ML20076K718

From kanterella
Jump to navigation Jump to search
Concrete Floor Fire-Stop Test of Nonqualified IEEE 383 Cable Penetrations Protected W/Firecode CT Gypsum & Thermafiber CT Felt
ML20076K718
Person / Time
Site: LaSalle Constellation icon.png
Issue date: 03/14/1980
From: Orals D, Quigg P
UNITED STATES GYPSUM CO.
To:
Shared Package
ML20076K714 List:
References
NUDOCS 8307180064
Download: ML20076K718 (38)


Text

{{#Wiki_filter:-. h % 'A% g1 .

  • 3..

.e I a 1 UNIiED STATES GYPSUKCOMPANY( .\\ ~ ' ]1000 East Northwest Highway!Das (laines. tilinois 60016

  • RESEARCH CENftf' AREA C00E 3 is CYPAESS 43,'47

%g; s g \\ 1 N i p 4 g., s s. y s k y h CONCRETE FLOOR FIRE-STOP TEST OF s.. 1" .g NONQUALIFIED IEEE 383 CABLE '.s.. g PENETRATIONS N PROTECTED WITH 4 FIRECODE CT-GYPSUM AND THERMAFIBER CT FELT ]

l il f

o f s-s s a 1 .= M {'g I 'D. L. ORALS, P.E. P. S. QUIGG, P.E. RESEARCH ASSOCIATE MGR. STRUCTURAL AND FIRE TESTING 5 F307180064 830711 -l-~ i 0 PDR PDR ADOCK 05000373 x 1

I

s.,

e a TABLE OF CONTENTS Page No. Introduction 1 Construction 2 Instrumentation 4 Test Procedure 4 ' Test Results 4 Evaluation of Test Results 6 List of Figures Fig. 1 Location of opening in concrete slab Fig. 2 Details of firestops A, B, C, D, E and F Fig. 3 Details of firestops G and 11 Fig. 4 Details of firestops A B R, R, Cp, R' R, R D and F Fig. 5 Details of firestops G and H 3 g Fig. 6 Locations of thermocouples on unexposed surface of -firestops Fig. 7 Hose stream setup List of Tables Table I Cable description Table II Penetration information List of Graphs Graph 1 Unexposed surface temperatures opening A Graph 2 . Unexposed surface temperatures opening A g Graph 3 Unexposed surface temperatures opening B Graph 4 Unexposed surface temperatures opening B R Graph 5 Unexposed surface temperatures opening C Graph 6 Unexposed surface temperatures opening C R

G .~ ~ List of Graphs (cont'd.) Graph 7 Unexposed surface temperatures openings D and DR Graph 8 Unexposed surface temperatures opening E Graph 9 Unexposed surface temperatures opening E R' Graph 10 Unexposed surface temperatures opening F Graph 11 Unexposed surface temperatures opening F R Graph 12 Unexposed surface temperatures opening G Graph 13 - Unexposed surface temperatures opening G R Graph 14 Unexposed surface temperatures opening H Graph 15 Unexposed _ surface temperatures' opening HR Graph-16 Furnace atmosphere temperatures List of-Photographs 7 Photo 1 Exposed surface before test Photo 2 Unexposed surface at start of fire test Photo 3 Unexposed surface during fire test Photo 4 Looking in_ furnace chamber at burning cable early in test Photo 5 Fire test sample in hose stream area after 3-hour fire exposure Photo 6 Fire test. sample at 60 degree angle just before hose stream test Photo 7 Application of hose-stream to test sample Photo'8 Exposed surface after fire endurance and hose stream test f. r J

...U'. INTRODUCTION Electrical power generating stations are fitted with appropriate fire barriers to provide containment within a compartment in the event of a fire. However, it is often necessary to penetrate these barriers in order for the plants to perform their function. For exampic, electric control and power transmission cables extend through-out the plant, passing through fire-rated walls and floors. If these points of penetration are not properly treated, the fire barriers may be seriously compromised. An earlier investigation titled, " Concrete FJoor Fire-Stop Test of tv IEEE 383 Qualified Cable Penetrations" tested on April 26, 1976 con-firmed the performance of approved IEEE 383 cable fire-stopped with i THERMAPIBER CT Felt and FIRECODE CT Gypsum for a 3-hour rating. This investigation was conducted to determine the effectiveness of the system used above, but with cable that does not conform to the require-ments of IEEE Standard 383. The non-approved cable selected for these tests were jacketed with cross-linked polyethylene, polyvinylchloride, and Butyl rubber which are considered highly combustible cable coverings. This system consisted of a layer of THERMAFIBER CT Felt, which was placed even with the bottom surface of the elab to provide a fire barrier and form for USG FIRECODE CT Gypsum that was poured in on top of the felt to~ complete the fire-stop system. Metal retainers, approxi-mately 3. inches wider than the opening, were provided around the apertures to accommodate thicknesses of FIRECODE CT Gypsum in excess of the thickness of the concrete deck. A second system using the non IEEE 383 approved cables was evalu-ated for retrofit installations.- That is, installations in existing e., e

s..

~ plants which have already been provided with a material that was subsequently determined as effecting inadequate fire protection. These barriers could be composed of various materials which may offer some protection, but for this investigation, it was con-l sidered negligible. To simulate that condition, the opening was i filled with a form placed even with the top s~urface of the slab and covered with 5 inches of FIRECODE CT Gypsum confined within a metal retainer 5 inches wider than the opening. After the FIRECODE CT Gypsum had set, the form was removed, leaving the cables exposed all the way up to the top surface of the slab. Testing under these conditions would provide data that would permit the use of the FIRE-CODE CT Gypsum " fire-stop" over any existing barrier since it repre-sented the worst possible condition anticipated. That is, the original barrier.could completely fall out or be consumed as soon as it was exposed to the fire. CONSTRUCTION A concrete floor slab of lightweight concrete, 6 in. thick, con-taining twelve circular and four rectangular openings was placed in a restraining frame at the U.S.G. Fire Test Facility. The openings were located as shown in Fig. 1. Openings A, B, C, E, and G were fitted with 3 in. high, sheet metal collars approximately 3 inches wider (1-1/2 in. on each side) than the [ holes they surrounded. Openings F and H were fitted with 6 in. high t collars in the same manner, and opening D, with a 4 in. pipe sleeve, 'l received no collar at all. The retrofit holes were also fitted with sheet metal collars. These were 10 inches wider (5 in. on each side) than the holes and 3 i 5 in. high for openings A Bg, CR' Eg, R, .in, high for D and G g, R

8 in, for F and H. A 3/8 in bead of silicone caulking was placed R R on the collar and concrete surface to ensure a watertight seal before they were fastened in place with 1/4 in. by 1-3/4 in. TAPCON anchors. Cables, 6 ft long, extending 1 ft below the underside of the slab, were placed in the openings. A description of the cables is given in Table I and the' distribution, quantity, and area are shown in Table II. Sketches showing the details of the fire-stop are shown on Figs. 2, 3, 4, and 5. THERMAFIDER CT Felt (nominal 4 lb/cu ft density), 4 in, thick, was cut to the approximate shape of the openings A, B, C,E, F, G and H and fitted between the concrete floor and cables even with the bottom of the slab. Opening D was filled in the same way but with a layer of 2 in, thick THERMAFIDER CT Felt (4 pcf). Metal baskets were used in open-ings G and H to support the felt. Openings A B CR, DR, R' R' R' "R were filled with E p, 3, THERMAFIDER CT Felt even with the top surface of the slab. The THERMAFIBER CT Felt in these openings, however, was removed after the FIRECODE CT Gypsum Cement had set to produce a condition where there was no protection for the cable until the top surface of the slab. This condition was designe'd to simulate a retrofit condition where FIRECODE CT Gypsum Cement would be poured over an existina seal which may not offer any fire resistance. A fluid mix of 60 to 65 lb of water per 40 lb of FIRECODE CT Gypsum was mixed in a Carrousel Twin Tub Pump-Mixer for 3 to 5 minutes - and sprayed into the opening with a pole gun nozzle. A 3 lb/ gal of water FIRECODE CT Accelerator solution was added to the gypsum slurry l

T ~ at the nozzle. The exposed concrete in the opening was wetted with the accelerator solution before the FIRECODE CT Gypsum Cement was introduced. About a week after the FIRECODE CT Gypsum Cement had been placed, 2 four control cables were removed from openings F and F and two power p These breached fire-stops cables were added to openings B and Bp. were then repaired with FIRECODE CT Gypsum Cement applied with a caulking gun. The fire-stops were air dried for 30 days prior to testing. INSTRUMENTATION Locations of the thermocouples on the sample are shown on Fig. 6. Temperatures were recorded on the unexposed surface of the concrete floor and on the fire-stop details as well as on the jackets of the cables and on the cable trays at the interface of the unexposed face of the floor as outlined in "IEEE Standard 634-1978." TEST PROCEDURE The specimen was subjected to a fire programmed in accordance with the ASTM E119 time-temperature curve (as required by IEEE 634-1978). Furnace temperatures were monitored and controlled by five thermocouples enclosed in protection-tubes distributed throughout the furnace, located 12 inches below the exposed surface of the floor (see Graph 10). TEST RESULTS The fire endurance test was conducted on January 9, 1980, at the. United States Gypsum Company _Research Center. Following is a record of observed events as they occurred: L

i i~ ' i . Time Min Observations 1 Exposed cable covering on fire side beginning to melt. 2 Cable on fire side beginning to burn - furnace chamber filling with smoke. 5 Cable'on fire side burning and giving off large quanti-ties of smoke. Difficult to see anything through furnace ports. 16 Small amount of smoke on unexposed surface - north half of slab. 22 Most of the cable covering has burned off the cable on the fire side leaving bare wire. 25 Small amount of smoke on unexposed surface from pene-tration AR* 38 Smoke coming from penetration A has stopped. p 45 Smoke or steam coming from penetration A retainer ring. R 48 Hairline cracks have appeared in FIRECODE CT Gypsum Cement around penetration containing cable trays. 61 Steam still coming from edge of penetration A ECODE R CT Gypsum Cement covered with condensed moisture in this area. 72 Light smoke on unexposed surface coming from several penetrations. 77 Smoke increasing on unexposed surface. 80 Cable jacket on unexposed-surface beginning to expand adjacent to FIRECODE CT Gypsum Cement of penetrations AR' A' R, and B. 105 Most of-smoke on unexposed surface coming from pene- ~ tration'A

  • R

+

1 e* o' Time Min Observations 120 Cable coverings on unexposed surface next to fire-stop becoming very glossy. Penetrations AR' ^' R' R' and F. D' R, R R' Cable covering on fire side still burning. 165 Cable covering on unexposed surface beginning to form k' blisters. Penetrations A ' ^' R' R' R R' E, F and F. R 183 Test terminated - no flame-through on unexposed surface of any pgg,etrations. As soon as practical, about 15 minutes after the fire endurance -test was terminated, thp assembly was removed from the furnace and subjected to a hose stream test as shown in Fig. 7. The 30 psi hose -stream, with the nozzle 17 feet away from the center of the assembly, was applied to the entire exposed surface for 82 seconds as prescribed in IEEE Standard 634-1978 for tests of specimens representing indus-trial and commercial applications. All the penetrations withstood the force and erosion of the hose stre~am without passage of water to the unexposed surface. EVALUATION OF TEST RESULTS Temperatures of the unexposed surface during the test are shown in Graphs 1 through 15. No passage of' flame or hot gases through the fire-stops described in this report sufficient to ignite the cable covering occurred during the three hours of fire exposure. None of the thermocouples on the exterior of the cable jackets at-the interfaceLof openings A B, C D, D E, lP, Fg, G, G and H R, g, R, R reached'700 F during fire exposure.

~ The cable c'ontained in opening A met the temperature rise criteria g of 700 F at three hours with the exception of the Type III cable which reached a temperature of 878 F. The cables contained in opening B met the temperature rise criteria R of 700 F at three hours with the exception of the Type III cable which reached a temperature of.709 F. Opening C had Type I cable, which reached 827 F and opening E had p a Type I~cabic, which reached 775 F. Even though these cable covering temperatures exceed 700 F, no cable cover ignited beyond the, unexposed surface during the test. All of the fire-stops resisted the impact and erosion of a 30 psi hose stream applied for 82 seconds without passage of any water. G 9 e O h

e .q Di A. O*- E ta lV G s / / .[~ .1 l ( ~ 2 A "-

  • {.*"if /$

G"DIA. OPE utu G ~ %4 B & CfA. CPEN!UG )k /

  • c G" DIA. CPNiuG CN

.s ' [E a _t w g iC .:b l. D" 3. #. (F / f.i-- "A' -@ T A a ~~ . c: g ~ .'- O ^ Z i g m., cygu,uc la

f.'-

$R G R G x :2A* opautuG 9 N 4" DIA.OPD uu. r l I e,'- 9 " i J j 4 i i *'t #t tti - ~ "g f,S'[.*fk ,' b I.. YN A; a :, t.wTE 2iAL: .' 4 -Me /- uc.HT w tic.HT CONCRE.TE. Sec. riou " A-A"

  • - OPE N INGS> IN SLAB

.t n n.o u n r, UNITED STATES GYPSUM CO. A To H oasic;uArtz. unw cous.Tutuc.viou perAit g, a gay 3 o r iG I ,,,,,, c, c c,,,,, ,.,.,,,,,,,,t, A" To H R = e a r p.o per o n. Trit Locariou OF Or>CutuG. tu ".T 'rZ-!On o.rc e-a 7cy coucRtcTE. si As "N 'ON S PRINT 8%S.U.E D .e .....e FORM

  • FOR RESE ARCH USE ONLY e e * ** * **
  • 8 * *'*" # ** W '
  • 0

,~ 9 e 0

e L A O C E'd W P E SOLID CAEL EE. TR.W CAI.5LE. TI4AY - Fl ::' ECCOZ r ' =" it-4" e - fi,, M ETAL eN :I_-- - i } *ri E:ETAlb lER Ifjle h.'-] j{it. _ ._ lt! A CT c.YP5 U M O ,l .' l '81 -,

  • l_._

Ft CECODIT. 8 p h ". '*. {4 - O j 'O {\\ g l; , 42, g a. ,- g h',4 W. :2.' g 'pg ? v_.,), -

  • a, l ',.

v ~ 4 7 i)v /'.

  • ' T6-4ERMMleEE.:.3_'O.' ' y

,P,._IJ 5 e ! -*J? s b II ,J t VJ CT FEL!" , a. /-

  • 3a'

,y 4 N _ Mmm e. IE~mER A THERsLNEtSCE CT 5:E L'T ,g. 31Vd* LADDE6.1 W1DTH 24" TYPEI - 8 CADLES OS: '/C. 3/C a.a c>F e uiven n !! - 23 a = 9/C. a 333 - S a ll CABLES C3: VC TYPE 1 WC p tr - 3 T Y..P E I - Ic3 CADLEO c.r-3/c a a 9/C OPEMIMG-C TII 9 3/O r,n 94 a 31 - I6 a

  • =

OPE A.J LU C -A-OPENINJG - B il I s " l E2." r 4" l.D. PIPE OLEEVC. l L PIPE CLAMP = y,um J ljoj w hAETAL RE.TAINfEER D-( CT Ir n FIE*ECODE = r, FTdECODE CT c.YPSUM C .w '. 4.. ' 4, ~. .j~.. J. MM g.. s;. rp j + 4,- g. 3 J..- 1 J T C.T G Y vt u M ~'~* C* ' p ggs;:MAFu5tIR s '. J. q 't

  • I i ;. )

T.~ 4 ? _; 67 ,9,

  • ri.

Tn CR MA1:tta,,,ER 4 g3 .f '- 4... d CT FELT .d. d..- / '. " i CT FELT E~ G" } .s j Type 2v - c ceLEc- = vc Type 2v - c ceuCs oP vc n V -2G

    • 2VC

= v - 2 2. i. o s/c. TYPE III-G PAMLES OFs 9/C. 9/C h VI VI -9 9/O a 9 o OPE hJINJ G - E OPE t Jt MC, - F I -D e .#' U' f"t i: >'Y' UNITED STATES GYPSUM CO. o s.po F lt* ~- car. RFCEARCH CENTER DES PL.AIP!LS, ILL f e,,. D ETAILD OF FIRI' fil 08M A.M,Cs "3' TE-C"72 i oave f:> 79 D, E- ^ W F-n.tr g ervissoms P R;*d T ISSUED t i J6a to POmse. FOR REstARCH ust CNLY e.e. emee see=*ee.=weao e e = 0 8 e

MEW COUE.TRUCTIOU MtE.TAL CE.TAIME5'. APPLICATIOR ffIVa" IV "Miu. C METAt. RETE.ieER T[ * . l = mRtcopE 'O 2_. _.,4,. .T.. % CT Cypsuu e_. Tt-322t/AF1:",ER 'y, I.'..4 j .*t. . iv. g c CT pEur s, 4: 4 . >... t,.,;,, 4 4,. t. .4 e, Type IV. - 1 CABLEC OF '/C = v ~L W c. VI -i 9/c CPEL.!!hJ6.-G I V2" I

  • .)

CAE3L E TYPCS vETu. RETuuER t. mezcope.

  • . M. -

t0 CT TYPE I I/C, = "".sOO MCM SUTYL RUSSE.R. IVSULATiou: PVC JACKET : FOWER CADuiC ...;l N... h"/

9. 4 T W, 7

C.Y PS U NI QKoulTE CO. 'N TYPE 11 MC = Wio Awc O.043 lu. GRS RUSBER: 0.043 lu. UEOF*RE.ME. :TACKE.T. E.T T l*""i y. muTROL CABLE: CEOL CABLE Co. TYP E 111 5/' C = BR/PVC. CouT ROL CASLE. ; COLLYE5C CO. g w CABL E. TYP ES TYP' IV - 1 CAE5L EE. OF '/C, TYP E tv f/C = 200 MCM XLPE IUSULATicN : PVC JAC.KIIT : Goo VOLT snowE32. 3/c CABLE

  • ESSEX CO.

n v g p/c, TYPE V 3/C= PE/PVC COUTROL cat 3LE : At4 ACQ U PA.. w VI -1 n a TYP E VI 9/C= # 12. AWC. O.020tu.PE: o.clo eu. PVC. Ou EACH COMOUC. TOR OPE NIMG-H PVC JACRET : COUTROL C.ABLE3. JUpco cc. et. P.G.QU LGQ UNITED STATES GYPSUM CO. FIG'* 3-~ on. A. Po o c z. RESEARCH CENTER DES PLAINES ILL D CTAI LO CI= MIC2 ECT oo ^ G AMD H

  • 'g E Tn.]o*72 l,

apen. oarr 6-l?:5-79 g t, arv.s ows is3g pm,yy i sauia rones.ron nessancM USE ONLY e.eise emee i*e.as.s e e. es e a n e O e

- GOLIO CABLEit - LAOCE22 " TYPE - 7 pay CADLE T32.AY ' I g% - 5" WIRECOOEE. y 9 m' g 5" l s* CT GYPSL.;M 3 l f. . - ff., j. .',' h }. PIRECODEE. I. ', -i. [j E R.ETAsuER a_ '+' METAL ' , ' g-I '- 3 CT GY P S t.) M .l. ,o {i.Y '- ',+*3}g p. '.,.4.y{ }(f.}I ',. 'a, ? A ' ** i-A..J

?.. -^ ^ :

{ 4 - 1. ,.i.v.} f19 i c} ~,w *' s I - u cT.v_ 8' RETAILJ-.2 j { ~A- [ l ia= , "5t M'." LADOCC WlDTH -f f a n 2A* s* OPEuiMC, ~~~ TYPE I - 19 CAtSLES OF 3/C, TYPI" 3 -11 CADLEES OF 1/C TYPE I - S cat >LES CF t/c n 11 - 55 5/C p 11 -20 a D/C a 11-23 se "MC. 9/C es III - IG H C.VC n 111-6 s. a O'C, = Ilt - 9 u a OP E k.11 MG -AR OPEkJIMO - E3,R OPEMI AJG - C.R 4 '5', 6* #IRCCODE-F " 1.D, PIPE SLECVE. .M U" - 5" FIRECODE, l r-y -{,i,.,.. .ep PIPC CLAMP NAh.1Gt12 CT Gypsum i<r.- Runa 7 : r...,... e. . J.

  • p. m R E i. '.* 4'.

Coou e ueTat -: M =T.u. , ): Li cy syPst.jM RETAlutLR m ~ ETA N ER. --*- .' E'AM ER.

, p,

,,, y <*.6' f,. 4 4- ,4.R-( l{. t.'," -6.. ',s

  • 9 4 x- [.

E

  • e.*.

. s o 2 h.s.. c, 4}. s ?. - k n :. A .1 o .yN G" s-G", l E" TYPC IV - G CASLES OF 8/C typg=ty G cAotes ep i/c u v - 26 e. = 3/C. v - 2 2. a L'O n 9/C l TYP!?.1H - G CASLES OF 9/C " VI - 9 a se VI - 9 = yC j opgygyg_gR O P EM I MG-E.R op E M1kJG-F R I l et. p. S. Q U IG.J. UNITED STATES GYPSUM CO. na A. POLIO { 'g-Q cm. RESEARCH CENTER DES PL.AINES. BLL. OC.TAILG OF 5: ll%C..'sT OPG A'*, t.SR, cR, gat U lO 7 2. 4,,n. oarc c.co-co DR, E. R ALID F , e.., ar veseoNS PRINT IS5y a" a ron=.ron nessanen use o*Lv 9 O e e e

a e ETQOplT NETAL QETAIM EP. APPLt CATIOM - 5

  • 7:I R ECODI!r.

C*T CYl>0UM 5" METAL

  • l9.,.*.

, 5" . RETA!UER.- . +. '.. J g y* .L - J E. ,fi.3 .i (,'.s) ',); a . p.:e.,.

  • C.

..A.*3 a 9 . 4 f * ' :.4 _ l m' TYPE IV - 1 CABLSE. CP I/C. n v-: wC u VI - I s.

  • 9/c.

OP E" Ul WG-G.R - 53" FIC2ECOCE. - 5" CT GYPOUM s . '.' r.***Y.w r CABLil TYPEG s' M IE'TAL

  • :. 7*

ICE:TAluEC,w . i "I-TYPE 1 1/C = 350 MCM cuTYL Runt 3CIO INCuLATIOM

  • PVC OACKCT: POWC" CABLE!

OKOMITE CO. '3-TYPE II g C =,V I O A W C. 0.01b lu.Gt*S Runt.t'l<. : 0.045 lu. UEOPCEME. JACKET : i-dj t-) f,,e, ?,c-couTcOL cAota : caszoL cAoLa co. ify: W ,.. d -..\\ TvPs. In syC'- eR/PvC couTcot cA.ote : coLLYEc. co. CADLE TYl?E 3 "4 .s T PC IV I/C = 300 MCM XLPE IUSULATIOM : PVC:TACKCT: Cm volt Powr r.:, e CADL C : E:*. L E X CO. TYPE IV -ICat,',Lt1 c>p t/c TYPE; V 3/C= PEC/PVC COUT ROL cADLEI. ! AWACOUDA. V -I a NC-TYPE. VI .9/C = W 12 AWG o. Cao 10. Pti : 0.010 lu. PVC Okt EACH CoucucToc2.; VI -I e-e- 9/C PVC JACKIIT ! COMTCOL CAGLu. ; Jupco co. OP E.U ILIG - H R-

  • e r. o.qu iac.

UNITED STATES GYPSUM CO. ,,, 4 pou,, pgg* 5 cw. RESEARCH CENTER DES PJINES. ILL DETAILS OF FICI OTOpra C, R A UT) t -lR Q' T T.. t o'7 3 Apen. DATE C. 2 0.f5(,,) ervi%eoms ~~ ~~ g, PRsNT ISSUED r-b sith, i FORM. FOn ntst AnCM USC ChLY e.e*** s ees sen.ne+e e i.e w e a i e e 4

e, C S1 v V ~~ n D P M o i c /a g ei n :. y u M~~ : g n,. se U n o :: n n u n n n n U o S ~ a t t m S i

  • 1 e.

e. u P cc Ro

c. o

)oeg6):;:;_ )g o n u P z. T k j c ) )oa s v T N ) Un. mpy,L: c Ec EC t oT r c7cya:rx uWxu RI p G e t uo.WTunwT vT. a c c P a not o T T s up. : u o oO s c s. u c c C o T. c. u rc Pc rC J c o 5 L. g g,L. c c (EA Cw T T A a (. ) t ER

_ u cD A

ub Lce Ec m t t t i l i etcug,ou(e2c g o' :e Y 7,l Ot.to ^Tt.TenTC g 0 A c cccc. uP T oCm'. otc; o A K s y. oL. 3 v.m r ognc eTNytLc vovY T = c E Ca c E o L r,. u t u A v. u A w T c c/.

o. u u3wrc c

so' H uA T R K c-T O oyoouoo u c c' :. C', c C c C c_ c p c t_ g c A r c A o o u$= I C Mst aL rcA 8C i U 1 D A UtP T M 2U J oIT O SP t v S cFe u u uU u. Psco 6 cOx a e E eK ou Yec c u.: es n " H y. u 4 g; y a. uisiououp arc s a P e pEJ Y cT C Deo G o c H s TA u . i o E LT S

  • i.

G M ocu f R c n.e nlI " p.,u p o pg : i o o o n u o T u c 8D lO E tH mCo n C a6 AL 2 A C t. T s O 1234567890I1[g111l122222 n N O L s n s Ae r 23456 7 e 9 01234 sC LR Tr a Mc 11 E uF n o 'T 8 %T Sov llI o g- _0 ~3. r -. c r. r 2 Cu U 4 ,1 DnuN 8 T 2 Tl n 3e y* o Lc Ee L o 2 8 Ta!noO t f g 0,. 11 rs r E L~ r c AT T O I NscT P [c O B UcAnCb Qv h41 7 A 1 g N c~ eC ~ 6 b Ou i. J h I Th L 3 '5 4 k o o U C 2 2 9 c. T 4 2 r i 7 C A 9 u t g7 C O,

c. o 1

? 7 O a/ 'd 5 p s 8 9 r, 2 e 1 .'l

, f@

_b 1 a L 8 2

p. A

( o i E s T i 4 7 8 v 9 ,c c D o m A f e L u 1 .Q 0 3/

1 1

I .c V c-o g v (.o .w 7 v ~E C ',+ 1 0, PP o I a ng\\. 7 5 g/. .Y @9 4 U ) v 1 ):1 uT 4 lB i 4 1. ) s( w-

V oT b

a zE MI iE t. I ar L' l )' L.

o. - c.

4 t 2 7 5 pep o-

o. l s

4 e =v Y iE C l

g.,gmd g a

r @ h lB T s uT ~P oA T 7 6

T B

c(c( A g 3 Y

J t

] h5 l hi[. mK .C I yL)vu: L Ai. T u (T rC tc r c a E )E PV 3 .)K z urcK S. 1 T .P I 7 .c uJ. lO eR g1 A 1 l 3 I t4 i.E CV o yJ,E e no c e T. i. u Y Po P oT. P LoYo.C c cl v v u v .E <>G U p c P o R (T ~ /p T M:(c w.D n n/s n :. sinn": nH p n .P a. a' d g= P cU a C M: :w U PeO V T

)e uE p

CEv C e c t t t L L-t C o ;o MoA./ MKp Ac t uc:o RO RO c)ot )ca) o;e t )2 i O C /c. C ic R E R c T) oe T 0a T 2H T T T x o u )xc-xcuXcT o A o1 E aT i A n co O oO. ucuoccu2coEcu

r. t u. "> e YJ P 2A UHwWi EewrWC H

u uo ucSuo C' eu. o /c 4 = C o pC c :e J c s T s c :. s 5c cpo /cV %WC=C cu C c-g c Aa R nu.c Vc a(A iuMO9 cL t A. C L C (E :u m E R cR o (n t :J v o u R a P m(cw g C cg O ooTeLIT E LtTE 1 g u ot o uY p e

~

oRzceRoE cA T r t N cT c r 0 M Y OuLctY u v. c T c E i i y e L oAXOAuOAc>cuoo2cL:Lwutwu*oTcwTCu1WuAT T c 7, " R cc c t c C L t o -] r t R-ICs au x L a eC c C C C cCcc r c APc A P c A P c Ao L C o u $ c u _ o g swt R Tt o =o z t

T- - -

T p, C uo t_ s T M E cu u ^ P T cWc tuc A cT

aK U

C o s u S uc a e iP" ao e.c c cr pre o nnnt i u n n n u_ 7 i n n p 'e sipl is T i T c g c Y u c=w r 2 G r u s-v X*~ o o c pccuu T i o9nnnC" c m,L

  • anp:st r e oo oaana4 9 S A c L

xA o S wu e Q t224 5 o 789.11_111il s. .01234s.73901234 ec c_ U e :. l 1 1122222 l l i ' F i' ('

AMSI/AST M E 119-78 AMO IEEE G34 -19*76 Hof F STREAM OlM Eh.)SIO M S FOR FLOOR P EME TRATICLJ S Fim.E.-STOPS TE7 O r / sa j ~ ~~ si s l s,'s, ' p% / h ,f's'N /'s s e s' Ds 17 '-O " i- . ?.i.. ~. - n s: s /. g m ,,s, s / s',2 / N. J l O '/c " MATIOM AL / g "N,fp OTANCmO PLAYPIPC +-- a / '. [,r ' EQUlPPED WITH 18/3" / TtD uOF 2.LE PRESSLEE ? g*^' ~/, OF qO p/in,2 '/s 'n s /, 4 '- O / o s, 'so* '.s 4 Y C A' C L l t._ AT' t O M G CXPC L12r.O S L2::t F"A,C EE AA.CA s -c - s sa. 4 pa HOS" STREIAlM AP PLI C.A~T'I CL ! e 2.V2 min. g>cr-l OO {+.2 HOSE STREAM / PPLICATIOM -THIS TIICT rt. P. S. QUIC4, o.e u xiso mec.- a a c,ec. UNITED STATES GYPSUM CO. j~ ,, a m,._, ct RESEARCH CCNTER DES PL.AINES. ILL. ^~" s T*? -lO72 H O O E. STP'rE.A M StITUP DATE 3-5-RO y, a,, mmis soms PMfNT I? SUED g g.,,g FORM

  • FOR RESEARCH USE ONLY e asse goes tee.ette se y e a p a

e s G e e r

o. ~ s s TABLE I CABLE DESCRIPTION Type I Okonite Co. Power cable PVC jacket 1/C, 350 MCM Butyl Rubber insulationd 1.04 in. - Area 0.85 in Cable O.D. Type II. Carol Cable Co. Control cable 3/C, #10 AWG 0. 043 in. GRS Rubber, 0.043 in. . Neoprene jacket 2 0.60 in. - Area 0.28 in Cable O.D. Type III Collyer Co. Control cable 9/C, #10 AWG, 600 volt BR/PVC (Butyl Rubber / PolyvinylchB9 tide) 2 Cable O.D. - 1.06 in. - Area 0.88 in Type _IV Escex Co. Power cable 1/C, 300 MCM'XLPE (cross-linked polyethylene) PVC (Polyvinylchloride) jacket, 600 yolt Cable O.D. - 0.88 in. - Area

0. 61 in Type V Anaconda 1:o. Control cable 3/C, PE/PVC (Polyethylene /Polyvinylchloride) cover 0.42 in. - Area 0.14 in2 Cable O.D.

Type VI Judco Co. Control cable 9/C, #12.AWG 0.020 in. PE (Polyethylene), -0.010 in. PVC (Polyvinylchloride) cover on each conductor, PVC jacket 2 0.72 in. - Area 0.41 in Cable O.D. 1-21 il Y r,

~ TABLE II PENETRATION INFORMATION Opening Cable Type Cable Opening & Area Cable % of Quantity Area Opening A-A Type I -19 16.2 in 36 in. by 8 in. p Type II -55 15.4 in rectangular opening - 288 in' 16% opening 2 Type III-18 _15.8 in 4 in. by 30 in. ladder 40% tray 47.4 inZ tray - 120 in2 2 B-B Type I -11 9.3 in 24 in. by 6 in. R 2 Type II -28 7.8 in rectangular opening - 144 in 17% opening 2 Type III-9 7.9 in 4 in. by 18 in. solid bottom 35% tray 25.0 inZ cable tray - 72 in2 C-C Type I -8 6.71n2 8 in, round hole R Type II -23

6. 4 in 50.3 in2 4 0% openint 2

Type III-8 7.0 in 20.a inz 2 D-D Type III-6 5.3 in 8 in. round hole - 50.3 in 11% openint R 4 in. I.D. pipe sleeve 42% sleeve 12.6 in2 E-E Type IV - 6 3.7 in 6 in, round hole R Type V -26 3.6 in 28.3 in2 39% openin< 2 Type VI - 9 3.7 in 11.0 inz F-F Type IV - 6 3.7 in 6 in, round hole R Type V -22 3.1 in 28.3 in2 37% openini 2 Type VI - 9 3.7 in 10.5 inz G-G Type IV - 1 0.6 in 4 in, round hole R 2 Type V -1 0.1 in 12.6 in2 9% openin 2 Type VI - 1 0.4 in 1.1 inz H-H Type IV - 1 0.6 in 4 in. round hole R 2 Type V -1 0.1 in 12.6 in2 9% openin 2 Type VI - 1 0.4 in 1.1 inz i

m ..,..,..i. c. e OPEUIMG A GBAPH-I . w x er ascrwaut_AR UMEXPOSED SURFACE ~ TEMPERATURES -.l ...s.. TEMR ^24 U LAcotaTYPs oK. mug 7w l + 3 --'.'.r: 550 l t-iv2- .c.Q .,jr !,1-vicecoon - wi j pp :. a cT cvasuu

7 500

...e.....e < r.. J ro, >,. '.... , ; ;n. i Oz f._ me-neeu. e '3' c .- T c r v n.t:r. Q a.r K.R :.._::. w m i_ =~ ~ 2,. r ~W; f p* v2-t. wor.e wiom .g @p s er 400 i u-creuius N' - : e cast _cs or Vc 8 T Y..P c t 1 i i .ss w c. ~ 9A: { j-g g

r.- s e

~, ^ g.,,., * ' M) 4_ t._ < ~ 8 + O P E U 1 U C:,- A. P 7 300 s ,M ~~_ ,,/y ' l l /- 14 8 Er ,. A, - /- 6..-- A-l.,,e _ gs .I / 7 4._ _ _..,t i e + --- p g 'w l/ ,. ' 'i n V i g/ ,. o, - i ~* l00 ,- 3 l ,, g ' - f - -y j l i ll l O l' - L _..._ _-. l.._ .1 1_ 1 O 15 30 45 60 75 90 105 120 135 150 16 5 180 TI fdF - Ml N! ! T F5

3.ca .: m, .o....-.. ..e ..._..GBAPH-- 2._ =.: wx er mec rAusuum ogeu,ac _. A R UM EX PO. SED Sar-2F ACE TEMPiERATURES I Jj TEMR

- -.:q o p ',

w@ d: .ioco -moomm w e .. =

h
  • .C CADt f*- TRAY t

m. s .. t h 'I w , R. ,1 r,)- ... ;. s...'..;.- r. w,acec>on. g fgGQ . ;; 4 CT "" * * >----- '?."I j ( -. r. 4xM " -() M - ME.TAL RETAlkJCR I e l l + 1 4.. ,bi' e uoorte wioTs j g A

  1. -[

t g: !600 l 7 ,.,. c,g e q,_g_c. Typs 1 - 19 CABLES OF l / l / = 11 - ris g ) .b us - so \\ ' '.h -S- * ~ ~ ~ ', "' ~~ opruiuc-AR / I 400 M ..k 'p - i I r y/ l l .Jr,,.. \\ l .t g I

4. 'i d>

~ ~-@~_.___ _. 4 -o i -(W- -- W-u -t


}

] 4 .j 6> t ~ '200 P-l m,d 46j;*g[,,., l 68 (r I I l' l' O 'I O 15 30 45 60 75 90 105 120 135 150 IG5 180 TIME-MINUTES

e t..:.m ...,, :m, F G R A ~4- - 3 xe nacrauc.uum opeuius --. B ~, -700 acEXPC>BED ' SUA.r:ACEE TEMPEEEATUF;UE5 - -i UN l-i j -) .l d scuo cAsi_a rsuy ,N h ~ 600 ~ I'Q" ~ cT c.YPSUM 0 ,.,1 'h, -' '.-. yslO Qic] pris2 r.cooE li ;.a l.; Y'.- :. - l g.,;. a; 4 gQ g "E7Q7 Y .aI'-/ M 4((/($l,-] f,y ?;',"(( ej r,., 7 500 ggg / ,-c.y - .e a se y. / -- - { py 3 m. i l ~ / i . ryPsz t. 1I c scst. n :> or: 8/c ' -VC j / i se I -28 j a 9/C

_/

s' tis c)

  • =

=* 4QQ 1 / r l A OPENibJG-B / e j l

  • f i

=. =

-a. t e I ,Ar' l l i I \\ jr- -q

c.. - --e ~

200 ~~~ $Q.hN 5. - h b~- b d %,A t 15 8 g' !y 7-i ,p j.-@

  • *... - - --- f

- - --l i00

p..... 1% 4 O

l i e5 .n. V :> i Mr = l l l F l i' i o ii i u i OO 15 30 45 60 75 90 105 120 1.35 150 165 180 T l A M C P.i f hil i1 C Q

TEMP. t ~" > OF R 710 GRAPH-4 ~ w xe ascraucut_aa opsuiuc. .B ~~ 2 ik M E x p M t:1pidivimAi URLC,7 i 700 ^' ~ _ wao c oi_m i "rR AY -i '600 r# 4_.._.... 5, t j

  • -I

.! F_ _ @_p 4 a r -Eig ;i l FIRCCODE. I 1 ' '.

  • l.[ji-.~.

. '.' I, '.'..Y; l cr cypsuu c.: 3. - I i l 500 fw:v..,

.. :-t

. e.o a s n -T y i i i - ,g ..w-t- y -7 g 4. j t i -i i t,. r u-l 400 t ~~ 1 - i i rv,,rm 2.- n =.ms - vc l 17 -0.-.- l.-w -~ n - 2e - =vc 4 C/c = 111-9 a j ..e .dr /'.A r. , h ,. ? ~ OPEkJ lkJC, - F3R i l f l 300 l .. e ,. 8 * . 4... T. -. O ~'"<f........... r { d ~ 7B f I. : _,.,.. 9... ' '" ~ j 200 - 1 . s U i 4 t+ (p ,e > / x-[.4 ^ i / f I r r<.,,47 1 u. /.." + .....l.______.4_____._..4.._____._j... l v ^ t e f O 1. E i 1-J 4-1 -- 8-3 - - --- 3--A t O 15 30 45 60 75.... 90.....,.C5 120 135 150 165 180 I

. GRAPH 5 e-cmcut aa wcuius C . ;_2 UlJEXPOSED SURFACE. TEMPERATUI2ES TEMP ~ ENE i CF cT ovesum ,,3, g & Jgj k,.- QQ^ <., ; glf - lQ.5>._ ['.e - C ~ ~ ~ ~ , -. - - - ~ - ~ ~ ~ ~ ---s-f 'f ,t .% S r '), ( .i. J. ; } b. '0 I I I 6 .) gy S 9 I O THERIME*lSCl'. f 'f CT FraLT { j i rvac 1 - e usu.o og vc i l 1 16 B 3/C t t !!.- 2.3 p a. n 333 - a s. 9/C. j 600 opeuiuc. - c = I i I i i 1 i l I t .i 400 2 I 4 i i i. i t 1 i i I i l l I -[ i 1 j 4 _ _ - e ---. ~ ~ ~ -4, c '# _ _ -6 p( - ~ r----__ 200 ~ ase p 6-Tr j i O-m I -- - U--J --- 2 - - --- A I t i O. 15 30 45 60 75 90 10 5 120 135 150 165 18 0 TlME - MINUTES

iCR GRAPH 6 e c i a c u u s. n o p e u i u c. c UNEXPOSED SURFACE. TEMPEI2.ATUR.ES - - 5 3:lRECODE.. e-a CT GYPSUM ^ " -R ~y

,.; 7.

y 9 .M4-TEMR

5. 'e.' g i. ' s *

^g

.*s1 k

' ' ~ ' q F' I 7 v e-350 = i Type 1 - 8 CAE>L. tis CF f/c. I n - 22:> - ::vc. -- - - - - - I .y Svc- "t-* 300 l g R OPEK.JikJG - C i g l A' f 1 A $8 ? ',p dr-l I (T 200 '3; y - - -- - -} - --- - y -- 4 -d'P _ _jp _ d? 4 l 4- &#"4 AY' Ar~,.___ 8B e l 1 100 / -Y f i 1 0- . l --- -II - - - - -- - 1 11 - --- u H - ---- - - l


h------.-l-1 1

O 15 30 45 60 75 90 10 5 120 135 150 165 180 TIME-MINUTES i e

TEMR oF. I D& DR GRAPH 7 e"cincoun.opewus.s 700 j divaxsesso st sei= ACE. TEMPE RATURE'S ,,M i

  • 3.-

Y 4* I.D. Pt PE St.E.t!NII { pb i

  • * '.. i d'

F i ,,.m C pigs.CL.Aup 2.#.' s98 I I

. 3; j. i
  • J 4 f~s _'" Fli:"ECODE I

/ T. CT C.YV. LUM f/ - A,* J ' ~. h.. I. J_ i.* < F(' 600 CT FELT. - L ' ' d, . ' ' l I g

  • si Tf!

,

  • N.

TH CR MAFig.ER .V w L-OU DECK. i ~ 3* lLIUDER PAD TYPE 111 - G., CAE5 L C t"= CP 9/C. ogm im _ o j -t --/- -t-50 0 i A A,-[-a i / L c7.. p i i i r x T~.4"

1. D, PI P Ef. S W

LE. EVE. y e f-178 ~ /? t pire caug -c.ac. c: -Hr(]a ~ 'n O *.1*MCTAL 5IRECODE f g~ g A t i- _4 9 il'y 1, - CT GYPSUM s.' '. 2

  • 2-RETAILIEC j

g /- 't. t /.' - is./. j [ Q } oa s c It,/ 10 e 1 t 300 ~e. -h, ^~' // TYPE 313 - C, cat 3LES. CT2 9/c. .ac maaiuc.- oa i /. g .o - - E. / -- [ I i 200 'W.... m. 9 O a g/ -._ _ p- - -4">- - --<> 4 "= - * -- ~ - ~ I __ 4 0- -- 0-22B g[- M i l l l i / e i 1 ../ i --l'------ <~ 41 - - IOO i c t. c ,y _. - _ _ 4._ 4 tH l I c.: -- i e i i s..:. t i 1 -- - 82'~ E-- - -I- ~~ 'l-O - L O 15 30 45 60 75 y,. 9._ 3....105.m 120 135 150 165 180

E GRAPH 8 e cincuum omvius T$MP* U k.! E >< P S D SURFACE TEMPERATURES oF 650 I t ) pwe - - - j g.pg 600 l t ri,l. -

  • h) 16 3 P tRifCODEL =

f , cr c.YPr,uM m) _ )) 4 -i h M,I.* *.-( *vf

  • ((gY E"

j 1 :. ' 4. 3,- 3 I 500 E TYPer iv '- c cAtst ns os: t/c l a v -2c .e v c. I i A l i V1 - 9 9/c s. .Y 2 I l OPE MIM G - EE I 6 l 4 1 i g ._I. 12 ~, 400

v. -

i i. i. i l 300 i 1 e r i I t i i 13 8 V... j i l i -s 200 's! .{ .... i.. .i i I I l 3 "4 -V er l J.' i l3 r ioo p e i i i I l- -- - I - - - 1 3 OO 15 30 45 60 75 90 105 -120 135 150 - - - 165- - - -180 TIME - MINUTES

m, -.

,,,.e.,

GRAPH .9..__.. e cincu%a ogeuius. E R ~ ULIEXPOSED SURFACEE TEMPERATURES ,i s f, j 3 r -s giaccc,oa i CT GYPCUM l 5" METAL I U.N~. Y " l ""*"""" "=u ' TEMP' a> ll e 13 .*. '. 5 (.'/.- C d-- II I ^ o F _. fv. ? c i

-]

800> c. .). j o-f J . TYl>ii av - G cAetc.:, or: t/c C. i s/c u v - s>.c g 9/C N VI - 9 a = OPEWlWG-ER ._j 600 i 3 .. 3 t i i / i 1 l 400 1 r los r r

x___,

j t l AY ^ l f& -" > f 4Y '. / 200 T-J- ] [ {~~~~ ~ ~ ~E' A -[ l 1 l E L .ll- .L L i II 0-ll O 15 30 45 60 75 90 105 120 135 150' 165 180 TlME-MINUTES

e 4

5..e....

. ;t a tt

d e

.J

  • ' ?.i.s -

s; st ', g ogauiuc, _ F ...._. G R APH - 10.. e cmeut_w. uutxPOSED SURFACE TEhA PERATURES - 5 TEMR 550- -- g-(p . /. rc {f-iv - a n

e. %r s0o w

.,;d n m ece

4 m-e cr f

I

gg

~ k x..;).'s'.:.Q.f'~cypsum $ jy'/ I l ~ ' ~j:

,.% CW i.';<
:

mirO'g!"5'* j y v W ^ i .e ~ 400 wpe tv - c cei_Ss op i/c [. y- = v -22 u . s/c 9/C p-a vt -9 j <] , ~ - OPEtJIMG -F '.4T i E-- - c[A ~~ ~ 300 = i gy' y 4-l T i i y 200 <l 4-/' l 1 i l - ,L-- - - -. - b 100 / l V WM = c c I 1 Il. ._-..I..... ll. - _... I II._ __.._. ....._. I I Q-Il Il ll. 60 75 90 105 120 135 150 165 180 O 15 30 45 TIME-MINUTES i

FR _....._.GRA?H .1.1 . e cincuan opauiuc, ULIE)< POSED SURFAC.E. TEMPER.ATUREs I ] TEMR' ,4, F __,. y,, _ m / ' cT wouM gQ I I 3 Gp:':TIf,W-

w,..
,

t g@ j. _-.J. 1 a ucrau RET ^t ute.3.,.q.,,,..., .g h q '+.4

c v1

? T 4) .s.:<j g j...' e.. i fp - $Q :.7 [ 400 .c l = ,b ~_ L i. Tyr.,c tv - G cant. us op ik i v-n m / QC e e va - 9 a = O P E LJI LJG-FR / / IIB i / 1 i - -- -- j - --- - -- -h ~~~~gl----M 1 300 -- l --o r i j I.' )_ [__ A>' r.- q ' j r s i i 200 /g' ~ _.4>- - { i F / Lf 100 l =. & (spc' i i i t .. ll.. I!. _ _ ll. .h d...... ; l.. l Q-I N . [......_ ll....... 75 90 105 120 135 150 16 5 180 O 15 30 45 EO TIME-MINUTES

3.3 t.. : s. o..... G '1 _ _ __ G R A P H .1 2.. p c i n c. u t_ a m. ogeuiuc,..TE.MPEFt ATURES UNEXPOSED SURFACIE t, l . i g egn J. y, METAt RE.TAluER 'M]f i [ra. f _9,r:tRticocm. g7 /, s CT c.Ypsuu K 'j fg;g M TIMEi -4!a W i'4 {' MT;n.gou -y .1 SF t E C202 ]- t 400'- wPctv-$ce mcm. Vc j t ff 2/C s. y _i we vi - t If. l. OPEUlhJG,-G p g %J,. ~~ 300 _=-4.> ,,_ o __ t l j jr ___e-d--- A ' i I W - --s- -- ~~ y-l ,e j v y 3 200 p-y / I [ l 100 d l i g' e; s l !l 1 1 - U


. L -

.Jl I I 0-O 15 30 45 60 75 90 105 120 135 150 165 180 TIME - MINUTES e-e

a GRAPH - 13 - cinc.utan. opauius - G R UUEXPOSED SURFACE TEM PERATL3RES - s >= m4 c c o o - CT CYpr.,UM b= MrtrAt. i Y' [ TEMf? ""'^'"" Q(.,,." ' 1 n. 's....I op

f... :

.3,. <} _, g:, - 500-I .) t I Type tv - a cAmt. : or: /c. \\ v w c. -w,- - wc. i7 i op'rtuiuc,- c - a 400 ') t f f U I4 300 I j a, de-- - -$-- t -f i t.s--- s Q4 j ,. 2 W-[ i i A I I 200 ~ l l [ [ WA {j i / i l / ..-...4. l @ ...n ....a -...i.-. n l. a..... a .... a _... n. _.. _ ... u.... oO 15 30 45 60 75 90 105 12 0 135 150 165 180 TIME-MINUTES

c, cmcum opsuius H ~G'R~ APH ~.14" -UUEXPOSED SURFACE TEMPER TLINE5 ' ~ ..t Jt-in-FI N g META 1 RETAIMER Ig g (YPSUNt s 4 .d' S-s;,* ,_j.' IE 4.4 , 18 d - f THERMAFletIR * ~~**/*

  • . ih CT FCLT J, 4-TEMR o

F Type tv - s ca.ota on '/c. =vc v -s 4cg vi -2 7 syc i i OP E NiMC,- H lk l i j L H 400 = a-. i l i l l l l 21B ~ i l 1 l' n s + I i 300 l l o ~ r ..ze- - -6 i ~ 4--- - -*~ , o g a m . J9 .r B' l -~i-100 l </, i La i j 4 O 15 30 45 60' 75 90 105 120- - II -- - - 165 180 l' -l- -H - - -- Is II -- - ll I - -- --- --- l 0-135 15 0 TIME-MINUTES

1s t ~n n ;1 '., .s o

~' s y,

I GRAPH - 15_. < ciac.utAa opex.iiuc. HR i UME)< POSED SURFActs TE.MPERATLIR.ES j I - 4." F:tt2rtCC't )C. 8 58 CT 6.YL' SUM s E3 MIItAt

  • ! $.'h; 1 f' Y F."C tat uf ?.C.,-en.
  • g-i.
... g.

..g,1 g. r..., i ,.'~,. ~ @_.(.I. g I,' rvnc w - i caet_n. og vc 22 '. */c

TEMP, s

p 20 se VI - I e. n ops.uiuc,- s. cF. 200 h ) o -- -0 ^ 13B 1 d> --O j 3_ _ y -f>.17. c[ 1 \\_f 200 y = 4: s n a M 6-j .~3 v gfp{ N h 4 --- 1 - - - - IL 1: Ji 1 0 0-0 15 30 45 60 75 90 105-120 135 150 165 180 TlME - MINUTES

r6HAPH 16 5LRb!.P5RATURE - E -- FURNACE. ATMOS AVG.OF 5 THERMOCOUPLE READINGS DURING FIRE JEST COMPARED WITH ASTi/ E119 STANDARD 2000= %T4 ['" l.. i ~ .i as9 .A. MW .~ ~' c. I ASTM E 119 ~ ?. j MEASURED 1 o I l500= =,, i p w; = h,.

~

H* _a r t; v

n. l

.J .._ _. g g... j W i y-l g wr: _J 51 4. a /"A\\ ~.' LA.! j W i v E 'l000 <m, W 22 W" l 1 22 4* Ta. l wo i 3. ' j

E

.e I e O an =---- IW Z ~ W I .o - 2i e ' 500 I. D i . G ....a g.r., 4 g

  • . = '. '

.E K' ..~J FURmCC THERMOCOUPLE I AMUT ~ ~ (FLCCR-Cl~ lLILIG ) l 4 l t 3 i l t I, i i 'l 'I.'" l I t 'li 0 O I 2 3 4 FIRE TEST TIME-HOURS t .~.

g.- -) t. - - .,.p y,,,. .7 g.- ,y.. y, t. s. f .- i. .v. /. j. i \\ L ...r I 4 8 Photocraph Al ( ..l.' ' before fire test Exposed surface i t I 1 L.. --J f-- p rn, er ~.., y ...s.- ..y..g,e J .[ F.. a g l t !e. . y.- x-e s 3 i i ! I 0 t F i Photocraph #2 Unexposec surface s*- ,,,.,---~M at start of fire test 4 ,.-l .g .i- ,~'I** /,I ......, i ;- .t [ , f ;f ..,,, l, - ( .w s -... .g: . To .n .L.) 1. I.

i. 2 J.

-. L3 - m,,, c..,,,..,..... m.. e. q

I ' ; 2 4

~ s / 2 > k 3 1

  • l e

1 / i Photocraph 43 j Unexposed surface during fire test ~ [ 4 l ..g g 1

  • ).'o
s l

l. }

    • "'e.

k l l

  • /

I .s. i a g-s.= bh hqg g' I i

...~, .. --.. -.R ~ = r = i. Photograph 44 Looking in furnace chamber at burning cable early in test } t I i i ~. --. J u-s i i. 3 I I L k, i 4 Photocrach #5 I. Fire test sample in hose stream area after 3-hour fire exposure d ) = e. j ..S s i 4 I f I i I 1 Photograph #6 '~ { / Fire test sample / ' at 60 degree 's \\ l angle just before ,1 hose stream test f, s i s I I l t.L - 4... L_ .-.- A - - = -.

e 4 7.,, t / / J. I ._s, us } .? 6 % l Photograph #7 Application of -l ! hose stream to ?, test sample l 4 4 + ( .s .. -a.. _) I,t t

r..

.g y[*- - ':g /,; g3 Photograph #8 i .T. V.,. '., Exposed surface i. \\.. s.... g ..c l t O't d, r:>,..A i 3 ance and hose after fire endur-g. '- f4.: i I stream test .i i - +t .6 .)

)

1' T, w 4 ',y ..g L ,[_. _ i. _ _ m.,_,.j 9 9}}