ML19003A371
| ML19003A371 | |
| Person / Time | |
|---|---|
| Site: | Turkey Point |
| Issue date: | 12/21/2018 |
| From: | Florida Power & Light Co |
| To: | Office of New Reactors |
| Shared Package | |
| ML19003A318 | List:
|
| References | |
| L-2018-237 | |
| Download: ML19003A371 (132) | |
Text
3KK-1 Revision 0 Turkey Point Units 6 & 7 - IFSAR Appendix 3KK Site Specific Seismic Evaluation Report Appendix 3KK is comprised of the AP1000 Turkey Point Site Specific Seismic Evaluation Report, Westinghouse Document Number TPG-1000-S2R-802. This is a Westinghouse proprietary document and is withheld under 10 CFR 2.390(b).
The non-proprietary AP1000 Turkey Point Site Specific Seismic Evaluation Report, Westinghouse Document Number TPG-1000-S2R-807 is a redacted version of the proprietary AP1000 Turkey Point Site Specific Seismic Evaluation Report.
WESTINGHOUSE NON-PROPRIETARY CLASS 3 TPG-1000-S2R-807 August 2015 Revision 4 AP1000 Turkey Point Site Specific Seismic Evaluation Report Westinghouse Electric Company LLC Nuclear Power Plants 1000 Westinghouse Drive Cranberry Township, PA 16066 2015 Westinghouse Electric Company LLC All Rights Reserved
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 3 of 231 Rev 4 RECORD OF REVISIONS Rev Date Revision Description(1) 0 See EDMS Original Issue 1
08/2012 Text revision to replace bridging mat to lean concrete fill throughout report.
2 1/2013 Addressed FPL RFI # RFI-FPL-036 including NRC RAI 03.07.01-14, 03.07.01-16, and 03.07.01-18, and FPL RFI # RFI-FPL-037 including NRC RAI 03.07.01-15. Turkey Point 2D and 3D SSI analyses were revised to incorporate a new FIRS developed by Bechtel to meet the minimum 0.1g requirement in Appendix S of 10 CFR Part 50. Revised seismic input and soil profiles from Bechtel Calculation 25409-000-K0C-0000-00066 Rev. 0 are reflected herein and the resulting in-structure floor response spectra (FRS) are compared to the AP1000 six key Nuclear Island (NI) locations FRS envelops. Also, transfer functions at the six key NI locations are presented in Appendixes B, C and D..
Finally, Seismic Category II adjacent structures SSI analyses were revised to incorporate updated Turbine Building First Bay and Annex Building stick model geometry.
3 03/2015 Performed 3D and 2D soil-structure interaction (SSI) sensitivity analyses to evaluate the potential effect on the Revision 2 design-basis SSI analyses of the Nuclear Island (NI) and Seismic Category (SC) II adjacent structures in-structure response spectra (ISRS).
Sensitivity SSI analyses are based on updated (2013) site characterization data and updated (2014) site response best-estimate (BE) sensitivity analysis, performed by others, and the corresponding updated SSI soil, rock, concrete and grouted rock seismic input for Turkey Point Units 6&7. Appendix E presents detailed descriptions of the updated BE seismic input, the initial (Revision 2) near NI and far-field (FAR) BE profiles and corresponding updated (Revision 3) BE profiles, and the results of 3D SASSI SSI sensitivity analyses to evaluate and compare the design-basis Revision 2 SSI analysis ISRS to the updated Revision 3 sensitivity study ISRS at the six key NI locations.
Appendix F presents the results and comparisons of the SCII Turbine Building First Bay and Annex Building adjacent structures 2D SSI sensitivity analyses. Narrative updates to describe and refer to the Appendix E and Appendix F SSI sensitivity analyses and/or results were added to Sections 1.0, 2.1.1, 2.2.1, and 7.0, and pertinent updated References 11, 12 and 13 were added to Section 8.0. Finally, clarification descriptions of the inclusion of the grouted rock zone and corresponding grouted rock properties in the design-basis and sensitivity SSI analyses were added to Sections 2.1, 2.2 and 3.3, and Figures 3.1-2 and 4.3-3 were updated. All other design-basis sections and appendixes remain unchanged. Proprietary version of this report is TPG-1000-S2R-802 Rev. 6.
4 08/2015 Revised GMRS elevation on Page 19 from El. -16 to El. -35. All other information in the report remains unchanged from the previous revision (Rev. 3).
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 4 of 231 Rev 4 TABLE OF CONTENTS Record of Revisions...................................................................................................................... 3 List of Tables.............................................................................................................................. 6 List of Figures.............................................................................................................................. 7 1.0 Purpose.............................................................................................................................. 16 2.0 Background........................................................................................................................ 18 2.1 Summary of TPNP Free Field Response Analyses.................................................... 18 2.1.1 Summary of 2014 Updated TPNP Site Response Sensitivity Analyses.......... 20 2.2 TPNP Soil-Structure Interaction (SSI) Analyses......................................................... 32 2.2.1 TPNP Updated Soil-Structure Interaction (SSI) Sensitivity Analyses.............. 33 3.0 SSI Analysis Design Inputs................................................................................................ 34 3.1 Foundation Concept Description................................................................................ 34 3.2 TPNP Best Estimate, Lower Bound and Upper Bound Soil Profiles........................... 37 3.3 TPNP Engineered Fill and Lean Concrete Fill Properties for SSI Analyses................ 51 3.4 Selected NI Key Locations......................................................................................... 52 3.5 TPNP Time History Inputs - El. -16 (Foundation/Top of Lean Concrete Fill)............. 53 3.5.1 TPNP Time History Inputs - El. +25.5 Surface Founded Adjacent Structures....................................................................................................... 53 3.6 AP1000 Envelope Response Spectra........................................................................ 62 4.0
[ ]a,c......................................................................... 63 4.1
[ ]a,c............................................................ 63 4.2
[
]a,c.............................................................................................................. 67 4.3
[ ]a,c.... 77 4.3.2
[ ]a,c...................... 80 4.4
[ ]a,c...................................................................... 91 5.0
[ ]a,c..................................................................... 94 5.1
[ ]a,c........................................... 94 5.2
[ ]a,c..................................... 94 5.3
[ ]a,c............................................................. 95 6.0 TPNP Site Specific SSI Analyses Results.......................................................................... 96 6.1 TPNP 2D SSI Analysis Results and Frequency-Dependent Bump Factor.................. 96 6.2 TPNP 3D BE, LB and UB Factored Design-Basis SSI Analysis Results.................. 104 6.3 TPNP 2D BE, LB and UB SSI Adjacent Building Analysis Results........................... 114 6.4 TPNP Adjacent Structure Relative Displacements................................................... 117
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 5 of 231 Rev 4 TABLE OF CONTENTS (cont.)
7.0 Conclusions...................................................................................................................... 118 8.0 References....................................................................................................................... 119 Appendix A TPNP Adjacent Structure SSI Analysis Results - NI Key Nodes........................ 120 Appendix B TPNP 3D BE SSI Analysis Transfer Functions - NI Key Nodes......................... 133 Appendix C TPNP 3D LB SSI Analysis Transfer Functions - NI Key Nodes......................... 143 Appendix D TPNP 3D UB SSI Analysis Transfer Functions - NI Key Nodes......................... 153 Appendix E Turkey Point Units 6 & 7 - Updated Site Characterization Sensitivity Assessment of Nuclear Island SSI Analysis....................................................... 163 E.1 Background and Purpose........................................................................................ 163 E.1.1 TPNP Updated Best Estimate Profile........................................................... 164 E.1.1.1 TPNP Engineered Fill, Lean Concrete and Grouted Rock Properties for SSI Analyses........................................................ 183 E.1.1.2 Key Nodes Selected................................................................... 184 E.1.2 TPNP Time History Inputs - El. -16 (Foundation/Top of Lean Concrete)..... 185 E.2 SASSI FRS Comparison - Updated TPNP 3D BE SSI Sensitivity Analysis and Results.............................................................................................................. 187 E.3 Summary of Results and Conclusions..................................................................... 197 Appendix F Turkey Point Units 6 & 7 Updated Site Characterization Sensitivity Assessment of SCII Adjacent Structures SSI Analysis....................................... 198 F.1 Background and Purpose........................................................................................ 198 F.1.2 Time History Inputs...................................................................................... 213 F.2 SASSI FRS Comparison - Updated TPNP 2D BESCII Adjacent Structures SSI Sensitivity Analysis and Results........................................................................ 217 F.2.1 2D SSI Sensitivity Analysis Response Spectra of Nuclear Island.................. 220 F.2.2 TPNP Adjacent Structure Relative Displacements....................................... 230 F.3 Summary of Results and Conclusions..................................................................... 231 F.3.1 Results......................................................................................................... 231 F.3.2 Conclusions................................................................................................. 231
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 6 of 231 Rev 4 LIST OF TABLES Table 3.2-1 TPNP Best Estimate Soil Column Profile and Soil Properties.............................. 38 Table 3.2-2 TPNP Lower Bound Soil Column Profile and Soil Properties............................... 41 Table 3.2-3 TPNP Upper Bound Soil Column Profile and Soil Properties............................... 44 Table 3.3-1 TPNP Backfill Soil and Fill Concrete Profile - BE................................................. 51 Table 3.3-2 TPNP Backfill Soil and Fill Concrete Profile - LB................................................. 51 Table 3.3-3 TPNP Backfill Soil and Fill Concrete Profile - UB................................................. 52 Table 3.4-1 NI Key Nodes at Location.................................................................................... 52 Table 4.1-1
[ ]a,c........... 65 Table 4.2-1
[
]a,c........................................................................................................ 68 Table 4.2-2
[
]a,c........................................................................................................ 71 Table 4.2-3
[
]a,c........................................................................................................ 74 Table 4.3-1
[ ]a,c... 81 Table 4.3-2
[
]a,c........................................................................................................ 88 Table 6.4-1 Relative Displacements...................................................................................... 117 Table E.1-1 Best-Estimate NI SSI Profile from 25409-000-K0C-0000-00066 -
Reference 1....................................................................................................... 165 Table E.1-2 Best-Estimate NI SSI Properties for the Updated Profile - Reference 12......... 168 Table E.1-3 Best-Estimate FAR SSI profile from 25409-000-K0C-0000-00066 -
Reference 1....................................................................................................... 171 Table E.1-4 Best-Estimate FAR SSI Properties for the Updated Profile - Reference 12..... 174 Table E.1-5 NI BE Backfill Soil, Fill Concrete and Grouted Rock Profile - BE Initial -
Reference 1....................................................................................................... 183 Table E.1-6 NI Backfill Soil, Fill Concrete and Grouted Rock Profile - BE Updated Profile -
Reference 12..................................................................................................... 183 Table E.1-7 Key Nodes at Location....................................................................................... 184 Table F.1-1 Best-Estimate SCII Near NI SSI Properties for the Updated Profile -
Reference 12..................................................................................................... 199 Table F.1-2 Best-Estimate SCII FAR SSI Properties for the Updated Profile -
Reference 12..................................................................................................... 202 Table F.1-3 Near NI SCII Backfill Soil, Fill Concrete and Grouted Rock Profile -
BE Updated Profile - Reference 12................................................................... 211 Table F.1-4 Key Nodes Selected.......................................................................................... 212 Table F.2-1 SCII Adjacent Structures BE Sensitivity Relative Displacement Comparison..... 230
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 7 of 231 Rev 4 LIST OF FIGURES Figure 2.1-1. Horizontal GMRS for the TPNP Site (FPL FSAR Figure 2.5.2-253)....................... 22 Figure 2.1-1a. Vertical GMRS for the TPNP Site (FPL FSAR Figure 2.5.2-254)......................... 22 Figure 2.1-2. TPNP FIRS and RG 1.60 PGA=0.1g Foundation Level Outcrop SSE................... 23 Figure 2.1-3. NI H1 Horizontal within ARS at TPNP Foundation El. -16..................................... 24 Figure 2.1-4. NI H2 Horizontal within ARS at TPNP Foundation El. -16..................................... 24 Figure 2.1-5. NI UP Vertical within ARS at TPNP Foundation El. -16........................................ 25 Figure 2.1-6. FAR H1 Horizontal within ARS at TPNP Foundation El. -16................................. 25 Figure 2.1-7. FAR H2 Horizontal within ARS at TPNP Foundation El. -16................................. 26 Figure 2.1-8. FAR UP Vertical within ARS at TPNP Foundation El. -16..................................... 26 Figure 2.1-9. Comparison of Spectra of Computed H1 Component Surface Motions for NI SSI Profiles with Horizontal DRS..................................................................... 27 Figure 2.1-10. Comparison of Spectra of Computed H1 Component Surface Motions for FAR SSI Profiles with Horizontal DRS................................................................. 27 Figure 2.1-11. Comparison of Spectra of Computed H2 Component Surface Motions for NI SSI Profiles with Horizontal DRS..................................................................... 28 Figure 2.1-12. Comparison of Spectra of Computed H2 Component Surface Motions for FAR SSI Profiles with Horizontal DRS................................................................. 28 Figure 2.1-13. Comparison of Spectra of Computed V Component Surface Motions for NI SSI Profiles with Vertical DRS......................................................................... 29 Figure 2.1-14. Comparison of Spectra of Computed V Component Surface Motions for FAR SSI Profiles with Vertical DRS..................................................................... 29 Figure 2.1-15. FIRS for the TPNP Turbine Building.................................................................... 30 Figure 2.1-16. FIRS for the TPNP Annex Building...................................................................... 30 Figure 2.1-17. Comparison between the NI FIRS Computed with the Sensitivity Analysis and the Initial Analysis (NI Profile).................................................................................... 31 Figure 3.1-1. TPNP Unit 7 Excavation Limits Plan View (Reference 4)...................................... 35 Figure 3.1-2. TPNP Unit 7 Excavation Cross-Section (Reference 4).......................................... 36 Figure 3.2-1. Turkey Point Site (FPL) NI VS............................................................................ 47 Figure 3.2-2. Turkey Point Site (FPL) NI VP............................................................................ 48 Figure 3.2-3. Turkey Point Site (FPL) - FAR VS.......................................................................... 49 Figure 3.2-4. Turkey Point Site (FPL) FAR VP......................................................................... 50 Figure 3.5-1. TPNP NI BE, LB and UB Seismic Input in H1 (X-Direction) - El. -16.................... 54 Figure 3.5-2. TPNP NI BE, LB and UB Seismic Input in H2 (Y-Direction) - El. -16.................... 55 Figure 3.5-3. TPNP NI BE, LB and UB Seismic Input in UP (Z-Direction) - El. -16.................... 56 Figure 3.5-4. TPNP FAR BE, LB and UB Seismic Input in H1 (X-Direction) - El. -16................ 57 Figure 3.5-5. TPNP FAR BE, LB and UB Seismic Input in H2 (Y-Direction) - El. -16................ 58
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 8 of 231 Rev 4 LIST OF FIGURES (Cont'd)
Figure 3.5-6. TPNP FAR BE, LB and UB Seismic Input in UP (Z-Direction) - El. -16................ 59 Figure 3.5-7. TPNP Turbine Building First Bay Seismic Input H1 in X-Direction - El. +25.5...... 60 Figure 3.5-8. TPNP Turbine Building First Bay Seismic Input H2 in Y-Direction - El. +25.5...... 60 Figure 3.5-9. TPNP Turbine Building First Bay Seismic Input UP in Z-Direction - El. +25.5...... 60 Figure 3.5-10. TPNP Annex Building Seismic Input H1 in X-Direction - El. +25.5..................... 61 Figure 3.5-11. TPNP Annex Building Seismic Input H2 in Y-Direction - El. +25.5..................... 61 Figure 3.5-12. TPNP Annex Building Seismic Input UP in Z-Direction - El. +25.5..................... 61 Figure 4.1-1. [ ]a,c................................................... 66 Figure 4.3-1. [ ]a,c................................................... 78 Figure 4.3-2. [ ]a,c........................................................ 79 Figure 4.3-3. [ ]a,c............................................... 86 Figure 4.4-1. [
]a,c........................................................................................................................ 92 Figure 4.4-2. [ ]a,c........... 93 Figure 6.1-1. TPNP 2D-3D Horizontal Bump Factors - All Nodes.............................................. 97 Figure 6.1-2. TPNP 2D-3D Vertical Bump Factors - All Nodes.................................................. 97 Figure 6.1-3. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Y-Direction -
Node 4041........................................................................................................... 98 Figure 6.1-4. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Z-Direction -
Node 4041........................................................................................................... 98 Figure 6.1-5. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Y-Direction -
Node 4061........................................................................................................... 99 Figure 6.1-6. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Z-Direction -
Node 4061........................................................................................................... 99 Figure 6.1-7. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Y-Direction -
Node 4535......................................................................................................... 100 Figure 6.1-8. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Z-Direction -
Node 4535......................................................................................................... 100 Figure 6.1-9. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Y-Direction -
Node 4120......................................................................................................... 101 Figure 6.1-10. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Z-Direction -
Node 4120......................................................................................................... 101 Figure 6.1-11. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Y-Direction -
Node 4412......................................................................................................... 102 Figure 6.1-12. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Z-Direction -
Node 4412......................................................................................................... 102 Figure 6.1-13. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Y-Direction -
Node 4310......................................................................................................... 103
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 9 of 231 Rev 4 LIST OF FIGURES (Cont'd)
Figure 6.1-14. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Z-Direction -
Node 4310......................................................................................................... 103 Figure 6.2-1. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in X-Direction - Node 1761
.......................................................................................................................... 105 Figure 6.2-2. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in Y-Direction - Node 1761
.......................................................................................................................... 105 Figure 6.2-3. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in Z-Direction - Node 1761
.......................................................................................................................... 106 Figure 6.2-4. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in X-Direction - Node 2078
.......................................................................................................................... 106 Figure 6.2-5. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in Y-Direction - Node 2078
.......................................................................................................................... 107 Figure 6.2-6. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in Z-Direction - Node 2078
.......................................................................................................................... 107 Figure 6.2-7. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in X-Direction - Node 2199
.......................................................................................................................... 108 Figure 6.2-8. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in Y-Direction - Node 2199
.......................................................................................................................... 108 Figure 6.2-9. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in Z-Direction - Node 2199
.......................................................................................................................... 109 Figure 6.2-10. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in X-Direction - Node 2675................................................................................................................... 109 Figure 6.2-11. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in Y-Direction - Node 2675................................................................................................................... 110 Figure 6.2-12. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in Z-Direction - Node 2675................................................................................................................... 110 Figure 6.2-13. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in X-Direction - Node 2788................................................................................................................... 111 Figure 6.2-14. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in Y-Direction - Node 2788................................................................................................................... 111 Figure 6.2-15. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in Z-Direction - Node 2788................................................................................................................... 112 Figure 6.2-16. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in X-Direction - Node 3329................................................................................................................... 112 Figure 6.2-17. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in Y-Direction - Node 3329................................................................................................................... 113 Figure 6.2-18. TPNP 3D BE, LB, UB FRS and AP1000 FRS Envelope in Z-Direction - Node 3329................................................................................................................... 113 Figure 6.3-1. TPNP TB First Bay BE, UB, LB FRS and AP1000 FRS Envelope in X-Direction -
Node 2951......................................................................................................... 115
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 10 of 231 Rev 4 LIST OF FIGURES (Cont'd)
Figure 6.3-2. TPNP TB First Bay BE, UB, LB FRS and AP1000 FRS Envelope in Z-Direction -
Node 2951......................................................................................................... 115 Figure 6.3-3. TPNP Annex Building BE, UB, LB FRS and AP1000 FRS Envelope in Y-Direction -
Node 2942......................................................................................................... 116 Figure 6.3-4. TPNP Annex Building BE, UB, LB FRS and AP1000 FRS Envelope in Z-Direction -
Node 2942......................................................................................................... 116 Figure A-1. TPNP Turbine Building First Bay BE, LB and UB in X-Direction - Node 4041....... 121 Figure A-2. TPNP Turbine Building First Bay BE, LB and UB in Z-Direction - Node 4041........ 121 Figure A-3. TPNP Turbine Building First Bay BE, LB and UB in X-Direction - Node 4061....... 122 Figure A-4. TPNP Turbine Building First Bay BE, LB and UB in Z-Direction - Node 4061........ 122 Figure A-5. TPNP Turbine Building First Bay BE, LB and UB in X-Direction - Node 4120....... 123 Figure A-6. TPNP Turbine Building First Bay BE, LB and UB in Z-Direction - Node 4120........ 123 Figure A-7. TPNP Turbine Building First Bay BE, LB and UB in X-Direction - Node 4310....... 124 Figure A-8. TPNP Turbine Building First Bay BE, LB and UB in Z-Direction - Node 4310........ 124 Figure A-9. TPNP Turbine Building First Bay BE, LB and UB in X-Direction - Node 4412....... 125 Figure A-10. TPNP Turbine Building First Bay BE, LB and UB in Z-Direction - Node 4412...... 125 Figure A-11. TPNP Turbine Building First Bay BE, LB and UB in X-Direction - Node 4535..... 126 Figure A-12. TPNP Turbine Building First Bay BE, LB and UB in Z-Direction - Node 4535...... 126 Figure A-13. TPNP Annex Building BE, LB and UB in Y-Direction - Node 4041...................... 127 Figure A-14. TPNP Annex Building BE, LB and UB in Z-Direction - Node 4041...................... 127 Figure A-15. TPNP Annex Building BE, LB and UB in Y-Direction - Node 4061...................... 128 Figure A-16. TPNP Annex Building BE, LB and UB in Z-Direction - Node 4061...................... 128 Figure A-17. TPNP Annex Building BE, LB and UB in Y-Direction - Node 4120...................... 129 Figure A-18. TPNP Annex Building BE, LB and UB in Z-Direction - Node 4120...................... 129 Figure A-19. TPNP Annex Building BE, LB and UB in Y-Direction - Node 4310...................... 130 Figure A-20. TPNP Annex Building BE, LB and UB in Z-Direction - Node 4310...................... 130 Figure A-21. TPNP Annex Building BE, LB and UB in Y-Direction - Node 4412...................... 131 Figure A-22. TPNP Annex Building BE, LB and UB in Z-Direction - Node 4412...................... 131 Figure A-23. TPNP Annex Building BE, LB and UB in Y-Direction - Node 4535...................... 132 Figure A-24. TPNP Annex Building BE, LB and UB in Z-Direction - Node 4535...................... 132 Figure B-1. TPNP 3D NI SSI BE Transfer Function in X-Direction - Node 1761...................... 134 Figure B-2. TPNP 3D NI SSI BE Transfer Function in Y-Direction - Node 1761...................... 134 Figure B-3. TPNP 3D NI SSI BE Transfer Function in Z-Direction - Node 1761....................... 135 Figure B-4. TPNP 3D NI SSI BE Transfer Function in X-Direction - Node 2078...................... 135 Figure B-5. TPNP 3D NI SSI BE Transfer Function in Y-Direction - Node 2078...................... 136
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 11 of 231 Rev 4 LIST OF FIGURES (Cont'd)
Figure B-6. TPNP 3D NI SSI BE Transfer Function in Z-Direction - Node 2078....................... 136 Figure B-7. TPNP 3D NI SSI BE Transfer Function in X-Direction - Node 2199...................... 137 Figure B-8. TPNP 3D NI SSI BE Transfer Function in Y-Direction - Node 2199...................... 137 Figure B-9. TPNP 3D NI SSI BE Transfer Function in Z-Direction - Node 2199....................... 138 Figure B-10. TPNP 3D NI SSI BE Transfer Function in X-Direction - Node 2675.................... 138 Figure B-11. TPNP 3D NI SSI BE Transfer Function in Y-Direction - Node 2675.................... 139 Figure B-12. TPNP 3D NI SSI BE Transfer Function in Z-Direction - Node 2675..................... 139 Figure B-13. TPNP 3D NI SSI BE Transfer Function in X-Direction - Node 2788.................... 140 Figure B-14. TPNP 3D NI SSI BE Transfer Function in Y-Direction - Node 2788.................... 140 Figure B-15. TPNP 3D NI SSI BE Transfer Function in Z-Direction - Node 2788..................... 141 Figure B-16. TPNP 3D NI SSI BE Transfer Function in X-Direction - Node 3329.................... 141 Figure B-17. TPNP 3D NI SSI BE Transfer Function in Y-Direction - Node 3329.................... 142 Figure B-18. TPNP 3D NI SSI BE Transfer Function in Z-Direction - Node 3329..................... 142 Figure C-1. TPNP 3D NI SSI LB Transfer Function in X-Direction - Node 1761....................... 144 Figure C-2. TPNP 3D NI SSI LB Transfer Function in Y-Direction - Node 1761....................... 144 Figure C-3. TPNP 3D NI SSI LB Transfer Function in Z-Direction - Node 1761....................... 145 Figure C-4. TPNP 3D NI SSI LB Transfer Function in X-Direction - Node 2078....................... 145 Figure C-5. TPNP 3D NI SSI LB Transfer Function in Y-Direction - Node 2078....................... 146 Figure C-6. TPNP 3D NI SSI LB Transfer Function in Z-Direction - Node 2078....................... 146 Figure C-7. TPNP 3D NI SSI LB Transfer Function in X-Direction - Node 2199....................... 147 Figure C-8. TPNP 3D NI SSI LB Transfer Function in Y-Direction - Node 2199....................... 147 Figure C-9. TPNP 3D NI SSI LB Transfer Function in Z-Direction - Node 2199....................... 148 Figure C-10. TPNP 3D NI SSI LB Transfer Function in X-Direction - Node 2675..................... 148 Figure C-11. TPNP 3D NI SSI LB Transfer Function in Y-Direction - Node 2675..................... 149 Figure C-12. TPNP 3D NI SSI LB Transfer Function in Z-Direction - Node 2675..................... 149 Figure C-13. TPNP 3D NI SSI LB Transfer Function in X-Direction - Node 2788..................... 150 Figure C-14. TPNP 3D NI SSI LB Transfer Function in Y-Direction - Node 2788..................... 150 Figure C-15. TPNP 3D NI SSI LB Transfer Function in Z-Direction - Node 2788..................... 151 Figure C-16. TPNP 3D NI SSI LB Transfer Function in X-Direction - Node 3329..................... 151 Figure C-17. TPNP 3D NI SSI LB Transfer Function in Y-Direction - Node 3329..................... 152 Figure C-18. TPNP 3D NI SSI LB Transfer Function in Z-Direction - Node 3329..................... 152 Figure D-1. TPNP 3D NI SSI UB Transfer Function in X-Direction - Node 1761...................... 154 Figure D-2. TPNP 3D NI SSI UB Transfer Function in Y-Direction - Node 1761...................... 154 Figure D-3. TPNP 3D NI SSI UB Transfer Function in Z-Direction - Node 1761...................... 155
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 12 of 231 Rev 4 LIST OF FIGURES (Cont'd)
Figure D-4. TPNP 3D NI SSI UB Transfer Function in X-Direction - Node 2078...................... 155 Figure D-5. TPNP 3D NI SSI UB Transfer Function in Y-Direction - Node 2078...................... 156 Figure D-6. TPNP 3D NI SSI UB Transfer Function in Z-Direction - Node 2078...................... 156 Figure D-7. TPNP 3D NI SSI UB Transfer Function in X-Direction - Node 2199...................... 157 Figure D-8. TPNP 3D NI SSI UB Transfer Function in Y-Direction - Node 2199...................... 157 Figure D-9. TPNP 3D NI SSI UB Transfer Function in Z-Direction - Node 2199...................... 158 Figure D-10. TPNP 3D NI SSI UB Transfer Function in X-Direction - Node 2675.................... 158 Figure D-11. TPNP 3D NI SSI UB Transfer Function in Y-Direction - Node 2675.................... 159 Figure D-12. TPNP 3D NI SSI UB Transfer Function in Z-Direction - Node 2675.................... 159 Figure D-13. TPNP 3D NI SSI UB Transfer Function in X-Direction - Node 2788.................... 160 Figure D-14. TPNP 3D NI SSI UB Transfer Function in Y-Direction - Node 2788.................... 160 Figure D-15. TPNP 3D NI SSI UB Transfer Function in Z-Direction - Node 2788.................... 161 Figure D-16. TPNP 3D NI SSI UB Transfer Function in X-Direction - Node 3329.................... 161 Figure D-17. TPNP 3D NI SSI UB Transfer Function in Y-Direction - Node 3329.................... 162 Figure D-18. TPNP 3D NI SSI UB Transfer Function in Z-Direction - Node 3329.................... 162 Figure E.1-1. Turkey Point Estimated Best-Estimate S-Wave Velocity Profile for the NI Profile for the RG 1.60 Motion............................................................................................ 177 Figure E.1-2. Turkey Point Estimated Best-Estimate P-Wave Velocity Profile for the NI Profile for the RG 1.60 Motion............................................................................................ 178 Figure E.1-3. Turkey Point Estimated Best-Estimate Damping Profile for the NI Profile for the RG 1.60 Motion........................................................................................................ 179 Figure E.1-4. Turkey Point Estimated Best-Estimate S-Wave Velocity Profile for the FAR Profile
.......................................................................................................................... 180 Figure E.1-5. Turkey Point Estimated Best-Estimate P-Wave Velocity Profile for the FAR Profile
.......................................................................................................................... 181 Figure E.1-6. Turkey Point Estimated Best-Estimate Damping Profile for the FAR Profile........ 182 Figure E.1-7. Comparison Between the NI FIRS Computed with the Sensitivity Analysis and the Initial Analysis (NI Profile).................................................................................. 186 Figure E.2-1. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in X-Direction -
Node 1761......................................................................................................... 188 Figure E.2-2. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in Y-Direction -
Node 1761......................................................................................................... 188 Figure E.2-3. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in Z-Direction -
Node 1761......................................................................................................... 189 Figure E.2-4. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in X-Direction -
Node 2078......................................................................................................... 189
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 13 of 231 Rev 4 LIST OF FIGURES (Cont'd)
Figure E.2-5. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in Y-Direction -
Node 2078......................................................................................................... 190 Figure E.2-6. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in Z-Direction -
Node 2078......................................................................................................... 190 Figure E.2-7. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in X-Direction -
Node 2199......................................................................................................... 191 Figure E.2-8. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in Y-Direction -
Node 2199......................................................................................................... 191 Figure E.2-9. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in Z-Direction -
Node 2199......................................................................................................... 192 Figure E.2-10. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in X-Direction -
Node 2675......................................................................................................... 192 Figure E.2-11. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in Y-Direction -
Node 2675......................................................................................................... 193 Figure E.2-12. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in Z-Direction -
Node 2675......................................................................................................... 193 Figure E.2-13. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in X-Direction -
Node 2788......................................................................................................... 194 Figure E.2-14. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in Y-Direction -
Node 2788......................................................................................................... 194 Figure E.2-15. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in Z-Direction -
Node 2788......................................................................................................... 195 Figure E.2-17. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in Y-Direction -
Node 3329......................................................................................................... 196 Figure E.2-18. TPNP 3D BE Sensitivity FRS Comparison and FRS Envelope in Z-Direction -
Node 3329......................................................................................................... 196 Figure F.1-1. Turkey Point Estimated Best-Estimate S-Wave Velocity Profile for the NI Site Column for the Site-Specific Motion................................................................... 205 Figure F.1-2. Turkey Point Estimated Best-Estimate P-Wave Velocity Profile for the NI Site Column for the Site-Specific Motion................................................................... 206 Figure F.1-3. Turkey Point Estimated Best-Estimate Damping Profile for the NI Site Column for the Site-Specific Motion..................................................................................... 207 Figure F.1-4. Turkey Point Estimated Best-Estimate S-Wave Velocity Profile for the FAR Site Column for the Site-Specific Motion................................................................... 208 Figure F.1-5. Turkey Point Estimated Best-Estimate P-Wave Velocity Profile for the FAR Site Column for the Site-Specific Motion................................................................... 209 Figure F.1-6. Turkey Point Estimated Best-Estimate Damping Profile for the FAR Site Column for the Site-Specific Motion..................................................................................... 210 Figure F.1-7. TPNP Updated Annex Building Surface DRS (5% damping) (Reference 12)...... 213
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 14 of 231 Rev 4 LIST OF FIGURES (Cont'd)
Figure F.1-8. TPNP Updated Turbine Building 1st Bay Surface DRS (5% damping)
(Reference 12)................................................................................................... 214 Figure F.1-9. TPNP Updated TB 1st Bay Seismic Input H1 in X-Direction (Scaled to 0.1g) -
El. +25.5 - Reference 12.................................................................................. 215 Figure F.1-10. TPNP Updated TB 1st Bay Seismic Input UP in Z-Direction (Scaled to 0.1g) -
El. +25.5 - Reference 12................................................................................... 215 Figure F.1-11. TPNP Updated AB Seismic Input H2 in Y-Direction (Scaled to 0.1g) - El. +25.5 -
Reference 12..................................................................................................... 216 Figure F.1-12. TPNP Updated AB Seismic Input UP in Z-Direction (Scaled to 0.1g) - El. +25.5 -
Reference 12..................................................................................................... 216 Figure F.2-1. TPNP TB 1st Bay BE Sensitivity FRS Comparison and FRS Envelope in X-Direction
- Node 2951...................................................................................................... 218 Figure F.2-2. TPNP TB 1st Bay BE Sensitivity FRS Comparison and FRS Envelope in Z-Direction - Node 2951.................................................................................... 218 Figure F.2-3. TPNP AB BE Sensitivity FRS Comparison and FRS Envelope in Y-Direction -
Node 2942......................................................................................................... 219 Figure F.2-4. TPNP AB BE Sensitivity FRS Comparison and FRS Envelope in Z-Direction - Node 2942................................................................................................................... 219 Figure F.2-5. TPNP 2D NI BE Sensitivity FRS Comparison, X Direction - Node 4041 (El. 99.0 ft)
.......................................................................................................................... 221 Figure F.2-6. TPNP 2D NI BE Sensitivity FRS Comparison, Y Direction - Node 4041 (El. 99.0 ft)
.......................................................................................................................... 221 Figure F.2-7. TPNP 2D NI BE Sensitivity FRS Comparison, Z Direction - Node 4041 (El. 99.0 ft)
.......................................................................................................................... 222 Figure F.2-8. TPNP 2D NI BE Sensitivity FRS Comparison, X Direction - Node 4061 (El. 116.5 ft)
.......................................................................................................................... 222 Figure F.2-9. TPNP 2D NI BE Sensitivity FRS Comparison, Y Direction - Node 4061 (El. 116.5 ft)
.......................................................................................................................... 223 Figure F.2-10. TPNP 2D NI BE Sensitivity FRS Comparison, Z Direction - Node 4061 (El. 116.5 ft)....................................................................................................................... 223 Figure F.2-11. TPNP 2D NI BE Sensitivity FRS Comparison, X Direction - Node 4120 (El. 179.56 ft)....................................................................................................................... 224 Figure F.2-12. TPNP 2D NI BE Sensitivity FRS Comparison, Y Direction - Node 4120 (El. 179.56 ft)....................................................................................................................... 224 Figure F.2-13. TPNP 2D NI BE Sensitivity FRS Comparison, Z Direction - Node 4120 (El. 179.56 ft)....................................................................................................................... 225 Figure F.2-14. TPNP 2D NI BE Sensitivity FRS Comparison, X Direction - Node 4310 (El. 327.41 ft)....................................................................................................................... 225 Figure F.2-15. TPNP 2D NI BE Sensitivity FRS Comparison, Y Direction - Node 4310 (El. 327.41 ft)....................................................................................................................... 226
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 15 of 231 Rev 4 LIST OF FIGURES (Cont'd)
Figure F.2-16. TPNP 2D NI BE Sensitivity FRS Comparison, Z Direction - Node 4310 (El. 327.41 ft)....................................................................................................................... 226 Figure F.2-17. TPNP 2D NI BE Sensitivity FRS Comparison, X Direction - Node 4412 (El. 224.0 ft)....................................................................................................................... 227 Figure F.2-18. TPNP 2D NI BE Sensitivity FRS Comparison, Y Direction - Node 4412 (El. 224.0 ft)....................................................................................................................... 227 Figure F.2-19. TPNP 2D NI BE Sensitivity FRS Comparison, Z Direction - Node 4412 (El. 224.0 ft)....................................................................................................................... 228 Figure F.2-20. TPNP 2D NI BE Sensitivity FRS Comparison, X Direction - Node 4535 (El. 134.25 ft)....................................................................................................................... 228 Figure F.2-21. TPNP 2D NI BE Sensitivity FRS Comparison, Y Direction - Node 4535 (El. 134.25 ft)....................................................................................................................... 229 Figure F.2-22. TPNP 2D NI BE Sensitivity FRS Comparison, Z Direction - Node 4435 (El. 134.25 ft)....................................................................................................................... 229
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 16 of 231 Rev 4 1.0 Purpose Two AP1000 units are to be constructed at the Florida Power & Light (FPL) Turkey Point site.
Since shear wave velocity profiles at the Turkey Point Units 6 & 7 site are different from the generic soil shear wave velocity profiles used for the AP1000 design, a site-specific Soil Structure Interaction (SSI) analysis was performed.
Westinghouse Electric Company (Westinghouse) has completed a revised site-specific SSI analysis of the Seismic Category (SC) I Turkey Point Nuclear Plant (TPNP) Nuclear Island (NI) with lean concrete (LC) fill and grouted rock, and SCII adjacent structures including the Turbine Building (TB) First Bay and Annex Building (AB) with engineered fill. This report describes the results of the revised site-specific SSI analyses and SSI sensitivity analyses that have been performed to demonstrate the acceptability of the AP1000 plant at the Turkey Point site. The analysis was revised to address the following:
- 1. Update the TPNP SSI model and SSI analysis using the current AP1000 NI20r three-dimensional (3D) Model, site-specific conditions including the LC fill, and TPNP Best Estimate (BE), Lower Bound (LB) and Upper Bound (UB) site soil profiles, and the revised safe shutdown earthquake (SSE) foundation level response spectra meeting the 0.1g minimum peak ground acceleration requirement of Appendix S of 10 CFR Part 50;
- 2. Incorporate lessons learned pertaining to justification of the NI20r 3D model and analysis results;
- 3. Compare the revised TPNP in-structure floor response spectra (FRS) to the AP1000 3D Certified Seismic Design Response Spectra (CSDRS) FRS envelope at six (6) key AP1000 NI locations;
- 4. Update the TPNP two-dimensional (2D) north-south (NS) model, which represents the AP1000 NI with the most recent Turbine Building (TB) First Bay stick model and TPNP BE, LB and UB site soil profiles, and perform the corresponding SSI analysis;
- 5. Update the TPNP 2D east-west (EW) model, which represents the AP1000 NI with the most recent Annex Building (AB) stick model and TPNP BE, LB and UB site soil profiles, and perform the corresponding SSI analysis;
- 6. Compare the TPNP TB First Bay and AB FRS to the AP1000 2D FRS envelope at the TB First Bay and AB 2D stick model base and six (6) key AP1000 NI locations;
- 7. Assess the relative displacements between the AP1000 NI and the TB First Bay and AB at elevations associated with the ground surface and near the top of each adjacent structure;
- 8. Present TPNP 3D BE, LB and UB transfer functions for the six key locations in Appendixes B, C and D, respectively.
- 9. Perform supplemental SSI sensitivity analyses based on a 2013 supplemental site characterization and 2014 site response sensitivity analysis, and compare the results of the sensitivity analysis to the existing design-basis analysis to assess the significance of the updated seismic input on the previous (Revision 3) site specific NI and SCII adjacent structures in-structure response spectra.
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 17 of 231 Rev 4 The SSI analyses results will show that the 2013 and 2014 supplemental site characterization and site response data have a negligible effect on the design basis site specific response of the NI and SCII adjacent structures, and the in-structure Floor Response Spectra (FRS) of an AP1000 plant at the Turkey Point Units 6 & 7 site is enveloped with margin by the AP1000 Certified Seismic Design Response Spectra (CSDRS) FRS at the key AP1000 NI and SCII adjacent structures locations.
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 18 of 231 Rev 4 2.0
Background
This section summarizes the free field response analyses, site response and SSI sensitivity analyses, and design-basis SSI analyses that have been performed for Turkey Point Units 6 & 7 to demonstrate that the AP1000 generic seismic response envelops the TPNP site specific seismic response.
2.1 Summary of TPNP Free Field Response Analyses The overall site elevation will be raised by approximately 25.5 feet with compacted crushed limestone. Adjacent to the NI (as shown in Figure 3.1-1), a slurry wall will be constructed to facilitate dewatering of the NI excavation. Inside the slurry wall area and as shown in Figure 3.1-2, the Miami Limestone will be excavated to competent rock, a surface elevation estimated to be approximately 35 feet below the ground surface (i.e., El. -35). On this surface, approximately 19 feet of lean concrete fill will be placed to bring the surface to El. -16 for construction of the mud mat and foundation of the NI. Adjacent to the NI, Category 1 engineered backfill will be placed to bring the ground surface to El. +25.5. Finally, below the Miami Limestone, the Key Largo Limestone is grouted from El. -35 to El. -60.
The numerical models used for SSI analysis specifies the dynamic properties of the site by using as input the shear wave velocity (Vs), compression wave velocity (Vp), unit weight and material damping of the soil, rock, layers. The SSI analysis is performed in the frequency domain using linear-elastic material properties. In order to account for the non-linearity of the soil, rock, concrete and grouted rock materials, the SSI analysis uses strain-compatible properties that represent the stiffness and damping properties of the various materials that are compatible with the strains generated by the design earthquake motion. Two sets of three (3) soil profiles, Best Estimate (BE), Lower Bound (LB) and Upper Bound (UB) are used for two (2) site conditions including near Nuclear Island (NI) and far from Nuclear Island (FAR) to account for uncertainties in the determination of soil, rock, concrete and grouted rock material properties.
Updated free-field site response analyses results, acceleration response spectra, SSI input time histories, and strain compatible soil properties were provided by FPL in Bechtel letters 25409-000-TCM-GEG-00752 (Reference 1) and 25409-000-TCM-GEG-00581 (Reference 2) and 25409-000-TCM-GEG-00404 (Reference 3).
To satisfy the requirements of Appendix S to 10 CFR Part 50, specifically that the Safe Shutdown Earthquake (SSE) motion must be an adequate acceleration response spectra (ARS) with a minimum peak ground acceleration (PGA) of 0.1g, the TPNP site-specific design response spectra (DRS) at the foundation level (El, -16) consists of the envelope of the TPNP site-specific foundation input response spectra (FIRS) and the RG 1.60 spectra scaled to 0.1g.
The resulting horizontal and vertical envelope FIRS is considered the SSE motion for the TPNP site.
Two horizontal (H1 and H2) and one vertical (UP) acceleration time histories are spectrally matched to the SSE motion. The SSI analysis of the NI uses a set of SSE acceleration time histories that are input as within, i.e., in-column motion at the elevation of the TPNP foundation
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 19 of 231 Rev 4 (El. -16) located 41.5-foot depth. To obtain these within time histories, each of the strain compatible BE, LB and UB soil profiles is analyzed by inputting the time histories consistent with the 41.5-foot depth, minimum 0.1g SSE spectra as an outcrop motion at this foundation depth.
Horizontal and vertical ARS at the design grade elevation were developed following the Interim Staff Guidance DC/COL-ISG-017 to check that the response due to the site-specific FIRS envelope the surface ARS using the BE, LB and UB soil properties.
Figure 2.1-1 (FSAR Figure 2.5.2-253) and Figure 2.1-1a (FSAR Figure 2.5.2-254) show the horizontal and vertical site-specific ground motion response spectra (GMRS), respectively. The GMRS was developed as the Truncated Soil Column Surface Response (TSCSR) on the uppermost in-situ competent material (El. -35).
The horizontal and vertical TPNP site-specific FIRS and RG 1.60 spectra scaled to 0.1g envelopes are presented in Figure 2.1-2.
The horizontal and vertical BE, LB and UB within ARS at the TPNP foundation El. -16 are shown in Figures 2.1-3 through 2.1-5 for the NI (near) site conditions, and Figures 2.1-6 through 2.1-8 for the FAR site conditions.
Figures 2.1-9 through 2.1-14 present the comparison of the computed surface motions to the respective DRS for each directional component (H1, H2, V), each soil case (BE, LB and UB) and each site condition (NI and FAR).
The in-column time histories at El. -16 and the BE, LB and UB soil profiles used as input to the SSI analysis were provided by FPL in Bechtel Letter 25409-000-TCM-GEG-00752 (Reference 1). As indicated, the SSE time histories were input into the three (BE, LB and UB) soil columns as outcropping motions at El. -16, and then output as in-column motions at El. -16 ft for use in the SSI analysis. These in-column time histories at El.-16 are shown in Figures 3.5-1 through 3.5-3 for the NI site conditions and in Figures 3.5-4 through 3.5-6 for the FAR site conditions.
Similarly, surface founded outcrop FIRS for the SCII TB First Bay and AB adjacent structures and corresponding time histories were provided by FPL in Bechtel Letter 25409-000-TCM-GEG-00404 (Reference 3), and the horizontal and vertical FIRS are presented in Figures 2.1-15 and 2.1-16, respectively. The TB First Bay and AB time histories are presented in Figures 3.5-7 through 3.5-9 for the TB First Bay and Figures 3.5-10 through 3.5-12 for the AB, which were conservatively increased to a minimum PGA of 0.10g, and the corresponding spectra are presented in Figures 2.1-15 and 2.1-16.
The BE, LB and UB soil property profiles were developed based on the variation in the randomized soil profiles used for developing the DRS and complying with SRP 3.7.2.II.4 guidance on soil property variation for SSI analysis, i.e., the coefficient of variation used was the larger of that calculated from the randomized soil profiles or 1.5 on the shear modulus as described in FSAR Subsection 2.5.2.6.7. The soil column profile and soil properties are presented in FSAR Tables 3.2-1, 3.2-2 and 3.2-3 for BE, LB, and UB cases, respectively.
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 20 of 231 Rev 4 2.1.1 Summary of 2014 Updated TPNP Site Response Sensitivity Analyses In 2013, a supplemental site subsurface investigation was performed by Rizzo & Associates (Rizzo) at the Turkey Point Units 6 & 7 site and corresponding updated site response sensitivity analyses were performed by Bechtel Corporation (Bechtel) in 2014. Supplemental site investigations at the TPNP site included collecting additional geotechnical data that resulted in updated site profiles including unit weights, thicknesses, nonlinear shear modulus (G)/Gmax and damping ratio curves, shear wave velocities (Vs) and compression wave (Vp) velocities for layers within the top 636 feet. Bechtel evaluated the sensitivity of the updated site properties on the ground motion response spectrum (GMRS), foundation input response spectrum (FIRS),
and soil-structure interaction (SSI) seismic input parameters on both the near Nuclear Island (NI) and far field (FAR) profiles. Reference 12 provides the updated SSI soil/rock properties for supplemental seismic SSI sensitivity analyses, which are described in detail in Appendix E for the Nuclear Island and Appendix F for SCII Turbine Building First Bay and Annex Building adjacent structures.
Based on the results of updated site response sensitivity analyses, Bechtel concluded the following (Reference 12):
- 1. The RG 1.60 spectrum with a peak ground acceleration (PGA) of 0.1 g envelopes the sensitivity NI FIRS (see Figure 2.1-17). Thus, the previously established SSE is still valid, which was partially based on the RG 1.60 spectrum with a PGA of 0.1 g; and
- 2. The approximate sensitivity GMRS (developed in Appendix 3 of Reference 12 using the updated site characteristics) is slightly higher than the initial GMRS (computed in Reference 1). At a frequency of 100 HZ, the sensitivity horizontal GMRS increased from 0.058 g to 0.062 g (a ratio of 1.07); with a maximum ground-motion change from 0.0635 g to 0.0698 g (a ratio of 1.10) at a frequency of 45 Hz. The ratio of these differences may indicate a significant change due to the updated site properties; however the ground-motion difference of 0.004 g at a frequency of 100 Hz, and 0.006 g at a frequency of 45 Hz is well within the confidence bounds of probabilistic seismic hazard analysis (PSHA) and seismic site response. Furthermore, the GMRS developed for the initial and updated site properties both characterize Turkey Point Units 6 & 7 site as a site with low seismic hazard.
Figure 2.1-17 presents a comparison of the previous TPNP site specific FIRS (References 1,11), updated FIRS (Reference 12), and the RG 1.60 envelope safe shutdown earthquake (SSE) spectra anchored to 0.1g (References 1, 11). As shown, the initial and updated site specific FIRS are similar up to about 5 hertz (Hz) and within about 10 percent above 5 Hz; however, and most importantly, both are enveloped by the initial RG 1.60 SSE curve anchored to the 0.1g peak ground acceleration (PGA). Therefore, since the RG 1.60 SSE curve still controls the site seismic input, the previous (References 1, 11) time histories are still valid and applicable to the design-basis and sensitivity SSI analyses.
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 21 of 231 Rev 4 Also, in conjunction with the (Reference 12) updated site response sensitivity analyses results, Reference 13 provides confirmation that the initial, rigorously developed seismic input (References 1, 2, 3) remain unchanged and valid as noted below, and Reference 4 has been updated to Revision 5:
- 1. The reference and information provided through Bechtel Letter No.
25409-000-TCM-GEG-00752 ("Release of Calculation 25409-000-K0C-0000-00066, Revision 0, SSI Input Time Histories and Soil Profiles for Envelope of RG 1.60 and Site Spectra," dated August 2, 2012) (Reference 1) remain valid for design basis soil profiles and SSI inputs.
- 2. The reference and information provided through Bechtel Letter No.
25409-000-TCM-GEG-00581 ("Turkey Point Units 6 & 7, Effect of Grouted Rock on Seismic Site Response," dated July 20, 2011) (Reference 2) remain valid for design basis soil profiles and SSI inputs.
- 3. The reference and information provided through Bechtel Letter No.
25409-000-TCM-GEG-00404 ("Release of Extracted Data from Calculations 25409-000-KOC-0000-00036 Rev. 0 and -00037 Rev. 0 for Turkey Point Units 6 & 7,"
dated February 26, 2010) (Reference 3) remain valid for design basis soil profiles and SSI inputs.
- 4. The revised Bechtel drawing 25409-000-CE-0010-00001, Rev. 5 (Nuclear Island Power Block Excavation Plan and Sections) (Reference 4) has been updated.
Finally, Bechtel calculation 25409-000-K0C-0000-00073, Rev. 0 was provided in Reference 12, and includes approximate ground motions and SSI properties for further Westinghouse SSI sensitivity analyses of the NI and SCII adjacent structures. Appendix E and Appendix F herein summarize the updated seismic input, SSI sensitivity analyses, and present results and conclusions pertaining to the effect of these analyses on the NI and SCII adjacent structures in-structure response spectra, respectively.
c:
.2 IV...
tl.O r::.'
.2..
ro...
~
Q) v v ro (ij
... t:
Q) c.
- 1.
..2:!
f:D.1 u
IV IV...
u Q) c.
V) 0.01 1 -
0.1
~
J 0.01 -ov 0.1 Westinghouse Non-Proprietary Class 3
~'- -
~ -
I ~, rl T
~
- I I"-
Ji
,. ~
1 ~
!II..
-J- "'
,, r
__L -
I
~,
~
I 1
10 Frequency, Hz 100
-- lE-5 smooth spectrum GMRS lE-4 smooth spectrum Figure 2.1-1. Horizontal GMRS for the TPNP Site (FPL FSAR Figure 2.5.2-253)
I I
I I
/
I Vertical 1E-5
--- Vertical GMRS
- Vertica I 1E-4 0.1 1
10 Frequency, Hz 100 Figure 2.1-1a. Vertical GMRS for the TPNP Site (FPL FSAR Figure 2.5.2-254)
TPG-1000-S2R-807 22 of 231 Rev4
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 23 of 231 Rev 4 Figure 2.1-2. TPNP FIRS and RG 1.60 PGA=0.1g Foundation Level Outcrop SSE 0.001 0.01 0.1 1
0.1 1
10 100 Spectral acceleration, g Frequency, Hz Horizontal FIRS Vertical FIRS RG1.60 Horizontal (PGA=0.1g)
RG1.60 Vertical (PGA=0.1g)
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 24 of 231 Rev 4 Figure 2.1-3. NI H1 Horizontal within ARS at TPNP Foundation El. -16 Figure 2.1-4. NI H2 Horizontal within ARS at TPNP Foundation El. -16 0.
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.1 1
10 100 Spectral acceleration [g]
Frequency [Hz]
NI - H1 Within 41.5 ft Depth Case: LB Case: BE Case: UB 0.
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.1 1
10 100 Spectral acceleration [g]
Frequency [Hz]
NI - H2 Within 41.5 ft Depth Case: LB Case: BE Case: UB
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 25 of 231 Rev 4 Figure 2.1-5. NI UP Vertical within ARS at TPNP Foundation El. -16 Figure 2.1-6. FAR H1 Horizontal within ARS at TPNP Foundation El. -16 0.
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.1 1
10 100 Spectral acceleration [g]
Frequency [Hz]
NI - UP Within 41.5 ft Depth Case: LB Case: BE Case: UB 0.
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.1 1
10 100 Spectral acceleration [g]
Frequency [Hz]
FAR - H1 Within 41.5 ft Depth Case: LB Case: BE Case: UB
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 26 of 231 Rev 4 Figure 2.1-7. FAR H2 Horizontal within ARS at TPNP Foundation El. -16 Figure 2.1-8. FAR UP Vertical within ARS at TPNP Foundation El. -16 0.
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.1 1
10 100 Spectral acceleration [g]
Frequency [Hz]
FAR - H2 Within 41.5 ft Depth Case: LB Case: BE Case: UB 0.
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.1 1
10 100 Spectral acceleration [g]
Frequency [Hz]
FAR - UP Within 41.5 ft Depth Case: LB Case: BE Case: UB
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 27 of 231 Rev 4 Figure 2.1-9. Comparison of Spectra of Computed H1 Component Surface Motions for NI SSI Profiles with Horizontal DRS Figure 2.1-10. Comparison of Spectra of Computed H1 Component Surface Motions for FAR SSI Profiles with Horizontal DRS 0
0.2 0.4 0.6 0.8 1
1.2 0.
0.2 0.4 0.6 0.8 1.
1.2 0.1 1
10 100 Ratio DRS/Envelope Spectral acceleration [g]
Frequency [Hz]
Surface NI - H1 Horizontal DRS: Surface Case: LB Case: BE Case: UB ARS Envelope Ratio DRS /
Env 0
0.2 0.4 0.6 0.8 1
1.2 0.
0.2 0.4 0.6 0.8 1.
1.2 0.1 1
10 100 Ratio DRS/Envelope Spectral acceleration [g]
Frequency [Hz]
Surface FAR - H1 Horizontal DRS:
Surface Case: LB Case: BE Case: UB ARS Envelope Ratio DRS / Env
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 28 of 231 Rev 4 Figure 2.1-11. Comparison of Spectra of Computed H2 Component Surface Motions for NI SSI Profiles with Horizontal DRS Figure 2.1-12. Comparison of Spectra of Computed H2 Component Surface Motions for FAR SSI Profiles with Horizontal DRS 0
0.2 0.4 0.6 0.8 1
1.2 0.
0.2 0.4 0.6 0.8 1.
1.2 0.1 1
10 100 Ratio DRS/Envelope Spectral acceleration [g]
Frequency [Hz]
Surface NI - H2 Horizontal DRS: Surface Case: LB Case: BE Case: UB ARS Envelope Ratio DRS /
Env 0
0.2 0.4 0.6 0.8 1
1.2 0.
0.2 0.4 0.6 0.8 1.
1.2 0.1 1
10 100 Ratio DRS/Envelope Spectral acceleration [g]
Frequency [Hz]
Surface FAR - H2 Horizontal DRS: Surface Case: LB Case: BE Case: UB ARS Envelope Ratio DRS / Env
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 29 of 231 Rev 4 Figure 2.1-13. Comparison of Spectra of Computed V Component Surface Motions for NI SSI Profiles with Vertical DRS Figure 2.1-14. Comparison of Spectra of Computed V Component Surface Motions for FAR SSI Profiles with Vertical DRS 0
0.2 0.4 0.6 0.8 1
1.2 0.
0.2 0.4 0.6 0.8 1.
1.2 0.1 1
10 100 Ratio DRS/Envelope Spectral acceleration [g]
Frequency [Hz]
Surface NI - UP Vertical DRS:
Surface Case: LB Case: BE Case: UB ARS Envelope Ratio DRS /
Env 0
0.2 0.4 0.6 0.8 1
1.2 0.
0.2 0.4 0.6 0.8 1.
1.2 0.1 1
10 100 Ratio DRS/Envelope Spectral acceleration [g]
Frequency [Hz]
Surface FAR - UP Vertical DRS:
Surface Case: LB Case: BE Case: UB ARS Envelope Ratio DRS /
Env
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 30 of 231 Rev 4 Figure 2.1-15. FIRS for the TPNP Turbine Building Figure 2.1-16. FIRS for the TPNP Annex Building 0
0.05 0.1 0.15 0.2 0.25 0.3 0.1 1
10 100 5% Damping Spectral Acceleration (g)
Frequency (Hz)
Surface founded FIRS - Turbine Building Horizontal Vertical surtb-h1-0.1g surtb-up-0.1g 0
0.05 0.1 0.15 0.2 0.25 0.1 1
10 100 5% Damping Spectral Acceleration (g)
Frequency (HZ)
Surface founded FIRS - Annex Building Horizontal Vertical surdrs-h2-0.1g surdrs-up-0.1g
Westinghouse Non-Proprietary Class 3 0.4 I
+
+
+-
RG 1.60 (PGA=0.1 g) t Initial 0.35 Updated 0.3
~
.9
+
c 0 0.25 Ill Q)
"t Qi
(..)
(..)
<(
0.2 iii
(..)
Q) a.
Cl)
"C- 0.15 Q) a.
E Ill 0
~ 0.1 IO 0.05 t
+-
+
+
+-
0 +-~~~~~~~~~~-,..-+~~~~~~~~~~~--+-~~~~~~~~~~~
0.1 10 100 Frequency [Hz]
Figure 2.1-17. Comparison between the NI FIRS Computed with the Sensitivity Analysis and the Initial Analysis (NI Profile)
TPG-1000-S2R-807 31 of 231 Rev4
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 32 of 231 Rev 4 2.2 TPNP Soil-Structure Interaction (SSI) Analyses TPNP site specific SSI analyses were performed and are summarized as follows:
The TPNP specific SSI analyses utilized three-dimensional (3D) and two-dimensional (2D) parametric SSI analyses.
For the TPNP 3D SSI analyses, the AP1000 NI20r 3D embedded finite element model (FEM) was modified to incorporate the TPNP site conditions including 19 feet of lean concrete fill constructed beneath the NI basemat and mud mat, grouted rock properties, specifically density, and engineered fill adjacent to the NI.
The in-column ground motions at the top of the LC fill (elevation -16 ft.) for the BE, UB and LB soil profiles were the input motions for the SSI models. These in-column input motions were developed as part of the design grade deterministic surface spectra following Subsection 5.2.1 of the Interim Staff Guidance DC/COL-ISG-017.
For the TPNP Turbine Building (TB) First Bay and Annex Building (AB) and Radwaste Building (RB), 2D embedded models were used incorporating the Seismic Category II adjacent structures and engineered fill in the TPNP 2D SSI analyses. The Seismic Category I/II interaction issues between the adjacent buildings and the NI are addressed herein.
Supplemental TPNP 2D parametric SSI analyses were performed to demonstrate the adequacy of the 3D mesh size, the soil layer modeling used and passing frequency in the TPNP 3D models.
TPNP 2D Coarse and Fine models were created and parametric SSI analyses performed for evaluation of TPNP 3D model frequency filtering, model mesh size limitations, and influence of the lower boundary SITE profile depth. The 2D Coarse model layer frequencies range from about 9 to 474 Hz and represent the embedded portion of the TPNP 3D model. The Fine model layer frequencies range from about 49 to 474 Hz. The 2D SSI response forms the basis for the Fine-to-Coarse response spectra ratios (Bump Factors) to account for the lower 3D model passing frequencies.
2D parametric SSI analysis results were used to calculate horizontal and vertical frequency-dependent Fine-to-Coarse SSI response spectra ratios (Bump Factors) at each of the six key locations.
Factored FRS at the six key locations were calculated using the TPNP 3D Design-Basis BE, LB and UB models and the System for Soil-Structure Interaction (SASSI) Direct method SSI analyses results. The 3D Direct FRS results are amplified by the Bump Factors, broadened by + 15 percent, and compared to the AP1000 generic FRS at the six key locations to show that the AP1000 FRS envelops the factored TPNP site specific SSI analyses FRS.
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 33 of 231 Rev 4 2.2.1 TPNP Updated Soil-Structure Interaction (SSI) Sensitivity Analyses Updated TPNP site specific 3D and 2D SSI sensitivity analyses were performed to assess the potential effect of the 2013 updated site characterization data and 2014 site response sensitivity analysis results on the TPNP in-structure response spectra. Detailed descriptions of the updated seismic input, SSI sensitivity analyses, and results and conclusions are presented in Appendix E for the Nuclear Island and Appendix F for the SCII Turbine Building First Bay and Annex Building adjacent structures.
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 34 of 231 Rev 4 3.0 SSI Analysis Design Inputs The following sections summarize design input information provided by FPL in Bechtel letters 25409-000-TCM-GEG-00752 (Reference 1) and 25409-000-TCM-GEG-00581 (Reference 2) pertaining to the TPNP site soil profiles, Foundation elevation (El.) -16 input time histories, and proposed LC fill and engineered fill material properties. Design inputs also include the Westinghouse generic AP1000 3D FRS envelope, and hard rock high frequency (HRHF) FRS envelope, which the TPNP SSI analyses results are compared for the structure (low frequency) and equipment (high frequency) qualification, respectively.
3.1 Foundation Concept Description Two AP1000 units, designated Units 6 and 7 are planned at the FPL TPNP site located in south Miami-Dade County, Florida. Plan and cross-section views of the TPNP Unit 7 excavation limits are presented in Figures 3.1-1 and 3.1-2, respectively. Note that the TPNP Unit 7 plan and cross-section information are similar to that of Unit 6, thus only TPNP Unit 7 is graphically presented.
A CRllNE P:!.D i
i j
' i I
\\ \\ '*
Westinghouse Non-Proprietary Class 3 2.ao*
--~* -*--**-*- * -*-*-*- * -*--*-*-*-*--*-*-*---*-*-**--*- * -*-*--*-*-**-*- * - * -*-**-*- * - * -* *-**- * *- * - *-----------------
/
jl REINFORCED DIAPHRA 1 SLURRY' IAU EL. = 2.0' CTYP I Ttf'
\\
um 1*
\\
mrr /
\\
.3mse
~ E *. BS.7%
l _ __../
I l _____
J A
I 2 *. '
.. - *- *-**- *- *- *- *-**- *-*- *- *-**- *-*--*- * -*-**-**-* *-*-*-*-*-*-*--*-*- *-*-* -*-*-*- *-*- *-*-*-*-*-*-**- * *-*- *-**-*- * -*-*-**-**- *- *-*-**-*-*-*-**-**- * -*-*-**-*- * -*-*-*-*-*--*- *- *-*-*-*-*-*- *- *- *-*-*-*-*-* *-**- *-*- *-**-**-*- *-**-**- *-*- *-**-**-*-*-* *-**-*- * -*-*-**-*-*-*-*-*-~ *,** Q~*-*-
Figure 3.1-1. TPNP Unit 7 Excavation Limits Plan View (Reference 4)
TPG-1000-S2R-807 35 of 231 Rev4
- EL. (-) 50.0' i\\H AMI L lMESTO E TPG-1000-S2R-807 1t,5 CONCRETE FILL Westinghouse Non-Proprietary Class 3 FORT THO!l.PSON FORMAT!D J
} CONT A I NME T BLDC SECTION A-A SCALE= HORZ.1"=50' VERT. 1 "= 50' GROUTED LAY ER KEY LARGO LI ME S T O~E Figure 3.1-2. TPNP Unit 7 Excavation Cross-Section (Reference 4) 36 of 231 B/ EXCAVATI O EL. (- 135. 0' B/ DI APHRAGM WALL EL. (- )£0. 0' Rev4
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 37 of 231 Rev 4 3.2 TPNP Best Estimate, Lower Bound and Upper Bound Soil Profiles TPNP site soil profiles including the BE, LB and UB soil cases were provided in Bechtel letters 25409-000-TCM-GEG-00752 (Reference 1) and 25409-000-TCM-GEG-00581 (Reference 2). The layer thickness, unit weight, shear wave velocity (Vs), compression wave velocity (Vp), and damping ratio from the ground surface to the simulated halfspace are presented in Tables 3.2-1 to 3.2-3 for the near Nuclear Island (NI) BE, LB and UB conditions.
Figure 3.2-1 graphically presents the TPNP NI Vs profiles within the approximately 4,300-foot TPNP site profile depth.
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 38 of 231 Rev 4 Table 3.2-1. TPNP Best Estimate Soil Column Profile and Soil Properties Layer No.
Thickness
[ft]
Unit Weight
[kcf]
S-Wave Vel.
[ft/sec]
P-Wave Vel.
[ft/sec]
Damping
[%]
1 5.00 0.130 610.4 1142.0 2.7223 2
5.00 0.130 715.7 1339.0 3.8302 3
5.00 0.130 756.7 1415.7 4.5882 4
5.00 0.130 756.6 1415.5 5.2148 5
5.00 0.130 761.9 1425.3 5.7405 6
5.50 0.130 728.5 3714.7 6.4187 7
6.00 0.130 721.1 3676.9 6.8292 8
5.00 0.130 726.7 3705.4 7.1026 9
6.33 0.150 5518.5 8600.0 1.0508 10 6.33 0.150 5518.5 8600.0 1.0508 11 6.33 0.150 5518.5 8600.0 1.0508 12 6.00 0.136 5674.2 8842.7 0.9853 13 10.00 0.136 5781.3 10815.9 0.9853 14 10.00 0.136 5449.9 10015.8 0.9853 15 10.00 0.136 4858.1 9006.7 0.9853 16 10.00 0.136 4768.7 9622.9 0.9853 17 10.00 0.136 4712.1 9446.3 0.9853 18 10.00 0.136 4670.9 9223.8 0.9853 19 10.00 0.136 4559.3 9080.0 0.9853 20 10.00 0.136 1847.0 5000.0 0.9853 21 10.00 0.120 1469.6 5000.0 1.8902 22 10.00 0.120 1531.8 6388.5 1.8194 23 10.00 0.120 1532.4 5079.2 1.8378 24 10.00 0.120 1596.1 6309.2 1.6993 25 10.00 0.120 1606.9 5860.8 1.6887 26 10.00 0.120 1622.1 5640.3 1.6710 27 10.00 0.120 1626.0 5819.6 1.6759 28 10.00 0.120 1647.0 5981.3 1.6664 29 10.00 0.120 1734.7 6059.5 1.5724 30 10.00 0.120 1941.1 6303.2 1.3770 31 10.00 0.120 1958.5 5563.6 1.3686 32 10.00 0.120 1886.2 5085.9 1.4253 33 10.00 0.120 1839.0 5698.6 1.4787 34 10.00 0.120 1754.1 5082.1 1.5659 35 10.00 0.120 1679.1 5410.9 1.6521 36 10.00 0.120 1675.0 5880.4 1.6566 37 10.00 0.120 1608.9 5533.7 1.7470 38 10.00 0.120 1558.7 5021.6 1.8167 39 10.00 0.120 1554.7 5327.5 1.8220 40 10.00 0.120 1518.3 5163.6 1.8882 41 10.00 0.120 1445.0 5000.0 2.0181 42 10.00 0.120 1440.3 5650.4 2.0275 43 10.00 0.120 1439.7 5745.5 2.0302
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 39 of 231 Rev 4 Table 3.2-1. TPNP Best Estimate Soil Column Profile and Soil Properties (cont.)
Layer No.
Thickness
[ft]
Unit Weight
[kcf]
S-Wave Vel.
[ft/sec]
P-Wave Vel.
[ft/sec]
Damping
[%]
44 10.00 0.120 1438.1 5682.1 2.0373 45 10.00 0.120 1437.8 5615.5 2.0394 46 10.00 0.120 1424.5 5629.8 2.0688 47 10.00 0.120 1416.2 5707.3 2.0948 48 10.00 0.120 1407.5 5360.2 2.1168 49 10.00 0.120 1398.7 5599.0 2.1366 50 10.00 0.120 1394.9 5438.2 2.1601 51 10.00 0.120 1395.3 5586.8 2.1765 52 10.00 0.120 1390.5 5588.1 2.1939 53 10.00 0.120 1389.8 5582.4 2.2078 54 10.00 0.130 3911.1 15710.3 0.7949 55 10.00 0.130 3910.9 15709.5 0.8020 56 10.00 0.130 3910.6 8543.3 0.8076 57 10.00 0.130 3910.1 7713.9 0.8182 58 10.00 0.130 3897.2 7895.1 0.8303 59 10.00 0.130 3886.0 7881.0 0.8451 60 10.00 0.130 3866.8 8006.0 0.8506 61 10.00 0.130 3839.6 8011.6 0.8613 62 10.00 0.130 3789.4 7637.4 0.8726 63 10.00 0.130 3778.8 7913.5 0.8859 64 10.00 0.130 3568.7 7860.7 0.9281 65 10.00 0.130 3407.3 7719.2 0.9689 66 10.00 0.130 3151.4 7436.6 1.0352 67 10.00 0.130 3158.5 7682.8 1.0372 68 10.00 0.130 3189.4 7486.7 1.0346 69 10.00 0.130 3381.8 7493.4 0.9992 70 10.00 0.130 3529.0 7346.1 0.9626 71 64.00 0.130 4308.0 8967.7 0.2912 72 100.00 0.130 4304.4 8960.4 0.2912 73 200.00 0.130 4483.1 9105.3 0.2912 74 200.00 0.130 4895.2 9514.6 0.2912 75 200.00 0.130 5131.4 9600.0 0.2912 76 200.00 0.130 5375.9 10057.4 0.2912 77 200.00 0.130 5640.4 10552.3 0.2912 78 200.00 0.130 5665.1 10598.5 0.2912 79 200.00 0.130 6496.8 12154.4 0.2912 80 200.00 0.130 6705.9 12545.6 0.2912 81 200.00 0.130 6771.8 12668.9 0.2912 82 200.00 0.130 6771.8 12668.9 0.2912 83 200.00 0.130 6779.1 12682.6 0.2912 84 200.00 0.130 6717.1 12566.6 0.2912 85 200.00 0.130 6724.7 12580.8 0.2912 86 200.00 0.130 6724.7 12580.8 0.2912
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 40 of 231 Rev 4 Table 3.2-1. TPNP Best Estimate Soil Column Profile and Soil Properties (cont.)
Layer No.
Thickness
[ft]
Unit Weight
[kcf]
S-Wave Vel.
[ft/sec]
P-Wave Vel.
[ft/sec]
Damping
[%]
87 200.00 0.130 6756.6 12640.4 0.2912 88 200.00 0.130 8996.6 16831.0 0.2912 89 200.00 0.130 9050.7 16932.3 0.2912 90 200.00 0.130 9132.9 17086.1 0.2912 91 200.00 0.130 9113.1 17049.0 0.2912 92 200.00 0.130 8800.1 16463.4 0.2912 93 200.00 0.130 8750.5 16370.7 0.2912 94 200.00 0.130 8444.8 15798.7 0.2912 95 200.00 0.130 8119.4 15190.0 0.2912 96 200.00 0.130 8034.9 15032.0 0.2912 97 200.00 0.130 7967.0 14904.9 0.2912 98 200.00 0.130 7755.8 14509.8 0.2912 99 200.00 0.130 7761.2 14519.8 0.2912 100 200.00 0.130 7676.3 14361.0 0.2912 101 200.00 0.130 7678.0 14364.3 0.2912 102 200.00 0.130 7673.1 14355.0 0.2912 103 200.00 0.130 7616.5 14249.2 0.2912 104 200.00 0.130 7601.7 14221.5 0.2912 105 200.00 0.130 7755.0 14508.2 0.2900 106 200.00 0.130 7827.7 14644.2 0.2900 107 200.00 0.130 7812.5 14615.9 0.2900 108 200.00 0.130 7823.1 14635.6 0.2900 109 200.00 0.130 7953.1 14878.8 0.2700 110 200.00 0.130 7953.1 14878.8 0.2700 111 200.00 0.130 7967.0 14904.9 0.2700 112 200.00 0.130 8059.6 15078.2 0.2600 113 200.00 0.130 8276.7 15484.3 0.2500 114 200.00 0.130 8394.8 15705.3 0.2600 115 200.00 0.130 8499.1 15900.4 0.2500 116 200.00 0.130 8499.1 15900.4 0.2500 117 200.00 0.130 8632.8 16150.6 0.2400 118 200.00 0.130 8683.6 16245.5 0.2400 119 200.00 0.130 8629.9 16145.1 0.2400 120 200.00 0.130 8655.0 16191.9 0.2500 121 200.00 0.130 8684.4 16247.0 0.2500 122 200.00 0.130 8749.0 16367.9 0.2500 123 200.00 0.130 8749.0 16367.9 0.2500 124 200.00 0.130 8760.9 16390.2 0.2500 125 200.00 0.130 8726.0 16324.9 0.2200 126 0.00 0.170 9200.0 17211.6 1.0000
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 41 of 231 Rev 4 Table 3.2-2. TPNP Lower Bound Soil Column Profile and Soil Properties Layer No.
Thickness
[ft]
Unit Weight
[kcf]
S-Wave Vel.
[ft/sec]
P-Wave Vel.
[ft/sec]
Damping
[%]
1 5.00 0.130 348.6 652.2 5.0459 2
5.00 0.130 410.1 767.3 7.2773 3
5.00 0.130 431.5 807.3 8.5154 4
5.00 0.130 431.8 807.7 9.5902 5
5.00 0.130 434.5 812.8 10.6477 6
5.50 0.130 411.4 2097.6 11.6194 7
6.00 0.130 406.6 2073.4 12.0646 8
5.00 0.130 416.6 2124.3 12.3661 9
6.33 0.150 4505.9 7021.9 1.4645 10 6.33 0.150 4505.9 7021.9 1.4645 11 6.33 0.150 4505.9 7021.9 1.4645 12 6.00 0.136 4633.0 7220.0 1.3666 13 10.00 0.136 4720.4 8831.1 1.3666 14 10.00 0.136 4449.8 8177.8 1.3666 15 10.00 0.136 3966.7 7353.9 1.3666 16 10.00 0.136 3893.6 7857.1 1.3666 17 10.00 0.136 3847.4 7712.9 1.3666 18 10.00 0.136 3813.8 7531.2 1.3666 19 10.00 0.136 3665.8 7300.7 1.3666 20 10.00 0.136 1408.1 5000.0 1.3666 21 10.00 0.120 1179.8 5000.0 3.0112 22 10.00 0.120 1250.7 5216.2 2.8238 23 10.00 0.120 1251.2 5000.0 2.7722 24 10.00 0.120 1303.2 5151.4 2.4188 25 10.00 0.120 1312.0 5000.0 2.3915 26 10.00 0.120 1324.4 5000.0 2.3613 27 10.00 0.120 1327.6 5000.0 2.3725 28 10.00 0.120 1344.8 5000.0 2.3484 29 10.00 0.120 1416.4 5000.0 2.2027 30 10.00 0.120 1584.9 5146.6 1.9078 31 10.00 0.120 1599.1 5000.0 1.8781 32 10.00 0.120 1540.1 5000.0 1.9890 33 10.00 0.120 1501.5 5000.0 2.0394 34 10.00 0.120 1432.2 5000.0 2.2136 35 10.00 0.120 1371.0 5000.0 2.2740 36 10.00 0.120 1367.6 5000.0 2.2892 37 10.00 0.120 1313.7 5000.0 2.4259 38 10.00 0.120 1272.7 5000.0 2.5301 39 10.00 0.120 1269.4 5000.0 2.5361 40 10.00 0.120 1239.7 5000.0 2.5854 41 10.00 0.120 1179.8 5000.0 2.7330
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 42 of 231 Rev 4 Table 3.2-2. TPNP Lower Bound Soil Column Profile and Soil Properties (cont.)
Layer No.
Thickness
[ft]
Unit Weight
[kcf]
S-Wave Vel.
[ft/sec]
P-Wave Vel.
[ft/sec]
Damping
[%]
42 10.00 0.120 1176.0 5000.0 2.7369 43 10.00 0.120 1175.5 5000.0 2.7433 44 10.00 0.120 1174.2 5000.0 2.7506 45 10.00 0.120 1174.0 5000.0 2.7579 46 10.00 0.120 1163.1 5000.0 2.7901 47 10.00 0.120 1156.3 5000.0 2.7691 48 10.00 0.120 1149.2 5000.0 2.8217 49 10.00 0.120 1142.1 5000.0 2.8919 50 10.00 0.120 1138.9 5000.0 2.8793 51 10.00 0.120 1139.3 5000.0 2.9138 52 10.00 0.120 1135.4 5000.0 2.9217 53 10.00 0.120 1134.7 5000.0 2.9424 54 10.00 0.130 3193.4 12827.4 1.0726 55 10.00 0.130 3193.3 12826.8 1.0790 56 10.00 0.130 3193.0 6975.6 1.0901 57 10.00 0.130 3192.6 6298.3 1.1063 58 10.00 0.130 3182.1 6446.3 1.1261 59 10.00 0.130 3172.9 6434.8 1.1349 60 10.00 0.130 3157.2 6536.9 1.1396 61 10.00 0.130 3135.0 6541.4 1.1572 62 10.00 0.130 3094.0 6235.9 1.1807 63 10.00 0.130 3085.4 6461.3 1.1950 64 10.00 0.130 2913.8 6418.3 1.2664 65 10.00 0.130 2782.0 6302.7 1.3247 66 10.00 0.130 2573.1 6071.9 1.3927 67 10.00 0.130 2578.9 6273.0 1.4001 68 10.00 0.130 2604.1 6112.9 1.3925 69 10.00 0.130 2761.2 6118.3 1.3322 70 10.00 0.130 2881.4 5998.1 1.3233 71 64.00 0.130 3517.4 7322.1 0.5271 72 100.00 0.130 3514.5 7316.1 0.5271 73 200.00 0.130 3660.4 7434.4 0.5271 74 200.00 0.130 3996.9 7768.6 0.5271 75 200.00 0.130 4189.8 7838.4 0.5271 76 200.00 0.130 4389.4 8211.8 0.5271 77 200.00 0.130 4605.4 8615.9 0.5271 78 200.00 0.130 4625.6 8653.7 0.5271 79 200.00 0.130 5304.6 9924.0 0.5271 80 200.00 0.130 5475.4 10243.5 0.5271 81 200.00 0.130 5529.2 10344.1 0.5271 82 200.00 0.130 5529.2 10344.1 0.5271 83 200.00 0.130 5535.1 10355.3 0.5271 84 200.00 0.130 5484.5 10260.6 0.5271
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 43 of 231 Rev 4 Table 3.2-2. TPNP Lower Bound Soil Column Profile and Soil Properties (cont.)
Layer No.
Thickness
[ft]
Unit Weight
[kcf]
S-Wave Vel.
[ft/sec]
P-Wave Vel.
[ft/sec]
Damping
[%]
85 200.00 0.130 5490.7 10272.2 0.5271 86 200.00 0.130 5490.7 10272.2 0.5271 87 200.00 0.130 5516.7 10320.8 0.5271 88 200.00 0.130 7345.7 13742.5 0.5271 89 200.00 0.130 7389.9 13825.2 0.5271 90 200.00 0.130 7457.0 13950.8 0.5271 91 200.00 0.130 7440.8 13920.4 0.5271 92 200.00 0.130 7185.2 13442.3 0.5271 93 200.00 0.130 7144.8 13366.6 0.5271 94 200.00 0.130 6895.1 12899.6 0.5271 95 200.00 0.130 6629.4 12402.6 0.5271 96 200.00 0.130 6560.5 12273.5 0.5271 97 200.00 0.130 6505.0 12169.8 0.5271 98 200.00 0.130 6332.6 11847.2 0.5271 99 200.00 0.130 6337.0 11855.4 0.5271 100 200.00 0.130 6267.7 11725.7 0.5271 101 200.00 0.130 6269.1 11728.4 0.5271 102 200.00 0.130 6265.0 11720.8 0.5271 103 200.00 0.130 6218.9 11634.5 0.5271 104 200.00 0.130 6206.8 11611.8 0.5271 105 200.00 0.130 6331.9 11845.9 0.5203 106 200.00 0.130 6391.3 11956.9 0.5229 107 200.00 0.130 6378.9 11933.8 0.5229 108 200.00 0.130 6387.5 11949.9 0.5248 109 200.00 0.130 6493.7 12148.5 0.4643 110 200.00 0.130 6493.7 12148.5 0.4643 111 200.00 0.130 6505.1 12169.8 0.4643 112 200.00 0.130 6580.7 12311.3 0.4429 113 200.00 0.130 6757.9 12642.9 0.4206 114 200.00 0.130 6854.4 12823.3 0.4423 115 200.00 0.130 6939.5 12982.6 0.4324 116 200.00 0.130 6939.5 12982.6 0.4324 117 200.00 0.130 7048.7 13186.9 0.4125 118 200.00 0.130 7090.1 13264.4 0.4360 119 200.00 0.130 7046.3 13182.4 0.4360 120 200.00 0.130 7066.7 13220.7 0.4147 121 200.00 0.130 7090.8 13265.6 0.4305 122 200.00 0.130 7143.5 13364.3 0.4073 123 200.00 0.130 7143.5 13364.3 0.4073 124 200.00 0.130 7153.3 13382.5 0.4073 125 200.00 0.130 7124.8 13329.2 0.2856 126 0.00 0.170 9200.0 17211.6 1.0000
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 44 of 231 Rev 4 Table 3.2-3. TPNP Upper Bound Soil Column Profile and Soil Properties Layer No.
Thickness
[ft]
Unit Weight
[kcf]
S-Wave Vel.
[ft/sec]
P-Wave Vel.
[ft/sec]
Damping
[%]
1 5.00 0.130 1069.0 1999.9 1.4687 2
5.00 0.130 1249.0 2336.6 2.0159 3
5.00 0.130 1327.1 2482.7 2.4722 4
5.00 0.130 1325.9 2480.5 2.8356 5
5.00 0.130 1336.0 2499.4 3.0949 6
5.50 0.130 1290.1 5000.0 3.5457 7
6.00 0.130 1278.8 5000.0 3.8657 8
5.00 0.130 1267.6 5000.0 4.0795 9
6.33 0.150 6758.8 10532.8 0.7545 10 6.33 0.150 6758.8 10532.8 0.7545 11 6.33 0.150 6758.8 10532.8 0.7545 12 6.00 0.155 6949.5 10830.0 0.7104 13 10.00 0.155 7080.6 13246.7 0.7104 14 10.00 0.155 6674.7 12266.8 0.7104 15 10.00 0.136 5950.0 11030.9 0.7104 16 10.00 0.136 5840.4 11785.6 0.7104 17 10.00 0.136 5771.1 11569.3 0.7104 18 10.00 0.136 5720.7 11296.8 0.7104 19 10.00 0.136 5670.5 11293.0 0.7104 20 10.00 0.136 2422.6 5000.0 0.7104 21 10.00 0.120 1830.5 5411.8 1.1865 22 10.00 0.120 1876.0 7824.2 1.1723 23 10.00 0.120 1876.8 6220.7 1.2184 24 10.00 0.120 1954.8 7727.1 1.1938 25 10.00 0.120 1968.1 7178.0 1.1925 26 10.00 0.120 1986.7 6907.9 1.1826 27 10.00 0.120 1991.4 7127.5 1.1838 28 10.00 0.120 2017.2 7325.6 1.1824 29 10.00 0.120 2124.6 7421.3 1.1224 30 10.00 0.120 2377.3 7719.9 0.9938 31 10.00 0.120 2398.7 6813.9 0.9973 32 10.00 0.120 2310.2 6228.9 1.0214 33 10.00 0.120 2252.3 6979.4 1.0721 34 10.00 0.120 2148.4 6224.3 1.1077 35 10.00 0.120 2056.5 6626.9 1.2003 36 10.00 0.120 2051.4 7201.9 1.1989 37 10.00 0.120 1970.5 6777.3 1.2581 38 10.00 0.120 1909.0 6150.2 1.3044 39 10.00 0.120 1904.1 6524.8 1.3091 40 10.00 0.120 1859.5 6324.1 1.3790
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 45 of 231 Rev 4 Table 3.2-3. TPNP Upper Bound Soil Column Profile and Soil Properties (cont.)
Layer No.
Thickness
[ft]
Unit Weight
[kcf]
S-Wave Vel.
[ft/sec]
P-Wave Vel.
[ft/sec]
Damping
[%]
41 10.00 0.120 1769.8 6108.0 1.4902 42 10.00 0.120 1764.0 6920.3 1.5020 43 10.00 0.120 1763.2 7036.7 1.5025 44 10.00 0.120 1761.4 6959.1 1.5089 45 10.00 0.120 1761.0 6877.6 1.5081 46 10.00 0.120 1744.7 6895.1 1.5340 47 10.00 0.120 1734.5 6990.0 1.5846 48 10.00 0.120 1723.8 6564.9 1.5880 49 10.00 0.120 1713.1 6857.4 1.5786 50 10.00 0.120 1708.4 6660.5 1.6205 51 10.00 0.120 1708.9 6842.4 1.6257 52 10.00 0.120 1703.1 6844.0 1.6474 53 10.00 0.120 1702.1 6837.0 1.6566 54 10.00 0.130 4790.1 19241.1 0.5891 55 10.00 0.130 4789.9 19240.1 0.5961 56 10.00 0.130 4789.5 10463.4 0.5982 57 10.00 0.130 4788.8 9447.5 0.6052 58 10.00 0.130 4773.1 9669.5 0.6123 59 10.00 0.130 4759.3 9652.2 0.6293 60 10.00 0.130 4735.8 9805.3 0.6349 61 10.00 0.130 4702.5 9812.2 0.6411 62 10.00 0.130 4641.0 9353.8 0.6449 63 10.00 0.130 4628.1 9692.0 0.6567 64 10.00 0.130 4370.8 9627.4 0.6802 65 10.00 0.130 4173.0 9454.0 0.7086 66 10.00 0.130 3859.6 9107.9 0.7694 67 10.00 0.130 3868.4 9409.5 0.7684 68 10.00 0.130 3906.2 9169.3 0.7687 69 10.00 0.130 4141.8 9177.5 0.7495 70 10.00 0.130 4322.1 8997.1 0.7002 71 64.00 0.130 5276.2 10983.2 0.1609 72 100.00 0.130 5271.8 10974.2 0.1609 73 200.00 0.130 5490.7 11151.6 0.1609 74 200.00 0.130 5995.4 11652.9 0.1609 75 200.00 0.130 6284.7 11757.6 0.1609 76 200.00 0.130 6584.1 12317.7 0.1609 77 200.00 0.130 6908.1 12923.9 0.1609 78 200.00 0.130 6938.4 12980.5 0.1609 79 200.00 0.130 7956.9 14886.1 0.1609 80 200.00 0.130 8213.1 15365.2 0.1609 81 200.00 0.130 8293.8 15516.2 0.1609 82 200.00 0.130 8293.8 15516.2 0.1609 83 200.00 0.130 8302.7 15532.9 0.1609 84 200.00 0.130 8226.8 15390.9 0.1609
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 46 of 231 Rev 4 Table 3.2-3. TPNP Upper Bound Soil Column Profile and Soil Properties (cont.)
Layer No.
Thickness
[ft]
Unit Weight
[kcf]
S-Wave Vel.
[ft/sec]
P-Wave Vel.
[ft/sec]
Damping
[%]
85 200.00 0.130 8236.1 15408.3 0.1609 86 200.00 0.130 8236.1 15408.3 0.1609 87 200.00 0.130 8275.1 15481.2 0.1609 88 200.00 0.130 11018.5 20613.7 0.1609 89 200.00 0.130 11084.8 20737.8 0.1609 90 200.00 0.130 11185.5 20926.1 0.1609 91 200.00 0.130 11161.2 20880.7 0.1609 92 200.00 0.130 10777.8 20163.5 0.1609 93 200.00 0.130 10717.1 20049.9 0.1609 94 200.00 0.130 10342.7 19349.4 0.1609 95 200.00 0.130 9944.2 18603.8 0.1609 96 200.00 0.130 9840.7 18410.3 0.1609 97 200.00 0.130 9757.6 18254.7 0.1609 98 200.00 0.130 9498.9 17770.8 0.1609 99 200.00 0.130 9505.5 17783.1 0.1609 100 200.00 0.130 9401.5 17588.6 0.1609 101 200.00 0.130 9403.6 17592.5 0.1609 102 200.00 0.130 9397.5 17581.2 0.1609 103 200.00 0.130 9328.3 17451.7 0.1609 104 200.00 0.130 9310.1 17417.7 0.1609 105 200.00 0.130 9497.9 17768.9 0.1617 106 200.00 0.130 9586.9 17935.4 0.1608 107 200.00 0.130 9568.4 17900.8 0.1608 108 200.00 0.130 9581.3 17924.9 0.1603 109 200.00 0.130 9740.5 18222.8 0.1570 110 200.00 0.130 9740.5 18222.8 0.1570 111 200.00 0.130 9757.6 18254.8 0.1570 112 200.00 0.130 9871.0 18467.0 0.1526 113 200.00 0.130 10136.9 18964.3 0.1486 114 200.00 0.130 10281.5 19235.0 0.1528 115 200.00 0.130 10409.2 19473.9 0.1445 116 200.00 0.130 10409.2 19473.9 0.1445 117 200.00 0.130 10573.0 19780.3 0.1396 118 200.00 0.130 10635.2 19896.6 0.1321 119 200.00 0.130 10569.4 19773.6 0.1321 120 200.00 0.130 10600.1 19831.0 0.1507 121 200.00 0.130 10636.2 19898.4 0.1452 122 200.00 0.130 10715.3 20046.5 0.1535 123 200.00 0.130 10715.3 20046.5 0.1535 124 200.00 0.130 10729.9 20073.8 0.1535 125 200.00 0.130 10687.2 19993.8 0.1695 126 0.00 0.170 9200.0 17211.6 1.0000 Note: % = percent; ft. = feet; ft/sec = feet per second; kcf = kips per cubic foot; SSI = soil structure interaction
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 47 of 231 Rev 4 Figure 3.2-1. Turkey Point Site (FPL) NI VS 0
100 200 300 400 500 600 700 800 900 1000 0
1000 2000 3000 4000 5000 6000 7000 8000 Depth [ft]
Vs [fps]
FPL - NI Best Estimate (BE)
Lower Bound (LB)
Upper Bound (UB)
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 48 of 231 Rev 4 Figure 3.2-2. Turkey Point Site (FPL) NI VP 0
100 200 300 400 500 600 700 800 900 1000 0
5000 10000 15000 20000 25000 30000 Depth [ft]
Vp [fps]
FPL - NI Best Estimate (BE)
Lower Bound (LB)
Upper Bound (UB)
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 49 of 231 Rev 4 Figure 3.2-3. Turkey Point Site (FPL) - FAR VS 0
100 200 300 400 500 600 700 800 900 1000 0
1000 2000 3000 4000 5000 6000 7000 8000 Depth [ft]
Vs [fps]
FPL - FAR Best Estimate (BE)
Lower Bound (LB)
Upper Bound (UB)
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 50 of 231 Rev 4 Figure 3.2-4. Turkey Point Site (FPL) FAR VP 0
100 200 300 400 500 600 700 800 900 1000 0
5000 10000 15000 20000 25000 30000 Depth [ft]
Vp [fps]
FPL - FAR Best Estimate (BE)
Lower Bound (LB)
Upper Bound (UB)
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 51 of 231 Rev 4 3.3 TPNP Engineered Fill and Lean Concrete Fill Properties for SSI Analyses Tables 3.3-1, 3.3-2 and 3.3-3 present the dynamic material properties for the engineered fill, lean concrete fill and grouted rock for the BE, LB and UB soil cases, which were provided by FPL in Bechtel letters 25409-000-TCM-GEG-00752 (Reference 1) and 25409-000-TCM-GEG-00581 (Reference 2) and incorporated in the respective SSI analyses of the NI and SCII adjacent structures:
Table 3.3-1. TPNP Backfill Soil and Fill Concrete Profile - BE Material Unit Weight
[kcf]
S-Wave Vel.
[ft/sec]
P-Wave Vel.
[ft/sec]
Damping Engineered Fill 0.130 610.4 1142.0 0.027 Engineered Fill 0.130 715.7 1339.0 0.038 Engineered Fill 0.130 756.7 1415.7 0.046 Engineered Fill 0.130 756.6 1415.5 0.052 Engineered Fill 0.130 761.9 1425.3 0.057 Engineered Fill 0.130 728.5 3714.7 0.064 Engineered Fill 0.130 721.1 3676.9 0.068 Engineered Fill 0.130 726.7 3705.4 0.071 Lean Concrete 0.150 5518.5 8600.0 0.011 Grouted Rock 0.155 5674.2 8842.7 0.010 Grouted Rock 0.155 5781.3 10815.9 0.010 Grouted Rock 0.155 5449.9 10015.8 0.010 Table 3.3-2. TPNP Backfill Soil and Fill Concrete Profile - LB Material Unit Weight
[kcf]
S-Wave Vel.
[ft/sec]
P-Wave Vel.
[ft/sec]
Damping Engineered Fill 0.130 348.6 652.2 0.050 Engineered Fill 0.130 410.1 767.3 0.073 Engineered Fill 0.130 431.5 807.3 0.085 Engineered Fill 0.130 431.8 807.7 0.096 Engineered Fill 0.130 434.5 812.8 0.106 Engineered Fill 0.130 411.4 2097.6 0.116 Engineered Fill 0.130 406.6 2073.4 0.121 Engineered Fill 0.130 416.6 2124.3 0.124 Lean Concrete Fill 0.150 4505.9 7021.9 0.015 Grouted Rock 0.155 4633.0 7220.0 0.014 Grouted Rock 0.155 4720.4 8831.1 0.014 Grouted Rock 0.155 4449.8 8177.8 0.014
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 52 of 231 Rev 4 Table 3.3-3. TPNP Backfill Soil and Fill Concrete Profile - UB Material Unit Weight
[kcf]
S-Wave Vel.
[ft/sec]
P-Wave Vel.
[ft/sec]
Damping Engineered Fill 0.130 1069.0 1999.9 0.015 Engineered Fill 0.130 1249.0 2336.6 0.020 Engineered Fill 0.130 1327.1 2482.7 0.025 Engineered Fill 0.130 1325.9 2480.5 0.028 Engineered Fill 0.130 1336.0 2499.4 0.031 Engineered Fill 0.130 1290.1 5000.0 0.035 Engineered Fill 0.130 1278.8 5000.0 0.039 Engineered Fill 0.130 1267.6 5000.0 0.041 Lean Concrete Fill 0.150 6758.8 10532.8 0.008 Grouted Rock 0.155 6949.5 10830.0 0.007 Grouted Rock 0.155 7080.6 13246.7 0.007 Grouted Rock 0.155 6674.7 12266.8 0.007 3.4 Selected NI Key Locations The six (6) key 2D and 3D NI locations selected to obtain floor response spectra (FRS) are shown below in Table 3.4-1.
Table 3.4-1. NI Key Nodes at Location TPNP/NI20r (3D) Node TPNP (2D)
Node 3D-X (feet) 3D-Y (feet) 3D-Z (feet)
Location 1761 4041 1000 1000 100 CIS at Reactor Vessel Support Elevation 2078 4061 1116.5 948.5 116.5 ASB NE Corner at Control Room Floor 2199 4535 1008 1014 134.25 CIS at Operating Deck 2675 4120 929 1000 179.19 ASB Corner of Fuel Building Roof at Shield Building 2788 4412 1000 1000 224 SCV Near Polar Crane 3329 4310 956.5 1000 327.41 ASB Shield Building Roof Area
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 53 of 231 Rev 4 3.5 TPNP Time History Inputs - El. -16 (Foundation/Top of Lean Concrete Fill)
The revised TPNP input acceleration time histories were provided by FPL in Bechtel Letter 25409-000-TCM-GEG-00752 (Reference 1) and are graphically presented herein as Figures 3.5-1 through 3.5-6 for the TPNP BE, LB and UB soil cases. The within time histories were provided at the foundation level following site response analysis at the foundation level, which included at input the minimum PGA = 0.1g outcrop SSE envelop of the site-specific FIRS and RG 1.60 spectra anchored to 0.1g as previously described in Section 2.1. The input time histories are used as seismic input in three orthogonal directions at the foundation/ top of the TPNP lean concrete fill (El. -16) in the TPNP SSI analyses.
Reference 1 provides two horizontal (H1 and H2) and one vertical (UP) time histories (El. -16) for each BE, LB and UB soil case with 32768 discrete values of acceleration with a time step of 0.005 seconds in files FPL-NI-BE-H1.ath, FPL-NI-BE-H2.ath, and FPL-NI-BE-UP.ath, FPL-NI-LB-H1.ath, FPL-NI-LB-H2.ath, and FPL-NI-LB-UP.ath,, FPL-NI-UB-H1.ath,,
FPL-NI-UB-H2.ath, and FPL-NI-UB-UP.ath for the (near) NI conditions.
H1 and H2 time history designations correspond to the X- (north-south) and Y- (east-west) directions, respectively, and UP corresponds to the Z- (vertical) direction.
FAR conditions time histories were provided in files FPL-FAR-BE-H1.ath, FPL-FAR-BE-H2.ath, and FPL-FAR-BE-UP.ath, FPL-FAR-LB-H1.ath, FPL-FAR-LB-H2.ath, and FPL-FAR-LB-UP.ath, FPL-FAR-UB-H1.ath, FPL-FAR-UB-H2.ath, and FPL-FAR-UB-UP.ath. The seismic analysis was executed for each excitation direction separately.
3.5.1 TPNP Time History Inputs - El. +25.5 Surface Founded Adjacent Structures The TPNP site-specific outcrop FIRS and corresponding input acceleration time histories for the SCII adjacent structures including the TB First Bay and AB were provided by FPL in Bechtel Letter 25409-000-TCM-GEG-00404 (Reference 3). Site specific outcrop FIRS for the TB First Bay and AB are presented in Figures 2.1-15 and 2.1-16, respectively. Figure 3.5-7 through 3.5-9 present horizontal and vertical time histories for the TPNP TB First Bay, and Figure 3.5-10 through 3.5-12 present horizontal and vertical time histories for the AB. The SCII adjacent structures input time histories were increased slightly by a factor of about 10-13 percent corresponding to the ratio of a minimum 0.1g PGA and the zero-period acceleration (ZPA) of each SCII outcrop FIRS, which yields a minimum outcrop PGA = 0.1g time history for each SCII surface-founded structure for SSI analysis. The input time histories are used as seismic input in two orthogonal directions at the ground surface (El. +25.5) in the TPNP SSI analyses (X and Z for the TB First Bay, and Y and Z for the AB).
Reference 3 provides two horizontal and one vertical time history (El. +25.5) for 28000 discrete values of acceleration with a time step of 0.005 seconds in files SURTB-H1.acc, SURTB-H2.acc, and SURTB-UP.acc for the TB First Bay, and SURDRS-H1.acc, SURDRS-H2.acc and SURDRS-UP.acc for the AB, which were modified by Westinghouse to achieve a minimum 0.1g PGA. The corresponding spectra are presented in Figures 2.1-15 and 2.1-16.
Westinghouse Non-Proprietary Class 3 0.1 Direction Hl,.. Case: LB, at 415 ft Depth, WITI-IIN 00 0.05 I
I I
- - -r - - - - -
r - -
§ *-
13 0
Q) -
0,)
(.) < -0.05 I
I I
I, I
I I
- - - r - - - - - r - - - - - ; - - - - - -,- - - - - - r - - - - -,.
j
-0 I
. 0 20 40 60 80 100 120 140 160 0.1 Direction HI,.. Case: BE, at4L5 :ft Depth, WITHIN I
T----
I
~
I t
~ -
F" -
-i -
00
......... 0.05 1
I
~
I
§ --E 0 1--.........
Q)
'O 0
I
< -0.05 I
I r
I I
I
--- r-----
r ----- ; ---
- -~------.------,
-0 1.__ _ _......._ __
. 0 20 40 60 80 100 120 140 160 Direction HI, Case: UB, at 4 LS ft Dep1h, WI'IHIN 0.2.--~~~-.-~~~~....-~~~--..--~~~.....-~~~~..-~~~-.-~~~~....-~~~--.-.
I 0.1 I
I T -
- r I
-0.l
.-. -- -T -
I I
I I
- - r -
- - - - r - - - - -
- r - - - - -,.
I I
I 20 40 60 80 Time [sec]
100 120 140 160 Figure 3.5-1. TPNP NI BE, LB and UB Seismic Input in H1 (X-Direction) - El. -16' TPG-1000-S2R-807 54 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Direction H2, Case: LB, a1:41.5 ft Depth, WITIIlN 0.. 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
i-1
.!:9 0.05 ----- T-----
I I
I
- - r- - -
- - - r - -
r - - - -
- -r
§
- e;!
0 r------......
- Q:.) -
QJo
- c:.,)
~ -0.05 I
I I
1 I
I I
- - - -,- - - - - - r - - - - -, - - - - - -,- - - - - - r - - - - - T
-0.10 20 40 60 80 100 120 140 160 DirectionH2"' Case: BE~ at41.5 ft Dep~ WI1HIN O. l ~--~-----..----~----------____,.----------.--.
i-1 bO I
0~05 - - - - - T -
I I
I
- - r r -
..... r - - - - -
a I
~
0 l--___..,.11-it!.
IU -
<U
(.) < -0.05
-0.10 20 40 60 80 100 120 140 160 Direction H2.
1Case: DB~ at41.5 ft Depth, WITIDN 0.1.------.--- ----..----.------..------.----..----r------.--.
eio
~ 0.05 -----,. -----
r -
6 I
I I
I
..... e o f----~*
<l.) -
Q)
(.)
~ -0.05 I
T----
I I
I I
~
I
,------r--- --,-----,------ r-- -- -,
t
-0.l ~--_._ __ __,_ ___
~--~---..__--~--~
0 20 40 60 80 100 120 140 160 Time [sec]
Figure 3.5-2. TPNP NI BE, LB and UB Seismic Input in H2 (Y-Direction) - El. -16' TPG-1000-S2R-807 55 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Direction Up::o Case: LB, at 41.5 ft Dep~ WITHIN O. I r-~~~~~-r-~~--,-~~---,r--~~.----~~----,--~~-----r~~--,--.
.!:9 0.05 I
I I
f I
I
""I -
t"" -
I r -
T
§ *-e 0 1----M~
Q -v u I
< -0.05 I
I I
I I
I
- -,- - - - - - r - - - - -, - - - - - -,- - - - - - r - - - - - i I
I I
I
-01
.__~__._~~_..__~____._~~_._~~.__~____J._~~--'--~-----'--J
. 0 20 40 60 80 lOO 120 140 160 Direction Up, Case: BE, at41.5 fi Depth, WITHIN 0.1.--~~~---.-~~~~--.--~~~~......-~~~---.....-~~~....... ~~~~
......... ~~~~..-~~~---.---.
0.05 I
-T I
I I
I I
I I
I I
l
--r-----
r -----.,-----~------r--- --
T I
I I
-0.05 I
I I
I
~
I
- -r - - - - - r - - - - -
- r - - - - -,.
-0 l
. 0 I
I 20 40 60 80 100 120 140 160 Direction Up, Case: UB, at 4 1.5 ft Depth, WITHIN' 0.2.--~---.-~~-.--~---.-~~---.-~~---~~~~~~~
00
~ 0.1 - - - - -
- r -
- r - - - - - -, - - - - - -*- - - - - -
r -
8 *--e o l--__..~..,..
Q) -
0 I
l t
I I
I I
(,,)
I I
~
M I
I I
t
~ -0.1 T -
- r- - - - - - r - - - - - -, - - - - - -,- - - - - - r - - - - - -.
-0.20 20 40 60 80 Time [sec]
100 120 140 160 Figure 3.5-3. TPNP NI BE, LB and UB Seismic Input in UP (Z-Direction) - El. -16' TPG-1000-S2R-807 56 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Direction Hl, Case: LB, at4 l.5 ft Depth, WlllilN 0.1.-~~~~.--~~~---.~~~~_..,.~~~~---..-~~~~-.-~~~~-.-~~~~--.--~~~~-.--.
I 0.05 -----7----
I I
I 4
M 1~ -
r -
r -
-r I
I
~
I I
I I
I
-0.05 I
I I
I I
I
- - -,- - - - - - r - - - - -
1 -
- r - - - - - -.
-0.10~
1 -~-~-~-~-~-~-~-~
20 40 60 80 100 120 140 160 Direction Hl, Case: BE~ at 41.5 ft Depth, WllHIN 0.2...-----.-------.----..---......------.----..-----.-----..........
0.1 T' -
1 -
r -
1
- -r- - - - -
r -
1 I
I I
-0.1 I
I I
I
r-----r-----1-----,------r-----
-0.20 20 40 60 80 100 120 140 160 Direction HI, Case: UB, at41.5 ft Dep1h, WITHIN 0.2.---~~~---.~~~~---.~~~~--.~~~~....... ~~~~.....,..~~~~--.-~~~~-r-~~~~..,,........,
0.1 -----.,- -----
-0.1 I
-- - r -
r -
I I
I I
I I
I I
I I
- - - - -r - - - - - r - - - - -, - - - - - -, - - - - - - r - - - - - -r I
-0.20 20 40 60 80 Time [sec]
100 120 140 160 Figure 3.5-4. TPNP FAR BE, LB and UB Seismic Input in H1 (X-Direction) - El. -16' TPG-1000-S2R-807 57 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Direction FI2, Case: LB, at41.5 ft Depth, WITHIN 0.1.--~~~--..~~~~....-~~~--..--~~~--.-~~~~...-~~~--.~~~~__,....~~~~.---.
~ 0.05 -----,.- -----
s
........ e Ot-----*
Q,) -
0 u < -0.05 I
I I
I
T ----
--- ~ -----
r -----
r -----,
I I
I I
1 I
1 I
I I
I I
I I
I I
I
- - - -,- - - - - - r - - - - -, - - - - - -, - - - - - - r - - - - -,.
-0.10 20 40
~
80 100 lW 1@
1~
Direction H2, Case: BE, at4L5 ft Dep~ WITHIN 0.1.--~~~-.-~~~~-.-~~~--..--~~~--.-~~~~....-~~~--.,...-~~~--.-~~~~...-.
- - -r- - -
r -
r -
00
"-' 0.05 8
I I
I I
I
.... e o 1----.....
cu -cu u < -0.05 j
T----
I I
I I
I I
I
~ - - -.- - - - - - r - - - - - * - - - - - -,- - - - - - r - - - - -,.
-0 1 ~--~-----~~--~---------~--~
. 0 20 40 60 80 100 120 140 160 DirectionH2, Case: UB, at4L5 ft Dep1h, WITHIN 0.1 ~__,__,__,~__,__,__,__,~__,__,__,__,.----.--.--.~~--.--.~~~~~--.---,~~~~~~~~~
~ 0.05 6 *-
...... e O t--~....,.*
u -
u u
~ -0.05 I
-0.10 20 40
- - -, - - - - - r - - - - - * - - - - - -
- r - - - - -
- I I
I I
I I
I I
I
~ - - -,- - - - - - r - - - - -
1 -
- r - - - - -
1 60 80 Time [sec]
I I
100 120 140 160 Figure 3.5-5. TPNP FAR BE, LB and UB Seismic Input in H2 (Y-Direction) - El. -16' TPG-1000-S2R-807 58 of 231 Rev4
00 I-'
c:
0 *-e Q.) -
Q.)
(.)
~
Westinghouse Non-Proprietary Class 3 Direction lJp, 1Case: LB, at 41.5 ft Deptl\\ WITHIN
- 0. 1 ~-~--~-~--~-~--~--~-~
0.05
.. T I
1
-0.05 t
t j
t I
I
--~----- r ------,-----~------ r -----
I I
I I
I L
I I
I
--r----- --- ---,-----~------ r -----T 4
I I
-0 1.__ __...._ _ _ ___._ __
L__ _ _
_J__J
. 0 20 40 60 80 100 120 140 160 Dir*ection Up, Case: BE, at 41.S ft Depth, Wl'IHIN 0.1 r-----,------.~----.-~-------.---~----.----------.----------.-----------.----------.-.
0.05 ----- T I
- r r -
r -
t I
0
-0.05 I
T-I I
I I
I:
I
--~-----r------,-----~------r-----,
-0. 1 ~-~--~-~--~-~--~-~--~
0 20 40 60 80 100 120 140 160 Direction Up, Case: UB, at 41. 5 *ft Depth, WITHIN 0.2.-------..-----..-------.----~--------~--------~~
.eLt 0 1 I
§
~
~
I I
I I
- L- -
r - - - -
r - - - -
- -r
--e o f------~
(1) -
(1) 0 I
< -0. l I
I I
I I
I I
I T -
- r - - - - -
- - - - - -,- - - - - - r - - - - - T
-0.20 20 40 60 80 Time [sec]
100 120 140 160 Figure 3.5-6. TPNP FAR BE, LB and UB Seismic Input in UP (Z-Direction) - El. -16' TPG-1000-S2R-807 59 of 231 Rev4
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 60 of 231 Rev 4 Figure 3.5-7. TPNP Turbine Building First Bay Seismic Input H1 in X-Direction - El. +25.5 Figure 3.5-8. TPNP Turbine Building First Bay Seismic Input H2 in Y-Direction - El. +25.5 Figure 3.5-9. TPNP Turbine Building First Bay Seismic Input UP in Z-Direction - El. +25.5
-0.15
-0.10
-0.05 0.00 0.05 0.10 0
10 20 30 40 50 60 70 80 90 Acceleration (g)
Time (sec)
SURTB-H1 Time History - PGA=0.1g
-0.15
-0.10
-0.05 0.00 0.05 0.10 0
10 20 30 40 50 60 70 80 90 Acceleration (g)
Time (sec)
SURTB-H2 Time History - PGA=0.1g
-0.10
-0.05 0.00 0.05 0.10 0.15 0
10 20 30 40 50 60 70 80 90 Acceleration (g)
Time (sec)
SURTB-UP Time History - PGA=0.1g
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 61 of 231 Rev 4 Figure 3.5-10. TPNP Annex Building Seismic Input H1 in X-Direction - El. +25.5 Figure 3.5-11. TPNP Annex Building Seismic Input H2 in Y-Direction - El. +25.5 Figure 3.5-12. TPNP Annex Building Seismic Input UP in Z-Direction - El. +25.5
-0.15
-0.10
-0.05 0.00 0.05 0.10 0
10 20 30 40 50 60 70 80 90 Acceleration (g)
Time (sec)
SURDRS-H1 Time History - PGA=0.1g
-0.15
-0.10
-0.05 0.00 0.05 0.10 0
10 20 30 40 50 60 70 80 90 Acceleration (g)
Time (sec)
SURDRS-H2 Time History - PGA=0.1g
-0.10
-0.05 0.00 0.05 0.10 0.15 0
10 20 30 40 50 60 70 80 90 Acceleration (g)
Time (sec)
SURDRS-UP Time History - PGA=0.1g
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 62 of 231 Rev 4 3.6 AP1000 Envelope Response Spectra The AP1000 3D FRS envelope is provided in Reference 8, and the HRHF FRS envelope (for high frequency equipment qualification) is provided in Reference 9. The TPNP 3D SSI FRS are compared to the AP1000 3D and HRHF FRS envelops at the six key locations identified in Table 3.4-1. Similarly, the AP1000 2D FRS envelops for the TB First Bay and AB are provided in Reference 10. The TPNP adjacent structures FRS are compared to the AP1000 2D FRS envelops at the six key nodes identified in Table 3.4-1. Section 6.0 presents the comparison of TPNP site specific FRS to the AP1000 and HRHF FRS envelopes.
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 63 of 231 Rev 4 4.0
[ ]a,c
[
]a,c 4.1
[ ]a,c
[
]a,c
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 64 of 231 Rev 4
[
]a,c
4.1.1
[
Table4.1-1. [
TPG-1000-S2R-807 Westinghouse Non-Proprietary Class 3
]3,c Comments 65 of 231 a,c Rev4
Westinghouse Non-Proprietary Class 3 a,c Figure 4.1-1. [
TPG-1000-S2R-807 66 of 231 Rev4
Westinghouse Non-Proprietary Class 3 4.2
[
TPG-1000-S2R-807 67 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.2-1. [
a,c TPG-1000-S2R-807 68 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.2-1. [
]3,c (cont.)
a,c TPG-1000-S2R-807 69 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.2-1. [
]3,c (cont.)
a,c TPG-1000-S2R-807 70 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.2-2. [
a,c TPG-1000-S2R-807 71 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.2-2. [
]3,c (cont.)
a,c TPG-1000-S2R-807 72 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.2-2. [
]3,c (cont.)
ac TPG-1000-S2R-807 73 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.2-3. [
a,~
TPG-1000-S2R-807 74 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.2-3. [
r,c (cont.)
a,c TPG-1000-S2R-807 75 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.2-3. [
]3,c (cont.)
a,c TPG-1000-S2R-807 76 of 231 Rev4
Westinghouse Non-Proprietary Class 3 4.3
[
]a,c 4.3.1
[
]a,c TPG-1000-S2R-807 77 of 231 Rev4
Westinghouse Non-Proprietary Class 3 a,c Figure 4.3-1. [
TPG-1000-S2R-807 78 of 231 Rev4
Westinghouse Non-Proprietary Class 3 a,c Figure 4.3-2. [
TPG-1000-S2R-807 79 of 231 Rev4
4.3.2
[
TPG-1000-S2R-807 Westinghouse Non-Proprietary Class 3 r,c
]a,c 80 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.3-1. [
a,c TPG-1000-S2R-807 81 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.3-1. [
]3,c (cont.)
a,c TPG-1000-S2R-807 82 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.3-1. [
]3,c (cont.)
a,c TPG-1000-S2R-807 83 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.3-1. [
]3,c (cont.)
a,c TPG-1000-S2R-807 84 of 231 Rev4
Westinghouse Non-Proprietary Class 3 4.3.3
[
]a,c TPG-1 OOO-S2R-807 85 of 231 Rev4
Westinghouse Non-Proprietary Class 3 a,c Figure 4.3-3. [
TPG-1000-S2R-807 86 of 231 Rev4
Westinghouse Non-Proprietary Class 3 4.3.4
[
]a,c TPG-1 OOO-S2R-807 87 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.3-2. [
a,c TPG-1000-S2R-807 88 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.3-2. [
]3,c (cont.)
a,c TPG-1000-S2R-807 89 of 231 Rev4
Westinghouse Non-Proprietary Class 3 Table 4.3-2. [
]3,c (cont.)
a,c TPG-1000-S2R-807 90 of 231 Rev4
4.4
[
TPG-1000-S2R-807 Westinghouse Non-Proprietary Class 3 r,c 91 of 231
]a,c Rev4
Westinghouse Non-Proprietary Class 3 a,c Figure 4.4-1. [
TPG-1 OOO-S2R-807 92 of 231 Rev4
Westinghouse Non-Proprietary Class 3 a,c Figure 4.4-2. [
TPG-1 OOO-S2R-807 93 of 231 Rev4
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 Page 94 of 231 Rev. 4 5.0
[ ]a,c
[
]a,c 5.1
[ ]a,c
[
]a,c 5.2
[ ]a,c
[
]a,c
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 Page 95 of 231 Rev. 4
[
]a,c 5.3
[ ]a,c
[
]a,c
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 Page 96 of 231 Rev. 4 6.0 TPNP Site Specific SSI Analyses Results 6.1 TPNP 2D SSI Analysis Results and Frequency-Dependent Bump Factor Figures 6.1-1 and 6.1-2 present the TPNP 2D horizontal and vertical Bump Factors calculated from the ratio of the TPNP 2D BE Fine and Coarse FRS for each of the six (6) key locations.
As shown, the frequency-dependent TPNP 2D Bump Factors range from 1.0 to about 1.5 horizontally and 1.0 to about 1.4 vertically.
The TPNP 2D Coarse and Fine SSI acceleration response spectra for 5% damping at the six (6) key NI locations are presented in Figures 6.1-3 through 6.1-14. The results of the TPNP 2D BE SSI Y (horizontal) and Z (vertical) analysis are compared to each other and to the AP1000 3D, 2D and HRHF FRS envelopes. As shown, the TPNP 2D BE coarse and fine FRS vary in spectral acceleration across the frequency range, the spectral shapes of the 2D BE FRS are similar, and both the 2D BE coarse and fine FRS are enveloped by the AP1000 and HRHF FRS envelope spectra.
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 Page 97 of 231 Rev. 4 Figure 6.1-1. TPNP 2D-3D Horizontal Bump Factors - All Nodes Figure 6.1-2. TPNP 2D-3D Vertical Bump Factors - All Nodes 0
0.5 1
1.5 2
2.5 3
0 1
10 100 2D-3D Bump Factor (dim)
Frequency (Hz)
Turkey Point 2D EW SSI (Y) Fine/Coarse Ratio 4041Y 1761 4061Y 2078 4120Y 2675 4310Y 3329 4412Y 2788 4535Y 2199 0
0.5 1
1.5 2
2.5 3
0.1 1
10 100 2D - 3D Bump Factor (dim)
Frequency (Hz)
Turkey Point 2D EW SSI (Z) Fine/Coarse Ratio 4041Z 1761 4061Z 2078 4120Z 2675 4310Z 3329 4412Z 2788 4535Z 2199
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 Page 98 of 231 Rev. 4 Figure 6.1-3. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Y-Direction - Node 4041 Figure 6.1-4. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Z-Direction - Node 4041 0
0.2 0.4 0.6 0.8 1
1.2 1.4 0.1 1
10 100 Spectral Acceleration (g)
Frequency (Hz)
TP 2D SSI EW BE w/LC (1761 - 4041Y)
TP 2D Fine-4041Y AP1000 3D 1761Y TP 2D Coarse-4041Y AP1000 2D-4041Y HRHF-1761Y 0
0.2 0.4 0.6 0.8 1
1.2 1.4 1.6 0.1 1
10 100 Spectral Acceleration (g)
Frequency (Hz)
TP 2D SSI EW BE w/LC (1761 - 4041Z)
TP 2D Fine-4041Z AP1000 3D 1761Z TP 2D Coarse-4041Z AP1000 2D-4041Z HRHF-1761Z
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 Page 99 of 231 Rev. 4 Figure 6.1-5. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Y-Direction - Node 4061 Figure 6.1-6. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Z-Direction - Node 4061 0
0.2 0.4 0.6 0.8 1
1.2 1.4 1.6 1.8 2
0.1 1
10 100 Spectral Acceleration (g)
Frequency (Hz)
TP 2D SSI EW BE w/LC (2078 - 4061Y)
TP 2D Fine-4061Y AP1000 3D-2078Y TP 2D Coarse-4061Y AP1000 2D-4061Y HRHF-2078Y 0
0.2 0.4 0.6 0.8 1
1.2 1.4 1.6 0.1 1
10 100 Spectral Acceleration (g)
Frequency (Hz)
TP 2D SSI EW BE w/LC (2078 - 4061Z)
AP1000 3D 2078Z TP 2D Fine-4061Z TP 2D Coarse-4061Z AP1000 2D-4061Z HRHF-2078Z
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 Page 100 of 231 Rev. 4 Figure 6.1-7. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Y-Direction - Node 4535 Figure 6.1-8. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Z-Direction - Node 4535 0
0.5 1
1.5 2
2.5 0.1 1
10 100 Spectral Acceleration (g)
Frequency (Hz)
TP 2D SSI EW BE w/LC (2199 - 4535Y)
TP 2D Fine-4535Y AP1000 3D-2199Y TP 2D Coarse-4535Y 0
0.2 0.4 0.6 0.8 1
1.2 1.4 1.6 1.8 0.1 1
10 100 Spectral Acceleration (g)
Frequency (Hz)
TP 2D SSI EW BE w/LC (2199 - 4535Z)
TP 2D Fine-4535Z AP1000 3D-2199Z TP 2D Coarse-4535Z AP1000 2D-4535Z HRHF-2199Z
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 Page 101 of 231 Rev. 4 Figure 6.1-9. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Y-Direction - Node 4120 Figure 6.1-10. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Z-Direction - Node 4120 0
0.5 1
1.5 2
2.5 3
3.5 0.1 1
10 100 Spectral Acceleration (g)
Frequency (Hz)
TP 2D SSI EW BE w/LC (2675 - 4120Y)
TP 2D Fine-4120Y AP1000 3D-2675Y TP 2D Coarse-4120Y 0
0.5 1
1.5 2
2.5 0.1 1
10 100 Spectral Acceleration (g)
Frequency (Hz)
TP 2D SSI EW BE w/LC (2675 - 4120Z)
TP 2D Fine-4120Z AP1000 3D-2675Z TP 2D Coarse-4120Z AP1000 2D-4120Z HRHF-2675Z
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 Page 102 of 231 Rev. 4 Figure 6.1-11. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Y-Direction - Node 4412 Figure 6.1-12. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Z-Direction - Node 4412 0
1 2
3 4
5 6
7 8
0.1 1
10 100 Spectral Acceleration (g)
Frequency (Hz)
TP 2D SSI EW BE w/LC (2788 - 4412Y)
TP 2D Fine-4412Y AP1000 3D-2788Y TP 2D Coarse-4412Y AP1000 2D-4412Y HRHF-2788Y 0
0.5 1
1.5 2
2.5 3
3.5 0.1 1
10 100 Spectral Acceleration (g)
Frequency (Hz)
TP 2D SSI EW BE w/LC (2788 - 4412Z)
TP 2D Fine-4412Z AP1000 3D-2788Z TP 2D Coarse-4412Z AP1000 2D-4412Z HRHF-2788Z
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 Page 103 of 231 Rev. 4 Figure 6.1-13. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Y-Direction - Node 4310 Figure 6.1-14. TPNP 2D Fine and Coarse FRS and AP1000 FRS Envelope in Z-Direction - Node 4310 0
2 4
6 8
10 12 0.1 1
10 100 Spectral Acceleration (g)
Frequency (Hz)
TP 2D SSI EW BE w/LC (3329 - 4310Y)
TP 2D Fine-4310Y AP1000 3D-3329Y TP 2D Coarse-4310Y AP1000 2D-4310Y HRHF-3329Z 0
1 2
3 4
5 6
7 0.1 1
10 100 Spectral Acceleration (g)
Frequency (Hz)
TP 2D SSI EW BE w/LC (3329 - 4310Z)
TP 2D Fine-4310Z AP1000 3D-3329Z TP 2D Coarse-4310Z AP1000 2D-4310Z HRHF-3329Z
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 Page 104 of 231 Rev. 4 6.2 TPNP 3D BE, LB and UB Factored Design-Basis SSI Analysis Results Time history seismic analyses for the TPNP 3D Design-Basis model and the TPNP BE, LB and UB cases were performed in two horizontal and one vertical direction. The TPNP top of LC (El. -16) input time histories were used in SASSI with the SASSI Direct method of analysis.
FRS for 5 percent damping were obtained at the six key NI locations shown in Table 3.4-1. The horizontal and vertical Bump Factors are applied along the frequency spectrum to amplify the TPNP 3D BE, LB and UB Design-Basis FRS based on the horizontal and vertical Bump Factors presented in Figures 6.1-1 and 6.1-2, respectively.
Finally, the factored TPNP 3D BE, LB, UB design-basis FRS are conservatively augmented by broadening the FRS envelop +15 percent for any other potential uncertainties in the soil properties and/or seismic input.
Figures 6.2-1 through 6.2-18 present the broadened horizontal and vertical TPNP Factored 3D Design-Basis FRS, which includes the BE, LB and UB FRS and TPNP FRS envelope compared to the 3D AP1000 CSDRS and HRHF FRS envelopes at the six (6) key NI locations.
The HRHF FRS envelope is presented to demonstrate that additional and margin exists at the key nodes in the high frequency range (20-50 Hz). As shown, the TPNP site specific FRS are enveloped by the AP1000 CSDRS and HRHF FRS envelopes at each of the six key NI locations.
Westinghouse Non-Proprietary Class 3 FRS Comparison X Direction I
- 11.
I
,.. I I
I 11J /f\\
I Tl I,
I '. ( I I 1v I l I I_
I
'""\\
ssienv-dS 1761
-- TP3D_Broad_Factored-d5 1761 I vv I I
~
1J I
12!
r~~-f
~- -~~
I I
~*
I
'-.,\\.
I
,_'-3 I LJ IJh i ~
'-i I
~ -;J k r ~
\\ I
~ffi+/-l
~,(-.,J~-t, 1
~r 1 111
./
..i...
\\. -
t
~,,--
I 111
- ~.
r ~/ \\\\(
I I
/
I -
~
v-....:..... 1 ~ I....
IT~
~I __
I
- HRHF _Broad-dS 1761
- TP3D_UBS_Factored-d51761
- TP3D_BES_Factored-d5 1761 TP3D_LBS_Fact ored-d51761 0.1 10 100 Frequency(Hz)
Figure 6.2-1. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in X-Oirection - Node 1761 FRS Comparison Y Direction
~ f--------+---+----+---+-+-+,HX+-+- O--t---+----+-+---+--+--+--++--.----+------1-~-+--+-+---H
--ssienv-dS 1761
- ~
-- TP3D_ Broad_ Factore d-d5 1761
]
~
f--------+---+----+---+-+-+A-<fi
~---+--I---+<-......... -+-<-++-
- HRHF Broad-dS 1761
- TP3D_ UBS_Factored-d5 1761
- TP3D_BES_Factored-d5 1761 TP3D_LBS_Factored-d51761 0.1 10 100 Freque ncy (Hz)
Figure 6.2-2. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in Y-Oirection - Node 1761 TPG-1000-S2R-807 Page 105 of 231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison Z Direction I
1l I
IT' I
W I
I I
1J1
' I I
. I I
I J I
I I'
I I I I
I I I
I '
11 I
I l_i I
I ~-
11
--ssienv-dS 1761
-- TP3D_Broad_Factored-d51761 I
1vvl r-I I '
I I
I I_
I I I
I I I I
I I __,
I
,J 111 I
I
- - 1~
- HRHF _ Broad-dS 1761
- TP3D_ UBS_ Factored-d5 1761
- TP3D_ BES_Factored-d5 1761 TP3D_ LBS_Factored -d51761 I
'v1 II ~ v.:-,-~- J)1 I ' - ~J 11 v
- ' ~ ~'i'Y.;v I
I llr',J r J 1 ::-11;+:. - -~
I I
I
\\ 1
--l::~ UJJ V ' I :1 r I I 11
' A_\\l__
-r
./
t,...-!.- -
--~
1 --
11+::-
I 1'1 0.1 10 100 Frequency (Hz)
Figure 6.2-3. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in Z-Oirection - Node 1761 FRS Comparison X Direction I I I 11 I
I I
I I
I I
,......,., I I I 1 I 1 I! I/ I I j ~
I r-,
I
) ~
11/
I
\\
I I
\\
I
(
11
'I I
) I
\\
I V,......, I I
l......J
' I I
ssienv-dS 2078
-- TP3D_ Broad_ Factored-d5 2078
,-. I k
- -1 I I I
\\
I_
!\\ 11
~
I
~
'T ~
I }1\\ I I
~ Jl I / I
.. 1f m 11.... -
I ii*'
f\\I I 1
- HRHF _ Broad-dS 2078
- TP3D UBS Factored-dS 2078 TP3D_ BES_Factored-d5 2078 TP3D_ LBS_Factored-d5 2078 I
,...!--ll"
/ I _; )I f!'*-r ',f
- * ~
I
\\
I
,( "
\\\\
~ I ~ r'<</ J I\\ _
--*\\ 1 I
_)
f ;r- '* 1 1 ~ 1-1 '( ~/,\\\\ I 1II1
- .2
.v ""
I
~~
~/
I I
I 111
' I*....: : :-:.: ~ I' I
I
~~~
I I
I 0.1 10 100 Freque ncy (Hz)
Figure 6.2-4. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in X-Oirection - Node 2078 TPG-1000-S2R-807 Page 106 of 231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison Y Direction n
l I I 11
~
' I I
\\
I I/ I\\\\
1 fl, ~
j I
I.
I I
J _ I i/ 1 I
11 I
I
--ssi e nv-dS 2078 I
~JB r I
'l f I \\ \\
I I
I
. 11 ~
I
)
1' (, Fl' I
,_L
- ~
I
'\\
I I _\\i I
d 2~
I r'-
I I cit I I I
! I
/
~ 1 ir, v*
\\
I
-A
,, ' 1." I',.nr i :J.,1
\\
- 111 d-
,c._f d/ ;
~ ---/
\\v \\, \\
I Ti - ~
.>/
I I *1 r
I
-- TP3D_ Broad_ Factored-d5 2078
- HRHF _ Broad-dS 2078
- TP3D_ UBS_ Factored-d5 2078
- TP3D_ BES_Factored-d5 2078 TP3D_ LBS_Factored-d5 2078 v
I 1 - r ~ ~--'
I I
I I 11
_ _,L _
_ *r-- 1
....---:::::1
~~-
___,,,, ~
I I I '
I 0.1 10 100 Fre que ncy (Hz)
Figure 6.2-5. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in Y-Oirection - Node 2078 FRS Comparison Z Direction
--ssie nv-dS 2078
-- TP3D_ Broad_ Factored-d5 2078
- HRHF _ Broad-dS 2078
- TP3D_ UBS_ Factored-d5 2078
- TP3D_ BES_Factored-d5 2078 TP3D_ LBS_Factored-d5 2078 0.1 10 100 Freque ncy (Hz)
Figure 6.2-6. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in Z-Oirection - Node 2078 TPG-1000-S2R-807 Page 107 of 231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison X Direction I
111'"'
I I
I I 1* 1
,.....L, I
I r -~
\\
-+
I
(: \\\\ 11 ~, I j
\\
I l\\J.....
I
~
i
\\I I
If I
--ssienv-dS 2199
-- TP3D_ Broad_ Factored*d5 2199
- 1 r
~ ~
I.
I
\\ I
- HRHF _ Broad*dS 2199
- TP3D_ UBS_ Factored*d5 2199 I
I
\\,j IJ
~
I
-- ~
)
I :,
'\\
1,,. if/ "\\\\
I ' I.
I I
r I
- TP3D_ BES_ Factored*d5 2199 TP3 D_ LBS_ Factored*d5 2199
,,..-,J_
I
- {I ~ rx ~.I'\\
I Ill
~/-'"'i "Vl7:- ~ '
\\ \\
I J 1 I
\\
1,,..1
- 1 \\./
- 11 1 ! 1' :-\\.. -
I
~ l,,.r I U'T ~,,~
I I
111
~ 'l._~~r-1 1
~
--1 I
I 0.1 10 100 Freque ncy{Hz)
Figure 6.2-7. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in X-Oirection - Node 2199 FRS Comparison Y Direction
--ssienv-dS 2199
--TP3D Broad Factored*dS 2199
- HRHF _ Broad*dS 2199
- TP3D_ UBS_ Factored-d5 2199
- TP3 D_ BES_Factored*d5 2199 TP3D_ LBS_Factored*d5 2199 0.1 10 100 Freque ncy{Hz)
Figure 6.2-8. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in Y-Oirection - Node 2199 TPG-1000-S2R-807 Page 108 of 231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison Z Direction I
J I
I 1 I I 1 I
I JD 11 I
I I
I I
I 1
)
I I
I I
I, -- \\
--ssienv-dS 2199 I
I 1 ~
- L
'Lt I
I I
I II I
I I
"I I'
rJ
\\
J I 1 I
l I
I l I I
~
I I
J I/
I I I,
\\ I ! l\\ l 11 I,1
/J~P~
".J
~
~
I I
......J'../1
_ / -I, j
-- TP3D_ Broad_ Factored-d5 2199
- HRHF _Broad-d5 2199
- TP3D_ UB5_ Factored-d5 2199
. TP3D_ BE5_Factored-d5 2 199 TP3D_LB5_Factored-d5 2199
~
I V'- I v '/ '- 1 I I ] 'I '-. _...-.,*'1-. y. I \\
\\
I
~~ --, --
.. ~ r ~
~*
I -
- l T1'
~
I I - _,
I V*V 0.1 10 100 Frequency (Hz)
Figure 6.2-9. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in Z-Oirection - Node 2199
- §
<=
0
-~
~
<[
0.1 FRS Comparison X Direction 10 Freque ncy {Hz)
--ssie nv-dS 2675
--TP3D_ Broad_ Fact ored-d5 2675
- HRHF _Broad-d5 2675
- TP3D_UB5_Factored-d5 2675
- TP3D_ BE5_Factored-d5 2675 TP3D_ LB5_Fact ored-d5 2675 100 Figure 6.2-10. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in X-Oirection - Node 2675 TPG-1000-S2R-807 Page 109 of 231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison Y Direction
--ssienv-dS 2675
-- TP3D_ Broad_ Factored-d5 2675
- HRHF _Broad-d5 2675
- TP3D_ UB5_Factored-d5 2675
. TP3D_BE5_Factored-d5 2675 TP3D_ LB5_Fact ored-d5 2675 0.1 10 100 Frequency (Hz)
Figure 6.2-11. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in Y-Oirection - Node 2675 FRS Comparison Z Direction
--ssienv-dS 2675
-- TP3D_ Broad_ Factored-d5 2675
- HRHF _Broad-d5 2675
- TP3D_ UB5_Factored-d5 2675
- TP3D_BE5_Factored-d5 2675 TP3D_LB5_ Fa ctored-d5 2675 0.1 10 100 Freque ncy (Hz)
Figure 6.2-12. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in Z-Oirection - Node 2675 TPG-1000-S2R-807 Page 110 of 231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison X Direction I
I I
I I I,_
I I
I.
-"'I 1J 11 q
1l I
I
--~
l I
- I.
I
)
rL"'
I j \\'
l I
,- r I
I
\\ ~
I :
.1
- I I I
I I 11,:
ssienv-dS 2788
-- TP3D_ Broad_ Factored-d5 2788
- HRHF _ Broad-dS 2788
- TP3D_ UBS_ Factored-dS 2788
- TP3D_ BES_Factored-dS 2788 TP3D_ LBS_Factored-dS 2788
,V I fl//\\ I \\ I \\
I I 11 I
L
\\,....-.......
I
~ \\ ~ "
v--... 1*
__ t9 -::1r'I -
I T i 1' ~
I
'- -tJ.
~
.. ~
I
- ~/
I 11 lll ----;...,,
rr I
1-1 - - ~ T
-1 0.1 10 100 Freque ncy {Hz)
Figure 6.2-13. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in X-Oirection - Node 2788 FRS Comparison Y Direction I I 111
~
1 I
I I I
- 1 I
I I I I J, I
I I I I 1TI I
I I I I I_,
I I 111 I
I I I "II I
I I
I I
I I I_
r r-r \\
I I I ' -I 1 L f ~\\ I I
r-:
I I u_
j f
--ssienv-dS 2788
-- TP3D_ Broad_ Factored-d5 2788
- HRHF _Broad -dS 2788
- TP3D_UBS_Factored-dS 2788
' TP3D BES Factored-dS 2788 TP3D LBS Factored-dS 2788 I
I -* (
I t 'I\\ ij I r\\ v\\
I I
I I_,
- f.
I J 111 I I llJt v
~ 1
~*
~&~ -/_ 1,~ 1 - l_ I
/.
I I
- !.- A 1-.
.--cf~ -Y-,_.T
- ~""""~-:.!--- L -
- 0.1 10 100 Freque ncy(Hz)
Figure 6.2-14. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in Y-Oirection - Node 2788 TPG-1000-S2R-807 Page 111 of231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison Z Direction
§
<=
~ 1--~~+--~l---+--+-+---t-1--!5-t-t-~~-+~-+-~l'---l-+--i.-t-+tlT~~+;1~+---+--+--+-f-t--H
]
~
0.1 Freque ncy (Hz) 10 100
--ssienv-dS 2788
-- TP3D_ Broad_ Factored-d5 2788
- HRHF _ Broad-dS 2788
- TP3D_ UBS_Factored-d5 2788
- TP3D_ BES_ Factored-d5 2788 TP3D_ LBS_Factored-d5 2788 Figure 6.2-15. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in Z-Oirection - Node 2788 FRS Comparison X Direction I
ln,n I
I.
I lv,v I ~
'~
11 I I
lc ln I
I I.
I I
ssienv-dS 3329
-- TP3 D_ Broad_ Factored-d5 3329
'l I
~
I
- HRHF _ Broad-dS 3329
- TP3 D_ UBS_Factored-d5 3329
- TP3 D_ BES_ Factored-d5 3329 TP3D_ LBS_Factored-d5 3329
)
I __,
,, r+ \\
I
!1
\\
I I
,- - J ~
II I
I\\.._
} I\\_
I I I
\\.. / - T',
~.. ~/ I'.!;*
t" ::1~ ~~ - - l..
1--
-.:..~
0.1 10 100 Freque ncy {Hz)
Figure 6.2-16. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in X-Oirection - Node 3329 TPG-1000-S2R-807 Page 112 of231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison Y Direction
- § c:
~ 1--~~+----+~+-+-+---+h~r+-~~ 11-----1~+-0-+-<--+-+-++--~~+--~t--+--+--1--+--+-+-l
~
0.1 Frequency(Hz) 10 100 ssienv-dS 3329
-- TP3D_Broad_Factored-d5 3329
- HRHF _Broad -dS 3329
- TP3D_UBS_Factored-d5 3329
. TP3D_BES_Factored-d5 3329 TP3D LBS Factored-dS 3329 Figure 6.2-17. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in Y-Oirection - Node 3329 FRS Comparison Z Direction
- § t--~~1----+~t--t--+--+40ttt-t--~~+---+~r*
--ssienv-dS 3329 c:
-- TP3D_Broad_Factored-d5 3329
- HRHF _Broad-dS 3329
- TP3D_ UBS_Factored-d5 3329
- ~
]
~ 1--~~1----+~t--t--+--H!Gt-t--~~t---+--.l--+--+~~++-l\\-l~~+----t~+--+---if-t-+-+-l
- TP3D_BES_Factored-d5 3329 TP3D_LBS_Factored-d5 3329 0.1 10 100 Freque ncy (Hz)
Figure 6.2-18. TPNP 30 BE, LB, UB FRS and AP1000 FRS Envelope in Z-Oirection - Node 3329 TPG-1000-S2R-807 Page 113 of231 Rev.4
Westinghouse Non-Proprietary Class 3 6.3 TPNP 20 BE, LB and UB SSI Adjacent Building Analysis Results TPNP adjacent building SSI analyses were performed to present FRS at the ground surface of the Turbine Building (TB) First Bay and Annex Building (AB) for the TPNP BE, LB and UB soil cases. Also, relative displacements are determined to assess the interaction between the adjacent structures and the NI. Section 6.4 presents the results of the relative displacement interaction evaluation.
Time history seismic analyses using the TPNP 20 TB First Bay (NS) model, TPNP 20 AB (EW) model, and the TPNP BE, LB and UB soil cases were performed in one horizontal and one vertical direction (X and Z for the TB First Bay model, and Y and Z for the AB model). The TPNP outcrop input time histories were provided in Reference 3 for the TB First Bay and AB, which were increased slightly to achieve a minimum PGA = 0.1g then used in SASSI in conjunction with the Direct method of analysis. FRS for 5 percent damping were obtained at the ground surface and broadened.+/-. 15 percent for the TB First Bay (node 2951) and AB (node 2942). FRS for 5 percent damping were also obtained at the six (6) key nodes of the NI to assess any influence of the adjacent structures on the key NI nodes.
Figures 6.3-1 through 6.3-2 present the broadened TB First Bay horizontal and vertical TPNP FRS envelopes and the individual TB First Bay FRS for the TPNP BE, LB and UB soil cases compared to the AP1000 TB FRS envelope at the ground surface (AP1000 El. 100.0' and TPNP El. +25.5'). As shown, the AP1000 TB FRS envelop the TPNP site specific FRS and broadened TPNP TB FRS at the TB First Bay surface node 2951.
Similarly, Figures 6.3-3 through 6.3-4 present the broadened AB horizontal and vertical TPNP FRS envelopes and the individual AB FRS for the TPNP BE, LB and UB soil cases compared to the AP1000 AB FRS envelope at the ground surface (AP1000 El. 100.0' and TPNP El. +25.5'). As shown, the AP1000 AB FRS envelop the TPNP site specific FRS and broadened TPNP AB FRS at the AB surface node 2942. TB First Bay and AB FRS envelopes are from Reference 10.
Appendix A presents the FRS at the six (6) key nodes of the NI due to the TB First Bay (North-South) and AB (East-West) response for each of the TPNP BE, LB and UB soil cases.
TPG-1000-S2R-807 Page 114 of231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison X Direction I
J_
r I
I I
11 I
I 11 I
I I -
I I
I 1
LIJ L,
I I
I I
,.J I
I I
'T I I"
I Turbi ne Broad Factore d 2955 I
. 11 I
tp2d-TB-broad 2951
- tp2d-BER2 -TB 2951
- tp2d-UBR5-TB 2951 I
- tp2d-LBR5-TB 2951 if l I '~
1 I
I I
l l I
I I
1"~
v,_ I
/ I \\.
J 'J\\
I I I I
,_ I
/ / I' / f
~
~J4
,_i_
,/.! /J/ "",l
~I'- r-\\ ~/
1 I\\-~
I
"'.... -1
... ~.:..-"=~ /
11 ~
f ' I I,_
- - -r- - -
1 -
- 0. 1 10 100 Frequency (Hz)
Figure 6.3-1. TPNP TB First Bay BE, UB, LB FRS and AP1000 FRS Envelope in X-Direction - Node 2951 FRS Comparison Z Direction I
I
~1---+-+-~1,~
I
---+---+-+-1~1~1--~l~~l~ll I
....L I I 11 I
I I
I
\\ I I
I I 1111 I
§
- 1 I
I I
I I
~ 1---~-+---+--+-+--+---+<'-lli' *-~1+--~-*---+--+-+--+-+-+-+-+-~-+-~--+~,--+--+-+~I Turbine Broad Factore d 2955 tp2d-TB-broad 295 1
- tp2d-BER2-TB 2951
- t p2d-U BR5-TB 2951
]
,-1-:
(
~
I I
- tp2d-LBR5-TB 2951 Tl ~
I!\\
\\
I
, ~ I I /
I -
~\\
~ I I 0.1 10 100 Frequency (Hz)
Figure 6.3-2. TPNP TB First Bay BE, UB, LB FRS and AP1000 FRS Envelope in Z-Direction - Node 2951 TPG-1000-S2R-807 Page 115 of231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison Y Direction
--Annex Broad Factored 2942
-- tp2d-broad 2942
- tp2d-BERS-AB 2942
- tp2d-UBRS-AB 2942 tp2d-LBRS-AB 2942 0.1 10 100 Frequency (Hz)
Figure 6.3-3. TPNP Annex Building BE, UB, LB FRS and AP1000 FRS Envelope in Y-Direction - Node 2942 FRS Comparison Z Direction
-- An nex Broad Factore d 2942
-- tp2d-broad 2942
- tp2d -BERS-AB 294 2
- tp2d-UBRS-AB 2942 tp2d-LBRS-AB 2942 0.1 10 100 Frequency (Hz)
Figure 6.3-4. TPNP Annex Building BE, UB, LB FRS and AP1000 FRS Envelope in Z-Direction - Node 2942 TPG-1000-S2R-807 Page 116 of231 Rev.4
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 Page 117 of 231 Rev. 4 6.4 TPNP Adjacent Structure Relative Displacements The TPNP 2D NS and EW models were used to obtain the relative displacements at the locations listed below:
Turbine Building Foundation to Nuclear Island Top of Turbine Building to Nuclear Island (El.170)
Annex Building Foundation to Nuclear Island Top of Annex Building to Nuclear Island (El.180)
The relative displacements were calculated to ensure that there is no contact between the structures at the foundations or at the superstructure. To prevent contact, the relative displacements between the NI and the foundations of the adjacent buildings must be less than 2 inches. To avoid contact between the NI and the Top of the Turbine Building (elevation 170) and Top of the Annex Building (elevation 180), the relative displacement between the superstructures must be less than 4 inches. The relative displacements, shown in Table 6.4-1, are less than the space allocated; therefore there is no contact between the NI and the adjacent structures.
Table 6.4-1. Relative Displacements TPNP Soil Case North South Model East West Model Turbine Building Foundation to Nuclear Island (inches)
Top of Turbine Building to Nuclear Island (El.170+)
(inches)
Annex Building Foundation to Nuclear Island (inches)
Top of Annex Building to Nuclear Island (El.180+)
(inches)
BE 0.050 0.159 0.023 0.081 LB 0.117 0.179 0.056 0.100 UB 0.028 0.157 0.009 0.067
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 Page 118 of 231 Rev. 4 7.0 Conclusions Based on the information presented in this report, the following conclusions are presented:
The TPNP 3D BE, LB and UB Factored Design-Basis FRS and the corresponding TPNP 3D broadened envelop are enveloped by the AP1000 3D CSDRS and HRHF (high frequency) FRS envelops; The SCII TPNP 2D BE, LB and UB Turbine Building First Bay and Annex Building broadened FRS are enveloped by the corresponding adjacent structure AP1000 2D-3D FRS envelop with margin; The TPNP Turbine Building First Bay relative displacements of 0.117 inches and 0.179 inches at the bottom and top of the structure, respectively are less than the 2-inch and 4-inch top and bottom NI gaps; and The TPNP Annex Building relative displacements of 0.056 inches and 0.100 inches at the bottom and top of the structure, respectively are less than the 2-inch and 4-inch top and bottom NI gaps.
Westinghouse further concludes that the broadened, factored TPNP seismic analyses results are enveloped by the AP1000 and HRHF FRS envelops, with respect to low (structure) and high (equipment) frequency response, respectively for the TPNP BE, LB and UB soil cases evaluated.
The TPNP 2D BE, LB and UB Turbine Building First Bay and Annex Building FRS are enveloped by the AP1000 2D and HRHF (high frequency) FRS envelope with sufficient margin; Finally, based on the results of the TPNP 3D NI and 2D SCII adjacent structures SSI sensitivity analyses presented in Appendixes E and F, respectively, the effect on the NI and SCII in-structure FRS is considered negligible due to the 2014 updated BE seismic input at Turkey Point Units 6&7. Therefore, the analysis presented in this report, specifically the results presented in Sections 6.2, 6.3, and 6.4, Appendixes A through D, and the conclusions presented above are still valid.
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 Page 119 of 231 Rev. 4 8.0 References
- 1.
Bechtel Letter No. 25409-000-TCM-GEG-00752,Release of Calculation 25409-000-K0C-0000-00066, Revision 0, SSI Input Time Histories and Soil Profiles for Envelope of RG 1.60 and Site Spectra, dated August 2, 2012.
- 2.
Bechtel Letter No. 25409-000-TCM-GEG-00581,Turkey Point Units 6 & 7, Effect of Grouted Rock on Seismic Site Response, dated July 20, 2011.
- 3.
Bechtel Letter No. 25409-000-TCM-GEG-00404,Release of Extracted Data from Calculations 25409-000-K0C-0000-00036 Rev. 0 and 00037 Rev. 0 for Turkey Point Units 6 & 7, dated February 26, 2010.
- 4.
Bechtel Drawing 25409-000-CE-0010-00001, Rev. 5, Nuclear Island Power Block Excavation Plan and Sections.
- 5.
SASSI2000, Users Manual, A System for Analysis of Soil-Structure-Interaction, Rev. 1, November 1999, Geotechnical Engineering Division Civil Engineering Department, University of California, Berkeley, CA 94720.
- 6.
ACS SASSI NQA Version 2.3.0 Verification & Quality Assurance Plan.
- 7.
FPL Turkey Point Units 6 & 7 COLA (Final Safety Analysis Report), Rev. 6, Chapter 2.0, Section 2.5, Geology, Seismology and Geotechnical Engineering.
- 8.
APP-GW-S2R-010, Rev. 5, TR03, Extension of Nuclear Island Seismic Analyses to Soil Sites.
- 9.
APP-GW-GLR-115, Rev. 3, TR115, Effect of High Frequency Seismic Content on SSCs.
- 10. DCP_NRC_002981, Rev. 3, Enclosure 2, AP1000 Response to Request for Additional Information (SRP3), dated July 28, 2010.
- 11. Westinghouse Electric Company Report No. TPG-1000-S2R-807, Revision 2, Turkey Point Site Specific Seismic Evaluation Report, dated January 30, 2013.
- 12. Bechtel Calculation No. 25409-000-K0C-0000-00073,Turkey Point Unit 6&7 COL, Sensitivity Assessment of Updated Site Properties on GMRS, FIRS and SSI Inputs, dated February 18, 2015.
- 13. FPL NNP PTN 6&7 COL Application, Response to Request for Information, Request Number RFI-FPL-0070, dated March 17, 2015.
Westinghouse Non-Proprietary Class 3 TPG-1000-S2R-807 Page 120 of 231 Rev. 4 Appendix A TPNP Adjacent Structure SSI Analysis Results - NI Key Nodes Floor response spectra (FRS) for the TB First Bay (TP2DNS) and AB (TP2DEW) models and the TPNP BE, LB and UB soil cases were obtained and compared. Note that for the TP2DNS analysis, X and Z due to X (North-South), and TP2DEW analysis, Y and Z due to Y (East-West) directions are presented on the figures below. For X-direction comparisons, the Y is zero and for Y-direction comparisons, the X is zero. For vertical, Z comparisons, Z due to X (North-South) and Z due to Y (East-West) are presented.
FRS for 5% damping and the TP2DNS model FRS at the six (6) key NI nodes are provided in Figures A-1 through A-12. FRS for 5% damping and the TP2DEW model FRS at the six (6) key NI nodes are provided in Figures A-13 through A-24.
Based on the adjacent structure SSI analyses results, the TP3DNS and TP2DEW FRS obtained are similar for the BE, LB and UB soil cases, and all nodes are enveloped by the AP1000 2D FRS envelope. Therefore, the TPNP TB First Bay and AB adjacent structures do not affect the NI structure responses.
Westinghouse Non-Proprietary Class 3 FRS Comparison X Direction 1t I
I 1-I I
J 1
I I l.I"' -
I J
- *v / 1 r\\
11 1 I I NI 20 - Broad 4041 TP20_ R5-BE-TB-NI 4041 I. I I I
~
I 11 J1
- TP20_ RS-LB-TB-NI 4041
- TP20_ RS-UB-TB-NI 4041 J
\\
./: 1~ 1 I I I
,:.;~,n 1 1 1 111 J
/ 11' bf I J I I
~---
..,.. J...,, \\ I I
I
~ i-I,..,
~ -
- --- 11
~-
1-1-===
V*V 0.1 10 100 Frequency (Hz)
Figure A-1. TPNP Turbine Building First Bay BE, LB and UB in X-Direction - Node 4041 FRS Comparison Z Direction I
- 1 I I I
I I.I.I I
I I
I 1-*. I
~
I I
I.1J I
I I I I 1 1 * -1 I 111 1 1t1 j
I I 1 I I I
(
I "
',.I \\
I I
I. 1 I I NI 20 - Broad 4041 I v
- v
'1 1 I
I I.1 I I 1 I. I /
I~
I 1JI TP20_ RS-BE-TB-NI 4041
- TP20_ R5-LB-TB-NI 4041
- TP20_ R5-UB-TB-NI 4041 I
I ~-
1 j
I I f\\ I I
I
____Jdj I
- -1
~,,. -, ~ 1~-~ I I
~ l' r=ff r- ---F== --
<l IJJ
""'""- -~
r-r 0.1 10 100 Frequency {Hz)
Figure A-2. TPNP Turbine Building First Bay BE, LB and UB in Z-Direction - Node 4041 TPG-1000-S2R-807 Page 121 of231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison X Direction j
I I
I I 1
I I I I
I 1 lt j
I I.
I u I r\\
I!
1
)
J I I t
I NI 20 - Broad 4061 1 I
'l I
TP2D_ R5-BE-TB-NI 4061
- TP2D_ R5-LB-TB-NI 406 1 J I/
I '
I l
I
~ "' J I
1/...... 1 J
I,.,..I'
,. _i '
I I
~
//<, I \\
~
I rf ~J~
~ ~~n~-=~~1
_............I
- n 1 _
_i
- -...... l I
I
- TP2D_ R5-UB-TB-NI 4061 0.1 10 100 Frequency (Hz)
Figure A-3. TPNP Turbine Building First Bay BE, LB and UB in X-Direction - Node 4061 FRS Comparison Z Direction I.I 1
111 I -*
,~
I i ~ I I
I 11 I I I
~ l I I t1 j
I I/
11 I
-*
- 1 I I I 111 111
~l I I NI 2D - Broad 4061 1-*-1 I
\\
I I I I 1 I 11 I
I
/
1 I
1J.1 I
\\.
TP2D_ R5-BE-TB-NI 4061
- TP2D_ R5-LB-TB-NI 4061
- TP2D_ R5-UB-TB-NI 4061 11 ~
1 1
I I
{\\
I I'
I 111 I 111
~ 11
1
~
~ ---, ~
I I
I
~
-11
~
T-'f
- ~
I
--r----1 11 1-rr 0.1 10 100 Frequency {Hz)
Figure A-4. TPNP Turbine Building First Bay BE, LB and UB in Z-Direction - Node 4061 TPG-1000-S2R-807 Page 122 of231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison X Direction NI 20 - Broad 4 120
-- TP2D_ R5-BE-TB-NI 4120
- TP2D_ R5-LB-TB-NI 41 20
- TP2D_ R5-UB-TB-NI 4120 0.1 10 100 Fre quency (Hz)
Figure A-5. TPNP Turbine Building First Bay BE, LB and UB in X-Direction - Node 4120 FRS Comparison Z Direction 11 I
-- NI 2D - Broad 4 120
-- TP2D_ R5-BE-TB-NI 4 120
- TP2D_ R5-LB-TB-NI 4120
- TP2D_ R5-UB-TB-NI 4120 0.1 10 100 Fre quency {Hz)
Figure A-6. TPNP Turbine Building First Bay BE, LB and UB in Z-Direction - Node 4120 TPG-1000-S2R-807 Page 123 of231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison X Direction I
. ~
I I
I I
I, ~
I I
I I
I _, ~
I.
r I, ~
I.
I,_
\\
I.~
I,_
I Nl 2D-Broad 4310 TP2D_RS-BE-TB-N I 4310 I *-
I 1
I,_
\\_ \\
- TP2D_RS-LB-TB-NI 4310
- TP2D_RS-UB-TB-NI 4310 I ~ - -
)
I,_
I )
\\.
I
_ I I
I I
I
-,-.;;r l
Y\\
I I I I
,...... I
-. ~
/
,... __ /~
~ - T..... I
,... I
~ -
0.1 10 100 Frequency (H z)
Figure A-7. TPNP Turbine Building First Bay BE, LB and UB in X-Direction - Node 4310 I
I I _,_
I I
FRS Comparison Z Direction I
I I I I
I I
I I I
I I
I I
- §
~ 1------+----+---+--+-+-+I J,10+-
- +------+---+---+1-1-+-++-,.+-----+---+---+--+-+-+-I f-+-11
~
I.
I I
~
11 I I
>-------+---+--+--+--+-+:~~
- ~--r--~)-t-T-i~lt-t-t-\\~---+-----t---t-t-~;-t--t-11:
I I IJ I ~\\
~-~
............... :........1 1
~
0.1 10 100 Fre quency (Hz)
NI 2D - Broad 43 10 TP2D_RS-BE-TB-NI 4310
- TP2D_RS-LB-TB-NI 4310
- TP2D_RS-UB-TB-N I 4310 Figure A-8. TPNP Turbine Building First Bay BE, LB and UB in Z-Direction - Node 4310 TPG-1000-S2R-807 Page 124 of231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison X Direction I I I
I I
IL I
I I I I I I I I--
n 11 111 I I I I I.lnl I
I 1 111 I I I I' I
11 111 1
I I I I
I 1 Nl2D-Broad4412 IT I I I I I'
~
11 J
\\.. "t I
I. )
~
I
- I I
111 TP2D_ RS-BE-TB-N I 4412
- TP2D_ RS-LB-TB-NI 4412
- TP2D_ RS-UB-TB-NI 441 2 I 1*, I/
I I
I
_L....--r4
/.-;..."'"'....,./...... -
- ~/-~ - - :::i...
- - l-- - 4"~
I
~
I ~
-~
0.1 10 100 Freque ncy(Hz)
Figure A-9. TPNP Turbine Building First Bay BE, LB and UB in X-Direction - Node 4412 FRS Comparison Z Direction I I _I_
f"'\\
11 IT
\\
11 I I,. I I
I I,-1 I
I I I I I
I I
I I
Nl2D-Broad 441 2 I '*'
lJ+:
I I I 111 I,-,
/:_J I
I I I 'I
\\JI
~ 11 I
I I 1,J I I I 1 I,
TP2D_ RS-BE-TB-N I 4412
- TP2D_ RS-LB-TB-NI 4412
- TP2D_ RS-UB-TB-NI 4412 I
I I
- -1 I
I I I I I l'l_I I
I I I 1,JI / 1 I I I
,-, I I I I I I I
I 1 I
\\
~
I I I I I
,,~, '
I I I 111
- 1 I -
..... 1 - I/
I
~==
1 ' Lr-
~
I ~
0.1 10 100 Freque ncy{Hz)
Figure A-10. TPNP Turbine Building First Bay BE, LB and UB in Z-Direction - Node 4412 TPG-1000-S2R-807 Page 125 of231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison X Direction
~ 1--~~+----1~+--+---+-1Wt+-~~-+-~+--+--+-JJt-t-+-H-+-~-+-~-+--+--+--+-+-++-1
~
Nl2D-Broad 4 535
-- TP2D_ R5-BE-TB-N I 45 35
~
~ 1--~~+------!~+--+---+->+<ri-+-~~--~+*-----+-+-+---+-->--+----~-+-~-+--+--+--+-+-+-+-<
- TP2D_ R5-LB-TB-NI 4535
- TP2D_ R5-UB-TB-NI 4535
.....!. -- ~ -
0.1 10 100 Frequency(Hz)
Figure A-11. TPNP Turbine Building First Bay BE, LB and UB in X-Direction - Node 4535 FRS Comparison Z Direction
--Nl2D-Broad 4535
-- TP2D_ R5-BE-TB-N I 4535
- TP2D_ R5-LB-TB-NI 4535
- TP2D_ R5-UB-TB-NI 4535 0.1 10 100 Freque ncy(Hz)
Figure A-12. TPNP Turbine Building First Bay BE, LB and UB in Z-Direction - Node 4535 TPG-1000-S2R-807 Page 126 of231 Rev.4
c:
0
-~
~ "
I I T 11
!l IJ I *-
I I 1 I I I I.
! I :.1.1.
1111{
14t11-,1
/' I I kl l, 0.1 Westinghouse Non-Proprietary Class 3 FRS Comparison Y Direction I
I I
I I' r-i I
j r r-..
\\rr ~ '
(
,, I
'""\\--,
I
-- NI 2D - Broad 4041 I
L.,
I I
l I I I
I
\\ I I I
I
~ 11 I
TP2D_ RS-BE-AB-NI 4041
- TP2D_ RS-LB-AB-NI 4041
- TP2D_ RS-UB-AB-NI 4041 I
I I
/
1
\\ I I
I
--Y I
'~ ~"-_J __ I_
~
..- l ' I
~~ ~
I~
-~- r -
I I I
I I I
10 100 Frequency (Hz)
Figure A-13. TPNP Annex Building BE, LB and UB in Y-Direction - Node 4041 c:
0
-~
~
I I
11 I J.
I 11 1-*-
!l 1J I *-
1J I../
_./f GI,
/1111**-
0.1 J
I FRS Comparison Z Direction I
( _ _r,\\,
l I
\\... _, \\
-- NI 2D - Broad 4041
'~
I 1
' \\.
I TP2D_ RS-BE-AB-NI 4041
- TP2D_ RS-LB-AB-NI 4041
- TP2D_ RS-UB-AB-NI 4041 I
I I
,/\\
I I
~ - r __ r-~--~~l _ Jj l
~ 1 --- f~ ' I-i-I 1-10 100 Frequency (Hz)
Figure A-14. TPNP Annex Building BE, LB and UB in Z-Direction - Node 4041 TPG-1000-S2R-807 Page 127 of231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison Y Direction I I_
I I
I I, I
I I
I-*-
~
I 11' I 1 J
I I..
(
I I,_
I I
1-*-
I I_ )
~
\\
I 1-*- I 1J l
I *- I
\\_,
le]
.Ii
~
, el I
I
/
~ J I,n,.
1' I
~
r \\
,.__, ~,*1 \\
~
,.. -y.A-'1f 1-:/_/-
~===~
-~
-T'
_I
-~ 1----
-- NI 2D - Broad 4061
-- TP2D_ RS-BE-AB-NI 4061
- TP2D_ RS-LB-AB-NI 4061
- TP2D_ RS-UB-AB-N I 4061 0.1 10 100 Frequency (Hz)
Figure A-15. TPNP Annex Building BE, LB and UB in Y-Direction - Node 4061 FRS Comparison Z Direction I I I
. I 11 I
I I I' I I I I I I I
-- 1 I -*
l_J
~
I I
I J.
I I
J l I 1.IJ I J I I V'
I 1 I. I I
I I
I I
I Ir-'
lei /:
. \\
I.I 1-*-
/
I u
I
~
I
/
I I
I 11
- r\\ I I 1
I I /
J_
I I I
I I Nl2D-Broad 4061
-- TP2D_ RS-BE-AB-NI 4061
- TP2D_ RS-LB-AB-NI 4061
- TP2D_ RS-UB-AB-N I 4061
~
~ ----- --- - ' ~ ~ -,.~
I I
- I
--l-I 11 --
I I l'-n
-1 I
I 0.1 10 100 Freque ncy (Hz)
Figure A-16. TPNP Annex Building BE, LB and UB in Z-Direction - Node 4061 TPG-1000-S2R-807 Page 128 of231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison Y Direction I I _I_
I i,Ll I
I 1T I
I I I I I J_,
I I
I I
11 I
I I
- -1 I
I I
I I 11 I
I I
I I I_, )
I V'"'""'\\
1-*-1 I I
~
1111 l
I
. I
"-~
-- NI 2D - Broad 4120
-- TP2D_ RS-BE-AB-NI 4120
- TP2D_ RS-LB-AB-NI 4120
- TP2D_ RS-UB-AB-N I 4120 I A I
I I
~
1 I
l
~"
I
~'
\\.
~
..... I
/ I_ '- ___ ;::::./.->~
- ,_ _.[ ', _ ;,.c..~ /,
-~
-I 0.1 10 100 Frequency (Hz)
Figure A-17. TPNP Annex Building BE, LB and UB in Y-Direction - Node 4120 FRS Comparison Z Direction Nl2D-Broad 4120
-- TP2D_ RS-BE-AB-NI 4120
- TP2D_ RS-LB-AB-NI 4120
- TP2D_ RS-UB-AB-NI 4120 0.1 10 100 Freque ncy (Hz)
Figure A-18. TPNP Annex Building BE, LB and UB in Z-Direction - Node 4120 TPG-1000-S2R-807 Page 129 of231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison Y Direction I I I
I I I.
' I I I sln Je I
11
-- NI 2D - Broad 4310 I.In 1\\
J \\
I
-- TP2D_ RS-BE-AB-NI 4310
- TP2D_ RS-LB-AB-NI 4310 I *-
)
\\,,
~
I 11
\\J
- TP2D_ RS-UB-AB-N I 4310 1-*- I
'~
1 I~ I I
-~
Y. '
I 1-
/......... _
~
~-- -
I
~
0.1 10 100 Frequency (Hz)
Figure A-19. TPNP Annex Building BE, LB and UB in Y-Direction - Node 4310 FRS Comparison Z Direction I I I
I I
I I
I I' I I,1 I
I I I I
I I *-
I,....L!
I I
11 1-*-
I I lr1n1 I 1 I
I I. I I
11 1J0 I.
I I,_
1l
)
- \\
I I
1/-
I "
I
/1 I I I I,J
~("j\\ I I I I Nl2D-Broad 4310
-- TP2D_ RS-BE-AB-NI 4310
- TP2D_ RS-LB-AB-NI 4310
- TP2D_ RS-UB-AB-NI 4310 I I I I Ll / A,Kt I I I I 11 '_
""'I'-
I...::::.-
I-0.1 10 100 Frequency (Hz)
Figure A-20. TPNP Annex Building BE, LB and UB in Z-Direction - Node 4310 TPG-1000-S2R-807 Page 130 of231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison Y Direction I.
I _I_
r I
I IT I
I I I I I I I _i_,
I I
I I I I 1 I
I I I 1-*-1 I
I I I I 11
- 1 Nl2D-Broad 4412 I 1111 n
I I
I I I 1-*-1 ) \\1 I
I I I I 1 I
\\.
TP2D_ RS-BE-AB*NI 4412
- TP2D_ RS-LB*AB-NI 4412
- TP2D_ RS-UB-AB-N I 4412 I
I. I
- I JI
\\r--\\..-""-
[;t r I,/ L: \\ _ ~~ ~--, L I I
I
--~
-~ //
,..._+::.
0.1 10 100 Frequency (Hz)
Figure A-21. TPNP Annex Building BE, LB and UB in Y-Direction - Node 4412 FRS Comparison Z Direction I I 11 l'\\ I I
I I, I I I I I
\\ I I
I I I I I 1J I
1-*-
it I
I I.
'f I
1-*-
l_J
""" / I I ~
I I I I_,
I I I
Nl2D-Broad 4412 TP2D_ RS-BE-AB-NI 441 2
- TP2D_ RS-LB*AB-NI 4412
- TP2D_ RS-UB-AB-N I 441 2 I 11. I I
I I \\ _I I I
I I I I 1J 1 _/
/~, I I
I I I I
\\
~
1,., ~
I I I'
_,,, I
\\ \\
-- 1'--..l'-I-I -
r
.._...::-- ~ --.-. -
I I
I -- 1 l
r r-r r 1 I 0.1 10 100 Freque ncy (Hz)
Figure A-22. TPNP Annex Building BE, LB and UB in Z-Direction - Node 4412 TPG-1000-S2R-807 Page 131 of231 Rev.4
Westinghouse Non-Proprietary Class 3 FRS Comparison Y Direction 11 Jn I
I I,.!--, '
J IJ I
-* )
ii I
11
\\(
\\
I lnl I I I TP2D_ R5-BE-AB-NI 4535
- TP2D_ R5-LB-AB-NI 4535 Nl2D-Broad 4535 I
1-*-1 )
I I 11
- TP2D_ R5-U B-AB-N I 4535 0.1 10 100 Frequency (Hz)
Figure A-23. TPNP Annex Building BE, LB and UB in Y-Direction - Node 4535 FRS Comparison Z Direction I I I I.
I 1--.1"""1 I I 1 I
I I' I
I I 11 I I I I I
I I I I 1.. *1 I
I' I
11 I I_
\\I 1 j
1.. -
I
- u. ~
Iola' I I )
I t.
\\ 1 11 I
I I
1--1 I I
\\I I
I
. o!~
I
~
r' I
I I
I vr n" I
~'
I I I I NI 2D - Broad 4535 TP2D_ R5-BE-AB-NI 4535
- TP2D_ R5-LB-AB-NI 4535
- TP2D_ R5-U8-AB-NI 4535
~~'
~~
-S- -S\\~ K,CT I
I
-- _,, 1 1 'lr-r r-ll i-1 0.1 10 100 Freque ncy (Hz)
Figure A-24. TPNP Annex Building BE, LB and UB in Z-Direction - Node 4535 TPG-1000-S2R-807 Page 132 of231 Rev.4