ML18219D829

From kanterella
Jump to navigation Jump to search
Response to Letter of 2/7/1978, Enclosed Additional Information on Steam Generator Subcompartment Pressure Response Analysis
ML18219D829
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 02/27/1978
From: Maloney G
Indiana Michigan Power Co, (Formerly Indiana & Michigan Power Co)
To: Case E
Office of Nuclear Reactor Regulation
References
Download: ML18219D829 (61)


Text

NRCQORM 196 UW NUCLEAR REOULATORV C SSION QOCXET NUM8E Iz TEI -S/> 3 &

FII E NUQEER NRC 0/STRISUTION FQR PART 5D DOCKET MATERlAL PSAR/FSAR AMDT DIST.

TO: FROM: OATE QF QOCUMENT Mr, Edson G~ Case Indiana & Michigan Power Co, 02/27/78 New York, NY 10004 CATE RECEIVEQ G ~ P. Maloney 03/02/78 R . GNOTORIZED PROP INPUT FORM NUMEER QF CQPIES RECEIVEQ QRIOINAL QCQPV

~htCLASSIFIEO g J r~rtr~

ENCLOSURE to NRC's ltr dtd 02/07/7 QESCRIPTION

Response

~ ~ Furnishing addi info on the analysis of the Steam Generator Subcompartment Pressure Respon eo ~ ~

Notorized 02/27/78, ~ ~

1p + 1/8".

PLANT NAME: DONALD CQ COOK UNITS 1 & 2

'jcm 03/02/78 FOR ACTION/INFORMATION ASSIGNED AD! LTR ASAP 6w BRANCH CHIEF: ez PROJECT MANAGER:

.Le s a~e~a INTERNAL0 Rl BUTION LAINAS NRC PDR IPPOLITO TQE F. ROSA CAleIILL (2)

P. COLLINS VOLL~IER (LTR)

HOUSTON BIJIICH HELTEaKS J. COLLINS CASE (LVR) KREGER MIPC LTR) KIRKROOD KVIGHT LTR BOSNAK SIHNEIL PAWLICKI ROSS (LTR)

NOVAK ROSZTOCZY CHECK TEDESCO (LTR BENAROYA EXTERNAL OISTRIBUTION CONTROL NUMBER LPDR TIC VSIC CRS l6 CYS SENT CATP GQRY I I 7g0610042

0' INDIANA IIt MICHIGAN POWER COMPANY P. O. 80X I8 8OWLING GREEN STATION NEW YORK, N. Y. 10004 February 27, 1978 Donald C. Cook Nuclear Plant Units 1 6 2 Docket Nos. 50-315 and 50-316 DPR Nos. 58 and 74 Steam Generator Subcompartment Pressure Response Analysis L

Mr. Edson G. Case, Acting Director Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D. C. 20555 li ri v -<~~)

Dear Mr. Case:

Xn his letter dated February 7, 1978, Mr. Kni~-e'3.- of the Division of Project Management requested additional information on the above cited analysis. An item by item response to Mr. Kniel's request is enclosed herein.

Very truly yours, P. Malone Vice Preside t Sworn and subscribed to before me this z~ day of February, 1978 in New York County, New York nAfl~

Notary Publ c KATHLirEQ D~(RQ NOTARY t'OIILlC, Stelo ot New York cc: R. C. Callen bio. 4l-4t.06292 Quehfied in queens County G. Charnoff Certiticeto tu~d in New York County P. W. Steketee enlnnrrluu expires ran~eh 30, 397y R. J. Vollen R. Walsh D. V. Shaller- Bridgman R. W. Jurgensen

~ 0

1.

0 Provide drawings which indicate the manner in which the net free volume within the steam generator'nclosure was subdivided to formulate the five node and seventeen node models which were

'art of the nodalization sensitivity studies.

~Res onse:

The nodalization schemes for the five and seventeen node models are given in Fig. 1 and Fig. 2, respectively. The flow parameters used in these nodalizations are listed on the following pages.

1 1

'I A

WINDOWS TO ADJOINING ST,. GEN. COMPARTMENT (6 BY 4.25) Isoo 692 PLATFORMS O~6 PLATFORMS (0.76 GRI D). (0.76 G R I D) 68I 680.60 425 870,60 STEAM GEN SUPPORTS 665

. 668.50 0< Qo.

'. 662.l'I 650.65 80O' .360 ICE CONDENSER SS DIAMETER LONER SUPPORT SLAB MS PIPE (IFT. WIDTH)

'ETSHIELD - 20 DIAMETER FON PIPE Fi'gure l. "Five Node Model.

N IN DOSS 'TO ADJOINING

.ST,. GEN. COMPARTMENT (6 BY4.25) I800 692 PLATFORMS 6 PLATFORMS (0.76 GRID) (0.76 GRI D) 68l

,680.60

.Qr Q

'.B70.OO STEAM GEN. SUPPORTS 665 Qv 668,50 Q Qi 6M.TI 650.63 82o IBO 2620 3604

'CE CONDENSER

~ ~

36 DIAMETER MS PIPE

, JETSHIELD .

LOWER Figure 2.

'0 Seventeen DIAMETER FON PIPE

.Node Model.

SUPPORT SLAB (IFT eIDTH)

5 NODE TMD MODEL VOLUME AND FLOWPATH DATA TMD NODE VOLUME '(CUBIC FEET) 46,51 4196.83

/

47,52 1752.33 48,53. 1712.45 49,54 1766.77 50 i55 1657. 21

'OUTLET NOZ ZLE (TOP ) BREAK FLOWPATH K 46-47. 0.84 0.03 10.99 5.98 10.11 90.68 0.449 46-48 0. 47 0.03 10.98 7.03 9.94 100.01 0.502 47-49 1.32 0.03 14.75 5.93 14.75 90.63 0.836 48-50 0.32 0.03 14.52 6.25 13.58 81.09 0.758 49-2 1.08 0.03 6.67. 6.06 7.00 113. 71 0. 886 50-1 , 1.09 0.03 6.61 6.38 6.51 104. 85 1.00 47-48 1.51 0.04 2'4.97 5.50 31.65 154.0 0.478 49-50 1.55 0.04 25 ..77 6.64 31..70 96.01 0.538 47-47 1.49 0.03 10.49 4.98 10.76 51.0 0.250 SIDE BREAK*

FLOWPATH K F LI H AT/AU 6-47 0.84 0.03 10. 99 5.98 10.11 90.68 0.836 46-48 0.84 0.03 10.98 7.03 9.94 100.01 0.8934

  • All other Flowpath Data is the same for the Side Break. as it is for the outlet'Nozzle (Top) Break.

1-4

17 NODE TMD YODEL - VOLUME AND FLOWPATH DATA TMD NODE VOLUME (CUBIC FT) 46.,63 4196. 83 47,64 762.96 48,65 386.56 49,66 386.56 50,67 736.81'00.

51,68 10 52,69 202.71 53,70 202.71 54,71 386. 37 55,72 462.90 56,73 244.53 57,74 244.53 58, 75 418.35 59 ~76 .692.54 60, 77 366.80 61,78 366.80 62,79 627.53 1 - 5

17 NODE TMD MODEL HORIZONTAL FLOW PATHS for OUTLET NOZZLE (TOP) or SIDE BREAK FLONPATH K LI EO (fg) (fg) (ft )

47-48 0.62 . 0.03 10.26 10.26 5.67 29.74 1.00 48-49 0.27 0.03 13.0 13.0 5.67 29.74 1.00 49-50 ~

0.62 0.03 12.26 12.26 5.67 29.74 1.00 50-47 1.00 0.03 14.36 14 '6 6.00 31.49 1.00 5 1-52 0.63 0.03 10.26 10.26 5.67 15.59 1.00 52-53 0.29 0.03 13.0 13. 0 5.67 15.59 1.00 53-54 0.63 0.03 12.,26 12.26 5.67 15.59 1.00 54-51 1.01 0.03 14.36 14.36 6.00 16.51 1.00 55-56 0.61 0.03 10.26 10.26 5. 6-7 18. 13 1. 00 0.27

'6-57 0.03 13.0 13.0 5.67 18. 13 1.00 57-58 0. 61 0. 03 12. 26 12. 26 5.67 18. 13 1.00 5 8-55 0. 97 0. 03 14. 36 14. 36 6.00 19.20 1.00 59-60 0.64 0.03 9.68 9.68 "'.57 30.20 '1.00 60-61 0.33 0.03 12.27 12. 27 7.57 30.20 1;00 6 1-62 0.64 0.03 11.57 11.57 7.57 30.20 1.00 62-59 1.03 0.03 13.42 13.42 7.90 31.52 1.00 1-6

17 .NODE TMD MODEL VERTICAL FLOW PATHS SIDE BREAK FLOWPATH K I Eg H (ft,) (ft) 46-47 0. 82 0.03 8.21 7.38 6. 16 60.87 0 '37 46-48 0.88 0.03 7.58 6.60 5.67 29. 81 0 ~ 809 46-49 0.80 0.03 7 '8 6.60 5.67 29. 81 0. 809 46-50 0.38 0.03 8.16 7.10 7. 83 70.20 1.00 47-51 0.69 0.03 8.00 8.00 6.07, 60.54 0. 845 48-52 0.66 0.03 8.00 8.00 5.67 30.09, 0. 817 49-53 0.60 0.03 8.00 8.00 5.67 28. 89 0. 784 50-54 0.0 0.03 8.00 8.00 7. 83 70.20 1.00 5 1-55 0.0 0.03 6.00 6.00 6.07 71.64 1.00 52-56 0.01 0.03 6.00 6.00 5.67 2.8.83 0.783 53 0.08 0.03 6.00 6.00 5.67 28.83 0.783 54-58 0 '3 0.03 6.00 6.00 6.62 52.20 0.744 55-59 0'.67 0.03 6.71 6.29 6.07 60.54 0.661 56-60 0.74 0.03 6.46 5.87 5.67 30.09 0.563 57-61 0.69 0.03 6. 46 5. 87 5.67 28.89 0.540 58-62 0.06 0.03 7.07 6.95 6.62 50.02 0.713 59-2 1. 03 0. 03 3.63 3. 38 7. 10 76.88 0.840 60-2 1.09 0.03 3.93 3.93 9.09 53.49 1.00 61-1 1.09 0.03 3.93 3.93 9.09 53. 49 1.00 62-1 1.08 0.03 3.70 3. 49 8. 17 75. 93 0. 864 TOP BREAK*

FLOWPATH K LI - LE() 'H AT T/

46-47 . 82 .022 11.21, 10.38 6. 16 60.87 0. 495 46-48 . 88 .022 10;58 9.60 5.67 29. 81 0.378 46-49 . 88.;022 10.58 9.60 5.67 29.81 0.378 46-50 . 38 . 021 11 16 10. 10 7.83 70.20 0.583

  • All other flow the data is the same for outlet nozzle (top) break.

the side break as it is for 1 - 7

2. Provide figures which (a) identify the peak forces and moments acting upon the steam generator for each of the models used in the sensitivity studies (i.e., five, nine and seventeen node models) and (b) demonstrate that the loads transmitted to the steam .generator supports are maximized by the nine node model.

~Res onsa:

(a) Table A presents the peak steam generator loads and the time of occurrence for the five, nine and seventeen node models.

Figures 2.l through 2e9 present the horizontal (same as axial) force time history, the vertical force time history, and the moment time history for each of the three -models evaluated in the nodal study.

(b) Only the peak inertial negative moment for the five and seventeen node models were slightly higher than the peak inertial negative moment for the nine node model. The calculations of the steam generator support loads were made by combining the forces and moments without consideration of time phasing. This conservatism would result in the nine node model submitted encompassing the" resultant support loads using a time phase analysis with the other 2 models. This can be seen by noting from the attached information that the peaks are quite narrow and do not occur at the same time.

TABLE A FH M+ M-Peak Time of Peak Positive Time of Peak Negative Tl me of.

Horizontal FH Moment M+ Moment M-Model Force ki s ~Secs (Ft-lbs). ~Secs ('.Ft-lbs} ~Se Cs

.5 node 982 0.01015 7.67 x 105 0.03194 - 4.85 x 106 0.01310 9 node 982 0.00822 2.64 x 106 0.03019 - 4.57 x 106 0.01232 17 node 800 0.00991 2.37 x 106 0.03228 - 6.85 x 106 0.01477

1.0E+06 9.0Ei05 8.0E+05 7.0E+05 UJ 6.0E+05 5.0E+05 a

CD W

R.OE+05

3. OE+05

)K

2. OE+05
1. OE+05 0.0 1.0 2.0 TINE ( SECONDS )

ANP STE AN GENERATOR STEAN GENERAT'OR NODELED AS 5 NODES 2 3"

2. OE<05 l . OE+05 0.

C)

LJj CD C)

LJ CC CD

~ -l.OE+05

)

LJJ

-2.0E+05 0.0 l.o 2.0 TINE (SECONDS )

ANP STEAN GENERATOR STEAN GENERATOR NODELED AS 5 NODES 2 4

0

l. OE+06

,0.

lA CCI

- l . OE+06 U

Gl

'LCI

~ -2.0E+06 I

CK LU O.

CD CD I.

~ICI

-3.0E+06 CD

- t.OF~06 "5.0E~06 0.0 1.0 2.0 T1NE (SECONDS )

ANP STEAN GENERATOR STEAN GENERATOR NODELED AS 5 NODES 2 5

\

1'

Ci v'Cvv. 8. rIL l . O'E+06 LU 0.

UJ C)

CC CL

-l. Of+06 0.0 1.0 2.0 TtP1E (SECONDS )

ANP STEAf'I GENER ATOR ST EAN GENER ATOR PlODELE D AS 9 NODES

2.OE405

1. OE+05 W

LQ

) 0.

LU CJ CL CD 4

CC CD

~ -1.0E+05

-2.0Ei05 0.0 1.0 2.0 TlNE- (SECONDS )

ANP STEAN. GENERATOR STEAN GENERATOR NODELED AS 9 NODES 2 7

I

3.0Ei06 2.0E+06 1.0E+06 Cl I

I U

0.

Lal

'Lh

)

W

~ -1.0E+06 I-LU CD l -2. 0E+06 Z

UJ K

CD K

-3.0E+06

-cl.OE+06

-5.0E+06 0.0 1.0 2.0 TINE (SECONDS )

I APlP STEAN GENERATOR STEAN GENERATOR NODELED AS 9 NODES 1

2 8

%4 al *

~ ]6ug<

e.OE+05 Z.OE+05 6.0E+05 5.0E+05 LU LCj

R.OE+05 3.0E+05 LCJ CD CD LL.
2. OE+05
l. OE+05 0.

-1.0E+05 0.0 O.l 0.2 0.3 TINE (SECONDS )

ANP STEAN GENERATOR STEAN GENERATOR NODELED AS IT NODES

2.0E+05

1. OE+05

..M V) lA W

Ul CD C)

LL CC

~UJ -1.0E+05

-2. OE+05

- 0.0 0.1 0.2 T INE ( SECONDS )

AMP STEAN GENERATOR STEAN GENERATOR NODELED AS 17 NODES

3.0'E+06 2.0E+06 1.0E+06 EA

< O.

I I

LL

~W -1.0E+Oe tll M

~ -2.0E+06 I

fC 4J

-3. OE<06 C)

I I-aW K -N.OE+06 C)

-5. OE+06

-6. OE+06

-l. OE+06 0.0 0.1 0.2 0.3 TINE ( SECONDS )

ANP STEAN GENERATOR STEAN GENERATOR NODELED AS 17 NODES

l

3. Provide the criteria including any limitations on component buckling used for determining the design load capacity of the critical elements in the vertical column support systems and the upper lateral support structure. In addition, identify the materials and the minimum specified properties for these support members.

~Res onse:

The allowable stresses for each load condition and a description of the loading conditions themselves are provided in the follow-ing paragraphs.

Normal Condition Thermal, weight, and pressure forces obtained from the RCL,analysis acting on the support structures are combined algebraically. The combined load component vector is multiplied by member influence coefficient matrices to obtain all force components at each end of each member. The interaction equations of AISC-69 are used with allowable specified limits which include stability and secondary bending effects.

U set Condition OBE support forces are assigned all possible sign combinations and, in each case, are added algebraically to normal condition forces. The interaction and stress equations of AISC-69 are used with allowable specified limits.

Emer enc Condition DBH loads are assig.>ed all possible sign combinations, combined

~with normal loads, and are used in the-above stress and inter-action equations. For this loading condition, limiting values of le5 times allowables are used. This limit represents a stress of about. 0.9 yield and provides a margin against buckling from 10 percent for short stocky members whose-buckling mode is highly inelastic to a margin of 30 percent for members that buckle elastically.

Faulted Condition DBE (all possible sign combinations assigned) and pipe break loads are combined with normal operating loads. The stress equations of AISC-69 are used and are adjusted such that the stresses in the supports are limited to yield.

3-1

The critical load .for the vertical supports is compressive, under the combination of normal loads, DBE, pipe break, and steam generator compartment .pressurization. Determination of the design load capacity of the columns is based on the AXSC-69 stress equations fectored for the faulted condition.

l

. Under the main steam line break at the side of the steam generator and the Design Basis Earthquake the critical element of the upper support is the belly band. As the steam generator

.is supported by the belly band through one-way acting bumpers (compression ohly), placed between the band and the steam generator shell, the band will always carry applied loads in tension and bending.

The design criteria for the band was that the combined stress due to bending and tension produced by the design load must not exceed

. the material yield stress. This is a ver'y conservative evaluation.

of the support capacity since the development of partial yielding at the extreme fibers in no way impairs the function of the support.

Stresses for this support are determined from influence coefficients developed by finite element analysis. 1 The material used for the steam generator upper lateral support is designated 3A. Provided in Table 1 are the material type, minimum properties and testing reauired for this designation.

The material designation for the vertical supports is given in Figure 1 and the material type, minimum properties, and testing.

required are given in Table 1.

3-2

of oy /

TABLE 1 Material Yield Point Material Charpy Designation KSI and Impact. Material Testing Required No. ASTM Material on Spec. Thickness Dwg No. Max. Min. Group A618 50 Tubing A618 Requirements Gr. 11 3A A588 Gr. 8 50 Plate (to 5") Yes A588 Requirements; also, 2 tension tests and 2 bend tests for each plate from which material is fabricated.

3B A588 50 Plate Gr. 8 (to 5") Yes A588 Requirements; also, for each 10 sq. ft. of plate used for fabrication make 2 tension tests transverse to thickness and testing to 2/3 of specified yield, and make 1 ultrasonic test for each finished plate after fabrication.

A193 75 Bolts Yes A193 Requirements.

Gr. 87 to and 105 Pins A194 Gr. 7 Nuts... No . .A19'4. Pequir'ements. ". "'"..",",', *,

A588 Gr. 8 55 50 Rods Yes A588 Requirements; also, 2 tension tests for each finished fabricated rod.

A194 Nuts A194 Requirements.

Gr. 7 No 3-3

J

~

q\V

%1

'l~

l M

3A I( (ay~+ ll I

t II an

~ ~ ~

~ I I~ '3 QLGV'A IDHI 5EC lOi~ I 3--'

briefl~ (a) the capability of the FELAP computer

j 4. Describe

'program; (b)~~ELAP was utilized in ~ ~lysis; (c) the mathematVFal model and assumptions i%de~and (d) how the FELAP results were verified.

Response

(a) FELAP is a general purpose computer program developed by the Franklin Research Laboratories for the analysis of complex three-dimensional, elastic structures composed of shells, plates, and straight or "curved beams. The program computes the dynamic and static response to distributed, thermal and concentrated loads.

(b) FELAP was used to perform a linear elastic analysis of the structure for the spatially varying and dynamically applied transien pressure loading.

The results from the program are the joint deflectionsg mid-panel stresses and stress resultants, and joint moments and forces (shear and in-plane).

The mid-panel stresses were integrated across the panel thickness to yield the in-plane forces and the mid-panel moments.

These were checked against the forces and moments at the joints.

The forces 'and moments at the locations on the structure indicated on Fig. 1, were used in the capability analysis of the steam generator enclosure.

(c) The steam generator enclosure was modeled as a series of quadrilateral finite elements with constant Modulus of Elasticity (E) and constant Plate Moment of Inertia (D).

The stiffness and modal methods of analvsis were emploved coupled with the finite element method and the assumption of small deflection, linear-elastic structural theory.

The enclosure was considered to be laterally restrained at its'slab base along the perimeter wall by the containment operating deck at El. 652' 7 1/2" and supported along the crane wall segment by the lower inlet door pier;-. The crane wall segment, of the model was carried beyond the limits of the perimeter wall and considered fixed by the balance of the crane wall.

(d) The results of FELAP have been confirmed according to ASME program verification requirement (1). Furthermore, verification and acceptance tests of FELAP were performed by the Computer Application Division in A.E.P.'s IBM System/370.

The FELAP results for this particular model were verified by making internal and external force equilibrium checks. Input modeling geometry was. verified by diagnostic plotting, to insure the accuracy of the geometry.

Reference (1) American Society of Mechanical Engineers, Pressu're Vessel and Piping, 1972 Computer Program Verification, No. I-24, 1972 4-1

E)ZCLOS JZ-"

I EiZIMZ-TER.

7-f 07-2 7 -5 EL.C 95-0

&ill,C.

ENCLoSUQE lIoo p Qi EPZCLOSOZ'.E 4/ V/DEfZ WAI-L 08-2,

~ P-'A/v'E'jYAL

5. Since the compartment pressure load is transient and dynamic in nature, explain how the load was used as input in the FELAP program.

Res onse:

The FELAP program is capable of performing both static and dynamic analysis. The time load was input as pressure time histories (9 separate loadings 1 for each subcompartment) and a dynamic 'analysis made. All.loads are applied simultaneously.

N 5-1

6. Indicate the loads and load combinations used in the design and analysis of the subcompartment walls and slabs.

/

~Res ense: I 1

The dynamic transient pressure loads acting simultaneously with the design basis earthquake were considered to act together with the operating load condition.

Load factors were not used with the individual loads because the overall factor of safety with reference to the ultimate section capacities was desired in the analysis.

6-1

~~

7. Provide sample calculations for ultimate moment and ultimate shear respectively at sections where the factors of safety are the lowest.

~Res onse:

Sample manual computations are on the attached design sheets.

~0 ~~ E P

~ r FORCE 'QE ENGlNEERING,DEPT. 8HEET~OF

. ADERICRR ELECTRIC PD ~ Ell'ICE CDRR. DATE COMPANY O. O

~

2 BROADWAY "NEW YORK

>i c.lJ~

EIrE L rTr

/4% 0 I4//'LE <~P >jPPLEc."P

,l4M OO frha

%a yI v

a aa ~i J-x a

h Y';

I AS g/'

I

- \

g <<9 ~

C'  :

.k.gC g:a 4 l,.z I

)

rh <<). 5'ri 4 P

I I I

4o $ . <I,C.$ ' Qa g QP$ 0 I

I I

I I

I t

~'.C. r,O .oP K;e:9 :ip 5s'.r I

I

~ r I

I I I

I I

  • a ~

I l

I t I I

l I I

I I

al ~,h ~

c.~~ J,I

+ t T'l.'N.A

' ~C Q,VAi<+ P Is Ti li

'L'BENT- fQ gr ~

~)

v

~~VI I QP -5-- r I

I

~ R

~~ t~

~ L 1

FORM CE

~

AMER ICAN ELECTR

'NGINEERING 0 I C POWIER SEW( Y I CE CORP. DATE

~ ~

Y GHGGT 'FCK COMPANY G.O 8ROAOWAY NEW YORK PLANT SuE(SECT rr ~= <-'~A ~-~r r ~r-.~aauCrr(..

~ 1

~ ~ h I

0 r rrr/r//d-r--rr//r/ /e"rrs. rr.rs' le (~r 4x/s/'l II I I 7c"r/~///ran II

).

I

( I

~oC~rr~ar I s

d/O(/(WdrJ C/ = ~p 15 rrr.

I

'- I ii ( I ( s t t' t' i-Wd'r/~

+

!.:. rt~~ ug Co/rr/tn--" rfdr"rr. H~'

,... '.. Aran/t g /crrD/8')'" r r'7J /7'c5
  • It I

t

/c/Q sF I/drrrr/v/FxsrsF/r cd dh r/ //c/(bY27//r//r/Fr//A~/

~ ll I I I ~ I I 1 t h

I I r'd/P<oJ

>bra I,

t

.Q~wg 5 p'/+ ..

t I I vt i jj i I I

I ( 4 w ( I

(

(5) +/FCcr 7r I'/s J vrr I

I I ll I

T I I h II t ~ ~ ~

~

I

~- s II t

I

/+ ~ra~r // w r W I I

faaiM GEE 6 OIr

~ ENGINEERING DF SHEET DATE CK.

AIIER I CAN ELECTRIC POWER SE 2 BROADWAY

. I CE CORP.

COhadPAN Y G.O HEW YORK SUB JECT I

1 t

I r

a j j rd rj ~ i P~ ~d j

i l i j l j!'~ i I l

  • 3

~ I i, II

}

I I

/o8w~

I c  !

,'cg..',

g~w+S x/g r I I

-F(go/g p)(Zy z' \

I I ~

Zd CCi 7i dard I I I i

1

+..= i.,W~r1...,,

I

,1 O~~9( ~~ l 1

I GT I j hajj

)

I a

!. l I '

I

~

I I I

i i

~ ~

! ~ l ~

I 1

t I ' I ~

)  ! ~ '

j r I I jI f 1 1 I i a 1

r I I I I i

~

I I

j j I ( ~ I I I

r i a I i ~

I r

'1 L

j I I I j I i s

( j I

I'ORll fiIE 8 . ~

ENGINEERING DE~~. SHEET 'OF DATE CK AMER ICAH ELECTR I C POIIER SMI CE CORP.

O,O COMPANY 2 BROADWAY gEVif YORK PLANT SUB JFCT 5, I

!, I

/

f' I

' I I I I I I

)

I

~I

-rN 1

~lKrr tv v f ~r. i " Wl~p~'. rJrW (~g9;vs'o Pvirrr'troF/ Pcs~ ail

- >JC ,:.~ SS/ / E

' fiHs Assay rfis+y 5

~ r '

0= KgC

+J~j ', ~ A / .. ca.-z -zg~

7/'.

I I

'r'o 5

./P 0 ye=~ y ~

I

.'Hd ... gX/Y(/,err'.rrd)7, 1

1 I 1 N = z ch.~~rye I 87, 'prov 'cFoy +

I 5 1

og7i+qprWfi, r

~

I

, .L '~). i.Z..~ cdrPpl r d))&sgzyro 1 ~

I I ~

5 ~

/ I

'lv'17O Ce..'.r. e~idrr dg;:~y."jq Fr OPS re c7n D~W6l ...

</ 7<=rzs I

~

5 C?r<'r 'o7g ag;x-re 1 5 5 I I "

1 1 5 I ~

I ~ ~

1

'1 I I

'~/y 1

= (' $

I ~

C I I

- Ce)zan','>rrrrc~/ c'/ 8':~ re: '-upgo 7e-ia;ou If

..~gt'"-C o C r'r'Yi /r. -, CFCvyrvr' P/r/Z" C,CZ' /.-~ 1 I .'

I I

...,~c ryder-ri~~-

~

1

~

II 5 ~ I I I 5 ~ I 5 5 I

=': Yz = C=.=-y;.;. -a.'3~$ cZ- 3 ..:.

1 1

7-6,

DATE CK A(ERIC(K ELEC(RIG PC'IER.SE~ICIIRP.

'OMPANY 2 BROADWAY Qj PLANT NEVI YORK

~ h SUB JECT

~ ~

( ~

(

I 10787( /i'PS' h I

~

h

(

I

(

ll I I

j ff ~ ~ ~ h'fI ~

I

(

I I

I I j I (

I i  !

! W. Zcc~/~km I II I

Ij (

~ (,I I ~

(

(

i I i ~

I r I II I

~ ~ ~

~ ~

I I I

I ~

(

VA rff ~ '

~~ O~

~ ~

Jt%

f OR<. GE SHEET cS.' OF ENGINEERING DEPT.

DATE CK AMER ICAH ELECIR I C POIIER S I CE CORP.

COMPANY G.O 2 BROADWAY NEW YORK PLANT SUB JECT

~

I,;

I

~ ~

I

'I I l I {

! (

.j i I

I j I I

~ I I

7~/

I I I ~

I I I

~ I il I F I

I

, E...j O'. 0 I

I I I ~

f I I I I I I

.! .D I

Zc c~gicza ic>-Z Xr7 I

I F I' F

'pi~i y~r.'C ~ig I ~

~s-F

{ t I I r

{;~

I x

~I I '

8. +Q ~<ri~R.-zc- ~i-N':-gT DPPcr'r

~"

I I

I I

I I

= / dEII I I

I I

I

( I ~

I ~ I

~ -

I I I<<

n ~ ~ " ~ - ~

I r- ~

I I

r r ~

I

~

'I I I I I I ~

t I I I I

~F cY~-,~. ~e {  !

e I

I I

I I

I I

i I I I i j { t I I I

/AT I ~

7-8 I ~ I I I

~ ~ ~~

r

I '

e ~

I'OII.II OE b ENGINEERING D .. ~

CORP OF DATE BY CK AIIER I CAN ELECTR I C POIIER SER Y I CE .

COMPAN Y G.O 2 BROADWAY NEW YORK PLANT SUB JFCT I F F I l II I I I Zoc~Yrn Zg7, I

~

I I

j I

I I ~

I

, +7,. = yI!y- ZSP p= </.Z Zi I I I,

~ ~

~

! i. -j I ',. I I

I I I

>> 4 I I

I I

c-r3 Hw7F77 7c z>.z~

i I'

l I

'8s rV' I

~ I  !  !

I i J 6- Z3 &//ryyAPiw 'rumb 7y. '.'r/<<gaze I

I

/ '

/g7Q I

'-~.~8--7>

/~

I

<~

SW I ~~ ZF-ZQ

~

~ '!

I I I y4PP

(:~o I

', /F 0 F, 7.,= /W l. F: ..

I I

I ~ I I

C'3 ~SCP 7 /,'d7 +I,"C7dl .

I I I

I I

I Ydd 4 z~ 7

~ ~

I II t T

l ~ ~

l,; i I

I I

I I

L j l I

~ ~ I I ~

j i

I

~

I I I

~ ~

I

~ I I ~

I I I I j j I 'j I I

I

~ I

~ ~

I

! i j

~

I

- I ~ I

~

I

~

.i J

~ ' 'I I I

i I l '.

i j (

( j i i l )

i I 7-9

~ l

\

~

fORM GE 6 ENGINEERING AMER I CAN EI.E CTR I C POWER D~

SERI} I CE CORP. DATE Y

SHEET 'F CK COMPANY G.O

.2 BROADWAY

,. t4EW YORK P.LANT SUB JECT r I V

J -~

~ ~

I I ~ j l I

~ ~

I I I

t  ! I I I ~ I I I I 'I ( r

~ ~ -(

II t,' I 1 I I I I I I

~ ( ~

I ( i I I I

~ I; t Ig ~

I  !

I I

CF ~J VI

( WF >gV'CQ i

I T t A7u I

(

~

I I

I

~

~V I'

I

'n~

( (

I, j t

' r i ~ ( ~, ( I, t

I "1 ~7 I

,~ I tm i t

(

I I

(,t,', I i I r

I, I ~

I ( I

~

I ~ }' >

~

(

~ I I l I'

j i ~ ~ r I I ,I V I I V I I J ( I I ~ ( I I I I I

! l 7-10

7OftPA Plf. If ENQINECAING DIt DATE OIIOKT fIY

'P CK, A}IER I CAN Ej ECIR I C P'OPIER S I E CORP.

2 BROADWAY COVIPANY G.O HCW YORK

~ ~, ~

SUB JFCT I

f I 1

! i t I I I

~

I Ci I

rw'CZg I f I I- ~ I ~:-

II I

P J+ t I I

dias j I

I t j j

I I

~

I

-" 4- t g< = p (i'yfy'H Z~oO >~ g ~PS+ g(iso.ooZAg<~

p I,

i I a I I I t I

~ f" t a I I I I t f j '

t i l i  !

or rr~ rrrcvrvZtr:5 -re~'ecA 7o Rti~lldugrrr ~roder.

I I I I

] I "T I

1 I i I I, I I  !

I i

4. - ~ ~

~ ~

f I

I

~ >>I I

I I

I

~

+ r~Z 7r .:; Iw:r' r/ Iw'Q f I

I t I If I ~ ~ ~r O . - ~ ~

I e -

f

~

I j I I ~

I

~-

t

~ ~W.~!/g P c n .P ~P r h y P7 ~

yPVW ~

-:,%87/- Pz

~

"~ ' ~ '

~ xmas

~ - ~

I

FORM C,tl' S- ~

ENGINEERING DE SHEET

\ SY GK.

P'O~ER CORP. DATE AMER ICAH ELECTRIC S CE COMPANY G.G

-2 BROADWAY NEW YORK SUEt JECT

'f i, i' t

tt" l l i I I

t Ci r~'/ l I  !

i ) I I ~

) I I I, i t l I ~

I I  ! t '

),

! l t j I ~

I I I  !

j i

'I I

I I I I, I

&> zg I ~ h zg

~ ~

i

~

(

J '  ! t  !: l i Vu

)

I~

I I ~ 't ii~ =

~ I ) i

/ ~~~V j I i I

~ I j

I I

I, I

),

i

~

I I

I i

t I

I

'I ~ ~

I

-y>'c'at" C

~/~5 I

)

I I i

I I

~ ~ ~ A A I

I I 4

'I I

4 tt I

"t' ~ '

I l

i I

e III h

F 4

ORII Gf ~ 6 EWGINCeniNO D CORP, CIATK 1 EEHEE.T '. 'F CK AIIER I ChN ELECTR I C POIICR SCR V I CC COMPANY G. 0 2 BROAD!fi!AY NEW YOAK PIANT SUBJECT

' I ', i 3 (

'cg ZC~C Ac'4'j r =.4 I

I 4

I fl I 1 4

4 I

I i i i  !

4 * 'F 1

) 4 4

~

4

~ - 1 4 t

I i I

I 4 M

I ~

~ ~ =

I ~

i

~ - f

~ h fl 4 I I I I

I 4 1 L .~

j I 1 4 r -~

1 ~

It I

I 4

I 4 f

~-

If 1 1 I I l

~

4 1

~ '-I I 4

~

4 7-,13

F ORI4 Pf. (t

~

'MERICA'll 4

ENGINEERING POIER S DE'LECTRIC I%ICE CORP, DATE DY SHEET 'FCK

2. BROADWAY COMPANY

! G.O

~

NEW YORK PLANT SUB JFCT

~ ~

.j I

I

\ l I

tt

'I I

~ ~

I I.

I I L (

' I ('

i (

4 I

r'ZEZCJ I I t '  ! I ( I I t

= re Q o I  !

( I I I

r . /E per.

I I

~ j

( f 4~ ~ ~

I '. I I 4 tl, I t

...I, 1

~gN, jg~ 4

~

J j I

~ I s I i I ' I4

~

I t (

~

4 4

~

4 I

~ U T I ~~

I g~

4II

.~ I ~I H

I

< s I

L s~ 7~$ .4

~ ~1