ML12355A713: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
 
Line 15: Line 15:
| page count = 54
| page count = 54
}}
}}
=Text=
{{#Wiki_filter:APPENDIX J Representative Inputs to and Outputs from the DYNEV II System J. REPRESENTATIVE INPUTS TO AND OUTPUTS FROM THE DYNEV II SYSTEM This appendix presents data input to and output from the DYNEV II System. Table J-1 provides the volume and queues for the ten highest volume signalized intersections in the EPZ for Scenario 1 conditions in Region R03. Refer to Table K-2 and the figures in Appendix K for a map showing the geographic location of each intersection.
Table J-2 provides source (vehicle loading) and destination information for five roadway segments (links) in the analysis network for Scenario 1 conditions in Region R03. Refer to Table K-1 and the figures in Appendix K for a map showing the geographic location of each link.Table J-3 provides network-wide statistics (average travel time, average speed and number of vehicles) for an evacuation of the entire EPZ (Region R03) for each scenario.
As expected, rain and snow scenarios, exhibit slower average speeds and longer average travel times.Table J-4 provides statistics (average speed and travel time) for the major evacuation routes -Interstate-94 and US-31 -for an evacuation of the entire EPZ (Region R03) under Scenario 1 conditions.
As discussed in Section 7.3 and shown in Figures 7-3 through 7-8, 1-94 eastbound is congested for the first 2 hours and 30 minutes of the evacuation.
As such, the average speeds are comparably slower (and travel times longer) than 1-94 westbound and US-31.Table J-5 provides the number of vehicles discharged and the cumulative percent of total vehicles discharged for each link exiting the analysis network, for an evacuation of the entire EPZ (Region R03) under Scenario 1 conditions.
Refer to Table K-1 and the figures in Appendix K for a map showing the geographic location of each link.Figure J-1 through Figure J-14 plot the trip generation time versus the ETE for each of the 14 Scenarios considered.
The distance between the trip generation and ETE curves is the average travel time. Plots of trip generation versus ETE are indicative of the level of traffic congestion during evacuation.
For low population density sites, the curves are close together, indicating short travel times and minimal traffic congestion.
For higher population density sites, the curves are farther apart indicating longer travel times and the presence of traffic congestion.
As seen in Figure J-1 through Figure J-14, the curves are spatially separated as a result of the traffic congestion in the EPZ, which was discussed in detail in Section 7.3.Donald C. Cook Nuclear Plant J-1 KILD Engineering, P.C.Evacuation Time Estimate Rev. 1 Table J-1. Characteristics of the Ten Highest Volume Signalized Intersections AOMax.Aproc Total Tur Inerecio (u Voum Queu 337 6,890 196 391 SR 63 & Broad St Actuated 405 666 22 810 0 0 TOTAL 7,556 430 2,796 25 337 SR 63 & Main St Actuated 427 4,127 13 TOTAL 6,923 -531 6,377 483 538 0 0 533 SR 63 & Klock Rd Actuated 537 51 1 TOTAL 6,428 -830 6,312 97 804 0 0 343 SR 63 & Port St Actuated 537 43 1 TOTAL 6,355 -291 3,367 29 E Napier Ave & Actuated 283 0 0 Pipestone St 287 1,552 24 TOTAL 4,919 -748 77 0 277 SR 139 & E Napier Actuated 284 4,660 0 Ave 292 0 0 TOTAL 4,737 -462 3,061 159 829 1,642 152 828 SR 63 & Botham Ave Actuated 827 0 0 TOTAL 4,703 -294 3,997 91 403 0 0 285 Colfax Ave & W Actuated 286 330 9 Napier Ave 335 166 1 TOTAL 4,493 -Donald C. Cook Nuclear Plant Evacuation Time Estimate J-2 KLD Engineering, P.C.Rev. 1 Nod Loato Coto Noe 0Vh (V 162 901 224 163 1-94 on/off Ramp & E Napier Ave Actuated 282 0 0 280 3,512 41 335 70 1 TOTAL 4,483 403 3,079 63 277 0 0 284 E Napier Ave & Union Actuated 279 497 9 St 385 838 23 TOTAL 4,484 Donald C. Cook Nuclear Plant Evacuation Time Estimate J-3 KLD Engineering, P.C.Rev. 1 Table J-2. Sample Simulation Model Input Veicle Entering .0 8UU3 b,/5U 343 194 S 8035 3,396 8059 1,698 8689 1,698 1077 153 NE 8116 4,500 8062 4,500 8689 1,698 130 171 NE 8116 4,500 8062 4,500 8026 1,698 779 59 NE 8099 1,698 8116 4,500 8689 1,698 983 300 NE 8116 4,500 8062 4,500 857 244 E 8016 4,500 246 4 E 8025 1,698 8026 1,698 693 27 NE 8099 1,698 8055 1,698 8026 1,698 822 9 NE 8099 1,698 8868 1,572 8003 6,750 1068 10 SW 8033 3,810 8035 3,396 Donald C. Cook Nuclear Plant Evacuation Time Estimate J-4 KLD Engineering, P.C.Rev. 1 Table J-3. Selected Model Outputs for the Evacuation of the Entire EPZ (Region R03)Network-Wide Average 2.3 2.6 2.4 2.7 2.3 2.3 2.6 2.6 2.2 2.5 2.6 2.2 2.8 2.9 Travel Time (Min/Veh-Mi)
Network-Wide Average 25.9 22.8 25.0 22.2 26.6 26.4 23.4 22.7 27.4 24.2 23.3 27.0 21.3 21.0 Speed (mph)Total Vehicles 60,053 60,370 60,289 60,536 50,004 57,336 57,636 57,374 54,673 54,955 54,793 46,615 55,909 60,244 Exiting NetworkII I Donald C. Cook Nuclear Plant Evacuation Time Estimate J-5 KLD Engineering, P.C.Rev. 1 0 Table J-4. Average Speed (mph) and Travel Time (min) for Major Evacuation Routes with the EPZ (Region R03, Scenario 1)1-94 EB I Z3.6 i 71.9 i 19.7 i 44.4 i 32.0 74.8 I 19.0 174.8 I 19.0 1 74.8 I 19.0 1-94 WB 23.6 74.7 19.0 73.6 19.3 74.7 19.0 74.7 19.0 74.7 19.0 US-31 NB 5.5 75.0 4.4 74.5 4.4 75.0 4.4 75.0 4.4 75.0 4.4 US-31 SB 5.5 74.3 4.4 73.1 4 75.0 4.4 75.0 4.4 75.0 4.4 Donald C. Cook Nuclear Plant Evacuation Time Estimate J-6 KLD Engineering, P.C.Rev. 1 Table J-5. Simulation Model Outputs at Network Exit Links for Region R03, Scenario 1 Cumulative Vehicles Discharged by the Indicated TimeýCumýulativue
ýPerceVnt of Vehicles Discharged by the Indicated Time 5 2,781 6,ýý 8,229 8,463 8,490 19 17 1 15 14 14 7 23 25 25 25 36 0.1 0.1 0.1 0.0 0.0 215 4,046 8,092 11,179 12,076 12,143 27 20 20 20 20 237 1,478 5,639 6,824 7,104 7,144 10 14 12 12 12 393 1,217 1,573 1,670 1,683 251 3 3 3 3 3 49 258 292 298 300 513 0.3 1 1 1 1 702 1,162 2,733 4,328 5,364 5,417 8 7 8 9 9 538 1,291 1,504 1,584 1,592 899 4 3 3 3 3 54 215 299 311 314 934 0.4 1 1 1 1 241 660 837 886 894 945 2 2 2 1 1 105 1,072 1,998 2,187 2,190 1007 1 3 4 4 4 13 77 96 100 102 1071 0.1 0.2 0.2 0.2 0.2 252 866 969 994 1,000 1072 2 2 2 2 2 56 1,505 2,857 2,907 2,913 1206 0.4 4 5 5 5 1304 3,029 6,913 9,737 10,994 11,020 21 17 18 18 18 75 756 1,543 1,564 1,565 1407 1 2 3 3 3 455 1,761 2,963 3,046 3,049 1414 3 4 5 5 5 Donald C. Cook Nuclear Plant Evacuation Time Estimate J-7 KLD Engineering, P.C.Rev. 1 Cumulative Vehicles Discharged by the Indicated Time Cumulative Percent of Vehicles Discharged by the Indicated Time 1430 13 1 94 1 178 184 184 0.1 1 0.2 1 0.3 0.3 0.3 19 19 1 28 1 29 1 29 0.1 1 0.1 0.1 0.1 0.1 Donald C. Cook Nuclear Plant Evacuation Time Estimate J-8 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Summer, Midweek, Midday, Good (Scenario 1)-Trip Generation
-ETE 100%.u 80%N 60%0 I-' 40%20%0.0%0 30 60 90 120 150 180 210 240 270 300 330 Elapsed Time (min)Figure J-1. ETE and Trip Generation:
Summer, Midweek, Midday, Good Weather (Scenario 1)ETE and Trip Generation Summer, Midweek, Midday, Rain (Scenario 2)-Trip Generation -ETE 100%80%60%0 I.-.40%C 20%0% ' ' '0 30 60 90 120 150 180 210 240 270 300 330 Elapsed Time (min)Figure J-2. ETE and Trip Generation:
Summer, Midweek, Midday, Rain (Scenario 2)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-9 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Summer, Weekend, Midday, Good (Scenario 3)-Trip Generation
-ETE 100%80%>M 60%4-0', 40%20%0.0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-3. ETE and Trip Generation:
Summer, Weekend, Midday, Good Weather (Scenario 3)ETE and Trip Generation Summer, Weekend, Midday, Rain (Scenario 4)-Trip Generation -ETE 100%80%:E M 60%4-*6 40%C 20%a.0%0 30 60 90 120 150 180 Elapsed Time (min)210 240 270 300 Figure J-4. ETE and Trip Generation:
Summer, Weekend, Midday, Rain (Scenario 4)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-10 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Summer, Midweek, Weekend, Evening, Good (Scenario 5)-Trip Generation -ETE U 4.0 0 4-.C W, U 100%80%60%40%20%0%ZOZO'Oý/I 0 30 60 90 120 150 180 Elapsed Time (min)210 240 270 300 Figure J-5. ETE and Trip Generation:
Summer, Midweek, Weekend, Evening, Good Weather (Scenario 5)ETE and Trip Generation Winter, Midweek, Midday, Good (Scenario 6)-Trip Generation -ETE 100%.80%-60%0 I-0 40%20%a,, a.0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-6. ETE and Trip Generation:
Winter, Midweek, Midday, Good Weather (Scenario 6)i-li KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate J-11 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Winter, Midweek, Midday, Rain (Scenario 7)-Trip Generation
-ETE 100%80%j 60%0 I-w 40%4-.C20%a.0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-7. ETE and Trip Generation:
Winter, Midweek, Midday, Rain (Scenario 7)ETE and Trip Generation Winter, Midweek, Midday, Snow (Scenario 8)-Trip Generation mETE 100%4A 80%:, 60%0 I-*0 40%20%0%0%_.Oeý30 60 90 120 150 180 210 240 270 300 330 360 Elapsed Time (min)Figure J-8. ETE and Trip Generation:
Winter, Midweek, Midday, Snow (Scenario 8)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-12 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Winter, Weekend, Midday, Good (Scenario 9)-Trip Generation
-ETE 100%80%M 60%4%0 0 40%S20%0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-9. ETE and Trip Generation:
Winter, Weekend, Midday, Good Weather (Scenario 9)ETE and Trip Generation Winter, Weekend, Midday, Rain (Scenario 10)-Trip Generation 1ETE 100%IA80%o 60%4-0 40%20%E0.0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-10. ETE and Trip Generation:
Winter, Weekend, Midday, Rain (Scenario 10)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-13 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Winter, Weekend, Midday, Snow (Scenario 11)-Trip Generation -mETE 100%80%60%0 0 40%4-20%0%0 30 60 90 120 150 180 210 240 270 300 330 Elapsed Time (min)Figure J-11. ETE and Trip Generation:
Winter, Weekend, Midday, Snow (Scenario 11)ETE and Trip Generation Winter, Midweek, Weekend, Evening, Good (Scenario 12)-Trip Generation
-ETE 100%280%:E 60%0 40%20%a'0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-12. ETE and Trip Generation:
Winter, Midweek, Weekend, Evening, Good Weather (Scenario 12)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-14 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Summer, Midweek, Weekend, Evening, Good, Special Event (Scenario 13)-Trip Generation -ETE 100%4A"J 80%:E 3 60%0 40%20%0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-13. ETE and Trip Generation:
Summer, Weekend, Evening, Good Weather, Special Event (Scenario 13)ETE and Trip Generation Summer, Midweek, Midday, Good, Roadway Impact (Scenario 14)-Trip Generation lETE 100%' 80%60%0 0 40%20%a.0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-14. ETE and Trip Generation:
Summer, Midweek, Midday, Good Weather, Roadway Impact (Scenario 14)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-15 KLD Engineering, P.C.Rev. 1 APPENDIX K Evacuation Roadway Network K. EVACUATION ROADWAY NETWORK As discussed in Section 1.3, a link-node analysis network was constructed to model the roadway network within the study area. Figure K-1 provides an overview of the link-node analysis network. The figure has been divided up into 35 more detailed figures (Figure K-2 through Figure K-36) which show each of the links and nodes in the network.The analysis network was calibrated using the observations made during the field survey conducted in May 2011. Table K-1 lists the characteristics of each roadway section modeled in the ETE analysis.
Each link is identified by its road name and the upstream and downstream node numbers. The geographic location of each link can be observed by referencing the grid map number provided in Table K-1.The term, "No. of Lanes" in Table K-1 identifies the number of lanes that extend throughout the length of the link. Many links have additional lanes on the immediate approach to an intersection (turn pockets);
these have been recorded and entered into the input stream for the DYNEV II System.As discussed in Section 1.3, lane width and shoulder width were not physically measured during the road survey. Rather, estimates of these measures were based on visual observations and recorded images.Table K-2 identifies each node in the network that is controlled and the type of control (stop sign, yield sign, pre-timed signal, actuated signal, traffic control point) at that node.Uncontrolled nodes are not included in Table K-2.K-i KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-1 KLD Engineering, P.C.Rev. 1 Figure K-1. D.C. Cook Link-Node Analysis Network K-2 KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-2 KLD Engineering, P.C.Rev. 1 Figure K-2. Link-Node Analysis Network -Grid 1 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-3 KLD Engineering, P.C.Rev. 1 Figure K-3. Link-Node Analysis Network -Grid 2 K-4 KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-4 KLD Engineering, P.C.Rev. 1 44J Donald C. Cook Evacuation Time Estimate Unk-Node Analysis Network Figures 4. I Grid 3 o o 03 I Figure K-4. Unk-Node Analysis Network -Grid 3 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-5 KLD Engineering, P.C.Rev. 1 Donald C. Cook Evacuation Time Estimate Link-Node Analysis Network Figures Figure K-S. Link-Node Analysis Network -Grid 4 K-6 KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-6 KLD Engineering, P.C.Rev. 1 Figure K-6. Link-Node Analysis Network -Grid 5 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-7 KLD Engineering, P.C.Rev. 1 m\ 4 I?V 35 I---- 116-- -S, 43332 E ~4A aodA,-'461=~ _____BMW, MA 01--e a//z 132'434 St 398 lld-tl.ý Ct, G, y St oil 396 W Far.1k, A 747 1.1 ------- -------Rd a 11 204 .1 ý_772 Z5 Fisk Rd L H-A-T__bele T 1 -4 JnJI I 7ý" ay~ej2kSt )aid C. Cook Evacuation Time Estimate ink-Node Analysis Network Figures Lepnd DCCNP ý",, AShadow Region* Node 2, 5, 10, 15 Mile Rings.-- Unk Water FAA []index Grid Don U 0 0.25 55 5U~Grid 6.1 U ~--~m, J Figure K-7. Link-Node Analysis Network -Grid 6 K-S KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-8 KLD Engineering, P.C.Rev. 1 r R 3, i r ~~ IJ Hal St. 3_-'EH(~, Stt A.A S~hWý ,ý350~ E~veh'e St Co, Ii B~ Stoav ded,.Estev, AvefJ350&adfrd ~ and2 HempbR~ ~ -aywdD8 7496 LI __~_ __ 0 E4f- A" ~i A'-~Ave C'.4[L Legend Donald C. Cook Evacuation Time Estimate DOCCNP I Shadow Region Unk-Node Analysis Network Figures* Node 2, 5, 10, 15 Mile Rings U Unki Water Grid 7 PA PM [7. Index Grid o .. .a es Figure K-8. Link-Node Analysis Network -Grid 7 K-9 KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-9 KLD Engineering, P.C.Rev. 1 Figure K-9. Link-Node Analysis Network -Grid 8 K-b KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-10 KLD Engineering, P.C.Rev. 1 Figure K-10. Link-Node Analysis Network -Grid 9 K-li KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-11 KLD Engineering, P.C.Rev. I Figure K-11. Link-Node Analysis Network -Grid 10 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-12 KLD Engineering, P.C.Rev. 1 Patht I Frank 64 x ....-- .L.~~W Ol.d 174 z St A & P ath Pt. .. ..I Rdge p i 4i' 1 ....4 " --......-T Woakam. Low--&-- -T, Dun It Ai ur K- .in -o e Analysi N o72 9/D adCuCoivc Taio TmeEsamt Pode J_ 11Ri0 G~d P.I ink .W. ater 025 rd Figures Alpine LikNoeA alss-ew rk--rd 0 KID Egineerigne.C Donal C., CokNcCalatK Evacuation Tim Esimt Rev.
77 W0a~o~d _s 2-"0M~,~R 293 Ti eTe IITc/soR 5------ 13 314 iL]_ Ji___ ___"~n Donald..C..Cook Evcutin im e nEstimate I~~46 83 I ! DCCNP Reio Uink-Node Analysis Network Figures* Node S , 5,0,iSMile~ings
, L--- ink WaterGrd 1ýb PMS --- -nd-- .3d Z____________________________
I Figure K-13. Link-Node Analysis Network -Grid 12 Donald C. Cook Nuclear Plant K-14 KLD Engineering, P.C.Evacuation Time Estimate Rev. 1 Figure K-14. Link-Node Analysis Network -Grid 13 K-15 KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-15 KLD Engineering, P.C.Rev. 1 Figure K-15. Link-Node Analysis Network -Grid 14 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-16 KLD Engineering, P.C.Rev. 1 Figure K-16. Link-Node Analysis Network -Grid 15 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-17 KLD Engineering, P.C.Rev. 1 Figure K-17. Link-Node Analysis Network -Grid 16 Donald C. Cook Nuclear Plant K-18 KLD Engineering, P.C.Evacuation Time Estimate Rev. 1 Figure K-18. Link-Node Analysis Network -Grid 17 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-19 KLD Engineering, P.C.Rev. 1 Figure K-19. Link-Node Analysis Network -Grid 18 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-20 KLD Engineering, P.C.Rev. 1 Figure K-20. Link-Node Analysis Network -Grid 19 K-21 KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-21 KLD Engineering, P.C.Rev. 1 Figure K-21. Link-Node Analysis Network -Grid 20 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-22 KLD Engineering, P.C.Rev. 1 Figure K-22. Link-Node Analysis Network -Grid 21 K-Li-- 1(1 fl Fnain~rifl0.
PC.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-23 Rev. 1 I Figure K-23. Link-Node Analysis Network -Grid 22 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-24 KLD Engineering, P.C.Rev. 1 Figure K-24. link-Node Analysis Network -Grid 23 K-25 KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-25 KLD Engineering, P.C.Rev. I Figure K-25. Link-Node Analysis Network -Grid 24 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-26 KLD Engineering, P.C.Rev. 1 Figure K-26. Link-Node Analysis Network -Grid 25 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-27 KLD Engineering, P.C.Rev. 1 Figure K-27. Link-Node Analysis Network -Grid 26 Donald C. Cook Nuclear Plant K-28 KLD Engineering, P.C.Evacuation Time Estimate Rev. 1 Figure K-28. Link-Node Analysis Network -Grid 27 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-29 KLD Engineering, P.C.Rev. 1 5I er Ml.Rd I P$12___ Maff he, Rd f ~ sp~msRd WdeR Rd~y,-d 1 S/ 11d W4T 81 47 I_____ _13 W~~r~~ml~~~i G53J Rd73 .~{ 74 z E M~o C,-E Elm Valley Rd 47T]1~3 1, `3~if 16 ~ T fs $1 BO tsosli 26 bi l why, L\ I- -Is _J1 A~t Legend Donald C. Cook Evacuation Time Estimate* DCCNP r:i Shadow Region iUnk-Node Analysis Network Figures* Node ' 2, 5, 10, l5 Mile Rings a--p Link water I Grid 28 PAA [T- Index Grid 0 _ 0._ 1,___________
Figure K-29. Link-Node Analysis Network -Grid 28 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-30 KLD Engineering, P.C.Rev. 1 Figure K-30. Link-Node Analysis Network -Grid 29 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-31 KLD Engineering, P.C.Rev. 1 Figure K-31. Link-Node Analysis Network -Grid 30 K-32 KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-32 KLD Engineering, P.C.Rev. I Figure K-32. Link-Node Analysis Network -Grid 31 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-33 KLD Engineering, P.C.Rev. 1 Figure K-33. Link-Node Analysis Network -Grid 32 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-34 KLD Engineering, P.C.Rev. 1 Figure K-34. Link-Node Analysis Network -Grid 33 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-35 KLD Engineering, P.C.Rev. 1 Figure K-35. Link-Node Analysis Network -Grid 34 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-36 KLD Engineering, P.C.Rev. 1 Figure K-36. Link-Node Analysis Network -Grid 35 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-37 KLD Engineering, P.C.Rev. 1}}

Latest revision as of 16:34, 1 August 2018

Final Report Kld TR-488, Revision 1, Development of Evacuation Time Estimates, Appendix J, Representative Inputs to and Outputs from the Dynev Ii System
ML12355A713
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 11/30/2012
From:
KLD Engineering, PC
To:
Office of Nuclear Reactor Regulation, American Electric Power
References
AEP-NRC-2012-78 KLD TR-488, Rev. 1
Download: ML12355A713 (54)


Text

APPENDIX J Representative Inputs to and Outputs from the DYNEV II System J. REPRESENTATIVE INPUTS TO AND OUTPUTS FROM THE DYNEV II SYSTEM This appendix presents data input to and output from the DYNEV II System. Table J-1 provides the volume and queues for the ten highest volume signalized intersections in the EPZ for Scenario 1 conditions in Region R03. Refer to Table K-2 and the figures in Appendix K for a map showing the geographic location of each intersection.

Table J-2 provides source (vehicle loading) and destination information for five roadway segments (links) in the analysis network for Scenario 1 conditions in Region R03. Refer to Table K-1 and the figures in Appendix K for a map showing the geographic location of each link.Table J-3 provides network-wide statistics (average travel time, average speed and number of vehicles) for an evacuation of the entire EPZ (Region R03) for each scenario.

As expected, rain and snow scenarios, exhibit slower average speeds and longer average travel times.Table J-4 provides statistics (average speed and travel time) for the major evacuation routes -Interstate-94 and US-31 -for an evacuation of the entire EPZ (Region R03) under Scenario 1 conditions.

As discussed in Section 7.3 and shown in Figures 7-3 through 7-8, 1-94 eastbound is congested for the first 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> and 30 minutes of the evacuation.

As such, the average speeds are comparably slower (and travel times longer) than 1-94 westbound and US-31.Table J-5 provides the number of vehicles discharged and the cumulative percent of total vehicles discharged for each link exiting the analysis network, for an evacuation of the entire EPZ (Region R03) under Scenario 1 conditions.

Refer to Table K-1 and the figures in Appendix K for a map showing the geographic location of each link.Figure J-1 through Figure J-14 plot the trip generation time versus the ETE for each of the 14 Scenarios considered.

The distance between the trip generation and ETE curves is the average travel time. Plots of trip generation versus ETE are indicative of the level of traffic congestion during evacuation.

For low population density sites, the curves are close together, indicating short travel times and minimal traffic congestion.

For higher population density sites, the curves are farther apart indicating longer travel times and the presence of traffic congestion.

As seen in Figure J-1 through Figure J-14, the curves are spatially separated as a result of the traffic congestion in the EPZ, which was discussed in detail in Section 7.3.Donald C. Cook Nuclear Plant J-1 KILD Engineering, P.C.Evacuation Time Estimate Rev. 1 Table J-1. Characteristics of the Ten Highest Volume Signalized Intersections AOMax.Aproc Total Tur Inerecio (u Voum Queu 337 6,890 196 391 SR 63 & Broad St Actuated 405 666 22 810 0 0 TOTAL 7,556 430 2,796 25 337 SR 63 & Main St Actuated 427 4,127 13 TOTAL 6,923 -531 6,377 483 538 0 0 533 SR 63 & Klock Rd Actuated 537 51 1 TOTAL 6,428 -830 6,312 97 804 0 0 343 SR 63 & Port St Actuated 537 43 1 TOTAL 6,355 -291 3,367 29 E Napier Ave & Actuated 283 0 0 Pipestone St 287 1,552 24 TOTAL 4,919 -748 77 0 277 SR 139 & E Napier Actuated 284 4,660 0 Ave 292 0 0 TOTAL 4,737 -462 3,061 159 829 1,642 152 828 SR 63 & Botham Ave Actuated 827 0 0 TOTAL 4,703 -294 3,997 91 403 0 0 285 Colfax Ave & W Actuated 286 330 9 Napier Ave 335 166 1 TOTAL 4,493 -Donald C. Cook Nuclear Plant Evacuation Time Estimate J-2 KLD Engineering, P.C.Rev. 1 Nod Loato Coto Noe 0Vh (V 162 901 224 163 1-94 on/off Ramp & E Napier Ave Actuated 282 0 0 280 3,512 41 335 70 1 TOTAL 4,483 403 3,079 63 277 0 0 284 E Napier Ave & Union Actuated 279 497 9 St 385 838 23 TOTAL 4,484 Donald C. Cook Nuclear Plant Evacuation Time Estimate J-3 KLD Engineering, P.C.Rev. 1 Table J-2. Sample Simulation Model Input Veicle Entering .0 8UU3 b,/5U 343 194 S 8035 3,396 8059 1,698 8689 1,698 1077 153 NE 8116 4,500 8062 4,500 8689 1,698 130 171 NE 8116 4,500 8062 4,500 8026 1,698 779 59 NE 8099 1,698 8116 4,500 8689 1,698 983 300 NE 8116 4,500 8062 4,500 857 244 E 8016 4,500 246 4 E 8025 1,698 8026 1,698 693 27 NE 8099 1,698 8055 1,698 8026 1,698 822 9 NE 8099 1,698 8868 1,572 8003 6,750 1068 10 SW 8033 3,810 8035 3,396 Donald C. Cook Nuclear Plant Evacuation Time Estimate J-4 KLD Engineering, P.C.Rev. 1 Table J-3. Selected Model Outputs for the Evacuation of the Entire EPZ (Region R03)Network-Wide Average 2.3 2.6 2.4 2.7 2.3 2.3 2.6 2.6 2.2 2.5 2.6 2.2 2.8 2.9 Travel Time (Min/Veh-Mi)

Network-Wide Average 25.9 22.8 25.0 22.2 26.6 26.4 23.4 22.7 27.4 24.2 23.3 27.0 21.3 21.0 Speed (mph)Total Vehicles 60,053 60,370 60,289 60,536 50,004 57,336 57,636 57,374 54,673 54,955 54,793 46,615 55,909 60,244 Exiting NetworkII I Donald C. Cook Nuclear Plant Evacuation Time Estimate J-5 KLD Engineering, P.C.Rev. 1 0 Table J-4. Average Speed (mph) and Travel Time (min) for Major Evacuation Routes with the EPZ (Region R03, Scenario 1)1-94 EB I Z3.6 i 71.9 i 19.7 i 44.4 i 32.0 74.8 I 19.0 174.8 I 19.0 1 74.8 I 19.0 1-94 WB 23.6 74.7 19.0 73.6 19.3 74.7 19.0 74.7 19.0 74.7 19.0 US-31 NB 5.5 75.0 4.4 74.5 4.4 75.0 4.4 75.0 4.4 75.0 4.4 US-31 SB 5.5 74.3 4.4 73.1 4 75.0 4.4 75.0 4.4 75.0 4.4 Donald C. Cook Nuclear Plant Evacuation Time Estimate J-6 KLD Engineering, P.C.Rev. 1 Table J-5. Simulation Model Outputs at Network Exit Links for Region R03, Scenario 1 Cumulative Vehicles Discharged by the Indicated TimeýCumýulativue

ýPerceVnt of Vehicles Discharged by the Indicated Time 5 2,781 6,ýý 8,229 8,463 8,490 19 17 1 15 14 14 7 23 25 25 25 36 0.1 0.1 0.1 0.0 0.0 215 4,046 8,092 11,179 12,076 12,143 27 20 20 20 20 237 1,478 5,639 6,824 7,104 7,144 10 14 12 12 12 393 1,217 1,573 1,670 1,683 251 3 3 3 3 3 49 258 292 298 300 513 0.3 1 1 1 1 702 1,162 2,733 4,328 5,364 5,417 8 7 8 9 9 538 1,291 1,504 1,584 1,592 899 4 3 3 3 3 54 215 299 311 314 934 0.4 1 1 1 1 241 660 837 886 894 945 2 2 2 1 1 105 1,072 1,998 2,187 2,190 1007 1 3 4 4 4 13 77 96 100 102 1071 0.1 0.2 0.2 0.2 0.2 252 866 969 994 1,000 1072 2 2 2 2 2 56 1,505 2,857 2,907 2,913 1206 0.4 4 5 5 5 1304 3,029 6,913 9,737 10,994 11,020 21 17 18 18 18 75 756 1,543 1,564 1,565 1407 1 2 3 3 3 455 1,761 2,963 3,046 3,049 1414 3 4 5 5 5 Donald C. Cook Nuclear Plant Evacuation Time Estimate J-7 KLD Engineering, P.C.Rev. 1 Cumulative Vehicles Discharged by the Indicated Time Cumulative Percent of Vehicles Discharged by the Indicated Time 1430 13 1 94 1 178 184 184 0.1 1 0.2 1 0.3 0.3 0.3 19 19 1 28 1 29 1 29 0.1 1 0.1 0.1 0.1 0.1 Donald C. Cook Nuclear Plant Evacuation Time Estimate J-8 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Summer, Midweek, Midday, Good (Scenario 1)-Trip Generation

-ETE 100%.u 80%N 60%0 I-' 40%20%0.0%0 30 60 90 120 150 180 210 240 270 300 330 Elapsed Time (min)Figure J-1. ETE and Trip Generation:

Summer, Midweek, Midday, Good Weather (Scenario 1)ETE and Trip Generation Summer, Midweek, Midday, Rain (Scenario 2)-Trip Generation -ETE 100%80%60%0 I.-.40%C 20%0% ' ' '0 30 60 90 120 150 180 210 240 270 300 330 Elapsed Time (min)Figure J-2. ETE and Trip Generation:

Summer, Midweek, Midday, Rain (Scenario 2)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-9 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Summer, Weekend, Midday, Good (Scenario 3)-Trip Generation

-ETE 100%80%>M 60%4-0', 40%20%0.0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-3. ETE and Trip Generation:

Summer, Weekend, Midday, Good Weather (Scenario 3)ETE and Trip Generation Summer, Weekend, Midday, Rain (Scenario 4)-Trip Generation -ETE 100%80%:E M 60%4-*6 40%C 20%a.0%0 30 60 90 120 150 180 Elapsed Time (min)210 240 270 300 Figure J-4. ETE and Trip Generation:

Summer, Weekend, Midday, Rain (Scenario 4)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-10 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Summer, Midweek, Weekend, Evening, Good (Scenario 5)-Trip Generation -ETE U 4.0 0 4-.C W, U 100%80%60%40%20%0%ZOZO'Oý/I 0 30 60 90 120 150 180 Elapsed Time (min)210 240 270 300 Figure J-5. ETE and Trip Generation:

Summer, Midweek, Weekend, Evening, Good Weather (Scenario 5)ETE and Trip Generation Winter, Midweek, Midday, Good (Scenario 6)-Trip Generation -ETE 100%.80%-60%0 I-0 40%20%a,, a.0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-6. ETE and Trip Generation:

Winter, Midweek, Midday, Good Weather (Scenario 6)i-li KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate J-11 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Winter, Midweek, Midday, Rain (Scenario 7)-Trip Generation

-ETE 100%80%j 60%0 I-w 40%4-.C20%a.0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-7. ETE and Trip Generation:

Winter, Midweek, Midday, Rain (Scenario 7)ETE and Trip Generation Winter, Midweek, Midday, Snow (Scenario 8)-Trip Generation mETE 100%4A 80%:, 60%0 I-*0 40%20%0%0%_.Oeý30 60 90 120 150 180 210 240 270 300 330 360 Elapsed Time (min)Figure J-8. ETE and Trip Generation:

Winter, Midweek, Midday, Snow (Scenario 8)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-12 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Winter, Weekend, Midday, Good (Scenario 9)-Trip Generation

-ETE 100%80%M 60%4%0 0 40%S20%0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-9. ETE and Trip Generation:

Winter, Weekend, Midday, Good Weather (Scenario 9)ETE and Trip Generation Winter, Weekend, Midday, Rain (Scenario 10)-Trip Generation 1ETE 100%IA80%o 60%4-0 40%20%E0.0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-10. ETE and Trip Generation:

Winter, Weekend, Midday, Rain (Scenario 10)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-13 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Winter, Weekend, Midday, Snow (Scenario 11)-Trip Generation -mETE 100%80%60%0 0 40%4-20%0%0 30 60 90 120 150 180 210 240 270 300 330 Elapsed Time (min)Figure J-11. ETE and Trip Generation:

Winter, Weekend, Midday, Snow (Scenario 11)ETE and Trip Generation Winter, Midweek, Weekend, Evening, Good (Scenario 12)-Trip Generation

-ETE 100%280%:E 60%0 40%20%a'0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-12. ETE and Trip Generation:

Winter, Midweek, Weekend, Evening, Good Weather (Scenario 12)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-14 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Summer, Midweek, Weekend, Evening, Good, Special Event (Scenario 13)-Trip Generation -ETE 100%4A"J 80%:E 3 60%0 40%20%0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-13. ETE and Trip Generation:

Summer, Weekend, Evening, Good Weather, Special Event (Scenario 13)ETE and Trip Generation Summer, Midweek, Midday, Good, Roadway Impact (Scenario 14)-Trip Generation lETE 100%' 80%60%0 0 40%20%a.0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-14. ETE and Trip Generation:

Summer, Midweek, Midday, Good Weather, Roadway Impact (Scenario 14)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-15 KLD Engineering, P.C.Rev. 1 APPENDIX K Evacuation Roadway Network K. EVACUATION ROADWAY NETWORK As discussed in Section 1.3, a link-node analysis network was constructed to model the roadway network within the study area. Figure K-1 provides an overview of the link-node analysis network. The figure has been divided up into 35 more detailed figures (Figure K-2 through Figure K-36) which show each of the links and nodes in the network.The analysis network was calibrated using the observations made during the field survey conducted in May 2011. Table K-1 lists the characteristics of each roadway section modeled in the ETE analysis.

Each link is identified by its road name and the upstream and downstream node numbers. The geographic location of each link can be observed by referencing the grid map number provided in Table K-1.The term, "No. of Lanes" in Table K-1 identifies the number of lanes that extend throughout the length of the link. Many links have additional lanes on the immediate approach to an intersection (turn pockets);

these have been recorded and entered into the input stream for the DYNEV II System.As discussed in Section 1.3, lane width and shoulder width were not physically measured during the road survey. Rather, estimates of these measures were based on visual observations and recorded images.Table K-2 identifies each node in the network that is controlled and the type of control (stop sign, yield sign, pre-timed signal, actuated signal, traffic control point) at that node.Uncontrolled nodes are not included in Table K-2.K-i KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-1 KLD Engineering, P.C.Rev. 1 Figure K-1. D.C. Cook Link-Node Analysis Network K-2 KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-2 KLD Engineering, P.C.Rev. 1 Figure K-2. Link-Node Analysis Network -Grid 1 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-3 KLD Engineering, P.C.Rev. 1 Figure K-3. Link-Node Analysis Network -Grid 2 K-4 KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-4 KLD Engineering, P.C.Rev. 1 44J Donald C. Cook Evacuation Time Estimate Unk-Node Analysis Network Figures 4. I Grid 3 o o 03 I Figure K-4. Unk-Node Analysis Network -Grid 3 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-5 KLD Engineering, P.C.Rev. 1 Donald C. Cook Evacuation Time Estimate Link-Node Analysis Network Figures Figure K-S. Link-Node Analysis Network -Grid 4 K-6 KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-6 KLD Engineering, P.C.Rev. 1 Figure K-6. Link-Node Analysis Network -Grid 5 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-7 KLD Engineering, P.C.Rev. 1 m\ 4 I?V 35 I---- 116-- -S, 43332 E ~4A aodA,-'461=~ _____BMW, MA 01--e a//z 132'434 St 398 lld-tl.ý Ct, G, y St oil 396 W Far.1k, A 747 1.1 ------- -------Rd a 11 204 .1 ý_772 Z5 Fisk Rd L H-A-T__bele T 1 -4 JnJI I 7ý" ay~ej2kSt )aid C. Cook Evacuation Time Estimate ink-Node Analysis Network Figures Lepnd DCCNP ý",, AShadow Region* Node 2, 5, 10, 15 Mile Rings.-- Unk Water FAA []index Grid Don U 0 0.25 55 5U~Grid 6.1 U ~--~m, J Figure K-7. Link-Node Analysis Network -Grid 6 K-S KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-8 KLD Engineering, P.C.Rev. 1 r R 3, i r ~~ IJ Hal St. 3_-'EH(~, Stt A.A S~hWý ,ý350~ E~veh'e St Co, Ii B~ Stoav ded,.Estev, AvefJ350&adfrd ~ and2 HempbR~ ~ -aywdD8 7496 LI __~_ __ 0 E4f- A" ~i A'-~Ave C'.4[L Legend Donald C. Cook Evacuation Time Estimate DOCCNP I Shadow Region Unk-Node Analysis Network Figures* Node 2, 5, 10, 15 Mile Rings U Unki Water Grid 7 PA PM [7. Index Grid o .. .a es Figure K-8. Link-Node Analysis Network -Grid 7 K-9 KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-9 KLD Engineering, P.C.Rev. 1 Figure K-9. Link-Node Analysis Network -Grid 8 K-b KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-10 KLD Engineering, P.C.Rev. 1 Figure K-10. Link-Node Analysis Network -Grid 9 K-li KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-11 KLD Engineering, P.C.Rev. I Figure K-11. Link-Node Analysis Network -Grid 10 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-12 KLD Engineering, P.C.Rev. 1 Patht I Frank 64 x ....-- .L.~~W Ol.d 174 z St A & P ath Pt. .. ..I Rdge p i 4i' 1 ....4 " --......-T Woakam. Low--&-- -T, Dun It Ai ur K- .in -o e Analysi N o72 9/D adCuCoivc Taio TmeEsamt Pode J_ 11Ri0 G~d P.I ink .W. ater 025 rd Figures Alpine LikNoeA alss-ew rk--rd 0 KID Egineerigne.C Donal C., CokNcCalatK Evacuation Tim Esimt Rev.

77 W0a~o~d _s 2-"0M~,~R 293 Ti eTe IITc/soR 5------ 13 314 iL]_ Ji___ ___"~n Donald..C..Cook Evcutin im e nEstimate I~~46 83 I ! DCCNP Reio Uink-Node Analysis Network Figures* Node S , 5,0,iSMile~ings

, L--- ink WaterGrd 1ýb PMS --- -nd-- .3d Z____________________________

I Figure K-13. Link-Node Analysis Network -Grid 12 Donald C. Cook Nuclear Plant K-14 KLD Engineering, P.C.Evacuation Time Estimate Rev. 1 Figure K-14. Link-Node Analysis Network -Grid 13 K-15 KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-15 KLD Engineering, P.C.Rev. 1 Figure K-15. Link-Node Analysis Network -Grid 14 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-16 KLD Engineering, P.C.Rev. 1 Figure K-16. Link-Node Analysis Network -Grid 15 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-17 KLD Engineering, P.C.Rev. 1 Figure K-17. Link-Node Analysis Network -Grid 16 Donald C. Cook Nuclear Plant K-18 KLD Engineering, P.C.Evacuation Time Estimate Rev. 1 Figure K-18. Link-Node Analysis Network -Grid 17 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-19 KLD Engineering, P.C.Rev. 1 Figure K-19. Link-Node Analysis Network -Grid 18 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-20 KLD Engineering, P.C.Rev. 1 Figure K-20. Link-Node Analysis Network -Grid 19 K-21 KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-21 KLD Engineering, P.C.Rev. 1 Figure K-21. Link-Node Analysis Network -Grid 20 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-22 KLD Engineering, P.C.Rev. 1 Figure K-22. Link-Node Analysis Network -Grid 21 K-Li-- 1(1 fl Fnain~rifl0.

PC.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-23 Rev. 1 I Figure K-23. Link-Node Analysis Network -Grid 22 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-24 KLD Engineering, P.C.Rev. 1 Figure K-24. link-Node Analysis Network -Grid 23 K-25 KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-25 KLD Engineering, P.C.Rev. I Figure K-25. Link-Node Analysis Network -Grid 24 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-26 KLD Engineering, P.C.Rev. 1 Figure K-26. Link-Node Analysis Network -Grid 25 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-27 KLD Engineering, P.C.Rev. 1 Figure K-27. Link-Node Analysis Network -Grid 26 Donald C. Cook Nuclear Plant K-28 KLD Engineering, P.C.Evacuation Time Estimate Rev. 1 Figure K-28. Link-Node Analysis Network -Grid 27 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-29 KLD Engineering, P.C.Rev. 1 5I er Ml.Rd I P$12___ Maff he, Rd f ~ sp~msRd WdeR Rd~y,-d 1 S/ 11d W4T 81 47 I_____ _13 W~~r~~ml~~~i G53J Rd73 .~{ 74 z E M~o C,-E Elm Valley Rd 47T]1~3 1, `3~if 16 ~ T fs $1 BO tsosli 26 bi l why, L\ I- -Is _J1 A~t Legend Donald C. Cook Evacuation Time Estimate* DCCNP r:i Shadow Region iUnk-Node Analysis Network Figures* Node ' 2, 5, 10, l5 Mile Rings a--p Link water I Grid 28 PAA [T- Index Grid 0 _ 0._ 1,___________

Figure K-29. Link-Node Analysis Network -Grid 28 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-30 KLD Engineering, P.C.Rev. 1 Figure K-30. Link-Node Analysis Network -Grid 29 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-31 KLD Engineering, P.C.Rev. 1 Figure K-31. Link-Node Analysis Network -Grid 30 K-32 KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-32 KLD Engineering, P.C.Rev. I Figure K-32. Link-Node Analysis Network -Grid 31 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-33 KLD Engineering, P.C.Rev. 1 Figure K-33. Link-Node Analysis Network -Grid 32 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-34 KLD Engineering, P.C.Rev. 1 Figure K-34. Link-Node Analysis Network -Grid 33 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-35 KLD Engineering, P.C.Rev. 1 Figure K-35. Link-Node Analysis Network -Grid 34 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-36 KLD Engineering, P.C.Rev. 1 Figure K-36. Link-Node Analysis Network -Grid 35 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-37 KLD Engineering, P.C.Rev. 1