20 Sequence 17 - Large LOCA Dominant Cutsets (LLOCA-05) . . . . . . . ... 59-183 59-21 Sequence 18 - Consequential SGTR Dominant Cutsets (SGTRC-03) . . . . . 59-189 59-22 Sequence 19 - Intermediate LOCA Dominant Cutsets (NLOCA-16) . . . .. 59-195 59-23 Typical System Failure Probabilities, Showing Higher Reliabilities for Safety Systems ................... ..... .... ....... . 59-201 59-24 Dominant CET Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 9-202 59-25 Comparison of Initiating Event Contribution to Core Damage and Large Release Frequencies ................... ......... .. .. 59-203 59-26 Summary of AP600 PRA Results . . . . . . . . . . . . . ........... . . . . . 59-204 59-27 Comparison of AP600 PRA Results to Risk Goals . . . . . . . . . . . . . . . . . . . 59-205 59-28 Site Boundary Dose Risk at 24 Hours ............ ............ . 59-206 59 AP600 PRA-Based Insights . . . . . . . . . . . . .. ................. . 59-207 !q i J ENE Revision: 11 UDI88 Eta:6. March 1998 liX o:\ap6ompra\rev.11pa-lot.wpf:Ib

namens== O LIST OF FIGURES Figure No. Title Page 2-1 Core Damage Logic Diagram for Internal Initiators . . . . . . . . . .... . . . . 2-5 8 2-2 Core Damage Logic Diagram for Internal Initiators . . . . . . . . . . . . . . . . . . . 2-59 2-3 Core Damage Logic Diagram for Internal Initiators ............... .. . 2-60 2-4 Core Damage Logic Diagram for Internal Initiators . . . . . . . ...... ..... 2-61 4-1 Large Loss-of-Coolant Accident Event Tree ... .......... . . . . . . . . . 4- 120 4-2 Medium Loss-of-Coolant Accident Event Tree . . . . . . . . . .... . . . . . . . . 4-121 4-3 Core Makeup Tank Line Break Event Tree . . . . . . . . . . . . . . . . . . . .. 4-122 4-4 Direct Vessel Injection Line Break Event Tree . . .. . .... . ... . . . 4-123 4-5 Intermediate Loss-of-Coolant Accident Event Tree ............ . . . . . . 4-124 4-6 Small Loss-of-Coolant Accident Event Tree .. ........ ... ..... . 4-125 4-7 Reactor Coolant System Leak Event Tree . .. ................. . . 4-126 4-8 Passive Residual Heat Removat Tube Rupture Event Tree . ... ... ... . 4-127 4-9 Steam Generator Tube Rupture Event Tree . . . . ........... ... . . 4-128 4-10 Reactor Vessel Rupture Event Tree ....... ........ .... . .... . 4-130 4-11 Interfacing Systems Loss-of. Coolant Accident Event Tree . .. . . ... . 4-131 4-12 Transients with Main Feedwater Event Tree .............. ......... 4-132 4-13 Transients with Loss of Reactor Coolant System Event Tree . . ..... . . 4-133 4-14 Transients with Loss of Main Feedwater Event Tree ....... . ........ 4-134 4-15 Transients with Core Power Excursion Event Tree . . . .. ... ... . . 4-135 4-16 Loss of Component Cooling Water System / Service Water System Event Tree . . . . ................. .. ..... .. . .... . 4-136 4-17 Loss of Main Feedwater Event Tree . ... ... ... ... ..... . . . 4-137 4-18 Loss of Condenser Event Tree . . . . . . ... .. .. ... .. . . 4-138 4-19 Loss of Compressed Air Event Tree . . ........... . .. . . 4-139 4-20 Loss of Offsite Power Event Tree ... .... . ... .. ....... . 4-140 4-21 Main Steam Line Break Downstream of Main Steam Isolation Valves Event Tree . . . . ........... . .. ...... .... . .. . 4-141 4-22 Main Steam Line Break Upstream of Main Steam Isolation Valves Event Tree .... ........ .. ... .... .... . . . . . . . 4-142 4-23 Stuck-Open Secondary. Side Safety Valve Event Tree . .. ... ... . . . 4-143 4-24 Anticipated Transient Without Scram Precursor without Main Feedwater Event Tree . . .. ... ..... ............. . . . . 4-144 4-25 Anticipated Transient Without Scram Precursor with Injection Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . . . . . . . . . 4- 14 6 4-26 Anticipated Transient Without Scram Precursor Transients with Main Feedwater Event Tree . . . . . . . . . . . . ............... . . . . . 4-147 O Revision: 9 April 11,1997 o \np60oprawvfprasof wpf.Ib lx h_ T Westifghouse

1

                                                                                                                         =.
                                                                                                                                =
                                                                                                                         =      E nauw,

%/ I'IST OF FIGURES (Cont.) Fisrure No. Ihlt Eggt 54 4 LOCA/RNS Pipe Rupture Dunng Hot / Cold Shutdown (RCS Filled) Even t Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-3 02 54-5 LOCA/RNS-V024 Opens During Hot / Cold Shutdown (RCS Filled) Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-303 54-6 Overdrauung of Reactor Coolant System During Dramdown to Mid-Loop . . . 54-304 54-7 Loss of Offsite Power (RCS Dramed) Event Tree ................... 54-305 54-8 Loss of RNS Initiator (RCS Dramed) Event Tree . . . . . . . . . . . . . . . . . . . . 54-306 54-9 Loss of CCW/SW Initiator (RCS Dramed) Event Tree . . . . . . . . . . . . . . . . 54-307 54-10 LOCA/RNS V024 Opens (RCS Dramed) Event Tree . . . . . . . . . . . . . . . . . 54-308 54-11 Accumulator Injection (Dilution Scenario) Event Tree . . . . . . . . . . . . . . . . . 54-309 54-12 Shutdown Transient Case SD1B2 RCS Pressure vs. Time . . . . . . . . . . . . . . 54-310 54-13 Shutdown Transient Case SD1B2 Mass Flow Rate vs. Time . . . . . . . . . . . . 54-311 54-14 Shutdown RNS Break Case SD3A (3500 gpm) . . . . . . . . . . . . . . . . . . . . . 54-312 54-15 Shutdown RNS Break Case SD3A2 (2000 gpm) . . . . . . . . . . . . . . . . . . . . 54-313 54-16 Shutdown RNS Break Case SD3A3 (1000 gpm) . . . . . . . . . . . . . . . . . . . . 54-314 54-17 Shutdown Plant Damage State Substate Event Tree for LP-ADS . . . . . . . . . 54-315 54-18 Shutdown Plant Damage State Substate Event Tree for LP-1 A . . . . . . . . . . . 54-316 54-19 Shutdown Plant Damage State Substate Event Tree for LP-3D . . . . . . . . . . . 54-317 54-20 Shutdown Plant Damage State Substate Event Tree for LP-3BR . . . . . . . . . . 54-318 54-21 Shutdown Plant Damage State Substate Event Tree for LP-3BE . . . . . . . . . 54-319 55-1 Seismic Initiating Event Hierarchy Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 55-105 55-2 EQ-STRUC Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-106 55-3 EQ-RVFA Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-108 55-4 EQ-LLOCA Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 55-109 55-5 EQ SLOCA Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-110 55-6 EQ-ATWS Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-111 55-7 EQ-STRUC Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-112 55-8 EQ.RVFA Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-113 55-9 EQ-LLOCA Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-114 55-10 EQ-SLOCA Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-115 55-11 EQ-ATWS Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-116 55-12 EQ-LOSP Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-117 55-13 EQLOSP Event Tree (for 0.5g level earthquake) . . . . . . . . . . . . . . . . . . . 5 5-118 J 55-14 EQAC2AB Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5- 1 19 55-15 EQ-XCIC Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5- 120 55-16 EQ-XADMA Fauh Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-121 55-17 EQ-XIW2A Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-122 55-18 EQ-RECIR Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-123 55-19 EQ.CM2SL Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-124 55-20 EQ-ADA Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-125 O- 55-21 EQ IW2AB Fauk Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-126 V IM S- luxi oW*v W*#1b AprH

LIST OF FIGURES (Cont.) e Firure No. Title Eage 55-22 EQ-PRHR Fault Tree . . . . . . . . . . . . . . ........ . . . . . . . . . . . . . . 55-127 55-23 EQ-PRESU Fault Tree . . . . . . ................... . . . . . . . . . . . 55-128 55-24 EQ-PMS Fault Tree . . . . . . . . . . ..... .... .. . . . . . . . . . . . . . 55-129 55-25 EQ-DC Fault Tree . . . . . . . . . ............... ... . . . . . . . . . . . 55-130 55 26 Class IE de Power Block Diagram . . . . . . . . . . . . . . . . . . . .. . . . . . . . 55-131 55-27 Containment Evaluation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-132 55-28 EQ-STRUC Event Sequences . . . . . . . . . . . . . . . . .. ............ . 55-133 55-29 EQ-RVFA Event Sequences . . ......................... . . . . . 55 134 55-30 EQ-LLOCA Event Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 135 55-31 EQ-SLOCA Event Sequences . . . ... ................... . 55 136 55-32 EQ-SGTR Event Sequences ... .............. .. .......... . 55 137

 '55 33         EQ-SLB Event Sequences . . ..................                                                                        ..........                              . 55 138 55-34         EQ-ATWS Event Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                .       .           . 55 139 55-35         EQ-LOSP Event Sequences (for 0.5g level earthquakes) . . . . . . . . . . . . . . . 55-140 56-1           Flood Zones and Barriers Plan at 66'-6" . . . . . . . . . .                                                 ......... . .                                           . 56-93 56-2          Flood Zones and Barriers Plan at 82'-6" . .. .. ....                                                                 ....              ...                           . 56-95 56-3           Flood Zones and Barriers Plan at 96'-6" . . . . . . . . . . . . . . . ... .                                                                           . . . 56-97 56-4           Flood Zones and Barriers Plan at 100*-0" & 107'-2" . . . . . .                                                                   ..           ..                      56-99 56-5           Flood Zones and Barriers Plan at 117*-6" . .......................                                                                                                   56-101 56-6          Flood Zones and Barriers Plan at 135'-3" . . . . . . . . . . . . . . . . . . . . . . . . 5 6- 103 56-7           Flood Zones and Barriers Plan at 160'-6" & 153'-0" . . . . . ...... ..                                                                                            . 56-105 56-8           Floot Zones and Barriers Plan at 160'-6" & 180'-0" . . .                                                 . ....                     . . . . . . . 56-107 56-9           8-in. Fire Main Rupture at-Power Event Tree .......... .. .... .                                                                                                     56-109 56-10          8-in. Fire Main Rupture during Hot / Cold Shutdown Event Tree . . . . . . . . . . 56-110 56-11          8-in. Fire Main Rupture during RCS Drained Conditions Event Tree                                                                             .. ..                   56-111 57-1           Fire Progression Event Tree for 1200 AF 01 Fire Area . . . .                                                                  .       .. . .                         57-156 59-1           Contribution of Initiating Events to Core Damage . . ..... .......                                                                                    .. 59-233 59-2           Contribution of Initiating Events to Large Release Frequency and Core Damage Frequency . . . . . . . . ... . .. .. .. . ..                                                                                      ..                59-234 59-3           Total Plant CDF/LRF . . . . .. .... . .. .... ..                                                                    .. ... ....                                   . 59-235 59-4           24-Hour Site Boundary Dose Cumulative Frequency Distribution . . . . . . . . . 59-236 Revision: 11 O

March 1998 3 Westinghouse

   . wav m..n w w v a                                                            lxxxii

.p I (J TABLE OF CONTENTS (Cont.) Section I!. tit f. Bat CHAPTERS 46 THROUGH 48 DELETED CHAPI'ER 49 OFFSITE DOSE EVALUATION 49.1 Introduction ...............................................49-1 49.2 Conformance with Regulatory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 49-1 49.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-2 49.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9-2 49.5 Dose Evaluation Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-6 49.6 Quantification of Site Risk . . . . . . . . . . . .........................49-7 49.7 Risk Quantification Results . . . . . . . . . ...........................49-7 49.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-8 CHAPTER 50 IMPORTANCE AND SENSITIVITY ANALYSIS 50.1 Introduction ...................................... . . . . . . . . 50-1 50.2 Importance Analyses for Core Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-1, 50.2.1 Initiating Event Importances (Case 1) . . . . . . . . . . . . . . . . . . . . . . . 50-2 50.2.2 Common Cause Failure Importances (Case 2) . . . . . . . . . . . . . . . . . 50-3 p 50.2.3 Human Error Importances (Case 3) . . . . . . . . . . . . . . . . . . . . . . . . . 50-5 V 50.3 50.2.4 Component Importances (Case 4) . . . . . . . . . . . . . . . . . . . . . . . . . . 50-6 System Importances for Core Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-7 50.4 Human Error Sensitivity Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-9 50.4.1 Set Human Error Probabilities to 1.0 (Failure) in Core Damage Results (Case 25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-9 50.4.2 Set Human Error Probabilities to 0.0 (Success) in Core Damage Results (Case 26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 0- 10 50.4.3 Assess Importance of Increasing Human Error Probabilities by a Factor of 10 (Case 27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-10 50.5 Other Sensitivity Analyses for Core Damage . . . . . . . . . . . . . . . . . . . . . . . . 50-11 50.5.1 Diesel Generator Mission Time (Case 28) . . . . . . . . . . . . . . . . . . 50- 1 1 50.5.2 Impact of Passive System Check Valves on Core Damage Frequency (Case 29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-12 50.5.3 Instrumentation and Control Cutoff Probability (Case 30) . . . . . . . . 50-12 50.5.4 Containment Recirculation After Safety Injection Line Break Event (Case 31 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50- 12 50.5.5 Quantification Truncation Probability (Case 32) . . . . . . . . . . . . . . . 50-13 50.5.6 Sensitivity to ADS Stage 4 Success Criteria (Case 33) . . . . . . . . . . 50-13 50.5.7 Squib Valve Failure Probability (Case 34) . . . . . . . . . . . . . . . . . . . 50-13 50.5.8 Circuit Breaker Failure Probability (Case 35) . . . . . . . . . . . . . . . . . 50-14 50.5.9 . End-State Importances (Case 36) . . . . . . . . . . . . . . . . . . . . . . . . . 5 0- 14

,e r

\. , v Revision: 9 3 WBStingh0088 April 11,1997

                                                          . mj                              o:\np60opra'wev.,9$rn-soc.* pf: I b

n.. .=

      =

I O TABLE OF CONTENTS (Cont.) Section Title Lage 50.6 Sensitivity and Importance Analyses For Large Release Frequency . . . . . . . 50-15 50.6.1 Importance Analyses For Large Release Frequency . . . . . . . . . . . 50- 15 50.6.2 Sensitivity Analyses For Large Release Frequency . . . . . . . . . . . 5 0-21 50.7 Sensitivity Analysis for Offsite Dose Risk . . . . . . . . . . . . . . . . . . . . . . . . . . 50-22 50.8 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 0-23 Attachment 50A ATWS PRA Sensitivity Case . . . . . . . . .......... ........ 50A-1 CHAPTER 51 UNCERTAINTY ANALYSIS 51.1 Introduction ... .......... . . ............ . .. . . . . . . . . . 51 - 1 51.2 Methodology . . . . . . . . .. .............. .... .. . . . . . . . . . . 51 - 1 51.3 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ ... 51-3 51.4 Sensitivity Studies for the Uncertainty Calculations . . . . . . . ....... . . 51-4 51.4.1 Urtertainty in the Cutoff Frequency . ....... .. ... . . . . . . 51 -4 51.4.2 Uncertainty in the Number of Cutsets Sampled . ... . ........ 51-4 51.4.3 Uncertainty in the Mean Failure Probability for Basic Events . . . . . . 51 -4 51.4.4 Sensitivity to the Random Number Input for Sampling . . . . . . . . . . . 51-5 51.5 References .......... ................ ....... . .. . .. 51-6 CHAPTER 52 RTNSS - FOCUSED PRA SENSITIVITY STUDY 52.1 Focused PRA Sensitivity Study Analysis Method . . .... ... . . . . . . . . . 5 2- 1 52.1.1 Core Damage Frequency Calculation . . . . . . . . . . . . . . . . . . 5 2-2 52.1.2 Release Frequency Calculation . . . . . . . . . . . . . .......... 52-5 52.2 At-Power Focused PRA Sensitivity Study . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2-5 52.2.1 At-Power Focused PRA Sensitivity Study Core Damage Frequency Quantification ... ..... ...... . . .......... 52-6 52.2.2 At-Power Focused PRA Sensitivity Study Release Frequency Quantification .. ............. ...... . . . . . 52-11 52.3 Shutdown Focused PRA Sensitivity Study . . . . . . . .. . .. ... . 52 16 52.3.1 Shutdown Focused PRA Sensitivity Study Core Damage Quantification . . . . . .......... ... ........ .. 52-16 52.3.2 Shutdown Focused PRA Sensitivity Study Release Frequency Calculation . ............................ . 52-19 52.4 Focused PRA Sensitivity Fire Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2-21 52.5 Focused PRA Sensitivity Study Flooding Analysis . . . ...... . . . . . . . 52-21 52.5.1 At-Power Focused PRA Sensitivity Study Flooding Scenarios . .. 52-21 52.5.2 Shutdown Focused PRA Sensitivity Study Flooding Scenarios . . . . . 52-22 52.5.3 Focused PRA Sensitivity Study Flooding Analysis Results S u m mary . . . . . . . . . . . . . . . . . . . . . . . . . .. . ... ... 52-23 52.6 Focused PRA Sensitivity Study Results and Conclusions . . . . ..... . ... 52-23 52.7 References . . . . . . . . . . . . . ... .... . ........ . . . . . . . . 52-24 O Revision: 11 ENEL March 1998 wy4h 3 Westinghouse o:WaWy llWa-toc.wptib XXXii

1151 v TABLE OF CONTENTS (Cont.) i i S.es.t,.on Title Egge CHAPTER 53 DELETED CHAPTER 54 LOW-POWER AND SHUTDOWN RISK ASSESSMENT 54.1 Introduction . .............................................54-1 54.2 Initiating Events .................. .............. ... .... 54-1 54.2.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... 54-2 54.2.2 Events Modeled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-2 54.2.3 Shutdown Phases Summary Description . . . . . . . . . . . . . . . . . . . . . 54-3 54.2.4 Initiating Events for Operanng Modes . . . . . . . . . . . . . . . . . . . . . . . 54-4 54.2.5 Actuanng Signals and Systems Available . . . . . . . . . . . . . . . . . . . 54- 15 54.2.6 Scenarios for Detailed Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 54-16 54.2.7 Summary of Initiating Events Analyzed . . . . . . . . . . . . . . . .... 54-21 54.3 Data............................................... . . . . 54-22 54.3.1 Shutdown Frequency . . . . ..................... ... 54-22 54.3.2 Mission Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-25 54.4 Event Tree Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-28 54.4.1 Event Tree LOSP-ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4-3 0 54.4.2 Event Tree RNS-ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-3 3 V Event Tree CCW-ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-3 3 54.4.3 54.4.4 Event Tree LOCA-PR-ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-33 54.4.5 Event Tree LOCA-V24-ND . . . . . . ...................... 54-34 54.4.6 Event Tree RCS-OD . . . . . . . . . . . . .............. . . . . . 54-36 54.4.7 Event Tree LOSP-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-3 8 54.4.8 Event Tree RNS-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-40 54.4.9 Event Tree CCW-D . . . . . . ........................... 54-40 54.4.10 Event Tree LOCA-V24-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-40 54.4.11 Boron Dilution Events (Reactivity Events) . . . . . . . . . . . . . . . . . . . 54-41 54.4.12 Boron Dilution Events Due to Chemical and Volume Control System Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-45 54.4.13 FndearM Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-48 54.5 Fault Tree Models for Shutdown and Low Power Events . . . . . . . . . . . . . . . 54-48 54.5.1 Insuumentation and Control Modeling for Shutdown (Level 1) . . . . 54-48 54.5.2 Insuumentation and Control Modeling for Shutdown (Level 2) .... 54-51 54.6 Success Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-51 54.6.1 MAAP4 Code Analysis for Shutdown Success Criteria . . . . . . . . . . 54-52 54.6.2 MAAP4 Parameter File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-52 54.6.3 MAAP4 Input Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-54 54.6.4 Definition of MAAP4 Cases From Event Trees . . . . . . . . . . . . . . . 54-55 54.6.5 Results From MAAP4 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 54-57 54.7 Common Cause Analysis .....................................54-57 a s g Revision: 9 O s'JsL%. April 11,1997 uun o w w **

TABLE OF CONTENTS (Cont.) e Section Title Eage 54.8 Human Reliability Analysis . . . . . ........ ..................... 54-57 54.8.1 Operator Actions Calculated . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-58 54.8.2 Conditional Human Error Probabilities . . . . . . . . . . . .. ...... 54-64 54.9 Fault Tree Quantification ..................................... 54-64 54.10 Level 1 Core Damage Frequency Quantification . . . . . . . . . ........... 54-67 54.10.1 Core Damage Quantification Method . . . . . . . . . . . . . . . . . . . . . . 54-68 54.10.2 Quantification Inputs . . . . . . . . . . . ....... . . . . . . . . . . . . . 54-69 54.10.3 Level 1 Shutdown Core Damage Frequency Results . . . . . . . . . . . . 54-70 54.11 Shutdown and Low-Power Release Category Quantification . . . .... . . . . . 54-71 54.12 Shutdown Assessment Importance and Sensitivity Analyses . . . . . . . . . . . . . 54-71 54.12 1 Importance Analyses for Core Damage at Shutdown . . . . . . . . . . . 54-72 54.12.P Other Sensitivity Analyses for Shutdown Core Damage .. . . . . . . 54-77 54.13 Summary of Shutdown Level 1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 54- 81 54.14 References ............................................. . 54-87 Attachment 54A Design Change Impact on Low-Power and Shutdown Risk Assessment ...... ............................. 54A-1 Atuichment 54B Surge Line Flooding Effect on Low-Power and Shutdown Risk Assessment ...... ........ .... .... .. ...... 54B-1 Attachment 54C Effect of Modifications to Safe / Cold Shutdown PRA . . . . . ... 54C-1 CHAPTER 55 SEISMIC MARGIN ANALYSIS ............ ..... . ... 55-1 55.1 Intoduedon .. .......... .. .. .. ............... ... . .. 55-1 55.2 Calculation of HCLPF Values . . . . . . ..... ... . .. . ... ..... 55-2 55.2.1 Seismic Margin HCLPF Methodology . . . ... ..... 55-2 55.2.2 Calculation of HCLPF Values . . . ...... .... . ....... 55-2 55.3 Seismic Margin Model . . . . . . . . . . . . . . . . . . . . .......... . . . . 55-12 55.3.1 SMA Model and Assumptions . . . .... . ..... . .. . . 55-14 55.3.2 Seismic Initiating Events . . . . . . . . . ... ... . . . . . . . . . . . . 55 16 55.3.3 Initiating Event Category HCLPFs . . . . .. . .... .... . . . 55-17 55.3.4 Event Tree Models . . . . ......... ........ .. . ... . 55-20 55.3.5 Fault Tree Modeling and Quantification .... ...... . ... 55 28 55.3.6 Seismic Event Core Damage Sequence Evaluation . . . . . . . . . . . . . 55-36 55.3.7 Containment Performance Model . . . . . . . . . . . . . . . . . . . . . . . . . 55-37 55.4 Calculation of Sequence and Plant HCLPF . . . . . . . .... ..... . . . . 55-38 55.4.1 HCLPFs for Basic Events . . . . . . . . . . . . ............... . 55-39 55.4.2 Calculation of Initiating Event HCLPFs . . . . . . . . . . . . . . . . . . . 55-39 55.4.3 Calculation of System Fault Tree HCLPFs . . . . . . .... . . . . . . 55-39 55.4.4 Calculation of Sequence HCLPFs . . . . . . . . . . . . . . . . . . . . . . . . . 55-40 55.4.5 Calculation of Plant HCLPF . . . . . . . . ....... ......... . 55-43 55.4.6 Large Release HCLPF . . . . . . . . . . . . . . . . . . . . ..... . . . . . 55-43 Revision: 11 ENEL e March 1998 mjg T Westingh00Se oNwahv.Ilira-toc.wpf.lb XXXiv

( ) v TABLE OF CONTENTS (Cont.) Section Title Eage 55.5 Sensitivity Analyses . . ............... . ...... . . . .... .. 55-46 55.5.1 Robust Fuel and Core AssemSly ..... .. ....... ...... . 55-48 55.5.2 Credit for Operator Actions . . . . . ..... . . . . ..... . . . . . 55-49 55.5.3 Less Credit for Operator Actions in LOSP Event at 0.09g ...... . 55-52 55.5.4 72-Hour Mission Time . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 55-5 3 55.5.5 Containment Isolation - Smaller Size Valves . . . ... . ..... . . . 55-56 55.5.6 Steam Generator Tube Rupture Success Criteria ........... .. 55-57 55.5.7 Steam Line Break Success Criteria . ...... . .. ... . . . . . . . . 55-5 8 55.5.8 Seismic Interaction Between Turbine and Auxiliary Buildings . . . . . 55-59 55.6 SMA Results and Insights . . . . . . . . . . . . . .. .. . . . . . ... .... 55-63 55.9.6 AP600 SMA Results . .... .. .. . ......... . . . . . 55-63 55.9.6 AP600 SMA Insights .. .. .. .. . . ... . . . . . . . . . . 55-68 55.7 References .... ............ .... . .. .. .. . .......... 55-70 Attachment 55A System HCLPF Calculations . . . . . . . .. . . .... .. 55A-1 Attachment 55B Sequence HCLPF Calculations . . ..... .. .. . .. ... . 55B-1 Attachment 55C Seismic Margin Analysis HCLPF Sensitivity Study . . . . . . 55C-1 (n) CHAPTER 56 PRA INTERNAL FLOODING ANALYSIS 56.1 Introduction .. . ... .. . ... . . . .. . .. . . .... . . . 56-1 56.1.1 Definitions . . . . ... ...... .. .. . . . ... ... 56-1 56.2 Methodology . . . .. ... ... .. .. . . . . . . ... . . . 56-1 56.2.1 Summary of Methodology . . . . ..... .... . . .. . .. . 56-1 56.2.2 Information Collection . . . .. . . . . . . .. . ... . . . 56-2 56.2.3 Initial Screening Assessment .... . . .. . . . .. . 56-3 56.2.4 Detailed Screening Assessment . . . .... . . . 56-4 56.2.5 Identification of Flood-Induced Initiating Events .. .. ... . . . 56-6 56.2.6 Initiating Event Frequencies .... . ... . . . . . .. .. . 56-7 56.3 Assumptions . . . . . . . . . . . . . . ........ .... . ....... .... . 56-7 56.3.1 General Flooding Analysis Assumptions and Engineering Judgments . 56-7 56.3.2 AP600-Specific Assumptions . .... . .......... . .. ... . 56-9 56.4 Infonnation Collection . ... . .............. ................ 56-11 56.4.1 PRA-Modeled Equipment and Locations . . ............. . 56-11 56.4.2 Identification of Areas for Flooding Evaluation . . . . . . . . . . . . . . . 56-11 56.5 At-Power Operations . . . . . . . . ..... . ........ .. . . . . . . . . 56-12 56.5.1 Initial Screening Assessment . . . . . . ..... ... . . ... .. . 56-12 56.5.2 Detailed Screening Assessment .... . .................. 56-12 56.5.3 Identification of Flood-Induced Initiating Events . . . . . ... .. . 56-28 56.5.4 Calculation of Flood-Induced Initiating Event Frequencies . . . . 56-32 56.5.5 Quantification of At-Power Flood-Induced Events . . . . .. . 56-39 _p~ I i LJ krme. I hI xxxy oVaWy, I Upra-toc.wpf.1b i L

111111 O TABLE OF CONTENTS (Cont.) Sectico I! tit East 56.6 Shutdown Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56-41 56.6.1 Detailed Screening Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6-41 56.6.2 Identification of Flood Induced Initiating Events . . . . . . . . . . . . . . 56-42 56.6.3 Calculation of Flood. Induced Initiating Event Frequencies . . . . . . . . 56-43 56.6.4 Shutdown Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56-48 56.7 Seismically Induced Flooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56-51 56.8 Flooding Hazards During Refueling Outages . . . . . . . . . . . . . . . . . . . . . . . . 56-52 56.9 Flooding Sensitivity Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56-52 56.9.1 Flooding Human Error Probabilities Sensitivity Study . . . . . . . . . . . 56-52 56.10 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6-53 CHAPTER 57 INTERNAL FIRE ANALYSIS 57.1 Introduction ............ ................. ................ 57-1 57.2 Qualitative Analysis Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-2 57.3 Quantitative Methodology of Fire Area Frequency . . . . . . . . . . . . . . . . . . . . . 57 6 57.3.1 Fire Frequency Calculations .............................57-d 57.3.2 Fire Damage Category Quantification . . . . . . . . . . . . . . . . . . . . . . . 57-7 57.4 Core Damage Quantification Methodology . . . . . . . . . . . . . . . . . . . . . . . . 5 7- 10 57.5 Fire Analysis Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-12 57.5.1 Qualitative Analysis Assumptions and Other Modeling Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57- 12 57.5.2 Quantification Assumptions And Modeling Considerations .... .. 57-14 57.6 At. Power Qualitative Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-17 57.7 At. Power Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-19 57.7.1 Fire Ignition Frequencies for Quantitative Analysis . . . . . . . . . . . . . 57-19 57.7.2 Fire Damage Category Quantification . . . . . . . . . . . . . . . . . . . . . . 57-19 57.7.3 Individual Area PRA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-19 57.8 Control Room Fire Analysis - Power Operation . . . . . . . . . . . . . . . . . . . . . . 57-22 57.8.1 Description of the Cc etrol Room and Associated Fire Protection . . . 57-22 57.8.2 Alternate Shutdown Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-23 57.8.3 Fire Hazard Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-24 57.8.4 AP600 Control Room Fire Evaluation . . . . . . . . . . . . . . . . . . . . . 57-25 57.8.5 Fire Scenario Identification and Frequency Determination . . . . . . . . 57-29 57.8.6 Control Room Fire Scenario Quantification and Results . . . . . . . . . 57-32

    -57.9        Shutdown Fire Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7-3 3 57.9.1       Fire Ignition Frequencies during Shutdown Modes of Operation . . . . 57-33 57.9.2        Fire Damage Category Quantification . . . . . . . . . . . . . . . . . . . . . . 57-34 57.9.3        Individual Area PRA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-34 57.9.4       Fire Analysis for Safe Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . 57 34 57.9.5       Fire Analysis for Mid-Loop Operation . . . . . . . . . . . . . . . . . . . . . 57-41 O

Revision: 9 gg April'11,1997 gm 3 W85tingh0U88 ona@00$rs\res9%pra-toc.nepf;1b XXXvi

RE q \ ) Qt TABLE OF CONTENTS (Cont.) Section Title Eage 57.10 Summary and Conclusions . . . ... ............... . . . . . . . . . . 57-42 57.10.1 At. Power Analysis ....... ......... .... ......... . 57-42 57.10.2 Shutdown Fire Analysis .. ...... ...... .. ..... . . . . 57-45 57.10.3 Conclusions . . . . . ............. .. ...... .. . . . . . . 57-47 57.11 References . ......... ... .......... . .. .. . . . . . . . . . . 5 7-4 8

         ' ATTACHMENT 57A         DEFINITIONS             . .............                        ...... ..........                            . 57A-1 ATTACHMENT 57B          DESIGN CHANGE EFFECT ON INTERNAL FIRE ANALYSIS . . 57B-1 CHAPTER 58 WINDS, FLOODS, AND OTHER EXTERNAL EVENTS 58.1   Introduction ...........                  ................ .                          ...............58-1 58.2   External Events Analysis ............. ..... .                                               . . ....                . . . 58-1 58.2.1     Severe Winds and Tornadoes . . . . . . .                    ....           . ....... .                    . . . 58-1 58.2.2     External Floods . . . . . . . . .           .... .. . .... .. . ......                                            . 58-2 58.2.3     Transportation and Nearby Facility Accidents                         .... . . .. .. .                             . 58-2 58.3   Conclusion . .........                 .      . .. ... ....                     ..... .                   . .. .               58-3 58.4   References    . .... ... . ....................                                              .....           . . . . . . 5 8-3 m

( CHAPTER 59 PRA RESULTS AND INSIGHTS V) 59.1 Introduction ...... .... ... ... .. .... . . . . .59-1 59.2 Use of PRA in the Design Process ........... .... .. . . . 59-3 59.2.1 Stage 1 - Use of PRA During the Early Design Stage .. ... .. 59-4 59.2.2 Stage 2 - Preliminary PRA . . . . . . . . . .. .......... .. . 59-5 59.2.3 Stage 3 - AP600 PRA Submittal to NRC (1992) . ... . .... 59-7 59.2.4 Stage 4 - PRA Revision 1 (1994) . . . . ...... ..... ... . 59-8 59.2.5 Stage 5 - PRA Revisions 2-8 (1995-1996).. . ... . . . . . . . . . . . 5 9-8 59.3 Core Damage Frequency from Internal Initiating Events at Power ......... 59-10 59.3.1 Dominant Core Damage Sequences ....... ..... ... .. . 59-12 59.3.2 Component Importances for At-Power Core Damage Frequency . . . 59-44 59.3.3 System Importances fcr At-Power Core Damage . . . ... . . 59-44 59.3.4 System Failure Probabilities for At-Power Core Damage .... .. 59-45 59.3.5 Common Cause Failure Importances for At-Power Core Damage .. 59-45 59.3.6 Human Error Importances for At-Power Core Damage . ..... . 59-45 59.3.7 Accident Class Importances . . . . . . . . . . . ............. .. 59-47 59.3.8 Sensitivity Analyses Summary for At-Power Core Damage . . . . . . 59-47 59.3.9 Summary of Important Level 1 At-Power Results . . . . . . . . . . . . . 5 9-4 8 l 59.4 Large Release Frequency for Internal Initiating Events at Power . . . . . . . . . . . 59-51 59.4.1 Dominant Large Release Frequency Sequences . . . . . . . . . . . . . . . 5 9 -5 2 59.4.2 Sensitivity Analyses for Containment Response . . ..... .. .. 59-72 ,c 1

 ~ _ ,

ENEl. Revision: II W W85tingh0USS Wra&=.

            ===                                                                                                                       March 1998 XXXvii                                        c:\pra\rev ll\pra-toc.wpf.lb

a = a: O TABLE OF CONTENTS (Cont.) Section Title M 59.4.3 Comparison of Initiating Event Importances for Core Damage Frequency and Large Release Frequency . ........... . . . . . . 59-72 59.4.4 Summary of Imponant Level 2 At-Power Results . . . . . . . . . . . . . . 59-73 59.5 Core Damage and Severe Release Frequency from Events at Shutdown . . . . . .................. .. ........... . . . . 59-75 59.5.1 Summary of Shutdown Level 1 Results . . . . . . . . . . . . . . . . . . . . 59-75 59.5.2 Large Release Frequency for Shutdown and Low-Power Events . . . . .................... ........... . ... 59-81 59.5.3 Shutdown Results Summary . . . . ....................... 59-82 59.6 Results from Internal Flooding. Internal Fire, and Seismic Margin An aly ses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . 59-82 59.6.1 Results of Intemal Flooding Assessment . . . . . . . . . .. ...... 59-82 59.6.2 Results of Intemal Fire Assessment . .. .. .. ...... ..... 59-83 59.6.3 Results of Seismic Margin Analysis . . . ....... ....... 59-87 59.7 Plant Dose Risk from Release of Fission Products . ........... .... . 59-87 59.8 Overall Plant Risk Results . . . . . . . . . . . . . . . . ............. . . . . . . 59-88 59.9 Plant Features Imponant to Reducing Risk ...... .... .. . . . . . . . . . 59-89 59.9.1 Reactor Design . . . . . . .... .......... . . .... . . 59-90 59.9.2 Systems Design . . . . . . . . . . . . . . . .................. . 59-91 59.9.3 Instrumentation and Control Design . . . . ..... . . .. ... 59-94 59.9.4 Plant Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59-95 59.9.5 Plant Structures . . . . . . . . . . . . . ........... . . . 59-96 59.9.6 Containment Design . . . . . . ..... . ... .. .. . ... 59-96 59.10 PRA Input to the Design Cenification Process . . . . . . ............... 59-101 59.10.1 PRA Input to Reliability Assurance Program . . . . . . . ....... 59-102 59.10.2 PRA Input to Certified Design Material ......... . . . . . . . . 59-102 59.10.3 PRA Input to the Technical Specifications . . . . . . . . . . . . . . . 59-102 59.10.4 PRA Input to MMI/ Human Factors / Emergency Response Guidelines . . . . . . . . . . . . . . . . ... ........ .. ... 59-102 59.10.5 Summary of PRA-Based Insights . . . . . . ....... . . . . . . . . 59-103 59.10.6 Combined License Information .................. .. . 59 103 APPENDIX A MAAP4 ANALYSIS TO SUPPORT SUCCESS CRITERIA . . . . . . . . . . . . . A- 1 APPENDIX B EX-VESSEL SEVERE ACCIDENT PHENOMENA ........ . ... . . . B-1 APPENDIX C DESIGN CHANGES THAT OCCURRED AFTER THE PRA ANALYSES WERE COMPLETED . . . . . . . . . . . . . . . . . . .....................C-1 APPENDIX D EQUIPMENT SURVIVABILITY ASSESSMENT . . . . . . . . . . . . . . . . . . . . . D- 1 i i O Revision: 11 ENEL March 1998 'a'a h

                                                                               .                           3 Westingh00Se oAprawv.liwa-tocypub                                     xxxviii

i m I V q u- LIST OF TABLES (Cont.) Table No. Title Page 57-25 Quantitative Summary - Control Room Fires During Safe Shutdown . . . . . . . . .... ........ ................. 57-138 57-26 Summary of Qualitative Evaluation Results - Mid-Loop Operation . . .. ....... .......... . . . . . . . . . . . . . . 57-139 57-27 Summary of Quantitative Results - Mid-Loop Operation .... . . . . . . . . . 57- 146 57-28 Quantitative Summary - Control Room Fires During Mid-Loop Operation . . . . ..................... ......... .. 57-154 57-29 Safe Shutdown Containment Single-Hot-Short LOCA Sensitivity . . . . . . . . . 57-155 59-1 Contribution of Initiating Events to Core Damage . ....... . ... . . 59-104 59-2 Conditional Core Damage Probability of Initiating Events . . . . .. . ... 59-105 59-3 Internal Initiating Events at Power Dominant Core Damage Sequences . . . . 59-106 59-4 Sequence 1 - Safety Injection Line Break Dominant Cutsets (SI-LB-02) . . . . 59-108 59-5 Sequence 2 - Intermediate LOCA Dominant Cutsets (NLOCA-03) . . . . . .. 59-113 59-6 Sequence 3 - Large LOCA Dominant Cutsets (LLOCA-06) . . . ... .. . 59-118 59-7 Sequence 4 - Large LOCA Dominant Cutsets (LLOCA-03) . . . . . . . . . . . . 59-124 59-8 Sequence 5 - Reactor Vessel Rupture Cutset (RV-RP-02) . . . . . . . . . . . . . . 59-130

 ,m
 -         59-9      Sequence 6 - Large LOCA Dominant Cutsets (LLOCA-11) . . . .......                                                     59-131 59-10     Sequence 7 - ATWS Dominant Cutsets (ATWS-28) .                                                                    . 59-133

() 59-11 Sequence 8 - Medium LOCA Dominant Cutsets (MLOCA-03) .... ...

                                                                                                                                       . 59-141 59-12     Sequence 9 - ATWS Dominant Cutsets (ATWS-13) . . . . . . . . .                            . ......                    59-146 59-13     Sequence 10 - Intermediate LOCA Dominant Cutsets (NLOCA-04) . ..                                                  . 59-151 59-14     Sequence 11 - Safety Injection Line Break Dominant Cutsets (SI-LB-03)                                          .. 59-156 59-15     Sequence 12 - Small LOCA Dominant Cutsets (SLOCA-03) . . . ......                                                   . 59-160 59-16     Sequence 13 - Core Makeup Tank Line Break Dominant Cutsets (CMTLB-03) 59-165 59-17     Sequence 14 - Steam Generator Tube Rupture Dominant Cutsets (SGTR-07) . 59-170 59-18     Sequence 15 - Steam Generator Tube Rupture Dominant Cutsets (SGTR-23) . 59-171 59-19     Sequence 16 - Large LOCA Dominant Cutsets (LLOCA-02) . . . . . . . . . . . . 59-177 59-20     Sequence 17 - Large LOCA Dominant Cutsets (LLOCA-05) . . . . . . . . . . . . 59-183 59-21     Sequence 18 - Consequential SGTR Dominant Cutsets (SGTRC-03) . .....                                                  59-189 59-22     Sequence 19 - Intermediate LOCA Dominant Cutsets (NLOCA-16) .                                    ..               . 59-195 59-23     Typical System Failure Probabilities, Showing Higher Reliabilities for Safety Systems . . . . . . . . . . . . . . . . . . . . . . .    ..      . . . . . . . . . . . . . . 59-201 59-24     Dominant CET Sequences . ...... ... .                           .. .......                  . ..              .. 59-202 59-25     Comparison of Initiating Event Contribution to Core Damage and La7e Release Frequencies ......... ... . ............ ...                                                     .. 59-203 59-26     Summary of AP600 PRA Results . . . . . . . . . . . .                . ..............                                . 59-204 59-27     Comparison of AP600 PRA Results to Risk Goals . ...                           . . . . . . . . . . . . . 59-205 59-28     Site Boundary Dose Risk at 24 Hours .......                     . . . . . . . . . . . . . . . . . . . 59-206 59-29     AP600 PRA-Based Insights . . . . . . . . . .           ..       ...........                      ..           .. 59-207 g
}
    /

ENE Revision: 11 MDI88 wah March 1998 liX o:\ap600\pra\rev.,l l\pra-lot.wpf. I b

W LIST OF FIGURES e Fkure No. Ti.tle Eage 2-1 Core Damage Logic Diagram for Internal Initiators ...... . . . . . . . . . . . 2 -5 8 2-2 Core Damage Logic Diagram for Internal Initiators ..... .... .... .. 2-59 2-3 Core Damage Logic Diagram for Intemal Initiators ......... . . . . . . . . . 2-60 2-4 Core Damage Logic Diagram for Intemal Initiators . . . . . . . . . . . . . . .. .. 2-61 4-1 Large Loss-of-Coolant-Accident Event Tree ....... ..... . . . . . . . . . 4- 120 4-2 Medium Loss-of-Coolant Accident Event Tree . . . . . .. . . . . . . . . . . . . . . 4- 121 4-3 Core Makeup Tank Line Break Event Tree . . . . . . . . . . . . . . . . . . . . . . . . 4- 122 4-4 Direct Vessel Injection Line Break Event Tree .. . ....... . . . . . . . . 4-123 4-5 Intermediate Loss-of-Coolant Accident Event Tree . . . . . . . . . . .... ... . 4-124 4-6 Small Loss-of-Coolant Accident Event Tree . ................... 4-125 4-7 Reactor Coolant System Leak Event Tree . . .......................4-126 4-8 Passive Residual Ileat Removal Tube Rupture Event Tree . . . . . . . . . . . . . . 4-127 4-9 Steam Generator Tube Rupture Event Tree . . . . . . . ........ . . . . . 4-128 4-10 Reactor Vessel Rupture Event Tree .. ... . .......... .. . . . . . 4-130 4-11 Interfacing Systems Loss-of-Coolant Accident Event Tree . . . . . . . . . . . . . . 4-131 4-12 Transients with Main Feedwater Event Tree . .................. .. 4-132 4-13 Transients with Loss of Reactor Coolant System Event Tree . . . . . . . . . . . . 4-133 , 4-14 Transients with Loss of Main Feedwater Event Tree . . . . . . . . . . .. . .. 4-134 4-15 Transients with Core Power Excursion Event Tree . . . . . . . . . . ...... . 4-135 4-16 Loss of Component Cooling Water System / Service Water System Event Tree . . . ........... .. ... ............. ....... .. 4-136 4-17 Loss of Main Feedwater Event Tree . . . ........... .... ....... . 4-137 4-18 Loss of Condenser Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-138 4-19 Loss of Compressed Air Event Tree . . .. ........ .............. 4-139 4-20 Loss of Offsite Power Event Tree ......... .... ....... ... ... . 4-140 I 4-21 Main Steam Line Break Downstream of Main Steam Isolation Valves Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . ................ 4-141 4 22 Main Steam Line Break Upstream of Main Steam Isolation i Valves Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-142 l 4-23 Stuck-Open Secondary-Side Safety Valve Event Tree . . . .. ...... . . . . 4-143 j 4 24 Anticipated Transient Without Scram Precursor without Main I Feedwater Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . 4-144 4-25 Anticipated Transient Without Scram Precursor with Injection E ve nt Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-146 4-26 Anticipated Transient Without Scram Precursor Transients with Main Feedwater Event Tree . . . . . . . . .......... ....... .. . .. 4-147 i O: Revision: -.9 April 11,1997 _ [ WSSthgh0llSe o \ap600;prawv.9pra-lof utf:1b lx

l 1, OST OF FIGURES (Cont.) Finnre No. IWg Eggs 54-4 LOCA/RNS Pipe Rupture Durms Hot / Cold Shutdown (RCS Filled) Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-302 54-5 . LOCA/RNS-V024 Opens During Hot / Cold Shutdown (RCS Filled) Event Tres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-303 54-6 Overdraining of Reactor Coolant System During Dnandown to Mid-Loop . . . 54-304 54-7 Loss of Offsite Power (RCS Dramed) Event Tree .... ............. 54-305 54-8 Loss of RNS Initiator (RCS Drained) Event Tree . . . . . . . . . . . . . . . . . . . . 54-306 54-9 Loss of CCW/SW Initiator (RCS Drained) Event Tree . . . . . . . . . . . . . . . . 54-307

   ; 54-10        LOCA/RNS V024 Opens (RCS Druned) Event Tres . . . . . . . . . . . . . . . . . 54 308 54-11        Accumulator Injection (Dilution Scenario) Event Tree . . . . . . . . . . . . . . . . . 54-309 54-12        Shutdown Transient Case SD1B2 RCS Pressme vs. Time . . . . . . . . . . . . . . 54-310 54-13         Shutdown Transient Case SD1B2 Mass Flow Rate vs. Time . . . . . . . . . . . . 54-511 54-14        Shutdown RNS Break Case SD3A (3500 gpm) . . . . . . . . . . . . . . . . . . . . . 54-312 54-15         Shutdown RNS Break Case SD3A2 (2000 sym) . . . . . . . . . . . . . . . . . . . . 54-313 54-16         Shutdown RNS Break Case SD3A3 (1000 gym) . . . . . . . . . . . . . . . . . . . . 54-314 54-17        Shutdown Plant Damage State Substate Event Tree for LP-ADS . . . . . . . . . 54-315 54-18         Shutdown Plant Damage State Substans Event Tree for LP-1A . . . . . . . . . . . 54-316 54-19         Shutdown Plant Damage State Substaes Event Tree for LP-3D . . . . . . . . . . . 54-317

( 54-20 Shutdown Plant Damage State Substate Event Tree for LP-3BR . . . . . . . . . . 54-318 54 21 Shutdown Plant Damage State Substate Event Tree for LP-3BE . . . . . . . . . . 54-319 55-1 Seismic Initiating Event L. J.y Tres . . . . . . . . . . . . . . . . . . . . . . . . . . 55-105 55-2 EQSTRUC Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-106 55-3 EQRVFA Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 108 55-4 EQLLOCA Initianng Event Famit Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 55-109 55 5 EQSLOCA Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-110 55-6 EQATWS Initiating Event Fault Tres . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-111 55 EQSTRUC Event Tres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-112 55-8 EQRVFA Event Tres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-113 55-9 EQLLOCA Event Tres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-114 55-10 EQSLOCA Event Tres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-115 55-11 EQATWS Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-116 l 55-12 EQLOSP Event Tres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-117 55-13 EQLOSP Event Tree (for 0.5g level eenhquake) . . . . . . . . . . . . . . . . . . . . 55-118 55 14 EQAC2AB Fank Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-119 ' 55-15 ~ EQXCIC Fauk Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-120 55 EQXADMA Fank Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-121 55-17 EQXIW2A Fank Tres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-122 55-18 EQRECIR Fauk Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-123 55-19 EQ.CM2SL Fauk Tres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-124 55-20 . EQADA Fauk Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-125 [;- 55-21 EQIW2AB Fauk Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-126 .s - Revision: 9 H ED April 11,1997 i Imi .wsomm e w . wor

W e, LIST OF FIGURES (Cont.) Figure No. Title hage 55-22 EQ-PRHR Fault Tree . . . . . . . . .............. .......... . . . 55-127 55-23 EQ-PRESU Fault Tree . . . . . . . . ........ ............. . 55-128 55-24 EQ-PMS Fault Tre e . . . . . . . . . . . . ...... .. ....... . . . . . . . 55-129 l 55-25 EQ.DC Fault Tree . . . . . ................... . . . . . . . . . . . . . . . 55- 130 55-26 Class IE de Power Block Diagram . . .... ..................... 55-131 55-27 Containment Evaluation Model ... ...........................55-132 55 28 EQ-STRUC Event Sequences . . .. .......... . . . . . . . . . . . . . . . 5 5-13 3 55-29 EQ-RVFA Event Sequences . . . . . . . . .................... ... . 55-134 55-30 EQ-LLOCA Event Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-135 55-31 EQ-SLOCA Event Sequences . . . . . . . . . . . . . .. ... . . . . . . . . . . 55-136 55 32 EQ-SGTR Event Sequences . ..................... ..... ... 55-137 55 33 EQ-SLB Event Sequences . . . . . . . . . . . . . . . . . .... ....... ... 55-138 55-34 EQ-ATWS Event Sequences . . ........... .... .. . . . . . . . . . . 5 5-13 9 55-35 EQ-LOSP Event Sequences (for 0.5g level earthquakes) . ......... ... 55-140 56-1 Flood Zones and Barriers Plan at 66'-6" . . ...... .... .. .. . . . 56-93 56-2 Flood Zones and Barriers Plan at 82'-6" . . ...... ......... .. ... . 56-95 56-3 Flood Zones and Barriers Plan at 96'-6" . . . . . . . . . . . . . . . . . . . . . . ... . 56-97 56-4 Flood Zones and Barriers Plan at 100'-0" & 107'-2" . . . . . . ..... . 56-99 56-5 Flood Zones and Barriers Plan at 117'-6" ........ .. ........ 56-101 56-6 Flood Zones and Barriers Plan at 135'-3" . . . . . . .............. .. 56-103 56-7 Flood Zones and Barriers Plan at 160'-6" & 153'-0" . . ......... 56-105 56-8 Flood Zones and Barriers Plan at 160'-6" & 180'-0" . . . .. .. .. .. . 56-107 56-9 8-in. Fire Main Rupture at-Power Event Tree ....... . ...... . . . . 56-109 56-10 8-in. Fire Main Rupture during Hot / Cold Shutdown Event Tree . . . . . . .. . 56-110 56-11 8-in. Fire Main Rupture during RCS Drained Conditions Event Tree ... . 56-111 57-1 Fire Progression Event Tree for 1200 AF 01 Fire Area . . . . . . . . . . . .. . 57-156 59-1 Contribution of Initiating Events to Core Damage .. . .. .. . . . . . 59-233 59 2 Contribution of Initiating Events to Large Release Frequency and Core Damage Frequency . ...... ........... ... ......... 59-234 59-3 Total Plant CDF/LRF . . . . . . .. ............ ..... ...... . . 59-235 59-4 24-Hour Site Boundary Dose Cumulative Frequency Distribution . . . . . . . . 59-236 Revision: 11 e March 1998 3 Westiligh00Se owemva*v.is w w

  • n lxxxii

f n (v) TABLE OF CONTENTS (Cont.) Section Tit.le

                                                         .                                                                  Ease CHAPTERS 46 THROUGH 48 DELETED CHAPTER 49 OFFSITE DOSE EVALUATION 49.1  Introduction ........................................                                          . . . . . . 49-1 49.2  Conformance with Regulatory Requirements . . . . . . . . . . . . . . . . . . . . . . . 4 9- 1 49.3  Assu mptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-2 49.4  Method ology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9-2 49.5  Dose Evaluation Results and Discussions . . . . . ..................... 49-6 49.6  Quantification of Site Risk . . . . . . . . ............................49-7 49.7  Risk Quantification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9-7 49.8  References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9- 8 CHAPTER 50 IMPORTANCE AND SENSITIVTTY ANALYSIS                                                                                 ,

50.1 Introduction ...............................................50-1 j 50.2 Importance Analyses for Core Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 0- 1 50.2.1 Initiating Event Importances (Case 1) . . . . ...... . . . . . . . . . . . 50-2' 50.2.2 Common Cause Failure Importances (Case 2) . . . . . . . . . . . . . . . . . 5 0-3 m 50.2.3 Human Error Importances (Case 3) . . . . . . . . . . . . . . . . . . . . . . . . . 50-5

 )            50.2.4     Component Importances (Case 4) . . . . . . . . . . . . . . . . . . . . . . . . . 50-6 50.3 System Importances for Core Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-7 50.4  Human Error Sensitivity Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-9 50.4.1     Set Human Error Probabilities to 1.0 (Failure) in Core Damage Results (Case 25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-9 50.4.2     Set Human Error Probabilities to 0.0 (Success) in Core Damage Results (Case 26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 0 10 50.4.3     Assess Imponance of Increasing Human Error Probabilities by a Factor of 10 (Case 27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-10 50.5  Other Sensitivity Analyses for Core Damage . . . . . . . . . . . . . . . . . . . . . . . 50- 1 1 50.5.1     Diesel Generator Mission Time (Case 28) . . . . . . . . . . . . . . . . . . 50- 1 1 50.5.2     Impact of Passive System Check Valves on Core Damage Frequency (Case 29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50- 12 50.5.3     Instrumentation and Control Cutoff Probability (Case 30) . . . . . . . . 50-12                          ;

50.5.4 Containment Recirculation After Safety Injection Line Break Event (Case 31 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-12 50.5.5 Quantification Truncation Probability (Case 32) . . . . . . . . . . . . . . . 50-13 50.5.6 Sensitivity to ADS Stage 4 Success Criteria (Case 33) . . . . . . . . . . 50-13 ) 50.5.7 Squib Valve Failure Probability (Case 34) . . . . . . . . . . . . . . . . . . . 50-13 50.5.8 Circuit Breaker Failure Probability (Case 3 5) . . . . . . . . . . . . . . . . . 50-14 50.5.9 End-State Imponances (Case 36) . . . . . . . . . . . . . . . . . . . . . . . . . 5 0- 14 A

                                                                                                                                 )

i ENEL ' Revision: 9  ! D U88 U.th. April 11,1997 xxxi owopawv.mpra-soc.wpr:Ib

                                                                                                                      --______a
, - . . +

TABLE OF CONTENTS (Cont.) e Section Title _Page 50.6 Sensitivity and Importance Analyses For Large Release Frequency . . . . . . . . 50-15 50.6.1 Importance Analyses For Large Release Frequency . . . . . . . . . . . . 50-15 50.6.2 Sensitivity Analyses For Large Release Frequency . . . . . . . . . . . . . 50-21 50.7 Sensitivity Analysis for Offsite Dose Risk . . . . . . . . . . . .......... .. 50-22 50.8 Results Summary . . . . . . . . ............ . . . . . . . . . . . . . . . . . . . . 50-23 Attachment 50A ATWS PRA Sensitivity Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50A-1 CtIAITER 51 UNCERTAINTY ANALYSIS 51.1 Introduction ..................... .......... . ...... .... 51-1 51.2 Methodology . . . . . . . . . . . .. ......... .... ..... ... . .. 51-1 51.3 Summary of Results . . . . . . . . . . . . ...... ....... .............. 51-3 51.4 Sensitivity Studies for the Uncenainty Calculations ......... . .. ..... 51-4 51.4.1 Uncertainty in the Cutoff Frequency . . . . . . . . . . ... . .. 51-4 51.4.2 Uncertainty in the Number of Cutsets Sampled . . . . ... .. .. .51-4 51.4.3 Uncenainty in the Mean Failure Probability for Basic Events . . . . . . . 51-4 51.4.4 Sensitivity to the Random Number Input for Sampling . . . . . . . . .51-5 51.5 References . . . . . . . . . . . . . . . . . . . . . . . .......... .. ...... . 51-6 CHAITER 52 RTNSS - FOCUSED PRA SENSITIVITY STUDY 52.1 Focused PRA Sensitivity Study Analysis Method . . . . . ..... . . . . . . . 52- 1 52.1.1 Core Damage Frequency Calculation . . . .. ..... . . 52-2 52.1.2 Release Frequency Calculation . . . . . . . . . . . . . . . . . 5 2 -5 52.2 At-Power Focused PRA Sensitivity Study . . . ........... ..... . . . 52-5 52.2.1 At-Power Focused PRA Sensitivity Study Core Damage Frequency Quantification .............. .. .. ...... . . 52-6 52.2.2 At-Power Focused PRA Sensitivity Study Release Frequency Quantification ............ . . .. . . 52-11 52.3 Shutdown Focused PRA Sensitivity Study .. .... . ...... . . . . 52-16 52.3.1 Shutdown Focused PRA Sensitivity Study Core Damage Quantification . . ... .. ... . .... . . . . . . 52-16 52.3.2 Shutdown Focused PRA Sensitivity Study Release Frequency Calculation . .......... .. ... . ...... . . . 52-19 52.4 Focused PRA Sensitivity Fire Analysis ......... ................ . 52-21 52.5 Focused PRA Sensitivity Study Flooding Analysis . . . . . . . . ... . . . . . . . 52-21 52.5.1 At-Power Focused PRA Sensitivity Study Flooding Scenarios . .. . 52-21 52.5.2 Shutdown Focused PRA Sensitivity Study Flooding Scenarios . . . . . 52-22 52.5.3 Focused PRA Sensitivity Study Flooding Analysis Results Summary .......................... ......... ... 52-23 52.6 Focused PRA Sensitivity Study Results and Conclusions . . . ... . . . . . . 52-23 52.7 References . . ........... .. . . . . . . . . 52-24 e = L i' 0%raWv.,llipra-toc.wpf.lb xxxii m_ w St-i

   /_N                                                                                                                                 !
   \g)

TABLE OF CONTENTS (Cont.) Section Title P. age 1 CHAPTER 53 DELETED CHAPTER 54 LOW-POWER AND SHUTDOWN RISK ASSESSMENT 54.1 Introduction ....... ............... ...... ......... . . . 54-1 54.2 Initiating Events . ................ .. ........... ... ..... 54-1 54.2.1 Identification . . . . ............. ........ . . ... 54-2 54.2.2 Events Modeled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. 54-2 54.2.3 Shutdown Phases Summary Description . . . . .. . . . . . . . . . . . . . . . 54-3 54.2.4 Initiating Events for Operaung Modes . . . . . . . . . . . . . . . . . . . . . . 54-4 54.2.5 Actuating Signals and Systems Available . . . . . . . . . . . . . . . . . . 54-15 54.2.6 Scenarios for Detailed Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 54- 16 54.2.7 Summary of Initiating Events Analyzed . . . . . . . . . . . . . . . . 54-21 54.3 Data................................ ............... .. 54-22 54.3.1 Shutdown Frequency . . ............................ 54-22 54.3.2 Mission Times . . . . . . . . . . . . .... ......... . . . . . . . . . . 54-25 54.4 Event Tree Development . . . . . . . . . ......................... .. 54-28  ; p 54.4.1 Event Tree LOSP-ND . . . . . . ... ............... ... .. 54-30 V 54.4.2 54.4.3 Event Tree RNS-ND .. ........... ... ......... Event Tree CCW-ND . . ........ ...........

                                                                                                                    ... 54-33
                                                                                                        . . . . . . . . . 54-3 3 54.4.4     Event Tree LOCA-PR-ND . . . . . . ...................... 54-33 54.4.5     Event Tree LOCA-V24-ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-34 54.4.6     Event Tree RCS-OD . . . . . . . ... .................                                .... 54-36 54.4.7     Event Tree LOSP-D . . .......... . . . . . . . . .              . . . . . . . . . 54-3 8 54.4.8     Event Tree RNS D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-40 54.4.9     Event Tree CCW-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-40 54.4.10 Event Tree LOCA-V24-D . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 54 40 54.4.11 Boron Dilution Events (Reactivity Events) . . . . . . . . . . . . . . . . . . . 54-41 54.4.12 Boron Dilution Events Due to Chemical and Volume Control System Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-45 54.4.13 Endstates Summny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-4 8 54.5 Fault Tree Models for Shutdown and Low-Power Events . . . . . . . . . . .... 54-48 54.5.1      Instrumentation and Control Modeling for Shutdown (Level 1)                          ... 54 48 54.5.2      Instrumentation and Control Modeling for Shutdown (Level 2) .... 54-51 54.6 Success Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-51 54.6.1      MAAP4 Code Analysis for Shutdown Success Criteria . . . . . . . . . . 54-52 54.6.2      MAAP4 Parameter File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-52 54.6.3      MAAP4 Input Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-54 54.6.4      Definition of MAAP4 Cases From Event Trees . . . . . . . . . . .... 54-55                               ,

54.6.5 Results From MAAP4 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 54-57 ) g_ 54.7 Common Cause Analysis . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . ..... 54-57 , i .

      /

V ENE Revision: 9 YO W?4mb April 11,1997 xxxiii o$ap6o"Per Wv 9$rHoc.wpLib

 ;h Ww O

TABIE OF CONTENTS (Cont.) Section Title _P_gg i 54.8 Human Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-57 54.8.1 Operator Actions Calculated . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 58 54.8.2 Conditional Human Error Probabilities . . .................. 54-64 54.9 Fault Tree Quantification ..................................... 54-64 54.10 Level 1 Core Damage Frequency Quantification . . . . . . . . . . . . . . . . . . . . . . 54-67 54.10.1 Core Damage Quantification Method . ......... .......... 14-68 54.10.2 Quantification Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-69 54.10.3 Level 1 Shutdown Core Damage Frequency Results . . . . . . . . . . . 54-70 54.11 Shutdown and Low-Power Release Category Quantification . . . . . . . . . . . . . . 54-71 54.12 Shutdown Assessment Importance and Sensitivity Analyses . . . . . . . . . . . . . 54-71 54.12.1 Importance Analyses for Com Damage at Shutdown . . . . . . . . . . . . 54-72 54.12.2 Other Sensitivity Analyses for Shutdown Core Damage ......... 54-77 i 54.13 Summary of Shutdown Level 1 Results ........................... 54-81 l 54.14 References ................................................ 54-87 Attachment 54A Design Change Impact on Low-Power and Shutdown Risk Assessment ........... .... ................... 54A-1 Attachment 54B Surge Line Flooding Effect on Low-Power and Shutdown Risk Assessment ........ .......... ................ 54B-1 Attachment 54C Effect of Modifications to Safe / Cold Shutdown PRA . . . . . . ... 54C-1 CHAPTER 55 SEISMIC MARGIN ANALYSIS . . . . . . ..... ....... .... .55-1 55.1 Introduction .......... ...... .. ..... .. ... ... .. .... 55-1 55.2 Calculation of HCLPF Values . . . ............. .............. . 55-2 55.2.1 Seismic Margin HCLPF Methodology ........... ... ...... 55-2 55.2.2 Calculation of HCLPF Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-2 55.3 Seismic Margin Model . . . . . ......... ....... .... ....... .. 55-12 55.3.1 SMA Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5- 14 55.3.2 Seismic Initiating Events . . . .. . ... ......... ....... 55-16 ) 55.3.3 Initiating Event Category HCLPFs . . . . . . . ... . . . . . . . . . 55-17 I 1 55.3.4 Event Tree Models . . . . . . . . ............... ... . .... 55-20 i l 55.3.5 Fault Tree Modeling and Quantification . ... . . . . . . . . . . . . . . 5 5-2 8 l 55.3.6 Seismic Event Core Damage Sequence Evaluation . . . . . . . . . . . 55-36 55.3.7 Containment Performance Model . . . . . . . . . . . . . . . . . . . . . . . . . 55-37 55.4 Calculation of Sequence and Plant HCLPF . . . . . . . . . . . . . . . . . . . . . . .. 55-38 55.4.1 HCLPFs for Basic Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-3 9 55.4.2 Calculation of Initiating Eveat HCLPFs . . . . . . . . . . . . . . . . ... 55-39 55.4.3 Calculation of System Fai < Tree HCLPFs . . . . . . . . . . . . . . . .. 55-39 55.4.4 Calculation of Sequence HCLPFs . . . . . . . . . . . . . . . . . . ...... 55-40 55.4.5 Calculation of Plant HCLPF . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-4 3 55.4.6 Large Release HCLPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-4 3 O Revision: 11 ENEL March 1998 ca h T Westinghouse o$prairevJ lipra-toc.wpf;ib xxxiv

l g =

                                                                                                                                                 .d.

l

       /
  %d TABLE OF CONTENTS (Cont.)

Section Title Page 55.5 Sensitivity Analyses . . . . . ....................... ....... . . . 55-46 55.5.1 Robust Fuel and Core Assembly . . . . . . . . . . . . . . . . . . . . . . . . . 55-48 55.5.2 Credit for Operator Actions . . ...................... . . . 55-49 55.5.3 Less Credit for Operator Actions in LOSP Event at 0.09g . . . . . 55-52 55.5.4 72-Hour Mission Time . . . . . . . . . . ... .................5553 55.5.5 Containment Isolation - Smaller Size Valves . . ..... . . . . . . . . 55-56 55.5.6 Steam Generator Tube Rupture Success Criteria . . . . . . . . . . . . . . . 55-57 55.5.7 Steam Line Break Success Criteria . . . . . . . . . . . . . . . . . . . . . . . 5 5-5 8 55.5.8 Seismic Interaction Between Turbine and Auxiliary Buildings . . . . . 55-59 55.6 SMA Results and Insights . . . ......................... . . . . . . 55-63 55.9.6 AP600 SMA Results ......... ...................... 55-63 55.9.6 AP600 SMA Insights . . . . . .... ..... ............... . 55-68 55.7 References ... .............. ..... ......... ..... . . . . . . 55-70 Attachment 55A System HCLPF Calculations . ..... ........ . . . . . . . . . . 55 A- 1 Attachment SSB Sequence HCLPF Calculations . . . .................. ... 55B-1 p Attachment 55C Seismic Margin Analysis HCLPF Sensitivity Study ..... . ... 55C-1 ( l

 ~

CHAPTER 56 PRA INTERNAL FLOODING ANALYSIS 56.1 Introduction ........ ................ ............ .. ... . 56-1 56.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . 56- 1 56.2 Methodology . . ......................... ...... ..... . . . . . 56-1 56.2.1 Summary of Methodology . . . . . ...... ........... ..... . 56-1 56.2.2 Information Collection .......... . ............. ..... 56-2 56.2.3 Initial Screening Assessment . . ....... . . . . . . . . . . . . . . . . . . 5 6-3 56.2.4 Detailed Screening Assessment . .. . .. .... . . . . . . . . . 5 6-4 56.2.5 Identification of Flood-Induced Initiating Events ... ......... . 56-6 56.2 6 Initiating Event Frequencies . ............ .. ... ... . . 56-7 56.3 Assumptions . . ................. ................ ..... . . 56-7 56.3.1 General Flooding Analysis Assumptions and Engineering Judgments . 56-7 56.3.2 AP600-Specific Assumptions ....... .............. ... 56-9 56.4 Information Collection . . . . . . . . .......... ....... . . . . . . . . . . . 56- 1 1 56.4.1 PRA.Modeled Equipment and Locations . . . . . . . . . . . . . . . .. . . . . 56-11 56.4.2 Identification of Areas for Flooding Evaluation . . . . . . . . . . . . . . 5 6- 1 1 56.5 At-Power Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6- 12 56.5.1 Initial Screening Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56-12 56.5.2 Detailed Screening Assessment ................ . . . . . . . 56- 12 56.5.3 Identification of Flood. Induced Initiating Events ........... .. 56-28 56.5.4 Calculation of Flood. Induced Initiating Event Frequencies . . . . . . . . 56-32 56.5.5 Quantification of At-Power Flood-Induced Events . . .. . . . . . . . . 56-39 y

    /
)

ENEL Revision: 11 W Westinghouse NLc March 1998 XXXV 0:\Pra\rev ll\pra-toc *pf.lb

O TABLE OF CONTENTS (Cont.) Seedon lille P.3ge 56.6 S hutdown Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56-41 56.6.1 Detailed Screening Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6-41 56.6.2 Identification of Flood-Induced Initiating Events . . . . . . . . . . . . . . 56-42 56.6.3 Calculation of Flood. Induced Initiating Event Frequencies . . . . . . . . 56-43 56.6.4 Shutdown Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 48 56.7 Seismically Induced Flooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 51 56.8 Flooding Hazards During Refueling Outages . . . . . . . . . . . . . . . . . . . . . . . 56 52 56.9 Floodmg Sensitivity Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 52 56.9.1 Flooding Human Error Probabilities Sensitivity Study . . . . . . . . . . . 56 52 56.10 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6-53 CHAPTER 57 INTERNAL FIRE ANALYSIS 57.1 Introduction .............................. ................ 57-1 57.2 Qualitative Analysis Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2 57.3 Quantitative Methodology of Fire Area Frequency . . . . . . . . . . . . . . . . . . . . . 57 6 57.3.1 Fire Frequency Calculations ............................. 57-6 57.3.2 Fire Damage Category Quantification . . . . . ................. 57-7 57.4 Core Damage Quantification Methodology . . . . . . . . . ... ....... . .. 57 10 57.5 Fire Analysis Assumptions . . . . . ............................. . 57-12 57.5.1 Qualitative Analysis Assumptions and Other Modeling Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7- 12 57.5.2 Quantification Assumptions And Modeling Considerations ...... . 57-14 57.6 At-Power Qualitative Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-17 57.7 At. Power Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-19 57.7.1 Fire Ignition Frequencies for Quantitative Analysis . . . . . . . . . . . . . 57-19 57.7.2 Fire Damage Category Quantification . . . . . . . . . . . . . . . . . . . . . . 57-19 57.7.3 Individual Area PRA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-19 57.8 Control Room Fire Analysis - Power Operation . . . . . . . . . . . . . . . . . . . . . . 57 22 57.8.1 Description of the Control Room and Associated Fire Protection . . . 57-22 57.8.2 Alternate Shutdown Capability . . . . . . . . . . . . . . ............ 57-23 57.8.3 Fire Hazard Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 24 57.8.4 AP600 Control Room Fire Evaluation . . . . . . . . . . . . . . . . . . . . . . 57 25 57.8.5 Fire Scenario Identification and Frequency Determination . . . . . . . . 57 29 57.8.6 Control Room Fire Scenario Quantification and Results ......... 57-32 57.9 Shutdown Fire Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 33 57.9.1 Fire Ignition Frequencies during Shutdown Modes of Operation . . . . 57-33 57.9.2 Fire Damage Category Quantification . . . . . . ............... 57-34 57.9.3 Individual Area PRA Analysis . . . . . . . . . . . . . . . . . . ....... . 57-34 57.9.4 Fire Analysis for Safe Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . 57 34 57.9.5 Fire Analysis for Mid-Loop Operation . . . . . . . . . . . . . . . . . . . . 5 7-41 th oMp600;praWv.9ptoc.wpf,1b xxxvi m_ w See-. l I _ 1

(- U TABLE OF CONTENTS (Cont.) Section Title Eage 57.10 Summary and Conclusions .. ... . .. ....... .. .... .. . . . . . 57-42 57.10.1 At-Power Analysis . ........ .... .. .. .. . ... . 57-42 57.10.2 Shutdown Fire Analysis . . . . . . . . . . . . . . . . . ............. 57-45 57.10.3 Conclusiora . . . . . . . . . . . . . . . . .... .... . . . . . . . 57-47 57.11 References ..... .... ...... ..... ... . . . . . . . . 57-48 ATTACHMENT 57A DEFINITIONS ............. ... .... . ....... 57A-1 ATTACHMENT 57B DESIGN CHANGE EFFECT ON INTERNAL FIRE ANALYSIS 57B-1 CHAPTER 58 WINDS, FLOODS, AND OTHER EXTERNAL EVENTS 58.1 Introduction .. . .. . ..... ........ ... . . . . . . . . . . . . . 5 8- 1 58.2 External Events Analysis ..... ............... ............. . . 58-1 58.2.1 Severe Winds and Tomadoes . . . . . . .... ..... ...... 58-1 58.2.2 External Floods ........... .... . . .. .. ... . 58-2 58.2.3 Transportation and Nearby Facility Accidents ........ .... . 58-2 58.3 Conclusion . . . . . . . . . . .... .... ............. ..... .... 58-3 58.4 References .............. .... ... .. . . .. . . ....... 58-3 m CHAPTER 59 PRA RESULTS AND INSIGHTS (}

'           59.1  Introduction      .     ............... . .                          . ........ .                                    . .       59-1 59.2  Use of PRA in the Design Process . . . .. .. .. ...                                      . ..                .. .            . 59-3 59.2.1    Stage 1 - Use of PRA During the Early Design Stage . . .. ..                                                  . . 59-4 59.2.2    Stage 2 - Preliminary PRA .                    .......... ... ... .......                                            59-5 59.2.3    Stage 3 - AF600 PRA Submittal to NRC (1992) . .. . .... ..                                                           59-7 59.2.4    Stage 4 - PRA Revision 1 (1994) ......... . .                                                   ..      . . . . 59-8 59.2.5    Stage 5 - PRA Revisions 2-8 (1995-1996) ...                              .        .. .          . ....             . 59-8 59.3   Core Damage Frequency from Intemal Initiating Events at Power . . . . ...                                                 . 59-10 59.3.1    Dominant Core Damage Sequences                           .. ..           ...... ... ...                         . 59-12   1 59.3.2    Component Importances for At-Power Core Damage Frequency . . . . 59-44 59.3.3    System Importances for At-Power Core Damage .                                         ........               . 59-44 59.3.4    System Failure Probabilities for At-Power Core Damage . . . . . . . . . 59-45 59.3.5    Common Cause Failure Importances for At-Power Core Damage ..                                                       59-45 59.3.6    Human Error Importances for At-Power Core Damage . . . . . . . . 59-45 59.3.7    Accident Class Importances                 .      ..... ...                    . . . . . . . . . . . . . 5 9-47 59.3.8    Sensitivity Analyses Summary for At-Power Core Damage . . . . . . 59-47 59.3.9    Summary of Important Level 1 At-Power Results . . . . .                                      ..         ..      . 59-48   j
           $9.4   Large Release Frequency for Intemal Initiating Events at Power . .                                     . . . . . . . 5 9-51 59.4.1    Dominant Large Release Frequency Sequences . . . . . . . . . . . . . . . 5 9-5 2 59.4.2    Sensitivity Analyses for Containment Response                                 . . . . . . . . . . . . . 5 9-72 m

i J ENEL Revision: 11 [ W85tingh0USS kWOL, March 1998 XXxvii c:4raWy.Ilyra-toc.wpf.lb

m u

        =

0 TABLE OF CONTENTS (Cont.) Section Title Eage 59.4.3 Comparison of Initiating Event Importances for Core Damage Frequency and Large Release Frequency . . . . . . ........ . . 59-72 59.4.4 Summary of Important Level 2 At-Power Results . . . . . .. . . . . . 59-73 59.5 Core Damage and Severe Release Frequency from Events at Shutdown . . . . . . . . . . . . . .... . . . . . .... . . . . . . . . . 5 9-75 59.5.1 Summary of Shutdown Level 1 Results . . . . ....... . . . . 59-75 59.5.2 Large Release Frequency for Shutdown and Low-Power Events .......... .......... ...... ..... ..... . 59-81 59.5.3 Shutdown Results Summary . .... ................. .. 59-82 59.6 Results from Internal Flooding, Internal Fire, and Seismic Margin A n aly ses . . . . . . . . . . . . . . . . . . . . . . . . . .. .. ......... . .. 59-82 59.6.1 Results of Intemal Flooding Assessment .. ... .... ..... 59-82 59.6.2 Results of Intemal Fire Assessment ....... . ...... ..... 59-83 59.6.3 Results of Seismic Margin Analysis ... ......... .... .. 59-87 59.7 Plant Dose Risk from Release of Fission Products . . . . . . . . . . . . . ... 59-87 59.8 Overall Plant Risk Results . . . . ........ ..... ....... . . . . 59-88 59.9 Plant Features Important to Reducing Risk . . . .................. .. 59-89 59.9.1 Reactor Design ............. ...... . . .. . ...... 59-90 59.9.2 Systems Design . . .. .... .... . . .. .... .. . 59-91 59.9.3 Instrumentation and Control Design . . . .. ......... .... 59-94 59.9.4 Plant Layout .. ... .. ... . ... .. .... .. . . 59-95 59.9.5 Plant Structures . .. . . ... . .. .. ... .... . . 59-96 59.9.6 Containment Design . . . . . . . . .. ... ...... .. ..... 59-96 59.10 PRA Input to the Design Certification Process . . . ... .. .. ...... 59-101 59.10.1 PRA Input to Reliability Assurance Program .. .......... . 59-102 59.10.2 PRA Input to Cenified Design Material . . ...... .... .. 59-102 59.10.3 PRA Input to the Technical Specifications . . . . . ...... .... 59-102 59.10.4 PRA Input to MMI/ Human Factors / Emergency Response Guidelines . . . . . . . . . . ....... . .... .. . ..... . 59-102 59.10.5 Summary of PRA-Based Insights . ...... .... . .. . 59-103 59.10.6 Combined License Information . .... ... ...... ... 59-103 APPENDIX A MAAP4 ANALYSIS TO SUPPORT SUCCESS CRITERIA . . ..........A-1 APPENDIX B EX-VESSEL SEVERE ACCIDENT PHENOMENA .... ....... . .. B-1 APPENDIX C DESIGN CHANGES THAT OCCURRED AFTER THE PRA ANALYSES WERE COMPLETED . . . . . . . . ....... ............... . . . C- 1 APPENDIX D EQUIPMENT SURVIVABILITY ASSESSMENT . ....... . .. . . . D- 1 O Revision: 11 ENEL March 1998 mur- 3 Westinghouse onprairev.llWtoc,wpf.lb XXXViii

iO) v LIST OF TABLES (Cont.) Table No. Title hge 57-25 Quantitative Summary - Control Room Fires During Safe Shutdown .............. . ... . ...... ...... ...... 57-138 57-26 Summary of Qualitative Evaluation Results - Mid-Loop Operation . .. ........ ............. . .. ...... 57-139 57-27 Summary of Quantitative Results - Mid-Loop Operation ........ ...... 57-146 57-28 Quantitative Summary - Control Room Fires During Mid-Loop Operation . .... ....... .................. .... 57-154 57-29 Safe Shutdown Containment Single-Hot-Short LOCA Sensitivity . . . . . . . . 57-155 59-1 Contribution of Initiating Events to Core Damage ........ .......... 59-104 59-2 Conditional Core Damage Probability of Initiating Events . . . . ... ... . 59-105 59-3 Internal Initiating Events at Power Dominant Core Damage Sequences ... 59-106 59-4 Sequence 1 - Safety Injection Line Break Dominant Cutsets (SI-LB-02) . . . 59-108 59-5 Sequence 2 - Intermediate LOCA Dominant Cutsets (NLOCA-03) . . . .. . 59-113 59-6 Sequence 3 - Large LOCA Dominant Cutsets (LLOCA-06) . . . . . . .... . 59-118 59-7 Sequence 4 - Large LOCA Dominant Cutsets (LLOCA-03) . ... . . . . 59-124 59-8 Sequence 5 - Reactor Vessel Rupture Cutset (RV-RP-02) . . . . . . . .. . . 59-130 59-9 Sequence 6 - Large LOCA Dominant Cutsets (LLOCA-11) .... 59-131 73 . . ( ) 59-10 Sequence 7 - ATWS Dominant Cutsets (A'IWS-28) ........ .. .. . 59-133 59-11 Sequence 8 - Medium LOCA Dominant Cutsets (MLOCA-03) . ....... 59-141 59-12 Sequence 9 - ATWS Dominant Cutsets (ATWS-13) . . . . ...... .... . 59-146 59 13 Sequence 10 - Intermediate LOCA Dominant Cutsets (NLOCA-04) 59-151 59-14 Sequence 11 - Safety Injection Line Break Dominant Cutsets (SI-LB 03) . . 59-156 59-15 Sequence 12 - Small LOCA Dominant Cutsets (SLOCA-03) . .. . ... 59-160 59-16 Sequence 13 - Core Makeup Tank Line Break Dominant Cutsets (CMTLB-03) 59-165 59-17 Sequence 14 - Steam Generator Tube Rupture Dominant Cutsets (SGTR-07) . 59-170 59-18 Sequence 15 - Steam Generator Tube Rupture Dominant Cutsets (SGTR-23) 59-171 59-19 Segunce 16 - Large LOCA Dominant Cutsets (LLOCA-02) . . ... .. . 59-177 59-20 Sequence 17 - Large LOCA Dominant Cutsets (LLOCA-05) . . . . . . .. 59-183 59-21 Sequence 18 - Consequential SGTR Dominant Cutsets (SGTRC-03) . . . . . . . 59-189 59-22 Sequence 19 - Intermediate LOCA Dominant Cutsets (NLOCA-16) . . ..... 59-195 59 23 Typical System Failure Probabilitie;, Showing Higher Reliabilities for Safety Systems . . . ................... ...... . ...... . 59-201 59-24 Dominant CET Sequences . . .... .. ....... ... ..... 59-202 59-25 Comparison of Initiating Event Contribution to Core Damage and Large Release Frequencies ............. .................. . 59-203 59-26 Summary of AP600 PRA Results . .... .. ........ ...... .. . 59-204 59-27 Comparison of AP600 PRA Results to Risk GorJs . . . . . . . . . . .. ..... 59-205 59-28 Site Boundary Dose Risk at 24 Hours .... . ...... .. .. . .. 59-206 59-29 AP600 PRA-Based Insights . . . . . . . . . ........ ...... . ...... 59-207 L) ENE Revision: 11 UN88 WA:&- March 1998 lix o:\ap600\praNrev_I t'pra-lot.mpf:1 b

LIST OF FIGURES e fimeJp2 Title Eage 2-1 Core Damage Logic Diagram for Intemal Initiators ....... .... . . 2-58 2-2 Core Damage Logic Diagram for Intemal Initiators . . . .. .. ....... . 2-59 2-3 Core Damage Logic Diagram for Intemal Initiators . . . ... ............ 2-60 2-4 Core Damage Logic Diagram for Intemal Initiators .. ....... ...... .. 2-61 4-1 Large Loss-of-Coolant-Accident Event Tree ........ ............ .. 4 120 4-2 Medium Loss-of-Coolant Accident Event Tree . .. ... .. ........ . 4-121 4-3 Core Makeup Tank Line Break Event Tree . . . . . . ................ . 4-122 4-4 Direct Vessel In;cction Line Break Event Tree . . . .. . .......... . . 4-123 4-5 Intermediate Loss-of-Coolant Accident Event Tree . ............. . . . . 4-124 4-6 Small Loss-of-Coolant Accident Event Tree .......... . ...... .. . 4-125 4-7 Reactor Coolant System Leak Event Tree . ....... . ........ ... 4-126 4-8 Passive Residual Heat Removal Tube Rupture Event Tree . . . . . . . . . . . . 4-127 4-9 Steam Generator Tube Rupmre Event Tree . . . . . . ........ .. . 4-128 4-10 Reactor Vessel Rupture Event Tree ....... . . . . . . . . . . . . . . . . . 4- 130 4-11 Interfacing Systems Loss-of-Coolant Accident Event Tree . ............. 4-131 4-12 Transients with Main Feedwater Event Tree ... ....... .... . . 4-132 4-13 Transients with Loss of Reactor Coolant System Evert Tree . ..... .... 4-133 4-14 Transients with Loss of Main Feedwater Event Tree . . . .. ...... . . 4-134 4-15 Transients with Core Power Excursion Event Tree .............. ... 4-135 4-16 Loss of Component Cooling Water System / Service Water System Event Tree . . . . . . . . . . . . . . . . . . . . . .............. . ....... 4-136 4-17 Loss of Main Feedwater Event Tree . . . . .... . .... ........... 4-137 4-18 Loss of Condenser Event Tree . . . . . .. .... . ................ 4-138 4-19 Loss of Compressed Air Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-139 440 Loss of Offsite Power Event Tree ........... .. . . . . . . . . . . . . . . . . 4- 140 4-21 Main Steam Line Break Downstream of Main Steam Isolation Valves Event Tree . . . . . . ......... ...... ................ . 4-141 4-22 Main Steam Line Break Upstream of Main Steam Isolation Valves Event Tree . . ... .. .. ..... ....... .. ........ 4-142 4-23 Stuck-Open Secondary-Side Safety Valve Event Tree ............. .. . 4-143 4-24 Anticipated Transient Without Scram Precursor without Main Feedwater Event Tree . . . ...... . ..... .. .... . . .. 4-144 4-25 Anticipated Transient Without Scram Precursor with Injection Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . . 4-146 4-26 Anticipated Transient Without Scram Precursor Transients with Main Feedwater Event Tree . . . . . . . ... ...... ............. .. 4-147 O Revision: 9 April 11,1997 o \np600% pram.9\pra lof*?f .!b [x f W85fi!)gh00S6 w____ . _ _ _ _ _ _ - _ _ _ - - _ _ - _ _ _ _ _ _ _ - _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ - _ _ _ - _ _ _ - _ - _ _ - _ _ _ _ _ _ . _ _ _ - - _ _ _ - _ _ _ _ - _ - -

9 O b LIST OF FIGURES (Cont.) Firure No. Ijigg East 54-4 LOCA/RNS Pipe Rupture D.tring Hot / Cold Shttdown (RCS Filled) Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-3 02 54-5 LOCA/RNS-V024 Opens During Hot / Cold Shutdown (RCS Filled) Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-303 54-6 Overdrairung of Reactor Coolant System During Draindown to Mid-Loop . . . 54-304 54-7 Loss of Offsite Power (RCS Drained) Event Tree ................... 54-305 54-8 Loss of RNS Initiator (RCS Drained) Event Tree . . . . . . . . . . . . . . . . . . . . 54-306 54-9 Loss of CCW/SW Initiator (RCS Dramed) Event Tree . . . . . . . . . . . . . . . . 54-307 54-10 LOCA/RNS V024 Opens (RCS Drained) Event Tree . . . . . . . . . . . . . . . . . 54-308 54-11 Accumulator Injection (Dilution Scenario) Event Tree . . . . . . . . . . . . . . . . . 54-309 54-12 Shutdown Transient Case SDIB2 RCS Pressure vs. Tirne . . . . . . . . . . . . . . 54-310 54-13 Shutdown Transient Case SD1B2 Mass Flow Rs's vs. Tirne . . . . . . . . . . . . 54-311 54-14 Shutdown RNS Break Case SD3A (3500 gpm) . . . . . . . . . . . . . . . . . . . . . 54-312 54-15 Shutdown RNS Break Case SD3A2 (2000 gpm) . . . . . . . . . . . . . . . . . . . . 54-313 54-16 Shutdown RNS Break Case SD3A3 (1000 gpm) . . . . . . . . . . . . . . . . . . . . 54-314 54-17 Shutdown Plant Damage State Substate Event Tree for LP-ADS . . . . . . . . . 54-315 54-18 Shutdown Plant Damage State Substate Event Tree for LP-1 A . . . . . . . . . . . 54-316 54-19 Shutdown Plant Damage State Substate Event Tree for LP-3D . . . . . . . . . . . 54-317 b] 54-20 54-21 Shutdown Plant Damage State Substate Event Tree for LP-3BR , . . . . . . . . . 54-318 Shutdown Plant Damage State Substate Event Tree for LP-3BE . . . . . . . . . . 54-319 55-1 Seismic Initiating Event Hierarchy Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 55-105 55-2 EQSTRUC Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-106 55-3 EQRVFA Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-108 55-4 EQLLOCA Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 55-109 55-5 EQSLOCA Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-110 55-6 EQATWS Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-111 55-7 EQSTRUC Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-112 55-8 EQRVFA Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-113 55-9 EQLLOCA Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-114 i 55-10 EQSLOCA Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-115 l 55-11 EQATWS Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-116 i 55-12 EQLOSP Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-117 I 55-13 EQLOSP Event Tree (for 0.5g level canhquake) . . . . . . . . . . . . . . . . . . . . 55-118 l 55-14 EQAC2AB Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-119 55-15 EQXCIC Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-120 55-16 EQXADMA Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-121 55-17 EQXIW2A Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-122 55-18 EQRECIR Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-123 55-19 EQ-CM2SL Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-124 55-20 EQ-ADA Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-125

 , ,)

(J x. 55-21 EQ1W2AB Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-126 Revision: 9 W== Egg CERW April 11,1997 1xxx o;Www.ep -int.wpt:tto Li---______- _ _

       ==

LIST OF FIGURES (Cont.) e Firure No. Title P. age 55-22 EQ-PRHR Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-127 55-23 EQ-PRES U Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-128 55-24 EQ.PMS Fault Tree . . . . . . . . . . . . ....................... . 55-129 55-25 EQ-DC Fault Tree . . . . . . . . . . . .... . ................... .. 55-130 55-26 Class IE de Power Block Diagram . . . ......... . . . . . . . . . . . . . . . . 55- 131 55-27 Containment Evaluation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-132 55 28 EQ-STRUC Event Sequences ..... ..........................55-133 55-29 EQ-RVFA Event Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 55 134 55-30 EQ-LLOCA Event Sequences . ... ............. . . . . . . . . . . . 5 5 13 5 55-31 EQ-SLOCA Event Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-136 55-32 EQ-SGTR Event Squences .... . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 13 7 55-33 EQ-SLB Event Sequences . . . ....................... . . . . . . . . 55-138 55-34 EQ-ATWS Event Sequences . . . .............................55-139 55-35 EQ-LOSP Event Sequences (for 0.5g level earthquakes) . . . . ... ...... 55-140 56-1 Eood Zones and Barriers Plan at 66'-6" . . . . . . . . . . . . . . . . . . . . . . 5 6-9 3 56-2 Flood Zones and Barriers Plan at 82'-6" . . ............ . . . . . . . . . 5 6-95 56-3 Flood Zones and Barriers Plan at 96'-6" . ................ ...... . 56-97 56-4 Flood Zones and Baniers Plan at 100'-0" & 107'-2" . . . . . . . . . . . . . . . . . . . 56-99 56-5 Flood Zones and Barriers Plan at 117'-6" ......... .... ...... . . 56-101 56-6 Flood Zones and BarTiers Plan at 135'-3" ....................... . 56-103 56-7 Flood Zones and Barriers Plan at 160' 6" & 153'-0" . . .... .. . ... . . 56-105 56-8 Flood Zones and Barriers Plan at 160'-6" & 180*-0" . . . . ..... .. .. . . 56-107 56-9 8-in. Fire Main Rupture at-Power Event Tree .............. ..... . . 56-109 56-10 8-in. Fire Main Rupture during Hot / Cold Shutdown Event Tree . . . . . . . . . 56-110 56-11 8-in. Fire Main Rupture during RCS Drained Conditions Event Tree . . . . . . 56-111 57-1 Fire Progression Event Tire fer 1200 AF 01 Fire Area . . . . . . . . . . . . . . . 57-156 59-1 Contribution of Initiating Events to Core Damage ........... . . . . . . . 59-233 I 59-2 Contribution of Initiating Events to Large Release Frequency and Core Damage Frequency . . . . .. ............. . ....... 59-234 59-3 Total Plant CDF/LRF . . . . . . .. . ...... ....... ........ 59-235 l 59-4 24-Hour Site Boundary Dose Cumulative Frequency Distribution . . . . . . . 59-236 l l j Revision: 11 e March 1998 ow+n e ne.u w wpra 1xxxii hw [ WestiflghollSe

1 l i

39. In-Vessel Retention of Molten Core Debris
                                                                                                                       ).
 <   4
 %J the completion of Reference 39-1, confirm the heat transfer assumptions at Rayleigh numbers beyond 10l !                                                                                      1 l

l The full-scale, slice-geometry ULPU testing, shown in Figure 39-3 (Reference 39-1), j investigates the critical heat flux on the external surface of the lower head of the reactor vessel. The test provides full-height water elevation capability to investigate the effects of varied water height and subcooling. The test determines critical heat fluxes at the various azimuthal locations on the lower head extemal surface. Advanced ULPU Configuratien III testing provides data for prototypical reactor vessel steel material with surface preparations to Westinghouse specifications and external cooling water flow restrictions to model the effect of reactor vessel reflective insulation. This test is also used to provide oscillatory pressure data for the reactor vessel insulation design. The ROAAM analysis also investigates transient aspects of core relocation to the lower head and development of the steady-state heat transfer system described above. Investigations of lower head vessel failure due to jet impingement (Reference 39-1) and in-vessel steam i explosion (References 39-2,39-6,39-7, and 39-8) have been performed and it is concluded that these phenomena will not fail the vessel. Investigations of the transient development of { molten pool conditions conclude that the steady-state heat fluxes bound the transient l conditions. Therefore, vessel failure prior to the development of the natural circulating pool and extemal cooling is physically unreasonable. (ov) The results of in-vessel retention ROAAM analysis have been peer-reviewed by an international panel of 17 experts in the fields of severe accident progression, heat transfer, thermal-hydraulics, and structural mechanics. The conclusion that vessel failure is physically unreasonable under thermal-hydraulic conditions of in-vessel retention is considered to be resolved and is credited in the AP600 PRA, provided that the sequence meets the criteria outlined above. Based on the results of the ROAAM testing and analysis, vessel failure is concluded to be physically unreasonable in the AP600 PRA provided the following conditions are met:

  • The reactor coolant system is depressurized.
                                                                                                                       )

l The vessel is submerged above the top of the molten debris pool. { .

  • Reactor vesse! reflective insulation allows the ingress of water at the bottom and egress of steam at the top.  ;

I The reactor vessel extemal surface conditions do not preclude the wetting phenomena I identified as the cooling mechanism in the ULPU testing. Each of these items is discussed below. g)s Revision: 11 W UNE

          ==.

ENEL Wa h March 1998 39-3 ovawn11wc394:wis9s I l I 9

        ^
39. In Vessel Retention of Molten Core Debris 1 39.3 Reactor Coolant System Depressurization e

l Reactor coolant system pressure is determined at node DP (Chapter 36) on the containment i event tree. Sequences that proceed downstream from node DP are depressurized to less than i 150 psi in the reactor coolant system. Based on the structural analysis of the reactor vessel I in Reference 39-2, the maximum static pressure that the damaged vessel can withstand is I approximately 400 psi. Therefore, sufficient reactor coolant system depressurization is I attained at all sequences considered for in-vessel reten; ion. I 39.4 Reactor Cavity Flooding (Node IR) i Reactor cavity flooding is considered at node IR on the containment event tree. Cavity I flooding is accomplished through either operator action or through the progression of the i accident. The operator floods the cavity by opening a motor-operated valve and a squib valve I in each of the recirculation lines between the in-containment refueling water storage tank and I the containment recirculation sump, as shown in Figure 39-4. De water floods the I containment by flowing out of the recirculation sumps, filling the floodable region, shown in I Figure 39-5, of the containment to the 107' 2" elevation, shown in Figure 39-6. I Some accident sequences flood the cavity automatically, because core damage occurs as a i result of failure to recirculate water to the core once it is drained from the in-containment I refueling water storage tank, or injection occurs but is not sufficient or soon enough to prevent I core damage. His section discusses the evaluation of successful cavity flooding to prevent I vessel failure at node IR for each of the AP600 accident classes. I 39.4.1 Success Criteria l The question that is considered at node IR to determine success or failure of cavity flooding I for in-vessel retention is: 1 Does the in-containment refueling water storage tank water flood the reactor cavity sufficiently I to submerge the reactor vessel above the elevation of the molten core debris in the lower I head? I Two criteria are us ,d to determine success at node IR: 1) the reactor vessel hemisphere must I be submerged prior to relocation of core debris to the lower head; and 2) the water level must I be above the top of the in-vessel debris bed prior to full relocation of debris to the lower i head. I 39.4.1.1' Water Elevations Success Criteria l Based on the criteria above, success is determined by the timing of water flooding in the I containment with respect to core melt relocation timing in the reactor vessel. He timing and I the uncertainties in the timing of core relocation to the lower head are discussed in I Appendix P of Reference 391, 'Ihe expected time of initial debris relocation to the lo'ver l I Revision: 8 j September 30,1996 6 Westinghouse j %V0mpraWv.s\wc39.wpf:ltso92296 39-4 l 1 L- - - - -

                                                                                                                        'I
39. In. Vessel Retention of Molten Core Debris I

i 'Ihe results of the analyses showed that the insulation was able to meet each of the defined I functional requirements. The design of the reactor vessel insulation provides an engineered I pathway for water-cooling the vessel and for venting steam from the reactor cavity. Design I changes to the insulation were completcd to ensure that the stress and deflection requirements I were met to provide adequate pathways for ingress of water and venting of steam. I l 39.6 Reactor Vessel External Surface Treatment l Based on the reactor vessel system design specification. the only treatment of the extemal I surface of the reactor vessel is a protective paint applied by the manufacturer prior to I shipping. The paint protects the vessel carbon steel surface during ', hipping and storage. I Removal of external surface paint, or any other treatment of the extemal reactor vessel ' I surface, is not expected to occur. l The ULPU testing includes tests using prototypical steel with pnint applied according to l Westinghouse paint application specifications. The aged paint surface actually increased the I wetability of the vessel external surface and increased the critical heat flux. In the PRA, it I is assumed that no extemal surface treatment of the reactor vessel impairs heat removal from I the vessel external surface. I 39.7 Reactor Vessel Failure (Node VF) l 39.7.1 Node VF Success Criteria 1 The question considered at node VF to determme success or failure of rer.ctor vessel integrity I is:

  • i Is the core debris maintamed inside the reactor vessel?

i I Success is credited at node VF if debris is maintamed in the reactor vessel and relocation to l l the containment is prevented. Based on the ROAAM analysis of in-vessel retention. an intact I reactor vessel remains intact if the reactor coolant system is depressurized (success at node l DP) and the reactor vessel is adequately submerged (success at node IR). However, in I accident class 3C, the vessel rupture initiating event, the vessel is failed prior to core damage I and relocation. In this case, success is credited if vessel failure does not allow debris j l relocation to the cavity. ' I Success criteria are as follows: I For all accident classes except 3C, success of node DP and node IR results in success I at node VF. l - For accident class 3C, success at node DP and node IR, and maintaining the debris I inside the faulted reactor vessel, result in success at node VF. v ENE Revision: 8 EN raarb September 30,1996 39-13 = W *v 8 W ti m 296

   = .-

4 39. In-Vessel Retention of Molten Core Debris O For all accident classes except 3C (vessel rupture initiating event), maintaining the debris in the vessel is ensured by ve.ssel integrity (success at nodes IR and DP). In accident class 3C, the vessel is failed below the intact core as a result of the initiating event. Since vessel rupture produces core damage, regardless of system availability, the failure of ADS and gravity injection has negligible frequency in accident class 3C. Core damage is caused by the inability to reflood the core until the reactor cavity is filled. AP600 has the unique cavity flooding feature that, once the cavity is filled up to the break, water can reflood back into the vessel as the containment compartments fill to arrest core damage before full core relocation. Only a limited amount of debris is likely to relocate to the lower head. The most likely failure for the reactor vessel initiating event is a local failure above the top of the lower head hemisphere at the beltline of the vessel. This location has the highest fluence and brittleness from exposure. Debris relocated into the lower head is guaranteed to be water cooled in the vessel. Therefore, for accident class 3C, a scalar failure probability value of 0.1 for debris relocation is assigned to node VF. A sensitivity to this value is investigated and discussed in Chapter 43, 39.8 Summary . The fault trees and scalar values linked for nodes IR and VF are summarized in Tables 39-2 and 39-3, respectively. 39.9 References 39-1 Theofanous, T.G., et al., "In-Vessel Coolability and Retention of a Core Melt," DOE /ID-10460, July 1995. 39-2 Theofanous, T.G., et al., " Lower Head Integrity Under In-Vessel Steam Explosion Loads," l DOE /ID-10541, June 1996. 39-3 Theofanous, T.G., "On the Proper Formulation of Safety Goals and Assessment of Safety Margins for Rare and High-Consequence Hazards," Reliability Engineering & Systems Safety, Summer 1996. 39-4 Theofanous, T.G., et al., "The Probability of Mark-I Containment Failure by Melt Attack on the Liner," NUREG/CR-6025, November 1993. 39-5 Theofanous, T.G., et al., "The Probability of Containment Failure by Direct Containment Heating in Zion," NUREG/CR-6075. December 1994. I 39-6 Theofanous, T.G., et al., " Premixing of Steam Explosions: PM-ALPHA Verification Studies," l DOE /ID-10504, September 1996. I i 1 39-7 Theofanous, T.G., et al., " Propagation of Steam Explosions: ESPROSE.m Verification i Studies," DOE /ID-10503, August 1996. I l 39-8 Theofanous, T.G., Volume 1 " Appendices E, F, and G to DOE /ID-10541," and Volume 2 - l l " Addenda to DOE /ID-10541. -10503, -10504," October 1997, and Volume 3 " Addenda to  ! l DOE /ID-10503,10504," December 1997. O1 Revision: 11 March 1998 W Westingh0USB , o \pra\rev Il\sec39 wpf.Ib-o30298 39-14

40. Passio Containment Cooling FM =-

O I CHAPTER 40 l PASSIVE CONTAINMENT COOLING l In this Chapter, the probability of failure of the passive containment cooling event tree node i PC in the containment event tree (CET) is calculated. Figures 40-1 and 40-2 show the passive I containment cooling system (PCS) and containment. l Analysis has been performed to demonstrate that containment cooling by air only maintains I the containment pressure at less than 80 psig. The analysis, initially performed with the i MAAP4 computer code and benchmarked with the W_ GOTHIC computer code using MAAP4 I mass and energy predictions, predicts a maximum containment pressure of approximately 80 I psig. The analysis included the following conservative assumptions: I

  • 14-inch cold leg break l
  • 1979 decay heat + 2a l - 15.7 psia initial containment pressure I 120'F initial contamment air temperature l
  • 102 percent core power I - Outside air temperature of 100'F l
  • Passive containment cooling system water failed upon demand G

V l i Figure 40-3 shows the containment pressure prediction for the MAAP4 and WGOTHIC analyses. I At a pressure of 80 psig, the conditional contamment failure probability' is less than 5.0E-4 I (Chapter 42). While passive containment cooling system failure in the Level 2 quantification I is assumed to result in contamment failure, the failure of passive contamment cooling system I water being delivered to the containment shell is not considered to be a containment failure i mechanism as the contamment cooling with only air limits the containment pressurization i sufficiently that the probability of containment failure is very low, less than 5.0E-4. I nerefore, for consideration of the passive contamment cooling system system in the Level l 2 quantification, there is only one failure mode that is assumed: plugging of the drams at the I floor of the annulus around the contamment shell. I If the passive contamment cooling system provides water to cool the containme:nt surface, the I plugging of the drams at the floor of the annulus around the contamment shell would I constitute a failure mode. Then, the water will eventually rise above the 1.6-meter level, I blocking the air inlets into the annulus from the baffle. His will reduce the heat removal I 'The containment failure probability assumes a shell temperature of 331*F, the saturation

,- I temperature corresponding to Service Level C Failure Pressure for the contamment (90 psig).

? V tur- Septem r 30 40-1 m:Pr.;Jtev_ssaac40.wpf:1b 092296

40. Passiva Containme:t Cooling O

from the annulus. Although this may not necessarily constitute failure of the containment heat removal, it is pessimistically assumed to do so. l There are two 100-percent drains in the vertical wall of the Shield Building. Surveillance of I these drains is performed every two years. One drain is sufficient to prevent overflowing of the passive containment cooling system to block the air inlet. The probability, q(PC), of failure of the PC event tree node due to the drain plugging is considered to be a rare event due to the following considerations:

  • The annulus is shielded from random accumulation of debris that may potentially plug the drains.
    !                =       The drains are located on the Shield Building vertical wall above the annulus floor, and I                        have screens to prevent small animals from entering the drains.

There are no data on this failure mode. Even if it is assumed that both drains will plug once during the plant lifetime, the failure probability would be SE-04 per week, for a 40-year plant lifetime. I Based on the rarity of this failure mode and engineering judgement, a failure probability of

                    .0001 is assigned to the PC node, given that a core damage event has occurred.

q(PC) = 1E-04. i O Revision: 11 51 arch 1998 oWaWviI\sec40.wpf Ib4121898 40-2 h [ Westinghouse k -.

40. e iv. co:t.i. : cooii.,

g O PCS Water Storage Tank l E

                                                                   ;l    '

E l Ir g f'~'N /'g lnlst t i Stool concrete Containment Shield O Air..Flow D

                                                                       . diiil Figure 40-1 AP600 Containment Schematic 4Mb=                                  Septem r     ,

40-3 mW*ev.h c40.wpf;lb&2596 l

EL' ud 7 55 40. Passiv2 Ccctainment Cooling 9 d "> Eb b l33 #

                                *!                                                                }

h- I

, n
                                               +

s Y I l , i, \ [j. j s' . -s E.  !  ! ' .. .. .. #.. Ii 6* ' , , g

                                      > L.     ....   .. J                        ,f  ,'
                                                                       /
                                               /                  o'
                                                              'e l

y ~~ , _

                                                                \. 4
                                                                       \.\%
                                                                                  'N\         ' '            -

s E a' l E E E Figure 40-2 AP600 Passive Containment Cooling O Revision: 11 ENEL March 1998 L? c- W

                                                                                                                                             - Westi@ouse o:W\revilwc40.wpf.lM121898                                                                            404
49. Offsite Dose Evaluation i
 /" %

f b  !

\j sit. ecuecary tryce,a :e.e IC So/ ce Term, 24 nowrs s

e , i a e 3S _F v w OE O 5

                       - cs N

O 09 i e , e , e 0 occi 0 0004 C QCCS c 001 0 002 4 005 0 D1 0 D2 : 05 4* Tmyroic Dose, sieverts Figure 49-55 m S4te Bowncary Tmyroao Dose IC So p ee Tere, 72 murs s

  • 1

_5, e b 0. P i i

                      -1 t

l ae I t 3 e* k o es i 0 0001 0 Occ2 0 0305 0 C01 0 DC2 0 005 0 09 0 32 C c5  : 9 Tryeo,e :e.e, sieve ts l Figure 49-56

f)
s. .3 Revision: 8 3MW h_ September 30,1996 m:W*v 8W49.wpf;Ib 49-47
49. Offsite Dose Evaluation e

OverailDose Risk Site Boundary Whole Body EDE,24 Hour Does

                                            $$$$4SSSS$5@@kk555kkkkkk WWWWWWWWWWWWWWWWWWWWWWWW a5 & n5 J 6 & nssnnn4 ad 6 aaod n u 1.00E-05                                                                                          ;

URD Criteria 1.00E.06 1.00E47 - - _ - _ __ - _ __ _ _ _ _ ----%  ;--- IC g . _ . CFE 1.00E.08 6 - ^......_...-........_._-............-..._...} - CFl CFL

                                                                                                                                                           ~~~~      '

y 1.00E-09 ',

                                                                                                                                      .                    ......sp 1.00E.10                                                                                                                 ',

1.00E.11 1.00E-12 Figure 49 57 Site Boundary hie Body Dose Level,(EDE), REM Overall Dose Risk Site Boundary Acute tied Bone Marrow Dose, 24 Hour

                                                 .$$$45S$$$%045k!555IIk IWIWWWWWWWWWWWWWWWWWW
                                                  -,,-            ...,-..                  .~~.-.,-..-

1.00E45 -

                                                                                                                            , van erts.,t.

1.00E.06 1.00E 07 ~ j =E a _ . _ . . ._ . . . _ . _ . _ ._. _ ._. _ . . . _ . _1. c_ . _ . _ . .=.w.z.c - _ , ,c ,, 1.00E 09 ' ,, CFI CFL

                                                        ........-....................................,_,,_,'-                                      -..- ca
                            , 3.o0s.1o ,                                                                                                 ;

1 l

                                                                                                                                           'g
                                                                                                                                                    . . . BP E 100E 11 TOM L

i 1.00C 12 1.00E 13 1.00E 14 Figure 49 58 Site Boundary Red Bone Marrow Dose Level, REM O Revision: 11 March 1998 w 3 WestirighollSe o:Wa\rev_ll\sec49.wpf;lb 49 48

k. - - . . . < , -

c ( w TABLE OF CONTENTS (Cont.) Section Title Eage CHAPTERS 46 THROUGH 48 DELETED CHAPTER 49 OFFSITE DOSE EVALUATION 49.1 Introduction ...............................................49-1 49.2 Conformance with Regulatory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 49-1 49.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-2 49.4 M ethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9-2 49.5 Dose Evaluation Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-6 49.6 Quantification of Site Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-7 49.7 Risk Quantification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-7 49.8 References . . . . . . . . . . . . . .................................. 49-8 CHAPTER 50 IMPORTANCE AND SENSITIVITY ANALYSIS 50.1 Introduction ..............................................50-1 50.2 Importance Analyses for Core Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-1, 50.2.1 Initiating Event Importances (Case 1) . . . . . . . . . . . . . . . . . . . . . . . 50 2 50.2.2 Common Cause Failure Importances (Case 2) . . . . . . . . . . . . . . . . . 50 3 A 50.2.3 Human Error Importances (Case 3) . . . . . . . . . . . . . . . . . . . . . . . . . 50-5 Cl 50.3 50.2.4 Component Importances (Case 4) . . . . . . . . . . . . . . . . . . . . . . . . . . 50-6 System Importances for Core Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-7 50.4 Human Error Sensitivity Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-9 50.4.1 Set Human Error Probabilities to 1.0 (Failure) in Core Damage Results (Case 25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-9 50.4.2 Set Human Error Probabilities to 0.0 (Success) in Core Damage Results (Case 26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50- 10 50.4.3 Assess Importance of Increasing Human Error Probabilities by a Factor of 10 (Case 27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-10 50.5 Other Sensitivity Analyses for Core Damage . . . . . . . . . . . . . . . . . . . . . . . . 50-11 50.5.1 Diesel Generator Mission Time (Case 28) . . . . . . . . . . . . . . . . . . 50- 1 1 50.5.2 Impact of Passive System Check Valves on Core Damage Frequency (Case 29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50- 12 50.5.3 Instrumentation and Control Cutoff Probability (Case 30) . . . . . . . . 50-12 50.5.4 Containment Recirculation After Safety Injection Line Break j Event (Case 31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-12  ; 50.5.5 Quantification Truncation Probability (Case 32) . . . . . . . . . . . . . . . 50-13 50.5.6 Sensitivity to ADS Stage 4 Success Criteria (Case 33) . . . . . . . . . . 50-13 50.5.7 Squib Valve Failure Probability (Case 34) . . . . . . . . . . . . . . . . . . . 50-13 50.5.8 Circuit Breaker Failure Probability (Case 35) . . . . . . . . . . . . . . . . . 50-14 50.5.9 End-State Importances (Case 36) . . . . . . . . . . . . . . . . . . . . . . . . 50-14 s g

 /   \
 \   )

LJ ENE Revision: 9 DE Et2N, April 11,1997 XXXi 0:WWW 9\ pre-toc.wpf.lb

m . .- e

         .1 O

TABLE OF CONTENTS (Cont.) Section Title Page 50.6 Sensitivity and Importance Analyses For Large Release Frequency . . . . . . . . 50- 15 50.6.1 Importance Analyses For Large Release Frequency ... . . . . . . . 50- 15 50.6.2 Sensitivity Analyses For Large Release Frequency . . . ........ . 50-21 50.7 Sensitivity Analysis for Offsite Dose Risk . . . . . . . . . . . . . . . . ......... 50-22 50.8 Results S u mmary . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . ... . . . 50-23 Attachment SOA ATWS PRA Sensitivity Case . . . . . ............ ....... 50A-1 CHAPTER 51 UNCERTAINTY ANALYSIS 51.1 Introduction ........................... ... . . .. ....... 51-1 51.2 Methodology . . . . . . . . . . ........ . .... ... ..... . ....... 51-1 51.3 Summary of Results . . . . . . ................... . . . ....... 51-3 51.4 Sensitivity Studies for the Uncertainty Calculations .... .... .. . .... 51-4 51.4.1 Uncertainty in the Cutoff Frequency . . . . . ...... .. ....... 51-4 51.4.2 Uncertainty in the Number of Cutsets Sampled ............... 51-4 51.4.3 Uncertainty in the Mean Failure Probability for Basic Events . . . . . . 51-4 51.4.4 Sensitivity to the Random Number Input for Sampling . . ....... 51-5 51.5 References . . . ............ ... .. ... . . . . . . .. 51-6 CHAPTER 52 RTNSS - FOCUSED PRA SENSITIVITY STUDY 52.1 Focused PRA Sensitivity Study Analysis Method ... . ... . . . . . . . . . 52-1 52.1.1 Core Damage Frequency Calculation .. . ................ . 52-2 52.1.2 Release Frequency Calculation . . . . . . ........ .. ...... 52-5 52.2 At-Power Focused PRA Sensitivity Study . . . . . ............. . ... 52-5 52.2.1 At-Power Focused PRA Sensitivity Study Core Damage Frequency Quantification ............ ... ...... . ... 52-6 52.2.2 At-Power Focused PRA Sensitivity Study Release Frequency Quantification . .. ............ .. . .. . . 52-11 52.3 Shutdown Focused PRA Sensitivity Study . . . ....... .... . .. .. 52-16 52.3.1 Shutdown Focused PRA Sensitivity Study Core Damage Quantification . . . . . . . . . . ......... . . .. 52-16 52.3.2 Shutdown Focused PRA Sensitivity Study Release Frequency Calculation ........ .... ....... ..... . 52-19 52.4 Focused PRA Sensitivity Fire Analysis . . . . . . . . . ...... ........... 52-21 52.5 Focused PRA Sensitivity Study Flooding Analysis . ........... .... 52-21 52.5 1 At-Power Focused PRA Sensitivity Study Flooding Scenarios . . . . . 52-21 52.5.2 Shutdown Focused PRA Sensitivity Study Flooding Scenarios . . . 52-22 52.5.3 Focused PRA Sensitivity Study Flooding Analysis Results Summary . . . . . . . . ...... ........... . .. ..... .. 52-23 52.6 Focused PRA Sensitivity Study Results and Conclusions . . . . . . . . . .... 52-23 52.7 References ............ .......... .......... . . .. .... 52-24 O Revision: 11 ENEL March 1998 mm. 3 Westinghouse o:\prairev.lliptw. toc.wpf;lb XXXii

1 i U TABLE OF CONTENTS (Cont-) Secdon Title P,gge CHAPTER 53 DELETED CHAPTER 54 LOW-POWER AND SHUTDOWN RISK ASSESSMENT 54.1 Introduction .... ........ ......... ....................... 54-1 54.2 Initiating Events ................ ........................... 54-1 54.2.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 54-2 54.2.2 Events Modeled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-2 54.2.3 Shutdown Phases Summary Description . . . . . . . . . . . . . . ... .. 54-3 54.2.4 Initiating Events for Operanng Modes . . . . . . . . . . . . . . . . . . . . . 54-4 54.2.5 Actuating Signals and Systems Available . . . . . . . . . . . . . . . . . . 54- 15 54.2.6 Scenarios for Detailed Analysis . . . . . .............. . . . . . 54-16 54.2.7 Summary of Initiating Events Analyzed . . . . . . . . . . . . . . . . ... 54-21 54.3 D ata . . . . . . . . . . . . . . . . . . . . . ............................. 54-22 54.3.1 Shutdown Frequency . . ........... ........... .... 54-22 54.3.2 Mission Times . . . . . . . . . . . ..................... ... . 54-25 54.4 Event Tree Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-28 54.4.1 Event Tree LOSP-ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4-3 0 (n #

        )                  54.4.2 54.4.3 Event Tree RNS-ND               .. . .......................

Event Tree CCW-ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-33

                                                                                                                                . . . . 54-33         J j

54.4.4 Event Tree LOCA-PR-ND ..................... . . . . . . 54-3 3 j 54.4.5 Event Tree LOCA-V24-ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-34 54.4.6 Event Tree RCS-OD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-36 54.4.7 Event Tree LOSP-D . . ............................... 54-38 54.4.8 Event Tree RNS-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-40 54.4.9 Event Tree CCW-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-40 54.4.10 Event Tree LOCA-V24-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-40 54.4.11 Boron Dilution Events (Reactivity Events) . . . . . . . . . . . . . . . . . . . 54-41 54.4.12 Boron Dilution Events Due to Chemical and Volume Control System Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-45 54.4.13 Endstates Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-48 54.5 Fault Tree Models for Shutdown and Low-Power Events . . . . . . . . . . . . . . . 54-48 54.5.1 Insuumentation and Control Modeling for Shutdown (Levd 1) .... 54-48 54.5.2 Instrumentation and Control Modeling for Shutdown (Level 2) .... 54-51 54.6 Success Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-51 J 54.6.1 MAAP4 Code Analysis for Shutdown Success Criteria . . . . . . . . . . 54-52 54.6.2 MAAP4 Parameter File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-52 54.6.3 MAAP4 Input Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-54 54.6.4 Definition of MAAP4 Cases From Event Trees . . . . . . . . . . . . . . . 54-55 54.6.5 Results From MAAP4 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 54-57 54.7 Common Cause Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-57

   /3
  \

Nu/ l g Revision: 9 l EO W,mb.

                                                                                                          #NM 9prMoc.wyflb April 11,1997           i i

XXKiii j i

                                                                                                            ._______ _ _            _ _ _ _ _ _ _ __ i
    ;g s a
     /j O

TABLE OF CONTENTS (Cont.) Section .T. itle Page 54.8 Human Reliability Analysis . .. ..... ... .. ......... . . . . . 54-57 54.8.1 Operator Actions Calculated . . . . .. ... .... . . . . . . . . . . 54-5 8 54.8.2 Conditional Human Error Probabilities .... .............. 54-64 54.9 Fault Tree Quantification .. ............. ............ . . 54-64 54.10 Level 1 Core Damage Frequency Quantification . . .. . ........ . . . . 54-67 54.10.1 Core Damage Quantification Method . . . . ......... ..... 54-68 54.10.2. Quantification Inputs . . . . . . . .................. ..... 54-69 54.10.3 Level 1 Shutdown Core Damage Frequency Results . . . . . ..... . 54-70 54.11 Shutdown and Low-Power Release Category Quantification . . . . . . . . . . . . . 54-71 54.12 Shutdown Assessment Importance and Sensitivity Analyses . . . . . . . . . . . . . 54-71 54.12.1 Importance Analyses for Core Damage at Shutdown . . . . . . . . . . . 54-72 54.12.2 Other Sensitivity Analyses for Shutdown Core Damage . .. . . . . 54-77 54.13 Summary of Shutdown Level 1 Results ... . ...... ... . . . . . . . . . . 54-81 54.14 References ........ ...... ............. .. .......... 54-87 Attachment 54A Design Change Impact on Low-Power and Shutdown Risk Assessment .................................... 54A-1 Attachment 54B Surge Line Flooding Effect on Low-Power and Shutdown Risk Assessment ...... ........ .. . . . . .. . 54B-1 l Attachment 54C Effect of Modifications to Safe / Cold Shutdown PRA .... ... 54C-1 l CHAPTER 55 SEISMIC MARGIN ANALYSIS . . ... .. ........ .. . 55-1 55.1 Introduction ... ..... ..... .. . . .. .. ...... ... 55-1 l 55.2 Calculation of HCLPF Values . . . .. . .... .. .... .. .. . 55-2 l 55.2.1 Seismic Margin HCLPF Methodology ... .. .. .. .. ... . 55-2 55.2.2 Calculation of HCLPF Values . . . . .. . .. ... ... .55-2 55.3 Seismic Margin Model ... ..... . .... ........ ... . ... 55-12 55.3.1 SMA Model and Assumptions . . . . . .... . .... . . . . . . . 55-14 55.3.2 Seismic Initiating Events . . . . . . . . . . . . .......... .. . . . 55-16 55.3.3 Initiating Event Category HCLPFs . . ... . ... .... .... . 55-17 55.3.4 Event Tree Models . . . . . . . . . . . . ..... .... ... .. . 55-20 i 55.3.5 Fault Tree Modeling and Quantification . . . . . . . . . ..... .... 55-28 l 55.3.6 Seismic Event Core Damage Sequence Evaluation . . ...... . . 55-36 55.3.7 Containment Performance Model . . . . . . . . ........ . ..... 55-37 55.4 Calculation of Sequence and Plant HCLPF .... ............ .. .. . 55-38 55.4.1 HCLPFs for Basic Events . . . . .. . . .. . . . . . . . . . . . . 5 5-39 55.4.2 Calculation of Initiating Event HCLPFs . .. . . . . . . . . . . . . . 5 5-3 9 55.4.3 Calculation of System Fault Tree HCLPFs . . . . . . . . . . . . .. 55-39 55.4.4 Calculation of Sequence HCLPFs . . . . . . .......... ..... 55-40 55.4.5 Calculation of Plant HCLPF . . . . . . . .... ........... . 55-43 l 55.4.6 Large Release HCLPF . . . . . . . . . .. .. .......... .. . 55-43 Revision: 11 O

 '                                                                                     ENEL                                       W85tingh00S8 March 1998                                                                          W=i.,,

o$pra\rev llipra-toc.wpfdb XXXiv

1 { C n i v TABLE OF CONTENTS (Cont.) Section Title P. age 55.5 Sensitivity Analyses . . . ......................... .......... . 55-46 55.5.1 Robust Fuel and Core Assembly . . . . . . . . . . . . . . . . . . . . . . . . 5 5 -4 8 55.5.2 Credit for Operator Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-49 55.5.3 Less Credit for Operator Actions in LOSP Event at 0.09g . . . . . . . . 55-52 55.5.4 72-Hour Mission Time . . . . . . . . . . ............. . . . . . 55-53 55.5.5 Containment Isolation - Smaller Size Valves . . . . . . . . . . . . . . . . 55-56 55.5.6 Steam Generator Tube Rupture Success Criteria . . . . . . . . . . . . . . . 55-57 55.5.7 Steam Line Break Success Criteria . . . . . . . . . . . . . . . . . . . . . . . . 55 58 55.5.8 Seismic Interaction Between Turbine and Auxiliary Buildings . . . . . 55-59 55.6 SMA Results and Insights .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-63 55.9.6 AP600 SMA Results ................................. 55-63 55.9.6 AP600 SMA Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-68 55.7 References ............................................55-70 Attachment 55A System HCLPF Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55A-1 Attachment SSB Sequence HCLPF Calculations . . . . . . . . . . ........ ....... 55B 1 o Attachment SSC Seismic Margin Analysis HCLPF Sensitivity Study ........... 55C-1 i

     )                                                                                                                                               .

CHAPTER 56 PRA INTERNAL FLOODING ANALYSIS , 56.1 Introduction ........ .. ......... ..................... .. 56 1 56.1.1 Definitions ....... ................. ............ . . 56-1 l 56.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......... ...... 56-1 j 56.2.1 Summary of Methodology . . . . . . . . . . . . . . . . ......... . . . . 56-1 j 56.2.2 Information Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56-2 ' 56.2.3 Initial Screening Assessment . . . . . . . . . . . . . . . . . . . . . . . .. . . 56-3 56.2.4 Detailed Screening Assessment ...........................56-4 56.2.5 Identification of Flood. Induced Initiating Events .............. . 56-6 I 56.2.6 Initiating Event Frequencies ........ . . . . . . . . . . . . . . . . . . . . 5 6-7 56.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6-7 56.3.1 General Flooding Analysis Assumptions and Engineering Judgments . 56-7 56.3.2 AP600-Specific Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56-9 56.4 Information Collection . . . . ..................................56-11 56.4.1 PRA-Modeled Equipment and Locations . . . . . . . . . . . . . . . . . . . 56-11 56.4.2 Identification of Areas for Flooding Evaluation . . . . . . . . . . . . . . 56- 1 1

                                                                                                                                                   ) !

56.5 At-Power Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56-12  ;

                       $6.5.1      Initial Screening Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6- 1 2                      1 56.5.2      Detailed Screening Assessment                ..................                       . . . . . . . 56-12 56.5.3      Identification of Flood. Induced Initiating Events . . . . . . . . . . . . . . 56-28 56.5.4      Calculation of Flood-Induced Initiating Event Lequencies . . . . . . . . 56-32 56.5.5      Quantification of At-Power Flood-Induced Events                         ...... . .               .. 56-39         .

i I i ENEl. Revision: 11 ) MD388 'a=: March 1998 XXXy o$pra\rev 11)pra40c.wpf.lb l

HR O TABLE OF CONTENTS (Cont.) Section I.itig bag 56.6 Shutdown Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6-41 56.6.1 Detailed Screening Assessment .......... . . . . . . . . . . . . . . . 5 6-41 56.6.2 Identification of Flood Induced Initiating Events . . . . . . . . . . . . . . 56-42 56.6.3 Calculation of Flood-Induced Initiating Event Frequencies . . . . . . . . 56-43 56.6.4 Shutdown Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56-48 56.7 Seismically Induced Flooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56-51 56.8 Flooding Hazards During Refueling Outages . . . . . . . . . . . . . . . . . . . . . . . . 56 52 56.9 Flooding Sensitivity Study ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6-5 2 56.9.1 Flooding Human Error Probabilities Sensitivity Study . . . . . . . . . . . 56-52 56.10 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 53 CHAPTER 57 INTERNAL FIRE ANALYSIS 57.1 Introduction ...................... ....... ................57-1 57.2 Qualitative Analysis Methodology . . .... ....... ................57-2 57.3 Quantitative Methodology of Fire Area Frequency . . . . . . . . . . . . . . . . . . .. 57-6 57.3.1 Fire Frequency Calculations .......................... . . 57-6 57.3.2 Fire Damage Category Quantification . . . . . . ... . . . . . . . . . . . . 57-7 57.4 Core Damage Quantification Methodology . . . . . ....... . . . . . . . . . . . 5 7- 10 57.5 Fire Analysis Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7 12 57.5.1 Qualite.tive Analysis Assumptions and Other Modeling Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57- 12 57.5.2 Quantification Assumptions And Modeling Considerations . . . . . . . 57-14 57.6 At. Power Qualitative Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7- 17 57.7 At-Power Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7- 19 57.7.1 Fire Ignition Frequencies for Quantitative Analysis . . . . . . . . . . . . . 57-19 57.7.2 Fire Damage Category Quantification . . . . . . . . . . . . . . . . . . . . . 5 7- 19 57.7.3 Individual Area PRA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-19 ) 57.8 Control Room Fire Analysis - Power Operation . . . . . . . . . . . . . . . . . . . . . . 57 22 ) 57.8.1 Description of the Control Room and Associated Fire Protection . . . 57 22 57.8.2 Alternate Shutdown Capability . . . . . . . . . . . . . . . . . . . . . . . . . . 57 23 57.8.3 Fire Hazard Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 24 57.8.4 AP600 Control Room Fire Evaluation . . . . . . . . . . . . . . . . . . . . . . 57-25 I 57.8.5 Fire Scenario Identification and Frequency Determination . . . . . . . . 57 29 ) 57.8.6 Control Room Fire Scenario Quantification and Results ..... ... 57-32 57.9 Shutdown Fire Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-33 57.9.1 Fire Ignition Frequencies during Shutdown Modes of Operation . . . . 57-33 57.9.2 Fire Damage Category Quantification . . . . . . . . . . . . . . . . . . . . . . 57 34 , 57.9.3 Individual Area PRA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 57-34 i 57.9.4 Fire Analysis for Safe Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . 57-34 l 57.9.5 Fire Analysis for Mid-Loop Operation . . . . . . . . . . . . . . . . . . . . . 57-41 l 9i Revision: 9 April 11,1997. [ Westinghoure o wepawvppm4acupt.lb uxvi  ! i l J _.__J

iBi A .b TABLE OF CONTENTS (Cont.) Section Title bage 57.10 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7-4 2 57.10.1 At-Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7-4 2 57.10.2 Shutdown Fire Analysis . . . . . . . . . . . . . . . . . .... .... . . . 57-45 57.10.3 Conclusions . . . . ................ .. ............. . 57-47 57.11 References . . . . . . . . .............. .......... . . . . . . . . . . . . 5 7-4 8 ATTACHMENT 57A DEFINITIONS ................................. .. 57A-1 ATTACHMENT 57B DESIGN CHANGE EFFECT ON INTERNAL FIRE ANALYSIS . . 57B-1 CHAPTER 58 WINDS, FLOODS, AND OTHER EXTERNAL EVENTS 58.1 Introduction ...............................................58-1 58.2 External Events Analysis ................. ....................58-1 58.2.1 Severe Winds and Tomadoes . . . . . . . . . . . . . ............... 58-1 58.2.2 Extemal Floods . . . . . ....................... ... . . . . 5 8-2 58.2.3 Transportation and Nearby Facility Accidents . . . . . . . . . . . . . . 5 8-2 58.3 Conclusion . ..................... ... .. ... ......... .. 58-3 58.4 Re ferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58-3 m /) V CHAPTER 59 PRA PESULTS AND INSIGHTS 59.1 Introduction ......... ................................. . . . 59-1 59.2 Use of PRA in the Design Process ... ....... ............. .. . . 59-3 59.2.1 Stage 1 - Use of PRA During the Early Design Stage . . . . . . . . . . . 59-4 I 59.2.2 Stage 2 - Preliminary PRA . . . . . . . . . . . . . . . .......... . . 59-5 59.2.3 Stage 3 - AP600 PRA Submittal to NRC (1992) . . . . . . . . . . . . . . . 5 9-7 59.2.4 Stage 4 - PRA Revision 1 (1994) . . . . . . . . . . . . . . . . . . . . . . . . . . 59-8 3 59.2.5 Stage 5 - r'RA Revisions 2-8 (1995-1996) . . . . . . . . . . . . . . . . . . . . 59-8 l 59.3 Core Damage Frequency from Intemal Initiating Events at Power . . . . . . .. 59-10 59.3.1 Dominant Core Damage Sequences .......................59-12 59.3.2 Component Importances for At-Power Core Damage Frequency . . . 59-44 59.3.3 System Importances for At-Power Core Damage . ....... . . . . 59-44 59.3.4 System Failure Probabilities for At-Power Core Damage . . . . . . . . . 59-45 59.3.5 Common Cause Failure Importances for At-Power Core Damage . . . 59-45 59.3.6 Human Error Importances for At-Power Core Damage . . . . . . . . . . 59-45 59.3.7 Accident Class Importances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59-47 59.3.8 Sensitivity Analyses Summary for At-Power Core Damage -. . . . . . 59-47 59.3.9 Summary of Important Level 1 At-Power Results . . . . . . . . . . . . . . 59-48 i 59.4 Large Release Frequency for Internal Initiating Events at Power . . . . . . . . . . . 59-51  ; 59.4.1 Dominant Large Release Frequency Sequences ............. . 59-52 59.4.2 Sensitivity / nalyses for Containment Response . . . . . . . . . . . . . 59-72 l 1 ,- m l ENE Revision: 11 DD88 CW.W March 1998 XxXyji oVab.llWa-toc *ptib J

nu m

         =

TABLE OF CONTENTS (Cont.) 0 Section Title .P,gite 59.4.3 Comparison of Initiating Event Importances for Core Damage Frequency and Large Release Frequency . . . . . . . . . . . . . . . . . . . . 59-72 59.4.4 Summary of Important Level 2 At-Power Results . . . . . . . . . . . . . 59-73 59.5 Core Damage and Severe Release Frequency from Events at Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . ............. . . . . 59-75 59.5.1 Summary of Shutdown Level 1 Results . . . . . . . . . . . . . . . . . . . . . 59-75 59.5.2 Large Release Frequency for Shutdown and Low-Power Events . . . . ............ ... ........... .. . . . . 59-81 59.5.3 Shutdown Results Summary . . . . . ...... ......... . . . . 59-82 59.6 Results from Intemal Flooding. Internal Fire, and Seismic Margin Analyses . . . . . . . . . . . . . . . . . . .... ............. ....... . . . 59-82 59.6.1 Results of Internal Flooding Assessment . . . . . . . . . . . . . . . . . . . 59-82 59.6.2 Results ofInternal Fire Assessment . .. . ................59-83 59.6.3 Results of Seismic Margin Analysis . . . . . . . . . . . . . ........ 59-87 59.7 Plant Dose Risk from Release of Fission Products . . .... .. .. 59-87 59.8 Overall Plant Risk Results . . . . . . . . . . . . . . ........... .. ... .. 59-88 59.9 Plant Features Important to Reducing Risk .. . ... ..... . . . . . . . . . 5 9-89 59.9.1 Reactor Design . . . . . . . . . . . . . . . . . . ....... ... . . . . 59-90 59.9.2 Systems Design . ........ .... . .. .. . . . . . . . . 5 9-91 59.9.3 Instrumentation and Control Design . . . . ...... ... . . . . . . 59-94 59.9.4 Plant Layout . . . . . .. ..... .... .... .. . . . . . . . . 5 9-95 59.9.5 Plant Structures . . . . . . . . ...... ..... . .. . . . . . . 59-96 59.9.6 Conte!nment Design . . . . . .... ............... . . . 59-96 59.10 PRA Input to the Design Certification Process . . . . ..... ... . 59-101 59.10.1 PRA Input to Reliability Assurance Program . . . . . . .. . 59-102 59.1u.2 PRA Input to Certified Design Material .. . .. . . . . . . 59-102 59.10.3 PRA Input to the Technical Specifications . . . . . . . . . . ... . . 59-102 59.10.4 PRA Input to MMI/ Human Factors / Emergency Response Guidelines . . . . ...... .... ........ .. .. . . . . . . 59-102 59.10.5 Summary of PRA-Based Insights . . . . . . . . . . . . . . . . . . . . . . 59-103 59.10.6 Combined License Information ........ .. .. . ... 59-103 APPENDIX A MAAP4 ANALYSIS TO SUPPORT SUCCESS CRITERIA . . .. . .. . . . A-1 APPENDIX B EX VESSEL SEVERE ACCIDENT PHENOMENA . . ... . .. . . B-1 APPENDIX C DESIGN CHANGES THAT OCCURRED AFTER THE PRA ANALYSES WERE COMPLETED . . . . . . . . . . . . ........ ...... ... . . . . . . . C- 1 APPENDIX D EQUIPMENT SURVIVABILITY ASSESSMENT . . . . . . . . . . . . .. . . . . . . D- 1 O A as h 1998 L, 3 Westiligh00Se l c:Wa\rev.llWtoc.wpf Ib xxxviii

m

 ;   T (l '

LIST OF TABLES (Cont.) j i Table No. Title P_ age 57-25 Quantitative Summary - Control Room Fires During Safe Shutdown ........ ............. ..................... 57-138 57-26 Summary of Qualitative Evaluation Results - Mid-Loop Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-139 57 27 Summary of Quantitative Results - Mid-Loop Operation . . . . . . . . . . . . . . 57- 146 28 Quantitative Summary Control Room Fires During Mid-Loop Operation . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 57-154 57-29 Safe Shutdown Containment Single-Hot-Short LOCA Sensitivity . . . . . . 57-155 59-1 Contribution of laitiating Events to Core Damage . . . . . . . . . . . . . . . . . . 59-104 59-2 Conditional Core Damage Probability of Initiating Events . . . . . . . . . . . . . . 59-105 59-3 Intemal Initiating Events at Power Dominant Core Damage Sequences . . . . . 59-106 59-4 Sequence 1 - Safety Injection Line Breat Dominant Cutsets (SI-LB-02) . . . . 59-108 59-5 Sequence 2 - Intermediate LOCA Dominant Cutsets (NLOCA-03) . . . . . . . . 59-113 59-6 Sequence 3 - Large LOCA Dominant Cutsets (LLOCA-06) . . . . . . . . . . . 59-118 59-7 Sequence 4 - Large LOCA Dominant Cutsets (LLOCA-03) . . ....... .. 59-124 59-8 Sequence 5 - Reactor Vessel Rupture Cutset (RV-RP-02) . . . . . . . . . . . . . 59-130 7 59-9 Sequence 6 - Large LOCA Dominant Cutsets (LLOCA-11) . . . . . . . . . . . . 59-131 ( i 59-10 Sequence 7 - ATWS Dominant Cutsets (ATWS-28) . . . . . . . . . . . . . . . . . . 59-133

 'd      59-11     Sequence 8 - Medium LOCA Dominant Cutsets (MLOCA-03) . . . . . . . . . . 59-141 59-12     Sequence 9 - ATWS Dominant Cutsets (ATWS-13) . . . . . . . . . . . . . . .. . . . 59-146 59-13     Sequence 10 - Intermediate LOCA Dominant Cutsets (NLOCA-04) . . . ... 59-151 59-14     Sequence 11 - Safety Injection Line Break Dominant Cutsets (SI-LB-03) . . . 59-156 59-15     Sequence 12 - Small LOCA Dominant Cutsets (SLOCA-03) . . . . . . . . . . . 59-160 59-16     Sequence 13 - Core Makeup Tank Line Break Dominant Cutsets (CMTLB-03) 59-165 59-17     Sequence 14 - Steam Generator Tube Rupture Dominant Cutsets (SGTR-07) . 59-170 59-18     Sequence 15 - Steam Generator Tube Rupture Dominant Cutsets (SGTR-23) . 59-171 59 19     Sequence 16 - Large LOCA Dominant Cutsets (LLOCA-02) . . . . . . . . . . 59-177 59-20     Sequence 17 - Large LOCA Dominant Cutsets (LLOCA-05) . . . . . . . . . . . . 59-183 59-21     Sequence 18 - Consequential SGTR Dominant Cutsets (SGTRC-03) . . . . . . . 59-189 59-22     Sequence 19 - Intermediate LOCA Dominant Cutsets (NLOCA-16) . . . . . . . 59-195 59-23     Typical System Failure Probabilities, Showing Higher Reliabilities for Safety Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59-201 59-24     Dominant CET Sequences . . . . . . ..............................                                     59-202 59-25     Comparison of Initiating Event Contribution to Core Damage and Large Release Frequencies     ............ .......................                                    59-203 59-26     Summary of AP600 PRA Results . . . . . . . . . . .           .........            . . . . . . . . . 59-204 59 27_    Comparison of AP600 PRA Results to Risk Goals . . . . . . . . . . . . . . . . . . 59-205 59-28     Site Boundary Dose Risk at 24 Hours . ..........................                                      59-206 59-29     AP600 PRA Based Insights . . . . . . . . . . . . . . . .......                . . . . . . . . . . . 5 9-207
 ',m
     \

J ENEl. Revision: 11 M @0m k"l'ra h March 1998 I ljg o%p600pra\rev.,1I\pra-lot wpf:Ib

LIST OF FIGURES e Firure No. Title E, age 2-1 Core Damage Logic Diagram for Internal Initiators . . . . . . . . . . . . . . . . . . . 2 -5 8 2-2 Core Damage Logic Diagram for Internal Initiators . . ............ .... 2-59 2-3 Core Damage Logic Diagram for Internal Initiators . . . . . . . . . . . . . . . . ... 2-60 2-4 Core Damage Logic Diagram for Internal Initiators . . . . . . . . ........ . . 2-61 4-1 Large Loss-of-Coolant-Accident Event Tree .................. . . . 4-120 4-2 Medium Loss-of-Coolant Accident Event Tree . . . . . . . . . ............ . 4-121 4-3 Core Makeup Tank Line Break Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . 4-122 4-4 Direct VesselInjection Line Break Event Tree . ....... . . . . . . . . 4-123 4-5 Intermediate Loss-of-Coolant Accident Event Tree . . ............ ... 4-124 4-6 Small Loss-of-Coolant Accident Event Tree .. ......... . . . . . . . . . 4-125 4-7 Reactor Coolant System Leak Event Tree ........... ... ..... . . . , 4-126 4 53 Passive Residual Heat Removal Tube Rupture Event Tree . ............ 4-127 4-9 Steam Generator Tube Rupture Event Tree . . . . ....... . . . . . . . . . . 4-128 l 4-10 Reactor Vessel Rupture Event Tree ......... ..... ......... . . . 4-130 l 4-11 Interfacing Systems Loss-of-Coolant Accident Event Tree . . . . . . ..... . 4-131 l 4-12 Transients with Main Feedwater Event Tree .... . . . . . . . . . . . . . . . . . . . 4- 13 2 ! 4-13 Transients with Loss of Reactor Coolant System Event Tree . . ..... . . . . 4-133 1 4-14 Transients with Loss of Main Feedwater Event Tree . . .. .. ...... ... 4-134 4-15 Transients with Core Power Excursion Event Tree . ................ 4-135 4-16 Loss of Component Coolir.g Water SystenVService Water System Event Tree . . . . . . . . . . . . . . . . . . . . . . . .. ............. . . 4-136 4-17 Loss of Main Feedwater Event Tree . ....... .. ... . . . . . . . . . . . . 4- 137 4-18 Loss of Condenser Event Tree . . . . . ....... . . .. . . . . . . . . . . 4- 13 8 4-19 Loss of Compressed Air Event Tree . . ..... ...... ... ...... . 4-139 4-20 Loss of Offsite Power Event Tree ......... ....... ........ . 4-140  ! 4 21 Main Steam Line Break Downstream of Main Steam Isolanon l Valves Event Tree . .. ........ ...... . ............. . .. 4-141 l 4-22 Main Steam Line Break Upstream of Main Steam Isolation Valves Event Tree ... ................. ......... .... . . 4-142 4-23 Stuck-Open Secondary-Side Safety Valve Event Tree . . . . . . ...... .. . 4-143 4-24 Anticipated Transient Without Scram Precursor without Main Feedwater Event Tree . . .. ....... . . ............ . . 4-144 l 4-25 Anticipated Transient Without Scram Precursor with Injection Evem Tree . . . . . . . . ....................................4-146 4-26 Anticipated Transient Without Scram Precursor Transients with Main Feedwater Event Tree . . . . . . . . . . ..................... ... 4-147 O Revision: 9 ENEl. April 11,1997 wn:::h,, M$0m o \apsprevev.9ps lor wpr.ib 1x

O

 \* /                                       .

LIST OF FIGURES (Coat.) Firure No. Ihlt P.ARE 54-4 LOCA/RNS Pipe Rupture During Hot / Cold Shutdown (RCS Filled) Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-302 54-5 LOCA/RNS-V024 Opens During Hot / Cold Shutdown (RCS Filled) Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-303 54-6 Overdraznmg of Reactor Coolant System During Draindown to Mid. Loop . . . 54-304 54-7 Loss of Offsite Power (RCS Dramed) Event Tree . . . . . . . . . . . . . . . . . . . 54- 305 54-8 Loss of RNS Initiator (RCS Dramed) Event Tre. . . . . . . . . . . . . . . . . . . . . 54-306 54-9 Loss of CCW/SW Initiator (RCS Dramed) Event Tree . . . . . . . . . . . . . . . . 54-307 54-10 LOCA/RNS V024 Opens (RCS Drained) Event Tree . . . . . . . . . . . . . . . . . 54-308 54-11 Accumulator Injection (Dilution Scenario) Event Tree . . . . . . . . . . . . . . . . . 54-309 54-12 Shutdown Transient Case SDIB2 RCS Pressure vs. Tune . . . . . . . . . . . . . . 54-310 54-13 Shutdowr. Transient Case SDIB2 Mass Flow Rate vs. Time . . . . . . . . . . . . 54-311 54-14 Shutdown RNS Break Case SD3A (3500 gpm) . . . . . . . . . . . . . . . . . . . . . 54-312 54-15 Shutdown RNS Break Case SD3A2 (2000 gpm) . . . . . . . . . . . . . . . . . . . . 54-313 54-16 Shutdown RNS Break Case SD3A3 (1000 gpm) . . . . . . . . . . . . . . . . . . . . 54-314 54-17 Shutdown Plant Damage State Substate Event Tree for LP-ADS . . . . . . . . . 54-315 54-18 Shutdown Plant Damage State Substate Event Tree for LP-1 A . . . . . . . . . . . 54-316 54-19 Shutdown Plant Damage State Substate Event Tree for LP-3D . . . . . . . . . . . 54-317 Shutdown Plant Damage State Substate Event Tree for LP-3BR . . . . . . . . . . 54-318 p 54-20 d 54-21 Shutdown Plar.: Damage State Substate Event Tree for LP-3BE . . . . . . . . . . 54-319 55-1 Seismic Initiating Event Hierarchy Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 55-105 55-2 EQ.STRUC Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-106 55-3 EQ-RVFA initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-108 55-4 EQLLOCA Initiating Event Fault Tree .......................... 55-109 55-5 EQ-SLOCA Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-110 55-6 EQ-NIWS Initiating Event Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-111 55 7 EQ.STRUC Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-112 55-8 EQ-RVFA Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-113 55-9 EQ-LLOCA Event Dee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-114 55-10 EQ.SLOCA Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-115 55-11 EQA*IWS Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-116 55-12 EQ-LOSP Event Tree . . . . . . . . . . . . - . . . . . . . . . . . . . . . . . . . . . . . . . . 55-117 55-13 EQ-LOSP Event Tree (for 0.5g level canhquake) . . . . . . . . . . . . . . . . . . . . 55-118 55-14 EQ-AC2AB Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-119 55-15 EQ XCIC Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-120 55-16 EQ-XADMA Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-121 55-17 EQ XIW2A Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-122 55-18 EQ-RECIR Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-123 55 19 EQ-CM2SL Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-124 55-20 EQ-ADA Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-125 55-21 EQ-IW2AB Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5-126

    \
 %J g                                                                                      Revision: 9 IEtas                                                                               April 11,1997 tmi                               . % %. w ,ca L _______

m: ne w .g LIST OF FIGURES (Cont.) O

                        . Fleure No.                                             Title                                                                     P_ age 55-22         EQ-PRHR Fault Tree . . . . .... .......................                                           . . . . . 55-127 55-23         EQ-PRESU Fault Tree . . . . . .           ...............................55128 55-24         EQ-PMS Fault Tree . . . . . . . ......               . . . . . . . . . . . . . . . . . . . . . . . . . 5 5- 129 55-25         EQ-DC Fault Tree . . . . . . . . . . .       ... ..............                       . . . . . . . . . .        5 5-130 55-26         Class IE dc Power Block Diagram . . . . . . . . . . . . . . . . . . . .. . . . . . . . 55-131 55-27         Containment Evaluation Model . . . . . . . .                ......................55-132 55-28         EQ-STRUC Event Sequences . . . . .                 ......................                              ... 55-133 55 29         EQ.RVFA Event Sequences . . . . . . ..................                                     . . . . . . . . 55-134 55-30         EQ-LLOCA Event Sequences . . . . . . . . ........... ..... ..                                          ... 55-135 55-31         EQ-SLOCA Event Sequences . . .                       .........             . . . . .  . .  . . . .  . .  . . 5 5- 136 55 32         EQ-SGTR Event Sequences ......................                                          . . . . . . . . . 55-137 55-33         EQ-SLB Event Sequences . . . ...                 ..................                        . . . . . . . . 55-138 55-34         EQ-ATWS Event Sequences . . . . ....                    . . . . . . . . . . . . . . . . . . . . . . . . 5 5- 139 55-35         EQ-LOSP Event Sequences (for 0.5g level earthquakes) . . . . . . . . . . . . . . . 55-140 56-1          Flood Zones and Barriers Plan at 66'-6" . . . . .........                          . . . . . . . . . . . . 5 6-93 56-2          Flood Zones and Barriers Plan at 82*-6" .               .   . . . . . . . . . . . . . . . . . . . . . . . 5 6-9 5 56-3          Flood Zones and Barriers Plan at 96'-6" . . . . . . . . . . . . . . . . . . . . . .....                           56-97 56-4          Flood Zones and Barriers Plan at 100'-0" & 107'-2" . . . .                         .  . .  . . .  . .  .  . . . 5  6-99 56-5          Flood Zones and Barriers Plan at i17'-6" . . . . . . . . . . . . . . . . .                          . . .       56- 101 56-6          Flood Zones and Barriers Plan at 135'-3" . . . . . . . . . . . . . . . . . . . . . . ..                         56-103 56-7          Flood Zones and Barriers Plan at 160'-6" & 153'-0" . . . . . . . . . . . . . . . .                              56-105 56-8          Flood Zones and Barriers Plan at 160'-6" & 180'-0" . . . ........ . . . .                                       56-107 56-9          8-in. Fire Main Rupture at-Power Event Tree ........ .....                                   . . . . . . .      56-109 56-10         8-in. Fire Main Rupture during Hot / Cold Shutdown Event Tree . .....                                    .. 56-110 56-11         8-in. Fire Main Rupture during RCS Drained Conditions Event Tree .. .. .                                        56-111 57-1          Fire Progression Event Tree for 1200 AF 01 Fire Art.a .                          ....        . . . . . . .      57-156 59-1          Contribution of Initiating Events to Core Damage ...... .                               ..     . . . . . .      59-233 59-2          Contribution of Initiating Events to Large Release Frequency and Core Damage Frequency . . .. .. ......... . .. . ....                                                .. 59-234 59-3          Total Plant CDF/LRF , . . . ..             ...       ..         ...... ... ...                   . . . . .      59-235 59-4          24-Hour Site Boundary Dose Cumulative Frequency Distribution . . . . . . . . .                                  59-236 Revislan: 11 O

March 1998 owuw==. uw.u-pr*

                                    .                                           lxxxii
                                                                                                             &                   [ Westinghouse

50A. ATWS PRA Sensitivity Case f (3

 \j' I ATTACHMENT 50A I

I ATWS PRA SENSITIVITY CASE I I In the PRA, when anticipated transient without scram (ATWS) occurs due to failure to insert I the control rods following a demand, the ATWS event trees are modeled to have at least I short-term automatic reactor coolant system (RCS) cooling with passive residual heat removal I (PRHR) or startup feedwater (when main feedwater is unavailable). If short-term cooling is I available, then the RCS pressure control is addressed. This control requires that the i pressurizer safety valves operate and the plant is not in the unfavorable exposure time (UET) I ofits fuel cycle. After both of these conditions are successful, namely short-term cooling and I pressure control of the RCS, then the next phase of the ATWS mitigation is addressed. , I l A sensitivity analysis was performed on the ATWS success criteria and the UET value, in I the sensitivity case, ATWS event trees are modeled to have at least short-term automatic RCS I cooling with only PRHR (when main feedwater is unavailable) and also requires operation of I the core makeup tanks (CMTs). A UET of 3 percent is assumed, based on LOFTRAN l analyses (Reference 50A-1) of ATWS events. I I The changes made for this sensitivity analysis include the following: I (g d t i I

a. The UET is defined as the percentage of full-power core life where the moderator temperature coefficient is not bounded by that assumed in the LOFFRAN analyses I where acceptable results are shown (i.e., RCS pressure less than 3200 psig following  ;

I an ATWS). For this sensitivity case, the UET is 3 percent. j i 6 I b. No credit is taken in an ATWS event for the operation of the startup feedwater system. I I c. The ADALT success criteria associated with the DP node of the containment event tree I for end state 3A is moved to the PRHR2 node in the ATWS event tree. ADALT I success criteria requires CMT injection (which also needs successful stopping of the I reactor coolant pumps), PRHR operation, and no consequential steam generator tube I rupture (SGTR). l l d. With item c implemented, the DP node in containment event tree for end state 3A is I assigned a failure probability of 1.0, which means that all 3A sequences go to I containment bypass and contribute to the large release frequency. This is an overly I conservative assumption because it ignores the possibility that the passive safety I systems and passive containment cooling system could mitigate the consequences of the i l ATWS, or at least prevent containment bypass. I I 'Ihe AP600 core damage frequency (CDP) and large release frequency (LRF) results for this l ATWS sensitivity case are summarized in Table 50A-1. The conclusion from the sensitivity I I case is that the change to the core damage frequency and large release frequency is negligible, 73 Revisioru 11 EMM M EL mtumb March 1998 50A-1 ob r ;e.iar:50awpf:1b ! I

          "iE 50A. ATWS PRA S:nsitivity Ccss I             and the impact on containment effectiveness is minimal (e.g., an absolute decrease of O   .

I 1 percent). I I Reference I l 50A-1 B.A. McIntyre, Westinghouse, to T.R. Quay, NRC, "AP600 Response to FSER Open items," I Westinghouse letter DCPiNRCl227, dated January 23,1998. O i i l Revision: 11 O l March 1998 _ T Westinghouse obem;,,uithwpt:Ib 50A-2 f

m-50A. ATWS PRA Senzitivity Case (q

s. s
    /

l Table 50A-1 l l ATWS SENSITIVITY CASE RESULTS l Sensitivity Case Base Case i ATWS CDF 5.4E-09/yr 1.0E-08 /yr l AP600 CDF (internal events at 1.65E-07/yr 1.7E-07/yr i power) I  % Contribution of ATWS to CDF 3.3 % 5.9 % 1 3A Plant Damage Class Frequency 5.4E-09/yr 1.0E-08/yr I (from ATWS) l LRF from 3A Plant Damage Class 5.4E-09/yr 4.2E-09/yr l Total LRF (internal events at power) 1.9E-08/yr 1.8E-08/yr I  % Contribution of ATWS to LRF 2.8 % 2.3 % 7 kj s l Containment Effectiveness (Ceff) 88.2 % 89.2 % I Conditional Containment Failure 11.8 % 10.8 % I Probability (CCFP) i A k ]

  ~

ENE Revision: 11 [ WBStloghouse NJh. March 1998 50A-3 ofww ro;pswitsoa.wpr:Ib

54A. Design Change hopact on Low Power and Shutdown Risk Assessment t v) i Having made changes to the basic events described above, the quantification output file is i recalculated. The resulting core damage frequency is 3.4E-08 events per year, which is I approximately 60 percent of the baseline core damage frequency of 5.5E-08. I I Unscheduled Maintenance Unavailability I l Based on the NRC request to assess the impact of unscheduled maintenance on the IRWST l during drained condition, unavailability of one IRWST train due to unscheduled maintenance i is incorporated into the model. Incorporating the train maintenance unavailability was I accomplished by setting basic event IRWMOD05S to 3.0E-03; the probability of a safety-i related system being in maintenance. I I Module IRWMOD05S previously represented failure of the MOV in the IRWST Train A to I open due to mechanical failure. As stated above, due to the design change, this failure mode i no longer exists. Consistent with the new design configuration, module IRWMOD06S I (associated with mechanical failure of the MOV in IRWST Train B)is set to zero. I I The train maintenance unavailability is then added to the new cutset file obtained from the ] I recalculation in the previous section. The resulting core damage frequency remains at 3.4E-08 1 l events per year.

                                                                                                                      ]

I g) t I l ne top 500 dominant cutsets from the quantification output file reflecting the revised basic event probabilities associated with the new IRWST configuration and maintenance l unavailability are shown in Table 54A-1. As stated above, the core damage frequency is I shown to be 3.4E-08 events per year. The associated component importance file is shown in I Table 54A-2. l l Single IRWST Train Operation Sensitivity I I ne current revision of Technical Specification 3.5.6 allows one of the IRWST injection trains I to be out of service during reduced inventory conditions. This Technical Specification i provision is to allow for unscheduled repairs of components in any one of the IRWST I injection trains during drained conditions. His provision is not intended to allow plant i personnel '.o schedule or plan maintenance activities to be conducted during reduced inventory I conditions, and, therefore, should not be misconstmed as such. I i However, a sensitivity study is performed to estimate the core damage frequency if one train i of the IRWST is failed. For this conservative estimate of the new IRWST design I configuration, one IRWST train is assumed to fail during filled and drained shutdown 1 l conditions. That is, it is assumed that the IRWST has only one injection line by essentially I setting the other train failure probability equal to 1.0. i l A G ENE Revision: 9 l UDM WaW April 11,1997 54A-5 mWA9*t54WP f:Ib _--_a

==amme
      ~

54A. Design Change impact on Low-Pcw:r and Shutdowa Risk Assessment This sensitivity is performed by modifying the following basic events in the quantification e output file: IWACV122AO = 1.0; IWACV123AO = 5.8E-04; IWACV124AO = 1.0; IWACV125AO = 5.8E-04; IWBCV122AO = 1.75E-03; IWBCV123AO = 5.8E-04; I IWBCV124AO = 1.75E-03; IWBCV125AO = 5.8E-04;IWX-CV-AO = 3.1E-05;IWX-1 MV-GO! = 3.8E-05; IRWMOD05S = 0; and IRWMOD06S = 0. Requantification of the cutset file with these changes provides a core damage frequency of l 2.0E-07 events per year. Since this evaluation is a sensitivity study of the main exercise in assessing the reliability of the new IRWST design, the output file for this case is not included in this report. This estimate of the core damage frequency at shutdown is believed to be conservative for the following reasons:

                      =      One train of the IRWST is assumed to fail during both drained and non-drained conditions.

l l

  • Approximately 61 percent of the co,e damage frequency of 2.0E-07 events per year is attributed to dominant failures that include failure of the IRWST injection line strainer (i.e., the top two cutsets total 1.2E-07, and these cutsets include basic event i IWB-PLUG).

1

                      =      Re IRWST water is considered to be clean water, suitable for injection into the RCS.
  • Re IRWST is covered to preclude material that could clog the strainer from entering the tank.
  • De IRWST strainer is assigned a conservative failure probability of 2.4E-04 in Revision 6 of the PRA. The plugging of the IRWST strainer is expected to be a much less probable event than reflected in a failure probability of 2.4E-04.

Therefore, failure of the IRWST line strainer is more dominant than would be expected for failure of a strainer in a clean water system. If a more realistic failure probability is used for strainer plugging, the resulting core damage frequency of the model having a single IRWST train configuration should be much closer to the core damage frequency of 5.5E-08 events per year. His is obtained from the baseline shutdown model of PRA, Revision 6. 54A.2 IRWST Recirculation Paths Changed from 10-inch and 4-inch Lines to 6-inch Lines This design change has no impact on the shutdown core damage frequency calculation, since the recirculation function is not credited in the Level 1 shutdown PRA. (See note in Section 54A.3 below.) O Revision: 11 March 1998 W Westilighouse c4rs'Rev_1I\attS4a wpf Ib-021898 54A-6

54B. Surge Line Flooding Effect on Low P:w;r and Shutdowa Risk Assessment

 ,m

( ) 1 l ATTACHMENT 54B l l SURGE LINE FLOODING EFFECT ON LOW-POWER AND SHUTDOWN RISK l ASSESSMENT l I 54B.1 Assessment of Shutdown PRA Including Effect for Surge Line Flooding I l An examination of the surge line flooding concems was conducted on the AP600 design to I determine the capability of the IRWST gravity injection function during reduced inventory I conditions if normal residual heat removal (RNS) cooling is lost. l l 'Ihe results of that examination indicated that, if RNS cooling is lost during reduced inventory j l conditions with the reactor coolant system open, a vent path through the ADS 4th stage is ' I required to preclude the occurrence of surge line flooding and thereby not affect gravity 1 injection. j i i I i Therefore, to address surge line flooding, Westinghouse has included the requirement for I l-out-of-4 ADS stage 4 valves to be opened, in the success efiteria for events during reduced I inventory conditions. This success criterion for 1-out-of-4 ADS stage 4 valves to be opened I is determined by analyses documented in Section 4.8 of the AP600 Shutdown Evaluation i l Report, WCAP-14837, (Reference 54B-1). Technical Specification 3.4.14 allows for 2 of the A l 4 ADS stage 4 valves to be out of service during reduced inventory conditions. This technical () I l specification provision is to allow for unscheduled repairs of as many as two ADS stage 4 valves during drained conditions. I I With the opening of ADS fourth stage, the RCS depressurizes within 24 hours, and the I containment sump recirculation function is required. Thus, given the requirement for

        !             operation of the ADS during reduced inventory conditions, the containment sump recirculatio" I             function is also included in the reduced inventory accident seq.iences when both the ADS and I             graxity injection are successful. The success criterion for containment sump recirculation I             requires operation of 1-out-of-2 trains; this success criterion is consistent with the basic l             success criteria for operating systems during reduced inventory (mode 5) conditions when I             decay heat level is expected to be very low. The affected reduced inventory accident I             sequences show success of containment sump recirculation leading to the "OK" end-state, and I             failure of containment sump recirculation leading to core damage end-state "LP-3BL" or l             "LPCBP."

l l The baseline and focused shutdown PRA as reported in Revision 6 is requantified o include I the effects of the additional ADS success criteria for surge line flooding and containment I sump recirculation success criteria for accident mitigation. This requantification includes 1 Levels 1 and 2 of the PRA. The results of this evaluation are used to derive the shutdown I PRA insights, as opposed to the results reported in shutdown PRA Revision 6. 77 ( )

    /

ENE Revision: 11 Mif$0ilS8 mt=&, March 1998 54B-I ov*evi nwt54b wpr Ib

in 4 1 54B. Srrgi Line Flooding Effect on Low P:wer cnd Shutdown Risk Assessmelt I All shutdown drained cases are affected by the surge line flooding issue. These cases are as O i follows: { l i IEV-RCSOD RCS overdraining when entering mid-loop condition i IEV-LOSPD Loss of offsite power during mid-loop operation

   !                      IEV-RNSD                Loss of RNS during mid-loop operation I                      IEV-CCWD                Loss of CCS/SWS during mid-loop operation
   !                      IEV-LOCA24D             LOCA through RNS-V024 during mid-loop operation i

I The method of evaluating the effect of these success criteria on the shutdown PRA involves I the following process: I l a. Include ADS stage 4 and containment sump recirculation functions in the shutdown i event trees for drained conditions. The revised event trees are provided in l Figures 54B-1 through 54B-5. I I b. Construct two ADS fault trees: ADASD for transient and loss of coolant accident cases I (i.e., with offsite power available), and ADASDP for the station blackout case. The i success criteria summary tables for these fault trees are provided in Tables 54B-1 and l 54B-2. I l c. Construct ADS support system fault trees for the fault tmes developed in item b. l d. Construct two containment sump recirculation fault trees: RECIRCS for transient and loss of coolant accident cases, and RECIRBS for the station blackout case. The success 9 I I criteria summary tables for these fault trees are provided in Tables 54B-3 and 54B-4. I I e. Construct containment sump recirculation suppo:t system fault trees for the fault trees I developed in item d. I I f. Construct initiating event sequences for the reduced inventory cases to include ADS and i containment sump recirculation success and/or failure, as appropriate. These sequences I used the fault trees for the IRWST, RNS, CCS, and SWS that are reported in the I shutdown PRA, Revision 6, without modification. I l g. Add success of the operator action to stop RCS drain-down in applicable sequences for I the RCS overdrain initiating eve.et (RCSOD); this is represented by basic event RHN-l MAN 04-SUCC. l l h. Group the non-drained initiating event sequences from shutdown PRA, Revision 6, with I the newly constructed initiating event sequences for the drained cases, discussed in I items f and g above. Quantify this group of sequences, using the same truncation limits I l as used for the Revision 6 shutdown PRA, to assess the effect of the changes in the I drained sequences on the baseline and focused shutdown core damage frequencier. Revision: 11 O ENEL

                                                                          -~~                W WB5tingh00S8 March 1998 oNravev11wt54b wpr:Ib.02259s                         54B-2 L

548. Surge Line Flooding Effect on Low P;w:r cnd Shutdow2 Risk Assessmelt = g i V i i. Use the Level 1 quantification results from the effort in item (h) to calculate the I baseline and focused shutdown large release frequencies. I I Note, the shutdown PRA, Revision 6, reflects the conservative modeling of RNS trees in i sequences associated with the loss of offsite power (LOSP) initiating event. This I conservatism consists of using an OR gate instead of an AND at the second level of the RNS l fault tree files RNP2, RNT2, RNP2D and RNT2D. By correcting of these fault tree files, the I baseline core damage frequency changes from 5.5E-08 to 4.7E-08 events per year; the I dominant core damage sequences with single RNS train failure from LOSP events are I eliminated by these corrections. The corrected RNS fault tree files are used in this evaluation I to resolve the surge line issue. l l 54B.1.1 Baseline PRA Shutdown Core Damage Frequency Results l I By incorporating the changes discussed above into the shutdown PRA model, the baseline I core damage frequency (CDF)..:hanges from 4.7E-08 to 9.0E-08 events per year; an increase I of 91 percent. However,it is d.portant to note that a CDF of 9.0E-08 is still very low. The l sequence results for this baseline case are shown in Table 54B-5, and the top 200 cutsets from I the quantification output file are shown in Table 54B-6. The associated component i importance file is shown in Table 54B-7. l l 54B.1.2 Focused PRA Shutdown Core Damage Frequency Results / 1 l O l By incorporating the changes discussed above into the model from the shutdown PRA, I Revision 6, the focused PRA sensitivity study core damage frequency changes from 4.lE-07 l to 5.9E-07 events per year; an increase of 44 percent. However, a CDF of 5.9E-07 is still l l very low. The sequence results for this focused case are shown in Table 54B-8, and the top i 200 cutsets from this quantification output file are shown in Table 54B-9. The associated I component importance fi!e is shown in Table 54B-10. l l 54B.2 Design Change Effect on Surge Line Cases  ; I  !' I 'Ihis section documents the effect of design changes on the baseline and focused PRA results l from the surge line cases addressed in the previous section (54B.1) of this attachment. The I cutset output files for the results in subsections 54B.l.1 and 54B.I.2 form the starting point I of these sensitivity studies. I I These particular design changes, made subsequent to preparing the design reponed in the I shutdown PRA, Revision 6, are as follows: I l 1. IRWST injection check valves maintaining the RCS pressure boundary changed to squib l valves; (i.e., check valves 123A/B and 125A/B are changed to squib valves 123A/B and 1 125A/B, respectively). These squib valves serve to isolate the IRWST and operate to l

                                                                                                                        )

p l v l ENEL Revision: 11  ! [ WE3tiflgh00Se w xia: L n March 1998 )' 54B-3 oWVeviliarts46.wpr.ib

I

  !="    ~Hi 54B. Surgi Line Flooding Effect on Low P:wIr and Shutd:wn Risk Assessment
  ~

l provide IRWST injection when called upon. Note, IRWST motor-operated O\ I valves 121 A & B are no longer required to be closed during drained conditions. I l 2. IRWST recirculation paths changed from 10-inch and 4-inch lines to 6-inch lines in all l paths l l 3. IRWST motor-operated valves 1ISA & B and check valves 120A & B maintaining the l IRWST water level changed to squib valves l l 4. CCS valves to the RNS heat exchanger changed from manual to air-operated i ! 5. The capacity of the service water basin reduced; its duration changed from 24 hours to l 12 hours I l 6. Service water system valves V037A & B changed from air-operated to motor-operated l l 7. The number of PRHR heat exchangers changed from two to one i I 8. RNS check valves V015A & B on the DVI lines changed to stop check valves. I i This evaluation is an extension of the studies documented in Attachment 54A. The same basic l event changes, shown in Attachment 54A, are made in these studies for the base cases. l Additional basic event changes related to the 4th stage ADS components, containment sump l recirculation components, and human error probabilities (HEPs) are made to perform I sensitivity studies in addition to those in Attachment 54A. l I In these studies, the effect of the design changes are evaluated together by performing the I steps in Section 54A.9, but on the surge line-related cutset files. In other words, the I sensitivity studies that assess the effect of each design change (as documented in i Sections 54A.1 through 54A.8) are not performed in this exercise. I i Note, for the first design change discussed above, pertaining to the IRWST injection valves, I the four squib valves have new dependencies on I&C systems and electric power systems for I actuating signals. The protection and safety monitoring system along with Class IE de power i provide the safety-related signal to these valves, with the diverse actuation system and the I non-Class IE de power providing the nonsafety-related signal. Each squib valve receives a 1 safety-related actuation signal from a different division, providing a robust redundancy I configuration. Since the check valves, which did not need a signal to open, have been I changed to squib valves, the I&C and power dependencies present a new challenge to the 1 IRWST actuation model. However, as discussed below, the I&C and power dependencies are i not included in the sensitivity study models. I I

  • Because of the robust redundancy of the safety-related signals, and the fact that the i nonsafety-related systems provide a backup to the safety-related signals, the I&C and I power dependencies will be dominated by common cause failures, with random failures Revision: 11 O

March 1998 oiva\revilwt54b.wpf.lb-o22598 54B-4 hhw 3 Westiflghouse

542. Surge Line Flooding Effect on Low Paw;r cad Shutdown Risk Assessment I 7 ,\

\'J I                     being negligible. The non-drained condition shutdown cases already include those I&C l                     and power common cause failures in the event sequences that include failure of the l                     ADS, and in fact, cutset reduction mies will prevent these common cause events from I                     occurring in the sequences involving failure of IRWST, since IRWST follows successful l                     ADS operation. Therefore, there is no impact on the design change sensitivity study           J l                      for the non-drained cases due to the new dependency on I&C and power systems.                ]

I l

  • For the drained condition shutdown cases modeled in shutdown PRA revision 6, the i design for the IRWST required the two IRWST motor-operated valves upstream of the I check valves to be closed. To inject water into the RCS upon loss of core cooling, one I of these motor-operated valves had to open. These two motor-operated valves received I safety related signals and power from separate divisions. The design has since changed I (as noted above) to include four squib valves with a success criteria of one-out-of-four I to open, and the motor-operated valves are no longer required to be closed during i drained conditions. Since each of the four squib valves receives a separate safety-1 related I&C signal and a separate safety-related power :.ource, the redundancy scheme I has improved. Therefore, the design change impact sensitivity study for the drained I cases is conservative with respect to the associated system dependencies.

I l The sensitivity studies for this evaluation, consisting of the following cases, are documented I in the subsections that follow: 1 ( l Case 1 - Effect of design changes on the baseline surge line core damage frequency V l Case 2 - Effect of design changes on the focused PRA sensitivity study surge line core I damage frequency i Case 3 - Effect on case 1 core damage frequency with single IRWST train, its I corresponding recirculation train, and 2 ADS 4th stage valves operation l Case 4 - Effect on case I core damage frequency when all HEPs are set to 0.5 l Case 5 - Effect on case 3 core damage frequency when all llEPs are set to 0.5. l l l 54B.2.1 Case 1 Sensitivity Study - Effect on Baseline (Surge Line) Results I l The Case i sensitivity study estimates the effect of the design changes on the baseline ) I shutdown core damage frequency of 9.0E-08, discussed above in subsection 54B.1.1. l l This estimation is conducted by making changes to the basic events in the quantification 1 output file from the surge line Level 1 baseline case. The following steps were done: I I l a) Revise basic event probabilities associated with the new IRWST configuration and I unscheduled maintenance unavailability discussed in subsection 54A.1; IWX-MV-GOl l is set to 2.6E-05, IWX-CV-AO set to 3.0E-05, IRWMOD05S set to 3.0E-03, and l IRWMOD06S is set to 0. l m ENEL Revision: 11 UDM WMh. March 1998  ! 54B-5 c:4=3\miliattS4b wpf;1b l I

l

            =ai 54B. Srrg2 Line Flooding Effect c2 L;w Pswir and Shutdowa Risk Assessment I                     b)      Revise the basic event frequencies for CCS initiating events to reflect the changes O

I discussed in subsection 54A.4; IEV-CCWD is set to 6.02E-04, and IEV-CCWND set I to 3.75E-03. 1 I c) Revise the basic event frequencies for the loss of offsite power initiating events to i reflect the changes discussed in subsection 54A.5; IEV-LOSPD is set to 4.44E-03, and I IEV-LOSPND is set to 1.71E-02. l I Having modified the basic events to incorporate these design changes into le shutdown PRA, I the baseline quantification output file is recalculated to estimate the shutdown core damage I frequency. The resulting shutdown core damage frequency changes from 9.0E-08 events per l year to 1.0E-07 events per year. The top 200 cutsets from this quantification output file are i shown in Table 54B-11. The associated component importance file is nown in l Table 54B-12. I l 54B.2.2 Case 2 Sensitivity Study - Effect on Focused PRA (Surge Line) Results l l De Case 2 sensitivity study estimates the effect of the design changes on the focused PRA i sensitivity study core damage frequency of 5.9E-07, discussed above in subsection 54B.1.2. i i This estimation is conducted by making changes to the basic events in quantification output I file from the surge line Level 1 focused PRA case. The following steps were done: l a) Revise basic event probabilities associated with the new IRWST configuration and O i unscheduled maintenance unavailability discussed in subsection 54A.1; IWX-MV-GO1 I is set to 2.6E-05, IWX-CV-AO set to 3.0E-05, IRWMOD05S set to 3.0E-03, and i IRWMOD06S set to 0. 1 I b) Revise the basic event frequencies for CCS initiating events to reflect the changes I discussed in subsection 54A.4; IEV-CCWD is set to 6.02E-04, and IEV-CCWND set I to 3.75E-03. 1 I Note, the service water system basin capacity design change is not included in the focused 1 PRA sensitivity study because this failure does not affect the SWS-related initiating events, I and the focused PRA does not credit nonsafety-related systems in the event trees. I I Having modified the basic events to incorporate these design changes into the shutdown PRA, I the focused PRA quantification output file is recalculated to estimate the shutdown core I damage frequency. The resulting shutdown core damage frequency changes from 5.9E-07 I events per year to 5.6E-07 events per year. The top 200 cutsets from this quantification I output file are shown in Table 54-13.The associated component importance file is shown in l Table 54B-14. Revision: 11 O March 1998 b W W85tingh00Se o4raWvil\att$4b wpf.lb.022$98 $48 6

I 542. Surge Line Flooding Effect on Low P:w:r and Shutdown Risk Assessment B== g i I l 54B.2 3 Case 3 Sensitivity Study - Single IRWST Injection Train, Corresponding Sump i Recirculation Train & 2 ADS 4th Stage Operation I i AP600 Technical Specifications (TS) 3.5.8 allows one of the IRWST injection trains and one 1 of the containment sump recirculation trains to be out of service during reduced inventory I conditiens; and TS 3.4.14 allows two ADS 4th stage valves to be out of service during I reduced inventory conditions. These technical specification provisions are to allow for l unscheduled repairs of components in any one of the IRWST injection trains, any one of the I containment sump recirculation trains and any two ADS 4th stage valves during drained I conditions. These provisions are not intended to allow plant personnel to schedule or plan I maintenance activities to be conducted during reduced inventory conditions, and, therefoie, I should not be misconstrued as such. l l However, a sensitivity study is performed to estimate the core damage frequency if one train i of IRWST, the associated containment sump recirculation train and two ADS 4th stage valves i are failed at the same time. For this conservative estimate of the design configuration, one l IRWST train, the associated containment sump recirculation train, and two ADS 4th stage I valves are assumed to fail during filled and drained shutdown conditions. It is assumed that l IRWST train B is available, and train A is unavailable. Additionally, the redundant injection I path via valve RNS-V023 is assumed to be unavailable. That is, it is assumed that (a) the l IRWST has only one injection line by essentially setting the other IRWST train failure I probability and the failure probability of RNS-V023 injection path equal to 1.0; (b) the O l containment sump recirculation function is provided by only one train (corresponding to the V i available gravity injection line) by setting the other recirculation train failure probability equal i to 1.0; and (c) the ADS 4th stage has only two valves by propagating the common cause i failure of two 4th stage valves through the shutdown model. I I Note, the ADS 4th stage operation with only 2 valves is reflected in the model by changing I only the common cause of the 4 ADS 4th stage squib valves to common cause of 2 ADS 4th I stage squib valves. Changes.to the squib valves random failure probabilities were not I attempted since these changes would not cht.nge the result of this sensitivity study. Note also I that operation with one available train of containment sump recirculation is reflected by setting 1 the failure probability of the other train equal to 1.0, and changing the common cause of 4 l recirculation squib valves to common tause failure of 2 squib valves. I I This sensitivity is performed by modifying basic events in the quantification output file from l Case 1, discussed above in subsection 54B.2.1. The following basic events are modified as I shown: l l ADX-EV-SA = 3.8E-05; IWACV122AO = 1.0; IWACV123AO = 5 BE.04; I IWACV124AO = 1.0; IWACV125AO = 5.8E-04; IWBCV122AO = 1.75E-03; 1 IWBCV123AO = 5.8E-04; IWBCV124AO = 1.75E-03; IWBCV125AO = 5.8E-04; I IWX-CV-AO = 3.lE-05; IWX-MV-GOI = 3.8E-05; IRWMOD05S = 0; I IRWMOD06S = 0; RN23 MOD 5S = 1; IWX-EV4 SA = 3.8E-05; REA-PLUG = 1.0. [%

 \
      )

ENEL R*'iSI ": 11 T Westinghouse w re:: w . March 1998 54B-7 owrevi natts4b.wpf:1b

i 3... ma E 54B. S:rg) Line Flooding Effect on Irw P:wer cnd Shutdown Risk Assessment j l Basic events RHN-MAN 05 and BEN-MAN 05C, representing operator failure to initiate O l injection via valve RNS-V023, are dropped from the quantification cutsets, since total i unavailability of this injection path is fully accounted for by setting the basic event i (RN23 MOD 5S) for hardware failure of this valve to 1.0. l l Subsection 29.4.6 of Chapter 29 discusses the various common cause failure combinations of I valves to be considered in calculating common cause failure of valves in the IRWST. For i example, common cause failure (CCF) of 2 IRWST squib valves is calculated by: 1 (1 combination of 2/4 + 2 combinations of 3/4 + 1 combination of 4/4) = 1.0E-05 + l 2(1.0E-06) + 2.6E-05 = 3.8E-05. This value is used for basic events IWX-MV-G01 and i ADX-EV-SA to represent the CCF of two squib valves in the IRWST and ADS, respectively, I for this sensitivity study. The common cause failure of two IRWST injection check valves i is calculated similarly by summing the CCF combination 2 of 2/4 and 4/4 check valves I (5.4E-07 + 3.0E-05 = 3.lE-05). The value of combinations of 3/4 check valves is not shown I since, as discussed in Chapter 29, CCF of 3/4 check valves is small compared to CCF of 4/4. I Common cause failure of 2 IRWST check valves is represented by basic event IWX-CV-AO l in this sensitivity study. Failure of the available recirculation train due to CCF of the I recirculation squib valves is assigned the failure probability of 3.8E-05, same as the value I assigned to CCF associated with the IRWST and ADS, above; this CCF probability of l 3.8E-05 for the recirculation squibs is assigned to basic event IWX-EV4-SA. Consistent with I the common cause evaluations in Chapter 29, CCF of the motor-operated valves in the recirculation lines is not applied to scenarios with a single available recirculation train. l I l Requantification of the cutset file with these changes provides a core damage frequency of g I 1.4E-06 events per year. However, a core damage frequency of 1.4E-06 is still quite low. l The top 200 cutsets from this quantification output file is shown in Table 54B-15. The I associated component importance file is shown in Table 54B-16. I l This estimate of the core damage frequency at shutdown is believed to be conservative for the I following reasons: l l

  • One train of IRWST is assumed to fail during both drained and non-drained conditions l

l

  • One train of containment sump recirculation is assumed to fail during both drained and I non-drained conditions l

l

  • Two ADS 4th stage valves are assumed to fail during both drained and non-drained I conditions I

l

  • The IRWST water is considered to be clean water, suitable for injection into the RCS I

l

  • The IRWST is covered to preclude material that could clog the strainer from entering i the tank Revision: 11 O

March 1998 d W W85tilighotise o \ prs \reviliatt54b.wpf:Ib-On598 54B-S

54B. Surge Line Flooding Effect on Low-P;w;r cnd Shutdown Risk Assessment Y l

  • The IRWST strainer is assigned a conservative failure probability of 2.4E 04 in the l PRA. The plugging of the IRWST strainer is expected to be a much less probable I event than reflected in a failure probability of 2.4E-04.

l l 548.2.4 Case 4 Sensitivity Study Setting HEPs to 0.5 in Case 1 Cutsets l l The Case 4 sensitivity study estimates the effect of the setting the human error probabilities I to 0.5 in the quantification output file from Case 1, discussed above in subsection 54B. 1. l The following basic events are set to 0.5: l l ADN-MAN 01, CCB-MAN 01, IWN-MAN 00. IWN-MAN 00C, LPM-MANOS, i REC-MANDAS, REC-MANDASC, REN-MAN 04, RHN-MANO3, RHN-MAN 04, i RHN-MAN 04-SUCC; RHN-MANOS, RHN-MAN 05C, PRN-MANO1. SWB-MAN 02, I and ZON-MAN 01. I l Requantification of the cutset file with these changes provides a core damage frequency of l 2.5E-06 events per year. However, a core damage frequency of 2.5E-06 is still quite low. I The top 200 cutsets from this quantification output file is shown in Table 54B-17. 'Ihe I associated component importance file is shown in Table 54B-18. l l 54B.2.5 Case 5 Sensitivity Study - Setting HEPs to 0 5 in Case 3 Cutsets l l The Case 5 sensitivity study estimates the effect of the setting the human error probabilities V l to 0.5 in the quantification output file from Case 3, discussed above in subsection 54B.2.3. I The following basic events are set to 0.5: I l ADN-MAN 01, CCB-MAN 01, IWN-MAN 00, IWN-MAN 00C, LPM-MANOS, l REC-MANDAS, REC-MANDASC, REN-MAN 04, RHN-MANO3, RHN-MAN 04, l RHN-MAN 04-SUCC; PRN-MANO1, SWB-MAN 02, and ZON-MANO1. l l Requantification of the cutset file with these changes provides a core damage frequency of 1 4.9E-06 events per year. However, a core damage frequency of 4.9E-06 is still quite low. I The top 200 cutsets from this quantification output file is shown in Table 54B-19. The I associated component importance file is shown in Table 54B-20. I l 54 B.',.6 Conclusion I i l The design changes were evaluated to determine their effect on the PRA results and insights. l The previous subsections provide details on the five quantitative sensitivity studies that I basically assess the effects of these design changes on the shutdown (surge line) baseline and I focused PRA core damage frequencies. The results of this evaluation are as follows: I  ; I a) When the design changes are incorporated together, the baseline (surge line) shutdown l PRA cere damage frequency changes from 9.0E-08 to 1.0E-07 events per year, an 1 increase of only 11 percent. [ N}l ENE Revision: 11 3 Westingh0088 ';mm

                                   .                                                                March 1998 54B-9                             owvi nan 54b.wpr.ib

hie Ulf ni 54B. Surge Line Flooding Effect on Low P w:r end Shutdown Risk Assessment When the design changes are incorporated together, the focused (surge line) shutdown O l b) l PRA core damage frequency changes from 5.9E-07 to 5.6E-07 events per year; a l decrease of 6 percent. I I c) Although some top cutsets are reordered, the top 50 to 100 cutsets are more or less the I same. This ca" *.se seen when the cutsets for the baseline and focused shutdown studies I in Section 5* 1 are compared with the results from Cases 1 and 2 in Section 54B.2. I l d) Although basic events importance are changed and reordered in some cases, the most I important events are relatively the same, as shown by their "importance % decrease" l values in the related component importance tables. l l c) When the HEPs are set to 0.5 in the surge line baseline case, the core damage I frequency becomes 2.5E-06 events per year, which is about 28 times greater than the I base case core damage frequency of 9.0E-08 events per year. This increase in the base I case core damage frequency is somewhat significant even though a core damage l frequency of 2.5E-06 is still quite low. The result indicates that the operator actions I are important in maintaining a very low core damage frequency for internal events at I shutdown. I l f) Although the functions of the IRWST and the RNS and its support systems (CCS and l SWS) are still important to maintaining plant safety during shutdown, the function of l ADS becomes more important than reflected in Revision 6 of the shutdown PRA, since I the ADS 4th stage is now required to preclude the effects of surge line flooding and I thereby maintain plant safety. Similarly, centainment sump recirculation becomes an I important function for the mitigation of accidents during drained conditions. The I importance of these functions is due mainly to their required operability during reduced I inventory conditions, where initiating events dominate the plant shutdown risk. l l 54B.3 AP600 Shutdown Level 2 PRA Using PRA Revision 8 Severe Accident i Phenomenology l I In this section, the AP600 shutdown PRA large release frequency is calculated using the I containment event tree methodology from revision 8 of the AP600 at-power PRA. The I analysis uses the Level I shutdown PRA results reported in this attachment, section 54B.1, I which includes the surge line flooding and long-term cooling updates. The purpose of this I analysis is to quantify the L se release ft qui acy for the baseline and focused shutdown PRA l and to show the sensitivi y o, the calcula 6.s to the assumption that a diffusion flame at the l IRWST vent fails the cor, 'tinm# l i The major limitation with usu.g Level 1 PRA results from section 54B.1 is plant design I changes noted in section 54B.2 are eot included in the analysis. However, the effect of these I changes on the system failure probab lity is a second order effect and the overall magnitude i of the failure probability is judged to be approximately unchanged. The effect of the severe Revision: 11 O ENEL March 1998 '- W Wesdnl$00Se oNrsrevi\ar:54b.wpr.id.022598 54B-10

54B. Surge Line Flooding Effect ca L,w P w;r cud Shutdowa Risk Assessment (v ) l accident methodology change from that used in shutdown PRA revision 2 to that used in at-I power PRA revision 8 on the large release frequency is measured directly from this analysis. l. l 54B.3.1 Level 1/ Level 2 Interface l l The surge line flooding results of the shutdown PRA are binned into 6 accident classes which I correspond to similar accident classes from the at-power PRA: 1 I Accident Class LP-1 A No RCS depressurization i Accident Class LP-3D Partial RCS depressurization l Accident Class LP-3BR Full RCS depressurization, core damage caused by 1 insufficient or late core reflood l Accident Class LP-3BE Full RCS depressurization, failure of gravity injection i Accident Class LP-3BL Full RCS depressurization, failure of long-tenn core I cooling l Accident Class LPCBP Core damage initiated by conminment bypass I l The accident class frequencies are presented in Tables 54B-21 and 54B-22 for the baseline I and focused shutdown PRAs, respectively. I l 54B.3.2 Containment Event Trees I n l The containment event tree structures used for accident classes LP-3BR,' LP-3BE and LP-3D ( ) 'O I in the shutdown analysis are the same containment event trees used for accident classes 3BR, l 3BE and 3D in revision 8 of the at-power PRA. The end states of the containment event trees I are binned into the same release categories, as well: l l Release Category IC Intact containment l Release Category BP Containment bypass l Release Category CI Containment isolation failure I Release Category CFE Early containment failure (during or immediately after core i damage) l Release Category CFI Intermediate containment failure (less than 24 hours) l Release Category CFL Late containment failure (greater than 24 hours) l l Accident class LP-1 A fails depressurization by definition and is assumed to always induce a l steam generator tube rupture which bypasses the containment. Accident class LPCBP l bypasses the containment by definition. No recovery actions are credited for LP-1 A and l LPCBP, so no containment event trees are used to quantify the large release frequencies for i these accident classes. 'Ihe frequency for accident classes LP-1A and LPCBP are added I directly into release category BP. l I The containment event trees for the baseline PRA are presented in Figures 54B-6 through l 54B-9, and for the focused PRA in Figures 54B-10 through 54B-13. Figures 54B-14 and I 54B-15 present the containment event trees for LP-3D for the baseline and the focused PRAs, s ._/ ENEl. Revision: 11 W8d@ll88 mtn:& March 1998 54B-11 e4rairevlisatr54b.wpt:1b

g W E 54B. Surge Line Flooding Effect ca IAw P:w:r cnd Sh:tdow:2 Rtk Assessmert I respectively, modified for the sensitivity case which assumes containment failure if a diffusion O I flame can be produced at the IRWST vents. 1 I 54B3.2.1 System Node Failure Probabilities l l The failure probabilities assigned to the system nodes on the containment event trees are I calculated from the fault tree linking results of the surge line flooding case (section 54B.1). I Note that the fault tree top events used in the containment event tree (CET) quantification are I fault trees specifically modeled for shutdown conditions; not at-power fault trees that were I modified for the new CET calculations. These fault tree top events were previously used in I the Level 2 assessment of shutdown events documented in the Revision 6 PRA. In the 1 Revision 8 PRA, Table 54-7 and the success criteria tables contain the information regarding I the special assumptions made for the shutdown modes. Table 54-8 presents the system I unavailability status information with reference to the proper Technical Specification for that I system. I I The following CET nodes use fault tree linking results for assigning the CET failure I probabilities; I I Node DP: Depressurization i Node IS: Containment Isolation l Node IR: Reactor Cavity Flooding from IRWST l Node IG: Hydrogen Igniters i Tables 54B-23 through 54B-26 identify which of the accident classes use fault tree linking for the above I nodes and the fault tree top event name. I l The failure probabilities for each node are presented on the event tree figures. l l 54BJ.2.2 Phtnomena Node Failure Probabilities I i The base case failure probabilities assigned to the phenomena nodes on the containment event I trees are scalar values assigned from the revision 8 at-power containment event trees for the , I corresponding accident classes. The failure probabilities for each node are presented on the I event tree figures. I I The at-power phenomenological probability values are conservative with respect to values I expected at shutdown. Decay heat rates for shutdown events are substantially lower than at- l l power events. For in-vessel retention of molten core debris via external cooling of the reactor i vessel, the lower decay heat rate translates to a lower volumetric power density in the lower I head. The heat fluxes predicted for the at-power scenarios bound the heat fluxes expected at I shutdown and therefore the results are conservative. ) l I For hydrogen generation and combustion phenomena, containment failure is dominated by ) I carly detonation. The release location and the hydrogen generation rate are the important Revision: 11 O Ed March 1998 W Westinghotise  ! ovawviiwt54b.wpr:1 w 3039: 54B-12

T l [ 7v- g:h . i% - ( 542. Sage line Hoodmg Effect on Iow.Pbw r and Shutdown Risk Assessment f # I i'

   /7-                                                                                                                        l U   l               phenomena that affect detonation. Shutdown accidents are dominated by reduced inventory l i l               cases which fail core cooling. The release location is to the steam generator compartments,           I I               which participate in containment mixing. Hydrogen release to the dead-ended compartments I               is limited so at-power detonation probability bounds with respect to shutdown. Hydrogen i               generation rates are also reasonably predicted. The core heat up rate at shutdown is slower I               than at-power due to the lower decay heat, but once cladding oxidation begins, the heat of I               reaction dominates the process and the progression is similar. If the oxidation reaction is not I               steam limited, the hydrogen generation rate is similar to the at-power rates. If the reaction I               is steam limited, the at-power generrtion rates bound the shutdown rates. Therefore, the I               at-power phenomenological probability estimates are conservative for the shutdown analysis.

l l For the diffusion flame sensitivity, the accident class LP-3D containment event tree is i modified based on the assumption that a diffusion flame at the IRWST vents fails the l containment with a probability of 1. The other low pressure accident classes either fail the l containment by definition (LP-1A and LPCBP) or discharge the hydrogen through stage 4 l ADS lines to the steam generator compartment (LP-3BR and LP-3BE) where the containment I wall is shielded from the burning. I i 54B3.23 level 2 PRA Quantification Results l l The quantification of the containment event tree paths are presented on the tree figures. 1 Summaries of the baseline and focused PRA quantification results and dominant sequences

   /,h  I               are presented in Tables 54B-21 and 54B-22, respectively. Summaries of the baseline and I               focused PRA diffusion flame sensitivities and dominant sequences are presented in l              Tables 54B-27 and 54B-28, respectively.

l I 54BJJ Shutdown level 2 PRA Conclusion l l The baseline PRA shutdown large release frequency is 1.5E-08 per reactor-year. The large i release frequency is dominated by reactor vessel failure due to the failure to flood the reactor I cavity which contributes 66 percent. Containment bypass due to steam geraerator tube rupture, I both as an initiating event and induced by high RCS pressure and temperature accounts for i approximately 24 percent of the large release. Ten percent of the large release frequency is I containment isolation failure. All other containment failure modes contribute negligibly to l l the large release frequency. He assumption that a diffusion flame at the IRWST vents fails

                                                                                                                             ]s I              the containment doubles the large release frequency. The diffusion flame failure sequence I              accounts for more than 50 percent of the large release frequency in this case, however, its I              frequency is on the order of 10'8 per reactor-year.                                                    ,

I I he focused PRA shutdown large release frequency is 33E-07 per reactor-year. The large I release frequency is dominated by reactor vessel failure due to failure to flood the reactor i cavity which contributes 82 percent. Early hydrogen detonation centributes 12 percent of the j l large release frequency. Late detonation contributes approximately 4.6 percent of the large  ; I release frequency. The other containment failure mode together account for approximately j i I percent of the large release. By assuming a diffusion flame at the IRWST vents fails the n k) ENEL Revision: 11 M Rid E 88 cmlh March 1998 54B-13 osprairevinaits4b.wpt:ib l t ,

yk un

54B. S:rg2 Linz Flooding Effect en Low P4w:r cnd Sh:tdown Risk Assessment I 1 i

l containment, the large release frequency increases by 20 percent. The frequency of the O i diffusion flame failure is 7.3E-08 per reactor-year and doesnt cause the large release I frequency to exceed the goal of IE-06 per reactor-year. l l 548.4 References l l 54B-1 "AP600 Shutdown Evaluation Report," WCAP-14837, Revision 0, March 1997. I I O Revision: 11 O March 1998 ovawviisarts4b.wpt:1b e.2598 - 54B-14 h6 3 Westinghouse

                                                                                                                    = man ==

54B. S:rge Line Flooding Effect on Low Power und Shutdown Risk Assessment E h (O l Table 54B-1 l l FAULT TREE "ADASD" l SUCCESS CRITERIA

SUMMARY

l Event description: At.tomatic depressurization system, autornatically actuated, fails to provide RCS vent l path following a loss of the residual heat removal capability during reduced inventory I shttdown conditions with the vessel head intact. For this scenario, offsite power is I available. I Success configuration: 1 out of 4 lines of stage 4 l System initial status: All squib valves of stage 4 closed l Mission time: 24 hot.rs I Components required Squib valve of stage 4 is required to open l to chr.nge status: l Initiating signals: PMS: automatic actuation on low hot leg water level signal l Operator actions: Manual actuation from the main control room when automatic actuation fails I - basic events: LPM-MANOS and ADN-MAN 01 performed through PMS I - basic event: REC-MANDAS performed through DAS

 / \

( L l Table 54B-2 I I FAULT TREE "ADASDP" I SUCCESS CRITERIA

SUMMARY

l Event description: Automatic depressurization system, automatically actuated, fails to provide RCS vent I path following a loss of the residual heat removal capability during reduced inventory I shutdown conditions with the vessel head intact. For this scenario, station blackout I has occurred. I Success configuration: 1 out of 4 lines of stage 4 I System initial status: ' All squib valves of stage 4 closed j l Mission time: 24 hours l Components required Squib valve of stage 4 is required to open I to change status: I Initiating signals: PMS: automatic actuation on low hot leg water level signal  ; I Operator actions: Manual actuation from the main control room when automatic actuation fails I - basic events: LPM-MANOS and ADN MAN 01 performed through PMS I - basic event: REC-MANDAS performed through DAS 4 (3 1 -

    /

U IDE M 8 bmo h1 r 54B-15 e4ra\reviliaas4b wpt:Ib J

     .       wg
               !                  54B. Surg: Line Flooding Effect ca Low P wxr and Shutdown Risk Assessment O

l Table 54B-3 I I FAULT TREE "RECIRCS" SUCCESS CRITERIA

SUMMARY

l Event description: Failure of recirculation lines to deliver water from the I containment sump to the reactor coolant system following a l transient or LOCA during drained shutdown conditions, given I the success of IRWST/ gravity injection l Success configuration: Flow from containment sump (via opening of either the i MOV/ squib valve flowpath or the check valve / squib valve I flowpath) to the RCS via 1 out of 2 gravity I injection / recirculation lines l System initial status: Check valves (V122A/B), squib valves (Vil8A/B and l V120A/B), and motor-operated valves (Vil7A/B) on I recirculation lines are closed i Mission time: 24 hours l Components required to change status: Motor-operated valve and squib valve, or check valve and squib l valve in each recirculation train must open l Initiating signals: Low-3 IRWST water level and ADS signal l Operator actions: Manual opening of the recirculation motor-operated and squib l valves if they fail to automatically open; basic event l REN-MAN 02 performed through PMS l l Manual opening of recirculation squib valves (in the check I valve paths) if they fail to open automatically; I basic event: REC-MANDAS performed through DAS I l Manual actuation of sump recirculation if IRWST low-3 water i level signal fails; I - basic event REN-MAN 04 performed through PMS (primary I cue to the operator is: increasing containment sump level; I secondary cues is: IRWST injection check valves indicating I open operation) l l l Note: 1) The MOVs and the squib valves (in the MOV paths) are manually actuated through the PMS only. I l 2) The squib valves in the check valve paths are manually actuated through the PMS or DAS. Revision: 11 O March 1998 Nd W Westinghouse owwviiwts4hwr r ib422598 54B-16

m= 54B. Surge Line Flooding Effect on Low P;w:.r and Shutdown Risk Assessment 5

  ;a) 4 v                 _

l Table 54B-4 l l FAULT TREE "RECIRBS" SUCCESS CRITERIA

SUMMARY

l Event description: Failure of recirculation lines to deliver water from the I containment sump to'the reactor coolant system following a I station blackout, given the success of IRWST/ gravity injection I Success configuration: Flow from containment sump (via opening of either the l MOV/ squib valve flowpath or the check valve / squib valve

         ,1                                                   flowpath) to the RCS via 1 out of 2 gravity I                                                    injection / recirculation lines l    System initial status:                          Check valves (V122A/B), squ'b valves (Vil8A/B and l                                                    V120A/B), and motor-operatej valves (Vi17A/B) cn I                                                    recirculation lines are closed l    Mission time:                                   24 hours l    Components required to change status:           Motor-operated valve and squib valve, or check valve and I                                                    squib valve in each recirculation train must open I    initiating signals:                             Low-3 IRWST water level and ADS signal l    Operator actions:                               Manual opening of the recirculation motor-operated and squib O      I                                                    valves if they fail to automatically open; basic event

(,,/ l REN-MAN 02 performed through PMS I I Manual actuation of sump recirculation if IRWST low-3 water l level signal fails; I - basic event REN-MAN 04 performed through PMS (primary I cue to the operator is: increasing containment sump level; I secondary cues is: IRWST injection check valves indicating I open operation) l Note: 1) The MOVs and the squib valves (in the MOV paths) are manually actuated through the PMS only.

2) The squib valves in the check valve paths are manually actuated through the PMS.

I

r. A i
   ~~.J ENEL                                                                  Revision: 11 Y W85tingh00S8                 cm:L,                                                                  March 1998 54B-17                                    o4ravevi ren54b.wpt:1b

im gm # >D pg. gggo 39{O

                                                                                               ,n h          q. *C      $ tOOo C[ &O M                                     E O

S . T S D N C . S C D R C D 2M 4 B DD DPS P D4 DOS DDP2DD O2 SAN E R. E DSAN D S DSAI D R D DS DSAN D S DSAI DS AASA P2 SAN O0SNA2R A2R SAN SPSTA2R F EI . WA2R WA2C CDWW CDWE WA CD NDWN SA2R SA2C SA NDWE ND C2A2 SP F CF. NI CAII CAIR CA RAII RAIR RA OMDW LCAI ON!DWW LRpAII CADWW RMAII DNINDWW IRRRAII E . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ET. UN. VLSS EEYT VLLS EEEY VS EY VLSS EEYY VLLS EEEY VS EY VLLS VSHLSS EYTEYY VNLSS VSCSLSS G QE IDSS IDDS IS IDSS IDDS IS EEEY IDDS ISODSS EHEYT IRDSS ISSSDSS EYUYEYY ED.. SI N I D . O .

                             .                                                                                                                             D O                  .                                                                                           D                i
                             .                                                                              D            E                                 E L                  .                                                                              E            N                  m              N
                             .                                                                              L            I                 v               I F                                                                                                 L I

A R E A R D E .

                             .                              T                                   T F            D                G N

N I T T N E T T T N E T C S S C I T T S C R R N T SN f I SN SNRE SN I SN R R T A N S. S nE U I E U E L. RE UI E 9D LI S N nE I UI E nE uI N uI H H O E T I V H O I E

                                                                @S                                                       T       K    N           S    N T H           S N
   )

8 E CS CN N CS A I CN R tN CN CS N I sS A sN R sS T sN I I C A L I I N N A L W I I 1 N A L I f G - OA L OA TRT OA OA LR uA T vA W W L I R R R R RT -R o R aT N rTNN TT TT NN TTNN EE aT N OS B N PET N SO OR SO T N SO SO EE N SO N OUNEI I U mNEI VENT mNI vESI V EN ENEI VE VENT ENIV VESI mN vE IE TN NEI ENT LTENT NEI ENT t S mVIC mVNG EV I EVIC EVNC mV SSAI SE VIC PVIC SENEVIC e ILU IA ILU IA I RKEL RD ILU DUILU nDIDILU - e - GG S GGRP GG GG S NGGRP GG UNI UO G S IRG S uO OG S h S G .

                              . N N           N T0 N IP                  N          N TO    N           CARN CMR N CTUO       C UPOP M

EPOP N sMDM N s E POP ( N IPOP TOIM IP TOGI 4 TO IPOP TOIM IP O TOGL TO O IP SI PST OGOOIM OPOIM NHOTU TIOTUPLCP vGRGOIM NENOTU 5-I D ACTU AOND IICP ILII AOILAOTU ILCPAOND ILII AO IL TUEC rI LCP rIVILCP TDRM TD NERE L1DE N DE LCLDE

                              . TDE           TDRM TD TDE                                                                                               mOCOIJS B      U O

S IIU II ERPJ mO I S WSI S - 4 L IIJS NMNN NMDG I IR IIU I NMN II I IIMN NM I IR NMDG I N NMI VAEN EMDI vONMMM ECI IR ONMMN DR IR yOEOMNN tCRC IR 5 G G G GSI G G G G e C .

                              . DN GSI DNER DN                   N               NER INU N G N

G RN N EI N NI I G N N I l b N . EI NR EINU NRID EI NR I R RID UL I R I I TNOU WR A R U A A R TN NU I A R a I . IU A IUL IU U A DTI D N U T D A T AIPDTI D DTI AI IDTI T A ADTI AD N AD O R SV R R D SV D .O D IE S I SV GESW SV I TR RSW SV

                              . DSW           DSJI          DS ESW                  ESJI        ES TR W TRCSW                         NTERN                      HERN R                   .

ERN SVIO ISVIA ENT SV E NERN NENT NE IVIO IVIA IV IO NCSI R IHAERN NR VIO IAVIO IH NRRRVIO P . CL CL L RAOT RATU RA RAOT RATU RA CL AL I AL L AL I D OAO I nL I RLL L n A O *; UOAOT I I E LWLAOT L I V DVWC DVSC DV SW W RA yVNC DSVWC RAOAVWC E . VWC H TE H WR H VSC TE WR NTLT EM v TE I TE EMPM J WR TE RB J N 8 TB IIFN J TBRI IIIC TB II SB CIFM SBRI CIIC SB CI E PFJF L WR tB OOaIFN J S B COIFN OOCOIFN I 0 . WUOI WU E WU RUOI RUQ2RE RU OQ O 'F O PNRUOI Q RTUOI PNANUOI Q Q L E

                 -             .         Q S T Q2R S-Q S HS T Q

HS- HS S T S T S T E 0 S S WSOR WSOM WS S FP S T ISOR S T ISOM FP T IS E O T E S F SOR OSSOR T S E SOR S S 4 4N W IS DWW LDWW DWW A 7 9 SDWN SD U SD WJWW WD U WD

                                    /ATI          /A2S          /A S       S I TI S

A2S S A 2O T F ATI GIATI NA I S F ATI t W . S S 0 B 8 C . CFFF CFFF CF t FFF MFFF NF VFFF FFOFFF IFFFF FF FFFF J I COOO COOO CO POOO ROOO RO S OOO OOTOOO N OOO IR OO OOOO N  : s eT tP I . FSEE FSSE FE FSEE FSSE FE NSSE R OR OSRR OSSR OR RSSR FEESEE AOSEE FEEEsEE ORRSRR RTSRR ORTRsRR _ W e i UC mR OSRR SCII EUU O SC S ES.r U SLU tL eUU S tLL SCCL SL AC EEU U / eau tL SLL UU cUU DAEUU sLL RRCLL SLSL SIFI UIU eUU tLL O t i EE - QS. SCII OUAA OU SF sI SI uA OA O S sII SCCI uAA OUUA OA OU SI CC eI vA OAA SII tII EECII uAA VPUAA OAFA sII uAA D l SD- LSFF LSsF LF LsFF LSSF LF LSsF LFFsFF OOSFF LFOFsFF T i b a 6 8 U b o TB. Nt

                               . 6 4

1 9 5 2 4 4 4 6 2 1 4 0 2 1 1 2 I I r En.. C R u. 3 8 7 6 3 3 3 2 2 1 S P E r . 3 1 1 e c Ptu_ n e u q Y. T.. I 8 8 8 9 5 9 9 9 9 9 S e EL. CI NB 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E f EA 0 0 5 8 7 8 3 3 0 5 o UB 0 7 5 7 2 9 7 0 9 1 e QO n ER 3 1 1 5 3 2 2 2 1 1 i SP S d . e R. 0 _ E. 1 2 3 4 5 6 7 8 9 c B 1 u M. d U. e N. _ p _ ll l O - MEh2. 1 a* m e= _ g8h ' _30 0 ydE I g .

                                                                                                                                                                .UhC

- tm

    *I[              Yj9.    =
                                  .h
                                  .                                                >AWO00 t

iil1, I n Te- meQ. p D 3 OD atO4Ie g . " C4Q ,gOmDC,Qo4E Fy 3EtD~ - EM [T Q e

!J                                                                                                                                                                               _

,L f S - C C T -

                             -            U C             -

S

                                           -                      P B S D 4                                   P D

4 S D C 4 DD DPSR P S B E R- D4 DOS DD DPR O0 SAN 2D ASAN N S D M AS DD D D N 2D AS ASAI R 2D AS P2 SANI F EI E. - SNA2R P2 SP SAI A2C CA2R WM2A SP P2 S N A WM2T CA2C CA SF A2RC F CF-NI - CADWN RMA!I LRRAIR ON1DWE ODWW LAII CRMD CPCAONID LRRA CPCA CRMD ODWELAIR OD ON1DWWE LA LRRAIIR E ET. UN. VNLSS VSHLLS VLSS VSLS VSHS VSSS VLLS VS VSHLSLS QE - EHEYY EYTEEY EEYY EYEY EYTY EYYY EEEY EY EYTEYEY G ED-SI - IRDSS ISODDS IDSS ISDS ISOS ISS? IDDS IS ISODSDS N I D - O - O .- T f D E D E D E D E D E D E L . D N N N N N N F . V E I A I A I A I A I A I A R R R R R R E G N D D D D T D D N I I T T S C T S U CT S C S CT N E S CT C S T U A N R T O RI S R T S RN I RN R T O L I E U R D n U R E S N E H U O K C

                 -                    T       I     E H           O   C      HI       E    u           H         O U             HI           HI
      )

3 E I N N S N TI I K C A L TS IN N I t t T I K C C C TS A IN R TS IN T I K C A L f o G - I A L W R A L B WA L R v W A L O WA T WA W R RT A EB L N R

                              -       P T N                       BTN            T N T             N             B     r      N     TNN           T             B    IN
                              -       O          SO                   UE           SO      N       O                          O        EE                         SLE 2        U              -       O NEI L       ENT NOV EKI NEI ENT V E       I T

N E u I T NIV ESI I D NE ENNI V t e S -

                              -         -     VIC SE VCG                     SVI C E SA SE V                           v.

z SA SVNG SV SE VIOG e nD KZ nD KZ RIA nI RD ILI h G h ILU

                                   .k G! S        uO G tMR I A. P RILU 7O     C UG N    S G N AR NI      uO C G I

N NI AR UCRP C TO i uG UO G TP CMR NCO S ( N . hcPOP t OOOIM P e UP vGOO - rI M CPOP OOI M T I TU S C. uGOO M R UP T I TU CP O S OOGL tP vO C UPOUO OGOOISL I . TDOTU NHOPD OTU AMPS NHO AMPS OND O NHOT D 5

         -     D              -           NLCP           TI       LII NL1DRM NDE EIJS TLCP IEUE TTER TI NL1D TTER L IEUE           tLII DRM aL     rI L1DEMM LCPI uIU t
                              -       P IDE 1J D        U              -       WAIJS EO                    IU                       ISKP        EO        I    ISKP                      mID    eO IJU 4                       -       ORMNN VONHDG VMNN NYAE VONM NYAE                                                            v. M D G      vM     vONMNPG 5        L                      DD         IR      ECI            N E        IR     ISMD         ECI            ISMD        e      N E MCI        I     N (lQ G                                  G                               G                                G            G e      C              -
                              -       NSN                G RNER GN GSI G RN GSI GNER GN G RN NR N

SI RU l b N - INI ARR N I EINU WRID NI IR D E N I EI WR E D NINU IRID NI IR I EI WR D a I - R U A TNOUL TU A L TNOU L TUL TU TNOU A T A DGDTI N SV AIPD I N

                                                                       .O ADTI I     SV L

IRE AIPD I L IRE AD N AD I .O I TS TRCSW AIPDTIN I SVO GISW TRCSJI TSW FHR TRCS FNR TSJI I R NPERN IHAENT IPVIO NR VIA IERN NVIO RO IHAE S CS NR VI S CS NVIA RO IENT IE NV NR I IHAERNT VIOA P ROL I I n L r. LATU L IL I CE D n L e. ALRVOACE IL D SVSCATU L IL A LuLAOTU IL UTAOT AOT RVOA E - DSVWC RA TE EM vVSC SVWC u WR N TE HS1LIW RA vV EM u IW HSTL N WR N SV RA vVWCC EM v TER N I 8 SNB CIIFN J WR t OO e. B IIC R I EB J TS L WRtB TS L PIFN IAFU OOEI IAFU EBRI PIIC EB PI WR O O tB JI r.I F N C 0 - R UOI PNRU E OUOI WPOF PNRU WPOF OU E OU PNRUOIE L E

                     -        -           SQ DS T Q2R            Q S    T Q

S Q2R S-Q S Q S T R E 0

                              .       FE            S    E S-FP              S S              E              S SOM FP             E SOWM SP S   4          .       OESOR T                     SOM            SOR       W   E       T         S  W    O                        S T 7          -           CDWW IS                 DU 4DWW                 S     N      I         D S W           4D      U 4D         I        DWRU A   9 N-
                              -       GCATI NU                 F A2S        2ATI 0
                                                                                          / O S

S F A / T S 2A2S 0 2A 0 S F A'IS I B 8 O- I SFFF FFOFFF VFFF CFFF FFOF CFFF VFFF VF FFOFFFF N OOO OOTOCO OOO COOO OCTO COOO - OOO O OOTOOOO

                         .I N    :

rT tP - IR AOsEE FEESSE NSEER FESE S FEEE FEEE NSSE NE S S FEESESE s nTsRR O R R RSRR ORSR ORRR ORRR R sSR RR ORRSRSR W i e mIR - uC-oA r. U U R tLL SLL UU s. S. U /EUU c e

t. tL ACLL UEU SLCL SILL EUU UUU /

SLLL A u. E CL U

                                                                                                                                              /U AL SLLCLCL UUEUEU O   t    vS-             uE     tII       SII       n tI      CCII          SICI        SIII           SIII       C tCI        CI      SIICICI D

i l aE-SD-VP uAA OAAt OOsFF LFFSsF uA DUAAISFF OAUA LFSFOAAA LFFF OAAA O LF LFFSFSFuUA OA OAAUAUA LFFF LsSF T i b a U b TB. NI - 7 1 1 1 9 8 9 8 6 7 1 6 1 5 6 4 9 3 H o P r ER. CT. RN 1 1 S EO. e PC. c n e Y. u q T-I - 9 0 0 0 0 0 0 0 0 e EL. 0 1 1 1 1 1 1 1 1 S CI - - - - - - - - - - NB- E 8 E E E E E E E f EA- 5 4 2 9 8 2 4 3 9 o UB 0 9 0 9 7 5 5 1 4 QO-m ER 1 9 8 7 6 5 4 4 3 u SP-S d R-e c u E. B M.

                               -      l I

2 1 3 I 1 4 5 1 6 1 7 1 S I 9 1 d U. e H. R lIl t i) f

    %                                                                                                                                                        %%9bg--

f 1 I h."k. pm9Qgy 3. 0 3 ubf C , < h=r3- 4e, g

9 ,. u m [p gcgmp 3 M M" h { Oj' 1NIE (# [ .b h g 3

                                                                                                                                     ')
                                                                                                                                                                >      a f3nWc.

O S . C C C C T . U U D S C . S J C D S N R D P4M B DD DDP2R C DD DD E R-E - DM N AS D4 DOR D M O0SAI N AS PN2 N 2 M AS O0 D4 S A0ASA SPSTA2C 2SAI P2 SPSTA 2S F EI - SM2A SNA2C SM2T SEPSTM2A SN A CN2A2 F CF- NRHD RPCA CADWE RMAIR RPCANRMD 4GN2NRMD 1DRRRPCA CA RM AD 4AMDW ONINDWE ONIND MCAI LRRRAIR LRRRA ST.I - 1 E UN VSLS VNLLS VSSS VLSCSSLS VN S VNLLS EHEEY VSCSLLSEYUYEEY VSCSS EYUYY QE EYEY EHEEY EYYY EEYUYYEY EH Y G ED.. SI ISDS IRDDS ISSS IDSSSSDS IR S IRDDS ISSSDDS ISSSS N I D - O . O . T N D r n. D E D E L . E E e N N F . V E L L E E v, t S I A I A

                              -                                                I       D D                             n                R                   R E                       -                 G N              T F       O O MM I

h" u t D T D N I I T T N E S C GSG I T T t v S C T N S E C T S A N I S R NRN A N R RU R I R R N E IUI E T F S U EI L. - n u I T I S N n u H LOL I T I N H O I N H O ) 8 E -

                              -     C           I N N R S A        t          T OHO I       O O I

N S N V E T H I S N A T H S R I N f G - K I A T A RN W C2C I A R E W 1 A T W RT 1 A R o R .

                              . i       N P          TWN        t      N                     N P             T         E    N                 TNN EE T
                              .             O O              OE            O                     O   0                     R    OS 3       U                             n.

e v I T L O NDV ENI n. e v I T I T 4 N E .T U IE TN NIV ESI N E t e S . E SA - VIG c SA S N SA 1

                                                                                                       -         V TPSAI                SENEVNG SENEV e                                         KZ D           IA             KZ       n       I     KZ    D           I    IUKZL             RDIDIA              hDIDI h       G                            G     NI    I        GRP G          NI       uS            NI    I           G    NRNI              UO OGRP              uO OG S                              . N AR        MN D0 N AR I                     tRNDN         AR    MN               I       ARN   CMDM      TO             tMDM

( N I

                              . I T

TU S OOOGI T WP 4 TU S tOIEI uT R TU S OO W O P DP ETUO SI C E OGRGOGL P O EGRGO E P AMPS TDOND AMPS AMEMMPS TD O N L LPUEC EIPST NENOND NENO 5- D . IEUE TTER NIDRM NLII IEUE TTER TREVEEUE IETOTTER NI D L ERE TIVILII NLOLDRM i-IVIL

n. LOLD B U DNSCSSKP WA O
                               . ISKP        WAIJ N             ISKP                                          I    ISKPI             EOCOIU               eOCOI 4                               . NYAE         ORMIG NYAE VEYEYYAE                                 OR          M    FNAEf L           VOEOMDG              yOEOM 5       L                      -     ISMD         DD            N ISMD           EGSRSSMD DD G

RMDI ECRC GSI N mCRC G e C -

                              .                 NSNER GSI G                     NS N S C

G N NER G N N N INU J I l . ININU T IN I R b ARRID I AR R R I RID I a I R UL TL R U TN NUL TN NU DG D T N T A RE DGD N N .O RE AE IS RE N H T E S AI I ID

                                                                                                                                                      .O AI I

ID DHR GISJI DHR TER RHR GI S IER W TR RSJI TR RS R . ERO L CS NPENT ERO IPVIA L CS IIH NDRRR CS HRO NP E WTO R IP V ACSI IH NRRRVIA HENT NRRRV IM HE P - LE D ROL L LE D I E E D RO L EL D I F LWLATU L I I E LWLA L

                              -     IVOA         UTATU IV0A                          OLWLVOA UT A ROOAO E                      -     FIW         DSVSC              FIf          RWAOAIW              DS V USW W                         RAOAVSC RAOAV
                               -        STL                  WR        SDLL ETMPMSTL                                  TITLT             EMPM         WR EMPM N         8 SS CAFU L    SNBRI SS CIIIC             CAF W         R OFOCOAF1 RS L SN B CI          I P

UOFUF L WR OOCOIIC RBRI WR OOCOI RB I L 0 RPOF R U SQ2R E RPOW PONANPOF T R S O U RTOFO PNANU Q2R E PNANU Q E H DS- H D S S - S E 0

                               . T            FE          FP T               E                    FE SE E

SOM FP T E S S 4 . I E OESOM I O TE E OE S O T 7 . WN CD U W W IN N C D ELN W I DU I D A 9 N. S O GCA2S NU S T SO F O GC A NU PIO IA T S F A2S S F A B 8 O- NFFF ISFFF NFFF FFF FFFF IS F PFFFF FF FFFF FF FF OOO OO OOOO OO OO I - ROOO N OOO ROOO OOO OOOO N O N  : ET.. CP s NI - ORSP IR FESE AOSSE FEEE FSEEEESE AO E NOSSE FEEESSE RTsSR ORRR OSRTRRSR IR RT R SR FEEEE RTSSR ORTRSSR ORTRR W e i UC ER UEU DA SLCL RR

r. E U UUU SLLL SCLSLLCL EUIUUEU DA U RR L ARCCL
                                                                                                                      /AEEU SLSLCCL UIUEEU              UIUU SLSLL O        t             . SICI        EE aCL      CI    SIII         SCIFIICI              EE              CECCI             SIFICCI             SIFII i    QS.

EE OAUA VP vUA OAAA OUAFAAUA VP A 4PUUA 4AFAUUA OAFAA I D l i SD. LFSF OOsSF LFFF LSFOFFSF OO F 1OSSF t FOFSSF LFOFF T b a U b TB-NI n .- 7 2 9 1 8 1 8 1 7 1 5 1 8 0 7 0 H P o E r C R n. a . S E u. e PC. c n e Y. u T q I 0 0 0 0 0 0 1 1 e S EL. CI 8 2 B.

                                . 1 E

1 E 1 E 1 E 1 E 1 E 1 E 1 E f o EA. UB 9 3 8 6 5 6 2 6 5 4 5 3 4 9 0 3 m u CO. ER SP. 2 1 1 1 1 1 6 6 S d R. e c u E. E M.

                                 . 0 2

1 2 2 2 3 2 2 4 5 2 6 2 7 2 d U e N R ll l c l< S. O rs 7.*2er 0 0 h g UhQemG o s . Eo' #3 - u$ t UAUhO

il

                                                                                                                                                             +t       !+

l TF mc5 38%E" M

  • OE3 I 4 TQ yc%r)I$%C4E %F9 p p"I " $5 gee
C S .

T D D C N 4 D P S C 4 N D P E R E-2M AAS HI 2 MS D M B D M B PAL N ASA N ASA O0SAI D4 DOR D4D O0S 2M AAS N PN2 M PAS F EI - C2A SDP M2A WM2A2 SM2A2 f SNA2C SNA C2T SEP M2L F CF. NI

                            . 4HD DGN2RHD 1CA       IDRRPCA           CRMDW CPCAI RPCAI NRMDW    RMAIR CADWE RMA LCACAD   LDRRFCA OMD OCN2RMD E        ET.    .       - - -                      -

VLS VLSHSLS VSLLS VSLLS VNLLS VNS VSS VLSHSSS UN. QE. EEY EEYTYEY EYEEY EYEET EHEEY EHY EYT EEYTYYY G ED. SI IDS IDSOSDS ISDDS ISDDS IRDDS IRS ISS IDSOSSS N I D - O - O -

                            -     D         D T

N T N D D L . E E E E E E F - L L L L E V E V E L L L L E

                            -               I     D                                                                          I         I      D E               -

I F F O G N T NI G F F O M N I

                             -    S C

S C G M I T T N E T T C S S C G R R N S S A N A N R R N L- -

                            -                     I                  n               R              I     E S I

I E H I

                            -     H         H L                      u               U              T     I    N T        I            H L
        )

8 E . T I T O I O t u C C I N N S A I R N N S T I T O I O f o G - W WC O O I A RN T I AW R WC R - N O N T O N N OS N T N OS OR PETWN PET OE OR N O N O 4 U - I T I T V E IE TN V E IE TN DUNDV OUN ITENI LTE I T I T t e S - SSA S SA E SAI E SAI PVIC PV SSA S SA e - nKZ n KZ KZL KZL DUIA DUI RKZ R KZ h S' G - UNI TAR uS S tRNR MI AR 3 R P NI ARN N ARN M G NI IRGRP DO M IRG US U N I. CRNR AR CAI S NI ( N - eTU v S tOIU TU uT O S T I TUO SI I T TUO SI EP O POGL OP0 O EP CTU S COIU TU OT O S 5-I D PS TUE ?RE EUE AMHMPS AMPST AMPST MIOND TI4 IEUEC IEUEC PLII P1 RUE PS AMHMPS rRE EUE NER tET2TER TTERE TTERE N DRM N D - ER ET2TER

 )7     B   U                     EKP       DNS        SKP          ISKPJ            ISKPJ          WSIU           WSI        uKP       uNS        SKP 4                         VAE VEYNYAE NYAEN NYAEN ONMDG ONM                                                           vAE       vEYNYAE s   5   L                     EMD EGSISMD                       ISMDI            ISMDI          DR         N DR           mMD       mGSISMD

- N C N GSI G G G R

,i      le  N               .

G N G N R E D I NER N N I INU I N N E b . I I W E A RID A R I I W a I . T TL O L' R UL R U T TL O T A A IE AE P IS RE L IRE T S RE T D D N D D A S .O IE AE IS P RE

                            -     TR        TERCHR                  FHR         W DHR W             GESJI GES TR                       TERCHR R               -

IO NCS IIHARO NDR CS S RO R ERO R NTENT NTE CSI L CSI IAVIA IAV IO NCS NDRI IIHARO CS P . I D I RE D CE D LE D RLL L RLL I D RE D

                            -        OA         OLEVOA RVOAOI IVOAO UOATU UOA                                                    OA        OLEVOA E               -

SW NTL RWAVIW ETMOSTL HSWLT SS L W FIW STLW DSYSC DSV NWL ETMOSTL I WR I S RWAVIW N I 8 E PFU L W RCS L TS L OFOEAFU WPOFO IAFUFRPOFO CAFUFRTU E RTU OOF PONRPOF S COIIC BRI S B COI E L W PFU OFOEAFU RCS L 0 - OOF PONRPOF L E

                            .-                                                       H Q2R S-Q S

E 0 . E S T F FP F E O S 4 E TE E M E O I E O OSSOM OSS O TE 4N IN N S N W W N W LD U LD IN N GIA 2W 4 7 A 9 2O SO O / O T O T GIA2S SO T F N 0 F S S NA NA 0 . B 8 O- VFF FFFOFFF CFFFF NFFFF OO OOOTOOO COOOO ROOOO N OOO N O I FFFF IFF vFF FFF FFF OO OOOMOOO

                       .I   -

N rT. S NSE FSEEESE FESSE FESSE AOSSE AOE NEE FSEEEEE IR IR S aIP - s - R R O S R R R R RTSSR RTR RRR Ost 9RRRR W i e cR-uC-I s. U e A tL SCLLL EUUU s. U ORSSR ORSSR r tL SL U aaU UEEU DAEEU DAU t tL SLCCL RRCCL RRL

                                                                                                                             /UU ALL       S aLUUUU tILLLL O    t i

vS- C tI uA SCIII OUAAA tI uA D sF LSFFFsF LFssF LFSSF OOSSF OA SI s sI u uA OAUUA SICCI EECCI VPUUA VPA OAA 4 EEI CII S tIIIII uAAAAA D l i

r. E S D .- I OOF LFF 1 mFFFFF T b a .

U I b TB. NI o En-6 0 6 0 4 0 1 0 1 0 1 0 1 0 1 0 I r S P R Ci .- e Ev. P(

n. _

c n A e Y-u q T-I - 1 1 1 1 2 2 2 2 _ e EL 1 1 1 1 1 1 1 1 S CI - - - - - - - - NB _ E E E E 8 E E E f EA 9 6 4 3 9 0 6 3 o UB 5 4 4 0 7 9 8 5 m e QO _ 5 5 3 1 9 8 6 5 su E R ._ SP S d . c e R. E. B 9 2 9 2 0 3 1 3 2 3 3 3 4 3 5 3 _ u M. d U e N R _ ll i . c

    -v                                                                                                                                                                       h
                                                                                                                                                    $a*Ey:sa A.                   -

hg g hyg p.p1ga*

                                                                                                                                                                   >3o   O AbYI*

t. O , eng<r

                                                                                                                                                     < ::- r         Jco u

h

{ Mp' am, [gg ggNhM

              -                                     cgo         D* 3

[g *C $ 9OA (M*U 3 hd 5a5 O S - T - D D D D N D N C . N R N R N R D D P MSB R P R P4M D M B E R E . P M A AS A AS A0AS P M P4M N PN2 2 M N AS PN ALA A ASA CM2A2 M B A0AS N ASA F EI CM2A CM2T CN2A SEPSTM2T SEW 2A2 CN2T SM2T2 F CF NI ORMD LPCA LFCAORMD LMCA OAMD hGN2NRMD t DRRRPCA LDPCAI OGRMDW ORMDW OAMD NRMDW LPCAI LMCA RPCA! E ET UN VSLS VSSS VNLS VLSCSSSS VSSLLS VSLLS VNSS VSSLS QE- EYEY EYYY EHEY EEYUYYYY EYYEEY EYEEY EHYY EYYEY G ED-SI - ISDS ISSS IRDS IDSSSSSS ISSDDS ISDDS IRSS ISSDS N I D - O - O -

                             -                                            D                          D L                   -                                            E                          E F                   -
                             -    S              S          S L

L E E l l S S

                             -     R             R          R             I        D D               I                   s               R E                   -

U C U C U C F O O MM F u U C N I C O C O C O S C GSG S C u v C O

                             .                                            R NRN                      R                                                  S L-                  .

u T IUI H T N a R U

 )                           .      a            N                        H LOL                                                             m 8        E                         v
r. E V

w v T OHO I O O T I E V v C C f o G m E E W C2C W E i O R . N O N O E N R O N O N OS N OS E R N T O N N OS 5 U . I T I T U I

                                                               .T   T I

T IE TN . IE TN U

                                                                                                                                             .T I

T V E IE TN t C S . T. SA T. SA TPSA S N SA S SAI T SAI TPSA E SAI e . I KZ I KZ IUKZ R I KZ n KZL I KZL IUKZ KZL h G . N NI AR N NI AR NRNI I AR US CRNDN AR NI uS R NI ARN N I NI ARN NRNI G I AR N ARN NI S( N - I D TU S I D TU S DP ETU S COIEI OT R TU S uO vT TUOSI D TUO SI DP ETU S T I TUO SI I AMPST 5- - EMPS EMPS EIPS AMe.MMPS AMPST EMPST EIPS D - LEUE LTER LEUE LPUE TRE LTER L ER NET yEEUE TREUEC LEUEC LPUE NETEPE LTERE L ER IEUEC TTERE B U wTTER ENSKPJ O

                             -   ISKP           ISKP        ISKP         ENS VEYe,SSKP                                    ISKPJ             ISKP            ISKPJ 4                            -   FYAE      FYAE FMAE                                    YYAE        VEYAEN FYAEN FNAE                                   NYAEN 5        L                  -          SMD         SMD          RMD ECSRSSMD EGSMDI                                         SMDI              RMD       ISMDI le       C                  -

S S S G G S S C b a N I C R C R C R N I TL N I TL C R R T . H H H AE AE T H T H T A . TRE IHR TRE IHR T E IER IS TER RE RHR ISRE TEHR S W IHR TRE S W IER T E RE DHR W S R WRO CS WRO CS WTO ACS NDRRR IIH CS MRO ND IIRO CSI R WRO R WTO CSI ACS L ERO CSI R P . EE D EE D EL D I E E D I E D EE D OVOAO RVOAO ROOA EL D LE D IVOAO

                            . RVOA RVOA ROOA                                 OLWLVOA E                  . UIW TSTL UI TSWL TITA   USW          RWAOAIW ETMPMSTL                    RWIW WTSTLTUIW E1STLT W USW TITL FIWSTLT W

N . PS L UAFU PS UAF L P UOF I W OFOCOAF R RS L W S L PS L P L SS L F I L 8 0 RPOF RPOW RTOW OFAFUF UAFUF UOFU CAFWO PONANFOW POPOFO RPOFO RTOF RPO E . H E 0 . E O SO E TE O E SO T O O S 4 7

                            . E N            E  W        ELN          IN                 H TO E O IW      N WTE P E O N WTELW I

WW WT A 9 . P O P T PIO IA SO F 1 ST O F O PIT IA S T B 8 N. O. I I OOO I PFFF PFFF PFFF FFF FFFF FFFFFF PFFFF PFFF MFFFF OOO OO OOO OOOO OOOOOO I OOOO OO ROOOO N e s ET. CP. II

                            . S PR      3R S

RRRR SR NESE NEEE NOSE FsEEEEEE FEESSE NESsE NOEE FEESE RTSR O RTRRRR ORRSSR RRssR S SR RTRR ORRSR W e DR. /U rU /UUU /AEU ARCL

a. U I U U U U r

S tLSLLLL UUEEU /EAI u.

e. U /AUU UUEM t uI i UC. AL L A!LL SLICCL L ARLL SLLCI O t n

QS EE CI uI CIII OAtA OAAA OPUA O CECI S tIFIIII uAFAAAA OAAUUA OA SIICCI CI CEII u vA OPAA OAAUA SIICI D I i SD. LFSF LFFF LOSF LsFOFFFF LFFSSF LFsaF LOFF LFFSF T b U I b a o TB-NI - ER. 0 0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I r CT. S P RN EO e PC. c n e Y - u T-q I - 2 2 2 2 3 3 4 0 e EL 1 1 1 1 1 1 1 0 S CI _ - - - - - -

  • NB E E E E E E E E f EA $ 9 1 6 6 9 0 0 o UB 7 5 5 2 0 5 0 0 QO m ER 3 2 2 2 3 1 6 u SP S

d R. e . c u E. B M. 6 3 7 3 8 3 9 3 0 4 1 4 2 4 3 4 d U. e N. R IIl pa$ f t 5 m~ >W O K4Er 3g . g

                                                                                                          .AJ y* U g         3  :s cv
*4gr.ig.8N-   !!                h                                              t ti.AWhtJ

54D. Surge Line Flooding Effect on Low P:w;r and Shutdown Risk Assessment .:

   ,m I

LJ l W g! a <go h A m e g ja:: nlE,gR.comh wile!=g w R < mowh allEggm3sEsa [m3ses m

                                                                                      !"'s alm,!'sn u             lm !'5 lee slsa 3siel 3snaleen m

W jaAAA p,@ l g gSAys gj3Ay4stEoM -.sEoM jAAAA jAAAAA jAAyA 10 Mol m-i sEEE EEEE EEE85 GEnD $34sAAAA sEbEE85 7

                 =              l 8

4 l b 8 8 8 g W l cl E 3 e d a w W  ! C E E El b l bgC bgE bU 8 0 0 4  : 15 m5$ -58 y a " " "! e sa sea 5 t - e a a" 50 e og s3 g5 5wpR g3

  • i ghaE wp E E E8 z -m G c  ::a lhgds 5 W Ddh  ! !D  ! !g W BG . h""G b5 hE55 m< mU m mj! g>m m% = gy-"
           ."s.e                   gaa                            --

sm ga ge a e ,- l e E c-

                                                                          !mHgR .22     l! is         9 6m 55        H!
  ^        ,

e 3 i i sis!$le.saIl6s!Em

                                   -g
                                          -    8:e !

smalsl192[l9-l *12 agaggagass agag31pleg#9 fralg gsal m "t ..m omI aoE gga nom gu on m ia a 4 i v} n

           .s l          n    s ! H, 5EE ,@ E El            E          E o   n E

3 - 8

                                                                                                                       -            J
           $zg                 i e[e!,g,iI[s!

a8 > > 2 H"E g! [g! ren se se came , n Ee con: se I cm,om A l 5g , a - 5 5

                                               !.,3~.5   5      a -      -  g        w
                                                                                          " EE"8m  gg   EE""8l zu W              !      585. 83585$             20IRE.5"  28ElgRE"8. EE"8l8 a                8G8
                $-             l   E                                                858l:

82s $280 8l288 8 88l$8

                $     !        l   !jsaj          Dejs8j !"isai!!$$!8i I8!i*jlH!Edh8!$!88                            18282 !i 8 8
                =

Z

                            !:     nasse s 8888 m 8888 $$888 888888 88888 888e8888
                          't       n.mmmw                                wwwww wwwwmu wwwww             n. m w w w u m u i5        6~!      l3!!B!gewww       5 "5  5 mumw o

Q I-=.6 :i - 3<asa 36nw 68 eB m 2 m

                                                           ~{333a L  2 susa 3mmm:

Sonsom 25a85 222 255535 255"85 22x s2 -- m Swwmam Sffe2 Sammmmamsa m a ssama 23555835 m

  • l"!

5 E E E E E E E m, 5 .l DI f 2: 21 A A A A A A A T 2: o, . 8 8, 8 8  :. b. j mf! 1  !!  :  :  :  :  :  :  : 1a li

      )

MM ,, 6 h1 r 1 54B 23 oW*v11*tS4b wP f:lb

R h.

m. g JL' rcQt f

3 f p-l 3 E' go rQ Og qe""J h 5,at ) gDE tf[.O'hgc g M a t l. i. O S - T -

                             -                                                                                                  D              D C                     -
                              -    D              P         D                      D S N C R B

N R E R - E - N IN2 MSB N PALA PN2 2 M B N PN2 ASA 2 M B DD DD SR ASA P2 2 SANI P4M A0ASA A ASA P M B F EI - SEP M2A2 SEPSTM2T2 SEPSTM2A2 OGN2NRMDW OGN2NRMDW ONINDWWE SPSTA2RC OAMDW ORMDW CN2T2 CM2T2 F CF - )GN2RMDW X LMCAI NI - IDRRPCAI LDRRRPCAI LDRRRPCAI LRRRAIIR LPCAI E ET-UN-VLSHSLLS VLSCSSSLS VLSCSSLLS VSCSLSLS VNSLS VSSLS QE - EEYTYEEY EEYUYYYEY EEYUYYEET EYUYEYEY EHYEY EYYEY G ED-SI - IDSOSDDS IDSSSSSDS IDSSSSDDS ISSSDSDS IRSDS ISSDS N I D - O - O -

                              -     D                       D                      D D

E L - E E L E L N F - L L E L E E L E E I A S S

                              -            D                I     D D              I     D D               R                     u             R E

I

                              -    F       O                F O O                  F     O   O             D                     v             U
                              -                                   MM                     MM                                T                   C N

I S C G M S C GSG S C GSG S C T N E O u C O

                              -    R NI                     R NRN                  R     NRN               R    R N        I L-                    -                                   IUI H LOL IUI H

U O E S N N T i

                              -     H L                     H LOL                                                   I 8
 )

E - T O I O T OHO I O O T OHO I O O T H I S N A R E V v m f o G - WC W C2C W C2C W I A ET R N E a R - N OS N OS N OS T IN SLE E N R OT N OS 7 U - IE TN IE TN IE TN NE V ENNI U IE

                                                                                                                                  .T    TN       .

IE TN t e S -

                               -    S             SAI       S       N     SAI      S       N     SAI       SENEVIOG             TPSAI          T     SAI e                          -     R             KZL R             I     KZL       n      I     RZL       RDIDILI              IUKZL          I     KZL h

S G - US S CRNR NI US ARN CRNDN ARN NI uS NI RNDN ARN CMDM NCO UO OG TP NRNI I ARN N I NI ARN ( N I COIU TUO OT O SI COIEI OT R TUO SI uOIEI vT R TUOSI COGPGOISL E POUO DP ETUO SI D TUO SI

                               -        AMHNPST                     EMMPST             AMEMMPST               NENOT D           EIPST          EMPST 5-     D                      -

TRE NET 2TFRE EUEC iRmVEEUEC

                                                             - A E aOTTERE REVEEUEC ETOTTERE NLOLDEMM L TIVILCPI             LPUEC LEUEC ERE       LTERE B      U                                                    mN sCSSRPJ              mNSCSSKPJ             EOCOIJU              ISKPJ          ISFPJ O
                               -    ENS         SRPJ 4                             -    VEYNYAEN                 vEaEYYAEN              vEYEYYAEK VOEOMNPG                          FNAE't         FYAEE 5      L                      -    ECSISMDI                 mGSRSSMDI              tGSRSSMDI ECRC                    I    N       RMDI            SMDI e    C                      -
                               -    G        R              G                      G                       G G

N NR SI RU C S S l b N - N I E W N I N I N I I R D R C R a I - TL O TL TL TN NU A T A AE IS P RE T AE S IS RE T S AE IS RE T AI S I IDTIN SVO I H T E T H S TRE T S

                                -   TERCMP              W TER         RHR       W  TER       RHR W TR RSM                       IER        W IHR          W R                      -   IIHARO              R   IIH NDRRR HRO       R  IIH NDRRP HRO      R    IH     HERNT WTO NRRRVIOA R   WRO        R EIACSI
                                -   NDR           CSI                     CSI                    CSI                                                 CSI P                      -   I        RE D           I       E   E D        I       E   E D         I    E L     IL LWLAOTU ROOAO RVOAO D      EE D
                                -       OLEVOAO                 OLWLVOAO               OLWLVOAO E                      -

RWAVIW W RWAOAIW W ETMOSTLT ETMPMSTLT ETMPMSTLT EMPM TER L RWAOAIW W RAOAVWCC USW W TITLT UIW TSTL1 W N I 8 W RCS OFOEAFUF L W R RS OFOCOAFJF 1 L W R RS WR RB OFOCOAFUF OOCOIFNC UOFUF UAFUF JI P L PS L 0 - PONRPOFO PONANPO$O PONANPOFO PNANUOIE RTOFO RPOFO L 8

                -               -                                                                                   Q S   T R

E 0

                                -   E                       E                      E                       E            SP S    4                 -   TE            E O TE                  OO       TE            E O T              SOWM           SO O              O O A

7 9 IN SO N C W T SO IN W T WT IN SC NW O T S I DWRU ATIR ELWPIT W E TW W P T T N - F F F F IA I B 8 O-I - FFFOFFFF FFF FFFFF FFF OCOTOOOO OOO OOOOO OOO OOOOO OO OOOOO FFFFF FF FFFFF PFFFF OOO PFFFF OOOO N  : nT - eP - FaEEESSE FsEEEEESE FSEEEESSE FEEESESE NOESE SR S NEESE s O sPRRSSR OsRTRRRSR O=RTPtfSSR ORTRSRSR RTRSR RRRSR W e mIR -- aUIUUUEU eUIU0EEU UIUEUEU /AUEU /UUEU S sUUUusU O i t i uC-vS - eE-S t_I n OiAAA LLL I I t uIL S u uA O S tLSLLLCL eIFIIICI vAFAAAUA O S S uILSLLCCL SLSLCLCL ARLCL ALLCL F!ICCI SIFICICI vAFAAUUA OAFAUAUA OPAUA OAfUA CEICI CIICI s D l i SD- LSFFFssF LsFOFFFSF LsFOFFSSF LFOFSFSF LOFSF LFFSF T b a tB U I b o Dn-f I - 0 0 0 0 0 0 0 0 0 0 0 0 I r C - S P R a-E w-e Pt-c n e Y-u T-q I - 0 0 0 0 0 0 e aL - 0 n 0 0 0 0 S tI - + + * + + + B E E E E E E f mA _ 0 0 0 0 0 C o vB - 0 0 0 0 0 0 vO-m eP - u SP - S d R - e E - I 2 3 4 5 6 c B - S 5 5 5 5 5 u M-d U-e N. R lI l e y 4 h ,.. ww O g*h 0 0 .A y" E gh hO = r .- o l lI- c - h AAWhA t

e' 4I T p i! p f 3 $.E'" M n" 0E hf>4$ yUAr,3$Qoku 3" r .- % 5. er

  \>'

,!\Q S - T .

                              -      D C                -

N 4 D 4 S C S C E R-E. 2M B 2D SR D M B AASA ASANI N ASA DSANI D SR F E.FI C2T2 CA2RC WR2T2 PA2RC F m, I OMDW LCAI DDWWE IAIIR CPHDW CPCAI CDWWE CAIIR E r. T uN-VSLS VLSLS VSSLS VLSLS vE EYEY EEYEY EYYEY EEYET G aD SI - ISDS IDSDS ISSDS IDSDS N I D .- O . O .

                              -      D D

E L ~ E N F ~ L I I A

                              -                 R E                -

I F D T T N I i. J S CT N E T N E _ L- R RN I S SN I _ E S R RE S H HI N U UI N

         )

8 E T I TS IN A C R C CS CN A R f o G . W WAR ET O N OA ET R N R - N T IN T N OS rT IN SLE NESLE NE

                              -           OS 8   U                -

IE TN V ENNI V IE TN n. tNE

v. E N N I V _

t e S - SSAI SVIOG E SAI tVIOG _ e - RKEL nILI KZL ILI _ h G - UNI CAnN uG TP G t HCO N ARN NI N NCO GG TP S ( N - CT uO ePCUO I TUO IPOUO _ I - O sI vOISL T SI TOISL 5- - P sT OT D AMPST AOT D D - t sWRE LC iLCPI IEUEC nDEMM TTERE TDEMM ILCPI

  \<     B   U                -       iKPI       r_ I J U      ISKPJ          IIUU
      -  4 L                        vAER       vMNPG     NYAEN              NMtPG N                                     _

5 tMDI E I N ISMDI I I

                              .                                                   G L     e C                -      G G

GN MR SI DN RR SI

 ,t,     l b   N                .-

N I NI IR RU D D E EI NR PU D a I - T TU A L IU A T A . A IE T ADTIN L S I SVOI IRE T ADTIN S R SVO I _

                              .      TR W TSW                  FHR W DSN R                       IO MCSI R IERNT NVIOA S RO CSI R        ERNT SVIOA                                          _

P - I D IL IL CE D CL IL

                              .-        OAO        AOTU RVOAO          RAOTU W

E - SW W SVWCC NTLT N TER IW HSTLT H VWCC TER N I 8 .- E PFUF L EB JI PIFNC WPOFO TS L IAFUF WUOIE TB IIFNC JI 0 - OOFO OUOIE L E

                               -                   Q S T R                      Q S T R

E 0 -

                              .         OO SP     S SOWM W O O WSOWM S         SP                                      _

S 4 7 . 4W W 4DWRU S W/ W SDWRU/A1IS _ A 9 N-

                              -      2T T 2ATIS 0          0              S T T S

B 8 O - I VFFF VFFFF CFFFF CFFFF

                                       - OOO       OOOO COOOO COOOO N     : CP s

ET S NESE RSEsE RRSR S FEESE FSEsE O s R R P sRsR ORRsR NI W i e ER UC-

                                     /U nU /

AL tL A

r. U e. U tL .L SLL UU eU tL SCL EU s. a U O t i

QS - EE-CI tI OA uA O C tI uI SII uAbA OAAbA ObAbA uI S tI u. IL D l SD- LFbF LdFSF LFFSF LSFSF T i b 0 U b a TB - NI - o En-0 0 0 0 0 0 0 H P r C R n-s - S E e P( v .- c n e Y-u T-q I - 0 0 0 0 e EL- 0 0 0 0 S tI - + * + + nB E E E E f eA-- 0 0 0 0 c vB- 0 0 0 0 a v. RO-t su S P .- . S d R-e E- 7 8 9 0 c B - 5 5 5 6 u M-d U-e N-R l!l a n - i c . - 3 5. jg n i<En. vrg - a0 MAfNU Off -{. . ,

4a a.k. ii g ht* qeQ g ( ge **3 he' 1 D{ M [ g h i g b h >= 1 .

  • H tCyn pg 3
                                                           /                                 g                                                                          E5 s                   -

O i - t . D E .

                          .          1                   A                        1 N

4 A CC X P P P R - 0 A S P P 0 2O A S D405 S X D E- D0 DS D- DC DC DG AA DS D- O000 D- DR P W DG DG m I - F. I W-CV CM W- W4 W- W- S - C-CV CV CL CL NV OV NV NV CAAA CR CE CE CF CF RH LC S - RE S4 RE SNNN WY WT SST RMMM CO CK LRS RF CM OIF S - NL NL S RF G T . - - N- VK VX VX VX VX VX VX VK VX VNNN VX VX VCX VX VX N I E - D-EW II ED EWII IA EE EWII EW EW IR II EDII EW EHWH EC IA II EC EUC IRIR IC IC ISC EE IR EW II D I O B-O O-R- 45 45 45 45 45 55 54 55 55 00 0000 6221 46 00 46 00 316 000 55 00 55 00 L P-00 00 00 00 00 00 00 00 F a -

                           -      EE 30 EE 30 EE 30 EE EE EE EE EE EE EEEE 30      30      50          80      50       50      4000 EE 33 EE EEE EE 33      800       50 EE 50 E                m
                           -     25        20       26       22, 22          15          65      10       16      4505           26     26      482       12     12 N

I v-e- 45 43 42 41 41 85 11 83 82 4551 43 42 151 81 81 L- - E . G R - D T D U -

                           -                                                             E N

E E N S -

                           -                                     T L

L V E

                                                                                                                            )

3 I A N

                           -                                     X                       I                                  2                   R             O G                    -

( I F G 0 V D I T N I T A S N I V S C A

                           .                                     L                       C                        T                                           L D                    -      S R

S n S R sU S nC n S R R S n S R A )OM R S S R RR U SU S RC R U - I

                            -     U                  U           R            U          H                U       T J            U      U       HO        UR U L                   --

C C w. C C wI C w C C T I w. C C I N NS C IN C C T TH I CI CC C C

 )     C                    -

O u O kE R A O W u O I T R O C W1 OE O R 7 1 N I T N T N z n T MG T NE T N T N T N PES ORW r T N T NG T NE

                            -     E        E          r. fN               E              N    E       E       OUR             u     E                 FN f                                V        V                         V        V              E    V       V       LTIN            v     V                 VI     V o   A                    -
                            -     E        E          v.

r VI ERJ E E SP E E P E r. E SN ER E I R -

                            -     G3       GE G              GX     GN        G3 RO U        GE G DUEP IRTO           G      G RI U         GD G U

t P - N2 I0 NT N IA I N IG I N2 I0 CO NT N CT IA I M A EUO N I N I CD CE N IG N I e h e N - TV A IS TR AE A IP T TN T AI IG A TV A IS O S AETR T A TE IP OPTT T TIC PAS A T A I OR PV E TN T AI IG A I S W - I TG T I TN NV TO T I I N L TI I T EO TO T O

                            -     TN TO IT

( - IR I IU I IR EL I WSOI I EC IU I 6- O - N NO N NL N IP N VA NO N EV IT ONTA DR F N N VE ER NL N IP D . IE IT I I I& I S I I I B T - D . DS D EB EE E DS D ER E

                                                                                     , G 8 NK S

E N I L I D E D E G N S R 4 5 U - N1 NV IL N NE N IN IK 1 2 IC TE V L A A R FP. N I N I I T E N R C H - I2 A1 AA A I AI AN 1 AH A D O A AS A SI RR D DA DA I N S R RV R RA RA D IC DV D GEP.( RD l - ER ET b a E D S1 A. D SI B D SE S DR T SS ST DT NA E . IN T NO E E NB NS NTOS IE IA(O S DE T R T ST NRC I A NT N IS IT T I1 II CS RL IE A AS N I C2 R1 CU CV C RQ RL S A RP M RW R A2 R1 D II AU AV T RQ RL SC DS DA UO0A DS0M N C R CI RM S WL RP ROL DM RW DP L - Hs H HV HU HI s NE V IN- H HN EPA U I TV TE T TS T SV EJ SE S S AN T TA W SS S E -

                             -    IO       IH        IB      I       IN       CO PN CH CB COMH                                   I      IR WT OCF C PAO    RT CN S                    -
                             - WM WT                 WI U

WT WI N RM OI RT RI U RT R W N N RI A E-SN J S Q SS SM SR Tn E S HI H T HQ TS F W SS SE E HE HS TM TR B N-A- WI W W WN ME II Y I I I OS F WE WR T IN IE N- S SF SC SI SN W 4T WF WC LFO SC SU I WI WN R T

                             -    /T SS
                                           /O S
                                                     /R       /A      /I ST SA SS 0V S T 2I               O       R   GIO NA
                                                                                                                                 /I
                                                                                                                              . SF
                                                                                                                                        /S GS F S     F C ST SA A      I O              N .- CW CF CC CN CR NW VA NF NC E.         CR        CC    CE SI CO  CT                RR              R   RC SI IF RE N BO CR
                                                                                                                           .B    CI     CE F CR O C NN NR RO RT F               V-             I         C        R       C       S         I     SG           C       R   IROR               O      P         E       C      S E-         F         F         F       F       F       F           N       F        F      AORP F                F       FER F            F s              C-
                              -   OF OO OF OF OF OF T        O       O RF OO OF RTP T

OF OF OTA OF OF O O IW O O a t 8 0 I - S. S O S S S S O SF SE SF SF SF SF CF SE SF EENN SF SF SFF S O /O A- S S O DA RR .D. S S SST S SF SF s I E 0

                 -     A.

B. 4C 1C OJ LIX 4C 1C OC LC OCLC LC OCLC OC LD OU 4C VPOO 1C DC OOCC OC OFO I OCLOS4CLC C LC 1C U 0 7 T- 8 6 6 6 6 9 1 2 6 4 2 4 5 9 9 C 9 N-E - 9 1 2 6 6 9 8 7 3 0 7 2 1 0 0 8 C- 5 4 2 5 5 4 2 2 2 2 1 1 1 1 1 T R - E. 2 1 1 N s P-A t e N s B-u s t u C O-R- P .- 8 0 8 0 0 8 9 0 9 0 9 0 0 9 9 0 9 0 9 0 9 0 0 9 9 0 0 1 0 1 O f o T- E E E E E E E E E E 8 E E E E D m E. S T-

                              -   3 3

7 2 0 1 R O. 8 0 8 4

                                                                                         ?

5 4 4 2 1 3 8 4 5 1 1 3 0 8 7 8 7 0 u U- 2 1 1 5 5 4 2 2 2 1 1 1 1 9 9 S C-0 2 d e P c u N 1 2 3 4 5 6 7 8 9 0 1 1 1 2 1 3 1 4 1 5 1 O d e T R h lIs ic s, 5C:" e ==

                         .t, O

7m B wsy gas Q ggO.s :> co e OEm75i l %on ftO J I

j'

                                                                                                                                                                             ~

f-f

                                                                                                                                                                             ~

T mmN CD9 g M e* @ {f" UCI$ P

                                                                                          =

B3O W'JEg

  • MCE *> Wh.E l

g;G r s . I . C C C C U. U U t ._ S D D C X D S C5

                                                          -   C    4l                 4                        SM          SP           P     4A           M            - 1        S9 t            .                 D          D405 2o                         2A            S        DAA DASS                    S            D A D40 DA15 t       R.

E. DR0 4 P W O000 AG D AS D5G NDS ND O D-2S A- N S O0G NDR0 E I WTN CMA S O1F T SNNN CAAA OV C- WW CF C-OV W0U CDL CAP WN- WNTN CARA SY NR OV C4 W C

                                                                                                                                                             -   SN-P CAV CAMA WNTN F_      CXM                                                                                                                       C E RMM CMXM
                             - - - - - - - - - - - - - - - - CME CMOM L   1. S   RMMM     LM   CS   LE     COP                      RO I                                                                                                                          LE
                   ?_                                                                              M-             - - - - -               - - -         S - - - - - - - -

G m_ _ VKN EWE VHX VNMN VK VX VX VWB VCX VCXM VX VX VAX VNX VCXM ETC EHWM EW EC ED ERW EEC EECP EC EW EDC EHW N I D_ I - IIR IOC IRIR II IC IA I1I IRC IRCL IC II IMC IRI EECP IRCL D O B O O_ R. 442 000 000 316 6131 0000 00 55 46 00 55 434 00 000 000 326 3144 0000 56 00 55 00 326 000 615 000 3144 0000 L F . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - F _ EEE EEE 310 800 EEEE EE EE EE EEE EEE EEEE EE EE EEE EEE EEEE 4550 30 30 30 320 162 1673 53 30 102 450 1613 T ._ E N. E 200 422 4415 15 22 10 224 216 2078 16 16 206 445 2008 N I V. E. 421 141 4911 15 41 I3 432 318 3526 83 12 318 495 3526 L- _ E . G ._ R

                        .                 D          T             D                 D                                           f t           D                      r
                                                                                                                                                                                    .N E                        E                 E                                                       E                                           O U             ._                N          S             N                 M                                     T C

I N v m T I S _ I A V E

                                                              )

3 I A I A N C A A T I A e C T A A R 2 R R E Z R E G S D G N 0 V D D P O S A I R D G N S A I R N I L I A N I T V C S S C OD D U S S C E R I T D U S D . s F R n I A O M R S t R STE S R G n SL RA E S S n R SA nW A I SL RL S E U . u L H s A T T I S T H 7 t C H T ULG CIU u s UU CN R P u s H T uD R C I UU CN R P L CAL E uA CA E

      )   C AGN W   I I

I N N R I W C O I W OFP A CA OM D A I t: vH N I OM D 7 N . a S P r u T T N T r f P a 1 f I . mTS w. O O L N w r. e N E V S E V N E V f E V S O D m o A . r WS D

                                                       -      E S v.

m S R v. e O E M E S E S R EPM 1 D v. e S 2 R .

                        . G R

I n u I sO E n v3 G UE GT G P F C GO R G U GR IP I 3 GO F C R t P . N sR U M V OO u20 N CT N CA AR NNN N IOI IE R N C C NTN M 2 0 N IE R e e N I T A H N AO E H O MT T vV T A I OR I T1E E A2N ATS AU TI TR V FT A I O I TR AOS T I O V TR AU O F h . I W a KTS S I rP I1I IAD IL I T ITD KS IL S W . T C m1 NASL WEWI mRN T mO T A TUR TI D T N TCR NAN TI D 3\ ( O I N R wN OLRA D IF v I N IVR vO NOT NCO NF E N I( ITA IA E I V E IAA NEO OL WER IA N IW E E g,G 6-B V I . IRI EC DTE GR ETR NE

r. I MN IR S

G t& NB, E I D GS NE

c. T D

IMS IAB E D U D T N I E H E G N IRB D U T NN D & S IRB , D N E H 4 5 U I NI IMP IW TO A R ;t P

                                                                . I1 T2 N

I IV TL NS IE E L T L P E T I T E L P T A 1 RG2 E L T I . ASM APSI DN JO A1 AS AA AS L U L E A L U DN1 L SE le S . RNU DAS T IAA C 'R GT IO( I T . DR T RD IV RU DA I FS O I FS Z I D E I T I FS O I GT ,FSEI I RZ b a E R STE N C NAWS IL O IA N1 SC A IB NI S

  • C AE SDC SD A N N G I IS NE SDC AE NAA IL1 SDTG ATN T N C T RLA IR EL RONN USEA I2 1

C RL IU Q CEB RR* C RLF A CN ORAA C R I '/ C A L RLF RO2 JS1 X CNIO RAMC I EU RVL DIPM S L SS U AR M E D SA AR EI MSE L HVT EOA O- Ns HA N HLE HUE H- R NV HUE s H NR TEC WP SN N EV T EE TIN 7NT TC S E TNT SNV TCA E _ _ ILA OEF CIOH PO W KO PRO R TR sOM WO OT WFL WMI WR T R IF PH IAI IAN IE O C PB OI IAN WMI R CIO IERO M WRTT S . U S A "_ E_ SA NT E F w J N S R E H Q R DJ E W FEN A= EG 3 S S TS S S E S B F A . WTS T I O SF W WFES W OEI WFRS R N. . S L

                           /TI SSA F C N S     F G uLO uA . 2T sI 4

I S

                                                                           /F t
                                                                                              ^

R.

                                                                                                           #W    O P

SOCL

                                                                                                                       /

s.II WC IE 4C I 2R S O

                                                                                                                                                     / P GCT /

C SOUL SI sFS VW R Sr 0S FA SF 0I S NUS S .SA O T_ _ CWF FOC C v;" CFE CBIF NI VCE CFE ISW CAEF C' I - N_ E CR OT N IRRRt; - COH COR RR CO1 N R COR F V. IR E SI E 9' T ROR O SR 7 IRI RPR s E ._ F O FER AOOF N OFT ORA RTT RF OA R FR N-F; P FE FP ORF O FT OF RF ORF RTF O F N FE AO FP O .F7 OA UW DAA . /O W /'. AT UO .OA O /O UO DAO OA t s 8 C I ._ S R SLT SFE RRRD A ST A' CE SCW 5HS SL SD R 3 A SL RR SD R i s 0 E

                 - S.

A. B OCP LCO LFS SIF OAO EEEN CF OOOCVPPO LC OC hO OU SF SIF SNFE SF CF OER OAC OOCP OC OC OAC VPC OOCP SIF EEF SNFE _ l 0 t S LD LMI LFC LCCO LC LC LFC OOC LCCO 0 U 7 9 ?_ _ 5 3 1 9 7 8 6 6 4 3 3 1 6 5 C 8 m_ C_ 9 8 8 6 5 3 3 3 3 3 3 3 2 2 T  : R_ E_ N t s P_ A e s . N I t u B. O. 0 0 M C R. P. 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 f T E E E E E E t E E E E E E E O o E- 0 0 4 2 8 9 f 7 1 7 6 4 7 1 3 D e r u S T-U- 5 8 4 7 2 7 2 6 0 5 3 3 2 3 2 3 0 3 9 9 7 3 2 __ 0 2 2 2 2 2 S C-0 d 2 e R. P cu 2_ 6 7 8 9 0 1 2 3 4 5 6 7 8 9 B_ 1 1 1 1 2 2 2 2 2 2 2 2 2 2 O T d R e M_ U N

  ,j                                                                                                                                                                                                    _

q

                                                                                                                                                                      %9d5Ch M-                         .
              &* D
                                                    $l                                                                                                                  ym.W8y g .                     _

AM J tM , g<C qmC,

                                                                                                                                                                                              !llllll L

g.. . 39 ~-

m. mg mCQo y 4 t* 3 gqnQ h g* N S3 3E P
                                                                                                                                                         $U h ME@*5oD.c S              -

O T - C

                     -                                                                   C                            I          C C              -
                     .            D C

U D G O C U E - W 4 D 4 D 4 S N R CL S-S A SN I F R - X 2P 4 OS 2P 2P D4A P4O DATS D4S OS DAA D O F E - DR AG DR0 DAS AC AC ST STN WD O0S SN-A0A NDUO O0 - CN- NNPN SN4 DAO DW NDS WN ST SN - P S 3G 0 - E I F .- I - NM RX C-OL LF NMARXM CVOCCMOLLF OL C - LF RME C-CAVLMC OAV CMIMCANA CAV CVA NF RMENAPCCM D1DVRS RME IROM G T-N- VX VX VKN VX2 3 - - - - - - - - - - - - - - - - - - - - VX VX VNX VNK VCXM VNX VXN

                                                                                                                                                       - - - - - - - M-VX VCX              VH1X N

I E-D- EC EW IC II EWE IIR EWN IIR EE IR Ew It EHD EHW EECP EHW EWH IRA IRI IRCL IRI IIR EC EEC ETDW IC IRC IOEI I - D O S. - O O- 56 55 542 443 55 55 615 524 3144 615 443 56 426 3135 L R - 00 00 000 000 00 00 000 P - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 000 0000 000 000 00 000 0000 F a -- 53 EE EE 80 EFE 510 EEE EE 301 30 EE 30 EEE 450 EEE EEEE 100 EEE 1633 450 EEE EE EEE EEEE 300 50 162 8000 E m 16 62 100 252 12 12 440 555 2008 446 256 12 616 4225 N I v-e- 82 11 821 412 11 11 493 151 3516 492 411 8? 918 1425 L - E- - G - R - D D T N T D U - D E E N E N N E

                                                                                                                    . O N T I        E E

N S - L L I N AN A I V E S C T A A V E 3 I A E RO R R Z 2 R G - I F S P DI D G U S I G 0 D N I

                      -           S L

I O

                                                              -   SA T

S N I C C A D U R N I V S

                     -            C               A          O CL C                  T            O                      S   T                V                       C D               -   S R

R S R F S T R R 'C v R A - a OL S RA E A S R O S M R S n R U - U C H U C L U L A C 4R H T I T m UU R CN P I T U C S U C u H T L - C T I C N C I A NC I I I N v. CA E I N C N C t e I ) C - O W O G I O F WE W R I m OM D I O R O v W 7 N - T a S T G P E R T I P O T N N E r

                                                                                                                                                    -       T N

mTS **E4 I 1 I - 0

                      . D VD             N              4                .WE ND V               O          ENP         m        E f

o A - V E S v

c. W EP SR I

S 1

                                                                                       -          TPF E SS L

VEO EP y t V S E M S 3 R -

                      -   G R

U 3 R I O G O UD U RU R D I E IUO NR GOUR FPC D I G OO T G P R E U L3 t P - NI C C W N NOT C CG C M T A I ET O N O M NO N M INN CRB2 CUA0 e . I IT C IEPR ITD I IOI h e N - T A O T E T A H AS2 3 ON I O O R DP T RP E EIS LPE TRGO O AU F T T ASA N T A TI ATS OOLV HI W aC ILC K IE IAD T AS S W - I a I IE0 TV a NAO V TIID NA TVD T I TUR N1VM O

                      - T                  T                          G                           L

( m C ILV mU m WE ISL IAGE WE ILE ITA E AR 6 O - I N v I N R MAO yL v OLO FMA NFOE OL NAE N I NCO VNN i

  -   D               -

I a IRI C IVM cP e. D T S RV I(LN D S IVN I IAB EIU$ B r - I W ME TR DER GS G NR N NNS IRE S C K D UH TE NM IR D ER T U NE GR 8, 4 5 U t s TY I MP MCS IEE IE TN TK I A V R C E PT A RGL E L N RG NC IE P T TO IW 1 2 i - S AN SM AHS AI AN DNA H T L IE DN AHE S U AP 1 le S - DR IA DNU RCU IA 1A IV T C I I Z I RCZ D I DD ER DS O I TC b - EE NT TT EAS MR D A TR 7T NC GT IT NAB IE WTN FS.ON FI CT fAS NN NA EAE IA A. T a E - IT I NT ITE SO NS NT 1 ILI ROU EMI CNEO ROV O SD G P ILE SOG IC LDC N 1 N I AI RM DS IS SR W RLA A T CIE RTR CU SM I P IS SR W USQ w. O T RARC USL RTC RL MUE CIO A L A ILF I u1 v 2

                      -                                                              DIS           vSC                       DIA            CE DL FAR                 R L               .

SA E N NI DEW HEL NU SEC V TJI ES NI E SNE aIE r J H LR TCI SN V MJER S A UE SNT W E v t1V s E -

                      -   CR PN CLA                    INA        P         PN       CIM          L-ON        IEAO           CIB        INO       CF CAN O                 e. B O S               .

RT OI R KO WIF Off OI R T S RTI WRFT R SU I WIT RO RMI PRDM A E- H S MA NT f E S D DQ H H R J B M-A- TE IR R E ITS S WT M N R E FE O t ST S WF S FES S OE WTS T I T I E E N T N I N- WU 4N W L ST 4I 4N sF ELT SO L CC STL W W O R T. SS S 2I 0A SSA TI /I SV 2A 0T 2I 0A G tO N v PII IAV

                                                                                                              /

S .EA I GCR NUI SVA

                                                                                                                                        /II SC F

S P I S F T S O N-E - NE VR MWF CAL VN VR RR - T RR CRA O - T N C I sF PFA CBDF R COO ISC N E CR CAF NC NFE FO W R ROH OT P F V. P SS IR GC SC SS IRC SRG RMR IRP GR E T I E - F N F O F I N N AO NO FP O AO F O FR FE FEY s l C-

                      -    OF RF OFT OFN O    /O          OA          CA PF
                                                                  /O RF
                                                                            /O RTO DAT RTF O NT RTF OFT OA ORF ORRF
                                                                                                  /AO               .OA      DAO            OA          W SLUO             UEO 8  I -       S        A       S R         S M A                A        RR           AR          SDMR           PR         S     R   ST                  SLT E     0  S -       SF CF SFE SFC CF CF EEE CEF SNME EEF SFE                                                                                SF        SIF       SITF s

i E 0

              -  A-B-        OC LC 4C   1C OCP   LCOOCE LCM      OC LCOCLC VPU             OOD 1OC      O.LCCO  P C OOC DOOPLCOVPC OCP DO OAC           1S OAAC LFC LFBC f     0 t      7  T-        4       3        8           6          5         5        4            4          3               2          1         1         1         0 C      9   N-E-

2 2 1 1 1 1 1 1 1 1 1 1 1 1 8 C-T R - E-N s P-A t e NI t s B. O-u t 1 - 0 0 0 0 0 0 0 0 0 0 0 1 1 1 M C PT..- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O f o E-E 4 2 E E 4 E 0 E 6 E 6 E 6 E 5 E 4 E 9 E 2 E 8 E 1 E 3 D m S-T. 1 0 6 4 3 3 2 2 1 0 0 7 6 2 0 u U. 2 2 1 1 1 1 1 1 1 1 1 9 9 9 S C. 0 2 i R-P E- 0 1 2 3 4 5 6 7 8 9 0 1 2 3 O e C-U-

                       -   3       3       3           3          3         3        3            3          3               3          4         4         4         4 T     R   N-l l

p ,# y:. s. ww O 3,,2r ..g00 5 = yfy UhOcmG n

  • _g73y,9ggSo 1 9

3 Jo

                                                                                            ,tC

,i yI 1 TU n ee5 CD4 MS$* OE { kb[q f 3Q. o"t2NQOf X*A Y > $343

                                             -                                                            .          I
                                             -                                           9                                                                                                       .
      )).

(Q s s . c . C C5 E . SP D S M D 1 1 S9 F R_ F. DAS1 ND 0 N A D A WD NS S D P 3P N N P W D P 1G 0 D S0 P EG DA15 NDR0 D5G S D P 1P N D SN P EP F I SNYN I SSTN - S 0 - SST S 1 - S - - SNTN S0U S 1 - S - - E F. I NARA RMOM O2FA M P LRSM R E LRCB O1DY h2F lRS h1DV O1DV lROM LRPM NAMA NDL ROP RMXM 41DY 1 RO3 O1DY LRPB T - - - - - - S- M- S - M- - - - - - - - - M- - M- - - - - G f 2 VCXM VCXC VAX VHIX VCXA VH5K VHXX VCXM VWB VH5R VHXX EUCE EDC ETDC EUCD ETLW ETOW EECP ERW ETLC ETOC N I E D. I EECP IRCL ISCR IMC IOEC ISCM IOPI IOZI IRCL III IOPC IOZC D O . . B . O O R 4144 0C00 3162 0000 42h 00O 3135 3162 0000 0000 0000 0000 3135 3135 4144 0000 534 000 3135 0(00 31}5 0000 L P . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - EEEE F T

                                  . EEEE EEEE EEE EEEE EEEE EEEE EEEE EEEE EEE EEEE 1673          3006        102         8000           3000         R090           8000           1613         520         9090            8000 N        6078                      606                        1620         4205           4205           6008         124         4207            4207 E         E.   .

1621 4227 N I V. E 9526 8711 918 1424 8711 1425 1425 9526 832 1424 1424 L . E- . G . R . N

                                           . O D D

E D D E D E . N O D E D E U . T I E N E N N T I N B N B S . C T L A A L I A B L 1 L I A I A C

  • A A N I

A I I A 1

                                  ._           Z    I                       R        /     I            R              R                       Z        E      R         /     R         /

G . S A I n F D A F D D S A R I P O D A D 1 A 1 N I D u S CS E R S C 1 B CS S E S R C S C D U S Ou C S B

                                                                                                                                                                           -   S C         B D              _

SL RA m RR U SA RW R D- RR A R UW R SL S nA E ST e,. R R - D- P D U . UU

                                  . CN R

P HO TH UD CR H T A HO D H S TH R T H T uU N P R UL CI A. uT H A S H T A S L . CA E I CA I D I A I I uA E cal I D I D C _ OM D W2 OH W I W2 H W W vM D OFP W I W I

             )                    _

N r _ i i 7 _ M P 1 I _ m n. e E m f . v S V v o A . v. e S SN EPM S n E SN P S n S R E F C S m O n S R 4 R .

                                  . GO R F C       RI U           GR IP u L nI u

I R u s3 U S3 GO R GT u s ROS CReS U S t P _ N IE R CD N NTNI CE O I RBS uUAE D aE T aRO2 CRP2 NU/0 CUM 0 IE R N IAR uU/E COME e . TR O OR TR vOLI vR R vOIV OOUV TR O T1E vOII OOUI h e N . AJ/ F Il tV I E T AOS A ITD i AE HIR E O rV T T CS T H HP S AU IL F A2N I1I H T CE T R HPR E

     )       S

( W _ Tl IA D E nU eC U T TCRIAA m1VT AT n. eC O AC N1IN E GR E ER N1LN TI IA D T A E IVR N1IT E GT N1LT E ET 6-O _ NF E W vE C NEO mR A IRB vNNA iIUB vE E

e. R R VNO EIL&

VNU EIPb NF E N NOT VNOA VNUA IMS EILB EIFB

  -gQ

_ I( I( ( B D I E G H NI T GR U NE G N GR NE B, GRN , NEE 9 E H GR NE GRN NEE 4 5 U . T T P IW T TO H T E I IW TO 1 2 IWV1 TOI2 T S E IW TO E H IWVE TOIH e H E A S Z I D U O AP T A I I S D AP I 1 APR1 I D SE RZ DU S AP I T APRT I D l b S _ DS I T RS DS TC F T RSI TCT IAUA, TC- , DSEI EA TCTF TC F IAUO a . EA n. I AA EAE IA O AA IAEA EATN NC IAEO T E LD LN

r. NRCD LDC N A E NRCD N P1 N n.

N1 LDTG I A E B" IRTE N P N N E eG1I 2 IAMC v IE L IE IliT2 LNIO N . IA t WLL ILF I mR WLL EU1 I RR* EUR RVOU R I mI GR E vNN I FM- e. ROLA FAR R y U ROLA RVO R vN FMSE DU

                                  ._                EJAU                        r EFAU EO                 s E uEs                  NR          LE EO L                      vEI L

E SC R W CE O OCFA CAN O N SNT W UE E uL e.1 W N WCSV W BA I OCFA OELO OeFO CERO t V SCA SIN CAI WCSI OELA W a I OeFA S . RR T PAOM RMI PRDF ?AOM PRPM PROM RRTT RFL PRPF PROF A E. . R T S E H R T E E E E J N E T. N H T E H T E E E B M_ A IFES T I W TI T T I T I IFRS WOUL W I G T R T N_. WOCL.II W C I I I I I I R . S FA F C S F S P S F E S S F C F S F T S TT S F RS S .SA SI S A H F S E S S TE F RS O 6.: . e . NBIF ROR F O CF NF2 FO U F O ROH OT A O CF FOFW FOAW NBEF MLC FOFU FOAU O OTOR OTTR ROR RAS OTOA OTTA F v. z .

                                  .       ROR FP O FERE FE E            T FEY C           E FERE FEE I

FE SI RPR FP O FID CI FEE C FE SC d . O FT OTAR ORF ORRN OTAR ORRF OROF O FT ON ORRN OROn l C._ SD .OAR SSIWU L SL UO SLTM UEO IWU SIL EUO SL UTO SD

                                                                                                                                           .OA SHS AT SILM UUO
                                                                                                                                                                   /

SL UT v E 8 G I S. A. SNFE SFMI OOCP SIF SITM OFOA OAC OAAO OFOA OAAC OACC OOCP S S !"L SFfI SIIF SIFF SNFE SCW R OER SIIM OAAO OAC SIF m u 5 1 E 0 B. LCCO LOSF LFC LFBC LOSF LFFC LFCC LCCO LMI LFFC LFCc 0 U 7 T. . 0 0 9 7 8 8 8 7 7 7 7 C 9 8 N. E C 1 1 0 0 0 0 0 0 0 0 0 T  : R. E N t s F. A e s _ N t B_ O. u R 1 1 1 1 1 1 1 1 1 1 1 C M P.. 1 1 1 1 1 1 1 1 1 1 1 O f o T. E

                                  . E 0

E 0 E 8 E 9 E 1 E 5 E 4 E 8 E 0 E 1 E 4 D m S . T. 2 6 2 8 4 1 8 6 3 1 8 u U_ f 8 8 7 7 7 6 6 6 6 5 0 S C. 0 2 d e P c u R. E. B 4 5 6 7 8 9 0 1 2 3 4 4 4 4 4 4 4 5 5 5 5 5 O d e U M T R N. l iQ . dU.03 - l

i. _
                                                        *,=NjI pgg                                                                                                         ygng,$0    =        0 tMfJD A        t g .               C.,

9w nit d i H hp fCyw/ 2 k ,a$g5' , o eQ h $e 4e9D{ M#ggO$d 3$ >$$"Bnk g S . O-I C C C . C U C U X E F

                      .              S S
                                                   -                          S              A S

1 D O5 SM AA D O0 1 DK 4P D R D AL SO D S0 A1 O A D A D 2S F R_ D4P E. O0C D4P O0"; F 3S NWD P 3O4- DM5 DDS P GG A-CY P 3X P S AG P S BG SN- SN- S H1N S O1DV WAD WN- S - S 0 - 1 - 1 - E I F I CAL RMF CAL RMF O1DV 0 - LROE CSM LROE CFA CMO CAP CFM3 CME- LRCM O1BV LO OR O1DV LROI O10V LR3M O10V LR3H

                                                                                                                   - - - - - - - -                     M-           0 - -         G          T.  . - - -                - - -               M-      - - - - - M-VM1X VX2 VCX VHXX VX                                  VHIX VH5X VH5X N          N. VNX E.           EHE IRR VNX EMW IRI VH1X ETDD IOEA VXC ECEICR   ETDW  IOEI ECN   EEC 1CR ETCWIRC ECIOEI ETDC       ETLW IC      IOECETLW IOPI             IOPI I

D O. I O B. O O_ 615 615 3135 362 3135 453 000 426 000 3135 0000 56 00 3135 0000 3135 0000 3135 0000 L F W. 000

                                - - - 000 EEE EEE
                                              - - - 0000     - - - -t00 EEEE EEE EEEE 00 0 EEE EEE                  EEEE EE EEEE EEEE EEEE 450          450          d000           106       R000          131           362        9000            33      900          8060         B060 E          N T_

E 442 442 4220 221 4226 262 216 4225 16 422.O. 4215 4215 N I V. E. 491 491 1423 311 1422 442 416 1415 13 1422 1415 1415 L- . E . G . R T ts D T E D E D E D E D E D E U _ N E s E E N na N N N N N S . V E N E V I A A N I A I A I A I A I A

                       .               O                 R                        R                      E               R               R       R            R            R G                       G       I    G            D                        D                      P               D               D       D            D            D N

I _ N T N I A I S S O

                                                                                                          -              S C

S C S C S C S C T. T C C O D I U IA R S R S T S R R R R D R D

                       .               C                                 n                      R         -   R                                                     N            N U                               R T               H T               u.       H T

V LI U C C H N T E H T H

                                                                                                                                                 ?

H A i T H A T M L . k CE N I I I u I C # C I P E I I E I E

 )     C               .

I R I W v W O F O WO W W WD WD 7 1 N I P O G O P T N T N T N O D N O E E E T f A d L V V V S

                       ._D U D I       I o                             -     R      -          S              E         S             E             E M S            S         S       S            s N          S     N 5     R                       !       D    I n     E LE G R

U L E G O G P n R E3 R U R U L E n O u P3 P U P3 O P N N u.R B T N N CKB N T NNN u. R K 2 vUA0 C CSB tRU2 CRU2 t c WO uUAA I O COA I IOI OOEV O C CUAR U ROEV OOEV0 CU 0 h e N _ T O RG I T T vOIR T HIE AP A T I A OOL

                                                                                    - HI   A T

A 3 2 TI ATS IAD T HR BS OOLE T AR HIT T NR US T US HR R S W . NAG NA N1VO I T UI ir.1 v V I T 0 TUR N1 N JT NAVE T

                                                                                                                                                              *1LN         N1LN

( 6 B 4 5 O U D r

                        . D P D WEU WE OLL OL S

NNS N I% IRR A E A N. S E VNNO N C EIUT CR f E 1W A S E V E I O T A e vNN EIU ERE IW A I N I D E N V S ITA O NCO VNK M IAP D T GR E N U P NE E EI4& IW VR B, 1 "F v E G N I E VN3N EILI GR NE IW AV E E VNA EIF& IR CR , NE E fIW 1 5 E VNA EIF& GR IW IR B, 1 O I RGN RGK TO L L TO I E I T TO 2 T TO H TO 2 TO 2 I DNI DNM AP A LS AP ASS A U AP 1 A AP T AP 1 AP 1 le S IA GTR GTT TC IA I V ID FRS TC I RPU R DJA DS O I TC , T I I TC F I TCG . I TCG b . NAT NA IA B AA IA S f SDC AE IA A IA O IANA IANA, T a E I LS ILT ROS N I SCD N E V SNE N 1 I N N E N I1 N tI1 N . RO USP USW IR U C E Q RLL IR E L R C C A IRE 2 EP1 I IR E P IRS 2 ES1 IiS2 RGO1 I L OIM U DIR I RV EO S LA RV A HAU FO V HIE CM RLF HUE AR A.V U N OLs S RV U RVE EO L 2' OCk EOCs L

                        .      SMS SN                     WCEE          T N       WC1           TGI           TNT        WCIV            E       WC1I         WCOY WCOy E                       CI           CIN          OEBH          IFA       OEEB           IOA          IAN WLF WMI PRFM O OEAO            P       OEBA         0ERO         OERC S               .

R SN T R I PRDT WOM PRDI U PRDF 7 RPM PRPM A E DE mS Q N R M 7 S P4 ET PM B M A FET C8tCs F C eF T R S S W E T S SO WI S W W T E E I S E E T T UI UI N C! I F S I C ST S O I 4C I I O I O R r GCA

                                *UT          N I

A F S D /F SC S F R /A SU

                                                                                                              / P S ET S          F     SS 2I 0F F S        E S

S RT F GS F GS S RT O a ISN Cw.N I R FO F CCF F0 C CTL CFE I E FOUW CCA COH OTAR VI FO U FO W FO W OTCR F t v N O N T OT C C O IRC IRS C E O'1 R AC T CI SO

                                                                                                                                           - R OT A OTCk C         II           II S          i            AO           AO           FEY           FRE FEY                  F       I    FE         FE              N       FET          FEG          fEG RTF RTF OBRO OAR                                                 OFN   OA ORF     UO OPNF    UOORF ORRm
                         .                                                         OPRF                                                                       OkOF OROF T   9 C.

I DAO DAO RR RR SLT UET SIL WU sLT UEO S M SL SLN

                                                                                                                                         /O A       SLT UE SL ULO SL ULO E   0      S            EEF EEF                   SITE          SFI        SITF          SFC OCE SIF OAC OAOC SIMF            CF      SIT       m  SISF         SISF S

T E

             -     A.

B.

                                ' PC VPC OAAU OOA OAAC "C O C OOC LFBD LSF LFBC                                         J ICM       LFC LFCC                      DC J

tC hAA IFBt u hALC tFPC OALC LFPC 0 U 0 7 T. . 6 6 6 5 5 5 5 5 5 4 4 4 C 9 N E 0 0 0 0 0 - 0, 0 0 0, 0, 0 0 8 C T N s R E. F. A t e N I t s B O u R _ 1 1 1 1 1 1 1 1 1 1 1 1 M C P 1 1 1 1 1 1 1 1 1 1 1 b 1 O f o E T E 3 8 3 E 3 E 7 E 6 E 3 3 E E 0 E 0 E 3 7 E 7 D a S T 0 0 0 4 3 3 2 1 1 0 9 9 0 w U. 5 5 5 4 4 4 4 4 4 4 3 3 0 S C. 2 d e R. P c u E. B

                          . 5 5

6 5 7 5 8 9 5 0 6 1 6 2 6 3 6 4 6 5 6 6 6 O d M. T R e U. N. f

   *;r -Usg   a.

ee m O g,R=r o g

  • 3MIj [g gg 3hOcen-
   *y (s-         ,J         _

pgco t U bC'

II l', TP meS 8 3* y NS CU { k (* f a t gDQ = " m3kCOf L f

                                                                                                                       /E' I >Ne$B m          -
 )

mY I S -

                         -                                                                                                      C I           .                                                                                                       I C           -

G O E -

                         -                                                   N                   l CL S-               A               A                 A              A F       R-       D         A D            D SA                  A D P So D ONP DAT5 O SN D SN F D                                                                  S   D P

SS F E- P 1S NW P ES D S FC- CP NDU0 AP P BP P 1 - E-I - S 1 - NT S - - W - Ss S - - SNPN S 1 - S 1 - S 14 S 4 E F-I - O1DV LROE CF CS O1DV LRPE C C E LRFM P OiMV 41BY 1RCB NANA RMIM O10T LR3B O10Y LR3B O1DV LROE O1DV LRPE T - M- - - S - - - - S- - - - - - - - - - - - - 0 - - 0 - - M- - - - - G N VH5X VXA VHXX VAX VCXX VHXX VCXM VH5X VH5X VH5X VHXX N I E D I ETLD ECD ETOD EDC EUNW ETCC EECP ETLC ETLC ETLW ETOW IOPA ICM IOZA IRC ISRI IOEC IRCL IOPC IOPC IOPI IOZI D O B. O O-R - 3135 0000 362 000 3135 0000 426 000 3145 0000 0000 0000 0000 3135 4144 3135 3135 0000 3135 0000 3135 0000 L F P-2EEE EEE EEEE EEE EEEE EEEE EEEE EEEE EEEE EEEE EEEE T- 8090 100 8C00 302 8000 8000 1633 8060 8060 8090 8000 N- 4217 4206 4206 E E - 4200 220 4200 206 4875 4227 6008 4217 N I V-E. 1423 311 1423 418 1575 1414 9516 1414 1414 1422 1422 L- . E - G - R - D E D E D E D E . O E N D D E D E D E U - NI N N N B T I N B N B N N S -

                         -  A I

A I A I A 1 C T A A A I 1 I A 1 I A I A

                         -    R                        R                            R                   R          /               Z   R         /     R         /    R             R G           -  D                          D                            D                   D          A         S A R I   D         A     D          A D               D N

I

                         - C S                   E S R    C E

R S C S C 1 B

                                                                                                                     -       D U S S   C 1

B

                                                                                                                                                   -   S C

1 B S C S C D - R S A R R SA RR U R D SL S R DD R DD R P U MI

                         -                                            RW                                             -    RA E               N-               N-U           -
                         - TI H

C R T H UD CR f

  • O TH H

T NA UU R H ES CN F T AA MS T MS T H AA H H T L .

                         - W C A        I              CA OH I

W1 I W PD CA E OM D W I ED I W DI ED I W I

     )       C           -

O H W OI DI W 7 1 N I T N T N O s m E E T

                         -                  V                         V S                                                  v f

o A - S E P S n EPM SN S R S m SS S N O S N R O S s S R 6 R - R

                         - U sE             J F

I R u SE GR IP nI u 3 U R E FPC R GOUR U P U P u s U S t P - CROT CU/A P I T TRIT t U M' A NTN I I tD tE 2 0 CRKS CUAE N O IERR CRUS CU CRUS E CU E vRO tU/ CRP CUN e OOIR T R vOUR TR v s. V OOEI TRGO OOEI OOEI vO1 OOU h e N -

                         -     r H

CP E A O I T sHPE P AOS ITD T v r S T BE HRR AU ILC P T UE HRR r HRR UE T C H T HP S W - m1IO T C m1LO TCR N u N N1 T TIID N1LT m1LT N1I N1L

)/.. (

6- O

             )

G yNOO N E KILT I I A R E yNUO NEO V TIFT IAA IRB E t ER e. R E E VT d;KA N. I 4 E IAGE NFOE VNAA I(LN E EIFB IT eIFB IT vNAA VNO E EIL G E E VN EIW mL B I - GR S GRtS D T G GR TE GR GR C..R GRN I I - NE E D NEDE E U N b NE UH NE NE NE N E T' 4 5 U I IW TO L L V E I TOIL WVV N I P r f I T 1 2 IW TO H E PT N IE IW TO H TO E H IW E IW TO AP IWV TOI APR I AP A LS APRA A f A 31 AP T AP T AP T le V D R O D b S . I TCT IAUB ID FRS AA TC V I IAEB DS AE I T I F M UA, s TC F IA Z I DSFI TCGF TCGF TCT O EAON IANO I IANO IAUS I I TC-IAES T a E - N IRTU PI SCD N C IRIU NI SDC C A NRP1 IE 2 N IREE LD G LNEO N IRSE I N IRSE I N PE IRTV N NE IRIV N I

                         -    RVOS EUQ RLL LA RVNS EGQ RLF AR ROH WE1                 ERR          IARC RVUU FMUE RVEU RVEU RVOA RVNA ESR              ESR           EUL            EGL L           -    EO            HAU EOE                   HUE EPTs EOLL                                             LR     EOCL EOCL EO V EOEV
                         -    WCSE T N WC E TNT W                                                V      WCII              SCI          WCOI            WCOI           WCS           WC E           -    OELH          IFA        OEFH PRPT WOM PROT WMI PAOM PRFF RRFT PRPF IAN           OCFO OEAA CEAO OERA                                                OERA PRPF OELB PRFI OEFB PROI S           -
                         -                                                                                                                                                     U               U A       E-N-       E             S          E              S E E R                   J L

E H T E P E P E Q S E Q S B A - N-T I F W S T I F S W W T J I T P I T I IF WO L I S T U I O T I U O T I C T I C R - S O /F S TO / P S RT S EE S RE S RE S R S TR O T. N. E

                         -    F             SC FOFF CCF FOAF CFE OTOC C O OTTC F R            S COH O SR O1AA ROO F AS F F

SS TW F9UU NBDF FO U FO S .EA F CS F OTCA U OTCA FOFC OTOE CS F FOACOTTE I F RI F V FEE C E SC FE T FEO 1 FE CC RMR IC IC FEE R FE SR E FRE FE FP O FEG FEG ORRO OROO ORF OTTF ORNI ORON ORRF OROF ULO CR4N 5 - CAR 1 C- UUT WU UTT UO O UO vn O .NT OA U1O UUO UTO 8 I - SLL STL SL SL SS SLM m SDMR SNrE: SLSISM M SL M SLL SL E 0 S-A- SIIE OAAU SFI 4OA SIFE SIF OA U OAC OFCC OAO SFFF SIM r v OOoP OALO OALO OAAC OACC SISM SIIF SIFF 5 I E 0 B- LFFD ISF LFTD LFC LOCC LFCt LCCO LFPC LFPC LFFC LFCC 0 U 7 T-N- 4 4 4 4 4 4 4 4 4 4 4 C 9 8 E-C- 0 0 0 0 0 0 0 0 0 0, 0 T  : R-E- N t s P-A e s N I t u B-O- R- 1 1 1 1 1 1 1 1 1 1 1 M C f P-T .- 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E O o E. 0 5 3 5 4 1 2 9 9 8 3 D a S. n *T-9 8 7 6 6 5 4 3 3 3 2 t L- 3 3 3 3 3 3 3 3 3 3 3 0 S C-0 d 2 e R-P c E. 7 8 9 0 1 2 3 4 5 6 7 u B- 6 6 6 7 7 7 7 7 7 7 7 O d e M-U- T R N-

)

,J la

  ;L                                                                                                                                                                                  . .

5$9M a-e g k I C$ g{ y}g p 9E:r,$00 8 9 J* 1 Afb ** ( Sf4{ , C,

{' me gat

  • n4ye t

E* E $gg lL* gqaQ h g*  !.1 N { E [**h $i

  • g >E 93.

s - O s - U - X D E ~

                      ~

I D M M M 4 1 D S OS D40S C F R- O5 D R T T T D SR 2X DAO D O0 N P GG P A WD DA5 O00S F E- DM0 WAN S P 1X 1 - DGI DG1 WUS WU0 WUK DG1 P S EX AR NLA

                                                                                                      - -   CT       W-    -    SS - -        S TN          S - D SNND E             I -

F-I - CMA CFM O1DV LROI CLDCPSCLD CLD O1DV CPS CPS OM LRPICVV LX CAC LRKM OIVV D2FA IRSM NVO RCM3 CAAO RMMM M - - B B - B - - - - - - - - - - - - - - - - - - - - 3 G T - - N-VXN VH5X VBB VBB VBB VHXX ETOC VX VXXEC VCRK VHXC VK2 VNN2 N I E - D-ECH ICR ETLC IOPC EWDIII EWD III EWD III IOEC IC EXW IPI EUNW ISRI ETCE EWM EHNN IOCR IIR IRIR I - D O .- B-O O-R - 453 000 3135 0000 444 000 444 000 444 000 3135 0000 56 00 354 000 3145 0000 3162 0000 543 000 6223 0000 L P - - - - - - - - - - - - - - - - - - ESEE - - - - EE - EEE

                                                                                                                   - - - - EEEE - - - - EEEE  - - -EEE    - - - - EEEE  - - -

F T-

                       -      EEE EEEE EEE EEE EEE 300 330          8090            300                  300          8000           33       100        8000          3006          501        4001 4502 4204                    215        4815          1421          152 E            N-E -

266 4204 240 240 240 16 4552 N I V-E- 441 1422 423 423 423 1422 12 361 1565 8211 812 L - - E - G - R -

                       -                   D                                                 D E

D E D E D T N U - E N N N N E L E V S - 3 I A I A I A I A L N E N

                       -              2    R                     E          E           E R                 R                   R             I                   E               E G                 -              0 V

D C N C N C D N D D F P G O- N I P O N I

                       -                   S D

A A A S DN C S C S C S C O T O D S R M V C O R SE mSR oN rE uT RGT SEE R R S R RR U R S n T- A I )T - U - U H RGu UGi U uN UGN H H T U C HO TH H T u LI T IJL t NI L - C C S N T I CUI CLA CuI CtA CUI CLA T I I C I I t A N 7A W1 W u F F ) C - O R W OPM OPM OPM W W O 1 PES 1 7 N - T N s T N T N a s ORW 1 k -

                        -     E N      E P                     m        E V

E V mN ysE mN v. OUR LTI f o A - VE O

                        -                  S v

t E E S S tVP SNSRIE S ePE S OO n O DUE 7 R -

                        -     G T U s O R G E G E G E n

S p u GA U V3 uS G O IRTO t P - N I D CU/R CRO N V N V N V IRI IRI IRI wRP tUMR s s N O IFT CDL2 CEA0 sR N NOT sU O IT M AT E" c OO1E TET TET TET uOUE u TO ORVV uO I T 3 OPT 3 h e N -

                        - A A T N i CR H T ANC    IIE ANC ANC IIE         IIE         i HPT R T A

IEE S E rVKS T H T A AS2 IE0 TIC 2 PAP S W - I T D m1IE TAR TAR TAR m1LE EV N TSV OCN mCER N2 U TTV ILV N O ( - I E GV IRR IRR IRR E IUL E WSOV O NTO v.N NAA yEH VN C A hAO OMTO v.N O N ISC NTOISC NTO ISC rIFI U N V

                        -      N      E                                                                                                                    IVM DR M S 6-                                     N                                                                     E        ICV         tRC&         EI D                  -
                         -     I             rILI D           D           GRN            G                   G             GR                       N L B                        -    D              GR             D                                                                              8, NE 4

5 R I

                         - N E

I NE IW TO H E O E E N I R N R I N R IWVE O E I O NEE TOIH N I T D K N I E LNE T C 1 2 IW TO K CS A EE I R I T. F E S I S

                        -      ASE      AP      T  A                 A           A           APRT       AS LOH     A                      1   APS               HS  D e   I RPZ                          R T      R      T R          T   I       D      IR       IMC        I      P      I      D      DCU                  .U l

b S -

                         -     DUI      TCTF I

D S D S D S TC F TE FM T O , TA TCRS E ANNC GEPANTOC

                         -         ON                            E          E            E IAEO             IT           ON NRS1I             IAAA a   E                   -     SRG          IAWO N              S" T      S* T        S* T N N                   NT     SCO I                      N CD          IO         IA(

T N - CGO

                         -     R C IRTE EUP CB R* O CB R* O CB R* O IRIE EGP II       C M ROT IE WE1 2

IRLLe A' E RTR UO0R RL E I - CE RVOU T T T RVNU SS TCE ROH R vLA DCU DS0U L - HIR EO L HE HE HE EOEL NN H EPTs E uAJ EL INL TG WCSI TNE TNE TNE WC I EA TETL W VW M SJI S AI E - IOO OELA WLT PRPF WLD WLD WLD PROF OT IIU IIU IIU OEFA PR IUP OCFO WDI PAOM PFOM O r t. F A CNA COMA RIF RT F S .

                         .                                                                                                                                                     N A            E.    .

SO N E SEE SEE SEE E E SR E J N E H T F I W B M A WIS T I WGL MGL WGL T P WRY T I SRT I T IY WT OS LF M STL SRB SRB SRB I 4U I R T-

                         -     /AI SUA F S         E /AA S     SHL
                                                                     /AA SHL
                                                                                 /AA SHL F S       TE RS 2S 0S
                                                                                                                     /FI S     V F S NT ES S

F C F SV I GIO NA .L O CTF FOFU CCI AU F PM FOCF NAL IF F N-E- V-CC AR OTOA CSA CSA C CCI IV CCI CSA IV O IV FMTA VE CFA SC SF R CORG O OR OT I O PRA E GCI IROC N BA E - F O FEE FDA FDA FDA FE N FE FEO FEPE F AORI OROmi PF ORF OTTF OPAR OFN RTPN m8 OFT ORRN O N O N O N

                          -                                                                                                                             r C-               OA           UUO           TU         TU          TU          UTO       /O           UO          I    O       U    t        OA DA A .H SS       SS          SS           SL M A                 SL          SS                    L S M            RR 0

I - S-S SFE R SLLM SIIM SWS SWS SWS SIFM CF SIF SFFF SLMI SI SFC EENC t s E

               -   A-B-          DCP OAAO ORU OPU ORU OACO OC hAC OFCC OAOA OCE VPOE ICO LFFC                     LIB      LIB         LIB          LFCC LC                tFC        LOCC LFSF LCM OOCM I      0 U       0 7    T-          3            3               3        3           3            3             3        3          3             3             3          3 C       9 8

N-E- C-0 0 0 0 0 0 0 0 0 0 0 0 T R - E-N s P - A t e N I t s B - O 1 1 u R - 1 1 1 1 1 1 1 1 1 1 M C P - 1 1 1 1 1 1 1 1 1 1 1 1 o f T- E E E E E E E E E E E E o E- 3 2 5 $ 5 A 7 4 P 2 0 0 D u S - r-1 1 0 0 0 9 9 9 8 7 7 7 0 m f - t 3 3 3 3 3 2 2 2 2 2 2 2 S C-0 2 d e R - P c E - 8 9 0 1 2 3 4 5 6 7 8 9 o d u e B - M-U- 7 7 8 8 8 8 8 8 8 8 8 8 T R M-UJ$i,- ww, O gU = cE

 'rI5 3g o
            .                                                                                                          aI 2* Q           gg                 l
 *I! .ETw  . f YhgG                    C W,tN  J.

I! 1l TV mC 3* Q{.$ M5$*' OE { hhf, g,UO = t)-t=Eby %EW ge3eE w E% M

                                                                                                                                                                         )geCO i

~ S /,

.7t(        s           -

u . E F R ~

                         -           L D SO D C0 1                          D N

D 4 2 4 D SN D OA D SA D PSA D CN A A F E~ P FG P GG D2G DGG P W AR0 P FP P CS AS P BS P CP E I ~ S - - S O1BV

                                                 - -    WUU    WUU            S     T      CTN          S      - -     S     - -    S    1 -     S O10V 1 -     S O1BY F .-

I O1!Vt LRPM LRCM CLL CLL CPP CPP LRS O2F OMA LKM LRFB O1MY 41BV 1RCE O10V LR3E LR3E LRCB T - - - - - - - - - - - - S - - - - - - - - - - - - 0 - - 0 - - - - - G - N ..- VHXX VHXX VAB VAB VHXA VXN ETNW ETCW VHXX VHXX VH5X VH5X VHXX N I E D. I IORI IOEI EEE ENW IRR III ETCD IOCM EWE ETNC ETCD ETLD ETLD ETCC IIR IORC ICEA IOPA IOPA IOEC D O .- O B. O. 3145 0000 3145 0000 444 000 444 000 3162 0000 542 000 0000 0000 3145 3135 3135 3135 0000 0000 0000 3145 L R. P.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - F EEEE EEEE EEE EEE EEEE 8000 8000 300 300 3000 EEE EEEE EEEE EEEE EEEE EEEE 310 B000 8000 8060 8060 B000 E i. 4275 4235 244 244 1420 100 4277 4220 4210 4210 4237 N i. m. v 1475 1475 422 422 8211 121 1474 1413 1413 1413 1474 I L- . E . G - R - D E D E D D E D E D E D E D E D E U - N N E N N B N N N N B S - I A I A L L I A I A 1 I A I A I A I A 1

                        . R              R                                  I            R            R        / R               R            R              R           /

G . D D F D S D A D D D D A N I S C S C S E S C A C L I S 1 B C S S C S C S C I B D - R R E S n SD R rG E C R R A R F R W D R R D N R D N R E-D U .

                        . TI H             H S T O u

t U Cu 3 X H T D H L H R T A T A H N S T IE H A T M H T M A H SA T OS L .

                        . W I    L A

CDL I I A I N I D P I E I E I LD

      )    C            .

WC OPP W H W G WI I WO WD WD W CI 7 1 N I T N i m S O

                        .                       O       E                                          T                       T                                           O
                        .                       T       V         v                                S                                                                   T f

o A . S S E r. S P S W S S S S N S N S 8 R .

                        . U R

3 R R U E3 G G R US R I n u R I n u R U EE R n O u PE n u O PE R U E R t P . CR CU 2 0 CRK2 CUA0 N I N IRR CR T CU t e N sR S CRKT U E CUAA tRUT tU A sRUT CRKS U A CUAE e e N . OO V OOEV T H HR A TEE ANN OO R H O v E H AOH R I OOER HRE vOER AOER HRE HRE OOEI HRR h . T S T BS I III T T T W T E r BP T UP T UP T BE S ( W - N1 E N R E VR N1 N T IWW TAA IRR N2 E C N A E C E N1 T T m1 VO E N1LO I N1LOI E N1 E VT T 6 O VN EI E VNK EI4& NOE ILI NTT ISS VN EI E R V ERI R VN A EI B vNKO VNAO VNAO VNKA eI4T EIFT EIFT EI4B -3<V fi B V I . GR 8, NE GR D FF D GR EC GTE GR GR S GR S GR S GR NE B. ESS E NE NTR NE NE E NE E NE E NE 4 5 U I . IW TO APS1 1 2 IW TO AP 1 2 1 NTT N I INN AEE A IW TO APS II TMP TO ASM APST AP IW H TO E L IW TO L TO V L IW TO H V A API A AP A AP IW T V IW E e I P RVV D l b S I TCM IAUA. I TC IA A

                                                     . DEE D RR R             I            INU TCRS TAS TCMF TC IAAA         IR I

IAUO P I IA V B TCG IANBII V I TCG IANB V I TC F IA O a E N P1 N 1 SPP S*

  • N CD NTE N P N I N N II N T

IR 2 E2 C CAB IR T IR E I uEU IRSU IRSU IREE N I RVH EE1 I uR1 RDD R vU NN R'

  • ELL RVLA I

SEU LA RiHU EER r tRQ R vUS RVES R ESQ eSQ vES RVUU ERR L EOTs E uLs HAA HEE EOAU NVT EOTL E uL EOC E vC EOLL WC v W tIV T TNN WC N EEC f lC I W TIE WCOE W uOE WCII E - OEFo OeAO PROM PRFM WGG WLL PROM O ISS III OEFA PLA OEFA O PROF PRFT

e. A H OERH OoRH PRPT PRPT PRFF OEAA S . UU KO A E E

T L E J N SPP LL SEE E NT A E E E P E P E B M. A N. T I T P I T I I W SAB WGG T SRR I 4 TS T L I T T I F T U I OF T U I OF T I R T S F RT S AS F ET / SS StN

                                                                /AA SHH F C S F          2TI 0SA F S     RE S EO AS      F S S

F G RO S RO F G S EE F SS O N. E . FOTW OTSR OTAR CEE FOUW CnE CCC CSS FOCF OT O VW/ FOTU R FOUF FO F OTSA OTAC OTCC OTCC OTAA FO F FOUU F V- I CI RR II E SI' C CC IC IC CC FEO FE FCC FDD FERE M FEO FE FEG FEG FE S E .- ORTF ORNF OSS O ORAR s ORTN U O ORNO OROO ULT OR4O OR R nN _ C. U O UOO TT UWU / A UOT U1T U vO I

           '  8    I -      SL             SLM          SPP     SSS SLTL                   A'       n SL         M SLM             SL           SL             SL mM E  0     S -     SIFF OACC SIMF 4AOC SMM SWW               SIFI         CFE SIFM                   SIME         SISE         SISE           SI        rM 1FCCOUULSS      ORR OAOA           LFSF LCO OCP    LFCC OACO             4AOU OALU           OALU LFPD 4AOO 1FCC
               -    A-S I

E 0 B- LFCC LII IFCD LFPD 0 U 7 T. N 3 3 3 3 3 3 3 2 2 2 2 _ C 9 8 E .- C-0 0 C. 0 0 0 0, 0, 0 0 0 I' R E .- N s P . t A e N s B I M O t f u R C P O T-1 1 E 1 1 E 1 1 E 1 1 E 1 1 E 1 1 E 1 1 E 1 1 E 1 1 E 1 1 E 1 1 E c E- 3 0 4 4 4 7 5 4 6 6 3 D m T S .- u C 6 2 5 4 4 3 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 0 S C 0 2 d e R. P c E 0 1 2 3 4 5 6 7 8 9 0 u B 9 9 9 9 9 9 9 9 9 9 0 O d e M. U 1 T R C I

 ,i v J,3 g..        *W   _

g3 wgg 8 2Mjg.' . 0 3BNtr-2 0 t UAfwW , {hT E3$ 3 ,d2 cr

srn L m_G [ g- g gC"t$ [D* M"o{b' 89 f5gm o3 1 f

                                                                                                               $g(* qt'" NE [ NO'h d klF a

e l>ae$3g-S . I' . C . E . 1 A M N M AA AA T I R. E.

                      .      D O3 D P

S CG P S 3 0 P G. D P 3G S 0 - P D SA P SS- - FS DAO S O5 D OS N P S G-4 DAI OT WS WD WK DAI OT DA1 OT D P S SS D SS D OR A-14 P S B-14 P S Gx-E I F.. - LRRM I

                      .      O1VV 41DL     1ROF            41DL I

OIMV ROF LRPE RCM NVA LRCE CCS O1BV CVD CVD CVD D10V CCS CCS IR3E 4I0V 1R3E O1Bv LRCI

                                                                        - - - - - - - - - - - - B                           - - B      -    B      -    0 -          0 - - - -

G m ._ VMXX

                                       - -        M-         -   M-VCXX VXM VMXX VXD VKD VXD VH5X VM5K VHXxEILW N            T          ETNWVM1X ICRI ETDE ICER VHIX ETDW   1OEI EUMD ISRA EWM ETCW IIR EWD EWD ICEI         III EWD    III ETLW   III        IOPI         ICPI ETCC IOEC I

D I ._ D O B O O R 3145 U000 0000 3135 3135 3145 543 3135 000 0000 000 444 444 444 000 000 0000 0C00 0000 3135 3135 3135

                                        - - - - - - - - - 0000 0000 L            P           -                                         - - - - - - - - - - - - - - - - - - - - - -                                                                  -

F . EEEE 8000 EEEE 8000 EEEE 8000 EEEE 8CC0 EEE EEEE S00 EEE

                                                                                              %000 EEE EEE 300 EEEE300 EEEE 300 EEEE 8060         8060          8000 E             x.        4215          4222            4222        4870                   4226         250            250         250        4216         4216          4224
u. I.56 N

I v. s. 1465 1421 1421 1573 811 1412 413 413 413 1412 9 412 1412 L- - E - G ._ R - D D D D D E D E D E D E U .

                      . NI E             E N

E N E N N N N N S .

                      .      A I

A N AR I I A 3 I A I A I A I A

                      .      R                                         R                      R                    E              E         E R               R             R G                .      D R

D C I D D 2 0 V D C N C N C D N D D N I

                      .      S             S C

T A S S C V C S A A A S C S C S C D C R R L C U R C RR U S n N O R S R mSn TNER S n. r t R D N R D N R U . i

                       . H             H         R     H           HO             u       H     I U        n       u NI U           n H A            H A           H
                       . T             T         I     T           TH             t S T I       D      C i              t         C     I    T M          T      M      T     m L                 . I             I         C I               I              t   N         F      C       A        e A C           A    I      E     I WD E      I WO P

) C . W W EW R W1 v R WO OM v M O M W D 7 1 N I

                       .                             G T N N E            O T

N T N T N O

                       .                             N                               ENP            T      EN             EN          EN                                          T VEO                   VE             VE          VE f

o A S S S I R S SN EP S S EP EP EP S N S N S S 9 R . x E u R EU V3 U LD U L R E RI U E G T OO n u E R G E O 3 F O E G O E U R O P R U O P n R u E t P tRL2 CRB CRB CD T NO CE A ITD tRK eUA NOV ITI TOV ITI NOV CRU ITI CU CRU CU tRK tUAR e eUA0 vOVV CUA3 OOIMCUA OOL T T T T T T OOE OOE vOEE h e N H HII HI OR R T N E E ASA vOE zHR ASC ASC ASC HR T U HR HRT BR T KS AG  ? A aV P IE B IEE IEE IEE T 1LU s S ( W N1CM E ER T N1VG E AE r P1V E A mC O O TVD ILE m1V TVR TVR TVR ILR ILR ILR r D I N1L E I n1 E e Vv O _ VNE i VNNI VNN vE O NAE vNF NAO NAO NAO VNA VNA EIF vNKN 6- -eR T IVN IVC IVC IVC EIF rI4I D - _ EICs EIUP EIU aI4 GR GR GR B 4 T L GR NE IW B, 1 GR S GR NE IW R NE E IW G N I S E V K C GR NE IW D EK D EK NCR NCR NCR IEO TO IW D EK NE NE IW NE IW E 5 I - TO 2 TC N TO K T L E TO IEO IEO TO TO H e I _ AF 1 AP I AP N A SA HE AP AF AH AH AP AP AP T l S . I P I A I A I PV DCZ I I RCT RCT RCT I I I b . TCO , TC R TC T T M IA E TC D S D S D S TCG TC: TC r IATA T IA I UB NNN IA S NE ME NE IANS IANS IA N O T a E -

                       -     N     S1      N         S     N       T S

NRPI U IOG N E SOT SCT SOT N CI CI IRSV IE N I RESI IE S Y. IREE N - IR EE1 2 IR E P I mW IE WEQ AIO RTC IREV ERL RTO RTO RTO CI CT CT RVEA ESL RVEA RVUD ERR I - RVH RV M R v R ROHS DCEERRVUA CT L - EOTs EO U E WC V WC1S W t1 u I EPT W E SJ EOEV HE WCI TUE ME

                                                                                                                          'JE HE T0E WCO EOCV EOCV EOLt WCO           WCIl E                 . OEFO OEB                      OeBN OCFM CNO OEAB                              I WIE P  U   INU WID W1D I9U        OERB         OERB CEAA PRFF S                 . PPON PRDa PRDI                            PAOT          RIT      PRFI U

PRPI U PRPI U A E. E NE n r. E S E H T E Q S S E S E S E E PS E PS E Q Q B M A. T I T P

n. T R E T ITS T WTL MYL WYL T U T U OC T

I I I I N I TF WTL II I C STB STB STB I OC I I R M ._ S NT S A S I S RO S ER /IA SVL /IA SVL /IA S RR S RR S EE O T. N. E

                       . F ES F FOPW FO N FO R OTOR OT       O    OT  T T F O SC    RR A F A F TF NAF FOUC SVA F OTAE SI CRA CAI CRA     CRA SVI OTCE    OTCE F

CAI CAI FO C FO C FOUU OTAA GI F GI F SS F V_ I C S C CR CR GV GV GV IR IR CC FEO FET FET FEO F O FE F A F A F A FEG FEG FE S E ._ ORTFU O ORRF ORRF OTTO OFT ORNF OFN OFN OFN ORDF OROF ORNr ULO UOC T 8 C_ SL I SIT CEO SLT UEO SS I T OA S R SLM UOO S OU S CU S OU SL UIO SL SLMw E 0 S. SIFF SITF SITF SFFE SFE SIMF SFS SFS SFS SISF SISF SIMM S E

              -    A.

B. AACC 4AAC IFCC IFBC LFBC LOCD OAAC DFCU DCP 4AOC ICO OCU 1FCC hCU LCB OCU tCB OALC OALC 4AOO LCB LFPC LFPC IFCC I 0 U 0 7  ?. 2 2 2 2 2 2 2 2 2 2 2 2 C 9 m.. 0 0 0 0 0 0 0 0 0 0 0 0 8 C. T N s R ._ E. P A t e N I t s B-O u R 1 1 1 1 1 1 1 1 1 1 1 1 M C P 1 1 1 1 1 1 1 1 1 1 1 1 O f E E E E E E E E E E E E o T E __ 9 1 1 8 6 4 0 0 0 7 7 9 D S_ 0 0 0 9 9 9 9 9 9 8 8 7 0 S m u T. U C. 2 2 2 1 1 1 1 1 1 1 1 1 0 . 2 d e . P c u R. E. 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 0 1 1 1 2 1 U I d e R M B U ._ N_ 1 1 1 1 1 1 1 1 1 1 1 1 c sQhp- ww gsbo wg0 0 ]g qAyp - g*b=> :g c D 9f5:. 78K y><$ C*

I ,I1

k h

T meE xo0 . MN$"OU { fmb4$ yD4()/Uk%OIU MFE" >g@$9#E. "

 \l l\   v                .

S I

                       .                                                                                                                                                C C         .

C U E .

                       .                        A            A               1              A             1 SX P

F D ON D SR P CP- P AX 1 - D SR D P 1C 0 D SS D P P 0 D POA D GS P 1G P D P 1G P O DAG O0 - D4S F S P BX F- 21G

                                    -     S           S      1 -     S    0 -     SS       4   S    00 -      SS- -        S      1 -      S    1 - WU SNY E             O1VY LRKB O10V LR3I O10V LR3I O1DV LROM LRPE LR OIMV         O1    vDW OIVV SOW LRKE r

O1DL O1DL CVL CAR LROF LROF CCP RMO

                             - - - -            0 -                       M-        - - - - - -      rM-        - - - -           M - -         M-      - - - - -

G VHXX VH5X VH5X 0 - - VH1X VCXX VH e1X VCXX VH5X VH5X VKB VNX N I ETNC ETLC ETLC ETDW EUNW EThOW EUND ETLE ETLW EWW EEr IORC IOPC IOPC IOFI ISRI IOsRI ISRA IOPR IOPI III IRC D 0 0, 3145 0000 3135 0000 3135 0000 3145 0000 3145 0000 31225 00000 3145 0000 3135 0000 3135 0000 444 000 000 616 R . EEEE EEEE EEEE EEEE EEEE EEEEE EEEE 8000 8060 8060 8040 8000 80420 8000 sEEE EEEE EEE EEE 8090 8090 300 453 E 4217 4214 42,14 4205 4876 42405 4810 4202 4202 254 446 N I 1464 1412 1412 1455 1572 14225 1563 1421 1421 412 493 L- . E . G . R D E D E D E D E D E D E D E D E D E T N U N B N N N N N N N N E S I A 1 I A I A I A I A I A O W I A I A N A I V E

                       . R        / R               R              R            P            R    L         R           R          O R G             D        A D               D              D            D            D    F         D           D          I T

D G N N I S C 1 B C S S C S C S C S D C E S C S C A L C S D T I D . R D- R D N R D N R RR U R T RE RR U R U C R S n G E A I U . H A H A H A H HO H ES HO H R H u G T L . T I S D T M I E T M I E I T TH I I T VO IL TH I T I I C T I uU L N I

         )   C        .

W I WD WD W W1 W DC W1 W E R W v P I 7 1 N I O T G T N P O f . N EN M

                      .                                                                                S                                              VE o A        . S S            S     N     S N           S             SN           S       L      SNS         S I

R S EP I 0 R R U V E n O u P R O U P R t' 3 nI u R U RA3 I RIE U VE n u sD U U R s G O D I 1 P . CRLS CUAF R u U ', R CRU CU R CU CR 2 0 uE D CROF2 CDLT CU 0 CEAA uU/GRO CRO CU/ NO ITR M t e N . OOVI vOEE OOEE OO V HRT HRT vre OOE2V ORVR E E vOIN OOI T E O e H R H HR0 H I H ASN T T RE T UR n1LEUR TN1 S T v T U1S TVKP T CG T C IEI K

 \/

h S W . N1CT E ET N1LE E IV u IV E N N R E t u s r,1 L N NOCO e IRR ECE N1IG E GU N1I E G TVA ILR NA WE ( O . VNHA VNAN vNAN VN Ve vNAK VEHO VNOL VNO ERCT NAT OL (\ v 6-B D T EICB GR NE EIFI GR NE tIFI GR NE EI GR NE 5 I.

                                                                               . N ER G

tIFB& GRE NER B. G N S GR E EILP NE S GR R EIL NE IVS D ER D NN IR S 4 5 U I IW E IW TO H TO H TO H TO E IW E IW 1 2 I T IWAR1 TOWO2 1T A I V IW L TO N TO E IW K NC IE A RG I . AP T AP TI AP T AP 1 A S APD A API I AP N AH DNI e I P I I I P I RN I PV A I A RC l S TCOF TCGF TCGF TC , T M TCAU IAHRA, IT O TB TCTR TCTT D GT b . IATO IANO IAIO3 IA A I US IAUT IAU N NA a E N S n E N I IRSE N IRSE I N IRE 2 S1 NRPE N V I nTE2 1 NRSI IE N U IRT PS N PT SO" CIB IL RO T N I I oER R vHU RVEU RVEU RVU ESP ESR ER1 IE ROHA WEL aN R VET 1 WEQ ROHS R rUP vOM RVOR IRTS EUW RT* C US DI L . E uTL EOCL EOCL EOLs EPTV E uMRs EPT E u U EO I HEE

                      . WO teFA IOERA   WCOI        WCOI          WCIV          W           W tGAV W                EW       tSS        WCS         TJN SN E             PsOF PRPF PhPF PRFN OERA OEAO OCFB OeETO OCFH OeL PAOI        PRSSM           PAOT PRPT OELN PRPI INI WIL CI R

S U N S A E E P E P E TPL I E Q S E J N E E E M E S R S E F v oS B T T U T U T NI T T I T T N T E WYG O tE I I O I O I E I TC I I F I I I N STR C R S NE F S RE S ES F GS F CS F OS RE S NT S F RR AI S OT S NO F BTS F E S F A T F S I A

                                                                                                                                                      /IA SVH    N G uI uF O             FoPU FO U FO U FOPW OTOA COTCA IC         OTCA OTMR F TC O SEOI OT0SR OR OC OTOO FO1        W F PF OTOT CRS FOFN FOFR CAC N C I   dI R

F FEO FEG FEG IC FEC FEO FEPI LI FEO C FEE FEE S GI IRO S. F D AO S I OPTNU 0 8 ORON ORON ULO OR ULO F OTTF ORMAF UDO I OTTO O ORRF U FO I T UUO ORRF UUO OF OT DAO RTF 8 SL SL M SL M SLE SS SLP SS SLL SLL S S RR E P 0 SIFM SISM SISM SIXF SFFF SIMGF SFFE SIIF SIIF SFt r EEF S E OACO LFCC HALO t OALO FFC LFPC LFFC OAIC EFCC IOCC OAU/C OFCD OAAC LFPDC LOCD LFFC LFFC OAAC OCR VPC LCI OOC I 0 0 U 7 9 2 2 2 2 2 2 2 2 2 2 2 C 8 0 0 0 0 0 0 0 0 0 0 0 - T  : N s t A e s N I t u 1 1 1 1 1 1 1 1 1 1 1 C M f 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E O o 8 3 3 2 2 9 7 6 6 2 2 D m u 7 1 7 1 7 7 7 6 5 5 5 5 5 1 1 1 1 1 1 1 1 1 0 S 0 d 2 e P c 3 4 5 6 7 8 9 0 1 2 3 u 1 1 1 1 1 1 1 2 2 2 2 O d e 1 1 1 1 1 1 1 1 1 1 1 T R

)i-s x
                                                                                                                                                      %$g_O3.                ww I        6C$                  -

2Nj pegnty , o g MAf(M 4 , < ctg E f Sg m t

R m_m = k $33* (HQw f) pg= n )$g gqqS ny ( gi" v I OE C[g A g3 M$ soQ S . O I . C . I . R . D Ro l SP D SP D N D M A D N D SA D l o D P OS D CAP A H E. . F DG - S - M S EC- - P S EC- P S 1P 0 - P S 3S 0-P S 21P 00 - P S FS P S 11C 00 - SS G-4 S GS E I F I O1GV LRDM O1DL LRPF D1DL IRPF O1DY LROB 41DP 1 ROE LROOB O1DDY O1MV LRFE O1DDV OIVV LROOH LRKE -LRCF O1BV

                                            - - - - - - - -                    M-               M - -         MM-         - - - - - - MM-                     - - - - - - -

G T. N.. VHXX VHXK VHKX VH1KETDC VH1XE1DC ETW0C ETND VHB1X VHXX VH12X VCXK VHXA N E ETOW ETOE ETOW IOZI I0EC IOSEC ETOOW IORA EUNW IOZZI ETCD ISRI IOEA L D D.. I IOZI IOZR IOEC O B. O O R 3145 0000 3135 0000 3135 0000 3145 0000 3136 0000 31225 00000 0000 3145 31225 00000 3145 0000 3145 0000 F L P. - - - - EEEE EEEE EEEE EEEE EEEE EEEEE EEEE EEEEs EEEE EEEE T 8000 8000 8000 8040 8002 80420 9000 80220 8000 8000 42005 4816 4230 E N E 4245 4202 4202 4207 4226 42407 4270 N I V. E

                       . 1445            1421           1421           1454             1428          14224            1473           14225            1562         1473 L.                .

E . G . R - D D D D D E D E D E D E D E D E U E N E N E N E N N N W B1 N N N N S I I I I A B I A I A I A I A I A I A A A R fI N A 1 R R R R R O R R R / R G

                                                                                  /

D D I C D A D D F A D D D D N I w. C S S T A S S C 1 B C S S C D E B C 1

                                                                                                                     -   S              S C

S C S C C L C D R R U R C R D R R T D R RE-R EE RR U R E U H H R H H A H H ESA H H SS HO H S N T I T T S T T VOS T T OO TH T O L . T I U I C I I D I I ILD I  ; LL I I L 7

)    C                 .

W R W E R W W I W W DCI W W CC W1 WC 1 N I

                       .                             3 R

O T OO TT f . P O o S S SS T A .

                       . S O

T S I R S S S M S L S S LL SNS S R I R . R U G3 a v SD U S U R n u R U EP L R U RA I R U E U R II AA3 RIE U V R U EE i t P CRD2 CU 0 RP uUMG CRP CUM R S CRBN CRCFS uU EI CUAI CU CR E CU A CU T CRFF2 0 CDL CEA CRKT CUAA OOL OOE2I OO OO22V O R.Ve OOER e e N . OOYV T DS HB vOUN 1 HPI G T OOU HP T vO H R E T AD T HIS HP0R U1E T H R E P T H00 12S T vK HRE BP h W N1NN N1L N1 T N1VR N1L T N1 O N1 N N vC m1VO O S . E AR m1LG EU E E E T E AA E IRT E E RRR E E ( O . VNT v.N eIFP U LEIF VNV VN A VNNO VNAEA EIFBB EI B EIUB VN O VNKK EI T EIBB& V aH ERC v. eI4TK O N 6- D . EIS& B r . GR NE 5

                                        . GRNS NEER GRNNEE GR NE GR NE U T   GRE NER GR NE S   GR E   NE B N G              GR NE S

E 4 U . IW TO 1 2 IWVE TOIN IWV TOIK IW TO H E TO IW P T IWARE TOWOH TO IW V I WRR1 L TOOO2 T I IW TO V L 5 e H AP 1 APRI DA APRN DA AP I T AP I T L O APD I T RN APSA I PV AP I NN 1 A I P AP I A V S . I TC I I TC R TC T TC F TC TCAUF TCM TCUU T O TC lb . IA A IAET IAE IA O IA E IAHRO IAUB IARRA. I TS IA B a E . N 1 N NS N NT N S N C N A IRT&E N PI U N 1 NRSE N IE V I EU I T N . IRE 2 ER1 I I I IS GW IREE ERR IR E F EN R IR EEQ I m&62 1 WEL uRQ I . RVU uGP R vNM R mNR RVUD RV R EO E EOMRL EOT RVETU RVHS R vTT E uRRs EPTV ROHA R E vL vUS L . EOLs E WCIV W vEU E SW t uEI EO!1 WC!1 WC1T WCCAI WC E W tAAV W W TIE E OEAO OuF PRFM PRO? OeFN OEAA OEBN PRFF OEETA OEFH OeTTO OCFB O PRSSF PROT PRSSM PAOI PPFT r_ A H S .

                        .                            f PROI                           PRDI U

A E. . E U E D M E S R E - E R E E E E J N E Q S E B M. T T T s T WTI T T T T A. N. I I I N T I I E N I m I O I TF I I I C I F R S ET SS S TA S F RT F RA F TI S nE vS F S P S F BTS OE S RO A S OOT F TTS F S NR EI S F EO S mF F a O FOUW FOAN FOAR FOrU FO E OTAR OTTO OTTT OTMA OT H FO1 U FOTF FO OT0SA OTSC OTSSR O OE LLI WF CTAC PC FOUF F SC SS OC T LC C R CC v.

r. FE CI FE FE FEC FEY FEPI FEO FEII FEO FE S ORNF OROF ORMF OR N ORRF ORMAN ORTO OEAAF OTTF ORNO I StUOT C UDO UEO UFFO O s1ETO I UOO U O E FOM SL U T 8 I . SLM SL SLEM SLT S!P SL SS M E 0 S .

A. SIMF OAOC sIFF eACC OACC SIFF DAIO SIKM DAAC SITF OAU/O SIMGM SIFE OACU SIGCF SFFF OA//C DFCC SIME OAOU S I E 0 B. LFCC LFCC LFCC IFFC IFBC LFPDC LFCD LFDDC 1OCC LFCD U 0 C 7 9 T. N. E

                         . 2 0

2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 8 . T C. R E. N s P. A t e N I t s B. O. u R. 1 1 1 1 1 1 1 1 1 1 M C F 1 1 1 1 1 1 1 1 1 1 O f o a . E E E E E E E E E 2 D s s. s.

                         . 0 5

9 4 9 4 7 4 5 4 4 4 4 4 0 4 6 3 5 3 0 S s u n.

u. 1 1 1 1 1 1 1 1 1 1 0

2 d e R. P c u E . B. 4 2 5 2 6 2 7 2 8 2 2 9 0 3 1 3 2 3 3 3 O T d R e M. U. N. 1 1 1 1 1 1 1 1 1 1 M r 2n a we= O g$r gg kg i g UE=eG e a

  • f. 6g7 J7 ,
                                    &8s                                                 (J#ftO    s

th .h

                                                                                             )*

t ma D# Q{ M:$*' 4 f ~a . [ a gD& (pDk%C$L 6 t , 7>$gEB4h h/ , I \ S I C . D E 4 1 S X 0 A A M F R 2 D40 D A 3S D RN D SS D N D PCS D SR PD D OA D P CS F A F E. CD I At O00-NWD SN S !'N D05 P DP WAD S - - S P F-4 P S 00 - 11P S O-4 S FX

                                                                                                                                               - - NwS          S      - -      S 1S 1 -

E F I OF CAV NFA CMO LS RMM RSM CFM -LRDB LRFE O1GY LROOB 1RCE O1MV O1DDY 01BV O1MV LRCI N F"t RS O1VV LRKE O1DP LROE MM- - - - - - - - - - S - - G T. N. E VX VNK VXC VX2 VHKX VHXX EC EHW ECEICRECE ETOC

                                                           -        3      - - - - - - - -

ETNW ET00C ETCW VH12X ETNC ECD VHXX VHXX VXA VHXX VH5X ETND IORC ETLC M-N I D I IC IRI ICR IOEC IORI IO2EC IOEI ICM IORA IOPC D O . . O B. O.. R 56 00 625 000 462 000 453 000 3145 0000 3145 0000 31225 00000 0000 3145 3145 0000 462 000 3115 0000 0000 3136 L P.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - EE EEE EEE EEE EEEE EEEE EEEEE EEEE FEEE EEE EEEE EEEE F E T. N E 30 12 400 455 106 621 381 232 8000 4247 8C00 4276 80220 42007 8000 4236 8000 4214 100 620 8000 4210 8092 4206 N I V E. 11 455 911 412 1444 1472 14224 1472 1472 911 1463 1428 L-E G R D E T N D E D E D E D E D E D E D E U N E V N B N N B N N N N S I A E N A I 1 I A I A 1 I A I A I A I A R E R / R R / R R R R G D G N P O D A D D A D D D D N I S C I T

                                                                      - S O C 1

B C S S C 1 B C S S C E S R C S C D R A I S R S R T F D- R R EE-D R E R S A R R W R U . _TH T I U C U C L H I T NS T A H H SSA H S T OOS T O H T U C D R T H H T L . I W N C C A I UD I W I LLD I WC L W I C O H W A I I W

       )      C          .

I O O F W RI W CCI 7 1 N I PE OR i n T N E OO TT O T N E O e f o A .

                         . S LW  P        v.

z V E S T O S S LL SS S T S V E P S S S S M

                         . R       DU                                    n             R              R                             R                          n E            R          P 2      R          . U         IR3         G           G O           u G          U               U AA II         R R U E          U              G I

R u VE U s 1 P . C C M E0 2 N I N O N T I RDS uU E CUOO CR CRFFS CU CRK E CUA CR CU R N I T tRLT tUAA CRON CU/I t

                         . O       OPV T                   T            COYI                          OO22I            OOE          OO E T R                   vOYR           OOI e

e N .

                         . a TI PS A T A I

I A I 3 2 0 4 HBR DE T H r H00R 12E T B NR sH TR A IO T tf H KP E T CD H S

   )/

h S W . n. e N M T U T WSR I T I V a1NT r AT E N1 n T r.1RRT E V N1 a1 e E V T C I A f1CO E E N1IR E GA . ( O . v ON N C N O v. N T A VN vNEKA VNK vN N IN I E VNHO VNOO

 ,[L   6      D e      DR&         I      A    I      M      cISB          EI              eIBBB           EI4           t. I                 R   EICT            EILB
                         .           N                       DG           GR            GR              GR               GR          GR                         GR       S      GR         T B      I          . E       I      B,               EN           NE            NE              NE               NE           NE                        NE       E NE              U 4

5 U l I T A R 1 2 NIS ISE IW TO H TO F IW IWRRE TOOOH TO IW IW TO H AFST E S IW TO L TO T AP V IW P U i . AS D 1 S ASS AP T APS AP T AP A AP

                         . ID                      D       REU                                P             NN                              P          D            PV                   O le b

S . TR IA GE . EAA NTA DRS DCA TC F TCM OC I IA O I IAUS IARRO I TCUUF TC I IA S I TCMF IAUO EAA DRS I TC IAMB I TCT IAUE a E . NC IA1 R12 LCD L SR CPE IREE N N IR PE N V IR&EE N IREV E N P E L LCD N IR SI U IRTA N PC T N I I SL L UO1 ILL DS FLA R R PU RVUU ERR RVHA EEL RVTTU RVUA E R R ERL I R.Ee R ILL vEU FLA RVHS RVOR EEQ EUF L . NA Is AU HUL EOLL EOTV EORRL EOLV E uTLI AU EOT EO E E S V S N TOI WCII WC WCAAI WCI W S N WC E WCST E PF COO CFA IRA OEAA OEFB OETTA OEAB Ce t.F A CFA OEFH OELN S . OO RTM ROM WGF PRFF PROI PRSSF PRFI PROF ROM PROT PRPI

                         .                                                                          U                             U                                                            -

A E M F N T I J H S E E Q S E E Q S E H T E E R E - B A OSI L W W S T T TC T T C T T I W T F T I W J R N. t . 4 2F GIT 0C NAS SC F /C SI 1 9 F EE S SS I F RR AI I S OOE F TTS F I S ER SI I S RE AS SC F I S F NO S E F F _ O TOPF FOFE n... VC IFW NCF CGL FOUU FOTC FO U FOUC FOTU NCF . e - N R P O COA OTAA OTSE OTSSA OTAE OTSA R O OTOC OTOH _ F v. SE NA AO IRI E FRE F LC FE CC FEO R FEII LLC FE CR FEO C FRE E FEO C FEE T _ S C

e. RI
                             /W      DAO             WU          OA I

RTF OAR OFN ORNN ORTF ORAAN OAMF ORTN OAR UOO U O UFFO LOO U O WU ORTO U T ORRF UUO T 8 I AT RR STL S H SLMM SL SL M SLM SL M STL SL SLL . E 0 S. . CF EEF SFI SFC SIMM OO VPC OOA OCE OAOO DACC OA//O 4AOC OACO OOA OACU SIFF SIGGt SIMF SIFM SFI SIFE OAAC SIIF d l E 0 A. B LS OOC LSF LCM LFCC IFCC LFDDC 1FCC LFCC LSF LFCD LFFC 0 U 7 F . r. 2 1 1 1 1 1 1 1 1 1 1 0 1 _ C 9 8 E. 0 0 0 0 0 0 0 0 0, 0, 6 _ T  : C. R E . N t s P. - A e s N I t u B. O. R 1 1 1 1 1 1 1 1 1 1 1 1 C P. M f T 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 8 O o D m E. S T.

                          . 6 3

4 3 4 3 9 2 9 2 4 2 9 1 8 1 5 1 5 1 4 1 2 1, _ u U. 1 1 1 1 1 1 1 1 1 1 1 1 0 S C. 0 d 2 e . . P c u R. B 4 3 5 3 6 3 7 3 8 3 9 3 0 4 1 4 2 4 3 4 4 4 5 4 O d e EM ._ 1 1 1 1 1 1 1 1 1 1 1 1 U. T R N.

 ,)J.

_iL

                                                                                                                                                                    %fh.O3 D       .

M- . gE gg - aNE # pmgnt.y g 0 0 MA J4 4 s ,' <". fmCa f;

W* g~ g J (* 3 (cye p t py 3 gqoQ gg 5ge1ho" 1f3O M

                                                                                                                                             )

(9TMQ"he .p>" *3g d -

                         -                                            C O

I - C I C U - C U G C U CID E F

                          -                 1 S
                                                       -           S-                            A            l            1              1 D40S S

D SA D S N 1 R - D SS0 D4X AT1 D CR OS D o D 0 D 30 0 F E- P 67G O0R DDU P GX DA3 P 1G P 3G1 -P 1G O005 P ES P 71G I - SS00 - SNT WNP S - - W2 S 1 - S S 1 - SNND S - - S 00 - E F-I - OIDDV CAM LROOH RMX CANW CMIM O1BV LRCI CV0 O1DV O1DV CCP LROM LROM -LROM RMMM O1DV CAAO O1DP LRPE O1DDv LROOM

                                                  - -       - - - - - - - -                                                                                               - - - MM -

G T - - - MM-VCABX VNX VCXN VHXX VXD VHIX E - - M-VH1X M- - - M - - - VHIX VNN2 VHXX 3 - VHB1 x N W-D- EUNNW EHC ISRRI IRC EECD IRCA ETCCIOEC EWN ETDW IIR ETDW IOEI ETDW IOEI EHWN IOEI ETOC ETN0W IRIR IOZC IOR2I I I - D O B-O C~ R~ 31225 616 4144 1145 444 000 314% 0000 0000 3145 3145 0000 6133 0000 3136 0000 31225 00000 L F~ 00000 000 0000 0000 F s~

                          ~     EEEEE EEE EEEE 80330            453           3633 EEEE 8000 EEE EEEE EEEE EEEE EEEE EEEE EEEEE 301       8070         8070         8070            4551            8002           80320 E              a-e-

48555 446 2009 4234 257 4215 4215 4215 4412 4206 42505 N I v-s- 15115 492 4514 1472 411 1435 1435 1435 4912 1428 ' 14125 L - - E - G - R - D T D D E D E D E r D E D E U - E N M T

                                                                    .        E N                       N            N            N                a r              N              N S                  -
                          - A I     OO PP V

E C A I A I A I A I A i v N A I I A O P SS R R R R E R R S G -

                          - D R

G S D D D D G P D D N I

                          -     S 21 22 N

I A D S S S C S N I O O C S S C 1 2

                          -     C     12         T                           C                       C                         C               T                                     2 D                  -     RRSS UCC A             SL E R RA G                E S

R R R R A T R R S CE U - I I

                           -- WOEE               T             UU        A   H     S       U         H            H            H               T        L H                   H ES 1H                            CN        M T   O           C         T            T            T                               T              T BID I        I L                    -    I    BB I

N CA A I L C I I I N A I I

 )

7 C -

                            -    W1CC            I             OM D W C                    O         W            W            W               I        F W                   W CC 1     N I
                          -            ;&        P 0

T N i n P O

                                                                                                                                                                                     &O T

f - CC 4 E O eN D C V S TS o A -

                          -     SNFF TT         I
                                                   -           E      S      S T        vE eP       S            S            S I
                                                                                                                                                 -             S         M    S      FL 3     R                  -

RI U YE3 D I FPE R R GOUR U E G O R U 3 R U 3 R U 3 D I sO U CRPN R S P R U EA3 I 1 t P - CDAR2 M CEL 0 N OO IERC CRK CUAn NO IT CR CU 2 0 CR CU 2 0 CR CU 2 0 M VT O CUMI CRRF2 CU 0 e N - ORE &V O TRG OOE e T OOEV OOEV OOEV O M3 OOU HPS OO&2v e - eR T AU E HR s AS HR HR HR T 2 aH C1S 0

                          -       a v CS              K        ILCR                        IE         a    US           US T US                    KT0 T                 D h     W                  -

m v&TN NA TIIO m1Bu TV I N1LN N1LN NAS N1LR m1T N m1LN O S - x FR WEOL IAGF r VV IL IR E IR E IR WEWV E EA FRR ( O - vrB EPCB& D NFDE wNKN NA vNA VNA VNA EIF& OLRO VNUO D IM EIFB vN K r.I B B & 6- D -

                            -                         S I(IB            r. I 4 I    IV         r.I F &     EIF&

S B T - G

                            - N C ,

B NN IR D E F T GR NE D EK GR NE B, GR NE B, GR NE B, NN IR GRNT GRC NEEU NE B, 4 U I I T A

                                       ,&1 2

A RG N I t PS ND TO H IW E NC IER IW TO 2 1 IW TO 1 2 IW TO 2 1 A RG E S IWVP TOIT IW&Rt TO O2 1 I - A 7B1 DNS A IA AP T AHE AP 1 AP 1 AP 1 DN S APRU APB S IR R RCV I I IOU I DO I 7N le - I T 07 , NAT 00 GTE DSFE TC F D I I TCS I TCS IATA, TCS , GTWA TC- TC0U . b I V0A AOT IA O NR IATA. IATA NATC IAEE IA0RA a E -

                            -    NR      V1      ILT           SD A N                      SOD N           N1     N     N1     N      N1       IL              N NC N V                    1 T     N                    -

IEK 2 WCK1 USM RART ROI CNEU IREE ERR CI RTT IR.E2 nN1 ARE2 EN1 IRE 2 EN1 RO E USmR IRIA EGF I R.ryCT K

                                                                                                                                                                                        &2 1

I - RO C DIS MUC RVUU CU R yO RVO RVO DIPE RVNR R L - EPP

                            - W OTV SNA TCI s           N H - LA EOLL WCII HEP TJT W E     Ps EOPs EOPs wMV WCMV              WCMV SN OII      EOEE E WC T W             wTAv Rs E                    -    OCTSO           CIR           IEAO          OEAA          INU       O e. O O     OEOO OEOO CIOA                               OEFN O             e. S T O S                    -

PAS M R T WRFT s PRFF WIO PRCM PRCM PRCM R TF S PROI PR SM A E-E  :&JN F u E E J J J D E R & J N B M-A - T SSI O r. R

r. E S WF S T S

WY T N E I T N E I T N FE I O r. S T E E W T S I N- I LL U SO L I ST I I I tL I O I L R T-

                            -    S    IIT F AAS NbS G uS S .EA
                                                               /        I    S EE F     S3
                                                                                           /I SV S

F T S S F T S F S T.G S N sI vA S F TP R S IOT F ATS O N-E- F FFW O R ISE N R CBDF FOUU CAF FO W FO W FO W COO OTAA CRO OT R OT R OT R N I6FL FOAE FOF W A CTTH OT SR F V- A9I IRP RMR CC G I I I IRRC ST BLI E- FE11 AO FP O FE F E FE FE FE AOOI FE FE1I d - OT00F RTF O NT ORNN OFR OR F OR F OR F RTTM OROF OR0AF I c 8 C. I

                             .      I SSPP O DAO RR
                                                                     .OA SDMR SLMM UOO           OU S L SLE UDO SLE UDO SLE UDO DAAm    RRR        t    SL UTO SLP U FO i      0     S.         SFMMF EEF SNME                               SIMM         SFI       SIKF         SIRF         SIKF            EEE        s    SIFF           SIMGr d      E
                 -    A.

B. OFUUC LOPPC OOC VPC DOOP OAOO OCA OAIC ICCO LFCC LCF LFFC LFFC LFFC OOOn OAIC OAIC VPP r. 4ACC 1FCC OAU/C LFPDC I 0 U 0 7 T- 1 1 1 1 1 1 1 1 1 1 1 C 9 M- - 0, 0 0 0 0 0 0 0 0 0 0 8 C-T R - N s: P - E-A t e N I s t B-O- u R 1 1 1 1 1 1 1 1 M C P .-- - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O f o T-E- E 1 0 E E 9 9 E E 8 E 8 E 8 E 8 E 7 E 7 E 6 D m S-T- 1 1 0 0 0 0 0 0 0 0 0 0 u U- 1 1 1 1 1 1 1 1 1 1 1 S C-0 2 d e R. P c E-u B - 6 4 7 4 8 4 9 4 0 5 1 5 2 5 3 5 4 5 5 5 6 5 U I d R e M-U- N-1 1 1 1 1 1 1 1 1 1 1 s p 3 h a. ww. 9 vT,E w I n g a 2N# gg U Oh. a ff j7 - $$ Jh,4 40 t 0

                                                                                                                                                                                     .{
                     ~

2 > . )" uc 7* Y In =y Mhn*j FOfm0fas 35E g (/5k&Ok Y)n*hw3Md

 )

7(v S - I - W C - S

                                                                   -                                                     D E             -
                          -                1              t 1

D O1 CX SP CX SP R N A 1 F R-E- D P 5 61G 0 D P le 7G0 -oM5 OS D V0 AS1 DD00 AS1 P4P P D OS SSS D S0 D D565 P DG P A F P 20G DD00 A0G G-4 1S I - S 00 - S WAD S 00 - WN7N WN6N CN- S N00D S - - S 0 - E F-I - O1DDV O1DV LROOM LROM CIO C P"M3 O1D1V LROBM CMRM CA1A CMRM CA1A LMF LRRE OAL COOM O1VV CDDO O1GV O1DV LRDM LROE T- MM- - - M- MC- - - - - - - - MM3 - - - - M-G N- VHA2X VHIK VX2 ETN0W ETDW ECN EWWCW EEWD EEWD EHW V BIX VCIN C- - O-VC2N VNX VHXK VWW2 VHXX ETNW ERRN ETOW ETDD VHIX N I E-D- IOREI IOEI ICR IOSEI IRIA IRIA IRI IORI IIIR IOZI IOEA I - D O B-O O-R- 31225 00000 3145 0000 453 000 31225 00000 4154 0000 4154 0000 525 000 3145 0000 4333 0000 0000 3145 3145 0000 L F P - EEEEE EEEE EEE EEEEE EEEE EEEE EEE EEEE EEEE EEEE EEEE T- 80320 8950 301 80430 3663 3663 100 8000 3221 8000 8040 N-E E-42505 4205 212 42425 2049 2049 552 4216 2222 4285 4200 N I V-E - 14125 1435 412 14215 4594 4594 151 1462 4332 1425 1453 L- . E - G - R - D E D E D E

                                                                                   ]                                                D E

D E D E U N N N W3 5 T T N N N S I A O P I A N I AR 4#1( C A C A S I A NN I A I A R S R E R R EEm R R G

                          -    D                D                    P   D F                   S              S         U           D                PPr D                    D A                                                     OOO N

I

                          - C S

2 2 1 S C O

                                                                      -  S D O C E D

A D C C O S C OOO C S S C D - R S CE R S n - T R T R SL E SL E RA G RA G T R STTT R R - - - T R - U -

                          - T H ES O

H T wIA L H E T V UU CN A M CNUUM A N E H T ULLL H R CIII T A H T L - I BL I kF W D I I CA A CA A V I CAAA I T I

      )

7 C - W CC W OM D OM D E W OFFF W S W 1 N I

                          -           sM T                           T N

T N E R T N f - C m E E E o - TS V V V .W V O A - S FL S E S E E TP S S E OO S T S 4 R - n TA3 I R U 3 G O n R 3 GO R F E F E GO R NR IU R U V E GTTO U R G3 n E 1 P - wRAF2 UL CR CU 2 0 N T wRO U 2 N IE O N C IE O C I E CRL CUA N IAB T CRD2 CU wR U A T t e N - ROEHR0 2V OO 0 H V TAI 3 ROE HR V0 TR AU E TR AU E DP EI OOV H T113 A222 OOYV AOH HB 0 R E e - T 2S T S I 2 0 r U S IL R IL R LP T K I110 T DS r P

 )

h S W - N1& E RF N N1 E N Ts MR IOV n1L N e I R TI IA

                                                                                                     )

M IA TI O L F IS N1C E E T IVVV E AR N1NN r r1 e O ( O - VNBR EICB6 VNh EIT& N/O IIM vNA hIF & NF E B NF E FN B R VNH EIC NOOO VNT IMMM EIS& vN O kI T

 ,(V 6-    D              -

I( I( B r -

                           -   GR NE          B.

GR NE 9, END S IWANER GRE B, D E G D E G S C GR NE D E GR NE GR

8. NE E S

4 5 U I IW ,R1 TOAO2 IWR1 TCO2 I E TOWN 2 1 N NS N NS I ID I ID R K IW TO NSSS IEEE IW TO 1 2 IW TO L V AP7 AP ACS APDE1 A GA A GA H N AP ASSS AP AP A le I S . I TC0U . 0N1 I TCR E 1 RIU I RP DGA TCAO , DSUE DSUE R G R G T A IET I TCO P RUUU DAAA TC I 1 I TC V b . IAVRA IAUA, OC IAH A ALT ALT WT IATS CCC IA A , IA B a E . N IRRE2 1 N L1 I nI2 SL C E N IR?T2 O1 SDPA SDPA CN AT N SE S V CEEE N 1 nE2 IREU N SI T N . EC 1 eA1 RTR RVmS E 1 RAOW CN U ELS RAOT ROW IR EEL RRRR I - rR1 ERQ I L RV T EOPRs E WCOAV W n vF UU HPL EOMLs WCGIV TCE H-MTC A H - TCE MTC A WII P SR RVHA EOTV HLLL E WC TIII UUU R W yU wLs EOL RVUS WCIE E - OETTO O e.L NO Vws IUATTI OEEAO IEUO IEUO UON OEFB IAAA O e. I VAO OEAH S - PRSSM PRPM WOF PRSFM WRDT WRDT RTI PROI WFFF PRFM PRFT

                          -                                                                                                                  U A         E-M-        E J

N E

                                                        .I RIL     SF        E J

N S E S E S R E Q S S E J N E T B A- T S; T TI WO T WFRS WFRS SE T W T N- I L I I S S I I SOUL SOUL ELN I C S I I T MF I R T-

                          -    S     IOT F ATS F DS SC S      IT      /F        S F       B0S T /

S .IA LI / S .IA LI PII IAA S NR / F EI S S F ET SS S NO F O V I N. E V-

                          -    FOF N FO W CCL OT SR OT1R C A I ALI                          EC FO10W OT01R I

CBAF CBAF PFR COF R R COF R R SRS T FOPC CLLL FOUW FOPF OTOE CAAA P OTAR CCC OTMC CI OC E- FE1I FEA FRI FEPR FPEO FPEO NO FEO FIII FE FEC - 3 1 C

                          -    OR0AF OREF OAN U FO             U O ORMEF O CT O WA           U RO             ,IA CT RTF
                                                                                                               .IA      /AO ORTF ONNN ORNF OR O U O          AAA         UOO              UDT 8    I         SLP              SL1            STH SLPA                    SDFR          SDFR           AR          SL           SHHH SLM                     SLE E    0    S A

SIMGF OAU/C SISF OADC SFC SIMEF SNIE SNIE CEF OOE OAURC OORP OORP OPC DACC OEEE OAOC MAIUIFFD SIFF SCCC SIMF SIXE SI E B 0 LFPDC LFEC LSM LFPPC LCOO LCOO LOC EFCC LMMM LFCC _ 0 U 7 T. 1 1 1 1 1 1 1 1 1 1 1 C 9 N. E.

                          . 0                0              0         0                 0             0              0           0            0           0                0 T

8 C. R E. N s t P. _ A e s . N I t u B. O. M C R.. P 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 O f o T E E 6 E 4 3 E E 3 E 9 E 9 E 7 E 6 9 E 7 E E 0 D S 0 0 0 0 9 9 9 8 6 5 4 0 0 m T u U. S C. 1 1 1 1 9 9 9 9 9 9 9 _ 2 d e R. P c E 7 8 9 0 1 2 3 4 5 6 7 u B 5 5 5 6 6 6 6 6 6 6 6 O d e U M. 1 1 1 1 1 1 1 1 1 1 1 T R N

 )

1n . -

                                                                                                                                                                 %@dEO3 w-                    _

k gE qfMga ye$Rgrg oc 3

                                                                                       %Af1W   4                                                         , { e*
  • gg a -

uuIah t t 8E M [ y NE# >aN$3 . t

                                                     ;                                      *,        1 i                                     [ g-              g CD9 ]                   t3M Tt            k o3           $'h(ta      4t    3
                                                                                                                                                                *C                                   .

S . O T C ._ E . X 0 1 D 1- 35 D N D P3N 1P D N D A D OR D S N D S N OO D POP D OP P l- R. E. D00 P 3P P 1P P S 21S P S GX P 61P P S 71P 00 - WD DAM S CC- - S GG WAN S 1 - S 1 - S 1 - Q0- - - S 00 E I F.. CMA I CFM O1DY 41DY LRCB 1 ROB LROB O1DY o1DDV lR r OE 41VV O1DDY O1DDY CVM 41BL O1BL 1RKI LROOB LROOB CCF IRCF LRCF

                                  - - - -                          M-              M-                mM-         - - - - -         MM-           -   MM-         - - -               - - - - -

G T. N M-VXN VHIX VH1X VH1X VH o1X VHXX VHA2X VHB1X VXX VHXX VHXK ET- OD ETNC ETNOC ETNOC EWC ETCE ETCW N E ECM ETDC ETDC ETDC IOEC IOEC IOEC IOSZA IORC IORZC IORZC IIC IOER IOEI I D D.. I ICR O B. O O. 453 3145 000 0000 0000 0000 00000 3145 3145 31225 3145 0000 31225 00000 31225 444 00000 000 0000 0000 3135 3135 L R. P. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - F . EEE EEEE EEEE EEEE 8070 EEEEE EEEE EEEEE EEEEE80320 EEE EEEE 80320 EEEE 301 B000 8000 E T. N E.

                           . 380 236 8070 4217 8070 4217           4217 80420 42400 8000 4214          42507             42507   -

254 4222 4222 N I V. E. 411 1434 1434 1434 14223 1462 14124 14124 411 1411 1411 L- . E . G . R . D D D E D E D E D E D E D E D E U ._ E N E N N N N N N N N S _

                            .            3 I

A B I I A B 1 I A B 1 I A D W I A I A P O B 1 I A O B P 1 I A N A I

                            .                 R        / R            /     R          / R                      R            R S /             R     S /                 R         O R G                      .

2 0 D A D A D A D F I D D A D A D I T D N I V S 1

                                                         -   S 1

B C S 1 B C S u S C S C 1 2 2 1 B C S 1 2 2 1 B

                                                                                                                                                             -           S C

A S L C V C B C t D _. S O R R M D R D R D- R aE R R S D R S D S CE - CE- R R U C R U _ U C S T H A H S T A H S T A H S T mS v4 H T H ESA H ESA U T OS T OS C H NR H N T EI T E L _ _ C N I D I D I D I iI I I BLD I BLD C I PC W OE W O I P ) 7 C . O R W I W I W I W DC W W CCI W CCI O R 1 N I

                             .   'r
                                 !       N E

O T ;T O EO T T N OG O f D P C T EN TN T o S TS 1S VE I A . V O E S S S S L S S S FL S FL EP S SR S S 5 R ._ G T U O R R U R U R U RAE U V I R E n u YA I R U EA I G O n RU u ED n R u E 1 t P _ N I CR S CR S CR S CROFT CRL D CU E OU E CU E CU A CUAR tRAFS CRRFS NO eUL E CU E IT tRK tUAG tRK tUA T uCEN vOE e e N _ T N OOEI OOEI OOEI OOE2R A A HRR HRR r HRR UE r HR0E U1P OOVE r H T KR r vOE2I HR0R 2E T OOE2I C1E H 0R AS IE r HRI BG T B HR h W . I T UE T 4E a1LT T N1T T TV G N1 u1L O O T D N1LT N1IT u1 S I E E IT E IT e IT IR u1CE EV e1ERT E FRT IL VU E V ( O N E VNAA VNAA N EIFB vNAA tIFB

v. N A K O eIFBT vNHN vNBKA VN KA NA iICBB EIBBB IV v. N K LEI4 eI4P VNK 6- D . I EIFB e.I C I D GR GR B T . Dm El GR NE GR NE GR NE GRE S GR NER E NI GR NE GRC NE EK NE R NE 4

5 U I NI IS IW TO E IW E IW M TO H TO H TOWOL E I WARV IW TO H TOAOH TO OH E IW .RE IWERE NC IE IW TO N TO K E IW I . ASE AP T AP T AP T APD A AP T AP7 T APB T AH AP I AP N S REZ RNV P 0N 7N RC I A I A le - I DCI TCSF TCaF TCSF TCAU I I I I TCDF I TC0UFIA0RO I TC0UF D s TC RNO IA TC T b . ON IATO IA zO IATO IAHRB IA1O IAVRO T IA a E . SRG N N N mE N N EE N TEU I N S E N N V EE SO/ N S N T T N . CPO IREE R C ENR IR EhR I mNR I R.e N Q I mER IRKEE EC R IR EK R RT CII IRE FRP IRES ERW I . PE RVOU RVOU R vOU R VETS R vHU RV TU RVCTU CC RVUM RVUR L . HUR TO EOPL EOPL WCMI WCMI E uPL E W tMI W vMR rGAE W E uTL EOPRL EO RL HEI WCOAI WCTAI TJG WCIS EOLU EOLI WCI E . IRO OEOA OEOA OeOA OeETH OeFA OETTA OESTA t I INO OEA OEAN S . WGT PRCF PRCF PRCF PRSST PROF PRSSF PR SF WIL PRFT N PRFI A E. S E E E E E E E S E E S R B M. A . W S T T T T T T S T S WY T M E N T E N. S L I I I I F I I L I L STT I I I N R T

                                  /CI SIA S

F E S S F E S S F E S S F 3T OO S NE S IOE S IOE F ES F ATS F ATS SVP F

                                                                                                                                                               /IU       S     EA ST     F S

SA EI O

                              . CGF FO U FO U FO U                                         FO1           F FOPU FOF U FOF U CAT FOUN FOUR F                E          CO           OT A OT A OT A OT0SC OTOA OT SA OT SA CRU OTAO OTAT N

V ._ LR C C C LC C ALC BLC GO CC CS F O FE FE FE FEPI FEO FEII FE1I F FE FE 5 E_ OFT OR m OR N OR N ORMAO ORTN OROAN OROAN OFF ORNF ORNF 1 OA UD v UDO UDO U FT U O U FO U FO OO UOO UOO 8 C I ._ S R SLE n SLEM SLEM SLP SL M SLP M SLP M S SLM SLM E 0 S_ SFE SIX n SIXM SIXM SIMGE SIFM SIMGM SIMGM SFF SIMF SIMF d E

                 -     A_

B_ DCP ECO LFFt OAI LFFC u LFFC OAIO IFPDD OAIO LFCC DAU/U LFPDC OACO 1FPDCOAU/O LCC LFCC 1FCC 4AU/O OCM OAOC 4AOC I 0 U 0 7 T. _ 1 1 1 1 1 1 1 1 1 1 1 C 9 N E. 0 0 0 0 0 0 0 0 0 0 0

       'I 8       C_

R_ N  : s E_ P_ A t e N s B . I t u O... R 2 2 2 2 2 2 2 2 2 2 2 M C P. 1 1 1 1 1 1 1 1 1 1 1 O f o T. E E 4 E 6 E 6 E 6 E 9 E 0 E 3 E 3 E 5 E 5 E 5 D m S T. 3 2 2 2 1 1 0 0 9 9 9 0 u U_ 9 9 9 9 9 9 9 9 8 8 8 S C. 0 2 d e R . P c u E B 8 6 9 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 O d e M. 1 1 1 1 1 1 1 1 1 1 1 T R J R .. T f

  *3"$5.

a. eW O g=a:r "$00 " Y. $( 1 8 :s: g

 *          ..[
                      .f                                                                        yAWgg
                                                                                     .)"                                                                                ,
                                                                                                                                                                          ~  jd%A .;

g

    'tP meIS       E              .j M           _ OE {f5hfas                       Q (p2e            f WEE p.              EE4k                                        ,

_ px. . Ilw S I C _ E _ _ O 4 D A A A A O1 O 1 M T I D P S 7P N DAO D NLA P S VN 20P 2S ASG COU S D SP D P AC P SP D SP D SP D BG P AC S P S BC P 10G S V0 D PV 0 DA S 01C NS7 0 - S - - 00 - 1 - S 1 - 1 - 1 - 00 - 00 - W0 E

  • O1DY LROB NVV RAC -LROBB O1D1Y LOP ODL 410L 1R3F O10L LR3F LR3F O10L OI0L LR3F IROBM 41D2V O11Dv LRBOM CPD CEO -
                             -   M-          - -         MC-             M-                                                   -   0 - - - MC-                    CM-               M G         "      VM1X          VXX       VHB1X
                                                                                   -                                                                       VWB VH5X VH5X VH5X VC5X
                                                                                                  -    0 -         0-VH12X           VHI2x VX3 N

I E ETDC EXWIPI IOEC ETWCC ERW ETLE III IOSEC ETLE ETLW E LW ET0CW IOPR IOPR IOPI !MFI 1OEEI ETC I O r. 0EIW ICE ECD D O

  • O 3145 454 31225 534 3135 3135 3135 3135 31225 31225 364 L

F

  • 0000 000 00000 000 0000 0000 0000 0000 00000 00000 EEEE EEE EEEEE EEE EEEE EEEE EEEE EEEE 2EEEE EEEEE EEE 000 8050 100 80430 320 8060 8060 8060 B060 80230 80320 125 E " 4207 615 42427 124 4212 4212 4212 4212 42025 42205 260 N

J

                    "      1434         961        14214            132          1411          1411           1411         1411          14215            14125             383 4            _

E _ G _ R _ _ D E D E

                                                           )        D E

D E D E D E D E D E

                                                                                                                                                 )        D E

1 U _ N N 5, N N N N N N 3 N 5 . S I A B 1 I A W3B O81 I AN I A N A I N A I I A I A 5 0 I A 3 8 R / R L(/ RE R O R C R R R 1 R 1 G D A D F A DP O D I T D I T D D D D N I S C 1 B

                                     -             S D -

C E 1 S-B COD C S A S L C A S L C S C S C S C D R D S

                                     -  R R     T D - RTE R DU R DU R D R                 G           NC              NC          N R D N

R E R E S n U H T A U S C H E A HLG H AR H AR H T V S TIU T MI T MI T M A H A T M H S T 4 H T S O u L I D C I I D IAL I EC I EC I E I E I l I L t

    )

7 C W I O WD I WFP W DE W RDE W D R WD WC W C A 1 N I _ T N G G O T O T T N f _ E N N N E o* A _ _ S VsE EVP s S nO S NR S I I NR S N S N S L S S S L VS EM 6 R _ _ U R GA OO n R uT n OU u PD n OU u PD n O u P n O u P r u A I 3 n u I A3 G P 1 P CR S N O CU E I IFT

u. R O S uU E c

AR sRU U G cRU U G tRU eU sRU U sRF U 2 tR tU F2 NN t e N OO H R TO A S vOE HR R I A1E AOEN 2N HRI AOEN HRI vOE HR AOE AO2H0 V0 vO 2v T H 0 II AS e P E IEE T U E i-1I 1 UG a UG T U sHR U 1 1 S T 0 2S ID h S W _- N1 _ E T TSV MT IUL N1L T E I T n A eVR m1LG IU m1LG IU N1L E I n. r.1 IL n.1. R R e N N1 E RR N TR IAN

 /.  (    O            _

VNEA NAA VNA A EITB ICV EIF B vOT MMS vNAL tIFP uNAL VNA sIFP EIF vNA

r. I F yNK mIB &

VN EI K B6 IBT NOE Q 6-B 4 D I U GR NE IWRE TOOH NE GRE K NER C IWA TOWiH E G N IS TE GR S GR S GR NE IW R E NE IW R E NE IW GR NE IW GR NE IWR 1 GR

3. NE IW R1 B. DU EPR T

_ TO P ITO N TO K TO K TOON2 TONO 2 LTO 5 H _ AP T E OH MC APDDT RP ASIU AP A I AP I A AP N A I AP N AP A NP E1 APE PN 1 LU e S _ I TCRF DM I TCAOF TA I I I I TCOU IOE F R l b a E _ IAUO EON _ N L LCO IN IAH O O IC N

  • TCGR TCGR TCGT TCGT TCUO . IA IANTIS IANT IAN N N IS N IT IAN N IT IAR N O1 A

N O RA. 2 SCL EU IRIE L IEB I nSS nSS T N _ _ EAR IOT I mNTTE R R IRS ESP IRS ESP eSW I eSW I n&T2 e 1 IRT&2 E 1 CAI RFA I L RVFU FTC EO L E R vESU E uMLL S4" NIE RVEM RVEM R EOCU EOCU E vER R vCI E vER R vCI vTS E W vRLa RVST EOLRs HE RF WCLI SEJ W tGII EIN WCOS WCOS W uO W tO tAIv WCIAv TTL E OENA PRPF CUN OoEAA RDI PRSFF PAI OER OER OeRN OeRN OaTAO OEATO INN S OFL PRPT PRPT N N PRPI PRPI PRSFM PRFSM WIP A "

                   "       E R
                                  . H TR         E E

E E PM E PM E PR E PR E E S S J J SER. R B ^ T T IHT T G T I UN T UN I T UE T UE T N E I T N I WWT I S WRT I 4 R OI OI I ON I ON I I SOS R ' S F IE DS S PI S V F B0S E 2 0 A S RA S RA S H F GT F GT F GA F CA F T0S F 0TS S D RI S RI S O T S OT /PI O "

                  '        FO U MFA OT1A         ROR OT01A FO10U            VLC FO N FO N FO R AS  OTCO      OTCO         OTCT    OTCT   OTS2R FO R FO 0W FO0 w CE OT1SR              CH1 F
                  "        FEA C

FE OREN ORF ORNEN RN C FEPR C SCI NID FEG OROF IC FEG OROF IC OROF FEG IS OROF FEG ORAEF IS FEIR OREAr L I OFE FERI LI F A T 3

  • U O UO U KO /AT ULO ULO ULO ULO UFKO UKFO O 1 8 ' SL1M SL SLPAM AHS SL SL SL SL SL A SLA S 3 E 0
  • SISM SIF SIMEM CCW 4 ADO OAC AAURO OER OALC 4ALC OALC OALC 4A/RC OAR /C SISF SISF SISF SISF SIGEF SIECr SFS 3 E
  • 1FEC LFC IFPBC LMI LFPC I FPC LFPC LFPC IFDBC LFBDC 4CD I CE 1 0 0

U 7 1 1 1 1 1 1 1 1 1 1 1 C 9 8

                  "C       0            0          0                0           0              0              0            0             0               0                  0 T   : '

N s A t e s " N t I M u C " _ - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 o f E E E E E E O 1 9 7 3 5 5 E 5 E 5 E 9 E 9 E 4 D e s 9 7 T. 7 6 6 6 6 4 4 4 0 u 8 8 8 8 8 8 8 8 8 8 8 S 'C 0 2 d e c " P u " 7 9 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 8 O d e *" 1 1 1 1 1 1 1 1 1 1 1 T R

 )

L  %*h .o9. . ww g g; 5s2,,e o o N.MDb t

                                                                                            .                                                      g           -

l (gCw

J mm * . C C* h (Cye y U ggg UYQ eg (g'*N n "5 S3 D [ h4g "y .* O$. . S I

                      -       C O__

C - C U X E S I D SM A 1 A OO t R - D4 4 OS D RA D SN AA D S D SS0 D S D SP D SP AA t E - O0R0 DM5 P DS P DP DDS P 1 - P 67G P 21 - P rC P FC D35G SNTN SAD S S SN- S 04 S 00 - S O04 SS- - SS - W22U E I - F- CAMA Nti O O1GV h1GY NAP RME O1DV LROE LROON O1DDV LROOE O1DDV OIML OIML LRPF LRPF CVVP C11L I - RMXM RlM LRDE IRDB - - - - - - - - CC-MM- - - MM-G T- - - - - 3 - - - - - - - - - - - - M- - N- VNKN VX2 VHXX VHXX VCX VH1X VHABX VHB1K VCxX VCXX VAAB N E - D-EHWE IRIR ECN ICR ETOD ETOC EEC ETDW IOZA IOZC IRC ETNNW IOEI ETWOW IORRI EUNE IOSZI EUNWISRR EWWh ISRI IIII I D I - O .- B-O O- 6142 553 3145 3145 526 3145 J000 00000 31225 31225 00000 3143 0000 3145 0000 4334 0000 L R - P.-- 0000 000 0000 0000 000 - F T-EEEE EEE EEEE EEEE EEE 4510 531 8000 B000 562 EEEE EEEEE EEEEE EEEE EEEE EEEE 8040 80330 90420 8000 8000 3660 E N - E-4400 162 4240 a 4287 116 4206 42555 42406 4872 4 8,7 2 2774 N I V-E- 4921 842 1443 1424 818 1452 14115 14222 1571 1571 4882 L- - E - G - R -

                      -    T                          D           D                         D            D               D              D E

D E U - N

                      -    E E

N E N E N E N E N N N S - V

                      -    E                    N A I           I A

B I I A I A OO PP I A W O I A N AR I E R R R R SS R L R O G -

                      -    G        S           P     D           D
                                                                            /

A D D D F D I D N I

                      - N
                      -    I L

I O

                                                  -   S           S 1
                                                                              -             S C

S C 21 22 S D S C T A S C D A D T A F S R MRC C R T-B O S s R R SS 12 CC C E R T RE RR U C L U RR IUO S R E G U - I T L U L HI A C T N H RA T AS u H T H EE T H ES T VD HO TH R I M H U C G U L - I N N C A I U I TD t e I I BB I II I C I C L ) C - I G O F I WR W SI v W W CC W DC W1 E R W1 O P 7 1 N I P 0 S m 7 f 2

                                                                                                                ;E                O T                G T

4 2 f - 4 T r. E CC N E v V S S VNN o A - 1 S W t S T O O T E M S S TT FF S L SN I R SN EEE 7 R - D

                      -    I R

I G O U GE R n u G G P R U R U YE3 R U RA I RI U J r D nI u GOO PP 1 P - M N I N T CRDT CU A uRDS NNN CR U E CU CRAR2 CROF CUL CU CD CE G sD E N OR t e e N - O T E H A T 3 2 OOYR: HBt kOYIHBR ATS IOI TI OO H OOEEV OOE2 HR 0 HR0 OR E N I AP E I TMTE A N KW 0 T DP T DE IAD T T CS T U1 TV G V ISSI h S W - NA WE C I T I V N1NO N1NT TUR E A E AT ITA E N1 N1ETN E FR N1L E IR NO G EC U mCO TLLA IIIR ( O - OL R N O I VNTO VNTA NCO EISB VN VNB VNAK VE ER P L vE NAAT 5- D - D SEC RI M EIST IAB EI EICBE EIFB tR IFFS B T - MNTE IRTR GR S GR NE E NE T GR U NE GR C NE 9, GRE NER G N S R N G D E U O_ 4 - A I S IW V IW E P IW IW .E1 IWAR I E I N 5 I - RGMP E TO L TO H T TO TOA 2 TOWO T N T K I I - DNSM SC AP I A AP T I U AP AP7B1 APD A sI A SNI A e S INU DPU V D O RN PA PA P TC0007 , TCAU

                      -                                                                     I            I               I              I l                      -    2TAS 5 AR      EUA TC                       TC F ES                   TC                                          T MR T MT D b                                         NOC          IA      B   IA        O NAE           IA       S  IAV0A            IACRS                  UT              U a    E               -
                      -    )ILTE IR                   N       I   N               IDC       N SE N                V1     N          E I

NRPS NRPT S I T N I RO T ACE USLA R R I mEU eRQ I R.Re EE A A IREV R RLF ERL IRK ECK1 2 IRTEV EN L IE WEP IE WEW R S C B

                      -    DIEU DCU R                    vUS R         vUU DAR                       A RV C              RVETA ROHM                     ROHR L               -

SNEC VT IL E vL TIE E uLL W UE SNT WCI R EOI V U.V EOP WCOTV WCGA s EOMRV EPTU W S W EPTI HAAE T35N E -

                      -    CILA COA SGI          W OrAH t

O e.AA I I CAN OEAB OETSO OEETB OCF OCFN I22I S - R SKO RLF PRFT PRFF RMI PRFI U PRS M PRSSI U PAOT PAOI N W11L A E - w- FEA DNT HNTO E E H R Q

EJ Q E S S E B A- OETS II T T T E E TS E I W T N T SSI N E T

S E T M N T E R E W C N- C L WT I F I WO I EC I LL C I TI TN S R R I I

                       -   GCTI              A        S EO S EE                         P S NR           S     IIT       S        OR    S RA            S       RI     /      A NUSA SU                    F S         F SS S                    F     OI     F AAS '               BTI      F AT F AAF SEEH O            m.

e

                       -   ISWF NTL FOUF FOUU NFE FOPC FOFFW N      F      RCA OTAC OTAA ROH OTME OT                                                  R F' O 1 C F OT0SE O SC O ST CLLS TN              TR     CVVC F            v. -    IRIR              AC            CC            CC             T         OR           ABI                LR              C                S      AAI e-s i          C-AO O F oAOA            OA I

nTFT OFN ORNO ORNN ORF OR FE UOT SLMM FE UOO FE UO FEC LDO F FEI1 OPO0F U O FEPI ORMAF OTTF OTTF U FO FEO I O O FEO I O FVVD KKT

       ;     6                 R     R S H            S1M                   SL              SLE          SLPP            SLP            SS              SS             SCCS t     0    I S ..

uEFE SFC SIME SIMM dIF SIXF SIMMP SIMGF SFrF EFFF SEEW d E

               -  A-B-         vPCP vOCO LCM  OCE      4AOU  IFCD OAOO       OAC LFCC LFC IFFC DAIC      OAUUC       OAUIC LFPPC LFPDC LOCC               OFCC         EFCC IOCC      OHHR LCCI i

n O C 7 T- 1 1 1 1 1 1 1 1 1 1 1 C 9 N - E 0 0 0 0, 0 0 0 0 0 0 0 8 C..- T N  : s R-E- P-A t e N I t s B O .- u R - 2 2 2 2 2 2 2 2 2 2 2 M C P-1 1 1 1 1 1 1 1 1 1 1 O f o E-T- E 3 E 4 E 1 E 8 E 5 E 5 E 0 E 7 E 3 E 3 E 9 D m S-T - 4 3 2 1 1 1 0 9 9 9 7 0 u Tt - 8 8 8 8 8 8 8 7 7 7 7 S C-0 2 d e R-P c E - u B - 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 9 0 0 U I d e U-M- 1 1 1 1 1 1 1 1 1 1 2

      '      R    N-c p3wsg   -

e s O 3 8' R :r - , hg l g gCD oIgs- .

                                 ,&$                                             AM LN

(

                                                                                                                     --"   ==: ;

54B. Surge Line Flooding Effect on Low Pxr and Shutdown Risk Assessrnent j i

 <x

( ) I l Table 54B-7 (Sheet 1 of 12) I 4 I BASIC EVENT IMPORTANCE - BASELINE SHUTDOWN PRA I INCLUDING SURGE-LINE FLOODING EFFECTS SYSTEM UNAVAILABILITY (Q) = 8.970E-08 NUMDER OF BASIC EVENT 4 = 316 NUMBER OF CUTSETS = 8252 NUMBER DECREASE IMPORTANCE OF IN SYSTEM BASIC EVENT BASIC EVENT (% DECREASE) CUTSETS UNAVAILABILITY PROBABILITY 1 IEV-CCWD 69.66 2442 6.2483E-08 4.2300E-04 2 IWX-MV-G01 32.89 266 2.9499E-08 5.5000E-05 3 ADX- EV-SA 17.93 290 1.6087E-08 3.0000E-05 4 INX-EV4-SA 15.53 210 1.3931E-08 2.6000E-05 5 IEV-RNGD 13.40 1207 1.2020E-08 8.1500E-05 5 IWX-FL-GP 7.41 168 6.6469E-09 1.2000E-05 7 REX-FL-CP 7.17 151 6.4316E-09 1.2000E-05 8 IEV-LOSPD 5.95 3158 5.3327E-09 1.4800E-03 9 OTH-R1 4.52 2938 4.0504E-09 4.2000E-01 10 IEV-RCSOD 3.66 564 3.2816E-09 4.4400E-06 11 IWX-CV-AO 3.49 395 3.1292E-09 1.5000E-04 12 IEV-LOCA24ND 3.06 121 2.7492E-09 1.6800E-05 33 CCX-SFTW 3.04 26 2.7251E-09 1.2000E-06 14 RHN-MAN 05C 2.89 27 2.5955E-09 1.5000E-01 15 RHN-MAN 04 2.29 134 2.0497E-09 5.5000E-02 16 CCX-ORY-SPX 2.17 112 1.9484E-09 3.6300E-06 17 IWN-MAN 00C 2,09 23 3.8777E-09 5.0000E-02 18 IEV-LOCA24D 1.86 546 1.6687E-09 1.1300E-05 19 CCX-XMTRX 1.57 97 1.4050E-09 2.6300E-06 20 IEV-CCWND 1.54 69 1.3841E-09 3.2100E-03

 /N         21 RHN-MA:404-SUCC                     1.52             468     1.3678E-09      9.4500E-01                       !

I ) 22 SUC-RIS 1.43 220 1.2824E-09 5.8000E 01

\__/           23 IWX-XMTR                            1.20             102     1.0808E-09      2.0100E-04 24 REN-MAN 04                          1.20               90    1.0758E-09      1.0000E-02 25 CCX-EP-SAM                          1.14             229     1.0215E-09      8.6200E-06 26 REC-MANDASC                         1.01               46    9.0394E-10      5.0600E-01 27 LPM-MAN 05                           .96               37    8.6177E-10      6.8300E-04 28 IWN-MANDO                            .88             189     7.8572E-10      1.1500E-03 29 IWB-PLUG                             .73             443     6.5444E-10      2.4000E-04 30 CCX-BY-PN                            .72             363     6.5015E-10      4.7000E-05 31 REC-MANDAS                           .72               31    6.4723E-10      1.1600E-02 32 MDAS                                 .64               75    5.7593E-10      1.0000E-02 33 IRWMOD055                            .51             498     4.5342E-10      3.2200E-03 34 RN23 MOD 5S                          .50             966     4.4863E-10      2.2100E-03 35 ED1 MOD 03                           .48             125     4.3214E-10      2.2020E-03 36 IEV-RNSND                             .46              46    4.1438E-10      9.6100E-04 37 CCX-ORY-SP                           .46               18    4.1251E-10      2.7700E-04 38 ZO1 MOD 01                            .39            625     3.5041E-10      2.0200E-02 39 CCX-IV-XR                            .37             277     3.3078E-10      2.4000E-05 40 ZOX-PD-ES                             .36            113     3.1940E-10      2.0000E-03 41 CCX-XMTR195                           .33              16    2.9956E-10      2.0100E-04 42 PL5 MOD 11                           .33               77    2.9731E-10      2.0900E-03 43 REN-MAN 05                            .33            833     2.9661E-10      1.6000E-03 44 IEV-LOSPND                            .25              40    2.2376E-10      8.1300E-03 45 202 MOD 01                            .23            232     2.1058E-10      2.0200E-02 46 ECICB100VO                           .23            483     2.1052E-10      1.2300E-02 47 RNX-PM-FS                            .23              59    2.0572E-10      7.7000E-04 48 ECX-CB-GO                            .21              92    1.9126E-10      1.2000E-03 49    CCX+ INPUT-LOGIC                  .19              29    1.6716E-10      1.0300E-04 50 PL50301ASA                           .18              52    1.6440E-10      1.1600E-03 51 PL503 01B.c a.                       .18              52    1.6440E-10      1.1600E-03 52 SUC-R2S                              .18               9    1.6422E-10      7.6000E-01 53 RNX-KV-GO                            .18              52    1.6282E-10      6.1000E-04 54 SWBMOD02                             .17             174    1.5621E-10      2.4400E-02 55 RNBMOD07S                            .17             184    1.5488E-10      1.5300E-02 56 RNAMOD068                            .17             134    1.5199E-10      1.5300E-02 57 IEV-!OCAPRND                         .16              59    1.4228E-10      1.5100E-05 7

4

      )

Rethion: 11 W~ W85tingh00S8 - w March 1998 54B-43 'W"*54bwpr: b

H

54B. Surge Line Floodi:g Effect on Lew P wer cnd Sh:tdown Risk Assessment h"= I l Table 54B-7 (Sheet 2 of 12)

O l I BASIC EVENT IMPORTANCE - BASELINE SHUTDOWN PRA INCLUDING SURGE-LINE FLOODING EFFECTS  ! 1 SYSTEM UNAVAILABILITY (Q) = 8.970E-08 NUMBER OF BASIC EVENTS = 316 NUMBER OF CUTSETS = 8252 NUMBER DECREASE IMPORTANCE OF IN SYSTEM EASIC EVENT BASIC EVENT (% DECREASE) CUTSETS UNAVAILABILITY FROBABILITY 58 CCX-PMAMOD1X .15 195 1.3392E-10 4.6300E-05 59 EC2CB200VO .14 186 1.2726E-10 1.2300E-02 60 ECX-CB-GC .13 74 1.1597E-10 7.3000E-04 i 61 PMAMOD11 .09 296 8.4017E-11 2.0900E-03 1 1 62 ED1 MOD 01 .08 27 7.0843E-11 5.0400E-04 63 ZOX-DG-DR .08 59 6.9537E-11 4.4000E-04  ! 64 CCBMOD015 .07 115 6.5398E-11 1.0400E-02  ! 65 SWAMOD07 .07 68 6.0739E-11 7.1200E-03 66 ADN-MAN 01 .07 58 6.0093E-11 4.9300E-04 67 OTH-R2 .07 29 5.9239E-11 2.4000E-01 68 IDDBSDDITM .07 411 5.8673E-11 3.0000E-04 69 IDDBSDSITM .07 411 5.8673E-11 3.0000E-04 70 IDDBSDK1TM .06 404 5.8169E-11 3.0000E-04 71 ED1 MOD 11 .06 59 5.0500E-11 3.1700E-04 72 ED1 MOD 113 .06 59 5.0500E-11 3.1700E-04 73 CCAMOD02 .05 66 4.6660E-11 7.1000E-03 74 PMA0301ASA .05 218 4.5109E-11 1.1600E-03 75 PMA0301BSA .05 218 4.5109E-11 1.1600E-03 76 EDiMOD13 .05 22 4.4450E-11 3.1700E-04 77 ZOX-DG-DS .05 54 4.4157E-11 2.8000E-04 78 IRWMOD06S .05 495 4.2876E-11 3.2200E-03 79 ED1 MOD 07 .05 22 4.2797E-11 3.0500E-04 80 IDBBSDDITM .05 181 4.1926E-li 3.0000E-04 81 IDBBSDK1TM .05 181 4.1926E-11 3.0000E-04 82 IDBBSDSITM .05 181 4.1926E-11 3.0000E-04 l 83 PXX-AV-LA .05 57 4.1919E-11 G.1000E-05 l 84 CCX-PMA030X .04 130 3.9816E-11 1. 3 8 f'O f -05 I 85 REA-PLUG .04 92 3.9394E-11 2.4000E-04

86 REB-PLUG .04 92 3.9394E-11 2.4000E-04 l 87 CCX-PL4 MOD 1 .04 25 3.7158E-11 1.419]E-04 88 IWA-PLUG .04 182 3.5711E-11 2.4000E-04 89 EC1REDG2GA .04 78 3.4214E-11 4.3600E-03 l 90 EC1REDG1GA .04 65 3.3986E-11 4.3600E-03 l 91 RNDEP0235A .04 322 3.2416E-11 1.7100E-04 92 CCX-FMAMOD1-SW .04 128 3.1888E-11 1.1000E-05 93 IDAMOD05 .03 354 3.0503E-11 5.1600E-04 l 94 ED2 MOD 03 .03 106 2.8237E-11 2.7000E-03 l 95 CCX-FMDMODI .03 298 2.6501E-11 1.4100E-04 96 CCX-PL403 .03 22 2.5485E-11 9.6900E-05 97 EC5EPMGBISA .03 14 2.3856E-11 1.7100E-04 98 IWACV122AO .03 178 2.2481E-11 8.7600E-03 99 IWACV123AO .03 178 2.2481E-11 8.7600E-03 100 IWACV124AO .03 178 2.2481E-11 8.7600E-03 101 IWACV125AO .03 178 2.2481E-11 8.7600E-03 102 IW10n170SPX .02 34 2.1416E-11 9.4600E-05 103 IW20R160SPX .02 34 2.1416E-11 9.4600E-05 104 ZOX-PD-ER .02 36 2.0190E-11 1.3000E-04 105 CCX-PL1 MOD 1 .02 14 1.9655E-11 1.4100E-04 106 CCX-PL7 MOD 1 .02 14 1.9655E-11 1.4100E-04 107 IDAMOD04 .02 340 1.8935E-11 3.1700E-04 108 EC1BS001TM .02 442 1.8675E-11 2.7000E-03 109 EC1BS012TM .02 442 1.8675E-11 2.7000E-03 110 EC1BS121TM .02 442 1.8675E-11 2.7000E-03 111 ED3 MOD 07 .02 34 1.8614E-11 3.0500E-04 112 ZO1 MOD 04 .02 129 1.8555E-11 1.2500E-03 113 PMAMOD11X .02 369 1.7906E-11 6.5300E-04 114 CCX-PKD030 .02 211 1.7752E-11 9.6900E-05 1.6898E-11 3.0000E-04 e

115 IDABSDSITM .02 261 a h 1998 . 6 W85tingh00S8 oNra\revll\att54b wpf:ltr022598 54B-44 _ _ _ _ . -.-~ .

54B. Surge Line Flooding Effect on Low P;wer and Shutdowa Risk Assessinent E g i !z  : i Table 54B-7 (Sheet 3 of 12) 1 l BASIC EVENT IMPORTANCE - BASELINE SHUTDOWN PRA INCLUDING SURGE LINE FLOODING EFFECTS SYSTEM UNAVAILABILITY (Q) = 8.970E-08 NUMBER OF BASIC EVENTS = 316 NiJMBER OF CUTSETS = 8252 NUMBER DECREASE IMPORTANCE OF IN SYSTEM BASIC EVENT BASIC EVENT (% DECREASE) CUTSETS UNAVAILABILITY PROBABILITY 116 ED3 MOD 03 .02 45 1.6662E-11 2.2020E-03 117 IW1TL170UFX .02 33 1.5467E-11 6.8400E-05 118 IW2TL160UFX .02 33 1.5467E-11 6.8400E-05 119 CCX-PL103 .02 12 1.3479E-11 9.6900E-05 120 CCX-PL703 .02 12 1.3479E-11 9.6900E-05 121 RNX-CV-GO .01 20 1.3367E-11 5.1000E-05 122 PL4MCD11 .01 68 1.2513E-11 2.0900E-03 123 ZO2M0004 .01 70 1.2037E-11 1.2500E-03 124 PLIMoD11 .01 57 1.1547E-11 2.0900E-03 125 PL7 MOD 11 .01 57 1.1547E-11 2.0900E-03 126 PL5XS00ASA .01 12 1,1113E-11 8.0000E-05 127 SWAMOD09P .01 40 9.6475E-12 1.8500E-03 128 SWDMOD09P .01 45 9.6353E-12 1.8500E-03 129 20X-BL-Es .01 20 9.0387E-12 6.0000E-05 130 CCX-FMDMoD4 .01 154 8.7220E-12 4.9800E-05 131 CCX-BY-PN1 .01 20 8.5918E-12 5.7000E-05 132 CCX-EF-SAMX .01 87 8.4646E-12 2.9400E-06 133 IRWMOD01 .01 53 8.2695E-12 1.2000E-02 134 2RWMOD03 .01 53 8.2695E-12 1.2000E-02 135 IRAEP121ASAX .01 63 7.9408E-12 5.8300E-05 tN 136 CCX-FMAMOD2X .01 22 7.8346E-12 8.5800E-05 t i 137 201DG001TM .01 74 7.4256E-12 4.6000E-02 \ ,/ 138 CCX-PMAMOD1 .01 87 7.3481E-12 1.4100E-04 139 ALL-IND-FAIL .01 31 7.1614E-12 1.0000E-06 140 PL40301ASA .01 44 6.3370E-12 1.1600E-03 141 PL40301BSA .01 39 6.1235E-12 1.1600E-03 142 PL10301ASA .01 38 5.9783E-12 1.1600E-03 143 PL70301ASA .01 38 5.9783E-12 1.1600E-03 144 PL10301BSA .01 36 5.8931E-12 1.1600E-03 145 PL70301BSA .01 36 5.8931E-12 1.1600E-03 146 AD2 MOD 01 .01 21 5.0246E-12 5.5400E-02 147 AD2 mod 02 .01 21 5.0246E-12 5.5400E-02 148 AD3 mod 03 .01 21 5.0246E-12 5.5400E-02 149 AD3 MOD 04 .01 21 5.0246E-12 5.5400E-02 150 CCX-PMA030 .00 59 4.4547E-12 9.6900E-05 151 PMA0301ASAX .00 176 4.3607E-12 1.6500E-04 152 IDCBSDDITH .00 183 4.3540E-12 3.0000E-04 153 IDCBSDSITM .00 183 4.3540E-12 3.0000E-04 154 PMA0301BSAX .00 157 4.2589E-12 1.6500E-04 155 RNX- PM- ER .00 17 4.1374E-12 1.6000E-05 156 CCX-VS-FA .00 5 4.0105E-12 3.8400E-05 157 REACV119GO .00 36 3.9688E-12 1.7500E-03 158 REBCV119GO .00 36 3.9688E-12 1.7500E-03 159 PMDMOD11 .00 235 3.9228E 12 2.0900E-03 160 IDCPSDK1TH .00 176 3.8508E-12 3.0000E-04 161 CCX-FM-ER .00 16 3.5961E-12 1.4000E-05 162 SWX-FM-ER .00 16 3.5961E-12 1.4000E-05 163 RHN-MANO3 .00 49 3.4266E-12 2.2600E-03 164 IWBCV122Ao .00 184 3.3498E-12 8.7600E-03 165 IWBCV123AO .00 184 3.3498E-12 8.7600E-03 166 IWBCV124Ao .00 184 3.3498E-12 8.7600E-03 167 IWBCV125A0 .00 184 3.3498E-12 8.7600E-03 168 CCX-IV-XR1 .00 11 3.3263E-12 2.4000E-05 169 IRWMOD10 .00 36 3.3142E-12 1.4600E-03 1TO IRWMOD12 .00 36 3.3142E-12 1.4600E-03 171 EC2BS002TM .00 208 3.29?7E-12 2.7000E-03 172 EC2BS022TM .00 208 3.2937E-12 2.7000E-03 1

    ^

jrjyggt Itevision: 11 [ W85tingh0088 trix.h March 1998 54B-45 ovasrevi \ arts 4b.wpr.ib

54B. Surg) Line Flooding Effect c3 Low P:wer and Shutdown Risk Assessmert l Table 54B.7 (Sheet 4 of 12) e I l BASIC EVENT IMPORTANCE - BASELINE SIIUTDOWN FRA I INCLUDING SURGE LINE FLOODING EFFECTS SYSTEM UNAVAILABILITY (Q) = 8.970E-08 NUMBER OF BASIC EVENTS = 316 NUMBER OF CUTSETS = 8252 NUMBER DECREASE IMPORTANCE OF IN SYSTEM BASIC EVENT BASIC EVENT (% DECREASE) CUTSETS UNAVAILABILITY PROBABILITY 173 EC2BS221TM .00 208 3.2937E-12 2.7000E-03 l'4 ED2 MOD 11 .00 39 3.1340E-12 3.1700E-04 175 CCX-PL4 MOD 1-SW .00 14 2.7743E-12 1.1000E-05 176 ED3 mod 01 .00 18 2.6048E-12 5.0400E-04 177 PMAM0012X .00 123 2.5440E-12 6.5300E-04 178 CCX-INPUT-LOGICX 00 12 2.3078E-12 2.5900E-05 179 PMAXS00ASAX .00 158 2.3072E-12 8.0000E-05 180 CCX-EP-SA .00 14 2.1763E-12 8.6200E-06 181 PL4 MOD 12 .00 30 2.1360E-12 2.0900E-03 182 EC1M0001 .00 31 2.0786E-12 2.0200E-04 183 PMAXS00ASA .00 28 1.9751E-12 8.0000E-05 184 IWCRS120BFA .00 23 1.8899E-12 8.7600E-04 185 IWDRS120AFA .00 23 1.8899E-12 8.7600E-04 186 IDDTD019RO .00 69 1.8874E-12 1.2000E-05 187 1DDTD020RQ .00 69 1.8874E-12 1.2000E-05 188 PMD0301ASA .00 157 1.8222E-12 1.1600E-03 l 189 CCX-FMDMOD1-SW .00 67 1.7268E-12 1.1000E-05 l 190 CCX-PMDMOD4-SW .00 67 1.7268E-12 1.1000E-05 l 191 PMD0301BSA .00 138 1.6428E-12 1.1600E-03 l 192 IWNTK001AF .00 5 1.6314E-12 2.4000E-06 I 193 IDBFD013RQ .00 20 1.6126E-12 1.2000E-05 194 IDBFD014RQ .00 20 1.6126E-12 1.2000E-05 l .00 1.4669E-12 1.1000E-05 l 195 CC.4-PL1 MODI-SW 8 ! 196 CCX-PL7 MOD 1-SW .00 8 1.4669E-12 1.1000E-05 197 EC2 MOD 01 .00 24 1.4182E-12 2.0200E-04 198 PMDMOD12 .00 97 1.3879E-12 2.0900E-03 199 CCX-LS-FA .00 32 1.3245E-12 5.3700E-06 200 ZON-MAN 01 .00 15 1.3117E-12 2.6700E-03 201 CCX-PMAMOD4 .00 41 1.2481E-12 4.9800E-05 202 RNAEPRNPSA .00 20 1.2281E-12 1.7100E-04 203 RNBEPRNPSA .00 20 1.2281E-12 1.7100E-04 204 IDAMoD08 .00 96 1.2181E-12 3.1700E-04 205 SWNTP001RI .00 10 1.1823E-12 5.2300E-03 l 206 PRAAV108LA .00 11 1.1753E-12 1.0900E-03 l 207 PRBAV108LA .00 11 1.1753E-12 1.0900E-03 208 SW7EPSBPASA .00 17 1.1633E-12 1.7100E-04 209 SWB-MAN 02 .00 8 1.1157E-12 1.6000E-03 210 PLIMOD12 .00 17 1.1082E-12 2.0900E-03 211 PL7M0012 .00 17 1.1082E-12 2.0900E-03 212 CCB-MAN 01 .00 13 1.0721E-12 1.0700E-03 213 CCX-IN-LOGIC-SW .00 8 9.7844E-13 1.1000E-05 214 CCX-FMAMOD2-SW .00 8 9.7844E-13 1.1000E-05 215 IRWMOD09 .00 18 8.5243E-13 1.4600E-03 216 IRWMOD11 .00 18 8.5243E-13 1.4600E-03 217 CC1EPSBPASA .00 15 8.3000E-13 1.7100E-04 218 CCNTF101RI .00 10 8.1191E-13 5.2300E-03 219 PMAMOD21X .00 14 6.0658E-13 1.1600E-03 220 ZO1 MOD 03 .00 17 7.7405E-13 1.0000E-04 221 PMDMOD41 .00 74 7.3741E-13 6.3500E-04 222 DAS .00 4 7,3730E-13 1.0000E-02 223 PL40302ASA .00 13 7.1831E-13 1.1600E-03 224 IDDBSDD1LF .00 37 7.0766E-13 4.8000E-06 225 IDDBSDK1LP .00 37 7.0766E-13 4.8000E-06 226 IDDBSDSILP .00 37 7.0766E-13 4.8000E-06 227 SW7EPSBPBSA .00 12 7.0599E-13 1.7100E-04 228 CCIEPSBPBSA .00 12 7.0577E-13 1.7100E-04 229 IRAEP121BSAX .00 66 6.9378E-13 5.8300E-05 230 IDBBSDD1LF .00 15 6.3971E-13 4.8000E-06 e

         ="

o:WrevIl\att54b wpf:1b 022598 54B-46 m_ w-

542. Surge Line Flooding Effect on Low-P;wer and Shutdows Risk Assessment x ", l l Table 54B-7 (Sheet 5 of 12) l l BASIC EVENT IMPORTANCE - BASELINE SHUTDOWN PRA l INCLUDING SURGE-LINE FLOODING EFFECTS SYSTEM UNAVAILABILITY (Q) = 8.970E-08 NUMBER CF BASIC EVENTS = 316 NUMBER OF CUTSETS e 8252 NUMBER DECREASE IMPORTANCE OF IN SYSTEM BASIC EVENT BASIC EVENT MDECREASE) CUTSETS UNAVAILABILITY PROBABILITY 231 IDBPSDKILF .00 15 6.3971E-13 4.8000E-06 232 IDEBSDS1LF .00 15 6.3971E-13 4.8000E-06 233 SW7EPCTFASA .00 10 6.2872E-13 1.7100E-04 234 SW7EPCTFBSA .00 10 6.2872E-13 1.7100E-04 235 CCX-AV-LA .00 5 6.2306E-13 6.1000E-05 236 ED1BSDS1LF .00 7 6.1418E-13 4.8000E-06 237 CCX-PMDEHO .00 35 5.9175E-13 4.0300E-06 238 ADX-MV-Go .00 4 5.8975E-13 1.1000E-03 239 PMD0302ASA .00 51 5.4645E-13 1.1600E-03 240 FMA0302ASAX .00 59 5.4567E-13 1.6500E-04 241 PRAAV108TM .00 9 5.3768E-13 5.0000E-04 242 PABAV108TM .00 9 5.3768E-13 5.0000E-04 2(3 IDDMOD33 .00 51 5.3380E-13 5.1600E-04 244 CMX VS-FA .00 7 5.2969E-13 3.8400E-05 245 CMX-cV-GO .00 4 5.2014E-13 5.1000E-05 24 fi IDDMOD32 .00 64 5.1326E-13 3.1700E-04 24'7 PL40302BSA .00 8 5.0482E-13 1.1600E-03 246 RC10R195SP .00 4 4.5386E-13 7.2200E-03 24W IWARS118BFA .00 11 4.4642E-13 8.7600E-04 250 IWBRS118AFA .00 11 4.4642E-13 8.7600E-04 (% 251 PMA0302BSAX .00 40 4.4387E-13 1.6500E-04 252 ZO2 MOD 03 .00 10 4.3199E-13 1.0000E-04

      )

( 253 ZO2DG002TM .00 4 4.1556E-13 4,6000E-02 t x~j ' 254 PMD0302BSA .00 32 3.6704E-13 1.1600E-03 255 PL10302ASA .00 7 3.5960E-13 1.1600E-03 256 PL70302ASA .00 7 3.5960E-13  ?. 1600E-03 1 257 EC1 MOD 12 .00 67 3.3817E-13 4.8000E-05 258 RC1TL195UT .00 3 3.2829E-13 5.2300E-03 259 PL10302BSA .00 5 2.7434E-13 1.1600E-03 260 PL70302BSA .00 5 2.7434E-13 1.1600E-03 261 PL1 MOD 51 .00 5 2.6401E-13 8.7400E-04 262 CCX-FMAMOD4-SW .00 12 2.5979E-13 1.1000E-05 263 REAMOV11?TM .00 9 2.5291E-13 5.0000E-04 264 REBMOV117TM .00 9 2.5291E-13 5.0000E-04 265 ED3BSDS1TM .00 1 2.3204E-13 3.0000E-04 266 IDAMOD06 .00 48 2.2782C-13 4.3600E-05 l 2 6*r CCX-BC-SA .00 5 2.1194E-13 8.4000E-06 I 268 IDDM0038 .00 34 2.0051E-13 3.2700E-04 269 PLIXS00ASA .00 5 1.9484E-13 8.0000E-05 270 PL4XS00ASA .00 5 1.9484E-13 8.0000E-05 271 PL7XS00ASA .00 5 1.9484E-13 8.0000E-05 272 CCX-HE-AF .00 5 1.9040E-13 1.2000E-06 273 IDAMOD02 .00 31 1.7752E-13 2.7000E-03 274 IDAMOD03 .00 31 1.7752E-13 2.7000E-03 275 PLMMOD41 .00 4 1.6831E-13 6.3500E-04 276 PRN-1MN01 .00 4 1.5932E-13 4.0800E-04 277 IDABSDDITM .00 9 1.4433E-13 3.0000E-04 278 IDABSDK1TM .00 9 1.4433E-13 3.0000E-04 279 CCX-XMT"t .00 3 1.3800E-13 2.0100E-04 280 CCX-TRYSM .00 4 1.3323E-13 2.0100E-04 281 PMAMOD41 .00 34 1.3256E-13 6.3500E-04 282 PMDXS00ASA .00 32 1.2368E-13 8.0000E-05 283 IDCFD007RQ .00 18 1.1757t-13 ' 2000E-05 284 IDCFD00BRQ .00 18 1.1757E-13 1.2000E-05 285 PMDEH0AISA .00 28 1.0625E-13 8.0000E-05 286 PMAMOD22X .00 2 9.9809E-14 1.1600E-03 287 EC1 MOD 13 .00 3 9.6145E-14 4.8000E-05 i l ENEL Rnisim 11 [ W85tingh0088 Ir/ m bm. March 1998 54B-47 ovavn uwts.ib.wpt:ib

l 1 54B. Surge Line Floodi;g Effect en Low P:wIr rnd Shutdown Risk Assessment I Table 54B-7 (Sheet 6 of 12) l i BASIC EVENT IMPORTANCE - BASELINE SIIUTDOWN PRA INCLUDING SURGE-LINE FLOODING EFFECTS SYSTEM UNAVAILABILITY (Q) = 8.970E-08 FJMBER OF BASIC EVENTS = 316 NUMBER OF CUTSETS = 8252 NUMBER DECREASE IMPORTANCE OF IN SYSTEM BASIC EVENT BASIC EVENT (% DECREASE) CUTSETS UNAVAILABILITY PROBABILITY 288 EC2 MOD 23 .00 3 9.6145E-14 4.8000E-05 289 EC2 MOD 22 .00 17 9.5368E-14 4.8000E-05 290 CCX-FMAEMOX .00 il 9.4591E-14 4.0300E-06 291 IDABSDS1LF .00 24 9.3592E-14 4.8000E-06 292 ZOX-BL-ER .00 2 8.6264E-14 1.3600E-06 293 ED2 mod 01 .00 2 8.5265E-14 5.0400E-04 294 20X-FL-GP .00 2 8.2379E-14 1.3000E-06 295 PRX-HR-ML .00 4 8.1157E-14 1.2000E-07 296 ECIM00121 .00 24 7.3386E-14 1.6800E-05 297 PMDMOD42 .00 12 6,8279E-14 6.3500E-04 298 IDCBSDD1LF .00 12 4.1966E-14 4.8000E-06 299 IDCBSDKILF .00 12 4.1966E-14 4.8000E-06 300 IDCBSDS1LF .00 12 4.1966E-14 4.8000E-06 301 IDAMoD07 .00 15 3.7303E-14 2.1900E-02 302 IDDMOD21 .00 6 3.6970E-14 1.9200E-04 303 PKDEHOA2SA .00 10 3.4972E-14 8.0000E-05 304 DGi-LOGIC .00 1 2.9976E-14 5.0000E-03 305 IDDMOD34 .00 10 2.1982E-14 4.3200E-05 306 ZJ3 mod 01 .00 8 1.3989E-14 8.4000E-05 307 ECIBS001LP .00 7 1.2768E-14 4.8000E-06 308 PHAEHOAISA? .00 6 1.0325E-14 8.0000E-05 309 PMAMoD42 .00 4 9.6589E-15 6.3500E-04 310 IWX-XMTRLW .00 2 5.7732E-15 9.2000E-09 311 IDDMOD35 .00 4 5.2180E-15 2.1900E-02 312 EC2 HOD 221 .00 3 4.6629E-15 1.6800E-05 313 IDDMOD22 .00 3 3.6637E-15 2.7000E-03 314 IDDMoD23 .00 3 3.6637E-15 2.7000E-03 315 PRCEP108SA .00 1 9.9920E-16 1.7100E-04 316 PRDEP108SA .00 1 9.9920E-16 1.7100E-04 l Revision: 11 O i March 1998 g [ Westingh00SS oNwaWvilWt54b.wpf Ib.022598 54B-48 I 1 J

I"s

                                                                                                                    .    ==.

E

50. Surge Line Flooding Effect on LomPower and Shutdown Risk Assessment ~5 l

l_ g

 \      l l                                                  Table 54B-7 (Sheet 7 Of 12) l I                         BASIC EVENT IMPORTANCE - BASELINE SHUTDOWN PRA I                                INCLUDING SURGE-LINE FLOODING EFFECTS SYSTEM UNAVAILABILITY (0)     =    8.970E-08 NUMBER OF EASIC EVENTS        e    316 NUMBER OF CUTSETS             =  8252 NUMBER          DECREASE IMPORTANCE       OF              IN SYSTEM      BASIC EVENT BASIC EVENT                        (% INCREASE)    CUTSETS         UNAVAILABILITY PROBABILITY 1 CCX-SFTW                2.531678E+06                26    2.2709E-03      1.2000E-06 2 IEV-PCSOD                 823973.                 564     7.3910E-04      4.4400E-06 3     IWX-FL-GP             617504.                 168     5.5390E-04      1.2000E-05 4 CCX-ORY-SPX               598368.                 112     5.3674E-04      3.6300E-06 5 IWX-MV-G01                597909.                 266     5.3632E-04      5.5000E-05 6 ADX-EV-SA                 597807.                 290     5.3623E-04      3.0000E-05
                   '/ REX-FL-GP                597503.                 151     5.3596E-04      1.2000E-05 8 IWX-EV4-SA                597329.                 210     5.3581E-04      2.6000E-05 9 CCX-XMTRX                 595577.                   97    5.3423E-04      2.6300E-06 10 IEV-LOCA24ND               182432.                 121     1.6364E-04      1.6800E-05 11 IEV-LOCA24D                164625.                 546     1.4767E-04      1.1300E-05 12 IEV-CCWD                   164605.               2442      1.4765E-04      4.2300E-04 13 IEV-RNSD                   164412.               1207      1.4748E-04      8.1500E-05 14 CCX-EP-SAM                 132114.                 229     1.1851E-04      8.6200E-06 15      IWX-CV-AO             23253.0                 395     2.0858E-05      1.5000E-04 16 CCX-BY-PN                  15420.5                 363     1.3832E-05      4.7000E-05 17 CCX-IV-XR                  15364.5                 277     1.3782E-05      2.4000E-05 18 IEV-LOCAPRND               10504.6                   59    9.4226E-06      1.5100E-05 19 ALL-IND-FAIL               7983.69                   31    7.1614E-06      1.0000E-06 20 IWX-XMTR                   5993.31                 102     5.3760E-06      2.0100E-04
  /N           21 IEV-LOSPD                  4010.98               3158      3.5979E-06      1.4800E-03

[ } 22 CCX-PKAMOD1-SW 3231.76 128 2.8989E-06 1.1000E-05

  \s_ ,/         23 CCX-PMAMOD1X               3224.37                 195     2.8923E-06      4.6300E-05 24 CCX-PMA030X                3216.48                 130     2.8852E-06      1.3800E-05 25 CCX-EP-SAMX                3209.69                   87    2.8791E-06      2.9400E-06 26 IWB-PLUG                   3039.21                 443     2.7262E-06      2.4000E-04 27 CCX-INPUT-LOGIC            1809.10                   29    1.62285-06      1.0300E-04 28 CCX-XMTR195                1661.17                   16    1.4901E-06      2.0100E-04 29 CCX-ORY-SP                 1659.74                   18    1.4888E-06      2.7700E-04 30 LPM-MAN 05                 1405.66                   37    1.2609E-06      6.8300E-04 31      PXX-AV-LA             766.061                   57    6.8716E-07      6.1000E-05 32 IWN-MANDO                  760.813                 189     6.8245E-07      1.1500E-03 33 IWNTK001AF                 757.783                    5    6,7973E-07      2.4000E-06 34      PRX-HR-ML             753.969                    4    6.7631E-07      1.2000E-07 35 IWX-XMTRLW                 699.573                    2    6.2752E+07      9.2000E-09 36 ICV-RNSND                  480.250                   46    4.3079E-07      9.6100E-04 37 IEV-CCWND                  479.163                   69    4.2981E-07      3.2100E-03 38      RNX-PM-FS             297.611                   59    2.6696E-07      7.7000E-04 39 RNX-KV-GO                 297.378                   52    2.6675E-07      6.1000E-04 40 CCX-PL4 MOD 1              293.748                   25    2.6349E-07      1.4100E-04 41 CCX-PL403                 293.179                   22    2.6298E-07      9.6900E-05 42 RNX-CV-GO                  292.178                   20    2.6208E-07      5.1000E-05 43     RNX-FM-ER             288.272                   17    2.5858E-07      1.6000E-05 44 CCX-FM-ER                 286.357                   16    2.5686E-07      1.4000E-05 45 SWX-PM-ER                 286.357                   16    2.5686E-07      1.4000E-05 46 CCX-EP-SA                 281.454                   14    2.5246E-07      8.6200E-06 47 CCX-PL4 MOD 1-SW          281.170                   14    2.5221E-07      1.1000E-05 48 CCX-LS-FA                 274.967                   32    2.4665E-07      5.3700E-06 49 IW10R170SPX               252.354                   34    2.2636E-07      9.4600E-05 50 IW20R160SPX               252.354                   34    2.2636E-07      9.4600E-05 51 IW1TL170UFX               252.066                   33    2.2610E-07      6.8400E-05 52 IW2TL160CFX               252.066                   33    2.2610E-07      6.8400E-05 53 RN23 HOD 5s                225.808                966     2.0255E-07      2.2100E-03 54 ED1 MOD 03                218.302                 125     1.9582E-07      2.2020E-03 55 IDDBSDDITM                 217.967                411     1.9552E-07      3.0000E-04 56 IDDBSDSITM                 217.967                411     1.9552E-07      3.0000E-04 57 IDDBSDX1TM                 216.098                404     1.9384E-07      3.0000E-04 q

I

       )

Revision: 11 3 Westingh0088 w March 1998 54B.49 ov.wv11wts4b.wpf.ib

y ;= 3 54B. Surge Line Flooding Effect on Low P;w r and Shutdow2 Risk Assessment I Table 54B-7 (Sheet 8 of 12) O i I BASIC EVENT IMPORTANCE BASELINE SHUTDOWN PRA l INCLUDING SURGE LINE FLOODING EFFECTS l SYSTEM UNAVAILABILITY (Q) = 8.970E-08 NUMBER OF BASIC EVENTS = 316 NUMBER OF CUTSETS = 8252 WUMBER DECREASE IMPORTANCE OF IN SYSTEM BASIC EVENT BASIC EVENT (% INCREASE) CUTSETS UNAVAILABILITY PROBABILITY 58 MDEP023SA 211.297 322 1.8953E-07 1.7100E-04 59 CCX-FMDMoD1 209.503 298 1.8792E-07 1.4100E-04 60 RHN-MANOS 206.337 833 1.8508E-07 1.6000E-03 61 CCX-FMD030 204.221 211 1.8319E-07 9.6900E-05 62 CCX-PMDMOD4 195.242 154 1.7513E-07 4.9800E-05 63 REA-PLUG 182.947 92 1.6410E-07 2.4000E-04 64 REB-PLUG 182.947 92 1,6410E-07 2.4000E-04 65 Zox-PD-Es 177.680 113 1.5938E-07 2.0000E-03 66 ED1 MOD 11 177.544 59 1.5926E-07 3.1700E-04 67 ED1M00113 177.544 59 1.5926E-07 3.1700E-04 68 ECX-CB-GO 177.469 92 1.5919E-07 1.2000E-03 69 ECX-CB-GC 176.970 74 1.5874E-07 7.3000E-04 70 CCX-ME-AF 176.889 5 1.5867E-07 1.2000E-06 71 Z0X-DG-DR 176.108 59 1.5797E-07 4.4000E-04 72 toX-DG-DS 175.764 54 1.5766E-07 2.8000E-04 73 IDDFD019RQ 175.340 69 1.5728E-07 1.2000E-05 14 IDDFD020RQ 175.340 69 1.572BE-07 1.2000E-05 75 CCX- FMDMOD1- SW 175.010 67 1.5698E-07 1.1000E-05 76 CCX-PMDMOD4-SW 175.010 67 1.5698E-07 1.1000E-05 77 ZOX-PD-ER 173.118 36 1.5529E-07 1.3000E-04 78 CCX-DY-PN1 168.032 20 1.5072E-07 5.7000E-05 79 ZOX-BL-ES 167.932 20 1.5064E-07 6.0000E-05 80 IWA-PLUG 165.841 182 1.4876E-07 2.4000E-04 81 IDDBSDD1LP 164.356 37 1.4743E-07 4.8000E-06 82 IDDBSDK1LF 164.356 37 1.4743E-07 4.8000E-06 83 IDDBSDS1LF 164.356 37 1.4743E-07 4.8000E-06 84 CCX-FMDEMO 163.696 35 1.4684E-07 4.0300E-06 85 PL5 mod 11 158.256 77 1.4196E-07 2.0900E-03 86 PL50301ASA 157.818 52 1.4156E-07 1.1600E-03 87 PL50301BSA 157.818 52 1.4156E-07 1.1600E-03 88 EDIMoD01 156.624 27 1.4049E-07 5.0400E-04 89 IRWMOD05S 156.476 498 1.4036E-07 3.2200E-03 90 tD1 mod 07 156.384 22 1.4028E-07 3.0500E-04 91 ED1 MOD 13 156.271 22 1.4018E-07 3.1700E-04 92 IDBBSDDITM 155.754 181 1.3971E-07 3.0000E-04 93 IDBBSDK1TM 155.754 181 1.3971E-07 3.0000E-04 94 IDBBSDS1TM 155.754 181 1.3971E-07 3.0000E-04 95 EC5EPMGBISA 155.504 14 1.3949E-07 1.7100E-04 96 CCX-PLIMOD1 155.383 14 1.3938E-07 1.4100E-04 97 CCX-PL7 MOD 1 155.383 14 1.3938E-07 1 4100E-04 9E CCX-PL103 155.065 12 1.3909E-07 9.6900E-05 99 CCX-PL703 155.065 12 1.3909E-07 9.6900E-05 100 PL5XS00ASA 154.857 12 1.3891E-07 8.0000F-05 101 CCX-IV-KR1 154.508 11 1.3859E-07 2.4000E-05 102 IRAEP121ASAX 151.836 63 1.3620E-07 5.8300E-05 103 IDBFD013RQ 149.812 20 1.3438E-07 1.2000E-05 104 IDBFD014RQ 149.812 20 1.3438E-07 1.2000E-05 105 CCX-PL1 MOD 1-SW 148.669 8 1.3336E-07 1.1000E-05 106 CCX-PL7 mod 1-SW 148.669 8 1.3336E-07 1.1000E-05 107 IDBBSDD1LF 148.576 15 1.3327E-07 4.8000E-06 108 IDB3SDK1LF 148.576 15 1.3327E-07 4.8000E-06 109 IDBBSDSILF 148.576 15 1.3327E-07 4.8000E-06 110 ED1BSDS1LF 142.645 7 1.2795E-07 4.8000E-06 111 ADN-MAN 01 135.823 58 1.2183E-07 4.9300E-04 112 REN-MAN 04 118.731 90 1.0650E-01 1.0000E-02 113 CCX-VS-FA 116.427 5 1.0444E-07 3.8400E-05 114 CCX-FMAMOD2X 101.789 22 9.1305E-08 8.5800E-05 115 CCX-INPUT-LOGICX 99.3341 12 8.9103E-00 2.5900E-05 Revision: 11 O March 1998 ov*wlisaits4b wpr:1w2259s 54B-50

                                                                                  %d             $)t/

W85tinghouse

541 Surge Line Flooding Effect on Low Power and Shutdown Risk Assessment n i 8 l Table 54B 7 (Sheet 9 of 12) l l BASIC EVENT IMPORTANCE . BASELINE SIIUTDOWN PRA I INCLUDING SURGE-LINE FLOODING EFFECTS SYSTEM UNAVAILABILITY (Q) = 8.970E-08 NUMBER OF BASIC EVENTS e 316 NUMBER OF CUTSETS = 8252 NUMBER DECREASE IMPORTANCE OF IN SYSTEM BASIC EVENT BASIC EVENT MINCREASE) CUTSETS UNAVAILABILITY PROBABILITY 116 CCX-IN-LOGIC-SW 99.1616 8 8.8948E-08 1.1000E-05 117 CCX-PMAMOD2-SW 99.1616 8 8.894BE-08 1.2000E-05 118 20X-BL-ER 70.7129 2 6.3430E-08 1.3600E-06 119 ZOX-FL-GP 70.6443 2 6.3368E-08 1.3000E-06 120 ED3 MOD 07 68.0177 34 6.1012E-08 3.0500E-04 121 IDAMOD04 66.5690 340 5.9712E-08 3.1700E-04 122 IDAMOD05 65.8673 354 5.9083E-08 5.1600E-04 123 MDAS 63.5642 75 5.7017E-08 1.0000E-02 124 IDABSDS1TM 62.7745 261 5.6309E-08 3.0000E-04 125 REC-MANDAS 61.4879 31 5.5148E-08 1.1600E-02 126 CCX-FMAMOD1 58.0902 87 5.2107E-08 1.4100E-04 127 CCX-FMA030 51.2455 59 4.5967E-08 9.6900E-05 128 PMAMOD11 44.7218 296 4.0115E-08 2.0900E-03 129 PMA0301ASA 43.3020 218 3.8842E-08 1.1600E-03 130 PMA0301BSA 43.3020 218 3.8842E-08 1.1600E-03 131 IWN-MAN 00C 32.7720 23 3.5676E-08 5.0000E-02 132 RHN-MAN 04 39.2606 134 3.5217E-08 5.5000E-02 133 PMAXS00ASAX 32.1484 158 2.8837E-08 8.0000E-05 134 PMAMOD11X 30.5491 369 2.7403E-08 6.5300E-04 135 IEV-LOSPND 30.4340 40 2.7299E-08 8.1300E-03

/*g          136 PMA0301ASAX               29.4585             176      2.6424E-08      1.6500E-04 l              137 PMA0301BSAX               28.7708             157      2.5807E-08      1.6500E-04
\__,<)         138 CCX-BC-SA                 2?.1281                 5    2.5231E-08      8.4000E-06 139 CCX-FMAMOD4               27.9389               41     2.5061E-08      4.9800E-05 140 PMAXS00ASA                27.5213               28     2.4687E-08      8.0000E-05 141 CCX-FMAMOD4-SW            26.3291               12     2.3617E-08      1.1000E-05 142 CCX-FMAEH0X               26.1668               11     2.3472E-08      4.0300E-06 143 IDABSDS1LF                21.7371               24     1.949BE-08      4.8000E-06 144 201 MOD 01                18.9482             625      1.6997E-08      2.0200E-02 145 EC1CB100VO                18.8458             483      1.6905E-08      1.2300E 02 146 201 MOD 04                16.5282             129      1.4826E-08      1.2500E-03 147 RHN-MAN 05C               16.3973               27     1.4708E 08      1.5000E-01 148 IDCDSDDITM                16.1748             183      1.4509E-08      3.0000E 04 149 IDCBSDSITM                16.1748             18.3     1.4509E-08      3.0000E-04 150 CMX-VS-TA                  15.3773                7    1.3793E-08      3.8400E-05 151 IRWMOD06S                  14.7967            495      1.3273E-08      3.2200E-03 152 IDCBSDK1TM                14.3056             176      1.2832E-08      3.0000E-04 153 IRAEP121BSAX               13.2658               66    1.1899E-08      5.8300E-05 154 ED2 MOD 03                 11.6274            106      1.0430E-08      2.7000E-03 155 EC1 MOD 01                 11.4691               31    1.028BE-08      2.0200E-04 156 EC2CB200VO                 11.3921            186      1.0219E-08      1.2300E-02 157 202 MOD 01                11.3869            232      1.0214E-08      2.0200E-02 158 CC? a AV-LA               11.3862                5    1.0213E-08      6.1000E-05 159 CMX-CV-Go                 11.3693                4    1.019BE-08      5.1000E-05 160 RNBMOD07S                 11.1124            184      9.9678E-09      1.5300E-02 161 ED2 MOD 11                11.0183               39    9.8835E-09      3.1700E-04 162 IDCFD007RG                10.9226               18    9.7976E-09      1.2000E-05 163 IDCFD008RQ                10.9226               18    9.7976E-09      1.2000E-05 164 RNAMOD06S                 10.9053             134     9.7821E-09      1.5300E-02 165 ZO2 MOD 04                10.7222               70    9.6179E-09      1.2500E-03 166 IDCBSDD1LF                9.74688               12    8.7430E-09      4.8000E-06 167 IDCBSDK1LF                P.74688               12    8.7430E-09      4.8000E-06 168 IDCBSDS1LF                9.74688               12    8.7430E-09      4.8000E *6 169 SWAM 0007                 9.44254               68    8.4700E-09      7.1200E-03 170 EC1REDG2GA                8.71011               78    7.8130E-09      4.3600E-03 171 EC1REDG1GA                B.65225               65    7.7611E-09       4.3600E-03 172 Zo1 MOD 03                8.62842               17    7.7397E-09       1.0000E-04 n
 ;     I)
     ~,

jgggggt Itevision: 11 M@M tru. h March 1998 54B-51 onprairevaiwts4b.wpr.ib

 !?
           *u "I                    5411. Surge Line Flooding Effect a Low-PowLr and Shutdowa Risk Assessment i

! Table 54B.7 (Sheet 10 of 12) e l I HASIC EVENT IMPORTANCE . BASELINE SHUTDOWN PRA INCLUDING SURGE.LINE FLOODING EFFECTS SYSTEM UNAVAILABILITY (Q) = 8.970E-08 WUMBER OF BASIC EVENTS = 316 NUMBER OF CUTSETS = 8252 NUMBER DECREASE IMPORTANCE OF IN EYSTEM BASIC EVENT BASIC TVENT (% INCREASE) CUTSETS UNAVAILABILITY PROBABILITY 173 ED3 MOD 03 8.41710 45 7.5501E-09 2.2020E-03 174 RNAEPRNPSA 8.00535 20 7.1808E-09 1.7100E-04 175 kNBEPRNPSA 8.00535 20 7.1808E-09 1.7100E-04 176 EC1 MOD 12 7.85390 67 7.0450E-09 4.8000E-05 177 EC2 MOD 01 7.82538 24 7.0194E-09 2.0200E-04 178 EC1BS001TM 7.68995 442 6.8979E-09 2.7000E-03 179 EC1B5012TM 7.68995 442 6.8979E-09 2.7000E-03 180 EC1BS121TM 7.68995 442 6.8979E-09 2.7000E-03 181 SW7EPSBPASA 7.56273 17 6.8017E-09 1.7100E-04 182 CCAMoD02 7.27445 66 6.5252E-09 7.1000E-03 183 SWBMOD02 6.96320 174 6.2460E-09 2.4400E-02 184 CCBMOD015 6.93742 115 6.2229E-09 1.0400E-02 185 PL4 MOD 11 6.66072 68 5.9747E-09 2.0900E-03 186 OTH-R1 6.23561 2938 5.5933E-09 4.2000E-01 187 PL1M0011 6.14634 57 5.5133E-09 2.0900E-03 188 PL7M0011 6.14634 57 5.5133E-09 2.0900E-03 189 PL40301ASA 6.08319 44 5.4566E-09 1.1600E-03 190 IDAMOD06 5.87885 48 5.2733E-09 4.3200E-05 191 PL40301BSA 5,87825 39 $.2728E-09 1.1600E-03 192 SWAMOD09P 5.80292 40 3.2052E-09 1.8500E-03 193 SWBMOD09P 5.79557 45 5.1986E-09 1.8500E-03 194 ED3 MOD 01 5.75881 18 5.1657E-09 5.0400E-04 195 PL10301ASA 5.73985 38 5.1478E-09 1.1600E-03 196 PL70301ASA 5.73885 38 5.1478E-09 1.1600E-03 197 PL10301BSA 5.65700 36 5.0743E-09 1.1600E-03 198 PL70301BSA 5.65700 36 5.0743E-09 1.1600E-03 199 CC1EPSBPASA 5.41024 15 4.8530E-09 1.7100E-04 200 ECIMOD121 4.86970 24 4.3681E-09 1.6800E-05 201 E02M0003 4.81543 10 4.3194E-09 1.0000E-04 202 SW7EPSBPBSA 4.60188 12 4.1279E-09 1.7100E-04 203 CCIEPSBPBSA 4.60044 12 4.1266E-09 1.7100E-04 204 PMAMOD12X 4.34032 123 3.8933E-09 6.5300E-04 205 IDAMODOB 4.28259 96 3.8415E-09 3.1700E-04 206 SW7EPCTTASA 4.09820 10 3.6761E-?9 1.7100E-04 207 SW7EPCTFBSA 4.09820 10 3.6761E-09 1.7100E-04 208 PKA0302ASAX 3.68625 59 3.3066E-09 1.6500E-04 209 PMA0302BSAX 2.99850 40 2.6897E-09 1.6500E-04 210 EC1BS001LF 2.96532 7 2.6599E-09 4.8000E-06 211 IWACV122AO 2.83596 178 2.5439E-09 8.7600E-03 212 IWACV123AO 2.83596 178 2.5439E-09 b.7600E-03 213 IWACv124A0 2.83596 178 2.5439E-09 8.7600E-03 214 IWACV125A0 2.83596 178 2.5439E-09 8.7600E-03 215 PLIXS00ASA 2.71500 5 2.4354E-09 8.0000E-05 216 PLexS00ASA 2.71500 5 2.4354E-09 8.0000E-05 217 PL7xS00ASA 2.71500 5 2.4354E-09 8.0000E-05 218 IRWMOD10 2.$2699 36 2.2667E-09 1.4600E-03 219 IRWMOD12 2.52699 36 2.2667E-09 1.4600E-03 220 REACv119GO 2.52389 36 2.2639E-09 1.7500E-03 221 REBCV119GO 2.52389 36 2.2639E-09 1.7500E-03 222 IWCRS120BFA 2.4030b 23 2.1556E-09 8.7600E-04 223 IWDRS120AFA 2.40308 23 2.1556E-09 8.7600E-04 22A F.C1 MOD 13 2.23292 3 2.0029E-09 4.8000E-05 225 EC2 MOD 23 2.23292 3 2.0029E-09 4.8000E-05 226 EC2 MOD 22 2.21487 17 1.9867E-09 4.8000E-05 227 PMDMOD11 2.08806 235 1.8730E-09 2.0900E-03 228 IDDMOD32 1.80445 64 1.6186E-09 3.1700E-04 229 PMD0301ASA 1.7492J 157 1.5690E-09 1.1600E-03 230 PMDXS00ASA 1.72337 32 1.5459E-09 8.0000E-05 Revision: 11 O ENEL March 1998 ch 3 Weninghouse o \prawvilinu54b wpf Ib.022598 $4B-52

54H. Surge Line Flooding Effect on Low-Power and Shutdown Risk Assessment

  /m\

s / l Table 54B-7 (Sheet i1 of 12) l l BASIC EVENT IMPORTANCE - BASELINE SHUTDOWN PRA INCLUDING SURGE-LINE FLOODING EFFECTS SYSTEM UNAVAILABILITY (Q) a 8.970E-08 NUMBER OF BASIC EVENTS e 316 NUMBER OF CUTSETS = 8252 NUMBER DECREASE IMPORTANCE OF IN SYSTEM BASIC EVENT BASIC EVENT (% INCREASE) CUTSETS UNAVAILABILITY PROBABILITY 231 RHN-MANO3 1.68647 49 1.5128E-09 2.2600E-03 232 PMD0301BEA 1.57699 138 1.4146E-09 1.1600E-03 233 PMDEHOA1SA 1.48049 28 1.3280E-09 8.0000E-05 234 td2BS002TM 1.35629 208 1.2166E-09 2.7000E-03 235 EC2B5022TM 1.35629 208 1.2166E-09 2.7000E-03 236 EC2BS221TM 1.35629 208 1.2166E-09 2.7000E-03 237 PhDMOD41 1.29380 74 1.160$E-09 6.3500E-04 238 PRAAV108LA 1.20074 11 1.0771E-09 1.0900E-03 239 PRBAV108LA 1.20074 11 1.0771E-09 1.0900E-03 240 PRAAV108TM 1.19824 9 1.0748E-09 5.0000E-04 241 PRBAV1087M 1.19824 9 1.0748E-09 5.0000E-04 242 IDDMOD33 1.15268 51 1.0340E-09 5.1600E-04 243 PL4 MOD 12 1.13696 30 1.0199E-09 2.0900E-03 244 CC3-MAN 01 1.11586 13 1.0009E-09 1.0700E-03 245 SUC-RIS 1.03523 220 9.2860E-10 5.8000E-01 246 REC-MANDASC .983838 46 8.8250E-10 5.0600E-01 247 ED3BSDSITM .862010 1 7.7322E-10 3.0000E-04 248 SWB-MANO2 .776113 8 6.9617E-10 1.6000E-03 249 PMAMOD21X .774267 14 6.9452E-10 1.1600E-03 250 CCX-XMTR .765253 3 6.8643E-10 2.0100E-04

    .O            251 IRWMOD01                    .759035                  53    6.8086E-10      1.2000E-02 l        i      252 IRWMOD03                     .759035                 53    6.8086E-10      1.2000E-02 (j              253 CCX-TRNSM                    .738780                  4    6.6269E-10      2.0100E-04                                      )

254 PMDMOD12 .738766 97 6.6267E-10 2.0900E-03 J 255 IDDMOD38 .704917 34 6.3231E-10 3.1700E-04 1 256 PL40302ASA .689540 13 6.1852E-10 1.1600E-03 l 257 IRWMOD09 .649947 18 5.8300E-10 1.4600E-03 l 258 IRWMOD11 .649947 18 5.8300E-10 1.4600E-03 259 ADX-HV-GO .597042 4 5.3555E-10 1.1000E-03 260 PL1 MOD 12 .589902 17 5.2914F-10 2.0900E-03 261 PL7 MOD 12 .589902 17 5.2914E-10 2.0900E-03 262 IWARS11BBFA .567632 11 5.0917E-10 8.7600E-04 263 IWBRS118AFA .567632 11 5.0917E-10 8.7600E-04 264 IDDMOD34 .567257 10 5.0883E-10 4.3200E-05 i 265 REAMOV1177M .563617 9 5.0556E-10 5.0000E-04 1 266 REBMOV117TM .563617 9 5.0556E-10 5.0000E-04 ' 267 ZON-MAN 01 .546234 15 4.8997E-10 2.6700E-03 268 IDABSDDITM .536178 9 4.8095E-10 3.0000E-04 269 IDABSDK1TM .536178 9 4.8095E-10 3.0000E-04 270 PMD0302ASA .524562 51 4.7053E-10 1.1600E-03 271 PMDEHOA2SA .487308 10 4.37125-10 8.0000E-05 272 PL40302BSA .484596 8 4.3468E-10 1.1600E-03 273 PRN-MAN 01 .435143 4 3.9032E-10 4.0800E-04 l 274 IWBCV122AO .422568 184 3.7904E-10 8.7600E-03 l 275 IWBCV123AO .422568 184 3.7904E-10 0.7600E-03 276 IWBCV124AO .422568 184 3.7904E-10 8.7600E-03 277 IWBCV125AO .422568 184 3.7904E-10 8.7600E-03 278 PMD0302BSA .352337 32 3.160$E-10 1.1600E-03 279 PL10302ASA .345196 7 3.0964E-10 1.1600E-03 280 PL70302ASA .345196 7 3.0964E-10 1.1600E-03 281 PL1 MOD 51 .336464 5 3.0181E-10 8.7400E-04 282 EC2 MOD 221 .309421 3 2.7755E-10 1.6800E-05 283 PLMMOD41 .295302 4 2.6489E-10 6.3500E-04 284 PL10302BSA .263347 5 2.3622E-10 1.1600E-03 285 PL70302BSA .263347 5 2.3622E-10 1.1600E-03 286 SWNTP001RI .250696 10 2.2487E-10 5.2300E-03 287 PMAwoD41 .232580 34 2.0862E-10 6.3500E-04

        ~
          ]

ENEL Revision: 11 UDM Lat h . March 1998 54B 53 c:4rairevil\ arts 4b.wpf: b

54B. Surg 3 Line Flooding Effect en Low-P;w:r and Shutdows Risk AssessmeEt l Table 54B-7 (Sheet 12 of 12) e l l BASIC EVENT IMPORTANCE - BASELINE SIIUTDOWN PRA INCLUDING SURGE-LINE FLOODING EFTECTS SYSTEM UNAVAILABILITY (Q) = 8.970E-08 NUMBER OF BASIC EVENTS s 316 NUMBER OF CUTSETS = 8252 NUMBER DECREASE IMPORTANCE OF IN SYSTEM BASIC EVEFTP BASIC EVENT (% INCREASE) CUTSETS UNAVAILABILITY PROBABILITY 288 IDDM0021 .214623 6 1.9252E-10 1.9200E-04 289 OTH-R2 .209131 29 1.8759E-10 2.4000E-01 290 ED2 MOD 01 .188508 1 1.6909E-10 5.0400E-04 291 ZANMOD01 .185640 8 1.6652E-10 8.4000E-05 292 CCNTF101RI .172161 10 1.5443E-10 5.2300E-03 293 Zo1DG001TM .171684 74 1,5400E-10 4.6000E-02 294 PMAEHOAISAx .143872 6 1.2905E-10 8.00 M1 05 295 PMDMOD42 .119796 12 1.0746E-10 6.350; 04 296 PMAMOD22X 9.581091E-02 2 8.5942E-11 1.1600J. 03 297 AD2 MOD 01 9.551045E-02 21 8.5673E-11 5.54GOE-02 298 AD2 mod 02 9.551045E-02 21 8.5673E-11 5.5400E-02 299 AD3 MOD 03 9.551045E-02 21 8.5673E-11 5.5400E-02 300 AD3 MOD 04 9.551045E-02 21 8.5673E-11 5.5400E-02 301 RHN-MAN 04-SUCC 8.874552E-02 468 7.9605E-11 9.4500E-01 302 DAS 8.137406E-02 4 7.2993E-11 1.0000E-02 303 IDAMOD02 7.310176E-02 31 6.5572E-11 2.7000E-03 304 IDAMOD03 7.310176E-02 31 6.5572E-11 2.7000E-03 305 RC1TL195UF 6.9612B9E-02 3 6.2443E-11 5.2300E-03 306 RC10R195SP 6.957354E-02 4 6.2408E-11 7.2200E-03 307 SUC-R2S 5.781296E-02 9 5.1858E-11 7.6000E-01 308 PMAMOD42 1.694677E-02 4 1.5201E-11 6.3500E-04 309 ZO2DG002TH 9.607883E-03 4 8.6183E-12 4.6000E-02 310 DG1-LOGIC 6.650192E-03 1 5.9652E-12 5.0000E-03 311 PRCEP108SA 6.513126E-03 1 5.8423E-12 1.7100E-04 312 PRDEP108SA 6.513126E-03 1 5.8423E-12 1.7100E-04 313 IDAMOD07 1.857359E-03 15 * .6661E-12 2.1900E-02 314 IDDM0022 1.508667E-03 3 1.1533E-12 2.7000E-03 315 IDDMOD23 1.508667E-03 3 1.3533E-12 2.7000E-03 316 IDDMOD35 2.598091E-04 4 2.3305E-13 2.1900E-02 Revision: 11 e March 1998  % T Westinghouse o:WWvilWtS4b wpf;lt>.022598 $4B.54

l "l ' T pa g$$I'" Mha oD. YTke s6.AC[goNU #E# > g4E. s

   /\   G        S T

C C U D C P P P S B S S C N E DDPS DD DDPR D D S D4 DOS D R 4 2M B D4 DOS F PSAN PS PSAI DS DSAN O0 SAN DSAI AASA O0 SAN F SA2R SA SA2C SA SA2R ODWW OD ODWE ND NDWW CADWW NOWE OMDW CADWW SNA2R SA2C C2A2 SNA2R E LAII LA LAIR RA RAII RMAII RAIR RMAII

                                          - - - -     - -   - - - -      - -    - - - -       - - - - -       - - - -     L- C A I.

G VLSS VS VLLS VS VLSS VNLSS VLLS VLLS VNLSS EEYY EY EEEY EY EEYY EHEYY EEEY EEEY EHEYY N I

                                 -       IDSS        IS    IDDS         IS     IDSS         IRDSS            IDDS         IDDS        IRDSS D               .

O - O R . L E-EI - F F- D D D T T E mI aT-

                                 -       E           E     E                                N                             D E

N E N N N E N vN-sE - I I I V L V I ED- A A A E L E R R R I L- SI - D D D G F G N T N E - S S S T I N S I G C C C U T T T T T E C T T RPT RT Rr O fSN SN A N SPT I R A N R - HO L U E HO HO C l K RE UI RE UI E I T E I E RE UI S N H I T E I E U -

                                 -       TK N TK TK A                   CS     CS       N   I       S N      CS      A T              I     S     N S               -

IC I IC IC L CN CN I N N A L I CN OA T W R I N N A L I WAL L WA WA B OAL OA L R R I R RT I R G - B N L B BTN TT TT N P T N TTNN N PET N N I SO NEI N UE N NOV EN N SO O ENEI O SO NEI N ENIV FE OS OR SO IE OUNEI D - ENT SVIC SV E EKI VE VENT L ENT - EV EVIC VIC VESI EVNG SSAI TN LTENT PVIC

            )

U .

                                 .       RILU UG     S RI    "R I A,VCG UG UGLP GG GG S I       ILU      D I

ILU G S GGRP IA RKZL UNI DUILU IRG S 6 L C N C C BO N N N MN N N TO CARN M N f C - CPOP CP OOIM CP OO OOGL Tn O IP IPOP TOIM OOOIM WPOP IP TOGL O O CTUO SI EPOP OPOIM O N I OTU TLCP TL O TLII OND AO AOTU TDOTU AOND IL ILCP NLCP ILII PST TUEC TIOTU PLCP i

                                 -       NDE         ND NDRM TD TDE                         NIDE             TDRM         NERE        N DE t

e A .

                                 .       EIJS        EI    EIU VMNN VM VMDG NM NMNNI ORMNN II     IIJS         WAIJS NMDG VAEN ONMNN IIU          EKPJ        WSIJS e  R               .
                                 .       E    IR     E     E        N          I     IR     DD        IR     I       N    EMDI        DR      IR h

S P . G G GSI G G G GSI NER G ( . GN GN GNER N N NSN G N N 8 D - NI IR NI IR NINU IRID I R I R INI ARR INU RID N I I A I R

               - E                       TU A TU TUL                       U       U A R U A                    UL        T           R U         A B    S                       ADTI        AD AD
                                                                   .N      D       DTI   DGDTI                  D N A             T D S

DTI SV , ,1J SV O D D SV N SV D ,O IE 4 5 U . I TSW I TS I TSJI ES ESW GISW ESJI TR W GESW C - IERN IE IENT NE NERN NPERN NENT IO R NTERN IAVIO le O NVIO NV IL I IL NVIA L AI '; IVIO IL AL I IPVIO ROL I IVIA AL L NCSI I D RLL I b . RAOT UTAOT RATU OAO UOAOT a F . AOT A ATU RA RVWC RV ERVSC EDV DVWC DSVWC DVSC SW W DSVHC T N - E TE WR TE TE WR NTLT I 1 E _

                                 -       WB     J    WB    WBRI         SD SB J SNB J                        SBRI         E    L      S     B     J        _

OIFN OIIC CI CIFN CIIFN CIIC PFUF COIFN W - PUCI Q OI PU PU Q Q2R E RU Q RUOI Q R SQ UOI RU Q2R E OOFO RTUOI Q O - S T S S- HS HS T DS T HS - S T D -

                                 -       E TSOR S    E     E TS TSOM FP    T IS T

ISOR S FE OESOR S T FP ISOM E O OSSOR F S _ T 7 .- IDWW ID ID U WD WDWW CDWW WD U 4N H LDWW U 0 SATI F SA F SA2S F S A S ATI GCATI NU S A2S 2O 0 1 GIATI NA H E FFFF FF FFFF NF NFFF ISFFF NFFF VFFF IFFFF _ S 6 1 . OOOO OO OOOO RO ROOO N OOO ROOO OOO N OOO _ 0 . IR S IR R 8 - FSEE FE FS9E FE FSEE AOSEE FSSE NSSE AOSEE N- OSRR OR OSSR OR OSRR RTSRR OSSR RSSR RTSRR O EUU U EEU U EUU DAEUU EEU OAEUU 4 O. /EEU . F I - SCLL SL SCCL SL SCLL RRCLLSI SCCL ACCL RRCLL EECII a PT .- SCII SI SCCI SCII EECII SCCI CCCI mI OUAA OA OUUA OA OUAA VPUAA OUUA O'UA J VPUAA S s e rR -

                                 .       LSFF LF LSSF                   LF     LSFF         OOSFF LSSF                    LSSF OOSFF                       .

E i uC. C t vS-i r. E - 4 0 5 0 7 2 5 7 6 N l i SD- 2 3 8 0 6, 1 6 5 4 E b 4 6 1 2 1 1 a TB-U b o NI - 4 3 1 Q P r ER - CT-E RN-EO-S e c PC-T n 7 7 9 9 9 9 9 9 9 e Y. N u q T-I 0 C 0 0 0 0 0 0 0 A e .- E E E E E E E E E S e.I L . 2 9 0 3 0 3 3 2 N I f mB eA.

                                 .       1 4

7 6 6 0 4 1 7 2 o uB-M e u vO-

r. R -

2 1 5 9 8 5 3 2 2 O S t SP-D d e c R. E. B

                                  -      I           2     3            4      5            6                7            8           9 u      M.

d U. e N. R l l' 1l/ ' ,

     .q w

N 3 @ E:. s. W-s i S. p Ak .7*k h w . O uAYy Uf(< %(%tr C,

3- ml!i di w yvhm a gJE. [ awpgc 3 ggg- t i a o mqg* O (( 6Ik m3 [<v"o. O f 3 l D E t C C U D D N O D S S S N C N D D 4 S

                                                                             -         4         C         -       C R                   D      P         R P4M E                            4 2M 4

2D 2D S D4D 2D R D4 DOR O0SAI P4M A0ASA B N P MSB ALA A0AS F AAS AS CA ASANCA2R SNA O0S ASAI CN2A2 SW2A2 CN2A F C2A CA2C SNA2C E OMD LCA LA OD #DWk IAII CAD RMA ODWE LAIR CADWE RMAIR OAMDW LMCAI ORMDW LPCAI LMCA OAMD G VLS EEY VS EY VLSS EEYY EHY VNS VLLS EEEY VNLLS EHEEY VNLLS EHEEY VSLLS EYEEY ISDDS VNLS EHEY IRDS N I IDS IS IDSS IRS IDDS IRDDS IRDDS D . O . O R L EI E. . i CF. D D T D T D NI D E E N E N E ET UN. E N N E V N E V E L N I QE. ED L L I A I A E I A E S R L I S R 1 R R R L- SI F D D G D G U F U N T N T C C E . S S S I S N I N C S C

                          .        C           CT CT                  T T CT                     E T T             E    O                C                O G                    .
                          .        R           RN RN                  A N              RN E

I S A N E I S T R T R H HI E HI E E I f E I HI N TI I I N N H N E U . T TS TS N 1 N N S TS IN A R N N S A R E V T I V S . I W IN WA WA L IN I I A WA T I A T E W E

                          .                         R        R                   R          RT               RN G                    .
                           .               N        T        T N P               T          TNN       P O

TWN OE E N R OS N OS E R N O N I O I N NEI SO O O N EE NIV O NDV U IE IE TN U I T T E ENT L E - ESI L ENI .T TN .T D .

                           .       SSP          SV      SVIC                     V   SVNG              -

D IA VIG TPSAI IUKZL S R SAI TPSA KEL IUKZ U . RKZ UNI UG UG S RI EILU D I I G UGRP RIA I GRP NRNI U Ni NRNI ) L . CAR C C N MN C TO MN DO I ARN C ARN I AR 6 . WP CP O WP O ETUO C TUO ETU f C . CTU CP CPOPOOIM OOO O S OO OOGLOND OOOGL DP SI O SI DP S O N I PS TUE TL TLCP O OTU TDO NL TLII TDOND NLII EIPST LPUEC TEUEC LPUE MPST EIPS 2 NDRM NIDRM L ERE NTERE L ER

                           .       NER       NDEINDE EIJS             NID                                                                ESKPJ            ISKP t

A . EKP VAE VM VMNN WAI ORM EIU VMDG NAIU ISKPJ N ORMDG N FNAEN RMDI VYAEN ESMDI FNAE e . e R .

                            .      EMD          E        E      IR    DD                E           DD                                                        RMD h

S P .

                            .      G G

GN GN G G NSN GNER NSNER GSI GSI S G S ( NINU ININU C N C 8- D . N I NI IR NI IR INI ARR IRID ARRID B I R E . T TU TU A R U TUL R UL T T H O B S . A AD ADTI DGD AD DGD N 1 T A IE I I SV N I .N O N .O T E S IRE S T E 4 5 U TR TS TSW GIS TSJI GISJI NPENT WTO IER W THR R IRO W IER R WTO C . IO IE NCS NV ILNVIOIL IERN NPE IPV IENT NVIA IPVIA ACSI N CSI ACS le O . I D I ROL IL L ROL L EL D IE D EL O b F . OA A AOT UTA ATU UTATU ROOAO VOAO ROOA a . SVSC DSVSC USW W RIW W US T N S NWL NSV SVWE N C DSV N WR EBRI SNBRI WR TITLT ESTLT P L WS L TIWL P L

                            .       E      L    EE       EB J SNB PFU         PI       PIFN          CII              PIIC          CIIIC             UOFUF OAFUF                UOFU W                      .

OOF OU OUOI R U OU Q Q SQ Q2R E R U SQ2R E RTOFO PPOFO RTOF O . S S T DS S - FP DS - E D . E S S FE SOR ors SOM OESOM FE FP SE O T E O SE T 7

                             .      4N          4D       4D 2AWI      W G t.      D      4D       U         CD U ELN W GCA2S I

S N O T W ELN PIO UE 0 2O 0 2A 0 0 Nu t A 2A2S 0 NU PI U T IA F IA I E . VFF VF VFFF ISF vFFF ISFFF PFFFF FFFFF PFFF 6 . - OO O OOO N O - OOO N OOO OOO OOOOO OO S 1 S S S IR S IR SR SR 0 NSE NE NSEE AOE NSSE AOSSE NOSSE FESSE NOSE R 8 N. RSR RR RSRR RTR RSSR RTSSR RTSSR ORSSR UEEU /AEU RTSR O 4 O . /EU /U /EUU DAU /EEU DAEEU /AEEU F I . ACL AL ACLL RRL ACCL RRCCL EECCI ARCCLCECCI SLCCL ARCL SICCI CECI

ET.

CP

                              .      CCI OUA OA OUAA CI      CCII          EEI VPAOOF OUUALSSF CCCI VPUUA OOSSF  OPUUA OAUUA                  OPUA S    s e

NI .

                              .      LSF LF              LSFF                                                            LOSSF LFSSF          LOSF E   i      ER.

UC. C t i QS EE. 0 8 3 0 9 3 3 2 1 N l i TD. 3 2 2 1 0 0 0 0 0 E b a . U b o TB. N! Q r C Ek . i E P R E n S c e Pw.. T n e Y. 9 9 0 9 0 0 1 0 1 0 1 0 1 1 1 1 1 N u q T. I - 0 E E E E A S e EL-CI - E 4 E 3 E 1 E 2 E 5 0 5 2 3 N I f 8 DA B 4 3 1 9 3 6 3 7 1 o UB 8 7 M a s QO ER. 1 1 1 4 4 1 1 O S u SP . D d R. 0 1 2 3 4 5 6 7 8 e E . 1 1 1 1 1 1 1 1 1 d c u B. M U. e N. R e lll y u3:.s. ww gQn=r 30 0 g;4E I go$EQ5h=

  *Ig5. g7J~           &          E$                                                n=

t4Yy

l 4I nl {

            %' I" me M CD"yk'D"Mhao3{! kmu D4 M[gC43 3E >                                     0               ,g*E                              -
   )

mQ  ! s i U D P P S S C E N MS D M B D4D D M B DDPSR D M B D4 DOR D M F P AL N ASA OOS N AS PSANI N ASA O0SAI N AS F SW2A WM2A2 SNA NM2A SA2RC SM2A2 SNA2C SM2A E ORMD CRMDW CAD CRMD ODWWE NRHDW CADWE NRMD LPCA CPCAI RMA CPCA LAIIR RFCAI RMAIR RFCA G VSLS VSLLS VNS VSLS VLSLS VSLLS VNLLS VSLS EYEY EYEEY EHY EYEY EEYEY EYEEY EHEEY EYEY N I ISDS ISDDS IRS ISDS IDSDS ISDDS IRDDS ISDS D . O . O R L EI E. F CF . T D T 6I . D N E N E DT... UI E E N E N I QD. L L V E I A V E L- rD. SI I F G R D G N N T E . S I S T I N G C T T C U T T E R S A N S RT O S A NF I S R . H R U I T I E R U HO U K C U R I T S N U R U .

                                  . T           C               I     S   C           TK         A C                 I I

S A C S I C N N C IC L C N N R C

                                  . W           O               I     A O             WA EB O                        I     A T O G              .                                     R                  L N                               RN N T          N      PET T             N       B   IN      T        N      PETWN T                    N N

I O N I E OS IE OR OUN N E O I SLE NE V N E OS OR IE OUNDV OE N E O I D .

                                  . S SA E T V SAI TN     L*TE      V l V E SA T      ENNI SVIOG V

E TN SAI LTENI V

                                                                                                                         - PVIG        E SA T

U . R U NI KZ G KZL NI DUI IRG G KZ NI RILI UG TP G KZL NI DUIA IRGRP G KZ NI 6

             )

L .

                                  . C     AR N ARN     M                  N AR C NCO N ARN M                                  DO N AR f      C              . C TU O       S T I     TUO SI EP OPO T I     TU CPOUO S OOISL I

T TUO SI EP OPOGL T O I TU S O N .

                                  .       MPS AMPST               TIO       AMPS           OT D AMPST TIOND AMPS 3     I              . TEUE        IEUEC               PL IEUE           TLCPI           IEUEC             PLII         IEUE
                                  . NTER TTERE N D TTER NDEMM TTERE                                                  N DRM TTER t

e A .

                                  . ESKP        ISKPJ VYAE NYAEN OMM NYAE WSI       ISKP VMNPG NYAEN ONMDG EIJU            ISKPJ NYAE WSIU            ISKP e    R                  ESMD        ISMDI           DR        ISMD        E     I    N   ISMDI           DR          N ISMD h

S P .

                                  . G                           N N 3                  G GN NR SI N

GSI NER 8 ( D . N D E I A R E I D NI IR RU D I A INU RID

               -   E              .

I T L R U L TU A R UL B S . A L T D D L ADTIN T D D N s 4 U . IRE IRE S IRE I SVOI RE S .O RE

                                  . THR         FHR         W GES FHR                 TSW            DHR W           GESJI           DHR
  )G         5 e    C              . IRO N CS S RO R CSI NTE IAV RO S CS NVIOA L IERNT          ERO CSI
                                                                                                                   .R NTENT ERO IAVIA           L      CS O

{ l b . IE D CE D RLL CE D IL IL LE D RLL L LE D a F . VOA RVOAO UOA RVOA AOTU IVOAO UOATU IvOA T RIN IW DSV IW RVWCC FIW W ESVSC FIW ES'I L H S T L 'W N I I HSTL E TER STLT I WR STL WS L TS L S B TS L WB JI SS L S BRI SS L OAFU IAFUF COI IAFU OIFNC CAFUF CAFU W .

                                  . PPOF WPOFO RTU WPOF Q

PUOIE Q RPOFO COIIC RTU Q2R E RsOF O . S S T R H S - H D .

                                  . E T E S

W E F O OSSLDW S E E TSOWM SP T I E F O OSSOM FP T I E T 7

                                  . I     N     S     N N                 S     N     IDWRU    W   N              W     LD   U  W  N U  0 S O F
                                                  / O '

S I GIA / O NA S SATIS F S O T GIA2S NA S O H E .

                                  . FFFF CFFFF                  IFF       CFFF FFFFF                 NFFFF           IFFFF           NFFF S  6 1           . OOOO COOOO N O COOO         IR OOOOO ROOOO N OOO ROOO 0           .                                                                                    IR R  8           . FESE        FESSE AOE FESE                        FSESE          FESSE           AOSSE           FESE
                                  . ORSR        ORSSR           RTR ORSR              OSRSR          ORSSR           RTSSR CRSR O  4        N.

O. UEU SLCL SLCCL UEEU DAU RRL UEU EUEU UEEU DAEEU UEU F I SLCL SCLCL SLCCL RRCCL SLCL ET. CP

                                  . SICI        SICCI           EEI       SICI OAUA OAUUA VPA OAUA OUAUA OAUUA VPUUA OAUA SCICI          SICCI           EECCI           SICI S   s:

e NI . ER . LFSF LFSSF OOF LFSF LSFSF LFSSF OOSSF LFSF E i 4. 7 C. C t i EE CS 1 1 1 0 0 0 0 0 N l i SD 0 0 0 0 0 0 0 0 E b a TB. U b NI . Q o ER . r CT E P RN EO. S e PC c T n e Y. 1 1 1 1 1 1 2 2 N u q T I 1 1 1 1 1 1 1 1 A s e mL.. . E E E 0 E E E E E N I 1 4 2 5 3 1 4 6 4 4 8 7 0 3 4 I f mBA o UB M m ER QO 4 3 3 1 1 1 9 5 O s u SP D d R. 9 0 1 2 3 4 5 6 e E. 1 2 2 2 2 2 2 2 c B u M d U. e N. R lIl

        )~

N Q D"iE= =* .... k l

                          -         b         p AI                                                                                      ypmh w$o o MAfy                                                 R       3:            yfcw

g m - i Eec' ME n e 3o{ig ro, g*OE { 4 go$ $ g,3 hCE p ygb!- S T D D D D O C N N R N R S C D P N R 4 D S C E 4 2M P4M P M B D SR N M P M D M 2D SR F AAS A0AS A ASA DSANI P AS A AS N AS ASANI F C2r y CN2T CM2A2 SA2RC SW2L CM2A WM2T CA2RC E OMt LCA LMCA OAMD ORMDW LPCAI NDWWE RAIIR ORMD LPCA ORMD CRMD ODWWE LAIIR LPCA- CPCA G VSS EYY EHYY VNSS VSLLSEYEEY VLSLS VSSS EEYEY VSLS EYYY VSSS EYEY VLSLS EYYY EEYEY N I

                         -     ISS        IRSS          ISDDS IDSDS                      ISSS       ISDS            ISSS        IDSDS D                  -

O - O R - L E - I - F n. F - D mI - D D E E WT-N- E E N NI QE - ED-L L S S L L S I A SI - I R R I R R L- F U U F U D T C C T C E - S C C N S C S CT N E C O O T E C O G - R SN I R S RN I R - H r f T N RE UI S N H T N R U HI E S s r U -

                          -    T P

E E CS A T E C TS A R S - I V V CN R I V C IN

                          -    W           E            E                OA ET W                    E               O          WA ET
                          -                                                  R    N                                                R     N G                   -

N E N N TT IN N N T N T IN N I

                          -            O I

R O I OS N SLE IE ENE V O I O N I E O I SLE NE V D

                          .            T      .U T T         .

TN VENNI T . T V T ENNI

                          -    SSA TPSA T                      SAI       EVIOG           S SA T SA                  E     SA SVIOG
)

U - RKZ UNI IUKZ NRNI N I KZL NI GG ILI TP U R KZ MI I N KZ NI G K3 MI RILI UG TP 6 L - CAR I AR I ARN N NCO C AR I AR N AR C NCO f C - CTU O S DP S D ETU TUO IPOUO SI TOISL L O TU S D TU S I T TU CPOUO S OOISL O 4 E -

                          -    TUE PS    EIPS L.PUE ER EMPST AOT D LEUEC LTERE TDEMM NTER ILCPI MPS EMPS AMPS TEUE LEUE LTER IEUE TTER NDEMM CT D TLCPI
                          -    NER '

t e A - EKP ISKP ISKPJ IIJU NMNPG ESKP VYAE FYAE ISKP ISKP EIJU NYAE VMNPG I e R - VAE FNAE FYAEN EMD RMD SMDI I I N ESMD SMD ISMD E N h S P - S S G SI N NR G S G GN NR SI ( - G 8 D - N I C R C R I R RU N D I C R D E NI IR RU D

   -   E                  -

T U A T L TU A O

                          -                                                                                                    ADTIN B      S                  -    A           H            H            T       DTIN        A          H               L SVOI 4      U                  -    IE          T     E      TRE          S   D SVO           IRE        TRE             IRE        I 5                         -    TR          IER          IHR          W   ESW         I   THR        IHR             FHR        TSW e    C                  -

IO NCS WTO ACS WRO CSI R NERNT IVIOA IRO N CS WRO CS S RO IERNT CS NVIOA l b O I D EL D EE D AL I L IE D EE VOA RVOA RVOA D CE D IL AOTU

L a F OA ROOA RVOAO RAOTU SW US UIW CC RIW UIW IW SVWCC T N NTL E L TIWL P L TSTL' !W PS L DVWER SB JI ESTL WS L
                                                                                                    ' STL HSTL N I

PS L TS L EB TER JI W - PFU UOFU UAFUF OOF RTOF RPOFO CIFNC RUOIE OAFU UAFU PPOF RPOE IAFU WPOF PIFNC OUOIE O - Q R Q R HS T S T D -

                           -         O         SO              E T

O ISOWM SP E T O E S W o SOWM SP R l 7 0 4 2W CLW PIT E N P O W WDWRU ATIS I S T W E P N O S

                                                                                                                    /

w I 4DWRU 2 A I' IS l E

              -            -   0           IA           I                S               F          I               S          0 i

6

                           -    VFF        PFFF         PFFFF            NFFFF           FFFF       PFFF CFFF VFFFF S    1
                           -         OO          OO          OOOO ROOOO OOOO                              OOO COOO                 OOCO 0              -    S          SR           S                                           S                          S R    8              -    NEE NOEE NESSE                           FSESE           FEEE       NESE            FEEE       NSESE N-        RRR        RTRR                   SR     OSRSR           ORRR       RRSR            ORRR       RSRSR O    4         O -

I -

                               /UU /AUU ALL ARLL AL RRaEU
                                                        /U
r. C LSCICI EUEU SCLCL SIII UUU SLLL /UEU ALCL SLLL UUU A C/EUEU.

L C :. F  : ET. CP CII CEII CI uCI CICI SIII CCIC"I S s e NI ER-OAALOFF LFF OPAA 4AUUA 1FSSF OUAUA LSFSF OAAA OAUA LFFF OAAA LFSF CUAUA LFFF LSFSF E i UC-C t i EE - QS-0 0 0 0 0 0 0 0 N l i SD- 0 0 0 0 0 0 0 0 E b a U b o D TB. rI Q r Cm- n-E P R E u-S e Pt-c T n 2 3 3 3 3 4 4 4 e Y N a g t T.. I 1 1 1 1 1 1 1 1 A S e E. IL. E E E E E E E E N I f mB rA - 1 1 3 0 0 6 9 4 8 2 2 1 9 8 0 0 o uB - M a vO-aR - su SP - 4 2 1 1 1 8 4 2 O S D d R. 7 8 9 0 1 2 3 4 e E . 2 2 2 c B . 3 3 3 3 3 u M . d . F e U. N l I gh. . O g - g,I( gm$5 $ H

  • 0 3 - 8N~ k uJYu0

4 , l' W y k g 3o8 N e o3 8 { g. [ 4" $ G #)'l C t k o 4 U M [. f r . gad

 ,\)w
   ,\

S C C T U S S S D N D N C. - C C D P R R D M D4DOSR D M B D4DOSR N M B P4M B P M m E N AS O0 SANI SM2T SNA2RC NRMD CADWWE NRMDW M ASA O0 SANI P SM2T2 CADWWE SNA2RC SW2L2 ORHDW ASA A0ASA A AS OAHDW ORHD CN2T2 CM2T RPCA RMAIIR RPCAI RMAIIR LPCAI- -LMCAI LPCA G VSSS "YYY VNLSLS EHEYEY VSSLS VNLSLS ETYEY VSSLsl EiEYEY VNSLS VSSS EYYEY EHYEY EYYY N I - ISSS IRDSDS ISSDS IRDSDS ISS9S IRSDS ISSS D .- O - O R-L E-F EI - CF- T T NI - N N D E ET- E E E N I UQEN >- V E V E L L S S E D .- I R R L- SI G G F U U N T N T C C E - I N E I N S C O C O G - S T T A N I S T T A N E C I R R - t w I T E' S N U R I T E S N H T N T N U -

                              -         L           I I

S A C I I S A TI E E S - L N N R C N N R V E V E

                              -        O            I        A ET O                         I     A ET W G               -
                              .        T       N P T R N IN    T        N          PET R N IN            N         E   N              N N

I N E O O I O NE V SLE N E OS OR SLE IE OUNE V OS IE R U OS IE O I D V T L ENNI V TN LTENNI TN .T TN T E SA - VIOG E SAI PVIOG S SAI TPSAI T . SA U G KZ NI D ILI I G TP G KZL NI DUILI t IRG

                                                                                                       - P R

U KZL NI IUKZL NRNI I N KZ NI

         )

6 L . N AR MN NCO N ARN M I N tO C ARN I ARN I AR r C - I T TU S OOOISL WPOUO T TUO SI OPOI EPO uO C TUO dL O SI DP ETUO SI D TU S O N I AMPS TDOT D AMPST TIOT D PLCPI MPST EIPST TEUEC LPUEC LEUE EMPS 5 IEUE NLCPI IEUEC

                               .       TTER          NIDEMM TTERE N DEMM NTERE L                                                 ERE      LTER t

C A ISKP WAIJU ISKPJ NYAE ORMNPGINYAEN ONMNPG VYAENIFNAEN FYAE WSIJU ESKPJ ISKPJ ISKF e R - ISMD DD N ISMDI DR N ESMDI RMDI SMD h S P -

                               -                             G    SI                              G SI S             S

( . NSN NR N N NR G 8-D . INI ARR RU D I A R I RU N D I C R C R _ E - R U A R U A T _ B S -

                                -                    DGDTIN                         T D           DTIN        A         T H E

T H TRE 4 U - RE N SVO I RE S SVOI IRE S T S GISW DHR W GESW W IER W IHR

  .\lv

(\ 5 l e C O DHR ERO L CS LE D NPERNT ERO IPVIOA ROL IL L LE D CSI R NTERNT IAVIOA N RLL IL Tl! R IRO IE CSI D R WTO EL ACSI D R WRO EE D CS b F . IVOA UTAOTU IVOAO UOAOTU VOAO ROOAO RVOA a - FIW DSVWCC FIW W DSVWCC RIW W USW W UIWTS1L T N

                                -          STL                  TER        STLT                 I    TER ESTLT              TITLT P      L      PS       L SS L SNB                   JI    SS       L          S B        JI     WS L W               .-      CAFU          CIIFNC             CAFUF COIFNC OAFUF UOFUF UAFU
                                -      RPOF R                UOIE       RPOFO RTUOIE PPOFO                                  RTOFO RPOF O                -

SQ R Q R H DS T H S T D -

                                -      T O

FE OESOWM SP T F O O OSSOWM T O O SP E SO O O T 7 I W WI CDWRU W I V W LDWRU I W W ELMPI1 W !' IP E W U I 0

                                -      S '

GCATIS NU S I

                                                                              '      T       GIATIS NA S

F T T IA T I E - NFFF ISFFFF NFFFF IFFFFF FFFFF PFFFF PFFF

                                .      ROOO N OOOO ROOOO N OOOO OOOOO                                                            OOO         OOO S  6 1             -

IR IR SR S 0 - R 8 - FEEE AOSESE FEESE AOSESE FEESE NOESE NEEE N- ORRR RTSRSR R RTSRSR ORRSR RTRSR RRRR O 4 O - I - UUU DAEUEU SLLL RRCLCL SLL OR UUcR O. U DAE.UEU L RR UUEU /AUEU /UUU LCL SLLCL ARLCL ALLL _ F t. I nA VP uICI ET- SIII EECICI SII EE SIICI CEICI CIII S OAAA VPUAUA OAA uAUA OAAUA OPAUA OAAA E s e NI CP_ ER LFFF OOSFSF LFFaF OOsFSF LFFSF LOFSF LFFF i UC-C t i EE QS - 0 0 0 0 0 0 0 N SD 0 l 0 0 0 0 0 0 . i E b . U b a TB. Ntn-Q o _ E}}