ML17292A809
ML17292A809 | |
Person / Time | |
---|---|
Site: | Columbia |
Issue date: | 09/20/1983 |
From: | Mata M GENERAL ELECTRIC CO. |
To: | |
Shared Package | |
ML17292A808 | List: |
References | |
23A1877AA, 23A1877AA-R02, 23A1877AA-R2, NUDOCS 9704220009 | |
Download: ML17292A809 (30) | |
Text
E 0 y V
NU"'L~< ENER+>
OPERATtONS "GER ERAL " ELEL'TRi t,'USINESS RBV 23 A1877AA SH MO. 1 REVISION SX'ATUS SHEET SYS. l4) I l DOCUMENT TITLE I REACTOR PROTECTION SYSTEM y
LEG~ OR DESCRIPTION OF GROUPS TYPE I DESIGN SPECIFICATION DATA SHEETS THE SUPPLY SYSTEN IS RESPONSIBLE FOR ~ ~ORD a TIESIGN CHANGE CONTROL OF THIS DOCUNENTM~ ~g qo ~2 4P1P
-Denotes Change REVISIONS
)
c Doctnaent Contxol 3608KK Tsansfex'ex'WA DMC-2414 PPfo~ c eu)t Owlet. Transferred To Supttly System Control As Per Work
(
Q~ Order 4SOO EMR-g-ggg Revision BURNS AND ROE Bysns %Roe Is Reetycesibte Only For That Information It Hae Added To This Orawing ln Accordance With Syyptyty System Oirsctlon By The Above Revisions.
BURNS 8 ROE FILE tIO. Q /f. /7+P St>PI T 02-0Z.C')Z MSy 2.
SYSTKM CVI CVI M wry ber Sheet Sheet 366A 740RS 754MR 432QH 722D b
RA SIEUR ling NED SAN JOSE tt AB ROQK
/
m zxzyn~~% 4'iR CONT ON SHEET 2 SH NO. 1 Nco $ 07A IRcv to/st )
9704220009'70415, I-~23 PDR ADQCK 05000397 P PDR
I(
4 0
0
SP5 R~~ ta a IRCLEAR EMERSY BUSINESS OPERATIONS 6 EN ERAL 9 FLE CTH [ c 23A1877AA REV 2 SHNO. 1$
4.1.12
~ ~ Reactor Protection System Tri Reactor Vessel Hi h Pressure 4 .1 .12 .I Punction >> Limit positive prcssure effect on reactor parer.
(Note 11) (Seo Paragzaph 4.1 .18 for Notes and Definitions) 4.1.12.2 Trip Channel Sensor AI 322-N023A Identities A2 B22;N023C (Note 11) Bl B2?-N023B B2 B22-N023D.
4.1.12.3 Normal Rsngo 920-1005 psig 4.1.12.4 Channel Znstrument Accuracy 4.1 .12.5 Channol Calibrational Accuracy 4 1.12.6 Channol Instrument Drift (Design) 4.1.12.7 Analytical Limit 4.1.12.8 Tochnical Specif ication Limit 4.1.12.9 Nominal Trip Sotpoint 4.1.12.10 Alazm Setting 4 1.12 Il Tzansiont 140 psi/second 4 .I .12.12 Trip Channel Sensor Response 0.5 seconds Time 4.1.12.13 Trip System Trip Logic See Reference 2.1.2.g for these requirements.
e See Refcronce 2 .I .2.r for this requirement.
NEO NOVA (RCV 'lO/$ 1)
-~ e ~
4 sucamR waRsr ELECTRIC 23'Al 877AA sH No. 9 GEM ERAL BUSINESS OPERATIONS RFV 2
' R'eactor Protection System Tri Reactor Vessel Lo>> Vates Level 4 .1 .5 4 .1.$ .1 Pnnction Rednce possibility of uncovering reactor coxe (Note 11) (See Paragxaph 4 .1 18 fox'otes and Definitions) 4.1.5.2 Trip Channel Sensor A1 B22-N024A Identities A2 B22-N024C
{Note 11) Bl B22-N024B B2 B22-N024D 4.1.5.3 Normal Range 559 to 568 inches above vessel zero 4.1.5.4 Channel Instrmnent Accnracy 4.1.5.$ Channel Calibrational Accuracy 4.1.5.6 Channel Znstzmsent Drift (Design) 4.1.5.7 Analytical Limit 4.1.5.8 Technical Specification Limit 4.1.5.9 Nominal Trip Setpoint
~ ~
4.1.5.10 Alarm Setting~
4.1.$ .11 Transient -7 inches/second 4.1.5.12 Trip Channel Sensox Response 1 second Time 4.1.5.13 Trip System Tzip Logic 1:2 See Reference 2.1.2.g for these requirements.
~. See Refe ence 2.1.2 r foz these requirements.
~
0 lolA Iltev $ o/l$ I
WNP-2 AMENDMENT NO. 50 August 1995 TABLE 7.2-5 RPS RESPONSE TIME (DESIGN)
CHANNEL, MAXIMUM SENSOR ACTUATOR, OVERALL RESPONSE AND LOGIC RESPONSE FUNCTION TIME RESPONSE TIME TIME APRM*
Flow Biased 0.06 0.05 Seconds** 0. 09 Simulated Thermal Seconds Seconds**
Power-Upscale 0.05 Seconds Fixed Neutron Flux- 0.06 0. 09 Upscale Seconds Seconds Reactor Vessel 0.5 0.05 Seconds 0.55 High Pressure Seconds Seconds Reactor Vessel Low 1.0 0.05 Seconds 1.05 Water Level Seconds Seconds MSLIV Closure 0.01 0.05 Seconds 0.06 Seconds Seconds Turbine Stop Valve 0.01 0.05 Seconds 0.06 Closure Seconds Seconds Turbine Control Valve 0.03 0.05 Seconds 0.08 Fast Closure Seconds Secondsg Neutron detectors are exempt from response time testing.
Response time shall be measured from the detector output or from the input of the first electronic component in the channel.
Total response time of 6 + 1 seconds including simulated thermal power time constant.
Measured from start of turbine control valve fast closure.
7 ~ 2 32
I I r J jp
/ /
~ ~
/t j-r r r r r r EI a
I' p
o j r
l 0
By: WLL Date: 4/1 4/97 C Hie tail>
NlS-LIS-61A B C D Sensor One sided u er tolerance bounds
.685 (~ 4 <g in ~~4~)
.78
.5
.432 .465 D 1.= Dg .'= Da>:=stack(D i,D g)
.675 .44
.605
.53
.554 Establish mean and standard deviation using standard Mathcad functions:
Notation as follows:
n = number of data points Mean = mean of the data s = standard deviation n '.= rows(Data) n = 10 n =0.117 Mean.'=mean(Data) Mean =0.5666 s . = stdev(Data) s n-1 The following analysis establishes the 95%/95% one sided upper tolerance interval. The tolerance interval is obtained from the matrix Tolas using MathCad's linterp function.
4 5.14 5 4.2 6 3.71 7 3.4 8 3.19 9 3.03 10 2.91 Tol 95:=
12 2.74 15 2.57 (I) Tol 95,n <2) 20 2.4 TF:= linterp Tol 95, TF = 2.91 25 2.29 30 2.22 40 2.13 60 2.02 File: LS61.MCD Page: 1
~h 0
'P
~
P Sy: WLL Date: 4/14/97 9s fPgyy-One-sided upper tolerance bound T up .'=Mean+ s TF T up~ 0 907 Establish normali lot:
. Residuals Residuals '.=Data Mean Standard Res.duais esl s
'.=
csorr(Slsndsrd R;d~, 1) cRowOR:= 1.. mws(ordRes)
'rdRes:=
I cRowOR-2 OrdRes '.= augment(OrdRes, Prob) cRowOR rows(OrdRes) x:=0 z := mor(normal(0, 1.x) Pmb, x) m.'= l intercept:=0 line~~ .'=m OrdRes~
~ + intercept t
- cRowOR 0
cRewOR 1.5 I 0.5 0 0.5 I.5
~R~~R,I File: LS61.MCD Page: 2
0 MS-PS-23A B C D Sensor c~b ~
By: WLL Date: 4/14/97 8/csf<9
.072
.22 (Qlq 'C)
One sided u er tolerance bounds g (
~k('ar~ '.
g ~.o&G ~
.04 .04 D 1.'= .06 D 2.'= Data:=atack(D t,D k) 04 .07 5 I ~Q c)ot f
.08
.181 5 .oc t7
.05
. eSC Z-Establish mean and standard deviation using standard Mathcad functions:
g ~ tQ Notation as follows:
P g(,( g o4 AG~~
n = number of data points Mean = mean of the data
~fli~is <+ ~o.l c'<
(1Y'~
s = standard deviation n '= rows(Data) n = 11 Mean .'= mean(Data) Mean = 0.0833 Lt~( Q clgt" Pc+~~,
n n = 0.0602 = 0.0362 s '.= stdev(Data) s S:= Data, Mean S n-1 i=1 The following analysis establishes the 95%/95% one sided upper tolerance interval. The tolerance inteival is obtained from the matrix Tolas using MathCad's linterp function.
4 514 5 4.2 6 3.71 7 3.4 8 3.19 9 3.03 10 2.91 Tol 95 .'=
12 2.74 TF:= linterp Tol 95, Tol 95,n TF =2.825 15 2.57 20 2.4 25 2.29 30 2.22 40 2.13 60 2.02 File: PS23.MCD Page: 1
By: WLL Date: 4/1 4/97 efa Jz+
One-sided upper tolerance bound T upp~.'=Mean+ s TF T upper 0 2533 Establish normali lot:
Residuals Residuals .'= Data Mean Standard Residu OrdRes .'= esott(Standard Rmtdmts, t oRowOR:= 1.. mws(OrdRcs) j 1
cRowOR-
' OrdRes .'= augment(OrdRes,Prob) cRowOR rows(OrdRes) x:=0 z:= mot (normal(0, t,x) Prob, x) m '.= l intercept:=0 cRowOR 'O~~cRowOR,L cRo)bOR cRotttOR 1 O.S 09 1 LS 2 2.S cRowOR,1 File: PS23.MCD Page: 2
k MS-PS-23A B C D Sensor One sided u er tolerance bounds
~
By: WLL Date: 4/1 4/97 g/ieger
.072
.04 .04 D .'= .063 D2.'=
1 Data .'= stack D 1,D 2
.04 .07
.05 .08 Establish mean and standard deviation using standard Mathcad functions:
Notation as follows:
n = number of data points Mean = mean of the data s = standard deviation n .'= rows(Data) n=9 Mean.'= mean(Data) Mean = 0.0572 n
n s '.= stdev(Data) s =0.0153 S:= Data, Mean S =0.0019 n-1 i= 1 The following analysis establishes the 95%/95% one sided upper tolerance interval. The tolerance interval is obtained from the matrix Tolas using MathCad's linterp function.
4 5.14 5 4.2 6 3.71 7 3.4 8 3.19 9 3.03 10 2.91 Tol 95.'=
12 2.74 TF:=linterp Tol 95, Tol 95,n TF =3.03 15 2.57 20 2.4 25 2.29 30 2.22 40 2.13 60 2.02 File: PS23.MCD Page:1
j ~
t, 0
1
By: WLL Date: 4/1 4/97
+s QPXbF One-sided upper tolerance bound T uppm.'=Mean+ s TF T up~ 0 1037 Establish normali lot:
Residuals Residuals.'= Data Mean Standard Residuals:=
s OrdRes:= esort(Standatd Rmtd~s, ) 1 eRowOR:= 1 .. mws(OrdRes) 1 cRowOR-2 OrdRes:= augment(OrdRes,Prob) cR NOR rows(OrdRes) x:=0 zm~n .'=met(normal(0, l,x) - Prob ~~n.x) m .'=1 intercept:=0 line ~ '.=m OrdRes
~ + intercept
'R cRowOR 0
LS 0.$
cRott)OR, 1 File: PS23.MCD Page: 2
By: WLL Date: 4/14/97 cveeb y+ q/jgw RPS Low Levei One sided u er toierance bounds (T>4~ (n N~ i 520 523 485 420 320 468 465 400 460 559 400 495 D1:= 455 D2:= Data .'= stack(D1,D2) 381 430 476 357 470 542 377 542 540 470 497 358 File: SRPSL.MCD Page: 1
Sy: WLL Date: 4/14/97 Establish mean and standard deviation using standard Mathcad functions:
Notation as follows:
n = number of data points Mean = mean of the data s = standard deviation n '.= rows(Data) n = 25 Mean '.= mean(Data) Mean = 456.4 s '= stdev(Data) s = 65.8679 n-1 The following analysis establishes the 95/o/95/o one sided upper tolerance interval. The tolerance interval is obtained from the matrix Tolss using MathCad's linterp function.
4 5.14 5 42 6 3.71 7 3.4 8 3.19 9 3.03 10 2.91 Tol 95 '.=
12 2.74 TF:= linterp Tol 95, Tol 95,n TF =2.29 15 2.57 20 2.4 25 2.29 30 2.22 40 2.13 60 2.02 One-sided upper tolerance bound T uppm'.=Mean+ s TF T uppm 607'2375 File: SRPSL.MCD Page: 2
'v '
'I I
~ oa By: WLL Date: 4/14/97 4I14t~
Establish normali lot:
Residuals Restdoats:=Da Moan Stan OrdRas:=asort(StalldaldRmjd~s 1} oRowOR:=l..taws(OrdRas) cRowOR- l 2
Prob OrdRes:= augment(OIdRes, Prob) wOR rows(OrdRes) x:=0 z ~ '.=rant(normal(0,1,x) Pmts n ~n,x}
m;= I intercept:= 0 line~wOR.'= m OrdRescR wo I cRowOR, t intercept cRowOR 0
cRowOR Xf M 1.5 I &.5 0 0.5 I 1.5 2 cRowOR, I File: SRPSL.MCD Page: 3
I MS-LIS-61A 8 C D and MS-DPIS-8A 8 C D Lo ic
~
By: WLL Date: 4/14/97 CeaA>> dl@'~P One sided u er tolerance bounds 30 sat sa!c) 17 20 14 30 30 25 D 1
.'= D 2.'= 20 Data:= stack(D t,D 2) 25 26 10 24 20 12 20 Establish mean and standard deviation using standard Mathcad functions:
Notation as follows:
n = number of data points Mean = mean of the data s = standard deviation
'.= rows(Data) n=15 n
Mean '.= mean(Data) Mean=21.5333 s.'=stdev(Data) s 6.4128 n-1 The following analysis establishes the 95%/95% one sided upper tolerance intetval. The tolerance interval is obtained from the matrix Tolss using MatCad's linterp function.
4 5.14 5 4.2 6 3.71 7 3.4 8 3.19 Tol 95 9 3.03 TF:=linterp Tol 95, Tol 95,n TF =2.57 10 2.91 12 2.74 15 2.57 20 2.4 25 2.29 file: SORBRTN.MCD page:1
By: WLL Date: 4/14/97
</aPP One-sided upper tolerance bound T up~'.=Mean+ s TF T upper 38 0142 Establish normali lot:
Residuals Residuals .'=Data- Mean Standard Residuals '
OrdRes:=esort(dtandardhtd~ts,l) oRowOR:=I..rows(ordRes)
I cRowOR-2 Probe:= R rows(OrdRes)
OrdRes .'= augment(OrdRes, Prob) x:=0 z~x.'=root(normal(0,t,x)-Prob~ ,x) m.'= l intercept:=0 line~~ .'=m OrdRes
~< + intercept
- cRowOR 0
dbnzOR 2 1.5 1 0.5 0 0.5 1 L5 cRotttORs 1 file: SORBRTN.MCD page: 2
By: WLL Date: 4/14/97
~4B> g5 /pe/g+
MS-PS 23A B C D and MS-LlS-24A B C 0 Lo6ic.
One sided u er tolerance bounds 30 (T)Q a+ ~)
33 25 30 30 35 40 D 1.'= D2'= Data '.=staak(D ~.D ~)
30 15 21 25 32 30 30 Establish mean and standard deviation using standard Mathcad functions:
Notation as follows:
n = number of data points
=
Mean mean of the data s = standard deviation n:= rows(Data) n = 14 Mean.'= mean(Data) Mean = 29 s .= stdev(Data) s = 6.0764 n-1 The following analysis establishes the 95%/95% one sided upper tolerance interval. The tolerance interval is obtained from the matrix Tolss using MathCad's linterp function.
4 5.14 5 4.2 6 3.71 7 3.4 8 3.19 Tol 95:= 9 3.03 TF:= linterp Tol 95, Tol 95,n TF = 2.6267 10 2.91 12 2.74 15 2.57 20 2.4 25 2.29 File: 2324.MCD Page: 1
By: WLL Date: 4/1 4/97
</i~fg~
One-sided upper tolerance bound T uppm'.=Mean+ s TF T up~ 44.9608 Establish normali lot:
Residuals:=Dam Mass SlandstdRtojdnats .--
Residuals OrdRas:=cert(StsndsrdRmtd~s,l) cRowOR:= l..rows(OrdRcs) 1 cRowOR-2 OrdRes '.= augment(OtdRess Prob) cRO)NOR rows(OrdRes) x:=0 zm, .'=mat(normal(0, l,x)- Pmb~~n,x)
.'=m OrdRes~
m.'= I intercept:=0 line ~ < + intercept'
'RotsOR t'~~~R 1
3 L5 2 1.5 1 0.5 0 0.5 1 15 2 cRotsOR, 1 File: 2324.MCD Page: 2
GE Nuclear Energy
- Genera1 gecsnc Campany 175 Cunner Avenue. San Jose. CA 95125 OG97-'121-964 February 12, 1997
~
TO: BWR Owners'roup Response Time Testing (RTT) Committee
SUBJECT:
Response Time Testing Committee Neeting Notice forNarch 12 1997 Attachments: (1) Draft NEDO-32291 Supplement 1, BWR Owners'roup Licensing as Topical Report - - System Analyses for the Simplification of Selected Response Time Testing Requirements", dated February 1997
.. (2) Washington, DC subway map
- <<8 '
~
~
~<<r Ai (3) Driving directions to meeting location v ')~'<<'P,'
C BWR Owners'Group Response Time Testing (RTT).Committee meeting will be held on Wednesday . March,12;,=.1997'in. Washington,,DC. The purpose of this meeting is to discuss the S+ ~ draft NEDO-32291 S'upplement 1 (see Attachment1). 'Appropriate comments willbe,
~~'4 C incorporated and the Committee. wilt be asked.to approve the revised document. This documentsupplements NEDO-32291-A, "System Analyses for the Elimination of. Selected.
4~ Response Time Testing-Requirements" by providing technical justification for the further .
simplNcation of response time testing requirements of selected Reactor Protection System (RPS) and. (2) Isolation Actuation System (IAS) instrumentation loops. The technical
<<J'"
ci.0 justification methods. utilized include Failure Modes and Effects Analysis (FMEA),, failure experience. reviews, and identification of functional surveillance testing other than response time testing, thatadequately confirms the ability of the selected instrumentation loops to meet'
'esponse time requirements member
.'TT'Commiffee are. requested to carefully review the affached draft Licensing
,~ <<
Topical. Report and provide. your comments to fhe undersigned no later than Wednesday,'.
March 5; 199T The reportis complete except for fhe FMEAinformafion for the GE
"+Y~'$ ' CR120A relays= Thatis expected to be available before the meeting; As we discussedin'.
conference. calls last fall'he fast response RTTs are notincluded. In addition, main.
,,sfeam Ifne radiation loop for MS/V closure is notincluded because it has been addressed by other BWROG action. Four radiation monitoring loops,. each applying to a'single p/ant;. are: notincluded'because it appeared unlikely that fhe FMEA could provide j
adequate usfifrcafron (due to complexity). Finally, one Drywe// High Pressure (RPS) loop for a single p/antis-notincluded because there are other ways.to address that one with greaterlikelihood ofsuccess..
I The Response Time Testing Committee will meet in the morning atthe Embassy Suites Hotel at Friendship Heights,. and then will travel to NRC lieadquarters in Rockville to discuss the reportconclusions, the schedule for Licensing Topical Report submittal, and the review/approval cycle. Following the meeting with the NRC we will return to the Embassy Suites Hotel to closeout open issues if required.
~ 'g ~, V'
$ s rk