ML18026A535: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 48: Line 48:
~y~
~y~
Attachment2SUSQUEHANNALOCADOSESFORACOMBINEDMSIVLEAKAGERATEOF300SCFHUSINGTHEISOLATEDCONDENSERTREATMENTMETHODSUSQUEHANNASTEAMELECTRICSTATION-EACHUNITExclusionAreaBoundary(2-Hour)LowPopulationZone.(30-Day)ControlRoom(30-Day)A.10CFR100LimitB.DosesusingMSIV-LCSTreatment>>>>C.PreviousCalculatedDosesw/oMSIVLeakage>>>>D.ContributionfromMSIVs300SCFHTotal<<>>>>E.NewCalculatedDosesUsingICTreatmentA.10CFR100LimitB.DosesUsingMSIV-LCSTreatment<<>>C.PreviousCalculatedDosesw/oMSIVLeakage>>>>D.Contribution&omMSIVs300SCFHTotal>>>>>>E.NewCalculatedDosesUsingICTreatmentA.GDC-19B.DosesusingMSIV-LCSTreatment'C.PreviousCalculatedDosesw/oMSIVLeakage>>>>D.Contribution&omMSIVsat300SCFHTotal"'.NewCalculatedDosesusingICTreatmentWholeBodyrem252.472.210.0072.21725.0.370.330.040.3750.380.350.410.76Thyroidrem300127.8125.50.11125.61'0030.429.612.1441.743014.1913.64.9518.55Betarem7512.011.01.1712.17NolimitspecifiedDosescalculatedforPowerUpratedconditionsinPP&LCalculationEC-RADN-1009PerGEcorrespon4encesOG94-574-09andOG93-1021-09FORMNDAP-QA-0726-1,Rev.0Page16of16  
Attachment2SUSQUEHANNALOCADOSESFORACOMBINEDMSIVLEAKAGERATEOF300SCFHUSINGTHEISOLATEDCONDENSERTREATMENTMETHODSUSQUEHANNASTEAMELECTRICSTATION-EACHUNITExclusionAreaBoundary(2-Hour)LowPopulationZone.(30-Day)ControlRoom(30-Day)A.10CFR100LimitB.DosesusingMSIV-LCSTreatment>>>>C.PreviousCalculatedDosesw/oMSIVLeakage>>>>D.ContributionfromMSIVs300SCFHTotal<<>>>>E.NewCalculatedDosesUsingICTreatmentA.10CFR100LimitB.DosesUsingMSIV-LCSTreatment<<>>C.PreviousCalculatedDosesw/oMSIVLeakage>>>>D.Contribution&omMSIVs300SCFHTotal>>>>>>E.NewCalculatedDosesUsingICTreatmentA.GDC-19B.DosesusingMSIV-LCSTreatment'C.PreviousCalculatedDosesw/oMSIVLeakage>>>>D.Contribution&omMSIVsat300SCFHTotal"'.NewCalculatedDosesusingICTreatmentWholeBodyrem252.472.210.0072.21725.0.370.330.040.3750.380.350.410.76Thyroidrem300127.8125.50.11125.61'0030.429.612.1441.743014.1913.64.9518.55Betarem7512.011.01.1712.17NolimitspecifiedDosescalculatedforPowerUpratedconditionsinPP&LCalculationEC-RADN-1009PerGEcorrespon4encesOG94-574-09andOG93-1021-09FORMNDAP-QA-0726-1,Rev.0Page16of16  
$aap~0r~IIF,"If o9D+8Aca!TM)VLstIAMBSM-105SH.2~SD-fo00000CT-5PDT~0IuaerF.4HMDCdDESEllELL-IAE00H001MNTMTIIEIKTIMA.ELEAKKL8STE-LW-I2I+~SM~-0IO'p'n''9213630A.des-JI'EID-II~D50-12510OID~w-M-oao"~MAN-ooo~IRV-IP.0DI''IAV-PP-)OIOIDTPe.-le15D~8-FKHO~MBA~AN--IIWWIIHMI~IRVVNT-)0lt02'DSA-U5IIO.PT260001SIETM0WMSM'FE--IM52~IRV-Nl-10)IAI"'a--IIeF00-MILDE0"I100c~0la0HaMsI'OCS-DBS-3DWHLTLa.AD'~02DI~ICI2DVMW-DAD-~NM-O5011011000IAV-PT-I82NQ+H$8Tl":".I'"2'WoKETK0WM0Ia'N2-DN53oae-oILDEcIIeDBS30~BWPI-OO0INEH)T000~a-D-00C~ll-PDT-00CMD02ODD-seva0oeeMIrO'02TaRI->>-NL-0112-TL-101128IPR.-)IN)6000POTHoC0~MV-PT-ION~aa-PP*RVVNT-)00DM-141SH.ISNIAE85toPots~N5-orw-~(Iaw-roMCrt:'*MB.6~tt125SetEII'ESD010alTNS12)-~HSM.IAK-TDI200DFM-155SH.IHIONI+0HAC0ESD-UM*5~laaoeeI-07&H007M-IOISH.3OYPA55VALVESB-La.IAVKSNM0DB.<<LIIM0ow.I3LK0MMILast0WHta"M-I0ISH.IH08IDIISehatt-~OIT...'Cl-IAl-PP-0000-10100~M-PP-DIWQUALITYRELATEDDAOM-149SH.I2MNrrsISECONNlMIP*8(CAEDTEDIAHECSIM.)RMNAM)MIIPT(CRtTEO)DLICRMLWMelSFBICIMMTMPSTNOC0.'.KA5NEOEOMIKAEPOIIIOEOWOOHCKENQF.INININISFIWKI~1)VECF0018TIEITN<CSIIEII)OBNTATE9Lili2~Olea-CjiQPttIOMSIVLEAKAGEALTERNATEFLOWPATHFIGUREHPENNSTLVSNTSPSNCR~LTSNTCSNPNDLLcersaaps.AECR*I0H-101HSNETQH)DD)ODD28  
$aap~0r~IIF,"If o9D+8Aca!TM)VLstIAMBSM-105SH.2~SD-fo00000CT-5PDT~0IuaerF.4HMDCdDESEllELL-IAE00H001MNTMTIIEIKTIMA.ELEAKKL8STE-LW-I2I+~SM~-0IO'p'n''9213630A.des-JI'EID-II~D50-12510OID~w-M-oao"~MAN-ooo~IRV-IP.0DI''IAV-PP-)OIOIDTPe.-le15D~8-FKHO~MBA~AN--IIWWIIHMI~IRVVNT-)0lt02'DSA-U5IIO.PT260001SIETM0WMSM'FE--IM52~IRV-Nl-10)IAI"'a--IIeF00-MILDE0"I100c~0la0HaMsI'OCS-DBS-3DWHLTLa.AD'~02DI~ICI2DVMW-DAD-~NM-O5011011000IAV-PT-I82NQ+H$8Tl":".I'"2'WoKETK0WM0Ia'N2-DN53oae-oILDEcIIeDBS30~BWPI-OO0INEH)T000~a-D-00C~ll-PDT-00CMD02ODD-seva0oeeMIrO'02TaRI->>-NL-0112-TL-101128IPR.-)IN)6000POTHoC0~MV-PT-ION~aa-PP*RVVNT-)00DM-141SH.ISNIAE85toPots~N5-orw-~(Iaw-roMCrt:'*MB.6~tt125SetEII'ESD010alTNS12)-~HSM.IAK-TDI200DFM-155SH.IHIONI+0HAC0ESD-UM*5~laaoeeI-07&H007M-IOISH.3OYPA55VALVESB-La.IAVKSNM0DB.<<LIIM0ow.I3LK0MMILast0WHta"M-I0ISH.IH08IDIISehatt-~OIT...'Cl-IAl-PP-0000-10100~M-PP-DIWQUALITYRELATEDDAOM-149SH.I2MNrrsISECONNlMIP*8(CAEDTEDIAHECSIM.)RMNAM)MIIPT(CRtTEO)DLICRMLWMelSFBICIMMTMPSTNOC0.'.KA5NEOEOMIKAEPOIIIOEOWOOHCKENQF.INININISFIWKI~1)VECF0018TIEITN<CSIIEII)OBNTATE9Lili2~Olea-CjiQPttIOMSIVLEAKAGEALTERNATEFLOWPATHFIGUREHPENNSTLVSNTSPSNCR~LTSNTCSNPNDLLcersaaps.AECR*I0H-101HSNETQH)DD)ODD28}}
}}

Revision as of 01:57, 18 May 2018

SSES Unit 1 & 2 MSIV Leakage Alternate Treatment Method Seismic Evaluation. W/One Oversize Drawing
ML18026A535
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 10/31/1994
From:
PENNSYLVANIA POWER & LIGHT CO.
To:
Shared Package
ML17164A434 List:
References
NUDOCS 9411290142
Download: ML18026A535 (57)


Text

ATTACHMENTTOPLA-4228ENCLOSURE2MSIVLEAKAGEALTERNATETREATMENTMETHODSEISMICEVALUATION94112'Pat42941i21PDRnoacKosooozs7pnR SUSQUEHANNASTFAMELECTRICSTATIONUNIT1AND2MSIVLEAKAGEALTERNATETREATMENTMETHODSEISMICEVALUATIONOCTOBER19,1994 TABLEOFCONTENTS~PaeCOVERSHEETTABLEOFCONTENTSINTRODUCTION1.SCOPEOFREVIEWTURBINEBUILDING2.1LateralForceResistingSystems2.2SeismicDesignCodes2.3SeismicDesignBasis2.4WindDesignCodes2.5WindDesignBasisMAINTURBINECONDENSERS3.1GeneralDescriptionofSusquehannaCondensers3.2ComparisonofSusquehannaCondenserswithDatabaseCondensers3.3CapabilityofAnchorstoWithstandDesignBasisEarthquakeLoads10101018MSIVLEAKAGECONTROLPIPING4.1MainSteamandTurbineBypass4.1.1DesignBasis4.1.1.1PipingDesignCode4.1.1.2PipingDesign4.1.1.3PipeSupportDesignCode4.1.2MarginAssessment4.1.3VerificationWalkdownResults20202121212222224.2MainSteamDrainstoCondenser4.2.1DesignBasis4.2.1.1PipingDesignCode4.2.1.2PipingDesign4.2.1.3PipingSupportDesignCode4.2.2MarginAssessment4.2.2.1SeismicDemand4.2.2.2PipeSupportComponentCapacities4.2.3VerificationWalkdownResults222323232323242525 TABLEOFCONTENTS~Pae4.3InterconnectedSystems4.3.1DesignBasis4.3.2MarginAssessment4.3.3VerificationWalkdownResults262626265.BLOCKWALLS27

INTRODINTheevaluationinthisreportwasperformedtodocumenttheseismicdesignadequacyofthe"MainSteamIsolationValve(MSIV)LeakageAlternateTreatmentMethod".ThismethodisbeingevaluatedforreplacingthedesignfunctionoftheMSIV-LeakageControlSystem(LCS).TheMSIV-LCSlicensedbaseddesignfunctionis'toservetoredirectMSIVleakagebackintosecondarycontainment,whereitcanbeprocessedasafilteredreleaseandreducethepotentialcontributiontooff-siteandcontrolroomdose.Historically,theMSIV-LCShasbeensusceptibletonumerousfailuresandcostlyrepairs.Inordertoimprovetheperformanceofthepowerplant,bothfromanuclearsafetyviewpointandeliminationofahighcostandhighmaintenancesystem,the"MSIVLeakageAlternateTreatmentMethod"hasbeenestablished,whichwillservetoprovideamoreeffectivemeanstoprocesstheMSIVleakage.Theprimarycomponentstobereliedupon,forpressureboundaryintegrity,inresolutionoftheBWRMSIVleakageissueare:(1)themainturbinecondensers,(2)themainsteamlinestotheturbinestopandbypassvalves,and(3)themainsteamturbinebypassanddrainlinepipingtothecondensers.Earthquakeexperiencehasdemonstratedthattheweldedsteelpipingandanchoredcondensersinsimilarsystemsareseismicallyrugged.Theearthquakeexperienceisderivedfromanextensivedatabaseontheseismicperformanceofover100powerplantunitsandindustrialfacilitiesinactualrecordedearthquakes.Basedonthispost-earthquakereconnaissance,theBWROwnersGroup(BWROG)seismicexperiencestudyhasidentifiedlimitedrealisticseismichazards,includingsupportdesignattributesandproximityinteractionissues,aspotentialsourcesofdamageonalimitednumberofcomponents.TheBWROG'sstudyisdocumentedinNEDC-31858P,"BWROGReportforIncreasingMSIVLeakageRateLimitsandEliminationofLeakageControlSystems".AreviewandevaluationwasperformedforPennsylvaniaPowerandLight,SusquehannaSteamElectricStation(SSES),Units1and2,toensurethatnosuchissuesarepresent,thusprovidingreasonableassuranceoftheintegrityofthesesystemsandcomponents.ThisreportsummarizesthemethodologyusedandsomeoftheresultsoftheseismicadequacyreviewoftheMSIVLeakageAlternateTreatmentMethod.

1.0OPEFREVIEWThemainturbinecondensersformtheultimateboundaryofthe"MainSteamIsolationValve(MSIV)LeakageAlternateTreatmentMethod".Boundarieswereestablishedupstreamofthecondensersbyutilizingexistingvalvestolimittheextentoftheseismicverificationwalkdown.TheboundariesareshowninFigure1ofthisevaluation.TheboundaryvalveswereselectedusingthecriteriaoutlinedinNEDC-31858PanddocumentedinPP&LEngineeringStudies,Analyses,andevaluations(SEA),SEA-ME423,"MSIVLeakageSeismicVeriGcationBoundaryDeterminationStudy,SSESUnit1"andSEA-ME424,"MSIVLeakageSeismicVerificationBoundaryDeterminationStudy,SSESUnit2.Thefollowingcriteriawasusedinselectingtheboundaryvalves:1.Normallyopenvalve,automaticallyclosesasaresultofMSIVisolationsignal2.Normallyopenvalve,whichcanberemotelyclosedfromcontrolroom3.Normallylockedclosed,manuallyoperatedvalve4.Normallyclosed,manuallyoperatedvalve5.Automaticallyorremotelyoperatedvalvesthatfailclosed,asaresultoflossofpowerorair(pneumaticoperators)tothevalveoperator6.Normallyclosedvalve,whichcanberemotelyclosedfromthecontrolroom7.Normallyclosedvalve,whichcanberemotelydosedfromacontrolpaneloutsidethecontrolroomInNEDC-31858P,aseismicdatabasewasassembled.'Msdatabaseservedashistoricaldocumentationoftheperformanceofnon-seismicdesignedpipingsystemsandmainturbinecondensers,atvariouspowerplantsthroughouttheworld,whichhavegonethroughvaryinglevelsofseismicevents.Thisdatabaseprovidedthebasisfordemonstrationofseismicadequacyofnon-'eismicallydesignedsystems.InordertodemonstratethatSSESpipingandcomponentsfallwithintheboundsoftheexperiencedatabase,tworeviewswereperformed.TheQrstreviewconsistedofreviewingtheconstructioncodestodemonstratethatthedesignatedpipingandcomponentswerebuilttostandardssimilartothoseplantsidentifiedintheexperiencedatabaseofNEDC-31858P.ThesecondreviewconsistedofseismicverificationwalkdownstoassurethatthecondensersandpipingsystemsfallwithintheboundsofthedesigncharacteristicsoftheseismicexperiencedatabasecontainedinNEDC-31858P.Conditionsthatmightleadtopipingconfigurationswhichareoutsidetheboundsoftheexperiencedatabasewerenotedduringthewalkdowns.Tables-5and r'1<~-z~z~y~geioz~vztAGod'U'~>~>AT7g,Pipgze8.'f,BC'L2 6ofthisreportsummarizetheidentifiedconditions(termed'"outliers"),andtheirresolutionstatus.Notethattheoutliersarebeingresolvedbydemonstratinganalyticallythattheydidnotcreatehazardsbeyondtheseismicinertialloading.Thesehazardsincludeinteraction,differentialdisplacement,and/orfailure/falling.Ifevaluationcannotqualifysomeoutliers,modiTicationswillbedesignedtoprovideseismicallyacceptableconQgurations.Whereanalysiswasusedtoresolvethewalkdownoutliers,the5%dampedconservativeQoorcurvesareextrapolatedfromtheexisting1/2%and1%dampedQoorcurvesthatwerebasedontheSSESgrounddesignbasisearthquake(DBE)anchoredat0.1gpeakgroundacceleration.Asanalternatemethodforgenerationofseismicinput,5.0%dampedrealisticmedian-centered,withnointentionalconservativebias,Qoorcurveswillbedeveloped,ifjudgedtobenecessary,basedontheNUREG/CR-0098mediangroundspectraanchoredat0.1gand0.067gpeakgroundaccelerationsforhorizontalandverticaldirections,respectively.Variabilitiesassociatedwithstructurefrequency,structuredamping,androckmodulusaresignificantinthedevelopmentoftheseismicQoorcurves.Mescmodelparameterswillbeselectedinarandomprocess.Anumberofearthquaketimehistorieswillbeutilizedwiththerandomlyselectedsetsofmodelparametervalues.Toaccountfortheuncertaintyinthestructuralfrequencycalculations,thepeaksoftheseismicQoorcurvesareshiftedratherthanbebroadened.Inadditiontotheongoingresolutionofthewalkdownoutliers,seismicmarginassessmentofarepresentativeboundingsampleofpipesupportsonthemaindrainlinewillbeconducted.ThisassessmentismoreconservativeandmorerestrictivethantheevaluationreferencedinNEDC-31858P.

0 2.0INEBILDINGPerformanceoftheturbinebuildingduringaseismiceventisofinteresttotheissueofMSIVleakagetotheextentthatnon-seismicallydesignedstructuresandcomponentsshouldsurviveandnotdegradethecapabilitiesoftheselectedmainsteamandcondenserQuidpathways.ABWROGsurveyofthistypeofstructurehas,ingeneral,confirmedthatexcellentseismiccapabilityexists.Therearenoknowncasesofstructuralcollapseofeitherturbinebuildingsatpowerstationsorstructuresofsimilarconstruction.'heSSESturbinebuildinghousestwoin-lineabout1100megawattturbinegeneratorswithallauxiliaryequipmentincludingtwo220tonoverheadservicecranes.'Ihebuildingisentirelyfoundedonrockwithreinforcedconcreteretainingwallsextendinguptogradelevel.Thesuperstructureisframedwithstructuralsteelandreinforcedconcrete.Exteriorwallsarepre-castreinforcedconcretepanelsexceptfortheupper30feet,whichismetalsiding.'Iheroofhasmetaldeckingwithbuilt-uproofing.Eachofthetwoturbinegeneratorunitsissupportedonafreestandingreinforcedconcretepedestalextendingdowntorock.SeparationjointsareprovidedbetweenthepedestalsandtheturbinebuildingQoorsandslabstopreventtransferofvibrationtothebuilding.TheoperatingQoorissupportedonvibrationdampingpadsatthetopedgeofthepedestals.Aseismicseparationgapisprovidednearthecenterofthebuildingbetweenthetwounits.Aseismicseparationgapisalsoprovidedagainstthereactorbuilding.ThedesignoftheSSESturbinebuildingincludesbothseismicandtornadoloadings.TheturbinebuildingisdesignedtopreventcollapseunderboththeDBEandtornadoloadconditions.ThedeQectionsfromtheseloadingshavebeenkepttoavaluesuchthatinteractionwithCategoryIstructuresisavoided.ThegroundaccelerationassociatedwiththeDBEis0.10g.TheturbinebuildinghorizontalshearsresultingfromtheDBEarepresentedinFigure2.Basedupontheabove,itisconcludedthattheSSESturbinebuildingisaseismicallyrobuststructurewithlittleriskofdamagetothestructurethatwoulddegradethecapabilityofthemainsteamandcondenserfluidpathways.Specificparametersincludedintheevaluationarepresentedbelow.2.1LateralForceResistingSystemsThelateralloadresistingsystemsuperstructuretype,abovetheturbineQoor,isabracedorrigidframestructuredependingonthedirectionoflateralloadconsistsofthefollowing:ColumnlinesGandKcomprisealternatingbaysofcross-bracingthatresistN-Swindorseismiclateralloadingconditions.E-Wlateralforcesareresistedbyrigidframebentsfromcolumnline12to29(Unit1).Lateralforceresistingsystemsubstructure,belowtheturbineQoor:ConcretewallsserveasshearwallsforlateralloadsintheNCdirections.

FIGURE2ASeismicDesignForcesfortheSUSQUEHANNATurbineBuildingIntheEast-WestDirectionHev.762'ev.729'ev.699'ev.676'lev.656'500010000150002000025000East-WestDBE(Klps)FIGURE28SeismicDesignForcesfortheSUSQUEHANNATurbineBuildinglntheNorth-SouthDirectionElev.787'ev.762'lev.699'ev.676'lev.656'500010000150002000025000North-SouthDBE(Klps) 22SeismicDesignCodes'Allnon-categoryIstructuresaredesignedtoconformtotherequirementsof:AmericanInstituteofSteelConstruction(AISC)Speci6cationfortheDesign,Fabrication,andErectionofSteelBuildings.AmericanConcreteInstitute(ACI)BuildingCodeRequirementsforReinforcedConcrete(ACI318-71).AmericanWeldingSociety(AWS)StructuralWeldingCodeAWSD1.1-72.23SeismicDesignBasisAseismicanalysisoftheturbinebuildingwasperformedfortheDBEloadinginthenorth-south,east-west,andverticaldirectionsinordertoassurethatthebuildingwillnotcollapse.TheresultingdeQectionswerealsoutilizedtoconfirmthatthereisnointeractionwiththereactor,building.2.4WindDesignCodesTheturbinebuildingisdesignedtoconformtotherequirementsof:AmericanSocietyofCivilEngineers,papernumber3269,WindDesignRequirements.AmericanInstituteofSteelConstruction(AISC)SpecificationfortheDesign,Fabrication,andErectionofSteelBuildings.AmericanConcreteInstitute(ACI)BuildingCodeRequirementsforReinforcedConcrete(ACI318-71).AmericanWeldingSociety(AWS)StructuralWeldingCodeAWSD1.1-72.25WindDesignBasisThedynamic,windpressuresusedinthedesignofSSESarederivedfromtheASCEPublicationNo.3269usingthefollowingequation.q=0.002558'hereqisthevelocitypressureinpsf,andVisthewindvelocity(mph).Itwas

assumedthat80%ofqisactingonthewindwardsideand50%issuctionontheleewardsideofthebuilding.Thelocalpressureatanypointonthesurfaceofthebuildingisequalto:p=qCpwherepisthepressureandCisthepressurecoefficient.Thetotalpressureonthebuildingisequalto:p=qCOwhereCoistheshapecoefficientandisequalto1.3.ThewindloadsareprovidedinTable1.Theturbinebuildingframeisdesignedtoresisttornadowindforcesassumingthattwothirdsofthesidingisblownaway.Inaddition,eachexteriorcolumnanditsconnectionsaredesignedforthefulltornadowindintheeventthatnosidingblowsawayinthetributaryareaofthecolumn.Themaximuminteractionratioforthestructuralsteel,resultingfromthecasewithnofailureofthesiding,isapproximatelythesameasthatobtainedfromtheDBEload.TheloadcombinationsutilizedforthedesignoftheturbinebuildingarepresentedinTable2.

TABLE1TornadoWindLoadsWallLoadRoofLoadHeight(ft)BasicVelocity(mph)DynamicPressurewith1.1GustFactorPressure0.8qSuction0.5qTotalDesignPressure1.3qSuction0.6q0-5050-150150<00Over40080951101202030404516243236101520232639525912182427TABLE2LoadCombinationsD+L+E'+L+WD+L+W'+L+E'eeNote1SeeNote1USDUSDD=DeadLoadL=LiveLoadW=WindLoadW'TornadoWindE'DesignBasisEarthquake(1)Innocaseshalltheallowablebasemetalstressexceed0.9Fyinbending,0.85Fyinaxialtensionorcompression,and0.5Fyinshear.WhereFsisgovernedbyrequirementsofstability(Localorlateralbuckling),fsshallnotexceed1.5Fs.Innocaseshallbeallowableboltorweldstressexceed1.7Fs.

3.MAINTURBINECONDENERS3.1GeneralDescriptionofSusquehannaCondensersThemainturbinecondenserisatripleshellmultipressuresurfacecondenserwhichconsistsofthree(3)rectangularshapedweldedsteelplatecondensersofthesinglepassquad-dividedtype.Thecirculatingwaterlowis448,000gallonperminute.Theheatexchangeareaofthehighpressureshellconsistsof28,0401-inchdiametertubes,approximately50footlong,givingaheattransferareaof367,000squarefeet.Theheatexchangeareaoftheintermediatepressureshellconsistsof28,0081-inchdiametertubes,approximately40footlong,givingaheattransferareaof293.300squarefeet.Theheatexchangeareaofthelowpressureshellconsistsof27,9721-inchdiametertubes,approximately30footlong,givingaheattransferareaof219,700squarefeet.Thedryweightandtheoperatingweightofthethreeshellsareasfollows:DrWeihtIb0eratinWeihtIbHighPressureCondenser678,200IntermediatePressureCondenser643,000LowPressureCondenser567,8002,132,7001,984,3001,572,700Thebaseofthecondenser(hotboxshell)is29'x49',29'x39',and29'x29'nplanforthehigh,intermediate,andlowpressurecondensers,respectively.Eachcondensershellissupportedfromtheconcretebaseslaboftheturbinepedestalon6embeddedplateassemblies.Positiveattachmentisprovidedbyanchorboltsandweldstotheembeddedplateassemblies.Theembeddedplatesassembliesonlyprojecttheirplatethicknessabovethebaseslab,sotherearenolegsorpiersbetweenthecondenserandthebaseslab.Thecondensershellsneckdownatthetopwheretheyweldtotheturbine.Thenecksincludearubberexpansionjointwhichstructurallyisolatesthecondensershellfromtheturbine,sothattheanchorstothebaseslabprovidetheentiresupportforthecondensershell.Theheightofeachshelltotheexpansionjointisapproximately56'.Thecondensersweretestedbyfillingtheshellwithwater.Thedesignconditionsforthecondensersincludeavacuumpressureof26"ofMercury,and"zone1"seismiccoefficientsof0.03gverticaland0.05ghorizontal.The.75"thickshellsofthecondensersarestiffenedbythetubesupportplatesandbystrutsthatconnectthetubesupportplatestothesidewallsandtothecondenserbottom.Platedividers,whichseparateeachshellintofourflowpaths,alsoservetostiffentheshell.3.2ComparisonofSusquehannaCondenserswithDatabaseCondensersThisreportwillshowthateachSSEScondensershelliscomparabletothedatabasecondensersinitscapabilitytoresistseismicforces.Inaddition,thisreportwillalsoshowthateachshellanchor10 systemshavethecapabilitytowithstandtheforcesassociatedwithDBEincombinationwithoperatingloads.Sinceeachcondenser(high,intermediate,andlowpressure)isindependentlysupportedfromtheothershellswecancompareitsstructural.characteristicstothesimilarcondensersaddressedinNEDC-31858P,"BWROGReportforIncreasingMSIVleakageRateLimitsandEliminationofLeakageControlSystem".ComparablecondensersthathaveexperiencedsignificantearthquakesasidentifiedinNEDC-31858Pwillbehereaftercalled"database"condensers.EachSSEScondensershellisspecificallycomparedtothedatabasecondensersfromMossLanding,Units6and7,andfromOrmondBeach,Units1and2.ThesecondensershavesimilarphysicalarrangementsofcomponentsandconstructiondetailstotheSSEScondenser,andwouldfunctionsimilarlytoresistseismicforces.FromTable3andfromFigures3through5,itisapparentthatmostofthephysicalfeaturesoftheSSEScondenserthatwouldbesignificantinseismicconsiderations,areeitherenvelopedbythedatabasecondensers,orwouldbelesscriticalthanthedatabasecondensers.OnepossibleexceptionisthegreaterheightoftheSSEScondensers.Anotheristhecapacitytodemandratio(Figure5)fortheintermediatepressureshell.Thesignificanceofthisgreaterheightisdiscussedintheparagraphbelow.Thecapabilityoftheanchorsforallthreeshellsisdiscussedinsubsection3.3.TheSSEScondenserishigherthanthedatabasecondensers(SeeFigure4a).Thisfeaturecannotbeconsideredaseitherenvelopedbyorlesscriticalthanthedatabasecondensers,sincelargerratiosofheighttobasewidthtendtogivelargeroverturningforces.InthecaseoftheSSEScondensershells,wecansaythatthisgreaterheightisnotthatsignificantforthreereasons.Thefirstreasonisthattheoperatingweightofeachshellincomparisontotheshellsideareaiscomparabletothatofthedatabasecondensers;thereforetheshearstressesintheshellplatewouldnotbeanyhigherthanthedatabasecondensersforthesame"g"load.ThisisapparentfromthedatainTable3.Thesecondreasonisthattheanchorboltshearareasincomparisontooperatingweightsarecomparabletothedatabasecondensersforallshellsexcepttheintermediatepressureshell.ThisisillustratedinFigure5inwhichtheSSEScondenseranchorsareactuallylesscriticalthantheanchorsofthedatabasecondensersexceptfortheintermediatepressureshell,ThethirdreasonisthattheanchorsfortheSSEScondenserhavemorethanenoughcapacitytowithstandtheforcesfromaDBEeventincombinationwithoperatingloads.Thisspecificanchorcapabilityisdiscussedinsubsection3.3.TheanchorconfigurationfortheSSEScondensershellsisnotnecessarilythesameasthatoftheddatabasecondensers.FortheSSEScondensershells,baseshearloadsaretakenbyweldsofthecondensertoembeddedplatesatlocations1and4ofFigure7.Theanchorboltsarenotdesignedforshearsbecausetheholesinthecondenserbaseareoversized,andtheweldsandguidesareastifferloadpathforshearloads.Sincetheanchoratlocation4isaguideinonedirection,theweldsatlocation1aresizedtotakealltheshearinthedirectionparalleltotheturbineaxis.Forloadsperpendiculartotheturbineaxistheanchorsatlocation1and4bothcontributetoresistingshears.InFigure5the"lowerbound"anchorareaisonlytherootareaoftheweldsactiveinthegivendirections.The"upperbound"areaisthetotalofanchorboltsareaonly.Thisconservatively<<ssumesthattheweldsfailbeforetheanchorboltsareeffectiveinresistingshears.Thecapacityto11

TABLE3ComparisonofSUSQUEHANNACondensertoDatabase'ondensersPlantNameHorizontalgLevelExperiencedManufactureWidthxLengthxHeight(Ft)(Ft"2)(Lbs)HeatExchangeOperatingWeightShellThickness/Mateial(In)/(ASTM)TubeSupportsThickness/Number(tn)TubeSheetsThickness(In)TubeSizeDiameter(ln)/Length(Ft)MossLanding0.40IngersollRand36x65x4743500031150003/4A-285C3/4-151/65'rmondBeach0.20South.Western27x52x2021000017675003/4A-285C5/8-141.251"/53'USQUEHANNA(HighPressure)0.21"~IngersollRand29x49x5621327003/4A-285C5/8-141.501/50'USQUEHANNA(IntermediatePressure)0,21'0IngersollRand29x39x5619843003/4A-285C5/8-111/40'USQUEHANNA(LowPressure)0.21*'ngersollRand29x29x5621970015727003/4'-285C5/8W1/30'atabaseinformationfromNEDC-31858PRevision2,September1993.AppendixD,Table4-1andTable4-3DBEdesignbasisis0.21ghorizontalfor5hdamping,peakofgroundresponsecurve,atcondenserbase(SeeFigure6)

FIGURE3SizeComparisonoftheSUSQUEHANNACondenser(Unit1or2)withRepresentativeCondensersfromEarthquakeExperienceOrmondBeachSUSQUEHANNAHighPressureSUSQUEHANNAIntermediatePressureSUSQUEHANNALowPressureMossLanding100000200000300000400000500000HeatTransferArea(Sq.Ft.PerShell)OrmondBeachSUSQUEHANNAHighPressureSUSQUEHANNAintermediatePressureSUSQUEHANNALowPressureMossLanding0500000100000015000002000000250000030000003500000OperatingWeight(LbsPerShell)13 FIGURE4DimensionalComparisonofSUSQUEHANNACondenser(Unit1or2)andRepresentativeCondensersfromtheEarthquakeExperienceDatabase~50~40CQP-302010OrmondBeachSUSQUEHANNA(a)HeightComparison(BaseToExpansionJoint)MossLanding40'ighPreeeure39'termedlatePreeeure29'owPreeeure~MossLandlng6&7(65'x36')~SUSQUEHANNAUnlt1or2HighPressureIntermedhtePressureLowPressure(49'29')(89'29')(29'29')mmOrmondBeacht&2(52'2T)(b)ShellFootprintComparison14

FIGURE5AAnchorageCapacity-to-DemandRatio:ParalleltoTurbineGeneratorAxisComparisonofSUSQUEHANNACondenser(Unit1or2)withRepresentativeCondensersfromEarthquakeExperienceDatabase0.00020.00018E0.000160.00014O0.00012E0.0001V)0.000080.000060.00004~f)0.00002QUpperBoundgLowerBoundMossLandingEICentroSUSQUEHANNASUSQUEHANNASUSQUEHANNAHighPressureIntermediatePressureLowPressureFlGURE5BAnchorageCapacity-to-DemandRatio:PerpendiculartoTurbineGeneratorAxisComparisonofSUSQUEHANNACondenser(Unit1or2)withRepresentativeCondensersfromEarthquakeExperienceDatabase0.00020.000180.00016a0.000140.00012M0.00010.000080.00006a)0.000040.00002QUpperBoundgLowerBoundMossLandingEICentroSUSQUEHANNASUSQUEHANNASUSQUEHANNAHighPressureIntermediatePressureLowPressure15 lAOIAOl.iOb0l.000O.IOt5IClOOAO0LEGENDELCENTROSTEhMPLhHT,1979IMPERIhLVhLLEYEQ~UhLLEYSTEAMPLhHT,1971ShNFERNANDOEQ~HOSSLhHDINGSTEhMPLhNT,1989LOMhPREThEQ~SUSQUEEOBfhDESIGNBhSISEhRTHQUhKEORMONDBEhCHSTEhMPLhNT,1973PT.MhGUEQPGh~0.208FUKhSHMlNUCLEhRPLhNT,1978MIYhGIKEN-OKIEQ.PGh~0.138PI.OTTEDAT5%DAMPINGOAO0400.000.05.0IO.Ol5.0f0.030.0Frequency(Hz)Figure6:ComparisonofSusquehannaGroundResponseSpectrumtoDataBaseSpectra FlGVRE7AnchorSystemforSUSQUEHANNACondenserUnit0or2DhtributlooofAnchorBoltsbyTensileArea/LocationShellUnitAxleofTurbineGeneratorVarieaLocationTotal7.609.507.603.803.804S.80IntermediatePreaaure(ln"2)7.603.803.807.603.803.8030AO(In"2)7.6020.007.603.803.8062.80329IAnchorboltsresistloadInverticaldlrectlon.WeldstoembeddedplateassemblyresistloadslnhorizontaldlrectlonLOAnchorBoltsresistloadlnverticaldirection.Nohardrestraintinhorizontaldirections(slidingfrictiononly).OAnchorBoltsresistloadlnverticaldlrecthn.Guidebarsresistloadlndirectionperpendiculartoaxisofturbinegenerator.Nohardrestraintperalleltoaxisofturbinegenerator(slidingfrictiononly).17 demandratiosfortheintermediatepressurecoridenserarelowerthanthecomparabledatabasecondensers.Thisdoesnotrepresentaconcernwhentheactualanchorcapacityiscomparedtotheseismicloadsinsubsection3.3.33CapabilityofAnchorstoWithstandDesignBasisEarthquakeLoads.HighPressureCondenser:ThemaximumtensionfromtheDBEforcesincombinationwiththeoperatingloadsis'estimatedtobe493.4kipsatlocations2or3comparetotheanchorboltscapacityofabout897kips.ThemaximumbaseshearfromDBEis448kips.Thisshearwouldberesistedinanumberofways:friction,shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovementstodevelopboltshears.Itwouldbeunconservativetoassumethattheweldsandanchorboltsactconcurrentlytoresistshearsincetheboltholesareoversize.Capacitiesofthethreeshearresistantphenomenonareasfollows:frictionfromresultantnormalforcesbetweencondenserandembeddedplateusinga0.10frictionfactor=183kipsweldcapacity=445kipsshearcapacityofanchorboltsnotintension=1814kipsItisreasonabletoassumethatthefrictionisavailableincombinationwithweldcapacityorincombinationwithboltcapacity.ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.IntermediatePressureCondenser:ThemaximumtensionfromtheDBEforcesincombinationwiththeoperatingloadsisestimatedtobe91kipsatlocations2or3comparetotheanchorboltscapacityofabout359kips.ThemaximumbaseshearfromDBEis417kips.Thisshearwouldberesistedinanumberofways:friction,shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovementstodevelopboltshears.Itwouldbeunconservativetoassumethattheweldsandanchorboltsactconcurrentlytoresistshearsincetheboltholesareoversize.Capacitiesofthethreeshearresistantphenomenonareasfollows:/XJttsTttncvzvO.lofrictionfromresultantnormalforcesbetweencondenserandembeddedplateusinga~frictionfactor=171kips18 weldcapacity=284kipsshearcapacityofanchorboltsnotintension=1814kipsItisreasonabletoassumethatthefrictionisavailableincombinationwithweldcapacityorincombinationwithboltcapacity.ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.LowPressureCondenser:ThemaximumtensionfromtheDBEforcesincombinationwiththeoperatingloadsisestimatedtobe905kipsatlocations2or3comparetotheanchorboltscapacityofabout1890kips.ThemaximumbaseshearfromDBEis330kips.Thisshearwouldberesistedinanumberofways:friction,shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovementstodevelopboltshears.Itwouldbeunconservativetoassumethattheweldsandanchorboltsactconcurrentlytoresistshearsincetheboltholesareoversize.Capacitiesofthethreeshearresistantphenomenonareasfollows:Wt</tf4y.TypoCLIOfrictionfromresultantnormalforcesbetweencondenserandembeddedplateusinga+28frictionfactor=135kipsweldcapacity=445kipsshearcapacityofanchorboltsnotintension=1814kipsltisreasonabletoassumethatthefrictionisavailableincombinationwithweldcapacityorincombinationwithboltcapacity.ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.19

,

4.0IVLEAKAEONYRLPIPINSeismicallyanalyzedpipingwithintheMSIVLeakageAlternateTreatmentMethodincludesthemainsteamlinefromcontainmentisolationvalvestotheturbinestopvalves,thebypasspipingfromthemainsteamlinetothemaincondensers,themainsteamdrainlineheaderfromcontainmentisolationvalvestoin-linepipeanchors,andportionsofmainsteambranchconnectionlinestoin-linepipeanchors.DesignmethodsfortheseanalyzedlinesareconsistentwithseismiccategoryIqualificationmethodsfortheSSESanddesignmarginsareaccordinglyadequatetoassureacceptableseismicperformance.Portionsofthesemainsteamanddrainlinepipingsystemshavenotbeenseismicallyanalyzed.SincesystemredesigntoseismiccategoryIrequirementswouldbeexceedinglycostly,analternateevaluationmethodhasbeenutilizedtodemonstrateseismicadequacy.NonseismicallyanalyzedpipingsystemswereassessedtodemonstratethatSSESpipingandpipesupportsfallwithintheboundsofa"seismicexperiencedatabase".Section1.0detailsthebackgroundforthishistoricaldatabaseaswellastheconstructioncodeandseismicwalkdownreviewsperformedtodemonstrateseismicadequacy.Thecodereviewpurposewastoinsureadequatedeadloadsupportmarginandductilesupportbehaviorwhensubjectedtolateralloads.SeismicwalkdownswereperformedtoverifythatSSESpipingandinstrumentationarefreeofimpactinteractionsfromfallingandtheproximityordifferentialmotionhazards.Conditionsoutsidetheexperienceddatabaseboundary(outliers)arebeingreviewedtodemonstratereasonableassuranceoftheintegrityoftheassociatedpipingsystemsandcomponentsundernormalandearthquakeloading.Inaddition,arepresentativeboundingpipesupportsampleonthe4"maindrainlinewillbeevaluatedtodemonstrateanchoragemargins.Thesereviewsdemonstratedthatthenon-seismicanalyzedpipingsystemsconsistofweldedsteelpipeandstandardsupportcomponents,consistentwiththeconstructionstandardsassociatedwiththeseismicexperiencedatabasepipingsystems.Reviewsalsodemonstratedthatadequatedesignmarginsexistfortypicalorboundingpipingsystemsupports.Specificdatausedintheevaluationsissummarizedbelow.Forthemainsteamdraininterconnectedpiping,itwasdemonstratedthatadequatedesignmarginsexisttoprovidereasonableassurancethatpipingpositionretentionwillbemaintainedbythepipingsystemdeadweightsupportsundernormalaswellasearthquakeloadings.Walkdownresultsindicatedthatadditionalsupportswouldberequiredtoeliminatethepotentialforpipingsysteminteractions.4.1MainSteamandTurbineBypassNofailuresofmainsteampipingwerefoundintheearthquakeexperiencedatabaseasdocumentedinNEDC-31858P.ThesepipingsystemsatSSESweredesignedinaccordancewiththeASMECodeSectionIII,Class2andANSIB31.1requirements,usingresponsespectrumanalysistechniques.Theanalysismodelsincludedthemainsteampiping,thebypasslines,andbranchpipinguptoseismicanchors.20

ThemainsteamlinesenvelopthepipingfromcontainmentisolationvalvesFO28A/B/C/DtotheturbinestopvalvesMSV-1/2/3/4andincludethedriplegsplusportionsofthesupplylinestothesteamsealevaporatorsuptoin-linepipeanchors.Theturbinebypassanalysisincludespipingfromthemainsteamlinestothecondenserplusportionsofthesteamsupplylinestothereactorfeedpumpturbinesandsteamairejectorsuptoin-lineanchors.ThesepipingsystemsweredesignedusingreactorandturbinebuildingresponsespectrainputstoperformdynamicseismicanalysistowithstandtheOBEandDBEloadingsincombinationwithotherapplicabledesignloadsinaccordancewiththeSSESdefinedloadingcombinations.Designmarginsforthereferencedmainsteamandturbinebypasspipingsystemsarethoseinherentbyapplicationoftheseismicdesigncodes.4.1.1DesignBasis4.1.1.1PipingDesignCodeASMEIII,Class2,1971EditionincludingWinter1972AddendaandB31.1,1973Edition4.1.1.2PipingDesignA.DesignTemperature:585FDesignPressure:1350psi-mainsteam1350psi-turbinebypassB.Pipesize,schedule,andD/tSizeNPS24241810.7510.758.6254.500Quickness1.0760.9411.1560.7190.5940.594OA38~Dt251615181410C,TypicalSupportSpacing:B31.1suggestedspanD.SupportTypes:springs,struts,snubbers,boxtype,E.DesignLoading:weight,thermal,seismic,steamhammerF.AnalysisMethod:linearelastic,seismicresponsespectrum,steamhammertimehistory21 G.SeismicandDynamicDesignBasis:responsespectraanalysesusingQoorresponsespectrathatwerederivedbasedonthegroundDBEwithapeakgroundaccelerationof0.10g.4.1.13PipeSupportDesignCodeAISCandANSIB31.14.1.2MarginAssessmentDesignmethodsfortheanalyzedmainsteamandturbinebypasspipingareconsistentwithseismicCategoryIqualificationmethodsforSSES.Theseismicwalkdownsidentifiedminorinteractionissuesthatcouldbepotentialsourceofdamage.Actionshavebeeninitiatedtoresolvetheseissues.Basedonactionimplementation,thedesignmarginsassociatedwiththesesystemsandtheirsupportingstructureswillbeadequatetoinsurepipingsystemintegrityunderprojectedseismicperformance.4.1.3VeriTicationWalkdownResultsThewalkdownresultsarepresentedinTables5and6forUnits1and2,respectively.42MainSteamDrainstoCondenserThemainsteamdrainlinetothecondenserconsistsofsafety(Class2)andnon-safetyrelatedpiping.Thesafetyrelatedpipeandportionsofthenon-safetypipinguptoin-linepipeanchorsdownstreamofisolationvalvesHV-1/241F019andF020wereseismicallyanalyzed.ThesepipingsystemsweredesignedinaccordancewiththeASMECode,SectionIII,Class2andANSIB31.1requirements,usingresponsespectraanalysistechniques.Theremainingmainsteamdrainandassociatedpipingwereanalyzedfordeadweightandthermalloadsusingcomputeranalysisandspacingcriteria.Thispipingissimilartopipingfoundintheseismicexperiencedatabase.Theseismicverificationwalkdownsidentifiedminorinteractionissuesthatcouldbepotentialsourcesofdamage.Actionshavebeeninitiatedtoresolvetheseissues.22 4.2.1DesignBasis4.2.1.1PipingDesignCodesASMEIII,Class2,1971EditionincludingWinter1972AddendaandB31.1,1973Edition4.2.1.2PipingDesignA.DesignTemperature:585FDesignPressure:1350psiB.Pipesize,schedule,andD/tS~izeNPS'iisickness~t'4.53.5131513150.4380.4380.2500.35810854C.TypicalSupportSpacing:B31.1suggestedspanD.SupportTypes:springs,struts,snubbersE.DesignLoading:weight,thermal,seismicF.AnalysisMethod:linearelastic,seismicresponsespectrumG.SeismicandDynamicDesignBasis:responsespectraanalysesusingQoorresponsespectrathatwerederivedbasedonthegroundDBEwithapeakgroundaccelerationof0.1g.4.2.1.3PipeSupportDesignCodeAISC,ANSIB31.1,andMSSSP584.2.2MarginAssessmentDesignmethodsfortheseismicallyanalyzeddrainpipingareconsistentwithseismicCategoryIqualificationmethodsforSSES.Therefore,thedesignmarginsassociatedwiththesesystemsandtheirsupportingstructureswillbeadequatetoinsurepipingsystemintegrityunderprojectedseismicperformance.23 Theobjectiveoftheassessmentofthenon-seismicMainSteamDrainpipingistodemonstratethatpipingpositionretentionwillbemaintainedduringaseismiceventplusprovidesassurancethatthepipesupportswillbehaveinaductilemannerandthatalllinesarefreeofknownseismichazards.Inaddition,itwillestablishthattheseSSESpipingsystemswillperforminamannersimilartopipingandsupportsthathavebeenobservedtodemonstrategoodseismicperformance.ThemethodologyutilizedtodemonstratethemarginsinherentintheSSESnon-seismicpipingsupportdesignsisbasedon:ThegroundseismicinputisbasedonthegroundDBEwhichisconservativelydefined.Thecalculatedpipingseismicresponseisbasedon5%dampedin-structureresponsespectraasrecommendedinEPRINP-6041.ThereaderisreferredtothefoHowingsubsection4.2.2.1formoredetails.~Thecomponentsupportcapacityisconservativelyestimatedbasedonthevendorratedvalues.Theevaluations'oalistoproduceaHigh-Confidence-Low-ProbabilityofFailure(HCLPF)forthewalkdownoutliersandarepresentativepipesupportsample.Thisshouldprovidethedesiredreasonableassuranceofgoodseismicperformance.4.2.2.1SeismicDemandTheoriginalseismicdesignoftheTurbineBuildingincludedthedevelopmentofthreelumpedmassmodelsfortheeast-west,north-south,andverticaldirections.TheseismicQoorcurvesweregeneratedtodetermineseismicanchorforcesanddisplacementsforthepipingsystemsthatareattachedtotheTurbineBuilding.TheseismicQoorcurveswereonlygeneratedfor1/2%and1.0%equipmentdampingvalues.Theexisting1/2%and1%dampedQoorcurveswillbeextrapolatedtogenerate5%dampedDBEQoorcurvesfortheevaluationofthewalkdownoutliersandarepresentativepipesupportsample.Duringthemarginassessment,5.0%dampedrealisticmedian-centered,withnointentionalconservativebias,Qoorcurveswillbedeveloped,ifnecessary,basedontheNUREG/CR-0098mediangroundspectraanchoredat0.1gand0.067gpeakgroundaccelerationsforhorizontalandverticaldirections,respectively.Variabilitiesassociatedwithstructurefrequency,structuredamping,androckmodulusaresigniQcantinthedevelopmentoftheseismicQoorcurves.Thesemodelparameterswillbeselectedinarandomprocess.Anumberofearthquaketimehistorieswillbeutilizedwiththerandomlyselectedsetsofmodelparametervalues.Toaccountfortheuncertaintyinthestructuralfrequencycalculations,thepeaksoftheseismicQoorcurvesareshiftedratherthanbebroadened.24 Itshouldbenotedthattheidentifieditemsduringtheseismicverificationwalkdownsaretaggedasoutlierssincetheydidnotfallwithintheboundsoftheearthquakeexperiencedatabase.Thepeakaccelerationvaluesofthedatabasegroundspectraareusuallygreaterthan0.9gwhilethepeakaccelerationvaluefortheDBEatSSESisabout0.21gfor5%equipmentdampingasshowninFigure6.InadditiontotheseismicDBEloads,deadweightandoperatingmechanicalloadsareaccountedfor.Operatingmechanicalloadsforthissystemarethermalexpansionloadsanddesigndeadweightsupportloadsareconsistentwithtributaryareaweightprocedures.4.2.2.2PipeSupportComponentCapacitiesThesupplementalfieldverificationdeterminedthatthesupporttypesusedareconsideredtohavegoodseismicperformance.Thesystemispredominantlysupportedfordeadweightutilizingrodhangers.'omponentdesignsareconstructedfromstandardsupportcatalogpartstypicallyconsistingofclamps,threadedrods,weldlesseyenuts,turnbuckles,weldinglugsandareattachedtoeitherconcreteorstructuralsteel.Thesesupporttypesaredesignedtoresistverticalloadsintension.Designcapacitiesareprovidedbymanufactures'oadratingdatasheets.LoadcapacityratingsforcomponentstandardsupportsaretypicallybasedontestingandutilizeafactorofsafetyoffiveinaccordancewithMSSSP-58.Theloadonwhichtheloadcapacitydata(LCD)isbasedisthereforeafactoroffivehigherthanthecatalogloadrating.ThemargincapacitiesforeachsupportcomponentaretakenastheLCDx5x0.7(EPRINP-6041).Includingthermaleffectsonallowableloads,componentstandardsupportsdesignedbyloadratingiscalculatedasfollows:TLx0.7Su/Su'here:TL:Supporttestloadislessthanorequaltoloadunderwhichsupportfailstoperformitsintendedfunction;TL=LCDx5Su:MaterialultimatestrengthattemperatureSu:MaterialultimatestrengthattesttemperatureStructuralsteelsupportmembersareevaluatedusingsectionstrengthbasedontheplasticdesignmethodsinPart2ofAISCor1.7timestheAISCworkingstressallowables.ConcreteanchorboltsareevaluatedusingdatafromtheA46/SQUGcriteria,AppendixC.4.2.3VerificationWalkdownResultsThewalkdownresultsarepresentedinTables5and6forUnits1and2,respectively.25

43InterconnectedSystemsTheinterconnectedsystemsconsistoftheremainingpipingwithintheMSIVLeakageAlternateTreatmentMethodthatwasnotseismicallyanalyzed.Thesesystemsarecomposedofweldedsteelpipingandstandardsupportcomponents.Analyzedbyruleandapproximatemethods,thesepipingsystemsaresimilartothepipingfoundintheseismicexperiencedatabasethathaveexperiencedseismiceventsinexcessoftheSSESdesignbasisearthquake.Interactionissuesidentifiedinthewalkdownthatcouldbepotentialsourcesofdamagewereevaluated,and,wherenecessary,actionshavebeeninitiatedtoeliminatethispotential.ItwillbedemonstratedthatadequatedesignmarginsexistfortheseinterconnectedsystemstoprovidereasonableassurancethatpipingpositionretentionwillbemaintainedbythepipingsystemdeadweightsupportsundernormalandDBEloadings.4.3.1DesignBasisTable4liststhedesignparametersassociatedwiththeseinterconnectedpipingsystems.4.3.2MarginAssessmentSameasforMainSteamDrainstoCondenser,Section4.2.2.Basedonthepipingsystemconstructionmaterialreviews,seismicwalkdownsperformedforimpactinteractionassessment,andtherepresentativesystemevaluations,interconnectedsystempipingpositionretentionwillbeinsuredandsystemsimilaritytotheseismicexperiencedatabasewillbedemonstrated.ThegoalistodemonstratethattheinterconnectedsystemsarecapableoffunctioningtosupporttheoperationoftheMISVLeakageAlternateTreatmentMethodduringandfollowingtheapplicableSSESDBE.4.3.3VerificationWalkdownResultsThewalkdownresultsarepresentedinTables5and6forUnits1and2,respectively.

MBlockwallsintheTurbineBuildinghavebeendesignedusingtheworkingstressmethodofreinforcedconcretedesigninaccordancewiththe1973/1976UBC.Thewallshavebeenrecheckedforseismicloadsusingthe1979UBCwitharesultingseismicloadingof0.084g.minimum.Inadditionsomeofthewallshavebeendesignedforapiperupturepressureof480lb/ft>andlargebore(4"diameterandlarger)pipesupportloads.Allofthewallshavebeendesignedforthemaximumloadsfromfieldrunattachments.Fieldrunattachmentshavebeencontrolledanddocumented.Cuttingofreinforcingsteelintheblockwallshasbeencontrolledanddocumented.Constructionofthewallsperthecivildrawingsandspecificationshasassuredcompliancewiththeblockwalldesignrequirements.AlloftheblockwallswhichareofconcernfortheMSIVLCSEliminationProjecthavebeendesignedascompositewallsconstructedasdoublewythereinforcedconcreteblockwallswith3000psifillconcretebetweenthewythe'swithallopencellsgrouted.Thethicknessofthesewallsvariesfrom2'-0"minimumto4'06"maximum.OnewalllocatedintheReactorBuildingwhichwasdesignedforOBE/DBE,SRVandLOCAloadsisonly1'-9"thick.TheblockwallswhichareofconcernfortheMSIVLCSEliminationProjectareevaluatedwithseismicloadsusingtheDBEQoorspectra.27

TABLE4INTERCONNECTEDSYSTEMDESIGNPARAMETERSUNIT1AND2SystemDeslgnatlonPlplngDesignTempPres.t'F)(pslg)SzeSupportsD/tSpacingSupportTypesDesignCodeLoading(Note1)SelsmloDealnBasisToAnchorRemainderMainSteamDrainsFrom8'DripLegs812'DripLegASMESecthnIa831.140191607xxs4.8xxa3.7160531604$ANSI831.1RcdHangersSpringsConcreteAnchorsPipeStrapsStrucLMemb.AISCMSSSP58DWThermalHydroMainSteamDripLegLevelInstrumentatlonASMESectionIIIANSI831.1RodHangersSpringsConc.Anch.PipeStrapsStruct.Memb.StrutsAISCMSSSP58DWThefnlalHydroNoneMainSteamAveragingManifoldtoPressureTransducerPanelsASMESectIIIANSI831.1120118ANSI831.1xxa4.8xxa3.'7RodHangersSprtngsStrutsConc.Anch.RpeStrapsStrucLMembHSCMSSSP58DWThenllalHydroNoneMainSteamTurbineStopValveDrains831.18078160716053ANSI831.1RcdHangersSpringsBoxTypeStruct.MembAISCMSSSP58OWTheBllalHydroNoneNone TABLE4~INTERCONNECTEDSYSTEMDESIGNPARAMETERSUNIT1AND2MSIVDrainh4lneAnchorstoHPCondenserIlncludasDraintoUIW8BypassfromHV1/2lf-F021)ANQ831.1TempPreLtF)(pslg)Sae5851350I'03ANSI831.1184Supports0/tSpacingSupportTypesRodHangersSpringsStructMemb.Cono.Anch.DesignCodeLoading(Note1)ToAnchorNoneRemainderSelsmloDealnBasisHPCITurbineSteamDrainfromIn4lneAnchortoM.LDrainHeaderANSI831.15851350xxa"ANS831.1AISCMSSSPSSRCCTurbineSteamDrainfromh4lneAnchortoM.S.DrainHdr.SteamSupplytoAlrEjectorBeyondHV-1/2010'ofirstaehmloanchorANSI831.1ANSI831.158513501'851350103ANS831.1ASMESect.IllANS831.1RodHangersPIpeStrapsCono.Anch.SnubbersStruct.Memb.AISCMSSSP58AISCMSSSP58OWThermalHydroSelsmloR.LAnalyshuslngOBERFPTSupplyBeyondValveHV-t/20111tofirstselsmhanchor831.11I.SASMESect.IIIANSI831.1AISCMSSSP58DWThermalHydroSelsmlcRS.AnalystsUsingDBE(Note2)SteamSealEvaporatorVneBeyondHV-1/20109tofirstaelsmhanchorANSI831.1ASMESectIIIANSI831.1SpdngsSnubbereStruckMemb.ASCMSSSP58OWThermalHydroSelsmhRLAnalysisusingDBEINote2)

TABLE4INTERCONNECTEDSYSTEMDESIGNPARAMETERSUNIT1AND2NOTES:1.ANALYSSMETHODISUNEAREIASTICFORBOTHHANDCALCULATIONSUSINGSPACINGCRITERIAANDME101COMPUTERANALYSS.2.SHSMICAU.YANALYZEDFROMTHEMAINSTEAMBRANCHCONNECTIONTOTHEFIRSTIN-UNEANCHOR.

7 TABLEdOutllerldentltlcathnandResolutionStatusUNITfnSteanDraintoCoadcnserSS1Sf-i5upyortESD-LLt-bignayslideoCCtESD-litfnproxfnftytoblockeallSupportESD-LLi-Sgf5Sy-ESD-fit-58$<<cyslideoCCValveSVfaf-7011outsideIgbgfCriteriaiyDCESCXAI.TAfIJDIEWOE>Ayyyfpesefsnfooovenentfsheingevaluatedblockwallfsevaluatedan4Coundacceptableas-lsDLCCerentfalsefsnfoanm<<atbetweenReactorSuffdfngandTurbineSufldlnglabefngevaluatedValvesefssLfooyerabflftyandpipeintegrityarebeingevaluatedfnSteanCrc<<NITtostopTafnAl10ESD115attache4toblockeallblockwallsefsafacapacityfsbeingevaluate4A0"DripLegsAl5SofateaboveWLTAthruDSoiatsereheingevaluatedforpositionretentionHainStean57pacstoCoodasorAS-5lnterectfonbetweenESD-102-SagA05crossaroundpipeDES-105-55,S7fnpro@Loftytoblockeall055-105-55,ESD-L00-55,055-105-ELEattachedtoblockwall5efsolopryingectionoCiblineonsuppoctfsbeingevaluatedblockwallisevaluatedandCoundacceptableasisblockwellfsevaluatedendfoundacceptablees-fsHcfnStoatoEV10107SteanJctAfr+actorAS-IAS5TalveSV-LOL07fnyroxfnftytoblockeallValveET-10107inyrorfnftytotireprotection5yra7blockwallfsevaluatedsndCoundacceptableaa-fsTaInfshefngevaluatedCorCallsaCeposition TABLE5OutllerMentNcatlonIndResolutionStatuellHITInStoatoStemJetAirEJectorCi-1{frmIT-10101toET-I0701$)2$0-100inproxinitytoblock<<cLL(FOIESIIALyAIUJEEIEOE)AypAcceptableas-ieCl2A~ESD-100StenchicasnayslideoffTalesST-10701$inprorinltytepiroprotectionSprayXAcceptableasisXAcceptableas-lslnSte>>DripLagDrains$11$12$1-5DI-a$15$1-0$17II/2Dbb-101,2ga<<ndorCableTreyIatoracticnbot<<om1-1/2NS-1stA10"Bllineiaterecticebot<<oen1-1/2"N$101010WlineInteractionbot<<ocn1-1/2"NS-102C"Acr.StemlineInteractionbetcem1"DS$105,ESD-I004block<<allINb-105,17'panbct<<ecnsepportsOAD-LIS,0$0-125endorcabletreyAdo0<<acyofcabletreys<<pportelabeinga<<el<<at<<4Soimiono@mentsofbothlinesarebeingecslnatodSeimionovmontsofbothlinesarebolaseeaL<<atodSeimieawmmtsofbothLineaarobeingeoalaatedSlack<<alLiseeelnatedondfo<<ndacceptableea-isSolsaieno<<montofI"pipeisbeingoval<<atod5<<pportevercpenisbeingeealnatodAdagaacyofcabletraysepportaisbeinge<<electedinStemDripLegLe<<elInstr<<aoatcticn$21IDSS-105inpresiaityteblock<<cLLblock<<alLisoval<<atedendfo<<ndacceptablees-is TABLEIOutllarMentlflcatlonandReiolutlanStatusUNITStemAveragingManifoldtopresserstraedncerpanoLS5-I1"OCO-LLSinproriaitytoblock<<aLL{ICTESTIALFAILIEWDE)PDVSlock<<aLLseimiocapacityiobeingoealnatedStopTalesSoa'tOscinetoCondansetSi-lPelvesSV-LOLOLA,S,C,DmyrequireaeimiorestraintsSi15MDliiSgiS10ASLL5tanchionsnayslideoTESeimioloadsfrasvalvesarebeingovslnatedPilwseimlaaementlsbeingovelnatedHICIStemDraintothisStemDrainSeederSS11"ESOillinprnrinitytoblock<<elLSSS5PESDLli-S55,SSiAS555tanchionsnayslideofTSlack<<aLLlsoealnatedandTonndacceptableas-isPipesoimiannementlsbeingovsinatedLnStempresserseasingLines00-21"PipeA5/0To@faglnproxiaitytoblock<<allSlack<<aLLseimiacapacitylabeinga%sleetedEeytooatliertypcsiAAncbcrageorSnpportCapacityF-FallnreandFalling{IIII)PProrinityandIopsotDDitferentialDlsplacment0-PaleoOperatorScreening

)

TABLEIOuNerldentlcathnandReeotuthnStatueUNlf2StemDraintoCond<<verAS-I2ESD-Sfi420JED-22$interaatfonSS-LrESD-SfaSupportsblAE2attachedtotccodifferentbuffdfns'IS-1TalveST2if7021outsideSQQOorlterieSS2rESD-Slifnprosfoftytobleak<<allSSaESD-Sfa-a10,17,14,10stanchion~uyportsne7slideoff(PDIESIIALPAILDSEIKIE)ypDSefmfo<<ovmentsoEbothLinesarebefnSevaluatedDifferentialseimfonovmentbetweenReactorSuildinsA.turbfneSulldlnafsbelnSevaluatedValveeefsafooperabilityapipefntesrityesebelnSevaluatedSfoekwalLfsevaluatedand!oundacceptableasispfpesofmf0mvmeutfabefnSevaluatedStemEronIOITtostopvalveA0"DripLessAl1SofstsabovetOITAthruDAl-2rESD-LLSfn~tytobmwaLLHoistsarsbelnsevaluated!orpositionretentionblockwaLLsefmfooapaoftplsbefnSevaluatedStemS7pesstoCondenserAS-LlntereationbetweenESD-202-Sa2Aa2arsesaroundpipeAS-S2iNS-20540ESD-200~uyyortsattacbedtoSloek<<allAS-52"EElineandsteel.pfatforainteraotlonSefmfopryfnSaotlenoE02lfneonsupportlsbeinSevaluatedSleekwalLfsevaluatedandfoundeooeptebleas-lsSteelplatfox<<wasnodffiedtooleertbe2lineStemteST20107StemJetAirEfeaterASHValveST-20107endbrpclssupportsfuproxfnftrtoblockweLLASSValveST-20107fnprorfnftytoTireProteetlonSpraySfookwelLlsevaluatedsndSoundaoeeytebleas-isVaLvelsbeinsevaluatedforSallsatepositfm TABLE6OuNerldenttftcathnandRaeotuthnStatueUNITnStemtoStemJetAlrMeet(fsmHT-20107toHT-207015)Cl-1i"ESD-200lnprcnchsltytoblochoeLLCl-2TalvesHT-2070)A/SlspeatcclthMaLLCl-5TelveHT-2470LSlnprorlccltytotireProtectionSpray{ICIESIIALPAILIE)ER)2)tOTAoeeptableu"lsAooeptebleulsAooeptebgss-lsStepTalvoSeatDrainstoSi-ITalvesHT-2010)A,S,C,Dnspre@cire~elmlorestraintsSelmleloadsfrerevalvesarel>>lnSevalnatodSCICStemDraintoHainStemDrainHeaderS'71L"EADRliai"ESD-227lnteraetlanSelmioadam<<ctofi"linelsbelnSevaluatedSICISteanDrainto)4alnStemDrainHeaderlnStemDripLaaOra)ns50-11"ERD.Rli4iHSD-227lntereetlonSl-1TalvesHT-20104AaSnayroqalreaelsniarestraintSL-R1GSD-250aiESD-RLRilntereetlonSi-51CSD-250aERD-202-HIflnteraotionSl-i1-1/2"Nl-202a10IWlineLnteraetlcaSl5TalvsHT-ROLLRALaiAces,StoaLinelnteraetlanS1-0i"CRD-250ccader0tireProtectionlineSl-7TaLvesHT-2011251A52neyr<<pclre~elm)arestraint.Alsolntereatlen<<ith4Aea.StemlineSl-01-1/2OSS-20i110IMLinelnteraetlonSl-0Sp-DSS-205-H4040a0"ESD-200Lb>>lnteraetlon01-10L-L/2"O55.205a10IlllinelnteraetlonSolmlencvmentofi"linelsbeinsevslnatedSccpyortsforHT-20105A~Saroboln0evalsatod5elsala<<wmentsofbothlinnarebelnSevalnatedSelmlenovmentsofbothLinesarebelnSevalnatedSelmlenovmentsofbothlinesarobolnSevalsatedSelmle<<vvmentsofHT-ROLLRAL4iLinearebelnSevalsatedTlr~ProteetlonlineeccppertsarebelnSevalnated5ccpportaforHT-ROLLRSLaSRaealmlemvmentefilineere)>>lnSevslsetedSelmlamvmentsofbothLinesarebelnsevalsatedSelealepxylsssationof0"StemLinemsepportlsbolasevalsated5eleslesovmenteofbothlinesarebalsaevalaeted TABLEeQuttterIdeatlftCathnandRSSO}uthnStatueUNT2StecccDripLe0LevelIntcscentatianSR-lSR-RSR5SR-01MI-2054$0"LobeOillinelntereetlon1D55-205410"ExtractionSteanUnelnteraotlonVDRS-202410"EstraetlonSteanlineinteractionSP-DSS-20$-E&00T410"PWEt!RAdraininteraction(POITIITIALPAINREIRRIR)4PPSelssionoveoentsofbothlinesanbeln0evalsatedSelsnlo~tsofbothlinesarebein0evalsate4Selsaloeormmteofbothlinesarebeln0evalsatedSelsslowhatofItilinelsbelnSevsloatedSteanAvera0ln0Ncnlfo14toSR-IPresserstrmsdoeerpanelSSR5$-$1ICD-212StanchionSopports~lidooff1"DCD-RIRenderEVhCDuet1DCD-212inproxialtytobloch<<allSelsnleunmetof1linelsbeln0evslsatedlÃhCseisaiosopportoapaeltylsbein0evalsatedRlocbeallselsaloeapaoltylsbelnsevalsate450-2Tubis0naderEVACTobis0inprorlaityofblock<<alllÃhCselsnlosspportoapaeltylsbein0evalsatedSlosh<<allselsolooapaoltylsbeln0evalsate4EeytooetllestypeacA-hncbora0eorRapportCapacityPPallorean4tallis0(II/I)P-PrecialtyandIspaotDdifferentialDlspiaomeat5-TslveOperatorSoroein0 ATTACHMENTTOPLA-422SENCLOSURE3SUSQUEHANNALOCADOSE

~y~

Attachment2SUSQUEHANNALOCADOSESFORACOMBINEDMSIVLEAKAGERATEOF300SCFHUSINGTHEISOLATEDCONDENSERTREATMENTMETHODSUSQUEHANNASTEAMELECTRICSTATION-EACHUNITExclusionAreaBoundary(2-Hour)LowPopulationZone.(30-Day)ControlRoom(30-Day)A.10CFR100LimitB.DosesusingMSIV-LCSTreatment>>>>C.PreviousCalculatedDosesw/oMSIVLeakage>>>>D.ContributionfromMSIVs300SCFHTotal<<>>>>E.NewCalculatedDosesUsingICTreatmentA.10CFR100LimitB.DosesUsingMSIV-LCSTreatment<<>>C.PreviousCalculatedDosesw/oMSIVLeakage>>>>D.Contribution&omMSIVs300SCFHTotal>>>>>>E.NewCalculatedDosesUsingICTreatmentA.GDC-19B.DosesusingMSIV-LCSTreatment'C.PreviousCalculatedDosesw/oMSIVLeakage>>>>D.Contribution&omMSIVsat300SCFHTotal"'.NewCalculatedDosesusingICTreatmentWholeBodyrem252.472.210.0072.21725.0.370.330.040.3750.380.350.410.76Thyroidrem300127.8125.50.11125.61'0030.429.612.1441.743014.1913.64.9518.55Betarem7512.011.01.1712.17NolimitspecifiedDosescalculatedforPowerUpratedconditionsinPP&LCalculationEC-RADN-1009PerGEcorrespon4encesOG94-574-09andOG93-1021-09FORMNDAP-QA-0726-1,Rev.0Page16of16

$aap~0r~IIF,"If o9D+8Aca!TM)VLstIAMBSM-105SH.2~SD-fo00000CT-5PDT~0IuaerF.4HMDCdDESEllELL-IAE00H001MNTMTIIEIKTIMA.ELEAKKL8STE-LW-I2I+~SM~-0IO'p'n9213630A.des-JI'EID-II~D50-12510OID~w-M-oao"~MAN-ooo~IRV-IP.0DIIAV-PP-)OIOIDTPe.-le15D~8-FKHO~MBA~AN--IIWWIIHMI~IRVVNT-)0lt02'DSA-U5IIO.PT260001SIETM0WMSM'FE--IM52~IRV-Nl-10)IAI"'a--IIeF00-MILDE0"I100c~0la0HaMsI'OCS-DBS-3DWHLTLa.AD'~02DI~ICI2DVMW-DAD-~NM-O5011011000IAV-PT-I82NQ+H$8Tl":".I'"2'WoKETK0WM0Ia'N2-DN53oae-oILDEcIIeDBS30~BWPI-OO0INEH)T000~a-D-00C~ll-PDT-00CMD02ODD-seva0oeeMIrO'02TaRI->>-NL-0112-TL-101128IPR.-)IN)6000POTHoC0~MV-PT-ION~aa-PP*RVVNT-)00DM-141SH.ISNIAE85toPots~N5-orw-~(Iaw-roMCrt:'*MB.6~tt125SetEII'ESD010alTNS12)-~HSM.IAK-TDI200DFM-155SH.IHIONI+0HAC0ESD-UM*5~laaoeeI-07&H007M-IOISH.3OYPA55VALVESB-La.IAVKSNM0DB.<<LIIM0ow.I3LK0MMILast0WHta"M-I0ISH.IH08IDIISehatt-~OIT...'Cl-IAl-PP-0000-10100~M-PP-DIWQUALITYRELATEDDAOM-149SH.I2MNrrsISECONNlMIP*8(CAEDTEDIAHECSIM.)RMNAM)MIIPT(CRtTEO)DLICRMLWMelSFBICIMMTMPSTNOC0.'.KA5NEOEOMIKAEPOIIIOEOWOOHCKENQF.INININISFIWKI~1)VECF0018TIEITN<CSIIEII)OBNTATE9Lili2~Olea-CjiQPttIOMSIVLEAKAGEALTERNATEFLOWPATHFIGUREHPENNSTLVSNTSPSNCR~LTSNTCSNPNDLLcersaaps.AECR*I0H-101HSNETQH)DD)ODD28