ML15036A249
ML15036A249 | |
Person / Time | |
---|---|
Site: | Arkansas Nuclear |
Issue date: | 02/05/2015 |
From: | Stephanie Pyle Entergy Operations |
To: | Document Control Desk, Office of Nuclear Reactor Regulation |
References | |
1CAN021501 | |
Download: ML15036A249 (34) | |
Text
1CAN021501 February 5, 2015
U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555
Subject:
ANO-1 Cycle 26 COLR Arkansas Nuclear One - Unit 1 Docket No. 50-313 License No. DPR-51
Dear Sir or Madam:
Entergy Operations, Inc. (Entergy) Arkansas Nuclear One, Unit 1 (ANO-1) Technical Specification 5.6.5 requires the submittal of the Core Operating Limits Report (COLR) for each reload cycle. Attached is Revision 0 of the ANO-1 Cycle 26 COLR. Please note that the latest approved revision number of the Babcock and Wilcox Topical Report BAW-10179P-A is identified in the COLR as Revision 8, May 2010. In addition, the approved revision number of the Entergy Reactor Physics Methods Report is identified in the COLR as Revision 0, December 1993.
This completes the reporting requirement for the referenced specification. This submittal contains no regulatory commitments. Should you have any questions, please contact me.
Sincerely,
ORIGINAL SIGNED BY STEPHENIE L. PYLE
SLP/dbb
Attachment:
ANO-1 Cycle 26 Core Operating Limits Report (COLR)
Entergy Operations, Inc. 1448 S.R. 333 Russellville, AR 72802 Tel 479-858-4704 Stephenie L. Pyle Manager, Regulatory Assurance Arkansas Nuclear One 1CAN021501 Page 2 of 2
cc: Mr. Marc L. Dapas Regional Administrator U. S. Nuclear Regulatory Commission Region IV 1600 East Lamar Boulevard Arlington, TX 76011-4511
NRC Senior Resident Inspector Arkansas Nuclear One P. O. Box 310 London, AR 72847
U. S. Nuclear Regulatory Commission Attn: Ms. Andrea E. George MS O-8B1 One White Flint North 11555 Rockville Pike
Rockville, MD 20852
Mr. Bernard R. Bevill
Arkansas Department of Health Radiation Control Section 4815 West Markham Street Slot #30 Little Rock, AR 72205
Attachment to 1CAN021501 ANO-1 Cycle 26 Core Operating Limits Report (COLR)
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 1 Rev. 0
ENTERGY OPERATIONS ARKANSAS NUCLEAR ONE UNIT ONE CYCLE 26 CORE OPERATING LIMITS REPORT
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 2 Rev. 0 1.0 CORE OPERATING LIMITS This Core Operating Limits Report for ANO-1 Cycle 26 has been prepared in accordance with the requirements of Technical Specification 5.6.5 with applicable 10 CFR 50.46 reporting. The core operating limits have been developed using the methodology provided in the references.
The following cycle-specific core operating limits are included in this report:
- 1) 2.1.1.3 Variable Low RCS Pressure - Temperature Protective Limits 2) 3.1.1 SHUTDOWN MARGIN (SDM)
- 3) 3.1.8 PHYSICS TESTS Exceptions - MODE 1 4) 3.1.9 PHYSICS TEST Exceptions - MODE 2 5) 3.2.1 Regulating Rod Insertion Limits
- 6) 3.2.2 AXIAL POWER SHAPING RODS (APSR) Insertion Limits
- 7) 3.2.3 AXIAL POWER IMBALANCE Operating Limits
- 8) 3.2.4 QUADRANT POWER TILT (QPT) 9) 3.2.5 Power Peaking 10) 3.3.1 Reactor Protection System (RPS) Instrumentation
- 12) 3.4.4 RCS Loops - MODES 1 and 2
- 13) 3.9.1 Boron Concentration
2.0 REFERENCES
- 1. "Safety Criteria and Methodology for Acceptable Cycle Reload Analyses," BAW-10179P-A, Rev. 8, Framatome ANP, Inc., Lynchburg, Virginia, May 2010. 2. Letter dated 4/9/02 from L.W. Barnett, USNRC, to J.M. Mallay, FRA-ANP, "Safety Evaluation of Framatome Technologies Topical Report BAW-10164P Revision 4,
'RELAP5/MOD2- B&W, An Advanced Computer Program for Light Water Reactor LOCA and Non-LOCA Transient Analysis' (TAC Nos. MA8465 and MA8468)," USNRC ADAMS Accession Number ML013390204. 3. RELAP5/MOD2-B&W - An Advanced Computer Program for Light Water Reactor LOCA Transient Analysis, BAW-10164PA, Rev. 6, Framatome Technologies, Inc., Lynchburg, Virginia, June 2007. 4. "Qualification of Reactor Physics Methods for the Pressurized Water Reactors of the Entergy System," ENEAD-01-P, Rev. 0, Entergy Operations, Inc., Jackson, Mississippi, December 1993. 5. "ANO-1 Cycle 26 Limits and Setpoints," Areva Doc. No. FS1-0016730, January 2015. 6. "Arkansas Nuclear One, Unit 1, Cycle 26 Final Reload Report," ANP-3366, Rev. 0, January 2015. (CALC-ANO1-NE-14-00001). 7. "ANO 1-26 Core Loading Plan (AREVA document no. FS1-0017393-2.0), FAB14-689, December 19, 2014. 8. "IC (Initial Condition) DNB RCS Protection Criteria," CALC-96-E-0023-02, Rev. 7.
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 3 Rev. 0
2.0 REFERENCES
(continued)
- 9. "Arkansas Nuclear One Unit 1, Cycle 26 Reload Technical Document (RTD)," AREVA document no. FS1-00184680 Revision 1, January 12, 2015 (CALC-ANO1-NE-14-00002). 10. "Special Report, Licensee Event Report 50-313/2014-002-00, Arkansas Nuclear One Unit 1, Docket No. 50-313, License No. DPR-51", 1CAN121405, December 22, 2014.
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 4 Rev. 0 Table Of Contents Page REACTOR CORE SAFETY LIMITS Fig. 1 Variable Low RCS Pressure-Temperature Protective Limits
................................. 6 Fig. 2 AXIAL POWER IMBALANCE Protective Limits
..................................................... 7
SHUTDOWN MARGIN (SDM) ...................................................................................................... 8
REGULATING ROD INSERTION LIMITS Fig. 3-A Regulating Rod Insertion Limits for Four-Pump Operation From 0 to 200 10 EFPD
...................................................................................... 9 Fig. 3-B Regulating Rod Insertion Limits for Four-Pump Operation From 200 10 EFPD to EOC ............................................................................. 10 Fig. 4-A Regulating Rod Insertion Limits for Three-Pump Operation From 0 to 200 10 EFPD
................................................................................... 11 Fig. 4-B Regulating Rod Insertion Limits for Three-Pump Operation From 200 10 EFPD to EOC ............................................................................. 12 Fig. 5-A Regulating Rod Insertion Limits for Two-Pump Operation From 0 to 200 10 EFPD
................................................................................... 13 Fig. 5-B Regulating Rod Insertion Limits for Two-Pump Operation From 200 10 EFPD to EOC ............................................................................. 14
AXIAL POWER SHAPING RODS (APSR) INSERTION LIMITS ............................................... 15 AXIAL POWER IMBALANCE OPERATING LIMITS Fig. 6-A AXIAL POWER IMBALANCE Setpoints for Full In-Core Conditions for Four-Pump Operation from 0 to EOC .................................................................. 16 Fig. 6-B AXIAL POWER IMBALANCE Setpoints for Minimum In-Core Conditions for Four-Pump Operation from 0 to EOC
............................................................. 17 Fig. 6-C AXIAL POWER IMBALANCE Setpoints for Ex-Core Conditions for Four-Pump Operation from 0 to EOC .................................................................. 18 Fig. 7-A AXIAL POWER IMBALANCE Setpoints for Full In-Core Conditions for Three-Pump Operation from 0 to EOC ................................................................ 19 Fig. 7-B AXIAL POWER IMBALANCE Setpoints for Minimum In-Core Conditions for Three-Pump Operation from 0 to EOC
........................................................... 20 Fig. 7-C AXIAL POWER IMBALANCE Setpoints for Ex-Core Conditions for Three-Pump Operation from 0 to EOC ................................................................ 21 Fig. 8-A AXIAL POWER IMBALANCE Setpoints for Full In-Core Conditions for Two-Pump Operation from 0 to EOC .................................................................. 22 Fig. 8-B AXIAL POWER IMBALANCE Setpoints for Minimum In-Core Conditions for Two-Pump Operation from 0 to EOC ............................................................. 23 Fig. 8-C AXIAL POWER IMBALANCE Setpoints for Ex-Core Conditions for Two-Pump Operation from 0 to EOC .................................................................. 24
QUADRANT POWER TILT LIMITS AND SETPOINTS ............................................................. 25 CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 5 Rev. 0 POWER PEAKING FACTORS Fig. 9A LOCA Linear Heat Rate Limits for Mark-B-HTP Fuel .......................................... 26 DNB Power Peaking Factors ............................................................................................... 27 REACTOR PROTECTION SYSTEM (RPS) INSTRUMENTATION Fig. 10 RPS Maximum Allowable Setpoints for Axial Power Imbalance ......................... 28 Fig. 11 RPS Variable Low Pressure Temperature Envelope Setpoints .......................... 29
RCS PRESSURE, TEMPERATURE, AND FLOW DNB SURVEILLANCE LIMITS .................. 30
RCS LOOPS MODE 1 AND 2 .................................................................................................... 31 REFUELING BORON CONCENTRATION ................................................................................ 31
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 6 Rev. 0 FIGURE 1 Variable Low RCS Pressure - Temperature Protective Limits (Figure is referred to by Technical Specification 2.1.1.3)
PUMPS OPERATING (TYPE OF LIMIT) GPM* POWER** FOUR PUMPS (DNBR LIMIT) 383,680 (100%) 110%
THREE PUMPS (DNBR LIMIT) 284,307 (74.1%) 89%
ONE PUMP IN EACH LOOP (DNBR LIMIT) 188,003 (49%) 62.2%
- 109% OF DESIGN FLOW (2.5% UNCERTAINTY INCLUDED IN STATISTICAL DESIGN LIMIT) ** AN ADDITIONAL 2% POWER UNCERTAINTY IS INCLUDED IN STATISTICAL DESIGN LIMIT 4-PUMP 3-PUMP 590 600610620630640 6502300 2200 2100 2000 1900 1800 1700 Reactor Coolant Outlet Temperature, °F Core Outlet Pressure, psig 1 PUMP EACH LOOP CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 7 Rev. 0 Figure 2 AXIAL POWER IMBALANCE Protective Limits (measurement system independent)
(Figure is referred to by Technical Specification 2.1.1 Bases)
(44.6, 112.0)(44.6, 87.6)(44.6, 61.0)-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70(-55.1, 101.4)(-55.1, 77.0)(-55.1, 50.4)(-55.1, 0.0)(-47.3, 112.0)(-47.3, 87.6)(-47.3, 61.0)ACCEPTABLE 4 PUMP OPERATIONACCEPTABLE 3 AND 4 PUMP OPERATIONACCEPTABLE 2, 3 AND 4 PUMP OPERATIONThermal Power Level %Axial Power Imbalance, %The three-or two-pump example setpoint curves show allowable values for an approximate 26% and 51% flow reduction for three-and two-pump operation respectively. The actual setpoint curve will be calculated by the Reactor Protection System and will be directly proportional to the indicated flow.120100806040200(56.3, 101.4)(56.3, 77.0)(56.3, 50.4)(56.3, 0.0)
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 8 Rev. 0 SHUTDOWN MARGIN (SDM)
(Limits are referred to by Technical Specifications 3.1.1, 3.1.4, 3.1.5, 3.1.8, 3.1.9, and 3.3.9)
Verify SHUTDOWN MARGIN per the table below.
APPLICABILITY REQUIRED SHUTDOWN MARGIN TECHNICAL SPECIFICATION REFERENCE MODE 1* 1 %k/k 3.1.4, 3.1.5 MODE 2* 1 %k/k 3.1.4, 3.1.5, 3.3.9 MODE 3 1 %k/k 3.1.1, 3.3.9 MODE 4 1 %k/k 3.1.1, 3.3.9 MODE 5 1 %k/k 3.1.1, 3.3.9 MODE 1 PHYSICS TESTS Exceptions** 1 %k/k 3.1.8 MODE 2 PHYSICS TESTS Exceptions 1 %k/k 3.1.9
- The required Shutdown Margin capability of 1 %k/k in MODE 1 and MODE 2 is preserved by the Regulating Rod Insertion Limits specified in Figures 3-A&B, 4-A&B, and 5-A&B, as required by Technical Specification 3.2.1.
- Entry into Mode 1 Physics Tests Exceptions is not supported by existing analyses and as such requires actual shutdown margin to be 1 %k/k.
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 9 Rev. 0 Figure 3-A Regulating Rod Insertion Limits for Four-Pump Operation From 0 to 200 10 EFPD (Figure is referred to by Technical Specification 3.2.1)
- Operating rod group overlap is 20% +/- 5% between two sequential groups, except for physics tests.
0 50 100 150 200 250 300Rod Index, % WithdrawnPower, % of 2568 MWt 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 (0.0, 7.3)
(33.5, 20)
(64.5, 58)(105.4, 102)(264.1, 102)(300.0, 102)(248.5, 90)
(248.5, 78)
(206.5, 58)
OPERATION IN THIS REGION IS NOT ALLOWED SHUTDOWN MARGIN LIMIT OPERATION RESTRICTED PERMISSIBLE OPERATING REGION0 20 40 60 80 100 GROUP 6*0 20 40 60 80 100GROUP 5* 0 20 40 60 80 100GROUP 7*
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 10 Rev. 0 Figure 3-B Regulating Rod Insertion Limits for Four-Pump Operation From 200 10 EFPD to EOC (Figure is referred to by Technical Specification 3.2.1)
- Operating rod group overlap is 20% +/- 5% between two sequential groups, except for physics tests.
0 50 100 150 200 250 300Rod Index, % WithdrawnPower, % of 2568 MWt 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 (0.0, 0.4)
(98.5, 20)(167.5, 58)(207.3, 102)(264.1, 102)
(300.0, 102)(248.5, 90)
(248.5, 78)(206.5, 58)
OPERATION IN THIS REGION IS NOT ALLOWED SHUTDOWN MARGIN LIMIT OPERATION RESTRICTED PERMISSIBLE OPERATING REGION0 20 40 60 80 100GROUP 6*0 20 40 60 80 100GROUP 5* 0 20 40 60 80 100GROUP 7*
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 11 Rev. 0 Figure 4-A Regulating Rod Insertion Limits for Three-Pump Operation From 0 to 200 10 EFPD (Figure is referred to by Technical Specification 3.2.1)
- Operating rod group overlap is 20% +/- 5% between two sequential groups, except for physics tests.
0 50 100 150 200 250 300Rod Index, % WithdrawnPower, % of 2568 MWt 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 (0.0, 5.5)
(33.5, 15)
(64.5, 43.5)
(106.0, 77)(264.7, 77)
(300.0, 77)(248.5, 67)
(248.5, 58)
(206.5, 43)
OPERATION IN THIS REGION IS NOT ALLOWED SHUTDOWN MARGIN LIMIT OPERATION RESTRICTED PERMISSIBLE OPERATING REGION0 20 40 60 80 100GROUP 6*0 20 40 60 80 100GROUP 5* 0 20 40 60 80 100GROUP 7*
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 12 Rev. 0 Figure 4-B Regulating Rod Insertion Limits for Three-Pump Operation From 200 10 EFPD to EOC (Figure is referred to by Technical Specification 3.2.1)
- Operating rod group overlap is 20% +/- 5% between two sequential groups, except for physics tests.
0 50 100 150 200 250 300Rod Index, % WithdrawnPower, % of 2568 MWt 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 (0.0, 0.3)
(98.5, 15)(167.5, 43.5)(207.9, 77)(264.7, 77)(300.0, 77)(248.5, 58)(248.5, 67)
(206.5, 43)
OPERATION IN THIS REGION IS NOT ALLOWED SHUTDOWN MARGIN LIMIT OPERATION RESTRICTED PERMISSIBLE OPERATING REGION0 20 40 60 80 100 GROUP 6*0 20 40 60 80 100GROUP 5* 0 20 40 60 80 100GROUP 7*
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 13 Rev. 0 Figure 5-A Regulating Rod Insertion Limits for Two-Pump Operation From 0 to 200 10 EFPD (Figure is referred to by Technical Specification 3.2.1)
- Operating rod group overlap is 20% +/- 5% between two sequential groups, except for physics tests.
0 50 100 150 200 250 300Rod Index, % WithdrawnPower, % of 2568 MWt 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 (0.0, 3.6)
(33.5, 10)
(64.5, 29)(107.2, 52)(265.8, 52)(300.0, 52)(248.5, 44)
(248.5, 38)
(206.5, 28)
OPERATION IN THIS REGION IS NOT ALLOWED SHUTDOWN MARGIN LIMIT OPERATION RESTRICTED PERMISSIBLE OPERATING REGION0 20 40 60 80 100 GROUP 6*0 20 40 60 80 100GROUP 5* 0 20 40 60 80 100GROUP 7*
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 14 Rev. 0 Figure 5-B Regulating Rod Insertion Limits for Two-Pump Operation From 200 10 EFPD to EOC (Figure is referred to by Technical Specification 3.2.1)
- Operating rod group overlap is 20% +/- 5% between two sequential groups, except for physics tests.
0 50 100 150 200 250 300Rod Index, % WithdrawnPower, % of 2568 MWt 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 (0.0, 0.2)
(98.5, 10)(167.5, 29)(209.1, 52)(265.8, 52)(300.0, 52)(248.5, 38)(248.5, 44)
(206.5, 28)
OPERATION IN THIS REGION IS NOT ALLOWED SHUTDOWN MARGIN LIMIT OPERATION RESTRICTED PERMISSIBLE OPERATING REGION0 20 40 60 80 100 GROUP 6*0 20 40 60 80 100GROUP 5* 0 20 40 60 80 100GROUP 7*
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 15 Rev. 0 AXIAL POWER SHAPING RODS (APSR) INSERTION LIMITS (Limits referred to by Technical Specification 3.2.2)
Up to 530 +/- 10 EFPD, the APSRs may be positioned as necessary for transient imbalance control. However, the APSRs shall be fully withdrawn by 540 EFPD. After the APSR withdrawal at 530 +/- 10 EFPD, the APSRs shall not be reinserted, except during the end of cycle shutdown when the reactor power is equal to, or less than, 30% FP.
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 16 Rev. 0 Figure 6-A AXIAL POWER IMBALANCE Setpoints for Full In-Core Conditions for Four-Pump Operation from 0 to EOC (Figure is referred to by Technical Specification 3.2.3)
-50.00 -40.00 -30.00 -20.00 -10.00 0.00 10.00 20.00 30.00 40.00 50.00 PERMISSIBLE OPERATING REGIONRESTRICTED REGION Power, % of 2568 MWt Axial Power Imbalance, %FP RESTRICTED REGIONPERMISSIBLE OPERATING REGION (-32.67, 60)
(-32.45, 80)
(34.71, 60)
(-25.14, 92)
(-19.89, 102)
(34.48, 80)
(27.66, 92)
(20.76, 102) 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0
10.0 0.0 CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 17 Rev. 0 Figure 6-B AXIAL POWER IMBALANCE Setpoints for Minimum In-Core Conditions* for Four-Pump Operation from 0 to EOC (Figure is referred to by Technical Specification 3.2.3)
- Assumes that no individual long emitter detector affecting the minimum incore imbalance calculation exceeds 73% sensitivity depletion. The imbalance setpoints for the minimum incore system must be reduced to 2.8% FP at the earliest time-in-life this assumption is no longer valid.
-50.00 -40.00 -30.00 -20.00-10.00 0.00 10.00 20.00 30.00 40.00 50.00 PERMISSIBLE OPERATING REGIONRESTRICTED REGION Power, % of 2568 MWt Axial Power Imbalance, %FP RESTRICTED REGIONPERMISSIBLE OPERATING REGION(-24.10, 60)
(-23.25, 80)
(25.86, 60)
(-16.61, 92)
(-11.96, 102)(25.01, 80)
(18.79, 92)
(12.56, 102)110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 18 Rev. 0 Figure 6-C AXIAL POWER IMBALANCE Setpoints for Ex-Core Conditions for Four-Pump Operation from 0 to EOC (Figure is referred to by Technical Specification 3.2.3)
-50.00 -40.00 -30.00 -20.00 -10.00 0.00 10.00 20.00 30.00 40.00 50.00 PERMISSIBLE OPERATING REGIONRESTRICTED REGION Power, % of 2568 MWt Axial Power Imbalance, %FP RESTRICTED REGIONPERMISSIBLE OPERATING REGION(-26.95, 60)
(-26.27, 80)
(28.80, 60)
(-19.02, 92)
(-13.77, 102)(28.10, 80)
(21.30, 92)
(14.46, 102)110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 19 Rev. 0 Figure 7-A AXIAL POWER IMBALANCE Setpoints for Full In-Core Conditions for Three-Pump Operation from 0 to EOC (Figure is referred to by Technical Specification 3.2.3)
-50.00 -40.00 -30.00 -20.00-10.00 0.00 10.00 20.00 30.00 40.00 50.00 PERMISSIBLE OPERATING REGIONRESTRICTED REGION Power, % of 2568 MWt Axial Power Imbalance, %FP RESTRICTED REGIONPERMISSIBLE OPERATING REGION(-32.84, 45)
(-32.67, 60)
(34.87, 45)
(-25.40, 69)
(-20.17, 77)
(34.71, 60)
(27.92, 69)
(21.04, 77) 110.0 100.0 90.0 80.0 70.0 60.0 50.0
40.0 30.0 20.0 10.0 0.0 CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 20 Rev. 0 Figure 7-B AXIAL POWER IMBALANCE Setpoints for Minimum In-Core Conditions* for Three-Pump Operation from 0 to EOC (Figure is referred to by Technical Specification 3.2.3)
- Assumes that no individual long emitter detector affecting the minimum incore imbalance calculation exceeds 73% sensitivity depletion. The imbalance setpoints for the minimum incore system must be reduced to 2.8% FP at the earliest time-in-life this assumption is no longer valid. -50.00 -40.00 -30.00 -20.00-10.00 0.00 10.00 20.00 30.00 40.00 50.00 PERMISSIBLE OPERATING REGIONRESTRICTED REGION Power, % of 2568 MWt Axial Power Imbalance, %FP RESTRICTED REGION PERMISSIBLE OPERATING REGION(-24.62, 45)
(-23.95, 60)
(26.38, 45)
(-17.41, 69)
(-12.68, 77)(25.71, 60)
(19.60, 69)
(13.44, 77)110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 21 Rev. 0 Figure 7-C AXIAL POWER IMBALANCE Setpoints for Ex-Core Conditions for Three-Pump Operation from 0 to EOC (Figure is referred to by Technical Specification 3.2.3)
-50.00 -40.00 -30.00 -20.00-10.00 0.00 10.00 20.00 30.00 40.00 50.00 PERMISSIBLE OPERATING REGIONRESTRICTED REGION Power, % of 2568 MWt Axial Power Imbalance, %FP RESTRICTED REGION PERMISSIBLE OPERATING REGION(-27.44, 45)
(-26.95, 60)
(29.31, 45)
(-19.80, 69)
(-14.62, 77)(28.80, 60)
(22.10, 69)
(15.33, 77)110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 22 Rev. 0 Figure 8-A AXIAL POWER IMBALANCE Setpoints for Full In-Core Conditions for Two-Pump Operation from 0 to EOC (Figure is referred to by Technical Specification 3.2.3)
-50.00 -40.00 -30.00 -20.00 -10.00 0.00 10.00 20.00 30.00 40.00 50.00 PERMISSIBLE OPERATING REGIONRESTRICTED REGION Power, % of 2568 MWt Axial Power Imbalance, %FP RESTRICTED REGIONPERMISSIBLE OPERATING REGION(-33.01, 30)
(-32.90, 40)
(35.04, 30)
(-25.65, 46)
(-20.45, 52)
(34.93, 40)
(28.17, 46)
(21.32, 52) 110.0
100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0
10.0 0.0 CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 23 Rev. 0 Figure 8-B AXIAL POWER IMBALANCE Setpoints for Minimum In-Core Conditions* for Two-Pump Operation from 0 to EOC (Figure is referred to by Technical Specification 3.2.3)
- Assumes that no individual long emitter detector affecting the minimum incore imbalance calculation exceeds 73% sensitivity depletion. The imbalance setpoints for the minimum incore system must be reduced to 2.8% FP at the earliest time-in-life this assumption is no longer valid. -50.00 -40.00 -30.00 -20.00 -10.00 0.00 10.00 20.00 30.00 40.00 50.00 PERMISSIBLE OPERATING REGIONRESTRICTED REGION Axial Power Imbalance, %FP RESTRICTED REGION PERMISSIBLE OPERATING REGION(-25.15, 30)
(-24.45, 40)
(26.91, 30)
(-18.02, 46)
(-13.56, 52)(26.21, 40)
(20.20, 46)
(14.11, 52)110.0
100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0
10.0 0.0Power, % of 2568 MWt
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 24 Rev. 0 Figure 8-C AXIAL POWER IMBALANCE Setpoints for Ex-Core Conditions for Two-Pump Operation from 0 to EOC (Figure is referred to by Technical Specification 3.2.3)
-50.00 -40.00 -30.00 -20.00-10.00 0.00 10.00 20.00 30.00 40.00 50.00 PERMISSIBLE OPERATING REGIONRESTRICTED REGION Axial Power Imbalance, %FP RESTRICTED REGION PERMISSIBLE OPERATING REGION(-27.92, 30)
(-27.60, 40)
(29.80, 30)
(-20.55, 46)
(-15.44, 52)
(29.47, 40)
(22.87, 46)
(16.17, 52)110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 Power, % of 2568 MWt
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 25 Rev. 0 Quadrant Power Tilt Limits And Setpoints (Limits are referred to by Technical Specification 3.2.4)
From 0 EFPD to EOC Measurement System Steady State Value (%) Maximum Value (%)
60 % FP > 60 % FP Full In-core Detector System Setpoint 6.83 5.50 25.00 Minimum In-core Detector System Setpoint2.78* 1.90* 25.00 Ex-core Power Range NI Channel Setpoint4.05 1.96 25.00 Measurement System Independent Limit 7.50 4.92 25.00
- Assumes that no individual long emitter detector affecting the minimum in-core tilt calculation exceeds 73% sensitivity depletion. The setpoint must be reduced to 1.50% (power levels > 60% FP) and to 2.19% (power levels 60% FP) at the earliest time-in-life that this assumption is no longer valid.
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 26 Rev. 0 Figure 9A LOCA Linear Heat Rate Limits for Mark-B-HTP Fuel (Figure is referred to by Technical Specification 3.1.8 and 3.2.5)
Allowable LOCA LHR Limits Core Elevation, ft LHR Limit for 0 MWd/mtU, kW/ft LHR Limit for 34,000 MWd/mtU, kW/ft LHR Limit for 62,000 MWd/mtU, kW/ft 0.000 15.83 13.83 11.80 2.506 16.73 14.73 12.50 4.264 17.20 15.20 12.50 6.021 17.30 15.30 12.50 7.779 17.40 15.40 12.50 9.536 17.10 15.10 12.50 12.000 16.20 14.20 11.80
Note: The LOCA LHR limits may be linearly interpolated as a function of burnup between 0 MWd/mtU and 34,000 MWd/mtU, between 34,000 MWd/mtU and 62,000 MWd/mtU, and as a function of core elevation.
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 27 Rev. 0 DNB Power Peaking Factors (Limits are referred to by Technical Specification 3.1.8 and 3.2.5)
The following total power peaking factors define the Maximum Allowable Peaking (MAP) limits to protect the initial conditions assumed in the DNB Loss of Flow transient analysis. The total power peaking factors for IC-DNB 4-pump and 3-pump are identical; hence one set of IC-DNB values are provided for both 4-pump and 3-pump operation.
IC-DNB Total Power Peaking Factors Mark-B-HTPAxial Peak x/L IC MAP Limits Axial Peak x/L IC MAP Limits Axial Peak x/L IC MAP Limits 1.1 0.01 2.04426 1.4 0.01 2.94000 1.7 0.01 3.20469 0.14 2.04515 0.14 2.94000 0.14 3.20469 0.20 2.04535 0.20 2.93545 0.20 3.15423 0.30 2.04551 0.30 2.84715 0.30 3.08083 0.40 2.04470 0.40 2.76077 0.40 2.98064 0.50 2.04437 0.50 2.66671 0.50 2.89369 0.60 2.04415 0.60 2.55808 0.60 2.78037 0.70 2.04400 0.70 2.46508 0.70 2.68552 0.80 2.04329 0.80 2.34973 0.80 2.56207 0.89 2.00109 0.89 2.27714 0.89 2.49021 0.99 1.90427 0.99 2.18525 0.99 2.39515 1.2 0.01 2.33088 1.5 0.01 3.08066 1.8 0.01 3.24949 0.14 2.33287 0.14 3.08066 0.14 3.24949 0.20 2.33339 0.20 3.03513 0.20 3.20303 0.30 2.33352 0.30 2.93856 0.30 3.13047 0.40 2.33338 0.40 2.84115 0.40 3.04037 0.50 2.33285 0.50 2.75216 0.50 2.95027 0.60 2.33232 0.60 2.63946 0.60 2.84225 0.70 2.26721 0.70 2.54429 0.70 2.74696 0.80 2.16931 0.80 2.42655 0.80 2.62489 0.89 2.10460 0.89 2.35382 0.89 2.55373 0.99 2.00767 0.99 2.26040 0.99 2.45882 1.3 0.01 2.64464 1.6 0.01 3.14861 1.9 0.01 3.28611 0.14 2.64863 0.14 3.14861 0.14 3.28611 0.20 2.64909 0.20 3.09918 0.20 3.24461 0.30 2.64997 0.30 3.01573 0.30 3.17163 0.40 2.64949 0.40 2.91490 0.40 3.08589 0.50 2.56272 0.50 2.82718 0.50 3.00025 0.60 2.46600 0.60 2.71210 0.60 2.89826 0.70 2.37484 0.70 2.61653 0.70 2.80288 0.80 2.26452 0.80 2.49634 0.80 2.68386 0.89 2.19471 0.89 2.42370 0.89 2.61261 0.99 2.09988 0.99 2.32955 0.99 2.51792 Notes 1. The values above are not error corrected. 2. The values above were generated using SCD methods which incorporate a 3.8% radial peak uncertainty in the DNBR design limit. Therefore, the above IC MAP limits can be compared to predicted peaks without the addition of up to 3.8% in radial peak calculation uncertainty. These limits, however, do not incorporate any grid bias uncertainty. 3. The present T-H methodology allows for an increase in the design radial-local peak for power levels below 100% full power. The equations defining the multipliers are as follows:
P/Pm = 1.00 P/P m < 1.00 MAP Multiplier 1.0 1 + 0.3(1 - P/P m) Where P = core power fraction, and Pm = 1.00 for 4-pump operation, or = 0.75 for 3-pump operation CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 28 Rev. 0 Figure 10 Reactor Protection System Maximum Allowable Setpoints for Axial Power Imbalance (Figure is referred to by Technical Specification 2.1.1.1, 2.1.1.2, and 3.3.1)
Flux / Flow Setpoint
(% Power / % Flow) Four Pump Operation 1.07 Three Pump Operation 1.07 Two Pump Operation 1.07 50-40-30-20-100102030405060(-44.0, 92.5)(-44.0, 64.8)(-44.0, 37.9)(-44.0, 0.0)(-34.0, 107.0)(-34.0, 79.3)(-34.0, 52.4)ACCEPTABLE 4 PUMP OPERATIONACCEPTABLE 3 AND 4 PUMP OPERATIONACCEPTABLE 2, 3 AND 4 PUMP OPERATIONThermal Power Level %Axial Power Imbalance, %The three-or two-pump example setpointcurves show allowable values for an approximate 26% and 51% flow reduction for three-and two-pump operation respectively. The actual setpointcurve will be calculated by the Reactor Protection System and will be directly proportional to the indicated flow.(45.0, 92.5)(45.0, 64.8)(45.0, 37.9)(45.0, 0.0)(30.0, 107.0)(30.0, 79.3)(30.0, 52.4) 12010080 6040200 CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 29 Rev. 0 Figure 11 Reactor Protection System Variable Low Pressure Temperature Envelope Setpoints (Figure is referred to by Technical Specification 3.3.1)
P = 16.25 Tout
-8063, psigACCEPTABLE OPERATIONUNACCEPTABLE OPERATION
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 30 Rev. 0 RCS Pressure, Temperature, and Flow DNB Surveillance Limits (Limit is referred to by Technical Specification 3.4.1)
Four-Pump Operation Three-Pump Operation Two-Pump Operation Minimum RCS Hot Leg Pressure (psig) Note 1 2082.2 2081.2Note 4 2120.4Note 5 2118.1 Maximum RCS Hot Leg Temperature (°F) Note 2 602.6 602.9 603.15 Minimum RCS Total Flow (Mlb m/hr) Note 3 143.36 Note 6 138.01 Note 9 106.46 Note 7 102.45 Note 9 70.64 Note 8 67.96 Note 9 Note 1 -- Using individual indications P1021, P1023, P1038 and P1039 (or equivalent) from the plant computer.
Note 2 -- Using individual indications T1011NR, T1014NR, T1039NR, T1042NR, T1012, T1013, T1040 and T1041 or averages TOUTA, XTOUTA, TOUTB, XTOUTB, TOUT, XTOUT from the plant computer.
Note 3 -- Using indication WRCFT (or equivalent) from the plant computer, and can be linearly interpolated between these values provided the Tave versus Power level curve is followed.
Note 4 -- Applies to the RCS loop with two RCPs operating.
Note 5 -- Applies to the RCS loop with one RCP operating.
Note 6 -- For T cold = 556.57 °F.
Note 7 -- For T cold = 556.3 °F.
Note 8 -- For T cold = 556.1 °F.
Note 9 -- For T cold = 580 °F.
CYCLE 26 COLR CALC-ANO1-NE-14-00003
ANO-1 31 Rev. 0 RCS Loops - Mode 1 and Mode 2 (Limit is referred to by Technical Specification 3.4.4)
Nominal Operating Power Level (% Power) Four Pump Operation 100 Three Pump Operation 75 Two Pump Operation* 49
- Technical Specification 3.4.4 does not allow indefinite operation in Modes 1 and 2 with only two pumps operating.
Refueling Boron Concentration (Limit is referred to by Technical Specification 3.9.1)
The minimum required boron concentration (which includes uncertainties) for use during refueling is 2404 ppm.