ML20237B092
| ML20237B092 | |
| Person / Time | |
|---|---|
| Site: | 05200003 |
| Issue date: | 08/13/1998 |
| From: | WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
| To: | |
| Shared Package | |
| ML20237B082 | List: |
| References | |
| NUDOCS 9808180042 | |
| Download: ML20237B092 (97) | |
Text
_ _ _ _ _ - - _ - - - -
- s:
En --
O Simplified Passive Advanced Light Water Reactor Plant Program AP600 Probabilistic Risk Assessment
!O l
Prepared for U.S. Department of Energy San Francisco Operations Office DE-AC03-90SF18495 i
[naina: n" a
g O @ ~
m_
m:\\ap600Spratocrev6kott.wpf.lb I
==
3
=:
i~
l i
TABLE OF CONTENTS Section Title Eage CHAPTER 1 INTRODUCTION 1.1 Background and Overview 1-1 1.2 Objectives 1-2 1.3 Technical Scope 1-3 1.4 Project Methodology Overview..
1-4 1.5 Results..........
1-6 1.6 Plant Definition.........
1-7 1.6.1 General Description.....
1-7 1.6.2 AP600 Design Improvement as a Result of Probabilistic Risk Assessment Studies
. 1-12 1.7 References 1-14 CHAPTER 2 INTERNAL INITIATING EVENTS 2.1 Introduction 2-1 2.2 Internal Initiating Event Identification and Categorization.......
2-1 2.2.1 Logic Diagram for Internal Initiating Events......
2-2 2.2.2 Loss-of-Coolant Accidents....
2-3 2.2.3 Transients........
2-6 (q
2.2.4 Anticipated Transient without Scram 2-9 2.2.5 AP600-Specific Initiating Event Analysis 2-11 2.2.6 Consequential Events.........
2-20 2.2.7 Summary of Interaal Initiating Event Categories......
2-21 23 Quantification of Internal Initiating Event Frequencies
. 2-21 2.3.1 Quantification of LOCA Initiating Event Frequencies........... 2-21 2.3.2 Quantification of Transient Initiating Event Frequencies......
.. 2-27 2.3.3 ATWS Precursor Initiating Event Frequency..........
.. 2-30 l
2.3.4 Summary of Internal Initiating Event Frequencies...
.... 2-30 2.4 References 2-30 A~ITACHMENT 2A Q~UANTIFICATION OF LOCA 1hTTIATING EVENT FREQUENCIES l
2A.1 Primary System Pipe Break Frequencies 2A-1 l
2A.2 Reactor Coolant System Leakage Initiating Event Frequency............
2A-6 l
2A.3 Steam Generator Tube Rupture Initiating Event Frequency....
2A-15 2A.4 Interfacing System LOCA Initiating Event Frequency..
2A-19 l
2A.5 -
Quantification of Stuck-open Pressurizer Safety Valve and Accumulator Interface Break and IRWST Interface Break..
2A-29 2A.6 Quantification Secondary-side Line Breaks and Stuck-open Main Steam Line Safety Valve Frequencies..........
2A-34 2A.7 Initiating Events Review Data Summary and INPO Data.
2A-39 l
l
\\
(Om) l ENEl.
Revision: 9
[ W85tingt10Use Ets::bm April 11,1997 iii ow60cvavn 9w -tocypt;id
.g... =
=
0 TABLE OF CONTENTS (Cont.)
Section Title Eage CHAlrTER 3 MODELING OF SPECIAL INITIATORS 3.1 Introduction 3-1 3.2 Ground Rules for Special Initiating Event Analysis..................3-1 3.3 Loss of Compon nt Cooling Water System / Service Water System Initiating Event 3-2 3.4 Loss of Compressei and Instrument Air System Initiating Event 3-2 3.5 Spurious Actuation of Automatic Depressurization System 3-3 3.5.1 Evaluation of Automatic Depressurization System Spurious Actuation.. 3-3 3.6 References 3-8 CHAPTER 4 EVENT TREE MODELS 4-1 4.1 Introduction 4-1 4.2 Large LOCA Event Tree Model..
4-3 4.2.1 Event Description.,
4-3 4.2.2 Event Tree Model and Nodes 4-4 4.2.3 Event Tree Success Paths.............
4-5 4.2.4 Operator Actions............
4-6 4.2.5 Event Tre,e End States..
4-6 4.3 Medium LOCA Event Tree Model........
4-6 4.3.1 Event Description...
4-6 4.3.2 Event Tree Model and Nodes 4-7 4.3.3 Event Tree Success Paths.......
. 4-9 4.3.4 Operator Actions.
4-9 4.3.5 Event Tree End States 4-9 4.4 Core Makeup Tank Line Break Event Tree Model.....
.. 4-10 4.4.1 Event Description.
. 4-10 4-10 4.4.2 Event Tree Model and Nodes 4.4.3 Event Tree Success Paths.........................
.. 4-12 4.4.4 Operator Actions...
.... 4-12 4.4.5 Event Tree End States.......
. 4-13 4.5 Direct Vessel Injection Line Break Event Tree Model..
. 4-13 4.5.1 Event Description..........
.. 4-13
... 4-14 4.5.2 Event Tree Model and Nodes 4.5.3 Event Tree Success Paths.......
........... 4-15 4.5.4 Operator Actions.
....... 4-15 4-15 4.5.5 Event Tree End States.
4.6 Intermediate LOCA Event Tree Model
. 4-16 4.6.1 Event Description....
.. 4-16
..... 4-16 4.6.2 Event Tree Model and Nodes 4.6.3 Event Tree Success Paths..
.. 4-19 4.6.4 Operator Actions.
.... 4-19 4.6.5 Event Tree End States 4-19 O
Revision: 9
,f T Westirighouse April 11,1997 o%p600$ra\\rev 9\\pra-toc.wpf.lb iv
1 i
=:
=
m AU TABLE OF CONTENTS (Cont.)
Section Title Eage 4.7 Small LOCA Event Tree Model4-20 4.7.1 Event Description.
............. 4 20 4.7.2 Event Tree Model and Nodes
.......... 4-20 4.7.3 Event Tree Success Paths..................
..... 4-23 4.7.4 Operator Actions.................................... 4-24 4.7.5 Event Tree End States...........
. 4-24 4.8 RCS Leak Event Tree Model.................
.............. 4-24 4.8.1 Event Description................
....... 4-24 4.8.2 Event Tree Model and Nodes
.............. 4-25 4.8.3 Event Tree Success Paths.....
...... 4-25 4.8.4 Operator Actions...................
............. 4-26 4.8.5 Event Tree End States
...............4-26 4.9 PRHR Tube Rupture Event Tree Model.....
......................4-26 4.9.1 Event Description......
. 4-26 4.9.2 Event Tree Model and Nodes
...... 4-26 4.9.3 Event Tree Success Paths
............ 4-27 4.9.4 Operator Actions
.....4-27 4.9.5 Event Tree End States
. 4-28 n
4.10 Steam Generator Tube Rupture Event Tree Model.......
............ 4-28
( ')
4.10.1 Event Description..
........................4-28 4.10.2 Event Tree Model and Nodes
............................4-30 i
4.10.3 Event Tree Success Paths............................... 4-34
)
4.10.4 Operator Actions.......
.................. 4-34 J
4.10.5 Event Tree End States
..................... 4-35 4.11 Reactor Vessel Rupture Event Tree Model
. 4-35 4.11.1 Event Description....................
......... 4-3 5 4.11.2 Event Tree Model and Nodes
............. 4-3 5 4.11.3 Event Tree Success Paths........
. 4-36 4.11.4 Operator Actions..
................... 4-3 6 4.11.5 Event Tree End States..........
.............. 4-36 4.12 Interfacing System LOCA Event Tree Model.......
.................4-36 l
4.12.1 Event Description............
.. 4-36 l
4.12.2 Event Tree Model and Nodes
............................4-36 4.12.3 Event Tree Success Paths........................
. 4-36 l
4.12.4 Operator Actions...............
4-37 l
4.12.5 Event Tree End States
...... 4-37 4.13' Transients with MFW Event Tree Model
.4-37 4.13.1 Event Description.
.. 4-37 4.13.2 Event Tree Model and Nodes
. 4-39 4.13.3 Event Tree Success Paths........
...... 4-4 3 l
4.13.4 Operator Actions 4-43 4.13.5 Event Tree End States.
... 4-43 OO Revision: 9 W WBStingh00S6 N.m b A ril 11.1997 P
w y
oMp600\\ prs \\rev 9%pra-toc.wpf.lb
Re-
=.n I
TABLE OF CONTENTS (Cont.)
Section Title
.Pajte 4.14 Transients with Loss of RCS Flow Event Tree Model..
........... 4-44
. 4-44 4.14.1 Event Description....................................
4.14.2 Event Tree Model and Nodes
........... 4-44 4.14.3 Event Tree Success Paths....
............ 4-47 4.14.4 Operator Actions............
......... 4-4 8 4.14.5 Event Tree End States
........ 4-4 8 4.15 Transients with Loss of MFW to One SG Event Tree Model.............. 4-48 4.15.1 Event Description........
...... 4-48
...................... 4-49 4.15.2 Event Tree Model and Nodes 4.15.3 Event Tree Success Paths......
........... 4-5 2 4.15.4 Operator Actions.....
........... 4-52 4.15.5 Event Tree End States
...... 4-53 4.16 Transients with Core Power Excursion Event Tree Model...
4-53 4.16.1 Event Description.............
...... 4-53 4.16.2 Event Tree Model and Nodes
................... 4-53 4.16.3 Event Tree Success Paths
. 4-57 4.16.4 Operator Actions..................
........,4-57 4.16.5 Event Tree End States
......... 4-57 4.17 Transients with Loss of CCS/SWS Event Tree Model.................. 4-5 8 4.17.1 Event Description.........
...........................4-58 4.17.2 Event Tree Model and Nodes
........ 4-58 4.17.3 Event Tree Success Paths.
...... 4-61 4.17.4 Operator Actions........
.. 4-62 4.17.5 Event Tree End States
.. 4-62 4.18 Loss of Main Feedwater Event Tree Model
............ 4-62 4.18.1 Event Description........
............ 4-62 4.18.2 Event Tree Model and Nodes
...... 4 64 4.18.3 Event Tree Success Paths
.............................. 4-68 4.18.4 Operator Actions.....
4-68 4.18.5 Event Tree End States
................ 4-68 4.19 Loss of Condenser Event Tree Model......
...... 4-69 4-69 4.19.1 Event Description.......
4.19.2 Event Tree Model and Nodes
. 4-69
..... 4-72 4.19.3 Event Tree Success Paths.
4.19.4 Operator Actions.
......... 4-7 2 4-73 4.19.5 Event Tree End States O
W85tiligh0038
,1997 6
ohp600\\pravev.ppra-toc.wpf:1b vi
%E w i J
TABLE OF CONTENTS (Cont.)
Section Title P.!yte 4.20 Loss of Compressed Air Event Tree Model......................... 4-7 3 4.20.1 Event Description.
.... 4-73 4.20.2 Event Tree Model and Nodes
. 4-74 4.20.3 Event Tree Success Paths......................
4-77 4.20.4 Operator Actions.........
...... 4-77 4.20.5 Event Tree End States
.. 4-77 4.21 Loss of Offsite Power Event Tree Model
. 4-78 i
4.21.1 Event Description........
.... 4-7 8 4.21.2 Event Tree Model and Nodes
.. 4-78 4
4.21.3 Event Tree Success Paths
................. 4-82 1
1 4.21.4 Operator Actions..........
. 4-82 l
4.21.5 Event Tree End States
... 4-83 4.22 Main Steam Line Break Downstream of MSIVs Event Tree Model
... 4-83 4.22.1 Event Description....
. 4-83 4.22.2 Event Tree Model and Nodes
.... 4-84 4.22.3 Event Tree Success Paths...........
. 4-87 4.22.4 Operator Actions.............
............ 4-87 4.22.5 Event Tree End States
..... 4-88 s
)
4.23 Main Steam Line Break Upstream of MSIVs Event Tree Model........... 4-88 v
4.23.1 Event Description..........
......... 4-88 4.23.2 Event Tree Model and Nodes
.. 4-89 4.23.3 Event Tree Success Paths.............................. 4-92 4.23.4 Operator Actions.
. 4-92 4.23.5 Event Tree End States
....... 4-93 1
4.24 Stuck-Open Secondary-Side Safety Valve Event Tree Model 4-93 4.24.1 Event Description...
. 4-93 4.24.2 Event Tree Model and Nodes
.. 4-94 4.24.3 Event Tree Success Paths.
... 4-97 4.24.4 Operator Actions..............
.. 4-97
. 4-97 4.24.5 Event Tree End States..........................
4.25 ATWS Precursors without MFW Event ~ree Model........
4-98 4.25.1 Event Description....................
. 4-98 4.25.2 Event Trev Model and Nodes
... 4-100
. 4-104 4.25.3 Event Tree Success Paths.......
4.25.4 Operator Actions.....
.. 4-104 4.25.5 Event Tree End States 4-105 b
V Revision: 9
[ WB5ti!1gt100se E M um.
April 11,1997 m
vil c$ap60opaVev,9Wtoc wpf:lb l
l
I M
e i
TABLE OF CONTENTS (Cont.)
t Section Title fate 4.26 ATWS Precursor with SI Event Tree Model
.. 4-105 l
4.26.1 Event Description.
4-105 4.26.2 Event Tree Model and Nodes 4-106 4.26.3 Event Tree Success Paths...........
.... 4-109 4.26.4 Operator Actions,....
... 4-109 4.26.5 Event Tree End States
..... 4-110 4.27 ATWS Precursor Transients with MFW Event Tree Model..
. 4-110 4.27.1 Event Description.
4-1 10 4.27.2 Event Tree Model and Nodes
.. 4-111 4.27.3 Event Tree Success Paths..
.... 4-114 4.27.4 Operator Actions.
......... 4-114 4.27.5 Event Tree End States
.. 4-114 4A Event Tree Analysis Methodology...
4A-1 4A.1 Overview......
4A-1 4A.2 Event Tree Terminology.............
4 A-1 4A.3 Event Tree Development.
4A-2 4A.4 Success Criteria....................
4A-4 4 A.4.1 Time Frame
. 4A-4 4A.5 Consequential Events....
4 A-5 4A.6 Definition of Core Damage Categories....
4 A -5 CHAPTER 5 SUPPORT SYSTEMS 5.1 Introduction 51 5.2 Support Systems and Their Interdependencies....
5-1 5.3 Front-Line Systems and Their Dependencies..........
5-1 CHAPTER 6 SUCCESS CRITERIA ANALYSIS 6.1 Introduction 6-1 6.2 Acceptance Criteria and Critical Functions for Success Criteria..
6-1 6.3 Event Sequences and Timing, Passive / Active System Interactions.
6-3 6.3.1 General Sequence Success Criteria.......
6-3 6.3.2 Timing of Events and Key Operator Actions 6-8 6.3.3 Passive / Active System Interactions 6-17 6.3.4 Sequence Success Criteria Summary.........
. 6-19 6.4 Event Tree Top Events Success Criteria
. 6-20 6.4.1 Accumulators
.......... 6-21 6.4.2 Full RCS Depressurization...............
6-22 6.4.3 Partial RCS Depressurization...........
. 6-33 6.4.4 Location of Main Steam Line Break Upstream of MSIVs.
...... 6-40 6.4.5 Large LOCA Break Size Sufficient for IRWST Injection with Failed Containment Isolation..
... 6-41 e
Revision: 9 April 11,1997 h,,,,,.
[ Westiflgt10Use o%p6005praVev.yspra-tocwpf:Ib viij
g i
t V
TABLE OF CONTENTS (Cont.)
Section Title Page 6.4.6 Main Steam Line Isolation Following Steam Line Break......... 6-41 6.4.7 Steam Generator Isolation Following SGTR
.. 6-43 6.4.8 Containment Isolation for Large LOCA
... 6-44 6.4.9 Core Makeup Tank System............................. 6-4 5 6.4.10 Turbine Bypass and Main Condenser Available - SGTR.
. 6-50 6.4.11 Auxiliary Pressurizer Spray.....
..... 6-51 6.4.12 RCS Boration Following ATWS...........
... 6-52 6.4.13 RCS Makeup From the Chemical and Volume Control System..... 6-53 6.4.14 Inventory and Reactivity Control Following Steam Line Break..... 6-5 5 6.4.15 Diverse Actuation System Operation for ATWS
.... 6-5 6 6.4.16 Emergency Diesel Generators Operate..
......... 6-5 8 6.4.17 Main Feedwater Available.........
. 6-59 6.4.18 Gravity Injection...........
....... 6-62 6.4.19 Motor Generator Sets Tripped.....
6-67 6.4.20 RCS Pressure Relief Via Pressurizer Safety Valves....
.. 6-68 6.4.21 Patsive Residual Heat Removal System Isolation Following PRHR Tube Rupture
.. 6-69 6.4.22 Passive Residual Heat Removal System Operatica............. 6-70 l]
6.4.23 Pressurizer Safety Valves Reclose
............ 6-74 v
6.4.24 Offsite Power Recovered Within One-half Hour............... 6-75 6.4.25 Reactor Coolant Pumps Trip.
......... 6-7 6 6.4.26 Water Recirculation to the RCS..
......... 6-7 8 6.4.27 Normal 14esidual Heat Removal System..
..... 6-80 6.4.28 Reactor Trip.............
........ 6-84 6.4.29 Manually Step-In Control Rods Following ATWS
...... 6-87 6.4.30 Manual Controlled Shutdown
........ 6-8 8 6.4.31 Startup Feedwater System 6-8 8 6.4.32 Steam Generator Overfilling Protection.......
6-93 6.4.33 Steamline Break-Induced Steam Generator Tube Rupture
... 6-94 6.4.34 Reclosure of the Main Steamline Relief Valves.
. 6-95 6.5 ATWS Modeling Considerations..
.... 6-98 6.5.1 Background.
.. 6-98 6.5.2 Success Criteria for Shutdown...........
...... 6-98 6.5.3 Success Criteria to Achieve Zero UET...
..... 6-99 6.5.4 Success Criteria Credit for Reactor Coolant Pump Trip
. 6-100 6.6 References.....................................6-101 CHAPTER 7 FAULT TREE GUIDELINES 7.1 Purpose 7-1 7.2 Fault Tree Development........
7-1 7.2.1 Procedural Steps for Fault Tree Preparation...
7-1 7.2.2 Procedural Steps for Fault Tree Construction.
7-2 OV Revision: 9
[ Westilighouse fh_
April 11,1997 iX o:\\np600\\pra\\ ret pra. toc.wpf:lb 9\\
I a
=
1 I
O I
TABLE OF CONTENTS (Cont.)
Section Title Page 7.3 Primary Events to be Considered in Fault Trees..
7-3 7-4 7.3.1 Random Component Failure 7.3.2 Outage for Maintenance and Testing 7-6 7.3.3 Common Cause Failures....................
7-7 7.3.4 Human Errors.....
7-7 7.3.5 Power and Control Model.............................. 7-10 7.4 Data Base.
..................................... 7-11 7.5 Fault Tree Model: Identification Codes
........ 7-11 7.5.1 Identification Code for Fault Tree Names
............... 7-11 7.5.2 Identification Code for Support Systems...
7-12 7.5.3 Identification Code for Primary Event Names
.. 7-12 7.5.4 Identification Code for Common Cause Failures 7-12 7.5.5 Identification Code for Undeveloped Events (Modules)
..... 7-13 7.5.6 Identification Code for Operator Errors
................7-14 7.6 Fault Tree Quantification
.................7-14 7.7 References 7-15 VkL P SS IDU T
8.1 System Description
8-1 8.1.1 Support Systems..................
8-1 8.1.2 Instmmentation and Control 8-1 8.1.3 Test and Maintenance Assumptions 8-2 8.2 System Operation...
8-2 8.3 Pe:formance during Accident Conditions....
8-3 8.3.1 Non-Loss-of-Coolant Accident Transients.......
8-3 8.3.2 Loss-of-Coolant Accidents................
8-3 8.3.3 Passive Residual Heat Removal Heat Exchanger Tube Rupture 8-4 8.4 Initiating Event Review 8-4 8.4.1 Initiating Events Impacting the Passive Residual Heat Removal System...
8-4 8.4.2 Initiating Events Due to Loss of the Passive Residual Heat Removal System 8-5 8-5 8.5 System Logic Models.....
8.5.1 Assumptions and Boundary Conditions 8-5 8-6 l
8.5.2 Fault Tree Models....
8.5.3 Human Intertetions 8-7 8.5.4 Common Cause Failures............
8-7 l
8.6 References............
8-7 9
Revision: 9 April 11,1997 6
WB5tingt100S6 o:\\ap600\\pra\\rev 9%pra-toc.wpf:lb X
Q
\\
v TABLE OF CONTENTS (Cont.)
Section Title P, age CHAPTER 9 PASSIVE CORE COOLING SYSTEM - CORE MAKEUP TANK
9.1 System Description
9-1 9.1.1 S upport Systems...........................
9-1 9.1.2 Instrumentation and Control.......................
9-1 9.1.3 Test and Maintenance Assumptions 9-2 9.2 System Operation...........................
9-2 9.3 Performance during Accident Conditions............................. 9-3 9.3.1
'nadvertent Opening of a Steam Generator Relief or Safety Valve 9-3 9.3.2 Steam Line Break.............
9-3 9.3.3 Steam Generator Tube Rupture...........................
9-3 9.3.4 Reactor Coolant System Heatup Transients.................
9-4 9.3.5 Loss-of-Coolant Accidents..
9-4 9.3.6 Loss of 0ffsite Power............
9-4 9.3.7 Anticipated Transient without Trip.............
9-4 9.4 Initiating Event Review 9-5 9.4.1 Initiating Events Impacting the Core Makeup Tank Subsystem......
9-5 9.4.2 Initiating Events Due to Loss of the Core Makeup Tank Subsystem... 9-5 9.5 System Logic Models.......
9-5 (g) 9.5.1 Assumptions and Boundary Conditions....................... 9-5 v
9.5.2 Fault Tree Models.
9-7 9.5.3 Human Interactions 9-8 9.5.4
( 'nmon Cause Failures..............
9-8 9.6 References................................................
9-8 CHAPTER 10 PASSIVE CORE COOLING SYSTEM - ACCUMULATOR 10.1
System Description
...... 10-1 10.1.1 Support Systems..................................... 10- 1 10.1.2 Instrumentation and Control.
............... 10- 1 10.1.3 Test and Maintenance Assumptions
. 10-1 10.2 System Operation..............
........... 10-2 10.3 Performance during Accident Conditions..
................ 10-2 10.3.1 Steam Line Break
. 10-2 10.3.2 Loss-of-Coolant Accidents or Non-Loss-of-Coolant Accidents with Automatic Depressurization System.....
.... 10-2 10.4 Initiating Event Review
............ 10-3 10.4.1 Initiating Events Impacting the Accumulator Subsystem.......... 10-3 10.4.2 Initiating Events Due to Loss of the Accumulator Subsystem....... 10-3 r
>(
Revision: 9 T Westinghouse
@b April 11,1997 r
gj o:\\ap600\\pra\\rev 9\\pra-toc.wpf.lb 1
t._____
e TABLE OF CONTENTS (Cont.)
Section Title hge
... 10-3 10.5 System Logic Models.....
10.5.1 Assumptions and Boundary Conditions.................
. 10-3
. 10-4 10.5.2 Fault Tree Models......
10.5.3 Human Interactions
...... 10-5 10.5.4 Common Cause Failures.
. 10-5 10.6 References
. 10-5 CHAPTER 11 PASSIVE CORE COOLING SYSTEM - AUTOMATIC DEPRESSURIZATION SYSTEM 11.1
System Description
... 11-1 11.1.1 Suppost Systems.........
11-1 11.1.2 Instrumentation and Control
. 11-2 11.1.3 Test and Maintenance....
... 11-3 11.2 System Operation.....
11-3 11.3 Perfonnance during Accident Conditions...............
11-3
. 11-3 11.3.1 Loss-of-Coolant Accidents...........
11.3.2 Tran sients......................................... 11-4 11-4 11.4 Initiating Event Review 11.4.1 Initiating Events Impacting the Automatic Depressurization System.. 11-4 11.4.2 Initiating Events Due to Loss of the Automatic Depressurization System..
................... 11-4 11.5 System Logic Models......
.................... 11-4 11.5.1 Assumptions and Boundary Conditions.
.... 11-4 11.5.2 Fault Tree Models.
.......... 11-5 11.5.3 Human Interactions
................... 11-7 11.5.4 Common Cause Failures 11-8 11.6 References
. 11-8 CHAPTER 12 PASSIVE CORE COOLING SYSTEM - IN-CONTAINMENT REFUELING WATER STORAGE TANK 12.1
System Description
.......... 12-1 12.1.1 Support Systems...........
...... 12-1 12.1.2 Instrumentation and Control 12 1 l
12.1.3 Test and Maintenance Assumptions...........
. 12-2 12.2-System Operation....
... 12 2 12.3 Performance during Accident Conditions.
12-2 12.3.1 Transients...........................
12-4
............... 1 2 -4 12.3.2 Loss-of-Coolant Accidents
(
12.3.3 Severe Accident Core Damage Mitigation 12-5 l
l 1
e A
,1997 W85tl!1gh00S8 o$ap600\\pra\\rev_9%pra-toc *pf.Ib xii
+ -w b
- O tO) w TABLE OF CONTENTS (Cont.)
i 1
Section Title
_P,. age 12.4 Initiating Event Review
..... 12-5 12.4.1 Initiating Events Impacting the IRWST Subsystem..
.... 12-5 12.4.2 Initiating Events Due to Loss of the IRWST Subsystem..
. 12-6 12.5 System Logic Models
......... 12-6 l
12.5.1 Assumptions and Boundary Conditions.
.... 12-6 12.5.2 Fault Tree Medels..
. 12-8 l
l 12.5.3 Human Interactions 12-9 12.5.4 Common Cause Failures..
. 12-10 12.6 References........
12-10 CHAPTER 13 PASSIVE CONTAINMENT COOLIM SYSTEM 13.1
System Description
............ 13-1 13.1.1 Support Systems
. 13-1
..... 13-1 13.1.2 Instrumentation and Control 13.1.3 Test and Maintenance Assumptions
.......... 13-2 13.2 System Operation....
.. 13-2 13.3 Performance during Accident Conditions.......
13-2 13.3.1 Post-Reactor Trip with Loss of All ac Power.................. 13-2 (n) 13.3.2 Automatic Depressurization System (ADS) Actuation............ 13-2 13.3.3 Post-Loss-of-Coolant Accident..
. 13-3 13.3.4 Post-Main Steam Line Break............................ 13-3 13.4 Initiating Event Review
.............. 13-3 13.4.1 Initiating Events Impacting the Passive Containment Cooling System................
........ 13-3 13.4.2 Ir.itiating Events Due to Loss of the Passive Containment Cooling System....
........... 13 -4 13.5 System Logic Model.
... 13-4 13.5.1 Assumptions and Boundary Conditions..
13-4 13.5.2 Fault Tree Model.......
..... 13-6 13.5.3 Human Interactions 13-6 13.5.4 Common Cause Failures..
...... 13-6
)
13.6 References.
....... 13-7
)
CHAPTER 14 MAIN AND STARTUP FEEDWATER SYSTEM i
14.1-
System Description
... 14-1 14.1.1 Support Systems
...... 14-1 14.1.2 Instrumentation and Control 14-1 14.1.3 Test and Maintenance Assumptions.........
14-2 l
(D U
Revision: 9 ENE 3 WBStirighouse Wh April 11,1997 xiii o:\\ap600Nprairev.9\\pra-toc.wpf; 1 b l
1 l
t L_____________.__._.._
=
0 TABLE OF CONTENTS (Cont.)
Section Title f.aye 14.2 System Operation
............... 14-2 14.3 Performance during Accident Conditions............................ 14-2 14.4 Initiating Event Review
. 14-4 14.4.1 Initiating Events Impacting the Main and Startup Feedwater and Condensate Systems................................... 14-4 14.4.2 Initiating Events Due to Loss of the Main and Startup Feedwater and Condensate Systems....................... 14-5 14.5 System Logic Models...
.... 14-5 14.5.1 Assumptions and Boundary Conditions.......
14-5
........ 14-7 14.5.2 Fault Tree Models....
.............. 14-8 14.5.3 Human Interactions 14.5.4 Common Cause Failures.....
........... 14-8 14.6 References
..... 14-8 CHAPTER 15 CHEMICAL AND VOLUME CONTROL SYSTEM 15.1
System Description
. 15-1 15.1.1 Support Systems..
.. 15-1 15.1.2 Instrumentation and Control Assumptions..
.... 15-1 15.1.3 Test and Maintenance Assumptions
.. 15-2 15.2 System Operation
..... 15-3 15.3 Performance during Accident Conditions..
.... 15-3 l
15.4 Initiating Event Review
........ 15-5 15.4.1 Initiating Events Impacting the Chemical and Volume Control System.15-5 15.4.2 Initiating Events Due to Loss of the Chemical and Volume Contro1 System.............
.. 15-5 i
15.5 System Logic Models.........
...... 15-5 15.5.1 Assumptions and Boundary Conditions....
..... 15-5 l
... 15-7 i
15.5.2 Fault Tree Models.............................
15.5.3 Human Interactions
... 15-8 1
15.5.4 Common Cause Failures..
......... 15-8 l
15.6 References............
.... 15-8 i
CHAPTER 16 CONTAINMENT HYDROGEN CONTROL SYSTEM l
16.1
System Description
.. 16-1 l
16.1.1 Support Systems...
16-1 16.1.2 Instrumentation and Control
...... 16-1 l
16.1.3 Test and Maintenance.
..... 16-2 l
1 i
1
~
Oll l
Revision: 9 l
April 11,1997
'6
[ WBStingh00SO o: sap 60%rasrev 9spra-ioc.wpf:tb xiv
. _ _ _ _ __-__- -___ - __ - ____ __ - _ _ ____- --_- ___ - __ _ ____________ _________ _________ - ____ O
t.:--r o
\\
i v
TABLE OF CONTENTS (Cont.)
Section Title Page 16.2 System Operation..................
............ 16-2 16.3 Performance during Accident Conditions.
.... 16-2 16.4 Initiating Event Review
..... 16-2 16.5 System Logic Model.................
...... 16-2 16.5.1 Assumptions and Boundary Conditions.
... 16-3 16.5.2 Fault Tree Model...
..................... 1 6-3 16.5.3 Human Interactions
............ 16-4 16.6.4 Common Cause Failures.............
.. 16-4 16.6 References
.........................................16-4 CHAPTER 17 NORMAL RESIDUAL HEAT REMOVAL SYSTEM 17.1
System Description
.. 17-1 17.1.1 Support Systems.....
. 17-1 17.1.2 Instrumentation and Control
.... 17-1 17.1.3 Test and Maintenance Assumptions.....
.... 17-1 17.2 System Operation................
.. 17-2 17.3 Performance during Accident Conditions.
.... 17-2 17.4 Initiating Event Review
. 17-3 c
3
(
17.4.1 Initiating Events Impacting the Normal Residual Heat
{
b Removal System.....
.............. 17-3 17.4.2 Initiating Events Due to Loss of the Noanal Residual Heat Removal System......
. 17-4 17.5 System Logic Models....
... 17-4 17.5.1 Assumptions and Boundary Conditions
. 17-4 17.5.2 Fault Tree Models.........
.. 17-6 17.5.3 Human Interactions
............... 1 7-7 17.5.4 Common Cause Failures.......
17-7 17.6 References
. 17-7 CHAPTER 18 COMPONENT COOLING WATER SYSTEM 18.1
System Description
.........................18-1 18.1.1 Support Systems
..... 18-1 18.1.2 Instrumentation and Control
.... I 8-1 18.1.3 Test and Maintenance Assumptions
... 18-1 18.2 System Operation..................
...... 18-2 18.3 Performance during Accident Conditions...
.......... 18-2 18.4 Initiating Event Review
. 18-2 18.4.1 Initiating Events Impacting the Component Cooling Water System... 18-3 18.4.2 Initiating Events Due to Loss of the Component Cooling Water System......
... 18-3
/m N.)i Revision: 9 3 W85tingh00S8 hh_
April 11,1997 XV o:\\ap600\\prairev 9%pra-toc.wpf.lb
e TABLE OF CONTENTS (Cont.)
Section Title f, age 18.5 System Logic Models...................
............ 18-3 18.5.1 Assumptions and Boundary Conditions.....
..... 18-3 18.5.2 Fault Tree Models........
............... 1 8-4 18.5.3 Human Interactions
. 18-5 18.5.4 Common Cause Failures....
..... 18-5 18.6 References 18-5 CHAPTER 19 SERVICE WATER SYSTEM 19.1
System Description
19-1 19.1.1 Support Systems...
..... 19-1 19.1.2 Instrumentation and Control 19-1 19.1.3 Test and Maintenance Assumptions
.. 19-1 19.2 System Operation.......
. 19-2 19-2 19.3 Performance during Accident Conditions.................
19.4 Initiating Event Review
. 19-2 19.4.1 Initiating Events Impacting the Service Water System.......
... 19-3 19.4.2 Initiating Events Due to Loss of the Service Water System......
19-3 19-3 19.5 System Logic Models....
19.5.1 Assumptions and Boundary Conditions...................... 19-3 19.5.2 Fault Tree Models.......
19-5
......... 19-5 19.5.3 Human Interactions 19.5.4 Common Cause Failures
..... 19-5 19.6 References................
. 19-5 CHAPTER 20 CENTRAL CHILLED WATER SYSTEM
............ 20-1 20.1
System Description
.. 20-1 20.1.1 Support Systems.
20.1.2 Instrumentation and Control
........... 20- 1 20.1.3 Test and Maintenance Assumptions....................... 20-1 20.2 System Operation........
........ 20-2 20.3 Performance during Accident Conditions................
.. 20-2 20.4 Initiating Event Review 20-2 20.4.1 Initiring Evem Im: acting the Central Chilled Water System...... 20-3 20.4.2 Initinting Events Due to Loss of the Central CC.ed Water Syst m..
.... 20-3 20.5 System Logic Model
.............. 20-3
..... 20-3 20.5.1 Assur iptions and Boundary Conditions.....
20.5.2 Fault Tree Mcdel.
..................... 2 0-4 20.5.3 Humn Interactions
. 20-4 20.5.4 Common Cause Failures...
20-4 p
,1997 WB5tiligt100SB o$ap6005pra\\rev_9% pre-tocMlb xvi
= = _
R_ _
\\v\\
/
/
TABLE OF CONTENTS (Cont.)
Section Title Eage 20.6 References
...... 20-5 CHAPTER 21 AC POWER SYSTEM 21.1
System Description
21-1 21.1.1 Support Systems
....... 21-2 21.1.2 Instrumentation and Control
....... 21-2 21.1.3 Test and Maintenance Assumptions.........
. 21-2 21.2 System Operation
...... 21-2 21.3 Performance during Accident Conditions..
... 21-3 21.3.1 Automatic Load Shedding
.. 21-3 21.3.2 Manual Transfer
. 21-3 21.3.3 Electric Circuit Protection
. 21-3 21.4 Initiating Event Review
.. 21-4 21.4.1 Loss of the Main Generator.
21-4 21.4.2 Loss of Offsite Power.
... 21-4 21.4.3 Loss of 4160-vae and 480-vac Busses..
........ 21-5 21.5 System Logic Models...
. 21-5 21.5.1 Assumptions and Boundary Conditions...
........ 21 5
(
21.5.2 Fault Tree Models...
........ 21-8
\\
21.5.3 Human Interactions 21-8 21.5.4 Common Cause Failures...
..................... 21-9 21.6 References 21-9 CHAPTER 22 CLASS 1E DC AND UNINTERRUPTIBLE POWER SUPPLY SYSTEM 22.1
System Description
22-1 22.1.1 Support Systems
. 22-1 22.1.2 Instrumentation and Control 22-1 22.1.3 Test and Maintenance Assumptions........
. 22-2 22.2 System Operation..............
.. 22-2 22.3 Performance during Accident Conditions.
22-2 22.4 Initiating Event Review 22-3 22.4.1 Initiating Events Impacting the Class IE de and UPS System 22-3 22.4.2 Initiating Events Due to Loss of the Class 1E de and UPS System.
22-3 22.5 System Logic Models......................
. 22-3 22.5.1 Assumptions and Boundary Conditions.......
. 22-3 22.5.2 Fault Tree Models
. 22-4 22.5.3 Human 1 interactions..
... 22-5 22.5.4 Common Cause Failures..
. 22-5 22.6 References...
...... 22-5 i
l fmC
~
Revision: 9 ENE 3 Westinghouse wh.
April 11,1997 xvij o:\\ap600Nprairev.95ra-toc.wptib
g l_
O TABLE OF CONTENTS (Cont.)
Section Title Page CHAPTER 23 NON-CLASS lE DC AND UPS SYSTEM 23.1
System Description
... 23-1 23.1.1 Support Systems..................
.......... 23-1 23.1.2 Instrumentation and Control
...... 23-1 23.1.3 Test and Maintenance Assumptions....
..... 23-1 23.2 System Operation..........
23-2 23.3 Performance during Accident Conditions........................... 23-2 23.4 Initiating Event Review 23-2 23.4.1 Initiating Events Impacting the Non-Class IE de and UPS System
. 23-3 23.4.2 Initiating Events Due to Loss of the Non-Class IE de and UPS System.
...... 23-3 23.5 System Logic Models
. 23-3 23.5.1 Assumptions and Boundary Conditions.................... 23-3 23.5.2 Fault Tree Models.
.. 23-5 23.5.3 Human Interactions.
... 23-5 23.5.4 Common Cause Failures.........
.............. 23-5 23.6 References...
............... 23-5 CHAPTER 24 CONTAINMENT ISOLATION
...... 24-1 24.1 System Description..............
24.1.1 Support Systems.............
.. 24-1 24.1.2 Instrumentation and Control
.... 24-1 24.1.3 Test and Maintenance Assumptions.
......................24-1 24.2 System Operation...
.. 24-2 24.3 Performance during Accident Conditions...
.... 24-2 24.4 Initiating Even; Review
......... 24-2 24.4.1 Initiating Events Impacting Containment Isolation
..... 24-2 24.4.2 Initiating Events Due to Loss of Containment Isolation System..... 24-2
.... 24-3 24.5 System Logie Models.
24.5.1 Assumptions and Boundary Conditions......
. 24-4 24.5.2 Fault Tree Models...
...... 24-5 24.5.3 Human Interactions..
................. 24-6 24.5.4 Common Cause Failures.
.... 24-6
. 24-6 24.6 References O
Revision: 9 ENEL 3 Westiligh00Se April 11,1997 kva h o:\\ap600\\pra\\rev.9pra-tocwpf.lb xviii
ilN G
TABLE OF CONTENTS (Cont.)
Section Title Eage CHAPTER 25 COMPRESSED AND INSTRUMENT AIR SYSTEM 25.1
System Description
25-1 25.1.1 Support Systems 25-2 25.1.2 Instrumentation and Control 25-2 25.1.3 Test and Maintenance Assumptions...............
.. 25-3 25.2 System Operation..............
. 25-3 25.3 Performance during Accident Conditions.
25-3 25.4 Initiating Event Review
. 25-4 25.4.1 Initiating Events Impacting the Instmment Air Subsystem 25-4 25.4.2 Initiating Events Due to Loss of the Instrument Air Subsystem
.... 25-4 25.5 System Logic Models........
.... 25-5 25.5.1 Assumptions and Boundary Conditions.....
.. 25-5 25.5.2 Fault Tree Models.
... 25-6 25.5.3 liuman Interactions
. 25-7 25.5.4 Common Cause Failures 25-8 25.6 References
.... 25-8 O
t d
CHAPTER 26 PROTECTION AND SAFETY MONITORING SYSTEM 26.1 System Analysis Description...
. 26-1 1
26.1.1 Analysis of Support Systems....
.... 26-4 26.1.2 Analysis of Instrumentation......
. 26-6 26.1.3 Test and Maintenance Assumptions......
26-6 1
26.2 Performance during Accident Conditions........
. 26-7 26.3 Initiating Event Review
... 26-8 26.3.1 Initiating Event Impacting PMS...
..... 26-8 1
26.3.2 Initiating Event due to Loss of PMS........
.... 26-8 26.4 System Logic Model Development.
.... 26-9 l
26.4.1 Assumptions and Boundary Conditions....
... 26-9 26.4.2 Fault Tree Models....
.... 26-13 l
26.4.3 Description of 1&C Subtree Development
.... 26-13 26.4.4 Human Interactions
.... 26-21 1
26.5 Discussion of Methodology..
. 26-21 l
i l
l 26.5.1 Fault Tree Analysis
... 26-21 l
26.5.2 Unavailability........
. 26-22 26.5.3 Spurious Failure Rate Per Year 26-22 26.5.4 Common Cause Failures..
. 26-24 i
26.5.5 Data Manipulation....
.. 26-24 l
l 26.6-References
.... 26-26 l
O N.]
l Revision: 10 ENEL l
[ WSStiflgh0llS8
- ggw-June 30,1997 xix o:\\ap60opraWv.t0%pra-toc.wpf Ib
-I 0
TABLE OF CONTENTS (Cont.)
Section Ili!!
ERES CHAPIER 27 DIVERSE ACTUATION SYS'IEM 27.1 System Analysis Description.................................
. 27-1 27.1.1 Support Systems Analysis...........
27-1 27.1.2 Analysis of Instrumentation and Control.....
. 27-2 27.1.3 Test and Maintenance......
. 27-2 27.2 Analysis of System Operation..........
. 27-2
... 27-6 27.3 Performance during Accident Conditions 27.4 Initiating.svent Review
.. 27-7 27.4.1 Initiating Events impacting the Diverse Actuation System......... 27-7 27.4.2 Initiating Events Due to the Loss of the Diverse Actuation System.. 27-7 27.5 System Logic Model..................
. 27-7 27.5.1 Assumptions and Boundary Conditions.............
. 27-7 27.5.2 Fault Tree Model......
. 27-8 27.5.3 Human Interactions
... 27-8 27.5.4 Common Cause Failums............................
. 27-8 27.6 References..................
. 27 8 CHAPTER 28 PLANT CONTROL SYSTEM 28.1 System Analysis Description.......................
. 28 1 28.1.1 Analysis of Support Systems.......
. 28-3 28.1.2 Analysis of Instrumentation.......
... 28-4 28.1.3 Test and Maintenance Assumptions..
.................. 28-5 28.2 Performance during Accident Conditions............................ 28-6 28.3 Initiating Event Review 28-6 28.3.1 Initiaing Events Impacting the Plant Control System.....
.... 28-6 28.3.2 Initiating Event due to Loss of Plant Control System........
. 28-7 28.4 System Logic Model Development............................... 28-7 28.4.1 Assumptions and Boundary Conditions.................
... 28-7 28.4.2 Fault Tree Models................
. 28-10 28.4.3 Description of I&C Subtree Development........
28-11 28.4.4 Human Interactions
. 28-18 28.5 Discussion of Methodology....................
. 28-19 28.5.1 Fault Tree Analysis..
. 28-19 28.5.2 Unavailability 28-19
. 28-19 28.5.3 Common Cause Failures.....
28.5.4 Data Manipulation......
28 20
. 28-21 28.6 References O
Revision: 9 April 11,1997 W85tingh00S8 o$ap6oopr \\rn 9spra-soc wpf:Ib n
l
/'~~N' C/
l TABLE OF CONTENTS (Cont.)
Section Title Page CHAPTER 29 COMMON CAUSE ANALYSIS 29.1 Introduction
... 29-1 29.2 Dependent Failures..
. 29-1 29.3 Common Cause Analysis...................
........... 29-4 29.3.1 A ssumptions.....................
29-4 29.3.2 Analysis of Potential Common Cause Failures within the System.... 29-5 29.3.3 Analysis of Potential Common Cause Failures among Several Systems. 29-6 29.4 Calculations for Component Groups.
.............................29-6 29.4.1 Class 1E DC Batteries 29-6 29.4.2 Non-Class IE DC Batteries............................. 29-7 29.4.3 Air-Operated Valves on the Core Makeup Tanks.............. 29-8 29.4.4 Automatic Depressurization System Motor-Operated Valves....... 29-9 29.4.5 Automatic Depressurization System Squib Valves
. 29-11 29.4.6 Common Cause Failure for IRWST Valves....
..... 29-11 29.5 Results......................
. 29-15 29.6 References
.. 29-15 CHAPTER 30 HbW RELIABILITY ANALYSIS p
i 30.1 Introduction
. 30-1 t
'/
30.2 Summary of Results.....
... 30-1 30.3 Methodology.................
............ 3 0-2 30.4 Major Assumptions
......... 3 0-4 30.5 Types of Human Interactions........
. 30-10 30.5.1 Quantification Model....
............. 30- 1 1 30.6 Quantification.......................
.. 30-12 30.6.1 ZON-MAN 01 (Start the Onsite Standby Diesel Generator) 30-12 i
30.6.2 LPM-MAN 01 (Recognize the Need for Reactor Coolant System Depressurization)
. 30-13 30.6.3 LPM-MAN 02 (Recognize the Need for Reactor Coolant System Depressurization..............
. 30-16 30.6.4 LPM-MANOS (Recognize the Need for Reactor Coolant System Depressurization...
. 30-16 30.6.5 LPM-REC 01 (Recognize the Need for Reactor Coolant System Depressurization.....
. 30-17 30.6.6 ADN-MAN 01 (Actuate the Automatic Depressurization System)... 30-18 30.6.7 ADN-REC 01 (Actuate the Automatic Depressurization System).... 30-19 30.6.8 CCB-MAN 01 (Start the Standby Component Cooling
. 30-20 Water Pump)......
30.6.9 CCN-MAN 02 (Inadvertent Misalignment of Heat Exchanger)
.... 30-21 i
I I
\\
G Revision: 9
[ W 6S Ullgt10LIS8 April 11,1997 xxi c:\\a;f00prairevfpra.coc.wpf.Ib
M e
TABLE OF CONTENTS (Cont.)
Section Title Page 30.6.10 CIB-MAN 00 (Diagnose Steam Generator Tube Rupture)........ 30-21 30.6.11 DUMP-MAN 01 (Operate Steam Dump Valves) 30-22 30.6.12 CIC-MAN 01 (Isolate Containment)
....... 30-23 30.6.13 ADS-MANTEST (Recognize the Need and Reclose ADS Stage MOV)...........
30-24 30.6.14 CAN-MANOS (Locally Close Manual Valve CAS-V204 to Isolate Containment).
. 30-26 30.6.15 CIT-MANOS (Isolate Containment)
. 30-27 30.6.16 CNM-MAN 01 (Actuate Core Makeup Tank)................. 30-27 30.6.17 CNM-REC 01 (Actuate the Core Makeup Tanks)....
.... 30-29 30.6.18 CVN-MAN 00 (Align Chemical and Volume Control System)..... 30-29 30.6.19 CVN-MAN 02 (Align Chemical and Volume Control System)..... 30-30 30.6.20 CVN-MANO3 (Start Chemical and Volume Control System Pump B).....
......... 30-31 30.6.21 ADF-MAN 01 (Depressurize the RCS to Refill the Pressurizer)..... 30-32 30.6.22 SGHL-MAN 01 (Isolate Feedwater to Failed Steam Generator)..... 30-32 30.6.23 CAN-MAN 01 (Start Standby Compressor)
..... 30-33 30.6.24 REN-MAN 02 (Initiate Recirculation)
...... 30-34 30.6.25 REN-MANO3 (Initiate Recirculation)
... 30-35 30.6.26 IWN-MAN 00 (Operate In-Containment Refueling Water Storage Tank Motor-Operated Valves)
. 30-36 30.6.27 RHN-MAN 01 (Align Normal Residual Heat Removal System).... 30-37 30.6.28 RHN-MANDIV (Align Normal Residual Heat Removal System)... 30-39 30.6.29 RHN-MAN 02/RHN-MANO3 (Align Normal Residual Heat Removal System)
.... 30-40 30.6.30 PCN-MAN 01 (Actuate Passive Containment Cooling System)
.... 30-41 30.6.31 HPM-MAN 01 (Diagnose Need for High Pressure Heat Removal)
...... 30-42 30.6.32 PRN-MAN 01 (Align Passive Residual Heat Removal System).
.. 30-43 30.6.33 PRN-MAN 02 (Align Passive Residual Heat Removal System)
. 30-44 30.6.34 PRN-MANO3 (Align Passive Residual Heat Removal System).... 30-45 30.6T PRI-MAN 01 (Isolate Failed Passive Residual Heat Removal Heat Exchanger)
...... 30-46 30.6.36 REN-MAN 04 (Initiate Recirculation)
. 30-47 30.6.37 RCN-MAN 01 (Trip Reactor Coolant Pumps)....
. 30-48 30.6.38 ATW-MAN 01 (Manually Insert Control Rods)
..... 30-49 30.6.39 ATW-MANO3 (Manually Trip the Reactor through Protection and Safety Monitoring System in One Minute)
. 30-50 30.6.40 ATW-MAN 04 (Manually Trip the Reactor through Diverse Actuation System in One Minute)
....... 30-51 O
Revision: 9 EN.~ELa W Westingh011S8 April 11,1997 onap600\\pra\\rev.,95pra-toc.wpf:1b Xxii
1 na sEs j
t i
e a
TABLE OF CONTENTS (Cont.)
Section Title PaZe I
30.6.41 ATW-MANOS (Manually Trip the Reactor through Protection k
and Safety Monitoring System in Seven Minutes)............. 30-52 1
30.6.42 ATW-MAN 06 (Manually Trip the Reactor through Diverse Actuation System in Seven Minutes) 30-53 30.6.43 RTN-MAN 01 (Perform Controlled Reactor Shutdown)......... 30-53 l
30.6.44 FWN-MAN 02 (Start the Startup Feedwater Pumps)
....... 30-54 l
30.6.45 FWN-MAN 03 (Start the Startup Feedwater Pumps)............ 30-55 30.6.46 REG-MAN 00 (Regulate Startup Feedwater)..
30-56 l
30.6.47 CIA-MAN 01 (Isolate Failed Steam Generator)...
...... 30-57 30.6.48 CIB-MAN 01 (Close Main Steam Isolation Valve)
.... 30-58 30.6.49 SGA-MAN 01 (Inadvertent Opening of Steam Generator Power-Operated Relief Valve).
30-59 30.6.50 SWN-MAN 0lN (Open Air-Operated Valve on Motor Strainer Line)
...... 30-60 30.6.51 SWB-MAN 02 (Start Standby Service Water Pump)........... 30-61 30.6.52 SWB-MAN 02N (Start Standby Service Water Pump) 30-62 30.6.53 TCB-MAN 01 (Start Standby Turbine Closed Cooling Water Pump).
... 30-63 30.6.54 TCB-MAN 02 (Locally Align Standby Turbine Closed Cooling Water Heat Exchanger)....
.... 30-64
{
30.6.55 VLN-MAN 01 (Actuate Hydrogen Control System).
. 30-65 l
30.6.56 VWN-MAN 01 (Align Standby Chiller).........
. 30-66 L
30.6.57 ATW-MAN 11 (Recognize the Need for Manual Boration)........ 30-67 30.6.58 REC-MANDAS (Diagnosis of an Event Through DAS Signals or Perform an Activity by Operating DAS Controls)......
.... 30-68
{
30.6.59 RHN-MAN 04 (Isolate the RNS during Shutdown Conditions).... 30-68 j
30.6.60 RHN-MANOS (Initiate Gravity Injection from IRWST via l
RNS Suction Line)....
30-70
{
30.6.61 RHN-MAN 06 (Recognize the Need and 'Ihrottle RNS Valve V011)........
30-71 30.6.62 RCS-MANODS1 (Close AOVs CVS-V045 or -V047, Given l
Failure of HL Level Instruments)
. 30-72 30.6.63 RCS-MANODS2 (Close AOVs CVS-V045 or -V047, Given Failure of Valves to Close Automatically).
... 30-73 l
30.6.64 SWN-MANO3 (Recognize the Need and Locally Refill i
Service Water Basin)
. 30-74 I
30.7 Conditional Probability Evaluation...
...... 30-75 l
30.7.1 Application.........
. 30-76 30.7.2 Process Used to Determine Dependencies....
30-76 l
30.7.3 Calculation of Dependent Human Error Probabilities 30-77 30.8 References........
30-78 gV ENEL Revision: 9 i
(
. n%,
April 11,1997 l
a xxiii oV mpr*n8 W N*P:lb f
l
e TABLE OF CONTENTS (Cont.)
Section Title Page CHAPTER 31 OTHER EVENT TREE NODE PROBABILITIES 31.1 Introduction 31-1 31.2 Identification of Cases Requiring Calculations..
....... 31-1 31.2.1 BL - Main Steam Line Break Occurs Inside Containment.
31-1 31.2.2 CNB -- Containment Isolation Fails Due to Reactor Coolant System Vessel Rupture....
. 31-1 31.2.3 MGSET - Control Rods Motor-Generator Set Trip
.. 31-1 31.2.4 NSGTR -- Consequential Steam Generator Tube Rupture........ 31-2 31.2.5 PO - Pre-existing Containment Opening Allowing Bypass........ 31-2 31.2.6 PRES - Reactor Coolant System Pressure Relief via Pressurizer Safety Valves.......
31-2 31.2.7 PRSOV -- Pressurizer Safety Valves Reclose
. 31-2 31.2.8 R05 -- Offsite Power Recovered within One-half Hour
. 31-2 31.2.9 SLSOV -- Main Steam Line Relief Valves Reclose
. 31-2 31.3 Case-Specific Calculations..
. 31 3 31.3.1 BL - Main Steam Line Break Occurs Inside Containment.......
. 31-3 31.3.2 CNB -- Containment Isolation Fails Due to RCS Vessel Rupture
. 31-3 31.3.3 MGSET - Control Rods Motor-Generator Set Trip......
. 31-4 31.3.4 PO -- Pre-existing Containment Opening Allowing Bypass.
. 31-4 31.3.5 PRES - Reactor Coolant System Pressure Relief sia Pressurizer Safety Valves............
.. 31-4 31.3.6 PRSOV -- Pressurizer Safety Valves Reclose
.... 31-8 31.3.7 R05 -- Offsite Power Recovered within One-Half Hour....
31-8 31.3.8 SGTRI -- Single Consequential Steam Generator Tube Runture.... 31-9 31.3.9 SGTR - Multiple Consequential Steam Generator Tube Rupture... 31-10 31.3.10 SLSOV -- Main Steam Line Relief and Safety Valves Reclose..
. 31-11 31.3.11 SLSOV1 - Main Steam Line Relief and Safety Valves Reclose 31-12 31.3.12 SLSOV2 - Main Steam Line Safety Valves Reclose 31-12 31.3.13 SLSOV3 - Main Steamline Relief and Safety Valves Reclose, SGTR.
. 31-13 31.3.14 BSIZE -- Large LOCA Break Size Sufficient for Gravity Injection without ADS if Containment Isolation Fails
.. 31-13 31.4 References
.. 31-14 CHAPTER 32 DATA ANALYSIS AND MASTER DATA BANK 32.1 Data Analysis.........
.32-1 32.1.1 Random Component Failure Data..
32-1 32.1.2 Test and Maintenance Unavailability.
32-2 32.1.3 Common Cause Failure Data.......
32-2 32.1.4 Human Reliability Data
.. 32-2 32.1.5 Initiating Event Frequency Data
........ 32-2 e
Revision: 9 E. NELa W WBStingh00S8 April 11,1997 c:\\ap6(Xhprairev.,9%pra-toc.wpf:Ib XXIV
E_j
=
m
{d' TABLE OF CONTENTS (Cont.)
Section Title hge 32.2 Master Data Bank........
... 32-3 32.2.1 Initiating Event Frequencies
... 32-3 32.2.2 Random Component Failures.
.. 32-3 32.2.3 Common Cause Failure Probabilities
.32-3 32.2.4 Human Error Probabilities...................
........ 3 2-3 32.2.5 System-Specific Calculations..
.32-3 32.2.6 Other Event Tree Node Probabilides..
. 32-4 32.2.7 Master Data Bank...
................ 3 2 -4 32.3 References..
. 32-4 CHAPTER 33 FAULT TREE AND CORE DAMAGE QUANTIFICATION 33.1 Introduction 33-1 33.2 Fault Tree Model Quantification
...... 3 3-1 33.3 Event Tree Model Calculation...
. 33-2 33.3.1 Core Damage Quantification Method........
.... 33-2 33.3.2 Input Files and Data 33-4 33.3.3 Definition of Consequential Event Categories 33-4 33.3.4 Plant Core Damage Frequency
. 33-6 g
i]
\\
CHAPTER 34 SEVERE ACCIDENT PHENOMENA TREATMENT 34.1 Introduction 34-1 34.2 Treatment of Physical Processes..
. 34-1 34.2.1 In-Vessel Retention of Molten Core Debris.................. 34-2 34.2.2 Fuel-Coolant Interaction (Steam Explosions)
. 34-2 34.2.3 Hydrogen Combustion and Detonation 34-3 34.2.4 High-Pressure Melt Ejection...................
34-4 34.2.5 Core Debris Coolability.....
... 34-5 34.2.6 Elevated Temperatures (Equipment Survivability)...
.... 34-5 34.2.7 Summary..............
..... 34-8 34.3 Analysis Method........
. 34-9 34.4 Severe Accident Analyses.......................
. 34-10 34.4.1 Accident Class 3BE - Intact Containment
. 34 10 34.4.2 Accident Class 3BE - Failed Containment.......
34-12 34.4.3 Accident Class 3BL - Intact Containment 34-15 34.4.4 Accident Class 3BL - Failed Containment..
.......... 34-17 34.4.5 Accident Class 3BR - Intact Containment 34-18 34.4.6 Accident Class 3BR - Failed Containment....
34-19 34.4.7 Accident Class 3C - Intact Containment 34-19 34.4.8 Accident Class 3C - Failed Containment.
. 34-20 34.4.9 Accident Class 3D - Intact Containment
. 34-20 34.4.10 Accident Class 3D - Failed Containment........
.. 34-21
/^T t
V Revisiom 9 ENEL T Westinghouse w-April 11,1997 XXv o:\\ap60opraVev.,9\\pra-toc.wpf.l b L___.-.
__.i
e!
TABLE OF CONTENTS (Cont.)
Section Title P_.jyte 34.4.11 Accident Class 6E - Bypass Containment
.. 34-22 34.4.12 Accident Class 6L - Bypass Containment
........... 34 24 34.4.13 Accident Class I AP.......................
.. 34-25 34.4.14 Accident Class I A.................................
34-26 34.5 Summary 34-28
.................................. 34-2 8 34.6 Insights and Conclusions.
34.7 References
.. 34-28 CHAPTER 35 CONTAINMENT EVENT TREE ANALYSIS 35-1 35.1 Introduction 35.2 Containment Event Tree - General Discussion 35-1 35.3 Event Tree Construction...........
. 35-2 35.4 Level 1/ Level 2 Interface........
.... 35-3 35.5 Containment Event Tree Top Events 35-3 35.5.1 Severe Accident Phenomena Considerations........
.... 35-4 35.5.2 Operator Action and Systems Top-Event Considerations......... 35-5
..................358 35.6 Release Category Definitions.........
35.6.1 Release Category BP - Containment Bypass......
35-9 35.6.2 Release Category CI - Containment Isolation Failure 35-9 35.6.3 Release Category CFE - Early Containment Failure........... 35-10 35.6.4 Release Category CFI - Intermediate Containment Failure....... 35-10 35.6.5 Release Category CFL - Late Containment Failure..
. 35-10 35.6.6 Release Category IC - Intact Containment..............
35-10 35.7 Top-Event Nodal Questions and Success Criteria..........
35-11 35.7.1 Top Event DP - RCS Depressurization After Core Uncovery.....
35-11 35.7.2 Top Event IS - Containment Isolation..................... 35-13 35.7.3 Top Event IR - Reactor Cavity Flooding
. 35-14
... 35-15 35.7.4 Top Event RFL - Reflooding of a Degrade /. Core 35.7.5 Top Event VF - Debris Relocation to tb Reactor Cavity 35-15 35.7.6 Top Event PC - Passive Containmer.1 Cooling.
35-16 35.7.7 Top Event IG - Hydrogen Control System.
.............. 3 5-17 35.7.8 Top Event DF - Diffusion Flame..
35-17 35.7.9 Top Event DTE - Early Hydrogen Detonation 35-18 35.7.10 Top Event DFG - Hydrogen Deflagration
...... 35-19 35.7.11 Top Event DTI - Intermediate Hydrogen Detonation.....
. 35-19 35.8 Summary...
.... 35-20 35.9 References
. 35-20 0
Revision: 9 ENEl.
April 11,1997 cm,,,,
Westinghouse oAar6o&pra\\rev 9pra-toc.wpf:lb XXVi
A
=
W_.
/.
/
\\x TABLE OF CONTENTS (Cont.)
Section Title Page CHAFTER 36 REACTOR COOLANT SYSTEM DEPRESSURIZATION 36.1 Introduction 36-1 36.2 Definition of High Pressure.
... 36 1 36.3 Node DP
... 36-2 36.4 Success Criterion.
. 36-2 36.4.1 Accident Classes 3BE. 3BL,3BR. 3C..
36-3 36.4.2 Accident Classes 1D and 3D..
.... 36-3 36.4.3 Accident Classes 1 A and 1 AP 36-3 36.5 Anticipated Transient Without Scram - Accident Class 3A
.... 3 6-5 36.6 Steam Generator Tube Rupture - Accident Class 6.
36-5 36.7 References
.... 36-6 CHAPTER 37 CONTAINMENT ISOLATION 37.1 Introduction
. 37-1 37.2 Definition of Containment Isolation......
....... 37-1 37.3 Success Cntena
. 37-1
/]
37.3.1 Accident Classes IA and LAP
.. 37-2 V
37.3.2 Accident Class 3A.........
. 37-2 37.3.3 Accident Class 3BR..........
........ 37-2 37.3.4 Accident Class 3BE
........... 37-2 37.3.5 Accident Class 3BL
... 37-2 37.3.6 Accident Class 3C.
. 37-3 1
37.3.7 Accident Class 3D/lD
... 37-3 37.3.8 Accident Class 6............
.. 37-3 37.4 Summary
........ 3 7-4 37.5 References
......... 37-4 j
t CHAPTER 38 REACTOR VESSEL REFLOODING 38.1 Introduction
.........................38-1 38.2 Definition of Reflooding Success.....
.... 38-1 38.3 Success Criteria................
..... 3 8-1 38-1 38.3.1 Accident Classes l A and I AP...
38.3.2 Accident Class 3BR..................
............ 3 8-2 38.3.3 Accident Class 3BE...........
............. 3 8-2 38.3.4 Accident Class 3BL.....
. 38-3 1
38.3.5 Accident Class 3D/lD
.... 3 8-4 38.3.6 Accident Class 6..............
.. 38-4 1
38.3.7 Accident Class 3C.....
. 38-4 1
38.3.8 Accident Class 3A..
. 38-4 e) 1 38.4 Summary....
. 38-4 (v
l Revision: 10 l
[ Westingh0llS8 6
June 30,1997 XXVij o Tap 600prairev.,10\\pra-toc. wpf: I b j
L_.____._________._
1 1
IRE e
TABLE OF CONTENTS (Cont.)
.SEli.931 T.Ltit Eau CHAPTER 39 IN-VESSEL RETENTION OF MOLTEN CORE DEBRIS 39.1 Introduction
. 39 1 39.2 Summary of In-Vessel Retention ROAAM.......................... 39-2 39.3 Reactor Coolant System Depressurization.
39-4 39.4 Reactor Cavity Flooding (Node IR)....
.. 39-4 39.4.1 Success Criteria.......
. 39-4 39.4.2 Cavity Flooding Scenario Dependencies..................... 39-6 39.5 Reactor Vessel Insulation Design Concept.......................... 39-7
........................ 39-8 39.5.1 Description of Insulation.....
39.5.2 Determination of Forces on Insulation and Support System....... 39-9 39.5.3 Conclusion.........
.... 39-12 39.6 Reactor Vessel Extemal Surface Treatment.....
... 39-13 39.7 Reactor Vessel Failure (Node VF)
.. 39-13 39.7.1 Node VF Success Criteria.
.... 39-13 39.8 S u mm ary..................
.... 39-14
.................... 3 9-14 39.9 References CHAPTER 40 PASSIVE CONTAINMEffr COOLING CHAPTER 41 HYDROGEN MIXING AND COMBUSTION ANALYSIS 41.1 Discussion of the Issue.............
............ 41 - 1 41.2 Controlling Phenomena............
.. 41-2 41.3 Major Assumptions and Phenomenological Uncertainties....
. 41-3 41.3.1 Hydrogen Generation..........
...... 41-3 41.3.2 Containn.ent Pressure........
.. 41-3
........ 41-4 41.3.3 Flammability Limits............
41.3.4 Detonation Limits and Loads.
........ 41-4 41.3.5 Igniter System.........
............ 41-5 41.3.6 Other Ignition Sources.......
.. 41-6 41.3.7 Severe Accident Management Actions
........ 41-6 41.4 MAAP4 Hydrogen Cases......
.. 41-6 41.4.1 Modeling Assumptions and Limitations.
. 41-6 41.4.2 MAAP4 Hydrogen Generation and Mixing Analyses
........ 41-9 41.4.3 MAAP4 Hydrogen Burning Analyses...................... 41-18 41.5 Early Hydrogen Combustion.
. 41-20 41.5.1 Hydrogen Generation Rates.............
. 41-20 41.5.2 Hydrogen Release Locations
. 41-22 41.5.3 Early Hydrogen Combustion Ignition Sources
. 41-23 41.6 Diffusion Flame Analysis - CET Node DF.
41-24 i
41.6.1 Diffusion Flame Analysis Summary 41-24 41.6.2 Node DF Containment Failure Probability Assignment
. 41-25 Revision: 9 ENEL April 11,1997 t# M -
W8Stingt100S8 oiap600ganv.9$ra-toe wpf.lb XxViii
1 M
r~~s
(
)
v TABLE OF CONTENTS (Cont.)
Section Title Pgte 41.7 Early Hydrogen Detonation - Containment Event Tree Node DTE........ 41-25 41.7.1 Containment Success Criteria at Node DTE................. 41-25 41.7.2 Early Hydrogen Detonation Decomposition Event Tree
........ 41-26 41.8 Sherman-Berman Methodology for Evaluating the Potential for Deflagration-to-Detonation Transition............................ 41 -2 7 41.8.1 General Description of the Sherman-Berman Methodology....... 41-27 41.8.2 Compartment Geometry............................. 41-27 41.8.3 Mixture Reactivity................................... 41 -28 41.8.4 Deflagration-to-Detonation Transition Probability............. 41 -28 41.8.5 Application of Sher: nan-Berman Methodology to the AP600 for Deflagration-to-Detonation Transition in Time Frame 2.
41-29 41.9 Deflagration in Time Frame 3.......
........ 41 -30 41.9.1 Containment Success Criterion.at Node DFL................ 41-30 41.9.2 AICC Peak Pressure.................................. 41-31 l
41.9.3 Conditional Containment Failure Probability from Deflagration.... 41-32 41.10 Detonation in Intermediate Time Frame.
......... 41 -3 8 41.10.1 Containment Success Criterion at Node DTI
. 41-38 41.10.2 Mixing and Stratification..
..... 41-38 l
73
)
41.10.3 Quantification of DTI Failure Probabilities
..... 41 -3 8 (V
41.10.4 Hydrogen Stratification Sensitivity......
........ 41-39 l
41.11 Safety Margin Basis Containment Performance Requirement.
.......... 41-39 l
41.12 S u mmary....................
........... 41 -40 41.13 References.............................................. 41 -41 CHAITER 42 CONDITIONAL CONTAINMENT FAILURE PROBABILITY DISTRIBUTION 42.1 Introduction
... 42-1 42.2 Probabilistic Model......
........... 4 2-1 42.3 Containment Failure Characteristics............................... 42-2 42.3.1 Median Values for Containment Failure
.. 42-2 42.3.2 Uncertainties in Containment Failure
........... 4 2-3 42.4 Containment Failure Predictions..
..............,................42-5 42.4.1 Containment Cylindrical Shell..........
.. 42-5 42.4.2 Ellipsoidal Upper Head............
........ 4 2-5 42.4.3 Equipment Hatches
............. 4 2-6 42.4.4 Personnel Airlock.
. 42-6 l
42.5 Overall Failure Distribution.......
. 42-7 42.6 Summary and Conclusions......
42-8 42.7 References..
.........................................42-8 t
[h G
Ruistom 9 ENEL T Westinghouse aw-April 11,1997 xxix oAap600\\pra\\rt v_9\\pra-toc.wpf:lb
k O
TABLE OF CONTENTS (Cont.)
Section Title Page CHAPTER 43 RFIFASE FREQUENCY QUANTIFICATION 43.1 Containment Event Tree Quantification........
................43-1 43.1.1 Containment Event Tree Base Quantification.......
........ 43-1 43.2 Accident Class 3BE..
............ 43-2 43.3 Accident Class 3BL.......
.. 43-2 43.4 Accident Class 3BR..............
..... 43-3 43.5 Accident Class l A.
...... 43-3 43.6 Accident Class I AP....
..... 43-4 43.7 Accident Class 3A....
. 43-4 43.8 Accident Class 3C.......
43-5 43.9 Accident Class 3D
. 43-6 43.10 Accident Class 6 (6E+6L)..
. 43-6 43.11 Accident Class I D.......................
. 43-7 43-7 43.12 Large Release Frequency Importance and Sensitivities.....
43.13 Containment Event Tree Conclusions and Insights.
... 43-7 CHAPTER 44 MAAP4 CODE DESCRIPTION AND AP600 MODELING 44.0 MAAP Background......
44-1 44.1 MAAP4.....
44-1 44-3 44.2 The AP600 MAAP4 Modeling 44.3 Benchmarking 44-6 44.4 Summary and Conclusions....
44-7 44.5 References 44-7 CHAPTER 45 FISSION-PRODUCT SOURCE TERMS 45.1 Summary of AP600 Release Categories
. 45-1 45.2 Release Category Source Terms................
. 45-2 45.2.1 Release Category IC........
.45-2 45.2.2 Release Category BP 45-3 45.2.3 Release Category CI...
. 45-3 45.2.4 Release Category CFE.
.. 45-4 45.2.5 Release Category CFI..
45-4 45.2.6 Release Category CFL......
.. 45-5 45.3 Direct-Release Sensitivity Case
. 45-5 45.4 MAAP4 Model Parameter Sensitivities.
. 45-6 45.4.1 FPRAT Sensitivity.
45-6 45.4.2 FAERDC Sensitivity..
. 45-6 45.5 Comparison with NUREG-1150 Results...
. 45-6 45.6 Summary.............
45-6 45.7 References 45-7 9
Revision: 9
[ W85tl!1gh00S8 April 11,1997 6
o:\\ap600\\pra\\rev.9pra-toc.wpf; 1 b XXX
o TABLE OF CONTENTS (Cont.)
Section Title Page CHAPTERS 46 THROUGH 48 DELETED CHAPTER 49 OFFSITE DOSE EVALUATION 49.1 Introduction
.... 49-1 49.2 Conformance with Regulatory Requirements........................ 49-1 49.3 Assumptions..........
.............492 49.4 Methodology.....
....... 49-2 49.5 Dose Evaluation Results and Discussions........................... 49-6 49.6 Quantification of Site Risk..
................. 4 9-7 49.7 Risk Quantification Results.................................... 49-7 49.8 References..
................... 4 9-8 CHAPTER 50 IMPORTANCE AND SENSITIVITY ANALYSIS 50.1 Introduction 50-1 50.2 Imponance Analyses for Core Damage............................ 5 0- 1, 50.2.1 Initiating Event Importances (Case 1)....................... 50-2 50.2.2 Common Cause Failure Importances (Case 2)...
.... 50 3 O
50.2.3 Human Error Importances (Case 3)......................... 50-5 50.2.4 Component Importances (Case 4)......................... 50-6 50.3 System Importances for Core Damage
.. 50-7 50.4 Human Error Sensitivity Analyses............................... 5 0-9 50.4.1 Set Human Error Probabilities to 1.0 (Failure) in Core Damage Results (Case 25)...
50-9 50.4.2 Set Human Error Probabilities to 0.0 (Success) in Core Damage Results (Case 26)............................
50-10 50.4.3 Assess Importance of Increasing Human Error Probabilities by a Factor of 10 (Case 27)............................... 50-10 50.5 Other Sensitivity Analyses for Core Damage..............
....... 50-11 50.5.1 Diesel Generator Mission Time (Case 28)
................. 50- 1 1 50.5.2 Impact of Passive System Check Valves on Core Damage Frequency (Case 29 ).................................. 50- 12 50.5.3 Instrumentation and Control Cutoff Probability (Case 30)........ 50-12 50.5.4 Containment Recirculation After Safety Injection Line Break l
Event (Case 31).......
. 50-12 50.5.5 Quantification Tmncation Probability (Case 32)............... 50 13 l
50.5.6 Sensitivity to ADS Stage 4 Success Criteria (Case 33)
. 50 13 50.5.7 Squib Valve Failure Probability (Case 34)................... 5 0- 13 50.5.8 Circuit Breaker Failure Probability (Case 35)................. 50 14 50.5.9 End-State Importances (Case 36)......
50-14 v
1 Revision: 9
[ W85tiflgh0088 April 11,1997 xxxi ovm4=*v 9*=#1b
e TABLE OF CONTENTS (Cont.)
Section Title Page 50.6 Sensitivity and Importance Analyses For Large Release Frequency
. 50-15 50.6.1 Importance Analyses For Large Release Frequency..
50-15 50.6.2 Sensitivity Analyses For Large Release Frequency.
.. 50-21 50.7 Sensitivity Analysis for Offsite Dose Risk....
. 50-22 50.8 Results Summary 50-23
... 0A ATWS PRA Sensitivity Case.....
50A-1 CHAPTER 51 UNCERTAINTY ANALYSIS 51-1 51.1 Introduction 51.2 Methodology
................. 51-1 51.3 Summary of Results.
51-3 51.4 Sensitivity Studies for the Uncertainty Calculations
. 51-4 51.4.1 Uncertainty in the Cutoff Frequency 51-4 51.4.2 Uncertainty in the Number of Cutsets Sampled 51-4 51.4.3 Uncertainty in the Mean Failure Probability for Basic Events.
. 51-4 51.4.4 Sensitivity to the Random Number Input for Sampling........... 51-5 51.5 References
.... 51-6 CHAPTER 52 RTNSS - FOCUSED PRA SENSITIVITY STUDY 52.1 Focused PRA Sensitivity Study Analysis Method......
.. 52-1 52.1.1 Core Damage Frequency Calculation
........ 52-2 52.1.2 Release Frequency Calculation 52-5 52.2 At-Power Focused PRA Sensitivity Study..
52-5 52.2.1 At-Power Focused PRA Sensitivity Study Core Damage Frequency Quantification
.. 52-6 52.2.2 At Power Focused PRA Sensitivity Study Release Frequency Quantification 52-11 52.3 Shutdown Focused PRA Sensitivity Study........
.... 52-16 52.3.1 Shutdown Focused PRA Sensitivity Study Core Damage Quantification..
52-16 52.3.2 Shutdown Focused PRA Sensitivity Study Release Frequency Calculation
....... 52-19 52.4 Focused PRA Sensitivity Fire Analysis......
. 52 21 52.5 Focused PRA Sensitivity Study Flooding Analysis..
52-21 52.5.1 At-Power Focused PRA Sensitivity Study Flooding Scenarios..... 52-21 52.5.2 Shutdown Focused PRA Sensitivity Study Flooding Scenarios..... 52-22 52.5.3 Focused PRA Sensitivity Study Flooding Analysis Results Summary 52-23 52.6 Focused PRA Sensitivity Study Results and Conclusions...
..... 52-23 52.7 References 52*14 O
Revision: 11 E,NEd W Westinghouse March 1998
-~
=
o:\\prairev.llpa-toe.wpf;lb XXXii
TABLE OF CONTENTS (Cont.)
Section Title P,_ age CHAPTER 53 DELETED CHAPTER 54 LOW-POWER AND SHUTDOWN RISK ASSESSMENT 54.1 Introduction
.. 54-1 54.2 Initiating Events
..... 54-1 54.2.1 Identification.................................
54-2 54.2.2 Events Modeled............
54-2 54.2.3 Shutdown Phases Summary Description..
.. 54-3 54.2.4 Initiating Events for Operanng Modes....................... 54-4 54.2.5 Actuanng Signals and Systems Available................... 54-15 54.2.6 Scenarios for Detailed Analysis......................... 54-16 l
54.2.7 Summary of Initiaring Events Analyzed.................
. 54-21 54.3 Data..
........................... 54-22 54.3.1 Shutdown Frequency
. 54-22 54.3.2 Mission Times..........
......... 54-25 54.4 Event Tree Development..
54-28 54.4.1 Event Tree LOSP-ND..
54-30 l
54.4.2 Event Tree RNS-ND.
... 54-33
\\
54.4.3 Event Tree CCW-ND...........
.................. 54-33 54.4.4 Event Tree LOCA-PR-ND
.................... 54-33 54.4.5 Event Tree LOCA-V24-ND............................. 54-34 54.4.6 Event Tree RCS-OD..
.................... 54-36 54.4.7 Event Tree LOSP-D..
. 54-38 54.4.8 Event Tree RNS-D................................... 54-40 54.4.9 Event Tree CCW-D................................. 54-40 54.4.10 Event Tree LOCA-V24-D.............................. 54-40 54.4.11 Boron Dilution Events (Reactivity Events)................... 54-41 54.4.12 Boron Dilution Events Due to Chemical and Volume Control System Opecation.............................. 54-45 l
54.4.13 Endstates Summary.................................. 54-48 54.5 Fault Tree Models for Shutdown and Low-Power Events............... 54-48 54.5.1 Instrumentation and Control Modeling for Shutdown (Level 1).... 54-48 l
l 54.5.2 Instrumentation and Control Modeling for Shutdown (Level 2).... 54-51 54.6' Success Criteria............................................ 54-51 54.6.1 MAAP4 Code Analysis for Shutdown Success Criteria.......... 54-52 54.6.2 MAAP4 Parameter File................................ 54-52 54.6.3 MAAP4 Input Changes............................... 54-54 54.6.4 Definition of MAAP4 Cases From Event Trees............... 54-55 54.6.5 Results From MAAP4 Analyses.............
. 54-57 54.7 Common Cause Analysis.................................... 54-57 A
.m.
Revision: 9 ENE 3 WSSdngh0tist
- gxz:1, April 11,1997 xxxiii
.wme.w p
O TABLE OF CONTENTS (Cont.)
Section Title Page
. 54 57 54.8 Human Reliability Analysis 54.8.1 Operator Actions Calculated
.. 54-58 54.8.2 Conditiona! Human Error Probabilities.......
. 54-64 54.9 Fault Tree Quantification 54-64 54.10 Level 1 Core Damage Frequency Quantification.
.... 54-67 54.10.1 Core Damage Quantification Method 54-68 54.10.2 Quantification Inputs 54-69 54.10.3 Level 1 Shutdown Core Damage Frequency Results....
54-70 54.11 Shutdown and Low-Power Release Category Quantification.....
... 54-71 54.12 Shutdown Assessment Importance and Sensitivity Analyses.............. 54-71 54.12.1 Importance Analyses for Core Damage at Shutdown...
. 54-72 54.12.2 Other Sensitivity Analyses for Shutdown Core Damage
....... 54-77 54.13 Summary of Shutdown Level 1 Results
. 54-81 54-87 54.14 References..
..-................................ 4A Design Change Impact on Low-Power and Shutdown Risk Assessment 54A-1
....... 4B Surge Line Flooding Effect on Low-Power and Shutdown Risk Assessment 54B-1
........... 4C Effect of Modifications to Safe / Cold Shutdown PRA 54C-1 CHAPTER 55 SEISMIC MARGIN ANALYSIS..
55-1 55.1 Introduction
. 55-1 55.2 Calculation of HCLPF Values 55-2 55.2.1 Seismic Margin HCLPF Methodology 55-2 55.2.2 Calculation of HCLPF Values
.. 55-2 55.3 Seismic Margin Model.......
... 55-12 55.3.1 SMA Model.?nd Assumptions.
... 55-14 55.3.2 Seismic Initiating Events..
55-16 55.3.3 Initiating Event Category HCLPFs.............
. 55-17 55.3.4 Event Tree Models.
55-20 55.3.5 Fault Tree Modeling and Quantification 55-28 55.3.6 Seismic Event Core Damage Sequence Evaluation.
. 55-36 55.3.7 Containment Performance Model.
. 55-37 55.4 Calculation of Sequence and Plant HCLPF.
. 55-38 55.4.1 HCLPFs for Basic Events.........
. 55-39 55.4.2 Calculation of Initiating Event HCLPFs
. 55-39 55.4.3 Calculation of System Fault Tree HCLPFs
.... 55-39 55.4.4 Calculation of Sequence HCLPFs 55-40 55.4.5 Calculation of Plant HCLPF.
. 55-43 55.4.6 Large Release HCLPF...
. 55-43 9
Revision: 11 ENEL W Westinghouse March 1998
' ~ ~-a o:\\pra\\rev.llptoc.wpf.lb XXXIV
E V
TABLE OF CONTENTS (Cont.)
l l
Section Title
_P, age
{
1 1
55.5 Sensitivity Analyses.....................
. 55-46 55.5.1 Robust Fuel and Core Assembly
.. 55-48 I
55.5.2 Credit for Operator Actions.
55-49 55.5.3 Less Credit for Operator Actions in LOSP Event at 0.09g..
55-52 55.5.4 72-Hour Mission Time............
... 55-53 55.5.5 Containment Isolation - Smaller Size Valves......
. 55-56 55.5.6 Steam Generator Tube Rupture Success Criteria........
55-57 55.5.7 Steam Line Break Success Criteria..
. 55-58 55.5.8 Seismic Interaction Between Turbine and Auxiliary Buildings 55-59 55.6 SMA Results and Insights....
55-63 55.9.6 AP600 SMA Results 55-63 55.9.6 AP600 SMA Insights......
.. 55-68 55.7 References 55-70 I
Attachment SSA System HCLPF Calculations....
55A-1 Attachment SSB Sequence HCLPF Calculations..
55B-1 l
m Attechment 55C Seismic Margin Analysis HCLPF Sensitivity Study 55C-1 h
CHAPTER 56 PRA INTERNAL FLOODING ANALYSIS 56.1 Introduction
.... 56-1 56.1.1 Definitions............
... 56-1 56.2 Methodology...........
... 56-1 56.2.1 Summary of Methodology..................
... 56-1 56.2.2 Information Collection........
.. 56-2 56.2.3 Initial Screening Assessment.
. 56-3 56.2.4 Detailed Screening Assessment
. 56-4 56.2.5 Identification of Flood-Induced Initiating Events
. 56-6 56.2.6 Initiating Event Frequencies
.. 56-7 56.3 Assumptions...........
...... 56-7 56.3.1 General Flooding Analysis Assumptions and Engineering Judgments. 56-7 56.3.2 AP600-Specific Assumptions.
. 56-9 56.4 Information Collection.........
.. 56-11 56.4.1 PRA-Modeled Equipment and Locations........
. 56-11 56.4.2 Identification of Areas for Flooding Evaluation.
..... 56-11 36.5 At-Power Operations.....
......... 56-12 56.5.1 Initial Screening Assessment...
. 56-12 56.5.2 Detailed Screening Assessment
. 56-12 56.5.3 Identification of Flood-Induced Initiating Events
... 56-28 56.5.4 Calculation of Flood-Induced Initiating Event Fr.quencies..
. 56-32 56.5.5 Quantification of At-Power Flood-Induced Events.
56-39 i'3 V
ENEl.
Revision: 11 T Westiflgh0USB g m 'a t March 1998 XXXV o:\\pra\\rev.ll\\pra. toc.wpf:lb t
i
I O
TABLE OF CONTENTS (Coat.)
Section Title
.P_ age 56.6 Shutdown Operations.........
56-41 56.6.1 Detailed Screening Assessment
. 56-41 56.6.2 Identification of Flood-Induced Initiating Events.
.. 56-42 56.6.3 Calculation of Flood. Induced Initiating Event Frequencies........ 56-43 56.6.4 Shutdown Quantification.......
.... 56-48 56.7 Seismically Induced Flooding.
............... 5 6-51 56.8 Flooding Hazards During Refueling Outages........
56-52 56.9 Flooding Sensitivity Study
....... 56-52 56.9.1 Flooding Human Error Probabilities Sensitivity Study........... 56-52 56.10 Summary of Findings.......
. 56-53 CHAPTER 57 INTERNAL FIRE ANALYSIS 57.1 Introduction
. 57-1 57.2 Qualitative Analysis Methodology 57-2 57.3 Quantitative Methodology of Fire Area Frequency....
57-6 57.3.1 Fire Frequency Calculations
. 57 6 57.3.2 Fire Damage Category Quantification...................... 57-7 57.4 Core Damage Quantification Methodology
.... 57-10 57.5 Fire Analysis Assumptions............
.......... 57-12 57.5.1 Qualitative Analysis Assumptions and Other Modeling Considerations.......
.... 57-12 57.5.2 Quantification Assumptions And Modeling Considerations
. 57-14 57.6 At-Power Qualitative Analysis Results................
. 57-17 57.7 At-Power Quantitative Results.
57-19 57.7.1 Fire Ignition Frequencies for Quantitative Analysis....
. 57-19 57.7.2 Fire Damage Category Quantification......
. 57-19 57.7.3 Individual Area PRA Analysis.............
. 57-19 57.8 Control Room Fire Analysis - Power Operation..........
. 57-22 57.8.1 Description of the Control Room and Associated Fire Protection... 57-22 57.8.2 Alternate Shutdown Capability.......................... 57-23 57.8.3 Fire Hazard Review..................
........... 5 7-2 4 57.8.4 AP600 Control Room Fire Evaluation..................... 57-25 l
57.8.5 Fire Scenario Identification and Frequency Detennination...
57-29 57.8.6 Control Room Fire Scenario Quantification and Results
... 57-32 57.9' Shutdown Fire Analysis.
... 57-33 57.9.1 Fire Ignition Frequencies during Shutdown Modes of Operation.
57-33
)
57.9.2 Fire Damage Category Quantification..
57-34 57.9.3 Individual Area PRA Analysis......
............ 57-34 l
57.9.4 Fire Analysis for Safe Shutdown.......
57-34 57.9.5 Fire Analysis for Mid-Loop Operation....
.......... 5 7-41 O
Revision: 9 April 11,1997 h_
[ WSStingh00$8 chp600\\pra\\rev 9\\pra. toc.wptib xxxyj
RF 7-s TABLE OF CONTENTS (Cont.)
Section Title P_ age a
57.10 Summary and Conclusions.
. 57-42 57.10.1 At-Power Analysis 57-42 57.10.2 Shutdown Fire Analysis...........
57-45 57.10.3 Conclusions.....
57-47 57.11 References 57-48 ATTACHMENT 57A DEFINITIONS.
57A-1 ATTACHMENT 57B DESIGN CHANGE EFFECT ON INTERNAL FIRE ANALYSIS.
57B-1 CHAPIER 58 WINDS, FLOODS, AND OTHER EXTERNAL EVENTS 58.1 Introduction
. 58-1 58.2 External Events Analysis
.........58-1 58.2.1 Severe Winds and Tornadoes....
.... 5 8-1 58.2.2 External Floods...
. 58-2 58.2.3 Transportation and Nearby Facility Accidents.
.. 58-2 58.3 Conclusion 58-3 58.4 References 58-3 oV)
CHAPTEP,59 PRA RESULTS AND INSIGHTS 59.1 Introduction
.59-1 59.2 Use of PRA in the Design Process...............
59-3 59.2.1 Stage 1 - Use of PRA During the Early Design Stage........... 59-4 59.2.2 Stage 2 - Preliminary PRA...........
. 59-5 59.2.3 Stage 3 - AP600 PRA Submittal to NRC (1992)......
. 59-7 59.2.4 Stage 4 - PRA Revision 1 (1994).........
59-8 59.2.5 Stage 5 - PRA Revisions 2-8 (1995-1996)..........
59-8 59.3 Core Damage Frequency from Intemal Initiating Events at Power 59-10 59.3.1 Dominant Core Damage Sequences...........
. 59-12 59.3.2 Component Importances for At-Power Core Damage Frequency.
59-44 59.3.3 System Importances for At-Power Core Damage.
....... 5 9-44 59.3.4 System Failure Probabilities for At-Power Core Damage..
59-45 59.3.5 Common Cause Failure Importances for At-Power Core Damage 59-45 59.3.6 Human Error Importances for At-Power Core Damage..
.... 59-45 59.3.7 Accident Class Importances.
.. 59-47 59.3.8 Sensitivity Analyses Summary for At-Power Core Damage.
59-47 59.3.9 Summary of Important Level 1 At-Power Results...
59-48 59.4 Large Release Frequency for Intemal Initiating Events at Power..
59-51 59.4.1 Dominant Large Release Frequency Sequences......
. 59-52 59.4.2 Sensitivity Analyses for Containment Response.........
. 59-72 i
}
t
)
J ENEL Revision: 11 W Westinghouse muh March 1998 XXXvii c:\\pra\\rev llipra-toc wpf;1b
z l
e TABLE OF CONTENTS (Cont.)
l Section Title Eage i
i 59.4.3 Comparison of Initiating Event Importances for Core Damage Fmquency and Large Release Frequency.........
. 59-72 59.4.4 Summary of Imponant Level 2 At-Power Results.
........ 5 9-73 59.5 Core Damage and Severe Release Frequency from Events at Shutdown.
. 59-75 59.5.1 Summary of Shutdown Level 1 Results...
.. 59-75 59.5.2 Large Release Frequency for Shutdown and Low-Power Events.
... 59-81 59.5.3 Shutdown Results Summary.......
........ 5 9-82 59.6 Results from Intemal Flooding, Internal Fire, and Seismic Margin Analyses......
........ 5 9-82 59.6.1 Results of Internal Flooding Assessment......
... 59-82 59.6.2 Results ofIntemal Fire Assessment 59-83 59.6.3 Results of Seismic Margin Analysis...
....... 5 9-87 59.7 Plant Dose Risk from Release of Fission Products..
.... 59-87 59.8 Overall Plant Risk Results....
59-88 59.9 Plant Features Imponant to Reducing Risk..........
59-89 59.9.1 Reactor Design
..... 59-90 59.9.2 Systems Design 59-91 59.9.3 Instrumentation and Control Design...
.. 59-94 59.9.4 Plant Layout..
..... 59-95 59.9 5 Plant Structures..
59-96 59.9.6 Containment Design....
.. 59-96 59.10 PRA Input to the Design Certification Process.....
.59-101 59.10.1 FRA Input to Reliability Assurance Program............... 59 102 59.10.2 PRA Input to Certified Design Material
....59-102 59.10.3 PRA Input to the Technical Specifications...
......59-102 59.10.4 PRA Input to MMI/ Human Factors / Emergency Response Guidelines...
......59-102 59.10.5 Summary of PRA-Based Insights...........59-103 59.10.6 Combined License Information
...59-103 APPENDIX A MAAP4 ANALYSIS TO SUPPORT SUCCESS CRITERIA.
.. A-1 APPENDIX B EX-VESSEL SEVERE ACCIDENT PHENOMENA
............ B-1 APPENDIX C DESIGN CHANGES THAT OCCURRED AFTER THE PRA ANALYSES WERE COMPLETED C-1 APPENDIX D EQUIPMENT SURVIVABILITY ASSESSMENT....
..... D-1 9
Revision: 11 ENEL March 1998
'r.'xh.
W65tiflgh09Se o:WVev thpra. toc.wpf.lb XXXViii
b LIST OF TABLES Table No.
Title Eage 2-1 Intemal Initiating Event Grouping - Plant Systems and Equipment Available for Transient / Accident Conditions......................... 2-31 2-2 NUREG/CR-3862 Initiator Categories.............................. 2-48 2-3 NUREG/CR-3862 Initiator Categories Not Considered in the AP600 PRA Analysis.................................... 2-52 2-4 AP600 Intemal Initiating Event Frequencies
.........................2-53 2-5 Initiating Event Frequencies Used in Event Tree Quantification............ 2-56 2A.1-1 Summary of Primary System Piping Data..........................
2A-1 2A.1-2 Summary of Primary System Pipe Break Frequency Quantification and Frequency Apportionments.............
2A-4 2A.1-3 Attribution of Line Break Frequencies to Specific LOCA Initiating Event Categories..........
2A-5 2A.2-1 RCS Leakage Events...........
2A-7 2A.3-1 Summary of Steam Generator Tube Rupture Events................... 2A-18 2A.4-1 Identification of the Situations Potentially Leading to LOCA and Interfacing LOCA on RNS.........................................
2A-20 2A.4-2 Screening Quantification of LOCA and Interfacing LOCA Frequencies
,m
(
)
on Normal RHR System..............
2A-23 2A.4-3 Summary of Screening Quantification of LOCA and Interfacing LOCA v
Frequencies on RNS.......
2A-28 2A.51 Spurious Stuck-open Pressurizer Safety Valve 2A-29 2A.5-2 Interface Break on Accumulator Lines............................ 2A-30 2A.5-3 Interface Break on IRWST Injection Lines......................... 2A-32 2A.6-1 Summary of Main Steam Line and Feedwater Line Piping Data for Secondary-side Break Frequency Quantification...............
2A-35 2A.6-2 Secondary-side Line Break Frequency Quantification.................. 2A-36 2A.6-3 Stuck-open Main Steam Line Safety Valve Frequency Quantification....... 2A-37 2A.71 Initiating Events Review Data Summary..........................
2A-40 3-1 Loss of CCS/SWS Initiating Event Fault Tree CSWF Success Criteria Summary.....................................
3-9 3-2 Spurious Actuation of Automatic Depressur zation Failure Criteria Summary... 3-10 3-3 Evaluation of Spurious Automatic Depressurization System Frequencies..... 3-11 4-1 Summary of Systems Associated with Mitigating Functions for AP600...... 4-115 4-2 Summary List of Event Tree Top Events
..........................4-116 4-3 Summary of Core Damage Categories 4-1 19 i
i V
Revision: 9 3 W8Stingh00S8 April 11,1997 l
XXXIX o Aap600Npra\\rev,9)pra-lot.wpf. l b l
i
=5 T
O LIST OF TABLES (Cont.)
Table NL Title P_ age 5-1 AP600 Safety-Related Plant Support Systems with Letter Designators......... 5-3 5-2 AP600 Nonsafety-Related Plant Support Systems with Letter Designators...... 5-3 5-3 AP600 Support System Interdependency Matrix....
5-4 5-4 AP600 Safety-Related Front-Line Plant System Letter Designators.......... 5-17 5-5 AP600 Nonsafety-Related Front-Line Plant System Letter Designators...... 5-17 5-6 AP600 Front-Line System Dependency Matrix............
...........5-18 6-1 Summary of Event Tree Top Events Success Criteria....
. 6-102 6-2 Summary of Success Criteria for the Mitigating Systems....
....... 6-130 6-3 Summary of Success Criteria for Operator Actions and Mission Times..... 6-144 6-4 Deleted 7-1 Example for Fault Tree XXX Success Criteria Summary......
.. 7-16 7-2 Example for System Dependency Matrix..
.. 7-16 7-3 Example for Component Test Assumptions...
.. 7-17 7-4 Example for Component Maintenance Assumptions..........
..... 7-17 7-5 Example for Operator Actions and Disposition Analysis Summary.
.. 7-17 7-6 Fault Tree Identification Codes
..... 7-18 7-7 System Identification Codes for Basic Events
.. 7-21 7-8 Component Identification Codes
. 7-24 7-9 Failure Mode Identification Codes...
....... 7-31 8-1 List of System Fault Trees 8-8 8-9 8-2a Fault Tree PRT Success Criteria Summary...
8-10 8-2b Fault Tree PRL Success Criteria Summary..
8-2c Fault Tree PRP Success Criteria Summary 8-1 1 8-2d Fault Tree PRS Success Criteria Summary 8-12 8-2e Fault Tree PRW Success Criteria Summary......................... 8 - 13 8-2f Fault Tree PRI Success Criteria Summary..........................
8-14 1
8-2g Fault Tree PRTA Success Criteria Summary
.. 8-15 l
8-3 Notes Related to System Fault Tree Assumptions..........
8-16 l
8-4 System Dependency Matrix.....
..... 8-17 8-5 Component Test Assumptions...........
.. 8-18 8-6 Component Maintenance Assumptions........
... 8-18 8-7 Operator Actions and Disposition Analysis Summary 8-19 f
8-8 Common Cause Failure Analysis Summary...
.. 8-19 8-9 Fault Tree Basic Events for Passive Residual Heat Removal System........ 8-20 l
1
(
l l
O Revision: 9 ENEL 3 Westiflgh00Se
{
April 11,1997 sh o:\\ap600prairev.,9%pra-lot.wpf. l b x) l 4
I
OU LIST OF TABLES (Cont.)
Table No.
Title P_ age 9-1 List of System Fault Trees 9-9 9-2a Fault Tree CM2AB Success Criteria Summary........................ 9-10 9-2b Fault Tree CM2SL Success Criteria Summary.
.. 9-11 9-2c Fault Tree CM2L Success Criteria Summary........................ 9-12 9-2d Fault Tree CM2P Success Criteria Summary........................ 9-13 9-2e Fault Tree CM1 A Success Criteria Summary.......
. 9-14 l
9-2f Fault Tree CM2LLT Success Criteria Summary....
9-15
{
9-2g Fault Tree CMBOTH Success Criteria Summary...................... 9-16 i
9-2h Fault Tree CM2LA Success Criteria Summary..
9-17 9-2i Fault Tree CM2NL Success Criteria Summary..........
. 9-18 9-3 Notes Related to System Fault Tree Assumptions..
. 9-19 9-4 System Dependency Matrix......
. 9-19
)
9-5 Component Test Assumptions..
..................... 9-2 0 l
9-6 Component Maintenance Assumptions.....
.. 9-20 i
9-7 Operator Actions and Disposition Analysis Summary..........
...... 9-21 9-8 Common Cause Failure Analysis Summary.............
... 9-21 9-9 Fault Tree Basic Events for Core Makeup Tank Subsystem 9-22
/m 10-1 List of System Fault Trees.
. 10-6 V) 10-2a Fault Tree AC2AB Success Criteria Summary
.......................10-7 10-2b Fault Tree ACI A Success Criteria Summary........................ 10-8 10-2c Fault Tree ACBOTH Success Criteria Summary
. 10-9 10-3 Notes Related to System Fault Tree Assumptions...
. 10-10 10-4 System Dependency Matrix...
.... 10-10 10-5 Component Test Assumptions.......
............ 10- 10 104$
Component Maintenance Assumptions.........................
. 10-11 10-7 Operator Actions and Disposition Analysis Summary................. 10- 1 1 10-8 Common Cause Failure Analysis Summary...........
. 10-11 10-9 Fault Tree Basic Events for Accumulator Subsystem
. 10-12 Il-la List of System Fault Trees.............
.11-9 11-1b List of System Fault Trees (For Plant Damage States Analysis)..
... 11-10 11-2a Automatic Depressurization System Success Criteria Versus Accident Conditions Full Depressurization....
. I1-11 11-2b Automatic Depressurization System Success Criteria Versus Accident Conditions Partial Depressurization
. 11-12 11-2c Automatic Depressurization System Fault Tree Summary (For Plant Damage States Analysis).
.. 11-13 11-2d Fault Tree ADA Success Criteria
. 11-13 11-2e Fault Tree ADT Success Criteria.....
. 11-14 m
Revision: 9 ENEL
[ Westinghouse mh%
April 11,1997 xlj o$ap600pra\\rev_9\\pra-lot.wpf.lb E-------_______________________._______--
M e
LIST OF TABLES (Cont.)
Table No.
Title Eage 11-2f Fault Tree ADI A Success Criteria.............................. 11-14 Il-2g Fault Tree ADI Success Criteria............................... 11-15 11-2h Fault Tree ADS Success Criteria................................ 11-16 11-2i Fault Tree ADU Success Criteda................,............... 11-17 11-2j Fault Tree ADV Success Criteria................................ 11-18 11-2k Fault Tree ADZ Success Criteria.....
... 11-18 1 2-21 Fault Tree ADM Success Criteria................................ 11-19 11-2m Fault Tree ADQ Success Criteria................................ 11-19 11-2n Fault Tree ADAL Success Criteria............................... 11-20 11-20 Fault Tree ADL Success Criteria................................ 11-21 11-2p Fault Tree ADRA Success Criteria............................... 11-21 11-2q Fault Tree ADR Success Criteria............................... 11-22 11-2r Fault Tree ADAB Success Criteria
. 11-23 11-2s Fault Tree ADB Success Criteria............................... 11-23 11-2t Fault Tree ADW Success Criteria........
............. 1 1 24 11-2u Fault Tree ADUM Success Criteria..........
........... Il-24 11-2v Fault Tree ADF Success Criteria..
.......... Il-25 11-2w Fau!r Tree ADMA Success Criteria............................... I 1-25 11-2x Fault Tree ADTLT Data Summary............................... 11-26 11-2y Fault Tree ADQLT Success Criteria............................. 11-26 11-3 Notes Related to System Fault Tree Assumptions..................... 11-27 11-4 System Dependency Matrix......
.... 11-28 11-5 Component Test Assumptions................................. 11-29 11-6 Component Mainten.nce Assumptions............................ 11-29 11-7 Operator Actions and Disposition Analysis Summary..
.... 11-30 11-8 Common Cause Failure Analysis Summary......................... 11-31 11-9 Fault Tree Basic Events for Automatic Depressurization System.......... 1 1 -3 2 12-1 List of System Fault Trees.,,.....
..... 12-11 12-2a Fault Tree IW2AB Success Criteria Summary
......................12-12 12-2b Fault Tree IW2ABM Success Criteria Summary
..... 12-13 12-2c Fault Tree IW2ABA Success Criteria Summary
... 12-14 12-2d Fault Tree IW2ABP Success Criteria Summary
.....................12-15 12-2e Fault Tree IW2 BPM Success Criteria Summary
........... 12-16 12-2f Fault Tree IW2ABB Success Criteria Summary
... 12-17 12-2g Fault Tree IW2ABBM Success Criteria Summary
.... 12-18 12-2h Fault Tree IW1 A Success Criteria Summary
....... 12-19 12-2i Fault Tree IW1AM Success Criteria Summary
........ 12-20 12-2j Fault Tree IWF Success Criteria Sumt.tary........................ 12-21 12-2k Fault Tree RECIRC Success Criteria Summary..................... 12-22 e
Apn
,1997 W85tingh00S8 cAs,400$rairev 9spra-lotwpf:Ib xlji
1
=-
si
~.
l O
V LIST OF TABLES (Cont.)
f Table No.
Title Page 1 2-21 Fault Tree RECIRP Success Criteria Summary...................... 12-23 12-2m Fault Tree RECIRB Success Critena Summary
................ 12-24 12-2n Fault Tree RECIRA Success Criteria Summary...................... 12-25 12-2o Fault Tree RECIRAP Success Criteria Summary....................
12-26 12-3 Notes Related to System Fault Tree Assumptions....................
12-27 12-4 System Dependency Matnx................................... 12-27 j
12-5 Component Test Assumptions.................................. 12-28 12-6 Component Maintenance Assumptions..............
.. 12-29 12-7 Operator Actions and Disposition Analysis Summary.................. 12-29 12-8 Common Cause Failure Analysis Summary...
. 12-30 12-9 Fault Tree Basic Events for IRWST Subsystem.....................
12-31 13-1 List of Sy stem Fault Trees..............................
..... 13-8 13-2 Fault Tree PCT Success Criteria Summary.......
.. 13-8 13-3 Notes Related to System Fault Tree Assumptions..................... 13-8 13-4 System Dependency Matrix..................................... 13-9 13-5 Component Test Assumptions..
.. 13-9 13-6 Component Maintenance Assumptions............................
13-10 f3 13-7 Operator Actions and Disposition Analysis Summary.................. 13-10 13-8 Common Cause Failure Analysis Summary......................... 13-10 13-9 Fault Tree Basic Events for Passive Containment Cooling System......... 13-11 14-1 List of System Fault Trees..................................... 14-9 14-2a Fault Tree FWT Success Criteria Summary
...... 14-10 14-2b Fault Tree FWF Success Criteria Summary......................... 14-11 14 2c Fault Trie SFWT Success Criteria Summar;........................ 14-12 14-2d Fault Tree SFW Success Criteria Summary.....
. 14-13 14-2e Fault Tree SFW1 Success Criteria Summary........................
14-14 14-2f Fault Tree SFWP Success Criteria Summary.....
14-15 14-2g Fault Tree SFWM Success Criteria Summary
... 14-16 14-2h Fault Tree SFWA Success Criteria Summary....................... 14-17 14-2i Fault Tree COND Success Criteria Summary............
14-18 l
14-2j Fault Tree CONDI Success Criteria Summary..
.... 14-19 14-2k Fault Tree CDS Success Criteria Summary...................
. 14-20 1 4-21 Fault Tree TCCW Success Criteria Summary.............
. 14-21 14-3 Notes Related to System Fault Tree Assumptions..
..... 14-22 l
14-4 System Dependency Matrix.........................
... 14-23 l
14-5 Component Test Assumptions...........,.........
14-31 l
14-6 Component Maintenance Assumptions...........................
14-3 2 14-7 Operator Actions and Disposition Analysis Summary................. 14-32 1
Revision: 9 W Westingholise
$E April 11,1997 h
OM M *ev.9Wlampf:lb xliii P P I
l
E=5 l
O LIST OF TABLES (Cont.)
Table No, Title Pag _e 14-8 Common Cause Failure Analysis Summary..........
......... 14-33 14-9 Fault Tree Basic Events for Main and Startup Feedwater System.......... 14-34 15-1 List of System Fault Trees...................
.. 15-9 15-2a Fault Tree CSBORI Success Criteria Summary..................... 15-10 15-2b Fault Tree CVS1 Success Criteria Summary........................ 15-11 15-2c Fault Tree CSAX Success Criteria Summary.............
.... 15-12 15-2d Fault Tree SGHL Success Criteria Summary..........
............ 15-13 15-2e Fault Tree CSP Success Criteria Summary
............... 15-14 15-3 Notes Related to System Fault Tree Assumptions..
... 15-15
. -. 15-16 15-4 System Dependency Matrix...
15-5 Component Test Assumptions
... 15-17 15-6 Component Maintenance Assumptions.
.........................15-18 15-7 Operator Actions and Disposition Analysis Summary.................. 15-19 15-8 Common Cause Failure Analysis Summary........
. 15-20 15-9 Fault Tree Basic Events for Chemict.1 and Volume Control System
....... 15 21 16-1 List of System Fault Trees...
.... 16-5 16-2 Fault Tree VLH Success Criteria Summary......
..... 16-5 16-3 Notes Related to System Fault Tree Assumptions..................... 16-5 16-4 System Dependency Matrix......
..... 16-6 16-5 Component Test Assumptions.....
..... 16-6 16-6 Componem Maintenance Assumptions
..................... 1 6-6 16-7 Operator Actions and Disposition Analysis Summary.................. 16-7 16-8 Common Cause Failure Analysis Summny.............
. 16-7 16-9 Fault Tree Basic Events for Containment Hydrogen Control System......... 16-8 17-1 List of System Fault Trees.
17-8 17-2a Fault Tree RNR Success Criterin Summary........
17-9 17-2b Fault Tree RNP Success Criteria Summary........
..... 17-9 17-3 Notes Related to System Fault Tree Assumptions..
.... 17-10 17-4 System Dependencies Matrix....
.... 17-11 17-5 Component Test Assumptions....
...... 17-12 17-6 Component Maintenance Assumptions
.................... 17-12 17-7 Operator Actions and Disposition Analysis Summary...
. 17-13 17-8 Common Cause Failure Summary
. 17-13 17-9 Fault Tree Basic Events for Normal Residual Heat Removal System....
. 17-14 O
Revision: 9 April 11,1997 WeStiligh00Se o:\\ap600Nprairev,,9\\pra-lot.wpf.lb xliv l.
m
(n V)
LIST OF TABLES (Cont.)
Table No.
Title Page 18-1 List of System Fault Trees
.. 18-6 18-2a Fault Tree CCN Success Criterie Summary.......................... 18-6 18-2b Fault Tree CCT Success Criteria Summary
................. I8-7 18 2c Fault Tree CCP Success Criteria Summary........................... I8-7 j
18-3 Notes Related to System Fault Tree Assumptions..........
.18-8 18-4 System Dependency Matrix.............
........................I8-8 18-5 Component Test Assumptions..............
...............I8-9
)
18-6 Component Maintenance Assumptions..........
..I8-9 i
18-7 Operator Actions and Disposition Analysis Summary................... I8-10 18-8 Common Cause Failure Analysis Summary......................... I 8-10 18-9 Fault Tree Basic Events for Component Cooling Water System........... 18-11 19-1 List of System Fault Trees..................................... 19-6 19-2a Fault Tree SWN Success Criteria Summary.
.......... 19-6 1
19-2b Fault Tree SWT Success Criteria Summary...
......................19-7 l
19-2c Fault Tree SWP Success Criteria Summary......................... 19-7 I
19-3 Notes Related to System Fault Tree Assumptions
.19-8 19-4 System Dependency Matrix.....................
19-9 (S'}
Component Test Assumptions............................
.. 19-10 19-5 19-6 Component Maintenance Assumptions.......,,................... 19-10 19-7 Operator Actions and Disposition Analysis Summary................. 19-11 19-8 Common Cause Failure Analysis Summary........................ 19-11 19-9 Fault Tree Basic Events for Service Water System................... 19-12 20-1 List of System Fault Trees
............... 20-6 20-2 Fault Tree VWH Success Criteria Summary
. 20-6 20-3 Notes Rels.ted to System Fault Tree Assumptions
.20-6 20-4 System Dependency Matrix.
20-7 20-5 Component Test Assumptions...........
. 20-8 20-6 Component Maintenance Assumptions
. 20-8 20-7 Operator Actions and Disposition Analysis Summary........
. 20-9 20-8 Common Cause Failure Anslysis Summary
........ 20-9 20-9 Fault Tree Basic Events for Central Chilled Water System
... 20-10 21-1 List of System Fault Trees...
21-10 21-2 Fault Tree Success Criteria Summary....
21-13 l
21-3 Nou:s Related to System Fault Tree Assumptions
... 21-29 l
21-4 System Dependency Matrix................
21-32 21-5 Component Test Assumptions.
21-32 o\\
(d Revision: 9 l
T Westinghouse fh_
April 11,1997 xlv c:\\ap600\\pra\\rev.9\\pra-ktwpf.lb
=C EE O
1 LIST OF TABLES (Cont.)
Table No.
Title Ea.ge
. 21-33 21-6 Component Maintenance Assumptions...................
.............. 21-33 21-7 Operator Actions and Disposition Analysis Summary...
21-8 Common Cause Failure Analysis Summary
........ 21-33 21-9 Fault Tree Basic Events for AC Power System
........... 21-34
............ 22-6 22-1 List of System Fault Trees
.... 22-10 22-2 Fault Tree Success Criteria Summary.
22-3 Notes Related to System Fault Tree Assumptions.................... 22-26
.. 22-26 22-4 Systems Dependercy Matrix..................
....... 22-27 22-5 Component Test Assumptions...
..... 22-27 22-6 Component Maintenance Assumptions........
22-7 Operator Actions and Disposition Analysis Summary...
..... 22-27 22-8 Common Cause Faibre Analysis Summary
... 22-28 22-9 Fault Tree Basic Events for Class IE de and Uninterruptible Power
............ 22-29 Supply System 22-10 System Power Requirements / Dependencies.
......... 22-41 23-1 List of System Fault Trees.....
............... 23-6 23-2 Fault Tree Success Criteria Summary.................
. 23-9 23-3 Notes Related to System Fault Tree Assumptions.................... 23-20 23-20 23-4 System Dependency Matrix....
...... 23-21 23-5 Component Test Assumptions......
23-6 Component Maintenance Assumptions........
.............. 23-21 23-7 Operator Actions and Disposition Analysis Summary.................. 23-21 23-8 Common Cause Failure Analysis Summary.................
.... 23-22 23-9 Fault Tree Basic Events for Non-Class 1E de and UPS System..
... 23-23 24-1 AP600 Containment Penetration List
..... 24-7 24-2 Screening Analysis Evaluation............
. 24-16 24-3 Containment Penetrations Not Screened Out for Normal Operation at Power Analysis..................
..................... 24-22 24-4 List of System Fault Trees
. 24-22 24-5a Fanit Tree CIC Success Criteria Summay
. 24-23 24-5b Fault Tree CIA Success Criteria Summary...
..... 24-23 24-Sc Fault Tree CIB Success Criteria Summary....
24-24 24-6 Notes Related to System Fault Trees Assumptions....
....... 24-24 24-7 System Dependency Matrix......
. 24-25
{
24-8 Component Test Assumptions......
.... 24-28 j
24-9 Component Maintenance Assumptions...
.. 24-28 O.
l Revision: 9 h_
T Westinghouse l
April 11,1997 c:\\ap600pu\\rev.9\\pra-lot.wpf.lb xlvi
(
)
t
' O LIST OF TABLES (Cont.)
Table No.
Title P. age 24-10 Operator Actions and Disposition Analysis Summary.................. 24 29 24-11 Common Cause Failure Analysis Summary......................... 24-29 24-12 Fault Tree Basic Events for Containment Isolation System.............. 24-30 25-1 List of System Fault Trees
................... 25-9 25-2a Fault Tree CAIAIR Success Criteria Summary...................... 25 - 10 25-2b Fault Tree CAIR Success Criteria Summary
............. 25-10 25-2c Fault Tree CAIAIRP Success Criteria Summary...................... 25-11 25-2d Fault Tree ENDCAIAI Success Criteria Summary.................... 25-11 25-2e Fault Tree ENDCAIAP Success Criteria Summary.................... 2512 25-2f Fault Tree CASF Success Criteria Summary....................... 25-13 25-3 Notes Related to System Fault Tree Assumptions..................... 25-13 25-4 System Dependency Matrix...........
............... 25 - 14 25-5 Component Test Assumptions.................................. 25-14 25-6 Component Maintenance Assumptions............................ 25-15 25-7 Operator Actions and Disposition Analysis Summary...........
.. 25-15 25-8 Common Cause Failure Analysis Summary........................ 25-15 l
25-9 Fault Tree Basic Events for Instrument Air Subsystem................. 25-16 26-1 List of System Fault Trees
..............................26-28 26-2a Fault Tree RTPMS and RTPMS1 Success Criteria Summary............. 26-29 l
26-2b Fault Tree RTSTP Success Criteria Summary...................... 26-29 26-2c Fault Tree RCL Success Criteria Summary......................... 26-30 26-2d.1 Fault Tree RCT Success Criteria Summary...........
......... 26-30 26-2d.2 Fault Tree RCN Success Criteria Summary......................... 26-31 26-2e I&C Subtree Success Criteria Summary 26-32 26-3a PMS I&C Subtree Constmetions..............................26-130 26-3b Representative PMS I&C Subtree Plot Listing.....................26-149 26-4 PMS Dependency Matrix..
....26-163 26-5 PMS Components Test Assumptions
... 26 166 26-6 Component Maintenance Assumptions..........................26-166 26-7 Failure Probabilities Calculated in this Section...
...26-167 26-8 Operator Actions and System Disposition Analysis Summary..........26-172 l
26-9 Common Cause Failure Analysis Summary..................26-175 26-10a Fault Tree Basic Events for Reactor Trip System.......
..26-177 26-10b Fault Tree Basic Events for the I&C Subsystem.....................26-181 26-11 Assumed List of I&C Instrumentation.......................
.26-230 l
27 1 List of System Fault Trees............
.................. 2 7-9 27-2a Fault Tree DAS Success Criteria Summary......................... 27-9 27-2b Fault Tree DASI Success Criteria Summary....
.... 27-9 C
Revision: 9 ENEL T Westinghouse cah.
April 11,1997 xlvii oVW*n_%I1*P :Ib f
=M.
1 O
LIST OF TABLES (Cont.)
Table No.
Title Page 27-3 Notes Related to System Fault Tree Assumptions
..... 27-10 27-4 System Dependency Matrix.................................... 27-10 27-5 Component Test Assumptions.............................
27-10 27-6 Component Maintenance Assumptions........................... 27-10 27-7 Operator Actions and System Disposition Analysis Summary...........
27-10 27-8 Common Cause Failure Analysis Summary......................... 27-11 27-9 Fault Tree Basic Events for Diverse Actuation System................. 27-12 28-1 List of System Fault Trees.................................... 28-23 28-2 Fault Tree Success Criteria Summary............................. 28-24 28-3a PLS 1&C Subtree Constructions................................. 28-46 28-3b Representative PLS 1&C Subtree Plot Listing....................... 28-55 28-4 PLS Dependency Matrix...................................... 28-66 28-5 PLS Components Test Assumptions............................. 28-68 28-6 Component Maintenance Assumptions........................... 28-69 28-7 Failure Probabilities Calculated in this Section...................... 28-70 28-8 Operator Actions and System Disposition Analysis Summary............ 28-73 28-9 Common Cau:e Failure Analysis Summary......................... 28-75 28-10 Fault Tree Basic Events for 1&C Subsystem....................... 2 8 -77 28-11 Assumed List of 1&C Instrumentation.28-136 28-12 Assignments of Plant Systems to Control Logic Cabinets28-139 28-13 Assignments of Plant Systems to the Control Gruup Cabinets...........28-140 29-1 Electrical Components with Low Common Cause Failure Rate........... 29-16 25 '.
Common Cause Failure Calculations............................. 29-17 30-1 AP600 Human Error Probability Summary Results................... 30-79 30-2 Manual DAS Actuation
. 30-95 30-3 Dependency Level Evaluation Summary..
... 30-97 30-4 Dependency Level Evaluation 30-111 30-5 List of Acronyms...................30-114 31-1 Summary of Event Tree Scalar Probabilities........
.......... 31-15 31-2 UET Versus Cumulative Fraction of Transients in the UET Period (Transient Time)
. 31-17 32-1 Generic Data B ase........................................... 32-5 32-2 Test and Maintenance Outal,e Generic Data.
......... 32-21 32-3 Test and Maintenance Unavailabilities Used in AP600 Core Damage Quantification...........
32-22 Revision: 9
[ Westiligh0USB April 11,1997 o$ap600hpra\\rev 9\\pra-lotspf;1b xlyjij
1 l
l LIST OF TABLES (Cont.)
i Table No.
Title Eage 32-4 Common Cause Factors................
.. 32-23 32 5 Master Data Bank (SIMON.OUT File).....
. 32-29 33 1 Summary of AP600 System Fault Tree Failure Probabilities.......
.. 33 7 33-2 Example Accident Sequence Definitions for Large LOCA.............. 3 3 19 33-3 List of Dominant Cutsets (At Power)......
.... 33-20 33 4 List of Dominant Sequences (At Power)........
33-29 33-5 Importance Calculations for Initiating Events...
... 33-42 l
334)
AP600 PRA List of Basic Event Descriptions............
.. 33-43 34-1 Post-Accident Monitoring Equipment............................ 34-30 34-2 Level 1 Accident Class..
... 34 31 34 3 AP600 Level 1 Dominant Core Damage Sequences.....
............ 34-3 2 34-4 Summary of Release Categories
.................................%38 34-5 3BE-1 Event Summary...................................... 34-3 9
! f 34-6 3 BE-2 Event Summary...................................... 34 40 j
\\
34-7 3BE 3 Event Summary...................................... 34-41 l
l 34-8 3BE-4 Event Summary...................................... 34 42 34-9 Summary of Releasc Categories Considered for Accident Class 3BE....... 34-43 34-10 Summary of Release Category Disposition for Accident Class 3BE........ 34 43
% 11 3 B E-5 Event Summary...................................... 34-44
% 12 3 B E-7 Event Summary....................................... 34-45 j
% 13 3 B E-8 Event Summary....................................... 34-46 W14 3BE-9 Event Summary......
...............................34-47
% 15 3BE-10 Event Summary..................................... 34-48 34-16 3 B L-1 Event Summary....................................... 34-49
%I7 3 B L-2 Event Summary...................................... % 50 l
34-18 Summary of Release Categories C'onsidered for Accident Class 3BL....... 34-51 34-19 Summary of Release Category Disposition for Accident Class 3BL........ 34-51 34-20 3 BL-3 Event Summary...................................... 34-52 l
34-21 3BR-1 Event Summary........................................ %53 l
34-22 Summary of Release Category Disposition for Accident Class 3BR........ 34-54 i
% 23 3C-1 Event Summary........................................ 34-55
% 24 Summary of Release Category Disposition for Accident Class 3C......... 34-56 l
34-25 3 D-1 Event Summary........................................ 34-57 34 26 Summary of Release Categories Considered for Accident Class 3D........ 34 5 8
% 27 Summary of Release Category Disposition for Accident Class 3D..........%58 34-28 3 D-2 Event Summary......................................... %59
)
34-29 6E-1 Event S ummary........................................ 34-60
/
% 30 6E 2 Event Summary........................................ 34-61 j
34-31 6E 3 Event Summary
.......................................34-62 I
Revision: 9 W W8Silligh0088 E..S-April 11,1997
l l
e i
l LIST OF TABLES (Cont.)
Table No.
Title Page l
34-32 6L-1 Event Summary.
....... 34 63 34-33 Summary of Release Categories Considered for Accident Class I AP
... 34-64 34-34 Summary of Release Category Disposition for Accident Class I AP.
. 34-64 34-35 1 AP-1 Event Summary..
..................... 34-65 34-36 Summary of Release Categories Considered for Accident Class IA
... 34-66 4
34-37 Summary of Release Category Disposition for Accident Class 1 A........
34-66 34-38 1 A-1 Event Summary..
.. 34-67 35-1 Functional Definitions of Level 1 Accident Classes
....... 35-22 35-2 CET Initial Conditions for Level 1 Accident Classes
.... 35-23 35-3 Containment Event Tree Nodal Questions...
.......... 3 5-24 35-4 Summary of Release Category Definitions.....
........... 35-25 35-5 Summary of Containment Event Tree Success Criteria..
35-26 35-6 Summary of Operator Actions Credited on Containment Event Tree..
.... 35-29 36-1 Summary Table for RCS Depressurization (CET Node DP).............. 36-7 j
37-1 Summary Table for Containment Isolation (CET Node IS)
.... 37-5 l 38-1 Summary Table for Reflooding (CET Node RFL)
...... 38-6 39-1 Pressure Loading on Insulation
.............................. 3 9-1 5 39-2 Summary Table for Reactor Cavity Flooding (CET NODE IR)........... 39-16 39-3 Summary Table for Debris Relocation to Cavity (CET NODE VF)...
39-16 41-1 Containment Event Tree Nodal Failure Probabilities.................. 41 -4 3 41-2 Summary of System Assumptions for MAAP4 Hydrogen Mixing Analyses... 41-44 41-3 Summary of Hydrogen Gene;ation Results MAAP4 Hydrogen Mixing Analyses................................................ 41-51 41-4 Summary of Early Compartment Gas Composition Results for MAAP4 Hydrogen Mixing Analyses......
.......... 41 -57 41-5 Summary of System Assumptions for MAAP4 Hydrogen Burning Analyses...........................
.... 41 -67 41-6 Summary of Hydrogen Generation Results for MAAP4 Hydrogen Buming Analyses........................................... 41 -68 41-7 Summary of Early Compartment Gas Composition Results for MAAP4 Hydrogen Buming Analyses.......
...... 41 -69 41-8 Geometric Classes for Flame Acceleration.
.......... 41 -71 41-9 fammary of DDT Potential Evaluation from NUREG/CR-4803.......... 41-72 41-10a Dependence of Result Class on Mixture and Geometric Class........... 41 -73 41-10b Classification of the Probability of Deflagration to-Detonation Transition
.. 41-73 l
Revision: 10 ENEL T Westirigholise l June 30,1997
- ng_
obp600$rn\\rev.10$ra-lot wpf.lb 1
i
/m i
I
{wJ l
LIST OF TABLES (Cont) j I
Table No.
Title P,_ age 41-11 AP600 Compartment Geometry Class Assignment for Sherman-Berman i
Methodology for the Estimation of the Likelihood of Detonation.......... 41-74 l
41-12 AP600 Scenario Dependencies for Early Detonation Analysis............ 41-75 1
41-13 Early Detonation Probability.................................. 41 -7 6
)
41-14 Intermediate Time Frame Detonation Probability.................... 41-87 l
41-15 Safety Margin Basis Containment Performance Requirement............ 41-90 l
1 4
42-1 Parameters Used in the Construction of the AP600 Containment i
l Failure Probability Distribution for Containment Temperature = 400*F....... 42-9 40 "
Parameters Used in the Construction of the AP600 Conditional Containment l
Failure Probability Distribution for Containment Temperature = 331'F...... 42-10 42-3 Cumulative Containment Failure Probability, Temperature = 400'F........ 42-11 i
42-4 Cumulative Contair. ment Failure Probability, Temperature = 331*F..
. 42-12 43-1 AP600 Containment Event Tree Nodes............................. 43-9 43-2 Release Category Descriptions...........
..... 43-10
]
43-3 Large Release Frequency, CCFP, and C, by Accident Class............. 43-11 43-4 Dominant Containment Event Tree Sequences for Large Release
(
j Ivequency....
.....................43-12
's 43-5 Accident Class 3BE Core Damage Sequences...................... 43-15 43-6 Accident Class 3BL Core Damage Sequences...................... 4 3 - 17 l
43-7 Accident Class 3BR Core Damage Sequences...........
43-20
)
43-8 Accident Class 1 A Core Damage Sequences...........
.......... 43-21 43-9 Accident Class I AP Core Damage Sequences....................... 43-23 43-10 Accident Class 3A Core Damage Sequences........................ 43-24 43-11 Accident Class 3C Core Damage Sequences.............
..,... 43-25 43-12 Accident Class ::D Core Damage Sequences....................... 43-26 43-13 Accident Class 6 Core Damage Sequences
.... 43-27 43-14 Dominant Cutsets for Large Release Frequency...........
....... 43-29 43-15 17CFE 3BE Large Release Frequency Sequence Cutsets......
. 43-33 43-16 19BP6 Large Release Frequency Sequence Cutsets...
43-42 43-17 19BP 3A Large Release Frequency Sequence Cutsets.........
. 43-52 43-18 19P1 A Large Release Frequency Sequence Cutsets.................... 43-60 43-19 19BPI AP Large Release Frequency Sequence Cutsets
..... 43-69 43-20 8CFE 3C Release Frequency Sequence Cutsets..........
........ 43-79 43-21 17CFE 3D Large Release Frequency Sequence Cutsets.
43-80 43-22 1 SCI 3BE Large Release Frequency Sequence Cutsets
... 43-88 43-23 18CI 3D Large Release Frequency Sequence Cutsets......
. 43-97
(
43-24 18CI 3BL Large Release Frequency Sequence Cutsets
.........43-106 43-25 18CI 3C Large Release Frequency Sequence Cutsets
.43-115 43-26 6 CFE 3BE Large Release Frequency Sequence Cutsets..........
.43-118 Revision: 9 ENEL l
[ W85tingh0Use m =: %
April 11,1997 l
[j o:\\ap600\\pravev_9%pra-latwpf;1b I
L
-~
O LIST OF TABLES (Cont.)
Table No.
Title Page 43-27 18CI 3A Large Release Frequency Sequence Cutsets....
.......... 4 3-129 43-28 18CI 3BR Large Release Frequency Sequence cutsets............... 4 3-143 44-3 MAAP Model Benchmarks.......
...... 44-8 45-1 Environmental Release Fmetions at 24 Hours After Core Damage Per Release Category.
... 45-8 45-2 Environmental Release Fractions at 72 Hours After Core Damage Per Release Category...
.45-9 45-3 Release Category IC Cases for Comparison..
. 45-10 f
45-4 Release Category BP Cases for Comparison
.......... 45-11 45-5 Release Category CFE Cases for Cotaparison
.. 45-12 45-6 Release Category CFI Cases for Comparison.......
. 45-13 45-7 Summary of Source Term Sensitivity Studies
............. 45-14 45-8 Volatile Aerosols (Represented by Iodine)....
.. 45-15 1
45-9 Non-Volatile Aerosols (Represented by Strontium).
............ 45-16 49-1 AP600 Source Terms From Level 2 Analysis........
. 49-9 l
49-2 AP600 Source Tcrms for Dose Evaluation (MACCS)
. 49-10 49-3 Site Boundary Whole-Body Dose (Effective Dose Equivalent)........
49-11 49-4 Site Boundary Thyroid Dose...
49-12 l
49-5 Po,nulation Whole-Body Dose (0 to 80.5 km Radius).....
... 49-13 49-6 Site Boundary Red Marrow Dose
. 49-14 49 7 Dose Summary...................
........................49-15 49-8 Site Boundary Dose Risk - 24 Hours..........
................ 4 9-16 49-9 Site Boundary Dose Risk - 72 Hours.......
...... 49-17 49-10 Population Dose Risk - 24 Hours............
. 49-18 49-11 Population Boundary Dose Risk - 72 Hours
................... 49-19 50-1 AP600 PRA Core Damage From Intemal Initiating Events At-Power Risk Decrease Ranking of Initiating Events.........
5 0-26 50-2 AP6'00 PRA Core Damage From Intemal Initiating Events At-Power Conditional Core Damage Ranking of Initiating Events..
. 50-28 50-3 AP600 Common Cause Importances - Risk Decrease 50-30 50-4 AP600 Common Cause Importances Risk Increase.
. 50 31 50-5 Human Error Risk Importances - Risk Decrease 50-33 50-6 Human Error Risk Importances - Risk Increase.....
50-34 50-7 AP600 Component Importances - Risk Decrease.........
. 50-35 50-8 AP600 Component Importances - Risk Increase.
........... 50-36 50-9 System Importance Calculation Results
. 50-37 50-10 AP600 Systems Grouped by PRA System Importance 50-39 9
Revision: 9 April 11,1997 h_
[ Westingh0!!Se o:\\ap600\\praWv 9\\pra-lot.wpf:lb lii
w s
LIST OF TABLES (Cont.)
Table No.
TJat Esse 50-11 Operator Actions in the hcMine PRA............................ 50-40 50-12 Contribution o Initiating Events to Core Damage Frequency for r
Sensitivity Case with Failure of all Operator Actions
................. 50-4 2 50 13 Operator Actions in Sensitivity Case 27........................... 50-43 50-14 Component Importances - For Risk Decrease Measure (At Power)......... 50-45 50-15 Component Importances - For Risk-Increase Measure (At Power).......... 50-55 50-16 Containment Event Tree Node Irpportances......................... 50-65 50-17 Contribution of Initiating Events to Large Release Frequency............ 50-66 50-18 Initiating Event vs Containment Effectiveness (C,)................... 50-67 50-19 End-State Importances....................................... 50-68 50-20 Summary of Large Release Frequency Component Importances Sorted l
by Risk Increase........................................... 50-69 l.
50-21 Summary of Large Release Frequency Component Importances Sorted by Risk Decrease...........,............................... 50-75 51-1 Uncertainty Analysis Cases.................................... 51-7 51-2 Basic Event Uncertainties...................................... 51-9 51-3 Summary of Results of PRA Uncertainty Analysis for Internal Events at Power........
...................................51-17 52-1 Nonsafety-Related Systems Removed from Baseline PRA Analysis........ 52-25 52-2 Safety-Related Systems credhed in the Focused PRA Sensitivity Study..... 52-26 52-3 At-Power Front-Line System Fault Trees.......................... 52-27 52-4 At-Power Focused PRA Sensitivity Study PMS Fault Trees.............. 52-29 52-5 At-Power Focused PRA Sensitivity Study Core Damage Contribution by Initiating Event......................................... 52-31 At-Power Focused PRA Core Damage Quantification Cutsets............ 52-33 l
52 6
~ 52-7 At-Power Focused PRA Core Damage Quantification Accident Sequences.... 52-50 52-8 At-Power Focused PRA Sensitivity Study Core Damage Contribution by B asic Events..............................................,. 5 2-56 52-9 Results of the Accident Class Quantification........................ 52-66 52-10 Summary of Release Frequency Calculations........................ 52-67 52-11 Dominant Containment Event Tree Sequences....................... 52-68 52-12 AbPower Initiating Event Contributions to Large Release Frequency....... 52-70 52-13 Shudown Frontline System Fault Trees........................... 52-72 52-14 Shutdown Focused PRA SensiCvity Study PMS Fault Trees............. 52-73 52-15 Shutdown Focused PRA Sensitivity Study Core Damage Contribution by Initiating Event................................. 52-74 52-16 Shutdown Focused PRA Sensitivity Study Top 200 Cutsets.............. 52-75 52-17 Shutdown Focused PRA Sensitivity Study Accident Sequences........... 52-93 (O_-)
Revisi a: 9 g
RMg 6 April 11,1997 jjjj cAap600%prairev.9\\pra-lot.wpf.lb
Bs n
O.
LIST OF TABLES (Cont.)
l 1
l
_ able No.
Title P_ age l
T 52-18 Shutdown Focused PRA Sensitivity Study Core Damage Contribution by Basic Event
. 52-97 52-19 Shutdown Focused PRA Sensitivity Study Release Frequency Results Summary by Release Category 52-103 52-20 Shutdown Release Category IC Reaults Summary 52-104 52-21 Shutdown Release Category ICP Results Summary...................52-105 52-22 Shutdown Release Category XL Results Summary
.52-106 52-23 Shutdown Release Category BP Results Summary..
....52-107 52-24 Shutdown Release Category CI Results Summary 52-107 52-25 Shutdown Release Category CI-C Results Summary..........
.....52-108 52-26 Shutdown Release Category CFE Results Summary.........
......52-108 52-27 Shutdown Release Category CFE-C Results Summary 52-109 52-28 Shutdown Release Category CFI Results Summary.................. 5 2-1 10 52-29 Shutdown Release Category CFL Results Summary.........
...52-110 52-30 Shutdown Release Category CFV Results Summary........
.52-111 52-31 At-Power Focused PRA Sensitivity Study Flooding-Induced Core Damage Frequency Quantification Results Summary.................52-112 52-32 Shutdown Focused PRA Sensitivity Study Flooding-Induced Core Damage Frequency Quantification Results Summary........
.......52-114 52-33 Summary of Focused PRA Sensitivity Study Results52-116 54-1 Matrix: Shutdown Phase / Outage Type / Operating Mode................ 54-89 54-2 Systems Availability and Actuating Signals Type................
.. 54-90 54-3 Initiating Event Frequencies Used in Event Tree Quantification.......... 54-92 54-4 AP600 Shutdown Mission Times and Frequencies.
. 54-93 54-5 Mission Times for Normally Operating Systems for AP600 Shutdown 54-94 Fault Trees & Event Tree Quantification..
54-6 Initiating Event Frequencies Used in AP600 Shutdown Event Tree Quantification....
... 54-95 54 7 List of System Fault Trees (Shutdown Case).........
.. 54-96 54-8 System Unavailability Status..........
..54-101 54-9 PMS/DAS I&C Subtrees for Modeling Shutdown PRA.54-106 54-10 PMS/DAS I&C Fault Tree Equivalents: Shutdown and At-Power Cases........
..54-109 54-11 PMS/DAS Subtree Success Criteria Summary....
...54-111 54-12 Data Developed for the PMS/DAS Shutdown I&C Models..
.54-129 54-13 Operator Actions Assignments for the PMS/DAS I&C Analysis..........54-131 54-138 54-14 PLS I&C Subtrees for Modeling Shutdown PRA...
54-15 PLS I&C Fault Tree Equivalents: Shutdown and At-Power Cases.
..54-139 54-16 PLS Subtree Success Criteria Summary
........54-140 54-17 Data Developed for PLS I&C Analysis...
..54-142 O
Revision: 9 ENEL
[ Westi!1gt100S8 April 11,1997 my=6 c:hp600\\pra\\rev.9\\pra-lot.wpf: I b liv
151 pJ LIST OF TABLES (Cont.)
Table No.
Title P_REe 54-18 Operator Actions Assignments for the PLS I&C Analysis..............54-143 54-19 PMS/DAS I&C Subtrees Used in Modeling Shutdown Assessment Plant Damage State Trees........................................54-144 54-20 PMS/DAS I&C Fault Tree Equivalents: Shutdown and At-Power Level 2 Cases........................................... 54 144 54-21 Operator Action Assignments for the PMS/DAS Level 2 I&C Analysis.....54-145 54-22a ADS Success Criteria Versus Accident Conditions Fell Depressurization Shutdown Condition....................................... 5 4-14 6 54-22b ADS Fault Tree Summary (For Plant Damage States for Events Initiated During Shutdown)......
............................... 5 4-1 46 54-23 Fault Tree ADAS Success Crite-ia Summary.......................54-147 54-24 Fault Tree ADTS Success Criteria Summary.......................54-148 54-25 Fault Tree ADALS Success Criteria Summary......................54-149 54-26 Fault Tree ADLS Success Criteria Summary.......................54-150 54-27 Fault Tree CIST Success Criteria Summary.......................54-151 54-28 Fault Tree CM2AM Success Criteria Summary....................
54-15 2 54-29 Fault Tree CM2 AMP Success Criteria Summary................
.54-153 54-30 Fault Tree IW2AB Success Criteria Summary......................54-154 (g
54-31 Fault Tree IW2A Success Criteria Summary.......................54-155 54-32 Fault Tree IW2AO Success Criteria Summary......................54-156 54-33 Fault Tree IW2AP Success Criteria Summary......................54-157 54-34 Fault Tree IWFS Success Criteria Summary 54-15 8 54-35 Fault Tree IWRNS Success Criteria Summary......................54-159 54-36 Fault Tree PCTS Success Criteria Summary
......54-160 54-37 Fault Tree PRM Success Criteria Summary.......................54-161 54-38 Fault Tree PRMP Success Criteria Summary......................54-162 54-39 Fault Tree PRW Success Criteria Summary.......................54-163 54-40 Fault Tree RNC2 Success Criteria Surmnary.......................54-164 54-41 Fault Tree RNT2 Success Criteria Summary.......................54-165 54-42 Fault Tree RNP2 Success Criteria Summary.......................54-166 54-43 Loss of CCS/SWS During Shutdown Initiating Event Fault Tree CSWF2 Success Criteria Summary....................................54-167 l
l 54-44 Fault Tree CCTS Success Criteria Summary......
.............. 54-16 8 1
54-45 Fault Tree CCPS Success Criteria Summary.......................54-169 54-46 Fault Tree SWTS Success Criteria Summary.......................54-170 54-47 Fault Tree SWPS Success Criteria Summary......................54-171 54-48 Fault Tree VLHS Success Criteria Summary......................54-172 I
i I
l 54-49 AC & DC Fault Trees Success Criteria Summary....................54-173 l
54-50 Fault Tree ADQLTS Data Summary.............................54-187
'54-51 Fault Tree ADTLTS Data Summary.............................54-188 1
54-52 AP600 Shutdown Modes.................................... 5 4-1 8 9 fiw Revision: 9 ENE 3 W8Shl @ 0tlS8 m:5.,:.
April 11,1997 ly oMp600\\pra\\rev_9%pra lot wpf.lb L________________
u.w=
i l
O l
LIST OF TABLES (Cont.)
_P, age Table No.
Title a
54-53 ADS Success Criteria for Shutdown Conditions......
...........54-190 54-54a Sequence of Events for MAAP4 Cases Supporting ADS Success Criteria ADTS, ADLS.................
.54-192 54-54b Sequence of Events for MAAP4 Cases Supporting ADS Success Criteria ADSS
..........54-193 54-54c Sequence of Events for MAAP4 Cases Supporting ADS Success Criteria ADTS
....54-194 54-54d Sequence of Events for MAAP4 Cases Supporting ADS Success Criteria ADLS and ADTS..........
.54-195 54-54e Sequence of Events for MAAP Cases Supporting ADS Success Criteria ADNS
...........54-196 54-55 Common Cause Failure Evaluated for Shutdown.......
..........54-197 54-56 AP600 Shutdown Assessment HEP Summary Results...
...54-198 54-57 Dependency Level Evaluation Summary for Shutdown Assessment
......54-207 54-58 Shutdown Master Data Bank...................
.54-211 54-59 List of Basic Events and their Descriptions (Shutdown Model)
........54-227 54-60 AP600 Shutdown Assessment Level 1 Accident Sequences Quantification Results.....
........54-235 54-61 List of Dominant Sequences (At Shutdown)
......54-236 54-62 List of Dotninant Cutsets (At Shutdown).........................54-240 54-63 Shutdown initiating Event Importances...........................54-251 54-64 Basic Event Importances Using Risk-Decrease Measure (At Shutdown).....54-252 54-65 Basic Event Importances Using Risk-Increase Measure (At Shutdown).....54-258 54-66 AP600 Containment Event Tree Nodal Questions.
...54-264 54-67 AP600 Release Category Summary
...54-265 54-68 Summary of Shutdown and Low-Power Accident Classes.........
.54-266 54-69 AP600 Shutdown and Low-Power Plant Damage Substate Frequencies
.54-267 54-70 AP600 Shutdown and Low-Power Plant Damage Substate Conditional Probabilities....54-268 54-71 AP600 Shutdown and Low-Power Containment Event Tree Quantification Results - Release Category Frequencies (Per Reactor-Year).............54-269 54-72 Release Category IC Dominant Sequences.......
.54-270 54-73 Release Category ICP Dominant Sequences............
........54-271 54-74 Release Category XL Dominant Sequences.....
...54-272 54-75 Release Category BP Dominant Sequences....
....54-273 54-76 Release Category CI Dominant Sequences..
.54-274 54-77 Release Category CI-C Dominant Sequences.......
...54-275 54-78 Release Category CFE Dominant Sequences......................54-276 54-79 Release Category CFE-C Dominant Sequences.....................54-277 54-80 Release Category CFI Dominant Sequences.....
...54-278 54-81
. Release Category CFL Dominant Sequences
...54-279 O
Revision: 9 ENE
[ Westiligh0USB April 11,1997 wrah onap600praWv.9pra-lot.wpf;1b lvi
1 LIST OF TABLES (Cont.)
Table No.
.Thlt East 54-82 Release Category CFV Dominant Sequences.......................54-280 54-83 Core Damage for Intemal Initiating Events at Shutdown - Risk Decrease...54-281 54-84 Core Damage for Internal Initiating Events at Shutdown - Risk Increase....54-282 54-85 Shutdown Common Cause Importance - Risk Decrease................54-283 54-86 Shutdown Common Cause Importance - Risk Increase................54-284 54-87 Shutdown Human Error Risk Importance - Risk Decrease..............54-285 54-88 Shutdown Human Errcr Risk Imponance - Risk Increase..............54-285 54-89 Shutdown Component Importance - Risk Decrease...................54-286 54-90 Shutdown Component Imponance - Risk Increase...................54-286 54-91 Operator Actions for Sensitivity Cases 7 and 8.....................54-287 54-92 Matrix of Shutdown Initiating Events Screening Process...............54-288 q
54-93 Technical Specification Requirements for Safety-Related Components......54-298 1
t 55-1 Seismic Margin HCLPF Values............................ -.... 55-72 55-2 SMA Event Tree Success Paths................................. 55-77
~ 55 3 -
Basic Event HCLPF Values................................... 55-80 i
55-4 EQ-IEV-STRUC HCLPF..................................... 55-84 l
55-5 EQ-IEV-RVFA HCLPF...................................... 5 5-85
[
55-6 EQ-IEV-LLOCA HCLPF..................................... 55-86 55-7 EQ-IEV-SLOCA HCLPF..................................... 5 5-87 a
55-8 EQ-IEV-A*IWS HCLPF...................................... 55-88
{
55 9 System HCLPFs........................................... 55-89
)
55-10 Sequence HCLPFs
........................................55-90 55-11 SM.. Mixed Cutsets......................................... 55-92 55-12 LarFe Release HCLPFS...................................... 55-93 55-13 med Cutsets for LOSP Operator Action Sensitivity.................. 55-95 55-14 Mixed Cutsets for LOSP 72-hour Mission Time Sensitivity............. 55-102 56-1 AC and Non-class IE DC Equipment Locations...................... 56-55 56-2 AP600 Building Areas....................................... 56-57 56-3 Flooding Analysis Initial Screening Results......................... 56-59 56-4 At. Power Detailed Screening Results............................. 56-63 l
56-5 At-Power Flooding-Induced Core Damage Frequency Quantification Summary Results........................................... 56-68 56-6 Shutdown Flooding-Induced Core Damage Frequency Quantification Summary Results........................................... 56-72 56-7 At Power Flooding Dominant Cutsets............................. 56-77 56-8 Shutdown Flooding Dominant Cutsets............................ 5 6-87 l
l Revision: 9 l
YN April 11,1997 w
f Ivii oVmPa*v W"P
- l I
O LIST OF TABLES (Cont.)
Table No.
Title
_P_ age 57-la AP600 Systems Credited for Power Operation...................... 57-50 57-lb AP600 Systems Credited During Safe Shutdown and Mid-Loop Operation............................. 5 7-51 57-2a Automatic Suppression System Reliability.......................... 57-52 57-2b Fire Areas with Automatic Fire Suppression....................... 57-52 57-3 Fire Barrier Failure Probabilities................................ 57-53 57-4 Summary of Qualitative Evaluation Results - Power
............... 5 7-54 Operation...............
57-5 Summary of Qualitative Evaluation Results for Containment for Power Operation....................... 5 7 -67 57-6 Fire Ignition Frequencies for AP600 Fire Areas......
..... 57-69 57-7 Fire Ignition Frequencies for AP600 Containment Fire Area............ 57-72 57-8 Summary of Fire Damage State Binning Process -
Power Operation.........
... 57-73 57-9 Summary of Fire Damage State Binning Process for Containment - Power Operation.................
.. 57-81 57-10 Contribution of Fire-Induced Initiating Event to Plant Core Damage Frequency - Power Operation
....... 57-83 57-11 AP600 Fire Scenario Initiating Frequency Binning -
Power Operation.......................................... 57-84 57-12 List of Top 200 Dominant Cutsets - Power Operation.................. 57-86 57-13 Summary of Quantitative Analysis Results........................57-100 57-14 Summary of QuantitatNe Analysis Results for Containment.....
.............57-109 57-15 Quantification of Core Damage Frequency for Control Room Fire Scenarios - Power Operation.........57-111 57-16 Summary of AP600 Plant Operational State (POS)
Times for Shutdown........
....57-112 57-17 Shutdown Fire Ignition Frequencies for AP600 Fire Areas
.......57-113 57-18 Fire Ignition Frequencies for AP600 Containment
..57-116 Fire Area....
57-19 Summary of Fire Areas in which a Fire Can Initiate Spurious ADS Actuation (LOCA)
...57-117 57-20 Shutdown Fire Damage State Definitions57-118 57-21 Shutdown Containment Fire Damage State Definitions57-119 57-22 Summary of Qualitative Evaluation Results - Safe Shutdown........57-120 57-23 Summary of Qualitative Evaluation Results for Containment Shutdown Operation (After Screening).................57-128 57-24 Summary of Quantitative Analysis Results - Safe Shutdown......57-129 9
Revision: 9 ENEL April 11,1997 mut:6 WeStiflgt10USB ow600pwev_9,maatwpr.ib Iviii
gb LIST OF TABLES (Cont.)
Table No.
Title bage 57-25 Quantitative Summary - Control Room Fires During Safe Shutdown
.......................................57-138 l
57-26 Summary of Qualitative Evaluation Results -
]
Mid-Loop Operation..........
...57-139 l
57-27 Summary of Quantitative Results - Mid-Loop Operation.
......57-146 57-28 Quantitative Summary - Control Room Fires During Mid-Loop Operation 57-154 j
57-29 Safe Shutdown Containment Single-Hot-Short LOCA Sensitivity........57-155 1
59-1 Contribution of Initiating Events to Core Damage 59-104 59-2 Conditional Core Damage Probability of Initiating Events..
......59-105 59-3 Intemal Initiating Events at Power Dominant Core Damage Sequences....59-106 59-4 Sequonce 1 - Safety Injection Line Break Dominant Cutsets (SI-LB-02)....59-108 i
59-5 Sequence 2 - Intermediate LOCA Dominant Cutsets (NLOCA-03)........59-113 59-6 Sequence 3 - Large LOCA Dominant Cutsets (LLOCA-06)...
......59-118 I
59-7 Sequence 4 - Large LOCA Dominant Cutsets (LLOCA-03)..
......59-124 I
59-8 Sequence 5 - Reactor Vessel Rupture Cutset (RV-RP-02)............. 59 130 59-9 Sequence 6 - Large LOCA Dominant Cutsets (LLOCA-11)
.....59-131
(~q j
59-10 Sequence 7 - ATWS Dominant Cutsets (ATWS-28)....
..59-133 59-11 Sequence 8 - Medium LOCA Dominant Cutsets (MLOCA-03)59-141 59-12 Sequence 9 - ATWS Dominant Cutsets (ATWS-13)...............
.59-146 59-13 Sequence 10 - Intermediate LOCA Dominant Cutsets (NLOCA-04).......59-151 59-14 Sequence 11 - Safety Injection Line Break Dominant Cutsets (SI-LB-03)
.. 59 156 59-15 Sequence 12 - Small LOCA Dominant Cutsets (SLOCA-03)...........59-160 59-16 Sequence 13 - Lore Makeup Tank Line Break Dominant Cutsets (CMTLB-03)59-165 59-17 Sequence 14 - Steam Generator Tube Rupture Dominant Cutsers (SGTR-07).59-170 59-18 Sequence 15 - Steam Generator Tube Rupture Dominant Cutsets (SGTR-23).59-171 j
59-19 Sequence 16 - Large LOCA Dominant Cutsets (LLOCA-02).
...59-177
{
59-20 Sequence 17 - Large LOCA Dominant Cutsets (LLOCA-05)..
.59-183 59-21 Sequence 18 - Consequential SGTR Dominant Cutsets (SGTRC-03)...
.59-189 59-22 Sequence 19 - Intermediate LOCA Dominant Cutsets (NLOCA-16)......59-195 l
59-23 Typical System Failure Probabilities. Showing Higher Reliabilities l
for Safety Systems...........
.59-201 l
59-24 Dominant CET Sequences.
5M02 J
59-25 Comparison of Initiating Event Contribution to Core Damage and Large Release Frequencies
........59-203 3
59-26 Summary of AP600 PRA Results......................
.......59-204 l
l 59-27 Comparison of AP600 PRA Results to Risk Goals...................59-205 59-28 Site Boundary Dose Risk at 24 Hours
......... 5 9-206 1
59-29 AP600 PRA-Based Insights.......
.59-207 O'V1 l
Revision: 11 l
[ W85tiligh00S8 hh_
March 1998 j
}jx o:\\ap600\\ prs \\rev_l l\\pra-lot.wpf:I b l
i
___________a
)
e LIST OF FIGURES Firure No.
Title P_ age 2-1 Core Damage Logic Diagram for Internal Initiators
. 2-58 2-2 Core Damage Logic Diagram for Internal Initiators
. 2-59 2-3 Core Damage Logic Diagram for Intemal Initiators
... 2-60 2-4 Core Damage Logic Diagram for Internal Initiators
.... 2-61 4-1 Large Loss-of-Coolant-Accident Event Tree 4-120 4-2 Medium Loss-of-Coolant Accident Event Tree..................
. 4-121 4-3 Core Makeup Tank Line Break Event Tree....
... 4-122 4-4 Direct Vessel Injection Line Break Event Tree.
..... 4-123 4-5 Intermediate Loss-of-Coolant Accident Event Tree.
.. 4-124 4-6 Small Loss-of-Coolant Accident Event Tree
. 4-125 4-7 Reactor Coolant System Leak Event Tree..
....... 4-126 4-8 Pa.;sive Residual Heat Removal Tube Rupture Event Tree.....
... 4-127 4-9 Steam Generator Tube Rupture Event Tree........
.... 4-128 4-10 Reactor Vessel Rupture Event Tree
. 4-130 4-11 Interfacing Systems Loss-of-Coolant Accident Event Tree.........
.. 4-131 4-12 Transients with Main Feedwater Event Tree
.... 4-132 4-13 Transients with Loss of Reactor Coolant Sstem Event Tree............. 4-133 4-14 Transients with Loss of Main Feedwater Event Tree..................
4-134 4-15 Transients with Core Power Excursion Event Tree 4-13 5 4-16 Loss of Component Cooling Water System / Service Water System Event Tree
. 4-136 4-17 Loss of Main Feedwater Event Tree... -....
..... 4-137 4-18 Loss of Condenser Event Tree........
................. 4-138 4-19 Loss of Compressed Air Event Tree......
4-139 4-20 Loss of Offsite Power Event Tree
. 4-140 4-21 Main Steam Line Break Downstream of Main Steam Isolation Valves Event Tree.................
4-141 4-22 Main Steam Line Break Upstream of Main Steam Isolation Valves Event Tree.
4-142 4-23 Stuck-Open Secondary. Side Safety Valve Event Tree........
.... 4-143 4-24 Anticipated Transient Without Scram Precursor without Main Feedwater Event Tree..
. 4-144 4-25 Anticipated Transient Without Scram Precursor with Injection Event Tree
. 4-146 4-26 Anticipated Transient Without Scram Precursor Transients with Main Feedwater Event Tree..
4-147 O
Revision: 9 April 11,1997 3 WBStiflgh0USB oWGprairev.9%pra-lof wpf.lb lx
,IO
'\\l v)
LIST OF FIGURES (Cont.)
Fieure No.
Title Page 4A-1 Example Event Tree for Illustration of Terminology...................
4A-7 4A-2 Functional Event Tree 4A-8 4A-3 Illustration of Consequential Event End States......................
4 A-9 7-1 Power / Control Model for Large Loads (4160-vac/480-vac Pumps, Fans, and Motors)
.. 7-34 7-2 Power / Control Model for Motor-Operated Valves..................... 7-36 7-3 Power / Control Model for Air-Operated Valves........................ 7-38 7-4 Power / Control Model for Variable Speed Motor (Main Feedwater Pump)..... 7-40 7-5 An Illustration of Fault Tree Basic Events for a Pump following the Model Given in Figure 7-1.........
................................7-42 8-1 Passive Residual Heat Removal System Sketch..................
.. 8-23 8-2 Passive Core Cooling System - Passive Residual Heat Removal Piping and Instrumentation Diagram.....
........ 8-25 9-1 Core Makeup Tank Subsystem Sketch...........
......... 9-25 9-2 Passive Core Cooling System Piping and Instrumentation Diagram......... 9-27 i
i
\\
C) 10-1 Passive Core Cooling System - Accumulator Subsystem............... 10-13 11-1 Automatic Depressurization System Sketch........................
11-44 12-1 IRWST Subsystem Sketch........................,........... 12-38 13-1 Passive Containment Cooling System Sketch....................... 13-12 14-1 Feedwater System Piping and Instrumentation Diagram 14-45 14-2 Condensate System Piping and Instrumentation Diagram..
14-51 14-3 Main Steam System Piping and Instrumentation Diagram.,............. 14-53 14-4 Turbine Building Closed Cooling Water System Piping and i
Instrumentation Diagram...................
... 14-55 14-5 Circulating Water System Piping and Instrumentation Diagram......
14-61 l
l 15-1 Chemical and Volume Control System Sketch....
15-25 l
15-2 Chemical and Volume Control System Piping and Instmmentation Diagram...........
15-27 l
l 17-1 Normal Residual Heat Removal System Sketch.
..... 17-19 17-2 Normal Residual Heat Removal System Piping and Instmmentation Diagram..
17-21 18-1 Component Cooling Water System Piping and Instrumentation Diagram....
18-13 A
l i
(
/
Revision: 9 ENEl.
[ WBStinghotise en h April 11,1997
[xi oAap60opa\\rev.,9%pra4ofwpf.lb O____________-_____________
e LIST OF FIGURES (Cont.)
P_ age Figure No.
Title a
19-1 Service Water System Piping and Instrumentation Diagram..
. 19-17 20-1 Central Chilled Water Low-Capacity Subsystem Piping and Instmmentation Diagram......
... 20-13 21-1 AC Power System One-Line Diagram............................ 21-61 22-1 Class IE de System One-Line Diagram
... 22 53 22-2 Class IE UPS One-Line Diagram 22-57 23-1 Non-Class IE de and UPS System One-Line Drawing
. 23-43 23-2 Non-Class IE de and UPS System Sketch.
......... 23-47 25-1 Instmment Air Subsystem Sketch.............
............... 25-19 27-1 Diverse Actuation System Block and Interface Diagram............... 27-13 29-1 IRWST Valve Configuration...
29-23 e
30-1 Human Reliability Analysis Quantificatio Model 30-115 34-1 Case 3BE-1: RCS Pressure and SG Pressure
.............. 34-68 34-2 Case 3BE-1: Loop 1 ADS Stage 4 Flows......................... 34-69 34-3 Case 3BE-1: Accumulator Water Mass and CMT Water Mass........... 34-70 34-4 Case 3BE-1: IRWST Flows.................................. 34-71 34-5 Case 3BE-1: Break Flows..
. 34-72 34-6 Case 3BE-1: Reactor Vessel Levels.........
..... 34-73 34-7 Case 3BE-1: Core Temperatures...
........ 34-74 34-8 Case 3BE-1: Reactor Cavity Water Level and IRWST Water Level.....
. 34-75 34-9 Case 3BE-1: Loop Compartment and Valve Vault Water Levels.
.. 34-76 34 10 Case 3BE-1: Containment Pressure................
... 34-77 34-11 Case 3BE-1: Containment Temperatures..
... 34-78 34-12 Case 3BE-1: Debris Mass.
. 34-79 34-13 Case 3BE-1: Reactor Vessel-to-Cavity Water Heat Transfer............ 34-80 34-14 Case 3BE-1: Hydrogen Generation
. 34-81 34-15 Case 3BE-1: Mass of Csl Released to Containment..
... 34-82 34-16 Case 3BE-1: Noble Gases Released.............
.... 34-83 34-17 Case 3BE-1: Releases to Environment...........
34 84 34-18 Case 3BE-1: Non-Volatile Release.
............. 34-85 34-19 Case 3BE-2: RCS Pressure and SG Pressure
..... 34-86 e
Revision: 9 ENEL
' x0:::6 W85tingt10US8 April 11,1997 e
oAap600$raWv.9)pra-lof.wnf:Ib lxii j
l
g J
V LIST OF FIGURES (Cont.)
Fleure No.
Title
_P_ age 34-20 Case 3BE-2: Loop 1 ADS Stage 4 Flows................
. 34-87 34-21 Case 3BE-2: Accumulator Water Mass and CMT Water Mass....
. 34-88 34-22 Case 3BE-2: IRWST Flows...............
. 34-89 34-23 Case 3BE-2: B reak Flows.................................
34-90 34-24 Case 3BE-2: Reactor Vessel Levels.
... 34-91 34-25 Case 3BE-2: Core Temperatures............................... 34-92 34-26 Case 3BE-2: Reactor Cavity Water Level and IRWST Water Level........ 34-93 34-27 Case 3BE-2: Loop Compartment and Valve Vault Water Levels......... 34-94 34-28 Case 3BE-2: Contain nent Pressure......
...... 34-95 34-29 Case 3BE-2: Containment Temperatures
. 34-96 34-30 Case 3BE-2: Debris Mass
....,........................... 34-97 34-31 Case 3BE-2: Reactor Vessel-to-Cavity Water Heat Transfer........
. 34-98 34-32 Case 3BE-2: Hydrogen Generation....
34-99 34-33 Case 3BE-2: Mass of Csl Released to Containment..34-100 34-34 Case 3BE-2: Noble Gases Released...............34-101 34-35 Case 3BE-2: Releases to Environment..............34-102 34-36 Case 3BE-2: Non-Volatile Release
.34-103 34-37 Case 3BE-3: RCS Pressure and SG Pressure
.34-104 m
34-38 Case 3BE-3: Loop 1 ADS Stage 4 Flows........................34-105 34-39 Case 3BE-3: Accumulator Water Mass and CMT Water Mass...
.34-106 34-40 Case 3BE-3: IRWST Flows..............
...34-107 34-41 Case 3BE-3: B reak Flows...................................34-108 34-42 Case 3BE-3: Reactor Vessel Levels.......
..34-109 34-43 Case 3BE-3: Core Temperatures...............................34-110 34-44 Case 3BE-3: Reactor Cavity Water Level and IRWST Water Level.34-111 34-45 Case 3BE-3: Loop Compartment and Valve Vault Water Levels
.34-112 l
34-46 Cast 3BE-3: Containment Pressure.......34-113 34-47 Case 3BE-3: Containment Temperatures
.34-114 34-48 Case 3BE-3: Debris Mass.
.34-115 34-49 Case 3BE-3: Reactor Vessel-to-Cavity Water Heat Transfer.
.34-116 34-50 Case 3BE-3: Hydrogen Generation
.34-117 34-51 Case 3BE-3: Mass of Csl Released to Containment.................34-118 34-52 Case 3BE-3: Noble Gases Released.34-119 34-53 Case 3BE-3: Releases to Environment....
.....34-120 l
34-54 Case 3BE-3: Non-Volatile Release.....
.34-121 34-122
)
34-55 Case 3BE-4: RCS Pressure and SG Pressure 34-56 Case 3BE-4: Loop i ADS Stage 4 Flows....34-123 34-57 Case 3BE-4: Accumulator Water Mass and CMT Water Mass..........34-124
)
34-58 Case 3BE-4: IRWST Flows....
.34-125 34-59 Case 3BE-4: Break Flows...
.34-126 m
1 V
3 Westinghouse b
Ap 111,
}xijj o:\\ap600\\pra\\rev_9\\pra-lofvpf:1b l
I E______________________________.
l 1
I M
1 0;
l LIST OF FIGURES (Cont.)
Figure No.
Title Page 34-60 Case 3BE-4: Reactor Vessel Levels............................34-127 34-61 Case 3BE-4: Core Temperatures..............................34-128 34-62 Case 3BE-4: Reactor Cavity Water Level and IRWST Water Level.......34-129 34-63 Case 3BE-4: Loop Compartment and Valve Vault Water Levels.........34-130 34-64 Case 3BE-4: Containment Pressure.............................34-131 34-65 Case 3BE-4: Containment Temperatures......................... 34-13 2 34-66 Case 3BE-4: Debris Mass.......................
......34-133 34-67 Case 3BE-4: Reactor Vessel-to-Cavity Water Heat Transfer..
.34-134 34-68 Case 3BE-4: Hydrogen Generation.............................34-135 34-69 Case 3BE-4: Mass of Csl Released to Containment......
.34-136 34-70 Case 3BE-4: Noble Gases Released.....
........34-137 34-71 Case 3BE-4: Releases to Environment.........34-138 34-72 Case 3BE-4: Non-Volatile Release.............................34-139 34-73 Accident Class 3BE: Comparison of Mass Fraction Csl Released to Ctmt..34-140 34-74 Case 3BE-5: RCS Pressure and SG Pressure
.34-141 34-75 Case 3BE-5: Loop 1 ADS Stage 4 Flows..............
........34-142 34-76 Case 3BE-5: Accumulator Water Mass and CMT Water Mass...
.....34-143 34-77 Case 3BE-5: IRWST Flows.....
.......34-144 34-78 Case 3BE-5: Break Flows
....34-145 34-79 Case 3BE-5: Reactor Vessel Levels............................34-146 34-80 Case 3BE-5: Core Temperatures....34-147 34-81 Case 3BE 5: Containment Temperatures......................... 34-14 8 34-82 Case 3BE-5: Loop Compartment and Valve Vault Water Levels.........34-149 34-83 Case 3BE-5: Containment Pressure............................34-150 34-84 Case 3BE-5: Containment Temperatures..............
.34-151 34-85 Case 3BE-5: Debris Mass.................................. 34-15 2 34-86 Case 3BE-5: Reactor Vessel-to-Cavity Water Heat Transfer............34-153 34-87 Case 3BE-5: Hydrogen Generation............................34-154 34-88 Case 3BE-5: Mass of Csl Released to Containment..........
...34-155 34-89 Case 3BE-5: Noble Gases Released...
....34-156 34-90 Case 3BE-5: Releases to Environment................34-157 34-91 Case 3BE-5: Non-Volatile Release..................
...34-158 34-92 Case 3BE-7: RCS Pressure and SG Pressure
..........34-159 34-93 Case 3BE-7: Loop 1 ADS Stage 4 Flows...............
.34-160 34-94 Case 3BE-7: Accumulator Water Mass and CMT Water Mass.
..34-161 34-95 Case 3BE-7: IRWST Flows.......
......34-162 34-96 Case 3BE-7: Break Flows..................................34-163 34-97 Case 3BE-7: Reactor Vessel Levels.....
.......34-164 34-98 Case 3BE-7: Core Temperatures..
...34-165 34-99 Case 3BE-7: Reactor Cavity Water Level and IRWST Water Level.......34-166 O
Revision: 9 April 11,1997 3 W85tingh0USB cAap600;prairev.9pra-lof.wpf;1b lxiv
<m i
LIST OF FIGURES (Cont.)
Fleure No.
Title Pege 34-100 Case 3BE-7: Loop Compartment and Valve Vault Water Levels........34-167 34-101 Case 3BE-7: Containment Pressure.........34-168 34-102 Case 3BE-7: Gas Flow Rate Through Containment Failure Location......34-169 34 103 Case 3BE-7: Containment Temperatures
.34-170 34-104 Case 3BE-7: Debris Mass.
....34-171 34-105 Case 3BE-7: Reactor Vessel-to-Cavity Water Heat Transfer............34-172 34-1 M Case 3BE-7: Hydrogen Generation...
....34-173 34-107 Case 3BE-7: Mass of Csl Released to Containment.34-174 34-108 Case 3BE-7: Noble Gases Released............................34-175 34-109 Case 3BE-7: Releases to Environment...........................34-176 34-110 Case 3BE-7: Non-Volatile Release..34-177 34-111 Case 3BE-8: RCS Pressure and SG Pressure
.....34-178 34-112 Case 3BE-8: Loop 1 ADS Stage 4 Flows........................34-179 34-113 Case 3BE-8: Accumulator Water Mass and CMT Water Mass......... 34 180 34-114 Case 3BE-3: IRWST Flows..................................34-181 34-115 Case 3BE-8: Break Flows........
...34-182 34-116 Case 3BE-8: Reactor Vessel Levels............................34-183 34-117 Case 3BE-8: Core Temperatures.......34-184 l
g 34-118 Case 3BE-8: Reactor Cavity Water Level and IRWST Water Level.......34-185
("}
34-119 Case 3BE-8: Loop Compartment and Valve Vault Water Levels........34-186 34-120 Case 3BE-8: Containment Pressure.............................34-187 34-121 Case 3BE-8: Gas Flow Rate Through Containment Failure Location......34-188 l
34-122 Case 3BE 8: Containment Temperatures34-189 I
34-123 Case 3BE-8: Debris Mass34-190 34-124 Case 3BE-8: Reactor Vessel-to-Cavity Water Heat Transfer............34-191 34-125 Case 3BE-8: Hydrogen Generation....34-192 34-126 Case 3BE-8: Mole Fraction Hydrogen in Valve Vault
....34-193 34 127 Case 3BE-8: Mass of Cs1 Released to Containment.....
.........34-194 34-128 Case 3BE-8: Noble Gases Released............................34-195 34-129 Case 3BE-8: Releases to Environment....................34-196 34-130 Case 3BE-8: Non-Volatile Release...........
.....34-197 34-131 Case 3BE-9: RCS Pressure and SG Pressure 34-19 8 34-132 Case 3BE-9: Loop 1 ADS Stage 4 Flows.......34-199 34-133 Case 3BE-9: Accumulator Water Mass and CMT Water Mass..........34-200 34-134 Case 3BE-9: IRWST Flows
.......34-201 34-135 Case 3BE-9: Break Flows..................................34-202 34-136 Case 3BE-9: Reactor Vessel Levels.....
....34-203 34-137 Case 3BE-9: Core Temperatures..............................34-204 l
34-138 Case 3BE-9: Reactor Cavity Water Level and IRWST Water Level.......34-205 34-139 Case 3BE-9: Loop Compartment and Valve Vault Water Levels.........34-206 34-140 Case 3BE-9: Containment Pressure........
.34-207 A
i
't)
Revision: 9 ENEL y Westinghotise Gh=-
April 11,1997 g,wyp.ior wpu t>
l l
I l
8 LIST OF FIGURES (Cont.)
1 1
Firure No.
Title
_P_ age 34-141 Case 3BE-9: Gas Flow Rate Through Containment Failure Location.....34-208 34-142 Case 3BE-9: Containment Temperatures
.............34-209 34-143 Case 3BE-9: Debris Mass...................................34-210 34-144 Case 3BE-9: Reac ar Vessel-to-Cavity Water Heat Transfer............34-211 34-145 Case 3BE-9: Hydrogen Generation......
...34-212 34-146 Case 3BE-9: Mole Fraction Hydrogen in Valve Vault...........34-213 34-147 Case 3BE-9: Mass of Csl Released ot Containment.................34-214 34-148 Case 3BE-9: Noble Gases Release
..................34-215 34-149 Case 3BE-9: Releases to Environment..........................34-216 34-150 Case 3BE-9: Non-Volatile Release.......
....34-217 34-151 Case 3BE-10: RCS Pressure and SG Pressure.........
.....34-218 34-152 Case 3BE-10: Loop 1 ADS Stage 4 Flows.........
.........34-219 34-153 Case 3BE-10: Accumulator Water Mass and CMT Water Mass
.34-220 34-154 Case 3BE-10: IRWST Flows...
..................34-221 34-155 Case 3BE-10: Break Flows...........
...34-222 34-156 Case 3BE-10: Reactor Vessel Levels....34-223 34-157 Case 3BE-10: Core Temperatures..............................34-224 34-158 Case 3BE-10: Reactor Cavity Water Level and IRWST Water Level.....34-225 34-159 Case 3BE-10: Loop Compartment and Valve Vault Water Levels......
.34-226 34-160 Case 3BE-10: Containment Pressure.....
.34-227 34-161 Case 3BE-10: Containment Temperatures.........
..........34-228 34-162 Case 3BE-10: Debris Mass.................
..............34-229 34-163 Case 3BE-10: Reactor Vessel-to-Cavity Water Heat Transfer.,.........34-230 34-164 Case 3BE-10,: Hydrogen Generation
....34-231 34-165 Case 3BE-10: Mole Fraction Hydrogen in Valve Vault...............34-232 34-166 Case 3BE-10: Mass of Csl Released to Containment.
.34-233 34-167 Case 3BE-10: Noble Gases Released.............34-234 34-168 Case 3BE-10: Releases to Environment.....
...........34-235 34-169 Case 3BE-10: Non-Volatile Release 34-236 34-170 Case 3BE-10: Gas Flow Rate Through Containment Failure Location 34-237 34-171 Case 3BL-1: RCS Pressure and SG Pressure
.................... 34-23 8 34-172 Case 3BL-1: Loop 1 ADS Stage 4 Flows...34-239 34-173 Case 3BL-1: Accumulator Water Mass and CMT Water Mass
......34-240 34-174 Case 3BL-1: IRWST Flows....
...34-241 34-175 Case 3BL-1: Break Flows.
...34-242 34-176 Case 3BL-1: Reactor Vessel Levels.....34-243 34-177 Case 3BL-1: Core Temperatures..
....34-244 34-178 Case 3BL-1: Reactor Cavity Water Level and IRWST Water Level.
....34-245 34-179 Case 3BL-1: Loop Compartment and Valve Vault Water Levels...34-246 4
34-180 Case 3BL-1: Containment Pressure....
...........34-247 O
Ap i
,1997
[ Westingh00S8 oMp600\\ prs \\rev 9\\pra-lof.wpfab lXvi j
__u
i l
l Wi t
,.~
(
)
U LIST OF FIGURES (Cont.)
Fiore No.
Title Page 34-181 Case 3BL-1: Containment Temperatures34-248 34-182 Case 3BL-1: Debris Mass................................... 34-24 9 34-183 Case 3BL-1: Reactor Vessel-to-Cavity Water Heat Transfer............34-250 34-184 Case 3BL-1: Hydrogen Generation.............................34-251 34-185 Case 3BL-1: Mass of Csl Released to Containment.................34-252 34-186 Case 3BL-1: Noble Gases Released...............
.....34-253 34-187 Case 3BL-1: Releases to Environment...............34-254 34-188 Case 3BL-1: Non-Volatile Release............................ 34 255 34-189 Case 3BL-1: RCS Pressure and SG Pressure
........34-256 34-190 Case 3BL-2: Loop 1 ADS Stage 4 Flows.............
..........34-257 34-191 Case 3BL-2: Accumulator Water Mass and CMT Water Mass..........34-258 34-192 Case 3BL-2: IRWST Flows.........34-259 34-193 Case 3BL-2: Break Flows.......
.34-260 34-194 Case 3BL-2: Reactor Vessel Levels............................34-261 34-195 Case 3BL-2: Core Temperatures...............................34-262 34-196 Case 3BL-2: Reactor Cavity Water Level and IRWST Water Level.......34-263 34-197 Case 3BL-2: Loop Compartment and Valve Vault Water Levels.........34-264 34-198 Case 3BL-2: Containment Pressure.............................34-265 b]
3A199 Case 3BL-2: Containment Temperatures........................34-266 t
34-200 Case 3BL-2: Debris Mass.................................. 34 267 34-201 Case 3BL-2: Reactor Vessel-to-Cavity Water Heat Transfer............34-268 34-202 Case 3BL-2: Hydrogen Generation............................34-269 34-203 Case 3BL-2: Mass of Csl Released to Containment.................34-270 34 204 Case 3BL-2: Noble Gases Released............................34-271 34-205 Case 3BL-2: Releases to Environment...........................34-272 34 206 Case 3BL-2: Non-Volatile Release............................34-273 34-207 Case 3BL-3: RCS Pressure and SG Pressure 34-274 34-208 Case 3BL-3: Loop 1 ADS Stage 4 Flows.......
........34-275 34-209 Case 3BL-3: Accumulator Water Mass and CMT Water Mass.........34-276 34-210 Case 3BL-3: IRWST Flows.......
...34-277 34-211 Case 3BL-3: Break Flows..
...........34-278 34-212 Case 3BL-3: Reactor Vessel Levels.............................34-279 34-213 Case 3BL-3: Core Temperatures..............................34-280 l
34-214 Case 3BL-3: Reactor Cavity, Water Level and IRWST Water Level.......34-281
)34-215 Case 3BL-3: Loop Compartment and Valve Vault Water levels.........34-282 34 216 Case 3BL-3: Containment Pressure 34-283 34-217 Case 3BL-3: Gas Flow Rate Through Containment Failure Location......34-284 L
34-218 Case 3BL-3: Containment Temperatures
.34-285 l
l 34-219 Case 3BL-3: Debris Mass...................................34-286 34-220 Case 3BL-3: Reactor Vessel-to-Cavity Water Heat Transfer...........34-287 34-221 Case 3BL-3: Hydrogen Generation.....34-288 m
I (v
ENE Revision: 9 3 Westinghouse r&= 6 April 11,1997 b;yij c:\\np600$rairev.9%pra-lof.wpf:lb
m.-
l 0
LIST OF FIGURES (Cont.)
Firure No.
Title Page 34-222 Case 3BL-3: Mole Fraction Hydrogen in Valve Vavit................34-289 34-223 Case 3BL-3: Mass of CsI Released to Containment.................34-290 34-224 Case 3BL-3: Noble Gases Released............................34-291 34-225 Case 3BL-3: Releases to Environment..........................34-292 34-226 Case 3BL-3: Non-Volatile Release
.......................34-293 34-227 Case 3BR-1: RCS Pressure and SG Pressure......................34-294 34-228 Case 3BR-1: Loop 1 ADS Stage 4 Flows
....34-295 34-229 Case 3BR-1: Accumulator Water Mass and CMT Water Mass..........34-296 34-230 Case 3BR-1: IRWST Flows..................34-297 34-231 Case 3BR-1: B reak Flows..................................34-298 34-232 Case 3BR-1: Reactor Vessel Levels..............
...34-299 34-233 Case 3BR-1: Core Temperatures................
.34-300 34-234 Case 3BR-1: Reactor Cavity Water Level and IRWST Water Level.......34-301 34-235 Case 3BR-1: Loop Compartment and Valve Vault Water Levels.........34-302 34-236 Case 3BR-1: Containment Pressure...34-303 34-237 Case 3BR-1: Containment Temperatures34-304 34-238 Case 3BR-1: Debris Mass..........
................. 34-3 05 34-239 Case 3BR-1: Reactor Vessel-to-Cavity Water Heat Transfer............34-306 34-240 Case 3BR-1: Hydrogen Generation............................34-307 34-241 Case 3BR-1: Mass of Csl Released to Containment..................34-308 34-242 Case 3BR-1: Noble Gases Released............
...........34-309 34-243 Case 3BR-1: Releases to Environment.....
.................34-310 34-244 Case 3BR-1: Non-Volatile Release.............................34-311 34-245 Case 3C-1: RCS Pressure and SG Pressure........................34-312 34-246 Case 3C-1: Loop 1 ADS Stage 4 Flows.........................34-313 34-247 Case 3C-1: Accumulator Water Mass and CMT Water Mass34-314 34-248 Case 3C-1: IRWST Flows........34-315 34-249 Case 3C-1: Break Flows.....
.....34-316 34-250 Case 3C-1: Reactor Vessel Levels.....
.......34-317 34-251 Case 3C-1: Core Temperatures
.........34-318 34-252 Case 3C-1: Reactor Cavity Water Level and IRWST Water Level.......34-319 34-253 Case 3C-1: Loop Compartment and Valve Vault Water Levels....34-320
.34-321 34-254 Case 3C-1: Containment Pressure.34-255 Case 3C-1: Containment Temperatures
............34-322 34-323 34-256 Case 3C 1: Debris Mass..............................34-257 Case 3C-1: Reactor Vessel-to-Cavity Water Heat Transfer............34-324 34-258 Case 3C-1: Hydrogen Generation.
......34-325 34-259 Case 3C-1: Mass of CsI Released to Containment..34-326
.........34-327 34-260 Case 3C-1: Noble Gases Released......34-261 Case 3C-1: Releases to Environment..........
.34-328 9
Revision: 9 ENEl.
T Westinghouse April 11,1997 mih owaccawv>praaof3r b lxviii u
M O
>U LIST OF FIGURES (Cont.)
Fleure No.
Title Page 34-262 Case 3C-1: Non-Volatile Release
.34-329 34-263 Case 3D-1: RCS Pressure and SG Pressure
...34-330 34-264 Case 3D-1: Loop 1 ADS Stage 4 Flows34-331 34-265 Case 3D-1: Accumulator Water Mass and CMT Water Mass34-332 34-266 Case 3D-1: IRWST Flows.34-333 34-267 Case 3D-1: Break Flows
....34-334 34-268 Case 3D-1: Reactor Vessel Levels.....
...34-335 34-269 Case 3D-1: Core Temperatures.........................
....34-336 34-270 Case 3D-1: Reactor Cavity Water T.evel and IRWST Water Levels......34-337 34-271 Case 3D-1: Loop Compartment and Valve Vault Water Levels..........34-338 34-272 Case 3D-1: Containment Pressure....
.34-339 34-273 Case 3D-1: Co itainment Temperatures
..34-340 34-274 Case 3D-1: Debris Mass...
....34-341 34-275 Case 3D-1: Reactor Vessel-to-Cavity Water Heat Transfer....
.34-342 34-276 Case 3D-1: Hydrogen Generation.......
........34-343 34-277 Case 3D-1: Mass of Csl Released to Containment 34-344 34-278 Case 3D-1: Noble Gases Released.....
.34-345 34 279 Case 3D-1: Releases to Environment.....
.........34-346 g)34-280 Case 3D-1: Non-Volatile Release...........
.34-347 i
V 34-281 Case 3D-2: RCS Pressure and SG Pressure
......... 34-34 8 34-282 Case 3D-2: Loop 1 ADS Stage 4 Flows34-349 34 283 Case 3D-2: Accumulator Water Mass and CMT Water Mass...........34-350 34-284 Case 3D-2: IRWST Flows..........
.34-351 34-285 Case 3D-2: Break Flows...
.............. 34-3 5 2 34-286 Case 3D-2: Reactor Vessel Levels.......
....34-353 l
34-287 Case 3D-2: Core Temperatures..
.34-354 I
34-288 Case 3D-2: Reactor Cavity Water Level and IRWST Water Level 34-355 34-289 Case 3D-2: Loop Compartment and Valve Vault Water Levels....34-356 34-290 Case 3D-2: Containment Pressure.....34-357 34-291 Case 3D-2: Gas Flow Rate 'Ihrough Containment Failure Location
.34-358 34-292 Case 3D-2: Containment Temperatures
.34-359 34-293 Case 3D-2: Debris Mass
.34-360 l
34-294 Case 3D-2: Reactor Vessel-to-Cavity Water Heat Transfer
.34-361 34-295 Case 3D-2: Hydrogen Generation...............
.34-362 l
34-296 Case 3D-2: Mole Fraction Hydrogen in Valve Vault......
.....34-364 34-297 Case 3D-2: Mass of Csl Released to Containment 34-298 Case 3D-2: Noble Gases Released.........
..34-365 34-299 Case 3D-2: Releases to Environment.
..34-366
.34-367 34-300 Case 3D-2: Non-Volatile Release
....34-368 34-301 Case 6E 1: RCS Pressure and SG Pressure...34-302 Case 6E-1: Passive RHR Heat Removal
.34-369 O)
(
Revision: 9 ENEL Y W85tingh0USS
';;,it0llL=.
April 11,1997 IXiX o Aap600\\pra\\rev_9'pra-lof.wpf:I b l
L
Es i
O LIST OF FIGURES (Cont.)
Firure No.
Title Pa_ge 34-303 Case 3D-1: Break Flows.....................
...34-370 34-304 Case 3D-1: Liquid and Steam Flows through Failed-Open SG Safety Valve.34-371
.34-372 34-305 Case 3D-1: Loop 1 ADS Stage 4 Flows34-306 Case 3D-1: Accumulator Water Mass and CMT Water Mass...........34-373 34-307 Case 3D-1: IRWST Flows....................
...........34-374 34-308 Case 3D-1: Reactor Vessel Levels..............................34-375 34-309 Case 3D-1: Core Temperatures...............................34-376 34-310 Case 3D-1: Reactor Cavity Water Level and IRWST Water Level.......34-377 34-311 Case 3D-1: Loop Compartment and Valve Vault Water Levels.........34-378 34-312 Case 3D-1: Containment Pressure.............................34-379 34-313 Case 3D-1: Containment Temperatures
.......34-380 34-314 Case 6E-1: Debris Mass
.......... 34-3 81 34-315 Case 6E-1: Reactor Vessel-to-Cavity Water Heat Transfer..
......... 34-3 82 34-316 Case 6E-1. Hydrogen Generation...
.34-383 34-317 Case 6E-1: Mass of Csl Released to Containment.
......... 34-3 84 34-318 Case 6E-1: Noble Gases Released..............................34-385 34-319 Case 6E-1: Releases to Environment...
....34-386 34-320 Case 6E-1: Non-Volatile Release
.....34-387 34-321 Case 6E-2: RCS Pressure and SG Pressure....................... 34 388 34-322 Case 6E-2: Passive RHR Heat Removal...........
........34-389 34-323 Case 6E-2: Break Flows
....34-390 34-324 Case 6E-2: Liquid and Steam Flows through Failed-Open SG Safety Valve.34-391 34-325 Case 6E-2: Loop 1 ADS Stage 4 Flows............
.34-392 34-326 Case 6E-2: Accumulator Water Mass and CMT Water Mass...........34-393 34 327 Case 6E-2: IRWST Flows..........
.....34-394 34-328 Case 6E-2: Reactor Vessel I.evels...........
........34-395 34 329 Case 6E-2: Core Temperatures................................34-396 34-330 Case 6E-2: Reactor Cavity Water Level and IRWST Water Level....... 34 397 34-331 Case 6E-2 Loop Compartment and Valve Vault Water Levels.........34-398 34-332 Case 6E-2: Containment Pressure..............................34-399 34-333 Case 6E-2: Containment Temperatures...........................34-400 34-334 Case 6E-2: Debris Mass
...................34-401 34-335 Case 6E-2: Reactor Vessel-to-Cavity Water Heat Transfer.............34-402 34-336 Case 6E-2: Hydrogen Generation 34-403 34-337 Case 6E-2: Mass of Csl Released to Containment..................34-404 34-338 Case 6E-2: Noble Gases Released....
...34-405 34-339 Case 6E-2: Releases to Environment...........................34-406 34-340 Case 6E-2: Non-Volatile Release 34 407 34-341 Case 6E-3: RCS Pressure and SG Pressure.......................34-408 34-342 Case 6E-3: Passive RHR Heat Removal...........34-409 Revision: 9 ENEL April 11,1997 gu.g:n 3 W8Stinghouse o:\\ap60opaVev.9Wlof.wpf.lb lxx
E l
O n
v LIST OF FIGURES (Cont.)
Figure No.
Title Page 34-343 Case 6E-3: B reak Flows.....................34-410 34-344 Case 6E-3: Liquid and Steam Flows through Failed-Open SG Safety Valve.24-411 34-345 Case 6E-3: Loop 1 ADS Stage 4 Flows......34-412 34-346 Case 6E-3: Accumulator Water Mass and CMT Water Mass34-413 34-347 Case 6E-3: IRWST Flows............................34-414 34-348 Case 6E-3: Reactor Vessel Levels34-415 34-349 Case 6E-3: Cote Temperatures..........34-416 34 350 Case 6E-3: Reactor Cavity Water Level and IRWST Water Level...34-417 34-351 Case 6E-3: Loop Companment and Valve Vault Water Levels.........34-418 34-352 Case 6E-3: Containment Pressure.......34-419 34-353 Case 6E-3: Containment Temperatures...........................34-420 34-354 Case 6E-3: Debris Mass34-421 34-355 Case 6E-3: Reactor Vessel-to-Cavity Water Heat Transfer....34-422 34-356 Case 6E-3: Hydrogen Generation 34-423 34-357 Case 6E-3: Mass of Csl Released to Containment.34-424 34-358 Case 6E-3: Noble Gases Released..34-425 34-359 Case 6E-3: Releases to Environment.....34-426 34-360 Case 6E-3: Non-Volatile Release 34 427
[V_T 34-361 Case 6L-1: RCS Pressure and SG Pressure..............
.34-428 1
34-362 Case 6L-1: Loop 1 ADS Stage 4 Fjows.....34-429 34-363 Case 6L-1: Break Flows...34-430 34-364 Case 6L-1: Liquid and Steam Flows through Failed-Open SG Safety Valve.34-431 34 365 Case 6L-1: Loop 1 ADS Stage 4 Flows..................34-432 34-366 Case 6L-1: Accumulator Water Mass and CMT Water Mass
...34-433 34-367 Case 6L-1: IRWST Flows..............,....................
34-4 34 34-368 Case 6L-1: Reactor Vessel Levels.....
.34-435 34-369 Case 6L-1: Core Temperatures..34-436 34-370 Case 6L-1: Reactor Cavity Water Level and IRWST Water Level.......34-437 34-371 Case 6L-1: Loop Companment and Valve Vault Water Levels.........34-438 34-372 Case 6L-1: Containment Pressure..........
....34-439 34-373 Case 6L-1: Containment Temperatures...........................34-440 34-374 Case 6L-1: Debris Mass
.34-441 34-375 Case 6L-1: Reactor Vessel-to-Cavity Water Heat Transfer.....34-442 34-376 Case 6L-1: Hydrogen Generation..........34-443 34-377 Case 6L-1: Mass of Csl Released to Containment...................34-444 34-378 Case 6L-1: Ncble Gases Released..34-445 34-379 Case 6L-1: Releases to Environment...34-446 34-380 Case 6L-1: Non-Volatile Release.34-447 34-381 Case 1 AP-1: RCS Pressure and SG Pressure 34-448 l
34-382 Case 1AP-1: Passive RHR Heat Removal
..34-449 34-383 Case I AP-1: Break Flows.....34-450 i
C ENEl.
Revision: 9 T Westinghouse cath.
April 11,1997 IXXi o:\\ap600\\pra\\rev_9\\pra-lof.wpf:1b L - - _ -_ _
l
.-ga,,.o 0
LIST OF FIGURES (Cont.)
Firure No.
Title Page 34-384 Case 1 AP-1: Liquid and Steam Flows through Failed-Open SG Safety Valve.34-451 34-385 Case 1 AP-1: Loop 1 ADS Stage 4 Flows.............
.34-452 34-386 Case 1 AP-1: Accumulator Water Mass and CMT Water Mass.........34-453 34-387 Case 1 AP-1: IRWST Flows.
34-4 54 34-388 Case 1 AP-1: Reactor Vessel Levels.......
............. 34-4 5 5 34 389 Case 1 AP-1: Core Temperatures............
.34-456 34-390 Case 1 AP-1: Reactor Cavity Water Level and IRWST Water Level......34-457
...34-458 34-391 Case I AP-1: Loop Compartment and Valve Vault Water Levels...
..34-459 34-392 Case 1 AP-1: Containment Pressure............
.34-460 34-393 Case 1AP-1: Containment Temperatures
.....34-461 34-394 Case 1 AP-1: Debris Mass34-395 Case 1AP-1: Reactor Vessel-to-Cavity Water Heat Transfer.
..34-462 34-396 Case 1 AP-1: Hydrogen Generation......34-463 34-397 Case 1 AP-1: Mass of Csl Released to Containment............
.34-465 34-398 Case 1 AP-1: Noble Gases Released.34-399 Case 1 AP-1: Releases to Environment.....34-466 34-467 34-400 Case 1 AP-1: Non-Volatile Release.34-401 Case I A-1: RCS Pressure and SG Pressure
.....34-468 34-402 Case 1 A-1: Passive RHR Heat Removal 34-469 34-403 Case IA-1: Break Flows.
...34-470 34-404 Case I A-1: Liquid and Steam Flows through Failed-Open SG Safety Valve.34-471
.34-472 34-405 Case 1 A-1: Loop 1 ADS Stage 4 Flows34-406 Case 1 A-1: Accumulator Water Mass and CMT Water Mass
.34-473 34-407 Case 1 A-1: IRWST Flows...
..34-474 34-408 Case I A-1: Reactor Vessel Levels...
.34-475 34-409 Case I A.1: Core Temperatures....
.34-476 34-410 Case I A-1: Reactor Cavity Water Level and IRWST Water Level....34-477 34-411 Case I A-1: Loop Companment and Valve Vault Water Levels.........34-478 34-412 Case I A-1: Containment Pressum............
..........34-479 34-413 Case I A-1: Containment Temperatures
..34-480 34-414 Case I A-1: Debris Mass..
...34-481 34-415 Case I A-1: Reactor Vessel-to-Cavity Water Heat Transfer............34-482 34-416 Case 1 A-1: Hydrogen Generation
.34-483 34-417 Case I A-1: Mass of Csl Released to Containment.
.34-484 34-418 Case IA-1: Noble Gases Released........
.34-485 34-419 Case I A-1: Releases to Environment.........................
.34-486 34-420 Case 1 A-1: Non-Volatile Release
.34-487 35-1 Containment Event Tree..
... 35-30 0
Revision: 9 ENEL April 11,1997 mm-W85tiligh00S8 c:\\ap600pr:Wv 9\\pra-lof2pf:lb IXXii
1
(
s LIST OF FIGURES (Cont.)
Figure No.
Title Page 36-1 AP600 Accident Class I A Base Case for Node DP Success -- RCS Pressure... 36-8 36-2 AP600 Accident Class I A Base Case for Node DP Success -- Core.
Exit Gas Temperature...
36-9 36-3 AP600 Accident Class I A Base Case for Node DP Success -- Steam Generator Tube Creep Damage
. 36-10 38-1 AP600 DVI Break with Valve Vault Flooding Containment I
Compartment Water Levels.
.. 38-7 39-1 Mini ACOPO Bowl for Testing.....
. 39-17 39-2 ACOPO Testing Arrangement........
39-18 39-3 ULPU Testing Arrangement 39-19 39-4 AP600 Passive Core Cooling System....
.. 39-20 39-5 Containment Floodable Region......................
. 39-21 39-6 Containment Floodable Region - Exploded View.
.. 39-22 39-7 AP600 Cavity Flooding Rate
.. 39-23 39-8 Schematic of Reactor Vessel and Insulation.......
......... 39-24 O
39-9 ULPU Test Configuration...........
......... 39-25 Q
40-1 AP600 Containment Schematic...
..............................40-3 40-2 AP600 Passive Containment Cooling
....... 40-4 40-3 Containment Pressure Prediction
.................................40-5 41-1 Combustion Cornpleteness for Nevada Test Site Premixed Combustion Tests (Reproduced from Ref. 41-3).........
. 41-91 41-2 The Flammability Floor Domain for Upward Flame Propagation for H -Air-H O (Vapor) Mixtures. The Flammability Limit 2
2 Curve is Superimposed on the Isobaric Controus of Calculated Adiabatic Explosion Pressure (from Ref. 41 1$).
......... 41-92 j
41-3
' Theoretical Adiabatic, Constant-Volume Combustion Pressures l
of Hydrogen-air Mixtures (Reproduced from Ref. 41-5)
......... 41 -93 41-4 Typical Calculated Versus Measured Axial Power Distribution............ 41-94 j
41-5 Normalized Power Density Distribution Near Middle of Life, j
Unrodded Core Hot Full Power, Equilibrium Xenon................. 41-95 1
41-6 Reactor Vessel Wa.er Level in AP600 Hydrogen Cases
.. 41 -%
41-7 Fraction of Cladding Reacted in AP600 Hydrogen Generation Cases
. 41-97 41-8 Containment Pressure for AP600 Hydrogen Cases................... 41-98 41-9 AP600 Containment Water Level - DVI Line Break with No Valve Vault Flooding.........
. 41-99 41-10 AP600 Containment Water Level - DVI Line Break with Valve Vault Flooding.
........................ 41 - 100 q
41-11 Accident Class 3BE Early Detonation Decomposition Event Tree.
....41-101 Revision: 10 I
l
[ W65tif)ghouSE h_
June 30,1997 ixxiii 04*Na*v iopr.iorwpr.:b
1 N
O LIST OF FIGURES (Cont.)
fjgpre No.
This Page 41-12 Accident Class 3BL Early Detonation Decomposition Event Tree......... 41 102 41-13 Accident Class 3BR/3C Early Detonation Decomposition Event Tree.41-103 41-14 Accident Class 3D/lD Early Detonation Decomposition Event Tree.......41-104 41-15 Accident Class LAP Early Detonation Decomposition Event Tree.........41-105 41-16 Detonation Cell Width versus Equivalence Ratio for Test Series #1 (H -Air at P=1 atm. T=20*C) (Reproduced from Reference 41-4).........41-106 2
41-17 Detonation Cell Width versus Equivalence Ratio for Test Series #3. 4 (H -Air-H O at p,=41.6 moles /m', T=100*C) (Ref. 41-4)..............41-107 l
2 2
41-18 Detonation Cell Width versus Temperature Ratio for Test Series #6. 7
{
1 (H -Air at X,e=0.17) (Ref. 41-4)...............................41-108 2
41-19 AP600 Adiabatic Shell Temperature for Hydrogen Burn...............41-109 41-20 AP600 Hydrogen Deflagmtion Analysis - Non-Reflood Case Hydrogen Generation Probability Distribution............................. 41 -110 41-21 AP600 Hydrogen Deflagration Analysis - Non-Reflooded Case Pre-Burn Pressure Probability Distribution.............................. 41 - 1 1 1 41-22 AP600 Hydrogen Deflagration Analysis - Non-Reflooded Case Probability Distribution of AICC Peak Pressure.............................41-112 41-23 AP600 Hydrogen Deflagration Analysis - Early-Reflood Case Hydrogen Generation Probability Distribution..............................41-113 41 24 AP600 Hydrogen Deflagration Analysis - Early-Reflood Case Pre-Bum Pressure Probability Distribution...............................41-114 41-25 AP600 Hydrogen Deflagration Analysis - Early Reflood Case Probability Distnbution of AICC Peak Pressure.............................41-115 41 26 AP600 Hydrogen Deflagration Analysis - Late-Reflood Case Hydrogen Generation Probability Distribution..............................41-116 41-27 AP600 Hydrogen Deflagration Analysis - Late-Reflood Case Pre Bum Pressure Probability Distribution...............................41-117 41-28 AP600 Hydrogen Deflagration Analysis - Late-Reflood Case Proability Distribution of AICC Peak Pressure.............................41-118 41-29 Reflooded 3BE Case - Lower Flammability Limit Sensitivity..........41-119 41-30 Reflooded 3BE Case - Steam Inerting Limit Sensitivity..............41-120 41-31 Accident Class 3BE Intermediate Detonation Decomposition Event Tree....41-121 41-32 Accident Class 3BL Interrraxiiate Detonation Decomposition Event Tree....41-122 41-33 Accident Class 3BR 3C, 3D LAP Intermediate Detonation Decomposition Event Tree.............................................. 41 - 123 42-1 AP600 Containment Fragility at Contamment Temperature of 400*F....... 4213 42-2 AP600 Containment Fragility at Containment Temperature of 331*F....... 42-14 43-1 Contribution of Accident Class to Large Release Frequency............ 43-15 2 43-2 Contribution of Cominant Containment Event Tree Sequences to Large Release Frequency.................................... 4 3-1 5 3 Apri
,1997 D U88
~c l
V LIST OF FIGURES (Cont.)
Figure No.
Title Eage 43-3 Containment Event Tree for 3BE...............................43-154 43-4 Containment Event Tree for 3BL...............................43-155 43-5 Containment Event Tree for 3BR...............................43-156 43-6 Containment Event Tree for 1 A....
.43-157 43-7 Containment Event Tree for I AP............43-158 43-8 Containment Event Tree for 3A.......
.......43-159 43-9 Containment Event Tree for 3C................................43-160 43-10 Containment Event Tree for 3D
...........43-161 43-11 Containment Event Tree for 6............................
.43-162 44-1 AP600 MAAP4 Containment Model Nodalization..............
44-12 45-1 Release Category IC Release Fraction Comparison Noble Gases..
. 45-17 45-2 Release Category IC Release Fraction Comparison Csl................ 45-18 i
45-3 Release Category IC Release Fraction Comparison Non-Volatiles......... 45-19 45-4 Case 3BE-4: IC 72-Hour Release Fraction Noble Gases (Xe, Kr) 45-20 45-5 Case 3BE-4: IC 72-Hour P/ case Fraction Csl..
...... 45-21 l
45-6 Case 3BE-4: IC 72-Hour ;elea:e Fraction TeO
. 45-22 2
/ g) 45-7 Case 3BE-4: IC 72-Hour Release Fraction Non-Volatiles (SrO)
....... 4 5-23 V
45-8 Case 3BE-4: IC 72-Hour Release Fraction moo
................... 4 5-24 i
2 l
45-9 Case 3BE-4: IC 72-Hour Release Fraction CsOH...
....... 45-25 45-10 Case 3BE-4: IC 72-Hour Release Fraction BaO..
............... 45-26 45-11 Case 3BE-4: IC 72-Hour Release Fraction La,,0..............
. 45-27 3
45-12 Case 3BE-4: IC 72-Hour Release Fraction CeO
. 45-28 2
45-13 Case 3BE-4: IC 72-Hour Release Fraction Sb...................... 45-29 l
45-14 Case 3BE-4: 1C 72-Hour Release Fraction Te2..................... 45-30 45-15 Case 3BE-4: IC 72-Hour Release Fraction UO......
............ 4 5-31 2
45-16 Release Category BP Release Fraction Comparison Noble Gases......... 45-32 45-17 Release Category BP Release Fraction Comparison Csl............... 45-33 45-18 Release Category BP Release Fraction Comparison Non-Volatiles......... 45-34 45-19 Case I A-1: BP 72-Hour Release Fraction Noble Gases (Xe, Kr).......... 45-35 l
45-20 Case I A-1: BP 72-Hour Release Fraction Csl...................... 45-36 45-21 Case 1 A-1: BP 72 Hour Release Fraction TeO..............
45-37 2
45-22 Case I A-1: BP 72-Hour Release Fraction Non-Volatiles (SrO)........... 45-38 l
45-23 Case IA-1: BP 72-Hour Release Fraction moo
................ 4 5-3 9 2
45-24 Case 1 A-1: BP 72-Hour Release Fraction CsOH.................... 45-40 45-25 Case I A-1: BP 72-Hour Release Fraction Ba0
.. 45-41 45-26 Case I A-1: BP 72-Hour Release Fraction La 0
............ 4 5-42 2 3 45 27 Case I A-1: BP 72-Hour Release Fraction CeO..................... 45-43 2
45-28 Case 1 A-1: BP 72-Hour Release Fraction Sb......
. 45-44 45-29 Case 1 A-1: BP 72-Hour Release Fraction Te2
. 45-45 T Westinghouse
$k,,.
Ap il 11, IXXv c:\\ap60Wra\\rev_9\\pra-lof.wpf.lb i
EN O
LIST OF FIGURES (Cont.)
l l
Firure No.
Title Page 45-30 Case I A-1: BP 72-Hour Release Fraction UO
..... 45-46 2
45-31 Case 3BE-5: Clair 72-Hour Release Fraction Noble Gases (Xe, Kr).....
45-47
. 45-48 45-32 Case 3BE-5: Clair 72-Hour Release Fraction Csl..........
45-33 Case 3BE-5: Clair 72-Hour Release Fraction TeO.................. 4 5 -4 9 2
.. 45-50 45-34 Case 3BE-5: Clair 72-Hour Release Fraction Non-Volatiles (SrO)....
45-35 Case 3BE-5: Clair 72-Hour Release Fraction moo.................. 4 5-51 2
45-36 Case 3BE-5: Clair 72 Hour Release Fraction CsOH
..... 45-52 45-37 Case 3BE-5: Clair 72 Hour Release Fraction Ba0......
.... 45-53 45-38 Case 3BE-5: Clair 72-Hour Release Fraction La O
. 45-54 2 3 45-39 Case 3BE-5: Clair 72-Hour Release Fraction CeO.
. 45-55 2
45-40 Case 3BE-5: Clair 72-Hour Release Fraction Sb
.... 45-56 45-41 Case 3BE-5: Clair 72-Hour Release Fraction Te2
. 45-57
... 45-58 45-42 Case 3BE-5: Clair 72-Hour Release Fraction UO2 45-43 Release Category CFE Release Fraction Comparison Noble Gases
........ 45-59 45-44 Release Category CFE Release Fraction Comparison CsI....
. 45-60 45-45 Release Category CFE Release Fraction Comparison Non-Volatiles
... 45-61 45-46 Case 3BE-8: CFE 72-Hour Release Fraction Noble Gases (Xe, Kr)....... 45-62 45-47 Case 3BE-8: CFE 72-Hour Release Fraction UO
. 45-63 2
45-48 Case 3BE-8: CFE 72-Hour Release Fraction TeO
. 45-64 2
45-49 Case 3BE-8: CFE 72. Hour Release Fraction Non Volatiles (SrO) 45-65 45-50 Case 3BE-8: CFE 72-Hour Release Fraction moo
... 45-66 2
45-51 Case 3BE-8: CFE 72-Hour Release Fraction CsOH.................. 45-67 45-52 Case 3BE-8: CFE 72-Hour Release Fraction BaO
. 45-68 45-53 Case 3BE-8: CFE 72-Hour Release Fraction La,,0
.... 45-69 3
45-54 Case 3BE-8: CFE 72-Hour Release Fraction CeO
...... 45-70 2
.... 45-71 45-55 Case 3BE-8: CFE 72-Hour Release Fraction Sb..............
45-56 Case 3BE-8: CFE 72-Hour Release Fraction Te2 45-72 45-57 Case 3BE-8: CFE 72-Hour Release Fraction UO
... 45-73 2
45-58 Release Category CFI Release Fraction Comparison Noble Gases.....
.. 45-74 45-59 Release Category CFI Release Fraction Comparison Csl 45-75 45-60 Release Category CFI Release Fraction Comparison Non-Volatiles........ 45-76 45-61 Case 3BE-9: CFI 72-Hour Release Fraction Noble Gases (Xe, Kr)
. 45-77 45-62 Case 3BE-9: CFI 72-Hour Release Fraction Csl.
....... 45-7 8 45-63 Case 3BE-9: CFI 72-Hour Release Fraction TeO
........ 45-79 2
45-64 Case 3BE-9: CFI 72-Hour Release Fraction Non-Volatiles (SrO).......
. 45-80 45-65 Case 3BE-9: CFI 72-Hour Release Fraction moo
... 45-81 2
45-66 Case 3BE-9: CFI 72-Hour Release Fraction CsOH..
45-82 45-67 Case 3BE-9: CFI 72-Hour Release Fraction BaO.........
. 45-83 45-68 Case 3BE-9: CFI 72-Hour Release Fraction La 0.................. 45-84 2 3 45-69 Case 3BE-9: CFI 72-Hour Release Fraction CeO
.. 45-85 2
45-70 Case 3BE-9: CFI 72-Hour Release Fraction Sb
.. 45-86 9
Revision: 9 ENEl.
3 We51righ0Use April 11,1997 lrAuts,.,
o:\\ap600\\prairev.9%pra-lof.wpf:1b I n vi
q I
i V
LIST OF FIGURES (Cont.)
Firure No.
Title
_P_ age 45-71 Case 3BE-9: CFI 72-Hour Release Fraction Te2......
45-87 45-72 Case 3BE-9: CFI 72-Hour Release Fraction UO
....................45-88 2
45-73 Case 3BE-10: CFL 72-Hour Release Fraction Noble Gases (Xe, Kr)
.... 45-89 45-74 Case 3BE-10: CFL 72-Hour Release Fraction Csl..............
45-90 45-75 Case 3BE-10: CFL 72-Hour Release Fraction TeO
.... 45-91 J
2 45-76 Case 3BE-10: CFL 72-Hour Release Fraction Non-Volatiles (SrO)........ 45-92
{
45-77 Case 3BE-10: CFL 72 Hour Release Fraction moo
. 45-93 2
45-78 Case 3BE-10: CFL 72-Hour Release Fraction CsOH........
. 45-94 45-79 Case 3BE-10: CFL 72-Hour Release Fraction BaO....
........ 45-95 45-80 Case 3BE-10: CFL 72-Hour Release Fraction La 0................. 45-96 2 3 45-81 Case 3BE-10: CFL 72.-Hour Release Fraction CeO
.......... 4 5-97 2
45-82 Case 3BE-10: CFL 72-Hour Release Fraction Sb................... 4 5-9 8 45-83 Case 3BE-10: CFL 72-Hour Release Fraction Te2
.. 45-99 45-84 Case 3BE-10: CFL 72-Hour Release Fraction UO......
....45-100 2
45-85 IC 72-Hour Direct Release Sensitivity Noble Gases (Xe, Kr)...........45-101 45-86 IC 72-Hour Direct Release Sensitivity Csl........45-102 45-87 IC 72-Hour Direct Release Sensitivity TeO
...................... 4 5 - 103 2
45-88 IC 72-Hour Direct Release Sensitivity Non-Volatiles (SrO)
........45-104 j
)
45-89 IC 72-Hour Direct Release Sensitivity moo
.....45-105 i
2 l# ' --
45 90 IC 72-Hour Direct Release Sensitivity CsOH....45-106 45-91 IC 72-Hour Direct Release Sensitivity BaO....
....45-107 45-108 45-92 IC 72-Hour Direct Release Sensitivity La,,03 45-93 IC 72-Hour Direct Release Sensitivity CeO....45-109 2
45-94 IC 72-Hour Direct Release Sensitivity Sb.....
.............. 4 5-1 10 45-95 IC 72-Hour Direct Release Sensitivity Te
....... 45 111 2
45-96 IC 72-Hour Direct Release Sensitivity 'UO
........45-112 2.............
45-97 Case 3BE-4: FRPAT Sensitivity on Release Fraction Noble Gases......45-113 45-98 Case 3BE-4: FPRAT Sensitivity on Release Fraction CsI 45-114 45-99 Case 3BE-4: FPRAT Sensitivity on Release Fraction TeO
.......45-115 2
45-100 Case 3BE-4: FPRAT Sensitivity on Release Fraction SrO............45-116 j
45-101 Case 3BE-4: FPRAT Sensitivity on Release Fraction moo
.45-117 2
45-102 Case 3BE-4: FPRAT Sensitivity on Release Fraction CsOH...........45-118 45-103 Case 3BE-4: FPRAT Sensitivity on Release Fraction Ba0............45-119 45-104 Case 3BE-4: FPRAT Sensitivity on Release Fraction La O3 45-120 2
45-105 Case 3BE-4: FPRAT Sensitivity or. Release Fraction CeO............45-121 2
45-106 Case 3BE-4: FPRAT Sensitivity en Release Fraction Sb..............45-122 45-107 Case 3BE-4: FPRAT Sensitivity on Release Fraction Te 45-123 2
45-108 Case 3BE-4: FPRAT Sensitivity on Release Fraction UO..45-124 2
45-109 Case 3BE-4: FAERDC Sensitivity on Release Fraction Noble Gases
.45-125 45-110 Case 3BE-4: FAERDC Sensitivity on Release Fraction Csl.....45-126 45-111 Case 3BE-4: FAERDC Sensitivity on Release Fraction TeO...........45-127 2
) (A)
%d Revision: 9 ENE T Westinghouse W-April 11,1997 1xxvii osp60@mwv.9m-ior.wpt:ib
F"$
9 LIST OF FIGURES (Cont.)
Figure No.
Title hge 45-112 Case 3BE-4: FAERDC Sensitivity on Release Fraction SrO 45-128 45-113 Case 3BE-4: FAERDC Sensitivity on Release Fraction moo
.45-129 2
45-114 Case 3BE-4: FAERDC Sensitivity on Release Fraction CsOH...
....45-130 45-115 Case 3BE-4: FAERDC Sensitivity on Release Fraction Ba0...45-131 45-116 Case 3BE-4: FAERDC Sensitivity on Release Fraction La O
.45-132 2 3 45-117 Case 3BE-4: FAERDC Sensitivity on Release Fraction CcO
.45-133 2
45-118 Case 3BE-4: FAERDC Sensitivity on Release Fraction Sb.......
)
J 45-119 Case 3BE-4: FAERDC Sensitivity on Release Fraction Te2.......
.45-135 45-120 Case 3BE-4: FAERDC Sensitivity on Release Fraction UO
...45-136 2.......
49-1 Population Whole Body Dose BP Source Term,24 Hours.
........ 49-20 49-2 Population Whole Body Dose BP Source Term,72 Hours....
. 49-20 49-3 Site Boundary Whole Body Dose BP Source Term,24 Hours 49-21 49-4 Site Boundary Whole Body Dose BP Source Term,72 Hours
... 49-21 49-5 Site Boundary Red Bone Marrow Dose BP Source Term,24 Hours
. 49 22 49-6 Site Boundary Red Bone Marrow Dose BP Source Term,72 Hours
... 49-22 49-7 Site Boundary Thyroid Dose BP Source Term,24 Hours.......
. 49-23 49-8 Site Boundary Thyroid Dose BP Source Term,72 Hours..........
.. 49-23 49-9 Population Whole Body Dose CFE Source Term,24 Hours....
. 49-24 49-10 Population Whole Body Dose CFE Source Term,72 Hours........
49-24 49-11 Site Boundary Whole Body Dose CFE Source Term,24 Hours
. 49-25 49-12 Site Boundary Whole Body Dose CFE Source Term,72 Hours
... 49-2S 49-13 Site Boundary Red Bone Marrow Dose CFE Source Term,24 Hours.
. 49-26 49-14 Site Boundary Red Bone Marrow Dose CFE Source Term,72 Hours 49-26 49-15 Site Boundary Dyroid Dose CFE Source Tenu,24 Hours.............. 49-27 49-16 Site Boundary Thyroid Dose CFE Source Term,72 Hours
... 49-27 49-17 Population Whole Body Dose CFI Source Term,24 Hours
. 49-28 49-18 Population Whole Body Dose CFI Source Term,72 Hours
. 49-28 49-19 Site Boundary Whole Body Dose CFI Source Term,24 Hours.......... 49-29 49-20 Site Boundary Whole Body Dose CFI Source Term,72 Hours.
... 49-29 49-21 Site Boundary Red Bone Marrow Dose CFI Source Term,24 Hours...... 49-30 49-22 Site Boundary Red Bone Marrow Dose CFI Source Term,72 Hours
.. 49-30 49-23 Site Boundary Byroid Dose CFI Source Term,24 Hours........
49-31 49-24 Site Boundary Byroid Dose CFI Source Tenn,72 Hours..
49 31 49-25 Population Whole Body Dose CFL Source Tenn,24 Hours.......
. 49-32 49-26 Population Whole Body Dose CFL Source Term,72 Hours....
. 49-32 49-27 Site Boundary Whole Body Dose CFL Source Term,24 Hours 49-33 49-28 Site Boundary Whole Body Dose CFL Source Term,72 Hours
. 49-33 49-29 Site Boundary Red Bone Marrow Dose CFL Source Term,24 Hours
.... 49-34 49-30 Site Boundary Red Bone Marrow Dose CFL Source Term,72 Hours
. 49-34
....... 49-35 49-31 Site Boundary Dyroid Dose CFL Source Term,24 Hours....
O Revision: 9 ENEL April 11,1997 mh Westinghouse owanpovevym or.wprJb lxxviii a
1 I
D (V
LIST OF FIGURES (Cont.)
1 Figure No.
Title
_P_ age 49-32 Site Boundary Thyroid Dose CFL Source Term,72 Hours.....
..... 49-35 1
49-33 Population Whole Body Dose CI Source Term,24 Hours
....... 49-36 l
49-34 Population Whole Body Dose CI Source Term,72 Houn
. 49-36 49-35 Site Boundary Whole Body Dose CI Source Term. 24 Hours............ 49-37 49-36 Site Boundary Whole Body Dose CI Source Term,72 Hours..
...... 49-37 49-37 Site Boundary Red Bone Marrow Dose Ci Source Term,24 Hours....... 4 9-3 8 j
49-38 Site Boundary Red Bone Marrow Dose CI Source Term,72 Hours....... 49-38 i
49-39 Site Boundary Thyroid Dose CI Source Term,24 Hours
...... 49-39 49-40 Site Boundary Thyroid Dose CI Source Term,72 Hours.....
49-39 49-41 Population Whole Body Dose DIRECT Source Term 24 Hours......... 49-40 49-42 Population Whole Body Dose DIRECT Source Term,72 Hours.
... 49-40 l
49-43 Site Boundary Whole Body Dose DIRECT Source Term 24 Hours....... 49-41 49-44 Site Boundary Whole Body Dose DIRECT Source Term,72 Hours 49-41 49-45 Site Boundary Red Bone Marrow Dose DIRECT Source Term,24 Hours... 49-42 49-46 Site Boundary Red Bone Marrow Dose DIRECT Source Term,72 Hours 49-42 49-47 Site Boundary Thyroid Dose DIRECT Source Term. 24 Hours
......... 4 9-4 3 49-48 Site Boundary Thyroid Dose DIRECT Source Term,72 Hours........... 49-43 49-49 Population Whcle Body Dose IC Source Term,24 Hours 49-44 i
49-50 Population Whole Body Dose IC Source Term,72 Hours
... 49-44 V
49-51 Site Boundary Whole Body Dose IC Source Term, 24 Hours......
. 49-45 49-52 Site Boundary Whole Body Dose IC Source Term,72 Hours.
. 49-45 49-53 Site Boundary Red Bone Marrow Dose IC Source Term,24 Hours....... 49-46 49-54 Site Boundary Red Bone Marrow Dose IC Source Term,72 Hours........ 49-46 49-55 Site Boundary Thyroid Dose IC Source Term,24 Hours.............. 49-47 49-56 Site Boundary Thyroid Dose IC Source Term,72 Hours
. 49-47 49-57 Overall Dose Risk Site Boundary Whole Body, EDE,24 Hour Dose...... 49-48 49-58 Overall Dose Risk Site Boundary Acute Red Bone Marrow Dose 24 Hour
. 49-48 51-1 AP600 Core Damage Frequency Uncenainty Histogram................ 51-19 51-2 AP600 PRA Uncenainty Analysis Results by Dominant Sequences
..... 51-20 51-3 AP600 PRA Uncenainty Analysis Results by Initiating Event
...... 51-21 52-1 Example Event Tree: Baseline Configuration...
.52-117 52-2 Example Event Tree: Nonsafety-Related Systems Removed............52-118 52-3 Example Event Tree: Nonsafety-Related Systems Removed and Core Damage States Simplified...
.....52-119 52-4 Example Event Tree: Final Focused PRA Sensitivity Study Configuration..52-120 i
52-5 ATWS Event Tree.............
.52-121 l
52-6 ATWSC Event Tree.
.52-122 52-7 CMTLB CMT Line Break Event Tree..
......52-123 52-8 ISLOC: Interfacing Systems LOCA Event Tree
......52-124 V
Revision: 9 ENEL T Westirighouse mam April 11,1997 lxxix o:\\ap600sprairev_9'pra-lof.wpf: I b l
l u_____
l l
l e
LIST OF FIGURES (Cont.)
Rage Figure No.
Title a
52-9 LCAS: Loss of Compressed Air Event Tree......
.......52-125 52-10 LCCW: Loss of CCW/SWS Event Tree.....
.............. 5 2 126 52-11 LCOND: Loss of Condenser Event Tree 52-127 52-12 LLOCA: Large LOCA Event Tree
......... 5 2-128 l
52-13 LMFW. Loss of Main Feedwater to both SGs Event Tree 52-129 52-14 LMFW1: Loss of Main Feedwater to One SG Event Tree 52-130 52-15 LOSP: Loss of Offsite Power Event Tree.....
.........52-131 52-16 LRCS: Loss of Reactor Coolant Flow Event Tree
.52-132 52-133 52-17 MLOCA: Medium LOCA Event Tree........
52-18 NLOCA/CNLOCA: Intermediate LOCA/ Consequential Intermediate LOCA Event Tree 52-134 52-135 52-19 POWEX Power Excursion Event Tree
...52-136 52-20 PRSTR: Passive RHR Tube Rupture Event Tree....
52-21 RV-RP: Reactor Vessel Rupture Event Tree..52-137 52-22 SGTR/CSGTR: SG Tube Rupture / Consequential SG Tube Rupture Event Tree
...52-138 52-23 SGTRC: SG Tube Rupture Initial Event Tree......
.....52-139 52-24 SI-LB: SI Line Break Event Tree
.........52-140 52-25 SLB-D: Steam Line Break Downstream of MSIVs Event Tree.....
.52-141 52-26 SLB-U: Steam Line Break Upstream of MSIVs Event Tree....
...52-142 52-27 SLB-V/CSLB-V: Stuck-Open Secondary Side Safety Valve / Consequential Stuck-Open Secondary Side Safety Valve Event Tree.
.52-143 52-28 SLOCA: Small LOCA Event Tree
..52-144 52-29 TRANS: Transients with Main Feedwater Event Tree.52-145 52-30 Containment Event Tree for Accident Class 3BE...
...........52-146 52-31 Containment Event Tree for Accident Class 3BL............... 5 2-147 52-32 Containment Event Tree for Accident Class 3BR.
...52-148 52-33 Containment Event Tree for Accident Class IA
......52-149 52-34 Containment Event Tree for Accident Class I AP...
.52-150 52-35 Containment Event Tree for Accident Class 3A......
.52-151 52-36 Containment Event Tree for Accident Class 3C.
..52-152 52-37 Containment Event Tree for Accident Class 3D.........
.......52-153 52-38 Containment Event Tree for Accident Class 6...
....52-154 52-39 Loss of Offsite Power (RCS Drained) Event Tree
.52-155 52-40 LOSP Dudng Hot / Cold Shutdown (RCS Filled) Event Tree
....52-156 54-1 LOSP During Hot / Cold Shutdown (RCS Filled) Event Tree....
.54-299 54-2 Loss of RNS Initiator During Hot / Cold Shutdown (RCS Filled) Event Tree..54-300 54-3 Loss of CCW/SW Initiator During Hot / Cold Shutdown (RCS Filled)
Event Tree 54-301 9
1 W Westinghouse p
,1997 oTap600\\pra\\rev.,9pra-lof.wpf:1b IXT.X
LIST OF FIGURES (Cont.)
Finnre No.
T. itis P.nas
$4-4 LOCA/RNS Pipe Rupave Dunng Hot / Cold Shutdown (RCS Filled)
Event Tree..............................................54-302 54-5 LOCA/RNS-V024 Opens Dunng Hot / Cold Shutdown (RCS Filled)
Event Tree..............................................54-303
{
54-6 Overdrmmng of Reactor Coolant System Dunng Drundown to Mid. Loop...54-304 l
54-7 Loss of Offsite Power (RCS Dramed) Event Tree...................54-305 54-8 Loss of RNS Initiator (RCS Dramed) Event Tree....................54-306 54 9 Loss of CCW/SW Initiator (RCS Dramed) Event Tree................54-307 54-10 LOCA/RNS-V024 Opens (RCS Dramed) Event Tree.................54-308 54-11 Accumulator Injection (Dilution Scenario) Event Tree.................54-309 54-12 Shutdown Transient Case SDIB2 RCS Pressure vs. Tune..............54-310 54-13 Shutdown Transient Case SD1B2 Mass Flow Rare vs. Tune............54-311 54-14 Shutdown RNS Break Case SD3A (3500 gym).....................54-312 54-15 Shutdown RNS Break Case SD3A2 (2000 gpm)....................54-313 54-16 Shutdown RNS Break Case SD3A3 (1000 gym)....................54-314 54-17 Shutdown Plant Damage State Substate Event Tree for LP-ADS.........54-315 54-18 Shutdown Plant Damage State Substate Event Tree for LP-1 A...........54-316 54-19 Shutdown Plant Damage State Substate Event Tme for LP-3D...........54-317 54-20 Shutdown Plant Damage State Substate Event Tree for LP-3BR..........54-318 54-21 Shutdown Plant Damage State Substate Event Tree for LP-3BE..........54-319 55-1 Seismic Initiating Event merarchy Tree.......................... 55-105 55-2 EQSTRUC Initiating Event Fault Tree........................... 55-106 55-3 EQRVFA Initiating Event Fanit Tree............................ 55-108 55-4 EQLLOCA Imt anns Event Fanit Tres.......................... 55-109 55-5 EQSLOCA Initiating Event Fault Tree........................... 55-110 55-6 EQN1WS Initiating Event Fault Tres........................... 55-111 55 EQSTRUC Event Tres..................................... 55-112 55-8 EQRVFA Event Tres.....................................
55-113 55-9 EQLLOCA Event Tres..................................... 5 5-114 55-10 EQSLOCA Event Tres..................................... 55-115 55-11 EQA'IWS Event Tree...................................... 55-116 55-12 EQ.LOSP Event Tres...................................... 55-117
)
55-13 EQLOSP Event Tree (for 0.5g level cantgaake).................... 55-118 55-14 EQAC2AB Fault Tree...................................... 5 5-119 55-15 EQXCIC Fault Tree....................................... 5 5-120
)
55-16 EQXADMA Fault Tree..................................... 55-121 l
55-17 EQXIW2A Fault Tres...................................... 55-122 1
55-18 EQRECIR Fault Tree...................................... 55-123 j
55-19 EQCM2SL Fault Tree...................................... 55-124 55-20 EQADA Fault Tree........................................ 5 5-125 l
55-21 EQIW2AB Fault Tree...................................... 5 5-126 I
l Revisient 9 l
Y@
Apeil 11,1997 ixxx
.wsoop._,,wwm
_w f
O
\\
l LIST OF FIGURES (Cont.)
Figure No.
Title Dage 55-22 EQ-PRHR Fault Tree.....
........... 55-127 55-23 EQ-PRESU Fault Tree....
.. 55-128 55-24 EQ-PMS Fault Tree.............
55-129 55-25 EQ-DC Fault Tree.......
. 55-130 55-26 Class 1E de Power Block Diagram...
............... 5 5-131 55-27 Containment Evaluation Model......
........ 55-132 55-28 EQ-STRUC Event Sequences....
. 55-133 55-29 EQ-RVFA Event Sequences.
............................. 5 5 - 1 34 55-30 EQ-LLOCA Event Sequences...
......................... 55-135 55-31 EQ-SLOCA Event Sequences..
55-136 55-32 EQ-SGTR Event Sequences
......... 55-137 55-33 EQ-SLB Event Sequences
............ 5 5-138 55-34 EQ-ATWS Event Sequences.................
55-139 55-35 EQ-LOSP Event Sequences (for 0.5g level earthquakes).
55-140 56-1 Flood Zones and Barriers Plan at 66'-6".
. 56-93 56-2 Flood Zones and Barriers Plan at 82'-6".......................... 5 6-95 56-3 Flood Zones and Barriers Plan at 96'-6".........
56-97 56-4 Flood Zones and Barriers Plan at 100'-0" & 107'-2".
.......... 5 6-99 56-5 Flood Zones and Barriers Plan at 117'-6"..............
.56-101 56-6 Flood Zories and Barriers Plan at 135'-3"
.........56-103 56-7 Flood Zones and Barriers Plan at 160'-6" & 153'-0"..
...56-105 56-8 Flood Zones and Barriers Plan at 160'-6" & 180*-0".........
.56-107 56-9 8-in. Fire Main Rupture at-Power Event Tree 56-109 56-10 8-in. Fire Main Rupture during Hot / Cold Shutdown Event Tree.........56-110 56-11 8-in. Fire Main Rupture during RCS Drained Conditions Event Tree......56-111 57-1 Fire Progmssion Event Tree for 1200 AF 01 Fire Area....
..57-156 59-1 Contribution of Initiating Events to Core Damage
.59-233 59-2 Contribution ofInitiating Events to Large Release Frequency and Core Damage Frequency.................
......59-234 59-3 Total Plant CDF/LRF......
.59-235 59-4 24-Hour Site Boundary Dose Cumulative Frequency Distribution.........59-236 9
Revision: 11 March 1998 3 Westlfighouse owemean_nwepra lxxxii
_ _ _ - - _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _