ML20237B092

From kanterella
Jump to navigation Jump to search
Rev 13 to AP600 PRA for Simplified Passive Advanced LWR Plant Program
ML20237B092
Person / Time
Site: 05200003
Issue date: 08/13/1998
From:
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20237B082 List:
References
NUDOCS 9808180042
Download: ML20237B092 (97)


Text

_ _ _ _ _ - - _ - - - -

s:

En --

O Simplified Passive Advanced Light Water Reactor Plant Program AP600 Probabilistic Risk Assessment

!O l

Prepared for U.S. Department of Energy San Francisco Operations Office DE-AC03-90SF18495 i

[naina: n" a

g O @ ~

m_

m:\\ap600Spratocrev6kott.wpf.lb I

==

3

=:

i~

l i

TABLE OF CONTENTS Section Title Eage CHAPTER 1 INTRODUCTION 1.1 Background and Overview 1-1 1.2 Objectives 1-2 1.3 Technical Scope 1-3 1.4 Project Methodology Overview..

1-4 1.5 Results..........

1-6 1.6 Plant Definition.........

1-7 1.6.1 General Description.....

1-7 1.6.2 AP600 Design Improvement as a Result of Probabilistic Risk Assessment Studies

. 1-12 1.7 References 1-14 CHAPTER 2 INTERNAL INITIATING EVENTS 2.1 Introduction 2-1 2.2 Internal Initiating Event Identification and Categorization.......

2-1 2.2.1 Logic Diagram for Internal Initiating Events......

2-2 2.2.2 Loss-of-Coolant Accidents....

2-3 2.2.3 Transients........

2-6 (q

2.2.4 Anticipated Transient without Scram 2-9 2.2.5 AP600-Specific Initiating Event Analysis 2-11 2.2.6 Consequential Events.........

2-20 2.2.7 Summary of Interaal Initiating Event Categories......

2-21 23 Quantification of Internal Initiating Event Frequencies

. 2-21 2.3.1 Quantification of LOCA Initiating Event Frequencies........... 2-21 2.3.2 Quantification of Transient Initiating Event Frequencies......

.. 2-27 2.3.3 ATWS Precursor Initiating Event Frequency..........

.. 2-30 l

2.3.4 Summary of Internal Initiating Event Frequencies...

.... 2-30 2.4 References 2-30 A~ITACHMENT 2A Q~UANTIFICATION OF LOCA 1hTTIATING EVENT FREQUENCIES l

2A.1 Primary System Pipe Break Frequencies 2A-1 l

2A.2 Reactor Coolant System Leakage Initiating Event Frequency............

2A-6 l

2A.3 Steam Generator Tube Rupture Initiating Event Frequency....

2A-15 2A.4 Interfacing System LOCA Initiating Event Frequency..

2A-19 l

2A.5 -

Quantification of Stuck-open Pressurizer Safety Valve and Accumulator Interface Break and IRWST Interface Break..

2A-29 2A.6 Quantification Secondary-side Line Breaks and Stuck-open Main Steam Line Safety Valve Frequencies..........

2A-34 2A.7 Initiating Events Review Data Summary and INPO Data.

2A-39 l

l

\\

(Om) l ENEl.

Revision: 9

[ W85tingt10Use Ets::bm April 11,1997 iii ow60cvavn 9w -tocypt;id

.g... =

=

0 TABLE OF CONTENTS (Cont.)

Section Title Eage CHAlrTER 3 MODELING OF SPECIAL INITIATORS 3.1 Introduction 3-1 3.2 Ground Rules for Special Initiating Event Analysis..................3-1 3.3 Loss of Compon nt Cooling Water System / Service Water System Initiating Event 3-2 3.4 Loss of Compressei and Instrument Air System Initiating Event 3-2 3.5 Spurious Actuation of Automatic Depressurization System 3-3 3.5.1 Evaluation of Automatic Depressurization System Spurious Actuation.. 3-3 3.6 References 3-8 CHAPTER 4 EVENT TREE MODELS 4-1 4.1 Introduction 4-1 4.2 Large LOCA Event Tree Model..

4-3 4.2.1 Event Description.,

4-3 4.2.2 Event Tree Model and Nodes 4-4 4.2.3 Event Tree Success Paths.............

4-5 4.2.4 Operator Actions............

4-6 4.2.5 Event Tre,e End States..

4-6 4.3 Medium LOCA Event Tree Model........

4-6 4.3.1 Event Description...

4-6 4.3.2 Event Tree Model and Nodes 4-7 4.3.3 Event Tree Success Paths.......

. 4-9 4.3.4 Operator Actions.

4-9 4.3.5 Event Tree End States 4-9 4.4 Core Makeup Tank Line Break Event Tree Model.....

.. 4-10 4.4.1 Event Description.

. 4-10 4-10 4.4.2 Event Tree Model and Nodes 4.4.3 Event Tree Success Paths.........................

.. 4-12 4.4.4 Operator Actions...

.... 4-12 4.4.5 Event Tree End States.......

. 4-13 4.5 Direct Vessel Injection Line Break Event Tree Model..

. 4-13 4.5.1 Event Description..........

.. 4-13

... 4-14 4.5.2 Event Tree Model and Nodes 4.5.3 Event Tree Success Paths.......

........... 4-15 4.5.4 Operator Actions.

....... 4-15 4-15 4.5.5 Event Tree End States.

4.6 Intermediate LOCA Event Tree Model

. 4-16 4.6.1 Event Description....

.. 4-16

..... 4-16 4.6.2 Event Tree Model and Nodes 4.6.3 Event Tree Success Paths..

.. 4-19 4.6.4 Operator Actions.

.... 4-19 4.6.5 Event Tree End States 4-19 O

Revision: 9

,f T Westirighouse April 11,1997 o%p600$ra\\rev 9\\pra-toc.wpf.lb iv

1 i

=:

=

m AU TABLE OF CONTENTS (Cont.)

Section Title Eage 4.7 Small LOCA Event Tree Model4-20 4.7.1 Event Description.

............. 4 20 4.7.2 Event Tree Model and Nodes

.......... 4-20 4.7.3 Event Tree Success Paths..................

..... 4-23 4.7.4 Operator Actions.................................... 4-24 4.7.5 Event Tree End States...........

. 4-24 4.8 RCS Leak Event Tree Model.................

.............. 4-24 4.8.1 Event Description................

....... 4-24 4.8.2 Event Tree Model and Nodes

.............. 4-25 4.8.3 Event Tree Success Paths.....

...... 4-25 4.8.4 Operator Actions...................

............. 4-26 4.8.5 Event Tree End States

...............4-26 4.9 PRHR Tube Rupture Event Tree Model.....

......................4-26 4.9.1 Event Description......

. 4-26 4.9.2 Event Tree Model and Nodes

...... 4-26 4.9.3 Event Tree Success Paths

............ 4-27 4.9.4 Operator Actions

.....4-27 4.9.5 Event Tree End States

. 4-28 n

4.10 Steam Generator Tube Rupture Event Tree Model.......

............ 4-28

( ')

4.10.1 Event Description..

........................4-28 4.10.2 Event Tree Model and Nodes

............................4-30 i

4.10.3 Event Tree Success Paths............................... 4-34

)

4.10.4 Operator Actions.......

.................. 4-34 J

4.10.5 Event Tree End States

..................... 4-35 4.11 Reactor Vessel Rupture Event Tree Model

. 4-35 4.11.1 Event Description....................

......... 4-3 5 4.11.2 Event Tree Model and Nodes

............. 4-3 5 4.11.3 Event Tree Success Paths........

. 4-36 4.11.4 Operator Actions..

................... 4-3 6 4.11.5 Event Tree End States..........

.............. 4-36 4.12 Interfacing System LOCA Event Tree Model.......

.................4-36 l

4.12.1 Event Description............

.. 4-36 l

4.12.2 Event Tree Model and Nodes

............................4-36 4.12.3 Event Tree Success Paths........................

. 4-36 l

4.12.4 Operator Actions...............

4-37 l

4.12.5 Event Tree End States

...... 4-37 4.13' Transients with MFW Event Tree Model

.4-37 4.13.1 Event Description.

.. 4-37 4.13.2 Event Tree Model and Nodes

. 4-39 4.13.3 Event Tree Success Paths........

...... 4-4 3 l

4.13.4 Operator Actions 4-43 4.13.5 Event Tree End States.

... 4-43 OO Revision: 9 W WBStingh00S6 N.m b A ril 11.1997 P

w y

oMp600\\ prs \\rev 9%pra-toc.wpf.lb

Re-

=.n I

TABLE OF CONTENTS (Cont.)

Section Title

.Pajte 4.14 Transients with Loss of RCS Flow Event Tree Model..

........... 4-44

. 4-44 4.14.1 Event Description....................................

4.14.2 Event Tree Model and Nodes

........... 4-44 4.14.3 Event Tree Success Paths....

............ 4-47 4.14.4 Operator Actions............

......... 4-4 8 4.14.5 Event Tree End States

........ 4-4 8 4.15 Transients with Loss of MFW to One SG Event Tree Model.............. 4-48 4.15.1 Event Description........

...... 4-48

...................... 4-49 4.15.2 Event Tree Model and Nodes 4.15.3 Event Tree Success Paths......

........... 4-5 2 4.15.4 Operator Actions.....

........... 4-52 4.15.5 Event Tree End States

...... 4-53 4.16 Transients with Core Power Excursion Event Tree Model...

4-53 4.16.1 Event Description.............

...... 4-53 4.16.2 Event Tree Model and Nodes

................... 4-53 4.16.3 Event Tree Success Paths

. 4-57 4.16.4 Operator Actions..................

........,4-57 4.16.5 Event Tree End States

......... 4-57 4.17 Transients with Loss of CCS/SWS Event Tree Model.................. 4-5 8 4.17.1 Event Description.........

...........................4-58 4.17.2 Event Tree Model and Nodes

........ 4-58 4.17.3 Event Tree Success Paths.

...... 4-61 4.17.4 Operator Actions........

.. 4-62 4.17.5 Event Tree End States

.. 4-62 4.18 Loss of Main Feedwater Event Tree Model

............ 4-62 4.18.1 Event Description........

............ 4-62 4.18.2 Event Tree Model and Nodes

...... 4 64 4.18.3 Event Tree Success Paths

.............................. 4-68 4.18.4 Operator Actions.....

4-68 4.18.5 Event Tree End States

................ 4-68 4.19 Loss of Condenser Event Tree Model......

...... 4-69 4-69 4.19.1 Event Description.......

4.19.2 Event Tree Model and Nodes

. 4-69

..... 4-72 4.19.3 Event Tree Success Paths.

4.19.4 Operator Actions.

......... 4-7 2 4-73 4.19.5 Event Tree End States O

W85tiligh0038

,1997 6

ohp600\\pravev.ppra-toc.wpf:1b vi

%E w i J

TABLE OF CONTENTS (Cont.)

Section Title P.!yte 4.20 Loss of Compressed Air Event Tree Model......................... 4-7 3 4.20.1 Event Description.

.... 4-73 4.20.2 Event Tree Model and Nodes

. 4-74 4.20.3 Event Tree Success Paths......................

4-77 4.20.4 Operator Actions.........

...... 4-77 4.20.5 Event Tree End States

.. 4-77 4.21 Loss of Offsite Power Event Tree Model

. 4-78 i

4.21.1 Event Description........

.... 4-7 8 4.21.2 Event Tree Model and Nodes

.. 4-78 4

4.21.3 Event Tree Success Paths

................. 4-82 1

1 4.21.4 Operator Actions..........

. 4-82 l

4.21.5 Event Tree End States

... 4-83 4.22 Main Steam Line Break Downstream of MSIVs Event Tree Model

... 4-83 4.22.1 Event Description....

. 4-83 4.22.2 Event Tree Model and Nodes

.... 4-84 4.22.3 Event Tree Success Paths...........

. 4-87 4.22.4 Operator Actions.............

............ 4-87 4.22.5 Event Tree End States

..... 4-88 s

)

4.23 Main Steam Line Break Upstream of MSIVs Event Tree Model........... 4-88 v

4.23.1 Event Description..........

......... 4-88 4.23.2 Event Tree Model and Nodes

.. 4-89 4.23.3 Event Tree Success Paths.............................. 4-92 4.23.4 Operator Actions.

. 4-92 4.23.5 Event Tree End States

....... 4-93 1

4.24 Stuck-Open Secondary-Side Safety Valve Event Tree Model 4-93 4.24.1 Event Description...

. 4-93 4.24.2 Event Tree Model and Nodes

.. 4-94 4.24.3 Event Tree Success Paths.

... 4-97 4.24.4 Operator Actions..............

.. 4-97

. 4-97 4.24.5 Event Tree End States..........................

4.25 ATWS Precursors without MFW Event ~ree Model........

4-98 4.25.1 Event Description....................

. 4-98 4.25.2 Event Trev Model and Nodes

... 4-100

. 4-104 4.25.3 Event Tree Success Paths.......

4.25.4 Operator Actions.....

.. 4-104 4.25.5 Event Tree End States 4-105 b

V Revision: 9

[ WB5ti!1gt100se E M um.

April 11,1997 m

vil c$ap60opaVev,9Wtoc wpf:lb l

l

I M

e i

TABLE OF CONTENTS (Cont.)

t Section Title fate 4.26 ATWS Precursor with SI Event Tree Model

.. 4-105 l

4.26.1 Event Description.

4-105 4.26.2 Event Tree Model and Nodes 4-106 4.26.3 Event Tree Success Paths...........

.... 4-109 4.26.4 Operator Actions,....

... 4-109 4.26.5 Event Tree End States

..... 4-110 4.27 ATWS Precursor Transients with MFW Event Tree Model..

. 4-110 4.27.1 Event Description.

4-1 10 4.27.2 Event Tree Model and Nodes

.. 4-111 4.27.3 Event Tree Success Paths..

.... 4-114 4.27.4 Operator Actions.

......... 4-114 4.27.5 Event Tree End States

.. 4-114 4A Event Tree Analysis Methodology...

4A-1 4A.1 Overview......

4A-1 4A.2 Event Tree Terminology.............

4 A-1 4A.3 Event Tree Development.

4A-2 4A.4 Success Criteria....................

4A-4 4 A.4.1 Time Frame

. 4A-4 4A.5 Consequential Events....

4 A-5 4A.6 Definition of Core Damage Categories....

4 A -5 CHAPTER 5 SUPPORT SYSTEMS 5.1 Introduction 51 5.2 Support Systems and Their Interdependencies....

5-1 5.3 Front-Line Systems and Their Dependencies..........

5-1 CHAPTER 6 SUCCESS CRITERIA ANALYSIS 6.1 Introduction 6-1 6.2 Acceptance Criteria and Critical Functions for Success Criteria..

6-1 6.3 Event Sequences and Timing, Passive / Active System Interactions.

6-3 6.3.1 General Sequence Success Criteria.......

6-3 6.3.2 Timing of Events and Key Operator Actions 6-8 6.3.3 Passive / Active System Interactions 6-17 6.3.4 Sequence Success Criteria Summary.........

. 6-19 6.4 Event Tree Top Events Success Criteria

. 6-20 6.4.1 Accumulators

.......... 6-21 6.4.2 Full RCS Depressurization...............

6-22 6.4.3 Partial RCS Depressurization...........

. 6-33 6.4.4 Location of Main Steam Line Break Upstream of MSIVs.

...... 6-40 6.4.5 Large LOCA Break Size Sufficient for IRWST Injection with Failed Containment Isolation..

... 6-41 e

Revision: 9 April 11,1997 h,,,,,.

[ Westiflgt10Use o%p6005praVev.yspra-tocwpf:Ib viij

g i

t V

TABLE OF CONTENTS (Cont.)

Section Title Page 6.4.6 Main Steam Line Isolation Following Steam Line Break......... 6-41 6.4.7 Steam Generator Isolation Following SGTR

.. 6-43 6.4.8 Containment Isolation for Large LOCA

... 6-44 6.4.9 Core Makeup Tank System............................. 6-4 5 6.4.10 Turbine Bypass and Main Condenser Available - SGTR.

. 6-50 6.4.11 Auxiliary Pressurizer Spray.....

..... 6-51 6.4.12 RCS Boration Following ATWS...........

... 6-52 6.4.13 RCS Makeup From the Chemical and Volume Control System..... 6-53 6.4.14 Inventory and Reactivity Control Following Steam Line Break..... 6-5 5 6.4.15 Diverse Actuation System Operation for ATWS

.... 6-5 6 6.4.16 Emergency Diesel Generators Operate..

......... 6-5 8 6.4.17 Main Feedwater Available.........

. 6-59 6.4.18 Gravity Injection...........

....... 6-62 6.4.19 Motor Generator Sets Tripped.....

6-67 6.4.20 RCS Pressure Relief Via Pressurizer Safety Valves....

.. 6-68 6.4.21 Patsive Residual Heat Removal System Isolation Following PRHR Tube Rupture

.. 6-69 6.4.22 Passive Residual Heat Removal System Operatica............. 6-70 l]

6.4.23 Pressurizer Safety Valves Reclose

............ 6-74 v

6.4.24 Offsite Power Recovered Within One-half Hour............... 6-75 6.4.25 Reactor Coolant Pumps Trip.

......... 6-7 6 6.4.26 Water Recirculation to the RCS..

......... 6-7 8 6.4.27 Normal 14esidual Heat Removal System..

..... 6-80 6.4.28 Reactor Trip.............

........ 6-84 6.4.29 Manually Step-In Control Rods Following ATWS

...... 6-87 6.4.30 Manual Controlled Shutdown

........ 6-8 8 6.4.31 Startup Feedwater System 6-8 8 6.4.32 Steam Generator Overfilling Protection.......

6-93 6.4.33 Steamline Break-Induced Steam Generator Tube Rupture

... 6-94 6.4.34 Reclosure of the Main Steamline Relief Valves.

. 6-95 6.5 ATWS Modeling Considerations..

.... 6-98 6.5.1 Background.

.. 6-98 6.5.2 Success Criteria for Shutdown...........

...... 6-98 6.5.3 Success Criteria to Achieve Zero UET...

..... 6-99 6.5.4 Success Criteria Credit for Reactor Coolant Pump Trip

. 6-100 6.6 References.....................................6-101 CHAPTER 7 FAULT TREE GUIDELINES 7.1 Purpose 7-1 7.2 Fault Tree Development........

7-1 7.2.1 Procedural Steps for Fault Tree Preparation...

7-1 7.2.2 Procedural Steps for Fault Tree Construction.

7-2 OV Revision: 9

[ Westilighouse fh_

April 11,1997 iX o:\\np600\\pra\\ ret pra. toc.wpf:lb 9\\

I a

=

1 I

O I

TABLE OF CONTENTS (Cont.)

Section Title Page 7.3 Primary Events to be Considered in Fault Trees..

7-3 7-4 7.3.1 Random Component Failure 7.3.2 Outage for Maintenance and Testing 7-6 7.3.3 Common Cause Failures....................

7-7 7.3.4 Human Errors.....

7-7 7.3.5 Power and Control Model.............................. 7-10 7.4 Data Base.

..................................... 7-11 7.5 Fault Tree Model: Identification Codes

........ 7-11 7.5.1 Identification Code for Fault Tree Names

............... 7-11 7.5.2 Identification Code for Support Systems...

7-12 7.5.3 Identification Code for Primary Event Names

.. 7-12 7.5.4 Identification Code for Common Cause Failures 7-12 7.5.5 Identification Code for Undeveloped Events (Modules)

..... 7-13 7.5.6 Identification Code for Operator Errors

................7-14 7.6 Fault Tree Quantification

.................7-14 7.7 References 7-15 VkL P SS IDU T

8.1 System Description

8-1 8.1.1 Support Systems..................

8-1 8.1.2 Instmmentation and Control 8-1 8.1.3 Test and Maintenance Assumptions 8-2 8.2 System Operation...

8-2 8.3 Pe:formance during Accident Conditions....

8-3 8.3.1 Non-Loss-of-Coolant Accident Transients.......

8-3 8.3.2 Loss-of-Coolant Accidents................

8-3 8.3.3 Passive Residual Heat Removal Heat Exchanger Tube Rupture 8-4 8.4 Initiating Event Review 8-4 8.4.1 Initiating Events Impacting the Passive Residual Heat Removal System...

8-4 8.4.2 Initiating Events Due to Loss of the Passive Residual Heat Removal System 8-5 8-5 8.5 System Logic Models.....

8.5.1 Assumptions and Boundary Conditions 8-5 8-6 l

8.5.2 Fault Tree Models....

8.5.3 Human Intertetions 8-7 8.5.4 Common Cause Failures............

8-7 l

8.6 References............

8-7 9

Revision: 9 April 11,1997 6

WB5tingt100S6 o:\\ap600\\pra\\rev 9%pra-toc.wpf:lb X

Q

\\

v TABLE OF CONTENTS (Cont.)

Section Title P, age CHAPTER 9 PASSIVE CORE COOLING SYSTEM - CORE MAKEUP TANK

9.1 System Description

9-1 9.1.1 S upport Systems...........................

9-1 9.1.2 Instrumentation and Control.......................

9-1 9.1.3 Test and Maintenance Assumptions 9-2 9.2 System Operation...........................

9-2 9.3 Performance during Accident Conditions............................. 9-3 9.3.1

'nadvertent Opening of a Steam Generator Relief or Safety Valve 9-3 9.3.2 Steam Line Break.............

9-3 9.3.3 Steam Generator Tube Rupture...........................

9-3 9.3.4 Reactor Coolant System Heatup Transients.................

9-4 9.3.5 Loss-of-Coolant Accidents..

9-4 9.3.6 Loss of 0ffsite Power............

9-4 9.3.7 Anticipated Transient without Trip.............

9-4 9.4 Initiating Event Review 9-5 9.4.1 Initiating Events Impacting the Core Makeup Tank Subsystem......

9-5 9.4.2 Initiating Events Due to Loss of the Core Makeup Tank Subsystem... 9-5 9.5 System Logic Models.......

9-5 (g) 9.5.1 Assumptions and Boundary Conditions....................... 9-5 v

9.5.2 Fault Tree Models.

9-7 9.5.3 Human Interactions 9-8 9.5.4

( 'nmon Cause Failures..............

9-8 9.6 References................................................

9-8 CHAPTER 10 PASSIVE CORE COOLING SYSTEM - ACCUMULATOR 10.1

System Description

...... 10-1 10.1.1 Support Systems..................................... 10- 1 10.1.2 Instrumentation and Control.

............... 10- 1 10.1.3 Test and Maintenance Assumptions

. 10-1 10.2 System Operation..............

........... 10-2 10.3 Performance during Accident Conditions..

................ 10-2 10.3.1 Steam Line Break

. 10-2 10.3.2 Loss-of-Coolant Accidents or Non-Loss-of-Coolant Accidents with Automatic Depressurization System.....

.... 10-2 10.4 Initiating Event Review

............ 10-3 10.4.1 Initiating Events Impacting the Accumulator Subsystem.......... 10-3 10.4.2 Initiating Events Due to Loss of the Accumulator Subsystem....... 10-3 r

>(

Revision: 9 T Westinghouse

@b April 11,1997 r

gj o:\\ap600\\pra\\rev 9\\pra-toc.wpf.lb 1

t._____

e TABLE OF CONTENTS (Cont.)

Section Title hge

... 10-3 10.5 System Logic Models.....

10.5.1 Assumptions and Boundary Conditions.................

. 10-3

. 10-4 10.5.2 Fault Tree Models......

10.5.3 Human Interactions

...... 10-5 10.5.4 Common Cause Failures.

. 10-5 10.6 References

. 10-5 CHAPTER 11 PASSIVE CORE COOLING SYSTEM - AUTOMATIC DEPRESSURIZATION SYSTEM 11.1

System Description

... 11-1 11.1.1 Suppost Systems.........

11-1 11.1.2 Instrumentation and Control

. 11-2 11.1.3 Test and Maintenance....

... 11-3 11.2 System Operation.....

11-3 11.3 Perfonnance during Accident Conditions...............

11-3

. 11-3 11.3.1 Loss-of-Coolant Accidents...........

11.3.2 Tran sients......................................... 11-4 11-4 11.4 Initiating Event Review 11.4.1 Initiating Events Impacting the Automatic Depressurization System.. 11-4 11.4.2 Initiating Events Due to Loss of the Automatic Depressurization System..

................... 11-4 11.5 System Logic Models......

.................... 11-4 11.5.1 Assumptions and Boundary Conditions.

.... 11-4 11.5.2 Fault Tree Models.

.......... 11-5 11.5.3 Human Interactions

................... 11-7 11.5.4 Common Cause Failures 11-8 11.6 References

. 11-8 CHAPTER 12 PASSIVE CORE COOLING SYSTEM - IN-CONTAINMENT REFUELING WATER STORAGE TANK 12.1

System Description

.......... 12-1 12.1.1 Support Systems...........

...... 12-1 12.1.2 Instrumentation and Control 12 1 l

12.1.3 Test and Maintenance Assumptions...........

. 12-2 12.2-System Operation....

... 12 2 12.3 Performance during Accident Conditions.

12-2 12.3.1 Transients...........................

12-4

............... 1 2 -4 12.3.2 Loss-of-Coolant Accidents

(

12.3.3 Severe Accident Core Damage Mitigation 12-5 l

l 1

e A

,1997 W85tl!1gh00S8 o$ap600\\pra\\rev_9%pra-toc *pf.Ib xii

+ -w b

  • O tO) w TABLE OF CONTENTS (Cont.)

i 1

Section Title

_P,. age 12.4 Initiating Event Review

..... 12-5 12.4.1 Initiating Events Impacting the IRWST Subsystem..

.... 12-5 12.4.2 Initiating Events Due to Loss of the IRWST Subsystem..

. 12-6 12.5 System Logic Models

......... 12-6 l

12.5.1 Assumptions and Boundary Conditions.

.... 12-6 12.5.2 Fault Tree Medels..

. 12-8 l

l 12.5.3 Human Interactions 12-9 12.5.4 Common Cause Failures..

. 12-10 12.6 References........

12-10 CHAPTER 13 PASSIVE CONTAINMENT COOLIM SYSTEM 13.1

System Description

............ 13-1 13.1.1 Support Systems

. 13-1

..... 13-1 13.1.2 Instrumentation and Control 13.1.3 Test and Maintenance Assumptions

.......... 13-2 13.2 System Operation....

.. 13-2 13.3 Performance during Accident Conditions.......

13-2 13.3.1 Post-Reactor Trip with Loss of All ac Power.................. 13-2 (n) 13.3.2 Automatic Depressurization System (ADS) Actuation............ 13-2 13.3.3 Post-Loss-of-Coolant Accident..

. 13-3 13.3.4 Post-Main Steam Line Break............................ 13-3 13.4 Initiating Event Review

.............. 13-3 13.4.1 Initiating Events Impacting the Passive Containment Cooling System................

........ 13-3 13.4.2 Ir.itiating Events Due to Loss of the Passive Containment Cooling System....

........... 13 -4 13.5 System Logic Model.

... 13-4 13.5.1 Assumptions and Boundary Conditions..

13-4 13.5.2 Fault Tree Model.......

..... 13-6 13.5.3 Human Interactions 13-6 13.5.4 Common Cause Failures..

...... 13-6

)

13.6 References.

....... 13-7

)

CHAPTER 14 MAIN AND STARTUP FEEDWATER SYSTEM i

14.1-

System Description

... 14-1 14.1.1 Support Systems

...... 14-1 14.1.2 Instrumentation and Control 14-1 14.1.3 Test and Maintenance Assumptions.........

14-2 l

(D U

Revision: 9 ENE 3 WBStirighouse Wh April 11,1997 xiii o:\\ap600Nprairev.9\\pra-toc.wpf; 1 b l

1 l

t L_____________.__._.._

=

0 TABLE OF CONTENTS (Cont.)

Section Title f.aye 14.2 System Operation

............... 14-2 14.3 Performance during Accident Conditions............................ 14-2 14.4 Initiating Event Review

. 14-4 14.4.1 Initiating Events Impacting the Main and Startup Feedwater and Condensate Systems................................... 14-4 14.4.2 Initiating Events Due to Loss of the Main and Startup Feedwater and Condensate Systems....................... 14-5 14.5 System Logic Models...

.... 14-5 14.5.1 Assumptions and Boundary Conditions.......

14-5

........ 14-7 14.5.2 Fault Tree Models....

.............. 14-8 14.5.3 Human Interactions 14.5.4 Common Cause Failures.....

........... 14-8 14.6 References

..... 14-8 CHAPTER 15 CHEMICAL AND VOLUME CONTROL SYSTEM 15.1

System Description

. 15-1 15.1.1 Support Systems..

.. 15-1 15.1.2 Instrumentation and Control Assumptions..

.... 15-1 15.1.3 Test and Maintenance Assumptions

.. 15-2 15.2 System Operation

..... 15-3 15.3 Performance during Accident Conditions..

.... 15-3 l

15.4 Initiating Event Review

........ 15-5 15.4.1 Initiating Events Impacting the Chemical and Volume Control System.15-5 15.4.2 Initiating Events Due to Loss of the Chemical and Volume Contro1 System.............

.. 15-5 i

15.5 System Logic Models.........

...... 15-5 15.5.1 Assumptions and Boundary Conditions....

..... 15-5 l

... 15-7 i

15.5.2 Fault Tree Models.............................

15.5.3 Human Interactions

... 15-8 1

15.5.4 Common Cause Failures..

......... 15-8 l

15.6 References............

.... 15-8 i

CHAPTER 16 CONTAINMENT HYDROGEN CONTROL SYSTEM l

16.1

System Description

.. 16-1 l

16.1.1 Support Systems...

16-1 16.1.2 Instrumentation and Control

...... 16-1 l

16.1.3 Test and Maintenance.

..... 16-2 l

1 i

1

~

Oll l

Revision: 9 l

April 11,1997

'6

[ WBStingh00SO o: sap 60%rasrev 9spra-ioc.wpf:tb xiv

. _ _ _ _ __-__- -___ - __ - ____ __ - _ _ ____- --_- ___ - __ _ ____________ _________ _________ - ____ O

t.:--r o

\\

i v

TABLE OF CONTENTS (Cont.)

Section Title Page 16.2 System Operation..................

............ 16-2 16.3 Performance during Accident Conditions.

.... 16-2 16.4 Initiating Event Review

..... 16-2 16.5 System Logic Model.................

...... 16-2 16.5.1 Assumptions and Boundary Conditions.

... 16-3 16.5.2 Fault Tree Model...

..................... 1 6-3 16.5.3 Human Interactions

............ 16-4 16.6.4 Common Cause Failures.............

.. 16-4 16.6 References

.........................................16-4 CHAPTER 17 NORMAL RESIDUAL HEAT REMOVAL SYSTEM 17.1

System Description

.. 17-1 17.1.1 Support Systems.....

. 17-1 17.1.2 Instrumentation and Control

.... 17-1 17.1.3 Test and Maintenance Assumptions.....

.... 17-1 17.2 System Operation................

.. 17-2 17.3 Performance during Accident Conditions.

.... 17-2 17.4 Initiating Event Review

. 17-3 c

3

(

17.4.1 Initiating Events Impacting the Normal Residual Heat

{

b Removal System.....

.............. 17-3 17.4.2 Initiating Events Due to Loss of the Noanal Residual Heat Removal System......

. 17-4 17.5 System Logic Models....

... 17-4 17.5.1 Assumptions and Boundary Conditions

. 17-4 17.5.2 Fault Tree Models.........

.. 17-6 17.5.3 Human Interactions

............... 1 7-7 17.5.4 Common Cause Failures.......

17-7 17.6 References

. 17-7 CHAPTER 18 COMPONENT COOLING WATER SYSTEM 18.1

System Description

.........................18-1 18.1.1 Support Systems

..... 18-1 18.1.2 Instrumentation and Control

.... I 8-1 18.1.3 Test and Maintenance Assumptions

... 18-1 18.2 System Operation..................

...... 18-2 18.3 Performance during Accident Conditions...

.......... 18-2 18.4 Initiating Event Review

. 18-2 18.4.1 Initiating Events Impacting the Component Cooling Water System... 18-3 18.4.2 Initiating Events Due to Loss of the Component Cooling Water System......

... 18-3

/m N.)i Revision: 9 3 W85tingh00S8 hh_

April 11,1997 XV o:\\ap600\\prairev 9%pra-toc.wpf.lb

e TABLE OF CONTENTS (Cont.)

Section Title f, age 18.5 System Logic Models...................

............ 18-3 18.5.1 Assumptions and Boundary Conditions.....

..... 18-3 18.5.2 Fault Tree Models........

............... 1 8-4 18.5.3 Human Interactions

. 18-5 18.5.4 Common Cause Failures....

..... 18-5 18.6 References 18-5 CHAPTER 19 SERVICE WATER SYSTEM 19.1

System Description

19-1 19.1.1 Support Systems...

..... 19-1 19.1.2 Instrumentation and Control 19-1 19.1.3 Test and Maintenance Assumptions

.. 19-1 19.2 System Operation.......

. 19-2 19-2 19.3 Performance during Accident Conditions.................

19.4 Initiating Event Review

. 19-2 19.4.1 Initiating Events Impacting the Service Water System.......

... 19-3 19.4.2 Initiating Events Due to Loss of the Service Water System......

19-3 19-3 19.5 System Logic Models....

19.5.1 Assumptions and Boundary Conditions...................... 19-3 19.5.2 Fault Tree Models.......

19-5

......... 19-5 19.5.3 Human Interactions 19.5.4 Common Cause Failures

..... 19-5 19.6 References................

. 19-5 CHAPTER 20 CENTRAL CHILLED WATER SYSTEM

............ 20-1 20.1

System Description

.. 20-1 20.1.1 Support Systems.

20.1.2 Instrumentation and Control

........... 20- 1 20.1.3 Test and Maintenance Assumptions....................... 20-1 20.2 System Operation........

........ 20-2 20.3 Performance during Accident Conditions................

.. 20-2 20.4 Initiating Event Review 20-2 20.4.1 Initiring Evem Im: acting the Central Chilled Water System...... 20-3 20.4.2 Initinting Events Due to Loss of the Central CC.ed Water Syst m..

.... 20-3 20.5 System Logic Model

.............. 20-3

..... 20-3 20.5.1 Assur iptions and Boundary Conditions.....

20.5.2 Fault Tree Mcdel.

..................... 2 0-4 20.5.3 Humn Interactions

. 20-4 20.5.4 Common Cause Failures...

20-4 p

,1997 WB5tiligt100SB o$ap6005pra\\rev_9% pre-tocMlb xvi

= = _

R_ _

\\v\\

/

/

TABLE OF CONTENTS (Cont.)

Section Title Eage 20.6 References

...... 20-5 CHAPTER 21 AC POWER SYSTEM 21.1

System Description

21-1 21.1.1 Support Systems

....... 21-2 21.1.2 Instrumentation and Control

....... 21-2 21.1.3 Test and Maintenance Assumptions.........

. 21-2 21.2 System Operation

...... 21-2 21.3 Performance during Accident Conditions..

... 21-3 21.3.1 Automatic Load Shedding

.. 21-3 21.3.2 Manual Transfer

. 21-3 21.3.3 Electric Circuit Protection

. 21-3 21.4 Initiating Event Review

.. 21-4 21.4.1 Loss of the Main Generator.

21-4 21.4.2 Loss of Offsite Power.

... 21-4 21.4.3 Loss of 4160-vae and 480-vac Busses..

........ 21-5 21.5 System Logic Models...

. 21-5 21.5.1 Assumptions and Boundary Conditions...

........ 21 5

(

21.5.2 Fault Tree Models...

........ 21-8

\\

21.5.3 Human Interactions 21-8 21.5.4 Common Cause Failures...

..................... 21-9 21.6 References 21-9 CHAPTER 22 CLASS 1E DC AND UNINTERRUPTIBLE POWER SUPPLY SYSTEM 22.1

System Description

22-1 22.1.1 Support Systems

. 22-1 22.1.2 Instrumentation and Control 22-1 22.1.3 Test and Maintenance Assumptions........

. 22-2 22.2 System Operation..............

.. 22-2 22.3 Performance during Accident Conditions.

22-2 22.4 Initiating Event Review 22-3 22.4.1 Initiating Events Impacting the Class IE de and UPS System 22-3 22.4.2 Initiating Events Due to Loss of the Class 1E de and UPS System.

22-3 22.5 System Logic Models......................

. 22-3 22.5.1 Assumptions and Boundary Conditions.......

. 22-3 22.5.2 Fault Tree Models

. 22-4 22.5.3 Human 1 interactions..

... 22-5 22.5.4 Common Cause Failures..

. 22-5 22.6 References...

...... 22-5 i

l fmC

~

Revision: 9 ENE 3 Westinghouse wh.

April 11,1997 xvij o:\\ap600Nprairev.95ra-toc.wptib

g l_

O TABLE OF CONTENTS (Cont.)

Section Title Page CHAPTER 23 NON-CLASS lE DC AND UPS SYSTEM 23.1

System Description

... 23-1 23.1.1 Support Systems..................

.......... 23-1 23.1.2 Instrumentation and Control

...... 23-1 23.1.3 Test and Maintenance Assumptions....

..... 23-1 23.2 System Operation..........

23-2 23.3 Performance during Accident Conditions........................... 23-2 23.4 Initiating Event Review 23-2 23.4.1 Initiating Events Impacting the Non-Class IE de and UPS System

. 23-3 23.4.2 Initiating Events Due to Loss of the Non-Class IE de and UPS System.

...... 23-3 23.5 System Logic Models

. 23-3 23.5.1 Assumptions and Boundary Conditions.................... 23-3 23.5.2 Fault Tree Models.

.. 23-5 23.5.3 Human Interactions.

... 23-5 23.5.4 Common Cause Failures.........

.............. 23-5 23.6 References...

............... 23-5 CHAPTER 24 CONTAINMENT ISOLATION

...... 24-1 24.1 System Description..............

24.1.1 Support Systems.............

.. 24-1 24.1.2 Instrumentation and Control

.... 24-1 24.1.3 Test and Maintenance Assumptions.

......................24-1 24.2 System Operation...

.. 24-2 24.3 Performance during Accident Conditions...

.... 24-2 24.4 Initiating Even; Review

......... 24-2 24.4.1 Initiating Events Impacting Containment Isolation

..... 24-2 24.4.2 Initiating Events Due to Loss of Containment Isolation System..... 24-2

.... 24-3 24.5 System Logie Models.

24.5.1 Assumptions and Boundary Conditions......

. 24-4 24.5.2 Fault Tree Models...

...... 24-5 24.5.3 Human Interactions..

................. 24-6 24.5.4 Common Cause Failures.

.... 24-6

. 24-6 24.6 References O

Revision: 9 ENEL 3 Westiligh00Se April 11,1997 kva h o:\\ap600\\pra\\rev.9pra-tocwpf.lb xviii

ilN G

TABLE OF CONTENTS (Cont.)

Section Title Eage CHAPTER 25 COMPRESSED AND INSTRUMENT AIR SYSTEM 25.1

System Description

25-1 25.1.1 Support Systems 25-2 25.1.2 Instrumentation and Control 25-2 25.1.3 Test and Maintenance Assumptions...............

.. 25-3 25.2 System Operation..............

. 25-3 25.3 Performance during Accident Conditions.

25-3 25.4 Initiating Event Review

. 25-4 25.4.1 Initiating Events Impacting the Instmment Air Subsystem 25-4 25.4.2 Initiating Events Due to Loss of the Instrument Air Subsystem

.... 25-4 25.5 System Logic Models........

.... 25-5 25.5.1 Assumptions and Boundary Conditions.....

.. 25-5 25.5.2 Fault Tree Models.

... 25-6 25.5.3 liuman Interactions

. 25-7 25.5.4 Common Cause Failures 25-8 25.6 References

.... 25-8 O

t d

CHAPTER 26 PROTECTION AND SAFETY MONITORING SYSTEM 26.1 System Analysis Description...

. 26-1 1

26.1.1 Analysis of Support Systems....

.... 26-4 26.1.2 Analysis of Instrumentation......

. 26-6 26.1.3 Test and Maintenance Assumptions......

26-6 1

26.2 Performance during Accident Conditions........

. 26-7 26.3 Initiating Event Review

... 26-8 26.3.1 Initiating Event Impacting PMS...

..... 26-8 1

26.3.2 Initiating Event due to Loss of PMS........

.... 26-8 26.4 System Logic Model Development.

.... 26-9 l

26.4.1 Assumptions and Boundary Conditions....

... 26-9 26.4.2 Fault Tree Models....

.... 26-13 l

26.4.3 Description of 1&C Subtree Development

.... 26-13 26.4.4 Human Interactions

.... 26-21 1

26.5 Discussion of Methodology..

. 26-21 l

i l

l 26.5.1 Fault Tree Analysis

... 26-21 l

26.5.2 Unavailability........

. 26-22 26.5.3 Spurious Failure Rate Per Year 26-22 26.5.4 Common Cause Failures..

. 26-24 i

26.5.5 Data Manipulation....

.. 26-24 l

l 26.6-References

.... 26-26 l

O N.]

l Revision: 10 ENEL l

[ WSStiflgh0llS8

ggw-June 30,1997 xix o:\\ap60opraWv.t0%pra-toc.wpf Ib

-I 0

TABLE OF CONTENTS (Cont.)

Section Ili!!

ERES CHAPIER 27 DIVERSE ACTUATION SYS'IEM 27.1 System Analysis Description.................................

. 27-1 27.1.1 Support Systems Analysis...........

27-1 27.1.2 Analysis of Instrumentation and Control.....

. 27-2 27.1.3 Test and Maintenance......

. 27-2 27.2 Analysis of System Operation..........

. 27-2

... 27-6 27.3 Performance during Accident Conditions 27.4 Initiating.svent Review

.. 27-7 27.4.1 Initiating Events impacting the Diverse Actuation System......... 27-7 27.4.2 Initiating Events Due to the Loss of the Diverse Actuation System.. 27-7 27.5 System Logic Model..................

. 27-7 27.5.1 Assumptions and Boundary Conditions.............

. 27-7 27.5.2 Fault Tree Model......

. 27-8 27.5.3 Human Interactions

... 27-8 27.5.4 Common Cause Failums............................

. 27-8 27.6 References..................

. 27 8 CHAPTER 28 PLANT CONTROL SYSTEM 28.1 System Analysis Description.......................

. 28 1 28.1.1 Analysis of Support Systems.......

. 28-3 28.1.2 Analysis of Instrumentation.......

... 28-4 28.1.3 Test and Maintenance Assumptions..

.................. 28-5 28.2 Performance during Accident Conditions............................ 28-6 28.3 Initiating Event Review 28-6 28.3.1 Initiaing Events Impacting the Plant Control System.....

.... 28-6 28.3.2 Initiating Event due to Loss of Plant Control System........

. 28-7 28.4 System Logic Model Development............................... 28-7 28.4.1 Assumptions and Boundary Conditions.................

... 28-7 28.4.2 Fault Tree Models................

. 28-10 28.4.3 Description of I&C Subtree Development........

28-11 28.4.4 Human Interactions

. 28-18 28.5 Discussion of Methodology....................

. 28-19 28.5.1 Fault Tree Analysis..

. 28-19 28.5.2 Unavailability 28-19

. 28-19 28.5.3 Common Cause Failures.....

28.5.4 Data Manipulation......

28 20

. 28-21 28.6 References O

Revision: 9 April 11,1997 W85tingh00S8 o$ap6oopr \\rn 9spra-soc wpf:Ib n

l

/'~~N' C/

l TABLE OF CONTENTS (Cont.)

Section Title Page CHAPTER 29 COMMON CAUSE ANALYSIS 29.1 Introduction

... 29-1 29.2 Dependent Failures..

. 29-1 29.3 Common Cause Analysis...................

........... 29-4 29.3.1 A ssumptions.....................

29-4 29.3.2 Analysis of Potential Common Cause Failures within the System.... 29-5 29.3.3 Analysis of Potential Common Cause Failures among Several Systems. 29-6 29.4 Calculations for Component Groups.

.............................29-6 29.4.1 Class 1E DC Batteries 29-6 29.4.2 Non-Class IE DC Batteries............................. 29-7 29.4.3 Air-Operated Valves on the Core Makeup Tanks.............. 29-8 29.4.4 Automatic Depressurization System Motor-Operated Valves....... 29-9 29.4.5 Automatic Depressurization System Squib Valves

. 29-11 29.4.6 Common Cause Failure for IRWST Valves....

..... 29-11 29.5 Results......................

. 29-15 29.6 References

.. 29-15 CHAPTER 30 HbW RELIABILITY ANALYSIS p

i 30.1 Introduction

. 30-1 t

'/

30.2 Summary of Results.....

... 30-1 30.3 Methodology.................

............ 3 0-2 30.4 Major Assumptions

......... 3 0-4 30.5 Types of Human Interactions........

. 30-10 30.5.1 Quantification Model....

............. 30- 1 1 30.6 Quantification.......................

.. 30-12 30.6.1 ZON-MAN 01 (Start the Onsite Standby Diesel Generator) 30-12 i

30.6.2 LPM-MAN 01 (Recognize the Need for Reactor Coolant System Depressurization)

. 30-13 30.6.3 LPM-MAN 02 (Recognize the Need for Reactor Coolant System Depressurization..............

. 30-16 30.6.4 LPM-MANOS (Recognize the Need for Reactor Coolant System Depressurization...

. 30-16 30.6.5 LPM-REC 01 (Recognize the Need for Reactor Coolant System Depressurization.....

. 30-17 30.6.6 ADN-MAN 01 (Actuate the Automatic Depressurization System)... 30-18 30.6.7 ADN-REC 01 (Actuate the Automatic Depressurization System).... 30-19 30.6.8 CCB-MAN 01 (Start the Standby Component Cooling

. 30-20 Water Pump)......

30.6.9 CCN-MAN 02 (Inadvertent Misalignment of Heat Exchanger)

.... 30-21 i

I I

\\

G Revision: 9

[ W 6S Ullgt10LIS8 April 11,1997 xxi c:\\a;f00prairevfpra.coc.wpf.Ib

M e

TABLE OF CONTENTS (Cont.)

Section Title Page 30.6.10 CIB-MAN 00 (Diagnose Steam Generator Tube Rupture)........ 30-21 30.6.11 DUMP-MAN 01 (Operate Steam Dump Valves) 30-22 30.6.12 CIC-MAN 01 (Isolate Containment)

....... 30-23 30.6.13 ADS-MANTEST (Recognize the Need and Reclose ADS Stage MOV)...........

30-24 30.6.14 CAN-MANOS (Locally Close Manual Valve CAS-V204 to Isolate Containment).

. 30-26 30.6.15 CIT-MANOS (Isolate Containment)

. 30-27 30.6.16 CNM-MAN 01 (Actuate Core Makeup Tank)................. 30-27 30.6.17 CNM-REC 01 (Actuate the Core Makeup Tanks)....

.... 30-29 30.6.18 CVN-MAN 00 (Align Chemical and Volume Control System)..... 30-29 30.6.19 CVN-MAN 02 (Align Chemical and Volume Control System)..... 30-30 30.6.20 CVN-MANO3 (Start Chemical and Volume Control System Pump B).....

......... 30-31 30.6.21 ADF-MAN 01 (Depressurize the RCS to Refill the Pressurizer)..... 30-32 30.6.22 SGHL-MAN 01 (Isolate Feedwater to Failed Steam Generator)..... 30-32 30.6.23 CAN-MAN 01 (Start Standby Compressor)

..... 30-33 30.6.24 REN-MAN 02 (Initiate Recirculation)

...... 30-34 30.6.25 REN-MANO3 (Initiate Recirculation)

... 30-35 30.6.26 IWN-MAN 00 (Operate In-Containment Refueling Water Storage Tank Motor-Operated Valves)

. 30-36 30.6.27 RHN-MAN 01 (Align Normal Residual Heat Removal System).... 30-37 30.6.28 RHN-MANDIV (Align Normal Residual Heat Removal System)... 30-39 30.6.29 RHN-MAN 02/RHN-MANO3 (Align Normal Residual Heat Removal System)

.... 30-40 30.6.30 PCN-MAN 01 (Actuate Passive Containment Cooling System)

.... 30-41 30.6.31 HPM-MAN 01 (Diagnose Need for High Pressure Heat Removal)

...... 30-42 30.6.32 PRN-MAN 01 (Align Passive Residual Heat Removal System).

.. 30-43 30.6.33 PRN-MAN 02 (Align Passive Residual Heat Removal System)

. 30-44 30.6.34 PRN-MANO3 (Align Passive Residual Heat Removal System).... 30-45 30.6T PRI-MAN 01 (Isolate Failed Passive Residual Heat Removal Heat Exchanger)

...... 30-46 30.6.36 REN-MAN 04 (Initiate Recirculation)

. 30-47 30.6.37 RCN-MAN 01 (Trip Reactor Coolant Pumps)....

. 30-48 30.6.38 ATW-MAN 01 (Manually Insert Control Rods)

..... 30-49 30.6.39 ATW-MANO3 (Manually Trip the Reactor through Protection and Safety Monitoring System in One Minute)

. 30-50 30.6.40 ATW-MAN 04 (Manually Trip the Reactor through Diverse Actuation System in One Minute)

....... 30-51 O

Revision: 9 EN.~ELa W Westingh011S8 April 11,1997 onap600\\pra\\rev.,95pra-toc.wpf:1b Xxii

1 na sEs j

t i

e a

TABLE OF CONTENTS (Cont.)

Section Title PaZe I

30.6.41 ATW-MANOS (Manually Trip the Reactor through Protection k

and Safety Monitoring System in Seven Minutes)............. 30-52 1

30.6.42 ATW-MAN 06 (Manually Trip the Reactor through Diverse Actuation System in Seven Minutes) 30-53 30.6.43 RTN-MAN 01 (Perform Controlled Reactor Shutdown)......... 30-53 l

30.6.44 FWN-MAN 02 (Start the Startup Feedwater Pumps)

....... 30-54 l

30.6.45 FWN-MAN 03 (Start the Startup Feedwater Pumps)............ 30-55 30.6.46 REG-MAN 00 (Regulate Startup Feedwater)..

30-56 l

30.6.47 CIA-MAN 01 (Isolate Failed Steam Generator)...

...... 30-57 30.6.48 CIB-MAN 01 (Close Main Steam Isolation Valve)

.... 30-58 30.6.49 SGA-MAN 01 (Inadvertent Opening of Steam Generator Power-Operated Relief Valve).

30-59 30.6.50 SWN-MAN 0lN (Open Air-Operated Valve on Motor Strainer Line)

...... 30-60 30.6.51 SWB-MAN 02 (Start Standby Service Water Pump)........... 30-61 30.6.52 SWB-MAN 02N (Start Standby Service Water Pump) 30-62 30.6.53 TCB-MAN 01 (Start Standby Turbine Closed Cooling Water Pump).

... 30-63 30.6.54 TCB-MAN 02 (Locally Align Standby Turbine Closed Cooling Water Heat Exchanger)....

.... 30-64

{

30.6.55 VLN-MAN 01 (Actuate Hydrogen Control System).

. 30-65 l

30.6.56 VWN-MAN 01 (Align Standby Chiller).........

. 30-66 L

30.6.57 ATW-MAN 11 (Recognize the Need for Manual Boration)........ 30-67 30.6.58 REC-MANDAS (Diagnosis of an Event Through DAS Signals or Perform an Activity by Operating DAS Controls)......

.... 30-68

{

30.6.59 RHN-MAN 04 (Isolate the RNS during Shutdown Conditions).... 30-68 j

30.6.60 RHN-MANOS (Initiate Gravity Injection from IRWST via l

RNS Suction Line)....

30-70

{

30.6.61 RHN-MAN 06 (Recognize the Need and 'Ihrottle RNS Valve V011)........

30-71 30.6.62 RCS-MANODS1 (Close AOVs CVS-V045 or -V047, Given l

Failure of HL Level Instruments)

. 30-72 30.6.63 RCS-MANODS2 (Close AOVs CVS-V045 or -V047, Given Failure of Valves to Close Automatically).

... 30-73 l

30.6.64 SWN-MANO3 (Recognize the Need and Locally Refill i

Service Water Basin)

. 30-74 I

30.7 Conditional Probability Evaluation...

...... 30-75 l

30.7.1 Application.........

. 30-76 30.7.2 Process Used to Determine Dependencies....

30-76 l

30.7.3 Calculation of Dependent Human Error Probabilities 30-77 30.8 References........

30-78 gV ENEL Revision: 9 i

(

T Westinghouse

. n%,

April 11,1997 l

a xxiii oV mpr*n8 W N*P:lb f

l

e TABLE OF CONTENTS (Cont.)

Section Title Page CHAPTER 31 OTHER EVENT TREE NODE PROBABILITIES 31.1 Introduction 31-1 31.2 Identification of Cases Requiring Calculations..

....... 31-1 31.2.1 BL - Main Steam Line Break Occurs Inside Containment.

31-1 31.2.2 CNB -- Containment Isolation Fails Due to Reactor Coolant System Vessel Rupture....

. 31-1 31.2.3 MGSET - Control Rods Motor-Generator Set Trip

.. 31-1 31.2.4 NSGTR -- Consequential Steam Generator Tube Rupture........ 31-2 31.2.5 PO - Pre-existing Containment Opening Allowing Bypass........ 31-2 31.2.6 PRES - Reactor Coolant System Pressure Relief via Pressurizer Safety Valves.......

31-2 31.2.7 PRSOV -- Pressurizer Safety Valves Reclose

. 31-2 31.2.8 R05 -- Offsite Power Recovered within One-half Hour

. 31-2 31.2.9 SLSOV -- Main Steam Line Relief Valves Reclose

. 31-2 31.3 Case-Specific Calculations..

. 31 3 31.3.1 BL - Main Steam Line Break Occurs Inside Containment.......

. 31-3 31.3.2 CNB -- Containment Isolation Fails Due to RCS Vessel Rupture

. 31-3 31.3.3 MGSET - Control Rods Motor-Generator Set Trip......

. 31-4 31.3.4 PO -- Pre-existing Containment Opening Allowing Bypass.

. 31-4 31.3.5 PRES - Reactor Coolant System Pressure Relief sia Pressurizer Safety Valves............

.. 31-4 31.3.6 PRSOV -- Pressurizer Safety Valves Reclose

.... 31-8 31.3.7 R05 -- Offsite Power Recovered within One-Half Hour....

31-8 31.3.8 SGTRI -- Single Consequential Steam Generator Tube Runture.... 31-9 31.3.9 SGTR - Multiple Consequential Steam Generator Tube Rupture... 31-10 31.3.10 SLSOV -- Main Steam Line Relief and Safety Valves Reclose..

. 31-11 31.3.11 SLSOV1 - Main Steam Line Relief and Safety Valves Reclose 31-12 31.3.12 SLSOV2 - Main Steam Line Safety Valves Reclose 31-12 31.3.13 SLSOV3 - Main Steamline Relief and Safety Valves Reclose, SGTR.

. 31-13 31.3.14 BSIZE -- Large LOCA Break Size Sufficient for Gravity Injection without ADS if Containment Isolation Fails

.. 31-13 31.4 References

.. 31-14 CHAPTER 32 DATA ANALYSIS AND MASTER DATA BANK 32.1 Data Analysis.........

.32-1 32.1.1 Random Component Failure Data..

32-1 32.1.2 Test and Maintenance Unavailability.

32-2 32.1.3 Common Cause Failure Data.......

32-2 32.1.4 Human Reliability Data

.. 32-2 32.1.5 Initiating Event Frequency Data

........ 32-2 e

Revision: 9 E. NELa W WBStingh00S8 April 11,1997 c:\\ap6(Xhprairev.,9%pra-toc.wpf:Ib XXIV

E_j

=

m

{d' TABLE OF CONTENTS (Cont.)

Section Title hge 32.2 Master Data Bank........

... 32-3 32.2.1 Initiating Event Frequencies

... 32-3 32.2.2 Random Component Failures.

.. 32-3 32.2.3 Common Cause Failure Probabilities

.32-3 32.2.4 Human Error Probabilities...................

........ 3 2-3 32.2.5 System-Specific Calculations..

.32-3 32.2.6 Other Event Tree Node Probabilides..

. 32-4 32.2.7 Master Data Bank...

................ 3 2 -4 32.3 References..

. 32-4 CHAPTER 33 FAULT TREE AND CORE DAMAGE QUANTIFICATION 33.1 Introduction 33-1 33.2 Fault Tree Model Quantification

...... 3 3-1 33.3 Event Tree Model Calculation...

. 33-2 33.3.1 Core Damage Quantification Method........

.... 33-2 33.3.2 Input Files and Data 33-4 33.3.3 Definition of Consequential Event Categories 33-4 33.3.4 Plant Core Damage Frequency

. 33-6 g

i]

\\

CHAPTER 34 SEVERE ACCIDENT PHENOMENA TREATMENT 34.1 Introduction 34-1 34.2 Treatment of Physical Processes..

. 34-1 34.2.1 In-Vessel Retention of Molten Core Debris.................. 34-2 34.2.2 Fuel-Coolant Interaction (Steam Explosions)

. 34-2 34.2.3 Hydrogen Combustion and Detonation 34-3 34.2.4 High-Pressure Melt Ejection...................

34-4 34.2.5 Core Debris Coolability.....

... 34-5 34.2.6 Elevated Temperatures (Equipment Survivability)...

.... 34-5 34.2.7 Summary..............

..... 34-8 34.3 Analysis Method........

. 34-9 34.4 Severe Accident Analyses.......................

. 34-10 34.4.1 Accident Class 3BE - Intact Containment

. 34 10 34.4.2 Accident Class 3BE - Failed Containment.......

34-12 34.4.3 Accident Class 3BL - Intact Containment 34-15 34.4.4 Accident Class 3BL - Failed Containment..

.......... 34-17 34.4.5 Accident Class 3BR - Intact Containment 34-18 34.4.6 Accident Class 3BR - Failed Containment....

34-19 34.4.7 Accident Class 3C - Intact Containment 34-19 34.4.8 Accident Class 3C - Failed Containment.

. 34-20 34.4.9 Accident Class 3D - Intact Containment

. 34-20 34.4.10 Accident Class 3D - Failed Containment........

.. 34-21

/^T t

V Revisiom 9 ENEL T Westinghouse w-April 11,1997 XXv o:\\ap60opraVev.,9\\pra-toc.wpf.l b L___.-.

__.i

e!

TABLE OF CONTENTS (Cont.)

Section Title P_.jyte 34.4.11 Accident Class 6E - Bypass Containment

.. 34-22 34.4.12 Accident Class 6L - Bypass Containment

........... 34 24 34.4.13 Accident Class I AP.......................

.. 34-25 34.4.14 Accident Class I A.................................

34-26 34.5 Summary 34-28

.................................. 34-2 8 34.6 Insights and Conclusions.

34.7 References

.. 34-28 CHAPTER 35 CONTAINMENT EVENT TREE ANALYSIS 35-1 35.1 Introduction 35.2 Containment Event Tree - General Discussion 35-1 35.3 Event Tree Construction...........

. 35-2 35.4 Level 1/ Level 2 Interface........

.... 35-3 35.5 Containment Event Tree Top Events 35-3 35.5.1 Severe Accident Phenomena Considerations........

.... 35-4 35.5.2 Operator Action and Systems Top-Event Considerations......... 35-5

..................358 35.6 Release Category Definitions.........

35.6.1 Release Category BP - Containment Bypass......

35-9 35.6.2 Release Category CI - Containment Isolation Failure 35-9 35.6.3 Release Category CFE - Early Containment Failure........... 35-10 35.6.4 Release Category CFI - Intermediate Containment Failure....... 35-10 35.6.5 Release Category CFL - Late Containment Failure..

. 35-10 35.6.6 Release Category IC - Intact Containment..............

35-10 35.7 Top-Event Nodal Questions and Success Criteria..........

35-11 35.7.1 Top Event DP - RCS Depressurization After Core Uncovery.....

35-11 35.7.2 Top Event IS - Containment Isolation..................... 35-13 35.7.3 Top Event IR - Reactor Cavity Flooding

. 35-14

... 35-15 35.7.4 Top Event RFL - Reflooding of a Degrade /. Core 35.7.5 Top Event VF - Debris Relocation to tb Reactor Cavity 35-15 35.7.6 Top Event PC - Passive Containmer.1 Cooling.

35-16 35.7.7 Top Event IG - Hydrogen Control System.

.............. 3 5-17 35.7.8 Top Event DF - Diffusion Flame..

35-17 35.7.9 Top Event DTE - Early Hydrogen Detonation 35-18 35.7.10 Top Event DFG - Hydrogen Deflagration

...... 35-19 35.7.11 Top Event DTI - Intermediate Hydrogen Detonation.....

. 35-19 35.8 Summary...

.... 35-20 35.9 References

. 35-20 0

Revision: 9 ENEl.

April 11,1997 cm,,,,

Westinghouse oAar6o&pra\\rev 9pra-toc.wpf:lb XXVi

A

=

W_.

/.

/

\\x TABLE OF CONTENTS (Cont.)

Section Title Page CHAFTER 36 REACTOR COOLANT SYSTEM DEPRESSURIZATION 36.1 Introduction 36-1 36.2 Definition of High Pressure.

... 36 1 36.3 Node DP

... 36-2 36.4 Success Criterion.

. 36-2 36.4.1 Accident Classes 3BE. 3BL,3BR. 3C..

36-3 36.4.2 Accident Classes 1D and 3D..

.... 36-3 36.4.3 Accident Classes 1 A and 1 AP 36-3 36.5 Anticipated Transient Without Scram - Accident Class 3A

.... 3 6-5 36.6 Steam Generator Tube Rupture - Accident Class 6.

36-5 36.7 References

.... 36-6 CHAPTER 37 CONTAINMENT ISOLATION 37.1 Introduction

. 37-1 37.2 Definition of Containment Isolation......

....... 37-1 37.3 Success Cntena

. 37-1

/]

37.3.1 Accident Classes IA and LAP

.. 37-2 V

37.3.2 Accident Class 3A.........

. 37-2 37.3.3 Accident Class 3BR..........

........ 37-2 37.3.4 Accident Class 3BE

........... 37-2 37.3.5 Accident Class 3BL

... 37-2 37.3.6 Accident Class 3C.

. 37-3 1

37.3.7 Accident Class 3D/lD

... 37-3 37.3.8 Accident Class 6............

.. 37-3 37.4 Summary

........ 3 7-4 37.5 References

......... 37-4 j

t CHAPTER 38 REACTOR VESSEL REFLOODING 38.1 Introduction

.........................38-1 38.2 Definition of Reflooding Success.....

.... 38-1 38.3 Success Criteria................

..... 3 8-1 38-1 38.3.1 Accident Classes l A and I AP...

38.3.2 Accident Class 3BR..................

............ 3 8-2 38.3.3 Accident Class 3BE...........

............. 3 8-2 38.3.4 Accident Class 3BL.....

. 38-3 1

38.3.5 Accident Class 3D/lD

.... 3 8-4 38.3.6 Accident Class 6..............

.. 38-4 1

38.3.7 Accident Class 3C.....

. 38-4 1

38.3.8 Accident Class 3A..

. 38-4 e) 1 38.4 Summary....

. 38-4 (v

l Revision: 10 l

[ Westingh0llS8 6

June 30,1997 XXVij o Tap 600prairev.,10\\pra-toc. wpf: I b j

L_.____._________._

1 1

IRE e

TABLE OF CONTENTS (Cont.)

.SEli.931 T.Ltit Eau CHAPTER 39 IN-VESSEL RETENTION OF MOLTEN CORE DEBRIS 39.1 Introduction

. 39 1 39.2 Summary of In-Vessel Retention ROAAM.......................... 39-2 39.3 Reactor Coolant System Depressurization.

39-4 39.4 Reactor Cavity Flooding (Node IR)....

.. 39-4 39.4.1 Success Criteria.......

. 39-4 39.4.2 Cavity Flooding Scenario Dependencies..................... 39-6 39.5 Reactor Vessel Insulation Design Concept.......................... 39-7

........................ 39-8 39.5.1 Description of Insulation.....

39.5.2 Determination of Forces on Insulation and Support System....... 39-9 39.5.3 Conclusion.........

.... 39-12 39.6 Reactor Vessel Extemal Surface Treatment.....

... 39-13 39.7 Reactor Vessel Failure (Node VF)

.. 39-13 39.7.1 Node VF Success Criteria.

.... 39-13 39.8 S u mm ary..................

.... 39-14

.................... 3 9-14 39.9 References CHAPTER 40 PASSIVE CONTAINMEffr COOLING CHAPTER 41 HYDROGEN MIXING AND COMBUSTION ANALYSIS 41.1 Discussion of the Issue.............

............ 41 - 1 41.2 Controlling Phenomena............

.. 41-2 41.3 Major Assumptions and Phenomenological Uncertainties....

. 41-3 41.3.1 Hydrogen Generation..........

...... 41-3 41.3.2 Containn.ent Pressure........

.. 41-3

........ 41-4 41.3.3 Flammability Limits............

41.3.4 Detonation Limits and Loads.

........ 41-4 41.3.5 Igniter System.........

............ 41-5 41.3.6 Other Ignition Sources.......

.. 41-6 41.3.7 Severe Accident Management Actions

........ 41-6 41.4 MAAP4 Hydrogen Cases......

.. 41-6 41.4.1 Modeling Assumptions and Limitations.

. 41-6 41.4.2 MAAP4 Hydrogen Generation and Mixing Analyses

........ 41-9 41.4.3 MAAP4 Hydrogen Burning Analyses...................... 41-18 41.5 Early Hydrogen Combustion.

. 41-20 41.5.1 Hydrogen Generation Rates.............

. 41-20 41.5.2 Hydrogen Release Locations

. 41-22 41.5.3 Early Hydrogen Combustion Ignition Sources

. 41-23 41.6 Diffusion Flame Analysis - CET Node DF.

41-24 i

41.6.1 Diffusion Flame Analysis Summary 41-24 41.6.2 Node DF Containment Failure Probability Assignment

. 41-25 Revision: 9 ENEL April 11,1997 t# M -

W8Stingt100S8 oiap600ganv.9$ra-toe wpf.lb XxViii

1 M

r~~s

(

)

v TABLE OF CONTENTS (Cont.)

Section Title Pgte 41.7 Early Hydrogen Detonation - Containment Event Tree Node DTE........ 41-25 41.7.1 Containment Success Criteria at Node DTE................. 41-25 41.7.2 Early Hydrogen Detonation Decomposition Event Tree

........ 41-26 41.8 Sherman-Berman Methodology for Evaluating the Potential for Deflagration-to-Detonation Transition............................ 41 -2 7 41.8.1 General Description of the Sherman-Berman Methodology....... 41-27 41.8.2 Compartment Geometry............................. 41-27 41.8.3 Mixture Reactivity................................... 41 -28 41.8.4 Deflagration-to-Detonation Transition Probability............. 41 -28 41.8.5 Application of Sher: nan-Berman Methodology to the AP600 for Deflagration-to-Detonation Transition in Time Frame 2.

41-29 41.9 Deflagration in Time Frame 3.......

........ 41 -30 41.9.1 Containment Success Criterion.at Node DFL................ 41-30 41.9.2 AICC Peak Pressure.................................. 41-31 l

41.9.3 Conditional Containment Failure Probability from Deflagration.... 41-32 41.10 Detonation in Intermediate Time Frame.

......... 41 -3 8 41.10.1 Containment Success Criterion at Node DTI

. 41-38 41.10.2 Mixing and Stratification..

..... 41-38 l

73

)

41.10.3 Quantification of DTI Failure Probabilities

..... 41 -3 8 (V

41.10.4 Hydrogen Stratification Sensitivity......

........ 41-39 l

41.11 Safety Margin Basis Containment Performance Requirement.

.......... 41-39 l

41.12 S u mmary....................

........... 41 -40 41.13 References.............................................. 41 -41 CHAITER 42 CONDITIONAL CONTAINMENT FAILURE PROBABILITY DISTRIBUTION 42.1 Introduction

... 42-1 42.2 Probabilistic Model......

........... 4 2-1 42.3 Containment Failure Characteristics............................... 42-2 42.3.1 Median Values for Containment Failure

.. 42-2 42.3.2 Uncertainties in Containment Failure

........... 4 2-3 42.4 Containment Failure Predictions..

..............,................42-5 42.4.1 Containment Cylindrical Shell..........

.. 42-5 42.4.2 Ellipsoidal Upper Head............

........ 4 2-5 42.4.3 Equipment Hatches

............. 4 2-6 42.4.4 Personnel Airlock.

. 42-6 l

42.5 Overall Failure Distribution.......

. 42-7 42.6 Summary and Conclusions......

42-8 42.7 References..

.........................................42-8 t

[h G

Ruistom 9 ENEL T Westinghouse aw-April 11,1997 xxix oAap600\\pra\\rt v_9\\pra-toc.wpf:lb

k O

TABLE OF CONTENTS (Cont.)

Section Title Page CHAPTER 43 RFIFASE FREQUENCY QUANTIFICATION 43.1 Containment Event Tree Quantification........

................43-1 43.1.1 Containment Event Tree Base Quantification.......

........ 43-1 43.2 Accident Class 3BE..

............ 43-2 43.3 Accident Class 3BL.......

.. 43-2 43.4 Accident Class 3BR..............

..... 43-3 43.5 Accident Class l A.

...... 43-3 43.6 Accident Class I AP....

..... 43-4 43.7 Accident Class 3A....

. 43-4 43.8 Accident Class 3C.......

43-5 43.9 Accident Class 3D

. 43-6 43.10 Accident Class 6 (6E+6L)..

. 43-6 43.11 Accident Class I D.......................

. 43-7 43-7 43.12 Large Release Frequency Importance and Sensitivities.....

43.13 Containment Event Tree Conclusions and Insights.

... 43-7 CHAPTER 44 MAAP4 CODE DESCRIPTION AND AP600 MODELING 44.0 MAAP Background......

44-1 44.1 MAAP4.....

44-1 44-3 44.2 The AP600 MAAP4 Modeling 44.3 Benchmarking 44-6 44.4 Summary and Conclusions....

44-7 44.5 References 44-7 CHAPTER 45 FISSION-PRODUCT SOURCE TERMS 45.1 Summary of AP600 Release Categories

. 45-1 45.2 Release Category Source Terms................

. 45-2 45.2.1 Release Category IC........

.45-2 45.2.2 Release Category BP 45-3 45.2.3 Release Category CI...

. 45-3 45.2.4 Release Category CFE.

.. 45-4 45.2.5 Release Category CFI..

45-4 45.2.6 Release Category CFL......

.. 45-5 45.3 Direct-Release Sensitivity Case

. 45-5 45.4 MAAP4 Model Parameter Sensitivities.

. 45-6 45.4.1 FPRAT Sensitivity.

45-6 45.4.2 FAERDC Sensitivity..

. 45-6 45.5 Comparison with NUREG-1150 Results...

. 45-6 45.6 Summary.............

45-6 45.7 References 45-7 9

Revision: 9

[ W85tl!1gh00S8 April 11,1997 6

o:\\ap600\\pra\\rev.9pra-toc.wpf; 1 b XXX

o TABLE OF CONTENTS (Cont.)

Section Title Page CHAPTERS 46 THROUGH 48 DELETED CHAPTER 49 OFFSITE DOSE EVALUATION 49.1 Introduction

.... 49-1 49.2 Conformance with Regulatory Requirements........................ 49-1 49.3 Assumptions..........

.............492 49.4 Methodology.....

....... 49-2 49.5 Dose Evaluation Results and Discussions........................... 49-6 49.6 Quantification of Site Risk..

................. 4 9-7 49.7 Risk Quantification Results.................................... 49-7 49.8 References..

................... 4 9-8 CHAPTER 50 IMPORTANCE AND SENSITIVITY ANALYSIS 50.1 Introduction 50-1 50.2 Imponance Analyses for Core Damage............................ 5 0- 1, 50.2.1 Initiating Event Importances (Case 1)....................... 50-2 50.2.2 Common Cause Failure Importances (Case 2)...

.... 50 3 O

50.2.3 Human Error Importances (Case 3)......................... 50-5 50.2.4 Component Importances (Case 4)......................... 50-6 50.3 System Importances for Core Damage

.. 50-7 50.4 Human Error Sensitivity Analyses............................... 5 0-9 50.4.1 Set Human Error Probabilities to 1.0 (Failure) in Core Damage Results (Case 25)...

50-9 50.4.2 Set Human Error Probabilities to 0.0 (Success) in Core Damage Results (Case 26)............................

50-10 50.4.3 Assess Importance of Increasing Human Error Probabilities by a Factor of 10 (Case 27)............................... 50-10 50.5 Other Sensitivity Analyses for Core Damage..............

....... 50-11 50.5.1 Diesel Generator Mission Time (Case 28)

................. 50- 1 1 50.5.2 Impact of Passive System Check Valves on Core Damage Frequency (Case 29 ).................................. 50- 12 50.5.3 Instrumentation and Control Cutoff Probability (Case 30)........ 50-12 50.5.4 Containment Recirculation After Safety Injection Line Break l

Event (Case 31).......

. 50-12 50.5.5 Quantification Tmncation Probability (Case 32)............... 50 13 l

50.5.6 Sensitivity to ADS Stage 4 Success Criteria (Case 33)

. 50 13 50.5.7 Squib Valve Failure Probability (Case 34)................... 5 0- 13 50.5.8 Circuit Breaker Failure Probability (Case 35)................. 50 14 50.5.9 End-State Importances (Case 36)......

50-14 v

1 Revision: 9

[ W85tiflgh0088 April 11,1997 xxxi ovm4=*v 9*=#1b

e TABLE OF CONTENTS (Cont.)

Section Title Page 50.6 Sensitivity and Importance Analyses For Large Release Frequency

. 50-15 50.6.1 Importance Analyses For Large Release Frequency..

50-15 50.6.2 Sensitivity Analyses For Large Release Frequency.

.. 50-21 50.7 Sensitivity Analysis for Offsite Dose Risk....

. 50-22 50.8 Results Summary 50-23

... 0A ATWS PRA Sensitivity Case.....

50A-1 CHAPTER 51 UNCERTAINTY ANALYSIS 51-1 51.1 Introduction 51.2 Methodology

................. 51-1 51.3 Summary of Results.

51-3 51.4 Sensitivity Studies for the Uncertainty Calculations

. 51-4 51.4.1 Uncertainty in the Cutoff Frequency 51-4 51.4.2 Uncertainty in the Number of Cutsets Sampled 51-4 51.4.3 Uncertainty in the Mean Failure Probability for Basic Events.

. 51-4 51.4.4 Sensitivity to the Random Number Input for Sampling........... 51-5 51.5 References

.... 51-6 CHAPTER 52 RTNSS - FOCUSED PRA SENSITIVITY STUDY 52.1 Focused PRA Sensitivity Study Analysis Method......

.. 52-1 52.1.1 Core Damage Frequency Calculation

........ 52-2 52.1.2 Release Frequency Calculation 52-5 52.2 At-Power Focused PRA Sensitivity Study..

52-5 52.2.1 At-Power Focused PRA Sensitivity Study Core Damage Frequency Quantification

.. 52-6 52.2.2 At Power Focused PRA Sensitivity Study Release Frequency Quantification 52-11 52.3 Shutdown Focused PRA Sensitivity Study........

.... 52-16 52.3.1 Shutdown Focused PRA Sensitivity Study Core Damage Quantification..

52-16 52.3.2 Shutdown Focused PRA Sensitivity Study Release Frequency Calculation

....... 52-19 52.4 Focused PRA Sensitivity Fire Analysis......

. 52 21 52.5 Focused PRA Sensitivity Study Flooding Analysis..

52-21 52.5.1 At-Power Focused PRA Sensitivity Study Flooding Scenarios..... 52-21 52.5.2 Shutdown Focused PRA Sensitivity Study Flooding Scenarios..... 52-22 52.5.3 Focused PRA Sensitivity Study Flooding Analysis Results Summary 52-23 52.6 Focused PRA Sensitivity Study Results and Conclusions...

..... 52-23 52.7 References 52*14 O

Revision: 11 E,NEd W Westinghouse March 1998

-~

=

o:\\prairev.llpa-toe.wpf;lb XXXii

TABLE OF CONTENTS (Cont.)

Section Title P,_ age CHAPTER 53 DELETED CHAPTER 54 LOW-POWER AND SHUTDOWN RISK ASSESSMENT 54.1 Introduction

.. 54-1 54.2 Initiating Events

..... 54-1 54.2.1 Identification.................................

54-2 54.2.2 Events Modeled............

54-2 54.2.3 Shutdown Phases Summary Description..

.. 54-3 54.2.4 Initiating Events for Operanng Modes....................... 54-4 54.2.5 Actuanng Signals and Systems Available................... 54-15 54.2.6 Scenarios for Detailed Analysis......................... 54-16 l

54.2.7 Summary of Initiaring Events Analyzed.................

. 54-21 54.3 Data..

........................... 54-22 54.3.1 Shutdown Frequency

. 54-22 54.3.2 Mission Times..........

......... 54-25 54.4 Event Tree Development..

54-28 54.4.1 Event Tree LOSP-ND..

54-30 l

54.4.2 Event Tree RNS-ND.

... 54-33

\\

54.4.3 Event Tree CCW-ND...........

.................. 54-33 54.4.4 Event Tree LOCA-PR-ND

.................... 54-33 54.4.5 Event Tree LOCA-V24-ND............................. 54-34 54.4.6 Event Tree RCS-OD..

.................... 54-36 54.4.7 Event Tree LOSP-D..

. 54-38 54.4.8 Event Tree RNS-D................................... 54-40 54.4.9 Event Tree CCW-D................................. 54-40 54.4.10 Event Tree LOCA-V24-D.............................. 54-40 54.4.11 Boron Dilution Events (Reactivity Events)................... 54-41 54.4.12 Boron Dilution Events Due to Chemical and Volume Control System Opecation.............................. 54-45 l

54.4.13 Endstates Summary.................................. 54-48 54.5 Fault Tree Models for Shutdown and Low-Power Events............... 54-48 54.5.1 Instrumentation and Control Modeling for Shutdown (Level 1).... 54-48 l

l 54.5.2 Instrumentation and Control Modeling for Shutdown (Level 2).... 54-51 54.6' Success Criteria............................................ 54-51 54.6.1 MAAP4 Code Analysis for Shutdown Success Criteria.......... 54-52 54.6.2 MAAP4 Parameter File................................ 54-52 54.6.3 MAAP4 Input Changes............................... 54-54 54.6.4 Definition of MAAP4 Cases From Event Trees............... 54-55 54.6.5 Results From MAAP4 Analyses.............

. 54-57 54.7 Common Cause Analysis.................................... 54-57 A

.m.

Revision: 9 ENE 3 WSSdngh0tist

gxz:1, April 11,1997 xxxiii

.wme.w p

O TABLE OF CONTENTS (Cont.)

Section Title Page

. 54 57 54.8 Human Reliability Analysis 54.8.1 Operator Actions Calculated

.. 54-58 54.8.2 Conditiona! Human Error Probabilities.......

. 54-64 54.9 Fault Tree Quantification 54-64 54.10 Level 1 Core Damage Frequency Quantification.

.... 54-67 54.10.1 Core Damage Quantification Method 54-68 54.10.2 Quantification Inputs 54-69 54.10.3 Level 1 Shutdown Core Damage Frequency Results....

54-70 54.11 Shutdown and Low-Power Release Category Quantification.....

... 54-71 54.12 Shutdown Assessment Importance and Sensitivity Analyses.............. 54-71 54.12.1 Importance Analyses for Core Damage at Shutdown...

. 54-72 54.12.2 Other Sensitivity Analyses for Shutdown Core Damage

....... 54-77 54.13 Summary of Shutdown Level 1 Results

. 54-81 54-87 54.14 References..

..-................................ 4A Design Change Impact on Low-Power and Shutdown Risk Assessment 54A-1

....... 4B Surge Line Flooding Effect on Low-Power and Shutdown Risk Assessment 54B-1

........... 4C Effect of Modifications to Safe / Cold Shutdown PRA 54C-1 CHAPTER 55 SEISMIC MARGIN ANALYSIS..

55-1 55.1 Introduction

. 55-1 55.2 Calculation of HCLPF Values 55-2 55.2.1 Seismic Margin HCLPF Methodology 55-2 55.2.2 Calculation of HCLPF Values

.. 55-2 55.3 Seismic Margin Model.......

... 55-12 55.3.1 SMA Model.?nd Assumptions.

... 55-14 55.3.2 Seismic Initiating Events..

55-16 55.3.3 Initiating Event Category HCLPFs.............

. 55-17 55.3.4 Event Tree Models.

55-20 55.3.5 Fault Tree Modeling and Quantification 55-28 55.3.6 Seismic Event Core Damage Sequence Evaluation.

. 55-36 55.3.7 Containment Performance Model.

. 55-37 55.4 Calculation of Sequence and Plant HCLPF.

. 55-38 55.4.1 HCLPFs for Basic Events.........

. 55-39 55.4.2 Calculation of Initiating Event HCLPFs

. 55-39 55.4.3 Calculation of System Fault Tree HCLPFs

.... 55-39 55.4.4 Calculation of Sequence HCLPFs 55-40 55.4.5 Calculation of Plant HCLPF.

. 55-43 55.4.6 Large Release HCLPF...

. 55-43 9

Revision: 11 ENEL W Westinghouse March 1998

' ~ ~-a o:\\pra\\rev.llptoc.wpf.lb XXXIV

E V

TABLE OF CONTENTS (Cont.)

l l

Section Title

_P, age

{

1 1

55.5 Sensitivity Analyses.....................

. 55-46 55.5.1 Robust Fuel and Core Assembly

.. 55-48 I

55.5.2 Credit for Operator Actions.

55-49 55.5.3 Less Credit for Operator Actions in LOSP Event at 0.09g..

55-52 55.5.4 72-Hour Mission Time............

... 55-53 55.5.5 Containment Isolation - Smaller Size Valves......

. 55-56 55.5.6 Steam Generator Tube Rupture Success Criteria........

55-57 55.5.7 Steam Line Break Success Criteria..

. 55-58 55.5.8 Seismic Interaction Between Turbine and Auxiliary Buildings 55-59 55.6 SMA Results and Insights....

55-63 55.9.6 AP600 SMA Results 55-63 55.9.6 AP600 SMA Insights......

.. 55-68 55.7 References 55-70 I

Attachment SSA System HCLPF Calculations....

55A-1 Attachment SSB Sequence HCLPF Calculations..

55B-1 l

m Attechment 55C Seismic Margin Analysis HCLPF Sensitivity Study 55C-1 h

CHAPTER 56 PRA INTERNAL FLOODING ANALYSIS 56.1 Introduction

.... 56-1 56.1.1 Definitions............

... 56-1 56.2 Methodology...........

... 56-1 56.2.1 Summary of Methodology..................

... 56-1 56.2.2 Information Collection........

.. 56-2 56.2.3 Initial Screening Assessment.

. 56-3 56.2.4 Detailed Screening Assessment

. 56-4 56.2.5 Identification of Flood-Induced Initiating Events

. 56-6 56.2.6 Initiating Event Frequencies

.. 56-7 56.3 Assumptions...........

...... 56-7 56.3.1 General Flooding Analysis Assumptions and Engineering Judgments. 56-7 56.3.2 AP600-Specific Assumptions.

. 56-9 56.4 Information Collection.........

.. 56-11 56.4.1 PRA-Modeled Equipment and Locations........

. 56-11 56.4.2 Identification of Areas for Flooding Evaluation.

..... 56-11 36.5 At-Power Operations.....

......... 56-12 56.5.1 Initial Screening Assessment...

. 56-12 56.5.2 Detailed Screening Assessment

. 56-12 56.5.3 Identification of Flood-Induced Initiating Events

... 56-28 56.5.4 Calculation of Flood-Induced Initiating Event Fr.quencies..

. 56-32 56.5.5 Quantification of At-Power Flood-Induced Events.

56-39 i'3 V

ENEl.

Revision: 11 T Westiflgh0USB g m 'a t March 1998 XXXV o:\\pra\\rev.ll\\pra. toc.wpf:lb t

i

I O

TABLE OF CONTENTS (Coat.)

Section Title

.P_ age 56.6 Shutdown Operations.........

56-41 56.6.1 Detailed Screening Assessment

. 56-41 56.6.2 Identification of Flood-Induced Initiating Events.

.. 56-42 56.6.3 Calculation of Flood. Induced Initiating Event Frequencies........ 56-43 56.6.4 Shutdown Quantification.......

.... 56-48 56.7 Seismically Induced Flooding.

............... 5 6-51 56.8 Flooding Hazards During Refueling Outages........

56-52 56.9 Flooding Sensitivity Study

....... 56-52 56.9.1 Flooding Human Error Probabilities Sensitivity Study........... 56-52 56.10 Summary of Findings.......

. 56-53 CHAPTER 57 INTERNAL FIRE ANALYSIS 57.1 Introduction

. 57-1 57.2 Qualitative Analysis Methodology 57-2 57.3 Quantitative Methodology of Fire Area Frequency....

57-6 57.3.1 Fire Frequency Calculations

. 57 6 57.3.2 Fire Damage Category Quantification...................... 57-7 57.4 Core Damage Quantification Methodology

.... 57-10 57.5 Fire Analysis Assumptions............

.......... 57-12 57.5.1 Qualitative Analysis Assumptions and Other Modeling Considerations.......

.... 57-12 57.5.2 Quantification Assumptions And Modeling Considerations

. 57-14 57.6 At-Power Qualitative Analysis Results................

. 57-17 57.7 At-Power Quantitative Results.

57-19 57.7.1 Fire Ignition Frequencies for Quantitative Analysis....

. 57-19 57.7.2 Fire Damage Category Quantification......

. 57-19 57.7.3 Individual Area PRA Analysis.............

. 57-19 57.8 Control Room Fire Analysis - Power Operation..........

. 57-22 57.8.1 Description of the Control Room and Associated Fire Protection... 57-22 57.8.2 Alternate Shutdown Capability.......................... 57-23 57.8.3 Fire Hazard Review..................

........... 5 7-2 4 57.8.4 AP600 Control Room Fire Evaluation..................... 57-25 l

57.8.5 Fire Scenario Identification and Frequency Detennination...

57-29 57.8.6 Control Room Fire Scenario Quantification and Results

... 57-32 57.9' Shutdown Fire Analysis.

... 57-33 57.9.1 Fire Ignition Frequencies during Shutdown Modes of Operation.

57-33

)

57.9.2 Fire Damage Category Quantification..

57-34 57.9.3 Individual Area PRA Analysis......

............ 57-34 l

57.9.4 Fire Analysis for Safe Shutdown.......

57-34 57.9.5 Fire Analysis for Mid-Loop Operation....

.......... 5 7-41 O

Revision: 9 April 11,1997 h_

[ WSStingh00$8 chp600\\pra\\rev 9\\pra. toc.wptib xxxyj

RF 7-s TABLE OF CONTENTS (Cont.)

Section Title P_ age a

57.10 Summary and Conclusions.

. 57-42 57.10.1 At-Power Analysis 57-42 57.10.2 Shutdown Fire Analysis...........

57-45 57.10.3 Conclusions.....

57-47 57.11 References 57-48 ATTACHMENT 57A DEFINITIONS.

57A-1 ATTACHMENT 57B DESIGN CHANGE EFFECT ON INTERNAL FIRE ANALYSIS.

57B-1 CHAPIER 58 WINDS, FLOODS, AND OTHER EXTERNAL EVENTS 58.1 Introduction

. 58-1 58.2 External Events Analysis

.........58-1 58.2.1 Severe Winds and Tornadoes....

.... 5 8-1 58.2.2 External Floods...

. 58-2 58.2.3 Transportation and Nearby Facility Accidents.

.. 58-2 58.3 Conclusion 58-3 58.4 References 58-3 oV)

CHAPTEP,59 PRA RESULTS AND INSIGHTS 59.1 Introduction

.59-1 59.2 Use of PRA in the Design Process...............

59-3 59.2.1 Stage 1 - Use of PRA During the Early Design Stage........... 59-4 59.2.2 Stage 2 - Preliminary PRA...........

. 59-5 59.2.3 Stage 3 - AP600 PRA Submittal to NRC (1992)......

. 59-7 59.2.4 Stage 4 - PRA Revision 1 (1994).........

59-8 59.2.5 Stage 5 - PRA Revisions 2-8 (1995-1996)..........

59-8 59.3 Core Damage Frequency from Intemal Initiating Events at Power 59-10 59.3.1 Dominant Core Damage Sequences...........

. 59-12 59.3.2 Component Importances for At-Power Core Damage Frequency.

59-44 59.3.3 System Importances for At-Power Core Damage.

....... 5 9-44 59.3.4 System Failure Probabilities for At-Power Core Damage..

59-45 59.3.5 Common Cause Failure Importances for At-Power Core Damage 59-45 59.3.6 Human Error Importances for At-Power Core Damage..

.... 59-45 59.3.7 Accident Class Importances.

.. 59-47 59.3.8 Sensitivity Analyses Summary for At-Power Core Damage.

59-47 59.3.9 Summary of Important Level 1 At-Power Results...

59-48 59.4 Large Release Frequency for Intemal Initiating Events at Power..

59-51 59.4.1 Dominant Large Release Frequency Sequences......

. 59-52 59.4.2 Sensitivity Analyses for Containment Response.........

. 59-72 i

}

t

)

J ENEL Revision: 11 W Westinghouse muh March 1998 XXXvii c:\\pra\\rev llipra-toc wpf;1b

z l

e TABLE OF CONTENTS (Cont.)

l Section Title Eage i

i 59.4.3 Comparison of Initiating Event Importances for Core Damage Fmquency and Large Release Frequency.........

. 59-72 59.4.4 Summary of Imponant Level 2 At-Power Results.

........ 5 9-73 59.5 Core Damage and Severe Release Frequency from Events at Shutdown.

. 59-75 59.5.1 Summary of Shutdown Level 1 Results...

.. 59-75 59.5.2 Large Release Frequency for Shutdown and Low-Power Events.

... 59-81 59.5.3 Shutdown Results Summary.......

........ 5 9-82 59.6 Results from Intemal Flooding, Internal Fire, and Seismic Margin Analyses......

........ 5 9-82 59.6.1 Results of Internal Flooding Assessment......

... 59-82 59.6.2 Results ofIntemal Fire Assessment 59-83 59.6.3 Results of Seismic Margin Analysis...

....... 5 9-87 59.7 Plant Dose Risk from Release of Fission Products..

.... 59-87 59.8 Overall Plant Risk Results....

59-88 59.9 Plant Features Imponant to Reducing Risk..........

59-89 59.9.1 Reactor Design

..... 59-90 59.9.2 Systems Design 59-91 59.9.3 Instrumentation and Control Design...

.. 59-94 59.9.4 Plant Layout..

..... 59-95 59.9 5 Plant Structures..

59-96 59.9.6 Containment Design....

.. 59-96 59.10 PRA Input to the Design Certification Process.....

.59-101 59.10.1 FRA Input to Reliability Assurance Program............... 59 102 59.10.2 PRA Input to Certified Design Material

....59-102 59.10.3 PRA Input to the Technical Specifications...

......59-102 59.10.4 PRA Input to MMI/ Human Factors / Emergency Response Guidelines...

......59-102 59.10.5 Summary of PRA-Based Insights...........59-103 59.10.6 Combined License Information

...59-103 APPENDIX A MAAP4 ANALYSIS TO SUPPORT SUCCESS CRITERIA.

.. A-1 APPENDIX B EX-VESSEL SEVERE ACCIDENT PHENOMENA

............ B-1 APPENDIX C DESIGN CHANGES THAT OCCURRED AFTER THE PRA ANALYSES WERE COMPLETED C-1 APPENDIX D EQUIPMENT SURVIVABILITY ASSESSMENT....

..... D-1 9

Revision: 11 ENEL March 1998

'r.'xh.

W65tiflgh09Se o:WVev thpra. toc.wpf.lb XXXViii

b LIST OF TABLES Table No.

Title Eage 2-1 Intemal Initiating Event Grouping - Plant Systems and Equipment Available for Transient / Accident Conditions......................... 2-31 2-2 NUREG/CR-3862 Initiator Categories.............................. 2-48 2-3 NUREG/CR-3862 Initiator Categories Not Considered in the AP600 PRA Analysis.................................... 2-52 2-4 AP600 Intemal Initiating Event Frequencies

.........................2-53 2-5 Initiating Event Frequencies Used in Event Tree Quantification............ 2-56 2A.1-1 Summary of Primary System Piping Data..........................

2A-1 2A.1-2 Summary of Primary System Pipe Break Frequency Quantification and Frequency Apportionments.............

2A-4 2A.1-3 Attribution of Line Break Frequencies to Specific LOCA Initiating Event Categories..........

2A-5 2A.2-1 RCS Leakage Events...........

2A-7 2A.3-1 Summary of Steam Generator Tube Rupture Events................... 2A-18 2A.4-1 Identification of the Situations Potentially Leading to LOCA and Interfacing LOCA on RNS.........................................

2A-20 2A.4-2 Screening Quantification of LOCA and Interfacing LOCA Frequencies

,m

(

)

on Normal RHR System..............

2A-23 2A.4-3 Summary of Screening Quantification of LOCA and Interfacing LOCA v

Frequencies on RNS.......

2A-28 2A.51 Spurious Stuck-open Pressurizer Safety Valve 2A-29 2A.5-2 Interface Break on Accumulator Lines............................ 2A-30 2A.5-3 Interface Break on IRWST Injection Lines......................... 2A-32 2A.6-1 Summary of Main Steam Line and Feedwater Line Piping Data for Secondary-side Break Frequency Quantification...............

2A-35 2A.6-2 Secondary-side Line Break Frequency Quantification.................. 2A-36 2A.6-3 Stuck-open Main Steam Line Safety Valve Frequency Quantification....... 2A-37 2A.71 Initiating Events Review Data Summary..........................

2A-40 3-1 Loss of CCS/SWS Initiating Event Fault Tree CSWF Success Criteria Summary.....................................

3-9 3-2 Spurious Actuation of Automatic Depressur zation Failure Criteria Summary... 3-10 3-3 Evaluation of Spurious Automatic Depressurization System Frequencies..... 3-11 4-1 Summary of Systems Associated with Mitigating Functions for AP600...... 4-115 4-2 Summary List of Event Tree Top Events

..........................4-116 4-3 Summary of Core Damage Categories 4-1 19 i

i V

Revision: 9 3 W8Stingh00S8 April 11,1997 l

XXXIX o Aap600Npra\\rev,9)pra-lot.wpf. l b l

i

=5 T

O LIST OF TABLES (Cont.)

Table NL Title P_ age 5-1 AP600 Safety-Related Plant Support Systems with Letter Designators......... 5-3 5-2 AP600 Nonsafety-Related Plant Support Systems with Letter Designators...... 5-3 5-3 AP600 Support System Interdependency Matrix....

5-4 5-4 AP600 Safety-Related Front-Line Plant System Letter Designators.......... 5-17 5-5 AP600 Nonsafety-Related Front-Line Plant System Letter Designators...... 5-17 5-6 AP600 Front-Line System Dependency Matrix............

...........5-18 6-1 Summary of Event Tree Top Events Success Criteria....

. 6-102 6-2 Summary of Success Criteria for the Mitigating Systems....

....... 6-130 6-3 Summary of Success Criteria for Operator Actions and Mission Times..... 6-144 6-4 Deleted 7-1 Example for Fault Tree XXX Success Criteria Summary......

.. 7-16 7-2 Example for System Dependency Matrix..

.. 7-16 7-3 Example for Component Test Assumptions...

.. 7-17 7-4 Example for Component Maintenance Assumptions..........

..... 7-17 7-5 Example for Operator Actions and Disposition Analysis Summary.

.. 7-17 7-6 Fault Tree Identification Codes

..... 7-18 7-7 System Identification Codes for Basic Events

.. 7-21 7-8 Component Identification Codes

. 7-24 7-9 Failure Mode Identification Codes...

....... 7-31 8-1 List of System Fault Trees 8-8 8-9 8-2a Fault Tree PRT Success Criteria Summary...

8-10 8-2b Fault Tree PRL Success Criteria Summary..

8-2c Fault Tree PRP Success Criteria Summary 8-1 1 8-2d Fault Tree PRS Success Criteria Summary 8-12 8-2e Fault Tree PRW Success Criteria Summary......................... 8 - 13 8-2f Fault Tree PRI Success Criteria Summary..........................

8-14 1

8-2g Fault Tree PRTA Success Criteria Summary

.. 8-15 l

8-3 Notes Related to System Fault Tree Assumptions..........

8-16 l

8-4 System Dependency Matrix.....

..... 8-17 8-5 Component Test Assumptions...........

.. 8-18 8-6 Component Maintenance Assumptions........

... 8-18 8-7 Operator Actions and Disposition Analysis Summary 8-19 f

8-8 Common Cause Failure Analysis Summary...

.. 8-19 8-9 Fault Tree Basic Events for Passive Residual Heat Removal System........ 8-20 l

1

(

l l

O Revision: 9 ENEL 3 Westiflgh00Se

{

April 11,1997 sh o:\\ap600prairev.,9%pra-lot.wpf. l b x) l 4

I

OU LIST OF TABLES (Cont.)

Table No.

Title P_ age 9-1 List of System Fault Trees 9-9 9-2a Fault Tree CM2AB Success Criteria Summary........................ 9-10 9-2b Fault Tree CM2SL Success Criteria Summary.

.. 9-11 9-2c Fault Tree CM2L Success Criteria Summary........................ 9-12 9-2d Fault Tree CM2P Success Criteria Summary........................ 9-13 9-2e Fault Tree CM1 A Success Criteria Summary.......

. 9-14 l

9-2f Fault Tree CM2LLT Success Criteria Summary....

9-15

{

9-2g Fault Tree CMBOTH Success Criteria Summary...................... 9-16 i

9-2h Fault Tree CM2LA Success Criteria Summary..

9-17 9-2i Fault Tree CM2NL Success Criteria Summary..........

. 9-18 9-3 Notes Related to System Fault Tree Assumptions..

. 9-19 9-4 System Dependency Matrix......

. 9-19

)

9-5 Component Test Assumptions..

..................... 9-2 0 l

9-6 Component Maintenance Assumptions.....

.. 9-20 i

9-7 Operator Actions and Disposition Analysis Summary..........

...... 9-21 9-8 Common Cause Failure Analysis Summary.............

... 9-21 9-9 Fault Tree Basic Events for Core Makeup Tank Subsystem 9-22

/m 10-1 List of System Fault Trees.

. 10-6 V) 10-2a Fault Tree AC2AB Success Criteria Summary

.......................10-7 10-2b Fault Tree ACI A Success Criteria Summary........................ 10-8 10-2c Fault Tree ACBOTH Success Criteria Summary

. 10-9 10-3 Notes Related to System Fault Tree Assumptions...

. 10-10 10-4 System Dependency Matrix...

.... 10-10 10-5 Component Test Assumptions.......

............ 10- 10 104$

Component Maintenance Assumptions.........................

. 10-11 10-7 Operator Actions and Disposition Analysis Summary................. 10- 1 1 10-8 Common Cause Failure Analysis Summary...........

. 10-11 10-9 Fault Tree Basic Events for Accumulator Subsystem

. 10-12 Il-la List of System Fault Trees.............

.11-9 11-1b List of System Fault Trees (For Plant Damage States Analysis)..

... 11-10 11-2a Automatic Depressurization System Success Criteria Versus Accident Conditions Full Depressurization....

. I1-11 11-2b Automatic Depressurization System Success Criteria Versus Accident Conditions Partial Depressurization

. 11-12 11-2c Automatic Depressurization System Fault Tree Summary (For Plant Damage States Analysis).

.. 11-13 11-2d Fault Tree ADA Success Criteria

. 11-13 11-2e Fault Tree ADT Success Criteria.....

. 11-14 m

Revision: 9 ENEL

[ Westinghouse mh%

April 11,1997 xlj o$ap600pra\\rev_9\\pra-lot.wpf.lb E-------_______________________._______--

M e

LIST OF TABLES (Cont.)

Table No.

Title Eage 11-2f Fault Tree ADI A Success Criteria.............................. 11-14 Il-2g Fault Tree ADI Success Criteria............................... 11-15 11-2h Fault Tree ADS Success Criteria................................ 11-16 11-2i Fault Tree ADU Success Criteda................,............... 11-17 11-2j Fault Tree ADV Success Criteria................................ 11-18 11-2k Fault Tree ADZ Success Criteria.....

... 11-18 1 2-21 Fault Tree ADM Success Criteria................................ 11-19 11-2m Fault Tree ADQ Success Criteria................................ 11-19 11-2n Fault Tree ADAL Success Criteria............................... 11-20 11-20 Fault Tree ADL Success Criteria................................ 11-21 11-2p Fault Tree ADRA Success Criteria............................... 11-21 11-2q Fault Tree ADR Success Criteria............................... 11-22 11-2r Fault Tree ADAB Success Criteria

. 11-23 11-2s Fault Tree ADB Success Criteria............................... 11-23 11-2t Fault Tree ADW Success Criteria........

............. 1 1 24 11-2u Fault Tree ADUM Success Criteria..........

........... Il-24 11-2v Fault Tree ADF Success Criteria..

.......... Il-25 11-2w Fau!r Tree ADMA Success Criteria............................... I 1-25 11-2x Fault Tree ADTLT Data Summary............................... 11-26 11-2y Fault Tree ADQLT Success Criteria............................. 11-26 11-3 Notes Related to System Fault Tree Assumptions..................... 11-27 11-4 System Dependency Matrix......

.... 11-28 11-5 Component Test Assumptions................................. 11-29 11-6 Component Mainten.nce Assumptions............................ 11-29 11-7 Operator Actions and Disposition Analysis Summary..

.... 11-30 11-8 Common Cause Failure Analysis Summary......................... 11-31 11-9 Fault Tree Basic Events for Automatic Depressurization System.......... 1 1 -3 2 12-1 List of System Fault Trees.,,.....

..... 12-11 12-2a Fault Tree IW2AB Success Criteria Summary

......................12-12 12-2b Fault Tree IW2ABM Success Criteria Summary

..... 12-13 12-2c Fault Tree IW2ABA Success Criteria Summary

... 12-14 12-2d Fault Tree IW2ABP Success Criteria Summary

.....................12-15 12-2e Fault Tree IW2 BPM Success Criteria Summary

........... 12-16 12-2f Fault Tree IW2ABB Success Criteria Summary

... 12-17 12-2g Fault Tree IW2ABBM Success Criteria Summary

.... 12-18 12-2h Fault Tree IW1 A Success Criteria Summary

....... 12-19 12-2i Fault Tree IW1AM Success Criteria Summary

........ 12-20 12-2j Fault Tree IWF Success Criteria Sumt.tary........................ 12-21 12-2k Fault Tree RECIRC Success Criteria Summary..................... 12-22 e

Apn

,1997 W85tingh00S8 cAs,400$rairev 9spra-lotwpf:Ib xlji

1

=-

si

~.

l O

V LIST OF TABLES (Cont.)

f Table No.

Title Page 1 2-21 Fault Tree RECIRP Success Criteria Summary...................... 12-23 12-2m Fault Tree RECIRB Success Critena Summary

................ 12-24 12-2n Fault Tree RECIRA Success Criteria Summary...................... 12-25 12-2o Fault Tree RECIRAP Success Criteria Summary....................

12-26 12-3 Notes Related to System Fault Tree Assumptions....................

12-27 12-4 System Dependency Matnx................................... 12-27 j

12-5 Component Test Assumptions.................................. 12-28 12-6 Component Maintenance Assumptions..............

.. 12-29 12-7 Operator Actions and Disposition Analysis Summary.................. 12-29 12-8 Common Cause Failure Analysis Summary...

. 12-30 12-9 Fault Tree Basic Events for IRWST Subsystem.....................

12-31 13-1 List of Sy stem Fault Trees..............................

..... 13-8 13-2 Fault Tree PCT Success Criteria Summary.......

.. 13-8 13-3 Notes Related to System Fault Tree Assumptions..................... 13-8 13-4 System Dependency Matrix..................................... 13-9 13-5 Component Test Assumptions..

.. 13-9 13-6 Component Maintenance Assumptions............................

13-10 f3 13-7 Operator Actions and Disposition Analysis Summary.................. 13-10 13-8 Common Cause Failure Analysis Summary......................... 13-10 13-9 Fault Tree Basic Events for Passive Containment Cooling System......... 13-11 14-1 List of System Fault Trees..................................... 14-9 14-2a Fault Tree FWT Success Criteria Summary

...... 14-10 14-2b Fault Tree FWF Success Criteria Summary......................... 14-11 14 2c Fault Trie SFWT Success Criteria Summar;........................ 14-12 14-2d Fault Tree SFW Success Criteria Summary.....

. 14-13 14-2e Fault Tree SFW1 Success Criteria Summary........................

14-14 14-2f Fault Tree SFWP Success Criteria Summary.....

14-15 14-2g Fault Tree SFWM Success Criteria Summary

... 14-16 14-2h Fault Tree SFWA Success Criteria Summary....................... 14-17 14-2i Fault Tree COND Success Criteria Summary............

14-18 l

14-2j Fault Tree CONDI Success Criteria Summary..

.... 14-19 14-2k Fault Tree CDS Success Criteria Summary...................

. 14-20 1 4-21 Fault Tree TCCW Success Criteria Summary.............

. 14-21 14-3 Notes Related to System Fault Tree Assumptions..

..... 14-22 l

14-4 System Dependency Matrix.........................

... 14-23 l

14-5 Component Test Assumptions...........,.........

14-31 l

14-6 Component Maintenance Assumptions...........................

14-3 2 14-7 Operator Actions and Disposition Analysis Summary................. 14-32 1

Revision: 9 W Westingholise

$E April 11,1997 h

OM M *ev.9Wlampf:lb xliii P P I

l

E=5 l

O LIST OF TABLES (Cont.)

Table No, Title Pag _e 14-8 Common Cause Failure Analysis Summary..........

......... 14-33 14-9 Fault Tree Basic Events for Main and Startup Feedwater System.......... 14-34 15-1 List of System Fault Trees...................

.. 15-9 15-2a Fault Tree CSBORI Success Criteria Summary..................... 15-10 15-2b Fault Tree CVS1 Success Criteria Summary........................ 15-11 15-2c Fault Tree CSAX Success Criteria Summary.............

.... 15-12 15-2d Fault Tree SGHL Success Criteria Summary..........

............ 15-13 15-2e Fault Tree CSP Success Criteria Summary

............... 15-14 15-3 Notes Related to System Fault Tree Assumptions..

... 15-15

. -. 15-16 15-4 System Dependency Matrix...

15-5 Component Test Assumptions

... 15-17 15-6 Component Maintenance Assumptions.

.........................15-18 15-7 Operator Actions and Disposition Analysis Summary.................. 15-19 15-8 Common Cause Failure Analysis Summary........

. 15-20 15-9 Fault Tree Basic Events for Chemict.1 and Volume Control System

....... 15 21 16-1 List of System Fault Trees...

.... 16-5 16-2 Fault Tree VLH Success Criteria Summary......

..... 16-5 16-3 Notes Related to System Fault Tree Assumptions..................... 16-5 16-4 System Dependency Matrix......

..... 16-6 16-5 Component Test Assumptions.....

..... 16-6 16-6 Componem Maintenance Assumptions

..................... 1 6-6 16-7 Operator Actions and Disposition Analysis Summary.................. 16-7 16-8 Common Cause Failure Analysis Summny.............

. 16-7 16-9 Fault Tree Basic Events for Containment Hydrogen Control System......... 16-8 17-1 List of System Fault Trees.

17-8 17-2a Fault Tree RNR Success Criterin Summary........

17-9 17-2b Fault Tree RNP Success Criteria Summary........

..... 17-9 17-3 Notes Related to System Fault Tree Assumptions..

.... 17-10 17-4 System Dependencies Matrix....

.... 17-11 17-5 Component Test Assumptions....

...... 17-12 17-6 Component Maintenance Assumptions

.................... 17-12 17-7 Operator Actions and Disposition Analysis Summary...

. 17-13 17-8 Common Cause Failure Summary

. 17-13 17-9 Fault Tree Basic Events for Normal Residual Heat Removal System....

. 17-14 O

Revision: 9 April 11,1997 WeStiligh00Se o:\\ap600Nprairev,,9\\pra-lot.wpf.lb xliv l.

m

(n V)

LIST OF TABLES (Cont.)

Table No.

Title Page 18-1 List of System Fault Trees

.. 18-6 18-2a Fault Tree CCN Success Criterie Summary.......................... 18-6 18-2b Fault Tree CCT Success Criteria Summary

................. I8-7 18 2c Fault Tree CCP Success Criteria Summary........................... I8-7 j

18-3 Notes Related to System Fault Tree Assumptions..........

.18-8 18-4 System Dependency Matrix.............

........................I8-8 18-5 Component Test Assumptions..............

...............I8-9

)

18-6 Component Maintenance Assumptions..........

..I8-9 i

18-7 Operator Actions and Disposition Analysis Summary................... I8-10 18-8 Common Cause Failure Analysis Summary......................... I 8-10 18-9 Fault Tree Basic Events for Component Cooling Water System........... 18-11 19-1 List of System Fault Trees..................................... 19-6 19-2a Fault Tree SWN Success Criteria Summary.

.......... 19-6 1

19-2b Fault Tree SWT Success Criteria Summary...

......................19-7 l

19-2c Fault Tree SWP Success Criteria Summary......................... 19-7 I

19-3 Notes Related to System Fault Tree Assumptions

.19-8 19-4 System Dependency Matrix.....................

19-9 (S'}

Component Test Assumptions............................

.. 19-10 19-5 19-6 Component Maintenance Assumptions.......,,................... 19-10 19-7 Operator Actions and Disposition Analysis Summary................. 19-11 19-8 Common Cause Failure Analysis Summary........................ 19-11 19-9 Fault Tree Basic Events for Service Water System................... 19-12 20-1 List of System Fault Trees

............... 20-6 20-2 Fault Tree VWH Success Criteria Summary

. 20-6 20-3 Notes Rels.ted to System Fault Tree Assumptions

.20-6 20-4 System Dependency Matrix.

20-7 20-5 Component Test Assumptions...........

. 20-8 20-6 Component Maintenance Assumptions

. 20-8 20-7 Operator Actions and Disposition Analysis Summary........

. 20-9 20-8 Common Cause Failure Anslysis Summary

........ 20-9 20-9 Fault Tree Basic Events for Central Chilled Water System

... 20-10 21-1 List of System Fault Trees...

21-10 21-2 Fault Tree Success Criteria Summary....

21-13 l

21-3 Nou:s Related to System Fault Tree Assumptions

... 21-29 l

21-4 System Dependency Matrix................

21-32 21-5 Component Test Assumptions.

21-32 o\\

(d Revision: 9 l

T Westinghouse fh_

April 11,1997 xlv c:\\ap600\\pra\\rev.9\\pra-ktwpf.lb

=C EE O

1 LIST OF TABLES (Cont.)

Table No.

Title Ea.ge

. 21-33 21-6 Component Maintenance Assumptions...................

.............. 21-33 21-7 Operator Actions and Disposition Analysis Summary...

21-8 Common Cause Failure Analysis Summary

........ 21-33 21-9 Fault Tree Basic Events for AC Power System

........... 21-34

............ 22-6 22-1 List of System Fault Trees

.... 22-10 22-2 Fault Tree Success Criteria Summary.

22-3 Notes Related to System Fault Tree Assumptions.................... 22-26

.. 22-26 22-4 Systems Dependercy Matrix..................

....... 22-27 22-5 Component Test Assumptions...

..... 22-27 22-6 Component Maintenance Assumptions........

22-7 Operator Actions and Disposition Analysis Summary...

..... 22-27 22-8 Common Cause Faibre Analysis Summary

... 22-28 22-9 Fault Tree Basic Events for Class IE de and Uninterruptible Power

............ 22-29 Supply System 22-10 System Power Requirements / Dependencies.

......... 22-41 23-1 List of System Fault Trees.....

............... 23-6 23-2 Fault Tree Success Criteria Summary.................

. 23-9 23-3 Notes Related to System Fault Tree Assumptions.................... 23-20 23-20 23-4 System Dependency Matrix....

...... 23-21 23-5 Component Test Assumptions......

23-6 Component Maintenance Assumptions........

.............. 23-21 23-7 Operator Actions and Disposition Analysis Summary.................. 23-21 23-8 Common Cause Failure Analysis Summary.................

.... 23-22 23-9 Fault Tree Basic Events for Non-Class 1E de and UPS System..

... 23-23 24-1 AP600 Containment Penetration List

..... 24-7 24-2 Screening Analysis Evaluation............

. 24-16 24-3 Containment Penetrations Not Screened Out for Normal Operation at Power Analysis..................

..................... 24-22 24-4 List of System Fault Trees

. 24-22 24-5a Fanit Tree CIC Success Criteria Summay

. 24-23 24-5b Fault Tree CIA Success Criteria Summary...

..... 24-23 24-Sc Fault Tree CIB Success Criteria Summary....

24-24 24-6 Notes Related to System Fault Trees Assumptions....

....... 24-24 24-7 System Dependency Matrix......

. 24-25

{

24-8 Component Test Assumptions......

.... 24-28 j

24-9 Component Maintenance Assumptions...

.. 24-28 O.

l Revision: 9 h_

T Westinghouse l

April 11,1997 c:\\ap600pu\\rev.9\\pra-lot.wpf.lb xlvi

(

)

t

' O LIST OF TABLES (Cont.)

Table No.

Title P. age 24-10 Operator Actions and Disposition Analysis Summary.................. 24 29 24-11 Common Cause Failure Analysis Summary......................... 24-29 24-12 Fault Tree Basic Events for Containment Isolation System.............. 24-30 25-1 List of System Fault Trees

................... 25-9 25-2a Fault Tree CAIAIR Success Criteria Summary...................... 25 - 10 25-2b Fault Tree CAIR Success Criteria Summary

............. 25-10 25-2c Fault Tree CAIAIRP Success Criteria Summary...................... 25-11 25-2d Fault Tree ENDCAIAI Success Criteria Summary.................... 25-11 25-2e Fault Tree ENDCAIAP Success Criteria Summary.................... 2512 25-2f Fault Tree CASF Success Criteria Summary....................... 25-13 25-3 Notes Related to System Fault Tree Assumptions..................... 25-13 25-4 System Dependency Matrix...........

............... 25 - 14 25-5 Component Test Assumptions.................................. 25-14 25-6 Component Maintenance Assumptions............................ 25-15 25-7 Operator Actions and Disposition Analysis Summary...........

.. 25-15 25-8 Common Cause Failure Analysis Summary........................ 25-15 l

25-9 Fault Tree Basic Events for Instrument Air Subsystem................. 25-16 26-1 List of System Fault Trees

..............................26-28 26-2a Fault Tree RTPMS and RTPMS1 Success Criteria Summary............. 26-29 l

26-2b Fault Tree RTSTP Success Criteria Summary...................... 26-29 26-2c Fault Tree RCL Success Criteria Summary......................... 26-30 26-2d.1 Fault Tree RCT Success Criteria Summary...........

......... 26-30 26-2d.2 Fault Tree RCN Success Criteria Summary......................... 26-31 26-2e I&C Subtree Success Criteria Summary 26-32 26-3a PMS I&C Subtree Constmetions..............................26-130 26-3b Representative PMS I&C Subtree Plot Listing.....................26-149 26-4 PMS Dependency Matrix..

....26-163 26-5 PMS Components Test Assumptions

... 26 166 26-6 Component Maintenance Assumptions..........................26-166 26-7 Failure Probabilities Calculated in this Section...

...26-167 26-8 Operator Actions and System Disposition Analysis Summary..........26-172 l

26-9 Common Cause Failure Analysis Summary..................26-175 26-10a Fault Tree Basic Events for Reactor Trip System.......

..26-177 26-10b Fault Tree Basic Events for the I&C Subsystem.....................26-181 26-11 Assumed List of I&C Instrumentation.......................

.26-230 l

27 1 List of System Fault Trees............

.................. 2 7-9 27-2a Fault Tree DAS Success Criteria Summary......................... 27-9 27-2b Fault Tree DASI Success Criteria Summary....

.... 27-9 C

Revision: 9 ENEL T Westinghouse cah.

April 11,1997 xlvii oVW*n_%I1*P :Ib f

=M.

1 O

LIST OF TABLES (Cont.)

Table No.

Title Page 27-3 Notes Related to System Fault Tree Assumptions

..... 27-10 27-4 System Dependency Matrix.................................... 27-10 27-5 Component Test Assumptions.............................

27-10 27-6 Component Maintenance Assumptions........................... 27-10 27-7 Operator Actions and System Disposition Analysis Summary...........

27-10 27-8 Common Cause Failure Analysis Summary......................... 27-11 27-9 Fault Tree Basic Events for Diverse Actuation System................. 27-12 28-1 List of System Fault Trees.................................... 28-23 28-2 Fault Tree Success Criteria Summary............................. 28-24 28-3a PLS 1&C Subtree Constructions................................. 28-46 28-3b Representative PLS 1&C Subtree Plot Listing....................... 28-55 28-4 PLS Dependency Matrix...................................... 28-66 28-5 PLS Components Test Assumptions............................. 28-68 28-6 Component Maintenance Assumptions........................... 28-69 28-7 Failure Probabilities Calculated in this Section...................... 28-70 28-8 Operator Actions and System Disposition Analysis Summary............ 28-73 28-9 Common Cau:e Failure Analysis Summary......................... 28-75 28-10 Fault Tree Basic Events for 1&C Subsystem....................... 2 8 -77 28-11 Assumed List of 1&C Instrumentation.28-136 28-12 Assignments of Plant Systems to Control Logic Cabinets28-139 28-13 Assignments of Plant Systems to the Control Gruup Cabinets...........28-140 29-1 Electrical Components with Low Common Cause Failure Rate........... 29-16 25 '.

Common Cause Failure Calculations............................. 29-17 30-1 AP600 Human Error Probability Summary Results................... 30-79 30-2 Manual DAS Actuation

. 30-95 30-3 Dependency Level Evaluation Summary..

... 30-97 30-4 Dependency Level Evaluation 30-111 30-5 List of Acronyms...................30-114 31-1 Summary of Event Tree Scalar Probabilities........

.......... 31-15 31-2 UET Versus Cumulative Fraction of Transients in the UET Period (Transient Time)

. 31-17 32-1 Generic Data B ase........................................... 32-5 32-2 Test and Maintenance Outal,e Generic Data.

......... 32-21 32-3 Test and Maintenance Unavailabilities Used in AP600 Core Damage Quantification...........

32-22 Revision: 9

[ Westiligh0USB April 11,1997 o$ap600hpra\\rev 9\\pra-lotspf;1b xlyjij

1 l

l LIST OF TABLES (Cont.)

i Table No.

Title Eage 32-4 Common Cause Factors................

.. 32-23 32 5 Master Data Bank (SIMON.OUT File).....

. 32-29 33 1 Summary of AP600 System Fault Tree Failure Probabilities.......

.. 33 7 33-2 Example Accident Sequence Definitions for Large LOCA.............. 3 3 19 33-3 List of Dominant Cutsets (At Power)......

.... 33-20 33 4 List of Dominant Sequences (At Power)........

33-29 33-5 Importance Calculations for Initiating Events...

... 33-42 l

334)

AP600 PRA List of Basic Event Descriptions............

.. 33-43 34-1 Post-Accident Monitoring Equipment............................ 34-30 34-2 Level 1 Accident Class..

... 34 31 34 3 AP600 Level 1 Dominant Core Damage Sequences.....

............ 34-3 2 34-4 Summary of Release Categories

.................................%38 34-5 3BE-1 Event Summary...................................... 34-3 9

! f 34-6 3 BE-2 Event Summary...................................... 34 40 j

\\

34-7 3BE 3 Event Summary...................................... 34-41 l

l 34-8 3BE-4 Event Summary...................................... 34 42 34-9 Summary of Releasc Categories Considered for Accident Class 3BE....... 34-43 34-10 Summary of Release Category Disposition for Accident Class 3BE........ 34 43

% 11 3 B E-5 Event Summary...................................... 34-44

% 12 3 B E-7 Event Summary....................................... 34-45 j

% 13 3 B E-8 Event Summary....................................... 34-46 W14 3BE-9 Event Summary......

...............................34-47

% 15 3BE-10 Event Summary..................................... 34-48 34-16 3 B L-1 Event Summary....................................... 34-49

%I7 3 B L-2 Event Summary...................................... % 50 l

34-18 Summary of Release Categories C'onsidered for Accident Class 3BL....... 34-51 34-19 Summary of Release Category Disposition for Accident Class 3BL........ 34-51 34-20 3 BL-3 Event Summary...................................... 34-52 l

34-21 3BR-1 Event Summary........................................ %53 l

34-22 Summary of Release Category Disposition for Accident Class 3BR........ 34-54 i

% 23 3C-1 Event Summary........................................ 34-55

% 24 Summary of Release Category Disposition for Accident Class 3C......... 34-56 l

34-25 3 D-1 Event Summary........................................ 34-57 34 26 Summary of Release Categories Considered for Accident Class 3D........ 34 5 8

% 27 Summary of Release Category Disposition for Accident Class 3D..........%58 34-28 3 D-2 Event Summary......................................... %59

)

34-29 6E-1 Event S ummary........................................ 34-60

/

% 30 6E 2 Event Summary........................................ 34-61 j

34-31 6E 3 Event Summary

.......................................34-62 I

Revision: 9 W W8Silligh0088 E..S-April 11,1997

l l

e i

l LIST OF TABLES (Cont.)

Table No.

Title Page l

34-32 6L-1 Event Summary.

....... 34 63 34-33 Summary of Release Categories Considered for Accident Class I AP

... 34-64 34-34 Summary of Release Category Disposition for Accident Class I AP.

. 34-64 34-35 1 AP-1 Event Summary..

..................... 34-65 34-36 Summary of Release Categories Considered for Accident Class IA

... 34-66 4

34-37 Summary of Release Category Disposition for Accident Class 1 A........

34-66 34-38 1 A-1 Event Summary..

.. 34-67 35-1 Functional Definitions of Level 1 Accident Classes

....... 35-22 35-2 CET Initial Conditions for Level 1 Accident Classes

.... 35-23 35-3 Containment Event Tree Nodal Questions...

.......... 3 5-24 35-4 Summary of Release Category Definitions.....

........... 35-25 35-5 Summary of Containment Event Tree Success Criteria..

35-26 35-6 Summary of Operator Actions Credited on Containment Event Tree..

.... 35-29 36-1 Summary Table for RCS Depressurization (CET Node DP).............. 36-7 j

37-1 Summary Table for Containment Isolation (CET Node IS)

.... 37-5 l 38-1 Summary Table for Reflooding (CET Node RFL)

...... 38-6 39-1 Pressure Loading on Insulation

.............................. 3 9-1 5 39-2 Summary Table for Reactor Cavity Flooding (CET NODE IR)........... 39-16 39-3 Summary Table for Debris Relocation to Cavity (CET NODE VF)...

39-16 41-1 Containment Event Tree Nodal Failure Probabilities.................. 41 -4 3 41-2 Summary of System Assumptions for MAAP4 Hydrogen Mixing Analyses... 41-44 41-3 Summary of Hydrogen Gene;ation Results MAAP4 Hydrogen Mixing Analyses................................................ 41-51 41-4 Summary of Early Compartment Gas Composition Results for MAAP4 Hydrogen Mixing Analyses......

.......... 41 -57 41-5 Summary of System Assumptions for MAAP4 Hydrogen Burning Analyses...........................

.... 41 -67 41-6 Summary of Hydrogen Generation Results for MAAP4 Hydrogen Buming Analyses........................................... 41 -68 41-7 Summary of Early Compartment Gas Composition Results for MAAP4 Hydrogen Buming Analyses.......

...... 41 -69 41-8 Geometric Classes for Flame Acceleration.

.......... 41 -71 41-9 fammary of DDT Potential Evaluation from NUREG/CR-4803.......... 41-72 41-10a Dependence of Result Class on Mixture and Geometric Class........... 41 -73 41-10b Classification of the Probability of Deflagration to-Detonation Transition

.. 41-73 l

Revision: 10 ENEL T Westirigholise l June 30,1997

ng_

obp600$rn\\rev.10$ra-lot wpf.lb 1

i

/m i

I

{wJ l

LIST OF TABLES (Cont) j I

Table No.

Title P,_ age 41-11 AP600 Compartment Geometry Class Assignment for Sherman-Berman i

Methodology for the Estimation of the Likelihood of Detonation.......... 41-74 l

41-12 AP600 Scenario Dependencies for Early Detonation Analysis............ 41-75 1

41-13 Early Detonation Probability.................................. 41 -7 6

)

41-14 Intermediate Time Frame Detonation Probability.................... 41-87 l

41-15 Safety Margin Basis Containment Performance Requirement............ 41-90 l

1 4

42-1 Parameters Used in the Construction of the AP600 Containment i

l Failure Probability Distribution for Containment Temperature = 400*F....... 42-9 40 "

Parameters Used in the Construction of the AP600 Conditional Containment l

Failure Probability Distribution for Containment Temperature = 331'F...... 42-10 42-3 Cumulative Containment Failure Probability, Temperature = 400'F........ 42-11 i

42-4 Cumulative Contair. ment Failure Probability, Temperature = 331*F..

. 42-12 43-1 AP600 Containment Event Tree Nodes............................. 43-9 43-2 Release Category Descriptions...........

..... 43-10

]

43-3 Large Release Frequency, CCFP, and C, by Accident Class............. 43-11 43-4 Dominant Containment Event Tree Sequences for Large Release

(

j Ivequency....

.....................43-12

's 43-5 Accident Class 3BE Core Damage Sequences...................... 43-15 43-6 Accident Class 3BL Core Damage Sequences...................... 4 3 - 17 l

43-7 Accident Class 3BR Core Damage Sequences...........

43-20

)

43-8 Accident Class 1 A Core Damage Sequences...........

.......... 43-21 43-9 Accident Class I AP Core Damage Sequences....................... 43-23 43-10 Accident Class 3A Core Damage Sequences........................ 43-24 43-11 Accident Class 3C Core Damage Sequences.............

..,... 43-25 43-12 Accident Class ::D Core Damage Sequences....................... 43-26 43-13 Accident Class 6 Core Damage Sequences

.... 43-27 43-14 Dominant Cutsets for Large Release Frequency...........

....... 43-29 43-15 17CFE 3BE Large Release Frequency Sequence Cutsets......

. 43-33 43-16 19BP6 Large Release Frequency Sequence Cutsets...

43-42 43-17 19BP 3A Large Release Frequency Sequence Cutsets.........

. 43-52 43-18 19P1 A Large Release Frequency Sequence Cutsets.................... 43-60 43-19 19BPI AP Large Release Frequency Sequence Cutsets

..... 43-69 43-20 8CFE 3C Release Frequency Sequence Cutsets..........

........ 43-79 43-21 17CFE 3D Large Release Frequency Sequence Cutsets.

43-80 43-22 1 SCI 3BE Large Release Frequency Sequence Cutsets

... 43-88 43-23 18CI 3D Large Release Frequency Sequence Cutsets......

. 43-97

(

43-24 18CI 3BL Large Release Frequency Sequence Cutsets

.........43-106 43-25 18CI 3C Large Release Frequency Sequence Cutsets

.43-115 43-26 6 CFE 3BE Large Release Frequency Sequence Cutsets..........

.43-118 Revision: 9 ENEL l

[ W85tingh0Use m =: %

April 11,1997 l

[j o:\\ap600\\pravev_9%pra-latwpf;1b I

L

-~

O LIST OF TABLES (Cont.)

Table No.

Title Page 43-27 18CI 3A Large Release Frequency Sequence Cutsets....

.......... 4 3-129 43-28 18CI 3BR Large Release Frequency Sequence cutsets............... 4 3-143 44-3 MAAP Model Benchmarks.......

...... 44-8 45-1 Environmental Release Fmetions at 24 Hours After Core Damage Per Release Category.

... 45-8 45-2 Environmental Release Fractions at 72 Hours After Core Damage Per Release Category...

.45-9 45-3 Release Category IC Cases for Comparison..

. 45-10 f

45-4 Release Category BP Cases for Comparison

.......... 45-11 45-5 Release Category CFE Cases for Cotaparison

.. 45-12 45-6 Release Category CFI Cases for Comparison.......

. 45-13 45-7 Summary of Source Term Sensitivity Studies

............. 45-14 45-8 Volatile Aerosols (Represented by Iodine)....

.. 45-15 1

45-9 Non-Volatile Aerosols (Represented by Strontium).

............ 45-16 49-1 AP600 Source Terms From Level 2 Analysis........

. 49-9 l

49-2 AP600 Source Tcrms for Dose Evaluation (MACCS)

. 49-10 49-3 Site Boundary Whole-Body Dose (Effective Dose Equivalent)........

49-11 49-4 Site Boundary Thyroid Dose...

49-12 l

49-5 Po,nulation Whole-Body Dose (0 to 80.5 km Radius).....

... 49-13 49-6 Site Boundary Red Marrow Dose

. 49-14 49 7 Dose Summary...................

........................49-15 49-8 Site Boundary Dose Risk - 24 Hours..........

................ 4 9-16 49-9 Site Boundary Dose Risk - 72 Hours.......

...... 49-17 49-10 Population Dose Risk - 24 Hours............

. 49-18 49-11 Population Boundary Dose Risk - 72 Hours

................... 49-19 50-1 AP600 PRA Core Damage From Intemal Initiating Events At-Power Risk Decrease Ranking of Initiating Events.........

5 0-26 50-2 AP6'00 PRA Core Damage From Intemal Initiating Events At-Power Conditional Core Damage Ranking of Initiating Events..

. 50-28 50-3 AP600 Common Cause Importances - Risk Decrease 50-30 50-4 AP600 Common Cause Importances Risk Increase.

. 50 31 50-5 Human Error Risk Importances - Risk Decrease 50-33 50-6 Human Error Risk Importances - Risk Increase.....

50-34 50-7 AP600 Component Importances - Risk Decrease.........

. 50-35 50-8 AP600 Component Importances - Risk Increase.

........... 50-36 50-9 System Importance Calculation Results

. 50-37 50-10 AP600 Systems Grouped by PRA System Importance 50-39 9

Revision: 9 April 11,1997 h_

[ Westingh0!!Se o:\\ap600\\praWv 9\\pra-lot.wpf:lb lii

w s

LIST OF TABLES (Cont.)

Table No.

TJat Esse 50-11 Operator Actions in the hcMine PRA............................ 50-40 50-12 Contribution o Initiating Events to Core Damage Frequency for r

Sensitivity Case with Failure of all Operator Actions

................. 50-4 2 50 13 Operator Actions in Sensitivity Case 27........................... 50-43 50-14 Component Importances - For Risk Decrease Measure (At Power)......... 50-45 50-15 Component Importances - For Risk-Increase Measure (At Power).......... 50-55 50-16 Containment Event Tree Node Irpportances......................... 50-65 50-17 Contribution of Initiating Events to Large Release Frequency............ 50-66 50-18 Initiating Event vs Containment Effectiveness (C,)................... 50-67 50-19 End-State Importances....................................... 50-68 50-20 Summary of Large Release Frequency Component Importances Sorted l

by Risk Increase........................................... 50-69 l.

50-21 Summary of Large Release Frequency Component Importances Sorted by Risk Decrease...........,............................... 50-75 51-1 Uncertainty Analysis Cases.................................... 51-7 51-2 Basic Event Uncertainties...................................... 51-9 51-3 Summary of Results of PRA Uncertainty Analysis for Internal Events at Power........

...................................51-17 52-1 Nonsafety-Related Systems Removed from Baseline PRA Analysis........ 52-25 52-2 Safety-Related Systems credhed in the Focused PRA Sensitivity Study..... 52-26 52-3 At-Power Front-Line System Fault Trees.......................... 52-27 52-4 At-Power Focused PRA Sensitivity Study PMS Fault Trees.............. 52-29 52-5 At-Power Focused PRA Sensitivity Study Core Damage Contribution by Initiating Event......................................... 52-31 At-Power Focused PRA Core Damage Quantification Cutsets............ 52-33 l

52 6

~ 52-7 At-Power Focused PRA Core Damage Quantification Accident Sequences.... 52-50 52-8 At-Power Focused PRA Sensitivity Study Core Damage Contribution by B asic Events..............................................,. 5 2-56 52-9 Results of the Accident Class Quantification........................ 52-66 52-10 Summary of Release Frequency Calculations........................ 52-67 52-11 Dominant Containment Event Tree Sequences....................... 52-68 52-12 AbPower Initiating Event Contributions to Large Release Frequency....... 52-70 52-13 Shudown Frontline System Fault Trees........................... 52-72 52-14 Shutdown Focused PRA SensiCvity Study PMS Fault Trees............. 52-73 52-15 Shutdown Focused PRA Sensitivity Study Core Damage Contribution by Initiating Event................................. 52-74 52-16 Shutdown Focused PRA Sensitivity Study Top 200 Cutsets.............. 52-75 52-17 Shutdown Focused PRA Sensitivity Study Accident Sequences........... 52-93 (O_-)

Revisi a: 9 g

RMg 6 April 11,1997 jjjj cAap600%prairev.9\\pra-lot.wpf.lb

Bs n

O.

LIST OF TABLES (Cont.)

l 1

l

_ able No.

Title P_ age l

T 52-18 Shutdown Focused PRA Sensitivity Study Core Damage Contribution by Basic Event

. 52-97 52-19 Shutdown Focused PRA Sensitivity Study Release Frequency Results Summary by Release Category 52-103 52-20 Shutdown Release Category IC Reaults Summary 52-104 52-21 Shutdown Release Category ICP Results Summary...................52-105 52-22 Shutdown Release Category XL Results Summary

.52-106 52-23 Shutdown Release Category BP Results Summary..

....52-107 52-24 Shutdown Release Category CI Results Summary 52-107 52-25 Shutdown Release Category CI-C Results Summary..........

.....52-108 52-26 Shutdown Release Category CFE Results Summary.........

......52-108 52-27 Shutdown Release Category CFE-C Results Summary 52-109 52-28 Shutdown Release Category CFI Results Summary.................. 5 2-1 10 52-29 Shutdown Release Category CFL Results Summary.........

...52-110 52-30 Shutdown Release Category CFV Results Summary........

.52-111 52-31 At-Power Focused PRA Sensitivity Study Flooding-Induced Core Damage Frequency Quantification Results Summary.................52-112 52-32 Shutdown Focused PRA Sensitivity Study Flooding-Induced Core Damage Frequency Quantification Results Summary........

.......52-114 52-33 Summary of Focused PRA Sensitivity Study Results52-116 54-1 Matrix: Shutdown Phase / Outage Type / Operating Mode................ 54-89 54-2 Systems Availability and Actuating Signals Type................

.. 54-90 54-3 Initiating Event Frequencies Used in Event Tree Quantification.......... 54-92 54-4 AP600 Shutdown Mission Times and Frequencies.

. 54-93 54-5 Mission Times for Normally Operating Systems for AP600 Shutdown 54-94 Fault Trees & Event Tree Quantification..

54-6 Initiating Event Frequencies Used in AP600 Shutdown Event Tree Quantification....

... 54-95 54 7 List of System Fault Trees (Shutdown Case).........

.. 54-96 54-8 System Unavailability Status..........

..54-101 54-9 PMS/DAS I&C Subtrees for Modeling Shutdown PRA.54-106 54-10 PMS/DAS I&C Fault Tree Equivalents: Shutdown and At-Power Cases........

..54-109 54-11 PMS/DAS Subtree Success Criteria Summary....

...54-111 54-12 Data Developed for the PMS/DAS Shutdown I&C Models..

.54-129 54-13 Operator Actions Assignments for the PMS/DAS I&C Analysis..........54-131 54-138 54-14 PLS I&C Subtrees for Modeling Shutdown PRA...

54-15 PLS I&C Fault Tree Equivalents: Shutdown and At-Power Cases.

..54-139 54-16 PLS Subtree Success Criteria Summary

........54-140 54-17 Data Developed for PLS I&C Analysis...

..54-142 O

Revision: 9 ENEL

[ Westi!1gt100S8 April 11,1997 my=6 c:hp600\\pra\\rev.9\\pra-lot.wpf: I b liv

151 pJ LIST OF TABLES (Cont.)

Table No.

Title P_REe 54-18 Operator Actions Assignments for the PLS I&C Analysis..............54-143 54-19 PMS/DAS I&C Subtrees Used in Modeling Shutdown Assessment Plant Damage State Trees........................................54-144 54-20 PMS/DAS I&C Fault Tree Equivalents: Shutdown and At-Power Level 2 Cases........................................... 54 144 54-21 Operator Action Assignments for the PMS/DAS Level 2 I&C Analysis.....54-145 54-22a ADS Success Criteria Versus Accident Conditions Fell Depressurization Shutdown Condition....................................... 5 4-14 6 54-22b ADS Fault Tree Summary (For Plant Damage States for Events Initiated During Shutdown)......

............................... 5 4-1 46 54-23 Fault Tree ADAS Success Crite-ia Summary.......................54-147 54-24 Fault Tree ADTS Success Criteria Summary.......................54-148 54-25 Fault Tree ADALS Success Criteria Summary......................54-149 54-26 Fault Tree ADLS Success Criteria Summary.......................54-150 54-27 Fault Tree CIST Success Criteria Summary.......................54-151 54-28 Fault Tree CM2AM Success Criteria Summary....................

54-15 2 54-29 Fault Tree CM2 AMP Success Criteria Summary................

.54-153 54-30 Fault Tree IW2AB Success Criteria Summary......................54-154 (g

54-31 Fault Tree IW2A Success Criteria Summary.......................54-155 54-32 Fault Tree IW2AO Success Criteria Summary......................54-156 54-33 Fault Tree IW2AP Success Criteria Summary......................54-157 54-34 Fault Tree IWFS Success Criteria Summary 54-15 8 54-35 Fault Tree IWRNS Success Criteria Summary......................54-159 54-36 Fault Tree PCTS Success Criteria Summary

......54-160 54-37 Fault Tree PRM Success Criteria Summary.......................54-161 54-38 Fault Tree PRMP Success Criteria Summary......................54-162 54-39 Fault Tree PRW Success Criteria Summary.......................54-163 54-40 Fault Tree RNC2 Success Criteria Surmnary.......................54-164 54-41 Fault Tree RNT2 Success Criteria Summary.......................54-165 54-42 Fault Tree RNP2 Success Criteria Summary.......................54-166 54-43 Loss of CCS/SWS During Shutdown Initiating Event Fault Tree CSWF2 Success Criteria Summary....................................54-167 l

l 54-44 Fault Tree CCTS Success Criteria Summary......

.............. 54-16 8 1

54-45 Fault Tree CCPS Success Criteria Summary.......................54-169 54-46 Fault Tree SWTS Success Criteria Summary.......................54-170 54-47 Fault Tree SWPS Success Criteria Summary......................54-171 54-48 Fault Tree VLHS Success Criteria Summary......................54-172 I

i I

l 54-49 AC & DC Fault Trees Success Criteria Summary....................54-173 l

54-50 Fault Tree ADQLTS Data Summary.............................54-187

'54-51 Fault Tree ADTLTS Data Summary.............................54-188 1

54-52 AP600 Shutdown Modes.................................... 5 4-1 8 9 fiw Revision: 9 ENE 3 W8Shl @ 0tlS8 m:5.,:.

April 11,1997 ly oMp600\\pra\\rev_9%pra lot wpf.lb L________________

u.w=

i l

O l

LIST OF TABLES (Cont.)

_P, age Table No.

Title a

54-53 ADS Success Criteria for Shutdown Conditions......

...........54-190 54-54a Sequence of Events for MAAP4 Cases Supporting ADS Success Criteria ADTS, ADLS.................

.54-192 54-54b Sequence of Events for MAAP4 Cases Supporting ADS Success Criteria ADSS

..........54-193 54-54c Sequence of Events for MAAP4 Cases Supporting ADS Success Criteria ADTS

....54-194 54-54d Sequence of Events for MAAP4 Cases Supporting ADS Success Criteria ADLS and ADTS..........

.54-195 54-54e Sequence of Events for MAAP Cases Supporting ADS Success Criteria ADNS

...........54-196 54-55 Common Cause Failure Evaluated for Shutdown.......

..........54-197 54-56 AP600 Shutdown Assessment HEP Summary Results...

...54-198 54-57 Dependency Level Evaluation Summary for Shutdown Assessment

......54-207 54-58 Shutdown Master Data Bank...................

.54-211 54-59 List of Basic Events and their Descriptions (Shutdown Model)

........54-227 54-60 AP600 Shutdown Assessment Level 1 Accident Sequences Quantification Results.....

........54-235 54-61 List of Dominant Sequences (At Shutdown)

......54-236 54-62 List of Dotninant Cutsets (At Shutdown).........................54-240 54-63 Shutdown initiating Event Importances...........................54-251 54-64 Basic Event Importances Using Risk-Decrease Measure (At Shutdown).....54-252 54-65 Basic Event Importances Using Risk-Increase Measure (At Shutdown).....54-258 54-66 AP600 Containment Event Tree Nodal Questions.

...54-264 54-67 AP600 Release Category Summary

...54-265 54-68 Summary of Shutdown and Low-Power Accident Classes.........

.54-266 54-69 AP600 Shutdown and Low-Power Plant Damage Substate Frequencies

.54-267 54-70 AP600 Shutdown and Low-Power Plant Damage Substate Conditional Probabilities....54-268 54-71 AP600 Shutdown and Low-Power Containment Event Tree Quantification Results - Release Category Frequencies (Per Reactor-Year).............54-269 54-72 Release Category IC Dominant Sequences.......

.54-270 54-73 Release Category ICP Dominant Sequences............

........54-271 54-74 Release Category XL Dominant Sequences.....

...54-272 54-75 Release Category BP Dominant Sequences....

....54-273 54-76 Release Category CI Dominant Sequences..

.54-274 54-77 Release Category CI-C Dominant Sequences.......

...54-275 54-78 Release Category CFE Dominant Sequences......................54-276 54-79 Release Category CFE-C Dominant Sequences.....................54-277 54-80 Release Category CFI Dominant Sequences.....

...54-278 54-81

. Release Category CFL Dominant Sequences

...54-279 O

Revision: 9 ENE

[ Westiligh0USB April 11,1997 wrah onap600praWv.9pra-lot.wpf;1b lvi

1 LIST OF TABLES (Cont.)

Table No.

.Thlt East 54-82 Release Category CFV Dominant Sequences.......................54-280 54-83 Core Damage for Intemal Initiating Events at Shutdown - Risk Decrease...54-281 54-84 Core Damage for Internal Initiating Events at Shutdown - Risk Increase....54-282 54-85 Shutdown Common Cause Importance - Risk Decrease................54-283 54-86 Shutdown Common Cause Importance - Risk Increase................54-284 54-87 Shutdown Human Error Risk Importance - Risk Decrease..............54-285 54-88 Shutdown Human Errcr Risk Imponance - Risk Increase..............54-285 54-89 Shutdown Component Importance - Risk Decrease...................54-286 54-90 Shutdown Component Imponance - Risk Increase...................54-286 54-91 Operator Actions for Sensitivity Cases 7 and 8.....................54-287 54-92 Matrix of Shutdown Initiating Events Screening Process...............54-288 q

54-93 Technical Specification Requirements for Safety-Related Components......54-298 1

t 55-1 Seismic Margin HCLPF Values............................ -.... 55-72 55-2 SMA Event Tree Success Paths................................. 55-77

~ 55 3 -

Basic Event HCLPF Values................................... 55-80 i

55-4 EQ-IEV-STRUC HCLPF..................................... 55-84 l

55-5 EQ-IEV-RVFA HCLPF...................................... 5 5-85

[

55-6 EQ-IEV-LLOCA HCLPF..................................... 55-86 55-7 EQ-IEV-SLOCA HCLPF..................................... 5 5-87 a

55-8 EQ-IEV-A*IWS HCLPF...................................... 55-88

{

55 9 System HCLPFs........................................... 55-89

)

55-10 Sequence HCLPFs

........................................55-90 55-11 SM.. Mixed Cutsets......................................... 55-92 55-12 LarFe Release HCLPFS...................................... 55-93 55-13 med Cutsets for LOSP Operator Action Sensitivity.................. 55-95 55-14 Mixed Cutsets for LOSP 72-hour Mission Time Sensitivity............. 55-102 56-1 AC and Non-class IE DC Equipment Locations...................... 56-55 56-2 AP600 Building Areas....................................... 56-57 56-3 Flooding Analysis Initial Screening Results......................... 56-59 56-4 At. Power Detailed Screening Results............................. 56-63 l

56-5 At-Power Flooding-Induced Core Damage Frequency Quantification Summary Results........................................... 56-68 56-6 Shutdown Flooding-Induced Core Damage Frequency Quantification Summary Results........................................... 56-72 56-7 At Power Flooding Dominant Cutsets............................. 56-77 56-8 Shutdown Flooding Dominant Cutsets............................ 5 6-87 l

l Revision: 9 l

YN April 11,1997 w

f Ivii oVmPa*v W"P

  • l I

O LIST OF TABLES (Cont.)

Table No.

Title

_P_ age 57-la AP600 Systems Credited for Power Operation...................... 57-50 57-lb AP600 Systems Credited During Safe Shutdown and Mid-Loop Operation............................. 5 7-51 57-2a Automatic Suppression System Reliability.......................... 57-52 57-2b Fire Areas with Automatic Fire Suppression....................... 57-52 57-3 Fire Barrier Failure Probabilities................................ 57-53 57-4 Summary of Qualitative Evaluation Results - Power

............... 5 7-54 Operation...............

57-5 Summary of Qualitative Evaluation Results for Containment for Power Operation....................... 5 7 -67 57-6 Fire Ignition Frequencies for AP600 Fire Areas......

..... 57-69 57-7 Fire Ignition Frequencies for AP600 Containment Fire Area............ 57-72 57-8 Summary of Fire Damage State Binning Process -

Power Operation.........

... 57-73 57-9 Summary of Fire Damage State Binning Process for Containment - Power Operation.................

.. 57-81 57-10 Contribution of Fire-Induced Initiating Event to Plant Core Damage Frequency - Power Operation

....... 57-83 57-11 AP600 Fire Scenario Initiating Frequency Binning -

Power Operation.......................................... 57-84 57-12 List of Top 200 Dominant Cutsets - Power Operation.................. 57-86 57-13 Summary of Quantitative Analysis Results........................57-100 57-14 Summary of QuantitatNe Analysis Results for Containment.....

.............57-109 57-15 Quantification of Core Damage Frequency for Control Room Fire Scenarios - Power Operation.........57-111 57-16 Summary of AP600 Plant Operational State (POS)

Times for Shutdown........

....57-112 57-17 Shutdown Fire Ignition Frequencies for AP600 Fire Areas

.......57-113 57-18 Fire Ignition Frequencies for AP600 Containment

..57-116 Fire Area....

57-19 Summary of Fire Areas in which a Fire Can Initiate Spurious ADS Actuation (LOCA)

...57-117 57-20 Shutdown Fire Damage State Definitions57-118 57-21 Shutdown Containment Fire Damage State Definitions57-119 57-22 Summary of Qualitative Evaluation Results - Safe Shutdown........57-120 57-23 Summary of Qualitative Evaluation Results for Containment Shutdown Operation (After Screening).................57-128 57-24 Summary of Quantitative Analysis Results - Safe Shutdown......57-129 9

Revision: 9 ENEL April 11,1997 mut:6 WeStiflgt10USB ow600pwev_9,maatwpr.ib Iviii

gb LIST OF TABLES (Cont.)

Table No.

Title bage 57-25 Quantitative Summary - Control Room Fires During Safe Shutdown

.......................................57-138 l

57-26 Summary of Qualitative Evaluation Results -

]

Mid-Loop Operation..........

...57-139 l

57-27 Summary of Quantitative Results - Mid-Loop Operation.

......57-146 57-28 Quantitative Summary - Control Room Fires During Mid-Loop Operation 57-154 j

57-29 Safe Shutdown Containment Single-Hot-Short LOCA Sensitivity........57-155 1

59-1 Contribution of Initiating Events to Core Damage 59-104 59-2 Conditional Core Damage Probability of Initiating Events..

......59-105 59-3 Intemal Initiating Events at Power Dominant Core Damage Sequences....59-106 59-4 Sequonce 1 - Safety Injection Line Break Dominant Cutsets (SI-LB-02)....59-108 i

59-5 Sequence 2 - Intermediate LOCA Dominant Cutsets (NLOCA-03)........59-113 59-6 Sequence 3 - Large LOCA Dominant Cutsets (LLOCA-06)...

......59-118 I

59-7 Sequence 4 - Large LOCA Dominant Cutsets (LLOCA-03)..

......59-124 I

59-8 Sequence 5 - Reactor Vessel Rupture Cutset (RV-RP-02)............. 59 130 59-9 Sequence 6 - Large LOCA Dominant Cutsets (LLOCA-11)

.....59-131

(~q j

59-10 Sequence 7 - ATWS Dominant Cutsets (ATWS-28)....

..59-133 59-11 Sequence 8 - Medium LOCA Dominant Cutsets (MLOCA-03)59-141 59-12 Sequence 9 - ATWS Dominant Cutsets (ATWS-13)...............

.59-146 59-13 Sequence 10 - Intermediate LOCA Dominant Cutsets (NLOCA-04).......59-151 59-14 Sequence 11 - Safety Injection Line Break Dominant Cutsets (SI-LB-03)

.. 59 156 59-15 Sequence 12 - Small LOCA Dominant Cutsets (SLOCA-03)...........59-160 59-16 Sequence 13 - Lore Makeup Tank Line Break Dominant Cutsets (CMTLB-03)59-165 59-17 Sequence 14 - Steam Generator Tube Rupture Dominant Cutsers (SGTR-07).59-170 59-18 Sequence 15 - Steam Generator Tube Rupture Dominant Cutsets (SGTR-23).59-171 j

59-19 Sequence 16 - Large LOCA Dominant Cutsets (LLOCA-02).

...59-177

{

59-20 Sequence 17 - Large LOCA Dominant Cutsets (LLOCA-05)..

.59-183 59-21 Sequence 18 - Consequential SGTR Dominant Cutsets (SGTRC-03)...

.59-189 59-22 Sequence 19 - Intermediate LOCA Dominant Cutsets (NLOCA-16)......59-195 l

59-23 Typical System Failure Probabilities. Showing Higher Reliabilities l

for Safety Systems...........

.59-201 l

59-24 Dominant CET Sequences.

5M02 J

59-25 Comparison of Initiating Event Contribution to Core Damage and Large Release Frequencies

........59-203 3

59-26 Summary of AP600 PRA Results......................

.......59-204 l

l 59-27 Comparison of AP600 PRA Results to Risk Goals...................59-205 59-28 Site Boundary Dose Risk at 24 Hours

......... 5 9-206 1

59-29 AP600 PRA-Based Insights.......

.59-207 O'V1 l

Revision: 11 l

[ W85tiligh00S8 hh_

March 1998 j

}jx o:\\ap600\\ prs \\rev_l l\\pra-lot.wpf:I b l

i

___________a

)

e LIST OF FIGURES Firure No.

Title P_ age 2-1 Core Damage Logic Diagram for Internal Initiators

. 2-58 2-2 Core Damage Logic Diagram for Internal Initiators

. 2-59 2-3 Core Damage Logic Diagram for Intemal Initiators

... 2-60 2-4 Core Damage Logic Diagram for Internal Initiators

.... 2-61 4-1 Large Loss-of-Coolant-Accident Event Tree 4-120 4-2 Medium Loss-of-Coolant Accident Event Tree..................

. 4-121 4-3 Core Makeup Tank Line Break Event Tree....

... 4-122 4-4 Direct Vessel Injection Line Break Event Tree.

..... 4-123 4-5 Intermediate Loss-of-Coolant Accident Event Tree.

.. 4-124 4-6 Small Loss-of-Coolant Accident Event Tree

. 4-125 4-7 Reactor Coolant System Leak Event Tree..

....... 4-126 4-8 Pa.;sive Residual Heat Removal Tube Rupture Event Tree.....

... 4-127 4-9 Steam Generator Tube Rupture Event Tree........

.... 4-128 4-10 Reactor Vessel Rupture Event Tree

. 4-130 4-11 Interfacing Systems Loss-of-Coolant Accident Event Tree.........

.. 4-131 4-12 Transients with Main Feedwater Event Tree

.... 4-132 4-13 Transients with Loss of Reactor Coolant Sstem Event Tree............. 4-133 4-14 Transients with Loss of Main Feedwater Event Tree..................

4-134 4-15 Transients with Core Power Excursion Event Tree 4-13 5 4-16 Loss of Component Cooling Water System / Service Water System Event Tree

. 4-136 4-17 Loss of Main Feedwater Event Tree... -....

..... 4-137 4-18 Loss of Condenser Event Tree........

................. 4-138 4-19 Loss of Compressed Air Event Tree......

4-139 4-20 Loss of Offsite Power Event Tree

. 4-140 4-21 Main Steam Line Break Downstream of Main Steam Isolation Valves Event Tree.................

4-141 4-22 Main Steam Line Break Upstream of Main Steam Isolation Valves Event Tree.

4-142 4-23 Stuck-Open Secondary. Side Safety Valve Event Tree........

.... 4-143 4-24 Anticipated Transient Without Scram Precursor without Main Feedwater Event Tree..

. 4-144 4-25 Anticipated Transient Without Scram Precursor with Injection Event Tree

. 4-146 4-26 Anticipated Transient Without Scram Precursor Transients with Main Feedwater Event Tree..

4-147 O

Revision: 9 April 11,1997 3 WBStiflgh0USB oWGprairev.9%pra-lof wpf.lb lx

,IO

'\\l v)

LIST OF FIGURES (Cont.)

Fieure No.

Title Page 4A-1 Example Event Tree for Illustration of Terminology...................

4A-7 4A-2 Functional Event Tree 4A-8 4A-3 Illustration of Consequential Event End States......................

4 A-9 7-1 Power / Control Model for Large Loads (4160-vac/480-vac Pumps, Fans, and Motors)

.. 7-34 7-2 Power / Control Model for Motor-Operated Valves..................... 7-36 7-3 Power / Control Model for Air-Operated Valves........................ 7-38 7-4 Power / Control Model for Variable Speed Motor (Main Feedwater Pump)..... 7-40 7-5 An Illustration of Fault Tree Basic Events for a Pump following the Model Given in Figure 7-1.........

................................7-42 8-1 Passive Residual Heat Removal System Sketch..................

.. 8-23 8-2 Passive Core Cooling System - Passive Residual Heat Removal Piping and Instrumentation Diagram.....

........ 8-25 9-1 Core Makeup Tank Subsystem Sketch...........

......... 9-25 9-2 Passive Core Cooling System Piping and Instrumentation Diagram......... 9-27 i

i

\\

C) 10-1 Passive Core Cooling System - Accumulator Subsystem............... 10-13 11-1 Automatic Depressurization System Sketch........................

11-44 12-1 IRWST Subsystem Sketch........................,........... 12-38 13-1 Passive Containment Cooling System Sketch....................... 13-12 14-1 Feedwater System Piping and Instrumentation Diagram 14-45 14-2 Condensate System Piping and Instrumentation Diagram..

14-51 14-3 Main Steam System Piping and Instrumentation Diagram.,............. 14-53 14-4 Turbine Building Closed Cooling Water System Piping and i

Instrumentation Diagram...................

... 14-55 14-5 Circulating Water System Piping and Instrumentation Diagram......

14-61 l

l 15-1 Chemical and Volume Control System Sketch....

15-25 l

15-2 Chemical and Volume Control System Piping and Instmmentation Diagram...........

15-27 l

l 17-1 Normal Residual Heat Removal System Sketch.

..... 17-19 17-2 Normal Residual Heat Removal System Piping and Instmmentation Diagram..

17-21 18-1 Component Cooling Water System Piping and Instrumentation Diagram....

18-13 A

l i

(

/

Revision: 9 ENEl.

[ WBStinghotise en h April 11,1997

[xi oAap60opa\\rev.,9%pra4ofwpf.lb O____________-_____________

e LIST OF FIGURES (Cont.)

P_ age Figure No.

Title a

19-1 Service Water System Piping and Instrumentation Diagram..

. 19-17 20-1 Central Chilled Water Low-Capacity Subsystem Piping and Instmmentation Diagram......

... 20-13 21-1 AC Power System One-Line Diagram............................ 21-61 22-1 Class IE de System One-Line Diagram

... 22 53 22-2 Class IE UPS One-Line Diagram 22-57 23-1 Non-Class IE de and UPS System One-Line Drawing

. 23-43 23-2 Non-Class IE de and UPS System Sketch.

......... 23-47 25-1 Instmment Air Subsystem Sketch.............

............... 25-19 27-1 Diverse Actuation System Block and Interface Diagram............... 27-13 29-1 IRWST Valve Configuration...

29-23 e

30-1 Human Reliability Analysis Quantificatio Model 30-115 34-1 Case 3BE-1: RCS Pressure and SG Pressure

.............. 34-68 34-2 Case 3BE-1: Loop 1 ADS Stage 4 Flows......................... 34-69 34-3 Case 3BE-1: Accumulator Water Mass and CMT Water Mass........... 34-70 34-4 Case 3BE-1: IRWST Flows.................................. 34-71 34-5 Case 3BE-1: Break Flows..

. 34-72 34-6 Case 3BE-1: Reactor Vessel Levels.........

..... 34-73 34-7 Case 3BE-1: Core Temperatures...

........ 34-74 34-8 Case 3BE-1: Reactor Cavity Water Level and IRWST Water Level.....

. 34-75 34-9 Case 3BE-1: Loop Compartment and Valve Vault Water Levels.

.. 34-76 34 10 Case 3BE-1: Containment Pressure................

... 34-77 34-11 Case 3BE-1: Containment Temperatures..

... 34-78 34-12 Case 3BE-1: Debris Mass.

. 34-79 34-13 Case 3BE-1: Reactor Vessel-to-Cavity Water Heat Transfer............ 34-80 34-14 Case 3BE-1: Hydrogen Generation

. 34-81 34-15 Case 3BE-1: Mass of Csl Released to Containment..

... 34-82 34-16 Case 3BE-1: Noble Gases Released.............

.... 34-83 34-17 Case 3BE-1: Releases to Environment...........

34 84 34-18 Case 3BE-1: Non-Volatile Release.

............. 34-85 34-19 Case 3BE-2: RCS Pressure and SG Pressure

..... 34-86 e

Revision: 9 ENEL

' x0:::6 W85tingt10US8 April 11,1997 e

oAap600$raWv.9)pra-lof.wnf:Ib lxii j

l

g J

V LIST OF FIGURES (Cont.)

Fleure No.

Title

_P_ age 34-20 Case 3BE-2: Loop 1 ADS Stage 4 Flows................

. 34-87 34-21 Case 3BE-2: Accumulator Water Mass and CMT Water Mass....

. 34-88 34-22 Case 3BE-2: IRWST Flows...............

. 34-89 34-23 Case 3BE-2: B reak Flows.................................

34-90 34-24 Case 3BE-2: Reactor Vessel Levels.

... 34-91 34-25 Case 3BE-2: Core Temperatures............................... 34-92 34-26 Case 3BE-2: Reactor Cavity Water Level and IRWST Water Level........ 34-93 34-27 Case 3BE-2: Loop Compartment and Valve Vault Water Levels......... 34-94 34-28 Case 3BE-2: Contain nent Pressure......

...... 34-95 34-29 Case 3BE-2: Containment Temperatures

. 34-96 34-30 Case 3BE-2: Debris Mass

....,........................... 34-97 34-31 Case 3BE-2: Reactor Vessel-to-Cavity Water Heat Transfer........

. 34-98 34-32 Case 3BE-2: Hydrogen Generation....

34-99 34-33 Case 3BE-2: Mass of Csl Released to Containment..34-100 34-34 Case 3BE-2: Noble Gases Released...............34-101 34-35 Case 3BE-2: Releases to Environment..............34-102 34-36 Case 3BE-2: Non-Volatile Release

.34-103 34-37 Case 3BE-3: RCS Pressure and SG Pressure

.34-104 m

34-38 Case 3BE-3: Loop 1 ADS Stage 4 Flows........................34-105 34-39 Case 3BE-3: Accumulator Water Mass and CMT Water Mass...

.34-106 34-40 Case 3BE-3: IRWST Flows..............

...34-107 34-41 Case 3BE-3: B reak Flows...................................34-108 34-42 Case 3BE-3: Reactor Vessel Levels.......

..34-109 34-43 Case 3BE-3: Core Temperatures...............................34-110 34-44 Case 3BE-3: Reactor Cavity Water Level and IRWST Water Level.34-111 34-45 Case 3BE-3: Loop Compartment and Valve Vault Water Levels

.34-112 l

34-46 Cast 3BE-3: Containment Pressure.......34-113 34-47 Case 3BE-3: Containment Temperatures

.34-114 34-48 Case 3BE-3: Debris Mass.

.34-115 34-49 Case 3BE-3: Reactor Vessel-to-Cavity Water Heat Transfer.

.34-116 34-50 Case 3BE-3: Hydrogen Generation

.34-117 34-51 Case 3BE-3: Mass of Csl Released to Containment.................34-118 34-52 Case 3BE-3: Noble Gases Released.34-119 34-53 Case 3BE-3: Releases to Environment....

.....34-120 l

34-54 Case 3BE-3: Non-Volatile Release.....

.34-121 34-122

)

34-55 Case 3BE-4: RCS Pressure and SG Pressure 34-56 Case 3BE-4: Loop i ADS Stage 4 Flows....34-123 34-57 Case 3BE-4: Accumulator Water Mass and CMT Water Mass..........34-124

)

34-58 Case 3BE-4: IRWST Flows....

.34-125 34-59 Case 3BE-4: Break Flows...

.34-126 m

1 V

3 Westinghouse b

Ap 111,

}xijj o:\\ap600\\pra\\rev_9\\pra-lofvpf:1b l

I E______________________________.

l 1

I M

1 0;

l LIST OF FIGURES (Cont.)

Figure No.

Title Page 34-60 Case 3BE-4: Reactor Vessel Levels............................34-127 34-61 Case 3BE-4: Core Temperatures..............................34-128 34-62 Case 3BE-4: Reactor Cavity Water Level and IRWST Water Level.......34-129 34-63 Case 3BE-4: Loop Compartment and Valve Vault Water Levels.........34-130 34-64 Case 3BE-4: Containment Pressure.............................34-131 34-65 Case 3BE-4: Containment Temperatures......................... 34-13 2 34-66 Case 3BE-4: Debris Mass.......................

......34-133 34-67 Case 3BE-4: Reactor Vessel-to-Cavity Water Heat Transfer..

.34-134 34-68 Case 3BE-4: Hydrogen Generation.............................34-135 34-69 Case 3BE-4: Mass of Csl Released to Containment......

.34-136 34-70 Case 3BE-4: Noble Gases Released.....

........34-137 34-71 Case 3BE-4: Releases to Environment.........34-138 34-72 Case 3BE-4: Non-Volatile Release.............................34-139 34-73 Accident Class 3BE: Comparison of Mass Fraction Csl Released to Ctmt..34-140 34-74 Case 3BE-5: RCS Pressure and SG Pressure

.34-141 34-75 Case 3BE-5: Loop 1 ADS Stage 4 Flows..............

........34-142 34-76 Case 3BE-5: Accumulator Water Mass and CMT Water Mass...

.....34-143 34-77 Case 3BE-5: IRWST Flows.....

.......34-144 34-78 Case 3BE-5: Break Flows

....34-145 34-79 Case 3BE-5: Reactor Vessel Levels............................34-146 34-80 Case 3BE-5: Core Temperatures....34-147 34-81 Case 3BE 5: Containment Temperatures......................... 34-14 8 34-82 Case 3BE-5: Loop Compartment and Valve Vault Water Levels.........34-149 34-83 Case 3BE-5: Containment Pressure............................34-150 34-84 Case 3BE-5: Containment Temperatures..............

.34-151 34-85 Case 3BE-5: Debris Mass.................................. 34-15 2 34-86 Case 3BE-5: Reactor Vessel-to-Cavity Water Heat Transfer............34-153 34-87 Case 3BE-5: Hydrogen Generation............................34-154 34-88 Case 3BE-5: Mass of Csl Released to Containment..........

...34-155 34-89 Case 3BE-5: Noble Gases Released...

....34-156 34-90 Case 3BE-5: Releases to Environment................34-157 34-91 Case 3BE-5: Non-Volatile Release..................

...34-158 34-92 Case 3BE-7: RCS Pressure and SG Pressure

..........34-159 34-93 Case 3BE-7: Loop 1 ADS Stage 4 Flows...............

.34-160 34-94 Case 3BE-7: Accumulator Water Mass and CMT Water Mass.

..34-161 34-95 Case 3BE-7: IRWST Flows.......

......34-162 34-96 Case 3BE-7: Break Flows..................................34-163 34-97 Case 3BE-7: Reactor Vessel Levels.....

.......34-164 34-98 Case 3BE-7: Core Temperatures..

...34-165 34-99 Case 3BE-7: Reactor Cavity Water Level and IRWST Water Level.......34-166 O

Revision: 9 April 11,1997 3 W85tingh0USB cAap600;prairev.9pra-lof.wpf;1b lxiv

<m i

LIST OF FIGURES (Cont.)

Fleure No.

Title Pege 34-100 Case 3BE-7: Loop Compartment and Valve Vault Water Levels........34-167 34-101 Case 3BE-7: Containment Pressure.........34-168 34-102 Case 3BE-7: Gas Flow Rate Through Containment Failure Location......34-169 34 103 Case 3BE-7: Containment Temperatures

.34-170 34-104 Case 3BE-7: Debris Mass.

....34-171 34-105 Case 3BE-7: Reactor Vessel-to-Cavity Water Heat Transfer............34-172 34-1 M Case 3BE-7: Hydrogen Generation...

....34-173 34-107 Case 3BE-7: Mass of Csl Released to Containment.34-174 34-108 Case 3BE-7: Noble Gases Released............................34-175 34-109 Case 3BE-7: Releases to Environment...........................34-176 34-110 Case 3BE-7: Non-Volatile Release..34-177 34-111 Case 3BE-8: RCS Pressure and SG Pressure

.....34-178 34-112 Case 3BE-8: Loop 1 ADS Stage 4 Flows........................34-179 34-113 Case 3BE-8: Accumulator Water Mass and CMT Water Mass......... 34 180 34-114 Case 3BE-3: IRWST Flows..................................34-181 34-115 Case 3BE-8: Break Flows........

...34-182 34-116 Case 3BE-8: Reactor Vessel Levels............................34-183 34-117 Case 3BE-8: Core Temperatures.......34-184 l

g 34-118 Case 3BE-8: Reactor Cavity Water Level and IRWST Water Level.......34-185

("}

34-119 Case 3BE-8: Loop Compartment and Valve Vault Water Levels........34-186 34-120 Case 3BE-8: Containment Pressure.............................34-187 34-121 Case 3BE-8: Gas Flow Rate Through Containment Failure Location......34-188 l

34-122 Case 3BE 8: Containment Temperatures34-189 I

34-123 Case 3BE-8: Debris Mass34-190 34-124 Case 3BE-8: Reactor Vessel-to-Cavity Water Heat Transfer............34-191 34-125 Case 3BE-8: Hydrogen Generation....34-192 34-126 Case 3BE-8: Mole Fraction Hydrogen in Valve Vault

....34-193 34 127 Case 3BE-8: Mass of Cs1 Released to Containment.....

.........34-194 34-128 Case 3BE-8: Noble Gases Released............................34-195 34-129 Case 3BE-8: Releases to Environment....................34-196 34-130 Case 3BE-8: Non-Volatile Release...........

.....34-197 34-131 Case 3BE-9: RCS Pressure and SG Pressure 34-19 8 34-132 Case 3BE-9: Loop 1 ADS Stage 4 Flows.......34-199 34-133 Case 3BE-9: Accumulator Water Mass and CMT Water Mass..........34-200 34-134 Case 3BE-9: IRWST Flows

.......34-201 34-135 Case 3BE-9: Break Flows..................................34-202 34-136 Case 3BE-9: Reactor Vessel Levels.....

....34-203 34-137 Case 3BE-9: Core Temperatures..............................34-204 l

34-138 Case 3BE-9: Reactor Cavity Water Level and IRWST Water Level.......34-205 34-139 Case 3BE-9: Loop Compartment and Valve Vault Water Levels.........34-206 34-140 Case 3BE-9: Containment Pressure........

.34-207 A

i

't)

Revision: 9 ENEL y Westinghotise Gh=-

April 11,1997 g,wyp.ior wpu t>

l l

I l

8 LIST OF FIGURES (Cont.)

1 1

Firure No.

Title

_P_ age 34-141 Case 3BE-9: Gas Flow Rate Through Containment Failure Location.....34-208 34-142 Case 3BE-9: Containment Temperatures

.............34-209 34-143 Case 3BE-9: Debris Mass...................................34-210 34-144 Case 3BE-9: Reac ar Vessel-to-Cavity Water Heat Transfer............34-211 34-145 Case 3BE-9: Hydrogen Generation......

...34-212 34-146 Case 3BE-9: Mole Fraction Hydrogen in Valve Vault...........34-213 34-147 Case 3BE-9: Mass of Csl Released ot Containment.................34-214 34-148 Case 3BE-9: Noble Gases Release

..................34-215 34-149 Case 3BE-9: Releases to Environment..........................34-216 34-150 Case 3BE-9: Non-Volatile Release.......

....34-217 34-151 Case 3BE-10: RCS Pressure and SG Pressure.........

.....34-218 34-152 Case 3BE-10: Loop 1 ADS Stage 4 Flows.........

.........34-219 34-153 Case 3BE-10: Accumulator Water Mass and CMT Water Mass

.34-220 34-154 Case 3BE-10: IRWST Flows...

..................34-221 34-155 Case 3BE-10: Break Flows...........

...34-222 34-156 Case 3BE-10: Reactor Vessel Levels....34-223 34-157 Case 3BE-10: Core Temperatures..............................34-224 34-158 Case 3BE-10: Reactor Cavity Water Level and IRWST Water Level.....34-225 34-159 Case 3BE-10: Loop Compartment and Valve Vault Water Levels......

.34-226 34-160 Case 3BE-10: Containment Pressure.....

.34-227 34-161 Case 3BE-10: Containment Temperatures.........

..........34-228 34-162 Case 3BE-10: Debris Mass.................

..............34-229 34-163 Case 3BE-10: Reactor Vessel-to-Cavity Water Heat Transfer.,.........34-230 34-164 Case 3BE-10,: Hydrogen Generation

....34-231 34-165 Case 3BE-10: Mole Fraction Hydrogen in Valve Vault...............34-232 34-166 Case 3BE-10: Mass of Csl Released to Containment.

.34-233 34-167 Case 3BE-10: Noble Gases Released.............34-234 34-168 Case 3BE-10: Releases to Environment.....

...........34-235 34-169 Case 3BE-10: Non-Volatile Release 34-236 34-170 Case 3BE-10: Gas Flow Rate Through Containment Failure Location 34-237 34-171 Case 3BL-1: RCS Pressure and SG Pressure

.................... 34-23 8 34-172 Case 3BL-1: Loop 1 ADS Stage 4 Flows...34-239 34-173 Case 3BL-1: Accumulator Water Mass and CMT Water Mass

......34-240 34-174 Case 3BL-1: IRWST Flows....

...34-241 34-175 Case 3BL-1: Break Flows.

...34-242 34-176 Case 3BL-1: Reactor Vessel Levels.....34-243 34-177 Case 3BL-1: Core Temperatures..

....34-244 34-178 Case 3BL-1: Reactor Cavity Water Level and IRWST Water Level.

....34-245 34-179 Case 3BL-1: Loop Compartment and Valve Vault Water Levels...34-246 4

34-180 Case 3BL-1: Containment Pressure....

...........34-247 O

Ap i

,1997

[ Westingh00S8 oMp600\\ prs \\rev 9\\pra-lof.wpfab lXvi j

__u

i l

l Wi t

,.~

(

)

U LIST OF FIGURES (Cont.)

Fiore No.

Title Page 34-181 Case 3BL-1: Containment Temperatures34-248 34-182 Case 3BL-1: Debris Mass................................... 34-24 9 34-183 Case 3BL-1: Reactor Vessel-to-Cavity Water Heat Transfer............34-250 34-184 Case 3BL-1: Hydrogen Generation.............................34-251 34-185 Case 3BL-1: Mass of Csl Released to Containment.................34-252 34-186 Case 3BL-1: Noble Gases Released...............

.....34-253 34-187 Case 3BL-1: Releases to Environment...............34-254 34-188 Case 3BL-1: Non-Volatile Release............................ 34 255 34-189 Case 3BL-1: RCS Pressure and SG Pressure

........34-256 34-190 Case 3BL-2: Loop 1 ADS Stage 4 Flows.............

..........34-257 34-191 Case 3BL-2: Accumulator Water Mass and CMT Water Mass..........34-258 34-192 Case 3BL-2: IRWST Flows.........34-259 34-193 Case 3BL-2: Break Flows.......

.34-260 34-194 Case 3BL-2: Reactor Vessel Levels............................34-261 34-195 Case 3BL-2: Core Temperatures...............................34-262 34-196 Case 3BL-2: Reactor Cavity Water Level and IRWST Water Level.......34-263 34-197 Case 3BL-2: Loop Compartment and Valve Vault Water Levels.........34-264 34-198 Case 3BL-2: Containment Pressure.............................34-265 b]

3A199 Case 3BL-2: Containment Temperatures........................34-266 t

34-200 Case 3BL-2: Debris Mass.................................. 34 267 34-201 Case 3BL-2: Reactor Vessel-to-Cavity Water Heat Transfer............34-268 34-202 Case 3BL-2: Hydrogen Generation............................34-269 34-203 Case 3BL-2: Mass of Csl Released to Containment.................34-270 34 204 Case 3BL-2: Noble Gases Released............................34-271 34-205 Case 3BL-2: Releases to Environment...........................34-272 34 206 Case 3BL-2: Non-Volatile Release............................34-273 34-207 Case 3BL-3: RCS Pressure and SG Pressure 34-274 34-208 Case 3BL-3: Loop 1 ADS Stage 4 Flows.......

........34-275 34-209 Case 3BL-3: Accumulator Water Mass and CMT Water Mass.........34-276 34-210 Case 3BL-3: IRWST Flows.......

...34-277 34-211 Case 3BL-3: Break Flows..

...........34-278 34-212 Case 3BL-3: Reactor Vessel Levels.............................34-279 34-213 Case 3BL-3: Core Temperatures..............................34-280 l

34-214 Case 3BL-3: Reactor Cavity, Water Level and IRWST Water Level.......34-281

)34-215 Case 3BL-3: Loop Compartment and Valve Vault Water levels.........34-282 34 216 Case 3BL-3: Containment Pressure 34-283 34-217 Case 3BL-3: Gas Flow Rate Through Containment Failure Location......34-284 L

34-218 Case 3BL-3: Containment Temperatures

.34-285 l

l 34-219 Case 3BL-3: Debris Mass...................................34-286 34-220 Case 3BL-3: Reactor Vessel-to-Cavity Water Heat Transfer...........34-287 34-221 Case 3BL-3: Hydrogen Generation.....34-288 m

I (v

ENE Revision: 9 3 Westinghouse r&= 6 April 11,1997 b;yij c:\\np600$rairev.9%pra-lof.wpf:lb

m.-

l 0

LIST OF FIGURES (Cont.)

Firure No.

Title Page 34-222 Case 3BL-3: Mole Fraction Hydrogen in Valve Vavit................34-289 34-223 Case 3BL-3: Mass of CsI Released to Containment.................34-290 34-224 Case 3BL-3: Noble Gases Released............................34-291 34-225 Case 3BL-3: Releases to Environment..........................34-292 34-226 Case 3BL-3: Non-Volatile Release

.......................34-293 34-227 Case 3BR-1: RCS Pressure and SG Pressure......................34-294 34-228 Case 3BR-1: Loop 1 ADS Stage 4 Flows

....34-295 34-229 Case 3BR-1: Accumulator Water Mass and CMT Water Mass..........34-296 34-230 Case 3BR-1: IRWST Flows..................34-297 34-231 Case 3BR-1: B reak Flows..................................34-298 34-232 Case 3BR-1: Reactor Vessel Levels..............

...34-299 34-233 Case 3BR-1: Core Temperatures................

.34-300 34-234 Case 3BR-1: Reactor Cavity Water Level and IRWST Water Level.......34-301 34-235 Case 3BR-1: Loop Compartment and Valve Vault Water Levels.........34-302 34-236 Case 3BR-1: Containment Pressure...34-303 34-237 Case 3BR-1: Containment Temperatures34-304 34-238 Case 3BR-1: Debris Mass..........

................. 34-3 05 34-239 Case 3BR-1: Reactor Vessel-to-Cavity Water Heat Transfer............34-306 34-240 Case 3BR-1: Hydrogen Generation............................34-307 34-241 Case 3BR-1: Mass of Csl Released to Containment..................34-308 34-242 Case 3BR-1: Noble Gases Released............

...........34-309 34-243 Case 3BR-1: Releases to Environment.....

.................34-310 34-244 Case 3BR-1: Non-Volatile Release.............................34-311 34-245 Case 3C-1: RCS Pressure and SG Pressure........................34-312 34-246 Case 3C-1: Loop 1 ADS Stage 4 Flows.........................34-313 34-247 Case 3C-1: Accumulator Water Mass and CMT Water Mass34-314 34-248 Case 3C-1: IRWST Flows........34-315 34-249 Case 3C-1: Break Flows.....

.....34-316 34-250 Case 3C-1: Reactor Vessel Levels.....

.......34-317 34-251 Case 3C-1: Core Temperatures

.........34-318 34-252 Case 3C-1: Reactor Cavity Water Level and IRWST Water Level.......34-319 34-253 Case 3C-1: Loop Compartment and Valve Vault Water Levels....34-320

.34-321 34-254 Case 3C-1: Containment Pressure.34-255 Case 3C-1: Containment Temperatures

............34-322 34-323 34-256 Case 3C 1: Debris Mass..............................34-257 Case 3C-1: Reactor Vessel-to-Cavity Water Heat Transfer............34-324 34-258 Case 3C-1: Hydrogen Generation.

......34-325 34-259 Case 3C-1: Mass of CsI Released to Containment..34-326

.........34-327 34-260 Case 3C-1: Noble Gases Released......34-261 Case 3C-1: Releases to Environment..........

.34-328 9

Revision: 9 ENEl.

T Westinghouse April 11,1997 mih owaccawv>praaof3r b lxviii u

M O

>U LIST OF FIGURES (Cont.)

Fleure No.

Title Page 34-262 Case 3C-1: Non-Volatile Release

.34-329 34-263 Case 3D-1: RCS Pressure and SG Pressure

...34-330 34-264 Case 3D-1: Loop 1 ADS Stage 4 Flows34-331 34-265 Case 3D-1: Accumulator Water Mass and CMT Water Mass34-332 34-266 Case 3D-1: IRWST Flows.34-333 34-267 Case 3D-1: Break Flows

....34-334 34-268 Case 3D-1: Reactor Vessel Levels.....

...34-335 34-269 Case 3D-1: Core Temperatures.........................

....34-336 34-270 Case 3D-1: Reactor Cavity Water T.evel and IRWST Water Levels......34-337 34-271 Case 3D-1: Loop Compartment and Valve Vault Water Levels..........34-338 34-272 Case 3D-1: Containment Pressure....

.34-339 34-273 Case 3D-1: Co itainment Temperatures

..34-340 34-274 Case 3D-1: Debris Mass...

....34-341 34-275 Case 3D-1: Reactor Vessel-to-Cavity Water Heat Transfer....

.34-342 34-276 Case 3D-1: Hydrogen Generation.......

........34-343 34-277 Case 3D-1: Mass of Csl Released to Containment 34-344 34-278 Case 3D-1: Noble Gases Released.....

.34-345 34 279 Case 3D-1: Releases to Environment.....

.........34-346 g)34-280 Case 3D-1: Non-Volatile Release...........

.34-347 i

V 34-281 Case 3D-2: RCS Pressure and SG Pressure

......... 34-34 8 34-282 Case 3D-2: Loop 1 ADS Stage 4 Flows34-349 34 283 Case 3D-2: Accumulator Water Mass and CMT Water Mass...........34-350 34-284 Case 3D-2: IRWST Flows..........

.34-351 34-285 Case 3D-2: Break Flows...

.............. 34-3 5 2 34-286 Case 3D-2: Reactor Vessel Levels.......

....34-353 l

34-287 Case 3D-2: Core Temperatures..

.34-354 I

34-288 Case 3D-2: Reactor Cavity Water Level and IRWST Water Level 34-355 34-289 Case 3D-2: Loop Compartment and Valve Vault Water Levels....34-356 34-290 Case 3D-2: Containment Pressure.....34-357 34-291 Case 3D-2: Gas Flow Rate 'Ihrough Containment Failure Location

.34-358 34-292 Case 3D-2: Containment Temperatures

.34-359 34-293 Case 3D-2: Debris Mass

.34-360 l

34-294 Case 3D-2: Reactor Vessel-to-Cavity Water Heat Transfer

.34-361 34-295 Case 3D-2: Hydrogen Generation...............

.34-362 l

34-296 Case 3D-2: Mole Fraction Hydrogen in Valve Vault......

.34-363

.....34-364 34-297 Case 3D-2: Mass of Csl Released to Containment 34-298 Case 3D-2: Noble Gases Released.........

..34-365 34-299 Case 3D-2: Releases to Environment.

..34-366

.34-367 34-300 Case 3D-2: Non-Volatile Release

....34-368 34-301 Case 6E 1: RCS Pressure and SG Pressure...34-302 Case 6E-1: Passive RHR Heat Removal

.34-369 O)

(

Revision: 9 ENEL Y W85tingh0USS

';;,it0llL=.

April 11,1997 IXiX o Aap600\\pra\\rev_9'pra-lof.wpf:I b l

L

Es i

O LIST OF FIGURES (Cont.)

Firure No.

Title Pa_ge 34-303 Case 3D-1: Break Flows.....................

...34-370 34-304 Case 3D-1: Liquid and Steam Flows through Failed-Open SG Safety Valve.34-371

.34-372 34-305 Case 3D-1: Loop 1 ADS Stage 4 Flows34-306 Case 3D-1: Accumulator Water Mass and CMT Water Mass...........34-373 34-307 Case 3D-1: IRWST Flows....................

...........34-374 34-308 Case 3D-1: Reactor Vessel Levels..............................34-375 34-309 Case 3D-1: Core Temperatures...............................34-376 34-310 Case 3D-1: Reactor Cavity Water Level and IRWST Water Level.......34-377 34-311 Case 3D-1: Loop Compartment and Valve Vault Water Levels.........34-378 34-312 Case 3D-1: Containment Pressure.............................34-379 34-313 Case 3D-1: Containment Temperatures

.......34-380 34-314 Case 6E-1: Debris Mass

.......... 34-3 81 34-315 Case 6E-1: Reactor Vessel-to-Cavity Water Heat Transfer..

......... 34-3 82 34-316 Case 6E-1. Hydrogen Generation...

.34-383 34-317 Case 6E-1: Mass of Csl Released to Containment.

......... 34-3 84 34-318 Case 6E-1: Noble Gases Released..............................34-385 34-319 Case 6E-1: Releases to Environment...

....34-386 34-320 Case 6E-1: Non-Volatile Release

.....34-387 34-321 Case 6E-2: RCS Pressure and SG Pressure....................... 34 388 34-322 Case 6E-2: Passive RHR Heat Removal...........

........34-389 34-323 Case 6E-2: Break Flows

....34-390 34-324 Case 6E-2: Liquid and Steam Flows through Failed-Open SG Safety Valve.34-391 34-325 Case 6E-2: Loop 1 ADS Stage 4 Flows............

.34-392 34-326 Case 6E-2: Accumulator Water Mass and CMT Water Mass...........34-393 34 327 Case 6E-2: IRWST Flows..........

.....34-394 34-328 Case 6E-2: Reactor Vessel I.evels...........

........34-395 34 329 Case 6E-2: Core Temperatures................................34-396 34-330 Case 6E-2: Reactor Cavity Water Level and IRWST Water Level....... 34 397 34-331 Case 6E-2 Loop Compartment and Valve Vault Water Levels.........34-398 34-332 Case 6E-2: Containment Pressure..............................34-399 34-333 Case 6E-2: Containment Temperatures...........................34-400 34-334 Case 6E-2: Debris Mass

...................34-401 34-335 Case 6E-2: Reactor Vessel-to-Cavity Water Heat Transfer.............34-402 34-336 Case 6E-2: Hydrogen Generation 34-403 34-337 Case 6E-2: Mass of Csl Released to Containment..................34-404 34-338 Case 6E-2: Noble Gases Released....

...34-405 34-339 Case 6E-2: Releases to Environment...........................34-406 34-340 Case 6E-2: Non-Volatile Release 34 407 34-341 Case 6E-3: RCS Pressure and SG Pressure.......................34-408 34-342 Case 6E-3: Passive RHR Heat Removal...........34-409 Revision: 9 ENEL April 11,1997 gu.g:n 3 W8Stinghouse o:\\ap60opaVev.9Wlof.wpf.lb lxx

E l

O n

v LIST OF FIGURES (Cont.)

Figure No.

Title Page 34-343 Case 6E-3: B reak Flows.....................34-410 34-344 Case 6E-3: Liquid and Steam Flows through Failed-Open SG Safety Valve.24-411 34-345 Case 6E-3: Loop 1 ADS Stage 4 Flows......34-412 34-346 Case 6E-3: Accumulator Water Mass and CMT Water Mass34-413 34-347 Case 6E-3: IRWST Flows............................34-414 34-348 Case 6E-3: Reactor Vessel Levels34-415 34-349 Case 6E-3: Cote Temperatures..........34-416 34 350 Case 6E-3: Reactor Cavity Water Level and IRWST Water Level...34-417 34-351 Case 6E-3: Loop Companment and Valve Vault Water Levels.........34-418 34-352 Case 6E-3: Containment Pressure.......34-419 34-353 Case 6E-3: Containment Temperatures...........................34-420 34-354 Case 6E-3: Debris Mass34-421 34-355 Case 6E-3: Reactor Vessel-to-Cavity Water Heat Transfer....34-422 34-356 Case 6E-3: Hydrogen Generation 34-423 34-357 Case 6E-3: Mass of Csl Released to Containment.34-424 34-358 Case 6E-3: Noble Gases Released..34-425 34-359 Case 6E-3: Releases to Environment.....34-426 34-360 Case 6E-3: Non-Volatile Release 34 427

[V_T 34-361 Case 6L-1: RCS Pressure and SG Pressure..............

.34-428 1

34-362 Case 6L-1: Loop 1 ADS Stage 4 Fjows.....34-429 34-363 Case 6L-1: Break Flows...34-430 34-364 Case 6L-1: Liquid and Steam Flows through Failed-Open SG Safety Valve.34-431 34 365 Case 6L-1: Loop 1 ADS Stage 4 Flows..................34-432 34-366 Case 6L-1: Accumulator Water Mass and CMT Water Mass

...34-433 34-367 Case 6L-1: IRWST Flows..............,....................

34-4 34 34-368 Case 6L-1: Reactor Vessel Levels.....

.34-435 34-369 Case 6L-1: Core Temperatures..34-436 34-370 Case 6L-1: Reactor Cavity Water Level and IRWST Water Level.......34-437 34-371 Case 6L-1: Loop Companment and Valve Vault Water Levels.........34-438 34-372 Case 6L-1: Containment Pressure..........

....34-439 34-373 Case 6L-1: Containment Temperatures...........................34-440 34-374 Case 6L-1: Debris Mass

.34-441 34-375 Case 6L-1: Reactor Vessel-to-Cavity Water Heat Transfer.....34-442 34-376 Case 6L-1: Hydrogen Generation..........34-443 34-377 Case 6L-1: Mass of Csl Released to Containment...................34-444 34-378 Case 6L-1: Ncble Gases Released..34-445 34-379 Case 6L-1: Releases to Environment...34-446 34-380 Case 6L-1: Non-Volatile Release.34-447 34-381 Case 1 AP-1: RCS Pressure and SG Pressure 34-448 l

34-382 Case 1AP-1: Passive RHR Heat Removal

..34-449 34-383 Case I AP-1: Break Flows.....34-450 i

C ENEl.

Revision: 9 T Westinghouse cath.

April 11,1997 IXXi o:\\ap600\\pra\\rev_9\\pra-lof.wpf:1b L - - _ -_ _

l

.-ga,,.o 0

LIST OF FIGURES (Cont.)

Firure No.

Title Page 34-384 Case 1 AP-1: Liquid and Steam Flows through Failed-Open SG Safety Valve.34-451 34-385 Case 1 AP-1: Loop 1 ADS Stage 4 Flows.............

.34-452 34-386 Case 1 AP-1: Accumulator Water Mass and CMT Water Mass.........34-453 34-387 Case 1 AP-1: IRWST Flows.

34-4 54 34-388 Case 1 AP-1: Reactor Vessel Levels.......

............. 34-4 5 5 34 389 Case 1 AP-1: Core Temperatures............

.34-456 34-390 Case 1 AP-1: Reactor Cavity Water Level and IRWST Water Level......34-457

...34-458 34-391 Case I AP-1: Loop Compartment and Valve Vault Water Levels...

..34-459 34-392 Case 1 AP-1: Containment Pressure............

.34-460 34-393 Case 1AP-1: Containment Temperatures

.....34-461 34-394 Case 1 AP-1: Debris Mass34-395 Case 1AP-1: Reactor Vessel-to-Cavity Water Heat Transfer.

..34-462 34-396 Case 1 AP-1: Hydrogen Generation......34-463 34-397 Case 1 AP-1: Mass of Csl Released to Containment............

.34-464

.34-465 34-398 Case 1 AP-1: Noble Gases Released.34-399 Case 1 AP-1: Releases to Environment.....34-466 34-467 34-400 Case 1 AP-1: Non-Volatile Release.34-401 Case I A-1: RCS Pressure and SG Pressure

.....34-468 34-402 Case 1 A-1: Passive RHR Heat Removal 34-469 34-403 Case IA-1: Break Flows.

...34-470 34-404 Case I A-1: Liquid and Steam Flows through Failed-Open SG Safety Valve.34-471

.34-472 34-405 Case 1 A-1: Loop 1 ADS Stage 4 Flows34-406 Case 1 A-1: Accumulator Water Mass and CMT Water Mass

.34-473 34-407 Case 1 A-1: IRWST Flows...

..34-474 34-408 Case I A-1: Reactor Vessel Levels...

.34-475 34-409 Case I A.1: Core Temperatures....

.34-476 34-410 Case I A-1: Reactor Cavity Water Level and IRWST Water Level....34-477 34-411 Case I A-1: Loop Companment and Valve Vault Water Levels.........34-478 34-412 Case I A-1: Containment Pressum............

..........34-479 34-413 Case I A-1: Containment Temperatures

..34-480 34-414 Case I A-1: Debris Mass..

...34-481 34-415 Case I A-1: Reactor Vessel-to-Cavity Water Heat Transfer............34-482 34-416 Case 1 A-1: Hydrogen Generation

.34-483 34-417 Case I A-1: Mass of Csl Released to Containment.

.34-484 34-418 Case IA-1: Noble Gases Released........

.34-485 34-419 Case I A-1: Releases to Environment.........................

.34-486 34-420 Case 1 A-1: Non-Volatile Release

.34-487 35-1 Containment Event Tree..

... 35-30 0

Revision: 9 ENEL April 11,1997 mm-W85tiligh00S8 c:\\ap600pr:Wv 9\\pra-lof2pf:lb IXXii

1

(

s LIST OF FIGURES (Cont.)

Figure No.

Title Page 36-1 AP600 Accident Class I A Base Case for Node DP Success -- RCS Pressure... 36-8 36-2 AP600 Accident Class I A Base Case for Node DP Success -- Core.

Exit Gas Temperature...

36-9 36-3 AP600 Accident Class I A Base Case for Node DP Success -- Steam Generator Tube Creep Damage

. 36-10 38-1 AP600 DVI Break with Valve Vault Flooding Containment I

Compartment Water Levels.

.. 38-7 39-1 Mini ACOPO Bowl for Testing.....

. 39-17 39-2 ACOPO Testing Arrangement........

39-18 39-3 ULPU Testing Arrangement 39-19 39-4 AP600 Passive Core Cooling System....

.. 39-20 39-5 Containment Floodable Region......................

. 39-21 39-6 Containment Floodable Region - Exploded View.

.. 39-22 39-7 AP600 Cavity Flooding Rate

.. 39-23 39-8 Schematic of Reactor Vessel and Insulation.......

......... 39-24 O

39-9 ULPU Test Configuration...........

......... 39-25 Q

40-1 AP600 Containment Schematic...

..............................40-3 40-2 AP600 Passive Containment Cooling

....... 40-4 40-3 Containment Pressure Prediction

.................................40-5 41-1 Combustion Cornpleteness for Nevada Test Site Premixed Combustion Tests (Reproduced from Ref. 41-3).........

. 41-91 41-2 The Flammability Floor Domain for Upward Flame Propagation for H -Air-H O (Vapor) Mixtures. The Flammability Limit 2

2 Curve is Superimposed on the Isobaric Controus of Calculated Adiabatic Explosion Pressure (from Ref. 41 1$).

......... 41-92 j

41-3

' Theoretical Adiabatic, Constant-Volume Combustion Pressures l

of Hydrogen-air Mixtures (Reproduced from Ref. 41-5)

......... 41 -93 41-4 Typical Calculated Versus Measured Axial Power Distribution............ 41-94 j

41-5 Normalized Power Density Distribution Near Middle of Life, j

Unrodded Core Hot Full Power, Equilibrium Xenon................. 41-95 1

41-6 Reactor Vessel Wa.er Level in AP600 Hydrogen Cases

.. 41 -%

41-7 Fraction of Cladding Reacted in AP600 Hydrogen Generation Cases

. 41-97 41-8 Containment Pressure for AP600 Hydrogen Cases................... 41-98 41-9 AP600 Containment Water Level - DVI Line Break with No Valve Vault Flooding.........

. 41-99 41-10 AP600 Containment Water Level - DVI Line Break with Valve Vault Flooding.

........................ 41 - 100 q

41-11 Accident Class 3BE Early Detonation Decomposition Event Tree.

....41-101 Revision: 10 I

l

[ W65tif)ghouSE h_

June 30,1997 ixxiii 04*Na*v iopr.iorwpr.:b

1 N

O LIST OF FIGURES (Cont.)

fjgpre No.

This Page 41-12 Accident Class 3BL Early Detonation Decomposition Event Tree......... 41 102 41-13 Accident Class 3BR/3C Early Detonation Decomposition Event Tree.41-103 41-14 Accident Class 3D/lD Early Detonation Decomposition Event Tree.......41-104 41-15 Accident Class LAP Early Detonation Decomposition Event Tree.........41-105 41-16 Detonation Cell Width versus Equivalence Ratio for Test Series #1 (H -Air at P=1 atm. T=20*C) (Reproduced from Reference 41-4).........41-106 2

41-17 Detonation Cell Width versus Equivalence Ratio for Test Series #3. 4 (H -Air-H O at p,=41.6 moles /m', T=100*C) (Ref. 41-4)..............41-107 l

2 2

41-18 Detonation Cell Width versus Temperature Ratio for Test Series #6. 7

{

1 (H -Air at X,e=0.17) (Ref. 41-4)...............................41-108 2

41-19 AP600 Adiabatic Shell Temperature for Hydrogen Burn...............41-109 41-20 AP600 Hydrogen Deflagmtion Analysis - Non-Reflood Case Hydrogen Generation Probability Distribution............................. 41 -110 41-21 AP600 Hydrogen Deflagration Analysis - Non-Reflooded Case Pre-Burn Pressure Probability Distribution.............................. 41 - 1 1 1 41-22 AP600 Hydrogen Deflagration Analysis - Non-Reflooded Case Probability Distribution of AICC Peak Pressure.............................41-112 41-23 AP600 Hydrogen Deflagration Analysis - Early-Reflood Case Hydrogen Generation Probability Distribution..............................41-113 41 24 AP600 Hydrogen Deflagration Analysis - Early-Reflood Case Pre-Bum Pressure Probability Distribution...............................41-114 41-25 AP600 Hydrogen Deflagration Analysis - Early Reflood Case Probability Distnbution of AICC Peak Pressure.............................41-115 41 26 AP600 Hydrogen Deflagration Analysis - Late-Reflood Case Hydrogen Generation Probability Distribution..............................41-116 41-27 AP600 Hydrogen Deflagration Analysis - Late-Reflood Case Pre Bum Pressure Probability Distribution...............................41-117 41-28 AP600 Hydrogen Deflagration Analysis - Late-Reflood Case Proability Distribution of AICC Peak Pressure.............................41-118 41-29 Reflooded 3BE Case - Lower Flammability Limit Sensitivity..........41-119 41-30 Reflooded 3BE Case - Steam Inerting Limit Sensitivity..............41-120 41-31 Accident Class 3BE Intermediate Detonation Decomposition Event Tree....41-121 41-32 Accident Class 3BL Interrraxiiate Detonation Decomposition Event Tree....41-122 41-33 Accident Class 3BR 3C, 3D LAP Intermediate Detonation Decomposition Event Tree.............................................. 41 - 123 42-1 AP600 Containment Fragility at Contamment Temperature of 400*F....... 4213 42-2 AP600 Containment Fragility at Containment Temperature of 331*F....... 42-14 43-1 Contribution of Accident Class to Large Release Frequency............ 43-15 2 43-2 Contribution of Cominant Containment Event Tree Sequences to Large Release Frequency.................................... 4 3-1 5 3 Apri

,1997 D U88

~c l

V LIST OF FIGURES (Cont.)

Figure No.

Title Eage 43-3 Containment Event Tree for 3BE...............................43-154 43-4 Containment Event Tree for 3BL...............................43-155 43-5 Containment Event Tree for 3BR...............................43-156 43-6 Containment Event Tree for 1 A....

.43-157 43-7 Containment Event Tree for I AP............43-158 43-8 Containment Event Tree for 3A.......

.......43-159 43-9 Containment Event Tree for 3C................................43-160 43-10 Containment Event Tree for 3D

...........43-161 43-11 Containment Event Tree for 6............................

.43-162 44-1 AP600 MAAP4 Containment Model Nodalization..............

44-12 45-1 Release Category IC Release Fraction Comparison Noble Gases..

. 45-17 45-2 Release Category IC Release Fraction Comparison Csl................ 45-18 i

45-3 Release Category IC Release Fraction Comparison Non-Volatiles......... 45-19 45-4 Case 3BE-4: IC 72-Hour Release Fraction Noble Gases (Xe, Kr) 45-20 45-5 Case 3BE-4: IC 72-Hour P/ case Fraction Csl..

...... 45-21 l

45-6 Case 3BE-4: IC 72-Hour ;elea:e Fraction TeO

. 45-22 2

/ g) 45-7 Case 3BE-4: IC 72-Hour Release Fraction Non-Volatiles (SrO)

....... 4 5-23 V

45-8 Case 3BE-4: IC 72-Hour Release Fraction moo

................... 4 5-24 i

2 l

45-9 Case 3BE-4: IC 72-Hour Release Fraction CsOH...

....... 45-25 45-10 Case 3BE-4: IC 72-Hour Release Fraction BaO..

............... 45-26 45-11 Case 3BE-4: IC 72-Hour Release Fraction La,,0..............

. 45-27 3

45-12 Case 3BE-4: IC 72-Hour Release Fraction CeO

. 45-28 2

45-13 Case 3BE-4: IC 72-Hour Release Fraction Sb...................... 45-29 l

45-14 Case 3BE-4: 1C 72-Hour Release Fraction Te2..................... 45-30 45-15 Case 3BE-4: IC 72-Hour Release Fraction UO......

............ 4 5-31 2

45-16 Release Category BP Release Fraction Comparison Noble Gases......... 45-32 45-17 Release Category BP Release Fraction Comparison Csl............... 45-33 45-18 Release Category BP Release Fraction Comparison Non-Volatiles......... 45-34 45-19 Case I A-1: BP 72-Hour Release Fraction Noble Gases (Xe, Kr).......... 45-35 l

45-20 Case I A-1: BP 72-Hour Release Fraction Csl...................... 45-36 45-21 Case 1 A-1: BP 72 Hour Release Fraction TeO..............

45-37 2

45-22 Case I A-1: BP 72-Hour Release Fraction Non-Volatiles (SrO)........... 45-38 l

45-23 Case IA-1: BP 72-Hour Release Fraction moo

................ 4 5-3 9 2

45-24 Case 1 A-1: BP 72-Hour Release Fraction CsOH.................... 45-40 45-25 Case I A-1: BP 72-Hour Release Fraction Ba0

.. 45-41 45-26 Case I A-1: BP 72-Hour Release Fraction La 0

............ 4 5-42 2 3 45 27 Case I A-1: BP 72-Hour Release Fraction CeO..................... 45-43 2

45-28 Case 1 A-1: BP 72-Hour Release Fraction Sb......

. 45-44 45-29 Case 1 A-1: BP 72-Hour Release Fraction Te2

. 45-45 T Westinghouse

$k,,.

Ap il 11, IXXv c:\\ap60Wra\\rev_9\\pra-lof.wpf.lb i

EN O

LIST OF FIGURES (Cont.)

l l

Firure No.

Title Page 45-30 Case I A-1: BP 72-Hour Release Fraction UO

..... 45-46 2

45-31 Case 3BE-5: Clair 72-Hour Release Fraction Noble Gases (Xe, Kr).....

45-47

. 45-48 45-32 Case 3BE-5: Clair 72-Hour Release Fraction Csl..........

45-33 Case 3BE-5: Clair 72-Hour Release Fraction TeO.................. 4 5 -4 9 2

.. 45-50 45-34 Case 3BE-5: Clair 72-Hour Release Fraction Non-Volatiles (SrO)....

45-35 Case 3BE-5: Clair 72-Hour Release Fraction moo.................. 4 5-51 2

45-36 Case 3BE-5: Clair 72 Hour Release Fraction CsOH

..... 45-52 45-37 Case 3BE-5: Clair 72 Hour Release Fraction Ba0......

.... 45-53 45-38 Case 3BE-5: Clair 72-Hour Release Fraction La O

. 45-54 2 3 45-39 Case 3BE-5: Clair 72-Hour Release Fraction CeO.

. 45-55 2

45-40 Case 3BE-5: Clair 72-Hour Release Fraction Sb

.... 45-56 45-41 Case 3BE-5: Clair 72-Hour Release Fraction Te2

. 45-57

... 45-58 45-42 Case 3BE-5: Clair 72-Hour Release Fraction UO2 45-43 Release Category CFE Release Fraction Comparison Noble Gases

........ 45-59 45-44 Release Category CFE Release Fraction Comparison CsI....

. 45-60 45-45 Release Category CFE Release Fraction Comparison Non-Volatiles

... 45-61 45-46 Case 3BE-8: CFE 72-Hour Release Fraction Noble Gases (Xe, Kr)....... 45-62 45-47 Case 3BE-8: CFE 72-Hour Release Fraction UO

. 45-63 2

45-48 Case 3BE-8: CFE 72-Hour Release Fraction TeO

. 45-64 2

45-49 Case 3BE-8: CFE 72. Hour Release Fraction Non Volatiles (SrO) 45-65 45-50 Case 3BE-8: CFE 72-Hour Release Fraction moo

... 45-66 2

45-51 Case 3BE-8: CFE 72-Hour Release Fraction CsOH.................. 45-67 45-52 Case 3BE-8: CFE 72-Hour Release Fraction BaO

. 45-68 45-53 Case 3BE-8: CFE 72-Hour Release Fraction La,,0

.... 45-69 3

45-54 Case 3BE-8: CFE 72-Hour Release Fraction CeO

...... 45-70 2

.... 45-71 45-55 Case 3BE-8: CFE 72-Hour Release Fraction Sb..............

45-56 Case 3BE-8: CFE 72-Hour Release Fraction Te2 45-72 45-57 Case 3BE-8: CFE 72-Hour Release Fraction UO

... 45-73 2

45-58 Release Category CFI Release Fraction Comparison Noble Gases.....

.. 45-74 45-59 Release Category CFI Release Fraction Comparison Csl 45-75 45-60 Release Category CFI Release Fraction Comparison Non-Volatiles........ 45-76 45-61 Case 3BE-9: CFI 72-Hour Release Fraction Noble Gases (Xe, Kr)

. 45-77 45-62 Case 3BE-9: CFI 72-Hour Release Fraction Csl.

....... 45-7 8 45-63 Case 3BE-9: CFI 72-Hour Release Fraction TeO

........ 45-79 2

45-64 Case 3BE-9: CFI 72-Hour Release Fraction Non-Volatiles (SrO).......

. 45-80 45-65 Case 3BE-9: CFI 72-Hour Release Fraction moo

... 45-81 2

45-66 Case 3BE-9: CFI 72-Hour Release Fraction CsOH..

45-82 45-67 Case 3BE-9: CFI 72-Hour Release Fraction BaO.........

. 45-83 45-68 Case 3BE-9: CFI 72-Hour Release Fraction La 0.................. 45-84 2 3 45-69 Case 3BE-9: CFI 72-Hour Release Fraction CeO

.. 45-85 2

45-70 Case 3BE-9: CFI 72-Hour Release Fraction Sb

.. 45-86 9

Revision: 9 ENEl.

3 We51righ0Use April 11,1997 lrAuts,.,

o:\\ap600\\prairev.9%pra-lof.wpf:1b I n vi

q I

i V

LIST OF FIGURES (Cont.)

Firure No.

Title

_P_ age 45-71 Case 3BE-9: CFI 72-Hour Release Fraction Te2......

45-87 45-72 Case 3BE-9: CFI 72-Hour Release Fraction UO

....................45-88 2

45-73 Case 3BE-10: CFL 72-Hour Release Fraction Noble Gases (Xe, Kr)

.... 45-89 45-74 Case 3BE-10: CFL 72-Hour Release Fraction Csl..............

45-90 45-75 Case 3BE-10: CFL 72-Hour Release Fraction TeO

.... 45-91 J

2 45-76 Case 3BE-10: CFL 72-Hour Release Fraction Non-Volatiles (SrO)........ 45-92

{

45-77 Case 3BE-10: CFL 72 Hour Release Fraction moo

. 45-93 2

45-78 Case 3BE-10: CFL 72-Hour Release Fraction CsOH........

. 45-94 45-79 Case 3BE-10: CFL 72-Hour Release Fraction BaO....

........ 45-95 45-80 Case 3BE-10: CFL 72-Hour Release Fraction La 0................. 45-96 2 3 45-81 Case 3BE-10: CFL 72.-Hour Release Fraction CeO

.......... 4 5-97 2

45-82 Case 3BE-10: CFL 72-Hour Release Fraction Sb................... 4 5-9 8 45-83 Case 3BE-10: CFL 72-Hour Release Fraction Te2

.. 45-99 45-84 Case 3BE-10: CFL 72-Hour Release Fraction UO......

....45-100 2

45-85 IC 72-Hour Direct Release Sensitivity Noble Gases (Xe, Kr)...........45-101 45-86 IC 72-Hour Direct Release Sensitivity Csl........45-102 45-87 IC 72-Hour Direct Release Sensitivity TeO

...................... 4 5 - 103 2

45-88 IC 72-Hour Direct Release Sensitivity Non-Volatiles (SrO)

........45-104 j

)

45-89 IC 72-Hour Direct Release Sensitivity moo

.....45-105 i

2 l# ' --

45 90 IC 72-Hour Direct Release Sensitivity CsOH....45-106 45-91 IC 72-Hour Direct Release Sensitivity BaO....

....45-107 45-108 45-92 IC 72-Hour Direct Release Sensitivity La,,03 45-93 IC 72-Hour Direct Release Sensitivity CeO....45-109 2

45-94 IC 72-Hour Direct Release Sensitivity Sb.....

.............. 4 5-1 10 45-95 IC 72-Hour Direct Release Sensitivity Te

....... 45 111 2

45-96 IC 72-Hour Direct Release Sensitivity 'UO

........45-112 2.............

45-97 Case 3BE-4: FRPAT Sensitivity on Release Fraction Noble Gases......45-113 45-98 Case 3BE-4: FPRAT Sensitivity on Release Fraction CsI 45-114 45-99 Case 3BE-4: FPRAT Sensitivity on Release Fraction TeO

.......45-115 2

45-100 Case 3BE-4: FPRAT Sensitivity on Release Fraction SrO............45-116 j

45-101 Case 3BE-4: FPRAT Sensitivity on Release Fraction moo

.45-117 2

45-102 Case 3BE-4: FPRAT Sensitivity on Release Fraction CsOH...........45-118 45-103 Case 3BE-4: FPRAT Sensitivity on Release Fraction Ba0............45-119 45-104 Case 3BE-4: FPRAT Sensitivity on Release Fraction La O3 45-120 2

45-105 Case 3BE-4: FPRAT Sensitivity or. Release Fraction CeO............45-121 2

45-106 Case 3BE-4: FPRAT Sensitivity en Release Fraction Sb..............45-122 45-107 Case 3BE-4: FPRAT Sensitivity on Release Fraction Te 45-123 2

45-108 Case 3BE-4: FPRAT Sensitivity on Release Fraction UO..45-124 2

45-109 Case 3BE-4: FAERDC Sensitivity on Release Fraction Noble Gases

.45-125 45-110 Case 3BE-4: FAERDC Sensitivity on Release Fraction Csl.....45-126 45-111 Case 3BE-4: FAERDC Sensitivity on Release Fraction TeO...........45-127 2

) (A)

%d Revision: 9 ENE T Westinghouse W-April 11,1997 1xxvii osp60@mwv.9m-ior.wpt:ib

F"$

9 LIST OF FIGURES (Cont.)

Figure No.

Title hge 45-112 Case 3BE-4: FAERDC Sensitivity on Release Fraction SrO 45-128 45-113 Case 3BE-4: FAERDC Sensitivity on Release Fraction moo

.45-129 2

45-114 Case 3BE-4: FAERDC Sensitivity on Release Fraction CsOH...

....45-130 45-115 Case 3BE-4: FAERDC Sensitivity on Release Fraction Ba0...45-131 45-116 Case 3BE-4: FAERDC Sensitivity on Release Fraction La O

.45-132 2 3 45-117 Case 3BE-4: FAERDC Sensitivity on Release Fraction CcO

.45-133 2

45-118 Case 3BE-4: FAERDC Sensitivity on Release Fraction Sb.......

.45-134

)

J 45-119 Case 3BE-4: FAERDC Sensitivity on Release Fraction Te2.......

.45-135 45-120 Case 3BE-4: FAERDC Sensitivity on Release Fraction UO

...45-136 2.......

49-1 Population Whole Body Dose BP Source Term,24 Hours.

........ 49-20 49-2 Population Whole Body Dose BP Source Term,72 Hours....

. 49-20 49-3 Site Boundary Whole Body Dose BP Source Term,24 Hours 49-21 49-4 Site Boundary Whole Body Dose BP Source Term,72 Hours

... 49-21 49-5 Site Boundary Red Bone Marrow Dose BP Source Term,24 Hours

. 49 22 49-6 Site Boundary Red Bone Marrow Dose BP Source Term,72 Hours

... 49-22 49-7 Site Boundary Thyroid Dose BP Source Term,24 Hours.......

. 49-23 49-8 Site Boundary Thyroid Dose BP Source Term,72 Hours..........

.. 49-23 49-9 Population Whole Body Dose CFE Source Term,24 Hours....

. 49-24 49-10 Population Whole Body Dose CFE Source Term,72 Hours........

49-24 49-11 Site Boundary Whole Body Dose CFE Source Term,24 Hours

. 49-25 49-12 Site Boundary Whole Body Dose CFE Source Term,72 Hours

... 49-2S 49-13 Site Boundary Red Bone Marrow Dose CFE Source Term,24 Hours.

. 49-26 49-14 Site Boundary Red Bone Marrow Dose CFE Source Term,72 Hours 49-26 49-15 Site Boundary Dyroid Dose CFE Source Tenu,24 Hours.............. 49-27 49-16 Site Boundary Thyroid Dose CFE Source Term,72 Hours

... 49-27 49-17 Population Whole Body Dose CFI Source Term,24 Hours

. 49-28 49-18 Population Whole Body Dose CFI Source Term,72 Hours

. 49-28 49-19 Site Boundary Whole Body Dose CFI Source Term,24 Hours.......... 49-29 49-20 Site Boundary Whole Body Dose CFI Source Term,72 Hours.

... 49-29 49-21 Site Boundary Red Bone Marrow Dose CFI Source Term,24 Hours...... 49-30 49-22 Site Boundary Red Bone Marrow Dose CFI Source Term,72 Hours

.. 49-30 49-23 Site Boundary Byroid Dose CFI Source Term,24 Hours........

49-31 49-24 Site Boundary Byroid Dose CFI Source Tenn,72 Hours..

49 31 49-25 Population Whole Body Dose CFL Source Tenn,24 Hours.......

. 49-32 49-26 Population Whole Body Dose CFL Source Term,72 Hours....

. 49-32 49-27 Site Boundary Whole Body Dose CFL Source Term,24 Hours 49-33 49-28 Site Boundary Whole Body Dose CFL Source Term,72 Hours

. 49-33 49-29 Site Boundary Red Bone Marrow Dose CFL Source Term,24 Hours

.... 49-34 49-30 Site Boundary Red Bone Marrow Dose CFL Source Term,72 Hours

. 49-34

....... 49-35 49-31 Site Boundary Dyroid Dose CFL Source Term,24 Hours....

O Revision: 9 ENEL April 11,1997 mh Westinghouse owanpovevym or.wprJb lxxviii a

1 I

D (V

LIST OF FIGURES (Cont.)

1 Figure No.

Title

_P_ age 49-32 Site Boundary Thyroid Dose CFL Source Term,72 Hours.....

..... 49-35 1

49-33 Population Whole Body Dose CI Source Term,24 Hours

....... 49-36 l

49-34 Population Whole Body Dose CI Source Term,72 Houn

. 49-36 49-35 Site Boundary Whole Body Dose CI Source Term. 24 Hours............ 49-37 49-36 Site Boundary Whole Body Dose CI Source Term,72 Hours..

...... 49-37 49-37 Site Boundary Red Bone Marrow Dose Ci Source Term,24 Hours....... 4 9-3 8 j

49-38 Site Boundary Red Bone Marrow Dose CI Source Term,72 Hours....... 49-38 i

49-39 Site Boundary Thyroid Dose CI Source Term,24 Hours

...... 49-39 49-40 Site Boundary Thyroid Dose CI Source Term,72 Hours.....

49-39 49-41 Population Whole Body Dose DIRECT Source Term 24 Hours......... 49-40 49-42 Population Whole Body Dose DIRECT Source Term,72 Hours.

... 49-40 l

49-43 Site Boundary Whole Body Dose DIRECT Source Term 24 Hours....... 49-41 49-44 Site Boundary Whole Body Dose DIRECT Source Term,72 Hours 49-41 49-45 Site Boundary Red Bone Marrow Dose DIRECT Source Term,24 Hours... 49-42 49-46 Site Boundary Red Bone Marrow Dose DIRECT Source Term,72 Hours 49-42 49-47 Site Boundary Thyroid Dose DIRECT Source Term. 24 Hours

......... 4 9-4 3 49-48 Site Boundary Thyroid Dose DIRECT Source Term,72 Hours........... 49-43 49-49 Population Whcle Body Dose IC Source Term,24 Hours 49-44 i

49-50 Population Whole Body Dose IC Source Term,72 Hours

... 49-44 V

49-51 Site Boundary Whole Body Dose IC Source Term, 24 Hours......

. 49-45 49-52 Site Boundary Whole Body Dose IC Source Term,72 Hours.

. 49-45 49-53 Site Boundary Red Bone Marrow Dose IC Source Term,24 Hours....... 49-46 49-54 Site Boundary Red Bone Marrow Dose IC Source Term,72 Hours........ 49-46 49-55 Site Boundary Thyroid Dose IC Source Term,24 Hours.............. 49-47 49-56 Site Boundary Thyroid Dose IC Source Term,72 Hours

. 49-47 49-57 Overall Dose Risk Site Boundary Whole Body, EDE,24 Hour Dose...... 49-48 49-58 Overall Dose Risk Site Boundary Acute Red Bone Marrow Dose 24 Hour

. 49-48 51-1 AP600 Core Damage Frequency Uncenainty Histogram................ 51-19 51-2 AP600 PRA Uncenainty Analysis Results by Dominant Sequences

..... 51-20 51-3 AP600 PRA Uncenainty Analysis Results by Initiating Event

...... 51-21 52-1 Example Event Tree: Baseline Configuration...

.52-117 52-2 Example Event Tree: Nonsafety-Related Systems Removed............52-118 52-3 Example Event Tree: Nonsafety-Related Systems Removed and Core Damage States Simplified...

.....52-119 52-4 Example Event Tree: Final Focused PRA Sensitivity Study Configuration..52-120 i

52-5 ATWS Event Tree.............

.52-121 l

52-6 ATWSC Event Tree.

.52-122 52-7 CMTLB CMT Line Break Event Tree..

......52-123 52-8 ISLOC: Interfacing Systems LOCA Event Tree

......52-124 V

Revision: 9 ENEL T Westirighouse mam April 11,1997 lxxix o:\\ap600sprairev_9'pra-lof.wpf: I b l

l u_____

l l

l e

LIST OF FIGURES (Cont.)

Rage Figure No.

Title a

52-9 LCAS: Loss of Compressed Air Event Tree......

.......52-125 52-10 LCCW: Loss of CCW/SWS Event Tree.....

.............. 5 2 126 52-11 LCOND: Loss of Condenser Event Tree 52-127 52-12 LLOCA: Large LOCA Event Tree

......... 5 2-128 l

52-13 LMFW. Loss of Main Feedwater to both SGs Event Tree 52-129 52-14 LMFW1: Loss of Main Feedwater to One SG Event Tree 52-130 52-15 LOSP: Loss of Offsite Power Event Tree.....

.........52-131 52-16 LRCS: Loss of Reactor Coolant Flow Event Tree

.52-132 52-133 52-17 MLOCA: Medium LOCA Event Tree........

52-18 NLOCA/CNLOCA: Intermediate LOCA/ Consequential Intermediate LOCA Event Tree 52-134 52-135 52-19 POWEX Power Excursion Event Tree

...52-136 52-20 PRSTR: Passive RHR Tube Rupture Event Tree....

52-21 RV-RP: Reactor Vessel Rupture Event Tree..52-137 52-22 SGTR/CSGTR: SG Tube Rupture / Consequential SG Tube Rupture Event Tree

...52-138 52-23 SGTRC: SG Tube Rupture Initial Event Tree......

.....52-139 52-24 SI-LB: SI Line Break Event Tree

.........52-140 52-25 SLB-D: Steam Line Break Downstream of MSIVs Event Tree.....

.52-141 52-26 SLB-U: Steam Line Break Upstream of MSIVs Event Tree....

...52-142 52-27 SLB-V/CSLB-V: Stuck-Open Secondary Side Safety Valve / Consequential Stuck-Open Secondary Side Safety Valve Event Tree.

.52-143 52-28 SLOCA: Small LOCA Event Tree

..52-144 52-29 TRANS: Transients with Main Feedwater Event Tree.52-145 52-30 Containment Event Tree for Accident Class 3BE...

...........52-146 52-31 Containment Event Tree for Accident Class 3BL............... 5 2-147 52-32 Containment Event Tree for Accident Class 3BR.

...52-148 52-33 Containment Event Tree for Accident Class IA

......52-149 52-34 Containment Event Tree for Accident Class I AP...

.52-150 52-35 Containment Event Tree for Accident Class 3A......

.52-151 52-36 Containment Event Tree for Accident Class 3C.

..52-152 52-37 Containment Event Tree for Accident Class 3D.........

.......52-153 52-38 Containment Event Tree for Accident Class 6...

....52-154 52-39 Loss of Offsite Power (RCS Drained) Event Tree

.52-155 52-40 LOSP Dudng Hot / Cold Shutdown (RCS Filled) Event Tree

....52-156 54-1 LOSP During Hot / Cold Shutdown (RCS Filled) Event Tree....

.54-299 54-2 Loss of RNS Initiator During Hot / Cold Shutdown (RCS Filled) Event Tree..54-300 54-3 Loss of CCW/SW Initiator During Hot / Cold Shutdown (RCS Filled)

Event Tree 54-301 9

1 W Westinghouse p

,1997 oTap600\\pra\\rev.,9pra-lof.wpf:1b IXT.X

LIST OF FIGURES (Cont.)

Finnre No.

T. itis P.nas

$4-4 LOCA/RNS Pipe Rupave Dunng Hot / Cold Shutdown (RCS Filled)

Event Tree..............................................54-302 54-5 LOCA/RNS-V024 Opens Dunng Hot / Cold Shutdown (RCS Filled)

Event Tree..............................................54-303

{

54-6 Overdrmmng of Reactor Coolant System Dunng Drundown to Mid. Loop...54-304 l

54-7 Loss of Offsite Power (RCS Dramed) Event Tree...................54-305 54-8 Loss of RNS Initiator (RCS Dramed) Event Tree....................54-306 54 9 Loss of CCW/SW Initiator (RCS Dramed) Event Tree................54-307 54-10 LOCA/RNS-V024 Opens (RCS Dramed) Event Tree.................54-308 54-11 Accumulator Injection (Dilution Scenario) Event Tree.................54-309 54-12 Shutdown Transient Case SDIB2 RCS Pressure vs. Tune..............54-310 54-13 Shutdown Transient Case SD1B2 Mass Flow Rare vs. Tune............54-311 54-14 Shutdown RNS Break Case SD3A (3500 gym).....................54-312 54-15 Shutdown RNS Break Case SD3A2 (2000 gpm)....................54-313 54-16 Shutdown RNS Break Case SD3A3 (1000 gym)....................54-314 54-17 Shutdown Plant Damage State Substate Event Tree for LP-ADS.........54-315 54-18 Shutdown Plant Damage State Substate Event Tree for LP-1 A...........54-316 54-19 Shutdown Plant Damage State Substate Event Tme for LP-3D...........54-317 54-20 Shutdown Plant Damage State Substate Event Tree for LP-3BR..........54-318 54-21 Shutdown Plant Damage State Substate Event Tree for LP-3BE..........54-319 55-1 Seismic Initiating Event merarchy Tree.......................... 55-105 55-2 EQSTRUC Initiating Event Fault Tree........................... 55-106 55-3 EQRVFA Initiating Event Fanit Tree............................ 55-108 55-4 EQLLOCA Imt anns Event Fanit Tres.......................... 55-109 55-5 EQSLOCA Initiating Event Fault Tree........................... 55-110 55-6 EQN1WS Initiating Event Fault Tres........................... 55-111 55 EQSTRUC Event Tres..................................... 55-112 55-8 EQRVFA Event Tres.....................................

55-113 55-9 EQLLOCA Event Tres..................................... 5 5-114 55-10 EQSLOCA Event Tres..................................... 55-115 55-11 EQA'IWS Event Tree...................................... 55-116 55-12 EQ.LOSP Event Tres...................................... 55-117

)

55-13 EQLOSP Event Tree (for 0.5g level cantgaake).................... 55-118 55-14 EQAC2AB Fault Tree...................................... 5 5-119 55-15 EQXCIC Fault Tree....................................... 5 5-120

)

55-16 EQXADMA Fault Tree..................................... 55-121 l

55-17 EQXIW2A Fault Tres...................................... 55-122 1

55-18 EQRECIR Fault Tree...................................... 55-123 j

55-19 EQCM2SL Fault Tree...................................... 55-124 55-20 EQADA Fault Tree........................................ 5 5-125 l

55-21 EQIW2AB Fault Tree...................................... 5 5-126 I

l Revisient 9 l

Y@

Apeil 11,1997 ixxx

.wsoop._,,wwm

_w f

O

\\

l LIST OF FIGURES (Cont.)

Figure No.

Title Dage 55-22 EQ-PRHR Fault Tree.....

........... 55-127 55-23 EQ-PRESU Fault Tree....

.. 55-128 55-24 EQ-PMS Fault Tree.............

55-129 55-25 EQ-DC Fault Tree.......

. 55-130 55-26 Class 1E de Power Block Diagram...

............... 5 5-131 55-27 Containment Evaluation Model......

........ 55-132 55-28 EQ-STRUC Event Sequences....

. 55-133 55-29 EQ-RVFA Event Sequences.

............................. 5 5 - 1 34 55-30 EQ-LLOCA Event Sequences...

......................... 55-135 55-31 EQ-SLOCA Event Sequences..

55-136 55-32 EQ-SGTR Event Sequences

......... 55-137 55-33 EQ-SLB Event Sequences

............ 5 5-138 55-34 EQ-ATWS Event Sequences.................

55-139 55-35 EQ-LOSP Event Sequences (for 0.5g level earthquakes).

55-140 56-1 Flood Zones and Barriers Plan at 66'-6".

. 56-93 56-2 Flood Zones and Barriers Plan at 82'-6".......................... 5 6-95 56-3 Flood Zones and Barriers Plan at 96'-6".........

56-97 56-4 Flood Zones and Barriers Plan at 100'-0" & 107'-2".

.......... 5 6-99 56-5 Flood Zones and Barriers Plan at 117'-6"..............

.56-101 56-6 Flood Zories and Barriers Plan at 135'-3"

.........56-103 56-7 Flood Zones and Barriers Plan at 160'-6" & 153'-0"..

...56-105 56-8 Flood Zones and Barriers Plan at 160'-6" & 180*-0".........

.56-107 56-9 8-in. Fire Main Rupture at-Power Event Tree 56-109 56-10 8-in. Fire Main Rupture during Hot / Cold Shutdown Event Tree.........56-110 56-11 8-in. Fire Main Rupture during RCS Drained Conditions Event Tree......56-111 57-1 Fire Progmssion Event Tree for 1200 AF 01 Fire Area....

..57-156 59-1 Contribution of Initiating Events to Core Damage

.59-233 59-2 Contribution ofInitiating Events to Large Release Frequency and Core Damage Frequency.................

......59-234 59-3 Total Plant CDF/LRF......

.59-235 59-4 24-Hour Site Boundary Dose Cumulative Frequency Distribution.........59-236 9

Revision: 11 March 1998 3 Westlfighouse owemean_nwepra lxxxii

_ _ _ - - _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _