ML18026A535: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:ATTACHMENTTOPLA-4228ENCLOSURE2MSIVLEAKAGEALTERNATETREATMENTMETHODSEISMICEVALUATION94112'Pat42941i21PDRnoacKosooozs7pnR SUSQUEHANNASTFAMELECTRICSTATIONUNIT1AND2MSIVLEAKAGEALTERNATETREATMENTMETHODSEISMICEVALUATIONOCTOBER19,1994 TABLEOFCONTENTS~PaeCOVERSHEETTABLEOFCONTENTSINTRODUCTION1.SCOPEOFREVIEWTURBINEBUILDING2.1LateralForceResistingSystems2.2SeismicDesignCodes2.3SeismicDesignBasis2.4WindDesignCodes2.5WindDesignBasisMAINTURBINECONDENSERS3.1GeneralDescriptionofSusquehannaCondensers3.2ComparisonofSusquehannaCondenserswithDatabaseCondensers3.3CapabilityofAnchorstoWithstandDesignBasisEarthquakeLoads10101018MSIVLEAKAGECONTROLPIPING4.1MainSteamandTurbineBypass4.1.1DesignBasis4.1.1.1PipingDesignCode4.1.1.2PipingDesign4.1.1.3PipeSupportDesignCode4.1.2MarginAssessment4.1.3VerificationWalkdownResults20202121212222224.2MainSteamDrainstoCondenser4.2.1DesignBasis4.2.1.1PipingDesignCode4.2.1.2PipingDesign4.2.1.3PipingSupportDesignCode4.2.2MarginAssessment4.2.2.1SeismicDemand4.2.2.2PipeSupportComponentCapacities4.2.3VerificationWalkdownResults222323232323242525 TABLEOFCONTENTS~Pae4.3InterconnectedSystems4.3.1DesignBasis4.3.2MarginAssessment4.3.3VerificationWalkdownResults262626265.BLOCKWALLS27
{{#Wiki_filter:ATTACHMENT TOPLA-4228ENCLOSURE2 MSIVLEAKAGEALTERNATE TREATMENT METHODSEISMICEVALUATION 94112'Pat42 941i21PDRnoacKosooozs7pnR SUSQUEHANNA STFAMELECTRICSTATIONUNIT1AND2MSIVLEAKAGEALTERNATE TREATMENT METHODSEISMICEVALUATION OCTOBER19,1994 TABLEOFCONTENTS~PaeCOVERSHEETTABLEOFCONTENTSINTRODUCTION 1.SCOPEOFREVIEWTURBINEBUILDING2.1LateralForceResisting Systems2.2SeismicDesignCodes2.3SeismicDesignBasis2.4WindDesignCodes2.5WindDesignBasisMAINTURBINECONDENSERS 3.1GeneralDescription ofSusquehanna Condensers 3.2Comparison ofSusquehanna Condensers withDatabaseCondensers 3.3Capability ofAnchorstoWithstand DesignBasisEarthquake Loads10101018MSIVLEAKAGECONTROLPIPING4.1MainSteamandTurbineBypass4.1.1DesignBasis4.1.1.1PipingDesignCode4.1.1.2PipingDesign4.1.1.3PipeSupportDesignCode4.1.2MarginAssessment 4.1.3Verification WalkdownResults20202121212222224.2MainSteamDrainstoCondenser 4.2.1DesignBasis4.2.1.1PipingDesignCode4.2.1.2PipingDesign4.2.1.3PipingSupportDesignCode4.2.2MarginAssessment 4.2.2.1SeismicDemand4.2.2.2PipeSupportComponent Capacities 4.2.3Verification WalkdownResults222323232323242525 TABLEOFCONTENTS~Pae4.3Interconnected Systems4.3.1DesignBasis4.3.2MarginAssessment 4.3.3Verification WalkdownResults262626265.BLOCKWALLS 27


INTRODINTheevaluationinthisreportwasperformedtodocumenttheseismicdesignadequacyofthe"MainSteamIsolationValve(MSIV)LeakageAlternateTreatmentMethod".ThismethodisbeingevaluatedforreplacingthedesignfunctionoftheMSIV-LeakageControlSystem(LCS).TheMSIV-LCSlicensedbaseddesignfunctionis'toservetoredirectMSIVleakagebackintosecondarycontainment,whereitcanbeprocessedasafilteredreleaseandreducethepotentialcontributiontooff-siteandcontrolroomdose.Historically,theMSIV-LCShasbeensusceptibletonumerousfailuresandcostlyrepairs.Inordertoimprovetheperformanceofthepowerplant,bothfromanuclearsafetyviewpointandeliminationofahighcostandhighmaintenancesystem,the"MSIVLeakageAlternateTreatmentMethod"hasbeenestablished,whichwillservetoprovideamoreeffectivemeanstoprocesstheMSIVleakage.Theprimarycomponentstobereliedupon,forpressureboundaryintegrity,inresolutionoftheBWRMSIVleakageissueare:(1)themainturbinecondensers,(2)themainsteamlinestotheturbinestopandbypassvalves,and(3)themainsteamturbinebypassanddrainlinepipingtothecondensers.Earthquakeexperiencehasdemonstratedthattheweldedsteelpipingandanchoredcondensersinsimilarsystemsareseismicallyrugged.Theearthquakeexperienceisderivedfromanextensivedatabaseontheseismicperformanceofover100powerplantunitsandindustrialfacilitiesinactualrecordedearthquakes.Basedonthispost-earthquakereconnaissance,theBWROwnersGroup(BWROG)seismicexperiencestudyhasidentifiedlimitedrealisticseismichazards,includingsupportdesignattributesandproximityinteractionissues,aspotentialsourcesofdamageonalimitednumberofcomponents.TheBWROG'sstudyisdocumentedinNEDC-31858P,"BWROGReportforIncreasingMSIVLeakageRateLimitsandEliminationofLeakageControlSystems".AreviewandevaluationwasperformedforPennsylvaniaPowerandLight,SusquehannaSteamElectricStation(SSES),Units1and2,toensurethatnosuchissuesarepresent,thusprovidingreasonableassuranceoftheintegrityofthesesystemsandcomponents.ThisreportsummarizesthemethodologyusedandsomeoftheresultsoftheseismicadequacyreviewoftheMSIVLeakageAlternateTreatmentMethod.
INTRODINTheevaluation inthisreportwasperformed todocumenttheseismicdesignadequacyofthe"MainSteamIsolation Valve(MSIV)LeakageAlternate Treatment Method".Thismethodisbeingevaluated forreplacing thedesignfunctionoftheMSIV-Leakage ControlSystem(LCS).TheMSIV-LCSlicensedbaseddesignfunctionis'toservetoredirectMSIVleakagebackintosecondary containment, whereitcanbeprocessed asafilteredreleaseandreducethepotential contribution tooff-siteandcontrolroomdose.Historically, theMSIV-LCShasbeensusceptible tonumerousfailuresandcostlyrepairs.Inordertoimprovetheperformance ofthepowerplant,bothfromanuclearsafetyviewpoint andelimination ofahighcostandhighmaintenance system,the"MSIVLeakageAlternate Treatment Method"hasbeenestablished, whichwillservetoprovideamoreeffective meanstoprocesstheMSIVleakage.Theprimarycomponents tobereliedupon,forpressureboundaryintegrity, inresolution oftheBWRMSIVleakageissueare:(1)themainturbinecondensers, (2)themainsteamlinestotheturbinestopandbypassvalves,and(3)themainsteamturbinebypassanddrainlinepipingtothecondensers.
1.0OPEFREVIEWThemainturbinecondensersformtheultimateboundaryofthe"MainSteamIsolationValve(MSIV)LeakageAlternateTreatmentMethod".Boundarieswereestablishedupstreamofthecondensersbyutilizingexistingvalvestolimittheextentoftheseismicverificationwalkdown.TheboundariesareshowninFigure1ofthisevaluation.TheboundaryvalveswereselectedusingthecriteriaoutlinedinNEDC-31858PanddocumentedinPP&LEngineeringStudies,Analyses,andevaluations(SEA),SEA-ME423,"MSIVLeakageSeismicVeriGcationBoundaryDeterminationStudy,SSESUnit1"andSEA-ME424,"MSIVLeakageSeismicVerificationBoundaryDeterminationStudy,SSESUnit2.Thefollowingcriteriawasusedinselectingtheboundaryvalves:1.Normallyopenvalve,automaticallyclosesasaresultofMSIVisolationsignal2.Normallyopenvalve,whichcanberemotelyclosedfromcontrolroom3.Normallylockedclosed,manuallyoperatedvalve4.Normallyclosed,manuallyoperatedvalve5.Automaticallyorremotelyoperatedvalvesthatfailclosed,asaresultoflossofpowerorair(pneumaticoperators)tothevalveoperator6.Normallyclosedvalve,whichcanberemotelyclosedfromthecontrolroom7.Normallyclosedvalve,whichcanberemotelydosedfromacontrolpaneloutsidethecontrolroomInNEDC-31858P,aseismicdatabasewasassembled.'Msdatabaseservedashistoricaldocumentationoftheperformanceofnon-seismicdesignedpipingsystemsandmainturbinecondensers,atvariouspowerplantsthroughouttheworld,whichhavegonethroughvaryinglevelsofseismicevents.Thisdatabaseprovidedthebasisfordemonstrationofseismicadequacyofnon-'eismicallydesignedsystems.InordertodemonstratethatSSESpipingandcomponentsfallwithintheboundsoftheexperiencedatabase,tworeviewswereperformed.TheQrstreviewconsistedofreviewingtheconstructioncodestodemonstratethatthedesignatedpipingandcomponentswerebuilttostandardssimilartothoseplantsidentifiedintheexperiencedatabaseofNEDC-31858P.ThesecondreviewconsistedofseismicverificationwalkdownstoassurethatthecondensersandpipingsystemsfallwithintheboundsofthedesigncharacteristicsoftheseismicexperiencedatabasecontainedinNEDC-31858P.Conditionsthatmightleadtopipingconfigurationswhichareoutsidetheboundsoftheexperiencedatabasewerenotedduringthewalkdowns.Tables-5and r'1<~-z~z~y~geioz~vztAGod'U'~>~>AT7g,Pipgze8.'f,BC'L2 6ofthisreportsummarizetheidentifiedconditions(termed'"outliers"),andtheirresolutionstatus.Notethattheoutliersarebeingresolvedbydemonstratinganalyticallythattheydidnotcreatehazardsbeyondtheseismicinertialloading.Thesehazardsincludeinteraction,differentialdisplacement,and/orfailure/falling.Ifevaluationcannotqualifysomeoutliers,modiTicationswillbedesignedtoprovideseismicallyacceptableconQgurations.Whereanalysiswasusedtoresolvethewalkdownoutliers,the5%dampedconservativeQoorcurvesareextrapolatedfromtheexisting1/2%and1%dampedQoorcurvesthatwerebasedontheSSESgrounddesignbasisearthquake(DBE)anchoredat0.1gpeakgroundacceleration.Asanalternatemethodforgenerationofseismicinput,5.0%dampedrealisticmedian-centered,withnointentionalconservativebias,Qoorcurveswillbedeveloped,ifjudgedtobenecessary,basedontheNUREG/CR-0098mediangroundspectraanchoredat0.1gand0.067gpeakgroundaccelerationsforhorizontalandverticaldirections,respectively.Variabilitiesassociatedwithstructurefrequency,structuredamping,androckmodulusaresignificantinthedevelopmentoftheseismicQoorcurves.Mescmodelparameterswillbeselectedinarandomprocess.Anumberofearthquaketimehistorieswillbeutilizedwiththerandomlyselectedsetsofmodelparametervalues.Toaccountfortheuncertaintyinthestructuralfrequencycalculations,thepeaksoftheseismicQoorcurvesareshiftedratherthanbebroadened.Inadditiontotheongoingresolutionofthewalkdownoutliers,seismicmarginassessmentofarepresentativeboundingsampleofpipesupportsonthemaindrainlinewillbeconducted.ThisassessmentismoreconservativeandmorerestrictivethantheevaluationreferencedinNEDC-31858P.
Earthquake experience hasdemonstrated thattheweldedsteelpipingandanchoredcondensers insimilarsystemsareseismically rugged.Theearthquake experience isderivedfromanextensive databaseontheseismicperformance ofover100powerplantunitsandindustrial facilities inactualrecordedearthquakes.
0 2.0INEBILDINGPerformanceoftheturbinebuildingduringaseismiceventisofinteresttotheissueofMSIVleakagetotheextentthatnon-seismicallydesignedstructuresandcomponentsshouldsurviveandnotdegradethecapabilitiesoftheselectedmainsteamandcondenserQuidpathways.ABWROGsurveyofthistypeofstructurehas,ingeneral,confirmedthatexcellentseismiccapabilityexists.Therearenoknowncasesofstructuralcollapseofeitherturbinebuildingsatpowerstationsorstructuresofsimilarconstruction.'heSSESturbinebuildinghousestwoin-lineabout1100megawattturbinegeneratorswithallauxiliaryequipmentincludingtwo220tonoverheadservicecranes.'Ihebuildingisentirelyfoundedonrockwithreinforcedconcreteretainingwallsextendinguptogradelevel.Thesuperstructureisframedwithstructuralsteelandreinforcedconcrete.Exteriorwallsarepre-castreinforcedconcretepanelsexceptfortheupper30feet,whichismetalsiding.'Iheroofhasmetaldeckingwithbuilt-uproofing.Eachofthetwoturbinegeneratorunitsissupportedonafreestandingreinforcedconcretepedestalextendingdowntorock.SeparationjointsareprovidedbetweenthepedestalsandtheturbinebuildingQoorsandslabstopreventtransferofvibrationtothebuilding.TheoperatingQoorissupportedonvibrationdampingpadsatthetopedgeofthepedestals.Aseismicseparationgapisprovidednearthecenterofthebuildingbetweenthetwounits.Aseismicseparationgapisalsoprovidedagainstthereactorbuilding.ThedesignoftheSSESturbinebuildingincludesbothseismicandtornadoloadings.TheturbinebuildingisdesignedtopreventcollapseunderboththeDBEandtornadoloadconditions.ThedeQectionsfromtheseloadingshavebeenkepttoavaluesuchthatinteractionwithCategoryIstructuresisavoided.ThegroundaccelerationassociatedwiththeDBEis0.10g.TheturbinebuildinghorizontalshearsresultingfromtheDBEarepresentedinFigure2.Basedupontheabove,itisconcludedthattheSSESturbinebuildingisaseismicallyrobuststructurewithlittleriskofdamagetothestructurethatwoulddegradethecapabilityofthemainsteamandcondenserfluidpathways.Specificparametersincludedintheevaluationarepresentedbelow.2.1LateralForceResistingSystemsThelateralloadresistingsystemsuperstructuretype,abovetheturbineQoor,isabracedorrigidframestructuredependingonthedirectionoflateralloadconsistsofthefollowing:ColumnlinesGandKcomprisealternatingbaysofcross-bracingthatresistN-Swindorseismiclateralloadingconditions.E-Wlateralforcesareresistedbyrigidframebentsfromcolumnline12to29(Unit1).Lateralforceresistingsystemsubstructure,belowtheturbineQoor:ConcretewallsserveasshearwallsforlateralloadsintheNCdirections.
Basedonthispost-earthquake reconnaissance, theBWROwnersGroup(BWROG)seismicexperience studyhasidentified limitedrealistic seismichazards,including supportdesignattributes andproximity interaction issues,aspotential sourcesofdamageonalimitednumberofcomponents.
FIGURE2ASeismicDesignForcesfortheSUSQUEHANNATurbineBuildingIntheEast-WestDirectionHev.762'ev.729'ev.699'ev.676'lev.656'500010000150002000025000East-WestDBE(Klps)FIGURE28SeismicDesignForcesfortheSUSQUEHANNATurbineBuildinglntheNorth-SouthDirectionElev.787'ev.762'lev.699'ev.676'lev.656'500010000150002000025000North-SouthDBE(Klps) 22SeismicDesignCodes'Allnon-categoryIstructuresaredesignedtoconformtotherequirementsof:AmericanInstituteofSteelConstruction(AISC)Speci6cationfortheDesign,Fabrication,andErectionofSteelBuildings.AmericanConcreteInstitute(ACI)BuildingCodeRequirementsforReinforcedConcrete(ACI318-71).AmericanWeldingSociety(AWS)StructuralWeldingCodeAWSD1.1-72.23SeismicDesignBasisAseismicanalysisoftheturbinebuildingwasperformedfortheDBEloadinginthenorth-south,east-west,andverticaldirectionsinordertoassurethatthebuildingwillnotcollapse.TheresultingdeQectionswerealsoutilizedtoconfirmthatthereisnointeractionwiththereactor,building.2.4WindDesignCodesTheturbinebuildingisdesignedtoconformtotherequirementsof:AmericanSocietyofCivilEngineers,papernumber3269,WindDesignRequirements.AmericanInstituteofSteelConstruction(AISC)SpecificationfortheDesign,Fabrication,andErectionofSteelBuildings.AmericanConcreteInstitute(ACI)BuildingCodeRequirementsforReinforcedConcrete(ACI318-71).AmericanWeldingSociety(AWS)StructuralWeldingCodeAWSD1.1-72.25WindDesignBasisThedynamic,windpressuresusedinthedesignofSSESarederivedfromtheASCEPublicationNo.3269usingthefollowingequation.q=0.002558'hereqisthevelocitypressureinpsf,andVisthewindvelocity(mph).Itwas
TheBWROG'sstudyisdocumented inNEDC-31858P, "BWROGReportforIncreasing MSIVLeakageRateLimitsandElimination ofLeakageControlSystems".
Areviewandevaluation wasperformed forPennsylvania PowerandLight,Susquehanna SteamElectricStation(SSES),Units1and2,toensurethatnosuchissuesarepresent,thusproviding reasonable assurance oftheintegrity ofthesesystemsandcomponents.
Thisreportsummarizes themethodology usedandsomeoftheresultsoftheseismicadequacyreviewoftheMSIVLeakageAlternate Treatment Method.  


assumedthat80%ofqisactingonthewindwardsideand50%issuctionontheleewardsideofthebuilding.Thelocalpressureatanypointonthesurfaceofthebuildingisequalto:p=qCpwherepisthepressureandCisthepressurecoefficient.Thetotalpressureonthebuildingisequalto:p=qCOwhereCoistheshapecoefficientandisequalto1.3.ThewindloadsareprovidedinTable1.Theturbinebuildingframeisdesignedtoresisttornadowindforcesassumingthattwothirdsofthesidingisblownaway.Inaddition,eachexteriorcolumnanditsconnectionsaredesignedforthefulltornadowindintheeventthatnosidingblowsawayinthetributaryareaofthecolumn.Themaximuminteractionratioforthestructuralsteel,resultingfromthecasewithnofailureofthesiding,isapproximatelythesameasthatobtainedfromtheDBEload.TheloadcombinationsutilizedforthedesignoftheturbinebuildingarepresentedinTable2.
==1.0 OPEFREVIEWThemainturbinecondensers==
TABLE1TornadoWindLoadsWallLoadRoofLoadHeight(ft)BasicVelocity(mph)DynamicPressurewith1.1GustFactorPressure0.8qSuction0.5qTotalDesignPressure1.3qSuction0.6q0-5050-150150<00Over40080951101202030404516243236101520232639525912182427TABLE2LoadCombinationsD+L+E'+L+WD+L+W'+L+E'eeNote1SeeNote1USDUSDD=DeadLoadL=LiveLoadW=WindLoadW'TornadoWindE'DesignBasisEarthquake(1)Innocaseshalltheallowablebasemetalstressexceed0.9Fyinbending,0.85Fyinaxialtensionorcompression,and0.5Fyinshear.WhereFsisgovernedbyrequirementsofstability(Localorlateralbuckling),fsshallnotexceed1.5Fs.Innocaseshallbeallowableboltorweldstressexceed1.7Fs.
formtheultimateboundaryofthe"MainSteamIsolation Valve(MSIV)LeakageAlternate Treatment Method".Boundaries wereestablished upstreamofthecondensers byutilizing existingvalvestolimittheextentoftheseismicverification walkdown.
3.MAINTURBINECONDENERS3.1GeneralDescriptionofSusquehannaCondensersThemainturbinecondenserisatripleshellmultipressuresurfacecondenserwhichconsistsofthree(3)rectangularshapedweldedsteelplatecondensersofthesinglepassquad-dividedtype.Thecirculatingwaterlowis448,000gallonperminute.Theheatexchangeareaofthehighpressureshellconsistsof28,0401-inchdiametertubes,approximately50footlong,givingaheattransferareaof367,000squarefeet.Theheatexchangeareaoftheintermediatepressureshellconsistsof28,0081-inchdiametertubes,approximately40footlong,givingaheattransferareaof293.300squarefeet.Theheatexchangeareaofthelowpressureshellconsistsof27,9721-inchdiametertubes,approximately30footlong,givingaheattransferareaof219,700squarefeet.Thedryweightandtheoperatingweightofthethreeshellsareasfollows:DrWeihtIb0eratinWeihtIbHighPressureCondenser678,200IntermediatePressureCondenser643,000LowPressureCondenser567,8002,132,7001,984,3001,572,700Thebaseofthecondenser(hotboxshell)is29'x49',29'x39',and29'x29'nplanforthehigh,intermediate,andlowpressurecondensers,respectively.Eachcondensershellissupportedfromtheconcretebaseslaboftheturbinepedestalon6embeddedplateassemblies.Positiveattachmentisprovidedbyanchorboltsandweldstotheembeddedplateassemblies.Theembeddedplatesassembliesonlyprojecttheirplatethicknessabovethebaseslab,sotherearenolegsorpiersbetweenthecondenserandthebaseslab.Thecondensershellsneckdownatthetopwheretheyweldtotheturbine.Thenecksincludearubberexpansionjointwhichstructurallyisolatesthecondensershellfromtheturbine,sothattheanchorstothebaseslabprovidetheentiresupportforthecondensershell.Theheightofeachshelltotheexpansionjointisapproximately56'.Thecondensersweretestedbyfillingtheshellwithwater.Thedesignconditionsforthecondensersincludeavacuumpressureof26"ofMercury,and"zone1"seismiccoefficientsof0.03gverticaland0.05ghorizontal.The.75"thickshellsofthecondensersarestiffenedbythetubesupportplatesandbystrutsthatconnectthetubesupportplatestothesidewallsandtothecondenserbottom.Platedividers,whichseparateeachshellintofourflowpaths,alsoservetostiffentheshell.3.2ComparisonofSusquehannaCondenserswithDatabaseCondensersThisreportwillshowthateachSSEScondensershelliscomparabletothedatabasecondensersinitscapabilitytoresistseismicforces.Inaddition,thisreportwillalsoshowthateachshellanchor10 systemshavethecapabilitytowithstandtheforcesassociatedwithDBEincombinationwithoperatingloads.Sinceeachcondenser(high,intermediate,andlowpressure)isindependentlysupportedfromtheothershellswecancompareitsstructural.characteristicstothesimilarcondensersaddressedinNEDC-31858P,"BWROGReportforIncreasingMSIVleakageRateLimitsandEliminationofLeakageControlSystem".ComparablecondensersthathaveexperiencedsignificantearthquakesasidentifiedinNEDC-31858Pwillbehereaftercalled"database"condensers.EachSSEScondensershellisspecificallycomparedtothedatabasecondensersfromMossLanding,Units6and7,andfromOrmondBeach,Units1and2.ThesecondensershavesimilarphysicalarrangementsofcomponentsandconstructiondetailstotheSSEScondenser,andwouldfunctionsimilarlytoresistseismicforces.FromTable3andfromFigures3through5,itisapparentthatmostofthephysicalfeaturesoftheSSEScondenserthatwouldbesignificantinseismicconsiderations,areeitherenvelopedbythedatabasecondensers,orwouldbelesscriticalthanthedatabasecondensers.OnepossibleexceptionisthegreaterheightoftheSSEScondensers.Anotheristhecapacitytodemandratio(Figure5)fortheintermediatepressureshell.Thesignificanceofthisgreaterheightisdiscussedintheparagraphbelow.Thecapabilityoftheanchorsforallthreeshellsisdiscussedinsubsection3.3.TheSSEScondenserishigherthanthedatabasecondensers(SeeFigure4a).Thisfeaturecannotbeconsideredaseitherenvelopedbyorlesscriticalthanthedatabasecondensers,sincelargerratiosofheighttobasewidthtendtogivelargeroverturningforces.InthecaseoftheSSEScondensershells,wecansaythatthisgreaterheightisnotthatsignificantforthreereasons.Thefirstreasonisthattheoperatingweightofeachshellincomparisontotheshellsideareaiscomparabletothatofthedatabasecondensers;thereforetheshearstressesintheshellplatewouldnotbeanyhigherthanthedatabasecondensersforthesame"g"load.ThisisapparentfromthedatainTable3.Thesecondreasonisthattheanchorboltshearareasincomparisontooperatingweightsarecomparabletothedatabasecondensersforallshellsexcepttheintermediatepressureshell.ThisisillustratedinFigure5inwhichtheSSEScondenseranchorsareactuallylesscriticalthantheanchorsofthedatabasecondensersexceptfortheintermediatepressureshell,ThethirdreasonisthattheanchorsfortheSSEScondenserhavemorethanenoughcapacitytowithstandtheforcesfromaDBEeventincombinationwithoperatingloads.Thisspecificanchorcapabilityisdiscussedinsubsection3.3.TheanchorconfigurationfortheSSEScondensershellsisnotnecessarilythesameasthatoftheddatabasecondensers.FortheSSEScondensershells,baseshearloadsaretakenbyweldsofthecondensertoembeddedplatesatlocations1and4ofFigure7.Theanchorboltsarenotdesignedforshearsbecausetheholesinthecondenserbaseareoversized,andtheweldsandguidesareastifferloadpathforshearloads.Sincetheanchoratlocation4isaguideinonedirection,theweldsatlocation1aresizedtotakealltheshearinthedirectionparalleltotheturbineaxis.Forloadsperpendiculartotheturbineaxistheanchorsatlocation1and4bothcontributetoresistingshears.InFigure5the"lowerbound"anchorareaisonlytherootareaoftheweldsactiveinthegivendirections.The"upperbound"areaisthetotalofanchorboltsareaonly.Thisconservatively<<ssumesthattheweldsfailbeforetheanchorboltsareeffectiveinresistingshears.Thecapacityto11
Theboundaries areshowninFigure1ofthisevaluation.
TheboundaryvalveswereselectedusingthecriteriaoutlinedinNEDC-31858P anddocumented inPP&LEngineering Studies,Analyses, andevaluations (SEA),SEA-ME423, "MSIVLeakageSeismicVeriGcation BoundaryDetermination Study,SSESUnit1"andSEA-ME424, "MSIVLeakageSeismicVerification BoundaryDetermination Study,SSESUnit2.Thefollowing criteriawasusedinselecting theboundaryvalves:1.Normallyopenvalve,automatically closesasaresultofMSIVisolation signal2.Normallyopenvalve,whichcanberemotelyclosedfromcontrolroom3.Normallylockedclosed,manuallyoperatedvalve4.Normallyclosed,manuallyoperatedvalve5.Automatically orremotelyoperatedvalvesthatfailclosed,asaresultoflossofpowerorair(pneumatic operators) tothevalveoperator6.Normallyclosedvalve,whichcanberemotelyclosedfromthecontrolroom7.Normallyclosedvalve,whichcanberemotelydosedfromacontrolpaneloutsidethecontrolroomInNEDC-31858P, aseismicdatabasewasassembled.
'Msdatabaseservedashistorical documentation oftheperformance ofnon-seismic designedpipingsystemsandmainturbinecondensers, atvariouspowerplantsthroughout theworld,whichhavegonethroughvaryinglevelsofseismicevents.Thisdatabaseprovidedthebasisfordemonstration ofseismicadequacyofnon-'eismically designedsystems.Inordertodemonstrate thatSSESpipingandcomponents fallwithintheboundsoftheexperience
: database, tworeviewswereperformed.
TheQrstreviewconsisted ofreviewing theconstruction codestodemonstrate thatthedesignated pipingandcomponents werebuilttostandards similartothoseplantsidentified intheexperience databaseofNEDC-31858P.
Thesecondreviewconsisted ofseismicverification walkdowns toassurethatthecondensers andpipingsystemsfallwithintheboundsofthedesigncharacteristics oftheseismicexperience databasecontained inNEDC-31858P.
Conditions thatmightleadtopipingconfigurations whichareoutsidetheboundsoftheexperience databasewerenotedduringthewalkdowns.
Tables-5and r'1<~-z~z~y~geioz~vztAGod'U'~>~>
AT7g,Pipgze8.'f,BC'L2 6ofthisreportsummarize theidentified conditions (termed'"outliers"),
andtheirresolution status.Notethattheoutliersarebeingresolvedbydemonstrating analytically thattheydidnotcreatehazardsbeyondtheseismicinertialloading.Thesehazardsincludeinteraction, differential displacement, and/orfailure/falling.
Ifevaluation cannotqualifysomeoutliers, modiTications willbedesignedtoprovideseismically acceptable conQgurations.
Whereanalysiswasusedtoresolvethewalkdownoutliers, the5%dampedconservative Qoorcurvesareextrapolated fromtheexisting1/2%and1%dampedQoorcurvesthatwerebasedontheSSESgrounddesignbasisearthquake (DBE)anchoredat0.1gpeakgroundacceleration.
Asanalternate methodforgeneration ofseismicinput,5.0%dampedrealistic median-centered, withnointentional conservative bias,Qoorcurveswillbedeveloped, ifjudgedtobenecessary, basedontheNUREG/CR-0098 mediangroundspectraanchoredat0.1gand0.067gpeakgroundaccelerations forhorizontal andverticaldirections, respectively.
Variabilities associated withstructure frequency, structure damping,androckmodulusaresignificant inthedevelopment oftheseismicQoorcurves.Mescmodelparameters willbeselectedinarandomprocess.Anumberofearthquake timehistories willbeutilizedwiththerandomlyselectedsetsofmodelparameter values.Toaccountfortheuncertainty inthestructural frequency calculations, thepeaksoftheseismicQoorcurvesareshiftedratherthanbebroadened.
Inadditiontotheongoingresolution ofthewalkdownoutliers, seismicmarginassessment ofarepresentative boundingsampleofpipesupportsonthemaindrainlinewillbeconducted.
Thisassessment ismoreconservative andmorerestrictive thantheevaluation referenced inNEDC-31858P.
0


TABLE3ComparisonofSUSQUEHANNACondensertoDatabase'ondensersPlantNameHorizontalgLevelExperiencedManufactureWidthxLengthxHeight(Ft)(Ft"2)(Lbs)HeatExchangeOperatingWeightShellThickness/Mateial(In)/(ASTM)TubeSupportsThickness/Number(tn)TubeSheetsThickness(In)TubeSizeDiameter(ln)/Length(Ft)MossLanding0.40IngersollRand36x65x4743500031150003/4A-285C3/4-151/65'rmondBeach0.20South.Western27x52x2021000017675003/4A-285C5/8-141.251"/53'USQUEHANNA(HighPressure)0.21"~IngersollRand29x49x5621327003/4A-285C5/8-141.501/50'USQUEHANNA(IntermediatePressure)0,21'0IngersollRand29x39x5619843003/4A-285C5/8-111/40'USQUEHANNA(LowPressure)0.21*'ngersollRand29x29x5621970015727003/4'-285C5/8W1/30'atabaseinformationfromNEDC-31858PRevision2,September1993.AppendixD,Table4-1andTable4-3DBEdesignbasisis0.21ghorizontalfor5hdamping,peakofgroundresponsecurve,atcondenserbase(SeeFigure6)  
==2.0 INEBILDINGPerformance==
oftheturbinebuildingduringaseismiceventisofinteresttotheissueofMSIVleakagetotheextentthatnon-seismically designedstructures andcomponents shouldsurviveandnotdegradethecapabilities oftheselectedmainsteamandcondenser Quidpathways.
ABWROGsurveyofthistypeofstructure has,ingeneral,confirmed thatexcellent seismiccapability exists.Therearenoknowncasesofstructural collapseofeitherturbinebuildings atpowerstationsorstructures ofsimilarconstruction.
'heSSESturbinebuildinghousestwoin-lineabout1100megawattturbinegenerators withallauxiliary equipment including two220tonoverheadservicecranes.'Ihebuildingisentirelyfoundedonrockwithreinforced concreteretaining wallsextending uptogradelevel.Thesuperstructure isframedwithstructural steelandreinforced concrete.
Exteriorwallsarepre-castreinforced concretepanelsexceptfortheupper30feet,whichismetalsiding.'Iheroofhasmetaldeckingwithbuilt-uproofing.Eachofthetwoturbinegenerator unitsissupported onafreestandingreinforced concretepedestalextending downtorock.Separation jointsareprovidedbetweenthepedestals andtheturbinebuildingQoorsandslabstopreventtransferofvibration tothebuilding.
Theoperating Qoorissupported onvibration dampingpadsatthetopedgeofthepedestals.
Aseismicseparation gapisprovidednearthecenterofthebuildingbetweenthetwounits.Aseismicseparation gapisalsoprovidedagainstthereactorbuilding.
ThedesignoftheSSESturbinebuildingincludesbothseismicandtornadoloadings.
TheturbinebuildingisdesignedtopreventcollapseunderboththeDBEandtornadoloadconditions.
ThedeQections fromtheseloadingshavebeenkepttoavaluesuchthatinteraction withCategoryIstructures isavoided.Thegroundacceleration associated withtheDBEis0.10g.Theturbinebuildinghorizontal shearsresulting fromtheDBEarepresented inFigure2.Basedupontheabove,itisconcluded thattheSSESturbinebuildingisaseismically robuststructure withlittleriskofdamagetothestructure thatwoulddegradethecapability ofthemainsteamandcondenser fluidpathways.
Specificparameters includedintheevaluation arepresented below.2.1LateralForceResisting SystemsThelateralloadresisting systemsuperstructure type,abovetheturbineQoor,isabracedorrigidframestructure depending onthedirection oflateralloadconsistsofthefollowing:
ColumnlinesGandKcomprisealternating baysofcross-bracing thatresistN-Swindorseismiclateralloadingconditions.
E-Wlateralforcesareresistedbyrigidframebentsfromcolumnline12to29(Unit1).Lateralforceresisting systemsubstructure, belowtheturbineQoor:ConcretewallsserveasshearwallsforlateralloadsintheNCdirections.
FIGURE2ASeismicDesignForcesfortheSUSQUEHANNA TurbineBuildingIntheEast-West Direction Hev.762'ev.729'ev.699'ev.676'lev.656'500010000150002000025000East-West DBE(Klps)FIGURE28SeismicDesignForcesfortheSUSQUEHANNA TurbineBuildinglntheNorth-South Direction Elev.787'ev.762'lev.699'ev.676'lev.656'500010000150002000025000North-South DBE(Klps) 22SeismicDesignCodes'Allnon-category Istructures aredesignedtoconformtotherequirements of:AmericanInstitute ofSteelConstruction (AISC)Speci6cation fortheDesign,Fabrication, andErectionofSteelBuildings.
AmericanConcreteInstitute (ACI)BuildingCodeRequirements forReinforced Concrete(ACI318-71).AmericanWeldingSociety(AWS)Structural WeldingCodeAWSD1.1-72.23SeismicDesignBasisAseismicanalysisoftheturbinebuildingwasperformed fortheDBEloadinginthenorth-south, east-west, andverticaldirections inordertoassurethatthebuildingwillnotcollapse.
Theresulting deQections werealsoutilizedtoconfirmthatthereisnointeraction withthereactor,building.
2.4WindDesignCodesTheturbinebuildingisdesignedtoconformtotherequirements of:AmericanSocietyofCivilEngineers, papernumber3269,WindDesignRequirements.
AmericanInstitute ofSteelConstruction (AISC)Specification fortheDesign,Fabrication, andErectionofSteelBuildings.
AmericanConcreteInstitute (ACI)BuildingCodeRequirements forReinforced Concrete(ACI318-71).AmericanWeldingSociety(AWS)Structural WeldingCodeAWSD1.1-72.25WindDesignBasisThedynamic,windpressures usedinthedesignofSSESarederivedfromtheASCEPublication No.3269usingthefollowing equation.
q=0.002558'here qisthevelocitypressureinpsf,andVisthewindvelocity(mph).Itwas


FIGURE3SizeComparisonoftheSUSQUEHANNACondenser(Unit1or2)withRepresentativeCondensersfromEarthquakeExperienceOrmondBeachSUSQUEHANNAHighPressureSUSQUEHANNAIntermediatePressureSUSQUEHANNALowPressureMossLanding100000200000300000400000500000HeatTransferArea(Sq.Ft.PerShell)OrmondBeachSUSQUEHANNAHighPressureSUSQUEHANNAintermediatePressureSUSQUEHANNALowPressureMossLanding0500000100000015000002000000250000030000003500000OperatingWeight(LbsPerShell)13 FIGURE4DimensionalComparisonofSUSQUEHANNACondenser(Unit1or2)andRepresentativeCondensersfromtheEarthquakeExperienceDatabase~50~40CQP-302010OrmondBeachSUSQUEHANNA(a)HeightComparison(BaseToExpansionJoint)MossLanding40'ighPreeeure39'termedlatePreeeure29'owPreeeure~MossLandlng6&7(65'x36')~SUSQUEHANNAUnlt1or2HighPressureIntermedhtePressureLowPressure(49'29')(89'29')(29'29')mmOrmondBeacht&2(52'2T)(b)ShellFootprintComparison14
assumedthat80%ofqisactingonthewindwardsideand50%issuctionontheleewardsideofthebuilding.
Thelocalpressureatanypointonthesurfaceofthebuildingisequalto:p=qCpwherepisthepressureandCisthepressurecoefficient.
Thetotalpressureonthebuildingisequalto:p=qCOwhereCoistheshapecoefficient andisequalto1.3.ThewindloadsareprovidedinTable1.Theturbinebuildingframeisdesignedtoresisttornadowindforcesassumingthattwothirdsofthesidingisblownaway.Inaddition, eachexteriorcolumnanditsconnections aredesignedforthefulltornadowindintheeventthatnosidingblowsawayinthetributary areaofthecolumn.Themaximuminteraction ratioforthestructural steel,resulting fromthecasewithnofailureofthesiding,isapproximately thesameasthatobtainedfromtheDBEload.Theloadcombinations utilizedforthedesignoftheturbinebuildingarepresented inTable2.
TABLE1TornadoWindLoadsWallLoadRoofLoadHeight(ft)BasicVelocity(mph)DynamicPressurewith1.1GustFactorPressure0.8qSuction0.5qTotalDesignPressure1.3qSuction0.6q0-5050-150150<00Over40080951101202030404516243236101520232639525912182427TABLE2LoadCombinations D+L+E'+L+WD+L+W'+L+E'ee Note1SeeNote1USDUSDD=DeadLoadL=LiveLoadW=WindLoadW'TornadoWindE'DesignBasisEarthquake (1)Innocaseshalltheallowable basemetalstressexceed0.9Fyinbending,0.85Fyinaxialtensionorcompression, and0.5Fyinshear.WhereFsisgovernedbyrequirements ofstability (Localorlateralbuckling),
fsshallnotexceed1.5Fs.Innocaseshallbeallowable boltorweldstressexceed1.7Fs.
3.MAINTURBINECONDENERS3.1GeneralDescription ofSusquehanna Condensers Themainturbinecondenser isatripleshellmultipressure surfacecondenser whichconsistsofthree(3)rectangular shapedweldedsteelplatecondensers ofthesinglepassquad-divided type.Thecirculating waterlowis448,000gallonperminute.Theheatexchangeareaofthehighpressureshellconsistsof28,0401-inchdiametertubes,approximately 50footlong,givingaheattransferareaof367,000squarefeet.Theheatexchangeareaoftheintermediate pressureshellconsistsof28,0081-inchdiametertubes,approximately 40footlong,givingaheattransferareaof293.300squarefeet.Theheatexchangeareaofthelowpressureshellconsistsof27,9721-inchdiametertubes,approximately 30footlong,givingaheattransferareaof219,700squarefeet.Thedryweightandtheoperating weightofthethreeshellsareasfollows:DrWeihtIb0eratinWeihtIbHighPressureCondenser 678,200Intermediate PressureCondenser 643,000LowPressureCondenser 567,8002,132,700 1,984,300 1,572,700 Thebaseofthecondenser (hotboxshell)is29'x49',29'x39',and29'x29'nplanforthehigh,intermediate, andlowpressurecondensers, respectively.
Eachcondenser shellissupported fromtheconcretebaseslaboftheturbinepedestalon6embeddedplateassemblies.
Positiveattachment isprovidedbyanchorboltsandweldstotheembeddedplateassemblies.
Theembeddedplatesassemblies onlyprojecttheirplatethickness abovethebaseslab,sotherearenolegsorpiersbetweenthecondenser andthebaseslab.Thecondenser shellsneckdownatthetopwheretheyweldtotheturbine.Thenecksincludearubberexpansion jointwhichstructurally isolatesthecondenser shellfromtheturbine,sothattheanchorstothebaseslabprovidetheentiresupportforthecondenser shell.Theheightofeachshelltotheexpansion jointisapproximately 56'.Thecondensers weretestedbyfillingtheshellwithwater.Thedesignconditions forthecondensers includeavacuumpressureof26"ofMercury,and"zone1"seismiccoefficients of0.03gverticaland0.05ghorizontal.
The.75"thickshellsofthecondensers arestiffened bythetubesupportplatesandbystrutsthatconnectthetubesupportplatestothesidewalls andtothecondenser bottom.Platedividers, whichseparateeachshellintofourflowpaths,alsoservetostiffentheshell.3.2Comparison ofSusquehanna Condensers withDatabaseCondensers ThisreportwillshowthateachSSEScondenser shelliscomparable tothedatabasecondensers initscapability toresistseismicforces.Inaddition, thisreportwillalsoshowthateachshellanchor10 systemshavethecapability towithstand theforcesassociated withDBEincombination withoperating loads.Sinceeachcondenser (high,intermediate, andlowpressure) isindependently supported fromtheothershellswecancompareitsstructural.
characteristics tothesimilarcondensers addressed inNEDC-31858P, "BWROGReportforIncreasing MSIVleakageRateLimitsandElimination ofLeakageControlSystem".Comparable condensers thathaveexperienced significant earthquakes asidentified inNEDC-31858P willbehereafter called"database" condensers.
EachSSEScondenser shellisspecifically comparedtothedatabasecondensers fromMossLanding,Units6and7,andfromOrmondBeach,Units1and2.Thesecondensers havesimilarphysicalarrangements ofcomponents andconstruction detailstotheSSEScondenser, andwouldfunctionsimilarly toresistseismicforces.FromTable3andfromFigures3through5,itisapparentthatmostofthephysicalfeaturesoftheSSEScondenser thatwouldbesignificant inseismicconsiderations, areeitherenveloped bythedatabasecondensers, orwouldbelesscriticalthanthedatabasecondensers.
Onepossibleexception isthegreaterheightoftheSSEScondensers.
Anotheristhecapacitytodemandratio(Figure5)fortheintermediate pressureshell.Thesignificanceof thisgreater heightisdiscussed intheparagraph below.Thecapabilityof theanchorsforallthreeshellsisdiscussed insubsection 3.3.TheSSEScondenser ishigherthanthedatabasecondensers (SeeFigure4a).Thisfeaturecannotbeconsidered aseitherenveloped byorlesscriticalthanthedatabasecondensers, sincelargerratiosofheighttobasewidthtendtogivelargeroverturning forces.InthecaseoftheSSEScondenser shells,wecansaythatthisgreaterheightisnotthatsignificant forthreereasons.Thefirstreasonisthattheoperating weightofeachshellincomparison totheshellsideareaiscomparable tothatofthedatabasecondensers; therefore theshearstressesintheshellplatewouldnotbeanyhigherthanthedatabasecondensers forthesame"g"load.ThisisapparentfromthedatainTable3.Thesecondreasonisthattheanchorboltshearareasincomparison tooperating weightsarecomparable tothedatabasecondensers forallshellsexcepttheintermediate pressureshell.Thisisillustrated inFigure5inwhichtheSSEScondenser anchorsareactuallylesscriticalthantheanchorsofthedatabasecondensers exceptfortheintermediate pressureshell,ThethirdreasonisthattheanchorsfortheSSEScondenser havemorethanenoughcapacitytowithstand theforcesfromaDBEeventincombination withoperating loads.Thisspecificanchorcapability isdiscussed insubsection 3.3.Theanchorconfiguration fortheSSEScondenser shellsisnotnecessarily thesameasthatoftheddatabasecondensers.
FortheSSEScondenser shells,baseshearloadsaretakenbyweldsofthecondenser toembeddedplatesatlocations 1and4ofFigure7.Theanchorboltsarenotdesignedforshearsbecausetheholesinthecondenser baseareoversized, andtheweldsandguidesareastifferloadpathforshearloads.Sincetheanchoratlocation4isaguideinonedirection, theweldsatlocation1aresizedtotakealltheshearinthedirection paralleltotheturbineaxis.Forloadsperpendicular totheturbineaxistheanchorsatlocation1and4bothcontribute toresisting shears.InFigure5the"lowerbound"anchorareaisonlytherootareaoftheweldsactiveinthegivendirections.
The"upperbound"areaisthetotalofanchorboltsareaonly.Thisconservatively
<<ssumesthattheweldsfailbeforetheanchorboltsareeffective inresisting shears.Thecapacityto11


FIGURE5AAnchorageCapacity-to-DemandRatio:ParalleltoTurbineGeneratorAxisComparisonofSUSQUEHANNACondenser(Unit1or2)withRepresentativeCondensersfromEarthquakeExperienceDatabase0.00020.00018E0.000160.00014O0.00012E0.0001V)0.000080.000060.00004~f)0.00002QUpperBoundgLowerBoundMossLandingEICentroSUSQUEHANNASUSQUEHANNASUSQUEHANNAHighPressureIntermediatePressureLowPressureFlGURE5BAnchorageCapacity-to-DemandRatio:PerpendiculartoTurbineGeneratorAxisComparisonofSUSQUEHANNACondenser(Unit1or2)withRepresentativeCondensersfromEarthquakeExperienceDatabase0.00020.000180.00016a0.000140.00012M0.00010.000080.00006a)0.000040.00002QUpperBoundgLowerBoundMossLandingEICentroSUSQUEHANNASUSQUEHANNASUSQUEHANNAHighPressureIntermediatePressureLowPressure15 lAOIAOl.iOb0l.000O.IOt5IClOOAO0LEGENDELCENTROSTEhMPLhHT,1979IMPERIhLVhLLEYEQ~UhLLEYSTEAMPLhHT,1971ShNFERNANDOEQ~HOSSLhHDINGSTEhMPLhNT,1989LOMhPREThEQ~SUSQUEEOBfhDESIGNBhSISEhRTHQUhKEORMONDBEhCHSTEhMPLhNT,1973PT.MhGUEQPGh~0.208FUKhSHMlNUCLEhRPLhNT,1978MIYhGIKEN-OKIEQ.PGh~0.138PI.OTTEDAT5%DAMPINGOAO0400.000.05.0IO.Ol5.0f0.030.0Frequency(Hz)Figure6:ComparisonofSusquehannaGroundResponseSpectrumtoDataBaseSpectra FlGVRE7AnchorSystemforSUSQUEHANNACondenserUnit0or2DhtributlooofAnchorBoltsbyTensileArea/LocationShellUnitAxleofTurbineGeneratorVarieaLocationTotal7.609.507.603.803.804S.80IntermediatePreaaure(ln"2)7.603.803.807.603.803.8030AO(In"2)7.6020.007.603.803.8062.80329IAnchorboltsresistloadInverticaldlrectlon.WeldstoembeddedplateassemblyresistloadslnhorizontaldlrectlonLOAnchorBoltsresistloadlnverticaldirection.Nohardrestraintinhorizontaldirections(slidingfrictiononly).OAnchorBoltsresistloadlnverticaldlrecthn.Guidebarsresistloadlndirectionperpendiculartoaxisofturbinegenerator.Nohardrestraintperalleltoaxisofturbinegenerator(slidingfrictiononly).17 demandratiosfortheintermediatepressurecoridenserarelowerthanthecomparabledatabasecondensers.Thisdoesnotrepresentaconcernwhentheactualanchorcapacityiscomparedtotheseismicloadsinsubsection3.3.33CapabilityofAnchorstoWithstandDesignBasisEarthquakeLoads.HighPressureCondenser:ThemaximumtensionfromtheDBEforcesincombinationwiththeoperatingloadsis'estimatedtobe493.4kipsatlocations2or3comparetotheanchorboltscapacityofabout897kips.ThemaximumbaseshearfromDBEis448kips.Thisshearwouldberesistedinanumberofways:friction,shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovementstodevelopboltshears.Itwouldbeunconservativetoassumethattheweldsandanchorboltsactconcurrentlytoresistshearsincetheboltholesareoversize.Capacitiesofthethreeshearresistantphenomenonareasfollows:frictionfromresultantnormalforcesbetweencondenserandembeddedplateusinga0.10frictionfactor=183kipsweldcapacity=445kipsshearcapacityofanchorboltsnotintension=1814kipsItisreasonabletoassumethatthefrictionisavailableincombinationwithweldcapacityorincombinationwithboltcapacity.ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.IntermediatePressureCondenser:ThemaximumtensionfromtheDBEforcesincombinationwiththeoperatingloadsisestimatedtobe91kipsatlocations2or3comparetotheanchorboltscapacityofabout359kips.ThemaximumbaseshearfromDBEis417kips.Thisshearwouldberesistedinanumberofways:friction,shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovementstodevelopboltshears.Itwouldbeunconservativetoassumethattheweldsandanchorboltsactconcurrentlytoresistshearsincetheboltholesareoversize.Capacitiesofthethreeshearresistantphenomenonareasfollows:/XJttsTttncvzvO.lofrictionfromresultantnormalforcesbetweencondenserandembeddedplateusinga~frictionfactor=171kips18 weldcapacity=284kipsshearcapacityofanchorboltsnotintension=1814kipsItisreasonabletoassumethatthefrictionisavailableincombinationwithweldcapacityorincombinationwithboltcapacity.ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.LowPressureCondenser:ThemaximumtensionfromtheDBEforcesincombinationwiththeoperatingloadsisestimatedtobe905kipsatlocations2or3comparetotheanchorboltscapacityofabout1890kips.ThemaximumbaseshearfromDBEis330kips.Thisshearwouldberesistedinanumberofways:friction,shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovementstodevelopboltshears.Itwouldbeunconservativetoassumethattheweldsandanchorboltsactconcurrentlytoresistshearsincetheboltholesareoversize.Capacitiesofthethreeshearresistantphenomenonareasfollows:Wt</tf4y.TypoCLIOfrictionfromresultantnormalforcesbetweencondenserandembeddedplateusinga+28frictionfactor=135kipsweldcapacity=445kipsshearcapacityofanchorboltsnotintension=1814kipsltisreasonabletoassumethatthefrictionisavailableincombinationwithweldcapacityorincombinationwithboltcapacity.ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.19
TABLE3Comparison ofSUSQUEHANNA Condenser toDatabase'ondensers PlantNameHorizontal gLevelExperienced Manufacture WidthxLengthxHeight(Ft)(Ft"2)(Lbs)HeatExchangeOperating WeightShellThickness
,
/Mateial(In)/(ASTM)TubeSupportsThickness
4.0IVLEAKAEONYRLPIPINSeismicallyanalyzedpipingwithintheMSIVLeakageAlternateTreatmentMethodincludesthemainsteamlinefromcontainmentisolationvalvestotheturbinestopvalves,thebypasspipingfromthemainsteamlinetothemaincondensers,themainsteamdrainlineheaderfromcontainmentisolationvalvestoin-linepipeanchors,andportionsofmainsteambranchconnectionlinestoin-linepipeanchors.DesignmethodsfortheseanalyzedlinesareconsistentwithseismiccategoryIqualificationmethodsfortheSSESanddesignmarginsareaccordinglyadequatetoassureacceptableseismicperformance.Portionsofthesemainsteamanddrainlinepipingsystemshavenotbeenseismicallyanalyzed.SincesystemredesigntoseismiccategoryIrequirementswouldbeexceedinglycostly,analternateevaluationmethodhasbeenutilizedtodemonstrateseismicadequacy.NonseismicallyanalyzedpipingsystemswereassessedtodemonstratethatSSESpipingandpipesupportsfallwithintheboundsofa"seismicexperiencedatabase".Section1.0detailsthebackgroundforthishistoricaldatabaseaswellastheconstructioncodeandseismicwalkdownreviewsperformedtodemonstrateseismicadequacy.Thecodereviewpurposewastoinsureadequatedeadloadsupportmarginandductilesupportbehaviorwhensubjectedtolateralloads.SeismicwalkdownswereperformedtoverifythatSSESpipingandinstrumentationarefreeofimpactinteractionsfromfallingandtheproximityordifferentialmotionhazards.Conditionsoutsidetheexperienceddatabaseboundary(outliers)arebeingreviewedtodemonstratereasonableassuranceoftheintegrityoftheassociatedpipingsystemsandcomponentsundernormalandearthquakeloading.Inaddition,arepresentativeboundingpipesupportsampleonthe4"maindrainlinewillbeevaluatedtodemonstrateanchoragemargins.Thesereviewsdemonstratedthatthenon-seismicanalyzedpipingsystemsconsistofweldedsteelpipeandstandardsupportcomponents,consistentwiththeconstructionstandardsassociatedwiththeseismicexperiencedatabasepipingsystems.Reviewsalsodemonstratedthatadequatedesignmarginsexistfortypicalorboundingpipingsystemsupports.Specificdatausedintheevaluationsissummarizedbelow.Forthemainsteamdraininterconnectedpiping,itwasdemonstratedthatadequatedesignmarginsexisttoprovidereasonableassurancethatpipingpositionretentionwillbemaintainedbythepipingsystemdeadweightsupportsundernormalaswellasearthquakeloadings.Walkdownresultsindicatedthatadditionalsupportswouldberequiredtoeliminatethepotentialforpipingsysteminteractions.4.1MainSteamandTurbineBypassNofailuresofmainsteampipingwerefoundintheearthquakeexperiencedatabaseasdocumentedinNEDC-31858P.ThesepipingsystemsatSSESweredesignedinaccordancewiththeASMECodeSectionIII,Class2andANSIB31.1requirements,usingresponsespectrumanalysistechniques.Theanalysismodelsincludedthemainsteampiping,thebypasslines,andbranchpipinguptoseismicanchors.20
/Number(tn)TubeSheetsThickness (In)TubeSizeDiameter(ln)/Length(Ft)MossLanding0.40Ingersoll Rand36x65x4743500031150003/4A-285C3/4-151/65'rmond Beach0.20South.Western27x52x2021000017675003/4A-285C5/8-141.251"/53'USQUEHANNA (HighPressure) 0.21"~Ingersoll Rand29x49x5621327003/4A-285C5/8-141.501/50'USQUEHANNA (Intermediate Pressure) 0,21'0Ingersoll Rand29x39x5619843003/4A-285C5/8-111/40'USQUEHANNA (LowPressure) 0.21*'ngersoll Rand29x29x5621970015727003/4'-285C5/8W1/30'atabase information fromNEDC-31858P Revision2,September 1993.AppendixD,Table4-1andTable4-3DBEdesignbasisis0.21ghorizontal for5hdamping,peakofgroundresponsecurve,atcondenser base(SeeFigure6)


ThemainsteamlinesenvelopthepipingfromcontainmentisolationvalvesFO28A/B/C/DtotheturbinestopvalvesMSV-1/2/3/4andincludethedriplegsplusportionsofthesupplylinestothesteamsealevaporatorsuptoin-linepipeanchors.Theturbinebypassanalysisincludespipingfromthemainsteamlinestothecondenserplusportionsofthesteamsupplylinestothereactorfeedpumpturbinesandsteamairejectorsuptoin-lineanchors.ThesepipingsystemsweredesignedusingreactorandturbinebuildingresponsespectrainputstoperformdynamicseismicanalysistowithstandtheOBEandDBEloadingsincombinationwithotherapplicabledesignloadsinaccordancewiththeSSESdefinedloadingcombinations.Designmarginsforthereferencedmainsteamandturbinebypasspipingsystemsarethoseinherentbyapplicationoftheseismicdesigncodes.4.1.1DesignBasis4.1.1.1PipingDesignCodeASMEIII,Class2,1971EditionincludingWinter1972AddendaandB31.1,1973Edition4.1.1.2PipingDesignA.DesignTemperature:585FDesignPressure:1350psi-mainsteam1350psi-turbinebypassB.Pipesize,schedule,andD/tSizeNPS24241810.7510.758.6254.500Quickness1.0760.9411.1560.7190.5940.594OA38~Dt251615181410C,TypicalSupportSpacing:B31.1suggestedspanD.SupportTypes:springs,struts,snubbers,boxtype,E.DesignLoading:weight,thermal,seismic,steamhammerF.AnalysisMethod:linearelastic,seismicresponsespectrum,steamhammertimehistory21 G.SeismicandDynamicDesignBasis:responsespectraanalysesusingQoorresponsespectrathatwerederivedbasedonthegroundDBEwithapeakgroundaccelerationof0.10g.4.1.13PipeSupportDesignCodeAISCandANSIB31.14.1.2MarginAssessmentDesignmethodsfortheanalyzedmainsteamandturbinebypasspipingareconsistentwithseismicCategoryIqualificationmethodsforSSES.Theseismicwalkdownsidentifiedminorinteractionissuesthatcouldbepotentialsourceofdamage.Actionshavebeeninitiatedtoresolvetheseissues.Basedonactionimplementation,thedesignmarginsassociatedwiththesesystemsandtheirsupportingstructureswillbeadequatetoinsurepipingsystemintegrityunderprojectedseismicperformance.4.1.3VeriTicationWalkdownResultsThewalkdownresultsarepresentedinTables5and6forUnits1and2,respectively.42MainSteamDrainstoCondenserThemainsteamdrainlinetothecondenserconsistsofsafety(Class2)andnon-safetyrelatedpiping.Thesafetyrelatedpipeandportionsofthenon-safetypipinguptoin-linepipeanchorsdownstreamofisolationvalvesHV-1/241F019andF020wereseismicallyanalyzed.ThesepipingsystemsweredesignedinaccordancewiththeASMECode,SectionIII,Class2andANSIB31.1requirements,usingresponsespectraanalysistechniques.Theremainingmainsteamdrainandassociatedpipingwereanalyzedfordeadweightandthermalloadsusingcomputeranalysisandspacingcriteria.Thispipingissimilartopipingfoundintheseismicexperiencedatabase.Theseismicverificationwalkdownsidentifiedminorinteractionissuesthatcouldbepotentialsourcesofdamage.Actionshavebeeninitiatedtoresolvetheseissues.22 4.2.1DesignBasis4.2.1.1PipingDesignCodesASMEIII,Class2,1971EditionincludingWinter1972AddendaandB31.1,1973Edition4.2.1.2PipingDesignA.DesignTemperature:585FDesignPressure:1350psiB.Pipesize,schedule,andD/tS~izeNPS'iisickness~t'4.53.5131513150.4380.4380.2500.35810854C.TypicalSupportSpacing:B31.1suggestedspanD.SupportTypes:springs,struts,snubbersE.DesignLoading:weight,thermal,seismicF.AnalysisMethod:linearelastic,seismicresponsespectrumG.SeismicandDynamicDesignBasis:responsespectraanalysesusingQoorresponsespectrathatwerederivedbasedonthegroundDBEwithapeakgroundaccelerationof0.1g.4.2.1.3PipeSupportDesignCodeAISC,ANSIB31.1,andMSSSP584.2.2MarginAssessmentDesignmethodsfortheseismicallyanalyzeddrainpipingareconsistentwithseismicCategoryIqualificationmethodsforSSES.Therefore,thedesignmarginsassociatedwiththesesystemsandtheirsupportingstructureswillbeadequatetoinsurepipingsystemintegrityunderprojectedseismicperformance.23 Theobjectiveoftheassessmentofthenon-seismicMainSteamDrainpipingistodemonstratethatpipingpositionretentionwillbemaintainedduringaseismiceventplusprovidesassurancethatthepipesupportswillbehaveinaductilemannerandthatalllinesarefreeofknownseismichazards.Inaddition,itwillestablishthattheseSSESpipingsystemswillperforminamannersimilartopipingandsupportsthathavebeenobservedtodemonstrategoodseismicperformance.ThemethodologyutilizedtodemonstratethemarginsinherentintheSSESnon-seismicpipingsupportdesignsisbasedon:ThegroundseismicinputisbasedonthegroundDBEwhichisconservativelydefined.Thecalculatedpipingseismicresponseisbasedon5%dampedin-structureresponsespectraasrecommendedinEPRINP-6041.ThereaderisreferredtothefoHowingsubsection4.2.2.1formoredetails.~Thecomponentsupportcapacityisconservativelyestimatedbasedonthevendorratedvalues.Theevaluations'oalistoproduceaHigh-Confidence-Low-ProbabilityofFailure(HCLPF)forthewalkdownoutliersandarepresentativepipesupportsample.Thisshouldprovidethedesiredreasonableassuranceofgoodseismicperformance.4.2.2.1SeismicDemandTheoriginalseismicdesignoftheTurbineBuildingincludedthedevelopmentofthreelumpedmassmodelsfortheeast-west,north-south,andverticaldirections.TheseismicQoorcurvesweregeneratedtodetermineseismicanchorforcesanddisplacementsforthepipingsystemsthatareattachedtotheTurbineBuilding.TheseismicQoorcurveswereonlygeneratedfor1/2%and1.0%equipmentdampingvalues.Theexisting1/2%and1%dampedQoorcurveswillbeextrapolatedtogenerate5%dampedDBEQoorcurvesfortheevaluationofthewalkdownoutliersandarepresentativepipesupportsample.Duringthemarginassessment,5.0%dampedrealisticmedian-centered,withnointentionalconservativebias,Qoorcurveswillbedeveloped,ifnecessary,basedontheNUREG/CR-0098mediangroundspectraanchoredat0.1gand0.067gpeakgroundaccelerationsforhorizontalandverticaldirections,respectively.Variabilitiesassociatedwithstructurefrequency,structuredamping,androckmodulusaresigniQcantinthedevelopmentoftheseismicQoorcurves.Thesemodelparameterswillbeselectedinarandomprocess.Anumberofearthquaketimehistorieswillbeutilizedwiththerandomlyselectedsetsofmodelparametervalues.Toaccountfortheuncertaintyinthestructuralfrequencycalculations,thepeaksoftheseismicQoorcurvesareshiftedratherthanbebroadened.24 Itshouldbenotedthattheidentifieditemsduringtheseismicverificationwalkdownsaretaggedasoutlierssincetheydidnotfallwithintheboundsoftheearthquakeexperiencedatabase.Thepeakaccelerationvaluesofthedatabasegroundspectraareusuallygreaterthan0.9gwhilethepeakaccelerationvaluefortheDBEatSSESisabout0.21gfor5%equipmentdampingasshowninFigure6.InadditiontotheseismicDBEloads,deadweightandoperatingmechanicalloadsareaccountedfor.Operatingmechanicalloadsforthissystemarethermalexpansionloadsanddesigndeadweightsupportloadsareconsistentwithtributaryareaweightprocedures.4.2.2.2PipeSupportComponentCapacitiesThesupplementalfieldverificationdeterminedthatthesupporttypesusedareconsideredtohavegoodseismicperformance.Thesystemispredominantlysupportedfordeadweightutilizingrodhangers.'omponentdesignsareconstructedfromstandardsupportcatalogpartstypicallyconsistingofclamps,threadedrods,weldlesseyenuts,turnbuckles,weldinglugsandareattachedtoeitherconcreteorstructuralsteel.Thesesupporttypesaredesignedtoresistverticalloadsintension.Designcapacitiesareprovidedbymanufactures'oadratingdatasheets.LoadcapacityratingsforcomponentstandardsupportsaretypicallybasedontestingandutilizeafactorofsafetyoffiveinaccordancewithMSSSP-58.Theloadonwhichtheloadcapacitydata(LCD)isbasedisthereforeafactoroffivehigherthanthecatalogloadrating.ThemargincapacitiesforeachsupportcomponentaretakenastheLCDx5x0.7(EPRINP-6041).Includingthermaleffectsonallowableloads,componentstandardsupportsdesignedbyloadratingiscalculatedasfollows:TLx0.7Su/Su'here:TL:Supporttestloadislessthanorequaltoloadunderwhichsupportfailstoperformitsintendedfunction;TL=LCDx5Su:MaterialultimatestrengthattemperatureSu:MaterialultimatestrengthattesttemperatureStructuralsteelsupportmembersareevaluatedusingsectionstrengthbasedontheplasticdesignmethodsinPart2ofAISCor1.7timestheAISCworkingstressallowables.ConcreteanchorboltsareevaluatedusingdatafromtheA46/SQUGcriteria,AppendixC.4.2.3VerificationWalkdownResultsThewalkdownresultsarepresentedinTables5and6forUnits1and2,respectively.25
FIGURE3SizeComparison oftheSUSQUEHANNA Condenser (Unit1or2)withRepresentative Condensers fromEarthquake Experience OrmondBeachSUSQUEHANNA HighPressureSUSQUEHANNA Intermediate PressureSUSQUEHANNA LowPressureMossLanding100000200000300000400000500000HeatTransferArea(Sq.Ft.PerShell)OrmondBeachSUSQUEHANNA HighPressureSUSQUEHANNA intermediate PressureSUSQUEHANNA LowPressureMossLanding0500000100000015000002000000250000030000003500000Operating Weight(LbsPerShell)13 FIGURE4Dimensional Comparison ofSUSQUEHANNA Condenser (Unit1or2)andRepresentative Condensers fromtheEarthquake Experience Database~50~40CQP-302010OrmondBeachSUSQUEHANNA (a)HeightComparison (BaseToExpansion Joint)MossLanding40'ighPreeeure39'termedlate Preeeure29'owPreeeure~MossLandlng6&7 (65'x36')
~SUSQUEHANNA Unlt1or2HighPressureIntermedhte PressureLowPressure(49'29')(89'29')(29'29')mmOrmondBeacht&2(52'2T)(b)ShellFootprint Comparison 14


43InterconnectedSystemsTheinterconnectedsystemsconsistoftheremainingpipingwithintheMSIVLeakageAlternateTreatmentMethodthatwasnotseismicallyanalyzed.Thesesystemsarecomposedofweldedsteelpipingandstandardsupportcomponents.Analyzedbyruleandapproximatemethods,thesepipingsystemsaresimilartothepipingfoundintheseismicexperiencedatabasethathaveexperiencedseismiceventsinexcessoftheSSESdesignbasisearthquake.Interactionissuesidentifiedinthewalkdownthatcouldbepotentialsourcesofdamagewereevaluated,and,wherenecessary,actionshavebeeninitiatedtoeliminatethispotential.ItwillbedemonstratedthatadequatedesignmarginsexistfortheseinterconnectedsystemstoprovidereasonableassurancethatpipingpositionretentionwillbemaintainedbythepipingsystemdeadweightsupportsundernormalandDBEloadings.4.3.1DesignBasisTable4liststhedesignparametersassociatedwiththeseinterconnectedpipingsystems.4.3.2MarginAssessmentSameasforMainSteamDrainstoCondenser,Section4.2.2.Basedonthepipingsystemconstructionmaterialreviews,seismicwalkdownsperformedforimpactinteractionassessment,andtherepresentativesystemevaluations,interconnectedsystempipingpositionretentionwillbeinsuredandsystemsimilaritytotheseismicexperiencedatabasewillbedemonstrated.ThegoalistodemonstratethattheinterconnectedsystemsarecapableoffunctioningtosupporttheoperationoftheMISVLeakageAlternateTreatmentMethodduringandfollowingtheapplicableSSESDBE.4.3.3VerificationWalkdownResultsThewalkdownresultsarepresentedinTables5and6forUnits1and2,respectively.
FIGURE5AAnchorage Capacity-to-Demand Ratio:ParalleltoTurbineGenerator AxisComparison ofSUSQUEHANNA Condenser (Unit1or2)withRepresentative Condensers fromEarthquake Experience Database0.00020.00018E0.000160.00014O0.00012E0.0001V)0.000080.000060.00004~f)0.00002QUpperBoundgLowerBoundMossLandingEICentroSUSQUEHANNA SUSQUEHANNA SUSQUEHANNA HighPressureIntermediate PressureLowPressureFlGURE5BAnchorage Capacity-to-Demand Ratio:Perpendicular toTurbineGenerator AxisComparison ofSUSQUEHANNA Condenser (Unit1or2)withRepresentative Condensers fromEarthquake Experience Database0.00020.000180.00016a0.000140.00012M0.00010.000080.00006a)0.000040.00002QUpperBoundgLowerBoundMossLandingEICentroSUSQUEHANNA SUSQUEHANNA SUSQUEHANNA HighPressureIntermediate PressureLowPressure15 lAOIAOl.iOb0l.000O.IOt5IClOOAO0LEGENDELCENTROSTEhMPLhHT,1979IMPERIhLVhLLEYEQ~UhLLEYSTEAMPLhHT,1971ShNFERNANDOEQ~HOSSLhHDINGSTEhMPLhNT,1989LOMhPREThEQ~SUSQUEEOBfh DESIGNBhSISEhRTHQUhKE ORMONDBEhCHSTEhMPLhNT,1973 PT.MhGUEQPGh~0.208 FUKhSHMlNUCLEhRPLhNT,1978 MIYhGIKEN-OKIEQ.PGh~0.138 PI.OTTEDAT5%DAMPINGOAO0400.000.05.0IO.Ol5.0f0.030.0Frequency (Hz)Figure6:Comparison ofSusquehanna GroundResponseSpectrumtoDataBaseSpectra FlGVRE7AnchorSystemforSUSQUEHANNA Condenser Unit0or2Dhtributloo ofAnchorBoltsbyTensileArea/LocationShellUnitAxleofTurbineGenerator VarieaLocationTotal7.609.507.603.803.804S.80Intermediate Preaaure(ln"2)7.603.803.807.603.803.8030AO(In"2)7.6020.007.603.803.8062.80329IAnchorboltsresistloadInverticaldlrectlon.
MBlockwallsintheTurbineBuildinghavebeendesignedusingtheworkingstressmethodofreinforcedconcretedesigninaccordancewiththe1973/1976UBC.Thewallshavebeenrecheckedforseismicloadsusingthe1979UBCwitharesultingseismicloadingof0.084g.minimum.Inadditionsomeofthewallshavebeendesignedforapiperupturepressureof480lb/ft>andlargebore(4"diameterandlarger)pipesupportloads.Allofthewallshavebeendesignedforthemaximumloadsfromfieldrunattachments.Fieldrunattachmentshavebeencontrolledanddocumented.Cuttingofreinforcingsteelintheblockwallshasbeencontrolledanddocumented.Constructionofthewallsperthecivildrawingsandspecificationshasassuredcompliancewiththeblockwalldesignrequirements.AlloftheblockwallswhichareofconcernfortheMSIVLCSEliminationProjecthavebeendesignedascompositewallsconstructedasdoublewythereinforcedconcreteblockwallswith3000psifillconcretebetweenthewythe'swithallopencellsgrouted.Thethicknessofthesewallsvariesfrom2'-0"minimumto4'06"maximum.OnewalllocatedintheReactorBuildingwhichwasdesignedforOBE/DBE,SRVandLOCAloadsisonly1'-9"thick.TheblockwallswhichareofconcernfortheMSIVLCSEliminationProjectareevaluatedwithseismicloadsusingtheDBEQoorspectra.27
Weldstoembeddedplateassemblyresistloadslnhorizontal dlrectlonL OAnchorBoltsresistloadlnverticaldirection.
Nohardrestraint inhorizontal directions (slidingfrictiononly).OAnchorBoltsresistloadlnverticaldlrecthn.
Guidebarsresistloadlndirection perpendicular toaxisofturbinegenerator.
Nohardrestraint peralleltoaxisofturbinegenerator (slidingfrictiononly).17 demandratiosfortheintermediate pressurecoridenser arelowerthanthecomparable databasecondensers.
Thisdoesnotrepresent aconcernwhentheactualanchorcapacityiscomparedtotheseismicloadsinsubsection 3.3.33Capability ofAnchorstoWithstand DesignBasisEarthquake Loads.HighPressureCondenser:
ThemaximumtensionfromtheDBEforcesincombination withtheoperating loadsis'estimated tobe493.4kipsatlocations 2or3comparetotheanchorboltscapacityofabout897kips.ThemaximumbaseshearfromDBEis448kips.Thisshearwouldberesistedinanumberofways:friction, shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovements todevelopboltshears.Itwouldbeunconservative toassumethattheweldsandanchorboltsactconcurrently toresistshearsincetheboltholesareoversize.
Capacities ofthethreeshearresistant phenomenon areasfollows:frictionfromresultant normalforcesbetweencondenser andembeddedplateusinga0.10frictionfactor=183kipsweldcapacity=445kipsshearcapacityofanchorboltsnotintension=1814kipsItisreasonable toassumethatthefrictionisavailable incombination withweldcapacityorincombination withboltcapacity.
ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.Intermediate PressureCondenser:
ThemaximumtensionfromtheDBEforcesincombination withtheoperating loadsisestimated tobe91kipsatlocations 2or3comparetotheanchorboltscapacityofabout359kips.ThemaximumbaseshearfromDBEis417kips.Thisshearwouldberesistedinanumberofways:friction, shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovements todevelopboltshears.Itwouldbeunconservative toassumethattheweldsandanchorboltsactconcurrently toresistshearsincetheboltholesareoversize.
Capacities ofthethreeshearresistant phenomenon areasfollows:/XJttsTttncvzvO.lofrictionfromresultant normalforcesbetweencondenser andembeddedplateusinga~frictionfactor=171kips18 weldcapacity=284kipsshearcapacityofanchorboltsnotintension=1814kipsItisreasonable toassumethatthefrictionisavailable incombination withweldcapacityorincombination withboltcapacity.
ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.LowPressureCondenser:
ThemaximumtensionfromtheDBEforcesincombination withtheoperating loadsisestimated tobe905kipsatlocations 2or3comparetotheanchorboltscapacityofabout1890kips.ThemaximumbaseshearfromDBEis330kips.Thisshearwouldberesistedinanumberofways:friction, shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovements todevelopboltshears.Itwouldbeunconservative toassumethattheweldsandanchorboltsactconcurrently toresistshearsincetheboltholesareoversize.
Capacities ofthethreeshearresistant phenomenon areasfollows:Wt</tf4y.TypoCLIOfrictionfromresultant normalforcesbetweencondenser andembeddedplateusinga+28frictionfactor=135kipsweldcapacity=445kipsshearcapacityofanchorboltsnotintension=1814kipsltisreasonable toassumethatthefrictionisavailable incombination withweldcapacityorincombination withboltcapacity.
ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.19
,


TABLE4INTERCONNECTEDSYSTEMDESIGNPARAMETERSUNIT1AND2SystemDeslgnatlonPlplngDesignTempPres.t'F)(pslg)SzeSupportsD/tSpacingSupportTypesDesignCodeLoading(Note1)SelsmloDealnBasisToAnchorRemainderMainSteamDrainsFrom8'DripLegs812'DripLegASMESecthnIa831.140191607xxs4.8xxa3.7160531604$ANSI831.1RcdHangersSpringsConcreteAnchorsPipeStrapsStrucLMemb.AISCMSSSP58DWThermalHydroMainSteamDripLegLevelInstrumentatlonASMESectionIIIANSI831.1RodHangersSpringsConc.Anch.PipeStrapsStruct.Memb.StrutsAISCMSSSP58DWThefnlalHydroNoneMainSteamAveragingManifoldtoPressureTransducerPanelsASMESectIIIANSI831.1120118ANSI831.1xxa4.8xxa3.'7RodHangersSprtngsStrutsConc.Anch.RpeStrapsStrucLMembHSCMSSSP58DWThenllalHydroNoneMainSteamTurbineStopValveDrains831.18078160716053ANSI831.1RcdHangersSpringsBoxTypeStruct.MembAISCMSSSP58OWTheBllalHydroNoneNone TABLE4~INTERCONNECTEDSYSTEMDESIGNPARAMETERSUNIT1AND2MSIVDrainh4lneAnchorstoHPCondenserIlncludasDraintoUIW8BypassfromHV1/2lf-F021)ANQ831.1TempPreLtF)(pslg)Sae5851350I'03ANSI831.1184Supports0/tSpacingSupportTypesRodHangersSpringsStructMemb.Cono.Anch.DesignCodeLoading(Note1)ToAnchorNoneRemainderSelsmloDealnBasisHPCITurbineSteamDrainfromIn4lneAnchortoM.LDrainHeaderANSI831.15851350xxa"ANS831.1AISCMSSSPSSRCCTurbineSteamDrainfromh4lneAnchortoM.S.DrainHdr.SteamSupplytoAlrEjectorBeyondHV-1/2010'ofirstaehmloanchorANSI831.1ANSI831.158513501'851350103ANS831.1ASMESect.IllANS831.1RodHangersPIpeStrapsCono.Anch.SnubbersStruct.Memb.AISCMSSSP58AISCMSSSP58OWThermalHydroSelsmloR.LAnalyshuslngOBERFPTSupplyBeyondValveHV-t/20111tofirstselsmhanchor831.11I.SASMESect.IIIANSI831.1AISCMSSSP58DWThermalHydroSelsmlcRS.AnalystsUsingDBE(Note2)SteamSealEvaporatorVneBeyondHV-1/20109tofirstaelsmhanchorANSI831.1ASMESectIIIANSI831.1SpdngsSnubbereStruckMemb.ASCMSSSP58OWThermalHydroSelsmhRLAnalysisusingDBEINote2)
==4.0 IVLEAKAEONYRLPIPINSeismically==
TABLE4INTERCONNECTEDSYSTEMDESIGNPARAMETERSUNIT1AND2NOTES:1.ANALYSSMETHODISUNEAREIASTICFORBOTHHANDCALCULATIONSUSINGSPACINGCRITERIAANDME101COMPUTERANALYSS.2.SHSMICAU.YANALYZEDFROMTHEMAINSTEAMBRANCHCONNECTIONTOTHEFIRSTIN-UNEANCHOR.
analyzedpipingwithintheMSIVLeakageAlternate Treatment Methodincludesthemainsteamlinefromcontainment isolation valvestotheturbinestopvalves,thebypasspipingfromthemainsteamlinetothemaincondensers, themainsteamdrainlineheaderfromcontainment isolation valvestoin-linepipeanchors,andportionsofmainsteambranchconnection linestoin-linepipeanchors.Designmethodsfortheseanalyzedlinesareconsistent withseismiccategoryIqualification methodsfortheSSESanddesignmarginsareaccordingly adequatetoassureacceptable seismicperformance.
7 TABLEdOutllerldentltlcathnandResolutionStatusUNITfnSteanDraintoCoadcnserSS1Sf-i5upyortESD-LLt-bignayslideoCCtESD-litfnproxfnftytoblockeallSupportESD-LLi-Sgf5Sy-ESD-fit-58$<<cyslideoCCValveSVfaf-7011outsideIgbgfCriteriaiyDCESCXAI.TAfIJDIEWOE>Ayyyfpesefsnfooovenentfsheingevaluatedblockwallfsevaluatedan4Coundacceptableas-lsDLCCerentfalsefsnfoanm<<atbetweenReactorSuffdfngandTurbineSufldlnglabefngevaluatedValvesefssLfooyerabflftyandpipeintegrityarebeingevaluatedfnSteanCrc<<NITtostopTafnAl10ESD115attache4toblockeallblockwallsefsafacapacityfsbeingevaluate4A0"DripLegsAl5SofateaboveWLTAthruDSoiatsereheingevaluatedforpositionretentionHainStean57pacstoCoodasorAS-5lnterectfonbetweenESD-102-SagA05crossaroundpipeDES-105-55,S7fnpro@Loftytoblockeall055-105-55,ESD-L00-55,055-105-ELEattachedtoblockwall5efsolopryingectionoCiblineonsuppoctfsbeingevaluatedblockwallisevaluatedandCoundacceptableasisblockwellfsevaluatedendfoundacceptablees-fsHcfnStoatoEV10107SteanJctAfr+actorAS-IAS5TalveSV-LOL07fnyroxfnftytoblockeallValveET-10107inyrorfnftytotireprotection5yra7blockwallfsevaluatedsndCoundacceptableaa-fsTaInfshefngevaluatedCorCallsaCeposition TABLE5OutllerMentNcatlonIndResolutionStatuellHITInStoatoStemJetAirEJectorCi-1{frmIT-10101toET-I0701$)2$0-100inproxinitytoblock<<cLL(FOIESIIALyAIUJEEIEOE)AypAcceptableas-ieCl2A~ESD-100StenchicasnayslideoffTalesST-10701$inprorinltytepiroprotectionSprayXAcceptableasisXAcceptableas-lslnSte>>DripLagDrains$11$12$1-5DI-a$15$1-0$17II/2Dbb-101,2ga<<ndorCableTreyIatoracticnbot<<om1-1/2NS-1stA10"Bllineiaterecticebot<<oen1-1/2"N$101010WlineInteractionbot<<ocn1-1/2"NS-102C"Acr.StemlineInteractionbetcem1"DS$105,ESD-I004block<<allINb-105,17'panbct<<ecnsepportsOAD-LIS,0$0-125endorcabletreyAdo0<<acyofcabletreys<<pportelabeinga<<el<<at<<4Soimiono@mentsofbothlinesarebeingecslnatodSeimionovmontsofbothlinesarebolaseeaL<<atodSeimieawmmtsofbothLineaarobeingeoalaatedSlack<<alLiseeelnatedondfo<<ndacceptableea-isSolsaieno<<montofI"pipeisbeingoval<<atod5<<pportevercpenisbeingeealnatodAdagaacyofcabletraysepportaisbeinge<<electedinStemDripLegLe<<elInstr<<aoatcticn$21IDSS-105inpresiaityteblock<<cLLblock<<alLisoval<<atedendfo<<ndacceptablees-is TABLEIOutllarMentlflcatlonandReiolutlanStatusUNITStemAveragingManifoldtopresserstraedncerpanoLS5-I1"OCO-LLSinproriaitytoblock<<aLL{ICTESTIALFAILIEWDE)PDVSlock<<aLLseimiocapacityiobeingoealnatedStopTalesSoa'tOscinetoCondansetSi-lPelvesSV-LOLOLA,S,C,DmyrequireaeimiorestraintsSi15MDliiSgiS10ASLL5tanchionsnayslideoTESeimioloadsfrasvalvesarebeingovslnatedPilwseimlaaementlsbeingovelnatedHICIStemDraintothisStemDrainSeederSS11"ESOillinprnrinitytoblock<<elLSSS5PESDLli-S55,SSiAS555tanchionsnayslideofTSlack<<aLLlsoealnatedandTonndacceptableas-isPipesoimiannementlsbeingovsinatedLnStempresserseasingLines00-21"PipeA5/0To@faglnproxiaitytoblock<<allSlack<<aLLseimiacapacitylabeinga%sleetedEeytooatliertypcsiAAncbcrageorSnpportCapacityF-FallnreandFalling{IIII)PProrinityandIopsotDDitferentialDlsplacment0-PaleoOperatorScreening  
Portionsofthesemainsteamanddrainlinepipingsystemshavenotbeenseismically analyzed.
SincesystemredesigntoseismiccategoryIrequirements wouldbeexceedingly costly,analternate evaluation methodhasbeenutilizedtodemonstrate seismicadequacy.
Nonseismically analyzedpipingsystemswereassessedtodemonstrate thatSSESpipingandpipesupportsfallwithintheboundsofa"seismicexperience database".
Section1.0detailsthebackground forthishistorical databaseaswellastheconstruction codeandseismicwalkdownreviewsperformed todemonstrate seismicadequacy.
Thecodereviewpurposewastoinsureadequatedeadloadsupportmarginandductilesupportbehaviorwhensubjected tolateralloads.Seismicwalkdowns wereperformed toverifythatSSESpipingandinstrumentation arefreeofimpactinteractions fromfallingandtheproximity ordifferential motionhazards.Conditions outsidetheexperienced databaseboundary(outliers) arebeingreviewedtodemonstrate reasonable assurance oftheintegrity oftheassociated pipingsystemsandcomponents undernormalandearthquake loading.Inaddition, arepresentative boundingpipesupportsampleonthe4"maindrainlinewillbeevaluated todemonstrate anchorage margins.Thesereviewsdemonstrated thatthenon-seismic analyzedpipingsystemsconsistofweldedsteelpipeandstandardsupportcomponents, consistent withtheconstruction standards associated withtheseismicexperience databasepipingsystems.Reviewsalsodemonstrated thatadequatedesignmarginsexistfortypicalorboundingpipingsystemsupports.
Specificdatausedintheevaluations issummarized below.Forthemainsteamdraininterconnected piping,itwasdemonstrated thatadequatedesignmarginsexisttoprovidereasonable assurance thatpipingpositionretention willbemaintained bythepipingsystemdeadweightsupportsundernormalaswellasearthquake loadings.
Walkdownresultsindicated thatadditional supportswouldberequiredtoeliminate thepotential forpipingsysteminteractions.
4.1MainSteamandTurbineBypassNofailuresofmainsteampipingwerefoundintheearthquake experience databaseasdocumented inNEDC-31858P.
ThesepipingsystemsatSSESweredesignedinaccordance withtheASMECodeSectionIII,Class2andANSIB31.1requirements, usingresponsespectrumanalysistechniques.
Theanalysismodelsincludedthemainsteampiping,thebypasslines,andbranchpipinguptoseismicanchors.20
 
Themainsteamlinesenvelopthepipingfromcontainment isolation valvesFO28A/B/C/D totheturbinestopvalvesMSV-1/2/3/4 andincludethedriplegsplusportionsofthesupplylinestothesteamsealevaporators uptoin-linepipeanchors.Theturbinebypassanalysisincludespipingfromthemainsteamlinestothecondenser plusportionsofthesteamsupplylinestothereactorfeedpumpturbinesandsteamairejectorsuptoin-lineanchors.Thesepipingsystemsweredesignedusingreactorandturbinebuildingresponsespectrainputstoperformdynamicseismicanalysistowithstand theOBEandDBEloadingsincombination withotherapplicable designloadsinaccordance withtheSSESdefinedloadingcombinations.
Designmarginsforthereferenced mainsteamandturbinebypasspipingsystemsarethoseinherentbyapplication oftheseismicdesigncodes.4.1.1DesignBasis4.1.1.1PipingDesignCodeASMEIII,Class2,1971Editionincluding Winter1972AddendaandB31.1,1973Edition4.1.1.2PipingDesignA.DesignTemperature:
585FDesignPressure:
1350psi-mainsteam1350psi-turbinebypassB.Pipesize,schedule, andD/tSizeNPS24241810.7510.758.6254.500Quickness 1.0760.9411.1560.7190.5940.594OA38~Dt251615181410C,TypicalSupportSpacing:B31.1suggested spanD.SupportTypes:springs,struts,snubbers, boxtype,E.DesignLoading:weight,thermal,seismic,steamhammerF.AnalysisMethod:linearelastic,seismicresponsespectrum, steamhammertimehistory21 G.SeismicandDynamicDesignBasis:responsespectraanalysesusingQoorresponsespectrathatwerederivedbasedonthegroundDBEwithapeakgroundacceleration of0.10g.4.1.13PipeSupportDesignCodeAISCandANSIB31.14.1.2MarginAssessment Designmethodsfortheanalyzedmainsteamandturbinebypasspipingareconsistent withseismicCategoryIqualification methodsforSSES.Theseismicwalkdowns identified minorinteraction issuesthatcouldbepotential sourceofdamage.Actionshavebeeninitiated toresolvetheseissues.Basedonactionimplementation, thedesignmarginsassociated withthesesystemsandtheirsupporting structures willbeadequatetoinsurepipingsystemintegrity underprojected seismicperformance.
4.1.3VeriTication WalkdownResultsThewalkdownresultsarepresented inTables5and6forUnits1and2,respectively.
42MainSteamDrainstoCondenser Themainsteamdrainlinetothecondenser consistsofsafety(Class2)andnon-safety relatedpiping.Thesafetyrelatedpipeandportionsofthenon-safety pipinguptoin-linepipeanchorsdownstream ofisolation valvesHV-1/241F019 andF020wereseismically analyzed.
Thesepipingsystemsweredesignedinaccordance withtheASMECode,SectionIII,Class2andANSIB31.1requirements, usingresponsespectraanalysistechniques.
Theremaining mainsteamdrainandassociated pipingwereanalyzedfordeadweightandthermalloadsusingcomputeranalysisandspacingcriteria.
Thispipingissimilartopipingfoundintheseismicexperience database.
Theseismicverification walkdowns identified minorinteraction issuesthatcouldbepotential sourcesofdamage.Actionshavebeeninitiated toresolvetheseissues.22 4.2.1DesignBasis4.2.1.1PipingDesignCodesASMEIII,Class2,1971Editionincluding Winter1972AddendaandB31.1,1973Edition4.2.1.2PipingDesignA.DesignTemperature:
585FDesignPressure:
1350psiB.Pipesize,schedule, andD/tS~izeNPS'iisickness
~t'4.53.5131513150.4380.4380.2500.35810854C.TypicalSupportSpacing:B31.1suggested spanD.SupportTypes:springs,struts,snubbersE.DesignLoading:weight,thermal,seismicF.AnalysisMethod:linearelastic,seismicresponsespectrumG.SeismicandDynamicDesignBasis:responsespectraanalysesusingQoorresponsespectrathatwerederivedbasedonthegroundDBEwithapeakgroundacceleration of0.1g.4.2.1.3PipeSupportDesignCodeAISC,ANSIB31.1,andMSSSP584.2.2MarginAssessment Designmethodsfortheseismically analyzeddrainpipingareconsistent withseismicCategoryIqualification methodsforSSES.Therefore, thedesignmarginsassociated withthesesystemsandtheirsupporting structures willbeadequatetoinsurepipingsystemintegrity underprojected seismicperformance.
23 Theobjective oftheassessment ofthenon-seismic MainSteamDrainpipingistodemonstrate thatpipingpositionretention willbemaintained duringaseismiceventplusprovidesassurance thatthepipesupportswillbehaveinaductilemannerandthatalllinesarefreeofknownseismichazards.Inaddition, itwillestablish thattheseSSESpipingsystemswillperforminamannersimilartopipingandsupportsthathavebeenobservedtodemonstrate goodseismicperformance.
Themethodology utilizedtodemonstrate themarginsinherentintheSSESnon-seismic pipingsupportdesignsisbasedon:ThegroundseismicinputisbasedonthegroundDBEwhichisconservatively defined.Thecalculated pipingseismicresponseisbasedon5%dampedin-structure responsespectraasrecommended inEPRINP-6041.ThereaderisreferredtothefoHowingsubsection 4.2.2.1formoredetails.~Thecomponent supportcapacityisconservatively estimated basedonthevendorratedvalues.Theevaluations'oal istoproduceaHigh-Confidence-Low
-Probability ofFailure(HCLPF)forthewalkdownoutliersandarepresentative pipesupportsample.Thisshouldprovidethedesiredreasonable assurance ofgoodseismicperformance.
4.2.2.1SeismicDemandTheoriginalseismicdesignoftheTurbineBuildingincludedthedevelopment ofthreelumpedmassmodelsfortheeast-west, north-south, andverticaldirections.
TheseismicQoorcurvesweregenerated todetermine seismicanchorforcesanddisplacements forthepipingsystemsthatareattachedtotheTurbineBuilding.
TheseismicQoorcurveswereonlygenerated for1/2%and1.0%equipment dampingvalues.Theexisting1/2%and1%dampedQoorcurveswillbeextrapolated togenerate5%dampedDBEQoorcurvesfortheevaluation ofthewalkdownoutliersandarepresentative pipesupportsample.Duringthemarginassessment, 5.0%dampedrealistic median-centered, withnointentional conservative bias,Qoorcurveswillbedeveloped, ifnecessary, basedontheNUREG/CR-0098 mediangroundspectraanchoredat0.1gand0.067gpeakgroundaccelerations forhorizontal andverticaldirections, respectively.
Variabilities associated withstructure frequency, structure damping,androckmodulusaresigniQcant inthedevelopment oftheseismicQoorcurves.Thesemodelparameters willbeselectedinarandomprocess.Anumberofearthquake timehistories willbeutilizedwiththerandomlyselectedsetsofmodelparameter values.Toaccountfortheuncertainty inthestructural frequency calculations, thepeaksoftheseismicQoorcurvesareshiftedratherthanbebroadened.
24 Itshouldbenotedthattheidentified itemsduringtheseismicverification walkdowns aretaggedasoutlierssincetheydidnotfallwithintheboundsoftheearthquake experience database.
Thepeakacceleration valuesofthedatabasegroundspectraareusuallygreaterthan0.9gwhilethepeakacceleration valuefortheDBEatSSESisabout0.21gfor5%equipment dampingasshowninFigure6.InadditiontotheseismicDBEloads,deadweightandoperating mechanical loadsareaccounted for.Operating mechanical loadsforthissystemarethermalexpansion loadsanddesigndeadweightsupportloadsareconsistent withtributary areaweightprocedures.
4.2.2.2PipeSupportComponent Capacities Thesupplemental fieldverification determined thatthesupporttypesusedareconsidered tohavegoodseismicperformance.
Thesystemispredominantly supported fordeadweightutilizing rodhangers.'omponent designsareconstructed fromstandardsupportcatalogpartstypically consisting ofclamps,threadedrods,weldlesseyenuts,turnbuckles, weldinglugsandareattachedtoeitherconcreteorstructural steel.Thesesupporttypesaredesignedtoresistverticalloadsintension.Designcapacities areprovidedbymanufactures'oad ratingdatasheets.Loadcapacityratingsforcomponent standardsupportsaretypically basedontestingandutilizeafactorofsafetyoffiveinaccordance withMSSSP-58.Theloadonwhichtheloadcapacitydata(LCD)isbasedistherefore afactoroffivehigherthanthecatalogloadrating.Themargincapacities foreachsupportcomponent aretakenastheLCDx5x0.7(EPRINP-6041).
Including thermaleffectsonallowable loads,component standardsupportsdesignedbyloadratingiscalculated asfollows:TLx0.7Su/Su'here:
TL:Supporttestloadislessthanorequaltoloadunderwhichsupportfailstoperformitsintendedfunction; TL=LCDx5Su:Materialultimatestrengthattemperature Su:Materialultimatestrengthattesttemperature Structural steelsupportmembersareevaluated usingsectionstrengthbasedontheplasticdesignmethodsinPart2ofAISCor1.7timestheAISCworkingstressallowables.
Concreteanchorboltsareevaluated usingdatafromtheA46/SQUGcriteria, AppendixC.4.2.3Verification WalkdownResultsThewalkdownresultsarepresented inTables5and6forUnits1and2,respectively.
25
 
43Interconnected SystemsTheinterconnected systemsconsistoftheremaining pipingwithintheMSIVLeakageAlternate Treatment Methodthatwasnotseismically analyzed.
Thesesystemsarecomposedofweldedsteelpipingandstandardsupportcomponents.
Analyzedbyruleandapproximate methods,thesepipingsystemsaresimilartothepipingfoundintheseismicexperience databasethathaveexperienced seismiceventsinexcessoftheSSESdesignbasisearthquake.
Interaction issuesidentified inthewalkdownthatcouldbepotential sourcesofdamagewereevaluated, and,wherenecessary, actionshavebeeninitiated toeliminate thispotential.
Itwillbedemonstrated thatadequatedesignmarginsexistfortheseinterconnected systemstoprovidereasonable assurance thatpipingpositionretention willbemaintained bythepipingsystemdeadweightsupportsundernormalandDBEloadings.
4.3.1DesignBasisTable4liststhedesignparameters associated withtheseinterconnected pipingsystems.4.3.2MarginAssessment SameasforMainSteamDrainstoCondenser, Section4.2.2.Basedonthepipingsystemconstruction materialreviews,seismicwalkdowns performed forimpactinteraction assessment, andtherepresentative systemevaluations, interconnected systempipingpositionretention willbeinsuredandsystemsimilarity totheseismicexperience databasewillbedemonstrated.
Thegoalistodemonstrate thattheinterconnected systemsarecapableoffunctioning tosupporttheoperation oftheMISVLeakageAlternate Treatment Methodduringandfollowing theapplicable SSESDBE.4.3.3Verification WalkdownResultsThewalkdownresultsarepresented inTables5and6forUnits1and2,respectively.
MBlockwallsintheTurbineBuildinghavebeendesignedusingtheworkingstressmethodofreinforced concretedesigninaccordance withthe1973/1976 UBC.Thewallshavebeenrechecked forseismicloadsusingthe1979UBCwitharesulting seismicloadingof0.084g.minimum.Inadditionsomeofthewallshavebeendesignedforapiperupturepressureof480lb/ft>andlargebore(4"diameterandlarger)pipesupportloads.Allofthewallshavebeendesignedforthemaximumloadsfromfieldrunattachments.
Fieldrunattachments havebeencontrolled anddocumented
.Cuttingofreinforcing steelintheblockwallshasbeencontrolled anddocumented.
Construction ofthewallsperthecivildrawingsandspecifications hasassuredcompliance withtheblockwalldesignrequirements.
AlloftheblockwallswhichareofconcernfortheMSIVLCSElimination Projecthavebeendesignedascomposite wallsconstructed asdoublewythereinforced concreteblockwallswith3000psifillconcretebetweenthewythe'swithallopencellsgrouted.Thethickness ofthesewallsvariesfrom2'-0"minimumto4'06"maximum.OnewalllocatedintheReactorBuildingwhichwasdesignedforOBE/DBE,SRVandLOCAloadsisonly1'-9"thick.TheblockwallswhichareofconcernfortheMSIVLCSElimination Projectareevaluated withseismicloadsusingtheDBEQoorspectra.27
 
TABLE4INTERCONNECTED SYSTEMDESIGNPARAMETERS UNIT1AND2SystemDeslgnatlon PlplngDesignTempPres.t'F)(pslg)SzeSupportsD/tSpacingSupportTypesDesignCodeLoading(Note1)SelsmloDealnBasisToAnchorRemainder MainSteamDrainsFrom8'DripLegs812'DripLegASMESecthnIa831.140191607xxs4.8xxa3.7160531604$ANSI831.1RcdHangersSpringsConcreteAnchorsPipeStrapsStrucLMemb.AISCMSSSP58DWThermalHydroMainSteamDripLegLevelInstrumentatlon ASMESectionIIIANSI831.1RodHangersSpringsConc.Anch.PipeStrapsStruct.Memb.StrutsAISCMSSSP58DWThefnlalHydroNoneMainSteamAveraging ManifoldtoPressureTransducer PanelsASMESectIIIANSI831.1120118ANSI831.1xxa4.8xxa3.'7RodHangersSprtngsStrutsConc.Anch.RpeStrapsStrucLMembHSCMSSSP58DWThenllalHydroNoneMainSteamTurbineStopValveDrains831.18078160716053ANSI831.1RcdHangersSpringsBoxTypeStruct.MembAISCMSSSP58OWTheBllalHydroNoneNone TABLE4~INTERCONNECTED SYSTEMDESIGNPARAMETERS UNIT1AND2MSIVDrainh4lneAnchorstoHPCondenser Ilncludas DraintoUIW8BypassfromHV1/2lf-F021)ANQ831.1TempPreLtF)(pslg)Sae5851350I'03ANSI831.1184Supports0/tSpacingSupportTypesRodHangersSpringsStructMemb.Cono.Anch.DesignCodeLoading(Note1)ToAnchorNoneRemainder SelsmloDealnBasisHPCITurbineSteamDrainfromIn4lneAnchortoM.LDrainHeaderANSI831.15851350xxa"ANS831.1AISCMSSSPSSRCCTurbineSteamDrainfromh4lneAnchortoM.S.DrainHdr.SteamSupplytoAlrEjectorBeyondHV-1/2010'o firstaehmloanchorANSI831.1ANSI831.158513501'851350103ANS831.1ASMESect.IllANS831.1RodHangersPIpeStrapsCono.Anch.SnubbersStruct.Memb.AISCMSSSP58AISCMSSSP58OWThermalHydroSelsmloR.LAnalyshuslng OBERFPTSupplyBeyondValveHV-t/20111 tofirstselsmhanchor831.11I.SASMESect.IIIANSI831.1AISCMSSSP58DWThermalHydroSelsmlcRS.AnalystsUsingDBE(Note2)SteamSealEvaporator VneBeyondHV-1/20109 tofirstaelsmhanchorANSI831.1ASMESectIIIANSI831.1SpdngsSnubbereStruckMemb.ASCMSSSP58OWThermalHydroSelsmhRLAnalysisusingDBEINote2)
TABLE4INTERCONNECTED SYSTEMDESIGNPARAMETERS UNIT1AND2NOTES:1.ANALYSSMETHODISUNEAREIASTICFORBOTHHANDCALCULATIONS USINGSPACINGCRITERIAANDME101COMPUTERANALYSS.2.SHSMICAU.Y ANALYZEDFROMTHEMAINSTEAMBRANCHCONNECTION TOTHEFIRSTIN-UNEANCHOR.
7 TABLEdOutllerldentltlcathn andResolution StatusUNITfnSteanDraintoCoadcnser SS1Sf-i5upyortESD-LLt-big nayslideoCCtESD-litfnproxfnfty toblockeallSupportESD-LLi-Sgf5Sy-ESD-fit-58$
<<cyslideoCCValveSVfaf-7011 outsideIgbgfCriteriaiyDCESCXAI.
TAfIJDIEWOE>Ayyyfpesefsnfooovenentfsheingevaluated blockwallfsevaluated an4Coundacceptable as-lsDLCCerentfal sefsnfoanm<<atbetweenReactorSuffdfngandTurbineSufldlnglabefngevaluated ValvesefssLfooyerabflfty andpipeintegrity arebeingevaluated fnSteanCrc<<NITtostopTafnAl10ESD115attache4toblockeallblockwallsefsafacapacityfsbeingevaluate4 A0"DripLegsAl5SofateaboveWLTAthruDSoiatsereheingevaluated forpositionretention HainStean57pacstoCoodasorAS-5lnterectfon betweenESD-102-Sag A05crossaroundpipeDES-105-55, S7fnpro@Lofty toblockeall055-105-55, ESD-L00-55,055-105-ELE attachedtoblockwall5efsolopryingectionoCiblineonsuppoctfsbeingevaluated blockwallisevaluated andCoundacceptable asisblockwellfsevaluated endfoundacceptable es-fsHcfnStoatoEV10107SteanJctAfr+actorAS-IAS5TalveSV-LOL07fnyroxfnfty toblockeallValveET-10107inyrorfnfty totireprotection 5yra7blockwallfsevaluated sndCoundacceptable aa-fsTaInfshefngevaluated CorCallsaCeposition TABLE5OutllerMentNcatlon IndResolution StatuellHITInStoatoStemJetAirEJectorCi-1{frmIT-10101toET-I0701$
)2$0-100inproxinity toblock<<cLL(FOIESIIAL yAIUJEEIEOE)AypAcceptable as-ieCl2A~ESD-100Stenchicas nayslideoffTalesST-10701$
inprorinlty tepiroprotection SprayXAcceptable asisXAcceptable as-lslnSte>>DripLagDrains$11$12$1-5DI-a$15$1-0$17II/2Dbb-101,2 ga<<ndorCableTreyIatoracticn bot<<om1-1/2NS-1stA10"Bllineiaterectice bot<<oen1-1/2"N$101010WlineInteraction bot<<ocn1-1/2"NS-102C"Acr.StemlineInteraction betcem1"DS$105,ESD-I004block<<allINb-105,17'panbct<<ecnsepportsOAD-LIS,0$0-125endorcabletreyAdo0<<acyofcabletreys<<pportelabeinga<<el<<at<<4 Soimiono@mentsofbothlinesarebeingecslnatod SeimionovmontsofbothlinesarebolaseeaL<<atod SeimieawmmtsofbothLineaarobeingeoalaated Slack<<alLiseeelnated ondfo<<ndacceptable ea-isSolsaieno<<montofI"pipeisbeingoval<<atod 5<<pportevercpenisbeingeealnatod Adagaacyofcabletraysepportaisbeinge<<elected inStemDripLegLe<<elInstr<<aoatcticn
$21IDSS-105inpresiaity teblock<<cLLblock<<alLisoval<<ated endfo<<ndacceptable es-is TABLEIOutllarMentlflcatlon andReiolutlan StatusUNITStemAveraging Manifoldtopresserstraedncer panoLS5-I1"OCO-LLSinproriaity toblock<<aLL{ICTESTIAL FAILIEWDE)PDVSlock<<aLLseimiocapacityiobeingoealnated StopTalesSoa'tOscinetoCondanset Si-lPelvesSV-LOLOLA,S,C,Dmyrequireaeimiorestraints Si15MDliiSgiS10ASLL5tanchions nayslideoTESeimioloadsfrasvalvesarebeingovslnated Pilwseimlaaementlsbeingovelnated HICIStemDraintothisStemDrainSeederSS11"ESOillinprnrinity toblock<<elLSSS5PESDLli-S55,SSi AS555tanchions nayslideofTSlack<<aLLlsoealnated andTonndacceptable as-isPipesoimiannementlsbeingovsinated LnStempresserseasingLines00-21"PipeA5/0To@faglnproxiaity toblock<<allSlack<<aLLseimiacapacitylabeinga%sleeted EeytooatliertypcsiAAncbcrage orSnpportCapacityF-FallnreandFalling{IIII)PProrinity andIopsotDDitferential Dlsplacment 0-PaleoOperatorScreening  
)
)
TABLEIOuNerldentlcathnandReeotuthnStatueUNlf2StemDraintoCond<<verAS-I2ESD-Sfi420JED-22$interaatfonSS-LrESD-SfaSupportsblAE2attachedtotccodifferentbuffdfns'IS-1TalveST2if7021outsideSQQOorlterieSS2rESD-Slifnprosfoftytobleak<<allSSaESD-Sfa-a10,17,14,10stanchion~uyportsne7slideoff(PDIESIIALPAILDSEIKIE)ypDSefmfo<<ovmentsoEbothLinesarebefnSevaluatedDifferentialseimfonovmentbetweenReactorSuildinsA.turbfneSulldlnafsbelnSevaluatedValveeefsafooperabilityapipefntesrityesebelnSevaluatedSfoekwalLfsevaluatedand!oundacceptableasispfpesofmf0mvmeutfabefnSevaluatedStemEronIOITtostopvalveA0"DripLessAl1SofstsabovetOITAthruDAl-2rESD-LLSfn~tytobmwaLLHoistsarsbelnsevaluated!orpositionretentionblockwaLLsefmfooapaoftplsbefnSevaluatedStemS7pesstoCondenserAS-LlntereationbetweenESD-202-Sa2Aa2arsesaroundpipeAS-S2iNS-20540ESD-200~uyyortsattacbedtoSloek<<allAS-52"EElineandsteel.pfatforainteraotlonSefmfopryfnSaotlenoE02lfneonsupportlsbeinSevaluatedSleekwalLfsevaluatedandfoundeooeptebleas-lsSteelplatfox<<wasnodffiedtooleertbe2lineStemteST20107StemJetAirEfeaterASHValveST-20107endbrpclssupportsfuproxfnftrtoblockweLLASSValveST-20107fnprorfnftytoTireProteetlonSpraySfookwelLlsevaluatedsndSoundaoeeytebleas-isVaLvelsbeinsevaluatedforSallsatepositfm TABLE6OuNerldenttftcathnandRaeotuthnStatueUNITnStemtoStemJetAlrMeet(fsmHT-20107toHT-207015)Cl-1i"ESD-200lnprcnchsltytoblochoeLLCl-2TalvesHT-2070)A/SlspeatcclthMaLLCl-5TelveHT-2470LSlnprorlccltytotireProtectionSpray{ICIESIIALPAILIE)ER)2)tOTAoeeptableu"lsAooeptebleulsAooeptebgss-lsStepTalvoSeatDrainstoSi-ITalvesHT-2010)A,S,C,Dnspre@cire~elmlorestraintsSelmleloadsfrerevalvesarel>>lnSevalnatodSCICStemDraintoHainStemDrainHeaderS'71L"EADRliai"ESD-227lnteraetlanSelmioadam<<ctofi"linelsbelnSevaluatedSICISteanDrainto)4alnStemDrainHeaderlnStemDripLaaOra)ns50-11"ERD.Rli4iHSD-227lntereetlonSl-1TalvesHT-20104AaSnayroqalreaelsniarestraintSL-R1GSD-250aiESD-RLRilntereetlonSi-51CSD-250aERD-202-HIflnteraotionSl-i1-1/2"Nl-202a10IWlineLnteraetlcaSl5TalvsHT-ROLLRALaiAces,StoaLinelnteraetlanS1-0i"CRD-250ccader0tireProtectionlineSl-7TaLvesHT-2011251A52neyr<<pclre~elm)arestraint.Alsolntereatlen<<ith4Aea.StemlineSl-01-1/2OSS-20i110IMLinelnteraetlonSl-0Sp-DSS-205-H4040a0"ESD-200Lb>>lnteraetlon01-10L-L/2"O55.205a10IlllinelnteraetlonSolmlencvmentofi"linelsbeinsevslnatedSccpyortsforHT-20105A~Saroboln0evalsatod5elsala<<wmentsofbothlinnarebelnSevalnatedSelmlenovmentsofbothLinesarebelnSevalnatedSelmlenovmentsofbothlinesarobolnSevalsatedSelmle<<vvmentsofHT-ROLLRAL4iLinearebelnSevalsatedTlr~ProteetlonlineeccppertsarebelnSevalnated5ccpportaforHT-ROLLRSLaSRaealmlemvmentefilineere)>>lnSevslsetedSelmlamvmentsofbothLinesarebelnsevalsatedSelealepxylsssationof0"StemLinemsepportlsbolasevalsated5eleslesovmenteofbothlinesarebalsaevalaeted TABLEeQuttterIdeatlftCathnandRSSO}uthnStatueUNT2StecccDripLe0LevelIntcscentatianSR-lSR-RSR5SR-01MI-2054$0"LobeOillinelntereetlon1D55-205410"ExtractionSteanUnelnteraotlonVDRS-202410"EstraetlonSteanlineinteractionSP-DSS-20$-E&00T410"PWEt!RAdraininteraction(POITIITIALPAINREIRRIR)4PPSelssionoveoentsofbothlinesanbeln0evalsatedSelsnlo~tsofbothlinesarebein0evalsate4Selsaloeormmteofbothlinesarebeln0evalsatedSelsslowhatofItilinelsbelnSevsloatedSteanAvera0ln0Ncnlfo14toSR-IPresserstrmsdoeerpanelSSR5$-$1ICD-212StanchionSopports~lidooff1"DCD-RIRenderEVhCDuet1DCD-212inproxialtytobloch<<allSelsnleunmetof1linelsbeln0evslsatedl&#xc3;hCseisaiosopportoapaeltylsbein0evalsatedRlocbeallselsaloeapaoltylsbelnsevalsate450-2Tubis0naderEVACTobis0inprorlaityofblock<<alll&#xc3;hCselsnlosspportoapaeltylsbein0evalsatedSlosh<<allselsolooapaoltylsbeln0evalsate4EeytooetllestypeacA-hncbora0eorRapportCapacityPPallorean4tallis0(II/I)P-PrecialtyandIspaotDdifferentialDlspiaomeat5-TslveOperatorSoroein0 ATTACHMENTTOPLA-422SENCLOSURE3SUSQUEHANNALOCADOSE
TABLEIOuNerldentlcathnand Reeotuthn StatueUNlf2StemDraintoCond<<verAS-I2ESD-Sfi420JED-22$interaatfon SS-LrESD-SfaSupportsblAE2attachedtotccodifferent buffdfns'IS-1TalveST2if7021 outsideSQQOorlterieSS2rESD-Slifnprosfofty tobleak<<allSSaESD-Sfa-a10,17,14,10 stanchion
~uyportsne7slideoff(PDIESIIAL PAILDSEIKIE)ypDSefmfo<<ovmentsoEbothLinesarebefnSevaluated Differential seimfonovmentbetweenReactorSuildinsA.turbfne SulldlnafsbelnSevaluated Valveeefsafooperability apipefntesrity esebelnSevaluated SfoekwalLfsevaluated and!oundacceptable asispfpesofmf0mvmeutfabefnSevaluated StemEronIOITtostopvalveA0"DripLessAl1SofstsabovetOITAthruDAl-2rESD-LLSfn~tytobmwaLLHoistsarsbelnsevaluated
!orpositionretention blockwaLLsefmfooapaoftplsbefnSevaluated StemS7pesstoCondenser AS-Llntereation betweenESD-202-Sa2 Aa2arsesaroundpipeAS-S2iNS-20540ESD-200~uyyortsattacbedtoSloek<<allAS-52"EElineandsteel.pfatforainteraotlon SefmfopryfnSaotlenoE02lfneonsupportlsbeinSevaluated SleekwalLfsevaluated andfoundeooepteble as-lsSteelplatfox<<was nodffiedtooleertbe2lineStemteST20107StemJetAirEfeaterASHValveST-20107endbrpclssupportsfuproxfnftr toblockweLLASSValveST-20107fnprorfnfty toTireProteetlon SpraySfookwelLlsevaluated sndSoundaoeeyteble as-isVaLvelsbeinsevaluated forSallsatepositfm TABLE6OuNerldenttftcathn andRaeotuthn StatueUNITnStemtoStemJetAlrMeet(fsmHT-20107toHT-207015)
Cl-1i"ESD-200lnprcnchslty toblochoeLLCl-2TalvesHT-2070)A/S lspeatcclthMaLLCl-5TelveHT-2470LS lnprorlcclty totireProtection Spray{ICIESIIAL PAILIE)ER)2)tOTAoeeptable u"lsAooepteble ulsAooeptebg ss-lsStepTalvoSeatDrainstoSi-ITalvesHT-2010)A,S,C,D nspre@cire~elmlorestraints Selmleloadsfrerevalvesarel>>lnSevalnatod SCICStemDraintoHainStemDrainHeaderS'71L"EADRliai"ESD-227lnteraetlan Selmioadam<<ctofi"linelsbelnSevaluated SICISteanDrainto)4alnStemDrainHeaderlnStemDripLaaOra)ns50-11"ERD.Rli4iHSD-227lntereetlon Sl-1TalvesHT-20104A aSnayroqalreaelsniarestraint SL-R1GSD-250aiESD-RLRilntereetlon Si-51CSD-250aERD-202-HIf lnteraotion Sl-i1-1/2"Nl-202a10IWlineLnteraetlca Sl5TalvsHT-ROLLRAL aiAces,StoaLinelnteraetlan S1-0i"CRD-250ccader0tireProtection lineSl-7TaLvesHT-2011251 A52neyr<<pclre~elm)arestraint.
Alsolntereatlen
<<ith4Aea.StemlineSl-01-1/2OSS-20i110IMLinelnteraetlon Sl-0Sp-DSS-205-H4040 a0"ESD-200Lb>>lnteraetlon 01-10L-L/2"O55.205a10Illlinelnteraetlon Solmlencvmentofi"linelsbeinsevslnated Sccpyorts forHT-20105A
~Saroboln0evalsatod 5elsala<<wmentsofbothlinnarebelnSevalnated SelmlenovmentsofbothLinesarebelnSevalnated SelmlenovmentsofbothlinesarobolnSevalsated Selmle<<vvmentsofHT-ROLLRAL 4iLinearebelnSevalsated Tlr~Proteetlon lineeccpperts arebelnSevalnated 5ccpporta forHT-ROLLRSL aSRaealmlemvmentefilineere)>>lnSevslseted SelmlamvmentsofbothLinesarebelnsevalsated Selealepxylsssationof0"StemLinemsepportlsbolasevalsated 5eleslesovmenteofbothlinesarebalsaevalaeted TABLEeQuttterIdeatlftCathn andRSSO}uthn StatueUNT2StecccDripLe0LevelIntcscentatian SR-lSR-RSR5SR-01MI-2054$0"LobeOillinelntereetlon 1D55-205410"Extraction SteanUnelnteraotlon VDRS-202410"Estraetlon Steanlineinteraction SP-DSS-20$
-E&00T410"PWEt!RAdraininteraction (POITIITIAL PAINREIRRIR)4PPSelssionoveoents ofbothlinesanbeln0evalsated Selsnlo~tsofbothlinesarebein0evalsate4 Selsaloeormmteofbothlinesarebeln0evalsated SelsslowhatofItilinelsbelnSevsloated SteanAvera0ln0 Ncnlfo14toSR-IPresserstrmsdoeer panelSSR5$-$1ICD-212Stanchion Sopports~lidooff1"DCD-RIRenderEVhCDuet1DCD-212inproxialty tobloch<<allSelsnleunmetof1linelsbeln0evslsated l&#xc3;hCseisaiosopportoapaeltylsbein0evalsated Rlocbeallselsaloeapaoltylsbelnsevalsate4 50-2Tubis0naderEVACTobis0inprorlaity ofblock<<alll&#xc3;hCselsnlosspportoapaeltylsbein0evalsated Slosh<<allselsolooapaoltylsbeln0evalsate4 EeytooetllestypeacA-hncbora0e orRapportCapacityPPallorean4tallis0(II/I)P-Precialty andIspaotDdifferential Dlspiaomeat 5-TslveOperatorSoroein0 ATTACHMENT TOPLA-422SENCLOSURE3 SUSQUEHANNA LOCADOSE
~y~
~y~
Attachment2SUSQUEHANNALOCADOSESFORACOMBINEDMSIVLEAKAGERATEOF300SCFHUSINGTHEISOLATEDCONDENSERTREATMENTMETHODSUSQUEHANNASTEAMELECTRICSTATION-EACHUNITExclusionAreaBoundary(2-Hour)LowPopulationZone.(30-Day)ControlRoom(30-Day)A.10CFR100LimitB.DosesusingMSIV-LCSTreatment>>>>C.PreviousCalculatedDosesw/oMSIVLeakage>>>>D.ContributionfromMSIVs300SCFHTotal<<>>>>E.NewCalculatedDosesUsingICTreatmentA.10CFR100LimitB.DosesUsingMSIV-LCSTreatment<<>>C.PreviousCalculatedDosesw/oMSIVLeakage>>>>D.Contribution&omMSIVs300SCFHTotal>>>>>>E.NewCalculatedDosesUsingICTreatmentA.GDC-19B.DosesusingMSIV-LCSTreatment'C.PreviousCalculatedDosesw/oMSIVLeakage>>>>D.Contribution&omMSIVsat300SCFHTotal"'.NewCalculatedDosesusingICTreatmentWholeBodyrem252.472.210.0072.21725.0.370.330.040.3750.380.350.410.76Thyroidrem300127.8125.50.11125.61'0030.429.612.1441.743014.1913.64.9518.55Betarem7512.011.01.1712.17NolimitspecifiedDosescalculatedforPowerUpratedconditionsinPP&LCalculationEC-RADN-1009PerGEcorrespon4encesOG94-574-09andOG93-1021-09FORMNDAP-QA-0726-1,Rev.0Page16of16  
Attachment 2SUSQUEHANNA LOCADOSESFORACOMBINEDMSIVLEAKAGERATEOF300SCFHUSINGTHEISOLATEDCONDENSER TREATMENT METHODSUSQUEHANNA STEAMELECTRICSTATION-EACHUNITExclusion AreaBoundary(2-Hour)LowPopulation Zone.(30-Day)ControlRoom(30-Day)A.10CFR100LimitB.DosesusingMSIV-LCSTreatment>>>>
$aap~0r~IIF,"If o9D+8Aca!TM)VLstIAMBSM-105SH.2~SD-fo00000CT-5PDT~0IuaerF.4HMDCdDESEllELL-IAE00H001MNTMTIIEIKTIMA.ELEAKKL8STE-LW-I2I+~SM~-0IO'p'n''9213630A.des-JI'EID-II~D50-12510OID~w-M-oao"~MAN-ooo~IRV-IP.0DI''IAV-PP-)OIOIDTPe.-le15D~8-FKHO~MBA~AN--IIWWIIHMI~IRVVNT-)0lt02'DSA-U5IIO.PT260001SIETM0WMSM'FE--IM52~IRV-Nl-10)IAI"'a--IIeF00-MILDE0"I100c~0la0HaMsI'OCS-DBS-3DWHLTLa.AD'~02DI~ICI2DVMW-DAD-~NM-O5011011000IAV-PT-I82NQ+H$8Tl":".I'"2'WoKETK0WM0Ia'N2-DN53oae-oILDEcIIeDBS30~BWPI-OO0INEH)T000~a-D-00C~ll-PDT-00CMD02ODD-seva0oeeMIrO'02TaRI->>-NL-0112-TL-101128IPR.-)IN)6000POTHoC0~MV-PT-ION~aa-PP*RVVNT-)00DM-141SH.ISNIAE85toPots~N5-orw-~(Iaw-roMCrt:'*MB.6~tt125SetEII'ESD010alTNS12)-~HSM.IAK-TDI200DFM-155SH.IHIONI+0HAC0ESD-UM*5~laaoeeI-07&H007M-IOISH.3OYPA55VALVESB-La.IAVKSNM0DB.<<LIIM0ow.I3LK0MMILast0WHta"M-I0ISH.IH08IDIISehatt-~OIT...'Cl-IAl-PP-0000-10100~M-PP-DIWQUALITYRELATEDDAOM-149SH.I2MNrrsISECONNlMIP*8(CAEDTEDIAHECSIM.)RMNAM)MIIPT(CRtTEO)DLICRMLWMelSFBICIMMTMPSTNOC0.'.KA5NEOEOMIKAEPOIIIOEOWOOHCKENQF.INININISFIWKI~1)VECF0018TIEITN<CSIIEII)OBNTATE9Lili2~Olea-CjiQPttIOMSIVLEAKAGEALTERNATEFLOWPATHFIGUREHPENNSTLVSNTSPSNCR~LTSNTCSNPNDLLcersaaps.AECR*I0H-101HSNETQH)DD)ODD28}}
C.PreviousCalculated Dosesw/oMSIVLeakage>>>>
D.Contribution fromMSIVs300SCFHTotal<<>>>>E.NewCalculated DosesUsingICTreatment A.10CFR100LimitB.DosesUsingMSIV-LCSTreatment<<>>
C.PreviousCalculated Dosesw/oMSIVLeakage>>>>
D.Contribution
&omMSIVs300SCFHTotal>>>>>>E.NewCalculated DosesUsingICTreatment A.GDC-19B.DosesusingMSIV-LCSTreatment' C.PreviousCalculated Dosesw/oMSIVLeakage>>>>
D.Contribution
&omMSIVsat300SCFHTotal"'.NewCalculated DosesusingICTreatment WholeBodyrem252.472.210.0072.21725.0.370.330.040.3750.380.350.410.76Thyroidrem300127.8125.50.11125.61'00 30.429.612.1441.743014.1913.64.9518.55Betarem7512.011.01.1712.17Nolimitspecified Dosescalculated forPowerUpratedconditions inPP&LCalculation EC-RADN-1009 PerGEcorrespon4ences OG94-574-09 andOG93-1021-09 FORMNDAP-QA-0726-1, Rev.0Page16of16  
$aap~0r~IIF,"If o9D+8Aca!TM)VLstIAMBSM-105SH.2~SD-fo00000CT-5PDT~0IuaerF.4HMDCdDESEllELL-IAE00H001MNTMTIIEIKTIMA.ELEAKKL8STE-LW-I2I+~SM~-0IO'p'n''9213630A.des-JI'EID-II~D50-12510OID~w-M-oao"~MAN-ooo~IRV-IP.0DI''IAV-PP-)OIOID TPe.-le15D~8-FKHO~MBA~AN--I IWWIIHMI~IRVVNT-)0lt 02'DSA-U5IIO.PT260001SIETM0WMSM'FE--IM52~IRV-Nl-10)
IAI"'a--IIeF00-MILDE0"I100c~0la0HaMsI'OCS-DBS-3DWHLTLa.AD'~02DI~ICI2DVMW-DAD-~NM-O5011011000IAV-PT-I82NQ+H$8Tl":".I'"2'WoKETK0WM0Ia'N2-DN53oae-oILDEcIIeDBS30~BWPI-OO0INEH)T000~a-D-00C~ll-PDT-00CMD02ODD-seva0oeeMIrO'02TaRI->>-NL-0112-TL-101128IPR.-)IN)60 00POTHoC0~MV-PT-ION
~aa-PP*RVVNT-)00DM-141SH.ISNIAE85toPots~N5-orw-~(Iaw-roMCrt:'*MB.6~tt125SetEII'ESD010alTNS12)-~HSM.IAK-TDI200DFM-155SH.IHIONI+0HAC0ESD-UM*5~laaoeeI-07&H007M-IOISH.3OYPA55VALVESB-La.IAVKSNM0DB.<<LIIM0ow.I3LK0MMILast0WHta"M-I0ISH.IH08IDIISehatt-~OIT...'Cl-IAl-PP-0000-10100~M-PP-DIWQUALITYRELATEDDAOM-149SH.I2MNrrsISECONNlMIP*8(CAEDTEDIAHECSIM.)RMNAM)MIIPT(CRtTEO)DLICRMLWMelSFBICIMMTMPSTNOC0.'.KA5NEOEOMIKAEPOIIIOEO WOOHCKENQF.INININISFIWKI~1)VECF0018TIEITN<CSIIEII)OBNTATE9Lili2~Olea-CjiQPttIOMSIVLEAKAGEALTERNATE FLOWPATHFIGUREHPENNSTLVSNTS PSNCR~LTSNTCSNPNDLLcersaa ps.AECR*I0H-101HSNETQH)DD)ODD 28}}

Revision as of 04:43, 29 June 2018

SSES Unit 1 & 2 MSIV Leakage Alternate Treatment Method Seismic Evaluation. W/One Oversize Drawing
ML18026A535
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 10/31/1994
From:
PENNSYLVANIA POWER & LIGHT CO.
To:
Shared Package
ML17164A434 List:
References
NUDOCS 9411290142
Download: ML18026A535 (57)


Text

ATTACHMENT TOPLA-4228ENCLOSURE2 MSIVLEAKAGEALTERNATE TREATMENT METHODSEISMICEVALUATION 94112'Pat42 941i21PDRnoacKosooozs7pnR SUSQUEHANNA STFAMELECTRICSTATIONUNIT1AND2MSIVLEAKAGEALTERNATE TREATMENT METHODSEISMICEVALUATION OCTOBER19,1994 TABLEOFCONTENTS~PaeCOVERSHEETTABLEOFCONTENTSINTRODUCTION 1.SCOPEOFREVIEWTURBINEBUILDING2.1LateralForceResisting Systems2.2SeismicDesignCodes2.3SeismicDesignBasis2.4WindDesignCodes2.5WindDesignBasisMAINTURBINECONDENSERS 3.1GeneralDescription ofSusquehanna Condensers 3.2Comparison ofSusquehanna Condensers withDatabaseCondensers 3.3Capability ofAnchorstoWithstand DesignBasisEarthquake Loads10101018MSIVLEAKAGECONTROLPIPING4.1MainSteamandTurbineBypass4.1.1DesignBasis4.1.1.1PipingDesignCode4.1.1.2PipingDesign4.1.1.3PipeSupportDesignCode4.1.2MarginAssessment 4.1.3Verification WalkdownResults20202121212222224.2MainSteamDrainstoCondenser 4.2.1DesignBasis4.2.1.1PipingDesignCode4.2.1.2PipingDesign4.2.1.3PipingSupportDesignCode4.2.2MarginAssessment 4.2.2.1SeismicDemand4.2.2.2PipeSupportComponent Capacities 4.2.3Verification WalkdownResults222323232323242525 TABLEOFCONTENTS~Pae4.3Interconnected Systems4.3.1DesignBasis4.3.2MarginAssessment 4.3.3Verification WalkdownResults262626265.BLOCKWALLS 27

INTRODINTheevaluation inthisreportwasperformed todocumenttheseismicdesignadequacyofthe"MainSteamIsolation Valve(MSIV)LeakageAlternate Treatment Method".Thismethodisbeingevaluated forreplacing thedesignfunctionoftheMSIV-Leakage ControlSystem(LCS).TheMSIV-LCSlicensedbaseddesignfunctionis'toservetoredirectMSIVleakagebackintosecondary containment, whereitcanbeprocessed asafilteredreleaseandreducethepotential contribution tooff-siteandcontrolroomdose.Historically, theMSIV-LCShasbeensusceptible tonumerousfailuresandcostlyrepairs.Inordertoimprovetheperformance ofthepowerplant,bothfromanuclearsafetyviewpoint andelimination ofahighcostandhighmaintenance system,the"MSIVLeakageAlternate Treatment Method"hasbeenestablished, whichwillservetoprovideamoreeffective meanstoprocesstheMSIVleakage.Theprimarycomponents tobereliedupon,forpressureboundaryintegrity, inresolution oftheBWRMSIVleakageissueare:(1)themainturbinecondensers, (2)themainsteamlinestotheturbinestopandbypassvalves,and(3)themainsteamturbinebypassanddrainlinepipingtothecondensers.

Earthquake experience hasdemonstrated thattheweldedsteelpipingandanchoredcondensers insimilarsystemsareseismically rugged.Theearthquake experience isderivedfromanextensive databaseontheseismicperformance ofover100powerplantunitsandindustrial facilities inactualrecordedearthquakes.

Basedonthispost-earthquake reconnaissance, theBWROwnersGroup(BWROG)seismicexperience studyhasidentified limitedrealistic seismichazards,including supportdesignattributes andproximity interaction issues,aspotential sourcesofdamageonalimitednumberofcomponents.

TheBWROG'sstudyisdocumented inNEDC-31858P, "BWROGReportforIncreasing MSIVLeakageRateLimitsandElimination ofLeakageControlSystems".

Areviewandevaluation wasperformed forPennsylvania PowerandLight,Susquehanna SteamElectricStation(SSES),Units1and2,toensurethatnosuchissuesarepresent,thusproviding reasonable assurance oftheintegrity ofthesesystemsandcomponents.

Thisreportsummarizes themethodology usedandsomeoftheresultsoftheseismicadequacyreviewoftheMSIVLeakageAlternate Treatment Method.

1.0 OPEFREVIEWThemainturbinecondensers

formtheultimateboundaryofthe"MainSteamIsolation Valve(MSIV)LeakageAlternate Treatment Method".Boundaries wereestablished upstreamofthecondensers byutilizing existingvalvestolimittheextentoftheseismicverification walkdown.

Theboundaries areshowninFigure1ofthisevaluation.

TheboundaryvalveswereselectedusingthecriteriaoutlinedinNEDC-31858P anddocumented inPP&LEngineering Studies,Analyses, andevaluations (SEA),SEA-ME423, "MSIVLeakageSeismicVeriGcation BoundaryDetermination Study,SSESUnit1"andSEA-ME424, "MSIVLeakageSeismicVerification BoundaryDetermination Study,SSESUnit2.Thefollowing criteriawasusedinselecting theboundaryvalves:1.Normallyopenvalve,automatically closesasaresultofMSIVisolation signal2.Normallyopenvalve,whichcanberemotelyclosedfromcontrolroom3.Normallylockedclosed,manuallyoperatedvalve4.Normallyclosed,manuallyoperatedvalve5.Automatically orremotelyoperatedvalvesthatfailclosed,asaresultoflossofpowerorair(pneumatic operators) tothevalveoperator6.Normallyclosedvalve,whichcanberemotelyclosedfromthecontrolroom7.Normallyclosedvalve,whichcanberemotelydosedfromacontrolpaneloutsidethecontrolroomInNEDC-31858P, aseismicdatabasewasassembled.

'Msdatabaseservedashistorical documentation oftheperformance ofnon-seismic designedpipingsystemsandmainturbinecondensers, atvariouspowerplantsthroughout theworld,whichhavegonethroughvaryinglevelsofseismicevents.Thisdatabaseprovidedthebasisfordemonstration ofseismicadequacyofnon-'eismically designedsystems.Inordertodemonstrate thatSSESpipingandcomponents fallwithintheboundsoftheexperience

database, tworeviewswereperformed.

TheQrstreviewconsisted ofreviewing theconstruction codestodemonstrate thatthedesignated pipingandcomponents werebuilttostandards similartothoseplantsidentified intheexperience databaseofNEDC-31858P.

Thesecondreviewconsisted ofseismicverification walkdowns toassurethatthecondensers andpipingsystemsfallwithintheboundsofthedesigncharacteristics oftheseismicexperience databasecontained inNEDC-31858P.

Conditions thatmightleadtopipingconfigurations whichareoutsidetheboundsoftheexperience databasewerenotedduringthewalkdowns.

Tables-5and r'1<~-z~z~y~geioz~vztAGod'U'~>~>

AT7g,Pipgze8.'f,BC'L2 6ofthisreportsummarize theidentified conditions (termed'"outliers"),

andtheirresolution status.Notethattheoutliersarebeingresolvedbydemonstrating analytically thattheydidnotcreatehazardsbeyondtheseismicinertialloading.Thesehazardsincludeinteraction, differential displacement, and/orfailure/falling.

Ifevaluation cannotqualifysomeoutliers, modiTications willbedesignedtoprovideseismically acceptable conQgurations.

Whereanalysiswasusedtoresolvethewalkdownoutliers, the5%dampedconservative Qoorcurvesareextrapolated fromtheexisting1/2%and1%dampedQoorcurvesthatwerebasedontheSSESgrounddesignbasisearthquake (DBE)anchoredat0.1gpeakgroundacceleration.

Asanalternate methodforgeneration ofseismicinput,5.0%dampedrealistic median-centered, withnointentional conservative bias,Qoorcurveswillbedeveloped, ifjudgedtobenecessary, basedontheNUREG/CR-0098 mediangroundspectraanchoredat0.1gand0.067gpeakgroundaccelerations forhorizontal andverticaldirections, respectively.

Variabilities associated withstructure frequency, structure damping,androckmodulusaresignificant inthedevelopment oftheseismicQoorcurves.Mescmodelparameters willbeselectedinarandomprocess.Anumberofearthquake timehistories willbeutilizedwiththerandomlyselectedsetsofmodelparameter values.Toaccountfortheuncertainty inthestructural frequency calculations, thepeaksoftheseismicQoorcurvesareshiftedratherthanbebroadened.

Inadditiontotheongoingresolution ofthewalkdownoutliers, seismicmarginassessment ofarepresentative boundingsampleofpipesupportsonthemaindrainlinewillbeconducted.

Thisassessment ismoreconservative andmorerestrictive thantheevaluation referenced inNEDC-31858P.

0

2.0 INEBILDINGPerformance

oftheturbinebuildingduringaseismiceventisofinteresttotheissueofMSIVleakagetotheextentthatnon-seismically designedstructures andcomponents shouldsurviveandnotdegradethecapabilities oftheselectedmainsteamandcondenser Quidpathways.

ABWROGsurveyofthistypeofstructure has,ingeneral,confirmed thatexcellent seismiccapability exists.Therearenoknowncasesofstructural collapseofeitherturbinebuildings atpowerstationsorstructures ofsimilarconstruction.

'heSSESturbinebuildinghousestwoin-lineabout1100megawattturbinegenerators withallauxiliary equipment including two220tonoverheadservicecranes.'Ihebuildingisentirelyfoundedonrockwithreinforced concreteretaining wallsextending uptogradelevel.Thesuperstructure isframedwithstructural steelandreinforced concrete.

Exteriorwallsarepre-castreinforced concretepanelsexceptfortheupper30feet,whichismetalsiding.'Iheroofhasmetaldeckingwithbuilt-uproofing.Eachofthetwoturbinegenerator unitsissupported onafreestandingreinforced concretepedestalextending downtorock.Separation jointsareprovidedbetweenthepedestals andtheturbinebuildingQoorsandslabstopreventtransferofvibration tothebuilding.

Theoperating Qoorissupported onvibration dampingpadsatthetopedgeofthepedestals.

Aseismicseparation gapisprovidednearthecenterofthebuildingbetweenthetwounits.Aseismicseparation gapisalsoprovidedagainstthereactorbuilding.

ThedesignoftheSSESturbinebuildingincludesbothseismicandtornadoloadings.

TheturbinebuildingisdesignedtopreventcollapseunderboththeDBEandtornadoloadconditions.

ThedeQections fromtheseloadingshavebeenkepttoavaluesuchthatinteraction withCategoryIstructures isavoided.Thegroundacceleration associated withtheDBEis0.10g.Theturbinebuildinghorizontal shearsresulting fromtheDBEarepresented inFigure2.Basedupontheabove,itisconcluded thattheSSESturbinebuildingisaseismically robuststructure withlittleriskofdamagetothestructure thatwoulddegradethecapability ofthemainsteamandcondenser fluidpathways.

Specificparameters includedintheevaluation arepresented below.2.1LateralForceResisting SystemsThelateralloadresisting systemsuperstructure type,abovetheturbineQoor,isabracedorrigidframestructure depending onthedirection oflateralloadconsistsofthefollowing:

ColumnlinesGandKcomprisealternating baysofcross-bracing thatresistN-Swindorseismiclateralloadingconditions.

E-Wlateralforcesareresistedbyrigidframebentsfromcolumnline12to29(Unit1).Lateralforceresisting systemsubstructure, belowtheturbineQoor:ConcretewallsserveasshearwallsforlateralloadsintheNCdirections.

FIGURE2ASeismicDesignForcesfortheSUSQUEHANNA TurbineBuildingIntheEast-West Direction Hev.762'ev.729'ev.699'ev.676'lev.656'500010000150002000025000East-West DBE(Klps)FIGURE28SeismicDesignForcesfortheSUSQUEHANNA TurbineBuildinglntheNorth-South Direction Elev.787'ev.762'lev.699'ev.676'lev.656'500010000150002000025000North-South DBE(Klps) 22SeismicDesignCodes'Allnon-category Istructures aredesignedtoconformtotherequirements of:AmericanInstitute ofSteelConstruction (AISC)Speci6cation fortheDesign,Fabrication, andErectionofSteelBuildings.

AmericanConcreteInstitute (ACI)BuildingCodeRequirements forReinforced Concrete(ACI318-71).AmericanWeldingSociety(AWS)Structural WeldingCodeAWSD1.1-72.23SeismicDesignBasisAseismicanalysisoftheturbinebuildingwasperformed fortheDBEloadinginthenorth-south, east-west, andverticaldirections inordertoassurethatthebuildingwillnotcollapse.

Theresulting deQections werealsoutilizedtoconfirmthatthereisnointeraction withthereactor,building.

2.4WindDesignCodesTheturbinebuildingisdesignedtoconformtotherequirements of:AmericanSocietyofCivilEngineers, papernumber3269,WindDesignRequirements.

AmericanInstitute ofSteelConstruction (AISC)Specification fortheDesign,Fabrication, andErectionofSteelBuildings.

AmericanConcreteInstitute (ACI)BuildingCodeRequirements forReinforced Concrete(ACI318-71).AmericanWeldingSociety(AWS)Structural WeldingCodeAWSD1.1-72.25WindDesignBasisThedynamic,windpressures usedinthedesignofSSESarederivedfromtheASCEPublication No.3269usingthefollowing equation.

q=0.002558'here qisthevelocitypressureinpsf,andVisthewindvelocity(mph).Itwas

assumedthat80%ofqisactingonthewindwardsideand50%issuctionontheleewardsideofthebuilding.

Thelocalpressureatanypointonthesurfaceofthebuildingisequalto:p=qCpwherepisthepressureandCisthepressurecoefficient.

Thetotalpressureonthebuildingisequalto:p=qCOwhereCoistheshapecoefficient andisequalto1.3.ThewindloadsareprovidedinTable1.Theturbinebuildingframeisdesignedtoresisttornadowindforcesassumingthattwothirdsofthesidingisblownaway.Inaddition, eachexteriorcolumnanditsconnections aredesignedforthefulltornadowindintheeventthatnosidingblowsawayinthetributary areaofthecolumn.Themaximuminteraction ratioforthestructural steel,resulting fromthecasewithnofailureofthesiding,isapproximately thesameasthatobtainedfromtheDBEload.Theloadcombinations utilizedforthedesignoftheturbinebuildingarepresented inTable2.

TABLE1TornadoWindLoadsWallLoadRoofLoadHeight(ft)BasicVelocity(mph)DynamicPressurewith1.1GustFactorPressure0.8qSuction0.5qTotalDesignPressure1.3qSuction0.6q0-5050-150150<00Over40080951101202030404516243236101520232639525912182427TABLE2LoadCombinations D+L+E'+L+WD+L+W'+L+E'ee Note1SeeNote1USDUSDD=DeadLoadL=LiveLoadW=WindLoadW'TornadoWindE'DesignBasisEarthquake (1)Innocaseshalltheallowable basemetalstressexceed0.9Fyinbending,0.85Fyinaxialtensionorcompression, and0.5Fyinshear.WhereFsisgovernedbyrequirements ofstability (Localorlateralbuckling),

fsshallnotexceed1.5Fs.Innocaseshallbeallowable boltorweldstressexceed1.7Fs.

3.MAINTURBINECONDENERS3.1GeneralDescription ofSusquehanna Condensers Themainturbinecondenser isatripleshellmultipressure surfacecondenser whichconsistsofthree(3)rectangular shapedweldedsteelplatecondensers ofthesinglepassquad-divided type.Thecirculating waterlowis448,000gallonperminute.Theheatexchangeareaofthehighpressureshellconsistsof28,0401-inchdiametertubes,approximately 50footlong,givingaheattransferareaof367,000squarefeet.Theheatexchangeareaoftheintermediate pressureshellconsistsof28,0081-inchdiametertubes,approximately 40footlong,givingaheattransferareaof293.300squarefeet.Theheatexchangeareaofthelowpressureshellconsistsof27,9721-inchdiametertubes,approximately 30footlong,givingaheattransferareaof219,700squarefeet.Thedryweightandtheoperating weightofthethreeshellsareasfollows:DrWeihtIb0eratinWeihtIbHighPressureCondenser 678,200Intermediate PressureCondenser 643,000LowPressureCondenser 567,8002,132,700 1,984,300 1,572,700 Thebaseofthecondenser (hotboxshell)is29'x49',29'x39',and29'x29'nplanforthehigh,intermediate, andlowpressurecondensers, respectively.

Eachcondenser shellissupported fromtheconcretebaseslaboftheturbinepedestalon6embeddedplateassemblies.

Positiveattachment isprovidedbyanchorboltsandweldstotheembeddedplateassemblies.

Theembeddedplatesassemblies onlyprojecttheirplatethickness abovethebaseslab,sotherearenolegsorpiersbetweenthecondenser andthebaseslab.Thecondenser shellsneckdownatthetopwheretheyweldtotheturbine.Thenecksincludearubberexpansion jointwhichstructurally isolatesthecondenser shellfromtheturbine,sothattheanchorstothebaseslabprovidetheentiresupportforthecondenser shell.Theheightofeachshelltotheexpansion jointisapproximately 56'.Thecondensers weretestedbyfillingtheshellwithwater.Thedesignconditions forthecondensers includeavacuumpressureof26"ofMercury,and"zone1"seismiccoefficients of0.03gverticaland0.05ghorizontal.

The.75"thickshellsofthecondensers arestiffened bythetubesupportplatesandbystrutsthatconnectthetubesupportplatestothesidewalls andtothecondenser bottom.Platedividers, whichseparateeachshellintofourflowpaths,alsoservetostiffentheshell.3.2Comparison ofSusquehanna Condensers withDatabaseCondensers ThisreportwillshowthateachSSEScondenser shelliscomparable tothedatabasecondensers initscapability toresistseismicforces.Inaddition, thisreportwillalsoshowthateachshellanchor10 systemshavethecapability towithstand theforcesassociated withDBEincombination withoperating loads.Sinceeachcondenser (high,intermediate, andlowpressure) isindependently supported fromtheothershellswecancompareitsstructural.

characteristics tothesimilarcondensers addressed inNEDC-31858P, "BWROGReportforIncreasing MSIVleakageRateLimitsandElimination ofLeakageControlSystem".Comparable condensers thathaveexperienced significant earthquakes asidentified inNEDC-31858P willbehereafter called"database" condensers.

EachSSEScondenser shellisspecifically comparedtothedatabasecondensers fromMossLanding,Units6and7,andfromOrmondBeach,Units1and2.Thesecondensers havesimilarphysicalarrangements ofcomponents andconstruction detailstotheSSEScondenser, andwouldfunctionsimilarly toresistseismicforces.FromTable3andfromFigures3through5,itisapparentthatmostofthephysicalfeaturesoftheSSEScondenser thatwouldbesignificant inseismicconsiderations, areeitherenveloped bythedatabasecondensers, orwouldbelesscriticalthanthedatabasecondensers.

Onepossibleexception isthegreaterheightoftheSSEScondensers.

Anotheristhecapacitytodemandratio(Figure5)fortheintermediate pressureshell.Thesignificanceof thisgreater heightisdiscussed intheparagraph below.Thecapabilityof theanchorsforallthreeshellsisdiscussed insubsection 3.3.TheSSEScondenser ishigherthanthedatabasecondensers (SeeFigure4a).Thisfeaturecannotbeconsidered aseitherenveloped byorlesscriticalthanthedatabasecondensers, sincelargerratiosofheighttobasewidthtendtogivelargeroverturning forces.InthecaseoftheSSEScondenser shells,wecansaythatthisgreaterheightisnotthatsignificant forthreereasons.Thefirstreasonisthattheoperating weightofeachshellincomparison totheshellsideareaiscomparable tothatofthedatabasecondensers; therefore theshearstressesintheshellplatewouldnotbeanyhigherthanthedatabasecondensers forthesame"g"load.ThisisapparentfromthedatainTable3.Thesecondreasonisthattheanchorboltshearareasincomparison tooperating weightsarecomparable tothedatabasecondensers forallshellsexcepttheintermediate pressureshell.Thisisillustrated inFigure5inwhichtheSSEScondenser anchorsareactuallylesscriticalthantheanchorsofthedatabasecondensers exceptfortheintermediate pressureshell,ThethirdreasonisthattheanchorsfortheSSEScondenser havemorethanenoughcapacitytowithstand theforcesfromaDBEeventincombination withoperating loads.Thisspecificanchorcapability isdiscussed insubsection 3.3.Theanchorconfiguration fortheSSEScondenser shellsisnotnecessarily thesameasthatoftheddatabasecondensers.

FortheSSEScondenser shells,baseshearloadsaretakenbyweldsofthecondenser toembeddedplatesatlocations 1and4ofFigure7.Theanchorboltsarenotdesignedforshearsbecausetheholesinthecondenser baseareoversized, andtheweldsandguidesareastifferloadpathforshearloads.Sincetheanchoratlocation4isaguideinonedirection, theweldsatlocation1aresizedtotakealltheshearinthedirection paralleltotheturbineaxis.Forloadsperpendicular totheturbineaxistheanchorsatlocation1and4bothcontribute toresisting shears.InFigure5the"lowerbound"anchorareaisonlytherootareaoftheweldsactiveinthegivendirections.

The"upperbound"areaisthetotalofanchorboltsareaonly.Thisconservatively

<<ssumesthattheweldsfailbeforetheanchorboltsareeffective inresisting shears.Thecapacityto11

TABLE3Comparison ofSUSQUEHANNA Condenser toDatabase'ondensers PlantNameHorizontal gLevelExperienced Manufacture WidthxLengthxHeight(Ft)(Ft"2)(Lbs)HeatExchangeOperating WeightShellThickness

/Mateial(In)/(ASTM)TubeSupportsThickness

/Number(tn)TubeSheetsThickness (In)TubeSizeDiameter(ln)/Length(Ft)MossLanding0.40Ingersoll Rand36x65x4743500031150003/4A-285C3/4-151/65'rmond Beach0.20South.Western27x52x2021000017675003/4A-285C5/8-141.251"/53'USQUEHANNA (HighPressure) 0.21"~Ingersoll Rand29x49x5621327003/4A-285C5/8-141.501/50'USQUEHANNA (Intermediate Pressure) 0,21'0Ingersoll Rand29x39x5619843003/4A-285C5/8-111/40'USQUEHANNA (LowPressure) 0.21*'ngersoll Rand29x29x5621970015727003/4'-285C5/8W1/30'atabase information fromNEDC-31858P Revision2,September 1993.AppendixD,Table4-1andTable4-3DBEdesignbasisis0.21ghorizontal for5hdamping,peakofgroundresponsecurve,atcondenser base(SeeFigure6)

FIGURE3SizeComparison oftheSUSQUEHANNA Condenser (Unit1or2)withRepresentative Condensers fromEarthquake Experience OrmondBeachSUSQUEHANNA HighPressureSUSQUEHANNA Intermediate PressureSUSQUEHANNA LowPressureMossLanding100000200000300000400000500000HeatTransferArea(Sq.Ft.PerShell)OrmondBeachSUSQUEHANNA HighPressureSUSQUEHANNA intermediate PressureSUSQUEHANNA LowPressureMossLanding0500000100000015000002000000250000030000003500000Operating Weight(LbsPerShell)13 FIGURE4Dimensional Comparison ofSUSQUEHANNA Condenser (Unit1or2)andRepresentative Condensers fromtheEarthquake Experience Database~50~40CQP-302010OrmondBeachSUSQUEHANNA (a)HeightComparison (BaseToExpansion Joint)MossLanding40'ighPreeeure39'termedlate Preeeure29'owPreeeure~MossLandlng6&7 (65'x36')

~SUSQUEHANNA Unlt1or2HighPressureIntermedhte PressureLowPressure(49'29')(89'29')(29'29')mmOrmondBeacht&2(52'2T)(b)ShellFootprint Comparison 14

FIGURE5AAnchorage Capacity-to-Demand Ratio:ParalleltoTurbineGenerator AxisComparison ofSUSQUEHANNA Condenser (Unit1or2)withRepresentative Condensers fromEarthquake Experience Database0.00020.00018E0.000160.00014O0.00012E0.0001V)0.000080.000060.00004~f)0.00002QUpperBoundgLowerBoundMossLandingEICentroSUSQUEHANNA SUSQUEHANNA SUSQUEHANNA HighPressureIntermediate PressureLowPressureFlGURE5BAnchorage Capacity-to-Demand Ratio:Perpendicular toTurbineGenerator AxisComparison ofSUSQUEHANNA Condenser (Unit1or2)withRepresentative Condensers fromEarthquake Experience Database0.00020.000180.00016a0.000140.00012M0.00010.000080.00006a)0.000040.00002QUpperBoundgLowerBoundMossLandingEICentroSUSQUEHANNA SUSQUEHANNA SUSQUEHANNA HighPressureIntermediate PressureLowPressure15 lAOIAOl.iOb0l.000O.IOt5IClOOAO0LEGENDELCENTROSTEhMPLhHT,1979IMPERIhLVhLLEYEQ~UhLLEYSTEAMPLhHT,1971ShNFERNANDOEQ~HOSSLhHDINGSTEhMPLhNT,1989LOMhPREThEQ~SUSQUEEOBfh DESIGNBhSISEhRTHQUhKE ORMONDBEhCHSTEhMPLhNT,1973 PT.MhGUEQPGh~0.208 FUKhSHMlNUCLEhRPLhNT,1978 MIYhGIKEN-OKIEQ.PGh~0.138 PI.OTTEDAT5%DAMPINGOAO0400.000.05.0IO.Ol5.0f0.030.0Frequency (Hz)Figure6:Comparison ofSusquehanna GroundResponseSpectrumtoDataBaseSpectra FlGVRE7AnchorSystemforSUSQUEHANNA Condenser Unit0or2Dhtributloo ofAnchorBoltsbyTensileArea/LocationShellUnitAxleofTurbineGenerator VarieaLocationTotal7.609.507.603.803.804S.80Intermediate Preaaure(ln"2)7.603.803.807.603.803.8030AO(In"2)7.6020.007.603.803.8062.80329IAnchorboltsresistloadInverticaldlrectlon.

Weldstoembeddedplateassemblyresistloadslnhorizontal dlrectlonL OAnchorBoltsresistloadlnverticaldirection.

Nohardrestraint inhorizontal directions (slidingfrictiononly).OAnchorBoltsresistloadlnverticaldlrecthn.

Guidebarsresistloadlndirection perpendicular toaxisofturbinegenerator.

Nohardrestraint peralleltoaxisofturbinegenerator (slidingfrictiononly).17 demandratiosfortheintermediate pressurecoridenser arelowerthanthecomparable databasecondensers.

Thisdoesnotrepresent aconcernwhentheactualanchorcapacityiscomparedtotheseismicloadsinsubsection 3.3.33Capability ofAnchorstoWithstand DesignBasisEarthquake Loads.HighPressureCondenser:

ThemaximumtensionfromtheDBEforcesincombination withtheoperating loadsis'estimated tobe493.4kipsatlocations 2or3comparetotheanchorboltscapacityofabout897kips.ThemaximumbaseshearfromDBEis448kips.Thisshearwouldberesistedinanumberofways:friction, shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovements todevelopboltshears.Itwouldbeunconservative toassumethattheweldsandanchorboltsactconcurrently toresistshearsincetheboltholesareoversize.

Capacities ofthethreeshearresistant phenomenon areasfollows:frictionfromresultant normalforcesbetweencondenser andembeddedplateusinga0.10frictionfactor=183kipsweldcapacity=445kipsshearcapacityofanchorboltsnotintension=1814kipsItisreasonable toassumethatthefrictionisavailable incombination withweldcapacityorincombination withboltcapacity.

ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.Intermediate PressureCondenser:

ThemaximumtensionfromtheDBEforcesincombination withtheoperating loadsisestimated tobe91kipsatlocations 2or3comparetotheanchorboltscapacityofabout359kips.ThemaximumbaseshearfromDBEis417kips.Thisshearwouldberesistedinanumberofways:friction, shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovements todevelopboltshears.Itwouldbeunconservative toassumethattheweldsandanchorboltsactconcurrently toresistshearsincetheboltholesareoversize.

Capacities ofthethreeshearresistant phenomenon areasfollows:/XJttsTttncvzvO.lofrictionfromresultant normalforcesbetweencondenser andembeddedplateusinga~frictionfactor=171kips18 weldcapacity=284kipsshearcapacityofanchorboltsnotintension=1814kipsItisreasonable toassumethatthefrictionisavailable incombination withweldcapacityorincombination withboltcapacity.

ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.LowPressureCondenser:

ThemaximumtensionfromtheDBEforcesincombination withtheoperating loadsisestimated tobe905kipsatlocations 2or3comparetotheanchorboltscapacityofabout1890kips.ThemaximumbaseshearfromDBEis330kips.Thisshearwouldberesistedinanumberofways:friction, shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovements todevelopboltshears.Itwouldbeunconservative toassumethattheweldsandanchorboltsactconcurrently toresistshearsincetheboltholesareoversize.

Capacities ofthethreeshearresistant phenomenon areasfollows:Wt</tf4y.TypoCLIOfrictionfromresultant normalforcesbetweencondenser andembeddedplateusinga+28frictionfactor=135kipsweldcapacity=445kipsshearcapacityofanchorboltsnotintension=1814kipsltisreasonable toassumethatthefrictionisavailable incombination withweldcapacityorincombination withboltcapacity.

ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.19

,

4.0 IVLEAKAEONYRLPIPINSeismically

analyzedpipingwithintheMSIVLeakageAlternate Treatment Methodincludesthemainsteamlinefromcontainment isolation valvestotheturbinestopvalves,thebypasspipingfromthemainsteamlinetothemaincondensers, themainsteamdrainlineheaderfromcontainment isolation valvestoin-linepipeanchors,andportionsofmainsteambranchconnection linestoin-linepipeanchors.Designmethodsfortheseanalyzedlinesareconsistent withseismiccategoryIqualification methodsfortheSSESanddesignmarginsareaccordingly adequatetoassureacceptable seismicperformance.

Portionsofthesemainsteamanddrainlinepipingsystemshavenotbeenseismically analyzed.

SincesystemredesigntoseismiccategoryIrequirements wouldbeexceedingly costly,analternate evaluation methodhasbeenutilizedtodemonstrate seismicadequacy.

Nonseismically analyzedpipingsystemswereassessedtodemonstrate thatSSESpipingandpipesupportsfallwithintheboundsofa"seismicexperience database".

Section1.0detailsthebackground forthishistorical databaseaswellastheconstruction codeandseismicwalkdownreviewsperformed todemonstrate seismicadequacy.

Thecodereviewpurposewastoinsureadequatedeadloadsupportmarginandductilesupportbehaviorwhensubjected tolateralloads.Seismicwalkdowns wereperformed toverifythatSSESpipingandinstrumentation arefreeofimpactinteractions fromfallingandtheproximity ordifferential motionhazards.Conditions outsidetheexperienced databaseboundary(outliers) arebeingreviewedtodemonstrate reasonable assurance oftheintegrity oftheassociated pipingsystemsandcomponents undernormalandearthquake loading.Inaddition, arepresentative boundingpipesupportsampleonthe4"maindrainlinewillbeevaluated todemonstrate anchorage margins.Thesereviewsdemonstrated thatthenon-seismic analyzedpipingsystemsconsistofweldedsteelpipeandstandardsupportcomponents, consistent withtheconstruction standards associated withtheseismicexperience databasepipingsystems.Reviewsalsodemonstrated thatadequatedesignmarginsexistfortypicalorboundingpipingsystemsupports.

Specificdatausedintheevaluations issummarized below.Forthemainsteamdraininterconnected piping,itwasdemonstrated thatadequatedesignmarginsexisttoprovidereasonable assurance thatpipingpositionretention willbemaintained bythepipingsystemdeadweightsupportsundernormalaswellasearthquake loadings.

Walkdownresultsindicated thatadditional supportswouldberequiredtoeliminate thepotential forpipingsysteminteractions.

4.1MainSteamandTurbineBypassNofailuresofmainsteampipingwerefoundintheearthquake experience databaseasdocumented inNEDC-31858P.

ThesepipingsystemsatSSESweredesignedinaccordance withtheASMECodeSectionIII,Class2andANSIB31.1requirements, usingresponsespectrumanalysistechniques.

Theanalysismodelsincludedthemainsteampiping,thebypasslines,andbranchpipinguptoseismicanchors.20

Themainsteamlinesenvelopthepipingfromcontainment isolation valvesFO28A/B/C/D totheturbinestopvalvesMSV-1/2/3/4 andincludethedriplegsplusportionsofthesupplylinestothesteamsealevaporators uptoin-linepipeanchors.Theturbinebypassanalysisincludespipingfromthemainsteamlinestothecondenser plusportionsofthesteamsupplylinestothereactorfeedpumpturbinesandsteamairejectorsuptoin-lineanchors.Thesepipingsystemsweredesignedusingreactorandturbinebuildingresponsespectrainputstoperformdynamicseismicanalysistowithstand theOBEandDBEloadingsincombination withotherapplicable designloadsinaccordance withtheSSESdefinedloadingcombinations.

Designmarginsforthereferenced mainsteamandturbinebypasspipingsystemsarethoseinherentbyapplication oftheseismicdesigncodes.4.1.1DesignBasis4.1.1.1PipingDesignCodeASMEIII,Class2,1971Editionincluding Winter1972AddendaandB31.1,1973Edition4.1.1.2PipingDesignA.DesignTemperature:

585FDesignPressure:

1350psi-mainsteam1350psi-turbinebypassB.Pipesize,schedule, andD/tSizeNPS24241810.7510.758.6254.500Quickness 1.0760.9411.1560.7190.5940.594OA38~Dt251615181410C,TypicalSupportSpacing:B31.1suggested spanD.SupportTypes:springs,struts,snubbers, boxtype,E.DesignLoading:weight,thermal,seismic,steamhammerF.AnalysisMethod:linearelastic,seismicresponsespectrum, steamhammertimehistory21 G.SeismicandDynamicDesignBasis:responsespectraanalysesusingQoorresponsespectrathatwerederivedbasedonthegroundDBEwithapeakgroundacceleration of0.10g.4.1.13PipeSupportDesignCodeAISCandANSIB31.14.1.2MarginAssessment Designmethodsfortheanalyzedmainsteamandturbinebypasspipingareconsistent withseismicCategoryIqualification methodsforSSES.Theseismicwalkdowns identified minorinteraction issuesthatcouldbepotential sourceofdamage.Actionshavebeeninitiated toresolvetheseissues.Basedonactionimplementation, thedesignmarginsassociated withthesesystemsandtheirsupporting structures willbeadequatetoinsurepipingsystemintegrity underprojected seismicperformance.

4.1.3VeriTication WalkdownResultsThewalkdownresultsarepresented inTables5and6forUnits1and2,respectively.

42MainSteamDrainstoCondenser Themainsteamdrainlinetothecondenser consistsofsafety(Class2)andnon-safety relatedpiping.Thesafetyrelatedpipeandportionsofthenon-safety pipinguptoin-linepipeanchorsdownstream ofisolation valvesHV-1/241F019 andF020wereseismically analyzed.

Thesepipingsystemsweredesignedinaccordance withtheASMECode,SectionIII,Class2andANSIB31.1requirements, usingresponsespectraanalysistechniques.

Theremaining mainsteamdrainandassociated pipingwereanalyzedfordeadweightandthermalloadsusingcomputeranalysisandspacingcriteria.

Thispipingissimilartopipingfoundintheseismicexperience database.

Theseismicverification walkdowns identified minorinteraction issuesthatcouldbepotential sourcesofdamage.Actionshavebeeninitiated toresolvetheseissues.22 4.2.1DesignBasis4.2.1.1PipingDesignCodesASMEIII,Class2,1971Editionincluding Winter1972AddendaandB31.1,1973Edition4.2.1.2PipingDesignA.DesignTemperature:

585FDesignPressure:

1350psiB.Pipesize,schedule, andD/tS~izeNPS'iisickness

~t'4.53.5131513150.4380.4380.2500.35810854C.TypicalSupportSpacing:B31.1suggested spanD.SupportTypes:springs,struts,snubbersE.DesignLoading:weight,thermal,seismicF.AnalysisMethod:linearelastic,seismicresponsespectrumG.SeismicandDynamicDesignBasis:responsespectraanalysesusingQoorresponsespectrathatwerederivedbasedonthegroundDBEwithapeakgroundacceleration of0.1g.4.2.1.3PipeSupportDesignCodeAISC,ANSIB31.1,andMSSSP584.2.2MarginAssessment Designmethodsfortheseismically analyzeddrainpipingareconsistent withseismicCategoryIqualification methodsforSSES.Therefore, thedesignmarginsassociated withthesesystemsandtheirsupporting structures willbeadequatetoinsurepipingsystemintegrity underprojected seismicperformance.

23 Theobjective oftheassessment ofthenon-seismic MainSteamDrainpipingistodemonstrate thatpipingpositionretention willbemaintained duringaseismiceventplusprovidesassurance thatthepipesupportswillbehaveinaductilemannerandthatalllinesarefreeofknownseismichazards.Inaddition, itwillestablish thattheseSSESpipingsystemswillperforminamannersimilartopipingandsupportsthathavebeenobservedtodemonstrate goodseismicperformance.

Themethodology utilizedtodemonstrate themarginsinherentintheSSESnon-seismic pipingsupportdesignsisbasedon:ThegroundseismicinputisbasedonthegroundDBEwhichisconservatively defined.Thecalculated pipingseismicresponseisbasedon5%dampedin-structure responsespectraasrecommended inEPRINP-6041.ThereaderisreferredtothefoHowingsubsection 4.2.2.1formoredetails.~Thecomponent supportcapacityisconservatively estimated basedonthevendorratedvalues.Theevaluations'oal istoproduceaHigh-Confidence-Low

-Probability ofFailure(HCLPF)forthewalkdownoutliersandarepresentative pipesupportsample.Thisshouldprovidethedesiredreasonable assurance ofgoodseismicperformance.

4.2.2.1SeismicDemandTheoriginalseismicdesignoftheTurbineBuildingincludedthedevelopment ofthreelumpedmassmodelsfortheeast-west, north-south, andverticaldirections.

TheseismicQoorcurvesweregenerated todetermine seismicanchorforcesanddisplacements forthepipingsystemsthatareattachedtotheTurbineBuilding.

TheseismicQoorcurveswereonlygenerated for1/2%and1.0%equipment dampingvalues.Theexisting1/2%and1%dampedQoorcurveswillbeextrapolated togenerate5%dampedDBEQoorcurvesfortheevaluation ofthewalkdownoutliersandarepresentative pipesupportsample.Duringthemarginassessment, 5.0%dampedrealistic median-centered, withnointentional conservative bias,Qoorcurveswillbedeveloped, ifnecessary, basedontheNUREG/CR-0098 mediangroundspectraanchoredat0.1gand0.067gpeakgroundaccelerations forhorizontal andverticaldirections, respectively.

Variabilities associated withstructure frequency, structure damping,androckmodulusaresigniQcant inthedevelopment oftheseismicQoorcurves.Thesemodelparameters willbeselectedinarandomprocess.Anumberofearthquake timehistories willbeutilizedwiththerandomlyselectedsetsofmodelparameter values.Toaccountfortheuncertainty inthestructural frequency calculations, thepeaksoftheseismicQoorcurvesareshiftedratherthanbebroadened.

24 Itshouldbenotedthattheidentified itemsduringtheseismicverification walkdowns aretaggedasoutlierssincetheydidnotfallwithintheboundsoftheearthquake experience database.

Thepeakacceleration valuesofthedatabasegroundspectraareusuallygreaterthan0.9gwhilethepeakacceleration valuefortheDBEatSSESisabout0.21gfor5%equipment dampingasshowninFigure6.InadditiontotheseismicDBEloads,deadweightandoperating mechanical loadsareaccounted for.Operating mechanical loadsforthissystemarethermalexpansion loadsanddesigndeadweightsupportloadsareconsistent withtributary areaweightprocedures.

4.2.2.2PipeSupportComponent Capacities Thesupplemental fieldverification determined thatthesupporttypesusedareconsidered tohavegoodseismicperformance.

Thesystemispredominantly supported fordeadweightutilizing rodhangers.'omponent designsareconstructed fromstandardsupportcatalogpartstypically consisting ofclamps,threadedrods,weldlesseyenuts,turnbuckles, weldinglugsandareattachedtoeitherconcreteorstructural steel.Thesesupporttypesaredesignedtoresistverticalloadsintension.Designcapacities areprovidedbymanufactures'oad ratingdatasheets.Loadcapacityratingsforcomponent standardsupportsaretypically basedontestingandutilizeafactorofsafetyoffiveinaccordance withMSSSP-58.Theloadonwhichtheloadcapacitydata(LCD)isbasedistherefore afactoroffivehigherthanthecatalogloadrating.Themargincapacities foreachsupportcomponent aretakenastheLCDx5x0.7(EPRINP-6041).

Including thermaleffectsonallowable loads,component standardsupportsdesignedbyloadratingiscalculated asfollows:TLx0.7Su/Su'here:

TL:Supporttestloadislessthanorequaltoloadunderwhichsupportfailstoperformitsintendedfunction; TL=LCDx5Su:Materialultimatestrengthattemperature Su:Materialultimatestrengthattesttemperature Structural steelsupportmembersareevaluated usingsectionstrengthbasedontheplasticdesignmethodsinPart2ofAISCor1.7timestheAISCworkingstressallowables.

Concreteanchorboltsareevaluated usingdatafromtheA46/SQUGcriteria, AppendixC.4.2.3Verification WalkdownResultsThewalkdownresultsarepresented inTables5and6forUnits1and2,respectively.

25

43Interconnected SystemsTheinterconnected systemsconsistoftheremaining pipingwithintheMSIVLeakageAlternate Treatment Methodthatwasnotseismically analyzed.

Thesesystemsarecomposedofweldedsteelpipingandstandardsupportcomponents.

Analyzedbyruleandapproximate methods,thesepipingsystemsaresimilartothepipingfoundintheseismicexperience databasethathaveexperienced seismiceventsinexcessoftheSSESdesignbasisearthquake.

Interaction issuesidentified inthewalkdownthatcouldbepotential sourcesofdamagewereevaluated, and,wherenecessary, actionshavebeeninitiated toeliminate thispotential.

Itwillbedemonstrated thatadequatedesignmarginsexistfortheseinterconnected systemstoprovidereasonable assurance thatpipingpositionretention willbemaintained bythepipingsystemdeadweightsupportsundernormalandDBEloadings.

4.3.1DesignBasisTable4liststhedesignparameters associated withtheseinterconnected pipingsystems.4.3.2MarginAssessment SameasforMainSteamDrainstoCondenser, Section4.2.2.Basedonthepipingsystemconstruction materialreviews,seismicwalkdowns performed forimpactinteraction assessment, andtherepresentative systemevaluations, interconnected systempipingpositionretention willbeinsuredandsystemsimilarity totheseismicexperience databasewillbedemonstrated.

Thegoalistodemonstrate thattheinterconnected systemsarecapableoffunctioning tosupporttheoperation oftheMISVLeakageAlternate Treatment Methodduringandfollowing theapplicable SSESDBE.4.3.3Verification WalkdownResultsThewalkdownresultsarepresented inTables5and6forUnits1and2,respectively.

MBlockwallsintheTurbineBuildinghavebeendesignedusingtheworkingstressmethodofreinforced concretedesigninaccordance withthe1973/1976 UBC.Thewallshavebeenrechecked forseismicloadsusingthe1979UBCwitharesulting seismicloadingof0.084g.minimum.Inadditionsomeofthewallshavebeendesignedforapiperupturepressureof480lb/ft>andlargebore(4"diameterandlarger)pipesupportloads.Allofthewallshavebeendesignedforthemaximumloadsfromfieldrunattachments.

Fieldrunattachments havebeencontrolled anddocumented

.Cuttingofreinforcing steelintheblockwallshasbeencontrolled anddocumented.

Construction ofthewallsperthecivildrawingsandspecifications hasassuredcompliance withtheblockwalldesignrequirements.

AlloftheblockwallswhichareofconcernfortheMSIVLCSElimination Projecthavebeendesignedascomposite wallsconstructed asdoublewythereinforced concreteblockwallswith3000psifillconcretebetweenthewythe'swithallopencellsgrouted.Thethickness ofthesewallsvariesfrom2'-0"minimumto4'06"maximum.OnewalllocatedintheReactorBuildingwhichwasdesignedforOBE/DBE,SRVandLOCAloadsisonly1'-9"thick.TheblockwallswhichareofconcernfortheMSIVLCSElimination Projectareevaluated withseismicloadsusingtheDBEQoorspectra.27

TABLE4INTERCONNECTED SYSTEMDESIGNPARAMETERS UNIT1AND2SystemDeslgnatlon PlplngDesignTempPres.t'F)(pslg)SzeSupportsD/tSpacingSupportTypesDesignCodeLoading(Note1)SelsmloDealnBasisToAnchorRemainder MainSteamDrainsFrom8'DripLegs812'DripLegASMESecthnIa831.140191607xxs4.8xxa3.7160531604$ANSI831.1RcdHangersSpringsConcreteAnchorsPipeStrapsStrucLMemb.AISCMSSSP58DWThermalHydroMainSteamDripLegLevelInstrumentatlon ASMESectionIIIANSI831.1RodHangersSpringsConc.Anch.PipeStrapsStruct.Memb.StrutsAISCMSSSP58DWThefnlalHydroNoneMainSteamAveraging ManifoldtoPressureTransducer PanelsASMESectIIIANSI831.1120118ANSI831.1xxa4.8xxa3.'7RodHangersSprtngsStrutsConc.Anch.RpeStrapsStrucLMembHSCMSSSP58DWThenllalHydroNoneMainSteamTurbineStopValveDrains831.18078160716053ANSI831.1RcdHangersSpringsBoxTypeStruct.MembAISCMSSSP58OWTheBllalHydroNoneNone TABLE4~INTERCONNECTED SYSTEMDESIGNPARAMETERS UNIT1AND2MSIVDrainh4lneAnchorstoHPCondenser Ilncludas DraintoUIW8BypassfromHV1/2lf-F021)ANQ831.1TempPreLtF)(pslg)Sae5851350I'03ANSI831.1184Supports0/tSpacingSupportTypesRodHangersSpringsStructMemb.Cono.Anch.DesignCodeLoading(Note1)ToAnchorNoneRemainder SelsmloDealnBasisHPCITurbineSteamDrainfromIn4lneAnchortoM.LDrainHeaderANSI831.15851350xxa"ANS831.1AISCMSSSPSSRCCTurbineSteamDrainfromh4lneAnchortoM.S.DrainHdr.SteamSupplytoAlrEjectorBeyondHV-1/2010'o firstaehmloanchorANSI831.1ANSI831.158513501'851350103ANS831.1ASMESect.IllANS831.1RodHangersPIpeStrapsCono.Anch.SnubbersStruct.Memb.AISCMSSSP58AISCMSSSP58OWThermalHydroSelsmloR.LAnalyshuslng OBERFPTSupplyBeyondValveHV-t/20111 tofirstselsmhanchor831.11I.SASMESect.IIIANSI831.1AISCMSSSP58DWThermalHydroSelsmlcRS.AnalystsUsingDBE(Note2)SteamSealEvaporator VneBeyondHV-1/20109 tofirstaelsmhanchorANSI831.1ASMESectIIIANSI831.1SpdngsSnubbereStruckMemb.ASCMSSSP58OWThermalHydroSelsmhRLAnalysisusingDBEINote2)

TABLE4INTERCONNECTED SYSTEMDESIGNPARAMETERS UNIT1AND2NOTES:1.ANALYSSMETHODISUNEAREIASTICFORBOTHHANDCALCULATIONS USINGSPACINGCRITERIAANDME101COMPUTERANALYSS.2.SHSMICAU.Y ANALYZEDFROMTHEMAINSTEAMBRANCHCONNECTION TOTHEFIRSTIN-UNEANCHOR.

7 TABLEdOutllerldentltlcathn andResolution StatusUNITfnSteanDraintoCoadcnser SS1Sf-i5upyortESD-LLt-big nayslideoCCtESD-litfnproxfnfty toblockeallSupportESD-LLi-Sgf5Sy-ESD-fit-58$

<<cyslideoCCValveSVfaf-7011 outsideIgbgfCriteriaiyDCESCXAI.

TAfIJDIEWOE>Ayyyfpesefsnfooovenentfsheingevaluated blockwallfsevaluated an4Coundacceptable as-lsDLCCerentfal sefsnfoanm<<atbetweenReactorSuffdfngandTurbineSufldlnglabefngevaluated ValvesefssLfooyerabflfty andpipeintegrity arebeingevaluated fnSteanCrc<<NITtostopTafnAl10ESD115attache4toblockeallblockwallsefsafacapacityfsbeingevaluate4 A0"DripLegsAl5SofateaboveWLTAthruDSoiatsereheingevaluated forpositionretention HainStean57pacstoCoodasorAS-5lnterectfon betweenESD-102-Sag A05crossaroundpipeDES-105-55, S7fnpro@Lofty toblockeall055-105-55, ESD-L00-55,055-105-ELE attachedtoblockwall5efsolopryingectionoCiblineonsuppoctfsbeingevaluated blockwallisevaluated andCoundacceptable asisblockwellfsevaluated endfoundacceptable es-fsHcfnStoatoEV10107SteanJctAfr+actorAS-IAS5TalveSV-LOL07fnyroxfnfty toblockeallValveET-10107inyrorfnfty totireprotection 5yra7blockwallfsevaluated sndCoundacceptable aa-fsTaInfshefngevaluated CorCallsaCeposition TABLE5OutllerMentNcatlon IndResolution StatuellHITInStoatoStemJetAirEJectorCi-1{frmIT-10101toET-I0701$

)2$0-100inproxinity toblock<<cLL(FOIESIIAL yAIUJEEIEOE)AypAcceptable as-ieCl2A~ESD-100Stenchicas nayslideoffTalesST-10701$

inprorinlty tepiroprotection SprayXAcceptable asisXAcceptable as-lslnSte>>DripLagDrains$11$12$1-5DI-a$15$1-0$17II/2Dbb-101,2 ga<<ndorCableTreyIatoracticn bot<<om1-1/2NS-1stA10"Bllineiaterectice bot<<oen1-1/2"N$101010WlineInteraction bot<<ocn1-1/2"NS-102C"Acr.StemlineInteraction betcem1"DS$105,ESD-I004block<<allINb-105,17'panbct<<ecnsepportsOAD-LIS,0$0-125endorcabletreyAdo0<<acyofcabletreys<<pportelabeinga<<el<<at<<4 Soimiono@mentsofbothlinesarebeingecslnatod SeimionovmontsofbothlinesarebolaseeaL<<atod SeimieawmmtsofbothLineaarobeingeoalaated Slack<<alLiseeelnated ondfo<<ndacceptable ea-isSolsaieno<<montofI"pipeisbeingoval<<atod 5<<pportevercpenisbeingeealnatod Adagaacyofcabletraysepportaisbeinge<<elected inStemDripLegLe<<elInstr<<aoatcticn

$21IDSS-105inpresiaity teblock<<cLLblock<<alLisoval<<ated endfo<<ndacceptable es-is TABLEIOutllarMentlflcatlon andReiolutlan StatusUNITStemAveraging Manifoldtopresserstraedncer panoLS5-I1"OCO-LLSinproriaity toblock<<aLL{ICTESTIAL FAILIEWDE)PDVSlock<<aLLseimiocapacityiobeingoealnated StopTalesSoa'tOscinetoCondanset Si-lPelvesSV-LOLOLA,S,C,Dmyrequireaeimiorestraints Si15MDliiSgiS10ASLL5tanchions nayslideoTESeimioloadsfrasvalvesarebeingovslnated Pilwseimlaaementlsbeingovelnated HICIStemDraintothisStemDrainSeederSS11"ESOillinprnrinity toblock<<elLSSS5PESDLli-S55,SSi AS555tanchions nayslideofTSlack<<aLLlsoealnated andTonndacceptable as-isPipesoimiannementlsbeingovsinated LnStempresserseasingLines00-21"PipeA5/0To@faglnproxiaity toblock<<allSlack<<aLLseimiacapacitylabeinga%sleeted EeytooatliertypcsiAAncbcrage orSnpportCapacityF-FallnreandFalling{IIII)PProrinity andIopsotDDitferential Dlsplacment 0-PaleoOperatorScreening

)

TABLEIOuNerldentlcathnand Reeotuthn StatueUNlf2StemDraintoCond<<verAS-I2ESD-Sfi420JED-22$interaatfon SS-LrESD-SfaSupportsblAE2attachedtotccodifferent buffdfns'IS-1TalveST2if7021 outsideSQQOorlterieSS2rESD-Slifnprosfofty tobleak<<allSSaESD-Sfa-a10,17,14,10 stanchion

~uyportsne7slideoff(PDIESIIAL PAILDSEIKIE)ypDSefmfo<<ovmentsoEbothLinesarebefnSevaluated Differential seimfonovmentbetweenReactorSuildinsA.turbfne SulldlnafsbelnSevaluated Valveeefsafooperability apipefntesrity esebelnSevaluated SfoekwalLfsevaluated and!oundacceptable asispfpesofmf0mvmeutfabefnSevaluated StemEronIOITtostopvalveA0"DripLessAl1SofstsabovetOITAthruDAl-2rESD-LLSfn~tytobmwaLLHoistsarsbelnsevaluated

!orpositionretention blockwaLLsefmfooapaoftplsbefnSevaluated StemS7pesstoCondenser AS-Llntereation betweenESD-202-Sa2 Aa2arsesaroundpipeAS-S2iNS-20540ESD-200~uyyortsattacbedtoSloek<<allAS-52"EElineandsteel.pfatforainteraotlon SefmfopryfnSaotlenoE02lfneonsupportlsbeinSevaluated SleekwalLfsevaluated andfoundeooepteble as-lsSteelplatfox<<was nodffiedtooleertbe2lineStemteST20107StemJetAirEfeaterASHValveST-20107endbrpclssupportsfuproxfnftr toblockweLLASSValveST-20107fnprorfnfty toTireProteetlon SpraySfookwelLlsevaluated sndSoundaoeeyteble as-isVaLvelsbeinsevaluated forSallsatepositfm TABLE6OuNerldenttftcathn andRaeotuthn StatueUNITnStemtoStemJetAlrMeet(fsmHT-20107toHT-207015)

Cl-1i"ESD-200lnprcnchslty toblochoeLLCl-2TalvesHT-2070)A/S lspeatcclthMaLLCl-5TelveHT-2470LS lnprorlcclty totireProtection Spray{ICIESIIAL PAILIE)ER)2)tOTAoeeptable u"lsAooepteble ulsAooeptebg ss-lsStepTalvoSeatDrainstoSi-ITalvesHT-2010)A,S,C,D nspre@cire~elmlorestraints Selmleloadsfrerevalvesarel>>lnSevalnatod SCICStemDraintoHainStemDrainHeaderS'71L"EADRliai"ESD-227lnteraetlan Selmioadam<<ctofi"linelsbelnSevaluated SICISteanDrainto)4alnStemDrainHeaderlnStemDripLaaOra)ns50-11"ERD.Rli4iHSD-227lntereetlon Sl-1TalvesHT-20104A aSnayroqalreaelsniarestraint SL-R1GSD-250aiESD-RLRilntereetlon Si-51CSD-250aERD-202-HIf lnteraotion Sl-i1-1/2"Nl-202a10IWlineLnteraetlca Sl5TalvsHT-ROLLRAL aiAces,StoaLinelnteraetlan S1-0i"CRD-250ccader0tireProtection lineSl-7TaLvesHT-2011251 A52neyr<<pclre~elm)arestraint.

Alsolntereatlen

<<ith4Aea.StemlineSl-01-1/2OSS-20i110IMLinelnteraetlon Sl-0Sp-DSS-205-H4040 a0"ESD-200Lb>>lnteraetlon 01-10L-L/2"O55.205a10Illlinelnteraetlon Solmlencvmentofi"linelsbeinsevslnated Sccpyorts forHT-20105A

~Saroboln0evalsatod 5elsala<<wmentsofbothlinnarebelnSevalnated SelmlenovmentsofbothLinesarebelnSevalnated SelmlenovmentsofbothlinesarobolnSevalsated Selmle<<vvmentsofHT-ROLLRAL 4iLinearebelnSevalsated Tlr~Proteetlon lineeccpperts arebelnSevalnated 5ccpporta forHT-ROLLRSL aSRaealmlemvmentefilineere)>>lnSevslseted SelmlamvmentsofbothLinesarebelnsevalsated Selealepxylsssationof0"StemLinemsepportlsbolasevalsated 5eleslesovmenteofbothlinesarebalsaevalaeted TABLEeQuttterIdeatlftCathn andRSSO}uthn StatueUNT2StecccDripLe0LevelIntcscentatian SR-lSR-RSR5SR-01MI-2054$0"LobeOillinelntereetlon 1D55-205410"Extraction SteanUnelnteraotlon VDRS-202410"Estraetlon Steanlineinteraction SP-DSS-20$

-E&00T410"PWEt!RAdraininteraction (POITIITIAL PAINREIRRIR)4PPSelssionoveoents ofbothlinesanbeln0evalsated Selsnlo~tsofbothlinesarebein0evalsate4 Selsaloeormmteofbothlinesarebeln0evalsated SelsslowhatofItilinelsbelnSevsloated SteanAvera0ln0 Ncnlfo14toSR-IPresserstrmsdoeer panelSSR5$-$1ICD-212Stanchion Sopports~lidooff1"DCD-RIRenderEVhCDuet1DCD-212inproxialty tobloch<<allSelsnleunmetof1linelsbeln0evslsated lÃhCseisaiosopportoapaeltylsbein0evalsated Rlocbeallselsaloeapaoltylsbelnsevalsate4 50-2Tubis0naderEVACTobis0inprorlaity ofblock<<alllÃhCselsnlosspportoapaeltylsbein0evalsated Slosh<<allselsolooapaoltylsbeln0evalsate4 EeytooetllestypeacA-hncbora0e orRapportCapacityPPallorean4tallis0(II/I)P-Precialty andIspaotDdifferential Dlspiaomeat 5-TslveOperatorSoroein0 ATTACHMENT TOPLA-422SENCLOSURE3 SUSQUEHANNA LOCADOSE

~y~

Attachment 2SUSQUEHANNA LOCADOSESFORACOMBINEDMSIVLEAKAGERATEOF300SCFHUSINGTHEISOLATEDCONDENSER TREATMENT METHODSUSQUEHANNA STEAMELECTRICSTATION-EACHUNITExclusion AreaBoundary(2-Hour)LowPopulation Zone.(30-Day)ControlRoom(30-Day)A.10CFR100LimitB.DosesusingMSIV-LCSTreatment>>>>

C.PreviousCalculated Dosesw/oMSIVLeakage>>>>

D.Contribution fromMSIVs300SCFHTotal<<>>>>E.NewCalculated DosesUsingICTreatment A.10CFR100LimitB.DosesUsingMSIV-LCSTreatment<<>>

C.PreviousCalculated Dosesw/oMSIVLeakage>>>>

D.Contribution

&omMSIVs300SCFHTotal>>>>>>E.NewCalculated DosesUsingICTreatment A.GDC-19B.DosesusingMSIV-LCSTreatment' C.PreviousCalculated Dosesw/oMSIVLeakage>>>>

D.Contribution

&omMSIVsat300SCFHTotal"'.NewCalculated DosesusingICTreatment WholeBodyrem252.472.210.0072.21725.0.370.330.040.3750.380.350.410.76Thyroidrem300127.8125.50.11125.61'00 30.429.612.1441.743014.1913.64.9518.55Betarem7512.011.01.1712.17Nolimitspecified Dosescalculated forPowerUpratedconditions inPP&LCalculation EC-RADN-1009 PerGEcorrespon4ences OG94-574-09 andOG93-1021-09 FORMNDAP-QA-0726-1, Rev.0Page16of16

$aap~0r~IIF,"If o9D+8Aca!TM)VLstIAMBSM-105SH.2~SD-fo00000CT-5PDT~0IuaerF.4HMDCdDESEllELL-IAE00H001MNTMTIIEIKTIMA.ELEAKKL8STE-LW-I2I+~SM~-0IO'p'n9213630A.des-JI'EID-II~D50-12510OID~w-M-oao"~MAN-ooo~IRV-IP.0DIIAV-PP-)OIOID TPe.-le15D~8-FKHO~MBA~AN--I IWWIIHMI~IRVVNT-)0lt 02'DSA-U5IIO.PT260001SIETM0WMSM'FE--IM52~IRV-Nl-10)

IAI"'a--IIeF00-MILDE0"I100c~0la0HaMsI'OCS-DBS-3DWHLTLa.AD'~02DI~ICI2DVMW-DAD-~NM-O5011011000IAV-PT-I82NQ+H$8Tl":".I'"2'WoKETK0WM0Ia'N2-DN53oae-oILDEcIIeDBS30~BWPI-OO0INEH)T000~a-D-00C~ll-PDT-00CMD02ODD-seva0oeeMIrO'02TaRI->>-NL-0112-TL-101128IPR.-)IN)60 00POTHoC0~MV-PT-ION

~aa-PP*RVVNT-)00DM-141SH.ISNIAE85toPots~N5-orw-~(Iaw-roMCrt:'*MB.6~tt125SetEII'ESD010alTNS12)-~HSM.IAK-TDI200DFM-155SH.IHIONI+0HAC0ESD-UM*5~laaoeeI-07&H007M-IOISH.3OYPA55VALVESB-La.IAVKSNM0DB.<<LIIM0ow.I3LK0MMILast0WHta"M-I0ISH.IH08IDIISehatt-~OIT...'Cl-IAl-PP-0000-10100~M-PP-DIWQUALITYRELATEDDAOM-149SH.I2MNrrsISECONNlMIP*8(CAEDTEDIAHECSIM.)RMNAM)MIIPT(CRtTEO)DLICRMLWMelSFBICIMMTMPSTNOC0.'.KA5NEOEOMIKAEPOIIIOEO WOOHCKENQF.INININISFIWKI~1)VECF0018TIEITN<CSIIEII)OBNTATE9Lili2~Olea-CjiQPttIOMSIVLEAKAGEALTERNATE FLOWPATHFIGUREHPENNSTLVSNTS PSNCR~LTSNTCSNPNDLLcersaa ps.AECR*I0H-101HSNETQH)DD)ODD 28