ML20064N280

From kanterella
Jump to navigation Jump to search
Reactor Primary Containment Integrated Leak Rate Test LaSalle County Nuclear Power Station
ML20064N280
Person / Time
Site: LaSalle Constellation icon.png
Issue date: 03/17/1994
From: Ray D
COMMONWEALTH EDISON CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
NUDOCS 9403290242
Download: ML20064N280 (116)


Text

______

9 Commonwraith Edison LaSalle County Nuclear Station 2601 N. 21st. Rd.

Marseilies, Illinois 61341 Telephone 815/357-6761 9

March 17,1994 g

U.S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555

SUBJECT:

Reactor Containment Building Integrated Leak Rate Test LaSalle County Nuclear Power Station Docket No. 50 374, NPF-18, Unit 2 Enclosed please find the report " Reactor Containment Building Integrated Leak Rate Test", LaSalle County Nuclear Power Station, Unit 2, December 8,1993 and related appendices describing the Type A test.

This report is submitted to you in accordance with the requirements of 10CFR50, Appendix J, Section V.B.I. The information contained in Appendix A of this report is intended to comply with requirements of 10CFR50, Appendix J, Section V.B.3.

According to 10CFR50, Appendix J, Section III.D., the next Type A test is presently scheduled to be performed at the next refueling outage (Spring 1995).

Sincerely,

~

D D.J. Ray Station Manager p

LaSalle County Station Enclosure cc:

J.B. Martin (U.S. NRC Region III)

F. Maura (U.S. NRC Region III)

D. Ilills (LaSalle Senior Resident Inspector)

A.T. Gody, Jr. (NRC NRL Project Manager)

Gary Benes (LaSalle N'LA)

J. Glover (Corporate ILRT)

File / Integrated Leak Test Station Managers:

Zion Dresden Byron Braidwood i g 90b4$940317 Quad Cities N-940 PDR ADOCK 05000374

(

P PDR

J '%v O

O REACTOR PRIMARY CONTAINMENT O

INTEGRATED LEAK RATE TEST O

D LaSALLE COUNTY NUCLEAR POWER STATION COMMONWEALTH EDISON COMPANY a

DOCKET NUMBER 50-374 UNIT 2 DECEMBER 8, 1993 9

9 9

9 i

TABLE OF CONTENTS.

[]

PAGE INTRODUCTION 1

A.

TEST PREPARATIONS 2

A.1 Type A Test Procedure 2

{)

A.2 Type A Test Instrumentation..................................

2 a.

Temperature L.

Pressure.

c.

Vapor Pressure d.

Flow A.3 Type A Test Measurement 4

A.4 Type A Test Pressurization...................................

4 B.

TEST NETHOD 15 B.1 Basic Technique..............................................

15 B.2 Supplemental Verification Test 15 B.3 Instrumentation Error Analysis 15 C.

SEQUENCE OF EVENTS 16 C.1 Test Preparation Chronology..................................

16 C.2 Test Pressurization Chronology...............................

16 C.3 Temperature Stabilization Chronology.........................

17 C.4 Measured Leak Rate Phase Chronology..........................

17 C5 Induced Leak Rate Phase Chronology...........................

17 C.6 Depressurization Phase Chronology............................

18 D.

TYPE A TEST DATA...................................................

19 D.1 Measured Leak Rate Phase Data 19 D.2 Induced Leak Rate Phase Data 19 E.

TEST CALCULATIONS 79

)

F.

TYPE A TEST RESULTS AND INTERPRETATIONS 80 F.1 Measured Leak Rate Test Results 80 F.2 Induced Phase Test Results 80 F.3 Leak Rate Compensation For Non-Vented Penetrations 81 F.4 Change In Drywell Sump Level.................................

81 F.5 Evaluation Of Instrument Failures............................

82 F.6 As-Found (Calculated Adjusted) Local Leak Rate 42 APPENDIX A TYPE B AND C TESTS 89 APPENDIX B L2R05 TYPE B AND C TEST

SUMMARY

101 APPENDIX C PCILRT CALCULATIONS 102 l

i t

I i

t C) i TABLES AND FIGURES INDEX I C)

TABLE 1 I N ST RUM ENT S P ECI FI CATI ON.....................................

5 TABLE 2A ILRT SENSOR PHYSICAL LOCATIONS 8

FIGURE 1 ILRT SENSOR DEVICE INTERCONNECTIONS 11 TABLE 2B SUBVOLUME LOCATIONS AND VOLUMES 12 FIGURE 2 ILRT SENSOR PHYSICAL LOCATIONS 14 TABLE 3 MEASURED LEAK RATE PRASE....................................

21 FIGURE 3 CALCULATED LEAK RATE AND LEAK RATE AT UCL....................

22 FIGURE 4 MEASURED AND CALCULATED TOTAL TIME LEAK RATE................

23 FIGURE 5 MASS vs TIME................................................

24 FIGURE 6 AVERAGE VAPOR PRESSURE vs TIME..............................

25

' C)

FIGURE 7 AVE RAG E T EM P E RATU RE vs TIM E.................................

26 FIGURE 8 AVERAGE DEW POINT vs TIME...................................

27 FIGURE 9 AVERAGE PRESSURE vs TIME....................................

28 FIGURE 10 P RES S U RE vs T I M E............................................

29

[C)

FIGURE 11-15 INDIVIDUAL - DEW POINT SENSORS vs TIME........................

30 FIGURE 16-3 0 INDIVIDUAL TEMPERATURE S ENSORS vs TIME.......................

35 TABLE 4 INDUCED LEAK RATE PHASE.....................................

51 30 FIGURE 31 MEASURED LEAK RATE AND LEAK RATE AT UCL (INDUCED) 52-FIGURE 32 MEASURED AND CALCULATED TOTAL TIME LEAK RATE (INDUCED) 53

'l FIGURE 33 MASS vs TIME (INDUCED) 54 i

FIGURE 34 AVERAGE PRESSURE vs TIME (INDUCED) 55' l

C)-

FIGURE 35 AVERAGE DEW POINT vs TIME (INDUCED) 56' a

j FIGURE 36 AVERAGE TEMPERATURE vs TIME (INDUCED) 57 FIGURE 37 PRESSURE vs TIME (INDUCED) 58' FIGURE 39-43 INDIVIDUAL DEW POINT SENSORS vs TIME (INDUCED) 59

. )

FIGURE 44-58 INDIVIDUAL TEMPERATURE SENSORS vs TIME (INDUCED) 64 TABLE 5 CALCU LAT ED AD JU ST ED L EAKAG E.................................

83.

TABLE 6 L2R05 TYPE B AND C TEST RESULTS 91 O

I "AD.

1 Page 1

.O -

INTRODUCTION

()

This report presents details of the Primary Containment Integrated Leak Rate Test (PCILRT) successfu' performed on December 8, 1993 at LaSalle County Nuclear Power Station,

.2.

The test was performed in accordance with 10CFR50, Appendix J and m LaSalle County Station Unit 2 Technical Speci fica tions.

LaSall>

ounty Station Unit 2 is a BWR 5, Mark II containment, located in aarsellies, Illinois.

LaSalle County Station Unit 2 received its operating license in June 19, 1984.

).

A short duration test (6.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />) was conducted using the general test method outlined in BN-TOP-1, Revision 1 (Bechtel Corporation Topical Report) dated November 1, 1972.

The total primary containment integrated leakage rate was found to be 0.3164 wt%/ day at a test pressure of 41.1 psig, which is within the 0.476 wt%/ day C) acceptance criterion. This value is the sum of the calculated leakage rate of 0.28486 wt%/ day plus the leakage rate of all non-vented penetrations which is 0.0315 wt%/ day.

The total 95% upper confidence limit leakage rate was found to be 0.3479 wt%/ day.

This value is the sum of the measured 95% upper confidence limit of 0.3164 wt%/ day plus the leakage rate of all non-vented penetrations which is 0.0315 wt%/ day.

()

The total "as-found" containment leakage. rate was found to be 0.4273 wt%/ day which is also within the 0.476 wt%/ day (.75 La) acceptance criteria.

This value is the sum of the "as-left" leak rate (0.3164 wt%/ day), the non-vented penetrations (0.0315 wt%/ day), and the back correction leak rate (0.0794 wt%/ day) which takes into account the improvements made to type B and C pathways during the outage.

()

The Induced phased leak rate test result was found to be 0.7996 wt%/ day. This value should compare with the sum of the measured leak rate phase of 0.2849 wt%/ day and the induced leakage rate of 0.638 wt%/ day (387.0 SCFH), the-difference of which being within the 1 0.159 wt%/ day (0.25 La) tolerance band.

The actual' test data results show a difference of 0.1232 wt%/ day.which is within the acceptance criterion.

()

The next primary containment integrated leak rate test is to be performed during the sixth Unit 2 refuel outage which also happens to be the 10 year refuel outage.

The outage is currently scheduled to begin February 1995.

O-O 1

j C) 1

Page 2 4

SEcTIoN A - TEST PREPARATIONS P

A.1 Type A Test Procedure The PCILRT was performed in accordance with Procedure LTS-300-4, i

Revision 18, dated December 1, 1993. This procedure was written to i,

comply with 10CFR50 Appendix J, ANSI N45.4-1972, and LaSalle County

.:()

Unit 2 Technical Specifications, and to reflect the Nuclear Regulatory Commission's approval of a short duration test using the BN-TOP-1, Rev. 1 Topical Report as a test method.

A.2 Type A Test Instrumentation yE.)

Table one shows the specifications f or the instrumentation utilized in the PCILRT.

Table Two lists the physical locations of the temperature and humidity sensors within the primary containment.

Instrument calibrations were performed using NIST traceable standards and LTS-300-4 was used to perform required In-Situ's prior to testing.

4 l

A Graftel, Inc Smart Sensor Instrumentation System was used in the performance of this test.

The Smart Sensors allow for the measurement e

I) of temperature and relative humidity during an ILRT without the aid of a data acquisition system.

Each sensor contains its own CPU, memory, signal conditioner, and RS-485 bus interface. All calibration constants are contained in each sensors nonvolatile memory.

Up to 124 sensors may be connected to a communications port at the same I

time.

For this test, 40 sensors were connected.

Each sensor responds M) only to its own unique address.

Cable runs may be up to 10,000 feet long.

For this test, cable runs were between 250 and 350 feet long.

Since the output of each sensor is a digital signal, cable lengths have no effect on instrument calibration.

The sensors were connected in 4 strings with each string containing both temperature and relative humidity sensors. Although the sensors are

()

physically connected in series, they are electrically connected in parallel. This ensures that the failure of any one sensor will not affect other sensors. The stringa connect to a standard serial communications port of an IBM compatible personal computer.

a.

Temperature

()

30 temperature sensors (thermistors) were suspended to prevent i

direct thermal influences from any metal surfaces.

Sensors were also kept away from any direct air flows.

H i

Graftel, Inc. Model 9202 temperature sensors were used to provide the containment temperatures. The model 9202 sensor is designed C) for the measurement of dry bulb temperatures during an ILRT. The sensors utilize superstable precicion thermistors.

The thermistors are glass hermetic encapsulated and subject to 100%

individual inprogress screening.

Each thermistor is mated to a signal conditioning circuitry, A/D converter, CPU, EEPROMS, and RS-485 network interface.

An isolation circuit is used to isolate each sensor from the network.

C)

This provides extra assurance that the failure of a single sensor will not result in a failure of the entire. string of sensors.

0

,a i.

O' Page 3 b.

Pressure O

Two precision Paroscientific 760-100A pressure transmitters were utilized.

Each transmitter had a. local digital readout in addition to a Dinary Coded Decimal output to the computer.

Primary containment pressure was sensed by the pressure transd tters in parallel through a 3/8" tube connected to a primary containment pressure sensing instrument line.

'O Each instrument consists of a Paroscientific pressure transducer an a digital interface board.

The digital board has a microprocessor-controlled counter and a RS-232 serial port. The microprocessor operating program is stored in permanent memory (EPROM). User controllable parameters are stored in writable memory (EEPROM). The computer interacts with the pressure

)

transmitter by way of the RS-232 interface.

The microprocessor monitors incoming commands from the computer.

When a sampling command is received, the microprocessor selects the appropriate frequency signal source and makes a period measurement using a 124.5 MHz timebase counter.

The counter integration time is user selectable.

Some commands require

()

measurements of both temperature and pressure signals.. In that case, the temperature period is measured first, followed by the pressure period. When the period measurement is completed, the microprocessor makes the appropriate calculations and loads the data onto the RS-232 bus.

Each precision pressure transmitter was calibrated over the range of 0 paia to 100 psia in approximately 10 psia increments using C) calibration standards as stipulated in Pre-Cal Services, Inc.

procedure ICP-14, c.

Vapor Pressure Ten relative humidity sensors were used to determine the partial pressure due to water vapor in the containment. The humidity

()

sensors were installed throughout the drywell and suppression chamber.

The sensors were placed in locations where the chance of the dowcell becoming damaged was slight.

The humidity sensors used were Graf tel, Inc. Model 9203 Relative Humidity Sensors.

These sensors utilize a temperature compensated bulk polymer chip.

They have an equivalent accuracy of 2*F dew

()

temperature and are unaffected by most commonly present chemical vapors.

Each relative humidity sensor is mated to signal conditioning circuitry, A/D converter, CPU, EEPROMs and RS-485 network interface.

An RS-485 isolation circuit is used to isolate each sensor from the network.

This provides extra assurence that the

()-

failure of any one sensor will not result in the failure if the entire string of sensors, d.

Flow A rotameter flowmeter, Fischer-Porter, calibrated to within i 1.0%

by Fischer-Porter, was used for flow measurements during the induced leakage phase of the ILRT.

The rotameter was connected to

[)

a primary containment penetration via 4" polyflow tubing'and the unrestricted output was vented to atmosphere.

O

'O Page 4 A.3 Type A Test Measurement Data from temperature and relative humidity sensors as well as the pressure transmitters was collected by an IBM compatible personal computer.

Electrical penetration E-20 was used to allow signals to travel back and forth between the inside and the outside of the drywell.

The computer would ask a specific sensor for its current data.

The sensor would in turn send the current data via the RS-485 cable to

()

repeater outside the drywell.

The signal from the repeater then gets sent through a conynrter to a switching box that switches between the temperature / humidity sensors and the pressure transmitters.

Output from the A/B switching box is then sent directly to the computer via the serial interface where data is readable by the computer and the test engineer.

All necessary calculations are performed and displayed and the data is stored to disk for retrieval at a later date.

O A.4 Type A Test Pressurization Two 1500 CFM, diesel driven air compressors were used to supply clean, oil free air for containment pressurization.

()

The compressors were physically located outside the reactor building.

The compressed air was piped into the reactor building through the existing PCILRT pressurization line.

For ease of handling, a flexible 4" pipe was used outside of the reactor building.

The drywell was pressurized through the "A" containment spray header 16" flange with an inboard valve, 2E12-r017A, open during the pressurization process.

)

C) l

()

c)

()

4 C)

TABLE 1 Page 5 (SHEET 1 OF 3)

INSTRUMENT SPECIFICATIONS INSTRUMENT MANUFACTURER MODEL NO.

SERIAL NO.

RANGE ACCURACY REPEATABILITY THERMISOR 1 GRAETEL 9202 0392010-33 50*F - 130*F 0.5*F 0.01*

THERMISOR 2 GRAETEL 9202 0392010-07 50*F - 130*F 0.5*F 0.01*

THERMISOR 3 GRAFTEL 9202 0392010-31 50*F - 130*F 0.5*F 0.01*

THERMISOR 4 GRAFTEL 9202 0392010-03 50*F - 130*F 0.S*F 0.01*

THERMISOR 5 GRAETEL 9202 0392010-25 50*F - 130*F 0.5*F 0.01*

THERMISOR 6

GRAETEL 9202 0392010-09 50*F - 130*F 0.5*F 0.01*

THERMISOR 7 GRAFTEL 9202 0392010-10 50*F - 130*F 0.5*F 0.01*

THERMISOR 8

GRAETEL 9202 0392010-21 50*F - 130*F 0.5'F 0.01*

THERMISOR 9 GRAETEL 9202 0392010-24 50*F - 130*F 0.5'F 0.01*

THERMISOR 10 GRAFTEL 9202 0392010-12 50*F - 130*F 0.5*F 0.01*

{

THERMISOR 1~

GRAFTEL 9202 0392010-05 50*F - 130*F 0.5*F 0.01*

THERMISOR 12 GRAETEL 9202 0392010-17 50

  • F - 13 0
  • F 0.5*F 0.01*

THERMISOR 13 GRAFTEL 9202 0392010-06 50*F - 130*F 0.5*F 0.01*

THERMISOR 14 GRAETEL 9202 0392010-16 50*F - 130*F 0.5'E 0.01*

THERMISOR 15 GRAFTEL 9202 0392010-14 50*F - 130*F 0.5*F 0.01*

THERMISOR 16 GRAFTEL 9202 0392010-15 50*F - 130*F 0.5*F 0.01*

THERMISOR 17 GRAFTEL 9202 0392010 5 0

  • F - 13 0
  • F '

O.5*F 0.01*

THERMISOR 18 GRAETEL 9202 0392010-27 50*F - 130*F 0,5*F 0.01*

THERMISOR 19 GRAFTEL 9202 0392010-19 50*F - 130*F 0.5*F 0.01*

THERMISOR 20 GRAETEL 9102 0392010-18 50*F - 130*F 0.5*F 0.01*

t

.-.-_x

~

Y

o

o-o=

o:

.o o

o-o.

o

<o

.oc TABLE 1 Page 6 (SHEET 2 OF 3)

INSTRUMENT SPECIFICATIONS INSTRUMENT MANUFACTURER -

MODEL NO.

SERIAL NO.

RANGE ACCURACY REPEATABILITY THERMISOR 21 GRAFTEL 9202 0392010-22 50*F - 130*F 0.5'F 0.01*

THERMISOR 22 GRAETEL 9202 0392010-04 50*F - 130*F 0.5*F 0.01*

THERMISOR 23 GRAFTEL 9202 0392010-02 50*F - 130*F 0.5*F 0.01*

l THERMIS9R 24 GRAFTEL 9202 0392010-11 50*F - 130*F

~0.5*F 0.01*

THERMISOR 25 GRAFTEL 9202 0392010-13 50*F - 130*F 0.5*F 0.01*

THERMISOR 26

' GRAETEL 9202 039' 010-30 50*F - 130*F 0.5*F 0.01*

THERMISOR 27 GRAFIEL 9202 0392G10-28 50*F - 130*F 0.5*F 0.01*

THERMISOR 28 GRAFTEL 9202 0392010-29 5 0

  • F - 13 0
  • F 0.5*F 0.01*

THERMISOR 29 GRAFTEL 9202 0392010-26 50*F - 130*F 0.5*F 0.01*

THERMISOR 30 GRAFTEL 9202 0392010-32 50*F - 130*F 0.5*F 0.01*

RH SENSOR 1 GRAFIEL 9203 0392010-42 20 - 100% RH 2*F DEW TEMP EQUIVALENT 0.2%

RH SENSOR 2 GRAFTEL 9203 0392010-39 20 - 100% RH 2*F DEW TEMP EQUIVALENT 0.2%

RH SENSOR 3 GRAETEL 9203 0392010-45 20 - 100% RH 2*F DEW TEMP EQUIVALENT 0.2%

RH SENSOR 4 GRAETEL 9203 0392010-37 20 - 100% RH 2*F DEW TEMP EQUIVALENT 0.2%

RH SENSOR 5 GRAETEL -

9203 0392010-35 20 - 100% RH 2*F DEW TEMP EQUIVALENT 0.2%

RH SENSOR 6 GRAITEL 9203 0392010-36 20 - 100% RH 2*F DEW TEMP EQUIVALDfT 0.2%

RH SENSOR 7 GRAETEL 9203 0392010-41 20 - 100% RH 2*F DEW TEMP EQUIVALENT 0.2%

RH SENSOR 8 GRAFIEL 9203 0392010-48 20 - 100% RH 2*F DEW TEMP EQUIVALENT 3.2%

.RH SENSOR 9-GRAETEL 9203 0392010-40 20 - 100% RH 2*F DEW TEMP EQUIVALENT 0.2%

RH SENSOR 10 GRAETEL 9203 0392010-38 20 -- 100 % RH 2*F DEW TEMP EQUIVALENT 0.2%-

-_-__:_=___-_____

TABLE 1 Page 7 (SHEET 3 OF 3)

INSTRUMENT SPECIFICATIONS INSTRUMENT MANUFACTURER MODEL NO.

SERIAL NO.

RANGE ACCURACY REPEATABILITY ymou seu 1oF > q PRESSURE VOlmmTRMS 760-100A 47111 0 - 100 psia 0.01% OF FULL SCALE 0.02% OF RJLL SCALE re po sc ic~t,9 c_

PRESSURE h alts 760-100A 46847 0 - 100 psia 0.01% OF FULL SCALE 0.02% OF FULL SCALE FLOW METER FISCHER-PORTER 10A1755 5 8511A0113A7 60 - 870 SCFH i 1.0% OF FULL SCALE N/A FLOW METER FISCHER-PORTER 10A1755 S 8511A0113A7 60 - 870 SCFH i 1.0% OF FULL SCAL 3 N/A l

PRESSURE DRUCK DPI601 6012773211 0 - 50 psia i 0.025 psia N/A

(SHEET 1 OF 3)

ILRT SENSOR PHYSICAL LOCATIONS Page 8 O

M & ERAT RE SENSORS CHANNEL ELEVATION LOCATION RADIUS SUBVOLUME

""*8E"

^*I""T" O

CHANNEL ELEVATION LOCATION RADIUS SUBVOLUME NUMBER AZIMUTH 1

724' 276*

39'-8" 8

2 758' 270-25' 5

O 3

762' 0*

25' 4

4 777' 270*

31' 4

i I

5 791' 270*

16' 3

O 6

808' 270*

20' 2

7 808' 225*

12' 2

8 826' 180*

10' 1

9 708' 195*

39'-8" 8

10 730' 270*

16' 6

11 743' 180*

5' 7

O 12 754' 180*

31' 5

13 772' 180*

20' 4

14 785' 180*

24' 3

15 804' 45*

12' 2

j 16 730' 90*

7' 6

17 743' 0*

5' 7

18 724' 75-43*

21'-10" 8

D 19 708' 19-30' 39'-8" 8

20 749' 0*

17' 5

21 785' 0*

28' 3

P l

t l

)

O TAsLE 2A (SHEET 2 OF 3)

ILRT SENSOR PHYSICAL LOCATIONS Page 9 Q

TEMPERATURE SENSORS CHANNEL ELEVATION LOCATION RADIUS SUBVOLUME Lg NUMBER AZIMUTH 22 811' 0*

16' 2

23 724' 95-30' 40' 8

24 708' 75-43*

22'-10" 8

25 750' 90*

20' 5

l 26 767' 90*

36' 4

[

27 791' 90*

21' 3

ib 28 797' 90*

25' 2

29 815' 180*

14' 2

30 822' 0*

14' 1

b r

l J

D 1

l 1

I I

i

)

TABLE 2A (SHEET 3 OF 3)

ILRT SENSOR PHYSICAL LOCATIONS Page 10

]

RH SENSORS CHANNEL ELEVATION LOCATION RADIUS SUBVOLUME NUMBER AZIMUTH 1

763' 0*

30' 4

2 803' 270*

21' 2

3 708' 232-10*

40'-3" 8

4 746' 270*

5' 7

5 773' 180*

20' 4

0 6

724' 75-43' 22'-4" 8

7 749' 0*

17' 5

g 8

791' 0*

21' 3

9 812' 180*

14' 2

10 825' 0*

5' 1

)

?

D

~

_.m--__-.__________

O Page 11 O

FIGURE 1 ILRT 3ENSOR DEVICE INTERCONNECTION O

\\

\\

O 5"^"'

5"^"'

5'"2"o '

t2o 0-

$ENSOR SENSOR

  • S 220 DHM SENSOR SENSOR REPE ATER/CONVER TER RACK D

SMT SHART MI% 0 yyn gH, SENSOR SENIOR SMART

$ MART STRING e4 gg SENSOR SENSDR a

I Y

O A/B SVITCHING BOX PT 01001 PT s1002 COMPUTER CONM PORT Q

l l

P l

l O

D Page 12 l

TABLE 2B (SHEET 1 OF 2) l l

SUBVOLUME LOCATIONS MID VOLIDES b

3 SUBVOLUME l

l SUBVOLLHI LOCATION VOLtME ft3 (wt. factor) l 1

Drywell Head Area Above 817'-6" 7745

.01963 l

l 2

Annulus Between Rr Vessel and Shield 25.483

.06458

)

and Between Elev. 817 * -6" and 796 '-6" l

3 Between Elev.

796'-6" and 777'-1" 36.786

.09321 l

l 4

Between Elev. 777'-11" and 759'-6" 55.595

.14088 l

5 Between Elev. 759'-6" and 734'-0" 05.910

.24303 l

6 Sume Area 1477

.00868 l

7 CRD Area 4592

.01164 l

)

8 Suneression Pool 165,100

.41836 l

TOTAL 394.638 1.0000

)

)

l l

l

}

Page 13 TABLE 2B (SHEET 2 OF 2)

SUBVOLUME LOCATIONS AND VOLtRGS

)

l NUMBER Or l

TDIPERA7URE SENSORS TEMPERA ~IURE SENSOR TEMPERATURE SENSOR l SUBVOLUME IN SUBVOLUME VOLtJME ft 3 (wt. factor) l

)

1 2

3 872.50

.009815 l

l 2

6 4.247.17

.010763 l

l 3

4 9.196.50

.023303 l

l 4

4 13.898.75

.03522 l

l 5

4 23.977.50

.060758 l

1 6

2 1.713.50

.00434 l

l~

7 2

2.296.0

.00582 l

-l 8

6 27.516.67

.069727 l

l

'ItyrAL 30 394.638 1.00000 l

l NUMBER OF l

l RH SENSORS IN RH SENSORS RE SENSORS l

SUBVOLUME SUBVOLUME VOLtJME ft 3 fvt. factor) l 1

1 7.745.0

.020497 l

l 2

2 12.741.5

.033157 l

l 3

1 16.786.0

.094077 l

l l

4 2

27.797.5

.071307 l

5 1

95.910.0

.243B97 l

l 3

1 I

I 6

0 0

0 l

i l

7 1

4.592.0

.012507 l

I I

8 2

82,550.0

.210047 l

l.

  • ft7TAL 10 194.638 1.00000 l

I l

O Page 14

.O FIGURE 2 ILRT SEN3OR PHYSICAL LOCATIONS O

WEST 835'-3" 0 DEGREES

(/

fO O

etta.e-SOUTH ~~

NORTH sto occatis so occasts

/@,

\\

,,c -s -

\\

EAST m -ii-

.. etates t

?

3

~

s

?

/

/

P

\\

$ \\

/

S

\\

7 s r -e -

y v

s i

(2)

O 7ss '

taa. o-l

\\

rw-c Q

734'-0*

l c

z/

,j

/

/

.j WATER Ltytt sw...

L i

m -e l

ELEVATION VIEW OF CONTAINMENT AND SUBVOLUME LOCATIONS i

i h

lO!

Page 15 SECTION B - TEST METHOD

'O B.1 Basic Technique The absolute method of leak rate determination was used. The absolute method uses the ideal gas laws to calculate the measured leak rate, as defined in ANSI N45.4-1972.

The inputs to the measured leak rate calculation include subvolume weighted containment temperature,

()

subvolume weighted vapor pressure, and total absolute air pressure.

As required by the Nuclear Regulatory Commission, in order to perform a short duration test (measured leak rate phase of less than 24' hours),

the measured leak rate was statistically analyzed using the principles outlined in BN-TOP-1, Rev. 1.

A least squares regression line for the measured total time leak rate versus time since the start of the test is calculated after each new data set is scanned.

The calculated leak rate C) at a point in time, t,

is the leak rate on the regression line at time i

t.

i l

B.2 Supplemental Verification Test l

The supplemental verification test superimposes a known leak of

,()

approximately the same magnitude as La (La = 385.7 SCFH or 0.6350 I

wt%/ day as defined in the Technical Specifications).

The degree of detectibility of the combined leak rate (containment calculated leak l-rate plus the superimposed induced leak rate) provides a basis for resolving any uncertalnty associated with the measured leak rate phase l~

of the test.

The allowed error band is 1 0.25 La (0.159 wt%/ day),

i i

()

There are no references to the use of upper confidence limits to j

evaluate the acceptability of the induced leakage phase of the PCILRT in y

the ANS/ ANSI standards or in BN-TOP-1, Rev. 1.

l B.3 Instrumentation Error Analysis j

'()

An Instrument Selection Guide (ISG) calculation is normally done per the guidelines of ANS 56.8 to determine system accuracy uncertainty.

Commonwealth Edison Co. utilizes a standard ILRT instrumentation. system l

which meets and exceeds the ndnimum criteria set forth in ANS 56.8.

Appendix C, page 114, specifies instrumentation requirements for Commonwealth Edison Co. standard ILRT instrumentation system.

Because

()

the instrumentation system specifications and minimum number of sensors criteria are met, then the ANS 56.8 ISG acceptance criteria is always satisfied. The ISG calculation for the instrument specifications yields an ISG of 0.02%/ day based on minimum instrument numbers.

1 The instkumentation uncertainty is used only to illustrate the system's ability to measure the required parameters to calculate the primary -

f containment leak.

)

It is extremely important during a short duration test to quickly I

identify a failed sensor and in real time back the spurious data out of the calculated volume weighted containment temperature and vapor pressure.

Failure to do so can cause the upper confidence limit value j

to place a short duration test in jeopardy.

It has been station

()

experience that sensor failures should be removed from all data collected, not just subsequent to the apparent failure, in order to i

f minimize the discontinuity in computer values that are related to the l

sensor failure (not any real change in containment conditions).

I l

O i

l

O Page 16 SECTION C - SEQUENCE OF EVENTS O

C.1 Test Preparation Chronology The pretest preparation phase and containment inspection were completed on December 8, 1993 with no visible structural deterioration being found. Major preliminary steps included:

O 1.

Completion of all Type B and C tests, component repairs, and retests.

2.

Completion of PCILRT pretest valve checklist including draining and/or venting systems as described in the UFSAR.

I

(

3.

Blocking of four drywell to suppression chamber vacuum breakers in O

the open position for pressure equalization between the drywell and suppression chamber volumes.

4.

Venting of the reactor vessel to the primary containment via the 1

manual head vent line and the drywell equipment drain sump.

5.

Completion of pretest data gathering system, including computer h3 program, instrument console, and associated wiring.

C.2 Test Pressurization Chronology i

O DATE TIwE EVENT 12/07/93 1700 Primary Containment pressurization initiated. Atmospheric pressure is 14.32 psia.

()

12/07/93 1715 Received reactor SCRAM and PCIS Groups 6 (partial), 7, and 9 at 1.69 psig.

12/07/93 2130 Found leakage at the Drywell Personnel Access ~ Hatch inner door equalization valve.

O 12/07/93 2143 Drywell Personnel Access Hatch inner door equalization valve is open and outer door is closed.

12/07/93 2325 Pressurization completed with Drywell g) pressure at 55.6356 psia and Reactor Building atmospheric pressure at 14.268 psia and Valve 2E12-F017A is closed.

Drywell Presonnel Access Hatch inner door open at this time.

p f

O

O Page 17 C.3 Teniperature stabilization Chronology DATE TDE EVENT 12/07/93 2329 Started containment stabilization phase.

[3 12/08/93 0205 The pressurization line is vented per union connection at OSA040.

12/08/93 0329 Stabilization criteria met for ness-plot and BN-Top-1 test methods at data set 160.

b C.4 Measured Leak Rate Phase DATE TDG EVENT 12/08/93 0343 Declare start of ILRT measured leak rate

[)

phase at data set 167.

12/08/93 0405 Operations notified that test phase has begun and that no adjustments are to be made to Shut Down Cooling and B RHR is not to be filled and vented with CY without

[)

the consent of the test director.

12/09/93 0957 ILRT measured leak rate phase completed satisfactory at data set 204 with a duration of 6.25 hours2.893519e-4 days <br />0.00694 hours <br />4.133598e-5 weeks <br />9.5125e-6 months <br />.

Results:

D

  • Calculated Leak Rate: 0.284863 wt%/ day
  • 95% Upper Confidence Limit: 0.316442 wt%/ day
  • Total 95% Upper Confidence Limit including non-vented penetrations:

0.347942 wt%/ day.

D C.5 Induced Leak Rate Phase DATE TD2 EVENT 3

12/08/93 1037 Stared I hour Induced Test stabilization phase at data set 208 with an induced leak rate of 387.0 SCFH or 0.638 wt%/ day.

12/08/93 1147 Started Induced Leak Rate Test at data set 215.

3 l

J

'O Page 18

'O..

DATE TDE EVENT 12/08/93 1527 Induced Leak Rate Test phase is completed satisfactorily at data set 237 with a duration of 3.67 hours7.75463e-4 days <br />0.0186 hours <br />1.107804e-4 weeks <br />2.54935e-5 months <br />.

Results:

  • Induced Leakage:

0.638 wt%/ day

  • Induced Calculated Leak Rate:

()

0.7996 wt%/ day.

Results within 1 0.159 wt%/ day acceptance criteria as the difference between the induced leak rate and the calculated leak rate is 0.1232 wt%/ day.

12/08/93 1534 Isolated Induced Test rig.

.O C.6 Depressurization Phase DATE TDE EVENT 12/08/93 1750 Commenced containment depressurization by manually opening 2VQO35.

12/08/93 2350 Suspended containment depressurization at 17.96 psia in preparation for the Drywell

()

Floor Bypass Test.

12/09/93 0150 Gags removed from vacuum breakers, returned to closed position.

12/09/93 0250 Commenced depressurizing suppression chamber to atmospheric pressure.

O 12/09/93 0630 Drywell depressurized to 15.88 psia, suppression chamber depressurized to O psig.

12/09/93 0743 Drywell Floor Bypass Test stabilization period started.

O 12/09/93 0813 Started I hour 1.5 psi Drywell Floor Bypass Test.

12/09/93 0913 Completed Drywell Floor Bypass Test, done satisfactory.

()

12/09/93 0926 Commenced Drywell depressurization.

12/09/93 0935 Drywell depressurized to atmosphere.

]

l 12/09/93 1100 Performed Drywell Post Test Inspection.

C) l O

O Page 19 SECTION D - TYPE A TEST DATA O

D,1 Measured Leak Rate Phase Data A summary of the computed data using the BN-TOP-1, Rev. I test method

()

for a short duration test can be found in Table 3.

Graphic results of the test are found in Figures 3 through 30.

D.2 Induced Leakage Phase Data

()

A summary of the computed data for the Induced Leakage Phase of the PCILRT is found in Table 4.

Graphic results of the test are found in Figures 31 through 58.

l O

1 0

D D

t l

D

O Page 20 0

0

'O

.O MEASURED LEAK RATE PHASE O

NATA szrs 1sv - 2o4 O

O O

1 l

O O

a Page 21 o

TABLE 3 Total Time Leak Rate Analysis g'

LaSalle 2

RDG TIME (MINUTES)

MEASURED LEAX (WT CALCULATED LEAX (WT UCL LEAX(WT %/OAY)

%/OAY)

%/QAY) g 167 QCD 168 10.02 0232721 169 15.18 Q212241 G212241 170 25.88 Q243869 Q241635 Q441336 171 35.88 0.251774 G252345 Q324873

-Q 172 45.90 Q288423 Q279433 Q335900 173 55.90 Q254037 Q273394 Q337899 174 65.90 Q236688 Q261328 Q332094 175 75.92 Q256392 Q262182 Q323493 l

176 85.92 Q272271 G268697 Q323060 i

l 177 95.92 Q270755 Q272455 0.321526

'O 178 105.93 Q274696 Q276251 G321217 179 115.93 0265965 Q276286 Q319090 180 125.93 Q276898 G279234 0.319289 181 135.95 Q290432 G284911 Q322884 182 145.95 0287832 Q288613 Q324568 183 155.95 Q272727 Q287993 Q323940 Q

184 165.97 Q280093 Q289011 G323891 185 175.97 G285895 Q290958 Q324558 106 185.97 G288264 Q292961 Q325400 187 195.98 0.2845G4 Q293882 Q325648 188 205.98 Q282515 Q294230 Q325655 189 215.98 Q284589 Q294826 Q325778 Q

190 232.70 0.279869 Q295712 Q327094 191 243.42 0.275327 Q294375 0.326435 192 253.42 Q278784 Q293657 0.325716 193 263.43 Q274762 0.292432 0.324826 194 273.43 Q281987 G292415 Q324385 195 283.43 Q279223 0.292006 Q323770 O

196 293.45 Q277208 Q291370 0.3230G3 197 303.45 Q275307 Q290553 Q322275 198 313.45 0.276216 C.239932 0.321547 199 323.47 Q274925 Q289215 G320775 l

I 200 333.47 Q273178 Q288360 Q319936 i

I 201 343.47 Q272203 Q287473 Q319069 P

202 353.48 Q274522 Q286920 Q318335 203 363.48 0.268703 Q285792 Q317366 l

20%

373.48 Q269689 G2848S3 Q316442 0

aM g

O U

t

,0 e

8 k

a e

L e

m Ti

,5 la 5

t y

o T

L C

,0 U

5 t

a

.g k

,. 5 a

4 e

L e

,0 m

4 i

g T

l a

v5 t

3 o

s r

T u

3 o

H

&e E

- 0 e R

3 g

U kS 2 im

!a 3

G T

a I

aL F

e L

- 5

2 e

/

i 2 m

i g

T 0

l a

t o

T 5

d

1 g

e t

a l

k

- 0 u

a e

c L

1 a

W l

T C

g W

/

- 5

\\

\\

\\

\\

r T

G

(\\

/(

Ii!i!!

O Q

0 0

0 0

0 0

5 4

3 2

1 0

0 0

Q O

Q 0

4 l y g

l!

--- - - o o

o.

.o o

o o

o o.

o

.g.

FIGURE 4 Measured Total Time Leak & Calculated Total Time Leak LaSalle g

Measured TotalTime Leak th dM TotalTrne Leak l

\\

G40-O 30 -

~

N

'v' (v(

O20 -

j I

i

?

O.10 -

I I

I

?

I

'E

,i t:

0 00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0 5.5 6O Time-Hours

-a

_mh-____-..______

O O

O-O O

O O

O O

O O.

nacre s Mass LaSalle 2

105750 l

l 105740 -

105730 -

'N 105720 -

105710 -

I b

m 105700 -

105690 -

105680 -

.105670 -

J.

105seO Q0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 50 5.5 6.0 Tme - Hours

u 5a 0

/

y

,0 6

,5 5

v

,0 5

u

,5

/

4 e

, 0 r

4 u

v sse

,5 3

r s

P ru 6

o r

H E

!e R

o!

,0 e

v U

pS2 3 n e

G a

T r

I aL F

V e

,5 g

2 ar v

e v

,0 A

2

,5 1

v

,0 1

v

,5 O

O Q

0 0

0 0

0 9

8 7

v 5

4 4

4 4

4 4

4 0

Q Q

0 psi a v

e

'4 -

e u

o u

o o

a u

FIGURE 7 Average Temperature LaSalle 2

93810 i

\\

93800 -

\\\\\\

k 93.790 -

A[\\ /

\\/

/

~

93 780 -

p l

\\

/

\\

93.770 -

/

3

/

93.760 -

/

V 7

l M

93.750 i

i i

i i

i i

i i

i O.0 G5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 60 Tme - Hours

Page.27

's

<J N

r.o 9

in im

_OD

'N \\

D

_n N

_Q S

v

'x-)

4.3 O

O B

to.

C C 3 cu N

_Qa s

~n &

s C

CD 3 L

x' tD t0 L

N m

CD

^u c

D 4

'N\\ 's

_q cu

.9 ss

-Q-

"%-)

10

~D 0

8 k

8 0(v 7

R cc

?

~

u.

.m,.

l m*e J

N,6 O

x

,5 5

v x

, 50 x

, 5 v

4

, 0 4

e eru

, 3 5

s s

s ru 9

e oH E

re f

0 e R

Pf e

U S

3 im a

G a

T I

eL F

gar

, 2 5

ev e

A 0

, 2

, 5 1

c N

, 0 1

c 5

s

, O N

O O

0 0

0 0

0 0

9 8

7 4

3 3

3 53 5

5 5

5 s

5 5

5 5

5 i8 l

L

._7_ _

U e

o o

T-u C

FIGURE 10 Pressure No.1 & Pressure No. 2 LaSalle 2

55 400

~

  • * " ~

55.395 -,N 55.390 -

s'N 55.385 -

NN.

N 55.380 -

P x

55375 -

N 55.370 -

55.365 -

55 360 -

x%

55.355 -

m.

c is 55.350 i

i i

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 40 4.5 50 5.5 6O Time - Hours

c v

u u.

.u

.u u

-u

-.v

.u.

v --

u --

FIGURE 11 Dew Point No.1 & Dew Point No. 2 LaSaffe 2

ew No.1 80 0 Dew Point No.2 79.7 -

,~

' ~ '

^ - '

7g _

79.1 -

78.8 -

78.5 -

p 78 2 -

77.9 -

77.6 -

77.3 -

5

/

e d'

a wo 77.0 i

1.0

' 1.5 2.0 2.5 30' 3.5 40 4.5 50' 5.5 '

6O Time-Hours

i ll o

,y.

m 0

, 6

~

C 1

5 5

i 0 5

u

, 4 5

4

.oN t

i 0 4

n o

io P

5 w

i 3 s

2 e

ruo 1

D H

e z

t

, 0 e e

o

&S e

o a

3 im 2

T L

n 3

~

.o 5

N

, 2 t

e n

~

, 0 io 2

P we i 1 5

D e

~

r 0 1

-e 5

,0

~

0 0

0 5

0 5

0 5

0 5

0 5

0 7

6 6

5 5

4 4

3 3

2 2

7 7

7 7

7 7

7 7

7 7

7 p

l l

j

,.t

.g 6

.g h

_. t 0

t g

6 n

io P

weD 4

5 5

..g

~

D 3

S

~

g 3

5 6

4 o

N

,0 t

4 n

g io P

,5 3

w s

3 e

ru

~

1 c

D H

E

,De g

R

&m 3 m 2

U T

G F

5 I

.o 5

N i 2 w

t

^

g n

=,

e io

>D 2

P we D

<5 1

g w

'^

~

'D 1

5 g

h

'G 5

+

t

~

m x

D Q

0 7

4 1

8 5

2 9

6 3

O g

9 8

8 8

7 7

7 6

6 6

6 7

7 7

7 7

7 7

7 7

7 7

p g

'L

a m$.

L

, 6O

,5 5

e

,0 5

's

,5 8

4

.o N

0 t

i 4 n

u io P

,5 w

3 s

4 e

tr o

D H

1 te E

,0 e

ta

&S e

R 2

3 m UG a

iT L

7 IF

.o

,5 N

2 t

n io 0

2 P

w e

,5 D

u 1

,0 1

0

,5 O

4!i

i!

O.

T

.O 0

7 4

1 8

5 2

9 6

3 0

9 8

8 8

7 7

7 6

6 6

6 7

7 7

7 7

7 7

7 7

7 7

p

.v.

y u

u

.o u

.v u

u u

e FIGURE 15 Dew Point No. 9 & Dew Point No.10 l

LaSalfe p

77.80 77.72 -

I

/

77.64 -

77.56 -

l i

77.48 -

tJ

/

77.40 -

p

~

77.32 -

y 77.24 -

77.16 -

J

./

t

/

f

.f a

77.08 -

^ l U

77.00 i

00 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -

40 4.5 5.0 5.5 6.0 Trne -Hours

__=

. o.

o:-

o o

o o-o o.

o o

o FIGURE 16 Temperature No.1 & Temperature No. 2 LaSaffe 2

Tw h 1 100 Temperature No.2

- - -.. ~.... -... - - - -.

- - ~ - - - - ~ ~

' ~ ^

' ~ ^ ^ ^ " ~ ' ~ ~ ~ ~ " ~~~~

98 -

96 -

94 -

92 -

90 -

p 88 -

86 -

84 -

l 82 -

u.

80 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5.

40 4.5 5.0 5.5 6.0 1

Time-Hours

v v --

v

.v v-v v

v v.

_a

-u FICURE 17 Temperature No. 4 & Temperature No. 3 LaSalte 2

Temperature No. 4

'~-~~

' ~ ~ ~

104O Tm vc. mare No. 3 103.5 -

103.0 -

H 102.5 -

102.0 -

101.5 -

l p

1010 -

100.5 -

~~

~~

' ~ ' '

100.0 -

~

- ' ' ~ ~,, _ _

99.5 -

y

'8 M

99D e

i i.

0.0 0.5 1.0 1.5 2D 2.5

' 3.0 3.5 40 45 5.0 5.5 60 Time -Hours

e e

CF~

7 O

O lT--

O

~

O e-O FIGURE 18 Temperature No. 5 & Temperature No. 6 LaSa!!e 2

109O Temperature No. 6 1 D8 6 -

,,u*

,,-mm' 1082 -

107.8 -

107.4 -

107.0 -

p 106 6 -

106.2 -

105,8 -

105.4 -

g 1

0 1050 i

i i

i i

i i

00 0.5 1.0 1.5 2.0 2.5 30 3.5 4.0 4.5 50 55 6O Time - Hours

l l

l O

O O

O i 6

,5 5

O

,0 5

8 O

o 5

4 N

p i 0 er u

4 ta O

re 5

p i 3 m

s ru 9

e o

Te H

1 E

ll 0 e O

R

& Sp i 3 m a

U T

a G

L 7

IF

.o

,5 2

N e

O r

,0 u

t 2

are p

,5 1

O m

e T

~

,0

~

1

~

O

~

i 0 5

0 O

0 2

4 6

8 0

2 4

6 8

0 8

7 6

5 4

4 3

2 1

0 0

e 0

0 0

0 0

0 0

0 0

0 0

1 1

1 1

1 1

1 1

1 1

1 e

O-

.Page 39

.O '

i 2

^

o*

i

'O

.i"

- D" O

i

_o o

o c

O

.o

-0 Z

m L

i "3

-Q u

O m

i L

m Q.

l

- Dn E

i e

F--a I

O Cb e m

_o&

i 3

n5 M

m O

1 o

Z N

O m

i t

i Q

M i

m L

Q i

O.

O E

e W

l

-l 1

l

- O i

l m

O-g i

e o

3 d-1 0

5 i

o i

i b

b b

Q.

. LL O-i

6

~

6 e

O T -~

~O O

O O

~T O

FIGURE 21 Temperature No.11 & Temperature No.12 Lass!!e 2

      • "O' I I 99 0 Temperature No.12 98.8 -

98.6 -

98,4 -

98.2 -

98.0 -

p 97.8 -

97.6 -

97.4 y

97.2 -

i e

97.0 OO O.5 1.0 1.5 2.0 2.5 30 3.5 4.0 4.5 50 55 6O Time - Hours

l l

u

^

mj, m

0 i 6 r

i 5 5

0 i 5 4

1 o

o

, 4 5

N er 0

u i 4 ta o

re 5

p i 3 m

sn u

2 e

oH 2

Te f

0 e E

la

, 3 i

&S u

R 2

m U

a T

G L

3 IF 1

, 2 5

.oN o

e 0

, 2 ru t

are

~

i 5 1

o p

m e

T i 10 e

1 0

5 0

O 0

3 6

9 2

5 8

1 4

7 0

7 6

5 4

4 3

2 2

1 0

0 0

0 0

0 0

0 0

0 0

0 0

1 1

1 1

1 1

1 1

1 1

1

g o

U--

U C

m-o u

4 FIGURE 23 Temperature No.15 & Temperature No.16 LaSaRs 2

N-110 Tw No.16 108 -

106 -

104 -

102 -

100 -

p 98 -

96 -

94 -

m S2 -

y O

F so 0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 40 4.5 50 55 6O Time - Hours

. 0=

0 ~

0-

.O 0:

0-

'O D:

O CF FIGURE 24 Temperature No.-17 & Temperature No.18 LaSane 2

TemperatureNo 17 Temperenre Nct 18 98 -

96 -

94 -

92 -

88 -

86 -

m ie._

84 -

m 82 -

J.

b E.a3 BO 0.0 G5 1.0 1_5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Time-Hours

=

+

~~,

.-----~~-~--~-~------~"-e-"-----

o o

o'~

~

6 o1 o

o-6-

6 6

~

o FIGURE 25 Temperature No.19 & Temperature No. 20 LaSalle 2

100 Tw h 20 4

-,... - - -. ~. ~

  • * " ~ ~ ~ ' ' ' '

' * ~ ~

~~

96 -

94._

92 -

88 -

88 -

84 -

82 -

80 O_O

~ 0.5

' 1.0 1.5 2.0 2.5 3.0 3.5 4.0

- 4.5 5.0 5.5 SO Tme-Hours

-o o

o o

o o-

-o

-o o

o-

. o-FIGURE 26 Temperature No. 21 & Temperature No. 22 LaSalfe 2

~ ~ ~ ' ~ '

Tw M 11QO Temperanse No. 22

~

~ - - - -

~

1094 -

- - - - ' ' ~ '

^~-

108 8 -

108 2 -

107.6 -

107.0 -

p 106.4 -

1058 -

105.2 -

E 104.6 -

g

'8 0

104.0 i

i e

i i

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 50 5.5 60 Time-Hours

- u u-u.

u u

u u

u u

u u-FIGURE 27 Tem erature No. 23 & Temperature No. 24 1.aSane 2

86.0 Temperature th 24 85.7 -

85.4-85.1 -

~,

84.8 -

..... ~-

84.5 -

p s.

84 2 -

s 83.9 -

83.6 -

83.3 -

E 2

1 83.0

+

0.0 0.5

.1.0

-S 2.0 -

25 30 35 40 45 50 55 60 T m'-N

.D

..g

.g g

FIGURE 28 Temperature No. 25 & Temperature No. 26-

~

LaSalfs 2

Temperaturs Na 25 101.0 Temperature Na 26 100.7 -

100.4 -

=

100.1 -

_- - ~

, _ _ _ _. - ~ ~ ^ '

998 -

99.5 -

p 99.2 -

98.9 -

98.6 -

/

7 98.3 -

p 1

^

98 0 i

a i

i OO

. 0.5 1D 1.5 2.0 2.5 3.0 3.5 40 4.5 50 5.5 60 Trne-Hours u.

lll iI

{

lllI

,$a u

~

O

, 6 5

, 5 o

/

/

, 50 8

2 o

o

/,

, 4 5

N eru

, 0 4

ta o

r

, 3 e

5 p

m snu 9

e o

2 H

Te

, 3 m 0 e E

!e o

R

&S 2 U

T e

G L

7 I

/

F 2

x

,5 f

2 oN o

er

,0 2

u tare

,5 1

o p

m

/

e

,0 T

1 c

5

,G

,/ -

0 0

0 8

6 4

2 0

8 6

4 2

O.

8 7

7 7

7 7

6 6

t 0

0 0

0 0

0 0

0 m,

0 m

6 1

1 1

1 1

1 1

1 1

i F

o ll

_ 7____

e e

U--

u u

u u

FIGURE 30 Temperature No. 29 & Temperature No. 30 LaSa!!e 2

Temperaun No. 29 109O Temperann Na 30 10e 2 -X 107.4 -

106 6 -

1058 -

1050 -

p 1042 -

1034 -

102.6 -

101.8 -

~

~

101.0 0.0 0.5 1.0 1.5 20 2.5 30 3.5 4.0 4.5 50 5.5 6O Time - Hours

0-

+

Page 50 0

g O

O moucro uxx urz PHASE O

oxra szrs 21s - 237 1

L D

3 l

l

~

O J

Page 51 4

o TABLE 4
o Total Time Leak Rate Analysis t.s.u 2

ROG TIME (MINUTES)

MEASUED LEAK (WT CALCLAATED LEAK (WT UC1. LEAK (WT %/ DAY)

%/ DAY)

%/ DAY)

,0 215 000 216 1Q00 G876778 217 2002 0.879801 G879801 218 3CO2 G807866 QB20378 1.117033 219 4QO2 Q746149 0.758100 G891611 0

220 5Q03 Q754391 G737308 G840920 221 6Q03 Q788G13 Q735697 Q947877 222 7QOS G786986 G744522 G866157 4

223 8005 Q780202 Q748038 G863656 224 90.07 G795807 G756824 G871354 225 10Q08 G793150 G762369 G871787

'O 226 11Q10 G795022 Q767213 G871592 227 12Q10 Q802180 Q773101 Q873705 228 13Q10 Q803330 Q778004 G874642 229 14Q12 G801286 G781358 G873784 i

230 15Q12 G807423 Q785554 G874660

-l 231 16Q12 G804651 Q788322 Q873920 l

V 232 17Q13 G807451 G791201 0.873734 233 18G13 G808824 Q793869 G873590 234 190.13 0804956 G795342 0.872234 235 20G15 G814686 Q798394 G873163 236 21Q15 Q804127 G799101 Q871410 i

237 22Q15 Q803771 Q799648 G869702 l

- 1 0.

O i

L. -

lgl g

f lf

~

o~

~'o Jo ^

o or

~

b'

+

1.

FIGURE 31.

Measured Total Time Leak & Total Time Leak at UCL U

t.se e 2

yg _ MeasuredTotalTkneLeak TotalTkne Leak atUQ.

1.17 -

1.14 -

1.11 -

6i gy..

1.05 -

1.02 -

t Q99 -

Q98 -

I Q93 -

/

d Q90 -

e y

. 0.87 -

'g - _

,, - - - ~

~

s

- ~ ~ - -

G84 -

1 G81 -

A

- - =

-1 G72 -

QS9 -

  • o QC8 -

Dt l'

a G83 -

u, w

l G80

-Q0 Q3 QS QS-1.0 1.3 1.5 1.8 -

2.0 2.3 2.5 +

2.8 :

3.0 3.3 3.5 Ykne-Heiss :

-:p f. s.

  • g..,l
4.U --

, h *),.- 5'M?N di.

N s*.

.,. _ ~ 1 :.>-

O O

O O

O O

^O' O

^ O

'O O

Q-FICURE 32 Measured Total Time Leak & Calculated Total Time Leak l

LaSa4 2

1.10 1.05 -

1.03 -

1.00 -

Q99 -

Q95 -

Q93 -

Q90 -

0.88 -

/

d QBS -

?

y QM-

'\\

\\

A aso -

s

-~-

_ \\_

G75 -

y, G73 -

0.70 -

QB8 -

E QB5 -

oe 0.83 -

tr QBO i

G0 Q3 G5 QB 1.0 1.3 1.5 1.8 2D 23 2.5 -

2.8 3.0 3.3 3.5

.;rh...F

, Time-Hotre '

e

, w,;

-a

i^

e e-b

-.U t

ii fs Page 54 i#

.m M

Re n

s_)

Q m

cv (g

w O-t

  • d a

r

. M.

.A tu q

1

-m t%

aa 6

gq WJ

=

W3 2,q cu CD

.m 9'

e 7

C

.aa n

.A

'"4.

4 90 n

er #

J

.n

'4 ;

e A

i

.Q A

~r 1

w/

  • g I

4 )

" md

J.

-[

Q s

.Y)

~ d 3!

Y a

I

.*4-O

~ l

+

R d

X 8

,m in t

3 aE

~

J.

i r,

J

....g. ~

e e

e O

O O

O O

O 4

FIGURE 34 9

Average Pressure.

La995s 2

55.340 55.330 -

55.320 -

55.310 -

l P

55.300 -

55290 -

55200 -

55270 -

mj (D

s5.280 QO G3 G5 08 1D 1.3 1.5 1.8 E.0 2.3 2.5 -

2.8 3D 3.3 3.5 s

Tkne-Hain

,..< 64 Y nht u is yJ.

  • 2.,=. k~ Skh.s' t.
  • M-

' ' 5 iW~ * '

p u

)

t EoD U*

t o

, 3 -

3

, 3 u

g

, 3-u

, 3, t

, 3, o

n

.y:

i o

P

, g %-

g w

5 3

ee l

E DS l

g e e

.. n 2

u RU a

jn G

et IF g

a 3

r a

ev o

A

, 3

..c 1

0

'1 o.

s

'a s

' a e

+

a

' n o

n-0 3

0 0

0 0

0 0

0 0

0 9

8 7

8 5

4 3

2 1

o 5

5 4

4 4

4 4

4 4

4 8

8 8

8 8

8 8

8 8

8 7

7 7

7 7

7 7

7 7

7 F

u p

E l

d

jL l

,y Page 57 3

n M

'M t's

)

.o.

M

)

3 W

O..

"3

. M.

L w

aEr

~ q W

wp

_j X

Q.

g lE.

m i

o

~,

g tu

-l CD

. _ vt (D

v t

CD O-

- w u

-1 e

a

~ -.d.

.i J

..n:

O

M o

i R

E a

g g'

g a

e 8

a a

a s

s l-l e

e M.

O

- m - - y ----- w

- v ----

u--

w-w FIctmE 37 Pressure No.1 & Pressure No. 2 t.s.

2 55340 2

51330 -

$1320 -

N \\ N x s 51310 -

N s 513. -

x x

N 55290 -

N N N.,

N x

7,

~

a; F

3 5

5 3

5 5

E E

5 5

5 1

5 5

1 00 0.3 0.5 G8 1.0 -

1.3 1.5 1.8 2.0 2.3 -

2.5 2.8 -

3.0 3.3 3.5 -

7tne-Hows

. - d,f d -

a.

e.

s -

u

ji ii 1

3

$=

2 m

t 5

3 3

3 u

,D 3

,8 2

t 2

.o 5

N 2

tn

,3 i

o o

2 P

w

,D*

e 2 ar.

9 D

to 3

H E

&o e

,2m o

R 2

O 1

Ta G

I 1

F e

o

,5 N

1 t

o n

,3 io 1

.C P

w

,D e

1 D

6 e

8

, G 5

, G e

d

, 3 n

A G

D C

D e

8 4

6, 2

4 D

u 9

9 8

7 7

7 1

B e

7 7

7 7

7 7

7 7

lljiI l

ll

id

'1 e.

Page 60 v

O A

I g

- m l

ci a

M

. M O.

2 o

4 O

m a Z

uC Q

'y

,r, CL g

- 2.'

m Q

j

~

l cdfa

~3k o

2 m

.q.

O 9

"v 5

Z o-

.C

,c -,

M O

.N O

.g 3.

-i.!

ed m

  • 6.

y

. 2,1

.n

\\

8,*

'* {

b b

1 o

i i

i i

i i

i o,,;

q w,

m W

m q

w, d

ol a

m m

N ed e

vi n

w 3

o 6

8 8

5 6

'o N

o 3

m

?

u,

+

p

. 1

,. _.. ~ _

u 9 --

9

--.y y.

.?

FIGURE 41

.9 Dew Point No. 5 & Dew Point No. 6

(

LaBene

~

2 i.

800 Ommk B 79.5 -

4 7G.0 -

N __

78.5 -

78.0 -

O 77.5 -

p 77.0 -

78.5 -

78.0 -

75.5-Dag aw 75.0 QO G3 G5 QB 1.0 1.3 1.5 1R 2.0 2.3 2.5 -

2.8 3.0 3.3 3.5 Time-Hours '

b wsL&.estL,. ;4+kniiOii% % -

4-2?lf_fhfff,;___f____c

~.)

  • s-w insii.-

' t i. e

O' O ^ '

D o

O O

O O

O O

FIGURE 42 Dew Point No. 7 & Dew Point No. 8 LaSalle 2

b 7

790 Dew Point No. 8 78.8 -

78.8 -

_,/

f-~~~.~-

-~~%~

78.4 -

78.2 -

78.0 -

p 77.8 -

-- J 77.8 -

77.4 -

77.2 -

5j n

77.0 0.0 03 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5 -

2.0 3.0 3.3 3.5 The -Houm '

it ; e t

%f

.s

-s

~-

?n

f.

,n-v

.f,, _

Page 63 es q

'/

~

f k

I g

1 M

O

?

"Oci -

/

f I

\\

-n i

O O

l e-

_4

\\

=

.o

's Z

M l

~m O

E Oi N

Q

\\

O.

\\

i

\\

-h 3

\\

=

s l

Cg

'\\

-Uf' o

wi

?

c m

/

.=

i O

N Z

\\

u 0

.E

-D O

D.

\\-

\\.

.4 B.

\\.

s O

O

\\

-5 1

i e

~D m

O 5

5

- g

(

a N

e a

b k

6 h

k k

k N

N E

b o

R R

R R

R R

R h

h h

h o.

  • ~

s

';)

}

s O..

l l

^

'Page 64 vi;

\\

'O I g

}

e

_. m

]

M L

.B n-

- g

,O D m 2:

5-

O

.o Z

o

. m i

L g

U u

CD

. E 0

L ID O.

1 E

-g:

f~~$a J.

m

.l cd,

. -5{ '

o-c e-2

,,3 0

.mp'

.Z WT O.

W 3!

L a

-3 %

M CD c

(D

.A' C1.

O

'E

'T m

f _

.c A,-

e d

.y.

.O.

ue.

7

.m,

" 'C

  • l *; ;-

' T.i O

i a

a i

i i

i d

G

. h E

E E

E O

E E

E

.E 4.,

L e

'. i '

O-f

O-0 --

0 0:

O

'O O

O O

O

'O y

FIGURE 45 Tempereture No. 3 & Tempereture No. 4 t.e 2

3 105.0 T-.,

-asiNa 4 104.5 -

f ---

A sy-104.0 -

J N

/

103.5 -

103.0 -

102.5 -

p 9

102.0 -

101.5 -

i-101.0 -

m 10Q5 -

l o

O

-10nD l

QO G3 35

~R8 1.0 1.3

'1.5

'1.8.

E.0 E.3 E.5 -

E.8 3.0 3.3 3.5 l

m.m.

w

.y

- 4.:s. :. 4

.h

.. A%i : A.y. _ _ _ __ f _.i ' j h;;

_. i:

s

i' 20i e

er Page 66 e

jo; p

j

_ =

84 1 '. -

\\

k

!o i

/

.n-f b

,m-4

=

'O oZ

~.

Gi L

3u M

O L.

_d' m

y

- C1.

)

t E

-2 I-mp

.]

.-l cdfa

~

-T[

o

\\

c O

M

~

Z m

-1 O

L n

3 43 W

l n

Lg

-S i

l C1. '

0'-

E il W

f--

-i

- y '.

n o

. n.

<a

(

- d

\\

\\

'\\

n o

H Y'

N

.Q' O

o 8~

B B

s s-s

+

,g O.

a i

'O 1

Ee* O 8

Q

~

5

~

3 w

, 3 3

O

, 0 3

8 8

u 2

O o

N J_

5 e

2 ru t

3 a

, E O

r ep 0

m

. E e1 r -

7 e

u.

e1 H_

T 4

-e E

8. h '

& u. 2 O

R s

1 U

T G

7 IF 5

o

, 1 N

e 3

O r

7 1

u o

t a

r D

e

, 1 p

m O

, 0 8

e T

5

, 0 O

1_

3

, G 0

0 0

2 4

8 8

0 2

4 8

8 n

1 8

7 8

5 5

4 3

2 1

i

!0 0

0 0

0 0

0 0

0 0

0 O

1 1

1 1

1 1

1 1

1 1

1

. p

~

Q

'O Page 68 O

A

" l Y

- C n

l

_n

'3 n

.O l

.Qn O

P m

~N p

A Z

_n g

a Lo u

_ r?

O W

I L

i (D

t U-

.Q.

E e

m l---2 l

g ja

"[I o

C Cn

  • o Ws Z

to O

c

-g a

u L

CD

_Ae C.

o Em

-a I-a m

D o

e

~nd i

i o

~

m y

e

,)

W w

Q Q

W W

W m

W W

m u.

O

o o'

o o

o o

o o

o o

o FIGURE 49 Temperature No.11 & Temperature No.12 LaSaRa 2

10C10 Te waPAL 12 99.7 -

99 4 -

99.1 -

= " * ' * * * ' - -

_,-*e

.m a+..

98.8 -

98.5 -

p 98.2 -

97.9 -

97.8 -

97.3 -

e 97.0 GD 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5 -

2.8 3D 3.3 3.5

' Time-Houre

7....

FIGURE 50 Temperature No.13 & Temperature No.14 t.s 2

N h 13 107.0 T..v. are Na 14 s~ --

~

108.4 -

105.8 -

105.2 -

104.8 -

4 104.0 -

p 103.4 -

1

'l 102.8 -

}

t 102.2 -

~

~

.o 3

101.B '-

4

.o 101.0

. 00

-Q3

'QS QB c 1.0.

1.3 1.8 1.8

2.0 2.3 2.5 -

- 2.8 3.0 3.3 '

3.5

) -.

Page 71-e

).

e"

-l

{

_ =.

n I

r L

l j

i D

-g.

to V

.e cu.

3 oZ

~d-i r

i 3

u Q

.9 g

cu Q3 Q.

E

- 2}

m h=h

-: Ai m'

,f l

e a

e to e-

-5.,

O 1

2

]

m

-S r_

U u

)

O.

r G)

C.

)

e o

h~

-E;

=

g i

3

-g. -

i i

I 6

a s

a i

a a

  • i 9

8 8

8' 8

8 E

E E

B B

?.

O O

O O

O O

O O

O O

O FIGURE 52 Temperature No.17 & Temperature No.18 ueg Tempersture No.17 3g Ye,r a rh is 98 -

90 -

94 -

92 -

88 -

BS -

84 -

E e2 -

ei m

I QO R3 05 OB 1.0 1.3 1.5 1.8 2.0 2.3 2.5 2.8 3.0 3.3 35 Time-Hours

Page 73

+

i ig m

M l

i i

.n I

  • i 1

i n

O cu 3

d

- m Z

a) n*

L U

..a O

n D

L d

m C.

E o

e e

ae F-.

2 e

a m

5, 7

.9 O

Z 3

m n

L W

D 4.)

L o

Q)

C.

E m

o H

=

- gn e

4

-s

- d 1

J O

a 4

i i

i e

0 8

8 8

8 8

8 h

g g

u.

O

O O

O O

O O

O

' D O

'O

~

O FIGURE 54 Temperature No. 21 & Temperature No. 22 LaSaEs y

1100 Teu,,o a W.22

  • * ~ ~ ~ ~

w smq 109 6 -

1092 -

100.8 -

108.4 -

108 0 -

p

.107.6 -

1072 -

108.8 -

?

1m.4 -

'a 2

i imo G0 Q3 QS QB 1.0 1.3 1.5 1.8 2.0 2.3 2.5 -

2.8 3.0 3.3 3.5 Tkne-Hours

F- -

5 ~ T e

U U-

- U

'U.

U-U ---

. U --

C i;g FIGURE 55 Temperature No. 23 & Temperature No. 24-LaSeRe 2

83.00 l

83.73 -

N w N i

w

,~~

' ~.

83.68 -

s ~-

N N

83.59 -

N'N.

~s B3.52 -

s.,

B3.45 -

p.

83.38 -

83.31 -

B3.24 -

\\

~ 83.17 -

x

m e

4, u

83.10 i

s i

i i

i i_

00 Q3 G5 QB 1.0 -

1.3 1.5 1.8 z 2.0 :

2.3 2.5 -

2.8 3.0

- 3.3.

3.5 Tkne-Hows '

.: _; _ _ _ - -== -----=,_- _ _- = =--, = = === =-_-

n~-~~----=-:---

- - - - - - - - - - - - -, - ~ ~ - - - --

'~

o e

o o

u o

o o

0 c r FIGURE 56 Temperature No. 25 & Temperature No. 26 Lese!!s g

101.0 T=uip-13 th 28 jaa7 _

- - - ~ ~

demumm

.m.*'

100.4 -

100.1 -

99.8 -

(

e 99.5 -

p 99 2 -

98.9 -

98.8 -

98.3 -

5j em 98.0 00 Q3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5 -

2.8 3.0 3.3 3.5 Tkne Homs

o o

o o

0 0

0 0

0 0

0

~>

u ricaz sv Temperature No. 27 & Temperature No. 28 LaSans 2

100.30 T=..w das No. 28 10824 -

/

108.18 -

f 108.12 -

p.

'\\

100.06 -

\\

100.00 -

\\

I

\\.

/

107.94 -

\\

107.88 -

^\\

/

x

/

107.82 -

/

<J 107.78 -

'a d

107.70 QD G3 QS QB 1.0 1.3 1.5

-1.8 2.0 2.3 2.5-2.8 3.0 3.3 3.5 Time-Hows

?

's

h

,M-Page 78 s

R n

\\

'~'

h

_A I

i

_n 5

b-M f

_o n

\\

O co

_ma O

dZ e

_A" t

D l

M

-O

'm

\\

.n m

1 W

C.

E

-2 m

a p

O d ba

~

5 M

CD.s CU t

_ m.

OZ t

'Q Q

n

~s c

""3 u

^

mr

-?

m D.

0 E

-a e

F l0

- 8 h

o I

n

- d

.{

w D

i d

o e

a n

e n

m 8

m m

o N

O M

b

,3

-o u.

0

=l

/

Page 79 BECTION E - TEST CALCULATIONS

)

Calculations for the test were based on LaSalle County Station Procedure LTS-300-4.

A reproduction of this computational procedure is found in Appendix C.

The instrument error analyses are also found in Appendix C.

In preparing for the LaSalle County Station short duration test using BN-TOP-1, Rev. 1, a number of editorial error and ambiguous statements in the topical report were identified.

Corrections to these errors have been incorporated into the calculations for BN-TOP-1, Rev 1, found in LTS-300-4 and in the calculations found in Appendix C.

The station has made no attempt to improve or deviate from the methodology outlined in the topical report.

O J

i N.,

J G

O

b Page 80

]

SECTION F - TYPE A TEST RESULTS AND INTERPRETATIONS F.1 Measured Leak Rate Test Results Based upon data collected during the Short Duration test, the following results were determined:

g Acceptance Actual Leak Rate Criterion (wt%/ day)

(wt%/ day)

Total Time Measured Leak Rate 0.269689 0.476

()

Calculated Leak Rate 0.284863 0.476 Upper 95% Confidence Limit Leak Rate 0.316442 0.476 F.2 Induced Phase Test Results O

A leak of 387.0 SCFH (0.638 wt%/ day) was induced on the primary containment for this phase of the test.

The following results were determined:

[]

Actual Leak Rate (wt%/ day)

Superimposed Flowmeter Leak Rate ( L.)

0.638 Calculated Leak Rate Prior To g

Verification Test (L )

0.284863 i

Induced Calculated Leak Rate During Verification Test (L )

0.799648 c

O Acceptance Criterion:

IL (Li+L) I s 0.159 wt%/ day c

l L - (Li + L,) l 0.1232 wt%/ day

=

c S

O

y s.

Page 81 F.3 Leak Rate Compensation For Non-Vented Penetrations

,s The Primary Containment Integrated Leak Rate Test was performed with the following penetrations not drained and vented as required by 10CFR50, Appendix J.

The minimum pathway "as left" leak rate of each of these penetrations, as determined by Type C testing is listed:

Penetration Function SCFH M-16 RBCCW Supply 0.0 M-17 RBCCW Return 0.45 M-25 PCCW "A" Supply 0.69 M-26 PCCW "B" Supply 0.35

,J M-27 PCCW "A" Return 6.08 M-28 PCCW "B" Return 0.0 M-30 RWCU Suction 0.0 M-36 Recire Loop Sample 0.0 M-96 Drywell Equip. Drain Sump 0.19 M-98 Drywell Floor Drain Sump 2.55 M-97 Drywell Equip. Drain Sump Cooling 0.0 3

M-22 Inboard MSIV Drain 0.19 M-7 RHR Shutdown Cooling Suction 0.37 M-15 Steam To RCIC 0.37 ECCS/RCIC Worst Division 6.84 M-HG Unit 2 H Recombiner Skid 1.03 2

M-34 Standby Liquid Control 0.0

_-7 CRD to RVWLIS Backfill 0.0

]

I-8 CRD to RVWLIS Backfill 0.0 I-4A CRD to RVWLIS Backfill 0.0 I-5 CRD to RVWLIS Backfill 0.0 TOTAL 19.11 SCFH 9'

This yields the following Non-Vented Penetration Penalty:

TOTAL (SCFH) x 1. 64 73x10-2 Non-Vented Penetration Penalty 0.0315 wt%/ day

=

O F.4 Change In Drywell Sump Level During the time that the drywell was closed for the PCILRT to the time it was re-opened for post test inspection (approximately 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br />), the drywell floor sump levels did not change as verified by the pre and post J

ILRT sump level measurements. The drywell equipment drain sump did increase 4.5" (approximately 1.3 x 10-2% total containment volume) during this period.

The small change in drywell equipment sump volume, (over the 36 hour4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br /> period when the drywell was closed), produced negligible effects during the 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> that the test was performed.

Therefore, changes in drywell sump levels were not used in calculating the final containment leakage rate.

)

Page 82 F.5 Evaluation Of Instrument Failures

.)

There were no instrument failures or sensors rejected during the test.

F.6 Am-Found (Calculated Adjusted) Local Leak Rate 7)

The 95% Upper Confidence Limit, Type A test leak rate, plus the total leak rate penalty for non-vented penetrations, plus the sum of the Calculated Adjusted local leak rates must be less than 0.75 La.

The Calculated Ad]usted local leak rates are summarized in Table 5.

As Found Test Results 95% Upper Confidence Limit 0.316442 wt%/ day Penalty For Non-Vented Penetrations 0.0315 wt%/ day j,j Calculated Adjusted Leakage 0.0794 wt%/ day TOTAL 0.42734 wt%/ day The total "As Found" containment leakage rate was below the maximum 9

allowable leakage rate of 0.75 La (0.476 wt%/ day).

Thus, the "As Found" Containment Integrated Leakage is satisfactory, e

e e

.A

TABLE 5 Page 83 (SHEET 1 OF 5)

CALCULATED ADJUSTED LEAKAGE MINIMUM PATHWAY ADJUSTED LOCAL PENETRATION / VALVEis)

TEST VOLUME AS-FOUND (SCFH)

AS-LEET (SCFH)

LEAK RATE (SCFH)

M-22 INBOARD MSIV DRAIN.

3.86 0.19 3.67 2B21-F016, 2B21-F019 M-21 DRYWELL PURGE 1.26 0.00 1.26 2VQO35, 2VOO69 M-5 "A"

FEEDWATER TO REACTOR 4.43

-3.00 0

1.43 2B21-F010A, 2B21-F032A M-6 "B"

FEEDWATER TO REACTOR 0.00 0.00 0

0.00 2B21-F010B, 2B21-F032B M-9B DRYWELL FLOOR DFAIN SUMP 25.14 5.10 20.04 2RF012, 2RF013 M-108, M-104 DRYWELL VACUUM BREAKER 0.00 0.37 S

0.00 2PC001A M-30 RWCU SUCTION 0.37 0.00 0

0.37 2G33-F001, 2G33-F004 M-101 RCIC TURBINE EXHAUST 0.00 0.37 0.00 2E51-FOBO, 2E51-F086 VACUUM BREAKER M-25 PCCW "A" SUPPLY 0.00 0.69 0.00 2VP063A, 2VP113A M-27 PCCW "A"

RETURN 0.42 6.08 0.00 2VP053A, 2VP114A

O N

b U

V O

O J

b

(. )

t) s TABLE 5 Page 84 (SHEET 2 OF 5)

CALCULATED ADJUSTED LEAKAGE MINIMUM PATHWAY ADJUSTED LOCAL PENETRATION / VALVE (s)

TEST VOLUME AS-FOUND (SCFH)

AS-LEFT (SCFH)

LEAK RATE (SCFH)

M-28 FCCW "B"

RETURN 0.00 0.00 0.00 2VP053B, 2VP114B M-53 COMBUSTIBLE GAS CONTROL 0.42 0.55 0.00 2HG001A, 2HG002A "A"

SUCTION M-104 COMBUSTIBLE GAS CONTROL 0.20 0.00 0.20 2HG005A, 2HG006A "A"

RETURN M-33 COMBUSTIBLE GAS CONTROL 0.37 0.15 0.22 2HG001B, 2HG002B "B"

SUCTION M-106 COMBUSTIBLE GAS CONTROL 0.00 0.00 0.00 2HG005B, 2HG006B "B"

RETURN M-15 RCIC STEAM SUPPLY 17.46 0.37

+

17.09 2E51-F008, 2E51-F063, 2E51-F076, 2E51-F064, 2E51-F091, 2E51-F357 M-29 RHR/RCIC HEAD SPPAY 0.00 0.37 S

0.00 2E12-F023, 2E51-F013 M-17 RBCW RETURN 0.00 0.45 0

0.00 2WR040, 2WR180 M-54 1.35 0.19 1.16 2IN074, 2IN075

O O'

O O

O O

O O

O O

O-TABLE 5 Page 85~

(SHEET 3 OF 5)

CALCULATED ADJUSTED LEAKAGE MINIMUM PATHWAY ADJUSTED LOCAL PENETRATION / VALVE (s)

TEST VOLUME AS-FOUND (SCFH)

AS-LEFT (SCFH)

LEAK RATE (SCFH)

M-ll HPCS INJECTION 0.00 0.42 S

0.00 2E22-F004 M-7 RHR SHUT DOWN COOLING 0.37 0.37 0

0.00 2E12-F008, 2E12-F009 SUCTION M-34 SBLC INJECTION 0.00 0.00 0

0.00 2C41-F004A, 2C41-F004B, 2C41-F007 M-81 RCIC VACUUM PUMP 0.72 0.00 0.72 2E51-F069, 2E51-F028 DISCHARGE M-76 RCIC TURBINE EXHAUST 0.58 0.71 0.00 2E51-F068, 2E51-F040 M-18 RHR "A" DRYWELL SPRAY 0.88 0.19 0.69 2E12-F016A, 2E12-F017A M-20 DRYWELL INERTING MAKEUP 0.42 0.19 0.23 2VQ047, 2VQ048 M-19 RHR "B" DRYWELL SPRAY 0.00 0.95 0.00 2E12-F016B, 2E12-F017B M-14 RHR "B" LPCI INJECTION 0.00 0.93 0.00 2E12-F042B

O O

~

V U

U

~

U TABLE 5 Page 86 (SHEET 4 CF 5)

CALCULATED ADJUSTED LEAFAGE MINIMUM PATHWAY ADJUSTED LOCAL PENETFATION / VALVE (s)

TEST VOLUME AS-FCUND (SCFH)

AS-LEFT (SCFH)

LEAK RATE (SCFH)

M-9 RHR "B" SHUT DOWN 0.00 0.37 0.00 2E12-F053B COOLING RETURN M-10 LPCS INJECTION 0.46 0.37 S

0.09 2E21-F005 M-12 LPCI "C"

INJECTICN 0.00 5.54 S

0.00 2E12-F042C I-ll, I-36, 1-45 "A"

POST LOCA 1.53 9.30 0.00 2CM022A, 2CM024A, CONTAINMENT MONITORING 2CM025A I-50, I-35, I-47 "B"

POST LOCA 0.00 1.40 0.00 2CM021B, 2CM023B, CCNTAINMENT MONITORING 2CM026B M-107, M-103 DRYWELL VACUUM EREAKER 3.46 2.43 S

1.03 2PC002A TOTAL =

48.20 CALCULATED ADJUSTED LEAKAGE PATE = TOTAL (SCFH) x (1.6473 x 10^-3)

[ wts/ day)

CALCULATED ADJUSTED LEAFAGE RATE = 0.079400 [wt9/ day]

a

g.

O Page 87 1

TABLE 5 O

(Sheet 5 of 5)

CALCULATED ADJUSTED LEAKAGE 0

In the case where individual leak rates are assigned to two valves in

()

series (both beforo and after the R&A), the penetration through-leakage would simply be the smaller or best of the two valves' leak rates.

S The Minimum Pathway Leak Rate of a single valve pathway is equal to the

)

measured leak rate past that single valve.

j

()

W In the case where a leak rate is obtained by pressurizing between two i

isolation valves and the individual valve's leak rate is not quantified, the "As-Found" and "AS-Left" penetration through-leakage for each valve' would be one half the measured leak rate if both valves are repaired.

In the case where a leak rate is obtained by pressurizing between two 1

ys isolation valves and only one valve is repaired, the "AS Found" Le penetration leak rate would conservatively be the final measured leak R

rate or one half of the measured value prior to repairs or adjustments, whichever is smaller.

The "As Left" penetration through-leakage _in either case is zero.

()

+

The Minimum Pathway Leak Rate of a parallel multi-valve pathway is equal to the sum of the Icakages of all the inboard valves or the sum of the leakages of all the outboard valves whichever is smaller.

If individual valve leakage rates are not known and the system is tested by pressurizing between all the valves, the Minimum Pathway Leak Rate is equal to half the measured leakage rate.

()

The correction (Calculated Adjustment) for each pathway is that pathway's Minimum Path Leakage Rate before the R&A minus its Minimum Path Leakage after the R&A but before the Type A Test. Any negative corrections will be set equal to zero.

O O

C) l C) -

) -'

3 Page 88

))

J J

APPENDICES

).

3-3 y

J.

J

i P.

Page 89 APPENDIX A

)

TYPE B AND C TESTS l

Presented herein are the results of local leak rate tests conducted on I

all penetrations, double-gasketed seals, and isolation valves during the

)

Unit 2 Refuel Outage, L2R05 (fifth). Total leakage for double-gasketed seals and total leakage for all other penetrations and isolation valves following repairs satisfied all Technical Specification limits.

These results are listed in Table 6.

)

i l

)

)

)

)

)

l l

)

l I

)

,mJ Page 90 O

\\n d

A)

'O L2R05 LLRT RESULTS O

O O

O

,wl g

O O

O O

O O

O

-O

'O O

'O TABLE 6 Page 91 (SHEET 1 OF 10)

L2R05 LLRT RESULTS AS-FOUND AS-LEET MINIMUM MAXIMUM MINIMUM MAXIMUM PENETRATION DESCRIPTION VALVE (s)/ COMPONENT DATE TOTAL PATHWAY PATHWAY DATE TOTAL PATHWAY PATHWAY M-22 INBOARD MSIV DRAIN 2B21-F016, 2B21-F019 9/5/93 7.72 3.860 7.720 11/29/93 0.37 0.185 0.370 M-66 SUPPRESSION CHAMBER 2VQ026, 2VQ043, 2VQO27 9/10/93 8.28 4.140 8.280 9/10/93 8.28 4.140 8.280 VENT M-20 DRYWELL VENT 2VQO29, 2VQO30, 2VQ042 9/10/93 3.50 1.750 3.500 9/10/93 3.50 1.750 3.500 M-67 SUPPRESSION CHAMBER 2VQO31, 2VQO32, 2VQ040 9/10/93 15.67 7.835 15.670 9/10/93 5.99 2.995 5.990 PURGE M-21 DRYWELL PURGE 2VQO34, 2VQO35, 2VQO36 9/10/93 2.51 1.255 2.510 11/21/93 0.00 0.000 0.000 2VQ0GB I-36 SUPPRESSION CHAMBER 2CM027, 2CM028 9/17/93 0.00 0.000 0.000 9/17/93 0.00 0.000 0.000 CONTINUOUS AIR MONITOR I-11 DRYWELL CONTINUOUS 2CM029, 2CM030 9/17/93 0.00 0.000 0.000 9/17/93 0.00 0.000 0.000 AIR MONITORING I-11 FC AIR SAMPLE 2CM031, 2CM032 9/18/93 0.00 0.000 0.000 9/18/93 0.00 0.000 0.000 I-45 SAMPLE RETURN TO 2CM033, 2CM034 9/18/93 0.00 0.000 0.000 9/18/93 0.00 0.000 0.000 SUPPRESSION CHAMBER M-5 A FEEDWATER 2B21-F010A 9/10/93 INFINITE 11/3/93 3.00 2B21-F032A 9/11/93 4.43 4.430 INFINITE 11/3/93 6.47 3.000 6.470 2B21-F065A 9/11/93 0.00 9/11_/93 0.00 M-6 B FEEDWATER and 2B21-F010B 9/7/93 0.00 9/7/93 0.00 RWCU RETURN 2B21-F032B 9/7/93 13.34 0.000 INFINITE 10/29/93 2.60 0.000 2.600 2B21-F065B 9/8/93 0.55 10/29/93 1.57 2G33-F040 9/9/93 INFINITE 10/29/93 1.39

U U

U U

U U

U U

U U

V TABLE 6 Page 92

~

(SHEET 2 OF 10)

I.2R05 LLRT RESULTS AS-FOUND AS-LEFT MINIMUM MAXIMUM MINIMUM MAXIMUM PENETRATION DESCRIPTION VALVE (s)/ COMPONENT DATE TOTAL PATHWAY PATHWAY DATE TOTAL PATHWAY PATHWAY M-54 DRYWELL PNEUMATIC 2IN001A, 2IN001B 9/8/93 0.00 0.000 0.000 9/8/93 0.00 0.000 0.000 SUCTION M-36 RECIRC LOOP SAMPLE 2B33-F019 9/7/93 0.00 0.000 0.000 9/7/93 0.00 0.000 0.000 2B33-F020 9/7/93 0.00 9/7/93 0.00 M-98 DRYWELL FLOOR DFAIN 2RF012, 2RF013 9/20/93 107.66 25.140 107.660 11/27/93 5.10 2.550 5.100 SUMP M-111 DRYWELL PERSONNEL DRYWELL PERSONNEL 9/3/93 2.40 2.400 2.400 12/1/93 2.12 2.120 2.120 ACCESS HATCH ACCESS HATCH M-112 DRYWELL EQUIPMENT DRYWELL EQUIPMENT 9/4/93 0.00 0.000 0.000 12/4/93 0.00 0.000 0.000 HATCH HATCH M-113 SUPPRESSION POOL SUPPRESSION POOL 9/4/93 0.00 0.000 0.000 11/26/93 0.00 0.000 0.000 EMERGENCY ACCESS EMERGENCY ACCESS HATCH #1 HATCH #1 M-114 SUPPRESSION POOL SUPPRESSION POOL 9/4/93 0.00 0.000 0.000 11/26/93 0.00 0.000 0.000 EMERGENCY ACCESS EMERGENCY ACCESS HATCH #2 HATCH #2 M-115 CRD REMOVAL HATCH CRD REMOVAL HATCH 9/4/93 0.00 0.000 0.000 11/18/93 0.00 0.000 0.000 j

N/A DRYWELL HEAD DRYWELL HEAD 9/5/93 0.00 0.000 0.000 12/3/93 0.00 0.000 0.000 l

M-42 E TIP PENETPATION E TIP PENETPATION 9/5/93 0.00 0.000 0.000 9/5/93 0.00 0.000 0.000 FLANGE FLANGE l

M-43 D TIP PENETRATION D TIP PENETRATION 9/5/93 0.00 0.000 0.000 9/5/93 0.00 0.000 0.000 FLANGE FLANGE M-44 C TIP PENETRATION C TIP PENETPATION 9/5/93 0.00 0.000 0.000 9/5/93 0.00 0.000 0.000 FLANGE FLANGE

U.

U

~

U U'

U

.U U

U U

U U

TABLE G Page 93 (SHEET 3 OF 10)

L2R05 LLRT RESULTS AS-FOUND AS-LEFT MINIMUM MAXIMUM MINIMUM MAXIMUM PENETRATION DESCRIPTION VALVE (s)/ COMPONENT DATE TOTAL PATHWAY PATHWAY DATE TOTAL PATHWAY PATHWAY M-45 B TIP PENETRATION 3 TIP PENETRATION 9/5/93 0.00 0.000 0.000 9/5/93 0.00 0.000 0.000 FLANGE FLANGE M-46 A TIP PENETRATION A TIP PENETRATION 9/5/93 0.00 0.000 0.000 9/5/93 0.00 0.000 0.000 FLANGE FLANGE M-108/M-104 DW TO SP A VACUUM 2PC001A OUTBOARD 9/2/93 0.00 0.000 0.000 11/27/93 0.00 0.000 0.000 BREAKER FLANGE O-RING SEAL M-108/M-104 DW TO SP A VACUUM 2PC001A INBOARD 9/2/93 0.00 0.000 0.000 11/27/93 0.37 0.370 0.370 BREAKER FLANGE O-RING SEAL M-108/M-104 DW TO SP A VACUUM 2PC001A ACTUATOR 9/2/93 0.00 0.000 0.000 11/27/93 0.00 0.000 0.000 BREAKER O-RING M-108/M u O SP A VACUUM 2PC001A ACTUATOR 9/2/93 0.00 0.000 0.000 11/27/93 0.00 0.000 0.000 u..

BREAKER SEAL M-106/M-110 DW TO SF B VACUUM 2PC001B OUTBOARD 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 BREAKER FLANGE O-RING SEAL M-106/M-110 DW TO SP B VACUUM 2PC001B INBOARD 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 BREAKER FLANGE O-RING SEAL M-106/M-110 DW TO SP B VACUUM 2PC001B ACTUATOR 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 BREAKER O-RING M-106/M-110 DW TO SP B VACUUM 2PC001B ACTUATOR 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 BREAKER SEAL M-103/M-107 DW TO SP C VACUUM 2PC001C OUTBOARD 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 BREAKER FLANGE O-RING SEAL M-103/M-107 DW TO SP C VACUUM 2PC001C INBOARD 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 BREAKER FLANGE O-RING SEAL

~ - -

~ - - -

TABLE G Page 94 (SHEET 4 OF 10)

L2R05 LLRT RESULTS AS-FOUND AS-LEFT MINIMUM MAXIMUM MINIMUM MAXIMUM PENETRATION DESCRIPTION VALVE (s)/ COMPONENT DATE TOTAL PATHWAY PATHMY DATE TOTAL PATHWAY PATHWAY M-103/M-107 DW TO SP C VACUUM 2PC001C ACTUATOR 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 BREAKER O-RING M-103/M-107 DW TO SP C VACUUM 2PC001C ACTUATOR 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 BREAKER SEAL M-105/M-109 DW TO SP D VACUUM 2PC001D OUTBOARD 9/2/93 0.00 0.000 0.000 9/20/93 0.00 0.000 0.000 BREAKER FLANGE O-RING SEAL M-105/M-109 DW TO SP D VACUUM 2PC001D INBOARD 9/2/93 0.00 0.000 0.000 9/20/93 0.00 0.000 0.000 BREAKER FLANGE O-RING SEAL M-105/M-109 DW TO SP D VACUUM 2PC001D ACTUATOR 9/2/93 0.00 0.000 0.000 9/20/93 0.00 0.000 0.000 BREAKER O-RING M-105/M-109 DW TO SP D VACUUM 2PC001D ACTUATOR 9/2/93 0.00 0.000 0.000 9/20/93 0.00 0.000 0.000 BREAKER SEAL M-20 DRYWELL VENT 2VQO30 INNER FLANGE 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 0-RING M-82 HPCS SPARE HPCS SPARE FLANGE 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 PENETRATION M-66 SUPPRESSION POOL 2VQO27 INNER FLANGE 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 VENT O-RING M-67 SUPPRESSION CHAMBER 2VQO31 INNER FLANGE 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 PURGS O-RING l

M-21 DRYWELL PURGE 2VQO34 INNER FLANGE 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 0-RING M-20 DRYWELL VENT 2VQO30 VALVE STEM 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 PACKING

O O

O O

O O

O O

.O C.

O TABLE 6 Page 95 (SHEET 5 OF 10)

L2R05 LLRT RESULTS AS-FOUND AS-LEFT MINIMUM MAXIMUM MINIMUM MAXIMUM PENETRATION DESCRIPTION VALVE (s)/ COMPONENT DATE TOTAL PATHWAY PATHWAY DATE TOTAL PATHWAY PATHWAY M-66 SUPPRESSION CHAMBER 2VQO27 VALVE STEM 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 VENT PACKING M-67 SUPPRESSION CHAMBER 2VQO31 VALVE STEM 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 PURGE PACKING M-38 SA TO DRYWELL SA FLANGE O-RINGS 9/2/93 0.00 0.000 0.000 12/4/93 0.00 0.000 0.000 M-37 MC TO DRYWELL MC FLANGE O-RINGS 9/2/93 0.00 0.000 0.000 12/4/93 0.00 0.000 0.000 M-21 DRYWELL PURGE 2VQO34 VALVE STEM 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 PACKING M-103 C VACUUM BREAKER 2PC003C INNER FLANGE 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 LINE O-RING M-104 A VACUUM BREAKER 2PC003A INNER FLANGE 9/2/93 0.00 0.000 0.000 12/4/93 0.00 0.000 0.000 LINE O-RING M-105 D VACUUM BREAKER 2PC003D INNER FLANGE 9/3/93 0.00 0.000 0.000 9/3/93 0.00 0.000 0.000 LINE O-RING M-106 B VACUUM BREAKER 2PC003B INNER FLANGE 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 LINE O-RING M-107 C VACUUM BREAKER 2PC002C INNER FLANGE 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 LINE O-RING l

M-108 A VACUUM BREAKER 2PC002A INNER FLANGE 9/2/93 0.00 0.000 0.000 11/27/93 0.00 0.000 0.000 LINE O-RING l'

M-109 D VACUUM BREAKER 2PC002D INNER FLANGE 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 LINE O-RING M-110 B VACUUM BREAKER 2PC002B INNER FLANGE 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 LINE O-RING l

1

O O

O O

O O

O O

O O

O' TABLE 6 Page 96 (SHEET 6 OF 10)

L2R05 LLRT RESULTS AS-E OUND AS-LEET MINIMUM MAX 1 MUM MINIMUM MAXIMUM PENETRATION DESCRIPTION VALVE (s ) /COMPONDIT DATE TOTAL PATHWAY PATHWAY DATE TOTAL PATHWAY PATHWAY M-97 DW EQUIPMENT DFAIN 2RE026, 2RE029 9/20/93 0.00 0.000 0.000 9/20/93 0.00 0.000 0.000 SUMP COOLING E-21 ELECTRICAL PENETRATION N/A 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 770' - 2' E-23 ELECTRICAL PENETRATION N/A 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 775' - 137*

E-26 ELECTRICAL PENETRATION N/A 9/2/93 0.00 0.000 0.000 9/2/93 0.00 0.000 0.000 774' - 225*

M-96 DRYWELL EQUIPMENT 2RE024, 2RE025 11/11/93 19.40 9.700 19.400 11/11/93 0.38 0.190 0.380 DRAIN SUMP M-30 RWCU SUCTION 2G33-F001 9/30/93 0.37 0.370 0.370 10/20/93 0.00 0.000 0.000 2G33-F004 9/30/93 0.37 10/20/93 0.00 M-101 RCIC TURBINE EXHAUST 2E51-F080, 2 E51-F086 9/6/93 0.00 0.000 0.000 12/1/93 0.37 0.185 0.370 VACUUM BREAKER N/A ELECTRICAL PRESSURIZATION 9/13/93 0.57 0.567 0.567 9/13/93 0.57 0.567 0.567 PENETRATION SYSTEM M-25 PCCW A SUPP Y 2VP063A, 2VP113A 9/22/93 0.00 0.000 0.000 10/26/93 1.38 0.690 1.380 i

M-26 PCCW B SUPPLY 2VP063B, 2VP113B 9/10/93 0.69 0.345 0.690 9/10/93 0.69 0.345 0.690 M-27 PCCW A RETURN 2VP053A, 2VP114A 9/22/93 0.83 0.415 0.830 11/10/93 12.16 6.080 12.160 M-28 PCCW B RETURN 2VP053B, 2VP114B 9/10/93 0.00 0.000 0.000 11/24/93 0.00 0.000 0.000 i

M-47 TIP INDEX PURGE 2INO31 9/9/93 0.00 0.000 0.000 9/9/93 0.00 0.000 0.000 AIR SUPPLY

O' O

O O

O O'

'O

'O O

O O

~

TABLE 6 Page 97 (SHEET 7 OF 10)

L2R05 LLRT RESULTS AS-FOUND AS-LEFT MIN 1 MUM MAXIMUM MINIMUM MAXIMUM PENETPATION DESCRIPTION VALVE {s)/COMPONFliT DATE TOTAL PATHWAY PATHWAY DATE TOTAL PATHWAY PATHWAY M-54 DRYWELL PNEUMATIC 2IN017 9/8/93 0.79 0.000 0.790 9/8/93 0.79 0.000 0.790 DISCHARGE TO DRYWELL 2IN018 9/8/93 0.00 9/8/93 0.00 M-53 COMBUSTIBLE GAS 2HG001A, 2HG002A 9/9/93 0.83 0.415 0.830 12/3/93 1.11 0.555 1.110 CONTROL A SUCTION M-104 COMBUSTIBLE GAS 2HG005A, 2HG006A 9/9/93 21.16 10.580 21.160 11/23/93 6.01 3.010 6.010 CONTROL A RETUPli M-33 COMBUSTIBLE GAS 2HG001B, 2HG002B 9/9/93 0.74 0.370 0.740 12/3/93 0.37 0.185 0.370 CONTROL B SUCTION M-106 COMBUSTIBLE GAS 2HG005B, 2HG006B 9/9/93 0.00 0.000 0.000 11/23/93 0.00 0.000 0.000 CONTROL B RETURN M-15 STEAM TO RCIC 2E51-F063, 2E51-F076, 9/6/93 34.92 17.460 34.920 11/17/93 0.74 0.370 0.740 2E51-F064, 2E51-F008, 2E51-F091, 2E51-F357 M-38 SA TO DRYWELL 2SA042, 2SA046 12/4/93 0.00 0.000 0.000 12/4/93 0.00 0.000 0.000 M-37 MC TO DRYWELL 2MCO27, 2MCO33 12/4/93 0.00 0.000 0.000 12/4/93 0.00 0.000 0.000 M-29 RHR/RCIC HEAD SPRAY 2E12-F023, 2E51-F013 9/17/93 0.00 0.000 0.000 9/17/93 0.00 0.370 0.370 11/27/93 0.37 M-59 CYCLED CONDENSATE TO 2FC113 11/24/93 0.00 0.000 0.550 11/24/93 0.00 0.000 0.550 REFUELING BELLOWS 2FC114 11/24/93 0.55 11/24/93 0.55 M-65 REACTOR WELL DRAIN 2FC115 9/21/93 0.00 0.000 0.000 9/21/93 0.00 0.000 0.000 2FC086 9/21/93 0.00 9/21/93 0.00 M-16 RBCCW SUPPLY 2WR029 9/10/93 0.00 0.000 0.000 9/10/93 0.00 0.000 0.000 2WR179 9/10/93 0.00 9/10/93 0.00

O O

O O

O O

O O

O O

O' TABLE 6 Page 98 (SHEET 8 OF 10)

L2ROS LLRT RESULTS AS-FOUND AS-LEFI MINIMUM MAXIMUM MINIMUM MAXIMUM PENETRATION DESCRIPTION VALVE (s)/ COMPONENT DATE TOTAL PATHWAY PATHWAY DATE TOTAL PATHWAY PATHWAY M-17 RBCCW RETURN 2WR040 9/10/93 0.00 0.000 0.510 10/15/93 0.45 0.450 0.560 2WR180 9/11/93 0.51 10/15/93 0.56 I-4F DRYWELL HUMIDITY 2CM017A, 2CM018A 9/18/93 0.00 0.000 0.000 9/10/93 0.00 0.000 0.000 MONITOR A SUCTION I-5F DRYWELL HUMIDITY 2CM017B, 2CM018B 9/18/93 0.00 0.000 0.000 9/18/93 0.00 0.000 0.000 MONITOR B SUCTION I-45 DRYWELL HUMIDITY 2CM019A, 2CM020A 9/18/93 0.37 0.185 0.370 9/18/93 0.37 0.185 0.370 MONITOR A DISCHARGE I-45 DRYWELL HUMIDITY 2CM019B, 2CM020B 9/18/93 0.37 0.185 0.370 9/18/93 0.37 0.185 0.370 MONITOR B DISCHARGE M-54 DRYWELL PNEUMATIC 2IN074, 2IN075 9/8/93 2.69 1.345 2.690 10/22/93 0.37 0.185 0.370 DRYER PURGE M-11 HPCS INJECTION 2E22-F004 9/9/93 0.00 0.000 0.000 10/16/93 0.42 0.420 0.420 M-7 RHR SHUTDOWN COOLING 2E12-F008 9/22/93 0.37 0.370 0.370 9/22/93 0.37 0.370 5.130 SUCTION 2E12-F009 9/22/93 0.37 10/19/93 5.13 M-34 SBLC INJECTION LINE 2C41-F004A/B 2/26/92 0.00 0.000 0.000 10/16/93 0.00 0.000 0.000 2C41-F007 10/16/93 0.00 10/16/93 0.00 M-81 RCIC VACUUM PUMP 2E51-F069, 2E51-F028 9/6/93 1.44 0.718 1.436 12/1/93 0.47 0.234 0.468 DISCHARGE M-76 RCIC TURBINE EXHAUST 2E51-F068, 2E51-F040 9/6/93 1.16 0.580 1.160 12/2/93 1.42 0.710 1.420 M-20 DRYWELL INERTING 2VQ047, 2VQ048 9/10/93 0.83 0.415 0.830 11/20/93 0.37 0.185 0.370 MAKEUP

O O ^-

-O O

O O

O.

-O-0 Os On TABLE 6 Page 99' (SHEET 9 OF 10)

L2R05 LLRT RESULTS AS-FOUND AS-LEFT MINIMUM MAXIMUM MINIMUM MAXIMUM PENETRATION DESCRIPTION VALVE (s)/ COMPONENT DATE TOTAL PATHWAY PATHWAY DATE TOTAL PATHWAY PATHWAY M-66 SUPPRESSION POOL 2VQ050, 2VQ051 9/10/93 0.00 0.000 0.000 9/10/93 0.00 0.000 0.000 INERTING MAKEUP M-46 A TIP PENETRATION TIP BALL VALVE A 9/13/93 0.37 0.370 0.370 9/13/93 0.37 0.370 0.370 M-45 B TIP PENETRATION TIP BALL VALVE B 9/13/93 0.37 0.370 0.370 9/13/93 0.37 0.370 0.370 M-44 C TIP PENETRATION TIP BALL VALVE C 9/13/93 0.37 0.370 0.370 9/13/93 0.37 0.370-0.370 M-43 D TIP PENETRATION TIP BALL VALVE D 9/13/93 0.00 0.000 0.000 9/13/93 0.00 0.000 0.000 M-42 E TIP PENETRATION TIP BALL VALVE E 9/13/93 0.56 0.560 0.560 9/13/93 0.56 0.560 0.560 M-18 RHR A DRYWELL SPFAY 2E12-F016A, 2E12-F017A 9/14/93 1.76 0.880 1.760 10/19/93 0.37 0.185 0.370 M-19 RHR B DRYWELL SPRAY 2E12-F016B, 2E12-F017B 9/23/93 0.00 0.000 0.000 11/13/93 1.29 0.645 1.290 M-13 RHR A LPCI INJECTION 2E12-F042A 9/14/93 0.83 0.830 0.830 9/14/93 0.'83 0.830 0.830 M-14 RHR B LPCI INJECTION 2E12-F042B 9/23/93 0.00 0.000 0.000' 11/5/93 0.93 0.930 0.930-M-8 A RHR SHUTDOWN 2E12-F053A 9/13/93 4.43 4.430 4.430 9/13/93 4.43 4.430 4.430 COOLING RETURN M-9 B RHR SHUTDOWN 2E12-F053B 9/23/93 0.00 0.000 0.000 11/5/93 0.37 0.370 0.370 l

COOLING RETURN M-10 LPCS INJECTION 2E12-F005 9/10/93 0.46 0.460 0.460 9/28/93

-0.37 0.370 0.370 M-12 RHR C LPCI INJECTION 2E12-F042C 10/6/93 0.00 0.000 0.000 11/19/93 5.54 5.540 5.540 M-77 RCIC TEST RETURN TO 2E51-F362, 2E51-F363 9/18/93 0.00 0.000 0.000 9/18/93 0.00 0.000 0.000 SUPPRESSION POOL

~

~

[

Lo o

o o

o o

~

~b o

o 6

o TABLE 6 Page 100 (SHEET 10 OF 10)

L2R05 LLRT RESULTS AS-FOUND AS-LEFT MINIMUM MAXIMUM MINIMUM MAXIMUM PENETRATION DESCRIPTION VALVE (s)/ COMPONENT DATE TOTAL PATHWAY PATHWAY DATE TOTAL PATF4AY PATHWAY I-11/I-36/

A POST LOCA 2CM022A, 2CM024A, 9/18/93 1.53 1.530 1.530 11/27/93 9.30 9.300 9.300 I-45 CONTAINMENT MONITORING 2CM025A I-50/I-35/

B POST LOCA 2CM021B, 2CM023B, 9/18/93 0.00 0.000 0.000 11/27/93 1.40 1.400 1.400 I-47 CONTAINMENT MONITORING 2CM026B I-4A RWLIS CRD BACKFILL 2C11-F422G N/A N/A N/A N/A 11/25/93 0.00 0.000 0.000 PANEL 2C11-P004 2C11-F423G N/A N/A 11/25/93 0.00 I-5A RWLIS CRD BACKFILL 2C11-F422B N/A N/A N/A N/A 11/20/93 0.00 0.000 0.000 PANEL 2C11-P003 2C11-F423B N/A N/A 11/20/93 0.00 I-7 RWLIS CRD BACKFILL 2C11-F422D N/A N/A N/A N/A 11/20/93 0.00 0.000 0.000 PANEL 2C11-P002 2C11-F423D N/A N/A 11/20/93 0.00 I-8A RWLIS CRD BACKFILL 2C11-F422F N/A N/A N/A N/A 11/20/93 0.00 0.000 0.000 PANEL 2C11-P005 2C11-F423F N/A N/A 11/20/93 0.00 TOTAL infinite 104.630 infinite TOTAL 96.265 58.251 96.265 l

r l

I l

{

l

w-d Page 101 APPENDIX B J

L2R05 TYPE B AND C TEST SUt44ARY The As-Found leak rate for the Primary Containment Isolation Valves / Components, excluding the Main Steam Isolation valves was below the Technical Speci.fication limit of 231.4 SCFH using the Minimum Pathway

-')

Methodology.

The Technical Specification limit was exceeded using the Maximum

~

Pathway Methodology due to large leakage from the RWCU return isolation valve (2G33-F040) and the "A" Feedwater inboard check valve (2B21-F010A).

Both components resulted in infinite leakage.

Failed components were repaired / adjusted to bring the total Type B and C leakage well below the Tech Spec limit.

q J

As-Found As-Found As-Left Tech spec Limit Min Path Max Path Max Path (SCFH)

(SCFH)

(SCFH)

(SCFH)

Type B 2.967 2.967 3.057 Type C 101.663 INFIt!ITE 93.208_

Total 104.63 INFINITE 96.265 231.4 4_

MAIN STEAM ISOLATION VALVES (TESTED AT 25 PSIG)

The As-Found leak rate for the Main Steam Isolation Valves did not exceed D

Technical Specification limits.

As-Found Leak Rate As-Left Leak Rate Tech Spec Limit STEAM LINE (SCFH)

(SCFH)

(SCFH)

A 29.35 29.35 c

B 15.54 15.54 C

7.79 7.79 D

8.56 2.09 Total 61.24 54.77 100.00 9

\\

%)

APPENDIX C Page 102 (PAGE 1 OF 13)

,,V CALCULATICtl OF COtrTAINHENT DRY AIR HASS

()

A.

Average Temperature of Subvolume li (Tg)

The average temperature of subvolume li (T ) equals the average of all 3

RTD/ Thermistor temps in subvolume il N

C)

Tg "

E T,3 1

j=1 Where N = The number of RTDs/ Thermistors in subvolume il 0

B.

Average Dew Temperature of Subvolume li (D )

1 The average dew temperature of subvolume li (Dy) equals the average of all dew cell dew temps in subvolume 81 C)

N 1"y Dg,3 D

j=1 Mbere

()

N = the number of Dew Cells in subvolume li i

If the subvolume in question is the suppression pool, the above assumption may be used if it can be shown f rom previous test data that there is a very close correlation between suppression pool chamber and water temperature.

()

C.

Total Corrected Pressure li (P )

3 The total corrected pressure ti, (Pg) is Pg = Ci + Hg Prg O

Mbere C

= Zero shift correction factor for raw pressure li 3

Slope correction factor for raw pressure li Hg a

Pri = Raw pressure ti, in decimal form O

1

I

)-

APPENDIX c Pago 103 (PAGE 2 OF 13')

)-

CALCULATICH OF CCHTAINMDTT DRY AIR MASS D.

Whole Containment Volume Weighted Average Temperature, (T )

}

e Calculate T u' sing the below equation or one that yields equivalent values e

to two decimal places.

I Te=

)

r 21 7

i=1 1

where th f3 = The volume fraction of the i subvolume N = The total number of subvolumes in containment

)

E.

Calculation of the ' Average Vapor Pressure of Subvolume i, (Pvg)

Average Subvolume Vapor Pressure as functions of Average Dew Temperatures (Dg) are most accurately found f rom ASME Steam Tables. A similar correlation that is extremely accurate is given below.

)

For 321 Dg i 80'T Pvg = 0.2105538 x 10~1 + 0.1140313 x 10-2 Dy

+ 0.1680644 x 10~4 xD2 + 0.3826294 x 10~0 D 3 1

1

+ 0.5787831 x 10-9 D4 + 0.2056074 x 10-10 p5 1

1 Tor 801 Dg i 115'r

)

Pvg = 0.18782 - 0.7740034 x 10-2 Dg

+ 0.204009 x 10~3 xD - 0.1569692 x 10-5 p 2'

3 i

i

+ 0.1065012 x 10~7 D4 1

Tor.1151 D1 1 155'T Pvg = 0.9897124 - 0.3502587 x 10-1 Dy

+ 0.5537028 x 10-3 xD - 0.3570467 x 10-5 p 2

3 1

1

+ 0.1496218 x 10~7 D4 i

O APPENDIX C Page 104 (PAGE 3 OF 13)

O CALCULATIW OF CONTAINMENT DRY AIR MASS Tor 155 1 Dg i 215'r Pvg = 0.333F872 x 10 - 0.9456801 x 10-1 D 1

g 2

3

+ 0.1121381 x 10-2 D - 0.598361 x 10-5 9 1

1

+ 0.1882153 x 10-7 D4 O

1

  • NarE Numbers f rom ASME Standard Stearn Tables, Tif th Edition.

T.

Whole Containment Average Vapor Pressure, (Pye)

O Calculate Pv using the below equation or one that yields equivalent values c

to two decimal places.

N fy Pvy Pvc=T E

T c

3 0

i=1 shere N = The total of subvolumes in containment th O

fi = volume fraction of the i subvolume G.

Calculation of the Whole Containment Average Dew Temperature, (D )

e Whole Containment Average Dew Temperature as functions of Whole Containment Average Vapor Pressures are most accurately found from ASME Steam Tables.

O A simpler correlation that is extremely accurate is given below.

D is in units of

'T.

e For 0.08859 1 Pye 1 0.50683 psia O

Notet Pe (0.08859) = 32'F, Pe (0.50683) = 80*T De = - 0.5593968 x 101 + 0.6348248 x 103 Pvc 4

3

- 0.320306 x 10 Pv2 + 0.1130089 x 105 pyc c

O -

- 0.2411539 x 10 py4 + 0.2796469 x 105 5

5 pyg 5

- 0.1348916 x-10 py 1

L APPENDIX C Page 105 (PAGE 4 or 13)

CALCULATIOi OF COTTAINMENT DRY AIR MASS For 0.50683 i Py 1 1.4711 psia e

Hotes Pe (0.50683) = 80*F, P,. (1.4111) = 115'r De = + 0.2334173 x 102 + 0.2004024 x 103 Pvc

- 0.2785328 x 10 Pv2 + 0.2765841 x 103 3

3 Pv p.)

c c

3

- 0.168669 x 10 Pv4 + 0.5658985 x 102 5

py C

C 1

6

- 0.7977715 x 10 py c

For 1.4711 1 Pvc1 4.2036 psia Note: Pe (1.4711) = 115T, P (4.2036) = 155'T e

De = + 0.5221757 x 102 + 0.7391149 x 102 pyc

- 0.3306993 x 10 py2 + 0.1074842 x 102 3

2 Pv e

c 1

4 5

- 0.2169825 x 10 Pv + 0.2432796 Pv e

c

- 0.1155358 x 10~1 Pv 6 c

3 For 4.2036 i Pv 1 15.592 psia c

Notes Pe (4.2036) = 155'T, Pe (15.592) = 215'r De = 0.8512278 x 102 + 0.274613 x 102 pV c

- 0.3847812 x 10 Pv2 + 0.3909064 Pv3 1

c c

- 0.2451226 x 10-1 Pv +

4 0.8484505 x 10~3 Pv 5 c

C 0

- 0.1237098 x 10-4 Pv c

  • NCTIE: Numbers f roni ASME Standard Steein Tables, Tif th Edition.

O a

-)

APPENDIX C Page 106 (PAGE 5 0F 13)

O CALCULATIQi Or CQiTAINHENT DRY AIR HASS II. Average Total Containment Pressure, (P) g e

H 1 E P ri P*N i=1 7'-

where N is the number of pressure transmitters used I.

Average Total Containment Dry Air Pressure, (P )d J

Pd=P-Py e

J.

Total Containment Dry Air Hass, (H) d E H=RT 3

e where R = Perfect gas constant of air, 53.35 lbg - ft/lb,

  • R 3

c = Total containment free volume.

V 3

0 9

'e

.e.=.2

9 APPENDIX C Page 107 (PAGE 6 OF 13)

O BN-TOP-1 METHOD TEST CALCULATICriS A.

Measured Leak Rate (Total time calculations)

From BN-TOP-1 Revision 1, Section 6.0 the following equation is given for the measured leak rate using the total time procedures Mi = 2.1Q2 To P g (1) nJ 1-ti T

Po ith MHERE:

Mi Hessured leak rate in weight % per day for the ith data point

=

Time since the beginning of the test period to the ith data t1

=

point in hours To, Tith = mean v lurne weighted containment temperature at the beginning of the test and at the ith data point (R)

O P, P

=

3 2

mean total absolute pressure, PSIA of the containment atmosphere at the beginning and end of test interval (t ).

i respectively.

P Pv2

  • mean total water vapor pressure, PSIA, of the containment yg, O

atmosphere at the beginning and end of test interval (ti) respectively Io=Py-Py1 Pith = P2-Pv2 g

B.

Calculated Leak Rate The method of Least Squares is a statistical procedure for finding the "best fit" straight line, commonly called the regression line, for a set of measured data such that the sum of the squares of the deviations of C

each measured data point f rom the straight line is minimized.

To determine the calculated leak rate (L1) at time ti, the regression line is determined using the measured leak rate data f rom the start of the test to time ti.

The calculated leak rate is the point on this line at time ti.

0 Ly=Ag + B (ty)

[4]

g O

O APPENDIX C Page 108 (PAGE 7 0F 13)

O EN 'IVP-1 METHOD TEST CALCULATICHS O

Using differential calculus, the numerical values of Al and Bi that will minimize the s'um of the squares of the deviations can be shown to be (EMll (Eti2)

(Eti)

( E tiMI)

[5]

Ag=

n(Et1 )

(Eti)2 2

-Q By = __ nE tlMI - (Etil (EMI).

[6]

n(Etl )

(Eti)2 2

.O MHERE n = number of data sets to time t1 Equations [5] and [6] are referred to as the Least Square equations and are used by the computer program to compute the calculated leak rate for

()

the Total Time and Point to Point calculations.

C.

Confidence Limits Even though the regression line is statistically determined to minimize the sum of the squares of the error, the values of the calculated leak

()

rate cannot be considered to be exactly correct. If the containment integrated leak rate test were run a number of times, under the same conditions, the calculated leak rates would be close in value but not exactly the same each time.

However, based on statistics we can establish confidence limits associated

()

with the regression line such that the limits of the calculated leak rate computed would successfully enclose the true value of the desired parameter a large fraction of the time. This fraction is called the confidence coefficient and the interval within the confidence limits is the confidence interval.

Confidence limits for the integrated leak test computer program are

^

determined based on a confidence coefficient of 95%.

This means that the probability that the value of the calculated leak rate will fall within the upper and lower confidence limits, or confidence interval, is 95%.

O I

er V

APPENDIX C Page 109 (PAGE 8 OF 13)

O BN-TOP-1 METHOD TEST CALCULATIONS O

To determine the value of the confidence limits the following statistical information is' required:

the variance, standard deviation, and the Student's T-Distribution.

The variance, as the name implies, is a measure of the variability of

()

individually measured data points from the mean, or in this case, from the regression line. The variance of the measured leak rate (MI) from the calculated leak rate (Li) is given by:

2 s

= SED

[7]

n-2 O

Where s is the variance and s is the standard deviation based on (n-2) degrees of freedom. SSQ is the sum of the squares of the deviations from the regression line and is mathematically expressed below:

SSO = E (Mi - N1)2

[8]

O Nhere Ng = deviation from regression line The standard deviation has more practical significance since computing the standard deviation returns the measure of variability to the original units of measurement. Additionally, it can be shown that given a normal

'()

distribution of measurements, approximately 95% of the measurements will fall within two standard deviations of the mean.

The number of standard deviations either side of the regression line which establish a upper confidence interval are more accurately determined using a statistical table called a " Table of Percentage Points of the

()

T-Distribution" and provide increased confidence in outcomes for small and large sample sizes.

Since we are interested in reporting a single value of calculated leak rate based on measurements taken over a specific time period, an additional f actor is applied to the formula for computing the variance and

()

hence, the standard deviation.

.O

c) '

APPENDIX C Page 110 (PAGE 9 0F 13)

O BN-TOP-1 METHOD TEST CALCULATIONS O

The Table of T-Distributious has been formalized for use by-the computer progran as follows:

/

T = 1.95996 +

2.37226

+

2.8225

[9]

()

(n-2)

(n-2)2 MHERE: the value of T is based on 95% confidence limits and (n-2) degrees of freedom.

The application of the additional f actor to the variance formula yields:

C)

- 2 2,,2 1 + _1_ +

( to - t l (10) o I (t1 - t)2 n

NHERE:

0 tp = time from the start of the test of the last data set for which the standard deviation of the measured leak rates (MI) from the regression line is being computed.

ti a time from the start of the test of the ith data set O

n = number of data sets to time tp n

I=I and

[11) i=1 o

1 I ti t

=

n Taking the square root of equation (10) yields the standard deviation:

()

2 o=s 1+ _1_ + fte -

t) i I (t1 - t)2 n

i C)

~

1

()

l J

1.

p 2,-

APPENDIX C Page 111 q

-(PAGE 10 0F 13)

C)-

j BN-TOP-1 METHOD TEST CALCULATIONS

$ C) --

l The upper confidence limit can now be determined, the confidence ~1imit being equal to T standard deviations _.above and below the regression line.

Combining equations [10] and (11] yleids:

[ ()'-

Confidence limits = L A To

[12) or l

UCL = Li + To

[13)

()

NHERE: UCL is the upper confidence = limit ~ respectfully.

t NHERE: Li =

Calculated Leak Rate at Time ti T-Distribution value based on n, the number of data sets T =

j

. received up until time ti.

Standard deviation of Hessure' Leak Rate (Hi) values about -

o =

C)'

the regression line based on data f rom. the start of, the test until thne ti.

OL iO.

f i

10.

o:

d

}

?

5

!O

APPENDIX c Page 112 (PAGE 11 OF 13)

DATA REJECTION CRITERIA

).

1.

If a sensor, in the opinion of the ILRT Test Engineer, is out of l

range, it will be ignored (i.e., set =0) and the total number of l

operable'RTD's/ Thermistors or Deweells in the containment will be l

reduced by one.

The sensor should be considered out of range if it is evident that the sensor has malfunctioned. All rejected data should be maintained if possible and the reason for rejection

)

documented on Attachment Z data sheet and in the Events log, (Attachment C).

Should a loss of temperature or humidity sensor occur, the bad sensor l will be locked out.

The volume fraction of the locked out sensor l

will be assigned to a substitute instrument (as many as five l

)

substitutes) which is located in similar temperature location based l

on temperature survey and/or temperature distribution prior to l

instrument failure. The volume fraction of the locked out sensor l

will be set equal to sero. Data from the locked out sensor will l

continue to be monitored and displayed. However, the data from the l

locked out sensor will not be used in the ILRT calculations.

l j

)

Document on Attachment Z data sheet and in Events Log, (Attachment C).l j

i NCYTE If all RTD's/ Thermistors in Subvolume 8 are lost, then STOP the test l

}

and repair the RTD's/ Thermistors, or if the air in Subvolume 8 can be l shown to be near saturation, use Subvolume 8 Average Deweell l

Temperature.

I If all deweells in Subvolume 8 are lost and the air in Subvolume 8 l

can be shown to be near saturation, use Subvolume 8 Average l

}

RTD/ Thermistor Temperature. Also, it the average RTD/ Thermistor temperature over the last 6 data sets is within 0.5* F of a specific RTD/The rmis tor, the specific RTD/ Thermistor may be chosen as the 4

dewcell.

1

)

2.

If one pressure transmitter is out of the-range of 14 < P (pala) < 60 the pressure transmitter will be ignored (set =0).

l NOTE 3

i All data should be recalculated with bad element (s) deleted.

i 3

j 1

a

LJ APPENDIX C Page 113 (PAGE 12 or 13)

DATA REJECTION DATA SHEET D

3.

Raw temperature, pressure, and dew point data should not be rejected statistic' ally, but may be rejected and not used in the final calculations provided there is a good physical reason for the rejection. Data rejected, including the cause or probable cause for the bad data, are to be documented.

If the validity of certain data

-)

is suspect, but no physical reason is found, then a statistical rejection technique may be applied.

(See ANSI /ANS 56.8-1987, for Data Rejection Criterion).

A data point may be rejected if it is expected to occur statistically less than 5% of the time. The statistical rejection of more than 5% of a set of data should not be allowed.

)

e o

9 9

9

k APPENDIX C Page 114 (PAGE 13 OF 13)

D ILRT TEST INSTRtMENTATION REQUIREMENTS B

10CTR50, Appendix J speelfles that all Type A tests be conducted in accordance with the provisions of the American National Standard, N45.4-1972.

Section 6.4 of that standard requires that the combined precision of all instruments used to perform a Type A test be such that the accuracy of the collected data g

is consistent with the unagnitude of the specified lealage rate.

The Instrument Selection Guide (ISG) formulation defined in Appendix C of the 1987 Standard, ANSI /ANS-56. 5, is an acceptable means of determining the ability of the Type A Test Instrumentation System to measure the integrated leakage rate of a Primary Reactor Containment System. This rather long formulation is labor intensive to calculate, either by hand or by computer.

J Section 5.4 of Corrrnonwealth Edison NO Directive, NOD-TS.13, specifies that all Cormonwealth Edison plants shall use a standardised instrumentation system for Type A testing. The following is a list of the resolutions, repeatabilities, and sensitivities which may be expected when the standardized system is used.

Also listed are the recommended minimum numbers of each type of sensor

)

Tr.rr IMSTRUMmTATIm ETsTEM KPEcfricATims Pressure Transmitters:

Resolution 0.0001 psi g

Repeatability 0.001 psi L

Sensitivity 0.0001 psi Minimum Number 1

i Teurperature Channels:

Resolution 0.01 'T Repeatability 0.02 'T j,

Sensitivity 0.01 'T Hinimum. Number 15 Dew Texaporature f*hannels:

Resolution 0.01 *T Repeatability 0.1

'T Sensitivity 0.1

'T Hinimum Number 5

J l

l Inntrument Parmeter Definitions Frm ANSI /A115 56.5 - 1987 Repeatability:

The capability of the measurement system to reproduce a given reading from a constant source.

O Resolution:

The least unit discernible on the display mechanism.

Sensit.1vity:

The capability of a measurement system to respond to change in the measured parameter, o

1,

.