ML19296D402

From kanterella
Jump to navigation Jump to search
In-Plant Safety Relief Valve Test, Revision 2
ML19296D402
Person / Time
Site: LaSalle Constellation icon.png
Issue date: 11/21/1979
From:
COMMONWEALTH EDISON CO.
To:
Shared Package
ML19296D397 List:
References
RTR-NUREG-0478, RTR-NUREG-478 PROC-791121, NUDOCS 8003040526
Download: ML19296D402 (78)


Text

-. - - -

In-Plant SRV x

Test 4

N O

.e.

f.< I A y

.e.e..,r[.cq) 7

_6 $6 O g y;

.j' j 1 Courry f5

.,di

.w I

t p

?c

~.

t c.

g)

/,, '

fj a

w

'PI Was

l b.=

.o

6:>, ;,..-

-. ~.

F:,_ %g

' y

'tJ

}

g

(.iF,. yy ic s.

o u

.c d

a M

3< s Q.

n<<

COMMONWEALTH

d.

.x

.*.j p.

EDISON

{

ic COMPANY 8;aw.,mm.wmec: mew;m.4bwan SARGENT&LUNDY

.CENQiNEERS 8003040

t November 21, 1979 ADDENDUM Revision 2 TABLES.

General Notes to Tables 1-4 Tables 1 thru 4 refer to six environmental conditions that are defined as follows:

Environment El Fluid Water 100 psia Pressure 50 F - 270"F Temperature Relative Humidity 50 R/hr.Y Radiation Environment E2 Fluid Air 15.4 psig Pressu.e 135*F Tempertture Relative Humidity 100%

Radiation 50 R/Hry ; 1.4 x 105 n/cm 2 sec.

Environment E3 Fluid Air / Water / Steam 650 psia Pressure 500*F Temperature Relative Humidity 50 R/hr.Y Radiation Environment F4 Sensor will be in the SRV discharge Fluid line and the "outside" of the sensor Pressure snd its cabling will be exposed to Temperature conditions in wetwell.

Relative Humidity Radiation 1 of 2

November 21, 1979 ADDENDUM Revision 2 Environment E5 Sensor will be in the SRV discharge Fluid 3ine and the "cutside" of the sensor Pressure and the cabling will be exposed to Temperature Relative Humidity conditions in the drywell.

Radiation Environment E6 Fluid Air Pressure

15. 4 psig 120*F Temperature Relative Humidity 100%

nadiation Negligibl0 2 of 2

LA SALLE COUNTY 1 IN-PLANT SRV TEST PLAN REVISION 2 NOVEMBER 21, 1979

November 21, 1979 Revision 2 TABLE OF CONTENTS Page I.

Objectives I-l II.

Schedule II-l Table I II-2 III.

Scope III-l A.

Test Conditions III-l B.

Quencher Selection Criteria III-l C.

Test Matrix (Test)

III-3 D.

Sensor Requirements III-7 E.

Signal Conditioning System III-9 F.

Data Acquisition and Monitoring System III-ll G.

Processing and Reduction of Recorded Data III-15 H.

Test Documents III-21 I.

Implementation III-21 TABLES Pages General Notes to Tables 1-2 Table 1 - Accelerometer Data Notes 1-3 Table 2 - Pressure Sensor Data Notes 1-3 Table 3 - Temperature Sensor Data Notes 1-3 Table 4 - Strain Gauge Data Notes 1-3 i

November 21, 1979 Revision 2 FIGURES Figures 1 through 15 including l A, 1B, 12A, 13A, and 14A -- Sensor Placement Figure 1 Accelerometer Locations Accelerometer Locations Section A-A Figure lA Figure 1B Downconer Accelerometer Locations Figure 2 Sensor Locations in Wet Well and SRV Lines Figure 3 Strain Gauge on SRV Discharge Line Figure 4 Sensors on SRV Branch Connection Downcomer Strain Gauge Figure 5 Strain Gauge or. RHR Suction Line Figure 6 Strain Gauges on Quencher Assembly Figure 7 Figure 8 Strain Gauges on Quencher Support Strain Gauges on Containment Liner Figure 9 Pressure Sensor Locations on Column Figure 10 Pressure Sensor Location on Downcomer Figure 11 Figure 12 Pressure Sensor Locations In Suppression Pool Figure 12A -

Pressure Sensor Locations In Suppression Pool Figure 13 Pressure Sensor Locations In SRV Discharge Lines Figure 13A -

Pressure Sensors on SRV Discharge Line Figure 14 Temperature Sensor Locations In Suppression Pool Figure 14A -

Temperature Sensor Locations In Suppression Pool Figure 15 Temperatu_e Sensor Locations In SRV Lines Identification of SRV Lines Figure 16 Figure 17 Data Acquisition System ii

November 21, 1979 Revision 2 APPENDICES Pages Test Matrix 1

Appendix A Specifications 1-2 Appendix B Specifications for Vishay System 1

Appendix C Specifications for Charge Amplifier 1-2 Appendix D Q.A.I. System Performance Characteristics 1-3 Appendix E lii

November 21, 1979 Revision 2 I.

OBJECTIVES The objec:ives of the LaSalle County Unit 1 In-Plant SRV Test are to provide test data that:

(1) will be utilized to confirm that the containment can safety accommodate all hydrodynamic loads and thermal effects associated with SRV actuation; and (2) will be utilized to demonstrate adequate plant design margins for these SRV loads.

In addition to the In-Plant SRV Test results, it is intended that all appropriate informa-tion available from the genr ic Mark II Program, from the Karlstein Test Group, and from the KWU information package also be used to support the LaSalle County plant licensing 4

activities and schedule.

is intended that the In-Plant SRV Test results will be used It to address licensing issues relative to SRV actuation.

The current issues are:

Submerged structural loads resulting from SRV actuation.

A.

Containment boundary loads resulting from SRV actuation.

B.

r C.

Thermal mixing of the suppression pool water during an extended SRV blowdown.

SRV response spectra for mechanical components in reactor D.

building.

These issues will be addressed for both first and subsequent SRV actuation conditions.

SARGENT&LUNDY

>ENGWEERS I-l

November 21, 1979 Revision 2 is anticipated that the licensing issues identified above It will be resolved by:

(1) confirming that the actual measured induced mechanical / structural response of selected compo-SRV nents in the reactor building can be accommodated; (2) confirm-ing that the actual measured SRV hydrodynamic loads and thermal effects in the suppression pool can be accommodated; and (3) confirming that the SRV design basis loads provide an adequate safety margin by analytically extending the actual in-plant test results to the most severe design basis conditions.

In order to accomplish the latter objective, the in-plant test data will be utilized to predict the most severe design basis SRV response postulated during plant operation.

This experi-mental / analytical approach provides a method to compare the severe actual SRV responses with the design basis responses most and will demonstrate that plant safety margin.

SARGENT&LUNDY

.auoimanne

_ 7_

I-2

November 21, 1979 Revision 2 II.

SCHEDULE Figure I is the schedule developed to address those activities associated with testing activities.

These activities are conc.rned primarily with the SRV test preparations and prelim-inary analysis and the subsequent acquisition of data from SRV actuations as described in Paragraph III.C, Test Matrix.

The schedule uses the LaSalle County - Unit 1 fuel load date as the primary reference date for activities associated with the In-Plant SRV Test.

The scheduled items on Figure I will encompass the following:

A.

Pre-Test Activities - This will include the procurement of instrumentation, design, and installation of sensor mounting brackets, design of downcomer penetration and installation, issuance of revised test plan, final engineering evaluation and guidelines for testing parameters.

B.

Equipment Installation - This will involve the actual installation of sensors and data acquisition station.

C.

Test Procedure - This activity will include the prepa-ration review, and approval of a step-by-step method for performance in the In-Plant SRV Test.

D.

Conduct of Test - The implementation of the test procedure at LaSalle County Station.

SARGENT$d. UNDY

.usomaans.

II-l

0 9

i i i i

i t

i I

4 i

I I

gi K

e i

g I

i i

i i

O i

, i i

i i

i t

6 i

i

_ i e

i i

t c

1 l i

1 e

b 1

i i i

i i i

I g

d k

E

{

[

3 O

i i

e s'

i E,

i

, i i

i

, i i

i i i i

i i i

{

I i

e i

i f

+ <

c a

t i

w i

e i i i

e i

e t

y

,,,A

, i 2

e i

i i e

i i i

(

g-f, i

i,

i i

i

, i i

e i

i i

I M

i i

e i

i i

i m

1-gg i

i e

i i

r i

e

+ i 3

2-E 1

I z-i i

e 1

l i

1 6

[.

9-k e, -

i I

i i

e t

4-g g

g-i i ;

i i

i i

e e

i i

e i

i 8

i 4-g u.

i i

e i

i i i

i

(-

g.

{

h t

i i

u-i i

i i

<, 3 g

i i,

t a

i e

i i i i i e

i I

II-73 g

El' f

?I-i i

y e

i i

i i

i i i i i

i i

t i.

El-

, i

=I-NN m

sc W

i i

i i i l

i e

a i

e i

GT-al jf vi-i t

i -i i

e t

i e

i i

e m

em n-1

+

, i t

i i i i i

, i i

i i i i

e

- m u

c-u a-W w

i e

i e

i t

i i i i

6 w

j o q; w

$1-e 3

i e

i i

i

, i e

i i

6 i

i Oc-Z CC 3 TiF II-Ti-i e

4 i

s i

i 22-1 i

i I

i i

e i

i e

i 22-(2-i i

i i

i t

i i

e i

(7-77-O g

i i

e t

i i

e i i.

t i i i

e i

i i

sz-g g

i i

t i

e i

i i i

a i i i

97-g 97-i i

II-h )

'[-

i i l

i i

I i

t - i i

i i

e i

g 4

r 97-i i t

, i i

i H

y

  • T-g gi i

i i

g eZ-i i e

t 6

i e

i i t

6 i

i i e2-i e

+.

e i

i i t

i i

ut y $ y; i i i !

1 x

vE-i i

3 i i i i i

i e

i i I

i i '

I IE-E B

-r

  • L-1 i

3 3

zt-t.: CEC T

E E

i i i - i i i

[""D@

'E-

' ' + i g'

E E

, i i

i e

i i i

i t

i vi-I g

3 vi-st-a a

i i

e i

i i

i

, i g ;

g-wE-i i.

g m

w w1-g i i

e I

i i

l l

l 4

iE-(

[i-e i

P( ( **

i i +

t

[

i 1

[

l l

I f

l I

I ML~

nt-

, i i

i i

i e

i i

i

$C-M E

09-e i

e e

i i

i i i i i i

e t

, i e

i 4

e i

i e

1 i

i e

19-S g

i i

N M

i i

e i i e

i i i a

i i

g i

i i

i i

En-re-i i

i i

t 1

i i i i

?v-i i

i i i

i i

e i

e i

i i i i

79-S9*

l l

i l

1 i

e i

I I

i kn" 99-i i

i i e

I t

i i l

e i i 8

i e i

49-i i i,

i e

i,

i 1,-

t l

t i

i

-i i

t EO N

b w

2 J

J w

&e eG W

e r

H m

m c-w H

W Z

D W

O U

v s

4 w

La.

D p

C e

zW w

r c'

o W

w a

m z

Wl O

E CE C"

"[

W

]

CL ca.

w 1

U Z

O -

wO cc u

o I

k*

II-2

November 21, 1979 Revision 2 III.

SCOPE A.

Test Conditions I

the reactor temperature During the performance of this test, and pressure will be maintained within allowable operation-al and test limits.

The prescribed reactor tolerances will be within 2% of the nominal operating values, with the These test tolerances reactor at or less than 60% power.

have been established for statistical considerations and have been applied to all applicable initial plant condi-tions.

To assure repeatability of data, the following initial conditions, in addition to those previously discussed, will bs thin allowable ~ test tolerances prior to an SRV/ ADS valve actuation: suppression pool water and discharge level, suppression pool water temperature, pipe temperature.

B.

Quencher Selection Criteria 1.

Quenchers located at azimuths 210 230", 252 264',

The selection and 170' will be selected for testing.

is based on the following criteria (See Figure 16):

Maximum Structural Response - It is anticipated a.

that the structural response of containment structures due to SRV discharges will be small.

the location selected for monitoring Therefore, accelerations should be on the containment wall SARGENT&LUNDY

..umn....--

III-l

November 21, 1979 Revision 2 rather than on the buttresses.

There are three buttresses, located at azimuths 60 180 and 300 Thus, the suppression pool is divided into three potential sectors, separated by these buttresses.

Representative Structures - The sector selected b.

for testing must represent a typical structural element with a minimum amount of discontinuities 4

such as large penetrations, concentrated masses, u

This would provide a favorable condition etc.

for comparing test data and analytically-derived l

" expected values."

Prcper Mixes of SRV Line Volumes - The ideal c.

combination of line selection is to include those lines with the largest and smallest vol-and other lines with intermediate volumes.

umes, This would allow the evaluation of effects of line volumes on pool pressure variations.

If the above condition could not be met, the alternative is to include the largest line volume in the test sector and to select the best available line combinat

.a, based on the existing SRV line arrangement.

d.

Close Proximity to Electrical Penetrations -

To minimize unavailable noise levels in the SARGENT&LUNDY muammens_,

III-2

November 21, 1979 Revision 2 signal conductors, the shortest distance from the sensors to the available electrical pene-tration is preferred.

Submerged Structural Loads and Thermal Mixing -

e.

The orientation of the tested quenchers should facilitate determination of multiple discharge load combinations, pool thermal mixing, and submerged structure loading characteristics.

C.

Test Matrix The test matrix is based on actuations of SRV valves which are located adjacent to each other (Az. 210*,

230 252, and 264 ).

In addition to these four valves, the SRV line at A.170 shall be tested in a single-valve-actuation mode.

(Refer to Figure 16 and Appendix A. )

Combinations of valve actuations shall be used to cover a variety of loading conditions and consequent structural responses that will provide test data to confirm the methods used for summing dynamic SRV loads.

A classifi-cation of the type of tests to be conducted is as follows:

1.

One SRV Actuation Test (SRV-1)

This test will be conducted by actuating a single SRV for a given duration of discharge time.

This test is designated as SRV-1 in the Test Matrix.

The test will include both the cold and hot initial pipe SARGENT$iLUNDY

..~ ~.... ~

III-3

November 21, 1979 Revision 2 temperature in order to investigate first and subsequent SRV actuation conditions.

2.

Consecutive SRV Actuations Test ( S RV-C)

This test will be conducted by actuating a single SRV consecutively for a given duration of discharge time for each actuation.

This test is designated as SRV-C in the Test Matrix.

The time interval between two consecutive actuations will be varied to determine the effects of the reflood transient on the maximum SRV loads resulting from subsequent actuation.

3.

Two SRV Actuations Test (SRV-2)

This test will be conducted by actuating two adjacent SRV's for a given duration discharge time.

This test is designated as SRV-2 in the Test Matrix.

The test will include both the cold and hot initial pipe conditions.

4.

Four SRV Actuations Test (SRV-4)

This test will be conducted by actuating four SRV's simultaneously for a given duration of discharge time.

This test is designated as SRV-4 in the Test Matrix.

SARGENT&LUNDY inummunes 7

III-4

November 21, 1979 Revision 2 5.

Sequential SRV Actuations Test (SRV-S)

This test will be conducted by actuating four SRV's in sequence (rather than simultaneously as in the previous case) for a given duration of discharge time and the sequencing time inter-val.

This test is designated as SRV-S in the Test Matrix.

The sequencing time interval will be carefully selected to provide the maximum predicted response.

6.

Extended SRV Blowdown Test (SRV-E)

F This test will be conducted to simulate the initial phases of the suppression pool temper-ature transient resulting from a postulated stuck-open safety relief valve (SORV).

This test is designated as SRV-E in the Test Matrix.

The purpose of this test is to demonstrate:

(1) adequate normal thermal mixing of the suppression pool water; and (2) adequate per-formance of the installed temperature monitoring system during an extended SRV blowdown due to SORV.

7.

Leaky Valve Test (S RV-L)

This test will be conducted to simulate a leaky relief valve seat preceding an SRV actuation.

SARGENT&LUNDY

.auemmens_-

III-5

November 21, 1979 Revision 2 The discharge pipe will be hot but unlike SRV-1-Hot Pipe will not necessarily be purged of air.

This test is designated as SRV-L in The Test Matrix.

Appendix A shows the Test-Matrix for this program.

The reactor will be maintained at normal operating temperature and pressure.

The entire test will be performed with the reactor at or less than 60% power.

It is anticipated that after a series of tests, the hot SRV/ ADS line

(" Hot Pipe") will require about th ree or four hours to restore pipe temperature to within allowable test tolerances.

Therefore, during the actual testing program, sequen-cing of the tests shall be optimized to reduce the total time required for completion of the entire test program.

Tests which will be used to evaluate thermal effects, hydrodynamic loading and response shall be repeated at least five times to ensure that a statistically sig-nificant result is obtained, and to demonstrate repeat-ability of the results.

Such tests include the SRV-1, SRV-2, SRV-4, SRV-S tests (see Appendix A).

The remaining tests are used to evaluate relative responses shall be performed a maximum of three times.

The Test Matrix (Appendix A) details the SARGENT$d. UNDY

.auawanne III-6

November 21, 1979 Revision 2 types of various tests to be performed.

D.

Sensor Requirements 1.

General Four basic types of instruments were selected to measure the test data:

Accelerometers, Pressure Sensors, Temperature Sensors, and Strain Gauges.

These instruments are further divided by monitoring ranges and environmental conditions as described below.

2.

Accelerometers Thirty-eight (38)~ accelerometers will be used in the tests.

The accelerometers are divided into three categories by environment:

Containment Drywell, Con-tainment Wetwell, and Outside Containment.

The Endevco 7717-200 will be used in the Containment Drywell; the Endevco 7717-M2A will be used in the Containment Wetwell; and the Endevco 7704-100 will be used at all locations outside of the containment.

Technical data on these accelerometers is provided in Appendix B.

Accelerometer locations are listed in Table 1 and shown on Figures 1, lA, and 1B.

SARGENT&LUNDY

.aumwanas.r-III-7

November 21, 1979 Revision 2 3.

Pressure Sensors Fifty-two (52) pressure sensors will be used in the tests.

The pressure sensors are divided into four groups based on pressure range to be monitored.

The high pressure sensors are used to monitor SRV discharge line pressures at several locations.

The medium and low pressure sensors are used in the suppression pool to measure the pressure transient caused by the SRV discharge.

One low pressure sensor capable of withstanding a high over pressure will be used to monitor reflood height.

Three ranges of the CEC 1000 were selected to furnish all but one of the required pressure signals.

A Valedyne AP-10 will be used to monitor reflood heighti Pressure sensor locations are listed in Table 2 and shown on Figures 10, 11, 12, 12A, 13, and 13A.

4.

Temperature Sensors Forty-one (41) temperature sensors will be used in the tests.

Due to the wide range covered by RTDs, only one category of temperature sensors is required.

The Medtherm PTF-100-10356 will be used in all locations listed in Table 3 and shown on Figures 14, 14A, and 15.

SARGENT&LUNDY

.~.~.....c III-8

November 21, 1979 Revision 2 5.

Strain Gages Fifty (50) uniaxial strain gages will be used in the tests.

Although all the strain gages are of the weldable type, three different categories of strain gages are used due to different temperature compen-sation requirements of the metal on which they are mounted (Table 4 notes).

The Ailtec MG-125/20-OlHG-150-6S uniaxial strain gage was selected to be installed in k bridge, bridge, and rosette configurations.

Strain gage locations are listed in Table 4 and shown on Figures 3, 5,

6, 7,

8, and 9.

E.

Signal Conditioning System 1.

General A 208-channel signal conditioning system will be required for the SRV test program.

Strain gages, pressure sensors, and temperature sensors will be conditioned with the Vishay 2100 signal conditioning /

amplifier system.

The Endevco accelerometers will be conditioned by the charge amplifier, Dynamics Corp-oration Model No. 7302/PH.

SARGENT&LUNDY

.auaissens III-9

November 21, 1979 Revision 2 2.

Vishay System The Vishay 2100 will be used to condition strain gage, pressure, and temperature sensors.

(See Appendix C for system specifications.)

This system features independently variable excitation for each channel (1-12V DC) and will accept quarter, half,

and full-bridge inputs as well as DC signals from other than bridge sources.

Internal to each ampli-fier channel are 120-ohm and 350-ohm bridge completion components for quarter-and half-bridge gages, as well as internal shunt calibration resistors to simulate +1000 microstrain.

Each channel has a bridge balance network that will offset a 13000 micro-'

strain imbalance, and an always active LED null in-dicator and valance resistors to compensate for line resistance.

The 2100 system has a signal output from 0 to 10V DC up to 100 ma with a frequency response of 5 KHz.

All signal and power outputs are current-limited for short' circuit protection.

After transducer hookup, normal setup procedure for the Vishay 2100 system involves only offset balancing and output gain adjustment.

This system will accommo-date any coiamon data collection or monitoring equip-ment.

SARGENR&LUNDY

..~.,~....

~

III-10

November 21, 1979 Revision 2 3.

Endevco 2721AM1 AC Charge Amplifier The Endevco 2721AM1 amplifier will be used to condition Endevco accelerometer sensors.

This amplifier is an all solid state, wideband instrument designed for use with piezo-electric transducers.

The output voltage of the charge amplifier is pro-portional to the eleletric charge generated by the connected transducer.

As a result, changes in cable length between transducer and amplifier will not affect system sensitivity, system low frequency re-sponse, or the temperature response of the transducer.

A ten-turn potentiometer on the front panel allows insertion of specific transducer sensitivity.

The five-position rotary switch provides five steps of calibrated gain resulting in system sensitivity (transducer plus amplifier) expressed in millivolts per unit measured, in engineering units.

F.

Data Acquisition and Monitoring System 1.

Data Acquisition System The digital data acquisition and recording system is the 0.A.I. Model 721.

A block diagram of the Q.A.I.

721 along with the other Data Acquisition SARGENT&l. UNDY muaiussas_;__

III-ll

November 21, 1979 l

Revision 2 System and Playback (DARPS) equipment is shown in Figure 17.

T l

All signal inputs to the system are processed,for-matted, and written in IBM compatible form on digital magnetic tape.

The tapes so generated may then be processed on any computer system (supporting industry standard magnetic tapes) for data reduction, analysis, and reformatting to any desired standard.

See Appendix,

E for System Performance Characteristics.

Internally the System consists of four main subsystems:

(1) an analog multiplexer; (2) precision analog-to-digital converter; (3) high speed digital magnetic tape record '

er; and (4) electronic control logic.

Several factors contribute to the unusually high accuracy and through-put of this system.

The analog-to-digital converter is '

a precision, 12-bit (11 bits plus sign) unit, with crystal referenced sampling rate.

The resulting low sample interval jitter eliminates the low and flutter problems of analog recorders.

The digital magnetic tap. unit is a high-speed (125 ips), very high density (6250 BPI Group Code Recording [GCR] ) device.

This en-ables an extremely high data throughput for the system.

The GCR technique provides for a very low error rate by correcting many recording errors on-the-fly.

Finally, semiconductor memory is used to buffer data flow through the system.

This allows data acquisition SARGENT&LUNDY

> ENGINEERS g _

III-12

November 21, 1979 Revision-2 and recording functions to proceed independently, for the highest possible system throughput (up to k million samples /sec).

The system provides for on-the-spot playback of recorded data, with reconversion to analog form.

It is also possible to speed up or slow down the playback over a 1000:1 range, with no loss of accuracyq Time data retrieved from the tape are locked to the signal data and thus track and speed up or slow down f

2.

Data Monitoring System a.

General The analog monitoring system will consist of a number of conventional analog instruments (oscillo-graphs, X-Y recorders, spectrum analyzers, FM magnetic tape, etc.).

The monitoring system has four function:

(1) real-time monitoring of signals; (2) display medium for after-the-run quick-look replay, of digitally-recorded signals; (3) redundant recording of any specially selected critical signals; and (4) system operational check / calibration.

One FM magnetic tape recorder will be provided for analog recording of dynamic data from seven selected accelerometer channels.

In addition, up to 47 selected channels will be recorded on oscillograph SARGENT&LUNDY iENGINEERS III-13

November 21, 1979 Revision 2 recorders for real-time verification of data.

This " quick-look" data will be provided as follows:

Number of

Response

Frequency Sensor Type Sensors Time History Spectrum Spectrum Accelerometer 7

X X

X Pressure Sensor 14 X

X Temp. Sensor 11 X

Strain Gage 8

X X

b.

FM Recorder The FM magnetic tape recorder will be a Bell and Howell Model 4010.

During recording of the test data, a transport speed of 3-3/4 ips will be used l

do that a response of 0-1250 Hz will be obtained.

This recorder will be calibrated for full scale equal to +40% deviation of the center frequency.

Data from accelerometer channels will then be played back into a spectrum analyzer with an X-Y plotter in order to obtained response spectrum plots.

c.

Oscillograph Recorder Up to 47 selected channels of test data will be presented in real-time through the use of light beam oscillograph recorders.

Honeywell Model 1508 recorders, with M-1000, M-1600, or M-400-350 galvanometers are used for this application.

This equipment will provide for the recording of data over the frequency range of DC to 200 Hz and will SARGENT&LUNDY

> ENGINEERS III-14

November 21, 1979 Revision 2 allow test personnel to validate inconting data before proceeding on to the next test phase.

d.

Response Spectrum Analyzer An MRAD Model 2B2S or equivalent spectrum analyzer will be used to present the " quick-lock" accelerometer data required.

The data will be analyzed at one-sixth octave intervals over a frequency range of 1 Hz to 100 Hz.

G.

Processino and Reduction of Recorded Data 1.

General The following processing and reduction tasKa will be performed on the recorded, digitized data, and will be written in IBM EBCDIC format.

The digitized data will be converted to engineering units and recorded in IBM EBCDIC format with appropriate header information on 1600 BPI magnetic tapes.

Microfiche records will be prepared of the digitized engineering unit data.

All digital tapes used will be certified to be free from parity errors.

SARGENT&LUNDY

.auaiwanne III-15

November 21, 1979 Revision 2 The data will be reduced and plotted and will be recorded on digital tape in IBM l

EDCDIC format.

2.

Data Reduction To perform the required data processing and reduction, presently considering the existing general we are purpose Wyle computer prog.am ADARS (Advanced Data Analysis and Reduction Software).

ADARS provides the framework for coordinating various data files on disc.

ADARS has an operator interf ace which allows the user to select a wide variety of processing and display options to meet his analysis requirements.

ADARS will perform all the necessary steps to process the raw digitized data tape and produce the required plots of reduced data.

The major tasks involved in this process include:

building a data base of pertinent channel information, demultiplexing the digitized data, conversion of the data to the proper engineering units and producing the analysis plots.

3.

Basic Analysis Parameters The data, which is to be acquired at 1000 samples per second,per channel, will be filtered at 200 Hz and then decimated to 500 Hz per channel.

The list SARGENT&LUNDY mumminans_s_

III-16 i

November 21, 1979 Revision 2 below summarizes the major parameters of the acquired data:

Acquisition rate of 1000 samples per second per channel.

Frequency components of data up to 200 Hz.

I Typical test time-will be a nomin

'5 seconds for most tests.

Data recorded in multiplexed 16-bit integer A/D counts.

All data from each test run will.be recorded on one magnetic tape.

4.

Co:nouter System Description The ADARS computer program is operational on Wyle Interdata 8/32 system.

The Interdata 8/32 is a 32-bit computer with 256 Kilobytes of 300 nanosecond main memory.

"he system includes a high-performance single and double precision floating point processor to speed calculations.

The primary peripherals of the Interdata 8/32 system include:

16-channel, 12-bit analog-to-digital converter i

SARGENT&LUNDY iENGINEERE III-17

November 21, 1979 Revision 2 8-channel, 12-bit digital-to-analog converter 67 Megabyte disc memory 300 Megabyte disc memory Two, 800/1600 BPI, 75 ips tape drives 400 cpm card reader 600 1pm line printer Two interactive terminals Tektronix 4014 Graphic Terminal Versatec 1200A printer / plotter /hardcopy unit The interdata is supplied with a full complement of software, including a real-time multiprogramming operating system, time sharing, an optimizing FORTRAN compiler, and full disc file management facilities.

These capabilities provide full support for all the ADARS activities.

5.

Data Processing and Reduction Approach The data processing and reduction that will be performed are described in a step-by-step manner.

Descriptions of steps that are not directly related to final requirements are included to show the logical SARGENT&LUNDY

> ENGrNEERS 7

III-19

November 21, 1979 Revision 2 process of the steps performed.

The processing steps are:

(1)

Build a data base on disc containing the pertinent channel information, including gage sensitivity, gage type, engineering units and plot labels.

(2)

Demultiplex the data to tape and copy it to disc for processing.

(3)

Remove any unwanted transducer bias or drift from the data.

(4)

Convert the data to its proper engi aring unit form.

(5)

Low pass digitally filter the data to remove any unwanted noise.

The cutoff point and rate are user selectable.

(6)

Decimate the data down from 1000 samples per second.

(7)

Copy the filtered and decimated data as described in (5) and (6) above to magnetic tape in IBM EBCDIC format in 4000 character records (fifty 80-character card images) in the tape format and file structure.

(8)

Prepare microfiche records of the data described '

SARGENT&LUNDY

..~.~......

III-19

  • lovember 21, 1979 Revision 2 in (7) above.

42 power 4" x 6" microfiche cards with 208 pages per sheet will be prepared using computer output to microfiche (COM) techniques.

(9)

Plot the following time histor" data in engin-eering units:

Accelerometer data Pressure sensor data Temperature data Uniaxial stress data (computed from strain gage data)

(10)

Plot the Fourier spectrum magnitude and phase for the following:

Pressure Sensor Data i

Accelerometer Data l

Uniaxial Strain Gage Data (11)

Plot the response spectra for the following:

Accelerometer Data (12)

Copy the reduced data Items (9), (10), and (11) above to magnetic tape in IBM EBCDIC format.

SARGENThLUNDY

-,.~o,~.....=

III-20

November 21, 1979 Revision 2 All digital magnetic tapes used on this project will be new and certified by the manufacturers to be free from parity errors.

H.

Test Documents The In-Plant SRV Test procedure provides a methodical approach which will ensure repeatability of data, plant safety and optimize the time spent performing this test.

1 The step-by-step format of the procedure addresses the critical plant conditions applicable to this test.

The precautions and induced conditions are l

within allowable operating tolerances as specified in the LaSalle County Technical Specification.

As an added precaution, " Quick-Look" data will be evaluated at the completion of each test section, to ensure response levels are within design limita-tions.

This evaluation will be completed prior to proceeding with th' next test section.

I.

Implementation Implementation of the In-Plant SRV Test program requires a multi-organization, multi-discipline effort.

Commonwealth Edison Company (CECO), as the licensee, provides overall program direction.

JEco operations and SARGENT&LUNDY

.. ~., ~....

III-21

November 21, 1979 Revision 2 technical / engineering staffs will provide input to test document preparation and assist in conduct of the test (data collection).

Sargent & Lundy, as the plant designer, will provide program definition and requirements, testing requirements and acceptance ;

criteria for the test.

Sargent & Lundy will also prepare all necessary testing documents, provide test administration, specify sensor types and locations, and conduct any associated analysis.

Wyle Laboratories, as the contractor, will install test equipment and sensors.

The field installation and test team will operate the data acquisition station.

They are experienced with this type of testing and have performed similar test in the past.

SARGENT&LUNDY

.nuawanne III-2?

November 21, 1979 Revision 2 TABLES General Notes to Tables 1-4 Tables 1 thru 4 refer to six environmental conditions that are defined as follows:

Environment El Fluid Pressure Temperature Relative Humidity Radiation Environment E2 Fluid Air Pressure 15.4 psig Temperature 135'F Relative Humidity 100%

Radiation 50 R/Hr 8; 1.4 x 105 n/cm 2 sec.

Enviro. ment E3 Fluid Pressure Temperature Relative Humidity Radiation Environment E4 Fluid Pressure Temperature Relative Hur.idity Radiation a

1 of 2

November 21, 1979 Revision 2 Environment E5 Fluid Pressure Temperature Relative Humidity Radiation Environment E6 Fluid Air Pressure 15.4 psig Temperature 120 F Relative Humidity 100%

Radiation Negligible 2 of 2

LA 54.LE Canny - 1 par.t I_ Od COPND%itALTH EO!$0rt COMFAMY ygg({ }

N ECT hC. 5835-00 DAtt 11-21-79 ACCELEROMETER DATA Rtv 3 z

St'ISOR LOCA710h EIFECTEC (f'!C7ED ACCLRACY (wv !R0r.,

h

<?[5 5tm50F R[$PC%5E FREQUENCY meg 1 v

wJ%E$

RA%5E g

A21'tJTM ELEV.

RA0!US (G)

(H2)

(1 %

g (CEG)

( m !%)

(FT*!N)

F.5.)

A1 46 804'-0 22'-7 0.005-1.0 1-50 1

E2 R

1 A2 46 804'-0 22'-7 0.005-1.0 1-50 1

E2 T

1 A3 106 804*-0 22*-7 0.005-1.0 1-50 1

E2 R

1 A4 106 804'-0 22'-7 0.005-1.0 1-50 1

E2 7

1 AS 226 804'-0 22'-7 0.005-1.0 1-50 1

E2 R

1 A6 226 804'-0 22'-7 0.005-1.0 1-50 1

E2 7

1 A7 46 755'-3 14'-11%

0.005-1.0 1-50 1

E2 R

AB 46 755'-J 14*-114 0.005-1.0 1-50 1

E2 V

A9 106 755'-3 14'-311 0.005-1.0 1-50 1

E2 R

A10 106 755'-3 14'-11 0.005-1.0 1-50 1

E2 V

All 226 755'-3 14'-114 0.005-1.0 1-50 1

E2 h

A12 226 755'-3 14'-11g 0.005-1.0 1-50 1

E2 V

A13 46 736'-7 14'-119 0.005-1.0 1-50 1

E2 5

2 A14 46 736'-7 14'-11\\

C.005-1.0 1-50 1

E2 V

2 A15 106 736'-7 14'-11h 0.005-1.0 1-50 1

E2 R

2 A16 106 736'-7 14'-11%

0.005-1.0 1-50 1

E2 V

2 A17 226 736'-7 14'-11%

0.005-1.0 1-50 1

E2 R

2 A18 226 736'-7 14'-114 0.005-1.0 1-50 1

E2 V

2 Ali 226 764'-6 41'-0 0.005-1.0 1-50 1

E6 R

6 A20 226 764'-6 41'-0 0.005-1.0 1-50 1

E6 V

6 A21 236 740'-0 48'-0 0.005-1.0 1-50 1

E6 R

3,6 A22 236 740'-0 48*-0 0.005-1.0 1-50 1

E6 V

3,6 A23 226 699'-10 47'-4 0.005-1.0 1-50 1

E6 R

6 A24 226 699'-10 47'-4 0.005-1.0 1-50 1

E6 V

6 A25 226 673'-4 47'-4 0.005-1.0 1-50 1

E6 4,6 A26 226 673'-4 47'-4 0.005-1.0 1-50 1

E6 V

4,6

LA SALE COU'fTY - 1

E L C' '

C0 ctw E ATH EC1509 COMSANY TABLE 1 PR(QfCT NO. 5835 00 DATE 11-21-79 ACCELER0"ETER DATA

,g 3

r 5E9500 LOCAT!0h o

EIPECTEC EIPECTED A; CURACY Inv 1 ROP..

40?E5 SEN505 PESPONSE FaEcutMtv utqT v

N; WEE &

RANGE E

A21mik ELEv.

R CIUS (G)

N)

(2 %

3 F.5.)

(OES)

(rT.In)

(FT-IN)

See A27 hates 740'-0 104'-0 0.005-1.0 1-50 1

E6 V

3,5,f See A28 Notes 673'-4 104'-0

0. 0c >- 1. 0 1-50 1

E6 V

3,5,6 A29 226 673'-4 14'-11%

0.005-1.0 1-50 1

El P

4 A30 226 673'-4 14'-11g 0.005-1.0 1-50 1

El V

4 A31 230 699'-10 29'-9 0.1-30 1-100 1

El R

A32 230 699'-10 29'-9 C 1-30 1-100 1

El T

A33 230 736'-7%

29.-9 0.005-1.0 1-100 1

E2 V

A34 230 688'-4 29*-9 0.1-30 1-100 1

g1 g

A35 230 680'-4 29'-9 0.1-30 1-100 1

El T

A36 226 804*-0 22'-5 0.005-1.0 1-100 1

E2 V

A37 174 688*-10 32'-9 0.10-50 1-100 1

El p

A38 174 688'-10 32'-9 0.10-50 1-100 1

El T

Page 3 of 3 Date 11-21-79 Rev. 2 TABLE 1 ACCELEROMETER DATA NOTES (1)

Sensors are to be located on the Gusset Plate connecting the legs of the Stabilizer Truss.

(2)

Sensors are to be located on the Drywell Floor near the Reactor Support.

(3)

Sensors are to be located on the Slab.

(4)

Sensors are to be located on the Basemat.

(5)

Sensors are to be located near the Intersection of Column Rows 8.9 and A.

(6)

Sensor :Tas no Conductors passing through the Containment.

LA SALLE D>p. f - 1

4I 1 0' 2-i C0%wt A' TM E0150ti COMPANY TAB E 2 LATE 11-21-79 PROJECT NO. 5835 00 FRESSURE SENSOR DATA REW 4 SENSOR LOOTIDh EXPECTED EXPECTED A: CURA:V E NV I ROP..

NOT ES SENS0r RESPCNSE FREQUEMCY MEN 7 4MBEG RANGE A200TH

ELEV, EA0!g!

(psgA)

(bZ)

(1 %

I*I*)

(DEG)

( M -14)

(FT-lh)

P1 263.8(

673'-4 36'-6 3-46 0-100 0.5 El F2 246.46 673'-4 36'-6 3-46 0-100 0.5 El 3

P3 233.14 673'-4 36'-6 3-46 0-100 0.5 El P4 22c 673'-4 36'-6 3-46 0-100 0.5 El P5 200 673'-4 36'-6 3-46 0-100 0.5 El 3

P6 173.14 673'-4 36'-6 3-46 0-100 0.5 El P7 166.86 673'-4 36'-t 3-46 0-100 0.5 El P6 257.54 673'-4 20'-8h2 3-46 0-100 0.5 El P9 246.46 673'-4 20'-8L2 3-46 0-100 0.5 El P10 215.54 673'-4 20*-8%2 3-46 0-100 0.5 El Pil 204.46 673'-4 20'-8k2 3-46 0-100 0.5 El P12 264 676'-10 43'-4 3-46 0-100 0.5 El P13 246.46 676'-10 43'-4 3-46 0-100 0.5 El P14 230 676'-10 43'-4 3-46 0-100 0.5 El P15 170 676'-10 43'-4 3-46 0-100 0.5 El P16 250 676'-10 14'-11%

3-46 0-100 3.5 El l

P17 210 676-10 14'-11%

3-46 0-100 0.5 El F18 230 676'-10 29'-9 3-46 0-100 0.5 El P19 226.42 676'-10 28'-0 3-46 0-100 0.5 El F20 230 676*-10 26'-3 3-46 0-100 0.5 El F21 233.58 676'-10 28'-0 3-46 0-100 0.5 El P22 264 688'-4 43'-4 3-46 0-100 0.5 El P23 246.46 688'-4 43'-4 3-46 0-100 0.5 El P24 230 688'-4 43'-4 3-46 0-100 0.5 El F25 250 688'-4 14'-11 3-46 0-100 0.5 El P26 210 688 44'-11%

3-46 0-100 0.5 El

._.._'-4

LA SALLE COU'ITY - 1

'"#'E l U' 1 C0890 WEALTH E0!S2 CONPAnY TA"E 2 PROJECT NO. 5835 00 CAf t 11-21-79 PRESSURE SENSOR DATA Bn 4 5th50c LOCAi!Dh LIFT:TIO txrttit0 ACCURA;Y tuy! R3.

hCit!

st W r RESPO45E Fat 0Lth;Y wt9T N#Bts RANGE A2! min Ettv.

RACTUS (PstA)

M (E %

E'S')

(OtG' (ri-1%)

(FT-1N)

P27 230 680'-4 29'-9 3-46 0-100 0.5 El P28 226.42 688'-4 28'-0 3-46 0-100 0.5 El P29 230 688'-4 26'-3 3-46 0-100 0.5 El P30 233.58 688'-4 28'-0 3-46 0-100 0.5 El P31

~

14-650 0-200 0.5 E5 1

P32

~

~

14-650 0-200 0.5 E5 1

~

P33 14-650 0-200 0.5 E4 2

P34

~

~

~

14-650 0-200 0.5 E4 2

P35 170 700'-10 36'-6 13-660 0-200 0.5 E4 P36 170 700'-10 3t'-6 13-660 0-200 0.5 E4 P37 174 694'-10 32'-9 7-200 0-200 C.5 El P36 174 694'-le 32'-9 7-200 0-200 0.5 El P39 174 694'-10 32'-9 7-200 0-200 0.5 El P40 174 694'-10 32'-9 7-200 0-200 0.5 El P41 174 689'-10 32'-9 7-200 0-200 0.5 El P42 174 689'-10 32'-9 7-200 0-200 0.5 El P43 174 689'-10 32'-9 7-200 0-200 0.5 El P44 174 689'-10 32'-9 7-200 0-200 0.5 El P45 14-650 0 200 0.5 E5 1

P46 14 650 0-200 0.5 E5 1

P47

~

14-650 0-200 0.5 E4 2

P49

~

14-650 0-200 0.5 E4 2

P49 230 682'-7 43'-4 3-46 0 200 C.5 El P50 230 697'-10 43'-4 3-46 0-200 0.5 El P51 350 673'-4 34'-6 3-20 0-200 0.5 El P52 170 36'-6 3-15 0-200 0.5 ES 3

Page 3 of 3 Date 11-21-79 Rev. 4 TABLE 2 PRESSURE SENSOR DATA NOTES (1)

Sensors P31, P45, and P32, P46 are located downstream of Safety / Relief Valve and inside Pipes 1MSO4BR-12 and 1MSO4BM-12, respectively (see Figure 13).

(2)

Sensors P33, P47 and P34, P48 are mounted in the center of the Quencher Device for Pipes 1MSO4BR-12 and IMSO4 BM-12, respectively (see Figure 13).

(3)

Sensor PS2 shall have as a minimum a sensitivity 4

of +1...

of H O at 90'F and be capable of with-2 standing the conditions of Fnvironment E5.

LA Lutt canny - i nu l or.1 MnEALTH E0150h COMcAmV TABLE 3

'~ '

maler =0. Su5 00 TEMPERATURE SENSOR DATA REV y SENSOR LOCAT10h EXPE CTED EIPECTEC ACCURACY ENVIRON.

NOTES SEM50F

RESPONSE

FPEQUE<Y MENT nUMBE5 RRt1E All'Ci>

ELEV.

RA21US

(*F)

M

( :

F.S.)

(DEG)

(ri-1%)

(FT-!N)

T1 264 673'-4 3 ' - 0 50-200 0-100 0.5 El T2 230 673'-4 37'-0 50-200 0-100 0.5 El T3 252 673'-4 21'-1 A 50-200 0-100 0.5 El 3

T4 210 673'-4 21' -1 /%

50-200 0-100 0.5 El 3

T5 264 676'-10 43'-4 50-200 0-100 0.5 El T6 250 676'-10 43'-4 50-200 0-100 0.5 El T7 230 676'-10 43'-4 50-200 0-100 0.5 El 76 210 676'-10 43'-4 50-200 0-100 0.5 El T9 170 676'-10 43'-4 50-200 0-100 0.5 El T10 250 676'-10 14'-11h 50-200 0- 100 0.5 El Til 210 676'-10 14'-111 50-200 0-100 0.5 El T12 90 676'-10 43'-4 50-200 0 100 0.5 El T13 0

676'-10 43'-4 50-200 0-100 0.5 E1 T14 90 676*

.0 14'-11%

50-200 0-100 0.5 El T15 0

676'-10 14'-11%

50-200 0-100 0.5 El T16 266.42 676'-10 28'-0 50-200 0-100 0.5 El T17 246.42 687'-4 28'-0 50-200 0- 100 0.5 El T18 226.42 676'-10 28*-0 50-200 0-100 0.5 El T19 206.42 687'-4 28'-0 50-200 0-100 0.5 El T20 186.42 687'-4 2W'-0 50-200 0-100 0.5 El T21 264 687'-4 43'-4 50-200 0-100 0.5 El T22 250 687'-4 43'-4 50-200 0-100 0.5 El T23 230 687'-4 43'-4 50-200 0-100 0.5 El T24 210 687'-4 43'-4 50-200 0-100 0.5 El T25 170 687'-4 43'-4 50-200 0-100 0.5 El T26 250 667'-4 14-11%

50-200 0-100 0.5 El

8 LA SALE COUNTY - 1

' AGE 1 0' 1 COPNowEATH EDISON COMPANY TAF,LE 3 PRNECT NO. 5835-00 E. ATE 11-21-79 TEMPERATURE SENSOR DATA GEV 1 SE4500 LOCAT10h DPECTED EXPECTED A000RACV Ek v!R.Vi.

NOTES

$!gsgr

" NJ4PE p

RESPONSE

FRE 1ENCY MEh1 RA4GE A2!%TH ELD.

prics

(*F)

("U (2 :

I*S*}

(CEG)

(FT !%)

(FT-!N)

T27 210 687'-4 14'-11%

50-200 0-100 0.5 El T28 90 687'-4 14'-11%

!0-200 0-100 0.5 El T29 0

687'-4 14'-11h 50-200 0-100 0.5 El T30 0

687'-4 43'-4 50-200 0-100 0.5 El T31 90 687'-4 43'-4 50-200 0-100 0.5 El 3

T32 252 677'-10 20*-1 /8 50-200 0-100 0.5 E1 T33 230 677'-10 36'-C 50-200 0-100 0.5 El T34 60-500 0-200 0.5 E5 1

T35 60-500 0-200 0.5 E5 1

T36 60-500 0-200 0.5 E4 2

T37 60-200 0-200 0.5 E4 2

738 60-500 0-200 0.5 E5 1

T39 60-500 0-200 0.5 E5 1

T40 60-500 0-200 0.5 E4 2

T41 60-500 0-200 0.5 E4 2

Page 3 of 3 Date 11-21-79 Rev. 1 TABLE 3 TEMPERATURE SENSOR DATA NOTES (1)

Sensors T34, T38 and T35, T39 are located downstream on Safety / Relief Valve and inside Pipes 1MSO4BR-12 and 1MSO4BM-12, respectively (see Figure 15).

(2)

Sensors T36, T40 and T37, T41 are mounted in the center of the Quencher Device for Pipes 1MSO4BR-12 and 1MS04BM-12, respectively (see Figure 15).

LA SAat counTv - 1

"E ' O 00*90 WEALTH E0! SON COMPANY TABLE 14 PROJECT 40. 5835-00 CATE 11-21-79 STRAIN GAUGE DATA sty 3 SEN50R LOCATIch EIPMTEC EIPECT D ACCURA V Env ! Rot.,

NOTL SE450r RESPO45E FRE0 TEN;Y ME%T N WBE5 RA%E A2!TTH ELEV.

RA0!US (IN/IN)

(H2)

(1 1 F.S.)

(DEG)

( FT.Ik)

(FT-IN) 3 51 170 692' '/16 36'-6

.0001.002 0-100 3

El 1,7,8 52 170 691' '/16 36'-6

.)001.002 0-100 3

El 1,7,8 S3 170 692' '/16 36'-6

.0001.002 0-100 3

El 1,1,8 S4 170 692' '/16 36'-6

.0001.002 0-100 3

El 1,7,8 55 170 716*-10 36'-6

.0001.002 0-100 3

El 1,7,8 S6 170 716'-10 36'-6

.0001.002 0-100 3

El 1,7,8 S?

170 716'-10 36'-6

.0001.002 0-100 3

El 1,7,6 S8 170 716'-10 36'-6

.0001.002 0-100 3

El 1,8 S9 170 676'-9 /4 36'-6

.0001.002 0-100 3

El 1.9 I

$10-170 676'-9/4 36'-6

.0001.002 0-100 3

El 1,9 1

5.

170 676*-9/4 36'-6

.0001.002 0-130 3

El 1,9 I

S12 170 676'-9 /4 36'-6

.0001.002 0-100 3

El 1,9 1

513 170 676'-9/4 36'-6

.0001.002 0-100 3

El 1,9 1

514 170 676'-9/4 36'-6

.0001.002 0-100 3

El 1,9 1

S15 170 676'-9/4 36'-6

.0001.002 0-100 3

El 1,9 I

S 16 170 676'-9/4 36*-o

.0001.002 0-100 3

El 1,9 1

S 17 170 676*-9/4 36'-6

.0001.C02 0-100 3

El 1,9 1

Sif 170 676'-9/4 36'-6

.0001.002 0-100 3

El 1,9 1

Sie 170 676'-9/4 36'-6

.0001.002 0-100 3

El 1,9 1

S20 170 6 76 '-f/4 36'-6

.0001.002 0-100 El 1,9

+

S21 170 6 7 6 '-9$/4 36'-6

.0001.002 0-100 3

El 1,9 S22 170 6 7 6 '-9h4 36'-6

.0001.002 0-100 3

El 1,9 S23 170 674'-7 36* 6

.0001.002 0-100 3

El 9

S24 170 674'-7 36*-6

.0001.002 0-100 3

El 2,9 S25 170 674'-7 36'-6

.0001.002 0-100 3

El 2,9 S26 170 674'-7 36'-6

.0001.002 0-100 3

El 9

LA SALLE COGiv - 1 P Af>E 2_ OQ CDPNDNWLAiTM ECI!T COMPANY TASE 4 PRGJECT NO. 5835-00 DATE 11-21-79

' STRAIN GAUGE DATA Rtv 2 SE'is0R LOCAT10%

SE450p

[IPECTEC IIPitTED ACCT;RA;V

[NVIR0h, NOT[$

N;fMBE s RE5PONSE FREQUENCY MENT RANGE A21'tT*

(LEV.

RADIt:5 (th/IN)

(h2)

(i I (CEG)

(TT-l%)

(FT-IN)

F.S.)

2 l

$27 170 4'-7 36'-6

.0001.001 0-100 3

El 2,9 S28 170 674'-7 36'-6

.0001.001 0-100 3

El 2,9 S29 170 674'-7 36'-6

.0001.001 0-100 3

El 2,9 S3C 170 674'-7 36'-6

.0001.001 0-100 3

E1

-,9 32*-9

.0001.001 0-100 3

El 6,7,10 S31 174 S32 174 32'-9 9001.001 0-100 3

El 6,7,10 533 174 32'-9

.0001.001 0-100 3

El 6,7,10 534 174 32'-9

.0001.001 E-100 3

El 6,7,10 S35 246 23'-3

.0001.001 0-100 3

El 6,7,10 536 246 23'-3

.0001.001 0-100 3

El 6,7,10 537 246-23'-3

.0001.001 0-100 3

El 6,7,10 S38 246 23'-3

.0001.001 0-100 3

El 6,7.10 S39 250 681'-2 43'-4

.0001.001 0-100 3

El 2,9 S40 250 681'-2 43'-4

.0001.001 0-100 3

El 2,9 S41 250 661'-2 43'-4

.0001.001 0-100 3

El 2,7,9 S42 250 681'-2 43'-4

.0001.001 0-100 3

El 2,7,9 543 250 681'-2 43'-4

.0001.001 0-100 3

El 9

544 250 681'-2 43'-4

.0001.001 0-100 3

El 9

S45 230 691*-3 43'-4 a.0001 1-50 3

El 10 S46 230 691'-3 43'-4

"*.0001 1-50 3

El 10 547 230 691'-3 43'-4

-*.0001 1-50 3

El 3,10 548 230 691'-3 43'-4 a.0001 1-50 3

El 3,10 S49 230 673'-4 17'-0 N.0001 1-50 3

El 4,10 550 230 673'-4 17*-0 ew.0001 1-50 3

El 5,10

Page 3 of 3 Date 11-21-79 Rev. 2 TABLE 4 STRAIN GAUGE DATA NOTES (1)

Gauges on SRV Discharge Pipe / Quencher may experience temperature up to 500*F.

(2)

The following sets of Strain Gauges should be arranged in a Rectangular Rosette Pattern:

(S25, S27, S28), (S24, S29, S30) and (S39, S43, S44).

(3)

These are redundant sensors to S45 and S46.

(4)

Sensor is centered between stiffeners and oriented along the short direction.

(5)

Sensor is centered on the stiffener opposite sensor S5 and aligned with the long direction.

(6)

Sensor elevation is shown in Figure 5.

(7)

The following sets of Strain Gauges should be wired in a half-bridge fashion in order that their signals add on a bending moment and subtract on elongation.

(S1, S2); (S3, S4) ; (S5, S6); (S7, SB); (S31, S32);

(S33, S34); (S35, S36); (S37, S38); (S41, S42).

(8)

Strain gauges mounted on SA-106 - Grade B steel.

(9)

Strain gauges mounted on SA-358 - Grade 316L steel.

(10)

Strain gauges mounted on SA-240-TP-304 stainless steel.

=

)

)

8 f

t r# %

\\

A. '

--i

($ac-IA) w

\\

V m

_ sm'.os jm

, sa.. sos'.e*

4

_ d

.a#g

I.?

,g,-

1 AI. A2 A3. AA e

q nA6 NOTE:

p#,

.(

y-tu.786'.6 c.

Accelerometers A27 and A28 are Mce.Pic LA.

S W D*N i

located at intersection of

,g, Column row"8.9' and "A" at elevation,as shovn g M

  • .c

('~ south east corner of Reactor )

Ai,,Ago (Building.) 51W remaln-7 sL.764'.(.'

ings Accelerometer Radial ry A9.A,6

{

jagt. %I'O" Locations see Section A-A p,

t on SK-1A h

f eL.755'.4,,

s A77 tett

.-(

Noi*2 s

h-A15. A15.Al7 A La Ath,AIS 3.4 21.472

/.L.140d O..

L

,.;.73,. 74,

.t -

enscTot 3.-

3 nmmm N

4 e

AHd

\\

t

.5

' : ' [,4,-

f.

couTAiwwawf

[

pcomacowsee W

Ij -

e lun!,YlOlljhj{

y tt. 7l0'-c5 L'

e W

b

~

)

lf.

A.,

A73.A2A m.

-r

- =

!"k P o L.

A 8--

a.s.i a..s u uo' - A u n,

(Set A57

.aofg3 I'

a

^

Ats, A2(,

7 429.

^Q-A./, - et ra' e' t /Aw

..sc

. % a. **.

.f.% '.4y.

_Ptsoes-1 AcceLecoueree LocATrous z=

m.wrw W

TEST N M M

.j

$ M$ ~~u%-

, *saa m eranoa e.... n _-

(,),4 if j M

sm K.y hk D

e to M

- - ' Tad EIHtond C4 S*I g

3 cs+><* p.lu.iweis

> -m -

g' 0lII3 lI3 3 l M s.cc e s

4 8

3

=

44[

9 d'

[

, k ,

\\

n

/

/-

I l.r

'.i A7. 48 L.,

h Alb,A14

~

tv '

f t

f g.

'Q i3

'N

- SACWif ICIAL

$d lErLD I

's g

'270 s

's j

Als. Air, '

/ Al7, ik.

' ' ~

,a,g

+

COLuMu

/

/ -

4.A79 j

\\~':$' g J-A i2. Aw, An i

ASI AM' l

l STAS 4LIZE:2 4

/

TEOM A7!. t.2 2 3

j f

\\

/ j o

s-

- A 55 f

AS. AG ce N

C04TA14Mt4T I

's AM ' '

At 9. A70

.3 W n

174*

i

@@@3 3R[]3E$L a

___ fldIO#26" - l A ACCELWMeThe LochTIOHS S&cnos s g e--

iM FL147 SFV

'u e asuminnasser

.j $ *,M} #,f",_h M

TEST ProdrEAM r.

m-1, ifm y--

s -_. n % wm p, O

t 'o n & _m x ON'T ' J emens um er, 6Td bri CA Sif-IA I

  • L.I. dado 4 mas, %

E

  • lII8 l1I I)

W a.cc 4 0

4 g

w t

a t

+

i

[

Y

\\

I Y

A38) l AOI g

~

'M Aj

$l J

o N

A38/.

TA4(*E:4TAL y M7 6EGT!ON A-A

2. 32.75' AE. J74*

_f'l60Rt=Ib DOWWCOMeg AcceLet2OMeTe' R LocATios

.u,_wr w as.. 9 mes.,we o.co

== m 737 qq

""# ^

E l,4 % Coowry(GifN

. - ~

ONII I

-,,o COMo40W m LTee D eW W U.

gg, g g y ~

C WicAdso, ILLI do'*

,,,,,_._,_,4 e

iII l33 3g

w:

^

f I

/

s

/

/

L, 4

s I

i l-

,,, w

\\_>\\

h PldrO2& - 2 6&HMt2 LCfj3Tidsb IW W&T WBLL AhlO f:4V Lir486 iW - PLMT $cN

== --- -

w. =*.

=

mammaamme m7 g a M

3 e, n. 3-7,s,,4. m

~

A La %lla coowfY STafied 4.-

x,, m 04t7 i

==== a ar-I rawwowweALTH &#60w Co<

$K.7 g

caueo.1Waos w

a, l

IIil5I il e,.suus a.cc 4 4

w o -- 2601bL g

a 67 TAW 6&WTIAL bl.

et.7 t o. 5 55'

!)

,, 9 77 62CT I O R A-A s_e e 7 9. s + 6' l3 l

A s ceoiAL A 3 3

~

e 6a SS 6dr TAWGE"N[iAL llMSOs bM-12 )

I;

,<- - ~

t67 v/ ate 2

.sv et 6BCT 1 CW 0> - er e t. <,e e. e s,

==

V N#IE*'

et.c.e2.oadll'l l 6TfalW G AG&6 Lot

  • f.&Golcko AT TWO LOCATION 6 2 FAIE6 0F OIAMETuscALLY

(

p h

bp-orroseo eTaAiw e40se, osiewrAveo PAltA' LBL To THE LOWa:TopiNAL Axth op TMB Dl6CHAWGE P PE. TH& CAO&eb 6HOOLD S& AT LBAST 7' AWAT P1 tom ANT WELO$.

)

/:

1

(

)

(

)

f A

I I

(

J~^-

_Picoce s 6TRAlk!

GAOGE ObJ 6EN' DlMHAESB LlWE j

W-PL ANT sev Test moa.w

riiih7, s,n,
g. A 6au.e coustrY t!risTsod 4
  • * * *# ' W 04 8f I assuun e es.

% o.-ww m.,a Co.

ex. 3 f,.

3 C+4acaso.1LL 40r6

  • l33 3l33 3l w s.oc e 0

4 8

Q

> Q ~ ~~f, L_

L l-,

4

\\

\\\\

~>

_ soore e 6&N5025 ON SEV Br2ANGH CONNECTIOW h

Ee@M

~~

. T "" %. -

d 6

-d'"*'

'A l A bu.t Coowff MATiod OwrT I emmen a m

~~

.- a co.

eg.4 3

co

.m.i

  • l

l8l m e-cc a 0

4 8

W Jl J

4 4

k 6

h S'

$l i

l 6u

.ne

$ 61_

_32,

,3 3g, 7paggg7,3g 63 )

? 6 33

  • $ 2>7 1
2. 37.75'
c. 75.25' l je

AE. 174*

A7. 7d(,'

Ld_

AJ 6&GTICW A-A NOT&6:

1. THE IW6TccMEWTeo Do#WcoM&es Age LOCATED ATt 2ADIUb : 32.75' AE: 174
  • 2AO106 : 16.75' A2: 14(,'
1. DIA4&TElCALLY Matto 4tAcces 6WOOLD Se co4NE6T&D TO MBAbOct SeWDl44 GTCAlW.

p

3. 6TCAlu GAotse9 *WOOLD De LocLT&D G" SELo#(

TWE So7 TOM OF THe OEActW&, AWD AT LEAST 1' AWW P20M ANY v&LOS.

l O

a

(

/

_Piacee-e DOWhlCOMe2 $Ts2AlH OAQce

()N m..- ~.

~.

t s.v r

iW.rLAaf w IF -

,* **7 -

~'a ~

m j 2 0 7. @z a m cuer 6ar.oa o.

o.m s I *8WO4WDALXsi IDl604 h.

66(- 5 O

l CHICAcap, IU teser6

_ e, -

g

=l5i lfa l

w a.ec.

w h

i

==

I

(

V-.

seu Ol se-74 )

s h

Ts.AlW

!ObtTT& q

, SM ssS

$44 q 4A0 e

I S SC

  • 6 41 M CTIObj A -A et..aaI.97'(

v_.

43.wso, 0 A E. 15 o-e 4

g 4

L I

NOT&b:

1.Tscee sTwaia cAuses Aue AseAwseo Tr rogM A 2EcTAWGuLA2 coseTTe, wiTH OWE GAccne PACALL&L TO THE LOWalidDlWAL Axt6 of TNB f't?t AMG 04 $A0Ge 01t:24TA39ALOW6 THE ciecOMPt-ftWC& OF THE fifTr.ht#0ifloWAL GAce&+ ActB OCIEWTATBO PAirALLtL To TW& Fife 6 LcWetToo WAL Axi$ AT 90' INTtstvALo, 7.6 Add &b 6WOOLD 96 LOCAT&7 AT LEA *JT 2' 4WAT P120M AWT WELD 6.

3. AW&LE6 DETWC&W TWO ADJAcEWT DAdd&& OF A $Tf.A14 20$GTTE SHOOLO DE 45*

f* I 60C& fo STt2AIN drAus& ON EW2 606710W LINJ&

ia-r AaT+=v an ans am, mressum assusuun aureus N

e v 's

-mm M-

^~

g pgocsgAM m

yg Od rT I

.onen e m

ha4waacN EM Co.

eg. g,, g j

Cwsumo.TLLie4 4

g!" p

T s 22

+ f t *.y (2y,,_4 a T

g, 3

y

)

6r \\

s ev,,,

6

$2l Pl AH v

se /v\\

eis

. *i5

\\

6'"

20

/

bihN

[ $19

}

l

, $22

..lY L..

62),

$71 6 17 sr7 SIB j

j Sit oTo \\

  1. EG s1G 4

cagi us : SG.J '

Asi170*

I EL.&\\/ATION vi ew A-A t40766:

1. eAcH Ac4 Was ? PAino oF DiA4&TeicALLY OPPobeo *Taaf4 aAO6es oeie4TATeo FA2ALLEL To Tse A2Ws LOWS:TOpiWAL Axis wiTu owe PAi2 i4 AWO ode FAi2 007 0F Tde PLA4e of THE GO64CH&2 ARM AWD 60 &oeT.
1. eAca Acu A:.+o -A. i e.ie or a AueTeicAuLy orro o oioses omlewTArea ALoaa Tse c!RCOMFece4cE OF TME AN ANO sW TWh FLAW & OF THE AN AMD 60PPoET.

3 Two dA0&t6 :80* APA27 ARE LOCATED 04 THE SPHt12E 602FACG. 026t4TATED FA7.ALLEL To THE Lo431TOGiWAL Axts OF TWB AltM6.

4. 672A:4 GAcets 6400L0 % LocATeo AT LEasT 2' AWAY P204 A4Y WELD 6.

Y t a att -7 b ~i 2 h \\ H f.A b O (.2 5 b 0 0 0 0 6 d C R & t2 A b b b W b l 1 O

14-r".Adr SW

-^ """

Te.T r o.ew

.s e

-m m

LA M Le coowrT srATA d

curr I

%ow.n.ALTu episow co sg.7 D

3 c w ca. o. n r.ia ois t ol sis le: il

,=

A w

..cc.

4 T

\\ #d/ B l

[ 4, QOggcM&2 SID6 - ARM j

$79 466&MSLaf

_$M b

D f

~~)

$17

$1b S

F

' ^ ~ ~

i i

f l

wores:

J

1. THe GOE4cWeir Lo r ATiod 16 LocAT&O AT:

i EADidb : 3(a. 5 '

M 17 o

  • l 1.16eT$ OF 3 $T24:4 6Au026 ACIt AestA4Mtp To FosfM ERCTAWOOLAS 200ETTES, EAcH coseTTE WAvi4G t GAdde FA8 TALL &t. To THE e

s i

bdPfoKT6 LO4G:TOOINAL Axis A40 I gad (see

^

$75 6 74

)

02i&WTATep ALowe We ciacc4ftste4ce OP

~

THE 6dPPORT. 2 24TINAL OAdue6 AGE p

$25<

QS28 Q6M

/EL.c7/.7" OGl64TATb? PARAL L&L To WB 60PfbfTb k'

S 77

$7 t

LOWDITUDIWAL avl 6 AT 90' 14TarevAL$,

3.6Auck$ $ WALL Se Locate 0 AT LEA 67 5' t

AWAY P5 tom A4Y weLob.

/.. A4&Ltc OETWbtW Two DApoe$ of A $TitArmJ,,

I EO6eTTE +WodLD DE 45'.

LA

~

i

\\\\

I l

l 1

tL.G73'-/

  1. '/

I f

1

_ FI&oce - S 6T'Z61W OAO6f&b Ot-1 62O&hjCW8J2 60Fyot2T IM-FLANT 6W m====---se I $D g h

'u"'ums sea wu T4$7 P20drtAu assuurasser

".g g

~

M W CAWTf6TAIJO4 i o n.i.%2;,

,,g, da:T I m.

ammTH emww co gg. 3 g

v j

4"MicAero,lLLJuoid, j

.ggg g ggg gg w a.cc 4 s 0 4

3

C

\\

l 8'- C.'

I

=

=

s NW 27 0*S '

Mc a os. sEuT ft (1.P) TYM 1

QuEucHE2)

BASE st(LP

.a. g y..

.o

.~ \\

  • 1 PE P E6TAL.

44 i O,

N

-4 e

c.o6u u u

$50 1

m AT 1h..(,71l -

m o:

J i

\\

/

N t...

Se A

--Q UEWCW E R.

\\

'*:. i.-

et.ro BMM..rt(l.F) s

-*s '

l

' '\\

- N Law Tzer

..,x l,.

cwa.uusL. (i.8)

\\

'.4

(

~* 5. \\

.V

'4'

$45. 646,$47.4 548

.(#.

AT EL, (o#1'-S' 4!.,4 N

s P

\\

'x s N

s.s. u w m e.

N \\

couTwu ME.uT x x x

y.

iso

  • C

_ el a o a e - o>

STEAlW GAUGES OW GOWTAlWMENT L.lWEE IW F%AMT 912V

."a7 " Yg.Ym TErf/T Pff0CriEAM E

L.A6aLLt. Lov.tyy 674 Tim B

-M '?>I 7' 04iv i Cwc '" % ko'$0.J Ca g9 CW.A&o,Iu.iwors s

d g* 0l333l88 8l w a.cc 4 l

5 4

8

oey.eu. etoon

/ EL. 7 M'.74 "

i k :NH

$%k i

i

  1. o.

72l

'Plb Pi9 rzo N

$E:c, TION A-A 4

d.

o P30 t'37 P29 t ECAcTot (ggg'_f ese.esos p,,

P27 M

_.i

,e (eao (G76 \\o,,

e s.>. w 2, e

(M66a7

^'

P'to #

e..c,73.4 3 s

','f,(

f ff.

n

.4

_80T46 :

l. cOLOMW #6 t.ocATtD AT 1&o* AE.

4.4 Pet %0tte seN60ES ARB Lo4AT&D AT EAcw LBvat. AWo +mLcho co* APA27

_FI(st3tte - 10 Ft2&SSO2f::: 68-190se LOCATIOWS OW COLOMW ia.euar sw

~

~

~

$ I'.,.,.,73, TEST mM ensammauer

  • . 4 m wr1 asu w 6mm a

me c

a -io.4 z

-A g y,7 MddOWW6ALTd NWW CO.

M.)O Cw.caeo.TW.tweis g* f I ' f8

e,,mme s.cc.

A2 = 174*

[peYuttrLLM.ooe 4L.7M'- 7)'2' I

i l'

o d

PSE P57 TMenStfAL _

Dowd N P39

[estActe Pw i

\\

a i

580.7104 A - A Se=174*

)

S O

6 P42 T'4l TAetWN t.

P,,

P4A 6bdTION D*D P 57 / 58 P 59.Pdeo e s

W O

YD 6y

-j 4

y P41,P42,WS,P44ee e

w

1. DouWcoMer 16 located AT A7:4074 = 67.t' RApios s 32'.('
c. 4 PueHoft 6twsoe6 Asee LocATeo AT eAcg LevaL A4D 6FAceO co* APART-

/

i

\\

N ____

_ T Icroce - n P rz rc 6 9 0 t2 B 6BW602 LOGATIOWS O.4 DowMcOMEt2 w... _=

= _ _-

ia-r'44 6ev Tt$T Pitet:rcM g

A iti.mg.x m g

wu=%umm t ty.;;;;;

OWtT l m

s

=

e

/

-or, % c.

w.,,

c c

. ru,..e

  • l333l33 3 m s.cc a 0

4 8

W

. - Q* l o-

/'

[

ess

\\(

1

\\

S e.

x

+

,t i 4 *)s$

OO

'210' m

,, ~ #0 el

  • ( /[

s Pit

as C m FI
  1. mi/!,\\
  1. c,,

"f,,"'P 2e e

/j e.

G 1

y,A g3 II

\\

g v

s%,

i q

e e,, 'u ' P4

  1. o.

P 4

)

\\ PIS 2/o*

A i

i Pope

/

  1. DI (88 11 8 f5W ifA)

PLAN

.Y (hhhtj

_ Fwoes - iz P e ssd2d 6N6O2 LOcgr;og 3

y 60 *'F2666 LOW FOOL SN
  • N $W as ' ^76 7 re-g 3

4

?

M7w

=

=

D Codicaeo.Iwians 4

gi' iii..

hans s.ce.

Y f$k 17)

Y Y

--~

&L. G 99'- 10 k. e L. G 9 7 '- 10'

  • /

'~

N C

P20 F??

& L. G S 6' L'

~agt pgf

'P29

' '70

.m

. 1:

. ??s I

-y l EL.G82-7

,P4ss

Pt9 el.G7 G'-lo"

. t.

./. 1 s-5%

pg

  • r;j

'r20 P37 E L. G7 3'- 4' III nM n

\\ rims 1, esire es n to to'ri YI J

14.956't

.i L

n gg, n.Ga

~

em Au mNsees erarup es.m e m ma sos azz.smeucity.

SGE PIG. I7 Ft3T., SEiNS@pr

AZIMUTH, BLevATIoW

_flo oce -17 A f*:2&66026 $&W902 Loc ATIoW5 IW

_60 PPG %S&IOM POOL Tigt m amm maussmer a

.. m e....

g

" A6eL44 coown $T@od y iggg'g ori d

D'**d C#

6g.13 A g f M o*u8M4.N cwicuo. h os f

g*

3 8{

e, mans a cca

y 62V 62V e rss,ns e

es2.ess

'eny8

(.

22YWELL

-h-

--h v

N i

+0rree%sou -f-

- -V -

Pool y

y w

h o

m o

S 4

o I__

3

=-

=-

4 i

T

/gJ r

I.T T

r

\\

J

\\

\\')

J L

~

~

P53, P47 P34,P48 NoT&:

F45,P46.F47 4P48 A28 2&DOWOANT P2e % oak % % ons.

F16028-13 f'286602& 6&W602 LOCATIOW6 i W 62V DiMWA9h6 LINe6 z-r ia-ruar sev s

t-7 e-=

g itK Nom asammeur d',"'

  • _ iihLLe M dAAT*4 d

bit I mW W

NTW Epi $0WCa

$K.13 g

3 MWD Wo*

m-=-

I "l33 8l38 8]

e,iams e.cc.

O e

8

Y d

r EL.718.435' f,)

]

3 3 s.

>W L M4OL DM-82 WATE2

[

Level

/

44..G 99.85,

- = -

=-

NOTB6:

1.TWO PR&6*d2B TWAN6POCE26 AE8 LOCATED sa THe piscassee met oss toot Above 4

y WotW.J. LEV 8L (04& TEA 4bDuc2R 4 fo2 RESdWPANCYh (ModNT A7 LE46B Co* APART TO PREV 5KT idTERFttEHC&)

(

)

(

)

sm 1

i

_flC10Rb ISA l'2E:6604& 6&46026 OM 6Ev' DibCHA266 Ll2 IW-M. ANT 6stv l

=.

i=... =.

^

iTr:67 PacdreAM Lsumanaumsyi d*"

LA6ALLA CcNNTY $TAIiCW 2'sL wea es. sqh "j

cuicaeo.nuaois i

e Il l l 3 1

O'

" Tib T50

'4 N

Tis.T79 t?'3 l

[4 770 _

_ rh

. Tid.Tf6 90*

^

7 782' tw

{*- -y'f 6

1 73; T2l D

\\%

Tt7 Til e,, p s-

,,l

\\

'O'

\\

$. Tco

+

T TM TIS

\\

TN TT 19 T10 e

n.m y

./

4 T24 Te\\ 2 AL T

Ak

?o*

t t

t

'So.

iso" (1,.

y b-PLAW h auce -ie TEMPF 2ATOR& MW60;E LOCATICW6 IN 60PPEe6540W Pool m-a.wT w

~~-

~

ansmusammer m 7 m oc m a

A ns.w #ew g

d "

X"'

__ a 6 2 h 9 ratio 4 Owrt I

= = =

an

%.wwwasmaEo w Co.

6M -14 g

3 Oww uuaess w -.

l333l333l g

j k m s cc e 0

4 8

9 (6sC-14 )

=

V 1

Y l

t

_.p 4

EL. Ge e - to l*22MAWir4T._ -

f 60PPSE:bbiod 1

POOL Tb4P4fATt.mit-Mowifos Nor ST$r WL. 687' $

. T29.T27.

' T28.T29 T21.T22.T23. j ri7.

T ' '< /

T 2t. T25 T30.-

7 70' T3:

'C "5 TG 77'TB D'C Te> Td.Ti3 m E

s( l.T33 T* L EL. G7G - 4 0 f

L T40,T 1, 8

Il6. / ~ Ty Tad. Tis

~

EL.G73'.4" T1 TIS T5 T2 T4 14.e58 s,

.2e.oTc 20.so e _ :

I

54. 5' Q i_

43.3 + 5's Wr2: AU.Seftsops Eo7ATED TO C4Je ACE ftzt st/MPuc47Y.

SEEE P16.14 FUR. 53i&&dEE.

  1. *W '

cl evATioW

_t n boet -:ss TEMPet2ATdee 6&kiso2 LocATioWS IM 6dPFt2966 tow POOL

- --- sn.

t4-PLAMT $4N

~~

w===

a e Tt6T PulbegAM g

$3.M $$$

'46d.La cou,ey $ttrie.4 a

LM.

o %.w, e.

ON4 I mus = l es=

fo wouweetTw rspee+4 ca bg t4A

=

j CM c u.ILLewme g

.l3i : ll 5 al

=

treauss a.ce.

N o 4

a

6dv 62V s

9 T54,T38 9

T 35,7 39

.__ p

--h-

_p

- - + -

t.

o y

8 D

b k

b G

4 q

N M

Q 0

o s_

I

=-

4 I a\\

T

(

'[ m \\

T f

~

\\ ')

J

\\wl J

L

~

~

T3G.T40 T37,T41 NOTE:

736 T39,T40 /c T41 Age espoyt;AWT TEMMatATOsts: $EW602fr.

_ Fisoee - is TeMPe2Sidge MW602 LOCATiotJ6 IN 62V LisjB6 O

IW.PLMT SRV

~~

er enwu

=====s==r s

. +,, o, e a

wxu cours ursrm a

owir i c~

tr co..oa ca g.:y 4

j cw.u,o tu..w..$

Jg

=lri: li: al m...

0 4

8

w O'

9pe

/

/

eas socTiOW /

12HolBA-24

/

[

o.

N

/

I

b. y'm M

'270*

lW.Olbt-\\2

{

'O IHbo4SH 82

\\ \\l PEDESTAL l

l>4bO 66r-82, o

\\

47 l

RWR SOCTIO4 -

IRHolOb-24 iMsosec-p

\\

\\

COWTAINM&47 WALL Ah-It Oe E/s.

RHK $0CTIOW k

12WolBC-74

\\

iso Wo F'LALJ

_paaee-se IDENTIFICATIOW OF $2V LlWE6 r

'W - F Ad7

  • TEST PEN l"useurTaumst li

_=

m a

e-7, e a m 1

' " " ~ '

A%U.e Coa.cY %TooW

~

OsssT I 2

%ennacW E"'W Co.

$g.gg g

CoHcA60,lLLinJot6 1.l5II II3l

Q.S.I. 721 p_-.________________._________q l

I DATA I

l STRAIN GAGE PROCESSOR, g

[

) DIGITAL MTU l

ANALOG MUX AMPL IER

)

F0 TTER P FS URE

& ADC g

SIGNAL D TO A l

j CONDITIONING g

l CONVERTER 4

L_________________

E i

om 8

VISilAY 2I00 tn i

o c

m 23 o

TO PLOTTER, C3 H

E h

OSCII.LOGRAPil, 3

m

$O i

+

ANALYZER, ETC.

OSCILLOGRAPil y

o_ P RECORDERS m

lc ACCELEROMETER rn E.

H 2

HONE LL j$

1 SIGNAL

+

m o

I CONDITIONING 7

I 4

<l w

SUNSTRAND 504E y

1/6 OCTAVE

,)DIGITALDATA g

ENDEVC0 FM TAPE SPECTRUM RECORDER ANALYZER c

2721AM1

^

h ANAI.0G DATA B&B 4010 MRAD 282S e

wz OO

e. (D 0O UM MM H

H W

4 W

November 21, 1979 Revision 2 APPENDIX A TEST MATRIX Nominal **

Type of Valve (s)

Initial Initial Initial Discharge Test Actuated Water Lee Pipe Temp.

Pool Temp.

Duration (Lic)

SRV-1 C

NNL+

CP, HP NT 15 SRV-1 G

NWL+

CP, HP NT 15 SRV-1 H

NWL+

CP, HP NT 15 SRV-1 M

NWL+

CP, HP NT 15 SRV-1 R

NWL+

CP, HP NT 15 SRV-C C

NWL*

CP*

NT 15 SRV-C G

NWL*

CP*

NT 15 SRV-C M

NWL*

CP*

NT 15 SRV-2 C,H NNL+

CP, HP NT 15 SRV-2 C,R NWL+

CP, HP NT 15 SRV-2 C,R NWL+

CP/HP NT 15 SRV-2 C,G NNL+

CP, HP NT 15 SRV-4 C,G,H,R NWL CP NT 15 SRV-S C,G,H,R NWL CP NT 15 SRV-E C

NWL CP NT 600 SRV-E H

NWL CP NT 600 SRV-L M

HP NT 15 NOTES:

The number of times each type of test should be repeated is to be determined from statistical considerations.

= After first actuation temperature and water level change.

= 15-second nominal time can be 5 to 20 seconds actual; extended blowdown may be limited by plant limits.

+

= Cold pipe only The SRV Discharge Ouenchers of valves M, G, C, H,

and R are located at 170 210', 252', and 264' respectively.

SRV-1 = One valve actuation CP = Cold Pipe SRV-C = Consecutive valve actuations HP = ho'. Pipe SRV-2 = Two valve actuation CP/HP = One Hot & One Cold Pipe Four valve actuation NWL = Normal Water Level SRV-4

=

SRV-S = Sequential valve actuations NT = Normsl Pool Temperature SRV-E = Extended valve blowdown SRV-L = Leaky valve simulation

November 21, 1979 Revision 2 APPENDIX B Specifications:

(Model Endevco 7704-100)

(used outside containment)

Charge Sensitivity Nominal:

pC/g 100 Minimum:

PC/g 90 Frequency Response (15%):

Hz 1 to 5000 Mounted Resonant Frequency Nominal:

Hz 20,000 Transverse Sensitivity Maximum:

3 Temperature Response F

-65 to 500 (15%):

Amplitude Linearity Sensitibity in-creases 1% per 250 g's.

Specifications:

(Model Endevco 7717-200)

(used in Containment Drywell)

Charge Sensitivity Nominal:

pC/g 200 Minimum:

pC/g 180 Frequency Response (+5%):

Hz 1 to 4000 Mounted Resonance Hz 17,000 Frequency:

Transverse Sensitivity @

Approx. 15 Hz:

3 max.

November 21, 1979 Appendix B Continued Revision 2 Temperature Response:

'F

-65 to 572 Amplitude Linearity:

Sensitivity increase approx.

1% per 250 g.

Specifications:

(Model Endevco 7717-M2A)

(used in Containment Wetwell)

Charge Sensitivity Nominal:

pC/g 200 Minimum:

pC/g 180 Frequency Response (+5%) :

Hz 1 to 3000 Mounted Resonance Frequency:

Hz 17,000 Transverse Sensitivity @

Approx. 15 Hz:

3 m ax.

Temperature response:

'F

-65 to 572 Amplitude Linearity:

Sensitivity increases approx. 1% per 250 g.

November 21, 1979 Revision 2 APPENDIX C Specifications for Vishay System Bridge Completion:

1/4 bridge completion network per channel Bridge Balance Range:

3000 micro-inches / inch Calibration:

Internal calibration of 11%

Amp Gain:

100 to 2000 continuous or steps of 100, 500, 1000, and 2000 Input:

Differential Input Impedance:

25 megohms differential or common mode Output:

+10V maximum Linearity:

10.05% to DC Stability 0.5% after 15 minutes

November 21, 1979 Revision 2 APPENDIX D Specifications for Charge Amolifier ENDEVCO Model 2721AM1 INPUT INPUT CONNECTION Single-ended with one side connected to circuit common; restricted for use with capacitive devices SOURCE IMPEDANCE 1 kn minimum shunt resistance; 30,000 pF maximum shunt capacitance MAXIMUM INPUT 30,000 pC pk without overload SLEW RATE 1,000 pC/ ps maximum OUTPUT OUTPUT CONNECTION Single-ended with one side connected to circuit common LINEAR OUTPUT VOLTAGE t10 V, maximum LINEAR OUTPUT CURRENT 2 mA, maximum OUTPUT IMPEDANCE 10G 10%

RESIDUAL NOISE Nc <0.03 pC rms +00.008 pC rms per 1,000 pF of source capacitance, referred to input Nr = 100-- pC rms (typical) v'Rs where Rs < 100 kn Noise = /Nc2 + Nr2 TRANSFER SYSTEM SENSITIVITY Amplifier gain is continuously adjustable to allow for indicated calibrated system sensitivity for transducers with sensitivities of 1 to 110 pC/g 1 of 2

November 21, 1979 Appendix D continued INDICATED RANGES 1,

3, 10, 30, 100 mV/g for 1 to 11 pC/g; 10, 30, 100, 300, 1,000 mV/g for 10 to 110 pC/g GAIN ACCURACY 1% of actual gain for source impedance > 10 kn and/or i 10,000 pF; 2% of gain for source impedance 1 kn to 10 kn and/or 10,000 pF to 30,000 pF GAIN STABILITY 200 ppm /*F, maximum FREQUENCY RESPONSE 2721AM1 5%, 1 Hz, with source, impedance

> 300 k IS%, 3 Hz to 10,000 Hz with source impedance 100 kn to 300 kn 5%, 5 Hz to 10 kHz with source impedance 10 kn to 100 kn

!5%, 50 Hz to 10 kHz with source impedance 1 kn to 10 kn ENVIRONMENTAL TEMPERATURE O C to 75*C (32*F to 167*F)

HUMIDITY 95% relative humidity, maximum 2 of 2

November 21, 1979 Revision 2 APPENDIX E Q.A.I. System Performance Characteristics Record Electronics Analog Input Channels:

Expandable to 256 channels in 16 channel blocks.

Digital Input Channels:

Expandable to 32 channels, up to 16 bit parallel with handshake transfer Frequency Response Range:

200 Hz Throughput Rate:

1000 samples /sec/ channel Recording Capacity:

Up to 145 Magabytes per reel Analog Input Impedance:

10 Megohms Conversion Method:

Successive approximation with S/H input amplifier Conversion Code:

2's complement binary Conversion Resolution:

12 bits including sign 66 dB Dynamic Range:

Conversion Accuracy:

0.01%

F.S., + 1/2 LSB Input Level-Analog:

+5 FS, +15V FS maximum overvoltage protected Digital:

Standard TTL Logic Levels Time Code Data:

Days, hours, minutes, and seconds may be entered into tape records as required.

November 21, 1979 Appendix E Continued Revision 2 Header Data:

Manually entered by operator via front panel keyboard Power:

1800 W, 110V AC, +10%,

50-60 Hz Playback Electronics Number of Output Channels:

One (expandable up to eight channels)

Throughput Rate:

Up to 250,000 samples per second Speed-Up Factor:

Up to 1000:1 and beyond limited only by thoughput rate Conversion Code:

2's complement binary Conversions Resolution:

12 bits including sign Setting Time:

3 microsec to 1/2 LSB Slew Rate Output Voltage:

20V/second standard for 15V FS; other ranges optional Output Current:

15 ma Output Filter:

4 pole active Bessel, Butterworth or Tschebychev optional Conversion Accuracy:

10.05% FS i LSB at 25*C Temperature Coefficient:

20 ppm /*C Time Code Data:

Days, hours, minutes, and seconds may be read from tape records and displayed.

November 21, 1979 Appendix E Continued Revision 2 Tape Transport Characteristics Format:

IBM compatible Number of Tracks:

9-track Density:

6250 BPI, GCR Record Length 4096 bytes Tape Speed:

125 ips

.