ML18039A557

From kanterella
Jump to navigation Jump to search
Rev 0 to CD-Q3068-980061, Evaluation of IGSCC Indication at Weld GR-3-63.
ML18039A557
Person / Time
Site: Browns Ferry Tennessee Valley Authority icon.png
Issue date: 10/04/1998
From:
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML18039A556 List:
References
CD-Q3068-980061, CD-Q3068-980061-R, CD-Q3068-980061-R00, NUDOCS 9810090026
Download: ML18039A557 (46)


Text

ENCLOSURE 2 TENNESSEE VALLEY AUTHORITY BROWNS FERRY NUCLEAR PLANT (BFN)

UNIT 3 TVA CALCULATION CD-Q3068-980061 See attached.

9810090026 981065 PDR ADOCK 05000296 P PDR

TVAN CALCULATIONCOVERSHEET

Title:

Evaluation of IGSCC Indication at Weld GRQW3 Plant: BFN Unit: 3 Preparing Organization: Key Nouns (For RIMS)

Site En ineerih Civil Pi e Anal sis, IGSCC, IGSCC Weld, Fracture Mechanics Branch/Project Identifiers: Each time these calculations are issued, preparer must ensure that the original (RO)

RIMS accession number fs filled in.

CD-Q3068-980061 Rev for RIMS use RIMS Accession Number Applicable Design Document(s): RO (see references) R1 SAR affected: UNID system(s): R2 0Y~ rNe Section(s): 068 R3 Quarrty Rehted? Yes No Revision 0 R1 R2 R3 0 DCN No. Safety rehtcd? Yes No N/A 0 Prepared These csrcuhucns ccntsin unverNed assumption(s) that

/0- -9 must be veiled hler? 0 a C ecked These csrcuhticns contain Yes No

.4.~~.

Reviewed

/cr r+-3'S special requirements andfcr rrmitine ccnditicns? 0 0 These cahuhUons contain a Yes No

.M~~go~ 5'8 design output attachment?

Approved Cshuhticn Rsvhion:

0 Entire Cahulaticn Date 0 Selected pspes 8 Ncl Appacable Statement of Problem:

An IGSCC indication has been Identified at weld GR4%3. An evaluation must be performed to determine If the weld will be acceptable for one or more fuel (operating) cycles of Browns Ferry unit 3.

Abstract:

This calculation evaluates an IGSCC Indication at weld GRQ43. The weld Is located on Reactor Water Recirculation loop B at the interface between valve 3-FCV48-77 (downstream side) and the 28" diameter piping. This calculation utilizes the pc-CRACK computer program to calculate the IGSCC growth rate, the fatigue crack growth rate, and to perform an endwf-period flaw stability evaluation.

The results of this calculation demonstrate that the indication at weld GRQ43 is acceptable for at least three additional operating cycles. The weld can also be considered acceptable for three additional cycles of operations after any future weld inspections if the crack is found not to have increased from its current size.

p Microfilm and relum calculation to Calculation Ubrary. Address: p Microfilmand destroy.

p Microfilm and return calculation to:

Page i

Ol TVAN CALCULATIONRECORD OF REVISION

Title:

Evaluation of IGSCC Indication at Weld GR<<3 CD-Q3068-980061 Revision Date No. DESCRIPTION OF REVISION Approved Initial issue.

Total pages: 20 Page n

0 ~I TVAN CALCULATIONDESIGN VERIFICATION (INDEPENDENT REVIEW) FORM CD-Q3068-980061

~

~ Calculation No. Revision Method of design verification (independent review) used:

1. Design Review
2. Alternate Calculation
3. Qualification Test Comments:

The above noted calculation revision has been reviewed and determined to be technically adequate based on the use of accepted sound engineering practices and techniques.

i~a<

ndependent Reviewer Date Page iii

Ik

>LI

TVAN CALCULATIONCLASSIFICATION FORM CALCULATION INFORMATION:

Plant BPN Unit 3 tdantifiar COW3068-980061 Rev. 0 Title Evaluation of IGSCC Indication at Weld GR<%3 System(s), Component, Feature or Subject of Catculation:

SYSTEM/DESCRIPTION AS NEEDED H Safety system Reactor Water Recirculation System (068)

Q Safety-related feature Q Nonsafety system Q Nonsafety-related feature H Quality-related system Q Quality-related feature Q Non Quality related system Q Non Quality related feature Q Plant environment (EQ, etc.)

Q Appendix R Q Civil structures Q Instrumentation (PAM, etc.)

Licensing Q Other Calculation Category: B01, B06 Calculation Classification:

H Essential D File Only C3 Cancel Engineering Output Q Desirable Q Superseded Obsolete Justification: This calculation documents acce tance of a weld flaw in a safe -related I ln s stem. This calculation shoutd therefore be classified as essential.

Concurrences:

Preparer r Checker Date /if- dli ~g f Verifier Date /o-+ - ~

Page iv

4)

SUBJECT:

Evaluation SCC Indication at Weld GR-3-63 BFN CALCULATION CD- 3068-980061 TABLE OF CONTENTS Page No.

Purpose.

References .

Assumptions .

Special Requirements/Limiting Conditions ..

Design Input Data Computations and Analyses Supporting Graphics . N/A Summary of Results.

Conclusions.

Appendices .................... N/A Attachments Attachment A, 'Notice of Indication No. U3C8-0120. Al Attachment B, pc-CRACK Stress Crack Growth Analysis Bl Attachment C, pc-CRACK Fatigue Crack Growth Analysis Cl Attachment D, pc-CRACK Allowable Flaw Size Evaluation Dl Rev PD Date o- - 8 PD Date Rev PD Date O CK Datel~-

f-O'8'ev CK Date CK Date Page v

4i 4i

SUBJECT:

Evaluation SCC Indication atWeld GR-3-63 BFN CALCULATION CD- 3068-980061 PURPOSE The purpose ofthis calculation is to determine whether weld GR-3-63, with an Intergranular Stress Corrosion Cracking gGSCC) indication, willbe acceptable for one or more fuel cycles without performing a weld repair.

REFERENCES

1. ASME Boiler and Pressure Vessel Code,Section XI, IWB-3640, 1989 Edition
2. Generic Letter 88-01, 'NRC Position on IGSCC in BWR Austenitic Stainless Steel Piping"
3. NUREG-0313 Rev. 2, "Technical Report on Material Selection and Processing Guidelines for BWR Coolant Pressure Boundary Piping"
4. Computer Program "pc-CRACK", Version 2.1, Structural Integrity Associates, San Jose, California
5. EPRI Special Report NP-4690-SR, "Evaluation of Flaws in Austenitic Steel Piping"
6. Calculation CD-Q3068-922489 Rev. 11, "BFN Unit 3 Stress Report for Recirculation Piping Loop B, Stress Problem No. Nl-368-2R"
7. Notice of Indication No. U3C8-0120
8. ASMB Boiler and Pressure Vessel Code,Section III, 1989 Edition
9. Induction Heating Stress Improvement, Research Project T1 113-1, Final Report, March 1983, General Electric, San Jose, California, page 4-95 ASSUMPTIONS None.

SPECIAL REQUIREMENTS/LIMITINGCONDITIONS There are no special requirements or limiting conditions associated with this calculation.

Rev PD tgP Date~kg Rev PD Date Rev PD Date CK Date /o W-gg CK Date CK Date Page

4l: P

~.h

SUBJECT:

Evaluation o SCC Indication at Weld GR-3-63 BFN CALCULATION CD- 3068-980061 DESIGN INPUT DATA Outside pipe diameter = 28.146" (reference 6)

Pipe wall thickness = 1.2" (reference 7)

Design pressure (N/U)= 1148 psi (reference 6)

Peak pressure (E/F)= 1361 psi (reference 6)

Pressure stress, design = 6249 psi (reference 6)

Pressure stress, peak = 7409 psi (reference 6)

Section modulus = 626.7. in3 (reference 6)

Design temperature = 562'F (reference 6)

Pipe material = A358 TP304'l 1 (reference 6)

S = 16.818'ksi (@ 562'F) (reference 8)

Current flaw depth = 0.2" (reference 7)

Current flaw length = 1.7" (reference 7)

Applied bending moments (reference 6, microfiche TVA-F-N000757, node 322):

Load Case ~Mtt-tb ~Mz R-lb Deadweight 10133 11037 Thermal (Tl) '19137 6913 Thermal (T2) 11964 10060 Thermal (T3) 28132 21399 Thermal (T4) 21979 16754 Thermal (T5) 1898 3690 Thermal (T15) 15179 21967 Weld Overlay Shmdcage 344 1761 OBE SAM, X direction 50 954 OBE SAM, Z direction 5 419 OBE inertia, XYdirections 11799 48627 OBE inertia, YZ directions 12973 28536 By using the above moments in the equation 12(My + Mz )': Z, where Z = 626.7 in, the following stresses were calculated for use in the crack growth analysis:

Deadweight = 0.287 ksi Thermal = 0.677 ksi goad case T3)

Weld shrinkage =,'.034 ksi OBE SAM = 0.026 psi (summation of both SAM load cases)

OBE inertia = 0.958 ksi Rev O

PD~cf C

Date~o.

Date/~.~

~ Rev PD CK Date Date Rev PD CK Date Date Page

4l :4l

,h

  • I 3J

SUBJECT:

Evaluation SCC Indication at Weld GR-3-63 BFN CALCULATION CD- 3068-980061

~ COMPUTATIONS AND ANALYSES Stress Corrosion Crack Growth Anal sis The stress corrosion crack growth analysis was performed by the computer program pc-CRACK (reference 4)

- using the crack growth rate law,parameters specified in Generic Letter 88-01 (i.e., C = 3.59x10'nd n = 2.161).

For analysis convenience, the maximum flaw depth of 0.2 inches was conservatively considered to extend the pipe circumference. Based on the ratio ofpipe wall thickness to radius, Model C (Circumferential 360'round Crack in a Cylinder) was selected f'rom the pc-CRACK Linear Elastic Crack Models. The stress considered in this analysis was the sum ofthe stresses due to internal pressure (design condition), deadweight, thermal expansion, weld overlay shrinkage, and OBE seismic anchor movements. The resulting stress value is 7.273 ksi.

Since this weld had been stress improved using the Induction Heating Stress Improvement Process {IHSI),

residual stress was considered to be zero. This is justified since IHSI produces compressive axial residual stresses up to approximately 50% of wall thickness (reference 9). The indications in weld GR-3-63 are less than 20% of the wall thickness. The compressive residual stresses tend to inhibit IGSCC growth.

The pc-CRACK Stress Corrosion Crack Growth option, from the Linear Elastic Fracture Mechanics Module, was selected for evaluation ofthe IGSCC crack growth. An evaluation period of 52,560 hours0.00648 days <br />0.156 hours <br />9.259259e-4 weeks <br />2.1308e-4 months <br /> (6 years or 3 fuel cycles) was used, with crack size calculated at increments of 730 hours0.00845 days <br />0.203 hours <br />0.00121 weeks <br />2.77765e-4 months <br /> (1 month). The results contained in Attachment 8 report a crack depth at the end of this evaluation period of 0.4078", which is below the ASME Section XI maximum allowable crack depth of 0.72" (60% of wall thickness).

Fati e Crack Growth Anal sis The stress corrosion crack growth analysis discussed above deteanined the weld law size after three complete fuel cycles. The fatigue crack growth analysis was therefore also performed considering three fuel cycles of operation. Conservatively, the initial flaw size for the fatigue crack growth analysis was assumed to be equal to the end-of-period law size calculated in the stress corrosion crack growth analysis.

The stress value considered in the fatigue crack growth analysis was the same as that used in the corrosion crack growth analysis (7.273 ksi) which is conservative since it includes the noncyclic deadweight and weld shrinkage

. stresses. Based on review of reference 6, thirty stress cycles were considered sufhcient to conservatively represent the number of stress cycles associated with the next three complete fuel cycles.

The loading profile and the stress intensity factors were determined using the Linear Elastic Fracture Mechanics Module of pc-CRACK. The stress intensities were used as input to the pc-CRACK Growth Evaluation Module using the Fatigue Crack Growth option. The crack model selected was Model C, Circumferential Crack in a Cylinder { /R = O.l). The Paris Law, Option A, was selected (C = 1.589xl0'nd n = 3.3). The fatigue crack law used is consistent with reference 5.

The pc-CRACK Fatigue Crack Growth Analysis option, from the Linear Elastic Fracture Mechanics Module, was selected for evaluating the crack growth due to fatigue. The results documented in Attachment C show that fatigue will produce an additional 0.0016" of crack growth, resulting in an endwf-period crack depth of 0.4094".

Rev Patte Date~to Rev PD Date Rev PD Date 0 CK D ates-+~ CK Date CK Date Page 3

4l 41 li

SUBJECT:

Evaluation SCC Indication at Weld GR-3-63 BFN CALCULATION e

CD- 3068-980061 Allowable Flaw Size Evaluation Following the methodology of reference 1, the allowable flaw depth to wall thickness ratios were calculated using the pc-CRACK Allowable Flaw Size option from the Codes and Standards Module. Under the Allowable Flaw Size option, Circumferential Crack/Stainless Steel, SMAW process, was selected. The following stress values were input into pc-CRACK for use in the weld flaw stability evaluation:

(membrane stress due to internal pressure)

(bending stress; deadweight plus OBE)

(expansion stress; includes thermal, weld shrinkage and SAM)

(material allowable stress)

'louie end-of-period flaw depth input for evaluation in pc-CRACK was 0.4094". This flaw depth represents the cumulative effects of crack growth due to IGSCC and fatigue for an evaluation period of 52,560 hours0.00648 days <br />0.156 hours <br />9.259259e-4 weeks <br />2.1308e-4 months <br />. The equation shown below, which is consistent with the requirements in reference 3, was used to determine the end-of-period flaw length. The resulting flaw length was deterinined to be 7.1234".

Lr = ar(L;/Q(ar/Q where Lr = final flaw length ar = final flaw depth L; = initial flaw length

~

a; = initial flaw depth

SUMMARY

OF RESULTS

'louie results ofthe analysis are provided in Attachment D. These results show that with an end-of-period flaw depth of 0.4094", and flaw length of 7.1234", the allowable flaw depth to wall thickness ratio willnot be exceeded and the weld willremain stable. (Note: The evaluation was performed only for the normal/upset condition. This is justified since the normal/upset condition safety factor is double that ofthe emergency/faulted condition, whereas by inspection the stresses associated with the emergency/faulted condition willbe considerably less than twice the normal/upset condition stresses.)

CONCLUSIONS Results ofthis calculation demonstrate that weld GR-3-63 is acceptable for a minimum of three additional fuel cycles. The weld can also be considered acceptable for three additional fuel cycles after any future weld if inspection the crack is found not to have increased &om its current size.

Rev PD~C Date te- i - a g Rev PD Date Rev PD Date 0 C Date~a- ~~g CK Date CK Date Page

i C

TVAN STANDARD SPP-9.1 PROGRAMS AND ASME SECTION XI Date 2-27-99 PROCESSES +wf~ Page 97 of 109 We'W~87 roN NOTIFICATION OF INDICATION FORM PART I - FINDINGS Not No. Q~t'f t-7/Optant/Unit 9 tSt Dwg./Sh. No. g ~~- (99Rir~ /(SU.DtXl ~Z Examination Report No.

escri tionoflndicat'etchPh

/ (0 ogr Component tD ph'equire forCI e2F rification):

Ci-//C. I/\/D/Of 'Sg g f93

/pz Signature of Examiner/Certification Level: /Date: 'F 2 Signature of ISO Coordinator (Field Supervisor): 5'/Date Signature of ISI Program Owner: /Date:

PART II - DISPOSITION 5.

Administrative control document number (P R, WRIWO) applicable Disposition Prepared/Recorded By:

I (a~ur< L.. woo<

rg. ~~ Date: h 6 98 to-)gal PART III - ADDITIONALEXAMINATIONS Additional Sample Required: Q Yea i/27/o r (Attach list of items in. additional sample, if yes.) ISI Prog m Owner Date Successive Examination Required: es QNo ib.l <0a49 ISI Progra Owner Date PART IV -.VERIFICATION OF CLOSURE Reexamination Report number, if Applicable:

Signature of ISO Coordinator. Date:

Comments: cia IL-SQ rf.citg/;estd,I fi9 Cats 'fti/ E.

Verification of Complete Corrective Action Required by Disposition Signature of ISI Program Owner: la< I'I y itgg Caisjft/iI C fiifitltstltatbisti (tp ggttptptttih/t i/sc,r.

$ .>1 to-5-'iii TVA 40580 [02-98] Page1 of1 SPP-9.1-2 [02-27-'98]

ll:

C il

'll

'I

c D - 8'3 o cop - 9 per og REPORT NO:

i WALL THICKNESS TVA P ROFI LE SH EET 0'YSTEM.

PROJECT: WELD NO Thickness Measurements As indicated,, Including Weld Width, Edgo-To-Edge At position 0'0'80'70'ecord IF 1

F.s-~t~F 2 Wold Centorllne 3

4 F

e Weld Edge Sldo Side Q4.

Ftow CROWN HEICHTI DIAMETER:

CROWN WIDTH: WELD LENCTH:

-.: .::.--. If& ."Q&tFP-g )II,("- ger.Z' ..~

--- --fit l g~Nq6::I (IN..-..PIrl@SI9II IS jjg IIFGRMAYIGN: GRAIL"

~/j =:5Ii'L'..

v

~ 6 = [(p.tr' thiIkQSIFIASLE PrqfyLE glory.g~lq-l'IrrtwIIIQ WIAigg IOr,[.$ I; ls lo'lT N II:

EXAIIINEA: REVIEWED 8 LEVEL: DATE ~

DATE' DATE:

S. s LEVE PAGE OF TVA 19644 IIV $ 59)

0 4>

t WF t'

1-1d;1995 2t32AW F~ T'v4 BFNP ISI 285 729 d653 P. 3 CD-Q30joS-9POO(o I RO

~ r REPORT t(O:

V/ALL iHICKNESS TVA PROFILE SHEET PROJECT: WELD NO( GR 3 UN(i: SYSTEM: R t=C.I C e We(d Edge Record Th(ckness Meesurernynts As We(d (ndlceted, Inc(udlng Weld Width, Center(Inc Edge To-Edge At 0'~ 2.S 4

~ a

~

pos(t(on 0 9 0'80'70'.24 v'(de @ Std CROWN HEICHT: OlAMETER:

CROWN W(OTH( WELD I.EHGTH(

~ ~

~ ~

f]go

~ ~ >> ~ I Attttt Alllr(ER: AEVIEWEP BY(

0ATE LEVEL'ATE: LEvEL: OATE r cE d<

Tvs (PA4 tiT 5 N) tees err ~+

285 7"-9 r(653 P.883

0 ~ l'"

1-1'd-1995 2-32%1 F~TVA BFNP ISI 285 729 d653

c. = A ~> <~<<~ -9 Book FLAN ORIENTATION I g

{VIEW FROM VALVE - LOOKING DOWN STREAM) 9'0 ka.b" lSs' 5.'I 5

5 t..as-"

'3OC

/zo" 9s" 55P-2'9-ITS 69:86 265 729 4653 P.GG2 p,H-

0 "7

<>-%30( '8-') poo6 I go tm pc-CRACK i%If DE51GM~<Z 0 Ta~+

(C) COPYRIGHT 1984, 1990 g CHK~P~~ OAI5 STRUCTURAL INTEGRITY ASSOCIATES, INC.

SAN JOSE, CA (408) 978-8200 VERSION 2.1 Date: 1-Oct-1998 Time: 13:39: 4.36 STRESS CORROSION CRACK GROWTH ANALYSIS IGSCC INDICATION AT WELD GR-3-63 INITIAL CRACK SIZE~ 0.2000 WALL THICKNESS~ 1.2000 MAX CRACK SIZE FOR SCCG 0.7200 STRESS CORROSION CRACK GROWTH LAW LAW ZD C N -Kthres K1C NRC 3.590E-OB 2.1610 0.0000 200.0000 STRESS COEFFICIENTS CASE ZD CO Cl C2 C3 28PDWTH 7.2730 0.0000 0.0000 0.0000 Kmax CASE ZD SCALE FACTOR 28PDWTH 1.0000 TIME PRINT TIME INCREMENT INCREMENT 52560.0 730.0 730.0 crack, model:CIRCUMFERENTIAL CRACK ZN CYLINDER (T/R~O ~ 1)

CRACK --- ----STRESS INTENSITY FACTOR-SZZE CASE 28PDWTH 0.0144 1.714 0.0288 2.432 0 '432 2.989 0.0576 3.463 0 '720 3.884 0.0864 4.269 0.1008 4.627 0.1152 4.962 0.1296 5.300 0.1440 5.636 0.1584 5.962 0.1728 6.281 0.1872 6.593 0.2016 6.900 0.2160 7.202 0.2304 7.500 0.2448 7.805 0.2592 8.130 0.2736 8.454 0.2880 8.777 0.3024 9.100 0.3168 9.423 0.3312 9.746

0

<> G3o&8-990orl 0.3456 10.069 0.3600 10. 393 laY IIEstsN~+~ 0 a~ lO I-9jt 0.3744 10.786 0.3888 11.183 CHKO~Z DATE/~

0.4032 11. 582 0.4176 11.985 0.4320 12.392 0.4464 12.801 0.4608 13.214 0.4752 13. 630 0.4896 14.064 0.5040 14.510 0.5184 14. 959 0.5328 15.412 0.5472 15.869

0. 5616 16.330 0.5760 16.795 0.5904 17.264 0.6048 17. 749 0.6192 18.263 0.6336 18.782
0. 6480 19.306 0.6624 19.834 0 '768 20.366 0.6912 20.903 0.7056 21.44S 0.7200 21.991 TIME KMAX DA/DT DA A A/THK 730.0 6. 87 2.308E-06 0.0017 0.2017 0.168 1460.0 6 ~ 90 2.334E-06 0.0017 0.2034 0.169 2190.0 6. 94 2.360E-06 0.0017 0.2051 0.171 2920.0 6. 97 2.387E-06 0.0017 0.2069 0.172 3650.0 7.01 2 '14E-06 0.0018 0.2086 0.174 4380.0 7.05 *2.441E-06 0.0018 0.2104 0.175 5110.0 7.08 2 '69E-06 0.0018 0.2122 0.177 5840.0 7.12 2.498E-06 0.0018 0.2140 0.178 6570.0 7.16 2.527E-06 0.0018 0.2159 0.180 7300.0 7.20 2.557E-06 0.0019 0.2177 0.181 8030.0 7.24 2.586E-06 0.0019 0.2196 0.183 8760.0 7.28 2.617E-06 0.0019 0.2215 0. 185 9490.0 7.32 2.647E-06 0.0019 0.2235 0.186 10220.0 7.36 2.679E-06 0 '020 0 '254 0.188 10950.0 7.40 2. 711E-06 0.0020 0.2274 0.189 11680.0 7.44 2.743E-06 0.0020 0.2294 0.191 12410.'0 7.48 2.776E-06 0.0020 0. 2314 0. 193 13140.0 7.52 '2.811E-06 0.0021 0.2335 0.195 13870.0 7.56 2.846E-06 0.0021 0.2356 0.196 14600.0 7.'61 2.882E-06 0.0021 0.2377 0.198 15330.0 7. 65 2.918E-06 0.0021 0.2398 0.200 16060.0 7.70 2.956E-06 0.0022 0.2419 0.202 16790.0 7.74 2.994E-06 0.0022 0.2441 0.203 17520.'0 7.79 3.033E-06 0.0022 0.2463 0.205 18250.0 7.84 3.074E-06 0.0022 0 '486 0.207 18980.0 7.89 3.117E-06 0.0023 0.2509 0 '09 19710.0 7.94 3.161E-06 0.0023 0.2532 0.211 20440.0 7.99 3.206E-06 0.0023 0.2555 0.213 21170.0 8.05 3.252E-06 0.0024 0.2579 0.215 21900.0 8.10 3-299E-06 0.0024 0.2603 0.217 22630.0 8.15 3.347E-06 0.0024 0.2627 0.219

. 23360.0 8.21 3.396E-06 0.0025 0.2652 0..221 24090.0 8.27 3.446E-06 0.0025 0.2677 0.223

<>-a3045'l FoOs t Rc 24820.0 8. 32 3 '97E-06 0.0026 0.2703 0.225 25550.0 8.38 3.549E-06 0.0026 0.2729 0.227 26280.0 8 F 44 3'603E-06 0.0026 0.2755 0.230

'27010.0 8.50 3.657E-06 0.0027 0.2782 0.232 27740.0 8.56 3.713E-06 0.0027 0.2809 0.234 28470.0 8. 62 3.771E-06 0.0028 0.2836 0.236 29200.0 8. 68 3.829E-06 0.0028 0.2864 0.239 29930.0 8.74 3.890E-06 0.0028 0.2893 0.241 30660.0 8.81 3.951E-06 0.0029 0.2922 0.243 31390.0 8.87 4.014E-06 0.0029 0. 2951 0.246 32120.0 8.94 4.079E-06 0.0030 0.2981 0.248 32850.0 9.00 4.145E-06 0.0030 0.3011 0.251 33580.0 9.07 4. 213E-06 0.0031 0.3042 0.253 34310.0 9.14 4.282E-06 0.0031 0.3073 0.256 35040.0 9.21 4.354E-06 0.0032 0.3105 0.259 35770.0 9.28 4.427E-06 0.0032 0.3137 0.261 36500.0 9.35 4 '02E-06 0.0033 0.3170 0.264 37230.0 9.43 4.579E-06 0.0033 0.3203 0.267 37960.0 9.50 4.658E-06 0.0034 0.3237 0.270 38690.0 9.58'.66 4.739E-06 0.0035 0.3272 0.273 39420.0 4.822E"06 0.0035 0.3307 0.276 40150.0 9.74 4 908E-06 0.0036 0.3343 0.279 40880.0 41610.0 9 '2 9.90 4.996E-06 5.087E-06 0.0036 0.0037 0 '379 0.3417 0.282 0.285 42340.0 9.98 S.180E-06 0.0038 0.3454 0.288 43070.0 10.07 5.275E-06 0.0039 0.3493 0. 291 43800.0 10. 15 5.374E-06 0.0039 0.3532 0.294 44530.0 10.24 ,S.475E-06 0.0040 0.3572 0.298 4S260.0 10. 33 5.579E-06 0.0041 0.3613 0.301 45990.0 10. 43 5.694E-06 0.0042 0.3654 0.305 46720.0 10.54 5 '29E-06 0.0043 0.3697 0.308 47450.0 10.66 5.969E-06 0 '044 0.3740 0.312 48180.0 10.78 6.114E-06 0.0045 0.3785 0.315 48910.0 10.90 6.265E-06 0.0046 0.3831 0.319 49640.0 11.03 6.423E-06 0.0047 0.3878 0.323

$ 0370.0 11.15 6.S86E-06 0.0048 0.3926 0.327 51100.0 11.29 6.757E-06 0.0049 0.3975 0.331 51830. 0 11.42 6.936E-06 0.0051 0.4026 0.335 52560.0 11.S7 7-121E-06 0;0052 0.4078 0.340

Oi

~AC aav mes>>v+7'>>c~>>'

tm g tHxo~~ mani~~

pc-CRACK (C) COPYRIGHT 1984, 1990 STRUCTURAL INTEGRITY ASSOCIATES, INC.

SAN ZOSE, CA (408)978-8200 VERSION 2.1 Date: 1-Oct-1998 Time: 13:15:36.67 FATIGUE CRACK GROWTH ANALYSES IGSCC INDICATION AT WELD GR-3-63 INITIAL CRACK SIZE~ 0.4078 WALL THICKNESS~ 1.2000 MAX,CRACK SIZE FOR FCG 0.7200 PARIS CRACK GROWTH LAW:

da/dN ~ c * (dK) "n where dK ~ Kmax - Kmin dK > dKthres Kmax < Klc CURRENT LAWS LAW ID C n dKthres Klc 1 1.589E-08 3.300 0.000 200.000 STRESS COEFFICIENTS

.CASE ZD CO Cl C2 C3 28PDWTH 7.2730 0.0000 '0.0000 0.0000 NUMBER OF CYCLE BLOCKS~

PRINT INCREMENT OF CYCLE BLOCK~

NUMBER OF CALCULATION PRINT FCG SUBBLOCK CYCLES INCREMENT ZNCREMENT LAW ZD 1 30 1 1 1 Rnax Kmin SUBBLOCK CASE ZD SCALE FACTOR CASE ZD SCALE FACTOR 1 28PDWTH 1.0000 28PDWTH 0.0000 crack model:CIRCUMFERENTIAL CRACK ZN CYLINDER (T/R~0.1)

CRACK -----------STRESS INTENSITY FACTOR

'SIZE 'ASE 28PDWTH 0 '144 1.714 0.0288 2.432 0.0432 2.989 0.0576 3.463 0.0720 3.884 0.0864 4.269 0.1008 4.627 0.1152 4.962 0.1296 5.300 0.1440 5.636 0.1584 5.962

I, c'9- Q3068-VS oo & I RG 0.1728 6.281 RKV DRSlGt4 oar~lD- -~g

0. 1872 6. 593 0.2016 6.900 Q cloCD DATE~~~

0.2160 7.202 0.2304 7.500 0.2448 7.805 0.2592 8.130 0.2736 8.4S4 0.2880 8.777 0.3024 9.100

0. 3168 9.423 0.3312 9.746 0.3456 10.069 0.3600 10.393 0.3744 10.786 0.3888 11.183 0.4032 11.582
0. 4176 11.985

.0.4320 12.392 0.4464 12.801 0.4608 13.214 0.4752 13. 630 0.4896 14 ~ 064 0.5040 14. 510 0.5184 14.9S9 0.5328 15 ~ 412 0.$ 472 15.869 0.5616 16.330 0.5760 16.795 0.5904 17.264 0.6048 17.749

0. 6192 18.263
0. 6336 18.782 0.6480 19.306 0.6624 19.834 0.6768 20 '66 0.6912 20.903 0.'7056 21.445 0.7200 21.991 TOTAL SUBBLOCK CYCLE CYCLE KMZN DELTAK R DADN DA A A/T BLOCK 1 1 11.71 0.00 11.71 0.00 5.3E-OS 0 0001

~ 0.4079 0.34 2 11.71 0.00 11.71 0.00 5.3E-OS 0.0001 0.4079 0.34 3 11.71 0.00 11.71 0.00 5.3E-05 0.0001 0.4080 0.34 4 ~ 4 11.72 0.00 11.72 0.00 5.3E"05 0.0001 0.4080 0.34 5 .5 11.72 0.00 11.72 0.00 5.3E-OS 0.0001 0.4081 0.34 6 6 11.72 0.00 11.72 0.00 5.4E-OS 0.0001 5.4E-OS 0.0001 0 '081 0.4082 0 '4 7 7 11.72 0.00 11.72 0.00 0.34 8 8 11.72 0.00 11.72 0.00 5.4E-OS 0.0001 0.4082 0.34 9 9 11.72 0.00 11.72 0.00 5.4E-OS 0.0001 0.4083 0.34 10 10 11.72 0.00 11.72 0.00 5.4E-OS 0.0001 0.4083 0.34 11 11 11.73 0 F 00 11.73 0.00 5.4E"OS 0.0001 0.4084 0.34 12 12 11.73 0.00 11.73 0.00 5.4E-05 0.0001 0.4084 0.34 13 13 11.73 0.00 11.73 0.00 5.4E"05 0.0001 0.4085 0.34 14 14 11.73 0.00 11 ~ 73 0.00 5.4E-OS 0.0001 0.4085 0.34 15 15 11. 73 0.00 11. 73 0.00 5.4E-05 0.0001 0.4086 0.34 16 16 11.73 0.00 11.73 0.00 5.4E-OS 0.0001 0.4087 0.34 17 17 11.74 0.00 11.74 0.00 5.4E-OS 0.0001 0.4087 0.34 18 18 11.74 0.00 11.74 0.00 5.4E-OS 0.0001 0.4088 0.34 19 19 11.74 0.00 11.74 0.00 5.4E-OS 0.0001 0.4088 0.34

0 20 20 11.74 0.00 11.74 0.00 S.4E-OS 0.0001 0.4089 0.34 21 21 11.74 0.00 11.74 0.00 5.4E-OS 0.0001 0.4089 0.34 22 22 11.74 0.00 11.74 0.00 5.4E-05 0.0001 0 '090 0.34 23'4 23 11.74 0.00 11.74 0.00 5.4E-OS 0.0001 0.4090 0.34 24 11.75 0.00 11.75 0.00 $ .4E-OS 0.0001 0.4091 0.34 25 25 11.75 0.00 11.7$ 0.00 $ .4E-OS 0.0001 0.4091 0.34 26 26 11.7$ 0.00 11. 75 0.00 5.4E-OS 0.0001 0.4092 0.34 27 27 11. 75 0.00 11.75 0.00 5.4E-05 0.0001 0 '092 0.34 28 28 11. 75 0 F 00 11.75 0.00 5.4E-OS '0. 0001 0.4093 0.34 29 29 11.75 0.00 11.75 0.00 $ .4E-OS 0.0001 0.4094 0.34 30 30 11.75 0.00 11 ~ 75 0.00 S.4E-05 0.0001 0.4094 0.34 RIV DISIGN~K QAM~IO I I Q CNCD~~ DATI~+

A

<E -QSOGS -')MOOG < RO pc-CRACK (C) COPYRIGHT 1 984 ~ 1 990 STRUCTURAL INTEGRITY ASSOCIATES, ZNC.

SAN JOSE, CA (408) 978-8200 RtV g

DL%tGN

~a ~ DATXL~

aavu~g VERSION 2.1 Date: 1-Oct-1998 Time: 13: 49: 41. 28 ALLOWABLE FLAW SIZE EVALUATIONS USING ASME SECTION XZ~ ZWB-3640/50 PROCEDURES AND CRZTERIA FOR CZRCUMFERENTZAL CRACKS ZN STAINLESS STEEL PIPING MATERIAL ZS SPECIFIED AS SHIELDED METAL ARC WELD DEFAULT PROPERTIES:

DESIGN STRESS 16.95 FLOW STRESS 50.85 ZGSCC INDICATION AT WELD FLAW GR-3-63 USER SUPPLIED MATERIAL PROPERTIES:

DESIGN STRESS 16.82 FLOW STRESS 50.46 PIPE GEOMETRY:

OUTER DIAMETER ~ 28.1460 WALL THICKNESS 1.2000 CRACK GEOMETRY:

CRACK DEPTH 0.4094 CRACK LENGTH 7.1234 THE FLAWED PIPE IS ASSUMED TO FAIL DUE TO UNSTABLE DUCTILE TEARING (EPFM)

THE ALLOWABLE FLAW SIZE ZS DETERMINED USING CODE TABLES AND DEFAULT SAFETY FACTORS FOR NORMAL OPERATING (INCL. UPSET & TEST)

CONDITIONS MEMBRANE STRESS (Pm) 6 '490 (SAFETY FACTOR ~ 2.770)

BENDING STRESS (Pb) 1.2450 (SAFETY FACTOR ~ 2.770)

EXPANSION STRESS (Pe) 0.7370 (SAFETY FACTOR ~ 1.000)

DESIGN STRESS 16 '200 (Pm + 'Pb) /Sm 0.4455 STRESS RATIO 0.4805 (DOES NOT INCLUDE S.F.)

M FACTOR 1.0415 a/t 0.3412 1/circumference 0.0806 ALLOWABLE a/t. 0.6000 1/circumference 0.00 0.10 0.20 0.30 0.40 0.50 ALLOWABLE a/t 0.6000 0.6000 0.6000 0.6000 0.6000 0.4900

4i ENCLOSURE 3 TENNESSEE .VALLEY AUTHORITY BROWNS FERRY NUCLEAR PLANT (BFN)

UNIT 3 3-ISI-0328-0 See Attached.

0 REFERENCE DRA Wl.

TVl 47KIE ~ c J CE ISJF?$ 4 KELLOCC er 2-180 Rrit J-DO?-CODI NOTE: THIS DetlrlHC SeorPSrerS CR-J-59 (OL) HIB SE iRVR-J-002-CDDJ CHM 2IJj 0 ALL S>1EETS CR-J-59-LS MATEPIAL SPEClr! CA?I&ISA

~ >

N

>>-e 1 AJ?d. I'P Jot

~

KR-J-SO KR J 50-LS-I HI I 0 Z O.JJ7 HOM rALL THK. (SS)

Q ~

2d X I IJd HOAt rALL IHK ISSI Stlgt A'R-J SD-LS 2 2d: X I.J22 HOLI. VALL INK. '(SS) DISCHA CR-J-60 (OL)

CR- J-60-L S

~~ RVR J 002~IS~~

RVR-J-002-COT 5

~e

~ +~ +0~

sAVOJ rpJI6NC a x 0.602'IH. rlLL CR-J-dt i+ 00 2 010 4'OO 12 2d' 28 INI'ECRAL RED. TEE 0. 9do X 2V 22 CROSS IHECRAL 0.980 TE'E' MIH. VAI,L MIN. Vlt I.172. MIH. t tt8P

) CO 2

2 ASME CC I (EQliVALE~T) tt6!I-) ).0 GO

.oo RtR-J-002 C016 Stl p RtR-J 002-C02V Rr0-J-002-C022 g RVR J 002-C020

~ RVR-J-002-COtd

~ ~BE'NT

~ RVR-J-002-0011

~ INTEGRAL TEE'2 CR-J-6I-LS

>r0-J-002-C02J >lee.>.0!l>-eel>

l>

M ~ RVR J-002-0019 r/12 X22 RED.(2 TTP.)

SEE DETAIL I

~I DETAIL 'Hr +6'2 a CIA 0 GINg tnt 2d X 22 CROSS

>>>...L>.!:l~ L r/22' 1? RED.

i ~o SEE DETAIL. 8 RVR-J-002-CC25 ~

KR JSI L

~

r 7

KR-J-26 1- CR-J-JJ OETllL 8 - OWE PrlCr Sorgtlf FORCIHC KP-J-51-LS-2 ~

KR J-Sl-LS-I ~M 1 KR-J-24 LS Qr<<

~KR J-24 ,1 0

CR-J-SJA,96 CR-J-62 FCV66-11

~g 4

-J-SJB- CR-J-27 (OL) , ~~~ ~ CR-J-29-LS-I IIIIIIIIIIIIIIIIIIIIIIIIIIIII

~ 1eaeteet

+cele>15 I MA 1tt1

+ l CC 1 ~ C FCVdd 71-r 28'R-J-d

~

~ FCV68-7~

CR-J-29-LS-2 CR-J-29

~$

~ IIIII 110 ~ I I KR JSJ A

~ 'C3 FCV68-79=((C CR-J-2d.

'eee e. e>e e>e ~

OrCONTAMINATION L liVE CR-J-27-LS e RBC-J-2~ CR-J-JO

~ <<<<\ ~ ~ a~

)

+>ee el ~

~

~

KR-J-52 KR J 2J eee ~ le ~ >e I e<<<<

KR J 52 5 I <<<<?..t:0 At S Ifk>e1fttff v>ttfr AVI1e0etttr KR-J-52-LS-2 3 (

XR N N BROKNS FERRr liVCLEAR PLANT UNIT J RECIRCULATION STSTEV Ci FIELD VELD 1+ ONIT NP. ~ e<<

<< ~ l STSTSM

"-"'LL <<r ~ > ~ ~ e ~ 11 ar <<e>

et I~ ~1 1-OJ 8 A10 NISINI KLSEAAtt EO A'I 8000 CCO

0 4l'