ML020720028

From kanterella
Jump to navigation Jump to search
Submittal of Technical Specification (TS) Bases Change for McGuire Nuclear Station, Units 1 & 2
ML020720028
Person / Time
Site: Mcguire, McGuire  Duke Energy icon.png
Issue date: 02/27/2002
From: Barron H
Duke Energy Corp
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML020720028 (86)


Text

Duke Energy Corporation P w Energy.

Duke McGuire Nuclear Station 12700 Hagers Ferry Road Huntersville, NC 28078-9340 H. B. Barron (704) 875-4800 OFFICE Vice President (704) 875-4809 FAX February 27, 2002 United States Nuclear Regulatory Commission ATTENTION: Document Control Desk Washington, DC 20555-0001

SUBJECT:

Duke Energy Corporation McGuire Nuclear Station Units 1 and 2 Docket Nos. 50-369 and 50-370 Technical Specification (TS) Bases Change Attached is a revision to McGuire Technical Specification Bases Manual Sections 3.3.1 (RTS Instrumentation), 3.3.3.

(PAM Instrumentation), and 3.9.3 (Nuclear Instrumentation).

Changes and additions to these Bases documents clarify the Nuclear Instrumentation System requirements for accuracy, operability and acceptance criteria for channel checks.

Attachment 1 contains the revised TS Bases List of Effective Sections. Attachment 2 contains revised TS Bases.

Please contact Jeff Thomas at (704) 875-4535 if you have any questions.

Very truly yours, H. B. Barron Attachments A ooI

U. S. Nuclear Regulatory Commission February 27, 2002 Page 2 Xc w/attachments:

L. A. Reyes U. S. Nuclear Regulatory Commission Regional Administrator, Region II Atlanta Federal Center 61 Forsyth St., SW, Suite 23T85 Atlanta, GA 30303 R. E. Martin U. S. Nuclear Regulatory Commission Mail Stop 0-8G9 11555 Rockville Pike Rockville, MD 20852-2738 R. M. Frye, Director Division of Radiation Protection 3825 Barrett Drive Raleigh, NC 27609-7221 S. M. Shaeffer Senior Resident Inspector U. S. Nuclear Regulatory Commission McGuire Nuclear Station

ATTACHMENT 1 REVISED TECHNICAL SPECIFICATION BASES LIST OF EFFECTIVE SECTIONS

McGuire Nuclear Station Technical Specifications List of Effective Pages and Bases List of Effective Sections Page Number Amendment Revision Date i 184/166 9/30/98 ii 184/166 9/30/98 iii 184/166 9/30/98 iv 184/166 9/30/98 1.1-1 184/166 9/30/98 1.1-2 184/166 9/30/98 1.1-3 184/166 9/30/98 1.1-4 194/175 9/18/00 1.1-5 194/175 9/18/00 1.1-6 194/175 9/18/00 1.1-7 194/175 9/18/00 1.2-1 184/166 9/30/98 1.2-2 184/166 9/30/98 1.2-3 184/166 9/30/98 1.3-1 184/166 9/30/98 1.3-2 184/166 9/30/98 1.3-3 184/166 9/30/98 1.3-4 184/166 9/30/98 1.3-5 184/166 9/30/98 1.3-6 184/166 9/30/98 1.3-7 184/166 9/30/98 1.3-8 184/166 9/30/98 1.3-9 184/166 9/30/98 1.3-10 184/166 9/30/98 1.3-11 184/166 9/30/98 1.3-12 184/166 9/30/98 1.3-13 184/166 9/30/98 1.4-1 184/166 9/30/98 1.4-2 184/166 9/30/98 1.4-3 184/166 9/30/98 1.4-4 184/166 9/30/98 Page 1 Revision 23

Page Number Amendment Revision Date 2.0-1 184/166 9/30/98 2.0-2 191/172 3/20/00 3.0-1 184/166 9/30/98 3.0-2 184/166 9/30/98 3.0-3 184/166 9/30/98 3.0-4 184/166 9/30/98 3.0-5 184/166 9/30/98 3.1.1-1 184/166 9/30/98 3.1.2-1 184/166 9/30/98 3.1.2-2 184/166 9/30/98 3.1.3-1 184/166 9/30/98 3.1.3-2 184/166 9/30/98 3.1.3-3 184/166 9/30/98 3.1.4-1 184/166 9/30/98 3.1.4-2 184/166 9/30/98 3.1.4-3 184/166 9/30/98 3.1.4-4 186/167 9/8/99 3.1.5-1 184/166 9/30/98 3.1.5-2 184/166 9/30/98 3.1.6-1 184/166 9/30/98 3.1.6-2 184/166 9/30/98 3.1.6-3 184/166 9/30/98 3.1.7-1 184/166 9/30/98 3.1.7-2 184/166 9/30/98 3.1.8-1 184/166 9/30/98 3.1.8-2 184/166 9/30/98 3.2.1-1 184/166 9/30/98 3.2.1-2 184/166 9/30/98 3.2.1-3 184/166 9/30/98 3.2.1-4 188/169 9/22/99 3.2.1-5 188/169 9/22/99 3.2.2-1 184/166 9/30/98 3.2.2-2 184/166 9/30/98 McGuire Units 1 and 2 Page 2 Revision 23

Page Number Amendment Revision Date 3.2.2-3 184/166 9/30/98 3.2.2-4 188/169 9/22/99 3.2.3-1 184/166 9/30/98 3.2.4-1 184/166 9/30/98 3.2.4-2 184/166 9/30/98 3.2.4-3 184/166 9/30/98 3.2.4-4 184/166 9/30/98 3.3.1-1 184/166 9/30/98 3.3.1-2 184/166 9/30/98 3.3.1-3 184/166 9/30/98 3.3.1-4 184/166 9/30/98 3.3.1-5 184/166 9/30/98 3.3.1-6 184/166 9/30/98 3.3.1-7 184/166 9/30/98 3.3.1-8 184/166 9/30/98 3.3.1-9 184/166 9/30/98 3.3.1-10 184/166 9/30/98 3.3.1-11 184/166 9/30/98 3.3.1-12 184/166 9/30/98 3.3.1-13 184/166 9/30/98 3.3.1-14 194/175 9/18/00 3.3.1-15 194/175 9/18/00 3.3.1-16 194/175 9/18/00 3.3.1-17 194/175 9/18/00 3.3.1-18 194/175 9/18/00 3.3.1-19 194/175 9/18/00 3.3.1-20 184/166 9/30/98 3.3.2-1 184/166 9/30/98 3.3.2-2 184/166 9/30/98 3.3.2-3 184/166 9/30/98 3.3.2-4 184/166 9/30/98 3.3.2-5 184/166 9/30/98 3-3.2-6 198/179 4/12/01 McGuire Units 1 and 2 Page 3 Revision 23

Page Number Amendment Revision Date 3.3.2-7 198/179 4/12/01 3.3.2-8 184/166 9/30/98 3.3.2-9 184/166 9/30/98 3.3.2-10 194/175 9/18/00 3.3.2-11 194/175 9/18/00 3.3.2-12 194/175 9/18/00 3.3.2-13 198/179 4/12/01 3.3.2-14 194/175 9/18/00 3.3.2-15 184/166 9/30/98 3.3.3-1 184/166 9/30/98 3.3.3-2 184/166 9/30/98 3.3.3-3 184/166 9/30/98 3.3.3-4 184/166 9/30/98 3.3.4-1 184/166 9/30/98 3.3.4-2 184/166 9/30/98 3.3.4-3 184/166 9/30/98 3.3.5-1 184/166 9/30/98 3.3.5-2 194/175 9/18/00 3.3.6-1 184/166 9/30/98 3.3.6-2 184/166 9/30/98 3.3.6-3 194/175 9/18/00 3.4.1-1 191/172 3/20/00 3.4.1-2 191/175 3/20/00 3.4.1-3 184/166 9/30/98 3.4.1-4 191/172 3/20/00 3.4.2-1 184/166 9/30/98 3.4.3-1 184/166 9/30/98 3.4.3-2 184/1 66 9/30/98 3.4.3-3 184/166 9/30/98 3.4.3-4 184/166 9/30/98 3.4.3-5 184/1 66 9/30/98 3.4.3-6 184/166 9/30/98 3.4.4-1 184/166 9/30/98 McGuire Units 1 and 2 Page 4 Revision 23

Page Number Amendment Revision Date 3.4.5-1 184/166 9/30/98 3.4.5-2 184/166 9/30/98 3.4.5-3 184/166 9/30/98 3.4.6-1 184/166 9/30/98 3.4.6-2 184/166 9/30/98 3.4.7-1 184/166 9/30/98 3.4.7-2 184/166 9/30/98 3.4.8-1 184/166 9/30/98 3.4.8-2 184/166 9/30/98 3.4.9-1 184/166 9/30/98 3.4.9-2 184/166 9/30/98 3.4.10-1 184/166 9/30/98 3.4.10-2 184/166 9/30/98 3.4-11-1 184/166 9/30/98 3.4.11-2 184/166 9/30/98 3.4-11-3 184/166 9/30/98 3.4.11-4 184/166 9/30/98 3.4.12-1 184/166 9/30/98 3.4.12-2 184/166 9/30/98 3.4.12-3 184/166 9/30/98 3.4.12-4 184/166 9/30/98 3.4.12-5 184/166 9/30/98 3.4.12-6 184/166 9/30/98 3.4.13-1 184/166 9/30/98 3.4.13-2 184/166 9/30/98 3.4.14-1 184/166 9/30/98 3.4.14-2 184/166 9/30/98 3.4.14-3 184/166 9/30/98 3.4.14-4 184/166 9/30/98 3.4.15-1 184/166 9/30/98 3.4,15-2 184/166 9/30/98 3.4.15-3 184/1 66 9/30/98 3.4.16-1 184/166 9/30/98 McGuire Units 1 and 2 Page 5 Revision 23

Page Number Amendment Revision Date 3.4.16-2 184/166 9/30/98 3.4.16-3 184/166 9/30/98 3.4.16-4 184/166 9/30/98 3.4.17-1 184/166 9/30/98 3.5.1-1 184/166 9/30/98 3.5.1-2 184/166 9/30/98 3.5.2-1 184/166 9/30/98 3.5.2-2 184/166 9/30/98 3.5.2-3 184/166 9/30/98 3.5.3-1 184/166 9/30/98 3.5.3-2 184/166 9/30/98 3.5.4-1 184/166 9/30/98 3.5.4-2 184/166 9/30/98 3.5.5-1 184/166 9/30/98 3.5.5-2 184/166 9/30/98 3.6.1-1 184/166 9/30/98 3.6.1-2 184/166 9/30/98 3.6.2-1 184/166 9/30/98 3.6.2-2 184/166 9/30/98 3.6.2-3 184/166 9/30/98 3.6.2-4 184/166 9/30/98 3.6.2-5 184/166 9/30/98 3.6.3-1 184/166 9/30/98 3.6.3-2 184/166 9/30/98 3.6.3-3 184/166 9/30/98 3.6.3-4 184/166 9/30/98 3.6.3-5 184/166 9/30/98 3.6.3-6 184/166 9/30/98 3.6.3-7 184/166 9/30/98 3.6.4-1 184/166 9/30/98 3.6.5-1 184/166 9/30/98 3.6.5-2 184/166 9/30/98 3.6.6-1 184/166 9/30/98 Mc(Guire Units 1 and 2 Page 6 Revision 23

Page Number Amendment Revision Date 3.6.6-2 184/166 9/30/98 3.6.7-1 184/166 9/30/98 3.6.7-2 184/166 9/30/98 3.6.8-1 184/166 9/30/98 3.6.8-2 184/166 9/30/98 3.6.9-1 184/166 9/30/98 3.6.9-2 184/166 9/30/98 3.6.10-1 184/166 9/30/98 3.6.10-2 184/166 9/30/98 3.6.11-1 184/166 9/30/98 3.6.11-2 184/166 9/30/98 3.6.12-1 184/166 9/30/98 3.6.12-2 184/166 9/30/98 3.6.12-3 184/166 9/30/98 3.6.13-1 184/166 9/30/98 3.6.13-2 184/166 9/30/98 3.6.13-3 184/166 9/30/98 3.6.14-1 184/166 9/30/98 3.6.14-2 184/166 9/30/98 3.6.14-3 184/166 9/30/98 3.6.15-1 184/166 9/30/98 3.6.15-2 184/166 9/30/98 3.6.16-1 184/166 9/30/98 3.6.16-2 184/166 9/30/98 3.7.1-1 184/166 9/30/98 3.7.1-2 184/166 9/30/98 3.7.1-3 184/166 9/30/98 3.7.2-1 184/166 9/30/98 3.7.2-2 184/166 9/30/98 3.7.3-1 184/166 9/30/98 3.7.3-2 184/166 9/30/98 3.7.4-1 184/166 9/30/98 3.7.4-2 184/166 9/30/98 McGuire Units 1 and 2 Page 7 Revision 23

Page Number Amendment Revision Date 3.7.5-1 184/166 9/30/98 3.7.5-2 184/166 9/30/98 3.7.5-3 184/166 9/30/98 3.7.5-4 184/166 9/30/98 3.7.6-1 184/166 9/30/98 3.7.6-2 184/166 9/30/98 3.7.7-1 184/166 9/30/98 3.7.7-2 184/166 9/30/98 3.7.8-1 184/166 9/30/98 3.7.8-2 184/166 9/30/98 3.7.9-1 187/168 9/22/99 3.7.9-2 187/168 9/22/99 3.7.9-3 184/166 9/30/98 3.7.10-1 184/166 9/30/98 3.7.10-2 184/166 9/30/98 3.7.11-1 184/166 9/30/98 3.7.11-2 184/166 9/30/98 3.7.12-1 184/166 9/30/98 3.7.12-2 184/166 9/30/98 3.7.13-1 184/166 9/30/98 3.7.14-1 184/166 9/30/98 3.7.15-1 197/178 11/27/00 3.7.15-2 197/178 11/27/00 3.7.15-3 197/178 11/27/00 3.7.15-4 197/178 11/27/00 3.7.15-5 197/178 11/27/00 3.7.15-6 197/178 11/27/00 3.7.15-7 197/178 11/27/00 3.7.15-8 197/178 11/27/00 3.7.15-9 197/178 11/27/00 3.7.15-10 197/178 11/27/00 3.7.15-11 197/178 11/27/00 3.7.15-12 197/178 11/27/00 McGuire Units 1 and 2 Page 8 Revision 23

Page Number Amendment Revision Date 3.7.15-13 197/178 11/27/00 3.7.15-14 197/178 11/27/00 3.7.15-15 197/178 11/27/00 3.7.15-16 197/178 11/27/00 3.7.15-17 197/178 11/27/00 3.7.15-18 197/178 11/27/00 3.7.15-19 197/178 11/27/00 3.7.15-20 197/178 11/27/00 3.7.15-21 197/178 11/27/00 3.7.16-1 184/166 9/30/98 3.8.1-1 184/166 9/30/98 3.8.1-2 184/166 9/30/98 3.8.1-3 184/166 9/30/98 3.8.1-4 184/166 9/30/98 3.8.1-5 184/166 9/30/98 3.8.1-6 184/166 9/30/98 3.8.1-7 184/166 9/30/98 3.8.1-8 192/173 3/15/00 3.8.1-9 184/166 9/30/98 3.8.1-10 184/166 9/30/98 3.8.1-11 192/173 3/15/00 3.8.1-12 184/166 9/30/98 3.8.1-13 184/166 9/30/98 3.8.1-14 184/166 9/30/98 3.8.1-15 184/166 9/30/98 3.8.2-1 184/166 9/30/98 3.8.2-2 184/166 9/30/98 3.8.2-3 184/166 9/30/98 3.8.3-1 184/166 9/30/98 3 8.3-2 184/166 9/30/98 3.8.3-3 184/166 9/30/98 3-8.4-1 184/166 9/30/98 3.8.4-2 184/166 9/30/98 Mc Guirre Units 1 and 2 Page 9 Revisionl 23

Page Number Amendment Revision Date 3.8.4-3 184/166 9/30/98 3.8.5-1 184/166 9/30/98 3.8.5-2 184/166 9/30/98 3.8.6-1 184/166 9/30/98 3.8.6-2 184/166 9/30/98 3.8.6-3 184/166 9/30/98 3.8.6-4 184/166 9/30/98 3.8.7-1 184/166 9/30/98 3.8.8-1 184/166 9/30/98 3.8.8-2 184/166 9/30/98 3.8.9-1 184/166 9/30/98 3.8.9-2 184/166 9/30/98 3.8.10-1 184/166 9/30/98 3.8.10-2 184/166 9/30/98 3.9.1-1 184/166 9/30/98 3.9.2-1 184/166 9/30/98 3.9.3-1 184/166 9/30/98 3.9.3-2 184/166 9/30/98 3.9.4-1 184/166 9/30/98 3.9.4-2 184/166 9/30/98 3.9.5-1 184/166 9/30/98 3.9.5-2 184/166 9/30/98 3.9.6-1 184/166 9/30/98 3.9.6-2 184/166 9/30/98 3.9.7-1 184/166 9/30/98 4.0.1 197/178 11/27/00 4.0.2 197/178 11/27/00 5.1-1 184/166 9/30/98 5.2-1 184/166 9/30/98 5.2-2 184/166 9/30/98 5.2-3 184/166 9/30/98 5.3-1 184/166 9/30/98 5.4-1 184/166 9/30/98 McGuire Units 1 and 2 Page 10 Revision 23

Page Number Amendment Revision Date 5.5-1 184/166 9/30/98 5.5-2 184/166 9/30/98 5.5-3 184/166 9/30/98 5.5-4 184/166 9/30/98 5.5-5 190/171 12/21/99 5.5-6 184/166 9/30/98 5.5-7 184/166 9/30/98 5.5-8 184/166 9/30/98 5.5-9 184/166 9/30/98 5.5-10 184/166 9/30/98 5.5-11 184/166 9/30/98 5.5-12 184/166 9/30/98 5.5-13 184/166 9/30/98 5.5-14 196/177 11/2/00 5.5-15 184/166 9/30/98 5.5-16 184/166 9/30/98 5.5-17 184/166 9/30/98 5.5-18 184/166 9/30/98 5.6-1 184/166 9/30/98 5.6-2 184/166 9/30/98 5.6-3 188/169 9/22/99 5.6-4 195/176 9/22/00 5.6-5 184/166 9/30/98 5.7-1 184/166 9/30/98 5.7-2 184/166 9/30/98 BASES (Revised per section)

Revision 0 9/30/98 II Revision 0 9/30/98 Revision 0 9/30/98 B 2. 1.1 Revision 0 9/30/98 B2.1-2 Revision 0 9/30/98 McGuire Unils 1 jmd 2 Page 11 Revision 23

Page Number Amendment Revision Date B 3.0 Revision 0 9/30/98 B 3.1.1 Revision 0 9/30/98 B 3.1.2 Revision 10 9/22/00 B 3.1.3 Revision 10 9/22/00 B 3.1.4 Revision 0 9/30/98 B 3.1.5 Revision 19 1/10/02 B 3.1.6 Revision 0 9/30/98 B 3.1.7 Revision 15 01/04/01 B 3.1.8 Revision 0 9/30/98 B 3.2.1 Revision 10 9/22/00 B 3.2.2 Revision 10 9/22/00 B 3.2.3 Revision 0 9/30/98 B 3.2.4 Revision 10 9/22/00 B 3.3.1 Revision 23 1/15/02 B 3.3.2 Revision 16 10/9/01 B 3.3.3 Revision 23 1/15/02 B 3.3.4 Revision 0 9/30/98 B 3.3.5 Revision 11 9/18/00 B 3.3.6 Revision 0 9/30/98 B 3.4.1 Revision 8 3/20/00 B 3.4.2 Revision 0 9/30/98 B 3.4.3 Revision 0 9/30/98 B 3.4.4 Revision 0 9/30/98 B 3.4.5 Revision 0 9/30/98 B 3.4.6 Revision 0 9/30/98 B 3.4.7 Revision 0 9/30/98 B 3.4.8 Revision 0 9/30/98 B 3.4.9 Revision 0 9/30/98 B 3.4.10 Revision 0 9/30/98 B 3.4.11 Revision 0 9/30/98 B 3.4.12 Revision 12 8/23/00 B 3.4.13 Revision 0 9/30/98 B 3.4.14 Revision 0 9/30/98 McGuire Units 1 and 2 Page 12 Revision 23

Page Number Amendment Revision Date B 3.4.15 Revision 0 9/30/98 B 3.4.16 Revision 0 9/30/98 B 3.4.17 Revision 0 9/30/98 B 3.5.1 Revision 10 9/22/00 B 3.5.2 Revision 10 9/22/00 B 3.5.3 Revision 0 9/30/98 B 3.5.4 Revision 0 9/30/98 B 3.5.5 Revision 0 9/30/98 B 3.6.1 Revision 0 9/30/98 B 3.6.2 Revision 17 10/08/01 B 3.6.3 Revision 18 10/23/01 B 3.6.4 Revision 0 9/30/98 B 3.6.5 Revision 0 9/30/98 B 3.6.6 Revision 0 9/30/98 B 3.6.7 Revision 0 9/30/98 B 3.6.8 Revision 0 9/30/98 B 3.6.9 Revision 0 9/30/98 B 3.6.10 Revision 0 9/30/98 B 3.6.11 Revision 0 9/30/98 B 3.6.12 Revision 0 9/30/98 B 3.6.13 Revision 0 9/30/98 B 3.6.14 Revision 0 9/30/98 B 3.6.15 Revision 0 9/30/98 B 3.6.16 Revision 0 9/30/98 B 3.7.1 Revision 0 9/30/98 B 3.7.2 Revision 0 9/30/98 B 3.7.3 Revision 0 9/30/98 B 3.7.4 Revision 0 9/30/98 B 3.7.5 Revision 0 9/30/98 B 3.7.6 Revision 0 9/30/98 B 3.7.7 Revision 0 9/30/98 B 3.7.8 Revision 0 9/30/98 B 3.7. 9 Revision 0 9/30/98 McGuire Units 1 and 2 Page 13 Revision 23

Page Number Amendment Revision Date B 3.7.10 Revision 0 9/30/98 B 3.7.11 Revision 0 9/30/98 B 3.7.12 Revision 6 10/6/99 B 3.7.13 Revision 0 9/30/98 B 3.7.14 Revision 14 11/27/00 B 3.7.15 Revision 14 11/27/00 B 3.7.16 Revision 0 9/30/98 B 3.8.1 Revision 13 1/18/01 B 3.8.2 Revision 21 1/8/02 I B 3.8.3 Revision 0 9/30/98 B 3.8.4 Revision 22 1/10/02 B 3.8.5 Revision 0 9/30/98 B 3.8.6 Revision 0 9/30/98 B 3.8.7 Revision 20 1/10/02 B 3.8.8 Revision 0 9/30/98 B 3.8.9 Revision 0 9/30/98 B 3.8.10 Revision 0 9/30/98 B 3.9.1 Revision 0 9/30/98 B 3.9.2 Revision 0 9/30/98 B 3.9.3 Revision 23 1/15/02 B 3.9.4 Revision 0 9/30/98 B 3.9.5 Revision 0 9/30/98 B 3.9.6 Revision 0 9/30/98 B 3.9.7 Revision 0 9/30/98 McGuire Units 1 and 2 Page 14 Revision 23

ATTACHMENT 2 REVISED TECHNICAL SPECIFICATION BASES 3.3.1, 3.3.3, 3.9.3

RTS Instrumentation B 3.3.1 B 3.3 INSTRUMENTATION B 3.3.1 Reactor Trip System (RTS) Instrumentation BASES BACKGROUND The RTS initiates a unit shutdown, based on the values of selected unit parameters, to protect against violating the core fuel design limits and Reactor Coolant System (RCS) pressure boundary during anticipated operational occurrences (AOOs) and to assist the Engineered Safety Features (ESF) Systems in mitigating accidents.

The protection and monitoring systems have been designed to assure safe operation of the reactor. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the RTS, as well as specifying LCOs on other reactor system parameters and equipment performance.

The LSSS, defined in this specification as the Allowable Values, in conjunction with the LCOs, establish the threshold for protective system action to prevent exceeding acceptable limits during Design Basis Accidents (DBAs).

During AOOs, which are those events expected to occur one or more times during the unit life, the acceptable limits are:

1. The Departure from Nucleate Boiling Ratio (DNBR) shall be maintained above the Safety Limit (SL) value to prevent departure from nucleate boiling (DNB);
2. Fuel centerline melt shall not occur; and
3. The RCS pressure SL of 2735 psig shall not be exceeded.

Operation within the SLs of Specification 2.0, "Safety Limits (SLs)," also maintains the above values and assures that offsite dose will be within the 10 CFR 20 and 10 CFR 100 criteria during AOOs.

Accidents are events that are analyzed even though they are not expected to occur during the unit life. The acceptable limit during accidents is that offsite dose shall be maintained within an acceptable fraction of 10 CFR 100 limits. Different accident categories are allowed a different fraction of these limits, based on probability of occurrence.

Meeting the acceptable dose limit for an accident category is considered having acceptable consequences for that event.

C1:',

J U,;4 1-1d 2 B B 3.3.1 31 -11Rvso Revision No.

o2 23

RTS Instrumentation B 3.3.1 BASES BACKGROUND (continued)

The RTS instrumentation is segmented into four distinct but interconnected categories as illustrated in UFSAR, Chapter 7 (Ref. 1),

and as identified below:

1. Field transmitters or process sensors: provide a measurable electronic signal based upon the physical characteristics of the parameter being measured;
2. Process monitoring systems, including the Process Control System, the Nuclear Instrumentation System (NIS), and various field contacts and sensors: monitors various plant parameters, provides any required signal processing, and provides digital outputs when parameters exceed predetermined limits. They may also provide outputs for control, indication, alarm, computer input, and recording;
3. Solid State Protection System (SSPS), including input, logic, and output bays: combines the input signals from the process monitoring systems per predetermined logic and initiates a reactor trip and ESF actuation when warranted by the process monitoring systems inputs;. and
4. Reactor trip switchgear, including reactor trip breakers (RTBs) and bypass breakers: provides the means to interrupt power to the control rod drive mechanisms (CRDMs) and allows the rod cluster control assemblies (RCCAs), or "rods," to fall into the core and shut down the reactor. The bypass breakers allow testing of the RTBs at power.

Field Transmitters or Sensors To meet the design demands for redundancy and reliability, more than one, and often as many as four, field transmitters or sensors are used to measure unit parameters. To account for the calibration tolerances and instrument drift, which are assumed to occur between calibrations, statistical allowances are provided NOMINAL TRIP SETPOINT Values.

The OPERABILITY of each transmitter or sensor can be evaluated when its "as found" calibration data are compared against its documented acceptance criteria.

McGuire Units 1 and 2 B 3-3.1!-2 Revision No. 23

RTS Instrumentation B 3.3.1 BASES BACKGROUND (continued)

Process Monitoring Systems Generally, three or four channels of process control equipment are used for the signal processing of unit parameters measured by the field instruments. The process control equipment provides signal conditioning, compatible output signals for instruments located on the main control board, and comparison of measured input signals with setpoints established by safety analyses. These setpoints are defined in UFSAR, Chapter 7 (Ref. 1), Chapter 6 (Ref. 2), and Chapter 15 (Ref. 3). If the measured value of a unit parameter exceeds the predetermined setpoint, an output from a bistable is forwarded to the SSPS for decision logic processing. Channel separation is maintained up to and through the input bays. However, not all unit parameters require four channels of sensor measurement and signal processing. Some unit parameters provide input only to the SSPS, while others provide input to the SSPS, the main control board, the unit computer, and one or more control systems.

Generally, if a parameter is used only for input to the protection circuits, three channels with a two-out-of-three logic are sufficient to provide the required reliability and redundancy. If one channel fails in a direction that would not result in a partial Function trip, the Function is still OPERABLE with a two-out-of-two logic. If one channel fails, such that a partial Function trip occurs, a trip will not occur and the Function is still OPERABLE with a one-out-of-two logic.

Generally, if a parameter is used for input to the SSPS and a control function, four channels with a two-out-of-four logic are sufficient to provide the required reliability and redundancy. The circuit must be able to withstand both an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Again, a single failure will neither cause nor prevent the protection function actuation.

These requirements are described in IEEE-279-1 971 (Ref. 4). The actual number of channels required for each unit parameter is specified in Reference 1.

Two logic channels are required to ensure no single random failure of a logic channel will disable the RTS. The logic channels are designed such that testing required while the reactor is at power may be accomplished without causing a trip. Provisions to allow removing logic channels from service during maintenance are unnecessary because of the logic system's designed reliability.

MAcGuire U is 1 Wfjr 2 B 3.3.1 -3 Revision No. 23

RTS Instrumentation B 3.3-1 BASES BACKGROUND (continued)

Trip Setpoints and Allowable Values The NOMINAL TRIP SETPOINTS are the nominal values at which the bistables are set. Any bistable is considered to be properly adjusted when the "as left" value is within the band for CHANNEL CALIBRATION tolerance.

The NOMINAL TRIP SETPOINTS used in the bistables are based on the analytical limits (Ref. 1, 2, and 3). The selection of these NOMINAL TRIP SETPOINTS is such that adequate protection is provided when all sensor and processing time delays, calibration tolerances, instrumentation uncertainties, instrument drift, and severe environment errors for those RTS channels that must function in harsh environments as defined by 10 CFR 50.49 (Ref. 5) are taken into account. The actual as-left Setpoint of the bistable assures that the actual trip occurs in time to prevent an analytical limit from being exceeded.

The Allowable Value accounts for changes in random measurement errors between COTs. One example of such a change in measurement error is drift during the surveillance interval. If the COT demonstrates that the loop trips within the Allowable Value, the loop is OPERABLE. A trip within the Allowable Value ensures that the predictions of equipment performance used to develop the NOMINAL TRIP SETPOINT are still valid, and that the equipment will initiate a trip in response to an AOO in time to prevent an analytical limit from being exceeded (and that the consequences of DBAs will be acceptable, providing the unit is operated from within the LCOs at the onset of the AOO or DBA and the equipment functions as designed). Note that in the accompanying LCO 3.3.1, the Allowable Values of Table 3.3.1-1 are the LSSS.

Each channel of the process control equipment can be tested on line to verify that the signal or setpoint accuracy is within the specified allowance requirements. Once a designated channel is taken out of service for testing, a simulated signal is injected in place of the field instrument signal. The process equipment for the channel in test is then tested, verified, and calibrated. SRs for the channels are specified in the SRs section.

Determination of the NOMINAL TRIP SETPOINTS and Allowable Values listed in Table 3.3.1-1 incorporate all of the known uncertainties applicable for each channel. The magnitudes of these uncertainties are factored into the determination of each NOMINAL TRIP SETPOINT. All field sensors and signal processing equipment for these channels are assumed to operate within the allowances of these uncertainty magnitudes.

MlcGuirc Units 1 afid 2 B 3.3.1-4 Revision No- 23

RTS Instrumentation B 3.3.1 BASES BACKGROUND (continued)

Solid State Protection System The SSPS equipment is used for the decision logic processing of outputs from the signal processing equipment bistables. To meet the redundancy requirements, two trains of SSPS, each performing the same functions, are provided. If one train is taken out of service for maintenance or test purposes, the second train will provide reactor trip and/or ESF actuation for the unit. If both trains are taken out of service or placed in test, a reactor trip will result. Each train is packaged in its own cabinet for physical and electrical separation to satisfy separation and independence requirements. The system has been designed to trip the reactor in the event of a loss of power, directing the unit to a safe shutdown condition.

The SSPS performs the decision logic for actuating a reactor trip or ESF actuation, generates the electrical output signal that will initiate the required trip or actuation, and provides the status, permissive, and annunciator output signals to the main control room of the unit.

The outputs from the process monitoring systems are sensed by the SSPS equipment and combined into logic matrices that represent combinations indicative of various unit upset and accident transients. If a logic matrix combination is completed, the system will initiate a reactor trip or send actuation signals via master and slave relays to those components whose aggregate Function best serves to alleviate the condition and restore the unit to a stable condition. Examples are given in the Applicable Safety Analyses, LCO, and Applicability sections of this Bases.

Reactor Trip Switchgear The RTBs are in the electrical power supply line from the control rod drive motor generator set power supply to the CRDMs. Opening of the RTBs interrupts power to the CRDMs, which allows the shutdown rods and control rods to fall into the core by gravity. Each RTB is equipped with a bypass breaker to allow testing of the RTB while the unit is at power.

During normal operation the output from the SSPS is a voltage signal that energizes the undervoltage coils in the RTBs and bypass breakers, if in use. When the required logic matrix combination is completed, the SSPS output voltage signal is removed, the undervoltage coils are de energized, the breaker trip lever is actuated by a compressed spring that is released by de-energizing the undervoltage coil, and the RTBs and bypass breakers are tripped open. This allows the shutdown rods and control rods to fall into the core. In addition to the de-energization of the B 3.3.1- 5 Revision No. 23 McGuire Units 1 and 2

RTS Instrumentation B 3.3.1 BASES BACKGROUND (continued) undervoltage coils, each breaker is also equipped with a shunt trip device that is energized to trip the breaker open upon receipt of a reactor trip signal from the SSPS. Either the undervoltage coil or the shunt trip mechanism is sufficient by itself, thus providing a diverse trip mechanism.

The decision logic matrix Functions are described in the functional diagrams included in Reference 1. In addition to the reactor trip or ESF, these diagrams also describe the various "permissive interlocks" that are associated with unit conditions. Each train has a built in testing device that can test the decision logic matrix Functions and the actuation devices while the unit is at power. When any one train is taken out of service for testing, the other train is capable of providing unit monitoring and protection until the testing has been completed. The testing device is semiautomatic to minimize testing time.

APPLICABLE The RTS functions to maintain the SLs during all AOOs and mitigates SAFETY ANALYSES,the consequences of DBAs in all MODES in which the RTBs are closed.

LCO, and APPLICABILITY Each of the analyzed accidents and transients can be detected by one or more RTS Functions. The accident analysis described in Reference 3 takes credit for most RTS trip Functions. RTS trip Functions not specifically credited in the accident analysis are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit. These RTS trip Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function performance. They may also serve as backups to RTS trip Functions that were credited in the accident analysis.

The LCO requires all instrumentation performing an RTS Function, listed in Table 3.3.1-1 in the accompanying LCO, to be OPERABLE. Failure of any instrument renders the affected channel(s) inoperable and reduces the reliability of the affected Functions.

The LCO generally requires OPERABILITY of three or four channels in each instrumentation Function, two channels of Manual Reactor Trip in each logic Function, and two trains in each Automatic Trip Logic Function.

Four OPERABLE instrumentation channels in a two-out-of-four configuration are required when one RTS channel is also used as a control system input. This configuration accounts for the possibility of the shared channel failing in such a manner that it creates a transient that requires RTS action. In this case, the RTS will still provide protection, McGuire Unit.* 1 wrd 2 B 3.3.1-6 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) even with random failure of one of the other three protection channels.

Three operable instrumentation channels in a two-out-of-three configuration are generally required when there is no potential for control system and protection system interaction that could simultaneously create a need for RTS trip and disable one RTS channel. The two-out-of-three and two-out-of-four configurations allow one channel to be tripped during maintenance or testing without causing a reactor trip. Specific exceptions to the above general philosophy exist and are discussed below.

Reactor Trip System Functions The safety analyses and OPERABILITY requirements applicable to each RTS Function are discussed below:

1. Manual Reactor Trip The Manual Reactor Trip ensures that the control room operator can initiate a reactor trip at any time by using either of two reactor trip switches in the control room. A Manual Reactor Trip accomplishes the same results as any one of the automatic trip Functions. It may be used by the reactor operator to shut down the reactor whenever any parameter is rapidly trending toward its Trip Setpoint.

The LCO requires two Manual Reactor Trip channels to be OPERABLE. Each channel is controlled by a manual reactor trip switch. Each channel actuates one or more reactor trip breakers in both trains. Two independent channels are required to be OPERABLE so that no single random failure will disable the Manual Reactor Trip Function.

In MODE 1 or 2, manual initiation of a reactor trip must be OPERABLE. These are the MODES in which the shutdown rods and/or control rods are partially or fully withdrawn from the core. In MODE 3, 4, or 5, the manual initiation Function must also be OPERABLE if the shutdown rods or control rods are withdrawn or the Control Rod Drive (CRD) System is capable of withdrawing the shutdown rods or the control rods. In this condition, inadvertent control rod withdrawal is possible. In MODE 3, 4, or 5, manual initiation of a reactor trip does not have to be OPERABLE if the CRD System is not capable of withdrawing the shutdown rods or control rods. If the rods cannot be withdrawn from the core, there MACGOlnre Unit~s 1 and 2 B 3.3.1-7 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) is no need to be able to trip the reactor because all of the rods are inserted. In MODE 6, the CRDMs are disconnected from the control rods and shutdown rods. Therefore, the manual initiation Function is not required.

2. Power Range Neutron Flux The NIS power range detectors are located external to the reactor vessel and measure neutrons leaking from the core. The NIS power range detectors provide input to the Rod Control System and the Steam Generator (SG) Water Level Control System. Therefore, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Note that this Function also provides a signal to prevent automatic and manual rod withdrawal prior to initiating a reactor trip. Limiting further rod withdrawal may terminate the transient and eliminate the need to trip the reactor.
a. Power Range Neutron Flux-High The Power Range Neutron Flux-High trip Function ensures that protection is provided, from all power levels, against a positive reactivity excursion leading to DNB during power operations. These can be caused by rod withdrawal or reductions in RCS temperature.

The LCO requires all four of the Power Range Neutron Flux-High channels to be OPERABLE.

In MODE 1 or 2, when a positive reactivity excursion could occur, the Power Range Neutron Flux-High trip must be OPERABLE. This Function will terminate the reactivity excursion and shut down the reactor prior to reaching a power level that could damage the fuel. In MODE 3, 4, 5, or 6, the NIS power range detectors cannot detect neutron levels in this range. In these MODES, the Power Range Neutron Flux-High does not have to be OPERABLE because the reactor is shut down and reactivity excursions into the power range are extremely unlikely. Other RTS Functions and administrative controls provide protection against reactivity additions when in MODE 3, 4, 5, or 6.

McGuirre Units 1 and 2 B 3.3.1-8 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO and APPLICABILITY (continued)

b. Power Range Neutron Flux-Low The LCO requirement for the Power Range Neutron Flux Low trip Function ensures that protection is provided against a positive reactivity excursion from low power or subcritical conditions.

The LCO requires all four of the Power Range Neutron Flux-Low channels to be OPERABLE.

In MODE 1, below the Power Range Neutron Flux (P-10 setpoint), and in MODE 2, the Power Range Neutron Flux Low trip must be OPERABLE. This Function may be manually blocked by the operator when two out of four power range channels are greater than approximately 10% RTP (P-10 setpoint). This Function is automatically unblocked when three out of four power range channels are below the P-1 0 setpoint. Above the P-1 0 setpoint, positive reactivity additions are mitigated by the Power Range Neutron Flux High trip Function.

In MODE 3, 4, 5, or 6, the Power Range Neutron Flux-Low trip Function does not have to be OPERABLE because the reactor is shut down and the NIS power range detectors cannot detect neutron levels in this range. Other RTS trip Functions and administrative controls provide protection against positive reactivity additions or power excursions in MODE 3, 4, 5, or 6.

3. Power Range Neutron Flux-High Positive Rate The Power Range Neutron Flux - High Positive Rate trip uses the same channels as discussed for Function 2 above.

The Power Range Neutron Flux-High Positive Rate trip Function ensures that protection is provided against rapid increases in neutron flux that are characteristic of an RCCA drive rod housing rupture and the accompanying ejection of the RCCA. This Function complements the Power Range Neutron Flux-High and Low Setpoint trip Functions to ensure that the criteria are met for a rod ejection from the power range.

The LCO requires all four of the Power Range Neutron Flux-High Positive Rate channels to be OPERABLE.

McGuire Units 1 and 2 B 3.3.1 -9 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

In MODE 1 or 2, when there is a potential to add a large amount of positive reactivity from a rod ejection accident (REA), the Power Range Neutron Flux-High Positive Rate trip must be OPERABLE.

In MODE 3, 4, 5, or 6, the Power Range Neutron Flux-High Positive Rate trip Function does not have to be OPERABLE because other RTS trip Functions and administrative controls will provide protection against positive reactivity additions. In MODE 6, no rods are withdrawn and the SDM is increased during refueling operations. The reactor vessel head is also removed or the closure bolts are detensioned preventing any pressure buildup. In addition, the NIS power range detectors cannot detect neutron levels present in this mode.

4. Intermediate Ranqe Neutron Flux The Intermediate Range Neutron Flux trip Function ensures that protection is provided against an uncontrolled RCCA bank rod withdrawal accident from a subcritical condition during startup. This trip Function provides redundant protection to the Power Range Neutron Flux-Low Setpoint trip Function. The NIS intermediate range detectors are located external to the reactor vessel and measure neutrons leaking from the core. Note that this Function also provides a signal to prevent automatic and manual rod withdrawal prior to initiating a reactor trip. Limiting further rod withdrawal may terminate the transient and eliminate the need to trip the reactor.

The LCO requires two channels of Intermediate Range Neutron Flux to be OPERABLE. Two OPERABLE channels are sufficient to ensure no single random failure will disable this trip Function.

Because this trip Function is important only during startup, there is generally no need to disable channels for testing while the Function is required to be OPERABLE- Therefore, a third channel is unnecessary.

In MODE 1 below the P-10 setpoint, and in MODE 2, when there is a potential for an uncontrolled RCCA bank rod withdrawal accident during reactor startup, the Intermediate Range Neutron Flux trip must be OPERABLE. Above the P-10 setpoint, the Power Range Neutron Flux-High Setpoint trip and the Power Range Neutron Flux-High Positive Rate trip provide core protection for a rod withdrawal accident. In MODE 3, 4, or 5, the Intermediate Range McGuire Unit 1 mid 23 B 3.3.1 -10 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Neutron Flux trip does not have to be OPERABLE because other RTS trip functions provide protection against positive reactivity additions. The reactor cannot be started up in this condition. The core also has the required SDM to mitigate the consequences of a positive reactivity addition accident. In MODE 6, all rods are fully inserted and the core has a required increased SDM. Also, the NIS intermediate range detectors cannot detect neutron levels present in this MODE.

5. Source Ranqe Neutron Flux The LCO requirement for the Source Range Neutron Flux trip Function ensures that protection is provided against an uncontrolled RCCA bank rod withdrawal accident from a subcritical condition during startup. This trip Function provides redundant protection to the Power Range Neutron Flux-Low Setpoint and Intermediate Range Neutron Flux trip Functions. In MODES 3, 4, and 5, administrative controls also prevent the uncontrolled withdrawal of rods. The NIS source range detectors are located external to the reactor vessel and measure neutrons leaking from the core. The NIS source range detectors do not provide any inputs to control systems. The source range trip is the only RTS automatic protection function required in MODES 3, 4, and .5- with the CRD System capable of rod withdrawal. Therefore, the functional capability at the specified Trip Setpoint is assumed to be available.

The LCO requires two channels of Source Range Neutron Flux to be OPERABLE. Two OPERABLE channels are sufficient to ensure no single random failure will disable this trip Function. The LCO also requires one channel of the Source Range Neutron Flux to be OPERABLE in MODE 3, 4, or 5 with RTBs open. In this case, the source range Function is to provide control room indication. The outputs of the Function to RTS logic are not required OPERABLE when the RTBs are open.

The Source Range Neutron Flux Function provides protection for control rod withdrawal from subcritical, boron dilution, and control rod ejection events. The Function also provides visual neutron flux indication in the control room.

In MODE 2 when below the P-6 setpoint during a reactor startup, the Source Range Neutron Flux trip must be OPERABLE. Above the P-6 setpoint, the Intermediate Range Neutron Flux trip and the McGuire Units 1 and 2 B 3.3.1 -11 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Power Range Neutron Flux-Low Setpoint trip will provide core protection for reactivity accidents. Above the P-6 setpoint, the NIS source range detectors are de-energized and inoperable.

In MODE 3, 4, or 5 with the reactor shut down, the Source Range Neutron Flux trip Function must also be OPERABLE. If the CRD System is capable of rod withdrawal, the Source Range Neutron Flux trip must be OPERABLE to provide core protection against a rod withdrawal accident. If the unit is to be in MODE 3 with the RTBs closed for > 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> the Surveillance requirement SR 3.3.1.7 must be completed within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> after entry into MODE 3. The surveillance shall include verification of the high flux at shutdown alarm setpoint of less than or equal to five times background of the average CPS Neutron Level Reading (the average CPS Reading is the most consistent value between highest and lowest CPS Neutron Level Reading).

If the CRD System is not capable of rod withdrawal, the source range detectors are not required to trip the reactor. However, their monitoring Function must be OPERABLE to monitor core neutron levels and provide indication of reactivity changes that may occur as a result of events like a boron dilution.

The neutron detector's high flux at shutdown alarm setpoint of less than or equal to five times background, in Mode 3, 4, or 5, shall be verified. Once the High Flux at Shutdown Alarm setpoints are set at five times background above steady state neutron count rate the re-verification/re-adjustment of the high flux at shutdown is not required. The neutron count rate will decrease as Mode changes are made from 3 to 4 to 5 as the system temperature decreases.

Any subsequent changes in the count rate are an indication of gamma flux (due to movement of irradiated particles in the system) which may cause the source range response to vary. Upon increase in the neutron count rate due to activities that add positive reactivity to the core, the presence of gamma flux will cease to be a factor in detector count rate.

A CHANNEL CHECK provides a comparison of the parameter indicated on one channel to a similar parameter on other channels.

This is based on the assumption that the two indicating channels should be consistent. Significant differences between the indicating source range channels can occur due to core geometry, decreasing neutron count rate as temperature is decreasing in the system, the location of the Source Assemblies (distance from the Source Detectors), and large amounts of gamma. Each channel should be McGuire Units 1 and 2 B 3.3.1-12 Revision No- 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) consistent with its local condition.

The requirements for the NIS source range detectors in MODE 6 are addressed in LCO 3.9.3, "Nuclear Instrumentation."

6. Overtemperature AT The Overtemperature AT trip Function is provided to ensure that the design limit DNBR is met. This trip Function also limits the range over which the Overpower AT trip Function must provide protection. The inputs to the Overtemperature AT trip include pressurizer pressure, coolant temperature, axial power distribution, and reactor power as indicated by loop AT assuming full reactor coolant flow. Protection from violating the DNBR limit is assured for those transients that are slow with respect to delays from the core to the measurement system. The Function monitors both variation in power and flow since a decrease in flow has the same effect on AT as a power increase. The Overtemperature AT trip Function uses each loop's AT as a measure of reactor power and is compared with a setpoint that is automatically varied with the following parameters:

reactor coolant average temperature-the Trip Setpoint is varied to correct for changes in coolant density and specific heat capacity with changes in coolant temperature;

"* pressurizer pressure-the Trip Setpoint is varied to correct for changes in system pressure; and

"* axial power distribution-f(Al), the Trip Setpoint is varied to account for imbalances in the axial power distribution as detected by the NIS upper and lower power range detectors.

If axial peaks are greater than the design limit, as indicated by the difference between the upper and lower NIS power range detectors, the Trip Setpoint is reduced in accordance with Note 1 of Table 3.3.1-1.

McGuire Units 1 and 2 B 3.3.1-13 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Dynamic compensation is included for system piping delays from the core to the temperature measurement system.

The Overtemperature AT trip Function is calculated for each loop as described in Note 1 of Table 3.3.1-1. Trip occurs if Overtemperature AT is indicated in two loops. The pressure and temperature signals are used for other control functions, therefore, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Note that this Function also provides a signal to generate a turbine runback prior to reaching the Trip Setpoint. A turbine runback will reduce turbine power and reactor power. A reduction in power will normally alleviate the Overtemperature AT condition and may prevent a reactor trip.

The LCO requires all four channels of the Overtemperature AT trip Function to be OPERABLE. Note that the Overtemperature AT Function receives input from channels shared with other RTS Functions. Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions.

In MODE 1 or 2, the Overtemperature AT trip must be OPERABLE to prevent DNB. In MODE 3, 4, 5, or 6, this trip Function does not have to be OPERABLE because the reactor is not operating and there is insufficient heat production to be concerned about DNB.

7. Overpower AT The Overpower AT trip Function ensures that protection is provided to ensure the integrity of the fuel (i.e., no fuel pellet melting and less than 1% cladding strain) under all possible overpower conditions.

This trip Function also limits the required range of the Overtemperature AT trip Function and provides a backup to the Power Range Neutron Flux-High Setpoint trip. The Overpower AT trip Function ensures that the allowable heat generation rate (kW/ft) of the fuel is not exceeded. It uses the AT of each loop as a measure of reactor power with a setpoint that is automatically varied with the following parameters:

McGujir(rf Units 1 and 2 B 3.3.1-14 Revision No- 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

"* reactor coolant average temperature-the Trip Setpoint is varied to correct for changes in coolant density and specific heat capacity with changes in coolant temperature; and

"* rate of change of reactor coolant average temperature including dynamic compensation for the delays between the core and the temperature measurement system.

The Overpower AT trip Function is calculated for each loop as per Note 2 of Table 3.3.1-1. Trip occurs if Overpower AT is indicated in two loops. The temperature signals are used for other control functions, therefore, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the remaining channels providing the protection function actuation. Note that this Function also provides a signal to generate a turbine runback prior to reaching the Trip Setpoint. A turbine runback will reduce turbine power and reactor power. A reduction in power will normally alleviate the Overpower AT condition and may prevent a reactor trip.

The LCO requires four channels of the Overpower AT trip Function to be OPERABLE. Note that the Overpower AT trip Function receives input from channels shared with other RTS Functions.

Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions.

In MODE 1 or 2, the Overpower AT trip Function must be OPERABLE. These are the only times that enough heat is generated in the fuel to be concerned about the heat generation rates and overheating of the fuel. In MODE 3, 4, 5, or 6, this trip Function does not have to be OPERABLE because the reactor is not operating and there is insufficient heat production to be concerned about fuel overheating and fuel damage.

8. Pressurizer Pressure The same sensors provide input to the Pressurizer Pressure-High and -Low trips and the Overtemperature AT trip. The Pressurizer Pressure channels are also used to provide input to the Pressurizer Pressure Control System, therefore, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation.

McGuire Units 1 and 2 B 3.3.1-15 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

a. Pressurizer Pressure-Low The Pressurizer Pressure-Low trip Function ensures that protection is provided against violating the DNBR limit due to low pressure.

The LCO requires four channels of Pressurizer Pressure Low to be OPERABLE.

In MODE 1, when DNB is a major concern, the Pressurizer Pressure-Low trip must be OPERABLE. This trip Function is automatically enabled on increasing power by the P-7 interlock (NIS power range P-1 0 or turbine impulse pressure greater than approximately 10% of full power equivalent (P 13)). On decreasing power, this trip Function is automatically blocked below P-7. Below the P-7 setpoint, power distributions that would cause DNB concems are unlikely.

b. Pressurizer Pressure-High The Pressurizer Pressure-High trip Function ensures that protection is provided against overpressurizing the RCS.

This trip Function operates in conjunction with the pressurizer relief and safety valves to prevent RCS overpressure conditions.

The LCO requires four channels of the Pressurizer Pressure-High to be OPERABLE.

The Pressurizer Pressure-High LSSS is selected to be below the pressurizer safety valve actuation pressure and above the power operated relief valve (PORV) setting. This setting minimizes challenges to safety valves while avoiding unnecessary reactor trips for those pressure increases that can be controlled by the PORVs.

In MODE 1 or 2, the Pressurizer Pressure-High trip must be OPERABLE to help prevent RCS overpressurization and minimize challenges to the safety valves. In MODE 3, 4, 5, or 6, the Pressurizer Pressure-High trip Function does not have to be OPERABLE because transients that could cause an overpressure condition will be slow to occur. Therefore, the operator will have sufficient time to evaluate unit McGiire Units 1 and 2 B 3.3.1-16 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) conditions and take corrective actions. Additionally, low temperature overpressure protection systems provide overpressure protection when below MODE 4.

9. Pressurizer Water Level-High The Pressurizer Water Level-High trip Function provides a backup signal for the Pressurizer Pressure-High trip and also provides protection against water relief through the pressurizer safety valves.

These valves are designed to pass steam in order to achieve their design energy removal rate. A reactor trip is actuated prior to the pressurizer becoming water solid. The setpoints are based on percent of instrument span. The LCO requires three channels of Pressurizer Water Level-High to be OPERABLE. The pressurizer level channels are used as input to the Pressurizer Level Control System. A fourth channel is not required to address control/protection interaction concerns. The level channels do not actuate the safety valves, and the high pressure reactor trip is set below the safety valve setting. Therefore, with the slow rate of charging available, pressure overshoot due to level channel failure cannot cause the safety valve to lift before reactor high pressure trip.

In MODE 1, when there is a potential for overfilling the pressurizer, the Pressurizer Water Level-High trip must be OPERABLE. This trip Function is automatically enabled on increasing power by the P 7 interlock. On decreasing power, this trip Function is automatically blocked below P-7. Below the P-7 setpoint, transients that could raise the pressurizer water level will be slow and the operator will have sufficient time to evaluate unit conditions and take corrective actions.

10. Reactor Coolant Flow-Low
a. Reactor Coolant Flow-Low (Single Loop)

The Reactor Coolant Flow-Low (Single Loop) trip Function ensures that protection is provided against violating the DNBR limit due to low flow in one or more RCS loops, while avoiding reactor trips due to normal variations in loop flow.

Above the P-8 setpoint, which is approximately 48% RTP, a loss of flow in any RCS loop will actuate a reactor trip. The setpoints are based on a minimum measured flow of 97,500 McGuire Units 1 and Be3.3.1-17 B Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) gpm. Each RCS loop has three flow detectors to monitor flow. The flow signals are not used for any control system input.

The LCO requires three Reactor Coolant Flow-Low channels per loop to be OPERABLE in MODE 1 above P-8.

In MODE 1 above the P-8 setpoint, a loss of flow in one RCS loop could result in DNB conditions in the core. In MODE 1 below the P-8 setpoint, a loss of flow in two or more loops is required to actuate a reactor trip (Function 1O.b) because of the lower power level and the greater margin to the design limit DNBR.

b. Reactor Coolant Flow-Low (Two Loops)

The Reactor Coolant Flow-Low (Two Loops) trip Function ensures that protection is provided against violating the DNBR limit due to low flow in two or more RCS loops while avoiding reactor trips due to normal variations in loop flow.

Above the P-7 setpoint and below the P-8 setpoint, a loss of flow in two or more loops will initiate a reactor trip. The setpoints are based on a minimum measured flow of 97,500 gpm. Each loop has three flow detectors to monitor flow.

The flow signals are not used for any control system input.

The LCO requires three Reactor Coolant Flow-Low channels per loop to be OPERABLE.

In MODE 1 above the P-7 setpoint and below the P-8 setpoint, the Reactor Coolant Flow-Low (Two Loops) trip must be OPERABLE. Below the P-7 setpoint, all reactor trips on low flow are automatically blocked since power distributions that would cause a DNB concern at this low power level are unlikely. Above the P-7 setpoint, the reactor trip on low flow in two or more RCS loops is automatically enabled. Above the P-8 setpoint, a loss of flow in any one loop will actuate a reactor trip because of the higher power level and the reduced margin to the design limit DNBR.

McGuire UiVts 1 and 2 B 3.3-1-18 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

11. Undervoltage Reactor Coolant Pumps The Undervoltage RCPs reactor trip Function ensures that protection is provided against violating the DNBR limit due to a loss of flow in two or more RCS loops. The voltage to each RCP is monitored. Above the P-7 setpoint, a loss of voltage detected on two or more RCP buses will initiate a reactor trip. This trip Function will generate a reactor trip before the Reactor Coolant Flow-Low (Two Loops) Trip Setpoint is reached. Time delays are incorporated into the Undervoltage RCPs channels to prevent reactor trips due to momentary electrical power transients.

The LCO requires a total of four Undervoltage RCPs channels (one per bus) to be OPERABLE.

In MODE 1 above the P-7 setpoint, the Undervoltage RCP trip must be OPERABLE. Below the P-7 setpoint, all reactor trips on loss of flow are automatically blocked since power distributions that would cause a DNB concern at this low power level are unlikely. Above the P-7 setpoint, the reactor trip on loss of flow in two or more RCS loops is automatically enabled.

12. Underfrequency Reactor Coolant Pumps The Underfrequency RCPs reactor trip Function ensures that protection is provided against violating the DNBR limit due to a loss of flow in two or more RCS loops from a major network frequency disturbance. An underfrequency condition will slow down the pumps, thereby reducing their coastdown time following a pump trip. The proper coastdown time is required so that reactor heat can be removed immediately after reactor trip. The frequency of each RCP bus is monitored. Above the P-7 setpoint, a loss of frequency detected on two or more RCP buses will initiate a reactor trip. This trip Function will generate a reactor trip before the Reactor Coolant Flow-Low (Two Loops) Trip Setpoint is reached.

Time delays are incorporated into the Underfrequency RCPs channels to prevent reactor trips due to momentary electrical power transients.

The LCO requires a total of four Underfrequency RCPs channels (one per bus) to be OPERABLE.

McGUire ULi;t* 1 nr 29B3 B 3.3.1-19 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

In MODE 1 above the P-7 setpoint, the Underfrequency RCPs trip must be OPERABLE. Below the P-7 setpoint, all reactor trips on loss of flow are automatically blocked since power distributions that would cause a DNB concern at this low power level are unlikely.

Above the P-7 setpoint, the reactor trip on loss of flow in two or more RCS loops is automatically enabled.

13. Steam Generator Water Level-Low Low The SG Water Level-Low Low trip Function ensures that protection is provided against a loss of heat sink and actuates the AFW System prior to uncovering the SG tubes. The SGs are the heat sink for the reactor. In order to act as a heat sink, the SGs must contain a minimum amount of water. A narrow range low low level in any SG is indicative of a loss of heat sink for the reactor. The level transmitters provide input to the SG Level Control System.

Therefore, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. This Function also performs the ESFAS function of starting the AFW pumps on low low SG level.

The LCO requires four channels of SG Water Level-Low Low per SG to be OPERABLE since these channels are shared between protection and control.

In MODE 1 or 2, when the reactor requires a heat sink, the SG Water Level-Low Low trip must be OPERABLE. The normal source of water for the SGs is the Main Feedwater (MFW) System (not safety related). The MFW System is normally in operation in MODES 1, 2, 3, or 4. The AFW System is the safety related backup source of water to ensure that the SGs remain the heat sink for the reactor. In MODE 3, 4, 5, or 6, the SG Water Level-Low Low Function does not have to be OPERABLE because the reactor is not operating or even critical. Decay heat removal is accomplished by the steam generators in MODE 3 and 4 and by the Residual Heat Removal (RHR) System in MODE 4, 5, or 6.

McGuire Units 1 and 2 B 3.3.1-20 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

14. Turbine Trip
a. Turbine Trip-Low Fluid Oil Pressure The Turbine Trip-Low Fluid Oil Pressure trip Function anticipates the loss of heat removal capabilities of the secondary system following a turbine trip. This trip Function acts to minimize the pressure/temperature transient on the reactor. Any turbine trip from a power level below the P-8 setpoint, approximately 48% power, will not actuate a reactor trip. Three pressure switches monitor the control oil pressure in the Turbine Electrohydraulic Control System. A low pressure condition sensed by two-out-of-three pressure switches will actuate a reactor trip. These pressure switches do not provide any input to the control system. The unit is designed to withstand a complete loss of load and not sustain core damage or challenge the RCS pressure limitations. Core protection is provided by the Pressurizer Pressure-High trip Function and RCS integrity is ensured by the pressurizer safety valves. Turbine Trip-Low fluid oil pressure is diverse to the Turbine Trip-Turbine Stop Valve Closure Function.

The LCO requires three channels of Turbine Trip-Low Fluid Oil Pressure to be OPERABLE in MODE 1 above P-8.

Below the P-8 setpoint, a turbine trip does not actuate a reactor trip. In MODE 2, 3, 4, 5, or 6, there is no potential for a turbine trip, and the Turbine Trip-Low Fluid Oil Pressure trip Function does not need to be OPERABLE.

b. Turbine Trip-Turbine Stop Valve Closure The Turbine Trip-Turbine Stop Valve Closure trip Function anticipates the loss of heat removal capabilities of the secondary system following a turbine trip from a power level above the P-8 setpoint, approximately 48% power. The trip Function anticipates the loss of secondary heat removal capability that occurs when the stop valves close. Tripping the reactor in anticipation of loss of secondary heat removal acts to minimize the pressure and temperature transient on the reactor. This trip Function will not and is not required to operate in the presence of a single channel failure. The unit is designed to withstand a complete loss of load and not McGuirF Units 1 anmd 2 B 3.3.1-21 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) sustain core damage or challenge the RCS pressure limitations. Core protection is provided by the Pressurizer Pressure-High trip Function, and RCS integrity is ensured by the pressurizer safety valves. This trip Function is diverse to the Turbine Trip-Low Fluid Oil Pressure trip Function.

Each turbine stop valve is equipped with one limit switch that inputs to the RTS. If all four limit switches indicate that the stop valves are closed, a reactor trip is initiated.

The LSSS for this Function is set to assure channel trip occurs when the associated stop valve is completely closed.

The LCO requires four Turbine Trip-Turbine Stop Valve Closure channels, one per valve, to be OPERABLE in MODE 1 above P-8. All four channels must trip to cause reactor trip.

Below the P-8 setpoint, a load rejection can be accommodated by the Steam Dump System. In MODE 2, 3, 4, 5, or 6, there is no potential for a load rejection, and the Turbine Trip-Stop Valve Closure trip Function does not need to be OPERABLE.

15. Safety Iniection Input from Engineered Safety Feature Actuation System The SI Input from ESFAS ensures that if a reactor trip has not already been generated by the RTS, the ESFAS automatic actuation logic will initiate a reactor trip upon any signal that initiates SI. This is a condition of acceptability for the LOCA.

However, other transients and accidents take credit for varying levels of ESF performance and rely upon rod insertion, except for the most reactive rod that is assumed to be fully withdrawn, to ensure reactor shutdown. Therefore, a reactor trip is initiated every time an Sl signal is present.

Trip Setpoint and Allowable Values are not applicable to this Function. The SI Input is provided by a manual switch or by the automatic actuation logic. Therefore, there is no measurement signal with which to associate an LSSS.

The LCO requires two trains of SI Input from ESFAS to be OPERABLE in MODE 1 or 2.

McGuL re Unut.; 1 mnd 2 B 3.3.1-22 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

A reactor trip is initiated every time an Sl signal is present.

Therefore, this trip Function must be OPERABLE in MODE 1 or 2, when the reactor is critical, and must be shut down in the event of an accident. In MODE 3, 4, 5, or 6, the reactor is not critical, and this trip Function does not need to be OPERABLE.

16. Reactor Trip System Interlocks Reactor protection interlocks are provided to ensure reactor trips are in the correct configuration for the current unit status. They back up operator actions to ensure protection system Functions are not bypassed during unit conditions under which the safety analysis assumes the Functions are not bypassed. Therefore, the interlock Functions do not need to be OPERABLE when the associated reactor trip functions are outside the applicable MODES. These are:
a. Intermediate Range Neutron Flux, P-6 The Intermediate Range Neutron Flux, P-6 interlock is actuated when any NIS intermediate range channel goes approximately one decade above the minimum channel reading. If both channels drop below the setpoint, the permissive will automatically be defeated. The LCO requirement for the P-6 interlock ensures that the following Functions are performed:

on increasing power, the P-6 interlock allows the manual block of the NIS Source Range, Neutron Flux reactor trip. This prevents a premature block of the source range trip and allows the operator to ensure that the intermediate range is OPERABLE prior to leaving the source range. When the source range trip is blocked, the high voltage to the detectors is also removed; and on decreasing power, the P-6 interlock automatically energizes the NIS source range detectors and enables the NIS Source Range Neutron Flux reactor trip.

The LCO requires two channels of Intermediate Range Neutron Flux, P-6 interlock to be OPERABLE in MODE 2 when below the P-6 interlock setpoint.

McGure Units 1 and 2 B 3.3.1-23 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Above the P-6 interlock setpoint, the NIS Source Range Neutron Flux reactor trip will be blocked, and this Function will no longer be necessary.

In MODE 3, 4, 5, or 6, the P-6 interlock does not have to be OPERABLE because the NIS Source Range is providing core protection.

b. Low Power Reactor Trips Block, P-7 The Low Power Reactor Trips Block, P-7 interlock is actuated by input from either the Power Range Neutron Flux, P-1 0, or the Turbine Impulse Pressure, P-13 interlock. The LCO requirement for the P-7 interlock ensures that the following Functions are performed:

(1) on increasing power, the P-7 interlock automatically enables reactor trips on the following Functions:

  • Pressurizer Pressure-Low;
  • Undervoltage RCPs; and
  • Underfrequency RCPs.

These reactor trips are only required when operating above the P-7 setpoint (approximately 10% power).

The reactor trips provide protection against violating the DNBR limit. Below the P-7 setpoint, the RCS is capable of providing sufficient natural circulation without any RCP running.

(2) on decreasing power, the P-7 interlock automatically blocks reactor trips on the following Functions:

Pressurizer Pressure-Low; Pressurizer Water Level-High; McGuire Units 1 amd 2 B 3.3.1-24 Revision No- 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Reactor Coolant Flow-Low (Two Loops);

Undervoltage RCPs; and Underfrequency RCPs.

Trip Setpoint and Allowable Value are not applicable to the P-7 interlock because it is a logic Function and thus has no parameter with which to associate an LSSS.

The P-7 interlock is a logic Function with train and not channel identity. Therefore, the LCO requires one channel per train of Low Power Reactor Trips Block, P-7 interlock to be OPERABLE in MODE 1.

The low power trips are blocked below the P-7 setpoint and unblocked above the P-7 setpoint. In MODE 2, 3, 4, 5, or 6, this Function does not have to be OPERABLE because the interlock performs its Function when power level drops below 10% power, which is in MODE 1.

c. Power Ranqe Neutron Flux, P-8 The Power Range Neutron Flux, P-8 interlock is actuated at approximately 48% power as determined by two-out-of-four NIS power range detectors. The P-8 interlock automatically enables the Reactor Coolant Flow-Low (Single Loop) reactor trip on low flow in one or more RCS loops, and the Turbine Trip-Low Fluid Oil Pressure and Turbine Trip-Turbine Stop Valve Closure reactor trips on increasing power. The LCO requirement for the Reactor Coolant Flow - Low Function ensures that protection is provided against a loss of flow in any RCS loop that could result in DNB conditions in the core when greater than approximately 48% power.

Above the P-8 setpoint, a turbine trip will cause a load rejection beyond the capacity of the Steam Dump System. A reactor trip is automatically initiated on a turbine trip when it is above the P-8 setpoint, to minimize the transient on the reactor. On decreasing power below the P-8 setpoint, the reactor trip on low flow in any loop is automatically blocked.

McGuimr Units 1 and 2 B 3.3.1-25 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

The LCO requires four channels of Power Range Neutron Flux, P-8 interlock to be OPERABLE in MODE 1.

In MODE 1, a loss of flow in one RCS loop could result in DNB conditions and, a turbine trip could cause a load rejection beyond the capacity of the Steam Dump System, so the Power Range Neutron Flux, P-8 interlock must be OPERABLE. In MODE 2, 3, 4, 5, or 6, this Function does not have to be OPERABLE because the core is not producing sufficient power to be concerned about DNB conditions and the reactor is not at a power level sufficient to have a load rejection beyond the capacity of the Steam Dump System.

d. Power Range Neutron Flux, P-10 The Power Range Neutron Flux, P-1 0 interlock is actuated at approximately 10% power, as determined by two-out-of-four NIS power range detectors. If power level falls below 10% RTP on 3 of 4 channels, the nuclear instrument trips will be automatically unblocked. The LCO requirement for the P 10 interlock ensures that the following Functions are performed:

on increasing power, the P-1 0 interlock allows the operator to manually block the Intermediate Range Neutron Flux reactor trip. Note that blocking the reactor trip also blocks the signal to prevent automatic and manual rod withdrawal; on increasing power, the P-1 0 interlock allows the operator to manually block the Power Range Neutron Flux-Low reactor trip; on increasing power, the P-1 0 interlock automatically provides a backup signal to block the Source Range Neutron Flux reactor trip, and also to de-energize the NIS source range detectors; the P-10 interlock provides one of the two inputs to the P-7 interlock; and McGuire Units 1 and 2 B 3.3.1-26 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) on decreasing power, the P-10 interlock automatically enables the Power Range Neutron Flux-Low reactor trip and the Intermediate Range Neutron Flux reactor trip (and rod stop).

The LCO requires four channels of Power Range Neutron Flux, P-1 0 interlock to be OPERABLE in MODE 1 or 2.

OPERABILITY in MODE 1 ensures the Function is available to perform its decreasing power Functions in the event of a reactor shutdown. This Function must be OPERABLE in MODE 2 to ensure that core protection is provided during a startup or shutdown by the Power Range Neutron Flux-Low and Intermediate Range Neutron Flux reactor trips. In MODE 3, 4, 5, or 6, this Function does not have to be OPERABLE because the reactor is not at power and the Source Range Neutron Flux reactor trip provides core protection.

e. Turbine Impulse Pressure, P-13 The Turbine Impulse Pressure, P-13 interlock is actuated when the pressure in the first stage of the high pressure turbine is greater than approximately 10% of the rated full power pressure. This is determined by one-out-of-two pressure detectors. The LCO requirement for this Function ensures that one of the inputs to the P-7 interlock is available.

The LCO requires two channels of Turbine Impulse Pressure, P-1 3 interlock to be OPERABLE in MODE 1.

The Turbine Impulse Chamber Pressure, P-1 3 interlock must be OPERABLE when the turbine generator is operating. The interlock Function is not required OPERABLE in MODE 2, 3, 4, 5, or 6 because the turbine generator is not operating.

17 Reactor Trip Breakers This trip Function applies to the RTBs exclusive of individual trip mechanisms. The LCO requires two OPERABLE trains of trip breakers. A trip breaker train consists of all trip breakers associated with a single RTS logic train that are racked in, closed, and capable of supplying power to the CRD System. Thus, the McGuire Units I and 2 B 3.3.1-27 Revision No- 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) train may consist of the main breaker, bypass breaker, or main breaker and bypass breaker, depending upon the system configuration. Two OPERABLE trains ensure no single random failure can disable the RTS trip capability.

These trip Functions must be OPERABLE in MODE 1 or 2 when the reactor is critical. In MODE 3, 4, or 5, these RTS trip Functions must be OPERABLE when the RTBs or associated bypass breakers are closed, and the CRD System is capable of rod withdrawal.

18. Reactor Trip Breaker Undervoltage and Shunt Trip Mechanisms The LCO requires both the Undervoltage and Shunt Trip Mechanisms to be OPERABLE for each RTB that is in service. The trip mechanisms are not required to be OPERABLE for trip breakers that are open, racked out, incapable of supplying power to the CRD System, or declared inoperable under Function 17 above.

OPERABILITY of both trip mechanisms on each breaker ensures that no single trip mechanism failure will prevent opening any breaker on a valid signal.

These trip Functions must be OPERABLE in MODE 1 or 2 when the reactor is critical. In MODE 3, 4, or 5, these RTS trip Functions must be OPERABLE when the RTBs or associated bypass breakers are closed, and the CRD System is capable of rod withdrawal.

19. Automatic Trip Logic The LCO requirement for the RTBs (Functions 17 and 18) and Automatic Trip Logic (Function 19) ensures that means are provided to interrupt the power to allow the rods to fall into the reactor core. Each RTB is equipped with an undervoltage coil and a shunt trip coil to trip the breaker open when needed. Each train RTB has a bypass breaker to allow testing of the trip breaker while the unit is at power. The reactor trip signals generated by the RTS Automatic Trip Logic cause the RTBs and associated bypass breakers to open and shut down the reactor.

The LCO requires two trains of RTS Automatic Trip Logic to be OPERABLE. Having two OPERABLE channels ensures that random failure of a single logic channel will not prevent reactor trip.

McGuiire U1Jils 1 and BR B 3.3.1-28 Revision No. 23

RTS Instrumentation B 3.3.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

These trip Functions must be OPERABLE in MODE 1 or 2 when the reactor is critical. In MODE 3, 4, or 5, these RTS trip Functions must be OPERABLE when the RTBs and associated bypass breakers are closed, and the CRD System is capable of rod withdrawal.

The RTS instrumentation satisfies Criterion 3 of 10 CFR 50.36 (Ref. 6).

ACTIONS A Note has been added to the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.1-1. When the Required Channels in Table 3.3.1-1 are specified (e.g., on a per steam line, per loop, per SG, etc., basis), then the Condition may be entered separately for each steam line, loop, SG, etc., as appropriate.

A channel shall be OPERABLE if the point at which the channel trips is found equal to or more conservative than the Allowable Value. In the event a channel's trip setpoint is found less conservative than the Allowable Value, or the transmitter, instrument loop, signal processing electronics, or bistable is found inoperable, then all affected Functions provided by that channel must be declared inoperable and the LCO Condition(s) entered for the protection Function(s) affected. If plant conditions warrant, the trip setpoint may be set outside the NOMINAL TRIP SETPOINT calibration tolerance band as long as the trip setpoint is conservative with respect to the NOMINAL TRIP SETPOINTS. If the trip setpoint is found outside the NOMINAL TRIP SETPOINT calibration tolerance band and non-conservative with respect to the NOMINAL TRIP SETPOINT, the setpoint shall be re-adjusted.

When the number of inoperable channels in a trip Function exceed those specified in one or other related Conditions associated with a trip Function, then the unit is outside the safety analysis. Therefore, LCO 3.0.3 must be immediately entered if applicable in the current MODE of operation.

A.1 Condition A applies to all RTS protection Functions. Condition A addresses the situation where one or more required channels for one or more Functions are inoperable at the same time. The Required Action is to refer to Table 3.3.1 -1 and to take the Required Actions for the protection functions affected. The Completion Times are those from the referenced Conditions and Required Actions.

Mc~uire Units 1 and 2 B 3.3.1-29 Revision No. 23

RTS Instrumentation B 3.3.1 BASES ACTIONS (continued)

B.1 and B.2 Condition B applies to the Manual Reactor Trip in MODE 1 or 2. This action addresses the train orientation of the SSPS for this Function. With one channel inoperable, the inoperable channel must be restored to OPERABLE status within 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br />. In this Condition, the remaining OPERABLE channel is adequate to perform the safety function.

The Completion Time of 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> is reasonable considering that there are two automatic actuation trains and another manual initiation channel OPERABLE, and the low probability of an event occurring during this interval.

If the Manual Reactor Trip Function cannot be restored to OPERABLE status within the allowed 48 hour5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> Completion Time, the unit must be brought to a MODE in which the requirement does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 additional hours (54 hours6.25e-4 days <br />0.015 hours <br />8.928571e-5 weeks <br />2.0547e-5 months <br /> total time). The 6 additional hours are reasonable, based on operating experience, to reach MODE 3 from full power operation in an orderly manner and without challenging unit systems. With the unit in MODE 3, the MODES 1 and 2 requirements for this trip Function are no longer required and Condition C is entered.

C.1 and C.2 Condition C applies to the following reactor trip Functions in MODE 3, 4, or 5 with the RTBs closed and the CRD System capable of rod withdrawal:

"* Manual Reactor Trip;

"* RTBs;

"° RTB Undervoltage and Shunt Trip Mechanisms; and

"* Automatic Trip Logic.

This action addresses the train orientation of the SSPS for these Functions. With one channel or train inoperable, the inoperable channel or train must be restored to OPERABLE status within 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br />. If the affected Function(s) cannot be restored to OPERABLE status within the allowed 48 hour5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> Completion Time, the unit must be placed in a condition in which the requirement does not apply. To achieve this status, the RTBs must be opened within the next hour. The additional hour provides M 0G Lir, Unit÷ 1 and 2 B 3.3.1-30 Revision No. 23

RTS Instrumentation B 3.3.1 BASES ACTIONS (continued) sufficient time to accomplish the action in an orderly manner. With the RTBs open, these Functions are no longer required.

The Completion Time is reasonable considering that in this Condition, the remaining OPERABLE train is adequate to perform the safety function, and given the low probability of an event occurring during this interval.

D.1.1, D.1.2, D.2.1, D.2.2, and D.3 Condition D applies to the Power Range Neutron Flux-High and Power Range Neutron Flux-High Positive Rate Functions.

The NIS power range detectors provide input to the CRD System and the SG Water Level Control System and, therefore, have a two-out-of-four trip logic. A known inoperable channel must be placed in the tripped condition. This results in a partial trip condition requiring only one-out-of three logic for actuation. The 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowed to place the inoperable channel in the tripped condition is justified in WCAP-1 0271 -P-A (Ref. 7).

In addition to placing the inoperable channel in the tripped condition, THERMAL POWER must be reduced to < 75% RTP within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

Reducing the power level prevents operation of the core with radial power distributions beyond the design limits. With one of the NIS power range detectors inoperable, 1/4 of the radial power distribution monitoring capability is lost.

As an alternative to the above actions, the inoperable channel can be placed in the tripped condition within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and the QPTR monitored once every 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> per SR 3.2.4.2, QPTR verification. Calculating QPTR every 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> compensates for the lost monitoring capability due to the inoperable NIS power range channel and allows continued unit operation at power levels >_75% RTP. The 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> Completion Time and the 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Frequency are consistent with LCO 3.2.4, "QUADRANT POWER TILT RATIO (OPTR)."

As an alternative to the above Actions, the plant must be placed in a MODE where this Function is no longer required OPERABLE. Twelve hours are allowed to place the plant in MODE 3. This is a reasonable time, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging plant systems. If Required Actions cannot be completed within their allowed Completion Times, LCO 3.0.3 must be entered.

McGuire Uriits 1 OrEd 2 B 3.3.1-31 Revision No. 23

RTS Instrumentation B 3.3.1 BASES ACTIONS (continued)

The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypass condition for up to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> while performing routine surveillance testing of other channels. The Note also allows placing the inoperable channel in the bypass condition to allow setpoint adjustments of other channels when required to reduce the setpoint in accordance with other Technical Specifications. The note also allows an OPERABLE channel to be placed in bypass without entering the Required Actions for up to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> for testing of the bypassed channel. However, only one channel may be placed in bypass at any one time. The 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> time limit is justified in Reference 7.

Required Action D.2.2 has been modified by a Note which only requires SR 3.2.4.2 to be performed if the Power Range Neutron Flux input to QPTR becomes inoperable. Failure of a component in the Power Range Neutron Flux Channel which renders the High Flux Trip Function inoperable may not affect the capability to monitor QPTR. As such, determining QPTR using this movable incore detectors once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> may not be necessary.

E.1 and E.2 Condition E applies to the following reactor trip Functions:

  • Power Range Neutron Flux-Low;
  • Overtemperature AT;
  • Overpower AT; Pressurizer Pressure-High; and
  • SG Water Level-Low Low.

A known inoperable channel must be placed in the tripped condition within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />. Placing the channel in the tripped condition results in a partial trip condition requiring only one-out-of-three logic for actuation of the two-out-of-four trips. The 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowed to place the inoperable channel in the tripped condition is justified in Reference 7.

If the operable channel cannot be placed in the trip condition within the specified Completion Time, the unit must be placed in a MODE where these Functions are not required OPERABLE. An additional 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> is allowed to place the unit in MODE 3. Six hours is a reasonable time, based on operating experience, to place the unit in MODE 3 from full power in an orderly manner and without challenging unit systems.

McGuire Units 1 and 2 B 3.3.1-32 Revision No. 23

RTS Instrumentation B 3.3.1 BASES ACTIONS (continued)

The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> while performing routine surveillance testing of the other channels. The note also allows an OPERABLE channel to be placed in bypass without entering the Required Actions for up to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> for testing of the bypassed channel.

However, only one channel may be placed in bypass at any one time. The 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> time limit is justified in Reference 7.

F.1 and F.2 Condition F applies to the Intermediate Range Neutron Flux trip when THERMAL POWER is above the P-6 setpoint and below the P-10 setpoint and one channel is inoperable. Above the P-6 setpoint and below the P-1 0 setpoint, the NIS intermediate range detector performs the monitoring Functions. If THERMAL POWER is greater than the P-6 setpoint but less than the P-10 setpoint, 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> is allowed to reduce THERMAL POWER below the P-6 setpoint or increase to THERMAL POWER above the P-1 0 setpoint. The NIS Intermediate Range Neutron Flux channels must be OPERABLE when the power level is above the capability of the source range, P-6, and below the capability of the power range, P-1 0. If THERMAL POWER is greater than the P-10 setpoint, the NIS power range detectors perform the monitoring and protection functions and the intermediate range is not required. The Completion Times allow for a slow and controlled power adjustment above P-10 or below P-6 and take into account the redundant capability afforded by the redundant OPERABLE channel, and the low probability of its failure during this period. This action does not require the inoperable channel to be tripped because the Function uses one-out-of-two logic. Tripping one channel would trip the reactor.

Thus, the Required Actions specified in this Condition are only applicable when channel failure does not result in reactor trip.

G.1 and G.2 Condition G applies to two inoperable Intermediate Range Neutron Flux trip channels in MODE 2 when THERMAL POWER is above the P-6 setpoint and below the P-10 setpoint. Required Actions specified in this Condition are only applicable when channel failures do not result in reactor trip.

Above the P-6 setpoint and below the P-1 0 setpoint, the NIS intermediate range detector performs the monitoring Functions. With no intermediate range channels OPERABLE, the Required Actions are to suspend operations involving positive reactivity additions immediately. This will preclude any power level increase since there are no McGuire Units 1 and 2 B 3.3.1-33 Revision No. 23

RTS Instrumentation B 3.3.1 BASES ACTIONS (continued)

OPERABLE Intermediate Range Neutron Flux channels. The operator must also reduce THERMAL POWER below the P-6 setpoint within two hours. Below P-6, the Source Range Neutron Flux channels will be able to monitor the core power level. The Completion Time of 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> will allow a slow and controlled power reduction to less than the P-6 setpoint and takes into account the low probability of occurrence of an event during this period that may require the protection afforded by the NIS Intermediate Range Neutron Flux trip.

H.1 Condition H applies to the Intermediate Range Neutron Flux trip when THERMAL POWER is below the P-6 setpoint and one or two channels are inoperable. Below the P-6 setpoint, the NIS source range performs the monitoring and protection functions. The inoperable NIS intermediate range channel(s) must be returned to OPERABLE status prior to increasing power above the P-6 setpoint. The NIS intermediate range channels must be OPERABLE when the power level is above the capability of the source range, P-6, and below the capability of the power range, P-10.

1.1 Condition I applies to one inoperable Source Range Neutron Flux trip channel when in MODE 2, below the P-6 setpoint, and performing a reactor startup. With the unit in this Condition, below P-6, the NIS source range performs the monitoring and protection functions. With one of the two channels inoperable, operations involving positive reactivity additions shall be suspended immediately.

This will preclude any power escalation. With only one source range channel OPERABLE, core protection is severely reduced and any actions that add positive reactivity to the core must be suspended immediately.

J.1 Condition J applies to two inoperable Source Range Neutron Flux trip channels when in MODE 2, below the P-6 setpoint, and performing a reactor startup, or in MODE 3, 4, or 5 with the RTBs closed and the CRD System capable of rod withdrawal. With the unit in this Condition, McGuire Units 1 and 2 B 3.3.1-34 Revision No. 23

RTS Instrumentation RTS Instrumentation B 3.3.1 BASES ACTIONS (continued) below P-6, the NIS source range performs the monitoring and protection functions. With both source range channels inoperable, the RTBs must be opened immediately. With the RTBs open, the core is in a more stable condition and the unit enters Condition L.

K.1 and K.2 Condition K applies to one inoperable source range channel in MODE 3, 4, or 5 with the RTBs closed and the CRD System capable of rod withdrawal. With the unit in this Condition, below P-6, the NIS source range performs the monitoring and protection functions. With one of the source range channels inoperable, 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> is allowed to restore it to an OPERABLE status. If the channel cannot be returned to an OPERABLE status, 1 additional hour is allowed to open the RTBs. Once the RTBs are open, the core is in a more stable condition and the unit enters Condition L. The allowance of 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> to restore the channel to OPERABLE status, and the additional hour to open the RTBs, are justified in Reference 7.

L.1, L.2, and L.3 Condition L applies when the required number of OPERABLE Source Range Neutron Flux channels is not met in MODE 3, 4, or 5 with the RTBs open. With the unit in this Condition, the NIS source range performs a monitoring function. With less than the required number of source range channels OPERABLE, operations involving positive reactivity additions shall be suspended immediately. This will preclude any power escalation. In addition to suspension of positive reactivity additions, all valves that could add unborated water to the RCS must be closed within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> as specified in LCO 3.9.2. The isolation of unborated water sources will preclude a boron dilution accident.

Also, the SDM must be verified within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> and once every 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> thereafter as per SR 3.1.1.1, SDM verification. With no source range channels OPERABLE, core monitoring is severely reduced. Verifying the SDM within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> allows sufficient time to perform the calculations and determine that the SDM requirements are met. The SDM must also be verified once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> thereafter to ensure that the core reactivity has not changed. Required Action L.1 precludes any positive reactivity additions; therefore, core reactivity should not be increasing, and a McGuire Units 1 and 2 B 3.3.1-35 Revision No. 23

RTS Instrumentation B 3.3.1 BASES ACTIONS (continued) 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Frequency is adequate. The Completion Times of within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> and once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> are based on operating experience in performing the Required Actions and the knowledge that unit conditions will change slowly.

M.1 and M.2 Condition M applies to the following reactor trip Functions:

Pressurizer Pressure-Low; Pressurizer Water Level-High; Reactor Coolant Flow-Low (Two Loops);

  • Undervoltage RCPs; and
  • Underfrequency RCPs.

With one channel inoperable, the inoperable channel must be placed in the tripped condition within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />. Placing the channel in the tripped condition results in a partial trip condition requiring only one additional channel to initiate a reactor trip above the P-7 setpoint (and below the P-8 setpoint for the Reactor Coolant Flow-Low (Two Loops) Function). These Functions do not have to be OPERABLE below the P-7 setpoint because, for the Pressurizer Water Level-High function, transients are slow enough for manual action; and for the other functions, power distributions that would cause a DNB concern at this low power level are unlikely. The 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowed to place the channel in the tripped condition is justified in Reference 7. An additional 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> is allowed to reduce THERMAL POWER to below P-7 if the inoperable channel cannot be restored to OPERABLE status or placed in trip within the specified Completion Time.

Allowance of this time interval takes into consideration the redundant capability provided by the remaining redundant OPERABLE channel, and the low probability of occurrence of an event during this period that may require the protection afforded by the Functions associated with Condition M.

The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> while performing routine surveillance testing of the other channels. The note McGuire Units 1 and 2 B 3.3.1-36 Revision No. 23

RTS Instrumentation B 3.3.1 BASES ACTIONS (continued) also allows an OPERABLE channel to be placed in bypass without entering the Required Actions for up to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> for testing of the bypassed channel. However, only one channel may be placed in bypass at any one time. The 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> time limit is justified in Reference 7.

N.1 and N.2 Condition N applies to the Reactor Coolant Flow-Low (Single Loop) reactor trip Function. With one channel inoperable, the inoperable channel must be placed in trip within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />. If the channel cannot be restored to OPERABLE status or the channel placed in trip within the 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />, then THERMAL POWER must be reduced below the P-8 setpoint within the next 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. This places the unit in a MODE where the LCO is no longer applicable. This trip Function does not have to be OPERABLE below the P-8 setpoint because other RTS trip Functions provide core protection below the P-8 setpoint. The 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowed to restore the channel to OPERABLE status or place in trip and the 4 additional hours allowed to reduce THERMAL POWER to below the P-8 setpoint are justified in Reference 7.

The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> while performing routine surveillance testing of the other channels. The note also allows an OPERABLE channel to be placed in bypass without entering the Required Actions for up to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> for testing of the bypassed channel. However, only one channel may be placed in bypass at any one time. The 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> time limit is justified in Reference 7.

0.1,0.2, P.1, and P.2 Condition 0 and P apply to Turbine Trip on Low Fluid Oil Pressure or on Turbine Stop Valve Closure. With a channel inoperable, the inoperable channel must be placed in the trip condition within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />. If placed in the tripped condition, this results in a partial trip condition requiring fewer additional channel to initiate a reactor trip. If the channel cannot be restored to OPERABLE status or placed in the trip condition, then power must be reduced below the P-8 setpoint within the next 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. The 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowed to place the inoperable channel in the tripped condition and the 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> allowed for reducing power are justified in Reference 7.

McGuire Units 1 and 2 B 3.3.1-37 Revision No. 23

RTS Instrumentation B 3.3.1 BASES ACTIONS (continued)

The Required Actions of Condition 0 have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> while performing routine surveillance testing of the other channels. The note also allows an OPERABLE channel to be placed in bypass without entering the Required Actions for up to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> for testing of the bypassed channel. However, only one channel may be placed in bypass at any one time. The 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> time limit is justified in Reference 7.

0.1 and Q.2 Condition Q applies to the Sl Input from ESFAS reactor trip and the RTS Automatic Trip Logic in MODES 1 and 2. These actions address the train orientation of the RTS for these Functions. With one train inoperable, 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> are allowed to restore the train to OPERABLE status (Required Action Q.1) or the unit must be placed in MODE 3 within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

The Completion Time of 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> (Required Action Q.1) is reasonable considering that in this Condition, the remaining OPERABLE train is adequate to perform the safety function and given the low probability of an event during this interval. The Completion Time of 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> (Required Action Q.2) is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems.

The Required Actions have been modified by a Note that allows bypassing one train up to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> for surveillance testing, provided the other train is OPERABLE.

R.1 and R.2 Condition R applies to the RTBs in MODES 1 and 2. These actions address the train orientation of the RTS for the RTBs. With one train inoperable, 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> is allowed to restore the train to OPERABLE status or the unit must be placed in MODE 3 within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />. The Completion Time of 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems. The 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> and 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> Completion Times are equal to the time allowed by LCO 3.0.3 for shutdown actions in the event of a complete loss of RTS Function. Placing the unit in MODE 3 removes the requirement for this particular Function.

McGuire Units 1 and 2 B 3.3.1-38 Revision No. 23

RTS Instrumentation B 3.3.1 BASES ACTIONS (continued)

The Required Actions have been modified by two Notes. Note 1 allows one RTB to be bypassed for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for surveillance testing, provided the other RTB is OPERABLE. Note 2 allows one RTB to be bypassed for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for maintenance on undervoltage or shunt trip mechanisms ifthe other RTB train is OPERABLE. The 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> time limit is justified in Reference 7.

S.1 and S.2 Condition S applies to the P-6 and P-1 0 interlocks. With one or more channel(s) inoperable for one-out-of-two or two-out-of-four coincidence logic, the associated interlock must be verified to be in its required state for the existing unit condition within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> or the unit must be placed in MODE 3 within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />. Verifying the interlock status, by visual observation of the control room status lights, manually accomplishes the interlock's Function. The Completion Time of 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> is based on operating experience and the minimum amount of time allowed for manual operator actions. The Completion Time of 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems. The 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> and 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> Completion Times are equal to the time allowed by LCO 3.0.3 for shutdown actions in the event of a complete loss of RTS Function.

T.1 and T.2 Condition T applies to the P-7, P-8, and P-1 3 interlocks. With one or more channel(s) inoperable for one-out-of-two or two-out-of-four coincidence logic, the associated interlock must be verified to be in its required state for the existing unit condition within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> or the unit must be placed in MODE 2 within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />. These actions are conservative for the case where power level is being raised. Verifying the interlock status, by visual observation of the control room status lights, manually accomplishes the interlock's Function. The Completion Time of 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> is based on operating experience and the minimum amount of time allowed for manual operator actions. The Completion Time of 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> is reasonable, based on operating experience, to reach MODE 2 from full power in an orderly manner and without challenging unit systems.

McGuire Units 1 and 2 B 3.3.1-39 Revision No. 23

RTS Instrumentation B 3.3.1 BASES ACTIONS (continued)

U.1 and U.2 Condition U applies to the RTB Undervoltage and Shunt Trip Mechanisms, or diverse trip features, in MODES 1 and 2. With one of the diverse trip features inoperable, it must be restored to an OPERABLE status within 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> or the unit must be placed in a MODE where the requirement does not apply. This is accomplished by placing the unit in MODE 3 within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> (54 hours6.25e-4 days <br />0.015 hours <br />8.928571e-5 weeks <br />2.0547e-5 months <br /> total time). With both diverse trip features inoperable, the reactor trip breaker is inoperable and Condition R is entered. The Completion Time of 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> is a reasonable time, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems.

With the unit in MODE 3, the MODES 1 and 2 requirement for this function is no longer required and Condition C is entered. The affected RTB shall not be bypassed while one of the diverse features is inoperable except for the time required to perform maintenance to one of the diverse features. The allowable time for performing maintenance of the diverse features is 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for the reasons stated under Condition R.

The Completion Time of 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> for Required Action U.1 is reasonable considering that in this Condition there is one remaining diverse feature for the affected RTB, and one OPERABLE RTB capable of performing the safety function and given the low probability of an event occurring during this interval.

V.1 With two RTS trains inoperable, no automatic capability is available to shut down the reactor, and immediate plant shutdown in accordance with LCO 3.0.3 is required.

SURVEILLANCE The SRs for each RTS Function are identified by the SRs column of REQUIREMENTS Table 3.3.1-1 for that Function.

A Note has been added to the SR Table stating that Table 3.3.1 -1 determines which SRs apply to which RTS Functions.

Note that each channel of process protection supplies both trains of the RTS. When testing Channel I, Train A and Train B must be examined.

Similarly, Train A and Train B must be examined when testing Channel II, McGuire Units 1 and 2 B 3.3.1-40 Revision No. 23

RTS Instrumentation B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)

Channel III, and Channel IV (if applicable). The CHANNEL CALIBRATION and COTs are performed in a manner that is consistent with the assumptions used in analytically calculating the required channel accuracies.

SR 3.3.1.1 Performance of the CHANNEL CHECK once every 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> ensures that gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the unit staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

SR 3.3.1.2 compares the calorimetric heat balance calculation to the NIS channel output every 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. If the calorimetric exceeds the NIS channel output by > 2% RTP, the NIS is not declared inoperable, but must be adjusted. Ifthe NIS channel output cannot be properly adjusted, the channel is declared inoperable.

Two Notes modify SR 3.3.1.2. The first Note indicates that the NIS channel output shall be adjusted consistent with the calorimetric results if the absolute difference between the NIS channel output and the calorimetric is > 2% RTP. The second Note clarifies that this Surveillance is required only if reactor power is > 15% RTP and that 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> is allowed for completing the first Surveillance after reaching 15% RTP. At lower power levels, calorimetric data are inaccurate.

McGuire Units 1 and 2 B 3.3.1-41 Revision No. 23

RTS Instrumentation B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)

The Frequency of every 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> is adequate. It is based on unit operating experience, considering instrument reliability and operating history data for instrument drift. Together these factors demonstrate the change in the absolute difference between NIS and heat balance calculated powers rarely exceeds 2% in any 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> period. Maintaining the 2% agreement is only applicable during equilibrium conditions.

In addition, control room operators periodically monitor redundant indications and alarms to detect deviations in channel outputs.

SR 3.3.1.3 SR 3.3.1.3 compares the incore system to the NIS channel output every 31 EFPD. If the absolute difference in AFD is > 3%, the NIS channel is still OPERABLE, but must be readjusted.

If the NIS channel cannot be properly readjusted, the channel is declared inoperable. This Surveillance is performed to verify the f(AI) input to the overtemperature AT Function and overpower AT Function.

Two Notes modify SR 3.3.1.3. Note 1 indicates that the excore NIS channel shall be adjusted if the absolute difference between the incore and excore AFD is > 3%. Note 2 clarifies that the Surveillance is required only if reactor power is > 15% RTP and that 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> is allowed for completing the first Surveillance after reaching 15% RTP.

The Frequency of every 31 EFPD is adequate. It is based on unit operating experience, considering instrument reliability and operating history data for instrument drift. Also, the slow changes in neutron flux during the fuel cycle can be detected during this interval.

SR 3.3.1.4 SR 3.3.1.4 is the performance of a TADOT every 31 days on a STAGGERED TEST BASIS. This test shall verify OPERABILITY by actuation of the end devices.

The RTB test shall include separate verification of the undervoltage and shunt trip mechanisms. Independent verification of RTB undervoltage and shunt trip Function is not required for the bypass breakers. No capability is provided for performing such a test at power. The McGuire Units 1 and 2 B 3.3.1-42 Revision No. 23

RTS Instrumentation B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued) independent test for bypass breakers is included in SR 3.3.1.14. The bypass breaker test shall include a local shunt trip. A Note has been added to indicate that this test must be performed on the bypass breaker prior to placing it in service.

The Frequency of every 31 days on a STAGGERED TEST BASIS is adequate. It is based on industry operating experience, considering instrument reliability and operating history data.

SR 3.3.1.5 SR 3.3.1.5 is the performance of an ACTUATION LOGIC TEST. The SSPS is tested every 31 days on a STAGGERED TEST BASIS, using the semiautomatic tester. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function. The Frequency of every 31 days on a STAGGERED TEST BASIS is adequate. It is based on industry operating experience, considering instrument reliability and operating history data.

SR 3.3.1.6 SR 3.3.1.6 is a calibration of the excore channels to the incore channels.

If the measurements do not agree, the excore channels are not declared inoperable but must be calibrated to agree with the incore detector measurements. If the excore channels cannot be adjusted, the channels are declared inoperable. This Surveillance is performed to verify the f(AI) input to the overtemperature AT Function and overpower AT Function.

A Note modifies SR 3.3.1.6. The Note states that this Surveillance is required only if reactor power is > 75% RTP and that 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> is allowed for completing the first surveillance after reaching 75% RTP.

The Frequency of 92 EFPD is adequate. It is based on industry operating experience, considering instrument reliability and operating history data for instrument drift.

McGuire Units 1 and 2 B 3.3.1-43 Revision No. 23

RTS Instrumentation B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.1.7 SR 3.3.1.7 is the performance of a COT every 92 days.

A COT is performed on each required channel to ensure the channel will perform the intended Function.

The tested portion of the Loop must trip within the Allowable Values specified in Table 3.3.1-1.

The setpoint shall be left set consistent with the assumptions of the setpoint methodology.

SR 3.3.1.7 is modified by a Note that provides a 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> delay in the requirement to perform this Surveillance for source range instrumentation when entering MODE 3 from MODE 2. This Note allows a normal shutdown to proceed without a delay for testing in MODE 2 and for a short time in MODE 3 until the RTBs are open and SR 3.3.1.7 is no longer required to be performed. If the unit is to be in MODE 3 with the RTBs closed for > 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> this Surveillance must be completed within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> after entry into MODE 3. The surveillance shall include verification of the high flux at shutdown alarm setpoint of less than or equal to the average CPS Neutron Level reading (most consistent value between highest and lowest CPS Neutron Level reading) < five times background.

The Frequency of 92 days is justified in Reference 7.

SR 3.3.1.8 SR 3.3.1.8 is the performance of a COT as described in SR 3.3.1.7, except it is modified by a Note that this test shall include verification that the P-6, during the Intermediate Range COT, and P-10, during the Power Range COT, interlocks are in their required state for the existing unit condition. The verification is performed by visual observation of the permissive status light in the unit control room. The Frequency is modified by a Note that allows this surveillance to be satisfied if it has been performed within 92 days of the Frequencies prior to reactor startup and four hours after reducing power below P-1 0 and P-6. The Frequency of "prior to startup" ensures this surveillance is performed prior to critical operations and applies to the source, intermediate and power range low instrument channels. The Frequency of "4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> after reducing power below P-10" (applicable to intermediate and power range low channels) and '4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> after reducing power below P-6" (applicable to source range channels) allows a normal shutdown to be completed and the unit McGuire Units 1 and 2 B 3.3.1-44 Revision No. 23

RTS Instrumentation B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued) removed from the MODE of Applicability for this surveillance without a delay to perform the testing required by this surveillance. The Frequency of every 92 days thereafter applies if the plant remains in the MODE of Applicability after the initial performances of prior to reactor startup and four hours after reducing power below P-10 or P-6. The MODE of Applicability for this surveillance is < P-1 0 for the power range low and intermediate range channels and < P-6 for the source range channels.

Once the unit is in MODE 3, this surveillance is no longer required. If power is to be maintained < P-1 0 or < P-6 for more than 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, then the testing required by this surveillance must be performed prior to the expiration of the 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> limit. Four hours is a reasonable time to complete the required testing or place the unit in a MODE where this surveillance is no longer required. This test ensures that the NIS source, intermediate, and power range low channels are OPERABLE prior to taking the reactor critical and after reducing power into the applicable MODE (< P-10 or < P

6) for periods > 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

SR 3.3.1.9 SR 3.3.1.9 is the performance of a TADOT and is performed every 92 days, as justified in Reference 7.

The SR is modified by a Note that excludes verification of setpoints from the TADOT. Since this SR applies to RCP undervoltage and underfrequency relays, setpoint verification requires elaborate bench calibration and is accomplished during the CHANNEL CALIBRATION.

SR 3.3.1.10 A CHANNEL CALIBRATION is performed every 18 months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy.

CHANNEL CALIBRATIONS must be performed consistent with the assumptions of the setpoint methodology.

The Frequency of 18 months is based on the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint methodology.

McGuire Units 1 and 2 B 3.3.1-45 Revision No. 23

RTS Instrumentation B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.1.10 is modified by a Note stating that this test shall include verification that the time constants are adjusted to the prescribed values where applicable. The applicable time constants are shown in Table 3.3.1-1.

SR 3.3.1.11 SR 3.3.1.11 is the performance of a CHANNEL CALIBRATION, as described in SR 3.3.1.10, every 18 months. This SR is modified by two notes. Note 1 states that neutron detectors are excluded from the CHANNEL CALIBRATION. The CHANNEL CALIBRATION for the power range neutron detectors consists of a normalization of the detectors based on a power calorimetric and flux map performed above 15% RTP.

The CHANNEL CALIBRATION for the source range and intermediate range neutron detectors consists of obtaining the high voltage detector plateau and discriminator curves for source range, and the high voltage detector plateau for intermediate range, evaluating those curves, and comparing the curves to the manufacturer's data. Note 2 states that this Surveillance is not required for the NIS power range detectors for entry into MODE 2 or 1, and is not required for the NIS intermediate range detectors for entry into MODE 2, because the unit must be in at least MODE 2 to perform the test for the intermediate range detectors and MODE 1 for the power range detectors. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed on the 18 month Frequency.

SR 3.3.1.12 SR 3.3.1.12 is the performance of a CHANNEL CALIBRATION, as described in SR 3.3.1.10, every 18 months. Calibration of the AT channels is required at the beginning of each cycle upon completion of the precision heat balance. RCS loop AT values shall be determined by precision heat balance measurements at the beginning of each cycle.

The Frequency is justified by the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

McGuire Units 1 and 2 B 3.3.1-46 Revision No. 23

RTS Instrumentation B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.1.13 SR 3.3.1.13 is the performance of a COT of RTS interlocks every 18 months.

The Frequency is based on the known reliability of the interlocks and the multichannel redundancy available, and has been shown to be acceptable through operating experience.

SR 3.3.1.14 SR 3.3.1.14 is the performance of a TADOT of the Manual Reactor Trip and the Sl Input from ESFAS. This TADOT is performed every 18 months. The test shall independently verify the OPERABILITY of the undervoltage and shunt trip mechanisms for the Manual Reactor Trip Function for the Reactor Trip Breakers and Reactor Trip Bypass Breakers. The Reactor Trip Bypass Breaker test shall include testing of the automatic undervoltage trip.

The Frequency is based on the known reliability of the Functions and the multichannel redundancy available, and has been shown to be acceptable through operating experience.

The SR is modified by a Note that excludes verification of setpoints from the TADOT. The Functions affected have no setpoints associated with them.

SR 3.3.1.15 SR 3.3.1.15 is the performance of a TADOT of Turbine Trip Functions.

This TADOT is as described in SR 3.3.1.4, except that this test is performed prior to reactor startup. A Note states that this Surveillance is not required if it has been performed within the previous 31 days.

Verification of the Trip Setpoint does not have to be performed for this Surveillance. Performance of this test will ensure that the turbine trip Function is OPERABLE prior to taking the reactor critical. This test cannot be performed with the reactor at power and must therefore be performed prior to reactor startup.

McGuire Units 1 and 2 B 3.3.1-47 Revision No. 23

RTS Instrumentation B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.1.16 and SR 3.3.1.17 SR 3.3.1.16 and SR 3.3.1.17 verify that the individual channel/train actuation response times are less than or equal to the maximum values assumed in the accident analysis. Response time testing acceptance criteria are included in the UFSAR (Ref. 1). Individual component response times are not modeled in the analyses.

The analyses model the overall or total elapsed time, from the point at which the parameter exceeds the trip setpoint value at the sensor to the point at which the equipment reaches the required functional state (i.e.,

control and shutdown rods fully inserted in the reactor core).

For channels that include dynamic transfer Functions (e.g., lag, lead/lag, rate/lag, etc.), the response time test may be performed with the transfer Function set to one, with the resulting measured response time compared to the appropriate UFSAR response time. Alternately, the response time test can be performed with the time constants set to their nominal value, provided the required response time is analytically calculated assuming the time constants are set at their nominal values. The response time may be measured by a series of overlapping tests such that the entire response time is measured.

As appropriate, each channel's response must be verified every 18 months on a STAGGERED TEST BASIS. Testing of the final actuation devices is included in the testing. Testing of the RTS RTDs is erformed on an 18 month frequency. Response times cannot be etermined during unit operation because equipment operation is required to measure response times. Experience has shown that these components usually pass this surveillance when performed at the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

SR 3.3.1.16 is modified by a Note stating that neutron detectors are excluded from RTS RESPONSE TIME testing. This Note is necessary because of the difficulty in generating an appropriate detector input signal. Excluding the detectors is acceptable because the principles of detector operation ensure a virtually instantaneous response. The response time of the neutron flux signal portion of the channel shall be measured from detector output or input of the first electronic component in the channel.

McGuire Units 1 and 2 B 3.3.1-48 Revision No. 23

RTS Instrumentation B 3.3.1 BASES REFERENCES 1. UFSAR, Chapter 7.

2. UFSAR, Chapter 6.
3. UFSAR, Chapter 15.
4. IEEE-279-1971.
5. 10 CFR 50.49.
6. 10 CFR 50.36, Technical Specifications, (c)(2)(ii).
7. WCAP-1 0271-P-A, Supplement 2, Rev. 1, June 1990.

McGuire Units 1 and 2 B 3.3.1-49 Revision No. 23

PAM Instrumentation B 3.3.3 B 3.3 INSTRUMENTATION B 3.3.3 Post Accident Monitoring (PAM) Instrumentation BASES BACKGROUND The primary purpose of the PAM instrumentation is to display unit variables that provide information required by the control room operators during accident situations. This information provides the necessary support for the operator to take the manual actions for which no automatic control is provided and that are required for safety systems to accomplish their safety functions for Design Basis Accidents (DBAs).

The OPERABILITY of the accident monitoring instrumentation ensures that there is sufficient information available on selected unit parameters to monitor and to assess unit status and behavior following an accident.

The availability of accident monitoring instrumentation is important so that responses to corrective actions can be observed and the need for, and magnitude of, further actions can be determined. These essential instruments are identified by unit specific documents (Ref. 1) addressing the recommendations of Regulatory Guide 1.97 (Ref. 2) as required by Supplement 1 to NUREG-0737 (Ref. 3).

The instrument channels required to be OPERABLE by this LCO include two classes of parameters identified during unit specific implementation of Regulatory Guide 1.97 as Type A and Category I variables.

Type A variables are included in this LCO because they provide the primary information required for the control room operator to take specific manually controlled actions for which no automatic control is provided, and that are required for safety systems to accomplish their safety functions for DBAs.

Category I variables are the key variables deemed risk significant because they are needed to:

Determine whether other systems important to safety are performing their intended functions; Provide information to the operators that will enable them to determine the likelihood of a gross breach of the barriers to radioactivity release; and McGuire Units 1 and 2 B 3.3.3-1 Revision No. 23

PAM Instrumentation B 3.3.3 BASES BACKGROUND (continued)

Provide information regarding the release of radioactive materials to allow for early indication of the need to initiate action necessary to protect the public, and to estimate the magnitude of any impending threat.

These key variables are identified by the unit specific Regulatory Guide 1.97 analyses (Ref. 1). These analyses identify the unit specific Type A and Category I variables and provide justification for deviating from the NRC proposed list of Category I variables.

The specific instrument Functions listed in Table 3.3.3-1 are discussed in the LCO section.

APPLICABLE The PAM instrumentation ensures the operability of Regulatory Guide SAFETY ANALYSES 1.97 Type A and Category I variables so that the control room operating staff can:

Perform the diagnosis specified in the emergency operating procedures (these variables are restricted to preplanned actions for the primary success path of DBAs), e.g., loss of coolant accident (LOCA);

Take the specified, pre-planned, manually controlled actions, for which no automatic control is provided, and that are required for safety systems to accomplish their safety function; Determine whether systems important to safety are performing their intended functions; Determine the likelihood of a gross breach of the barriers to radioactivity release; Determine if a gross breach of a barrier has occurred; and Initiate action necessary to protect the public and to estimate the magnitude of any impending threat.

PAM instrumentation that meets the definition of Type A in Regulatory Guide 1.97 satisfies Criterion 3 of 10 CFR 50.36 (Ref. 4). Category I, non-Type A, instrumentation must be retained in TS because it is intended to assist operators in minimizing the consequences of accidents.

Therefore, Category I, non-Type A, variables are important for reducing public risk.

Mc-Gtire Units 1 and 2 B 3.3.3-2 Revision No. 23

PAM Instrumentation B 3.3.3 BASES LCO The PAM instrumentation LCO provides OPERABILITY requirements for Regulatory Guide 1.97 Type A monitors, which provide information required by the control room operators to perform certain manual actions specified in the unit Emergency Operating Procedures. These manual actions ensure that a system can accomplish its safety function, and are credited in the safety analyses. Additionally, this LCO addresses Regulatory Guide 1.97 instruments that have been designated Category I, non-Type A.

The OPERABILITY of the PAM instrumentation ensures there is sufficient information available on selected unit parameters to monitor and assess unit status following an accident. This capability is consistent with the recommendations of Reference 1.

LCO 3.3.3 requires two OPERABLE channels for most Functions. Two OPERABLE channels ensure no single failure prevents operators from getting the information necessary for them to determine the safety status of the unit, and to bring the unit to and maintain it in a safe condition following an accident.

Furthermore, OPERABILITY of two channels allows a CHANNEL CHECK during the post accident phase to confirm the validity of displayed information.

In some cases, the total number of channels exceeds the number of required channels, e.g., pressurizer level has a total of three channels, however only two channels are required OPERABLE. This provides additional redundancy beyond that required by this LCO, i.e., when one channel of pressurizer level is inoperable, the required number of two channels can still be met. The ACTIONS of this LCO are only entered when the required number of channels cannot be met.

Category I variables are required to meet Regulatory Guide 1.97 Category I (Ref. 2) design and qualification requirements for seismic and environmental qualification, single failure criterion, utilization of emergency standby power, immediately accessible display, continuous readout, and recording of display.

Listed below are discussions of the specified instrument Functions listed in Table 3.3.3-1.

1. Neutron Flux - (Wide Range)

Wide Range Neutron Flux indication is provided to verify reactor shutdown.

McGuire Units 1 and 2 B 3.3.3-3 Revision No. 23

PAM Instrumentation B 3.3.3 BASES LCO (continued)

Neutron flux is used for accident diagnosis, verification of subcriticality, and diagnosis of positive reactivity insertion.

Two channels of wide range neutron flux are required OPERABLE.

2, 3. Reactor Coolant System (RCS) Hot and Cold Legq Temperatures RCS Hot and Cold Leg Temperatures are Category I variables provided for verification of core cooling and long term surveillance.

RCS hot and cold leg temperatures are used to determine RCS subcooling margin. RCS subcooling margin will allow termination of safety injection (SI), if still in progress, or reinitiation of SI if it has been stopped. RCS subcooling margin is also used for unit stabilization and cooldown control.

In addition, RCS cold leg temperature is used in conjunction with RCS hot leg temperature to verify the unit conditions necessary to establish natural circulation in the RCS.

Reactor coolant hot and cold leg temperature inputs are provided by fast response resistance elements and associated transmitters in each loop.

Two channels of RCS Hot Leg Temperature and two channels of RCS Cold Leg Temperature are required OPERABLE by the LCO.

RCS Hot Leg and Cold Leg Temperature are diverse indications of RCS temperature. Core exit thermocouples also provide diverse indication of RCS temperature.

4. Reactor Coolant System Pressure (Wide Range)

RCS wide range pressure is a Category I variable provided for verification of core cooling and RCS integrity long term surveillance.

RCS pressure is used to verify delivery of Sl flow to RCS from at least one train when the RCS pressure is below the pump shutoff head. RCS pressure is also used to verify closure of manually closed spray line valves and pressurizer power operated relief valves (PORVs).

McGuire Units 1 and 2 B 3.3.3-4 Revision No. 23

PAM Instrumentation B 3.3.3 BASES LCO (continued)

In addition to these verifications, RCS pressure is used for determining RCS subcooling margin. RCS pressure can also be used:

to determine whether to terminate actuated SI or to reinitiate stopped SI; to determine when to reset Sl and shut off low head SI;

  • to manually restart low head SI;
  • as reactor coolant pump (RCP) trip criteria; and to make a determination on the nature of the accident in progress and where to go next in the procedure.

RCS pressure is also related to three decisions about depressurization. They are:

to determine whether to proceed with primary system depressurization;

  • to verify termination of depressurization; and to determine whether to close accumulator isolation valves during a controlled cooldown/depressurization.

A final use of RCS pressure is to determine whether to operate the pressurizer heaters.

RCS pressure is a Type A variable because the operator uses this indication to monitor the cooldown of the RCS following a steam generator tube rupture (SGTR) or small break LOCA. Operator actions to maintain a controlled cooldown, such as adjusting steam generator (SG) pressure or level, would use this indication.

Furthermore, RCS pressure is one factor that may be used in decisions to terminate RCP operation.

Two channels of wide range RCS pressure are required OPERABLE.

McGuire Units 1 and 2 B 3.3.3-5 Revis-ion No. 22

PAM Instrumentation B 3.3.3 BASES LCO (continued) 5, 6. Reactor Vessel Water Level Reactor Vessel Water Level is provided for verification and long term surveillance of core cooling. It is also used for accident diagnosis and to determine reactor coolant inventory adequacy.

The Reactor Vessel Water Level Monitoring System provides a direct measurement of the collapsed liquid level above the fuel alignment plate. The collapsed level represents the amount of liquid mass that is in the reactor vessel above the core.

Measurement of the collapsed water level is selected because it is a direct indication of the water inventory.

Two channels of Reactor Vessel Water Level are provided in both the core region (lower range) and the head region (wide range) with indication in the unit control room. Each channel uses differential pressure transmitters and a microprocessor to calculate true vessel level or relative void content of the primary coolant.

7. Containment Sump Water Level (Wide Range)

Containment Sump Water Level is provided for verification and long term surveillance of RCS integrity.

Containment Sump Water Level is used to determine:

  • containment sump level accident diagnosis;
  • when to begin the recirculation procedure; and
  • whether to terminate SI, if still in progress.

Two channels of wide range level are required OPERABLE.

8. Containment Pressure (Wide Range)

Containment Pressure (Wide Range) is provided for verification of RCS and containment OPERABILITY.

Containment pressure is used to verify closure of main steam isolation valves (MSIVs), and containment spray Phase B isolation when Containment Pressure - High High is reached.

McGuire Units 1 and 2 B 3.3.3-6 Revision No. 23

PAM Instrumentation B 3.3.3 BASES LCO (continued)

Two channels of wide range containment pressure are required OPERABLE.

9. Containment Atmosphere Radiation (Higqh Ranqe)

Containment Atmosphere Radiation is provided to monitor for the potential of significant radiation releases and to provide release assessment for use by operators in determining the need to invoke site emergency plans. Containment radiation level is used to determine if a high energy line break (HELB) has occurred, and whether the event is inside or outside of containment.

Two channels of high range containment atmosphere radiation are provided. One channel is required OPERABLE. Diversity is provided by portable instrumentation or by sampling and analysis.

10. Hydrogen Monitors Hydrogen Monitors are provided to detect high hydrogen concentration conditions that represent a potential for containment breach from a hydrogen explosion. This variable is also important in verifying the adequacy of mitigating actions.

Two channels of hydrogen monitors are required OPERABLE.

11. Pressurizer Level Pressurizer Level is used to determine whether to terminate SI, if still in progress, or to reinitiate SI if it has been stopped.

Knowledge of pressurizer water level is also used to verify the unit conditions necessary to establish natural circulation in the RCS and to verify that the unit is maintained in a safe shutdown condition.

Three channels of pressurizer level are provided. Two channels are required OPERABLE.

12. Steam Generator Water Level (Narrow Range)

SG Water Level is provided to monitor operation of decay heat removal via the SGs. The Category I indication of SG level is the narrow range level instrumentation.

McGuire Units 1 and 2 B 3.3-3-7 Revision No. 23

PAM Instrumentation B 3.3.3 BASES LCO (continued)

SG Water Level (Narrow Range) is used to:

"* identify the faulted SG following a tube rupture;

"* verify that the intact SGs are an adequate heat sink for the reactor;

"* determine the nature of the accident in progress (e.g., verify an SGTR); and

"* verify unit conditions for termination of Sl during secondary unit HELBs outside containment.

Four channels per SG of narrow range water level are provided.

Only two channels are required OPERABLE by the LCO.

13, 14, 15, 16. Core Exit Temperature Core Exit Temperature is provided for verification and long term surveillance of core cooling.

Adequate core cooling is ensured with two valid Core Exit Temperature channels per quadrant with two CETs per required channel. Core inlet temperature data is used with core exit temperature to give radial distribution of coolant enthalpy rise across the core. Core Exit Temperature is used to determine whether to terminate SI, if still in progress, or to reinitiate SI if it has been stopped. Core Exit Temperature is also used for unit stabilization and cooldown control.

Two OPERABLE channels of Core Exit Temperature are required in each quadrant to provide indication of radial distribution of the coolant temperature rise across representative regions of the core.

Two sets of two thermocouples (1 set from each redundant power train) ensure a single failure will not disable the ability to determine the radial temperature gradient.

17. Auxiliary Feedwater Flow AFW Flow is provided to monitor operation of decay heat removal via the SGs.

McGuire Units 1 and 2 B 3.3.3-8 Revision No. 23

PAM Instrumentation B 3.3.3 BASES LCO (continued)

The AFW Flow to each SG is determined by flow indicators, pump operational status indicators, and NSWS and condensate supply valve indicators in the control room. The AFW flow indicators are category 2, type D variables which are used to demonstrate the category 1 variable of AFW assured source.

AFW flow is used three ways:

  • to verify delivery of AFW flow to the SGs; to determine whether to terminate SI if still in progress, in conjunction with SG water level (narrow range); and
  • to regulate AFW flow so that the SG tubes remain covered.
18. RCS Subcooling Mar-gin Monitor RCS subcooling is provided to allow unit stabilization and cooldown control. RCS subcooling will allow termination of SI, if still in progress, or reinitiation of SI if it has been stopped.

The margin to saturation is calculated from RCS pressure and temperature measurements. The average of the five highest core exit thermocouples are used to represent core conditions and the wide range hot leg RTDs are used to measure loop hot leg temperatures. The plant computer performs the calculations and comparisons to saturation curves. A graphic display over the required range gives the operator a representation of primary system conditions compared to various curves of importance (saturation, NDT, etc.).

A backup program exists to ensure the capability to accurately monitor RCS subcooling. The program includes training and a procedure to manually calculate subcooling margin, using control room pressure and temperature instruments.

19. Steam Line Pressure Steam Line Pressure is provided to monitor operation of decay heat removal via the SGs. Steam line pressure is also used to determine if a high energy secondary line rupture occurred and which SG is faulted.

McGuire Units 1 and 2 B 3.3.3-9 Revision No. 23

PAM Instrumentation B 3.3.3 BASES LCO (continued)

Two channels of Steam Line Pressure are required OPERABLE.

20. Refueling Water Storage Tank Level RWST level monitoring is provided to ensure an adequate supply of water to the safety injection and spray pumps during the switchover to cold leg recirculation.

Three channels of RWST level are provided. Two channels are required OPERABLE by the LCO.

21. DG Heat Exchanger NSWS Flow Flow indicators are provided in each of the NSWS trains to indicate cooling water flow through the respective train DG. These indicators are provided for operators to manually control flow to the DG heat exchanger. One flow indicator is required OPERABLE on each train.
22. Containment Spray Heat Exchanger NSWS Flow Flow indicators are provided in each of the NSWS trains to indicate cooling water flow through the respective train containment spray heat exchangers. These indicators are provided for operators to manually control flow to the heat exchanger. One flow indicator is required OPERABLE on each train.

APPLICABILITY The PAM instrumentation LCO is applicable in MODES 1, 2, and 3.

These variables are related to the diagnosis and pre-planned actions required to mitigate DBAs. The applicable DBAs are assumed to occur in MODES 1, 2, and 3. In MODES 4, 5, and 6, unit conditions are such that the likelihood of an event that would require PAM instrumentation is low; therefore, the PAM instrumentation is not required to be OPERABLE in these MODES.

ACTIONS Note 1 has been added in the ACTIONS to exclude the MODE change restriction of LCO 3.0.4. This exception allows entry into the applicable MODE while relying on the ACTIONS even though the ACTIONS may eventually require unit shutdown. This exception is acceptable due to the McGuire Units 1 and 2 B 3.3.3-10 Revision No. 23

PAM Instrumentation B 3.3.3 BASES ACTIONS (continued) passive function of the instruments, the operator's ability to respond to an accident using alternate instruments and methods, and the low probability of an event requiring these instruments.

Note 2 has been added in the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed on Table 3.3.3-1. When the Required Channels in Table 3.3.3-1 are specified (e.g., on a per steam line, per loop, per SG, etc., basis), then the Condition may be entered separately for each steam line, loop, SG, etc., as appropriate.

The Completion Time(s) of the inoperable channel(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function.

A.1 Condition A applies to all PAM instrument Functions. Condition A addresses the situation when one or more required channels for one or more Functions are inoperable. The Required Action is to refer to Table 3.3.3-1 and take the appropriate Required Actions for the PAM instrumentation affected. The Completion Times are those from the referenced Conditions and Required Actions.

B.1 Condition B applies when one or more Functions have one required channel that is inoperable. Required Action B.1 requires restoring the inoperable channel to OPERABLE status within 30 days. The 30 day Completion Time is based on operating experience and takes into account the remaining OPERABLE channel, the passive nature of the instrument (no critical automatic action is assumed to occur from these instruments), and the low probability of an event requiring PAM instrumentation during this interval. Condition B is not applicable to functions with a single required channel.

C.1 Condition C applies when the Required Action and associated Completion Time for Condition B are not met. This Required Action specifies initiation of actions in Specification 5.6.7, which requires a written report to be submitted to the NRC immediately- This report McGuire Units 1 and 2 B 3.3.3-11 Revision No. 23

PAM Instrumentation B 3.3.3 BASES ACTIONS (continued) discusses the results of the root cause evaluation of the inoperability and identifies proposed restorative actions. This action is appropriate in lieu of a shutdown requirement since alternative actions are identified before loss of functional capability, and given the likelihood of unit conditions that would require information provided by this instrumentation.

D.1 Condition D applies when a single require channel is inoperable.

Required Action D.1 requires restoring the required channel to OPERABLE status within 7 days. The Completion Time of 7 days is based on the relatively low probability of an event requiring PAM instrument operation and the availability of alternate means to obtain the required information. Continuous operation with the required channel inoperable is not acceptable. Therefore, requiring restoration of the required channel to OPERABLE status limits the risk that the PAM function will be in a degraded condition should an event occur.

E.1 Condition E applies when one or more Functions have two inoperable required channels (i.e., two channels inoperable in the same Function).

Required Action E.1 requires restoring one channel in the Function(s) to OPERABLE status within 7 days. The Completion Time of 7 days is based on the relatively low probability of an event requiring PAM instrument operation and the availability of alternate means to obtain the required information. Continuous operation with two required channels inoperable in a Function is not acceptable because the alternate indications may not fully meet all performance qualification requirements applied to the PAM instrumentation. Therefore, requiring restoration of one inoperable channel of the Function limits the risk that the PAM Function will be in a degraded condition should an accident occur.

Condition E does not apply to hydrogen monitor channels and functions with single channels.

F. 1 Condition F applies when two hydrogen monitor channels are inoperable.

Required Action F.1 requires restoring one hydrogen monitor channel to OPERABLE status within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />. The 72 hour8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> Completion Time is reasonable based on the backup capability of the Post Accident Sampling McGuire Units 1 and 2 B 3.3.3-12 Revision No. 23

PAM Instrumentation B 3.3.3 BASES ACTIONS (continued)

System to monitor the hydrogen concentration for evaluation of core damage and to provide information for operator decisions. Also, it is unlikely that a LOCA (which would cause core damage) would occur during this time.

G.1 and G.2 If the Required Action and associated Completion Time of Conditions D, E, or F are not met, the unit must be brought to a MODE where the requirements of this LCO do not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and MODE 4 within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

H.1 Alternate means of monitoring Containment Area Radiation have been developed and tested. These alternate means may be temporarily installed if the normal PAM channel cannot be restored to OPERABLE status within the allotted time. If these alternate means are used, the Required Action is not to shut down the unit but rather to follow the directions of Specification 5.6.7, in the Administrative Controls section of the TS. The report provided to the NRC should discuss the alternate means used, describe the degree to which the alternate means are equivalent to the installed PAM channels, justify the areas in which they are not equivalent, and provide a schedule for restoring the normal PAM channels.

SURVEILLANCE A Note has been added to the SR Table to clarify that REQUIREMENTS SR 3.3.3.1 and SR 3.3.3.3 apply to each PAM instrumentation Function in Table 3.3.3-1.

SR 3.3.3.1 Performance of the CHANNEL CHECK once every 31 days ensures that a gross instrumentation failure has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a McGuire Units 1 and 2 B 3.3.3-13 Revision No. 23

PAM Instrumentation B 3.3.3 BASES SURVEILLANCE REQUIREMENTS (continued) similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. The high radiation instrumentation should be compared to similar unit instruments located throughout the unit; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. During the time between startup and calorimetric adjustment calibration (calorimetric adjustment is performed at 100% power), the channels may have excessive error. During this period A CHANNEL CHECK is performed to detect gross channel deviation.

Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including isolation, indication, and readability. If a channel is outside the criteria, it may be an indication that the Sensor or the signal processing equipment has drifted outside its limit. If the channels are within the criteria, it is an indication that the channels are OPERABLE.

As specified in the SR, a CHANNEL CHECK is only required for those channels that are normally energized.

The Frequency of 31 days is based on operating experience that demonstrates that channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

SR 3.3.3.2 A CHANNEL CALIBRATION is performed every 92 days on the Hydrogen Monitor channels. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor using hydrogen gas mixtures to obtain calibration points at 0 volume percent (v/o) and 9 v/o hydrogen.

The test verifies that the channel responds to measured parameter with the necessary range and accuracy. The Frequency is based on operating experience associated with these monitors.

SR 3.3.3.3 A CHANNEL CALIBRATION is performed every 18 months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to measured parameter with the McGuire Units 1 and 2 B 3.3.3-14 Revision No. 23

PAM Instrumentation B 3.3.3 BASES SURVEILLANCE REQUIREMENTS (continued) necessary range and accuracy. This SR is modified by a Note that excludes neutron detectors. The calibration method for neutron detectors is specified in the Bases of LCO 3.3.1, "Reactor Trip System (RTS)

Instrumentation.* The Frequency is based on operating experience and consistency with the typical industry refueling cycle.

REFERENCES 1. UFSAR Section 1.8.

2. Regulatory Guide 1.97, Rev. 2.
3. NUREG-0737, Supplement 1, "TMI Action Items."
4. 10 CFR 50.36, Technical Specifications, (c)(2)(ii).

McGuire Units 1 and 2 B 3.3.3-15 Revision No. 23

Nuclear Instrumentation B 3.9.3 B 3.9 REFUELING OPERATIONS B 3.9.3 Nuclear Instrumentation BASES BACKGROUND The source range neutron flux monitors are used during refueling operations to monitor the core reactivity condition. The installed source range neutron flux monitors are part of the Nuclear Instrumentation System (NIS) and the Wide Range Neutron Flux Monitoring System (Gamma-Metrics). Source range indication is provided via the NIS source range channels and the Gamma-Metrics shutdown monitors using detectors located external to the reactor vessel. These detectors monitor neutrons leaking from the core. Neutron flux indication is provided in counts per second. The NIS Source Range Channels are BF3 detectors with a range of 1 to 1 E6 cps. The Wide Range channels are fission chambers with a range of 0.1 to 1 E5 cps (in the startup range). The NIS source range channels and the Gamma-Metrics shutdown monitors provide continuous visible count rate indication in the control room and an audible high flux control room alarm to alert operators to a possible dilution accident. Although not required by this LCO, the NIS source range channels provide audible count rate indication in the control room and in the containment and an automatic high flux (containment evacuation) alarm in containment to alert personnel. Administrative controls that require at least one NIS source range channel OPERABLE during CORE ALTERATIONS will ensure that personnel moving fuel in the reactor building will have an audible indication of source range counts and an automatic containment evacuation alarm on a high flux at shutdown condition. The NIS is designed in accordance with the criteria presented in Reference 1.

APPLICABLE Two OPERABLE source range neutron flux monitors are required SAFETY ANALYSES to provide a signal to alert the operator to unexpected changes in core reactivity such as with a boron dilution accident (Ref. 2) or an improperly loaded fuel assembly.

The source range neutron flux monitors satisfy Criterion 3 of 10 CFR 50.36 (Ref. 3).

LCO This LCO requires that two source range neutron flux monitors be OPERABLE to ensure that redundant monitoring capability is available to detect changes in core reactivity.

McGuire Units 1 and 2 B 3.9.3-1 Revision No. 23

Nuclear Instrumentation B 3.9.3 BASES LCO (continued)

The two required source range neutron flux monitors may consist of a combination of NIS source range monitors and Gamma-Metrics shutdown monitors with alarm setpoints of less than or equal to the average CPS Neutron Level reading (most consistent value between highest and lowest CPS Neutron Level reading) at 0.5 decade above the steady state count rate.

The neutron detectors high flux at shutdown alarm setpoint of less than or equal to 0.5 decade above steady state count rate, prior to Mode 6, shall be verified. Once the High Flux at Shutdown Alarm setpoints are set at 0.5 decades above steady state neutron count rate the re-verification/re adjustment of the high flux at shutdown is not required. Any subsequent changes in the count rate are an indication of gamma flux (due to movement of irradiated particles in the system), core geometry, and the location of the Source Assemblies (distance from the Source Detectors):

this may cause the source range response to vary. Upon increase in the neutron count rate due to activities that add positive reactivity to the core, these issues will cease to be a factor in detector count rate.

Prior to core refueling, the as-left High Flux at Shutdown Alarm setpoints (prior to core unloading) should be re-verified. The re-adjustment to a different value may not be required since the detectors were proven to be operational and capable of responding to core multiplication neutrons.

A CHANNEL CHECK is a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that the two indicating channels should be consistent.

Significant differences between the indicating source range channels can occur due to core geometry, the location of the Source Assemblies (distance from the Source Detectors), and large amount of gamma. Each channel should be consistent with its local condition. The operability of the detector is not in question.

During core unloading and core reloading when there is very little neutron activity, the neutron count rate may be less than 1 CPS and the re verification/re-adjustment of the high flux at shutdown is not required.

The operability of the detector is not in question.

APPLICABILITY In MODE 6, the source range neutron flux monitors must be OPERABLE to determine changes in core reactivity. There are no other direct means available to check core reactivity levels. In MODES 2, 3, 4, and 5, the NIS source range detectors and circuitry are also required to be OPERABLE by LCO 3.3.1, "Reactor Trip System (RTS) Instrumentation."

The Gamma-Metrics shutdown monitors perform no safety functions in other MODES.

McGuire Units 1 and 2 B 3.9.3-2 Revision No. 23

Nuclear Instrumentation B 3.9.3 BASES ACTIONS A.1 and A.2 With only one required source range neutron flux monitor OPERABLE, redundancy has been lost. Since these instruments are the only direct means of monitoring core reactivity conditions, CORE ALTERATIONS and positive reactivity additions must be suspended immediately.

Performance of Required Action A.1 shall not preclude completion of movement of a component to a safe position.

B. 1 With no required source range neutron flux monitor OPERABLE, action to restore a monitor to OPERABLE status shall be initiated immediately.

Once initiated, action shall be continued until a source range neutron flux monitor is restored to OPERABLE status.

B.2 With no source range neutron flux monitor OPERABLE, there are no direct means of detecting changes in core reactivity. However, since CORE ALTERATIONS and positive reactivity additions are not to be made, the core reactivity condition is stabilized until the source range neutron flux monitors are OPERABLE. This stabilized condition is determined by performing SR 3.9.1.1 to ensure that the required boron concentration exists.

The Completion Time of once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> is sufficient to obtain and analyze a reactor coolant sample for boron concentration and ensures that unplanned changes in boron concentration would be identified. The 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Frequency is reasonable, considering the low probability of a change in core reactivity during this time period.

McGuire Units 1 and 2 B 3.9.3-3 Revision No. 23

Nuclear Instrumentation B 3.9.3 BASES SURVEILLANCE SR 3.9.3.1 REQUIREMENTS SR 3.9.3.1 is the performance of a CHANNEL CHECK, which is a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that the two indication channels should be consistent with core conditions.

Changes in fuel loading and core geometry can result in significant differences between source range channels, but each channel should be consistent with its local conditions.

The Frequency of 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> is consistent with the CHANNEL CHECK Frequency specified similarly for the same instruments in LCO 3.3.1.

SR 3.9.3.2 SR 3.9.3.2 is the performance of a CHANNEL CALIBRATION every 18 months. The CHANNEL CALIBRATION ensures that the monitors are calibrated. High Flux at Shutdown Alarm setpoints are set at 0.5 decade above the steady state count rate prior to conducting refueling operations.

This SR is modified by a Note stating that neutron detectors are excluded from the CHANNEL CALIBRATION. The CHANNEL CALIBRATION for the source range neutron flux monitors consists of obtaining the detector plateau or preamp discriminator curves, evaluating those curves, and comparing the curves to the manufacturer's data. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage. Operating experience has shown these components usually pass the Surveillance when performed at the 18 month Frequency.

REFERENCES 1. 10 CFR 50, Appendix A, GDC 13, GDC 26, GDC 28, and GDC 29.

2. UFSAR, Sections 4.2, 15.4.6.
3. 10 CFR 50.36, Technical Specifications, (c)(2)(ii).

McGuire Units 1 and 2 B 3.9.3-4 Revision No. 23