ML17277A465
ML17277A465 | |
Person / Time | |
---|---|
Site: | Columbia |
Issue date: | 01/26/1983 |
From: | Bedrosian B, Defelice N, Ng L BURNS & ROE CO. |
To: | |
Shared Package | |
ML17277A464 | List: |
References | |
NUDOCS 8303010362 | |
Download: ML17277A465 (565) | |
Text
APPLXCABXLZTY OF THE USE OF THE SQUARE>>POOTWF-THE-SURF-SQUARES (SRSS) iMTHOD k4 ~
'+ FOR COi~&XNXNG PEAK DYNAMXC RESPONSES t
FOR HNP-2 TECHNXCAL REPORT prepared hy BURNS AND ROE~ XNC.
for application to NASHXNGTON PUBLXC POWER SUPPLY SYSTEM NUCLEAR PROTECT NO. 2 Prepared by: J N. DeFelxce L. Ng Reviewers by: PL.
N." Etto~ey 1 Approved by:
Bedrosian Submitted by:
J. . Ve de be Date: I uC/zV 83030i0362 830203 PDR ADOCK 05000397 E PDR
- e TABLE OF CONTENTS 4
lg, q ll'"
PAGE
- 1. Xntroduction and Summary
'\ I 2. Response Cases I
- 3. Technical Methodology
- 4. Results 7 5. Conclusion 10 4'
l
LIST OF .TABLES TABLE NO. PAGE Effects of Factor c 12 Effects of Factor N 13 Cases StucKeC {Accelerations) 14 Cases Studied'Displacements)
General Results (Accelerations) 16 General Results (Displacements) 20
LEST OF FXGURES FIGURE NO. TITLE PAGE Definition of TL and TU 24 Generation of Combined Time 25 Histories Effects of Factor e Selection 26 Effects of N (Number of Trials) 27 Selection 5a Seismic Model 28 SRV Containment Model 29 Sc Definition of Response Azimuth 30 General Results (Accelerations) 31 General Results (Displacements) 79
~ ~ )~ ~ ~
1., INTRODUCTION AND
SUMMARY
This report describes a study made in order to demon-strate the applicability of the square root of the sum of the. squares (SRSS) method for combining peak dynamic responses to the NNP-2 nuclear plant. It is prepared in compliance with the requirements of the NRC regarding confirmatory issues as stated in the Safety Evaluation Report for WNP-2, NUREG-0891 (Reference 1) and as delineated by the NRC in its letter of September 16, 1982 (Reference 2) .
The scope of the study is in line with previous corres-pondence and discussions with the NRC (Reference 3) on the same subject. Combinations of dynamic responses due to safety relief valve (SRV) discharge and seismic loadings are considered at locations typical of the containment vessel in the drywell region. The study includes 96 combination samples of acceleration or displacement responses due to OBE or SSE seismic loading and single valve or all valve SRV loading.
To demonstrate the applicability of the SRSS method, the methodology used is directed towards compliance with Option 2 as proposed by the NRC in Reference 2 letter. In this regard, it is first noted in the study that each of the definitions of seismic and SRV loads individually meets the requirement on non-exceedence*probability (NEP), namely 84 percent minimum. Then for each of the 96 sa'mple combin-ations of seismic and SRV loads; the"response magnitudes
obtained by SRSS method are investigated to assess if they meet the -required non-exceedepce probab'lity as determined from the cumulative di,stribution function (CDF) developed for the combination. The individual CDF's are.
generated using procedures similar to those in the previous report by Structural Mechanics Associates on the applica-bility of the SRSS method for Mark III nuclear plants (Reference 4) . Two parameters affecting the CDF develop-ment, namely, the duration of the seismic loading and the number of time lags,- per sampLe, between initiation of the seismic and SRV loads are investigated in the study.
The study finds that the requirements of Option 2 for the application of the SRSS method are satisfied. As noted above, the individual dynamic loads are defined to have non-exceedence probabilities of 84 percent or greater.
With regard to the parameters affecting the generation of the CDF's, the study shows that the values used are conserva-tive and satisfactory. Then using the generated CDF's, it is determined for each of the 96 samples that the response magnitude. obtained by SRSS has a non-exceedence probability greater than 50 percent. Likewise for each of the 96 samples, the non-exceedence probability of 1.2 times the SRSS magnitude is found to exceed 85 percent. Thus, the square root of the sum of the squares method for combining dynamic responses is shown to be applicable to the WNP-2 nuclear plant.
2~ RESPONSE CASES The response cases considered in this study are described below:
- a. Load Combinations The SRV discharge and seismic load combinations which were used in this study are listed below.
The single valve and all valves discharge cases were used since they were found to be representative of all different SRV discharge design cases.
Load combinations involving LOCA plus SSE and more than two dynamic loads are not considered in this study since the use of the SESS method was previously approved for these cases csee References 5 and 6) .
- b. Locations Zn the wetwell, the responses of the WNP-2 containment structure to SRV discharge loads were found to be signifi-cantly (several times) larger than the responses to the seismic loads. Consequently, the difference between the combination of the two peak dynamic responses in the wetwell by the absolute sum (ABS) method and the SRSS method becomes small and the SRSS issue unimportant. This led us to limit the samples studied in this report to the dr@well area of the WNP-2 containment structure. A total of 96 samples were studied of which 48 samples were response accelerations and 48 samples were response displacements.
OQOLOG
- a. ,Criteria - The methodology used herein to demonstrate the applicability of the SRSS method for combining peak dynamic responses is that proposed by the NRC as Option 2 in its letter of September 16, 1982 (Reference 2). This methodology corresponds to criteria established by the NRC in Methodology for Combining Dynamic Responses, NUREG-0484 Revision 1 (Reference 7) where it is stated that peak dynamic responses may be combined by SRSS if a NEP of 84 percent or greater is achieved for the combined response. An acceptable method of accomplishing this is summarized in Option 2 of Reference 2 letter as follows:
(1) Each dynamic load is defined to correspond to a NEP of 84 percent or greater.
(2) The SRSS value of the response combination has an NEP of at least 50 percent selected from a Cumulative Distribution Function (CDF) curve constructed on the assumption that individual response amplitudes are known and only random time phasing, defined by its probability density function, exists.
(3) 1.2 times the SRSS value of the response combin-ation has an NEP of 85 percent or greater based on the preceding CDF curve.
'I' l
- b. Ao lication to WNP-2 - The principal steps in the application of the above criteria to the WNP-2 project are described below.
(l) Definition of seismic and SRV loads The seismic and SRV loads are each defined to satis y the -recgCirement of 84 percent minimum non-exceedence probability. The seismic loads used'for the design of WNP-2 have been defined at a NEP in excess of 84 percent in accordance with Reference 8. The SRV load definition is given "in'Reference 9; as noted- therein the.'design load has a NEP of 90 percent.
Time histories utilized for each of the seismic and SRV acceleration and displacement responses listed in Section 2 were obtained from project calculation/files.
Herein, the seismic response is designated yl(t) and the SRV discharge response is designated y (t) .
(2) Generation of CDF's CDF curves are developed for each of the response cases'isted,in Section 2 by the procedure below. For each response case, the following steps are applicable.
(a) Review of the response time histories shows that th'e duration Tl of the seismic response yl(t) is 20.48 seconds and the durat'on T of the SRV response y2(t) is 2.048 seconds.
0 (b) The maximum responses are evaluated for each time history such that y~ ~ maximum yl(t) y~ ~ maximum y2(t:)
and the SRSS response is calculated as 2 2 SRSS ylm y2 (c) The strong motion portion of the seismic response is used in this study. As discussed i'n Sect:ion 4 of this report this ensu'res conservative results (see also Reference 4) .
Zn this approach, the strong motion portion is defined as the time frame between the first and the last times that the response amplitude yl(t) reaches the value 0(.y~, a fractional part of the maximum value. Figure l shows this concept- Zn the figure, T> and TU are the times defining the start and end of the strong seismic motion. Zn Reference 4, t.he value of OC was taken to be 0.5; the same
, value, CC = 0.5, is used in this study. =
(d) The time lag, Y , between initiation of the seismic strong motion and the subseauent initiation- of the SRV response is generated as a random variable with a uniform probabil-ity density function, f : ~
I 8(Z> ~ -~
U L
'L c Z"~C 1 1
(e) The method of generating the combined time history y(t) is summarized in Pigure 2.
Por a selected value-of ~
y(t) ~ yl(t), 0 < t+C Q+ T2 K t + Tl y(t) y (t) + y (t- )
@at ~ ~+ T2 After y(t) is determined, the maximum absolute value y associated with the'elected value 2's obtained.
ym maximum [ y(t) ]
(f) Steps (d) and (e) are repeat'ed for each selected value o5 < . The number of Honte Carlo trials used in the study is 200, the same as in Reference 4. Thereby, a total of 200 values of. y are obtained. The effect r
on the resulting CDP of varying the number of trials is discussed in Section 4, Results.
(g) Usinq conventional statistical methods as in
'eference 10, the histogram and associated CDF of y are constructed from the .generated set of y-m data.
~ ~ h4 ~
(h) Steps (a) through (g) are repeated for each
. of,,the. response cases. Thereby 96 CDF's associated with the 96 response cases are
', obtained.
Program SUPRA was developed to perform the preceding steps. The program was verified and checked using manual calculations.
(3) Validation of SRSS Method To demonstrate the applicability of the SRSS method'to'WNP-2 the'ollowing 'steps""are'perform'ed for each of the response cases.
(a) From the CDF,'he response at 50 percent
~
NEP (R50) and the response at 85 percent NEP (R85) are read.
(b) Comparison is made between RSRSS and R50 and between 1.2 x R and R85 (c) If RS~S 5 R50 and 1.2. RSRSS ) R85, the SRSS method of combining peak dynamic responses is applicable..
- 4. RESULTS
- a. Effect of =actor c( - It has been conservatively assumed that the SRV- response time history must beg'n at some time during the strong motion poition.of the earthauake
. response'. As previously discussed, the factor oC is used to
~ ~ 0 'L ~ 1 define the duration of the strong motion portion. The 1~
effects on the .CDF's 'of several'response cases are investi-
~4 I gated for 0( = 0.0 and 0( ~ 0.50. The selected cases for l
I the sensitivity study involve vertical acceleration of different points due to OBE and SRV discharge (all valves 4 actuation/AVA); 200 trial values of time lag are used.
The results are pictured in Figure 3 and listed in Table l for a typical response case. The conservatism which results from narrowing the duration of the strong motion portion of the. seismic. response is .evident as the response at the same NEP level is always larger with M ~ 0.50 than with + ~ 0.0.
- b. Effect of Number of Monte Carlo Trials - The effect of varying the number of Monte Carlo 'trials of time lag is investigated. CDF's are developed for the same response case as in subparagraph a. above for the number of trials equal to 400, 300, and 200 in turn. The results are given in Figure 4 and Table 2. It is evident that the differences between the CDF's are negligible. Consequently, the number of trials in this study, 200, is satisfactory.
- c. General Results - A total of 96 response combina-t'ons are included in the study: Tables 3a and 3b show the associated load combinations. Responses at four elevations on the containment vessel in the drywell are investigated; the locations are shown in Figures 5a and 5b. For each elevation, three directions of acceleration and displace-ment are studied, namely, horizontal direction, vertical direction at 9 = 0', and vertical direction at & =
'80'see-Figure Sc).
The resultant CDF's and numerical characteristics are given, in- Figures 6-1 through 6-48 and Tables 4.1 through q1 4.4 for acceleration responses and in Figures 7-1 through C w. ~
7-'48 and Tables 5.1 through 5.4 for displacement responses.
For all 96 uses in the study,it is determined that I
> ~
j SESS +P 50 l
~
1 2 RsRss ~ R85 .
P P
- 5. 'CONCLUSXON Xt has been shown in,'.this".restudy;;that,~the,criteria established by NRC for the applicability of the SRSS method for combining peak dynamic responses have been satisfied as
~ 4 follows:
- a. Seismic and defined to have an NEP SRV of discharge loads have each been 84 percent or greater.
- b. Based on investigation. of 96 response cases cover-ing. combinations of seismic and SRV discharge responses, the SRSS value of the response. combination in each case has an NEP of at least 50 percent as determined from the associated CDF curve
- c. Similarly -for all 96 cases, 1.2 times the SRSS value of the response combination has an NEP of 85 percent or greater based on the CDF curve.
Xn view of the preceding, it is concluded that the SRSS method for combining peak dynamic responses is'pplic-.
able to the NNP-2 nuclear plant.
REFERENCES:
USNRC: Safety Evaluation Report related to the operation of WPPSS Nuclear Project No. 2, Docket.
No. 50-397, Washington Public Power Supply System; NUREG-0892.
USNRC letter to the Supply System, A. Schwencex to R. L. Ferguson, on the subject: WNP-2 Request for additional information, dated September L6, 1982.
3~ Supply System letter G02-82-886 to USNRC, G. D. Bouchey to A. Schwencer, on the subject: Nuclear Project No. 2
- SRSS Combination of Dynamic Responses, dated November 3, 1982.
4 ~ Structural Mechanics Associates'eport SKL 12109.01-R001. entitled: "Study .to Demonstrate -the Generic Applicability of SRSS Combination of Dynamic Responses for Mark XXX Nuclear Steam Supply System and Balance-of-PLant Piping and Equipment Components," dated November 1981.
- 5. General Electric Company Report NEDE-24010-P entitled:
"TecTinicaL Bases for the Use of the Square-..Root-of-Sur;of-,Squares (SESS) Method..for Combining Dy~amic Loads for Mark IZ Plants," dated..July 1977, with Supplements 1 through 3.
- 6. USNRC letter to Dr. Hancock Chau, Chairman of Mark XX Owners Group, signed Roger J. Mattson, dated June 25, 1980, with Attachment including staff's evaluation of GE Topical report entitled: "Technical Bases for the Use of the Square-Root-of-the-Sum-of-Squares (SRSS)
Method for Combining Dynamic Loads for Mark IX Plants,"
NEDE-24010-P and Supplements 1 through 3 (see Reference 5) .
7 ~ USNRC: MethodoLogy for Combining Dynamic Responses, NUREG-0484, Rev. 1, dated May 1980.
- 8. Washington Public Power Supply System, Nuclear Project No. 2, Final Safety Analysis Report, Vol. 6, Appendix 2.5 K: "Seismic Exposure Analysis for the WNP-2 and WNP-1/4 Sites."
- 9. "SRV Loads - Improved Dezinition and Appl'ation Methodology to Mark IX Containments," Technical Report prepared by Burns and Roe, Inc., for Application to WPPSS-WNP 2, July 1980.
- 10. J. R. Benjamin and C. Allen Cornell: "Probability, Statistics and Decision for Civil Engineers," McGraw-Hill Book Company, 1970.
NODE NO. a= 0. a= 0.50 .
Rg0 (+0. 50] RS5 /Li0 50)
~
SEISMIC SRV R5pg~ ABA5Aso T.L R50 R&5 50 R&5 I (FIG. 5a) (FIG. Q 152 26 0.0 20.49 5.263 6.388 1.16 16 ~ 01 5.585 6.510 1.06 1.02 14&, 28 0.0 20.49 5.654 6.936 1.16 16.01 5.946 7.056 1.05 1.02 30 i 0.0 20.49 6.939 8.288 1.16 16.01 7.329 9.161 1.06 1.11 33 0.0 20.49 8.775 10.22 1.16 16.01 9.147 10.89 1.04 1.07 LOADING CASE: OBE+SRV (AVA) 1 &0 *
.VERTICAL ACCELERATION RESPONSE TABLE 1 EFFECTS OF FACTOR a SELECTION
- See Figure 5c.
NOM NO. N = 200 N = 300 N = 400 R<<'(N-2aO) R(W20 SEI$ 4IC ($
(Fi 5a p Tg R50 85 TL R50 R 85 T "50 R8S R (N=40I)) R8S 152 26 1.16 16. 01 5.585 6.510 1.16 16.05. 5.569 6.526 1.16 16.01 5.592 6.608 1.00 0.99 148 28 1.16 16.01 5.946 7.056 1.16 16.01 6.091 7.088 1.16 16.01 5.982 7.071 0.99 1.00 30 1. 16 16.01 7.329 9.161 1.16 16.01 7.295 8.729 1.16 16.01 7.295 '.609 1.00 1.06 140 33 1.16 16.01 9.147 10.89 1.16 16.01 9.189 10.97 1.16 16.01 9.395 11.09 0.97 0.98
?QADING CASE: OBE+SRV (AVA) 180
- VERTXCAL ACCELERATXON RESPONSE TABLE 2 EH!ECIS OF N (Number of trials) SELECTXON
- See Figure sc.
LOADING CASE RESPONSE LOCATXONS DIRECTXON AZIMUTH OF*
TXME HISTORY INVESTIGATED OF RESPONSE RESPONSE LOCATION SSE + SVA Radial p4 SSE + AVA Radial PO OBE + SVA Radial 04 OBE + AVA Radial PO SSE + SVA Vertical p4 SSE + AVA Vertical 00 OBE + SVA Vertical PO OBE + AVA Vertical pD SSE + SVA Vertical 1800 SSE + AVA. 4- Vertical 1804 OBE + SVA Vertical 1800 OBE + AVA Vertical 1800 TOTAL NUMBER OF CDF's GENERATED = 48 SSE - SAFE SHUTDOWN EARTHQUAKE OBE - OPERATXNG BASE EARTHQUAKE AVA - SRV~ ALL VALVES ACTUATION SVA SRV, SXNGLE. VALVE ACTUATION TABLE 3a - CASES STUDIED (ACCELERATIONS)
- . See Figure 5c.
LOADING CASE RESPONSE LOCATIONS DIRECTION AZIMUTH OF
- TIME HISTORY INVESTIGATED OF RESPONSE RESPONSE LOCATION SSE + SVA Radial 00 SSE + AVA Radial po OBE + SVA Radial po OBE + AVA ,Radial 00 SSE + SVA Vertical po SSE + AVA Vertical 00 OBE + SVA Vertical po OBE + AVA Vertical po SSE + SVA 4 Vertical 180~
SSE + AVA 4 Vertical 180o OBE + SVA 4 Vertical 180 OBE + AVA Vertical 180 TOTAL NUMBER OF CDF's GENERATED ~ 48 SSE SAFE SHUTDOWN EARTHQUAKE OBE - OPERATING BASE EARTHQUAKE AVA - SRV, ALL VALVES ACTUATION SVA SRV g SINGLE VALVE ACTUATION TABLE 3b - CASES STUDIED (DISPLACEMENTS)
See Figure Sc.
LOADING SSE + SINGLE VALVE Locat on ea sponse NEP for ABS S smc Direction Azimuth yl Y2 SRSS t0) le 2 SRSS V NS 50 SRSS ~
85 2SRSS SRSS 152 26 Radial 0 12. 73 lo. 53 16.52 88.79 19. 83 96.50 Oo813 0.809 1.41 148 28 Radial 0 ll.95 9. 11 15.03 79.50 :18 '3 97.00 0.850 0,856 1.40 I ~
30 Radial 0 12.46 11.65 17.06 79.70 20o47 98.50 0+885 0.871 1,41 140 33 Radial 0 13. 81 1. 561 13.90 95.51 16.68 100. 00 0.994 0.828 '.11 ~
~ ~
~
152 26 Vertical 0 8.87 3.94 9 '1 87.50 ll.64 99 F 00 0.915 0. 817 l. 32 s I 148 28 Vertical oo 9.36 2.68 9.74 89 '0 11 68 100 F 00 0. 961 0.816 1.24 144 30 Vertical oo 9.59 3.70 10.28 70.66 12'4 98+74 0. 934 Oo886 1.29 140 33 Vertical oo 9.36 3 '5 10+16 88.00 12.19 99.00 Oi 923 0. 816 1. 31 152 26 Vertical 180 8.78 3.94 9.62 87. 15 ll.55 99.00 0. 912 0 '18 1,32 148 28 Vertical 180 8.77 2.68 9. 17 90ooo lia Ol 100.00 0+ 956 0 '14 1 ~ 25 30 Vertical 180 8.91 3.70 9.65 75.93 11e 58 99.50 0.925 Oi873 lo 31 140 33 Vertical 180 9.29 3e95 los 09 87.50 12'l 99.00 Oi92 0.814 1.31 TABLE 4.1 - GENERAL RESULTS tACCELERATIONS - SSE + SINGLE VALVE)
LOADING SSE + ALL VALVE Locat on Peak Res onse or ABS Ql s 1 Direction Azimuth yl y2 SRSS HEP SRSS for, 'o2 SRSS l. RSS R5O SRSS R85 le2SRSS SRSS 152 26 Radial Oo 12.73 7.17 14.61 92 F 00 17 54 98.00 0.87 0.756 1.36 148 28 Radial Oo 11.95 1.74 12.08 93.50 14.49 100.00 0.98 0+825- 1. 13 llew 30 Radial oo 12.46 2.03 12.62 97.00 15.15 100.00 0.98 0+822 1 15 140 33 Radial Oo 13.81 1.142 13o86 91.15 16.63 100.00 0.99 0.831 1.08 152 26 Vertical oo 8.87 $ .48 9+94 91. 11 11.92 100.00 0.89 0.802 l. 34 148 28 Vertical Oo 9.36 4.56 10.41 84.84 12.49 98 F 00 0 ~ 90 0 '35 1:34 144 30 Vertical oo 9.59 6.41 53 78.00 13.85 96.00 0.86 0.874 1 ~ 39 140 33 Vertical oo . 9.36 8.33 12 ~ 53. 78.86 15.04 94.00 0.867 0 907 1.41 152 26 Vertical 180 8.78 4.48 9.86 91.44 11.83 100.00 0.89 0 802 1.35 148 28 Vertical 180 8.77 4.56 9.88 83. 19 11. 87 98.67 0.888 00839 1. 35 30 Vertical 180 ~ 8.91 6.41 10+98 76. 00 i3.18 97.50 0+864 0.849 1.40 l40 33 Vertical 180 9.29 8.33 12.48 78'3 14 '7 94.00 0.868 0 ~ 908 1.41 TABLE 4.2 GENERAL RESULTS {ACCELERATIONS - SSE + ALL VALVE)
LOADING OBE + SINGLE VALVE Locatio Peak Res onse NEP for R50 RSS ABS Direction Azimuth yl Y2 SRSS SRSS 1 ~ 2 SRSS le RSS SRSS
'52 SRSS ~ 2SRSS 26 Radial 0 7.46 10.53 12s90 78.00 15.49 97 '0 0 ~ 91 O.S56 1+40 148 28 Radial Oo 6.66 9. 11 Ii+28 74 '0 13 '3 96 '7 0. 913 0.895 1.40 30 Radial Oo 6. 36 lie 65 13.27 68e50 15 '3 98.82 0+957 0 '95 1 36 140 33 . Radial 0 6.87 1.56 7 '4 94.34 8 '6 100 F 00 0.975 0. 814 lo 20 152 26 Vertical 0 4.71 3.94 6al4 83 F 00 7 '7 94.50 0+795 0 '67 le41 148 28 Vertical Oo 5. 02 2.68 5.69 90.65 6+82 99 50 0.882 0+816 1.35 144 30 Vortical Oo 5.17 3.70 6.36 69 '3 7.63 97.23 0+929 0.906 1.40 140 33 Vertical Oo 5. 02 3.95 6<39 83.50 7.66 94.50 O.S61 0.844 1.40 152 26 Vortical 180 4.64 3.94 6.09 83+00 7 '0 94. 17 Oe798 0. S75 l. 41 148 28 Vertical 180 4o57 2. 68 5o30 87.79 6.36 99.50 Oo864 0.820 '.37 30 Vertical 180 4.60 3 ~ 70 5.90 67 '3 7o09 96.50 Oi929 0. 910 l. 41 140 33 Vertical 180 4.97 3.95 6+35 82 '0 7 ~ 62 94 50 0.862 Oi 851 l. 41 TABLE 4.3 - GENERAL RESULTS tACCELERATIONS - OBE + SINGLE VALVE)
GOADING OBE + ALL VALVE Location Pea Res onse HEP fo 1.2 NEP for R50 R&5 A P
Ml C pV Direction Azimuth Yl SRSS SRSS 1~ RSS SRSS ~ 2SRSS SRSS 152 26 Radial po 7.46 7,].7 10 '5 89.00 12.42 98. 00 0 813 0 '96 1.41 14& Radial po 6.66 1'74 6.&e 95.50 8.26 ..100.00 O. 968 0.807 1.22
'l 2&
30 Radial 0 6.36 2. 03 6.68 94.00 8 100. 00 0+ 95 O.eos 1.26 140 33 Radial po 6.87 1. 14 6.96 92.50 8 ~ 36 1.00.00 0+987 0.824 1.15 152 Vertical po 4.71 4.48 6.50 82.49 F 80 97.85 0. 864 0,843 1.41 148 28 Vertical po 5. 02 4.56 6.78 73+71 8.13 97 '6 0 ~ 909 0 '90 1.41 144 30 Vertical po 5.17 6.41 8.24 68.50 9~
89'l.
94.50 0 926 0.935 1.41 140 33 Vertical po 5.. 02 8;33 9.73 67.61 67 93.50 0. 94 0 936 1 37 152 26 Vertical 180 4.64 4.48 $ .45 42.~00 7 '4 97.50 0 ~ 866 0.842 1.41 14& 2& Vertical 1&0 4.57 4.56 6.46 68.64 7. 75 96.00 0. 92 0. 911 l. 41 144 30 Vertical 180 4.60 6+41 7.89 67.50 9.47 90.82 0.92& 0.967 1.40 140 33 Vertical 180 4. 97 8 33 9.70 67.45 1+ 16 93 '0 0 ~ 94 0+936 1,37 TABLE 4.4 - GENERAL RESULTS (ACCELERATZONS - OBE + ALL VALUE)
LOADING SSE + SINGLE VALVE Location Peak Res onse HEP for EP for R50 R85 ABS c RV Direction zimutk y1 y2 SRSS SRSS (4) 1 2 8RSS RSS SRSS
~piss) SRSS 1+2SRSS 152 26 Radial 0" 0.12535 0.00077 0;1254 99.50 0.1504 100.00 lo00 0 '3 'eOl 148 28 Radial 0 0.13677 0.00132 0.1368 00.00 0.01641 100.00 F 00 0.83 '
01 144 30 Radial 0 0.15403 0.00180 0,1540 95.08 '0,1848 100 F 00 1.00 0+83 1.01 140 Radial 0 0.18970 0.00014 0.1897 94.00 0.2276 100.00 , li00 0+83 1.00 152 26 Vertical 0 0.02120 0.00042 0.0212 92.50 0.02545 100.00 1.00 0.83 '.02 148 28 Vertical 0 0.02141 0.00042 0.0214 89.50 0.02569 100.00 1.00 0 '3 1.02 144 30 Vertical 0 0.02157 0.00048 0.0215 87.00 0.02589 100.00 F 00 0.83 1.02 140 33 Vertical 0 0.02178 0.00050 0.0217 85.88 0.02615 100 F 00 1.00 0.83 1.02 152 26 Vertical 180 0.,02121 0.00042 0;0212] 92 50 0.02545 100.00 1.00 0.83 1.02 148 28 Vertical 180 0.02144 0.00042 0.0214 90.50 0.02573 100.00 1.00 0.83 1.02 144 30 Vertical 180 0.02162 0.00048 0.02162 87.50 0 02594 100.00 1.00 0.83 1.02 140 33 Vertical 180 0;02179 0.00050 0.02179 85.72 0.02615 100.00 1.00 0.83 1.05 TABLE 5.1 - GENERAL RESVLTS (DISPLACEHENTS - SSE + SINGLE VALVE)
LOADING SSE + ALL VALVE Location Peak Res onse NEF for HEP for ABS e/sill Direction Aximutk R50 85 sass {a) 1,2
. C HARV Yl Y2 SRSS SRSS 1 RSS SRSS ~ 2SRSS SRSS 152 26 Radial 0 0.12535 0.00010 0.12540 100.00 a.15040 100.00 1.00 0~ 1.0 148 28 Radial Oo 0.13677 0.00003 0.13680 99+50 0'. 16410 100.00 1.00 83'.83 F 00 30 Radial ao 0.15403 0.00007 0.15400 96.00 0.18480 100 F 00 1.00 0 '3 1.00 140 33 Radial 0 0.18970 0.00003 0. 18970 92.00 0.22760 100 F 00 1.00 0,83 1.00 152 26 Vertical 0 0.02120 0.00126 0.02124 80.00 0.02549 100.00 loaa 0.84 1.06 148 28 Vertical 0 0.02141 0.00129 0.02144 86.50 0.02573 100.00 1.00 0.83 1.06 30 Vertical 0 0.02157 0.001'33 0.02161 86.66 0.02594 100.00 1.00 0+83 1.06 140 33 Vertical 0 0.02178 0.00141 0.02183 80.50 0 F 02619 100.00 1.00 0.84 1.06 152 26 Vertical 180 0.02121 0.00126 0 F 02124 80 F 00 0.02549 . 100.00 1+00 a.84 '.a6 148 28 Vertical 180 0.02144 0.00129 0.02148 86.50 0.02578 100.00 1+00 0.83 1.06 30 Vertical 180 0.02162 0.00133 0.02166 87.00 0.02599 100. 00 1 ~ 00 0.83 1.06 140 33 Vertical 180 0.02179 0. 00141 0. 02183 80. 50 0.02620 100.00 1.00 0.84 1 0 TABLE 5.2 - GENERAL RESULTS tDISPLACEMENTS - SSE + ALL VALVE)
0,,'+P'JLN cl jp lb%'
~
~ ~ I LOADING - OBE + SINGLE VALVE Location Peak Res onse NEP fo NEP for R5 0/ R85/ ABS Se1smxc RV Direction A?imntt SRSS SRSStai 1 2 SaSS SRSS ~ 2SRSS 8RSS 152 26 Radial 0 0.0631 0.000768 0.063 99.50 .076 100. 00 l. 00 0. 83 1.01 148 28 Radial 0 .069 0.00132 0.069 99.50 .083 100 ~ 00 0 ~ 99 0 ~ 83 1.02 30 Radial 0 0.076 0.0018 0.076 90.50 ~ 091 100 ~ 00 0 ~ 99 0 ~ 83 1. 02 140 33 Radial o O.a93 o.oao14 0 ~ 093 99 50 .112 100.00 1.00 0,83 1.00 152 26 Vertical 0. 0.0093 0 '00425 O.OD935 90.00 .0112 100.00 0.99 0.83 1.04 148 28 Vertical 0 0.0095 0.000419 0.00947 88.50 F 0114 loo.oo o.99 a.83 1.04 30 Vertical 0 0.0096 0.000484 0.00957 83.44 i0115 100.00 0.99 0.83 1.05 140 33 Vertical 0 0.0097 0.00050 0.00968 89.04 a0016 100.00 0.99 0.83 1.05 152 26 Vertical 180 0.0093 .00042 0.00936 91.50 eaoll loo.ao 0.99 o.83 1.04 148 28 Vertical 180 .0095 .00042 0.00948 89.50 spoil loa.oo 0.99 0.83 1.04 l44 30 Vertical 180 .0096 .00048 0.00958 86.50 aaall 100.00 0.99 0.83 1.05 140 33 Vertical 180 .0097 .00050 0.00968 89.49 .0012 100.00 0.99 0 '3 1.05 TABLE 5.3 - GENERAL RESOLTS (DISPLACEklENTS - OBE + SINGLE VALVE)
~ '
~
LOADING OBE + ALL VALVE I,ocation Peak Res onse NEP for ABS c Direction Azimutl 50 jr 85 Sexism SRV Y2 SRSS SRSS (l) i+2 SRSS SRSS 1.2SRSS 1 SRSS 152 26 Radial Oo 0.063 0;000099 0.063 99.50 0.6756 100.00 i+00 0.83 1.00 148 28 Radial 0.069 0.000030 0.069 100.00 Oe0829 100.00 1+00 0.83 1.00 144 30 Radial 0.076 0.000072 0.076 99.50 0.0)13 100.00 1.00 0 AD &3 1.00 140 33 Radial 0.093 0.000026 0.093 99.50 0+112 100 ~ 00 1 o00 0 83 1.00 l.52 26 Vortical Oo 0.0093 0.00126 0.0094 82.23 0.011 100.00 0.99 0.84 1.12 14& 28 Vertical Oo 0.0095 0.00129 0.0096 85.00 0.012 100.00 0.99 0.84 1.13 30 Vertical Oo 0.0096 0.00133 0.0097 82.50 0.012 100.00 0.99 0.&4 1. 13 140 33 Vortical Oo 0.0097 0.00141 0.0098 83.50 0.012 100.00 0.99 0.84 1.13 152 26 Vertical 180 0.0093 0.0013 0 '094 82.19 0. 011 100.00 0.99 0 '5 1.12 14& 28 Vortical 180 0.0095 0.0013 0.0096 86.49 0.012 100.00 0.99 1.13
'9 0.83'00.00 144 30 Vertical 180 0.0096 0.0013 0.0097 85.00 0.0012 0 0.83 1.12 140 33 ~ Vertical 1&0 0.0097 0.0014 0 ~ 0098 83.50 0.0012 100.00 0.99 0 83 1.13 TABIE 5.4 GENERAL RESULTS tDISPLACEHENTS - OBE + ALL VALVE)
(p, l I J
jO 1 (P gI 4
~ e
t on Motion FIGURE 1 - Definition of TL and TU Determine Strong Portion oX Seismic Response Motion:
T>, TU corresponding to a~ 0.5 Generate Random Phasina.
Behwden Seismic aiid SRV Response Mot3on's:
PDF (>)
(TUEL)
TL TU PDF ~ Probability, Density Function ADD Seismic (5~) SRV (/2)
Time obtain Y =.Y~.. + Y2 FIGURE 2 - Generation of Combined Time Histories CI NOpE 152 - OM {Figure 5a)
NODE 26 - SRV (F fgure 5b) o CQ CI
/
/
I IJ 1 a /
)0 l
CI rI o I I
I I
I CI I I
o I ga Q ~ 5 CI Q Q CI CI 3.20 4.oo 4.'80 5.6a 6.4a v; a 8 F 00 8.80 RESPONSE' OADIHG j ORE'l'SRV(/PA),f VERTZCAEl ACCEf>ERATXOQ {FT/SEC*~2) f 180')
2oa gj,yuge 3g Effeotg og Fqcgaq g Qeleotiorl
1 a
'1 i" I f
~ ~
C)
O NODE l52 - OBE (Figure 5a)
NODE 26 SRV (Figure 5b)
CO C)
N = 200 N 300 N = 400 3.20 4.00 4.80 5.60 6.40 7.20 8.00 8.80
RESPONSE
LOADING; OBHtSRV(AVA) VERTICAL ACCELERATION (FT/SEC**2) (l&0 )
a= 0.5 Figure 4; Effecey of H (Nurgbeq Of Tqk,ply) Selection
est I ~tS I~1 ~
u4
~SL Bl Il H'8
~
SSZ Pd+
Tkk HmrrP!ale K4~ e l~!IC74 45+&
l04 4 ~
C95~4 CV
~ &
47
-p
~S'~ as c4 ce
\
led~
~I af ol~M l&5*S'ZXSiCIC tCODEL
il ft (1
1 4 ~
IL C
~ r-6:
~ 1
Vessel Azizauth PIane Azinazth Plane (B ~ 1800) (e 0 i
~ ~ MOW re r
r Single Safe~
Belief Valve H.gure 5c - DEFTNITICM OF RESPOND AZZKEH nCD n
0-VALUE NE
)'a.nax Kl ).393 eE)
Kl E) lY ),60S eE) 8s.nnx lL.
al SRSS ).652 eE) 88. 79Z
) . 2+SRSS ). 883 ~E) 86.snx n
CV n RBS.SUN 2.326 ~E) nn ln. DO l2. DO l g. 00 l6. DD l8. 00 20, 00 22. 00 2$ .00 26. DD
RESPONSE
LOAD)NC SRV(SVA) + SSE. llQR)ZQNTRL RCCELERRT)QH -. {FT/See+*2).
CQATA) ANENT VESSEL ORYUELL. !NQOE 26 - SRVl. NQOE lS2 - SSE )
Figure 6-1
VALUE HE/'.277 eEl SO. OOZ 1.S93 ~El BS. OOX SASS 78.SOZ 1.2+SRSS ).BO3 vEl S7.OOZ f4 n ASS.Sue 2..OB +El
.Oa 10. OD 12. 00 16. OO. 1 a. DD 2D. QD 22. OD 2 .QD
RESPONSE
LOAD l NC SRV (SVA) ~ SSE; t(OR l ZOHTAL ACCELERAT l QH FZ/SEC**2)
CONTA)HNENT VESSEL ORYUf LL, (NODE 28 " SRV) ~ (NODE 190 - SSE l Figure 6-2
.I
(
HfS)'.
I
-jn
~g) 4J
~
K
~
l.Sln ~E) SO. OOZ E)
).783 ~E) 8S.ODZ lL'n n SRSS ).7DG vfl 7S.7OZ l.2+SRSS 2.097 +El S8. SOZ n(V n Af)S. SUN 2. 0) l ~f l
)O.an ) 2. On ) <). 00 )s.nn . lo.nn 20. 00 22. 00 2 . 00 28. 00
RESPONSE
LOAO) NC SRV (SVA) .t SSE. HM)20NTAL ACCELERA'f)QH FT(SEC<*2}
(:ONTA)NHENT V(.SSI ORVUELL. (NODE 3O - SRV) (NGOE )99 - SSEl Figure 6-3
a a
0-i VALUE a HEf'D.DDX w lQ a ~
l.38l <<El Kl C) l.31) <<El oS.ooz A.
SASS 8S.S)X l.2+SASS l.666 <<El loo.ooz fV a ABS. SUN l, S3'1 <<E l na
!3.90 l3.GD l 3. OD l Q. OD l Q. 2O l Q. QD l . GD ii). OD l S. DD RESf'QNSI.:
LOAD)HC Sf(V (SVA) t SSE. )IORl lOHTAL ACCELEAAT1 OH FT/SEC~~2}
COHTA)HHEHT VFSSFL ORYUFLL. (HOOE 33 " SBV) ~ (HOOE lllo - SSF) Figure 6-4
- 4. r ~>AvCvt gi l
I
"~
E I, ~1
~Q4y "gi 4 Ji. ~ 4.'li~~) equi' aa>Ji dr ki, ~
~ 4 g ~
"C t'j '6 P 4/,lip 4; L$ A1 gg ~ ave tc,
alO 0-t-
RESP. VALUE tn ~ ED lg a l.276 vE) SO. OOX G
lQ C)
).326 +E} BS. OOZ ll. a
+I a ).46l <<El 82. DDZ l.2~SRSS l.'lSil. ~F.l 80. OOX Pl a flBS.SUN l.880 +El nn a l2.00 l3.00 lq.00 )S.OO l6.00 la.00 10. 00 ! 9. 00 20. 00 REsPcjNsl OflnlHC SRV(OVA) + SSF., t(ORl2OMTflL fl(:CELERAT)OH (FT/SEC~~2).
(:OHTfl)HNEHT VESSEL ORYUELL. (HOOE 26 " SRV). (HQOE }62 - SSF) Figure 6-5
- ,Ijl
VALVE NEO
- l. l9S <<E} Sn. DDZ
- l. 1SS wEl OS. DOZ
.SRSS s3.snx
- l. 2wSRSS l. ()VS wE1 inn.onx ASS. SUN l. 369 wE l C) l l. Gn ! l. Oa !2.00 l2. 20 l2. ()0 12. GO 12. 00 .Z. 00 la. 20 azsf awsr:
LOAD}NC SRV (AVA) + SSE. tlM1'LONTAL ACCELERAT1ON (FT/SECww2)
CONTA1NHENT VF SSEL ORI'UfLL, (NQDF. 28 - SRV) . !NQDF. )QG ~ SSF) Figure 6-6.
4 n
CQ Cl I I VALUE Q ~
Ig I
~n E)
Q>
).206 ~E}
}.296 ~E}
SD.DDZ os. aax n
n SRSS l . 262 +E l . 97. QDZ
}.2+SRSS }.S}5 +El }na.oaZ Cl PJ Cl ABS. SUN l. 499 n
n Cl
}2. 20 }2. Vn } 2. GD }2. 00 l 3. Qn l 3. 20 l 3. QO l3. Gn
RESPONSE
LOAD}NC SRV (A Vfl) l SSE.QRl20HTAL ACCFLFRA'flats (FT/SEL'+~I2) CONTA!NHFNT Vf:SSfL ORYUFLL (NDDE 33 " SRV), (NOQF. }<}<} - SSE) Figure 6-7 .
1 n CV n n nC3 n 0-I I VALUE I g- n !.381 ~El SO.OOZ CA E) lV 1.302 ef.I GS.ODZ Q.. n SRSS I. 306 ~E I Bl. !SZ
- 1. 2vSRSS I. 663 +El IOO. DOZ n
P4 n ASS. SUN 1. QSS +EI nn
- 13. 00 ! 3. GO !3. OO 1! on ! .20 1 .vo 1,1. GO 15.00 RE 5 f'QH5 f:
LQAOlN('RV(AVAI + SSF.. tiQR!'LQNTAL ACCELERA'l !QN (FT/SECve21 (:QNTAINHFNT VFSSEL PRYUFLL, (NQOF. 33 " SRVI. (NQDF. !40 -'SF) Figure 6-8
t V
aa aCl o RESP. VALUE NEP
- l. I')6 ~EI SO. OOX .
).326 +El OS.OOI SASS l.29D +El ).2eSttSS l.S<)9 +El 9'). 2DX o !V o ABS. SUN ) . 799 ~E) aa
- 3. 00 )0. 00 l2. l .00 )S. 00 16, 00 RESt'ENSE LOAD) t)C St(V (SVA) + 00f., t(681LONTAL ACCELERATION (FT/SECtw2)
CGNTAINHENT VESSFL OBY(JELL. (NOOF. 26 <<SAV). (NODE lS2 - QBF) Figure 6-9
na a Kl a t I~ VALUE
~a Il~ + ~
g O ).930 +El
~a ~
Sa. Qox lI1 E)
- l. 2l l +El 0S.OQX
'n lL.
a SRSS 7<). hoZ
).2+SRSS ) ~ 353 +El 96. '7X nPJ a At)S.SUN ).S76 +E) n .OD 2. QO <J. DO 6.OO 0.QO )2. QQ l .Qo )G.QD arse'oNsr-LOAD) NC SRV tSVA) 59E. tiOR)20NTAL ACCELERAT) QN tFT/SFC+v2) t:ONTfl!NHEN'f VESSEL OR'I'UELL, tNOOF. 20 - SRV). tNt)OF. )90 - t)9F) Pigure 6-lO
VALUE
).270 +E) SO.OOZ ).()26 +E)
SRSS ). 327 ~E) GB.SOZ
).2~SRSS ).893 +E) an. 02Z ABS. SUN l. 001 ~E) l O. OO )}.OO 12.OO )3.00 1 .OD )S.OD )G.OD 1]. OO 1 a. OO RFSf'QNSE LQAO) NC SRV (SVA) ~ QOE. NOR)24NTAL ACCELF RAT14N (fT/SECvv2)
CONTAINHFNT VESSEL OR'l'UFLL. (NODE 30 - SRV) ~ (N40E )<)9 " 4BF.) Figure 6-ll
a 5 I atQ ~ ~ a I 0-I- RESf'. VALUE
~ 5
-!a I. I .~a E) Q>
- 6. 070 <<fa G.t)aa <<Eo SO.OOX BS.OOX I
='
lL. al a RRSS 7. 048 <<Ea s4. ~ ~ 34'OO.OOZ
- l. 2<<SRSS B.4sa <<EO aN n flas. Sue B. 4a4 <<Ea t.na 6.40 G.OO . 7.20 7.Ga -
a.an B. 4n B. oa S.2a REs f'QNsl t LDflalHC SRV (SVfl) ~ OBF.. IIMl'LOMTflLACCELERATlQH tFT/SEC<<<<2) ' COHT!))H)!EHT VFSSEL ORiUELL, tHODE 33 . SRV), (HOOF. ) 40,
~ ~
DBF.) Figure 6-12
yI 5 ~ n CQ IC
\
n 0-RESI'. VALUE Hf.l'o.oox
- 4) 8.0)9 ~EO Kl ID
- 9. 883 ~ED BS. QOX LL.
Cl
+I SRSS ).DBS <<E) 89. Qog t.
Cl I:
~ ~
- l. 2+SRSS l. 2t'2 +El 98. QOX ABS. SUN ! . 063 vf. l na l l. 20 l2.00 l 2. 00 l 3. GO RESf'QNSE Lann)Ht; SRv(nvni ~ ~BE. !laR.'zaHTAL AccELERATlQN (FT/sfc~~2)
CQNTA! HHfHT VESSFL OB'iUFLL. (HOOF. 2G - SRV). tHOOF. !62 - OBF) Figure 6-13
n Pl
~ ~
I
+
Cl n P I- VALUE t t I ~n So.noX I Kl II K) 6.659 ~ED 0S.OOX t Q.. tl n 'I tt
~ t SRSS 6.078 eED ).2iSRSS 0.255 ~FO )oo.aox nP4 Cl AOS. SU)I 0. 396 UFO G. 60 G. 00 7. 00 7'. 20 7. 40 7. GO 7. GD G. 00 RESf'ONSE LQAO)NC SRV (AVA) ~ QBE. NQR)ZQNTAL ACCFLFRAT 1QN (FT/SELv+2)
CQNTAlNNFNT VESSEL ORYLIFLL. (NQDF. 20 - SRV). NQDF. )90 " QBE) Figure 6-14
n Pl n n
+
Cl Cl I RESI'. VALUE I
~n NE('o.aox lA ~
6.ass ~EO
<<Kn Kl El 6.N2 +Eo oS.aoX Q..
n SRSS ()c. Oax I.2+SRSS 0.007 ~EO Iao.OOX Cl A n ASS. SUN 0. 309 ~FO Cl n
- 4. 20 6. Go 6. 00 7. 00 7. 20 7.40 7. 60 RESI'ONSE LOAOINC SRV (AVA) + OOE. IIORHONTAL ACCELFRAT ION (FTZSECvv2)
LONTAIHHENT VESSFL OR'iLJELL. (NODE 30 - SRV). (NODF. I9Q ~ OBE) Figure 6-15
~ ~
0-I VALUE I~ NEf'O. I e CD 6.676 ~E0 OOX Kl C3 6.082 eE0 f)S.OOX lL. CD CD SASS 6. 867 +EO 82.SOX
~ ) .~ 2ysftss a. 36) +E0 ~ )OO.OOX Af)S. SUH a. 0) s +EO -u. GO 6. On 7. 00 'l.20 7.40 7.GO 'l. 00 0. 00 0. 20 azsI'awsC LOAD)NC SBV (flYA) l QOE. Naif'LBNTflL ACCELEBAT)QN (f'TJSEL'wv2)
CQNTA) Nl1ENT VESSEL OR'iilELL. (NODE 33 " Sfj"Y) (NQOE ) 90 ~ QDE) Figure 6-16
P CI n CI CI VALUE 8.683 vEO SD.OOX
- 8. SO'l v EO BS.OOX SRSS 9.70)1 +EO 87.SOX 1.2vSRSS ) .! GI'E! aS.OOX Af)S.SUN 1.281 ef.)
n n
- l. 20 G. QQ G. GQ 8. GQ !2. 00 !3.GQ
!0.40'ESf'ONSE LOAD!NG SRV (SVA) + SSf'.. Vf'.RT!COL ACCELERAT>QN (FT/SfL'>+2) (04)
CONTfl! WENT Vf'.SSEL DR')'UELL. (NODE 26 <<SRU). (NMF..'S2 - SSE) Picture 6-17
nAl nn n n I- RES f'. VALUE NEO lQ 9.356 ~EO SO.DOX ~A
~
Kl E) 9.528 +ED BS.DDX CL. n
~I SASS 9.'l3S +ED 89.SDZ a
- l. 2vSgSS
~ ~
l.!65
~ eEl lDD.DDX nPJ n
ABS. Sun i. 2O4 .:El n n
. 00 9.20 9.GQ ! Q.DD >Q CQ lQOQ ... ZQ l.'. GQ 12. QQ RESf'OUSE LOAD INC SAY (SVAl > SSE, VERT l GAL AL'CELEBAT '.QN (FT. SEC ".v2) (0 .)
CONTfll{4HEN" Vl'.SSl:L OPVUI:LL. (NODE 20 ~ . SgV). (N59E i%8: SSE} Figure 6-18 .
EQ CI P RESf'. VALUE
-jo NF.f'D.
I 9.606 +ED
~
Kl C) OOX 1.D93 ~El BS. OOX lL. Ql n SRSS l. 02B +El VD.OBX
],2+SRSS ).23if +El 80. ')QX AOS.SUN ) 329 ~E) n n .50 10. 00 10. Sa >> .00 !!.SD f 2. On !2. Sa !3.00 13. Sa
RESPONSE
LOAD!NC SRV (SVA)>> SSF.. VERTlCAL ACCELfRAT lW (F's Sf Cv+2) {0<) CON((i'NUGENT VFSSff ORYUFLL, !HOOF 30 .. SRV). (NOOF, Vq SSF) Figure 6-19
d I H,
Cl l- VALUE s-s ~ o Kl 8. M'l ~ED SO.OOC Kl E) 8.84l +EO 'OS.OOX Q.. Cl n SASS l.Ol6 <<El aO.OOX l.2~SASS l.218 >>El 88. OO.L iV n RDS. SUN l . 33l +E? nn
- 0. 00 8. GO .'0. 00 l l. 20 l3 GO40
~
RESf'ENSE LOAO) HC SAV (SVA) ~ SSE. VEt'T1LAL ACCELFRRT)SN HAFT/Sf C~ ~2) CONTR'NHFHT VFSSFL flR'l'UELL. (NQOE 33 " 'SRV). !HOOF F40 - SSF Figure 6-20
a N
~ ~
F ~ (A 0-I I RESP. VALUE NEP A M ~ a.OSV <<Eo 50. OOX an (A E) 8.559 <<EO 85. OOX Q.
.8.8a5 <<EO 8}.}}X 2<<SASS !.}82 } 00. ODX n
P4
~ ~
Cg ABS.SUH }.335 <<El n n
,50 S. DO 8. 50 }0. 00 lO. 50 l l. 50 }2.00 }2.50 RESt'BISE LQflD!NC SRV(AVA) + SSE. Vf'.RTlCAL ACCELEQATIQN (FT SEC<<<<2} (A.),
MNTA}NlFNT VESSf':L DRYUELL. (NODE 26 <<SRV}. (NQDE }52 " SSE) Figure '6-2i
J P4 V
~
I tl
~ k n
Pl nn Cl CA CI VALUE I I NEl'D. I U1 n CA 9.373 +EO ODX I
~n ~
Kl E) I . OII) ~E) 85. ODZ lL. n k SRSS CI I. 2+SRSS
~ ) .~ 2I)9 +E) 90. Dax k Cl N
ASS. SUN 1. 392 eE! n
'b. Oa a. oa 9. Da ! a. I)a .'3. Ga 1 '.I)C BF sr assr=
LOAQ!NC SRV(AVA) + SSE. VERTICAL ACCELERATIQN (fT/SEC~~2) tOoj i"'INTAINHFNT VESSEL QRYUfLL. (NQQE 28 -. SRV). tNQQE }I)B - SSE) Figure 6-22
'e CI N ~ ~
Cl Cl 0-I- VALUE
~n NEf'O.ODZ Kl 9.880 +EO I ~Cl Kl ~
C) QP l.2lO ~El OS.DDZ l1. n SASS 'O.OOZ
- l. 2+SRSS
~ ~
l . 306 86. DDZ Cl vE.'flS. iV SUtl l . GOl +E! O J.DD !Q.QQ l I.QQ .2.00 l3.00 ..00 l S. 00 .'G.QQ l l.00 REspQNsL LOAQINl: SRV (AVA) + SSF., VFRT1LAL ACCELEBAT tOH HAFT, SEC>>+2) (QO) i:INTA!!~~F~T VFSSF;. ORVuFLf.. ~NOOF. 3O - SRV). (NOQF fO< - SSu Figure 6-23
rO A n Cl C) C) I I I RESP. VALUE I I i~ M CI }.086 eE} SO. OOX
~
CA E)
}.369 wE} BS. OOZ lL.
Jl SRSS 78. 06K
}.2~SRSS }.SOC ~E} SI!. Oog niN n ASS.SUN !,768 ef}
n Cl
.00 a. 00 }0. 00 .'2.00 } ',00 }0.00 20.00 22.00 RESf'ONSET LOAO.NC SPY tAVA) + SSE. VERT}CAL ACCELERATJQM (FT/SECv+P) (0 Cf)MTfl!NHFNT VFSSEL OR'I'Ul.LL. (NODE 33 " SRV}. (NOOF. }QO - SSF.} Figure 6-24
~ - ~ ~
0-RES!'. VALUE I U1 U1 9.885 eEO ODX I IT cQ Cl E) Q..
- 6. 3S2 <<EO '0.
Ja SASS 6. kQl ~EO 83. 0OX Cl
- l. 2<<SASS 7. 368 ~EO aI!. SOX ASS. SUN 8.650 <<rEO n
n
.50 5.00 5.50 6. 50 7. 00 7. 50 REsf'QN5E LQflDJ AC SRV (SVA) ~ QDE. VERT !CAL ACCELEPATIQV (FT/SEL'vs2) (0 )
LQVTfl!NHl;Nl VESSf.:L DR'fuFLL. (NQDE 26 - SPY), NQDE !52 - QBF} Figure 6-25
n04 nn nC3 A VALUE LA Ch I
~A E)
Q S. Ol (l S.S67 <<EO
<<f 0 SD. OOX OS.OOX Q..
n QI n SRSS S.GO7 <<EO 80. GSX
- l. 2<<SRSS
~ 6. 024 ~ <<EO 88. SOX n
N a ASS.SUN 7.G86 <<FO n n S.2O 5. GO l. 20 'l. GO 8. 00 Rf: sf'0NsF; LOROlN(: SRV (SVA) " OOF.. VFRTlCAL ACCFLERATION (FT/SEL<<<<2l (a~)- CQNTfi'NMFN ~ VFSSFL OR I(~FLL. (NQOl..28 " SRVl. (NOOE >40 - GBF} Figure 6-26
44
- 0
t- RESI'. VALUE ~ I NEf'o. Q fQ s.aoG ~ED ODX g Q lG E3
- 6. 8} ) +EO OS. OOX lL.
nJl sRss 6.3sa ~EO 68.23X
).2+SRSS 1.G3) +EO 87. 23X ASS.SU5 . 0.012 iED .Qn S.SD G.OD G. SD 1. 00 1. 'HD 8. 00 0. 60 8,0D Rf Sf'QNSl.
LOAO) Nl SRV (SVA) ()OE, VfRT! CAL ACCELERAT!5N (FT/SECi~2) (0o) Al Nl1l:NT VESSl L OR i Llfi L. (NODE 30 <<SRV) ~ (NODE 109 - 6DE)
'ON" Figure 6-27
h n CD I RESP, VALUE Ul 5.SOI <<EO SD.ODX C)- CD lA E) 6.967 <<ED aS.ODX Cl. CD
~l CD SASS 6.307 <<EO 83. sox I. 2<<SASS ~ ~
7.664 <<EO S<l. SDX C3 Ol ASS.SUN B.869 <<EO nn 5.00 S.SO 6. 00 G.SO 7.00 7.SO G. 00 G. SO
RESPONSE
GAD! HU SPV (SVA) ~ DOF.. VERT ILAL ACL'ELERATION (fT. SEC<<<2) (QO] i:QWTfll!4NFMT VESSEL DRYUELL. (NODE 33 " SRV). (NQDF. )QO - ME) Fipple 6-28
I' I' ~ I- RES('. VALUE NEO I I -ja re~ S.6)') ~EO 50. DDZ lA E) QP G.S78 +EO OS.DDX ll. Cl
+I SRSS 6. ()99 +ED ()2. t)9Z 1.2+SRSS I.')89 +EO 87.GSZ a
iV ASS. SUN 8.: 09 +ED C) n
- 3. 2D 5..M RESI'QNSt:-
1.2 G. QD LOAD'. NC SRV (AVA) I QOE. VERT 1 (:AL ACCELERAT)QN (FT/SE(:++2) '(() ~ } CQNTA'HHFNT VFSSFL DR iUELL. (NQOE 26 -- SRV). (NQOE 192 - ODE) Figure 6-29
t a
I RESP. VALUE I
-ja o ~Q 6.)62 +En Sa.nnX hl E)
Qrl 7.29) ~En os.nnx lL. C) 6.118 <<f.a 13. 1)X
!.2<<SRSS o..'3(( vE9 S1.! 6X PJ n ASS.SUN S.S16 <<fn n
n
'L . Qn 4'. on S. 60 6. (:0 1. 2a o. 00 o. on 9. GQ )Q. ()0 RE Sf'ONSL.
LOAO! HC SRV (AVA) ~ OOE. VfRT) CAL ACCELERAT! ON (fT/SEC'v+2) (0] (:ONTA.NNrNT VrsorL nRi'MELL. (NO0E 2o Spv). (NOof. !()o - Oof.) Figure 6-30
a Pl nn C3 n 0-RES('. VALUE ~ I~ Kl 'l. 63t) gEO so. Dox co< Cl E3 lY 9.2t)8 ~ED as.oax Q. Cl Ql n SASS 68. SOX
).2+'SASS S.88)>>fo 84. SOX n
i4 A ABS. SUN ). l SS +E) nn 80 5. Ga G. qa 7. 20 8. 00 0. 00 8. 60 ! 0.40 '.'.20 RESl'ONSL. LOADINC SPV (AVA) QDF.. VERT)(:AL ACL'ELfRATION (F t/Sf(:v v2) (0') CON AINHEN Vl.SSI.L DAYUELL. (Wflf. 30 ~ SRV). (NODE )<JQ - OBF.) Figure 6-31
~ ~ ~
( A P4 ( (;
~'
Ch CO i C) I I. I 0- I
'(
l RESI'., VALUE (
~
l a, }5') vED DDX (Tn Kl E) 1.092 +E} ()5. DDX
'n Q..
I <<F..'EI'D. n SRSS a.a2V +ED G'7. Gl f
}.2<<SRSS }.? G7 <<E:. a3.50' nf4 CD A()5. SU)l:.')35 n }2. 00 !3.00 .00.
RESPQNSL LOAD)N(: SRV (AVA) " ODE. VERT}CAL AC(.'ELFRATtON (FT SFL'v>>2) (0 ) COHTA!HHFN( Vl SSEL DB'iUELL. (NODE 3:) ~ SRV) (NODF. }(ID - QBF.) Figure'-32
a C3 a 0-RESf'. VALUE n
~a NEf'o.
Q R
~n ~
B. 779 +EO nnX E) 9,gt)B vEO as. onx 0
~l a SRSS 8. 623 +EO . 07. 1SX ).2+SRSS ~ ~ 1.)SS +E) ~ ~ 89.0DX a
ABS. SUB 1 . 272 +E) nn
- 0. 00 0. QQ 9. GQ : Q. t)0 .'.' 20 12. 30 12. GQ '3. GQ RLSPQNSE LDAO)NC SRV (SVA) + SSE VER I jl'AL AL'CELERAT 1 OH (FT SEC+'>2) l) Bn) coNTA)N)~EvT vEssEL nRYutLL. tNDQE 26 -; SRv). (oooF. )52 -- ssF) Figure 6-33
~ 'e ~
0-RESP. VALUE NEP
-ja I 8.77S +EO 60.001 lQ C)
CY 8:887 +EO BS.ODX a.. C) SRSS a.)7S ~ED 80.00X 1 . 2+SRSS 1 ..'! 1 +E 1 10D. OOX n PJ n ABS.SUN ).)1;6 ~E! nn
.00 8.Ã B. !0. qD .'0. 00 11. QQ RCSf'ENSE LDAO!NC SRV (SVA) 1 SSE. VERT! LAL ACL'ELERAT!GN (FT/Sf 0++2) () 80)
CONTA)NHfNT VFSSEL ORYllFLL. (NQOE 28 - SRV). {NQOF. 1<18 - SSF) Figure I 6-34,
It e
\
t- VALUE Kl Cl ~ a.s26 ~EO SO. QQZ ~ CA Cl lL 1. Ol 1 ~E) GS. DO% lL. CI gl SRSS 9. 652 +EO '7S. S3Z r
- l. 2~'SRSS.
~ 1.~ }SO +El BB.SOX CI iW CI AOS. SUN .'. 262 eE) "b. sa o. 00 9. SD }0. 30 . )Q.SD )..Sa )2.00 RESI'ENSE LOAD) N(: SRV (SVA) I SSE, VERT) LAL AC(:ELE RAT)ON (FT/SFL'++2) (1 ()0)
CQNTA)NNENI VFSS.".L ORYUFi L. (NQOF. 30 ." SRV) ~ -(NQOF. }I)I} " SSE) Figure 6-35
~ ~ I> I I ~ I RES f'. VALUE Ch
~n B. 2B7 +EO 50. QOX Kl G B5.0DX CL Q.. ~t CI }.QQB>>E} O'I. SO%
l.2>>SRSS
~ l.2}! >>El ~ BB,QOX nAl Cl A})S. SUN ). 324>>E}
00 9. 50 IO 00 10. 50 .'.'. QO }}.50 !2.0d }2.50 '3. QO RFSf'OHSE i QA01NU SRV (SVA) .~ SSE. VERT)CAL ACCELERAT)Qtl (FT. SEL'>>>>2) (JBO) cONTA! Wt~FWT VESSEL ORiuELL. tuaOE 33 - SRV). (NOOE }40 -- SSE) Figure 6-36
an VALUE NEI'0, B.EBS ~EQ QQX
- 9. (l83 +EO 85. QDX SI. 0QX l.2+SRSS l. I.83 +EI IQQ.QQX PJ ABS.SUN l.326 +EI n
nn
- 4. 50 8. 50 IO. QD lO, 50 I l. 00 l I. 50 l 2. 00 l2. 5D
RESPONSE
LOADINC SRV (AVA) + SSE, VERTlCAL ACCELERATlQW (FT/SEC++2I (IBQI COblTAIHHENT VESSEL DRYUELL, (NODE 28 - SRVI. (NQOE l52 - SSEI Figure 6-37
I d 0
RES I'. VALUE NEI'. 781 <<EO 5D. ODX B.B56 <<ED 85. DDX SRSS S. OBB <<ED 83. I BX 1.2<<SRSS 1.187 <<El BB. G7X ABS. SUN 1. 333 <<El C) Cl 'b. SO B. 00 S. 50 10.00 10.50 . 11. OD 11.50 12. 00 12. 50 RESf'QNSE LQADINC SRV (AVAI .~ SSE. VERT) CAL ACCELERAT 1QH (FT/SEC<<<<21 (l BD1 CQNTAltNFNT VFSSFI. DR1'UELL. (NQDE.28 - SRV). (NQDF. IQB - SSF.'I Figure 6-38
C) A I I VALUE a ~ca I Kl G-A 8. 982 <<Eo Sa.onx Kl E) Cl 1.181 <<El 85. OOX lL Cl C) SRSS 1.098 <<El 76. OOX
- l. 2<<SRSS
~ 1.318 <<El ~ S7. 5OX ASS. SUN 1 . 533 <<E 1 .oa o. ao la. an 1 l. aa 12. 00 13. ao .00 00 16. oa
RESPONSE
LQAOl NC SRV (AVAl ~ SSF.. VERT1CAL ACCELERATlQN SSF'5. (FT/SEC<<<<21 (1 8D) Figure 6-39 COWTAINHFNT VFSSFL DR(UFLi.. <NQOF. 30 SRVI. <NAOF f4'
Cl N R n Cl Cl Cl 0-RESP. VALUE
~a ~e NE}'o.anx O Q ~
l.083 <<El LQ E) l.360 <<El 8S. OaX Q.. Cl a'l SRSS 78. 83Z l.2<<SRSS }.987 <<El 99. nnx Cl P4 Cl ABS.SUN l.762 <<El n Cl
- 4. no 8. aO }2.on }u.on l6.oo }0,00 20.00 22. 00 RESf'QHSE L(}An}NC SRV(AVA) 'SE. VFRTlCAL ACCELERATlaN (FT/SEC<<<<2} (loni CONTA}NUGENT VFSSEL DBYUFLL, (NODE 33 SRV}, (NOOE }90 - SSE} Figure 6-49
IP C ~ j I
~ a ~
P
~ 1 . ~ ~,4 Q
Q IQ Q l RE Sf'. VALUE NEf'O.OOZ I fQ G-Q o 4.858 <<Ea Kl C) 6.385 <<Eo 85.OOZ Q.. Q SRSS 6.084 <<EO 83. DDZ l.2<<SRSS 7.30l <<Eo 84. )7Z Q P4 Q ASS. SUt1 8. 575 <<Eo Q n q.j. 50 5. QQ 5. 50 6.0o 6.50 7.on 7.50 8. 00 8. 50 RFsl'GABE LOAOlNC SRV (SVA) OBE. VERT l CAL ACCELERATlON (FTc'SEC 2) (l Bol CQt(TA! NHFNT VESSEL ORYLJFLL. ~ (NODE 26 - SR/), (NGOE l52 - OOE) Figure 6-4l
~ k
'E h h
Cl lD Cl 0-I- RESI'. VALUE
~ g) h) ta ~
4.577 <<EO 50. I Kl OOX'S.OOI lD 5.214 <<EO a SRSS 5.299 <<EO B7.,79 X I.2<<SRSS 6,359 <<EO 99.50X aOl Cl MS. SUN 7. 252 <<EO Cl n
- 4. 40 4. 00 5. 20 5.60 6 OD 6 40 6. BD 7.20 BESPCINSE LQADINC SRV (SVAl + QDE. VERTICAL ACCELERATIQH (FT/SEC<<<<2) (IBOI CQNTAIN~FNT VESSEL ORYuELL. {NQDE 2B - SRVl. tNQDE I4B =-'BE! Figure 6-42
(-, ~ ~ aCV an n Cl a 0-I- RESI'. VALUE
-ja Ng NEI'Q.
I Kl ~ 6.485 <<EO DDZ CA El 6.441 <<EO as.onZ 0 a al SRSS 61.83Z l.2<<SRSS 1.087 <<ED a ASS.SUFI 0.303 <<EO n
- s. 00 S. Sn 6.00 6.50 7.00 l. 60 0. OD 8. 50
RESPONSE
LQAOINC SRV (SVAI ~ OOE; VERTICAL ACCELERATION (FTc'SEC<<<<23 (lani caNTAINnENT vEssEL oR't'uELL. (NaoE 30 - sRvl. (NooE l44 - aBE) Fiqure 6-43
g I
~ ~ ;I CI CQ n
0-RESP. VALUE ~ g) Kl ~ 5.912 <<EO SO.QOZ KL C) Q> 6.980 <<EO 8S.ODZ Q.. n+I Cl SRSS 6.396 <<EO 82. SOZ l . 2<<SRSS 7. 6l 5 <<EO S9. SOZ 04 n ABS.SU}} Gi S}'l <<EO an 4
'I( 5. 50 6.on 6.sn - v.no l. 50 a. OO, G. 50 RESf'QHSE BROAD} NC SRV (SVA) + OOE. VERT 1 CAL ACCELERAT1QN (FT/SFC<<<<2) (l 80}
CONTAINNENT VFSSE}. ORYUELL, (NODE 33 - SRV}. (NQQF. }(}O (}(}E} Figure 6-44
n CI n n CO RESf'. VALUE
-jag) ~
Ul ~. ~ g Ci
~
5.585 eEO SO. QDX Kl E) 6.5lO ~EQ 85, QOX G.. CI SASS 6.9tl6 eEO 82.00X l.2+SRSS 'l.735 +EO 9'l, SQX n P4 n AQS. SUfl 9.! l <I +EO CI n
.20 Q. 00 u. 80 5. GD .'I 7.M 8. 00 8. 60 RESI'ENSE 'ADINC SRV (AVA) ~ UOE. VERT! CAL ACCFLERATlQN (FT/SECe <<2) (IOO)
CnNTAINNFNT VFSSFL DRYuFLL. (NMf: 26 - SRVl. ~Hnol; I%2 - nBFl Figure 6-45
Cl an nCl Cl I- RESf'. VALUE I I I g) ~a 5.9Il6 <<ED 5D. OOZ
~
E) 85, OOX CL. Cl SRSS GG. Glib l.2<<SRSS
~ ~ 'l. lQG <<EO 96. ODX Cl P4 ASS. SUN 9. l 3l <<EO nn .20 V. OO Q. 00 5. GD 6. 90 G. 00 G. 00 S. 60 RESVQHSf.
LOAD)NC SRV (Avnl + OOE. VERT! CAL ACCELERAT! W (FT/SEC<<<<21 (lGDl ('QN'I'A l N~fNT VF5SEL flR Yl IFLL, (NQDF 28 .. SRV l (NOOSE l QG QBF } Figure 6-46
~ ~
aPl 0-1- RESP. VALUE NEP a Cra 7.329 <<ED SO. OOZ lQ E)
- 9. l6l <<EO 85. OOZ O..
a a SRSS 7.89S <<ED 67.SOZ l.2<<SRSS 9.tl79 <<EO 90. 02Z aPJ a ABS.SUN l. )02 <<E}
- 5. GO 6. VO 7. 20 G. QD 9. GD 10. '90 ! l. 20 RESt'CIHSE LOADlNC SRV (AVA) ~ OBE. VERT l CAL ACCELERATION (FT/SE(:<<<<2) (l ODl CWTA)NnFNT VESSEL ORYUFLI.. (NQOF. 3O - SRV). 'Nf)OF. )4)) - MF) Figure 6-47
RES)'. VALUE
- 9. }97 <<EO SO.OOZ
).OB9 vE) BS. OOZ SRSS 9.700 vEO 67.9SZ l, 2vSRSS ).!GQ <<E) 93,SOZ PJ n EBS.Sue ).>30 vEl n'
- 4. 00 7. QO B. 00 )3. 00 ),00 RESf'ONSET
'DD)NC SRV (A'(A} OBF.. VERT)CAL ACLQ,ERflT)QN (FT/'SECvv2) () BO)
COWTA!VALENT VESSEL DRYUELL. !NODE 33 - SRV). (NQDF. )QO - QBE) Figure 6-48
Cl A NSP. VALUE ~aIg g4 ~
),253 vf-)
lA IQ QA l.2stl vE-.'n.oox vE-l aS.onX QI A l . 2Sg 99, SOX. l.2vSRSS .'. Sn<l vE-l l nn. nnx AQS.SUN l.26l A vE-.'igure
} d~l, GD l 2<l. 00 .'25. 00 l 25. 2D l25, 1/0 l 5. GD l25, 00 l2G. 00 126, 2D RESPONSE +10 LOfifllNC SAV (SVA) + SSE NQR! ZGNTAL Olsf'LAL'EBEN'l'7) gONTAlNtlEQT VESSEL OBVUKLL< (NnOE 26 " SBV) i lNaOE l52 5SEl 7-1
A
-'l' Cl A
\
'.IESf',, ItALOg ":
g MQ
.o. N gp ~ }.368 of~) . SQ. DQg l.368 <<f"l 8S. DOX L
a Sf(SS 1.360 <<E-} lOQ.OOa* 1,2vSl(SS l. St}i <<E-l !QO.DQg A N OOS. Sun !.381 ~f-i n (3G,OO 136.nn l36.(10 l 6.8a 13'l.20 . lP'l.6n l3a.ao ! an.ha . 138.oa Bt.:5 f'QNSC + l0 LOBO}H(i SRY (SABA} t SSE. IIOR1'EDENTAL 41SPLACENENT (FT} COHTA!NHEHT VESSEL OR'NELL, (NOOE 28 - SgV), (HOOE !<l8 -. SSE} Figure 7-2
A PJ
~ j ~ ~ ~ I A
CO I ~ A ~ ~ t-. : RfSP, P4 ~ VAt.N NgP
)
l, e l,gba wf'.-l Sa. 004 Cl Kl i.%90 <<f-I BS.OQX 0 Gl S RSS l.Sga <<f"l aS,aax
- l. 2<<SRSS l. fISB <<f-.) >00.DOX A
A AaS.Sun f.SSB <<f-I a C)
>s2,oa ls3.2a isa.oa Is~i.aa l q.oa ling.oo, l 5,2a lss.6o isa.aa ft C S f'QHSF; + }0 INC SR V <SVA> t SSf. IIBRI 26NTAL 4) SPLACENFNT 'OAD (fT I CONTAINMENT VfSsf L ORYUF LL, (Ngaf 30 SRV) p (NODf. )99 - SSf ) Figure 7-3
A n
~g Q ~ . Bggf',. YALVE ~
NEP
}.087 eE l SQ. QOZ
~n Kl 63
}. 087 yE<<} OS.ODZ 4
A SRSS l. 087 ea.aa~ ra
},2vS55S .',276 vf-l too. OQZ ADS.SUtl }.086 vE-l A
n
- a. a .e a...e e .
RESPQNSL ea','pee.
+}0.
a e e .a .ea aa. LOAO}NC SRV tSVA) t SSF. tlOR}LANfAL DES}'LACEHFQ'fT) CONTAlNtfEJT VESSEL PR'(UELL (NOAE 43;- S}tV}~ tgODF- }9Q SSF) Figure 7-4
t 1
t4 0C O CI O O O Cl O o O O Cl Clt = O O ill Cl taL hg Cl lA Ill P2 Il2 M'P M Cl
~
Cl'
~
4A CA Vl Ul LA 'V C2 IPr CC Pl UT Cl taL C2 ~ tA ~ V7 CP aG CP Q CL CQ
. CV C CLC m tel I O Ill~ C C Z'l CCl CCS N O Cl W
GZ 'G
II I 1 A CQ I CQ MPg
)-- ~A $ 0, ODZ fA E) C l,36B <<E 1 os. ooz A SASS 1. 36B vE-1 99.50$
1 1.2vSASS 1,6Ill vE-1 1 on. ooz ABS. Stjtl l. 36B vE-1 A n l 3676. g0 13G76. 00 13677. 20 LanOlt>I; SRVIOVOI + SSE, 1 G77. 60 AESI'ENSE 'l0 l 3618. 00 tknRlRQHTAL nlSt'LACEtlENT l)678. I10
. tFTl 1 678, 00 1 3678. 20 l 3678. 60 CONTAlNHENT vESSEL AR'fLIELL, (NBOE 2B SAY) (tlBOE l(B .- SSEl Figure 7-g
0 C
VALUE NE('0. I R Ul fQ ~ l.AO <<E-l Qng cr. n Kl E) lY l,spa +E-l 85. QQX L. n l.s(ln vf-l 96.004
. 2<<SASS l. 8tl8 <<E lan. QQX S. SW l s'il <<K-l ~
n lsasv,aa lsaoo.ao l asa.aa l uaa.aa l vol.ao lp(los.oo l (lm.oo l (lo(l.oo l los.oo f 0 sI'QN5E + lO" LQADlNC SRV (AYA) t SSE NORHONTAL PJSI'LACENENT (FT) CQNTA1NHENT VESSEL ORYUELL (NODE 30 " SRVl ~ )HORDE lt)9 -" SSEl Figure 7-7
.I r ~ ~ t I
I
~ ', ~ ~ ~ l= ' ~ ' ~ r< ~ ~ ~
DIES
~ ~ I.
A
~ ~
f'. VOL}lg I I I I My
~Q l.a87 vr-i . Sn,onx lA E) l,B91 yf'l . BS-OOZ fL SRSS 92'.004'nn.nng ).2e5$ 55 2.$ 16 if l 8)5.5UI} I, 097 ef-I n
l8866,50 }8968.00 )0868.50 }097D,OD }8870.50 lPS7}.00 I 87}.SD }8872.00 }1872,50 RESf'6NGE +l0 LUADINC SRV (flVA) + SSE ttBRI75NTflL P)Sf'LAPEIIEH'f (GATI COHTAI ANENT VESSEL DRYUELL, tNPOE 33 SRV I, iNOPE }90 QSK I pigure 7-8
I ~
~ ~ ' ~, ~
P r I ~ I A IP ~ ~
- -'- ' H
~
I
.f.
I ~ flEOf'e; ". VgtHK. ~
~ ~~% Nf'.i>g .- cr.< ~g-Z SO.DOZ ,'A ~ ~
lY 0
~: 6I BA +E"2 BS. OOZ 'J SftSS . 6.Big yg-2 99.50%
A I
'.2+SBS) '?,5'?7 yf-2 lOO.OOZ C)
AQS.SUN . 6.380 +E-2
'ta,qO 02.aa SZ.OO 6>.OP S .24 Ga,ea 6 .SO Sa. Oa s>,oo avsl nisi ~>o SAY (SYAl t ODK. fl081'LOHTAL 41Sf'LAf:EtlgNT '-OADlNC (fT)
I:WTA)NWEHT VESSEL DttYPELL, NUDE 26 ' SAVING (ttQOE IS2 . OAK)
~ PigQX'B 7-9
A
~ ~ ~ ~ r'r ~ ~ ~, ~ ~
I- HASP, .VAL,Ug
~ I
~
~ CA G. Q ~
6,gled <<g-2 Sn. Onx E) .. 0.8)2 <<K~2 as,nng 0 gl cj SASS .6,9!3 <<f-2 89. Snz l.gtSASS 8.2SS <<E 2 - inn. nnX C) N Q ASS.SUN 7. 099 <<E~2 ta,so Ga,on ss.oo 6s..zo . Gs.gg 6s.so 68.oo 7D.oo 70.20 REGS'GHEE . +10.'. LOAOlNG SRV (SVA) t 60E. INBl20HIAL Pl St'LACKNEHT (I l') COtlTAltJHEQT VESSEL WYLJELL (t/OPE 2Q -. SAY) (NODE lga IQE) Figure 7-10
n
'I ~ ~ =I ~ ~ ~ 'I ~
r ~ I
~ ~
C) I
,S ~ ~ 'I ,
~, ~ I-. Vflt,UE I m ~
'.'AESPe'QSS N ~
7,60a rE>>,2 so.oDZ
, El
- 7. {iog tg<<2 ~
BS.ODZ L.
' 7;g)O rE-2 .'O.SQZ .),2rSQSS 8. }32 rE 2 lOO. ODZ aSS.Sun . 7,gaa re-Z n
n 16.00 76.j?0 76.90 76.60 76,00 77.00 77.20 . 77,90 . 77,60 RESf'ENSE + lO SBV LSVA} t DOE l)MlZOHTAL DlSPlflCNENT 'OAD}NC tFT) . CPNTA}NNENT VESSEL WYUELLg (NODE 3Q - SgV)r (HORDE ))ted - OBE} FigugO 3-ll
t C
o ~ g) 8 . 33'1 vg-.2 so. oog I IQ 8.331 vE'2 ns. nox lL. A S ASS 9,3N vE-2 99. 5A'4 1.2~S11SS..
~ l.isa ~ ~E-1 l no. onx aPJ A AaS.qUn 8.3Sl ~E-2 'baa. no +)0"sp.
saa. ~in saa. nn s a. zo saa. sn oo san. Oo san, nn sas. pn RES['QNsE LOROlNC SBV(SVA} + QPE< H08120NTAL PtSPLACgNNT lt'T! Cago>H~KHT VESSEL DbruELL, tuaAK 33 - SAVi. NnnE. lan -'8El Figure 7-12
~ ~
A . I- RKSl'e: .VALUE "
.t tt ~ g) 6, Will NEf's.oox ~g-.g;" Sa.onX lA ~
I Kl 6.)ill ~E-2 fL t SRSS 6,3lg vE 2 . 09.sna
).gySR55 1,676 vE-2 lno. onx A
AaS.Sun 6.320 ~E-2 A A t3DB, QD '3QQ. 63lu. DD 63l s. qo 63l 6, DD Do 63 ln, Dn 63l l . Dq CC'SVnNsr '~a 6p l q, 63i 2. Do Do L<PDl NC SRV IAVA) t GOER ll>Rl Z<N'/ AL Ot SVLACENENT ~
'(f'fl NNTAlHgNT VESSEL ORVUELL, (NODE 26 - SRVl ~ (NOOE l52 08El Figure 7-13
A A A 4D A ~ UQLljf .
'. NE f' ~ II . 'I ~
M~
.6.Sly vg-2 SO. 001 g A Kl E) lY 6. 8)2 vf 2 OS. OOX lL I A 55SS 6.8l2 vf-2 lOO, . 1.2+SASS ~ 6.2SS ~E-2 'OD.OOX ~ ~
lpga A 00'SS,SNQ A 6.SlS vf-2
'taIz~,iIn saIsi.so saiaI.so saIn.oo saIpz.an span.qo saIaa;sn salzg,no saIzn.on AFSI'ENSE '+ l 0 LOAP1NC QAV tAVQ) ~ DOE NOAl26HTAP f)JSP)flCENHT )FT)
CQNTAl NUGENT QESSf L DB'CPE LLe (NOOf 28 . SBU) s (HAM OBf ) Figure 7-14
0 A A 4 r1 A CI VALISE
~ IQ 4l lQ ~ .g,sas ~F-.R sa. Aas I ~ ~A Kl E) g.apa ~E-z - os.anx A
5815 . '$,608 vf-2 99,50%
<,z~sgss a.isa ~c-z . taa.oaz A AQS,SON 'l.sees +f"2 A
A 160. 20 . 760. 00 7M.60 700. 80 '}0l. 00 1P}. 20 6}. 00 '6}. 60 70},00 Rf sPQNGE +10 LQAD1HC 8RV lAVA) + 00f. II08328NTAt. P)sPLAPPHPQT . !Ff) coNror w~rr>r- vrsset aAvurrt, bwana aa - sAV>, ~pone gq -.ooct
> Figure 7-15 0
AKSt', VALOR 8.>a> iE-.2 - SO.OOX 8,331 <<E~2 OS.OOX SASS 8.3$ 'f <<E~2 99.50%
}.2<<SWISS }.)20 <<E-1 lan.OOX AQS.SUN 8.390 <<E-2
'B>>l. >> . BI3 .3 I I . I'l.l IIB: 3333.3 333II. 3 333 BE)f'QNsf +10 L4001HC SRV (AVA). t 4OE. H4R}Z4HTAL PtSf'LANHfHT (AT) C4NTAlHtlENT V)SSEL ORYLJELLi N4DE 33 " SR))i (N40E }gal 4PEl Figure 7-16
~ ~ ~ ~ A ~ pl ~ I ~ \ ~
1
~ ~ ~
Q ~ ~ .i .E A gg8P,', 'VALOg
-',.I "'<a ~ ~
u g )Rn vg"7 8n,anX E) 2.120 yg-2 ys.anX CL.
'1 2 . 8558 .
J;)Zl yEr2 9$ ,5DX
. l,l+SQ88 2,5/8 vg-2 - lDD.DDX A
R ABS.SUN 2. lG3 +E"2 C3 A 1<<.2 I I, 2.2 2I2, REs f'QNGC I '2.
+ l0 I 211.2 2II.M 2.'1.11 LGADlNC SRV tSVA) + SSF. VKRT1CAL P)Sf'LACEltENT tFT)
CONTAlgHENT VESSEL ORYUELLr 'flODE 26 - SRV) ~ (NAPE l SQ ~ 88E) Figure 7-17
~
A Pl I
~ ~
r r ~
~ ~ 6 ~ ~
l- ~
~'l a
l ri gl
.- ~ ~ ~ ~
VALUP-vE.-.2 qD.DDX E) Z.ill vK
~
qr 7 SS.DDZ ll 5885 BQ.SDQ I
).2v85S) R,869 wf<<2 ]DD.DDg A
Pl A 8086800 R.)64. +K"0 2)2.00 213 6)l 2)V.VO 2l5.20 2lB.OD 2)6,60 2)7,60 2)0.$ 0 2)6.2D 5 f: SPONGE + l 0" LDADlHC 8NV,. 8YO) t 88$ . VEATlCAL 015/'LACKHNT (FT) LBNTA)RNONDE Vf56fL ORYUELL. (NOOK 26 6))V) ~ INDQK )IlB " 666) Fipple 7-3.8
n H
~ ~
n n 0-
.I-6-6 ~ 'VALUE '. ~n I'l Wg g) lD. ~
2.)S'7 vE-2 Sa.aag lY 2.lS7 vE-2 as.anx O.. Ql n SASS 2.)sa NE-2 87.001 j.2ySRSS 2.688 +E>>2 )aa.aag n Pl n ABs, sUQ g. 206 vE 2 nn ~ 216. IIG 216. 20 216. 00 2( 6. IIO 212, 60 6, 60 216. 20
+}0g 22D. 00 22D.'110 REsf'6$ 5E LQAD 1 NC SRV (SVA) g SSEi VERT t COL P 1 SPL flCEHENT tFT )
CONTAt NAP'NT" VESSEL DR'fUELLr NQOE 30 SRU) r (HOOE I 49 ~ SSE) ' Figure 7-19
e lt E 44l e I' 1 1
5 0
~ I I ~
Ci NSI', VALUE',
~a l 'ca
"., C70 j
~ ~Q I l'l0 vP-2 so.aax CA E) 8S.aaz lY Re )70 VK"E A.. I A SftSS - g.~ l'i8 vE-2 ~
- 88. 08i l . 2vSBSS 2. 6l S vf-2 lan.aoX nA 2 IQ RQS.SUN 2.229 vf."2 n
2!7.6D 2)D,I)0 210.20 LOAO)NC 65Y lSVA) + SSI; 2 D.DD
RESPONSE
220.00 YNTtCflL OlSf'LACENFHT 2)i.60
+ l 0" tf'f) 22'0. >l0 f23. 224. 00 CatJTA1HHQNT VFSSf L DAYUELL< (HQDE 33 'BV} o ,'. Eigure~WO=. ~l& I~%'hAJACtOl%llVC2'f
V V ~ V V e
~ V'
4 n Al Q cj l ~ CI t BKS f', Vgl05 NKP I A r
'. & 2.)2P yE~2 sn,oax I ~ .,~n
- ... lg 2, l 33 yE-2 . ss.onx 4-
+I ?. l2J vf-2 llo, ooX J. 2+SPSS 2. GAS iE<<2 ! ao.oox ASS. SUJET 2.296 vE-2 !.II ' !.I !I. I I!. "Pi/5 f'BNSE . 'I.III- II.II +1Q"- . 22. 60 LOADlNg SPV (AVA) p SSEi VENT! CAL P)SPLACEQEfl7 ll'Tl CONTAlNHENT VESSEL Pf!Y1IELL (NODE 76 " SftV) 4NOOg l52 " QSgl Figurp 7-23, I
I I l
", ~ ~
I 2 I ~ '
~ ~ t ~ ~ ~ ~ ~ 2 2 Cl S ',
2 C) ~ ~ f I . f(E5I'," foal)f)E .: I'EP
~
s Ig O N 2..l 0 l'- wE"2 SD.DPI I Al E) 1
- 2. lq2 ~g-2 : as,ong 0
gl sss 2, )Q vg~2 : 86. SDZ
).2@5/55 2.573 ~E-2 )DD.DDZ A
P4 R ASS,SU/ 2;268 +E-2
- 22. 22.22 22.2 22 'I. 22, GO 2 ,QO RESf'QNSl= l0 (flVfl) I SSE. VERT'-(:AL 015PLflCf'.PENT (f'7)
'OAD)H('BV Cat(TAJ t(NE N I VfSSE L OP'iUEL f.r (NQDE 20 SPigl r (NOf)t'- f jg . SSE) Figure 7-22
'b e 0
i v'I
' I ~ ~ ~ ~ rl ~ r~ "'.1, I
I ~
~ ~ 4~ 'C ~,
t-.
..//SAN, .. VAf.0$ . " NP ~ l W' ~ICq ~,
1 SQ.OD4 Cg E) Z.)67 +E-2 8S,QDX a.. a 2.lsl qE-2 . os.osX'ftSS 1.2yS8$ $ 2,519 rE'2 lQD,QQX Ch ~ ~ P4 n AQS..StJN 2.29D eE-2
~ ~ 2!. 'i!. 2K iii 2.2II ! ."Ii !!.6!l 22,80 ' .00 RI: 5 t'6NSE + l P.
SflV NYA) + SSE. VEflT.'CAL Pllf'LALEHENT 'OflQ/H4 (t'T) CQHTAlHHENT VESSf.'L PR'iUELL. (WQE 30 - SPV) lNQQE l99 - SSEl Figure 7-23 .
A ~ ~ 0 ~
~ A q ~ t ~ ~ ~ ~ ) ~
C A Q
~
t- 0
~ ~ 'VALIJE ~
I ~
~ \ .g
~ gp '. CQ e
- 2. l70 eE<<2 So,oox 5
E) 2, lQ) eg 2. 85.DDZ 0 A Sgss 2. lB3 vE 2 OD.SDZ
- l. 2vs ftSS 2. 619 ~E-2 ron.onx A ABS. SUN 2,320 vE<<2 n
'2!.GO ,
2!.00 2 ,00 22.20 . 22,40 22.60 22.00 23.00 23.20 AEsl'QNsC SRV (flVA) o SSE. VERTlCAL 0lsf'LACEHNT
+10'Olln!NC (AT)
CONTAleENT VESSEL OR'I'uELL. tNDOE 33 - SRV). tNDDE lQO - SS[3 Fj gQLG 7 24
A Q A A I ~
'KSP' ~ VALUE' ~
Q N ~ 8.)QS +E'3 sn,ong I
~R r
K) 8.3t1S vK-.3 BS.ooz A. S/SS 8.35) ~E-3 an.nog
~
1.2vSASS 1. 123 ~E-2 1nn,ooX ABS.SU11 8.'f68 yE 3 53.00 83r20 93.<lo S3.GO 93,B0 9 .,OO 9 .20 9 .QQ 9,60 REGPQNs) w 1 0 LOADlNC SAV (SVA) + GABE, VEgTJCOL fj1SI'LACE/EN'1 (fl)" CQNTA1NHENT VESSEL ORYUELL, (NQDE 2B SBV), (HOOE )62 >> OBE1 Figure 7-2S.
A Q
~ ~ ~
t-.
~ ~ I BEGS. YAlgg ~Q ~
I
~ ~ ~ 4 ~ ~ I ~ ~a ~
Q.966 vE<<3 So.paX I E3 " Q,067 vE"3 6S.OOX 0 Q
+ sns ).ZvSRSS S.q7q ~E-a ).)37 vE-2 oa.sox )on.onX A
A Q BPS,qt)g a.669 ~E-a A C3 5 ~.sa s .sa s,zn s .sa ss.aa y.ua ss,an s .za sv.sa
~
RESI'QNQE e l0 l,QAO}NC SRV tSVA) + OBE, VERT}CAL O)5)'LACENEHT lFT) CQNTA}NUGENT .VESSEL ORYUELL (NOOE 26 "'RV) ~ tNOOE )0t) >> OOE)' Pl.gure 7-26.
~ ~ ~
I~
~ ~
A ~ ~
~ H ~ ~
Q N
~
ap I
~. 'I ~
ggSP, VALN 'l.
'O Kl 9,658 ~K'3 SO.OOZ
'I Kl Cl S. 580 vE-3 BG. OOX G.. gl
.A SASS Q.S71 +E-3 1,2+NSS 1,198 vE-2 '00;OOZ ~ ~
ABQ,SON 1.4W vE-?
'b>,ca ss.sa ss.aa s .aa s .aa sp,oo ss.so 1ng.nn lnn, on .
RESf'ENSE ..+10 LonO1NC SgV (SVA) ~ OBE, VERTJCAL Also'LACPNN FTl
.COQTPlNHENT'ESSEL OR'(UELL. (NODE 30 -.
SBV), fNQQE 1I1$ ~ OBE) Figure 7-27
'f y e
'f
Q PV
~ ~ ~ ~
Ch C} 0-M
<a MQ ~ ~
VALUE'(Ef'.666.vE-3 eI -.4 o.: ~ SO.QQX
~ ~Q Q
r 9. 669 wE 3 GS,ODZ Q.. A SASS 9.6PJ vE"3 ,: 88.0%X 3.RES)SS l,)62 +E 2 l an. OQg RBS.S05 }.Ol'l vE-2 hs.2n 96.pn 96.oa Av.60 sa.00 sp,20 ion.oo l00.00 l0).60
RESPONSE
SBV (SYR) t 60E VFATlCRI P)Sf'LRCEHENT
+10'ORDING (FT)
CQNfRltltfEt/7 VESSEL ORYUELLi )NODE 33 - SAV)r (NODE lan ~ OBE) Figure 7-28
J J
I ~
~ ~ \
L
~ t ~ ~ ~ ~
g 0 I I
,~ ~ ~~ - ~ ~ ~ Ã ~
j ~
~ ~ L a 1 M 'KOPi . It ALOE:...
NE)';3(2 O Q e qg 3 Sn.oog I
~Q E)
- 9. 553 eE>>3 85. Ogi
+I sgsg 8.'t)2Q vE>>3 '2.23$
l,2+ssss }. l3l ~E 2 )on.oax Q CV Q A))s,suN l,nsa ~E-2 a n
.QQ a.ca 8.GD a.an )0.00 l0. N }0, $ 0 }0,60 RE Sf'ENSE +10.'EAP)HC SBV tAVA) .~ OOE. VEBTlCA}. P)SPLACENHT (FT) ~o)FATA)wEKT vEssEL nsYUEL):, )Hant. 26 - ssY). NPnE l52 -. APE) 'igure 7-29
~ ' A CI VALUP, Kl ~ 8,$ 66 vE~3 .oo I an 50,QDX
- . E) 8.56'E-3 ., 65.ODg 0
+I ggSS 9.552 vE-4 85.DQX ).2e5$ 55 ).)t)6 +E'2 PDD,DDX AaS.Sfjff ).OS5 ~E-g n
n
- 4. g,i>o 8,6o s.ao . )o.on
+}0"q.2a 2D . )o.on )o.oo ko.10 RESI'QNSf LGAD)flG SftV(AVAl t DOE. VNT)COL P)gf'I.ACEVfffT (f'T)
CWTA)H<EHT.VESSf:L flftYUELL, (NOPE 20 -. SgV).. (NAPE )(8 - OBE)
'igure 7-30
y k \'
~ .\. ~ ~ , ~ ~ y ~ ~
p ~ y Q Cl y . Q
, -t -'. REgf', Vgl.Ug..." HEf'. . ~-
l~ I'l l I t S.SQ) eE~Q 60. OOX CI.
~a Q.73). +E-3 45,4DX ~ ~ Q sftsS .. s,6sl ~E-a 02. 504 ),2vsftSS ).1M vE>>2 1OO.ODX Q
CV HBS.SUN J,OBQ vE"7 Q nQ ry
. i>o: S,GA a. Oo lo. Oo 10.2o 1a, qo lo,60 1O.OO 11.00 gEs f'QNsE +10" LOAO1NC SBV tAVA) g OBEr VERT lCAL PlSf'LACEtlEHT HAFT)
CONTAlHHFffT VESSEL PAVUELL (NOOK 30 SAV). RHODE ling OPEl Figure 7-3l
1t 4Q
'SP. VALUE .~a ~ ~ ~
g
~CO o
Q,668 vK>>3 so.anx ca< I'.. 8.78S vf-0 81>> POD SASS 8.77l vE-3 . aa,SOX
).Rv$ 5SS t.t70 ~E-2 lan. OOX CI P4 A AOS.SIJO t.tns ~E-2 n ~.aa a,a9 Io.oa ia.an io.an ip.aa io,on l t. DG )t.20 Rear nose . ~10 I,OAOtNG SRV (AVA) 0 ObE VERTlCAL OlSf'LACENEllT lf'T)
CO(TAlNHE(T VESSEL PRYVELL.. (NODE 33 " SRV) NODf. t00 " Figure 7-32. OBE)
V 4 0
.p I~ ~ ~ ~
A 'L I" 4 1
"~
l-, I I ci lA 'c~ 2, }Rl .vg-0 So.oox E)
~
2.}Z} vE<<2 . qs,nox A-n SRSS 2. }2} vf-2 S2.5OZ
~ ' ),2wssss 2,sos +E-2 lao.oax 885.SUE 2. }53 +E"2 H!0.60 21',,20 2.'1.60 2!2.00 2.'2.(0 2)2,80 213,20 213.80 21!1.00 gEsI oHsg . +ia LOAD } AC SRV (SVA } 0 SSEe VERT J CAL P 1 SPLACQ j}EflT (Fj }
Car<TA}NANT VEsSEL OR'QUELL. tNAPE 2P - SAVj. tNGOE }M - SSE} t}8O} Figure 7-33
I l~ h) I 2.)44 +E-2 oS.OOX SRgs 2.)98 vE>>2 BD.SOX l.gvSRQS 2,573 +E-2 ) oo. QDZ a P4 a BBS.SUtl 2.)86 vE-2 a' 212. OO .
- 2) 3. GD 2! 0. <)0 215. 20 2) 6.00 216. 00 217. 60 218. VO 219.20 RESPONSE +10 Lonn)Nc sRV (svn) ~ ssE, YERT)cAL P)SI'LAcENVNT (l-T)
CWTA)HNENT VESSEL PRyugLL. NOAE 2Q - SRV). (NODE )QO - SSE) ()OO) F'igure- 7-34
il l' S A
% j. ~
~ ~
CI CI
~ ~
CI ~ ~ t-.. AESPe VALUE I I ~ <a I ICO
~
I 4l fA ~
?, 16) eE" 2 SD, 00$
,I, Kl CQ lY 2.)g2 eE-2 BS,ODX 0 Jl CI SRSS 2.)62 vE". ? B7.SDX
'I l.2+SRSS 2,6SI) +E'2 ) DD,ODZ CI A))S. SU)) 2. 2) 0 +E-2 Cl n
2)5,20 . 2)G.OD ?)G.GD 2)7.6D 2}8.<JO 2)8.2n Z2O.OD 2 Q.aO 22),GO RPSI'ONSE +)0 LOAf))NC SRV(SVA) ~ SSE, VERT)COL Plsl LACENNT (FT) cor)Tfl)rNEriT VEssfL DRt'uELL. INVADE 30 -. SRV). {NaDE )I)9 SSE) l)QQ) Pigure 7-35
4
'h g1 I A I e ~y
~, ~ h '.n ~ ~ '4 ~ ' 'I, ~
n RESP. VALUE . M gg 4 2i)79 vf-2 SD. OOX I E)
- 2. )'?9 wf-2 OS.OOZ CL.-
n+I SRSQ 85,$ 2X
),2vgRSS 2,6)S yf-2 )QO.DDX fl))S. SU/ 2.228 +f-2 n
II. II.I I II.2 II . REsl'ANGE II.
+10 PI..2 2.'I 22 3.20 2 4,0D t
CQNTfl) NNEQT 'f LEAP)NC SRV(SVA) f SSE. VERT)CA), P)5f'LACEHENT .. (fT) SS L PRYUE LL. tNOOE 33 - SRV) (NOAE l )O - SSE) . f l 80) . Pigure '?-36
1 1
A p
~
ltKSf'. VALUg.
~
- 2. )g) vg-2 SQ, QOZ
- 2. l 3) ~E-2
~ 85. ODZ SRSS g. l 2o 2l.ao 2l.oa 22,oa 22,2a 22.qa 22,6a +10 SRV(AVA) + SSEr VERTICAL 01Sf'LACEHENT 'OPglNC (FT),
CDQTAl HHEt)T VESSEL QRVUELP Q>AE 26 t SRV) i NDOE l52 ~ SSE j (J Aol Pigyrc 7"37-
I E
'C y 1 4 " ~ (
R t
~ 'VALLEY f ',.
e '2, l'l0 vg"2 SO.OQx cn Cr. ? I g)
~ E) lY P, l.gg yE 2:- Bs.ODx 0-Ql A SRNS 2, l )B.yE-2 ~ 06. 50x . ),2+SRSS ~ 2.678 +E<<2 ~ IDD. OnX AQS. SUll 2. 273 +E-2 zl. 2a 2l.ua 2l. BD 2l.aa q .nn 2, .2a 22, tlo 2 .60 22, 00 Rg5f'6$ 5$ . +10"'QADiNG SRV tAVA) + SSE. VNTlCAL DlSI'LACE5ENT (FT)
CBNTAlNHENT 'VFSSEL DRiUELL. fNQDF 28 " SRY) <<MEl (f891. Figure- 7-3Q SHADE ling
C. g
~ ~
I n
~,
Q
~
Q) Q
. I- AEOt'<
o e ~ ~ ! I gj 2, l 6$ vE 2 40. ODZ
~n 0
E3 lL 2, 162 yE.2 'S,OOZ A-D N n 2.166 w'E"2 07.ODZ
).2egRSS 2.599 <<E-2 1OO.OOZ Q
N n ABS.SU1l 2.29S vE-2 dl.'ll0 2!,60 21 ~ GD 2 ~ 00 22 20 2 ~ $0 22 60 2 .GD 2a. OO BEgf'ENSE + l0 SRV(AVAl t SSE. VERTlCAL PlSf'LACEHEHT 'QAOlt(C (fT) CONTAlHVfHT VESSEL PRYUELL. (NQDE 30 - SRV1, ignOE ltlg - SSE) l l 801 Figure 7-39
P ~ * ~ l ~ t
~~ << ~ ~ 4 'I. ~ I ~
I r ~ h
~ ~
r . A.
~, <. g ~
g I r
. < RKSI'r 'VALUE I 5Pp )'lB yg-2 .So. Oox Kl fY Z.)SS +g-2 'S,DOX A-,
C)
- 2. JB3 +E'2 BO.SDX
).2+SRSS 2.629 eE~2 !ao.oox C)
~ ~ P4 QBS,SU/ 2.32D vE"2 Cl n 2.<ll <. II <. 2 RE5 f'QHs f + l SRV tAVA) ~ SSE. VERT! COL Q! Sf'LACE Ht.:NT o.'nnalNG tf T) CBNTA!WENT VESSEL DRYUELL. tHBDF. 33 ~ SRV), tgBAE lQQ SSF) t)AO) pigure 7-4o
1 ~ l '
C) CV s
~ $ ~
I
~ ~ ~ ~
5A,DDZ 05.00Z Q. 355 vg-4 Q).5DZ
).2vggSS ).!23 l ~E-2 . )DD.DDZ A
N A Af)5. SON 8,'f70 +F."3 'b2. tie sz.aa ss.sn ss.aa s .an',sa s .sa s,sa s .sa RESf'PNSL +/0 Lt1ADlWD SftV iSVn) ~ aOE. VELDT)CAL OlSPLACWHENT. q: I) CQtlTfl)NHEJT VESSEL DR'iUELLi ttf00$ g6 - SRl/) ~ (HOPE l52 - OPE) l)OA) Figure 7-41
A
~ I ~ ~
R W QI C} I ~
'KSf'-. -
VA),of
- o. CA ~
8.$ 7) yE-3 So.aox I
- s. 972 +E 3, Bs. Ooz Q..
S ftSS S.)7Q +E-3 aa. Sox
).2eSBSS ).!30 ~E-2 lan.anX ABS.SUN 9.889 +E-3 'bi.an s .sa s .on s .so ss. an sp.so s .oa s .so ao,aO RESPONSE +lO LOAO)r)C SRV (SVA) > 09K VEBT JCf)L Q)SfILACEHEHT . (FT) cwfqlwEHT vfssfl pf,'I'uELL, 20 - Figure 7~42 (HBOE slav). (Hang )NB aBE) flan)
4 I i e > ~
'4 ~ ~
A N
.' A ~, . A A ~ y I- '
I ~ VRLUP NEO
~
(>> j g h Hg Kl I ~
~A S.565 yg'-0 . 5O,DDX Kl ~ >
K3 9,568 yg>>g 85 ~ DDZ 0
+I '6. 50X ~
A S.g'l'l vE-3
).2o5115$ 1,!QQ +E~2 1DD.DDX n
A A ABS,SUN ).DD5 ~E-2 A A al.sa ss.zo ss.aa ss.ao s> ao ,sp.sn ss.so ioo.ao 'nn.an RESf'ONSE +lO LOAD)HG SRV lSVO) t OBE. VERT) COL P15PLACEHENT (FT} CONTA1HNENT VESSEL DPYUELL tNODE 3D ' SgVl (NODE $ 94 00E) f18Dl Fggure 7-43
* ~ IJ I \' .= A
(g
~ ~ ~ ~ ~ ~ ~
g ~ ~p
~ ~
lg A A i ~ I
'. }}ESP, VOLua' ~g lA ~
I
~R E) ~
a.670 ~g-a . as,ooz L. S,GBQ wE-3 BQ.QBX
).2+SRSS }..'62 eE-2 }oo.oog A})s. st)5 ! . 0,'l +F.-2 ~ ~
s,zn aa.an aa.aa a .aa a .Ia q.za }00.00 .'.80. !Q}.GO RE Sl'ONSf: w10 LOfit))NC SAV (SYfl) i OOE VERT}GAL 0)sf'LACE)}NT ({'T3 CoNTA)NHF1n VESSEL OR'fuFLL, .iHanE a3 ~ - SRV). tNOOg }On - nag) Figure 7-44',.
R R ~ g
~
f
~ ~
CI 0 ~ I
~ ~
NS f'~ I CCI IXI Q.3tlg eg-.3 So.anX
~R lA Kl 8,5') j eg-3 as,anX 0
R Sl)SS S,930 eg-3 B2. l SX l . 2vS15S l. ) 32 vE>>2 )ao.noz R flBS, SU)) l.oGQ tE-2
- 5. ap Q. 20 9.90 9.60 B.B0 l .00 )0.20 )0,t)0 -
10.60 Rcspowsr +>0 SBV NVA) o OBEi VFNl CAL 9) Sl'Lot:EVENT 'OAA)NG
)PTl t <N'fA 1NHENT vEssEL PgY)jELL< (NQQE 26'gp) c 5BDE is) ~ 0BE) (l Gal Figure 7-45
a a I
/
C C}
))KSt',. VALOK >a'co fg 8.41'E-g 1 ~a ~ .
SD.Ong NEt'ftSS E) 8.540 yE~3 BS,OOi Q a . 8.SS7 vE 3 86.48X
),2~SASS l.)41 wE-2 )OD,ODX n
a A)S.SUN ).0'l6 yE>>2 a
- 4. 20 8. 40 8,60 o.oo >n.on ip.on 40 !O.SO )O.BO RESPONSE ~la LORD)NC SAY tPVfll o OBE Vfgf)CAL DtSPLACNEHT tF'fl CONTR)Nt<ENT VESSEL OAYUELL. NOOK 20 " SRV) r (NOPE )48 " OBE) f)QO) Figure 7-46
Q p4
' Q Cj t- /ESP, YALOE . Nf' ~ ~ ~ ~
tn CA
~Q ~
q,sos ~E-a so.aox
~ ~r 8, 659 yE-3: Gs, DDZ Q 8.6s7 vE-3 Os.aox ),g+sgss ~ f. )68 vE-2, ~ lao,aox ~
ABS,SUN '.asn ~E-2 n Q
'b.qn 8.6o 8.oo ln,on )o.2o lo.so 'o.sq lo.ao . ll,on Rf sf'QNsE +f sRY lAYA) + QBE.
0"'QAo)Nc YERTlcAL Ptsf'LAONEHT (FTl CONTA)HHEWT VESSEL ORYUELL. (hfOOE ga - SRV) ~ (NOOK l9g OQE) (18O). Figuie 7-47
~ ", ~
I i 0 ~ '
\ '. NS}'. VALUE e.072 ~E-0 . sa.oax 8,7))7 wE-3 .'s.aax Sgss 8. 77) +E<<3 83; SDX }.2+SASS ). l73 ~E-2 - loa.aaX n
A POS.S})N l.)aa ~E-2 4.60 9.00 )O.OO )9,$ 0 )O.i(a )P.60 l0.00 l),00 - ll,20 RESf'GQSE ~10 LOAD}NG 5/V (AVQ) w GBE, VE}}ltCAL O)5}'LACE>E}i'T (PT) Cat4TAJNEttT.VESSEL AR'WELL. 4NGOE 33 ~ - SAV) ~ 4H4OE }90 - 4BE).'}80) ' Pigure 7-.48
ENCLOSURE 1 The information below is in response to the reference letter, dated December 9, 1982. The items are identified in the same manner as the reference letter. 271.07 Compare and correlate the systems described in Table 3.2-1 of the FSAR with the master systems list in the September 1982 program. Where systems have been omitted from the harsh environment qualification program provide the basis (e.g., not required for safe shutdown or accident mitigation). Identify the class lE functions for each system. Response: Enclosure 2 provides detailed response to the above inquiry. 271.08 Identify, by categories listed in NUREG-0737, the components (plant tag number and/or manufacturer and model number) included in the qualification program in response to TMI Action Plan Requirements. Response: Appendix B of the WNP-2 FSAR provides the Supply System's Response to Regulatory Issues resulting from THI-2. Also, Enclosure 3 includes additional information that addresses tasks involving equipment qualification for Task II.B.3. Enclosure 4 provides additional information on Task II.F.I. 271.09 Provide a statement that flooding and aging analyses have been sufficiently completed. Response: The aging analyses have been completed as indicated in Section 4.2 of the WNP-2 Environmental gualification Report for Safety-Related Equipment, transmitted to the NRC in September 1982. The flooding analysis has been completed and will be avail-able for review during the environmental audit. 271.10 Provide a statement that 1E equipment located in areas which experience a significant increase in radiation during a LOCA has been reviewed for possible damage to solid state devices. Response: Equipment containing solid state devices which could be exposed to radiation levels equal to or greater than 10" rads have been qualified by test or analysis. Equipment that are not exposed to radiation levels approaching the 10" rad level are currently being evaluated. Should this investigation identify semi-conductors susceptible to threshold damage below 10" rads, the equipment will be relocated or replaced to eliminate the question of low-level radiation damage. This investigation will be completed by January 28, 1983. 8302230285
271.11 Indicate that the "accuracy" information missing from the summary sheets, Appendix C, as well as other pertinent infor-mation, will be available at time of audit. ~ j.v Response: Instrumentation. accuracy is being obtained from specification and qualification data prepared by WNP-2 suppliers and 4 designers for use code 1X, Levels 1 and 2 equipment '(reference Appendix A of the Environmental gualification. Report). Some
'4c of this'nformation will be available'uring the environmental audit. The summary sheets will be updated to include this data prior to fuel load. .
271.12 Indicate that the effects of Beta radiation have been included in the qualification program. Response: The NNP-2 qualification program does consider the effects of beta radiation. There are three types of equipment within the primary containment that need to be analyzed to determine their susceptibility to long-term beta effects. These are: o Electrical junction box components'and wiri'ng o Air-cooled motors o Some exposed cabling beneath the reactor pressure vessel. The remaining equipment within the containment is adequately protected from beta effects. The results of the analysis for the equipment listed above will determine action is needed to protect this equipment. if corrective 271.13 In accordance with the Commission Memorandum and Order CLI-80-21, dated May 23, 1980, indicate that replacement parts will be qualified to NUREG-0588 Category I requirements unless sound reasons to the contrary exist. Response: The Supply System is complying with the above by documenting sound reasons to the contrary where qualification to NUREG-0588, Category I, requirements cannot be achieved. Supply System procedures are in place to regulate this activity. 271.14 Indicate that the minimum set of safety equipment to provide a single success path to achieve the required safety functions will be qualified, or 'adequate justification will be provided, rior to fuel load.
, Response: The Supply System has performed an analysis to satisfy the above. This analysis or justification for interim operation is contained in Appendix D of the Environmental gualifica-tion Report, transmitted to the NRC in September 1982.
271.15 Indicate that safety equipment located inside primary contain-ment has been qualified to the temperature/pressure profile described in- Table 3.11-2.
Response: The safety-related equipment has been qualified to the first 24-hour'er'iod into the accident conditions depicted by*Table 3.11-2 of the WNP-2 FSAR. This equipment is also qualified to the post-accident conditions defined by Profile 1 of Appendix B in the Environmental gualification Report. A revision to this Profile has been made to include the 24-hour conditions of Table 3.11-2 superimposed on the plant-specific conditions. This composite identifies the margin inherent in the Table 3.11-2 generic profile and will be issued in a revision to the Environmental gualification Report. 271.16 Before the Safety-Related Mechanical (SRM) equipment audit items can be selected, the applicant must provide a statement that all SRM equipment in a harsh environment is included in the mechanical equipment qualification program and must indicate the qualification status of the SRM equipment. If qualification is not complete, briefly describe the tasks to be performed. Provide a list of SRM equipment which is considered qualified from which audit items may be selected. Your review of equipment should be essentially complete before items are selected. The staff review will concentrate on materials which are sensitive to environmental effects, for example, seals, gaskets, lubricants, fluids for hydraulic systems, diaphragms. Response: The Environmental gualification Report (September 1982) detailed the Supply System's reevaluation program for Environ-mental gualification of Safety-Related Mechanical equipment. This reevaluation program of the harsh environmental effects on Safety-Related Mechanical (SRM) equipment has been completed, and a detailed list of evaluated items is contained in Enclosure 5. All items are qualified with these exceptions: MSLC-FN-1; SGT-FN-1Al, lA2, 1B1, 1B2; CEP-V-3A, 3B, 4A, 4B; CSP-V-6; CSP-A0-6, 9 Corrective action for non-qualified items has been defined and is being implemented.
Sheet 1 of 24 ENCLOSURE 2 WNP-2 SAFETY RELATED SYSTEMS LIST V. 4i l Ao Emer enc Reactor Shutdown Reactor Protection System (RPS) Average Power Range Monitor (APRM) Local Power Range Monitor System (LPRM) Control Rod Drive System (CRD) Note 6, 7 Bo Primary Containment Zsolation-Containment Instrument Air System (CZA) Isolation Valves in, the 'following systems: RRC Hydraulic Control 'Y Main Steam System MS Reactor Feed Water System RFW Reactor Recirculation System RRC High Pressure Core Spray System HPCS Low Pressure Core Spray System LPCS Standby Liquid Control System SLC Residual Heat Removal System RHR Reactor Core Isolation Cooling System RCIC Containment Atmosphere Control CAC Containment Supply Purge System CSP Containment Exhaust Purge System CEP Reactor Closed Cooling System RCC Reactor Water Cleanup System RWCU Equipment Drain System EDR Floor Drain System FDR Containment Instrument Air System CIA Process Instrumentation System PI Control Air System CAS Fuel Pool Cooling System FPC Traversing Zn Core .Probe System TIP Notes: 1, 2g 3g Sg 6g 7
Sheet 2 of 24 C. Reactor Core Coolin (Short Term) High Pressure Core Spray System (HPCS ) Low Pressure Core Spray System (LPCS ) Main Steam System (MS ) Residual "eat Removal System (RHR ) Containment Instrument Air System (CIA ) Standby Service Water System (SW) Notes: 1 through 7 DE Containment Znte rity Containment Atmosphere, Control system (CAC ) Containment Return Aii System (CRA) Containment Vacuum Breaker System (CVB) Residual Heat Removal, System . (RHR ) Standby Service Water System (SW ) Notes: 1 through 7 E. Core Residual Heat-Removal Residual Heat Removal System (RHR ) Standby Service Water System (sw) Notes: 1 through 7. Fo Prevent- Release of Radioactive Material Standby Gas Treatment System (SGT ) Main Steam Leakage Control System (MSLC ) Standby Service Water System (SW ) Leak Detection System (LD ) Miscellaneous Drain System (MD ) Reactor Building Exhaust Air System (Reactor (REA ) Building Isolation) Reactor Building Outside Air System (Reactor (ROA ) Building Zsolation) Notes: 1 through 7 NOTES I1 Emergency Electrical Power Systems Electrical Distribution System, (CZE Portion) (E) Diesel Generator Systems (DG ) Diesel Generator Systems Diesel Exhaust System (DE) Diesel Lube Oil System (DLO ) Diesel Starting Air System (DSA ) Diesel Cooling Water System (DCW ) Diesel Oil System (DO ) ¹2 Reactor Building Emergency HVAC Systems Reactor Building Recirculation System (RRA )
Sheet 3 of 24 N3 Diesel Generator Building Emergency HVAC Systems Diesel Building Exhaust Air System (DEA ) Diesel Building Mix Air System (DMA ) Diesel Building Return Air System (DRA ) I4 Control Room Emergency HVAC Systems Waste Building Exhaust Air System (WEA) Waste Building Mixed Air System (WMA ) Waste Building Outside Air System (WOA ) 05 Service Water Pumphouse Pumphouse Outside Air System (POA ) Pumphouse Return Air System (PRA ) N6 Only a portion of each system may be needed in order to support a particular safety function. The sum of all such portions of each safety system are included in the master Class 1 Electrical List. $7 Portions of system alrady listed, as well as others which are purely instrumentation, (i.e., CMS and SPTM) are needed per Reg. Guide 1. 97 in order to support accident mitigation. The indivi-dual instruments are listed on the master Class 1 Electrical Lis t.
Sheet 4 of 24 The six safety ob)ectives for plant systems have been iden-tified as: Emergency Reactor Shutdown Containment Isolation/Integrity Reactor Core Cooling (Short Term) Containment Heat Removal Core Residual Heat Removal Prevent Release of Radioactive Material The eleven safety functions used to achieve these lists ob)ectives's shown on the C1E and SRM are: A Emergency Reactor Shutdown, including SCRAM Signals and Reactivity Insertion B1 ~ Primary Containment Isolation B2. Reactor Building Isolation C Emergency Core Heat Removal D Containment Atmosphere Control E - Core Residual Heat Removal, including Long-term Cooling F. Prevention of the Release of Radioactive Material to the Environment G No Active Safety Function but a Passive Integrity Function H. Emergency Electrical Power Systems, AC and DC I Instrumentation to Follow the Course of an Accident J. Compartment Heat Removal for Equipment Operability or Personnel Habitability A cross-reference is provided below which shows the correla-tion between the system identifier and FSAR Table 3.2-1 (Amendment 26) Zt should be noted that only a portion of a system's components may be required to meet the safety func-tions listed.
Sheet 5 of 24 OBJECTIVES SAFETY FUNCTIONS Emergency Reactor Shutdown A, H, I Containment Isolation/Integrity B1, D, G, H Reactor Core Cooling C, G, H Containment Heat Removal E, G, H, Ig J Core Residual Heat Removal E, G, H~ I, J Prevent Release of Radioactive Material B2, F, Gg H
>>d FSAR EQUIPMENT LIST CROSS REFERENCE Principal Component FSAR Table 3.2-1 S stem Identifier(s) Safety Function Comments
- 1. Reactor System (A), (F)
~ 1 Reactor vessel MS ~ 2 Reactor vessel support skirt STR/MECH .3 Reactor vessel appurtances pressure retaining portions STR/MECH .4 CRD housing supports STR/MECH .5 Reactor internal structures, engineered safety features STR/MECH, See Neutron Monitoring . 6 Reactor internal structures, other STR/MECH NSR(1 ) .7 Control rods STR/MECH . 8 Control rod drives CRD . 9 Core support structure STR/MECH . 10 Power range detector hardware LPRM . 11 Fuel assemblies STR/MECH . 12 Reactor Vessel Stabilizer STR/MECH
- 2. Nuclear Boiler System (A) (B)I (C)I (F)
~ . 1 Vessels, level instrumentation condensing chambers MS . 2 Vessels, air accumulators MS .3 Piping, relief valve discharge from relief valve to suppression pool STR/MECH ~ 4 Piping, relief valve discharge within suppression chamber and suppression pool STR/MECH .5 Piping, main steam and feedwater within outermost isolation valve STR/MECH . 6 Pipe supports, main steam STR/MECH ~ 7 Pipe restraints, main steam STR/MECH
FSAR EQUIPMENT LIST CROSS REFERENCE Principal Component FSAR Table 3.2-1 System Identifier(s) Saf et Function Comments
.8 Piping, other within outermost isolation valves STR/HECH .9 Safety/r'elief valves MS . 10 Valves, main steam isolation valves HS . 11 Valves, other, isolation valves and within containment MS, CVB, . 12 Valves, instrumentation beyond outermost isolation valves HS, HD, MSLC . 13 Hechanical modules, instrumenta-tion, with safety function HS ~ 14 Electrical modules with safety function MS . 15 Cable, with safety function E 3~ Reactor Recirculation System (8),(F) .1 Piping STR/MECH .2 Pipe suspension, recirculation line STR/MECH ~ 3 Pipe restraints, recirculation line STR/HECH .4 Pumps RRC .5 Valves RRC, HY . 6 Motor, pump RRC .7 Electrical modules, with safety function ~ 8 Cable with safety function . 9 LFMG Sets NSR(2) 0
'I 0 FSAR EQUIPHENT LIST CROSS REFERENCE Principal Component FSAR Table 3.2-1 S stem Identifier(s) Safety Function Comments
- 4. CRD Hydraulic System (A) i (F)
.1 Valves, scram discharge volume lines CRD ~ 2 Valves, insert and withdraw lines CRD .3 Valves, other CRD NSR (3) . 4 Piping, scram discharge volume lines STR/HECH .5 Piping, insert and withdraw lines STR/HECH .6 Piping, other STR/HECH NSR (3) ~ 7 Hydraulic control unit CRD .8 Elecrical modules, with safety function CRD . 9 Cables, with safety function E
- 5. Standby Liquid Control System (E),(F) A system generally con-
~ 1 Standby liquid control tank STR/HECH sisting of Quality Class .2 Pump SLC I, Seismic Class 1, Class . 3 Pump motor SLC 1E components existing for .4 Valves, explosive SLC additional reactor safety, .5 Valves, isolation and within but not required to miti-containment SLC gate any postulated acci- . 6 Valves, beyond isolation valves SLC dents or provide a . 7 Piping, within isolation valves necessary safety function.
to reactor vessel STR/HECH
. 8 Piping, beyond isolation valves STR/HBCH .9 Electrical modules, with safety function SLC . 10 Cable, with safety function E 0
FSAR EQJIPHENT LIST CROSS REFERENCE Principal Component FSAR Table 3.2-1 S stem Identifier(s) Safet Function Comments
- 6. Neutron Honitor'ing System (A)i(B)i(F)
. 1 Piping, TIP STR/MECH . 2 Electrical modules, IRH 6 APRH IRH, APRH .3 Cable, IRH 6 APBH APRH, IRH .4 Valves, tip isolation subsystem TIP .5 Power range detector harware LPRH
- 7. Reactor Protection (A)
. 1 Electrical modules RPS .2 Cable E
- 8. Leak Detection System (B),(F)
. 1 Temperature element LD .2 Differential temperture switch LD .3 Differential flow indicator RWCU, RCIC .4 Pressure switch RWCU, RCIC .5 Differential pressure indicator ,switch RWCU, RCIC . . 6 Differential flow'ummer LD
- 9. Process Radiation Honitors (F)
.1 Electrical modules, main steam line and building ventilation monitors HS, REA~WOA .2 Cable, main steam line and reactor building ventilation monitors
- 10. RBR System
.1 Heat exchangers, primary side RHR .2 Beat exchanger, secondary side SW
FSAR EQUIPMENT LIST CROSS REFERENCE Principal 'Component FSAR Table 3.2-1 S stem Identifier(8) Safet Function Comments
.3 Piping, within outermost isola-tion valves, reactor coolant pressure boundary STR/MECH .4 Piping, other STR/MECH ~ 5 Pumps RHR .6 Water leg pumps RHR .7 Pump motors RHR . 8 Valves, isolation Reactor Coolant Pressure Boundary RHR .9 Valves, other RHR . 10 Mechanical modules RHR . 11 Electrical modules with safety function RHR . 12 Cable, with safety function E ll. Low Pressure Core Spray (B), (C) . 1 Piping, within outermost isola-tion valves to reactor vessel STR/MECH ~ 2 Piping, beyond outermost isolation valves STR/MECH ~ 3 Pumps LPCS . 4 Water leg pumps LPCS ~ 5 Pump motors LPCS . 6 Valves, isolation, Reactor Coolant Pressure Boundary LPCS ~ 7 Valves, other LPCS .8 Electrical modules with safety function LPCS .9 Cable, with safety function E 0
'g,g g g p'$g!
FSAR EQUIPHENT LIST CROSS REFERENCE Principal Component FSAR Table 3.2-1 System Identifier(s) Safety Function Comments
- 12. High Pressure Core Spray (B), (C)
. 1 Piping, within outermost isolation valve STR/HECH .2 Piping, return test line to condensate storage tank beyond second isolation valve STR/HECH NSR (4) .3 Piping, beyond outermost isolation valve, other STR/HECH .4 Pump HPCS .5 Mater leg pumps HPCS .6 Pump motor HPCS .7 Valves, beyond diesel shutoff valves SW . 8 Valves, isolation, Reactor Coolant Pressure Boundary HPCS .9 Valves, beyond isolation valves, motor operated HPCS ~ 10 Valves, other HPCS . 11 Electrical modules, with safety function HPCS . 12 Electrical auxiliary equipment DG .13 Cable with safety function (HPCS Emergency Power Supply see 38a) cn
- 13. RCIC System (B). (F) The components of the RCIC
. 1 Piping, within outermost isola- 8 system in general are tion valves, Reactor Coolant Quality Class I, Seismic Pressure Boundary Class 1, Class 1 Electrical. ~
STR/HEC H The system exists i3
FSAR EQJIPHENT LIST CROSS REFERENCE Principal Component FSAR Table 3.2-1 S stem Identifier(s) Safet Function Comments
. 2 Piping, beyond outermost isola- for additional reactor tion valves STR/HECH safety but is not required .3 Piping, return test line to to mitigate the consequences condensate storage tank beyond of a postulated accident.
second stop valve, drip pot discharge valve to condenser STR/HECH NSR (4)
.4 Pumps RC IC .5 Water leg pumps RCIC .6 Valves, isolation and Coolant, Pressure Boundary RC IC ~ 7 Valves, other RC IC .8 Turbine RCIC .-9 Electrical modules, with safety func tion RC IC ~ 10 Cable, with safety function RC IC
- 14. Fuel Service Equipment (F)
. 1 Fuel preparation machine NSSE .2 General purpose grapple NSSE
- 15. Reactor Vessel Service Equipment (F)
.1 Steam line plugs NSSE .2 Dryer and separator sling and head strongback NSSE
- 16. In-Vessel Service Equipment (F)
.1 Control rod grapple NSSE
- 17. Refueling Equipment (F)
. 1 Refueling equipment platform assembly NSSE . Refueling Bellows 2 STR/HEC 8 NSR (5)
FSAR EQUIPMENT LEST CROSS REFERENCE Principal Component FSAR Table 3.2-1 System Identifier(s) Safet Function Comments
- 18. Storage Equipment (F)
.1 Fuel storage racks STR/MECH .2 Defective fuel storage container NSSE 1 9. Radwas te Sys tern (H),(F) ~ 1 Tanks, atmospheric STR/MECH NSR (6) .2 Heat exchangers STR/MECH NSR (6) .3 Piping and valves forming part of containment boundary EDR 6 FDR .4 Piping, other STR/MECH NSR (6) .5 Pumps MWR NSR (6) ~ 6 Valves, flow control and filter systems EDR~ FDR, MWR NSR (6) .7 Valves, other PVR NSR (6) . 8 Mechanical modules EDR~FDR,PVR,PWR NSR (6) ~ 9 Radioactive equipment 6 floor drains and other radwaste piping and valves upstream of collector . tanks STR/MECH NSR (6) . 10 Instrumentation and control board MWR, PWR NSR (6)
F 11 Concentrator PWR NSR (6)
. 12 Plant discharge line NSR (6)
- 20. Reactor Water Cleanup System (H), (F)
~ 1 Vessels, filter/demineralizer RWCU NSR (7) . 2 Heat exchangers RWCU NSR (7 ) . 3 Piping, within outermost isola-tion valves RWCU .4 Piping, beyond outermost containment isolation valves RWCU NSR (7) .5 Pumps RWCU NSR (7)
FSAR EglIPMENT LIST CROSS REFERENCE Principal Component FSAR Table 3.2-1 System Identifier(s) Safety Function Comments
. 6 Valves, isolation valves, Reactor Coolant Pressure Boundary RWCU . 7 Valves, beyond outermost contain>>
ment isolation valves NSR (7)
.8 Mechanical modules NSR (7)
- 21. Fuel Pool Cooling and Cleanup System (B),(F)
~ 1 Vessels, filter/demineralizers FPC NSR (8) .2 Vessels, otAer FPC NSR (8) .3 Heat exchngers FPC ~ 4 Piping FPC Cooling Portion Only .5 Pumps FPC . 6 Makeup system (normal) NSR (8) ~ 7 RHR connection FPC . 8 Makeup system (emergency) SH .9 Piping, suppression pool to outer isolation valves
- 22. Control Room Panels (A) - (F)
. 1 Electrical modules with safety function All Systems .2 Cable, with safety function E
- 23. Local Panels and Racks (A) (F)
. 1 Electrical modules with safety function All Systems .2 Cable, with safety function E
- 24. Off-Gas System NSR (9)
Tanks OG NSR (9)
FSAR EQUIPHENT LIST 0 CROSS REFERENCE Principal Component FSAR Table 3.2-1 S stem Identifier(s) Safety Function Comments
~ 2 Heat exchangers OG NSR (9) . 3 Piping STR/HEC8 NSR (9) . 4 Pumps OG NSR (9) . 5 Valves OG NSR (9) . 6 Hechanical modules, with safety function OG NSR (9) .7 Pressure vessels OG NSR (9)
- 25. Standby Service Water System (B) (F)
.1 Piping STR/HECH 2 Pumps SW .3 Pump motors SW . 4 Valves SW .5 Electrical modules, with safety function . 6 Cable, with safety function
- 26. Turbine Plant Service Water NSR (10)
.1 Piping and valves TSW NSR (10) .2 Pumps TSW NSR (10)
- 27. Reactor Building Closed Cool Water System (B) (F)
. 1 Neat exchangers RCC NSR (11 ) .2 Pumps RCC NSR (11) .3 Tanks RCC NSR (11) . 4 Pi:ping and valves inside containment RCC ~ 5 Containment isolatioin valves and associated piping RCC
44 4 FSAR EQJIPHEHT LIST CROSS REFERENCE Principal Component FSAR Table 3 '-1 System Identifier(s) Safet Function Comments
. 6 Piping and valves in Reactor Building RCC NSR (11 ) . 7 Piping and valves, other RCC NSR (11 )
- 28. Primary Containment Cooling System (B),(F)
. 1 Piping and valves up to outermost isolation valves, containment purge and exhaust CEP, CSP, CRA
- 29. Standby Gas Treatment. System (F)
.1 Filter units SGT .2 Fans SGT .3 Piping and valves SGT
- 30. Primary Containment Atmospheric (B)
Control System
. 1 Piping and valves CAC ~ 2 Equipment CAC
- 31. Other HVAC (C) (F)
.1 Reactor Building (non-essential) REA, ROA NSR (12) .2 Reactor Building (essential) RRA, REAg ROA .3 Turbine Building TEA~ TOA~ TRA NSR (12) .4 Radwaste Building WRA~WEA~WOA,WHA NSR (12) . 5 Control Room, Critical Switchgear Area, Cable Spreading Area (non-essential) NSR (12) .6 Control Room, Critical Switchgear Area, Cable Spreading Area (essential) WEA, WHA, WOA
FSAR EQUIPMENT LIST CROSS REFERENCE Principal, Component FSAR Table 3.2-1 System Identifier(s) Safet Function Comments
~ 7 Diesel Generator Bldg. DEA~ DHA~ DRA, DOA . 8 Standby Service Water Pumphouse POA ~ PRA
- 32. Condensate Storage 6 Transfer NSR (13)
.1 Condensate storage tank COND NSR (13) .2 Piping and valves COND NSR (13) ~ 3 Pumps COND NSR (13)
- 33. Instrument and Sample Lines Refer to particular system for associated instrumen-
- 34. Fuel Storage Facilities (F) tation
. 1 Fuel pool/dryer separator liner STR/HEC 8 . 2 Storage racks 6 supports STR/HECB
- 35. Building Cranes (F)
. 1 Reactor Building HT .2 Turbine Building MT NSR (14) ~ 3 Radwaste Building MT NSR (14) .4 Standby Service Water Pumphouse MT NSR (14) .5 Hiscellaneous Areas MT NSR (14)'B)
- 36. Instrument and Service Air
. 1 Piping and valves CAS .2 Compressors CAS,SA NSR (15) .3 Vessels CAS,SA NSR (15)
- 37. Containment Instrument Air System (B) I (C) I (D)
. 1 Piping and valves inside containment to and including outboard isolation valve CIA 0
FSAR EQOIPMENT I IST CROSS REFERENCE Principal Component FSAR Table 3.2-1 S stem Identifier(s) Safet Function Comments
.2 Piping and valves to Hain Steam relief valves CIA .3 Other piping and valves CAS NSR (15) . 4 Compressors CAS NSR (15) .5 Receiver CAS NSR (15) . 6 Piping and valves outside containment isolation valves to nitrogen bottles CIA HPCS DIESEL GENERA%)RS
- 38. a. Diesel Generator Systems (C)
.1 Day tanks DO .2 Piping DO .3 Pumps, fuel oil system DO . 4 Diesel-generators DG . 5 Electrical modules with safety function DG, DSA, DCH, DLO, DO . 6 Cable, with safety function E . 7 Diesel fuel storage tanks DO . 8 Diesel-generators service water supply DCH, SH .9 DSA diesel starting air DSA .10 Diesel intake exhaust piping DE
- 38. b. Standby AC Power Systems (Other Than HPCS)
. 1 Storage and day tanks DO .2 Piping and valves diesel oil DO . 3 Pumps diesel oil DO .4 Diesel-generators DG
FSAR EQUIPMENT LIST CROSS REFERENCE Principal Component FSAR Table 3.2-1 System Identifier(s) Safet Function Comments 5 Electrical modules with safety function DG, DSA, DLO, DCW, DO
.6 Diesel cooling water supply , DCW .7 Cable with safety function E .8 Diesel intake/exhaust air piping DE .9 Diesel starting air DSA
- 39. Auxiliary AC Power System
~ 1 Essential components DG~ E .2 Nonessential components E NSR (1 6)
- 40. Auxiliary 125/250 Volt DC Power System
.1 Batteries E .2 Battery Charges E .3 Cables E .4 Modules E 0
- 41. 24 Volt DC Power System
~ 1 Batteries .2 Battery Charges . 3 Cables .4 Modules
- 42. 1 20 Vol t itica l Power Cr Supply (B) (F)
System Equi.pment
- 43. Power Conversion System (F)
( Fi gures 3. 2-23, 3. 2-24 ) hD sW
FSAR EQUIPHENT LIST CROSS REFERENCE Principal Component FSAR Table 3.2-1 System Identifier(s) Safety Function Comments
. 1 Hain steam piping from outermost isolation valves up to turbine stop valves . 2 Hain steam branch piping -to 1st valve capable of timely ac tua tion STR/HECH ~ 3 Hain turbine bypass piping up to bypass valve STR/HECH NSR (17) .4 First valve that is either normally-closed or capable of automatic closure in branch piping connected to main steam and turbine bypass piping HS~HD NSR (17) ~ 5 Turbine stop valves, turbine control valves and turbine bypass valves HS NSR (17) .6 Hain steam leads from turbine control valve to turbine casing STR/HECH NSR (17) .7 Feedwater and condensate system beyond outermost isolation valve RFH, COND NSR (17) . 8 Turbine generator TG NSR (17) . 9 Condenser COND NSR (17)
. 10 Air ejection equipment COND NSR (17) . 11 Feedwater treatment system CPR NSR (17) . 12 Turbine bypass system beyond turbine bypass valve HS NSR (17) . . 13 Turbine gland sealing system components BS NSR (17) . 14 Piping, valves, other VARIOUS NSR (17) . 15 Equipment, other VARIOUS NSR (17)
l <<t FSAR EgJIPHENT LIST CROSS REFERENCE Principal Component FSAR Table 3.2-1 System Identifier(s) Safety Function Comments
- 44. Circulating Water and Cooling NSR (10)
Tower Hakeup Water System(s)
.1 Piping and valves NSR (10) ~ 2 Pumps NSR (10) .3 Cooling tower fans NSR (10)
- 45. Hain Steam Isolation Valves (B),
Leakage Control System
~ 1 Piping a valves within primary containment and out through the STR/HEC H, H SLC (F)'6.
outermost isolation valves
. 2 Piping and valves beyond the outermost isolation valves MSLC .3 Blowers 'SLC Containment Vessel (F)
- 47. Buildings
~ 1 Reactor Building STR/H ECH .2 Turbine Building STR/HECH NSR (18) . 3 Radwaste Control Building STR/HECH .4 Diesel Generator Building STR/HEC H .5 Spray Ponds and Standby Service Water Pumphouse STR/HEC H . 6 Service Building STR/HECH NSR (18) . 7 Cooling Towers STR/HECH NSR (18) . 8 Hakeup Water Pumphouse STR/HECH NSR (18) . 9 Circulation Water Pumphouse STR/HEC 8 NSR (18) .10 Air Intake Structures No. 1 STR/HECH 6 No. 2. 0 bJ sW
FSAR EQUIPHENT LIST CROSS REFERENCE Principal Component FSAR Table 3.2-1 S stem Identifier(s) Safet Function Comments
- 48. Containment/Drywell Atmosphere Honitoring System CHS (C), (D), (E)
- 49. Drywe1 1 Insulation NSR (19)
~ 1 Insulation on piping which is within the drywell Various Systems
- 50. Instrumentation and Control Equipment ' (A) - (F) 1 Safety-related instrumentation and control systems SPTH g PI g SP~ ARH SRH General Notes:
A. Exhibit 1 references the system safety functions used on this listing. B. Exhibit 2 references the notes used to describe the non safety-related components. C. "STR/HECH" is used in lieu of a system identifier when the component identified is a generic structural or mechanical item such as piping or a building.-
Sheet 23 of 4 EXHIBIT 2 NOTES FOR NON SAFETY-RELATED (NSR) SYSTEMS OR COMPONENTS: (1) Some internal components of the reactor vessel are considered to be NSR, but are QI, SCI to ensure core reliability. (2) The RRC pumps and motors do not require a power source to perform their safety function. (3) Only those components of the CRD system that are associated with the reactor scram function are safety-related. (4) Subject piping is isolated from that portion of the system providing a safety function. (5) This equipment is used during the refueling process but provides no safety function-(6) The Radwaste Systems and components are designed to retain high and low level wastes in such a manner as to minimize personnel exposure. The design cri-teria incorporates 10CFR20 and 10CFR50 considerations but provides no safety-related functions. (7) Only that portion of the RWCU that is part of the RCPB is safety-related. Those portions of the system downstream of the outermost containment isolation valve have no safety function. (8) Only those portions of the FPC system required for spent fuel cooling and emergency pool makeup are necessary for safety (9) The off gas system has been analyzed and any postulated failure will not result in an off-site release greater than 0. 5 REM. (10) This system provides cooling to only non-essential components. (11) RCC is not, required for decay heat removal or for cooling any safety-related equipment. (12) Only those portions of HVAC systems providing containment isolation and/or safety-related equipment cooling function is safety-related. (13) The condensate storage system is not required as a source of emergency makeup, but may be used. (14) Only those cranes directly involved with refueling are safety-related. The remainder are seismic Class I where necessary to prevent deleterious effects to safety-related equipment (15) Only those portions of CAS which form a boundary with CIA or which are part of the containment isolation boundary are safety-related.
Sheet24 of 24 (16) Those portions of the electrical system not associated with the supply of power to safety-related equipment are considered non-essential and not safety-related. (17) Only those portions of the power conversion system which form an isolation boundary with the nuclear boiler system are safety-related. (18) These buildings house only non-essential equipment and are not needed to pre-vent radioactive releases in excess of 10CFR100 limits. (19) The insulating function is not required for safety, however, the insulation i~ design is Quality Class 1 and Seismic Class 1 in order to prevent any poten-tial effects to safety-related equipment.
Enclosure 3 NUREG 0137 TASK 11.8.3 VALVE POSITION INDICATORS
- EPN Descri tion Manufacturer Model Number PSR-V-X80-1 Solenoid Valve Valcor V526-5940 II
.-X80-.2 -X23-,1 -X73-'2 -X83-1 -X83-2 -X84-1 -X84-2 -X82-7 -X82-8 PSR-V-X77A-1 Solenoid Valve Target Rock 102110 -X77A-2 -X77A-3 -X77A-4 -003-A -003-8 PSR-V-X82-1 Solenoid Valve Yalcor V526-5295 -X82-2 -X88-1
- 0 -X88-2
-012 -013 -014 -015 -016 '105 -108 -110 II -011 '
SW-V-840 II
-842 -844 -846 PSR-I L-V/X80-1 Indicating Light Master Spec. Comp. 800A2CIJ2L2N2 X80-2 X73-1 X73-2 X83-1 X83-2 X84-1 X84-2 X82-7 X82-8 X77A-1 X77A-2 X77A-3 X77A-4 Page 1 of 2
EPN Oescri tion Manufacturer Model Number PS R- I L- V/X82-1 Indicating Light Master Spec. Comp. 800A2C1J2L2N2 X82-2 X88-1 X88-2 E-TR-S1B Transformer
-S2B E-SlB Lamp Rack Master Spec. Comp. 800-RH-04-03-1 <<S2B PS R- I L- V/X80/1/1 Indicating Light Master Spec. Comp. 10HA2C7J3L(GR)
X80/2/1 X73/1/1 X73/2/1 X83/1/1 X83/2/1 X84/1/1 X84/2/1 X82/7/1 X82/8/1 X77A/1/1 X77A/2/1 X77A/3/1 X77A/4/1 X82/1/1 X82/2/1 X88/1/1 X88/2/1 003/A 003/B 012 013 014 015 016 105 108 110 011 SW-IL-V/840 842 844 846 Page 2 of 2
Enclosure 4 ' NUREG 0737 TASK II.F.1.1 Descri tion NOBLE GAS EFFLUENT RAD MONITOR Manufacturer Model Number REA-SR-27A Sample Rack Nuclear Meas. Corp. RAK-2N TEA-SR-26A W EA-SR-25A REA-SR-27 Sample Rack Kaman Instruments 952312-001 TEA-SR-26 952309-001 WEA-SR-25 952299-001 REA-SR-37 Flow Control Rack Air Monitor Corp. AMC-79-128 TEA-SR-38 REA-RE-19 Detector Kaman Instruments 952582
-19A NMC TEA-RE-13 Kaman Instruments 952582 -13A NMC WEA- RE-14 Kaman Instruments 952582 -14A NMC REA-RIS-19 Ratemeter Kaman Instruments 952279 -19A NMC TEA-RIS-13 Kaman Instruments 952279 4 -13A WEA- R IS-14 -14A REA- RR-19 Recorder Kaman NMC Kama'nstruments NMC Instruments 952279 5-823335-000 -19A TEA-RR-13 Kaman Instruments 5-823335-000 WEA-RR-14 REA- Y-055 Solenoid Valve Asco HR89028404LL TEA- V-003 WEA-V-003 REA-FN-94 Sample Pump Kaman Instruments 952455-000 TEA-FN-93 MDA Scientific Inc.
WEA-FN-25 CS/REA-FN-94 Control Module Kaman Instruments 952577 CS/TEA-FN-93 952570 CS/WEA-FN-25 952577 REA- FIS-1 Flow Indicator Alarm Kaman Instruments II 952458 TEA- FI S-1 WEA- FI CS-1 Page 1 of 3
NUREG 0737 TASK II.F.1.2 PARTICULATE & IODINE EFFLUENT SAMPLE EPN Descri tion Manufacturer Model Number REA-SR-48 Sample Rack Rocky Ht. Nuclear (Later) NUREG 0737 TASK II.F.1.3 CONTAINMENT HIGH RANGE RAD MONITORO EPN Descri tion Manufacturer Model Number CHS-RE-27 E Rad Detector Victoreen VHRCHS 875
-27F CHS-RIS-27E Ratemeter Victoreen VHRCHS 875 -27F CHS-RR-27E Recorder Leeds 5 Northrup 100 Series -27F NUREG 0737 TASK II.F.1.4 CONTAINMENT PRESSURE MONITOR Descri tion Manufacturer Model Number
= CMS-PT-1
-2 -5 Pressure Trans. Rosemount 1153B Series -6 w7 -8 CMS-PR-1 Recorder Leeds 8 Northrup 135 II -2 .-7 134 -8 BD-GI-SRU-89 Signal Resister Un. Bailey Instrument 766110BAAA2 -95 B 0-G I I-S RU-74 -76 B 0-GI- E/S-99 Power Supply General Electric 9T66Y990 BD-GII-E/S-299 CMS-PI-7 Heter (Later) (Later)
Page 2 of 3
f NUREG 0737 TASK II.F.1.5 CONTAINMENT WATER LEVEL EPN Descri tion Manufacturer Model Number CMS-LE-3A/3B Transducer Electrosyn Inc. (Later)
-4A/48 -5A/5B CMS-LT-3 Level Transducer Electrosyn Inc. (Later) -5 CMS-LR-3 Recorder Leeds 8 Northrup 134 NUREG 0737 TASK II.F.1.6 CONTAINMENT HYDROGEN MONITOR EPN Descri tion Manu factur er Model Number CMS-AY-1 Hydrogen Anal. Beckman Instruments 7C ~2 CMS-H2R-1 Recorder Leeds 5 Northrup 134 -2 CMS-SR-13 Sample Rack Beckman Instruments 799763 -14 Page 3 of 3
Enclosure 5 NOMENCLATURE SAFETY RELATED MECHANICAL E UIPMENT LIST SRM)
AA 1., Appendix A contains the following information:
- 1. SRM User's'anual: a description abbreviations'n the SRM,List.
of 'he use fields and
>~I, at 2. ~
System Code List: a.list of system abbreviations used on the SRM Equipment List.' 1
- 3. Component Table: '
list of component abbreviations used on the SRM
.V~
A'I Equipment List. t*
- 4. -
SRM Equipment, List. A'A4 Ag
- Pi
.A S
"A t S II A
A.2
SRM E ui ment List Description of codes used on the SRM list User': Manual:. Desi nation Descri tion CONTRACT The contract under which the equipment was
'purchased. The contracts beginning with 02 and Contract 59 were with the NSSS supplier. The two-digit contracts are for equipment purchased through the A/E and the three-digit contracts indicate equipment purchased through contractors at the construction site.
EQUIPMENT NO. The equipment piece'number (EPS) is listed. It 'is composed of the system designation (a complete list is enclosed), a component code (list'nclosed) and a unique identifier. Manufacturer: Contains the code'repared for '. the industry by Southwest Research Corporation indicating the company who manufactured the equipment. In a few cases where the manufacturer has not been determined, the supplier's code was put in this column until the manufacturer has'een determined. MFG MODEL NO. The manufacturer's model number. In the cases where this has not been determined, General Electric purchased part drawing number or other applicable information is supplied. Q ~ I.D. The Qualification Identification is a six-digit number indicating a file which contains all the qualification documentation for that EPN along with summary forms and plant walk-through records. Safety Function The 'Class 1 action that a piece of equipment or a system is required to perform or monitor that makes it safety related. A component may provide one or more of the safety functions listed below.
~Sbol Function A. Emergency Reactor Shutdown including SCRAM Signals and Reactivity Insertion.
A.3
wv B. Containment Isolation Bl Primary'Co'ntainment B2- Reactor Building C. Emergency Core Heat Removal, D. Containment Atmosphere Control E. Core Residual Heat'emoval, including Long-Term Cooling F Prevention of,. the Release of Radioactive Material to the Environment, G. No Active Safety Function but a Passive Integrity Function Emergency Electrical Power Systems, AC and DC. Instrumentation to Follow the Course of an'Acc'ident Compartment Heat Removal .for Equipment, Operability or Personnel Habitability PLANT LOCATION The location of the component within the plant by building, elevation and coordinates'. EQUIPMENT A description of the equipment function., DESCRIPTION DRAWING The plant PAID on which the component appears. USE Contains codes which describe equipment use during accident and/or normal plant shutdown conditions. The USE field is based on Item 2 Appendix E of NUREG 0588. The "USE" input field is a two-digit field. The first digit shows the equipment operability requirement for accident mitigation and the second shows the equipment operability requirements for Hot or Cold shutdown conditions. X X 0 The equipment is not required before, during or after .a transient. A.4
Example: Equipment in this category provides no active function, but may provide a passive function by containing radioactive material outside the Reactor Building. It need not be qualified to demonstrate operability, even under non-accident service environments. Equipment that will experience the environmental conditions of design basis accidents for'which it must function to mitigate said accidents, and that will be qualified to demonstrate operability in the accident environment for the time required for accident mitigation with safety margin to failure. Example: Equipment in this category is required for'cci.'dent mitigation of accidents analyzed in the FSAR. This includes: pumps, valves, valve'operators, fans, NSSS Equipment and dampers to follow the course of an accident, etc. Equipment will experience environ-mental conditions of design basis accidents through which it need,not provide an active function for mitigation of said accidents, but through which it must not fail in a manner detrimental to plant safety or
~ accident mitigation, and that will be qualified to demonstrate the capability to withstand any accident environment for the time during which it must not fail with safety margin to failure..
Example: Equipment in this category must not actively fail in a manner detrimental to plant safety, e.g., a pump which is not required to operate but must maintain its integrity for the duration of the design basis events. Equipment that provides only a,passive integrity function on a potentially contaminated system will be categorized as a "2" and will have a "G" placed in the "EC" column. A.5
Category 2 will include all manual boundary, integrity, test and root valves which may be exposed to post-LOCA and radioactive drain systems components (FDR and EDR). Equipment that will experience environmental conditions of design basis accidents through which not function, for mitigation of said it need accidents, 'and whose failure (in ay mode) is deemed not detrimental to plant safety or accident mitigation, and need not be qual'ified for any accident environment but will be qualified for its nonaccident service, environment. Example: Equipment in this category is limited to the 1M equipment in the "harsh environments" which is Safety-Related only to prevent the release of radioactive material and will not be exposed to post-LOCA radioactive fluids. This category will include the components of the Reactor Water Clean-up System downstream of the second containment isolation valve. Equipment that will not experience environmental conditions of design basis accidents and that will be qualifed to demonstrate operability under the exposed extremes of its accident service environment. This equipment would be located outside the Reactor Building. Second Digit X X 0 The equipment is not required to operate to shut down the plant during normal conditions. The equipment is required to operate for Hot Shutdown only during normal plant conditions. A.6
The equipment is required to operate for Cold Shutdown only during normal plant conditions.'he equipment is required to operate for both Hot Shutdown and Cold Shutdown during normal conditions. A.7
,.> g
~
~
Ltttf 2 PASTLR E42 SPNEhl Llll NEl st SS
.SYSTEN CODE Llsl Oi'IE t2I09/OL PAGE SYSTLV COOK SYSTEII TlfLK AMM AMHUMCI ATOMS O2 cg >2 AR, APRII-ARM AVERAGL POIKKR RANGE AI5.8ftfoy54 CI41E5 AREA R)O IA 'll ok MONITORING Noklf OA SYSTER n2 AS AUM Ll.LARY, STEAII SYSTEM C2 Bi BAC NVA5M 1 IP SYStKN I22 BCF BOILER CIIKFLCAL FEED )YsfK t'2 Bo BLOVOohtt S fsf(N 02 C f-'- I LII CottfAlhMKttf SLIKUCTURES Ako AFPURTAIICES C2 CAC COHLAlkMEMT ATFOSPIIERE CONIROL SYStEN 222 CAS CONTROL AIR SYSTEII 02 CBD . CIRCULAt IMS MATER 8LOVDOLI STS gtf CONfAIRNEtlf KRtiAUSf PURGE 4f 4fftl: .'2 CEF '2 CF CIIEHLC1L FKED SYSIEH-C2 CLA COktllhMKMT IhsfRUMEH'I Al tl SZSTLN C2 CL CHLORINE SYS TEP KS 2 CMS CON TllhHENT "IIGHfloRltIC SYSTEII 02 CM cokfilkHEHT NllRGGFN $ fsfgN 02 CND COMOLHSOR ORAIMS l VER 0 RTSTKtf (2 COND IIUCL\AR COAOENSAIK SYSTEM 02 CO2 CARBOM 0fottt CE SYSTEM ".2 CPR CONCEtlsi TE DEtl I NERAL 1lER SYS IEtt n2 f2 COR fi f KRXQ~ uR -'. ~ CRD CONTROL R00 ORlyE SY )E5 -.". ~ -.
I'2 Ctki C 1 ELL'Cf RLCAL BLOB MIXED AIR ltIVACT SYSTEM C2 CVB COMTALAMENT ItiCUUN BREAKER SYSTEII I:2 CU CLRCULATIHG VATER SYSTI:H KIK, 5IKKKK KOOKKOriiii KhKBf
~OIKSKL Ollll0fllKS+SllllfS Sttii) 22 OK . OKKSKL XMIOSS SKSOKMK[
OKI 2: I/SOS
$ PINED PtlKP C2 or, DLE SEL G f ENLR A CR SYSTEM 02 ot.o otEsEt. EUBK otL stsfKP Oii SKKKKCEUlKSKOriliKO l1~ii%ii rsi C2 00 DIESEL OLL SZSfEN 02 . Ooi DIKSEL BvlLDIke oufsloK 4llt cHV Acl SYSTEN 'iF iRl OtESEL BulLOlko RETURh,ALR LIIVICI SYTTEH i2 OSA DIESEL SIART ING ilR SYSTEM Ott OEHINERALI lED l ATKR SYS'LKII 0F I.'lElf%)elf-hl Cfctt C2 Ko EGUIPRK'll Eti AIH STSTEN TP ONLVl EOR EOUIPREMT Ctt Jlhs Biol LACYfVK SYSTKII F2 Fo FLOOR CRilh SYsfEN I2 to2 P2 fOR >0 FP 'UEL.FLOOR CRAI h RACLOACTL VE SYslEM Fl OIL'5'ISfER RE PROTECt LOM SY STEN "2 FPC FUEL POBL KOCLIMS SYS'fKN
MhP"2 PASTER . IPHELT LTSf SYSTEH COCK L1$ 1 DATE 12/09/RL PAGE SYSTKN CODE SYSTEH 11TLE 02 fM FlLlERED MATEh~TSTClj 02 GKA GUARD I'OUSE ERHAU4f 4th nfl'gAOI OYSTER CR GFP guAAC. tOILS 5 XIEf tMIKCELO~f 0155 CR ssNA ~ CUAAO IOUS E HlXEO Alh (HVACI SYSfEH CR GOA CUAPC IQUSl OUfSlDK AlR (HVACI SYSTKP s2 02 CrP KH EfUjlg 4) GRA GUARD TOUS) (I $ tsl Yf Etl CR GY GLYCOL. SY5TKII 02 C2 HD Ls iI KATFR so Los iSILf SiiikiSASSIS'jl O!I DRA lN SYSTEtl I'. 2 Hit M tlKA11NG HOT MAlER SYSTEH 02 HPCS ~HGt PAKSSUR~COR~SA S S N 02 HS HEATTNG STEAII OYSTER C2 IIV IEAtEA VKNt IYSTEft 02 HY ACC HYDRAULIC CO 1 0 " 02 tl2 HTOACGTN 5YSlEI' l;2 OO 1 SO PHASE EUS DUC 1 S'YSTKH C2 IRH rsrss!!so!sir srsrs !!Os!!os 02 i'o . osis osricilaR ir~rss .. 02 Og 02 r2 LE LPCS LPAH
' . LAI10RATOAT E)U)PI'tiff LOg PfgSSU~CgR~+$ ~7~
LOCAL F OKER RA IGK NON 110R SY STER Irt HD Hl SCELLANECUS DRATN SYSTEN 02 HET NS NSII
'AfN HE TFOROLOG ICAL SYSTEM STEA8 CNllCLEIhf STI~I) '.
NACHlNE StiOP fBUTPNEHf
~ ."sos LLrL.sl:is LssM.s sslllsssAIsIE5 il 2 HAIN STEAtl AELlEF VALVE SYSTEH (FlPTAB 'l3tiV ONLYI LR Hf HA 1 KRl JL t AA N SFOAt SY Sf EH nR HV Hl S CKLLAstKCUS VENtS I F IPSE AQ OHLYI CR Sr isscsssissi ilisrf sisrsR C2. Hsth Nf SCELLAtlECUS MASfE 4 fA61CAC f1 VEI. STS'ffll 02 02 OG OFF GAS SYSTKH 02 r PUtlP I CUSE lALLI BLsIOtSTRUCTURE 6 APFURTANCES (r 2 PEA PUtlP bOUSE EXI'LUST Alh IHVAC I SYSTEM CR 02 PNA PUIIP HCUSE NlXEQ $ 15 IIIVAC) SY4Nt 02 12 POA FRA PUHP hOUSE OUtllOE A)fl 4IIljlA( SYSIEN FUHP I'OUSE RETURN AIR IHVACI SYSf EN j
I'2 PS PROCESS SAPPLTNG SYSI'KH st 2 I'SA PROCESS SAtsnLI HG AAOI CAC11VE SYSlEH PVtl PAOCKSS VENT S AADlOACTLVE OYSTER FKC POl ASLK COLD MAlER rR P4H POliULK HOT MA'IER i2 FKA PAOCFSS AAOl CACf1 VK 1 SOLlOSI SYSTEH
's2 CR Riir " 'AOO Rc. AC10R DLCG 6 lArJCTUAK 4 AFPUAl ANCKS OLC=II IriNtiOR CYSIER FCC CLsISI 0 "OULI tt6 stATKR SYSlKN ACIC AEAC10A COlil lSOLA110tl COOLlRO SYSTTN
IIKL-li]5 MHF 2 IIASTIR L .e'tlEKT Lltl . SYS1EH COBE Llsf OA IE 12/09/8 I P AGE FRO J SZSI r COOK SYSTKH TITLE C2 Ro . RGQP BRAIN sYSIEH fPIPIHQ qKL I n2 REA REAC'IOR BUILOfhG EXHAUST APL IIIVACl KTSIEN
..Bt t. Bf ECI98 Ef IRQklHDMRII~AIEE n2 KF al REACTOR FEKOMAIER SYSTEH s'2 A MR AE 6 IOUAL HEA t AEHOVAL SYS IKN r2 02 ROA l Af g TGA PU IL0IHG OI+$ LO~AILI~HAc~e RPS REACTOR PRCTECTIOH SISTER (2 RP MH REActoR BULPlhg POTAGE Not Q5TKR ng AHUoa it91LGIS~L'IQQLil8 dHACLkXRlf5 r2 RRC AE AC IOR RECI RCCLAllotl SYSTEM n2 RQCU AEACTOA MATER CLEANUP STSTKtl F2 S SIIIPLLIIO SAUELI 02 Sl '
SEASIEE ALR OSSIEA I'2 SLL fullC ACIO 'IAEATHKkf St)IKll
'At ~
P2 scil scasLcc SMILE~as Su~LAP SLatEILAEaiEjl . h2 scl sUpEnvlschz colfROL lhstAUAEHIAllok O2 SC st SfATOA COOLING MATEA SYSlEN 02 SLA SERItlCE BUILCIAG KXPAUSt AIR TMVACI SYSTEN 02 ES2 SKC SEts
.- PLAKf SECUIII ft Bt(TKII SEISNIC NOKITORIHO $ TSJKH 02 ~~s 02 02 r2 02 R2 stlCO SMMM SLC SMA SERVICE BUILCIM6 rKAtlHG C4HCEKSAIE SYSTEN SERVICE BUILOIAG MEATIKG Hof HATEA SZSTEN SIAhoBY Llnuto COH'IAOL STStEN ~spnao-aranILCfktl NIXES SERVICE BU PIR $ HVAC) $ T5IKH SUPPRESS IOII PCIIL LEAP MOMIEOAIMS SSSIEP O2 srMH 'KAVICE BU ILOIIIG PCTAOLE Mof IIATEA SZSTEH 02 SAA SERVICE BUILCIMG RETURk AIR INVJCI S'ZSTEH SF ' ORR SSUIICE RIIISE ~IIOM$ 5A SVBP n2 02 S$
SQ . SEA LING Sf EA N $ $ S If H SIAtlOBY SERVICE 4ATEA SYSTKH
~ O 02 T IURBIMK BLC6 STRUCtuRE 6 AFPUATAKCES r2 ILA TURBINE BUILCIHG EXHAUST ATA IHVAC) STStEN (2 ILST TEST ECU1PtKAI AHO IKSTRUFKHIS n2 TURBIKE GEA~KR TOR O2 . TIP TRAVEASItl6 IKCOAE PROBE $ SEMEN 02 THU TOMER NAKE UP UA'tER S ISLE I'2 III IUABIHI LUTE OIL SYSTEN l2 TOA TURBIHE UUILOIMG OUTS IOE AIR CHVACI StsfKN 02 Clh'of ABLE rnt HATER S'ZSTEN L,, ~,
TPMH TURf IHK BU IL ni fKA -tuAiHE 8uiC5fRG RrtiJIOI A$ cRIT)cTKAfKiI I 6 Ii PLAittt SERVICE UATKW SYS'fKN O2 YA AAOICACTIVE VENT IPIPIKG OKLTI ~ ~ 02 4 RAOMASTE: OLUG StAUCIURK A APFUATAhCKS
~
02 MCII MASIL KUIL CIHG CtlILLEO MATIR SYSTEV EILA MASII BulLCItlG EXhAUSI AIA II'VACI SYS1E'I r2 MAS IE IUILCIKG HIXFD AIR IMVJC) Ststth n2 MHF2 GENERAL Sl IE 6TRUCfURKSISYSTKN$ 6 EOLIPIIENT
II RP 2 I!ASTER Ei .,rlIKIIf Ll St NCI ~NSc STSCCII COOK LlSl 12/0'3/SA OATS. PAGE FIIOJ STSlcr COOK STSTEII TLTLK n2 02 MOP IIP VII MASlK 0UlLOIKG 00lSlOE ill CHV17l yTKiEH HASTE OUILOlHG POTABLE HOT UATKR $ TSlER 02 MA A WAS lE gU/LCfhg PKJURII A/R lllVP)] $ ySlgR 02 VRK NAS lK BUlLflHG RKFRlQKHAtlCN STSTKII
1 IIA SHIHG ION PUBLIC r uQC A SUFPLY SYStch HEL-H2I HASIER EoulPIENt LIST CATE 12/09/81 PAuE COHPCHEHT IABLE cahp NPAO IE C/ 'P caoE carFOHQIT IOEIITIFICATIOH C R caHP ABccEF 0.. Utllt ', tf U111 51 UHI T C L EK 6R 4 P II SPARE SAF PAA'f Ro CLS ll AC AIR C&)HUII IOHING UNIt 'OI IILOIIKR X A SCFN PSIC HP C 4 02 015 5 Ao AIR cAFIOKR H VALVEX 8 O IN " P SIC OECF 4 0 '02 019 l C I, Ail Alit HAtIOLIHC UNIT H BLO)IER C A 4 4 SCFH IIP 8 42>>02$
'Eif 4 I il'H Aiih i ~U~~E '.-:.." "- -l VS IO ~
8 ~ 02-ES T AL'I ALTKAAATINO RELAY CKfSKR. EXCI LNBIIP~ti I
" = - ' ~ ~AtlP 8 = l ~2=222=- 42 555 AHP AHN Ao AA AR AS it IHFLIFIER /hXUhC I All OFERATOR l fI) RS ilR AECEl.ltetl ALAR)2 PECOAOER, I IR 6 li I 1 CH . K II IIISIAU VX 'CA II&LOU OO:
AHtlUtlC Colll ~ l . 0 8
~ 4 ~t~.l 0 0 ti..
8 il I I 4 I '
'~2 ~
02 19$ OR 22=IIII. 42>>120 42"205 222-Aux Autt IAsl CA . LKct AIR RELEASE VALVE 1'Gulp ' t NstRU xtll 0 ~ 8 ~ Ot-t&5 AV H VALVEX XFL IN P $ 16 OKSF 0 ~ 02 150 Ail AIH LASHER ll F ILTER Xl l.....-..."..8':/f 2' ';. PS 0 A AT AHALYZEA INSfA I N CA C 4 l2 ' IltIIII~ 150 eo eoARc lIisLRu I dlli..g:;-.-.:'I ":::. I
~
4.
~
BJII IIIININ JUMOIIVN N~IOOU C ~ ll
'l" ~ .
0 8 I 4 I= 0 ~
'BH 22=222 BL IAL:R N HECFUN XK FTLB RPH APH C 0 0 02-020 'l BLR eGILER N HTEXCH 8 4 KSFT P SIC C OR 025 Ot BUOY el))T I HKCF I'H 4 4l 44 4 4 0 0 ~
4 0 4 4 gL.t.7~ f Bt .-i Bt&t 8&ttERV 125 VOLT BATTER'Y E I OittRV SATTAY .- I Pg 'l O~:. -)~Big 8:.. &;i:.',;;;:i5:
.. ' t),5 ~ ',". ~..'gti ,. VPO-'I ." $ CC AKPH 0 4 - 02 260 ~202 252........--.-...
4, CR 154 VOLT BATJERY 8 ~ I IIIV NOVI II ~ . 85 c cohphessax tl BLOMER SCFA PSIC IIP C 0 02 010 CAR I'IL&)RIAE AIIALTZEA/RECOIIGER I I NSTRU A 8 4 02 I50 CB CIRCUl f BREAKER CKIBRK I . '&'5'..'5 ~i- =: OE6f,. AHP 8 l 42"265
.IIt I-.~iof '"
CSL CAULK E ELEcaH cxxxxx 02>> CCU CaOLfho CglL CI.H'fRAL CatltROL VII IT "tiiill INSTRU UCCFF 0 4 4 Iiii.........IIVII.-.P..2........-..2-.5-.22:825 ......--, 4 0 02 CK Ca'IOUC II VITY f LEAK)IT I I NSIAU CK ~ ~ '.l 02"Ifo CtiAACUAL F IL f ER ILtER CF CHL cl EOILORI hATOAS ca'loUctlvltT IHolcATotl H H F
~
I IHslRU llllll cllcxl ~, A ~ 4 l ', SCFH g
~ .: I, -PSI ll C 4 ~
HICR 0 0
>> &&, 8 C
8
.l 4 4 02 W>>
02-dA IR-L I 5 CIST C )Blot)CII Vl IT INt) TAA4 Sl'I TCH I I )is lRU CIS 02-250
~
4 8 Cl 1 COHOUCTIVI TT INOICN I AANSHII CC'll ACTOR ~ CL lE o)IILY8 I I HSTRU "ll 4 8 0 02 250 CHER L CXf RKA I) ~ 016F AKP i2 COE Io)AAOSIV1 f Y SENSOR t t tIS tRIJ XEl 0 ~ - 0 0 4 0 8 02 COND COHPU'f EA I I tlS f RU 02>>202 ca l caHouctlvf t Y ANAI./coNtRol.l.ER I I Nstau CX 4 8 . 0 , 02-15$ CONtl CJIlttEClt)RI ~ CL ~ II. 9)ILY ~ ( E.LI.Cotl A XXAXX 02 COll Ct) IROSI V I I T RKCOAOKR I It)Sf RU XRN 8 52 CP CR C')Hf RCL PA'iiL Cari cotjPLKR C IOOF I ~ CL ~ lK atILY ~
=
E 4 t'ttlsl'Rit 4444l itilxi
~ ~
5ltitdt X itiC
~
l 4 Zzl l' 4 4 kii 8 4 ~ 4 4 02 4 02 d$ $ 4 02 CII Ca'IOUCII VI tt RKCORCKII 02 20$ CR (t ILLcR 'Oi-'054 l I i'" i CR C HA)It H HKCFUH CX 4 4 TLB AFP RFr 02 106
'*'2"525 C
I 'f CAH CS ca:ltncL ~OATH racuLE Co'IOIICtIVIIT'sut1tH"' CUARKhl IRANSFORHEII I t I t&of PU
't)ISTRU UTTCC tlx I' 4
4 4
'it 4 " 4 i X .II l
OR 02 515
IIEL CONP CODE Cf H 21 COMPONENT C4'ISUC 1
~IP of Hf IF IC AT LOH IIVltr TRANS'Ilt tER R
SO COMP ItASKIH6'lotl PUBLIC ABCCEF MASTER E4UIPNLNT g . COHPOIIEIII TABLE I iJ)f f uLEA SUPPLY SYSTEN
.. 'g 'HLf 'CE LIST 0 UNIT C
L 0 OAtE CR I 2/09/81 C~FP 0 tl PAGE SPAIIE SAF PAAT Ho CLS 02 234
': '""'kk-lhc tovc'0 Ct CU COCL fit IDIHSlh4 UtIIT ACCuru X ax 0 I 0 'I2 42 455 52=!IOIL ..
CO Cl c2 C3 21 VOLT BAtfEAY CMARSER 125 VGLI BAf tERY CI'AAGEA 262 uolt sstlt+I c~ss Ik E C BAf fRY
~REER~I0I:..'.
BATfRY 41 0
'" ~ ~ '6 ':.,'-. I I..;.:-'I', ~",jl';:,". VDC " VPC AIIPH ANPH, AHEII 8,
5 5
~
0 -'.
~R-CAR. -..;. 02-2&1 42 261 CAI'PER H VALVKX 8 6 IH PSLG DECF 0 0 0 42 019 Ltf Kc Cftu'It COLLECTOR CEllSlllt I II F ILIES ~ ~
EHAIAU KEs2 5:, 5':.>>.'; SCFII
.r.'..I:,;,.:. I 0 5.1C~D II2=kkS ~ 2-1 III kf-OE CKf CFS DC lECTOR 2 EAE DIFFERENT ~AL LOI~MCH fj INSTIIU ~SEIG4 $ ,
INS IAU FS~O
~ .'">> -"PP'. ""',;;";:;'I'.I ", '"." 0 . ~ ~
i 0 0 8 0
~ '2>>ALTO 5
fi 445 OIF CIFFUSKR H P IPEX'X X 0 LH PSIC C 0 0 42 080 Of Disc FUsf 0 ol scuHHKct CKTBAK A A DLCF A NP 42 Rkk ' E lf I FER lttI I JL LEYEL AK coADI'R ELR his Eftf'fkfiifliMISEL ~Su ICH I tls T ALI 1 NSfRU LRD LBO 0 0 LL ~ ~ I'". 'P'"' I' ~ ..'. '202-230 IIR 225' OLf OM DMS CIFFE'llEH LEVEL E."MI LfBAAL ZER CEHI STER Cf'HAIIO METI.R fAAtlStllfTER K IHSTAU NIRIR-A IROAY
"-ILS~RIIA
LTD CO0 0 PSIC
'~3lk SCFII LINE ECF I I 0 ~~E~t.02 0
0 9A S. CHTA K INSTIIU IIXCB0 AIIP A NP
'I CGK Cl~SGLVKU GXZGKH ELEHEHI I INSIAU XEV 0 0 0 0 0 ~
ODOR CCCR H PEHETR 20I00 .g ....">> 0: "- s",",.I LR'". ~ .~ I P 0 0 ' f.02 115 Of ol'lstsfsutfou+ARIL ' C "RfSS CGIIIAGLLCR I cufsKA ILR IHSTRU PCD 0
- ISE 'PC kk. k.
8 R~R=RRR 02 155 OPE DRIP FAN ELBOII P IPE xx ~ Ill P SIC 0 0 D ~ 0 0 02 404 Of OPI 0 PRfSS ItiUICATOR I INST tlU P IO 0 4 0 0 0 0 0 8 ~ ~ 02 VS CPIR CPI 5 0 PRESS ltlolCIAt R C PtlKSS IHOICAflN6 SQ1TCH COMOfA I I f HS IAU INST AU PRI PS i 8 0 0 . 02>>o155>> 02-20
>=a~
i DPI t 0 'IIESS lhLILCAT TAAIISHITTER I IHSIAU P IS 0 8 ~ 02 210 OPII 0 PRI'SS RECORDER INSIRU 245 PRO 0 8 0 0 42 DPRC C PAICS IlKCOACING CONTROLLER I IIISTIRU 42 245 PCR 0 8 0
'A OPf ORVE 0 PRES)
OR IVK TRANSHIITKA, I CiftS I IZ Sktlf CH H INSTllU Pfo cRDRYE A0000 4 I ~
- ~ ~ ';I ' "Silt' ~ ~ ". 0 . 0 5
8 Ii 0.... 2 4 225 02 230 if-..(&0 CS I I tISTAU XS0 0 0 0 ~ 0 0 8 ~ 02-32S OI CENS 11'r IRAtISHITTER 8 02 234 Ot DtRS CR IVF. TURIIIIIE iiiif '5'ifiii"fkufckfIkifskffck 0 TKHF RECORDING SvLTCK I ~ssu tsf I LNSIRL TRS
~u0 ~ .I ~ l ~
8 8 8 0 0
. ~
02 g2 02 125 325 245 Of I C tf tlF TAANSiI1TTEA I LHSf RU I 10 0 8 0 RR-239 OU OV OIISIA or I/II OEA"RitltR auf'I'sALVL CAAlh VALV~
'iz(a SPV:
ILKC TRQIYORA ULIC f CONV MTERI
'I H
IlfKXCP VALVE x V LLVEX XO'X il 'AlxdiIV" xiii'f I I tfSTRU KXX 0 AX 0 4 0 IH LH
'il414 PS IO PSIC PS IG ski ll H BII 0 ECF ""b0 EGF ECF C
C U i'. 8 0 i 0 0 42-055 02" 130 02 02~902 02-L&5 K/P fLc'C Tfs OFNUK NA flC CONV ENTEIl I I HS I RU EZ 0 8 0 42 1 &5 E/3 ELfc IHutt tc F Ovf R EL'PPLV 1Ni f AU xP xxli 8 ~ 02-195 1 EAHP vuLTAGK AMILIFIEP IIII FAEAHIL I I IStfu frr JF 42-1 I I ftt IUIICZCA ts I'U'IPxx x x 4 F fHO GFI' 0 C 0 ' "0 0 Oz-401 ut EF".X IHC EXCESS'FLOli'CllEClE EL!CIRIC hfltlRIG COIL VALVE: E V ALVEX CXX' MKAILR XXXAXX ~
". 1R 0 0 0 514 0 0' OEGF a i i 52184 92 294 C
I MASHIM610N PUBLIC P c. I SUPPLr STSTEN I!EL H2 I MASTER EQOIPHEHT LIST OAIE 12/09ldl PAGE
. COHPOMEHT TABLE COMP C HPR0 IE CI P P SPARE SAF .
COOK CONF QMEMt I BENT IF IC I'I IQN A CONP ABCCEF 9 UH)f. Uhlf J UNIT KE 62I 5 H PART h0 CLS EIIQ I.L.C TAQHTDRAULIC QPKRA'I QA H VALVOP C NN LS FTLB 02 .SOI fl LQLTNETEAISEE V FOR SAA USCI E ltlSTAU ETICSI 02-295 KJ EIEPAIIS IQII JQINI H P IPEXX N X N PSI0 I C O~IR-999
.I - TH::.I .:, I 'l EJC EJECEOIIEEIIJECSOR OR DUOIOR II PUMP ~ O X 00 .-, ~
0 c !l 42 OBI xxx I ~, f fl,8 '."..:,,'-'; RFII RPtl C I I - 02 104 ELF INE A LIGHT fIXJURElcCQA(K~ ~KL,(lt20tf~VXIK I ELP EN:RGEN~CY LIGIITING PAMCL C CKTSKA I OAR I 016F ANP 8 02vS05 ENS4 rC'c I SQUARK VOLTAGE OI.VICE I INSTRU Krr AF OR-II I E'IG EPP EO EhIIIME ENERGEMCT >ONER PAMEL SPiC I AL I IT E CUIP AMO OOLS I H E EMQLMC CKtSKR X OABl ~ . - '0 "g",:,"." 0KBP AKP $ C 0 0 0 . 02vS45 92 455 ES EXIIAUST SILEtiCEA H PIPEXX ESH IL.CTRIC STA IP HEATER E I IIEA EA XIIIII I I ' I ~ I C I 02 294 C10 IRtMSOLCIRIVQLTAGE I I NSTAU ETI I 8- 42-EUII EV EX EXC' I IL".C TA IC Uhl I HEATER EVAPORATOR EXHIUS TEA EXC IIEA Ih l hu F ILIER C tl K HEAT ER OLOMEA QfgCAA
~
E I~ ~ I ~ C A I III
~
I ~ ..:=.,
.'"' 'Oaf I:...".!';'faro'ISK ~
Cf fl
~ ~
irlIC 110
~ O IIP 59 HICR 2
k C 0
~
I I '
~
I
~yaR .
DSO
)2 240 9k=R9'9 42 H F ILTEA P C ~
FA f LANE ARRE Sl CA tl P IPE XX X 'IM PS10 I I 0 I I I 02 040 Of FC FC FCtt tch CGIL FLCM CQMTROLLEA FILL CQtthCCTICN tl P IPEXX I ..;" i, I:;.;.;I,I;;.".; -.I ., I
.',';l,l;;,': ' .
o I . OR".939 IIR iI ai-oaa
~
or FCV fc. FLQV CONTROL VALV~ FLCV CICIII Mf fl +ALIIEX I INS TRU FEIN I I I I I I I I
-r- I 8 ~ ~
I I
~
02 IIO
'I I I I I I I I F4 F4CV FL..v GLASS FU:IC I I CM GENERATOR I
I IIISTAU FIICCI IISLRU 0
."'::i;: 'I 8 .'n 02 115 02-1 01 ftl Fl FIC F liNC I.QAO FLQM lh0$ CATOR FLCII lhOlCAfltIG CQMjrIOLLEA $
aiollrll D, I I MSTRU
'f NSTAU FCI PEI ~
I ~
. '. ~
EP
': 'I., '.. ~. ~ 'IIP I 0 I .0 ~ ~
I .
- 4R QRI IE-Ers
- 99. f5'9 Of flS FL)V IhOICAtlhG SMITCH I IMSIRU FSI ~ I I I I I I 8 02 S25 Fl I FL)M lhDICAtlhu TRAMSHltt R I IMSTAU FTI I 8 I 02 240 fL I L I C!I ILtc A NI HIER QR"0%0 FLT F
F ILT ER H H F F IL TEA ~9 SCFH OPtl '":."'510 PSIO MICR I C C
~
I
~
0 I 02 010 02"040 FLX FLEXIBLE COMIECTION H P IPEXX $N Pffg ~ C g f tt FAM H 8LOMER C A ~ I ~ BCF . I PSI4 IIP 0 I 92~240 - 4 I ~ ~ I
~ ~ ~ ~ ~ ~ ~
FQ fh )tt iICiUkiEO QPKPAi QR H VALVCP 0 IN 8 02 Sit FV FLCL IhlEGPATCA I lhSTAU fQH I 8 I 42-144 FQI ILEIL Ihti4AATIMG IMOICATQA I I MStAU F44 I 8 I 42 180 F4S FLQM ihiEGRAf M SlilfCH f fkStRO FN 8 I I I 42".S25 42 245 FR FLCV RECOIIO R I I MSTRU FAI 8 FRC FLEAM RECQN01M6 CONTROLLER I ltISTRU FCR I 8 I 42 245 FRC S fLcU ricQNoihG cctt lAL Rhl fcH i -ih" iiiu FCR ~ 8 I 42 205 f L I4 IIC'I I I hSt AU F Sit I 8 I 42 RS5
'f6 FRS PECQ:SOIMG SM FS FLCCV Sv1 lCH I MS Inu FSI I I I I I 8 QR-125 ksiv FiQv cfrihiecL iLV-sH. c. VALVCX BEGS 8 I 02 Fl f Lait I RANSHIT TER I IKSTRU FTI I I 8 42-250 F lO TACIISOUCKA ~ FREOUEIICY I INSTI U STI I 02-FU f ILT E!2 Utcl i ! ILiEII II PSIO ICR C 02 F VII f USK ELCCK tt'ILCE!I CL ~ I f CIILY~ I CxtOXR A II I OI6F AMP 42 FUSE fUII ~ ~ CL ~ IE lMLro" It" CKTUKA AXE X I I OEGF A IIP 02 FX FLOV fAt PcQf lit tt;Btiiii F III ~ c ~ I I -
0 I II C il I 02-440 0 I IEN NEIILNATQII QEMEISA 0 A RPH VAC KV 42 245
VASHIHCION PUBLIC I RsiER SUPPL'T SYSTEN HKL-HZI NASTEA EOUIPREHT LISt OATK 12/49/81 PAGE I
~ 'OHPONEHT TABLE CGNP C NPRD C 1E C/ P. Is SPARE SAF COOK CJNPOHEHT TOKEITIFIC ATION R CO NP I BC OE F 0 uNfi .. II UNI 'I J UNI T L EE CR 8 H PART ko CLS IV I IIC HCU
..... I'F CIIAVI tY VCPII ILATOR ltitIR I KATthG COlL HYGR AI'LIC CONTROL
... HIJD jQJC fj~NY~F VIIII fER H
8 ll H BL9VKA HEATER HEA t ER CRORVE Ii~fgygg~ OXO II KIXIII 00 40 X0400 l 8l g
~ .'g SCFII $ ".5;- : I'-'
I
'0 4
I l I I S
~
l 4 4 S 4 4'- 0 C S C 8
~ ~' I 0
42"421 02 290 SEERS. 42290 y2-065 Ol I:G'I I ANG ER ysNVEIBr A ~ StRUT I SUPPT N SUPOIlt 0 K IPS ~ 0 0 0 ~ 02~ HO I YOAALLIC OPEAATOA H VALVOP C XI L8 FTLB 0 0 8 I 02 34% N)l ilP HA IIQIST HYOAAULIC POMKR UIIIT HYOROGKN RECORBINER . H II II HECFUH HECFUQ AEcol 0 CX CXO xiii lN TL TQ
'.:I,-'.-~;:::
(
' +s RPII; SCFII 'PH OECF 8
8 I f l
. IiR-068 02 45(
rs Ht Fest stATION P jPQXX $ A S=SS~r FYDAAAT H VALVEX FAO H D 0 0 02 015 Ol I~ Xe I
'ISIl ~ I y.:;'-42I: -,
HIP r3T ISA IEA NEAT KXCI'AplGER H 8 IEKCH ~ ~ 0 0 0 C 0' 4 OR 055 Ot ru FuhtoIF IKIS H H IX FEAT EXCXANCEA SPPj""i:, PRES, I -:.....-HBH '.S;.U S SSS C $ S VIN FAI'OULhCY NEj)A H2P HYJRCGIKN PKCOAOElp I IHSTAU iAI I O ~ ~ SS SSS I/P CURREhl/FNEUFAll C COHVKAIER I INSIRU I'YIO"0 8 ~ 02 165 IL INOICA IOR LIGHT ~ ~ CL ~ IE ONLY ~ I INST RU 2 IX CX HV H'V 0 02 6KHfA~FDAIF -;;:..;, "-....(,... j ~: ...: 'R-EOS
'lS N NVKATEA ~ KM 8 IA IH YAUFEHI RACK I :. ~;....: I,; I'".'4.: I l}2-IEO JI IRRIISOSCERICURREliS VAITHITERISEE V FOP BIR USE ~SH I
E E NECF UN INSTAU CASU X EX I'gp I IICB ~ S MATT MATT iL S 02 295 JP Jrt PUFP H PUNPXX K I F TIIO GFII 0 8 0 I 0 02~026
" LA iAO LICHYhlNG ARAESYOA EirCTRCiifc tlrE OE AY NSTAU UY4 Bi i0 8
e 4 0 02~ Lis Lou AHPLITUOE SELECTOR 1 "VEL CONIROLLEA 1 INSTRU UT0 Al I i .. 8 325 LC 1 INSlRU I.C0 ~ ~ O 4i->Sr.... LCV LiVtL KOHIROL VALVE 8 VAI.VEX F X IN P 16 OECF C 4 02" 133 LK IE VK L ELEIEKHT I I Ns I'RU LES I 4 0 ~ 4 4 8 ~ 4 02" 110 LEVEL GLaSS IHSTAU L'IICC I I I I 8 4" 02 1l5 LG Lf EEVLL INDICATOR f INSfPU Qf I 0 I 0 0 4 0- n'84 0 02 115 OT LIC 'EVKL IHOICATINO CONIROLLER I INStAU LCI 0 8 42 IS5
- LIS LEVEL IllolCAIIHG Skit CH I IIISTRU LSI I ~ : 8 '. ~
0 0 02~325 iiio iKVEi INOiC"Thills Sil'ICII . ir -fllSfhu-LTS' N 8 02 2)4 L'iS L I:li t SVIICH INSIRU ZSX I 4 I 0 I 8 4 02 325
'LEIS LOCAL I'illUAL SMI TCI. K I 1IS I llU I SX 4 I I I U 42 325 iH)A YOLTIGE)CUkhfNt SfGN1L L1hlf f f Hs)HQ VC 8 0 d2 155 LOC LUBE .C IL COHO I tl ONER H F ILTEA C 00 QPH PSIO H ICR 8 0 0 42 415 Ot LP LIGHTlh6 PANEL E CKTOKR X DAB I 20E VAC OTCF ANP 8 I 02~305 iVsi IL"C IRCIIIC FOViR SUP>LY lE7SI I ill f t llU XP XX I 8 I 42-195 LA LEVrL PECPIHOCR 4 02 245 LPS LKVrl RKCaholhG SVITCH I IHSTAL LEIS I "l ' 02-205 LS LEVER IV IICII f tllSTPU lsi i 4 X. II 0 02 325 LSPV LEVEL CONTROL VLV-SPV I VALVEX XEX 1N PSIG OECF ~ 02 Lt LKVrL TRAHSllllTER I INSTAU LTX 0 8 fi2-230 iiO LJS iiiplSJi.sAii iEVri L44 VOLUHE SI LTCTEIR I
I I PlstllU I NSTRU iUYI IL' XX 0 I X I 8 U
! 02 02 325 LX LEVEL IESl Pottsl I I NSA IU " Iia LEVBX X I ~ 4 I X I 4 OZ JGO at I GrOa IIOtoAX C 42 300 N/A FAPIUAL OR AUTO STATION I INS'TPU UCI 4 8 4 02 155
NASHIN6toti PUBLIC r[IVEIL SUFFLY SYSTEII HEL 826 HAs TER EOUI FI ENT Lt 4 t DATE 12/09/al pAr E 5
" COHPONKHT TABLE CO>P CODE COHPONENT IOEtlf IFICAT ION C
R NPRD CORP ABC CEF 6, QNgt '. ll.' Uklt 4 UNlt C AE EE CF 4R. Li 4, 2 g SPARE PARf NO SAP CLS HC I'0 IS I LAE C OHT ROLLER X 8 02 155 Hc I'O'IOA CONTROL CENTER X 8 02 405 I'OIS'f LRE ELEHEhf INSIRU I I I I I I ((=[20 HE HI HOISTUILE INDICAfOR THS
'NSTRU HC HEN NN I AU Hl0 0 8 .R S ~ ~ .:'2LFS HIC HIS FO I'OISTL'RE IHDIC CONTROLLER I OIL((+0 [Nn[CI+IHO~HlCH HOTOA OPERATOR =[lll[RU E VALVOP =
l[I NN LB FTLB 4 k.~ 4
~ 8 C
4 $ 4 4200155 2"[2[ 02" 502 I IIR roISTLHE IIECOAOER FGIS LURE SEPARATOR I lks TRu HRN I 8 ~ OR 205 RRS H HTEXCH K F HT )'0 I STUAK TRAN S Hl TTR E 1 gkst R U NTP 4L: EYIDD).','[I'" "<'pA, 8 4 I ','. 02"210 . HV/I HII/P II/VOL'f To CURRENT CONVEILTER FlLL L~VOL To PNEUHATI C COND~ I. 1HSTRU
~NS lRLl~Q g I .' U:r.'-'" .. '0:1 ~ ~ 1 j:.I pl. ~
0 (, ...,PR 1&5 R=LR HX F IxEIL II HECFUN ~ NN FTLB APH APIl C 4 I 02 121 Ot IQ HULI IRONE AIR CONCITI ONER M HTEXCH GH 4 KSFT 4 0 NBH C I ~ 0 02 015 AOLLLI H P IPEXX K ~ TH P516 I 02 084~ 8 Ol.r - 2 515
~H((RU~AA': ','. ~ gi","';:" .. ': '[!>2'Fu[P '-".-'- ~
NSC p'" 'ump CSCILLCGRAPH IXYGKk )ECOILDKA H IHSTAll PUMP XX KILN
~
F TH 0 6PN
'RII RPH R
C A~l"'! 0
.ll 42-0 RRR NO PBU SL ISIIIC PLAYBACK UHIT I NSTAU 02 245 I ':
FC i'CV FR~USSURE CGN'IROLLER FREsstitL itl ANALYZER KOOfAO~AVf I 8 - INSTI[U PCI VALVEX g 0 .h: '.! 0[CF 0 C g,
~,,'.": ~ ~ ..'y'c . 02 02 ISS lSA I
I PH FHE P[IIC FH ELErEHT FII II[OICATIHG COHIAOLLER I 'HSTAU PEh I INSIRU ACI
~
I::"'~ 8 04m '.i',-';.0[ ~ I 0 R...i 8 0 I S~R=[! R..... g
~ ~
02 154 42 155 Ptll 'f FH INDICATING TRAtlSHITTIIL I INS IILU Aft I 8 I ~ 02-244 PHRC FH AECOADIRIG CO[IT AOLLEA I f IISIRU ACR I 0 ~ ~ 02 205 fHT PI AI TAAR'shfifkR PRESSURE IAOICATOA T IRR!Ru 110 I INSTAU PIN 4 0 ':' :".'.(4 ' ~ 4 0 ~ 0 8
~
4
~ ;:-, :"'2 .'2~155, 02-2[i Pi 115 I
PIC FAESS ERR[CA((00 COII[IIOLLEJI tCH,I [ [HS'IAU P((, g g ~ 5, FI 6 FR SSU&E INOICAflNG Sill lilSTAU PSI I I I I 4 I I 8 I 02 425 I FCSI ION INDICATION ELEIIEHT INSTAU I 02"I f5 POE PO Pos I, Post I I CN Ii[0 ICATOA Fosit1OII EVITCH I NS I AU IHsfAU-Z E ZSN IN I I 0 - 4 0 8 8 I 0 I 0 02~1 15 02 525 Pot POSITION TAANSHITTEA 1 INSIAU ZTN 8 N 4 .' 02 254 POIR FCrhhtlOHttKRI ~ CL.IE OHLY4 E ELECCH XXXXXX ~ 42 4 pp Furr 8 02 000 pAcxIG'P POLE R PANEL 8' 02 305 PR FR:5" LAE IFS'CORDER I IIISIHL, PP ~ ~ ~ ~ ~ ~ I 8 I I 02%245 FROG PRdGAIHHER I NstRtt UYC 4 8 0 0 42 PRV PRESSLILE ACOUCING IIALVI.. H VAI VEX F H 1H P 410 DTGF "C 4 42 ISS PS FI[ESSURE SVI ICH I ItlSTAU PSN I I I I- 4 0 ~ 8, 02 225 PS V TOLFNCIU i[ILOT VALVL E VALVEX XI X IH F414 DEGF 8 I OR-ISA I Pf POIE.NI IAL IR JNSFOPPER I 8 " I 02 SAS I'R..SSURL I RA[IS!'ll ILR i fo 'A=ssu'RE tRillsnbcitt
""" '" i 1'ksltku I 8 I 02 254 PUI PURl I'I INDICATOR' INSTRU XII I I I I 4 I I 8
8 I 4 4 02 165
~,,
02-IT5
'i "'
FUI I PUILI I Y " ISHlf' f CR I IHS t Ru X I I I rus FUAiiY Suftcii IND IC TAA
'I )Nstnu isi I i '
i ""'"i", N 8 I N 02 240 02-125
~ ~ ~ ~ ~~
PV P ILO I VALVL H VALVE% IH ' 516 DEGF I 42-110
'0I C
PAIC " CE[t PO INf TAAhsHI TIER ' I I tlS IRU 4f I I
'"ll'1P'4='5" U I I 02 RSO bus Il 1't[tl[ AESTAit[lf' "CiiPoAI 1 Ni . I I D I , 4 4 0R 000 FX PR SSUAI. I Fsf Poltlt I INSIPU PXNNNN I I I I I C I I 0 02 080 OT
0 0 1ASHINGTOH PUBLIC I 506EA SIJFFLY MEL M26 EGUIPtEHT LIST SYSfEI'ASTER DAfE 12/49/Bi PAGE
" COHPOJIEHT TABLK CO JIP C NPRO IE C/ P P ..ttfJf f,'; ':P 'Qhfl, 'PARK'AF'A CODE COMP OHKHT TOCNl'IF IC ATION R COMP ABCCEF g ~ . 4 KK 4 tl . PARf NO CLS QOC CIJICK OISCOHKECf CCUPLIHG H P IPEXX X 4 IH PSIC 4 4 4 02>> OT O~P CUV TtrE MfTER E IHS'IRU XIXCC 4 4 HA 02>>
osv culex Acttl;0 sot.EHoto ptLor sr Mf A/I RAN RC JEESI STANCE'/CURREHT COHVKR RAOIAI TON AHPLIF'IER
. FCNJIOfg CAPPER VALycx xcx IltSrRU RP0 J'I H
0 '".;:..: R" l49 2-j&5 42>>016 AC CAOlATIOII COHTROLLEA 02-155 RC CECONB IHEJ0 02 051 AD RE AEL RUPTURE DISC CADI A'TICH ELKKENT FLOV HALAIJCINO RELAY P IPE XX 4 1IISTRU AE4 = 4 1HS'f Rll UT4 4 4
-'; !..;4'I ~
1'4'->>'j!+ g: j~'.:J-; ': 4 <<.:.'-,":42=1 12=98 10 42 $ 55 pES f 9) S lOA I ~ CLA~IOHLYA ELEC)~+ X XX ~; Rle ', ee 5>> ~ ~'. ef.t 1.,1 ~ 8 Af Af FR I GERAT IOH HAC J5 INK H HTEXCH C 4 KSFT PSIP HBH C 4 02-0 1 5 AI AADIA'IION IHO ICATOA I INSTRU R14 4 4 ~ 4 4 4 4 8 4 4 02 ITS Ats AADIALIGN INDICATING SUIT CH I INSIAU R 4 8 ~ 02 g5 ALY RNR Ao FELAY JIEHOTE MANUAL CONTROLLER . CESTRICTIIIG OAlfICE It RELAYX 1 IIISTRU gCSEXR ' I'EIIRIE II~ IINRL c4N~RCL Rill'[cll ~ECggRR~ERg'2 N P IPKXX 0 4 a
) -::,,
0 0
'eI"y,.~g~.,
TN EE:". 'e.'C~ kR' PSIC 4 4 8 8 C 4 4 J':::i "-92-155 i~a42LXE% 4
,42 $ 55 02 080 '0l.
AOO ItOO N COHAOD EFBBXX 4 4 4 4 4 4 8 4 ~ 4 02-026 APV CEAC TCR PRCSSURE VESSEL H VESSEL A XXI 4 4 4 . PSIG DEPF 8 4 4 02-426 I RA AAOllfloti AEHC~OCA NsfRU Jlhg -: -. I, .-'c' -ci'l'.':"i"! 8 0 J -'.-. 'I-ROS I RS RSA RADIATIOH SQI)CH JESPOHSE SPECTRUN AHNUNCIAT 1HSTRU IHSTAU RSR I: UK+M ..':1'5 ".
-s"-.
4 "~ .". 4
~ e~>>
4>> .
~,0. 8 4
4 r '~
-'2 e42 $ 25 25i ASM PAOI A I ION SAHPLER IHSTRIJ RKXXXX 4 4 4 4 ~ 4 8 4 4 4 4 42 Of I RsR tAIAxlaL pEspcHsc spccTRUM R 1 IHstRL vA AH 02 205 I
ASAT RT ASrl TRAIISDUCER 'FOA RSA RADIAT ION TRANSHITTKR IIISTRU
;,-:::: eI 0 8
If ~05-!40 4 ..',. '! 02 205 42 234 DC llct 0 ~ IIR-021 Rl S ELECIPQHIC TRIP UNIT ~ ~ 02 101 c ILEHC ER S X 4 02 090 I
~stRU "." "..":;... >R-.I VJE"" " ~!52 255 5 .:: 00-.000 Sc SPEED COHf ROCKER C4 0 5 ~
SCR cK SCAE EN cf CEO ELEIIENT It I F ILTER IHSTRU 4 SKX
~ 4 0 ' ';"j',:,' " -'""cI02 ".<< 0 PSIQ IIICA 2 I ~
0 S.:~ >~=i je. 00 SEQ Safe.r'r EYI MASH H 4 444444 4 0 4 4 ~ ~ 4 4 02 Ol SH I ~ 9 KV Sll ITCH GEAP. CKTBHK FACAFE &900 VAC 4 4 2000 AHP 8 ~
. 02>>$ $ 4 St Sfcc.o IWOICATOA INST AU Xr X X 4 4 X 4 4 8 4 4 02 )f5 8 I 42 154 SL 19GVCLT St!ITCH GEAR E CKlBRK FACACD IB4 V AC '.' 4 AHP 8 02 $$4 SM 1 ~ 16KV SIIITCH GEAR E CKTORK FACAEE 1160 VAC ~ 4 - ~ A IIP 0 . 02 3$ 0 SMA IAIAXIJL ACCELEPATIIJI SENSOR I INSTAU VEI AM 02" I 10 sMD sxoxc ct:I:croA I IJISTAU XSE 4 4 4 4 4 4 4 8 4 02 015 Star IC Nl xt A f'PEXX 0'I 4 TH 'SIO PSIC 4 42 080 SMX M X 4 4 C 0 ~
SMA c HLD 81 F Il SUPOAf 8 44 NIPS 4 4 4 C 4 42 044 4 SP safIPLE POIJIT H P IPEXX X 4 TH 4 4 0 4 02 210 SPV InLEIIIOD PILOT VALVE I: VALVEX XEX $N . PSIC OEGF 0 42 l$ 1 SIJAT kftiJA C( R OOf KXTAACl(fl f I hfdf AU UYX 4 4 02 165 SR S AMP Lc. RACK C X XXXIXX 4 4 4 X X ~ 4 02 4 SELJCTOA SMITCII Cere XA "An I CIGF 42-325 SS Sl Sr SPKkd S4ITCII S IAAIhER N I tKIBKR f'lel IKSTPU VC.I AM Okof, AMP AHP 42 02 1001
LasHltl61GN PUBLIc PDIER SlPPLV SY$ TEtl tlEL NR t NASTER EOUIPFENT LIST DATE 12/09/SI PAGK CGHPCIIENf 'f ABLE CONP C
' C IE C/ ~ P'PARE SAF CODE CO HI'ONKNI IDEN'f 1 FICAIIGN R COIIP,'BCgCF tt.',.'Ltg)f;.-".'-g . itself ~ J UNIT L KE BR-r, K,.iCART h0 CLS Sf SCLSNIC litlGGEA I I tlS TAU VEI JH $ 25 sull IEAH UK II HKAICEI HIEX CH All II KSFT PS16 HBH C 4 OR 02 021 Ol SUN $ LtlNC F I tlSTRU UGX 4 8 02 g)5 SUIIP IUNP N ACCUNU BX $ I4 .<Er;. >> IC ET ) 44: ', TPF SV SOLEHOLD OPERATED VACVE ValVCX XC i~,'4>> ggtr>g.;/I.:>>., '" PSIy DKSF"'
E ',
"'i'::: j~~'i'"'i-' g;. 42- ~ ~ ~
R I RAP >> H I/SS II~HF I SCLICTCR $ 4ILICH CK'IBKR E OA OK6F ANP 8 02-$ 25
'la IH LP a ux Il'TApE I AY A UK I I I Nslhu 4
02 I I1 IAFC taGtlc ltc Util 1 NSTAQ XRXCXV 4 2 2 4 IBE IBI T IUAB IOI TT KL.ENEKI TURB IDLTY INDICATING TRANS
~ 8 j . ";.', .~ .'.L>>02>>t f 4 02-4'..].
8 0 IUABICIf Y RECGROEP . IBR fBS IUXDLClfI SMITCtl INSIAU XS0 0 j
~ 0 02-$ 25 IBT tututclTY IAANSHITTH I NS'I AU X TX 0 8 42 2$ 0 IC ICtlt'EAATURC CONTROLLER INSIRU Tcv 'tO lENPKRATURE cotlfhoL vA vE ILHE DELAY RKLAY , VALVES .
CX 4: .;,, 4 4 4. '-
~I...YE..'44't 8
Eljt:: C
~ 0 I;I'".'.;,'.44 444 ' 2 155 TO IRAtlSFER OOLjLV ~
IOS I INC DELAY SMITCH INSTRU XSX 4 0 0 4 4 ~ 8 4 42 $ 25 IEHPERATURC ELENEIII INSTRU TEA 0 4 ll ICNI'KRATU'%E IttDLCAIOT INSIRU I IV 0 4 4 0 P 4 0 4 4 ~ 8 02 ITO 42 I I g I, '.,i 4 8 4 0 IIS ILISTRU ' " i giht ' IK IN TCNP I AKK I ltlCA INDICATEN4 SQIfctl ACCUNg INSTRU Xsc 4 4 hr 4 Y,g"j,l'rr
- 4) 4 0
.4" 0 8 i~t':::,
0.<;-Etr 42 $ 25 02"225 ftl 'f LNC TOTAL IZEA INSTAU XGX 4 02 L90 14R IGROUc RECGAOCR THSTRU XRO NSf 8 SS 14T IGNOBLE f FAILS/IfTELL TR IRAIISFIEANCP IR l I Ctl p ER a'I LA SECOR GEA "'44=444. 02-20 5 TR thtaXLAL RECORDER 02-20 5 IAO tfANlhaL BLOCK/STALPc CL ot E< ELCCGK AAXXXX
'4 42>>
TRL IRS 1$ ISC It thagc+Af OR IENPCAAIURE RECORDING SQI TCH ICIIPERAIUAE SQITCH I 4:IQ'CA Ai UA I S C AtltlER IC'IPEAAIU&E IRAIISHlfffX I ICt 44~Et INS TRV ltlSTRU ltlSIRU I tts TRU TSR T Se EE I 'If41$ 4 4 4 9< - '- -" 4 C. 4 CIRC Ii... 8 4
~"4 -'>>02-4$ 0 02 )05 "9C."$ 80.
02 150 4 02 2$ 0 fv -'fX- frst valvE VALVCX F I tl Pc16 DE CF 02 t$ 0 tufttH'l! Itf.f.i. f I fPKXX 0 T 6 4'It ~ ~ IY ACLAY 4 FNEUI'AIIC COKTROL I Ns I ttu PCXAI40 4. 02 UFH v UVLPLCX FIELD HOOULE ltalvt H I NS I A 4 U 'f Y CK vaL'vh x 4 4 IH FSIG j OI.CF 0 02>> 02 150 V USC L. l FGA HfLIOAA USL CttlLYI VALVEx IH PSI6 OECF 4 02>>L$ 0 VAR tl i AA HC I CA INSI AU EIX CD X C OR-295 Vain iHatl f'>LCCA t ViR I its f AU YX 8 02 vB vacull'AIAKER VALVEX .IH . PSIO C 02-OEI 5 VGA H V LBRA I ION AHFI.t F I KP I tlsTRU VPA =0 i l'IAA il (N 0 4 ~ 4 8 42>> VBC 'LCVCIIT LNSIAU VEj 4 8 4 02 LTG VOCC l ltlAatluN/CCCCNIALCLIY tttutC I Ksf AU VEX X X 4 4 4 X 0 42-$ 25 VBLS VBS viuhi t ttiii shiit icii" Vlrlha I LGtl tltn ICAI IAG SCI I tctl '" I I Its IKU VSI tKsihu vsv 4 0 4 0 j 8 8 X 4 02 $ 25 02 $ 25 vo 'itr:Mt AG Gc vl cE P lPEXX I 4 ltl I $ 10 4 C 4 0 4 02 $ 95 01
MASHING ION PUBLIC r2ILE h SUPPLT SYSTEM NEL N21 HAS'TER EQUlPXEH'1 LIST BATE 12/09/81 PAGE 8 CONPCHEHT TABI.E I UNION:;r CORP COBE COKPONEII1 IOENT IFICATION II 'OMP ABCCEF 0 . II IlIll7 UNIT l. EE sa 5 N PART Ho cLs Vx IhstAUFENT ISOLAIIOH VAI.V N VALVEX FAO B Ps lo OECF C 4 4 4 02 Vt 'b JPOA IZLA N NTEXCN E 4 PSIC MBN C ~ 4 02-OSS II USr,Jl FOR NELCOAR USE 0 Z 42= boa vlko olaEcfloH REcoaoEa I THSTRU zR41A 00000,'VP0~ ':.-:.;: . zing. 40405 VOC ' 22 222 bof bI2IO OIRECTION TRANSIIITTER f luSfRU ZEfEH0 005)g; SJ. +j~ $ )0 ", )BC voc . 0~2-OSS 4000'SA II2-222 I l2ID SI'EEO AECOROER I INS 1 AU SRXGA4 00045 VOC 4 ZZZ 00005 VOC 5 '2"0$ bs1 VI IO SPEEO 1 RAIISNI TIER I IHSTRU SET AI 4 00050. HPII OOOOI VCC 4'OOOI VOC 02>>435 VTO bUll X IIATT TRiHSOUCER VAfER UNl'f Hf ATER PRIHAAT CCHTAlHHEHT PENETRAf' . E H I HSTAU HTEX H PEHEfa ~ A g;""-I',-. "";.K olio-:,. $ ., r;~+ ..
- ."I:,q.4;gt'j'.-
II'ff0
~ .
HBH, II C 0
"~ ', ';r "0 42-4 55 02>>)I5 XE ELENEHfy SPECIAL~TPES ~H+SPU II1JJ2 xa FECOACIA2SPECIAL TZPES I IHSf AU 4 OR X'1 TRAV SH I 1 ILP ~ SPEC IAL 1T PE 5 I I hS f AU 4 42 Rso SZC VLu TAVL POS SII CLOSEO E INSTAU ZSX 4 4 4 4 4 8 I
4
'-"" '2g>>
SSIO SIO
'ILV 'faVL POS SH TNIER OPEN VLV TPVL POS SILOF/N ~~HSfg~s E 'NslAU Z$ 4. 0'..." ~ .I2. ",j;,'.2F: =': .. '5 ~
4 I~ B
~ .".'::: 02~
I~l~kR 5 Isle
~
bLv TevL pos su Toao CLCSEB E INslau osh 4 ~ 4 4 4 4 S 4 42 ssf 2I bLv fh vL pos sil loao opoI E INsTAU Qso 4 4 4 g 4 4 4 8 4 02>> ELECTRICAL MOIOR START COIL E CXTBRK O
* ~; ~ lw l'tq1 ~ ~
DECF
~ ~
AllP 4 02
\~
r ~ 2 /.%4" ~ J ~ ~
isissisl eiseiieeiegeaee¹eeegeeegeggggegegee¹¹ga¹¹¹¹gg¹g¹gg¹g¹l
<< ~ ~ ~ <<r. ~ << ~ <<<< ~ ~ <<<< rr <<<<<<<<rr ~
gegggegg¹ee¹gga¹g¹¹gg¹¹g¹¹¹g¹gogg¹¹gggg¹a¹¹¹a
<<r>> r<<<<<<<<<<<<r<<v <<<<<<<<<<r ~ g¹¹¹¹ge¹l +r1<<10 ~
i S e ii 1 e e II II e g g i II g e g g g i ¹ e g ¹ g e g i e ¹ ¹ g g ¹ g g e g g g e ¹ ¹ g e g g e e ¹ i ¹ ¹ e e g ¹ g ¹ g ¹ g ¹ g I 0 jf~gtg J g e I IL¹¹I~ I + I ~~ fJ fflI 0 A1I k IJI TI IIfLILlUII II ¹4 5 H I II8 ILIra I ¹ g! I ai a
¹¹gggg I
I ~ ~
' USER v VAIICE -AT SRIL ~ SORT ~ REPORT 0~ ~ 00 ~ ~ 0 ~ ~ 1 ~ ~ 40 ~ 0 << ~ 0 0 ~ 1 1 1 ltl 1 1 1 ~ 0 0 ~ 0 ~ ~ 0 ~ 1 ~ 0 ~ 00 0 0 ~ ~ 0 ~ 0 ~ tt tl ~ ~~ ~ ~ 0 ~ ~ 11 ~ 1 ~ ~ ~ tt ~ ~ 010 ~ 1 ~ 40 ~ 0 ~ 1 ~ ~ 1 ~ ~ 1 ~ 1 ~ 1 ~ 10 ~ ~ 1 ~ tttt ~0~ ~ tltttltttltl 1~0 ~ ~ 1 1 ~ 0 1 ~ ~ ~ 1 ~ 01 ~ 1 ~ 1 1 ~ 1 0 ~ 101 ~ 01 1 ~ ~ 0 0 ~ ~1 ~ Otttt ~~0~1 ~~1~~ tt ~ ~ ~ ~ 0001 ~ 11 ~ ~~~1 ~1 ~ 1~
41llttt~ 1 ~ ~ 0 ~ ttt ~ Oltttllt~ 1 ~ ltttl M V VMV V V 'V VLI VLILIVM V V V V LIM Ll V V V, Q V M LI MMVLI M M V MVLIMQ V V M V VVLIM V O'V V MMMM M M V LI LI VVMLI MV. V V LI M M UVLI MLIVVLI VVVM V M VV LI LIM UV V kJSQM LtSI~QQ~QQQ M Q M MLI LI U LI MV M- VV MM U U V MMMM LI U VM V U UV V UM UU .U U VVLI VVVM V V V VVLI LI M LILIVV VUVLI K~L RJlQNL LI M V M V V LI V V V M VM M MQVVMM M M LIM V M M V VMVVMMMMVMU UMVMM QLI V VMLI M V~VV IIIIII If V
~ ~~~~~~1 ~~ ~ 1101 ~ 0 ~ ~ 0 ~ ~ ~ ~ 01 ~ ~ 01 ~ 0 ~ 0 ~ ~ ~ 1 ~ 10 ~ 10 ~ ~ 0 ~ 0 ~ ~
ltl ttlt ttttttltttt ltttlltltttttltttttttttttl
~0~0~1~1 ~0~1~ ~ ltt1 ~4 ~ ~ ~ ~1 ~ 1~ ~1~
4 ~ ~ 1 ~ ~ ~ ~ ~ 0 ~ ~ 1 ~0 ~ 1110 ~ ~ ~~~1 ~ 0 ~ 1 ~ 11 ~ ~ 0 ~ ~1 ~ ~ ~ 00 ~ llltttttlttttt 1100 1~1 ~
~ ~ ~ ~1 1~~ ~ 01 ~ 0 ~ 0 ~ ttt ~~~0~ 10 ~ 01 ~ ~ 11 ~0 ~~4~0 ~
LABEL. PRTOO -FOR SPOOLEO'3-01-06<<13'58 STARTEO'3-Ol-06e13:59v Otl'RO T A
ttAStlTNGTON PUBLlC POttER SUPPLY SYSTEH kIGLEEMkRKhLXQ SORT REPORT NUHERlCALl.Y SPEClFY TttE FlELDS YOU MTSH SORTED ~ ANY FIVE tlAY BE SELECTED ~ SORT T CONTRACT ~ ~ LIUI COHPONENT ~
~LE!! ~ . EPNo COMPOS ~ ~S-lTE ttFG ~ ~
EPN ~ ~ HOOEY'JlUAL alo.. PLACING A NUHBER OR LETTEll 1N ONE OF THE BOXES BELOM ALLOUS O)ILY RECORDS COt A t NG A VALUE TO PRlNT ON YOUR REPORTo LEVEL. VALUEl~ ~ VALUER' VALUES' SElSHlC OUALlFYl 'YES ~ ~ NO ~ ~ EttVlRONHENTAL OUALlFYT YESo ~ ttO ~ ~ RU LO Gi
~ ~ PROGRAH ~c)-SqR+ kS81H~~Ullt I~2(E8 SlJPZLI~SI RAGE J1u-0000 ~
I MNP-2 SRN EOUIPNENT LIST . DATE 01/06/83 IX 2 I2 ~ I 4~ t E.lSNI~~RAEAKKSSt~ 4 EPIJ DESCRIPTION HFG NOBEL BLDG ELEV S DETAIL E TH USE HL TEST ANL Fa C SAFETY FUNCTION 'ID FRED AIE DRAMIIJG CONTRACT A/E LEVEL EC ZONE 2 '" CAC-FCV-IA (EIIO) FLOM COILTROL F130 FROH X-49 53A5659 P Y 01 0 09
~2A H551 Hil CAC-FCV-Iht A H551 Hl1 COHPOSITE FOR CAC-FCV-IA R '1 5 H / ~
CAC FCV-18 F130 53A5659 P Y 01 0 09 N551 H6 2~5 IEIIO) FLOV CONTROL FROH X 97 22llkl 222 2 CAC-FCV-18t N551 H6 COIIPOOIEE FOR CAC~FCF-I CAC-FCV-2A F130 53A5659 P N 01 0 09 H551 Fio 2 54 (E/I01 Ft,O~VCO TRO 'I -9 CAC-FCV-2At N551 F10 COHPOSITE FOR CAC-FCV-2A 2 '" CAC-FCV-28 (EHO) FLOV CONTROL TO F130 X-9Q 53A5659 P Y 01 0 09 SGM N551
.i2
~ CAC-FCV-28t N551 COHPOSITF FOR CAC-FCV-28 CAC-FCV-3A F130 53A5659 2 '4 (EHO) FLOM CONTROL FROH X 105 P 0 Y 01 0 09 N551 D10 CAC-FCV-3ht A N551 D10 COHPOSITE FOR CAC-FCV 3A R 95 o8/1 CAC-FCV 38 F130 53A5659 A P 01 0 09 551 205$ (EHO) FLOM CONTROL FROH X 101 R 9 I Y lUll ~2 H CAC-FCV-34t A N551 D6 COHPOSITI. FOR CAC-FCV-38 R 196 J 0/1 7 1 CAC-FCV-1A 2 ~ 5" (EIIO) FLOV COtITROL ChC FCV 1At TO F130 X"102 53$ 5659 2~LIP Bib ll C L P N 0 0 09 222II HS51 222 E10 C H551 E10 COHPOSITE FOR CAC-FCV-1A R 195 No 1/ 0
~ 1M.Q 2 '"
CAC-F CV-18 (EHO) FLOV CONTROL TO X-103 F130 53A5659 R 195 N A 0 0 0 09 MR0~2h H551 CAC-FCV-e4t A H551 E6 COHPOSITE FOR CAC-FCV-18 1/6+0 R 195 ~ I.H.0 kl 1 CAC-FCV-5A C678 17 A N 21 0 H551 F11 1 ~ 0 GLOBE CAC-AV-1A S ~ V~ It)LET R 57). Hog/6tl I 0 0 , 133005.... 71 . . 2 A CAC-FCV-+At A H551 F11 2 ~ CORIP(2SI TI f OR CAC-FCV-51 R 572 8 ~ 6/6 ~ 1 I 0 n 133005 1 A I OOP
~ PROGIIAH SxN-SORT VAR J 0 VNP-2 rR SRN EOUIPttENT a~~uf LlST 0~a~00 DA TE 01/06/83 EPII tIFG NODEL S C
~ ~+ EMI~~Rd TH IIL TEST ANL FO C 1J ~
FRED A/E BRAVING A/E ZONE DESCRIPTIOH BLDG ELEV DETAIL USE SAFETY FUNCTION QID CONTRACT LEVEL EC CAC-FCV-58 C678 18 F 21 H N551 F2 QLDJI~S~IL1~aQ~NL CAC"FCV 50+ N551. F2 COHPOSITE FOR CAC- -5 CAC-FCV-&A C678 50 F 21 A I H551 G12 EIIO OIOIIE CA~CO- ~ A~AC R 3RD~ CAC-FCV-6A+ N551 G12 COHPOSITE FOR CAC-FCV 6A CAC-FCV-68 C678 19 F 0" EIIO N 21 N551 01 2 GLOB CAC Ftt 1 R LRR CAC-FCV-68+ N551 Gl COHI OSITC FOR CAC-FCV-6 CAC-FH-IA A136 01 ~ 11 F 21 GLOVER 25 IIP N N551 E13 CAC FN-10 A136 01 ~ 11 N551 BLOVER 25 HP CAC-HR-IA+ A120 P-2040 COHPOSITC HYDROGEH RECOHB tt R
~
A 8551 Dli CAC-HR-ID+ A120 P-2010 H551 D2 COHPOSITE tIYOROGEN RECOHOIHCR 18 CAC-TCV-1A Ch78 16 2 ~ 0" GLOBE CAC-EV-lA SV IH lCHOI F N 21 8551 D12 R 5 CAC-TCV IA+ H551 012 COHPOSITE FOR CAC-TCV-4A CAC TCV 48 C678 F H 21 N551 D5 2 ~ 0" GLOBE CAC-EV-18 S ~ V~ INLET 35JL02 CAC-TCV-48+ H551 COHPOSITE FOR CAC-TCV-18 CAC-V-11 V085 DVG P2-3311 H-7 0" 01 9 58 N551 G6 4 ~ GATE CAC LINE TO lX-981 6LIO~ d CAC-V-II+ 01 9 58 N551 COHPOSITE FOR CAC-V-ll ~s9 . 11$ I 1 G6 CAC-V-13 V085 OVG P2-3311-tl-7 A Y 01 9 58 N551 4 ~ 0" GATE CAC LINE TO (X-1031 49MH i(.6. P........l..tt Bl ~ D . 3h1108 41A ...... ET 2.....d...... CAC-V-13+ 9 P Y 01 58 N551 E7 CONPOSITC FOR CAC-V 13 R 495 II ~ 4/6 ' I 0 BI >n 3f 1708 1 A
I PROGRAH bffH-SORT 5HIMB)~)I~ME~IEBL~ISJE VNP-2 SRN G~a 0000 COUIPHCNT LIST DATE 01/06/83 t ~~ KlSIII~'iLJRSh5EIER ~~~ EPN HFG HODKL S E TN IIL TEST ANL FO C FRED A/E BRAVING A/E ZONK DESCRIPTION BLDG ELEV DETAIL USE SAFCTY FUNCTION OID CONTRACT LEVEL KC
~ ~ CAC-V-15 RE 0~ GATC CAC LINC FRO V085 X-97 OVG P2-3311 N-7 P Y S1a 01 9 58, N551 H6 CAC-V-)5+ A P Y 01 9 58 N551 H6 COHPOSI'IC FOR CAC-V-15 CAC-V-17 V085 DVG P2-3311 N 7 A P T 01 9 58 H551 06 1 ~ 0 ~ GATC CAC Llt)E FROH IX-)01) LZ.ah 61108 M1 C AC-V-17+ 01 9 58 N551 06 COB~PS $ T OR A -V-CAC-V-IA 1207 NH 95C2670F3L2 F N 21 N551 F15 2'AUNQIA~SO CAC ATT~AEILO CAC-V-IA+ N551 F15 COHPOSITE FOR CAC V A 2,
CAC-V-18
~ UNllEAS TO CAC AU~I-lB 1207 lO NH-95C2670F362 F N 21 N551 F2 CAC-V-IB+ 'N551 F2 COHPOSITK FOR CAC V-CAC-V"2 V085 DVG P2-3311 N 7 P T 01 9 58 HS51 010 ~ 2 OA~TCAC SIN~IE lr-CAC-V-2+ P Y 01 9 58 N551 G10 COHPIISITC FOR CAC-V-2 tl CAC-V-2A 2 ~ 0" SAUNDERS CAC-V-PAi IEHO) CAC R 12 07 TURN NH-91C2070F3L2 F N 21 N551 12 2~F12 N551 F12 COIIPOSITE FOR CAC-V-2A 2 '"
CAC-V-28 CAC-V-28+ SAUNDERS ICHO) CAC RETURN 1207 NH.-91C2070FSL2 F N 21 6153h ~H551 F1 A N551 Fl COHPOSITE FOR CAC V-28 R 573 HU6/7 5 1 CAC"V-3A 12 07 NII"95C1670F3L3
~.S ~f F N 21 0 N551 012 0 ~ 7< GLOBE CAC-HS 1A BRA Itl MIISS~L CAC"V-31+ A N551 012 COHPOSITC FOR CAC-V-3A 2 ST~SU Sl rh SSSO h CAC-V-30 ~ )207 Nll-95C1670F3L3 A F N 21 0 tl551 01 0 ~ 75" GSLODE CAC-HS-IA DRAltl R 573~~)Ef/7q5 .I 0 . 0,.....,. .... 361915 . 71.........2 ... A....
CAC-V-38+ A 8551 01 ' TUSU 2 COHrnsITK FOR CAc-v-..b R 57% 86/7 ~ 5 I 0. 0 361915 A
I I' ~ PROGP AN S.. ~ SO T S4QI~~~~QQPJ VNP-2 SRH
~~LH EOUIPNENT LIST a~u~ooa DATE 01/06/$ 3 EPN HFG 4~s SEIS~KLZh8$ HUE HODEL S E TH HL TEST ANL FO C FRED A/E DRAVINC A/E ZONE DESCRIPTION BLDG ELEV DETAIL uSE SAFETY FUNCTION OID CONTRACT I.CVEl. EC R CAC-V-4 V085 DVG P2-3311"N-7 oi 9 58 H551 E10 61ZD~
CAC-V-4+ C 0 N~PO 01 9 58, H551 E10 4 '" GAT~CAC~gj CAC-V-6 FQD VOS5 DVC P2-3311 N 7 P Y CDQ 01
~CORRI~~
9 5$ H551 Hi 0 1 CAC-V-6s CO~HO ~FO~ 6 P Y 01 9 5$ 8551 H10 CAC-V-R . V085 DVG P2-3311 7 N 01 9 5$ H551 Bio 4 o g" gA~Q CAC-V-8+ 5$ COIIP~OS TE F CAC-V-8 P Y 01 9 H551 Bio R CEP-Ao-IA N322 AS38 01 9 07 8513
')R P Y J13 OPERA OR FOR CEP-AO-18 N322 A838 H N513 J13 AIR OPERATOR FOR I
CEP-AO-2A N322 A838 RIR O~DERRIOR R C D- - P Y 01 9 07 H513 J13 R ~ CEP-AO-28 N322 A838 AIR OPERATOR FOR CEP-V-2 H513 J13 CEP-AO 3A . AIR OPERATOR F+~RC ~- A H322 AS38 01 9 10 M1 ~ N513 C11 CEP-AO-38 . 1206 AS38 P Y 9 06 N513 C11 AIR OPERA R CEP-AO-4A N322 A838
~JR OP(~RA P Y 01 9 iaa~
10 H513 C11 CEP AO-48 1206 A838 P Y 9 06 8513 C11 AIR OPERATOR FOR CQ~PB 1.sE. 18MI 68 CEP"V-1A
~
Q ~ 0 RO I ." 8280 I >'III II"I OVG A-206 I63 R ~ P Y OI O O'I;.', <3 DD JI3
sh I RI ro OR O'H . II,&PA,V ~,o v ER &~A rhsar 6 c 44 r ~ PROGRAH SHH-SORT Mb SIIHfiIQ~QLILJJNE~RPLY ELY SIEN DE NO 0080 MNP-2 SRH EOUIPHENT LIST DATE 01/06/83
~ t t EUiHIMiLRhkkNGEEL~+~
EPN HFG HODEL 'TH IIL TEST ANL- FO A/E DRAMING S E C FRED A/E ZONK ~ DESCRIPTION BLDG ELEV DETAIL USE SAFETY FUNCTION OID CONTRACT LEVEL EC ~
~ CEP-V-7A 30.0" BLFY ORYVEL~XlljuST~~O 8250 DMG A 206763 P Y 9 07, HSI3 J13 R I CEP-V-2A+ HSI3 J13 COHPOSITE FOR VALVE CEP"V-2A 512II~B CEP-V-28 1208 DMG V"502L 119A 01 9 NSI3 J13 2$ GATE CEP-V 2A BYPASS 3~a &a CEP-V-28+ N5I3 J13 CORPOSI+E FOR~SLY C P- -1 CEP-V-3A 8250 OVG A 20676I 01 9 10 HSI3 C1I 2I o 0" 8~F SU~PP C lgK~II~A CEP-V-3A+ H513 ,CII COIIPOSI I~EPOS VR VE CEP- -SR 86~
CEP-V-38 1208 OMG V502L119A 01 9 N5I3 C1I 2 ~ 0" GATE CEP V-3A 8 PASS CEP V-38+ HSI3 CII COHPOSITE FOR VALVE CEP-V 3A CEP-V-'lA 8250 DVG A-206761 H5I3 CII 01 9 10 2I ~ 0" RFLY SUPP ~ CHAHBER EXHAUS CEP-V-IA+ COHPOSITE FOR VALVE CEP-V-IA I 5 1{~ H513 2 '" CEP-V-IB GATE CEP-V-IA BYPASS 1200 V 502L-119A Ol 9 55hhl~h HSI3 1 C1I 1 CEP-V-IB+ H513 CII COHPOSI TE FOR VALVE CEP V-IB CIA-V-20 8350 P 30ICA83-001 P Y 01 9 3& H556 J6 F5'CLO IROIOOFERROS~T~SO ~ 0 1 1252 215 2 C IA-V-20+ P Y 'N556 J6 COHPOSI TE FOR C I A V-20 5hA 01 "9 nI9 <7ISS& 'N6:
~~~PLLO P Y -
5252~15 2'55 155525 I 5 CIA~V>3OA+ P Y HH556 'HG 2 nnS <
~ .l lh 5 nr V5i Vi rr 2 ~
IIR .'5C .I OOI 5 I~I PO115 I52252S r215
~ ' I'A ~V >508 l8$ 50 '"5" (HO l POMG'I821101'5P HB P Y, '01 '9 19 PH556 ~ .'F6 ~ < GL'8 v82 >OUTER' SOL f 1-9I l Ag .4'NOy7.230 .,.11.13, H8140........., ....,. R>3$ 3803...&215... 72 lA ~
CrA~V~SOn ~ P Y "HS56 ~ 'F6
~ ~ Irh S ~ ~
2 ~ 5 S ~ SF v52 vl 111 . F San.WPSE7;0 '3 "215 2 $ AR 11 "8110 t!50tE04 1 *A
ll 0 1
'I
PROGRAH .i-SORT liINGJDLLJJJRLIC~IlE~uP~ MNP-2 LlS'T ZOWIE a~u~ana6 SRH EQUIPHENT DATE 01/06/83 EPN HFG HOOEL r TH HL TEST ANL FO C FREQ A/E DRAUTNG A/E ZONE OESCR1PTI ON BLDG ELEV. OETA1L USE SAFETY FUNCT10N QID CONTRACT LEVEL EC C RA-F N-1A1 J127 36-26 1/2-1170 H F Y 01 10 H513 012 PR 1 CONT FAN HC-78 ALL AZ R31l ~RI15~1 CRA-FN-1AZ PR1 CONT FAN CRA-FN-181 HC-78 ALL J127 J127 36-26 1/2-1770/1170 36-26 1/2-1170
~~5k&RJLLK..R30 ...,.
F 2 3 Y 11 01 6i H513 E15C.15 .. 6.7 ..... 2 D12
... A PR CONT FAN HC-RB ALL F Y 01 40 H513 011 1
C 506 lR2 D A> R30 2 3 N 1%5015 67 2 A
~*R 2 AN Pt .- 2 .NN v ~ ~ I" A N~ AA 'NA N N ~ . PA gD A s NE 2 R A~ w%~ ~ ~ A~RIVAAA'~~gNAPA~N'2:~+PA'Av NAR)" 2'DA" D PROGRAH SEIH-SORT MAD IU 2 ED ILEUDEELEDU E ILD UR DELE VNP-2 SRtt EOUIPHENT LIST IDEE ~a~n01/06/83 DATE aaaal EPtt HFG HOOEL. S E TH HL "I'EST ANL FO C FRED,A/E ORAVING A/E ZONE DESCRIPTI Ott BLDG ELEV 'ETAIL USE SAFf Tr FUNCTION, Olo CottTRACT LEVEI. EC 2 ~ CRA-FN-182 J127 36 26 1/2 1770/1170 F Y 11 01 64 Hsi3 011 a ~
CRA-FN-ICI J127 36 26 1/2,1170 01 %0 H513 DB PRI CODIT FAN HC 88 ALL 5 6 l CRA-FN-IC2 J127 36-26 1/2 1770/1170 Y 11 '01 61 H5%3 D9 PRI CottT FAN HC-BB ALL DDDD- DZ CRA-FN-2AI Jl 27 38-26 I/2 1770 01 52 H513 Hl 1 PR I CDN'I'AN~DC-ID AL Rl CRA-FN-2A2 CRA-Ftt-281 J127 23-1/IX17-I/2 "3450 01 77 a~ H513 J127 38-26 1/2-1770 01 52 H513 HB PRI CONT FAN HC-88 ALL I/IXI7-I/2 3150 CRA-FN-282 PRI CONT FAN HC 88 A J127 23 01 92 2~ H543 H9 CRA-FN-3A J127 1388009"8 F Y ,01 H513 F12 LOMER LEVEL RECIRC ~ FAN HC-78 531 I CRA-FN-3A+ F12. CRA-FN-38 LOMER LEVEL RECIRC CRA-Ftt-38D
~ FAN J127 ttC-88 1388009 8 K
F 'Y 01 IU! ~EA H513 H513 F9 531 CRA-Ftt-3C J127 1388009-8 F Y 01 H5% 3 FB LOMER LEVEL RECIRC ~ FAN HC-RB CRA-FN-3C+ K Y H513 FB hah 2 CRA-FN-iA J127 ~ 500722-113 C E F Y 01 71 H543 . JIG COttTAINHENT OOHE tt2 HIXING F At( C 572 330 A R 7 3 LED CRA-FN AA+
~ ED.DI H513 1
J10 h CRA-Ftt-AIE CottTAIttHENT OOHE H2 J127 HIXIttG FAN 500722 113 C R~PP RRA C I RIP~~ F Y 01 71 U ajUI H513
~2h 2 AI9 .h CRA-FN-AND Y H513 J9 C 572 f06 Q AgR)7...1 P ..P 115001, 1 A CRA-Ftt-5A J127 13Dt8009 8 A F Y 01 H5A3 JB' UPPfR LEVEL RECIPC f ADt I'C-78 C 572 180 D A? R17 O I%5002 22 A A
PROGR A't <<.AH-SAR 7 A I RERILRIIRLEI~IRE~RRRLR~Jfg MNP-2 SRN E4UIPHENT LIST
~GE .DATE u'000 01/06/83 1 2 ~a+ EJSNII~~hSdNEIER EPN NFG HODEL S" E 'IN llL. TEST ANL FO C FRE0' A/E BRAVING A/E ZONE 1 ~
OESCR,IPTION BLDG ELEV DETAIL"= USE SAFETY 'FUNCTION 410 CONTRACT LEVEL EC 1
~
CRA K Y H513 JS BIT...I 3., Ftt-5AR'ot>P os 1 T E.. OF .C8k-.F V.-.5h C .572 180..D.A? II 115002; I .A, CRA-FN-50 .- J127. -1388009 8 :- Jll UPPER EVQI ~+~~A~)~fg F .Y 01 R~u N513 CRA-Ftt-58+ N513 ,COHPDS J TE+F~CA CRA Ftl 5C J127 1388009-8 F Y '01 H513 JS
-7 CRA-F tl-5C+ N513 JS COHPOS[T~
" CRA-FN-50 J127 138S009 8 F, Y. '01 N513-50 C tfl-Itf-OU ~ H513 COIIPOSI IE OF CSA-LOSS OSI AR: ISO~XXXX CRO FIO ICE -XXX CRO-ORVE-0219 G080 7RDBI IIC 11,
'l528 Y 02 DRIVE ASSN ~ C TRL ROD R ~
CRO-ORVE-0223 OR/YE ASSH ~ CIQR R G080 7ROBIIIC il 02 CAO-ORVE-0227 G080 TROBI IIC Y 11 02 H528 DRIVE ASSN ~ CNTRL ~ ROD OR 281. CRO-ORVE-0231 DRIVE ASSH ~ CHIRK ROP OR ~ GOSO 7ROBIIIC 7RDBIIIC A
~~5E Y.- 02 lll!1N528 42423 2 G9 1
GORO 11 02
~81 H528 G9, 'RO-ORVE-0235 Y
DRIVE ASSH ~ C TR R 0 OR CRO-DAVE-0239 Go 80 TROB I IIC A Y 11 .02 N528-DRIVE ASSN ~ CHAL ~ AO A ~IMI~SS.E 200~ CRO-ORVE-0213 DRIVE ASSH ~ CNTRL ~ ROO OR ~ G080 TR081IIC Y'l 02 28~2$ N528, l CRO-DRVE-0615 0080 7ROBIIIC ' A LR~ 11 02 N52S 09 DRIVE ASSH ~ CN'IRL ~ AOD OAa ALIIRREI~ESRfl RRIUI~SRSX
~ ~
1 CRO-ORVE-0619 DRIVE ASSH ~ CNTRLa AOO DA~ 44080 TROD 11 IC A 2 RESSEC 1 Y 11 02 2244~2~ tl52S G9 1 CRO-DAVE'-0623 Go 80 TROD IIIC A Y 11 02 ' H528 G9 DRIVE ASSN'NTRL ~ ROD OR ~ ~LLIRSER.VESSEL,I....A.S,; 1. II42441-...II2411- . ..2 ....1. CRO-ORVE-0627 DRIVE ASSN ~ CtlTRL ~ ROD OA ~ GOAD TtRDBIIIC A 501 UNDER VFSSEL I Y ll 02 H528 G9 C 3 A 092OOI 02813 2 A 2
PROGRAH SRH-SORT (LSNLBGZQKJJLBL~ME(LSIIIPL~XS eaar NO OOaa Ut(P 2 SRH REGUIP'(ENT LIST DATE 01/06/83 R
~o~ fJ~~ILAQETES o4~
EPtt NFG IIODEL S E TH HL TEST ANL FO C FRED A/E DRAYING'/E LONE DES CR IP T I ON BLDG ELEV DETAIL USE SAFETY FUNCTION - DID ., CONTRACT LEVEL EC CRO-DRVE-0631 DRIVE ASSN+ CN R ~ 0 G080 TR08111C Y il 02 N528 . . G9 2
~
CRO-ORVE-0635 G080 TR0811IC Y 11 02 N528 G9 DRIVE ASSN~ CNTRL ~ ROO DR ~ 22(U~281 ,CRD-ORVE-0639 0080 7RD811IC A T il 02 N528 C
-1 G9 DRIVE ASSH ~ CtgR~LOO OR DE~ESSE lllli ~2221 CRD-ORVE-0613 GOGO TROBIIIC Y 11 02 N528 DRIVE ASSH ~ CJIJR ~ RO 2'.
CRO-ORVE-0617 G080 TROBIIIC A T 11 02 'N528 llMFJLXESSE 52nD~ CRO-DRVE-1011 (1080 7RD8111C. Y 11 02 N528 DRIVE ASSH$ CNTRL ~ ROO OR ~ CRD ORVE-1015 0080 TRO8111C Y 11 02 N528 G9 DRIVE ASSN'NTRLe ROD QR ~ CRO-ORVE-1019 G080 780811IC Y 11 02 t(528 G9 DRIVE ASSH ~ CNTRL ~ ROO 0 CRO-ORVE 1023 0080 7ROB111C A Y 11 02 N528 ORLVE ASSN ~ C TR RGO OR ~ DHLJKS lUl~B CRD-ORVE 1027 G080 7RO81IIC A Y 11,02 N528 G9 DRIVE ASSN'NTRL$ ROO DRY 50 ~3REE 2fQ CRO-ORVE-1031 G080 TRO8111C Y ll 02 H528 G9
~
DRIVE. ASSH ~ CNTRL~ ROO OR ~ 22$ II1 $ 2211 2 "'1. CRO-DRVE-1035 G080 TRDBI IIC A Y 11 02 H5?8 G9 DRIVE ASSN'NTRLa ROO OR ~ C D R 2211 2 CRO-ORVE 1039 ill IVC ASSR~CTRE CRO-DRVE-1013 RR~R. GO(20 (i0 80 7RDBIIIC TRO811IC A LJlllSEIE$2$ 2 El A Y Y 11 11 02 02 SSSIUI ~ H528 N528 221 G9 OR IVE ASSN ~ CNTRL ~ ROD DR 'ills@ DE(LYKSXE zan~au CRO-ORVE-1017 GOPG TRO8111C A Y 11 02 H528 G9 DRIVE ASStlR CNTRL ~ ROO OR ~ RES M.ESE ~SE ~222~2211. 2 .A CRO-DRVE-1051 0080 TRD8111C A' ll 02 H528 G9 OR IV E ASSH ~ CN TS(L ~ t(00 OP ~ O~Q t~lgjSSE Q ~?(Utl 02813 . 2..A. CRO-ORVE-1107 ' GO?0 TRDBIIIC A T 11 02 N528 G9 DRIVE ASSN'NTRL$ ROD OR ~ 521 UJtDEB..VESSEL .. 1 A .D920D1...02813..2... 2 A CRD-ORVE-1111 CORO TRDBIIIC A Y 11 02 H528 G9 DRIVE ASSN ~ CtlTRL ~ ROO OR ~ 501 U'(OER- VESSEL I A 092001'2813 2 A
+,I I S geh+t ;,i i:age. ~
V.
o S " A'0 4+2" COAOA g,,,l( A 2S EI I Es '. A /gN I4 sgyP R,JOIN/ w A: S N4 AE ~ PROf AAH ztt SGRI ~AOOJOOIOILOJIO~JIOE~IIO GE NOMOOAO VNP 2 SAH 'EOUIPHENt'IST, DATE 01/06/83 EPN NFG HODEL iio 'USHIC ~RAN . TH IIL TEST AKL FO C. S FRED A/E BRAVING A/E ZONE OESCR IP TI ON ELEV DETAIL, 2'LDG USE SAFETY FUNCTION alo CONTRACT LEVEL EC II15 GOAD TAOBIIIC A ll ,02 H528
'RD-ORVE QRI YE dSSHOMILIRL~QILRR NQ 2' 24jt~2813 II ~Df~SB~MIQR~QQ CRO ORVE-II 19 G080 TROB1 C .Y 11 02 BX H528 02 G9 l
CRO-DRVE-II23 6080, 7RO81IIC Y 11 02 N528 G9 QA.IYf .AHSII~~QRJM 820~2 C RO-OR VE -I I 27 G080 TRDBIIIC Y 11 '02 H528 G9
ÃJ~X~~MIE~ILRR 2 CAO-ORVE-I I 31 G080 1RDBIIIC Y 11 "02 N528 09 ARVX A$ $ H ~RLMUllLR E~XSS CRO ORVE-ll35 6080 1RDBIIIC Y 11 , 02 H528 IVE ASSN~ C RL 2 CRD-ORVE-II39 6080 7RDBlllC Y 11 02 N528 ASSH~tfJQ~O 2'9 ORjVg CRO DRVE-III3 OAIVE ASSH ~ CNTAL4 ROD DR 60 AO TROBI II C Y 11 02' H528 G9 CRD-ORVE IIIT 6080 7ROBIIIC 11 02 H528 G9 ORJVE ASSN SNARL ROO OR CRO-DRVE-Il 51 G080 7ROBIIIC Y 11 02 H528 G9 DRIVE ASSH ~ CNTRL ~ ROD ORa 2222 CRD-DRVE-I I 55 6080 7RDAIIIC DRIVE ASSH ~ CNTRL ~ ROD OR ~
Y 11 02 22~ H528 ROLl 2 G9 CRD-DRVE-1803 6080 1RDBIIIC Y 11 02 N528 DRIVE ASSN ~ CttTRL ~ ROO OR ~ 'JHl~28 CRD-DRVE-IA07 DRIVE ASSN ~ CNTRL ~ ROD II080 TROBIIIC Y ll ~ 02 '528 Ae PJJ1~281 CAD-DRVE-1811 DRIVE ASSN'NTRL~ CRO-DRVE-1815 ROO OR ~ G080 60t20 7ROBIIIC 7ROBIIIC Y 11 02 02
~2 N528 H528 G9 A~ Y 11 G9 DRIVE ASSN ~ CNTRLa ROO OR ~
QHRDLYXS A 280~28 CRO-DRVE-IA19 GOOAO TABB IIIC A. Y 11 02 H528 DRIVE ASSH ~ CNTRL ~ ROO OR ~
~EO B 2ISl ~2613 CRD-ORVE-1823 GO RO 7ROB I I IC A Y 11 02 H528 G9 DRIVE ASSH ~ CNTAL ~ ROO OR ~ C~Itl.t)MES YESSEL . 1 3.,h .. 0%2001 .02813.. 2.
CRO ORVE-1827 6000 TROBIIIC A II 02 N528, 69 OR IVE ASSN ~ CttTAL ~ ROD OR ~ C 2101 UNDE% VESIEL I A 092001 02813 2 A
2. 0 PROGR AH PtH-qqA I ~PBIJII22222M2LELJJIYEEMIIPELL2221E2 MNP-2: SRH KQUIPHENT LIST hate Ha 0001 DATE 01/06/83 I I ~> II ~~~ EISHILMXLJJ!Ek5EIKB "~
'RKO ~
KPN HFG HODEL S E TH l!L TEST ANL FO C A/E ORANING, A/K ZONE 2 DESCRIPTION BLDG ELKV DETAIL USE SAFETY FUNCTION 010 CONTRACT LEVEL KC ~
~ CRO-ORVE-1831 0080 7ROBIIIC A Y 11 02 "'528 DRIVE ASSH CNTRL RO DR LMDE~ 281 CRO-DRVE-183S GOAD 7RDBIIIC A Y 11 02 H528 G9 DRIVE ASSN'NTRL ~ ROO OR ~ C UNDER S E A 2R1 CRO-ORVE-1839 0080 TROB III C Y 11 02 H528 G9 DRIVE ASSN'NTRL ~ ROO OR ~ C 50 U ~2R1 DRIVE 1813 ASSN'NTRLa ROD DR ~
G080
'AD-ORVE TADBIIIC 0 U A Y il 02 H528 G9 CRD ORVK 1817 DRIVE ASSH ~ CNTRL ~ ROD DR ~
G080 7RDBIIIC Y. 11 02 a~ H528 CAD-DRVE-1851 GOGO TRDAIIIC Y 11- 02 H528 G9 DRIVE ASSH ~ CNTRL ~ ROD OR ~ 5 U 2 CRO-DAVE-1855 0080 TROD IIIC 02 H528 DRIVE ASSN ~ CNTRL ~ RO R~ Y 11
~26 CRO-ORVK-1859 G0 80 TROD I II C Y 11,02- H528 OR IVE ASSH ~ CNTR ~ RO CRD-DRVE'203 GOGO TROBIIIC Y 11 o2 2'528 09 OR[YE~ASS ~ CNTR R 28 CRD-ORVE-2207 GOGO I 7ROBI IC YE 11 02 H528 G9 DRIVE ASSH ~ CNTRL CRD-ORVE-2211 DRIVE ASSH ~ CNTRL ~
ROO OR ROO DRY
~
G080 7AOBIIIC .Y 'l 02. aaL" 222~22IL 028 H528 2 G9 CAO-ORVE-2215 0080 7ROBIIIC Y 11 02, H528 . DRIVE ASSH ~ CNTRL~ ROO OR ~ C CRO-ORVK 2219 DRIVE ASSN. CNTRL. AOO nR. GOGO TRDBIIIC Y ll 02 a~2$ H528 1 CRO-ORVE-2223 GORO 7RDBIIIC A Y 11 02 H528 DRIVE ASSN ~ CNTAL ~ Mtf&~~G. ROO OR ~ CRO-ORVE-2227 DRIVE ASSH ~ CNTRLa CRD-ORVE-2231 AOD OR ~ GO80 rooo TAOBIIIC TRoBIIIC A JIEKILJIEEYEL A
~2 Y Y
11 11 02 02 2aai H528 02813 H528 2 G9 G9 A DRIVE ASSN ~ CNTRL ~ ROO OR ~ 2 ~22 HKILYEYYEL .I 2 J!22.H,l " '0201M 2 CRD-ORVE-2235 GOYIO TROD 1llC A Y 11 02 H528 G9 DRIVE ASSN ~ CNTRL ~ ROO OP ~ XNMImEII VESSEL.... 1 3 . 092001.. 02813..... 2. A. CAO-DAVE-223I Gotio TRDBIIIC A Y 11 02 H528 09 OR IVE ASSH ~ CtlTRL ~ ROD OR ~ 0 SYI UNOER VESSEL I 3 092001 02813 2 A
~ PROGRAH ~gg BLI~wE~UPPL~ 0 A~01/06/83
~001 MNP-2 SRH EGUIPHENT LlST DATE EPN HFG ,$ r ~~ EISEI~SLZMSHEIEE '
HODEL TH HL TEST ANL FO C FRED A/E ORA)tlNG - A/E ZONE. OESCRIPTTON BLDG ELEV OETAlL USE SAFETY FUNCTlON 010 CONTRACT LEVEL, EC e RO-OA VE-2243 'G9
. pSlYE .HSN~HIJIL EQILOR~TRD8144C GOAO Y 11 02 B)L~ 'H528 CRO-DRVE-2247 GOSO TROD I IIC A Y =11 02 N528 '9 IKJLHRQLVESSEL IU 02 CRO-DRVE 2251 GOSO TRO814IC Y 11 02 H528 G9 DRIVE ASSHo CN f~e~R~)R~ EB~SS 92M1 021 CRO-ORVE-2255 GOSO 7RO814 IC Y- 11 02 N528 G9 ORHAVE AS~SII CH RL Rll R~
CRO-ORVE-2259 DRIVE ASSH ~ CNTR ROO 0 G080 TRD81IIC Y 11 -02
~2$ 15=
N528 . G9 CPO-ORVE-2603 GOBS TRO81IIC Y 11 02 "'528 OR)VE ASSN'NTAL ~ ROO OR ~ CRO-DRVE-2607 GO SO 7RD814IC Y 11 02 H52S G9 OR)VE ASSN'NTRL% ROD OR ~ CRO-ORVE-2611 GOSO 7RO8144C Y= 11 02 N528 G9 DRIVE ASSH ~ CNTRL ~ ROO ORa CRO-ORVE-2615 GORO TRO8144C Y 11 02- H528 DR)VE ASStl ~ CNTRL ~ ROO DR ~ CRO-DAVE-2619 GOBO TRD81IIC Y 11 02 N528 G9 OR)YE ASSN'NTRL ~ ROO OR ~ CAD-DAVE-2623 GOSO -7R08114C Y 11 02 N528 69 DRIVE ASSN ~ CNTRL ~ ROO OR~ 2 CRO-ORVE-2627 DRIVE ASSN'NTRL ~ ROO DR GOAD TROBIIIC A XR5E Y 11 02 22k~l2~H528 G9 CRD-ORVE-2631 GO 80 7808144C Y ll 02 H528 G9 y OR)YE ASSH ~ CNTRL ~ ROO OR ~ lH~2$ 1 CRO-DAVE-2635 GO AO 7R081IIC A 7 11 02 N528 G9 OR)VE ASSN'NTAL~ AOO DA ~ r CRO-ORVE-2639 GOAD TRO8144C A Y 11 02 N528 G9 DRIVE ASStl ~ CNTRL ~ ROD DR ~ C 0 0 ~IHLL~281 CRD-DRVE-2643 ORlVE ASSN ~ CNTRL ~ ROO OR ~ GCRO TRD8144C 50 A Y 11 02 ~ '528 PIUI~2BLl 2-~ G9 CRO-ORVE-2647 GO PO TROD 1 I IC A Y ll* 02 H52S G9 DRlVE ASSN~ CVTRL ~ ROD OR ~ 5 L UORLR~&SEL,.. 1 3...~-, .
..022001..02813..
CRO-DAVE-2651 GOAD TROD) IIC A Y 11,02 H528 G9 OR)VE ASSN ~ CNTRL ~ ROD DRY C 501 l)HOER VESSEL 1 3 0~2001 02813 2 A
~ ~ 2 PROGRAN SRN-SORT A SLIIIItlIQ!LHJR~MEB BUEBL~SEJLH GC HKJl001 E. f QNP-2 SRH COUIPHENT I.IST DATE 01/06/83 I I V
~. 2 1 AtllS oa~~~ EI.QLl~~khHEIQLSea ~
EPN NFG HOOCL S E TH HL TEST ANL FO C FAE4 A/E ORAQING A/E ZONE 1 I DESCRIPT I ON BLDG ELEV DETAIL USE SafETY FUNCTION 410 CONTRACT LEVEL EC I 2 CRO-ORVE-2655 G080 TROBIIIC 02 Il528 DRIVE ASSH ~ CNJRLU ROO OR ~ Y 11 20~2 G9 CRO-ORVE-2659 G080 TRODI II C Y 11 02 N528 G9 DRIVE ASSN'NTRL ~ CRD-ORVC-3003 ROD DA ~ DRIVE ASSN~ CKTRL ~ ROD OR>> CAD-ORVE-3007 DRIVE ASSN ~ CNTRL ~ ROD OR ~ G080 6080 TROBIIIC TAOBIIIC C 0 0 A QQLYEXS EEL ~ Y Y A 11 11 02 02 2kCl 02II1 H528 EIUI~EREX N528 2 09
)S CRD-DRVE 3011 PR IVE ASSH ~ CNT~RL RO OR ~
G080 7RDB I IIC Y ii 02 RRIUI~ H528-221~ 69 CRO-ORVC-3015 Gaaa TABB I I IC Y 11 02 H528 G9 DRIVE ASSN'NTRL ~ ROO OR ~ 22llI~ CRO-ORVE-3019 GOGO 7RDBIIIC Y 11 02 H528 DRIVE ASSll ~ CNTRL>> ROD DR ~ 50 CRO-ORVC-3023 G080 7ROBIIIC Y 11 02 N528 G9 OAIVE ASSN ~ CNTRL>> ROO OR>> DE CRO ORVE-3027 CRISE RSSII CRO-ORVC-3031 CO~SR ORIVE ASSH ~ CNTRL ~ CRO-ORVE-3035 DRIVE ASSN ~ CNTAL ~
~ROO R ROO OR ~
ROO OA>> G080 G080 Goao TROBIIIC TABB I IIC TRDBIIIC 50 ME~AS A Y Y Y 11 11 02 02 11,02 2M~I2 IUU H528 H528
'I lUIL~221~
H528 2~~ G9 G9 69
>>2 CRO-ORVE-3039 6080 TROBIIIC 02 N528 Y 11 DRIVE ASSH ~ CNTRL>> ROO DR>> RIUIL~
CRO-ORVC-3013 CRISE RSSII CM~VRL GOGO 7ROBIIIC r 11 02 Il528 ) V ROO R 2081 02au CRD-DRVC-3017 DRIVE ASSN'NTRL ~ ROD DR ~ 60 AO TRDB I I IC Y il 02 na~ H528 CRO-DRVE J051 DRIVE ASSN CHER RO~OOR G080 TROBIIIC A RLJIUOER SESS EL Y 11 02 JL!222L 22212~ H528 G9 2 CRO-ORVC-3055 DRIVE ASSN'NTRL ~ ROO OR ~ 6080 7ROBIIIC
~~ss A LILIIUE!L.VESSEL 1..2 Y
1 11 02
.052%01.
N528 02813 . 2 69
.A CRO-ORVE-3059 III DRIVE ASSN'NTRL ROD OR ~
GOAD 7ROB C A 5Q~IIPCA.VES5jEL, .1 3 .. Y II h . 02
'........092001 H528 02813... 2 G9 h
CRO-ORVE 3103 60 2'0 7ROO I I IC A Y. 11 02 8528 69 ~ VVVV OR IVE ASSN ~ CN'IRL ~ ROD AR ~ C 50l UNDER VESSEL I 3 A 092001 02813 2 A
I 4 J f
PROI'RAN SIEI-SOIL ~SSSSSSSSILJJIS~S~SS~SSSE BAG~uMOIlLS VNP 2 SRH COUlPHENT LIST DATE OI/06/83 ['> dl HFG HODEL S C TN HL TEST ANL FO C FRED A/E DRAVING A/E ZONE DESCRIPTION BLDG ELEV DETAIL USE SAFETY FUNCTION 010 CONTRACT LEVEL CC CAD-ORVE-3101 8IYC hSSIIa CtlIRL~U)Q M G080 TABB IIIC
~KKJtESS A Y. 11 \
02
~2$ 22 N528 G9 CRD-ORVE-3111 ~8.1Y~A M~ GO 80 TROB III C Y ll 02 HS28 SSI~ISSSX G9 CRD-ORVE-3115 BIYK. ANSII~HIEL~
6080 TRDBlllC Y ll 02 0~2 H528 69 CRO-ORVE-3119 R V~AS~I~e GORO 7RDB III C Y 11 02 N528 G9 0 CRO-ORVC-3123 GO SO TROD I I IC Y 11 02 H528 69
&8 lVf,.MSRK~KIEL~IU!I'll 22~2225 2 CRD-DAVE-3127 GOGO TRODI IIC Y 11 02 8528 R Llg 'ASPISH g~R CRO-DRVE-3131 GOSO 1ROBIIIC ' -
11 02 H528 09 OR)~CA S~H ~ CRO-ORVE-3135 6080 TROD IIIC Y 11 02 H528 OR IV E ASSN ~ CN RL RO CRO-DRVE-3139 6080 TRDBIIIC -Y 11 02 H528 G9 DRIVE ASSN ~ C TR RO R 2 CRD-ORVC-3113 GOGO TROBIIIC Y 11 02 H528 G9 DRIVE ASSN'NTRL ~ ROD OR$ ~281 CRO-ORVC-3117 GO 80 TROBI IIC, Y 11 02 8528 09 DRIVE ASSH ~ CNTRL ~ ROO- OR~ 2881~2 CRO-DRVC "3151 DRIVE ASSN ~ CNTRL ~ CRD-ORVC-3155 DRIVE ASSN'NTRL ~ ROO OR ~ ROO OR G080 G080 7ROBIIIC 7RDBIIIC A SK!LJKSR
. Y Y
11 11 02 02 H528 H528 2$
~
d~ 69 CRO-DAVE-3159 6080 1ROBIIIC 11 02 H528 69 DRIVE ASSN$ CNTRL ~ AOO OR$ Y 0~2a CRO-DRVC-3803 DRIVE ASSH$ CNTRLa ROO OR ~ GOGO 1RDBIIIC Y 11 .02 22~2$ N528 IS=2.~ 69 CRD-DRVE-3807 DRIVE ASSN ~ CNTRL ~ AOO CRO-ORVE-3811 OR ~ GO 80 TABB IIIC
~~SEE A XESSE~
Y 11 02 kl H528
.82813 2 G9 GO 80 TRO8111C A Y 11 02 8528 G9 DRIVE ASSH ~ CN/R+ ROt) OR~;- S 50LBINOER YCSSCL ... 1. 3'.. b 092D01. 42815.......- . -2...
CAD DRVC-3815 GORO TROBIIIC A Y 11 02 ~ N528 G9 OR IVE ASSN ~ CEITRL ~ RCO OR ~ C 501 UssOER V. SSI'L 3 - A 092001 02813 2 A
I'n
"~ ~,. R".f R 'R'i~,ii 2, 2R4~RR ~, . '.c*
ls MB~BI
~
b.ROM)1IQKZQRLIQMltNEE
- VNP-2 SRH EOUIP!lEHT L'1ST G~U 0001 r ~
I I R DATE 01/06/83 EPH HFG tlOOEL 222222S ". S E TH llL TEST ANL FO C FRED A/E ORAMING A/E ZONE OESCRIPTI ON BLDG'ELKV DETAIL USE SAFETY FUNCTION 410 CON'TRACT LEVEI. EC ~
~ CAO-DAVE 3S19 60 00, 7RDB I I IC Y Ii 02 H528 OR IVE ASSH ~ CH~R~a~O ~
Mi ~2 CRO-ORVE-3S23 6080 TROB111C -11 02 ll528 DRIVE ASStl ~ CNTRL ~ ROO OA ~ 0 D Y.
~291 CRO-DRVE-3827 DRIVE ASSH CHTRL ~ ROO OR G080 TRD811IC Y 11 02 22~2~~
H528 69 CRO-DRVE-3S31 6080 TROBIIIC Y 11 02 8528 DRIVE ASSN ~ CHTRL ~ ROD OR ~ CRO-DRVE-3835 GOAD TROBIIIC A Y 11 02 8528 G9 DRIVE AR:SH ~ CQ~RR~O ~QQLJtESSE
~
22IISL~2$ LI 2 CRO-ORVE-3S39
- G080 TRO8111C )t 11 02 H528 G9 DRIVE ASS!l ~ CHTRL ~ ROO ORa 50 2$ 1 CRO-DAVE-3813 GOSO 7RD8111C Y 11 02 H528 DRIVE ASSN'HTRL ~ ROO OR ~
))~2e CAD-ORVE-3817 G080 7RDBIIIC Y 11 02 H528 G9 DRIVE ASSN ~ CHTRL ~ ROO DR ~
CRD-ORVE-3851 GO SO 7AOB11IC A Y ii 02 H528 DRIVE ASSH ~ CHURL+ ROO R~ DfJLYE55 2QQ~ CRO-DRVE-3855 G080 TROBIIIC DRIVE ASSN'HTRL ~ ROD ORa Y 11 02 8528 G9 YLRKL CPD-DRVE-3859 G080 TROBIIIC 02 DRIVE ASSN ~ CHTRL ~ ROO OR ~ A Y 11 8528 G9 IUII II2212 CRD-ORVE-12 03 6080 TROBIIIC A Y 11 02 8528 DRIVE ASStl ~ CHTRL ~ ROD OR ~ C 50 U R 3 ~28 G9 CPO-ORVE-1207 G080 7RDBIIIC DRIVE ASSN ~ CHTRL ~ ROO Y 11 02 H528 G9 OR ~ SIUll II2212 CRO-ORVE-1211 DRIVE ASSN ~ CHTRL ~ CPO-ORVE-1215 ' DR IVE ASSN ~ Ct!TRL ~ CPO-DRVK-1219 DRIVE ASSH ~ CHTRL ~ ROD OR ROO
~
OR ~ ROD DR ~ GOAD GOAD 6080 TROD I IIC 7ROBIIIC TRDBIIIC 2 C 50 0 VII UQQER A 2 V A SLSSSflL22222~ A lfEDR:KL . I 3 Y Y Y 11 11 11
'02 02 02 H528 H528 D.f)20D.I.~2813
{LI2OQI H528
.a2813 '9 2 2
G9 G9 A CRO-DAVE-1223 6000 TADBIIIC A ORIVK ASSH ~ CHTAL ~ ROO OR ~ Y 11 02 H528 G9
$ 0I U)IDEA VESSEL,1.3 .. 0'l2001.. 02813. .... 2 A CRO-ORVE-1227 DRIVE ASSti. CITAL. Ann nA.'
GOAO 7AOOIIIC Y II 02 H528 G9 C 501 Ut!DER VESSEL I 3 A 092001 02013 2 A
PROI'R~Nqr~-SOSZ ASIImarmLBila~VDLSua~XS ABE NU.%001 EPN OESCA NFG IPTION HOOEL VNP-2 SRH EOUIPHENT BLDG.ELEV S DETAIL E
~22LlST TH USE 22222~ ~2&222 HL TEST ANL FO C SAFETY FUNCTION FRED alD DATE A/E DRAVING CONTRACT 01/06/83 A/E ZONE LCVEL CC CRO-ORVE-1231 6080 7RDBIIIC T 11 02 $ 528.
BI V.EMS SB.~BL~DILDR 00~28 ~ l~A$ CRO-ORVE-1235 5~RIELe ROILY CRD-DRVE-1239 G080 6080 TAOBIIIC TRDBIIIC Y li il 02 02 8528 H528 2 G9 G9 OR 1Y ~555 sMIO~ILQE 20~28 CRO R ORVC-1213 Y~A~~NQJQ G080 7AOBIIIC ll 02 H528 CRO-DAVE-1217 60 $ 0 TROB IIIC 11 02. N528 BLYf ARSN~QE CRO-DRVE-1251 G080 7RDSIIIC Y" lt 02 H528 G9 CRD-ORVC-1255 6080 7ROBIIIC Y 11 02 N52$ OR IVE ASSH~og~R~O CRD-ORVC-1259 6080 TROBIIIC Y- 11 02 N528 G9 DRIVC ASSN ~ CNTRL 00 0 CRO-ORVE-'I607 6080 1ROBIIIC Y 11 02 H52$ DA/VC ASSH ~ CN RL CAO-ORVC-1611 GOAD 1ROBIIIC T 11 02 H528 DRIVE ASSN ~ CNTRL ~ ROO OR ~ CRO-ORVE-1615 G080 1ROBIIIC A Y 11 -02 H528 G9 DAIVE ASSH ~ CNTRLo ROO DR LKK CRD-ORVC-1619 6080 7ROBIIIC ll -02 H528
~
Y DRIVE ASSN'NTAL~ ROO OR ~ CRD-ORVE-1623 GOSO 7AOBIIIC Y 11 02 N52$ G9 OAIVE ASSN ~ CNT RO OR 281 A, CRD-DRVE-1627 6080 7RD81IIC A T 11 02 H528 ORIVC ASSN~ CNTRL~ ROD OR~ ILKRSf 0~2 G9 CRO ORVC-1631 DAIVE A SN ~ CNTRL ~ CRO DRVE 1635 ROO OA GOI20 G080 TRDBIIIC TROBIIIC C
~OI EADKHKL .~X..r 11 02 2221 H52$
II 221~ G9 A 11, 02 H528 69 DRIVE ASSH ~ CNTRL ~ ROO OR ~ 50 H JESS@. ~22lk~2ILL3 2 CRO DAVE>>1639 GOAD TRDB IIIC" A Y 11 02 N52$ G9 DRIVE ASSN'NTRL~ ROO OR~ C 2IS) ILI]PER,.YESSEI ...1..3 h Dl)2001 .02813.... 2 L. CRD-DAVE 1613 60<<0 1ROS IIIC A Y 11 02 69 DR IVE ASSN ~ CNTRL Rf)D OA ~ C 501 UflOER V S'SCL A A
PROGRAM 65&(-SDRg IHSIELL(leLJ J Lul(E!LSULEL~XSIEII. ~ - ~hGf Mu 0001. UNP-'2 SRH EGUIPHENT LIST DATE 01/06/83 &rt a(a EPN NFG MODEL IllS "&&&&&&&USLLL&&&&&&&S TH HL TES'I ANL. FO C A/E DRANING A/E ZONE
'528 E FRE4 OESCRIPTIOtt BLDG ELEV DErArl. USE SAFETY FUNCTION alo CONTRACT'EVEL EC CRO ORVE 4647 'O 80 TROD I I IC Y- 11 02 G9 OR If'ASSH>> Cg JR/i R~O R aJeaE~aS . $ 8~28 CRO-ORVE-4651 6080 7ROBIIIC A Y 11 02 H528 G9 DRIVE ASSH ~ CNTRL ~ ROO OR ~ C U 22991 9.2(Il CRO-ORVE-4655 DRIVE ASSN ~ CNTRL ~ RDD CRD-ORVE -5011 D~R G080 G080 ~
Ttl08111C TROB III C Y Y ll 11 02 02
&&&&~&&&X tl528 . H528 G9 DRIVE ASSH ~ CNTRL ~ ROO OR 11'2 CRO-DRVE-5015 DRIVE ASSHg C~TRL~ROD R
6080 7RD8144C A QMKRSE Y
~&&&&-N528 G9 CRO-DRVE-5019 G080 TRDBIIIC Y 11 02 tl528 ,
69 DRIVE ASStl ~ CNTRL>> ROO OR ~ CRO-ORVE-5023 DRIVE ASSH CNTRL ~ ROO DRY G080 TRO8144C Y ii 02 H528 281 69 CPO-DRVE-5027 DRIVE ASSM ~ CMTRL ~ ROD -OR ~ G0$ 0 7ROBI IIC 0 A Y ll 02 H528 G9 CPO-ORVE-5031 6080 7ROBIIIC Y 11 02 H528 DRIVE ASSN'NTRL ~ ROD OR ~ 8(~28 CRO-DRVE-50 35 G080 7RO8144C A- Y 11. 02 , 'N52$ G9 DRIVE ASSN ~ CNTRL ~ ROO OR ~ C 501 UN 2R CPO-DRVE-5039 GO 80 7RD814 IC A "Y- 11 02 . N528 G9 DRIVE ASSH ~ CHIRK ROD OR ~ C 50 U OCR VE SE A 2ml CRO-DRVE-5043 GORO TRDBIIIC A Y 11 02 M528 G9 DRIVE ASSH ~ Ct(TRL ~ ROO OR ~ C 50 UNO R V SS L 1 3 9 CRO-DRVE-5047 G080 TROB144C , Y 11. 02' N528 DRIVE ASSH ~ CNTRL ~ ROO OR>> 50 022M~2II) CRD-DRVE-5051 G080, TRDBIIIC A 11 02 H528 G9, DRIVE ASSN ~ CNTRL ~ ROO OR ~ C 50 UND R S A 22II~2 CRD-DRVE-5415 60 $ 0 TRO8144C Y 11 02 N528 DRIVE ASSH ~ CNTRL ~ ROD OR ~ C 0 UND maLt 82ei~ CRO-ORVE-5419 G080 7RDBIIIC A Z 11 02 H528 G9 DRIVE ASStl ~ CNTRL ~ ROO OR ~ C 501 Ut(DER E SEL 1 3 A ~9&0 <<Qel . 2 h CRO-DRVE-5123 6080 TRDBIIIC A - Y 11,02 N52$ G9 DRIVE ASSH ~ CNTRL ~ ROO OR ~ C 5gg UNPEtl VESSEL =
, 1 3 A (&&&2001. 02813 . 2 CRO-DRVE-Sla 7 OR IVF. ASSt& Ct(TR(. ~ ROO OR ~ 'ROB IIC 60&&0 I C 501 UNDFR . VESSE'L I Y 11 02 '092001 N528 02813 2 G9 A
I 222222 S2-SORE S IIASII VKP 2 N 'gJ I~QI~~PLIST SRH ECUIPHENT RhC~u QCClB 01/06/83
'~fJQL3 DATE F4 ~4 4 KPN HFG NOOEL S K TH HL TEST ANL FO C FRED A/E DRAYING A/E ZONE DESCRIPTION BLDG KLEV DETAIL USE SAFETY FUNCTION alD CONTRACT LEVEL EC CRD-DRVE-5131 6080 TRO8144C ' 11 02 H528 G9 DR LEAQQH 208~
CRD ORVK-5135 6080 TAO8111C T 11 02 H520 G9 DRIVE ASSN ~ CN R 0 OR ILIUM " 0281 ig CRD-DRVE 5139 G080 TRO8111C A Y 11 02 H528 69 DRIVE ASSH ~ CNTRL ~ ROD E~EIE3. IIIU 22222 CRO-ORVE-5143 6080 7R0811IC Y 11 02 H528 G9 DRIVE ASSN'NTA ~ ROO OR ~ 28 CRO DRVE 5117 OR VE AS N N 6080 TRO8141C .Y 11 02 H528 09 281 CRO ORVE 5819 G080 TRO811IC Y 11 02 H528 G9 DRIVE ASSN ~ CNTRL RO DRY CAD-DRVE-5823 G080 7RD8114C A Y 11 02 H528 G9 DRIVE ASSHo" C RL ~ RO R~ QQL3KSS 2 CAD-DRVK-5827 GOAO '808111C Y 11 02 H528 G9 DRIVE ASSN'HIRK R OR ASSN' CRO-ORVE 5831 6080 TRD8141C Y 11 02 H528 OR222 RSSII CR OO CRD DRVE-5835 G080 TAD814IC Y 11 02 H528 G9 DRIVE ASSN ~ CNTRL ~ ROO R~ ~ROLL 2 2 CRO"ORVE-5839 GOGO TRO811 ~C Y 11 02 H528 OAIVK 'NTRL ~ ROD OR ~ 20~2813 CRD-DRVE-58h3 DRIVE- ASSN ~ . CNTRLa CRO HCU-0219 ROO OR ~ G080 6080 TROB111C 761E500G1 Y 11 11'2 02
~2 H528 G9 Y 02 H528 CRO IIYORAULI ZQ.~ 'I CONTRO U21 AS 2C1 CRO HCU 0223- G080 761E500G1 T 02 02 H528 C3 CRO HYDRAULIC CONTROL Ul CRD HCU-0727 CRO IIYDRAUL C CON RO '080 U IT AS 7 ASS 761E500GI Y 11 02 02 6,7.Nl1 N528 2E1 0 2C1 C3 CRO HCU-0231.
CRO IITORAULIC CO CRO IICU-0235 RO N 6080 A COSO 76IK500GI. 761KSOOG1 A T Y 11 11 02 02 02 22llltl 02 2222~ H578 H528 C3 C3 2. CRD IIYORAULIC- ON'I ROL UN A$ $ J ~2i2~2C8.23 h ~foal.Dill .02C12.. 1 A.... CRO-IICU-0239 CRD IIYORAUE IC CONTROL UN'IT CQ I20 <<76 I E500GI Y Il P2 02 H52A C3 ASST R 577 K2/4 ~ 1 I 3 A 167001 02C12 I A ~ 2 2 2'R Q oslo, 2R )Q~(W ~s f,f ~ 2, 2 w2 SS /' - SR I
.2 * ~ I R I
~ 'I ~ ~g}g Pgg~~QMrB UMP 2 SRN EOUIPNENT SgRRLY DYRIEII LIST PAGE..NO ODDLY DATE 01/06/83 2
I 6' EPM
~+~ EI$5~S~EIBEIER ~+~
NFG MODEL S E TH HL fEST AML FO C FRED A/E ORAIIING A/E ZONE OESCRIPTI ON SLOG ELEV DETAIL USE SAFETY FUNCTION OIO CONTRACT LEVEL EC
~6 CRO HCU 0213 G080 761E500G1 T 11 02 02 N528 C3 CRD HTORAUgfC COQJPOL Ifl SS 6ZDD~2C1 CRD HCU 0615 6080 761ESOOGI Y 11 02 02 H528 C3 CRD IIYDRAULIC COOTROL~UR T RSSZ .Ill.01 9261 CRO-IICU"0619 6080 CRO IITORAULIC CONTROL UNIT ASSY 761E500G1 T ii 02 02 Tff&&l 22CI~~
H528 C3 CRD"HCU 0623 CAO HYDRAULIC COMTRO CRO-HCU 0627 6080 UM T AS G080 761E500G1 761E50061 Y 11 11 02 02 02
~2 H528 C3 T 02 H528 C3 CIIO IIYOAAUJ,JC CONJR~OU~AS &TO&~SO&~
CRO HCU 0631 6080 761ESOOGI Y 11 02 02 N528 C3 CRO IIYORAULIC CONTROL UNIT ASSY 6ICJU~ 2EI CRO-HCU-0635 G080 761E500G1 Y Ii 02 02 H528 CRD IIYDRAULIC COOT&OS~US ~SSS RID~ 2C1 CRO HCU 0639 6080 761ESDOGI Y 11 02 02 H528 CRD HYDRAULIC CONTROL UNIT ASSY 2 CRO"HCU 0613 G080 761E500GI Y 11 02 02 H528 CRO HYDRAULIC CONTROL U ASST SEU~RCl CRO HCU-0617 G080 761ESOOGI A T 11 02 02 H528 C3 CRO HYDRAULIC CONTROL UMIT ASST lt 5 K ~ 2@1 CRO HCU 1011 CRO HYDRAULIC CONTAOL G080 UNIT ASSY 761ESDOGI
/8 A Y ii 02 02 H528 C3 A 522 A .SJII&& ~2CSR CRD HCU 1015 CRO HYDRAULIC CONTAOL CRD-HCU-1019 6080 UNIT ASST 6080 761E50061 761E500G1 522 5/8 A
1 Y A 11 02 02 6 OO M528
&I2 I C3 CRD IIYORAULIC CONTROL UNIT ASST CR5=ltCU=iaiS 60AO 761E50061 Y
Y 11 11 02 02 02 lf 02 TJIIIS ORCT~ N528 H528 C3 C3 CRO HYDRAULIC CONTROL UNIT ASST A 522 L /8 ~ CRO HCU 1027 G080 761E500G1 A Y 11 02 02 H528 C3 CRO IIYDRAULIC CONTROL UNIT ASST .1,6.7.0OI. 02CI 2 . I,. h CRO-HCU-1031 G080 761ESOOGI A T 11 02 02 N528 C3 CRD IIYORAULIC CO&ITROL UNIT ASSY 522 15/8 ~ 1 R A 3 6,70.9.1 .&21-12.= 1. h CRO-HCU-1035 6080 76IE500G1 02 CRD HYDRAULIC CONTROL UNIT ASST R 522 KP/8 ~ 1 A
..I -..
Y A 11 02 167001 H52S
.. 02C12 ......I C3 A
CRD HCU-1039 8080 761E50061 A 11 02 H528 Y 02 C3 CRD HYDRAULIC CttMTRtIL UNlT JSSY R 52P K2/A~ 1 1 A 167001 02C12 1 1 A
PROGRAN SNH SORT UA IIIKH8JM~ltQLMRZLX SXSIX abG~O 00020 QNP-2 SRH KOUIPNEMT I.IST- DATE 01/06/83 S "SEBUM!l~S~lllllEIEIIS HFG S L TN HL TEST ANL FO C FRED
"'ODEL A/K ORAUlttG A/E ZONK DESCRIPTION BLOC ELKV DETAIL USE= SAFETY FUNCTION OID CONTRACT LEVEL Ec CRO HCU 1013 COSO , 7&IE500GI, Y 11 02 02 8528 C3 CRO IITQRAQ~ &LILY2C1 CRO-HCU-1017 GOBS 7&IKSOOGI Y Il 02 02 H528 CRD IIYORAUI,JC CONTROL U A favjt~
CRO-HCU-1051 0080 V&IE50001 Y 11 02 02 H528 CRO HYDRAULIC CO I OL UM 6XLll~2 CRD HCU 1107 GOBS 761K500GI Y 11 02 02 tl52S C3 CRD HYDRAUL C C TRO U ASS 2 CRD-HCU lhll G080 761E50001 Y 11 02 02 H528 ~ CRO HYORAU C 0 TR A CRO HCU 1115 G080 761K50001 02 Y 11 02 N528 C3 CRO IITDRAULIC COM ROL UN 7 ASS CRD HCU 1119 C TR UN G080 761ESOOGI . r. iI 02 02 N528 C3 CRD"HCU-1123 CORO '761E500GI T. 11 02 02 H528 CRO IITORAULIC CONTROL UNIT AS Y
'RD"HCU 1127 0080 '761K50001 A . Y 11 02 02 "
N528 CRD~II ORAULJC CON RO M AS ~2C1 CRD-IICU"11 31 GOBS 7&IKSOOG1 Y Il 02 02 H528 CRD IIYDRAULIC COIITROL UN ASSY 162M~2M CRO HCU 1135 C080 761E500G1 Y 11 02 02 H528 CRO HTORAULIC CONTROL UM A SY 6'IIU 82C1 CRO-HCU 1139 GOBS 761K500G1 Y 11 02 02 N528 CRO HYDRAULIC CONTRO UMI SS !U 02L1 CRD-HCU 1113 GOGO '761K500G1 Y 11 02 02 N528 C3 CRO H'YORAULIC C TRO U A SY- aZILOl 0261 CRO IICU-1117 Ci080 761K500GI 11 02 02 H528 Y C3 CRD IIYDRAULIC CON'TROL UNIT ASSY kIM1~2C1 CRO-IICU 1151 GOBS , 761E500G) Y 11 02 02 N528 CRO HYDRAULIC CONTROL UIIIT ASS I&1.04~2M CRO-HCU-1455 CRO IIYDRAULIC COMTRO CRO-HCU-1803 GOGO UM T ASSY GOSO 761ESOOG1 761KSOOGI = -
.. A Y
Y A 11 11 02 02 02 16ZRR~2C12 02
.8528 8528 ~ C3 C3 b.
CRO IIYORAULIC COIITROL UNIT ASST .q 52Z~y/Sty...... L2 , j&7001. 02C12......1.. A .. CRO-HCU 1807 C080 7&IE50001 A Y 11 02 02 H528 C3 CRO IIYORAULIC CONTROL VIIIT ASST R 522 L5/8 ' " I 3 A 167001 02C12 I A
PROGRAH betH SORT ve~a~ev ueeev~e svreex~ss RAGE Ieu.Q002 I
~h ~ IINP-2 SR!I EQUIPMENT LIST DATE 01/06/83 I e. ~
1 Qh e1~v~KLpeekeeleve"'H EPN HFG MODEL S K NL TEST ANL FO C FRED A/E DRAIIING A/E ZONE DES CR IP TI ON 8LDG ELEV DETAIL USE SAFETT FUNCTION OIO CONTRACT LEVEL KC I I CRD NCU-ldll
~ GQBQ 761E500G1 Y 11 02 02 H528 C3 CRD HYDRAULIC CON ROL UNIT SSY eIIHI~2CI2 CRD-HCU 1815 CRD HYDRAULIC CONTROL UNIT ASST CRD"HCU-IleI9 6080 761K50061 R 522 '/ A Y 11 02 02 HS28 ~261 C3 G080 761K500G1 T 11 '02 02 H528 CRD HTORAULIC COMTROL UNIT ASST A 61RO-NCU 1823 6080 761E50061 Y 11 02 02 H528 C3 CRO NYORAULIC CONTROL UM T ASSY CRD-HCU 1827 GQBQ 761E500G1 -Y 11 02 Q2 H528 C3 CRO HTORAUL OM 01. I SS h 'I CRO-HCU 1831'RO HYDRAULIC CON'TROL UNIT ASSY G080 761ESQQG I. Y A
11 02 02
~2 H528 C3 CRO-NCU-1835 CRD HYDRAULIC CONTROL 6080 UNIT ASST 761E50061 52 2/
Y ll . 02 02 HS28 C3 hZ!N1
~
CRO HCU-1839 6080 761E500GI T 11 02 02 H528 C3 CRD HYDRAULIC CONTROL UNIT ASSY 5 / CRO-HCU-IBA3
~
6080 761E50061 Y 11 02 02 H528 C3 CRO. HYDRAULIC CONTROL UNIT ASSY 6ISL'~!241 e I CRO-NCU-Idi7 CRD HYDRAULIC CONTROL 6080 UNIT'ASSY 7616500G1 R 522 R2/dol A I 3 Y A 11 02 02 ZIUU Jl?Cl~ H528 C3 CRO-HCU 1851 6080 761E500G1 Y 11 02. 02 H528 C3 CRD HYDRAULIC CONTROL UNIT ASSY 8 522 X / eJJLII~ ICE e CRO-NCU 1855 6080 761K50061 7 ll 02 02 H528 C3 CRO-NCU"1859 CRD NYDRAUL C CO TRO
'080 CRD HYDRAULIC CONTROL UNIT ASST UN T AS Y 761KS0001 Y ll 02 16Lkkl~ZCl eeee~eee~
02 . H528 C3 CRD-HCU-2203 G080 761E500GI Y 11 02 02 H528 i~ CRD NYORAULIC CONI'ROL OMIT ASSY IevMI~.RC1 i CRO-HCU-2207 6080 76IE50001 A Y 11 02 02 H528 C3 CRO HYDRAULIC CONTROL UNIT ASSY 2~49 67001 a2CXa ..1 d p g h CRO-HCU-2211. CRO HYDRAULIC CONTROL UN'IT ASST 6080 761KSQQG1 R 522 5/8 A A I 3 T A ll ~veeel" H528eev12 02 C3
. l.-.-..ll. .
CRD-NCU 2215 ~ 6080 761E500GI A 11 02 02 H528 CRD HYDRAULIC COMTROL UMIT ASST J 522 J.5/O ~ I . 167001 02C12...1 ..A C3'...,., CRD-NCU 2219 NYDPAULII CONTROL 6080 761E50061
'22 A Y Il 02 02 H528 C3 ~
CRD UeMIT ASST R LS/8 ~ A A ,167001 02C12 I A
~ PROGRPH . tt SOR LCMIHQDI VMP-2 ILRllB~M~ IlR~XSJX5 EGUIPHEMT LIST ZIICC. UM222 SRH DATE 01/06/83 EPN t!FG MODEL S E Ttt HL TEST AML FO C FRED A/E DRAVING A/E ZONE DES CR IP T I ON BLDG ELEY DETllL USE SAFETY FUNCTION OID CONTRACT LEVEL KC CRD HCU-2223 CRO tITQRAIML~IRS UI~S G080 761E500GI T 11 02 02 '5282212 1 C3 1
CRO-HCU 2227 0080 761ESOOG1 02 CR~OQRAgl, A Y A 11 CZIUI~221~ 02 H528 C3 1 CRO-HCU"2231 G080 76IE500GI T 11 02 02 H528 C3 CRO HYDRAULICI~R~JT Agf CZIUIZ II2C12 2 1 CRO HCU 2235 G080 761E50001 CRO HYORAUL C CO Y 11 02 02 H528 TRO A 6IRD1 CRO HCU 2239 8080 761ESOOG1 Y 11 02 02 H528 CRO HYDQAV~C~OLQ~I+~l ILI 82K.1 CRO HCU 22h3 761ESOOG1 02 0080'RO Y 11 02 H528 HYDRAULIC CONTR V A S CRD-HCU-22h7 G080 761KSOOGi CRO H ORA L C CO Y 11 02 02 H528 C3 T A I CRO-HCU"2251 GORO 761E500GI Y 11 02 02 H528
~ CRD HTDRAULIC CONTROL UNIT ASS CRO IICU"2255 G080 761E500Gi CRO HTORAULIC CONTROL UN T ASST Y 11 02 02 H528 1
CRO"HCU 2259 G080 761K500GI l
/
Y 11 02 02 HS28 ZCZ~ C3 2~ CRO O'TORAULIC CONTROL UNIT ASSY 522
~ ~h CRD-HCU 2603 G080 761K50081 Y 11 02 02 H528 C3 CRD H'TORAULIC CONTROL UMIT lSST 222UI~2212 CRO HCU-2607 G080 76IKSOOG1 A Y 11 02 02 H528 C3 CRO HYDRAULIC CONTROL UMIT ASSY 8 22222~ Cl CRO-HCV-2611 CRO HTORAULIC COI<TROL Ult ll0080 761E50001 l Y 11 02 02 H528 C3 ASSY ~ h 629m~2 EI I CRD IICU-2615 G080 761E500G I A Y 11 02 02 H528 CRD HTORAULIC CON'IROL UttIT ASSY R CRO"HCU-2619 ~~
G080 761E500GI Y 11 02 02 H528 C3 CRD IIYORAULIC CONTROL UNIT ASSY 12222~2222 CRO-HCU 2623 0080 761E50001 Y 11 02 02 H528 CRO HYDRAULIC COCITROL UNIT lSS M klkll~ 2 CI C3 CRO HCU 2627 CRD IIYORAULIC CONTROL CRO HCU-2631 G080 UNIT ASSY 0080 761KSOOGI 761E50001
~~R 1222 A
1 Y 6 11 02 02 167001 H528 02C12....1 ., C3 6 .. A Y 11 02 02 H528 C3 CRD HTORAVLIC CONTROL UIIIT ASST R 522 LS/8 ~ h I 3 A 167001 .02C12 1 A
PROGRAM ~eM-SORT UA If&NION~QL~&08 $ QPCL~ZSLEII ~Ann-aa nnnn r, '
', MNP 2 SRM EGUIPMENT LIST DATE 01/06/83 ~ )
n~ KPN MFG MODEL S E n ~nnnnf~sLJdnnnnlnnn'" TII HL TEST AML FO C FREQ A/E ORAUIIIG A/E ZONE n I DKSCRIPTIOM GLDG ELKV DETAIL USE SAFETY FUNCTION OIO CONTRACT LEVEL KC n CRO HCU"2635 G080 761E50061 Y 11 02 02 II528 CRO HYDRAULIC CONTRO~UH T lSS 62k~261 CRO-HCU-2639 6080 761E500G1 02 02 M528 l11 A Y CRD HYDRAULIC CONTROL UMIT ASSY R K28 ~ 1 I3N~WI2 CRD-HCU-2613 G080 761ESOOGI A Y 11 02 02 H528 C3 CRD HYDRAULIC CONTIIOL Ut)17 ASST 522 K2/8 1 nnlnnn nnnnn n n CRO IICU-2617 6080 761ESOOG I 11 02 02 M528 CRO HYDRAULIC COH'TROL UH ASSY Y fiIM~ 6'3 CRO-HCU-2651 6080 761E50061 Y 11 02 02 II528 C3 =
, ')
CRO HYDRAULIC CO TR U ASS nun w nnnnn CRD HCU-2655 G080 761ESOOG1 Y 11 02 02 H528 CIID HYDRAULIC CONTROL UNIT ASSY 0 CRD-IICU"2659 6080 761E500G1 Y 11 02 02 , H528 CRD HYDRAULIC CONTRO UM 7 ASST
~~
CRO-HCU-3003 6080 761E500GI T 11 02 02 H528 C3 CRD HYORlULIC COMTRO UH T ASSY CRO-HCU-3007 6080 761K50061 Y 11 02 02 II528 C3 CRO HYDRlUL'IC CON RO U I ASSY nnnn~nnn CRO-HCU 3011
'RO 6080 CRO HYDRAULIC CONTROL UNIT ASSY HCU 3015 6080 761E500GI 76IESOOG1 Y
Y 11 11 02 02 nxn~nnn~~ 02 02 H528 H528 C3 C3 CRD HYDRAULIC CONTROL UNIT ASSY Etta 9261 n CRD IICU 3019, GOAO 761E50061 A Y 11 02 02 M528 C3 CRO HYDRAULIC CONTROL UNIT ASST 52 8 1 ikIH~I2L1 CRO-HCU-3023 G080 761K50001 Y 11 02 02 M528 C3 CRO HYDRAULIC CONTROL Uttfl ASS CRO-HCU 3027 6080 761ESOOGi A Y 11 02 8528 C3 CRO HYDRAULIC CONTROL UNIT ASST R 2 /R ~ 1 A kZPJl~RC CRO "HCU-3031 G080 761K500G1 A Y 11 02 H528 C3 CRO HTORAULIC CONTROL UNIT ASST ~6.7'1 MZ.Cl 2.. 1 CRD-IICU-3035 CRO HYDRAULIC CONTROL G080 UNIT ASST 761ESOGG1 Y l 11 02 02
.16.7.00L M528 02.CI2 . 1, C3 A..
CRD-IICU-3039 6080 CRD IIYORiUL/C CONTROL VMlT ASSY 761E500GI
" M2R .K2Ae7 A
Y,II 1.3 .-.. A 02 02
.....,....167001.
H528. 02C12 ...... 1 C3
. A CRO-HCU-3013 0080 761K50061 Y 11 02 02 M528 C3 CRO HYDRlULIC'COttTROL Ut)IT ASSY R 522 tt 2/3 ~ 7 I 3 A 167001 02C12 1 A
'jft tt ~I It4
~RPCIIRE,-sI $ 0RL 4mBIfiDI!LPJIBLI~MEI~URRL AGE NuMD824 WP 2 SRH EOU1PHENT LIST DATE 01/06/83 EPN HFG HOOEL ~SEISR~~RSRESERS S E TH HL TEST ANL FD C FREO A/E BRAVING A/E ZONE DESCRIPT10N BLDG ELEV DETATL USE SAFETY FUNCTION 010 CONTRACT LEVEL EC CRO HCU 30h7 G080 761E500G1 Y 11 02 02 - HS28 C3 SBR ?MBJIILICABHIMLJLNILJLS SXSS~SCSa HCU-3051 CRO .~8lLlUkihlJL~MIM~
8080 761ESOOGi- Y 11 02 02 IR1221 2221~ H528 C3 1
=
CRO-HCU-3055 02080 761KSOOG1 A Y 1) 02 02 H528 C3 fIlR. I?IQBBULT f~@~NIT. ass 2L42 SESSI~RCS~ 1 CRD-HCU-3059 G080 761ESOOG1 Y 11 02 02, 8528 C3 kJ?II?BAN.1LSJ??QEQLJllU 2L1 ~ I. CRD HCU 3h03 0080 761ESOOG1- Y 11 02 02 H528 C3
'BKJ!YSBBVL ILLSS. @8~ 2C1 CRD-HCU 3hot 0080 761E500G1 Y 11 02 02 H528 C~R HY 0 0 C 8 D IICU-3h 1 1 G080 '61ESOOG1 Y 11 02 02 HS28 C3 CRD HYDRA C 7 CRO HCU 3h15 0080 761E500G1 Y 11 02 02 H528 C3 CRO HYORAU TC CON RO U Y CRO-HCU 3h19 G080 761E50081 Y 11 02 02 H528 . CRO IIYDRAUL C ONI'RO A CRO HCU-3h23 - 0080 '61E500G1 Y 11 02 02, 8528 CRO HYORAULTC CONTROL UN T ASSY EEUUIl 92C1 ~ CRO-HCU 3h27 "
CRO HYORAULTC CONtROL U 1T ASSY G080 761E50001 Y ii 02 02 H528 161l?l?~2 CRD-HCU-3h31 8080 761E500G1 Y 11 02 02 H528 C3 CRO HTORAUL1C CONTROL UNT ASSY 6ZllkL~ CRO-HCU-3135 G080 761KSOOGi Y ii 02 02 H528 CRO HYDRAULlC CONtRD UN T ASS &Zll8~2CI CRO-HCU 3h39 G080 761ESOOG1 Y 11 02 02 H528 CRO HTORAULTC CONTROL UNTT ASST '"
~6.730~2C.1 CRO HCU 3hh3 0080 761ESOOG1 A Y 11 02 02 H528 C3 CRO HYDRAULIC CONTROL UNIT ASST 52 2/ ~ 7 A 1f 222~2222 1 1 CRD HCU 3hht ~
6080 761E500G1 02 H52R Y 11 02 C3 CRO HTORAUL1C CONTROL UN 7 ASST SERR~RC12 CRO-IICU-3h51 0080 761E50081
..1...A ~
A Y 11 02 02 H528 C3 CRO HYDRAULIC CONTROL UN1T ASSY 02C12 167901 CRO HCU 3h55 CORO 76IK5OOf1 02 H528 A Y 1 I 02 C3 CRO IIYDRAUI.ic cnNTROL Uutt A..SY = R 522 W2/3 ~ 7 1 3 A 167001 02C12
~ PAOCRIH SAI -SORT rnt~~a~AEILSVeeL~m SRtl EQUIPHENT LIST En. RAGE IIO 0002 I
QMP 2 DATE 01/06/83 I ~ Ala EPN HFG NODEL S E TN IIL TEST ANL FO C FAEG I/E ORIUI tlG I/E ZONE I DESCRIPTION BLDG ELEV OETIIL USE SAFETY FUNCT'ION OID CONTRACT LEVEL EC I
~ ~ CRO-HCU-3I59 GOGO 761E50081 Y 11 02 02 NS28 CAD HYDRAULIC CONTROL UNIT ASST 61.0~
CRD-IICU-3803 G080 761ESBOG1 I Y 11 02 02 H528 C3 CRO HYDRAULIC CONTROL UNIT ASSY R 522 5/3 ' . 1kHLO~? C.I2 1 h CRO HCU 3807 CRD IIYDRAULIC CONTROL CRO-IICU 3811 Util'I 0080 ASST G080 761E500G1 761ESOOG1 Y 11 02 02 61621 N528 62C12 I C3 Y 11 02 02 N528 C3 CRD IIYORAULI CONTROL'UNIT ASSY kLImL JlZCI CRD HCU 3815 I G080 761ESOOG1 r 11 02 02 N528 C3 CRO IILORAU~LIC O~NI OL UN AI 6L9.~2C CRO-HCU-3A19 COBB 761ESD001 Y 11 02 02 N528 C3 CllD IIYORAULIC CONTROL UNIT ASST A 1%IRK~,RC1 CRD-HCU-3823 CAD HYDRAULIC CONTROL GOSO 761ESOOG1 I Y 11 02 02 N528 UNIT ASST 5 5 3 2FJ. CRD-IICU-3827 0080 761E500G 1 I Y 11 02 02 . H528 C3 CRO HYDRAULIC CONTROI. UNIT ASST R 5 2 5/ ~ 7 C CRD"HCU 3831 0080 761ESOOG1 T 11 02 02 H528 CRO IIYDRAULIC CONTROL UNIT ISS 6188~26 CRO-IICU 3835 " CRD IIYORAULIC CONTAOL UNIT ASSI CAO HCU 3839 0080 G080 761ESOOG1 76IE500G1 R 522 K2/3 ~ 7 I I 1 3 Y 11 02 02
~221.~~
H528 C3 Y 11 02 02 tl52S C3 CRD HYDRAULIC CONTROL OMIT ASST R 522 K2/3 ~ 7 l6Ikk~kCl?
-CRO HCU 3813 GOSO 761ESOOGi A Y 11 02 02 N528 C3 CRD HYDRAULIC CONTROL OMIT ASSY R 52 K/ ~ A 16 12~6 CRO-HCU-3847 I CRO HYDRAULIC CONTROL GOBO UtilT ISSY 761E500G1 R 52 237 T 11 02 02 6122L N528 6221~ C3 6 CAD-HCU 3851 CRD GOSO HYDRAULIC COIITROL UNIT ASST 761E50001 I Y 11 02 02 HS28 C3 R 522 K2/3 ~ 7 I I CRD HCU-3855 CRD IIYORAULIC CONTROL UMIT ASSY 0080 761E50001 I 3 7 11 02 02 3 6L0o.1 H528 .0? C.12 ..1,...
C3 h CRO HCU 3859 GOBS 761ESOOG1 I Y 11 02 02 H528 C3 CRO HYDRAULIC CONTROL Util l ISSY R 5?2 K2/3 ' 1 3 A 167tml tt?%12 .I = h, CRO HCU i?03 GOBO 761E500G1 I T 11 02 02 H528 C3 CRO HYOAAULIC CO!ITROL Util T ASSY R 5?2 L5/3 ~ 7 l.k . A 167001 . 02C12 I A CAO IICU-4207 G080 761 ES0001 A Y 11 02 02 H528 C3 CRO HYDRAULIC CGN'TROL U" I 7 I SSY A 5?? L5/3 ~ 7 1 167001 02CI? I A
*6, ~
0 P R 0 G}R~M>00 N-~OR T IM~I92LHIDLIIM IINP-2 JHt~ UREL~IE 002 00 0002& SRN EQV IPtIENT LIST DATE 01/06/85 EPN
~oa SEISIII~XLPhEk IIEILBS ~ ~ +
HFG BODEL S E Ttl HL TEST ANL FO C FRED A/E GRAVING A/E ZONE DES CR IP T I ON BLDG ELEV DETAIL USE SAFETY FUNCTION OIO CON'TRACT LEVEL EC CRO"HCU 1211 C080 761E50081 Y 11 02 02 N528 RO HTDRSVL.I.CMQRIEDLJl 2C1 CRO-HCU-1215 G080 761E50001 02 ~R IlN3PM~M Y 11 02 N528
&IDD~2 Cl C3 CRD-HCU-1219 G080 CRO JIYORAUJ,JC CghQjU1~~A 761ESOOGI Y 11 02 02 1&10IU N528 II2C12 2 C3 CRO-HCU-1223 CRO H RA CRO-HCU 1227 C
0080 0080 761ESOOG1 761E50001 Y 11 02 02
~2N528 T 11 02 02 N528 C3 0 I DR~A &IJ1~2Ll CRD-HCU-1231 G080 761ESOOGI Y 11 02 02 N528 C3 CRO HYORAU C COI 0 V A C RO-HCU-1255 G080 761E50001 Y 11 02 02 H528 C3 CRO H ORA CRD-HCU-1239 0080 761E500G1 Y 11 02 02 . N528 CRD HYDRAU C CON 0 A CRO HCU-1215 G080 761E500G1 Y 11 02 02 N528 CRD H DRAU C CO S &IIELD CRO-HCU 1217 GO SO 761E500G1 02 Y 11 02 H528 CRO HYDRAULIC CONTRD tt &IDD~RCI CRO-HCU-1251 CRD HYORAUL C CON R t G080 A
7&IE500G1 'T 11 02 02 N528 0~2222 ~.& C3 CRO HCU 1255 CRO IITORAUL C CON RO CRO HCU-1259 U 0080 A 761E50081 Y 11 D2 02 H528 II 221~ C3 8 761ESDOGI Y 11 D2 02 N528 C5 ~ CRO HYDRAULIC Cot TRO N AS ~2C12 1 CRO HCV 1607 GORO 761E50001 ll CRO HYDRAULIC CONTROL UNIT ASST Y Jl 02 02
~2C NSPB C3 ~
r C RO-HCU-161 1 CRO HYDRAULIC CONTROL UN T ASS GOSO 7&IE500G1 A
&I .2-0 Y 11 02 02 &1&Ill N528 IIRC}R ~...A=
C5
'2 CRD HCU-1615 0080 761E500GI Y 11 02 H528 C3 CRD HYDRAULIC CONTROL tl ASSY 0 0 I&I,Ojl~2C12 1 A.
CRO-HCU-1&19 G080 761E500G1 11 02 D2 N528 C3 CRD HTDRAULIC CONTROL UNIT ASST 167001,D2C12 A .....L . A CRD HCU-1623 0080 761E50001 1 11 02 02 N528 C5 CRO HYDRAULIC Cl'NTRI}L UNIT ASST R 522 L5/3 ~ 7 A 1&7001 02C12 I A
\r 2 &0& }"RA . r 00 r+ W, 'r, I P' 0 r
- 0 0 0'
" 0
s PROGRAM SttN-SORT BLI~INE8 SUPPLX STSIEII ~GE ho 0002 I' T. VNP-2 SRN EOUIPNEMT LIST DATE 01/06/83 ~ rO EPN A S ttagf JQIU~~I1AQEILggot ~ IIOOEL S E TH HL TEST ANL Fo C FREO A/E DRAYING A/E ZONE HFG'ESCRIPTION
,BLOC ELEV DETAIL USK SAFETY FUNCTION OID CONTRACt LEVEL EC CRO-HCU 1627 'G080 OH~TOO~ 761K50001 li 02 02 H528 CRO HTORRUL~COHTR~O Y
625~ 2C1 C3 CRO-HCU 1631
'CRO HYDRAULIC CONTROL UNIT ASSY G080 761E500GI Y ll 02 02 . H528 . C3 A 629%1 0251 CRD HCU 1635 CRD HYDRAULIC CONTROL CRO HCU 1639 C080 UNIT ASST 0080 761ESOOG1 761ESOOG1 Y
Y 11 11 02 02 02 H528 DTTTJUI~RCTR 02 N528 T ~ C3 C3 CRD HYDRAULIC CnM7ROL UM 7 A S M CRO-HCU-1613 -, G080 761ESOOG1 11- 02 02 Y NS28
~Zaai 02u.
CRD HCU 1617 G080 761ESOOG1 Y 11 02 02 N528 C3 CRO HYDRAULIC CONT VNTASY CRO HCU 1651 0080 761E50001 7 11 o2 02 N528 CRO HYDRAULIC COHTRO UN CRO-HCU-1655 G080 761ESOOGi 11 02 Y N528 CRO HYDRAULIC CONtROI. UN 7 ASSZ Il2 CRO-HCV-5011 . 0080 761ESOOG1 02 Y 11 02 N528 C3 CRO HYDRAULIC COHTROL UNIT A Sr 61N~2K1 CRO-HCU-5015 G080 761ESOOG1 11 02 oh Y N528 CRD HYDRAULIC CONTROL UNIT ASSY CRO HCU 5019 0080 761K50001 Y 11 02 02 N528 C3 CRO HYDRAULIC COIITROL UNIT ASSY 6lJOI 02C12 1 Jl CRO-HCV-5023 CRD HYDRAULIC CONTROL UNIT ASSY G080 761K50001 522 5
-Y ll 02 02 N528 CRD-HCU-5027 G080 761E50081 Y 11 02 02 H528 C3 CRD HYDRAULIC CONTROI. UMIr Assr 6.2II~2Ci CRD HCU-5031 0080 761ESOOGI '
A 11 02 02 NS28 CRD HYDRAULIC CONTROL UNIT ASST R 22 K2/3 ~ 7 A ~6ZUU B? CRO-HCU"5035 G080 76IE500GI A Y 11 02 02 N528 C3 CRO HTORAULIC'ONTROL UNIT ASSY 22 K Q~T A 1$ JJll 1 ~2CI2 1....A . CRD HCU 5039 '040 ,761ESOOGI A Y 11 02 02 H528 C3 CRD HYDRAULIC CONTROL UNIT ASST 1.6700.1 02612 1 A CRD HCU-5013 C080 761E500IT 1 ' . A Y 11 02 02 N528 C3 CRO HYDRAULIC Co'IIROL UNIT..ASSY R 522 K2/3 ~ 7 167001', 02C12 1 A CRO HCU-5017 cono . 761E500Gl A Y 11 02 02 N528 C3 CRO HYORAVLIC .CONTROL VVIT ASST R 522 K2/3 ~ 7 I 3 A 167001 02C12 I A P,
-~
q~RgT OT TT gv, yR~gq~w))IPP)~ Q gPTO IT Oy, ~ TTPU CRRTHRT T- + TT ~ "'Ra" z-)WfOW PTER', 'T
PROGRAII SI2~ SORT UiLLIUH5BLE/lQLi~KSMQPBLIMXSZE PAGE NO DDQ28 MNP-2 SRH EQUIPHENT LlST DATE 01/06/83 EPtt DESCRIPTION HFG "'OOEL DLOG ELEV S OETATL
~ ~ ~SEISEI USE E~2MAIIEIERS ~ ~ +
TH HL TEST ANL FO C SAFETY FUNCTTON
'REO OIO A/E DRAVlNG 'ONTRACT A/E ZONE LEVEL EC CRD IICU-5051 G080 761E500G1 Y 11 02 02 H528 C3 CRO H+AR+ULgg gg~gg U A Zan ~2C1 CRD CRO IICV"SA15 IIYORAULIC CON RO 6080 A
761E500I'21 T ll 02 02 H528 22222 2222 761E50061 Y 11 02 02 H528, 6HLOS 02 CRO-IICU"5123 608O 761ESOOGl Y 11 02 02 H528 CRO IIYDRAUI.TC NTR UN A bXQ3~2E CRD HCU 5127 GOeO 761E500G1 Y 11 02 02 H528 C3 CRD IIYDRAUL 0 A fi ZD l~I2C1 CRD-IICU-5131 G080 761ESOOG1 CRO IIYORAULlc CONTRO Y 11 02 02 tl528 N CRO-IICV-5A35 761E50061 'RO IITORAUL C CORNY G080 Y 11 02 02 H528 CRD HCU-5139 G080 761E50061 Y 11 02 02 H528 CRO IIYDRAULTC CON ROL UNI A CRO-HCU 5113 G080 '61E50061 Y 11 02 02 HS28 CRD~H ORAULTC CRO IICU-5AIT CRO IIYORAULIC CONTRO CRO HCU 5819 G080 Utt T ASS Goeo 761ESOOG1 761E500G1 Y 11 02 02 22223 2222~ H528 C3 Y 11 02 02 H528 CRO IIYORAULIC CONTROL UNl A SY 1IUIJ Il2Li CRO-HCU 5823 t G080 761E50061 Y 11 02 02 HS28 C3 CRO IIYORAULIC CONTROL UNIT ASS 67.IH~ CRO-HCU"5827 G080 761E500G1 CRO HYORAUl.lC'CONTRO VN T A Y Y 11 o2 02 10~ H528 C3
~
CRO HCU 5831 GORO 761E500G1 Y 11 02 02 H528 C3 CRO IIYDRAULIC CONTROL UNIT ASST bIP~2E1 CRO-HCU-5835 CRO HYDRAULIC CONTROL UNll G080 ASSY
'6IE50061 Y, ll 02 02 H528 C3 bZMl Q 2C1 CRD-IICU-5839 CRO IITORAUL1C CONTRO CRD-HCU-5813 6080 UN T ASSY G080 761ESOOG1 76)E500Gi A Y Y 11 ll 02 02 02 1 2122 02 ~ H528 H528 2 Cl 2 . C3 C3 CRO IIYORAULIC CONTROL UNIT ASST 167001 .02C12....1 A.
2'lt w 2F f ~ ~ '0 2 2 (8P r< 2 2 rr1 rr y r - N*'l 'Llr w" 4a r r
~
~ ~ POO ' ", 'P 6 I ~ LBOB, 1 l, O ~ O PROGR AH SRRI-SGR T ASIQHGIEKJJl8~VEE SURPL~XSIK RAGr Na 0002%
VNP-2 SRH EOUIPHENT LIST DATE 01/06/83
"'BEIBBILIB~BRBEIEB '
5 ~ 5 IIIE EPN NFG NOBEL E TH NL TEST ANL FO C FRED A/K DRAVING A/K ZONE DESCRIPTION BLDG ELEV DETAIL USE SAFETY FUNCTION OID CONTRACT LEVEL KC
~CRO-V-10 90" GLO~Q~C~AD18C~~
H035 CV502L IA 01 61'~ 99+ N528 CRO-V-I0+ Y N528 K6 CRO-V-I 0 COMPOSITE CRO-V-II 2" GLOBE SCRAM
)1035 DISTICH0~0~A)LdO V502L-1A 01 61'~
57 N528 F6 CRO-V-II>> K N528 F6 COIIPOOI PE PC~COO 9 CRD-V-120 8 35772 1" C)JKaSCRAH DISTICH~HR ~A V135 K El.~M528 CRO-V-126/0219 83170 Al 1 GLOBE SCRAH R290 INLET VALVE IAO) Y 11 02 02 12~ N528 CI CRO-V-126/0223 I>> GLOBE SCRAH R290 INLET VALVE CAO) 83170-Al Y il 02 02'5282I:I CI CRO-V-126/0227 R290 83170-Al A Y 11 02 02 N528 CI I>> GLOBE SCRAH INLET VALVE tAO) 5 5 I ~k125l.~2 CRD-V-126/0231 I>> GLOBE SCRAN R290 INLET VALVE IAO) 83470-AI
~BL ~6196L Y 11 02 02 H528 22CI CI CRO-V-l 26/0235 R290 83170-Al Y 11 02 02 N528 CI 1>> GLOBE SCRAN INLET VALVE I AO) 1~~ 3619~
CRO-V-126/0239 R290 83170-Al 11 02 02 H528 CI I>> GLOBE SCRAM INLET VALVE IAO) 21265 A LB Y GOBI =&6126~2212 2 1 CRO-V-126/0243 0290 83170-Al 11 02 02 M528 CI I>> GLOBE SCRAM INLET VALVE (AO) E~Rg lgrl~~4 A l~d,gl Y
~61961 .J) 2C12 2 CRO-V 126/0615 GLOBE SCRAM CRD-V-126/0619 4290 INLET VALVE tAO) 83170-Al ~522 1515 ~ 1...,
A
.. 1..5,.1 Y ~
11 51, 02 02 M528
...161961..22C12=.. 2 CI . 6 .
P.290 83470 Al A 11 02 02 H528 CI I" GLOBE SCRAM INLET VALVE IAO) R 522 L5/8 ~ I A28) 361961 02C12 2
PROQRAU SRM~OR hSIIIH GI'S LILJÃ)t
~ ))NP "2 ~
SRN EOUIPHENT UP LIST AG~LLJIDD W DATE 01/D6/83
&&&&&~~&&II&&
EPN DES CR HFG. IP T I ON MODEL BLDG ELEV S E DETAIL.
~
Tt) USE NL TEST ANL FO C SAFETY FUNCTION
- FRED 01D A/E ORAltlNG CONTRACT '/E ZONE LEVEL EC l, & CRO-V"126/0623 R290 83170-Al T 11 02 02 N528 CI '" GLOBE. SCBh~UL~L)t~hQ &L)&~2CL CRO-V-126/0627 R290 83170 Ai 11 02 02 H528 CI GLQRRtH.A~LX~hLX~Q La'B &1 82 CRD-V-126/0631 2". GL,QAEMCEh5 IHLELXh~dD R290 83170-Al .Y aB ll 02 02 H528 CI CRD-V-126 /0635 R290 83170-Al Y 11 02 02 N528 CI " QLQI)~EM.~LELXh~
CRO-V-, 126/0639 R290 83470-Al T 11 02 02 H528 CI 1'LQK kCCa5 Ig CRO-V-126/0613 R290 83170 Ai Y 11 02 02 N528 CI-CRO-V-126/0647 R290 83470 Al Y 11 02 02 H528 CI L.~LQOE AQBh~BLEL3Lk CRD-V-126/1011 R290 83170 Al Y 11 02 02 N528 CI GLOBE SCRAM T A CRO-V 126/1015 R290 83170 Al Y 11 02 D2 H528 CI GLOBE SCRA CRO V 126/I 019 R290 83170 Al T 02 02 . N528 CI
)i GLOBE SCRAH ItlLET VA V AO 11 CPO-V-126/1023 .R290 83170 Al Y 11 02 02 N528 'CI 1" GLOBE SCRAH INLET VALVE lAO) &I!I&1 ~2K CRO-V-126/1027 I" GLOBE SCRAH R290 ttLET VALVE lAO) 83170-Al Y, ll 02 02 H528 CI CRO-V 1"
126/1031 R290 83170 Al Y 11 02'S 02 '528 CI GLOBE SCRAM IN~LET AL AO 2C1 CRO-V-126/1035 R290 83170-Al Y-. 11 02 02 N528 CI 1" GLOBE SCRAH It)LET VALVE lAO) 6&19~ CRO-V 126/1039 GLOBE SCRAM 8290 INLET VALVE lAO) 83170-Al T ll 02 02 - H528 CI aQ 519%1 02CL CRO-V-126/1013 R290 83170-Al A Y ll 02 02 HS28 CI IO GLOBE SCRAtl INLET VALVE lAO)
&8!i ~&&&&&~&&&&-
CRO-V-126/1047 R290 831 70-Al I CI I~ GLOBE SCRAN INLET VALVE lAO) RP2 KZ!Lri A
......1 3 Y ..heBI 1 02 D2 =3&1561 H528 . 02C12. 2...h ..
CRD-V-126/1051 R290 83170-Al A T 11 02 02. H528 ~ CI 1" GLOBE SCRAM INLET VALVE laO) R 5P2 K2/I&~ I A~ Bl 3fi) 961 02C12 2 A
0 a,
~ PROGAAH SRH-SOR T ~4ItlRIQL>VHLI~QE8 mllPRL~SJEN char ND..00031 HHP"2 SRN EOUIPHEHT LIST DATE 01/06/83 EPN HFG NODEL ~ i ~ IIJMSl MMHEE TN HL TEST ANL'O C ii ~
A/E DRAMING S E FRED A/E ZONE DES CR IP TI ON BLDG ELEV DETAIL USE SAFETY FUNCTION OID CONTRACT LEVKL EC & ~ CAD-V-126/14 0 T 8290 83170 Al 02
)i GLOBE SCRAH INLET VALVE (AO T 11 02 612I6~2C1 N52$ CI CRO-V I"
126/1411 R290 GLOPE SCRAH INLET VALVE (AO) CRO-V-126/1115 R290 83170-Al 83170 "Al R 522 / ~ A
~ak Y 11 ll 02 02 &12~2&1~~
02 02 N52$ CI A Y N528 CI 1" GLOBE SCRAN INLET VALVE (AO) R 522 5 8 ~31 a 22&~2&22 2 .. CRO-V-126/1119 R290 83470 Al A T 11 02 02 N528 CI I" GLOBE SCRAH INLET VALVE (AO) R 522 5/ ~ I A CRD-V 126/1123 8290 83170-Al Y 11 02 02 N528 CI
)~ GLOBE SCRAH INLET VALVC (AO) 6LI CAD-V-126/1427 R290 83170-Al 02 CI I" GLOBE SCRAN INLET'ALVE (AO) R 5 2 Y 11 02 N528 f 12&1~2&&2 2 CRO-V-126/1131 R290 83470-Al Y 11 02 02 N528 CI 1" GLOBE SCRAH INLET VALVE (AO) ~a CRO-V-126/1435 R290 $ 3170-Al Y 11,02 '02 "
N52$ CI I" GLOBE SCAAN INLET VALVC (AO) R K CRO-V-126/1139 R290 83170 Al T 11 02 02 N52$ CI
~2Cl )R GLOBE SCRAN INLET VALVE (AO CRO-V-126/1113 '2 R290 83470-Ai A Y 11 02 02 $ 528 CI )~ GLOBE SCRAH INLET VALVE (AO) R 522 K2/ 2C CRO-V-126/1147 $ 290 83170-Al Y IL 02 N528 CI 1~ GLOBE SCRAH INLET VALVE (AO) 22&2~2&&2 CRO-V-126/1151 R290 83170-Al 11 02 02 .. H528 CI I" GLOBE SCAAH IHLET VALVE (AO) R 5 K Y
CRD-V-126/1455 83170-Al I" GLOBE SCRAH R290 INLET VALVE (AO) R MRlJLai A i ~a Y 11 02 02 N528
&&&&I II2212 2
CI
=~a&ill CRO-V-126/1803 R290 83170-Al A Y 02 02 N528 CI GLO(&C SCRAH INLET VALVE (AO) R 5 / &22&~2&12 2 .~
CRO-V-126/1807 R290 1" GLOBE SCRAH INLET VALVE (AO) CRO-V-126/1A11 R290 83170-Al 83170 Al
~a& Y 11 I
02 02 361261 N528 82C12. CI 2....h. I" GLOBE SCRAN INLET VALVE (AO) R 522 LS/8 ~ I ~Ma&l Y 11 02 02
~&22&1~2212 8528 .. 2 CI ll CRO-V-126/1815 I"
CRO GLOBE SCRAN V-126/1819 R290 INLET VALVE (AO) R290 83170-Al 83170-Al A 2<j,a!.Oth..... 1.3. Y ht$ 1....... 02 02 8528 361%61 ..02C12 ..-,.... 2 CI
. A A Y 11 02 02 H528 CI 1" GLOBE SCRAN INLET VALVE (AO) 572 L5/8 ~ I I 3, A ACR) 34196) 02C12 2 A
/~
PROGRAH SRN-SQll N ~IjRPLZ 'LY ~~anJA
~ I VNP 2 SAN EOUIPHENT LIST BATE 01/06/83 ~ ElS ~
- EPN HFG HOOEL S E TN IIL TEST ANL FO C FREO A/E BRAVING A/E ZONE OESCAIPT ION SLOG ELEV OETAIL USE SAFETY FUNCTION 01D CONTRACT LEVEL EC
/
2~
~ ~ CRO-V-126/1823 R290 83170-Al Y 11 02 . 02 N528 CI >'.GLOM SCBAHDBLE~Ut~h91 619~2C12 CRO-V-126/1827, R290 83170 Al Y 11 "02 02 'N528 CI )" GLOBE SCRA~N~VALY~A ~s 61%6~2C12 2 CRO-V-126/1831 '290 83170 Al Y 11 02 02 H$ 28 CI GLOBE SCRA5 I~~XLY~O 61%61 02C12 CRO-V-126/1835 )" GLOBE SCRAN IN ET A V R290 0
83170-Al Y ll 02 02 H528 ,CI CRO-V-126/1839 R290 83170-Al- Y 11 02 02 HS28 CI 1" GLOBE SCllAH I T A A CRO-V-126/1813 R290
)0 GLOBE SCRAN INLET VALVE (AO 83170-Al ll 02 02 N528 CI CRO-V-126/1817 10 GLOBE SCRAN INLET VALV R290 83170 Al Y fi" 02 02 N528 CI AO)
CRO-V-126/1851= R290 83170-Al Y 11 02 02 '528 CI IS GLOBE SCRAN INLET VALVE IAO) CR 0-V-12 6/1 855 R290 83170-Al Y 11 02. 02 H528 CI GLOBE SCRAH INLET VALVE IAO) 2'2 CRO-V 126/1859 A290 83170 Al A Y 11
/
02" H528 CI IN GLOBE SCRAH INLET VALVE IAO) R 5 K2S LCI CRO-V-126/2203 R290 10 GLOBE SCRAH INLET VALVE (AO) 83170 Al Y ll 02 02 12k~ N528 CI CRO-V-126/2207 8290 IO GLOBE SCRAN INLET VALVE IAO) 83170-Al h Y 11 02 '2 N528 ' CI A 5 I CAO-V-126/2211 R290 83170-Al Y 11 02 02 N528 CI GLOBE SCRAH INLET VALVE TAO) Cl CRO-V-126/2215 R290 1" GLOBE SCRAH INLET VALVE IAO) CRO-V-126/2219 R290 I GLOBE SCRAH Inl.ET VALVE IAO) 83170-A I 83170-Al R 5 L22
/
A J.K!N,.'I, ~ K Y Y
>~
11 11 9l 02 02 02 02 LK1~2D 46fMl H528 N528 62Cl? ... 2 CI
. d
0 I.
PROGRAH SORT U>>S>>ll>>IS)UN PUBLIC I'R IINP 2 SR)I EIIUTPIIEUT LIST SU~PL~~I~IN mbSr au DATE a0033 01/06/83 STATUS C-
~1~ E ARA '/E I ~2'l NFG NODEL S E TN HL TEST ANL FO C FREQ DRAPING A/E ZONE
~
) DESCRIPTION BLDG ELEV OETAIl USE SAFETY FUNCTION 010 CONTRACT LEVEl- EC S
ll J~~ I ~ CRO-V-126/2235 R2 90 831TB"Al Y 02 02 H528 I" Gl.OBE SCRAH INLET VALVE I AO)
~
CRD-V 126/2239 R290 83170-Al A Y 11 02 02 N528 Cl IU GLOBE SCRAN INLET VALVE CAO) R 522 K2/8 ~ 1 AAB )222~ CRO-V 126/2213 R290 83170-Al A 11 02 02 H528 CI l~ GLOBE SCRAH INLET VALVE CAO) R 5 2 K2/S ~ 1 Y SS)222~222~ CRD-V-126/2217 R290 S3170-Al Y 11 02 D2 N528 Cl GLOBE SCRAH INLET VALVE CAO) R 5 f SSSS~RE22 CRO-V 126/2251 R290 8311D-Al Y 11 02 02 H528 Cl GLOBE SCRAH INLET VALVE tAO) 6i2)2~ I CRD-V-126/2255 R290 83170-Al A Y 11 02 02 N528 CI l~ GLOBE SCRAH INLET VAl.VE tAO) R 522 K28 CRO-V-126/2259 1% INLE'I VALVE AO) 8290 83170-Ai Y 11 02 02 'S28 Cl GLOBE SCRAN C 02Cl CRD-V-126/2603 R290 83170 Al Y 11 02 02 N528" Cl
)U GLOBE SCRAN INLET VALVE tAO)
CRO-V-126/2607 1" GLOBE SCRAH INLET VALVE AO) R290 ~ 83110-A I Y ll 02 02 t'112k N528 CI CRO-V 126/2611 R290 S3170-Al A Y 11 02 02 852S
)0 GLOBE SCRAH INLET VALVE'AO) 52 5/ ?Cl CRO-V-126/2615 R290 83110 Al 1'8 Y 11 02 02 H52S Cl 1U GLOBE SCRAH INLE'I VALVE CAO) 412k~2j:1 ll CRO-V-126/2619 R290 83170 Al Y 02 02 N528 Ch 1% GLOBE SCRAN INLET VALVE CAO) 2 CRO V-126/2623 R290 83170-Al Y 11 02 02 H528 Cl )0 GLOBE SCRAN INLET VALVE CAO) S)S~SE22 2 CRO-V-126/2627 1" GLOBE SCRAN INLET VALVE tAO)
R290 83170 Al
~>>2 Y 11 02 02 h12 el H528 C1 ll 02 CRO-V 1" GLOBE 126/2&31 SCRAH I)lLET VALVE CAO)
R?90 83170-Al
.2.~sP An Y I Da; . HS28"I M619.6)~2)C'12.
Cl 2 A-' ll) 0$ ,~
~ ~
CRO-V-126/2635 8290 83170-Al A 1 0/2 N)))+II Cl II,'I 2 LYL ~N 2TS45)Tf~OROA= 2..6 L .. I<'TILT)OE SCRAH INLET VALVE t'AOV tn AI I =I.) ssif st'Tf&01~n~s)~> R 5 U>> CRD-V-126/2639 f" 'GLOBE, I '
l.l I ' SCRA4I'1'IP'I ~ C 1))LET I I VALVE I"'
1 ~ I 1 R29,0 ltAO)
~
P< I S31.10 Al R~, 5?Z~>>ldp~21,2 A Y IIII 02.~ I.)3..--.4spisI.-.-..... 0$ Ip H50B n 36$ %6LL.-.Oagl2I ...2; Ch
~
U A < CRO-V-126/2613 R290 831.7UO/IA I A Y 11I I 08:~ 0$ )p H584 n Ch > I 4'LO)/O'SCRAM BIB ~ I ~ I ~ ~ I PIT INLET I~ III V JLVE I VSI >>IS (AO) IU ~ II R 5? 2, + g/B~h I I3 . A 2P.)>> I 3&i%A.I DaC)a, 2" A2
6 ~PO G R d M~/ 12 6R kSIILNGM~LI~N~IJRRLX~3 llNP-2 SRN EQUIPMENT LIST
~~003'f 01/06/83 DATE EPN HFG HOOEL S E TH HL TESt ANL FO C FRED A/E ORAMING A/C ZONE DCSCRIPTI ON BLDG CLEV DETAIL USE SAFCtY FUNCTION OIO CONtRACT LCVEL EC CRO-V-I26/2617 R290 83170 Al 02 02 Ci GLOBE. SCRAHMNL~AL~D ~IC2Lfl A Y 4
11, 626~2212~ H528
~~2 CRO-V-126/2651 R290 83170 Al A Y 11 02 02 N528 CI 1'LOBE SCBd~NL~~AO 2ll ~1 6~2Cl CRO-V-126/2655 R290 83170-Al 02 02 H528 CI GLQAE, SCRd5 38LC~dLKf.&dO. 2KJI2~aS A Y 11 616~2212 2 l CRO-V-126/2659 R290 83170-Al Y 11 02 02 H528 CI L DII~CEktLJBL~d~
6 E CRO-V-126/3003 R290 83170 Al Y 11 02 02 N528 CI E LABE S.C~LELXILY 619 CRD-V-126/3007 R290 83170 Al Y 11 02 02 N528 Ci G AM CRO-V-126/3011 R290 83170-Al Y 11 02 02 H528 CI G QQ~CB~HL~dL~II 618~2 CRO-V-126/3015 G OR~CRAM A R290 A 83170-Al Y ll 02 02 N528 kiLR6l~ CI CRO-V-126/3 019 R290 83170-Al Y 11 02 02 H528 CI I PIPPE 2~61~ll 21~21 I I ~6 619 CRD-V-126/3023 R290 83170-Al 'Y 11 02 02 H528 CI IO GLOBE SCRAM INLET VALVE (AO)
~2Cl CRO-V-126/3027 R290 83170 Al Y 11 02 02 N528 CI l~ GLOBE SCRAH INLE7 VALET AO) 6196.~
CR 0-V-1 26/3 03 1 R290 83170-Al Y 11 02 02 N528 CI IO GLOBE SCRAH INLET VA VE lAO) 612~l2L1 CRD-V-126/3035 I~ GLOBE SCRAH INLET VA R290 TAO) 83170 Al Y 11 02 02
~2212 H528 Ci CRO-V-126/3039 I"
R290 83170-Al Y ll 02 02 H528 GLOBE SCRAM INLEt VALVE TAO) 612K~ CRO-V 126/3013 8290 83170 Al Y 11 02 02 M528 CI IR GLOBE SCRAH INLET VALVE (AO) R K / k 26l l!2C1 CRO-V-126/3017 R290 83170-Al A Y 11 02 02 H528 CI 1" GLOBE SCRAH INLET VALVC lAO) K23 R 5 26222~2@12 2 CRO-V-126/3051 R290 83170-Al A Y 11 02 02 H528 CI 1 GLOBE SCRAN INLET VALVE (AO) ~ R Bing KQQ<7 1 3 h)91 .261261. PEC12. CRD-V-126/3055 R290 83170-Al A 11 02 02 H528 CI I" GLOBC SCRAN INLET VALVE (AO) R 522 K2/3 ' I 3 Y A~ fll 361961 02C12 2 A
6 PROGOAAH S....-SORT MBS~l I~aE~MRRII MNP-2 SRN EGUIPNENT LIST SXSJQl RAG~. 0043S DATE 01/06/83 EPN NFG NOBEL S C
~ +a TH ~~ggjJfg HL TEST ANL FO C as+
FRED A/E ORANING A/E ZONE DESCRIPTION BLDG ELEV DETAIL USE -SAFETY FUNCTION- 41D CONTRACT LEVEL KC ( 6 CAD-V-126/3059 R290 83170-A1 I" GLOBE SCRAN INLET ~AL P~AO) Y 11 02 02 H528 CI CRO-V-126/3103
~
R290 83170 Al T 11 02 02 H528 CI
)" GLOBC SCRAN INLET VALVE (AO) h12~KJ CRO-V-126/3107 R290 83170-Al i Ii GLOBE SCRAM INLET VALVK (AO) 5 5 .T .1 02 02 26226I H528 ORCIR CI 6
CRO-V-126/3111 I~ GLOGE SCRAN INLET VALV (AO) R290 83170-Al II 02 02 H528 CI 2C1 CRO-V-126/3115 R290 83170-AI 11 02 02 H528 I" Y CI GLOBE SCRAM IN CT A A
&19&~)2 CRD-V-126/3119 R290 S3170 Al Y 11 02 02 N528 CI 1" GLOBE SCRAM NL T VALVE (AO CRO-V-126/3123 R290 83170 Al Y 11 02 02 H528 CI - 10 GLOBE SCRAN INLET A ( 0 &12~2 CRO-V-126/3127 R290 83170 Y 11 02 02 H528 CI I" GLOBE SCRAH IREE~IVI V LAO I ~ ,
CRO-V-126/3131 GLOBE SCAAH INLET VA A290 A 83170 "Al Y 11 02 02 '528 CI CRO-V-126/3135 R290 83170 Al Y 11 02 02 N528 CI 1% GLOBE SCRAH INLET VALV AO) CRO-V-126/3139 R290 83170-AI 11 02 02 H528 I~ GLOOC SCRAN INLET VALVE CAO Y -. CI 2Cl CAO-V-126/3113 I~ GLOBE SCRAN INLET R290 83170 Al Y ll 02 02 N528 CI VA VE ( AO)
)$ &12&~2Cl CRO-V 126/3117 R290 83170-Al 11 02 '02 H528 CI 1" INLET VALVC IAO ~
GLOBE SCRAH f 1661REAR 2 CRO-V-126/3151 R290 83170-Al 02 02 - N528
'IS GLOAE SCRAN INLET VALVC tAO) T 11 CI AB. 26IRA~RCht CRO-V-126/3155 R290- 83170-Al A ll 02 02 N528 -- 2 .A..
I OLOA~EAENAN NLEI T . CI VJk VE (AO 2LI2IRAI 2 6116L &2612 CRD-V 126/3159 R290 83170-Al A . - 02 02 H528 IS GLOBE SCRAN INLET VALVE IAO) T 11 . CI
~61261 II2212 2 6 CRO-V-126/3803 R290 S3170-Al I" GLOBE SCRAH INLET VALVC (AO) 5ZZ A
LXL3+7:.... I& Y 11 02
..ht81.........
02
.361961 N528 . 02C12.............2 CI . A .......
CRO-V-126/3807 R290 83170-Al I" A T 11 02 02 H528 CI GLOBC SCRAH INLET VALVE IAf)) A 527 L'5/3 ' I 3 A ~ Gl 361'961 02C12 2 A
A A - q 5 ' Aa'h .iCwvCW AWz ~ AS'A A 0- ~ PROI RA.I SRH~OR MNP-2
~~at)56 01/06/83 SRN EQUIP)lEHT LIST DATE ~ i ~ g?p~D~AHEIEB EPtt HFG NOBEL S E TH ttL TEST AttL FO C FRED A/E'RA)tlttG A/E ZONE DESCRIPTION BLDG ELEV DETAIL USE SAFETY FUNCTION OID CONTRACT LEVEL EC CRO-V" 126/3811 R290 83170-Al 11 02 02 H528 CI 3.." EL9Qf SCEh8&SL~hiY~Q 639~2C1 CRO-V-126/3815 R290 RJI70-Al Y 11 02 02 H528 CI 1 CLADS SCLQ~llSJ PALY ALBO~2222 CRD-V-126/3819 1 GLOg f Sg{t )LLNN,~A R290 l
83170-Al Y ll 02 02 H528 61ML~)2C CI CRO-V-126/3823 R290 BJI70-Al Y 11 02 02 N528 CI GLOBE SCREAK N 0 CRO-V-126/3827 R290 BJI70 Al Y 11 02 02 H528 CI GLOB~SERA I ~ E A 619~ CRD-V-126/3831 1" GLOBE SCRAN INLET VA V R290 l AO) 83I70-Al Y ll 02 02 H528 CI CRO-V-126/JBJS li GLOBE SCRAH IN E VAL R290 l 0
. 83ITO Al ,Y il 02 02 tl528 CI CRO-V-126/3839 R290 BJI70-Al Y 11 02 02 H528 CI )% GLOBE SCRAH It ET VA VE lAO)
R290 'RD-V-126/JBI3 83I 70-Al Y 11 02 02 H528 CI I" GLOBE SCRAtl INL I VA V 619~2 Ci CRD-V-126/JBIT R290 83I70-Al Y 11 02 02 H528 CI l~ GLOBE SCRAN INLET VALVE lAO) fLL'lf~ CRO-V-126/3851 R2 90 83170 Al Y 11 02 02 t)528 CI 10 GLOBE SCRAN INLET VALVE lAO) 19k1~2C1 CRD-V-126/3855 R290 83ITO Al Y 11 02 02 HS28 CI
)" GLOBE SCRAN IttLET VALVE lAO)
CRO-V-126/3859 R290 83I70-Al Y 11 02 02 H528 CI 1" GLOBE SCREAK N~LVAL~VtAO) 8 &156~2C1 CRO-V-126/I203 R290 83170-Al Y 11 02 02 N528 GLOBE SCRAN INLET VALVE lAO) II 6LI6~2C1 CRO-V-126/1207 BJI 70-Al 1 GLOBE~SCRAG L El R290 VA VE AADA ~B Y 11 02 02 36LK~2C1 H528 CI CRO-V-)26/I211 R290 BJI 70-Al Y 11 02 02 H528 CI IR GLOBE SCRAN It)LET VALVE lAO) I LMa ~6l96~2C CRO-V 126/I2)5 R290 83170 Al 11 02 02 H528 CI
,22LDE1515 A Y )" GLOBE SCRAN INLET VALVE lAO) A ,~ Dl SB1221 22C12........,....2 1- --.
CRO-V-126/I 219 R290 BJITO Al 02... N528, . CI
)i GLOBE SCRAH IttLET VAt.VE lAO) P. 522 LS/3 '
A 361961 02C12 2 A
J 0
'ROGRAM DIEM-SOA I SBSSISSISa2$ llLIC ESSESMIISE~TSIEB AGE HO 00037 Mt}P-2 SRH EQUIPMENT LIST DATE 01/06/83 SEB EPN HFG MODEL S EIIS E- ~EESSSCiSLEdddSEEES TH ML TEST'tlL FO C FRED A/E DRA}IING A/E ZO}}E DESCRIPTION BLDG ELEV DETAIL - US/ SAFETY FUNCTION OIO CONTRACT LEVEL EC I
' ~ I CAO-V-126/h223 1" GLOBE SCAA~JP~E~A A290 AO BJI70-Al LL5Qa.Z A Y ll 8 02 02 6196~2C12 H528 CI CRO-V-126/I 227 .R290 83I70 Al Y 11 02 02 HSRB CI I~ GLOBE SCRAM JNQET VA VE I AO) hLI6~2Cl 2 CRO-V-126/I 231 R290 BJI70-Al Y. 11 . 02 02 H528 CI l~ GLOBE SCRAM INLET V~AVE I AO) aS Lk61 'RCl CRD-V-126/I 235 GLOBE SCRAM INLET AL E R290 AO 83I70-Ai 'Y tl 02 02 '528 CI
'I CRO-V-126/I239 )" GLOBE SCREAM 8290 ~~ElLAA V~IA )
BJI70-Al Y ll 02 02.. H528= CRO-V-126/h2I3
)0 GLOBE SCRAH INLET VALVE'AO)
R290 83170-Al V ll 02 02 H528 CI CRO-V-126/I2I7 R290 BJI70-Al Y" 11 02 02 . H528 CI 1 ~ GLOBE SCRAM INLET VALVE (AO) RLL CRO-V-126/I 251 R290 " 83ITO-A1, d A Y 11 02 H528 CI 1
~ GLOBE SCAAH INLET VALVE (AO)
CRD-V-126/1255 10 GLOBE SCRA}t R290 INLET VALVE (AO) BJI70-Al Y ll 02 02 : 61!161 H528 CI CRO-V-126/I 259 R290 83170 Al Y 11 02 02 M528 CI 1" GLOBE SCRAM INLET VALVE (AO) R 522 K2/357 = A CRO-V-126/I607 I~ GLOBE SCAAH INLET R290 VALVE. (AO) 83170-Al R 5 5/3 ~ A
~d Y 5
02 02 H528 2~2522 2 CI 2 CRO-V-126/I 611 R290 BJI70-Al A 02 02 H528 CI 10 GLOBE SCRAM INLET VALVE tAO) R 522 5/3 ~ 7 12 ? CRO-V-126/I615 R290 83I70-Al Y 11 02 02 H528 CI 2~ l~ GLOBE SCRAM INLET VALVE (AO) 5 5/ 261 kRC1 CRO-V 126/I619 R290 83170-Al Y 11 02 02 H528 CI 1" GLOBE SCRAH INLET VALVE TAO) SI A ).LL MEC12 CRO-V-126/I 623 1" GLOBE SCRAH CRO-V-126/I627 8290 INLET'ALVE (AO) R290 BJI 70 "Al 83I70-Al 5 5/3 ~BS Y 11 I 02 02
~251.~2C12 H528 .2 Ch A
02 H528
~ CI ..h A 11 02 1" GLOBE SCRAH It}LET VALVE (AO) ~522 5 5 7 ~~at)L Y ~LI61 QRC12.
CRO-V-126/h631 R290 83170-Al A Y .11 02 02 H528 CI 1',GLOPE SCRAM It}LET VALVE )AO) 8 %2~2Aa7. r ..1 3 .ASSI 361961...02C1R .......2... A CRD-V-126/I635 CILO}}E SCRAM R290 lt!LET VALVE t Ats) 83I70-Al 5?2 KR/3 ' 3 ll 02 02 361961 H528 02C12 CI P. 1 A~ 81 2 A
0 2 PRDGRAN sRN-sORT GIM~QlILLISQLSl!RPLXSXS UNP-2 dn~~4438 SRN EOUIPNENT LIST DATE 01/06/83 f 2
~ lo a~~ hSEXER ~ ~
HFG MODEL S C TN HL TEST ANL FO C FRED,,A/E DRAUING A/E 2ONE DESCRIP TI ON BLDG ELEV DETAIL USE SAFE'tY FUNCTION '410 CONTRACT LEVEL EC CRO-V-126/463'9 R290 83470-Al 02 Y 11 02 H528 CI 6LQQL, SCBdtLI jlL~dLY~O1 ha 612~2212 CRO-V-126/4643 1 GLADE SCRA5 CRD-V-126/4647 INLY 'KdLY~MA R290 8290 83470-Al 83470-Al RJf2Qa. A Y 11 02 02
&19&1 H528 02C Ci Y 11 02 02 H528 CI 1" GLOBE SgRAlLIHl,K~Lyf I.d aS &19~ 2C1 CRO-V-126/4651 R290 83470-Al 02 " Y 11 02 H528 Ci 0 M~CE~NL CRD V-126/4655 R290 83470 Al 11 02 02 H528 CI 1~GABt;&C~A1BL~LY CRO-V-126/5011 R290 83470-Al 11 02-Y 02 H528 Ci l2Cl CRD-V-126/5015 R290 83470 Al Y 11 02 02 N528 Ci 1'LOP~RE~AHLK~L~
CRO-V-126/5019 R290 83470 Al 11 02 Y 02 M528 CI I'EOBE BEOAJJg6 I 1 GE ~ CRD-V-126/5023 R290 83470-Al 11 02' Y 02 N528 Ci GLOB/ SCRA~NQ~Q~AO CRO-V-126/5027 1" GLOBE SCRAM INLET AL E R290 (AO) 83470-Al 11'2 02 M528 CI
- { O CRD-V-126/5031 R290 83470-Al 02 I" GLOBE SCRAH INL T VA )AO)
Y 11 02
&15 N528 CI
'l CRD-V-126/5035 Ia R290 83470 Al Y 11 02 02 NS28 Ci 2 GLOBE SCRAM NL T VAL C AO 2'i
&1561 CRD-V-126/5039 R290 83 F 70-Al Y. 02 11 02 N528 CI ~'l 1$ GLOBE SCRAN INLET 0)
A aS 156~2C1 CRO-V-126/5043 I" GLOBE SCRAN INL'E'I VALVE 8290
)AO) 83470 Al Y ll 02 02 N528 5
CRO-V-I26/5047 R290 83470-Al 02 02 H528 T Ci
)a Gl.OBE SC AH N ET VALVE AO ~EB2 h12hl 0261 CRO-V "126/5051 R290 83470 Al Ia Y 11 02 02 H528 Ci GLOBE SCRAN INLET VALV <AO 1612f ~2212 2 CRD V 126/5415 R290 83470 Al A I'1 1" GLOBE SCRAH INLET VALVE CAOQ CRO-V-12/ /54 l 9 ~222..6511 .1 Y .da81 02'&
02 3615&1 H528
.02C12 ...2....h Ci R290 83470 Al A Y 11 02 - 02 NI28 Ci ~ ~
p r~ ~ ~ r/2 ~
'P m
4 PROgAJM SRM SORT dSN SiMII~SLILLDVE LMUML~IEB AG~O 8003'I i
",I' 'VNP-2 SRN EOUIPMENT LIST DATE 01/06/83 ill ~ +~ SIC~oiLZhAdNEIES&i 'REO ii EPN HFG HODEL S E TN HL TEST ANL FO C A/E BRAVING A/E ZONE DESCRIPTION BLDG ELEV,DETAIL' USE SAFETY FUNCTION - '10 CONTRACT LEVEL EC '528 2 ~ CRO-V-126/5I23 R290 83170 Al Y 11 -02 02 CI I" GI,OOE SCR~A1NQ~~AV~ 2Cl CRO-V-12f /5I27 I" GLOBE BCBAII L~KE~IVA E R290 IAOI 83I70 Al Y ll 02. 02 11211 N528 22C12 ~
CI
'2 CRO-V-126/5 I 31 R290 83I70-Al A Y 11 02 N528 CI I'LOBE GCBAK JELEJ E~AV~&A 2Lkal &19&1 " 02Cl CRO-V-126/SI35
- R290 83I 70-Al Y 11 02 02 N528 CI IQ GLOBE SCRAN+NL~~Ai~A ) S &L)6~ A CRO-V-126/5 I 39 R290 83170 Al CI GLOSS SCAdtl.gtlLH YA~ Y 11 02
&L)~
02 N528 CRO-V-126/51I3 R290 83I70-Al 02 02 H528 CI 1" GLOBE SCRAH INLET VA V AO Y 11 fLLI~ CRO-V-126/5 II7 R290 83170 Al Y 11 02 02 '528 CI 1$ GLOBE SCRAM INLE'I VAL AO CRO-V-126/5819 IQ GLOBE SCRAM INLET VALVE CAO) R290 83I70"Al Y 11'2 02 8528 CI CRD-V-126/5823 R290 83I70-Al Y 11 02 02 N528 "" CI I GLOBE GCBAK IIKALEt A VE IAOI &19~2 CRO-V-126/5827 R290 83I70 Al Y 11 02 02 H528 CI 1" GLOBE SCRAM INLET VALVE (AO) &l2f2~ CRO-V-126/5831 - R290 83I70-Al Y 11 02 - 02 N528 CI IQ GLOBE SCRAM INLET VALVE (AO) CRO-V-126/5835 R290 83I 70-Al Y 11 .02 02- N528 CI 1% GLOBE SCRAN INLET VALVE TAO) )S CRD-V-126/5839 A290 83I70 Al A Y 11 02. 02 N528 . CI 1" GLOBE SCRAM INLET VALVE IAO LJQLLa.'l aSL 2212GL II2C12 2 CRO-V-126/58I3 R290 83ITO-Al Y 11 02 02 N528 - CI 1$ GLOBE SCRAN INLET VALVE (AO) A g 12fi1 '2Sl CAD-V-127/0219 1% GLOBE SCRAN EXHAUST VALVE CRO-V-127/0223 R290 R290 IAO) 83 I 70-82 83I70-82
~58 A ~ ~22llllY 02 - -'02 ..221221 OBC12=2 H528 .
CI CI
.1 IQ GLOBE SCRAM EXHAUST VALVE (AO) 52 5/ ~
A I Y 02 02
&ISkL~2$12=
H528 2 ..d CRO-V-127/0227 83I70"02 ll R290
~2kB.~/I.. =..I ...As%1..
A Y 02 02 H528
...2 CI..
I I" GLOBE SCRAN EXHAUST VALVE CRO-V-)27/0231 R290 GLOBE SCRAM EXHAUST'ALVE IAO) IAO) 83170 82
' 522 . A LS/B.I o 1 3
3 Y 'l AeB) 02 5&1.'2&1. 02 361961 02C12, N528 02C12 2 CI h A
t E'
PROGRAII 5 tI-SORT 2lLHJ~IIM~ UNP-2 SRH EGUTP.'IENT LTST B~OMM40 DATE 01/06/83 NFG NOBEL S C LSN~~AN TH HL TEST ANL FO C FREG A/E BRAVING A/E ZONE DESCRIPTION BLDG ELCV OE'TAIL USE SAFETY FUNCT10N 010 CONTRACT LEVEL EC CRO V-127/0235 R290 83170 82 11 02 02 H528 CI
.1'LOM SCBSILEXtlBlS~LLY Y
619~ RC1 ~<l CRO-V-127/0239
~<< ~<R~ LEIIH~E~ R290 83170 "82 Y 11 02 02 @LID N528 8
CI CRD-V-127/0213 R290 83170-82 02 02 H528 CI I GLOBL~Q~AQQQLLLT A Y 11 613~ RC CRO-V-127/0615 R290 83170-82 Y 11 02 02 N52S 615/~IRC1 CRD"V"127!0619 R290 83170-82 Y 11 02 OR H528 CI I" 0 OB~ECRA~6U A A CRO-V-127/0623 83170-82 1~ GLOBE SCRAM XHAUS A R290 Y 11 02 02 61 '1f~8528 CI CRO V-127/0627 R290 83170-82 Y 11 02 02 NS28 CI 61R~ CR 0- V-12 7/0 631 R290 83170-82 Y 11 02 02 H52S CI 1
~ GLOBC SCRAH CX AUS A E A CRD-V-127/0635 R290 83170-82 ~
A Y 11 02 02 N528 CI 1$ GLOBE SCRAN XHAUS A CPO-V-127/0639 R290 83170-82 11 02 02 H528 CI
)0 GLOBE SCRAN EXIIAUST VALVE IAO)
T 612~ CRO V-127/0613 R2 90 83170-82 Y 11 02 02 N528 CI 1$ GLOBE SCRAH EXHAUST VA VC IAO) 61KL~1 CRD-V-127/0617 R290 83170"82 Y 11 02 02 H528 CI 1 GLOBE SCRAH EXIIAUST VALVE IAGl T 126l~2 CRD-V-127/1 011 R290 83170-82 Y 11 02 02 N528 CI
~~AD 61R6~2C12 2-CRO-V-127/1015 10 GLOBE SCRAH EXHAUST VALVE CRO V 127/1019 R290 R290 IAO)
S3170-82 83170"82 T T 11 11 02 02 02 02 N528 H528 2Ll~ CI CI 1i GI.OBE SCRAH EXHAUST VALVE AO a 6125~2 C1? 2 CRO-V 1" 127/1023 GLOBE SCRAH EXHAUST VALVE
-1 2 7/1 02 7 R290 IAOl 83170-82 5 5 A Y l~da.B 11 02 02 f 1RLL Il2Cl~
N528 CI. 83170-82 C RO-V
)$ GLOBE SCRAH EXIIAUST VALVE 8290 IAO) 5~52 34QI ~ 1 .....1 3.
Y kegl...... 11 02 02 361961 H528
.02C12 CI ..... 2,... A CRD-V-12 7/1 031 R290 83170-82 A T 11 02 02 N528 CI 1" GLOBE SCRAH CXIIAUST VALVC IAO) R 522 L5/8 ~ I 13 A~ Bl 361961 ORC12 2
N'
~ xe 1 6 E -e Ms e A 6' ee' dc 'l\I Ae&+Ies hee dAVC ' ~ &M A GR AN bs..<-SOR T PRO MA I ltIGIQEJMLJLLuME~QEELLZISIEH- QE )ID 4042)I.,
2 ~ e VNP-2 SRH EQUTPHENT LlST DATE 01/06/83
~ ~
I CPN MFG HOOEL A ~~> IS5I~~S&EZE A~ 1 S E TH HL TEST ANL FO C FREO A/C DRAUlNG A/E ZONE DESCRIPTION BLDG ELEV OETAlL USE SAFETY FUNC'TTON OTO CONTRACT LEVEL EC CRO-V-1 2 7/1 0 JS 8290 83170"82 11 02 Y 02 H528 CI
)% GLOBE SCRAM EXIIAUST VAL C IAO) aLta~
CRO-V-127/1039 R290 83I70-82 A Y 11 02 02 8528 CI 1~ GLOBE SCRAM EXHAUST VALVE IAO) R 522 II+28 ~ I A dfdd~l2222 CRO-V-127/10I3 R290 83I70-82
/
I Y il 02 02 H528 CI 1~ GLOBE SCRAM EXHAUST VALVE IAO) 522 5~2Gl C RO-V-12 7/1 01 7 R290 83I70-82 11 02 02
)~ GLOBE SCRAH EXIIAUST VALVE I AO)
Y M528 CI 6Lt6~2C1 CRO-V-127/1051 R290 1" GLOBE SCRAH EXIIAUST VALV IAO) 83I70 82 Y ii 02 02 H 528 CI
&Llfd ~2222 CRO-V-127/1I07 83170 "82 GLOBC SCRAM EXHAUST VALVE CRO-V-127/1I11 R290 IAO) 5 2 5/ ~
A Y 11 02 ld'IdL~.2~ 02 H528 CI R290 83I70 82 I" GLOBE SCRAM EXIIAUST VALVE IAO) Y 11 It 02 6LI~ 02 H528 CI
.CRD-V-127/1I 15 R290 83I70-82 'Y 11 02 02 H528 CI )% GLOBE SCRAH EXHAUST VALVE IAO)
CRD-V-127/1 I 19 R290 83I70-82 11 02 02 H528
)0 GLOBE SCRAH EXHAUST Y CI V~AL E IAO) kLtI~2C1 CRO-V 127/1I23 R290 83I70-82 H528 CI I" GLOBE SCRAM EXHAUST VALVE (AO)
Y 11 02 02 g CRO-V-127/1I27 8290 83I70-82 Y 11 02 02 H528 CI 10 GLOBE SCRAH EXHAUST VALVE IAO) A Q fd261 II2C12 2 Q ~ CRO-V-127/1I31 R2 90 83I70-82 Y 11 02 02 H528 CI 1" GLOBE SCRAH EXIIAUSV VAL~VIASI 22~2222 2 CRO-V-)27/1I35 1" GLOBE SCRAM EXHAUST VALVE R290 IAO) 83170 82 h Y 11 02 02 6LI61 JQCl~ 8528 CI CPO-V-127/1I39 R290 83170 82 A ~ Y 11 02
~sl26~2222 02 N528 CI ~d )% GLOBE SCRAH EXHAUS'T VALVE CAO) R S AS AdU 2 CPD-V-127/1II3 8290 83I70-82 Y 11 02 02 M528 CI 1" GLOBE SCRAM EXIIAUST VALVE IAO) 2 6 Ltki~RClR CRO-V-127/1IIT R290 83I70 02 11 02 8528 )~ GLOBE SCRAH EXIIAUST VALVE IAO) Y 02 CI I .~61262~2212 2 6 CRO-V-127/1IS1 R290 83170 82 1) 02 02 H528 A Y CI GLOBE SCRAH EXIIAUST VAI,VE IAD) ~2? .K2/2. I .....1,3 ~ ."h 2 Bl ....361961 02C12 .... 2...
CRD-V-127/1I55 R290 83I70-82 02 H528 I" Y 11 02 CI GLOBC SCRAM EXIIAUST VALVE I Jf)) R 522 IC2/8 ~ A 1 3 A~ 81 3(>1461 02C) 2 2
\ PROGR~A ~Q SOR dSIIIMBD)I~BLH~MQLSIJRRL~E QNP-2 A~~OQfL SRN EOUIPHENT LIST OATK 01/06/83
~
EPN HFG HOOEL S C TH HL TEST ANL FO C FREO A/C ORAQING A/K ZONK DESCRIPTION SLOG ELEV OCTAIL USC SAFETY FUNCTION OIO CON'TRACT LEVEL KC CRO-V 127/1803 R290 83170 82 Y li OR 02 N528 CI I'LOBE. SLBhtLEXIIhDS~hLY~ GSS ~SCS CRO-V-127/1807 ~QLoBE RCBM ExlMRLZh~dQ R290 83170 82 Y ll 02 02 6LS~RC N528 CI CRO-V-127/1811 R290 83170-82 Y 11 02 02 N528 CI 1" GLOBE SCR~AQ}h~~ CRO-V-127/1815
)~ GLOB~E C AH X) AU A R290 A
83170-82 Y il 02 02 61'I61 ~ N528 CI CRO-V-127/1819
" GLOB~MhlLEXMll~h R290 83170 BR Y 11 a
02 fil3~ 02 N528 CI CRO-V-127/1823 I~SLRS SARAH U A R290 0 83LI70-82 Y 11 02 02 fil'Ifil ~ N528 CI CRO-V-127/1827 I'LRIIC SC~RIR I IUS R290 83170 82 Y il 02 02 N528 CRO-V-127/1831 R290 83170-82 Y 11 02 02 N528 CI l GLOBE SCRAH EXHAUS VALV lAO CRO-V-127/1835 GLOBE SCRAH EXHAUS A R290 V AO 83170 82 Y ll AB 02 02 N528 CI CRO-V 127/1839 R290 83170-82 Y. 11 02 02 N528 CI 1~ GLOBE SCRAH EXHAUST VALVE lAO) SSS&S SRC12 S CRO-V-127/1813 R290 83170-82 Y 11 OR 02 M528 CI 1" GLOBE SCRAN EXHAUST VA VC (AO) C RO- V-12 7/1 81 7 R290 83170-82 Y 11 02 02 N528 CI I" GLOBE SCRAN EXHAUST VALVE IAOl 2C C RO-V-12 7/I 851 R290 1" GLOBE SCRAH KXHA'EST VALVE lAO) 83170-82 Y li 02 02 H528 CI CRO-V-127/1855 R290 83170-82 A Y 11 02 02 N528 CI I~ GLOBC SCRAH EXHAUST VALVE CAn) K / Bfr.~M CRO-V-127/1859 R290 83170-02 Y 11 02 02 H528 CI Io GLOBE SCRAH EXHAUST VALV (AO) SSSSS~SCI? h)B S CRO-V-127/2203 R290 83170-82 02 8528 CI l~ GLOBC SCRAH EXHAUST VALVE IAO) Y 11 Sl. ~1?S102 Il?CSS ..S CRO-V-127/2207 R290 83170-82 A Y 11 02 02 H528 CI 1
~ GLOBE SCRAH EXHAUST VAI,VE )An) ~~LEAK . I 4 h ABl 46I.'J fik 02C12 2 d CRO-V-127/2211 R290 83170 "02 A Y 11 02 02 H528 CI IN GLOBC SCRAH EXHAUST VALVE (A1) R 522 LS/8 ~ I 1 3 A~ RI 361961 02C12 2 A
v 'A ~ >> Aw A. IA 'V O'A ~ v G V -v, 4. 'L - k G '2 4'. f
~ ~
I PROGRAM SIR. -SORT .IQtLPSRLi f UNP-2 SRM
~ ~LtLS UBELY~IEtf EQUlPHENT LIST PAGE DATE f(D. 000%3 01/06/83 ~
~ ~ EPN HFG
"~22222?~~IEIIIEEEE MODEL S E 'TH )IL TEST At(L FO C FRED A/K DRAltlNG A/E 20I(E DESCRIPTION BLDG ELEV OETATL USE SAFETY FUNCTION 01D ,CONTRACT LEVEL EC CRO-V-127/2215 R290 83470 82 GLOBE SCRAH EXHAUS'f VA+V~E(A )
02 hid~ 02 H528 CI CRO-V-127/2219 R290 83470 82 A Y 11 02 02 H528 CI 1~ GLOBE SCRAM EX)IAUST VALVE (AO) ! 522 L5 8 A 1 02C1 127/2223 CRO-V R290 GLOBE SCRAM EXHAUST VALVE (AO) 83I70 82
~>akl Y 11 02 02 IIIIII M528 OEEI~~ CI CRO-V-127/2227 )0 GLOBE SCRAM CRD V-127/2231 R290 EXHAUST VALVE (AO)
R290 83470-82 83470 82 Y 11 11 02 02 02 r 2222 H528 222~ CI Y 02 , H528 CI ASSAI~ CRO-V-127/2235 R290 83410 82 Y 11 02 02 . tl528 CI 1" GLOBE SCRAM EXHAUST VALVE (AO) n. CRO-V-127/2239 R290 83470 82 Y 11 02 02 H528 CI l GLOIIE SCRAG EXRAOS? VA~LVE AAO CRD-V-127/2243 R290 83470-82 Y 11 02 02 t(528 C4
)0 GLOBE SCRAM EXHAUST VALV (AO)
CRO V-127/2241 8290 83470 82 Y 11 02 02 tl528 CI
]0 GLOBE SCRAH EXHAUS 0 h V-127/2251 CRO R2 90 83470-82 Y 11 02 02 H528 CI 1" GLOBE SCRAH EXHAUST VALVE (A~O 8 3h CRD-V 127/2255 R290 83170-82 Y 11 02 02 H528 CI 10 GLOBE SCRAH EXHAUST VAL E (AO) 12~2K I l".. ~
6 CRO-V-127/2259 R290 83470-82 02 02 H528 CI
- 1. GLOBE SCRAM ExtlAUST VALVE (AO) 2."?~A ~
A I EM~I Y 11 3GL561 t".I h l'- . '7/ e. I f '
0
~QE~
PROGRAH ~-Jt QO EPN OESCAlPTI HFG ON
)11HSQHL2llS NOBEL QNP-2 SRN EOU1PHENT LTST BLDG ELEV S E DETATL i'IER TH HL TEST ANL FO C USE SAFETY FUNCTlON ~
FRED 010 CONTRACT GC DATE A/E DRAMlNG WOOING 01/06/83 A/E ZONE LEVEL EC CRO-V-127/2627 R2 90 ~ 83170-82 11 02 02 H528 CI
&LOBE SCBhtLEXHdMSLJfdLV~O Y
AS ~2C1 CRO-V-127/2631 R290 83170 82 Y 11 02 02 N528 CI GLQK SQLhlLKXllhllh~hLY~hD 8 6~2C1 CRO-V-127/2635 R290 83170 82 Y 11 02 02 H528 CI 1" GLOBE SCRAIARQQhllh~~~h ) 61%~ 2C CRO-V-127/2639
)~G OBE SCRA EX AUS A R290 A
83170 82 ll 02 02 H528 CI CRD-V-127/2613 R290 83170 82 Y 11 02 02 H528 CI 1" GLOBE SCRAN 615 CRO-V-12 7/2617 R2 90 83170-82 Y 11 02 02 H528 CI l~ GLOBE SCRAH EXHAUS VA V 0 CRO-V" 127/2651 R290 83170 82 r 11 02 02 8528 CI
)0 GLOBE SCRA EX AUS VA A 6126)~
CRD-V-127/2655 R290 83170 82 Y 11 02 02 H528 CI 1" GLOBE SCAAN EXHAUST VA V (A ) I CRO-V-127/2659 R290 83170-82 Y 11 02 02 8528 CI I GLGR~ESERAM X AUST Llf ~G 619~2 CRO-V-127/3003 R290 83170 82 Y ll 02 02 8528 CI 1~ GLOBE SCRAN EXHAUST VALVE <AO) hl26~2C CRD-V-127/3007 R290
]w GLOBE SCRAH EXHAUST VALVE (AO) 83170-82 Y 11 02 02 IH528 2.2212 CI ll CRO-V-127/3011 R290 1" GLOBE SCRAN EXHAUST VALV (AO 83170-82 Y 02 02 61561 ~
8528 CI CRO-V-127/3015 CRO V-127/3019 R290 lw GLOBE SCRAN EXHAUST VA VE CA?) R290 83170-82 83170" 82 Y Y ll 11 02-02 02 2121 02
~221~
H528 H528 CI CI 10 GLOBE SCRAN EXHAUST VALVE lAO) R ~2Ch CPD-V-127/3023 R290 83170 82 Y 11 02 02 H528 CI l~ GLOBE SCRAH EXHAUST VALVE (AO) ski 36156l ~2C1 CRO-V-127/3027 R290 83170-82 Y 11 02 02 H528 CI 1" GLOBE SCRAH EXHAUST VA VE )AO) CRD-V-127/3031 R290 1" GLOBE SCRAH EXHAUST VALVI: lAO) CRO-V-127/3035 R290 83170 82 83170 82 2??,II?L? 1 A
....I Y 1....1ASI 11 02 02 SGTSRL H528 . II2212 2 CI A Y 11 02 02 H528 CI 1" GALORE SCRAN EXHAUST VALVE lAO) R 522 X2/3 ' 1 3 A~ Ol 361961 02C12 2 A
r', 2.2 0'
~
PROGRAH -..N-SORT EPN DESCRIPTION NFG NOBEL
~O~~VESMllM MNP-2 SRN BLDG ELCV EOUIPHENT S
DETAIL E LIST'ar
~tSTQl MXLP.dEdNEI TN HL TEST ANL FO C USE SAFETY FUNCTION FAEO 010 DATE A/E BRAVING CONTRACT ~0008 01/06/83 '/E ZONE LEVEL EC CRO-V-127/3039 R290 83170-82 .Y ll 8
02 02 N528 Cl CRO-V-127/3 013 R290 83170-82 CI
) % GLOEIE SCRAH EXIT(AUST VALVC (AO) 522 3 A Y 11 AII 02 02 62222 8528 22222 2 CRO-V-127/3017 1" GLOBE SCRAH EXIIAUST- VALQ~CAO)
CRO-V-127/3051 R290 83170-82
~all Y 11 02 . 02 262261.
N528 22212 2 CI
-6 ~ R2 90 83110-82 Y 11 02 02 N528 CI 1" GLOBE SCRAH EX AUS A C AO 36LR~2 CRO-V-127/3055 8290 83170-82 Y 11 02 02 N528 CI GLOBE SCRAIIAX~II QS~ 0 )8 619~2 CRO"V-127/3059 R290 83170-82 Y . 11 02 02 N528 CI 10 GLOBE SCRAN EXHAUST VALVE (AO)
CRO-V-127/3103 1~ GLOBE SCRAH CRO-V-12 7/3107 EXHAUST~ACAIIA R290 R290 83170 82 83170-82 Y 11 II 02 02
~2 N528 CI A Y 11 02 02 N528 CI GLOBE SCRAH EXHAUST VALVE CAO) 5 5 ~
I CRO-V-127/3111 8290 83110-82 Y 11 02 02 N528 CI I" GLOBE SCRA EXHAUS A CAO CRO-V-127/3115 R290 83170 82 Y 1 1- 02 02 8528 CI 10 GLOBE SCRAN EXHAUST VALVC (AO) [6 CRO-V-127/3119 R290, 83110-82 Y 11 02 02 8528 CI
)0 GLOBE SCAAN EXIIAUST VALV CAO) hA LIMNI Jl2C12 CRO-V-121/3123 R290 83170-82 Y 11 02 02 8528 CI GLOBE SCRAH EXHAUST VALVE CAO) 5.126~2 CRO-Y-127/3127 l~ GLOBE SCRAH EXHA~US V ~CA R290 83170-82 Y daL 11 02 02 f 226~222~~
H528 CI CAD-V-127/3131 R290 83170-82 li GLOBE SCRAN EXHAUST VALVE CADI I Y 11 02 02 612%1
. H528 92Cl CI CIID-V-I27/3135 'R290 GLOBE SCRAH QXIIAUST Vht,VE QAOQ 83170-82 2LJQlkaI A Y .d)81 11 02 02 .~6226l H528 62212 A CI 6-CRO V-127/3139 I X'I'P67 VAI R290 ~ O'I 83170 02 ~ 2 AQ l P 2 ~
I 1 Y ll (Illi 02 361981 H528
" l"..., CI..h A ?
PROGRAH STEH-SORT tIHGD)lLRll8~Q~URRLX GLAZE Aar Su nnOHb MNP"2 SRN EOUlPHENT LlST DATE 01/06/83 EPN HFG HOOEL i ~+ EtSEIC V~EdNEIEES~" S E TH NL TEST ANL Fo C FRED A/E ORAIIING A/E ZONE DESCRIPT)ON BLDG EI.EV OETATL USE SAFETY FUNCTTON Olo CONTRACT LEVEL EC CRO-V-127/3451 8290 83470-82 Y li 02 02 H528 CI GLOBE 8CKBLfXHXQRIMdLYE&dQ )S GASG~SCAS C RO-V-1 2 7/3455 R290 83470-82 I H GLOBQ~CR~AH )tglLU~LY~L 22 Jf2L4. A Y
~
11 8 02 6l9~ Ci 02 H528 2 CI CRO-V-127/3459 R290 83470-82 Y li 02 02 H52S Ea18~2Ci CI CRD-V 127/3803 GQOB~SCR~AX CRO-V-127/3807
~AUS ~~ R290 R290 83470 82 83470 82 Y 11 11 o2 02 02 02 H528 8528 CI CI I" B,08)~&htLfJUfHLRLX~d Y CRO-V-127/3811 R290 8347O 82 Y 11 02 02 8528 CI GLON~IC SCAAH HAUS CRD-V-127/3815 R290 S3470 82 Y 11 02 02 N52S CI )R GI.OBE SCRA EXKAU A CPD-V-127/3819 R290 83470-82 Y 11 02 02 CI l GLOBE SCRAH XH US 0 H528'18~12 CRO-V 127/3823 . R290 83170 82 Y 11 02 02 N528 GLOB/ SCR~AH X AU VA 8 ~2C1 CRO-V-127/3827 R290 83170-82 02 02 H528 11 CI I GLOBE GCGAN EX~HAUST AL IXII Y
612~ . CRO-V-127/3831 l~ GLOBE SCRA~HXHA~US ~AL ~ R290 0 83470-82 Y 11 02 02 N528 222~2222 2 CI CRO-V-127/3835 R290 83470-82 Y 11 02 02 H528 CI 1" GLOBE SCRAH EX))AUST A IAA) CRO-V-127/3839 R290 S3470-82 11 02 02 H52S I" GLOBE SCRAN EX AUST A A Y 612)21 CRO-V-127/3843
)~ GLOBE SCRAH R290 EXHAUST ItALVE I 0) 83170-82 Y ll 8
02 02 N528 2C CI CRO-V 127/3847 R290 83170-82 Y 11 02 02 H528 CI
~ski M196~2C1 CRD-V-127/3851 R590 )I L'do'EI S'C'R'ATE LX'HAUAI VXUIVLI I'A'n'>'
83470-82 481'2,1)'2'~1)A~ 11 02 H528, CI
~$
Si IA" GL'O'O'2 SCII'AII'EXIIXUXT'EX)'Eg 1'I'SV 22 EJECT A" 2 1 3 7 AaOi 1 l. OP 0)',, Afar'8"..
...361Q1 .00C1K 2 $4
. CROI<V-127'/3859) I" a'0"9tI) O'L'oR'Ec'R'Ax'll)2US'T'al! VEA'II)) 8'hII"r t)'LRP R 5H'f2'/5 Ah 7 13
.Y ll A ~ 81 05 oh, N52S,,
3h'1It'4kc'1V 2' 84
0 0
2 PROGRAH hQQH-SORY
'PN MhSHINfaIQtLZUBLIC PQMEH SUPPL~YSIEH RAGE NO 00047 1
UNP-2 SRH EOUIPHCNT LIST DATE 01/06/83 1 1 4 HFG HOOEL S E TH HL TEST ANL FO C FRED A/E BRAVING A/E 20NE OCSCRIPTION BLDG ELEV DCTAIL USE SAFETY FUNCTION OIO CONTRACT LEVEL EC CRD-V-127/1203 8290 83170-82 Y 11 02 02 N 528 CI
)N GLOBE SCRAN EXHAUST VALV l ) a Rim~2 ll ~
CRD-V-127/1207 R290 83170 82 02 02 H528 CI 1" GLOBE SCRAN EXHAUST VALVE lAO) Z
~6~2u CR O-V" 12 I/I211 R290 83170-82 A Y 11 02 02 N528 CI 1" GLOBE SCRAH EXHAUST VALVE tAO) 5/ ~21 21 QQC12 CR 0-V-12 7/I 215 R290 83170-82 Y I'1 02 02 N528 CI Iw GLOBE SCRAN EXHAUST VALV lAO)
CRO-V-127/1219 8290 83170 "82 Y 11 02 02 N528 CI 1'LOBE SCRA~H~AUS A ) CRO-V-127/1223 R290 83170 82 Y 11 02 02 N528 Ci
)% GLOBE SCRAH EXHAUST VALVE lAO) A CRO-V-127/1227 R290 83170"82 Y 11 02 02 N528 Ci Io GLOBE SCRAH EXHAUST VALVE lAO)
CRO-V-127/1231 R290 . 83170-82 Y 11 02 02 H528 CI 1% GLOBE SCRAH EXHAUST VALVE lAO) 5 3 CRO-V-127/1235 R290 83170 82 11 02 02 N528 CI II GLOBE SCRAH EXHAUST VALVE AO) Y CRO-V-127!1239 8290 83170-82 02 H528 CI
)i GLOBE SCRAH CXHAUST'ALVE lAO) R 522 K 3 Y 11 02 2
CAD V-127/1213 R290 83170-82 Y 11 02 02 H528 CI GLOBE SCRAH EXHAUST VALVE lAO) 5 2 3 222~ 2C12 2 CRO-V-127/1217 1 R290 GLOBE SCRAH EXHAUST VALVE lAO) 83170 82 Y A ll 8 02 02 'N528 CRO-V 127/1251 R290 83170-82 A Y $1 02 02 HORS CI I~ GLOBE SCRAM EXHAUST VALVC lAO) 361961 02C12 Cnn--2 ') 2
~~ 1 ~
(2 1
0
~ I I iraq eW 'nas
~ '
PROgBRdH STAh SORT EiIQlLEUBjD'~N~llP aar~nmaa/Ib QNP-2 SRH EOUlPHCNT LTST DATE 01/06/83 oao NElEB ~
=
NFG HODEL S E TH HL TEST ANL FO C FRED A/E ORAQTNG A/E ZONE OESCRIPTlON BLDG CLCV OETATL USE SAFETY FUNCTION OTD CONTRACT LEVEL EC CIEO V-127/1619 GL99~XBd5 XXlldQS~~d R290 83170 82 Y il 02 02 H528 2C1 CI ll CRO-V-127/1623 R290 83170 82 Y 02 02 N528 CI 1>> GLOBE SCRAH XXII~AUST A~AS 3619~2C12 CRO-V-127/1627 1>> GLOBE SCRA~EXIJAU~SL R290 A 83170 82 Y 11 21 02
~6226~262~
02 8528 CI CRO-V 127/1631 R290 83170 82 Y 11 02 02 8528 ' CI 1>> GLOB~E C AH XHAUS CRD-V 127/1635 8290 83170-82 Y 11 02 02 8528 CI 1 ~ G OOC SCRAH X AU A 0 CRO-V-127/1639 8290 83170 82 Y 11 02 02 N528 CI 1" GLOBE SCRAH EX IAUST VA VE A CAO-V-127/1613 R290 83170-82 Y 11 02 02- N528 1>> GLOBE SCRAH XHAUS A CRO-V-127/1617 R290 83170-82 Y 11 02 02 N528 CI 1" GLOBE SCRAH EXH US V A I CRO V-127/1651 R290 83170 82 Y 11 02 02 8528
)" GLOBE SCRAN CRD-V-127/1655 1" GLOBE SCRAH EXHAUST R290 VA VE (AO) 83170-82 Y 11 02 02 '528 CI CPO-V-127/5011 R290 83170 82 Y 11 02 02 N528 CI GLOBE SCRAH EXHAUS7 VALVE TAO) 619&~2C.l CRO-V-127/5015 R290 83170-82 Y 11 02- 02 H528 CI
~ 1>> GLOBC SCRAH CXHAUS VALVC AO) CRD-V-127/5019 I" R290 83170-82 Y ll 02 02 N528 CI GLOBE SCRAH EXHAUST A a hLkfi~ CPO-V-127/5023 1>> GLOBE SCAAH EXHAUS A R290 V AO 83170-82 Y ll 02 02 8528 8 CRO-V-127/5027 R290 83170-82 Y 11 02 02 N528 I GLGS~ESCRA 2~ lUST Vl VE Illl 3fi12~ CRD-V-127/5031 R290 83170-e2 Y 11 02 02 N528 CI 1>> GLOBE SCRAN CXHAUST VAI.V AO) 1 612ti
,I" CRO-V-127/5035 GLOAC SCAAH EXIIAUST VALVC R290 I)Ol 83170 A2 ~RP~2l 0 2 A
7 T 1 Y 6 11 Ill 02 02 8528 SSI'161 ..GRCI2 2 CI A.
t h I. I
~ PROGRAN Skn-SORT ~&222&UCL222&l&<<2222 2622&1 &2&222 ~AGf NU 000NI r',
r> 'PN OES CR HFG IP T I ON HODEL MNP-2 SRN EQUIPHCNT BLDG ELEV S OCTAIL LIST
~<<~
TH USE ELiEIC C~ShNEIEJS<<<<<< HL TEST ANL FO C SAFETY FUNCTION FRED alo AIC DRAMING CONTRACT D/TC 01/06/83 A/E ZONE LEVEL CC I 1 6 6
~ )
C RO-V-12 7/5 01 3 R290 83170-82 A. Y 11 02 02 N528 CI 1" GLOBE $55h5~HhVRLYhl.~dkl ~2222
~
A<<a &I'I&1 CRO-V-127/5017 8290 83170-82 A
~e ll Y 02 02 8528 CI CRO-V-127/5051 1 GLOBE SCgAH R290 EXglu~syAt,g~~AL 83170-82 2LJ12 L3<<1 Y
h<<S 11 02 6l261 02 1&126~2C12 BZC1 N528 CI CRD-V-127/5115 1" GLOBE SCRA~XHAQS~Q~h0 CRO-V-127I5119 CPO-V-127/5123 I GLOBE SCRAN E~X AUST R290 R290 R290 VA~E- CAS1 83110-82 83170-82 83170 82 Y Y Y 11 11 11 02 02 02 02 02
~2 &22~2212 02 H528 8528 N528 6
2 CI CI CI CRD-V-127/5127 8290 83170-82 Y 11'2 02 N528 CI 1" GLOBE SCRA~g}flfAU)~gggf~ aS 6156~ CliO-V-121/5131 I" GLOBE S~CRAH XHAUST VA R290 A 83170-82 Y ll 02 02
&LI61 N528 ~2C1 CI CRO-V-127/5135 R290 83170-82 Y 11 02 02 N528 CI l~ Gl-ODE SCRAH E)]~AU ~ALQ~AQ <<S &&2&2~&C12 CRD-V-121/5139 l GLOBE SCRAH EXHAUST VAL~V R290 lAO) 83170-82 52 2I A Y ll 02 02 2&1 N528 ll&C12 CI CRD-V-121/5113 I" GLOBE SCRAH EXHAUST VALVE 8290 IAO) 83170-82 Y ~B1 ll 02 02 3619~ N528 2Cl CI CRD-V-127/5117 R290 )~ GLOBE SCRAH EXHAUST VALVC lAO) 83170"82 ~a Sl.
Y 11 02
&226~221~~
02 N528 ,CI CRD-V-127/5819 R290 83110-82 Y 11 02 02 H528 CI 1" GLOBE SCRAH EXHAUST VALV~IAO) ~h<<S 61M1 02Cl Y, CRO-V-121/5823
)0 GLOBE SCRAN EXHAUST VALVE R290 lAO) 83170 82 ~s& 11 02 &IM~2C1?
N528 2 CI CRO V-121/5827 1" GLOBE SCRAH EXHAUST R290 83170-82 A Y ll 02 02 H528 CI VAL.VE LAO) 2? l5LXa7 L& & ~ &I &&&2&& II2612 2 & CRD-V-127/5831 R290 83170-82 K~ ll H528 CI 1" GLOBE SCRAH EXHAUST VALVE lAO) 2? h.<<91 02 ,
~&1.9&1~?CI?
02 2 A. CRO-V-127/5835 R290 1" GLOBE SCRAH fXHAUST VALVE IA01 83170-82
%22. i<2/5 ~ 7.....
A 1 3. Y h ~ 11 81, ..., 02 02
.... 361961 H528 . 02C12 ...... 2 CI ...A .
CRO-V-127/5839 R290 1" GLOBf SCRAH EXHAUST VALVE )AA) 83110 82 520 Sa/3.7 h 1 Y Aa81 ll Oa 18 Wf.) RF l'>C Tt59% CI
PAOGR AN s .. SAR~ NEsIQ!LRIm~'mdE~ll hr~uWOGS UNP-2 SRN EQUIPNENT LlST DATE 01/06/83 NFG HOOEL r TN HL I'EST ANL FO C . FRED A/E BRAVING A/E ZONE DES CR IP TI ON BLDG ELEV DETAIL USE SAFETY FUNCTION 410 CONTRACT LEVEL EC CRO-V-127/5813 R290 83470-82 Y 11 02 02 H528 CI I "..GlOt)E $ CahlLEX)lhlls~hLX~hk &19~2 CSP-AO-I N322 A838 07 01 9 N543 D5 8 CSP-AO-10 N322 A838 RSR IlPSRS+R~~S~P saba H543 2 C6 CSP-AO-2 H322 A838 01 07 06 A1R OPQRQQg Q)~ N513'0 CSP-AO-3
~I B.ALE B4IQlLEQLXSE=-
N322 A838 01 1%1 N513 Ds CSP-AO-I H322 A838 01 10 . H513 Cs A/R OPERAS~~~ CSP AO-5 N322 A838 01 10 8513 C5
~AR OPERA/0 R P- -5 CSP-AO 6 M322 A838 01 10 H543 814 AIR OPERATOR FO S -V-CSP.-AO-T H332 73 AIR OPERATOR FOIL G H543 C6 CSP-AO-A H332 0-73 NSI3 811 AIR OPERATOR FOR CSP- -8 1SRR~15 1 CSP-A0-9 N322 A838 C 01 10 N513 C6 AIR OPERATOA FOR CSP-V-9 Lamas &8 2 CSP-V-I 8250 A-206763 01 07 HS43 0 05 CSP-V-I+ 01 H543 05 &110~8 CSP-V-10 AI 15 CVI-L 01 9 C P Y N513 21 VACUUH RELIEF VALVE CSP-V-IO>
CONPOSITE FOR CSP-V-IO 19 ~ K A 612k 8513 1 C6 E, CSP-V 2 8250 30" BFLT CONTAINHENT ISOL VALVE. CSP-V-2+ A-206763 50 II%5 01 0 07 1 f llllS8543 SL 06 K 01 N543 D6 CONPOSITE FOR CSP"V-2 R '%08 Nf$ ~0h Z 1 Sl ~ .Stllll AS- 1 h ~ ~ CSP"V 3 21" BFLY CONTAIN'IElll ISOL VALVE 8250 DUG A 206761 R'AI C P N 01 10 H513 Ds N~ &/7 ~ 6 3 81 ~ F 36110& 68 2 A
0 0
PROGRAN SORT HIIIGIM~RLKMt))f EfLS llER~MJE8
& S& ~ ~
A ekS~O 000m Y ~ VNP 2 SRH EOUIPNCNT,LIS'f BATE 01/06/83
~
ffa ~4~ EPN HFG HOOEL 'TH IIL TEST ANL FO A/E BRAVING S E C FREO A/E ZONE DESCRIPTION BLOG ELEV DEI'AIL USE SAFETY FUNCTION 010 CONTRACT LEVEL EC CSP-V 3+ CONPOSITE FOR CSP-V-3 N513 D5 & CSP-V-I 21 BFLY CONTAINHENT ISOL VALVE 8250 OVG A-206761 178 6 01 9 10 N513 C5 R 44119k CSP-V-I+ COHPOSITE FOR CSP-V-I ~6/ 6 UJk6 N513 C5 CSP-V-5 8250 OVG A-206761 01 9 10 21~ .RFLY CON'fAINHEf)T ISOL VAL C H513 C5 N 611%~ CSP-V-S& HSI3 811 CONPOStTE FOR CSP-110 CSP-V-6 8250 A-206765 9 21" BFLY P N ~ 01 10 H513 811 CON ENT ~OL VALV CSP-V-6+ COHPOSITE FOR CSP"V 7 CSP-V~ AI 15 a~ HSI3 Bll CV1-L P Y 01 9 H513 CS
~ 21" CHECK VAC REL 0 SUPP CHARS CSP-V 7+
HSI3 C5 CONPOSI E 0 CSP-V-8 AI 15 CV I-L 01 9= NSI3 811 F 75" GLOBE 21~ VACUUN RELIEF VALVE CSP-V-B+ COHPOSITE FOR CSP V-8 H513 Bll 1 k CSP-V-9 8250 OVG A-206761 9 21 "BFLY C 01 10 HSI3 C6 VAC RELIEF TO SUPP CHAHB 0 /5 CSP-V-9+ COHPOSITE FOR CSP-V-9
&&&&&~&~ &
H513 C6 CVB-V-IA Al 15 CVI-L/TYPC 121 01 17 H513 P Y 0 812 1$ ll 21% CHK VAC RELIEF TO ORYVELL C VB-V-1A+
&HS13 812 ..., 2&1&& .A.
1 CVB-V-IO AI ) 5 CV I-L/TYPE A P 121 17 H51' Y 01 812
?a" (')ll VAC RC'.CF 'fO ORYVFl) .. g. 19? ~O.'~" ~
n 0 1& )&i 2
PROGRAH -H SORT IRIQ!LPJIB~illl~URRLX~ GE NamOOr vNp-2 sRH EaulpN NT LlsT DATE Oi/06/83 EPN HFG HODEL
~~~ EIS~~RAREIERS>>
S E TH HL TEST ANL FO C FREO A/E BRAVING A/E ZONE DESCRIPTION BLDG ELEV DETAIL USE SAFETY FUNCTION 410 CONTRACT LEVEL EC CVB-V-IC+ 8513 811 CVB-V-la AI 15 CVI-L/TTPE 24>> CHK /~AD ~Q Q&MQ L P Y 121 01
~
0 17 01 H513 812 CVB-V-IO+ 8513 812 CVB-V-IE AI 15 . CVI-L-TTPE ' 21 CHK VAC RE P Y 121 01 0 17 8513 811 EF 0 OR VE CVB "V-IE+
. H513 811 CVB-V-1F 24" CHK VAC RELIEF TO ORTVELL AI15 CV1 L-TYPE P Y 124 Ol 0 17 H543... 811 CVB-V-IF+
8543 811 CVB-V-1G A415 CVI;L-TYPE 24>> CHK VAC RELIEF TO RTVELL P Y 121 Ol 0 17 8513 Bll CVB-V-IG+ 8513 811 CVB-V-1H A415 CV1-L-TYPE 24 ~ 0 CHK ~ VAC ~ RELIEF TO DRTVELL P Y 121 01 ~ 0 17 H513 811 CVB-V-IH+ H543 811'VB-V-l J AI15 CVI L TTPE P Y 124 01 0 17 8513 89 24" CHECK VAC RELIEF TO ORYVELL CVB-V-IJ+ 8513 89 CVB-V-1K A415 CVl L-TTPE 21 A P Y 121 01 0 17 H513 89 CHK VAC RELIEF TO ORYVELL 2 17 CVB-V-1K+
.K H543 a~
C 612 CVB-V-1L A115 Cvl-L-TYPE ' P Y 12 ~ 01 0 7 H843 BB 24 cllEclt vac RELIEF Tb DRTllELL -'ilBh kis 'HB->>V~i'Li "K
. T k{54 3 ,"58 j'g gg "835 H Q '.Mi'.Ml,
'B-"VJ i H 'AHS iAILLI-'I'fbE AA ll84 n0 l j7 Ol
'I P"0 T
24'" 'C'i<El.'<<Var'FL I EF'tl "eRSOELL C f82 lPL 6 AP R39 "0 '5'8 I'OlI1 '2
/lpga
/ ~ PROGRAH ~.,x-gqs iIMIQll~B~IIKILSIIPEL~SIEtL OE hu 00053 MNP-2 SRN KOUIPNENT LISt. DATE 01/06/83 EPN HFG NOBEL S 'E TCl llL TEST ANL Fo c FREa A/E DRAQING A/E zoNK DESCRIPTION BLDG ELEV DETAIL usK SAFETY FuNcttoN ato CONtRACT I.KVEI. Ec
.~
C VB- V- I X+ N513 62%0 CVB-V IN AI 15 Cvl-L-TYPE P Y 121 01 0 17 H513 21% CIIECK VAC RELIEF To ORYMKLL C 9
,CVB-V-IN+
CVB-V-IP
~~RfdLILAE M.h K Y ~LIILi N513 88 Ah 15 CVI-L TYPE A P Y 121 01 0 17 N513 88 21" CHECK VAC RK~LKF QO~RLCf LJQ CVB-V-IP+ Cl51 3 88 cvB-v-la A115 Cvl-L-TYPE P Y 121 Ol 0 17 H513 87 21% CHECK VAC RELIEF To DRYMELL CVB-V-IO+ K H513 87 coHposITE 0F cvB v-la 3 CVB-V-1R AI15 Cvl L-TYPE P Y 121 01 0 17 .
Il513 87 21% CHECK VAC RI'LIEF To ORYICELL CVB V-IR+ H513 87 CVS-V- IS CVB-V-IT Ah 15 Cvl L-TYPE P. Y 121 Ol 0 17 H513 87 210 CCIK VAC RELIEF To ORYMELL 192 CVB-V-lt+ K 8513 87 C 19 A kl9k1 h
~ PROGRAM SRH-SORT ~<II IEEBttLEN~IIEILS UttP-2 SRH CQUIPNENT I!EEL~I LIST EIL- Rh6E DATE EE 0&0 4 Sf 01/06/83 EPN HFG HOOEL HBk i ~ ~ C~LEhlhMIKIIS+~ i S E TN HL TEST ANL FO C FRE4 A/C DRAVING AIE ZONE DESCRIPTION 8LDG ELEV DETAIL USE SAFETV FUNCTION 410 CONTRACT LEVEL CC EOR-AO-19 K125 60CSR10SP176 121 P T 9 09 H537 D9 AIR OPERATOR EDR-V-19 EDA-A0-20 K125" 60CSRIOSP176 121 S P Y 9 09 N537 D9 AIR OPERATOR EDA-V 20 167 Hi5/1 ~ 7 '0 R OZ EOR-V 19 3$ AO GATC FAON DRVVELL SUMP COR-V-19+
V085 P2 3311-N-21 P V T 01 01
~sill~I 9 - N537 H537 5 E D9 D9 EOR-V 20 V085 P2 3311-N-21 3$ GATE FAOH OR UELL P T Ol 9 D9 UHP CAO E
CDR-V-20+ Ol N537 09 FOR AO-3'IR K125 60CSRIOSP176 P Y 121 9 09 N539 D6 OPERATOR FOR V 3 I FDA-AO-1 K125 60CSRIOSP176 S v 121 9 09 tt539 D6 AIR OPERATOR FOR V-1 R 1 7 H 0/1 FOR-V-3 FDR-V-3+ CATE VLV AD V085 P2 3311 N-21 K P 01 01 9 EI!I~E~'N539 M539 D6-V-3 Y 06 COMPOSITE FOR FOR R 167 tt ~ 0/I ~ 0 F DR-V-1 V085 P2 "3311 N-21 N P Y 01 9 N539 06 GATE COttl TO OAN FO-SUNP-R3 AO R 167 ~ 0/I o 1 0 FDR-V 1t K P Y Oi N539 06 COIPOSITC FOR FDR-V-1 R 67 N ~ 0/1 ~ FPC-P-IA FUEL POOL CIRC PUMP 1A FPC P-IA+ R 9 H EEI) l H526 EE
~ D13 K N526 D13 ~ FUEL POOL COOLING PUHP R 519 L ~ 7/8 ~ 6 2 3 G FPC-P-18 V318 3LR 9 N H526 C13 FUEL POOL CIRC PUMP 18 R 9 I ~ 8 LRL0~18. 2 FPC-P>>IO+ K N526 C13 FUEL POOL COOLING PUMP R 519 I. ~ 7/8 ~ 8 2 3 0 ~> l!ll l Jl FPC-V-153 V085 P2-3311 N 9 6% NO CATE FPC-V-153+
FPC-P-3 SUCT SUPP POOLOD-N R 11A J ~ 9/7 A P Y
.DI........
01 9 18+ 361710 H526 0 lb . .2. 811 A.. A P T 01 9 1R N526 811 CATE HO FPC-P 3 SUCT SUPP POOL 118 J 9/7 ~ 9 01 R 1 0 361710 A
"- II
.'PJ:. L SF>> O><<F,V. v TO s USES>>U<<O",SE>>O P' ' 3 -.,-. <<<< . -'.. '." ~ ~ & PROGRAM SRH-SOR hSi15fiIQlLBlRLLLJ~JNEBMURPLIMZSIEM hGE Nu&QD55 VNP-2 SRN EOUIPNENT LIST DATE 01/06/83 RIR EPN ~y~ E1D!fl~~&gahMElEB ~1 t HFG MODEL S E T'I IIL TESt ANL FO C FRED A/E DRANING A/E ZONE DEOS I CR P T I ON BLDG ELEV DETAIL USE SAFETY FUNCTION OlD CONTRACT LEVEL EC FPC-V-154 ~
6'HO GATEZPMMk!KLKELEPEIIILII V085 P2 3311-N 9, 01- 9 i 8+ N526 811 61?1D~ F PC-V<< I 5 I+ O'TO OSTE, FPC~SS SU Of 9 48 H526 Dil
~IO FPC-V-156 3 SO OSTE FPC-V-156i SUPP POOL RES~US V085 SO 01IG OO-U P2-3311-N-9 ~&E>>TL 01 9 18' &111& &L&~Cll N526 . . 3 01 9 18 "M526 811 6 ~ HO GATE SUPP POOL RETURN ISO FPC-V-172 V085 P2 3311-NP 62 H526 C9 8" CAtE VA VE MOTO OP RA EO F PC-V-172+ N526 C9 FPC-V-173 V085 P2 3311 HP-62 NS26 CB Bi GATE VALVE MOTOR OPERA 0 FPC-V-173+ M526 CB FPC-V-175 V085 P2 3311 NP 62 N526 C10 8~ GATE VA!,VE HOtOR OPERA 0 FPC-V-175+ N526 C10 5
FPC-V-181A V085 P2-3311 NP-62 P M526 8~ GATE VALVE HOTOR OPERATEO 61?%~ F PC-V-181A+ N526 DIA 8 ~ GATE VALVE MOTOR OPERATEO FPC V-1818 V085 P2-3311-NP-62 N526 C I'I 80 GATE VALVE NOTOR OPERATEO I F PC-V-1818+ 8" N526 CIA GATE VALVE HOTOR OPERATEO M&&IS F PC-V-181 .V085 P2-3311-NP-62 N526 C9 8~ GATE VALVE NOTOR OPERATEO 5&&3&~1& FPC-V-Iaii H526 C9 COMPOSITE TO FPC-V-ISA HPCS-AO-5 AIR OPERATOR HPCS V-5 HPCS-P-I K125 1075 D-SK-2765 FIG 080570 351861171
~DO.2.32M H
A ILZ ..3 P
.0 V
0 ll
.Q1800%..
11 NS20
~Q N520 HB 86 h
HPCS PUHP R 123 HE 3/3 ~ Go I 0 CtG 233008 02E22 2 A
PROGRAH SRH-SORT lLHQXQlLRQGLILJJ!YES HlBe~XSIQL, char aa ODOSI VNP-2 SRN EOULPHENT LIST DATE 01/06/83 EPN HFG HODEI.
~le S E ~EI15l~RLBhEbllEIfJIS TH HL TEST ANL FD C FRED A/E BRAVING A/E ZONE DESCRIPTION BLDG ELEV DETAIL USE SAFETY FUNCTION 010 CONTRACT LEVEL EC HPCS-P-I+ H520 85 HPCS PUHP 33nn HPCS-P-3 C666 3065 1055 6599 N 01 0 82 N520 C6 HPCS SYSTEH VATCR LEG PUH D~S HPCS-P 3+ A N520 C&
HPCS STSTEH VAjER~E~G U P 2~LB HPCS-RV 11 L265 LCT 20 01 73 N520 C6 10X1$ RELIEF HPCS P 3 SUCTION Ik92~2 HPCS-RV-35 L265 LCI'-20 I" x 2" RELIEF HPCS-P 3~1SCH 01 99+ D~ N520 CS HPCS V-l A391 DVG 5310 2 1 P N 01 0 331 H520 CT 11" GATE HO COND VTR NTO HPCS 2E2 HPCS-V-10 A391 OVG 1927 3 P N 01 0 71 t N520 E3 10"HO GLOBE HPCS~R TUR 0 CS DD ~2E2 HPCS-V-10+ A H520 E3 CORP FOR 10IN GLOBE RETURN TO CST R 11 L /3 ~ HPCS-V-11 DVG 1927-3 P N 01 0 71 H520 E3 10" HO GLOBE HPCS RETURN TO CST ll~2E22 2 . h HPCS-V-II+ A N520 COHP FOR 101N GLOBE RETURN 0 CST R 1 9/3 HPCS-V-12 A391 91-13306 P N Ol 9 33+ N520 B5 (AGATE HPCS-P-I HIN FLOV HO) 60~2E2 HPCS-V-12+ K H520 BS COHP FOR 1IN GATE HPCS-P"I HIN FLO R 19 3~/g9 HPCS-V-15 A391 91-13272 9 N520 07 18 HO GATE SUPP POOL GUILT TO HPCS l.sC . N lll15 02E22 2 ..A HPCS-V-IS+ A N520 07 IRNHO GATE SUPP POOL GUILT TOJIPCS R 11+~/3 <9 I y C 36l jIIS. 1 h. HPCS-V-16 A395 OVG 2621 3 0 P Y 01 H520 06 210 CHECY, SUPP POOL SUCTION R +$9 Lip/3 ~ II 0 CeG. 361017 .. 118 ....... 2 HPCS-V-2 A395 OVG 2620-3 R N H520 C6 20" CHECK IIPCS-P-I CST SUCTION R 130 IIEET/3 ' I 0 CD G 361015 118 2
0 l,.
~ PROGRAN SRN-SORT IIINGIBKZllB~ll VNP-2 ~ ~ IIRB.~EtL SRH EOUIPHENT LIST AG~.AOO$ 7 DATE 01/06/03 >>
6 d>> HLQl 441 EANEIER5 ~ ~ ~ EPN HFG S E TN HL TESl'NL FO C FREQ A/E BRAVING A/E ZONE DESCRIP'lI ON BLDG ELEV OETAII. USE SAFETY FUtlCTION OIO'ODEL CONTRACT LEVEL EC HPCS-V-23 A391 OVG 192S 3 P N. 01 0 65 H520 E5 02 02E2 HPCS-V-23+ N520 HPCS-V-21 A391 OVG 2632 3 P N H520 Bl
>>6 CHECK IIP~C-P>> Egg>>EC CEllj~68 I A391 OVG 91 13101 01 0 55 . N520 'PCS-V G7 12~ GAlE CON A I N520 GT HPCS-V-5 VOSS P2-2767"N"2 P Y ~
01, 9 51 H520 12% CHECK CONTAINHENT SOL Ol IIPCS-V-5+ N520 HS 12"ACHECK VLV CON AINH I 0 COH I HPCS-V 7 . 0350 P 76550-1 N520 C5 I ~ 5" CHECK HPCS-P 3 DISCHARGE LPCS-FCV-11 F130 52'657 P N 01 9 30 H520 013 3" GLOBE LPCS-P-I NIN FLOV NO LPCS-FCV-11+ N520 B13 3~HO GLOBE LPCS P-1 NIN FLOV RECIR kk LPCS-P-1 1075 29APKO-5 STAGE N 02 37 II520 812 LPCS PUNP 0 2E LPCS-P-I+ H520 012 LPCS PUHP LPCS-P-2 C666 FIG 3065-1055 6599 01 0 82 H520 C12 LPCS VATER LEG PUNP XXi~5 LPCS-P-2+ A- H520 C12 LPCS VATER LEG PUNP R R k6 LPCS-RV-10 L265 D-30F 0' - 01 99'520 G12 I ~ 5"X2"RV LPCS-P-1 5/II I thlSel 2, IL .,'0, 29.7003 215. 2,A LPCS-RV 31 L265 LCT20 0 N 01 73 N520 CI2 1" XI" LPCS-P-2 SUCTIOtt R %26 K ~ 0/3 ~ 7 0 0 297002 215 A
0 PROGRAH Sagt-SORT AdfflHQIQ~LI~RESMMPPL~Y$JEH. S~u 00OSS MNP 2 SRH EOPIPHENT I.IST DATE Ol/06/83 EPN
~a i~~l~~tlktIEIERS ~ ii HFG HODEL S E TH HL TEST ANL FO C FRED A/E DRAMING A/E ZONE DESCRIPTION BI.OG El.EV DETAIL USE SAFETY FUNCTION DID CONTRACT LEVEL EC LPCS-V-l V085 DMG P2 3313 tt 10 A Oi 9 37 H520 Dll Ul 00 SlTS SU~PP 00$ SUUT ~JlLX 00$ l LPCS-V-I+ A 01 9 H520 Dll "I!0 ~L '1 SUPP POOL SUCTION VALVE R 150 0/1 ~ MHk LPCS-V-12 A395 DMG 2617 3 P Y 01 9 11 H520 E15 12" GLOBE HO TEST LINE TO SUPP POO LPCS-V-3 A395 OMG 2621-3 H520 813 16" CHECK LPCS-P-I D f~SC ARGE P 76550-1 ,0.- H520 C12 2
LPCS-V-5 V085 P2-3311-N-15 P. Y 21 .Ol 9 13 H520 011 12" HO GATE TO REACI'OR V SE J N LPCS-V-S+ H520 Gl 1 12%HO GATE COIITAINHENT BOUNDARY V LPCS-V-6 V085 P2-2767-N2 P Y 01 9 51 H520 G9 12% CHECK TO REACTOR VESSEL 51 LPCS-V-6+ H520 12" CIIECK TO REACTOR VESSEL HS-AO-13 A (thS-gO-Z4 RELIEF VLV AIR OPERATOR C710 C5216 C 517 AZ 3 C R Y 121 0 'I529 F10 HS-AO-138 (thS AD-3A) C710 C5216 C Y 121 H529 FIO RELIEF VLV AIR OPERATOR 517 15 1 HS-AO-IA C710 C5216 C Y 121 H529 Flo AIR OPPERATOR TO HS-RV IA C 17 AZ R 8 lEOI HS-AO-18 C710 C5216 ' C Y 121 II529 Dl1 AIR OPPERATOR TO HS RV-18 C 1 R HS-AO-1C C710 C5216 C Y 121 . 0 H529 AIR OPPERATOR TO HS-RV-1C C 517 AZ 313 R22 MS% HS-AO-IO AIR OPPERATOR HS-AO "22A AIR OPERATOR HS-V-22A HS AO-228 TO HS RV JO C710 S157 S157 C5216 SA-A022 SA-A022 C C iMH H SIO 10 0 AZ R30
'P f P
Y Y
~B)iF Y
121 llS 115 05 05 0 9 9
~fSap~jt 15 Jggggg 15 H529 H529 . Pgggg H529 2"
DT F12 E12 A AIR OPERATOR HS-V-228 g 510 .$ 7 D.AZ. R30 I 3 BleF. 018002 02822 2 A HS-AO-22C SI57 SA-A027 H P Y 115 05 9 15 H529 F5 AIR OPEPATOR HS-V 2ZC C 511 311 D AZ 830 I 3 DliF 018002 02822 2
0
~ PROGR AN .RH-SORT ~Al ISQHlILRlIQLI MNP-2 ~ME~~XSi SRN EQUIPMENT LIST ERR~~RL(5 DATE 01/06/83 CPN NFG HODEL . ~~ ~SUSIII~~IIhMJEES + ~ ~
S E TH HL TEST ANL FO C FRED A/C DRAMING A/E ZONE DESCRIPTION BLDG ELCV DETAIL USC SAFETY FUNCTION 01D CONT'RACT LEVEL EC NS-AO 22D hIB QREBhML5~29 3157 SA-A022 P Y 115 05 9 15 N529, 2~2822 ES HS-AO-28A S157 SA A022 ALR OPERATOR - -28A P T 115 05 9 15 N529 F13 anna 028 HS-AO-288 $ 157 SA-A022 AIR OPERATOR HS-V P Y 115 05 9 15 H529 E13 RB Xa 1MII2 0282 HS-AO-28C 3157 SA-A022 115 05 9 AIR OPERATOR HS-V-28C Y 15
~25 N529 F1 HS AO-2RD S157 SA-A022 AIR OPERATOR NS-V 28 P 'Y 115 05 9 15 H529 E1 HS-AO 28 C710 C5216 AIR OPPERATOR P T 121 N529 010 TO HS-RV-28 HS-AO-2C C710 C5216 C. P Y 121 N529 F7 AIR OPPERATOR NS-RV 2C TO JlUUI~
HS AO-2D C710 C5216 AIR OPPERATOR P T 121 N529 07 TO NS-RV 2D HS AO-38 C710 C5216 AIR OPPERATOR Y 121 H529 010 TO HS-RV-38 HS-An-3C C710 C5216 AIR OPPERATOR Y 121 Il529 F7 TO HS-RV 3C Z HS-AO-30 C710 C5216 AIR OPPERATOR HS-RV-30 Y 121 N529 08 ON NS-AO-1A C710 C5216 AIR OPPERATOR NS-RV 1A C T 121 N529 TO C A R HS-AO-18 AIR nPPCRATOR C Y 121 N529 09 TO NS-RV 18 C 51 A R a ( NS-AO-1C C710 C5216 AIR OPPERATOR TO S-RV 1C C Y 121 N529 FT C 517 A 2 8 R22 HS AO-1D C710 C5216 AIR OPPERATOR C T 121 0 NS29 08 NS-RV-10 TO C ~A L'I R gg ~llew 2. HS-AO 58 C710 C5216 121 AIR OPPERATOR TO HS-RV 58 2 5(~22 C 522 L. Y H529 HS-AO-SC C710 C5216 AIR OPPERATOR HS-RV-5C C Y 121 0 N529 FB TO c 517 ht 179 .Rfk. .. . LQ. .C.... .IllaPP& 02. ..2 HS-RV-IA ~ C710 6R I 0 IIB-65-BP 6" X 10" HAIN STCAH SAFETY RELIEF I'17 C AZ 21 RIR 0 C 121 00 0 15 297009 H529 02822 2 Fl I A
0 PRDGRAH yRH SORT QQL~ÃR~P.EL~ZMEII PAGf BQ.00060 MNP-2 SRH EOUIPHENT LIST DATE 01/06/05
~~a EISEIl~~dEAIIEIKB ~ ~ ~
EPN HFG HOOEL S E TH HL TEST ANL FO C FREO A/E ORAUING A/E ZONE DESCRIPTION BLDG ELEV DETAIL USE SAFETY FUNCTION 010 CONTRACT LEVEL EC H S- R V-1 A+ H529 FII 2~ HS RELIEF~L HS RV-10 C710 6R10 HO-65-OP C Y 121 00 0 15 H529 011 60 X 100 HS SAFETY RELIEF VALVE Ii~292 HS-RV-IO+ Y H529 011 HS-Rf'I -' ". C.5<7~A: '"
... ' C 297 09. 1 A
0 0
~ PROGRAH EI-SORT tIJMQIQKJJIQ ~IIE~UJJ J~ISIK VNP-2 SRH EQUIPMENT LIST hG~a 00061 DATE 01/06/83 EPN HFG MODEL TH% SEBSll I~~BARRIER 0 TH HL YES'I AHL FR 0 FRES A/E BRAVING A/E ZONE DESCRIPTION BLDG ELEV DETAIL USE SAFETY FUNCTION 010 CONTRACT LEVEL EC IBS"RV-38+ H529 D10 HS-Rf'LIJ~VL NS-RV-3C C710 6RI 0 IIB-65 OP C 121 00 0 15 N529 5- x~0. 5X,BEKILHKLJ~LYf iZ dZ 22XJL2 Y 08~28 C7 HS-RV-3C+ H529 E7 HS-RgLJE~ HS-RV-3D C710 6RI 0 HB"65-BP 6' C Y 121 00 0 15 N529 I~SR Ag A NS-RV-30+ H529 EB HS-RCP/E~F HS-RV-1A C710 6RIO HB-65-BP 6" 10' Y 121 00 0 15 8529 F9 X S FE R HS-RV-TIA+ HS-RELIEF N529 F9 V V HS-RV-AB C710 6RIO HB-65 BP 121 IS'IS Y 00 0 15 8529 D9 6 X S~AFETY RE EF I E 2 HS-RV-18+ M529 HS-RELICF VLV HS-RV-IC C710 6RIO IIB 65-BP 121 00 6% Y 0 15 HS29 FB X 10% HS SAFETY RE IEF VALVE m 0282 HS-RV-IC+ N529 FB HS-RELIEF VLV HS-RV-10 C710 6RIO HB-65"BP 6" X 10" Y 121 00 0 15 NS29 CB HS SAFE R LI A 82 HS-RV-10+ HS-RELIEF VLV N529 EB 0 HS-RV-58 C710 6010 HB-65-BP 121 00 6" X 10" Y 0 15 N529 E9 NS SAFCTY RELIEF VA VC 28
~
HS-RV-50+ C H529 HS-RELIC LV 7 Jg ggg NS-RV-5C C710 6RIO llB 65-BP 6 X 10% HS SAFETY RELIEF VALVE 0 0 C
'I I~E Y 121 00 0 15 Zany M529 0282 FB HS-RV-SC+
N529 NS-RELIEF VLV ~BS1 C BB&TS..ABS ..l. 4 Y
. E E. 221Q t9 FB Is 5 V- I 8350 B'6 850-1 P Y 01 0 35 M529 AII 0 2 GLOBE VLV HO RX VEII7 573 225 RIS 0 '215 D A 2 0 361231 2 A
6 PROGRAH S2621-SORT U~AggtLGGttLi~~B.T~CER RMRELL.SISIEtt hD~D&0062 'F'PN 6 HFG DESCRIPTION MODEL IINP-2 SRH KOUlPHENT LIST S E
~ ++ E lS5I~~EhttKIES TH HL TEST Al)L FO C ~ +~
FREQ A/E DRAItlNO DATE 01/06/83 A/E ZONE BLDG ELEV DETAIL USE SAFETY FUNCTIOH OID, COttTRACT LEVEL EC 6 HS-V- I+ REACTOR VES~SE IIEAD VE T V 01 9 35 tl529 Jl0 MS-V-16 VOBS P2-3311-N-1 P Y . Ol 9 58 N529 813 MO GATE FROM PRICOWT 502 3 0 R36 HS-V-16+ 01 tl529 813 HO GATE VLV FR~OM P g CO 3biIQ2 HS-V-19 VOBS DVG P2"3311 .N 1 30,MO GATE DRAIN BLOCK P Y 01 9 58 - N529 811 612IL1 NS-V )9+ O'IIO 6116 lf~LO II 2~61LOLO P Y 01 9 H529 61 ~ ) HS-V-2 8350 P 76850-1 2" GLOBE 01 9 35 N529 J10 HO RV HEAD VENT MS-V-24 REACTOR VESSEL IIEAO VENT Y'1 9 35 6123 H529 Ji0 tlS-V-22A R310 1612 JHNNT Y 115 01 05 9
~
26$ Y 15 N529 F12 AO GLOBE MSIV )INBOARD) 2tt IIS-V-22A+ HS ISOL VLV Y 115 N529 F12 bi9 HS-V-228 R310 1612JMNNTY ll 26% Y- 115 05 9 15 HS29 E12 AO GLOBE HSIV IINBOARO) C 0 A R3 2$ HS-V-228+ 1'15 NS ISOL VLV K Y tl529 E12 506 1s NS-V-22C R310 1612 JMIINTY 260 AO GLOBE HSIV IOUTBOARO) Y. 115 05 ~ 9 15 H529 FS t2Lt6~262 HS-V-22ct 115 HS ISOL VLV Y H529 FS 612 1 NS V-22D tl310 1612 J)2NNTY tt 26% AO GLOBE Y 115 05 9 15 N529 ES HSIV IIIIBOARO) NS V-220'S HS-V-28A I SOL VLV 260 AO GLOBE HSIV (OUTBOARD) R310 1612JHHNTY K 5~& tl' 1.3. Y.. 115 Al.)E 115 05
.. 9 '.Q6196 15 H529 M529 1
ES F13
'A.
2-~LLF . 2619&9. I12622 2 .h. NS-V-2BA+ HS ISOL VLV ~Ok.ll K 962 6 Y
.........1.2....6L 115 ~ F...... , N529 '....66196\............ 1 F13 A
- r, !
HS-V-280 6.<<t 1310
~I V <<.'1062FLRIF) )6)2JM)26ITY R 50't ~ Rli ll Y 115 B\ .F 05 9 , 15 \I )62 9 H529 ~ 'I E13
dSlll)IGIQILLUB~)IE~IIBB~ 0~~0063 VNP 2 "SRM EQUIPMCNT LlST DATE 01/06!83 I ( CPN HFG NOBEL E16ED~~EhIIEZ " S C TH IIL TEST ANL FO C FRED -A/E DRAVING A/E ZOIIE ( DESCRIPTION BLDG CLEV DETAIL USE SAFETY FUNCTION 010 CONTRACT LEVEL EC ) HS V-288+ 115 Y H529 E13
$ &.Nl, YL.
HS-V-28C g6" HS-V-28C+ kO GLgg~klY~lilmhII R310 1612 JNHNTY K T T 115 La 115 05 , 9 15 (Lk($ I(8~ ( H510 I N529 M5 Fl I~ 5$ ISA~ 5L6. 1s HS-V-28D 'R310 1612JMNNTY 2 i AO G 0 HS I U Y 115 05 9 1$ N510 aL568 02a HS-V-280+ 115 Y N529 E1 H3~ SO~ HS-V-67A 8350 P 76890 1
- P Y 01 9 15 H529: F13 I ~ 5" GATE HS- BA BOD ORA HS-V-67A+ P H~S- -28 A 0 Y Y N529 F13 A
HS-V-678 8350 P 76890-1 - P 01 I ~ 5" GAT HS- -2 C Y ,9 15 N529 013 I ~ 0 I NS-V-670+ HS-V-gSA BOO~A~A) N529 013 HS-V'-67C 8350 P 76890-1 ' 01 15 N529 Fh I ~ 5" GATE HS-V-28C BOOT ORA t SHUT 25~ 'IS-V-67C+ P HS V-28C BODY DRAIN M529 Fh 6125 HS-V-67D I 5"
~
8350 GATE HS-V-2AD BODY ORA N St)UT P 76890 I P Y 01 9 '15 '529 Dh HS-V-670+ NS-V-280 BOOT DRAIN C C H529 01 6125 HSLC FN-1 8515 TV93689 01 H557 E1
)NBA MS LINE DEPRESS'AN R 1 3 /
HSLC-FN I+ K H557 Eh t)BD ~ HS Llt)E DEPRESS ~ FAN Wlk& i%50k~ NSLC-FN-2 85 15 715-9789 01 M557 I)3 OUTBO NS LINE OCPRES FAN 2 NSLC-Ftt-2+ OUTBD ~ HS LINE, DEPRESS'AN ~ AH Its>C.l.ek,.....1...0." K E H557 1%50A9...28 ...... M3 l....a.......
'let .j
a PPOGRAH snH SORT y~>llMIa!LEKLLC~IIEII-sllBP~SIEIL ~kGE NO 00064. VNP 2 SRH EQUIPMENT LISt DATE 01/06/83 EPN HFG MODEL S E
~ yyg f+~~Q DQ TH HL TES't ANL FO C Jf ~
FRED A/E DRAIIING A/E ZONE DESCRIPTION BLDG ELEV DETAIL USE SAFETY FUNCTION OIO CONTRACT LEVEL EC HSLC V 10 1~50 GATE HS DEPRES ~ 8350 VENT VALVE To P 76890 001 R 50 ~ I/ C
~
01 9 '5H?ln H557 2Li HS HSLC-V-10+ C H557 HS I ~ 5~ GAtE HS DEPRESS VENT VALVE 50 6 1 HSLC-V-l A 8350 P76020 A P Y 01 9 49 H557 cr 1 ~ 5% GATE HS VENT BYPASS VALVE r / kl?%~ HSLC V IA+ 01 19 H557 C7 1 5" GA'ZE MS~V NT BYPASS VAQ E 6 HSLC-V-18 8350 P76020 P 01 9 19 H557 CS 105% GATE HS VENT BYPASS VALVE To R 17 5 Y k121? ~1 MSLC-V-IB+ 01 19 H557 CS 1 ~ 5% GATE HS VENT BYPASS VALVE HSLC-V-lc 8350 79020-001 A 01 9 19 H557 DT 1 ~ 5% GATE HS VENT O'YPASS VALVE To R A ~ 5~ HSLC-V-IC0 P Y 01 %9 H557 D7 I ~ 5" GATE VENT BYPASS HS VALVE HSLC-V-l 0 8350 P76020 A P Y 01 9 19 H557 DS 1 ~ 5% GATE HS VENT BYPASS VALVE To 555 561?~~ HSLC-V ]0+ P Y 01 19 H551 D5 I+5" GATE HS VENT BYPASS VALVE 5 1 d MSLC-V-2A 8350 P 76890 001 P 'Y 01 9 H557 CB 1 5~ GAtE LOOP "A" R 50 H?5~l MSLC-V 2A+ H551 CB I ~ 5" GAlE LOOP "A" MANIFOLD 6125 1 HSLC-V-28 8350 P 76890-001 C P Y 01 9 15 H557 CB 1 o5 GAZE LOOP iB" MANIFOLD HO R 502 Ho6/5 ~ 0 12BI 245 2 HSLC-V 28+ K P Y H557 CB 1 5" GATE LOOP "8" MANIFOLD 502 II 5 3 a6X 258~XS d HSLC-V-2C 8350 P 76890-001 C P Y 01 9 45 H557 EB 1 ~ 5 GATE LOOP +C HANIFOLO Ho R 502 He6/6 ' 1 0 361258 215 .2 ....d HSLC-V-2C+ 1.5~ GAtE LOOP ~C~ MArllFOLO 8 10?Mre6(.6 K
~ 4.... P 1.L Y H557 .36125.8.....215 1 EB .. A MSLC-V 2D 8350 P 76890-001 C P Y 01 " 9 l5 H557 ES 1.5 GAZE I.OOP n ~ANIFOLD rrO R 5OP. rr ~ A/5 ~ R 1 0 F 361258 215 2 A
~ I PROGR AH .SHH=SOAI d QIISQI~RLI~QLSllRRL~IEN GE NLLJlDD68 VNP 2 SRN EQUIP'lENT. LIST DATE 01/06/83 HFG
~ i ~ NJ~~RdNEI ~ ~
HOOEL S E TH HL TESt ANL FO C FRED A/E BRAVING A/E ZONE DESCRIPT'ION BLDG ELEV DETAIL USE SAFETV 'FUNCTION 410 CONTRACt LEVEl. CC HSLC V-20+ K H557 ES 1 5.'.DAIE LQOL. "Q~hHIEG 6125 HSLC-V-3A 8350 P 76890-001 01 9 15 N557 C9
.QAgf LOOP HSLC-V-3A+
H557 C9-1,5 QAIE LARD 6125~ HSLC-V-38 8350 P 76890-001 01 . 9 CS HSS7 CS G~AT HSLC-V-38+ '
~~5" A 0 N557 CS HSLC-V-3C 8350 P 76890-001 l 5" GATE 0 ~ ~ 0 01 9 45 H557 .D9 HSLC-V-3Ct N557 I ~o5 GATE LOOP "C" . HSLC-V-3D 8350 P 76890-001 01 9 15 H557 ES I ~ 5" GATE LOOP ~Ci HO HSLC V-SD+
H55N ES I ~ 5" GATE LOOP 61258 1 '" HSLC-V-I GATE TO GAS TREATHE T 8350 P 76890 001 01 9 15 6125 H557 J5 HSLC-V-0+ 5" C N557 1 ~ GATE TO GAS TREATH T 6125~ HSLC-V 5 8350 P 76890-001 01 9 A5 H557 JS I ~ 50 GATE TO GAS TR A H N 6125~1 NSLC-V-5+ H557 J5 I ~ 5~ GATE TO CASER A
&125 HSLC-V-9 8350 P 76890 1%50 C 9 45 H557 GATE HS OCPRES V NT VALV TO HSLC-V-9+ 8350 P 76890 5"
1 C H557 H5 1 ~ GATE HS DEP~RS V~CI VA~ 6125~
>>~
s PROGR AN SRH SOR T IIlHFEQULRllBLIWEQME8 SUPPL~XSIE OK NOWaau MIIP-2 SRH EOU1PHENT LTST DATE 01/06/83 ESSES ~EISSI~SKJ!SSSSEEESSE-EPN HFG HOOEL S E TH IIL TKST ANI. FO C FREO A/K ORAVTNG A/E ZONE OESCR IPT1ON BLDG ELEV OE'lA lL USK SAFEZY FUNCZlON 010 CONTRACT LEVEL EC RCC" V"101 V085 P2 3311 NF 61 '.I525 OVOID
~~51 A =..1W P Y 01 9 65 = E10 ~ .
10>> GAZE VALVE BOO'Y X..~O/ .3 ... Ol. 36llslf'1h. .2 . A RCC-V 101+ A H525 EI0 CORI OSI Tr. 10 ~ Hn GAZE 511 K~ 0/1 ~ 3 1 0 81 361711 11A A
~ >>>> r 4 R rs~F. E,r 'P<<a"= I*r scr,r>> ',>> "E>> "A4, s r ~,r '
~ PROGRlH gMH-SQR IILHfiIQKJJlBLILZ3N VNP-2 SRH EQUIPMENT
~ UERL~XSIX LIST AG~Q 80867 OATK 01/06/83' EPN NFG HOOEL S E TH IIL TEST ANL FO C FREQ A/E ORAllING A/E ZONK S
OESCRIPTI ON OLOG ELEV OETATL USE SAFETY FUNCTION QIO CONTRACT LEVEL EC RCC-V-129 V085 P2-3311 NP-62 H525 EOS 8- GhIE EPS=H3~tlL RCC-V-1291 H525 E05 I)lCC-V-130 RCC-V-130+ H525 E06 CO!IPOS)IE FOR ~RCC S- )O RCC-V-131 V085 P2-3311-NP-62 P" GA/K MO F -H OU RCC-V" 131+ H525 E06 COMPOSI~O~R RCC-V-21 V085 P2-3311 N-11 P Y 01 9 18 M525 010 ION HO GATE PR H CONT OU RCC-V 2)t H525 010 COMPO OR R RCC-V-AO V085 P2-3311-N-1 1 01 9 18+ N525 Ol 1 10" GATE HO RCC R F OH P CC-V-l 0+ N525 011 COIIPOS)IE FO~RIICC- 0 X6121 RCC-V-5 V085 P2-3)II N-11 01 9 18+ N525 10% HO GATE PRIM CONT INL SO P Y 6lI1~ E10 RCC-V-5+ H525 K10 COHPOSITK FOR RCC-V-5 361.1 1 h RCIC V 110 8350 P 79360 8 P Y 01 9 99+ N519 K7 2" YACC RKL>> VLV-H~ Oo-80 3612hZ SLZaF) . 1 1 I)1 215 2. h RC I C-V-110+ P Y 9 H519 ET l Bl 0 &1M3 l...h.... RC IC-V-113 8350 P 79360 8 P Y 01 9 99+ H519 ET 2i CAlf VLV HO 8 815 ds6L7il, ..... 1 1 .Al....361213..215 ..........r 2, ...A RCIC-V-113' Y H519 K7 975 OI ~ 6/7 ' 1 OI 361213 1
PROGRAH ggN SQRT 42lM~UlLLIC RIVES SVPBL~IE AGE HQ 00068 . VNP 2 SRH EQUIPHENT LIST DATE 01/06/83 EPN NFG HODEL i EIS~SLlk RhNEIER
>~ ~A S TN HL TEST ANL FO C FREQ A/E, DRAVIHG A/E ZONE DESCRIPTION BLDG ELEV DETAIL USE SAFETY FUNCTION OID CONTRACT LEVEL EC gCIC-V-a RCIC-V-13+ P 7 9 58 N519 RCIC-V-19 8350 P 76850 P H519 2~ GLOBE VLV Y ET RCIC V-1>I+
H519 E7 RCIC-V-198 8350 P 78560 01 0 32 N519 J6 1 AOFC GLOBE SUPPLY 'TO SP198 61 IZciC,.v-3I RCIC-V 31+ 9 18 Y 01 H519 DT 6 RCIC-V-63 VOBS P2-3311 K 11 01 9 501 H519 10" HO GATE H3 HS TO RHR HX RCIC TURB RCIC-V-631 N519 gCIC- V- g1 ' R C I C-V-61+ P Y 01 9 50+ N519 G6'CIC-V 68 10" NO GAY~TURB XII 0 S V085 PP P2-3311-N-11 A 1LIA P Y 01 9 18'519 6.171~ ET RCIC-V-68+ H519 EB RCIC-V"69 8350 P 79360 01 9 99+ HS19 I>50" P Y 07 GATE VLV 'IO SUPP
>>2>i 215 i RC I C V-69+ P Y H519 07 1 5 I~
RCIC 76 8350
~1 V ~ . 106DAA3 001 I" P Y 01 , 31+ H519 GLOBE RCIC V-63 BYPASS HO ~1K%
RCI C-V 76+ CIC-V-$ . C560D A N519 H3 RCIC-V-8+ A P Y 01 58 H519 F6 RA=Ah=i M&1XQ2 1 h. REA-V-I 8250 OVG A-206760 8 P 9 N515 J3 72 F 0" DFLY R BLO ISO REA-V-I+ 8 H515 J3 RX BLDG EXH VLV iQ-ho-2 DISCH COHPOSITE R 59$ tleg/6ef...,.......13.. Q2 ~ F .. 361102 A REA-V-2 72 '" BFLY R BLO ISO 8250 nVG A-206760 R 597 Ilo1/LA' 'I 3 82 ~ P $ 61102 H515 68 2 J3 A
~ PROGRAH S...-SORT ~IIIRRIEGLRIIRLlLJ!2 E~IIRRLI~ BAG~>.aa061 MNP 2 SRH EOUIPHENT LIST DATE 01/06/83 )
Ql EPN HFG HODEL S E TN HL TEST ANL FO C FRED A/E DRAQING A/E ZONE DESCRIPTION BLDG ELEV DETAIL USE SAFETY FUNCTION OID CONTRACT. LEVEL EC I REA-V-2+ H515 RE ALP9&XILYLKJ)ISIJLCQIIRQRZ RFM-V-32A A395 3081-3 ~H P N 01 9 H529 I!KS~QLkVIRIIM~Q 1 RFM-V-32AR H529 G13 21" AQ 0l!NK BEKJNJNQABQ RFU-V-328 A395 3081-3 P N 01 9 H529 AO CLIEC F 8 A RFII-V-328+ N529 G5
" AQ CtM~
RFM-V-65A V085 P2-3313-N 33 P Y 01 9 38 H529 013 21>> HO GAT R M 61LL'~ RFM"V-65AR N529 RFU V-658 V085 P2-3313 N-33 P Y 01 9 38 N529 240 HO GATE RFU INLET TO RP ( RFU-V-658R INLET N529 G1 GA IIG GATE GFII TG AP RIIR-AO-89 K125 0-SK-2765 11 H521/2 J10 AIR OPERATOR RHR-V-89 1K!~6I RHR-FCV-61A F130 52A8657 01 9 38 H521/I 812 HO GLOBE RHR A HIN FLOV .A RHR-FCV-61 A+ H521 C12 HO GLOBE RHR A HIN LOll R I IR- F C V- 61 8 F130 52A8657 A P N 01 9 38 H521/2 86 HO GLOBE RIIR 8 H fly FgOU h
i' PROGRAM SRH-SORT A I!ItfH9lLEllffLIfi~VES.,SUPPLIMYSIEH VNP 2 SRH EOUIPHENT LIST
~GZ PATE Na ~0070 01/06/83 5
Ill EPN HFG
~a~ EZSfII~a~h RILNEiESS ~ ~ ~
HOOEL S E TH IIL TEST ANL FO C FRE4 A/E ORAVING A/E ZONE DESCRIPTION SLOG ELEV OE'TAIL USE SAFETY FUNCTION 410 CONTRACT LEVEL EC RHR-LCV-658 F130 2808 h2A 01 9 28 H521/2 GS 2 O,OLOOE LIOE~FOOII OHO R HR-LCV-658+ K N521 Ith 235" GLOBE LltIE FROH RIIR HEAT EXCIIA RHR-P-2A 1075 29APKO 02 0 18 N521/I 812 RHR PUHP I.OOP A IfX SU~PP Y 5221l II2EEE 2 RHR-P 2 A+ H521 812 RIIR PUHP A RHR-P-28 I 075 29APKO-3 ~ 02 0 18 N521/2 Oh R Ill/ fBQHP ~g 3811 02E1 RIIR-P-28+ N521 86 R IIR PUHP RHR-P-2C 1075 29APKP"3 02 0 18 H521/2 CS 02E1 RIIR-P-2C+ H521 RHR PUHFP CE 2 COO RIIR-P-3 C666 FIG 3065 1055 &599 01 0 82 uu~1/2 N52 CS R IIR P-3+ N521 ~ ~ RHR MATER LEG PUHP RHR-PCV-51A F130 TYPE 667 EVP 01 9 17+ H521/I Jll Ii CONTV PIC SONIC FLOV SPECIAL T 52~Bi 2 2 R HR-P CV-5 1 A+ NII21 K13
~ 0 CotITV PIC SONIC FLOV! SPECIAL TY R 8 6 RHR-PCV-518 F130 TYPE 667 EVP N 01 9 17+ N58I/2 J5 8 coNTV Pic "5'oNIc Fi'ovf sP c A I kDI~ 22 vs(R III'Cgf'll+ KA IttIS'dI K'h A'II&I'PfCn46NfC VLOII! RECTAL TY n h "IIEE I I'V I Bl 2 I:n "."Ann". I h An II BP I /. 22 F.
I I IEI'I nit l I I '2 '5 I FIL' n hhs I n/>> n n I.r I:,3002 1. h
<< I I v-r.hr ~ IIFin I rn ~ .n r,t IIIFl 2'I ~ OI 2 25 IF 2 ( 2552 1hl .I/1 I 0 ~ nt,r.2 I Ahnnn I h nil'I'(R> tt 0-5 'ItAR1ifIT=AAX '265 Igt'ALA@-SMI'06&I'dtf5LI "SIST Id)'k"kf""'Pffft'IIA'CULT'fb'BI'Itf'L'IIV ~ 'LI2'6'5 I oN 'n-%66'tfI'i!
LCT-II 8
"R %h "o
II'aYP'721, "A
%40 "<<,"tf'/R.I ......:1 I
3 ... E 0 N C 2h8
~
I' "o'I 01
.......... "A+
99+ I2'%of2
'YiS"A" 2'9fl$3,...2I5....... '2 8521/I 215 . "A
I PROGRAH si,<I-SORT hSllINBIQtLZJlS~ME ILLUML~XSl eh 8~~007( L l<NP-2 SRM EOUlPHENT LlST DATE 01/06/83 I I EPN NFG NOBEL
~ + + SEIStf fN I~SI~I(h N EIEB S I S E HL 'fEST ANL FO C FREQ A/E DRAQlNG A/E, ZONE 1
OESCRTPT10N BLDG ELEV DETAlL USE SAFEfY FUNCTTON OTD CONTRACT LEVEL EC t RHR-RV 888
~
L265 LCT 11 N 248 Oi 0 " 99+ N52i/2 3/< "Xi" 8)jEMQB~fLSllCLIQKJIELIE 81(IO~ RHR-RV-SBC l.cr-l 1 N 218 01 0 99+ tl521/2 CB M!M<(I 'llfLHl5~~UHJQtLJiELIf. 5 RHR-V-105 R f0" I I" CtlECK HR-V-1 15 HO G~AT F~PY FROH
~
V U A395 V085 2623 3 OVG P2-3313-N-31 P Y 01 9 LllBJI 50 Mi~ N52 1/1 N521/2 C9 HB 2aM RHR-V-115+ 01 9 H521 2s& RHR-V 116 V085 DVG P2 3313-N-31 14 HO GAT P Y 01 9 50 H521/2 H9 R N V I RHR-V-116+ 01 9 14" HO GA~TQOtl 8521 J6 RHR-V-11A IN HO GArE V085 P2-3311 N 7 P Y 01 9 58, H521/1 El 1
~61'12 RHR X 0 A AHR-V 11A+ P Y 01 9 58 N521 HO GATE RHR A OU RHR V-118 V085 P2-3311-N-7 HO GATE RHR HX 8 DRA N P Y 01 9 58 H521/2 Cll RHR-V-118+
4 HO GATE RHR
'Rt<R-V-123A X 8 OUTLET 8350 76890-2 01 C*E 9 ~6 58 N521 E7 h
IW GATE HO RHR-V-50 BYPASS P 01 9 .. IS N521/1 ES 61 RIIA-V 123A+ RHR-V-50 BYPASS N521 G10 AI<R-V-1238 8350 P 76890-2 1" GATE HO Rl<R-V 50 BYPASS 01 9 45 N521/2 E13 C 9 RHR-V 12384 RI<R-V-50 BYPASS A Y N521 GB
~125B 1 RHR V-12%A 8350 P 30AEA83-001 RIIR GRIP POT DRAIN TO POOL N 01 9 65 N521/1 813 61253 21 RHR-V-121 A+
AHR ORTP RIIR V-1210 POT ORAltl TO RAOVASTf: 8350 P 301EA83-001
~M7KJienNel A
A
. A. 1 .
N N CsE 01 . 9 361253 65 t<521 MS21/1 Oii i..h C13 ~ ~ RHR DRIP POT TO POOL 172 2/8 ~ 1 Bl 361253 R LE 1 C~ 215 2 A
0 0
PRO&RAN SRH-SORT HRIQXJM~DltEE SUPPLI SISiIES Gr Itnmoags VNP-2 SRN EOUIPNENT LIST DATE 01/06/83 EPN HFG ~ HOOEL
~~~ Ell5I~~EhNEIKE ~ +~
S E TH HL TEST ANL FO C FRED A/E BRAVING A/E ZONE
~ DESCRIPTIOtl BLDG CLCV DETAIL USE SAFETY FUNCTION 010 CONTRACT LEVEL EC R HR -V-1218+ N521 D11 AHR DRIP POT DRAIN TO RA VAST RHA-V-125A 8350 P- 30IEABJ-001 A 01 9 65 N521/2 DI RHR DRIP POT DRAIN TO POOL A 172 / 5 25 RIIR-V-125A+ K Y N521 01 RHR OAIP POT DRAIN 17 5 ~0 6.125%
RHR-V-1258 RHR DRIP POT DRAIN TO POOL RHR-V 1258+ 8350 P 30IEAOJ-001
~~~~))) A Y 01 65 H521/2 N521 01 01 RHR DRIP POT DRAIN TO RAOVA "RHR-V-131A 8350 P 301FA83-002 C H521/1 E11 2$ GLOBE HO CAC TIE TO RIIR R 51 K 0 RIIR-V-IJIA+ C= N521 G15.
CAC INTERTIE TO AHR 9 RHA-V-1318 8350 P 301FABJ-002 N521/2 R5859
~
F6 2H GLOBE NO CAC TIE TO RHR RIIR-V I 3(8+ N521 F2 CAC INTERTIE TO RHR RHR-V-16A . V085 P2-3313-N 35 P Y 01 9 72 H521/1 16" HO GATE SPRAY HEAOCR H7 RIIR-V 1&A+ 01 72 16'O P Y 9 H521 Hl 1 GATE SPRAY tIEADER M1IR h RHR-V-168 VO85 P2-3313-N-35 A P Y 01 9 72 H521/2 Cl0 I&~ HO GATE ORYVELL SPAAY tlEAOCR 5 3 /7 ~ R IIR-V-I&8+ P Y 01 9 72 H521 F6 16~ HO GATE OAYVELL SPRAT HEADER 6122 1 RHR-V-17A V085 P2 3313 N-35 01 72 N521/1
~f A P Y 9 H5 I&% HO GA'IE DRYVELL SPRAY HDR 5 RHR-V ITAL A P Y 01 9 72 H521 HI 0 16" ~I*C ) ~
NO GATE ORYVELL SPRAY IIOR Cf t).. LJI ~ )I)5 ) ) RIIR-V-I78 V085 P2-3313-N-35 H521/2 I&0 HO GA'IE DRYVELL SPRAY HEAOCII R 0 K P Y
-IL-~EL)))
01 9 72
) 11~) ). ~ 011 .)
8 IIR-V-178+ I&" HO GATE DRYVELL SPRAY tIE ADER RHA-V-19 KH..jteMf!~ A 3.......1 P O. Y BlsC ~ 3....361725.....1 01 9 72 N521 F6
...A A395 DVG 2&30-3 P Y F521/2 JI 3 CHECK TO RCACTO)I HEAD SPRAY R 550 H~ 2/5 ~ 1 2 3 BlqE 361038 118 2 A
e PROGRAII SRH~ORT mi))kralLBUI~OM~UBBL SrSrE AGE ND 00073
,6, QNP-2 SRH EOUIPHENT LIST DATE, 01/06/83 I
I 6 EPN HFG HODEL S E TH IIL TEST ANL FO C FRED A/E ORAMlNG A/E ZONE OESCRTPTl ON BLOC ELEV DETAIL USE SAFETY FUNCTlON 01D CONTRACT LEVEL EC
~ ~ RtlR-V-21 A395 OMG 2618-3 P Y 01 0 35o H521/2 EB 10 5t)MLQBf LQ~LLLILSQ oLe &L0~3 .
R I IR - V-2 1+ t)521 Ell RD QCDRLJJIQ~I~~ IIR V-23 A395 OVG 2&51 3 01 93 H521/2 J13 R k"Mo SLOPE 8J)ILL~~J~EShY P Y 0 610~ RIIR-V-23o H521 HO GLO~BR A A RHR-V-2%A 2648-3 ll." LID. QLM~QQP ~LL.IA395 OMG Y Oi 0 35o H521/1 E9 Rt)R-V 24 Ao H521 E12
)8" Ho GLOAE LOOP A S H 0 RIIR-V-248 A395 OMG 2618 3 Y 01 0 35+ H521/2 C11 )8" HO G OBE OOP 8 T 0 RHR-V-248o H521 E6 )8% HO GLOB OO ST Ro RIIR-V-27A V085 P2-3311-N-10 P Y 01 9 88 ))521/1 07 &" HO G~A E QOOP A 0 RIIR-V-27A+ &" Ho GATE LOOP 01 9 88 H521 Eli A To SUPP 0 SPR RHR-V-278 6 Rll Gll~LDDP ~D'~ V085 I
P2-3311-N-10 P Y 01 9 88 H521/2 Cl1 RHR-V-278o P Y 01 9 88 H521 E7
&o HO GAT Oo RIIR "V-31 1 A395 2625 3 01 H521/1 CiI 8" Ct EC$ QQg @+I~AD RLCC)~AG k~1 Rt)R-V-318 A395 D'IIG 2625 3 P 01 H521/2 )8% CHECK RHR PUHP 0 SCIIARG 61)LL)~1$
RHR-V-31C A395 2625-3 H521/2 16'IICCG RIIR~PGRP C I~RIIRRG~ OMG L348L R 1 P N 01 GRGR~RR~ C5 R IIR
)8" -V -3 A RHR-V 3Ao Ho GATE HX A OUTLET $
V 50~085 P2-33)3-N-10
~~~~I A A 'L ~RC P
P N N 01 01 0 9 55 361236
)1521/1 . %1 H521 Gl 0 J13 A )8" Ho GATE IIX A OUTLET )SOL t)~l~Jo'P/j)o5..-.....2 .1 . CeE =...361736.............. 1...A RHR-V-38 V085 P2-33)3 tl-(0 A P N 01 0 55 H521/2 J9 )8 HO GATE IIX 8 OUTLET )SOL P. 557 Hol/8 ~ 0 2 1 CD E 36173& 11A 2 A
E PROGAAH SRH-SORT MhaIIU>DIM QIDLlf EQMER SUPPLIMISIEH PAGE NO DOON VNP"2 SRH EOUIPHCNT LIS'I DATE 01/06/83
+ + ~ EI M ILJSLJ'.hRhBEIEBS ~ ~ ~
HFG NOBEL S E TH HL TEST ANL FO C FRED A/E DRAVING A/E ZONE DESCRIPTION BLDG ELEV DETAIL USE SAFETY FUNCTION 010 CONTRACT LEVEL EC RHR-V-38+ 01 9 H521 Jl I IO ~ UO GATE ~OG O OU LLLJEOI LZ3 1 RHR-V-10 A395 2615-3
- 1. HO GI.OBE LOOP 8 TO Fl. DR TK OVG R 55 H P Y 121 01 0 99+
a2~ 8521/2 AHR V 10 A IIR IIO GLOGE GIIG LOOP
-V-1 1 A B~E ~URI V085 II P2-2767-N-2 P Y 01 9 ~Il EIIEII H521 H521/1 A
Gh 11" TCSTABLE CHECK 8 RHR R T RHR-V-h IA+ H521 G10 RHA-V-118 V085 P2 2767 N-2 Y 01 9 11 H521/2 G13 IhN TESTABLE CHECK AHR RET RHR-V-hIB+ H521 08 Il" TESTABLE CHECK RHR AET 56 A RHR-V-1IC V085 P2-2767-N-2 01 9 11 H521/2 013 ll" TCSTABI.E CHECK 8 RHR RCT P Y RHR"V-11C+ H521 G10 11" TESTABLE CHECK 8 RHR RE RIIR-V-12 1 V085 P2-3311-N-36 01 9 12 H521/1 Il" HO GATE OUTBOARD RETURN TO RPV R 527 ~ 0/ A 0 GT AIIR V-12A+ ll" H521
~E Gl1 1
HO GATE OUTBOARD RETURN TO RP 5 0/ RHR"V 128 V085 P2-3311-N-36 A Y 01 9 12 H521/2 F12 11" HO GATE RET TO RPV OUTBOARD 0/ ~
~
R IIR-V-128+ H521 G7 11" EIO GATE RET TO RPV OUTBOARD 61226. 1
~
RIIR-V-12C VO 85 P2-3311-H-36 A Ol 9 12 H521/2 E12 11 "GATE RHA RETURN TO RPV ~ OUTAO R 52 J~O/5 hf.tK EGEEE~L4 RHR-V-12Ct 11"GATE AHR RETURN TO RPVtOUTBO. RHR-V-17A V085 P2-3313 N-10 aaQ>>a A 1 ~ EA1 1 TEE 1 8521 Gl0 1 A P N - Ol 0 5S H521/1 J13 IAAIIO GATE AHA HX INLCT ISOL 8 5 5 J~f~ Zl C>> 6LZX~Ih 2 .h. RHR-V-17A+ Ol Jl 1 18" tlO GATE AHR HX ItILCT ISOL ILATS ~,?./Br'T, .= 2..> N
... C~
HS21 E........361736.......-....... 1 .. A RtlR-V-178 Vl!A5 >2-3313-tl-10 A P Y 01 9 H521/2 J3 1A "GA'IE HO RHR HX IIILCT ISOL S76 Ho3/8 ~ 1 2 1 C ~C 36) 736 11A 2 A
"hl '.3'A h h ~ PROGRhH Sc TB-SOR f c QM VIIP 2 RIIQ~II~IIEPL~EN SRH KOUlPMENT LIST AGC NUMB075
~ I DATE 01/06/83 I 3 I I
~
I EPN HFG MODEL
~>>~ EZSM~~ahNDESS ~
S E TH IIL TEST ANL FO C FREO A/E DRAV1NG A/E 20NE 3 OESCR IPT10N BLDG ELEV DETAIL USE SAFETY FUNCTTON OTD CONTRACT LEVEL CC ) 3 8HR-V-178>> K A 01 9 P N N521 18'G.hTE~IM&~tlLE~SD R IIR -V-IBA A395 DVG 2648-3
~L" Ho WLOB~lHLtKK~LYl~RJLQ P N 01 0 35+ H521/1 RHR-V-48A+
H521 J13 18 XLMGQPEMH~lG~B RtlR-V-188 A391 DVG 2618-3 I8" HO ~GLOBE 01 0 35+ H521/2 JB ) 3 RHR-V-188i 4'O BZS~KKJLLYP~L M521 J5 RIIR-V-19 V085 P2-3311-N-7 IDAHO GATE LOOP 8 0 F OOR DRA P H 01 9 58 H521/2 6 R I(R V I 9+ 01 9 58 M521 Gl 4>>HO GA OOP 0 RHR-V-IA ~ V085 P2-3313-N-IO 21>> 01 9 37 M521/1 C7 HO GAT SUPP 00 OOP A U RHR-V-IA+ 24>> HO GATE SUPP 00 A P Y 01 9 N521 El 1 RHR-V-48 V085 P2-3313-N-40 P* Y 21" HO GATE SUPP POOL LOO 01 9 37 8521/2 811 8 OTLCT 6LL1 R HR-V-IB+ 21>> 01 9 H521 HO GA'TE SUPP POOL LOOP OT RtlR-V-IC. V085 P2 3313 N-40 24>> HO GATE SUPP POO P Y D1 9 37 8521/2 811 OOP C SUPPY k1Ll RHR-V IC>> 21>> HO GATE SUPP POOL LOOP C SUPP 01 9 N521 Dll I RHR-V-50A- VO85 P2-2767-N-3 12>> Y 01 13 N521/1 FS AO CHCCK TEST CHECK LOOP A 61XL'~ RHR-V-50A+ A N521 12>> AO CHECK TEST CHECK OOP A ~ EB~~EaE~ G10 RtlR-V-508 V085 P2-2767-N-3 12>> AO CIIECK TEST CHECK LOOP 8 Y 01 13 6 M521/2 LIRAS~ 2~E13 RIIR-V-5083 12 RIIR AO CIICCK V-52A TEST CHCCK LOOP 8 F130 SI(O-00 10 EVP K BBBMTB 3 BE BBT A
.3 3 Y
N Bl 3~E .... 01 0 333333. H521 N521/1 1 08 J10
.h.
8>> GLOBE RCTC S'TEAM TO RHR Hx R 571 H 8/8 ' 1 1 C ~ E 361931 12A 2 A
4 PROGRAM SRH-SGAy Vh3jllMiIELHlBL1~VERSUPPLY SYSTEII. RACE ND 00074 VNP-2 SRH EOU1PHENT LIST DATE 01/06/83-DGIR ooiSEJSMIC TS~RhlEIESSoso EPN HFG NODEL S E TM HL TEST ANL FO C FRED A/E DAAVTNG A/E ZONE DES CR TP 71ON BLDG ELEV OETATL USE SAFETY FUNCT10N 010 CONTRACT LEVEL EC AHA-V-52A+ H$ 21 8~ GLOBE A+CPS ~~0 M12 RHR-V-528 If". NO RHR GLOBE RC IC STEAN TO Rl V-5285 If~ GLOBE RCIC STEAH TO RIIR HX
- 12. Ilo GATE SHUTDOVN~OO]~ygP F130 R I X A
SHB OVG 00-10-KVP 2658-3
~RE P
N
~kaEa T 21 01 Ol 0 ~fd52~2 ~2952 9 26 =~
M521/2 M521 H521/1-11 J6 K5 F6 8 RHR-V-53A+ M521 G1
&13128 1'12 RHR-V-538 A391 DVG 2658-3 P=Y - 01 9 99+ H521/2 120 NO GLOBE SHUTO COOL LOOP RHR-V 5385 M521 G7 12~ NO GLOB~HUTQ C~OO ~00 RHR-V-68A V085 P2-3313 "N-39 P N 01 9 13 M521/1 D11 l 6~GATE HO AIIR I X SV TS AHR-V-68A+ M521 H12 l6"GATE NO RHR HX SV RHR-V-688 V085 P2-3313 N-39 01 9 13 H52 1/2 013 1&NAB GATE RHR HX SV ISOL RHR V-688+ M521 H10 16"$ 0 I'RATE RHR HX SV TSO 1 h RHR-V-6A V085 P2-3313 N-10 P;,N 01 9 55 M521/1 88 IB"HO GATE RHR PUMP A INLET BLOCK RHR-V-6A+
lA"HO GATE A IIR -V -68 RHR PUHP A 1NLKT BLOCK V085 P2-3313-N-10 A P N 01" 01 9 9 521 55 M521 H521/1 8 C12 C7 18~NO GATE RHR PUNP 8 TNLET R 31 0/8 RHR V-68+ . P N 01 9 M521 C6 IBNMO GATE RHR PUHP 8 INLET ~sf =M51125 1 .A. RIIR-V-73A 2i GLOBE HO RHR H EX A VENT SHELL 8350 P 301FAR3-001 8 592 JR/9 A P
.RRK 0 ~fd25 =
H521/1
.215 ~ H11 .8 RHR V-73A+
AHR H EX A VENT SHELL RHR-V-73D Sl 8350 P 301FAO3-001
~821 J II/O A
8 ~ P 2 C,L, 0 3612SS ......1 H521 H521/2
. J11 H1 h
2" GLOBE HO RHR H EX 8 VLNT SHKI.I. R 572 2 1 C ~E 361251 215 2 A
a PRO GR AN >r<H-SCR T QIQ?LBUQL~llE~UR~SZ AGE HO DD077
'PN IINP-2 SRN EOUIPHENT LTST DATE 01/06/83 r,'IR ~
NFG HOOEL S E TH HL TEST ANL FO C FRED A/E=DRAMTNG A/E ZONE OESCR1PTTON BLDG ELEV OETATL USE SAFETY FUNCTTDN ., 010 CONTRACT LEVEL EC ~ 2 RNR-V-738+ N521 BIB IL.E.II lLXEH.~BEL~ RHR-V-B VDRS P2-3313 N-33 A P Y 01 9 . 76 H521/1 E6
~Q~GA $ SIIUTQQIIlLQLQLIH amex ~1aLs 6123~1 RIIR-V-Bt P Y 01 9 N521 Fll 2R" G.ATE. SIMQQMtLMQl.lNQ Sl Ce 6LZ32 RHR-V-89 I 1" TESTA',
V085 P2-2767 N"2 P Y 01 ~ 9 11, 8521/2 RI10 RI<R-V-89+ N521 RHR-V-9 VOBS P2-3313-N-33 P Y 01 9, 76,. N521/1 200 GAT SHU 0 N 0 I 9 RIIR-V-9i P Y Dl ~ 9 H521 Fio 29 ORIC RHUTOOVIT COO SU ROA-AD 10 . POll P~0~ 630-N-31108 8515 Ell HCC AGON AUTO OAHPEA
@L /20-IP ROA-AO-10+ N515 Ell ADA-AO-ll P011 P~0~ 630 N 3]108 NSIS NCC ROOH 11 AUTO DAMPER al $ ? CA-IAO II ROA-AO-11+ MSI5 EB lla ROA-AO-12 HI39 332 2799 N515 C7 DC HCC ROON AU 0 AN R @A,-AD- I RDA-AO-I2+ N515 C7 ROA-AD-13 POll P~0~ 630-ff 31108 N515 Gll RECONB NCC RH1 AUTO OAHPER RA4, IB ROA-AO 13+ N515 Gll alla ROA-AD"ll P0 ll P HO ~ 630-N-311 08 R H515 G13 AECOHB HCC RN 11 ROA~OQ AUTO OAHPER 9 9 HO/ 1LQ~l ROA-AD-Ilt H515 G13 1 Q .sl. . al 1 001. L .. i..
A OA-AO-15 PO ll Polio 630-N-31108 R N515 G13 ANA AN IA AUTO DAMP~A 8 563 H~ 8/I ~ 8 0 J 011001 216 A
.~
PQOGRAII SRO-SORT RKB$ZQ5LEVBL~WERMUPBLYDTSIEII PAGE NO 0007& . NNP 2 SRH EQUIPMENT LIST DATE 01/06/83 EPN HFG HOOEL yy~ ~~~JQCYC11$FRED ~1~ S TH HL TCST ANL FO C A/E DRAYING A/E ZONE DES CR 1P I I ON BLDG ELEV OCTAIL USE SAFETY FUNCTION 010 CONTRACT LEVEL EC ~ goA-AO-l5 ROA-AO-15+ K HSIS G13 ROA-AD-17 PO Il PoO ~ 630-N-31108 H515 Gll AHA RM 18 Rg -A,o I7 AUTO OAMPFR R 5 HE 8/ 1100~1 ROA-AO-17+ H545 GII klHN I R OA-A D-19 Po la 630-N-31<08 H515 FB FUEL POOL HEAT CXCH IZa4-AO- I9 C PUMP RH
)
ROA-AO-19+ HSIS FB 1 ROA-Y-1 8250 0657 II
'I A 02 0 H515 8% F 0" R BLDG ISO VALVE 578 N 5 7 PA-Ao-Vl 61 OA-Y-2 8250 0657 02 0" P N 0 H545 81 ~ R BLOC ISO VALVE 4h-Ao 5 V2 ~
PROGRAH SBN .SOR~ SSPPL~ISIEII
~
LSL'IBSISPLJJlSLIEJJlSES BAG~0 000T'},. ,I, ' QNP 2 SRN EOUIPHENT LIST DATE 01/06/B3 s .l
~ Sl EPN NFG NOBEL S E TH NL TEST ANL FO C FREO A/E DRAWING A/E ZONE DESCRIPT I ON BLOB ELEV OETAlL USE SAFETY FUNCTION OIO CONTRACT LEVEL EC I ~
RRA-FN-I P114 150 F FAff FOR RRA-FC ~k.ltalC4 A
~ 3....... 1 3 N ..J.........155012 N545 ...., 61,.........
B14 2... A RRA-FN-10 P205 150 A N H545 E15 F Aff FOR RRA-FC-10 522 N3/3 ~ fs 0 J 145012 6T 2 A
~ -.'W P P'IT 6,, 6 ~ PFHa W FT 4'R WO~ FAD~WE~. ~ P ..FA PRAI:R AH >F2g~g&
EPN HFG OESCRIPTI ON
~ 66lllll52!I~5 HOOEI.
MNP-2 62~ BLDG ELEV
~
II SRH EOUIPHENT S
~
OETAIL E
~152 LIST ~ ~ fiSNIC TH USE HL TEST ~h&hNEIE ANL FO C SAFETY FUNCTION FREO OIO ~
CONTRACT BATE A/E ORAtt ING
~lLJIDIQ8~
01/06/83 A/E LEVEL EC ZONK R RA-F N-11 fbi'O&M&h=EC=11 RRA-FN-12 P295 85 15 150 60PC/AOJUSTAX n~ tlSI5 ~c tlt;~QQtt &EEIM Ebtt 01 99+ 033 HSI 5
~6 CT RRA-FN 13 8515 IOPC/AOJUSTAX 99+ tl515 tl15 .fill FRR RILLZC&5 01 552~f 8 RA AW -F t'- l I FOR R - - I 8515 IOPC/AOJUSTAX F N 01 99'515 H13 RRA FN-15 AttEOti ~RR 8515 10PC/AOJUSTAX 01 99'l515 RRA-FN-17 8515 IOPC/AOJUSTAX F N 01 99+ tl515 Gll 13300 CFH ANA RRA-FN-19 F N 01 99+ N515 G9 FPC HEAT EX H A RH RR A-F tt-2 P111 150 F N N515 88 FAN FOR RRA-FC-RRA FN-20 F N 01 99+ tl515 FPC HEAT EXCI~IPHP R RRA-FN-3 P111 150 F N H515 89 Fitt FOR RRA-FC-3 RRA-FN-I P295 215 F N 01 N515 813 FAN FOR RRA-FC-RRA-FN 5 P111 150 F N H515 812 FAN FOR RRA-FC-5 RRA-FN-6 P111 135 F N HSIS BT F ~ 5 FOR RRA~FA RRC-P-1A 8260 210099 9 M521/1 EI tlEC RCULAT'ION PUHP 2~1 P Y 01 302~ 2B RIEC-P-IA+ A N530 Cl1 RECIRCULAT IOtt PUHP LLJLJLL. 23M2 h RRC P-18 8260 210100 P Y 01 9 H530 CT RECIRCULATION PUHP 50 5552L II2565 RRC P-18+ A Y H530 CT ~
RECIRCULATION PUHP C %0.8~15 9 Al 820 2 Q 233020 ....1 . h... tlRC V-16A 8350 19290 8 P Y H530 C11
~ 75" GATE NO PUHP SURGE INLET 501 tl ~ I/O ~ I 10 R 81 361212 215 2 A
2 PROGRAH >AH SORT IIL2222~2ILRIRL &JJlhEILIRRPLLSIEIEIL- char XO aOOsl I VNP-2 SRN EOUTPHENT LTST DATE 01/06/83 a ll EPN PFG NOBEL S- E, . sa TN
~ ~g~~g~E 'REO flL TEST ANL FO C ass A/E DRAVTNG '/E'ONE'ONT'RACT OESCRIPT10N BLDG ELEV OETATL USE SAFETY FUNCT10N 010 LEVEL EC
~
~ RRC-V-16At P Y H530 C11 RRC PUHP SEAL PURGE 1NLE RpcV-lbB RRC-V 1602 RRC PUHP SEAL PURGE 1NLE 2 hh~JII/7 K
2 P Y N530, 222 811 2-I!.~ ~
~
RRC-V-23A A585 OVG 9210875V A P Y 01 9 37 N530 hlfi..
~
210 HO GATE 02635 012'HQOZ 22 h RRC-V-23At K Y N530 D12 21" HO GATE ILIILIL ' MI 2 61M
'" 2 >:1 47'>V n y 9 37 r 'I
8 PROGRAH b... -SOR AA))1))~~a~af MNP-2
~U~TSTE SGGE Su-GOOSE t,'.
SRH EOUIPHENT, LIST DATE 01/06/83 IIR EPN MESSS~~SdSEIESS"'OOEL HFG S E TH HL TEST ANL FO C. FRED A/E DRAM]NO A/E ZONE 5 DES CR I P I ] ON BLDG ELEV DETAIL USE SAFETY FUNCTION 010 CONTRACT LEVEL EC RMCU-V-]01 ~ VO 05 P2-3311 N 2 01 0 58 H523 F1I PMCU-V-]0]+ H523 F lI RMCU V-102 A39] I513-I7 P Y 01 0 76 H523 5 lO GLOB~FOR R~C 6100~1a RVCU-V-]02+ H523 GIS RMCU-V-106 V085 P2-3311 N-2 P Y 01 . 0 58 H523 012 fa1I RMCU-V-]068 P 01 58 H523 Y G12 RMCU-V-I 6"GATC V085 P2-3311 N I P Y 01 .9 TO H523 E]5 HO CONT SO A RMCU-V-Ii 01 9 H523 E15 RMCU V-IO P2-3311-N-I 6" GATC HO RMCU R TUR 0 VOBS F OMG P Y 121 Ol . 9 10 H523 Hll 611]B RMCU-V I 0+ 01 9 Hl 1 SGT-An-]A] R HSI I AIR OAHPER FOR SGT-FSI-]AI 7 SGT-AD-IA2 HSII G6 AIR OAHPFR FOR SGT-FN- A2 SGT-AO ]81 HSII E6 A]R OAHPER FOR SGT-FN-IBI SGT-AD-]82 AIR DAHPFR FOR SGX-FN-]82 SGT-AG-2A H322 A-SOB 55 ~JOF R A 8 F P N 01 9 06 HSII H5II 8 C6 H]5 ROTOR OPERATOR SGT-V-2A 8&&FSRX 015002~)) 2 k. S GT-AO-28 "322 A508 HO]OR OPERATOR SGT-V 28 ~RELIL688 2 A
~Jlad-.
P N 01 9 06 H511 A18AAR=68 D15 SGT-DV-]A]+ DELUGE VALVE ASST FOR SGT-DV-]A2+ F030 SGT-FL-]A F C 30 n-SI898-] 0-5 I 898-1 K AT%.HSZC38~. K
'....= .2 .0 F...... 100001 H5II 1$
HSII
.1 F]2 Fl1 OELUGC VALVE ASST FOR SGT-CF -]A-] R 579 H83/I ~ 0 100001 18 1 . A
.a -w', > * > f ' "- '.- '>2 .Aaa>h. c ~ '. 1>.>> < - >> 6 >'>>'5'.~af>>>>'>>>~i '>a>>>>'>>> 4 a%i'a>>> ">>>., w IA >.. ' s
~ PROGRAH b~>I-SORT MHIERDKJJlaLI~MEa soeeLt szsIEtl ttu 00085 OE L'NP-2 SRtl EOUlPNEHT LlST, DATE 01/06/83 EPH NFG NOBEL S E
~ ~~
TN MLRk81ttEJEES ~ IIL TEST ANL FO C FREO A/E ORAIITNG A/E ZONE DESCR 1PT10H BLDG ELEV DETAlL USE SAFETY FUNCT'TOH 410 CONTRACT LEVEL EC SGT-OV>>lA3+ F030 D-51898-1 tl51 1 Fln DELUGE VALy~A Sg PORING F aruu~ SGT-OV-181+ SGT-Ov 102+ DELUGE VALVE ASSY FOR SGT-CF SGT-nv-183+ DELUGE VALVE ASSY FOR SGT-FII-1A1 SG F030 F030 F030 lg
-CF-1 -2 1
0-51898-1 0 51098 0"51890-1 1 K P N 200 01 0~ IUljll 000~ il511 tl511 ll NSII, '.
~ Bll 812 810 8515 7IS-9797 F N = 01 12 N511 EXIIAUST FAtt SG~FU- A 0 SGT-FH-1A1+ F" tl511 J6 EXHAUST FAH FOR SGT-FU-1A- R 6 SGT-FN-1A2 8515 71S 9797 01 12 N511 tt6 EXHAUST FAN SGT-FU-1A 5.
SGT-FH-1A2+ IISII EXHAUST FAH FOR SGT-FU A 2 SGT-Ftl-181 - 8515 TIS 9798 F H 01 12 HSII E6 EXHAUST FAN SGT-FU 18 SGT-FN-181+ F MSII EXHAUST FAH FOR SGT-FU-18-1 R 5 6 ~ l SGT-FN-182 EXHAUST FAN SGT-FN-182+ SG't-FU-18 8515 713-9790 01 12 H511 2'ISII 2~C6 A C6 EXHAUST FAN FOR SGT-FU 18-2 R 576 J 5 SGT-PCV-Fl v125 n-I R HSII G12 2i CONT DELUGE VLV SGT"Ov lAl R 5~80 ~/3 t A 236995.~ 8' M A
~k0j>5 SGT-PCV-F2 V125 0-1 'R H511 Gll 2" CONt DELUGE VLV SGT nv lA2 R 580 Hi3/2 ~ 9 1$ 2 SGT-I>CV-F3 vl25 n-I R H511 Gln 2 CDNt DELUGE vLy SGT-nv-lA3 52kaltaA~9.....2 0..... F..........'..236005 .. 10 2,. A
0 0
i PROGRAH ASH-S0$ da~om0080 llNP-2 SRH EOUIPNENT LIST DAtE 01/06/83
~ I a 5GSNZ~SLP ARLNEIEB EPN NFG NOBEL S E TH HL TESt ANL FO C FREO A/E BRAVING A/E ZONE OES CR IP T I ON BLDG ELEV DETAIL USE SAFE'TY FUNCTION OIO CONTRACt LEVEL EC SGT-FCV-F5 . V125 D-I R NSII 811 ..2". CONT OELUB~LILSG.T~B2 8~LE 00 SGT-PCV-F6 V125 D-I A)N~ELU.G~L~R~ NLHa3LLs R
60~8 N511 89 SGT-V-IA 8250 A-206761 01 . 9 994 NSII H11 IA. Hn ~BF ~SG SGT-V-IA+ N511 HII 180 HO BFLT SGT TIE SGT-V-18 8250 A-206761 01 9 994 N511 18" HO BFl.Y SGT T E P N 61L~ E11 a ~ SGT-V-18+ NSII E11 18 HO BFLT SGT T SGT-V-2A
~ 18" AO BFLY SGT L N OT--A 8250 0657 P N 01 9 06 6111~ N511 H15 SG'I-V-2A+
lR" AO BFLTSGT LINE TO SGT-FU- A L~a N511 H15 SGT-V-28 8250 0657 1A" AO BFLT SGT LINE TO SGT-FU-18 0503~ A 01 9 06 11% NSII 6 D15 d SGT-V-28+ 8511 015 18% AO BFLT SGTLINE TO SGT-FU-10 R 8 61 1 d SGT-V-3A1 8250 A-206761 A P N Ol 9 99+ NSI I 18" HO BFLV SGT-FN-lA2 8~7& I HBLZe.X 0 D~E 361 f03 .<68 ...2 ....d... SOT~V-'3AI+ ." lA" 'd BFl. Y'GTiFN-'I A2"'~ I
>I "O' ~ F 361'tD
- HSiI PC7
."1
' PROGRAN >RN"SORT f>~AS I~IS O~B~ClfKR RLlPQL~XSZEII ~RAGGED 44bB< ~ ~ LINP-2 SAN EOUIPHEHT LIST .DATE 01/06/83 I ~
I. Q I EPN tfF0 NOBEL S E TN HL'EST ANL FO C FRED A/E ORAffING'A/E ZONE DES CR IP I ION BLDG ELEV DETAIL USE'AFETT .FUNCTION OID COHZRACT . LEVEL EC
~
SGT V-3A2 8250 A 206761 P H 01 9 991 f1511 18" HO BFLY SGT-FN-1A1 6110~ SGZ-V-312+ A H511 JT IBi NO BFLY SGT-FN-lAI 576 J ~~7 h&QQ SGT-V-381 HSI I 8250 A-206761 P N 9 99+ ET 18" f>0 BFL Y SGT-FH 182 INLET ~4M/ao .i. 4~% ~&liR3. ~fL 2. SGT-V-381Q HSII ET 18" NO BFLY SGT~Fit- 82~N EZ A-206761 h.'GT-V-382 8350 01 9 99+ f1511 C7 18 NO BFLY SG'I FN 181 INLE &lh&~S A f1511 'GT-V-382+ CT 180 HO BFLY SGT-FN-181 INLET R J s SGT-V-IA1 8250 A 206761 P H 01 9 99+ HSII IBQ NO BFLY SGT-FN-1AI OUTLET R 8 8/ EdlR~ SGT-V" IA1Q NSII JS 18" t!0 BFLY SGT-FN ill INLET R 58 HB A SGT-V-IA2 8250 A-206761 'A P- K 01 G5 18" NO RFLY SGT-FN-1A2 DISCN / SGZ-V-IA2+ A-206761 A H511 18" ffO RFLY SGT-FN-1A2 OISCH ~ R 587 Jo 0/ ~ 0 SGT-V-181 18 HO BFLT SGT-FN-181 OISCH 8250 A-206761 R 585 J2/5 ' A P 0 H 01 9 99'511I Q. C5
~
SGT-V-181Q A H511 CS 18" t>0 BFLY SGT-Ftf-181 OISCH ~ 585 J2/
~
R ~ SGZ-V-182 8250 A-206761 99'511 Jl~ P 01 9 D5
=
A N 18" DFLY SGT-FN-182 OISCH R 58 ill& f8 6 SGT-V-182Q A HSI I OS 18" NO BFLY SGT-Ftt-102 OISCff ~ R 585 J6 7 1 .Qa SGT-V-5AI 8250 A-206761 A P N ' I 9 99+ H511 JS 18 f>FL'Y SGT-FN 1A-1 OUTLf I 5&Z lh*&Q I ~M Qsf ~61551 6!L 2 .h . SGZ-V-SAT+ A H511 J5 I f&" NO BFL Y SG Z-F tt-I A-1 I t>LE I 8 58 I ~Q 8~8 &61193 1 .h SGT-V-5A2 18" NO BFLY SGT-FN-IA2 DISCI> 8250 A-206761
~IJ&1 I A P N =
I Q..ll ~ I
- 01. -9
.=....:,
99+ 2&I&85..- N511 65....--... 2 05
. h'.
SGT-V-5A2Q A >f5 I I G5 14" >'0 BFLY SGT-F>t-lA2 OISCH ~ R 587 J/7 ~ 1 I 0 OQF 361103 A
0 PROGP AH SRH-SORT BALLL>B~QE~ll88L~LT VNP-2 rr SlLDOD8b SRM EOUIPNENT LIST 'DATE OI/06/83 HFG '
~~ ~
EII ~~EANEIERS ' MODEL E TN ML TEST ANL FO C FRED A/E BRAVING A/E,ZONE, DESCRIPTION BLDG ELEV, DETAIL USE SAFETY FUNCTION QIO CONTRACT LEVEL EC SGT-V-581 IB" HO BF.l T 5 8250 A-206161 01 9,994 NBA I C5 SGT-V-SBI+ N541 lA~ HO~F~SG - - I 0 ~2L HSING CS SGT-V-582 8250 A-206761 A P N 01' 994 N51% ES 118~68 SGT-V-582+ IB" BFLT SGT- ES N 2 OU SLC-P-1A SLC PUHP SLC-P-IA+ U055 2X3 TD 60 N 01 9 016 ~ M522-8522 F6 COMPOSITE FOR S C-P- A SLC P-18 U055 2X3TO-60 01 9 N522 D6 SLC PUHP SLC-P-I 8+ M522
'06 COMPOSITE FOR SLC-P 18 SLC-V-1A A391 OVG 2662 3 99+
Is P N 01 0 8522 El HO GLOBE SLC TANK OUT 6188~ SLC-V-I A+ P 01 99+ H522 N EOI COHPOSITE FOR SLC-V-IA
'1 K~1 SLC-V-18 A391 DVG 2662-3 99+
P Y 61!l~l M522 OI
=
0 HO GLOBE SLC TANK OUTLET SLC-V 18+ COMPOSITE FOR SLC-V-18 R 8 P Y, 01 0 . 99'522 361003 ~ 18 Ooi
PROGR AH SIcH-SORT ~HMIQKJMLlLZJlIIE~lt RRLIMYSIE5 RAGE hM 8008 MNP-2 SRH EOUIPHENT, LIST - 'ATE 01/06/83 EPN HFG
~IEIil5~ 'S E - ~EIEEIC IEI EIIUIEEIEES TH HL TEST ANL FO C FREO "'OOI.L A/E ORAMING A/E ZONE DESCRIPTION OLOG ELEV OETAIL USE SAFETY FUNCTION OIO CONTRACT LEVEL,EC SM-V-187A I" GATE SM-V IOTA+
IHOI Ill V085 ITITO FPX II~X- ~ P2-3311-NP-62 1& P M ~~1 H521 88 H521 88 FPC IIX-7A INLET COHPOS JTE 56L735 1 A. SM V-1878 VO85 P2-3311-ttP-62 6" GTATE (HO) SM INTO FPC-HX-IB I IQ 1 P IL Rkl.H5 H521 M d.. 2 86
..d..
SM-V-1878+ COIPOSITE TO SM-V-1878 K,
- H524
...... 361.7%5....., .........1 86 ..A .
SM-V-1158A V085 ~>-33 1 I-ttP-62 P H521 87 6" GATE )HO) SM OUT FPC-IIX-I A R BIB 0 G 361715 IIA 2 A
1 PROGRAN 'SRN-SORT GIQILBItRLI~ttE~tlBR~XS BAG~DM000tt ttNP" 2 SRH EOUIPNENT LTST DATE 01/06/83 EPN tlFG tlODEL' E TN HL TEST ANL FD C FRED A/E DRAttING A/E ZONE DESCRIPTION BLDG ELEV OET'AIL USE SAFETY FUNCTION 010 CONTRACT LEVEL EC SM-V-IBBA+ tl52I BY mZS=ttz=ti Stt eltu.~atte S lt- V- 188 8 V085 P2-3311"NP-62 N52I 87 BAJ[ QQ~Q O~P g-I~X 6114K SM-V-IBOB+ FPC-ltX-I g $ }I~07 ~ 0 tl52I 87 Stt-V-2IA 8350 P 79020 P N 01 9 I9 H52I D12
'2" GATE VLV HO RHR PUNP N R hler~'1 Stt-V-2IA+ P N 01 H52I 012 COHPOSITE OF Stt-V-2IA SM-V-2h8 8350 P 79020 P 'N 01 - 9 I9 N52I D10 2% GATE VLV HO RNR PUNP H'TR 61 Sll-V-2h 8+ P N 01 H52I DIO COHPOSI TE OF SM-V-2h8 612%
SM-V-2IC 0350 P 79020 A P N 01 9 I9 tl52I 013 2" GATE VLV NO RtlR PUMP tlTR \~ II 7 SV-V-2IC+ COHPOSITE OF Slt-V 2IC R II6 ~H7/I A
~ 3 I~sf P N 01 ~5125 H52I ~
1 013 Jl
~ q f V
PROGRAH SRH-SORT V~AS NO~TON P QLJQ~VKR %UPeL~I~ hD~Q 0008% VNP 2 SRH EOUIPHENT LlST OI/06/83 lf
~ DATE I
KPN
~~~ UXHICM~BhlEIES ~ ~ ~
HFG HOOEL S E TH HL TEST'NL FO C ~ FRED A/E BRAVING A/E ZONK OESCR IP I I ON BLDG ELEV DETAIL USK SAFETT FUNCTION. OIO, CONTRACT LEVEL EC SV-V-11 . 8350 DVG 79020 Ol LPCS PUHP ROON ISOL VALVE 9 19 8521 SV-V-11+ Oi-COHPOSITE OF SV-V 11+ P N 8521 l ~~
~
SV-V-51 8350 OVG 79020 A P T OI 9 19 HS21 2 GT SV RTN RRA-CC-1 HPCS PHP RH R / 9 SV-V-54t 01 P N H521 COHPOSITE OF SV-V-51+
ill RIQ1LLllQLILZQllElLSllRELZ~I BAG~~B.O lb MNP-2 SRH EGUTPHENT LTST BATE 01/06/83
~s DEBBooo rN HFG HOOKL S E TH HL TEST ANL FO C FREO A/E ORAMTNG A/E ZONK OESCRTPT10N SLOG ELEV OETA1L USK SAFETZ FUNCTlON QTO CONTRACT LEVEL KC SM-V-75A 8350 76630 2~ GLOBE 'HO TO FUEL P 2 01 99+ 152'/1 813 VLV 00
( SM-V-75A+
~ SM T1ELLNE TO FUEL POO H521 Gll SM-V-758 8350 P 76630-2 99+
2% N 01= H521/1 A13 GLOBE VLV HO TO FUEL POOL 0
0 4 q I
Attachment A WASHINGTON PUBLIC POWER SUPPLY SYSTEM RESPONSE TO ENCLOSURES 1 AND 2 OF REFERENCE (a) INTRODUCTION Purge and vent butterfly valve and actuator assemblies are being qualified by combination of analysis and testing for structural integrity and for operability. Operability is being considered for open to fail-closed operation. The analyses considers design basis LOCA loads in combination with seismic plus hydrodynamic vibration loads and normal operating loads. Testing was performed by the manufacturer on similar butterfly valves to determine torque coeffi-cients which included the effect of upstream elbows. The air operators on the 24-inch and 30-inch purge and vent valves were sized to accomodate the required valve seating torque. The seating torque was specified as 17,000 inch pounds for the 24-inch valves and 27,800 inch pounds for the 30-inch valves. Subsequent fluid flow analyses in combination with the experimentally deter-mined dynamic torque coefficients resulted in maximum dynamic torques of 13,808 and 22,174 in-lb (attached analysis). However, containment isolation is more conservatively addressed than these numbers indicate because the dynamic torques which exist in the isolation sequence act to close the valve and the opposing bearing frictional torques are small. Preliminary stress analyses for the dynamic and operating loads show that the critically stressed members are the protrusions for mounting the air operator to the valve body. The existing stress analysis is based on piping stress analysis with very conservative input motion. The input motion is being revised to be more realistic. When the loads on the valves have been revised, the valve analysis will be updated and the results submitted to the NRC. If there is not a significant reduction of loading, the operator mounting pro-trusions will be reinforced. RESPONSES TO SPECIFIC UESTIONS IN ENCLOSURE 1 OF REFERENCE a uestion 1 The torque sizing letter of January 9, 1976, BIF to Burns and Roe, indicated the dynamic flow forces of air during normal operation were negligible and the seating torque was considered the governing design load. Dynamic loads under LOCA pressures were not considered. WPPSS should determine if the dynamic flow loads dur ing DBA-LOCA pressures are negligible as compared to the seating torques. The dynamic flow loads must be based on test (either model or actual size). 8303010234
j 0 h'
~Res onse Dynamic loads based on model testing and analysis for LOCA pressures have been determined (the report is attached). The dynamic load at all times is tending to close the valves and is always less than the seating torque. uestion 2 The applicant should show the operator has the ability to close the valve at all angles. Dynamic torque loads will vary with disc angle. The April 17, 1976, letter, BIF to Burns and Roe, indicated operator torque capability also varies with disc angle. ~Res onse The attached report shows that the operator has the ability to close the valve from all angles. The dynamic flow, in fact, aids the closing of the valve. uestion 3 If the dynamic torque under LOCA pressure for these valves is greater than the seating torque, a new analysis should be performed to show the effects of combined LOCA dynamic loads plus SSE seismic loads. ~Res onse Not applicable. The seating torque is always greater than the dynamic torque under LOCA pressure. uestion 4 Stress allowables for the analysis are yield strength values. No additional margin is applied. Stress allowables should reflect some margin. For example: the maximum shear allowable should be .6 Sm (Sm as defined by ASME B&PV code, Section III) for ASME Section III Components or .4 Sy (Sy = yield strength, allowable as defined by AISC) for all other components. In addition, ultimate strength was used for non-pressure boundary components. For valves required to operate conservative allowables should be used to allow for deviations in manufacturing. Margins should be conservatively applied. ~Res onse The allowable values being used in the stress analysis for non pressur e retaining parts of these valves and operators are those specified in the AISC Handbook as shown below. For the pressure retaining parts, the allowables for ASME Section III, Class 2 have been used.
AISC Allowabl es Normal Condition: Bending .0.6. Fy Shear 0.4 Fy Faulted Condition: Bending 0.96 Fy Shear 0.64 Fy However, the minimum yield strength, Sy, from the ASME B8PY Code is being used instead of the nominal yield strength, Fy. This results in significant additional margin. uestion 5 The valve appears to have natural frequencies at 17.3 Hz and 23.9 Hz but the seismic analysis for the valve assembly assumed the valve to be rigid. In addition, seismic qualification for a component which has a function beyond simple pressure boundary should be qualified by test.
~Res oese The calculated natural fr equencies are in the range of the hydro-dynamic excitation. The analysis of the valve and its operator assembly is being based on'oads derived from a dynamic, finite element piping analysis into which the valve assembly is carefully modeled.
The valve design has been closely examined. The only failure mech-anisms which could reasonably be expected involve binding of moving parts. These are being examined conservatively by analysis and operating experience. No additional testing is planned.
- 3. RESPONSES TO SPECIFIC UESTIONS IN ENCLOSURE 2 TO REFERENCE a 272.01 Oemonstration of operability of the containment purge and vent valves and the ability of these valves to close during a design basis accident is necessary to assure containment isolation. This demonstration of operability is required by NUREG-0737, "Clarification of TMI Action Plan Requirements",
II.E.4.2 for containment purge and vent valves which are not sealed closed duri.ng operational conditions I, 2, 3, and 4.
- 1. For each purge and vent valve covered in the scope of this review, the following documentation demonstrating compliance with the "Guidelines for Oemonstration of h Operability of Purge and Vent Valves" (Attachment 2) is s
to be submitted for staff review: A. Oynamic Torque Coefficient Test Reports (Butterfly valves only) - including a description of the test setup. B. Operability Oemonstration or In-situ Test Reports (when used).
C. Stress Reports. D. Seismic Reports for Valve Assembly (valve and operator) and associated parts. E. Sketch or description of each valve installation showing the following (Butterfly valves only):
- 1. direction of flow
- 2. disc closure direction
- 3. curved side of disc, upstream or downstream (asymmetric discs)
- 4. orientation and distance of elbows, tees, bends, etc. within 20 pipe diameters of valve
- 5. shaft orientation
- 6. distance between valves F. Demonstration that the maximum combined torque developed by the valve is below the actuator rating.
The applicant should respond to the "Specific Valve Type guestions" (Attachment I) which relate to his valve. Analysis, if used, should be supported by tests which establish torque coefficients of the valve at As torque coefficients in butterfly valves are various'ngles. dependent on disc shape, aspect ratio, angle of closure flow direction and approach flow, these things should be accurately represented during tests. Specifically, piping installations (upstream and downstream of the valve) during the test should be representative of actual field installations. For example, non-symmetric approach flow from an elbow upstream of a valve can result in fluid dynamic torques of double the magnitude of those found for a valve with straight piping upstream and downstream. In-situ tests, when performed on a representative. yalye, should be performed on a valve of each size/type which is determined to represent the worst case load. Worst case flow direction, for example, should be considered. For two valves in series where the second valve is a butterfly valve, the effect of non-symmetric flow from the first valve should be considered if the valves are within 15 pipe diameters of each other. If the applicant takes credit for closure time vs. the buildup of containment pressure, he must demonstrate that the method is conservative with respect to the actual valve closure rate. Actual valve closure rate is to be determined under both loaded and unloaded conditions (if valves close faster at all angles of opening under loaded conditions, no load closure time may be used as conservative) and periodic inspection under tech. spec. requirements should be performed to assure closure rate. does not increase with time or use.
e ~Res 1. ense A. The dynamic torque coefficient test reports are considered by BIF as proprietary information. The reports are available to the NRC or to the Supply System at their offices in Mest Warwick, Rhode Island. The results of the tests are summarized in the graphs on the last two pages of the attached report from BIF. B. Operability is being demonstrated by analysis. The results of this analysis will be submitted. C. The stress reports are being revised and the results will be submitted as soon as they have been completed, reviewed, and approved. D. The seismic analysis is included in C (above). A sketch of each valve installation is attached. (Figures 1 8 2) F. Demonstration that the maximum combined torque developed by the valve is below the actuator rating. Dynamic torque as a function of valve disk angle has been presented in the attached analysis for both the 24- and 30-inch butterfly valves, in steam and airflow, using the worst-case upstream-piping configuration. These results show that the disk seating torque is the maximum torque achieved in the closing sequence. The actuator rating can be based on the minimum spring force developed, which is equal to the spring preload. For spring-actuated, fail-closed operation, these preloads develop a 'a torque on the valve disk in the closed position up to the s following limits: 24" Val ve 8" c 1 inder (preload) 1500 lb *11.26 in = 16,890 in lb > 13,808 in lb (seating torque) 30" Valve 10" c linder (preload) 2900 lb (Ref "*) *11.18 in = 32,422 in lb > 22,174 in lb (seating torque)
- 2. The "specific valve type questions" are answered in response to guestion 272.02 (below).
- 3. The analysis used to determine the operating torques is attached.
The torque coefficients used conservatively considered the disc share, aspect ratio, angle of closure, flow direction, and ( approach flow.
H w 4%44ee we e! 4e 'e'Jd ee ~ w ju~eee,
- 4. No in-situ testing has been performed on these valves. If the analysis now being performed does not show conclusively that these valves will operate safely through an hypothesized event, testing will be used to gain that assurance.
- 5. These valves are in series and are within 15 pipe diameters of each other. However, the effect of an elbow immediately before the analyzed valve oriented in the manner which causes the greatest torque is greater than the effect of the other valve.
The effect of the other valve was, therefore, not considered.
- 6. As shown on Page 9 of the attached BIF report, unloaded, the valve closes in four seconds or less. Loaded, the valve will close in less time.
Our valve operability test and inspection program will assure ' that the valve closing time is not increased beyond four seconds with age. This is a normal part of our maintenance program per Section XI of the ASHE Code. 272.02 The following questions apply to specific valve types only and need to be answered only where applicable. If not applicable, state so. A. Torque Due to Containment Backpressure Effect (TCB) e For those air operated valves located inside containment, e is the operator design of a type- that can be affected by I the containment pressure rise (backpressure effect) i.e., where the containment pressure acts to reduce the e operator torque capability due to TCB. Discuss the operator design with respect to the air vent and bleeds. Show how TCB was calculated (if applicable).
'e e 'I B. Where air operated valve assemblies use accumulators as the fail safe feature, describe the accumulator air e system configuration and its operation. Discuss active electrical components in the accumulator system and the basis used to determine their qualification for the environmental conditions experienced. Is this system seismically designed? How is the allowable leakage from the accumulators determined and monitored7 C. For valve assemblies requiring a seal pressurization system (inflatable main seal), describe the air pressuri-zation system configuration and operation including means used to determine their qualification for the environmental condition experienced. Is this system e
seismically designedl D. Where electric motor operators are used to close the valve, has the minimum available voltage to the electric operator under both normal or emergency modes been ( determined and speci'fied to the operator manufacturer to assure the adequacy of the operator to stroke the valve
at accident conditions with these lower limit voltages available7 Does this reduce voltage operation result in any significant change in stroke timing7 Describe the emergency mode power source used. E. Where electric motor and air operator units are equipped with handwheels, does their design provide for automatic re-engagement of the motor operator following the hand-wheel mode of operation2 If not, what steps are taken to preclude the possibility of the valve being left in the handwheel mode following some maintenance, test, etc. type operationT F. For electric motor operated valves, have the torques developed during operation been found to be less than the torque limiting settings7
~Res ense The six specific questions A through F are not applicable to the WNP-2 containment purge and vent valves as noted below:
A. The vent and purge valves are located outside of containment. B. These valves are spring-actuated for the fail-close feature. C. An inflatable main seal design is not present. D. Electric motor operators are not present on the valves. E. There are no handwheels on these valves. F. Electric motor operators are not present on the valves.
- 4. RESPONSES TO UESTIONS IN ATTACHMENT I TO ENCLOSURE 2 OF REFERENCE (a ATTACHMENT I TO ENCLOSURE 2 Guidelines for Demonstration Of Operability of Purge and Vent Valves 0 erabilit In order to establish operability it must be shown that the valve actuator's torque capability has sufficient margin to overcome or resist the torques and/or forces (i.e., fluid dynamic, bearing, seating, friction) that resist closure when stroking from the initial open position to full seated (bubble tight) in the time limit specified. This should be predicted on the pressure(s) established in the containment following a design basis LOCA. Considerations which should be addressed in assuring valve design adequacy include:
- l. Valve closure rate versus time - i.e., constant rate or other.
- 2. Flow direction through valve; aP across valve.
- 3. Single valve closure (inside containment or outside containment valve) or simultaneous closure. Establish worst case.
- 4. Containment back pressure effect on closing torque margins of air operated valve which vent pilot air inside containment.
- 5. Adequacy of accumulator (when used) sizing and initial charge for valve closure requirements.
- 6. For valve operators using torque limiting devices are the settings of the devices compatible with the torques required to operate the valve during the design basis condition.
- 7. The effect of the piping system (turns, branches) upstream and downstream of all valve installation.
- 8. The effect of butterfly valve disc and shaft orientation to the fluid mixture egressing from the containment.
Demonstration Demonstration of the various aspects of operability of purge and vent valves may be by analysis, bench testing, in-situ testing, or a combination of these means. Purge and vent valve structural elements (valve/actuator assembly) must be evaluated to have sufficient stress margins to withstand loads imposed while valve closes during a design basis accident. Torsional shear, shear, bending, tension and compression loads/ stresses should be considered. Seismic loading should be addressed. Once valve closure and structural integrity are assured by analysis, testing or a suitable combination, a determination of the sealing integrity after closure and long term exposure to the containment environment should be evaluated. Emphasis should be directed at the effect of radiation and of the containment spray chemical solutions on seal material. Other aspects such as the effect on sealing from outside ambient temperatures and debris should be considered. The following considerations apply when testing is chosen as a means for demonstrating valve operability: Bench Testin A. Bench testing can be used to demonstrate suitability of the in-service valve by reason of its traceability in design to a test valve. The following factors should be considered when qualify-ing valves through bench testing.
- 1. Whether a valve was qualified by testing of an identical valve assembly or by extrapolation of data from a similarly designed valve.
- 2. Whether measures were taken to assure that piping upstream and downstream and valve orientation are simulated.
- 3. Whether the following load and environmental factors were considered:
- a. Simulation of LOCA
"~ b. Seismic loading J S
- c. Temperature soak
- d. Radiation exposure
- e. Chemical exposure
- f. Debris B. Bench testing of installed valves to demonstrate the suitability 1 of the specific valve to perform its required function during
'S the postulated design basis accident is acceptable.
- 1. The factors listed in Items A.2 and A.3 should be considered when taking this approach.
S In-Situ Testin
~ S ss In-situ testing of purge and vent valves may be performed to confirm the suitability of the valve under actual conditions. When per-forming such tests, the conditions (loading, environment) to which the valve(s) will be subjected during the test should simulate the design basis accident.
NOTE: Post test valve examination should be performed to establish structural integrity of the key valve/actuator components.
~Res ense
- l. Valve closure rates were assumed to be uniform and conservatively slow for calculations of flow rates.
Page 9 of attached BIF calculations.
- 2. Maximum dynamic torque coefficients were determined for the worst case flow directions and the worst case valve disk and shaft orientations relative to both flow direction and the orientation of an upstream elbow (Page 17 of attached calculations).
Maximum flow rate for different degree of openings based on the mass flow rate through the valve due to ascending differential pressure as furnished by WPPSS Calc. No. ME-02-83-08-0 dated 10/8/82 (Page 18).
- 3. Simultaneous closure increases the back-pressure on the 0 upstream valve and hence reduces the dynamic torque.
This acts only to lessen the conservatism of the analysis since the dynamic torque tends to close the valves.
4, 5, & 6 Not applicable - The valves do not vent pilot air inside containment and accumulators are not used to actuate valve to fail-closed position. There are no torque limiting devices on the valves or actuators. 7 58 These effects have been considered for developing torque
'oefficients. See item 2 above.
The concerns of this section have been addressed as dis-cussed in the above introduction. The results of the, stress analysis will. be transmitted when they are completed. A preliminary evaluation shows that the decontamination chemicals have little effect on EPT and stainless steel seats. EPT seats generally can resist a cumulative radia-tion dosage of 1 x 107 rad. Also, during a LOCA, the valve internal temperature would be expected to be higher than ambient which would tend to increase sealing capability after valve closure. Bench Testin The results of bench testing are reported in the attached BIF calculations. In-Situ Testin No in-situ testing is planned for these valves except for the normal operability tests. If analysis cannot assure operability, the valve assemblies will be tested in-situ.
gy" P)P8
/JOAN) pipEC7iod <<gyves< HVAR Sbodrgg CSP-V- 3 cgr V-g g-%~ Fo+
o7 gae plAEdsronla C58 I-'f sEE esp-8'- 8,'ro g
~ go +(.80 &p CSP- Boi X-7 (877rIC)468 'O g
p@UETA87/04 8-4 ( 0
)JpglgyNAC PIPF
~Et oRIEPlATIOP Fd~ strad suo~i>c cd( V-(d-2 -rot Vpc.y& Qsu'ES CSP-Y-5 j RCL~ PodsfllP cs~u'-4
.r piW 5o~~~
R.OV A~re acciOcsr
/Zd S//o~idc Q5 p - I/-/ g z pg h/6TAÃ~
n
~o X-53 g~ un>rWio~s SZE ECI fO est-8or-3. 4 s'esp-ao7 iz I
r r
/
C51't P-~ - V-/ I r ygoaJ ~ J I
/r rr r // 5'f/oN/~
r r' s'z~fr. SKETCH Ykk$ ~SP-)I- / g vs~-u'-zI ogicp0pod uF esP-V-S jg siw<Ak
I A 4'* - B IF A UNIT OF GENERAL SIGNAL 1600 DIVISION POAD WEST WARWICK, R.I. 02893 QUALIFICATION OF PRIMARY CONTAINMENT BUTTERFLY ISOLATION VALVES UNDER LOCA CONDITION. DYNAMIC TORQUE CALCULATION OF BUTTERFLY VALVE PREPARED FOR: WASHINGTON PUBLIC POWER SUPPLY SYSTEM, VALVE SIZES 30", and 24" WPPSS CONTRACT NO. 68 BIF ORDER NO.: PN27234 & PN27235 NPPSS IDENTIFICATION NO. CSP-V-1 S 2, and CSP-V-3 o Prepared by: Debendra K. Dae Date: 40v". lo l 982. Checked by: Dezso Szila i Date: ~cJ', /o. l9'gP REPORT NO. TR-27234 And TR-27235 0
TABLE OF CONTENTS SECTION PAGE 1e Sl15NLcLxy
- 2. Dynamic torque tables
- 3. Ref ezences
- 4. Analytical Procedure and Flow Data
- 5. Analysis foz 30 inch valve (I) a. Hand Computation of several test cases for air flow 25
- b. Computer results and comparision with hand computation 28 (ZI) c. Hand computation of several test cases foz steam flow 40
- d. Computer results and comparision with hand computation 42
- 6. Analysis for 24 inch valve (ZZI) e. Hand computation of several test cases for air Slow 53 Computer results and comparision with hand computation 55 Hand computation of several test cases for steam flow 67 Computer results and comparision with hand computation 69
- e'ppendix 80
- a. NPPSS Calc.No. ME-02-83-08-0, Sheets 1 thzu 9
- b. LOCA Temp. Curve
- c. LOCA Pressure Curve
- d. WPPSS Letter dated 10/22/82
- e. BZF Flow Loss Coefficient K plot
- f. BIF dynamic torque Coefficient CT plot
This repoxt contains the dynamic torque analysis of two butterfly valves of sizes 30, and 24 inch. The analysis is performed for LOCA Qoss of Coolant Accident) per NPPSS Specification, reference l on page six of this report. The analytical procedure and the assumptions are outlined in the section beginning on page seven. Dynamic torque calculations have been performed for two media, namely, air and saturated steam for various angles of opening of these valves. The results of the analysis tabulated on page two through five of the report indicate that the dynamic torques developed under the specified flow conditions are less than the design torques used in the. original Seismic and Stress analysis of thes'e valves. Therefore the valves are safe against the action of dynamic torque in the event of a LOCA.
SUMMARY
OF RESULTS 4 Time Table Angle c4
- 1 30 Inch Valve, airflow Dynamic s degas Torque in-lb 1.0 90 (Full open) 11020 1.5 78 '5 23098 2.0 67 '0 18138 2.5 56.25 14747 3.0 45. 00 12428 3.5 33.75 10780 4.0 22.50 8014 4.5 11.25 3972 5.0 9. 0 (Full closed) 0. 0
- TNet= 22174 in-lb 0
- At full closed position the dynamic torque is zero and the net torque is due to seating and bearing friction.
NOTE: The design torque used in the Seismic analysis report No. TR-74-8 by McPherson Associates for this valve is 27800 in-lb. Therefore the design is safe.
I Time S
SUMMARY
OF RESULTS Table Angle c4 deg. 2, 30 Inch Valve Steam flo~ Dynamic Torque in-lb 1.0 90(Full open) 11032 1 5 78 '5 23175 2 0 67.50 18142 . 2~5 56.25 14668 3 0 45. 00 12424 3 5 33.75 10580 4.0 22.50 7809 4.5 11.25 3867 5.0 9. 0 (Full closed) 0.0
- Tget 22174 in lb
- At full closed position the dynamic torque is zero and the net torque is due to seating and bearing friction.
1 S
r ~
SUMMARY
OP RESULTS Table 3 ~ 24 Xnch Valve; Air flow Time Angle A Dynamic S deg e Torque in-lb 1.0 90 9'ull open) 5525 1.5 78.75 11692 2.0 67.50, 9095 2.5 56.25 7428 3 0 45.00 6239 3.5 33.75 5430 4.0 22.50 4043 4.5 11.25 2020 5.0 9. 0 (Full 00*
~ closed) TNet= 13808 in-lb
- At full closed position the dynamic torque is zero and the net torque
~ r is due to seating and bearing friction.
Note: The design torque used in the Seismic analysis report No. TR-74-7 by McPherson Associate for this valve is
'1700 in-lb. Therefore the deisgn is safe.
SUMMARY
OF RESULTS
~ o Table - 4 24 inch Valve, Steam flow Time Angle W Dynamic s degas Torque in-lb 1.0 90(Full open) 5425 78.75 1139'4 2~0 67.50 8921 2.5 56.25 7213 3 ' 45.00 6109 3' 33.75 5202 4.0 22.50 3842 4 5 11.25 1902 5.0 9. 0 (Full closed) 0.0
- Tget= 13808 in-lb
- At full closed position the dynamic torque is zero and the net torque is due to seating and bearing friction.
A REFERENCES WPPSS Specification 2808-68, Calc. No. ME-02-83-08-0, Sheets 1 thru 9, dated 10/8/82. IOCA Temperature Curve Fig. 6.2-2. LOCA Pressure Curve Fig. 6.2-3. 2~ ANSI/AWWA C504;80, AWWA Standard for Rubber-Seated Butterfly Valves. American Water Works ASsociation, Colo. 3~ Beard,C., Final Control Elements, Valve's and Actuators, First. Edition, Rmbach Publxcatxons, 969. 4 ~ Hutchison, J. W., ISA Handbook of Control Valves, 2nd Edition.
'5. Torque and Sizing Calculation for BIF Butterfly Valves, No. D-214590, dated 1/9/75 for WPPSS Contract 068.
c
- 6. B IF Test Report for Dynamic Torque and Head Loss Tests of Cast Iron Streamline Disc versus Fabricated Flat Plate Disc dated 1
May 13, 1974.
- v. B I F Test Report STR-0650-43, Hydrodynamic and Headloss Test of 12" - 150 Lb. Butterfly Valve with directly connected short radius elbow upstream, dated 2/24/82.
- 8. B IF Drawings: 30 inch Valve General Arrangement Drawing A-206763
~ ~ 24 inch. Valve General Arrangement Drawing A-206764
,1 ANALYTICAL"PROCEDURE The valves analysed in this report are primary containment isolation Butterfly Valves used in the purge system. Valve sizes considered here are 30 inch and 24 inch.
During the normal operation these valves are in full open position and should close completely in case of an accident. 'In the event of a LOCA (Loss of Coolant, Accident) the valves have to close against ascending
'I differential pressure. During the closing operation the valve disc
'will be in semi-open positions and will experience fluid dynamic forces due to uneven pressure distribution across the faces of the disc. The pressure rise and temperature rise inside the containment with res-pect to time, is given in NPPSS addendum (reference l). The flow through the va'lve causes aerodynamic effect on the disc that gives rise to the dynamic torque. This dynamic torque is given by the formula: TD = CT (h P) D3 (Ref. 2)..............(l) TD = Dynamic Torque (in.-Lb.) CT = Coefficient of dynamic torque obtained from test (Dimensionless constant) (Ref . 7) I P = Differential pressure across the valve (psi) D = Disc diameter (in.) During the closing operation of the valve CT and 5,P will be changing for varying closing angles of the disc. The dynamic torque will tend to close the valve where ap the shaft bearing friction torque will oppose it. The bearing friction .torque is given by the formula: T) = TT D 4 fb (d/2) A p '(Ref. 2)............... (.2)
8 Tb = Shaft bearing friction torque (LB-in.) D = Valve Port diameter (in.) fb = Bearing friction coefficient (dimensionless constant) d = Shaft diameter (in.)
$p = Differential pressure (psi)
Therefore the net unbalanced torque is T =, TD Tb N The differential pressure b,p across the valve shall be calculated from the data on volumetric flow rate under LOCA Condition supplied
<to us by WPPSS. The equation used will be the one for sub-sonic gas flow recommended by the Fluid Controls Institute:
P12 P2 4 Where Q Q
= 963 CV Gasflow in SCFH (Ref. 3 and 4)........ ~ -- -. (3)
Pl = Valve upstream pressure (psia) P2 Valve downstream pressure (psia) Specific gravity (air =.1 at 60oF anR 1 atm. pressure) Upstream temperature in o Rankine Cv Valve coefficient. 29.9D2 fK. D Valve Port diameter (in. ) Coefficient of flow (dimensionless constant) (Ref. 7)
0 WPPSS recommends that with the occurrence of LOCA inside containment, a signal is sent to the main control which automatically sends the valves to the failure mode. The time delay (instrumentation time) before the Butterfly valve starts to close is given to be less than one second. We have conservatively assumed this delay to be one full second. Time of closure from the full-open position to full-close position is four seconds. This closure time was the original requirement, of the valve operator and ,f has been tested at B I F for several valves and is noted to be often less i than four seconds and even as low, as one and a half seconds. A smaller closing time will obviously cause less flow due to lower containment pressure and a lower dynamic torque. However, the maximum closure time of four seconds is used in this analysis. Therefore, from the onset of LOCA to the full closure of the valve the time duration is five seconds. Using this time period we have abstracted the pressure and temperature response under a LOCA condition from WPPSS curves of Reference 1, Fig. 6 '-2 and Fig. 6.2-3 . The drywell pressure and temperature are used which are considerably higher than the wetwell values. The enlarged plots for the period of interest are shown on pagesl0. and 11 . The specific volume and the volumetric flow rate of both saturated steam and air are also presented in WPPSS addendum, reference 1. These quantities are also plotted against time for both steam and air as shown in pages 10, thru 15. For saturated steam the specific volume or specific weight are obtained fro.-. the steam table. The period of closure of the valve has been divided into e'ght equal divisions each of 0.5 second duration representing 11.25 degree of closure of the butterfly valve at. a uniform rate. This division facilitates in
1.0
~ rl I t>>~ Ia .,1 ~
4 f
~ ~ ~ ~
e I a! Ia
~ ~
ri I 1
>4 ~ i ~
4 ~ a f ~
~ ~ ~ ~ !"~ ~ ~ ~ >LL ~ ~ a rl ~ ~ ~ ~ ~ L ~ ~ ~ ~ ~
t>> fthm
~ ~ 'l ~ 4 ~ ~ ~ ~ ~ I ~ >> ~ 1~
ilLL I
~ ? jtf,' al ~
ff.r ~ Ll ~ f ~ ~ ~ ~ 7 f~~ I ~ ~ i f a>>
~ I ~ ~ >Il ~ 'I ~ ~ j ~ >>4 I~ ~ ~ ~ ~ r ~ ' tf I ~ ro~ ~ l jj,- rfq L f ~ ~ ~
at at 1
~ el ~ ~ ~
fe I~ 2, 4 ~ ~ I
~ ~
L~
>>>4 ~ ~ > ~ ~ ~ ~
f
~ ~ ~ > ~ ~ I~~ a tf ~ I ~ ~ ~ 4 ~
I I ~. I~
- L41 >>~4 f 4 tl I
~ ~
4 44 f4>>
~ ~ ' ~ e ~
f >>
~.~ ~ ~ ~ ~ 4 4>L ~ > ~
- .', 2; Lg t' ~ ~ ~ 4I Itf
~ ~ ~
tjjj L~j 11! 2 I ~ ? I. ~ ~ ~ ~ .'.11 2
~a f~
1
~ ~ ~ ~ ~
f ~ ~\ ~
~ I ~
4 ~ o4 ~ e ~ ~ Il ~ I~ ~ ~ 4 4l ~ at 1.".27 '!"f'. ~ ~ ~ ~
~ ~ 4 ~ 4 ~. ~
L ~ I I ~ ~ ~ ~ f f~ I al I Lr t. .,"23
~ ~ ~ ~ ~ "RESP :::-fos'E.':-: : ~ JJ ~ ~
Iat
~
fM I 4 I e ~ 1-~
~ .: [f I'\>> 2 j.a>> ~ >>4 ~ ~
jt ~ ~
~ ~
eo >> Vi
~ t>> "&Are ..-.'P;ox .jg Fgo~RE ! 1j?
I 4~ ft>>r 4f>>I
~ ~ ~ ~ ~ 4 >>4 LL ~ ~ ~ 4 ~ ~
e t I >>4'4 ttt 4 a>4
~
4 at i >> ~ 4~ ~ I I 4~ ~ >> la f4 4 L>4 rv ~
~ +t ~ r ~ ~ ~ Le ~ . ~
L ':"j ~ L~ ~ o4 f ~ 4 4~ i ~ '
~ oJ4 >>r ~
I
~ >
i
~ ~ f.
l Lgr 44 4 ~ ~ ~ ~ >4
~ ~ ~ , *S 4>>
4 LV
'l 4 l L o4 >>r LL ~ ~
I ~ L ~
>>a >J~ >>4 >>>
t>>
>,X ~
4 >> '~~! Z e'
'J>>j:, 0 4 ~ ~ ~ ~ ~
44> 4 44 Cv 22 Lt Zo
'jj te Ioa >~ ~ ~
4 ~~
~ 4 4
t."> ~ C az 22 Z 22 f>! Cl Lf. 0
)'j. n " -8=. ;;]. ~' 't a >> ~ ~
f 4 ~ 4 Z I?>> 4V e 4>> ot >>4 ~ ~ 4 ~
~ -t 4~ l >>' ~ 4 4 4 I 4> >>4 ~ ~ 4 ~ ~
4 e 44 ~ > ~
~ ~ ~ ~ Li ~ ~ ~ o>> I I ~ 4 ~ ~ a .~ ~
lr ~
~ ~ >>>4 ~ >> i ~ >> t41?
LE ~ ~ a>> ~ 4~
~
La >4
~ ~ ~ ~ I~ ~ t~ 4 C,j .1!
2 4 o>> 4 ~ J ~ ~ ~
~ ~
4
~.
I I
~ ~ ~ ~ ~ e>>
e
~ ~ a ~ 4 ~: yf5i1:: 5't:""
1 la
~ ~ << ~:, i'< ~ ~ ~ ~
I ~
~ ~ ~ -~r l ~ ~
I ' ~>>
- +KC.A~tt.' ~,
~ ~ ~ ~ ~ ~ ~ ~ ~ ~
t ~ ~ ~ ~ ~ 4 ~ ~ 4 ~ ~ I~ ~ e ~ ~ ~ ~ ~ >o>>
~ ~ ~ ~ i 4 ~ ~ I~ ~ ~ "t>> ~ t a>> te Qikitj.gMGN; i,lI ~ ~ f ~4 ~ ~ 4! 4 f4 ~ ~ ~ ~ ~ ' ~ ~ 4 e ~ ~ ~ ~ ~ ~ ~
f L I~ 'Aii:oN .TXtAE' ~ f e > ~ ~
~ ~
4> 4 ~
~ ~ ~ ~ ~ ~ ~ ~ ~ a>>
j>>t> 4 t f~ ~ 2.. ~ I ~ 4 ' ~ 't L ~ ~ puLL
>e l" Loft)
~ \
- 't
'rf t'ai 4411 ~i ~ ~ I lPLL <<4 I~ ~ ~ <<tt lit
~ ~ ~ ~ ~ 'I pi ~ Ll ~
it i t ~
~ ~ i ~ 4 ~ ~ ~ ~ ~ ~ ~
4
~' *~ ~ ~
I~ ~
~. itl tt ~ 11 t ~ ~ ~ I ~ ~ I ~ ~ 111 I~~ ~ ~ t ~ ~ t t ~ ~ ~ ~
t' ~ t:t.; t Ni .tt ~ ~
~
t'tt lt ~ L ~
~
I<< 1 ~ t I~
~ ~ I? I 14 ~' ~ I ~ L ~ ~ ~ tt t
?C ~ ~
~ I I ~ ~ ~ ~ ~
tt t ~ 1 ~ I
~ ~ ~ Lri t tt ~ ~ ~ ~ ~ ~ 4. L ~ ~ ~ L ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~
I4 LH I tt L') 4 ~ 1 I ~ ~ 4 ~ ' t +~ LliI L I 2 graf"f ~4 TEYWp E jQ RE;.=: R,'PCEiA
~
e:):<<::.i';Yi
~ ~ ~ ~ ~
t<<1 I !
~
J
~ ~ 1 ~ ~ !.p ~ il~ ~
I ~ ~ ~ ~ ~ ~ t AA il imi
~ t<<4 L E <<I ~l 1 ~ ~ ~
L~ I~
~ ' I~ ~ 'I 1 <<P ~ ~
JJI i tw<<' 4L 1. I <<IJ 3?I' +) '.276.' 44 '
~ ~ ~ ~ ~ ~ ~
iI ~ L ~ ~ 4 LlV
- 4 It! I LJ g
rl gt g a. g ~ Rs 4 L 4
~ ~
IL X
<z R
Ug~ Z~ lrt Lt 0 ~ 0 OX o N N A ci z tL<<
~ M 44 ~ . ~ I~ ~ I ? ~~ ? t<<
4. t I~I 4 ~ ~ <<
~ 1' . ~ ItI 0 ~ LJ L 't ~ ~ I ~ ~1 f ~
1 1 ~ ~ ~ ~ I ~ ~ - ~ ~ tt
~
t't!; tfJ ~ ~ ~ ~ ~ ~~ t 20
~ ~
I I ~ ~ 14
? pf ~ ~ ~ 1 I' ~
I' ~
~
I<< ~ ~ ' ~
\~
I ~ ~ I ~ I~ I I~ 4 I<< LJI ~~
~ ~ ~ t ~ ~ ~ ~ LI41 I~I "-: $ ~4I:! t ~
0" l
~ ~
t ~ 1 t~ ~
<<5 "-QL ~
ft I r-Ir \ .r:tt!..(
~ ~ ~k I ~ ~ tf Lt I U.,'
Closed.
ii It t I-i I I
~~ h f 'I ~ h J ~ ~ tI ~ ~ I ~
1~
'LI iI ~ ~ s ~ ~ ~ ~ ~
Pt ~ 't! t: L 1
~ P ~ I~ I, ts r ~ 'ts t~~~ ~ I~ I cc.: 'P ~ ~ 11 ~ ~
1>>
~ Jt IT~ ~ t ~ ~ I bate ~ I ~ ~ I1~ h ~ Il. ~ I ~ ~ ~
lh JtsII
~ I ~ ~ 1 t t~ ~ ~ ct ~ ~
h>>t t I~ I~ ~ ~ t Li ~ ' PI ~ i ~ ~ I~I ~ Ww I ~ ~
~ ~ I I I i ~
I J.
~ ~ ~ ~ ~ ~ ~ ~ ~ ~
J~ t t ~ ~ ~ tsh~ 1 sgi I ~ L Pre ~ hJ~ t ~ I I j tt ~ ~ I th
~
Pi) f ps h th ~ ~ i t~ tl h g> tL>: hh ~ ~ 1 ~ I st!> ~
~ ~ ' >' ~ ~ 1 t 1. ~ ~ ~
I I
}} ' !P gr>>JI 4.t ~ I~ ~ ~ IJ I j ~ Lj': W it i ~
ti>>r L t Lr P ~ t ILsPl
~ ~ ~ ~
Ij ~ ~~ p
~ ~ ~ ~ ~ ~
t'r t
~
I>> ~ ilh
~ ~'
rp P, >>> 1 ~
}.WT ~ ~
f
~ ~ ~ ~ ~ L~ t ~
1 LP l t-r =..: I~ > ~ I+ 'Q./k) g f=. EP,S -~C.Pn
~1 ~ ~
rj g>>h 'tI t rtr t ~ I P
~ h Lt jI ~
i> ~ J I~ l c'r-"t gg ~ ~ t N I
~
j ~ r ~ p L
~>>~ ~ I 1 lrPP i fr i ~ ~ I c: ~
1 ~ 1 ~
.} ~ ~
4 h>> L I
~ ~
CO. -.z ~a~:
~ ~ ~ ~ ~ ~
j8.u t
$ ::: P olAL. ~ ~ ~ ~ I I Ptl ~h it rp t Cs ~.~ LP h >> I srht 1>>t ~
Li ~ h.
~ sp t TP i PN -'C ;:~J Pl ~' ~ ~ ~ ~ } '
0 ~
'D.
D ,'iL t nV f '
~ 'i 't.i ~
z cj! D DZ Zg ~ ij, D L 'ob= 1 ~ ,"'t}j tss j=.P t DN ee D
~ t ~ ' ~
D P ' Jh
~ I 3 r ~ ~ L s,f ~-
1 ~ ~ I I>> ~ I ~ I L>
~ ~
Q ~ I ~ ~ ~ ~
~ ~ 'I i' ~ I ~ ~ ~ I P ~ ~ 1 f ll ~ ~ ~ ~ ~ 1 2:- 'I I L~ ~I ~ ~ I ~ ~ ~ ~
t
~ t~ 1 ~ t ~ ,}
PL
~ L~ ~ +::f:..-"4's ~::Tt.'~g ('5'P-e ' ~ I ll I 11L pj s j ': i t:::.' s . '. s ~ 1 s > ~ I ~
1 ~
>> F 111 ~ ~F 1 ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ t ltl i~!t ~ ~ ~ ~
g,'//) t',: I'j
~ 1 ~ I' ~ ~ ~
t
~
ttl't I ~ s t:tl" C ~ I ~
-L-.Ct tt}cc"I }}5-' ' 5.1. 86 P2 5 L ~ I ~
St j g 5>>.. t}
~ ~
t t
.is) l;(:::!j C
I j ~~ ~ ~ ~ ~ ~ l
~
tits ~
~ Pl ~ ~ ~ 1 ~ I Pl ~
Q CLosag,
':I I~ tl t>>ht Wa << 0frl t;tt I 0 I~ I I i
~ ~ ~ ~ ~0 ~ ~
I~ ~ I<< ~ I ~ ~ ~ 0 I ~ ~ ~
~ ~ ~
II 1 ~ ~ l ~ I ~ I
~
Pt
~ ~ ~ ~ ~ t Lr<< I I >>r 01 ' ~~ ~ ~ ~ I~ ~ ll<< ~ ~ f It>><< I<< ~~ hP ~ ~
tt f~ ~ L ~ I~
~
I I I~ e ~
<<hl ref ~
1 f~
~ ~ ~ 1 Ta I <<+ 0 ~ ~ I>>
I' at I~ ~ '0 ~ ~ ~ ~ I Lch Ih IPL
~ ~ l is ~ ~ ~ ~
I
~ ~
I I ~ :tLI l ~
~ ~ ~
0
~ ~ ~ ~
II
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 01 ~ ~ ~ 0 ~ >> ~
I I~<< I00 I ~ I~ I ~
~ ~ I~ tf 1 ~ ~
fkh I cr ~ I~ 10 t Ilr ~ ~ ~ ~ ~ ~ I ~ ~ ~
~
ris ~ ~ t limni
~ r ~ r 1 'I ~ ~
sr ~ ~ :-' 't.-.: ~ ~ 1 a
~
1
~
it' +tit rrrh<<
~t ~ I Ltttff\hLLt ~ '1 1 ~ ~ .<<Ll PP<<r .ftr ~ ~
1 ~ 0: nl'(w::~ t'V ~
~ ~ ' ~
h 0 I~ 0 11 ~
~ ~ ~ ~
t
't 0 t htr 'I I~ ~ ~ ~ ~ ~ ~
t I ~ ha
~ ~
f
~ ~ ~
I ~ t lh I~ li =::F..'LDb1t: -: ~ I arf I
<<i' ~ ~ ~ ~ ~ PL ~ ~~ I heart ~ ~ L a TLL I h iir I~ 0 Pt ~ .I ~ I L's ' I~ \~ ~ it ~ ~
Ut L-C phil=, o.s
~ ~ ~ ~ 4 PL VAQV<l:Q rr <<t 1~~ ~
sj'$ ~ h[' ~ I
~~ I I ~
i ~ ~ ~
'L ~ ~ ~ ~ ~ ~ 't 0 ~ <<<< ~ h ~ ~ ~ ~ ~ ~ VIItt-'.F . 'eyl=. ~ I.
0
~ ~ ~ 'h I~0 ~ ~~ ~ '>>
I ~~ I' <<-r-em .jf 0 LI
~ + ~ I LP h~
i4'i a ~ i<< t 'j: 0 h<< h 0...J "It 4 0 ~ PL r~ Cl 2 sf zg ll Lf 6 L go rf OX t P 0 N
'P
<<j z ~0
~ ~ ",I sr 0
s << ~
~0 4 ~ '<<2 ~ ~
P 0 ~ ~ I ,'k tf <<0 ~ >> I
\' ~ ~ 0<< .I ~
0 ~ ~ ~ f'0
~ 0 0 II ~ ~ ~ f~ ~ ~ Pa tI Pt I ~ I~ ~ 1 ~
t ~ ~
~ ~ ~ ~ I t .~ ~ ~ ~ ~ ~ I -:I 0 0 ~ ~ ! ~ 1 ~ ~ 1 ~ ~ 0 I Ir 1'p ~ I ~ 0 I I 0 ~ I 'sr ~ ~ ..:iT.:S ..~C~.
c r )LI
~ tT rtt PIrt I~ >>L I :tit. ~ >> I tg 1 1 ~ ~ s ~ ~ .I I ~
I
~ ~
I~
~ r ~ ~ 1<<
tar t
.".r Stall $lf'P ~ ~
t I
~ ~ ~ ~ ~ f ttit Its t.'". ~ ~
I ~ P ~ ~ 110 Pit I 1111 I ~ 1 ~ 0 ~
~ ~ I I ~ ~ ~ ~
0~ t >>
~
h [Irt jgK 0. t"
~ ~ ~
t::;H.Z5:
'Loa> ~
I
'- tt' Lt I ~ !9j I~ RS'; I:$5 . -:,L L 3)0)'ff I <<5 ~ ~ 1 ~
f t t,"l>> I I ~ I stet t<<ls ~ ~ 0
~ ~
a'
~ ~ ~
I 0 ~ ea ~
I ' I I I I 4 ~ I ~ I
~ I s f I j . t ~ I e I ~ I 4 I ~
i, s ~ e ~ t '] s I I ~ I s
~ f s - l e
s C ~ I s s I ~ ' ~ '
~ s I I I 4 I I s I I I I I ~
I I s I ~ '. I . I ~ 4 ~ ~ s
~ I .' .t ~ I I I I I s I I I ~ ' ~ t s e~>cA s
K~hv.~+ E ~e s I 1 I ~ ~ I I
'I s I s ~ I s I ~ I 4 ~
I ~ I '": I 4 4 I I ~ t I I I I I 4 I I 4 I I 4 s ~ I 4 I 4
; I; I ~
s s s I I ~ 4 ~ 1 ~ I 4 s I I ( 4 I I I I I I 4 s,
- I d I s I s s s I I I I I I t I 4 I I ~ 4 I 4 4 4, s I t ~ s 'I ~ ~ s s 4 i x~ \ e s 4 ( I ~
t I pg 4 I s (
~ ~
4 f s i ! I 4 I s 4 j s e s
~
4
~
I 4
' I!
I I I I I ~
~ I I 'I ~
s I ~ ~ I e ~ I I ~ I 1 I I I I I s ~ ~ v.>j I I I I I I s I I ~ s . I I I ",$ j s I I > I I I I ~ I ~ ~ s I I I I i I I j I I
~ ~
f>C iej 1 4 I I ~ s
* ~ I i I 4 4 ~
- I I ~ I I I 4 4 4 4 I e > I ~ I ~ I I I e s ~ I ' I ~
I s s 4 I e s 4 s I. 4 s s 4 4 ~ 4 4 ~ ~ I 1 I ~ I ,'! I I' I I ~ ( I I I j I 4 4 I
~
e . e ~ e I 4 I 4 ~ I I ~ ~
~," } e S I' . 4 ', I I s 4 I ~ 4 C e ~ ~ I s t I I I I s i . ~ s ~ ~ ~ t I 4 s ~ ~ I ! i - I I'I ~ ' i I I ~ 1 I t I 4 h I I 4 I t I 4 S I, I 4 ~
4
~ ~ I I I I I ~ I ~ I e, ~ ~ t ~ ~ 4 s ~ C I 4 I ~ ~
I 4 I 4 I e ~ s t i s e 4 j ~ I j I ~ I I . i
~ i I e ~ I ~ s ~ I t ~ ~ > i ~ I t ~
I I ~ I I ' 4 I I 4 I 4 I S I 4 I ~ e 4 i 1 > I ~ 4 ~ j s > I I ~ ( h ~ I ~ 'I I 4 I f ~ 4 ~ e s I 4 t I i ' I I I 4 I
~ ' t f s I I I ,4'1 4 s s I I s- I ~
4 I 4
~ ~ ~ 4 1 I ' I I t i I t ~ ~ 4 ~ ~ t e C I I I 1 I I I I I s j j I 1 ! I s I I 1 I ~ ~ i !
I I I I I, I e ~ ~ s I I I I i s e g 4 I ~ s ~ ~ e
' 4 I e S ~ S ~ I i"- D s I 4 s I I '
I I I I i ' t ox I e i C 4 '. ~ I I t ~ e
~
( t ~ 1 C C j I 4 L, DD 'I ~ 4 I e I e ih ~ I ~ > I ~ e h
>i D I I I ~ t ~
I I s s ~ e 4
~ I ~ ~ f I ' e I ~
j i t I I I, 1 4 ~ ~ h 4 4 I 4
' I Z I I ~ I e I s I s ~
s I s . I 4 ~ ~ ~ '. ! I I 4 ~ >*i', i ~ s 4 ~ ~ ~ f hf() I I I I ~ s 4 > ~ I I I 4 I t ~ ~ j ~ 4 ~
~ I I e I ~ s I 4 4 . I I ~ I ~ e 4 s s 4 I I t ( I 4
..-10 I 4 I ~ t I t ~ ' I
~ ~ ~ I ~ ~ ~ 4 t s ~ I ~ s I 4 s t I s t 1 ! I 1 I ' I ~ ~ ~ I I 4 ~ e s ' t I s 4 ~ ~ I I I ~ s 4 C ' e
-."e I ~ I 4 t I s s j 4 I I oL5 . wzma CsF-" e
; L, I ~ s 4 e 4 I " t 4 4 I e I ZbELAg+
I I t, 4 4 j I e~ f I I ~ ~ ~
" "i I I ! 'l 4 f ~
I s I r (
>, 4 opev
0 I 4 4 c' I I C I ~ f I! BO iXhfCH 'J /%LE'Q 4 eY I I I
/r' . g 1: ~ I ~, ~ I ~t ~
sm Uhh VCb i sT'Ep p~pm~i~p;t.-W e ~ 4
'(\ 4 I
4 I S (-5PF SS-'-SWT A-CRaF'-Q g I 4 I 4 ~ I
~ 4 I I I ~ I .Co.,K<,=6761) )+A'LUg -I<< I 4 I I
':j. 'i~@~-c.6. QLfjQ~ ~ 4 r i I ~ 4 I I I. c Y a l~ I ! I i 4 I I 4 I '.:,:j I. a ~ j ~ e I I
~ ~
I 4 4 I 4 g
~ I ~ I e I 4 I I 4 --' g ~ 4 g ' 4 ~ I ~ I I I I 4 I I s g 4 I ~ ~ ~ I I I I I C I e 4
I ~ I I ~ s I ~ 4 I e
~
e I I I 0 4 ~ ~ I 4 I I ' 4 e I I ~ 0 ~ i!! 1 i c 4 s 4 ~ I C 4 I I I i ~ ~ I I ~ 4 ZZ << 4 I ~ I I 1 ~ ~ s I g ( ~ 0 Il I I I I I I I I I I II E I ~ N~ ~ i I ~ I ~ 1 I 4 I C ~ 4 I Y I I I I I, g Lf 1 ~ 4 ~ I ~ e Z I 4 i C 4 s
~
4 I 4 I I
>~M o, e I I 1 4 I I I
- i I I I !
4 ~ ~ s I ~ s ~ g I I I I, ~ 0 I I I I C e t e c r g g e
~ 4 e I ~ a 4 c a ~ ~ I 4 I I I I ' ~ ~ <<1 I, ! I I I I I C C S 4 ~ c 4 ~ 4 4 I s I 4 I ~ g ~ 4 ' I s I I I ~ ~ I e
4 ~ g e 4 c ~ I I I i I Y ca ~ 4 I ~ I 4 . c I << I I I s e I I 'I I I ' t I I I I
~ s 4 e ~
I g t s 4 t e i s ~ ~ I I ~ I
! ~ I I I 4 1 ~ ~ ~ I I 4 g e I I s ~, ~ I I I I I ' 4, ' ' ~ } c I I:
I I I: i I ~ I I ~ I I g i I I I C s ~ 4 4 4 i 4
~
4
~ ~
4 i I ~ 4 I I 4 I e ~ 4 c ~ 4 4 ! 4 ~ ' I I 4: I 4 4 ~ I 4 I
~ i ~ I I e " I I I I 4 e c I I ~ ~ 1. 1 e I C C ~
i I I c I I 4 i r ! I ~ I I I I I I I s I s fr( I ~ I I I I \ I ~ c ~ ~ I ~ 4 e e
- "/i.,i 4 I I I 4 ~ 4 4 1 4 I s ~ ~ 4 I ~ s c I 4 I
! I e I I << ~ 4 g << I g ~ I 4 ~
g s g ! I I I e I X c I I I 4 4
~ I ~ 4 g ~ I
,"-'i r
<z0 I s
4 I r ~ I I ~ ~ c ~ ~ ~ e 4 c ~ i g ~ 4 ~ ~ ~ I I g I~ I c a t Z4~ 4 e I s (' ~, I 4 e i I C 4 I 4 I 1st I 04 H
~
I 4 I I I 4 C I I ~ ~ I ', ~ I I <<e s 4 'g. i C
~ 4 4 ~ ~ I C s I e j I I I I I I Q e I I ~ I i I I
'-'.:j = 0X I 4 I I ~ I I e 4 I I
~ ~
I I 1 4 I I 4 4 I 4 3:;4. 0 0 I e' 4 ~ i,l' ~ << I s 1
~
I ' i I 4 4 4 ~ t I ~ I s ~ r I a ~ ~ 0 g ~ e I s s 4 I c 4 c 4 I ~ ~ ~ E I i 4 I I I I I 0 I I ~
~ I I ~ e 4 ~ ~ ~ ~ I 0 I I I s I I c I ', c ( ; ~ I 1 s ~ I I I g I 4
- ,'":.I Z I I 4
~ e I I s ! I ~ I I t s i I 4 I I S ~ i g s I s I 4 I I I ~ e I I I e e I 4 s I ~ I s ~ I I C 4 I I I I I I ~ ~ I I ~ I 4 I I ~ I 1 I I ~ I I I I a "- I i I I '
i
.. f g 4 C )~LC I I I g " ~
I I ~ I 4 I I g I
<<%1 1 ~ ,4 ~ I s ~ ~ ~ ~ c 4 I c 4 I 4 I I
- 4 4 I 4
' 1 I I C c i ~ ~ 1 4 C 4 I c e e I I P t I I I f'.ea" i ~ 4 4 c ~ I I s C I ~ I s s ~ Qe 5 g~Y .r 's~
I, 4 ~ I g I 4 I I I I I I e I I s s I 4 ) 4 4 4 4 I ~ e 4 s'k I I I I
>eL 4 ~ I I I I y': '.'.-.
e 4 c I I I I I
-'78,'7,5-'., t ~ ~ i s I I I ~ i 4 4 4 ~ ~ ~ f 4 ~ ~ 4 ~ I g 4 CLosE'0
~~ ,3.
~ e,, :=Y, i<<rye<<r,, <<t ac ~ \ jY, (r6 r e <<a,rrr' ' '
16 reading the interpolated values of pressure, temperature density and volumetric flow as can be seen from the p lots on p a g es 10 thru 15.
~
Data obtained from reference 1, and the interpolated values are presented below. 8 equal intervals representing 11.25o rotation of the disc are considered. TABLE 1 Time Angle Pressure Temp, Air Sat.Steam s deg~ psig oF density density Lbf/ft~ Lbf/ft~ 1.0 90(Full open) 221'.1295 0.0789'.0818 1.5 78.75 19.2* 234* 0.1325* 2.0 - 67.50 20.7 243 0.1359 0.085 2.5 56.25 22 '* 249.5* 0.1405* 0.0886 3.0 45.00 , 24.0 255 0.1460 0.0926 3ob 33.75 25.4* 259* 0.1515* 0.0953 4.0 22.50 -26. 7 262 0.156 0.0984 4.5 11.25 27.9* 265* 0.1595* 0.1009 5.0 0.0(full close() 28.9 268 0.1618 0.1033 . *Interpolated from graphs. Page 10 Page ll Page 12 For satu ated steam from stea table at. the given pressure. Coefficient of flow Kv and the dynamic torque coefficient CT for different I angles of valve opening are obtained from the test report reference 7. B I F has conducted extensive test on different types of disc geometry and
l7 disc and shaft orientation with respect to the direction of flow which "are summarized in reference 6 and 7. The test medium is water and no air test is undertaken. Reference 6 is for two types of discs, namely, cast iron streamline disc and fabricated flat plate disc. Measurements have been made for dynamic torque coefficient and flow coefficient for both flatside upstream and flatside downstream of the disc. The com-parison indicates that the disc orientation of flatside down stream always causes higher dynamic torque. Reference 7. incorporates a directly connected short radius elbow upstxeam to study the effect of flow non-uniformity on dynamic torque. Several tests have'een performed with yshaft vertical and shaft horizontal, counter clockwise opening and clock wise opening, with flatside upstream and flatside downstream. These test data are also compared with that of a straight pipe without any elbow up-stream of the valve. A careful study of these experimental results in-dicate Hat the most severe case is a vertical shaft orientation (i.e.
, perpendicular to the plane of the elbow) with flatside of the disc down-stream with a clockwise rotation of the disc.
-~-;;;,-,:.-; - Thi;s orientation results in approximately 30% increase in maximum dynamic torque coefficient than that obtained for a straight pipe. Zn this re-port this most severe case is used to obtain torque coefficients at s various angle of valve opening. This approach results in higher torque values and represents the worst condition. The test data are presented in the tabular form.
t .0 Time Sec. Angle (~ Deg. TABLE 6
) CT 1.0 90 0.55 0.275 1.5 78.75 0-70 0 560 2.0 67.50 1.10 0.35 2.5 56.25 2.30 0.175 3.0 45.00 5.20 0.09 3~5 33.75 14.00 0.045 4.0 22.50 45.00 0.02 4.5 11.25 170.00 0.01 5.0 0.0 :Closed 0.0 0 The volume and mass flow rate through the valve due to ascending differential pressure is presented by WPPSS in referencel. We note that this is the flow rate for valve in fully open position. However, the valve is closing gradually and the flow rate should decrease accordingly and when the valve is fully shut the flow rate should re-duce to zero. This would occur at the end of 5 seconds. Therefore, we have to obtain the percentage of full open flow corresponding to the appropriate percentage of opening. Reference 3 and 4 provide such in-formation. In reference 3, page 38,the flow characteristic of a butter-fly valve is presented. This is a plot of percent of flow versus percent open which shows an equal percentage curve for the firt 25% of flow a linear curve thereafter for the remaining 75% of flow. In reference 4,
page 166,the flow characteristic of Butterfly valve is to fall shown between the linear and equal percentage curve. Therefore from these plots the fraction of maximum flow at a 'percentage opening can be de-A termined. Before deciding whether to use the linear or equal per- 'I j centage curve some careful consideration has been given to determine 4 which one should give the worst dynamic torque. Upon some reflection it is observed from equation (1) that the-dynami'c torque increases when the pressure drop increases. It is also apparent from equation (3) E that the pressure drop is greater when the flow rate is greater. This is achieved by using the linear curve which predicts higher flow than
~the equal percentage curve. Therefore on the basis of this argument following flow rates are established for different degree of opening of the Butterfly valve. '..'TABLE -7 For 30 1nch valve Axr flow Time Angle Percentage Full open Flow Percentage Flow s deg>> open 5 . ft3/s ft3/s 1.0 90 Full open 100 1614.9 1614.9 t
1.5 78.75 87.5. 1625* 1423.6 QJ 2.0 67.5 75 1646.4 1234.8 J 2.5 56.25 62.5 2669.5* 1043.4
'I
- 3.0 45 50 1687. 2 843.6 3.5 33.75 37.5 1700* 637.5 S } 4.0 22.5 25 1709.9 427.5
)
4.5 11.25 12.5 1719.5* 214.9
'. I I
5.0 0.0 Full 0.0 1734.3 0.0 I Closed
*Interpolated Page 13 Ref. 3 and 4 from graph
a.ve'a a - v weal A a ksa 9a.s'I'L lvl ',v a>A ' ~ 2 y kk:
' '..., ~ a~ l 'I A ~ e -20 . For the 24 inch. NPPSS recqmmends that an ordeg to establish the'. flow rate same velocity as that of 30. inch. valve be used, Therefore following flow rates are obtained from the velocity data of WPPSS.
TABLE-8 For 24 incCc valve air flow Time Angled Velocity Full open Flow Percentage flo' s
~ <
deg'e
~ ~
ft/s ft~/s t3/s 90 Full open 352 1015.6 '1015.6 1.5 7.8. 75 - (1)'58.9 1028* 899.5 2.0 . 67. 5 1035.5 776.6 2.5 56.25 1052* 657.5 3.0 45.00 367.8 '061.2 530.6 3 '3.75 1070* 401e3 4.0 22.5 372.8 1075.6 268.9 4.5 11.20 1085* 135.6 5.0 0.0 Full 378.1 1090.9 0.0 closed Ref.l Pa e 14 (1). Not given
- Interpolated from graph 24 inch valve J..d . 23 inch Area 2.8852 Ft2
0
' ~
21 For saturated steam flow data of WPPSS, some discrepanceis are observed. Calculations presented on Sheet no. 7 of 9 and 8 of 9. and the table on Sheet 9 of 9 indicate that the flow rate is decreasing with respect to time especially at time 2 and 5 seconds. These data points are plotted . on page 15 of this report; Since the containment pressure is rising with respect to time the flow rate should increase. This can he seen from the behavior'of the air flow results. Therefore steam flow rates were re-calculated to establish the corrected flow rates. The results are as follows: Reference 1. Sheet No. 7 of 9 and 8 of 9 30 inch. valve saturated steam flow.
= 0.525 hp -
W y d2 d 29 inch, K-6.0 Kv
=HV At.l sec. $p = 18 psi Pl = 32.7 psia 'X = 0.55 Pl Y = 0.76 <<12 68 ft3/Lbf V '18 = 'W V = LQ.525 (0.76} (29} 6(12.68) (32.68)=2070 ff /s
C 0 0
22 Steam flow continued AP= 20.7 psi Pl = 35.4 psia Ap = 0.585 Pl Y.= 0.74 11.7222 ft /Lbf 20.7 0 ~ 525 (0.74)
~ (29) 6.0 (11.772) (11.772) =2082 ft Very close to /s NPPSS result.
Same as WPPSS result = 2118.2 ft /s hP = 26.7 psi 1 41.4 psia A,X.= 0.645 Pl 0.718 10.165 ft /lbf 26.7 0.525(0.718)(29) 6(10.165) (19.165)=2132 ft3/s QP = 28.9 psi Pl 43.6 psia dr = 0.663 Y ~ 0.712 V = 9.683 ft /lbf 28.9 0 525 (0 712) (29) 2 6(9.683) (9.683)=2147 ft3/8
0 0
'23
'hese corrected values of steam flow rate is plotted earlier ~ on page
- 15. "'From this plot the intermediate values are interpolated.
~ ~
TABLE-9 30 inch valve, Saturated Steam flow degas Time Angle Pull open. flow Percentage flow s ft3/s ft /s 1.0 90 2070 2070 1.5 78.75 .2074* .1814.8 2.0 67.5 2082 1561.5 2.5 56. 25 2097* 1310.6 3.0 45 211$ .2 1059.1 3.5 33.75 2126* 797.3 4.0 22.50 2132 533.0 4.5 11.25 2139* 267.4 5.0 0.0 2147 0.0 From pages 21 6 22 and reference 1
- Interpolated from the graph on page 15.
24 'I The corrected values of Steam flow rate obtained for the 30 inch valve were used to arrrive at the proper flow rate for the 24 inch valve based upon the criterion of same velocities in both the valves. The results are presented below. TABLE 10 25 inch valve, Saturated Steam flow Time Angle Full. open flow Full open flow Percentage s deg. fog 30" valve, fog 24" valve, flow, ft3/s ft /s ft /s 1.0 90 2070 1289.6 1289.6 1.5 78.75 2074 1291 1130.5 2.0 67.5 2082 1297 972.8 2.5 56.25 2097 1306.4 816.5 3.0 45 2118.2 1319.6 659.8 .0 3.5 4.0 33.75 22.50 2126 2132 1324.4 1328.2 496.7 332.1 4.5 11.25 2139 1332.54 166.6
.5. 0, 0.0 2147 1337.5 0.0 From Page,23 Shown below VALYF Q Velocity in 30 inch = 30" = 30" = same velocity in 24 inch valve A A3p 4~31338 Full open flaw in 24 inch valve = Qlp (A24) = Q3p (6.62297) p~l 30
. When the valve shuts off completely the flow through the valve ceases and therefore- the dynamic torque vanishes. Xn this position the dif-ferential pressure across the valve disc is the containment absolute pressure minus the atmospheric pressure. This is equal to the gage pressure inside the containment. Thus the necessary torque to com-pletely close the valve and maintain it in the fully-shut condition against the existing differential pressure is due to the sum of the shaft bearing friction torque and the rubber seat friction torque called the seating torque. 'The shaft bearing friction torque is presented as equation 2 earlier. . The seating torque is given by T = C D2 (Ref.2)..........(4)
Where Ts = Seating or unseating torque (in-lb) C ,~ Coefficient of seating or unseating torque (Ref.5) D = Valve part diameter (inch) With all data available the necessary calculation is performed using equation (1). through (4) . Dynamic torque is calculated for each angular position to determine its maximum value and at what angle i;t occurs. There are two valves (30 inch and 24 inch) and for each 9 sets of calculation has to be made. Furthermore two flowing media are con-sidered, namely, air and satruated steam. Therefore altogether it requires 36 sets of calculation. For this repetitive type of work a computer program is written following the methodology described earlier in the analytical procedure Section, Zn order to validate
0 A
.- the computer program hand calculation of several test cases are per-formed in the beginning. Subsequently the computer results are presented including the input and output. Comparisions with the test cases show there is full agreement with the manual calculation thus verifying the validity of computer program.
SAMPLE CALCULATION VALVE SIZE 30 Inch Medium: Valve opening angle of - gg degree occuxring at g. 0 second
~
Inlet
~
pressure from pressure curve = 18.0 +t4 7= 2 3'2 7 Inlet temperature from temperature curve Note that .the higher pressure and temperature are used from the Drywell curves. Density from the density curve fox air or from steam table for Saturated Steam = o.I21g LLg(ft 9 Full orate from open uiL mue,fl w flowrate curve = l<Ig 'l Q>(> Feicentage flow at percentage opening = ( l<l I'5 ) ~i) = I v
= Q.J 9(22 ~o. 29 Io) 2 = 94 ~2'IgxIo '( = o.rs Catq.v'pecific gravity G = o IHi = 1 ~
Gq) based on air wieght density 0 0766 at 60 F and 1 atm. pressure; Downstream pressure I = + (0 ~7 fg ) to 3p
'845(3 3 g)to = 3108 psia Therefore pressure drop h,p pl - p2 = i-C2 ]so Dynamic torque TD = CT5pg = 1i,02,3 CT- H5(Ref. 7 elbow effect plus most adverse shaft ~ 'otation) orientation and disc
e 24 The shaft friction torque Tb ' ((2a.lgb e 5 402 o.oog(p.5/g)( g.gg) in-(4 (Nergzqgggy cmauQ Q) Therefore the net unbalanced torque is TN .= T> Tb = >to l7 ~ t in-0 This is a set of calculation for one valve angle. Similar calcualations are performed for differenk angles and presented in subsequent pages.
,(x)
HB S>AF'T 'RXCT108 70RCLUB 7S QEQCLCjLGLy g~g4Q, TBQ~~ 0 URTHcg CN.cucATzotg OF g~lx VoR6 y Sa zs r~ ~ver Za<>~~
~y~~~zc Tome To 08TAI.N 7 HE. Play yogpup AT Aey .
Auc ULA~ A I'PAo @AH Is c<<~~R.VAYU v e .
~ 'nch VALVE SIZE: Medium: A c'< Valve opening angle of Inlet 30
~ SAMPLE CALCULATION '78.gc3 pressure from pressure curve =
degree occurring
$9 ~ g + f4'7=
at 1.5
~>'"
second F'>~~ E R7 Inlet temperature from temperature curve = 2pcf g +C,o 094 . R. Note that the higher pressure and temperature are used from the Drywell curves. 4 Density from the density curve for air or from steam table for saturated steam o.l325 Llg/ 3 ft Full open Mume flow rate from flowrate curve = f<2'7 &3(S percentage flow at percentage opening = ( ~'>7 )(< 87S)= < t<> < ft(> Flow rate in szo(s~ q) SCFH ~s (5 l~'tS) fo xjo J
= 8 ' $ 55S "
Ih~ imp (cqq ) Valve coefficient 3o 346 3. X Io ' C o.yo (QC$ 73 Specific gravity = o' 3>< = 1p based on air wieght density G
- 0. 0766 I
at 60 F and l atm. pressure. Downstream pressure I
- ~~.>~ ( < SKIES)lo 6',(,,>> ( t ~.)( c~~) = r? <~ pgt,a.
Therefore pressure drop kp pl p> = i.047 Csso Dynamic torque TD CT ~p R = 23098 CT=.GC(Ref. 7 elbow effect plus in- f.4 most adverse shaft. orientat'cn and disc rotation)
0 , RUN VALVE 17;18 SUN 07 NOV 82 ~~ i~<g VALVE,AIR.Ft-O~ ENTER THE NUMBER OF DATA SETS
"'F9 .
FOR EACH DATA SET ENTER THE FOLLOWING DATA IN ITS RESPECTIVE ORDER SEPERATED BY A COMMA OR A BLANKS A) 'PSTREAM PRESSURE IN PSIG B) UPSTREAM TEMPERATURE IH DEGAS F C) DENSITY IN LB/FT443 D) ACTUAL FLOM RATE IN FT443/SEC E) LOSS COEFFICIENT F) TORQUE COEFFICIENT ENTER DATA FOR SET NO+ i ?18 221 +1295 1614+9 +55 ~ 275 ENTER DATA FOR SET NOo 2
?19i2 234 +1325 1423 F 6 o7 i56
- I ENTER DATA FOP. SET NOi
?20 ii 243 ~ 1359 . ENTER DATA FOR SET NO ~
3 1234 i 8 4 1 o 1 i 35
?22i3 249+5 +1405 1043+4 2~3 ei75 Q
ENTER DATA FOR SET NO ~ 5 Q ?24 255 +146 843i6 5i2 -.I i09'NTER Q DATA FOR SET NO+ 6
?25+4 259 i1515 637 ' 14 ~ 045 ENTER DATA FOR SET NOo 7 ?26e7 262 i156 427 ' 45 F02 ENTER DATA FOR SET HO ~ 8 ?27+9 265 ii.595 214+9 170 +01 ENTER DATA FOR SET NOi ?28i9 268 +f618 0 CLo SF+ .0 0 '
.TH UT IS AS FOLLOWS+
- =BET NO+ P T RO 'A KV CT PSI DEGo F LB/FTt43 FT443/SEC 18oO 221+0 Ooi295 1614i9 Oi55 0+275 I
234oO Ooi325 1423i6 0+70 0 '60 20,o 7 243+0 0+1359'234i8 ioi0 Oo350 22' 249+5 Oii405 1043i4 2i30 Ooi75
-5 24oO 255oO Ooi460 843o6 So20 .
Oi090 6 25' 259+0 0+1515 637+5 14 i 00'. 0 '45
. 262+0 Ooi560 427+5 45+00 0+020 27+9 265+0 Oii595 214i91 170+00 Ot010 9 28+9 268+0 Oi1618 0+0 C Loss'+0 I 90 YOU M ISH TO HAKE ANY CHANGES?
PNO
3D CALCULATION AT ANGLE = g0 DEG o OCCURING AT TIME = i, 0 ABSOLUTE UPSTREAM PRESSURE Pi = 32i7 PSI ABSOLUTE UPSTREAM 'TEMPERATURE Ti ~ 68i+0 DEBS R FLOM RATE IN SCFH = 9874936'T443/HR VALVE COEFFICIENT CV ~ 34234+9 SPECIFIC GRAVITY G ~ io69i CALCULATED DOMNSTREAM PRESSURE P2 = 3ioi PSI PRESSURE DROP ACCROSS THE VALVE DP = i+620 PSI DYNAMIC TORQUE TD ~ ii020+ LB-IN
CALCULATION AT ANGLE = jg. 75 DEG+ OCCURING AT TIME = i5 ABSOLUTE UPSTREAM PRESSURE Pi = 33+9 PSI ABSOLUTE UPSTREAM TEMPERATURE Ti 694@0 DEB+ R FL04l RATE IN SCFH = 885557i FT443/HR VALVE COEFFICIENT CV = 30346 o 0 .SPECIFIC GRAVITY G = io730 CALCULATED DOWNSTREAM PRESSURE P2 32+2 PSI PRESSURE DROP ACCROSS THE VALVE DP = i+667 PSI DYNAMIC TORQUE TD = 23098+ LB-IN
~ \\>>>>>>>>>>>> <<>>>>~ 0>>>>>>>> ~ ~ ~ 0>><<<<>>>><<>>>> \>>>>>> ~ >><<\ 0>> ~
. CALCULATION AT ANGLE = 67 5 DEG ~ OCCURING AT TIME = Z. 0 SEC ABSOI UTE UPSTREAM PRESSURE Pi = 35 ~ 4 PSI ABSOLUTE UPSTREAM TEMPERATURE Ti = 703i0 DEBS R FLOM RATE IN SCFH = 79i8319+ FT443/HR VALVE COEFFICIENT CV = 24207o7 SPECIFIC GRAVITY G = 1+774 CALCULATED DOMNSTREAM PRESSURE P2 = 33+3 PSI PRESSURE DROP ACCROSS THE VALVE DP = 2+094 PSI DYNAMIC TORQUE TD = 18138+ LB-IN
~ ~
S 0 33 CALCULATION AT ANGLE = gQ-25 DEGAS OCCURING AT TIME = 2. 5 SE ABSOLUTE UPSTREAM PRESSURE Pi = 37+0 PSI ABSOLUTE UPSTREAM TEMPERATURE Ti = 709i5 DEBS R FLOW RATE IN SCFH = 6929288 FTM3/HR VALVE COEFFICIENT CV = i674ie2 SPECIFIC GRAVITY G = ii834 CALCULATED DOMNSTREAM PRESSURE P2 = 33+6 PSI PRESSURE DROP ACCROSS THE VALVE DP = 3i406 PSI DYNAMIC TORQUE TD i4747o LB IN
DEGAS CALCULATION. AT ANGLE = +5 OCCURING AT TIME ~ 3. 0 'E e ABSOLUTE UPSTREAM PRESSURE Pi = 38 ' PSI ABSOLUTE UPSTREAM TEMPERATURE Ti = 7i5 ~ 0 'EB+ R FLOW RATE IN SCFH = 58i4734+ FT443/HR
'VALVE COEFFICIENT CV = if,i33i9 SPECIFIC GRAVITY G ~ 1+906 CALCULATED DOWNSTREAM PRESSURE P2 = 33oi PSI PRESSURE DROP ACCROSS THE VALVE DP = 5i58i PSI
- 'YNAMIC TORQUE TD = i2428+ LB-IN
CALCULATION AT ANGLE = pp-'7g DEG+ OCCURING AT TIME = P 5'E ABSOLUTE UPSTREAM PRESSURE Pi ~ 40+i. PSI ABSOLUTE UPSTREAM TEMPERATURE Ti 7i9o0 DEGAS R FLOM RATE IN SCFH = 4527766 FT443/HR VALVE COEFFICIENT CV = 6785+6 SPECIFIC GRAVITY G = io978 CALCULATED DOMNSTREAM PRESSURE P2 = 30 ~ 4 PSI PRESSURE DROP ACCROSS THE VALVE DP = 9+682 PSI I . DYNAMIC TORQUE TD = i0780+ LB-IN
i
. CALCULATION AT AHGLE = g2 5 DEB+ OCCURIHG AT TINE = Q.O SEC',
ABSOLUTE UPSTREAM PRESSURE Pi = 4ii4 PSI ABSOLUTE UPSTREAM TEMPERATURE Ti = 722 ' DEBS R FLOM RATE IH SCFH = 3i2i673+ FT443/HR VALVE COEFFICIEHT CV = 3784+8 SPECIFIC GRAVITY G = 2+037 CALCULATED DOMHSTREAN PRESSURE P2 = 2Si2 PSI PRESSURE DROP ACCROSS THE VALVE DP = 16oi9'4 PSX ~ DYHANIC TORQUE TD = 8014, LB-IH .
CALCULATION AT AHGLE = g$ Qb DEG OCCURIHG AT TIME = c}-5 ABSOLUTE UPSTREAM PRESSURE Pi = 42 ~ 6 PSI ABSOLUTE UPSTREAM TEMPERATURE Ti = 725+0 DEGAS R FLOW RATE IN SCFH = i608037 FT443/HR VALVE COEFFICIENT CV = i947i3 SPECIFIC GRAVITY 'G = 2+082 '.CALCULATED DOWHSTREAM PRESSURE P2 = 26+5 . PSI PRESSURE DROP ACCROSS THE VALVE DP = i6 054 PSI. DYHAMIC TORQUE TD = 3972'B-IH
CALCULATION AT ANGLE = 0 DEGAS OCCURING AT TIME = 5'0 "'EC ABSOLUTE'UPSTREAM PRESSURE Pi = 43+6 PSI ABSOLUTE UPSTREAM TEMPERATURE Ti = 728+0 DEGAS R FLOW RATE IN SCFH = 0. FT483/HR VAL'VE COEFFICIENT CV = O,Q SPECIFIC GRAVITY 6 = 2+ii2 h ht
~a PRESSURE DROP ACCROSS THE VALVE DP = 0+000 PSI DYNAHIC TORQUE . TD = Oe LB IN SFC
'3g L
Valve in full closed os i<ion. An le aG = 0o This occurs't 5.0 second Upstream pressure = 28.9 + 14.7 = 43.6 psia Downstream pressure = Atmospheric = 14.7 psia, valve fully shut, downstream is exposed to atmosphere. Differential pressure 6 p = 43.6 - 14.7 = 28 ' psi Flow rate is zero since the valve is fully closed. Therefore the dynamic torque is zero. Friction torque at the shaf t bearing is Tb Tl (D2) (fb d) Ap 8 ~ (Z~ (9)2. <0 co4)(2 S)(ae.9) (Ref. 5 ) S in-lb Valve seating torque due to rubber friction=.is Ts D2K
= (%9 !4) (24) = 2.2,0?7.4 - 4n- tL (,Ref. 5 )
Net torque TN = Tb + Ts = 22i7$ i~- Lh ROTC Tsar Russo@. F~<~<>N <oBFFTCZFN7 K hlOULb BB LES~ 1 HAN 2.6 OBThmEb FRoM REFT 5 ~ THIS Vzt ua rs FoR A Dt FFGLEn)TtAL f'RED< oRE. oF gS f'sr WHICH I< fREATKC TH A< THE, PReseAT V~~~F- F gQ,9 I sl ~ THEREFoRE, 7HE PggQE OP 7 IS CoasehvhT<1/E.
~
go 0 VALVE SIZE: 3 ~ SAMPLE CALCULATION Medium: S o.+ ~~o.pM Sk-e avn
\
Valve opening angle of 78 +5'egree occurring at K.S second
' e Inlet pressure from pressure curve = t8.2. + l4'7=
1 tt Inlet temperature from temperature curve = p.3y y ggo Cqy 4p, Note that the higher pressure and temperature are used from the Drywell curves. Density from the density curve for air or from steam table for saturated steam = o. ottig Lip/ fy s Pull open viLume flow rate from flowrate curve = R 074 A'/S Percentage flow at percentage opening = ( M7Q )('87~)= ~fig'8 /+IS Flow rate in SCFH Qs =(0 f33) )9 SaO(33 q) f/7 ( l.i ' 2,8q xtn~
~
f 4 rgq ) 0 Valve coefficient CV = go 340 x(og 'V= o 7o Qp,sg,7) Specific gravity.'G = < o~t8 = I ~ ot'8 based on air wieght density 0 0766 at 60 F and 1 atm. pressure. Downstream pressure I g> ~~ ( 6 Xqg) io 1 a(g)(g9q ) Therefore pressure drop dp pl p2 = I (72.g psi. Dynamic torque TD = CTb,p 5 ' 2><75 CT-- 5'Q(Ref. 7 elbow effect plus i.n t.4 most adverse shaft o ient"tion and disc rotation)
SAMPLE CALCULATION VALVE SIZE: 30. Inch Medium: S~+u.~~A S+eam Valve opening angle of 67 5 degree occurring at 2,- o second e Inlet ~ r pressure from pressure curve = 2a7+l4 7= 3<-Q Inlet temperature from temperature curve = 2@3+ $ gg go 3,'R. Note that. the higher pressure and temperature are used from the Drywell curves. Density from the density curve for aira or from steam table for saturated steam = o.o85 LLg/ff Full open vilume flow rate from flowrate curve = 208K +'la Percentage flow. at percentage opening = ( ls8'4 )(o7S')= Igfl g 6/S Flow rate in SCFH Qs =(5 (2.]) )0 sao (xs.q) s7 ( 703) 3 X lO
- 2. 2 Valve coeffxcxent Cv = ~s.gz as e(2.e.tg 2,g 2.077
~ xfo ' = I l (g,g f,7)
Specific gravity G = 0'4>< 0 '766
= t ii based on air wieght density at. 60 F and 1 atm. pressure..
2 Q. Downstream pressure I = g~,q ( Io ol$ 3) to
~cs(.zg.~~)io> <'" >< >) = zs.s< s'a I
r Therefore pressure drop ap pl p2 = 2 ~ C9 )Si Dynamic torque TD = CT h, p Q . = i 8100 CT= ~ 35 (Ref. 7 elbow effect plus most adverse shaft i.n Up orientation and disc rotation)
RUN
'VALVE 17i28 SUH 07 HOV 82 . 3~ INCA YALVe STEAN FLoug 'NTER THE NUNBER OF'DATA SETS ~
FOR EACH DATA SET ENTER THE FOLLOWING DATA IN ITS RESPECTXVE ORDER SEPERATED BY A COHNA OR A BLANKS A) UPSTREAH PRESSURE IN PSXG B) UPSTREAH TEMPERATURE XN DEG+ F C) DENSITY IN LB/FTf43
')D).
F) ACTUAl FLOW RATE LOSS COEFFICIENT TORQUE COEFFICIENT IN FT443/SEC j ENTER DATA FOR SET HO,.
?18 221 +0789 2070 +55 i275 ENTER DATA FOR SET NO+ 2 I?19+2 234 i0818 1814o8 +7 +56 ENTER DATA FOR SET NOi 3 243 ~ 085 1561+5 '7 iii +35 ENTER DATA FOR SET HOi 4 ?22+3 249i5 +0886 1310+6 213 ~ 175 ENTER DATA FOR SET NO+ 5 . ?24 255 o0926 1059oi 5+2 +09 I
ENTER DATA FOR SET NO+ 6
?25i4 259 i0953 797i3 14 ~ 045 ENTER DATA FOR SET NOo 7 ?26e7 262 +0984 533 45 +02 'NTER DATA FOR SET NO ~ 8 ?27+9 265 i%009 267+4 170 +01 I
ENTER DATA FOR SET NO 9
?28 o 9 268 o 1033 0 QQQgQQ ~
0
-~
-~ <<r INPUT IS AS FOLLOMS+
SET Noi P T RO ~ QA KV CT PSI BEGS F LB/FT443 FT443/SEC 18oO 22ioO Oo0789 2070+0 0+55 0+275
.2 19i2 234+0 ' '8i8 1814i8 0+70 0+560 g
20 ' 243+0 0+0850 156}o5 ~ ioiO Oo350
. 4i 22 t 3 249o5 0+0886 1310+6 2+ 30. 0+175 '5 '4oO 255eO . '. 0 '926 1059~1 Oo090 - '6 25+4 259.0 0+0953 797 ' 14o00 0 '45 '7: =
26o7 262+0 ' Oi0984 0+0'+20 533+0 45i00 Oi 020
. ~ ~i 8 , 27i9 26510 - 0+1009, 267+4 170+00 Oi010 9'.
rw ',j .: - = 28o9 268+0 0+1033 ~ CLoSeD OiO 90 YOU M.'SH TO HAKE ANY CHANGES?
?NO
CALCULATION AT ANGt E = $0 DEG+ OCCURING AT TIME = I SEC ABSOLUTE UPSTREAM PRESSURE Pi 32+7 PSI ABSOLUTE UPSTREAM TEMPERATURE Ti 681 o 0 'EG o R FLOW RATE IN SCFH = i2657823i FT443/HR VALVE COEFFICIENT CV = 34234+9 SPECIFIC GRAVITY G = ii030 CALCULATED DOMNSTREAN PRESSURE P2 = 3X+f PSI PRESSURE DROP ACCROSS THE VALVE DP = io62i PSI DYNAMIC TORQUE TD = ii032+ LB-IN
CALCULATION AT ANGLE = 7g'gg DEGAS OCCURING AT TIME = SEC ABSOLUTE UPSTREAM PRESSURE Pi = 33i9 'SI ABSOLUTE UPSTREAM TEMPERATURE Ti = 694+0 DEG+ R FLOLJ RATE XN SCFH ~ ii289048i FT443/HR VALVE COEFFICIENT CV = 30346+0 SPECIFIC GRAVITY G = ii068 CALCULATED DOMNSTREAM PRESSURE P2 = 32i2 PSI PRESSURE DROP ACCROSS THE VALVE DP = 1+673 PSI DYNAMIC TORQUE TD = 23i75 ~ LB-IN
CALCULATION AT ANGLE = Q'7 5 DEGAS OCCURING AT TIME = 2 Q
~ SEC ABSOLUTE UPSTREAM PRESSURE Pi = 35o4 'PSI ABSOLUTE UPSTREAM TEMPERATURE Ti ~ 703+0 DEB+ R FLOM RATE IN SCFH = 10013326m FT443/HR VALVE COEFFICIENT CV ~ 24207i7 SPECIFIC GRAVITY G = iii10 CALCULATED DOWNSTREAM PRESSURE P2 ~ 33+3 PSI PRESSURE DROP ACCROSS THE VALVE DP = 2+09'5 PSI.
DYNAMIC TORQUE TD = 18142+ LB-IN
o
- o CALCULATION AT ANGLE = 54. Z5 DEG o, OCCURING AT TIME = p 5 SEC P
ABSOLUTE UPSTREAM PRESSURE Pi 37+0 PSX DEGAS
. ABSOLUTE UPSTREAM TEMPERATURE Ti = 709+5 R FLOP RATE IN SCFH = 8/03782 FT443/HR VALVE COEFFICIENT CV = f674io2 SPECIFIC GRAVITY G = 1+i57 P2 = 33~6 PSI '
CALCULATED DOMNSTREAM PRESSURE
~ PRESSURE DROP ACCROSS THE VALVE DP = 3,387 PSI ~ ~ ~
i.J I~
~
DYNAMIC I~
~ ~ ~ v I I N vI ~ TORQUE I TD = ~ <<~
i 0I I i4668+
~
LB-IN 5
C CALCULATION AT ANGLE = f5 DEG ~ OCCURING AT TIME = '3. 0 SEC ABSOLUTE UPSTREAM PRESSURE Pi = 38i7 PS1 ABSOLUTE UPSTREAM TEMPERATURE Ti = 7i5e0 DEGo R FLOW RATE IN SCFH = 7300i24, FT443/HR VALVE COEFFICIENT CV = iii33 ~ 9 SPECIFIC GRAVITY 6 = 1+209 CALCULATED DOWNSTREAM PRESSURE P2 = 33oi PSl PRESSURE DROP ACCROSS THE VALVE DP = 5,579 PSI DYNAMIC TORQUE TD = f2424'B-IN
CALCULATIOH AT ANGLE = . 3Q ? 5 DEG i OCCURING AT TIME = 3. 5 SEC ABSOLUTE UPSTREAM PRESSURE Pi = 40+i 'SI ABSOLUTE UPSTREAM TEMPERATURE Tf = 7i9o0 DEG ~ R FLOM RATE IH SCFH = 5662727 FT483/HR VALVE COEFFICIENT CV ~ 6785o6 GRAVITY G = i i244 'PECIFIC CALCULATED DOMNSTREAM PRESSURE P2 = 30+6 PSI PRESSURE DROP ACCROSS THE VALVE DP 9+502 PSI DYNAMIC TORQUE TD = '0580+ LB-IH
CALCULATION AT ANGLE = 22.. g DEG OCCURING AT TIME = +.O 'EC I ABSOLUTE UPSTREAM PRESSURE Pi = 4f+4 PSI ABSOLUTE UPSTREAM TEMPERATURE Ti = 722 ' 'EGAS R FLOM RATE IN SCFH = 389205i FT443/HR VALVE COEFFICIENT CV = 3784' SPECIFIC GRAVITY G = f i285 CALCULATED DOMNSTREAM PRESSURE P2 ~ 25i6 PSI PRESSURE DROP ACCROSS THE VALVE DP = i5o780 PSI " DYNAMIC TORQUE TD = 7809'B IN
- ~
h
~ P
CALCULATION AT ANGLE = fl-<5 DEG OCCURING AT TIME = 0'~ SEC ABSOLUTE UPSTREAM PRESSURE Pi = 42+6 :PSI ABSOLUTE UPSTREAM TEMPERATURE Ti 725@0 . DEBS R FLOW RATE IN SCFH ~ 2000880'T4'43/HR VALVE COEFFICIENT CV = i947o3 SPECIFIC GRAVITY G = io3i7 CALCULATED DOWNSTREAM PRESSURE P2 = 27o0 PSI PRESSURE DROP ACCROSS THE VALVE DP = i'28 PSI , DYNAMIC TORQUE TD = , 3867'i LB-IN
3 5'2 3 ~
~ ~
p CALCULATIOH AT ANGLE = O- o DEG. OCCURIHG AT TIME = g sQ SEC '9 ABSOLUTE UPSTREAM PRESSURE Pi = 43 ' PSI cJ ABSOLUTE UPSTREAM TEMPERATURE Ti ~ 728o0 DEGAS R Q FLObl RATE XH SCFH = 0. FT483/HR VAL'VE COEFFICIENT CV = 0 0
~
SPECIFIC GRAVITY G " 1+349
~ M 1 PRESSURE DROP ACCROSS THE VAI VE DP = 0+000 PSI '~r DYNAMIC TORQUE TD = Oo LB-IN
SAMPLE CALCULATION VALVE SIZE Inch Medium: A I.R.
'75'egree occurring at. L 5 i0'alve JJ I%4 Inlet opening angle of 'lS pressure from pressure curve = 10 ~ R, +l4 7= S~'l second i'Sco Inlet temperature from temperature -curve = 2.~g + 4,g,o <9~ 4g.
Note that. the higher pressure and temperature are used from the Drywell ~ curves. Density from the density curve for air or from steam table for Saturated Steam = o.~tag I.ly/f ta Full open vilume flow rate from flowrate curve = ~o+S ' QS/S Percentage flow at percentage opening = ( Ic>S )('S>S)= 899 5 gt(S Flow rate in SCFH Qs =(3 228) )0 sao ( R3.q)
= 5's5'gexlo $ 4 /h".
1g p (egg)
- e. Valve coefficient C
~vo IS LUCIS )(ls Q- o"7c Q,sf,7)
Specific gravity G = +'~~~< = I 73 based on air wieght density 0.0766 at 60 F and 1 atm. pressure. Downstream pressure $ -<>. (r'> ..--g) )o
)to~ ca(~;.>.-. < '"~C'-'~ ) = 3P ~ !8$
pressure drop ap pl p2 = I-'lib )5'herefore Dynamic torque TD = CT+p CT--tSQ (Ref. 7 elbow effect plus in L4 most adverse shaft orientation and disc rotation)
et "ql SAMPLE CALCULATXON VALVE SXZE Xnch Medium: Ayg. Valve opening angle of gg.Q.5 degree occurring at 2 ~ 5 second Xnlet pressure from pressure curve = 22 3 +lb'7= ~7 Psc',a Xnlet temperature from temperature curve = 2)q.g y +go Note that the higher pressure and temperature are used from the Drywell curves. Density from the density curve for air or from steam table for Saturated Steam = o. Itto5 LLQ/ftS Pull open viLume flow rate from flowrate curve = +'is Percentage flow at percentage opening' ( lo~> )& ~~3= dsv S its(S Plow rate in SCFH Qs =(2.R(7) [0 +" tfis-xlo t /hc
'>(~.>.~) $
Valve coefficient C== Je,l31) Js,er '> r
= lO. qZdlS XIO~
Q= 2 3 (ILt).V) Specific gravity G = o'l~~~ = l. &Sf based on air wieght density 0 '766 at 60 F and I atm. pressure. Downstream r pressure I = ~~'4 (+344) ) lo l~S( IC't49S') (0 3~'5~< )5'4~ Therefore pressure drop ap pl p2 = d ~ 4SB Iver. Dynamic torque TD CT 5p Q = "/f2'7 CT- ~ l75{Ref. 7 elbow effect plus in- t.4 most adverse shaft orientation and disc rotation)
RUN.
.VALVE 17:39 'UH 07 HQV 82 g$ ZtdCH. VALVE AIR. I=Le 8 ENTER THE NUNBER OF DATA SETS FOR EACH DATA SET ENTER THE FQLLOMIHG DATA IN ITS RESPECTIVE ORDER SEPERATED BY A CONCHA OR A BLANKS A) UPSTREAN PRESSURE IH PSIG ~
B) UPSTREAN TEHPERATURE IH DEG<< F C) DENSITY IH LB/F7443 ') ACTUAL FLOM RATE IN FT443/SEC E) LOSS COEFFICIENT F) TORQUE COEFFICIENT ENTER DATA FOR SET HO<< 1
?18 221 <<1295 1015 F 6 ~ 55 <<275 l
ENTER DATA FOR SET HO<< 2
?19<<2 234 <<1325 899<<5 <<7 <<56 ENTER DATA FOR SET NO<< 3 20<<7 243 <<1359 776<<6 i<<i <<35 ENTER DATA FOR SET HO<< 4 ?22<<3 249<<5 <<1405 657<<5 2' <<175 ENTER DATA FQR SET HO<< 5 '?24 255 <<146 530<<6 5<<2 <<09 ENTER DATA FOR SET HO<< 6 j ?25<<4 259 <<1515 4 401<<3 <<045 t
ENTER DATA FOR SET HO<< 7
?26<<7 262 <<.156 268 45 <<02 ENTER DATA FOR SET HO, 8 ?27<<9 265 <<1595 135<<6 170 <<01 ENTER DATA FOR SET HO ~ 9 ?28<<9 268 <<1618 0 CLc t.E.D 0 . ~
I INPUT IS AS FOLLOMSi i SET NOi P T RO OA . CT PSI DEBS F LB/FT443 FT443/SEC 18+0 221 iO 0+1295 1015m 6 0+55 0+275 19+2 234oO 0+1325 899i5 0 '0 0+560 20+7 243'. 0+1359 776i6 iii0 Oi350 I 4 2213 249 ' 0 '405 657i5 2e30 0+175 24i0 255iO 0+1460 530i6 5+20 0+090 25' 259+0 0+1515 401>3 14 F00 Oo045 26+7 262+0 0+1560 268 ' 45o00 'i020 27e9'65+0 0+1595 135i6 170<00 0 '10 28 ~ 9'68+0 0 ~ 1618 0~0 ~ .. CL8t89 0+0 DO YOU Wt ISH TO MAKE ANY C8ANGES7 VNO
- o4 CALCULATIOH AT ANGLE = Cj'Q DEB+ OCCURING AT TIME = .0 . SEC ABSOLUTE UPSTREAM PRESSURE Pi = 32+7 PSI ABSOLUTE UPSTREAM TEMPERATURE Ti = 68io0 DEB+ R FLOW RATE IH SCFH = 62i0283+ FTW43/HR VALVE COEFFICIENT CV = .21327+8 I
SPECIFIC GRAVITY G = i+69i CALCULATED DOWNSTREAM PRESSURE P2 = 3io0 PSI PRESSURE DROP ACCROSS THE VALVE DP = io65i PSI
'YNAMIC TORQUE TD = 5525+ LB-IH P '0
0 CALCULATION AT ANGLE = '7Q.'7g DEGAS OCCURING AT TIME = t S SEC ABSOLUTE UPSTREAM PRESSURE Pi = 33+9 PSI ABSOLUTE UPSTREAM TEMPERATURE Ti = 694i0 DEGAS R FLOM RATE IN SCFH = 5595381+ FTt43/HR VALVE COEFFICIENT CV = 18905+0 SPECIFIC GRAVITY G = f ~ 730 CALCULATED DOWNSTREAM PRESSURE P2 = 32+2 PSI-PRESSURE DROP ACCROSS THE VALVE DP = i i7i6 PSI DYNAMIC TORQUE 'TD = ii692o LB-IN
0 0
CALCULATION AT ANGLE = Q7 5'EGS OCCURING AT TIME = ~' SEC ABSOLUTE UPSTREAM PRESSURE Pi = 35+4 PSI ~ ABSOLUTE UPSTREAM TEMPERATURE Ti = 703i0 DEG+ R FLOW RATE IN SCFH ~ 498005io FT443/HR . VALVE COEFFICIENT CV = i5081+0 SPECIFIC GRAVITY 6 ='+774 CALCULATED DOMNSTREAM PRESSURE P2 = 33+3 PSI PRESSURE DROP ACCROSS THE VALVE DP = 2 ~ 136 PSI DYNAMIC TORQUE TD = 9095+ LB-IN
CALCULATION AT ANGLE = g~, 4 5 DEG, OCCURIHG AT TIME = 2 ~ SEC ABSOLUTE UPSTREAM PRESSURE Pi = 37+0 'SI ~ ABSOLUTE UPSTREAM TEMPERATURE Ti = 709o5 DEBS R FLOM RATE IN SCFH = 436650i FT443/HR VALVE COEFFICIENT CV = i0429i5 SPECIFIC GRAVITY G = i+834 P CALCULATED DOWNSTREAM PRESSURE P2 = 33i5 PSI PRESSURE DROP ACCROSS THE VALVE DP = 3i488 PSI DYNAMIC TORQUE TD = 7428'B-IH
~ ~
N
CALCULATION AT ANGLE = QS DEGAS OCCURING AT TIME = 3'O 0
, ABSOLUTE UPSTREAM PRESSURE Pf = 38i7 PSI ABSOLUTE UPSTREAM TEMPERATURE Tf = 715i0 DEG ~ R FLOW RATE IN SCFH = 3657300+ FT443/HR VALVE COEFFICIENT CV = 6936o3 SPECIFIC GRAVITY G = 1 906 CALCULATED DOWNSTREAM PRESSURE P2 = 33i0 PSI PRESSURE DROP ACCROSS THE VALVE DP = 5+698 PSI DYNAMIC TORQUE TD = 6239'B-IN ~
~
.CALCULATION AT ANGLE = Q$ . )g DEG ~ OCCURING AT TIME = ~' SEC ABSOLUTE UPSTREAM PRESSURE Pi = 40+i PSI ABSOLUTE UPSTREAM TEMPERATURE Ti = 7i9' DEG R FLOW RATE IN SCFH = 2850i85i FTt43/HR VALVE COEFFICIENT CV = 4227+3 SPECIFIC GRAVITY 6 = i+978 CALCULATED DOWNSTREAM PRESSURE P2 = 30i2 PSI PRESSURE DROP ACCROSS THE VALVE DP = 9+9i8 PSI DYNAMIC TORQUE 'TD = 5430, '-LB-IN
C CALCULATION AT ANGLE = 22. 5 DEG i OCCURING AT TIME = Q 0 SEC ABSOLUTE UPSTREAM PRESSURE Pi = 41+4 PSI ABSOLUTE UPSTREAM TEMPERATURE T1 = 722i0 DEGAS R FLOM RATE IN SCFH = 1963550+ FTM3/HR VALVE COEFFICIENT CV = 2357+9 SPECIFIC GRAVITY 6 = 2i037 CALCULATED 904INSTREAM PRESSURE P2 ~ 24i8 PSI PRESSURE DROP ACCROSS THE VALVE DP ~ 16+613 PSI DYNAMIC TORQUE TD = 4043+ LB-IN
CALCULATION AT ANGLE = II ~2.5 DEG OCCURING AT TIME = 4'5 SEC ABSOLUTE UPSTREAM PRESSURE Pi = 42+6 PSI ABSOLUTE UPSTREAM TEMPERATURE Ti = 725o0 DEGAS R FLOW RATE IN SCFH = iOi4658i FT443/HR VALVE COEFFICIENT CV = 12i3ii SPECIFIC GRAVITY G ~ 2+082 CALCULATED DOWNSTREAM PRESSURE P2 = 26i0 PSI PRESSURE DROP ACCROSS THE VALVE DP = i6+60i PSI DYNAMIC TORQUE .TD = 2020, LB-IN .
CALCULATIOH AT ANGLE = 5, DEB+ OCCURIHG AT TINE = 5'0 SEC
'ABSOLUTE UPSTREAM PRESSURE Pi ~ 43+6 PSI . ABSOLUTE UPSTREAM TEMPERATURE Ti = 728i0 DEBS R FLO4J RATE XH SCFH =. 0. FTtt3/HR "p
VALVE COEFFICIEHT CV = 0 0 SPECIFIC GRAVITY 6 = 2ifi2 PRESSURE DROP ACCROSS THE VALVE DP = 0+000 PSI b DYHANIC TORQUE TD 0~ .LB-IH
1 Valve in full closed osi+ion. An le aC = Oo This occurs at 5.0 second
/
Upstream pressure = 28.9 + 14.7 = 43.6 psia Downstream pressure = Atmospheric = 14.7 psia, valve fully shut 5.j downstream is exposed to
'tmosphere.
Differential pressure b, p = 43.6 - 14.7 = 28.9 psi Flow rate is zero since the valve is fully closed. Therefore the dynamic torque is zero. 5w,'riction torque k. at the shaft bearing is Tb W (D2) (fb d) Ap 8: I (Ref. 5 ) in-lb Valve seating torque due to rubber 'friction is Ts = D2 K (Ref. 5 ) Net torque TN = Tb + Ts fgeo8 t'.~-(.L
t SAMPLE CALCULATION VALVE SIZE: 2,+. Inch Medium: s aA-u~e 0~ SR<a,rn ~ Valve opening angle of 7'g gg degree occurring at < ~ second Inlet pressure from pressure curve = l9 2 +(4'7=,.~>'9 Inlet temperature from temperature curve = g.~g ~ gg,o Note that the higher pressure and temperature are used from the Drywell. curves. Density from the density curve for air or from steam table for saturated steam = o.o 2Id, LIy/ fg 4 Full open uiLume flow =ate from flowrate curve = I2-'I2 percentage flow at percentage opening = ( l2.92. )( gag~ II>> <
'2/4 It(d Flow rate in SCFH Qs =(4 4418) .Io 5ao (>>.q)'
6 147( q) " o~>2>I4 y~s/ 4 Valve coefficient C ae.ge Xe e(2.2 ) Id.qoi x/4 3 i4 - o,7c gatq 7) V 0.7g Specific gravity = o818 = a(83 based on air wieght density G 0 '766 l at 60 F and l atm. pressure. Downstream pressure $ = ( '7 ~283) to q~,~ pc~(.(,.)(y < '~( ~<). = sz.~as p~~~ Therefore pressure crop dp = pl p2 = I 4V2 )Sc, Dynamic torque TD = CThp 3) = I[394 CT- SC(Ref. 7 elbow effect plus i.n L4 most adverse shaft orientation and disc rotation)
~ ~
SAMPLE CALCULATION VALVE SIZE: Inch Medium: 5~~~~$ ~ Valve opening angle of 2.R 5 degree occurring at 4 second 2t"7 +l4 7= $ i 4 e
~
Inlet
~
pressure from pressure curve = 5 Inlet temperature from temperature curve = gj'o2. + +C,o g 2.2, R, Note that the higher pressure and temperature are used from the Drywell curves. 4 Density from the density curve for air or from steam table for Saturated Steam = o.ogham Ll,y/its Pull'open uiLume flow rate from flowrate curve = l'325 2
~ '3/5 Percentage flow at percentage opening = ( '325 2. )(o 253 352.os H(s Flow rate in SCFH Qs =(i.&50) ~O 6 s~o (<i.~)
1a7 ( 7i~)
- 2. <247 XIO H'h<
J- Valve coefficient g 2.-3579)(lo . - g5gtq p3 Specific gravity.G = ~ o984 = 1.2.8gS based on air wieght density 0 '766 at 60oF and l atm. pressure. Q. Downstream pressure I = ( ~ 4247) lo {2.3579)N~ (I z.>~)(,7u. ) = 25 42. )5jQ, Therefore pressure drop dp pl p2 = L5 lS
~ - Dynamic torque TD = CT h,p X7 3 3840 CT- o2,(Ref. 7 elbow effect plus i.n<<L4 most adverse shaft orientation and disc rotation)
RUN VALVE 17:54 SUN 07 HOV 82 2f > MCB V TEq~ Pto& EHTER THE NUMBER OF DATA SETS FOR EACH DATA SET ENTER THE FOLLOWING DATA XN ITS RESPECTIVE ORDER SEPERATED BY A COMMA OR A BLANK+
*) UPSTREAM PRESSURE XN PSIG B) UPSTREAM TEMPERATURE XH DEBS F C) DENSXTY IN LB/FTM3 D) ACTUAL FLOM RATE IN FT443/SEC Ij E) LOSS COEFFICIENT F) TORQUE COEFFICIENT
I ENTER DATA FOR SET NOi 1
~718 i 221 0789 X 289 e 6 t55 t 275 ENTER DATA FOR SET'O+ 2
- ..'?19i2 234 i0818 . 1130+5 t7 o56 ER DATA FOR SET NOi 3' 243 o085 972i8 i+i +35 ENTER DATA FOR SET NOo 4
?22o3 249i5 o0886 816e5 2o3 +175 ENTER DATA FOR SET NOi 5 "?24 255 +0926 659o8 5+2 i09 ENTER DATA FOR SET NOi 6 j '?25+4 259 o0953 496e7 14 ~ 045 ENTER DATA FOR SET NO ?26+7 332o1 45 7'62 +0984 +02 ENTER DATA FOR SET NOo 8 *,'?27 ~ 9 265 +1009 166+6 170 +Oi . ENTER DATA FOR SET NO+ 9
- ?28i9 268 i1033 0 0 0 I
INPUT IS AS FOLLOWS+ SET NOi P T RO QA KV CT PSI BEG. F LB/FT443 FT443/SEC 18oO 221+0 0 '789'289o6 0+55 Oi275 19i2 234i0 Oo0818 1130o5 Oi70 0+560 20 ' 243+0 0+0850 972mB ioi0 0+350 22 t 3 249'e 5 0+0886 816i5 2 '0 0+175 24+0 255o0 Oi0926 659+8 5+20 0 '90
- 0 7 25+4 26 '
259+0 262oO Oi0953 0 '984 496 ' 332ii 14i00 45o00 0+045 0+020 8 27 ' 265+0 0+1009 166o6 170+00 Oi010 28+9 268+ 0 0+1033 0~0 C l.OS OiO DO YOU M'.ISH TO MAKE ANY C8ANGES'F TNO
r V CALCULATION AT ANGLE qg DEBS OCCURING AT TIME = l' SEC ABSOLUTE UPSTREAM PRESSURE Pi = 32 7 PSI ABSOLUTE UPSTREAH TEMPERATURE Ti = 681+0 DEGAS R FLOM RATE IN SCFH = 7885763 FT443/HR S CV = S VALVE COEFFICIENT 21327 8 SPECIFIC GRAVITY G = ii030 CALCULATED DOMNSTREAH PRESSURE P2 ~ 3iei PSI PRESSURE DROP ACCROSS THE VALVE DP = 1+621 PSI
,0 DYNAHIC TORQUE TD = 5425+ LB-IN
P 0
CALCULATION AT ANGLE = )P.7y DEBS OCCURING AT TINE SEC ABSOLUTE UPSTREAN PRESSURE Pi = 33 ' PSI ABSOLUTE UPSTREAH TEMPERATURE Ti = 694@0 DEBS R FLOM RATE IN SCFH = 7032328 FT443/HR 'VALVE COEFFICIENT CV = i8905+0 SPECIFIC GRAVITY G = ii068 CALCULATED DOMNSTREAM PRESSURE P2 = 32+2 PSI PRESSURE DROP ACCROSS THE VALVE DP = io672 PSI DYNAMIC TORQUE TD = ii394 ~ LB-IN
4 C
~ ~
=
CALCULATION AT ANGLE = G7 5'EGAS OCCURING AT TIHE = Q,.Q
/
ABSOLUTE UPSTREAH PRESSURE Pi = 35i4 PSI
. ABSOLUTE UPSTREAH TEHPERATURE Ti = 703 0 DEG R FLOM RATE IN SCFH = 6238209+ FT443/HR VALVE COEFFICIENT CV = i5081o0 SPECIFIC GRAVITY G = iiii0 CALCU ATED DOMNSTREAH PRESSURE P2 = 33i3 PSI PRESSURE DROP ACCROSS THE VALVE DP = 2 '95 PSI DYNAHIC TORQUE . TD = 892i e LB-IN
'o
. CALCULATION AT ANGLE = S'(,.~5 DEB+ OCCURING AT TIME = 2'5'EC ABSOLUTE UPSTREAM PRESSURE Pi ~ 37i0 PSI ABSOLUTE UPSTREAM TEMPERATURE Ti = 709+5 DEBS R FLOW RATE IN SCFH = 5422430 FT443/HR VALVE COEFFICIENT CV = i0429o5 SPECIFIC GRAVITY G = iii57 CALCULATED DOWNSTREAM PRESSURE P2 = 33+6 PSI PRESSURE DROP ACCROSS THE VALVE DP = 3i388 PSI DYNAMIC TORQUE TD = 72i3o LB-XN
9 n CALCULATION AT ANGLE DEBS OCCURING AT TINE = . 3. 5 SEC ABSOLUTE UPSTREAM PRESSURE Pi = 38o7 PSI ABSOLUTE UPSTREAN TEHPERATURE Ti = 7i5 ~ 0 DEBS R g FLOt4 RATE IN SCFH = 4547S44 FT443/HR
,D I )
VALVE COEFFICIENT CV = 6936+3 I i I 7
'9 SPECIFIC GRAVITY G, = 209 "g I t
CALCULATED DOWNSTREAM PRESSURE P2 = 33ii PSI 9 J PRESSURE DROP ACCRQSS THE VALVE DP = 5i579 PSI DYNANIC TORQUE TD = 6109'B-IN 9 7
CALCULATIOH AT ANGLE = 3Q )g DEG 'CCURIHG AT TIME = Q 5 SEC ABSOLUTE UPSTREAM PRESSURE Pi 40+i PSI ABSOLUTE UPSTREAM TEMPERATURE Ti = 7i9o0 DES+ R 'FLOM RATE IN SCFH = 352775ii FT443/HR VALVE COEFFICIENT CV = 4227i3 SPECI F IC GRAVITY G = f. + 244 .CALCULATED DOMNSTREAM PRESSURE P2 = 30o6 PSI PRESSURE DROP ACCROSS THE VALVE DP = 9i502 PSI DYNAMIC TORQUE TD = 5202+ LB-IH
'77 CALCULATION AT ANGLE = Z 2..5 6 DEB+ OCCURING AT TIME ~ +' SEC ABSOLUTE UPSTREAM PRESSURE Pi = 4i,4 PSI ABSOt UTE UPSTREAM TEMPERATURE Ti 722.0 DEG. R FLOM RATE IN SCFH = 2425048+ FT443/HR VALVE COEFFICIENT CV = 2357+9 SPECIFIC GRAVITY 6 = i+285 CALCULATED DOMNSTREAM PRESSURE P2 = 25oh PSI'RESSURE DROP ACCROSS THE VALVE DP = 15i787 PSI DYNAMIC TORQUE TD ~ 3842+ LB-IN
I * 'N f pQ Io CALCULATION AT ANGLE = Il~~ 5 DEGAS OCCURING AT TIME ~ cf- 5 'EC
'j- ABSOLUTE UPSTREAM PRESSURE Pi = 42i6 PSI -,i jg '<<j ABSOLUTE UPSTREAM TEMPERATURE Ti 72S'o0 DEBS R FLOM RATE IN SCFH = 1246622'T4'03/HR VALVE COEFFICIENT CV = 1213oi 'p SPECIFIC GRAVITY G = f,o317 CALCOLATED DOMNSTREAM .PRESSURE P2- ~ 27+0 . PSI PRESSURE DROP ACCROSS THE VALVE DP = 15o631 'SI ij ~ 'j)
DYNAMIC TORQUE fD = 1902 'B-IN
'3
CALCULATION AT ANGI E = 5 DEG ~ OCCURING AT TIME = S 0 SEC ABSOLUTE UPSTREAM PRESSURE Pi = 43ob PSI ABSOLUTE UPSTREAM TEMPERATURE Ti = 728 0 DEG R 1 FLOM RATE IN SCFH = 0. FT443/HR VALVE COEFFICIENT CV = o.O PECIFIC GRAVITY 6 i'349 i' ~ ~ PRESSURE DROP ACCROSS THE VALVE DP = 0 F 000 PSI DYNAMIC TORQUE TD = 'Oi LB-IN
t
'lA ~
P I Iyl
;l
- t
~] ppP>MD LX
- q Pg jl I
~ t
'I I
h l Xj I
'WASHINGTON PUBLIC POViER SUPPLY SYSTEM ~)he% ; CALCULATIONCOVER SHEET SHEET OIr~
Cl PROJECT DISCIPLINE CALC NO+
~MB~~ QQ<g-Q-Og 0 CONTRACT SPEC IP I CATION QUALITY CLASS tYI &&K o 'Yes + GcoC. ViC V I= <- VA.<d 6 5 ACTION REQUIRED @SAR CHANCE @SPEC CHANCK @OTHER (IDENTIFY)
V~wD A. HZ P Q, .Cl oS ATTACHMENTS QCOMPUTKR PRINTOUT @OTHER (IDENTIC) E~ SAR. I W C.3.- SUPERSEDED BY SUPERSEDES CIPRKLIMINARY g PINAL REVe NO. REVISION DESCRIPTION CALCULATIONBY OATK VIEWED DATE APPROVED DATE
~ 'I OS RS
4 I
~
r ~ ~
~
WASKNGTON PUBUC POSER SUPPLY SYSTEM CAI.Ci NO+ 5HCCT NO~OP rchrohMco ev ITIONAt IHPOhMATIQN IP ItCQUIhCO a~~. i, l~st.
+Pc F OM 2lhTB f USI OC I'T'I l PP'OUGH ~ I CEP 30 BVTlGPFtf it 64VQQ
..'I 5 IVcw' Omy~t M lA t=~ I Pea..used A~a Men o wx vt'vs A > CoW~ 5 P 90 t '@[TIE Pter I'. -;VI.= TI.-. OIP, 5 ted&.5 (>o g 1 PS<C Ps<a '- A,(~ Sr.m 18 saa Pat . LR.48 Cot- b
- I Q. ~ 30 1 854 AD@3 l.X 6 ~lC~ s,~~a P ..S Awe t
j II t
'3 SS7 as5 4 S~ . io.s pi Q%%+<~OA, a\)P.K5
- 4. -4 t.4 II (Z G.4.< io,W Ft"I m RSV 5+CI
>48 a.ls PEC Time. I f lS 5+ l . +aA- Q.S 3 5: A'>w -
F'M Co&TI\t M Np~ [ Ay TtlC plkt >RGB l.i ~~co Asov T', ji, t lt't~~ 4~~
~y ~~+X-4+ DO~~ C'p QvJ l5ylll=-,r. ig p+ <<, ~ I l3. A -FlC hEVIEWEO INITIAL/OATC go S$
W&II0 h0
~
~ r ~ r ~ ~ WASHINGTON PUBLIC POV/ER SUPPLY SYSTEM CALCr NO. SHKKT NO.~~+ I
'G-tsar'I?t? Pestait?'>>sc.e Cost-t=tc-tt=tp7 K '
Fioptha I li I Pip)M6 g. 'V Ague S I gpt
~
i I II i
'i 'm~~ 390 = 'R 4a, I 0 I l [th, H; E'e F. g fC= I L0 .Dti~ Co <
9,'5
} = goo oL i >>Ip to<<S (a) I(= t 8g 4i Fg<=t SLFiS.'5.>>t I, P-I< lPSF QJ '- >I +5 E<>J QEss +oh. SD (I) Fioi>>o +Hi pcs>> !3t?F>>>>CIITot oto i,ks t.gl Pst',I,iRFF)4" I I+
( I) Fi oor I't?oh>> Piihh To P> I?cI ih? v,'.'fi? I+y[p.s o i> pov',~?g: \ '3 C>>o't R*i>>c s EPF so-'Y (~) K= o.s t?, 'tit, I?+F '?g DvcT g 4 ALuE Q ( 54.X3(, ', CIIKQIk>PiR I @Is?a.Q W>fV I+t.O) L= s% lS'< I I>>= '~3+x> - p.shh'>>.- +2>>= sQ '77 =2'Il
>>t (I Irh ') ~
I s ~ opc t,P ss E WIFj sjct = ~oo -,oopg ( sI?sv lt>>> P; >tot) 8't'f7
,Q i 3 t I . 6 Q 'ZIPF?I J
CHKCKKO INITIAIS/DATK
-AP/sz
~ ~ VAS19NGTON PUBUC POSER SUPPLY SYSTEM SHEET NO.~L. ~)~Q
~ g I I ~ 3O ~
I 1zp () g lo BuA I s s l8)I 39 pc'f+Q E'xi+ Loss I(= i.o /pe,g g, l.o
~~~~ P<s&wee'. 3 0 t P, > -4 ~ ~I~ F'. I Q QQp ~)c ltd VS% PI gI.~~Py ~
I ~ Kl K'p ~ k'o - o [ o CHECKEp INITIAISgpATE
/Off/gz
p NhSHINGTON PUBLlC POWER SUPPLY SYSTEM CAI.Cr NOo SHEKT NO,~O~F I R jos Fio~ I I<67.e A~a Vacocivies GC' I Lx) =, o.52 K=.y 4, $ = pL'L i~, . I . i >5~= l3.0 t3sl
, 5R >> 'I 0 )c gQ C,o x l,lg 20 ), k I-5//S~a 5 " 9'>~~ ~I-= ISIS.'9+o)sac.
ga~OC i'-l V= $('g= ~ K+8 W~ >(
+>58 t 35 k+ I' As' sc4 (Iclo% Ills)
G3 =,5 Wb 3G 1+X 8+1 20 G.o.x'l,y r
>s3 7 ~ 7 36 = <GnGA.Yes sec V = <6+g4- 35s9 wPs os7.
3 s" c. (ioo% Aie)
~ = . 5P 5x.as x ~"~ i Q.~~~ x Q +5 = Q.+6.3 ~8/sec I9ri3>> 0,85 -
I@8 Eked< ".cc 168'l.k 9 G7 8 $ t 3
%,o 87 CHECKEO INITIAlS/OATK p$
wo nsn,es rene a ~ wa
CAI.C. FIOo ShSHINGTON PUBLIC POSER SUPPLY SYSTEM SHEET MO 6'O 0 Am + ~ac. ( L 0 0 /t A I f)'s ~P~ g4,. 7 PC i P, = 4 L.+.PS>I>; II (%1
/ .6+
V
- was.
g~( ~ o I R 6(,.R x 6.6 l = laos. Q 9t /s=c g =<.4 i Yt~)iZ A- + san ".t
'3 2.3 ~ .-
4.,>8 7 A~ 5 Sec. (ioo% I<<3
= ~ 0 oL5v ~ tgX2 t~ ~P" gQ.% PS i .C,O7 <.LS R= %3.C. Prie lt= 6<
9 8O. 4 iS/S~c g =4,.e y= 13. RBo.6 x I.i 6 %t sec g: 6;le SP/~a
~ A,CIP1 $ t V.= lq 4.
- 4. a5q ll, r ) g S==: (Ion'/. ki-:) t,,~ hNw~. aP= ~h. 7 Psl p +g.4- Ps>b
~ =,rg> v.69)c 3+t ~)P .70 $ .M. x >.5'3 S;5Q W /'I.P L3g "p,( A = +os/ t (O =
3[l. 5' b.S~~ = l7RR. 6 9</~<c V = Jib~
+ 581 pqg,g+PS C HE.C K'E 0 IIIITIALS/OATC , g~p/z~
~ ', 1as WASHINGTON PUBLIC POSER SUPPLY SYSTEM CALCa NOa SHKKT NO.~~+ +ASS'LO ~ Raze" Alaaca Ueiclc,i> aa
( Sa! . 'Stcam) A~i Scc,
-" b.GRb Y I
p =57, f psych
=, 5' ~ s1 't X Q3
( .6 c l2.05 ,g ~ ,3 t g= 4,.o
!/ = S~. t8 ~s/as A=4,ssa Se' 0 S. 4 iii. )R, la 5 ~<i~ = Pcs 8 7. 3 %t~ s s c.
Vo!" = $z rh gCC
=>o~7 3 lt'a s~ ~
L
&.ss-) - 57.2. %ps A~ a 5m~. ~P= pub.t PS l 'xo."I 356- PSlb P =
( O a.i[,Q, +~ip-" .SS
=Jlaa /- K= G ~ I-"I Y= .1+ $ =.I't4.'iL< i I ~ 8 =
poll.g Vts/scc Ll-8 E<//c.Q . A = f,581 0t
'v, = '" !.~s..z a ! .4 <i3')
z P= k4 P~ I 4u =. +Pox .18 x S'i~I P =3P,. I &SABA lO ~ O 4 (Oat Ph=,~z " Lu = (Qc.z ia/<=e. g=g.C
'l =.73 = i iG. ! ' o.s = ~ i <a. k %'s /,a ~
9= to8+l~s
$ 3.
A i.se~ qadi.C; 9I S (r.'HECKKO 4-,~ ev INITIALS/OATK g w%/8'~ WI SIO Rl {KOIa4.I3)
0
~ ~
WASHINGTON PUBLIC POWER SUPPLY SYSTEM CAI.C. NO. SHEET NO. ~ I Ax 4 SCC, ('5yT. MTp; ) aP= g(. l P~l
~
P = +h.+ P~IA M:=.SRS ~.7R> ~ S'+I K= c.sz
'10>+'
I 4 4 Pp~ .C <S
't . 7a.~
0 o 'f . <8/s ~ V = to.+ .<f~z, A= + ~el 5'= >o'f.+x <o. += R IT7.5 %t /~<~ Wrs
'toS 81 A ss . 5 3, a x .7g x 8+ '1 ~p- QS. \ ~El Q,O x'g (, P'= 43<, PSie /p- .6C. ~ = 3. 5, <8//" ~ c. g= l'..o Ik = Q.~.a ~ 0 t' ata'I.q E<~ls c. V = t.l'o Q< /c.P .A = +.os~ %~ ='~JE,l j 0 11.3 ~p-O'881 k-r \'E +E.c.. ( Nbx. Lor. A P, T ) .spy x, log s&l 'C 'hR.'1 ~P= 'BA. 7 ps I 0;i(, p'= tg,~ ps' k 5',4- t->/ ec 'P/
tc'. = C;o Q,~5.~~ 8.S = Wilg.b. $ ~/sec. '/ =.70 g = 8,.Co ~4 //'ZPI A = ~ ~@1
+ 587 ~t.'HKCKKO ITIAI S/DATE /0 g /~~i'
WASHINGTON PUBLIC POWER SUPPLY SYSTEM CAI.Cc No. SHKKT NO. l
~ ~
l I I J I i I I FIBVLFI c,l5 pe,Qi ~ II I I i I II Tl lh Ie Fco~ >lapp p L-o ~ Rl Ph3 Q It~I aC ling I 'i Csee.g LS/ +~~/s c~ l-~/SK,~
<QRaR I SL%.5 Robe.5 +S l.g, c
a03 l \ t6,'t Ptb 1 Ace +~8. 3 2't 6,3 Qca. Q 1 $C ~ Q 2 Ill,g, + Gl.g X46, 8 l1og,g 512. 3 Qg4., 7 XSo. 6 l t 3Q.5 5'7 B. l 9Q5' oL 3'l Gl l 0- ll 3 c 3ll l ling,g >1~ 5 x ss, c p]qq,g RK Payee twc. E'
+ \+ +~CMQ.C.'hl tM l ~p'~+O - po p$ /f l ~
Fl.o vJ Q. +, g iiggp
~~l- J~ DR~ 6 SH'EET p- g~q p 4iuciiooo[c 0 F 0 I Q. ICe i'sc Fih)c c CciepF ieieiu'Tg QF L bocIPic'ci 'i P uQK A~a OF Fr.iC ale~, Z'.C,. leei'CH'LC-< l (+0 pieeesuFe Re" Foiue- I o<- l(ei i c cau&cioiu Live BFe>F . ~uP-g. FLAP, F lC. C.Z-l C HKCKKO TIAl 5/OATK 4 I'o/6/fz;
- ~
P A 40 O C ~ I A O o nm 30 2'I CI I 2e EA C n CA W CC 25 4 m 2f ZZ ZI 20
~ Q D
XS 18 m O Vl M Z il m Cl Xl m ill '0
~O I
m <w III CD O X7 Il mG W Z) XI I ~- n n lp 0.1 + S 103 TIME Icecap cv
~ m
Vl r Cl O Cr t m ~ I-O O m o O m OW
Ã)
Ch 000 'lO PQ o Ro g 1 CA C C 'I IJ Cjl I C 50 3o I Id 200 m Q m O 8 Z m I
~m W I/I m D K CD O gZ7 M I/I mm 100 O
0.1 10 I S TIME her') c m
\
A
.%RahtsgLee PaHk Pacer Iiappbj Systen MKRag968 SM56eocge&~~V/ay Ricfr)~VhmhingtonS9352 (509) 372~
W 22>>gv~z XM g8 Qf jhdQ55'~~ .2685 Divison P~d Qamfck Q ~3 tiara: A Ne9ona)d
~~act: N~R PRMKi 2 QRBR%7Z@f W j~uRQTXCe >e~e saefi~ 8m %we ~oBaw$
'L. Q. Hichm W Rick Ricapaio anng ~~Sef'asian tramaltted hy X9, 19E2 hv tHepham.
%e guam'and vent valves erich &7 4s analyzing for Qas4ng t W:8
('13 5~~. ORB' t" 1g 1 h XTCn
' 4J $ 'os th>> enaEysxs of .e 24-inch wQva. vie the mme veracities addch ~
Rich see etabl zYr@ in QPPSS GDe~atian HE-02-8 0 t,ransack. ~ en October 9~ X.982 by 744 Please cia avaw<Mng wf&An yaui poser to see that the Ravager M, 3M'd'ie'ehm date WhS O'. Ricapato cava Nr. Hichnan $ s act.
%hare cd;~N to have ~.".e resu3ts %er ice RRC by Gctaber 3.5, I A. Bola~/M6D 5Ã@QH ~ QSP 2 WngineeWi~ig
5O il Q 0 7I
~5
- 1. ~
4 ~ 5 I ~ ~ ' ~ ~ ~ I Q
- ,I 6
~ II .zC 4, '5 I5 '-"-z '4J ~
C< S a 1 4 I I Q l h v Z4 SI Z C
.'o a.
g IS oo
'.t~ o a <<<M>X ,4CI CI
- 5. - Cf o
~ I 4 I I ~
5 D Q 55 4 Qya 4,, 0 $ g +0 $y +0 50 64 70 da 50 W W I
- 4 ~ 4 ~ *
~ f l J: I ~ I ~
t I ~
~ ~ ~ - ~ ~, l I ~
I
',7 t.'0 ~ p 0 ~ "CO
,.Oz
<0 l
',17 o ig
't i0 ~ ~ ~
E ~'"7
- gx I
"ZL
,~lat~ '*i 0 g.
.50M ~
0 '-tun 0X
~ ~ ~ ~ ~ r ~ 't0N0 !n 7
A"..l':8H.A
'0 ~ ~ ~ I ~ ~ ~~ I ~ $ Qo 54 te 5a 6,4 VO 8c 9c}}