ML093290259

From kanterella
Jump to navigation Jump to search
WCAP-15589, Rev. 1, Analysis of Capsule 38 Degrees from the Arizona Public Service, Company Palo Verde Unit 1, Reactor Vessel Radiation Surveillance Program
ML093290259
Person / Time
Site: Palo Verde Arizona Public Service icon.png
Issue date: 03/31/2003
From: Conermann J, Disney R, Laubham T
Westinghouse
To:
Arizona Public Service Co, Office of Nuclear Reactor Regulation
References
102-06094-TNW/GAM WCAP-15589, Rev 1
Download: ML093290259 (218)


Text

WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-15589, Revision 1 Analysis of Capsule 38' from the Arizona Public Service Company Palo Verde Unit 1 Reactor Vessel Radiation Surveillance Program T. J. Laubham ILK. Disney J. Conermann MARCH 2003 Prepared by the Westinghouse Electric Company for the Arizona Public Service Company Approved:

/ Equipment & Materials Technology Westinghouse Electric Company LLC Energy Systems P.O. Box 355 Pittsburgh, PA 15230-0355 02003 Westinghouse Electric Company LLC All Rights Reserved

WCAP-!5589 March 2003 Revision 1 Analysis of Capsule 381 from, Arizona, Public Service Company Palo Verde Unit 1 Reactor Vessel Radiation Surveillance Program

.(Westinghouse-

TABLE OF CONTENTS LIST O F TA B LE S .......................................................................  :....................................................................... iv LIS T O F FIG URE S ............................................................................................................................................. v PRE FAC E ................ ................................................................................................................................. Viii EXECUTIVE

SUMMARY

(OR) ABSTRACT ........................................................................................... ix 1

SUMMARY

OF RESULTS ............................................................................................. ...... 1-1 2 IN T RO DU C TIO N ............................................................................................................................... 2-1 3 B A CK GRO U N D ............................................................................................................................... 3-1 4 DESCRIPTION OF PROGRAM ........................................................................................................ 4-1 5 TESTING OF SPECIMENS FROM CAPSULE 380 ........................................... 5-1 5.1 OVERVIEW ........................... ........................

  • .... 5-1 5.2 CHARPY V-NOTCH IMPACT TEST RESULTS ....... ........................................................ 5-3 5.3 TENSILE TEST RESULTS ................................................................................................... 5-5 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY ............................................................. 6-1

6.1 INTRODUCTION

.............................................. 6-1 6.2 DISCRETE ORDINATES ANALYSIS ................................................................................. 6-2 6.3 NEUTRON DOSIMETRY .............................................................................................. 6-4 6.4 PROJECTIONS OF REACTOR VESSEL EXPOSURE .................................................... 6.8 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE ........................... 7-1 8 RE FE REN C ES ................................................................................................................................... 8-1 APPENDIX A LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS APPENDIX B CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING HYPERBOLIC TAGENT CURVE-FITTING METHOD Analysis of Palo Verde Unit I Capsule 380

Ji LIST OF TABLES Table 4-1 Chemical Composition (wt. %) of the Palo Verde Unit I Reactor Vessel Surveillance M aterials ......................................................................................................... 4-2 Table 4-2 Heat Treatment of the Palo Verde Unit I Reactor Vessel Surveillance Material .............. 4-3 Table 5-1 Charpy V-Notch Data for the Palo Verde Unit I Lower Shell Plate M-43 11-1 Irradiated to a Fluence of 7.85x10i n/cm 2 (E>1.0 MeV) (Longitudinal Orientation) ...... 5-6 Table 5-2 Charpy V-notch Data for the Palo Verde Unit I Lower Shell Plate M-4311-1 Irradiated to a Fluence of 7.85 x 10t" n/cm (E > 1.0 MeV) (Transverse Orientation) ..... 5-7 Table 5-3 Charpy V-notch Data for the Palo Verde Unit 1 Surveillance Weld Metal Irradiated to a Fluence of 7.85 x 10 S n/cm2 (E > 1.0 M eV) ............................................................... 5-8 Table 5-4 Charpy V-notch Data for the Palo Verde Unit I Heat Affected Zone (HAZ) Metal Irradiated to a Fluence of 7.85 x 1018 n/cm2 (E > 1.0 MeV) .............................................. 5-9 Table 5-5 Charpy V-notch Data for the Palo Verde Unit I Standard Reference Material Irradiated to a Fluence of 7.85 x 1018 n/cm 2 (E > 1.0 MeV) .............................................. 5-10 Table 5-6 Instrumented Charpy Impact Test Results for the Palo Verde Unit I Lower Shell Plate M-431 1-i Irradiated to a Fluence of 7.85 x 10'8 n/cm2 (E > 1.0 McV)

(Longitudinal Orientation) .................................................................................................. 5-11 Table 5-7 Instrumented Charpy Impact Test Results for the Palo Verde Unit I Lower Shell Plate M-431 1-1 Irradiated to a Fluence of 7.85 x 10 " n/cm2 (E > 1.0 MeV)

(Transverse O rientation) ..................................................................................................... 5-12 Table 5-8 Instrumented Charpy Impact Test Results for the Palo Verde Unit 1 Surveillance Weld Metal Irradiated to a Fluence of 7.85 x 10"1n/cm2 (E > 1.0 MeV) ........................... 5-13 Table 5-9 Instrumented Charpy Impact Test Results for the Palo Verde Unit I Representative Heat Affected Zone (HAZ) Material Irradiated to a Fluence of 7.85 x 10' rn/cm 2 (E > 1.0 MeV) ............................................... 5-14 Table 5-10 Instrumented Charpy Impact Test Results for the Palo Verde Unit 1 Standard Reference Material Irradiated to a Fluence of 7.85 x 10" n/cm 2 (E > 1.0 MeV) ............ 5-15 Table 5-11 Effect of Irradiation to 7.85 x 101" n/cm2 (E > 1.0 MeV) on the Notch Toughness Properties of the Palo Verde Unit 1 Reactor Vessel Surveillance Materials ..................... 5-16 Analysis of Palo Verde Unit I Capsule 38*

iii LIST OF TABLES (CONTINUED)

Table 5-12 Comparison of the Palo Verde Unit 1 Surveillance Material 30 fl-lb Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions .............................................................................................. 5-17 Table 5-13 Tensile Specimens From Lower Shell Course Plate M-43 11-1 and Weld ......................... 5-18 Table 6-1 Calculated Fast Neutron Exposure Rates at the Center of the Surveillance Capsule Core Midplane Elevation ......................................... 6-13 Table 6-2 Calculated Azimuthal Variation of Fast Neutron Exposure Rates and Iron Atom Displacement Rates at the Reactor Vessel Clad/Base Metal Interface .............................. 6-14 Table 6-3 Relative Radial Distribution of 4(E > 1.0 MeV) Within the Reactor Vessel Wall ........... 6-15 Table 6-4 Relative Radial Distribution of 4)(E > 0.1 MeV) Within the Reactor Vessel Wall ........... 6-16 Table 6-5 Relative Radial Distribution of dpa/sec Within the Reactor Vessel Wall .......................... 6-17 Table 6-6 Nuclear Parameters Used in the Evaluation of Neutron Sensors ....................................... 6-18 Table 6-7 Monthly Thermal Generation During The First Eight Fuel Cycles of the Palo Verde Unit 1 Reactor (Reactor Power of 3800 MWt) ............................................... 6-19 Table 6-8 Measured Sensor Activities and Reaction Rates

- Surveillance Capsule 1370 ...................................................... ...... ............ 6-21

- Surveillance Capsule 380 .................................................. 6.22 Table 6-9 Summary of Neutron Dosimetry Results Surveillance Capsules 1370 and 380 ................. 6-23 Table 6-10 Comparison of Measured, Calculated, and Best Estimate Reaction Rates at the Surveillance C apsule C enter .............................................................................................. 6-24 Table 6-11 Best Estimate Neutron Energy Spectrum at the Center of Surveillance Capsule

- C apsule 1370 .................................................................................................. 6-25

- C apsule 380 .................................................................................................... 6-26 Table 6-12 Comparison of Calculated and Best Estimate Integrated Neutron Exposure of Palo Verde Unit I Surveillance Capsules 1370 and 380 ................................................ 6-27 Analysis of Palo Verde Unit 1 Capsule 38'

Iv LIST OF TABLES (CONTINUED)

Table 6-13 Azimuthal Variations of the Neutron Exposure Projections on the Reactor Vessel Clad/Base Metal Interface at Maximum Fluence Elevation ............................................... 6-28 Table 6-14 Neutron Exposure Values Within The Palo Verde Unit 1 Reactor Vessel ..........  :...6-30 Table 6-15 Updated Lead Factors for Palo Verde Unit I Surveillance Capsules ................................. 6-34 Table 7-1 Palo Verde Unit 1 Reactor Vessel Surveillance Capsule Withdrawal Schedule .............. 7-1 Analysis of Palo Verde Unit I Capsule 380

V LIST OF FIGURES Figure 4-1 Arrangement of Surveillance Capsules in the Palo Verde Unit I Reactor Vessel ............. 4-4 Figure 4-2 Typical Palo Verde Unit 1 Surveillance Capsule Assembly .............................................. 4-5 Figure 4-3 Typical Palo Verde Unit 1 Surveillance Capsule Charpy Impact Compartment A ssemb ly ............................................................................................................................. 4-6 Figure 4-4 Typical Palo Verde Unit I Surveillance Capsule Tensile and Flux Monitor C ompartm ent A ssembly ..................................................................................................... 4-7 Figure 4-5 Typical Palo Verde Unit 1 Surveillance Capsule Charpy Flux and Compact Tension Com partm ent Assembly ....................................................................................... 4-8 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Palo Verde Unit 1 Reactor Vessel Lower Shell Plate M-4311-1 (Longitudinal Orientation) ...................................... 5-19 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Palo Verde Unit I Reactor Vessel Lower Shell Plate M-43 11-1 (Longitudinal Orientation) ....................................... 5-20 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Palo Verde Unit 1 Reactor Vessel Lower Shell Plate M-4311-1 (Longitudinal Orientation) ....................................... 5-21 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Palo Verde Unit 1 Reactor Vessel Lower Shell Plate M-43 11-1 (Transverse Orientation) ......................................... 5-22 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Palo Verde Unit 1 Reactor Vessel Lower Shell Plate M-43 11-1 (Transverse Orientation) .......................................... 5-23 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Palo Verde Unit 1 Reactor Vessel Lower Shell Plate M-4311-1 (Transverse Orientation) ...................... 5-24 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Palo Verde Unit I Reactor Vessel Surveillance Weld M etal ..................................................................... ....... 5-25 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Palo Verde Unit 1 Reactor Vessel Surveillance Weld M etal ......................................................................................... 5-26 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Palo Verde Unit I Reactor V essel Surveillance W eld M etal ......................................................................................... 5-27 Analysis of Palo Verde Unit I Capsule 380

vi LIST OF FIGURES (CONTINUED)

Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Palo Verde Unit 1 Reactor Vessel Heat Affected Zone Material ...... ............................ 5-28 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Palo Verde Unit I Reactor Vessel Heat Affected Zone M aterial ..................................................................... 5-29 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Palo Verde Unit 1 Reactor Vessel Heat Affected Zone M aterial ............................... :................................................... 5-30 Figure 5-13 Charpy V-Notch Impact Energy vs. Temperature for Palo Verde Unit I Reactor Vessel Standard Reference M aterial ................................................................................... 5-31 Figure 5-14 Charpy V-Notch Lateral Expansion vs. Temperature for Palo Verde Unit I Reactor Vessel Standard Reference Material ............................................................................. ..... 5-32 Figure 5-15 Charpy V-Notch Percent Shear vs. Temperature for Palo Verde Unit 1 Reactor Vessel Standard Reference Material ................................................................................... 5-33 Figure 5-16 Charpy Impact Specimen Fracture Surfaces for Palo Verde Unit 1 Reactor Vessel Lower Shell Plate M-431 1-1 (Transverse Orientation) ..................................................... 5-34 Figure 5-17 Charpy Impact Specimen Fracture Surfaces for Palo Verde Unit I Reactor Vessel Lower Shell Plate M-43 11-1 (Longitudinal Orientation) ................................................. 5-35 Figure 5-18 Charpy Impact Specimen Fracture Surfaces for Palo Verde Unit 1 Reactor Vessel W eld M etal Specim ens ....................................................................................................... 5-36 Figure 5-19 Charpy Impact Specimen Fracture Surfaces for Palo Verde Unit 1 Reactor Vessel Heat A ffected Zone (HAZ) ................................................................................................. 5-37 Figure 5-20 Charpy Impact Specimen Fracture:Surfaces for Palo Verde Unit 1 Reactor Vessel Standard Reference M aterial ......... I............................................................................. . 5-38 Figure 5-21 Tensile Properties for Palo Verde Unit 1 Reactor Vessel Intermediate Shell Plate M -4311-1 (Transverse Orientation) .................................................................................. 5-39 Figure 5-22 Tensile Properties for Palo Verde Unit I Reactor Vessel Weld Metal .............................. 5-40 Figure 5-23 Fractured Tensile Specimens from Palo Verde Unit I Reactor Vessel Lower Shell Plate M -43 11-1 (Transverse Orientation) ................................................................. 5-41 Analysis of Palo Verde Unit I Capsule 38*

viI LIST OF FIGURES (CONTINUED)

Figure 5-24 Fractured Tensile Specimens from Palo Verde Unit 1 Reactor Vessel Weld Metal .......... 5-42 Figure 5-25 Engineering Stress-Strain Curves for Intermediate Shell Plate M-43 11-1 Tensile Specimens lA2JC, 1A2K2 and 1A2J5 (Transverse Orientation) ..................................... 5-43 Figure 5-26 Engineering Stress-Strain Curve for Weld Metal Tensile Specimens IA33C, 1A334, an d IA 3J7 ........................................................................................................................... 5-4 4 Figure 6-1 Palo Verde Reactor Model (45 Degree R-O Sector) Including Vessel Surveillance Capsules

...... ...... .......... ............................................................................................................ 6 -10 Figure 6-2 Azimuthal Variation of Neutron Flux (E > 1.0 MeV) at Reactor Vessel Inner Radius ..... 6-11 Figure 6-3 Axial Distribution of Reactor Power .................................................................................. 6-12 Analysis of Palo Verde Unit I Capsule 380

viii PREFACE This report has been technically reviewed and verified by:

Reviewer:

Sections 1 through 5, 7, 8, Appendices A, B and C Ed Terek Section 6 G.N Wrights eS-jRN"%t /rerz 6-0, lulvt5hr-s RECORD OF REVISON Revision 0: Original Issue Revision 1: Corrected the surveillance plate material from M-6701-2 to M-43 11-1. Changes are throughout the Table of Contents, Main Text, Tables, Figures and Appendices. No changes were required to Sections 2, 3, 6, 7 and 8. Appendix C was eliminated.

Analysis of Palo Verde Unit I Capsule 38*

Ix EXECUTIVE

SUMMARY

The purpose of this report is to document the results of the testing of surveillance capsule 380 from Palo Verde Unit 1. Capsule 380 was removed at 9.81 EFPY and post irradiation mechanical tests of the Charpy V-notch and tensile specimens was performed, along with a fluence evaluation based methodology and nuclear data including recently released neutron transport and dosimetry cross-section libraries derived from the ENDF/B-VI database. The calculated peak clad base/metal vessel fluenee after 9.81 EFPY of plant operation was 4,65 x 10' nk/e2 and the surveillance Capsule 380 calculated fluence was 7.85 x 108 n/cr2.

A brief summary of the Charpy V-notch testing results can be found in Section I and the updated capsule removal schedule can be found in Section 7.

Analysis of Palo Verde Unit I Capsule 380

1-1 1

SUMMARY

OF RESULTS The analysis of the reactor vessel materials contained in surveillance capsule 38' the second capsule'to be removed from the Palo Verde Unit I reactor pressure vessel, led to the following conclusions: (General Note:

Temperatures are reported to two significant digits only to match CVGraph output.)

2 0 The capsule received an average fast neutron calculated fluence (E > 1.0 MeV) of 7.85 x 1O's n/cm after 9.81 effective full power years (EFPY) of plant operation.

Irradiation of the reactor vessel lower shell plate M-43 11-1 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction of the plate (longitudinal orientation), to 7.85 x 1018 n/cm 2 (E> 1.0MeV) resulted in a 30 ft-lb transition temperature increase of 21.580 F and a 50 ft-lb transition temperature increase of 30.06'F. This results m an irradiated 30 ft-lb transition temperature of 8.72'F and an irradiated 50 ft-lb transition temperature of 42.52'F for the longitudinally oriented specimens Irradiation of the reactor vessel lower shell plate M-43 l1-1 Charpy specimens, oriented with the longitudinal axis of the specimen normal to the major working direction of the plate (transverse orientation), to 7.85 x 10"8 n/cm2 (E> 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 1.11°F and a 50 ft-lb transition temperature increase of 12.14°F. This results in an irradiated 30 ft-lb transition temperature of 10. 14'F and an irradiated 50 ft-lb transition temperature of 55.25'F for transversely oriented specimens.

, Irradiation of the weld metal Charpy specimens to 7.85 x 1018 n/cm 2 (E> 1.0MeV) resulted in a

. 30 ft-lb transition temperature increase of 6.27 0F and a 50 ft-lb transition temperature increase of 8.12'F. This results in an irradiated 30 ft-lb transition temperature of-47.0°F and an irradiated 50 ft-lb transition temperature of-25.3 0F.

2

  • Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens to 7.85 x 1018 n/cm (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature decrease of -26.590 F and a 50 ft-lb transition temperature decrease of -13.431F. This results in an irradiated 30 ft-lb transition temperature of -89.79°F and an irradiated 50 ft-lb transition temperature of -40.01 OF.

0 Irradiation of the standard reference material Charpy specimens to 7.85 x 10" n/cm 2 (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 114.25°F and a 50 ft-lb transition temperature increase of 128.6°F. This results in an irradiated 30 ft-lb transition temperature of 136.16 0F and an irradiated 50 ft-lb transition temperature of 176.21 IF.

0 The average upper shelf energy of the lower shell plate M-43 11-1 (longitudinal orientation) resulted in an average energy decrease of 6 ft-lb after irradiation to 7.85 x l108 n/cm 2 (E;> 1.0 MeV). This results in an irradiated average upper shelf energy of 141 ft-lb for the longitudinally oriented specimens.

The average upper shelf energy of the lower shell plate M-431 1-1 (transverse orientation) resulted in an average energy decrease of 53 ft-lb after irradiation to 7.85 x 1018 n/cm 2 (E > 1.0 MeV). This results in an irradiated average upper shelf energy of 115 ft-lb for the transversely oriented specimens.

Analysis of Palo Verde Unit I Capsule 380

1-2 The average upper shelf energy of the weld metal Charpy specimens resulted an average energy decrease of 6 ft-lb after irradiation to 7.85 x 1010 n/cm2 (E> 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 158 ft-lb for the weld metal specimens.

The average upper shelf energy of the weld HAZ metal Charpy specimens resulted an average energy decrease of 16 ft-lb after irradiation to 7.85 x 1018 n/cm2 (E > 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 119 ft-lb for the weld HAZ metal.

The average upper shelf energy of the standard reference material Charpy specimens resulted an average energy decrease of 24 ft-lb after irradiation to 7.85 x 10108 n/cm 2 (E > 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 105 ft-lb for the standard reference material.

A comparison of the Palo Verde Unit I reactor vessel beltline material test results with the Regulatory Guide 1.99, Revision 21i, predictions led to the following conclusions:

The measured 30 ft-lb shift mitransition temperature values for all the surveillance program materials (Weld and Plate) for capsule 380 are less than the Regulatory Guide 1.99, Revision 2, predictions.

- The measured percent decrease in upper shelf energy of the Capsule 380 surveillance material is less than the Regulatory Guide 1.99, Revision 2, predictions, with exception to the lower shell plate M-43 11-1 (Transverse Orientation).

The peak calculated and best estimate end-of-licene (32 EFPY) neutron fluence (E> 1.0 MeV) at the core midplane for the Palo Verde Unit I reactor vessel using the Regulatory Guide 1.99, Revision 2 attenuation formula (ie. Equation # 3 in the guide; ffip x) f e (-o.24) is as follows:

Calculated: Vessel inner radius* = 1.64 x 1019 n/cm 2 Vessel 1/4 thickness = 9.52 x 1018 n/cm 2 Vessel 3/4 thickness = 3.21 x 10 8 n/cm 2 Best Estimate: Vessel inner radius* = 1.36 x 1019 n/cm 2 Vessel 1/4 thickness = 7.90 x 1018 n/cm2 Vessel 3/4 thickness = 2.66 x 10'" n/cm 2 Analysis of Palo Verde Unit I Capsule 38*

2-1 2 INTRODUCTION This report presents the results of the examination of the Capsule located at 38', the second capsule to be removed from the reactor in the continuing surveillance program which monitors the effects of neutron irradiation on the Palo Verde Unit 1 reactor pressure vessel materials under actual operating conditions.

The surveillance program for the Arizona Public Service Company Palo Verde Unit 1 reactor pressure vessel materials was designed and recommended by Combustion Engineering. A description of the surveillance program and the preirradiation mechanical properties of the reactor vessel materials is presented in Reference

3. The surveillance program was planned to cover the 40-year design life of the reactor pressure vessel and was based on ASTM E185-82, "Standard Practice for conducting Surveillance Tests for light-water cooled Nuclear Power Reactor Vessels". Capsule 38' was removed from the reactor after 9.81 EFPY of exposure and shipped to the Westinghouse Science and Technology Center Hot Cell Facility, where the post irradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed.

This report summarizes the testing of and the post-irradiation data obtained from surveillance capsule located at 380, removed from the Palo Verde Unit 1 reactor vessel and discusses the analysis of the data.

Analysis of Palo Verde Unit I Capsule 380

3-1 3 BACKGROUND The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an important factor in ensuring safety inr the nuclear industry.. The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. The overall effects of fast neutron irradiation on the mechanical properties of low alloy, ferritic pressure vessel steels such as A533 Grade B Class I (base material of the Arizona Public Service Company Palo Verde Unit I reactor pressure vessel beitline) are well documented in the literature.

Generally, low alloyferritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during high-energy irradiation.

A method for ensuring the-integrity of reactor pressure vessels has been presented in "Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code[41. The method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature (RTNDT).

RTNDT is deftied as the greater of either the drop weight nil-ductility transition temperature (NDTT per ASTM E-2081'1) or the temperature 606F less than the 50 fi-lb (and 35-mil lateral expansion) temperature as determined from Charpy specimens oriented perpendicular (transverse) to the major working direction of the plate. The RT~m of a given material is used to index that material to a reference stress intensity factor curve (Ku( curve) which appears in Appendix G to the ASME Code[41. The Kt. curve is a Intermediate bound of dynamic, crack arrest, and static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the K1. curve, allowable stress intensity factors can be obtained for this material as a function of temperature. Allowable operating limits can then be determined utilizing these allowable stress intensity factors. Note that Code Case N-640 now allows the use of the K1. curve as an alternative to the Kh,curve.

RTNDT and, in turn, the operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties. The changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor surveillance program, such as the Palo Verde Unit I reactor vessel radiation surveillance programt", in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens tested. The increase in the average Charpy V-notch 30 ft-lb temperature (ARTrr) due to irradiation is added to the initial RTNDT,,along with a margin (M) to cover uncertainties, to adjust the RTNDT (ART) for radiation embrittlement. This ART (RTNDT initial + M + ARTNT) is used to index the material to the K16 curve and, in turn, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials.

Analysis of Palo Verde Unit 1 Capsule 38*

4-1 4 DESCRIPTION OF PROGRAM Six surveillance capsules for monitoring the effects of neutron exposure on the Palo Verde Unit 1 reactor pressure vessel core region (beltline) materials were inserted in the reactor vessel prior to initial plant start-up. The capsules were positioned in the reactor vessel between the core support barrel and the vessel wall at locations shown in Figure 4-1. The vertical center of the capsules is opposite the vertical center of the core.

Capsule 380 was removed after 9.81 effective full power years (EFPY) of plant operation. This capsule contained Charpy V-notch impact and tensile specimens made from reactor vessel lower shell course plate M-4311-1, submerged arc weld metal representative of the beltline region welds, heat-affected-zone (HAZ) metal and standard reference material from HSST-0lMY plate. All HAZ specimens are obtained within the heat-affected-zone of lower shell plate M-43 11-1 and 4311-2.

Charpy V-notch impact specimens from Plate M-6701-2 were with the longitudinal axis of the specimen parallel to the major working direction of the plate (longitudinal orientation). Charpy V-notch impact specimens from Plate M-43 I1-1 were with the transverse axis of the specimen perpendicular to the major working direction of the plate (transverse orientation). The Charpy V-notch specimens from the weld metal were machined with the longitudinal axis of the specimen transverse to the weld direction with the notch oriented in the direction of the weld.

Tensile specimens from Plate M-43 11-1 were machined in with the longitudinal axis of the specimen perpendicular to the major working direction of the plate (transverse orientation). Tensile specimens from the weld metal were oriented with the longitudinal axis of the specimen transverse to the weld direction..

Capsule 380 contained dosimeter wires of sulfur, iron, titanium, nickel (cadmium-shielded), cobalt (cadmium-shielded and unshielded), copper (cadmium shielded) and uranium (cadmium-shielded and unshielded).

The capsule contained thermal monitors made from four low-melting-point eutectic alloys and sealed in glass capsules. These thermal monitors were used to define the maximum temperature attained by the test specimens during irradiation. The composition of the four eutectic alloys and their melting points are:

80% Au, 20% Sn Melting Point 536 0 F (2801C) 90% Pb, 5% Sn, 5% Ag Melting Point 558OF (2921C) 2.5% Ag, 97.5% Pb Melting Point 580°F (304 0 C) 1.75%Ag, 0.75%Sn, 97.5%Ag, Melting Point 590°F (310°C)

The chemical Composition and heat treatment of the surveillance material is presented in Tables 4-1 and 4-2.

The chemical analysis reported in Table 4-4 was obtained from TR-V-MCM-012. The arrangement of the various mechanical test specimens, dosimeters and thermal monitors contained in capsule 380 is shown in Figure 4-2. A typical Palo Verde Unit I surveillance capsule Charpy impact compartment assembly is shown in Figure 4-3, while Figure 4-4 and 4-5 show the Tensile-Monitor Compartment and Charpy Flux & Compact Tension Compartment, respectively.

Analysis of Palo Verde Unit 1 Capsule 38*

4-2 Table 4-1 Chemical Composition (wt %) of the Palo Verde Unit I Reactor Vessel Surveillance Materials.

Element Plate M-431 1-1 Weld Metal M-4311-2/M-4311-3 C 0.24 0.16 Mn 1.48 l.08 P - 0.003 0.005 S 0.006 0.005 Si 0.23 0.24 Ni 0.63 0.06 Cr 0.07 0.06 Mo, 0.50 0.58 V 0.004 0.006 Cb 0.01 0.01 Ti 0.01 0.01 Co 0.014 0.018 Cu 0;04 0.04 Al 0.026 0.005 B 0.001 0.001 W 0.01 0.02 Sb 0.0022 0.0014 As 0.018 0.006 Sn 0.004 0.004 Zr 0.001 0.001 Pb 0.001 0.001 N 0.012 0.007 Analysis of Palo Verde Unit I Capsule 38'

4-3 Table 4-2 Heat Treatment of the Palo Verde Unit I Reactor Vessel Surveillance Material Material Temperature (°F) Time (hrs.) Coolant Surveillance Program Austenitizing: 4 Water-quenched 1600+/-25 Test Plate M-43 11-1 Tempered: 4 Air Cooled 1225 +/-25 Stress Relief: 40 Furnace Cooled to 6000F 1150 +/-25 Weld Metal Stress Relief: 41 hr & 45 min. Furnace Cooled 1125+/-25 Analysis of Palo Verde Unit 1 Capsule 38'

4-4 1600 VESSEL ;l.-OUTLETNOZZLE 1420 VES SEL. VESSEL.

.. 70- 2300 f*'*_*-.* -. /"*\INLET*

I *.* "-I-- " "* * ]* NOZZLE CORE SHROUD)

REACTOR VESSE CORE REACTOR 380 ENLARGED PLAN VIEW ELEVATION VIEW 00 Figure 4-1. Arrangement of Surveillance Capsules in the Palo Verde Unit 1 Reactor Vessel Analysis of Palo Verde Unit I Capsule 380

4-5

__, -Lock Assembly 1 } Wedge Coupling Assembly Charpy and Flux Compartment Assembly or Charpy, Flux, and, necting Spacer Compact Tension ,

Compartment Assembly Temperature, Flux, Tension and Charpy Compartment Assembly Charpy and Flux Compartment Assembly or Charpy, Flux, and Compact Tension Compartment Assembly Figure 4-2 Typical Palo Verde Unit 1 Surveillance Capsule Assembly Analysis of Palo Verde Unit I Capsule 38'

4-6 Wedge Coupling - End

. Charpy Impact Splcimens Flux Monitor Housing Precracked Charpy -Connecting Spacer and/or Charpy Impact Speci mens

-Rectangular Tubing Wedge Coupling - End Cap Figure 4-3 Typical Palo Verde Unit 1. Surveillance Capsule Charpy Impact Compartment Assembly Analysis of Palo Verde Unit I Capsule 380

.... 4-7-...

Wedge Coupling - End Cap

=-Tension Specimens and Tension Specimen Housing Charpy Impact Specimens Connecting Spacer

.. Flux Spectrum Monitor Cadmium Shielded

-Stainless Steel Tubing Stainless Steel -Cadmium Shield Tubing -Threshold Detector Threshold7 Detector -QuartzTubing Flux Spectrum Monitor" Temperature Monitor- -Weight Temperature Monitor-..

Housing

-Low Melting Alloy Charpy Impact Specimens Tension Specimens and Tension Specimen Hous ing Rectang u lar Tu Wedge Coupling -

End Cap Figure 4-4 Typical Palo Verde Unit I Surveillance Capsule Tensile and Flux-Monitor Compartment Assembly Analysis of Palo Verde Unit I Capsule 380

4-8

.. .. .............. .. .... . rt*

Wedge Coupling - End Cap-harDy I Flux Monitor Housing-Connecting Spacer 1/2 t Compact Tension, Specimens Rectangular Tubing Wedge Coupling - End Cap Figure 4-5 Typical Palo Verde Unit I Surveillance Capsule Charpy Flux and Compact Tension Compartment Assembly Analysis of Palo Verde Unit I Capsule 380

5~-

5 TESTING OF SPECIMENS FROM CAPSULE 380 5.1 OVERVIEW The post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens was performed in the Remote Metallographic Facility (RMF) at the Westinghouse Science and Technology Center. Testing was performed in accordance with IOCFR50, Appendices G and HI[2, ASTM Specification E185-821'1, and Westinghouse Procedure RMF 8402, Revision 2 as modified by Westinghouse RMF Procedures 8102, Revision 1, and 8103, Revision 1.

Upon receipt of the capsule at the hot cell laboratory, the specimens and spacer blocks were carefully removed, inspected for identification number, and checked against the master lists in WCAP- 14066[11. No discrepancies were found.

Examination of the four low-melting, eutectic alloy thermal monitors indicated that the two lowest melting point monitors melted, and that the 580°F monitor had signs that some melting had occurred. Based on this examination, the maximum temperature to which the test specimens were exposed to was 580*F.

The Charpy impact tests were performed per ASTM Specification E23-981 1' and RMF Procedure 8103, Revision 1, on a Tinius-Olsen Model 74,358J machine. The tup (striker) of the Charpy impact test machine is instrumented with a GRC 930-1 instrumentation system, feeding information into an IBM compatible computer. With this system, load-time and energy-time signals can be recorded in addition to the standard measurement of Charpy energy (ED). From the load-time curve (Appendix A), the load of general yielding (Poy), the time to general yielding (toy), the maximum load (PM), and the time to maximum load (tM) can be determined. Under some test conditions, a sharp drop in load indicative of fast fracture was observed. The load. at which fast fracture was initiated is identified as the fast fracture load (PF), and the load at which fast fracture terminated is identified as the arrest load (PA). The energy at maximum load (EM) was determined by.

comparing the energy-time record and the load-time record. The energy at maximum load is approximately equivalent to the energy required to initiate a crack in the specimen. Therefore, the propagation energy for the crack (Ep) is the difference between the total energy to fracture (ED) and the energy at maximum load (EM).

The yield stress (oy) was calculated from the three-point bend formula having the following expression:

C=(Poy *L) / [B * (W- a)

  • C] (1) where: L distance between the specimen supports in the impact machine B the width of the specimen measured parallel to the notch W height of the specimen, measured perpendicularly to the notch a notch depth Analysis of Palo Verde Unit I Capsule 380

5-2 The constant C is dependent on the notch flank angle (0), notch root radius (p) and the type of loading (i.e.,

pure bending or three-point bending). In three-point bending, for a Charpy specimen in which 4= 450 and p =

0.0 10 inch, Equation I is valid with C = 1.21. Therefore, (for L = 4W),

ay= (PQr *L) / [B * (W- a) 2 *1.21] = (3.33 *PGy

  • W) / [B * (W- a)2 ] (2)

For the Charpy specimen, B = 0.394 inch, W = 0.394 inch and a = 0.079 inch. Equation 2 then reduces to:

tT=33.3 *Por (3) where ay is in units of psi and PGY is in units of lbs. The flow stress was calculated from the average of the yield and maximum loads, also using the three-point bend formula.

The symbol A in columns 4, 5, and 6 of Tables 5-5 through 5-8 is the cross-section area under the notch of the Charpy specimens:

A = B * (W - a) =0.1241 sq.in. (4)

Percent shear was determined from post-fracture photographs using the ratio-of-areas methods in compliance with ASTM Specification A370-97191 .. The lateral expansion was measured using a dial gage rig similar to that shown in the same specification.

Tensile tests were performed on a 20,000-pound Instron, split-console test machine (Model 1115) per ASTM Specification E8-99 1'01 and E21-92 1"], and RMF Procedure 8102, Revision 1. All pull rods, grips, and pins were made of Inconel 718. The upper pull rod was connected through a universal joint to improve axiality of' loading. The tests were conducted at a constant crosshead speed of 0.05 inches per minute throughout the test.

Extension measurements were made with a linear variable displacement transducer extensometer. The extensometer knife edges were spring-loaded to the specimen and operated through specimen failure. The extensometer gage length was 1.00 inch. The extensometer is rated as Class B-2 per ASTM E83-93' 21.

Elevated test temperatures were obtained with a three-zone electric resistance split-tube furnace with a 9-inch hot zone. All tests were conducted in air. Because of the difficulty in remotely attaching a thermocouple directly to the specimen, the following procedure was used to monitor specimen temperatures.

Chromel-Alumel thermocouples were positioned at the center and at each end of the gage section of a dummy specimen and in each tensile machine griper. In the test configuration, with a slight load on the specimen, a plot of specimen temperature versus upper and lower tensile machine griper and controller temperatures was developed over the range from room temperature to 550'F. During the actual testing, the grip temperatures were used to obtain desired specimen temperatures. Experiments have indicated that this method is accurate to +20 F.

The yield load, ultimate load, fracture load, total elongation, and uniform elongation were determined directly from the load-extension curve. The yield strength, ultimate strength, and fracture strength were calculated using the original cross-sectional area. The final diameter and final gage length were determined from post-fracture photographs. The fracture area used to calculate the fracture stress (true stress at fracture) and percent reduction in area was computed using the final diameter measurement.

Analysis of Palo Verde Unit 1 Capsule 38'

5-3 5.2 CHARPY V-NOTCH IMPACT TEST RESULTS The results of the Charpy V-notch impact tests performed on the various materials contained in capsule 380, which received a fluence of 7.85 x 10'8 n/cm 2(E > 1.0 MeV) in 9.81 EFPY of operation, are presented in Tables 5-1 through 5-8 and are compared with unirradiated results as shown in Figures 5-1 through 5-12.

The transition temperature increases and upper shelf energy decreases for the capsule 38° materials are summarized in Table 5-9. These results led to the following conclusions:

Irradiation of the reactor vessel lower shell plate M-43 11-1 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction of the plate (longitudinal orientation), to 7.85 x 10W8 n/crM2 (E> 1.0MeV) resulted in a 30 ft-lb transition temperature increase of 21.58°F and a 50 ft-lb transition temperature increase of 30.06 0F. This results in an irradiated 30 ft-lb transition temperature of 8.72°F and an irradiated 50 ft-lb transition temperature of 42.52°F for the longitudinally oriented specimens Irradiation of the reactor vessel lower shell plate M-43 11-1 Charpy specimens, oriented with the longitudinal axis of the specimen normal to the major working direction of the plate (transverse orientation), to 7.85 x 1018 n/crm 2 (E> 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 1.1°F and a 50 ft-lb transition temperature increase of 12.14°F. This results in an irradiated 30 ft-lb transition temperature of

10. 14°F and an irradiated 50 ft-lb transition temperature of 55.251F for transversely oriented specimens.

Irradiation of the weld metal Charpy specimens to 7.85 x 1018 n/CM 2 (E> 1.0MeV) resulted in a 30 ft-lb transition temperature increase of 6.271F and a 50 ft-lb transition temperature increase of 8.121F.

This results in an irradiated 30 ft-lb transition temperature of-47.0°F and an irradiated 50 ft-lb transition temperature of-25.3°F.

Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens to 7.85 x 10'8 n/cmr2 (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature decrease of -26.591F and a 50 ft-lb transition temperature decrease of-13.431F. This results in an irradiated 30 ft-lb transition temperature of-89.791F and an irradiated 50 ft-lb transition temperature of-40.01°F.

Irradiation of the standard reference material Charpy specimens to 7.85 x 1018 n/cm2 (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 114.25'F and a 50 ft-lb transition temperature increase of 128.6°F. This results in an irradiated 30 fl-lb transition temperature of 136.16°F and an irradiated 50 ft-lb transition temperature of 176.21 OF, The average upper shelf energy of the lower shell plate M-4311-2 (longitudinal orientation) resulted in an average energy decrease of 6 ft-lb after irradiation to 7.85 x 10 i" n/cm 2 (E> 1.0 MeV). This results in an irradiated average upper shelf energy of 141 ft-lb for the longitudinally oriented specimens.

The average upper shelf energy of the Intermediate shell plate M-43 11-i (transverse orientation) resulted in an average energy decrease of 53 ft-lb after irradiation to 7.85 x 10"' n/cm2 (E > 1.0 MeV). This results in an irradiated average upper shelf energy of 115 ft-lb for the transversely oriented specimens.

The average upper shelf energy of the weld metal Charpy specimens resulted an average energy decrease of 6 ft-lb after irradiation to 7.85 x 1018 rncm 2 (E> 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 158 ft-lb for the weld metal specimens.

Analysis of Palo Verde Unit I Capsule 380

5-4 The average upper shelf energy of the weld HAZ metal Charpy specimens resulted an average energy decrease of 16 ft-lb after irradiation to 7.85 x 10" n/cm2 (E > 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 119 ft-lb for the weld HAZ metal.

The average upper shelf energy of the standard reference material Charpy specimens resulted an average energy decrease of 24 ft-lb after irradiation to 7.85 x 10'" n/cm 2 (E > 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 105 ft-lb for the standard reference material.

A comparison of the Palo Verde Unit I reactor vessel beltline material test results with the Regulatory Guide 1.99, Revision 211", predictions led to the following conclusions:

The measured, 30 ft-lb shift in transition temperature values for all the surveillance program materials (Weld and Plate) for capsule 380 are less than the Regulatory Guide 1.99, Revision 2, predictions.

- The measured percent decrease in upper shelf energy of the Capsule 380 surveillance material is less than the Regulatory Guide 1.99, Revision 2, predictions, with exception to the lower shell plate M-43 11-1 (Transverse Orientation).

The fracture appearance of each irradiated Charpy specimen from the various surveillance capsule 380 materials is shown in Figures 5-13 through 5-16 and show an increasingly ductile or tougher appearance with increasing test temperature.

The load-time records for individual instrumented Charpy specimen tests are shown in Appendix A.

The Charpy V-notch data presented in this report is based on a re-plot of all capsule data using CVGRAPH, Version 4. 1, which is a hyperbolic tangent curve-fitting program. Hence, Appendix C contains a comparison of the Charpy V-notch shift results for each surveillance material (hand-fitting versus hyperbolic tangent curve-fitting). Additionally, Appendix B presents the CVGRAPH, Version 4.1, Charpy V-notch plots and the program input data.

Analysis of Palo Verde Unit I Capsule 38*

5-5 5.3 TENSILE TEST RESULTS The results of the tensile tests performed on the various, materials contained in capsule 380 irradiated to

  • 7.85 x I011 n/cm2 (E > 1.0 MeV) are presented in Table 5-13 and are compared with unirradiated results as shown in Figures 5-21 and 5-22.

The results of the tensile tests performed on the lower shell plate M-43 11-1 (transverse orientation) indicated that irradiation to 7.85 x 1011 n/cm2 (F> 1.0 MeV) caused an approximate increase of 8 to 10ksi in the 0.2 percent offset yield strength and approximately a 0 to 5 ksi increase in the ultimate tensile strength when compared to unirradiated data[') (Figure 5-21).

The results of the tensile tests performed on the surveillance weld metal indicated that irradiation to 7.85 x l018 n/cm2 (E > 1.0 MeV) caused a 5 ksi increase in the 0.2 percent offset yield strength and a 4 to 10 ksi increase in the ultimate tensile strength when compared to unirradiated data (Figure 5-22).:

The fractured tensile specimens for the lower shell plate M-43 11-1 material are shown in Figure 5-23, while the fractured tensile specimens for the surveillance weld metal and heat-affected-zone material are shown in Figure 5-24...

The engineering stress-strain curves for the tensile tests are shown in Figures 5-25 and 5-26.

Analysis of Palo Verde Unit I Capsule 380

5-6 Table 5-1 Charpy V-notch Data for the Palo Verde Unit 1 Lower Shell Plate M-4311-1. Irradiated to a Fluence of 7.85 x 1018 n/cm 2 (E> 1.0 MeV) (Longitudinal Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number F C ft-lbs Joules mils mm  %

IAHIT -75 -59 5 7 1 0.03 5 1A127 0 -18 19 26 12 0.30 15 1A112 20 -7 38 52 31 0.79 25 1A125 30 -1 43 58 39 0.99 25 IA13U 50 10 60 81 44 1.12 35 IAII 100 38 '91 123 66 1.68 65 1A122 150 66 116 157 74 1.88 85 1A144 225 107 138 187 60 1.52 100 IA13K 275 135 144 195 106 2.69 100 Analysis of Palo Verde Unit I Capsule 380

5-7 Table 5-2 Charpy V-notch Data for the Palo Verde Unit 1 Lower Shell Plate M-4311-1 Irradiated to a Fluence of 7.85 x 10s n/cm 2 (E> 1.0 MeV) (Transverse Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number F C ft-lbs Joules mils mm  %

1A255 -75' -59 4 5 5 0.13 2 IA21E -40 -40 8 11 4 0.10 5 IA25P 0 -18 24 33 21 0.53 10 1A232 5 -15 39 53 38 0.97 15 1A21J 10 -12 39 53 30 0.76 15 IA23A 25 -4 37 50 30 0.76 20-IA25E 50 10 38 52 28 0.71 25 IA25U 50 10 47 64 38 0.97 30 IA261 70 21 55 75 42 1.07 45:

1A222 80 27 65 88 51 1.30 50 1A247 125 52 89 121 71 1.80 60 IA21M 150 66 110 149 79 2.01 90 1A256 150 66 62 84 51 1.30 60 IA235 200 93 112 152 84 2.13 100 1A263 250 121 118 160 78 1.98 100 Analysis of Palo Verde Unit I Capsule 38*

5-8 Table 5-3 Charpy V-notch Data for the Palo Verde Unit I Surveillance Weld Metal Irradiated to a Fluence of 7.85 x 1018 n/cm 2 (E> 1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number F C ft-lbs Joules mils mm  %

IA31Y -96 -71 7 9 7 0.18 10 IA354 -70 -57 19 26 17 0.43 20 1A324 -55 -48 11 15 14 0.36 20 IA3A2 -50 -46 34 46 26 0.66 25 IA3B3 -45 -43 25 34 22 0.56 25 1A372 -25 -32 48 65 37 0.94 40 IA33K -10 -23 95 129 69 1-75 70 IA32U 0 -18 65 88 52 1.32 60 IA342 15 -9 96 130 69 1.75 70 1A35E 25 -4 114 155 71 1.80 85 IA32M 50 10 129 175 85 2.16 ,90 IA323 100 38 149 202 90 2.29 100 IA35U 150 66 163 221 92 2.34 100 1A331 200 93 151 205 90 2.29 - 100 IA33B 250 121 170 231 97 2.46 100 Analysis of Palo Verde Unit I Capsule 38*

5-9 Table 5-4 Charpy V-notch Data for the Palo Verde Unit I Heat Affected Zone Metal Irradiated to a Fluence of 7.85 x 1016 n/cm 2 (E> 1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number F C ft-lbs Joules mils mm  %

1A441 -175 -115 12 16 4 0.10 5 IA442 -120 -84 23 31 12 0.30 10 1A43D -90 -68 54 73 39 0.99 . 45 IA41U -75 -59 53 72 33 0.84 40

]A44Y -50 -46 18 24 16 0.41 30 IA453 -30 -34 30 41 24 0.61 40 1A416 -25 -32 47 64 46 1.17 .50 IA443 0 -18 103 140 64 1.63 .85 WA44D 25 -4 62 84 48 1.22 50 iA41M 70 21 108 146 75 1.91 100 1A42B 130 54 100 136 70 1.78 100 I A43T 200 93 148 201 90 2.29 100 Analysis of Palo Verde Unit I Capsule 380

5-10 Table 5-5 Charpy V-notch Data for the Palo Verde Unit I Standard Reference Material' Irradiated to a Fluence of 7.85 x 10'8 n/cm2 (E> 1.0 MeV)

Sample Temperature Impact Energy. Lateral Expansion Shear Number F C ft-lbs Joules mils mm  %

IAB6M 0 -18 4 5 1 0.03 S IAB56 100 38 28 38 14 0.36 10 IAB4A 125 52 30 41 28 0.71 15 IAB53 175 79 42 57 42 1.07 25 IAB6P 200 93 45 61 40 1.02 45 IAB5K 225 107 91 123 90 2.29 95.

1AB4B 250 121 88 119. 72 '1.83 90 lAB44. 325 163 110 149 71 1.80 100 IAB45 375 191 100 136 82 2.08 100.

Analysis of Palo Verde Unit I Capsule 380

5-11 Table 5-6 Instrumented Charpy Impact Test Results for the Palo Verde Unit I Lower Shell Plate M-4311-1 Irradiated to a Fluence of 7.85 x 1018 n/cm2 (E>1.O MeV) (Longitudinal Orientation)

Normalized Energies (ft-lb/in2 )

Charpy Yield Time to Time to Fast Test Energy Load Yield try Max. Max. Fract. Arrest Yield Flow Sample Temp. ED Charpy Max. Prop. PGY (msec) Load PM T, Load Pr Load PA Stress Sv Stress No. (OF) (ft-lb) ED/A EM/A Ep/A (Ib) (Ib) . (msec) (Ib) (lb) (ksi) (Wcs) 1A1 IT -75 5 40 19 21 2216 0.15 2228 0.14 2216 0 74 74 iA127 0 19 153 65 88 3565 0.17 4077 0.23 4077 0 119 127 1A112 20 38 306 212 94 3925 0.18 4503 0.49 4497 447 131 140 30 43 346 273 74 3857 0.18 4454 0.60 4452 0 128 138 1A125 IA13U 50 60 483 293 191 3202 0.17 4040 0.71 3996 518 107 121 IAIlI 100 91 733 320 414 3750 0.18 4566 0.69 3913 1091 125 138 lA122 150 116 935 308 626 3582 0.18 4401 0.69 3578 2280 119 133 1A144 225 138 1112 314 798 2686 0.17 3625 0.84 n/a n/a 89 105

]AI3K 275 144 1160 353 808 3166 0.18 4109 0.83 n/s. n/a 105 121 of -l- . -. -I Analysis of Palo Verde tlnit I ('il,,ti¢ *"'

5-12 Table 5-7 Instrumented Charpy Impact Test Results for the Palo Verde Unit I Lower Shell Plate M-4311-1 Irradiated to a Fluence of 7.85 x 1 0 18 n/cm 2 (E>1.0 MeV) (Transverse Orientation)

Normalized Energies (ft-lb/in2 )

Charpy Yield Time to Time to Fast Test Energy Load Yield tiy Max. Max. Fract. Arrest Yield Flow Sample Temp. ED Charpy Max. Prop. Pci (msec) Load PM T, Load Pr Load PA Stress Sy Stress No. (OF) (ft-lb) ED/A EM/A EV/A (Ib) (lb) (msec) (lb) (Ib) (ksi) (ksi) 1A255 -75 4 32 16 16 2076 0.12 2088 0.13 2076 0 69 69 IA21E -40 8 64 36 29 3390 0.17 3390 0.17 3390 0 113 113 IA25P 0 24 193 138 55 3412 0.18 3683 0.4 3681 0 114 118 1A232 5 39 314 224 90 3739 0.18 4221 0.53 4215 0 125 133 1A21J 10 39 314 .240 75 3748 0.17. 4475 0.54 4416 0 125 137 1A23A 25 37 298 198 100 3206 0.17 3742 0.53 3658 0 107 116 IA25E 50 38 306 200 106 3369 0.17 3997 0.51 3963 580 112 . 123 IA25U 50 47 379 266 113 3101 0.17 3754 0.68 3574 450 103 .114 1A261 70 55 443 290 153 3379 0.18 4089 0.7 4072 1096 113 124 IA222 80 65 524 273 250 3219 0.17 3905 0.68 3821 1304 107 119 1A247 125 89 717 297 420 3452 0.18 4237 0.69 3848 1597 115 128 IA21M 150 110 886 306 580 3448 0.17 4326 0.69 3043 2071 115 129 1A256 150 62 500 259 240 2944 0.17 3684 0.69 3582 1313 98 110 1A235 200 112 902 252 651 2797 " 0.17 3585 0.69 n/a n/a 93 106 1A263 250 118 951 302 648 2534 0.17 3483 0.84 n/a n/a 84 -100 Analysis of Palo Verde Unit I Capsule 38*

5-13 Table 5-8 Instrumented Charpy Impact Test Results for the Palo Verde Unit I Surveillance Weld Metal Irradiated-to a Fluence of 7.85 x 101 n/cm 2 (E>I.0 MeV)

Normalized Energies (ft-lb/in2)

Charpy Yield Time to Time to Fast Test Energy Load Yield tGy Max. Max. Fract. Arrest Yield Flow Sample Temp. ED Charpy Max. Prop. PGy (msec) Load PM Tm Load PF Load PA Stress Sy Stress 0 (lb) (lb) (msec) 0b) (Ib) (ksi) (ksi)

No. ( F) (ft-lb) ED/A EM/A E,/A IA31Y -96 7 56 32 25 3362 0.16 3362 0.16 3362 0 112 112 IA354 -70 19 153 71 82 4128 0.18 4478 0.23 4362 0 137 143 IA324 -55 11 89 40 48 3838 0.17 3845 0.17 3838 0 128 128 1A3A2 -50 34 274 192 82 3870 0.18 4168 0.47 4164 0 129 134 1A313 -45 25 201 66 135 4119 0.17 4427 0.22 4231 0 137 142 IA372 -25 48 387 210 176 3686 0.17 4058 0.51 3979 924 123 129 IA33K -10 95 765 308 457 3790 0.17 4217 0.69 3585 1218 126 133 1A32U 0 65 524 216 308 3555 0.17 4087 0.53 4071 1422 118 127 1A342 15 96 774 320 453 3926 0.18 4323 0.70 3566 1239 131 137 IA35E 25 114 919 329 589 3925 0.17 4482 0.70 3480 1822 131 140 1A32M 50 129 1039 332 707 3147 0.17 3682 0.83 2798 1728 105 114 1A323 100 149 1201 274 927 3407 0.2 3833 0.68 n/a n/a 113 121 IA35U 150 163 1313 275 1039 3170 0.17 3799 0.69. n/a. n/a. 106 116 IA331 200 151' 1217 269 948 3132 0.17 3807 0.68- n/a* n/a 104 116 IA33B 250 170 1370 343 1026 3173 0.18 3816 0.84 n/a n/a 106 116 Analysis of Palo Verde Unit I Capsule 38*

5-14 Table 5-9 Instrumented Charpy Impact Test Results for the Palo Verde Unit I Heat Affected Zone Material Irradiated to a Fluence of 7.85 x loll n/cm 2 (E>1.0 MeV)

Nonnalized Energies 2

(ft-lb/in )

Charpy Yield Time to Time to Fast Test Energy Load Yield tky Max. Max. Fract. Arrest Yield Flow Sample Temp. ED Charpy Max. Prop. Pcy .(msec) Load PM Tw Load PF Load PA Stress Sy Stress No. ("F) (ft-lb) ED/A EM/A Ep/A (Ib) (lb) (msec) (Ib) 0ib) (ksl) (ksi)

IA441 .175 12 97 55 42 4205 0.18 4372 0.2 4366 0 140 143 1A442 .120 23 185 70 115 4217 0.17 4751 0.22 4474 0 140 149 IA43D -90 54 435 251 184 4413 0.17 4914 0.51 4862 753 147 155 IA41U -75 53 427 228 199 3862 0.17 4336 0.52 4167 0 129 136 1A44Y -50 18 145 62 83 4015 0.17 4220 0.21 3976 0 134 137 1A453 -30 30 242 58 184 3478 0.17 3814 0.22 3677 458 116 121 IA416 -25 47 379 223 156 3938 0.17 4347 0.51 4230 1046 131 138 1A443 0 103 830 375 455 4244 0.18 5340 0.70 4541 1555 141 160 IA44D 25 62 500 197 302 3479 0.18 3705 0.52 3570 1888 116 120 IA41M 70 108 870 266 604 3364 0.17 3746 0.67 n/a n/a 112 118 IA42B 130 100 806 259 547 3228 0.17 3659 0.67 n/a n/a 107 115 IA43T 200 148 1192 320 872 3704 0.17 4442 0.7 n/a n/a 123 136 Analysis of Palo Verde Unit I Capsule 38*

5-15 Table 5-10 Instrumented Charpy Impact Test Results for the Palo Verde Unit I Standard Reference Material Irradiated to a Fluence of 7.85 x 1 0 "' n/cm 2 (E>1.0 MeV)

Normalized Energies 2

______(ft-lb/in )

Charpy Yield Time to Time to Fast Test Energy Load Yield tcy MaL Max. Fract. Arrest Yield Flow Sample Temp. ED Charpy Max. Prop. Poy (nisec) Load Pm T, Load PF Load PA Stress Sy Stress No. (OF) (ft-lb) ED/A EMIA Et/A (Ib) _b) (msec) (ib) (Ib) (ksi) (ksi)

IAB6M 0 4 32 8 24 1207 0.11 1207 0.11 1207 0 40 40 1AB56 100 28 226 166 59 3648 0.18 4317 0.43 4315 0 121 133 1AB4A 125 30 242 170 72 3807 0.18 4257 0.42 4228 503 127 134 1AB353 175 42 338 207 132 3582 0.17 4319 0.50 4183 1327 119 132 IAB6P 200 45 363 222 141 3736 0.17 4515 0.5! 4513 792 124 137 IAB5K 225 91 733 291 ,443 3466 0.18 4297 0.67 3190 2469 115 129 IAB4B 250 88 709 267 442 3056 0.17 3862 0.67 1261 575 102 115 1A1344 325 110 886 292 595 3470 0.17 4317 0.66 n/8 n/a 116 130 1AB45 375 100 806 283 523 3328 0.18 4113 0.67 n/a n/a Ill 124 Analysis of Palo Verde Unit 1 Capsule 380

5-16 5-16 Table 5-11 Effect of Irradiation to 7.85 x *0'9 n/cm2 (E>1.0 MeV) on the Notch Toughness Properties of the Palo Verde Unit 1 Reactor Vessel Surveillance Materials Average 30 (ft-lb)(') Average 35 mil Lateral°b) Average 50 ft-lb()' Average Energy Absorption($)

Material Transition Temperature ('F) Expansion Temperature (*F) Transition Temperature (*F) at Full Shear (ft-lb)

Unirradiated Irradiated AT Uniirradiated Irradiated AT Unirradiatcd Irradiated AT Unirradiatcd Irradiated AE Lower Shell -12.85 8.72 21.58 14.24 33.19 18.95 12.46 42.52 30.06 147 141 -6 Plate M-431 1-1 (Longitudinal)

Lower Shell 9.04 10.14 1.1 36.51 40.65 4.14 43.11 55.25 12.14 168 115 -53 Plate M-431 1-1 (Transverse)

Weld Metal -53.28 .47 6.27 -30.94 -31.79 -0.84 -33.43 -25.3 8.12 164 158 -6 HAZ Metal -63.2 -89.79 -26.59 -29.74 -42.71 -12.97 -26.57 -40.01 -13.43 135 119 -16 SRM 21.9 136.16 114.25 47.48 153.84 106.35 47.61 176.21 128.6 129 105 -24

a. "Average" is defined as the value read from the curve fit through the data points of the Charpy tests (see Figures 5-1, 5-4, 5-7. 5-10 and 5-13).
b. "Average" is defined as the value read from the curve fit through the data points of the Charpy tests (see Figures 5-2, 5-5, 5-8, 5-11 and 5-14)

Analysis of Palo Verde Unit I Capsule 38*

5-17 Table 5-12 Comparison of the Palo Verde Unit I Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper Shelf Energy Decrease with Regulatory Guide 1.99, Revision 2, Predictions Material Capsule Fluence 30 ft-lb Transition Upper Shelf Energy (x 1019 Temperature Shift Decrease n/cm Predicted Measured Predicted Measured (OF) (OF) (%)(b) (%)

Lower Shell 380 0.785 24.23 21.58 18 5 Plate M-431 1-1 (Longitudinal)

Lower Shell 380 0.785 24.23 1.1 '.18 31.5 Plate M-43 11-1 (Transverse)

Surveillance 1370 0.433 22.8 -2.94 16 1 Program 380 0.785 23.3 6.27 18 4 Weld Metal Heat Affected 1370 0.433 -10.98 --- 8 Zone Material 380 0.785 -26.59 --- 12 Notes:

(a) Calculated Fluences from capsule 380 dosimetry analysis results (E > 1.0 MeV)

(b) From Figure 2 of Regulatory Guide 1.99, Revision 2, using the Cu wt. Percent and capsule fluence values.

Analysis of Palo Verde Unit I Capsule 38*

5-18 Table 5-13 Tensile Specimens From Lower Shell Course Plate M-431 1-1 and Weld Sample Test 0.2% Yield Ultimate Fracture Fracture Fracture Uniform Total Reduction Number Material Temperature Strength Strength Load Stress Strength Elongation Elongation in Area (F) (ksi) (ksi) (Idp) (ksi) (ksi) (%) (%) (%)

IA2JC PLATE 50 61.1 85.7 -3.01 165.8 61.3 15.1 29.6 63 1A2K2 PLATE 175 60.1 79.8 2.87 162.4 58.4 13.4 25.5 64 IA2J5* PLATE 550 77.7 2.71 155.6 55.3 20.2 64 1A3JC WELD -15 75.4 85.9 2.70 194.4 55.0 13.6 27.3 72 IA3J4 WELD 75 72.8 86.7 2.63 201.2 53.6 11.5 26.1 73 1A3J7 WELD 550 62.1 82.5 2.47 169.8 50.2 10.6 23.8 70

  • NOTE: Testing difficulties make the yield strength and uniform elongation of specimen 1A2J5 invalid.

Analysis of Palo Verde Unit 1 Capsule 380

5-19 LOWER SHELL M-4311-1 (LONGITUDINAL).

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 13W525 on 01-29-2001 Resuts Curve Fluence ISE d-LSE USE d-USE T

  • 30 d-T o 30 T
  • 50 d-T o 50 0 2.19 0 147 0 0 12.46 0 2 a 2a 0 141 -6 2158 42 30B6 W

-o z..

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve lqend

!aa S20s .l.tt Data Set(s) Platted Curve Plant Capsule Material Ori. Heat#

PVl UNIRR PLATE SA533BI LT M-4311-1 2 PVI 38 PLATE SA533BI LT M-4311-1 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Palo Verde Unit I Reactor Vessel Lower Shell Plate M-431 1-1 (Longitudinal Orientation)

Analysis of Palo Verde Unit 1 Capsule 380

5-20 LOWER SHELL M-4311-1 (LONGITUDINAL)

CVGRAPI 4.1 Hyperbolic Tangent Curve Printed at Ja4551 on 01-29-200I Results Curve Fluence USE d-USE T o LE35 d-T o LE35 I 0 8432 0 1424 0 2 0 8Z78 -. 54 =3:9 Ila%

ci, 4-)

-300 -20O -0oo 0 100 200 300 400 500 600 Temperature in Degrees F Curve Legend I- 2 0----

Data Setgs) Plotted Curve Plant Capsule Material ori Beat#

1 PVI UNIRR PLATE SA533B1 LT M-4311-1 2 PV1 38 PLATE SAW313 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Palo Verde Unit I Reactor Vessel Lower Shell Plate M-431 1-1 (Longitudinal Orientation)

Analysis of Palo Verde Unit I Capsule 38'

5-21 LOWER SHELL M-4311-1 (LONGITUDINAL)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 13:490 on 01-29-2001 Results Curve Fluence T o 5( Shear d-T o 50,/. Shear 1 0 59.06 0 2 0 7'3.'77 14.71 U)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Legeud 10 - 20-....

Data Set(s) Plotted Curve Plant Causle Material OrL heatf PVl UNJRR PLATE SA53381 LT MA-41l 2 PVl 38 PLATE SA533BI LT Md-4311-1 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Palo Verde Unit I Reactor Vessel.

Lower Shell Plate M-431 I-] (Longitudinal Orientation)

Analysis of Palo Verde Unit I Capsule 38*

5-22 LOWER SHELL M-4311-1 -(TRANSVERSE)

CVGRAPH 4J Hyperbolic Tangent Curve Printed at 14M37 on 01-29-2001 Results T Curve Fluence LS d-MS USE d-USE T

  • 30 d-T o 3D T o 50 d-T &50 1 0 219 0 168 0 9.04 0 4311 0 2 0 219 0 115 -53 10.14 IJ W52 1014 (I)

PC T

.4~)

CD

-300 -200 -100 0 100 200 30o, 400 500 60o Temperature in Degrees F Curve Legend I t- 20---.--

Data Set(s) Plotted Curve Plant Cansule Material Or. Heatl PVI UNIRR PLATE SA533BI Th M-4311-1 2 "VI 38 PLATE SA5:1I3I TL M-4311-1 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Palo Verde Unit 1 Reactor Vessel Lower Shell Plate M-431 1-1 (Transverse Orientation)

Analysis of Palo Verde Unit I Capsule 380

23 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Palo Verde Unit 1 Reactor Vessel Lower Shell Plate M-431 1- (Transverse Orientation)

Analysis of Palo Verde Unit 1 Capsule 380

5-24 LOWER SHELL M-4311-1 (TRANSVERSE)

UVGRAPH 41 Hyperbolic Tangent Curve Printed at 1507:42 on 01-29-20)01 Results Curve Fluencte T

  • 5W/ Shear d-T 50r/. Shear l 0 Th34 0 0 90M 1.47

$-4)

.0

-300 ' -200 -1 0 100 20 30 400 500 60o Temperature in Degrees F Curve Legend l10 Data Set(s) Plotted Curve Plant Canule Material Onf Heat5 DrL - Heat#

PVI UNIIIR PLATE SAM3BI TL M-4311-I 2 38 PLATE SASM311 Tn M-4311-i Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Palo Verde Unit I Reactor Vessel Lower Shell Plate M-431 1-1 (Transverse Orientation)

Analysis of Palo Verde Unit I Capsule 38*

5-25 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Palo Verde Unit I Reactor Vessel Surveillance Weld Material Analysis of Palo Verde Unit 1 Capsule 380

5-26 SURVEILLANCE WELD CVGRAPH 4J Hyperbolic Tangent Curve Printed at l3?l5 on 08-4-2000 Results Curve Fluence USE d-USE T o L35 d-T o L5 I 0 90.43 0 -30.94 0 2 0 8&8M -a3m -_M3 -1.I8 3 0 92.18 1.74 -31.m9 -.84 Yn

-300 * -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Legend ID-Data Set(s) Plotted Curve Plant Cansule Material OfL HeatL PVl UNIRR WELD M-4311-1/M-4311-2 2 137 WELD M-4311-1/M-4311-2

3 PVt 38 WELD M-4311-1/M-4311-2 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Palo Verde Unit 1 Reactor Vessel Surveillance Weld Metal Analysis of Palo Verde Unit I Capsule 380

5-27 Figure 5-9 Cbarpy V-Notch Percent Shear vs. Temperature for Palo Verde Unit I Reactor Vessel Surveillance Weld Metal Analysis of Palo Verde Unit 1Capsule 38*

5-28 SURVEILLANCE HEAT-AFFECTED-ZONE CVCRAI 4.1 Hyperbolic Tangent Curve Printed at l12209 on "80-2000 Results Curve Fluence ISE d-LSE USE , d-USE T o 30 d-T o 30 T o50 d-T o 50 0 2,.19 219 0 135 0 *-632 0 570 2 0 0 124 -11 -74J8 -10A -37. -1L2 2A9 0 -16 3 0 119 -&a79 -2;9 U,)

1.0

>)

-300 -200 -100 0. 100 200 300 400 500 600 Temperature in. Degrees F Curve Legend i0t - 20-----

Data Setqs) Plotted Curve Plant Caisule. Material Ori. Heatd I PVI UNIRR HEAT AFFD ZONE 2 PV1 137 HEAT AFF) ZONE 3 Pyl 38 HEAT AFFI) ZONE Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Palo Verde Unit I Reactor Vessel Heat Affected Zone Material Analysis of Palo Verde Unit I Capsule 38*

5-29 SURVEILLANCE HEAT-AFFECTED-ZONE CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 13:1321 on 08-04-2000 Results Curve Fluence USE d-USE .7 o LE35 d-T o LF35 1 0 80.92 0 -29.74 0 2 0 8.08 5j5 -39.04 -9:3 3 0 90.51 9M58 -42.71 -1w.97 Ul) 40)

-300 -200 -100 0 100 200 300 40* 500 600 Temperature in. Degrees F Curve Legend Io- 20----

Data Set(s) Plotted Curve Plant Capsule Material Ori. Heat#

PVI UNIRR HEAT AFFD ZONE 2 PVI 137 HEAT AFFD ZONE 3 PVI 38 HEAT AFFD ZONE Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Palo Verde Unit I Reactor Vessel Heat Affected Zone Material Analysis of Palo Verde Unit 1 Capsule 38'

5-30 SURVEILLANCE HEAT-AFFECTED-ZONE CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 13:1420 on 08-04-2000 Results Curve Fluence T o 50z Shear d-T 0 50/ Shear 1 0 -.93 0~

2 0 -19.99 -19.05 3 0 -31.17 -30.w3 (U

a)1

-300W -200 -100 O 100 200 300 400 , 500, 600 Temperature in Degrees F Curve legend ID0 20 - .----- 30 Data Set(s) Plotted Curve Plant Caotule Material Or. Heat#

1 PVI UNIRR HEAT AFD ZONE 2 PVI 137 HEAT AFFD ZONE 3 PVI 38 HEAT AFFD ZONE Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Palo Verde Unit I Reactor Vessel Heat Affected Zone Material Analysis of Palo Verde Unit 1 Capsule 38'

5-31 STANDARD REFERENCE MATERIAL CVGRAPH 41 Hyperbolic Tangent Curve Printed at 131657 on 08-04-2000 Results Curve Fluence LS d-LSE USE d-USE To 30 d-T o 30 To 50 d-T o 50 0 219 0 129 0 219 0 47.61 0 2 0 219 0 105 -24 12329 101.39 15528 107.66 3 2.19 0 105 -24 13616 11425 17621 16 I)

-)

-300 -20 -100 0 1oo 200 30 40 5W 600 Temperature in Degrees F Curve Legend 10- 20-"..--* 30 Data Set(s) Plotted Curve Plant Camule Material On. Heat#

1 PVI UNIRR SRM SAW3BI LT- _

2 PV1 137 SRII SAW3BI Li' 3 P~l 38 SRM SA533BI Figure 5-13 Charpy V-Notch Impact Energy vs. Temperature for Palo Verde Unit I Reactor Vessel Standard Reference Material Analysis of Palo Verde Unit I Capsule 380

5-32 Figure 5-14 Charpy V-Notch Lateral Expansion vs. Temperature for Palo Verde Unit I Reactor Vessel Standard Reference Material Analysis of Palo Verde Unit I Capsule 380

5-33 Figure 5-15 Charpy V-Notch Percent Shear vs. Temperature for Palo Verde Unit 1 Reactor Vessel Standard Reference Material Analysis of Palo Verde Unit I Capsule 381

IA Iii,_1QG i- 1*50 0F 12:Al22, Figure 5-16 (harpy Impaci:pecml~,Oiea4r*ae Srces fori- l1 Verde Unit I Reactor Vessel Lowe Shll PateM-41-1 (Tr~ansqverse Orientation)

'A, al*, f* aI&V;dt'd Uj*iji:

c i ule ' '. ". .

.. - 35:

1A 7- 5 T::K>. IE. -4 0'F IA25Pn W I 1A231 50 F I00 F 71 W'A 25OF- 1A25E, 50OF I-

i- 2, SON  :

n\1A27 ,125 MAYIM 150JF .:. K.L235, 0O 3, 250OF Figure N -17 Charpy Impact Specim.en Fracture Surfaces fori PIo Verde Unit 'I Reactor Vessel

/Lower.Shell Plate Nl-4311-1 (Loiigiudinal Orienitition)

AMQBW Palo vcrdýjU il Capsule .38ý'

5~S 6<

AIV) I Y 9 ILE 54, 4 =-7 011 I A3-32-' I A33: 511-

-I!

~I I -2 \ 01. 10oO° 1IA3*31, ?F

Figiure 5-18i ct Spccimcn 1,racture Smrfatces for I41o Vterdv ,UIlit 2 Reactor )v S~eI tal spcdineiil

I A-141ý -17,ý`ý 1A441,0F -120 0 FU.T'A4 A442, 175 D, ~-&

IA44Yý -5001:

1ý 70 0F*

1." 42 1,~ i~I O'- 1A43T, 200 0 Fll Figu re 5419* Charpy Iqpact Specimen Fracture Sur*ices for Palo Verde unit I Reactor vessel H ea t Aff ected ?... (

A~a1ysis ~t Th~1o V~rd5 Uft&i Capsuic 3S~

- ~3S 1000 F IAB51, 175 0 FI 2250F:

u rc ..- - .0Charpy Impact Specimen Fracturt

... Surfaices for Palo :rdUnit I Reictor Vt-essl Standard Reference Material f

onlsi lauVedUilt 1 au

5-39 (0C) 0 50 100 150 200 250 300 120 S I I I1 I I I_

800 110 100 700 ULTIMATE TENSILE STRENGTH 90 600 2 A 0

C4, W-80 0I T 70 1500 60 400 50 0.2% YIELD STRENGTH 300 40 LEGEND:

O A UNIRRADIATED

  • A IRRADIATED TO A FLUENCE OF 7.85 X 1018 n/cm2 (E>I.0MeV) AT 5500 F 80 2 REDUCTION INAREA 70 60 I- 50 b-I 40 C-, TOTAL ELONGATION 30 A&

20 10

! 1 ! IA 0

0 100 200 300 400 500 600 TEMPERATURE (OF)

Figure 5-21 Tensile Properties for Palo Verde Unit 1 Reactor Vessel Lower Shell Plate M-4311-1 (Transverse Orientation)

Analysis of Palo Verde Unit I Capsule 38*

SA4O (oC)

-50 0 50 100 150 200 250 300 120 IIII t I I I_ 800 110 100 700 90 ULTIMATE TENSILE STRENGTH AE-----NG7 600 80 C-, 70 500 C-,

60

..... 0.2% YIELD STRENGTH 400 50 40 300 LEGEND:

o A UNIRRADIATED A IRRADIATED TO A FLUENCE OF 7.85 X 10'L n/cm2 (E>1.0MeV)AT 550-F 80 REDUCTION IN AREA 70 60 50 0

-J

(_- 40 30 AL TOTAL ELONGATION 20 10 I UNIFORM ELONGATION 0

-I( *0 0 100 200 300 400 500 600 TEMPERATURE (°F)

Figure 5-22 Tensile Properties for Palo Verde Unit 1 Reactor Vessel Weld Metal Analysis of Palo Verde Unit I Capsule 380

5-4 SSp Spe-Cimem 1A2'J5 Testcd at Figure5`23! Frictured Tensile Specimlens, from Palo Veide ,unit I Reactor NV ,et,Shell Plmte NI-431 1-1(T[ransverse Orientation)

\av ,oI'do V ;' L2 ~lt', eS

I'5~42 Speci Sp Figure 5-24 . Fractured Tensile Specimens fromn Palo .nit V... I Reac AnalysiS of.Palo \, erde .. nt 1 (&apsuke 38~ ... . . ... .:  :.:::.

5-43 100 90 80 70 60 E6 c/i (n 50 40 1A2,JC 30 50 F 20 10 0

0 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN, IN/IN STRESS-STRAIN CURVE PALO VERDE UNIT 1 38 DEGREES 100 90 8o 70 60O (Ii (0

w 50 40 30 1A2K2 175 F 20 10 0

0 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN, IN/IN 100 90 s0 70 60 c6 U 50

(,) 40 30 1A2J5 20 550 F 10 0

0 0.06 0.1 0.15 0.2 0.25 0.3 STRAIN, IN/bN Figure 5-25 Engineering Stress-Strain Curves for Lower Shell Plate M-431 1-1 Tensile Specimens 1A2JC, 1A2K2 and IA2J5 (Transverse Orientation)

Analysis of Palo Verde Unit I Capsule 38R

5-44 100 90 80 70 60 50 40 iA3JC 30 -15 20 10 0

0 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN, IN/lN STRESS-STRAIN CURVE PALO VERDE UNIT 1 38.DEGREES 100 90 80 70 60 w5 U, 50 40 30 1A3J4 20 75 F 10 0

0 0.05 0.1 0.15 0.2 0.25 0.3 STRAIN, IN/IN 100 90 80 70 MA 6 0 NO.

C6 FA 50 0,

40 30 1A3J7 550 F 20 l0 0 0.06 0.1 0.15 0.2 0.25 0.3 STRAIN. IN/IN Figure 5-26 Engineering Stress-Strain Curves Weld Metal Tensile Specimens 1A3JC, 1A3J4, and IA3J7 Analysis of Palo Verde Unit I Capsule380

6-1 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY

6.1 INTRODUCTION

Knowledge of the neutron environment within the reactor vessel and surveillance capsule geometry is required as an integral part of LWR reactor vessel surveillance programs for two reasons. First, in order to interpret the neutron radiation induced material property changes observed in the test specimens, the neutron environment (energy spectrum, flux, fluence) to which the test specimens were exposed must be known. Second, in order to relate the changes observed in the test specimens to the present and future condition of the reactor vessel, a relationship must be established between the neutron environment at various positions within the reactor vessel and that experienced by the test specimens. The former requirement is normally met by employing a combination of rigorous analytical techniques and measurements obtained with passive neutron flux monitors contained in each of the surveillance capsules.

The latter information is generally derived solely from analysis.

The use of fast neutron fluence (E > 1.0 MeV) to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for development of damage trend curves as well as for the implementation of trend curve data to assess vessel condition. In recent years, however, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves as well as to a more accurate evaluation of damage gradients through the reactor vessel wall.

Because of this potential shift away from a threshold fluence toward an energy dependent damage function for data correlation, ASTM Standard Practice E853, "Analysis and Interpretation of Light-Water Reactor Surveillance Results," recommends reporting displacements per iron atom (dpa) along with fluence (E > 1.0 MeV) to provide a data base for future reference. The energy dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693, "Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements per Atom." The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, "Radiation Embrittlement of Reactor Vessel Materials."

This section provides the results of the neutron dosimetry evaluations performed in conjunction with the analysis of test specimens contained in surveillance Capsules WI 37 and W38 which were withdrawn after the fourth and eighth fuel cycles, respectively. This evaluation is based on current state-of-the-art methodology and nuclear data including neutron transport and dosimetry cross-section libraries derived from the ENDF/B-VI data base. This report provides a consistent up-to-date neutron exposure database for use in evaluating the material properties of the Palo Verde Unit 1 reactor vessel. Included in the neutron exposure database is information related to the standby surveillance capsules W43, W142, W230, and W310.

In each capsule dosimetry evaluation, fast neutron exposure parameters in terms of neutron fluence (E > 1.0 MeV), neutron fluence (E > 0.1 MeV), and iron atom displacements (dpa) are established for the capsule irradiation history. The analytical formalism relating the measured capsule exposure to the exposure of the vessel wall is described and used to project the integrated exposure of the vessel wall.

Also, uncertainties associated with the derived exposure parameters at the surveillance capsules and with the projected exposure of the reactor vessel are provided.

Analysis of Palo Verde Unit I Capsule 38'

6-2 All of the calculations and dosimetry evaluations presented in this section have been based on the latest available nuclear cross-section data derived from ENDF/B-VI and the latest available calculational tools and are consistent with the requirements of Draft Regulatory Guide DG-1053, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence." Additionally, the methods used to develop the best estimate pressure vessel fluence are consistent with the NRC approved methodology described in WCAP-14040-NP-A, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," January 1996.

6.2 DISCRETE ORDINATES ANALYSIS A plan view of the reactor geometry at the core midplane is shown in Figure 4-1. Six irradiation capsules attached to the reactor vessel are included in the reactor design to constitute the reactor vessel surveillance program. The capsules are located at azimuthal angles of 380, 430, 1370, 1420, 2300, and 330' relative to the core cardinal axis as shown in Figure 4-1.

A plan view of the 45 degree R-0 sector model of the reactor including the surveillance capsule holder modeling attached to the reactor vessel is shown in Figure 6-1. The 45-degree model assumes azimuthal symmetry conditions in the reactor and the three capsules modeled at 380, 400, and 43' represent the locations of all six surveillance capsules. The stainless steel surveillance capsule holder containers are a 1.968-inch byl .293-inch inner dimension with a 0.138-inch wall thickness. The stainless steel specimen containers are 1.5 inch by 0.75-inch and approximately 96 inches in height. The containers are positioned axially such that the test specimens are centered on the core midplane, thus spanning the central 8 feet of the 12.5-foot high reactor core.

From aneutronic standpoint, the surveillance capsules and associated support structures are significant.

The presence of these materials has a marked effect on both the spatial distributions of neutron flux and the neutron energy spectrum in the water annulus between the core barrel and the reactor vessel. In order to determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model. The effect of the surveillance capsules on the neutron environment at the vessel clad base metal interface is shown in Figure 6-2.

In performing the fast neutron exposure evaluations for the surveillance capsules and reactor vessel, two sets of transport calculations were carried out. The first set of two-dimensional R-0 model calculations for each of the eight cycles use a model containing no surveillance capsules. The second set of R-0 computations were for each of the eight cycles with the surveillance capsule modeling shown in Figure 6-1 included at the 380, 400, and 430 locations in the 45 degree model. The two sets of calculations were used to obtain relative neutron energy distributions throughout the reactor geometry as well as to establish relative radial distributions of exposure parameters {4(E > 1.0 MeV), O(E > 0.1 MeV), and dpa/sec) through the vessel wall. The neutron spectral information was required for the interpretation of neutron dosimetry withdrawn from the surveillance capsule as well as for the determination of exposure parameter ratios, i.e., [dpa/sec]/[4(E > 1.0 MeV)], within the reactor vessel geometry. The relative radial gradient information was required to permit the projection of measured exposure parameters to locations interior to the reactor vessel wall, i.e.,.the 1/4ATand 3/3/4Tlocations.

The absolute cycle-specific results from the forward transport calculations included the neutron energy spectra and radial distribution information in the two-dimensional r,0 model and provided the information required to:

Analysis of Palo Verde Unit I Capsule 380

6-3

1. Evaluate neutron dosimetry obtained from surveillance capsules,
2. Relate dosimetry results to key locations at the inner radius and through the thickness of the reactor vessel wall,
3. Enable a direct comparison of analytical prediction with measurement, and
4. Establish a mechanism for projection of reactor vessel exposure as the design of each new fuel cycle evolves.

The two-dimensional rO transport calculation model for the reactor configuration shown in Figure 4-1 is plotted in Figure 6-1. The transport calculations were carried out using the DORT two-dimensional discrete ordinates code Version 3.1131 and the BUGLE-96 cross-section library 14]. The BUGLE-96 library is a 47 energy group ENDF/B-VI based data set produced specifically for light water reactor applications.

In the transport analyses, a forward solution mode is used with anisotropic scattering treated with a P5 -

Legendre polynomial expansion of the scattering cross-sections and angular discretization modeled as an S 16 order of angular quadrature.

The core power distribution utilized in the forward transport calculation for each cycle were derived from assembly power and pin-by-pin power data provided by APS. The cycle averaged axial power distribution derived from APS data is shown in Figure 6-3. The axial power distribution data was used to define the maximum exposure parameter value.

Selected results from the neutron transport analyses are provided in Tables 6-1 through 6-5. The data listed in these tables establish the means for absolute comparisons of analysis and measurement for the Capsules W137 and W38 irradiation periods and provide the means to correlate dosimetry results with the corresponding exposure of the reactor vessel wall. The tabulations also provide the data for the 40' surveillance capsule location.

In Table 6-1, the calculated exposure parameters [ý(E > 1.0 MeV), (E > 0.1 MeV), and dpa/sec] are given at the geometric centerof the three azimuthally symmetric surveillance capsule positions (38', 400, and 430). All results are based on the Palo Verde Unit 1 core power distributions for the eight cycles of operation. The DORT forward solution tiansport analyses for each cycle are used to establish the absolute comparison of measurement values with analysis results. Similar neutron exposure rate data are given in Table 6-2 for the reactor vessel inner radius. Again, the three pertinent exposure parameters are listed for the Cycles 1 through 8 based on the cycle-by-cycle core power distributions. Also listed in Table 6-2 are the average exposure values for the both the first 4 cycles of operation, for the 8 cycles of operation, and for cycles 5 through 8. The average values for cycles 5 through 8 are used for exposure projections.

It is important to note that the data for the vessel inner radius were taken at the clad/base metal interface, and, thus, represent the maximum predicted exposure levels of the vessel plates and welds.

Radial gradient information applicable to VE > 1.0 MeV), ý(E > 0.1 MeV), and dpa/sec is given in Tables 6-3, 6-4, and 6-5, respectively. The data, obtained from the reference forward neutron transport calculation, are presented on a relative basis for each exposure parameter at several azimuthal locations.

Exposure distributions through the vesselt wall may be obtained by normalizing the calculated or projected exposure at the vessel inner radius to the gradient data listed in Tables 6-3 through 6-5.

Analysis of Palo Verde Unit I Capsule 38*

6-4 For example, the neutron flux f(E > 1.0 MeV) at the 1/T depth in the. reactor vessel wall along the 00 azimuth is given by:

01,/,r (00) = (233.756,00) F(239.409, 00) where:

0Yr (00) Projected neutron flux at the 1/T position on the 00 azimuth.

0(233.756,0-)-= Projected or calculated neutron flux at the vessel inner radius on the 0' azimuth.

F(239.409,0") = Ratio of the neutron flux at the '/T position to the flux at the vessel inner radius for the 00 azimuth. This data is obtained from Table 6-3.

Similar expressions apply for exposure parameters expressed in terms of W(E > 0. 1 MeV) and dpa/sec where the attenuation function F is obtained from Tables 6-4 and 6-5, respectively.

6.3 NEUTRON DOSIMETRY The passive neutron sensors included in the Palo Verde Unit I surveillance program are listed in Table 6-6.

Also given in Table 6-6 are the primary nuclear reactions and associated nuclear constants that were used in. the evaluation of the neutron energy spectrum within the surveillance capsules and in the subsequent determination of the various exposure parameters of interest [ý(E > 1.0 MeV), 4(E > 0.1 MeV), dpalsec].

The relative locations of the neutron sensors within the capsules are shown in Figure 4-2. The iron, nickel, copper, titanium, and cobalt-aluminum monitors, in wire form, were placed in holes drilled in spacers at several axial levels within the capsules. The cadmium shielded uranium fission monitors were accommodated within the dosimeter block located near the center of the capsule.

The use of passive monitors such as those listed in Table 6-6 does not yield a direct measure of the energy dependent neutron flux at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time and energy dependent neutron flux has on the target material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

" The measured specific activity of each monitor,

  • The physical characteristics of each monitor,

" The operating history of the reactor,

  • The energy response of each monitor, and

" The neutron energy spectrum at the monitor location.

Analysis of Palo Verde Unit I Capsule 380

6-5 Specific activities for each of the monitors contained in Capsule W137 were determined using established ASTM procedures as documented in prior analysis ý'sl. The specific activities for each of the monitors contained in Capsule W38 were determined using established ASTM procedures (16 through 29. Following sample preparation and weighing, the activity of each monitor was determined by means of a high-resolution gamma spectrometer. The irradiation history for the first four operating cycles of the Palo Verde Unit I reactor were from NUREG-0020, "Licensed Operating Reactors Status Summary Report". The irradiation history for the Cycles 5 to 8 operating periods of the Palo Verde Unit 1 reactor was obtained from plant personnel t'01. The irradiation history applicable to the exposure of Capsules W137 and W38 is given in Table 6-7.

Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:

R=P A No F Y , J Cj [1-e'.] [e-."]

where:

R Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pr (rps/nucleus).

A = Measured specific activity (dps/grn).

No = Number of target element atoms per gram of sensor.

F = Weight fraction of the target isotope in the sensor material.

Y = Number of product atoms produced per reaction.

Pj = Average core power level during irradiation period j (MW).

P.,r = Maximum or reference power level of the reactor (MW).

Cj = Calculated ratio of (E > 1.0 MeV) during irradiation period jto the time weighted average 4(E > 1.0 MeV) over the entire irradiation period.

X Decay constant of the product isotope (1/sec).

tj = Length of irradiation period j (sec).

td = Decay time following irradiation period j (sec).

and the summation is carried out over the total number of monthly intervals comprising the irradiation period.

In the equation describing the reaction rate calculation, the ratio [Pj]/[P,fr] accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio Cj, which can be calculated for each fuel cycle using the transport technology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single cycle irradiation, Cj is normally taken to be 1.0. However, for multiple-cycle irradiations, particularly those employing low leakage fuel management, the additional Cj term should be employed. The impact of changing flux levels for constant power operation can be quite significant for sensor sets that have been irradiated for many Analysis of Palo Verde Unit I Capsule 380

6-6 cycles in a reactor that has transitioned from non-low leakage'to low leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another.

Measured and saturated reaction product specific activities as Well as the derived full power reaction rates are listed in Table 6-8. All the measurements of fission monitors were updated with the following corrections. The reaction rates of the 238U sensors provided in Table 6-8 includes corrections for 3SU impurities, plutonium build-in, and gamma ray induced fission.

Values of key fast neutron exposure parameters were derived from the measured reaction rates using the FERRET least squares adjustment code [I*. The FERRET approach used the measured reaction rate data, sensor reaction cross-sections, and a calculated trial spectrum as input and proceeded to adjust the group fluxes from the trial spectrum to produce a best fit (in a least squares sense) within the constraints of the parameter uncertainties. The best estimate exposure parameters, along with the associated uncertainties, were then obtained from the best-estimate spectrum.

In the FERRET evaluations, a log-normal least squares algorithm weights both the a priori values and the measured data in accordance with the assigned uncertainties and correlations. In general, the measured values,f, are linearly related to the flux, q, by some response matrix, A:

fLU') w 0(a) where i indexes the measured values belonging to a single data set s, g designates the energy group, and (x delineates spectra that may be simultaneously adjusted. For example, g

relates a set of measured reaction rates, R,, to a single spectrum, ýg, by the multi-group reaction cross-section, aig. The log-normal approach automatically accounts for the physical constraint of positive fluxes, even with large assigned uncertainties.

In the least squares adjustment, the continuous quantities (i.e., neutron spectra and cross-sections) were approximated in a multi-group format consisting of 53 energy groups. The trial input spectrum was converted to the FERRET 53-group structure using the SAND-il code 3"]. This procedure was carried out

  • byfirst expanding the 47 group calculated spectrum into the SAND-I! 620 group structure using a SPLINE interpolation procedure in regions where group boundaries do not coincide. The 620 point spectrum was then re-collapsed into the group structure used in FERRET.

The sensor set reaction cross-sections, obtained from the ENDF/B-VI dosimetry file , were also collapsed into the 53-energy group structure using the SAND-il code. In this instance, the trial spectrum, as expanded to 620 groups, was employed as a weighting function in the cross-section collapsing procedure. Reaction cross-section uncertainties in the form of a 53 x 53 covariance matrix for each sensor reaction were also constructed from the information contained on the ENDF/B-VI data files. These matrices included energy group to energy group uncertainty correlations for each of the individual reactions. However, correlations between cross-sections for different sensor reactions were not included.

The omission of this additional uncertainty information does not significantly impact the results of the adjustment.

Analysis of Palo Verde Unit I Capsule 38'

6-7 Due to the importance of providing a trial spectrum that exhibits a relative energy distribution close to the actual spectrum at the sensor set locations, the neutron spectrum input to the FERRET evaluation was taken from the center of the surveillance capsule modeled in the reference forward transport calculation. While the 53 x 53 group covariance matrices applicable to the sensor reaction cross-sections were developed from the ENDF/B-VI data files, the covariance matrix for the input trial spectrum was constructed from the following relation:

M+,R = R'+ R , P, where R&specifies an overall fractional normalization uncertainty (i.e., complete correlation) for the set of values. The fractional uncertainties, Rk specify additional random uncertainties for group g that are correlated with a correlation matrix given by:

P. = [1-018., + 0 e 4 where:

(g-g',/

H 2 Y'2 The first term in the correlation-matrix equation specifies purely random uncertainties, while the second term describes short range correlations over a group range y (0 specifies the strength of the latter term). The value of 6 is I when g = g' and 0 otherwise. For the trial spectrum used in the current evaluations, a short range correlation of y = 6 groups was used. This choice implies that neighboring groups are strongly correlated when 0 is close to 1. Strong long-range correlations (or anti-correlations) were justified based on information presented by R. E. Maerker 1 3'1. The uncertainties associated with the measured reaction rates included both statistical (counting) and systematic components. The systematic component of the overall uncertainty accounts for counter efficiency, counter calibrations, irradiation history corrections, and corrections for competing reactions in the individual sensors.

Results of the FERRET evaluation of the Capsule W137 and W38 dosimetry are given in Table 6-9. The data summarized in this table include fast neutron exposure evaluations in terms of O(E > 1.0 MeV),

(b(E > 0.1 MeV), and dpa. In general, excellent results were achieved in the fits of the best estimate spectra to the individual measured reaction rates. The measured, calculated and best estimate reaction rates for each reaction are given in Table 6-10. An examination of Table 6-10 shows that, in all cases, reaction rates calculated with the best estimate spectra match the measured reaction rates to better than 6%. The best estimate and measured reaction rates compared to calculated reaction rates for the Co monitors show unusually high values. Although the reason has not been identified, a higher Co content in the monitor than that documented and used in the analysis would result in high values. In any event, Co reaction is monitored for an energy range much lower than the fast flux of primary interest; thus the Co data has insignificant effect on the best estimate fast flux from the analysis. The best estimate spectra from the least squares evaluation is given in Table 6-11 in the FERRET 53 energy group structure.

In Table 6-12, absolute comparisons of the best estimate and calculated fluence at the center of Capsules W 137 and W3 8 are presented. The results for the Capsules W 137 and W38 dosimetry evaluation (BE/C ratio of 0.832 for t,(E> 1.0 MeV)) are within expected tolerances compared with results obtained from similar evaluations of dosimetry from other reactors using methodologies based on ENDF/B-VI cross.

sections.

Analysis of Palo Verde Unit I Capsule 38'

6-8 6.4 PROJECTIONS OF REACTOR VESSELEXPOSURE The best estimate exposure of the Palo Verde Unit I reactor vessel was developed using a combination of absolute plant specific transport calculations andall available plant specific measurement data. In the case of Palo Verde Unit 1, the measurement database contains measurements from the five surveillance capsules discussed in this report.

Combining this measurement data base with the plant-specific calculations, the best estimate vessel exposure is obtained from the following relationship:

4

~B~tst =K 0Ic.1, where:

ciset E,, The best estimate fast neutron exposure at the location of interest.

K = The plant specific best estimate/calculation (BE/C) bias factor derived from the surveillance capsule dosimetry data.

Ocltc. = The absolute calculated fast neutron exposure at the location of interest.

The approach defined in the above equation is based on the premise that the measurement data represent the most accurate plant-specific information available at the locations of the dosimetry; and further, that the use of the measurement data on a plant-specific basis essentially removes biases present in the analytical approach and mitigates the uncertainties that would result from the use of analysis alone.

That is, at the measurement points the uncertainty in the best estimate exposure is dominated by the uncertainties in the measurement process. At locations within the reactor vessel wall, additional uncertainty is incurred due to the analytically determined relative ratios among the various measurement points and locations within the reactor vessel wall.

For Palo Verde Unit 1, the derived plant specific bias factors were 0.832, 0.894, 0.902 for cI(E > 1.0 MeV), 4(E > 0.1 MeV), and dpa, respectively. Bias factors of this magnitude developed with BUGLE-96 are within expected tolerances for fluence calculated using the ENDF/B-VI based cross-section library.

The use of the bias factors derived from the measurement data base acts to remove plant-specific biases associated with the definition of the core source, actual versus assumed reactor dimensions, and operational variations in water density within the reactor. As a result, the overall uncertainty in the best estimate exposure projections within the vessel wall depends on the individual uncertainties in the measurement process, the uncertainty in the dosimetry location, and, in the uncertainty in the calculated ratio of the neutron exposure at the point of interest to that at the measurement location.

The uncertainty in-the derived neutron flux foran individual measurement is obtained directly from the -

results of a least squares evaluation of dosimetry data. The least squares approach combines individual uncertainty in the calculated neutron energy spectrum, the uncertainties in dosimetry cross-sections, and the uncertainties in measured foil specific activities to produce a net uncertainty in the derived neutron flux at the measurement point. The associated uncertainty in the plant specific bias factor, K, derived from the BE/C data base, in turn, depends on the total number of available measurements as well as on the uncertainty of each measurement.

Analysis of Palo Verde Unit I Capsule 380

6-9 In developing the overall uncertainty associated with the reactor vessel exposure, the positioning uncertainties for dosimetry are taken from parametric studies of sensor position performed as part a series of analytical sensitivity studies included in the qualification of the methodology. The uncertainties in the exposure ratios relating dosimetry resultsto positions within the vessel wall are again based on the analytical sensitivity studies of the vessel: thickness tolerance, downcomer water density variations, and vessel inner radius tolerance. Thus, this portion of the overall uncertainty is controlled entirely by dimensional tolerances associated with the reactor design and by the operational characteristics of the reactor.

The net uncertainty in the bias factor, K, is combined with the uncertainty from the analytical sensitivity study to define the overall fluence uncertainty at the reactor vessel wall. In the case of Palo Verde Unit 1, the derived uncertainties in the bias factor, K, and the additional uncertainty from the analytical sensitivity studies combine to yield a net uncertainty of + 7.6%.

Based on this best estimate approach, neutron exposure projections at key locations on the reactor vessel inner radius are given in Table 6-13; furthermore, calculated neutron exposure projections are also provided for comparison purposes. Along with the current (9.81 EFPY) exposure, projections are also provided for exposure periods of 15, 32, 40, 45, and 54 EFPY. Projections for future operation were based on the assumption that the Cycles 5 through 8 exposure rates would continue to be applicable throughout plant life.

In the derivation of best estimate and calculated exposure gradients within the reactor vessel wall for the Palo Verde Unit I reactor vessel, exposure projections to 15, 32,40,45, and 54 EFPY were also employed.

Data based on both a L(E > 1.0 MeV) slope and a plant-specific dpa slope through the vessel wall are provided in Table 6-14.

In order to assess RTNDT versus fluence curves, dpa equivalent fast neutron fluence levels for the 1/4Tand 3/T positions were defined by the relations:

dpa(%T) dpa (/ T)

(14T) = (oT) and 0 'C14T)

= (o0T) dapa(O))

Using this approach results in the dpa equivalent fluence values listed in Table 6-14.

In Table 6-15, updated lead factors are listed for all of the Palo Verde Unit I surveillance capsules.

Analysis of Palo Verde Unit I Capsule 380

6-10 240-180 ACDRCA'MAW 0-0 Y,Cm 120- 680 FUE e -d IcNgVeLAsON

-751 125 17,25 25 25 37 6 0-- FUEL 75 12,5 175 225 275 525 375 425 Figure 6-1. Palo Verde Reactor Model (45 Degree R-e Sector) Including Vessel Surveillance Capsules Analysis of Palo Verde Unit I Capsule 380

6-11 Figure 6-2 Azimuthal Variation of Neutron Flux (E > 1.0 Mev)

At The Reactor Vessel Inner Radius 3.1 2.9 2.7 U,

2.5 5-C 2.3 U,

U, 0 2.1 1.9 1.7 1.5 0.0 15.0 30.0 45.0 Azimuthal Angle (Degmes)

I et-No Capsules --With Capsules Analysis of Palo Verde Unit 1 Capsule 380

6-12 Figure 6-3 Axial Distribution of Reactor Power 1.2 1.1 1.0 0.9 0.8 0.7 0.6 05.5 ,...

0 ' 50 100 150 Axial Distance from Core Bottom (Inches)

Analysis of Palo Verde Unitl1 Capsule 380

6-13 Table 6-1 Calculated Fast Neutron Exposure Rates at the Center of the Surveillance Capsules Core Midplane Elevation Capsule Location Operating Cycle 380 400 430 Flux(E>1.0 Mev) [n/cm 2-secj Cycle I 4.201E+10 4.224E+10 4.167E+10 Cycle 2 2.804E+10 2.803E+10 2.751E+10 Cycle 3 2.493E+10 2.511E+10 2.487E+10 Cycle 4 2.655E+10 2.657E+10 2.606E+10 Cycle 5 2.518E+10 2.621E+10 2.658E+10 Cycle 6 2.647E+10 2.748E+10 2.779E+10 Cycle 7 1.718E+10 1.751E+10 1.745E+10 Cycle 8 1.669E+10 1.708E+10 1.709E+10 Average(l -4) 3.046E+10 3.058E+10 3.013E+10 Average(l -8) 2.542E+10 2.583E+10 2.570E+10 Average(5-8) 2.104E+10 2.170E+10 2.184E+10 Flux(E>O.1 Mev) [n/cm 2-seC]

Cycle I 7.783E+10 7.808E+10 7.655E+10 Cycle 2 5.156E+10 5.143E+10 5.017E+10 Cycle 3 4.581E+10 4.605E+10 4.535E+10 Cycle 4 4.890E+10 4.882E+10 4.761E+10 Cycle 5 4.623E+10 4.803E+10 4.845E+ 10 Cycle 6 4.865E+10 5.038E+10 5.068E+10 Cycle 7 3.145E+10 3.199E+10 3.171E+10 Cycle 8 3.057E+10 3.122E+10 3.108E+10 Average(I-4) 5.617E+10 5.626E+10 5.512E+10 Average( 1-8) 4.677E+10 4.742E+10 4.692E+10 Average(5-8) 3.859E+10 3.972E+10 3.978E+I0 Eron Atom Displacement Rate [dpa]

Cycle I 6.094E-tl 6.130E-11 6.047E-11 Cycle 2 4.079E- I1 4.079E- 1I 4.004E-1 I Cycle 3 3.629E- II 3.654E-1 I 3.619E-1 I Cycle 4 3.860E-11 3.864E-I1 3.791E-11 Cycle 5 3.663E-11 3.813E-1I 3.866E-lI Cycle 6 3.849E-11 3.996E-11 4.041E-11 Cycle 7 2.503E-11 2.552E-11 2.543E-11 Cycle 8 2.432E-1 1 2.488E-1 I 2.489E-1 1 Average(l -4) 4.426E- I1 4.444E- I1 4.379E-1 1 Average(l -8) 3.697E-11 3.757E-I1 3.738E-11 Average(5-8) 3.062E-11 3.158E-11 3.179E-1l Analysis of Palo Verde Unit I Capsule 38*

6-14 Table 6-2 Calculated Azimuthal Variation Of Fast Neutron Exposure Rates And Iron Atom Displacement Rates At The Reactor Vessel Clad/Base Metal Interface Flux (E > 1.0 Mev) [nkcm2-sec]

Operating Cycle 0 Deg 15 De* 30 Deg 42.3 Deg 45 Deg Cycle I L.77E+10 2.56E+10 2.57E+10 3.01E+10 3.OOE+10 Cycle 2 1.53E+10 1.57E+10 1.75E+10 1.86E+10 1.85E+I0 Cycle 3 1.71E+10 1.89E+10 1.62E+10 1.70E+10 1.70E+I0 Cycle 4 , 136E+10 1.89E+10 1.75E+10 1.85E+I0 1.83E+I0 Cycle 5 9.48E+09 .16E+10 1.34E+10 1.85E+10 1.86E+10 Cycle 6 8.26E+09 1.09E+10 1.39E+10 1.94E+10 1.95E+10 Cycle 7 7.66E+09 1.01E+10 1.07E+10 1.24E,+10 1.24E+ 10 Cycle 8 8.39E+09 9.71E+09 1.02E+10 1.21E+10 1.21E+10 Average (1-4) i.60E+10 2.01E+10 1.93E+10 2.12E+10 2.11E+10 Average (1-8) 1.20E+10 1.50E+10 1.54E+10 1.80E+10 1.80E+10 Average (5-8) 8.42E+09 1.05E+10 1.19E+10 1.53E+10 1.54E+10 Flux (E > 0.1 Mev) [n/cm2-sec]

Operating Cycle 0 Deg 15 De* 30 Deg 42.3 De 45 De Cycle 1 3.74E+10 5.41E+10 5.49E+10 6.43E+10 6.42E+10 Cycle 2 3.20E+10 3.32E+10 3.72E+10 3197E+10 3.95E+10 Cycle 3 3.57E+10 3.98E+10 3.45E+10 3.63E+10 3.62E+10 Cycle 4 2.85E+10 3.99E+10 3.72E+10 3.94E+10 3.92E+10 Cycle 5 2.45E+10 21.98E10 2.85E+10 3.91E+10 3.94E+10 Cycle 6 1.73E+10 2.29E+10 2.95E+10 4.11E+10 4.14E+10 Cycle 7 1 60E+10 2.11E+10 2.25E+10 2.62E+10 2.62E+10 Cycle 8 1.75E+10 2.04E+10 2.16E+iO 2.56E+10 2.56E+10 Average (1-4) 3.36E+10 4.25E+10 4.11E+10 4.52E+10 4.50E+10 Average (1-8) 2.51E+10 3.16E+10 3.26E+10 3.84E+10 3.84E+10 Average (5-8) 1.76E+10 2.21E+10 2.52E+10 3.25E+10 3.26E+10 dpa/sec Operating Cycle 0 Deg. 15 Deg 30 Deg 42.3 Deg 45 Dea Cycle 1 2.74E-11 3.91E-1I 3.94E-11 4.60E-11 4.58E-11 Cycle 2 2.37E-11 2.41E-11 2.69E-l1 2.86E-11 2.84E-11 Cycle 3 2.63E-11 2.90E-11 2.50E-11 2.61E-11 2.60E-11 Cycle 4 2.IOE-11 2.90E-I1 2.69E-11 2.83E-11 2.81E-1I1 Cycle 5 1.47E-11 1.79E-11 2.07E-11 2.82E-1I 2.84E-1 I Cycle 6 1.28E-11 1.67E-I1 2.13E-I I 2.97E-11 2.99E-1I Cycle 7 1.19E-lI1 1.55E-1I 1.64E-11 1.90E-11 1.90E-11 Cycle 8 1.30E-11 1.49E-11 1.57E-11 1.85E-11 1.85E-1 l Average (1-4) 2.48E-1 1 3.09E-I I 2.97E-11 3.24E- 1I 3.23E- 1I Average (1-8) 1.85E-I1 2.30E-11 2.36E-11 2.76E-11 2.76E-1I Average (5-8) 1.30E-I1 1.62E-11 1.83E-11 2.35E-11 2.35E-1I Analysis of Palo Verde Unit 1 Capsule'38 0

6-15 Table 6-3 Relative Radial Distribution Of 4(E > 1.0 MeV)

Within The Reactor Vessel Wall RADIUS AZIMUTHAL ANGLE (cm) 00 150 300 400 450 233.756 1.000 1.000 1.000 1.000 1.000 234.006 0.989 0.989 0.989 0.990 0.989 234.631 0.946 0.945 0.945 0.944 0.945 235.506 0.872 0.870 0.871 0.869 0.871 236.631 0.774 0.772 0.773 0.770 0.771 237.924 0.668 0.665 0.666 0.662 0.664 239.410 0.558 0.554 0.555 0.551 0.553 241.197 0.446 0.442 0.444 0.440 0.441 243.205 0.344 0.341 0.343 0.339 0.340 245.063 0.269 '0.267 0.269 ,0.265 0.265 246.478 0.222 0.220 0.221 0.219 0.218 247.780 0.185 0.183 0.184 0.183 0.182 249.192 0.152 0.150 0.151 0.150 0.150 250.716 0.123 0.121 0.121 0.121 0.120 252.056 0.101 0.099 0.100 0.099 0.099 253.098 0.086 0.085 0.085 0.084 0.084 254.182 0.073 0.071 0.072 0.071 0.071 255.182 0.062 0.060 0.060 0.059 0.059 255.994 0.053 0.051 0.051 0.050 0.050 256.369 0.051 0.049 0.049 0.048 0.047 Note: Base Metal Inner Radius = 233.756 cm Base Metal 1/4T = 239.409 cm Base Metal 1/2T = 245.063 cm Base Metal 3/4T = 250.716 cm Base Metal Outer Radius = 256.369 cm Analysis of Palo Verde Unit I Capsule 38:

6-16 Table 6-4

'Relative Radial Distribution Of 4(E > 0.1 MeV)

Within The Reactor Vessel Wall RADIUS AZIMUTHAL ANGLE (cm) 00 150 300 400 450 233.756 1.000 1.000 1.000 1.000 1.000 234.006 1.010 1.010 1.010 1.010 1.009 234,631 1.014 1.011 1.013 1.010 1.011 235.506 1.001 0.996 0.998 0.994 0.996 236.631 0.969 0.963 0.966 0.959 0.961 237.924 0.924 0.915 0.920 0.911 0.913 239.410 0.866 0.855 0.861 0.850 0.852 241.197 0.794 0.781 0.788 0.775 .0.777 243.205 0.713 0.700 0.707 0.693 0.694 245.063 0.641 0.627 0.634 0.619 0.619 246.478 0.586 0.572 0.578 0.564 0.564 247.780 0.536 0.521 0.527 0.514 0.514 249.192 0.485 0.469 0.475 0.461 0.461 250.716 0.431 0.415 0.420 0.406 0.406 252.056 0.385 0.370 0.374 0.360 0.359 253.098 0.349 0.333 0.337 0.323 0.322 254.182 0.312 0.296 0.299 0.285 0.284 255.182 0.278 0.262 0.263 0.249 0.248 255.994 0.247 0.231 0.231 0.217 0.216 256.369 0.239 0.222 0.222 0.207 0.206 Note: Base Metal Inner Radius - 233.756 cm Base Metal 1/4T .239.409 cm Base Metal 1/2T = 245.063 cm Base Metal 3/4T = 250.716cm Base Metal Outer Radius 256.369 cm Analysis of Palo Verde Unit I Capsule 380

6-17 Table 6-5 Relative Radial Distribution Of dpa/sec Within The Reactor Vessel Wall RADIUS AZIMUTHAL ANGLE (cm) 00 150 300 400 450 233.756 1.000 1.000 1.000, 1.000 1.000 234.006 0.990 0.990 0.991 0.991 0.990 234.631 0.953 0.952 0.953 0.952 0.953 235.506 0.891 0.890 0.891 0.889 0.890 236.631 0.810 0.808 0.810 0.807 0.808 237.924 0.721 0.719 0.722 0.717 0.719 239.410 0.629 0.626 0.629 0.624 0.626 241.197 0.534 0.530 0.534 0.528 0.530 243.205 0.444 0.440 0.444 0.438 0.439 245.063 0.374 0.371 0.375 0.369 0.369 246.478 0.327 0.324 0.328 0.322 0.322 247.780 0.289 0.285 0.288 0.284 0.284 249.192 0.253 0.248 0.251 0.247, 0247 250.716 0.218 0.213 0.216 0.211 0.211 252.056 0.190 0.185 0.188 0.183 0.182 253.098 0.169 0.164 0.167 0.162 0.161F 254.182 0.150 0.144 0.146 0.141 0.141 255.182 0.132 0.126 0.128 0.122 0.122-255.994 0.117 0.111 0.112 0.106 0.106 256.369 0.113 0.107 0.107 0.102 0.101 Note: Base Metal Inner Radius = 233.756 cm Base Metal 1/4T = 239.409 cm Base Metal 1/2T = 245.063 cm Base Metal 314T = 250.716 cm Base Metal Outer Radius = 256.369 cm Analysis of Palo Verde Unit I Capsule 380

6-18 Table 6-6 Nuclear Parameters Used In The Evaluation Of Neutron Sensors Target Fission Monitor Atomic Reaction of Atom Response Product Yield Material Weight Interest " Fraction Ran e Half-life (%)

Copper. .63.546 Cu 63(ncc)Co60 0.6917 E > 5 Mev 1925.5d Iron 55.845 FeS4(n,p)Mni 0.0585 E > 2 Mev 312.3d Nickel 58.693 Ni5S(n,p)Coss 0.6808 E > 2 Mev 70.82d Titanium 45.953 Ti 6(n,p)Sc6 0.0825 E > 2 Mev 83.79d Uranium-23 8 238.051 U2 38(nf)Cs137 0.9996 E> I Mev 10983.3d 6.02 Uranium-238 238.051 U2 8(n,f)Zrs 0.9996 E > I Mev 64.02d 5.15 10 3 Uranium-238 238.051 U239(n,f)Ru 0.9996 E> I Mev 39.27d 6.26 Cobalt-Al 58.933 Co5 9(n,y)Co*° 0.0017 Non-threshold 1925.5d Notes: 1. -Atomic weight data taken from the Chart of the Nuclides, 15h Edition, Dated 1996.

2. Half-life data and target fraction data for the Cu 63(n,ct), Fe4(n,p), Ni58(n,p), Ti"(n,p), and Co59(n,y) reactions were taken from ASTM Standard E 1005-97.
3. Half-life and fission yield data for the U238(n,f) reaction taken from ASTM Standard
  • E 1005-97.
4. Target atom fraction for the U2" assumed as 350 ppm of U235.

Analysis of Palo Verde Unit 1 Capsule 38*

6-19 Table 6-7 Monthly Thermal Generation During The First Eight Fuel Cycles Of The Palo Verde Unit I Reactor (Reactor Power of 3800 MWt)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Thermal Thermal Thermal Thermal Generation Generation Generation Generation Mo-Year (MWt-hr) Mo-Year (MW - Mo-Year (MWt-hr) Mo-Year (MWt-hr)

Jun-85 488193 Mar-88 1667501 Jun-90 10825 May-92 389734 Jul-85 488786 Apr-88 2300328 Jul-90 2146547 Jun-92 2726926.

Aug-85 83645 May-88 2371300 Aug-90 2337547. Jul-92 2825923 Sep-85 1069383 Jun-88 2698106 Sep-90 1652836 Aug-92 .2825394 Oct-85 962630 Jul-88 503771 Oct-90 2797086 Sep-92 2545283 Nov-85 194 Aug-88 69686 Nov-90 2704935 Oct-92 2610331 Dec-85 1460729 Sep-88 2565055 Dec-90 2813104 Nov-92 2734833.

Jan-86 1265571 Oct-88 2659128 Jan-91 996506 Dec-92 2576546 Feb-86 2011169 Nov-88 2708768 Feb-91 1084003 Jan-93 2645967 Mar-86 566400 Dec-88 2789443 Mar-91 2822719 Feb-93 2461534 Apr-86 0 Jan-89 2775471 Apr-91 2731759 Mar-93 2806238 May-86. 597004 Feb-89 2385008 May-91 2824227 Apr-93. 2735243 Jun-86 2473534 Mar-89 404819 Jun-91 2725393 May-93 2606624 Jul-86 1814285 Jul-91 2825868 Jun-93 .2730282 Aug-86 1746682 Aug-91 2824884 : Jul-93 2487672 Sep-86 1929290 Sep-91 1725887 Aug-93 2019059 Oct-86. 2413152 Oct-91 2386029 Sep-93 174976 Nov-86 2440676 Nov-91 2700441 Dec-86 2768558 Dec-91 2822439 Jan-87 1462574 Jan-92 1430983 Feb-87 0 Feb-92 1248802 Mar-87 1861757 Apr-87 2705174 May-87 2615160 Jun-87 2387981 Jul-87 29941 Aug-87 2431392 Sep-8 7 2502710 Oct-87 144005 Analysis of Palo Verde Unit I Capsule 380

6-20 Table 6-7 (Continued)

Monthly Thermal Generation During The First Eight Fuel Cycles Of The Palo Verde Unit]IReactor (Reactor Power of 3800 MWt Cycle 5 Cycle 6 Cycle 7 Cycle 8 Thermal Thermal Thermal Thermal Generation Generation Generation Generation Mo-Year (MWt-hr). Mo-Year (MWt-hr) Mo-Year (MWt-hr) Mo-Year (MWt-hr)

Nov-93 175241 May-95 124734 Oct-96 19736 Apr-98 856293 Dec-93 2408701 Jun-95 2522346 Nov-96 2575629 May-98 2882404 Jan 2402290 Jul-95 2818244 Dec-96 2882996 Jun-98 2790255 Feb-94 2170013 Aug-95 2672598 Jan-97 2882444 Jul-98 2879986 Mar-94 2397621 Sep-95 2732753 Feb-97 2602247 Aug-98 2874823 Apr-94. 2342627 Oct-95 2826498 Mar-97 2852026 Sep-98 2790115 May-94 2430079. Nov-95 2422865 Apr-97 2790215 Oct-98 2883307 Jun-94 2361925 Dec-95 2334446 May-97 2441952 Nov-98 2790301 Jul-94' 2768631 Jan-96 2826311 Jun-97 2774045 Dec-98 2883381 Aug-94 -2763506 Feb-96 2267706 Jul-97 2882408- Jan-99 2883251 Sep-94 2669901 Mar-96 2519048 Aug-97 2876879 'Feb-99 2603835 Oct-94' -2769680 Apr-96 1373041 Sep-97 2789493 ,Mar-99 -2581165 Nov-94 2256552. May-96 2742983 Oct-97 2842908 Apr-99 2790255 Dec-94 2718645 Jun-96 2735425 Nov-97 2782268 May-99 2883223 Jan-95 2808750 Jul-96 2821260 Dec-97 2883231 Jun-99 2786766 Feb-95 2552287 Aug-96 2630990 Jan-98 2883225 Jul-99 2882991 Mar-95 .2638589 -Sep-96 1682394 Feb-98 2272117 Aug-99 2882823 Apr-95 76 Mar-98 1202072 Sep-99 2778552 Oct-99 85396 Analysis of Palo Verde Unit I Capsule 380

6-21 Table 6-8 Measured Sensor Activities And Reaction Rates Surveillance Capsule W137 Measured Saturated Reaction Activity Activity Rate Reaction Location (dps/2m) (dps/km) (rps/atom) 63 Cu (n,a) 6°Co Top 1.04E+05 2.985E+05 4.553E-17 Middle 9.81E+04 2.815E+05 4.295E-17 Bottom 9.89E+04 2.838E+05 4.330E-17

'4Fe (n,p) 14Mn Top 9.79E+05 2.218E+06 3.516E-15 Middle 9.09E+05 2.059E+06 3.265E-15 Bottom 9.21E+05 2.087E+06 3.308E-15 s5Ni (n,p) 5%Co Middle 3.36E+06 2.979E+07 4.265E-15 46 Ti (n,p) 46Sc Top 1.09E+05 7.165E+05 6'627E-16 Middle 1.03E+05 6.770E+05 6.262E-16 Bottom 1.03E+05 6.770E+05 6.262E-16 59 1.504E+08 Co (n,,) 60Co Middle 5.24E+07 8.657E-12 S9Co (n,'y) 6"Co (Cd) Middle 6.35E+06 1.822E+07 1.049E-12 238 U (n,f) 137Cs (Cd) 4.12E+04 4.341 E+05 2.852E-15 Top Middle 1.OOE+05 1.054E+06 6.922E-15 Bottom 7.56E+04 7.966E+05 5.233E-15 2U (n,f) 9 SZr (Cd) Top 4.08E+04 4.449E+05 3.416E-15 Middle 8.72E+04 9.509E+05 7.300E-15 238u Bottom 6.54E+04 7.132E+05 5.475E-15 (n,t) 03

° Ru (Cd) Top 1.37E+04 5.853E+05 3.697E-15 Middle 2.70E+05 1.154E+07 7.286E-14 Bottom 1.94E+04 8.288E+05 5.235E-15 238 U (n,f) '37Cs Top 2.06E+05 2.171 E+06 1.426E-14 Middle 3.68E+05 3.878E+06 2.547E-14 Bottom 2.87E+05 3.024E+06 1.987E-14 23 SU (n,O)9Zr Top 2.34E+05 2.552E+06 1.959E-14 Middle 4.18E+05 4.558E+06 3.499E-14 23SU Bottom 3.03E+05 3.304E+06 2.537E-14 (n,f) 103Ru Top 6.27E+04 2.679E+06 1.692E-14 Middle 1.08E+05 4.614E+06 2.914E-14 Bottom 7.09E+04 3.029E+06 1.913E-14 Analysis of Palo Verde Unit I Capsule 38'

6-22 Table 6-8 cont'd Measured Sensor Activities And Reaction Rates Surveillance Capsule W38 Measured Saturated Reaction Activity Activity Rate Reaction Location (dps/nm) (dos/gmn) (-Ps/atom) 63Cu (n,a) 60Co Top 1.320E+05 2.494E+05 3.805E- 17 Middle 1.510E+05 2.853E+05 4.352E-17 Bottom 1.140E+05 2.154E+05 3.286E-17 54 Fe (n,p) 4Mn Top 5.940E+05 1.735E+06 2.751E-15 Middle 5.560E+05 1.624E+06 2.575E-15 Bottom 5.470E+05 1.598E+06 2.533E-15 581i (n,p) " 8Co Middle 9.21 OE+05 2.538E+07 3.634E-15 4'Ti'(n,p) "Sc Top 2.550E+04 4.491E+05 4.154E-16 Middle 3.150E+04 5.548E+05 5.131E-16 Bottom 3.170E+04 5.583E+05 .5.164E-16 59Co (ny) 6Co Middle 6.880E+07 1.300E+08 7.483E-12 238 U (n,f) '37Cs 6.790E+05 3.581E+06 2.352E-14 Top Middle 4.11OE+05 2.167E+06 1.424E-14 238 Bottom 1.080E+06 5.695E+06 3.741E-14 U (n,f) 95Zr Top I.OOOE+05 3.750E+06 2.879E-14 Middle 6.840E+05 2.565E+07 1.969E-13 238U 03Ru Bottom 1.740E+05 6.524E+07 5.009E-14 (n,f) Top 1.360E+04 3.860E+06 2.438E-14 Middle 8.700E+03 2.470E+06 1 .560E-14 Bottom 2.4 1OE+04 6.481E+06 4.321E-14 Analysis of Palo Verde Unit I Capsule 38'

6-23 Table 6-9 Summary Of Neutron Dosimetry Results Surveillance Capsule W 137 Best Estimate Flux and Fluence for Capsule W 137 Flux Fluence Quantity fn/cm2-secl Quantit fn/cm2 ] Uncertainty (E > 1.0 MeV) 2.584E+10 4D(E > 1.0 MeV) 3.724E+ 18 7%

(E > 0.1 MeV) 5.165E+10 (D(E > 0. 1 MeV) 7.444E+ 18 10%

  • (E < 0.414 eV) 2.790E+ 1I (E < 0.414 eV) 4,021E+19 7%

dpa/sec 4.018E- I1 dpa 5.79IE-03 6%

Best Estimate Flux and Fluence for Capsule W38 Flux Fluence Quantity fn/cm2-secl Ouantit rn/cm 2 ] Uncertainty (E > 1.0 MeV) 2.041E+10 D(E > 1.0 MeV) 6.320E+1 8 7%

(E > 0.1 MeV) 3.974E+10 $ (E > 0.1 MeV) 1.231E+19 10%

(E < 0.414 eV) 2.583E+1 I D< 0.414 eV)

(E 7.998E+19 6%

dpa 9.868E-03 6%

dpalsec 3.187E-1 1 Analysis of Palo Verde Unit I Capsule 380

6-24 Table 6-10 Comparison Of Measured, Calculated, And Best Estimate Reaction Rates At The Surveillance Capsule Center Surveillance Capsule W137 Reaction Measured Calculated Best BE / Meas BE/ Calc Meas/Calc Estimate 63 Cu (n,a)60Co 4.39E-17 4.79E-17 4.30E-17 0.98 0.90 0.92 4Fe (n,p)5 4Mn 3.36E-15 4.10E-15 3.44E- 15 1.02 0.84 0.82, 58Ni (n,p)5 8 Co 4.26E-15 5.33E-15 4.45E- 15 1.04 0.83 0.80 46"Ti (n,p)4Sc 6.38E-16 7.39E-16 6.38E-16 1.00 0.86 0.86 59Co (n,Y)OCo 8.66E-12 1.38E-12 8.47E-12 0.98 6.14 6.28

"'Co (n,y)6°Co (Cd) 1.05E-12 2.89E- 13 1.01E-12 0.96 3.49 3.63 Surveillance Capsule W38 Best Reaction Measured Calculated BE / Meas BE/ Calc Meas/Calc Estimate 63 Cu (n,cL)60Co 3.81E-17 4.02E- 17 3.57E-17 0.94 0.89 - 0.95 4Fe (np)4Mn 2.62E- 15 3.44E-15 2.75E-15 1.05 0.80 0.76 58Ni (n,p)58Co 3.63E-15 4.48E- 15 3.63E-1 5 1.00 0.81 0.81 4"Ti (n,p)"Sc 4.82E-16 6.20E-16 5.05E-16 1.05 0.81 0.78 "9Co (n, y)6Co 7.48E-12 1.12E-12 7.31E-12 0.98 6.53 6.68 Analysis of Palo Verde Unit I Capsule 380 .

6-25 Table 6-11 Best Estimate Neutron Energy Spectrum At The Center Of Surveillance Capsules Capsule W137 Group Energy Flux Energy Flux 2

Number avleV) (n/cmsec) Group # AMeY (n/Ccm -sec) 1 1.73E+01 7.464E+06 28 .9.12E-03 2.551E+09 2 1.49E+01 1.539E+07 29 5.53E-03 2.529E+09 3 1.35E+ 01 5.215E+07 30 3.36E-03 8.815E+08 4 1.16E+01 1.314E+08 31 2.84E-03 9.226E+08 5 1.00E+01 2.861E+08 32 2.40E-03 9.861E+08 6 8.61E+00 4.696E+08 33 2.04E-03 3.216E+09 7 7.41E+00 1.162E+09 34 1.23E-03 3.520E+09 8 6.07E+00 1.626E+09 35 7.49E-04 3.813E+09 9 4.97E+00 2.799E-+-09 36 4.54E-04 4.1 12E+09 10 3.68E+00 2.580E+09 37 2.75E-04 4.759E+09 S1I 2.87E+00 4.124E+09 38 1.67E-04 8.040E+09 12 2.23E+00 3.933E+09 39 1.OIE-04 4.976E+09 13 1.74E+00 4.046E+09 40 6.14E-05 4.629E+09 14 1.35E+00 3.114E+09 41 3.73E-05 4.221E+09 15 1.11E+00 4.378E+09 42 2.26E-05 3.821E+09 16 8.21E-01 4.012E+09 43 1.37E-05 3.462E+09 17 6.39E-01 3.740E+09 44 8.32E-06 3.226E+09 18 4.98E-01 2.635E+09 45 5.04E-06 3.144E+09 19 3.88E-01 3.'108E+09 46 3.06E-06 3.078E+09

20. 3.02E-01 4.676E+09 47 1.86E-06 2.996E+09 21 1.83E-01 4.083E+09 48 1.13E-06 2.817E+09 22 1.1 1E-01 3.177E+09 49 6.83E-07 3.058E+09 23 6.74E-02 2.971E+09 50 4.14E-07 4.465E+09 24 4.09E-02 2.094E+09 51 2.51E-07 1.949E+10 25 2.55E-02 1.528E+09 52 1.52E-07 4.378E+10 26 1.99E-02 1.203E+09 53 9.24E-08 2.112E+ 11 27 1.50E-02 2.504E+09 Note: Tabulated energy levels represent the upper energy in each group.

Analysis of Palo Verde Unit 1 Capsule 38'

6-26 Table 6-11 cont'd Best Estimate Neutron Energy Spectrum At The Center Of Surveillance Capsules Capsule W38 Group, Number Energy Flux Energy Flux (Mev') (n/CM 2-seC) Group # (MeV) (n/cW -sec) 1.73E+01 5.948E+06 28 1.73E+09 1.728E+09 2 1.49E+01 1.237E+07 29 1.67E+09 1.671E+09 3 1.35E+01 4.21 OE+07 30 5.63E+08 5.633E+08 4 1.16E+O I 1.065E+08 31 5.63E+08 5.639E+08 5 1.00E+01 2.329E+08 32 5.66E+08 5.673E+08 6 8.61E+00 3.820E+08 33 1.70E+09 1.708E+09 7 7.41E+00 9.447E+08 34 1.68E+09 1.692E+09 8 6.07E+00 1.309E+09 35 1.62E+09 1.639E+09 9 4.97E+00 2.239E+09 36 1.57E+09 1.589E+09 10 3.68E+00 2.060E+09 37 1.66E+09 1.692E+09 11 2.87E+00 3.270E+09 38 1.70E+09 1.752E+09 12 2.23E+00 3.094E+09 39 1.69E+09 1.738E+09 13 1.74E+00 3.158E+09 40 1.69E+09 1.742E+09 14 1.35E+00 2.410E+09 41 1.69E+09 1.753E+09 15 1.11E+O0 3.361E+09 42 1.68E+09 1.762E+09 16 8.21E-01 3.055E+09 43 1.66E+09 1.755E+09 17 6.39E-01 2.826E+09 44 1.65E+09 1.767E+09

-18 4.98E-01 1.976E+09 45 1.68E+09 1.827E+09 "19 3-88E-01 2.315E+09 46 1.69E+09 1.872E+09

20. 3.02E-01 3.456E+09 47 1.68E+09 1.890E+09
21. 1.83E-01 3.001E+09 48 1.60E+09 1.830E+09 22 L.11E-01 2.318E+09 49 1.43E+09 2.029E+09 23 6.74E-02 2.154E+09 50 1.70E+09 3.084E+09 24 4.09E-02 1.504E+09 51 5.49E+09 1.411E+10 25 2.55E-02 1.088E+09 52 9.28E+09 3.409E+ 10 26 1.99E-02 8.444E+08 53 2.01E+10 2.070E+1 I 27 1.50E-02 1.732E+09 Note: Tabulated energy levels represent the upper energy in each group.

Analysis of Palo Verde Unit I Caosule 380

6-27 Table 6-12 Comparison Of Calculated And Best Estimate Integrated Neutron Exposure Of Palo Verde Unit 1 Surveillance Capsules W137 and W38 CAPSULE W137 Calculated Best Estimate BE/C 4)(E > 1.0 MeV) [n/cm 2] 4.33E+18 3.72E+18 0.86 2 7.94E+ 18 7.44E+ 18 0.94 D(E > 0.1 MeV) [n/cm ]

dpa 6.23E-03 5.79E-03 0.93 CAPSULE W38 Calculated Best Estimate BE/C 2 7.85E+18 6.32E+ 18 (D(E > 1.0 MeV) [n/cm ] 0.80

()(E > 0.1 MeV) [n/cm 2] 1.45E+19 1.23E+19 0.85 dpa 1.13E-02 9.87E-03 0.87 AVERAGE BE/C RATIOS BE/C n1(E > 1.0 MeV) [r/cmr2] 0.832 Dp(E>0.1 MeV) [r/6n2] ).894 dpa ).902 Analysis of Palo Verde Unit I Capsule 38'

6-28 Table 6-13 Azimuthal Variations Of The Neutron Exposure Projections On The Reactor Vessel Clad/Base Metal Interface At Maximum Fluence Elevation Best Estimate 0_ 150 30_ 42.30 450 9.81 EFPY E>1.0 MeV 3.08E+18 3.87E+18 3.96E+18 4.65E+19 4.65E+18 E>O.1 MeV 6.93E+18 8.75E+18 9.03E+18 1.06E+19 1.06E+19 dpa 5.17E-03 6.43E-03 6.59E-03 7.72E-03 7.71E-03 15 EFPY E51.0 MeV 4.23E+18 5.30E+18 5.58E+i18 6.74E+18 6.74E+18 E>O.I MeV 9.51E+18 1.20E+19 1.27E+19 1.54E+19 1.54E+19 dpa 7.09E-03 8.81E-03 9.30E-03 1.12E-02 1.12E-02 32 EFPY E>1.0 MeV 7.99E+18 1.00E+19 1.09E+19 1.36E+19 1.36E+19 E>0.1 MeV 1.79E+19 2.26E+19 2.48E+19 3.09E+19 3.10E+19 dpa 1.34E-02 1.66E-02 1.82E-02 2.25E-02 2.26E-02 40 EFPY E>1.0 MeV 9.76E+18 1.22E+19. 1.34E+19 1.68E+19 1.68E+19 E>0.1 MeV 2.19E+19 2.76E+19 3.05E+19 3.83E+19 3.84E+19 dpa 1.64E-02 2.03E-02 2.23E-02 2.79E-02 2.79E-02 45 EFPY E>1.0 MeV 1.09E+19 1.36E+19 1.50E+19 1.88E+19 1.89E+19 E>O.1 MeV 2.44E+19 3.07E+19 3.41E+19 4.28E+19 4.30E+19 dpa 1.82E-02 2.26E-02 2.49E-02 3.12E-02 3.13E-02 54 EFPY E>1.0 MeV 1.29E+19 1.61E+19 1.78E+19 2.24E+ 19 2.25E+19 E>0.1 MeV 2.88E+19 3.63E+19 4.05E+19 5.11 E+19 5.12E+19 dpa 2.16E-02 2.68E-02 2.96E-02 3.72E-02 3.73E-02 Note: Maximum neutron exposure projection is at either 42.30 or 450 Analysis of Palo Verde Unit '1Capsule 38°

6-29 Table 6-13, cont'd Azimuthal Variations Of The Neutron Exposure Projections On The Reactor Vessel Clad/Base Metal Interface At Maximum Fluence Elevation Calculated 00 150 300 42.30. 450 9.81 EFPY E>1.0 MeV 3.71E+18 4.64E+18 4.75E+18 5.59E+18 5.58E+18 E>0.1 MeV 7.76E+ 18 9.79E+18 1.01E+19 1.19E+19 1.19E+19 dpa 5.73E-03 7.12E-03 7.31 E-03 8.55E-03 8.55E-03 15 EFPY E>1.0 MeV 5.09E+ 18 6.37E+18 6.70E+18 8.10E+18 8.101E+18 E>0.1 MeV 1.06E+19 1.34E+19 1.42E+19 1.72E+1 9 1.72E+19

, dpa. 7.87E-03 9.77E-03 1.03E-02 1.24E-02 1.24E-02 32 EFPY E>1.0 MeV 9.60E+ 18 .1.20E+19 1.31E+19 1.63E+19 1.64E+19 E>0.1 MeV 2.01E+19 2.53E+19 2.78E+19 3.46E+19 3.47E+ 19 dpa 1.49E-02 ,1.84E-02 2.01E-02 2.50E-02 2.50E-02 40 EFPY E> 1.0 MeV 1.17E+19 1.4?E+19 1.61E+19 2.02E+19 2.02E+19 E>O.1 MeV 2.45E+19 3.09E+19 3.42E+19 4.28E+19 4.29E+19 dpa ,1.82E-02 2.25E-02 2.48E-02 3.09E-02 3.1OE-02 45 EFPY E> 1.0 MeV 1.31E+19 1.63E+19 1.80E+19 2.26E+19 2.27E+19 E>0.1 MeV 2.73E+19 3.44E+19 3.81E+19 4.79E+19 4.81E+19 dpa 2.02E-02 2.51E-02 2.77E-02 3.46E-02 3.47E-02 54 EFPY E> 1.O MeV 1.55E+19 1.93E+19 2.14E+ 19 2.70E+19 2.70E+ 19 E>0.1 MeV 3.23E+19 4.06E+ 19 4.53E+19 5.72E+19 5.74E+ 19 dpa 2.39E-02 2.97E-02 3.29E-02 4.13E-02 4.14E-02 Note: Maximum neutron exposure projection is at either 42.30 or 450 Analysis of Palo Verde Unit I Capsule 380

6-30 Table. 6-14 Neutron Exposure Values Within The Palo Verde Unit I Reactor.Vessel, Best Estimate Fluence (n/cm 2) Based on E > 1.0 MeV Slope 00 150 300 42.30 450 9.81 EFPY Surface 3.08E+1 8 3.87E+1 8 3.96E+1 8 4.65E+18 4.65E+18

'AT 1.72E+18 2.14E+18 .2.20E+ 18 2.58E+18 2.57E+ 18 3T T 3.83E+17 4.68E+17 4.82E+17 5.65E+17 5.63E+17 15 EFPY Surface 4.23E+18 5.30E+18 5.5 8E+ 18 6.74E+ 18 6.74E+1 8 3/4T 2.36E+18 2.94E+18 3.1OE+18 3.74E+18 3.74E+18 5.25E+17 6.42E+17 6.79E+17 8.18E+17 8.17E+17 32.EFPY Surface 7.99E+ 18 1LOOE+19 1.09E+19 1.36E+19 1.36E+19

'AT ,4.47E+1 8 5.55E+ 18 6.05E+1 8 7.54E+ 18 7.54E+ 18 Y4 T 9.92E+ 17 1.21E+18 1.33E+18 1.65E+18 1.65E+18 40 EFPY Surface 9 76E+1 8 1.22E+19 1.34E+19 1.68E+19 1.68E+19 IAT 5.46E+18 6.77E+1 8 7.44E+ 18 9.33E+ 18 9.33E+18

%T 1.21E+18 1.48E+18 1.63E+18 2.04E+ 18 2.04E+ 18 45 EFPY Surface 1.09E+19 1.36E+19 1.50E+19 1.88E+19 1:89E+19

'AT

'AT 6.07E+ 18 7.54E+ 18 8.31E+18 1.04E+19 1.05E+19 1.35E+18 1.65E+18 1.82E+18 2.28E+ 18 2.28E+18 5.4 % T EFPY Surface 1.29E+19 1.61E+19 1.78E+19 2.24E+19 2.25E+119 3/44T 7.19E+18 8.92E+18 9.88E+18 1.25E+19 1.25E+19 1.60E+18 1.95E+18 2.16E+18 2.72E+18 2.73E+18 Notes:

0 Maximum neutron exposure projection is at either 42.3' or 450 The '1/4Tand 3/4T values were determined using the calculational methods described in Section 6.2 and not by the empirical relation described in Regulatory Guide 1.99, Rev. 2.

Analysis of Palo Verde Unit I Capsule 380

6-31 Table 6-14, cont'd Neutron Exposure Values Within The Palo Verde Unit I Reactor Vessel Best Estimate Fluence (n/cm2 ) Based on dpa Slope 00 150 300 42.30 450 9.81 EFPY Surface 3.08E+1 8 3.87E+18 3.96E+18 4.65E+18 4.65E+18

'AT 3AT 1.96E+18 2.43E+ 18 2.50E+18 2.93E+18 2.92E+ 18 6.96E+17 8.34E+ 17 8.64E+17 " 1.OIE+18 1.OOE+18 15 EFPY Surface 4.23E+18 5.30E+18 5.58E+18 6.74E+ 18 6.74E+ 18

'1/4T 2.68E+18 3.33E+18 3.53E+18 4.25E+18 4.24E+ 18 3/I T

%3/4T 4

9.55E+17 1.14E+18 1.22E+18 1.47E+ 18 1.45E+ 18 32 EFPY Surface 7.99E+18 1.OOE+19 1.09E+19 1.36E+19 1.36E+19 1/44T 5.07E+18 6.28E+18 6.89E+18 8.57E+18 8.56E+18 3/4/T, 1.80E+18 2.16E+ 18 2.38E+18 2.95E+18 2.94E+ 18 40 EFPY Surface 9.76E+18 1.22E+19 1.34E+19 1.68E+19 1.68E+19 6.19E+18 7.67E+18 8.47E+18 1.06E+19 1.06E+19

%3/4T 2.20E+ 18 2.63E+ 18 2.93E+18 3.65E+I 8 3.63E+18 45 EFPY Surface 1.09E+ 19 1.36E+19 1.50E+19 1.88E+19 1.89E+19

'AT 6.89E+ 18 8.54E+18 9.46E+ 18 1.19E+19 1.19E+19 3/4T 2.45E+18 2.93E+1 8 3.27E+1 8 4.09E+18 4.07E+1 8 54 EFPY Surface 1.29E+19 1.61E+19 1.78E+19 2.24E+19 2.25E+19 1/4AT 8.16E+18 1.01E+19 1.12E+19 1.42E+19 1.41E+19

%3/4T 2.90E+ 18 3.47E+18 3.88E+18 4.88E+1 8 4.85E+ 18 Notes:

S Maximum neutron exposure projection is at either 42.3' or 450 The V4T and 3/3/4T values were determined using the calculational methods described in Section 6.2 and not by the empirical relation described inRegulatory Guide 1.99, Rev. 2.

Analysis of Palo Verde Unit I Capsule 380

6-32 Table 6-14, cont'd Neutron Exposure ,Values Within The Palo Verde Unit I Reactor Vessel Calculated Fluence (n/cm2 ) Based on E > 1.0 MeV Slope

.200 150 300 42.30 450 9.81 EFPY Surface 3.71E+18 4.64E+ 18 4.75E+18 5.59E+ 18 5.58E+18 3/T 2.07E+ 18 2.58E+18 2.64E+ 18 3.10OE+18 3.09E+ 18 4.60E+ 17 5.62E+17 5.79E+17 6.78E+17 6.76E+17 15 EFPY Surface 5.09E+ 18 6.37E+18 6.70E+ 18 8.101E+18 8.10E+18 A1/4T 2.84E+1 8 3.53E+18 3.72E+18 4.50E+18 4.49E+ 18

-/3/4T. 6.31E+1 7 7.71E+17 8.16E+17 9.83E+17 9.81E+17 32 EFPY Surface 9.60E+ 18 1.20E+19 1.31E+19 1.63E+19 1.64E+19 14 rT 5.37E+18 6.66E+18 7.27E+18 9.06E+18 9.06E+18

%,T: 1.19E+18 1.45E+18 1.59E+18 1.98E+18 1.98E+18 40 EFPY Surface 1.!7E+19 1.47E+19 1.61E+19 2.02E+19 2.02E+ 19 "AT 6.55E+18 8.14E+18 8.94E+ 18 1.12E+1 9 1.12E+19

%T.- 1.46E+18 1.78E+18 1.96E+18 2.45E+1 8 2.45E+18 45 EFPY Surface 1.31E+19 1.63E+19 1.80E+19 2.26E+19 2.27E+19 4T 7.30E+1 8 9.06E+ 18 9.99E+1 8 1.26E+19 1.26E+19

%1/4T 1.62E+18 1.98E+18 2.19E+-18 2.74E+ 18 2.75E+18 54 EFPY Surface 1.55E+19 1.93E+19 2.14E+19 2.70E+ 19 2.70E+19

'AT 8.63E+18 1.07E+19 1.19E+19 1.50E+19 1.50E+19

%3/4T 1.92E+18 2.34E+18 2.60E+18 3.27E+1 8 3.27E+1 8 Notes:

0 Maximum neutron exposure projection is at either 42.30 or 450 The 1/4Tand %T values were determined using the calculational methods described in Section 6.2 and not by the empirical relation described in Regulatory Guide 1.99, Rev. 2.

Analysis of Palo'Verde Unit I Capsule 38'

6-33 Table 6-14, cont'd Neutron Exposure Values Within The Palo Verde Unit I Reactor Vessel Calculated Fluence (n/cm2) Based on dpa Slope 00 150 300 42.30 450 9.81 EFPY Surface 3.71E+18 4.64E+ 18 4.75E+18 5.59E+18 5.5 8E+ 18

'AT 2.35E+18 2.92E+18 3.O0E+ 18 3.53E+18 3.51E+18 3/T 1.04E+ 18 1.21E+18 '1.20E+18 8.36E+1 7 1.OOE+18 15 EFPY Surface 5.09E+ 18 6.37E+18 6.70E+ 18 8.10E+18 8.10E+18 1/4T 3.23E+18 4OOE+I 8 4.24E+ 18 5.11E+1 8 5.09E+18 1.15E+18 1.37E+18 1.46E+ 18 1.76E+18 1.75E+18 32 EFPY Surface 9.60E+18 l'.20E+19 1.31 E+ 19 1.63E+19 1.64E+19 1/4AT 6.09E+ 18 7.55E+I 8 8.27E+18 1.03E+19 1.03E+19 3/4T 3/4AT 2.17E+18 21.59E+18 2.86E+18 3.55E+18 3.53E+18 40 EFPY Surface 1.17E+19 1.47E+19 1.61E+19 2.02E+ 19 2.02E+ 19

/4T 7.44E+ 18 9.22E+ 18 1.02E+19 1.27E+19 1.27E+19 3/4Y.T 2.65E+18 3.16E+ 18 3.51E+18 4.39E+18 4.36E+ 18 45 EFPY Surface 1.31E+19 1.63E+19 1.80E+19 2.26E+19 2.27E+19 1/T 8.28E+18 1.03E+19 1.14E+ 19 1.43E+19 1.42E+19 3/ T 3.93E+ 18 4.89E+18 4 2.95E+18 3.52E+18 4.92E+ 18 54 EFPY Surface 1.55E+19 I .93E+19 2.14E+19 2.70E+19 2.70E+ 19 1/4AT 9.80E+18 1.21E+19 1.35E+19 1.70E+19 1.70E+ 19 3/4AT 3.48E+ 18 4'.17E+18 4.66E+ 18 5.86E+ 18 5.83E+18 Notes:

0 Maximum neutron exposure projection is at either 42.30 or 45' 0 The 'AT and 3/4AT values were determined using the calculational methods described in Section 6.2 and not by the-empirical relation described in Regulatory Guide 1.99, Rev. 2.

Analysis of Palo Verde Unit I Capsule 380

6-34 Table 6-15 Updated Lead Factors. For Palo Verde Unit 1 Surveillance Capsules Capsule Midplane Max.

Capsule Location Fluence Wall Fluence Lead Factor W137[a) 430 4.33E+18 3.05E+18 1.42 W3 8[b) 380 7.85E+18 5.59E+18 1.41 430 W43 7.95E+18 5.59E+I 8 1.42 W142 380 7.86E+ 18 5.59E+18 1.41 W230 400 7.99E+18 5.59E+ 18 1.43 W310 400 7.99E+1 8 5.59E+18 1.43 Notes:

[a], - Withdrawn at the end of Cycle 4.

[b] - Withdrawn at the end of Cycle 8.

The surveillance capsule lead factor is defined by:

DSuriwillance Capsule Calrulared (D Clad I Base Metal Interface Axial Peak Calculated where (Dis the neutron fluence (E > 1.0 MeV) at the time of the capsule withdrawal.

In the case of the standby capsules, the neutron fluence is at the time of the latest withdrawn capsule.

Analysis of Palo Verde Unit I Capsule 38'

7-1 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE The following surveillance capsule removal schedule meets the intent of ASTM E 185-82 and is recommended for future capsules to be removed from the Palo Verde Unit I reactor vessel. This recommended removal schedule is applicable to 32 EFPY of operation.

TABLE 7-1 Palo Verde Unit I Reactor Vessel Surveillance Capsule Withdrawal Schedule Removal Time Fluence Capsule Location Lead Factor') " (EFPY)@) (n/cm' E > 1.0 MeV)(c) 1370 1370 1.42 4.533 4.33x 101s (c) 380 38o 1.41 9.81 7.85 x 1013 (c) 2300 2300 1.43 15 1.16 x 1019 3100 3100 1.43 EOL 2 .3 5 x 101 9(d) 430 430 1.42 Standby (e) 1420 1420 1.41 Standby (e)

Notes:

(a) Updated in Capsule 38* dosimetry analysis.

(b) Effective Full Power Years (EFPY) from plant startup.

(c) Plant specific evaluation.

(d) The 310° Capsule should be removed at 32 EFPY or at 37.1 EFPY if a License Renewal is obtained from the NRC.

(e) Capsules 43* and 142* will reach an EOL license renewal (54 EFPY) fluence of 2.70 x 10'9 n/cm' (E > 1.0 MeV) at 38 EFPY. Thus, it is recommended that these Capsules be removed at this time and placed in storage.

Analysis of Palo Verde Unit 1 Capsule 380

8-1 8 REFERENCES I. Regulatory Guide 1.99, Revision 2, Radiation Embrittlement ofReactor Vessel Materials,U.S.

Nuclear Regulatory Commission, May, 1988.

2. Code of Federal Regulations, 10CFR50, Appendix G, FractureToughness Requirements, and Appendix H, Reactor Vessel MaterialSurveillanceProgramRequirements, U.S. Nuclear Regulatory Commission, Washington, D.C.
3. TR-F-MCM-012, "Arizona Public Service Company Palo Verde Unit I - Evaluation of Baseline Specimens Reactor Vessel Materials Irradiation Surveillance Program", B.C. Chang; January 31, 1987.
4. Section XI of the ASME Boiler and Pressure Vessel Code, Appendix G, FractureToughness Criteriafor ProtectionAgainst Failure
5. ASTM E208, StandardTest Methodfor ConductingDrop-Weight Test to DetermineNil-Ductility Transition Temperature ofFerriticSteels, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA
6. TR-V-MCM-002, "Summary Report on Manufacture of Test Specimens and Assembly of Capsules For Irradiation Surveillance of Palo Verde Unit 1 Reactor Vessel Materials", A.D. Emery, July 14, 1982.
7. ASTM El 85-82, StandardPracticefor Conducting Surveillance Tests for Light-Water Cooled NuclearPower Reactor Vessels, E706 (IF), in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1993.
8. ASTM E23-98, StandardTest Methods for Notched Bar Impact Testing ofMetallic Materials,in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1998.
9. ASTM A370-97, Standard Test Methods and Definitionsfor Mechanical Testing of Steel Products, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1997.
10. ASTM E8-99, StandardTest Methodsfor Tension Testing ofMetallic Materials,in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1999.
11. ASTM E21-92 (1998), StandardTest Methods for Elevated Temperature Tension Tests of Metallic Materials,in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1998.
12. ASTM E83-93, StandardPracticefor Verification and ClassificationofExtensometers, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1993.
13. RSIC Computer Code Collection CCC-650, "DOORS 3.1 One, Two- and Three-Dimensional Discrete Ordinates Neutron/Photon Transport Code System, ",August 1996.
14. RSIC DLC-1 85, "BUGLE-96 Coupled 47 Neutron, 20 Gamma-Ray Group Cross-Section Library Derived from ENDF/B-V1 for LWR Shielding and Pressure Vessel Dosimetry Applications",

March 1996 Analysis of Palo Verde Unit 1 Capsule 38'

8-2

15. WCAP-14066, "Analysis of the 1370 Capsule from the Arizona Public Service Company Palo Verde Unit I Reactor Vessel Surveillance Program", J.M. Chicots, et. al., May 1994.
16. ASTM Designation E482-89 (Re-approved 1996), StandardGuidefor Application of Neutron TransportMethods for Reactor Vessel Surveillance, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 2000.
17. ASTM Designation E560-84 (Re-approved 1996), StandardRecommended Practicefor ExtrapolatingReactor Vessel SurveillanceDosimetry Results, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 2000.
18. ASTM Designation E693-94, StandardPracticefor CharacterizingNeutron Exposures in Iron and Low Alloy Steels in Terms ofDisplacementsper Atom (dpa), in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 2000.
19. ASTM Designation E706-87 (Re-approved 1994), StandardMaster Matrixfor Light-Water Reactor PressureVessel Surveillance Standard,in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 2000.
20. ASTM Designation E853-87 (Re-approved 1995), StandardPracticefor Analysis and InterpretationofLight-Water Reactor SurveillanceResults, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 2000.
21. ASTM Designation E261-98, StandardPracticefor DeterminingNeutron FluenceRate, Fluence, and Spectra by Radioactivation Techniques, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 2000.
22. ASTM Designation E262-97, StandardMethodfor Determining Thermal Neutron Reaction and Fluence Rates by Radioactivation Techniques, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 2000.
23. ASTM Designation E263-00, StandardMethodfor MeasuringFast-Neutron Reaction Rates by Radioactivationof Iron, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 2000.
24. ASTM Designation E264-92 (Re-approved 1996), StandardMethodfor MeasuringFast-Neutron Reaction Rates by RadioactivationofNickel, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 2000.
25. ASTM Designation E481-97, StandardMethodfor MeasuringNeutron-FluenceRate by Radioactivationof Cobalt and Silver, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 2000.

Analysis of Palo Verde Unit I Capsule 38*

8-3.

26. ASTM Designation E523-92 (Re-approved- 1996), StandardTest Method for Measuring Fast-NeutronReaction Rates by Radioactivationof Copper, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 2000.
27. ASTM Designation E704-96, StandardTest Methodfor Measuring Reaction Rates by Radioactivationof Uranium-238, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 2000.
28. ASTM Designation E705-96, StandardTest Methodfor MeasuringReaction Rates by RadioactivationofNeptunium-237, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 2000.
29. ASTM Designation E1005-97, StandardTest Methodfor Application and Analysis of Radiometric Monitorsfor Reactor Vessel Surveillance, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 2000.
30. Electronic Mail Correspondence, "Monthly Thermal Power Histoty and Reactor Physics Data",

from Messrs. Fernandez/Neville (APS) to Mr. Bencini (Westinghouse), July - August 2000.

31. F. A. Schrnittroth, FERRET DataAnalysis Core, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.
32. W. N. McElroy, S. Berg and T. Crocket, A Computer-AutomatedIterativeMethod ofNeutron Flux Spectra Determinedby FoilActivation, AFWL-TR-7-41, Vol. I-IV, Air Force Weapons Laboratory, Kirkland AFB, NM, July 1967 33.: RSIC Data Library Collection DLC-178, "SNLRML Recommended Dosimetry Cross-Section Compendium", July 1994.
34. EPRI-NP-2188, Development andDemonstration ofan Advanced Methodologyfor L WR DosimetryApplications,R. E. Maerker, et al., 1981.

Analysis of Palo Verde Unit I Capsule 380

APPENDIX A INSTRUMENTED CHARPY IMPACT TEST CURVES

  • Specimen prefix "IA1" denotes Intermediate Plate, Longitudinal Orientation

" Specimen prefix "IA2" denotes Intermediate Plate, Transverse Orientation

" Specimen prefix "IA3" denotes weld material

" Specimen prefix "I A4" denotes Heat-Affected Zone material

" Specimen prefix "IAB" denotes Standard Reference Material Plate, Longitudinal Orientation A-I

CD o 9 9 9 9 9 9

/ I i 9 9 9 9 9 I I I 9 .

  • I 9 9 9 9 9 9 9 9 9 9 9 9

. . . aaaI . . - r - - - - - - -- . - . - . - - * -. . - -. - - - -

IIII99I 9 I 9 9I 3I I li i tim i (m-c I l o 0.00 0.60 1,.20 1 .80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (resec)*

IAB6M, 0°F 0

0 o I I s I

L -
ri -: -

L9 - I I

I 9 9 I 9 9 . -

I- 9* 3. . . rrI .. I - - - - -r9 - . -. r -- - -- r - --. I . .. - rI - - - - - r - - - - --

  • , '...  !.;o . .. . .. ..... -,- .. ..

0 i I t 9 i 9 9 9

-I I I9 I I I 1 9 9 S0.00 0.60 1.20 I i 1.80I 2.40IAB 3.00I, 100-FI 3.60 4.20 4.80 5.40 6.00 Time (Insec)

" lAB56, 100°F tr0 . . . .

..... ... a ... £ - r -- - - - - - -

1 9 9 I I 9I

-- - - 9

- - - - - --I - - - - - I . . . IL - - - - - IL . . .Li . . . 9 I - -- -! -- - - - -- ',- - ---- --..- - - - - --.- --

4n . ,

o 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.2.0 4.80 5.40 6.00 Tihe (rmsec) 1AB4A, 125°F A-2

CD~f .2~ . .a,,~.

C)

C)

CDc


r-----r 31

.a

- - - - - I- - - -. - -

a 64aa a ~- - -r C3

  • -- -- i l I D 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec) lAB53, 1750 F

.0 U

0 0

0 IAB6P,,2000 F 0o 0ý 0ý 0D

.0 C

0 0 0.00 0.60 1.20 1,80 2.40 3.00 310 4.20 4.80 5.40 6.00 Time (msec) 1"B5K, 225-F

  • A-3

co to o F F

F S

i F F i II *F i I

-F--- -

.r-,

p F

I r

F F

F r -- r I

I FFF

-- r - ----

F F.

r ------

£ I

0i I F F 0 I IF F1 F-L

- FI I I I FFF C)F F F t I F F I I I I . F S I I I T Ime I I 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Tme (rmsc) 1AB4B, 250°F 0

0 0

0

.2 0

lAB44, 325°F

.0 0

0

(~1 o 0.00 0.60 120 1.8D 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

IAB45, 375 0 F A-4

IAI IT, -75°F 8D Co I I I i I  !

r ... r ... r *---- -r - " ...

-- ..... ... ----r . . ..----- -"r "0

  • I I - I I -- I I I $ I , I 4 i I 1 I I I I i I

,r II

.. I

.... ,_ i I

........ i i I i i

0.00 0.90 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

IA127, O0 F C0 0 0.00 0.60 120 1.80 2.40 3.00 3.60 4.20 4.80 5.40 Time (msmec)

IA112, 20*F A-5

r--,cr.ntyr--r~r-rr-- -____________________________________________________________________________________

,* -.., - a 'a r -.. ., . .... a - a' 'i ' -

I 'I I a a a i

a, ' - - 'a ' ' " a - --

I - a a iI , i I a. a a a i ------------ a

- - - -- - a a a I' '

L- - -L - - - L. - - I* a a i a a I a a a a a Ii I a

  • 4.20 60 4.80 5.40 6.0 oo 0.60 1.20 1.80 2.40 3.00 3.

Time (msec)

..... * * **..* ..... i*¸ IA125, 30°F v-a-.I a o I

-a----------ýr r1 -- r-- -- - - ý- -

I I

.. I

. L ----

I I a a a 'r I a' ,

L)a  :~~r_ ----------. I I, _ _.1


i---------------

0 o I! o r-_

a - a o0.00 0.60 1.20 1.80 2.40 3.00 3.

Time (msec)

IAI3U, 50-F a Oa " . . . Ia " -

o a a a 9 ,

C) a i m a a. a l a a a a' ,

i a a a Ir. a - - a ---.-- r------I---I-S I a a a a

a. . . . . a a I.... . .
  • ir-- a  !

(Me 60 4a a---

a,8 a.

a.0 6 1 IA1 00-F I I IIA IlI O ° A-6

C>

  • ii ii i I I I I I Ii i
  • i. i II I - I i - I- i i - I . . .. S I ,

I I I

. ~I1 I I

I II I

.. . .r-...... - - - - -- r. ----

C) 0 I I tI I I I I I I o!0.

Q

  • S S I
  • iI I I - i, l I l I S -.. ..

- . .r - - - -.. r - - - r . . .r .- .- I- .- - r: - - I- - - r . . . . .-- .

  • i I I i i I I t i I I i 0.60 1.20 1.80 2.40 Time{msec)e0 3.00 3.80 4A2 4.80 5.40 6.00 1A 122, 150°F 1A144, 225 0F I~=~ I 0

q CD

£2 C,0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

I 1A13KY 275-F A-7

o I S i F t i S . i F S . . . S Ii F S -

I S S I S S F I

.0 5 F I I S S I F S S S I I I -

I a I S* I I I I I

  • I S " F I F S i i -

8 I S S S I I I I 0 O.00. 0.60 1.20, 1".80 2.40. 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec) 1A255,-750 F a: S o S S S S II F. i i S I I F S 10 i I I I I S S F S S. I I S I a

- L,-----,-.---,-.---,--------

r r ---

S r.-

L -.....

S S SIII F

  • - S. a S o I I S SI S I I FI S SSI S IS
  • a a I S 8 S I IF

'*- 1 - - t -I I -I 0.00 0.60 1.20 1.80. 2.40 3.00 3.60 4.20 4.80 5Z40 6:00 Tine (msec) 1A21E, -40°F 0

8 S I S S oS S . i . S I ~ i I r- .- . r ...... r - - r - --- r ...

- ... r .. . . .. .r . . .

.5 5 i . i S i S 3I -- - - - - - - -

$ S.* m. I ,

i I 1" S S i ----- ".----. S -----. - F ----.- . -. .

F Fp I S I S S I F S S-- --- ----- - -----------

0 0.00 0.80 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Tmne (msec) lA25P, 0°F A-8

CD (D

0 8

0i IA232, 5F to.

o m I I S I S CD *I I I s I i S

  • I I i S i I /

I II I S S I

.0I I !I I i S i I I I I I I

- ~ ......L

".... .. . . ... ,S. ...

(. I I S I I SIII I I I i i SI Ii I I II

  • I S I I I II 54 I S I i I I I i O A i S i S I S S S I. .4 _ -. _ 4.

,.. -__ *. - - 4 -* - _ .. _

o 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.810 5.40 6.00 Time (msec) 1A21J, 10°F 1A23A, 25°F A-9

0 PD IA2SE, 50-F 0

0 0

0 C

(0 S0.00 0.60 120 1.80 2.40 30D 3.60. 4.2D 4.80. 5.40 6.00 TUme (msec)

IA25U, 50TF CD ED 0 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 Time (msec)

IA261, 70OF A-10

1A222, 80°F S e i I I I I I S I I I I I . ,

r - -

  • II

-r - - r ----

I r - -

I

- r


r I

- -r I


r -----

I r - - -

I

  • I. 4 I I III I 4 I i~ -----. .

IIIIII I 4 I

- . r -. - - - - - - -- - -r - - -

i i iI I i S i I i I i S I i I i I I I I oi I I Ii I O 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec) 1A247, 125-F "O i4 . . I 4 I I i I o i I 4 I I i I I i S I


r-.-----

. r -----

r r - --

i I i i 4 I I I I I I I I I I I 0 iiI 0.00 0.50 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00, Time (mSec)

IA21M, 150-F A- I1

C3 CD co

.2 2

Q C) 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20  ;.eo 5.40 6.00, Tirne (msec) 1A256, 150-F

,Ea~

.0 I I 1 a aa , I -----

- -r- - -

CD L- --- L ----- L -- -... ..... ,--....

I - , I I II o0000 0:60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

F IA235,2 000


r----- r ----- rý ---- r ----- r ----- r ----- r ------

L r ----- r ---- ----- r ----- rý ---- ------

1 1

0 oo 0.60 120 , 1.80 2.40 - -

- ,i 3.00LII 3.60 420 4.80 5.40 6.00

- I Time (msec)

IA263,250-F A-12

0 0

  • p I i I I I I

. . . . . .. . I .. . . . .

i I I I 1 I i 0 I I I I I I I I Ir - --- r r ----- r . . . --- -

" L Li I C a i I IiII I a I I I

  • I I I a i i I I tI o* III I I i I 0 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

IA3 IY, F 0

I S I I aI I a a I I I r*._

r.-- . --.. . . I

. r,-- I

. -..r,..... I

. ...-.- -r . . I

-' I I 1 I I - I I U g a - - I I

- a S I a -a I IaI a--~---- -- ---- --

I- -- - L -- - --- ---

a I.

a$ a I I a a a r ---- r ------------------ -----

o 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec)

IA354, F I I I a I Ia a r - - r - - -r - -- r - -rr- ------ - -- - - - - -r - - -

S - --- L - -------

-r-a--------

-a-..--a --- r----

aI r----.a-a

-- -r-----r---

a i I . a a I L---------- I i i I I I

  • a I I a a a a
  • a I a a a o 0.00 0.60 1.20 1.80 " 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec) 1A324, F A-i3

00 o .0 0.6 1.8 I~ 2.4 3.0 3.0 C0 48 .0 Dsc TW

  • g II A3 2 F

-t ' r- - r .. .---------- i . . . - - -r -

(0*I I I

  • I " I I I II I I I I I I I I r - - - - -

. I I I I i I I II i I I I I I 1I i I 1 I I I 4:I I , i I I t I II i I I !I I1 . I I I I I

0. . . - ..- -: *-  :--- -  :-- - . -  :...--

0.00 0.60 1.20 1.80 2.40 3.00 3.60- 4.20 4.80 5.40 6.00 Time (msec)

IA3B3, -45°F C) q0 C3 o i I I I I I I , II I I I I r r - - - -

- ------ ,- -- r----r ----- r ------

Ii

  • I I

. .L .. -.-.-.- _- - - -. -_-L . .

__ - - "I I l I I - - - - - LI I 0.0 060 3 12 1.0 2.4 3.0 36 42 I I I I 4.8 I 5.0 6 Ui I I+ I I I I I I I I I .1 I 0 0.00 0.60 1.20 1.80 2.40 3.00 3.50 420 4.80 5.40 6.00 Time (msec)

]A372, -25°F

-A-14

CD S

U0 n

13 a0 0 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec) 1A33K, F 8

i ,

0 CD IA32U, OTF 0

0 0

a U

0 U

o 0.00 0.60 1.20 1.80 2.40 3.0 3.60 4Z0 4.80 5.40 6.00 Time (msec) 1A342, 15°F A-I5

  • 0 co
  • I F 4 I i i
  • I i I F i F

..... I

. - -F I F r----

i 4

-- -. gI

-, L - - - - - L - - - - L - - - - - - - - - - L L - -- - - -

F 4 LI' F i I lF i I I I 0 .0 0.60 1.20 1,80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (rnmsec)

]A35E, 25°F

  • I F F F F I F F F F S----- r- --- --- ---- r--- --- r F F F F F , F F F F F F I I "  : F

- " . "F F.. -" I F " ".

L -- -

I- I I _F4' 4. FI --

F I I F FF oi i I I i I i I o joJo o060 1o0 10 2.40 3.00 36o 4.2) 4.80 5.40 6.00 Time (Msec)

IA32M, 50-F F I io i F I

Fi F

IF I F"

mi

. . -rr.- . .----. .- .- .- .- . . --. . . . . .. r - - - - - r - - - - - r - - - - - r - - - - - -

F F I F F I F


- r I t F- - 4 L - - - - - - -L - - - L - - - L - - - - - - L - - - - L - - - -

0.00 0.So

  • 1'20 1.80 2.40F 3.00 3.60 4.20 4.B0 5.40 6
  • I ' " 'Time (reset) 1A323, 100°F A-I6

1A35U, 150OF III ii i i i I CoI I I I I I I II i I I I

.. . . - - - - - - - r - -- r - - - - r - - - - - - - . . . . . . .

o0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 5.00 Time (msec) 1A331,200OF a

oa I

I i I

I I I II I I (D IIIIII I III I I I I II r -- - - rr - - -r - - r - -- r - --r- "- .. r .... r - - -

o 0o.00 0.60 1.20 1.80 2.40 3-00 3.60 4.20 4.80 5.40 6.00 Time (msec) 1A33B, 250°F A-17

0 C)

V 0

1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Tue (msec) 1A441, -175°F CD a I I I I I I I CAD 3r - -- r... .... r ..... .- .--- rý- ---. r ----- r r - --

-SaaaaI - - - -- -- - - - -- a a a - -

()a P I t I I a a " I I a

  • a i I i I a a a a a
  • A r "', . .. "4" 0-- .0'F o 0.00 0.60 1.20 1.80 2.40 300 3.60 4.20 4.80 5:40 6.00 Tine. (rntec) 0 1A442,-120 F 8

9 CD 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Tmue (rnsec) 1A43D, F A-19

3

-.- - -9 .

4 r3- 4 CD 0.006 1.2 18 2.4 3.0 3.6 4.0 48 .0 0 Tim (me IA41U, F I I I It 9 I 9 I I i

.r- --- r ----- r-- -- Ir I-..... r .... r --- r - --

9 4 9 --- --- L----- L-----

I L------L_----

I 1.29 9 3 9 S

I 9I I I I

-L--L"........ --.... . L'-

i I I 9 9 9 9 9 '

9

  • 0,.00 1~O

$.20 1 .80 2.40 3.00: 3.60 4.20 4.80 5.40 6.00

  • 9 TiI e (I e 9 IA44Y, F 0ý 83* I4' - -- - ,* - * *"

2 ---  :. .

0.0o 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 S.40 6,00 Tine (msec) 1A453, F A-19

0 0

'U

0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 mime (msec) 1A416, -25°F i

(..

0 0

0.60 120 1.80 2A0 3.00 3.60 4.20 420 5.40 6.00 Time (msec)

I A443, O°F C3 to 1 ) I S II - I -

S Ir - I! I S I

II * , I I I r-----r"-...--------------r.

I 2 I 3 I 3 1- is, . -- s.. - - u r -

" I- - -" .... . ..

III . I t.I SI I II - - L I I UI II i I I II I I i i. I I! I

- - - ; - --  ; '- -r , ,,

  • _ -.-

0 0.00 0.60 1.20 1.80) 2A0 3.00 3.60 4.21) 4.80 5.40 5.00 T*ife (mnsec)

IA44D, 25°F A-20

C) o I a a

  • 1 a

.... r

.--------------------- 7--r ---- - . ----- r -r----------

I I ii I Ii a I I I I I I a r L.. .... I I a I . .

a al a a a a a I

() a p a a a Ia o0.00 0,B0 1.2D 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec)

IA41M, 70°F 0

p w

.0 0

0 0D

.00 0.60 1.20 1.80 ,2.40 3.00 3.60 4.20 4.80 5.40 6.00 lime OMee1) 1A42B, 130OF 1A43T, 200°F

-A-21

APPENDIX B Charpy V-Notch Plots for Each Capsule Using Hyperbolic Tangent Curve-Fitting Method.

B-O

Contained in Table B-I are the upper shelf energy values used as input for the generation of the Charpy V-notch plots using CVGRAPH, Version 4.1. Lower shelf energy values were fixed at 2.2 ft-lb. The unirradiated and irradiated upper shelf energy values were calculated per the ASTM E185-82 definition of upper shelf energy.

TABLE B- I Upper Shelf Energy Values Fixed in CVGRAPH Material Unirradiated Capsule 1370 Capsule 380 Lower Shell Plate 147 ft-lb 141 ft-lb M-4311-1 (Longitudinal)

Lower Shell Plate 168 ft-lb ** 115 M-431 1-1 (Transverse)

Surveillance Weld 164 ft-lb 162 ft-lb 158 ft-lb (Heat # 9007 1)

HAZ Material 135 ft-lb 124 ft-lb 119 ft-lb Standard Reference Material 129 ft-lb 105 ft-lb 105 ft-lb No Lower Shell Material inCapsule 1370.

B-I

UNIRRADIATED (TRANSVERSE)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 14-5937 on 01-29-2001 Page 1 Coefficients of Curve I F- A=85.09 B = {a. C = 97.54 TO -- 718 Equation is CYN A+ B

  • I tanh((T - TO)/C) I Upper Shelf Energy: 168 Fixed Temp. at 30 ft-lbs 9 Temp. at 50 ft-lbs 431 Lower Shelf Energy: 2.19 Fixed Material PLATE SA&33111 Heat Number. M-4311-1 Orientation: TL Capsule: UNIRR Total Fluence:

C,)

z Q..

-300 -20o -100 0 100 20O 4W0 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- PVY Cap- UNIRR Material: PLATE SA53311 Ori" TL Heat #: M-4311-1 Charpy V-Notch Data Tempera ture Input CVN Energy Computed CVN Energy Differential 0 B 1358 --558

-40 15 1358 1.41 0 24 25.96 -lA 0 34 2596 6.03 30 38 4139 -329 40 52 4785 4.14 40 57 47.85 9.14 80 82 79 2.90 80 79 79 0 Data continued on next page B-2

UNIRRADIATED (TRANSVERSE)

Page 2 Material: PLATE SA533BI Heat Number. M-4311-1 Orientation: TL

. Capsule, UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CvN Energy Differential 90 99 87.48 11.51 90 88 87.48 51 90 55 87.48 -3Z48 120 110 111.97 -1.97 120 117 11197 5.02 160 138 13757 .42 160 132 137.57 -5.57 210 186 155.63 30.36 210 150 155.63 -5.63 SUM of RESIDUAIS 16.93 B-3

UNIRRADIATED (TRANSVERSE)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 15.D429 on 01-29-2001 Page 1 Coefficients of Curve I A= 42.48 B= 4148 C 72.2 TO =49.68 Equation is LE. = A + B j tanh((T - TO)/C)

Upper Shelf L. 83.97 Temperature at LE. 35: 365 Lower Shelf IE: 1 Fixed Material: PLATE SA533BI Heat Number. M-4311-1 Orientation: TL Capsule UNIRR Total Fluencew.

Cl)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- PV1 Cap.: UNIRR Material: PLATE SAW33B1 " OrL TL Heat 4: M-4311-1 Charpy V-Notch Data Tempera ture Input lateral Expansion Computed LE. Differential

-40 2 739 -5.39

-40 7 7.39 -.39 0 16 17.73 -1.73 0 25 t7.73 726 30 26 31.44 -3.44 40 37 36.95 .04 40 42 36.95 5&04 80 64 56.94 5.05 58 58.94 -94 m* Data continued on next page

  • B-4

UNIRRADIATED (TRANSVERSE)

Page 2 Materia 1l:PLATE SAS=I1 Heat Number. M-4311-1 Orientation TL Capsule- UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LKE Differential 90 65 635 1A9 635- -.5 90 63 90 42 63.5 -21.5 79 73.61 538 120 8073 6M 89 8023 8.76 160 210 84 8023 3.76 210 87 83 3.99 66 83 -17 SUM of RESIDUALS = -3.69 B-5

UNIRRADIATED (TRANSVERSE)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 15:07:42 on 01-29-2001 Page. 1.

Coefficients of Curve 1 A 50 B =50 C= 72.02 TO 77.34 Equation is: Shear/. = A + B tanh((T - TO)/C) I Temperature at 50. Shear 77.3 Material PLATE SA533D1 Heat Number. M-4311-1 Orientation: TL Capsule UNIRR Total Fluence:

CO 7--

J--

424 3--

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant; PVI Cap: UNIRR Material PLAT SAX3BI1 Ori: TL Healt ý,M-4311-1 Charpy V-Notch Data Tempera ture Input Percent Shear Computed Percent Shear Differential

-40 0 3.7 -a7

-40 0 3.7

-3.7 0 t0 10.45 -.45 0 10 10.45 -.45 30 20 21.17 -1.17 40 30 26.17 3B2 30 26.17 80 70 51.84 1815 80 M0 -11M Data~ continued on next page B-6'

UNIRRADIATED (TRANSVERSE)

Page 2 Material: PLATE SA533B1 Heat Number. M-4311-1 Orientat ion: TI Capsule- UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 90 60 58.69 12 90 60 58.69 12 90 40 5869 -IB.69 120 80 7657 3.42 120 80 76.57 3.42 160 90 90.84 -B4 160 90 90.4 _45 210 100 9754 2.45 210 100 97-54 SUwi of RESIDUAIS = -1.55 B-7

CAPSULE 137 (TRANSVERSE)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 08:4.18 on 08-03-2000 Page 1 Coefficients of Curve 2 Equation is: CVN = A+ B ' 1tanh((T - T0)/C) I Upper Shelf Energy: 87 Fixed Temp. at 30 ft-lbs 43A4 Temp. at 50 ft-lbs 983 Lower Shelf Energy W.9 Fixed Material- PLATE SA533BI Heat Number. M-6701-2 Orientation: TL Capsule: 137 Total Fluence 10 P>

Q)

-300 -200 -100 0 100 200 300 400 600 600 Temperature in Degrees F Data Set(s) Plotted Plant- PVI Cap- 137 Material: PLATE SA533B1 0ri- TL Heat #: M-6701-2 Charpy V-Notch Data Temperaature Input CVN Energy Computed CYN Energy Differential

-25 9 IZ93

-3.93 5 23 1898 4.01 35 24 2728 -328 50 2722 -a55 65 35 3755 75 47 4125 5.74 85 52 45.01 6%

I0( 56 50.61 528 Data continued on next page B-8

B-9 CAPSULE 137. (TRANSVERSE)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 0&-5959 on 08-03-2000 Page I Coefficients of Curve 2 A=41.13 B=40.13 C 153.26 TO 9a75 Equation is: I = A+ B I tanh((T - T0)iC)

Upper Shelf L&. 8127 Temperature at LE. 35: 70.1 Lower Shelf LE-, I Fixed Material- PLATE SA533BI Heat Number. M-6701-2 Orientation: TL Capsule: 137 Total Fluence

°Q=-

CO

-300 -200 -100 0 100 200 300 400 50 600 Temperature in Degrees F Data Set(s) Plotted Plant PVI Cap-- 137 Material: PLATE SA533B1 Ori TL Hea at k M-*01-2 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LU Differential

-25 10 15.05 -5.05 5 24 2018 3I1 35 24 26.48 -246 50 26 29.%8 9B 65 32 3369 -L69 75 40 3625 a74 85 43 38B4 415 100 46 4Z?7 SData continued on next page ý*

B-10

CAPSULE 137 (TRANSVERSE),

Page 2 Materia h PLATE SAW3BI Heat Number. M-6701-2 Orientatiow" TL Capsule: 137 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LK Differential 125 50 492 .79 150 56 5523 .76 185 54 62% -a55 225 70 69 .99 265 74 73.51 .48 300 78 76.17 [82 350 79 7.53 A6 SUM of RESIDUALS = -1.48 B-lI

CAPSULE 137 (TRANSVERSE)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 09M35 on 0&-03-2000 Page I Coefficients of Curve 2 A 50 B z50 C =98 TO -- 16435 Equation is: Shear/. = A + B' tanh((T - TO)/C) I Temperature at 1zShear. 164.3 Materiak PLAT]E SA5331B1 Heat Number M-6701-2 CIrientation: TL Capsule 137 Total FAuencw Cf2

-30 -200 -100 0 too 200 3o0 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant PVI Cap: 137 Material: PLATE SA533BI Ori: TL He; it #/: M--6701-2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-25 15 2M0 12.91 5 10 3.76 623 35 10 6.71 328 50 15 U89 61 65 20 11.7 8.29 75 20 13T7 6.02 B5 20 16.8 3*9 10o 25 21.26 3.73 I Data continued on next page I B-12

B-13 CAPSULE 38 (TRANSVERSE).

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 145937 on 01-29-2001 Page I Coefficients of Curve 2 A X58590 B= i56.4 C: U1135 TO 72M37 Equation i- CVN = A + B* tanh((T - TO)/C) ]

Upper Shelf Energy. 115 Fixed Temp. at 30 ft-1lb 10.1 Temp. at 50 ft-lbs 552 Lower Shelf Energy: 219 Fixed Material: PLATE SA5331B1 Heat Number. M-4311-1 Orientation: TL Capsule: 38 Total Fluence CI)

,fl K7 Q) z U

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant PVi Cap. 38 Material: PLATE SA53B1 Ori: TL Heat #: M-4311-1 Charpy V-Notch Data Tempera Lure Input CVN Energy Computed CVN Energy Differential

-75 4 9.66

-40 8 15.43 -7.43 0 24 26.36 -2.36 5 39 28.1 10139 10 39 29.94 9.05 25 37 35.95 L04 50 47 47.41 -.41 50 38 47A1 -9.A1 Data continued on next page B-14

CAPSULE 38 (TRANSVERSE)

Page 2 Material" PLATE SA533BI Beat Number. M-4311-1 Orientation: TL Capsule: 38 Total Fluence:*

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 70 55 5739 -239 80 65 62.45 2.54 125 89 83.43 5Y56 150 110 92.58 17.41 150 62 9258 -3058 200 112 104.64 7.35 250 118 110.54 7.45 SUM of RFFSDUAIS= 3.05 B-1 5

CAPSULE 38 (TRANSVERSE)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1504"29 on 01-29-2001

- Page. 1I Coefficients of Curve 2 A = 42.42 B= 41A42 C =t14A9 TO= 61.39 Equation is: L, = A + B* [ tanh((T - %)/C) I Upper Shelf LF- 83.84 Temperature at LE 35: 401.6 Loer Shelf LE: I Fixed Material PLATE A533B1 Heat Number M-4311-t Orientation TL Capsule 38 Total Fluence 4d 0-0 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- PVI CapN 38 Material: PLATE SA533BI Ori. TL lleH /t M-4311-1 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LK Differential

-75 5 8 -3

-40 4 13.04 -9.04 0 21 22.12 -1.12 5 38 w52 14.47 I0 30 24.98 5.01 25 30 29.68 .31 50 38 38.31 -31 50 28 38.31 -1031

  • "* Data continued on next page

CAPSULE 38 (TRANSVERSE)

Page 2 Materiaai: PLATE SAW33BI Heat Number M-4311-1 Orientation: TL Capsule- 38 Total Fluenw.

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LS Differential 70 42 4552 -352 80 51 49D9 1.9 125 71 63.2 7.67 150 79 69.31 9A 150 51 69.31 -1&31 200 84 7711 691.

250 78 8017 -287 SUM of RESIDUALS -2.51 B-17

CAPSULE 38 (TRANSVERSE)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 15.T.7:42 on 01-29-2001 Page I Coefficients. of Curve 2 A 50 B= 50 C= 9451 TO: 9082 Equation is Shear/. = A + B* I tanh((T - TO)/C) I Temperature at 5o. Shear. 908 Material: PLAT SA533B1 Heat Number. M-43U1-1 0rientation: TL Capsule: 30 Total Fluence:

rI

,a

'5-4-j) a4 0) 0)

0-0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted PlanLt PVI Cap- 38 Materiat PLATE SA533BI OrL TL Heat I: M-4311-1 Charpy V-Notch Data Lture Input Percent Shear Computed Percent Shear Differential 2 2.9 -.9 5 5.9 '-9 25 10 12.76 -276 10 15 1399 50 1 15 1531 20 19.89 30 29.65 .34 25 29.65 -4.65 Data continued on next page

  • B-18

B-19 UNIRRADIATED (LONGITUDINAL)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 13325 on 01-29-2001 Page I Coefficients of Curve 1 A 7459 B= 72.4 C= 69.42 TO 37.7, Equation is CVN = A + B I tanh((T - TO)/C) I Upper Shelf Energy- 147 Fixed Temp. at 30 ft-lbs: -12.8 Tempý at 50 ft-lbs IZ4 Lower Shelf Energy: .219 Fixed Material PLATE SA533B1 Ht!at Number. M-4311-1 Orientation: LT Capsule: UNIRR Total Fluence CITI PC z

,Q-)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- PVI Capc UNIRR Material: PLATE SA533BI Ori: LT He*at #: M-4311-1 Charpy V-Notch Data Tempera ture Input CVN Energy Computed CVN Energy Differential 10 7 U9

-80 10 7 2.99

-40 20 16.39 3.6

-40 16 1639 -39 0 39 3927 -27 0 33 3927 -627 40 95 77.69 17.3 40 65 77.69 69 80 110 114.44 -4.44 Data continued on next page "**

B-20

B-21 UNIRRADIATED (LONGITUDINAL)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 13:45:51 on 01-29-2001 Page I Coefficients of Curve I A 42,66 B 41.M6 C49.4 , T 23.43 Equation is: LE. = A + B'[ tanh((T - TO)/C) ]

Upper Shelf LE- 84.32 Temperature at LE. 35: 142 - Lower Shelf L&* 1 Fixed Material: PLATE SA533B1 Heat Number. M-4311-1 Orientation: LT Capsule: UNIRR Total Fuence:

Cl)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant PVI Cap-, UNIRR Material: PLATE SAS33BI OrL LT leat f M-4311-1 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LK Differential

-60 0 224 -224

-40 0 224 -224

-40 9 6.93 2-06 0 8 6.93 1.06 0 27 2425 Z74 40 22 2425 -225 40 65 5613 8.86 45 5613 -113 80 76 76.66 Data continued on next page B-22

UNIRRADIATED (LONGITUDINAL)

Page 2 Materia I PLATE SA533BI Heat Number: M-4311-1 Orientation: LT Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE. Differential 80 78 76.66 123 120 87 8269 43 120 82 M69 -.69 160 86 83.99 2 160 85 8399 1 210 85 8428 .71, 210 77 8428 -728 SUM of RFSIDUWL = -2.42 B-23

UNIRRADIATED (LONGITUDINAL)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 13:49H9 on 01-29-2001 Page 1 Coefficients of Curve 1 A 50 B =50 C= 5a77 TO =59.06 Equation is: Shear/ = A + B

  • tanh((T - TO)/C) I Temperature at 5%/ Shear. 59 Material: PLATE SA533HI Heat Number. M-4311-1 Orientation: LT Capsule UNIRR Total Fluence cu c"1 4j

&D Q..

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- PVI Cap: UNIRR Material PLATE SA533BI OriL LT Hea t #:M-4311-1 Charpy V-Notch Data Temperaiture Input Percent Shear Computed Percent Shear Differential

-80 0 -56

-80 0 .66 244 -.56

-Z44

-40 0 Z44 -2.44

-40 0 0 20 10 9.99 0 10 10 0 40 40 32.98 7.01 40 20 32.98 -12.98 80 70 6U54 1.45 Data continued on next page B-24

UNIRRADIATED (LONGITUDINAL)

Page 2 Material: PLATE SAW33BI Heat Number. M-4311-I Orientation: LT Capsule UNIRR Total Fluencx Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 80 70 68.54 1.45 120 100 90h 929 120 80 90.6 -10.6 160 100 97.71 228 160 100 97.71 228 210 100 99B3 26 210 100 99.63 .36 SUM of RESIDUALS = 5 B-25

. CAPSULE 137 (LONGITUDINAL)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 09.11:17 on 08-03-M2 Page 1 Coefficients of Curve 2 A =65.59 B= 63.4 C= 60.68 TO 860.62 Equation is CVN = A + B

  • I tanh((T - TO)/C) I Upper Shelf Energy:. 129 Fixed Temp. at 30 ft-lbs: 42 Temp. at 50 ft-lbs 653 Lower Shelf Energy: 219 Fixed Material: PLATE SA533B1 Heat Number: M-6701-2 Orientation: LT Capsule: 137 Total Fluence:

CI)

-300 -200 -100 0 0oo 200 3W0 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant PVl Cap."137 Material: PLATE SA533BI Orit LT Heat #:M-6701-2 Charpy V-Notch Data Temper;ature Input CVN Energy Computed CVN Energy Differential

-25 9 5.98 3.01 25 24 19.67 4.32 45 28 32.13 -4.13 65 49 49.62 -.62 100 86 8518 .81

.69 150 118 1173 200 025 12065 -1.56 250 136 12852 7.47

    • " Data continued on next page *'

B-26

B-27 CAPSULE 137- (LONGITUDINAL)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 0919.44 on 08-03-2000 Page I Coefficients of Curve 2 A 44.88 B 43*88 C 61-91 TD =6937 Equation is LE. = A + B

  • tanh((T - T0)/C) I Upper Shelf LE: 88.7? Temperature at LE. 35: 55.1 1ower Shelf L& 1 Fixed Material: PLATE SA533BI Heat Number- M-6701-2 Orientation: LT Capsule, 137 Total Fluenc.

4-)

-W00 -200 -100 0 100 200 30 400 500 6w0 Temperature in Degrees F Data Set(s) Plotted Plant- PVI Cap.: 137 Material: PLATE SAS33BI OrL LT Heat I#ýM-6701-2 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential

-25 9 4.97 4.02 25 17.9 4.09 45 24 28.45 -4.45 65 38 4179 -379 100 71 64.98 6.01 150 81 E-73 -473 200 79 87.5 -8.5 250 94 8&52 5.47 Data continued on next page

,B-28

B-29 CAPSULE 137 :(LONGITUDINAL)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 0e2738 on 08-03-2000 Page I Coefficients of Curve 2 A=50 B=50 C=82.14 TO= 108.69 Equation is .Shear/. = A + B I tanh((T - TO)/C) I Temperature at 50/ Shear 108B.

Material- PLAT E SA533BI Heat Number 9--6701-2 0rientation LT Capsule: 137 Total Fluenc a)

Cr' a)

C.)

a)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: PVI Cap: 137 Material: PLATE SA533BI OrL LT Heat t M-6701-2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-25 10 a71 628 25 15 IL53 45 20 17.49 65 25 25Mi -.65 100 40 44.72 -4.72 150 70 7321 -321 200 100 9023 9.76 250 100 W96~ 31 Data continued on next page B-30

B-31 CAPSULE 38 (LONGITUDINAL)

CVGRAPII 41 Hyperbolic Tangent Curve Printed at 133525 on 01-29-2001 Page 1 Coefficients of Curve 2 A= M.5 B =69.4 C.=9L26 TO =71.

- Equation is CVN = A + B*1 tanh((T - TO)/C) I Upper Shelf Energy: 141 Fixed Temp. at 30 ft-lbs 8.7 Temp. at 50 ft-lbs 42.5 Lower Shelf Energy: 2,19 Fixed Material: PLATE SA533BI Heat Number. M-4311-1 Orientation: LT Capsule 38 Total Fluence:

300- ---

1250 200 L) 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: PVl Cap: 38 Materiah PLATE SA533B1 frt LT Heat . M-4311-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-75 5 7.53 -2.53 0 19 25.98 20 38 35.89 2.1 30 43 4179 12 50 60 5525 4.74 100 91 9231 -1.31 150 116 119.76 -3.76 225 138 136*1 1.68

.Data con.Unued on nexi paFge B-32

B-33 CAPSULE 38 (LONGITUDINAL)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 13:45:51 on 01-29-2001 Page 1 Coefficients of Curve 2 A =4189 B= 40.9 C= 7824 TO: 465 Equation is LE. =A + B Itah((T - TO)/C)

Upper Shelf LE 8Z78 Temperature at LR 35 331 Lower Shelf LE. 1 Fixed Material: PLATE SA533BI Heat Number M-4311-1 Orientation: LT Capsule- 38 Total Fluence a)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees. F I Data Set(s) Plotted Plant: PVI Cap: 38 Material: PLATE SAS33BI Off: LT Heat ý. 14-4311-1 Charpy V-Notch Data Temperature Input Lateral Fxpansion Computed LK Differential

-75  ! 45 -3.5 0 12 20.09 -8.09 20 31 28.54 2,45 30 39 5.61 50 44 43.71 28 100 66 66.17 -.17 150 74 7726 -3.36 225 60 8193 -2193

  • Data continued on next page B-34

B-35 CAPSULE 38 (LONGITUDINAL)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 13:49-9 on 01-29-2001 Page 1 Coefficients of Curve 2 A= 50 B =5 C = &T Equation is Shear/. = A+ B I I tanh((T - TO)/C) I Temperature at 50,/ Shear. 7W7 Material: PLATE SA533B1 Heat Number. M-4311-1 0Irientation: LT Capsule: 38 Total Fluence a)4 UI

-300 -200 -100 0 100 200 300 400 500 60O Temperature in Degrees F Data Set(s) Plotted Plant PVI Cap- 38 Material: PLATE SA533BI 0ri- LT Heat / M-4311-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-75 5 3.02 [97 0 15 15.19 -.Z78 19 21 25 22.21 30 25 26.5 -1.5 50 35 38.49 -1.49 100 65 64B2 17 150 85 8552 -52 225 100 97.13 2.86 Data continued. on next page.*"#.,

D B-36

B-37 UNIRRADIATED CVGRAPII 4.1 Hyperbolic Tangent Curve Printed at OA.236 on 08-03-2000 Page I Coefficients of Curve I

[ A= M B = 80.9 C= 56.43 TO=

Nuation is CVN = * + B tanh((T - ¶0)/C) I Upper Shelf Energy. 164 Fixed Temp. at 30 ft-lbs -532 Temp. at 50 ft-lbs -33.4 Lower Shelf Energy: 219 Fixed Material: WELD Heat Number: M-4311-1/M-4311-2 Orientation:

Capsule: UNIRR Total Fluence:

Ci) z

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees. F Data Set(s) Plotted Plant PVI Cap-- UNIRR Materiak WELD Ori: Heat f M-4C l1-l/M-4311-2 Charpy V-Notch Data Tempera ture Input CVN Energy Computed INN Energy Differential

-100 7 8.6 -1,6

-80 15 1425 .74

--80 18 1425 3.74

-40 32 42b4 -10.54

-40 40 42,54 -254 0 110 95.76 1423 0 95 95.76 -.76 20 123 12125 174 127 12125 5.74

'~Data continued on next. page B-38

UNIRRADIATED Page 2 Material: W, FLi Heat Number M-43I1-1/M-4311-2 0]rientation:

Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed GYN Energy Differential 20 123 12125 1.74 40 138 139.7 -1.7 40 124 139.7 -15.7 80 132 157.35 -2525 80 176 15735 18B04 120 155 162.33 -7.33 120 167 162.33 4.68 160 165 16359 1.4 163.59 -8.59 160 155 10.06 210 174 163.93 210 156 163.93 -7.93 SIJM of RESIDUALS -- 1912 B-39

UNIRRADIATED CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 09:51:31 on 08-03-2000 Page 1 Coefficients of Curve i A 45.71 B= 44.71 C= 4224 TM -20:62 Equation is L.KE A + B [tanh((T - TO)/C} ]

Upper Shelf LLE 9OA3 Temperature at LE 35: -30.9 kzwer Shelf LL- I Fixed Material: WELD Heat Number. M-4311-1/M-4311-2 Orientation:

Capsule- UNIRR Total Fluence:

CI)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant PVI Cap- UNIRR Material- WELD OrL Heat /. M74311-1/M-4311-2 Charpy V-Notch Data Tempera ture Input Lateral Expansion Computed LE, Differential 0 3.03 -3.03

-40 6 6.07 -.07

-80 9 6.07  ?-92

-40 21 26M3

-40 29 26-53 2.46 0 70 65.96 65%6 4.03 0 65 -.96 20 74 79.02 -5.02 20 82 79.02  ?-97 Data continued on next page

  • B~.o

UNIRRADIATED Page 2 Material WEL)D Heat Number. M-4311-1/M-4311-2 Orientation:

Capsule: UNIRR Total Fluence ,

Charpy V-Notch Data (Continued)

Temperature Input lateral Expansion Computed LE. Differential 20 81 79.02 1.97 40 81 65.63 -41)

-163 40 84 85M3 80 89 89,67 80 94 89h7 4.32 120 93 90.31 2B8 120 91 9021 .68 160 89 90.41 -I,41 160 91 90.41 58 210 89 90,43 -143 210 91 90.43 56 SUM of. RESIDUALS = -121 B-41

UNIRRADIATED CYGRAPH 4.1 Hyperbolic Tangent Curve Printed at 09:5959 on 08-03-2000 Page 1 Coefficients of Curve 1 A= 50 B= 50 C= 57.87 TO = -10.44=

Equation is Shear'/= A + B [ tanh((T - TO)/C) ]

Temperature at 50. Shear:. -10.4 Material: WELD Heat Number. M-4311-1/M-4311-2 Orientation:

Capsule: UNIRR Total lFluence 4-)

1:)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in De grees F Data Setqs) Plotted Plant PV1 Cap- UNIRR Material- WELD. Ori. Heat #: M-4311-1/M-4311-2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-100 0 4.33 -4.33

-80 10 829 1.7 10 829 1.7

-40 20 26.47 -6&47 0 30 26.47 3.2 0 50 5*&2 --8.92 20 70 5&92 11.07 -

20 70 74.11. -4.11 80 74.11 a~8 Data continued on next page ~

B-42

B-43 CAPSULE 137 CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 0M..457 on 08-03-M20 Page I Coefficients of Curve 2 209 B=79.9 C =77.6 V.=.421 Equation is CVN = A + B I tanh((T - TO)/C) ]

Upper Shelf -Energy: 162 Fixed Temp. at 30 ft-lbs --562 Temp. at 50 ft-lbs: -28.8 Lower Shelf Energy: Z19 Fixed Material: ELD MHeat Number. M-4311-1/M-4311-2 Orientation:

Capsule: 137 Total Fluence:

M In)

-300 -200 -100 0 100 200 300 40 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: PVI Cap: 137 Material WELD Ori. Heat #:M-4311-1/M-4311-2 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-95 7 13.69 -69

-70 21 22.76 -1.76

-50 28 33.7 -537

-35 36 404 -8B4

-25 55 53. 163

-5 67 72.65 -5.65 0 79 77.76 123 5 97 82.9 14.09

" Dta -ontinued on next page -

B-44

CAPSULE 137 Page 2 ELD Material: W[ Heat Number. M-4311-1/M-4311-2 0:rientation:

Capsule: 137 Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 15 109 93.12 15S7 60 123 13133 -8x3 75 124 139.79 -15.79 100 147 149.51 -251 225 155 161.46 -6.46 300 162 161.9 ý.07-350 182 161.97 20.02 SUM of RESIDUALS -9 B-45

CAPSULE' 137.

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 09:51.31 on 8-03--2000 Page 1 Coefficients of Curve 2 A41.3 B=42.93 C 5225 TO -21.09 Equation is: LE A + B [ tanh((T - TO)/C) I Upper Shelf LE:- M Temperature at L.E. M -321 Lower Shelf LE. I Fixed Material WELD Heat Number M-4311-1/M-4311-2 Orientation:

Capsule 137 Total Fluence:

4-1S

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant PVI Cap- 137 Katerial WELD OrL Heat k. M-43 tl-1/M-4311-2 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential

-95 5 5.79 -.79

-70 18 12.45 554

-50 26 2234 3.65

-35 3Z77 -5.77

-25 42 40.73 126

-5 50 56.76 -6.76 0 58 6038 -2.38 5 72 6a76 823 Data continued on next page BL46

CAPSULE 137, Page 2 Material' WELD Heat Number. M-4311-1/M-4311-2 0rientation:

Capsule 137 Total Fluenc Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE. Differential 15 70 69.63 26 60 90 83.19 6.8 75 82 84.76 -Z76 100 92 86.05 5.94 93 88.87 612 300 84 86.87 -2.87 350 75 8&87 -11B7 SUM of RESIDUOA[S 4.71 B-47

CAPSULE 137 CVGR*PH 41 Hyperbolic Tangent Curve Printed at O95M59 on 0W-03-20M)

Page 1 Coefficients of Curve 2 A= 50 B= 50 C= 47.34 TO -6.56 Equation is: Shear/. A + B* [ tanh((T - TO)/C) ]

Temperature at 5,/. Shear: -6.5 Material: WELD Heat Number. M-4311-1/M-4311-2 Orientation:

Capsule: 137 Total Fluence a.)

CI) a)

C a)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant PVI Cap- 137 Material: WELD OrL: Heat #:M-43 11-1/M-4311-2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-95 10 2.32 7.67

-70 15 8.4t 858

-50 15 13.76 123

-35 20 23.12 -312

-25 30 31A5 -1.45

-5 45 5164 -6.64 0 50 56.86 5 70 61.97 8.02

- Data continued on next page

,B-48

CAPSULE 137 Page 2 Material: fELD Heat Number M-4311-1/M-4311-2 Ori, entation:

Capsule: 137 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differen tial 15 80 7131 &68 60 95 94.33 £6 75 90 96.9 100 225 100 98.9 1.99 100 99.99 0 300 100 99.99 350 100 9999 0 sUm Iof RESIDUAL~S = 10.94 B-49

CAPSULE 38 CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 09:42:36 on 08-03-2000 Page I Coefficients of Curve 3 A = BD9 B =7?.9 C=60.95 TO=-746 Equation is CVN = A + B [ tanh((T - TO)/C) I Upper Shelf Energy: 158 Fixed Temp. at 30 ft-lbs -47 Temp. at 50 ft-lbs -25.3 Lower Shelf Energy- Z19 Fixed Material: WELD Heat Number. M-4311-1/M-431l-2 Orientation:

Capsule: 38 Total Fluence:

U,)

T0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant PVi Cap- 38 Material:. WELD Or: Heat fi: M-43 H-I/M-4311-2 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-96 7 U69 469

-70 19 1063 2-36

-55 It 245 -13s

-5M 34 27.82 617

-45 25 31L53 -6,53

-25 48 50M3 -233

-11 95 68.01 26.98 0 65 80.69 -15B9 D*ata continued on nexct page s"*

'B-50

B-51 CAPSULE 38 CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 09*1:31 on 08-03-2000 Page I Coefficients of Curve 3 A=46.5 B= 4559 C = 57.39 TOz -16.87

.Equation is LE, A + B

  • tanh((T - TO)/C) I Upper Shelf LE. 92.18 Temperature at LE. 35: -31.7 Lower Shelf LE- I Fixed Material WELlD Heat Number. M-4311-1/M-4311-2 Orientation:

Capsule: 38 Total Fluence 20V a .I 110)

C,)

1100" I 5f/

U'

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Sets) Plotted Plant: PVI Cap-, 38 Material: WELD) Ori" Heat k M-4311-1/M-4311-2 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE, Differential

-96 7 6.44 .55

-70 17 13.37 3.62

-55 14 20M09 -6.09

-50 26 285 3.14

-45 25.88 -3S8

-25 37 40.17 -3.17 7100 69 52.02 16.97 52 59.62 -7,62 Data continued on next page '

B-52

B-53 CAPSULE 38 CVGRAPII 41 Hyperbolic Tangent Curve Printed at 09:5959 on 08-03-2000 Page I Coefficients of Curve 3 A =50 B1=50 C = 59.75 TO = -1828 Equation is Shear/ = A + B [ tanh((T - TO)/C) I Temperature at 5%/. Shear. -182 Material: WELD Heat Number. M-4311-1/M-4311-2 Orientation:

Capsule: 38 Total Fluence:

6OT CU.

20

-30 o -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant. PVI Cap: 38 Material: WiELD Oni: Heat #:M-4311-1/M-43 11-2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-96 10 6.9 3.09

-70 20 15.04 4.95

-55 20 22.63 -2.63

-50 25 25.7 -.7

-45 25 29.02 -4.02

-25 40 44.4 -4.4

-t0 70 56BB 13.11 0 60 643 -4B3

- ~Data continued on next page

'B-54

B-55 UNIRRADIATED CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 11L01l on 08-03-2000

-Page I Coefficients of Curve 1 A 6EL59 B= 66A C= 9723 TO = I4 Equation is CVN =A+ B Ltanh((T - TO)/C) I Upper Shelf Energy: 135 Fixed Temp. at 30 ft-lbs -632 Temp. at 50 ft-lbs -265 Lower Shelf Energy: 2.19 Fixed Materiah HEAT AFFD ZONE Heat Number. Orientation:

Capsule: UNIRR Total Fluence 300--- - -

Cl) 250 T

  • ~1 20OO 0

1507 00 0 i,,

C) 0 1007 z

Q 5ff0/1 50-J U'

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: PVI Cap- UNIRR Material: HEAT AFl) ZONE OrL Heat f.

Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-80 39 23.16 15.83 30 23.16 6.83

-40

-40 41 4i.91 -.91 0 59 41.91 17.0B 55 67.63 -12a3 0

40 53 67M -14.63 40 85 93.65 -&65 55 93.65 -38.65 60 106 104.38 1.61

  • "Data continued on next page *

.B-56

B-57 UNIRRADIATED CYGRAPH 41 Hyperbolic Tangent Curve Printed at 1121:56 on 08-03-2000 Page 1 Coefficients of Curve I A =400. B =39.96 C= 94. TO =-15.46 Equation is LE. = A + B [ tanh((T - TO)/C) I Upper Shelf LM: 80.92  : Temperature at LK 35- -29.7 Lower Shelf LE: I Fixed MateriaL HEAT AFFID ZONE Heat Number. Orientation:

Capsule- UNIRR Total Fluence:

(In a- -

1007--

0-I

-300 -200 -100 0 100 200 300 4W0 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- PVI Cap: UNIRR MaterialtHAT AFFI ZONE Or: Heat #:

Charpy V-Notch Data Temper, ature Input Lateral Expansion Computed LKF Differential

-40 18 17.33 .66

-40 24 17.33 6.66 27 30.86 -3A8

-40 40 3086 9.13 0 39 47.41 -.a1 0 40 47.41 -,7.41 40 63 61.97 102 40 42 61.97 -19.97 77 6738 9.61 Data continued on next page B-58

UNIRRADIATED Page 2 Material: HEAT AFFD ZONE Heat Number: Orientation:

Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE. Differential 60 81 6738 13a61 60 78 6738 1061 80 64 71.49 -7.49 80 79 71.49 7.5 120 73 7657 -3.57 120 83 7657 -6.42 160 70 7U.99 --M89 160 83 7X99 4 210 82 8024 L75 210 71 8024 -924 SUM of RESIDUALS.= Z08 B-59

UNIRRADIATED CVGRAPH 41 Hyperbolic Tangent Curve Printed at 12A.47 on 08-03-2000 Page I Coefficients of Curve I A 50 B 50 C = 7395 TO0=-.93 Equation is Shear/ = A + B* I tanh((T - f0)/C) Q Temperature at 5W1 Shear: -.9 Material: HEAT AFFD ZONE Heat Number. Orientation:

Capsule: UNIRR Total Fluence:

1007 0

cr~ 6GF 4.)

0 0

0 20-IU1 1 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- PVI Cap- UNIRR Material HEAT AFPD ZONE OrL Heat #:

Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-80 10 10.54 -54

-80 20 1054 9.45

-40 30 25.79 42

-40 40 25.79 142 0 40 50.63 -10.63 0 40 50.63 -10.63 40 80 75.15 4B4 40 40 7515 -35.15 60 100 83B6 16.13 Data continued on next page *'"

B-60

B-6I CAPSULE .137 CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1l04&tll on 08-03-2000 Page 1 Coefficients of Curve 2 A 63.09 B= 60.9 C 92M6 TO =-17.61 Equation is: CVN = A + B

  • i tanh((T - TO)/C)Q Upper Shelf -Energy. 124 Fixed Temp. at 30 ft-lbs -74.1 Temp. at 50 ft-lbs -37.9 Lower Shelf Energy*. 219 Fixed Material: HEAT AFFD ZONE Heat Number Orientation:

Capsule: 137 Total Fluence, CI)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- PVI Cap- 137 Material: HEAT AFFD ZONE Ori: Heat #:

Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-70 27 3198 -498

-45 89 45.64 43.5

-35 56 51.63 4.16

-20 25 61M3 -36.53 5 44 77.64 -33.64 20 118 86.5 31A9 35 85 9423 -923 100 138 115.03 22.96 Dat~a continued on next page '

B-62

CAPSULE 137 Page 2 Material: HEAT AFFD ZONE Heat Number: Orientation:

Capsule: 137 Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 150 137 120.79 162 225 118 12334 -5.34 300 108 123I6 -15.86 350 120 12395 -3.95 SUM of REIDUAS = 8*

B-63

CAPSULE, 137 CYGRAPH 4.1 Hyperbolic Tangent Curve Printed at 11:2156 on 08-03-2000

- Page I Coefficients of Curve 2 A = 43.54 B= 42.54 C= 99.7 TO = -l.75 Equation i L. = A + B*[tanh((T - T0)/C) .

Upper Shelf LE.: 86.08 Temperature at LR 35: -39 Lower Shelf LE. I Fixed Material: HEAT AFFD ZONE Heat Number. Orientation:

Capsule: t37 Total Fluence:

2006-CI]

150-1007 0

0 0O-t) I 5OO

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant PV1 Cap- 137 Material: HEAT AFFD ZONE OrL Heat ý.

Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential

-70 21 23.41 -Z41

-45 53 3259 20.4

-35 35 -467

-20 26 4a01 -17.01 5 37 53.49 -1649 20 79 5929 19.7 35 63 64.48 -1.48 100 83 78.89 4.1 Data continued on next page B-64

B-65 CAPSULE 137 CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1129-.47 on 08-03-2000 Page 1 Coefficients of Curve 2 A = 50 B 50 C = 107.14 TO=-19.99 Equation is Shear/. = A + B I tanh((T - TO)/C) I Temperature at 50z Shear: -199 Material: HEAT AFFD ZONE Heat Number. Ori entation:

Capsule: 137 Total Fluence C/)

-300 -200 -100 0 100 200 300; 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant PV1 Cap- 137 Material: HEAT AFFD ZONE Oriz Heat #!

Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-70 15 2822 -1322

-45 60 3853 21.46

-35 50 43.04 695

-20 40 49.99 -9.99 5 50 61.45 -11.45 20 80 67B4 12M15 35 60 732 -M.62 100 100 9037 9.62

-- Data continued on next page B-66

B-67 CAPSULE 38 CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1:.48.11 on 08-03-2000 Page 1 Coefficients of Curve 3 A= 60.59 S B= 58A4 C 125 T = 7-17.07 71 Equation is: CVN = A + B

  • I tanh((T - TO)/C) I Upper Shelf Energy: 119 Fixed Temp. at 30 ft-lbs -89.7 Temp. at 50 ft-lbs: -40 Lower Shelf Energy* 2.19 Fixed Material HEAT AFFD ZONE Heat Number .. Orientation:

Capsule: 38 Total Fluence:

3007 - -

250 200" I 14 1507f 1007-

-.Oý i- b i I b i D

-300 -200 -100 0 100 200 300 400 500 6W0 Temperature in Degrees F Data Setfs) Plotted Plant- PV1 Cap: 38 Material: HEAT AFFD ZONE OrL Heat #:

Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-175 12 1084 115

-120 23 21.06 1.93

-90 54 29.93 24.06

-75 53 35.32 17.67

-50 18 4556 -27L56

-30 30 54.58 -2458

-25 47 56.9 -9.9 0 103 6852 34.47 Data continued on next page B-68

CAPSULE 38 Page 2 Materiak HEAT AFFD ZONE Heat Number Orientati on:

Capsule: 38 Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 25 62 79.54 -1754 70 108 957.6 1223 130 100 108B5 -885 200 148 115.48 3251 SIJM of RESIDUAIS = 35.6 B-69

CAPSULE, 38 CVGRAPH 41 Hyperbolic Tangent Curve Printed at 112156 on 08-03-2000 Page 1 Coefficients of Curve 3 A= 45.75 B= 44.75 C= 14a69 TO =--7.5 Equation is La.E. A + B [ tanh((T - Tn)/C) I Upper Shelf LE. 90.51 Temperature at LE. 35: -42.7 . Lower Shelf LE. I Fixed Material" HEAT AFFD ZONE Heat Number. Orientation:

Capsule 38 Total Fluence:

.,. 150 1007 -

0)

. 4-)

-30 0 -200 -100 0 100 200 3W0 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant PVI Cap. 38 Material: HEAT AFFD ZONE Ori" Heat #:

Charpy V-Notch Data Temperature Input Lateral Expansion Computed LK Differential

-175 4 892 -492

-120 12 16.46 22.55 -4.46

-90 39 16.44

-75 33 2615 6.84

-50 16 32-89 -16.89

-30 24 38.8 -14.8

-25 46 40.33 5.66 0 64 4808 15.91 Data continued on next page B-70

CAPSULE 38 Page 2 Material: BEAT AFFD ZONE Heat Number.

B One otation:

Capsule: 38 Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed L.. Differential 48 55.7 -7.7 70 75 67.79 72 130 70 79 -9 200 90 85.78 421 SUM of RESIDUALS -1.51 B-71

CAPSULE 38 CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 112.47 on 08-03-2000 Page 1 Coefficients of Curve 3 A 0B 50 C i11284 T~38 Equation is Shear/ = A + B* [ tanh((T - TO)/C),

Temperature at 50*/ Shear. -31.8 Material HEAT AF1FD ZONE Heat Number. Orientation:

Capsule: 38 Total Fluence:

a) cn a) 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant PVI Cap: 38 Material: HEAT AFFD ZONE Ori: Heat #:

Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-175 5 7.33 -2m3

-120 10 17,33 -7.33

-90 45 26.3 18.69

-75 40 31.77 822

-50 30 42.03 -12.03

-30 40 50M3 -10.83

-25 50 53.04 -3.04 0 85 63.75 2124

  • "Data continued on next page I B-72

CAPSULE 38 Page 2 Material: HEAT AFFD ZONE -. Heat Number. Orientation:

Capsule: 38 Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 25 50 7326 -2326 70 100 85.88 1411 130 100 94.2 5,37 200 100 9838 1.61 SUM of RERIDUAIS = 10.42

  • I B-73

UNIRRADIATED STANDARD, 'REFERENCE MATERIAL CVGRAPH 41 Hyperbolic Tangent Curve Printed at Ia46-27 on 08-04-2M Page 1 Coefficients of Curve I A 6559 B. 63.4. C 66.96 TO 64.43 Equation is CVN = A + B* [ tanh((T - TO)/C)f Upper Shelf Energy. 129 Fixed Temp. at 30 ft-lbs 21.9 Temp. at 50 ft-lbs 47.6 Lower Shelf Energy:.2.19 Fixed Material: SRM SA533B1 Heat Number: Orientation: LT Capsule: UNIRR Total Fluence 250 fI t*

200F

.4. 150" 1003 50 =-

I U' II 1 1 I . 0I

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- PVl Cap. UNIRR MateriaL SRM SA533BI Ori: LT Heat #

Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-40 9 7.56 L43

-40 8 756 .43 0 20 18.35 1.64 0 22 18.35 3.64 40 47 43.44 3.55 40 40 43-44 -3.44 80 82 80.07 1.92 80 71 80.07 -9.07 120 125 108.73 1626

__Data, continued on next page B-74

UNIRRADIATED STANDARD REFERENCE MATERIAL Page 2 Material: SRM SA533BI iHeat Number. Orientation: LT Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CYN Energy Computed CVN Energy Differential 120 96 108.73 -1073 160 121 122.09 -1.09 160 130 122.09 7.9 210 131 1738 3.61 210 132 12738 461 SUM of RESIDUAL' 18.71 B-75

UNIRRADIATED STANDARD, REFERENCE MATERIAL CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 10f.49.12 on 08-04-2000 Page 1 Coefficients of Curve 1 A=41S3 B =40.63 C .5601 TO =56.71 Equation is UE = A+ B I tanh((T - T0)/C) I Upper Shelf IE 8227 Temperature at LK 35: 47.4 Lower Shelf LE: 1 Fixed Material: SRM SA533BI Heat Number. Orientation: LT Capsule: UNIRR Total Fluence.

200 --

1507 1007 o3 Q -

0 0 500

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant PVI Cap-- UNIRR Material: SRM SA53i I11 Ori: LT Heat I.

Charpy V-Notch Data Temperature Input Lateral Expansion Coi mputed LR Differential

-40 1 3.49 -Z49

-40 I 3.49 -2.49 0 10 10.47 -.47 0 13 10.47 Z52 40 33 29B5 3.14 40 28 29B5 -185 80 60 57.61 Z38 80 53 57.61 -4.61 120 83 7458 8.41 I Data continued on next page

  • B-76

B-77 UNIRRADIATED STANDARD REFERENCE MATERIAL CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at I0:5156 on 08-04-2000 Page 1 Coefficients of Curve I I A =50 B =50 C=61.02 TO =8&76 Equation is: Shear/.= A + B I I tanh((T - TO)/C) 1

Temperature at T/ Shears 88V7 Material: SRM SA533B1 Heat Number. Orientation: LT Capsule: UNIRR Total Fluence:

Q)

C/D 0.

-300 -200 -100 0 100 200 300 400 5O0 600 Temperature in Degrees F Data Set(s) Plotted Heat Plant- PVI Cap- UNIRR Materialk SRM SA533BI OrL LT Charpy V-Notch Data Tempera ture Input Percent Shear Computed Percent Shear Differential

-40 0 L44 -1.44

-40 0 L44 -1.44 0 10 5.16 4.3 0 10 516 483 40 20 16.82 3.17 40 20 16.82 3.17 80 40 42.6 -2A88 80 40 42B6 -2B86 120 80 7R56 6.43 Data continued on next page B-78

UNIRRADIATED STANDARD REFERENCE MATERIAL Page 2 Material: SRM SA533B1 *Heat Number: Orientation: LT Capsule: UNIRR Total Fluenc.

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear .Differential 120 60 73.56 -13.56 160 100 9116 8.83 160 100 91.16 8M3 210 100 98.15 1.4 210 100 SUM oof RIS1UUAS D15 :21.611.64 B-79

CAPSULE 137 STANDARD REFERENCE MATERIAL CYGRAPH 4.1 Hyperbolic Tangent Curve Printed at 104627 on 08-04-2000 Page I Coefficients of Curve 2 A= 5359 B= 5L4 C= 75.06 T = 16054 Equation i*CVN = A +B* B tanh((T - T0)/C)f Upper Shelf Energy: 105 Fixed Temp. at 30 ft-lbs 1232 Temp. at 50 ft-lbs: 1552 Lower Shelf Energy., 219 Fixed Material: SRM SA533B1 Heat Number. Orientation: LT Capsule: 137 Total Fluence 3007 Cn 250-

- 2007 bt)

I 50-

-(

r;100

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: PVI Cap- 137 Material: SRM SA533BI Ori- LT Heat #:

Charpy V-Notch Data Temperaature Input CVN Energy Computed CVN Energy Differential 25 8 4.9 3.09 70 9 10.65 -11 100 1927 1272 125 22 30.92 -8.92 150 47 46.42 .57 200 74 78.37 -437 250 105 96.31 8.68 300 110 102.55 7.44 Data continued on next page B-80

B-81 CAPSULE 137. STANDARD REFERENCE MATERIAL CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10.49.12 on 08-04-2000 Page 1 Coefficients of Curve. 2 A 42,32 B 402 C= 90.15 TO =154S8 Equation is: LE. =A + B *Itanh((T - 1'0)/C)

Upper Shelf LE- M3.64 Temperature. at LK M- 1385 Lower Shelf LE- 1 Fixed Material: SRM SA533Bi 1' Heat Number Orientation: LT Capsule: 137 Total Fluence U) 1507-1007 500 5F -

U

-300 -200 -100 0 100 200 300 400 500 6W0 Temperature in Degrees F Data Set(s) Plotted Plant: PV1 Cap- 137 Material: SRM SA533BI Ori: LT Heat #:

Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential 25 8 5.4 259 70 11 11.95 -,95 100 24 19.93 4.06 125 26 29.18 18 150 41 40.17 .26 200 57 61.5 -45 250 82 74.74 725 300 84 80.47 352 Data continued on next page B-82

B-83 CAPSULE .137 STANDARD REFERENCE MATERIAL CVGRAPH 41 Hyperbolic Tangent Curve Printed at 105156 on 08-04-2000 Page 1 Coefficients of Curve .2 A ~50 B=50 C=82,17 TO =171.6 Equation .is Shear/. A + B1 [ tanh((T -TO)/C) 1 Temperature at 50% Shear 171.6 Material: SRM SA533B1 Heat Number. Orientation: LT Capsule: 137 Total Fluence.

(U)

Qcr W0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- PV1 CapN 137 Material SRM SA533BI 0riý LT Hleat ý Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 25 t0 2.73 726 70 15 7.76 723 100 20 14.87 512 125 25 243 .69 150 30 37.1 -7.1 200 60 6658 -658 250 100 B7.05 12.94 300 100 95.78 421 Data continued on next page

- B-84

CAPSULE 137 STANDARD REFERENCE MATERIAL Page 2 Material: SRM SA533B1 Heat Number. Orientation: LT Capsule: 137 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 350 100 9&71 128 SUM of RESIIUAIS = 25.07 B-85

CAPSULE 38- STANDARD REFERENCE MATERIAL CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 10.4627 on 08-04-2000 Page 1 Coefficients of Curve 3 A= 53.59 B= 51.4 C= 94.01 TO=182.81 Equation. is CVN = A + B *[ tanh((T - TO)/C) I Upper Shelf. Energy: 105 Fixed Temp. at 30 ft-lbs 1361 Temp. at 50 ft-lbs 1762 Lower Shelf Energy- 219 Fixed Material: SRM SA533BI Heat Number. Orientation:

Capsule: 38 Total Fluence:

4-)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- PVl Cap.: 38 Material- SRM SA533B1 Ori: Heat#P Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 0 4 426 -26 100 28 1726 10.73 125 30 25.45 4.4 175 42 4923 -7.3 200 45 62.89 -17.89 Z25 91 7523 1076 250 88 1523 2.86 325 110 10023 9.76 Data continued on next page B-86

B-87 CAPSULE 38 STANDARD REFERENCE MATERIAL CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 149.12 on 08-04-2000 Page 1 Coefficients of Curve 3 A = 40.81 B 39.81 C= 77.47 TO-- 16523 Equation is: L = A + B tanh((T - TO)/C)]

Upper Shelf LE- 80.62 Temperature at LI 35: 153.8 Lower Shelf LF- 1 Fixed Material: SRM SA533B1 Heat Number. Orientation:

Capsule: 38 Total Fluence:

CI)

S--

04

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- PV1 Cap. 38 Material SRM SA533B1 Ori: Heat Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential 0 1 2. -U 100 14 13,46 53 125 28 2181 6.18 175 42 45.8 -33 200 40 5756 -1756 225 90 6659 23.4 250 72 7259 -59 325 71 79.35 -835 Data continued on next page B-88

CAPSULE 38 STANDARD REFERENCE MATERIAL Page 2 Material: SRM SA533BI Heat Number. Orientation:

Capsule: 38 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed .E. Differential 375 82 8026 L73 SUM of RE!SIDUALS = .43 B-89

CAPSULE 38 STANDARD REFERENCE MATERIAL CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1051.56 on 08-04-2000 Page 1 Coefficients of Curve 3 A= 50 B= 50 C= 35.72 TO 196.95 Equation is: Shear/ = A + B* [ tanh((T - TO)/C) ]

Temperature at 50T. Shear. 196.9 Material: SRM SA533BI Heat Number. Orientation:

Capsule 38 Total Fluence CI) 4-)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- PVI Cap-- 38 Material- SRM SA533BI Ori: Heat #:

Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 5 0 4.99 100 10 A3 956 125 15 L74 1325 175 25 &62 227 200 45 5424 -924 225 95 877 1222 250 90 95.11 -5.11 325 100 99.92 .07 Data continued on next. page *~

B-90 A

B-91