ML24214A070: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:Instrument E fficiency D etermination for Use       in Minimum   Detectable C oncentration Calculations in Support of t   he Final S   tatus Surveys at O       CNGS
{{#Wiki_filter:Instrument E fficiency D etermination for Use in Minimum Detectable C oncentration Calculations in Support of t he Final S tatus Surveys at O CNGS


Revision 0
Revision 0
Line 24: Line 24:


Westinghouse - Radiological Engineering Group 141 Longwater Drive Suite 113 Norwell, MA 02061
Westinghouse - Radiological Engineering Group 141 Longwater Drive Suite 113 Norwell, MA 02061
                                                              @Westinghouse Author:
@Westinghouse Author:
Martin C. Erickson                             Date
Martin C. Erickson Date


Reviewer:
Reviewer:
William Parish                               Date
William Parish Date


Approved:
Approved:
Christopher C. Messier                           Date Contents Executive Summary..............................................................................................................................                                                                                                 ....... 3
Christopher C. Messier Date Contents Executive Summary..................................................................................................................................... 3


==1.0                                                                     INTRODUCTION==
==1.0 INTRODUCTION==
.............................................................................................................................                                                                                       4 2.0                                                                                                 CALIBRATION SOURCES ...........................................................................................................                                                                                     ... 4 3.0                                                                               EFFICIENCY DETERMINATION.................................................................................................... 6 3.1                                                                       Alpha and Beta Instrument Efficiency (ei) .....................................................................................                                                                 ..... 6 4.0                                                                       Source to Detector Distance Considerations ........................................................................................ 7 4.1                                                                   Methodology ...............................................................................................................................                                                                                       ...... 8 4.2                                                                 Source (or surface) Efficiency (es) Determination ...............................................................................                                                       8 5.0                                                                       INSTRUMENT CONVERSION FACTOR (Ei) (INSTRUMENT EFFICIENCY FOR GAMMA SCANNING) .....................................................................................................................                                                                                   ................ 9 6.0                                                                       APPLYING EFFICIENCY CORRECTIONS BASED ON THE EFFECTS OF FIELD CONDITIONS FOR TOTAL EFFICIENCY ..........................................................................................................                                                                         .... 9
............................................................................................................................. 4 2.0 CALIBRATION SOURCES.............................................................................................................. 4 3.0 EFFICIENCY DETERMINATION.................................................................................................... 6 3.1 Alpha and Beta Instrument Efficiency (ei).......................................................................................... 6 4.0 Source to Detector Distance Considerations........................................................................................ 7 4.1 Methodology..................................................................................................................................... 8 4.2 Source (or surface) Efficiency (es) Determination............................................................................... 8 5.0 INSTRUMENT CONVERSION FACTOR (Ei) (INSTRUMENT EFFICIENCY FOR GAMMA SCANNING)..................................................................................................................................... 9 6.0 APPLYING EFFICIENCY CORRECTIONS BASED ON THE EFFECTS OF FIELD CONDITIONS FOR TOTAL EFFICIENCY.............................................................................................................. 9


==7.0                                                                       CONCLUSION==
==7.0 CONCLUSION==
....................................................................................................................                                                                         ........... 10
............................................................................................................................... 10


==8.0                                                                                                                                   REFERENCES==
==8.0 REFERENCES==
....................................................................................................................                                                                             ............ 11
................................................................................................................................ 11


Table 2.1 OCNGS Nuclides and Major Radiations: Approximate Energies ...........................................................                                       . 5 Table 3.1 Nominal Instrument Efficiencies (es) ...................................................................................................... 7 Table 4.1 Source-to-Detector Distance Effects on Instrument Efficiencies for -                       Emitters .................................. 8 Table 4.2 Source Efficiencies as Listed in ISO 7503-1 ...........................................................................................                                                               9 Table 5.1 Energy Response and Efficiency for Photon Emitting Isotopes ...............................................................                                           9
Table 2.1 OCNGS Nuclides and Major Radiations: Approximate Energies............................................................ 5 Table 3.1 Nominal Instrument Efficiencies (es)...................................................................................................... 7 Table 4.1 Source-to-Detector Distance Effects on Instrument Efficiencies for - Emitters.................................. 8 Table 4.2 Source Efficiencies as Listed in ISO 7503-1........................................................................................... 9 Table 5.1 Energy Response and Efficiency for Photon Emitting Isotopes............................................................... 9


ii Executive Summary The minimum detectable concentration (MDC) of the field survey instrumentation is an important factor     affecting     the     quality     of     the     final     status     survey     (FSS). The     efficiency     of     an     instrument inversely impacts         the MDC value. The objective of this report is to determine the instrument and source       efficiency       values       used       to       calculate       MDC.       Several       factors       were       considered       when determining these efficiencies and are discussed in the body of this report. Instrument efficiencies (ei), and source efficiencies (e   s), for alpha beta detection equipment under various field conditions, and   instrument   conversion   factors   (Ei),     for     gamma scanning   detectors   were   determined   and   the results are provided herein.
ii Executive Summary The minimum detectable concentration (MDC) of the field survey instrumentation is an important factor affecting the quality of the final status survey (FSS). The efficiency of an instrument inversely impacts the MDC value. The objective of this report is to determine the instrument and source efficiency values used to calculate MDC. Several factors were considered when determining these efficiencies and are discussed in the body of this report. Instrument efficiencies (ei), and source efficiencies (e s), for alpha beta detection equipment under various field conditions, and instrument conversion factors (Ei), for gamma scanning detectors were determined and the results are provided herein.


3
3


==1.0         INTRODUCTION==
==1.0 INTRODUCTION==
 
Before performing Final Status Surveys of building surfaces and land areas, the MDC must be calculated to establish the instrument sensitivity. The Oyster Creek Nuclear Generating Station (OCNGS) License Termination Plan (LTP) list the available instrumentation and nominal detection sensitivities; however, for the purposes of this basis document, efficiencies for the nominal 100 cm2 gas
Before performing Final Status Surveys of building surfaces and land areas, the MDC must be calculated to establish the instrument sensitivity. The Oyster Creek Nuclear Generating Station (OCNGS) License Termination Plan (LTP) list the available instrumentation and nominal detection sensitivities; however, for         the         purposes         of       this         basis         document,         efficiencies         for         the         nominal         100         cm2         gas


proportional/scintillation and the 2"x2" Nal (TI) detectors will be determined. Efficiencies for the other instrumentation listed in the LTP shall be determined on an as needed basis. The 100 cm2 scintillation
proportional/scintillation and the 2"x2" Nal (TI) detectors will be determined. Efficiencies for the other instrumentation listed in the LTP shall be determined on an as needed basis. The 100 cm2 scintillation


probe, or the gas proportional probe will be used to perform   building surface surveys (i.e., fixed point measurements). A 2"x2" NaI (TI) detector will be used to perform gamma surveys (i.e., surface scans) of portions of land areas and possibly supplemental structural scans at the sites. Although surface scans and fixed-point measurements can be performed using the same instrumentation, the calculated MDCs will be quite different. MDC is dependent on many factors and may include but is not limited to:
probe, or the gas proportional probe will be used to perform building surface surveys (i.e., fixed point measurements). A 2"x2" NaI (TI) detector will be used to perform gamma surveys (i.e., surface scans) of portions of land areas and possibly supplemental structural scans at the sites. Although surface scans and fixed-point measurements can be performed using the same instrumentation, the calculated MDCs will be quite different. MDC is dependent on many factors and may include but is not limited to:


x                                             Instrument Efficiency x                                       Background x                                             Integration Time x                                         Surface Type x                                         Source to Detector Geometry x                                     Source Efficiency
x Instrument Efficiency x Background x Integration Time x Surface Type x Source to Detector Geometry x Source Efficiency


A significant factor in determining an instrument MDC is the total efficiency, which is dependent on the instrument   efficiency,   the   source   efficiency   and   the   type   and   energy   of   the   radiation. MDC   values   are inversely affected by effi ciency, as e fficiencies incr ease,   MDC values will decrease. Accounting for both the instrument and source components of the total efficiency provides for a more accurate assessment of surface activity.
A significant factor in determining an instrument MDC is the total efficiency, which is dependent on the instrument efficiency, the source efficiency and the type and energy of the radiation. MDC values are inversely affected by effi ciency, as e fficiencies incr ease, MDC values will decrease. Accounting for both the instrument and source components of the total efficiency provides for a more accurate assessment of surface activity.


2.0         CALIBRATION SOURCES
2.0 CALIBRATION SOURCES


For accurate measurement of surface   activity, it is desirable that the field instrumentation be calibrated with source standards similar to the type and energy of the anticipated contamination. The nuclides listed in Table 2.1 illustrates the nuclides found in soil and building surface area DCGL results that are listed in the OCNGS LTP.
For accurate measurement of surface activity, it is desirable that the field instrumentation be calibrated with source standards similar to the type and energy of the anticipated contamination. The nuclides listed in Table 2.1 illustrates the nuclides found in soil and building surface area DCGL results that are listed in the OCNGS LTP.
Instrument response varies with incident radiations and energies; therefore, instrumentation selection for field surveys must be modeled on the expected surface activity. For the purposes of this report, isotopes with max beta energies less than that of C-14 (0.158 MeV) will be considered difficult to detect (reference table     2.1). The     detectability     of     radionuclides     with     max     beta     energies     less   than     0.158   MeV,     utilizing 4
Instrument response varies with incident radiations and energies; therefore, instrumentation selection for field surveys must be modeled on the expected surface activity. For the purposes of this report, isotopes with max beta energies less than that of C-14 (0.158 MeV) will be considered difficult to detect (reference table 2.1). The detectability of radionuclides with max beta energies less than 0.158 MeV, utilizing 4
scintillation     detectors,     will     be     negligible     at     typical   source     to     detector     distances     of     approximately     0.5 inches. The   source   to   detector   distance   of   1.27   cm   (0.5   inches)   is   the   distance   to   the   detector   with   the recommended     standoff. Tables     2.1     and     2.2     provide     a     summary     of     the     LTP     radionuclides     and     their detectability using Radiological Health Handbook data.
scintillation detectors, will be negligible at typical source to detector distances of approximately 0.5 inches. The source to detector distance of 1.27 cm (0.5 inches) is the distance to the detector with the recommended standoff. Tables 2.1 and 2.2 provide a summary of the LTP radionuclides and their detectability using Radiological Health Handbook data.
Table 2.1 OCNGS Nuclides and Major Radiations: Approximate Energies
Table 2.1 OCNGS Nuclides and Major Radiations: Approximate Energies


Nuclide         Energy   Emax (Mev) Average E     Photon Energy       Detectable               Detectable (Mev)                       (Mev)           (Mev)           w/100 cm2   Detectable   w/NaI 2x2 Detector     w/100 cm2 Detector H-3                         0.018         0.005 C-14                         0.158         0.049 Mn-54                                                   0.835 (100%)                                       9 Fe-55                       N/A           0.0052 Co-60                       0.314         0.094       1.173 (100%)                           9           9
Nuclide Energy Emax (Mev) Average E Photon Energy Detectable Detectable (Mev) (Mev) (Mev) w/100 cm2 Detectable w/NaI 2x2 Detector w/100 cm2 Detector H-3 0.018 0.005 C-14 0.158 0.049 Mn-54 0.835 (100%) 9 Fe-55 N/A 0.0052 Co-60 0.314 0.094 1.173 (100%) 9 9
1.332 (100%)
1.332 (100%)
1L                                           
1L   
6U                                                                                       9
6U     9
                                   <   
 < 
1E                                                                                   9           9
1E       9 9
                                                                
  
7F                                                                                        9
7F    9
6E                                                                                                   9
6E       9
                                                                
  
                                                                
  
&V                                                                                 9           9
&V       9 9
                                                    %D  P; 5D\\V
  %D  P; 5D\\V
(X                                                                
(X        
                                                                                        9           9
    9 9
                                                                       
   
                                                                       
   
(X                                                                                 9           9
(X       9 9
                                                               
 
1S                                                                                                    
1S      
3X                                                      (       9                                
3X    (   9  
                                                        (  
  (  
                                                            (  
(  
3X                                                0.039(0.007%)           9
3X    0.039(0.007%) 9
                                                    0.052(0.20%)
  0.052(0.20%)
0.129(0.005%)
0.129(0.005%)
3X                                                                          9
3X    9
                     
 
3X                                                    (  
3X      (  
                         
 
$P                                                                      9
$P      9
                                                               
   
&P                                                                    9
&P      9
                                                           
   
                                                             
   
                       
 
&P                                                                        9
&P    9
                     
 
185(*        DQG   ,62            SURYLGH   JXLGDQFH   IRU   VHOHFWLQJ   FDOLEUDWLRQ   VRXUFHV   DQG   WKHLU   XVH   LQ
185(*  DQG,62  SURYLGH JXLGDQFH IRU VHOHFWLQJ FDOLEUDWLRQ VRXUFHV DQG WKHLU XVH LQ
GHWHUPLQLQJ WRWDO HIILFLHQF\\  ,W LV FRPPRQ SUDFWLFH WRFDOLEUDWH LQVWUXPHQW HIILFLHQF\\ IRU D VLQJOH EHWD
GHWHUPLQLQJ WRWDO HIILFLHQF\\ ,W LV FRPPRQ SUDFWLFH WRFDOLEUDWH LQVWUXPHQW HIILFLHQF\\ IRU D VLQJOH EHWD


5 energy;   however,   the   energy   of   this   reference   source   should   not   be   significantly   greater   than   the   beta energy of   the lowest energy to   be measured. Calibration   sources should   be selected   that   emit   alpha or beta radiation with energies similar to those expected of the contaminant in the field.
5 energy; however, the energy of this reference source should not be significantly greater than the beta energy of the lowest energy to be measured. Calibration sources should be selected that emit alpha or beta radiation with energies similar to those expected of the contaminant in the field.


Tc-99 (0.294MeV at 100%)     and Th-230 (4.621 MeV at 23% and 4,687 MeV at 76%) have been selected as       the       beta       and       alpha       calibration       standards       respectively,       because       their       energies       conservatively approximate the beta and alpha energies of the plant specific radionuclides most prevalent in the field.
Tc-99 (0.294MeV at 100%) and Th-230 (4.621 MeV at 23% and 4,687 MeV at 76%) have been selected as the beta and alpha calibration standards respectively, because their energies conservatively approximate the beta and alpha energies of the plant specific radionuclides most prevalent in the field.


3.0           EFFICIENCY DETERMINATION Typically,   using   the   instrument   4         efficiency   exclusively   provides   a   good   approximation   of   surface activity. Using   these   means   for   calculating   the   efficiency   often   results in   an   underestimate   of activity levels in the field. Applying both the instrument 2   efficiency and the surface efficiency components to determine the total efficiency allows for a more accurate measurement due to consideration of the actual characteristics     of     the     source     surfaces.     ISO     7503-1     recommends     that     the     total     surface     activity     be calculated using:
3.0 EFFICIENCY DETERMINATION Typically, using the instrument 4 efficiency exclusively provides a good approximation of surface activity. Using these means for calculating the efficiency often results in an underestimate of activity levels in the field. Applying both the instrument 2 efficiency and the surface efficiency components to determine the total efficiency allows for a more accurate measurement due to consideration of the actual characteristics of the source surfaces. ISO 7503-1 recommends that the total surface activity be calculated using:




                                                                                                                         
   


Where:
Where:
As     is the total surface activity in dpm/cm     2, Rs +B is the gross count rate of the measurement in cpm, RB       is the background count rate in cpm, ei   is the instrument or detector 2   efficiency, es       is the efficiency of the source and W is the area of the detector window (cm   2) (126 cm2 active for the 43-93/Scintillation detector)
As is the total surface activity in dpm/cm 2, Rs +B is the gross count rate of the measurement in cpm, RB is the background count rate in cpm, ei is the instrument or detector 2 efficiency, es is the efficiency of the source and W is the area of the detector window (cm 2) (126 cm2 active for the 43-93/Scintillation detector)


3.1                                                                                 Alpha and Beta Instrument Efficiency (e i)
3.1 Alpha and Beta Instrument Efficiency (e i)


Instrument     efficiency     (ei)     reflects     instrument     characteristics     and     counting     geometry,     such     as source construction,     activity     distribution,     source     area,     particles     incident     on     the     detector     per     unit time     and therefore source to detector geometry. Theoretically the maximum value of es       is 1.0, assuming all the emissions   from   the   source   are   2     and that all emissions from the source are detected. The ISO 7503-1 methodology for determining the instrument efficiency is similar to the historical 4                       approach; however, the detector response, in cpm, is divided by the 2 surface emission rate of the calibration source. The instrument   efficiency is   calculated   by dividing the net count rate by the 2     surface emission rate (q2)
Instrument efficiency (ei) reflects instrument characteristics and counting geometry, such as source construction, activity distribution, source area, particles incident on the detector per unit time and therefore source to detector geometry. Theoretically the maximum value of es is 1.0, assuming all the emissions from the source are 2 and that all emissions from the source are detected. The ISO 7503-1 methodology for determining the instrument efficiency is similar to the historical 4 approach; however, the detector response, in cpm, is divided by the 2 surface emission rate of the calibration source. The instrument efficiency is calculated by dividing the net count rate by the 2 surface emission rate (q2)


6 (Includes     absorption     in     detector     window,     source detector     geometry).     The     instrument     efficiency     is expressed in ISO 7503- 1 by:
6 (Includes absorption in detector window, source detector geometry). The instrument efficiency is expressed in ISO 7503-1 by:


                                                  

      

Where:
Where:
RS+B is the gross count rate of the measurement in cpm, RB       is the background count rate in cpm, q2   is the 2   surface emission rate in reciprocal seconds
RS+B is the gross count rate of the measurement in cpm, RB is the background count rate in cpm, q2 is the 2 surface emission rate in reciprocal seconds


Note that both the 2       surface emission rate and the source activity are usually stated on the certification sheet   provided   by   the   calibration   source   manufacturer   and   certified   as   National   Institute   of   Standards and     Technology     (NIST)     traceable. Table   3.1     depicts   nominal     instrument     efficiencies     that     have     been determined during calibration using the 2   surface emission rate of the source.
Note that both the 2 surface emission rate and the source activity are usually stated on the certification sheet provided by the calibration source manufacturer and certified as National Institute of Standards and Technology (NIST) traceable. Table 3.1 depicts nominal instrument efficiencies that have been determined during calibration using the 2 surface emission rate of the source.
Table 3.1 Nominal Instrument Efficiencies (ei)
Table 3.1 Nominal Instrument Efficiencies (ei)


Source               Emi ssi on         Active Area of           Area of the             100 cm2 the Source             Detector               Nominal (cm2)                                     In strumen t (ei) (Contact) Efficiency
Source Emi ssi on Active Area of Area of the 100 cm2 the Source Detector Nominal (cm2) In strumen t (ei) (Contact) Efficiency


Tc-99                                               15.2               100 cm2                 0.1203 Th-230                                             15.2               100 cm2                 0.1393
Tc-99 15.2 100 cm2 0.1203 Th-230 15.2 100 cm2 0.1393


4.0                                                   Source to Detector Distance Considerations A   major   factor   affecting   instrument   efficiency   is   source   to   detector   distance. Consideration   must   be given to this distance when selecting accurate instrument efficiency. The distance from the source to the detector shall be as close as practicable to geometric conditions that exist in the field. A range of source to     detector     distances     has     been     chosen,     considering     site     specific     survey     conditions. In     an     effort     to minimize   the   error   associated   with   geometry,   instrument   efficiencies   have   been   determined   for   so urce to detector distances representative of those survey distances expected in the field. The results shown in Table 4.1 illustrate the imposing reduction in detector response with increased distance from the source.
4.0 Source to Detector Distance Considerations A major factor affecting instrument efficiency is source to detector distance. Consideration must be given to this distance when selecting accurate instrument efficiency. The distance from the source to the detector shall be as close as practicable to geometric conditions that exist in the field. A range of source to detector distances has been chosen, considering site specific survey conditions. In an effort to minimize the error associated with geometry, instrument efficiencies have been determined for so urce to detector distances representative of those survey distances expected in the field. The results shown in Table 4.1 illustrate the imposing reduction in detector response with increased distance from the source.
Typically, this source to detector distance will be 0.5 inches for fixed point measurements and 0.5 inches for scan surveys on flat surfaces, however they may differ for other surfaces. Table 4.1 makes provisions for   the   selection   of   source   to   detector   distances   for   field   survey   conditions   of   up   to     2.0   in. If   surface conditions   dictate the   placement   of   the   detector   at   distances   greater   than   2.0   in   instrument   efficiencies will be determined on an as needed basis.
Typically, this source to detector distance will be 0.5 inches for fixed point measurements and 0.5 inches for scan surveys on flat surfaces, however they may differ for other surfaces. Table 4.1 makes provisions for the selection of source to detector distances for field survey conditions of up to 2.0 in. If surface conditions dictate the placement of the detector at distances greater than 2.0 in instrument efficiencies will be determined on an as needed basis.


7 4.1         Methodology The practical application of choosing the proper instrument efficiency may be determined by averaging the surface variation (peaks and valleys narrower than the length of the detector) and adding 0.5 inches, the   spacing   that   should   be maintained   between   the   detector   and   the   highest   peaks   of   the   surface. The source-to-detector distance was evaluated using a Ludlum 43-93 scintillation detector with a 1.2 mg/cm         2 window   for   Tc-99   and   Th-230. Five   1-minute measurements were made on contact   and at   distances of 0.5, 1, 1.5 and 2 inches. Measurement results are contained in Appendix B.
7 4.1 Methodology The practical application of choosing the proper instrument efficiency may be determined by averaging the surface variation (peaks and valleys narrower than the length of the detector) and adding 0.5 inches, the spacing that should be maintained between the detector and the highest peaks of the surface. The source-to-detector distance was evaluated using a Ludlum 43-93 scintillation detector with a 1.2 mg/cm 2 window for Tc-99 and Th-230. Five 1-minute measurements were made on contact and at distances of 0.5, 1, 1.5 and 2 inches. Measurement results are contained in Appendix B.
Select the source to detector distance from Table 4.1 that best reflects this pre-determined geometry.
Select the source to detector distance from Table 4.1 that best reflects this pre-determined geometry.
Table 4.1 Source-to-Detector Distance Effects on Instrument Efficiencies for   -   Emitters
Table 4.1 Source-to-Detector Distance Effects on Instrument Efficiencies for - Emitters


Instrum ent Efficiency (ei)
Instrum ent Efficiency (ei)
Source to Detector Distance (in)                     Tc-99 Distributed                         Th-230 Distributed C ont act                                       1                                           1 0.5                                     0.849383                                   0.013418 1.0                                     0.597486                                   0.000716 1.5                                     0.468216                                   0.000301 2.0                                     0.356736                                   6.12E-05
Source to Detector Distance (in) Tc-99 Distributed Th-230 Distributed C ont act 1 1 0.5 0.849383 0.013418 1.0 0.597486 0.000716 1.5 0.468216 0.000301 2.0 0.356736 6.12E-05


4.2                                                                           Source (or surface) Efficiency (es) Determination Source efficiency (es), reflects the physical   characteristics of the surface and any surface coatings. The source efficien cy is the ratio between the number of particles emerging from surface and the total number of particles released within the source. The source efficiency accounts for attenuation and backscatter.
4.2 Source (or surface) Efficiency (es) Determination Source efficiency (es), reflects the physical characteristics of the surface and any surface coatings. The source efficien cy is the ratio between the number of particles emerging from surface and the total number of particles released within the source. The source efficiency accounts for attenuation and backscatter.
es       is nominally 0.5 (no self-absorption/attenuation, no backscatter) -             backscatter increases the value, self-absorption     decreases     the   value. Source     efficiencies     may     either     be     derived     experimentally     or     simply selected   from   the   guidance   contained   in   ISO   7503-1. ISO   7503-1   takes   a   conservative   approach   by recommending     the     use     of     factors     to     correct     for     alpha     and     beta     self-absorption/attenuation     when determining surface activity. However, this approach may prove to be too conservative for radionuclides with max   beta   energies that   are marginally lower than 0.400 MeV, such as Co-60 with a max       of 0.314 MeV. In this situation, it   may be more appropriate to determine the source efficiency by considering the energies     of     other     beta     emitting     radionuclides.     ISO     7503-1     source     efficiencies     are     used     as     routine guidance     and     exceptions     to     those     es     efficiencies     will     be     documented     as     appropriate     to     the     specific measurement     or     survey.     Using     this     approach,     it     is     possible     to     determine     weighted     average     source efficiency. For example, a source efficiency of 0.375 may be calculated based on a 50/50 mix of Co-60 and     Cs-137. The     source     efficiencies     for     Co-60     and   Cs-137     are     0.25     and     0.5     respectively,   since   the 8
es is nominally 0.5 (no self-absorption/attenuation, no backscatter) - backscatter increases the value, self-absorption decreases the value. Source efficiencies may either be derived experimentally or simply selected from the guidance contained in ISO 7503-1. ISO 7503-1 takes a conservative approach by recommending the use of factors to correct for alpha and beta self-absorption/attenuation when determining surface activity. However, this approach may prove to be too conservative for radionuclides with max beta energies that are marginally lower than 0.400 MeV, such as Co-60 with a max of 0.314 MeV. In this situation, it may be more appropriate to determine the source efficiency by considering the energies of other beta emitting radionuclides. ISO 7503-1 source efficiencies are used as routine guidance and exceptions to those es efficiencies will be documented as appropriate to the specific measurement or survey. Using this approach, it is possible to determine weighted average source efficiency. For example, a source efficiency of 0.375 may be calculated based on a 50/50 mix of Co-60 and Cs-137. The source efficiencies for Co-60 and Cs-137 are 0.25 and 0.5 respectively, since the 8
radionuclide fraction for Co-60 and Cs-137 is 50% for each, the weighted average source efficiency for the mix may be calculated in the following manner:
radionuclide fraction for Co-60 and Cs-137 is 50% for each, the weighted average source efficiency for the mix may be calculated in the following manner:
(.25) (.5) +(.5) (.5) = 0.375
(.25) (.5) +(.5) (.5) = 0.375
Line 155: Line 154:
Table 4.2 Source Efficiencies as Listed in ISO 7503-1
Table 4.2 Source Efficiencies as Listed in ISO 7503-1


                                                < 0.400 MeVmax                 0.400 MeVmax Beta Emitters                   es   = 0.5                 es   = 0.5 Alpha Emitters                 es   = 0.25                 es   = 0.5
< 0.400 MeVmax 0.400 MeVmax Beta Emitters es = 0.5 es = 0.5 Alpha Emitters es = 0.25 es = 0.5


5.0                                                   INSTRUMENT CONVERSION FACTOR (E i) (INSTRUMENT EFFICIENCY FOR GAMMA SCANNING)
5.0 INSTRUMENT CONVERSION FACTOR (E i) (INSTRUMENT EFFICIENCY FOR GAMMA SCANNING)
Separate   modeling   analysis   (Microshield)   was   conducted   using   the   common     gamma   emitters   with     a concentration of 1.6 pCi/g of uniformly distributed contamination throughout the volume.
Separate modeling analysis (Microshield) was conducted using the common gamma emitters with a concentration of 1.6 pCi/g of uniformly distributed contamination throughout the volume.
Microshield is a comprehensive photon/gamma ray shielding and dose assessment program, which is widely used throughout the radiological safety community. An activity concentration of 1 pCi/g for the nuclides was entered as the source term. The radial dimension of the cylindrical source was 28 cm, the depth was 15 cm, and the dose point above the surface was 10 cm with a soil density of 1.6 g/cm3. The
Microshield is a comprehensive photon/gamma ray shielding and dose assessment program, which is widely used throughout the radiological safety community. An activity concentration of 1 pCi/g for the nuclides was entered as the source term. The radial dimension of the cylindrical source was 28 cm, the depth was 15 cm, and the dose point above the surface was 10 cm with a soil density of 1.6 g/cm3. The


instrument   efficiency   when   scanning,   Ei,   is   the   product   of   the   modeled   exposure   rate   (Microshield) mRhr per   1/pCi/g   and   the   energy   response   factor   in   cpm/mR/hr   as   derived   from the   energy   response curve provided by Ludlum Instruments (Appendix A). Table 5.1 demonstrates the derived efficiencies for the major gamma emitting isotopes listed in Tables 2.1 and 2.2.
instrument efficiency when scanning, Ei, is the product of the modeled exposure rate (Microshield) mRhr per 1/pCi/g and the energy response factor in cpm/mR/hr as derived from the energy response curve provided by Ludlum Instruments (Appendix A). Table 5.1 demonstrates the derived efficiencies for the major gamma emitting isotopes listed in Tables 2.1 and 2.2.


Table 5.1               Energy Response and Efficiency for Photon Emitting Isotopes
Table 5.1 Energy Response and Efficiency for Photon Emitting Isotopes


Ei Isotope               (cpm/pCi/g)
Ei Isotope (cpm/pCi/g)
Mn-54                       289 Co-60                     478 Nb-94                     546 Sb-125                     320 C s-137                     238 Eu -152                     413 Eu -154                     387
Mn-54 289 Co-60 478 Nb-94 546 Sb-125 320 C s-137 238 Eu -152 413 Eu -154 387


When     performing     gamma     scan     measurements   on     soil     surfaces     the     effective     source     to     detector geometry is as close as is reasonably possible (less than 4 inches).
When performing gamma scan measurements on soil surfaces the effective source to detector geometry is as close as is reasonably possible (less than 4 inches).


6.0                                                   APPLYING EFFICIENCY CORRECTIONS BASED ON THE EFFECTS OF FIELD 9
6.0 APPLYING EFFICIENCY CORRECTIONS BASED ON THE EFFECTS OF FIELD 9
CONDITIONS FOR TOTAL EFFICIENCY
CONDITIONS FOR TOTAL EFFICIENCY


The total   efficiency for any given   condition can   now be   calculated   from the   product   of   the instrument efficiency ei       and the source efficiency es.
The total efficiency for any given condition can now be calculated from the product of the instrument efficiency ei and the source efficiency es.
 
etotal    = ei x es


The  following  example  illustrates  the  process  of  determining  total  efficiency. For  this  example,  we  will assume the following:
etotal = ei x es


x                                              Surface activity readings need to be made in the OCNGS Reactor Building basement concrete surfaces using the 3002 and 43-93 scintillation detector.
The following example illustrates the process of determining total efficiency. For this example, we will assume the following:
x                                      Data  obtained from characterization results from the basin indicate the presence  of beta emitters with energies greater than 0.400 MeV.
x                                      The source (activity on the surface) to detector distance is 0.5-inch detector standoff.
x                                To  calculate  the  total   efficiency,   etotal,  refer  to  Table  4.1  "Source  to  Detector  Distance Effects on Instrument Efficiencies for a -  Emitters" to obtain the appropriate e    i    value.
x                                          Contamination on all surfaces is distributed relative to the effective detector area.
x              When      performing      fixed-point      measurements      with      scintillation      instrumentation      the effective source-to-detector geometry is representative of the calibrated geometries listed in Table 4.1.
x                                          Correction for pressure and temperature are not substantial.


In  this  example,  the   2      value  for  ei        is  0.1203  as  depicted  in  Table  3.1 "Instrument    Efficiencies". The source-to-detector   correction    for    0.5   inches    is    0.849383    as    depicted  in    Table   4.1 "Source to Detector Distance Effects on Instrument Efficiencies for a- Emitters". The e value of 0.5 is chosen refer to Table 4,2    "Source Efficiencies as listed in ISO 7503-1". Therefore,    the    total    efficiency    for     this    condition becomes = ei      x  es      = 0.1203 x 0.849383 x 0.5 = 0.0511 or 5.11%.
x Surface activity readings need to be made in the OCNGS Reactor Building basement concrete surfaces using the 3002 and 43-93 scintillation detector.
x Data obtained from characterization results from the basin indicate the presence of beta emitters with energies greater than 0.400 MeV.
x The source (activity on the surface) to detector distance is 0.5-inch detector standoff.
x To calculate the total efficiency, etotal, refer to Table 4.1 "Source to Detector Distance Effects on Instrument Efficiencies for a - Emitters" to obtain the appropriate e i value.
x Contamination on all surfaces is distributed relative to the effective detector area.
x When performing fixed-point measurements with scintillation instrumentation the effective source-to-detector geometry is representative of the calibrated geometries listed in Table 4.1.
x Correction for pressure and temperature are not substantial.


==7.0         CONCLUSION==
In this example, the 2 value for ei is 0.1203 as depicted in Table 3.1 "Instrument Efficiencies". The source-to-detector correction for 0.5 inches is 0.849383 as depicted in Table 4.1 "Source to Detector Distance Effects on Instrument Efficiencies for a-Emitters". The e s value of 0.5 is chosen refer to Table 4,2 "Source Efficiencies as listed in ISO 7503-1". Therefore, the total efficiency for this condition becomes = ei x es = 0.1203 x 0.849383 x 0.5 = 0.0511 or 5.11%.


Field conditions may significantly influence the usefulness of a survey instrument. When applying the instrument   and   source   efficiencies   in   MDC   calculations,   field   conditions   must   be   considered. Tables have been constructed to assist in the selection of appropriate instrument and source efficiencies. Table 4,1   "Source to Detector Distance Effects on Instrument Efficiencies for   a- Emitters" lists instrument efficiencies   (ei)   at   various   source to   detector   distances   for   alpha and beta   emitters. The   appropriate   ei value should be applied, accounting for the field condition, i.e., the relation between the detector and the 10 surface to be measured.
==7.0 CONCLUSION==
Field conditions may significantly influence the usefulness of a survey instrument. When applying the instrument and source efficiencies in MDC calculations, field conditions must be considered. Tables have been constructed to assist in the selection of appropriate instrument and source efficiencies. Table 4,1 "Source to Detector Distance Effects on Instrument Efficiencies for a-Emitters" lists instrument efficiencies (ei) at various source to detector distances for alpha and beta emitters. The appropriate ei value should be applied, accounting for the field condition, i.e., the relation between the detector and the 10 surface to be measured.


Source efficiencies shall be selected from Table 4,2 "Source Efficiencies as listed in ISO 7503- 1 ". This table lists conservative e       s values that correct for self-absorption and attenuation of surface activity. Table 5.1 "Energy Response and Efficiency for Photon Emitting Isotopes" li st s Ei values that apply to scanning MDC       calculations.       The       MicroshieldTM     model     code     was     used     to     determine     instrument     efficiency
Source efficiencies shall be selected from Table 4,2 "Source Efficiencies as listed in ISO 7503-1 ". This table lists conservative e s values that correct for self-absorption and attenuation of surface activity. Table 5.1 "Energy Response and Efficiency for Photon Emitting Isotopes" li st s Ei values that apply to scanning MDC calculations. The MicroshieldTM model code was used to determine instrument efficiency


assuming contamination conditions and detector geometry cited in the section           "MDCs for Gamma   Scans of Land Areas" of the License Termination Plan.
assuming contamination conditions and detector geometry cited in the section "MDCs for Gamma Scans of Land Areas" of the License Termination Plan.


Detector and source   conditions   equivalent to   those   modeled herein   may directly apply to   the   results   of this report.
Detector and source conditions equivalent to those modeled herein may directly apply to the results of this report.


==8.0 REFERENCES==
==8.0 REFERENCES==
8.1 NUREG-1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various contaminants and Field Conditions," 1998


8.1        NUREG- 1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various contaminants and Field Conditions,"    1998
8.2 ISO 7503-1, "Evaluation of Surface Contamination - Part I: Beta Emitters and Alpha Emitters," 1988-08-01.
 
8.3 ISO 8769, "Reference Sources for the Calibration of Surface Contamination Monitors-Beta-emitters (maximum beta energy greater 0. 15MeV) and Alpha -emitters," 1988-06-15.
8.2                         ISO 7503- 1, "Evaluation of Surface Contamination - Part I: Beta Emitters and Alpha Emitters," 1988-08-01.
8.4 "Radiological Health Handbook," Revised Edition 1970.
8.3     ISO 8769, "Reference Sources for the Calibration of Surface Contamination Monitors-Beta-emitters (maximum beta energy greater 0. 15MeV) and Alpha -emitters," 1988-06-15.
8.4     "Radiological Health Handbook," Revised Edition 1970.


11 Attachment A Microsh ield and Excel Form s
11 Attachment A Microsh ield and Excel Form s


12 Case Summary of OCNGS 44-10 eff Co60                                                           Page 1 of 2
12 Case Summary of OCNGS 44-10 eff Co60 Page 1 of 2


MicroShield LT 13.07 BHI Energy
MicroShield LT 13.07 BHI Energy


Results with Buildup: Dose Point No. 1 -         (X = 0, Y = 25, Z = 0) cm Energy     Activity       Energy Flux     Photon Flux         Exposure   Absorbed       Absorbed (MeV)     (Photons/sec) (MeV/cm2/sec)   (Photons/cm&#xb2;/sec)   Rate       Dose Rate       Dose Rate (mR/hr)     (mrad/hr)       (mGy/hr) 6.938e-01 3.568e-01     2.586e-05       3.728e-05           4.993e-08   4.359e-08       4.359e-10 1.173e+00 2.187e+03     2.691e-01       2.294e-01           4.809e-04   4.198e-04       4.198e-06 1.333e+00 2.187e+03     3.070e-01       2.304e-01           5.327e-04   4.650e-04       4.650e-06 Total     4.375e+03     5.762e-01       4.598e-01           1.014e-03   8.849e-04       8.849e-06
Results with Buildup: Dose Point No. 1 - (X = 0, Y = 25, Z = 0) cm Energy Activity Energy Flux Photon Flux Exposure Absorbed Absorbed (MeV) (Photons/sec) (MeV/cm2/sec) (Photons/cm&#xb2;/sec) Rate Dose Rate Dose Rate (mR/hr) (mrad/hr) (mGy/hr) 6.938e-01 3.568e-01 2.586e-05 3.728e-05 4.993e-08 4.359e-08 4.359e-10 1.173e+00 2.187e+03 2.691e-01 2.294e-01 4.809e-04 4.198e-04 4.198e-06 1.333e+00 2.187e+03 3.070e-01 2.304e-01 5.327e-04 4.650e-04 4.650e-06 Total 4.375e+03 5.762e-01 4.598e-01 1.014e-03 8.849e-04 8.849e-06


Date                   Preparer                               Reviewer 10/31/2023           'YY/.         ..d;;__c__'tc,~ 1/
Date Preparer Reviewer 10/31/2023 'YY/...d;;__c__'tc,~ 1/


File Name                                                                     Run Date       Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC   October 31,     4:01:37 Co60.msd                                                                     2023           PM Project Info Case Title                 OCNGS 44-10 eff Co60&#xa3; Description                 OCNGS 44-10 eff for Co-60&#xa3; Geometry                   8 -         Cylinder Volume -         End Shields
File Name Run Date Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC October 31, 4:01:37 Co60.msd 2023 PM Project Info Case Title OCNGS 44-10 eff Co60&#xa3; Description OCNGS 44-10 eff for Co-60&#xa3; Geometry 8 - Cylinder Volume - End Shields


Source Dimensions Height             15.0 cm (5.906 in)
Source Dimensions Height 15.0 cm (5.906 in)
Radius             28.0 cm (11.024 in)                                               .,,
Radius 28.0 cm (11.024 in).,,
Dose Points No. X             Y                 Z             Air Gap                 ~
Dose Points No. X Y Z Air Gap ~
  #1   0.0 cm (0 in) 25.0 cm (9.843 in) 0.0 cm (0 in) 10.0 cm (3.937 in)                       ~ -                                       X
#1 0.0 cm (0 in) 25.0 cm (9.843 in) 0.0 cm (0 in) 10.0 cm (3.937 in) ~ - X


Shields Shield Name   Dimension     Material               Density (g/cm3)                       z Source       3.69e+04 cm&#xb3;   Soil -         Earth (Average US)1.60122 Air Gap                     Air                     0.00122
Shields Shield Name Dimension Material Density (g/cm3) z Source 3.69e+04 cm&#xb3; Soil - Earth (Average US)1.60122 Air Gap Air 0.00122


Source Input: Grouping Method -         Actual Photon Energies Library: Grove Nuclide       Ci                   Bq                         Ci/cm&#xb3;           Bq/cm&#xb3; Co-60         5.9112e-008           2.1872e+003             1.6000e-006           5.9200e-002
Source Input: Grouping Method - Actual Photon Energies Library: Grove Nuclide Ci Bq Ci/cm&#xb3; Bq/cm&#xb3; Co-60 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002


file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Co60-1...           10/31/2023 Case Summary of OCNGS 44-10 eff Co60                                                     Page 2 of 2
file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Co60-1... 10/31/2023 Case Summary of OCNGS 44-10 eff Co60 Page 2 of 2


Buildup Buildup: The material reference is Source.
Buildup Buildup: The material reference is Source.
Line 234: Line 231:
Mass Attenuation Library NIST Library
Mass Attenuation Library NIST Library


Integration Parameters Radial                                                                             20 Circumferential                                                                   10 Y Direction (axial)                                                               10
Integration Parameters Radial 20 Circumferential 10 Y Direction (axial) 10


file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Co60-1...       10/31/2023 Co-60 Total E i Energy   Energy     Exposure Rate       Energy Response     Ei (MeV)     (KeV)     Mr/hr -1 pCi/g     cpm/Mr/hr           (cpm/pCi/g) 0.6938       684           4.99E-08           810,000       4.04E -02 1.173     1173             4.81E-04             496000       2.39E+02 1.333     1333             5.33E-04             450000       2.40E+02 Total                                                                 478
file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Co60-1... 10/31/2023 Co-60 Total E i Energy Energy Exposure Rate Energy Response Ei (MeV) (KeV) Mr/hr -1 pCi/g cpm/Mr/hr (cpm/pCi/g) 0.6938 684 4.99E-08 810,000 4.04E -02 1.173 1173 4.81E-04 496000 2.39E+02 1.333 1333 5.33E-04 450000 2.40E+02 Total 478


14 Case Summary of OCNGS 4410 eff Cs137                                                                 Page 1 of 2
14 Case Summary of OCNGS 4410 eff Cs137 Page 1 of 2


MicroShield LT 13.07 BHI Energy
MicroShield LT 13.07 BHI Energy


Results with Buildup: Dose Point No. 1 -         (X = 0, Y = 25, Z = 0) cm Energy   Activity       Energy Flux       Photon Flux         Exposure     Absorbed         Absorbed (MeV)     (Photons/sec)   (MeV/cm2/sec)     (Photons/cm&#xb2;/sec)   Rate         Dose Rate       Dose Rate (mR/hr)       (mrad/hr)       (mGy/hr) 4.470e-   2.270e+01       5.969e-08         1.335e-05           4.092e-08     3.572e-08       3.572e-10 03 3.182e-   4.528e+01       8.972e-06         2.820e-04           7.473e-08     6.524e-08       6.524e-10 02 3.219e-   8.354e+01       1.739e-05         5.401e-04           1.399e-07     1.222e-07       1.222e-09 02 3.640e-   3.040e+01       1.057e-05         2.903e-04           6.004e-08     5.242e-08       5.242e-10 02 6.616e-   1.968e+03       1.361e-01         2.057e-01           2.638e-04     2.303e-04       2.303e-06 01 Total     2.150e+03       1.361e-01         2.068e-01           2.642e-04     2.306e-04       2.306e-06
Results with Buildup: Dose Point No. 1 - (X = 0, Y = 25, Z = 0) cm Energy Activity Energy Flux Photon Flux Exposure Absorbed Absorbed (MeV) (Photons/sec) (MeV/cm2/sec) (Photons/cm&#xb2;/sec) Rate Dose Rate Dose Rate (mR/hr) (mrad/hr) (mGy/hr) 4.470e-2.270e+01 5.969e-08 1.335e-05 4.092e-08 3.572e-08 3.572e-10 03 3.182e-4.528e+01 8.972e-06 2.820e-04 7.473e-08 6.524e-08 6.524e-10 02 3.219e-8.354e+01 1.739e-05 5.401e-04 1.399e-07 1.222e-07 1.222e-09 02 3.640e-3.040e+01 1.057e-05 2.903e-04 6.004e-08 5.242e-08 5.242e-10 02 6.616e-1.968e+03 1.361e-01 2.057e-01 2.638e-04 2.303e-04 2.303e-06 01 Total 2.150e+03 1.361e-01 2.068e-01 2.642e-04 2.306e-04 2.306e-06


Date                     Preparer                                 Reviewer 11/01/2023                   7Y/       ..d;:._         c..~~
Date Preparer Reviewer 11/01/2023 7Y/..d;:._ c..~~


File Name                                                                           Run Date         Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC         November 1,       2:14:43 Cs137.msd                                                                           2023             PM
File Name Run Date Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 1, 2:14:43 Cs137.msd 2023 PM


Project Info Case Title                   OCNGS 4410 eff Cs137&#xa3; Description                   OCNGS 44-10 eff for Cs-137&#xa3; Geometry                     8 -         Cylinder Volume -         End Shields
Project Info Case Title OCNGS 4410 eff Cs137&#xa3; Description OCNGS 44-10 eff for Cs-137&#xa3; Geometry 8 - Cylinder Volume - End Shields


Source Dimensions Height               15.0 cm (5.906 in)
Source Dimensions Height 15.0 cm (5.906 in)
Radius               28.0 cm (11.024 in)                                                   */
Radius 28.0 cm (11.024 in) */
Dose Points No. X             Y                   Z             Air Gap
Dose Points No. X Y Z Air Gap
  #1   0.0 cm (0 in) 25.0 cm (9.843 in)   0.0 cm (0 in) 10.0 cm (3.937 in)       ~                                                                                                                                                             __/ X
#1 0.0 cm (0 in) 25.0 cm (9.843 in) 0.0 cm (0 in) 10.0 cm (3.937 in) ~ __/ X


Shields                                                                                       ~
Shields ~
Shield Name   Dimension       Material                   Density (g/cm3)                           z
Shield Name Dimension Material Density (g/cm3) z


Source         3.69e+04 cm&#xb3;   Soil -         Earth (Average US)1.60122 Air Gap                       Air                       0.00122
Source 3.69e+04 cm&#xb3; Soil - Earth (Average US)1.60122 Air Gap Air 0.00122


file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Cs137-11...                 11/1/2023 Case Summary of OCNGS 4410 eff Cs137                                                       Page 2 of 2
file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Cs137-11... 11/1/2023 Case Summary of OCNGS 4410 eff Cs137 Page 2 of 2


Source Input: Grouping Method -         Actual Photon Energies Library: Grove Nuclide         Ci                   Bq                       Ci/cm&#xb3;         Bq/cm&#xb3; Ba-137m         5.9112e-008         2.1872e+003           1.6000e-006         5.9200e-002 Cs-137         5.9112e-008         2.1872e+003           1.6000e-006         5.9200e-002
Source Input: Grouping Method - Actual Photon Energies Library: Grove Nuclide Ci Bq Ci/cm&#xb3; Bq/cm&#xb3; Ba-137m 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002 Cs-137 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002


Buildup Buildup: The material reference is Source.
Buildup Buildup: The material reference is Source.
Line 268: Line 265:
Mass Attenuation Library NIST Library
Mass Attenuation Library NIST Library


Integration Parameters Radial                                                                               20 Circumferential                                                                     10 Y Direction (axial)                                                                 10
Integration Parameters Radial 20 Circumferential 10 Y Direction (axial) 10


file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Cs137-11...       11/1/2023 Cs-137 Total E i
file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Cs137-11... 11/1/2023 Cs-137 Total E i


Energy                           Exposure Rate       Energy Response (MeV)         Energy (KeV)       Mr/hr -1 pCi/g         cpm/Mr/hr             Ei (cpm/pCi/g) 0.0045                   5           4.09E-08                                               0 0.0318                   32           7.47E-08                                               0 0.0322                   32           1.40E-07                                               0 0.0364                   36           6.00E-08                                               0 0.6616                 662           2.64E-04               900000                       238 Total                                                                                             238
Energy Exposure Rate Energy Response (MeV) Energy (KeV) Mr/hr -1 pCi/g cpm/Mr/hr Ei (cpm/pCi/g) 0.0045 5 4.09E-08 0 0.0318 32 7.47E-08 0 0.0322 32 1.40E-07 0 0.0364 36 6.00E-08 0 0.6616 662 2.64E-04 900000 238 Total 238


16 Case Summary of OCNGS 4410 eff Nb94                                                         Page 1 of 2
16 Case Summary of OCNGS 4410 eff Nb94 Page 1 of 2


MicroShield LT 13.07 BHI Energy
MicroShield LT 13.07 BHI Energy


Results with Buildup: Dose Point No. 1 -         (X = 0, Y = 25, Z = 0) cm Energy   Activity       Energy Flux   Photon Flux       Exposure     Absorbed       Absorbed (MeV)   (Photons/sec) (MeV/cm2/sec) (Photons/cm&#xb2;/sec) Rate         Dose Rate     Dose Rate (mR/hr)     (mrad/hr)     (mGy/hr) 2.290e- 1.451e-01     1.954e-10     8.533e-08         2.614e-10   2.282e-10     2.282e-12 03 1.737e- 7.734e-01     1.253e-08     7.214e-07         6.765e-10   5.906e-10     5.906e-12 02 1.748e- 1.482e+00     2.461e-08     1.408e-06         1.303e-09   1.138e-09     1.138e-11 02 1.960e- 4.352e-01     1.151e-08     5.870e-07         4.247e-10   3.708e-10     3.708e-12 02 7.026e- 2.187e+03     1.606e-01     2.285e-01         3.096e-04   2.703e-04     2.703e-06 01 8.711e- 2.187e+03     1.991e-01     2.285e-01         3.747e-04   3.271e-04     3.271e-06 01 Total   4.377e+03     3.596e-01     4.571e-01         6.843e-04   5.974e-04     5.974e-06
Results with Buildup: Dose Point No. 1 - (X = 0, Y = 25, Z = 0) cm Energy Activity Energy Flux Photon Flux Exposure Absorbed Absorbed (MeV) (Photons/sec) (MeV/cm2/sec) (Photons/cm&#xb2;/sec) Rate Dose Rate Dose Rate (mR/hr) (mrad/hr) (mGy/hr) 2.290e-1.451e-01 1.954e-10 8.533e-08 2.614e-10 2.282e-10 2.282e-12 03 1.737e-7.734e-01 1.253e-08 7.214e-07 6.765e-10 5.906e-10 5.906e-12 02 1.748e-1.482e+00 2.461e-08 1.408e-06 1.303e-09 1.138e-09 1.138e-11 02 1.960e-4.352e-01 1.151e-08 5.870e-07 4.247e-10 3.708e-10 3.708e-12 02 7.026e-2.187e+03 1.606e-01 2.285e-01 3.096e-04 2.703e-04 2.703e-06 01 8.711e-2.187e+03 1.991e-01 2.285e-01 3.747e-04 3.271e-04 3.271e-06 01 Total 4.377e+03 3.596e-01 4.571e-01 6.843e-04 5.974e-04 5.974e-06


Date                   Preparer                             Reviewer 11/01/2023                 '?Y/ d-                           c__~~
Date Preparer Reviewer 11/01/2023 '?Y/ d-c__~~


File Name                                                                 Run Date         Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 1,     2:28:46 Nb94.msd                                                                   2023             PM
File Name Run Date Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 1, 2:28:46 Nb94.msd 2023 PM


Project Info Case Title                 OCNGS 4410 eff Nb94&#xa3; Description               OCNGS 44-10 eff for 9b-94&#xa3; Geometry                   8 -         Cylinder Volume -         End Shields
Project Info Case Title OCNGS 4410 eff Nb94&#xa3; Description OCNGS 44-10 eff for 9b-94&#xa3; Geometry 8 - Cylinder Volume - End Shields


Source Dimensions Height             15.0 cm (5.906 in)
Source Dimensions Height 15.0 cm (5.906 in)
Radius             28.0 cm (11.024 in)                                             *,
Radius 28.0 cm (11.024 in) *,
Dose Points                                                                         ~
Dose Points ~
No. X           Y                 Z           Air Gap                                 __.,,,-
No. X Y Z Air Gap __.,,,-
X
X
  #1   0.0 cm (0 in)25.0 cm (9.843 in) 0.0 cm (0 in)10.0 cm (3.937 in)
#1 0.0 cm (0 in)25.0 cm (9.843 in) 0.0 cm (0 in)10.0 cm (3.937 in)
Shields                                                                                   z Shield Name   Dimension     Material               Density (g/cm3)                 '
Shields z Shield Name Dimension Material Density (g/cm3) '


file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Nb94-11...         11/1/2023 Case Summary of OCNGS 4410 eff Nb94                                                                                                                                                                                                                                                                               Page 2 of 2
file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Nb94-11... 11/1/2023 Case Summary of OCNGS 4410 eff Nb94 Page 2 of 2


Source                                       3.69e+04 cm&#xb3;                                   Soil -         Earth (Average US)                                               1.60122 II                                                                                                                                                                                                       I                                                                                                                                                                                                           I                                                                                                                                                                                                                                                                                                                                                                               I                                                                                                                                                                                                                                                     IAir GapAir0.00122I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     I
Source 3.69e+04 cm&#xb3; Soil - Earth (Average US) 1.60122 II I I I IAir GapAir0.00122I I


Source Input: Grouping Method -         Actual Photon Energies Library: Grove Nuclide                                         Ci                                                                     Bq                                                                           Ci/cm&#xb3;                                                           Bq/cm&#xb3; Nb-94                                           5.9112e-008                                                             2.1872e+003                                                               1.6000e-006                                                           5.9200e-002
Source Input: Grouping Method - Actual Photon Energies Library: Grove Nuclide Ci Bq Ci/cm&#xb3; Bq/cm&#xb3; Nb-94 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002


Buildup Buildup: The material reference is Source.
Buildup Buildup: The material reference is Source.
Line 304: Line 301:
Mass Attenuation Library NIST Library
Mass Attenuation Library NIST Library


Integration Parameters Radial                                                                                                                                                                                                                                                                                   20 Circumferential                                                                                                                                                                                                                                                                           10 Y Direction (axial)                                                                                                                                                                                                                                                                       10
Integration Parameters Radial 20 Circumferential 10 Y Direction (axial) 10


file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Nb94-11...                                                                                                                                                                                                                                 11/1/2023 Nb-94 Total Ei
file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Nb94-11... 11/1/2023 Nb-94 Total Ei


Exposure Rate       Energy Energy       Energy         Mr/hr -1       Response           Ei (MeV)         (KeV)           pCi/g       cpm/Mr/hr     (cpm/pCi/g) 0.023             23         2.61E-10                             0 0.0174             17         6.77E-10                             0 0.0175             18         1.30E-09                             0 0.0196             20         4.25E-10                             0 0.7026           703         3.10E-04       846000             262 0.8711           871         3.75E-04       756000             284 Total                                                               546
Exposure Rate Energy Energy Energy Mr/hr -1 Response Ei (MeV) (KeV) pCi/g cpm/Mr/hr (cpm/pCi/g) 0.023 23 2.61E-10 0 0.0174 17 6.77E-10 0 0.0175 18 1.30E-09 0 0.0196 20 4.25E-10 0 0.7026 703 3.10E-04 846000 262 0.8711 871 3.75E-04 756000 284 Total 546


18 Case Summary of OCNGS 4410 eff Eu152                                                         Page 1 of 2
18 Case Summary of OCNGS 4410 eff Eu152 Page 1 of 2


MicroShield LT 13.07 BHI Energy
MicroShield LT 13.07 BHI Energy


Results with Buildup: Dose Point No. 1 -         (X = 0, Y = 25, Z = 0) cm Energy     Activity     Energy Flux     Photon Flux         Exposure   Absorbed       Absorbed (MeV)     (Photons/sec) (MeV/cm2/sec)   (Photons/cm&#xb2;/sec)   Rate       Dose Rate     Dose Rate (mR/hr)     (mrad/hr)     (mGy/hr) 1.500e-02 3.324e+02     2.932e-06       1.955e-04           2.515e-07   2.196e-07     2.196e-09 4.000e-02 1.294e+03     6.697e-04       1.674e-02           2.962e-06   2.586e-06     2.586e-08 5.000e-02 3.236e+02     4.267e-04       8.534e-03           1.137e-06   9.924e-07     9.924e-09 1.000e-01 6.219e+02     5.665e-03       5.665e-02           8.667e-06   7.567e-06     7.567e-08 2.000e-01 1.639e+02     3.578e-03       1.789e-02           6.315e-06   5.513e-06     5.513e-08 3.000e-01 5.914e+02     1.914e-02       6.378e-02           3.630e-05   3.169e-05     3.169e-07 4.000e-01 1.374e+02     5.855e-03       1.464e-02           1.141e-05   9.960e-06     9.960e-08 5.000e-01 1.234e+01     6.514e-04       1.303e-03           1.279e-06   1.116e-06     1.116e-08 6.000e-01 9.275e+01     5.828e-03       9.713e-03           1.138e-05   9.931e-06     9.931e-08 8.000e-01 3.894e+02     3.255e-02       4.069e-02           6.192e-05   5.405e-05     5.405e-07 1.000e+00 9.358e+02     9.784e-02       9.784e-02           1.803e-04   1.574e-04     1.574e-06 1.500e+00 5.074e+02     8.060e-02       5.374e-02           1.356e-04   1.184e-04     1.184e-06 Total     5.402e+03     2.528e-01       3.817e-01           4.576e-04   3.995e-04     3.995e-06
Results with Buildup: Dose Point No. 1 - (X = 0, Y = 25, Z = 0) cm Energy Activity Energy Flux Photon Flux Exposure Absorbed Absorbed (MeV) (Photons/sec) (MeV/cm2/sec) (Photons/cm&#xb2;/sec) Rate Dose Rate Dose Rate (mR/hr) (mrad/hr) (mGy/hr) 1.500e-02 3.324e+02 2.932e-06 1.955e-04 2.515e-07 2.196e-07 2.196e-09 4.000e-02 1.294e+03 6.697e-04 1.674e-02 2.962e-06 2.586e-06 2.586e-08 5.000e-02 3.236e+02 4.267e-04 8.534e-03 1.137e-06 9.924e-07 9.924e-09 1.000e-01 6.219e+02 5.665e-03 5.665e-02 8.667e-06 7.567e-06 7.567e-08 2.000e-01 1.639e+02 3.578e-03 1.789e-02 6.315e-06 5.513e-06 5.513e-08 3.000e-01 5.914e+02 1.914e-02 6.378e-02 3.630e-05 3.169e-05 3.169e-07 4.000e-01 1.374e+02 5.855e-03 1.464e-02 1.141e-05 9.960e-06 9.960e-08 5.000e-01 1.234e+01 6.514e-04 1.303e-03 1.279e-06 1.116e-06 1.116e-08 6.000e-01 9.275e+01 5.828e-03 9.713e-03 1.138e-05 9.931e-06 9.931e-08 8.000e-01 3.894e+02 3.255e-02 4.069e-02 6.192e-05 5.405e-05 5.405e-07 1.000e+00 9.358e+02 9.784e-02 9.784e-02 1.803e-04 1.574e-04 1.574e-06 1.500e+00 5.074e+02 8.060e-02 5.374e-02 1.356e-04 1.184e-04 1.184e-06 Total 5.402e+03 2.528e-01 3.817e-01 4.576e-04 3.995e-04 3.995e-06


Date                   Preparer                               Reviewer 11/01/2023               7Y/   d--                           c__~~
Date Preparer Reviewer 11/01/2023 7Y/ d-- c__~~


File Name                                                                   Run Date       Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 1,     2:36:04 Eu152.msd                                                                   2023           PM
File Name Run Date Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 1, 2:36:04 Eu152.msd 2023 PM


Project Info Case Title                 OCNGS 4410 eff Eu152&#xa3; Description               OCNGS 44-10 eff for Eu-152&#xa3; Geometry                   8 -         Cylinder Volume -         End Shields
Project Info Case Title OCNGS 4410 eff Eu152&#xa3; Description OCNGS 44-10 eff for Eu-152&#xa3; Geometry 8 - Cylinder Volume - End Shields


Source Dimensions Height             15.0 cm (5.906 in)
Source Dimensions Height 15.0 cm (5.906 in)
Radius             28.0 cm (11.024 in)
Radius 28.0 cm (11.024 in)
Dose Points No. X           Y                 Z             Air Gap
Dose Points No. X Y Z Air Gap
  #1   0.0 cm (0 in)25.0 cm (9.843 in) 0.0 cm (0 in) 10.0 cm (3.937 in)
#1 0.0 cm (0 in)25.0 cm (9.843 in) 0.0 cm (0 in) 10.0 cm (3.937 in)


file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Eu152-11...         11/1/2023 Case Summary of OCNGS 4410 eff Eu152                                                           Page 2 of 2
file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Eu152-11... 11/1/2023 Case Summary of OCNGS 4410 eff Eu152 Page 2 of 2


Shields Shield Name   Dimension     Material                 Density (g/cm3)         ~               ___,,,
Shields Shield Name Dimension Material Density (g/cm3) ~ ___,,,


Source       3.69e+04 cm&#xb3;   Soil -         Earth (Average US)1.60122                           -                                         X Air Gap                     Air                     0.00122
Source 3.69e+04 cm&#xb3; Soil - Earth (Average US)1.60122 - X Air Gap Air 0.00122
                                                                                          " z
" z


Source Input: Grouping Method -         Standard Indices Number of Groups: 25 Lower Energy Cutoff: 0.015 Photons< 0.015: Included Library: Grove Nuclide         Ci                   Bq                         Ci/cm&#xb3;           Bq/cm&#xb3; Eu-152         5.9112e-008           2.1872e+003             1.6000e-006           5.9200e-002
Source Input: Grouping Method - Standard Indices Number of Groups: 25 Lower Energy Cutoff: 0.015 Photons< 0.015: Included Library: Grove Nuclide Ci Bq Ci/cm&#xb3; Bq/cm&#xb3; Eu-152 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002


Buildup Buildup: The material reference is Source.
Buildup Buildup: The material reference is Source.
Line 340: Line 337:
Mass Attenuation Library NIST Library
Mass Attenuation Library NIST Library


Integration Parameters Radial                                                                                   20 Circumferential                                                                         10 Y Direction (axial)                                                                     10
Integration Parameters Radial 20 Circumferential 10 Y Direction (axial) 10


file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Eu152-11...           11/1/2023 Eu-152 Total Ei
file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Eu152-11... 11/1/2023 Eu-152 Total Ei


Exposure       Energy Energy       Energy     Rate Mr/hr -   Response         Ei (MeV)       (KeV)       1 pCi/g     cpm/Mr/hr   (cpm/pCi/g) 0.015         15       2.52E-07                         0 0.04         40       2.96E-06                         0 0.05         50       1.14E-06                         0 0.1         100       8.67E-06     4680000           41 0.2         200       6.32E-06     3420000           22 0.3         300       3.63E-05     2610000           95 0.4         400       1.14E-05     2070000           24 0.5         500       1.28E-06     1575000             2 0.6         600       1.14E-05     1080000           12 0.8         800       6.19E-05       765000           47 1       1000       1.80E-04       630000           113 1.5       1500       1.36E-04       425000           58 t~l=                                                    
Exposure Energy Energy Energy Rate Mr/hr - Response Ei (MeV) (KeV) 1 pCi/g cpm/Mr/hr (cpm/pCi/g) 0.015 15 2.52E-07 0 0.04 40 2.96E-06 0 0.05 50 1.14E-06 0 0.1 100 8.67E-06 4680000 41 0.2 200 6.32E-06 3420000 22 0.3 300 3.63E-05 2610000 95 0.4 400 1.14E-05 2070000 24 0.5 500 1.28E-06 1575000 2 0.6 600 1.14E-05 1080000 12 0.8 800 6.19E-05 765000 47 1 1000 1.80E-04 630000 113 1.5 1500 1.36E-04 425000 58 t~l=  
                                =
=
                                =
=
                                =
=
                                =
=
                                =
=
                                =
=
                                =
=
                                =
=
                                =
=
                                =
=
                                =
=
                                =
=
                                =
=
                                =
=
                                =
=
                                =
=
                                =
=
20 Case Summary of OCNGS 4410 eff Eu154                                                                                     Page 1 of 2
20 Case Summary of OCNGS 4410 eff Eu154 Page 1 of 2


MicroShield LT 13.07 BHI Energy
MicroShield LT 13.07 BHI Energy


Results with Buildup: Dose Point No. 1 -         (X = 0, Y = 25, Z = 0) cm Energy       Activity           Energy Flux         Photon Flux             Exposure       Absorbed           Absorbed (MeV)         (Photons/sec)       (MeV/cm2/sec)       (Photons/cm&#xb2;/sec)       Rate           Dose Rate           Dose Rate (mR/hr)         (mrad/hr)           (mGy/hr) 1.500e-02     1.669e+02           1.473e-06           9.818e-05               1.263e-07       1.103e-07           1.103e-09 4.000e-02     4.451e+02           2.304e-04           5.759e-03               1.019e-06       8.894e-07           8.894e-09 5.000e-02     1.131e+02           1.491e-04           2.982e-03               3.972e-07       3.467e-07           3.467e-09 1.000e-01     8.850e+02           8.063e-03           8.063e-02               1.234e-05       1.077e-05           1.077e-07 2.000e-01     1.494e+02           3.261e-03           1.630e-02               5.755e-06       5.024e-06           5.024e-08 4.000e-01     1.560e+01           6.648e-04           1.662e-03               1.295e-06       1.131e-06           1.131e-08 5.000e-01     4.736e+00           2.500e-04           5.000e-04               4.908e-07       4.284e-07           4.284e-09 6.000e-01     1.764e+02           1.109e-02           1.848e-02               2.164e-05       1.889e-05           1.889e-07 8.000e-01     8.529e+02           7.130e-02           8.912e-02               1.356e-04       1.184e-04           1.184e-06 1.000e+00     6.728e+02           7.034e-02           7.034e-02               1.297e-04       1.132e-04           1.132e-06 1.500e+00     8.534e+02           1.356e-01           9.039e-02               2.281e-04       1.991e-04           1.991e-06 Total         4.335e+03           3.009e-01           3.763e-01               5.364e-04       4.683e-04           4.683e-06
Results with Buildup: Dose Point No. 1 - (X = 0, Y = 25, Z = 0) cm Energy Activity Energy Flux Photon Flux Exposure Absorbed Absorbed (MeV) (Photons/sec) (MeV/cm2/sec) (Photons/cm&#xb2;/sec) Rate Dose Rate Dose Rate (mR/hr) (mrad/hr) (mGy/hr) 1.500e-02 1.669e+02 1.473e-06 9.818e-05 1.263e-07 1.103e-07 1.103e-09 4.000e-02 4.451e+02 2.304e-04 5.759e-03 1.019e-06 8.894e-07 8.894e-09 5.000e-02 1.131e+02 1.491e-04 2.982e-03 3.972e-07 3.467e-07 3.467e-09 1.000e-01 8.850e+02 8.063e-03 8.063e-02 1.234e-05 1.077e-05 1.077e-07 2.000e-01 1.494e+02 3.261e-03 1.630e-02 5.755e-06 5.024e-06 5.024e-08 4.000e-01 1.560e+01 6.648e-04 1.662e-03 1.295e-06 1.131e-06 1.131e-08 5.000e-01 4.736e+00 2.500e-04 5.000e-04 4.908e-07 4.284e-07 4.284e-09 6.000e-01 1.764e+02 1.109e-02 1.848e-02 2.164e-05 1.889e-05 1.889e-07 8.000e-01 8.529e+02 7.130e-02 8.912e-02 1.356e-04 1.184e-04 1.184e-06 1.000e+00 6.728e+02 7.034e-02 7.034e-02 1.297e-04 1.132e-04 1.132e-06 1.500e+00 8.534e+02 1.356e-01 9.039e-02 2.281e-04 1.991e-04 1.991e-06 Total 4.335e+03 3.009e-01 3.763e-01 5.364e-04 4.683e-04 4.683e-06


Date                           Preparer                                         Reviewer 11/02/2023                         7Y/     ..d;__c_~~
Date Preparer Reviewer 11/02/2023 7Y/..d;__c_~~
File Name                                                                                         Run Date             Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC                       November 1,           2:42:04 Eu154.msd                                                                                         2023                 PM
File Name Run Date Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 1, 2:42:04 Eu154.msd 2023 PM


Project Info Case Title                         OCNGS 4410 eff Eu154&#xa3; Description                         OCNGS 44-10 eff for Eu-154&#xa3; Geometry                           8 -         Cylinder Volume -         End Shields
Project Info Case Title OCNGS 4410 eff Eu154&#xa3; Description OCNGS 44-10 eff for Eu-154&#xa3; Geometry 8 - Cylinder Volume - End Shields


Source Dimensions Height                   15.0 cm (5.906 in)
Source Dimensions Height 15.0 cm (5.906 in)
Radius                   28.0 cm (11.024 in)
Radius 28.0 cm (11.024 in)
Dose Points No. X               Y                       Z                 Air Gap
Dose Points No. X Y Z Air Gap
  #1     0.0 cm (0 in)   25.0 cm (9.843 in)       0.0 cm (0 in)     10.0 cm (3.937 in)
#1 0.0 cm (0 in) 25.0 cm (9.843 in) 0.0 cm (0 in) 10.0 cm (3.937 in)
Shields I                                                                                                                                                                                                         I                                                                                                                                                                                                                                                                                                                                                                                       I
Shields I I I


file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Eu154-11...                                     11/2/2023 Case Summary of OCNGS 4410 eff Eu154                                                                                                                                                                               Page 2 of 2
file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Eu154-11... 11/2/2023 Case Summary of OCNGS 4410 eff Eu154 Page 2 of 2


Shield Name                     Dimension                       Material                                               Density (g/cm3)                                   ~                                     ___,,,
Shield Name Dimension Material Density (g/cm3) ~ ___,,,
Source                         3.69e+04 cm&#xb3;                   Soil -         Earth (Average US)                       1.60122                                                                                       -                                         X I                                                                                                                                                                                         I                                                                                                                                                                                               I                                                                                                                                                                                                                                                                                                                                                                           I                                                                                                                                                                                                                                                 I Air GapAir0.00122z
Source 3.69e+04 cm&#xb3; Soil - Earth (Average US) 1.60122 - X I I I I I Air GapAir0.00122z


Source Input: Grouping Method -         Standard Indices Number of Groups: 25 Lower Energy Cutoff: 0.015 Photons< 0.015: Included Library: Grove Nuclide                           Ci                                               Bq                                                     Ci/cm&#xb3;                                     Bq/cm&#xb3; Eu-154                           5.9112e-008                                     2.1872e+003                                         1.6000e-006                                     5.9200e-002
Source Input: Grouping Method - Standard Indices Number of Groups: 25 Lower Energy Cutoff: 0.015 Photons< 0.015: Included Library: Grove Nuclide Ci Bq Ci/cm&#xb3; Bq/cm&#xb3; Eu-154 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002


Buildup Buildup: The material reference is Source.
Buildup Buildup: The material reference is Source.
Line 390: Line 387:
Mass Attenuation Library NIST Library
Mass Attenuation Library NIST Library


Integration Parameters Radial                                                                                                                                                                                             20 Circumferential                                                                                                                                                                                   10 Y Direction (axial)                                                                                                                                                                               10
Integration Parameters Radial 20 Circumferential 10 Y Direction (axial) 10


file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Eu154-11...                                                                                                                                 11/2/2023 Eu-154 Total Ei
file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Eu154-11... 11/2/2023 Eu-154 Total Ei


Energy     Energy     Exposure Rate     Energy Response           Ei (MeV)     (KeV)     Mr/hr -1 pCi/g       cpm/Mr/hr         (cpm/pCi/g) 0.015         15           1.26E -07                                   0 0.04         40           1.02E -06                                   0 0.05         50           3.97E -07                                   0 0.1       100           1.23E -05             468000 0             58 0.2       200           5.76E -06             342000 0             20 0.4       400           1.30E -06             207000 0               3 0.5       500           4.91E -07             157500 0               1 0.6       600           2.16E -05             108000 0             23 0.8       800           1.36E -04             765000             104 1     1000           1.30E -04             630000               82 1.5     1500           2.28E -04             425000               97 Total                                                                   387
Energy Energy Exposure Rate Energy Response Ei (MeV) (KeV) Mr/hr -1 pCi/g cpm/Mr/hr (cpm/pCi/g) 0.015 15 1.26E -07 0 0.04 40 1.02E -06 0 0.05 50 3.97E -07 0 0.1 100 1.23E -05 468000 0 58 0.2 200 5.76E -06 342000 0 20 0.4 400 1.30E -06 207000 0 3 0.5 500 4.91E -07 157500 0 1 0.6 600 2.16E -05 108000 0 23 0.8 800 1.36E -04 765000 104 1 1000 1.30E -04 630000 82 1.5 1500 2.28E -04 425000 97 Total 387


22 Case Summary of OCNGS 44-10 eff Mn54                                                       Page 1 of 2
22 Case Summary of OCNGS 44-10 eff Mn54 Page 1 of 2


MicroShield LT 13.07 BHI Energy
MicroShield LT 13.07 BHI Energy


Results with Buildup: Dose Point No. 1 -         (X = 0, Y = 25, Z = 0) cm Energy   Activity       Energy Flux   Photon Flux       Exposure     Absorbed       Absorbed (MeV)   (Photons/sec) (MeV/cm2/sec) (Photons/cm&#xb2;/sec) Rate         Dose Rate     Dose Rate (mR/hr)     (mrad/hr)     (mGy/hr) 5.700e- 8.097e+00     2.715e-09     4.763e-06         1.459e-08   1.274e-08     1.274e-10 04 5.405e- 1.625e+02     5.166e-07     9.556e-05         2.928e-07   2.556e-07     2.556e-09 03 5.415e- 3.218e+02     1.025e-06     1.892e-04         5.798e-07   5.062e-07     5.062e-09 03 5.950e- 6.440e+01     2.254e-07     3.788e-05         1.161e-07   1.013e-07     1.013e-09 03 8.348e- 2.187e+03     1.907e-01     2.285e-01         3.610e-04   3.151e-04     3.151e-06 01 Total   2.743e+03     1.908e-01     2.288e-01         3.620e-04   3.160e-04     3.160e-06
Results with Buildup: Dose Point No. 1 - (X = 0, Y = 25, Z = 0) cm Energy Activity Energy Flux Photon Flux Exposure Absorbed Absorbed (MeV) (Photons/sec) (MeV/cm2/sec) (Photons/cm&#xb2;/sec) Rate Dose Rate Dose Rate (mR/hr) (mrad/hr) (mGy/hr) 5.700e-8.097e+00 2.715e-09 4.763e-06 1.459e-08 1.274e-08 1.274e-10 04 5.405e-1.625e+02 5.166e-07 9.556e-05 2.928e-07 2.556e-07 2.556e-09 03 5.415e-3.218e+02 1.025e-06 1.892e-04 5.798e-07 5.062e-07 5.062e-09 03 5.950e-6.440e+01 2.254e-07 3.788e-05 1.161e-07 1.013e-07 1.013e-09 03 8.348e-2.187e+03 1.907e-01 2.285e-01 3.610e-04 3.151e-04 3.151e-06 01 Total 2.743e+03 1.908e-01 2.288e-01 3.620e-04 3.160e-04 3.160e-06


Date                   Preparer                             Reviewer 11/02/2023             7J//     .d;;_               c_~~
Date Preparer Reviewer 11/02/2023 7J//.d;;_ c_~~


File Name                                                                 Run Date         Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 2,   11:04:37 Mn54.msd                                                                 2023             AM
File Name Run Date Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 2, 11:04:37 Mn54.msd 2023 AM


Project Info Case Title                 OCNGS 44-10 eff Mn54&#xa3; Description               OCNGS 44-10 eff for Mn54&#xa3; Geometry                   8 -         Cylinder Volume -         End Shields
Project Info Case Title OCNGS 44-10 eff Mn54&#xa3; Description OCNGS 44-10 eff for Mn54&#xa3; Geometry 8 - Cylinder Volume - End Shields


Source Dimensions Height             15.0 cm (5.906 in)
Source Dimensions Height 15.0 cm (5.906 in)
Radius             28.0 cm (11.024 in)
Radius 28.0 cm (11.024 in)
Dose Points                                                                     -1~
Dose Points -1~
No. X           Y                 Z           Air Gap                                 __...,
No. X Y Z Air Gap __...,
  #1   0.0 cm (0 in)25.0 cm (9.843 in) 0.0 cm (0 in)10.0 cm (3.937 in)                           X Shields Shield Name   Dimension     Material               Density (g/cm3)                       z Source       3.69e+04 cm&#xb3; Soil -         Earth (Average US)1.60122 Air Gap                     Air                     0.00122
#1 0.0 cm (0 in)25.0 cm (9.843 in) 0.0 cm (0 in)10.0 cm (3.937 in) X Shields Shield Name Dimension Material Density (g/cm3) z Source 3.69e+04 cm&#xb3; Soil - Earth (Average US)1.60122 Air Gap Air 0.00122


file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Mn54-11...         11/2/2023 Case Summary of OCNGS 44-10 eff Mn54                                                       Page 2 of 2
file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Mn54-11... 11/2/2023 Case Summary of OCNGS 44-10 eff Mn54 Page 2 of 2


Source Input: Grouping Method -         Actual Photon Energies Library: Grove Nuclide       Ci                   Bq                         Ci/cm&#xb3;         Bq/cm&#xb3; Mn-54         5.9112e-008         2.1872e+003           1.6000e-006         5.9200e-002
Source Input: Grouping Method - Actual Photon Energies Library: Grove Nuclide Ci Bq Ci/cm&#xb3; Bq/cm&#xb3; Mn-54 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002


Buildup Buildup: The material reference is Source.
Buildup Buildup: The material reference is Source.
Line 422: Line 419:
Mass Attenuation Library NIST Library
Mass Attenuation Library NIST Library


Integration Parameters Radial                                                                               20 Circumferential                                                                     10 Y Direction (axial)                                                                 10
Integration Parameters Radial 20 Circumferential 10 Y Direction (axial) 10


file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Mn54-11...         11/2/2023 Mn-54 Total Ei
file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Mn54-11... 11/2/2023 Mn-54 Total Ei


Exposure         Energy Energy   Energy   Rate Mr/hr -1     Response           Ei (MeV)     (KeV)       pCi/g         cpm/Mr/hr     (cpm/pCi/g) 5.70E-04         1         1.50E-08                             0 5.41E-03         5         2.93E-07                             0 5.41E-03         5         5.80E-07                             0 5.95E-03         6         1.16E-07                             0 8.35E-01       835         3.61E-04         800000           289 Total                                                         289
Exposure Energy Energy Energy Rate Mr/hr -1 Response Ei (MeV) (KeV) pCi/g cpm/Mr/hr (cpm/pCi/g) 5.70E-04 1 1.50E-08 0 5.41E-03 5 2.93E-07 0 5.41E-03 5 5.80E-07 0 5.95E-03 6 1.16E-07 0 8.35E-01 835 3.61E-04 800000 289 Total 289


24 Case Summary of OCNGS 44-10 eff Sb12                                                     Page 1 of 3
24 Case Summary of OCNGS 44-10 eff Sb12 Page 1 of 3


MicroShield LT 13.07 BHI Energy
MicroShield LT 13.07 BHI Energy


Results with Buildup: Dose Point No. 1 -         (X = 0, Y = 25, Z = 0) cm Energy   Activity     Energy Flux   Photon Flux       Exposure   Absorbed       Absorbed (MeV)   (Photons/sec) (MeV/cm2/sec) (Photons/cm&#xb2;/sec) Rate       Dose Rate       Dose Rate (mR/hr)     (mrad/hr)       (mGy/hr) 3.770e- 1.082e+02     2.399e-07     6.364e-05         1.950e-07   1.702e-07       1.702e-09 03 2.720e- 2.797e+02     2.875e-05     1.057e-03         3.827e-07   3.341e-07       3.341e-09 02 2.747e- 5.219e+02     5.590e-05     2.035e-03         7.221e-07   6.304e-07       6.304e-09 02 3.100e- 1.812e+02     3.220e-05     1.039e-03         2.895e-07   2.527e-07       2.527e-09 02 3.549e- 9.109e+01     2.849e-05     8.028e-04         1.736e-07   1.515e-07       1.515e-09 02 1.170e- 5.709e+00     6.666e-05     5.700e-04         1.037e-07   9.051e-08       9.051e-10 01 1.590e- 1.525e+00     2.614e-05     1.644e-04         4.369e-08   3.814e-08       3.814e-10 01 1.726e- 3.964e+00     7.431e-05     4.305e-04         1.267e-07   1.106e-07       1.106e-09 01 1.763e- 1.508e+02     2.890e-03     1.639e-02         4.955e-06   4.326e-06       4.326e-08 01 2.041e- 7.056e+00     1.572e-04     7.703e-04         2.788e-07   2.434e-07       2.434e-09 01 2.081e- 5.318e+00     1.208e-04     5.806e-04         2.151e-07   1.878e-07       1.878e-09 01 2.279e- 2.874e+00     7.141e-05     3.133e-04         1.295e-07   1.131e-07       1.131e-09 01 3.210e- 9.122e+00     3.149e-04     9.808e-04         6.021e-07   5.257e-07       5.257e-09 01 3.804e- 3.272e+01     1.328e-03     3.491e-03         2.579e-06   2.252e-06       2.252e-08 01 4.080e- 3.977e+00     1.727e-04     4.233e-04         3.369e-07   2.941e-07       2.941e-09 01 4.279e- 6.415e+02     2.916e-02     6.815e-02         5.703e-05   4.978e-05       4.978e-07 01 4.435e- 6.607e+00     3.109e-04     7.010e-04         6.089e-07   5.316e-07       5.316e-09 01 4.634e- 2.264e+02     1.111e-02     2.399e-02         2.180e-05   1.903e-05       1.903e-07 01
Results with Buildup: Dose Point No. 1 - (X = 0, Y = 25, Z = 0) cm Energy Activity Energy Flux Photon Flux Exposure Absorbed Absorbed (MeV) (Photons/sec) (MeV/cm2/sec) (Photons/cm&#xb2;/sec) Rate Dose Rate Dose Rate (mR/hr) (mrad/hr) (mGy/hr) 3.770e-1.082e+02 2.399e-07 6.364e-05 1.950e-07 1.702e-07 1.702e-09 03 2.720e-2.797e+02 2.875e-05 1.057e-03 3.827e-07 3.341e-07 3.341e-09 02 2.747e-5.219e+02 5.590e-05 2.035e-03 7.221e-07 6.304e-07 6.304e-09 02 3.100e-1.812e+02 3.220e-05 1.039e-03 2.895e-07 2.527e-07 2.527e-09 02 3.549e-9.109e+01 2.849e-05 8.028e-04 1.736e-07 1.515e-07 1.515e-09 02 1.170e-5.709e+00 6.666e-05 5.700e-04 1.037e-07 9.051e-08 9.051e-10 01 1.590e-1.525e+00 2.614e-05 1.644e-04 4.369e-08 3.814e-08 3.814e-10 01 1.726e-3.964e+00 7.431e-05 4.305e-04 1.267e-07 1.106e-07 1.106e-09 01 1.763e-1.508e+02 2.890e-03 1.639e-02 4.955e-06 4.326e-06 4.326e-08 01 2.041e-7.056e+00 1.572e-04 7.703e-04 2.788e-07 2.434e-07 2.434e-09 01 2.081e-5.318e+00 1.208e-04 5.806e-04 2.151e-07 1.878e-07 1.878e-09 01 2.279e-2.874e+00 7.141e-05 3.133e-04 1.295e-07 1.131e-07 1.131e-09 01 3.210e-9.122e+00 3.149e-04 9.808e-04 6.021e-07 5.257e-07 5.257e-09 01 3.804e-3.272e+01 1.328e-03 3.491e-03 2.579e-06 2.252e-06 2.252e-08 01 4.080e-3.977e+00 1.727e-04 4.233e-04 3.369e-07 2.941e-07 2.941e-09 01 4.279e-6.415e+02 2.916e-02 6.815e-02 5.703e-05 4.978e-05 4.978e-07 01 4.435e-6.607e+00 3.109e-04 7.010e-04 6.089e-07 5.316e-07 5.316e-09 01 4.634e-2.264e+02 1.111e-02 2.399e-02 2.180e-05 1.903e-05 1.903e-07 01


file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Sb125-11...       11/2/2023 Case Summary of OCNGS 44-10 eff Sb12                                                         Page 2 of 3
file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Sb125-11... 11/2/2023 Case Summary of OCNGS 44-10 eff Sb12 Page 2 of 3


6.006e- 3.887e+02     2.445e-02       4.071e-02           4.772e-05   4.166e-05       4.166e-07 01 6.066e- 1.098e+02     6.975e-03       1.150e-02           1.361e-05   1.188e-05       1.188e-07 01 6.359e- 2.476e+02     1.647e-02       2.589e-02           3.202e-05   2.795e-05       2.795e-07 01 6.714e- 3.964e+01     2.782e-03       4.143e-03           5.386e-06   4.702e-06       4.702e-08 01 Total   3.065e+03     9.663e-02       2.042e-01           1.893e-04   1.653e-04       1.653e-06
6.006e-3.887e+02 2.445e-02 4.071e-02 4.772e-05 4.166e-05 4.166e-07 01 6.066e-1.098e+02 6.975e-03 1.150e-02 1.361e-05 1.188e-05 1.188e-07 01 6.359e-2.476e+02 1.647e-02 2.589e-02 3.202e-05 2.795e-05 2.795e-07 01 6.714e-3.964e+01 2.782e-03 4.143e-03 5.386e-06 4.702e-06 4.702e-08 01 Total 3.065e+03 9.663e-02 2.042e-01 1.893e-04 1.653e-04 1.653e-06


Date                   Preparer                               Reviewer 11/02/2023               7Y/       4-_c_'C::J~ /
Date Preparer Reviewer 11/02/2023 7Y/ 4-_c_'C::J~ /


File Name                                                                   Run Date         Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 2,     11:03:12 Sb125.msd                                                                   2023             AM Project Info Case Title                 OCNGS 44-10 eff Sb12&#xa3; Description                 OCNGS 44-10 eff for Sb125&#xa3; Geometry                   8 -         Cylinder Volume -         End Shields
File Name Run Date Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 2, 11:03:12 Sb125.msd 2023 AM Project Info Case Title OCNGS 44-10 eff Sb12&#xa3; Description OCNGS 44-10 eff for Sb125&#xa3; Geometry 8 - Cylinder Volume - End Shields


Source Dimensions Height             15.0 cm (5.906 in)
Source Dimensions Height 15.0 cm (5.906 in)
Radius             28.0 cm (11.024 in)                                               . ,,
Radius 28.0 cm (11.024 in).,,
Dose Points                                                                 ,.,.--,
Dose Points,.,.--,
No. X             Y                 Z           Air Gap                             ~ __...,,
No. X Y Z Air Gap ~ __...,,


  #1   0.0 cm (0 in) 25.0 cm (9.843 in) 0.0 cm (0 in)10.0 cm (3.937 in)                           -                                 X
#1 0.0 cm (0 in) 25.0 cm (9.843 in) 0.0 cm (0 in)10.0 cm (3.937 in) - X


Shields Shield Name   Dimension     Material                 Density (g/cm3)                       z Source       3.69e+04 cm&#xb3; Soil -         Earth (Average US)1.60122 Air Gap                     Air                     0.00122
Shields Shield Name Dimension Material Density (g/cm3) z Source 3.69e+04 cm&#xb3; Soil - Earth (Average US)1.60122 Air Gap Air 0.00122


Source Input: Grouping Method -         Actual Photon Energies Library: Grove Nuclide       Ci                   Bq                         Ci/cm&#xb3;           Bq/cm&#xb3; Sb-125         5.9112e-008           2.1872e+003           1.6000e-006           5.9200e-002
Source Input: Grouping Method - Actual Photon Energies Library: Grove Nuclide Ci Bq Ci/cm&#xb3; Bq/cm&#xb3; Sb-125 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002


Buildup Buildup: The material reference is Source.
Buildup Buildup: The material reference is Source.


file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Sb125-11...           11/2/2023 Case Summary of OCNGS 44-10 eff Sb12                                                   Page 3 of 3
file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Sb125-11... 11/2/2023 Case Summary of OCNGS 44-10 eff Sb12 Page 3 of 3


Mass Attenuation Library NIST Library
Mass Attenuation Library NIST Library


Integration Parameters Radial                                                                           20 Circumferential                                                                   10 Y Direction (axial)                                                               10
Integration Parameters Radial 20 Circumferential 10 Y Direction (axial) 10


file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Sb125-11... 11/2/2023 Sb-125 Total E i
file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Sb125-11... 11/2/2023 Sb-125 Total E i


Energy     Energy   Exposure Rate     Energy Response           Ei (MeV)     (KeV)     Mr/hr -1 pCi/g       cpm/Mr/hr         (cpm/pCi/g) 0.004           4         1.95E -07                                   0 0.027         27         3.83E -07                                   0 0.031         31         2.89E -07                                   0 0.035         35         1.74E -07                                   0 0.117         117         1.04E -07                                   0 0.159         159         4.37E -08                                   0 0.173         173         1.27E -07                                   0 0.176         176         4.96E -06           300000 0               15 0.204         204         2.79E -07                                   0 0.208         208         2.15E -07                                   0 0.228         228         1.30E -07                                   0 0.321         321         6.02E -07                                   0 0.38       380         2.58E -06           210000 0               5 0.408         408         3.37E -07                                   0 0.428         428         5.70E -05           225000 0             128 0.443         443         6.09E -07                                   0 0.463         463         2.18E -05           175000 0               38 0.601         601         4.77E -05           175000 0               83 0.607         607         1.36E -05           108000 0               15 0.636         636         3.20E -05             950000               30 0.671         671         5.39E -06             900000                 5 Total                                                                 320
Energy Energy Exposure Rate Energy Response Ei (MeV) (KeV) Mr/hr -1 pCi/g cpm/Mr/hr (cpm/pCi/g) 0.004 4 1.95E -07 0 0.027 27 3.83E -07 0 0.031 31 2.89E -07 0 0.035 35 1.74E -07 0 0.117 117 1.04E -07 0 0.159 159 4.37E -08 0 0.173 173 1.27E -07 0 0.176 176 4.96E -06 300000 0 15 0.204 204 2.79E -07 0 0.208 208 2.15E -07 0 0.228 228 1.30E -07 0 0.321 321 6.02E -07 0 0.38 380 2.58E -06 210000 0 5 0.408 408 3.37E -07 0 0.428 428 5.70E -05 225000 0 128 0.443 443 6.09E -07 0 0.463 463 2.18E -05 175000 0 38 0.601 601 4.77E -05 175000 0 83 0.607 607 1.36E -05 108000 0 15 0.636 636 3.20E -05 950000 30 0.671 671 5.39E -06 900000 5 Total 320


26 Appendix A Ludlum Response Curve
26 Appendix A Ludlum Response Curve


27 Energy Response   for   Ludlum       Model 44-10
27 Energy Response for Ludlum Model 44-10


10
10


Co-57
Co-57
                                                                                                                                                                                                                                                                                                ""*2 I                                             -......
""*2 I -......


                                                                                                                                                                                                                                                                                                                                                                                                          "ill,       I
"ill, I
                                                                                                                                                                                                                                                                                                                                                                                        " ~
" ~


                                                                                                                                                                                                                                                                                                                                                                                                                        ~           I                                         "
~ I "


c~
c~


0 . 1 10                                                                                                                                                                                                                                                                                       100                                                                                                                                                                                                                                                                           1000                                                                                                                                                                                                                                                         10000
0. 1 10 100 1000 10000


Comma   ,F.nori) * (l<oV)
Comma,F.nori) * (l<oV)


28
28
Line 489: Line 486:
28 Appendix B Tc-99 and Th-230 Source-to-Detector Distance Effects
28 Appendix B Tc-99 and Th-230 Source-to-Detector Distance Effects


29 Counts     Counts UTR=             4PNMM=
29 Counts Counts UTR= 4PNMM=
UST=             4NUMM=
UST= 4NUMM=
nt~ct=     UOV=nt~ct=     4OMMM=
nt~ct= UOV=nt~ct= 4OMMM=
UOM=             4PMMM=
UOM= 4PMMM=
UOR=             4ORMM=
UOR= 4ORMM=
                                ~n=           ~n=       4O4UM=
~n= ~n= 4O4UM=
TSS=               PUS=
TSS= PUS=
TRO=               44T=
TRO= 44T=
R=in.=     SUP=R=in.=       R44=
R=in.= SUP=R=in.= R44=
ST4=               TP4=
ST4= TP4=
TMS=               TPV=
TMS= TPV=
                                ~n=           ~n=         RTM=
~n= ~n= RTM=
RNO=               O4=
RNO= O4=
RMT=               O4=
RMT= O4=
N=in.=       4SV= N=in.=       44=
N=in.= 4SV= N=in.= 44=
ROS=               OV=
ROS= OV=
RMR=               PN=
RMR= PN=
                                ~n=           ~n=         PM.
~n= ~n= PM.
PTM=               N4=
PTM= N4=
4NT=               NR=
4NT= NR=
R=in.=     PTS= R=in.=       NM=
R=in.= PTS= R=in.= NM=
PVP=               NP=
PVP= NP=
4NU=               NO=
4NU= NO=
                                ~n=           ~n=         NO.
~n= ~n= NO.
PNN=
PNN=
PMS=
PMS=
O=in.=       PMT=O=in.=
O=in.= PMT=O=in.=
PMR=
PMR=
OTR=                
OTR=  
                                ~n=           ~n=        
~n= ~n=  
=
=
=
=

Revision as of 10:47, 4 October 2024

Enclosure 19: Technical Basis Document, Instrument Efficiency Determination for Use in Minimum Detectable Concentration Calculations in Support of the Final Status Surveys at OCNGS Revision 0, February 14, 2024
ML24214A070
Person / Time
Site: Oyster Creek
Issue date: 08/01/2024
From: Erickson M
Holtec Decommissioning International, Westinghouse
To:
Office of Nuclear Reactor Regulation
Shared Package
ML24214A209 List:
References
HDI-OC-24-018
Download: ML24214A070 (1)


Text

Instrument E fficiency D etermination for Use in Minimum Detectable C oncentration Calculations in Support of t he Final S tatus Surveys at O CNGS

Revision 0

Prepared by:

Westinghouse - Radiological Engineering Group 141 Longwater Drive Suite 113 Norwell, MA 02061

@Westinghouse Author:

Martin C. Erickson Date

Reviewer:

William Parish Date

Approved:

Christopher C. Messier Date Contents Executive Summary..................................................................................................................................... 3

1.0 INTRODUCTION

............................................................................................................................. 4 2.0 CALIBRATION SOURCES.............................................................................................................. 4 3.0 EFFICIENCY DETERMINATION.................................................................................................... 6 3.1 Alpha and Beta Instrument Efficiency (ei).......................................................................................... 6 4.0 Source to Detector Distance Considerations........................................................................................ 7 4.1 Methodology..................................................................................................................................... 8 4.2 Source (or surface) Efficiency (es) Determination............................................................................... 8 5.0 INSTRUMENT CONVERSION FACTOR (Ei) (INSTRUMENT EFFICIENCY FOR GAMMA SCANNING)..................................................................................................................................... 9 6.0 APPLYING EFFICIENCY CORRECTIONS BASED ON THE EFFECTS OF FIELD CONDITIONS FOR TOTAL EFFICIENCY.............................................................................................................. 9

7.0 CONCLUSION

............................................................................................................................... 10

8.0 REFERENCES

................................................................................................................................ 11

Table 2.1 OCNGS Nuclides and Major Radiations: Approximate Energies............................................................ 5 Table 3.1 Nominal Instrument Efficiencies (es)...................................................................................................... 7 Table 4.1 Source-to-Detector Distance Effects on Instrument Efficiencies for - Emitters.................................. 8 Table 4.2 Source Efficiencies as Listed in ISO 7503-1........................................................................................... 9 Table 5.1 Energy Response and Efficiency for Photon Emitting Isotopes............................................................... 9

ii Executive Summary The minimum detectable concentration (MDC) of the field survey instrumentation is an important factor affecting the quality of the final status survey (FSS). The efficiency of an instrument inversely impacts the MDC value. The objective of this report is to determine the instrument and source efficiency values used to calculate MDC. Several factors were considered when determining these efficiencies and are discussed in the body of this report. Instrument efficiencies (ei), and source efficiencies (e s), for alpha beta detection equipment under various field conditions, and instrument conversion factors (Ei), for gamma scanning detectors were determined and the results are provided herein.

3

1.0 INTRODUCTION

Before performing Final Status Surveys of building surfaces and land areas, the MDC must be calculated to establish the instrument sensitivity. The Oyster Creek Nuclear Generating Station (OCNGS) License Termination Plan (LTP) list the available instrumentation and nominal detection sensitivities; however, for the purposes of this basis document, efficiencies for the nominal 100 cm2 gas

proportional/scintillation and the 2"x2" Nal (TI) detectors will be determined. Efficiencies for the other instrumentation listed in the LTP shall be determined on an as needed basis. The 100 cm2 scintillation

probe, or the gas proportional probe will be used to perform building surface surveys (i.e., fixed point measurements). A 2"x2" NaI (TI) detector will be used to perform gamma surveys (i.e., surface scans) of portions of land areas and possibly supplemental structural scans at the sites. Although surface scans and fixed-point measurements can be performed using the same instrumentation, the calculated MDCs will be quite different. MDC is dependent on many factors and may include but is not limited to:

x Instrument Efficiency x Background x Integration Time x Surface Type x Source to Detector Geometry x Source Efficiency

A significant factor in determining an instrument MDC is the total efficiency, which is dependent on the instrument efficiency, the source efficiency and the type and energy of the radiation. MDC values are inversely affected by effi ciency, as e fficiencies incr ease, MDC values will decrease. Accounting for both the instrument and source components of the total efficiency provides for a more accurate assessment of surface activity.

2.0 CALIBRATION SOURCES

For accurate measurement of surface activity, it is desirable that the field instrumentation be calibrated with source standards similar to the type and energy of the anticipated contamination. The nuclides listed in Table 2.1 illustrates the nuclides found in soil and building surface area DCGL results that are listed in the OCNGS LTP.

Instrument response varies with incident radiations and energies; therefore, instrumentation selection for field surveys must be modeled on the expected surface activity. For the purposes of this report, isotopes with max beta energies less than that of C-14 (0.158 MeV) will be considered difficult to detect (reference table 2.1). The detectability of radionuclides with max beta energies less than 0.158 MeV, utilizing 4

scintillation detectors, will be negligible at typical source to detector distances of approximately 0.5 inches. The source to detector distance of 1.27 cm (0.5 inches) is the distance to the detector with the recommended standoff. Tables 2.1 and 2.2 provide a summary of the LTP radionuclides and their detectability using Radiological Health Handbook data.

Table 2.1 OCNGS Nuclides and Major Radiations: Approximate Energies

Nuclide Energy Emax (Mev) Average E Photon Energy Detectable Detectable (Mev) (Mev) (Mev) w/100 cm2 Detectable w/NaI 2x2 Detector w/100 cm2 Detector H-3 0.018 0.005 C-14 0.158 0.049 Mn-54 0.835 (100%) 9 Fe-55 N/A 0.0052 Co-60 0.314 0.094 1.173 (100%) 9 9

1.332 (100%)

1L   

6U     9

 < 

1E       9 9

  

7F    9

6E       9

  

  

&V       9 9

  %D  P; 5D\\V

(X        

    9 9

   

   

(X       9 9

 

1S      

3X    (   9  

  (  

(  

3X    0.039(0.007%) 9

  0.052(0.20%)

0.129(0.005%)

3X    9

 

3X      (  

 

$P      9

   

&P      9

   

   

 

&P    9

 

185(*  DQG,62  SURYLGH JXLGDQFH IRU VHOHFWLQJ FDOLEUDWLRQ VRXUFHV DQG WKHLU XVH LQ

GHWHUPLQLQJ WRWDO HIILFLHQF\\ ,W LV FRPPRQ SUDFWLFH WRFDOLEUDWH LQVWUXPHQW HIILFLHQF\\ IRU D VLQJOH EHWD

5 energy; however, the energy of this reference source should not be significantly greater than the beta energy of the lowest energy to be measured. Calibration sources should be selected that emit alpha or beta radiation with energies similar to those expected of the contaminant in the field.

Tc-99 (0.294MeV at 100%) and Th-230 (4.621 MeV at 23% and 4,687 MeV at 76%) have been selected as the beta and alpha calibration standards respectively, because their energies conservatively approximate the beta and alpha energies of the plant specific radionuclides most prevalent in the field.

3.0 EFFICIENCY DETERMINATION Typically, using the instrument 4 efficiency exclusively provides a good approximation of surface activity. Using these means for calculating the efficiency often results in an underestimate of activity levels in the field. Applying both the instrument 2 efficiency and the surface efficiency components to determine the total efficiency allows for a more accurate measurement due to consideration of the actual characteristics of the source surfaces. ISO 7503-1 recommends that the total surface activity be calculated using:



 

Where:

As is the total surface activity in dpm/cm 2, Rs +B is the gross count rate of the measurement in cpm, RB is the background count rate in cpm, ei is the instrument or detector 2 efficiency, es is the efficiency of the source and W is the area of the detector window (cm 2) (126 cm2 active for the 43-93/Scintillation detector)

3.1 Alpha and Beta Instrument Efficiency (e i)

Instrument efficiency (ei) reflects instrument characteristics and counting geometry, such as source construction, activity distribution, source area, particles incident on the detector per unit time and therefore source to detector geometry. Theoretically the maximum value of es is 1.0, assuming all the emissions from the source are 2 and that all emissions from the source are detected. The ISO 7503-1 methodology for determining the instrument efficiency is similar to the historical 4 approach; however, the detector response, in cpm, is divided by the 2 surface emission rate of the calibration source. The instrument efficiency is calculated by dividing the net count rate by the 2 surface emission rate (q2)

6 (Includes absorption in detector window, source detector geometry). The instrument efficiency is expressed in ISO 7503-1 by:





Where:

RS+B is the gross count rate of the measurement in cpm, RB is the background count rate in cpm, q2 is the 2 surface emission rate in reciprocal seconds

Note that both the 2 surface emission rate and the source activity are usually stated on the certification sheet provided by the calibration source manufacturer and certified as National Institute of Standards and Technology (NIST) traceable. Table 3.1 depicts nominal instrument efficiencies that have been determined during calibration using the 2 surface emission rate of the source.

Table 3.1 Nominal Instrument Efficiencies (ei)

Source Emi ssi on Active Area of Area of the 100 cm2 the Source Detector Nominal (cm2) In strumen t (ei) (Contact) Efficiency

Tc-99 15.2 100 cm2 0.1203 Th-230 15.2 100 cm2 0.1393

4.0 Source to Detector Distance Considerations A major factor affecting instrument efficiency is source to detector distance. Consideration must be given to this distance when selecting accurate instrument efficiency. The distance from the source to the detector shall be as close as practicable to geometric conditions that exist in the field. A range of source to detector distances has been chosen, considering site specific survey conditions. In an effort to minimize the error associated with geometry, instrument efficiencies have been determined for so urce to detector distances representative of those survey distances expected in the field. The results shown in Table 4.1 illustrate the imposing reduction in detector response with increased distance from the source.

Typically, this source to detector distance will be 0.5 inches for fixed point measurements and 0.5 inches for scan surveys on flat surfaces, however they may differ for other surfaces. Table 4.1 makes provisions for the selection of source to detector distances for field survey conditions of up to 2.0 in. If surface conditions dictate the placement of the detector at distances greater than 2.0 in instrument efficiencies will be determined on an as needed basis.

7 4.1 Methodology The practical application of choosing the proper instrument efficiency may be determined by averaging the surface variation (peaks and valleys narrower than the length of the detector) and adding 0.5 inches, the spacing that should be maintained between the detector and the highest peaks of the surface. The source-to-detector distance was evaluated using a Ludlum 43-93 scintillation detector with a 1.2 mg/cm 2 window for Tc-99 and Th-230. Five 1-minute measurements were made on contact and at distances of 0.5, 1, 1.5 and 2 inches. Measurement results are contained in Appendix B.

Select the source to detector distance from Table 4.1 that best reflects this pre-determined geometry.

Table 4.1 Source-to-Detector Distance Effects on Instrument Efficiencies for - Emitters

Instrum ent Efficiency (ei)

Source to Detector Distance (in) Tc-99 Distributed Th-230 Distributed C ont act 1 1 0.5 0.849383 0.013418 1.0 0.597486 0.000716 1.5 0.468216 0.000301 2.0 0.356736 6.12E-05

4.2 Source (or surface) Efficiency (es) Determination Source efficiency (es), reflects the physical characteristics of the surface and any surface coatings. The source efficien cy is the ratio between the number of particles emerging from surface and the total number of particles released within the source. The source efficiency accounts for attenuation and backscatter.

es is nominally 0.5 (no self-absorption/attenuation, no backscatter) - backscatter increases the value, self-absorption decreases the value. Source efficiencies may either be derived experimentally or simply selected from the guidance contained in ISO 7503-1. ISO 7503-1 takes a conservative approach by recommending the use of factors to correct for alpha and beta self-absorption/attenuation when determining surface activity. However, this approach may prove to be too conservative for radionuclides with max beta energies that are marginally lower than 0.400 MeV, such as Co-60 with a max of 0.314 MeV. In this situation, it may be more appropriate to determine the source efficiency by considering the energies of other beta emitting radionuclides. ISO 7503-1 source efficiencies are used as routine guidance and exceptions to those es efficiencies will be documented as appropriate to the specific measurement or survey. Using this approach, it is possible to determine weighted average source efficiency. For example, a source efficiency of 0.375 may be calculated based on a 50/50 mix of Co-60 and Cs-137. The source efficiencies for Co-60 and Cs-137 are 0.25 and 0.5 respectively, since the 8

radionuclide fraction for Co-60 and Cs-137 is 50% for each, the weighted average source efficiency for the mix may be calculated in the following manner:

(.25) (.5) +(.5) (.5) = 0.375

Table 4.2 Source Efficiencies as Listed in ISO 7503-1

< 0.400 MeVmax 0.400 MeVmax Beta Emitters es = 0.5 es = 0.5 Alpha Emitters es = 0.25 es = 0.5

5.0 INSTRUMENT CONVERSION FACTOR (E i) (INSTRUMENT EFFICIENCY FOR GAMMA SCANNING)

Separate modeling analysis (Microshield) was conducted using the common gamma emitters with a concentration of 1.6 pCi/g of uniformly distributed contamination throughout the volume.

Microshield is a comprehensive photon/gamma ray shielding and dose assessment program, which is widely used throughout the radiological safety community. An activity concentration of 1 pCi/g for the nuclides was entered as the source term. The radial dimension of the cylindrical source was 28 cm, the depth was 15 cm, and the dose point above the surface was 10 cm with a soil density of 1.6 g/cm3. The

instrument efficiency when scanning, Ei, is the product of the modeled exposure rate (Microshield) mRhr per 1/pCi/g and the energy response factor in cpm/mR/hr as derived from the energy response curve provided by Ludlum Instruments (Appendix A). Table 5.1 demonstrates the derived efficiencies for the major gamma emitting isotopes listed in Tables 2.1 and 2.2.

Table 5.1 Energy Response and Efficiency for Photon Emitting Isotopes

Ei Isotope (cpm/pCi/g)

Mn-54 289 Co-60 478 Nb-94 546 Sb-125 320 C s-137 238 Eu -152 413 Eu -154 387

When performing gamma scan measurements on soil surfaces the effective source to detector geometry is as close as is reasonably possible (less than 4 inches).

6.0 APPLYING EFFICIENCY CORRECTIONS BASED ON THE EFFECTS OF FIELD 9

CONDITIONS FOR TOTAL EFFICIENCY

The total efficiency for any given condition can now be calculated from the product of the instrument efficiency ei and the source efficiency es.

etotal = ei x es

The following example illustrates the process of determining total efficiency. For this example, we will assume the following:

x Surface activity readings need to be made in the OCNGS Reactor Building basement concrete surfaces using the 3002 and 43-93 scintillation detector.

x Data obtained from characterization results from the basin indicate the presence of beta emitters with energies greater than 0.400 MeV.

x The source (activity on the surface) to detector distance is 0.5-inch detector standoff.

x To calculate the total efficiency, etotal, refer to Table 4.1 "Source to Detector Distance Effects on Instrument Efficiencies for a - Emitters" to obtain the appropriate e i value.

x Contamination on all surfaces is distributed relative to the effective detector area.

x When performing fixed-point measurements with scintillation instrumentation the effective source-to-detector geometry is representative of the calibrated geometries listed in Table 4.1.

x Correction for pressure and temperature are not substantial.

In this example, the 2 value for ei is 0.1203 as depicted in Table 3.1 "Instrument Efficiencies". The source-to-detector correction for 0.5 inches is 0.849383 as depicted in Table 4.1 "Source to Detector Distance Effects on Instrument Efficiencies for a-Emitters". The e s value of 0.5 is chosen refer to Table 4,2 "Source Efficiencies as listed in ISO 7503-1". Therefore, the total efficiency for this condition becomes = ei x es = 0.1203 x 0.849383 x 0.5 = 0.0511 or 5.11%.

7.0 CONCLUSION

Field conditions may significantly influence the usefulness of a survey instrument. When applying the instrument and source efficiencies in MDC calculations, field conditions must be considered. Tables have been constructed to assist in the selection of appropriate instrument and source efficiencies. Table 4,1 "Source to Detector Distance Effects on Instrument Efficiencies for a-Emitters" lists instrument efficiencies (ei) at various source to detector distances for alpha and beta emitters. The appropriate ei value should be applied, accounting for the field condition, i.e., the relation between the detector and the 10 surface to be measured.

Source efficiencies shall be selected from Table 4,2 "Source Efficiencies as listed in ISO 7503-1 ". This table lists conservative e s values that correct for self-absorption and attenuation of surface activity. Table 5.1 "Energy Response and Efficiency for Photon Emitting Isotopes" li st s Ei values that apply to scanning MDC calculations. The MicroshieldTM model code was used to determine instrument efficiency

assuming contamination conditions and detector geometry cited in the section "MDCs for Gamma Scans of Land Areas" of the License Termination Plan.

Detector and source conditions equivalent to those modeled herein may directly apply to the results of this report.

8.0 REFERENCES

8.1 NUREG-1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various contaminants and Field Conditions," 1998

8.2 ISO 7503-1, "Evaluation of Surface Contamination - Part I: Beta Emitters and Alpha Emitters," 1988-08-01.

8.3 ISO 8769, "Reference Sources for the Calibration of Surface Contamination Monitors-Beta-emitters (maximum beta energy greater 0. 15MeV) and Alpha -emitters," 1988-06-15.

8.4 "Radiological Health Handbook," Revised Edition 1970.

11 Attachment A Microsh ield and Excel Form s

12 Case Summary of OCNGS 44-10 eff Co60 Page 1 of 2

MicroShield LT 13.07 BHI Energy

Results with Buildup: Dose Point No. 1 - (X = 0, Y = 25, Z = 0) cm Energy Activity Energy Flux Photon Flux Exposure Absorbed Absorbed (MeV) (Photons/sec) (MeV/cm2/sec) (Photons/cm²/sec) Rate Dose Rate Dose Rate (mR/hr) (mrad/hr) (mGy/hr) 6.938e-01 3.568e-01 2.586e-05 3.728e-05 4.993e-08 4.359e-08 4.359e-10 1.173e+00 2.187e+03 2.691e-01 2.294e-01 4.809e-04 4.198e-04 4.198e-06 1.333e+00 2.187e+03 3.070e-01 2.304e-01 5.327e-04 4.650e-04 4.650e-06 Total 4.375e+03 5.762e-01 4.598e-01 1.014e-03 8.849e-04 8.849e-06

Date Preparer Reviewer 10/31/2023 'YY/...d;;__c__'tc,~ 1/

File Name Run Date Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC October 31, 4:01:37 Co60.msd 2023 PM Project Info Case Title OCNGS 44-10 eff Co60£ Description OCNGS 44-10 eff for Co-60£ Geometry 8 - Cylinder Volume - End Shields

Source Dimensions Height 15.0 cm (5.906 in)

Radius 28.0 cm (11.024 in).,,

Dose Points No. X Y Z Air Gap ~

  1. 1 0.0 cm (0 in) 25.0 cm (9.843 in) 0.0 cm (0 in) 10.0 cm (3.937 in) ~ - X

Shields Shield Name Dimension Material Density (g/cm3) z Source 3.69e+04 cm³ Soil - Earth (Average US)1.60122 Air Gap Air 0.00122

Source Input: Grouping Method - Actual Photon Energies Library: Grove Nuclide Ci Bq Ci/cm³ Bq/cm³ Co-60 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002

file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Co60-1... 10/31/2023 Case Summary of OCNGS 44-10 eff Co60 Page 2 of 2

Buildup Buildup: The material reference is Source.

Mass Attenuation Library NIST Library

Integration Parameters Radial 20 Circumferential 10 Y Direction (axial) 10

file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Co60-1... 10/31/2023 Co-60 Total E i Energy Energy Exposure Rate Energy Response Ei (MeV) (KeV) Mr/hr -1 pCi/g cpm/Mr/hr (cpm/pCi/g) 0.6938 684 4.99E-08 810,000 4.04E -02 1.173 1173 4.81E-04 496000 2.39E+02 1.333 1333 5.33E-04 450000 2.40E+02 Total 478

14 Case Summary of OCNGS 4410 eff Cs137 Page 1 of 2

MicroShield LT 13.07 BHI Energy

Results with Buildup: Dose Point No. 1 - (X = 0, Y = 25, Z = 0) cm Energy Activity Energy Flux Photon Flux Exposure Absorbed Absorbed (MeV) (Photons/sec) (MeV/cm2/sec) (Photons/cm²/sec) Rate Dose Rate Dose Rate (mR/hr) (mrad/hr) (mGy/hr) 4.470e-2.270e+01 5.969e-08 1.335e-05 4.092e-08 3.572e-08 3.572e-10 03 3.182e-4.528e+01 8.972e-06 2.820e-04 7.473e-08 6.524e-08 6.524e-10 02 3.219e-8.354e+01 1.739e-05 5.401e-04 1.399e-07 1.222e-07 1.222e-09 02 3.640e-3.040e+01 1.057e-05 2.903e-04 6.004e-08 5.242e-08 5.242e-10 02 6.616e-1.968e+03 1.361e-01 2.057e-01 2.638e-04 2.303e-04 2.303e-06 01 Total 2.150e+03 1.361e-01 2.068e-01 2.642e-04 2.306e-04 2.306e-06

Date Preparer Reviewer 11/01/2023 7Y/..d;:._ c..~~

File Name Run Date Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 1, 2:14:43 Cs137.msd 2023 PM

Project Info Case Title OCNGS 4410 eff Cs137£ Description OCNGS 44-10 eff for Cs-137£ Geometry 8 - Cylinder Volume - End Shields

Source Dimensions Height 15.0 cm (5.906 in)

Radius 28.0 cm (11.024 in) */

Dose Points No. X Y Z Air Gap

  1. 1 0.0 cm (0 in) 25.0 cm (9.843 in) 0.0 cm (0 in) 10.0 cm (3.937 in) ~ __/ X

Shields ~

Shield Name Dimension Material Density (g/cm3) z

Source 3.69e+04 cm³ Soil - Earth (Average US)1.60122 Air Gap Air 0.00122

file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Cs137-11... 11/1/2023 Case Summary of OCNGS 4410 eff Cs137 Page 2 of 2

Source Input: Grouping Method - Actual Photon Energies Library: Grove Nuclide Ci Bq Ci/cm³ Bq/cm³ Ba-137m 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002 Cs-137 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002

Buildup Buildup: The material reference is Source.

Mass Attenuation Library NIST Library

Integration Parameters Radial 20 Circumferential 10 Y Direction (axial) 10

file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Cs137-11... 11/1/2023 Cs-137 Total E i

Energy Exposure Rate Energy Response (MeV) Energy (KeV) Mr/hr -1 pCi/g cpm/Mr/hr Ei (cpm/pCi/g) 0.0045 5 4.09E-08 0 0.0318 32 7.47E-08 0 0.0322 32 1.40E-07 0 0.0364 36 6.00E-08 0 0.6616 662 2.64E-04 900000 238 Total 238

16 Case Summary of OCNGS 4410 eff Nb94 Page 1 of 2

MicroShield LT 13.07 BHI Energy

Results with Buildup: Dose Point No. 1 - (X = 0, Y = 25, Z = 0) cm Energy Activity Energy Flux Photon Flux Exposure Absorbed Absorbed (MeV) (Photons/sec) (MeV/cm2/sec) (Photons/cm²/sec) Rate Dose Rate Dose Rate (mR/hr) (mrad/hr) (mGy/hr) 2.290e-1.451e-01 1.954e-10 8.533e-08 2.614e-10 2.282e-10 2.282e-12 03 1.737e-7.734e-01 1.253e-08 7.214e-07 6.765e-10 5.906e-10 5.906e-12 02 1.748e-1.482e+00 2.461e-08 1.408e-06 1.303e-09 1.138e-09 1.138e-11 02 1.960e-4.352e-01 1.151e-08 5.870e-07 4.247e-10 3.708e-10 3.708e-12 02 7.026e-2.187e+03 1.606e-01 2.285e-01 3.096e-04 2.703e-04 2.703e-06 01 8.711e-2.187e+03 1.991e-01 2.285e-01 3.747e-04 3.271e-04 3.271e-06 01 Total 4.377e+03 3.596e-01 4.571e-01 6.843e-04 5.974e-04 5.974e-06

Date Preparer Reviewer 11/01/2023 '?Y/ d-c__~~

File Name Run Date Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 1, 2:28:46 Nb94.msd 2023 PM

Project Info Case Title OCNGS 4410 eff Nb94£ Description OCNGS 44-10 eff for 9b-94£ Geometry 8 - Cylinder Volume - End Shields

Source Dimensions Height 15.0 cm (5.906 in)

Radius 28.0 cm (11.024 in) *,

Dose Points ~

No. X Y Z Air Gap __.,,,-

X

  1. 1 0.0 cm (0 in)25.0 cm (9.843 in) 0.0 cm (0 in)10.0 cm (3.937 in)

Shields z Shield Name Dimension Material Density (g/cm3) '

file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Nb94-11... 11/1/2023 Case Summary of OCNGS 4410 eff Nb94 Page 2 of 2

Source 3.69e+04 cm³ Soil - Earth (Average US) 1.60122 II I I I IAir GapAir0.00122I I

Source Input: Grouping Method - Actual Photon Energies Library: Grove Nuclide Ci Bq Ci/cm³ Bq/cm³ Nb-94 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002

Buildup Buildup: The material reference is Source.

Mass Attenuation Library NIST Library

Integration Parameters Radial 20 Circumferential 10 Y Direction (axial) 10

file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Nb94-11... 11/1/2023 Nb-94 Total Ei

Exposure Rate Energy Energy Energy Mr/hr -1 Response Ei (MeV) (KeV) pCi/g cpm/Mr/hr (cpm/pCi/g) 0.023 23 2.61E-10 0 0.0174 17 6.77E-10 0 0.0175 18 1.30E-09 0 0.0196 20 4.25E-10 0 0.7026 703 3.10E-04 846000 262 0.8711 871 3.75E-04 756000 284 Total 546

18 Case Summary of OCNGS 4410 eff Eu152 Page 1 of 2

MicroShield LT 13.07 BHI Energy

Results with Buildup: Dose Point No. 1 - (X = 0, Y = 25, Z = 0) cm Energy Activity Energy Flux Photon Flux Exposure Absorbed Absorbed (MeV) (Photons/sec) (MeV/cm2/sec) (Photons/cm²/sec) Rate Dose Rate Dose Rate (mR/hr) (mrad/hr) (mGy/hr) 1.500e-02 3.324e+02 2.932e-06 1.955e-04 2.515e-07 2.196e-07 2.196e-09 4.000e-02 1.294e+03 6.697e-04 1.674e-02 2.962e-06 2.586e-06 2.586e-08 5.000e-02 3.236e+02 4.267e-04 8.534e-03 1.137e-06 9.924e-07 9.924e-09 1.000e-01 6.219e+02 5.665e-03 5.665e-02 8.667e-06 7.567e-06 7.567e-08 2.000e-01 1.639e+02 3.578e-03 1.789e-02 6.315e-06 5.513e-06 5.513e-08 3.000e-01 5.914e+02 1.914e-02 6.378e-02 3.630e-05 3.169e-05 3.169e-07 4.000e-01 1.374e+02 5.855e-03 1.464e-02 1.141e-05 9.960e-06 9.960e-08 5.000e-01 1.234e+01 6.514e-04 1.303e-03 1.279e-06 1.116e-06 1.116e-08 6.000e-01 9.275e+01 5.828e-03 9.713e-03 1.138e-05 9.931e-06 9.931e-08 8.000e-01 3.894e+02 3.255e-02 4.069e-02 6.192e-05 5.405e-05 5.405e-07 1.000e+00 9.358e+02 9.784e-02 9.784e-02 1.803e-04 1.574e-04 1.574e-06 1.500e+00 5.074e+02 8.060e-02 5.374e-02 1.356e-04 1.184e-04 1.184e-06 Total 5.402e+03 2.528e-01 3.817e-01 4.576e-04 3.995e-04 3.995e-06

Date Preparer Reviewer 11/01/2023 7Y/ d-- c__~~

File Name Run Date Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 1, 2:36:04 Eu152.msd 2023 PM

Project Info Case Title OCNGS 4410 eff Eu152£ Description OCNGS 44-10 eff for Eu-152£ Geometry 8 - Cylinder Volume - End Shields

Source Dimensions Height 15.0 cm (5.906 in)

Radius 28.0 cm (11.024 in)

Dose Points No. X Y Z Air Gap

  1. 1 0.0 cm (0 in)25.0 cm (9.843 in) 0.0 cm (0 in) 10.0 cm (3.937 in)

file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Eu152-11... 11/1/2023 Case Summary of OCNGS 4410 eff Eu152 Page 2 of 2

Shields Shield Name Dimension Material Density (g/cm3) ~ ___,,,

Source 3.69e+04 cm³ Soil - Earth (Average US)1.60122 - X Air Gap Air 0.00122

" z

Source Input: Grouping Method - Standard Indices Number of Groups: 25 Lower Energy Cutoff: 0.015 Photons< 0.015: Included Library: Grove Nuclide Ci Bq Ci/cm³ Bq/cm³ Eu-152 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002

Buildup Buildup: The material reference is Source.

Mass Attenuation Library NIST Library

Integration Parameters Radial 20 Circumferential 10 Y Direction (axial) 10

file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Eu152-11... 11/1/2023 Eu-152 Total Ei

Exposure Energy Energy Energy Rate Mr/hr - Response Ei (MeV) (KeV) 1 pCi/g cpm/Mr/hr (cpm/pCi/g) 0.015 15 2.52E-07 0 0.04 40 2.96E-06 0 0.05 50 1.14E-06 0 0.1 100 8.67E-06 4680000 41 0.2 200 6.32E-06 3420000 22 0.3 300 3.63E-05 2610000 95 0.4 400 1.14E-05 2070000 24 0.5 500 1.28E-06 1575000 2 0.6 600 1.14E-05 1080000 12 0.8 800 6.19E-05 765000 47 1 1000 1.80E-04 630000 113 1.5 1500 1.36E-04 425000 58 t~l=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

20 Case Summary of OCNGS 4410 eff Eu154 Page 1 of 2

MicroShield LT 13.07 BHI Energy

Results with Buildup: Dose Point No. 1 - (X = 0, Y = 25, Z = 0) cm Energy Activity Energy Flux Photon Flux Exposure Absorbed Absorbed (MeV) (Photons/sec) (MeV/cm2/sec) (Photons/cm²/sec) Rate Dose Rate Dose Rate (mR/hr) (mrad/hr) (mGy/hr) 1.500e-02 1.669e+02 1.473e-06 9.818e-05 1.263e-07 1.103e-07 1.103e-09 4.000e-02 4.451e+02 2.304e-04 5.759e-03 1.019e-06 8.894e-07 8.894e-09 5.000e-02 1.131e+02 1.491e-04 2.982e-03 3.972e-07 3.467e-07 3.467e-09 1.000e-01 8.850e+02 8.063e-03 8.063e-02 1.234e-05 1.077e-05 1.077e-07 2.000e-01 1.494e+02 3.261e-03 1.630e-02 5.755e-06 5.024e-06 5.024e-08 4.000e-01 1.560e+01 6.648e-04 1.662e-03 1.295e-06 1.131e-06 1.131e-08 5.000e-01 4.736e+00 2.500e-04 5.000e-04 4.908e-07 4.284e-07 4.284e-09 6.000e-01 1.764e+02 1.109e-02 1.848e-02 2.164e-05 1.889e-05 1.889e-07 8.000e-01 8.529e+02 7.130e-02 8.912e-02 1.356e-04 1.184e-04 1.184e-06 1.000e+00 6.728e+02 7.034e-02 7.034e-02 1.297e-04 1.132e-04 1.132e-06 1.500e+00 8.534e+02 1.356e-01 9.039e-02 2.281e-04 1.991e-04 1.991e-06 Total 4.335e+03 3.009e-01 3.763e-01 5.364e-04 4.683e-04 4.683e-06

Date Preparer Reviewer 11/02/2023 7Y/..d;__c_~~

File Name Run Date Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 1, 2:42:04 Eu154.msd 2023 PM

Project Info Case Title OCNGS 4410 eff Eu154£ Description OCNGS 44-10 eff for Eu-154£ Geometry 8 - Cylinder Volume - End Shields

Source Dimensions Height 15.0 cm (5.906 in)

Radius 28.0 cm (11.024 in)

Dose Points No. X Y Z Air Gap

  1. 1 0.0 cm (0 in) 25.0 cm (9.843 in) 0.0 cm (0 in) 10.0 cm (3.937 in)

Shields I I I

file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Eu154-11... 11/2/2023 Case Summary of OCNGS 4410 eff Eu154 Page 2 of 2

Shield Name Dimension Material Density (g/cm3) ~ ___,,,

Source 3.69e+04 cm³ Soil - Earth (Average US) 1.60122 - X I I I I I Air GapAir0.00122z

Source Input: Grouping Method - Standard Indices Number of Groups: 25 Lower Energy Cutoff: 0.015 Photons< 0.015: Included Library: Grove Nuclide Ci Bq Ci/cm³ Bq/cm³ Eu-154 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002

Buildup Buildup: The material reference is Source.

Mass Attenuation Library NIST Library

Integration Parameters Radial 20 Circumferential 10 Y Direction (axial) 10

file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Eu154-11... 11/2/2023 Eu-154 Total Ei

Energy Energy Exposure Rate Energy Response Ei (MeV) (KeV) Mr/hr -1 pCi/g cpm/Mr/hr (cpm/pCi/g) 0.015 15 1.26E -07 0 0.04 40 1.02E -06 0 0.05 50 3.97E -07 0 0.1 100 1.23E -05 468000 0 58 0.2 200 5.76E -06 342000 0 20 0.4 400 1.30E -06 207000 0 3 0.5 500 4.91E -07 157500 0 1 0.6 600 2.16E -05 108000 0 23 0.8 800 1.36E -04 765000 104 1 1000 1.30E -04 630000 82 1.5 1500 2.28E -04 425000 97 Total 387

22 Case Summary of OCNGS 44-10 eff Mn54 Page 1 of 2

MicroShield LT 13.07 BHI Energy

Results with Buildup: Dose Point No. 1 - (X = 0, Y = 25, Z = 0) cm Energy Activity Energy Flux Photon Flux Exposure Absorbed Absorbed (MeV) (Photons/sec) (MeV/cm2/sec) (Photons/cm²/sec) Rate Dose Rate Dose Rate (mR/hr) (mrad/hr) (mGy/hr) 5.700e-8.097e+00 2.715e-09 4.763e-06 1.459e-08 1.274e-08 1.274e-10 04 5.405e-1.625e+02 5.166e-07 9.556e-05 2.928e-07 2.556e-07 2.556e-09 03 5.415e-3.218e+02 1.025e-06 1.892e-04 5.798e-07 5.062e-07 5.062e-09 03 5.950e-6.440e+01 2.254e-07 3.788e-05 1.161e-07 1.013e-07 1.013e-09 03 8.348e-2.187e+03 1.907e-01 2.285e-01 3.610e-04 3.151e-04 3.151e-06 01 Total 2.743e+03 1.908e-01 2.288e-01 3.620e-04 3.160e-04 3.160e-06

Date Preparer Reviewer 11/02/2023 7J//.d;;_ c_~~

File Name Run Date Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 2, 11:04:37 Mn54.msd 2023 AM

Project Info Case Title OCNGS 44-10 eff Mn54£ Description OCNGS 44-10 eff for Mn54£ Geometry 8 - Cylinder Volume - End Shields

Source Dimensions Height 15.0 cm (5.906 in)

Radius 28.0 cm (11.024 in)

Dose Points -1~

No. X Y Z Air Gap __...,

  1. 1 0.0 cm (0 in)25.0 cm (9.843 in) 0.0 cm (0 in)10.0 cm (3.937 in) X Shields Shield Name Dimension Material Density (g/cm3) z Source 3.69e+04 cm³ Soil - Earth (Average US)1.60122 Air Gap Air 0.00122

file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Mn54-11... 11/2/2023 Case Summary of OCNGS 44-10 eff Mn54 Page 2 of 2

Source Input: Grouping Method - Actual Photon Energies Library: Grove Nuclide Ci Bq Ci/cm³ Bq/cm³ Mn-54 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002

Buildup Buildup: The material reference is Source.

Mass Attenuation Library NIST Library

Integration Parameters Radial 20 Circumferential 10 Y Direction (axial) 10

file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Mn54-11... 11/2/2023 Mn-54 Total Ei

Exposure Energy Energy Energy Rate Mr/hr -1 Response Ei (MeV) (KeV) pCi/g cpm/Mr/hr (cpm/pCi/g) 5.70E-04 1 1.50E-08 0 5.41E-03 5 2.93E-07 0 5.41E-03 5 5.80E-07 0 5.95E-03 6 1.16E-07 0 8.35E-01 835 3.61E-04 800000 289 Total 289

24 Case Summary of OCNGS 44-10 eff Sb12 Page 1 of 3

MicroShield LT 13.07 BHI Energy

Results with Buildup: Dose Point No. 1 - (X = 0, Y = 25, Z = 0) cm Energy Activity Energy Flux Photon Flux Exposure Absorbed Absorbed (MeV) (Photons/sec) (MeV/cm2/sec) (Photons/cm²/sec) Rate Dose Rate Dose Rate (mR/hr) (mrad/hr) (mGy/hr) 3.770e-1.082e+02 2.399e-07 6.364e-05 1.950e-07 1.702e-07 1.702e-09 03 2.720e-2.797e+02 2.875e-05 1.057e-03 3.827e-07 3.341e-07 3.341e-09 02 2.747e-5.219e+02 5.590e-05 2.035e-03 7.221e-07 6.304e-07 6.304e-09 02 3.100e-1.812e+02 3.220e-05 1.039e-03 2.895e-07 2.527e-07 2.527e-09 02 3.549e-9.109e+01 2.849e-05 8.028e-04 1.736e-07 1.515e-07 1.515e-09 02 1.170e-5.709e+00 6.666e-05 5.700e-04 1.037e-07 9.051e-08 9.051e-10 01 1.590e-1.525e+00 2.614e-05 1.644e-04 4.369e-08 3.814e-08 3.814e-10 01 1.726e-3.964e+00 7.431e-05 4.305e-04 1.267e-07 1.106e-07 1.106e-09 01 1.763e-1.508e+02 2.890e-03 1.639e-02 4.955e-06 4.326e-06 4.326e-08 01 2.041e-7.056e+00 1.572e-04 7.703e-04 2.788e-07 2.434e-07 2.434e-09 01 2.081e-5.318e+00 1.208e-04 5.806e-04 2.151e-07 1.878e-07 1.878e-09 01 2.279e-2.874e+00 7.141e-05 3.133e-04 1.295e-07 1.131e-07 1.131e-09 01 3.210e-9.122e+00 3.149e-04 9.808e-04 6.021e-07 5.257e-07 5.257e-09 01 3.804e-3.272e+01 1.328e-03 3.491e-03 2.579e-06 2.252e-06 2.252e-08 01 4.080e-3.977e+00 1.727e-04 4.233e-04 3.369e-07 2.941e-07 2.941e-09 01 4.279e-6.415e+02 2.916e-02 6.815e-02 5.703e-05 4.978e-05 4.978e-07 01 4.435e-6.607e+00 3.109e-04 7.010e-04 6.089e-07 5.316e-07 5.316e-09 01 4.634e-2.264e+02 1.111e-02 2.399e-02 2.180e-05 1.903e-05 1.903e-07 01

file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Sb125-11... 11/2/2023 Case Summary of OCNGS 44-10 eff Sb12 Page 2 of 3

6.006e-3.887e+02 2.445e-02 4.071e-02 4.772e-05 4.166e-05 4.166e-07 01 6.066e-1.098e+02 6.975e-03 1.150e-02 1.361e-05 1.188e-05 1.188e-07 01 6.359e-2.476e+02 1.647e-02 2.589e-02 3.202e-05 2.795e-05 2.795e-07 01 6.714e-3.964e+01 2.782e-03 4.143e-03 5.386e-06 4.702e-06 4.702e-08 01 Total 3.065e+03 9.663e-02 2.042e-01 1.893e-04 1.653e-04 1.653e-06

Date Preparer Reviewer 11/02/2023 7Y/ 4-_c_'C::J~ /

File Name Run Date Run Time C:\\Users\\marty.erickson\\Grove Engineering\\MicroShield\\Examples\\CaseFiles\\OC November 2, 11:03:12 Sb125.msd 2023 AM Project Info Case Title OCNGS 44-10 eff Sb12£ Description OCNGS 44-10 eff for Sb125£ Geometry 8 - Cylinder Volume - End Shields

Source Dimensions Height 15.0 cm (5.906 in)

Radius 28.0 cm (11.024 in).,,

Dose Points,.,.--,

No. X Y Z Air Gap ~ __...,,

  1. 1 0.0 cm (0 in) 25.0 cm (9.843 in) 0.0 cm (0 in)10.0 cm (3.937 in) - X

Shields Shield Name Dimension Material Density (g/cm3) z Source 3.69e+04 cm³ Soil - Earth (Average US)1.60122 Air Gap Air 0.00122

Source Input: Grouping Method - Actual Photon Energies Library: Grove Nuclide Ci Bq Ci/cm³ Bq/cm³ Sb-125 5.9112e-008 2.1872e+003 1.6000e-006 5.9200e-002

Buildup Buildup: The material reference is Source.

file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Sb125-11... 11/2/2023 Case Summary of OCNGS 44-10 eff Sb12 Page 3 of 3

Mass Attenuation Library NIST Library

Integration Parameters Radial 20 Circumferential 10 Y Direction (axial) 10

file:///C:/Users/marty.erickson/Grove%20Engineering/MicroShield/html/OC%20Sb125-11... 11/2/2023 Sb-125 Total E i

Energy Energy Exposure Rate Energy Response Ei (MeV) (KeV) Mr/hr -1 pCi/g cpm/Mr/hr (cpm/pCi/g) 0.004 4 1.95E -07 0 0.027 27 3.83E -07 0 0.031 31 2.89E -07 0 0.035 35 1.74E -07 0 0.117 117 1.04E -07 0 0.159 159 4.37E -08 0 0.173 173 1.27E -07 0 0.176 176 4.96E -06 300000 0 15 0.204 204 2.79E -07 0 0.208 208 2.15E -07 0 0.228 228 1.30E -07 0 0.321 321 6.02E -07 0 0.38 380 2.58E -06 210000 0 5 0.408 408 3.37E -07 0 0.428 428 5.70E -05 225000 0 128 0.443 443 6.09E -07 0 0.463 463 2.18E -05 175000 0 38 0.601 601 4.77E -05 175000 0 83 0.607 607 1.36E -05 108000 0 15 0.636 636 3.20E -05 950000 30 0.671 671 5.39E -06 900000 5 Total 320

26 Appendix A Ludlum Response Curve

27 Energy Response for Ludlum Model 44-10

10

Co-57

""*2 I -......

"ill, I

" ~

~ I "

c~

0. 1 10 100 1000 10000

Comma,F.nori) * (l<oV)

28

28 Appendix B Tc-99 and Th-230 Source-to-Detector Distance Effects

29 Counts Counts UTR= 4PNMM=

UST= 4NUMM=

nt~ct= UOV=nt~ct= 4OMMM=

UOM= 4PMMM=

UOR= 4ORMM=

~n= ~n= 4O4UM=

TSS= PUS=

TRO= 44T=

R=in.= SUP=R=in.= R44=

ST4= TP4=

TMS= TPV=

~n= ~n= RTM=

RNO= O4=

RMT= O4=

N=in.= 4SV= N=in.= 44=

ROS= OV=

RMR= PN=

~n= ~n= PM.

PTM= N4=

4NT= NR=

R=in.= PTS= R=in.= NM=

PVP= NP=

4NU= NO=

~n= ~n= NO.

PNN=

PMS=

O=in.= PMT=O=in.=

PMR=

OTR=

~n= ~n=

=

=

=

=

=

=

=

=

30