ML17278A289

From kanterella
Jump to navigation Jump to search
Proposed Tech Specs,Adding Neutron Flux Monitoring Instrumentation, to Allow for Single Loop Operation at Higher Power Subj to Addl Core Monitoring
ML17278A289
Person / Time
Site: Columbia Energy Northwest icon.png
Issue date: 07/17/1985
From:
WASHINGTON PUBLIC POWER SUPPLY SYSTEM
To:
Shared Package
ML17278A287 List:
References
NUDOCS 8507230114
Download: ML17278A289 (25)


Text

INDEX LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS SECTION PAGE 3/4. 3 iNSTRUMEHTATION 3/4.3. 1 REACTQR PROTECTION SYSTEM INSTRUMENTATION............ 3/4 3-1 3/4. 3. 2 ISOLATION ACTUATION IHSTRUMEHTATION............... 3/4 3-10 3/4.3.3 EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATIOH....................................... 3/4 3-25 3/4. 3. 4 RECIRCULATION PUMP TRIP ACTUATION INSTRUMENTATION

~*~

ASS Recirculation Pump Trip Systemiinstrumentation.. 3/4 3-37 End-of-Cycle Recirculation Pump Tr'-ip System I instrumentation..............~...................... 3/4 3-41 3/4. 3. 5 REACTOR CORE ISOLATION COOLING'YSTEM ACTUATION INSTRUMENTATION..........i~~ 3/4 3-47 3/4. 3. 6 CONTROL ROD BLOCK INSTRUMENTATION.................... 3/4 '-52 3/4.3. 7 MONITORING INSTRUMENTATION Pr Radiation Monitoring Instrumentation. 3/4 3"58 Seismic Monitoring Instrumentation.............:..... 3/4 3-61 Meteorological Monitoring Instrumentation............ 3/4 3-64 Remote Shutdown Monitoring Instrumentation........... 3/4 3-67 Accident Monitoring Instrumentation.................. 3/4 3-70 Source Range Monitors...;.........;.................. 3/4 3"76 Traversing In-Care Probe System...... 3/4 3"77 Chlorine Detec.ion System. 3/4 3-78 Fire Detection Instrumentation. 3/4 3-79 Loose-Part Detection System. 3/4 3-83 Radioactive Liquid Ef luent Monitoring Instrumentatson... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3/4 3"84 Radioactive Gaseous Effluent Monitoring Instrumentation............... 3/4 3-89 3/4. 3. 8 TURBINE OVERSPEED PROTECTION SYSTEM. 3/4 3-96 3/4. 3. 9 FEEDMATER SYSTEH/MAIN TURBINE TRIP SYSTEM ACTUATiOH INSTRUMENTATION. ~ 0 ~ ~ ~ ~ ~ 3/4 3-98

>/4 3.IO NENTN6l4 I=LISX lho Ni~OIEl6I(, >/4 z-lN WASHINGTON NUCLEAR " UNIT 2 vi 8507230ii4 8507i7t PDR ADOCK 05000397 PD~R

~0 yO IHOEX BASES SECTION PAGE INSTRUMENTATION (Continued) 3/4.3. 7 MONITORING IHSTRUMEHTATIOH Radiation Monitoring Instrumentation............ 8 3/4 3-4 Seismic Monitoring Instrumentation.............. 8 3/4 3-4 Meteorological Monitoring Instrumentation.......

a 8 3/4 3-5 Remote Shutdown Monitoring Instrumentation...;.. 8 3/4 3"5 Accident Monitoring Instrumentation............. 8 3/4 3"5 Source Range Monitors........................... 8 3/4 3-5 Traversing In-Core Probe System.... 8 3/4 3-.5, Chlorine Oetection System..... ~ ................. 8 3/4 3"5 Fire Detection Inetrumentation.+.............. 8 3/4 3-6' Loose"Part Oetection System... '................. 3/4 3"6 .

Radioactive Liquid Effluent Moolitoring Instrumentation..........~+X 8 3/4 3-6 Radioactive Gaseous Effluent Monitoring Ins trumentati on......~&. 8 3/4 3-7 3/4. 3. 8 TUREINE OVERSPEED uPORO ECTION SYSTEM..;.......... 8 3/4 3-7 3/4. 3. 9 FEEDMATER SYSTEM/MAIN TURBINE TRIP SYSTEM ACTUATION IHSTRUMEHTATION. 8 3/4 3"7

~le.s.<o MON'TTEoai Is@@ saloofogiNSI itgvTiRiaiagNTRTvoaI..

~ ~JA~-7 3/4. 4 REACTOR COOLANT SYSTEM.

3/4. 4. 1 RECIRCULATION SYSTEM.. ~ ~ ~ ~ e

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 8 3/4 41 3/4. 4. 2 SAFE)'/RELIEF VALVES 8 3/4 41 3/4.4.3 REACTOR COOLANT SYSTEM LEAKAGE Leakage Oetection Systems. 8 3/4 4"2 Operational Leakage. 8 3/4 4"2 3/4. 4. 4 CHEMISTRY 8 3/4 4-2 3/4. 4. 5 SPECIFIC ACTIVITY. 8 3/4 4"3 3/4. 4. 6 PRESSURE/TEMPERATURE LIMITS 8 3/4 4-4 3/4.4.7 MAIiV STEAM LIHE ISOLATIOH VALVES 8 3/4 4"5 3/4. 4. 8 STRUCTURAL INTEGRITY 8 3/4 4-5

\

3/4 4 9 RESIOUAL HEAT REMOVAL 8 3/4 4-5

%WASHINGTON NUCLEAR - UHIT 2 xiii

gO ~0 t

IHoO X

':ST OF FIGURES FIGURE PAGE 3.". 5-1 SODIUM PENTABORATE SOLUTiON SATURATION TEMPERATURE... /4 1-2" SOOiUM PEHTABORATE TANK, V01UME VERSUS CONCENTRATIOH REQUIREMENTS 3/4 1"22 MAXIMUt1 AVERAGE PLANAR LIHEAP, HEAT GENERATION RATE (IsfAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE, INITIAL CORE FUEL TYPE 8CR183........ 3/4 2"2 MAXIMUM AVERAGE PLANAR LINEAR HEAT GEHcRATION RATE (MAPLHGR) VERSUS AVERAGE Pl AINAQ EXPOSURE,

'INITiAL CORE FUEL TYPE 8CR233.... r~..v; 3/4 2-3 3.2.1-3 "

MAXIMUM AVERAGc, PLANAR LINEAR gE,T~'GENERATION RATE; (MAPLHGR) VERSUS AVERAGE PLANAR cXPOSURE INITIA'ORE FUEL TYPE 8CR711. 3/4 2"4 3.2."=-1 MINIMUM CRITICAL PONER RATIO (MCPR1 K. FACTOR

~ Qagmac V RSUS CORE FLOW........Q~..

POeeR U~+iS OF Spe- ~.>.10-1.........

3/4 2-7 3/+ p-}g$

3. 4. 6. 1-1 t1IHIMUM REACTOR VESSEL!, METAL TEMPERATURE VERSUS REACTOR VESS LwPRESSURE (iHITIAL VALUES)...... 3/4 4-2G 3.4.6. 1-2 MINIMUM REACTORPItESSEL METAL TEMPERATURE VERSUS REACTOR VcSSEL PRESSURE (OPERATIOHAL VALUES) 3/4 4-21
4. 7-1 SAMPLE PLAN 2) FOR SHUBBER FUNCTIONAL TEST .......... 3/4 7-15 3 a 7-1 WEIGHT/HEIGHT LIMITATIONS FOR LOADS OVER THE SPEHT FUEL STORAGE POOL........... ~ ~ 3/4 a-lo 8 3/4 3-1 REACTOR VESSEL WATER LEVEL........- ... B 3/4 3-8 B 3/4.4.6-1 FAST NEUTRON FLUENCE (E>1MeV) AT 1/4 T AS A FUNCTION OF SERVICE LIFE . 8 3/4 4-7
5. 1-1 EXCI USION ARcA BOUNDARY 5" 2
5. 1-2 LOW POPULATION ZONE o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o o ~ ~ ~ ~ 5" 3
5. 1-3 UNRESTRICTED AR AS AHO SITE BOUNDARY FOR RADIOACTIVE GASEOUS ANO LIQUID EFFLUENTS 5-4
6. 2. 1-" OFFSITE ORGANIZATION. 6-3
6. 2. 2-la UNIT ORGANIZATION. 6-4
6. 2. 2" lb UNiT ORGAHiZATiON " OPERATIONS DEPARTMENT............ 6-5 WASHINGTON NUCLEAR - UNIT 2 XX

~0 l

~p INSTRUMENTATION 3 4.3.10 NEUTRON FLUX MONITORING INSTRUMENTATION LIMITING CONDITION FOR OPERATION 3.3. 10 The APRM and LPRM~ neutron flux noise levels shall not exceed three (3) times their established baseline value.

APPLICABILITY: OPERATIONAL CONDITION

~De~

1 with aSv eeseS two reactor coolant system recirculation loops in operation with THERMAL POWER greater than the limit specified in Figure 3.3.10-1 and total core flow less than

.45/ of rated total core flow or with one reactor coolant system recurculation loop not in operation viith THERMAL P01JER greater than the limit specified in Figure 3.3.,10-1.

'ACTION: With the APRM or LPRM* neutron flux noise level greater than tttree (3) times their established baseline noise levels, initiate correc-tive action within.15 minutes to restore the noise levels to within the required 1 imi ts wi thin 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> or r educe THERMAL POWER to less than or equal to'the limit specified in Figure 3.3.10-1 within the next 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

SURVEILLANCE RE UIREMENTS 4.3.10.1 The provisions of Specification 4.0.4 are not applicable.

4.3.10.2 With two reactor coolant system recirculation loops in opera-tion, establish a baseline APRM and LPRM* neutron flux noise level value within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> upon entering the APPLICABLE OPERA-TIONAL CONDITION of Specification 3.3.10 provided that baselining has not been performed since the most recent CORE ALTERATION.

4.3. 10.3 Wi.th qne reactor coolant system recirculation loop not in operation, establish a baseline APRM and LPRM* neutron flux noise level value with THERMAL POWER less than or equal to the

=

limit specified in Figure 3.3.10-1 prior to entering the APPLiCABLE OPERATIONAL CONDITION of Specification 3.3.10 provided baselining has not been performed with one reactor coolant system recirculation loop not in operation since the most recent CORE ALTERATION.P WASHINGTON NUCLEAR - UNIT 2 3/4 3-102

01 ~0 H

1RYl569

~p SURVEILLANCE RE UIREMENTS TheAPRM and LPRM* neutron flux noise levels shall be deter-l'.3.10.4

, mined to be less than or equal to the'imit -of Specification 3.3. 10 when operating within the APPLICABLE OPERATIONAL CONDITION of Specification 3.3.10:

a. At least once per 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, and
b. Within 30 minutes after completion of a THERMAL POWER increase of at least 5X of RATED THERMAL POWER.

1

  • Detector levels A and C of one LPRM string per core octant plus detector levels A and C of one LPRM string in the center of the core should be monitored.

8The baseline data obtained in Specification 4.3.10.3 is applicable to operation with one reactor coolant system recirculation loop not in operation and.THERMAL POWER greater than the limits specified in Figure 3.3.10-1.

WASHINGTON NUCLEAR - UNIT 2 . 3/4 3-103

FIGURE 3.3.10-1 THERHAL POWER LIMITS OF SPECIFICATIOH 3.3.10-1 70

~, ~

~ ~ ~

l

~ ~

i;;l:i':".:*.:

~ ~ ~ ~ I~ ';

": i::,'

~

~

~  :'" ' ~ ~ .~~~ I ~

'I

~ ~

~ 'i ~ I

~ ~ ~ ~

~ ~ ~ I ~ ~

~ ~ -~

~ ~ *

)

~ ~~ I~ ~ ( ~ ~ I~ ~ ~ ~~ ~

) l 60

.iii'iiliiii:i' " ~ I ~

I -::;-::;.-,::.::,. II ~

~

I

~ "~

I ~ ~ ~

~

' i:.:(il ~ ~ I /* a

- I~ ~ I~ ~ ~ ~ ~ ~ I  :

i~ ~ 1::...':,:::--:

~ ~ ~ i!::;!.i::

!:::I,'::::::'-:::-::::I

!::.';:,: ',;:,'. ~,',

i!!i i!i) ~ ~

!:',',:::,',':.::I ;:;::::i:::;.!j I

50 I ii g'.i'..I:!.a.'/

Ii ~ ~ I ~

a ~ ~

~

~ ~ ~ ~~ ~ a.(.l ~ ~~ ~ ~ ~

QV QJ ~ ~

I ~ ~ ~ I rr ~I

~-

'I ~

I ~ ~ ~ ~ ~ I ~

,', .'I

~ I I~~~

gl :j!)a! I(!

~

40  :::::.::::::'--1 ',!l;i!I::

0 UJ ~ ~ I i:il!!::(

~ ~

I': "'c""" I~ ~ ~

+ O '

~ ~

'::::;:::t i:";;j;:::

.
i."'1 II\~ ~ ~ - ~

1 30 ~ ~ ~ I ~ ~ ~

~ ~ ~- !il:" :i! .!(999  :.:(i(!.:!] ~ = I I ~

(I) I

~

i ~

~~

I~

\  ! '

~

ji,a;::!!.(

ii ,ilail: '-:::i! ::

~

~

~ I

~ ~ I'

~ ~

I~

"!i ~

~ ~ r ~ ~

20 i:.'.i::!l.:(

~

~ I

~

I~

li:i(i ii  ::::;:::::;;::'...:'::I ~ ~

~

"~: ir'I ~

e:.'a i.". l (

~ ~ ~

.:::iii;;

(

"I ~ ~ ~ ~ .,-!!:i .: a ~

.':i:li!

10 ~ ~

(i( I

~ I ~ ~ ~ ~ ~

I,,  !\i "[

0 30 40 50 60 70 CORE- FLOlf (X RATED)

~0 IHSTRUMENTATION

.' 4 BASES MONITORING INSTRUMENTATION (Continued) 3/4. 3. 7. 12 RADIOACTIVE GASEOUS EFFLUEHT MONITORING INSTRUMENTATION The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluents during actual or potential releases of gaseous effluents. The alarm/trip setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the

.alarm/trip'will occur prior to exceeding the limits oi" 10 CFR Part 20. This instrumentation also includes provisions for monitoring and controlling the concentrations of potentially explosive gas mixtures in the WASTE GAS HOLDUP SYSTEM. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63, and 64 of Appendix A to 10 CFR Part 50.

AA 3/4. 3. 8 TURBINE OVERSPEEO~PROTECTIOH SYSTEM

~Pg This specification is provided to ensure that the turbine overspeed protection system instrumentatjop and the turbine speed control valves are OPERABLE and will protect the tdrbgne from excessive overspeed. Protection from turbine excessive overspeed "lp~required since excessive overspeed ot'he turbine could generate potentially',damaging missiles which could impact and damage safety-related components, equip ent. or structures.

3/4.3.9 FEEOWATER SYSTEM/MAIN TURBINE TRIP SYSTEM ACTUATIOH INSTRUMENTATION The feedwater system/main turbine tr3p~system actuation instrumentation is provided to initiate the feedwater system/main turbine trip system in the event of reactor vessel water level equal to omr'greater than the level 8 setpoint associated with a feedwater controller failure.

Qpb~ ~ '3 4."3;10 NEUTRON. FLUX MONITORING INSTRUMENTATION At the high power/low flow corner of the operating domain, a small probability of limit cycle neutron flux oscillations exists depending on combinations of operating conditions (e.g., rod patterns, power shape).

To provide assurance that neutron flux limit cycle oscillations are detected ~nd suppressed, APRH and LPRN neutron flux noise levels should be monitored while operating in this region.

.Stability tests at operating BWRs were reviewed to determine a generic region of the power/flow map in which surveillance of neutron flux noise levels should be. performed. A conservative decay ratio of 0.6 was chosen as the bases for determining the generic region for surveillance to account for the plant to plant variability of decay ratio with core and fuel designs. This generic region has been determined to correspond to a core flow of less than or equal to 45K of rated core flow and a thermal power greater than that specified in Figure 3.4.1.1-1 (Reference ).

WASHIHGTON NUCLEAR - UNIT 2 8 3/4 3-7

~1 ~0 I

I (l

~p INSTRUMENTATION BASES MONITORING INSTRUMENTATION (Continued)

NEUTRON FLUX MONITORING INSTRUMENTATION (Continued)

Neutron flux noise limits are also established to ensure early detection of limit cycle neutron flux oscillations. BWR cores typically operate with neutron flux noise caused by random boiling and flow noise.

Typical neutron flux noise levels of 1-12Ã of rated power (peak-to-peak) have been reported for the range of low to high recirculation loop flow during both single and dual recirculation loop operation. Stability tests at operating BWRs have demonstrated that when stability related neutron flux limit cycle oscillations occur they result in peak-to-peak neutron flux limit cycles of 5-10 times the typical values. Therefore, actions taken to reduce neutron flux noise levels exceeding three (3) times the typical value are sufficient to ensure early detection of limit cycle neutron flux oscillations.

Typically, neutron flux noise levels show a gradual increase in absolute magnitude as core flow is increased (constant control rod pattern) with two reactor recirculation loops in operation. Therefore, the baseline neutron flux noise level obtained at a specific core flow can be applied over a range of core flows. To maintain a reasonable variation between the low flow and high flow ends of the flow range, the range over which a specific baseline is applied should not exceed 205 of rated core floW with two recirculation loops in operation. Data from tests and operating-plants indicate that a range of 205 of rated core flow will result in approximately a 505 increase in neutron flux noise level during operation with two recirculation loops. Baseline data should be taken near the maximum rod line at which the majority of operation will occur. However, baseline data taken at lower rod lines (i.e., lower power} will result in a conservative value since the neutron flux noise level is proportional to the power level at a given core flow.

In the case of single loop operation (SLO), the normal neutron flux noise may increase more rapidly when reverse flow occurs in the inactive jet pumps. This justifies a smaller flow range under high flow SLO conditions. 'aseline data should be taken at flow intervals which correspond to less than a'0$ increase in APRM neutron flux noise level.

If baseline data is not specifically available for SLO, then baseline data with two recirculation loops in operation can be conservatively applied to SLO since for the same core flow SLO will exhibit higher neutron flux noise levels than operation with two loops. However, because of reverse flow characteristics- of SLO, the core flow/drive flow relationship is different than the two loop relationship and there-fore the baseline data for SLO should be based on the active loop re-circulation drive flow, and not the core flow. Because of the uncer-tainties involved in SLO at high reverse flows, baseline data should WASHINGTON NUCLEAR - UNIT 2 B 3/4 3-7a

~0 ~0 s

U "i

INSTRUMENTATION BASES MONITORING INSTRUMENTATION (Continued)

NEUTRON FLUX MONITORING INSTRUMENTATION (Continued) be taken at or below the power specified in Figure 3.4.1. 1-1. This will result in approximately a 254 conservative baseline value if compared to baseline data taken near the rated rod line and will therefore not result in an overly restrictive baseline value, while providing sufficient margin to cover uncertainties associated with SLO.

WASHINGTON NUCLEAR - UNIT 2 B 3/4 3-7b

3/4.4 REACTOR COOLANT SYSTEH 3/4.4. 1 RECIRCULATION SYSTEM RECIRCULATION LOOPS LIMITING COiNDITION FOR OPERATIOiN 3.4.1.1 Two reactor coolant system recirculation loops shall be in operation.

APPLICABILITY: OPERATIONAL CONDITIONS 1" and 2".

ACTiOH:

ae With one reactor coolant system recirculation loop not in operation:

1. Within 4 5yhrs:

a) Place the~ecirculation flow control system in the Local Manual (Position Control) mode, and DKl.6T6 c) Increase the MINIMUM CRITICAL POWER RATIO (MCPR) Safety Limit by 0.01 tos1.07 / per Specification 2.1.2, and,

,, aaat S r d) Reduce the Maximum Average Planar Linear Heat Generation Rate (HAPLHGR) limit toga value of 0.84 times the two recirculation loop operation limit per Specification 3.2. 1, and, 4%}.

e) Reduce the Average Power Range Monitor (APRM) Scram and Rod Block and Rod Block Monitor Trip Setpoints and Allow" able Values to those applicable for single recirculation loop operation per Specifications 2.2. 1, 3.2.2, and 3.3.6.

aaq it C) Reduce the volumetric fiov rate of the operating recircuia-tion loop to < ~ega* gpm. 41>12$

4) ~he 'Temitaamt. pSWCit ShOtt be leSS ictus.r, Or equ,eut'lOi& Q &e 'limnib Speei+e6 8 10.'h ~4;Af. On8, r+K4r COO>6-'re aq<r'e~

aV %%K Poul@O>S Ck SPCC. 0 Y'Ceivtv,hb'kie 166( 50% 1v bportkVio~ ovid, Ni4

(@AC.

BKR40L, 904)'ER op@~

'i 4~ M 4&i%

speciineh tw p'hb. s. i.t.i-i> ound %e prouisior a oF spec. ~ io 5 bauirci no& been soaisi"eb iv i@mba KViov wikhn ira m ~mkcs pro reduce igseanp,c pouasp. ho less 4tnaen ov eqvvag ad e 4r;4 speci inch 'v phb.?,.'i.i.l -i wiKLh ai hoitvs. 7ha pvouis'oms "See Special Test Exceotion 3.10.4.

) gs oxyve)

""This value represents theft&~ volumetric recirculation loop flow which produces 100- core flow at 100, THERMAL POWER. val ue 4e-4e MRS WASHINGTON i'NUCLEAR - UNIT 2 3/4 O( Spec. N.~.io.3, Wes4 he so44teb prov- 4 Vcsuv t~ poCev. Op+ akio>,....

Lbovk W6 Limt 4 .epewC<5 <v Rg. 4.$ ,l.l -l .

~0

'l 'tf I

S e

r REACTOR COOLANT SYSTEM LIMITING CONDITION FOR OPERATION Continued ACTION: (Continued)

Perform Surveillance Requirement

~"" of 4.4.1.1.2 if THERMAL POMER recirculation loop is < RATED THERMAL POMER or the flow in the operating loop is < @K""" of rated loop flow.

10 ees-n i h Reduce recirculation loop flow>in.,the operating loop until

)

8)

Abc NEQJ the core plate hP noise does'}ot deviate from the estab-l'ARh L" lished core plate hP noise~patterns by more than Eg,~ ]gg4f>

CSSB ATT'6)

2. The provisions of Specification 3.0.4 are not applicable.
3. Otherwise, be in at leasSt HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.
b. With no reacto~ coolant. system recirculation loops in operation, immediately initiate me'asures to place the unit in at least HOT SHUTDOWN within the n'ext86 hours.

SURVEILLANCE REOUIREMENTS 4.4.1.1.1 With one reactor coolant system recirculation loop not in operation, at least once perp/ hours verify that:

~8 The recirculation flow control system is in the Local Manual (Position Control) mode, and 4.i,aRB The vo'lueetric flaw rate of the operating loop is < wprdi88 gpe.**

o,c'.hag

""This value represents thePdes+gn volumetric recirculation loop flow which produces 100Ã core flow at 100~ THER4NL POWER. value ~~

WA,S Y

upon THERMAL POMER and recirculation loop flow which will sweep the cold water from the vessel bottom head preventing stratification.

he.'hnQ WASHINGTON NUCLEAR - UNIT 2 3/4 4-2

~0 yO 1

sf J

F

4g 4

It

.IRGVl SGD

+ = W

,f It 1 4 I

4 j'

Aoc ..hJea) 'ARA., R AcTiOt4 I S I af eaneVTf'S) R)R 3.4 < ~ l 'I 4

4-i

= 4 08- >/.<. '.!I'ffc,e

't p,

W If 41 tl f

M iaaf. '0nQ.. rear+.v. Y<Cf fry((dfow .

I 4

4

. YQGp! %Or i% 6 6r0.rfo 'Pnuf fff. opere' j

Iff e. Vfwik ~q~~4eh, ',f~ o h 4 l 4ouo hers'N~ h% Jo vff4+ (gv YnioWHS 4

4 4

I, J II I

',t II 4

I, t

lj 44 lh I I jJ t

tt 4 It I k t jl 4

4 II 1,

1L I

4 I

4 ht

1 C REACTOR COOLANT SYSTEM SURVEILLANCE REOUIREMEHTS Continued)

~

~

DELETE crf The core plate hP noise is less than~ of the established core plate DP noise patterns. ~

~aenlo Aper Nmrar d.

t tgtl 4.4.1.1.2. With one reactor coolant system recirculation loop not in operation, within no more than 15 minutes prior to either THERMAL POWER increase or recir-cgp pgpW. culation loop flow increase, verify that the following differential temperature requirements are met if THERMAL.POWER is < ~"~" of RATEO THERMAL POWER or the recirculation loop flow in the operating ecirculation .loop is < '50,>>""" of r ated loop flow: K )Q

a. < 145 F

~

M between>reactor vessel steam space coolant and bottom head drain line coolants Vp

b. < 500F between the<reactor coolant within the loop not in operation and the coolant in tfie-reactor pressure vessel, and
c. < 50'F between the reactors'coolant within the loop not in operation and the operating loop.

The differential temperature requirements of Specification 4.4. l. 1.2h. and c.

do not apply when the loop not in operation~is isolated from the reactor pressure vessel.

4. 4. l. l. 3 Each reactor coolant system recircul'ation loop flow control valve shall be demonstrated OPERABLE at least once per 18 months by:
a. Verifying that the control valve fails "as is" on loss of hydraulic pressure (at the hydraulic control unit), and
b. Verifying that the average rate of control valve movement is:
1. Less than or equal to 11>> of stroke per second opening, and
2. Less than or equal to 1I of stroke per second closing.

r

~Sr'.

r THERMAL POWER and recirculation loop flow which will upon sweep the cold water from the vessel bottom head preventing stratification.

od ve.)

WASHINGTON NUCLEAR - UNIT 2 3/4 4-3 tL csui. boas r~ >>reehe M~ dsr. eSItrral Shp a%

ns.~i- of fa>ed Am Aa,ove Io cove.

To 4.4.l.~. \ %he Ceve. ~iERQAt. PedBR lS qve&er Wm Le sr 't' CLOTS) 3,4.1. t.

FIGURE 3.4.1.1-1 T8ERIIAL POMER LItlITS OF SPECIFICATIOH 3.4.1.1-1 I ' I ~ ~

I.'.. ~

i ll ',:.:

  • t Ia'll t.:.I; "',

~ ~

I.: I~ ~ ~~ ~ ~

70 ~ ~ I

~ I I I a.l I~ . ~ ~

I~I

~ ~ ~ I

~

iii!i'!I ~ ~

I~

~ ~

~ ~

~ \ ~ ~

~

I~ ~

~ I I~ ~

I:: I 60 ~ ~ ~

~ ~ ~

-~ ~ ~

~ ~ ~

"':I': ;!i.:.:::I

~ ~ ~

~ ~ t I ~~ ~

~ ~ a Iiii!iil I

i;i'll:

"~ " I ". I .':Iti:

~

~ ~ ~ ~ ~

I 50 ii:iiii

<<~ ~~ t

'"::lill. I I... ~

I

.,I},

~ ~ ~

~ ~

~ I I

~ "'

t ~ ~

~ I

!I
::::

'.::I::i:  ::::lil.

~

~ts ~ ~ :ital:::!. j}': 'li(i::

!.:i:II:,i: I~ ~ ~

II. I::

I ~ ~

~

I

~ ~

I~ I~

40 I ~

I ~

'  : I'l.':I ~ ~ ~ ~ ~ ~ ~

lail:: :::II !I P ~ ~ ~ I

~ ~ ~ ~

'I

~ ~

.I:.".::

~ ~~

li

Ili I ~ IIIII::

~ ~

~

~ ~

  • ~

~ ~ ~

.:::!I;I '.  :::::.}.:'}!;::

iiiliI ~

u JM".

~~ ~~ ~

l-'::--:,' -i li::l:: ~ ~

K .i:I:"I::I  ::.::I-:::I

~ ~

.'::IIII:I  !!il ItI ~ ~

5 30 ~ ' ~ I~ t~ ~

-'ill;-.'::ll

~ ~

~ ~

~ ~

t

~ ~

,:::::-:::::I

~ t II!

iillil!ii :Il:I ~ ~

~ ~

I Il ~ I i:}l}i!i.":::

~ ~

~ ::I:I ~ ~ ~ ~ ~ ~ ~

I ~ ~ l ~ ~ ~ ~ ~

~ ~

I a

..!:! Ii l ":ii',ili!:

~ ~

II iili[}II!

I~~  : I I'.: ~ ~

II

~

~ .!

I.

20 ~ ~ ~ ~ ~ ~-

i Ii.:i: i

~ ~ ~ ~ ~ li

~ ~ ~ It ~ ~ ~ ~

I~ I i!':

Il..".I Ia  ::i II!

-:::::I!

~ ~

i}::::'Ill It

~ ~ ~ ~

-':i;;.I
.:i:: -l
t'ai:I ::

~ ~ ~

I :I::I itl ~

I

~ .

"'II:.I::

~

~ ~ ~ ~

~I "III  ! ,I."!
.::::::I iii:'":I:J 10 - ~

il.'.)<<:I:  : Ill:I.'

~ "t

"-" 'I ~

I

~ ~  : ~ :'.:: I

~: I

~ ~ I

~ ~

Ilsl'tl

~ ~

~

~ ~ ~

~ ~ ~~

~~ ~ ~

~ ~ I I

I ;I' t

~ I 0

30 40 50 60 70 CORE FLOW (I RATED)

yO