ML18039A557
ML18039A557 | |
Person / Time | |
---|---|
Site: | Browns Ferry ![]() |
Issue date: | 10/04/1998 |
From: | TENNESSEE VALLEY AUTHORITY |
To: | |
Shared Package | |
ML18039A556 | List: |
References | |
CD-Q3068-980061, CD-Q3068-980061-R, CD-Q3068-980061-R00, NUDOCS 9810090026 | |
Download: ML18039A557 (46) | |
Text
ENCLOSURE 2
TENNESSEE VALLEY AUTHORITY BROWNS FERRY NUCLEAR PLANT (BFN)
UNIT 3 TVA CALCULATION CD-Q3068-980061 See attached.
9810090026 981065 PDR ADOCK 05000296 P
TVANCALCULATIONCOVERSHEET
Title:
Evaluation of IGSCC Indication at Weld GRQW3 Plant:
BFN Unit:
3 Preparing Organization:
Site En ineerih Civil Branch/Project Identifiers:
CD-Q3068-980061 Key Nouns (For RIMS)
Pi e Anal sis, IGSCC, IGSCC Weld, Fracture Mechanics Each time these calculations are issued, preparer must ensure that the original (RO)
RIMS accession number fs filled in.
Applicable Design Document(s):
(see references)
Rev RO R1 for RIMS use RIMS Accession Number SAR affected:
0Y~ rNe Section(s):
UNID system(s):
068 R2 R3 Revision 0 R1 R2 R3 Quarrty Rehted?
Yes No 0
DCN No.
N/A Prepared
/0-
-9 C ecked
.4.~~. /cr r+-3'S Reviewed
.M~~go~ 5'8 Approved Date Statement of Problem:
Safety rehtcd?
Yes No 0
These csrcuhucns ccntsin unverNed assumption(s) that must be veiled hler?
0 a
Yes No 0
0 These csrcuhticns contain special requirements andfcr rrmitine ccnditicns?
Cshuhticn Rsvhion:
0 Entire Cahulaticn 0 Selected pspes 8 NclAppacable These cahuhUons contain a Yes No design output attachment?
An IGSCC indication has been Identified at weld GR4%3. An evaluation must be performed to determine Ifthe weld willbe acceptable for one or more fuel (operating) cycles of Browns Ferry unit 3.
Abstract:
This calculation evaluates an IGSCC Indication at weld GRQ43. The weld Is located on Reactor Water Recirculation loop B at the interface between valve 3-FCV48-77 (downstream side) and the 28" diameter piping. This calculation utilizes the pc-CRACK computer program to calculate the IGSCC growth rate, the fatigue crack growth rate, and to perform an endwf-period flaw stability evaluation.
The results ofthis calculation demonstrate that the indication at weld GRQ43 is acceptable for at least three additional operating cycles. The weld can also be considered acceptable for three additional cycles of operations after any future weld inspections ifthe crack is found not to have increased from its current size.
p Microfilmand relum calculation to Calculation Ubrary.
Address:
p Microfilmand return calculation to:
p Microfilmand destroy.
Page i
Ol
TVANCALCULATIONRECORD OF REVISION
Title:
Evaluation of IGSCC Indication at Weld GR<<3 CD-Q3068-980061 Revision No.
DESCRIPTION OF REVISION Date Approved Initial issue.
Total pages:
20 Page n
0
~I
TVANCALCULATIONDESIGN VERIFICATION(INDEPENDENT REVIEW) FORM CD-Q3068-980061
~
~
Calculation No.
Method of design verification (independent review) used:
1.
Design Review 2.
Alternate Calculation 3.
Qualification Test Revision Comments:
The above noted calculation revision has been reviewed and determined to be technically adequate based on the use of accepted sound engineering practices and techniques.
ndependent Reviewer i~a<
Date Page iii
Ik
>LI
TVANCALCULATIONCLASSIFICATIONFORM CALCULATIONINFORMATION:
Plant BPN Unit 3
tdantifiar COW3068-980061 Rev.
0 Title Evaluation of IGSCC Indication at Weld GR<%3 System(s), Component, Feature or Subject of Catculation:
SYSTEM/DESCRIPTION AS NEEDED H
Safety system Q
Safety-related feature Q
Nonsafety system Q
Nonsafety-related feature H
Quality-related system Q
Quality-related feature Q
Non Quality related system Q
Non Quality related feature Q
Plant environment (EQ, etc.)
Q Appendix R Q
Civilstructures Q
Instrumentation (PAM, etc.)
Licensing Q
Other Reactor Water Recirculation System (068)
Calculation Category:
B01, B06 Calculation Classification:
H Essential Q
Desirable D
File Only Q
Superseded C3 Cancel Obsolete Engineering Output Justification:
This calculation documents acce tance of a weld flaw in a safe
-related I ln s stem. This calculation shoutd therefore be classified as essential.
Concurrences:
Preparer Checker Verifier r
Date
/if-dli ~gf Date
/o-+ -~
Page iv
4)
SUBJECT:
Evaluation SCC Indication at Weld GR-3-63 BFN CALCULATION CD-3068-980061 TABLEOF CONTENTS Page No.
Purpose.
References Assumptions Special Requirements/Limiting Conditions..
Design Input Data Computations and Analyses Supporting Graphics
. N/A Summary ofResults.
Conclusions.
Appendices....................
N/A Attachments Attachment A, 'Notice ofIndication No. U3C8-0120.
Attachment B, pc-CRACK Stress Crack Growth Analysis Attachment C, pc-CRACK Fatigue Crack Growth Analysis Attachment D, pc-CRACK Allowable Flaw Size Evaluation Al Bl Cl Dl Rev PD Date o-
- 8 O
CK Datel~- f-O'8'ev PD CK Date Date Rev PD CK Date Date Page v
4i 4i
SUBJECT:
Evaluation SCC Indication atWeld GR-3-63 BFN CALCULATION CD-3068-980061 PURPOSE The purpose ofthis calculation is to determine whether weld GR-3-63, with an Intergranular Stress Corrosion Cracking gGSCC) indication, willbe acceptable for one or more fuel cycles without performing a weld repair.
REFERENCES 1.
ASME Boiler and Pressure Vessel Code,Section XI, IWB-3640, 1989 Edition 2.
Generic Letter 88-01, 'NRC Position on IGSCC in BWRAustenitic Stainless Steel Piping" 3.
NUREG-0313 Rev. 2, "Technical Report on Material Selection and Processing Guidelines for BWR Coolant Pressure Boundary Piping" 4.
Computer Program "pc-CRACK",Version 2.1, Structural Integrity Associates, San Jose, California 5.
EPRI Special Report NP-4690-SR, "Evaluation ofFlaws in Austenitic Steel Piping" 6.
Calculation CD-Q3068-922489 Rev. 11, "BFN Unit 3 Stress Report for Recirculation Piping Loop B, Stress Problem No. Nl-368-2R" 7.
Notice ofIndication No. U3C8-0120 8.
ASMBBoiler and Pressure Vessel Code,Section III, 1989 Edition 9.
Induction Heating Stress Improvement, Research Project T1 113-1, Final Report, March 1983, General Electric, San Jose, California, page 4-95 ASSUMPTIONS None.
SPECIAL REQUIREMENTS/LIMITINGCONDITIONS There are no special requirements or limitingconditions associated withthis calculation.
Rev PD tgP Date~kg CK Date /o W-gg Rev PD CK Date Date Rev PD CK Date Date Page
4l:
P
~.h
SUBJECT:
Evaluation o SCC Indication at Weld GR-3-63 BFN CALCULATION CD-3068-980061 DESIGN INPUT DATA Outside pipe diameter = 28.146" Pipe wallthickness = 1.2" Design pressure (N/U)= 1148 psi Peak pressure (E/F)= 1361 psi Pressure stress, design = 6249 psi Pressure stress, peak = 7409 psi Section modulus = 626.7. in3 Design temperature = 562'F Pipe material = A358 TP304'l 1 S = 16.818'ksi (@ 562'F)
Current flaw depth = 0.2" Current flaw length = 1.7" (reference 6)
(reference 7)
(reference 6)
(reference 6)
(reference 6)
(reference 6)
(reference 6)
(reference 6)
(reference 6)
(reference 8)
(reference 7)
(reference 7)
Applied bending moments (reference 6, microfiche Load Case
~Mtt-tb Deadweight 10133 Thermal (Tl)
'19137 Thermal (T2) 11964 Thermal (T3) 28132 Thermal (T4) 21979 Thermal (T5) 1898 Thermal (T15) 15179 Weld Overlay Shmdcage 344 OBE SAM, X direction 50 OBE SAM, Z direction 5
OBE inertia, XYdirections 11799 OBE inertia, YZ directions 12973 TVA-F-N000757, node 322):
~Mz R-lb 11037 6913 10060 21399 16754 3690 21967 1761 954 419 48627 28536 Byusing the above moments in the equation 12(My + Mz)': Z, where Z = 626.7 in, the followingstresses were calculated for use in the crack growth analysis:
Deadweight = 0.287 ksi Thermal = 0.677 ksi Weld shrinkage =,'.034 ksi OBE SAM= 0.026 psi OBE inertia = 0.958 ksi goad case T3)
(summation ofboth SAM load cases)
Rev PD~cf Date~o. ~
O C
Date/~.~
Rev PD Date CK Date Rev PD CK Date Date Page
4l
- 4l
,h
- I 3J
SUBJECT:
Evaluation SCC Indication at Weld GR-3-63 BFN CALCULATION CD-3068-980061
~ COMPUTATIONS ANDANALYSES Stress Corrosion Crack Growth Anal sis The stress corrosion crack growth analysis was performed by the computer program pc-CRACK (reference 4)
- using the crack growth rate law,parameters specified in Generic Letter 88-01 (i.e., C = 3.59x10'nd n = 2.161).
For analysis convenience, the maximum flaw depth of0.2 inches was conservatively considered to extend 360'round the pipe circumference. Based on the ratio ofpipe wallthickness to radius, Model C (Circumferential Crack in a Cylinder) was selected f'rom the pc-CRACK Linear Elastic Crack Models. The stress considered in this analysis was the sum ofthe stresses due to internal pressure (design condition), deadweight, thermal expansion, weld overlay shrinkage, and OBE seismic anchor movements. The resulting stress value is 7.273 ksi.
Since this weld had been stress improved using the Induction Heating Stress Improvement Process {IHSI),
residual stress was considered to be zero. This is justified since IHSI produces compressive axial residual stresses up to approximately 50% ofwall thickness (reference 9). The indications in weld GR-3-63 are less than 20% of the wallthickness. The compressive residual stresses tend to inhibit IGSCC growth.
The pc-CRACK Stress Corrosion Crack Growth option, from the Linear Elastic Fracture Mechanics Module, was selected for evaluation ofthe IGSCC crack growth. An evaluation period of52,560 hours0.00648 days <br />0.156 hours <br />9.259259e-4 weeks <br />2.1308e-4 months <br /> (6 years or 3 fuel cycles) was used, with crack size calculated at increments of730 hours (1 month). The results contained in report a crack depth at the end ofthis evaluation period of0.4078", which is below the ASME Section XImaximum allowable crack depth of0.72" (60% ofwallthickness).
Fati e Crack Growth Anal sis The stress corrosion crack growth analysis discussed above deteanined the weld law size after three complete fuel cycles. The fatigue crack growth analysis was therefore also performed considering three fuel cycles of operation. Conservatively, the initialflaw size forthe fatigue crack growth analysis was assumed to be equal to the end-of-period law size calculated in the stress corrosion crack growth analysis.
The stress value considered inthe fatigue crack growth analysis was the same as that used in the corrosion crack growth analysis (7.273 ksi) which is conservative since itincludes the noncyclic deadweight and weld shrinkage
. stresses.
Based on review ofreference 6, thirtystress cycles were considered sufhcient to conservatively represent the number ofstress cycles associated withthe next three complete fuel cycles.
The loading profile and the stress intensity factors were determined using the Linear Elastic Fracture Mechanics Module ofpc-CRACK. The stress intensities were used as input to the pc-CRACK Growth Evaluation Module using the Fatigue Crack Growth option. The crack model selected was Model C, Circumferential Crack in a Cylinder {/R = O.l). The Paris Law, Option A, was selected (C = 1.589xl0'nd n = 3.3). The fatigue crack law used is consistent with reference 5.
The pc-CRACK Fatigue Crack Growth Analysis option, from the Linear Elastic Fracture Mechanics Module, was selected for evaluating the crack growth due to fatigue. The results documented in Attachment C show that fatigue willproduce an additional 0.0016" ofcrack growth, resulting in an endwf-period crack depth of0.4094".
Rev Patte Date~to 0
CK D ates-+~
Rev PD CK Date Date Rev PD CK Date Date Page 3
4l 41 li
SUBJECT:
Evaluation SCC Indication at Weld GR-3-63 e
BFN CALCULATION CD-3068-980061 Allowable Flaw Size Evaluation Following the methodology ofreference 1, the allowable flaw depth to wall thickness ratios were calculated using the pc-CRACK Allowable Flaw Size option from the Codes and Standards Module. Under the Allowable Flaw Size option, Circumferential Crack/Stainless Steel, SMAWprocess, was selected. The followingstress values were input into pc-CRACK for use in the weld flaw stability evaluation:
(membrane stress due to internal pressure)
(bending stress; deadweight plus OBE)
(expansion stress; includes thermal, weld shrinkage and SAM)
(material allowable stress)
'louie end-of-period flaw depth input for evaluation in pc-CRACK was 0.4094". This flaw depth represents the cumulative effects ofcrack growth due to IGSCC and fatigue for an evaluation period of52,560 hours0.00648 days <br />0.156 hours <br />9.259259e-4 weeks <br />2.1308e-4 months <br />. The equation shown below, which is consistent withthe requirements in reference 3, was used to determine the end-of-period flaw length. The resulting flaw length was deterinined to be 7.1234".
Lr = ar(L;/Q(ar/Q where Lr = final flaw length ar = final flaw depth L; = initialflaw length
~ a; = initialflaw depth
SUMMARY
OF RESULTS
'louie results ofthe analysis are provided in Attachment D. These results show that with an end-of-period flaw depth of0.4094", and flaw length of7.1234", the allowable flaw depth to wallthickness ratio willnot be exceeded and the weld willremain stable. (Note: The evaluation was performed only forthe normal/upset condition. This is justified since the normal/upset condition safety factor is double that ofthe emergency/faulted condition, whereas by inspection the stresses associated withthe emergency/faulted condition willbe considerably less than twice the normal/upset condition stresses.)
CONCLUSIONS Results ofthis calculation demonstrate that weld GR-3-63 is acceptable for a minimum ofthree additional fuel cycles. The weld can also be considered acceptable forthree additional fuel cycles after any future weld inspection ifthe crack is found not to have increased &omits current size.
Rev PD~C Date te-i - a g 0
C Date~a- ~~g Rev PD CK Date Date Rev PD CK Date Date Page
i C
TVANSTANDARD PROGRAMS AND PROCESSES ASME SECTION XI
+wf~
We'W~87 roN NOTIFICATIONOF INDICATIONFORM SPP-9.1 Date 2-27-99 Page 97 of 109 PART I - FINDINGS Not No. Q~t'f t-7/Optant/Unit 9
tSt Dwg./Sh. No.
g ~~- (99Rir~ /(SU.DtXl~Z Examination Report No. /
(0 Component tD e2F Ci-//C. I/\\/D/Of'Sg g f93 escri tionoflndicat'etchPh ogr ph'equire forCI rification):
/pz Signature of Examiner/Certification Level:
Signature of ISO Coordinator (Field Supervisor):
Signature of ISI Program Owner:
/Date:
'F 2
5'/Date
/Date:
PART II - DISPOSITION 5.
rg. ~~
Date:
h 6
98 Administrative control document number (P R, WRIWO) applicable Disposition Prepared/Recorded By:
I (a~ur<
L.. woo<
PART III - ADDITIONALEXAMINATIONS Additional Sample Required:
r Q Yea i/27/o (Attach list of items in.additional sample, ifyes.)
ISI Prog m Owner Successive Examination Required:
es QNo ib.l ISI Progra Owner to-)gal Date
<0a49 Date PART IV-.VERIFICATIONOF CLOSURE Reexamination Report number, ifApplicable:
Signature of ISO Coordinator.
Date:
Comments:
cia IL-SQ rf.citg/;estd,I fi9 Cats 'fti/
E.
Verification of Complete Corrective Action Required by Disposition Signature of ISI Program Owner:
y itgg Caisjft/iI C fiifitltstltatbisti (tp ggttptptttih/t i/sc,r.
$.>1 to-5-'iii la< I'I TVA40580 [02-98]
Page1 of1 SPP-9.1-2 [02-27-'98]
ll:
il C
'll
'I
TVA WALL THICKNESS P ROFI LE SH EET c D - 8'3 o cop - 9 per ogi REPORT NO:
PROJECT:
WELD NO position 0'0'80'70'ecord Thickness Measurements As indicated,, Including Weld Width, Edgo-To-Edge At0'YSTEM.
Wold Centorllne IF F.s-~t~F F
1 2
3 4
Sldo e Weld Edge
Side Q4.
Ftow CROWN HEICHTI CROWN WIDTH:
DIAMETER:
WELD LENCTH:
-.:.::.--. If&."Q&tFP-g
)II,("- ger.Z'
..~
--- --fit l g~Nq6::I (IN..-..PIrl@SI9II IS jjg IIFGRMAYIGN:GRAIL"
- ~/j =:5Ii'L'..
v
~ 6 = [(p.tr' thiIkQSIFIASLE PrqfyLE glory.g~lq-l'IrrtwIIIQ WIAigg IOr,[.$I; ls lo'lT EXAIIINEA:
LEVEL:
DATE:
TVA 19644 IIV$ 59)
S.
s REVIEWED 8 LEVE DATE' NII:
DATE ~
PAGE OF
0 4>
t WFt'
~r 1-1d;1995 2t32AW F~ T'v4 BFNP ISI 285 729 d653 V/ALL iHICKNESS PROFILE SHEET CD-Q30joS-9POO(o I RO P. 3 REPORT t(O:
PROJECT:
UN(i:
WELD NO(
GR 3 SYSTEM:
R t=C.I C
pos(t(on 0
~
9 0'80'70'.24 Record Th(ckness Meesurernynts As (ndlceted, Inc(udlng Weld Width, Edge To-Edge At 0'~
~
v'(de We(d Center(Inc 4
a 2.S e We(d Edge
@ Std CROWN HEICHT:
CROWN W(OTH(
OlAMETER:
WELD I.EHGTH(
~
~
~
~
f]go
~
~ >>
~
I Alllr(ER:
LEVEL'ATE:
Tvs (PA4 tiT 5 N)
AEVIEWEP BY(
LEvEL:
OATE Attttt 0ATE r
cE d<
tees err ~ +
285 7"-9 r(653 P.883
0
~l'"
1-1'd-1995 2-32%1 F~TVA BFNP ISI 285 729 d653 c.
=
A FLAN ORIENTATION
{VIEW FROM VALVE - LOOKING DOWN STREAM)
~> <~<<~ -9 Book I g 9'0 ka.b" lSs' 5.'I 5
5 t..as-"
'3OC
/zo" 9s" 55P-2'9-ITS 69:86 265 729 4653 p,H-P.GG2
0 "7
<>-%30( '8-') poo6 I go tm pc-CRACK (C)
COPYRIGHT 1984, 1990 STRUCTURAL INTEGRITY ASSOCIATES, INC.
SAN JOSE, CA (408) 978-8200 VERSION 2.1 i%If DE51GM~<Z 0 Ta~+
g CHK~P~~
OAI5 Date:
1-Oct-1998 Time: 13:39:
4.36 STRESS CORROSION CRACK GROWTH ANALYSIS IGSCC INDICATION AT WELD GR-3-63 INITIALCRACK SIZE~
0.2000 WALL THICKNESS~
1.2000 MAX CRACK SIZE FOR SCCG 0.7200 STRESS CORROSION CRACK GROWTH LAW LAW ZD C
N
-Kthres K1C NRC 3.590E-OB 2.1610 0.0000 200.0000 STRESS COEFFICIENTS CASE ZD CO Cl 28PDWTH 7.2730 0.0000 Kmax CASE ZD SCALE FACTOR 28PDWTH 1.0000 C2 0.0000 C3 0.0000 TIME 52560.0 TIME INCREMENT 730.0 PRINT INCREMENT 730.0 crack, model:CIRCUMFERENTIAL CRACK ZN CYLINDER (T/R~O ~ 1)
CRACK -------STRESS INTENSITY FACTOR-SZZE CASE 28PDWTH 0.0144 0.0288 0 '432 0.0576 0 '720 0.0864 0.1008 0.1152 0.1296 0.1440 0.1584 0.1728 0.1872 0.2016 0.2160 0.2304 0.2448 0.2592 0.2736 0.2880 0.3024 0.3168 0.3312 1.714 2.432 2.989 3.463 3.884 4.269 4.627 4.962 5.300 5.636 5.962 6.281 6.593 6.900 7.202 7.500 7.805 8.130 8.454 8.777 9.100 9.423 9.746
0
<> G3o&8-990orl 10.069
- 10. 393 0.3456 0.3600 0.4032 0.4176 0.4320 0.4464 0.4608 0.4752 0.4896 0.5040 0.5184 0.5328 0.5472
- 0. 5616 0.5760 0.5904 0.6048 0.6192 0.6336
- 0. 6480 0.6624 0 '768 0.6912 0.7056 0.7200
- 11. 582 11.985 12.392 12.801 13.214
- 13. 630 14.064 14.510
- 14. 959 15.412 15.869 16.330 16.795 17.264
- 17. 749 18.263 18.782 19.306 19.834 20.366 20.903 21.44S 21.991 0.3744 10.786 0.3888 11.183 laY IIEstsN~+~
0 a~ lO I-9jt CHKO~Z DATE/~
TIME 730.0 1460.0 2190.0 2920.0 3650.0 4380.0 5110.0 5840.0 6570.0 7300.0 8030.0 8760.0 9490.0 10220.0 10950.0 11680.0 12410.'0 13140.0 13870.0 14600.0 15330.0 16060.0 16790.0 17520.'0 18250.0 18980.0 19710.0 20440.0 21170.0 21900.0 22630.0
. 23360.0 24090.0 KMAX
- 6. 87 6 ~ 90
- 6. 94
- 6. 97 7.01 7.05 7.08 7.12 7.16 7.20 7.24 7.28 7.32 7.36 7.40 7.44 7.48 7.52 7.56 7.'61
- 7. 65 7.70 7.74 7.79 7.84 7.89 7.94 7.99 8.05 8.10 8.15 8.21 8.27 DA/DT 2.308E-06 2.334E-06 2.360E-06 2.387E-06 2 '14E-06
- 2.441E-06 2 '69E-06 2.498E-06 2.527E-06 2.557E-06 2.586E-06 2.617E-06 2.647E-06 2.679E-06
- 2. 711E-06 2.743E-06 2.776E-06
'2.811E-06 2.846E-06 2.882E-06 2.918E-06 2.956E-06 2.994E-06 3.033E-06 3.074E-06 3.117E-06 3.161E-06 3.206E-06 3.252E-06 3-299E-06 3.347E-06 3.396E-06 3.446E-06 DA 0.0017 0.0017 0.0017 0.0017 0.0018 0.0018 0.0018 0.0018 0.0018 0.0019 0.0019 0.0019 0.0019 0 '020 0.0020 0.0020 0.0020 0.0021 0.0021 0.0021 0.0021 0.0022 0.0022 0.0022 0.0022 0.0023 0.0023 0.0023 0.0024 0.0024 0.0024 0.0025 0.0025 A
A/THK 0.2017 0.168 0.2034 0.169 0.2051 0.171 0.2069 0.172 0.2086 0.174 0.2104 0.175 0.2122 0.177 0.2140 0.178 0.2159 0.180 0.2177 0.181 0.2196 0.183 0.2215
- 0. 185 0.2235 0.186 0 '254 0.188 0.2274 0.189 0.2294 0.191
- 0. 2314 0. 193 0.2335 0.195 0.2356 0.196 0.2377 0.198 0.2398 0.200 0.2419 0.202 0.2441 0.203 0.2463 0.205 0 '486 0.207 0.2509 0 '09 0.2532 0.211 0.2555 0.213 0.2579 0.215 0.2603 0.217 0.2627 0.219 0.2652 0..221 0.2677 0.223
<>-a3045'l FoOs t Rc 24820.0 25550.0 26280.0
'27010.0 27740.0 28470.0 29200.0 29930.0 30660.0 31390.0 32120.0 32850.0 33580.0 34310.0 35040.0 35770.0 36500.0 37230.0 37960.0 38690.0 39420.0 40150.0 40880.0 41610.0 42340.0 43070.0 43800.0 44530.0 4S260.0 45990.0 46720.0 47450.0 48180.0 48910.0 49640.0
$ 0370.0 51100.0 51830. 0 52560.0
- 8. 32 8.38 8
F 44 8.50 8.56
- 8. 62
- 8. 68 8.74 8.81 8.87 8.94 9.00 9.07 9.14 9.21 9.28 9.35 9.43 9.50 9.58'.66 9.74 9'2 9.90 9.98 10.07
- 10. 15 10.24
- 10. 33
- 10. 43 10.54 10.66 10.78 10.90 11.03 11.15 11.29 11.42 11.S7 3 '97E-06 3.549E-06 3'603E-06 3.657E-06 3.713E-06 3.771E-06 3.829E-06 3.890E-06 3.951E-06 4.014E-06 4.079E-06 4.145E-06
- 4. 213E-06 4.282E-06 4.354E-06 4.427E-06 4 '02E-06 4.579E-06 4.658E-06 4.739E-06 4.822E"06 4 908E-06 4.996E-06 5.087E-06 S.180E-06 5.275E-06 5.374E-06
,S.475E-06 5.579E-06 5.694E-06 5 '29E-06 5.969E-06 6.114E-06 6.265E-06 6.423E-06 6.S86E-06 6.757E-06 6.936E-06 7-121E-06 0.0026 0.0026 0.0026 0.0027 0.0027 0.0028 0.0028 0.0028 0.0029 0.0029 0.0030 0.0030 0.0031 0.0031 0.0032 0.0032 0.0033 0.0033 0.0034 0.0035 0.0035 0.0036 0.0036 0.0037 0.0038 0.0039 0.0039 0.0040 0.0041 0.0042 0.0043 0 '044 0.0045 0.0046 0.0047 0.0048 0.0049 0.0051 0;0052 0.2703 0.2729 0.2755 0.2782 0.2809 0.2836 0.2864 0.2893 0.2922
- 0. 2951 0.2981 0.3011 0.3042 0.3073 0.3105 0.3137 0.3170 0.3203 0.3237 0.3272 0.3307 0.3343 0 '379 0.3417 0.3454 0.3493 0.3532 0.3572 0.3613 0.3654 0.3697 0.3740 0.3785 0.3831 0.3878 0.3926 0.3975 0.4026 0.4078 0.225 0.227 0.230 0.232 0.234 0.236 0.239 0.241 0.243 0.246 0.248 0.251 0.253 0.256 0.259 0.261 0.264 0.267 0.270 0.273 0.276 0.279 0.282 0.285 0.288
- 0. 291 0.294 0.298 0.301 0.305 0.308 0.312 0.315 0.319 0.323 0.327 0.331 0.335 0.340
Oi
~AC tm pc-CRACK (C)
COPYRIGHT 1984, 1990 STRUCTURAL INTEGRITY ASSOCIATES, INC.
SAN ZOSE, CA (408)978-8200 VERSION 2.1 aav mes>>v+7'>>c~>>'
g tHxo~~ mani~~
Date:
1-Oct-1998 Time: 13:15:36.67 FATIGUE CRACK GROWTH ANALYSES IGSCC INDICATION AT WELD GR-3-63 INITIALCRACK SIZE~
0.4078 WALL THICKNESS~
1.2000 MAX,CRACK SIZE FOR FCG 0.7200 PARIS CRACK GROWTH LAW:
da/dN ~ c * (dK) "n where dK ~ Kmax - Kmin dK > dKthres Kmax < Klc CURRENT LAWS LAW ID C
1 1.589E-08 n
3.300 dKthres 0.000 Klc 200.000 STRESS COEFFICIENTS
.CASE ZD CO Cl C2 C3 28PDWTH 7.2730 0.0000
'0.0000 0.0000 NUMBER OF CYCLE BLOCKS~
PRINT INCREMENT OF CYCLE BLOCK~
SUBBLOCK 1
NUMBER OF CALCULATION CYCLES INCREMENT 30 1
PRINT ZNCREMENT 1
FCG LAW ZD 1
Rnax Kmin SUBBLOCK CASE ZD SCALE FACTOR CASE ZD SCALE FACTOR 1
28PDWTH 1.0000 28PDWTH 0.0000 crack model:CIRCUMFERENTIAL CRACK ZN CYLINDER (T/R~0.1)
CRACK -----------
STRESS INTENSITY FACTOR
'SIZE
'ASE 28PDWTH 0 '144 0.0288 0.0432 0.0576 0.0720 0.0864 0.1008 0.1152 0.1296 0.1440 0.1584 1.714 2.432 2.989 3.463 3.884 4.269 4.627 4.962 5.300 5.636 5.962
I,
c'9-Q3068-VS oo & I RG 0.1728
- 0. 1872 0.2016 0.2160 0.2304 0.2448 0.2592 0.2736 0.2880 0.3024
- 0. 3168 0.3312 0.3456 0.3600 0.3744 0.3888 0.4032
- 0. 4176
.0.4320 0.4464 0.4608 0.4752 0.4896 0.5040 0.5184 0.5328 0.$ 472 0.5616 0.5760 0.5904 0.6048
- 0. 6192
- 0. 6336 0.6480 0.6624 0.6768 0.6912 0.'7056 0.7200 6.281
- 6. 593 6.900 7.202 7.500 7.805 8.130 8.4S4 8.777 9.100 9.423 9.746 10.069 10.393 10.786 11.183 11.582 11.985 12.392 12.801 13.214
- 13. 630 14
~ 064
- 14. 510 14.9S9 15
~ 412 15.869 16.330 16.795 17.264 17.749 18.263 18.782 19.306 19.834 20 '66 20.903 21.445 21.991 RKV DRSlGt4 oar~lD- -~g Q
cloCD DATE~~~
TOTAL SUBBLOCK CYCLE CYCLE KMZN DELTAK R
DADN DA A A/T BLOCK 1
1 2
3 4
5 6
7 8
9 10 11 12 13 14 15 16 17 18 19
~ 4.5 6
7 8
9 10 11 12 13 14 15 16 17 18 19 11.71 11.71 11.71 11.72 11.72 11.72 11.72 11.72 11.72 11.72 11.73 11.73 11.73 11.73
- 11. 73 11.73 11.74 11.74 11.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 F 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.71 11.71 11.71 11.72 11.72 11.72 11.72 11.72 11.72 11.72 11.73 11.73 11.73 11 ~ 73
- 11. 73 11.73 11.74 11.74 11.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.3E-OS 0 ~ 0001 5.3E-OS 0.0001 5.3E-05 0.0001 5.3E"05 0.0001 5.3E-OS 0.0001 5.4E-OS 0.0001 5.4E-OS 0.0001 5.4E-OS 0.0001 5.4E-OS 0.0001 5.4E-OS 0.0001 5.4E"OS 0.0001 5.4E-05 0.0001 5.4E"05 0.0001 5.4E-OS 0.0001 5.4E-05 0.0001 5.4E-OS 0.0001 5.4E-OS 0.0001 5.4E-OS 0.0001 5.4E-OS 0.0001 0.4079 0.4079 0.4080 0.4080 0.4081 0 '081 0.4082 0.4082 0.4083 0.4083 0.4084 0.4084 0.4085 0.4085 0.4086 0.4087 0.4087 0.4088 0.4088 0.34 0.34 0.34 0.34 0.34 0'4 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34
0 l
20 21 22 23'4 25 26 27 28 29 30 20 21 22 23 24 25 26 27 28 29 30 11.74 11.74 11.74 11.74 11.75 11.75 11.7$
- 11. 75
- 11. 75 11.75 11.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
F 00 0.00 0.00 11.74 11.74 11.74 11.74 11.75 11.7$
- 11. 75 11.75 11.75 11.75 11 ~ 75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S.4E-OS 5.4E-OS 5.4E-05 5.4E-OS
$.4E-OS
$.4E-OS 5.4E-OS 5.4E-05 5.4E-OS
$.4E-OS S.4E-05 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
'0. 0001 0.0001 0.0001 0.4089 0.4089 0 '090 0.4090 0.4091 0.4091 0.4092 0 '092 0.4093 0.4094 0.4094 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 RIV DISIGN~K QAM~IO I I
Q CNCD~~
DATI~+
A
<E -QSOGS -')MOOG
< RO pc-CRACK (C)
COPYRIGHT 1 984 ~
1 990 STRUCTURAL INTEGRITY ASSOCIATES, ZNC.
SAN JOSE, CA (408) 978-8200 VERSION 2.1 RtV DL%tGN DATXL~
g
~a~ aavu~g Date:
1-Oct-1998 Time: 13: 49: 41. 28 ALLOWABLE FLAW SIZE EVALUATIONS USING ASME SECTION XZ~ ZWB-3640/50 PROCEDURES AND CRZTERIA FOR CZRCUMFERENTZAL CRACKS ZN STAINLESS STEEL PIPING MATERIAL ZS SPECIFIED AS SHIELDED METAL ARC WELD DEFAULT PROPERTIES:
DESIGN STRESS 16.95 FLOW STRESS 50.85 ZGSCC INDICATION AT WELD FLAW GR-3-63 USER SUPPLIED MATERIAL PROPERTIES:
DESIGN STRESS 16.82 FLOW STRESS 50.46 PIPE GEOMETRY:
OUTER DIAMETER ~
WALL THICKNESS CRACK GEOMETRY:
CRACK DEPTH CRACK LENGTH 28.1460 1.2000 0.4094 7.1234 THE FLAWED PIPE IS ASSUMED TO FAIL DUE TO UNSTABLE DUCTILE TEARING (EPFM)
THE ALLOWABLE FLAW SIZE ZS DETERMINED USING CODE TABLES AND DEFAULT SAFETY FACTORS FOR NORMAL OPERATING (INCL. UPSET
& TEST)
CONDITIONS MEMBRANE STRESS (Pm)
BENDING STRESS (Pb)
EXPANSION STRESS (Pe)
DESIGN STRESS (Pm + 'Pb) /Sm STRESS RATIO M FACTOR a/t 1/circumference ALLOWABLE a/t.
6 '490 (SAFETY FACTOR ~
2.770) 1.2450 (SAFETY FACTOR ~
2.770) 0.7370 (SAFETY FACTOR ~
1.000) 16 '200 0.4455 0.4805 (DOES NOT INCLUDE S.F.)
1.0415 0.3412 0.0806 0.6000 1/circumference 0.00 0.10 0.20 0.30 0.40 0.50 ALLOWABLE a/t 0.6000 0.6000 0.6000 0.6000 0.6000 0.4900
4i
ENCLOSURE 3
TENNESSEE.VALLEY AUTHORITY BROWNS FERRY NUCLEAR PLANT (BFN)
UNIT 3 3-ISI-0328-0 See Attached.
0
CR-J-60 (OL)~
CR-J-60-L S~
CR-J-dt i+
RVR-J-002-COT 5~
RVR J 002~IS~
~e 010 2
2
) 00 tt8P 2 CO tt6!I-)
CR-J-59 (OL)
KR J 50-LS-I~ Q HI I 0
~
A'R-J SD-LS 2~
~ +~ +0~
4'OO
).0 GO
.oo Stl Rrit J-DO?-CODI iRVR-J-002-CDDJ N
1
>>-e RtR-J-002 C016 REFERENCE DRAWl.
TVl 47KIE~ c J CE ISJF?$ 4 KELLOCC er 2-180 NOTE:
THIS DetlrlHC SeorPSrerS CHM 2IJj 0 ALL S>1EETS MATEPIAL SPEClr! CA?I&ISA AJ?d.
I'P Jot Z O.JJ7 HOM rALL THK. (SS) 2d X I IJd HOAt rALL IHK ISSI Stlgt 2d: X I.J22 HOLI.
VALL INK. '(SS) DISCHA sAVOJ rpJI6NC a
12 x 0.602'IH. rlLL INI'ECRAL RED.
TEE 0. 9do MIN. Vlt 2d' 22 CROSS 0.980 MIH.
VAI,L 28 X 2V IHECRAL TE'E' I.172. MIH. t ASME CC I (EQliVALE~T)
CR-J-6I-LS~
p RtR-J 002-C02V RVR-J-002-COtd Rr0-J-002-C022 g RVR J 002-C020~
l>
>lee.>.0!l>-eel>M
>>>...L>.!:l~ L
>r0-J-002-C02J RVR-J-002-CC25~
~ RVR-J-002-0011
~ ~BE'NT INTEGRAL TEE'2 r/12 X22 RED.(2 TTP.)
SEE DETAIL I
~ RVR J-002-0019
~I tnt 2d X 22 CROSS r/22' 1?
RED.
SEE DETAIL. 8 i ~o DETAIL 'Hr +6'2 a CIA 0 GINg KR JSI L 1
CR-J-SJA,96 4
-J-SJB-KR J-Sl-LS-I ~M KP-J-51-LS-2 ~
CR-J-62~g FCV66-11 CR-J-27 (OL)
FCVdd 71-28'R-J-d
+
r KR JSJ
'C3 A ~
OrCONTAMINATION L liVE RBC-J-2~
CR-J-JO KR-J-52
)
KR J 2J KR J 52 5 I 3
(
KR-J-52-LS-2 KR-J-24 LS~ r KR-J-26 1-CR-J-JJ 7
Qr<<
~KR J-24
,1
, ~~~ CR-J-29-LS-I
~ CR-J-29-LS-2 l
~ CR-J-29
~ FCV68-7~
FCV68-79=((C CR-J-2d.
~ 1eaeteet
+cele>15 CC 1 I MA~ 1tt1 C
~IIIII
~ $110
~ II CR-J-27-LS
<<<<?..t:0 At XR N N Ci FIELD VELD 1+
ONIT NP.
STSTSM
"-"'LL A10 NISINI KLSEAAtt EO A'I 8000
~ eee
~ le
~
>e ~ I e<<<<
S Ifk>e1fttff v>ttfr AVI1e0etttr
'eee e.
e e>e e>e
~
BROKNS FERRr liVCLEAR PLANT UNIT J RECIRCULATION STSTEV
+>ee el <<<<\\ ~ ~ a~ ~ ~
~ e<<
~ >
~ ~ e ~ 11
~
l
<<r et I ~ ~ 1
<<e>
ar 1-OJ 8
CCO OETllL 8 -
OWE PrlCr Sorgtlf FORCIHC0 IIIIIIIIIIIIIIIIIIIIIIIIIIIII
0 4l'