ML20101R024

From kanterella
Revision as of 01:10, 12 May 2020 by StriderTol (talk | contribs) (StriderTol Bot change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Reactor Containment Integrated Leak Rate Test,Lasalle County Nuclear Power Station,Unit 2
ML20101R024
Person / Time
Site: LaSalle Constellation icon.png
Issue date: 03/27/1992
From:
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20101R020 List:
References
NUDOCS 9207150200
Download: ML20101R024 (83)


Text

, _ . . . . . . ...

REACTOR CONTAINME11T DUILDING INTEGRATED LEAK RATE TEST

{

LASALLE COUN*tY NUCLEAR l'OWER STATIO!1 a

COMMONWEALTil EDIGON COMPANY DOCKET NUMDER 50-374 UNIT TWO MARCH 27, 1992 -

ZCADTS/388 9207150200 920702 ,

PDR ADOCK 05000374 P PDR ,

i TABLE OF CONTENTS PAGE INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. TEST PREPARATIONS. . . . . . . . . . . . . . . . . . . . . . 2 A.1 Type A Test Procedure . . . . . . . . . . . . . . . . . 2 A.2 Type A Test Instrumentation . . . . . . . . . . . . . . 2

a. Temperature
b. Pressure
c. Vapor Pressure
d. Flow A.3 Type A Test Measurement . . . . . . . . . . . . . . . . 3 A.4 Type A Test Pressurization. . . . . . . . . . . . . . 3 B. TEST METHOD. . . . . . . . . . . . . . . . . . . . . . . . .10 B.1 Basic Technique . . . . . . . . . . . . . . . . . . . .10 B.2 Supplemental Verification Test. . . . . . . . . . . . .10

-B.3 Instrumentation Error Analysis. . . . . . . . . . . .10 C. SEQUENCE OF EVENTS . . . . . . . . . . . . . . . . . . . . .11 C.1 Test Preparation Chronology . . . . . . . . . . , . . .11 C.2 Test Pressurizatn Chronology. . . . . . . . . . . . .11 C.3 Temperature Stabfiitation Chronology. . . . . . . . . .12 C.4 Measured Leak Rate Phese Chronology . . . . . . . . . .12 C.5 Induced Leak Rate Phase Chronology. . . . . . . . . . .12

.C.6 Depressurisation Phase Chronology . . . . . . . . . . .13 D. TYPE A TEST DATA . . . ' . . . . . . . . . . . . . . . . . . .14 D.1 Measured Leak Rate Phase Data . . . . . . . .. . . . .14 D.2- Induced Leak Rt.te Phase Data. . . . . . . . . . . . . .14

~E. TEST CALCULATIONS. . . . . . . . . . . . . . . . . . . . . .40 T. TYPE A TEST RESULTS AND INTERPRETATION . . . . . . . . . . .41 F .1 - Measured Leak Rate Phase Data Results . . . . . . . . . ' 41 F.2 Induced Leak Rate Phase Data Results. . . . . . . . . .41 F.3 Leak Rate Compensation for Non-Vented Penetrations. . .42 F.4 - Change in Drywell Sump Level. . . . . . . . . . . . . .42 F.5 Evaluation of Instrument Failures . . . . . . . . . . .43 F.6- Calculated Adjusted Type A Test Results . . . . . . . .43

' APPENDIX A TYPE B AND C TESTS . . . . . . . . . . . . . . .50 APPENDIX B TYPE B AND C TEST

SUMMARY

. . . . . . . . . . . .60 i

l- APPENDIX C IPCLRT CALCULATIONS. . . . . . . . . . . . . . . .61 l

APPENDIX D BN-TOP-1, REV. 1 ERRATTA . . . . . . . . . . . . .76 L ZCADTS/388

P TABLES AND FIGURES INDEX TABLE 1 INSTRUMENT SPECIFICATION . . . . . . . . . . . . . 4 TABLE 2A PCILRT INSTRUMDIT PHYSICAL LOCATION. . . . . . . . 6 i

TABLE 2D PCILRT SUb'IOLUME SPECIFICATION. . . . . . . . . . . .8 i

FIGURE 1 ELEVATION VIEW OF CCHTAINMENT AND SUBVOLUME. . . . 9 LOCATIONS TABLE 3 MEASURED LEAKRATE PHASE. . . . . . . . . . . . . .15 FIGURE 2 BECHTEL LEAKRATE VS. TIME. . . . . . . . . . . . .18 FIGURE 3 CONTAINMENT DRY AIR PRESSURE VS. TIME. . . . . . .19 FIGURE 4 CORRECTED PRESSURE VS. TIME. . . . . . . . . . . .20 FIGURE 5 AVG. SUBVOLUME-RTD TEMPERATURE VS. TIME. . . . . .21 FIGURE 6 AVG. SUBVOLUME DEWCELL TEMPERATURES VS. TIME . . .22 FIGURE 7 CONTAINMENT DRY A441 MASS VS. TIME. . . . . . . . .23 FIGURE 8 INDIVIDUAL THERMISTER AND DEWCELL SENSORS VS. . .24 TIME ,

TABLE 4 INDUCED LEAKRATE PHASE , . . . . . . . . . . . . .28 FIGURE 9 BECHTEL INDUCED LEAKRATE VS. TIME. . . . . . . . .30 FIGURE 10 CONTAINMENT DRY AIR PRESSURE VS TIME (INDUCED). .31 FIGURE 11 CORRECTED PRESSURES VS. TIME (INDUCED) . . . . . .32 FIGURE 12 AVG. SUBVOLUME RTD TEMPERATURES VS. TIME . . . . .33 (INDUCED)

FIGURE 13 AVG. SUBVOLU"E DEWCELL TEMPERA'IURES VS. TIME . . .34

-(INDUCED)

FIGURE 14 COPTAIE1ENT. DRY AIR MASS VS, TIME (INDUCED). . . .35

-FIGURE 15 INDIVIDUAL TERMISTER AND DEWCELL SENSORS VS. . . .36 TIME (INDUCED)

TABLE 5- CALCULATED ADJUSTED LOCAL LEAKRATES. . . . . . . . .44 TABLE 6 TYPE B AND C TEST RESULTS. . . . . . . . . -. . . .51 ZCADTS/388

.~  :-----. - ,- _. - .. ,,-.

l Page 1 IRIROWCIIO!I This report presar c5 siis of the Primary Containment Integrated Leak Rate Test (PCILRT) suci vety performed on March 27, 1992 at LaSalle County Nuclear Power Stat. dnit Two. The test was performed in accordance with 10CTR50, Appendix J and the LaSalle County Unit Two Technical Specifications.

LaSalle County Station is a DWR 5, Mark 11 containment, located in Marsellies, Illinois. LaSalle Unit Two received its operating license in June, 1984.

A short duration test (7.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />) was conducte; using the general test method outlined in BN-TOP-1, Revision 1 (Bechtel Corporation Topical Report) dated -

November 1, 1972.

The total primary containment integrated leakage rate was found to be 0 2771 wt%/ day at a test pressure of 41.1 psig, which is within the 0.476 wt%/ day acceptance criterion. This value is the sum of the calculated leakage rate ot 0.2534 wt%/ day plus the leakuge -ate of all non-vented penetrations which is 0.0237 wt%/ day. The total 95% upper confidence limit leakage rate was found to be 0.3523 wt%/ day. This value is the sum of the measured 95% upper confidence limit of 0.3286 wt%/ day plus the leakage rate of all non-vented penetrations which is 0.0237 wt%/ day.

The total "as-found" containment leakage rate was found to be 0.6155 wt%/ day which exceeds the 0.476 wt%/ day (0.75 La) acceptance criteria. This value is the sum of the "as-left" leak rate (0.3286 wt%/ day), the non-vented penetrations (0.0237 wt%/ day), and the back correction leak rate (0.2632 wt%/ day) which takes into account the improvements made to type B and C pathways during the outage. The maximum allowable Leak Rate of 0.635 wt%/ day (1.0 La) was not exceeded. _

The Induced phase leakage test result was found to be 0.8285 wt%/ day. This value should compare with the sum of the measured leak rate phase of 0.2534 wt%/ day and the induced leakage rate of 0.6633 et%/ day (397.4 SCTH), th9 s tem of which being within the 1 0.159 wt%/ day (0.25 La) tolerance band. The actual test data resrlts show a difference of 0.0882 wt%/ day which is within the acceptance criterion.

The next integrated primary containment leak rate test is to be performed during the fifth Unit 2 Refuel Outage which is currently scheduled to beg 3n September 4, 1993 based on two consecutive "as-found" ILRT failures per 10CTR50, Appendix J, III.A.6.b.

ZCADTS/388

Page 2 ,

I l

SECIIOil_A - IISTJ BEPAEAIICUS i l

A.1 Iype A Teat _ftscadute ,

The PCILET was performed in accordance with Procedure LTS-300-4, Revision 16, dated rebruary 15, 1992. This procedure was written to comply wlth 10CTR50 Appendix J, ANSI N45.4-1972, and LaSalle County l Unit Two Technical Specifications, and to reflect the Nuclear Regulatory Commission's, approval of a short duration test using the BN-TOP-1, Rev. 1 Topical Report as a test method.

A.2 Tyr.e_A InaLinattumentation ,

Table One shows the specifications for the instrumentation used in ,

the PCILRT. Table Two lists the phyascal locations of the temperature at.d humidity sensors witlaa the primary containment. ,

a. Iempstatur.c Sensors.were suspended to prevent direct thermal influences from any metal surfaces. Sensors were also kept away from any direct air flows.

Each thermister was calibrated to yield an output of -99 mV to 499 mV over the range of 50'r to 140'r. Callbrations were done by Commonwealth Edison company, Operational Analysis Dept.

b. Er_tA&ute Two precision PPM-1000 HR pressure transmitters were utilized, t Each transmitter had a local dlgital readout in addition to a Binary Coded Decimal output to the process computer. Primary ,

containment pressure was sensed by the pressure transmitters in parallel-through a 3/8" tube connected to a primary Containment pressure sensing instrument line.

Each preclslon pressure transmitter was calibrated over the range O psia to 100 psia in approximately 5 psie. Increments using a Volumetrics Inc. VMC 836 calibration standard,

c. YAppr PreEgute

-Ten Lithium Chloride Dewpoint Temperature Units were installed throughout the Drywell and Suppression Pool. The dewpoint cells were placed in locations where the chance of the dewcell becoming damaged was slight.

A-calibration was-done on each deweell network over the range of dewpoint temperatures of 34'C to 100*C. Calibrations were performed by Commonwealth Edison Company, Operational Analysis Dept.

b ZCADTS/388

Page 3

d. flow A rotameter flowmeter, rischer-Porter, calibrated to within t1.0% by Fischer-Porte;, was used for flow measurement. One half Inch polyflow tubing connected the rotameter to a test connection on one of the primary containment penetration lines. ,

A.3 Type _LTe s t_Me asuIrme tit The PCILRT was performed utilizing an Interf ace with the Volwnettles Data Acquisition System (DAS) and Prime Computer. Information from the thermistets and dewcells is sent to a Dual Multiplexer Scanner in the Drywell. The Scanner takes the data and sends it through an electrical penetration (E-20) to a System Console. The System Console takes the raw data and converts it into data readable to a computer and the test engineer. "his information is then sent to the Prime Computer where a'.1 needed calculatlous are performed and a hard copy of the Information is produced.

A.4 Type.JLles t_Plesnutiz ation Two 1500 CTH, diesel driven air comprensors were used to supply clean, oil f ree air for containment pressurisation.

The compressors were physically located outside the reactor building. The compressed air was piped into the reactor building through an existing PCILRT Pressurizing Line. For ease of handling, a flexible 4 Inch pipe was used outside of the reactor building.

The drysell was pressurized through the "A" contalrunent spray header 16 Inch flange with an inboard valve 2E12-F017A, open during the pressurization process.

ZCADTS/388

Page 4 TABLE 1

'(Sheet'l of'2) il m m UMENT SPECIFICATIONS a

INSTRUMEZC MANUFACTURER SERIAL NO. HANGE ACCURACT EEPEATABILITT l Pressure Transmitter volumetries 10141-1 4-100 psia AO . 0'35%F. S . 0.001% PSI Pressure Transmitter volumetrics 10255-1 4-100 psia. '20.005%F.S. 0.001% PSI

j. Thermister 1 Volumetrics 12576-17 50-140*F 20.25*F 0.01*F Thermister 2 Volumetrics- 12576-11 50-140*F 10.25'F 30.01*F Thermister 3 volumetrics 12576-7 50-140*F 0.25*F 10.01*F Thermister 4 volumetrics 1 50-140*F 10.25*F 20.01*F l .Thermister 5 Volumetrics 12576-18 50-140*F 0.25*F AO.01*F

~

Thermister'6 volumetrics -11778-14 50-140*F 20.25'r 10.01*F Thermister 7 volumetrics 12576-15 50-140*F iO.25'T 20.01*F Thermister 8 .Volumetrics 12576-16 50-140*F 20.25'T 10.01*F Thermister 9 volumetrics 12576-23 50-140*F 10 25'T r0.01*F l Thermister 10 volumetrics 12576-8 50-140*F 0.25'F 0.01*F Thermister 11 Volumetrics 12576-28 50-140*F 10.25'T 20.01*F j Thermister 12 volumetrics 12576-9 50-140*F 0.25'T AO.01*F Thermister 13 volumetrics 12576-10 50-140*F 10.25*F 20.01*F Thermister 14 volumetrics 12576-24 50-140*F 0.25*F 20.01*F

!~ Thermister 15 volumetrics 10533-26 50-140*.' 20 25*F 20.01*F

' 'Thermister 16 volumetrics 12576-29 50-140*F 0.25'T 0.01*F Thermister 17 volumetrics 12576-30 50-140*F 10.25'T 0.01*F

'Thermister 18 Volumetrics 12576-27 50-140*F 10.25'F 20.01*F Thermister 19 volumetrics 4 50-140*F r0. 2 5 * "* 10.01*F

[. Thermister 20 -Volumetrics 14 50-140*F r o.25'T 10.01*F l Thermister 21 Volumetrics 2. 50-140*F 20.25*F 20.01*F

. Thermister 22 volumetrics 3 50-140*F rc.25'T 10.01*F l Thermister 23 volumetrics 12576-20 50-140*F 20.25*F 10.01*F t Thermister 24 volumetrics 12576-6 50-140*F 10.25*F 20.01*F l Thermister 25 volumetrics 12576-22 50-140*F 0.25*F 0.01*F 4

4 I

e ZCADTS/388 e  ; -

. - . . - = -. .- . . . . . .. - . . .

,r Page 5 TABLE 1

-(Sheet 2 of 2)-

INSTRUMENT SPECIFICATIONS EAEGE ACCUEACY M EATABir.TTI INSTRUMENT MANUFAC*URER SERIAL NO.

Thermis'ter 26' volumetrics 12576-25 50-140*F 20.25*F 20.01*F 11340-11 50-140*F 0.25*F 0.01*F Thermister,27 Volumetrics-ro.02*F Volumetrics 12576-21 50-140*F. 20 25*F

, .Thermister 28 11340-4 50-140*F r0.25*F r0.01*F l .Thermister 29 volumetrics T-27 50-140*F 0.25*F N/A Thermister 30~ volumetrics 0.01*F Deweell 1 Volumetrics 1020292 34-100*C 20.25*F Dewcell 2 volumetrics 0920292 34-100*C 0.25'r ro.01*F Deweell 2 volumetrics 1060292 34-100*C ro.25*F r0.01*F Dewce31 4 Volumetrics- 0940292 34-100*C r o.25*F 0.01*F Dewcell 5 Volumetrics 0890292 34-100*C 0.25*F r0.01*F

,0970292 34-100*C r o .25'r 0.01*F

.Dewcell 6 volumetrics 20.01*F Dewcell 7 Volumetrics 0850292 34-100*C $0.25'r volumetrics' O880292 34-100*C 0.25*F 20.01*F Deweell 8 Deweell 9 Volumetrics 0950292 34-100*C 20.25'T r0.01*F' Dewcell 10 volumetrics 0200292 34-100*C 20.25*F ro.01*F

.8511A0113A7 60-870SCFH rl . 0h . Flow N/A Flowmeter Fischer-Forter 8511A0113A8 60-870SCFH 21.0 W . Flow N/A Flown.eter Fischer-Forter.

ZCADTS/388

Page 6 7ADLE 2A (Sheet 1 of 2)

PCILRT INSTRUMENT PITYSICAL LOCATIONS INSTRUMENT IN STRUMENT RTILH02 EI'N SUrVOLUlit ELEVAT10!L .. AZ IMUIlL__

1 2TE-CT001 9 700' 19' 2 2TE-CT002 9 724' 95*

3 2TE-CT003 9 708' 195' 4 2TE-CT004 9 724' 275' 5 2TE-CT005 6 746' 0' 6 2TC-CT006 6 750' 90*

7 2TE-CT007 6 754' 180' 8 2TE-CT008 6 758' 270*

9 2TE-CT009 5 762' 0*

10 2TE-CT010 5 767' 90' 11 2TE-CT011 5 772' 380*

12 2TE-CT012 5 777' 270' 13 2TE-CT013 4 785* O' 14 2TE-CT014 4 791' 90' 15 2TE-CT015 3 797' 90' 16 2TE-CT016 3 808' 270' 17 2TE-CT017 3 811' 0*

18 2TE-CT018 3 815' 180' 19 2TE-CT019 2 804' 115' 20 2TE-CT020 2 804' 295' 21 2TE-CT021 1 822' 0*

22 2TE-CT022 1 826' 180' 23 2TE-CT023 8 743' 0*

24 2TE-CT024 8 743' 180' 25 2TE-CT015 7 730' 90' 26 2TE-CT026 7 730' 270' 27 2TE-CT027 4 791' 270' 28 2TE-CT028 9 7?4' 75' 29 2TE-C1029 4 785' 180' 30 2TE-CT030 9 708' 75' ZCADTS/388

- . . _ _ . _ _ . _ . . . . _ _...___.___.._..__m... . _ _ _ _

-Pags 7 2ADLE_2A (Sheet. 2 of 2)

PCILRT INSTRUMENT PlWSICAL LOCATICHS INSTRUMENT INSTRUMENT RENCELL_th Efli EMBYDLUME ELEVAT1G L _AaIMU.I1L.

1 2ME-CT031 9 708' 195' 2 2ME-CT032 6 752' 0' 3 2ME-CT033 5 773' 180' 4 2ME-CT034 4 791' 0' 5 2ME-CT035 3 812' 180' 6 2ME-CT036 1 826' 0' 7 2ME-CT037 3 803' 180* l 8 2ME-CT038 8 746' 270' l

-9 2ME-CT039 5 763' 0'  !

10 2ME-CT040 9 724' 75' '

b E

ZCADTS/388

, ~ , -

Page 8 TABLE.2D PCILRT SUBVOLUME SPECIFICATIO!I

_3UDYRLUME LOCATIDH .10LUH L itl twt._fectar)_

_____ .1 Drywn1LilemLAte a _Above_310

  • 10" 1145 .i_01953 2 Annulu s_D e.tw e e n_Rx_Y.e s s e Land _S hi c 1 L ___112 6 .01001 3 D e twee nlle va_018 '.- 6 "._ and 7.90 ' -6 " 10c357 .04052 _ _

4 Delve enllen_19 6 * - 0."_and_23 7 ' - 1" 10,la 6. 40932L- _

$ De tweenllen_J 7 7 ' -11" antl59 ' - 6" $5 t5.95 i140D3

$ BelvennlleL_219110" anL22A * -0" _.95 J10 -.24301 7 Smp_ Area 3.427 2.00D18 __

8 CED_Atea 4592 .01144 9 .Supptession_Eo91 101,10.0 .11015 701AL 19.1, DJ B 1 4D0!LO.

5 i

ZCADTS/388

r30ttar a if -10*_

l . w 33y.3* 10' - l ' 'O' 8IT' C y 3 - .-

-?C' So7W -

73 4' 6* -

@ '7 5

, M  % $ IY* l' N u

'l*

[ 3 @

rrr -n - l/ ,

/ \ s

)) .

rsv.c_ / -

\

4.I . s F.5'- Y 7

i f

T+ d-o'- / /

p_4.c._///////f @

f ,< / / / / -- V * '- * *

{ $ /, ,,y

,  :. * -ru'-s*

h O h

=

  • @g /

Y, ~

/ - '/ f -WATU (,EVC,

's C 7f 7

7 6/ 699-10 l l l /

fll L /. fs / / ^

'--671-4' at-e _

ELEVATIOh! VIEW OF CONTAINMENT ANb SUBVOLUME LotATioNs

Page 10 SECTID!Lih1ESLMET110D D.1 Dasic_Techulque The absolute method of leak rate determination was used. The absolute method uses the ideal gas laws to calculate the measured leak rate, as defined in ANSI H4 5. 4-197 2. The inputs to the measured leak rate calculation include subvolume weighted cont altunent temper atu r e, subvolume weighted vapor pressure, and total absolute air pressure.

As required by the Nuclear Regulatory Commission, in order to perform a short duration test (measured leak rate phase of less than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />), the measured leak rate was statistically analyzed using the principles outlined in DN-1tP-1, Rev. 1. A least squares regression line for the measured total time leak rate versus time since the start of the test is calculated after each new data set is scanned. The calculated leak rate at a point in time, tg, is the leak rate on the regression line at the time t i.

B . 2 S uppleme nt a l._V e tlil c a t io tL2e s_t The supplemental verification test superimposes a known leak of approximately the same magnitude as La (La = 385.7 SCFH or 0.6350 "t%/ day as defined in the Technical Speelfications). The degree of detectability of the combined leak rate ( cont ai nment calculated leak rate plus the superimposed, induced leak rate) provides a basis for resolvir:g any uncertainty associated with the measured leak rate phase of the test. The allowed error band is _t 0.25 La (0.159) wt%/ day.

There are no references to the use of upper confidence limits to evaluate the acceptahllity of the Induced leakage phase of the PCILRT in the ANS/ ANSI standards or in DN-TOP-1, Rev. 1.

B.3 lustrumentation.lir.or_ Analysis An instrumentation error analysis was perf ormed prior to the test in accordance with BN-TOP-1, Rev 1 Section 4.5. The instrument system error was calculated in two parts. The first part was to determine system accuracy uncertelnty. The second and mo.e important calculation (since the leak rate is impacted most by changes in the containment parameters) was performed to determine the system repeatability uncertainty. The maximum system error analysis performed prior to a 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> test yielded a total I ns t r ume nt uncertainty of i 0.0112 wt%/ day.

The instrumentation uncertainty is used only to 111ustrate the system's ability to measure the required parameters to calculate the primary containment leak rate.

It is extre.mely important during a short duretion test to quickly identify a failed sensor and in real time back the spurious data out of the calculated volume weighted contaliw.ent temperature and vapor pressure. Fallure to do co can cause the upper confidence limit value to place a short duration test in jeopardy. It has been station experience that sensor failures should be removed from all data collected, not just subsequent to the apparent failure, in order to minimlre the discontinuity lo computer values that are related to the sensor fallure (not any real change in containment conditions).

ZCADTS/3BB

Page 11 fiECT10 LLC 2EEWENCE_DLIVIHTS C.1 TesLheparatinILChrnnalogy The pretest preparation phase and containment inspection were completed on March 26, 1992 with no visible structural deterioration being found.

Major prellininary steps included:

1. Completion of all Type B and C tests, component repairs, and retests.
2. Completion of PCILRT pretest valve checklist including draining and/or venting systems as described in the UTSAR.
3. Blocking of four drywell to suppression chamber vacuum breakers in the open position for pressure equalisation between the drywell and suppression chamber volumes.
4. Venting of the reactor vessel to the primary containment via the manual head vent line and the drywell equipment draln sump.
5. Completion of pretest data gathering system, includirig computer program, instrument console, and associated wiring.
6. An experimental test sensor installed in the suppression pool volume (Channel 39) malfunctioned and was locked out of the Data Acquisition System prior to containment pressurisation.

4 i

DATE TIME EVINI

  • C.2 lesLu.enurlantion Chrsnoingy 03/27/92 0348 Primary Containment Pressurisation Initiated. Atmospheric pressure lis 14.31 pala.

03/27/92 0405 Groups 7 and 9-1solations and Reactor Scram received.

i 03/27/92 0738 Found Personnel Airlock Inner Door Equallting Valve leaking during c w tainment walkdown at approximately 38 pala. Closed i; Personnel Airlock Outer Door-and equalised pressure in the alrlock. Attempted to open the inner door _but would not_open, appears to be mechanical problem. Equalizing Valve-left full open to maintain equal pressure g between containment and airlock. No leakage L observed at outer airlock door.

l r

I e

. l

-ZCADTS/388'

.. ,; . _ . , , . , _ u.c _ .-._ _ . _ . _ _ - - _ . _ - . . _ . _ , . . . _ _ . _ . _ _ - - . . . _ . _ _ _ _ _ _ _ _ _ _ . . . _ _ _ _ . _ . _ _ .

Paga 12 03/27/02 0925 Primary Containment walkdown completed. No noticeable leaks observed.

03/27/92 1010 Closed the 2012-F017A valve which teiminated pressurization. Drywell pressure at 55.83 psia (41.45 psig). Pressualzation line is vented per union connection at OSA039.

C . 3 Tempe r atur e_.Etabili s ellon_Ch r o no lo gy DATE TIME EVINT 03/27/92 1300 Channel 49, Subvolume 9 Suppression Chamber Deweell locked out due to erretic readings.

The sensor shleid was lost prior to the start of pressurization. Without the _

shield, the sensor is sporadic.

03/27/92 1550 Declared the Primary Containment is stable per Mass-plot and DN-TOP-1 criterion.

C.4 Measured _Len)_ Rate _EhcKe 03/27/92 1550 Declare .. art of ILRT Measured leak rate phase at Data Set il [15:38:07). Date Data Set $111.

03/27/92 1848 ILRT in progress and test results are satisfactory at this point.

03/27/92 2238 The Measured leak rate phase is completed satisfactori.'.y at Data Set $43 (Dase Data Set 1153), with a duration of 7.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />.

RESULTS: Calculated Leakrate:

0.2534 wt%/ day and 95% Upper Confidence -

(

Limits 0.3286 wt%/ day. Tocal 95% Upper Confidence Limit including non-vented penetrations: 0.3523 wt%/ day.

C 5 InduceLLenkegelateJhnse 03/27/91 2330 Imposed Induced leak rate of 400 ScrH.

Started I hour stabilization time at a Base Data set #158. [23:28:07).

03/28/92 0030 Started induced leak rate test at a Base Data Set 1164. [00:28:07).

ZCADTS/388

Pags 13 03/28/92 0430 The Induced leak rate phase is completed satisfactorily at a Base Data Set $188, with a duration of 4.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />. RESULTS: Induced Leakage 0.6633 wt%/ day and Induced Calculated Leak Rate: 0.8285 wt%/ day.

C.6 DeplessurisettinILFhnse DATE I1ME EVINI 03/28/92 0430 Isolated induced rig.

03/28/92 0500 Depressurized Personnel Airlock and opened outer airlock door.

03/28/92 0545 Connenced depressurization.

03/28/92 1310 Suspended containment depressurization at 16.7896 pela in preparation for Drywell Floor Bypass Test.

03/28/92 1545 Secured all vacuum breakers to closed position.

03/28/92 1630 Commenced depressurization of Suppression Chamber.

03/28/92 2000 Suppression Chamber depressurized to atmosphere.

03/28/92 2010 Commenced depressurizing drywell ts obtain 1.7 paid for Floor Bypass Test.

03/28/92 2210 Drywell depressurized to approximately 1.7 psig. -

03/28/92 2220 Start Drywell Floor Bypass Test stabilization period.

03/28/92 2250 Bypass Test stabilizetion period complete.

Start Drywell Floor Bypass Test.

03/28/92 2350 Drywell Floor Bypass Test completed satisfactorily.

03/28/92 2359 Commenced depressurization of Drywell.

03/29/92 0027 Drywell depressurized to atmosphere and commenced Drysell inspection.

ZCADTS/388

u Page 14  !

SECII0ti D - TYELA_TESLDATA i

D.1 Heaanta u tak_ Rale._2Anse_ Data A summary of the computed data using the BN-TOP-1, Rev. 1 test method for a short duration test can be found in Table 3. Graphic results of the test are found in Figures 2-6.

D.2 Indu.ced_Icakage_thasn_ Data A summary of the computed data for the Induced Leakage Phase of the PCILRT

'is found in-Table 4.- Graphic results of the test are found in Figures 9-15.

i e

n 9

7 f

l I

I I

f' l

l t

l- t ZCADTS/388

,e_,, ..:. , n -- __......_a_,_.,_,__,,_.._._._.._;__;._.;,.a._.._...__ .._,.__:. . . _ _ _ _ _ , _ _ . . . . _ , _ ; _. u.. _.__._.,._r

l l

Pags 15 '

I l

MEASURED LEAKRATE PHASE 3 DATA SETS 111-153 i

0 f

i 5

r 2CADTS/388' t.

.sd., w n . 4 w w wt,w me .es ms . .,--4,-,-.w...~(y .m, ,-., ._,.y... ,,(.,y.p w w t r # .-+,- -m- d'w' wT 4 h" ' * ' - - 7M-W -- m' y ' r vi7, rm,y y

l I

SOFTNARE PRODUCT ID NUMBER: GN01405-0.0 TAJBLE 3 I i

                                                      • SUHKARY TABLE Or LEAKPATES***************************

LASALLE UNIT 2 08:15:55 HON, 15 JUN 1992 i DATA SET 111 THROUGH 153 VERITICATION TEST RESULTS CALCULATED USING THE BN-TOP-1 METHOD

-1

^

TOTAL TIME LST OF BN-TOP DATA DATA SET T1HE TEST DRY AIR LEAKRATES LEAKRATES UCL SET 4 DAY HH HH SS TIME, (HR) MASS, (LhM) ,(%/D) ,(%/D) ,(%/D) 111 007 15:38:07 0.000 0.10558222E+06 112 087 15:48 07 0.167 0.10558014E+06 0.2837 113- 087 15:58 07 0.333 0.10557470E+06 0.5130 114 087 16:08:07 0.500 0.10557114E+06 0.5036 0.5434 1.4888 115 087 16:18:07 0.667 0.10557227E+06- 0.3395 0.4336 1.1354 116 007 16:28:07 0.833 0.10556767t+06 0.3970 0.4179 0.8664 117 087 16:38:07 1.000 0.10556397r.+06 0.4148 0.4188 0.7566 118 087 16:48:07 1.167 0.10556553E+06 0.3252 0.3776 0.6710 119 087 16:58:07 1.333 0.10556208E+06 0.3434 0.3596 0.6126 '

120 087 17:08:07 1.500 0.10555764E406 0.3725 0.3591 0.5834

-121 087 17:18:07 1.667 0.10555642E406 0.3519 0.3518 0.5543 122 087 17:28:07 1.833 0.10555617E+06 0.3230 0.3377 0.5238 i 123 087.17:38:07 2.000 0.10555151E+06 0.3490 0.3352 0.5082

-124 087 17:48 07 2.167 0.10554878E+06 0.3508 0.3341 0.4964 125 087 17:58:07 2.333 0.10554720E+06 0.3404 0.3307 0.4837 126 087 18:08:07- 2.500 0.10554284E+06 0.3580 0.3325 0.4787 127 087:18:18:07 2.667 0.10554266E406 0.3373 0.3293 0.4686 128 087 18:28:07 2.833 0.10554026E+06 0.3366 0.3268 0.4600 129 087 18:38:07 3.000 0.10553641E+06 0.3471 0.3269 0.4553 130 087 18:48:07 3.167 0.10553536E+06 0.3364 0.3251 0.4487 131- 087 18:58:07 3.333 0.10553506t+06 0.3216 0.3209 0.4401 132 087 19:08:07 3.500 0.10553112E+06 0.3318 0.3192 0.4346 133- 087 19:18:07 3.667 0.10553319E+06 0.3040- 0.3132 0.4251 134 087 19:28:07 3.833 0.10553006E+06 0.3093 0.3090 0.4175 135 087 19:38:07 4.000 0.10552812E+06 0.3074 0.3051 0.4106 136 087 19:48:07 4.167 0.10552616E+06 0.3059 0.3016 0.4042 137' -087 19:58:07 4.333 0.10552448E+06 0.3029 0.2982 0.3982 138 087 20:08:07 4.500- 0.10552378E+06- 0.2952 0.2942 0.3918 139 087 20:18:07 4,667 0.10551976E+06 0.3042 0.2920 0.3874

.140 .087 20:'8.07 '4.833 0.10552000E+04 -0.2926 0.2885 0.3819 141 087 20:38:07 5.000 0.10551859E+06 0.2893 0.2851 0.3765 142 087 20:48307 5.167 0.10551739E+06 0.2852 0.2816 0.3711 143: 087 20:58:07- 5.333 0.10551376E+06 0.2918 0.2794 0.3672 144 087 21:08:07 5.500 0.10551422E406 0.2810 0,2761 0.3623

-145 087 21:18:07 5.667 0.10551226E+06 0.2806 0.2732 0.3579 146- 087 21:28:07 5.833 0.10551059E+06 0.2791 0.2705 0.3537 147 087 21:38:07 6.000 -0.10550792E+06 0.2815 0.2683 0.3503 148 087 21:48:07 6.167 0.10550673E+06 0.2783 0.2660 0.3468 149 087 21:58:07 6.333 0.10550678t+06 0.2708- 0.2632 0,3427 150 087 22:08:07 6.500 0.10550523E+06' O.2692 0.2606 0.3389 151 087 22:18:07- 6.667 0.10550187E+06 0.2740 0.2586 0.3360 152 087 22:28:07' 6.833 0.10550234E+06 0.2657 0.2561 0.3324

-153 087 22:38:07 7.000 0.10550189E+06 0.2608 0.2534 0.3286

        • .... **.e******..*********** **.***.......*********...***.....***

SOFTWARE PRODUCT ID HUMBER: GN01405-0.0 DAS CHANNEL i 39 IS LOCKED OUT FROM DSN 1 DAS CHANNEL i 49 IS LOCKED OUT (RCH DSN 1

BN-TOP-1 LEAKRATES VS TIME CALCULATED LEAK RATE Normal Test 95 % UPPEF: CONFIDENCE LIMIT FIGURE 2 Allowed Leck Rote 2.0o l l  :  :  : 2.00 1.64 --

--1.64

~ 1.2 9

--1_29 6 -- \ -

0.93 0.93 m

o

( '

m E

2Ht be O_57

~~0.57 0.21 0.21

-0.14 -D 14

-0.50 I l l l I I -0.50 0.33 1.33 2.33 3.33 4.33 5.33 6.33 7.33 HOURS SOFTWARE ID NU MBER: GNO1405-0.0

Md o 8 o 8 $ $  %

g 8 $ $ E. $ f, E O a 5 5o si  ?> f' 4 78 6 se $ .

li~ g g

( 0 t

H L .

o r-U (d e z

.(

I o

= .) > ..

h

/ 8 W W '

= CD 2

1 1

2

.L l

s

~~)

V f 2 l W 8. m o

> + x

~3

. O W Di n (

O W S g o

)

W c i E W O Q'

[ W 0.

8 o' I a R -

% / 8:

o -

E-Z W

2 .  :

8 Z - a- '

o

( T 8

e $ d 0 F c e e at 4 Z  % g $ 8 O* p, e O 3 -

e* E O si E _

VISd O C C C O O O O O O O O O O O O so e c4 o to o e tw 9 c. o c. 9 9 9 9 m u, u, a) + + + +

4 O O 43 41 v) v1 V6 y l l l , l l l o 0, a>

ED tw 0

~ l 3 (D s: O C T o ..

..o z o r-b O Z

bJ O or-2

..o E

}- 9 W

[D W 3

> D W ..

Z E m

  • y O a w a W 5 C)
  • W W E M W

x

..n,o

(>

a -

.L O

%, t.n

.e o

b' el 0'

O F- .. ..

bJ 2

Z

$ l l l  ;  ; l C l-- o, Z o e o e e e es o o

O C C O O O O O O 'a o

v o

C4 c>

O o

10 as o

cn v

as N

<n b b b b I d d *[

O O O O O V) V) 8/)

VISd

CORRECTED PRESSURES VS TIME Normal Toet P1 P2 FIGURE 4

!  !  !  :  : 55.5700 55.5700

-55.5600 55.5600

--55.5500 55.5500 --

" 55.5400 g 55.5400 S

E

~

~ 55.5300 55.5300 55.5200 55.5200

~55.5100 55.5100

' I I I I

55.5000 55.5000 4.00 5.00 6.00 7.00 0.00 1.00 2.00 3.00 HOURS SOFTWARE ID NU v18ER
GNO1405-0.0

1 J 030

$ D  ? t"~ m e n a

s W ,-

e n

+

9 s

. 9 a - o o

~

  • v>

~

y

~

.,,1,"

.r. ,

, . o O, CD 9 O ED i I*

+ l nn O

b n, .. -

o T

Z 9 m O d Z 2

0 l-- ..

. .. j .

o a' W w l o W

> g

  • m

=

  • s W l l 3 W j z y ..

e 3 5Eo 9 l-(-

< O W I g l g s os cn l Wh@@__  ! .

., 6 a

g q

m 5

4 l .1.

W O l- v) o

.u e

c I N Z

. bJ + n l 2 >(D > th ..

c

'D o.

_j. -

O 03 D '

':  :  : 1: : l',

g W o lW 8 e I r; e e g o d d d d U 5 a 2

>c

< g" N *gg- - - - m e e s e

3930 /

i.i..

J 030 4 8 4  :. R 4 e

'i6 e re R 15 R R O

g  ::~  :  : -

g :j j  :  : g

. i

,, d H i I  !

"g i{f LO O

Wug I \

i t

yg l

g e

r-o h ll Z m

o

> = .. j

... m m = 'J e w

W W

g 8

c { ,(I s

a a i s s Z

s lh I I

hp Q w o o W kswm ) X y 2>g>

w* * "

I g y<c F \\ i

,4 -

1 o

J ,

J (A W

.O g

g ]o\ a o~ ns uma 3

I o.

l J

O

., :  :  :  : 5 f:

g D

eNO .  ? '

Wggg a a a 7 R R R

>< . --. _ -J _33.0_ - .

CONTAINMENT DRY AIR MASS VS TIME Normel Test FIGURE 7 1 i

l l l  : I 105.6000 105.6000

-105.5800 105.5800 --

-105.5S00 105.5500 --

SS ES 105.5400 a a 105.5400 -

5 E S S x x -

105.5200 105.5200 --

1

" 105.5000 105,5000 --

105.4600 105.4500 "

l l l l l I 105.4600 105,4600 7.00 1.00 2.00 3.00 4.00 5.00 6.00 0.00 HOURS SOFTWARE ID NU MBER: GNO1405-0.0

SEL.ECTED RTOS VS TIME CH10 CH13 CH16 CH19 Normal Test CH11 CH14 CH17 CH12 . n> >

CHIB FIGURE I 102.00  : l l l l 102.00 98.86

~---

Y 98 .86 95.71 --

--95.71 02.57 -- -

92.57 S

c=2 23 c

89.43 -- -

83.43 80.29 -- -

66.29 83.14 83.14 80.00 I I  ! l l l 80.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 HOURS SOFTWARE ID NU MBER: GNO1405-0.0

. ' 'e j

.w l .

i$ ELECTED 1RTDSWS TIME; CH29' ~ NormallTest L

x,

~CH20- TCH23: C H26--

CH21' 'CH241 CH27- --

CH22 TCHiS CH2B FlGURE 8 (CONT.)

i119.00 l l . i.  !. i.119.00 M -

47 MZ- -

_ .jj.

72 116.00 -!

~ 118.00 . - --'

= ~ - . ~ . . - - --- - - - ~ ~ -

'113.00 -- 113.00' 110.00

- ' 11 G.00

___ . co

. en u

w. e a _

'107.00 -= --107.00 104.00 104.00-101.00 .

101.00 .

:  :  :  :  : - 98.00 98.00 5.00 G.00 7.00 0.00- 1.00 2.00 3.00 4 00 HOURS SO FTWAR E - ID NU MBER: GNO1405-0.0 e

SELECTED' RTOS VS TIME

.CH30 CH33 CH36 CH39- Norm <il Tset CH31 CH34 GH37 CH32 043' CH3B FIGURE 8 (CONT.)

115.00- l l l l~ l ' 115.00 108.29 3 m 108.29 101.57 --

--101.57 94.86 --

94.86 5

o n ,

I I l Il 23 c

I l

88.14

{

q j _

I ~BB.14 c

L  :'

81.43 --

"81.43 74.71 --

j ..

74.71 60.00 l I I l l l 0.00 6B,00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 HOURS S OFTWARE ID NU M BER
GNOl405-0.0

,  : l ^ ,

" o *A cLO 0 9 7 6 4 3 1 0 _

0 2 2

5 8 1 4 7 0, .

7 5 3 1 0 B 6 5 8 8 8 8 8 7 7 7 t

s j

3x _,

- 0 0 s 0 e 0 T

N~ - 7 l

o m

  1. w"~~~ _

5 0

o r

__ ~

I 0

4 1

N 0

. - G O

  • E V,_ N 9 .

G

'M *:- W'-

- l 0 R 0 E

__ 5 B

.~ '

N_

-=

M U

E' -

N l

' ~

0 M =

I '

- 0 S D T' -_ 4 R I U

O E S678 -

VHHH 4 44 g/ _

H R

A S

L CCC '

,, w

_~

l 0

0 3

W I d' _

~

1 .

0 E'

C' " __' _

- 5 W

e '"

' l 0

_ -0 E' , 2 d

D4M5 3 V _[__,,/.

NCCC HHH 4

' "/

0 T' . 0 C' - 1 5 '

I' l

. '74~5 ;,

E S '

3 -

- I -

- >[xff

- 0 0

0 7 6 4 3 0

!01 2 00 9 1 2 5 8 1 4 7 0 444 7 5 3 1 0 8 8 5 HHH 8 8 8 8 8 7 7 7 CCC cJ2 a Pe.LC t

ill

Page 28 INDUCED LEAKRATE PHASE DATA SETS 164-188 b

ZCADTS/3BB w.ii.._ . . . . _

SOT 7 WARE PRODUCT-ID NUMBER: GN01405-0.0

' ~

TABLE 4

  • * * * * * * * * * * * * * * * * * * * * * * * * *
  • S UMMART TAB LE O F LE AKRAT E S * * * * * * * * * * * * * * * * * * * * * * * * * *
  • LASALLE UNIT 2 08:16:47 ' TON, 15 JUN 1992  ;

-DATA' SET 164 THROUGH 188 VERITICATION TEST RESULTS CALCULATED USING THE BN-TOP-1 METHOD TOTAL TIME LST OF BN-TCP DATA DATA SET TIME TEST DRY AIR LEAKRATES LEAKRATES UCL SET # DAY HH MM SS TIME, (HR) MASS, (LEM) ,(%/D) ,(%/D) ,(%/D) 164, 088 00:28:07: 0.000 0.10545269E+06 165 088 00:38 07 0.167 0.10544698E+06 0.7773 166 .c88 00:48 07 0.333; 0.10543989E+06 -0.8733 167 '088 00:58:07 0.500- 0.10543283E+06 0.9040 0.9149 1.1735

" .168 .088 01:08:07 0.667- 0.10542769E+06' O.8530 0.8906 1.1520 169 088 01:18:07- 0.033 0.10542256E+06- 0.8226 0.8601 1.0716 170 088 01:28:07 -1.000 0.10541723E+06 0.8069 0.8356 1.0095 171 088-01:38:07 1.167 0.1C540981E+06 0.8362 0.8350 0.9774 172-- 088 01:48:07: 1.3331 0.10540600E+06 0.7968 0.8183 0.9449

'173 088 01:58:07 1.500 0.10539895E+06 0.8153 0.8144 0.9263 174. -088 02:08:07: 1.667 0.10539111E+06 0.8407 0=.8207 0.9243 175 088102:18:07 1.833 0.10538580E+06 0.8303 .0.8219 0.9173 176 '088 02:28:07 2.000 0.10537967E+06 0.8309- 0.8231 0.9118 177 088 02:38:07 2.167 .0.10537297E+06 0.8373 0.8258 0.9093

'178 088.02:48:07 2.333 0 10536780E+06

. 0.8280 0.8255 0.9041

,179 088 02:58:07- 2.500 0.10536031E+06 .0.8409 0.8284 0.9035 180 088 03:08:07 -2.667. 0.10535542E+06 0.8300 0.8283 0.8997 181 088 03:18:07 2.833 0.10534951E+06 0.8287 0.8279 0.8962 "182 088 03:28:07 3.000 0.10534334E+061- 'O.8295 0.8278 0.8932 183: 088 03:38:07 3.167 0.10533728E+06 0.8293 0.8277- 0.8906 184 088 03:48:07- 3.333- 70.10533017E+06 .0.8365 0.8289 0.8897

185 '088 03:58:07-- 3.500 .0.10532501E+06 0.8302 0.8288 0.8876' 186 088104:08:07 3.667 0.10531941E+06- 0.8272 0.8283- 0.8852

'187 088104:18:07 -3.833' O.10531251E+06- 0.8322 0.8286 0.8839-188: :088 04:28:07 4.000 0.10530691E+06 0.8295 0.8385 0.8822 0 ********************************************************************** '

  • -NO PRESSURE CHANNELS ARE LOCKED OUT ,
DAS CHANNEL # 39 IS LOCKED OUT FROM DSN 1-

~DAS~ CHANNEL f- 49 IS LOCKED OUT TT.OM DSN - 1 t

9 .

l:

7-o

{-

---m u-L B N --TO P - 1 LEAK RATES VS TIM E Verification Test f CALCULATED LEAK RATE UPPER AND LOWER BOUNDS. RGURE 9

' Tarcet Leck Rate l l l l 1.1000 l l 1.1000 l

l l

- 1.0357 1.0357

--0.9714 0.g714 --

( ;$

" 0.9071 y o,go71 W

1 t_a c_ ret g

~

~~08429 0.8429 x ~

k-

--0.7786 0.779B

~0.7143 0.7143

:  :  :  : 0 B500 l 0.osco 1.83 2.33 2.83 3.33 3.83 j

) 0.33 o.83 1.33 i HOURS {

[

SOF IWARE ID NUMBER: GNO1405-0.0 -

)l

VISd o o o o e o o o o o o o o o o o

+

u3 m *t c4 C3 tra to

  • t"# G C1 Q Q G CE3 ID (D
  • 4 4 J J J J J J C

s

@ 4 4 C

C O

W W

. o o ,

C4 c

o '

+ 0

'i:

- l 8 in C O

'C ..

o T

m T-y W O Z

C W

y ..

_e Q'

o W l- r, g

Ul s

> 5 o 7 y .. ._a Z IM d m m Q D :3 to D O y

@ c W T W ..

<1'.

a

.1.

T ln c{

h -

M O

F- ..

W d 2

Z 4 l l l l l c o,

}-

- o I- e o a o o e e o o o o o o o o o O e G

e G

e G

ca Q

o G4 e

EE3 o

IIJ e

ID k k k k k k k k

'4 4 O C C O O O VISd _ __ _ _ _

llf s_

ic 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 c e

0 8 6 4 2 0 8 t 5 4 4 4 4 4 3 3 s 5 5 5 5 5 5 5 5 e 5 5 5 5 5 5 5 5 T -

- o 0 .

2 n

o 4 0

\ -

i t

a 5 c

i f 0 i

r  :

o 4

e 1 V s.

3 O N

G

0 R 0 E 3

B E M M U I

T N l  : 0 4 S D S

1 1 2 R I V .E U R O E U H S .G I R

E F N  : 0 A

W l

R 8 1

I U F S O S S E :a R

l 2_

P i D

E T l

o C s.

o No E

R R

O ~

C c.

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 4 2 0 8 e 1 2 5 4 4 4 4 4 3 3 5 5 5 5 5 5 5 5 PP 5 5 5 5 5 5 5 5 i_

fflll fI sa (; lllllllll lllIIlll>!lI

WMEDM AVE SU8 VOLUME RTD TEMPERATURES VS TIME Verifloation Test SV 1 SV 4 SV 7 sV z sv 5 sv a FIGURE 12 SV 3 _

SV 9 l l l l 120.00 120.00

--114 71

-=

114.71

--109 43 l 109.45 -

i 104 14 104.14 8-c:22

'$ a -

l i

98.86

- f 98.86 X l

~

~ 93.57 93.57 1

l

- 88.29 68.29

' I I I I ' 83.00 83.00 I 2.40 3.00 ~.60 4.20 0.00 0.80 1.20 1.80 HOURS SOFTWARE ID NijMBER: GNO1405-0.0 u

a '-

a

ij1Ill J l!

i o$c 2

0 7 4 1 9 3 0 0,

t 5 5 6 7.. 7- 9 s 4 3 2 1 0 B 8 e 8 8 8 8- 8 7 7 T -

- 0 0 n .2 0 i

o -

4 t

a c

7 -

5 Me i

Ei r f

V l

&_v~ ., ~

l 0

6

.0

'4 1

I 3 .O T' s _

N 5~ ~ G V L

,3 # l R

l 0

S 1

, 0 E E

R E

R G

U I

- 3 B

M O F

- U T l N

0 A

l 4 S D R .' 2 R U

I E O E P789 -

H R

aMVVV SSS s" '

A E

l l

0 W

_ .. ' 8 T 1 l

- t L - O L - .s S cE ,

d l l

0 2

W' 1 Ws E

d436 -

. E.VVWSS l l

0 6

M 0 U s L '

d ~ ,

M .

- X

- 0 .

B 0

0 U.

S 0 7..

5 4

6 1

7 9

7 3

9 0

0

. 1 23 54 -

3 2 1 0 8 8 EVVV 8 8 8 8 8 7 7 VSSS A ' wI $

,Il I\l ll1 l l lIil 382- 8e*

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 0 5 5 4 4 3 3 2 1 t 5 5 5 5 5 5 5 s 0 0 0 0 0 0 0 e 1 1 1 1 T

1 1 1

- 0 0 2

n o 4 0 i

t -

a 5 i

c 0 f

i r 1 0 4

e l 6 1 V 3 O N

G l 0 R E 0 E M

3 B

I M

T U S N l  : 0 V 4 1

4 S 2 R D I

E U S R U O E S G H R

A I

F A

M l

0 8 W I 1

R t I

0 A 5 Y l

! 0 R 2 1

D T

N E l 0

6 M 0 N

I A

T -

N -

- - - - - - 0 0

O 0 0 0 0 0

0 0

0 0

0 0

00 0

C 0 0

5 0

5 4

0 0

4 5

3 0

3 5

2 0

2 5

1, 5 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 _

l ' ,

m$ o8p, lll ll l ll

i SELECTED RTDS VS TIME Verification Test CH13 CH16 CH19 CH10 CH11 CH14 .CH17 a CHIB FIGURE 15 CH12 c

!  ! l l 102.00 )

102.00 2, l v <,

_ _ _ r.

0 _

--99.14 99.14 ^

l 1

--96.29 96.29 --

--93.43 03.43 ".a t

c S

cca

--90.57 90.57

~

87.71 87.71

--84.86

_[

!  ! l l I 82.00 62.00 2.40 3.00 3.60 4.20 0.00 0.80 1.2.0 1.80 HOURS sot- IWARE ID NU MBER: GNO1405-0.0

mtymw SELECTED RTDS VS TIME CH20' CH23 CH26 CH29 Verification Test CH21 CH24 CH27 CH22 +

CH28 FIGURE 15 (CONT.)

120.00 l l  !  ! l l 120.00

E -

-- 117.14 117.14 x -

K 114.29 -- ~~

-- 114.29 111.43 111.43

.0 ".a L

a ca 108.57 108.57 105.71 105,71 102.55

-- 102.BD 100,00 l l l l l l 100.00 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 HOURS SO FTWAR E ID NU MB ER: GNO1405-0.0

- N _m A N% = +. m'

'lL

- SELECTED RTOS VS; TIME CH30 . CH33 CH36: CH39 Verification 'Tset

.CH31 1CH3^ ~CH27

CH32 CH35 CH38 FIGRE 15 (C0llT.)

113.00 l l  !. l l . i13.00 t

10S.57 --- --106.57' 100.14 -- - 100.14

' " G 3.71 c.o 93.71

.c'.o I$$ E$

87.29

"- - - - - - - - - - - - - - - " - - - - ~ ~ - ~ ~ - - - - - - - - - -

"B7.29 X y 80.86 80.86 74.43

~

7+.43

)

68.00 l l l l l 68.00 3.60 4.20 0.00 0.60 1.20 1.80 2.40 3.00 HOURS SOFTWARE ID NU M BE R: G N O 140 5- 0.O'-

i

' ' ' ' ~ ~ ~ ~ ~

3030 e e a e a e e e 9 F G C C C, C. 9 9 e d o m m ui J 0 e

e e " "

o e e e

: o O H  :  :  :  : ,

e= 0 0 2 \' ?' ). ,

l 5 .s \ tn

,9 l'

\ O

,t ) t

\

~

5 --

\f' 8 r-

> ( m O 1 Z m i

\ O e e-T 2 I O / 3 O'

o ,O_ ..

i -- o m "

e m

w i 5 Cat )I ,

W I Z

e s ..

  • m O N x p D o

w

\ \. r m e,s,m, ,.

i\\\g r D'

>%ZZ \ )

- o k

N OOO ..

'U f

(

\

?

~

J 1 l i O W \

\ rf)

O \

g ..

-g w \ , \

O n+

l ,

\

Q M- II.

+~ 1 L

l dOO l ..

-e 9

b

  • O l

\

w \\ L

.-l \\>

u '(X: o

[/) x  :  :  :

O.

CrN o b o a

9

,r + + s s .s o e e e

o N N III e o e OVO JS30 . .

Page 40 SECTION E - TESI_CALCULA110HS Calculationn for the test were based on LaSalle County Procedure LTS-300-4. A reproduction of this computational procedure is found in

, Appendix C. The instrument error analyses are also found in Appendix C. In preparing for the LaSalle Station short duration test using BN-TOP-1, Rev. 1a number of editorial error and ambiguouc statements in the topical report were identified. These errors are presented in Appendix D and are editorial in nature only. The Station has made no attempt to improve or deviate from the rnethodology outlined in thu topical report.

ECADTS/3Be

p '

(

U Page 41 i

l l

SECTIOi4_ r - TYPE A TEST RTSULTS_MipJ{IERPSI, TAT 10H  !

F.1- tieAsgred Leak Rate __Tagt. Resuits Based upon data coll.ected during the Short Duration Test, the following results were determined:

Acceptance Actual Leak Rate Criterion (wt%/ day) Iwt%/ day)_

Total time measured leak rate 0.2608 0.476 Calculated leak rate 0.2534 0.476 Upper 95% confidence limit leak rate 0.3286 0.476

F.2 Induced Phasm_lgsi_Reavits A leak of 397.4 SCFH (0.6633 wt%/ day) was induced on the Primary Containment for this phase of the test. The following results were determined:

Actua, Leak Rate (wt%/ day)

-Superimposed Flowmeter Leakrate (Lo) 0.6633 Calculated Leakrate prior to verification test (Lg) 0.2534 Induced Calculated Leakrate during verification test (L c) 0.8285 Acceptance Criterion: lL-_-(L3 e + L c)l i 0.159 wt%/ day lLc ~ (bl+b)l=0.0882wt%/

o day ZCADTS/388

Page 42 l

F.3 Leak Rate Compananting_ Lor _11gn-Vented Pene1I.ations i The Integrated Primary Containment Leak Rate Test was performed with ti.e following penetrations not drained and vented as required by 10CFR50, Appendix J. The minimun pathway As Left Leak Rate of each of these penetrations, as determined by Type C testing is listed:

Ennetratinn Innction SCD1 M-16 RBCCW Supply 0.0 M-17 RBCCW Return 0.0 M-25 PCCW "A" Supply 0.695 1M-26 PCCW "B" Supply 0.185 M-27 PCCW "A" Return 2.8 M-28 PCCW "B" Return 0.185 M-30 RWCU Suction- 0.0 M-36 Recire Loop Sample .

0.0 M-96 -Drywell-Equipment Drain Sump 0.42 M-98 Drywell- Floor Drain Sump 0.51 M-97' Drywell Equipment Sump Cooling 0.85 M-22 Inboard MSIV Drain 0.42 H-7 RHR Shutdown Cooling-Suction 0.47 M-15 RCIC Steam Supply 3.95 ECCS/RCIC Worst Division 2.01 M-HG Unit 1 Hydrogen Recombiner 1.92 M-34 Standby Liquid Control 0.0 TOTAL 14.415 This yields the following Non-Vented Penetration Penalty:

Total (SCFH)'x 1.6473 x 10~3 Non-vented Penetration' Penalty 0.0237 wt%/ day F.4 Change inDrywell Sump Level Changes in drywell smnp levels were not used in calculating tho final leakage rate. The' observed 1 sump level increase during the test resulted in a= net volume change of'8.7 Ft3 .. This represents approximately 2.2 x-10-3 % of the total containment volume.

All inputs to the sumps were in all probability made through a leakage path directly.from the Reactor vessel. There were no known inputs made from outside the containment throughout the test. The observed increase-in sump level therefore,.is considered to have negligible effects on the

-overall measured leakage rate.

ZCADTS/388

, , . ~ , _ - ,- - ,.. .- . - . . . .

.Paga 43 F.5 EY.aluation of_ IRS. tim ent Failurga.

_There were to instrenents or sensor- rejected during the' PCILRT. Leakage and Verification Tests. Channel 39, an experimental test sensor _ installed in the= Suppression Pool Volume, malfunctioned and was locked out of the Data Acquisition System prior to' containment pressurizatiou. Channel 49, Subvolume 9 Suppression Chanber Dewcell, was locked out during the ILRT Stabilization Period due_to erratic readings. The Channel 49 sensor shield was lost during installation.- Without the shield, the sensor was

-sporadic. . No further instrument problems occurred during the PCILET or

. verification test._ These changes did not affect ISG calculatione prior and port test for instrument-errors.

F.6 As-Found_(Calculated AdjuC1gd) Local Laak Rate The 95%' Upper Confidence Limit, Type A test leak rate, plus the total leak rate penalty for non-vented penetrations, plus the sum of the Calculated Adjusted local leak rates must be less than 0.75 La. The Calculated Adjusted local leak rates are summarized in Table 5.

As Found Test Results 95% Upper Confidence Limit 0.3286 wt%/ day A Penalty for Non-Vented Penetrations 0.0237 wt%/ day Calculated' Adjusted Leakage 0.2632 wt%/ day

'D7IAL 0.6155 wt%/ day The total "As Found" Containment leakage rate _ was above the Maximum allowablef leakage rate of '0.75 La (0.476 wt%/ day) . Thus, the "AS-FOUND" Containment Integrated Leakage is unsatisfactory, and considered as a failure.

l i

l l

ZCADTS/388 i

i

M Page 44

~

hc

.IABLE 5 (Sheet'l of 5)

CALCULATED ADJUSTED LEAKAGE MINIMUM PATHWAY VALVE (S) OR AS FOUND/AS LEFT ADJUS N LOCAL:

PENETRATIQ1{ TEST VOLUME (SCFH) LIAK RITE (SCFH) 2B21-F016/F019 Inboard MSIV Drain 17.49/0.42 8 17.i7 2VQO26/27/43 Suppression Pool Vent 9.04/4.39 9 4.65

.2VQO29/30/42 D rywell:. Vent' 2.075/2.54 *' O.0'-

2VQO31/32/40 Suppression Chamber Purge 0.0/0.0

  • 0.0 2B21-F010A/F032A.~ "A" FW to Reactor 12.08/3.04 0 f, )4 2PC001A OUTBD Flange Drywell Vacuum Bkr 0.65/0.0 $ 0.65 2PC001A INBD Flange Drywell Vacuum Bkr 0.0/0.0 S 0.0 2PC001A Actuator 0-Ring Drywell Vacuum Bkr 0.0/0.0 $ 0.0 2PC001A Actuator Seal Drywell Vacuum Bkr 0.0/0.0 5 0.0 ZCADTS/388

Page 45

. TABLE 5 (Sheet'2 of 5)

CALCULATED ADJUSTED LEAKAGE MINIMUM PATHWAY VALVE (Si.OR AS FOUND/AS LEFT ADJUSTr.D LOCAL EEMETRATION TEST VOLUME- (SCFH) LEAK RATE (SCFH) 2VQO27 INED Flange Suppression Pool Vent 0.0/0.0 $ 0.0 2RE024/2RE025 Drywell Equip Drain Sump 0.84/0.0 .* 0.84 2G33-F001/F004 RWCU Suction 115.7/0.0 0 115.7 2VP063B/113B PCCW B $upply 0.23/0.185 8 0.045 2VP053A/114A PCCW A Return 5.6/0.0

  • 5.6 2HG001A/2A Conbustible Gas Control A Suction 0.57/0.0
  • 0.57 2HG001B/2B Combustible Gas Control B Suction 0.28/0.0
  • 0.28 2HG005A/6A Combustible Gas Control A Return 2.085/0.0
  • 2.085 2HG005B/6B Combustible Gas Control B Return 0.0/0.0
  • 0.0 2CADTS/388 j

^

t -'

s_ Y Page,46 IABLE_S..

(Sheet:3 of 5)-

~

CALCULATED ADJUSTED LEAKAGE MINIMUM PATHWAY VALVE (S) OR AS FCUND/AS LEFT ADJUSTED LOCAL PENETRATION. TEST-VOLUME (SCFH) -LEAK RATE fSCFH)

. 2E51-F063/76/64/08/91 RCIC Steam Supply 5 . '.4 / 3 . 94 5 ' +. 1.195 2WR029/179 EBCCW-Supply. 0.0/0.0 0 0.0 2WR040/180' HBCCW Return 0.0/0.0 8 0.0 2IN074/75 DW Pneumatic Dryer Purge 1.67/2.775

  • 0.0 2VQ050/51 Suppression Pool Inerting Makeup 0.0/0.0 1 0.0 L

t Y

ZCADTS/388

Page 47 TABLE 5

-(Sheet 4 of-5)

CALCULATED ADJUSTED LEAKAGE MINIMUM PATHWAY VALVE (S) OR PENETRATION AS FOUND/AS LEFT ADJUSTED . LOCAL TEST VOLUME fSCFH) LEAK RATE'(SCFH) 2E12-F016A/F017A. RHR A Drywell Spray 0.0/0.0 * 'O.0

.2E12-F016B/F017B RHR B Drywell Spray 0.0/O.0

-2E12-F042B .RHR B LPCI Injection 1.48/0.0 2 1.48 2S12-F053A RHR A SCD Return 0.0/0.0 $ 0.0 -

TOTAL 159.765 SCFH Total (SCFH) X 1.6473 x 10-3 Calculated Adjusted Leakage = 0.2632 wt%/ day ZCADTS/388 m-_.__-_-__ _-- - _ _ . _ _ . _

Pags 48 IAHLE_3 (Sheet 5 of 5)

CALCULATED ADJUSTED LEAKAGE e In the case where individual leak rates are assigned to two valves in series (both before and after the R&A), the penetration through-leakage would simply be the smaller or best of the two velves' leak rates.

O The Minimum Pathway Leak Rate of a single valve pathway is equal to the measured leak rate past that single valve.

I In the case where a leak rate is obtained by pressurizing between two isolation valves and the individual valve's leak rate is not quantified, the AS-FOUND and AS-LEFT penetration through-leakage for each valve would be one half the measured leak rate if both valves are repaired.

  • In the case where a leak rate is obtained tv pt- :surizing between two isolation valves and only one valve is tepaired, the AS-FOUND penetration leak rate would conservatively be the final measured leak rate or one half of the measured value prior to repairs or adjustments, whichever is smaller. The AS-LEFT penetration through leak rate, in either case is zero. This assumes the repaired valve leaks zero.

+ The Minimum Pathway Leak Rate of a parallel multi-valve pathway is equal to the sum of the leakages of all the inboard valves or the sum of the leakagcs of all the outboard valves whichever is smaller. If individual valve leakage rates are not known and the system is tested 4 by pressurizing between all the valves, the Minimum Pathway Leak Rate is equal to half the measured leakage rate.

The correction (Calculated Adjustment) for each pathway is that pathway's Minimum Path Leakage Rate before the R&A minus its Minimum Path Leakage after the R&A but before the Type A Test. Any negative corrections will be set equal to zero.

ZCADTS/388 l l

t.. ;vy V i'-

Paga 49 i

l APPENDICES r

l

-.,I _

1 J

6 4

I I

i ZCADTS/388' e

Pago 50 1

APPENDIX A

'lYPE D AND C TESTS

'Priser.te; herein are the results of local leak rate tests conducted on all penetrations, dot.ble-gasketed seals, and isolat.jon valves. Total leakage for double-gasketed seals and total-leakage for all other penetrations and isolation valves following repairs satisfied all Technical Specification limits.- These results are listed in Table 6.

M ZCADTS/388

Page 51 IABLE 6 (Sheet 1 of 9)

AS-FOUND (SCFH) AS-LEFT (SCFH)

MINIMUM MAXIMUM MINIMTH MAXIMLH PATHWAY PATHWAY DATE TOTAL PATHWAY PATHWAY VALVES (s)/COMPCNENT DATE TOTAL EENETRATION DESCRIPTION 0.42 0.84 2B21-F016/2B21-F019 01/06/92 34.98 17.49 34.98 02/19/92 0.84 M-22 Inboard MSIV Drain 18.08 9.04 18.08 02/29/92 8.78 4.39 8.78 Suppression 2VQO26/2VQO27/2VQ043 01/10/92 M-66 Chamber Vent .

4.15 02/29/92 5.08 2.54 5.08 2v0029/2VOO30/2VOO42 01/06/92 4.15 2.075 M-20 Drvwell Vent 0.0 0.0 0.0 03/07/92 0.0 0.0 0.0 Suppression 2VQO31/2VQO32/2VQ040 01/10/92 M-67 Cham.her_P_ urge __ 0.0 0.0 0.0 01/10/92 0.0 0.0 0.0 01/10/92 M-21 Drywell Purge 2VQO34/2VQO35/2VQG36 2VOO68 0.0 0.0 0.0 01/07/92 0.0 I-36 Suppression 2CM027/2CM028 01/07/92 0.0 0.0 Chamber C.A.M. 0.0 0.0 0.0 01/07/92 0.0 0.0 0.0 Drvwell C.A.M. 2CM029/2CM030 01/07/92 I-11 0.0 01/07/92 __2 Q_ 0.0 0.0 I-11 LWir Sample 2 7231/2CM032 01/07/92 0.0 O mQ___

0.0 0.0 01/07/92 0.0 0.0 I-45 Sample Return 2CM033/2CM034 01/07/92 0.0 0,0 to Suppression _

Cham _btr 02/19/92 3.04 M-5 A Feedwater 2B21-F010A 01/19/92 24.42' 12.03 01/19/92 12.08 2B21-F032A 01/19/92 2B21-F065A Q1/19/92 6.96 _12 M 24.42 03/12/92 _ _QE 3.04 12.08 01/09/92 1.03 M-6 B Feedwater and 2B21-F010B 01/09/92 1.03 0.0 01/09/92 0.0 RWCU Return 2B21-F032B 01/09/92 i

3.23 02/29/92 0.56 2B21-F065B 01/10/92 0.0 1.03 02/29/92 0.83 0.0 1.03 2G33-F040 01/10/92 0.0 0.56 01/06/92 0.56 0.28 0.56 M-54 Drywell 2IN001A/2IN001B 01/06/92 0.56 0.28 Pneumatic Suction 01/15/92 0.0 M-36 Recirc Loop 2B33-F019 01/15/92 0.0 0.0 0.0 0.0 0.0 01/15/92 ___Q J_ 0.0 Sample 2B33-F020 Q1/15/92 0.51 1.02 1.02 01/14/92 1.02 M-98 Drywell Floor 2RF012/2RF013 01/14/92 1.02 0.51 DIain_Swnp 1.74 03/25/92 2.77 2.77 2.77 1.74 1.74 M-111 Drywell Drywell Personnel 09/08/91 Personnel Access Hatch Ancesa_ Hatch 43.215 85.93 13.95 32.16 PAGE TOTAL ZCADTS/388

Paga 52' TABLE 6 j (Sheet 2 of 9)

AS-FOUND (SCFH) AS-LEFT (SCFH)

MINIMUM MAXIMUM MINIMUM MAXIMUM

' PENETRATION DESCRIPTION VALVES (s)/ COMPONENT DATE TOTAL PATHWAY PATHWAY DATE TOTAL PATHWAY PATHWAY

.M-112 Drywell Dryt 41 Equipment 01/05/92 0.0 0.0 0.0 03/24/92 0.0 0.0 0.0 Equipment Hatch Hatch M-113 Suppression S.P. Access Hatch 31 01/03/92 0.0 0.0 'O.0 03/24/92 0.0 0.0 0.0 Pool Access Hatch Il M-114 Suppression S.P. Access Hatch 32 01/03/92 0.0 0.0 0.0 03/19/92 0.0 0.0 0.0 Pool Access Hatch 12 M-115 CRD Removal CRD Removal Hatch 01/04/92 0.0 0.0 0.0 03/05/92 0.0 0.0 0.0 Hatch N/A Drvwell Head Drvwell Head 01/05/92 0.0 0.0 0.0 03/24/92 0.0 0.0 0.0 M-42 E T.I.P. E T.I.P. Penetration 01/04/92 0.0 0.0 0.0 01/04/92 0.0 0.0 0.0 Penetration Flange Elange M-43 D T.I.P. D T.I.P. Penetration 01/04/92 0.0 0.0 0.0 01/04/92 0.0 0.0 0.0 Penetration Flange Flange _

M-44 C T.I.P. C T.I.P. Penetration 01/04/92 0.0 0.0 1.0 01/04/92 0.0 0.0 0.0 Penetration Flange Flange M-4 5 B T.I.P. B T.I.P. Penetration 01/04/92 0.0 0.0 0.0 01/04/92 0.0 0.0 .0.0 Penetration Flange Flange M-46 A T.I.P. A T.I.P. Penetration 01/04/92 0.0 0.0 0.0 01/04/92 0.0 i 0.0 0.0 Penetration -Flange Elange M-108/M-104 DW to S.P. 2PC001A Outboard 01/04/92 0.65 0.65 0.65 03/05/92 0.0 0.0 0.0 Vacuum Breaker. Flange Seal A Outboard Flange M-108/M-104 DW to S.P. 2PC001A Inboard 01/04/92 0.0 0.0 0.0 03/05/92 0.0 0.0 0.0 Vacuum Breaker Flange Seal A Inboard Flange .l PAGE TCrIAL 0.65 0.65 0.Q_ 0.0 ZCADTS/388

. .. I

Page 53 TABLE 6 (Sheet 3 of 9)

AS-FCQiD (FCTH) AS-LEI I ( SCFH)

MINIMUM j MAXIMUM MINIMUM MAXIMUM DATE TOTAL PATHWAY PA~E4AI DATE ~1UIAL PATHWAY PATF4AI PENETRATION DISfRILPTION VALVESfs)/CCMPONENT 0.0 01/04/92 0.0 0.0 0,0 03/11/92 0.0 0.0 M-108/M-104 DW to S.P. 2PC001A Actuator Vacuum Breaker 0-Ring A Actuator

_ Q-PE a _

0.0 03/11/92 0.0 0.0 0.0 2PC001A Actuator 01/04/92 0.0 0.0 M-108/M-104 DW to S.P.

Vacu e Breaker Seal A Actuator Saal 0.0 01/04/92 0.0 0.0 0.0 <

2PC001B Outboard 01/04/92 0.0 0.0 M-106/M-110 DW to S.P.

l7acuum Breaker Flange Seal B Outboard -

lnanze .

0.0 0.0 0.0 01/04/92 2.0 0.0 0.0 M-10 6 /M-13 0 DW to S.P. 2PC001B Inboard 01/04.'92 Vacuum Breaker Flange Seal B Inboard ElaDge -.

0.0 0.0 0.0 01/04/92 0.0 0.0 0.0 01/34/92 M-106/M-110 DW to S.P. 2PC001E Actuator l vacuum Breaker 0-Ring B Actuator Q-1 ht.' 0.0 01/04/92 0.0 0.0 0.0 2PC001B Actuator 01/04/92 0.0 0.0 M-106/M-110 DW to S.P.

Vacuum Breaker Seal B Actracor Seal .

0.0 01/04/92 0.0 0.0 0.0 2PC001C Outboard 01/04/92 0.0 0.0 M-103/M-107 DW to S.P.

Vacuum Breaker Flange Seal C Outboard Elange 0.368 0.368 0.368 2PC001C Inboard 01/04/r'g' O.368 0.368 0.368 01/04/92 M-103/M-107 DW to S.P.

Vacuum Brcaker Flange Seal

'C Inboard Elange 0.368 0.363 0.368 0.363 PAGE ~1UIAL ,

ZCADTS/388

m , - ~ .

_)_.

~

Page 54 TABLE 6 (Sheet 4 of 9)

AS-NuUriD (SCTH) AS-LEFT (SCTH) l MAI1MCM MINIMGM MAIIMUM MINIMUM VALVES (s)/ COMPONENT 0 ATE TOTAT, PATHWAT PATEX1T DATE TOTAL fATHWAT PM PENETRATIOtt___D_ESCRIPTION 0.0 0.0 0.0 2PC001C Actuator 01/04/92 0.0 0.0 0.0 01/04/92 M-103/M-107 DW to S.P.

Vacuum Breaker 0-King C Actuator O-Ring  !

0.0 0.0 0.0 01/04/92 .0 0.0 0.0 M-103/M-107 DW to S.P. 2PC001C Actuator 01/04/92 Vacuum Breaker Seal C Actuator Seal 0.0 01/04/92 0.0 0.0 0.0 2PC001D Outboard 01/04/92 0.0 0.0 ,

l M-105/M-109 DW to S.P.

! Vacuum Breaker Flange Seal i D Outboard Elaage 0.0 0.0 0.0 2PC001D Inboard 01/04/92 0.0 0.0 0.0 01/04/92 M-105/M-109 DW to S.P.

Vacuum Breaker Flange Seal D Inboard LLDD3e 0.0 01/04/92 0.0 0.0 0.0 2PCOO1D Actuator 01/04/92 0.0 0.0 M-105/M-109 DW to S.P.

Vacuum Breaker 0-Ring D Actuator l O-Ring ____

0.0 0.0 01/04/92 0.0 0.0 0.0 01/04/92 0.0 M-105/M-109 DW to S.P. 2PC001D Actuator Vacuum Breaker Seal D Actuator Seal 0.0 01/03/92 0.3 0.0 0.0 2vQO30 Inner Flange 01/03/92 0.0 0.0 M-20 Drywell Vent Seal __

0.0 0.0 01/03/92 0.0 0.0 0.0 01/03/92 0.0 M-82 HPCS Spare HPCS Spare Flange tenetration 0.0 02/29/92 0.0 0.0 0.0 01/03/92 0.0 0.J M-66 Suppression 2V;?O27 Inner Flange PJ2Q. J._Vgpt Seal 0.0 0.0 01/03/92 0.0 0.0 0.0 01/03/92 0.0 M-67 Suppression 2VQO31 Inner Flange l Cha.Wer Purgn__ _ Seal 0.0 0.0 0.0 0.0 PAGE TOTAL ,

ZCADTS/388

s 4

, Page 55

! . TABLE 6 (Sheet 5 of 9) i

, I AS-FOUND fSCFH) AS rM T iSCFH) l MINIMUM MAXIMUM MINIMUM MAX 1 MUM f PENETRATICN DESCRIPTION VALVES (s)/ COMPONENT DATE TOTAL PATHWAY PATHWAT DA~E TOTAL PATEWAY PATHWAY l 'M Drywell Purge.. 2VQO34 Inner Flange 01/03/92 0.0 0.0 0.0 01/03/92 0.0 0.0 0.0 l Seal j M-20~ Drywell Vent 2VQ0_30 alve Stem 01/03/92 0.0 0.0 0.0 01/03/92 0.0 0.0 0.0 i Packinc.

! M-66 Suppression 2VQO27. Valve Stem 01/03/92 0.0 0.0 0.0 02/29/92 0.0 0.0 0.0

! Chamber Vent Packing M-67 Suppression 2VQO31 valve Stem 01/03/92 0.0 0.0 0.0 01/03/92 0.0 0.0 0.0 Chamber Purge Packinc _

M-38 SA to Drywell Service Air Blind 01/03/92 0.0 0.0 0.0 03/25/92 0.0 0.0 0.0

Flange Seal M-37 MC-to Drywell MC Blind Flange 01/03/92 0.0 0.0 0.0 03/25/92 0.0 0.0 0.C Seal M-21 Drywell Purg? 2VQO34 Valve Stem 01/03/92 0.0 0.0 0.0 01/03/92 0.0 0.0 0.0

_ Packing M-103 C Vacuum Bkr 2PC003C Inner Flange 01/04/92 0.0 0.0 0.0 01/04/92 0.0 0.0 0.0 Line Seal l- M-104 A Vacuum Bkr 2PC003A Inner Flange 01/04/92 0.0 0.0 0.0 01/04/92 0.0 0.0 0.0 Line Seal I M-105 D Vacuum Bkr 2PC003D Inner Flange 01/04/92 0.0 0.0 0.0 01/04/92 0.0 0.0 0.0 Line . Seal i M-106 B vacuum Bkr 2PC003B Inner-Flange 01/04/92, 0.0 0.0 0.0 01/04/92 0.0 0.0 0.0

} Line _ Seal i l M-107 C Vacuum Bkr 2PC002C Inner Flange 01/04/92 0.0 0.0 0.0 01/04/92 0.0 0.0 0.0 j __ Line Seal M-108- A Vacuum Bkr- 2PC00.2A Inner Flange 01/04/92 0.0 0.0 0.0 01/04/92 0.0 0.0 0.0 l Line Seal _

l M-109 D Vacuum Skr 2PC002D Inner Flange 01/04/92 0.0 0.0 0.0 01/04/92 0.0 0.0 0.0 Line Seal' l M-110 B Vacuum Bkr 2PC002B Inner Flange 01/04/92 0.0 0.0 0.0 01/04/92 0.0 0.0 0.0 Lime Seal M-97 DW Equipment 2RE026/2RE029 01/15/92 5.32 2.66 5.32 01/15/92 1.7 0.85 1.7 Drain Sump; I

C9011Da h . . .. . .

i' PAGE TOTAL 2. 60_:g _ 2.22 0.85 _ 1.7

i. ZCADTS/388 l

m-Page 56 TABLE 6 I

(Sheet 6 of 9) i AS-FOUND (SCFH) AS TM T (SCFH)  !

MINIMUM MAXIMUM MINIMUM MAXINUM

- PENELATION DESCRIPTICN VAIVESfs)/CCMPONENT DATE WE PATEWAY PATHWAY DATE TtTIAL PATHWAY PATEWAY t E-21 Electrical. Electrical Penetration 01/03/92 0.0 0.0 0.0 01/03/92 0.0 0.0 0.0 Penetration [

E-23 Electrical Electr~ cal Penetratir n 01/03/92 0.37 0.37 0.37 01/03/92 0.37 9.37 0.37  !

E_enetration ,

I E-26 Electrical 31ectrical Peratration 02/13/92 0.0 0.0 0.0 02/13/92 0.0 0.0 0.0 [

E.enetration M-96 Drywell 2EE024/2EE025 01/75/92 5.35 2.525 5.05 03/16/92 0.84 0.42 0.84 Equipment Drain Sumo v M-30 Reactor Water '2G33-F001 01/18/92 115.7 02/27/92 0.0  ;

Cleanup Suction 2G33-F004 01/18/92 127.7 115.7 127.7 02/27/92 0.0 0.0 0.0  ;

'I M-101 RCIC Turbine 2E51-F080/2E51-F086 01/06/92 0.74 0.37 0.74 01/06/92 0.0 0.0 0.0 [

Exhaust Vacuum

._ Dierter N/A Electrical Electrical Penetration C'/16/92 0.95 0.95 0.95 01/16/92 0.95 0 c5 0.95 (

Penetration Pressurization System Pressurization System M-25 PCCW A Supply 2VPO63A/2VP113A 01/10/92 1.39 0.695 1.39 01/10/92 1.39 0.695 1.39 M-26 PCCW B Suynly 2VP063B/2VP113B 01/12/92 0.46 0.23 0.46 03/06/92 0.37 0.185 0.37 M-27 PCCW A Return 2VP053A/2VP114A 01/10/92 24.5 12.25 24.5 03/14/92 5.6 __Z.J ,_ 5.6 M-28 PCCW B Return 2VP053B/2VP114B 01/12/92 0.37 0.185 0.37 01/12/92 0.37 0.185 0.37 M-47 T.I.P. Index 2INO31 01/10/92 0.0 0.0 0.0 01/10/92 0.0 0.0 0.0 Purge Air S_uPPl y M-54 Drywell 2IN017 01/10/92 0.47 01/10/92 0.47 Pneumatic 2IN018 01/10/92 0.0 0.0 0.47 01/10/92 0.0 0.0 0.47 Discharge to Drvwell M-53 Combustible Gas 2HG001A/2HG002A 01/10/92 1.07 0.535 1.07 02/20/92 0.57 0.285 0.57 Control A Suction PAGE TOIAL 133.81 163.07 5.89 10.93 ZCADTS/388

- . . _. . , .__ _ . . . _ - __ __ J

Page 57 TABLE 6 4

(Sheet .7 of 9)

AS-FCUND fSCFH) AS-LEFT fSCFH) __

4 MINIMUM MAXIMCM MINIMUM MAXIMUM PENETRATION DESCRIPTION VALVESfs)/COMPOIENT DATE TOTAL FATHWAY PATHWAY DA E TUrAL PA*IEWAY PATHNAY M-104 Combustible Gas 2HG005A/2HG006A 01/10/92 4.17 2.085 4.17 03/13/92 6.51 3.255 6.51 j, Control A' Return M-33 Combustible Gas 2HG001B/2HG002B 01/10/92 0.55 0.28 0.56 02/20/92 0.56 0.28 0.56 Control B Syction .. .

M-106 Combustible Gas 2HG005B/2HG006B 01/10/92 0.0 0.0 0.0 03/13/92 0.37 0.185 0.37 i

Control B.

Return _

M-15' RCIC Steam 2E51-F063/2E51-F076

{ Supply- 2E51-F064/2E51-F008 j 2E51-F091 01/15/92 10.28 5.14 __10 23_ 03/25/92 7.9 3.95 7.9

M-38 SA to Drywell 2SA042 & 2SA046 01/05/92 0.0 0.0 0.0 01/05/92 0.0 0.0 0.0 l Packing ___

M-37  !*C to Drywell 2MCO27 & 2MC033 01/05/92 0.0 0.0 0.0 01/05/92 0.0 0.0 0.0 Packing M-29 RHR/RCIC He&d

~

2E51-F013/2E12-F023 01/16/92 1.54 1.54 1.54 01/16/92 1.54 1.54 1.54 i Spray

{ M-59 Cycled 2FC113 01/06/92 0.0- 01/06/92 0.0 i Condensate to 2FC114 01/06/92 1.3 0.0 1.3 01/06/92 1.3 0.0 1.3 Refueling i

Bellows

M-65 Reactor Well 2rC115 01/06/92 0.371 01/06.92 0.371 Drain 2FC086 01/06/92 0.371 0.371 0.371 01/06/92 0.371 0.371 0.371

{. M-16 RBCCW Supply. 2WR029 01/12/92 0.0 02/29/92 0.0

2WR179 01/12/92 '0.0 0.0 0.0 02/29/92 0.0 0.0 0.0
M-17 RBCCW Return 2WR040 01/12/92 0.0 02/29/92 0.0

?- 2WR180 01/12/92 0.0 0.0 0.0___ 02/29/92 _J.3 0.0 1.3 I-4 F Drywell 2CM017A/2CM018A 01/07/92 0.0 0.0 0.0 01/07/92 0.0 0.0 0.0 Humidity-

Monitor A 3 Suction __

PAGE TOTAL 9.416 18.221 9.581 19.851 3

2 ZCADTS/388

. _. - ._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . __. J

Page 59 TABLE 6 (Sheet 8 of 9) 1 AS-FOUND (SCFH) AS-LEFT (SCFd)

MINIMUM MAXIMU14 KINIMUMI MAXIMUM PENETRATION DESCRIPTION VALVES (s)/COMPOn m i DATE TOTAL PrTHWAY PATHWAT DATE TCTIAL PATHWAY PATEWAT 4 I-5F Drywell 2CM917B/2CM018B C1/07/92 0.0 0.0 0.0 - 01/07/92 0.0 0.0 0.0 Hmidity Monitor B

~

Snetion _

I-45 Drywell 2CM019A/2CMO20A 01/07/92 0.0 0.0 0.0 01/07/92 0.0 0.0 0.0 Humidity

[ Monitor A i Discharge

I-45 Drywell 2CM019B/2CM0203 01/07/92 0.0 0.0 0.0 01/07/92 0.0 0.0 0.0
Humidity Monitor B Discharge _ _ _

i M-54 Drywell 2IN074/2IN075' 01/06/92 3.34 1.67 3.34 03/05/92 5.55 2.775 5.55 Pneumatic Dryer Purge __

j M-11 HPCS Injectioq_ 2E22-F004 01/09/92 0 . 5 5__ 0.56 0.56 01/15/92 0.0 0.0 0.0 l M-7 RHR Shutdown 2E12-F008 01/17/92 0.37 03/02/92 0.47 Coolino Suction 2E12-F009 01/17/92 0.37 0.37 0.37 03/02/92 2.1 0.47 2.1 1 M-34 SBLC Injection 2C41-F004A/2C41-F004B 05/01/90 0.0 02/26/92 0.0 2C41-F007 02/26/92 0.37 00 0.37 02/26/94 0.37 0.0 0.37 M-81 RCIC Vacuum 2E51 128/2E51-F069 01/08/92 3.01 1.505 3.01 03/10/92 3.28 1.64 3.28 Emno Discharge M-7 6 RCIC Turbine 2E51-F040/2E51-F068 01/08/92 0.474 0.237 0.474 01/08/92 0.474 0.237 0.474 Exhaust M-20 Drywell 2VQ047/2VC048 01/06/92 0.565 0.2825 0.565 01/06/92 0.565 0.2825 0.565 Inerting-Makeup M-66 Suppression 2v0050/2VQ051 01/06/92 0.0 0.0 0.0 02/14/92 0.0 0.0 0.0 Pool Inerting tiakemp

[ M-46 A T.I.P. T.I.P. Ball valve A 01/09/92 0.55 0.65 0.65 01/09/92 0.65 0.65 0.65 j Penetration l PAGE TOTAL 5.2745 9.339 6.0545 12.989 3

i ZCADTS/388 ra+ n. . . - , n ,--. _._

i:. Page 59 TABLE 6 (Sheet 9'of 9)

AS-FOUND (SCFH) AS-LEFT (SCFH)

MINIMUM MAXIMUM MINIMUM MAXIMUM 4 ~ PENETRATION DESCRIPTION VALVESh3)fC h i.nl DATE TOTAL PATHWAT PATHWAY DATE TOTAL DATHWAT PATHWAI j ' M-4 5 B T.I.P. T.I.P. Ball valve B 01/09/92 0.37 0.37 0.37' 01/09/92 0.37 0.37 0.37 Penetration M-44 C T.I.P. T.I.P. Ball Valve C 01/09/92 0.65 0.65 0.65 01/09/92 0.65 0.65 0.65 Penetration M D T.I.P. T.I.P. 3all Valve D 01/09/92 0.37 0.37 0.37 01/09/92 0.37 0.37 0.37 Penetration M-42 E T.I.P. I.P. Ball. Valve E' 01/09/92 1.21 1.21 1.21 01/09/92 1.21 1.21 1.21 Penetration M-18 RHR.A Drywell 2E12-F016A/2Z12-F017A 01/16/92 0.0 0.0 0.0 02/17/92 1.6 0.8 1.6 Spray M-19 RER'B Drywell 2E12-F016B/2E12-F017B 01/31/92 0.0 0.0 0.0 02/26/92 13.8 6.9 13.8 Spray M-13 RHR A LPCI 2E12-F042A G1/17/92 0.0 0.0 0.0 02/23/92 0.47 0.47 0.47 Inieclian M RHR B LPCI 2E12-F042B 01/31/92 1.48 1.48 1.48 02/25/92 0.0 0.0 0.0 Injection M-8 A RHR Shutdown 2E12-F053A 01/16/92 0.0 0.0 0.0 02/17/92 0.0 0.0 0.0 CQ.211gg Return M-9 B RHR Shutdown 2E12-F053B 02/01/92 0.0 0.0 0.0 02/01/92 0.0 0.0 0.0 Cooling _ Return _

M-10 LPCS Injection 2E12-F005 01/11/93 0.0 0.0 0.0 01/11/92 0.0 0.0 0.G M-12 RHR C LPCI 2E12-F042C 01/20/92 0.0 0.0 0.0 b 20/92 0.0 0.0 OM Iniection M-77 RCIC Test 2E51-F362/2E51-F363 N/A N/A N/A N/A 03/10/92 0.46 0.23 0.46 Return to Suppression Pool.

PAGE TOTAL 4.08 4.08 11.00 18.93 TOTAL ALL PAGES 199.47 287.028 47.694 96.928 ZCADTS/388

, , , - c-.. .- , - - - . . , . . - -

- - - 1

Page 60 APPENDIX B TYPE B AND C TEST

SUMMARY

The As-Found leak rate for the Primary Containnent Isolation Valves / Components, excluding the Main Steam 2rvb tion Valves was below the Tech Spec Limit of 231.4 ScrH using the Minimurr. Path Methodology. The Tech Spec. limit was exceeded using the Maximum Path Methodology due to a large >

leakage contribution from Reactor Water Cleanup Suction Isolation Val.ss which amounted to 127.7 Scril or 44.5 % of the total. The 2033-F001 and 2G33-r004 Reactor Water Cleanup Isolation Valves were replaced during the outage and other components repaired / adjusted to bring the total Type B and C leakage well below the Tech Spec limit.

As-round As-Found As-Left Tech Spec Limit l Min path Max Path Max Path (SCril)

(SCFH) (SCTH) (Scril)

Type B 4.078 4.078 4.458 -----

Type C 195.3955 _182.95. ,_ %3L _._-- J Total 199.47 287.03 96.93 231.4 Main Steam Isolation valves (Tested at 25 psig)

AS TOUND LEAK RATE AS LETT LEAK RATE- TECH SPEC LIMIT.

ETENi.11HE IECni) (ECUI) [SCFH)

A 23.78 24.1 -----

B 28.1 8.67 -----

C 6.7 11.44 -----

D 7.1 _1115 -----

--TOTAL 65.68 51.86 100 i

l i  !

l ZCADTS/388-

Pags 61-APfENDlK C (Sheet 1 of 15)

CALCULAT10!i OF CONTAINMENT DRY AIR HASS A. Average Temperature of Subvolume $1 (Tg)

The average temperb'ure t of subvolume li (Tg) equals the average of all RTD/Thermister temps in subvolume li Tg " )f{ E Tg ,3 j=1 Where N = The number of RTDs/Thermisters in subvolume $1 B. Average Dow Temperature of Subvolume li (D1 )

The average dew temperature of subvolume il (Dg) equals the average of all dew cell dew temps in subvolume li Di N I'd j=1 Where N = the number of Dew Cells in subvolume li If the subvolume in question is the suppression pool, the above assumption may be used if it cen be shown from previous test data that there is a very close correlation between suppression pool chamber and water temperature.

'C. Total Corrected Prcssure for Pressure transmitter li (Pg)

The total corrected pressure ti, (pg ) is l Pg = C3 4 Hg Prg Where Cg = Zero shift correction factor for raw pressure li Mg = Slope correction factor for raw pressure 41 Pri = Raw pressure ti, in decimal form D. Whole Containment Volume Weighted Average Temperature, (Tc)

Calculate Tc using the below equation or one that yleids equivalent values to two decimal places.

ZCADTS/388

_r

1 Pags 62 APPrNDIK C (Sheet 2 of 15)

CALCULATION OF CONTAINMENT DRY AIR MASS Te = " - *-

N f

E 1 imi T1

. . . where *

  1. th ft = The volume fraction of the i subvolume H = The total number of subvolumes in containtnent E.' Calculation of the Average Vapor Pressure of Subvolume 1, (Pvg)

.Averago Subvolume Vapor Pressure as functions of Average Dew Temperatures (Dg) -are mest ancurately found f rom ASME St.eam Tables. A similar correlation that is extremely accurate is given below. *

-For 32 1 Dg i 80*F Pvg = 0.2105538 x 10~3 + 0.1140313 x 10-2 y

+=0.1680644 x 10-4 xD2 + 0.3826294 x 10'0 D 3

+ 0.5787831 x 10'9 D4 + 0.2056074 x 10-10 9 5 For 80 1 D3 1 115*F Pvg.= 0.18782 - 0.7740034 x 10-2 pi

+ 0.234009 x 10*3 xD2 - 0.1569692 x 10-5 9 3 1 1 4

+ 0.1065012 x 10~7 D 1-For-115 1-D1 1 155'F Pvg = 0.9897124 - 0.3502587 x 10 1 p

+ 0.5537028 x 10~3 xD2 - 0.3570467 x 10-5 D 3 i i 4

+ 0.1496218 x 10-7 D 1

For 155 1 D3 A 215'F 1

-Pvg = 0.3338872 x 10 - 0.9456801 x 10'l D i

+ 0.11'21381 x 10~3 2D - 0.598361 x-10-5 33 1 1 4

+ 0.1882153 x 10~7 D 1

  • NOTE Numbers from ASME Standard Steam Tables, Fifth Edition. i t

- ZCADTS/388 J,. . ~ , - _ . m , . . . , _ - - , -_ -

Psg2 63 AP.IHIDIK_C (Sheet 3 of 15)

CALCULAT101 Or CQiTAINMCHT DRY AIR MASS

r. Whole Containment Average Vopor Pressure, (Pve)

Calculate Pyeusing the below equation or one that yields equivalent values to two decimal places.

N fy Pv3 Pvc=T c E Tg i=1 where N = The total of subvolumes in containment fg = Volume fraction of the i th subvolume G. Calculation of the Whole Containment Average Dew Temperature, (D c)

Whole Containment Average Dew Temperature as functions of Whole Containment Average Vapor Pressures are most accurately found f rom ASME Steam Tables.

A simpler corrointion that is extremely accurate is given below.

  • De is in units of 'r.

For 0.08859 s. Pv c i 0.50683 psia Note Pc (0.08859) = 32'r, Pc10.50683) = 80*r Pv c De = - 0.5593968 x 101 + 0.6348248 x 103 3

- 0.320306 x 10 4Pv + 2 0.1130089 x 10 py 5 _

c 5

- 0.2411539 x 103Pv4 + 0.2796469 x 105 py C

C 5 6

- 0.1348916 x 10 py for 0.50683 1 Pye 1 1.4711 psia Note P c (0.50683) = 80*T, Pc (1.4711) = 115'r Pv c De = + 0.2334173 x 102 + 0.2004024 x 103

- 0.2785328 x 103 Pv 2 4 0.2765841 x 103 Pv 3 e c 3 4 4 0.5658985 x 10 2 py 5

- 0.168669 x 10 Pv C C 1 6

- 0.7977715 x 10 Pv c

  • ZCADTS/388

Pagt 64 AEEDIDIX C (Sheet 4 of 13)

CALCULATION OF CONTAINMENT DRY AIR MASS For 1.4711 1 Pyg A 4.2036 psia Notes Pc (1.4711) = 115*F, Pc (4.2036) = 155'T p,

De = + 0.5221757 x 102 + 0.7391149 x 102

- 0.3306993 x 102 py2 + 0.1074842 x 102 py 3 C C 1

- 0.1169825 x 10 Pv4 + 0.2432796 Pv5 c c 6

- 0.1155358 x 10-1 Pv _

c For 4.2036 i Pyc 1 15.592 psia Notes Pc (4.2036) = 155'F, Pg (15.592) = 215'T py De = 0. 85*.227 8 x 102 + 0.274613 x 102 c

- 0.3847812 x 101 Pv2 + 0.3909064 /v3 C C

- 0.2451226 x 10-1 Pv4 + 0.8484505 x 10~3 Pv 5 e c 0

- 0.1237098 x 10~4 Pv c

  • NOTE: Numbers from ASME Standatt Steam Tablos, Fifth Edition.

H. Average Total Containment Pressure, (P) .p N

1 E P ri P*N 11 ,

where N is the number of pressure transmitters used 6: 1. . Average Total Containment Dry Air Pressure, (Pd)

Pd=P-Pv c ZCADTS/388 m... . ._ . . . . . . . .. .

.I

Pags 65 APffdiD1K_C (Sheet 5 of 15) i CALCULATION OF CONTAINMrJiT DRY AIR MASS J. Total Containment Pry Alt Mass, (H) l Iype_.1 ,

P Y d

H*RT c i

where Rw Perfect gas constant of air, $3.35 lbg - (t/lb, *R Ve = Total containment free volume.

P b

2 L

ZCADTS/388 l ..

l

m Page 66 I

AEEEND1K_C (Sheet 6 of 15)

BN-TOP-1 METHOD TEST CALCULATIONS A. Measured Leak Rate (Total time calculations)

Prom DN-TOP-1 Revision 1, Section 6.0 the following equation is given for the measured leak rate using the total time procedures Hg = 110D ToP ith tg 1 T ith EO WHERE:

Hg = Hessured leak rate in weight % [er day for the itL data point tg = Time since the beginning of the test period to the ith data point in hours T,o Tith a mean volume weighted containment temperature at the beginning of the test and at the ith data point (R)

P,P2 1

= mean total absolute pressure, PSIA of the containment  !

atmosphere at the beginning and etad of test interval (tg) respectively.

Pyy, Pv2 a mean total water vapor pressure, PSIA, of the containment atmosphere at the beginning and end of test interval (tg)-

respectively Po=Py-Py1 Pith = P2~Ev2 B. Calculated' Leak Rate The method of.Least Squares is a statistical procedure for finding the >

"best fit" straight line, commonly called the regression line, for a set of measured data such that the swn of the squarns of the deviations of each measured data point from the straight line is minimized.

To determine the calculated leak rate (Lg) at_ time _t i , the regtabslon line is-determined using the measured leak rate data from the start of the test

-to time ti, The calculated-leak rate is the point on this line at time ti.

Lg = Ai + Bg(t i ) [4]

ZCADTS/308' q

. . . - . . . . . _ _ . _ . , . _ . . _ - - . _ . , - - , . . . . . . ~ . , _ _ ~ ~ . . . . , - . . , . . - , , , - - , - . - . . . . . . . . ,

Pags 67 APElml&_C (Shoot 7 of 15)  :

BN-TOP-1 METi!0D TEST CALCULATIONS l Using dif ferential calculus, the numerical values of A3 end B3 that will minimise the sum of the squares of the deviations can be shown to be A1 = _iE141) (E112 ) -

(Eti) ( [5] i n(Etl )

2 -

(%ti){ tim 11 Bg a _nEti)il 2 - ( EtiL_({h'i) [6) n(Et1 ) , (ggg)

WilERE na number of data sets to time t1 Equations [5] and [6] are referred to as the Least Gquare equations and are used by the computer program to compute the calculated leak rate for the Total Time and Point to Point calculations.

C. -Confidence Limits Even-though the regression line is statistically detetmined to minimize the sum of the' squares of the error, the values of the calculated leak rate cannot be considered to be exactly correct. If the containment integrated leak rate test were run a number of times, under the same conditions, the calculated leak rates would be close in value but not exactly the same each time, llowever, based on statistics we can establish confidence limits associated with the regression line such that the limits of the calculated leak rate computed would successfully enclose the true value of the desired parameter a large fraction of the ti.ne. This fraction is called the confidence coefficient and the interval within the confidence limits is the confidence interval.

Confidence limits for-the integrated leak test computer program are determined based on a confidence coefficient of 95%. This means that the probability that the value of the calculated leak rate will fall within the upper and lower confidence limits, or confidence interval, is 95%.

I 2CADTS/388 l

page 68 APPENDIK_C (Sheet 8 of 15) -

i BN-TOP-1 METHOD TEST CALCtlLATICRIS To determine the value of the confidence limits the following statistical information is required the variance, standard deviation, and the Student's T-distribution.

The variance, as the name implies, is a measure of the variability of individually measured date points from the mean, or in this case, from the '

regression line. The variance of the measured leak rate (M1) from the calcul6ted leak rate (L1) is given bys s2 , ggg [7]

n-2 Where s is the variance and s is the standard deviation based on (n 2) i degrees of freedom. SSQ is the sum of the squares of the deviations f rom the regresssion line and is mathematically expressed below SSQ = E (Mi - N1)2 [8]

Where: H3 = deviation from regression line The standard deviation has more practical significance since computing the standard deviation returns the measure-of variability to the original units of measurement. Additionally, it can be shown thac given n_ normal distribution of measurements, approximately 95% of the measurements will fall within two standard deviations of the mean.

The number of standard der *ations either side of the regression lin. ,pac h establish a upper confidence interval are n. ore accurately determined asi 2 a statistical table called a " Table of percentage Points of the T-distribution" and' provide increased confidence in outcomes for small and large sample sizes.

Since we ere interested in reporting a single value of calculated leak rate based on measurements taken over a specific time period, an additional factor is applied to the formula for computing the variance and hence, the standard deviation.

ZCADTS/388

Pags 69 AEffliDlK_C (Sheet 9 of 15)

BN-TOP-3 METIIOD TEST CALCU!.ATIONS The Table of T-distributions has been formulized for use by the computer program as valows:

T = 1.95996 + 24220 + 2d12.5 [9]

(n-2) (n-2)2, WHEREt the value of 7 is based on 95% confidence limits and (1.-2) degrees of f reedon .

The application of the additional factor to the variance formula yJeldst

-02 , ,2 14 l._ + itP__bl2 [10) n E (ti'- t)2 WHERE tp = time from the start of the test of the last data set for which the standard deviation of the measured leak rates (Mi) from the regression line is being computed.

ti = time from the start of the test of the ith data set n-e number of data sets to time tp n

E=E  ; and (11) i=1 t = 1 E ti n

Taking the square root of equation (10) ylsids the standard deviations o=a 1:+ _1_ + (tp 51 2 g n E (tl --t)2 The upper confidence limit can now be determined, the confidence limit

-being equal to T standard deviations above and below the regtension line.

Combining equations [10) and (11) yields l'

I ZCADTS/380

. - .. ~ .-.- , . . - . - . ... .. - . - . . ~ . . . . . . - - . - -

. 4, .

t i ,. Pags 70 AEPJ2(DIX C (Sheet 10 of 15)

BN40P-1 METilOD TEST CALCULATIONS Confidence limits = L .i To (12) or UCL = L1 + To [13)

WHERE UCL la the upper confidence limit respectfully.

WilERE: Li = Calculated Leak Rate at Time tl T = T-Distribution value based on n, the number of data sets received up until time ti.

o = Standard deviation of Hessure Leak Rate (MI) values about the regression line based on data frem the start of the test until' time tl.

l 1

H i

ZCADTS/388

Page 71 1

AEEEUDIK_C l (Sheet 11 of 13)  !

t Date Rejection Criteria  ;

1. If a sensor, in the opinion of the Tech Staff Engineer, is out of range, it will be ignored (i.e., set =0) and the number of operable ,

R1D's/Thermisters or Dewcells in the subvolume will be reduced by one. The sensot should bo considerad out of range if it is evident that the sensor has nalfunctioned. All rejected cata should be  !

maintained if possible and the reason for rejection documented on

  • Attachment Z data sheet and in the Events log, (Attachment C).

Should the number of RTD's/Thermisters or the nun.ber of Dew calls lu a subvolume become equal to zero (accept for Subvolume, 2 and 7:

Zero dowcells already) then with approval of the Technical Staff Supervisor, substitute the average temperature of the appropriate subvolumn which is chonen based upon the temperature survey and/or temperature distribution prior to Instrument failure. Document on Attaahment Z data sheet and in Events Log, (Attachment C).

HQIE If all RTD's/Thermisters in subvolume 9 are lost, then stop the test and repair the RTD's/Thermisters or if the AIR in Subvolume 9 can be shown to be near saturation, use Subvolume 9 average Dewcell temperature.

If all Deweells in Subvolume 9 are lost, and the Air in Subvolume 9 can be shown to be near saturation, use Subvolwas 9 average RTD/Thermister temperature. Also, if the average RTD/Thermister temperature over the last 6 data 3ets is within 0.5'r of a speelfic RTD/Thermister, the specific RTD/Thermist:r may be chosen as the Dewcell.

2.- If one pressure transmitter is out of the range of 14 < r (paia) < 60 the pressure transmitter wlll be ignored (set =0).

UQIE All Dato should be reculculated with bad element (s) deleted.

3. Raw temperature, pressure, and dew point data should not be rejected statistically, but may be rejected and not used in the final calculations provided there is a good phys! cal reason for the rejection. Data rejected, including the chuse or probab2e cause for the Lad data'.- are to be documented. If the validity of certain data Els suspect, but no physical reason is found, then a statistical rejection technique may be applied. (See ANSI /ANS ~ 56.0-1987, for Data-Rejection Criterion). A data point may be rejected if it is expected to occur statist.ically le's than 5% of the tima. The statistical rejection of more than 5% of a set of data should not be allowed.

ZCADTS/388 L

l.

~m Page 72 APf1HDlX_C (Sheet 12 of 15) i CALCULATIOi OF INSTRUMENT SELECTIQi GUIDE, (ICG)

~

ISO = 240.0 2 (ep /p)2 + 2 (er /T)2 , ,,,y g,dfp)F  %

t _H p Il r Nd -

wheret t is the test time, in hours p is test pressure, psia T is the volume weighed average containment temperature, ('R)

N la the number of pressure transmitters N .As the number of RTDs/Thermlsters N ois the number of dew cells e is the combined pressure transmitters' error, (psia) e la the cortibined RTDs'/thermisters error, (*R) ed is the ccmbined dew cells' error, ('R) g

_(Sp )2 , (ppp , pg p)2_

where Sp la the sensitivity of a pressure transmitter RP is the repeatability of a pressure transmitter RS is the resolution of pressure transmitter

~ ~

% i "r " .

2 (Sr ) + (RP r 4 RSr I - -

l where Sr is the sensitivity of an RTD/thermister RPr is the repentability of an RTD/thermister RSp is .he resolution of an RTD/thermister

, ,g I ~% '

M Td l-(8d) + (RPd + RS d )-

- where s .d S is the sensitivity.of a dew cell RP d is the repeataDility of_a dew cell

  • PSd is the resolution of a dew cell dEy change in vapor._prassure 6T d 'I d change in saturation temperature The above ratio la from ASME steam tables-and evaluated at the-containment's saturation temperature at that time.

o ZCADTS/388 L.

1 L

Page 73 APEENDJK_C (Sheet 13 of 15)

UPPER AND LONER DOUNDING ISG VAf.It%

USE SENSOR C0tiTIGURATICri IN CONTIG. TL LASALLE Unit 2 TEST MINIMUM MAXIMUM DURATIOti ISG VALUE ISU VALUE (110URS) (%/ DAY) (%/ DAY) 1 0.0625 0.0670 2 0.0312 0.0335 3 0.0208 0.0223 4 0.0166 0.0168 '

5 0.0125 0.0134 6- 0.0104 0.0112 v 7 0.0089 0.0096 8 0.0078 0.0084 9 0.0069 0.0074 10 0.0062 0.0067 11 0.0057 0.0061 12 0 0052 0.0056 13 0.0048 0.0052 14 -0.0045 0.0048 15 0.0042 0.0045 16 0.0039 0.0042 17 0.0037 0.0039 18 0.0035 0.0037 '

19 0.0033 0.0035 20 0.0031 0.0034 '

21 0.0030 0.0032  ;

22 0.0028 0.0030 23 0.0027 0.0029 24 0.0026 0.0028 NO PRESSURE CHANNELS ARE LOCKED OUT DAS CllANNEL 139 IS LOCKED OUT TROM DSN 1 ZCADTS/388. .

1 I

! Page 74 AITERD_lX_C 1

(Fheet 14 of 15)

UPPER AND LOWER DOUNDING ISG VALUES USE SENSOR CONFIGUKaTION IN CONTIO. FL LASALLE Unit 2 TEST HINIMUM MAXIMUM DURATION ISG VALUE ISG VALUE (HOURS) (%/ DAY) (t/ DAY) 1 0.0626 0.0678 2 0.0313 0.0339 3 0.0209 0.0226 4 0.0157 0.0170 5 0.0125 0.0136 6 0.0104 0.0113 7 0.0089 0.0007 8 9.0078 0.0085 9 0.0070 0.0075 10 0.0063 0.0068 11 0.0057 0.0062 ,

12 0.0052 0.0057 13 0.0048 0.0052 14 0.0045 0.0048 15 0.0042 0.0045 16 0.0039 0.0042 17 0.0037 0.0040 18 0.0035 0.0038 19 0.0033 0.0036 20 0.0031 0.0034  !

21 0.0030 0.0032 22 0.0028 0.0031 23 0.0027 0.0029

-24 0.0026 0.0028

'NO PRESSURE CHANNELS ARE LOCKED OUT DAS-CHANNEL,139 IS LOCKED OUT FP.0H DSN 1 DAS CHANNEL I49 IS LOCKED OUT TROM DSN 1 ZCADTS/338 I l

7 Page 75 APIENDlK_C (Sheet 15 of 15)

DEFINITIONS A. Maximum Allowable Leak Rmte (LA ) at pressure Pa (39.6 psig)

L, = 0.635% of containment 3voluine per day

= 0.00635 x 394,638 ft /24 hr

= 2506 ft 3/24 hr

= 104.4 ft 3/hr

= 104.4 .L3b i_t_li 21 = 305.7 SCFH 14.7 B. Maximum Allowable Operational Leak Rate (L T ) at pressure Pg (39.6 psig)

LT = 0.75 Lg I

= 0.75 (.635%/ day)

= 0.476%/ day .;

= 289.3 SCFH C. Maximum Allowable Total Type "B" and "C" tests (L 3)

L1 = 0.60 L

= C.60 (A.635%/ day)

= 0.381%/ day

= 231.4 SCFH D. Induced Leak Rate Acceptance Criteria ,

Lo = superimposed flowmeter leak rate (%/ day)

Le = Induced Statistically Averaged / Calculated leak rate during

. verification test (%/ day) -

Lg = Statistically Averaged / Calculated leak rate prior to I verification test (%/ day) lLe - (Lo+L) l10.25L, 1 1 0.25L, (.635%/ day) 1 0.159%/ day E. Rotometer Induced riowmeter Flowrate [Lo (scfh))

pressure-temperature correction Lo a L, IPm)(Tcl

,Pc)(Tm).

(

Lm = Measured Fled ~(SCFH\

Pm = Rotometer Outlet Pressure (PSIA)

Pc = Calibrated Pressure (PSIA)

Tm = Rotometer Outlet Temperature (*R)(*F-+ 459.69) .

Tc = Calibrated Temperature ('R)['T + 459.69)

ZCADTS/3BB

. _ . - ,, . , - . . . a., . _- - . _ ~ . _~u__.-.

Page 76 AEPEHDlX,1)

(Sheet 1 of 5)

{

BN-TOP-1, REV. 1 ERRATA The Commission has approved short duratio the Station topleal uses the general test method n testing for the IPCLRT provided report.

previously used is in the statistical analysisThe data. o and the ones primary differe I

of the measured leak rate Without making any judgements concerni certain errors discovered. in the editing of the inathemating the validity of this test method, cal expressions wete to clarily the method in a mathematicallThe implementation. intent method, but here rather is not to chan

~

The errors are listed below.y precise manner that allows its EDUh110tL3LEEC11LtLDA Reads: L g = A + B tg Should Readt Lg=Ag4 D g tg Reason:

The calculated leak rate (L ) at time t g

using equations 6 and 7).usingBgthe g regression line const (computed The summation signs in a

equation 6 are defined as I = E, where n is th

}

i =1 e number of data sets up until time tg.

constants change each time a new data set isThe regression line received.

function of time.The calculated leak rater is not a linea FARAGRAPILE01&QWitiG 104_JAJECI1Q1Lb2 Reads:

The deviation of the measurede leak calculated leak rate (L) (M) fromratthe rigure A.1 in Appendix A and is expressed astis shown grap Deviation a Mg-Li Should Roads The deviation regression A.1 line (Ngof

) the measured leak rate (M ) from g the in Appendi- A and is expressed asis shown graphically on Figu Deviation = M g-Ng where N g = A p+B p *t g, ZCADTS/388

, - - . . - - . . . - ~ . . - . . . . _ _ _ . . - . - . .

Page 76 AEPlllDlK D (Sheet 1 of 5)

BN-TOP-1, REV. 1 ERRATA The Commission has approved short duration testing for the IPCLRT provided the Station uses the general test method outlined in the BN-TOP-1, Rev. 1 topical report. The primary dif ference between that mettod and the ones previously used is in the statistical analysis of the measured leak rate data.

Without making any judgements concerning the validity of this test method, certain errors in the editing of the mathematical expressions were discovered. The intent here is not to change the tent method, but rather to clarify the method in a mathematically precise manner that allows its implementation. The errors are listed below.

EQUAT10tL31u__SETION 6.2 Roads: Li=A4 D tg Should Read L3 = Ag + D3 tg Reasont The calculated leak rate (Lg) at time ti is computed using the regression line constants Ag, Bg (comp *1ted using equations 6 and 7). The summation signs in n

equation 6 are defined as I = E, where n is the number i=1 of data sets up until time tg. The regression line constants change each time a new data set is received. The-calculated leak rate is not a linear function of time.

EAEAGE Pli_I E LOWING EO._3A; SETION 6.2

[ Reads: -The deviation of the measured leak rate (H) from the j calculated leak rate (L) is shown graphically on rigure A.1 in Appendix A and is expressed as Deviation = Mg - L1 j, Should Read: The deviation of the measured leak rate (Hg) from the

! regression line (Hg) is shown graphica71y on Figure

!~

-A.1 in Appendix A and is expressed as:

Deviation a Mi ---Ng - -

where Ng =Ap+Bp *t i, l

l ZCADTS/388

Pc.ga 77 APPENDIX D (Sheet 2 of 5)

A,Dp=

p Regression line constants computed from all data sets available from the start of the test to the last data set at time t ,

p tg = time from the start of the test to the ith data set.

Reason: The calculated leak rate as a function of time during the test is based on a regression line. The regression line constants, Ag and Bg are changing as each additional data set is received. Equation 3A is used later in the test to compute the upt.ur confidence limit as a function of time. For the purpose of this calculation, it is the deviation from the last computed regression line at time tp that is important.

EDUAUQti_b SECTIOli_.fi12 Reads: SSQ = E (Mg - Lg )2 Should Roads SSQ = I (Mg - Ng)2 Reason: Same As Above ,

EQUADON 5. SECTION 6.2 Heads: SSQ = E [Mg - (A + Btg))2 Should Reads SSQ = E (Mg - (Ap+Bp

  • tg)]2 Reason Same As Above EQQAHON ADOVE ECUATIC*i 6. SECH ON 6.2 Reads: B = ity_._t)(My - M1 E(tg - t)2 Should Readt Dg =E[ity_y_klufy__51)

(tg - t)2 Reasons-- Regression-line constant B1 changes over time (as a function of tp) as each additional data set is received. Bar of "t" left out of denominator.

Summation sinns omitted.

ZCADTS/388 4

- ,.- - ~ - . . - % _e,.-- . _ _ - _ . , _


3-4 %w -c.4 9- e

l ,,,

lr,' --

Pago 78 AEl'LiDIK_D (Sheet 3 of $)

EQUATION 6. SECTION 61 2 Reads: B = p . E . tgJ3 - (E ty)_{Ilyl n Itg2 - (I tg)2 Should Reada B3 = n E tyl y - (E tyl_{I Jyl n Etg2 - (E tg)2 Reason Same es above.

EOUATION 7.._ SECTlQtLQal )

Reads: A = M-Bt l

Should Readt Ag = H - Bgt Reason Same as above.

EQQATION 10. SECTION 1 2 Reads: A = IIJy) (Et[).- (l' y) (E ty Jyl n E tg2 - (E t )2i Should Readt' Ag = IEJy) ( E t[1 - ( T._ty) ; ( E tyJyl n E tg2 - (E t i)2 Reason Same as above.

EQUAT10tL11. SECTION 6.3 Reads 0 2 , ,2 [1 , 1 , gg , p32) n (tg - t)2 Should Readt 0 2,,2[g,1,gg _ gy2) n--E(tg' E)2 3CADTS/388

--,-ns ,,-a- , - , - , -- - - - . - . . ~ na, - n ~

Pags 79 AEfl2iDIYJ (Sheet 4 of 5) where tp = tiree from the start of the test of the last data set for which the standard deviation of the measured leak rates (Hg) -

from the regression line (Hg) is being computod; tg a time from the start of the test of the ith data sets n = number of data sets to time t p n

E = E ; and i=1 I

s t = E tg _

n Reasont Appears to be error in editing of the report. Report does a poor job of defining variables.

ECilAT10tLliuSECIIDtLfu3 Readst o = s [ 1 + 1 + (t p_ _tlA n (tg - t)2 Should reads o=s[1+1+(t__51A p n E (tg - t)2 Reason Same As Above.

EQUATION 15. SECIlgtLW -

Readat Confidence Limit =L1T Should Readt Confidence Limits = L i T x o where L = calculated lead rate at time tp, T = T distribution value based on n, the number of data

, sets received up until time tp; oa standard deviation of measured leak rate values (Mg) ebout the regression line based on data from the start

'of the test until time t p.

Reason Same As Above.

ZCADTS/388

. . . . .- -- .. . _ _ _ _ _ _ = _ - - _ _ _ . .

Page 80 AEEENDlX_D (Sheet 5 of 5)

EQUAIIQtL1hdCIlotLful Reads: UCL = L + T i

Should Readt UCL = L + T

  • o Reason: Same As Above.

EQUATION 17- SLCIlotLiil Reads: LCL = L - T Should Readt LCL = L - T

  • o _

Reason: Same As Above.

s 2

L ZCADTS/388

_ . . .