Similar Documents at Cook |
---|
Category:Report
MONTHYEARML24183A0162024-07-25025 July 2024 Review of Reactor Vessel Material Surveillance Program Capsule W Technical Report AEP-NRC-2024-45, Report Per Technical Specification 5.6.6 for Inoperability of Post Accident Monitoring Neutron Flux Monitoring2024-06-13013 June 2024 Report Per Technical Specification 5.6.6 for Inoperability of Post Accident Monitoring Neutron Flux Monitoring ML24159A2702024-05-30030 May 2024 R1900-0024-001, Rev. 16, NFPA 805 Nuclear Safety Capability Assessment AEP-NRC-2022-66, Report Per Technical Specification 5.6.6 for Inoperability of Unit 2 Post Accident Monitoring Neutron Flux Monitoring2022-12-15015 December 2022 Report Per Technical Specification 5.6.6 for Inoperability of Unit 2 Post Accident Monitoring Neutron Flux Monitoring AEP-NRC-2022-46, Notification of Deviation from Electric Power Research Institute (EPRI) Materials Reliability Program 2019-008, Interim Guidance for NEI 03-08 Needed Requirements for Us PWR Plants for Management of Thermal Fatigue in2022-12-12012 December 2022 Notification of Deviation from Electric Power Research Institute (EPRI) Materials Reliability Program 2019-008, Interim Guidance for NEI 03-08 Needed Requirements for Us PWR Plants for Management of Thermal Fatigue in ML22340A1992022-11-30030 November 2022 Report of Changes, Tests, Experiments Pursuant to 10 CFR 50.59(d)(2) ML22340A2132022-11-30030 November 2022 R1900-0024-001, Revision 13, NFPA 805 Nuclear Safety Capability Assessment ML22340A1762022-11-30030 November 2022 Commitment Change Summary October 2020 to May 2022 AEP-NRC-2022-58, U1C31 Steam Generator Tube Inspection Report2022-10-24024 October 2022 U1C31 Steam Generator Tube Inspection Report AEP-NRC-2021-44, Form OAR-1, Owner'S Activity Report2021-08-12012 August 2021 Form OAR-1, Owner'S Activity Report ML21125A5582021-04-19019 April 2021 Report 2019, Commitment Change Summary, May 2019 to October 2020 ML21125A5392021-04-19019 April 2021 Report of Changes, Tests, Experiments Pursuant to 10 CFR 50.59(d)(2), Boration System Functionality Requirement Change in Mode 4 EA-21-024, Notice of Enforcement Discretion2021-03-0404 March 2021 Notice of Enforcement Discretion for Donald C. Cook Nuclear Plant, Units 1 and 2 AEP-NRC-2021-07, Supplement to Report Per Technical Specification 5.6.6, Lnoperability of Unit 1, Post Accident Monitoring, Containment Water Level2021-01-28028 January 2021 Supplement to Report Per Technical Specification 5.6.6, Lnoperability of Unit 1, Post Accident Monitoring, Containment Water Level AEP-NRC-2020-28, CFR 72.48(d)(2) Summary Report of Completed Changes, Tests, and Experiments 1O CFR 72.48 Evaluations2020-05-0606 May 2020 CFR 72.48(d)(2) Summary Report of Completed Changes, Tests, and Experiments 1O CFR 72.48 Evaluations AEP-NRC-2020-23, Request for Use of Encoded Phased Array Ultrasonic Examination Techniques in Lieu of Radiography2020-04-30030 April 2020 Request for Use of Encoded Phased Array Ultrasonic Examination Techniques in Lieu of Radiography ML20108E9992020-03-0505 March 2020 Enclosure 7 - LTR-SCS-19-50, Revision 0, D.C. Cook Unit 1 Low Temperature Overpressure Protection System (Ltops) Analysis for 48 EFPY, Dated March 5, 2020, Attachment 2 Only (Non-Proprietary) ML20108F0002020-02-28028 February 2020 Enclosure 5 - WCAP-18455-NP, Revision 1, D.C. Cook Unit 1 Heatup and Cooldown Limit Curves for Normal Operation, Westinghouse Electric Company, February 2020. (Non-Proprietary) ML18274A0952018-09-30030 September 2018 WCAP-18394-NP, Revision 1, Fatigue Crack Growth Evaluations of D. C. Cook Units 1 and 2 RHR, Accumulator, and Safety Injection Lines Supporting Expanded Scope Leak-Before-Break, September 2018 (Non-Proprietary) ML18334A2712018-09-30030 September 2018 WCAP-18394-NP, Revision 1, Fatigue Crack Growth Evaluations of D.C. Cook, Units 1 and 2 RHR, Accumulator, and Safety Injection Lines Supporting Expanded Scope Leak-Before-Break. AEP-NRC-2018-36, Notification of Initial Renewable Operating Permit2018-05-0909 May 2018 Notification of Initial Renewable Operating Permit AEP-NRC-2018-21, 30-Day Report of Changes to or Errors in an Evaluation Model2018-05-0404 May 2018 30-Day Report of Changes to or Errors in an Evaluation Model ML18026A8822018-02-0505 February 2018 Staff Assessment of Flooding Focused Evaluation ML18334A2702018-01-31031 January 2018 WCAP-18309-NP, Revision 0, Technical Justification for Eliminating Safety Injection Line Rupture as the Structural Design Basis for D.C. Cook, Units 1 and 2, Using Leak-Before-Break Methodology. ML18334A2692018-01-31031 January 2018 WCAP-18302-NP, Revision 0, Technical Justification for Eliminating Residual Heat Removal Line Rupture as the Structural Design Basis for D.C. Cook Units 1 and 2, Using Leak-Before-Break Methodology. ML18334A2682018-01-31031 January 2018 WCAP-18295-NP, Revision 0, Technical Justification for Eliminating Accumulator Line Rupture as the Structural Design Basis for D.C. Cook Units 1 and 2, Using Leak-Before-Break Methodology (Non-Proprietary) ML17151A9672017-06-14014 June 2017 Flood Hazard Mitigation Strategies Assessment ML16313A1172016-10-10010 October 2016 1BTl1V001-RPT-01, Donald C. Cook Focused Scope Peer Review - Pre-Initiator Human Reliability Analysis. ML16127A3352016-05-0606 May 2016 Reactor Oversight Process Task Force FAQ Log-April 13, 2016 ML16113A1982016-04-20020 April 2016 Precursor Screening Analysis- Reject ML16169A1182016-03-31031 March 2016 RWA-1313-015, Rev. 1, AST Radiological Analysis Technical Report. ML15308A0932015-10-15015 October 2015 Pressurized Water Reactor Owners Group (Pwrog), 15066-NP, Revision 1, Responses to Follow-Up NRC RAI 2 on the D.C. Cook, Units 1 and 2, Reactor Internals Aging Management Program. AEP-NRC-2015-83, Revision 1 of Final Integrated Plan Regarding March 12, 2012, NRC Order Regarding Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049)2015-10-0101 October 2015 Revision 1 of Final Integrated Plan Regarding March 12, 2012, NRC Order Regarding Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049) ML15233A0242015-08-19019 August 2015 Transmittal of Annual Report of Loss-of-Coolant Accident Evaluation Model Changes ML14253A3172014-09-0404 September 2014 Enclosure 2: I&M CAP Document AR 2010-1804-10, Root Cause Evaluation Attachment, Rx Vessel Core Support Lug Bolting Anomalies ML14147A3292014-06-18018 June 2014 Staff Assessment of the Flooding Walkdown Report Supporting Implementation of Near-Term Task Force Recommendation 2.3 Related to the Fukushima Dai-ichi Nuclear Power Plant Accident ML14181A5382014-06-0505 June 2014 Enclosure 5 to AEP-NRC-2014-42, Attachment #2 (NP-Attachment) of Westinghouse Letter, LTR-PL-14-22, Westinghouse Responses to NRC, Request for Additional Information on the Application for Amendment to Restore.. ML14073A7592014-03-31031 March 2014 Staff Assessment of the Seismic Walkdown Report Supporting Implementation of Near-Term Task Force Recommendation 2.3 Related to the Fukushima Dai-Ichi Nuclear Power Plant Accident ML14092A3302014-03-17017 March 2014 Document No. 13Q3208-RPT-003, Revion 1, Seismic Hazard and Screening Report for the Cook Nuclear Plant (Cnp), Enclosure 2 to AEP-NRC-2014-25 AEP-NRC-2014-15, 30 Day Report of Changes to or Errors in an Evaluation Model2014-02-27027 February 2014 30 Day Report of Changes to or Errors in an Evaluation Model ML13337A3252014-01-24024 January 2014 Interim Staff Evaluation and Audit Report Relating to Overall Integrated Plan in Response to Order EA-12-049 (Mitigation Strategies) AEP-NRC-2014-08, SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page D-322 Through Page D-4042014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page D-322 Through Page D-404 ML14035A3632014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page C-845 Through Page C-962 ML14035A3682014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page D-241 Through Page D-321 ML14035A3672014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page D-170 Through Page D-240 ML14035A3662014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page D-92 Through Page D-169 ML14035A3642014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page D-1 Through Page D-91 ML14035A3522014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Cover Through Page B-312 ML14035A3532014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page C-1 Through Page C-114 ML14035A3552014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page D-405 Through End 2024-07-25
[Table view] Category:Technical
MONTHYEARML24159A2702024-05-30030 May 2024 R1900-0024-001, Rev. 16, NFPA 805 Nuclear Safety Capability Assessment AEP-NRC-2022-66, Report Per Technical Specification 5.6.6 for Inoperability of Unit 2 Post Accident Monitoring Neutron Flux Monitoring2022-12-15015 December 2022 Report Per Technical Specification 5.6.6 for Inoperability of Unit 2 Post Accident Monitoring Neutron Flux Monitoring ML22340A2132022-11-30030 November 2022 R1900-0024-001, Revision 13, NFPA 805 Nuclear Safety Capability Assessment ML22340A1992022-11-30030 November 2022 Report of Changes, Tests, Experiments Pursuant to 10 CFR 50.59(d)(2) ML22340A1762022-11-30030 November 2022 Commitment Change Summary October 2020 to May 2022 AEP-NRC-2022-58, U1C31 Steam Generator Tube Inspection Report2022-10-24024 October 2022 U1C31 Steam Generator Tube Inspection Report AEP-NRC-2021-07, Supplement to Report Per Technical Specification 5.6.6, Lnoperability of Unit 1, Post Accident Monitoring, Containment Water Level2021-01-28028 January 2021 Supplement to Report Per Technical Specification 5.6.6, Lnoperability of Unit 1, Post Accident Monitoring, Containment Water Level AEP-NRC-2020-23, Request for Use of Encoded Phased Array Ultrasonic Examination Techniques in Lieu of Radiography2020-04-30030 April 2020 Request for Use of Encoded Phased Array Ultrasonic Examination Techniques in Lieu of Radiography ML20108E9992020-03-0505 March 2020 Enclosure 7 - LTR-SCS-19-50, Revision 0, D.C. Cook Unit 1 Low Temperature Overpressure Protection System (Ltops) Analysis for 48 EFPY, Dated March 5, 2020, Attachment 2 Only (Non-Proprietary) ML20108F0002020-02-28028 February 2020 Enclosure 5 - WCAP-18455-NP, Revision 1, D.C. Cook Unit 1 Heatup and Cooldown Limit Curves for Normal Operation, Westinghouse Electric Company, February 2020. (Non-Proprietary) ML18334A2712018-09-30030 September 2018 WCAP-18394-NP, Revision 1, Fatigue Crack Growth Evaluations of D.C. Cook, Units 1 and 2 RHR, Accumulator, and Safety Injection Lines Supporting Expanded Scope Leak-Before-Break. ML18274A0952018-09-30030 September 2018 WCAP-18394-NP, Revision 1, Fatigue Crack Growth Evaluations of D. C. Cook Units 1 and 2 RHR, Accumulator, and Safety Injection Lines Supporting Expanded Scope Leak-Before-Break, September 2018 (Non-Proprietary) ML18334A2692018-01-31031 January 2018 WCAP-18302-NP, Revision 0, Technical Justification for Eliminating Residual Heat Removal Line Rupture as the Structural Design Basis for D.C. Cook Units 1 and 2, Using Leak-Before-Break Methodology. ML18334A2682018-01-31031 January 2018 WCAP-18295-NP, Revision 0, Technical Justification for Eliminating Accumulator Line Rupture as the Structural Design Basis for D.C. Cook Units 1 and 2, Using Leak-Before-Break Methodology (Non-Proprietary) ML18334A2702018-01-31031 January 2018 WCAP-18309-NP, Revision 0, Technical Justification for Eliminating Safety Injection Line Rupture as the Structural Design Basis for D.C. Cook, Units 1 and 2, Using Leak-Before-Break Methodology. ML16313A1172016-10-10010 October 2016 1BTl1V001-RPT-01, Donald C. Cook Focused Scope Peer Review - Pre-Initiator Human Reliability Analysis. ML16169A1182016-03-31031 March 2016 RWA-1313-015, Rev. 1, AST Radiological Analysis Technical Report. ML15308A0932015-10-15015 October 2015 Pressurized Water Reactor Owners Group (Pwrog), 15066-NP, Revision 1, Responses to Follow-Up NRC RAI 2 on the D.C. Cook, Units 1 and 2, Reactor Internals Aging Management Program. ML14253A3172014-09-0404 September 2014 Enclosure 2: I&M CAP Document AR 2010-1804-10, Root Cause Evaluation Attachment, Rx Vessel Core Support Lug Bolting Anomalies ML14147A3292014-06-18018 June 2014 Staff Assessment of the Flooding Walkdown Report Supporting Implementation of Near-Term Task Force Recommendation 2.3 Related to the Fukushima Dai-ichi Nuclear Power Plant Accident ML14092A3302014-03-17017 March 2014 Document No. 13Q3208-RPT-003, Revion 1, Seismic Hazard and Screening Report for the Cook Nuclear Plant (Cnp), Enclosure 2 to AEP-NRC-2014-25 ML13337A3252014-01-24024 January 2014 Interim Staff Evaluation and Audit Report Relating to Overall Integrated Plan in Response to Order EA-12-049 (Mitigation Strategies) ML14035A3632014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page C-845 Through Page C-962 AEP-NRC-2014-08, SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page D-322 Through Page D-4042014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page D-322 Through Page D-404 ML14035A3682014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page D-241 Through Page D-321 ML14035A3672014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page D-170 Through Page D-240 ML14035A3662014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page D-92 Through Page D-169 ML14035A3642014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page D-1 Through Page D-91 ML14035A3562014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page C-115 Through Page C-231 ML14035A3572014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page C-232 Through Page C-353 ML14035A3552014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page D-405 Through End ML14035A3592014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page C-354 Through Page C-468 ML14035A3602014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page C-469 Through Page C-583 ML14035A3612014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page C-584 Through Page C-722 ML14035A3532014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page C-1 Through Page C-114 ML14035A3522014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Cover Through Page B-312 ML14035A3622014-01-13013 January 2014 SD-121023-001, Rev. 2, in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the D. C. Cook Unit 1 and 2, Page C-723 Through Page C-844 ML13357A3252014-01-10010 January 2014 Mega-Tech Services, LLC, Technical Evaluation Report Regarding the Overall Integrated Plan for Donald C. Cook Nuclear Plant, Units 1 and 2, TAC Nos.: MF0766 and MF0767 AEP-NRC-2014-59, Enclosure 3: Babcock & Wilcox Report, S-1473-002, Revision 0, Examination of Clevis Bolts Removed from D. C. Cook Nuclear Plant. Part 3 of 32013-12-31031 December 2013 Enclosure 3: Babcock & Wilcox Report, S-1473-002, Revision 0, Examination of Clevis Bolts Removed from D. C. Cook Nuclear Plant. Part 3 of 3 ML14253A3182013-12-31031 December 2013 Enclosure 3: Babcock & Wilcox Report, S-1473-002, Revision 0, Examination of Clevis Bolts Removed from D. C. Cook Nuclear Plant. Part 1 of 3 ML14253A3192013-12-31031 December 2013 Enclosure 3: Babcock & Wilcox Report, S-1473-002, Revision 0, Examination of Clevis Bolts Removed from D. C. Cook Nuclear Plant. Part 2 of 3 ML13267A3202013-09-12012 September 2013 SD-121023-001, Rev. 1, Seismic Walkdown Report in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic, Page C-297 Through Page C-396 ML13267A3162013-09-12012 September 2013 SD-121023-001, Rev. 1, Seismic Walkdown Report in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic, Cover Through Page B-312 ML13267A3172013-09-12012 September 2013 SD-121023-001, Rev. 1, Seismic Walkdown Report in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic, Page C-1 Through Page C-98 AEP-NRC-2013-74, SD-121023-001, Rev. 1, Seismic Walkdown Report in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic, Page C-99 Through Page C-1982013-09-12012 September 2013 SD-121023-001, Rev. 1, Seismic Walkdown Report in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic, Page C-99 Through Page C-198 ML13267A3192013-09-12012 September 2013 SD-121023-001, Rev. 1, Seismic Walkdown Report in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic, Page C-199 Through Page C-296 ML13267A3212013-09-12012 September 2013 SD-121023-001, Rev. 1, Seismic Walkdown Report in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic, Page C-397 Through Page C-500 ML13267A3222013-09-12012 September 2013 SD-121023-001, Rev. 1, Seismic Walkdown Report in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic, Page C-501 Through Page C-600 ML13267A3232013-09-12012 September 2013 SD-121023-001, Rev. 1, Seismic Walkdown Report in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic, Page C-601 Through Page C-700 ML13267A3252013-09-12012 September 2013 SD-121023-001, Rev. 1, Seismic Walkdown Report in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic, Page C-801 Through Page C-884 2024-05-30
[Table view] |
Text
APPENDIX J Representative Inputs to and Outputs from the DYNEV II System J. REPRESENTATIVE INPUTS TO AND OUTPUTS FROM THE DYNEV II SYSTEM This appendix presents data input to and output from the DYNEV II System. Table J-1 provides the volume and queues for the ten highest volume signalized intersections in the EPZ for Scenario 1 conditions in Region R03. Refer to Table K-2 and the figures in Appendix K for a map showing the geographic location of each intersection.
Table J-2 provides source (vehicle loading) and destination information for five roadway segments (links) in the analysis network for Scenario 1 conditions in Region R03. Refer to Table K-1 and the figures in Appendix K for a map showing the geographic location of each link.Table J-3 provides network-wide statistics (average travel time, average speed and number of vehicles) for an evacuation of the entire EPZ (Region R03) for each scenario.
As expected, rain and snow scenarios, exhibit slower average speeds and longer average travel times.Table J-4 provides statistics (average speed and travel time) for the major evacuation routes -Interstate-94 and US-31 -for an evacuation of the entire EPZ (Region R03) under Scenario 1 conditions.
As discussed in Section 7.3 and shown in Figures 7-3 through 7-8, 1-94 eastbound is congested for the first 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> and 30 minutes of the evacuation.
As such, the average speeds are comparably slower (and travel times longer) than 1-94 westbound and US-31.Table J-5 provides the number of vehicles discharged and the cumulative percent of total vehicles discharged for each link exiting the analysis network, for an evacuation of the entire EPZ (Region R03) under Scenario 1 conditions.
Refer to Table K-1 and the figures in Appendix K for a map showing the geographic location of each link.Figure J-1 through Figure J-14 plot the trip generation time versus the ETE for each of the 14 Scenarios considered.
The distance between the trip generation and ETE curves is the average travel time. Plots of trip generation versus ETE are indicative of the level of traffic congestion during evacuation.
For low population density sites, the curves are close together, indicating short travel times and minimal traffic congestion.
For higher population density sites, the curves are farther apart indicating longer travel times and the presence of traffic congestion.
As seen in Figure J-1 through Figure J-14, the curves are spatially separated as a result of the traffic congestion in the EPZ, which was discussed in detail in Section 7.3.Donald C. Cook Nuclear Plant J-1 KILD Engineering, P.C.Evacuation Time Estimate Rev. 1 Table J-1. Characteristics of the Ten Highest Volume Signalized Intersections AOMax.Aproc Total Tur Inerecio (u Voum Queu 337 6,890 196 391 SR 63 & Broad St Actuated 405 666 22 810 0 0 TOTAL 7,556 430 2,796 25 337 SR 63 & Main St Actuated 427 4,127 13 TOTAL 6,923 -531 6,377 483 538 0 0 533 SR 63 & Klock Rd Actuated 537 51 1 TOTAL 6,428 -830 6,312 97 804 0 0 343 SR 63 & Port St Actuated 537 43 1 TOTAL 6,355 -291 3,367 29 E Napier Ave & Actuated 283 0 0 Pipestone St 287 1,552 24 TOTAL 4,919 -748 77 0 277 SR 139 & E Napier Actuated 284 4,660 0 Ave 292 0 0 TOTAL 4,737 -462 3,061 159 829 1,642 152 828 SR 63 & Botham Ave Actuated 827 0 0 TOTAL 4,703 -294 3,997 91 403 0 0 285 Colfax Ave & W Actuated 286 330 9 Napier Ave 335 166 1 TOTAL 4,493 -Donald C. Cook Nuclear Plant Evacuation Time Estimate J-2 KLD Engineering, P.C.Rev. 1 Nod Loato Coto Noe 0Vh (V 162 901 224 163 1-94 on/off Ramp & E Napier Ave Actuated 282 0 0 280 3,512 41 335 70 1 TOTAL 4,483 403 3,079 63 277 0 0 284 E Napier Ave & Union Actuated 279 497 9 St 385 838 23 TOTAL 4,484 Donald C. Cook Nuclear Plant Evacuation Time Estimate J-3 KLD Engineering, P.C.Rev. 1 Table J-2. Sample Simulation Model Input Veicle Entering .0 8UU3 b,/5U 343 194 S 8035 3,396 8059 1,698 8689 1,698 1077 153 NE 8116 4,500 8062 4,500 8689 1,698 130 171 NE 8116 4,500 8062 4,500 8026 1,698 779 59 NE 8099 1,698 8116 4,500 8689 1,698 983 300 NE 8116 4,500 8062 4,500 857 244 E 8016 4,500 246 4 E 8025 1,698 8026 1,698 693 27 NE 8099 1,698 8055 1,698 8026 1,698 822 9 NE 8099 1,698 8868 1,572 8003 6,750 1068 10 SW 8033 3,810 8035 3,396 Donald C. Cook Nuclear Plant Evacuation Time Estimate J-4 KLD Engineering, P.C.Rev. 1 Table J-3. Selected Model Outputs for the Evacuation of the Entire EPZ (Region R03)Network-Wide Average 2.3 2.6 2.4 2.7 2.3 2.3 2.6 2.6 2.2 2.5 2.6 2.2 2.8 2.9 Travel Time (Min/Veh-Mi)
Network-Wide Average 25.9 22.8 25.0 22.2 26.6 26.4 23.4 22.7 27.4 24.2 23.3 27.0 21.3 21.0 Speed (mph)Total Vehicles 60,053 60,370 60,289 60,536 50,004 57,336 57,636 57,374 54,673 54,955 54,793 46,615 55,909 60,244 Exiting NetworkII I Donald C. Cook Nuclear Plant Evacuation Time Estimate J-5 KLD Engineering, P.C.Rev. 1 0 Table J-4. Average Speed (mph) and Travel Time (min) for Major Evacuation Routes with the EPZ (Region R03, Scenario 1)1-94 EB I Z3.6 i 71.9 i 19.7 i 44.4 i 32.0 74.8 I 19.0 174.8 I 19.0 1 74.8 I 19.0 1-94 WB 23.6 74.7 19.0 73.6 19.3 74.7 19.0 74.7 19.0 74.7 19.0 US-31 NB 5.5 75.0 4.4 74.5 4.4 75.0 4.4 75.0 4.4 75.0 4.4 US-31 SB 5.5 74.3 4.4 73.1 4 75.0 4.4 75.0 4.4 75.0 4.4 Donald C. Cook Nuclear Plant Evacuation Time Estimate J-6 KLD Engineering, P.C.Rev. 1 Table J-5. Simulation Model Outputs at Network Exit Links for Region R03, Scenario 1 Cumulative Vehicles Discharged by the Indicated TimeýCumýulativue
ýPerceVnt of Vehicles Discharged by the Indicated Time 5 2,781 6,ýý 8,229 8,463 8,490 19 17 1 15 14 14 7 23 25 25 25 36 0.1 0.1 0.1 0.0 0.0 215 4,046 8,092 11,179 12,076 12,143 27 20 20 20 20 237 1,478 5,639 6,824 7,104 7,144 10 14 12 12 12 393 1,217 1,573 1,670 1,683 251 3 3 3 3 3 49 258 292 298 300 513 0.3 1 1 1 1 702 1,162 2,733 4,328 5,364 5,417 8 7 8 9 9 538 1,291 1,504 1,584 1,592 899 4 3 3 3 3 54 215 299 311 314 934 0.4 1 1 1 1 241 660 837 886 894 945 2 2 2 1 1 105 1,072 1,998 2,187 2,190 1007 1 3 4 4 4 13 77 96 100 102 1071 0.1 0.2 0.2 0.2 0.2 252 866 969 994 1,000 1072 2 2 2 2 2 56 1,505 2,857 2,907 2,913 1206 0.4 4 5 5 5 1304 3,029 6,913 9,737 10,994 11,020 21 17 18 18 18 75 756 1,543 1,564 1,565 1407 1 2 3 3 3 455 1,761 2,963 3,046 3,049 1414 3 4 5 5 5 Donald C. Cook Nuclear Plant Evacuation Time Estimate J-7 KLD Engineering, P.C.Rev. 1 Cumulative Vehicles Discharged by the Indicated Time Cumulative Percent of Vehicles Discharged by the Indicated Time 1430 13 1 94 1 178 184 184 0.1 1 0.2 1 0.3 0.3 0.3 19 19 1 28 1 29 1 29 0.1 1 0.1 0.1 0.1 0.1 Donald C. Cook Nuclear Plant Evacuation Time Estimate J-8 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Summer, Midweek, Midday, Good (Scenario 1)-Trip Generation
-ETE 100%.u 80%N 60%0 I-' 40%20%0.0%0 30 60 90 120 150 180 210 240 270 300 330 Elapsed Time (min)Figure J-1. ETE and Trip Generation:
Summer, Midweek, Midday, Good Weather (Scenario 1)ETE and Trip Generation Summer, Midweek, Midday, Rain (Scenario 2)-Trip Generation -ETE 100%80%60%0 I.-.40%C 20%0% ' ' '0 30 60 90 120 150 180 210 240 270 300 330 Elapsed Time (min)Figure J-2. ETE and Trip Generation:
Summer, Midweek, Midday, Rain (Scenario 2)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-9 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Summer, Weekend, Midday, Good (Scenario 3)-Trip Generation
-ETE 100%80%>M 60%4-0', 40%20%0.0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-3. ETE and Trip Generation:
Summer, Weekend, Midday, Good Weather (Scenario 3)ETE and Trip Generation Summer, Weekend, Midday, Rain (Scenario 4)-Trip Generation -ETE 100%80%:E M 60%4-*6 40%C 20%a.0%0 30 60 90 120 150 180 Elapsed Time (min)210 240 270 300 Figure J-4. ETE and Trip Generation:
Summer, Weekend, Midday, Rain (Scenario 4)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-10 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Summer, Midweek, Weekend, Evening, Good (Scenario 5)-Trip Generation -ETE U 4.0 0 4-.C W, U 100%80%60%40%20%0%ZOZO'Oý/I 0 30 60 90 120 150 180 Elapsed Time (min)210 240 270 300 Figure J-5. ETE and Trip Generation:
Summer, Midweek, Weekend, Evening, Good Weather (Scenario 5)ETE and Trip Generation Winter, Midweek, Midday, Good (Scenario 6)-Trip Generation -ETE 100%.80%-60%0 I-0 40%20%a,, a.0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-6. ETE and Trip Generation:
Winter, Midweek, Midday, Good Weather (Scenario 6)i-li KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate J-11 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Winter, Midweek, Midday, Rain (Scenario 7)-Trip Generation
-ETE 100%80%j 60%0 I-w 40%4-.C20%a.0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-7. ETE and Trip Generation:
Winter, Midweek, Midday, Rain (Scenario 7)ETE and Trip Generation Winter, Midweek, Midday, Snow (Scenario 8)-Trip Generation mETE 100%4A 80%:, 60%0 I-*0 40%20%0%0%_.Oeý30 60 90 120 150 180 210 240 270 300 330 360 Elapsed Time (min)Figure J-8. ETE and Trip Generation:
Winter, Midweek, Midday, Snow (Scenario 8)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-12 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Winter, Weekend, Midday, Good (Scenario 9)-Trip Generation
-ETE 100%80%M 60%4%0 0 40%S20%0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-9. ETE and Trip Generation:
Winter, Weekend, Midday, Good Weather (Scenario 9)ETE and Trip Generation Winter, Weekend, Midday, Rain (Scenario 10)-Trip Generation 1ETE 100%IA80%o 60%4-0 40%20%E0.0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-10. ETE and Trip Generation:
Winter, Weekend, Midday, Rain (Scenario 10)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-13 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Winter, Weekend, Midday, Snow (Scenario 11)-Trip Generation -mETE 100%80%60%0 0 40%4-20%0%0 30 60 90 120 150 180 210 240 270 300 330 Elapsed Time (min)Figure J-11. ETE and Trip Generation:
Winter, Weekend, Midday, Snow (Scenario 11)ETE and Trip Generation Winter, Midweek, Weekend, Evening, Good (Scenario 12)-Trip Generation
-ETE 100%280%:E 60%0 40%20%a'0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-12. ETE and Trip Generation:
Winter, Midweek, Weekend, Evening, Good Weather (Scenario 12)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-14 KLD Engineering, P.C.Rev. 1 ETE and Trip Generation Summer, Midweek, Weekend, Evening, Good, Special Event (Scenario 13)-Trip Generation -ETE 100%4A"J 80%:E 3 60%0 40%20%0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-13. ETE and Trip Generation:
Summer, Weekend, Evening, Good Weather, Special Event (Scenario 13)ETE and Trip Generation Summer, Midweek, Midday, Good, Roadway Impact (Scenario 14)-Trip Generation lETE 100%' 80%60%0 0 40%20%a.0%0 30 60 90 120 150 180 210 240 270 300 Elapsed Time (min)Figure J-14. ETE and Trip Generation:
Summer, Midweek, Midday, Good Weather, Roadway Impact (Scenario 14)Donald C. Cook Nuclear Plant Evacuation Time Estimate J-15 KLD Engineering, P.C.Rev. 1 APPENDIX K Evacuation Roadway Network K. EVACUATION ROADWAY NETWORK As discussed in Section 1.3, a link-node analysis network was constructed to model the roadway network within the study area. Figure K-1 provides an overview of the link-node analysis network. The figure has been divided up into 35 more detailed figures (Figure K-2 through Figure K-36) which show each of the links and nodes in the network.The analysis network was calibrated using the observations made during the field survey conducted in May 2011. Table K-1 lists the characteristics of each roadway section modeled in the ETE analysis.
Each link is identified by its road name and the upstream and downstream node numbers. The geographic location of each link can be observed by referencing the grid map number provided in Table K-1.The term, "No. of Lanes" in Table K-1 identifies the number of lanes that extend throughout the length of the link. Many links have additional lanes on the immediate approach to an intersection (turn pockets);
these have been recorded and entered into the input stream for the DYNEV II System.As discussed in Section 1.3, lane width and shoulder width were not physically measured during the road survey. Rather, estimates of these measures were based on visual observations and recorded images.Table K-2 identifies each node in the network that is controlled and the type of control (stop sign, yield sign, pre-timed signal, actuated signal, traffic control point) at that node.Uncontrolled nodes are not included in Table K-2.K-i KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-1 KLD Engineering, P.C.Rev. 1 Figure K-1. D.C. Cook Link-Node Analysis Network K-2 KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-2 KLD Engineering, P.C.Rev. 1 Figure K-2. Link-Node Analysis Network -Grid 1 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-3 KLD Engineering, P.C.Rev. 1 Figure K-3. Link-Node Analysis Network -Grid 2 K-4 KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-4 KLD Engineering, P.C.Rev. 1 44J Donald C. Cook Evacuation Time Estimate Unk-Node Analysis Network Figures 4. I Grid 3 o o 03 I Figure K-4. Unk-Node Analysis Network -Grid 3 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-5 KLD Engineering, P.C.Rev. 1 Donald C. Cook Evacuation Time Estimate Link-Node Analysis Network Figures Figure K-S. Link-Node Analysis Network -Grid 4 K-6 KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-6 KLD Engineering, P.C.Rev. 1 Figure K-6. Link-Node Analysis Network -Grid 5 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-7 KLD Engineering, P.C.Rev. 1 m\ 4 I?V 35 I---- 116-- -S, 43332 E ~4A aodA,-'461=~ _____BMW, MA 01--e a//z 132'434 St 398 lld-tl.ý Ct, G, y St oil 396 W Far.1k, A 747 1.1 ------- -------Rd a 11 204 .1 ý_772 Z5 Fisk Rd L H-A-T__bele T 1 -4 JnJI I 7ý" ay~ej2kSt )aid C. Cook Evacuation Time Estimate ink-Node Analysis Network Figures Lepnd DCCNP ý",, AShadow Region* Node 2, 5, 10, 15 Mile Rings.-- Unk Water FAA []index Grid Don U 0 0.25 55 5U~Grid 6.1 U ~--~m, J Figure K-7. Link-Node Analysis Network -Grid 6 K-S KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-8 KLD Engineering, P.C.Rev. 1 r R 3, i r ~~ IJ Hal St. 3_-'EH(~, Stt A.A S~hWý ,ý350~ E~veh'e St Co, Ii B~ Stoav ded,.Estev, AvefJ350&adfrd ~ and2 HempbR~ ~ -aywdD8 7496 LI __~_ __ 0 E4f- A" ~i A'-~Ave C'.4[L Legend Donald C. Cook Evacuation Time Estimate DOCCNP I Shadow Region Unk-Node Analysis Network Figures* Node 2, 5, 10, 15 Mile Rings U Unki Water Grid 7 PA PM [7. Index Grid o .. .a es Figure K-8. Link-Node Analysis Network -Grid 7 K-9 KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-9 KLD Engineering, P.C.Rev. 1 Figure K-9. Link-Node Analysis Network -Grid 8 K-b KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-10 KLD Engineering, P.C.Rev. 1 Figure K-10. Link-Node Analysis Network -Grid 9 K-li KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-11 KLD Engineering, P.C.Rev. I Figure K-11. Link-Node Analysis Network -Grid 10 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-12 KLD Engineering, P.C.Rev. 1 Patht I Frank 64 x ....-- .L.~~W Ol.d 174 z St A & P ath Pt. .. ..I Rdge p i 4i' 1 ....4 " --......-T Woakam. Low--&-- -T, Dun It Ai ur K- .in -o e Analysi N o72 9/D adCuCoivc Taio TmeEsamt Pode J_ 11Ri0 G~d P.I ink .W. ater 025 rd Figures Alpine LikNoeA alss-ew rk--rd 0 KID Egineerigne.C Donal C., CokNcCalatK Evacuation Tim Esimt Rev.
77 W0a~o~d _s 2-"0M~,~R 293 Ti eTe IITc/soR 5------ 13 314 iL]_ Ji___ ___"~n Donald..C..Cook Evcutin im e nEstimate I~~46 83 I ! DCCNP Reio Uink-Node Analysis Network Figures* Node S , 5,0,iSMile~ings
, L--- ink WaterGrd 1ýb PMS --- -nd-- .3d Z____________________________
I Figure K-13. Link-Node Analysis Network -Grid 12 Donald C. Cook Nuclear Plant K-14 KLD Engineering, P.C.Evacuation Time Estimate Rev. 1 Figure K-14. Link-Node Analysis Network -Grid 13 K-15 KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-15 KLD Engineering, P.C.Rev. 1 Figure K-15. Link-Node Analysis Network -Grid 14 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-16 KLD Engineering, P.C.Rev. 1 Figure K-16. Link-Node Analysis Network -Grid 15 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-17 KLD Engineering, P.C.Rev. 1 Figure K-17. Link-Node Analysis Network -Grid 16 Donald C. Cook Nuclear Plant K-18 KLD Engineering, P.C.Evacuation Time Estimate Rev. 1 Figure K-18. Link-Node Analysis Network -Grid 17 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-19 KLD Engineering, P.C.Rev. 1 Figure K-19. Link-Node Analysis Network -Grid 18 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-20 KLD Engineering, P.C.Rev. 1 Figure K-20. Link-Node Analysis Network -Grid 19 K-21 KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-21 KLD Engineering, P.C.Rev. 1 Figure K-21. Link-Node Analysis Network -Grid 20 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-22 KLD Engineering, P.C.Rev. 1 Figure K-22. Link-Node Analysis Network -Grid 21 K-Li-- 1(1 fl Fnain~rifl0.
PC.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-23 Rev. 1 I Figure K-23. Link-Node Analysis Network -Grid 22 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-24 KLD Engineering, P.C.Rev. 1 Figure K-24. link-Node Analysis Network -Grid 23 K-25 KLD Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-25 KLD Engineering, P.C.Rev. I Figure K-25. Link-Node Analysis Network -Grid 24 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-26 KLD Engineering, P.C.Rev. 1 Figure K-26. Link-Node Analysis Network -Grid 25 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-27 KLD Engineering, P.C.Rev. 1 Figure K-27. Link-Node Analysis Network -Grid 26 Donald C. Cook Nuclear Plant K-28 KLD Engineering, P.C.Evacuation Time Estimate Rev. 1 Figure K-28. Link-Node Analysis Network -Grid 27 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-29 KLD Engineering, P.C.Rev. 1 5I er Ml.Rd I P$12___ Maff he, Rd f ~ sp~msRd WdeR Rd~y,-d 1 S/ 11d W4T 81 47 I_____ _13 W~~r~~ml~~~i G53J Rd73 .~{ 74 z E M~o C,-E Elm Valley Rd 47T]1~3 1, `3~if 16 ~ T fs $1 BO tsosli 26 bi l why, L\ I- -Is _J1 A~t Legend Donald C. Cook Evacuation Time Estimate* DCCNP r:i Shadow Region iUnk-Node Analysis Network Figures* Node ' 2, 5, 10, l5 Mile Rings a--p Link water I Grid 28 PAA [T- Index Grid 0 _ 0._ 1,___________
Figure K-29. Link-Node Analysis Network -Grid 28 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-30 KLD Engineering, P.C.Rev. 1 Figure K-30. Link-Node Analysis Network -Grid 29 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-31 KLD Engineering, P.C.Rev. 1 Figure K-31. Link-Node Analysis Network -Grid 30 K-32 KID Engineering, P.C.Donald C. Cook Nuclear Plant Evacuation Time Estimate K-32 KLD Engineering, P.C.Rev. I Figure K-32. Link-Node Analysis Network -Grid 31 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-33 KLD Engineering, P.C.Rev. 1 Figure K-33. Link-Node Analysis Network -Grid 32 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-34 KLD Engineering, P.C.Rev. 1 Figure K-34. Link-Node Analysis Network -Grid 33 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-35 KLD Engineering, P.C.Rev. 1 Figure K-35. Link-Node Analysis Network -Grid 34 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-36 KLD Engineering, P.C.Rev. 1 Figure K-36. Link-Node Analysis Network -Grid 35 Donald C. Cook Nuclear Plant Evacuation Time Estimate K-37 KLD Engineering, P.C.Rev. 1