ML20217Q692
| ML20217Q692 | |
| Person / Time | |
|---|---|
| Site: | Browns Ferry |
| Issue date: | 04/23/1998 |
| From: | Berg M TENNESSEE VALLEY AUTHORITY |
| To: | |
| Shared Package | |
| ML20217Q684 | List: |
| References | |
| ND-Q0031-920075, ND-Q0031-920075-R08, ND-Q31-920075, ND-Q31-920075-R8, NUDOCS 9805110005 | |
| Download: ML20217Q692 (116) | |
Text
QA Record NUCLEAR ENGINEERING CALCULATION TITLE: CONTROL ROOM DOSES PLANTAJNIT BFN / 2,3 PREPARING ORGANIZATION KEY NOUNS: DOSE. CONTROL ROOM. GAMMA DOSE. BETA DOSE. THYROID DOSE NE MNE BRANCH / PROJECT REV (for RIMS use)
RIMS accession number IDENTIFIERS ND-00o31-920075 920807A0012 R14920727107 Ro APPLICABLE DESIGN R
4
'96 0416 103 DOCUMENT (S):
R7 Re R14 980428 101
"^
4AR SYSTEM (S)
SECTCN R9 NA NA j
Revision 0 R7 R8 R9 Safety Related?
X YES _ NO DCN No.
Calculation Revision k
?J[/}
W17331 Y Entre Calculation J
P OUSE 7
4M elected Pages
.SER NI d 8.
2
/
Reviewed f
Statement of Problem:
r) /
S D. FOSTER 8.M. M Determine the control room doses as a function of M
Approved dp/
the new control room parameten; for Unit 2 cycle H.A.GOLDMAN FOR HEC
(
- v. b i
,,q
- 7. the most significant parameters include:
j m
- 1. CREVS flow of 3000 cfm,'1500 cfm, and [R5 Dm 7a7m
/f f(,
4/Zs/'f6 0 cfm.
[RS
- 2. New X/O values for the new CREVS air intake PAGES Al>DED locations.
I" 4'" /
- 3. 3717 cfm unfiltered inleakage into the Control C
PAGES DELETED Building Habitability Zone.
9.e t/
W. 4 t.g
- 4. Inclusion of 11.5 SCFH MSIV leakage.
PAGES CHANGED
f 6.10 cfh leakage from closed HWWV valves. IR6
[R7 ABSinACT This calculation contains an unvenhed assumption (s) that must be veri 6ed later.
YES X NO MENh '
Abstract: See next page.
9805110005 980501 PDR ADOCK 05000259 P
PDR Py ' % p; 4 - tM 1 *1'If e g O Microfilm and return calculations to: CALC LIBRARY
~
N 60EK CALClif,2 G B t.!J.,.
C:l ul; tion No. ND-Q0031-9275 R v: R8 Pirnt: BFN Pagg:g
Subject:
Control Room Doses Prepared: M Date:3,ggg Checked:
Date:
ABSTRACT:
The Control Room (CR) doses were determined in this calculation. The STP code was used to determine the releases from the base'of the stack and from the top of the stack. These releases were used as input into the COROD code to determine the control room doses. The most significant parameters utilized in this calculation Were:
(1) CREVS How of 3000 cfm (2) 2 CREVS air intake locations, each with different X/Q values (3) 3717 cfm unfiltered inleakage into the Control Building IIabitability Zone.
(4) A continuous 10 cfm release from the base of the stack I
(5) A continuous 10 cfh leakage from the primary containment to the base of the stack via the IIardened Wetwell Vent valves.
The results of the calculation were as follows :
Control Room Dose (reml 3
Thyroid 11.109 (ICRP-30)
Gamma 1.541 Beta 0.285 i
The control room doses are below the limits of 10CFR50 App.A GDC 19 (ref.21) of 5 rem whole body or equivalent (30 rem thyroid. 30 rem beta).
i 4
REVISION LOG bONTt?0L 00n1 6S65 yp4 g',3,,y,,,,,
rsne:
l Revision DESCRIPTION OF REVISION 9%',,
n o.
h
/ OM Legibility evaluated and accepted for issue.
5I4310%Y y.2742 Sigreture
'Date~
l ggs casso:-
,Bt f, % z3, Q-193t'3C
}"'""
^
9,j^
w-3 cascismerw Y candMitMew
,pn>ser mas smr, arrna'MM7 & ))
M1bck**!f n (
MTMNMWf3 M7h&MT //
2 Ayes nJJ.d :
non e.
pa)a, sela i J [ mf0): Cm+kDweb)E\\y)Sm.Rtwas h) 1%4>
38,JIAlIhgeA's o pag e s ct, oyed:
conasleef, *LCfaae V> W log > class,fic< boa s%. t s las O.
de v/ t kJ (o rt n1, l > 7, f, J > R l>
23-87, Nao beg a h jon}t S
'AJ S 2..',
Q,, S jQ e yo $o or)
WAS k
'-l* d ^ ']tL UL st e n e /,,g b u,ld, ag ' s UoL u n1 t'.
- - A) O m i k! ^1}ility evaluated and Legi5 ho"s ga./es.
accept.ed or issuc.
5hs,
-u,-y oat.
tv A 105 34 (EN DES 4 78)
~
- g._ __.
REVISION LOG OAITROL SOOM m)oS&s mQ,u.g
-1 lle visinri no.
DESCRIPTION OF REVISION Arrteved
~
~
~ ~ ~ ~ ^ -
^V"A 3
AwAtmon -c.wq u t-a%L.LL -
3 A &b.
y A m J,: t 3 4 1
PAses AnsD:
ca.: n + w f X bys%Qg essas 2ewnw: u PAG &s C&W4@: M AAat.-E f a q MEst'.].
LegiM.11ty T' alm LCd Cd accep ed cr ipW-F4/
44 eye 3 3sYL /fehe: -
Date
'c ignat
/.a.ig 4
R w;s.d e,( e, \\ a;.., t, 7,91,s.
ocy w,,,,,,
W k;ck i n s h ils auf. mdc 6.dcle.f+ d.~p.e to tLe off 4.s sh d wLt<.L r. Ace / hue,f sf.d celeu.1,
- f celauldi~
y l
c a.d;n ua s. h e <<u.cl s e t As 7,8C 01 m4c.J 5 c Gm un:1)W jahsf -,,a 3.
See Sk-
\\
to in elude o
C*lt aw-Lee up 4.i.J t.
0 4t O,U..i 3 44,/ t,c,;4,g,,y, P,f, o J J.J : s....<..
c4 c.,,, a,3 c, o, cder,itJt.,,h..f, yi) # t y,g,,4
- J Rw;em sled I
8" E I
dj e) tt p,,,
c k..,. J : R.a; o c...<>k.k, c~<.su.A
%.t (efl, Pay, t,3 tkeu n,13, j.1,il thr= 39,36,37 19, I6 tb.
2o 2
v'n ing se gree tiret 4 ret
~~^^
~
~
}
l I
i
-- g. _. _._._...__
REVISION LOG OALTROL-h00M )0S65 m pggu.g llevision i
rto.
DESCRIPTION OF REVISION 3,,',,,,
V ha d..\\
can C
ceevs Ft.- ca. A is oo c.fm <J O
c fm.
hajn.dd=d:
Ac4ddi..I Re.,63 SL t c.L. ci...:n ac.
st,.t, cc
.lw d. p,.t,.d R.wi.m sh,.t Pag. 37A
( 5 9 p.yd ANk
+ 13 9 y1 c( Aai<d.'
hl. -.
- 9aya,
.myd:
C ov**sk J c
Cove.sk t' C. % J:.
Sk+ l.4 I E.3n 9,29,34,36 6
Ev luJ.J 10 s e.f L l< k.a. tL, L L../,,./
ut.1/ y,,a YY}
v.\\vn. b. lated A fkk...k l2.
s wa.
Ocu s1m u.
au+k.;2.J tk.
o y,-,
-P t k e
- d..le d v. :. v. lv..,
a al ele m.- sied / t k t a.
y.
J le v< l r..f.e l.,,. I r.le.a w.oll occ u r.
Ibrd,./ w,L,Il y,,+ ;.,,f,ll./
NA/ I"784 'll (A 1, W I"? 1 3 I by D C h/s.'
W l"7 3 3 7
- c..-. j (A3.
P,s oaaa : AsL..1 m c.1 p,.n
.tsday J.t R,vc.w s k.t ( n p.h Po3,2 del.fel : C.tc cl.utft<.k.- s L 4 L
( T.t.1 ef' n,. p ')3 J 4, A H 4J<a.
Re is,.-, 2 P,n c k.,..t : c. -,L..I, c... s L..t c k, J:.-
r,ya.P coa J.:
s k+; z, s, 7, s, zo,2 i,2.4, 3 4
,o a in... irisa.re 4 rei
TVAN CALCULATION RECORD OF REVISION ND-00031920075 Page of Title Control Room Doses g ggg M t/' n /t r Revision DESCRIPTION OF REVISION Date No.
Approved 7
This revision evaluated the dose to the control room from a base of stack 41596 release rate of 10 cfm for the duration of the accident (30 days). This dose was added to the model and a new total dose was calculated. Microfiche #TVA F-A000038.
Revision 7 contains a total of 161 pages.
Pages added: coversheet, abstract, revision log, calculation classification and j
categorization (2), independent review form, computer file storage information sheet, 4
Appendix A (3 sheets) pages deleted: none
=
8 Revision 8 was performed to incorporate new XiG values and to include both east and west control room intakes in the calculation. The Hardened Wet Well Vent leakage of 10 cfh was modified to start later in the accident to simulate the finite trayel time to the stack. The MSIV leakage component was eliminated from the analysis.
Incorporated Appendix A into the text. This calculation is in support of UFSAR (section 14.6.3) change package RIMS # R92 980427 958, SA RIMS # R92 980427 959, and SE RIMS # RS2 880427 960.
Pages added: independent review, microfiche information sheet pages changed: cover, calculation classification forms (2 pages), computer input i
storage information sheet, 1-4,6, 8,9,12-15,18,19,21-36 i
pages deleted: p2 of abstract, classification forms (RS,2 pages), Appendix A, Attachments 8-11, Attachment 14 R8: 131 total pages j
TVA 40532 (08 97l NEDP 2-1108 06
- 7'
Page TVAN CALCULATION CLASSIFICATION FORM CALCULATION INFORMATION:
Page 1 of 2 Plant BFN Und 2/3 Identdier ND-QOO31-920075 Rev. R8 issue Date Ttle Control Room Doses System (s), Component, Feature or Subject of Calculation SYSTEM / DESCRIPTION O Safety system System No.
O Safety-related feature O Nonsafety system System No.
O Nonsafety-related feature O Quakty related system O Quakty related feature O Non Qualdy related system O Non Quahty related feature C Plant environment (EQ. etc.)
O Appendix R C CMI structures O Instrumentation (PAM, etc.)
W Ucensing 10CFR50 App A GDC19 O Other Calculaton Category NA Final Classificaten e Essential O File Only O Cancel O Engineenng C eput O Destable O Superseded O Obsolete O
Preparer G
DATE
%/I'I Checker DATE I
Venfier
/
DATE
/
Sheet TVAN CALCULATION CLASSIFICATION FORM
. e:
Identifier: ND-00031-920075 R8 Page 2of 2 Preliminary Classification e Essential O File Only O Cancel O Engineering Output O Desrable O Superseded O Obsolete O
)
CALCULATION CLASSIFICATION JUSTlFICATION:
Preparer Calculation shows compliance with 10CFRSO App.A GDC 19 control room operator doses i
\\
J Checker Agr wi h classification O Disagree-comments required fY Venfier e Agree with classification O Disagree-comments required j
Y i
I NEP-3.1 s t e.. $.~e n t 6 page 1,of 1 CAI.C'll.ATIOil OESIGli VERIFICATIOil (Ill0'EPEll0ENT REVit.wl
~
t 0 Hit
\\
NM2O3/ P2co'zr A
Calculation flo.
gevision l
Method of design verlf tcation'(Independent review) used (check method usedit 1,
Design Review N
..its nst: Calculati:n 3.
Qualification Test Justifle'ation (esplain belod)
Hethod it In the design review ree'thod. justlfy tho' technical adequacy of the l
cal'eulation and explain how the adequacy was verlfled (celeulation is i
sirellar to another, based on accepted handbook reethods.,appropelate '*
sonsitititty studies included (6e conf!dence, etc.).
8 i
Method 2 In the alternate calculation nothod, identify the po'ges whne th's
\\
alternato calculation has been included in the esiculation psekage and esplain why this method (a adequate.
(
!!sthod 3:
~
In the quellfication' test rest, hod, Identify the QA doeurnented.
dalculation,an,d explain. source (s).where testing ' adequately dersons
$ Yb.'!5- ~$.~' ~$:- oKAt 1l &
w ' N;:.--} b_IAM,
-s6L /rn4 n1KK -_--
& > -x. Ma l AdrA' a "& d n, 'L. _ A. at. _
u p.=ik n. H r3 s /.dd,_ n L. M = ~i) 21 A. '. 4 f s h, Ja -.L d i, e ' ~ J A n-. + J =-,.T L
~
on,e,s. E A$ ^ r_I-Yn?
hW A.ad W -$
' > _21 A ~A(4, n 9,..i %.'.a'- _ L' % A AR i F d's y K f,, 2 n L
' :.d & CnLavP & J,Let u,.JL 1,a > tA
/.
~.
As. %A.
J nL-Dfa -> L L (A sj u M F i s->
,. n k - ll., HE @ow m f. r e A 'iJA L a= n- % -fi & 'd
^
n Wm JL~
^
as.) & M n
MV *tJK<"9/M A -- /. 412
%+r. L 9 fu,. *...
mat a
~ L AL d-12Cf MJr.L ~ 'LA'Mr.1 s AJes L A
~
u
's ~_4 ~ s. / J a>U n it a A n 4 - 1 i. M xan-- - A n
. - M /J
- 1-, K IL52R fKald L L.Q_ M } LL. ( -__, paw MB L jfUf,,
Y
~)r0fwk-sK1s::K)
~L.m 2 s'
~
n*> m i n. Man.- L =__' = K i 4
- r.-
g 1
.:7 y
t
/
\\
b??
_4 Deslan rift Date (Independe
'I ever)'
NEP 3.1 ATTACHMENT 6 PAGE 1 OF 1 CALCULATION DESIGN VERIFICATION (INDEPENDENT REVIEW) FORM ND-02031-920075 03 i
CALCULATION NO.
REVISION 1
METHOD OF DESIGN VERIFICATION (INDEPENDENT REVIEW) USED (CHECK METHOD USED) :
l
- 1. DESIGN REVIEW X
- 2. ALTERNATE CALCULATION
- 3. QUALIFICATION TEST JUSTIFICATION (EXPLAIN BELOW):
METHOD l: IN THE DESIGN REVIEW METHOD, JUSTIFY THE TECHNICAL ADEQUACY OF THE CALCULATION AND EXPLAIN HOW THE ADEQUACY WAS VERIFIED (CALCULATION IS SIMILAR TO ANOTHER, BASED UPON ACCEPTED HANDBOOK METHODS, APPROPRIATE SENSITIVITY STUDIES INCLUDED FOR CONFIDENCE, ETC.)
i METHOD 2: IN,THE ALTERNATE CALCULATION METHOD, IDEN7IFY THE PAGES WHERE THE ALTERNATE CALCULATION PACKAGE AND EXPLAIN WHY THIS METHOD IS-ADEQUATE.
METHOD 3: IN THE QUALIFICATION TEST METHOD, IDENTIFY THE QA DOCUMENTED, j
SOURCE (S) WHERE TESTING ADEQUATELY DEMONSTRATES THE ADEQUACY OF j
THIS CALCULATION AND EXPLAIN.
44*
yr A though review was made of the computer codes used and their input to perform R3 to this calculation. The input used in the codes was checked and found to be conservative.
The R3 results are reasonable. Because R2 of this calculation was previously found to be technically acceptable, R3'to the calculation is accepted.
~
hW
/3 -a 3 2.-
DESIGN VERIFIER DATE
CALCULATION DESIGN VERIFICATION UNDEPENDENT REVIEW) FORM Nb-6 0031 - 9 2 00 7S Calculation No.
Revision
?
Method of design verification (independent review) used (check metnod used):
1.
Design Review
)(
2.
Alternate Calculation 3.
Qualification Test t,
/
Justification (explain below):
Method 1:
In the design review method, justify the technical adequacy of the calculation and explain how the adequacy was verified (calculation is similar to another, based on accepted handbook methods, appropriate sensitivity studies included for confidence, etc.)
Method 2:
In the alternate calculation method, identify the pages where thialternate calculation 1
has been included in the calculation package and explain why this method is adequate.
1 Method 3:
In the qualification test method, identify the QA documented source (s) where testing adequately demonstrates the adequacy of this calculation and explain.
( STf 4 ('ORo.D JA LW Ew aw TE -t$ A Mb7YA. Ye K
M M o-Y e 8 4 m ja/c A &,
Y'nA. C 'E T
l
/
J20 Q8 Design fier DaE (Indepen nt R.
wer) wxm. w. s. m >
< ccm N S 3.1 Aanshmme a
k NEP-3.1 Page 1 of 1 CALCULATION DESIGN VERIFICATION (INDEPENDENT REVIEW) FORM NB-o 0o 31 - 920o 7r 5
Ca'.c'ulation No.
Revision Method of design verification (independent review) used (check method used):
1.
Design Review X
2.
Alternate Calculation 3.
Qualification Test i
Comments.
M ' _4 b CAEY Ah*"-
h.t,
- Ann-M:_^=n'
~w.,L-MAJ M -
Y m
a n s kt; a + L:a K 6 x
(/
w.
2 3-2-93
^ -____^2_
esign V fd Date Independent iewer) 6431k
CALCULATION DESIGN VERIFICATION (INDEPENDENT REVIEW) FORM 1
N D - GOO SI -92. o o *!c5 b
Calculation No.
Revision Method of design verification (independent review) used (check method used):
1.
Design Review v'
2.
Alternate Calculation 3.
Qualification Test 1
Comments:
q'.
- '#4 AM/efres
/f, l<aksy Sem Oc Wa<b<l bl4bll YfM Ad ddeles 46 44{u b 44 it 44
- M<d h ydebl M eas4 p%
&<eu shck d<w.
Hwy 14, we 4, b g
h
&m;Q k(9 ced emW4,-
- 16.
con I rum i4 m
de. A M+l "liIi**S "A'
8-E**b '** P '*d5f"SN '"#'id I
4 y
k 4 -u, b h.t4 9e volu\\ek, ed d~a56~'o 4*g dess c.on%.!%dus in %. c*mf w runs of Ws ek. %s cayns !
d i
h h*5*
8" cacA respech (deare mea m; % and lovce., dery' iyts.
%, acQ compasr cass at casen anj gm ave afauuf 4, y,);gy ne M*tio% draw by ne um pek.a.
n h
Abbmk rt.
d*ItNeo h based on do icsud, d< sip ver.Oed, 4 w a a lct 7,vtaes A usis 4 d<IAA. ha o ms, e ob by hph, Oedel u J. coethdons,. %4 calc, (WiSi*n Maialb qub.
k I
%b ll 4 *c f
Design erifier Iwe (Independent Reviewer) eu.
~..c.
r
]
1 CALCULATION DESIGN VERIFICATION (INDEPENDENT REVIEW) FORM ND-00031-920075 07 CALCULATION NO.
REVISION METHOD OF DESIGN VERIFICATION (INDEPENDENT REVIEW) USED (CHECK METHOD USED):
- 1. DESIGN REVIEW
/
- 2. ALTERNATE CALCULATION
- 3. QUALIFICATION TEST JUSTIFICATION (EXPLAIN BELOW):
i METHOD 1:
IN THE DESIGN REVIEW METHOD JUSTIFY THE 1ECHNICAL ADEQUACY OF THE CALCULATION ANI 1
EXPLAIN HOW THE ADEQUACY WAS VERIFIED (CALCULA110N IS SIMILAR1D ANOTHER. BASED UPOI ACCEPTED HANDBOOK METHODS. APPROPRIATE SENSTTIVITY S1TJDIES INCLUDED FOR CONFIDENCE ETC.)
MEITIOD 2:
IN THE ALTERNATE CALCULATION METHOD. IDENTIFY THE PAGFS WHERE THE ALTERNAT CALCULATION PACKAGE AND EXPLAIN WHY THIS METHOD IS ADEQUATE.
MEITIOD 3:
IN THE QUAIRICATION TEST MEITIOD. IDENTIFY THE QA DOCUMENTED. SOURCE (S) WHERE1ESTINt ADEQUATELY DEMONSTRATES 11IE ADEQUACY OF THIS CALCULATION AND EXPLAIN.
This revision utilizes calculation methodologies commonly used throughout the nuclear industry for many years. Input and detailed assumptions relative to this particular revision are adequately giveo and documented. The results of this calculation are in agreement with the input changes and the assumptions.. Hence, the calculation is technically adequato.
Therefore, the entire calculation package, revision 7, is deemed to be technically adequate.
&rwX. O
-z
~
T DEJ GN VERIFIER
\\IT:
TVAN CALCULATION DESIGN VERIFICATION (INDEPENDENT REVIEW) FORM ND-00031-920075 8
i i
Calculaton No.
Revision Method of design venficaton (independent review) used:
1.
Design Review g
2.
Alternate Calculation O
3.
Qualification Test O
Comments:
This calculation is being revised to incorporate new X/O values and to include both east and west intakes into the control room into the calculation.
The calculaton uses STP and COROD software models developed in previous revisions to determine the control room operator doses. Additional runs were made using the COROD models to more realistically account for the plant design having two air intakes to the CREVS system on opposite sides of the control building.
The calculation also eliminates the specific dose calculation ressulting from MSIV leakage by assuming that this leakage is included in the 2% per day design basis leakage value. This is found to be appropriate and acceptable. For this leakage to occur during a LOCA occunng inside of the drywell, the break flow would be required to pass through the wetwell pool water and then reenter the steam lines through openings which are in the process of n3 easing break flow. This is an unrealistic scenario. In addition, even if the scenario 8
were considered credible, the liquid portion of the break flow will accumulate on the drywell floor, while the passage of the vaporous porton of the break flow through the wetwell pool water wouldiesult in the stripping of significant amounts of those iodine isotopes which would otherwise contnbute significantly to the control room dose.
The calculation continues to be technically adequate. The elements of section 3.2.5D of NEDP-2 and Appendix A of NEDP-5 were addressed by this review and the calculation was found to satisfactorily address the checklist items.
?
/
/ Design Venfier Date O
l
_ -s,
~. _,
I
I l
TVAN COMPUTER INPUT FILE f 0/ M 1'il STORAGE INFORMATION SHEE1
/pr ([JJ/?T
(
D.yument ND-OOO31-920075 Rev.R8 Ptsnt: BFN Page l
Subject:
Control Room Doses O
Electroruc storage of the riput files for trus calculation is not required Comments:
input Ales for tNs rah dagon have been stored electrorecany and suttcient identifying informabon ts provided below for each input e
Ale. (Any retneved file requares re-venAcation of its contents before use )
The computer input is permanently stored in FILEKEEPER file e 301063
l
!/
TVAN COMPUTER OUTPUT h 90d d
MICROFICHE INFORMATION SHEET g/rg Document NDM31970075 Rev.R8 Plant: BFN Page Sub e:
Does on the Refueling Floor Without the Bioshield Blocks Installed at the Equipment Hatch Microfiche Nurnber Desenption s
TVA F-A000038 R7 output TVA-F-A000050 R8 output Name Code Description N9275S8 STP Rekases N9275C8A COROD control room dose, stack base, west (U1 side) intake N9275C88 COROD control 6oom dose, stack base, east (U3 side) intake N9275C8C COROD control room dose, stack top, west (U1) intake N9275C8D COROD control room dose, stack top, east (U3) intake l
i TENNESSEE VALLEY AUTHORITY Page 1 of 37
SUBJECT:
ND-QOO31-920075 PROJECT:
BFN/2,3 CONTROL ROOM DOSES W.1%4 M W Sef aus % Mmum T
& V/u] W l
TABLE OF CONTENTS Mo. of paces Coversheet 3
Abstract 11 M
Revision Log 4
Calculation Classification & Categorization
' E.2.
Independent Review Form M7 1A8 Computer Input File Storage Information Sheet...
1 M ; m b.L. L f.,,..be. Uw e d..............................
l Af PAGE No.
Table of Contents 1
2 Purpose Methodology 2
Assumptions 3
References 16 Calculations 22 MSIV Flow Rate............................
22 STP Model 23 COROD Model 29 Results 34 Listing of Computer Runs 37 No. of paces
_....,. DO M At No. of paaes Condenser and turbine volumes....
3 Deleted..........................
- Air intake locations.............
5 Post LOCA containment conditions.
2 Deleted..........................
- 3000 CFM CREVS filter capacity...
3 11.5 SCFH per line....
2 Att2-*- -t 9 Sted X/O ftl tr.
. P' 9.....
d Att2 '---t 9 Ingut f00 " 0:1-:10ti;n. 9.d.
O
- -- --. 0.,.hhJ Af i
_ _..,u _
_.sa
- _. i _.. i. u. _a _ _.,.-
.mm__<-__m Att
-t 11 """r
' --12 :-ting ;P.:nge;. '.'... y 5
.. 2 Deleted.........................
- 3 Evaluation of Reduced CREVS flow rates 59
..__m u.u,g
__m___m
_m___,,
,.m.m==..-...
.._,._._m..,..__.
_,o_2._._.._.2
- 7...
s(
.... -.. dM 4 f
.=
Del
......__t___
a.
.._g__
-y-I
1 Calculation No. ND-QOO319275 Rev: R8 Plant: BFN Page: p g
Subject:
Control Room Doses Prepared: o %
Date: %.qt Checked: /d Date: //u/pg Purpose The purpose of this. calculation is to determine the control room doses following a Loss of Coolant Accident (LOCA). This calculation is being performed as the new calculation of record in support of the modifications being made to CREVS in order to demonstrate compliance with 10CFR50 App.A GDC 19 and the modification to install automatic backdraft dampers in the offgas stack and the installation of the hardened wetwell vent (HWWV)
Methodology The STP code (reference 2) was used to determine the source strength to be inserted in the COROD code (reference 3) which determines the Control Room (CR) doses. The source terms calculated by STP were the source coming out of the bottom of the stack and that coming out of the top of the stack. The code was also set up such that the sources for the first 30.0 minutes were separate from the sources for the remaining duration of the accident, i.e. from 30.0 minutes through 30 days. The reason for this was that new ICRP-30 conversion factors could be applied to the dose for the time period 0-30.0 minutes and for the dose for the remaining 30.0
)
minutes 30 days.
i
I TENNESSEE VALLEY AUTHORITY 27 SEEET 3 OF SUBJECT ND-O 031-920075 PROJECT _
BFN-2,3 lRQ CONTROL ROOM DOSES COMPUTED BY DATE f2/>/vCHECKED BY DATE B'S g-2 s-n.
sow RY
/M C llw/93 j
/
f 9:me n on 41 ASSUMPTIONS:
/# v/u/y 1.
The Standby Gas Treatment System is operating at a total flow of 22,000 cfm.
Technical Justification:
Reference 1 gives the flow k
rate of the SGTS during Special Test 89-07 as 4
approximately 20,000 cfm with all three trains in service.
The 22,000 cfm value represents a 10% margin onthe20,000cfm;seealgoReferences5,10&40. Refer..a l g 4 y o.ppic..i.4, to u.4 h I.JJ s ors P t.w.
2.
The maximum unfiltered inleakage into the Control Room j
is 3717 cfm.
Technical Justification:
See Reference (27).
3.
The activity is released under fumigation conditions from the top of the stack for the first 30fp minutes of lR4 1
the accident.
I i
Technical Justification:
(Reference 20) section 2.1.2(a) states
"...a fumigation condition should be assumed to exist at the time of the accident and continue tir 1/2 hour."
A memorandum from Atmospheric Science (Reference 8) also states fumigation for 1/2 hour should be considered.
Th:
cec /=3 ti4n fu=i-ese'=ation ree"Ite in a M/O of 2.2SE '
Oce---
Ni A f r:nc; '20).
[N t: the 2.25Ei /clu: R:: :
preli=inarf '/:lue
- he final 'falue var 2.21E-t which i an incignificant di'.ference].
)
i (Th: 2 0 r- (0 5 =ir) "-- =dd:d t; the 22 mi.m a=
iu
- 'er tr 2 rt_..t f s lr-tr^"4"
="A dMper cl^-"va ti;;a M
fer the L;- wf no a al :::.
{
i P
uu-TENNESSEE VALLEY AUTHORITY sheet 4 of 37 SUETECT:
ND-Q0031-920075 CONTROL ROOM DOSES COMPUTED BY:
DATE:
CHECKED BY:
DATE:
(/ 2,/gy
/'d'N W
tttd ',
ASSUMPTIONS:
4.
The Control Room emergency pressurization system filter efficiency is.
90%/90%
for inorganic and organic
- iodine, respectively.
Technical Justification:
The Restart Design Criteria BFN-50-7030A (Reference 12) states the charcoal adsorbers shall have a 99%
efficiency at design flow.
The current FSAR Chapter 14 accident analysis section 14.6.3.5 uses an efficiency of 90%/70%
for inorganic and
- organic, respectively.
The BFNP Technical Specification 3.7.E.2.b requires a demonstrated efficiency of 90%
for all iodine, see Reference (30).
no 5.
The release at the base of stack is a continuous 1r cfm for the duration of the accident.
Technical Justification:
DCN W17999 installs dual automatic backdraft dampers in all three unit's dilution ducts and in the cubicle exhaust and steam packing exhaust ducts.
The unit 1 J
dilution fan path has been reconnected by this DCN.
The backdraft dampers in a flow path will close automatically on low flow or reverse flow and thus close prior to the creation or large backflows.
When closed, the backdraft dampezy restrict the total M
flow from the base of the stack to less than + cfm (Reference 24).
The backdraft dampers are counter balanced to rem? ?.n closed with no differential pressure.
If the flow path is experiencing positive flow, the dampers will open.
In this configuration, no leakage from the base of the stack will be possible since the flow is up the stack for this condition.
The dual dampers protect against single failures.
All flow paths contain bubble tight isolation dampers and blind flanges which are closed during maintenance and thus prevent any leakage during maintenance activities on a flow path.
The cubicle exhaust and steam packing exhaust ducts contain bypass lines with identical dampers as the normal flow path in order to allow maintenance on the normal flow path.
A:\\BuiOO4\\N2920075
TENNESSEE VALLEY AUTHORITY sheet 5" of 37
SUBJECT:
ND-Q0031-920075 CONTROL ROOM DOSES COMPUTED BY:
DATE:
CHECKED BY:
DATE:
j$Y
& 0(
l llIl93 l-M ' 9.t i
4 6C.-
I'2lSli)
- 4sr.
Is-14 13 lR6 c....s s-s,,
,a
. g, 1 l
l
. p*
o$
/
g
,.s
-/
, r* f
+-
r,,+.c kK ~li i
3 e
s l
l
(,p Ns x
M l
0 I
v u
g V
g I
V I
b v l.
v v
i l
l J;
(L $99 S' 1
"~ L
," [. l "I I"
,_ _.- 3 r-->
i l
- . s
...?
i gq
%s
\\
u___J t
J L
-- j t
ottuft EL m **
su al Ases 3,
P.
a p.
mg=
F'd&i r
M o
EL S64*
's,,,,,,,,,,,, "
1 a
f
- ya,t
'oTI#S'"
R6 466 CAP
,W
~
3.es.c 5,sur Awar<.
l
[gs,.sveanc secoddtf g ** '
l D
t.
s y m66r u8*
so e useC.* * *
- s b '#
BASE OF STACK FLOW CONFIGURATION DIAGRAM 1
~
A:\\BLS004\\N2920075
I TENNE 8853 VALLEY AUTHORITY 37 SHEET 6 OFJyP 0
SUBJECT ND-Odo31-920075 PROJECT BFN-2,3 lgq CONTRbL ROOM DOSE 8 COMPUTRD,BY DATEg,zg % CHECKED BY DATE AhS 7-3/'fz.
f4/0C Il20/93 j.ve-93 RY fD V> 4-lt' W N ff ASSUMPTIONS:
6.
The source terms are based on TID-14844 methodology using a design power of 3458 MWt as noted by Reference (5) and 1,000 effective full power days (EFPD) of operation.
Technical Justification:
The source terms used in this calculation are the same as used in Calculation ND-Q0999-880158 Revision 2 (Reference 10).
The TID-14844 methodology is the same as used in the FSAR Chapter 14 Section 14.10 evaluation.
7.
The drywell leak rate is 2% volume per day (i.e. 235.8 cfh) for 30 days.
Technical Justification:
Regulatory Guide 1.3 Section C.1.e (Reference 7) states "the primary containment should be assumed to leak at the leak rate incorporated...in the technical specifications for the duration of the accident."
The BFN ".7it 2 Technical l R4 Specification 3.7.A.2.b (Reference 9) allows a leak rate of up to 2Y volume per day at the 49.6 PSI design basis accident pressure.
The volume of the drywell is taken as 283,000 cubic feet (Reference 17).
(283,000 cuf t) (0.02/ day) (1 day /24 hr)=235.8 cuf t/hr /,
{ff 3,4sso,,g e,,t dy s..fsle Tul.,4)is % e 34 lakp is Hst\\f isop. nsdienkf 1 a
j 8.
The LOCA source term, 100%.of the core inventory of noble gases and 25% of the iodines, is released instantaneously to the primary containment.
The iodines are comprised of 4% Organic iodine and 96% Inorganic j
iodine (91% elemental plus 5% particulate); the particulate portion is assumed to plate out and is therefore not included in the STP model.
Technical Justification:
Regulatory Guide 1.3 sections C.1.a and C.1.b (Reference 7) specify the release term for a LOCA for a Boiling Water Reactor.
?
l l
~,
]
TEENEOSE3 VALLEY AUTE3RITY sheet ] of 37
SUBJECT:
ND-Q 031-920075
[R4 CONTRO, ROOM DOSES COMPUTED BY:
DATE:
CHECKED-BY:
DATE:
9&7~92
'[*/[f1 -
db ih*/ U k
/-20 43
/8Y 9
'M L altlU rs -149 ASSUMPTIONS:
9.
The leaka'ge from the primary containment is assumed to mix 3
inctantaneously and uniformly in 1,931,502 ft of the reactor zone and refueling floor before passing to the SGTS.
Technical Justification:
Based on the physical configuration of the plant and engineering judgement this assumption is reasonable.
The total leakage from the drywell can be expected to occur from a large number of different penetrations located on various l
elevations and drywell perimeter positions.
The leakage must then pass through the reactor building free volume in order to reach an SGTS intake duct. As such, mixing with some portion of the reactor building air must occur.
Furthermore, SGTS also takes suction from the refuel floor.
The air on the refuel floor is clean and thus effectively reduces the activity concentration of the contaminated air being processed by the SGTS.
Revision one of this calculation assumed a 29.4% / 70.6% flow split between the reactor zone and the refueling floor, respectively.
The tacit assumption made there was that the '.* nit i refueling floor lS 4 equipment hatch was in place to assure that the air being taken into the SGTS from the refueling floor was clean.
Now if we consider the equipment hatch to be open, the air flow through the open hatch is not known and hence 2 possible conditions need to be considered:
l (1) There is no flow through the open hatch or the flow goes from 1
the refueling floor to the reactor zone.
(2) There is. flow from the reactor zone to the refueling floor.
For condition (1), if there is no flow through the hatch, this I
would exactly be what was previously modelled and analyzed by
' )
revision 1 of this calculation. If the flow was to go from the refueling floor into the reactor zone this would only serve to dilute the reactor zone's source term and hence would not be as bad
)
a case as if the hatch were closed. Therefore revision 1 of this calculation covers condition (1).
For condition (2), the flow is assumed to go to the refueling floor and hence it is reasonable to assume a mixing volume of the reacter zone plus a fraction of the refueling floor. This was evaluated in calculation MD-Q 065-920473 (Reference 66), and given as 1,931,r.J.'
ft3 4 (M b
/
- 2. Q 3 M Wo9 ff E*e UiI 1.
Sim de U ' - -*
Ry fee Wd (
is (en A.
4 (JW h 2../ 3, Oh cadh.
a f
TENNE 2SEE VALLEY AUTHORITY O
sheet 9 o f 3-7
SUBJECT:
ND-Qf031-920075 IEN CONTROL ROOM DOSES M*-
%-t1A1 YN/97 COMPUTED BY:
DATE:
CHECKED BY:
7-
.Av4t-sin ein M93 lRs ihaq g
6L e
e 's r
reskht,/
fa (L;b 2...l 3
wi ci A. c.luldb a.
p,f.,,./
w;% L u4
.i. whi,
vols. <.
- 10. The Containment Atmospheric Dilution (CAD) System is assumed to operate for a period of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> at a flow rate of 139 cfm at 10 days, 20 days, and 29 days postaccident.
Technical Justification:
References 13 and 14 in conjunction with FSAR section 5.2 (page 5.2-44) and FSAR Figure 5.2418 provide the justification for this assumption.
The FSAR section referenced indicates the CAD should be assumed to operate at 10, 20, and 30 days postaccident. The use of 29 days in this analysis provides added conservatism since the period evaluated ends at 30 days.
- 11..The SGTS filter efficiencies for this calculation were 90%/90%
for inorganic and organic iodines, respectively.
Technical Justification:
The BFNP Technical Specification 3.7.B.2.b requires a demonstrated efficiency of 90% for all iodine, see Reference (29).
at a floy*of 3000 cfm. Addih--(Ventilation System (CREVS) op
- 12. The Control Room Emergency
<*4 5
-- f c8 tw ft.-
f isoo c4 f,, w :,,( so A..
g5
- d 0
- Technical Justification:
See References (31) (62)*. Reference (62)J C a **
- f*-
8t** a-J oe
- 1. J e-a-s t ed' a-IvW.
is vp'n as At achment 6.
13.Thestackdilutio[nfans(actualIy.$.7.*i
.'-tO.l h,7[4 "46s <.$ O r".I e * ~.'. N..' h."$$[. 4.k.I' d includes the cubicle exhaust fans and the steam packing exhaust fans also) leak into the rooms at the base of the stack which form a mixing volume.
This free volume is given as 69,120 cubic feet of which 50% is assumed to be effectively used as the_ mixing volume for the escaping gases and therefore 50% of 69,120 is 34,560 cubic feet.
Technical Justification:
See Reference 15 for the free volume calculation.
The leakage in the stack rooms occurs on a middle elevation, i.e. between elev. 568 and 597.5, at about elev. 532.
Also, the leakage occurs'at about 1/4 of the stack radius.
The exit path from this stack area is'through the louvers and doors at the full radius of the stack; therefore, the escaping gases must i
mix in that volume and hence a 50% mixing volume is deemed a valid j
assumotion.
This assumption was deemed conservative because the room is relatively open with n the future, additional dilution is required. increasing the mixing volume percentage would need t i I
Criculation Ns. ND-Q00319275 Rev: R8 PI:nt: BFN Pag:: 7g
Subject:
Control Room Doses Prepared: Ace Date.3-'7 f f Checked: /k Date: y/z,/fy ASSUMPTIONS:
I
- 14. The following X/Q values were utilized in COROD:
Technical Justification: From Reference (28):
X/Q (sec/ cum)
RELEASE PATII TIME PERIOD West /U1 East /U3 Intake FUMIGATION TOP OF STACK 0 30.0 min 3.40E 5 3.02E 5 TOP OF STACK RELEASE 30.0 min 2 hr 5.90E 15 9.64E 7 2 hr 8 hr 4.29E 15 1.89E 7 8 hr 1 day 3.65E 15 8.37E 8 1 day 4 day 2.58E 15 1.43E 8 4 day 30 day 1.57E 15 1.13E 9 l)1 BO'ITOM OF STACK RELEASE 0 30.0 min 3.70E 3 1.20E 3*
30.0 min 2 hr 3.70E 3 1.20E 3 I l 2 hr 8 hr 2.38E 3 7.01EJ4 4
8 hr 1 day 1.91E 3 6.42E-4 1 day 4 day 1.19E 3 4.09E 4 4 day 30 day 5.97E 4 2.14E 4
- reference 28 actually only gives the 0.5 2 hr X/Q. However that is a typographical error in the calculation and is really a 0-2 hr X/Q (= 0 0.5 hr and 0.5 2 hr X/Q) l q
- 15. The dose from both the top and bottom of the stack released during 0 30.0 minute time frame may be l
divided by a factor of 1.7 in order to account for the use of the so called ICRP 30 conversion factors; the dose released during the 30.0 minute to 30 day time frame may be divided by a factor of 1.35.
Technical Justification: The complete justification for the division by 1.7 is given in Reference (35) where the iodine isotopic spectrum weighted conversion factor in the COROD code and the iodine isotopic spectrum weighted conversion factor given by ICRP 30 are in the ration of 1.7 for the first 30 minutes of the accident.
The I 131 isotope is largely going to dominate the long term iodine release because the I 131 half life is about 8 days as opposed to a maximum of less than one day for any of the other iodine isotopes. The iodine conversion factors were compared between COROD and the CRAC2 code (see References 36-38), which used and early version fo the ICRP 30 conversion factors, and this comparison shown on page 10 of Ref.(35) indicates that I 131 has the lowest ration of the conversion factors: that is 1.48E6/1.1E6 =1.35. Hence utilizing the 1.35 ratio is conservative for times greater than 30.0 minutes. Reference 35 information for ICRP factors is independent
{
of which unit it is applied to.
1 l
I TENNESSEE VALLEY AUTHORITY O
sheet /4of37
SUBJECT:
ND-Qf031-920075 CONTROL ROOM DOSES fSN COMPUTED BY:
DATE:
CHECKED BY:
DATE:
BS 9-/7-P L hl pi m fl.A9 C u f ut*3 ff-j.2s -93 JM ASSUMPTIONS:
or Sd 3 Wajk. slaI43 R4 4
16.
The flow split between the Unit 2 reactor zone and the refueling floor was taken as 29.4%/70.6%,
respectively, for revision 1 of this calculation. For revision 2, the total SGTS flow of 22000 CFM (1,320,000 CFH) was taken from the reactor zone plus a part of the refueling floor, see Assumption 9.
Technical Justification:
This is the flow split determined in Reference 32. For Revision 2, see reference 66.
TLis essw b'o-is delef.J.
Thir --1-"I-tien 1; f;i Uc.it
- r;tien ;..ly, l R4 17.
Technical Justification: Since
+ha k' =6 4 7 ^ff of 4-h a fin i t diluti:n fa..
eff;;te ti.o leakage h uu. L;.; b r r e o f + h e r t i r M,
- ha calerlatir--I r; ulum would J.;;ge if ".it 1 Jere Oper-6 4 e t.
'The "-it 2 'ilutic; f;;; h;;; d;;per; ;; rppered te bein; hirr':;d h
_m
+w.
vm. _, - - - _ __.. _,, --
m-
--_-m___
...,2
'iM el5}E.* Wf %g l "'d7(d'^."D"5.."5^e^. "NC"U %.-.^A. s t..k.6
Z.
1_. _
MW6 re fl<.f t. tohl lake G 6
b..a caved b-k
- 18. Control room operator occupancy times are as follows:
Percent occucancy Time 100%
0 - 1440. min.(1 day) 60%
1440. min. - 5760. min.(4 days) 40%
5760. min.-Duration of accident (30 days)
Technical Justification:
See Reference 6.
l it.
- 19. The dimensions of the Unit / Control Room are:
153.95 ft x 36.83 ft x 15.33 ft.
Tbs. c h a-Maas b.
J u43 Ri Technical Justification:
See Reference 22. These dimensions have no bearing on the thyroid dose which uses the total Control Room volume, input as a separate item.
- 20. The receptor point location in the COROD model was taken at 76.97 ft, 18.42 ft, 6.0 ft.
Technical Justification:
This is as close to the geometric center of the room as a six foot tall individual may be expected to be.
This would be the worst case location for whole body dose to an individual who was six feet tall.
- 21. The Control Room roof thickness is 2.25 ft of concrete.
Technical Justification: See Ref.(22).
l l
TENNE 2SEE VAI13Y AUTHORITY
.77 8HEET 11 OF.F/-
0 SUBJECT ND-OdO31-920075 PROJECT BFN-2,3 p
CONTROL ROOM DOSES COMPUTED BY t
DATE g 5/.9g, CHECKED BY DATE l
Btb 9 9L QGC g l 2 c(4 3 p,y ASSUMPTIONS:
m, ws, u 3
- 22. The? Control Room free volume is given as 210,000, cubic RLf I
feat.
Technical Justification:
Dimensions from Ref.(22).
The length of the control room habitability zone is very t
close to 464.5 ft including the end wall thicknesses.
The width is 36.83 ft.
The height is 15.33 ft.
l Therefore the volume is 262,259. cubic feet.
Considering a reduction for equipment and some walls, the free volume is customarily assumed to be 80% of the calculated gross volume; this yields a free volume of (0.80)(262,259.) = 209,807. cubic feet.
This is rounded to 210,000, cubic feet.
- 23. The time intervals for the COROD runs are given below:
Time Interval Time Interval in Seconds 0 - 30 min 1,800.
30 min -
2 hr 5,400.
I 2 hr 8 hr 21,600.
8 hr
- 24 hr 57,600.
24 hr
- 96 hr 259,200.
96 hr
-720 hr 2,246,400.
24.
In accordance with Ref.(3), the following Adult Inhalation Thyroid Dose Conversion Factors were utilized internal to the COROD runs:
COROD ISOTOPE MREM / CURIE REM / CURIE I-131 1.48E9 1.48E6 I-132 5.35E7 5.35E4 I-133 4.00E8 4.00E5 I-134 2.50E7 2.50E4 I-135 1.24E8 1.24E5 For the conversion to ICRP-30 factors, see Assumption 15.
?
TENNESSEE VALLEY AUTHORITY 27 SHEET 12 OF-3f-o 8UBJECT ND-Of031-920075 PROJECT BFN-2,3 (g
CONTROL ROOM DOSES COMPUTED BY DATE g,g/.4 CHECKED BY DATE OO F-3/- 9 2._
&C l{2*b3
[
l-2 0.-93
)
V gw v.n ASSUMPTIONS Cont'd M V/*J/f f 25.
In accordance with Ref.(3), the following breathing rates were utilized internal to the COROD runs:
2 TIME POST ACCIDENT
_H / SEC 0-8 HR 3.47E-4
.8 - 24'HR 1.75E-4 GREATER THAN 24 HR 2.32E-4 SINCE THE PRESENT CALCULATION DOES NOT DETERMINE'THE DOSES FROM THE MSIV TIAKAGE DIRECTLY 0"T OM' Y INCO""^"_'.TEC T"OC" g
^^ CEC SY ""FEP"CE. ASSUMPTIONS 26-33 ARE ONLY PERIFERALLY RELATED TO THE PP MENT CALCULATION BUT ARE INCLUDED FOR READY REFERENQE AND CXPLANATORY VALUE. PfM6-9HB--fWiPP-9 HAT M MEY ARE APPROPRIAT5 TO THE GE CALCULATION WHICH DETERMINED Th1L ESES FROM MSI7 77AKAGE AND HENCE ARE RELEVANT.
INPUT TO Th GE CALCULATION IS GIVEN IN ATTACHMENT 9.
EXPLICIT INPUTS N SUMPTIONS. AND SO ON TO THAT CALCULATION ARE NOTED BY THAT CAtGLATION.
IT IS EXPLICITLY NOTED THAT THE GE CALCULATION U M TZES A 100% POWER LEVEL OF 3293 MWt AS i
OPPOSED TO THE " M ETCH" POWER LEVEL OF 105% OR 3458MWt USED IN DETERMINING THE M ES FROM THE STACK IN THE PRESENT CALCULATION.
p 26.
All piping remains inta from the MSIVs to the condenser even though it i ot seismically qualified.
The condenser also remains in t.
Technical Justification: See Refs.(
&(26).
This appears to be in accordance with the B G (BWR Owner's Group) pos'ition as well as others in the ustry.
It is also assumed that a large flow path to th condensers is open for all times during the acc ent scenario, see Ref.(23).
This calculation does not consider MSIV leakage as a separately accounted for bypass path from second.irv containment directly into the turbine building. MSIV leakage is considered as a component of the tor.il containment leakage of 2%/ day, all of which is assumed to leak into the secondary containment encimure I
Assumptions 26-29 and 31-35 are no longer applied to this calculation. Modeling feature / considerations resulting from these assumptions have been removed in R8.
TENNESSIO VALLEY AUTHORITY
?7 8EEET 13 OF4f 0
SUBJECT ND-OIO31-920075 PROJECT BFN-2,3 lg4 CONTROL ROON DO8ES COMPUTED BY DATE g-J/42. CHECKED BY DATE j
8lG
- 8. St. 72_
4 6 '- II2* /4 3 p24 97
- 27. Free volume of Low Pressure (LP) turbines and free 1
volume of the "3..it r condensers was taken as 51,000 ft l Pi4 /4 li 3
and 136,000 ft, respectively; this was modelled in STP as a single volume cglied " Condensers" with a total volume of 125,000 ft.
l Technical Justification: This was obtained by 3
multiplying the total free volume of 187,000 ft by (2/3).
This volume is deemed conservative.
The volume of the main steam piping and other small bore piping was neglected because its volume is insignificant with respect to the volume of the condensers and the LP R *b*
- 3 9 *
- V i'*
- J 44 d*f" "'"*2 turbines, tosee Ref. (39) 3 WH I d
%WO
- ~0 C**d* w s Rg n yptis.Ise
- 28. MSIV leakage rate was taken as 11.5 SCFH per valve.
Tr;hnical Justification:
There are four main steam lines and therefore the total leakage was (4) (11. 5) = 4 6 SCFH, see Refs. (42) & (43).
- 29. The free volume f the turbine building (TB) was taken 3
as 2,100,000 ft and consisted of the U..it 2 area of h ome J P2 m
volume E
Thu val== b 16 ave'JeThisvaluewasusedasthge**ixingJ.
turbine deck.
f*e
- H T
- i in the TB.
Technical Justification: see Ref.(39).
This was deemed a reasonable assumption in this case because the leakage was assumed to come from all the LP turbine seals which are spread out over a considerable area; and the vents in the TB roof, which release the effluent, are spread over the entire length of the TB.
- 30. The new air intake locations are as noted in Ref.(45),
(See Attachment 3].
6 Technical Justification:
See section entitled MSIV FLOW RATE and Attachment 4.
en e.s,., kldal u Rt a
TE3DfE8833 VALLEY AUTHORITY J7 SEEET 14 OF 94" SUBJECT ND-O 31-920075 PROJECT BFN-2,7 lM CONTROL ROOM DOSES p
DATE(.z,f.9a CHECKED BY DATE COMPUTED BY 8/d f-3/- ? 2.
l QC ll2clq 3 j,2p,cf 3 l$/
el4V Ap/ yg
- 32. Deleted.
p, 4 4,,
,.,y A
- 33. The flow rate out the TB roof vents # was taken as gy 8,640,000 CFH = (144,000 CFM) (60 min /hr).
i l
Technical Justification: See Ref.(47).
- 34. The dose from the MSIV release via the Turbine Building (TB) roof vents is added to the dose from the stack (base and top). [Not und N R#3 Af Technical Justification:
The wind directions'are mutually exclusive for the X/Q value only for the short time period, i.e. 0-2 hrs; however, for the annual average values the wind direction probabilities are i
taken into consideration.
Intermediate values of X/Q l
are obtained by a logarithmic interpolation between the short time X/Q and the annual average value.
Therefore l
the doses obtained by using the X/Q set from the stack l
(top and bottom) and the doses obtained by using the X/Q j
l set from the TB are added to assure a conservative i
result.
See Attachment 3.
I 6
1
q..,
Calcul tion N3. ND-Q0031-9275 k:v: R8 Plant: BFN Page: g,p p
Subject:
Control Room Doses Prepared: gm Date: M.n S l
Checked: /A Date: y/eg/pp 1
1
- 35. The dose from the MSIV leakage may be divided by 2 because of the dual air intake configuration.
i l
Technical Justification: Now according to Ref.(63), page 6.4-10: "With dual air inlets placed on plant structures on opposite sides of potential radiation release points (e.g., containment building) and capable of functioning with an assumed single active failure in the inlet isolation system, the following considerations may be applied I
to the evaluation of the control room X/Qs:
(i) Dual inlet designs without manual or automatic selection control... [usel.. least favorable inlet location to estimate X/Qs. The estimated values can be reduced by a factor of 2 to account for dilution effects..."
Therefore, since the new BFN CREVS design will function with a single active failure and the new air inlets are on opposite sides of the Turbine Building where MSIV leakage is released, the factor of 2 reduction in X/Q
[ Equivalent to dividing the MSIV doses by 21 is applied to the MSIV leakage contribution to the total dose
- 36. The hardened wetwell vent isolation valve (FCV-64-221, 222) leak a maximum of 10 cfh of drywell atmosphere following a LOCA.
Technical Justification: The HWWV valves are periodically tested via the Appendix J test program to determine their leakage at pressures typical of the peak pressure following a LOCA. References 67 and 68 state that the maximum allowable leakage for these valves is 10 scfh. The values are for Unit 2; however, the Unit 3 system design is identical and thus will have the same acceptance criteria.
- 37. The HWWV leakage is assumed to start S nours post LOCA.
Technical Justification: The leakege of the 6ves actually starts at the start of the accident. However, the 14" SCH 30 (ID=13.25", ref.71) line is over 5 feet long (ref.70). Therefore the travel time from the valves to the stack is :
n (13.25"/12in/ft)2 500 fV(4*10 cfh) = 47.88 hr Since it takes longer than 47 hours5.439815e-4 days <br />0.0131 hours <br />7.771164e-5 weeks <br />1.78835e-5 months <br /> to reach the stack, the use of 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> for the start of the leak is very conservative.
TENNESSEE VALLEY AUTHORrfY sheet I6 of 37
SUBJECT:
ND-QOO31-920075 CONTROL ROOM DOSES COMPUTED BY:
DATE:
CHECKED BY:
DATE:
'Mk-IluM3 f
fas43
}Rf l
l
REFERENCES:
I 1.
Memorandum to Plant ' Operations Review Committee (PORC) from W.C.
- Thomison, Acting Technical Support Superintendent, dated January 4,1990, Closure of Special Test (ST) 89-07, "Off-Gas Stack Backflow Measurement", (RIMS # R40 900104 873).
2.
STP - Source Transport Program User's Manual, Code Version 6, ID# 262165.
3.
.COROD - Code Version 3, ID# 262347; User's Manual for COROD, Rev 1,
By R.L. Sanders,
- TVA, April 12,
- 1991, (W13910419300];
Gennal3-009.
4.
Deleted.
l 5.
ND-Q0999-880134 RO "Offsite and Control Room Operator Doses Following a LOCA with a Ground Level Stack Release" (B22'88 0921 l
105).
6.
13th AEC Air Cleaning Conference, " Nuclear Power P32nt Control Room Ventilation System Design for Meeting General Criterion 19,"
l K.G. Murphy and K.M.Campe.
7.
U. S. Atomic Energy Commission Regulatory Guide 1.3, Revision 2, June 1974.
8.
Memorandum from J.P.
Blackwell, Atmospheric Science, to D.W.
l Wilson, Chief Nuclear Technology Engineer, dated July 13, 1988
[B45'880714 600].
l 9.
Browns Ferry Nuclear Plant Unit 1,2,3 Technical Specifications
~
l 3.7. A.2.b and 3.7.B.2.b (as revised through Amendments 189, 204 and M
1 161, respectively)
- 10. HD-Q0999-880158 R2 " Control Room Operator Dose as a Function ':
Time Following a LOCA or FHA" (B22'88 1222 102].
- 11. Deleted.
A:\\BLS004\\N2920075
i TENNE 30EE VALLEY AUTEDRITY 27 SEEST 17 OF 47 O
SUBJECT ND-Of031-920075 PROJECT BFN-2,J
$4 CONTROL ROON DOSES COMPUTED BY DATE r.2gygCHECKED BY DATE g
80 T-3/-f2
%6' (l2*I* 3 f
I %
lBY
REFERENCES:
12.
Design Criteria BFN-50-7030A Revision l
" Control Bay and Reactor Building Board Rooms y
Environmental Control Systemy 4-10e2 ["2:^ 0410:0?}.
- Units 2 =4 3 ash igs ( A14 Maze 3 tot 1 l
- 13. Significant Conditions Report SCRBFNEEB8510 R2 BFNP Units 1, 2,
&3
[B22'87 0327 019).
i
- 14. Memorandum from R.J. Smith, Project Engineer, to Guy G.
Campbell, Plant Manager, dated September 28,1989, "BFN -
Nuclear Engineering (NE) Position Concerning the Use of Containment Atmosphere Dilution (CAD) Following a Loss I
of Coolant Accident (LOCA)"
(B22'89 0928 003).
I
- 15. ND-QOO65-920078 RO, " Determine the Free Volume in the SGTS Stack at Elevation 568ft to 597.5ft,"
(R14920724102).
l o
L fR4 l
- 16. ND-Q/000-890013 Rg " Post-LOCA Control Room Gamma Dose l
from Secondary Containment and Core Spray Piping" l
( N ].
R N 9 3 ol N 882..
(R4
- 18. MD-Q0000-88280 RO " Reactor Building Free Volumes" (B22'88 0720 103).
- 19. BFNP Unit 0 Design Change Notice (DCN) No. W11053, Nuclear Engineering, " Prevent Ground Level Releases",
System 66 (Replaces ECN E-0-P7217).
l l
- 20. U.S. NRC Regulatory Guide 1.145 Revision 1 " Atmosphere l
Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants,"
November 1982.
I
- 21. Code of Federal Regulations (CFR) Title 10, Enerav, Parts 0 to 199.
?
l l
I l
TENNESSEE VALLEY AUTHORITY l
0 sheet /g of 37
SUBJECT:
ND-Qf031-920075 lN l
CONTROL ROOM DOSES COMPUTED BY:
DATE:
CHECKED BY:
DATE:
h5 7-b'-92 f
9"lbW
l.Al C tj a o(s3 j gg 4_3 lfy M'lM W4f
REFERENCES:
^ Y/u/19' 23.
"BWR Report for Increasing MSIV Leakage Rate Limits and Elimination of Leakage Control Systems," NEDC-31858P, Class III, DRF B21-00461, GE Nuclear Enerav. February, (1991).
- 24. Test Instruction 0-TI-225, Test Deficiency Report #4, Written 4/15/96 lR 25.
" Performance of Condensers and Main Steam Piping in Past Earthquakes," Report No. 50032.02-R-01, Revision 0, by S.P. Harris and T.R.Roche, EQE Engineering.
Prepared for GE and incorporated as Appendix D of GE Report NEDC-31858P, Ref.(23) above.
26.
Letter:
T. A. Green to E.Trottier, OG91-603-09, Submittal of Revised BWR Owners Group (BWROG) MSIV Leakage Closure Committee Draft Documentation and other Supporting Information for NRC Review and Comment," Attachment 2,
" Verification of Main Steani Piping and Condenser Seismic Adequacy," July 26, 1991.
- 27. Calculation MD-QOO31-920154 RO,
" Evaluation of Habitability Zone Unfilterd Inleakage," [R22920615104].
- 28. Memorandum from C.E.Cronan (Stone and Webster) to H. Lee Williams dated April 3,1998 " BROWNS FERRY NUCLEAR STATION RESPONSE TO NRC QUESTIONS ON ATMOSPHERIC DISPERSION FACTORS / CONTROL ROOM HABILITABILITY ATMOSPHERIC DISPERSION FACTOR CALCULATIONS' A
RIMS # P.92 980414 949 p rd.9 U.'l: '. ', ?
29.4Srcunc Fer y "ucle:r Plant
'J.. i t : Technicel E;ccificatiens
( 3.0 rc'/ iced thrcugh ?.=cnd:ent:20;'
l 0 ',
EN f 3_- 2,: " h-.? E k.E.r _ 7 3,2. 5 2
f
.~
rI m I,2,3 30.
Browns Ferry Nuclear Plant UniL 2 Technical Specifications 3.7.E.2.b " Control Room Emergency Ventilation," page 3.7/4.7-19, M.
Amendments:c. 172, cept. 12,10 S F 18 4, 2u4. J I& l m p u b.l,
y a
l l
i
TENNE!8E3 VALLEY AUTHORITY O
sheet <P of 37
SUBJECT:
ND-QIO31-920075 lp CONTROL ROOM DOSES COMPUTED BY:
DATE:
CHECKED BY:
DATE:
f g
7 - P 2:-- 4# 1/2 in ' p p 20.m )y
- s. o o e$** y/n/tV
REFERENCES:
j i
- 31. TVA Drawing 0-47E865-4 R026.
I I
- 32. MO O2055-020225 22, appuv J 7/25/;2, T m moi.od Fom;nt ge
~s
-SCTS Fire f;;
t.'.e Refool
...J Reeet:r 0;ild ing, '!.
R8/
f?1' a2 0??102 ] c Sip 4<4eJe/
h @e face.
w I
ne (ad i
alculation 02837.1401, " Accident Elevated X/Q from Top of Stack to Room Air Intakes," ENVR/WM(B)-3, dated 7/27/92;
" Accident Ground from Base of Stack to Control Room Air Intakes,"
ENVR/WM ( B) -2, 27/92, by Stone Webster Engineering Corporation, Environmen ivisi.on,
- Boston, gt Massachusetts.
[See Attachment 8 ].
TVA Calcu
-QO303-920092 RO, " Accident Ground Level X/Q From Base of Stack to Con Room Air Intakes", [R14 920828 110]
- 34. Federal Register / Vol. 56, No. 98 / Tuesday, May 21, 1991 /
Rules and Regulations / 23394.
- 35. Calculation ND-Q2031-910015 RO,
" Control Room LOCA Doses CREVS Modifications," (B22910904104).
- 36. NUREG-1169, " Resolution of Generic Issue C-8," by J.N.Ridgely and M.L.Wohl, USNRC, Washington, DC 20555, (1986).
- 37. ICRP. 1977. Recommendations of the International Commission on Radiological Protection. International Commission on Radiological Protection, Fublication 26, Pergamon Press, Oxford, England.
- 38. ICRP. 1979. Limits for Intakes of Radionuclides by Workers.
International Commission on Radiological Protection, Publication 30, Part 1, Pergamon Press, New York, New York.
- 39. Letter: J.R.Rupert to Patrick P.
Carier, dated July 8,1991, Boiling Water Reactor Owner's Group (BWROG)
Plant -
"BFNP Specific Radiological Dose Calculations Data Sheets MS I'!
Leakage," with attached data sheets,
[B22910708002].
Given as.]
40.
Calculation ND-Q2031-920012 RO,
" Control Room LOCA Do s e s,
[B22920429112].
i l
-. a.uu. -
r.
l TENNESSEE VALLEY AUTHORITY l
sheet
'2
- of 37
SUBJECT:
ND-Q0031-920075 CONTROL ROOM DOSES
" COMPUTED BY:
DATE:
CHECKED BY:
DATE:
MC (2) $ /4 3 gsg it f4_,g
{ R,6 9 ryu<A L1 A'w. (o 7
REFERENCES:
i 41.
DCN W11053B, Closed 5/16/91, [B22910516009).
42.
Browns Ferry Nuclear Plant Units 1,
2, and 3 Technical Specifications, Containment
- Systems, Surveillance Requirements, 4.7.A.2.1.
(Amendments 189, 204, and 161) 43.
Letter:
T.A. Green to J.L.Kamphouse dated July 8,
- 1991, OG91-568-09, " Browns Ferry Control Room Dose Calculations in Accordance with the BWROG Radiological Dose Methodology (11.5 SCFH per steam line)." See Attachment 7.
44.
Letter: A.L.Jenkins to J.L.Kamphouse, "Browps Ferry Control Room Dose Calculations in Accordance with the BWROG
. Radiological Dose Methodology (11.5 SCFH per Steam Line)
Revision 1," dated August 28, 1992, with attachment: " Browns Ferry Nuclear Plant Calculation of LOCA Doses to the Control Room f rom MSIV Leakage, " DRF A00-04146 Section C, Performed by GE Nuclear Energy, August 1992.
[See Attachment 10].
1 45.
Sketches based on Drawings: 3-47W200-8 R000, 47E200-15 RB, 10N212 R13; and the relevant drawings of DCN W18060A.
j
[Given as Attachment 3.]
46.
Reference deleted.
47.
Drawings: 2-47E865-3 R005, 1-47E865-3 R005, 3-47E865-3 R006.
i 48.
Reference deleted.
i 49.
Thermodynamics: An Engineering Approach, by Y. A.Cengel and M.A. Boles, McGraw-Hill Book Company, New York, p.55, (1989).
50.
Fundamentals of Physics, 3rd Edition, by D.Halliday and R.
Resnick, John Wiley & Sons, Inc., New York, p. 486, (1988).
i i
51.
Fan Engineering, 7th Edition, Edited by R.Jorgensen, I
Buffalo Forge Co., Buffalo, New York, page 317, (1970).
I
(
52.
Reference deleted.
t f
53.
BFI& FSAR, Figure 14.6-10, "LOCA Primary Containment Pressure Response,"
and Figure 14.6-11, "LOCA Drywe;.
Temperature Response."
(Given as Attachment 4.]
i 54-59. References deleted.
1
l
.w n
-x l
TENNESSEE VALLEY AUTHORITY sheet 2(
of 37
SUBJECT:
ND-QOO31-920075 CONTROL ROOM DOSES COMPUTED BY:
DATE:
CHECKED BY:
DATE:
00 l 2.l9 l43 Ci%t.
st-tg.A s R(
ap aud le1 Ru. 6 M*N9 14%
hge.
t
REFERENCES:
/,4e V/s a./
60.
Fundamentals of Classical Thermodynamics, 2nd Edition, G.J.VanWylen and R.E.Sonntag, John Wiley and Sons, Inc., New York, (1973).
61.
Reference deleted.
62.
Procurement Request Form, H.Crisler to R. Hyde for purchase of two CREVS filter assemblies.
[Given as Attachtsent 6].
63.
USNRC Standard Review
- Plan, 6.4 Rev 2,
" Control Room Habitability System,a p 6.4-8, July, 1981.
64.
Base Drawing (CCD U1-3) 0-47E865-4, DCA Number W17527-003
.Rev 000; and Base Drawing (CCD) 0-47E865-4, DCA Numbers:
W18060-001 R000, W18060-002 R000, W18060-003 R000, W18060-004 R000.
1 l
65.
Base Drawing (CCD-0) 0-47E930-21 R000, DCA Number W18060-022 R000.
66.
MD-QOO65-920473, " Estimated Mixing Volume and SGTS Flow During a Design Basis Accident on Unit 2 With the Equipment Hatches Removed",
Revision 1 [R14 930104 101]
67.
Site Standard Practice (SSP) 8.7, Revision 4,
" Containment Leak Rate Program", pages 89 and 136.
68.
Surveillance Instruction 2-SI-4.7.A.2.g-3/64f, Revision 4,
R6
" Primary Containment Leak Rate Test Hardened Wetwell Vent:
Penetration X-205",Section 6.1.
69.
ND-Q0064-920091, " Hardened Wetwell Vent Bypass Leakage :'ese j Evaluation", Revision 1.
- 70. BFN drawing 0-17E401-11 R1 F
- 71. Perry's Chemical Engineers' Handbook,6th ed.
TENNEISE3 YALLEY AUTHORITY Sf' 3 7 SHEET 22 OF M g4 8UBJECT ND-O 031-920075 PROJECT BFN-2,3 lg4 CONTROL ROOM DOSES COMPUTED BY DATE CHECKED BY DATE 6 7-24 h 66 7+7 Rl 26 y
97 CALCULATIONS:
MSIY FLOW RATE (rJot iAwlb Ah At The properties of an ideal gas at two different states are related to each other by:
Refs.(49)&(50).
(PiV )/Ti = (PgVg)/Tg 1
where P = pressure in PSIA V = volume or volumetric flow rate, e.g. CFH.
T = absolute temperature,
- R.
Subscript "i" indicates initial condition and "f" indicates final condition.
Consequently:
Vg = PiV Tg/PgTi j
i Initial conditions are standard temperature and pressure, i.e. the flow rate of 11.5 SCFH [Refs.(42)&(43)] is taken at 70*F and 1 atmosphere (Ref. (51) ; taken as 14.4 PSIA at BFNP).
The valve is tested at a pressure of 25 or 26" PSIG; see Ref.(43).
Examination of Ref.(53) indicated that it was appropriate to determine the MSIV flow rate for two time periods under two different conditions, i.e. for two sets of i
values for Pg and Tg.
Ref.(53) is given as Attachment 4 where the selection of the Pg and Tg parameters are shown.
The two time periods were 0 - 1100 seconds and 1100 seconds
- 30 days.
All these parameters are shown below:
INITIAL CONDITIONS O - 1100 SEC 1100 SEC - 30 DAYS Pi=14.4 PSIA (1 at) Pg=27 PSIG+14.4 PSIA Pg=10 PSIG+14.4 PSIA P =41.4 PSIA Pg=24.4 PSIA f
T =175*F=634.67*R Ti=70*F=529.67*R Tg=275*Fu'134.67*R f
V =11.5 SCFH i
The absolute temperature Rankine scale is related to the Fahrenheit scale as follows:
- Ra*F+459.67 See Ref.(60).
TENNESSEE VALLEY AUTHORITY l
sheet 2.3 of J7
SUBJECT:
ND-Q0031-920075 CONTROL ROOM DOSES COMPUTED BY:
DATE:
CHECKED BY:
DATE:
& hC.
I flIl93 f
l-204.3 Q *. %6 4W%
0 - 1100 SECONDS:
W I
V, = (734. 67'R) '14. 4 PSIA) (11. 5 SCFH) 5.548 CFH.
=
(41.4 PSIA) (529.67'R) 1100 SECOtOS - 30 DAYS:
i Vr = (634. 67'R) (14. 4 PS.IA)(11.5 SCFH)
(0.7072)(11.5)
=
=
(24.4 PSIA) (529.67 R) l Vr
= 8.132CFH.
Since there are 4 steam lines the MSIV leakage from one line as given above must be multiplied by 4; therefore the leakagts are (4 ) (5.54 8 ) =22.19 CFH and (4 ) ( 8.132 ) =32. 6 CFH for the two time periods, respectively.
The worst case leakage of 32.6 CFH will be used for the entire duration of the accident.
CALCULATIONS:
STP MODEL The STP model used to determine the released activities from the top and base of the stack for the control room dose analysis is l
shown in Figure 1.
In this model the source term is released into the drywell (component 1) and then leaks at 235.8 cfh into the reactor building (component 2). The volume of the reactor building l-is taken as 1,931,502 ft which indicates that mixing, and thus 3
holdup and decay, takes place in the reactor building as well as the refuel floor.
The SGTS flow from the reactor building is taken as 22,000 cfm (1,320,000 cfh) through the SGTS charcoal filter (component 4).
The filter efficiency is taken as 90% for the l
inorganic and organic iodines.
The CAD flow from the drywell to l
the SGTS is at a flow of 139.0 cfm (8340 cfh) for 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> periods l
beginning at 10 days, 20 days, and 29 days.
The flow for,the fig 30.0 minutes to the base of stack (components 10 & 6) is e cfm (;.
cfh) and 21,995 cfm (1,319,700 cfh) to the top of stack (component g4
- 8) under fumigation conditions.
After 30.0 minutes fumigation ceases) and the 21,995 cfm is released from the top of the stack (component 7) via normal atmospheric conditions.
[
A:\\BL3004\\N2920075
{
L
IW hiculation No. ND-Q0031-9275 Rev: R8 j Pl:nt: BFN Page: gq g
Subject:
Control Room Doses Prepared: A4 Date: %,,,p Checked: /g Date: y/4s/,y The flow from the containment to the main steam lines and the condensers is not used and has been discontinued in R8 (see figure 1). However the volumes / components are retained in the STP input for historical purposes. The historical flow (32.6 cfh) into the main steam lines and condensers was directed into component 12 which was a combi' ed volume. The same Dow is directed to the turbine deck which is component 13. The n
exhaust flow out the top of the TB vents is 8.640.000 cih. This is directed to component 14.
The flows associated with this model are shown in Figure 2.
The hardened wetwell (HWWV) valves (FCV 64 221, 222) provide a leakage path from the drywell to the offgas stack. This flow is 10 cfh.
1 lA C::lruistion Ns. ND-Q00319275 l Rev: R8 Plant: BFN Page: g gg
Subject:
Control Room Doses Prepared: eW Date: +(1gg Checked: /g/
Date: y/2 /fr Figure 1: STP Mooel 100% Noble Gas 25% todene m
0% Other R8 Torus 235.8 V
2 RB CM 8340 enser 1.32E6 32,3 f
3 Dummy 13 TB One 1.32E6 8,640,000 Y
U 4 SGTS 14 Top Ch Fitt of TB 1.32E6 Volumes (cutt)
) f 1:283,000 5 Dummy 2:1,931,500 Tm g
10: 34,560 HWWV: 10 at time > 8 hr 12:125,000 600 13:2.100,000 1.319.400 lff f
Remainder 1.0 10 Stack 7 Top of Room Stack 600 f
6 Base of Stack
I i
Cr_ltulition No. ND-Q0031-9275 Riv: R8 Pirnt: BFN Page:y jp
Subject:
Control Room Doses Prepared: et,&
Date: 9 s1,f f Checked: fier Date: y/rs/py Figure 2 FLOWS IN STP MODEL COMPONENTS FLOW RATE 1-+2 2%/ day = 235.8 cih 1-+7 0 cfh t< 8hr: 10 cfh for t>8 hr 2-*3 22,000 cfm = 1,320,000 cfh 3-+4 22,000 cfm = 1,320,000 cfh 4-+5 22,000 cfm = 1,320,000 cfh 5-*7 22,000 10 = 21990 cfm = 1,319,400 cfh 5-*10 10 cfm = 600 cfh 10-+6 10 cfm = 600 cfh 1-+3 139 cfm = 8340 cfh for 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> periods at 10,20, and 29 days:
0 cfh for all other times
IUll 1
Iculation No. ND-Q0031-9275 R:v: R8 Plant: BFN Pzge: g y y
Subject:
control Room Dosee Prepared: u m Date: 4,q 46 Checked: //M Date: y/n/pr Figure 3: STP Input 1 ' CORE INVENTORY (CURIES)*
1 7.7173+7 2 1.1455+8 3
1.8416+8 4
2.0719+8 5 1.7438+8 6 3.3922+6 7 5.0351+6 8 8.0945+6 9 9.1072+6 10 7.6652+6 11 3.8936+7 12 1.3977+6 13 7.6039+7 14 1.0720+8 15 1.4002+8 16 1.1873+6 17 5.7251+6 18 2.0252+8 19 3.1599+7 20 1.9842+8 21 1.8343+8 22 1.8795+8 0
7 LOCA MODEL NJs 14 KCONC= 0 1 *DRYWELL & TCRUS 2 'U2 REACTOR ZONE' 3 ' DUMMY 1' 4 ' CHARCOAL
- 5 ' DUMMY 2' 6 ' BASE OF STACK' 7
- TOP OF STACK' 8 'RB HVAC FAILS' 9 'NOT USED' 10 ' STACK ROOMS' 11 'NEVER USED' 12 ' CONDENSERS' 13 'TURB BLDG' 14 'TB TOP'
-1 INITIAL ACTIVITY (INSTANTANEOUSLY RELEASED FROM THE CORE) IN COMPONENTS G 1 1.0E-6 2 1.0E-6 3 1.0E-6 4 1.0E-6 5 1.0E-6 G 6 1.0E-6 7 1.0E-6 8 1.0E-6 9 1.0E-6 10 1.0E-6 G 11 1.0E-6 12 1.0E-6 13 1.0E-6 14 1.0E-6 V 1 203000 CUFT 2 1931502 CUFT 3 1.0 4 1.0 5 1.0 CUFT V 6 1.0 7.1.0 8 1.0 9 1.0 10 34560 CUFT 11 1.0 CUFT V 12 125000 CUFT 13 2100000 CUFT 14 1.0 S 1 1 1 0.23 S 1 1 2 0.25 S 1 1 3 1.00 F 1 2 0 235.8
$ F 2 TO 8 RB HVAC IS OMITTED IN THIS MODEL IT IS LESS THAN 30600 CFH.
F 1 3 0 0.0 F 1 7 0 0.0
$F 1 12 0 32.6 MSIV LEAXAGE OMITTED IN R8 RE F 2 3 0 1320000.
F 12 13 0 32.6 PF 12 1 10000.
F 13 14 0 8640000.
A6 A7 A8 A 14 N60 N70 N80 N 14 0 U 3 4 5 1320000. 0.90 0.90 0.0 F 5 10 0 600.0 F 10 6 0 600.0 F 5 7 0 1319400.0 0.5 HR TIME TO 0.5 HR (30 MIN)
N60 N70 N80 N 14 0 P2067 2.000 HR TIME TO 2.000 HR (2.0 HRS)
N60 N70 N80 N 14 0 P2067 8.0 HR TIME TG 8.0 HR N60 N70 N80 N 14 0 P2067 24.0 HR TIME TO 24.0 HR (1 DAY)
F 1 7 0 10.0 lAe N60
i bliul tion N2. ND-Q0031-9275 Riv: R8 Plant: BFN Pzgu g y y
Subject:
Control Room Doses Prepared: Mott, Date: 1.tMi Checked: //
Date: f/'u/pr N70 N80 N 14 0 P2067 96.0 HR TIME TO 96.0 HR (4 DAY')
S N60 N70 N80 N 14 0 P2067 240.0 HR TIME TO 240.0 HR (10 DAYS) CAD PURGE FLOW FOR 24 HRS BEGINS 264.0 HR TIME TO 264.0 HR (11 CAYS) TURN OFF CAD PURGE FLOW F 1 3 0 8340.0 480.0 HR TIME TO 480.0 HR (20 DAYS) CAD PURGE FLOW FOR 24 HRS BEGINS F 1 3 0 0.0 504.0 HR TIME TO 504.0 HR (21 DAYS) TURN OFF CAD PURGE FLOW F 1 3 0 8340.0 696.0 HR TIME TO 696.0 HR (29 DAYS) CAD PURGE FLOW FOR 24 HRS BEGINS F 1 3 0 0.0 720.0 HR TIME TO 720.0 HR (30 DAYS) TURN OFF CAD PURGE FLOW F 1 3 0 8340.0 P2067 T
T
IM hl:ul: tion No. ND-Q0031-9275 Rev: R8 Plant: BFN Pagt: 27 y
Subject:
Control Room Doses Prepared: q Date: yz3-tj Checked: /g Date:.,%j/pp CALCULATIONS.
COROD MODEL The dose to the control room operators was calculated using the ecmr uter code COROD. The COROD model I
used is based on the one used in Reference 5. however there are differenas based on assumptions / technical justifications. The X/Q values are given in assumption 14. The activities released from bottom of the stack as determined by STP are input into the COROD runs N9275C8A (unit 1/ west intake) and N9275C8B (unit 3/ east intake). The STP output for the top of stack releases were used as input to the COROD runs N9275C8C (unit 1/ west intake)and N9275C8D (unit 3/ east intake).
The inputs to these four COROD runs are shown in Figures 4 7.
As per assumption 12, two additional cases were run to demonstrate the sensitivity of control room dose to CREVS Dow rate. A case of CREVS flow of 1500 cfm was run to determine the lower analytical limit for the low fan flow switch on the CREVS unit. This analysis was performed in Revision 5 and'not repeated in Revision 8 with the revised X/Q values or releases. Another case for a CREVS flow of 0 cfm was run in Revision 5 to demonstrate the acceptability of having no CREVS flow for approximately 2 minutes. The two minutes corresponds to the time between tripping the primary CREVS unit and the startup of the standby unit. IIaving no CREVS during the entire 30 day accident period bounds the thyroid dose for not having CREVS for any two minute period. The input decks for these cases are found in Appendix 13. They were not updated to the Revision 8 X/Q values or Revision 8 STP releases. These results are not used and are kept in the calculation to show the sensitivity of the doses to CREVS intake and for historical purposes.
I M
Calculation No. ND-Q0031-9275 Rev: R8 Plant: BFN Page: p,fp
Subject:
Control Room Doses Prepared: m Date:
wp l
Checked: /p Date: yf,jfg t
1 Figure 4: COROD INPUT "N9275C8A" q
UIAVest Intake
//N9275C8A JOB 264360,9MBERG. BIN 111.MSGLEVEL 1,MSGCLASS=T i
//* MAIN ORG= LOCAL. CLASS =SB
//JCL JCLLIB ORDER =(APB.NEN.PS264460.PROCLIB)
// STEP 1 EXEC COKOD. SOUT= '
//GO.SYS!N DD
8 I 131 I 132 I 133 1 134 1 135 3
!* 131 I* 132 I* 133 I* 134 I* 135 KRM 85 KR 85 KR 87 KR 88 KR 89 XD.131 XEM 133 XE 133.XEM 135 XE 135 XE 137 XE 138
-6
- BASE OF afACK
$ TN.
0.5000E+00 1 1.656E-04 2 2.198E-04 3 3.908E-04 4 3.325E-04 5 3.603E 04 6 7.278E-06 7 9.662E-06 8 1.718E-05 9 1.461E-05 10 1.584E-05 11 3.159E-03 12 1.201E-04 13 5.340E-03 14 8.402E-03 15 2.564E-04 16 1.020E-04 17 4.901E-04 11 1.738E-02 19 1.433E-03 20 1.672E-02 21 5,525E-04 22 5.652E-03
-6
' BASE OF STACK
$ TN.
0.2000E+01 1 8.193E-03 2 7.822E-03 3 1.870E-02 4 7.125E 03 5 1.593E-02 6 3.601E-04 7 3.438E-04 8 8.221E-04 9 3.132E-04 10 7.003E-04 11 1.322E-01 12 5.967E-03 13 1.472E-01 14 3.178E-01 15 1.026E-05 16 5.055E-03 17 2.406E-02 18 8.594E-01 19 3.206E-02 20 7.787E-01 21 5.185F-05 22 1.989E-02
-6
' BASE OF STACK
$ TN.
0.8000E+01 1 2.589E-01 2 7.654E-02 3 5.212E-01 4 1.667E-02 5 3.307E-01 6 1.138E-02 7 3.365E-03 8 2.291E 02 9 7.326E-04 10 1.454E-02 11 2.2521,00 12 1.915E-01 13 6.628E-01 14 3.810E+00 15 2.932E-13 16 1.60SE-01 17 7.379E-01 18 2.709E+01 19 6.114E-01 20 1.935E+01 21 3.965E-11 22 1.378E-03 R8
-6
' BASE OF STACK
$ TN=
0.2400E+02 1 2.404E+00 2 4.756E 02 3 3.467E+00 4 5.585E-04 5 1.051E+00 6 1.057E-01 7 2.061E-03 8 1.524E-01 9 2.455E-05 10 4.622E-02 11 4.511E+00 12 1.853E+00 13 9.039E-02 14 3.570E+00 15 0.0 16 1.523E+00 17 6.300E+00 18 2.493E+02 19 2.087E+00 20 9.226E+01 21 0.0 22 1.723E-10
-6
' BASE OF STACK
$ TN=
0.9600E+02 1 2.489E+01 2 8.601E-04 3 1.092E+01 4 4.758E 09 5 5.241E-01 6 1.094E+00 7 3.780E-05 8 4.800E 01 9 2.091E-10 10 2.304E-02 11 8.978E-01 12 2.265E+01 13 3.745E-05 14 1.565E-01 15 0.0 16 1.711E+01 17 4.560E+01 18 2.433E+03 19 1.209E+00 20 1.006E+02 21 0.0 22 0.0 i
l
-6
' BASE OF STACK
$ TN=
0.7200E+03 1 2.232E+02 2 5.836E-13 3 1.800E+00 4 0.0 5 5.2f9E 04 l
6 9.809E+00 7 2.565E-14 8 7.913E-02 9 0.0 10 2.3'.2E-05 t
11 2.637E-05 12 5.250E+02 13 7.660E 22 14 6.074E-09 15 0.0 16 2.379E+02 17 7.166E+01 18 1.450E+04 19 1.945E-03 20 8 881E-01 21 0.0 22 0.0 2*3.70E-3 2.38-3 1.91-3 1.19-3 5.97-4 1800 5400 21600 57600 259200 2246400 3000.0 3717.0 O.90 1E-15 0.90 1E-15 210000.0 1E-15 100.0 60.0 40.0 1440.0 5760.0 153.948 36.833 15.33 46.0 9.0 4.0 76.974 18.4165 6.0 0.0 ROOFFLtJX DOSE TO COtrTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF 1000.0 1000.0 1000.0 20.0 20.0 20.0 500.0 500.0
-13.58 2.25
/*
//
1 l
l
1 i l 11/dl Calculation No. ND-Q0031-9275 R.v: R8 Plant: BFN Pagt: ygj
Subject:
Control Room Doses Prepared: y Date: 3.,7,gg Checked: A Date: y/u/W Figure 5: COROD INPUT "N9275C8B" gy U3/ East Intake
//N9275C8B JOB 264360.9MBERG. BIN 111.MSGLEVEL=1,MSGCLASS=T
//* MAIN ORG= LOCAL, CLASS =SB
]
//JCL JCLLIB ORCER=(APB.NEN.PS264460.PROCLIB)
I
// STEP 1 EXEC COROD,SotJT='**
//OO.SYSIN DD
- NIT = 22 NR= 1 ITP= 6 FACT = 1.0
/ /
LOCA BASE OF STACK 0-30 DAY RELEASE 4 Al# N. ' d M 7~
/fOf 1
l
! 131 1 132 I 133 1 134 1 135 I* 131 I* 132 !* 133 I* 134 1* 135 I
KRM 85 KR 85 KR 87 KR 88 KR 89 I
XEM 131 XEM 133 XE 133 XEM 135 XE 135 XE 137 XE 138 l
-6
' BASE OF STACK
' S TN=
0.5000E+0C l
1 1.656E-04 2 2.198E-04 3 3.908E-04 4 3.325E-04 5 3.603E-04 6 7.278E-06 7 9.662E-06 8 1.718E-05 9 1.461E-05 10 1.584E-05 11 3.159E-03 12 1.201E-04 13 5.340E-03 14 8.402E-03 15 2.564E-04 16 1.020E-04 17 4.901E-04 18 1.738E-02 19 1.433E-03 20 1.672E-02
[
21 5.525E 04 22 5.652E-03
)
-6
' BASE OF STACK
$ TN.
0.2000E+01 l
1 8.193E 03 2 7.822E-03 3 1.870E-02 4 7.125E-03 5 1.593E 02, 6 3.601E 04 7 3.438E 04 8 8.221E-04 9 3.132E-04 10 7.003E-04 11 1.322E-01 12 5.967E-03 13 1.472E 01 14 3.178E-01 15 1.026E 05 16 5.055E-03 17 2.406E-02 18 8.594E 01 19 3.206E-02 20 7.787E-01 l
21 5.185E-05 22 1.989E-02
-6
' BASE OF STACK
$ TN=
0.8000E+01 1 2.589E-01 2 7.654E-02 3 5.212E-01 4 1.667E 02 5 3.307E-01 6 1.138E-02 7 3.365E-03 8 2.291E-02 9 7.326E-04 10 1.454E-02 11 2.252E+00 12 1.915E-01 13 6.628E-01 14 3.810E+00 15 2.932E 13 16 1.609E-01 17 7.379E 01 18 2.709E+01 19 6.114E-01 20 1.935E+01 l
21 3.965E-11 22 1.378E-03
-6
' BASE OF STACK
$ TN=
0.2400E+02 gg 1 2.404E+00 2 4.756E-02 3 3.467E+00 4 5.585E-04 5 1.051E+00 6 1.057E-01 7 2.091E-03 8 1.524E 01 9 2.455E-05 10 4.622E-02 l
11 4.511E+00 12 1.853E+00 13 9.039E-02 14 3.570E+00 15 0.0 16 1.523E+00 17 6.300E+00 18 2.493E+02 19 2.087E+00 20 9.226E+01 21 0.0 22 1.723E 10 l
-6
' BASE OF STACK
$ TN.
0.9600E+02 1
1 2.489E+01 2 8.601E 04 3 1.092E+01 4 4.758E-09 5 5.241E-01 6 1.094E+00 7 3.780E-05 8 4.800E-01 9 2.091E-10 10 2.304E-02 11 8.978E 01 12 2.265E+01 13 3.745E 05 14 1.565E-01 15 0.0 16 1.711E+01 17 4.560E+01 18 2.433E+03 19 1.209E+00 20 1.006E+02 21 0.0 22 0.0
-6
' BASE OF STACK
$ TN=
0.7200E+03 1 2.232E+02 2 5.836E-13 3 1.800E+SO 4 0.0 5 5.259E-04 6 9.809E+00 7 2.565E-14 8 7.913E-02 9 0.0 10 2.312E-05 11 2.637E-05 12 5.250E+02 13 7.660E-22 14 6.074E-09 15 0.0 16 2.379E+02 17 7 166E+01 18 1.450E+04 19 1.945E-03 20 8.881E-01 21 0.0 22 0.0 2*1.20E-3 7.91-4 6.42-4 4.09-4 2.14E-4 1800 5400 21600 57600 259200 2246400 3000.0 3717.0 0.90 1E-15 0.90 1E 15 210000.0 1E-15 100.0 60.0 40.0 1440.0 5760.0 153.948 36.833 15.33 46.0 9.0 4.0 76.974 18.4165 6.0 0.0 ROOFFLt3 DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE THROtJGl{ ROOF 1000.0 1000.0 1000.0 20.0 20.0 20.0 500.0 500.0
-13.58 2.25
/*
//
j s
)
1 i
d 4
l l
l Ill11 l
C:l:ul ti:n Ns. ND-Q0031-9275 Rev: R8 PI::nt: BFN Page: 3g,f37
Subject:
Control Room Doses Prepared: A v>
Date: ygns Checked: /$6/
Date: ppipj)j>
Figure 6. COROD INPUT *N9275C8C" UIAVest intake 48
//N9275C8C JOB 264360.9MBERO. BIN 111.MSGLEVEL=1,MSGCLASS T
//*MAI:f ORG. LOCAL CLASS.SB
//JCL JCLLIB ORDER =(APB.NEN.PS264460.PROCLIB)
// STEP 1 EXEC COROD, SC UT= ' * *
//OO.SYSIN DD
- TOP OF STACK *)
L//[wFj7"
- E I I 131 1 132 1 133 I 134 I 135 I* 131 !* 132 !* 133 I* 134 I* 135 KRM 85 KR 85 KR 87 KR 88 KR 89 XEM 131 XEM 133 XE 133 XEM 135 XE 135 XE 137 XE 138
-7
' TOP OF STACK
$ TN=
0.5000E+00 1 1.227E+02 2 1.651E+02 3 2.900E+02 4 2.5E5C+02 5 2.682E+02 6 5.394E+00 7 7.258E+00 8 1.275E+01 9 1.113E+01 10 1.179E+01 11 2.357E+03 12 8.900E+01 13 4.056E+03 14 6.296E+03 15 4.381E+02 16 7.556E+01 17 3.634E+02 18 1.288E+04 19 1.336E+03 20 1.245E+04 21 8.120E+02 22 4.864E+03
-7
' TOP OF STACK
$ TN.
0.2000E+01 1 1.332E+03 2 1.328E+03 3 3.053E+03 4 1.304E+03 5 2.627E+03 6 5.853E+01 7 5.837E+01 8 1.J42E+02 9 5.733E+01 10 1.155E+02 11 2.196E+04 12 9.693E+02 13 2.592E+04 14 5.350E 04 15 4.183E+00 16 8 216E+02 17 3.921E+03 18 1.398E+05 19 1.393E+04 20 1.288E+05 21 2.044E+01 22 5.086E+03
-7
' TOP OF STACK
$ TN.
0.8000E+01 1 8.859.+03 2 3.239E+03 3 1.819E+04 4 9.570E+02 5 1.213E+04 6 3.894E+02 7 1.424E+02 8 7.996E+02 9 4.206E+01 10 5.331E+02 11 8.558E+04 12 6.536E+03 13 3.308E+04 14 1.548E+05 15 2.947E-08 16 5.509E+03 17 2.555E+04 18 9.307E+05 19 2.012E+05 20 7.139E+05 21 3.951E-06 22 1.192E+02 Ra
-7
' TOP OF STACK
$ TN=
0.2400E+02 1 3.414E+04 2 9.648E+02 3 5.123E+04 4 1.379E+01 5 1.714E+04 6 1.500E+03 7 4.241E+01 8 2.252E+03 9 6.063E-01 10 7.532E+02 11 5.742E+04 12 1.917E+04 13 1.533E+03 14 5.040E+04 15 0.0 16 1.590E+04 17 6.741E+04 18 2.618E+06 19 6.404E+05 20 1.12'E+06 21 0.0 22 3.498E-06
-7
' TOP OF STACK
$ TN=
0.9600E+02 1 1.268E+05 2 7.407E+00 3 6.438E+04 4 4.368E-05 5 3.869E+03 6 5.575E+03 7 3.256E-01 8 2.830E+03 9 1.920E-06 10 1.701E+02 11 5.198E+03 12 8.304E+04 13 2.470E 01 14 9.659E*02 15 0.0 16 6.453E+04 17 1.817E+05 18 9.221E+06 19 3.681E+05 20 5.468E+05 21 0.0 22 0.0
-7
' TOP OF STACK
$ TN.
0.7200E+03 1 6.212E+0S
! 2.16 9+ - s) 3 6.443E+03 4 0.0 5 1.913E+00 6 2.731E+04>
7 9.534E 11 8 2.832E+02 9 0.0 10 8.407E 02 11 7.091E-02 12 1.204E+06 13 2.096E-18 14 1.648E-05 15 0.0 16 5.839E+05 17 2.103E+05 18 3.804E+07 19 6.050E+02 20 2.357E+03 21 0.0 22 0.0 3.40E-5 5.90E-15 4.29E-15 3.65E-15 2.58E-15 1.57E-15 1800 5400 21600 57600 259200 2246400 3000.0 3717.0 0.90 1E-15 0.90 1E-15 210000.0 1E 15 100.0 60.0 40.0 1440.0 5760.0 153.948 36.833 15.23 46.0 9.0 4.0 76.974 18.4165 6.0 0.0 ROOFFLUX DOSE TO CoffrROL ROOM PERSONNEL DUE TO SHINE THROt.KHf ROOF 1000.0 1000.0 1000.0 20.0 20.0 20.0 500.0 500.0
-13.58 2.25
/*
//
I!
IlL11
'l Calculation No. ND-Q0031-9275 Rw: R8 Pknt: BFN Page: 33 p37
Subject:
control Room Doses Prepared: e Date: y.a.n Checked: p Date: y/a/pp Figure 7: COROD INPUT "N9275C8D" g
U3MEast Intake
/ 'd9275C8D JOB 264 360,9KBERG. BIN 111.KSGLEVEL=1,MSGCLASS.T
//*KAIN ORG LOCAL, CLASS SB
//JCL JCLLIB ORDER =(APB.NEN.PS264460.PROCLIB)
// STEP 1 EXEC COROD.SOUT= ' * *
//GO.SYSIN DD
- NIT. 22 NR. 1 ITP= 6 FACT = 1.0 LOCA BASE OF STACK 0-30 DAY RELEASE (Noce: This ef ele should read " TUP OF STACK */ 8/J[84J F"h M/
I 131 1 132 I 133 I 134 I 135 I* 131 I* 132 I* 133 I* 134 I* 135 KRM 85 KR 85 KR 87 KR 88 KR 89 XEM 131 KEM 133 KE 133 JUD4 135 KE 135 XE 137 XE 138 j
-7
' TOP OF STACK
$ TN=
0.5000E+00 a
1 1.227E+02 2 1.651E+02 3 2.900E+02 4 2.555E+02 5 2.682E+02 6 5.394E+00 7 7.258E+00 8 1.275E+01 9 1.123E+01 10 1.179E+01 11 2.357E+0.?
12 8.900E+01 13 4.056E+03 14 6.296E+03 15 4.381E+02 16 7.556E+01 17 3.634E+02 18 1.288E+04 19 1.336E+J3 20 1.245E+04 21 8.120E+02 22 4.864E+03 i
-7
' TOP OF STACK
$ TN.
0.2000E+01 1 1.332E+03 2 1.328E+03 3 3.053E+03 4 1.304E+03 5 2.627E+03 6 5.853E+01 7 5.837E+01 8 1.342E+02 9 5.733E+01 10 1.155E+02 11 2.196E+04 12 9.693E+02 13 2.592E+04 14 5.350E+04 15 4.183E+00 16 8.216E+02 17 3.921E+03 18 1.398E+05 19 1.393E+04 20 1.288E+05 21 2.044E+01 22 5.086E+03
-7
' TOP OF STACK
$ TN=
0.8000E+01 1 8.459E+03 2 3.239E+03 3 1.819E+04 4 9.570E+02 5 1.213E+04 6 3.894E+02 7 1.424E+02 8 7.996E+02 9 4.206E+01 10 5.33tE+02 11 8.558E+04 12 6.536E+03 13 3.308E+04 14 1.548E+05 15 2.947E-08 16 8.509E+03 17 2.555E+04 18 9.307E+05 19 2.012E+05 20 7.139E+05 R8 21. 951E-06 22 1.192E+02
-7
' TOP OF STACK
$ TN=
0.2400E+02 j
1 3.414E*04 2 9.648E+02 3 5.123E+04 4 1.375E+01 5 1.714E+04 i
6 1.500E+03 7 4.241E+01 8 2.252E+03 9 6.063E-01 10 7.532E+02 11 5.742E+04 12 1.917E+04 13 1.533E+03 14 5.040E+04 15 0.0 16 1.590E+04 17 6.741E+04 18 2.618E+06 19 6.404E+05 20 1.128E+06 21 0.0 22 3.498E-06
-7
' TOP OF STACK
$ TN.
0.9600E+02 1 1.268E+05 2 7.407E+00 3 6.438E+04 4 4.368E-05 5 3.869E+03 6 5.575E+03 7 3.256E-01 8 2.830E+03 9 1.920E-06 10 1.701E+02 11 5.198E+03 12 8.304E+04 13 2.470E-01 14 9.659E+02 15 0.0 16 6.453E+04 17 1.817E*05 18 9.221E+06 19 3.681E+05 20 5.468E+05 21 0.0 22 0.0 7
- TOP OF STACK
$ TN.
0.7200E+03 1 6.212E+05 2 2.169E-09 3 6.443E+03 4 0.0 5 1.913E+00 6 2.731E+04 7 9.534E-11 8 2.832E+02 9 0.0 10 8.407E 02 11 7.091E-02 12 1.204E+06 13 2.096E-18 14 1.648E-05 15 0.0 16 5.839E+05 17 2.103E+05 18 3.804E+07 19 6.050E+02 20 2.357E+03 21 0.0 22 0.0 3.02E-5 9.64E-7 1.89E-7 8.37E-8 1.43E-8 1.13E-9 1800 5400 21600 57600 259200 2246400 3000.0 3717.0 0.90 1E-15 0.90 1E-15 210000.0 1E 15 100.0 60.0 40.0 1440.0 5760.0 153.948 36.833 15.33 46.0 9.0 4.0 74.974 18.4165 6.0 0.0 ROOFFLUX DOSE To CONTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF 1000.0 1000.0 1000.0 20.0 20.0 20.0 500.0 500.0
-13.58 2.25
/*
//
i
I b
Calculation No. ND-Q0031-9275 Rev: R8 Plant: BFN Page: 3pg
Subject:
Control Room Doses Prepared: m4p Date:M Checked: /,pr Date: y/2sfyp.
I Results l
The results for a CREVS flow rate of 3000 cfm are shown in Table 1. The whole body gamma dose to the control j
room from the reactor building shine is 1.511 rem (reference 16). The doses determined by COROD are based m ICRP.2 conversion factors. The table converts the ICRP.2 doses to the ICRP.30 values.
Table 1 Control Room THYROID Doses (reml j
l Unit 1 (West Intake) d l
i 0
.5 HR
.5-2 HR 2-8 HR 8-24 HR 1-4 DAY 4-30 DAY TOTAL Base Stack 1.326E-04 1.205E-02 3.026E-01 1.032E+00 7.082E+00 2.860E+01
(
OF*
1 1
1 1
0.6 0.4 l
ICRP-2 DOSE 1.326E-04 1.2 05E-02 3. 026E-01 1. 032E+00 4.249E+00 1.14 4r'+01 17.036
)
i DCF*
1.7 1.35 1.35 1.35 1.35 1.35 ICRP-30 DOSE 7.800E-05 8.926E-03 2.241E-01 7.644E-01 3.148E+00 '8.474E+00 12.619 j
1 Top Stack 9.045E-01 1.507E+00 8.516E-02 4.031E-07 8.030E-08 2.097E-07 j
l OF 1
1 1
1 0.6 0.4 l
ICRP-2 DOSE 9.045E-01 1.507E+00 8.516E-02 4.031E-07 4.818E-08 8.388E-08 2 197 l
DCF 1.7 1.35 1.35 1.35 1.35 1.35 I
ICRP-30 Dose 5.321E-01 1.116E+00 6.308E-02 2.986E-07 3.569E-08 6.213E-08 1.711 i
Unit 3 (East Intake) l
\\
0.5 HR
.5-2 HR 2-8 HR 8-24 HR 1-4 DAY 4-30 DAY TOTAL Base of Stack 4.301E-05 3.908E-03 1.005E-01 3.468E-01 2.434E+00 1.025E+01 OF 1
1 1
1 0.6 0.4 ICRP-2 DOSE 4.301E-05 3.908E-03 1.005E-01 3.468E-01 1.460E+00 4.100E+00 6.012 DCF 1.7 1.35 1.35 1.35 1.35 1.35 ICRP-30 DOSE 2.530E-05 2.895E-03 7.444E-02 2.569E-01 1.082E+00 3.037E+00 4.453 l
Top Stack 8.034E-01 1.842E+00 1.133E+00 6.815E-01 4.666E-01 1.537E-01 l
l OF 1
1 1
1 0.6 0.4 i
ICRP-2 DOSE 8.034E-01 1.842E+00 1.133E+00 6.815E-01 2.800E-01 6.148E-02 4.801 DCF 1.7 1.35 1.35 1.35 1.35 1.35 ICRP-30 DOSE 4.726E-01 1.364E+00 8.393E-01 5.048E-01 2.074E-01 4.554E-02 3.434 Unit 1 (West Intake) Total: 14.331 rem Unit 3 (East Intake) Total: 7.887 rem AVG (both intakes) : 11.109 ram
\\
- OF= Occupancy Factor = 1.0 for 0 24 hr. 0.6 for 14 day,0.4 for 4 30 day i
l
- DCF = ICRP.30 Dose Conversion Factor = 1.7 for 0 0.5 hr,1.35 for 0 5 hr.30 day l
t I
I l
C2ulation No. ND-Q0031-9275 R:v: R8 Plant: BFN Page: $f,9 p
Subject:
Control Room Doses Prepared: x,A Date: t(14 i
Checked: /gf Date: y/4s/pp 1
Table 2 Gamma and Beta Ccntrol Room Doses [reml J
l Gamma Beta l
j U1 Base 0.0266 0.2186 I
{
U1 Top 0.009535 0.1114 U3 Base 0.009338 0.07658 U3 Top 0.01464 0.1634 RB 1.511 NA i
U1 total 1.547135 0.33 R8 U3 total 1.534978 0.23998 Average 1.5410565 0.28499 i
I l
l l
[
IFA C:lculsti:n N3. ND-QOO31-9275 Rev: R8 Plant: BFN Pzge: %,T)]
Subject:
Control Room Doses Prepared: bw Date: q,g.6(
Checked: /p Date: y/cs//p The final doses for a CREVS flow rate of 3000 cfm are given below:
Table 3 l
Control Room Dose,[ rem)
Thyroid 11.109 (ICRP-30) l Garrma 1.541 Beta 0.285 The control room doses are below the limits of 10CFR50 App.A GDC 19 (ref.21) of 5 rem whole body or equivalent (30 rem thyroid,30 rem beta).
i The results for CREVS flow rates of 1500 cfm and 0 cfm are provided in Attachment 13. Note that these cases utilized the revision 5 models, and have not been updated to ilm revision 8 parametdrs.
Arrscuec 13 a<suun ue aer-aaeo /.a. 8,3 n a,w hanser sz ea Mu.e 214s y,
eHwee
/d Y/Es/97 1
\\
l l
l l
l I
i
I TENNESSEE VALLEY AUTHORITY sheet 37 of 3 7
SUBJECT:
ND-QOO31-920075 CONTROL ROOM DOSES COMPUTED BY:
DATE:
CHECKED BY:
DATE f no:-v lpy l
rec-
'koks LIST OF COMPUTER RUNS:
Revision 2 fM l
STP RUNS JOBNAME JOB NUMBER DATE STP011 4388 9/18/92 COROD RUNS JOBNAME JOB NUMBER DATE DESCRIPTION I
COROD06 4836 9/18/92 Base of stack release, t > 30.5 min COROD07 4771 9/10/92 Top of stack release, t > 30.5 min COROD08 4755 9/18/92 Fumigation conditions, t"5 30.5 min COROD011 4803 9/18/92 Base of stack release, t $ 30.5 min j
l l
Bayision 4 STP RUNS JOBNAME JOB NUMBER DATE ND9275S 9383 1/11/93 STP011
- 4388 9/18/92 b!
COROD RUNS JOBNAME JOB NUMBER DATE DESCRIPTION ND9275C1 9417 1/11/93 Top of stack release, t 5 30 min COROD07
- 4771 9/18/92 Top of stack release, t > 30 min f
ND9275C2 9374 1/11/93 Bottom of stack release, O to 30 min ND9275C3 1087 1/20/93 Bottom of stack release, t > 30 min i
- From Revision 2 i
(
TENNESSEE VALLEY AUTHORITY sheet 379 of 37
SUBJECT:
ND-QOO31-920075Af CONTROL ROOM DOSES COMPUTED BY:
DATE:
CHECKED BY:
DATE:
QOC 3[2s/f3 8-M"U l
LIST OF COMPUTER RUNS (cont'd) i Revision 5 l
COROD RUNS l
JOBNAME JOB NUMBER DATE DESCRIPTION l
1500 cfm CREVS flow rate ND9275C1 7336 3/26/93 Top of stack release, t 5 30 min ND9275C3 7403 3/26/93 Bottom of stack release, t > 30 min 0 cfm CREVS flow rate l
i ND9275C1 7292 3/26/93 Top of stack release, t S 30 min ND9275C3 7377 3/26/93 Bottom of stack release, t > 30 min i
.s f cm o ra n c u m A NG4 4. d 622 m vNo ac
^
s.
7g33
/@-Q2o3l-71oo75Ao
/YTT/)cykfghj^
"h*
i T~
Patrick P. Carter. Manager of Site Licensing. PAA IC-8FN r.
J. R. Rupert. Engineering Manager. Browns Ferry Engineering Project, l
Nuclear Engineering. EDB 1A-8FN JUL O'S 1991
SUBJECT:
BR0kWS FERRY. NUCLEAR PLANT (BFN) - BOILING WATER REACTOR OkWER'S GROUP (8WCC) PLANT - SPECIFIC RADIOLOGICAL DOSE CALCULATIONS DATA SREETS "S!'l LEAKAGE R
erence:
Your memorandum to me dated Aprit 10. 1991 (R08 910610 983)
Please find attached the completed data sheets as requested for Plant-Specific radiological dose calculations by CE for the BWROC MSIV Leakage Conenittee.
J. R. Ruperf.
Attachment:
Data Sheets cc (Attachment):
RIMS. ET SLP A L. $. Bettis. EDB LF-BFN R. E. Crister. EDB IF-8PW R. W. Mundy. TCE At1-OFN C. W. Pratt. BR SA-C R. S. Ruscryk. ATM LA-8FM
(
C. A. Silver. ED8 LF-8FN
\\
M. G. Zaalouk. ED8 1A-8FN
~ \\
l L
0325e-85 Buv l'.S. Savines Bonds RePularly on the Parroll Savines Plan
..r
..AXACE LOSURE C MMITTtt RAD 20 LOG 2 CAL 005E CALCULATgeg DATA SHRET #1 WQ P3 F-91oo7fR %
M YT M MBri~ /
Pm 2 m PLANT (S)
BROWNS FERRY NUCLEAR PLANT - UNIT 2 100% RATED PCwER LEVEL 3293 HV THERMAL Containment Maximum Allowable Leskage Rate to Reactor Building 2
% per day.
Does this include MSIV Leakage?
Yes I
Wo Reactor to Outboard MSIV Pipe compartment 4
Number of Lines 141 feet
- Average Pipe Length 23.647 inches Pipe Inside Diameter inches (Sched. 80) 26 Pipe Outside olemeter 312 lbs. per foot Pipe Mass Per Unit Length Insutstion Meteriet Mirror (Reflective 1 3-1/2 inches Innulation Thickness outboard MSIV to Tubrine stop Valve Pipe Comosetment (NP Turbine Pathway 1 189 feet
- Average Pipe Length 21.542 inches Pipe Inside Otometer inches (Sched. 80 ASTM A106 Gr. 8) 24 Pipe Outside Otometer 291 lbm. per foot Pipe Mass Per Unit t.ength Insutstion Materist Calcium SL11este 2-1/2 inches tuulation Thickness outboard MSIV to Condenser Ptoe comoertment (Desin Line Pathway 1 Wumber of Lines 4(3") to 1(4")
Average / Equivalent Pipe Length (125' of 3") (110' of 4")
feet
- 2.624/3.826 inches Pipe Inside Otameter inches (Sched. 160/80 ASTM 3.5/4.5 Pipe Outside Diameter A106 Cr. 8) 14.31/14.98 lbs. per foot Pipe Mass Per Unit Length Insulation Material Piberglass/Calcius silieste_
2-1/2 inches Insulation Thickness Minimus Oismeter of Orsin 2.624 inches
- Line Pathway
- CE will esiculate equivalent values if appropriate drawings are provided (piping segments may not have same diameters or some number of para 1Let pathyways).
0781s-24
.uw.. -.. M Do s t C ALCULA T ow OATA SHEET 42 ND-Q 203 l-1100KR0, MTAcHMCWi~
j PA63#3 PLANT (S) nROWNS FERRY NUCLEAR PLANT - UNIT 2 Main Condenser /LP Turbine Free Volume Randenter 1.36E5 cuble feet (Unit 2)
(not including hotwell)
Free Volume LP Turbines 5.1E4 euble feet Relative Evaluations (Needed to Calculate Ef fective Volume)
Surface of W4 tar in Hotweit 2-4 feet - 567' eLev.
~
~
27" = 190,000 gal.
2 min, full power operation
- Drain Line Inlet to Condenser 9 590*EL.k$0 rein Cooler feet
- Condanner to LP Turbine Bellows 35'-10" feet - 609*-1" LP
~
TurbineBellowsk$
573'-3" condense /k Turbine Center Line EL. 621' 0" feet
~
~
Turbine Buildint Fstimated Free Volume 2.1E6 cuble feet (Unit 2 Turbina Oeen If? Turbine Estimated Free Volume 568.6 cuble feet
- Estimated Internal Area 4402 equere feet a Cnntrol Room Complete Free Volume 210.000 cubic feet HabitabtLity Zone
~
Habitabable Volume 210.000 cuble feet Vent Filter Intake 8.33 cubic feet per second (500efm)
Vent UnfLLtered Intake 45.8 cubic feet per second ( 215 0c f.9 )
Recirculation Rate no charcoal fL1ters cuble feet per ascend Intake Filter EfficLency 95% Inort/95% ora.
% (2 banks of 2 filters in seri Inteke Filter ActLvated 2
inches Carbon Bad Depth RaeirculatLon Filtat-P f f i e l aeir y Mn charenel filters %
Recirculation FL1ter Activated Wo charcoal filters inches Carbon Bed Depth Is the intake and reeleeutation filter the same filter?
Yee I No (No charcoal filters in rectreulation loop.)
- TFpical from CE turbine Department; If you have specific value for your plant, please revise accordingly.
1781a-25
i l6-G.203l-TuoM'R l, MTTMWMMT 3 f3 y
~
G O
O
.a O.
O e
n.,.
m tyj
,3-Qe.
t wj-l' l-i gi ns e
,e.!
r' 9
)%
e g
y i
)
. '"1, '
.i f
I d--
I
.l
.J t
%, e -
d'
)
a-.
l':'t',W. A"E 6,
a i
x-wre r
I f,,f,gge g aim, Ap_,,f G./ 6 94 #.nse Ad a
e n a.
sre n o p
'W l
l
,M f
f l.
- l. (*er.e,.nseur w t
iI il r
4 t
N
,,,,... i t
.i.
i r
T,}"
em,
,f)
, c'./
- A X
r > < > > <>
< * ~ * -
.j.,(.
. g
[
438
.em ns e.
\\ ~~
p.
i L,
y e
c..
s m.gN
. e,,,,,Jy>.,
~ -*
,,a,,,
=.
Li=~ r ;
u.w,
+
j
-g s,,.
,c a." "_., : 12--';q*e
.,.n,.,r.y:.-
.a a,
>~ "n ;
a' n " m~
.1. -,... -
.e a
<,,,../
g...
<'~*d, 4
l
',,r.gi~'.G. "'3 L'"; m. {-
9
- f
. :,/.
-u I.
4
- ._~
. __ ___. a C.
_1,,,
a ~.,
~e.
l l
- 3
~
^
c.I
'~;;; /
f4 A
u). !.
., ~.,. n x
c g
e
.s. ~
\\
\\-
)
l
\\
I eueaee
,, Jam,. M
- %i
. << n ~ -
- l., res m
. i.
dJ 1._
l' l
-l Il 3-Y7 W200-?
l?o<x>
&L 2i to u
.3 41
//
E2. I "
2.- 2, G
/
Nb-aw1-n
- 1.f RI.
Anemur 2 em 2 dr 9!!,1T
/
...L......
is.....
.c.,
cn,, 4,,,--,
_I i I fT I
I_
+l+l++ ++I@f
]y lW'# +
+
6.
i i--
2 a
e-i mm.r-e
=
7 b
l @~g,
.l Ie # I+
+ J +++
b
_g
.2 I
i Q
- 1 i
'C
&, M,,
T+ 5 +
+
+
+
+ + + +
O lM m'.r"'" '
6 L. __
i e
e
._ =.J e %
)
i"'
~ 'e ium i
4-xc pl "wurzen i
i
] { O
! ll 3
w.spLJiP
- s, h
e
! ll la I
3
! p,urs var row.a 2
i e
+ lr +
h
,1
+
+
+
+i+
g
+
+
6a h, ds I
0 as i_.
i t- >
e
.=
t-q r
h g
) li0
!m b
+
+
+
+
+1+
+
+
+
si a
11 w
ar e
s m
x Ull efI _ __ __.h
- i. u l n
p.lg. i a
g,_
S
,,c,,
I il mLe g
q unir a veur rowsm h
Ila el ;.g-
~
e
.- v.
~
e
- d h
m __._ _
e e_,
M-e _ =.....,
_ 3 B.
i
[.i,
e g
9 t
_m t a 4 1..v_ +
_+
7 e e
I 10,
- o,.- G 8< +
+., _.
+
b e
3[11 -uner a Ear rowen
~
y II 14-.
i 5
11 e
3 I,_..
i l
l i
i
_g
.ll
- s I
3 e
Il ea ell1
. e n
i.
3
~
m
> g ys
_... ~
,e m
n t
I i..
.. i... w.....i.,,....
r 6 e 6 6e6 ce e ee e
e e
e eee
..=:=
- m NSU /N7M,Md (TYM )
T m... eaar 1
Figure 1
i L ;. :.'. ~ff^.[ ~
R
N.g
~
l
.....\\
.]p.vpr'
.. ~
- 1.,.
',. < p.,
- 's, j
., y
- c..
y i
e L
( -l, s
g g+.
N a ::.+ 9i.g:' +p91s4tyynnewr 3 Pp.3fr; 1,
x:
.h,.
=
'( k
//,
'g 6
//
. 'i,
/
\\,
,h
.,I.,
's, i
\\'
f y*,
y'4*et:.I'e',l. p' e
'h
'k'-
[N 3hb
. >;. 7..,. : Y g
4
., \\.qm.
N
,, e:,...,'.e*
- .. g.,..
j l
~
'T*,
e* *
- t y,;
a e
'h I
sbr'('
)s ll
/
- ~..
o
- o Q
f~
jl
?,,
N
\\
t h
L N
1 ' 3;
'h,
'x g ns' au
\\\\.
,gges 1
,.L....
\\
As.
* /
q
' s' \\
/%
e,.
% ' 7 amp
'D N
.u
- g1o.,
w.
, s" 0
N s
Sg&2H
'N 8 '
y ggp g,p I)W4 /o A/2.t2, Ra
[!o. J.0 f
3 6
s
-(
1 e
4 y
f lV:D-Q1o21-1soe1Y A I f n-Y f f y
Arrsenser 3
.i
=
.n i-O
\\
.f}.
'L '
g m
=.3
[
W2 I
d 35 O;
i sa xe d
h I
- o.
i J
v4 W
q b'
41 Z,
J,
~
o
.O
^
v 5-J 1,
.x O
M
)
+
' o'G Q
t
\\
'N E
+
+
p
'\\
w r
N
/1 X
l r
/
N c
s 1
d
~
,,9 -9 '
,,0 - L i i
1
-p
.i 1
((1; I 2
Z
^
)
f 4_
4 _ s-e, m
o
,f
..m r9 hW W
E d >f pa-Q2au-tuntRt d pY W g -
g-gmsvecer.2 2
\\
o.
Z 3
r-l a
g qi
)
aOe i
x "o
p&A s
l i
i i
i
'4 i'I Gj
<C W
l le - si if h
- +:
7
' m, O
d O
)
cr I
1 X
i UJ
/
N (f) 2
~
g s.
I L
L l
t I
(
l y
N 2
i
-o
,)~ o hx(B l
to O
Y rb e
1 0
j X3
'b,
_k i
)
w m O D 1
O _j cr uJ l
l
a ND b o3l-91eort Ao w,y y I
se _
, -.. m u.
i e
3 go 21 fts16
.. u-.,
. - u- -
s c - i Loop, m.x la
=
~
Ot "J$a the Aw.
1 E
Q.
\\.
lo ftsid to e
=
i e
o t o*'
to' 108 to '
to' to' to' ic" 8
TIM s APTast Acc.tosNFP (6WC.)
SR0dNS FERRY NUCLEAR PLANT i
FINAL SAFET/
ANALYSIS REPORT AMENDMENT 7
, 7ese-of=Caelest Asaident Primary Castainment Pressure l Response MCURE 14.6-10 i
550 p AauezoM-13*7s**
ArrA% vater y-PMt2x2>
i r
l i
500 w
f 21S*f-1 r
250 Y
l E
3 F
4 i
ey2co E
tyC'F e
e\\
J l
d 13 150 3>5 0
+
ff g g q AMA COMeeNAytoess L
A = 3 LOOPE. 4 MX t -2 LOOPS.2MN c=tLOor. Ma I
t t
t I
O I
b L
e 1o5 to IO"I Ic*
10' LO tot ic vims AssTan Acc.tesNT (,eec.)
SROWNS FERRY NUCLEAR PLANT FINAL SAFETY ANALYSIS REPORT Lase-of-caelant Ascident AMENDIENT 7 DrywgL1 Temperature Raspense FIGURE 14. k11
1 1
N M u M aevsRo MfMHMMY 6 hw /en ra M t./t.U M t M t N I R E QU E ST F ORM RIMS ACCestson Numeer TO:
k khl h/
[ehhhh
/
r,om. H.C4iW, WW Md@914AL, WWG-F46 SPH Date:
G6em AAre-r WuecGasz sgy sueieCt..,,eco,e,,,em of ne,
.e./er une..
fe, j
PR Number:
Check 88 Ti e.teenhi end/or meteries per the enoched procurement reeveet required; spm).,14 De reevisitionee ey the ONE engineenng protest. Essessed I
performeneo detes are noted en the etteched PR. lif thss riesm se chesmed.de not some6ete the lower half of the form.)
Pteese take the vietesserv octaen to preques the stem (el end/or meterio4 por the att ched PR. Pteste return within 10 werteng sevs e coey of the PR form to me with the roguested information en dem 10.
TNs PR is uneeheduled.
O
- m. 'a i a a a a a a-3 meeRiofe,en -,orehese.isesii. id tPR.
This PR is scheeweed in v d she, w attached Leme ta,=we as (Annenmond. Minat. SL M C.A A848e. tem 64 72 A4 l'oe Nu CON weet O A Aemeawevt. vee C134 C.E twasa se**ermones seese are weesseeest Cewen eaeasee RIMS Access on Number To:
F rom.
Date:
Check u We saknow6 edge thes presurernent request. (spoeted performense detes fequired; are a: we hoog inesseted.
O rw ra i a
ia ' 'i -. - *>: -
Centresi tassaeor Assures as t Atteenawad: Attet. SL M C-4 motst, hem *N 72 A 4 t'er 8*u CON weet O A A*'aeaweve. sue C134 C E 1entsa ser% awase sense M "'ennesset TV A 1Md510eeg eass Coastert capave*
I J
1 % >b M ie*7S h M 1hi N W 4 kt S 63 o_
a Gf8'rJ P' WIWiP4ff-W&' f5%d 6c'f p,
__ o, one sanwen,pgA o wenes e sae t ' -
j cPwA4v== a.-=w gr.4,,(,sisWs/x,Wft sem ie,4v G* 4r5*'dIW/'74,f I I I I l_f I I I I I l_
oner.,=e rese f'tJ ISidlWIAl+t61 PTWlo t ICillLiroN t41 I AllLPfleidfl IN TIWef Lie im41 1 1 I I I I It
]
AceHbeael oeesrisissa of pesmens C664 - GerefPsPe G=orM kWNcr V6m ut:0W WM(M l
A. e.ae.as. A,a
- c. cm ma u.a.
g b #9#L @Af (t,l.2) bJ-f[ S il - $ l'1
- s. so
- o. svesen
(,i1 rwsr.
OSI,(, W cQ r'
s 3 *****"*** kereves h e, ca, r2 3
"""8"'"*"
---8"""""*"
l Pi i l I 1 I iIIIii Pt I l ll l l l l I1 8---
_ isone 80usueur Scessesses nOfAW Aeusses, fe.neer
(
PtI I I ti eiet I I II I i it i i t I i I l
4 c
ri
..ea. =e. WA l
s ac~ ~ s nu 4 y,y,r, 6
^ ^"a sese, ama
- c. Asus suam in aus _
[kf 6 h.l h
d
- s. rv4 ches w : u # A o, issa c==
I
- a. ommea craerm sun.-_ _ a=== resaw OPro 60-103 o A
.-.-,.e.
- vps(s>08t/8;paj ApSI N@ A.,l % *2, l fr$$ 11'7/5t'9/' f#9
- E Y O No I
i
- ""*a*****""**'
i C"
8 e
ismai== = s.awere. wei==
-ea m ea; c.w.mm ame se=es, Freense 6&TGi hIN F 10 sease==e es== 'r=" cP" *'"'
Scheduled Ostes Espected Dates Procurement Reevest leaue Date Rseuestson iease Date tems.ammmme se runcie 4
Award of Contract Submtttal of Technesi Dee sun esa anse== es= e===ese lause usueur ter Tva esegr.4 sen DelWy to Ote i,same seene.one g,9., gg y 33 casen,Aemm ese n er een at rer Yes C No
@ Yes No 12 0"*' e== veiase av to, one ear nu cose.an een en uve 13 paseme o=====a Pise sem v.=ser over p
14 **""'*ets. sa e f r,y F ; c e M 6 G w h,, f p rie e e pr.)o # Len 4cwe.orsw#
t, 84 3.,/' liFedre e W56ere* deWid J IE 7' Y',7 ** 3 1 Je ***s 8 t7f.*J..'s-, 9emesser rip es
.h4***
L^^P d ** c's eson.e.e, s4G.#,, ra r es e<,,,,(o ge rvsiw easusos. /wwsarud*
n v
(,iw.4 u..w w.e+
d TvA i s,
<a m,.., cptor, e, p::,vice i E Mu-3 ~
l5 ""8'""-
'**r*O'**'"*"""'
i- - - - - "**".
i
&&seNAno76Ro, A77hulp@r 4G fkt3e3 f
11.0 FACTOEf_TISTI E Factory testing of each fully assembly energency pressurizing air a.
system, each high efficiency filter, and each charcoal adsorber tray shall be conducted. Minimum performance for acceptance is specified in Sectios 30 herein.
12,O FBIFARATION FOR.IIIFIBIT a.
The Contractor shall prepara eli asterials and articles for shipment in such sanner as to facilitate handling and to protect them from damage in transit, and he shall be responsible for and
)
make good any and all damage due to improper preparation for loading for shipment. Boxes and crates shall be marked and have a packing list enclosed showing the parts contained therein.
b.
All finished surfaces shall be coated or otherwise protected with an approved rust preventive.
c.
Components shall be packaged for shipment in accordance with ANSI N45.2.2 as a minimus:
Comnenant f_aval of Pachmaina Housing Assembly D
EEFA/Posti11ter 8
Charcoal 8
Instrument 8
Fan and Motor Assembly D
i Electric Duct Bester B
13.0 IIITAILATION AED TESTIE a.
If required by TVA, Contractor shall provide competent engineers to supervise the installation and initial testing of the assembled equipment furnished. Components shall be indelibly marked at the factory for identification and for location and orientation in the assembly. Piping and valves for test connections shall be i
permanent and shall be suitable for periodically testing the systes and components throughout the plant life.
1 DETA11.ED SFICIFICATICES 14.0 m co m ITIORI l
l Esek air filter train shall have e nominal capacity of 3000 SCIM a.
and shall be arranged essentially as shown on and be within the dimensional limits of attached Figure-1 Sheets 1 and 2.
External pressure loses through ductwork, and II?A filters upstream of charcoal filter assembly wil) be between 1.5" W.G. and 3.0" W.G. P,DNE106 121-8 l
T
&&s*N4Ne790, AT7MHMWT 6 1%t3e3 11.3 FACTOff TEETTEc Factory testing of each fully assembly energency pressurizing air a.
system, each high efficiency filter, and each charcoal adsorber tray shall be conducted. Minlaum performance for acceptance is specified in Section 30 herein.
12.0 PEDARATION FOR SEIPMEET The Contractor shall prepare all materials and articles for a.
shipment in such manner as to facilitate handling and to protect them from damage in transit, and he shall be responsible for and i
make good any and all damage due to Laproper preparation for loading for shipment. Boxes and crates shall be marked and have a packing list enclosed showing the parts contained therein.
b.
All finished surfaces shall be coated or otherwise protected with an approved rust preventive.
Components shall be packaged for shipment in accordance with c.
AESI N45.2.2 as a minimum:
Commonant Level of Pachmains Housing Assembly D
EEFA/Fostfilter B
Charcoal B
Instrument B
Fan and Motor Assembly D
Electric Duct Esater 8
13.0 IESTALLATION AED TESTI E If required by TVA, Contractor shall provide competent engineers to a.
supervise the installation and initial testing of the assembled equipment furnished. Components shall bo indelibly marked at the factory for identification and for location and orientation in the assembly. Piping and valves for test connections shall be permanent and shall be suitable for periodically testing the systes and components throughout the plant life.
DETAff_En SFICIyICATIOES 14.3 6 M IT10ER Beek, air filter train shall have a nominal capacity of 3000 SCfM a.
and shall be arranged essentially as shown on and be within the dimensional limits of attached Figure-1 Sheets 1 and 2.
External pressure loses through ductwork, and BFA filters upstream of charcoal filter assembly will be between 1.5" W.G. and 3.0" W.G. P1,DRIl06 121-8
.~
M. h^*^u M.Rs,M..AtWinW7,"fy n OG91 568-09 July 8, 1991 J. L. Kamphouse Tennessee Valley Authority Browns Ferry Nuclear Plant P. O. Box 2000 (TCE 11)
Decatur, AL 35602
Subject:
BROWNS FFMRY CONTROL ROOM DOSE CAT 1*U1ATIONS IN ACCORDANCE WITH THE BWROC RADIOLDCICAL DOSE METHODOIACY (I1.5 SCFH PER STFAW LINE)
Attachments:
- 1) Dose Calculacion Summary for 11.5 scfh Per Steam Line and Computer Code Output
- 2) Browns Ferry Inpuc Data Sheets The subject control room dosi, calculations for Browns Ferry have been veri-fied.
These results are high parcially because of the large unfiltered intake l
into the control room, and the high (and relatively constant with time) atmospheric dispersion factors.
It appears that there may be a non compliance f
at Browns Ferry regarding 10CFR20 requirements; therefore, this situation should probably be evaluated by TVA per 10CFR21 and 10CFR50.72 and 50.73.
MSIV LEAKAGE DOSE CONTRIBUTION (REMS)
BETA LM IOD(301 (30-75)
NOBLE GAS 0.14 0.00 1.49 INORG. IODINE 0.00 0.13 0.00
)
ORGANIC IODINE (4%)
0.01 325.
0.03 HP TURSINE 0.00 0.00 0.00 ORGANIC IODINE 0.00 179.
0.00 (CONVER,SION FROM I-2)
TOTAL DOSE FROM 0.15 504 1.52 MSIV LEAKAGE PATHVAY
j OG91 568 09 July 8, 1991 Page 2 If you have any questions regarding these verified calculations or any other MSIV 1.eakage Closure Committee iss.res, please call the undersigned.
Very truly yours, O ;J f
T. A. Green Sr. Technical Program Manager StJR Owners' Group Tel: (408) 925 1308 FAX: (408) 925 2476 Mail Code 382 Attachments TAG 27/ TAG /rr ec:
RD Binz IV, MSIV 1.eakage Closure Committee Chairman CL Tully, GPC LS Burns, CE SJ Stark, GE CB Scramback, CE
~
l i
TENNESSEE VALLEY AUTHORITY l
SUBJECT:
ND-Q0031-920075 RS CONTROL ROOM DOSES COMPUTED BY:
DATE:
CHECKED B :
DATE:
%GC 3lnh3 3+M3 v 3 Evaluation of Reduced CREVS Flow Rates The Control Room Emergency Ventilation system (CREVs) has two units (a
primary unit and a
standby unit).
As a
part of the instrumentation for the CREVs control circuits, a flos test is made to ensure that the fan in an operating unit is functioning I
properly.
This is referred to as the low flow switch.
If the flow rate is below a preestablished range, that unit is tripped and the standby unit is started.
The CREVs fans were purchased with a flow requirement of 3000 cfm i 10 percent (i.e., 2700 to 3300 cfm).
The low flow instrumentation will be designed with an upper operational j
limit of 2700 cfm so as not to trip a fully functional unit (i.e.,
with flow greater than 2700 cfm).
The lower limit for.the instrumentation was selected as 1500 cfm.
This was an arbitrary
- value, If all of the instrument inaccuracies occurred at the same time at their maximum value, a unit would be considered fully functional (by the flow instrumentation) for a flow of as low as 1500 cfm.
Revision 5 of this calculation demonstrates that a CREVS flow rate of 1500 cfm will yield acceptable operator doses.
All other parameters are the same as used in the COROD runs for Revision 4.
If a CREVs unit is tripped based on low flow or for any other reason, a time period of approximately 2 minutes will exist in which CREVs is not supplying filtered air to the control room.
In order to evaluate the acceptability of this situation, cases were run for 0 cfm CREVs flow for the thirty day duration of the accidant.
All other parameters are the same as used in the COROD runs for Revision 4.
Based en the results in the main body of this calculation it is known that the dose contribution from the base of the stack prior to thirty minutes and the top of the stack after thirty minutes are negligible.
Therfore only the cases for the base of the stack af ter thirty minutes and tne top of the stack before thirty minutes were evaluated.
l 1
i.
TENNESSEE VALLEY AUTHORITY sheet 2, of $7
SUBJECT:
ND-QOO31-920075 R5 CONTROL ROOM DOSES COMPUTED BY:
DATE:
CHECKED BY:
DATE:
%$C 3/2eh3
'f4f4J RESULTS TABLE 13-1 CONTROL ROOM DOSES [ REM] for 3000 cfm CREVs Flow Rate From Page 34 of ND-Q0031-920075 R5 Whole Body Source Gamma Beta Thyroid Fumigation "ND9275C1" O.00833, 0.09804 2.394 (Bottom of stack t> 30 min)
Base of Stack "ND9275C3" 0.00563 0.04536 4.003 TABLE 13-2 CONTROL ROOM DOfiES [ REM] for 1500 cfm CREVs Flow Rate Whole Body Source Gamma Beta Thyroid Fumigation "ND9275C1" 0.008185 0.09519 2.952 (Bottom of stack t> 30 min)
Base of Stack "ND9275C3" 0.005642 0.04542 4.956 TABLE 13-3 CONTROL ROOM DOSES [ REM] for 0 cfm CREVs Flow Rate Whole Body Source Gamma Beta Thyroid Fumigation "ND9275C1" 0.007970 0.09093 3.947 (Bottom of stacP. t> 30 min)
Base of Stack "ND9275C3" 0.005657 0.04554 6.673
TENNESSEE VALLEY AUTHORITY sheet 3 of $7
SUBJECT:
ND-Q0031-920075 R5 CONTROL ROOM DOSES COMPUTED BY:
DATE:
CHECKED BY:
DATE:
Q hC-3l2 b(13 3.qjQ A ratio of the thyroid dose from the stack for various CREVs flow rates is calculated by comparing the thyroid dose with a CREVS flow rate of 3000 cfm to the dose with a flow rate of 1500 and 0 cfm.
1500 / 3000 Top of stack (1500 cfm) 2.952 / 2.394 1.233
=
Base of stack (1500 cfm) 4.956 / 4.003 1.238
=
0 / 3000 Top of stack (O cfm) 3.947 / 2.394 = 1.649 Base of stack (O cfm) 6.673 / 4.003 = 1.667 The similar ratios for gamma and beta dose are very close to 1.0 (within 8 percent).
Since the calculated doses for gamma and beta are so small compared to the allowable limit, the small effect due to CREVS flow rate reduction is negligible.
Therefore the gamma and beta doses reported on page 36 of Revision 5 apply to the cases with reduced CREVS flow rates of 0 and 1500 cfm.
The control room thyroid doses due to MSIV leakage are expected to increase by the same ratios as calculated above.
Ac discussed above for the stack releases, the effect on gamma and beta are negligble.
The thyroid dose is expected to increase by the same 1.23 and 1.66 factors calculated above.
The total control room thyroid dose for a CREVS flow rate of 3000 cfm was determined to be 14.33 rems on page 36 of Revision 5 of this calculation.
The corresponding thyroid dose for a CREVs flow rate of 1500 cfm would be 17.63 rem ( 1.23 x 14.33 = 17.63 rem) and the dose for'O cfm CREVS flow would be 23.79 rem (1.66 x 14.33
=
23.79 rem).
Both of these values are within the GDC 19 limits.
Therefore it is concluded that a lower limit on the CREVS low flow instrumentation of 1500 cfm is acceptable and not having CREVS operating for a period of two minutes while the standby unit is coming up to speed is acceptable.
!l!l lIl idf g
- a a D3 4 a Efgb wnCC'L W'e' L
i
$f C
5 5
5 DD 8
8 8
EE 66 RR 0
0 0
HT 33 EE DCN NN 33 NH DD 3
3 3 ANI NN FF 77 FF AA 93 97 4 69 EUR FF BB 11 00 8B EE 2
3
- 0. R 1
R FF 22 11 OO 22 A3 A3 0
3A SSS 22 BB 11 JJ BB LL M1 M1 0
P
RRN DD E. E.
E. E.
66 NN 63 63 0 A 36 AAI 111111111111 E. E 11 11 33 RR 21 21 0 H 12 CCL EE 1
11 EE 44 EE C
1 EE SS 11 SS 66 TT EE EE E 3EE 605 SS UU 11 UU 22 NN TM TM M 6MT 5 3 UU O1 11 OO II AI AI I
E IA 4
OO HH CC HH DT DT T D RTD HH PP 55 PP NN G E PP MM CC CC 77 MM BS II TT N TTT MM AA CCC CCC 22 AA TT GG RR PP NRN AA KK CC CC 99 KK CC II AA OO Q Q IAI KK JJ CC CC DD JJ CC RR TT TT E E RTR JJ 99 CC CC HN 99 AA OO SS SS X X PSP 99 CC CC CC CC CC CC CC CC CC CC CCCCCCCCCCCC CCCCCCCCCC 55 555 55 55555 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5555555 55 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 5555555 55 RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 7
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 77 777 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 7777 RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 77 77 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 77 77777777 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 77
- 7777777 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 77 77 77 777 777 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 2222 22 HHHHHHHHHHHHHHHHHHHHHHliHHHHHHHHHHHHHHH 222222 22 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 22 2
22 22 2
22 22 2
22 22 2
22 22 2
22 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 22 2 22 RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 22 2 22 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 22 222 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 222 222 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 22 22 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 9999999999 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 999999999999 TTTTTTTTITTTTTTTTTTTTTTTTTTTTTTTTTTTTT 99 99 99 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 9999999 999 999999 99 DDDDDD DDDDDDDD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DDDDDD9DDDDD 5
5 5
DD DDDDDDDDDDDD 8
8 8
EE HT 0
0 66 RR 0
DCN 33 EE iNNtlNNNlaHN 33 HN DD 3
3 3 ANI N1 NN t
t l
ll i
ii lil FF lNNHtNNtliH 7l FF AA 93 97 4 69 EUR tF 1
RPP bS BE HH 0C BB EE 2
3
- 0. R R
22 HH OO 22 A3 A3 0
3A SSS a2 P
G RRN DD DD NH DD 33 AA ll 63 63 O A
36 AAI LL E. E.
E. E.
NN 66 ii NN 33 RR 21 21 C
H 12 CCL EE EE 44 EE C
1 tE i4 lt NH!NtltNNN SS 66 T:
EE EE E 3EE 605 k
SS l!
tlt UU iHNNtNlttIfN UU 22 N ;l TM TM M 6MT 5 3 aU iiiIl OO 11 OO II AI AI I
E IA 4
aO t
I HH CC HH DT DT T D RTD nH PP 55 PP Nl O E t tW l
e MM 77 MH 55 II TT N TTT tAA AA 22 AA TT GG RR PP NRN K
KK 99 KK CC II AA OO Q Q IAI 4
JJ DD JJ CC RR TT TT E E RTR J
99 NN 99 AA OO SS SS X X PSP v9 r4
- \\
E{
kM lll t
G[9 h Tbilt."
[1IteNN trdRIS 1ED'O
~
A
^
13:13:17 IAT4401 LOCATE FOR STEM 4 ACE CE SD=STEPLIS 5500=&PS. Ell.PS264444.pgMLib 3-e.4 9 15:15:22 !AT4402 UNIT / 5340
,v0Lt$l*USGM15 15:13:22 1AT4401 (OCATE FOR step =CO DD*SitPt z S D$s0=APS.* :.PS264440.PCMLIS 13:15:221AT4402 Lee!Tr5540
,v0Lt$1=USGM15 15:15:22 1184401 LOCITE F0:0 STEP =CO DD=FT11F001 DSM=4PS.KM.M2264460.150 TOPE.ELEEN 15:13:22 I AT4402 L941T15540 40L i s )*USGS22.grT12F001 D98=4PS.NE%. W2264460.150 TOPE. TWEL VE 15:15:22 IAT4A01 LOCATE FOR STEP =GO DD 13:13:22 I AT4402 UNIT *5540
,voltSl=USGS22
,f]
15:13:22 I AT5110 JOS ND9275C1 (JOS075%) USES O SOFT 83 15:13:22 1 AT5110 JOS ND9275C1 (JOS073%) USES D USCM15
, f D.; 00031 o ? 00 =<= 5 15:13:22 I ATS110 JOS ND9275C1 (JOS075%) USE S D SOFT 35 15:13:22 I AT5110 JOB ND9275C1 ( J08073%) USES D USGS22 15:15:25 IAT5210 JOS JS5CATLG (JOS075%) SYSM USING D $0FT85 ON 727 15:13:23 1AT5210 JOB STEPLIS ( J00 073% ) SYSM USINC D USCM15 ON 27A 15:15:25 I AT5210 JOS JSSCATLG (>06075%I SYSM USING D SOFT 85 DN 750 15:15:23 I AT5210 JOB FYllF001 (JOS075%) SYSM USING D USGS22 ON 777 15:13:25 IAT2000 JOS ND9275C) ( JOS 0 73% ) SELECTED SYSD GRP=SSATCH 13:15:25 TVA30262 720 LIMITED TIME CL S$ IS IN EFFELT....
15:13:23 ICH70001! IDEDO LA$f ACCESS AT 15:13:22 ON FRIDAY, MARCH 26, 1995 15:13:23 IEF4051 ND9275CI - ST ARTED - TIME *l3.14.15 13:15:24 84M514===tLOCMS!2E CHANGE. OLD*05990, NEW*23476. ND9275C1/VFYLEDT e/IDRL1ST /K.SN264%0.FT06.0tJTPUT.C6447V00 13:13:24 I AT5110 JOS ND9275C1 (JOS075%) USES D USCM15 15415:24 Tva0021 ND9275C1 USCM15 274 ace 05376 EXCP=00000176 DDN*SYS00001 15:15:21 TVA0021 ptD9275C1 USGS22 777 BC=002%
EXCP=00000001 DDN=IDRLIST 13:13:25 Tva0021 ND9275C1 USGM15 27A SC=00000 EXCP=00000004 DDN=STEPLIS 13:15:26 TVA0021 ND9275C1 v!O EXCP=00000002 DDN=FT16F001 15:15:26 TVA0028 ND9275C1 USC322 777 BC*00000 EXCP=00000000 DDN*FT11F001 13:15:26 TdA002I ND9275C1 USGS22 777 SCe00000 EXCP=00000000 DDN=FT12F001 13:13:56 TVA002I ND9275C1 USGS22 777 Sca00000 EXCP=00000044 Cost =F T12F 001 15:13: % TV10021 ND9275C1 USGS22 777 BC=00004 EXCPe00002109 DON =FT11F001 15:152 % TVA0021 ND9275C1 VIO EXCP=00000005 DDN=FT16F001 13:15:% TVA002I ND9275C1 USCS22 777 Sc=00764 EXCP*00000002 DDN=FT06F001 13:15 % TVA002I ND9275C1 USCM15 27A SC=00000 EXCP=00000030 DDN*STEPL18 15:13 % TWA0021 HD9275C1 USCS22 777 SC*01024 EXCP*00000004 DDN=SYSUT) 13:13:37 IEF4041 ND9275C1 - ENDE0 - TIME =13.16,27 i
l i
i l
l
-_r--
~- n mm xm.mmy - =q
=w----
2*:
//=MA3 2 GRMDCAL.CL AS3eSS
//PROCLIS SS BEse*4pt.EN.PS3M464.PROCLIS SIW-98
>sa.,/tj "1.gg
//STE#1 EXEC Ctats,SOUT *n'
//GO.SYSIJ BS e d
/5 1 //ND*275CI JDs 264%3 'TJesNouSE.L1)B2FSF2*.NSCLEWLs!,NSGCLASSaf Ah, L Aw f]
2 //PRocLIB 00 DSN=4Pt.8C3.PS264464.PROCLIS. DISP =SMR
/T n,, - -
=
r 3 //STEPl EXEC COBOO,50UT m'e' 4 XXCSROS PROC T
- 5.L.isR. apY.e.* APG. fE,N PS.f 64468. PCHL I B '.50UTa 's *,
ND 0003192 00 75 nEw XX
...A,P..
4
.u 6 6.iSOTm.ufwM,
XX T
...u2644 150T =.r n-5 XXeACECE EXE C PGN=VFYL X D T, RE G I ON=4996K. APS. NE.M. PS264469. PCML I B ( COR00 3 '
, TINE =1, XX P ARM = ' /JOA T E *910 71,P A T M 6 XXSTEPt!B DD DSeseaLIBRARY. DISP = Ster IEF653I SUBSTITUTION XL
- DSM=&PS.K N.PS2M468.PCMLIB DISP = Stat 7 XXPLIDL8F DD SYSOUT*4SOUT IU6531 SUBSTITUTION XL
- SYSOUT==
4 XXSYSPRINT 00 SYS00TesSOUT IU653I SUSSTITUTION XL - SYSOUTea 9 XX1DRLIST DD DSN=E.SN264 %e.F T 06.0UTPUT t + 13 DISP *( NEW,P ASS ),
XX UNIT =ALLOC. SPACE =(TRK.(20,5).RLSE).
XX DCBa t SYS3. MODEL,RECFN=F SA,LRECL
- 133,8LE S!ZE = 3996 )
le XXSYSDUNP 00 SYSOUT=450UT IEF6531 SUBSTITUTION XL
- SYSOUT=a 11 XXCO EXEC PcN=COR00. TINE =4T IEF653! SutSTITUTION XL PCN=COR00 TIE =5 a
12 XXSTEPLIB 00 DSN=4 LIBRARY. DISP =$NR IEF653I SUBSTITUTION XL
- DSN=APS. DEN.PS264460.PCHLIB.D!$P=Slet 13 XXFiew eel DD DSN=K. SN264 %e. F T 66.0UTPUT t *1 ),D ISP=( M00,F ASS )
14 XXFT11F001 DD DSNeg[LEYEN. DISP =SDet IEF6531 SUBSTITUTION XL
- DSN=4PS.NEN.W2264464. ISOTOPE. ELEVEN, DISP =$ist 15 XXFT12F004 DD DSN=4 TWELVE. DISP =SMR 1EF6531 SUBSTITUTION XL - DSM=APS.NEN.W2264460.!$0f0PE. TWELVE DISP-Sect 16 XXFild et! DD UN I T =$YSPL.DC9*( RE CFM*F B,LRECL*60,BLKSIZE*1120 ),
XX SPACEstTRK,(1,1),RLSE) 17 XXSYSUDUNP DO SYSOUT*450UT IEF653I SUBSTITUTION XL - SYSOUT==
14 XXASNLIGNR 00 SYSOUT*SSOUT IEF655I SUSSTITUTION XL
- SYSOUT e 19 XXFT45F001 00 DONAME=SYSIN 20 //CO.SYSIN D0 e,0CS*SLES!21*40 21 XXPRINT EXEC PCN= tEBCENER,COND=EVEN 22 XXSYSPRINT 00 SYSOUT=450UT IEF653I SUBSTITUTION XL - SYSOUTea 23 XXSYSUTI DD DSN=E. SN264 %8.F IS6.0UTPUTt + 1 ),0!sP=( OL D,P ASS )
24 XXSYSUT2 00 SYSOUT=4SOUT TEF6531 SUBSTITUTION XL - SYSOUT==
2$ XXSYSIN DD DUNNY 26 XXCATALOG EXEC PGN=IEFBRle 27 XXDDI D0 DSN=E.SN264 %e.FT86.0UTPUT(
- l ), DISP =( OL D.C ATLC,CATL C )
s 9 e
e#
MWh t zG EMTES b we w e a.. v i s.'.X ICN790 ell IM 30 LAST ACCESS AT 13183:22 eBI FBISAT, MARCII 26. 1995 0%' 3b/v3 IEF1MI ALLOC. FW eW9E75C1 GACECE STEP 1
==
IEF2371 27A ALLOCATED TO STEPLIS IEF2371 AS3 ALLOCATE 3 TO PLIguess y
IEF2371 AS3 ALLOCATED TO SYSPRIsti 8s
-1981001 777 ALLOCATES 70 00Nem tenLIST DATALLAS (
)
'J IE! 2371 A33 ALLOCATED TO SYSaulso SLn51A **etL9CESI2E CNANet. W IEF.n ID92.nci.A.TES TO SYS6.9=43990 NEl8*23476, ND9275C1/VFYtEST e/ISRLIST /E.SN2 TVA.2371 27A ALLOC cel
.15 274 e4 AP...P u64460.P.x,E,.537.
DCPe Geir6 Deessneseti Dm2 Em ND 0003192 0075 IDm V= SER D& eu ID9n5Ci.N.OS. u=il.IID92nCi 522 m SC 25.
DA DCPeteeseee 00see =L m 02:
nl 27A use.e e DCPeetetete4 DONeSTEPu t IEFl423 N09275CI GACECE STEpl
- STEP NAS DECUTED - COMO CODE etee IEF2451 Apt.eEN.PSZ64468.POE14 EEPT IEF2451 VOL SER NOSE USSil5.
- D2e5:
toKDs.ND9275C1.J0se7336.ne uenA.T SYSouf I
IEF2851 IDEDO.ND9275Cl. JOSE 7336.Detteest.T SYSOUT IEF2451 E.SN2M564.Fio6.0UTPUT.GM47 Wee PASSED 1EF2451 VOL SER IIOSe USGS22.
.IEF2451 ID 1
SYSOUT a.neemeenene.E.D.O. 8.eD.9275Cee. JOSE 73M.80000e.eC T.
eese m eeeeeemee..
TVA JOS/ STEP tr0RNATION esseemeeemuseeeeemosmeeeeeeeemeeeeemsees a STEP NAME GACMCE START TIME 13.14.13.45 STEP CPU et.04.se.13 e
e Pen MAME VFYLEST STOP TIME 13.14.15.41 J0e CPU es.ee.08.13 e
e SERV..UN.IT 629 ELAP TIE 80.04.e!.96 CONDITION CODE 000 em m eeeeeeen e.0.
.een
... eeeeee.eeeeeeeems m
se..
eemeeeeeeee m e m ee m e m esseem m es TVA Joe / STEP INF0senATION t-eeeeeeeeeeemeeeeeeeeeeeeeeeeemeenesseeeeeeeeeeenmue.
eeeeeemeeeeeeeeeeeeemmeneseeemene amessee e
D CP STATISTICS e
a UNIT DCP COLast LSelf DCP ConstT UNIT EXCP COUNT UNIT EXCP COUNT UNIT EXCP COUNT ted!T DCP COUNT e
- 27A 4
777 1 27A 176 e
VIO Pact OUT e
PAGES SNAPPES IN e
a eseeou seesmesseemseeemeneemmemm_ _ _
__eeeeeeem m eeeeeeeee.___
- - seeeeeeeeeeeeemeeeeeeee==eeeeeeeeeenoemee IEF373! STEP /0ACECE / START 93045.1314 IEF3741 STEP /0ACECE / STOP 93445.1314 CPU eNIN es.13SEC SRS eNIN es.01SEC VIRT 4224E SYS te4E DT 4E SYS 49E1R IEFl%1 ALLOC. FOR IID9275C100 STEP 4 IEF2371 27A ALLOCATED 10 STEPtte IEF2371 777 ALLOCATED TO FT4Weel IEF2371 777 ALLOCATED TO FT11Fe01 IEF2371 777 ALLOCATED TO FT12F404 1G01011 Sets ALLOCATED TO BONAME (FT1Meel)
DSN ISYS93045.Tl31321.RAtee. sed 9275C1.Re000001 1
STORCLAS E SCTEMPs nonTCLAS (
) DATACLAS (
)
TEF237T AS3 ALLOCATED TO SYStatpWe IEF237I AS3 Att0CATED TO Asestisest IEF2371 JES3 ALLOCATED TO Fie5 Feel TVee921 ND9275CI VIO D CPeteetese2 00seeFT16 Feel TVAte2{ ND9275C1 USGS22 777 BCecette DCP=Seteette DON =FT11 Feel TVA0021 ND9275C1 USS$22 777 Ke00000 EXCPettactose DON =FT12F401 TVate!! ND9275C1 USGS22 777 SCettoes DCPeeeeeee64 DONeFil2 Feel TYAce21 ND9275C1 L80522 777 Keteete DCP=484821e9 DONeFil1F001 TWaee21 ND9275C1 VIO DCPeeeeeeeel DONeFilW401 TV40021 ND9275C1 USGS22 777 BC=40764 DCP=ceeeeeet DON FTeeFeel TVAse21 ND9275C1 USGM15 27A BCatteet EXCP=4teesese Does.STEPLIS IEFitt! ND9275Cl 90 STEP 1 - STEP was EXECUTED - COND CODE 9004 IEF2951 APS.E N.PS264460.PGDL18 EEPf IEF285!
VOL SER MOSe USGMll.
IEF2451 E.SN2M 564.F186.0UTPUT.GM47 Wee PASSED 2EF2451 VOL SER #s0Se USGS22.
IEFleSt APO.W N.N2264460.1$0f0PE.LLEVEN REPT IEFre51 VOL SER NOSE USGS22.
IEF2e51 APS.EN.N2264464. ISOTOPE.TMLVE REPT IEF2e51 VOL SER 800$* USGS22.
ICD 1851 SYS93005.T131321.Raete.ND9275C1.24099001 DELETED DDNAME=FT16 Feel IEF2451 IDK00 ND9275C1.J0007336.DetteteD.T SYSOUf IEF245!
IDK00.ND9275C1.Jole7336.Deesseet.T SYSOUT IEF2e31 IDE DO.ND9275C1.J008 es see eemeene ne e mmenee7336. 00000009. T SYSIN m eneem m e m m e. TVA JOS/ STEP INFORMATION es semesammemmemeeeeeeeemmmemene e STEP NAME C0 START TIME 13.14.15.44 STEP CPU es.se.01.41 e
e PCM MAM COR00 STOP TIME 13.14.26.56 Joe CPU 0e.09.01.54 e
e SERV UNIT e,e30 Etap TIME te.es.11.12 CONDITION CODE esse e
sseemeeeeeeeeeeeeeeeeeee m eeeeeeeeeeee neee m enee TVA JOS/S INFORMATION ese m u seeeeee m een e m essee m m ene m m m ee sees seeme s moes se smemusa mmesseemseee eeeeee eee eeeeme ne TEP m e s me sm mm e en e se s esseeen-memeneeem e nueme m em o
EXCP STATISTICS e UNIT DCP COUNT UNIT EXCP COUNT UNIT DCP COUNT UNIT EXCP COUNT UNIT EXCP COUNT UNIT EXCP COUNT e
e 27A 30 777 2 777 2,109 777 44 VIO 5
e e TOTAL EXCP 2.194 e
VIO PACE OUT e
PACES SWAPPED IN e
e essememesmeseeen e V10 PAW IN
. mueseeeeeeeeeeeeeeeeeeeeeeeeeeeeeememe ammeweousseeeemesessemeseseemeseemes mmesee IEF373! STEP /00
/ START 93045.1314 IEF374I STEP /C0
/ STOP 95045.1314 CPU eMIN 01.415EC SRS eNIN et.24SEC v!RT 396& SYS
- st DT SE SYS 0928K 1EF2361 ALLOC. FOR MD9275C1 PRINT STEP 1 IEF2371 JES3 ALLOCATED 70 SYSPRINT 1EF2371 777 ALLOCATED TO SYSUTI IEF2371 JES3 ALLOCATED 10 SYSUTE IEF2371 DMY Alt 0CATED TO SYSIN Tvate21 ND9775C1 USCS22 777 BCe41824 DCPetececte4 DDN SYSUTI IEFl421 ND9275C1 PRINT STEP)
- STEP WAS EXECUTED = COMO C00E 4000 IEF2451 10KDO.ND9275C1. JOSE 7334.Deseeter.T SYSOUT IEF2051 K. SN264360. F.i o6. 0UTPUT.G6447 Wee PASSED IEF2e51 VOL SER NOS USGS22.
IEFre51 IDE DO.ND9275C1. JOSE aseemen emmemeennesee7336. Deeste t e. T SYSOUT m os m e m m e.nes TVA JUS / STEP INFORMATION emesesseeeeeeeeemmenesseeeeeeeeeeme nemm e e e e e e s.
e STEP NAdE PRINT START TIME 13.14.26.68 STEP CPU 08.00.00.06 e
e PCM k&ME IESGEMR STOP TIME 13.14.27.13 JOS CPU 08.00.01.68 e SERV UNIT CODE 8000 seemmeneeseeeee.le.e.somenene EL AP.T.IM.E.80.00.00.53 CONDIT IONeeeeeeemese eemmemseemem e s e e...e. e me.
JOS/STFP INFORMATION seeeeeeee m seee m enem m e e m e m m es m eses TVA usu eusemeemeenmmmmenmesoammem
...e.see.
me smene e.m...
e EXCP STATISTICS e UNIT DCP COUNT UNIT DCP COUNT UNIT EXCP COUNT UNIT EXCP COUNT UNIT EXCP COUNT UNIT DCP COUNT e 777 4
e PACES SWAPPEG IN e
e e TOTAL DCP mmeemmeeeeeeeemmeemesommem.messee V10 PAGE OUT 4
v!O PACE IN e
nemm usemesmeeee nem-mm usseeeesome.seessee sum e. e m.e seam m ee TEF3731 STEP / PRINT
/ START 93045.1314 IEF3741 STEP / PRINT
/ STOP 93045.1314 CPU OMIN se.06SEC SRs eMIN se.etSEC VIRT 572E SYS 240E EXT 4E SYS awas IEF2361 ALLOC. FOR N0927501 CATALOG STEP 1 IEF2371 777 ALLOCATED TO 001 IEFl421 ND9275Cl CATALOC STEP 1 - STEP WAS EXECUTED - COND CODE este IEF2e5!
K. 5M264360.F f ee.0UTPUT.GM4 7 Vee CATALOGED IEF245!
VOL SER NOSE USGS22.
smus-meemenemensmemmmmem-me TVA JOS/ STEP INF0& NATION emmmummmmm* muse *emm m"~
5 STEP NAME fATALOC START TIME 13.14.27.16 STEP CPU 04.09.09.02 5 PCM NAMENEF SR14 STOP TIME 13.14.27.69 JOS CPU 00.09.01.62 e SERV UNIT 40 ELAP TIME 0 CONDITION CODE este e
seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeese.eeeeeeeeeeeeee.e 8.0e.00.51 seeeeeeeeeeeeest eeeeeeeeeeeeeeeeeeeeeeenesee. ee..esseeeeeeeeeeee ee s e.O.RMATION eseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee TVA JOS/ STEP INF
.eeeeee so. eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee........e..
e EXCP STAT!STICS e UNIT QCP COUNT UNIT EXCP COUNT UNIT EXCP COUNT UNIT ExCP COUNT UNIT DCP COUNT UNIT EXCP COUNT e ee e e ee e e eee ee eeeee en.ouses sem ees..SW APP.E.D...IN..e.e.......e e
PAGES e.TO.T AL..E.XC.P
..... e.es..ee.IO.P..AGO.eeeeeee.seeeeeeeeen..V.10 P AGE OU T V.
IN e
se.a ee............
. e...
e eu
.u 6Atus / Sle# 4544 Y6S G80 e,e43 ps.orlC sus eset) 64.00SEC VIRT 4R SYS 240K EXT 44 in sa;W
+
l
.weneesee--
__ee---___
e4 TWA JOS/STTJ INFOsNe&TIJIe enes==*eeeeee m -
- - _ _ _ _ _ - eenemmeeeessee se e a uA M ND9275C1.-
^ - CR @ Jet aggetEDUSE.EDS ?FDF:s 5f ART OtTE $3/a*AS JTART 114 13.14.13.45 CONDIT10ss CDCE 9000 e
e Joe NUMB JOS475 h ACCT 0414 264343 iSTEPtts Sfor DAtt 01/t?A 3 STOP 1 ME 13.14.27.71 CPU f!ME 60.00.91.42 e
e JOS CLASS $5 Mv5 SP3.1.3 REL 83.8 ELAP titt es.se.34.26 SERVICE UNITS 9,679 SY D.
meeeeeeeeeseenee. _ - - - ______ weeweeee wese*ete TWA JOS/ STEP IMF0stnAT10se se+eeans== - own eeeeeeeeeeeroem seeeeeee m Ses TEF3751 JOS /N09275C1/ SIART T3845.1514 IEF3161 JOS /ft09275C1/ STOP 95645.1316 CPU OMIM 61.42SEC SRS OMIN es.25SEC
\\
f f
fD 0003192 00 75 ysean l
1 i
i l
l I
I l
i l
l 1
~2.*
O
Phet 9001 IES3S+a ed4MG GUTWT RECF4/tRECL/SLEs!2E COP!E3 Faces IW h O 3!I I3 I,
peccrsslms tuera at Eco prmes,*c a WD 0005192 00 75 h 3-dt e
i l
l i
n:.
.l l
l l
l 9
19% 312C(/13 i
/MatfM h W
u.
ND 0003192 00 75 h
l l
i l
C5/93/26 a 13.14.14.408 L1NKACE ED170R EOAD M0DULE DATE VERIF1 CATION PACE 0000 ese.
e u..
.. weseenen.e eemme.eensees.u..... en.. es eeenn.e..ee..
..eueene..
. un.eeeemen ene.
m CCCCCCCCCC 000000000000 RpRRRRRRRRR 000000000000 000000000 m
a CCCCCCCCCCCC vuuuuvuvuvuu RRRRRRRRRRRR --_------ _@0 0000000000 e
a CC CC 00 00 RR RR 00 00 DD DO e
m CC 00 00 RR RR 00 00 DD 00 a
e CC 00 00 RR RR 00 00 DD DD e
e CC 00 00 ;---- - - RR 00 00 DD DD a
e CC 00 00 RRRRRRRRRRR 00 00 DD DD e
o CC 00 00 RR RR 00 00 DD DD e
a CC 00 00 RR RR 00 00 DD DD e
a CC CC 00 00 RR RR 00 00 DD DD
=
a CCCCCCCCCCCC 0-RR RR 000000000000 D00D000000 e
e CCCCCCCCCC uuuuuuuuuuuu RR RR 000000000000 D00000000 e
e see me... ee==...
..e eesse.
e.......
u ne......sene.....se ne.
.se.ees.nemen seeeeeeen........
FILE:
APS.NEN.PS264460.PGML18 MODULE:
COROD LASTLINK1 91/071 QA.CH.E.CE RESUL.TS
.u e
emeeeenee==esemessee......semennee.....e.een.... nee eee.e.ee.neues.e.oe.e.e.se.. u a
e e
AAAAAAAAAA
$$$$$$$$$S SSSSS$$$$$ EEEEEEEEEEEE DDDDDDDD0 e
AAAaaaaaaaaA $$5SSSSSSS$5 SSSSSSSSSSSS EEEEEEEEEEEE D000000000 m
e
...PP AA AA $$
8 PF i
e PP PP AA AA SS SS EE DD DD e
i PP PP AA AA SSS SSS EE DD DD =
AAAAAAAAAAAA SS$$$$$$$
$$$$$$$35 EEEEEEEE DD DD
.e 8
.- - AAaaaaAAAAAA SSSSSSSSS SSSSSSSSS EEEEEEEE DD DD l
e ppppppppppp
=
l e
$$ EE DO DD e
i n
l e
PP AA AA S$$$$$$$$$$$ S$$$$$$$$$$5 EEEEEEEEEEEE 00000DD000 e
t' s
PP AA AA SSSSSSSSSS SSSSS$$$$$ EEEEEEEEEEEE DDDDDDDDD e
l e
l
.............................................................e............
e l
crretrre Dm
- ~L%
. MO
~
t j
I CC CC 00 W Effe
- W 00 00 80 Q
/]
CC 00 00 ANNAMMR 00 00 De De CC 00 00 Ram 00 00 00 00 i
CC 00 00 PR p
00 00 00 00 CC CC 00 00 NR RR 00 00 DO 00
.MQM 92 00 7 5 CCCCCCCC annanann a
pR 00000000 D00000000 CCCCCC 000000
=
=0 0
0 D==o0 r-segnanme EEEEEEEEEE W W
333333 pa w EEEFFFFFFF W W
33333333 y
pa at EE W
W 33 33 RR pm EE W
W 33 EEEEEEEE W W 33333 Renappaa EEEEEFEE W W 33333 RR Re EE WW 33 RR Re EE WW 33 33 SW RR EEEEEEEEEE W
33333333 mR pg FFFFFFFFEE W
333333 Ice Ice 00D00000 999999 222222 7777777777 5555555555 CCCCCC 11 psee see D00000000 99999999 22222222 7777777777 5555555555 CCCCCCCC 111 tesse see 00 00 99 99 22 22 77 55 CC CC 1111 tes pet see 00 00 99 99 22 77 55 CC 11 too see see 00 DD 999999999 2222222 77 5555555 CC 11 see see see DD DO 99999999 2222222 77 5555555 CC 11 tes peese 00 DO 99 22 77 55 CC 8
11 Net poet DD DO 99 99 22 77 55 55 CC CC 11 ten Not D00000000 99999999 2222222222 77 55555555 CCCCCCCC 111111 see see D00000D0 999999 2222222222 77 555555 CCCCCC 111111 00000 33333?
//
222222 unu
//
999999 333333 0000000 33333L4
//
22222222 66%6u6
//
99999999 33333333 et et 33 7
//
22 22 u u
//
99 99 33 33 et to 33
//
22 %
//
99 99 33 et et 33333
//
2222222 unuu
//
999999999 33333 04 et 33333
//
2222222 M6666666
//
99999999 33333 es se 31
//
22 u
u
//
99 33 es se 33 33 //
22 64 u //
99 99 33 33 0000000 33333333 //
2222222222 6u6uu //
99999999 33333333 00000 333333
/
2222222222 6%ue
/
999999 333333 11 333333 11 44 11 66MM
=
111 33333333 111 444 til M6eue 1111 33 33 as 1111 M44 1111 66 u
11 33 11 44 44 11 u
11 33333 11 44 44 11 unu66 1
11 33333 Il 44 44 11 M6666664
'{
11 33 11 4444 %4444 11 M
66 J
11 33 33 tt 11 4444% 4444 as 11 M
u 111111 33333333 111111 44 111111 ue6u64 111111 333333 111111 44 111111 666666 I
i 1
ll I
3 i
1 l
n/
o e
- 8
'7 N M3a/93 l jl 9
.e-ND sdo3192 0075 Qkt'3d-1) i l
I i
l l
l l
l l
REPRODUCTION OF IN DATA DECX e
+
+
+
+
+
+
+
Nifa 22 NPe 1 ITPa 6 FACTe 1.0 LOCA DOSE FUMIGATION-MD-90031-920075 R$
I 131 1 132 I 133 I 134 3 135 to ist In 132 In 133 In 134 I= 135 mRM es sa 85 am 47 ER se sa 69 MEM 131 NEM 133 KE 133 XEM 135 XI 135 XE 137 XE 138 i
8
'30 MIM FUMICATION 0 IN*
4.5000E*00 l 1.227E+02 2 1.652E+02 3 2.900E+02 4 2.556E+02 5 2.683E+02 6 5.395E+00 7 7.260E+00 8 1.275E+0!
9 1.123E
- 01 10 1.179E +01 11 2.357E + 03 12 4.902E*01 13 4.057E+03 14 6.297E+05 15 4.342E+02 16 7.554E+0i 17 3.635E+02 16 1.244E +04 19 1.336E+03 20 1.245E+04 24 4.12tt+02 22 4.865E+03 8
'30 MIN FUMICATION
' 4 TNe 0.2000E+01 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 le 0.0 11 0.0 12 0.0 IS 0.0 14 0.0 15 0.0 16 0.0 17 0.0 14 0.0 19 0.0 20 0.0 21 0.0 22 0.0 2
)
8
'30 MIN FUMIGATION
- 0 TNa 0.4000E+0!
1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 1
6 0.8 7 0.0 4 0.0 9 0.0 10 0.0 i
!! b.I 12 0.0 13 0.0 14 0.0 15 0.0 46 0.0 17 0.0 14 0.0 19 0.0 20 0.0 21 0.0 22 0.0 8
'30 MIN erMIGATION
' 0 TN* 8.2400E+02 i
l 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 60.8 7 0.0 8 0.0 9 0.0 10 0.0 11 0.0 12 0.0 13 0.0 14 0.0 15 0.0 16 0.0 17 0.0 18 0.0 19 0.0 20 0.0 25 0.0 22 0.0 i
8
'30 MIN FijMICAf!ON
' 8 TNe 0.9600E+02 1 0.0 1 0.0 3 0.0
,4 0.0 5 0.0 6 0.0 70.0 0.0 0.0 10 0.0 l
11 0.0 12 0.0 13 0.0 14 0.0 15 0.0 4
(
16 0.0 17 0.0 18 0.0 19 0.0 20 0.0 i
21 0.0 22 0.0 1
l 8
- 30 MIN FUMICATION
' 8 TN=
0.7200E+03 l
I 0.0 2 0.0 3 0.0 4 0.0 5 0.0 i
6 0.0 70.0 8 0.0 9 0.0 10 0.0 j
ll 0.0 12 0.0 13 0.0 le 0.0 15 0.0 16 0.0 17 0.0 le 0.0 19 0.0 20 0.0 1
21 0.0 22 0.0 i
3.26E-5 3.05E-12 4.4E-13 1.4E-13 2.7E-14 1.5E-15 1400 5400 21600 51600 259200 2246400 1500.0 3717.0 0.90 IE-15 0.90 IE 15 210000.0 lE 15 j
i 100.0 60.7 /40.0 1440.0 5760.0
)
153.948 56.833 15.33 46.0 9.0 4.0 76.974 18.4165 6.0 0.0 ROOFFLUM DOSE TO CONTR0t ROOM PERSONNEL DUE TO 5 HINE THROUGH POOF l
1900.0 1000.0 1000.0 20.0 20.0 20.0 500.0 500.0 -13.54 2.25 l
+
+
+
+
+
+
+
+
l i
I i
l p
J
l LOCA su w eg.eGAT!uM-he-eee31-9200?6.
W~ DIibl0 CONTROL SAY COMPUTA7!ON IMPUT DATO f
DATE 03/26/V3 CORCd START TIME 13:14:16
/
NUMeER OF !$0 TOPES
- 22 l
NLMcER OF AIR INTAKE WALUES e 1 9
00 9 i
Nim 0ER OF TINE PEmicos =
6 l
MULTIPLIER OF IWUI CLNtIES
- 1.0000E*40 TIIE PERIODS (S.EC)
$)C pr+.93 1 8..e 5 40.e 21640.e 57600.3 25,200.e 2246440..
TOTAL CURIES RELEASED DURING TIME PERIOD 1-131 122.7 s.e 8.e 0.8 0.0 e.e I
132 165.2 0.0 0.0 0.0 0.0 e.e I
290.0 0.0 0.0 e.e e.e 0.0 I
134 255.6 0.0 0.0 0.0 0.0 e.e 1
135 268.3 0.0 0.0 0.8 0.0 e.e to 131 5.4 8.3 e.e 0.8 0.0 e.e le 132 7.3 e.0 0.0 0.0 e.e e.e 133 12.7 e.0 0.0 0.0 0.0 0.0 i
le 1 34 11.2 0.0 0.0 0.0 9.6 0.8 i
135 11.8 e.e 0.0 0.8 0.0 e.e i
NRM 45 2357.0 0.0 e.e e.e 0.0 e.e ER 45 49.e 0.0 0.0 e.0 0.0 e.e 1
ER 87 6057.0 0.e 0.4 0.0 e.e 0.3 l
ER 14 6297.0 0.8 e.0 0.0 e.0 0.0 ER 19 434.2 0.8 0.0 e.8 0.0 0.0 XFM 151 75.6 0.0 0.0 8.0 0.0 e.e XEM 133 563.5 a.e 0.0 0.0 0.0 0.0 XE 133 lisse.s e.e 8.0 0.0 0.0 e.e MEM 135 1334.s e.e e.e 6.0 e.e e.e XE 135 12450.0 0.0 0.0 0.0 0.0 e.8 XE 137 812.1 0.0 0.0 0.0 0.0 0.0 XE 134 0.0 0.0 0.0 0.0 0.0 0.0 CHI /O (SEC/CU. METER) 3.26E-05 3.95E-12 4.tet-13 1.4eE-13 2.70E-14 1.5eE-15 FLOW RATE OF AIR INTAKE (CFM) 1540.0 l
FfLTER EFFICIENCY. ELEMENTAL IODINE. FIRST PASS = 0.90 I
F!tTER EFFICIENCY. ELEMENTAL IOCINE. SECOND PASS e 4.00 FILTER EFFICIENCY. DRCAMIC IDOINE. FIRST PASS =
0.90 F1tTER EF71CIENCV. ORGANIC 100!NE. SECOND PASS
- 8.00 CONTROL R00N VOLUME (CU. FT. I =
210000.8 l
FLON RATE TMROUGH ROOM CIRCULATION SYSTEM (CFM)
- e.e i
100.0 PERCENT OCCUPANCY BEFORE 1644.0 MIN.
I 1
60.0 PERCENT OCCUPANCY BETWEEN 1440.8 AND 5764.s MIN.
40.4 PERCENT OCC% FANCY AFTER 5768.8 MIN.
l SUCCESSIVE TIME PERIODS IN MINUTES 30.0 90.0 364.0 960.0 4320.0 37440.0 AVERAGE CURIE RELEASE RATE CONCENTRATION IN CURIES /CU. METER DURING EACH TIME PERIOD I
131
- 2. 222E-96 0.000E+0e 0.000E+99 0.000E+00 0.000E+0e 4.040E+ee 1
132
- 2. 992E - 06 0.000E+00 0.000E*00 0.000E+ee 8.000E*00 0.000E*00 I
133 5.252E-06 0.090E*se 0.000E+es 0.0stE*e6 e.e00E+00 0.000E+ee I
134 4.629E 06 0.000E+0e 0.000E*00
- 0. 0 00E *e0 e.000E+0e 8.000E+0e 1
135
- 4. e 59E - 96 0.eeeE+0e 8.000E*00 0.000t+te e.000E+00 0.000E+06
!=
131
- 9. 771E.08 e.se0E*00 0.000E+08 0.000E*00 0.000E*00 0.000E*e8 132 1.315E 07 0.et0E+0e 0.000E+00 0.se0E+ee 0.000E+0e 0.000E+0e In 133 2.309E-07 0.000E+0e e.e00E+0e 8.0e0E+ee e.000E+0e 4.000E+00 la 134 2.e34E-07 0.000E+0e e.SeeE+0e 0.000E+00 0.000E+0e e 000E*00 In 135 2.135E-87
- 0. 00 eE + 0 e e.000E+et 0.000E+00 0.000E+0e 0.000E+et ERM 85 4.269E-05 0.000E+e8 0.000E+0e 0.000E+0e 0.000E+0e 0.000E*ee ER e5 1.612E-06 0.030E+0e e.800E+et 0.000E+0e 0.000E*ee e.000E*00 RR 87
- 7. 346E - 05 0.000E+0e 0.860E+0e 9.000E+00 0.000E*00 0.000E+00 Ek 68 1.140E-04 0.000E+es 0.000E+00 0.000E+es 4.000E*00 0.000E+00 l
RR 89 7.9364-86 8.teeE+0e 0.eteE+0e 8.000E+00 0.000E+te e.000E+0e XEM 131 1.349E-06 e.000E+0e 0.000E+00 0.000E*00 0.000E+00 0.000E+00 l
XEM 133 4.543E-06 0.000E+e4 e.400E+08 0.000E+00 0.000E*00 0.000E+00 XE 133 2.333E-84 0.000E+0e 0.000E*00 e.000E+00 e.400E+0e 0.000E+08 l
XEM 135 2.420E-85 a.ee0E+ee e.eseE+0e e.000E+00 0.000E+00 0.000E+0e XE 135 2.255E-04 0.000E+08 0.000E+0e 0.000E+00 0.000E+0e 0.000E+0e XE 137 1.471E-05 0.0seE+0e 8.000E+0e 0.ce0E*60 0.000E+0e e.000E+00 XE 134 0.setE+ee e.000E+ee e.800E+et e.000E+00 0.000E+0e e.000E+es l
y,,
9
.I
~-
4,oc shelo
\\l SATE.3/2./93 Tilt 13:1 4u E
. TEN..Tjf 0F CONTAse!NATED WOLL.E (X l
IEIGHT OF CONTAselet.TFD WOLINE (f,1.-
3.53.95 FT 4 0tviSTOses 1
i I fN OF CONTAnletA
[d
.45 s
TLD WOLISE u) e 15.33 9 O!Y!sIONS
[
. DIVISIONS a
DOEE P01%f COORDINATESa Xe
- 7. 97 FT, Ye
- 14. 2 FT, 2*
.... FT MM SNIE18 teatL THICMESS a...
}
}
TE FOLLOW 1N. VAltKS ARE FOR A LEAK RATE OF 15..... CFN AND A.YPASS RATE OF..
.. CFM ISOTOPE TOTAL CONCENTRATION TIE BL.t!NG EACH TIME PERIOD IN CL5t!E-t/CU. IETER 1
1 131
- 2. 29E-.7 5.17n-.7 15 =.-..
1
.i m.. 7.4 E.12. a n. 2.. M-223.u n-n
.....E+..
N 0 000M 92 0075 t u2
- 5. m l..,
5.
3.
)
i u.3 5.un.,7
.i. im - o
.5 m..
i.3
- 2. i m-u i. - -n i
n n 1. m u......
. o9E.
i. 5=. 7 1.. x..o 2...n u 3.. m..u un
... m..-u......
ng43 7
?
7.3 i.
m, 1.
.-=
,i.3 m-.
- 2. 2 m..
i.six--
5.1.m.
2.7m. 9..,3..u SE-i.
5 i.
u 2..
i.u 5.95n-.9 i
u i
u.3
=--
=o
.3m-u i.0 m u
.1.
3.2m-n 2.m.E u.2. i m-n l
.i.
u.5 2.2m..o
.2..--.. 5m..n 5
.. m.
5x 9
. 5. - 2.......
.n i.5..u.E5
- 1. n,E..o.
5.,u n
n.
2.3.m -.7 a
.i...m..?..m.5 7.9 m.?
7.,5n.-u 3.o.n..n.
m
.7
~
- 1.. n -
3.5.m - 5 3.
u...
t
.o i..
- -. 5 5
2.. m... 7 7 5.5 m o i.7m m
.u..x..n 9
,2.. m 7..u n.-.7 5.un-a
..E 12 2.7
. ni 7E-22
.a u3
.E...
.. m.
3.o. 7 2..
2.,-
.i..u x.
- 2..... 7 t.09n..n,.n.. - - n....m....
m 2.n u.-.5 7.
.5... m.
- 7. 3..,.
3..
5.5n u....m..2
- u5 m-o
= uS 3.2 m.7
- 7. 4n 5.i.13.. 5.i.2 m....u.
E..i.
.E-..
..~.7 5..
7.
7E..21
. m
...E...
m.
l
= in
.. ~..
.. ~..
T= nu.i mm = FOR A tm on or u..... CF, A.,0 A mm on 0F..
.. Cu ISOTOPE TOTAL tet0LE toeV tas.e4 SOSE FOR EACM ISOTOPE AND T!E PER108 ni
. 7 m -.3 3.o.n-n.i.u.n,.1. 2....on n i.5m.m. 3m...u.........
i n2,
.3 m.
-n 3.3 m..
i u.
i..
.2
- 3. - -.3
.. m..7 i un.ou 1
n 5.2 m -
n 2.... n.7.. m n
.2.5.m. n 2.. m..,..
3.uw n
.. m
- i. un
.. ~..
...m. n.
.7 5.m.*
3.
i..m... 2.n., 2. m-i.. 55.-n i
ni 1.,5 = -.. m -.3 2.nu.-n, un. 5
.. m.
.n
..m-n
- i. u2 0
i.nu. 9
- i. n2 i.on.
- i. ix
.t.2m-n 3.,uw-n, 2.9..
2.
- 9..m n. o n n. 2. 2m i..........
i.i m.
1.
- i. n5
., m u
- 2. m *.
5n..
i.on-n
,.o.n.-.....i en.i.n
.a 3.5.5..,u.
2.. m -
3.
.n.5 i.7 m -
.a
- 2. n u-n
.2. u...i.i m.n
.5.i m -.5
.n 7
.n m..........
=
.....,.i..m-u.9 o
s.17n-u 2.u..n 2.,.m u.
- 3..m..-o........
.... 1.un-a
= m
= -.
- us
. 3 i... m..
3.7m-n 2.
..Y 7..3.m -u.
= us
.u..n i. u..
i.3m
= n5 5.nx n 3....
7.o n.m.5 i. 7.n4 5 i.i m
. 3=-n 7 32.= s.5
..5..
= n5
. 7.m.m....u..
.i.3m.n
- 2. i.m..n.
. 3m n
- m.......
= n7
...0
= iu Sums
- 2..m...
......nt-n
- 3. im 5.. u n TOTAL WHOLE 80DY Gas.e4 BOSE FROM ALL ISOTOPES DURING POST ACCI.NT PERIOD IS.
- 8. 9=... t&DS i
TE FOLLOWING VAllES AAC FOR A LEAK RATE OF 15..... CFM AND A BYPASS RATE OF...... CFM ISOTOPE TOTAL WHOLE 800Y BETA DOSE FOR EACH !$0f0PE AND TIME PERIOD 1
131 3.91
- 1. 33.7E -.24.3 1E.2 9.92 133 1.935E-.1
- 2. 19E-.1 1.75.x-.3 1.2m-.
- 5. 254.E-17. 0...E*..
E sS2 E.
.2
- 3. 7.-.7 1.26.E+....
0E+.0 1
1
.. 53E -
3.21af-1
.54 3.234E-.2 9.E-2.251E-1.8.0 E*.1.
E-
- 00...E+..
F 13 2.291E-01 3.27 E-I 1.1.
1.257E-E* 2 5.577E-4
..E+..
/
135 1.59 E-1.72n-1 1
-.2 17
. 0..E+..
~. 8 131 4.57n-.3 3.6 aE-.3
. 3 m.E-..
- l. 29E*.a 2.312E-16
.E+..
I.
132 5.6 3
1.
3E -.2 7.72
.. 0 E +.
- 2. 17E-..
2.157E*.4
.0
.E+..
0.0
.E*..
I.
13.3 13 7.
9E-.3 1.7.n-.2 1.
- 1. 5 E. 3 7
5.556.E+0 E-1 I
l.
7E-.2
- 1. 39E*.2 5.5
- 9. 23E-1.
- 2. 3.21E =..
000E+..
1 135 23E..
1.29n.-.3 1 E-.
2.5.%E-.2 5E-.3 1.21.E* 4 9 E-6.11n-19
. 0
.E*..
RIDI 45 3n *.
1 5
. 69E-17
.. 0 E*..
BR 45 5.1.7E-.2
.9 1.
I 1.2 3E-.2 1.
5.E-..
2.21.2E-o 7.2 3E-17 E...
ER 47 1.
lE*
51E. 1 9..u.?E.. I 1.
4.752E-01
.3.
.. 0 E+0
.0
.0 E*..
0 ER SS 2.392E-.
- 5. 2 E +.
- 7. 99E-.I
- 5. 91E-..99E.2 1.43at-il 7.823E-5 E+0
.0..E+.
ER 89 3.579E-1 0.
..E+
0 E+0.
0E+.
MEM 131 3.a.27E-.2 3.235E-.2
. 77E-.3 7
3.
0.00 E+..
1.303E-17 MEM ul 1.5 E+.1 1.22tE+.1 3.7 9.7.9.E-.2
. 543E-
. 1.232E-6 38E-1 0.00 +
ME 133 0.000E*.
4.94M..
9E-
- 2. o 9E-1
.. 57E 15
.9
. 000E+.
MEM 135 1.
2E-.
- 1. 5.f.. 1.7 9E+.I E+..
1.5.57E 15 0 E*0 ME 135 XE 134
...l E+..I. 9.5 5E *.1E+.1 1.76..x -.9 3.4 7E-..
2.021E-15 0.0.0.E+.0 0.0 kE 137 E*..
.. 00E+0.
0E+.
.. 0.E+..
E+..
.. +..
E+..
.. 0 E+0.
SLSIs 3.2 5E+.1
- 5. 7.M +.1
. 84.E+..
- 3. 32. -
- 7. 99E-15 0....E+..
TOTAL WHOLE BODY BETA DOSE FROM ALL ISOTOPES DURING POST ACCIDENT PERIOG IS*
9.519E*.1 MRADS TOTAL WHOLE SODY GAMMA +. ETA DOSE FROM ALL ISOTOPES DUR[NC POST ACCIDENT PERIOD IS=
- 1. 33E+.2 MRA05 TM FOLLOWINS VALUES AAE FOR A LEAR RATE OF15..... CFM AND A BYPASS RATE Op......
CFM ISOTOPE TOTAL INHALAT!001 DOSE FOR EACM ISOTOPE AND TIME PERIOD 1
131.. 9.E*.2 9.5.PE+.2 1.134E+02 7.33.E-.3
.. 30E-13
- 0. 000E+.0 1
132
- 2. 92E*01 3.7
- 2. 753E + 0.
2.926E-.5.. 00E*00 0.000E+0 I
D.3
- 2. 5 E+
4.1.nE+ 2
- 5. 9.e.t E +. 2
. 00E+0
.77.E+.1
- 3. 53E-.3 1 2 7E 13 I
13 1..
1
- 2. 2 E+.1
. 419.E-01 3.909E 07
.000E*0 0.000E+0.
I y/.H5 9.1.7.5E +.1 1.632E+.2 1.6 E+.
5.75aE-0
- 1. 6.e 5E +.1 5.. 2E*0.1
.260E 1 3.22.=.0.
1.770E l.5
.000E*..
3 131 1.9 E+.1
.2 0.000E+00 I.8 DI 1.25. E*.!
- 2. 3.M +.
8.47.E*..2.97 E-01 1.21 1.28 5.00.F*0 0.000F+00 0
5 133
. 2.E +.1
- 2. 996E =.01. 717E -.0
+
1.6 5E-8tE 15
- 0. 0 00E +00 1
13
- 3. Mn +.1 7.17.E +..!
7..t 7E.2 2.53.E-.8
. 00 0E
- 0.
Os000E+0 1
135 1
5 2.751E le 0.00 E+0 Sts.:
8.8.lE+.2
- 1. 85.E *.3 2.1 1E+.2 1.21.E-.2
- 5. 576E -15. 0 0E*.0 1
1
-/
l
1 TST3 geEAftaus 30E FRest ALL gegisES 3W3B15 v4ST ACCISElff to Ab
- 2. 4 e bu 46c 3hy,,
I
/g,
-,0u..
. DEES ARE, 0E.m.
004 0 7,,,CLU.E em C.,ET.RS.
TESE FaCTGAS AAE TE FOLLIWeissa 100.00 PERCENT FOR e TO 1444. MilGITES:
40.00 PERCENT FOR 1444. TO 5764. M11eJTEss Ace 40.e0 PERCENT AFTER 5760. MilalTES.
IdMOLE SODY CAf.04 eOSE INCLUD!ssG OCCtJPANCY FACTOR 15 0.495E+0e ISIAOS MMOLE 400Y MTo DOSE INCLUDiesG OCCupaseCY FACTOR 15 9.519E+05 MRASS IpetAL ATION SOE TO THYROID 18sCLUDING OCCUP. FACT. !$ 2.952E+03 MRADS ND 000M 92 00 f f 3 1-fJY) t i
t l
CONTROL ROOM DOSE FROM DIRECT GAf.tA PEMETRAT10sd 0F WALLS, ROOF OR FLOOR FROM AN EXTERNAL SOURCE DATE 83/26/93 Tilt 13:14:16 DoeE TO CONTROL ROOM PERS0l# EEL DUE TO SHINE THROUGH ROOF LDeCTH OF CONTAMINATED WOLUE (XI lege,se FY 20 DTV1STONS WIOTH OF CONT AMINATED VOLUME (Y) e 1900.00 20 DIVISIONS EIGHT OF CONTAM184ATED VOLUE (2) = 1000.00 20 DIVISIONS DOSE POINT COORDINATES:
x*
500.04 FT, V=
560.00 FT, 2a 13.50 FT SH1 ELD WALL TH1CalESS
- 2.250 15010PE TOTAL WHOLE 80DY GAfetA DOSE FOR EACH ISOTOPE AND TIME PERIOD I
131 1.464E=e6 0.teeE+00 8.e00E+et e.SeeE+ee 0.000E+00 e.SetE+et I
132 2.24ef-04 0.000E+es
- e. gem +es e.eeeE+0e e.000E+0e 0.00eE+00 I
133
- 6. 464E -05 0.000E+0e 0.000E+00 0.e#4E+0e 8.00eE+0e 0.000E+4e 1
134 4.779E*e4 e.testite 4.eeeE+4e 0.046E+et e.60eE+0e e.000E*40 1
135 9.754E*04 S.SetE*e8 0.000E+4e 0.00eE+0e e.400E+ee e.000E+0e la 131
- 6. 439E -te 8.teeE+ee 0.teeE+80 0.000E+0e e.000E+6e 0.setE+0e In 132 9.471E 04 8.e4GE+et
- 0. e00E + 60 0.000E+ee e. 40 eE +0e 0.000E+ee In 133 2.042E-06 e.eeeE+0e e.seeE+ee o.ceeE*ee e.000E+00 0.000E+0e In 134 2.099E=e5
- 0. 000E +04 0.teeE+ee e.000E+0e 0.000E+0e e.SeM+00 le 135 4.24ef-05 0.000E+44 0 eseE+0e 6.eetE+0e
- 0. 00 0E
- 0 0 e.000E*e8 ERei el 7.664E-47 0.044E+00 e.eeW+0e 8.000E+80 0.000E*%e e.008E+0e ER 85 3.26 4 *08 0.000E+0e
- 0. test +60 0.000E+es 0.000E+0e 0.003E+We ER 97 1.424E*02 e.SeeE+et 0.000E+0e 8.008E*00 0.000E+0e
- 0. 00 0E + 0 8 ER e4 7.191E-02 e.setE+es 0.eetE+et 0.000E+et
- 0. 00 eE + 08 s.etseE+0e ER 89 4.654E*e3 0.setE+4e e.seeE+0e 0.ecoE+ee e. 0 0 0E + 0 0 0.000E*00 MEM 131
- 4. 382E-14 0.eett+ee
- e. cost +0e 0.000E+es 0.000E+6e 0.000E+60 MEM 133 1.332E-e9 0.teeE*e6
- 0. 000E +ee 8.000E+0e 0.te0E*00 0.000E+ee NE 333 3.107E 13
- 0. eeM +0e e.eeM+es e.eetE+ee e.000E+00 e.000E*00 XEM 135 9.492E-05 0.eeM +00 e.eteE+et 0.eetE+ee e.000E+00 0.000E+0e XE 135 3.5e 2E-95 0.00M +ee e 600E+0e 0.000E+0e 0.000E+00
- 0. 0 0 0E +0 0 NE 137 1.169E-04 0.teeE+0e e.teeE+00 0.000E+0e 0.000E+08 e.600E+00 XE 13e e.tett+00 0.eest+0e 8.000E+0e e.000E+0e 0.068E*0s
- 6. 0 0 6E + 0 0 Samit 9.290E-02 e.Sett+et 0.000E*ee 8.eetE+0e 0.000E+44 e.000E + 00 WHOLE 500Y GAMMA DOSE (ColeTItalDUS OCCUPANCY) DUE TO EXTERNAL SOURCE 9.290E-92 MRADS WHOLE BODY GAMMA DOSE (DCCLe*A80CV FACTORS INCLUDED) DUE TO EXT. SOURCE 9.290E-82 tera 05 TOTAL PERSOMMEL GAMMA DOSE FRCst ALL SOURCES PRESENTLY CALCUL ATED e.185E+0e MRADS Is0TE: TOTAL IS FOR F1RTT VALE OF CotiTROL ROOM AIR Flow RATE DATE e3/26/93 COR00 END TIME 13:14:26 r
ll'l' l!lil 1
i!
lI e t:
N
%T 3
ds c o C(4 e 3 3 3J ae 33 4 C C ' (n -
b 4\\ f 4
4T%
+
M 333 M
d x
999 M
e e
///
M d l
ls 888 a0a pn 222 r0c.
mo
///
S g:i oi 333 N
p0 n3 Ct 000 O
u2h a
I c3 sc yyy G eme si aaa E boTA el ddd R
r S np nnn lfrE ip n
uuu E
l o/
sa n
SSS C iejS u
u N
wlaC By 000 A
bMI n
000 T
sa,C Ma S
P nl B
E 222 E
oi) n If G
000 C i aC o o
A C
gvI e
S A eaPn hn S
r nD o to E
E 000 S
uAi i
M0 L
000 C e (t
mt 3 U I
ce a oa T
T:
D 222 C nbrm rr S
S9 E e222e a er E fg A
A0 H g
g E
't l t o O i
C C
C a333a H pl n f C dm D
D3 S t999t T eien S e
A A9 u///u cwCi O vh O
O/ E O777O N c R
ot R
R6 G 222 I
A s nl mi B
B2 A d///d noa F ew
/
T e333e 3 Soic O r
F M3 U l000l Citi e
O B0 O u
u 3 Igan L eu I
d y y yd Cemh A bn D
d D eaaae A rrc V i
N Ae N hdddh S e oe O lt E
Gt E crrrc E h ef t M ln Oa K SuuuS / thn E io Dd E ttt S
, tid R wc Np E oaaao C e
M AU W NSSSN I
3 Pt Eo T
C 9
.D a Ot T
93.Ad C
A m
F 1
p Sd H
u O
,3eu Oe.
C m x e
Rd m e N 8nsy nE u
l r
O 2o l
,i O n
u p
e I
iet 3 mC a
M m
v T hssn 9 eS c
o r
A crae 9rO C
e L
reec 1
R S
L aVle e
s-A M Pr
,rn s
l T
A 8ao e
i S
,S r
2 n
a N
yE.o sg i
m I
a/0f hrn sABE dS0 cei uXX 2 nC : s rmn BCC
.X M
uI4e aoi
/ / pN M
SC2u Mta MCCrU M
s sm BDDoS M
noos nue
[::::
JttI i:-
1L
5 5
5 DD M
8 8
8 EE 66 RR 0
0 0
HT 33 EE DCN NN 33 NN DD 3
3 3 ANI NN FF 77 FF AA 93 97 4 49 EUR FF 8B 11 00 8S EE 2
3 1
R FF 22 11 OO 22 A3 A3 0
3A SSS 22 BB 11 JJ BB LL M1 M1 0 P
RRN DD E. E.
66 NN 63 63 0 A 36 AAI 111111111111 E. E.
33 RR 21 21 0 H 12 CCL E. E.
11 11 EE 1
11 EE 44 EE C
1 EE SS 11 SS 66 TT EE EE E 3EE 605 SS UU 11 UU 22 NN TM TM M 6MT 5 3 UU OO 11 OO II AI AI I
E IA 4
OO HH CC HH DT DT T D RTD HH PP 55 PP NN O E PP MM CC CC 77 MM SS II TT N T T MM AA CCC CCC 22 AA TT GG RR PP NPN AA KK CC CC 99 KK CC II AA OO Q Q IOI KK JJ CC CC DD JJ CC RR TT TT E E RTR JJ 99 CC CC NN 99 AA OO SS SS X X PSP 99 CC CC s4% % ] gw CC CC CC CC CC CC y' $g CC CC CCCCCCCCCCCC CCCCCCCCCC M DO$
- e) 3>8 1 55 555 55 55555
%O DO@* egoONU 55 55 55 1
55 55 55 55 55 55 55 55 55 a
55 55 55 55 55 55
~
55 55 55
.r '
55 55 55 5555555 55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 5555555 55 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 7
77 777 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 7777 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 77 77 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 77 77777777 77 7777777 77' 77 77 777 777 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 2222 22 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 222222 22 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 22 2
22 22 2
22 22 2
22 22 2
22 22 2
22 22 2 22 22 2 22 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 22 222 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 222 222 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 22 22 9999999999 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 999999999999 NNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 99 99 99 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 9999999 999 999999 99 DDDDDD DDDDDDDD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DDDDDDDDDDDD 5
5 5
DD DDDDDDDDDDDD 8
8 8
EE 0
0 0
HT 66 RR DCN 33 EE-NN NNNNNHNNNNNN 33 NN DD 3
3 3 ANI NN FF HNNHHHlNHNN 77 FF AA 93 97 4 49 EUR FF l
BB NN 00 BB EE 2
3 1
1 RPP BB R
22 NN OO 22 A3 A3 0 3A SSS 22
DD NN DD 33 AA RRN DD 66 NN 63 63 0
A 36 AAI E. E.
E. E.
NN E. E.
NN 33 RR 21 21 0
H 12 CCL EE NN EE 44 EE C
1 EE SS JNNlNHHHNtHNN SS 66 TT EE EE E 3EE 605 SS i
iI l
UU NHHNNHHNHINN UU 22 N
TM TM M 6MT 5 3 U0 l
OO 11 OO II AI AI I
E IA 4
D0 HH CC HH DT DT T
D RTD HH PP 55 PP NN O E PP MM 77 MM Ss II TT N
T T
MH AA 22 AA TT GG RR PP NPN AA KK 99 KK CC II AA OO Q Q IOI KK JJ DD JJ CC RR TT TT E E RTR JJ 99 NN 99 AA OO SS SS X X PSP 99
- [t6 ug[
N 5
5 5
DD 8
8 8
EE 22 RR 0
0 0
HT 99 EE DCN NN 22 NN DD 3
3 3 ANI NN FF 77 FF AA 97 90 2 29 EUR FF BB 11 00 BB EE 3
5 1
R FF 22 11 OO 22 A1 A1 0 2A SSS 22 BB 11 JJ BB LL M1 M1
111111111111 66 NN 63 63 0 A 36 AAI E. E.
33 RR 21 21 0 H 12 CCL E. E.
11 11 EE 1
11 EE 44 EE C
1 EE SS 11 SS 66 TT EE EE E 3EE 6O5 SS UU 11 UU 22 NN TM TM M 6MT 5 3 UU
!O 11 OO II AI AI I
E IA 4
OO HH CC HH DT DT T D RTD HH PP 55 PP NN O E PP MM CC CC 77 MM BB II TT N TTT MM AA CCC CCC 22 AA TT GG RR PP NRN AA KK CC CC 99 KK CC II AA OD Q Q IAI KK JJ CC CC DD JJ CC RR TT TT E E RTR JJ 99 CC CC NN 99 AA OO SS SS X X PSP 99 CC CC Y
g CC' CC CC CC CC CC CC CC CCCCCCCCCCCC CCCCCCCCCC
- C3 8C$ b 3
5yCO43 3
9
'V 55 555 Dg Qt 55 55555 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5555555 55 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 5555555 55 RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 7
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 77 777 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 7777 RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 77 77 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 77 77777777 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 77 7777777 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 77 77 77 777 777 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 2222 22 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 222222 22 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 22 2
22 22 2
22 22 2
22 22 2
22 22 2
22 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 22 2 22 RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 22 2 22 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 22 222 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 222 222 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 22 22 TTTTTTT
.TTTTTTTTTTTTTTTTTTTTTTTTTTTTT RRRRRRR'RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 9999999999 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 999999999999 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 99 99 99 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 9999999 999 999999 99 DDDDDD DDDDDDDD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DDDDDDDDDDDD 5
5 5
DD DDDDDDDDDDDD 8
8 8
EE 22 RR 0
0 0
!:T 99 EE DCh NN NNNNNNNNNNNN 22 NN DD 3
3 3 ANI NN l
FF NfNNNNNNNNH 77 FF AA 97 90 2 29 EUR FF BB NH 00 BB EE 3
5
- 5. R 1
R FF 22 NN OO 22 A1 A1 0
2A S5S 22 BB NH JJ BB LL M1 M1 0
- 2. M DDE BB P
RRN DD E. E.
NN 66 NN 63 63 0 A 36 AAI NN E. E.
E E.
33 RR 21 21 0 H 22 CCL EE kN EE 44 EE C
2 EE SS NilNNtNttNNN SS 66 TT EE EE E 3EE 605 SS lf ilii UU NHNHNHfHHHNN UU 22 NN TM TM M 6MT 5 3 UU OE 11 OO II AI AI I
E IA 4
OO HH CC HH DT DT T D RTD HH PP 55 PP NN O E PP MM 77 MM BB II TT N
TTT MM AA 22 AA TT GG RR PP NRN AA KK 99 KK CC II AA OD Q Q IAI KK JJ DD JJ CC RR TT TT E E RTR JJ 99 NN 99 AA OO SS SS X X PSP 99
Atme Jos eeren racN en-m22 oSP= 2. DEvtCE=rNTRsR, See i
j Impel 0! USERIS 19ESS IS ASSIGOES TO THIS JOS.
2)[y]
13:11:37 1Af4401 LOCATE FOR STEP =0&CW CX 00=STEPLIB DSN* Apt.E N.PS264460.PeleLIB 13:11:3711T4402 UNITd334e
.vol t S l=U5tiMll 13:11:37 IAT4404 LOCATE FOR STEP *eo DD=$7EPLIS DSN=&Pt.NEA.PS264464.PGNLIG 13:11:37 1Af4402 UNIIs1340
.voltSl=U5eM15 13:11:37 12T4401 LOCATE FOR STE M40 00=FT11F001 DSN=&PS.EN.N2264440.150 TOPE.ELEVEM 13:11:37 I AT4402 UNIT =3344
.v0Lill=USGS22 4
13:11:37 !ai4401 LOCATE FOR STEP *C0 DD=FT12F 001 DSM= APS. NDs. N2264460.1 $0 TOPE. TWL VE 13:11:37 I AT4402 UNIT *3340
,VOLISt=USGS27
/
13:11:37 I AT5110 JDS ND9275C1 EJ00072923 USES D $0FT83 13:11:37 I ATS110 J04 ND9275C1 (JOS072923 USES D USCN15 13:11:371&T5110 Joe ND9275C14 JOSS 72923 USES D SOFT 65 g MMM3 } 92 g 7 J 13:11:37 I AT5110 JOS ND9275C1 (JD607292) USE S D USGS22 13:11:37 I AT5210 JDB JS3CATLG (Joe 872921 SYSM USING D SOFTSS ON 727 wUU t=
13:11:37 IAT5210 JOS STEPL18 6J0807292) SYSM USING D USCM15 ON 27A 13:11:37 IAT5210 JOS JS3CATLC (JOS$7292) SYSM U$tNG D SOFT 85 ON 730 13:11:371 AT5210 JOS Fil17005 8 J00072923 SYSM USING D USGS22 ON 777 g"Q(
)
13:11:37 IAT2000 JOS ND9275C) (jot 07292) SELECTED SYSN GRP=SSAICH F
13:11:37 TVA30262 720 LIMITED TIME CLASS IS IN EFFECT....
J 13:11:37 ICN7000!! IDEDO LAST ACCESS AI 13:11:37 ON FRIDAY, MARCH 26, 1993 13:11:37 IEF4031 ND9275C1 - STARTED - f!ME*13.11.37 13:11:34 BLN514===SLOCKS!2E CHANCE, OLD=03990, NEW=23476, ND9275C1/VFYLEDT m/IDRt1ST /K.SN264360.FT06.0UTPUT.C6446V00 13:11:38 IAT5110 J04 N09275C1 (JO907292) USES D USCMIS 13:11:39 TVA0021 N09275C1 USCM15 27 A SC=05376 EXCP=00000l?6 DON =SYS00001 13:11:39 TVA002I ND9275C1 USGS29 728 BC=00256 EXCP*00000001 DDN=IDRLISI 13:11:39 TVA0021 ND9275C1 USGM15 27A SC=00000 EXCP=00000004 DDN=STEPLIB 13:11:40 TVA0021 MD9275C1 VIO EXCP=00000002 DON =Fil6F001 13:11:40 TVA0021 ND9275C1 USCS22 777 BC=00000 EXCP=00000000 DDN=Fil1F001 13:11:40 TVA002! ND9275C1 USGS22 777 BC=00000 EXCP=00000000 DDN=FT12F001 13:31:47 TVA0023 ND9275C1 USGS22 777 BC=00000 E XCP=00000044 DDN=FT12F001 13:11:47 TVA0021 ND9275C1 USGS22 777 BC*00000 EXCP=00002109 DON =FT11F001 13:11:47 TVA0021 ND9275C1 VIO EXCP=00000005 DDN=FT16F001 13:11:48 TVA0021 ND9275C1 USGS29 724 BC=00764 EXCP=00000002 DDN=FT06F001 13:11:46 TVA002! N09275C1 USGM15 27A SC=00000 EXCP*00000029 DON =STEPLIB 13:11:44 TVA0023 add 9275C1 USCS29 728 BC=01024 EXCP*00000004 DDN=SYSUT1 13:11:50 IEF4041 ND9275C1 - ENDED - TIME =13.11.49
/
h-W 15 1 JOB 266343.*CA u..An ORG=iOCx.CtA$s-S a8FNMfSE.E382fWN',85GLEWLel,M50 CLASS =T
%h 3/24/93 l
//PRott!B 08 DSes* apt.eE D.PS266464.PROCLIS. DISP =9m
// STEP 1 EXEC COROS.SOUT**e' M[ h h
I //MD9275C1 JOS 2H363,'TA A8FNOUSE.ED82F'BFN',MSCLEVEt=1,MSGCLASS=T
/
2 //PROCLIB 00 Dses=APS.NEN.PS264466.PROCLIS.DISPe$HR 3 //STEPl EXEC COR00,$0UT*'*
- 4 XXCOR00 PROC T*5. LIBRARY =' APS.sEN.PS764460.PCML IB ',$0Ufe'e *,
XX EL EVEMe
- APS.NEN. W2264468. !S0 70PE. E L EVEN',
XX TWELVE =' APB.NE N.W2264460. ISOTOPE. TWELVE' Pt 5 XXQACitCE EXEC PGes=vFYLEDT.REGlow=4096K, TIMES t,
u Q @w k h 2 M A *J P XX PARM= ' /JDA TE *91471,P A TN= AP B. NE N. PS 2M468. PGML I S ( COR00 )
6 XX$7EPt!B 00 Dsse=4tIBRARY. DISP =SNR UUf7 IEF6531 SussTITUTIOes JCL - DSN* APS.lEN.PS2M48.PCML IS. DISP =95:
i 7 XXPLIDuse DO SYSOUT=480UT l
IEF6531 SUBSTITUT!Ose XL - SYSOUT*e
. hg[
8 XXSYSPRINT DO SY$0UfatSOUT l
IEF653! SUBSTITUTION XL - SYSOUTee 9 XXIDRLIST DD DSN=E. SN264360. F T 06. 0UTPUT I + 13,0 !$P=( NEW,P AS$ 3, XX UNITE AL LOC.SP ACEst TRE.6 20,5 ).RL SE 1, XX DCle( SYS t. MODEL,RECFM=FSA,LRECL *133. BLESIZE=3996 )
le XXSY$DUsp DD SYSOUT*4SOUT IEF6531 SUSSTITUTION XL - SYSOUT.s 11 XXCO EXEC PCM=COROD. TIME =si IEF6531 SUBSTITUvl0N XL - PCM=COR00 TIIE=5 12 XXSTEPLIB 10 DSN=st!BRARY, DISP =SNR IEF6531 SUBSTITUTIcee XL - DSM* Apt.NEN.PS264468.PCML18, DISP *9et 13 XXFT4(,F001 DD DSN=E. SN264 360. F T 06.0UTPUT t +1 ), DISP =( MOO.P ASS )
14 XXFTilFool DD DSM=4EL EVE N. DISP = Sect IEF6531 SUBSTITUTION JCL - DSes*APB.NEN.W2264464. ISOTOPE.ELEVEM, DISP =$le i
15 XXFil2 Fool 00 dst 4=aTWELVE DISP =SMR
!EF6531 SUSSTITUT!ose XL - DSM*APS.NEN.W2264464.15070PE. TWELVE, DISP *$NR 16 XXF116F00100 UNI T a$YSPt.DC5=( RECFM=F 3 LRECLest,6LESIZE*31201, XX SPACE =(TRE 41,1),RLSE) 17 XXSYSUguse 00 SY$0UT*450UT IEF6531 $U8STITUTION XL - SYSOUT*e 16 XXASNLIGNR 00 Sv$0UTesSOUT IEF653I SUSSTITUTION XL - SYSOUT=a 19 XXFT65F001 00 UDesAsqE*$YSIN 20 //CO.SYSIN DD e,DCS*eLESIZE*40 21 XXPRINT EXEC PGMe!ESCENER COND=EVEN 22 XXSYSPRINT DD SYSOUT*4500T IEF653I WSSTITUTION XL
24 XXSYSUT2 DD SYSOUT*4SOUT IEF653I SUSSTITUTIcee XL - SYSOUT**
25 XXSY$lN DD DUMMY 26 XXCATALOG EXEC PGM*IEFBR16 27 XXD01 DD DSN=E.SN264368.F T 06.0UTPUT( + 1 ).DISPat 0L D.CATLC,CATLG )
- r.'
1 Js Tim CLASS IS D EPPECT....
Qk MQN 2
. M LAST ACCESS AT 13:11r37 ON F11 BAY, MARCIt 26, 1995 1
ILri n ! M LOC. FOR W9275C1 GACM CI STEP 1 IEF2371 174 ALLOCATED TO STEPLIS IEF237I AS3 ALLOCATED TO PLImpe my / [
1EF1371 ASS Att0CATED TO SYWRINT Ff i
a[1 IGelee! 728 ALLOCatts 70 mem IMLIST SATACLAS I
)
IEF2371 JES3 ALLOCafES TO SYSapp BLN514 se.6LOCESI2E CNANGE. OL9=05990, MIP'23476, ND9275C1/VFYLEDT e/IDRLIST /K.SN264Mt.Fio6.0UTPUT.G6446V00 IEF237! 27A ALLOCATED 10 SYtesten TVA9023 ND9275C1 USGNI5 27A eCe95376 EXCP*00000176 DON =SYS60001 IEF265!
APO.W N.PS26 0.PWILIS EEPT 0 i NO9n5C R N05.446US0529 7,.I15.
TV.285,I 1
VOL SE USS i
N0 00 m.4 e.00 IVA0021 ND9275C1 USEN15 2FA 4 % *.256 n -.00ee00 DD i-t ST s n9 es EXCP*0000se64 DON =$fEPLIS f * "" f*
IEFl628 ND9275C1 SACE CE r.R.. 4P NAS EXECUTG a COND CODE 8000 w
F-245I APS.E N.PS26W. 0.PSElt EEPT As et IEF285I InuSI V.OL SER N0ss USSIIS.
lT U 000M 92 0075
. 9n5Ci.
07292.DO.ee..A.T SV.U, l
m,n.5 io 5
.5M,643.9 n,5Ci. m 07292.0000000..T
,S YSOU.T D..N0 4
0.
106. = PUT.G6446ve AS i
iu!.Si V
SYSOUT
.iu..u.5.:.,A.OL
.R.NO,S. US.5,,... 9. 75.Ci m. 07292 0000 0.C. T...
3-z/ M
.. e
.e e ST,E,P.,
.AC.
m m,$TE, I.,0R,m:0,,
..0.....
..e.
CE START Tim is.il.37. 8 STEP CPU
. 0. 13 e PC
.mDT S,0P n-13.i1.3 x.
CPU 00.00.00.13 T
.e00.00. 9.46
.e SERV.U !.T.
622
.....E.t &P..e.I.
1.58 C
e m
.n..&..Jo.,$1E.,....r.,0.R.,.,.A.,.10,,O,.ii.i 0.
CO.DE.
0 0 00 e..
me.
..me
. u.s.
...e..........
.e..
e
.ee
...me..
e.
e EXCP STATISTICS e UNgf EXCP COUNT dNIT Ex p COUNT L8dIT EXCP CouMT UNIT EXCP COUNT UNIT EXCP COUNT UNIT EXCP COUNT a 27A 4
724 1
27A e
176V10 P. AGE.OUT
. m 4
me. m.ES Su..aPPED.em.Nm g e TOTAL EXCP.
m.181 IN PAG.ne I
s
. m a
.m
.m ese u.
m IEF3731 STEP /0&CE CE / START 93045.1311
.e m e. --
IEF374! STEP /eate rt / STOP 93085.1311 CPU SMIN Se.13SEC SR$
OMIN es.015EC VIRT 4224K SYS 276E EXT 4R SYS 8904K IEF2341 ALLOC. FfMr NO9275C100 STEP 1 IEF2371 27A ALLOCATED TO STEPLIS IEF2371 728 Att0CafED TO PfeWeel IEF2371 777 ALLOCATED TO FT11F001 IEF237I 777 ALLOCATED TO FT12F001 1001011 $NS Att0CATED TO BONAE (FTlpeel)
DSN ESYS93045.,fl31136.RA000.ND9275C1.Re000001
)
STORCLAS (SCTE 95 NGMTCL AS (
) DATACLAS I
)
IEF237I JES3 ALLOCATED TO SYStelse IEF237! AS3 ALLOCATED TO ABNLIGNR IEF2371 JES3 ALLOCATED TO Fie5 Feel TVA002I ND9275C1 VIO EXCP*e0000002 DDWaFTl p eel TVA0021 ND9275C1 USGS22 777 BC=40000 EMCP=00000ete DON =Fil1F001 1
TVAte25 ND9275C1 USGS22 777 BCooseet EXCPetestee00 DON =FT12F001 TVAce2! ND9275C1 USGS22 777 BC.00000 EXCP=00000044 00N=FT12F001 TVA8021 ND9275C1 USGS22 777 BCe00000 EXCPe00002109 DON =FT11F001 TVA$e2I ND9275C1 VIO EXCP=etese005 DONeFT16F001 TVA002! ND9275C1 USGS29 728 BCe TVA0021 ND9275CI USGNil 274 BC.Ge768 ENCP*e0000002 DONeFTOW 441 00004 ENCP*ete00029 DON =SIEPL18 IEFl421 ND9275C1 GO STEP 1 - STEP NAS EXECUTED - COND CODE 0000 l
IEF2451 APS.NEN.PS264464.PGMLIS REPT I
IEF2851 VOL SER Nose US$NIS.
IEF285I E.SN264360.FT06.0UTPUT.G6446V40 PASSED IEF2851 V0L SER NOS* USGS29.
l l
IEF285!
APS.M N.W2264460.150 TOPE. ELEVEN EEPT 7
l IEF205I VOL SER NOSE USGS22.
IEF2851 APS.W N.N226 REFT IEF245I VOL SER NOS.4460.!SOTOPE.TELVE l
US0522.
I IG01851 SYS93085.T131136.RA000.ND9275C1.R0000001 DELETED DDNAMEeFil weet l
IEF2851 IDE00.ND9275C1. JOSE 7292.00000000.7 SYSoui IEF2451 10EDe.ND9275C1. Jose 7292.Doesteet.T SYS0uf i
IEF. eeeeeeene.ND.9275C1. JOSE 7292 00000809. ?
as 2451 IDEDO see.ee.eees.
SYSIN TVA JOS/ STEP INFORMATION ennem.mo.m m
.ee ne.sesse.nem mem a STEP NAME GO START TIME 11.11.39.54 STEP CPU 04.00.01.42 e pCM MAME COR00 STOP TIME 13.11.48.28 JOS CPU 08.09.81.55 e
a SERV UNIT 8.794 TIME 00.08.08.74 CONO! TION CODE 4000 eseemeeeeeeeeeeeeeneeeeeeeeeeeeemme.E.L AP e
.eeeeeeeeen TVA JOR INFORMATIO seeeeeeeeeeeee.nesseeeeeeeeeeeeeeeeeeeeeeeeeeeeee m eeeeeeee m/STEPeemmeeme N e m s ee e ee eeee e ee e eee e eeeeeeeme ee ee eemu see ee m eesseeeeeeeeem m eeeeeeeeeeeeeeeeem m e m eee m e e
EXCP STATISTICS e
a UNIT EXCP COUNT UNIT EXCP COUNT UNIT EXCP COUNT UNII EXCP COUNT UNIT EXCP COUNT UNIT EXCP COUNT e
a 27A 29 728 2 777 2,109 777 44 VIO 5
e e TOTAL EXCP 2.189 ble PAGE IN e
VID PAGE OUT 0
PAGES SNAPPED IM 0
e a seememesseees==emeeammenesseeeeeeenmesmeeeeeememmem-memeemeseemmmamenemomessene na meneau IEF373I STEP /Go
/ START 93445.1311 IEF374I STEP /GO
/ SIDP 95045.1311 CPU GNIN 01.42SEC SRS OMIN 00.23SEC VIRT 396E SYS 300E EXT 8E SYS 8916E IEF2361 ALLOC. FOR NO9275C) PRINT STEP 1 IEF2171 JES3 ALLOCATED TO SYSPRINT IEF2371 728 ALLOCATED TO SYSUT1 IEF2371 JES3 ALLOCATED TO SYSUT2 IEF2371 DMY ALLOCATED TO SYSIN TVA0921 ND9275C1 USCS29 728 BCe01024 EXCP=00680064 00N*SYSUT1 IEF142I ND9?? SCI PRINT STEpl - STEP NAS EMECUTED - CONO CODE 0000 l
IEF285!
I DE DO. ND9275C 1.JDS87292. D4000eeF. T SYSOUT IEF2851 E.SN264360.FT06.0UTPUT.G4446V90 PASSED IEF2851 VOL SER NOSE USG329.
I IEF24 a nne.5.I....I.DE Do. MD9275C1. JOSE 7292. 00900010. 7 SYSOUT l
. m eeeee m eeeeeeeeeeeeeeee m m eness TVA JOS/ STEP INFORMATION enseeeeene me ssenemes-mm mes.mesme s e STEP Mane PRINT START TIME 13.11.48.31 STEP CPU 00.00.00.65 e
e PCM NAME 3ESGEER STOP T!ME 15.11.49.29 Joe CPU 00.00.31.60 e
- SERV UNIT 171 ELAP T.
CONDITION CODE 0000 m
someemuseeemmenemoeeeeeeeeeemuneIME.. 80.00.00.98
. TV4 JOS seeeeeeeeeeeeeeeeeeeeeeeeee m esseeeeeeeeeeeeeen m eneesee m/ STEP INFORMATION esseessessemee m eessessesee m m m eme m ene m me
-meeememamemmeemesmeeeemen-mmmmene mee e
EXCP STATISTICS e
e UNIT EXCP COUNT UNIT EXCP COUNT UNIT EXCP COUNT UNIT
'EXCP COUNT UNIT EXCP COUNT UNIT EXCP COUNT e
a 728 4
e a TOTA.
emeee.L.E.XCPm ese m ese m m eseeee m.E IN 4
VIO PAGE OUT 0
PACES $ NAPPED IN e
e eeeesi,seemumam m m n e a m eem m enen enn e ue ou s ma ue m mmm e o u m e s.
IEF3731 STEP / PRINT
/ START 95445.1311 IEF374! STEP / PRINT
/ STOP 95885.1111 CPU OMIN 00.05SEC SRB OMIN 00.00SEC VIRT 372K SYS 232K EXT 4E SYS 892sa IEF236! ALLOC. FOR ND9275CI CATALOG STEP 1 i
1 IEF2371 728 ALLOCATED TO DDI IEF1421 ND9275Cl CalALOG STEPl - STEP NAS EXECUTED - COMO CODE 0000 IEF285!
E.SN264360.F 186.0UTPUT.G6446V90 CAIALOGED IEF2853 VOL SER NOSE US0$29.
, eseememeememem-meeeeeeeeeee.....
.. TWA JOS/ STEP INF 0GMai!ON mmemm m mm mumumm m u m m o e $1EP NAstw.tATALOG START TIME 13.11.49.39 STEP CPU 00.00.00.02 l
8 PCM MAME IEFtR14 STOP TIMC 13.18.49.89 Joe CPU 00.60.01.62 su RV UNiieeeeeeeeeeeemeseseeeeeeeeeeemseeeeeeeeeeem ET I M.eu80.00.00.50 CONDITION CODE 0000 a SE 49 ELAP TWA JOS/ STEP 1Ntoen4 TION m m m en m eeeeeeeeeeeeee m m m p eepeeeeeee seeeeeemesseee eeeeeeeeeeeeeeeeeeeeeeeeeeemmemmeememm e e e e e e n o e me s mmes-mmeeeeeeeeemamee me e u e n e s e e.
8 EXCP STAlt5f!CS a UNIT EXCP COUNT UNIT EXCP COUN1 UNIT EXCP COUNI UNIf fsCP COUNT UNIT EXCP COUNT UNIT EXCP COUNT e TOTAL EX 0
VIO PAGE IN e
VIO PAGE ou 0
PAGES SWAPPED IN 0
eseeeeees.C.P.eeeeeeeeeeeeeeeeneme=e m e m ees m ee m e m ee m u eu sees.t meeene maseeemenneemeeeeeeeeeeeeueenesseemn eue l
MGL 3 /asin c.
.... 4311 ID L a u /L...
93446.1311 CPU
.+em..m ee - _ _ __ - :: :=+emmese=1seGMIJ 08.62SEC SRSeMTA 60.seSEC VT27 as Sys 232E EXT (a Sys sages see.
I w o'ngeAt!On es ee tvi sot / STEP ses eemes==me*=== eeeeeeeeeeee m ane e JOS mapE N0977M1 P90GRAf9ER 93AspMOUSE.EDS2FSF2 START D4TE 93/2V 93 START TIME 13.11.37.88 CONDITION CODE teet e
e 4 4 MUMS JOB 87292 ACCT DATA 264343 ISTEPLIB STC,# DATE 03/26/93 STOA TIME 13.11.49.40 CPU TIME 09.44.41.62 e
a J04 CL ASS Sa Mvs SP3.1
--- eeeeee**===eermeeeeeeeeee* 3 REL 63.4 ELAP TIME 40.06.12.92 SE.iVICE UM115 E
- wn tv4 JOS/ STEP !WORMATION esse **e===ameseesee**eas e** **= =ee eeeee s.9 623e==ySMe emee***.
=.:: : -
IEF375I Jos /ND9275C1/ START 93045.1311
=
IEF3761 JOS /N09275C1/ STOP 93045.1311 CPU OMIN 01.62SEC SRB OMIM 96.24SEC pcgM4WT 0 f
NO 0003192 0075 '
f F2/43 m>:.
um m untm c.,,,,
i i imm --.== =c, ut=cv.usm wir. r i,
dBc 3/ zein P.0CE531W DOED AT EOS f
NY b
i ND 0003192 0075 3 2/42 e
- "9.* e
MC 3/2s/53
[NJM f
i M 0003192 00 75 k 3M3 95/05/26 a 13.11.58.691 LINEAGE EDIT 0R L0AD M0DULE DATE VERIF1 CATION PAGE 0000 ene===eseceneemseemesse..enemessammme,eeee eee.. eeeemememesses.seeeeemmene.meeneommenese a
e CCCCCCCCCC 000000000000 09_ _ _-
_-_-_-_-X D00D00000 e
e CCCCCCCCCCCC 000000000000 RRRRRRRRRRRR 000000 90000 0000000000 m
o CC CC 00 00 RR RR 00 00 D3 D0 m
a CC 00 00 RR RR 00 00 DD DD e
a CC 00 00 RR RR 00 00 DC D0 e
a CC 00 00 ;-
=
e CC 00 00 RRRRRRRRRRR 00 00 DD DD e
o CC 00 00 RR RR 00 00 DD D0 m
e CC 00 00 PR RR 00 Oc DD DD e
e CC CC 00 00 RR PR 00 00 DD DD e
a CCCCCCCCCCCC 000000000000 RR 99 09___----~---
DDDDDDDDDD e
a CCCCCCCCCC N RR RR 000000000000 0D0D00000 e
e e
semeseseemeeeeemmeememmeneemmeseemes nemem......ee. memme me.eeeeeeemameeeeeemmeessee FILE:
AP9.NEN.PS264468.PCML18 MODUL E:
COROD LASTLINK 91/071 QA CNEC.K..R.E.SU.L T.S eseesseemme
.eeee-massammeneeenesesseeemosomeoseesense, meesmesseeeeemseen i
AAAAAAAAAA S$$$$$$$$$
S$$$$5SSSS EEEEEEEEE" FEE FDDDDDDDD e
AAAAAAAAAAAA SSSS$$$$$$$S SSSSSSSSSSSS EEEEEEEEE EEE ODDDDDDDDD e
... -pp AA AA SS SS SS SS Et DD DD e
e pp e
a pp pp AA AA S$$
SS$
EE DD DD e
e
-- AAAAAAAAAAAA SSSS$$$SS EEEEEEEE DD DD e
e r
AAAAAAAAAAAA
$3S$$$$$$
a PP AA AA SS SS SS SS EE DD 00 a
e pp AA AA S$$$$$$$$$5S $$$S3S2S$$55 EEEEEEEITEEE DDDDDDDDDD e
a PP AA AA SSS3SSSSSS SSSSSSSESS EEEEEEE EEEE DDDDDDDDD e
e seesseemosomemeemmemommemeemmmesemmenesee eeeeeeeeeeemmesem m:
6CLC
^M 3 8 he waff 4
CCCCnce
- maamaman
( )
Q
~
u.
CC CC 00 00 m me 00 00 Du o
CC 00 00 m am 00 00 DO DO CC 00 00 pupANNAWR 00 00 00 00 CC 00 00 Raamem 00 00 00 00 CC 00 00 km RW 00 00 DO DO 1
//
l CCCCCCCC nnnann00 Na RR 00000000 00D0D0000 CCCCCC 000000 Ret RR nanana 00D00000 l
NO EEErEErm W W
333333 00031 92 0075 l
m m FFFF W W
33uu33 Re se it W
W 33 13 m
IIR EE W
W 33 penanmaan EEEEEEEE W W 33333 menemmen EFFFFFFF W W 33333
},$
}
pa se EE WW 33 att RR EE WW 13 33 Ret RW EEEEEEEEEE W
33333333 aft RR EEEEFFFFFF W
333333 sof NId D0000000 999999 222222 nruuur $555555555 CCCCCC 11 sees Not D00000000 99999999 22222222 7777777777 5555M5555 CCCCCCCC 111.
t Neses see DD DO 99 99 22 22 77 55 CC CC 1111 i
ses pas see 00 00 99 99 22 77 CC 11 pas pas see DD DO 999999999 2222222 77 5555555 CC 11 sof N04 ees Do DO 99999999 2222222 77 5555555 CC 11 Des pesos DD DO 99 22 77 55 CC 11 eas sees 00 00 99 99 22 77 55
% CC CC 11 see eos D00000000 99999999 2222222222 77 55555555 CCCCCCCC 111111 l
pot r.4 00D00000 999999 2222222222 77 555555 CCCCCC 111111 sette 333333
//
222212 Huu
//
999e99 333333 000000e 33333333
//
22222222 uuun
//
99999999 33333333 et se la 33
//
22 22 u u
//
99 99 33 33 ee to 33
//
22 u
//
99 99 33 et 40 33333
//
2222222 uuuu
//
999999999 33333 et to 33333
//
2222222 usoueu
//
99999999 33333 06 to 33
//
22 u
//
99 33 se se 33 33 //
22 u
u //
99 99 33 33 0000000 33333333 //
2222222222 unuu //
99999999 33333333 1
eseee 11111*
/
2222222222 uuu
/
999999 333333 l
11 333333 11 11 44 eeeoe 111 33333333 111 111 444 0e00000 1111 33 33 1111 till 4464 es se 1
11 33 11 11 44 44 es se 11 33333 11 11 44 44 es 9e 11 Su33 11 11 44 44 es se 33 11 11 4444444444 es se 11 33 33 11 11 44444o.44 es se s
i 111111 33333333 111111 111111 44 eseeees i
111111 333333 111111 111111 44 esses i
N.*.
O i
i JiEt{f 3 i
NTT}KNah d B zg ff ND 0003192 00751
- urs l
I n
REM 000UCTION OF IWUT DATA DEQt g
)
e e
e
+
+
e
+
+
M1T= 22 NRe 1 ITP= 6 FACT
- 1.0 LOCA DOSE FLMIGATION-NO-00031-920075 R5 I 131 I 132 1 l'.3 i 134 I 135 1
1 la 131 la 132 != 133 In 134 != 135 KRN 85 ER 95 OR OF ER 88 ER 89
.I Kim 131 NEM 133 XE 133 XEN 135 XE 135 XE 137 rt 138 8
'30 MIN FUMIGAi!ON 8 TNa 0.5000c+00 I 1.ZZ7E+02 2 1.652E+02 3 2.900E+02 4 2.556E+0!
5 2.683E+02 6 5.395E+00 7 7.260E+00 8 1.275E+01 9 1.123E+0!
10 1.179E+0!
11 2.357E+03 12 0.902E*01 13 4.05'E+03 14 6. 297E +0 3 15 4.382E+02 16 7.558E+01 17 3.635E+02 18 1.288E+04 19 1.136E + 03 to 1.245E+04 21 8.121E + 0 2 22 4.865E+03 8
'30 MIN FUMIGai10N
- 0 TN=
0.2000E+01 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 6 0.0 7 0.0 8 0.6 9 0.0 le 0.0 11 0.0 12 0.0 13 tot 14 0.0 15 0.0 16 0.0 17 0.0 18 0.0 29 0.0 20 0.0 21 0.0 22 0.0 i
8
'50 MIN FLet1GATION
- 8 TNe 0.8000E+0!
1 0.0 2 0.0 3 0.0 4 0.0
$ 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0 11 0.0 12 0.0 13 0.0 14 0.0 15 0.0 16 0.0 IF 0.0 18 0.0 19 0.0 20 0.0 21 0.0 22 0.0 8
'30 MIN FUMICATION 8 TNo 0.2400E+02 1 0.0 2 0.0 10.0 4 0.0 5 0.0 6 0.0 7 0.0 4 0.0 9 0.0 10 0.0 11 0.0 12 0.0 13 0.0 14 0.0 15 0.0 16 0.0 17 0.0 18 0.0 19 0.0 20 0.0 21 0.0 22 0.0
'30 MIN FUNICATION
' 8 IN=
0.9200E*02 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 4 0.0 7 0.0 4 0.0 9 0.0 10 0.0 11 0.0 12 0.0 13 0.0 14 0.0 15 0.0 16 0.0 17 0.0 18 0.0 19 0.0 20 0.0 21 0.0 22 0.0 8
'30 MIN FUMICATION S The 0.7200E*03 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0 11 0.0 12 0.0 13 0.0 14 0.0 15 0.0 16 0.0 17 0.0 18 0.0 l' O.0 20 0.0 28 0.0 22 0.0 3.26E-5 3.05E-12 4.8E-13 1.4E-13 2.7E-14 1.5E-15 t 500 % 80 21600 5400 259200 2246400 0.0 3717.0 0.90 IE-15 4',90 lE-15 210000.0 IE-15 300.0 60.0 40.0 1440 ? 5760.0 153.448 36.833 15.33
==.0 9.0 4.0 76.974 18.4165 6.0 0.0 ROOFFLUX DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF
'1000.0 1980.0 1980.0 20.0 20.0 20.0 500.0 500.0
-13.58 2.25 e
+
+
+
+
+
+
a.
eme= Nee s t
.2.
, etW.
av.,
LOCA BBE PtROIS.TI.ut-as-(s 51-C2 75 As 1+6[$J 94TE. TROL shy CDs.'UTATIOne IspUT DATA CON 3/26/CS COR00 $iART tim 13a11:4.
pF seseER OF 130 TORES =
22 sameER OF AIR INTARE WALES = 1 teseER OF TIE PERIGO. =
6 MannnR OP 1.PU: Com =
1........
u4.$.p 0003192 00 75 n = = = < =e..>.
1 54..
u6....
576....
25,2....
u m C= =$ =tE,=0 i 0 u ME. 100 pgg i
ist 322.7 i
132 29.5.2
.9 i6 i
lu i
i 34 255.6 26..
>>5
- i. i31 5.4 i.
>>2 7.3
- i. 133 12.7
- i. 12 u.2 1
135 ii..
.5 n57..
..e 0..
4.
9..
.R
.5 0..
.R
.7 51..
o.9 6 m...
.R
.R 45.2 ni n.6 So n3 no. 5
= lu
. u5 iu.
no.6..
n5,
=
u.
.u.. i
=
XE i3 CHI /O (SEC/CU. ET.ER) 3.2d-5
- 3. 5E 12 4...E-13 1.4.E 13 2.70E te 1.5.E-15 FLON RATE OF AIR.IN.TAKE (CFM)
FILTER EFFICIENCV, ELEENTAL 100tBE, FIRST PASS =
FILTER EFFICIENCV, ELEM NTAL 100iE. SECONO PASS =....
i
.,9 FILTER EFFICIENCV, ORGANIC 1001ME, FIRST PASS =
. 9..
FILTER EFFICIENCY. ORGANIC 10014, SECOMO PASS =
..21..
CONTROL ROOM VOLUE (CU. FT. ) =
FLOM RATE THROUSN ROOM CIRCULATION SYSTEN (CFM) =
1.. PEllCENT OCCUPassCY SEFORE 144... MIN.
6... PERCEWT OCCLPAMCV SETWEN 14. MIN.
576.4... AND 576... MIN.
4... PERCENT OCCL.bANCY AFTER SUCCES$.1VE TIE P.ER.IODS IN MD JTES 3..
9.
M..
96...
432...
3744...
AVERAM C !E RELEASE RATE CUNCENTRATION IN CURIES /CU. METER DLNtING EACH Tile PERIOD 1
131 2.222E-.4
. 0.E*
.....E+0.
...e E+..
e.0..E+0.
. 0 0E+..
I 132 2.992E-06 0..E+..
....E+0.
. 0. E+..
. 000E +0 0 0.00.E*..
I 133 5.252E.
4.629E*.6
. 0.
.E+..
...e.E+..
E
. 000E+..
..... +..
0.0E+0.
- 0. 0.E+00 I
D4
.....E+..
.....E+..
.. 0.E*0.
E+00. 000E+..
6 I.
135
- 4. 59E 06.....E+..
.....E+0..
0....E+..
.. 0.E+0.
.. 0.E*0.
.0 I
131 9.771E*..
....M+..
.....E+
......E*..
. 00.E+..
0.000E+..
In 132 1.315E-.7.....E*..
0..E+.......E+..
.0
. 0 0E+0.
In 133 2.3.34E-.7 9E-.
0.0..E+..
0..E+..
. 00 E+0.
. 000E+..
0...E+..
2.135E-.7
.E.
.....E+0.
... 0E+..
la D4 2.
..... +.
E+.
0.00.E+0.
. 0e0E+.0 In 135 7
E+..
0..E+.......E+..
. 0 0 0E + 0.
.. 0 E+..
5 4.269E*.5
....E+..
ERN
...e.E+..
0E+00. 00 E+..
1.612E-.6 5
....E+..
..000E*..
.....E+04
. 00.E+00
. 800E+..
ER 7
1.14.E-.5.....E*..
.... E-.0 7.34.
0.0 0E+0
.. 00E+0.
. 0 0E+..
ER 7.936E=.4.....E*..
. 0..E+0.
E*.
0 0.00.E+.
. 00.E+0.
. 00.E+..
KR E
. 00.E+00
. 00.E+0.
. 000E+0.
1.369E-.6 0.... +......E+..
ER
.9 XEM 131
..E*..
.E+..
.. 00E+..
. 00.E*0.
0.0..E+..
6.553E*.6 XEM 133
....M+..
. 000E+..
- 0. 00E+00 0.00.E+..
...0.E+..
2.333E-.6 2.42 E-.4...
E+..
- 0. 00E+..
XE 133
.E+..
.. 00E+..
0.00.E+.
XEM 135 2.25M-.5. 00.E+..
.. 0.E+.0
. 00 E*00. 000E+0.
. 00.E+e.
KE DS
...e.E*..
.....E+.0
. 1 0E+00 0.
0 0E + 60 0.00.E+..
1.4.71E-.4M+.5
.....E*.......E+..
0.000E+0.
137
.. 00E+0.
.. 00E+00 XE 13
..E*..
..E+0.
0.000E+.0
. 000E+0.
.000E+..
=
=wl.
v 2
l CONTa0L BAY tea:LE 300Y AND tiet4LATleN DOSE Dem 03mm nE umiu 29 c-36/c LENGTM rF CONTAMINATED V0ttat (Mt a 153.95 FT WIDTH OF CONTAMIMMED VOLUME eV) e
%,33 46 OtVISfows
- E10HT OF CONTAMINATED YOLLsE (2) 15.33 9 DIVgsIOMs 4 01V1510MS 00$E PotMT COORDINATES:
x=
76.97 FT, Y*
18.42 FT, 2*
6.00 FT gg h
SHIE10 WALL THICILE SS = 0.e64 TE FOLLOWING VALUES ARE FOR A LEM RATE OF e.00 CFM AND A 8YPASS RATE OFa**m CFM ISOTOPE TOTAL CONCENTRATION T!E DURING EACH TIME PERIOD IN CUR!E-HR/CU. METER 131 2.44W-07
- 6. u 9E -4 7 1.733D 07 2.903E-te 1.144E-17 0.000E+ee I
132 3.20 5.05x *e7 7.341E-0,
- 1. 04M-4
.i. 5m-u
- 3. 7ae.7 2.994E*11 9.6,4,5E 2,1 e. 00M.* ee i
US 07 7
5.,385E iG
- 7. 9* - u e.e m ee 0.0en.ee ND 0003192 0n ?5 i.2 Ei
..een i
ia 4.4 n-0 7
.uu-87 5.37n-u i
u5 5.36
-87 i.3 m -06 2.9en -07 2.65 u-ie 2.0 m it e.0en.se 00
- i. ui i. 09... 3.Out-u 7.62eE-09 i.27n-ti 5.e m.i9 e.een ee i
n2 1..
64
- 3. 2m-u 4. 7n t-09 i.3 m i2 4.23* -22 0.00u.00 3, upp i
U3 2.575eu 4.95x-u i.uSeu 2.33n -u
.5.7.:.n.e0 0.00x.00 i9 0.00 1
is 2.02=-o
- 3. 565E -u 2.36 --09 3.5 n-14 4.6 m u 6.use a i.2m-=
i. 2 65E a u..e--
i.
u.5 0.06 00 2.355E-
06 1.17 a-05 i
i.269E-0
- 2. i nE-i.
0.00u.00 a
85 i.8m 07 4.90 x-07 a
i.2 m -05 2.,519e e5 i.4 m 06 9.nx > >.. euf-it in-05 4.757E-u i.um 49 i.46n -22 0.00=.00
.R 47
- 7. 5m-u i.
.4 0e R
-i e..e..e.
R
.9 2.559e.t,
- 4. me 2.5 = u e.sta.4.
0.00
.e 0.48=.80
- 4. 222E.-.o Di
.un i. 53x-U3 7.a x -8,7 7.i m. 7 i.07m-07 1.uw ie 7.25
- 0. 0 0 =.00 2.ei 5.ein 07 7.9 m 10 2.69.n-i-u e.e m ee xE tu 2.6 n-05
.5 5.,ein.5 2.9 m.-0A 1.147E-i5 i.
..e m 1.,e m..e 8. t e n..u xEn ut i.
-u i.u xE O7 5.45 05, 6. a,.n..a 2a-.9 i.2.
ie
.e a u5 2.4 m -
5 i.45w 05
... m.-i64.09u.ee
.i.5 m.e.u 0.u 1.4 1.au i xE ua 0.e m.t.
- 0. 00=.8 7 0.e m.t.l
- 0. 0.e n..e 0. 8m..u
.t en 00 u
e e.e m.e.
THE FOLLOWING VALUES ARE FOR A LEAR RATE OF e.00 CFM AND A SYPASS RATE Ores **** CFM ISOTOPE TOTAL WHOLE 800Y GAMMA DOSE FOR EACH ISOTOPE AND TIME PERICO I
131 4.47eDe3 1.342E-42 3.39E-03 5.69et-86 2.242E-13 0.000E+0*
1 132 3.%3E 82 4.l ut-82 1.204E-42 3.331E-06 1.e73E-15 0,000E+e8 I
133 1.627E-82 4.394E*02 1.052E-82 1.4 7M-45 3.609E-13 0.000E+0e j
1 u4 5.337E-02
- 9. 3 79E-0 2 4.21eE-93 9.237E-04 e.eeeE+ee 0.000E+0e i
135
- 3. 39M -4 2 8.769E-42 1.842E et 1.679E-05 1.309E-15 0.000E+0e i
le 131 2.14 5E -84 5.991E-04 1.493E-04
- 2. 542E-07 9.859E 15 0.000E+00 to 132
- 1. %M - e 3 3.5490 43 5.3070 04 1.u*E-07
- 4. 71 W - 17 0.000E+0e le 133 7.153D 64 1.932E-05 4.625E 04 6.444E-47 1.547E-14 e.eetE+44 i
la 134 2.345E-03 4.121E-05 2.729E-44 4.0546 09 0.eetE+44 0.000E+00
!=
135 1.4920 03 3.454E-05 0.095E 7.3796 47 5.752E 15 0.000E+ee RAM 85 3.743E=62
- 9. 3 7M- 0 2 1.801E-et 1.21n-05 4.272E-14 e.000E+68 ER AS 1.842E-05 5.040E-05 1.294E-05 2.215E-04 9.243E-16 0.eetE+te ER 47 2.325E-el 4.651E et 4.54M -42 2.97eb e6 2.027E-17 s.eeeE+0e ER 68 8.535D 81 2.422E+04 3.29?E-41 1.27M 84
- 1. 015D13 e.eetE+ee KR 49 2.025E-et 3.332E-63 2.047E-12 0.eett+40
- e. ecee +4e 0.000E+00 XEM 131 4.941D64 2.u2D05 6.243E-04 1.0536 06 4.22aE-14 0.000E*ee XEM 133 5.236E-43 1.432 0 02 3.562E*e3 5.645D 66 1.91 M-13 a.000D 00 ME 133 4.655E-01 1.11M +00 2.81 E-el 4.655E-04 1.740 0 11 0.000E+4e MEM 135 3.945E-02 3.341E-02 1.251E-e4
- 2. 54x-14 0.00eE+00
- 0. 000E +0 e EE 135 3.le9E-el 4.175E 01 1.410E-01 1.96M-84 2.441E-12 0.040E+0e XE 137 4.96eE-03 9.967E-04 1.710E-11 e.000E+4e 4.000E+0e 0.eeeDet RE De 0.000D00 0 eeeE+0e
- 0. tem +0e 4.000D 00 e.eetE+88 0.eett+48 SLAs 2.061E+ee 4.902E+64 9.129E-61 4.540E-04 2.137E-11 0.000C+4e TOTAL WHOLE SODY GA8 eta DOSE FROM ALL ISOTOPES DURING POST ACCIDENT PERIOD IS
- 7.87M+et MRAOS TE FOLLOWING VALLES ARE FOR A LEAR RATE OF 0.00 CFM AND A SYPASS RATE OFeeeees CFM ISOTOPE TOTAL WHOLE 500Y BETA DOSE FOR EACH ISOTOPE AMO TIME PERICO I
131 4.el4E-42 1.184E-el 2.79M-42 4.6420 05 1.845E-12
- 0. 000D00 1
132
- 1. h 7E-e n 3.134D el 4.6346 02 1.2780 05 4.117E-15 0.000E+08 1
133 1.943E-01 5.555E-01 1.282E-01 1.796E-64 4.399E-12
- s. s eet +0e I
134 2.334 6 01 4.189D el 2.721E-02
- 4. 04 7E-0 7 0.000E+0e 0.000E+ee 1
135 1.637E-el 4.22aE-01 4.441E-82
- 4. 097D 45 6.311E-13
- 0. 0 00E +00 In ill 1.765E-05 4.456E-03 1.229E-05 2.069E-46 4.115E 14 e.eeM+44 In 132 6.049E-43 1.377E-02 2.037E-03 5.617E-47 1.409E-16 0.000E+00 to 133 8.719E-03 2.354 0 02 5.63aE-03 7.894E-06 1.934E*13 0.eeeE+49 In 134 1.027E=e2 1.445E*e2 1.195E-03 1.7740 44
- 0. 000E + 44 0.000E+0e In 135 7.194E 43 1.854E 82 3.903E-03
- 3. 55aE-66 2.773E-14 0.000E+0e ERM 85 9.ae9E-41 2.457E+ee 4.719E-01 3.189E-04 1.120E 12 0.000E+88 am 45 3.75aE-42
- 1. 0%E-el 2.64M-e2 4.5190 05 1.aad -12 0.ee0E+ee ER 47 8.%1E+4e
- 1. u9E+01 1.645D00 1.064E-04 7.271E*16 e.000E+4e ER 88 3.832E+00 9.eetE+4e 1.441E+4e 5.731E-84 4.555E-13 0.000E+0e ER 69 2.615E-01 4.341E-82
- 2. u4E-11 0.000E+00 0.000E+e4 e.eeeE+et MEM 131 1,818E*02 5.ec V 02 1.269E-42 2.14tE-05 8.595C-13 0.06eE+ee XEM 133 1.16eE-81 1.1' 3 el 7.892E-42 1.251E-64 4.25eE*12 0.0seE+86 XE 133 2.935E+ee 4.06b a 04 2.034E+0e 3.370E-03 1.289E-te 0.000 Det 1
KiM u5 1.467E en 1.23h.-ol 4.u9E-04 1 490E 14 0.000E+0e 0.000E+0e XE 135
- 6. %4E+0e
- 1. 727D81 3.825E+64 4.1540 01 5.158E-11 0.000E+0e XE 137
- 7. 4 3M-61 1.494E-41 2.563E-89
- e. tete +0e e.000E+et 0.0e0E+00 j
XE 134 0.eeeE+ee 0.000D ee 4.eetE+0e 4.040E*00 e.teeE+00 0.046E+00 Stat:
2.479E+41 5.622E*e! 9.999E+6e 9.e49E-03 1.962E-le 4.000E+4e i
TOTAL WHOLE BOOY BETA DOSE FROM ALL ISOTOPES DURINO Po$f ACCIDENT PER100 IS* 9.093E+04 NRAOS TOTAL WHOLE 800Y CA8 eta +0 ETA DOSE FROM ALL !$0f 0 PES OURING POST ACCIDENT PER100 IS* 9.84 4+41 MRAOS THE FOLLOWING VALUES ARE FOR A LEAR RATE OF e.00 CFM AND A SYPASS RATE OFus**** CFM ISOTOPE TOTAL DetALATION OOSE FOR EACM ISOTOPE AND TIME PERf00 l
I 131 4.602D02 1.266E+43 3.204D42 2.767E-41 1.414E-06 0.000E*ee I
132 2.141E+01 4.94M +41
- 7. 2 %E +42 1.089E-03
- 4. 3 n eE - 13 0.000E+00 l
1 133 2.92M+42 7.9eM+02
- 1. 492E+02 1.337E 81
- 4. 3+ 0E -99 e.000E+0e 1
u4 1.442E+01 2.534E+01 1.67aE+44
- 1. 258E-85
- 0. 0 0 0E
- e e 0.000E+0e l
i I
135 8.30M*el 2.144E+02 4.584E+01
- 2. 0 71E-02 2.1 + 6E l e 0.000D ee In til
- 2. 023D 01 5.%7 Del 1.409D01 1.190D 02 6.2teCate 4.000E+44 In 132 9.604D el 2.15M *ee 3.149E-el 4.435E-45 1.8%f 14 0.000E+0e
!=
133 1.247E+01 3.474E+0! 8.314E+80 5.47aE 03 1.9048 10 e.00eE+ee
-l le 1%
6.335E-01 1.113Dee 7.372E-?2 5.5296 07 e.eestese 0.000E+ee la 135 3.644E+0e 9.422E+0e 3.979E+00 9.2006 04 9.meM 12
- 0. 000E +ee i
Sim:
9.leeE*e2 2.444E+05 5.844De2 4.4490 01
- 1. +5M. e e 0.046E+ee l
TOTAL 18.eALAT10N SOSE FROM ALL IODIE S DURING Posi ACC!aENT PERIOS IS* 3.947gies MRADS l
'Lk 3hsh3 THE FOLLOWING DOSES ARE THOSE CIVEN ASOYE SUT INCLU.DE OCCUPAMCY F ACTORS.
THESE FACIORS ARE THE FOLLOWINGS 100.00 PERCENT FO e 70 1440. MINUTES:
60.00 PERCENT FOR 1448. TO 5764. MINUIESg ANO
[
40.00 PERCENT AFTER 576e. MINUTES.
/
WH0(E SODY CAMMA DOSE INCLUDING OCCUPANCY FACTOR IS 7.877E+0e MRADS WHOLE 80DY BETA DOSE INCLUDING OCCUPAMCY FACIOR 15 9.093E+0B MRADS IMHALAI!ON DOSE TO IHYROID INCLUDING OCCUP. F ACT. IS 3.947E+03 MRADS H 0003192 0075 f M693 l
l I
CONTROL ROOM DOSE FROM DIRECT CAMMA PEMETRATION OF WALLS, ROC # OR FLOOR FROM AN EXTERNAL SOURCE DATE 03/26/93 TIME 13:11:40 DOSE TO CONTROL ROOM PER$00. DEL DUE TO SHINE THROUGH ROOF LENGTH OF CONTAMINATED voturE (X)
- 1900.04 FT 20 Div!$10NS 1
WIOTH OF CONTAMINATED volume (YI
- 1000.00 29 D!vis!0NS HEIGHT OF CONIAMINATED VOLUME (2)
- 1000.00 to DIVISIONS DOSE POINT COORDINATES:
X*
500.00 FT, Y*
540.00 FT, 2*
-13.54 FT i
SHIELD WALL THICKIESS
- 2.254 ISOTOPE TOTAL WHOLE SODY CAMMA DOSE FOR EACH ISOTOPE AND TIME PERIOD 131 1.464E-06 0.000E+00 0.000E+00 0.000E+00 0.000E+04 0.000E+0e I
132 2.246E-04 0.00eE+ee 0.000E+00 0.000E+00 0.000E+00 0.000E+49 I
133
- 6. 466E - 0 5 0.000E+ee 0.000E+0e 0.000E+49 e.00eE+06 0.000E+00 l
I 134
- 4. 779E-04 0.000E+00 0.000E+0e 0.040E+0e e.000E+00 0.000E+00 1
135 9.754E-04 9.eetE+00 0.009E*00 e.000E+00 0.000E+08 0.000E+60 l
In 131 6.439E-00 0.000E+0e 0.000E+0e 0.000E+00 0.000E+00 0.000E+6e l
In 132 9.471E-06 0.000E+0e 0.000E+0e e.000E+et 0.000E+4e 0.000E+00 le 133 2.842E-86 0.000E+00 0.000E+0e 0.000E+ee 0.000E*00 0.000E+00 i
to 134
- 2. 099E -9 5
- 0. 000E +e e 8.000E+0e 0.000E+00 0.000E+0e 0.000E+49 Im 135 4.244E-05 0.000E+00 0.000E+08 0.000E+00 0.000E*00 0.000E+00 ERM 85 7.669E-97 0.00eE+ee
- e. ecee +08 0.000E+00 0.000E+00 0.000E+00 ER 45 3.269E-04 0.000E+00 0.000E400 0.000E+00 0.000E+0e 0.000E+04 ER 87 1.426E-92 e.000E+00 0.000E+00 0.000E+00 0.000E*00 0.000E+00 ER 7.191E-42 e.600E*40 0.000E+0e 0.000E+00 0.000E+00 0.000E+44 ER 89 4.656E-93 0.e#0E+44 0.000E+ee 0.040E+00 0.000E*00 0.000E+00 XEM 131 4.302E*14 0.000E+49 0.000E+ee 0.000E+04 0.000E+0e 0.000E+e0 XEM 133 1.332E-49
- 0. 0 00E +00 0.000E+0e 0.000E+00 0.000E+00 0.000E*00 XE 133 3.107E-13 0.00eE+ee e. 00 0E +0 e 0.000E+00 0.000E+00 0.000E+et XEM 135 9,492E-05 0.000E+0e 6.000E+00 0.000E+00 0.000E*00 0.000E+00 XE 135
- 3. 50 2E-0 5 0.000E+0e 6.000E*00 0.000E+00 0.000E*00 0.000E+00 XE 137 1.169E-04 0.000E+0e 8.000E+00 0.000E+00 0.000E+00 0.000E+0e XE 134 0.000E+es 0.000E*00 0.000E+0e 0.000E+00 0.000E*00 0.000E+00 SLM 9.290E-42 0.000E+0e 0.000E+0e 0.000E+00 0.000E+0e 0.000E+0e WHOLE 800Y CAMMA DOSE (CONTINU0US OCCLPAMCY) DUE TO EXTERNAL SOURCE 9.290E-02 MRADS WHOLE SODY CAMMA DOSE (OCC1PAMCY FACTORS DeCLUDED) DUE TO EXT. SOURCE 9.290E 02 MRADS TOTAL PERSONNEL Cama DOSE FROM ALL SOURCES PRESENTLY CALCULATED 7.970E*00 MRADS NOTE: TOTAL !$ FOR FIRST VAltK OF CONTROL ROOM 2:R FLOW RATE DATE 03/26/93 COROD END TIME 13:11:47 l
(
\\(s m>R0 5%
Q Y
a DOOuWmNooN*
s s
$5&,e%4u M
333 M d x
999 M
e e
///
M d l
ls 888 a0a pn 222 r0 c.
mo
///
S g:i oi 333 N p0n3 Ct 000 O u2h a
I c3 sc yyy G eme si aaa E boTA el ddd R
r S np nnn lfrE ip m
uuu E l o/
sa u
M SSS C iejS u
n M
N wl aC By M
000 A
bMI n
M 000 T
sa,C Ma S
P nl B
E M
222 E
oi) n If G
M 000 C iaCo o
A M
C gvI e
S A eaPn hn M
S rnDo to M
E E
000 S
uAi i
M M0 L
000 C e (t
mt 3 U I
ce a oa T
T:
D 222 C nb r m rr S
S9 E e222e a er E fg A
A0 H g
g E tlto O i
C C
C a333a H pl nf C dm D
D3 S t999t T eien S e
A A9 u///u cwCi O vh O
O/ E O777O N c R
ot R
R6 G 222 I
A s nl mi B
B2 A d///d noa F ew
/ T e333e 3 S oi c O r
F 4
M4 U l000l Citi e
O B0 D u
u 3 Igan L eu I
d y y yd C e mh A bn D
d D eaaae A rrc V i
N Ae N hdddh S e oe O lt E
Gt E crrrc E h ef t M ln Oa K SuuuS / thn E io M
Od E ttt S
,T Id R wc M
Np E oaaao C e
M AU W NSSSN I
3 Pt Eo T
C 9
.D a Ot T
93.Ad C
A M
F 1
p Sd H
M O
C M
x
,3eu Oe.
e Rd M
e N 8nsy nE M
l r
O 2o l
,i O n
M p
e I
iet 3mC u
M m
v T hssn 9 eS u
o r
A crae 9rO C
e L
reec 1
R S
L avl e e
s A M Pr
,rn s
l T
A 8ao e
i S
,S.r 2
n a
N yE o
sg i
m I
a/0f hrn sABE dS0 cei uXX 2 nC : s rmn BCC X M uI4 e aoi
//pN M SCZu Mta M. C C r. U.
M s
sm 1
s tf t'
ywS' >b 5
5 5
DD y
8 8
8 EE 22 RR 0
0 0
HT 99 EE NN 22 NN DD 3
3 3 ANI NN DCN FF 77 FF AA 97 90 2
69 EUR FF BB 11 00 B8 EE 3
5
1 RPP BB R
22
<F 11 OO 22 A1 A1 0
3A SSS 22 BB 11 JJ BB LL M1 M1 DD 111111111111 DD 33 AA 0 P
- 2. M DDE BB G
E. E.
111111111111 RRN DD E. E.
66 NN 63 63 0 A 36 AAI 11 11 33 RR 21 21 0
H 12 CCL E. E.
EE 1
11 EE 44 EE C
1 SS 11 SS 66 TT EE EE E 3EE 6O5 SS EE dU 11 UU 22 F1 TM TM M 6MT 5 3 UU t
rd 11 OO II AI AI I
E IA 4
OO HM CC HH DT DT T D RTD HH PP 55 PP NN O E PP MM CC CC 77 MM 58 II TT N
T T
MM AA CCC CCC 22 AA TT GG RR PP NPN AA KK CC CC 99 KK CC II AA OO Q Q IOI JJ CC CC DD JJ CC RR TT TT E E RTR JJ KK 99 CC CC HN 99 AA OO SS SS X X PSP 99 CC CC s
CC CC p
CC CC CC CC CC CC CCCCCCCCCCCC CCCCCCCCCC 3M DGOWM 4gOONv a
55 555 55 55555 w\\N%Qy 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5555555 55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 5555555 55 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 7
77 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 777 7777 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 77 77 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 77 77777777 77 7777777 77 77 77 777 777 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 2222 22 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 222222 22 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 22 2
22 22 2
22 22 2
22 22 2
22 22 2
22 22 2 22 22 2 22 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 22 222 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNiNNNNNNN 222 222 r
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 22 22 9999999999 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 999999999999 NNNNNNNNNNNNNNNNNNl't NNNNNNNNNNNNNNNNNN l
99 99 99 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 9999999 999 999999 99 DDDDDD DDsDDDDD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DDDDDDDDDDDD 5
5 5
DD DDDDDDDDDDDD 8
8 8
EE 22 RR 0
0 0
HT 99 EE DCN NN NNNNNNNNNNNN 22 NN DD 3
3 3 ANI HN FF HNNNHNNNNNH 77 FF AA 97 90 2 69 EUR fF BB NN 00 BB EE 3
5
- 0. R 1
R FF 22 NN OO 22 A1 A1 0 3A SSS 22 BB NN JJ BB LL M1 M1 DD NN DD 33 AA 0
P
- 2. M DDE BB G
RRN DD E. E.
HN NN E. E.
66 NN 65 63 0 A
36 AAI E E.
33 RR 21 21 0
H 12 CCL EE NN EE 44 EE C
1 E
E, S SS NNNNNlNNliNNN SS 66 TT EE EE E 3EE 605 i
UU NNNNHNNHHHNN UU 22 NN TM TM M 6MT 5 3 "u U OI 11 OO II AI AI I
E IA 4
0O HH CC HH DT DT T D RTD HH PP 55 PP NN O E PP MM 77 MM s8 II TT N T T MM AA 22 AA TT GG RR PP NPN AA KK 99 KK CC II AA OO Q Q IOI KK JJ DD JJ CC RR TT TT E E RTR JJ 99 NH 99 AA OO SS SS X X PSP 99
q r
aPb& qw^'SO 5
5 5
DD 8
8 77 RR 3
8 EE 77 EE 0
0 HT NN DCN 33 NN DD 3
3 3 ANI NN FF 3333 3333 77 FF AA 90 91 1
19 EUR BB 333333333333 00 BB EE FF 33 33 33 BB FF RR R 4 5
1
BB 33 33 33 JJ BB LL M1 M1 FF DD 33 22 33 DD 33 AA 0
P
- 2. M DDE E, E.
33 33 BB G
RRN DD 33 E, E, 66 NN 63 63 0 A 36 AAI 33 33 RR 21 21 0 H 12 CCL E, E, EE 33 33 EE 44 EE SS 33 C
1 33 SS 66 TT EE EE E 3EE 6O5 SS EE UU 333 333 UU 22 NN TM TM M 6MT 5 3 UU OO 33 33 33 OO II AI AI I
E IA 4
OO HH CC HH DT DT T D RTD PP 55 PP NN MM CC CC 77 HM BB II TT N TTT HH O E AA CCC CCC 22 AA TT GG RR PP NRN PP MM KK CC CC 99 KK CC II AA OO Q Q IAI JJ CC CC DD JJ CC RR TT TT E E RTR KK AA 99 CC CC NN 99 AA OO SS SS X X PSP JJ CC CC 99 CC CC h
NW CC CC CC CC CC CC CCCCCCCCCCCC CCCCCCCCCC 55 555 3g y
goc 4w4Nooqw 3 34 55 55555 55 55 55 55 55 55 d
- yg M 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5555555 55 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 5555555 55 RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 7
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 77 777 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 7777 RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 77 77 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 77 77777777 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 77 7777777 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 77 77 77 777 777 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 2222 22 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 222222 22 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 22 2
22 22 2
22 22 2
22 22 2
22 22 2
22 TTTTTTTTTTTTTTTTTTTTTTTTTTTT7TTTTTTTTT 22 2 22 RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 22 2 22 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 22 222 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 222 222 22 22 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 9999999999 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 999999999999 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 99 99 99 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 9999999 999 999999 99 DDDDDD DDDDDDDD DD DD DD DD 4
DD DD DD DD DD DD DD DD DD DD DD DD DDDDDDDDDDDD 5
5 5
DD DBDDDDDDDDDD 8
8 8
EE 77 RR 0
0 0
HT 77 EE NN NNNNHNNNNNNN 33 NN DD 3
3 3 ANI NN DCN FF NNNNHNHNNNN 77 FF AA 90 91 1
19 EUR fF EB NN 00 BB EE 4
5 1
RPP bB R
22 NN OO 22 A5 A5 0 3A SSS d2 F
BB NN JJ BB LL M1 N1 DD NN DD 33 AA 0 P
- 2. M DDE aB E,E, NN G
RRN bD NN E, E, 66 NN 63 63 0 A 36 AAI 33 RR 21 21 0 H 12 CCL t E.
EE NN EE 44 EE C
1 E
SS NNNNNNNNNNNN SS 66 TT EE EE E 3EE 605
- t. S UU NNNNNNNNNNHN UU 22 NN TM TM M 6MT 5 3
-uu IO 33 OO II AI AI I
E IA 4
mo HH CC HH DT DT T D RTD FP 55 PP NN O E e H MM mP 77 MM BS II TT N TTT AA M
22 AA TT GG RR PP NRN AA KK 99 KK CC II AA OO Q Q IAI aK JJ DD JJ CC RR TT TT E E RTR J
99 NN 99 AA OO SS SS X X PSP 4 9
.g mggg wa.in. a.
~
Oc 3%
iMn LOCATE Fen STE>eetWCr eg.Sigptg3
,..,,se iAI4402 (De1115348
, yetis)*Utell5 ge0>ePS.WN.PS264464.PENL18 2
C 43:15:31 IAf440t toCait fee Siihen De* STEP 5tB DSN=APS.W1PS264464.PGMLIB
/
13:15:3) IAi4402 UNIYr5344
, vot t s l=US$N15 13:15:33 1474401 totAtt foe Sitkoo.USC32200=FT 11F 001 DSe,= Art. WN. W2264460. ! SOTOPE. EL EVEN 13:15:3814f 4402 UN!t: 3340 vot:3) s 13:15:39 f tT4461 LOCATE FOR SIE NGC 1
DD=FT12F001 0$N= apt. l(N. W2264460 130 f 0PE. TWWE 13:15:39 IAf4402 U,N n a5,40 iAr5n0 o II.*.3340 9n5C3 v0L..E S1*US,CS22.n n, uSrs
. Son.0,.3 j
- vr O na5:4 i Aisn.
i 9n5C3.
l nn uSES o us n 13:ll:4.e IAf 5180 Jo.e ND9275C3 (J0047377,8 USES 4
0 50F185 n05:
ihr$n0 x. 9n5C3 <,.nn uSES na5:40 lAf$nt et JSSCARG (,tenn) SYSN o usc$n US Mbec 0 $0083 06s M7 13:15:401A7,5210 JOS STEPLIE. (Jo.tt?377) SYSN uS; 'NC D U na5:
x o SCN15 O 40 14 5n e,e. JS3C,m us:,so o use$n 0N 27A On ni Sv5 4 iannt
.nn00
..Onni Sv5,M.
US nu5:
ne
)
105 0. n7 RD 0003192 0075 13:n 40 IAT2000 Joe ND9275C3 (J0407377) SELECTED SYSN GaPeSSATCH t
13:15:40 TVA30262 720 LIMITED TIME CL ASS !$ IN EFFECT,...
13:15:40 ICN70001! 10E06 (AST AC 49 ON FRIDAY, MARCH 26, 1993 IEF4031 N09275C3 - STARTE. CESS A1 13:15:
13:15:40 f!PE* 2 3.15.40 13:15:41 8tN5ta 41 laillit JOS ND9275C3 (JOS$7377)saattoCESUE CHANGE, Ot0*45996. NEWa23476, ND9275C3/VFYLEDT m/IDRLi$f /K.SN264360 13a5:
ustt D uscN16 i
13:15:42 TVA0023 ND9275C3 USCM15 27A SC=05376 TVA002I N09275C3 USGS24 762 BC=00256 EXCPa00000176 00se*Svs64041
)
13: nr42
(
EXCPa00000001 00 Net 0RLIST 13:15:42 TWA002I N09275C1 USGN15 27A BC*00040 EXCP=00000004 DON *STEPt!$
g 13:15:42 tvA002! ND9275C1 V10 EkCPa00000002 00N# T16F001
, hp 13:15:42 Tvatett N09275C3 USGS22 777 BC= esses tXCP=00000000 DDN4TILF00) 13:15443 TVA0021 ND9275C3 USCS22 nF BC=00000 Tva0021 ND9275C3 USGS22 777 BC*00000 EXCP*06000000 00NefT12f941 13:15:49 TVA002I ND9275C3 USGS22 777 BCetttet EXCP*00000044 CDN=FT12f641 13:15:49 EXCP*00002109 ODN=FillF001 t'
13:15:49 TVA00ll ND9275C3 USCS24 762 BC=00764 EXCP*00000002 00N W T46F00%
13:15:49 Tv&4021 ND9275C3 v!0 EXCP*00000005 DON d iterett 13 a5:49 tvA002: o9275C3 uscNiS na 3C.00000 EXCP*00000029 00N StEPtts 13:15:50 fvA0021 N09275C3 USCS24 762 8C*01024 EXCP*00000004 DDN=SYSUil 13:15:52 IEF6641 ND1275C3 - ENDED = TIME *1315.51 i
t l
i l
I i
l l
l l
I
~
l
.P
~
arv. 3. '.. -,..
.. w.. EDB2F 9FW',8SOLEVEls t,NeeCLASS= T 19e sinin 5,i,*..<.tN ca m.
..i.We
//PROCLj% 00 Db>'wb.NEN.PS264M4.PROCL18.81SM94 1
//STE>l EXEC COR(S.SOUTs'e'
//GO.SYSIX 00 e MM
(
1 //N09275C3 JOS 2H363.*SJE AWMOUSE.EDB2FSF2'.NSCtEVELel,NSGCLASSaf 2 //PROCL!B DD DSas=APS.00iN.PS26444.PROCL!4,015p=Seet 3 //STEpt EXEC COR00.50UT***
- 4 XXCOR00 PROC f*5.LIBRARYe'APS.NEN.PS2H460.PCMLIB*.SOUTa'e*,
EL EVE N* ' APB, NEN. W2 2M460. ! $0 TOPE. E L E VE N *,
XX XX TW L VE = ' APS. NE N.W12M464.15070PE. f WELVE' M
5 XXamCR EXEC PC8pVFYLECT. REC 10N=*e96X,f !NE*1, 0 031 92 0073 n
w XX P Ares = ' / JDA TE *910 71 Pain = APS. DE N. PS264469. PGML 15 ( COR00 ) '
6 XXSTEPLIB 00 DSN*eLIBRARY.015P=$MR IFF6131 SUBSTITUTION XL - 0$N*APS.NEN.PS26444.PCML18,0!$P*SMR 7 XXPLIOUNP DO SYSOUfetSOUT
[
d IEF6531 SUS $f!TUTION XL
- SYSOUT==
- Q 3
l 8 XXSYSPRINT DO SYSouf=450UT i
IEF653! SUSSTITUTION XL = SYSOUTee 9 XX1DRL3ST 00 DSM=E. $N 264368. F T 06. 0U TPUT (
- l ),0 ! SP* ( teEW, P ASS ),
=
XX UNI T
- f IRK,( 2 0,51,RLSE ),
XX DCS*fsYSt.MODEL,RECFN*FSA,LRECL*133,8tXS!2E*3994) le XXSYSOUDes 00 SYSOUT=450uf IEF M31 SUSSTITUTION XL
- SYSOUfee 11 XXCO EXEC PCN*COR00, TINE =4T IEF653! SUBSTITUTION XL
- PCN=COR00, TINE =5 12 XXSTEPLIB DO DSNe4 LIBRARY 015P*SMR IEF6531 SUBSTITUTION XL - DS80*APO.NEN.PS2M460.PCML18.0!SP*S6f?
13 XXFT96F00100 DSN=a. SN 264 364. F T 04s. 0UT PUT ( * ! ),0 ! So= ( N00,P ASS )
14 XXFTilF40100 DSN*4 ELEVEN. DISP =SMR IEF6531 SUBSTITUf!ON XL
- DS80e&Pt.NEN.W2266464. ISOTOPE. ELEVEN,0!SP*SDSt 15 XXFf12F40100 DSassefWELVE.0!SP*SMR IEF6531 SUSSTITUTION XL = DS80*APO.NEN.W2264460 !$070PE. TWELVE,0!SP=SN4 16 XXFT16F601 00 UN! T* SYSPL. DC8 *( RECFN=f s,LRECL *40,6LX512E=3120 ),
XX SPACE =(TDK.(1,1),RLSE) 17 XXSYSUIPep ED SYSOUT=450UT IEF6531 Sussf!TUTION XL - SYt0UTes 18 XXASNL!GNR 00 SYSOUT*4S(RJT IEF653I SUSSTITUTION XL - SYSOUT==
19 XXFT95F00100 DONAME*SYSIN to //CO.SYSIN 00 m,0CS*4LES!2E*tt 21 XXPRINT EXEC PCN=1ESCENER,COND*EVEN 22 XX5YSPRINT 00 SYSOUT*450UT IEF6531 SUSSTITUTION XL
- SYSOUT==
23 XXSYSUT1 DO DSN=N. SN264360.F T 86.0UTPUT( e l ),0!Spe t 0L O,P ASS )
i 24 XXSYSUf2 DD SYSOUT*450UT 15F6531 SUtst!TUTIOct XL - SYSOUT e 25 XXSYSIN 00 DUse4Y 26 XXCATALCO EXEC PGN*fEFBR14 27 XKDD1 00 OSN=st. SN264344. F T 06. 0UTPUT (
- 13,0 ! SP= ( 0L O.C A T L C,CA TL C )
w.*.
r e
u..
es,# c M1 t,/f.3
)
. u Y, NARcx 24, 19,$
IEF2MI AtLuc.
- .s l
IEF237I 174 ALLute dD to ta b..
j IEF2371 AS3 tit 0C.AtED TO PtI8 UMP 1
IEF237! ASS Alt 0 CATES TO SYSPRIarf
/f IC0100! 752 ALLOCAftp TO DONAM IgRt1ST DATACLAS (
)
j y IEF2373 JES3 4tLOCATED TO SYSSLaes I
StM51A neSLOCESIZE CNAMEE. OLDe43999 NEte=23476, t#9275C3/VFYLgDT a/IDRt!ST /E.SN264364.FTet.0UTPUf.G6H9 Vee IEF2371 27A ALLOCATE 810 SYSeceet tvate!! ND9275C3 USGM15 274 aceoS376 EXCP=cettel?6 00Ne$YS$e04}
IEF285I APO.NEN.PS264444. pGeE18 EEPT
!E7245!
VOL SEA NOSE USGMil.
Tvate2I ND9275C3 USGS24 762 BCo40256 EXCPe00000001 DON =10RLI57 gM n# } O 'S M Fi of E'
- l TVA192! ND9275C3 USGNIS 274 BCeteete EXCP=000ee004 DONe$fEPLIB u
/ G UU a d IEF1421 ND9275C3 QACMCI STEPS - STEP WAS EXECUTED - CONO CODE 4004 IEF2458 APS.W N.PS2e4468.pGeE!$
EEPI
!EF245I VOL SER NOSE UG9015.
-y)
IEF2451 I DE 00.ND9275C3. Jot 0 7377. D6440084. T SYSolff IEF2 l
if r 2.05!
10KDo
. Jose 7377. Doe SYSOUT E.SN2 ND9275C3.6,0UTPuf.c6%,steet.T 5:
360.rs ve.
PASSED i
IEF2451 vot SER NOS* US$$24.
l IEF245!
IDE De.ND9275C3 u nees s nes seeeeeeeeee J.O.Se 7377. 0000000C. T SYSOL77 i
.eeeneneneene==eaese TVA JOS/ STEP INFONNATION unnee en u nnenn um eneme n ee s s een ne eeessee I
e STEP NAME GACMCE START TIME 13.15.44.76 STEP CPU 08.60.00.13 i
e PCM NAME VF YLE0f STOP TIME 13.15.42.32 J04 CPU 00.00.0e.13 e
i e SERV UNIT nneeeeeene....eneeseeennemanna80.00.01.56 COND!f*0N CODE tote 6tt ELAP TIME e
seesene nne TVA JOS/ STEP emmenenenenne e
c
.ees.eeeeneusemeeneeeeeeeeeeeeeeeeeeeeeennene.I.NFO.R.M.A..TIDM neenneneneesme no enemmeneeneenoueuseee seseemme-n men.
. eemeneeneesseeeemens s
EXCP STATISTICS j
e UNIT EXCP COUNT UNIT EXCP COUNT UNIT EXCP COUNT UN!!
EXCP COUNT Lad!T C&A COUNT UNIT EXCP COUNT e
e a 274 4
762 1
27A 176 e 101&L EX.CP eseeseseenen ees..I.O.P. AGE IN. neeemumeneeeeeeeenen.10.PA.GE.O.UTu eenmeenumeneneneneeneseeenese.e 141 V
e V
e PACES SWAPPED IN e
j seenoemee e
me IEF3731 STEP /QACwCE / START 95045.1315 ne n nee neses i
IEF374I STEP /0ACECE / STOP 93445.1315 CPU C'1TN 80.13SEC SRS SMIN 84.015EC VIRT 4224K SYS 272K EXT 4E SYS 4944E i
l IEF236! ALLOC. FOR ND9275C3 C0 STEP 1 i
!EF2371 27A ALLOCATED to STEPLIS l
IEF237! 762 ALLOCATED TO FT06F401 1EF2371 777 ALLOCaiED TO FT11F601 IEF2371 777 ALLOCATED TU FT12F401 i
1G01011 SMS ALLOCATED TO DONA 4 (FT16F0011 DSM ($YS93045.7131534.R&004.ND9275C3.Recettel I
i STORCLAS (SCTEMP) MGMfCLAS (
l DATACLAS (
)
r IEF2371 AS3 Att0CATED TO SYSUOUPED
!EF2371 AS3 ALLOCATED 70 ABNLIGNR IEF2371 AS3 ALLOCATED TO Fie5 Feet TVA6021 ND9275C3 V10 EXCPee6466642 DONeFT16Fe 01 TV4ee2f ND9275C3 USGS22 777 BCeeetee FMCpee60seece 00N*FT11F001 l
TVAce21 ND9275C3 USCS22 777 BCeeteet EXCPeeeeeeeet DONef f12F001 TYAce2I ND.275C3 USGS22 777 BCatetes EXCPeece86044 DONeFil2F001 TVasell ND9275C3 USGS22 777 BCe40004 EXCPe00002109 DONeFT11F401 TV40421 ND9275C3 VIO EXCPetee64405 00NeFT16 Feel TVAte2{ ND9275C3 USGS24 762 SCe64764 EXCP*e0000002 DONef 184F001 Tvase21 ND9275C3 USGMIS 27A SC=60400 EXCPe00000429 DON.SIEPLIS
!EF1421 ND9275C3 C0 STEP 1 - STEP NAS EXECUTED
- CONO CODE 4000 IEF265I APG.NEN.PS264466.PGaEIS KEPT 1EF245!
VOL SER. NOSE USGM15.
IEF2851 E.SN264364.FT06.00TPUT.G6449Ve4 Patere 1EF285I VOL SER NOS* U$4824.
IEF285!
APG.NEN.W2264464.1$0f 0PE. ELE VEN REPT IEF2851 VOL SER NOSE USGS22.
IEF2451 APO.NEN.W2264464 !SOTOPE. TWELVE EEPT IEF2851 VOL SER NOS* USGS22.
1C01651 SYS9 945.T131534.RA000.ND9275C3.96000641 DELETED.
DONAME*Fil6 Feel
!EF285!
I DEDO.ND9275C3. J0Se 7377. Dece4600. 7 SYSOUT IEF2451 I DE DG. N092 t >C3. J0887377. De tt e t0E. ?
SYSOUT IEF24 mese 5.!
IDE DQ.ND9275C3. Jose 7377. 00000049. T SYSIN eeeemannneeeeeeeeeeeenesenennee.... TVA JOS/ STEP INFORMATION === s e ene e s se e eee ee e e e e eeemenee ns eenn ene e se s s e s a STEP NAME C0 START TIME 13.15.42.36 STEP CPU 64.66.61.!.4 e
a pCn NAME COR00 STOP f!NE 13.15.49.54 JOS CPU 0 0. 0 0. 81. f4 e
e SERV UNIT 4.562 ELAP TIME
=0.00.07.22 CONDITION CODE ette e
neeen oe m e en o e s n u s e ne mo n ene see ene s ee ne se e m e TVA JOS eressee eeeeee nesseeeee nneeee eeeee ee e e eee ee ee e ee eenn e n e n/S TEP INFORMATION s e n s e en n e n e s e e ne n s e seen s ee e ee e e e e e e e e eenn en a m esennueneseeenee s es s a nn ees sesees s un ee n enn e ns e e a
EXCW STAftSTICS a UNIT EXCP COUNT UNif EXCP COUNY UN!f EXCP COUNT UNIT EXCP COUNT UNIT EXCP COUNT UN!?
EXCP COUNT e
e i
e 27A 29 762 2 777 2.149 777 44 VIO 5
e e TOTAL EXCP 2.149 VIO PAGE IN e
v e
PAGES SWAPPED IN O
e steeseennessenseeeeeeeeeeeneesennesseeenneenseeeeeeeep!O PACE OUT eeeneeneoc osenenneeeee==unnenunenseeeee n.enes.....ee.
IEF373t STEP /C0
/ JTA9f 93045.1315 IEF374! STEP /C0
/ STOP 93645.1315 CPU GNIN el.34SEC SRB OMIN 08.22SEC VIRT 396E SYS 296E EXT SE SYS 89121 IEF2341 ALLOC. FOR N09275C3 PRINT STEP 1
!EF2371 JES3 ALLOCATED TO SYSPRINT 1EF2371 762 ALLOCATED TO SYSUT1 1EF2373 PS3 ALLOCATED TO SYSUT2 IEF2377 OMY Att0CATED TO SYSIA TV4002r ND9275C3 USGS24 762 BCe01024 EXCPe00000004 DDNeSYSUT1 IEFloti ND*275C3 PetNT STEPl
- STEP WAS EXECUTED a CCND CODE ette IEF24"1 I DE De. ND9275C3. J0607377. 0000000F. T SYSOUT lEFlest E.SN2643ee.F T 66.0UTPUT.G6449 Vet PASSED IEF2851 VOL SER NOSE USGS24.
IEF2851 10E DO. ND9275C3. J0607377. D40000 l e. ?
SYSOUT on e e n e n se e e e ee n eeee ee eeeeeeeeeee ene n se s enn e TVA sog/ STEP ]NFORMATION au e nee se ne nnusee emesene s e e eew e s ens e e e e e n e e e STFP NAME PRINT START TIME 13.15.49.61 STEP CPU 64.60.00.06 a PCM MAME IESGDER STOP TIME 13.15.51.29 Jo6 CPU 60.08.01.57 a SERV UNIT 174 EL&P f!ME
- 9.00.01.64 CONo! TION CODE 8086 e
sese nn e eneee nn es e ns ee ss e me nenen n e nn s e e n e TVA JOS/
eseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeemenee. eesseeeeeeeeeeeeee.S..TEPe e e e.I N.F.ORM. A..T I O.N e
- e se s s e eeee* ese s se...eeeee eeeeeee e e e s s e m e e e e e.n o l
e
. eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenes.eeeeeeeeeeeeees...
I e
EXCP STATISTICS e
e UNIT EXCP COUNT tm1T EXCP COUNT UNIT e 762 4
EXCP COUNT UNIT EXCP COUNT UN!f EXCP COUNT UNIT EXCP COUNI e
a YOTAL EXCP VIO PACE 0
e PACES SWAPPED IN O
seeeeeeee eee eeessee.. 4.ee eeeeee ee eee...INeeeeeee ee eee e...ee.ve!O.P. A.C.E OUT e
seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees e
IEi3731 STEP / PRINT
/ START 93685.1315 IEF3741 STEP / PRINT
/ STOP 93085.1315 CPU GNIN 06.46SEC SK8 eMIN 08.eeSEC VIRT
$72E SYS 232K EXT 4E SYS a=?es IEF2341 ALLOC. FOR N09275C3 CATALOC STEP 1 1EF2371 762 ALLOCATED TO 001 IEFl42! ND1275C3 CAT ALOC STEPl
- STEP WAS EXECUTED + COND CODE este 1EF285!
E.SN264340.F T 06.00TPUT.C6449V6 e CAIALCCED 1EF2851 VOL SER NOSE USGS24 eseese nsasseenme empunna sseeemeneeseenen TVA J08/ STEP ]NFORMAi!ON m u m u m eeen m e m en u ne m esen n u nene e STEP NAN $e, CATALOG START 71MC 13.15.51.39 STEP CPU
- 0.06.08.e2 m PCM NAME' IEF&R1, STOP TIMF 10.15.51.44 J08 CPU 60.08.01.59 a SERV UNif 39 ELAP TIME 6.'.co.00.45 CONDI T ION COD.E..eeseesseeeeeessessemeeeeee ee e e e e e e 4000 eseeeeeeeeeeeeeeeeeeeee e e e eee eeee eeeeee eeeee e *** ee s TVA JOS/ STEP INF 09M A T10M se*=
ease maseeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee eeeeee e e ee e e e e e e e e e e e e e e e e e e e e e e e eee ee e eeee eee eeeeee eee**e s** **e es s e...s e e e e e e e e....
e EXCP STAf!S!!CS a UNIT EXCP COLMT UNIT EXCP COUNT UNIT EXCP COUNI UNIT ExCP COUHf UNIT EXCP COUNT UNIT EXCP COUNT a TOTAL EXCP e
V10 PACE IM e
VIO PACE e
PACES SWAPPED IN o
a asemeememeseeeenass e eennuseeme nemuseen mem a m e e. Ou.t e eeemeemmenemseen meeseemseemesmm s es e e n.... e o
ig f;f;,,gj j g,,3,,j,
~
m r
s m eeeeeeeeeeeeeeeee;ee,eee.
I 4
.me/ STEP s.
Th
.m A
twounATIONeMI1 ee.etSEC VfDT e3 SK..e$YSeeeee==**emeneo 1 4e 232K EXT e Jos enest ND9775C3 PWomanMia u m.r o.J< W N STAaf DATE 63/rins Staaf TIME 33.15.44.76 CON 0! TION CODE etic e
eesso.
..es e Jos same Jute 7377 ACCT SATA 264363 15fEILis sTW DATE e3/26/13 STOR TIME 13.13.51,85 cpu 7tnE og.ee.e1.g3 e
e Joe Class SS avs $P1.1.5 maEL e5.4 ELAP essw TIME se.94.!!.ee SE WICE LM1(n 4
aieeeeeees TVA JOS/5TEP twoRMATION Sfme-r
- '" -' ~***6*3eee**eseeeeegemese.34 5 SYsMe IEF3751 JOS /N09T75C3/ STaaf (5445.1315 eme IEJ5761 JOS /ND9275C3/ STOP 93045.1315 CPU eMIN et.59sEC SRS en!N es.25SEC f
&N 3
i NO 0003192 0075 Y ssM3 t
i l
t i
l l
l l
l 0
l
)
1 i
l l
t i
i 4
I l
l l
l I
i l
i r *.
o 4P
IE43523 mm W MCNLMC1/StK312E C&dE3 FINas 3.s ~
4gC 3/2e/v3 emocessam cars 41 ca.
kTisch>9Mr B 3, g ND 0003192 0075 1834#43 O
b e
N.* e W
' ' " ~ ' ' ' " '
=
I l
%9c 3(2etn
}
MW 8
3
((
i l
H 0003192 0075 1
l I
i 95/95/26 815.15A1.534 LiNKA0E EDIT 0R EOA0 N00ULE OATE VERIFICATION PAGE tett
.. m ne.
... m......me.....mn.m meennu..
.m.nemen...
CCCCCCCCCC 000000000000 Repennessee 000000000000 000000000
a CC 00 00 RN RR 00 00 00 De e
e CC 00 00 WR RA 00 00 00 00 e
a CC 00 00 L --- a 00 00 00 00 e
- CC 00 00 pennenament 00 00 00 00
. CC CC 00 00 se se 00 00 00 DD
. CCCCCCCCCCCC 000000000000 pm me 000000000000 0000000000 CCCCCCCCCC 0000nnnnnnna AR RR 000J00000000 000000000 m
m
.....e s.. m...
.m..m..
.......... e m......... m um m.. m.m..mm..
...n.m.....m....
FILE Apt.NEN. psf 64444.PCMLIB MODULE C0e00 L ASTLINK t 91/071 OA CHECK RESU.L.IS
......n....ne. m....n
. m e m... m.......
e a
ppppppppppe Aa m AAAAA
$35$$$$$$$
SS$$$$$3S1 EEEEEEEEEEEE 00000000g a
e e
popppppppppp AAAAAAAAAAAA SSSSSSSSSSSS SSSSSSSSSSSS EEEEEEEEEEEE 0000000000 m
pp PP AA AA $$
SS EE 00 00 pp pp AA AA $$3 SSS EE DO 00 m
Pppppppppppp AAAAAAAAAAAA SS$$$$$$$
EEEEEEEE DD 00.
e PpPoppppppp AAAAAAAAAAAA
$5$$$$$$$
SSSSSSSSS EEEEEEEE 00 00 m
a pp AA AA
$$ EE DD Du e
a PP AA AA SS SS SS SS EE DO 00 e
e pp AA AA SSSSSSS$$$SS $S$$$$$$$$$3 EEEEEEEEEEEE DDDD000000 m
a PS AA AA SSSSSSSSSS SSSSSSSSSS EEEEEEEEEEEE D00000000 m
j
.............................................................................n.
L
=:r.*
l
\\
l
c=m u~
m D.e.u u.
1 CCCCCrCC 00.M00.
.M 000 0M s.
.0 CC CC 00 00 se an 00 De oc ce
,,, a C 3/7t[1)
CC 00 00 so en 00 On De De CC 00 00 eaanpasse 00 00 De 00 CC 00 00 ANERAARR 00 00 DO De CC 00 00 M PR 00 00 DO 00 CC CC 00 00 RR a#
00 00 Do De CCCCCCCC 00000000 M M
00000000 000000000 CCCCCC nnnnnn mR M
000000 00000000
)f manaamme EEEfTEEYEE W W
333333 Respuulum EEEEEEEEEE W W
33333333 Re M EE W
W S3 33 M
M EE W
W u
ND 0003192 aa se sneesseen tEEEEEEE W w 33333 Ramessen EggEEEEE W W 33M3 UUrs RR RR EE WW 31 M
Re EE WW
$3 33 d
RR RR FEEEETEEEE W
33333333 4047 RR RR EEEEEEEEEE W
333333
//
see M 00000000 999999 222222 7777777777 5555555555 CCCCCC 333333 Does pee D00000000 99999949 22222222 7777777777 5555555555 CCCCCCCC 33333333 sense see D0 DO 99 99 22 22 77 55 CC CC 33 33 ese fee see D0 00 99 99 22 77 55 CC 33 bee Det see 00 00 999999999 2222222 77 5555555 CC 33333 see sol see 00 DO 99999999 2222222 77 5555555 CC 33333 pee Messe 00 00 99 22 77 55 CC 33 pos pose DO 00 99 99 22 77 55 55 CC CC 33 33 tee see D00000000 99999999 2222222222 77 55555555 CCCCCCCC 31333333 toe see D0000000 999999 2222222222 77 555555 rerrre 333333 ettet 333333
//
222222 6eMM
//
999999 333333 0000000 33333333
//
22222222 M646666
//
99999999 33333333 et 80 33 33
//
22 22 M M
//
99 99 33 33 se to 33
//
22 M
//
99 99 33 et ce 3M13
//
2222222 6eMee64
//
999999999 33333 et 40 33333
//
2222222 6eeeeeed
//
99999999 33331 et to 13
//
22 M
M
//
99 33 es 80 33 33 //
22 et u //
99 99 33 33 e 00000 33333333 //
2222222222 MMeen //
99 N 9 33333333 00000 333333
/
2222222222 Meed
/
999999 333333 11 333333 11 5555555555 44 222222 111 33333333 111 5555555555 444 22222222 1811 33 33 1111 55 4444 22 22 41 33 il 55 44 44 22 33333 11 5555555 44 44 2222222 11 33333 11 5555555 44 44 2222222 11 33 as 11 55 4444444444 22 33 35 s
11 55 4444444444 22 111111.
33333333 111111 55555555 44 2222222222 111111 333333 111131 555555 44 2222222222 l'
N.*.
e
3/2 /p3 pl)/M65 0
th Q ND 0003192 0075 W M S*T)
REPRODUCTION OF IWl'2 DATA DECK
+
+
+
+
+
+
+
N!To 22 NR= 1 ITP= 6 FACTS 1.8 4 0CA SA3E OF STACE-HD-00431-920075 RS 1 131 1 132 1 133 1 134 1 135 135
(
fm 133 la 132 != 133 la 134 1 mRNe5ER85ER87ER84tR89 XEN 131 MEM 133 XE 133 XEM 135 XE 135 XE 137 XE 134 6 '5ASE OF 51 ACE
- s TN=
0.5000E+0e I e.e 2 0.0 3 0.0 4 0.0 5 0.0 6 8.8 7 8.9 4 0.4 9 0.8 le 4.0 11 4.4 12 0.0 13 0.0 14 0.0 15 0.0 16 0.0 17 0.0 14 0.0 19 0.0 20 0.8 21 0.0 22 9.0 6 *SASE OF STACK
' $ TM=
- 0. 260eE +91 1 2.058E-43 2 1.964E-83 3 4.694E C3 4 1.789E*43 5 4.661E-43 4 9.04W*05 7 8.634E-95 4 2.665E 64 9 7.862E*05 I4 1.759E*04 Il 3.320E*02 12 1.499E-e3 13 3.694E*02 14 7.981E*02 15 2. 569E
- 06 16 1.269E*t3 17 6.643E-93 16 2.15M 01 19 4.435E-03 20 1.956E*01 21 1.299Ea05 22 4.949E 43 6 'SA5E OF STACE
- 8 TN=
4.6664E+01 1 4.665E* e 2 2 1.947E-42 3 1.329E*01 4 4.220E-43 5 8.428E*02 6 2.9e W-83 7 8.55M-94 4 5.44M*e3 9 1.45 W -04 le 3.765E-43 11 5. 737E-e l 12 4.845E-02 13 1.642E-el 14 9.695E-01 15 7.377E-14 16 4.leW 42 17 1.64 N-01 14 6.911E+te 19 1.535E-el to 4.931E+00 21 9.977E*12 22 3.471E-44 6 '8ASE OF STACE
' $ TNa 0.2400E+02 4 6.419E-en 2 1.244E*02 3 9.235E*01 4 1.446E 04 5 2.785E 01 l
6 2.822E*e2 7 5.466E-04 4 4.059E*e2 9 6.354E-06 19 1.224E-02 11 1.190E+60 12 4.949E*01 13 2.347E-92 le 9.363E-01 15 0.0 16 4.06 M -61 17 1.68eE+ee la f. 654E+61 19 5.258E-41 20 2.44W+61 21 0.0 22 4.441E*11 6 'SA5E OF STACE
' $ TNa 8.9600E+42 3 7.431E**s 2 2.391E*e4 3 3.Se4E+en 4 1.311E-09 5 1.500E-el 6 3.o.".4 7 1.651E-05
& l.45?t 01 9 5.765E 11 le 6.591E-03 11 2.7124-91 12 7.157E*00 13 1.015E-05 14 4.367E-02 15 0.0 16 5.h41E+60 17 1.414E
- 01 14 7.62aE+s2 19 3.061E-01 20 2.905E+44 tl 9.6 22 0.0 6 '5ASE OF STACM
- 4 TN*
4.728tE+ 9 3 3 9.565E+01 2 2.644E-13 3 6.671E t!
4 9.s 5 1.a?4E-04 6 4.295E*00 7 8.992E 15 8 2.932E 92 9 0.0 le 8.238E 06 11 9.320E-06 12 2.479E+02 13 2.675E 22 in 2.131E-09 15 0.0 16 1. e42E
- 02 !? 2.723E+0!
14 5.961E+03 19 4.958E-04 to 3.153E-01 21 0.0 22 0.0 2:8.49E-4 7.3E-4 6.6E-4 5.4E-4 4.0E-4 lees $400 21600 57600 259200 224640s 0.0 3717.9 0.40 IE-1 L.w 90 IE 15 210000.0 1E-15 t
los.e 60 44.0 1440.0 5760.0 153. % 8 36.833 15.33 46.0 9.e 4.4 76.974 18.4165 6.4 0.0 R00FF1UX DOSE 10 CONTROL ROOM PERSONNEL DUE 70 SHINE THROUGH ROOF 1984.0 1994.0 1944.0 20.0 28.8 20.0 500.0 500.0 -13.58 2.25
+
+
+
+
+
+
+
l h.
10CA S&W W STACE* 19-40051 '.20075 RS l
MC 312tl93 CoeffROL SAV COMPUT1 TION ticut DAT3 I
DATE 03/26/,3 COR00 START TIME 13:15:42 8RsGER OF ISOTOPES =
22 seseER OF AIR INient VALLES = 1 i
IRsGER OF T14 PERIOOS =
6 1
peJLTIPLIER OF INPUI CURIES
- 1.0000E+44 1
TIME PERIOOS (SEcl 0 W I92 M7*#
1440.0 5400.0 21644.0 57600.9 259200.0 2246448.
.e TOTAL C1 RIES RELEASED DURING TIME PER100
""c
$ 3*.sf.93 131 0.0 0.0 0.1 0.6 7.8 95.6
\\
132 8.8 0.0 0.0 0.0 0.0 8.0 i
1 133 6.9 4.6 0.1 0.9 3.3 0.7 1
1 34 4.0 0.0 0.0 0.0 0.0 0.0 1
135 0.8 9.6 0.1 0.3 0.1 0.8 In 331 e.e e8 e.e 8.0 4.3 4.2 to 132 0.0 0.0 4.0 0.0 0.0 0.0 to 153 e.s e.e 3.0 0.0 0.1 0.4 I
In 1 34 0.3 e.e e.e e.e 0.g e.e l
le 135 6.8 0.0 0.0 0.0 0.0 0.0 l
mRN e5 0.e e.e e.6 1.2 e.3 e.e I
KR 45 0.0 4.0 0.0 0.5 7.2 247.9 ER 47 0.0 9.9 9.2 e.0 e.8 e.0 ER 64 0.0 0.1 1.0 e.9 0.0 0.0 ER 49 9.8 0.8 e.9 0.0 C.9 0.0 MEN 131 0.8 0.0 0.0 9.4 5.4 104.2 XEN 133 4.s 4.0 0.2 1.7 14.1 27.2 XE 133 8.9 e.2 6.9 66.5 762.8 5941.6 IEN 135 0.8 0.0 0.2 0.5 8.3 0.0 RE 135 0.8 9.2 4.9 24.4 29.8 0.3 XE 137 0.0 0.0 0.0 8.4 8.0 0.8 5
xE 134 e.e 0.e e.s e.e e.e e.e CHI /O (SEC/CU. NETER) 4.89E=64 8.89E-44 7.30E-04 6.6M-84 5.40E-64 4.00E-04 FLOW RATE OF AIR INTAKE (CFM) 8.4 FitfER EFFICifMCV, ELEEWi&L 100!NE, FIRST PASS e 0.94 FILTER FFFICIENCY, ELEMENT AL IODINE. SECONO PASS = 0.90 j
FILTER EFFICIENCY, ORGANIC 100lNE. FIR $i PASS
- 4.9e FILTER EFFICIENCY. ORGANIC IDDINE, SECOMO PASS =
0.00 CONTROL ROON VOLUME (CU. FT.) =
210000.0 FLOW RATE THROUGN RCOM CIRCULAi!0N SYSTEN (CFM)
- 9.0 100.0 PERCENT OCCUPANCY BEFORE 1440.0 MIN.
64.0 PEACENT OCCUPANCY BETWEN 1440.4 AND $764.8 NIN.
40.0 PERCENT OCC1pANCY AFTER 5760.8 NIN.
SUCCESSIVE TIM PERIDOS IN N!NUTES 34.0 99.0 364.0 964.0 4320.0 37440.0 AWRA0E F*IE RELEASE RATE CONCENTRAi!ON IN CURIES /CU. NETER DURIN0 EACH TIME PERIOD I
131 s 000E+ee 3.384E-10 2.232E-09 7.355E-09 1.631E-08 1.703E-04 1
132 0.000E+49
- 3. 233E -18 6.540Eale 1.42H 10 4.98tE-13 3.643E-23 1
133 0.806E+08 7.734E*18 4.492E-09 1.058E*08 6.843E-09 1.184E*le 1
134 4.et#E+0e 2.945E-10 1.426E-10 1.657Eal2 2.731E-le 0.000E+00 1
155 6,000E+04 6.547E -10
- 2. 84 M
- 09 3.191E*09 3.125E 10 3.337E 14 le 131 8.000E+60 1.489E-11 9.811E-11 3.234E 10 7.171E-10 7.484E*10 to 132 9.400t+et 1.421E-11
- 2. 892E-11 6.2634-12 2.190E*l4 1.601E-24 la 133 e.00eE+e8 3.400E*ll 1.974E*le 4.651E-10 3.025E* l0 5.221E 12 18 134 0.000E+00 1.294E*11 6.269E-12 7.241E*14 1.201E*,9 0.000E+#8 In 135 0.606t+06 2.896E-11 1.252E*lt 1.402E 10
- 1. 3 73E-11
- 1. 467E - 15 ERN 85 0.000E+00 5.466E-99 1.939E-04 1.364E-08 5.277Eale 1.660E*15 ER 35 0.000E+49
- 2. 464E -10 1.651E-09 5.671L 09 1.491E*06 4.,14E-66 ER 87 0.000E*00
- 6. 08 5E -99 5.685E-49 2.649E-10 2.156E-14 4.763E 32 ER 88 0.000E+00 1.314E 04
- 3. 277E
- 04
- 1. 0 73E
- 04
- 9. 09&E a t t
- 3. 79M - 19 ER 49 0.000E+44 4.229E-13 2.493E-21
- 0. 0 00E +0 0 0.000E+00 0.000E+0e REN 131 0.000E+0e 2.049E*16
- 1. 347E-09 4.661E-09 1.121E 08 1.455E-68 XEN 131 0.000E+00 9.94 9E 6.360E-49 1.925E-04 2.946E*08
- 4. 849E
- 09 XE 133 0.000E+0e 3.553E-es 2.33M-t? 7.624E-87 1.549E 06
- 1. 065E - 06 XEN 135
- 0. 000E +44 1.323E-99
- 5. law-09 6.025E-09
- 6. 377E -10 8.826E*14 XE 135 4.60M+tt 3.220E-04
- 1. 6%E - 0 7 2.802E-07
- 6. 052E
- 0 8 5.614E-11 XE 137 0.000E+0e 2.139E*12 3.372E 19 0.000E*00 0.000E*00 0.000E+6e EE 134 0.000E*40 8.000E+04 0.000E+00 0.000E+00 0.000E+00 0.000E*60 O
@J1.es i a eta.g m,m W isetaLAlles amE tam eS/36/98 TIM 13:17:03 k
LEls?M OF CSIffaellHsTEg vetteE (31 e 153.95 FT M DTVTSige 64DTM OF CotifeestgestEp wettes (V) e 36.43 9 DIVISIONS Eleff 0F CONTas!!NATED WellSE (21 e 15.35 4 Olvisiosa poet PolNT CoeRDIIesTES:
Ie 76.97 FT, Ye 14.42 FT, 2
6.00 FT SMIE18 tlALL THICEaE38 e 0.004 hMN h r
TE FOLLeutus VALES AM FOR A LEAR RATE OF 1500.00 CFM AND A BYPASS RATE OFoemees CFM ISStePE TOTAL CONCE3ffRAT10se TIE BURItes EACH T!* PERIOD IN CURIE-tet/CU. ETER I
131 e.0
- ee 2.26eE te 4.949E 89 4.44M 84 4.642E-07 7.454E-M 1
132 9.
+44 1.95N -le 2.304E-09 1.541E-09 7.04tE-Il
- 1. 709E *13 1
115 0.teeE+44 5.le4E le 1.773E-04 1.199E e? 3.611E 07 5.69eE-te' I
134
- 0. 000E+44 1.535E te 4.44 7E-t e 4.277E-!! 3.519E 13 5.799E-19
) g I
i 135 0.004E+44 4.244E-10 1.e46E-04 3.521E-04 1.643E-84 1.50eE te i
le
- 4. 000E+44 9.931E 12 3.933E-te 3.714E*e9
- 3. 794E-44 3.45W -e7 to 1,2 8.eett+ee 4.541E 12 1.015E-te 6.947E !! 3.112E-12
- 7. 512E-15 le 133 0.00eE+ee 2'244 11 7.79M 14 5.264E e9 1.547E-e4 2.5eM-09 le 1 34 0.000E+0e 6 745E 12
- 1. 955E-11 1.440E-12 1.54M -14 2.550t-24 le 135 0.000E+0e 4.46M-Il
- 4. 774E *le 1.547E 49 7.396E 19 6.59f
'. +
EAM 65 6.eeeE+0e
- 4. 67M - 09 9.747E-te 2.044E-07 4 164E 44 2.91t,
,w um 05 0.000E+04 2.223E te 4.94eE-09 4.4eM-84
- 1. e6 ?E-M 2.752. el ER 37 0.eett+ee 4.59eE-09 2.582E-04 5.099E-09 9.74M-11 7.756E-15 ER to 0.008E+00 1.09eE-04 1.544E-67 1.541E-07 1.e47E-84 4.449E-11 K4 44 0.000E+0e 4.194E-14 2.97eE *15 1.75tE 23 0.040E+44
- 0. 000E + 44 XEM 131 0.00eE+44 1.44eE-10
- 7. 544E-89 7.227E-04 4.015E-07 1.155E-45 XEM 135
- 0. 000E + 0e 4.923E*10 3.423E-04 2.969E-07 2.09eE-06 3.014E-te xE 133 0.eeeE+es 3.194E-64 1.26N-M l.14ef 05 1.135E-e4 6.625E-M XEM 135 0.000E+ee 5.94M le 1.04M-04 3.457E-04 1.697E-44 7.Se3E 11 XE 135 e.eeeE+es 2.42M-84 4.64eg e7 4.197E-M 4.24et-e6 7.se7E 44 XE 137 0.000E+48 3.M3E-13 2.090E 14 3.296E 21
- 0. 00 M+44 8.440E+44 XE 134 0.eetE+44 0.00eE+44 0.000E*00 0.000E*e0 e.eeeE*40 e.seeE+ee TE FOLLOWINS VAllES ARE FOR A LEAR RATE OF 1500.00 CFM A88 A BVPASS RATE OFemmene CFM ISOTOPE TOTAL ISIDLE B08Y GAfsta BOW FOR EACH ISOTOPE AND TIE PER100 I
131 0.seeE+0e 4.42et-46 1.754-44 1.664E-03 1.693E 02 1.544E-41 1
132 4.setE+0e 2.171E 05 2.564E-04 1.754E-04 7.476E 06 1.90lf-04 133 e.eett+fe 1.419E-05 4.927E-04
. 330E 03 1.00M 02
- 1. 542E-03 134
- 0. 000E
- 00 1.774E*05 5.140E-05
- 4. 944E * *6 4.067E-04 6 ?t3E-14 1
135 0.000E+ee 2.649E-05
- 6. 4 79E - 64 2.231E 03 1.066E-03
- 9. 5ME-M le 131 0.80eE+0e 1.946E-07
- 7. ?tM-86 7.279E-05 7.44M-84 6.77eE-e3 le 132 8.eett+49 9.544E 07 1.120E-05 7.72M M 3.MIE-07 4.355E te le 133 8.seeE+0e 6.235E-07 2.16M 45 1.M44 04 4.409E-44 6.95M*e5 le 134 8.sett+44 7.797E-87 2.259E-66 2.17M-07 1.?e7E-09 2.944E 15 le 135 0.000E+00 1.14M 86
- 3. 02*E-45 9.403E-e5 4.64 M-85 4.177E-07 NIBI 45 0.088E+0e 3.743E 05 7.4eiE-04 1.644E-05 3.33M-04 2.335E-M ER 45 0.eetE+4e 2.26M-84 9.12M 97 4.975E M
- 7. M IE-04 1.561E-04 2.997E-06 2.375E-le ER 44. 0.000E+0e 7.554E-04
- 1. 090E-02 3.096E-et 7.53 N-84 3.!!2E M EE 49 4.setteet 4.900E-09 2.354E *le 1.34M 14 e.eeeE*se 8.teeE+ee XEM 131 0.49eE+49 1.09ef-04 4.37M 05 4.214E-04 4.67M-e3 6.736E*e2 NEN 133 e.eeeE+44 6.344E-M 2.434E-e4 2.111E-03 1.49et-82 2.144E-et ME 133 4.setE*ee 4.959E-04 1.959Po2 1.432E-01 1.761E+0e 1.028t+e1 XEN 135 e.eest+0e 1.245E-05 2.29 N 04 7.344E-04 3.545E-04 1.545E-M XE 135 0.setE*00 3.514E 44 1.eest 02 5.223E-02 5.326E-02 4.720E-04 XE 137 0.49eE+0e 3.330E-09 1.90et le 2.996E-17 0.000E+04 e.000E+0e XE 134 0.00eE+0e 0.000E+6e 8.seM+04 0.000E+0e 0.seM+00 0.00eE+0e Stats e.setE*00 1.49et-93
- 4. 514E-42 2.59 N-01 1.M5E*00 1.0544*01 TOTAL WMOLE BODY SAMMA DOSE FROM ALL ISOTOPES DURINd POST ACCIDENT PERIOD IS e 1.271E+01 MRAOS TE FOLLOWileS VallES ARE FOR A LEAR RATE OF 1500.00 CFM AND A 4YPASS RATE OFesses. CFM ISOTOPE TOTAL toe 0LE 900V SET 4 DOSE FOR EACH ISOTOPE AND TIE PER100 1
131 8.teeE*e4 3.644E-05 1.443E-03 1.362E 02 1.394E-el 1.26M+4e 1
132 e.seeE+ee 4.332E
- e5 9.454E-64 6.749E-04 3.023E-05 7.295E-04 I
133 0.teeE+e8 1.729E-04 6.085E-83 4.e59E-02 1.223E-01
- 1. 929E - 0 2 1
134 0.000E+0e 7.773E-05
- 2. 252E-04
- 2. led-05
- 1. 74N-0 7 2.93 M-13 1
135
- e. tete +ee 1.29M*e4 3.317E-03 1.075E-e2 5.141E-05 4.543E-95 In 131 0.00eE+0e 1.64N-M
- 4. 343E
- 05 5.990E-04 6.125E-03 5.571E-et le 132 4.teeE+0e 3.M3E-te 4.331E*e5 2.965E*05 1.32eE-06 3.207E*e9 le 133 e.eeeE+ee 7.4eet-e6 2.64et-e4
- 1. 744E - 85 5.374E-83 4.4 77E-44 le 134 e setE+ee 3,41M -06 9.e99E*06
- 9. 520E - 07 7.431E-09 1.291E-14 le 135 8.eeeE+0e 5.699E M 1.45et-04 4.727E 64 2.259E-04 2.014E-M snel 45 0.80eE+4e 9.499E-64 2.046E-02 4.215E-02 0.740E-03 6.11eE-e5 um 45 e. setE*ee 4.624E-03 1.461E-03 1.431E*e2 2.220E-01 5.72M+0e ER 47 0.seeE+0e 5.051E-03 2.74 M et 5.442E 03 1.075E-04
- 4. 522E-69 ER 44 0.setE+0e 3 39N-63 4.931E-82 4.92eE e2 3.342E-03 1.197E 45 ER 49 0.eetE+0e 6.32eE-04 3.035E-99 1.789E 17 0.89eE+0e 0.000E+0e EEN 131 0.000E+48 2.229E-e5 4.89M-04 4.5ME-83 9.499E*02 1.369E+et XEM 133 8.eett+44 1.466E-64 5.39M-63
- 4. 677E-4 2 3.3eM*el 4.751E*01 XE 133
- 8. 000E +4e 3.59eE-03 1.41eE*e1 1.326E+0e 1.275E+el 7.445E+01 XEM 135 0.000E+44 4.720E-05 4.555E e4 2.726E 03 1.334E-03 5316E-06 XE 135 e.eetE+ee
- 7. 43M
- 03 2.242E*e1 1.le4E+06 1.125E+08 1.443E-92 XE 137 0.eest+44 4.99N-07 2.849E-08 4.491E 15 0.000E+04
- 0. 000E + 0e XE 134 e.000E+0e 0.000E+04 0.08eE+0e 0.000E+et 0.00eE+0e 0.000E+0e Stats e.040E*04 2.123E 02 4.44eE*01 2.672E+ee 1.481E+01 4.33M+01 l
TOTAL WHOLE SODY SETA DOSE FROM ALL ISOTOPES DURINO POST ACCIDENT PERIDO IS* 1.014E+02 MRADS TOTAL WMOLE 80gY 4Apese+0 ETA DOSE FROM ALL !$0f0 PES DURINO POST ACCIDENT PERIO0 IS= 1.141E*02 MRA03 TE FOLLOWINS VALIES AE FOR A LEAR RATE OF 1500.00 CFM AND A BYPASS RATE OFessee. CFM
!$0 TOPE TOTAL leetALATION DOSE FOR EACH IS0 TOPE ANO TIME PERICO I
131 e.setE+ee 4.17M-el 1.655E+01 7.477E+el 1.064E*03 9.714E+03 1
132 4.eetE+08 1.344E*02
- 1. 54 M-01 5.329E*02 3.16*E-03
- 7. 6 3M - 06 I
133 0.000E+ee 2.551E 01 4.461E+0e 3.020E+01 1.206E*02 1.903E+01 1_
134 0.04eE+49 4.793E-03 1.349E-02 6.736E-04
- 7. 34 7E- 06 1.211E Il I"
135 8.steE+0e 6.574E-02 1.642E+0e 2.751E+4e 1.743E*e8 1.554E 02
!s 131 0.0eeE+0e 1.43M 62 7.272E-el 3.M3E+49 4.695E*0L 4.270E+e2 le 132 e,seeE+ee 5.73 M -84 4.740E-63 2.341E-03
- 1. 3+0E -04 3.356E-07 le 133 e.eeeE+ee 1.12tE-62 3.49M 01
- 1. 32M + 0 0 5.301E*00 4.363E*01 In 134 0.000E+ee 2.leM -e4 6.le4E-04 2.961E 05 3.2.af.e7 5.324E-13 le 135 e.eeeE*ea 2.490 Eye 3 7.394E-02 1.209E-01 7.659E 0 2 6.424E 04 MSIs 4.eteE*04 7.497E-41 2.445E*01 1.16M+et 1.243E*el 1.016E+44 4
\\
1' TOTAL IsetatATION BSGE FROM ALL IDOIMS Bist!NS POST ACC18ENT MR100 ism 1.155E444 setA3B eeeeeeeaee aeeeeeeeee TW FOLLEMING 90SES ARE THOSE CIVEN (DOWE BUT INCLUDE OCCtpANCY FACTORS.
TESE FACTORS ARE TM FOLLONINGs 100.00 PERCENT FOR 0 TO 1440. NTNUTES:
60.00 PfDCYNT FON 1444. TO 5764. MItalTESg ANO 48.00 PERCENT *FTER 5766. Mite /TLS.
O WHOLE 500V CAsetA DOSE INCLUDING OCCUPANCY FACTOR IS 5.641E+et pa0A05 kNOLE 3001 SETA DOSE INCluCING OCCUPANCY FACTOR IS 4.542E+0! DetA05 IfetAAATION BOSE TO THYR 0!D INCLUDING OCCUP. F ACT. IS 4.956E+03 MRA05 O
9< u e i
1 l
CONTROL ROOM DOSE FROM DIRECT CAMMA PENETRATION OF WALLS. ROOF OR FLOOR FROM AN EXTERNAL SolstCE DATE 85/26/93 TIME 13:17:02 DOSE TO CONTROL ROOM PERSONDEL DUE TO SMINE THROUGH ROOF LEMOTH OF CONTAMINATED V0tUME (X) e 1000.00 FT 20 DTVISIONS MIDTN OF CONTAMINATED VOLUME (Y) = 1900.00 20 DIVISIONS WIGHT OF CONTAMINATED VOLUME (2) = 1400.00 28 DIVISIONS DOSE POINT C00R0!NATE$s Xe 544.06 FT, Y=
500.00 FT.
2=
- 13.54 FT SHIELD WALL TNICKMSS
- 2.254 ISOTOPE TOTAL WHOLE 500V CAMMA DOSE FOR EACH !$0f0PE AND TIME PERICO 1
131 4.880E*00 6.694E 10 1.765E-04 1.551E 67 1.54AE-04 1.401E-05 I
132 0.000E+00 7.282E 64
- 5. 9 2sE =
3.424E-07 5.345E-09 3.413E-18 4.635E 07 1
133 0.000E+00 2.856E*04 67 4.167E-04 1.220E-05 1.824E-06 I
134 0.000E*00 9.121E-64
- 1. 76 7E- 0 7 5.473E-09 4.060E-14 0.000E+0e i
135 8.000E+08 3.947E*e7 6.461E*06 2.05eE-05 9.033E-06 4.360E-09 to 131 9.600E*00 2.944E*ll 7.754E*19
- 6. 419E
- 09 6.804E-04 6.154E
- 0 7 to 132 0.044E+00 3.201E*e9 2.605E*06 1.50$E-04 2.367E-10 3.500E*19 In 133 4.te#E+0e
- 1. 255E-69 2.916E*04 1.832E 07 5.361E-07 4.019E-04 l
18 134 4.000E*60 6.4644-09
- 7. 766E - 69 2.405E-10 1.765E-15 0.000E+44 i
to 135
- 0. 000E +0 0 1.744E*e4 3.016E-e 7 9.0e9E-07 3.969E-07 3.675E-10 ERM 45 0.000E*04 2.946E*10 4.18eE-49 7.434E-49
- 1. 365E *99 3.721E 14 i
ER SS 4.000E+00 1.54tE*11 4.el?E-It 3.679E*e9
- 4. 353E -08 1.ll?E-06 ER 87 0.000E*00
- 3. 54 *E -04 1.324E-05 1.470E*66 6.027E*19 1.154E*26 EE 44 0.000E+49 2.485E-05 2.4 79E -04 2.165E-04 4.261E-06 2.969E*13 ER 89 8.460E+et 7.444E*18
- 1. 755E-17 0.000E+00 0.000E+00 0.000E+00 XFM 131 0.000E+00 1.970E 17 5.233E-16 4.644E-15 5.074E-14 7.274E-13 i
XEM 131 0.000E+te 6.639E-13 1.544E-11 1.246E-10 4.f43E-10
- 1. 2 24E - 09 XE 133 0.000E+tt 1.419E*16
- 3. 735E-15 3.249E-14 3.048E*ll
- 1. 770E *12 l
XEM 135 0.800E+46 1.557E-84 2.442E*07 7.563E*e7 3.602E-07 4.322E-le j
XE 135 e.000E+44 1.500E-04 3.106E-07 1.39?E-06 1.353E-06 1.084E-04 NE 137 0.000E+00 5.094E*11 3.215E*17 0.000E+00 0.000E+00 0.000E+te XE 134 0.000E*00
- 0. 000E +e t e 000E*00 0.000E*06 0.000E+00 e.800E*e8 l
SuMi
... 0E*0.
2.9 4e-05 2.794E 4 2.466E. 4 3.3.iE-05 i.767E-05 i
WHOLE BODY CAMMA DOSE (CONTINU0US DCCUPANCY) DUE TO EXTERNAL SOURCE 5.975E-04 MRADS teeDLE 300Y CAMMA DOSE (OCCUPANCY FACTORS INCLUDED) CUE TO EXT. SOURCE 5.734E-94 MRA05 TOTAL PERSONNEL CAMMA DOSE FROM ALL SOURCES PRESENTLY CALCUL ATED 5.642E+00 NEADS NOTE: TOTAL 13 FOR FIRST VALUE OF CONTROL ROOM AIR FLOW Raf E l
DATE 03/26/93 COR00 END TIME 13:17:11 i
(
"AN%
kb 2e OOOu H OO WN h
d
~
m 33'3 u d x
999 u
e e
///
M d
l ls 888 a0a pn 222 r0c.
mo
///
S g:i oi 333 N
p0n3 Ct 000 O
u2h.
a I
c3 sc yyy G eme si aaa E b oT A el ddd R
r S np nnn lfrE ip n
uuu E l o/
sa u
SSS C i ejS u
n N
wlaC By 000 A
bMI n
000 T
sa,C Ma S
P nl B
E M
222 E
oi) n If G
M 000 C iaCo o
A N
C gvI e
S A eaPn hn M
S rnDo to M
E E
000 S
uAi i
M M0 L
000 C
e (t
mt 3 U I
ce a oa T
T:
D 222 C nbrm rr S
S9 E e222e a er E fg A
A0 H g
g E tlto O i
C C
C a333a H plnf C dm D
D3 S t999t T eien S e
A A9 u///u cwCi O vh O
O/ E D777O N c-R ot R
R6 G 222 I
Asnl mi B
B2 A d///d noa F ew
/ T e333 e 3 3oic O r F
M3 U l000l Citi e
O B0 O u u 3 Igan L eu I
d y y yd C e mh A bn D
d D eaaae A rrc V i
N Ac N hdddh S e oe O lt E
Gt E crrrc E h ef t M ln Os K SuuuS / thn E io Dd E ttt S
, tid R wc Np E oaaao C e
AU W NSSSN I
3 Pt Eo T
C 9
.D a Ot T
9 3.A d C
A M
F 1
p Sd H
M O
,3eu Oe.
C M
x e
Rd
- e N 8nsy nE l
r O 2o l
,i O u
M p
e I
i et 3 mC n
M m
v T hssn 9eS U
o r
A crae 9rO k;
e L
reec 1
R S
L aVle e
s A M Pr
,rn s
l T
A 8ao e
i S
,S r
2 n
a N yE.o sg i
m I
a/0f hrn sABE dS0-cei uXX 2 nC:s rmn BCC X M uI4e aoi
// pN M
SC2u Mta MCCrU M
s sm BDDoS M noos ue a%
1 I1CCB OGGI 3 p--
,4 5
5 5
DD NM 8
8 8
EE 33 RR 0
0 0
HT 08 EE DCN NK NN 44 NN DD 3
3 3 ANI FF 3333 3333 77 FF AA 99 92 3 69 EUR FF SB 333333333333 0O BB EE 0
2 1
R FF 22 33 33 33 OO 22 A6 A6 8 3A SSS 22 BB 33 33 33 JJ BB LL M1 M1 0 P
- 2. M DDE BB _
RRN DD -
E, E, 33 33 E, E, 66 NN 63 63 0 A 36 AAI 33 RR 21 21 0 H 12 CCL E, E.
33 33 EE 33 33 EE 44 EE C
1 EE SS 33 33 SS 66 TT EE EE E 3EE 605 SS UU 333 333 UU 22 NN TM TM M 6MT 5 3 UU _
OO 33 33 33 OO II AI AI I
E IA 4
OO HH CC HH DT DT T D RTD HH _
PP 55 PP NN O E PP MM CC
'C C 77 MM SB II TT N
T T MM AA CCC CCC 22 AA TT GG RR PP NPN AA KK CC CC 99 KK CC II AA OD Q Q IOI KK JJ CC CC DD JJ CC RR TT TT E E RTR JJ 99 CC CC NN 99 AA OO SS SS X X PSP 99 CC CC bw hW CC CC CC CC CC CC CC CC CCCCCCCCCCCC CCCCCCCCCC t3 s3 O
9DWpO,WM
aC cC
)'
55 555 55 55555 d \\*(%
55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5555555 55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 5555555 55 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 7
77 777 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 7777 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 77 77 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 77 77~
77777 77 7777777 77*
777 77 77 777 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 2222 22 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 222222 22 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 22 2
22 22 2
22 22 2
22 22 2
22 22 2
22 22 2 22 22 2 22 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 22 222 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 222 222 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 22 22 9999999999 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 999999999999 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 99 99 99 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 9999999 999 999999 99 DDDDDD DDDDDDDD DD DD DD DD DD DD DD DD DD DD DD DD DD
~DD DD DD DDDDDDDDDDDD 5
5 5
DD DDDDDDDDDDDD 8
8 8
EE 33 RR 0
0 0
HT DCN 00 EE NN NNNNNlNHNNNN 44 NN DD 3
3 3 ANI Nu i
99 92 3 69 EUR Fr FM BB NN 00 BB 0
2
- 3. R 1
R Fr 22 NN OO 22 A6 A6 0 3A SSS 2?
BB NN JJ BB LL M1 M1 0
- 2. M DDE Bn P
RRN Dn NN E, E, E, E,
. NN 66 NN 63 63 0 A 36 AAI L, F 33 RR 21 21 0 H 12 CCL EEE.
NN EE 44 EE C
1 Lr SS
.NNNNNHHNNHNN SS 66 TT EE EE E 3EE 605 Sm UU NHHNHNHNHNHH UU 22 NN TM TM M 6MT 5 3
ui OO 33 OO II AI AI I
E IA 4
t n un HH CC HH DT DT T D RTD a e PP 55 PP NN O E m
MM 77 MM BB II TT N
T T
Am AA 22 AA TT GG RR PP NPN KK 99 KK CC II AA OO Q Q IOI Kw JJ DD JJ CC RR TT TT E E RTR a