ML18026A535: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter: | {{#Wiki_filter:ATTACHMENT TOPLA-4228ENCLOSURE2 MSIVLEAKAGEALTERNATE TREATMENT METHODSEISMICEVALUATION 94112'Pat42 941i21PDRnoacKosooozs7pnR SUSQUEHANNA STFAMELECTRICSTATIONUNIT1AND2MSIVLEAKAGEALTERNATE TREATMENT METHODSEISMICEVALUATION OCTOBER19,1994 TABLEOFCONTENTS~PaeCOVERSHEETTABLEOFCONTENTSINTRODUCTION 1.SCOPEOFREVIEWTURBINEBUILDING2.1LateralForceResisting Systems2.2SeismicDesignCodes2.3SeismicDesignBasis2.4WindDesignCodes2.5WindDesignBasisMAINTURBINECONDENSERS 3.1GeneralDescription ofSusquehanna Condensers 3.2Comparison ofSusquehanna Condensers withDatabaseCondensers 3.3Capability ofAnchorstoWithstand DesignBasisEarthquake Loads10101018MSIVLEAKAGECONTROLPIPING4.1MainSteamandTurbineBypass4.1.1DesignBasis4.1.1.1PipingDesignCode4.1.1.2PipingDesign4.1.1.3PipeSupportDesignCode4.1.2MarginAssessment 4.1.3Verification WalkdownResults20202121212222224.2MainSteamDrainstoCondenser 4.2.1DesignBasis4.2.1.1PipingDesignCode4.2.1.2PipingDesign4.2.1.3PipingSupportDesignCode4.2.2MarginAssessment 4.2.2.1SeismicDemand4.2.2.2PipeSupportComponent Capacities 4.2.3Verification WalkdownResults222323232323242525 TABLEOFCONTENTS~Pae4.3Interconnected Systems4.3.1DesignBasis4.3.2MarginAssessment 4.3.3Verification WalkdownResults262626265.BLOCKWALLS 27 | ||
INTRODINTheevaluation inthisreportwasperformed todocumenttheseismicdesignadequacyofthe"MainSteamIsolation Valve(MSIV)LeakageAlternate Treatment Method".Thismethodisbeingevaluated forreplacing thedesignfunctionoftheMSIV-Leakage ControlSystem(LCS).TheMSIV-LCSlicensedbaseddesignfunctionis'toservetoredirectMSIVleakagebackintosecondary containment, whereitcanbeprocessed asafilteredreleaseandreducethepotential contribution tooff-siteandcontrolroomdose.Historically, theMSIV-LCShasbeensusceptible tonumerousfailuresandcostlyrepairs.Inordertoimprovetheperformance ofthepowerplant,bothfromanuclearsafetyviewpoint andelimination ofahighcostandhighmaintenance system,the"MSIVLeakageAlternate Treatment Method"hasbeenestablished, whichwillservetoprovideamoreeffective meanstoprocesstheMSIVleakage.Theprimarycomponents tobereliedupon,forpressureboundaryintegrity, inresolution oftheBWRMSIVleakageissueare:(1)themainturbinecondensers, (2)themainsteamlinestotheturbinestopandbypassvalves,and(3)themainsteamturbinebypassanddrainlinepipingtothecondensers. | |||
Earthquake experience hasdemonstrated thattheweldedsteelpipingandanchoredcondensers insimilarsystemsareseismically rugged.Theearthquake experience isderivedfromanextensive databaseontheseismicperformance ofover100powerplantunitsandindustrial facilities inactualrecordedearthquakes. | |||
Basedonthispost-earthquake reconnaissance, theBWROwnersGroup(BWROG)seismicexperience studyhasidentified limitedrealistic seismichazards,including supportdesignattributes andproximity interaction issues,aspotential sourcesofdamageonalimitednumberofcomponents. | |||
TheBWROG'sstudyisdocumented inNEDC-31858P, "BWROGReportforIncreasing MSIVLeakageRateLimitsandElimination ofLeakageControlSystems". | |||
Areviewandevaluation wasperformed forPennsylvania PowerandLight,Susquehanna SteamElectricStation(SSES),Units1and2,toensurethatnosuchissuesarepresent,thusproviding reasonable assurance oftheintegrity ofthesesystemsandcomponents. | |||
Thisreportsummarizes themethodology usedandsomeoftheresultsoftheseismicadequacyreviewoftheMSIVLeakageAlternate Treatment Method. | |||
==1.0 OPEFREVIEWThemainturbinecondensers== | |||
formtheultimateboundaryofthe"MainSteamIsolation Valve(MSIV)LeakageAlternate Treatment Method".Boundaries wereestablished upstreamofthecondensers byutilizing existingvalvestolimittheextentoftheseismicverification walkdown. | |||
Theboundaries areshowninFigure1ofthisevaluation. | |||
TheboundaryvalveswereselectedusingthecriteriaoutlinedinNEDC-31858P anddocumented inPP&LEngineering Studies,Analyses, andevaluations (SEA),SEA-ME423, "MSIVLeakageSeismicVeriGcation BoundaryDetermination Study,SSESUnit1"andSEA-ME424, "MSIVLeakageSeismicVerification BoundaryDetermination Study,SSESUnit2.Thefollowing criteriawasusedinselecting theboundaryvalves:1.Normallyopenvalve,automatically closesasaresultofMSIVisolation signal2.Normallyopenvalve,whichcanberemotelyclosedfromcontrolroom3.Normallylockedclosed,manuallyoperatedvalve4.Normallyclosed,manuallyoperatedvalve5.Automatically orremotelyoperatedvalvesthatfailclosed,asaresultoflossofpowerorair(pneumatic operators) tothevalveoperator6.Normallyclosedvalve,whichcanberemotelyclosedfromthecontrolroom7.Normallyclosedvalve,whichcanberemotelydosedfromacontrolpaneloutsidethecontrolroomInNEDC-31858P, aseismicdatabasewasassembled. | |||
'Msdatabaseservedashistorical documentation oftheperformance ofnon-seismic designedpipingsystemsandmainturbinecondensers, atvariouspowerplantsthroughout theworld,whichhavegonethroughvaryinglevelsofseismicevents.Thisdatabaseprovidedthebasisfordemonstration ofseismicadequacyofnon-'eismically designedsystems.Inordertodemonstrate thatSSESpipingandcomponents fallwithintheboundsoftheexperience | |||
: database, tworeviewswereperformed. | |||
TheQrstreviewconsisted ofreviewing theconstruction codestodemonstrate thatthedesignated pipingandcomponents werebuilttostandards similartothoseplantsidentified intheexperience databaseofNEDC-31858P. | |||
Thesecondreviewconsisted ofseismicverification walkdowns toassurethatthecondensers andpipingsystemsfallwithintheboundsofthedesigncharacteristics oftheseismicexperience databasecontained inNEDC-31858P. | |||
Conditions thatmightleadtopipingconfigurations whichareoutsidetheboundsoftheexperience databasewerenotedduringthewalkdowns. | |||
Tables-5and r'1<~-z~z~y~geioz~vztAGod'U'~>~> | |||
AT7g,Pipgze8.'f,BC'L2 6ofthisreportsummarize theidentified conditions (termed'"outliers"), | |||
andtheirresolution status.Notethattheoutliersarebeingresolvedbydemonstrating analytically thattheydidnotcreatehazardsbeyondtheseismicinertialloading.Thesehazardsincludeinteraction, differential displacement, and/orfailure/falling. | |||
Ifevaluation cannotqualifysomeoutliers, modiTications willbedesignedtoprovideseismically acceptable conQgurations. | |||
Whereanalysiswasusedtoresolvethewalkdownoutliers, the5%dampedconservative Qoorcurvesareextrapolated fromtheexisting1/2%and1%dampedQoorcurvesthatwerebasedontheSSESgrounddesignbasisearthquake (DBE)anchoredat0.1gpeakgroundacceleration. | |||
Asanalternate methodforgeneration ofseismicinput,5.0%dampedrealistic median-centered, withnointentional conservative bias,Qoorcurveswillbedeveloped, ifjudgedtobenecessary, basedontheNUREG/CR-0098 mediangroundspectraanchoredat0.1gand0.067gpeakgroundaccelerations forhorizontal andverticaldirections, respectively. | |||
Variabilities associated withstructure frequency, structure damping,androckmodulusaresignificant inthedevelopment oftheseismicQoorcurves.Mescmodelparameters willbeselectedinarandomprocess.Anumberofearthquake timehistories willbeutilizedwiththerandomlyselectedsetsofmodelparameter values.Toaccountfortheuncertainty inthestructural frequency calculations, thepeaksoftheseismicQoorcurvesareshiftedratherthanbebroadened. | |||
Inadditiontotheongoingresolution ofthewalkdownoutliers, seismicmarginassessment ofarepresentative boundingsampleofpipesupportsonthemaindrainlinewillbeconducted. | |||
Thisassessment ismoreconservative andmorerestrictive thantheevaluation referenced inNEDC-31858P. | |||
0 | |||
==2.0 INEBILDINGPerformance== | |||
oftheturbinebuildingduringaseismiceventisofinteresttotheissueofMSIVleakagetotheextentthatnon-seismically designedstructures andcomponents shouldsurviveandnotdegradethecapabilities oftheselectedmainsteamandcondenser Quidpathways. | |||
ABWROGsurveyofthistypeofstructure has,ingeneral,confirmed thatexcellent seismiccapability exists.Therearenoknowncasesofstructural collapseofeitherturbinebuildings atpowerstationsorstructures ofsimilarconstruction. | |||
'heSSESturbinebuildinghousestwoin-lineabout1100megawattturbinegenerators withallauxiliary equipment including two220tonoverheadservicecranes.'Ihebuildingisentirelyfoundedonrockwithreinforced concreteretaining wallsextending uptogradelevel.Thesuperstructure isframedwithstructural steelandreinforced concrete. | |||
Exteriorwallsarepre-castreinforced concretepanelsexceptfortheupper30feet,whichismetalsiding.'Iheroofhasmetaldeckingwithbuilt-uproofing.Eachofthetwoturbinegenerator unitsissupported onafreestandingreinforced concretepedestalextending downtorock.Separation jointsareprovidedbetweenthepedestals andtheturbinebuildingQoorsandslabstopreventtransferofvibration tothebuilding. | |||
Theoperating Qoorissupported onvibration dampingpadsatthetopedgeofthepedestals. | |||
Aseismicseparation gapisprovidednearthecenterofthebuildingbetweenthetwounits.Aseismicseparation gapisalsoprovidedagainstthereactorbuilding. | |||
ThedesignoftheSSESturbinebuildingincludesbothseismicandtornadoloadings. | |||
TheturbinebuildingisdesignedtopreventcollapseunderboththeDBEandtornadoloadconditions. | |||
ThedeQections fromtheseloadingshavebeenkepttoavaluesuchthatinteraction withCategoryIstructures isavoided.Thegroundacceleration associated withtheDBEis0.10g.Theturbinebuildinghorizontal shearsresulting fromtheDBEarepresented inFigure2.Basedupontheabove,itisconcluded thattheSSESturbinebuildingisaseismically robuststructure withlittleriskofdamagetothestructure thatwoulddegradethecapability ofthemainsteamandcondenser fluidpathways. | |||
Specificparameters includedintheevaluation arepresented below.2.1LateralForceResisting SystemsThelateralloadresisting systemsuperstructure type,abovetheturbineQoor,isabracedorrigidframestructure depending onthedirection oflateralloadconsistsofthefollowing: | |||
ColumnlinesGandKcomprisealternating baysofcross-bracing thatresistN-Swindorseismiclateralloadingconditions. | |||
E-Wlateralforcesareresistedbyrigidframebentsfromcolumnline12to29(Unit1).Lateralforceresisting systemsubstructure, belowtheturbineQoor:ConcretewallsserveasshearwallsforlateralloadsintheNCdirections. | |||
FIGURE2ASeismicDesignForcesfortheSUSQUEHANNA TurbineBuildingIntheEast-West Direction Hev.762'ev.729'ev.699'ev.676'lev.656'500010000150002000025000East-West DBE(Klps)FIGURE28SeismicDesignForcesfortheSUSQUEHANNA TurbineBuildinglntheNorth-South Direction Elev.787'ev.762'lev.699'ev.676'lev.656'500010000150002000025000North-South DBE(Klps) 22SeismicDesignCodes'Allnon-category Istructures aredesignedtoconformtotherequirements of:AmericanInstitute ofSteelConstruction (AISC)Speci6cation fortheDesign,Fabrication, andErectionofSteelBuildings. | |||
AmericanConcreteInstitute (ACI)BuildingCodeRequirements forReinforced Concrete(ACI318-71).AmericanWeldingSociety(AWS)Structural WeldingCodeAWSD1.1-72.23SeismicDesignBasisAseismicanalysisoftheturbinebuildingwasperformed fortheDBEloadinginthenorth-south, east-west, andverticaldirections inordertoassurethatthebuildingwillnotcollapse. | |||
Theresulting deQections werealsoutilizedtoconfirmthatthereisnointeraction withthereactor,building. | |||
2.4WindDesignCodesTheturbinebuildingisdesignedtoconformtotherequirements of:AmericanSocietyofCivilEngineers, papernumber3269,WindDesignRequirements. | |||
AmericanInstitute ofSteelConstruction (AISC)Specification fortheDesign,Fabrication, andErectionofSteelBuildings. | |||
AmericanConcreteInstitute (ACI)BuildingCodeRequirements forReinforced Concrete(ACI318-71).AmericanWeldingSociety(AWS)Structural WeldingCodeAWSD1.1-72.25WindDesignBasisThedynamic,windpressures usedinthedesignofSSESarederivedfromtheASCEPublication No.3269usingthefollowing equation. | |||
q=0.002558'here qisthevelocitypressureinpsf,andVisthewindvelocity(mph).Itwas | |||
assumedthat80%ofqisactingonthewindwardsideand50%issuctionontheleewardsideofthebuilding. | |||
Thelocalpressureatanypointonthesurfaceofthebuildingisequalto:p=qCpwherepisthepressureandCisthepressurecoefficient. | |||
Thetotalpressureonthebuildingisequalto:p=qCOwhereCoistheshapecoefficient andisequalto1.3.ThewindloadsareprovidedinTable1.Theturbinebuildingframeisdesignedtoresisttornadowindforcesassumingthattwothirdsofthesidingisblownaway.Inaddition, eachexteriorcolumnanditsconnections aredesignedforthefulltornadowindintheeventthatnosidingblowsawayinthetributary areaofthecolumn.Themaximuminteraction ratioforthestructural steel,resulting fromthecasewithnofailureofthesiding,isapproximately thesameasthatobtainedfromtheDBEload.Theloadcombinations utilizedforthedesignoftheturbinebuildingarepresented inTable2. | |||
TABLE1TornadoWindLoadsWallLoadRoofLoadHeight(ft)BasicVelocity(mph)DynamicPressurewith1.1GustFactorPressure0.8qSuction0.5qTotalDesignPressure1.3qSuction0.6q0-5050-150150<00Over40080951101202030404516243236101520232639525912182427TABLE2LoadCombinations D+L+E'+L+WD+L+W'+L+E'ee Note1SeeNote1USDUSDD=DeadLoadL=LiveLoadW=WindLoadW'TornadoWindE'DesignBasisEarthquake (1)Innocaseshalltheallowable basemetalstressexceed0.9Fyinbending,0.85Fyinaxialtensionorcompression, and0.5Fyinshear.WhereFsisgovernedbyrequirements ofstability (Localorlateralbuckling), | |||
fsshallnotexceed1.5Fs.Innocaseshallbeallowable boltorweldstressexceed1.7Fs. | |||
3.MAINTURBINECONDENERS3.1GeneralDescription ofSusquehanna Condensers Themainturbinecondenser isatripleshellmultipressure surfacecondenser whichconsistsofthree(3)rectangular shapedweldedsteelplatecondensers ofthesinglepassquad-divided type.Thecirculating waterlowis448,000gallonperminute.Theheatexchangeareaofthehighpressureshellconsistsof28,0401-inchdiametertubes,approximately 50footlong,givingaheattransferareaof367,000squarefeet.Theheatexchangeareaoftheintermediate pressureshellconsistsof28,0081-inchdiametertubes,approximately 40footlong,givingaheattransferareaof293.300squarefeet.Theheatexchangeareaofthelowpressureshellconsistsof27,9721-inchdiametertubes,approximately 30footlong,givingaheattransferareaof219,700squarefeet.Thedryweightandtheoperating weightofthethreeshellsareasfollows:DrWeihtIb0eratinWeihtIbHighPressureCondenser 678,200Intermediate PressureCondenser 643,000LowPressureCondenser 567,8002,132,700 1,984,300 1,572,700 Thebaseofthecondenser (hotboxshell)is29'x49',29'x39',and29'x29'nplanforthehigh,intermediate, andlowpressurecondensers, respectively. | |||
Eachcondenser shellissupported fromtheconcretebaseslaboftheturbinepedestalon6embeddedplateassemblies. | |||
Positiveattachment isprovidedbyanchorboltsandweldstotheembeddedplateassemblies. | |||
Theembeddedplatesassemblies onlyprojecttheirplatethickness abovethebaseslab,sotherearenolegsorpiersbetweenthecondenser andthebaseslab.Thecondenser shellsneckdownatthetopwheretheyweldtotheturbine.Thenecksincludearubberexpansion jointwhichstructurally isolatesthecondenser shellfromtheturbine,sothattheanchorstothebaseslabprovidetheentiresupportforthecondenser shell.Theheightofeachshelltotheexpansion jointisapproximately 56'.Thecondensers weretestedbyfillingtheshellwithwater.Thedesignconditions forthecondensers includeavacuumpressureof26"ofMercury,and"zone1"seismiccoefficients of0.03gverticaland0.05ghorizontal. | |||
The.75"thickshellsofthecondensers arestiffened bythetubesupportplatesandbystrutsthatconnectthetubesupportplatestothesidewalls andtothecondenser bottom.Platedividers, whichseparateeachshellintofourflowpaths,alsoservetostiffentheshell.3.2Comparison ofSusquehanna Condensers withDatabaseCondensers ThisreportwillshowthateachSSEScondenser shelliscomparable tothedatabasecondensers initscapability toresistseismicforces.Inaddition, thisreportwillalsoshowthateachshellanchor10 systemshavethecapability towithstand theforcesassociated withDBEincombination withoperating loads.Sinceeachcondenser (high,intermediate, andlowpressure) isindependently supported fromtheothershellswecancompareitsstructural. | |||
characteristics tothesimilarcondensers addressed inNEDC-31858P, "BWROGReportforIncreasing MSIVleakageRateLimitsandElimination ofLeakageControlSystem".Comparable condensers thathaveexperienced significant earthquakes asidentified inNEDC-31858P willbehereafter called"database" condensers. | |||
EachSSEScondenser shellisspecifically comparedtothedatabasecondensers fromMossLanding,Units6and7,andfromOrmondBeach,Units1and2.Thesecondensers havesimilarphysicalarrangements ofcomponents andconstruction detailstotheSSEScondenser, andwouldfunctionsimilarly toresistseismicforces.FromTable3andfromFigures3through5,itisapparentthatmostofthephysicalfeaturesoftheSSEScondenser thatwouldbesignificant inseismicconsiderations, areeitherenveloped bythedatabasecondensers, orwouldbelesscriticalthanthedatabasecondensers. | |||
Onepossibleexception isthegreaterheightoftheSSEScondensers. | |||
Anotheristhecapacitytodemandratio(Figure5)fortheintermediate pressureshell.Thesignificanceof thisgreater heightisdiscussed intheparagraph below.Thecapabilityof theanchorsforallthreeshellsisdiscussed insubsection 3.3.TheSSEScondenser ishigherthanthedatabasecondensers (SeeFigure4a).Thisfeaturecannotbeconsidered aseitherenveloped byorlesscriticalthanthedatabasecondensers, sincelargerratiosofheighttobasewidthtendtogivelargeroverturning forces.InthecaseoftheSSEScondenser shells,wecansaythatthisgreaterheightisnotthatsignificant forthreereasons.Thefirstreasonisthattheoperating weightofeachshellincomparison totheshellsideareaiscomparable tothatofthedatabasecondensers; therefore theshearstressesintheshellplatewouldnotbeanyhigherthanthedatabasecondensers forthesame"g"load.ThisisapparentfromthedatainTable3.Thesecondreasonisthattheanchorboltshearareasincomparison tooperating weightsarecomparable tothedatabasecondensers forallshellsexcepttheintermediate pressureshell.Thisisillustrated inFigure5inwhichtheSSEScondenser anchorsareactuallylesscriticalthantheanchorsofthedatabasecondensers exceptfortheintermediate pressureshell,ThethirdreasonisthattheanchorsfortheSSEScondenser havemorethanenoughcapacitytowithstand theforcesfromaDBEeventincombination withoperating loads.Thisspecificanchorcapability isdiscussed insubsection 3.3.Theanchorconfiguration fortheSSEScondenser shellsisnotnecessarily thesameasthatoftheddatabasecondensers. | |||
FortheSSEScondenser shells,baseshearloadsaretakenbyweldsofthecondenser toembeddedplatesatlocations 1and4ofFigure7.Theanchorboltsarenotdesignedforshearsbecausetheholesinthecondenser baseareoversized, andtheweldsandguidesareastifferloadpathforshearloads.Sincetheanchoratlocation4isaguideinonedirection, theweldsatlocation1aresizedtotakealltheshearinthedirection paralleltotheturbineaxis.Forloadsperpendicular totheturbineaxistheanchorsatlocation1and4bothcontribute toresisting shears.InFigure5the"lowerbound"anchorareaisonlytherootareaoftheweldsactiveinthegivendirections. | |||
The"upperbound"areaisthetotalofanchorboltsareaonly.Thisconservatively | |||
<<ssumesthattheweldsfailbeforetheanchorboltsareeffective inresisting shears.Thecapacityto11 | |||
TABLE3Comparison ofSUSQUEHANNA Condenser toDatabase'ondensers PlantNameHorizontal gLevelExperienced Manufacture WidthxLengthxHeight(Ft)(Ft"2)(Lbs)HeatExchangeOperating WeightShellThickness | |||
/Mateial(In)/(ASTM)TubeSupportsThickness | |||
/Number(tn)TubeSheetsThickness (In)TubeSizeDiameter(ln)/Length(Ft)MossLanding0.40Ingersoll Rand36x65x4743500031150003/4A-285C3/4-151/65'rmond Beach0.20South.Western27x52x2021000017675003/4A-285C5/8-141.251"/53'USQUEHANNA (HighPressure) 0.21"~Ingersoll Rand29x49x5621327003/4A-285C5/8-141.501/50'USQUEHANNA (Intermediate Pressure) 0,21'0Ingersoll Rand29x39x5619843003/4A-285C5/8-111/40'USQUEHANNA (LowPressure) 0.21*'ngersoll Rand29x29x5621970015727003/4'-285C5/8W1/30'atabase information fromNEDC-31858P Revision2,September 1993.AppendixD,Table4-1andTable4-3DBEdesignbasisis0.21ghorizontal for5hdamping,peakofgroundresponsecurve,atcondenser base(SeeFigure6) | |||
FIGURE3SizeComparison oftheSUSQUEHANNA Condenser (Unit1or2)withRepresentative Condensers fromEarthquake Experience OrmondBeachSUSQUEHANNA HighPressureSUSQUEHANNA Intermediate PressureSUSQUEHANNA LowPressureMossLanding100000200000300000400000500000HeatTransferArea(Sq.Ft.PerShell)OrmondBeachSUSQUEHANNA HighPressureSUSQUEHANNA intermediate PressureSUSQUEHANNA LowPressureMossLanding0500000100000015000002000000250000030000003500000Operating Weight(LbsPerShell)13 FIGURE4Dimensional Comparison ofSUSQUEHANNA Condenser (Unit1or2)andRepresentative Condensers fromtheEarthquake Experience Database~50~40CQP-302010OrmondBeachSUSQUEHANNA (a)HeightComparison (BaseToExpansion Joint)MossLanding40'ighPreeeure39'termedlate Preeeure29'owPreeeure~MossLandlng6&7 (65'x36') | |||
~SUSQUEHANNA Unlt1or2HighPressureIntermedhte PressureLowPressure(49'29')(89'29')(29'29')mmOrmondBeacht&2(52'2T)(b)ShellFootprint Comparison 14 | |||
FIGURE5AAnchorage Capacity-to-Demand Ratio:ParalleltoTurbineGenerator AxisComparison ofSUSQUEHANNA Condenser (Unit1or2)withRepresentative Condensers fromEarthquake Experience Database0.00020.00018E0.000160.00014O0.00012E0.0001V)0.000080.000060.00004~f)0.00002QUpperBoundgLowerBoundMossLandingEICentroSUSQUEHANNA SUSQUEHANNA SUSQUEHANNA HighPressureIntermediate PressureLowPressureFlGURE5BAnchorage Capacity-to-Demand Ratio:Perpendicular toTurbineGenerator AxisComparison ofSUSQUEHANNA Condenser (Unit1or2)withRepresentative Condensers fromEarthquake Experience Database0.00020.000180.00016a0.000140.00012M0.00010.000080.00006a)0.000040.00002QUpperBoundgLowerBoundMossLandingEICentroSUSQUEHANNA SUSQUEHANNA SUSQUEHANNA HighPressureIntermediate PressureLowPressure15 lAOIAOl.iOb0l.000O.IOt5IClOOAO0LEGENDELCENTROSTEhMPLhHT,1979IMPERIhLVhLLEYEQ~UhLLEYSTEAMPLhHT,1971ShNFERNANDOEQ~HOSSLhHDINGSTEhMPLhNT,1989LOMhPREThEQ~SUSQUEEOBfh DESIGNBhSISEhRTHQUhKE ORMONDBEhCHSTEhMPLhNT,1973 PT.MhGUEQPGh~0.208 FUKhSHMlNUCLEhRPLhNT,1978 MIYhGIKEN-OKIEQ.PGh~0.138 PI.OTTEDAT5%DAMPINGOAO0400.000.05.0IO.Ol5.0f0.030.0Frequency (Hz)Figure6:Comparison ofSusquehanna GroundResponseSpectrumtoDataBaseSpectra FlGVRE7AnchorSystemforSUSQUEHANNA Condenser Unit0or2Dhtributloo ofAnchorBoltsbyTensileArea/LocationShellUnitAxleofTurbineGenerator VarieaLocationTotal7.609.507.603.803.804S.80Intermediate Preaaure(ln"2)7.603.803.807.603.803.8030AO(In"2)7.6020.007.603.803.8062.80329IAnchorboltsresistloadInverticaldlrectlon. | |||
Weldstoembeddedplateassemblyresistloadslnhorizontal dlrectlonL OAnchorBoltsresistloadlnverticaldirection. | |||
Nohardrestraint inhorizontal directions (slidingfrictiononly).OAnchorBoltsresistloadlnverticaldlrecthn. | |||
Guidebarsresistloadlndirection perpendicular toaxisofturbinegenerator. | |||
Nohardrestraint peralleltoaxisofturbinegenerator (slidingfrictiononly).17 demandratiosfortheintermediate pressurecoridenser arelowerthanthecomparable databasecondensers. | |||
Thisdoesnotrepresent aconcernwhentheactualanchorcapacityiscomparedtotheseismicloadsinsubsection 3.3.33Capability ofAnchorstoWithstand DesignBasisEarthquake Loads.HighPressureCondenser: | |||
ThemaximumtensionfromtheDBEforcesincombination withtheoperating loadsis'estimated tobe493.4kipsatlocations 2or3comparetotheanchorboltscapacityofabout897kips.ThemaximumbaseshearfromDBEis448kips.Thisshearwouldberesistedinanumberofways:friction, shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovements todevelopboltshears.Itwouldbeunconservative toassumethattheweldsandanchorboltsactconcurrently toresistshearsincetheboltholesareoversize. | |||
Capacities ofthethreeshearresistant phenomenon areasfollows:frictionfromresultant normalforcesbetweencondenser andembeddedplateusinga0.10frictionfactor=183kipsweldcapacity=445kipsshearcapacityofanchorboltsnotintension=1814kipsItisreasonable toassumethatthefrictionisavailable incombination withweldcapacityorincombination withboltcapacity. | |||
ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.Intermediate PressureCondenser: | |||
ThemaximumtensionfromtheDBEforcesincombination withtheoperating loadsisestimated tobe91kipsatlocations 2or3comparetotheanchorboltscapacityofabout359kips.ThemaximumbaseshearfromDBEis417kips.Thisshearwouldberesistedinanumberofways:friction, shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovements todevelopboltshears.Itwouldbeunconservative toassumethattheweldsandanchorboltsactconcurrently toresistshearsincetheboltholesareoversize. | |||
Capacities ofthethreeshearresistant phenomenon areasfollows:/XJttsTttncvzvO.lofrictionfromresultant normalforcesbetweencondenser andembeddedplateusinga~frictionfactor=171kips18 weldcapacity=284kipsshearcapacityofanchorboltsnotintension=1814kipsItisreasonable toassumethatthefrictionisavailable incombination withweldcapacityorincombination withboltcapacity. | |||
ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.LowPressureCondenser: | |||
ThemaximumtensionfromtheDBEforcesincombination withtheoperating loadsisestimated tobe905kipsatlocations 2or3comparetotheanchorboltscapacityofabout1890kips.ThemaximumbaseshearfromDBEis330kips.Thisshearwouldberesistedinanumberofways:friction, shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovements todevelopboltshears.Itwouldbeunconservative toassumethattheweldsandanchorboltsactconcurrently toresistshearsincetheboltholesareoversize. | |||
Capacities ofthethreeshearresistant phenomenon areasfollows:Wt</tf4y.TypoCLIOfrictionfromresultant normalforcesbetweencondenser andembeddedplateusinga+28frictionfactor=135kipsweldcapacity=445kipsshearcapacityofanchorboltsnotintension=1814kipsltisreasonable toassumethatthefrictionisavailable incombination withweldcapacityorincombination withboltcapacity. | |||
ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.19 | |||
, | |||
==4.0 IVLEAKAEONYRLPIPINSeismically== | |||
analyzedpipingwithintheMSIVLeakageAlternate Treatment Methodincludesthemainsteamlinefromcontainment isolation valvestotheturbinestopvalves,thebypasspipingfromthemainsteamlinetothemaincondensers, themainsteamdrainlineheaderfromcontainment isolation valvestoin-linepipeanchors,andportionsofmainsteambranchconnection linestoin-linepipeanchors.Designmethodsfortheseanalyzedlinesareconsistent withseismiccategoryIqualification methodsfortheSSESanddesignmarginsareaccordingly adequatetoassureacceptable seismicperformance. | |||
7 | Portionsofthesemainsteamanddrainlinepipingsystemshavenotbeenseismically analyzed. | ||
SincesystemredesigntoseismiccategoryIrequirements wouldbeexceedingly costly,analternate evaluation methodhasbeenutilizedtodemonstrate seismicadequacy. | |||
Nonseismically analyzedpipingsystemswereassessedtodemonstrate thatSSESpipingandpipesupportsfallwithintheboundsofa"seismicexperience database". | |||
Section1.0detailsthebackground forthishistorical databaseaswellastheconstruction codeandseismicwalkdownreviewsperformed todemonstrate seismicadequacy. | |||
Thecodereviewpurposewastoinsureadequatedeadloadsupportmarginandductilesupportbehaviorwhensubjected tolateralloads.Seismicwalkdowns wereperformed toverifythatSSESpipingandinstrumentation arefreeofimpactinteractions fromfallingandtheproximity ordifferential motionhazards.Conditions outsidetheexperienced databaseboundary(outliers) arebeingreviewedtodemonstrate reasonable assurance oftheintegrity oftheassociated pipingsystemsandcomponents undernormalandearthquake loading.Inaddition, arepresentative boundingpipesupportsampleonthe4"maindrainlinewillbeevaluated todemonstrate anchorage margins.Thesereviewsdemonstrated thatthenon-seismic analyzedpipingsystemsconsistofweldedsteelpipeandstandardsupportcomponents, consistent withtheconstruction standards associated withtheseismicexperience databasepipingsystems.Reviewsalsodemonstrated thatadequatedesignmarginsexistfortypicalorboundingpipingsystemsupports. | |||
Specificdatausedintheevaluations issummarized below.Forthemainsteamdraininterconnected piping,itwasdemonstrated thatadequatedesignmarginsexisttoprovidereasonable assurance thatpipingpositionretention willbemaintained bythepipingsystemdeadweightsupportsundernormalaswellasearthquake loadings. | |||
Walkdownresultsindicated thatadditional supportswouldberequiredtoeliminate thepotential forpipingsysteminteractions. | |||
4.1MainSteamandTurbineBypassNofailuresofmainsteampipingwerefoundintheearthquake experience databaseasdocumented inNEDC-31858P. | |||
ThesepipingsystemsatSSESweredesignedinaccordance withtheASMECodeSectionIII,Class2andANSIB31.1requirements, usingresponsespectrumanalysistechniques. | |||
Theanalysismodelsincludedthemainsteampiping,thebypasslines,andbranchpipinguptoseismicanchors.20 | |||
Themainsteamlinesenvelopthepipingfromcontainment isolation valvesFO28A/B/C/D totheturbinestopvalvesMSV-1/2/3/4 andincludethedriplegsplusportionsofthesupplylinestothesteamsealevaporators uptoin-linepipeanchors.Theturbinebypassanalysisincludespipingfromthemainsteamlinestothecondenser plusportionsofthesteamsupplylinestothereactorfeedpumpturbinesandsteamairejectorsuptoin-lineanchors.Thesepipingsystemsweredesignedusingreactorandturbinebuildingresponsespectrainputstoperformdynamicseismicanalysistowithstand theOBEandDBEloadingsincombination withotherapplicable designloadsinaccordance withtheSSESdefinedloadingcombinations. | |||
Designmarginsforthereferenced mainsteamandturbinebypasspipingsystemsarethoseinherentbyapplication oftheseismicdesigncodes.4.1.1DesignBasis4.1.1.1PipingDesignCodeASMEIII,Class2,1971Editionincluding Winter1972AddendaandB31.1,1973Edition4.1.1.2PipingDesignA.DesignTemperature: | |||
585FDesignPressure: | |||
1350psi-mainsteam1350psi-turbinebypassB.Pipesize,schedule, andD/tSizeNPS24241810.7510.758.6254.500Quickness 1.0760.9411.1560.7190.5940.594OA38~Dt251615181410C,TypicalSupportSpacing:B31.1suggested spanD.SupportTypes:springs,struts,snubbers, boxtype,E.DesignLoading:weight,thermal,seismic,steamhammerF.AnalysisMethod:linearelastic,seismicresponsespectrum, steamhammertimehistory21 G.SeismicandDynamicDesignBasis:responsespectraanalysesusingQoorresponsespectrathatwerederivedbasedonthegroundDBEwithapeakgroundacceleration of0.10g.4.1.13PipeSupportDesignCodeAISCandANSIB31.14.1.2MarginAssessment Designmethodsfortheanalyzedmainsteamandturbinebypasspipingareconsistent withseismicCategoryIqualification methodsforSSES.Theseismicwalkdowns identified minorinteraction issuesthatcouldbepotential sourceofdamage.Actionshavebeeninitiated toresolvetheseissues.Basedonactionimplementation, thedesignmarginsassociated withthesesystemsandtheirsupporting structures willbeadequatetoinsurepipingsystemintegrity underprojected seismicperformance. | |||
4.1.3VeriTication WalkdownResultsThewalkdownresultsarepresented inTables5and6forUnits1and2,respectively. | |||
42MainSteamDrainstoCondenser Themainsteamdrainlinetothecondenser consistsofsafety(Class2)andnon-safety relatedpiping.Thesafetyrelatedpipeandportionsofthenon-safety pipinguptoin-linepipeanchorsdownstream ofisolation valvesHV-1/241F019 andF020wereseismically analyzed. | |||
Thesepipingsystemsweredesignedinaccordance withtheASMECode,SectionIII,Class2andANSIB31.1requirements, usingresponsespectraanalysistechniques. | |||
Theremaining mainsteamdrainandassociated pipingwereanalyzedfordeadweightandthermalloadsusingcomputeranalysisandspacingcriteria. | |||
Thispipingissimilartopipingfoundintheseismicexperience database. | |||
Theseismicverification walkdowns identified minorinteraction issuesthatcouldbepotential sourcesofdamage.Actionshavebeeninitiated toresolvetheseissues.22 4.2.1DesignBasis4.2.1.1PipingDesignCodesASMEIII,Class2,1971Editionincluding Winter1972AddendaandB31.1,1973Edition4.2.1.2PipingDesignA.DesignTemperature: | |||
585FDesignPressure: | |||
1350psiB.Pipesize,schedule, andD/tS~izeNPS'iisickness | |||
~t'4.53.5131513150.4380.4380.2500.35810854C.TypicalSupportSpacing:B31.1suggested spanD.SupportTypes:springs,struts,snubbersE.DesignLoading:weight,thermal,seismicF.AnalysisMethod:linearelastic,seismicresponsespectrumG.SeismicandDynamicDesignBasis:responsespectraanalysesusingQoorresponsespectrathatwerederivedbasedonthegroundDBEwithapeakgroundacceleration of0.1g.4.2.1.3PipeSupportDesignCodeAISC,ANSIB31.1,andMSSSP584.2.2MarginAssessment Designmethodsfortheseismically analyzeddrainpipingareconsistent withseismicCategoryIqualification methodsforSSES.Therefore, thedesignmarginsassociated withthesesystemsandtheirsupporting structures willbeadequatetoinsurepipingsystemintegrity underprojected seismicperformance. | |||
23 Theobjective oftheassessment ofthenon-seismic MainSteamDrainpipingistodemonstrate thatpipingpositionretention willbemaintained duringaseismiceventplusprovidesassurance thatthepipesupportswillbehaveinaductilemannerandthatalllinesarefreeofknownseismichazards.Inaddition, itwillestablish thattheseSSESpipingsystemswillperforminamannersimilartopipingandsupportsthathavebeenobservedtodemonstrate goodseismicperformance. | |||
Themethodology utilizedtodemonstrate themarginsinherentintheSSESnon-seismic pipingsupportdesignsisbasedon:ThegroundseismicinputisbasedonthegroundDBEwhichisconservatively defined.Thecalculated pipingseismicresponseisbasedon5%dampedin-structure responsespectraasrecommended inEPRINP-6041.ThereaderisreferredtothefoHowingsubsection 4.2.2.1formoredetails.~Thecomponent supportcapacityisconservatively estimated basedonthevendorratedvalues.Theevaluations'oal istoproduceaHigh-Confidence-Low | |||
-Probability ofFailure(HCLPF)forthewalkdownoutliersandarepresentative pipesupportsample.Thisshouldprovidethedesiredreasonable assurance ofgoodseismicperformance. | |||
4.2.2.1SeismicDemandTheoriginalseismicdesignoftheTurbineBuildingincludedthedevelopment ofthreelumpedmassmodelsfortheeast-west, north-south, andverticaldirections. | |||
TheseismicQoorcurvesweregenerated todetermine seismicanchorforcesanddisplacements forthepipingsystemsthatareattachedtotheTurbineBuilding. | |||
TheseismicQoorcurveswereonlygenerated for1/2%and1.0%equipment dampingvalues.Theexisting1/2%and1%dampedQoorcurveswillbeextrapolated togenerate5%dampedDBEQoorcurvesfortheevaluation ofthewalkdownoutliersandarepresentative pipesupportsample.Duringthemarginassessment, 5.0%dampedrealistic median-centered, withnointentional conservative bias,Qoorcurveswillbedeveloped, ifnecessary, basedontheNUREG/CR-0098 mediangroundspectraanchoredat0.1gand0.067gpeakgroundaccelerations forhorizontal andverticaldirections, respectively. | |||
Variabilities associated withstructure frequency, structure damping,androckmodulusaresigniQcant inthedevelopment oftheseismicQoorcurves.Thesemodelparameters willbeselectedinarandomprocess.Anumberofearthquake timehistories willbeutilizedwiththerandomlyselectedsetsofmodelparameter values.Toaccountfortheuncertainty inthestructural frequency calculations, thepeaksoftheseismicQoorcurvesareshiftedratherthanbebroadened. | |||
24 Itshouldbenotedthattheidentified itemsduringtheseismicverification walkdowns aretaggedasoutlierssincetheydidnotfallwithintheboundsoftheearthquake experience database. | |||
Thepeakacceleration valuesofthedatabasegroundspectraareusuallygreaterthan0.9gwhilethepeakacceleration valuefortheDBEatSSESisabout0.21gfor5%equipment dampingasshowninFigure6.InadditiontotheseismicDBEloads,deadweightandoperating mechanical loadsareaccounted for.Operating mechanical loadsforthissystemarethermalexpansion loadsanddesigndeadweightsupportloadsareconsistent withtributary areaweightprocedures. | |||
4.2.2.2PipeSupportComponent Capacities Thesupplemental fieldverification determined thatthesupporttypesusedareconsidered tohavegoodseismicperformance. | |||
Thesystemispredominantly supported fordeadweightutilizing rodhangers.'omponent designsareconstructed fromstandardsupportcatalogpartstypically consisting ofclamps,threadedrods,weldlesseyenuts,turnbuckles, weldinglugsandareattachedtoeitherconcreteorstructural steel.Thesesupporttypesaredesignedtoresistverticalloadsintension.Designcapacities areprovidedbymanufactures'oad ratingdatasheets.Loadcapacityratingsforcomponent standardsupportsaretypically basedontestingandutilizeafactorofsafetyoffiveinaccordance withMSSSP-58.Theloadonwhichtheloadcapacitydata(LCD)isbasedistherefore afactoroffivehigherthanthecatalogloadrating.Themargincapacities foreachsupportcomponent aretakenastheLCDx5x0.7(EPRINP-6041). | |||
Including thermaleffectsonallowable loads,component standardsupportsdesignedbyloadratingiscalculated asfollows:TLx0.7Su/Su'here: | |||
TL:Supporttestloadislessthanorequaltoloadunderwhichsupportfailstoperformitsintendedfunction; TL=LCDx5Su:Materialultimatestrengthattemperature Su:Materialultimatestrengthattesttemperature Structural steelsupportmembersareevaluated usingsectionstrengthbasedontheplasticdesignmethodsinPart2ofAISCor1.7timestheAISCworkingstressallowables. | |||
Concreteanchorboltsareevaluated usingdatafromtheA46/SQUGcriteria, AppendixC.4.2.3Verification WalkdownResultsThewalkdownresultsarepresented inTables5and6forUnits1and2,respectively. | |||
25 | |||
43Interconnected SystemsTheinterconnected systemsconsistoftheremaining pipingwithintheMSIVLeakageAlternate Treatment Methodthatwasnotseismically analyzed. | |||
Thesesystemsarecomposedofweldedsteelpipingandstandardsupportcomponents. | |||
Analyzedbyruleandapproximate methods,thesepipingsystemsaresimilartothepipingfoundintheseismicexperience databasethathaveexperienced seismiceventsinexcessoftheSSESdesignbasisearthquake. | |||
Interaction issuesidentified inthewalkdownthatcouldbepotential sourcesofdamagewereevaluated, and,wherenecessary, actionshavebeeninitiated toeliminate thispotential. | |||
Itwillbedemonstrated thatadequatedesignmarginsexistfortheseinterconnected systemstoprovidereasonable assurance thatpipingpositionretention willbemaintained bythepipingsystemdeadweightsupportsundernormalandDBEloadings. | |||
4.3.1DesignBasisTable4liststhedesignparameters associated withtheseinterconnected pipingsystems.4.3.2MarginAssessment SameasforMainSteamDrainstoCondenser, Section4.2.2.Basedonthepipingsystemconstruction materialreviews,seismicwalkdowns performed forimpactinteraction assessment, andtherepresentative systemevaluations, interconnected systempipingpositionretention willbeinsuredandsystemsimilarity totheseismicexperience databasewillbedemonstrated. | |||
Thegoalistodemonstrate thattheinterconnected systemsarecapableoffunctioning tosupporttheoperation oftheMISVLeakageAlternate Treatment Methodduringandfollowing theapplicable SSESDBE.4.3.3Verification WalkdownResultsThewalkdownresultsarepresented inTables5and6forUnits1and2,respectively. | |||
MBlockwallsintheTurbineBuildinghavebeendesignedusingtheworkingstressmethodofreinforced concretedesigninaccordance withthe1973/1976 UBC.Thewallshavebeenrechecked forseismicloadsusingthe1979UBCwitharesulting seismicloadingof0.084g.minimum.Inadditionsomeofthewallshavebeendesignedforapiperupturepressureof480lb/ft>andlargebore(4"diameterandlarger)pipesupportloads.Allofthewallshavebeendesignedforthemaximumloadsfromfieldrunattachments. | |||
Fieldrunattachments havebeencontrolled anddocumented | |||
.Cuttingofreinforcing steelintheblockwallshasbeencontrolled anddocumented. | |||
Construction ofthewallsperthecivildrawingsandspecifications hasassuredcompliance withtheblockwalldesignrequirements. | |||
AlloftheblockwallswhichareofconcernfortheMSIVLCSElimination Projecthavebeendesignedascomposite wallsconstructed asdoublewythereinforced concreteblockwallswith3000psifillconcretebetweenthewythe'swithallopencellsgrouted.Thethickness ofthesewallsvariesfrom2'-0"minimumto4'06"maximum.OnewalllocatedintheReactorBuildingwhichwasdesignedforOBE/DBE,SRVandLOCAloadsisonly1'-9"thick.TheblockwallswhichareofconcernfortheMSIVLCSElimination Projectareevaluated withseismicloadsusingtheDBEQoorspectra.27 | |||
TABLE4INTERCONNECTED SYSTEMDESIGNPARAMETERS UNIT1AND2SystemDeslgnatlon PlplngDesignTempPres.t'F)(pslg)SzeSupportsD/tSpacingSupportTypesDesignCodeLoading(Note1)SelsmloDealnBasisToAnchorRemainder MainSteamDrainsFrom8'DripLegs812'DripLegASMESecthnIa831.140191607xxs4.8xxa3.7160531604$ANSI831.1RcdHangersSpringsConcreteAnchorsPipeStrapsStrucLMemb.AISCMSSSP58DWThermalHydroMainSteamDripLegLevelInstrumentatlon ASMESectionIIIANSI831.1RodHangersSpringsConc.Anch.PipeStrapsStruct.Memb.StrutsAISCMSSSP58DWThefnlalHydroNoneMainSteamAveraging ManifoldtoPressureTransducer PanelsASMESectIIIANSI831.1120118ANSI831.1xxa4.8xxa3.'7RodHangersSprtngsStrutsConc.Anch.RpeStrapsStrucLMembHSCMSSSP58DWThenllalHydroNoneMainSteamTurbineStopValveDrains831.18078160716053ANSI831.1RcdHangersSpringsBoxTypeStruct.MembAISCMSSSP58OWTheBllalHydroNoneNone TABLE4~INTERCONNECTED SYSTEMDESIGNPARAMETERS UNIT1AND2MSIVDrainh4lneAnchorstoHPCondenser Ilncludas DraintoUIW8BypassfromHV1/2lf-F021)ANQ831.1TempPreLtF)(pslg)Sae5851350I'03ANSI831.1184Supports0/tSpacingSupportTypesRodHangersSpringsStructMemb.Cono.Anch.DesignCodeLoading(Note1)ToAnchorNoneRemainder SelsmloDealnBasisHPCITurbineSteamDrainfromIn4lneAnchortoM.LDrainHeaderANSI831.15851350xxa"ANS831.1AISCMSSSPSSRCCTurbineSteamDrainfromh4lneAnchortoM.S.DrainHdr.SteamSupplytoAlrEjectorBeyondHV-1/2010'o firstaehmloanchorANSI831.1ANSI831.158513501'851350103ANS831.1ASMESect.IllANS831.1RodHangersPIpeStrapsCono.Anch.SnubbersStruct.Memb.AISCMSSSP58AISCMSSSP58OWThermalHydroSelsmloR.LAnalyshuslng OBERFPTSupplyBeyondValveHV-t/20111 tofirstselsmhanchor831.11I.SASMESect.IIIANSI831.1AISCMSSSP58DWThermalHydroSelsmlcRS.AnalystsUsingDBE(Note2)SteamSealEvaporator VneBeyondHV-1/20109 tofirstaelsmhanchorANSI831.1ASMESectIIIANSI831.1SpdngsSnubbereStruckMemb.ASCMSSSP58OWThermalHydroSelsmhRLAnalysisusingDBEINote2) | |||
TABLE4INTERCONNECTED SYSTEMDESIGNPARAMETERS UNIT1AND2NOTES:1.ANALYSSMETHODISUNEAREIASTICFORBOTHHANDCALCULATIONS USINGSPACINGCRITERIAANDME101COMPUTERANALYSS.2.SHSMICAU.Y ANALYZEDFROMTHEMAINSTEAMBRANCHCONNECTION TOTHEFIRSTIN-UNEANCHOR. | |||
7 TABLEdOutllerldentltlcathn andResolution StatusUNITfnSteanDraintoCoadcnser SS1Sf-i5upyortESD-LLt-big nayslideoCCtESD-litfnproxfnfty toblockeallSupportESD-LLi-Sgf5Sy-ESD-fit-58$ | |||
<<cyslideoCCValveSVfaf-7011 outsideIgbgfCriteriaiyDCESCXAI. | |||
TAfIJDIEWOE>Ayyyfpesefsnfooovenentfsheingevaluated blockwallfsevaluated an4Coundacceptable as-lsDLCCerentfal sefsnfoanm<<atbetweenReactorSuffdfngandTurbineSufldlnglabefngevaluated ValvesefssLfooyerabflfty andpipeintegrity arebeingevaluated fnSteanCrc<<NITtostopTafnAl10ESD115attache4toblockeallblockwallsefsafacapacityfsbeingevaluate4 A0"DripLegsAl5SofateaboveWLTAthruDSoiatsereheingevaluated forpositionretention HainStean57pacstoCoodasorAS-5lnterectfon betweenESD-102-Sag A05crossaroundpipeDES-105-55, S7fnpro@Lofty toblockeall055-105-55, ESD-L00-55,055-105-ELE attachedtoblockwall5efsolopryingectionoCiblineonsuppoctfsbeingevaluated blockwallisevaluated andCoundacceptable asisblockwellfsevaluated endfoundacceptable es-fsHcfnStoatoEV10107SteanJctAfr+actorAS-IAS5TalveSV-LOL07fnyroxfnfty toblockeallValveET-10107inyrorfnfty totireprotection 5yra7blockwallfsevaluated sndCoundacceptable aa-fsTaInfshefngevaluated CorCallsaCeposition TABLE5OutllerMentNcatlon IndResolution StatuellHITInStoatoStemJetAirEJectorCi-1{frmIT-10101toET-I0701$ | |||
)2$0-100inproxinity toblock<<cLL(FOIESIIAL yAIUJEEIEOE)AypAcceptable as-ieCl2A~ESD-100Stenchicas nayslideoffTalesST-10701$ | |||
inprorinlty tepiroprotection SprayXAcceptable asisXAcceptable as-lslnSte>>DripLagDrains$11$12$1-5DI-a$15$1-0$17II/2Dbb-101,2 ga<<ndorCableTreyIatoracticn bot<<om1-1/2NS-1stA10"Bllineiaterectice bot<<oen1-1/2"N$101010WlineInteraction bot<<ocn1-1/2"NS-102C"Acr.StemlineInteraction betcem1"DS$105,ESD-I004block<<allINb-105,17'panbct<<ecnsepportsOAD-LIS,0$0-125endorcabletreyAdo0<<acyofcabletreys<<pportelabeinga<<el<<at<<4 Soimiono@mentsofbothlinesarebeingecslnatod SeimionovmontsofbothlinesarebolaseeaL<<atod SeimieawmmtsofbothLineaarobeingeoalaated Slack<<alLiseeelnated ondfo<<ndacceptable ea-isSolsaieno<<montofI"pipeisbeingoval<<atod 5<<pportevercpenisbeingeealnatod Adagaacyofcabletraysepportaisbeinge<<elected inStemDripLegLe<<elInstr<<aoatcticn | |||
$21IDSS-105inpresiaity teblock<<cLLblock<<alLisoval<<ated endfo<<ndacceptable es-is TABLEIOutllarMentlflcatlon andReiolutlan StatusUNITStemAveraging Manifoldtopresserstraedncer panoLS5-I1"OCO-LLSinproriaity toblock<<aLL{ICTESTIAL FAILIEWDE)PDVSlock<<aLLseimiocapacityiobeingoealnated StopTalesSoa'tOscinetoCondanset Si-lPelvesSV-LOLOLA,S,C,Dmyrequireaeimiorestraints Si15MDliiSgiS10ASLL5tanchions nayslideoTESeimioloadsfrasvalvesarebeingovslnated Pilwseimlaaementlsbeingovelnated HICIStemDraintothisStemDrainSeederSS11"ESOillinprnrinity toblock<<elLSSS5PESDLli-S55,SSi AS555tanchions nayslideofTSlack<<aLLlsoealnated andTonndacceptable as-isPipesoimiannementlsbeingovsinated LnStempresserseasingLines00-21"PipeA5/0To@faglnproxiaity toblock<<allSlack<<aLLseimiacapacitylabeinga%sleeted EeytooatliertypcsiAAncbcrage orSnpportCapacityF-FallnreandFalling{IIII)PProrinity andIopsotDDitferential Dlsplacment 0-PaleoOperatorScreening | |||
) | ) | ||
TABLEIOuNerldentlcathnand Reeotuthn StatueUNlf2StemDraintoCond<<verAS-I2ESD-Sfi420JED-22$interaatfon SS-LrESD-SfaSupportsblAE2attachedtotccodifferent buffdfns'IS-1TalveST2if7021 outsideSQQOorlterieSS2rESD-Slifnprosfofty tobleak<<allSSaESD-Sfa-a10,17,14,10 stanchion | |||
~uyportsne7slideoff(PDIESIIAL PAILDSEIKIE)ypDSefmfo<<ovmentsoEbothLinesarebefnSevaluated Differential seimfonovmentbetweenReactorSuildinsA.turbfne SulldlnafsbelnSevaluated Valveeefsafooperability apipefntesrity esebelnSevaluated SfoekwalLfsevaluated and!oundacceptable asispfpesofmf0mvmeutfabefnSevaluated StemEronIOITtostopvalveA0"DripLessAl1SofstsabovetOITAthruDAl-2rESD-LLSfn~tytobmwaLLHoistsarsbelnsevaluated | |||
!orpositionretention blockwaLLsefmfooapaoftplsbefnSevaluated StemS7pesstoCondenser AS-Llntereation betweenESD-202-Sa2 Aa2arsesaroundpipeAS-S2iNS-20540ESD-200~uyyortsattacbedtoSloek<<allAS-52"EElineandsteel.pfatforainteraotlon SefmfopryfnSaotlenoE02lfneonsupportlsbeinSevaluated SleekwalLfsevaluated andfoundeooepteble as-lsSteelplatfox<<was nodffiedtooleertbe2lineStemteST20107StemJetAirEfeaterASHValveST-20107endbrpclssupportsfuproxfnftr toblockweLLASSValveST-20107fnprorfnfty toTireProteetlon SpraySfookwelLlsevaluated sndSoundaoeeyteble as-isVaLvelsbeinsevaluated forSallsatepositfm TABLE6OuNerldenttftcathn andRaeotuthn StatueUNITnStemtoStemJetAlrMeet(fsmHT-20107toHT-207015) | |||
Cl-1i"ESD-200lnprcnchslty toblochoeLLCl-2TalvesHT-2070)A/S lspeatcclthMaLLCl-5TelveHT-2470LS lnprorlcclty totireProtection Spray{ICIESIIAL PAILIE)ER)2)tOTAoeeptable u"lsAooepteble ulsAooeptebg ss-lsStepTalvoSeatDrainstoSi-ITalvesHT-2010)A,S,C,D nspre@cire~elmlorestraints Selmleloadsfrerevalvesarel>>lnSevalnatod SCICStemDraintoHainStemDrainHeaderS'71L"EADRliai"ESD-227lnteraetlan Selmioadam<<ctofi"linelsbelnSevaluated SICISteanDrainto)4alnStemDrainHeaderlnStemDripLaaOra)ns50-11"ERD.Rli4iHSD-227lntereetlon Sl-1TalvesHT-20104A aSnayroqalreaelsniarestraint SL-R1GSD-250aiESD-RLRilntereetlon Si-51CSD-250aERD-202-HIf lnteraotion Sl-i1-1/2"Nl-202a10IWlineLnteraetlca Sl5TalvsHT-ROLLRAL aiAces,StoaLinelnteraetlan S1-0i"CRD-250ccader0tireProtection lineSl-7TaLvesHT-2011251 A52neyr<<pclre~elm)arestraint. | |||
Alsolntereatlen | |||
<<ith4Aea.StemlineSl-01-1/2OSS-20i110IMLinelnteraetlon Sl-0Sp-DSS-205-H4040 a0"ESD-200Lb>>lnteraetlon 01-10L-L/2"O55.205a10Illlinelnteraetlon Solmlencvmentofi"linelsbeinsevslnated Sccpyorts forHT-20105A | |||
~Saroboln0evalsatod 5elsala<<wmentsofbothlinnarebelnSevalnated SelmlenovmentsofbothLinesarebelnSevalnated SelmlenovmentsofbothlinesarobolnSevalsated Selmle<<vvmentsofHT-ROLLRAL 4iLinearebelnSevalsated Tlr~Proteetlon lineeccpperts arebelnSevalnated 5ccpporta forHT-ROLLRSL aSRaealmlemvmentefilineere)>>lnSevslseted SelmlamvmentsofbothLinesarebelnsevalsated Selealepxylsssationof0"StemLinemsepportlsbolasevalsated 5eleslesovmenteofbothlinesarebalsaevalaeted TABLEeQuttterIdeatlftCathn andRSSO}uthn StatueUNT2StecccDripLe0LevelIntcscentatian SR-lSR-RSR5SR-01MI-2054$0"LobeOillinelntereetlon 1D55-205410"Extraction SteanUnelnteraotlon VDRS-202410"Estraetlon Steanlineinteraction SP-DSS-20$ | |||
-E&00T410"PWEt!RAdraininteraction (POITIITIAL PAINREIRRIR)4PPSelssionoveoents ofbothlinesanbeln0evalsated Selsnlo~tsofbothlinesarebein0evalsate4 Selsaloeormmteofbothlinesarebeln0evalsated SelsslowhatofItilinelsbelnSevsloated SteanAvera0ln0 Ncnlfo14toSR-IPresserstrmsdoeer panelSSR5$-$1ICD-212Stanchion Sopports~lidooff1"DCD-RIRenderEVhCDuet1DCD-212inproxialty tobloch<<allSelsnleunmetof1linelsbeln0evslsated lÃhCseisaiosopportoapaeltylsbein0evalsated Rlocbeallselsaloeapaoltylsbelnsevalsate4 50-2Tubis0naderEVACTobis0inprorlaity ofblock<<alllÃhCselsnlosspportoapaeltylsbein0evalsated Slosh<<allselsolooapaoltylsbeln0evalsate4 EeytooetllestypeacA-hncbora0e orRapportCapacityPPallorean4tallis0(II/I)P-Precialty andIspaotDdifferential Dlspiaomeat 5-TslveOperatorSoroein0 ATTACHMENT TOPLA-422SENCLOSURE3 SUSQUEHANNA LOCADOSE | |||
~y~ | ~y~ | ||
Attachment 2SUSQUEHANNA LOCADOSESFORACOMBINEDMSIVLEAKAGERATEOF300SCFHUSINGTHEISOLATEDCONDENSER TREATMENT METHODSUSQUEHANNA STEAMELECTRICSTATION-EACHUNITExclusion AreaBoundary(2-Hour)LowPopulation Zone.(30-Day)ControlRoom(30-Day)A.10CFR100LimitB.DosesusingMSIV-LCSTreatment>>>> | |||
$aap~0r~IIF,"If o9D+8Aca!TM)VLstIAMBSM-105SH.2~SD-fo00000CT-5PDT~0IuaerF.4HMDCdDESEllELL-IAE00H001MNTMTIIEIKTIMA.ELEAKKL8STE-LW-I2I+~SM~-0IO'p'n''9213630A.des-JI'EID-II~D50-12510OID~w-M-oao"~MAN-ooo~IRV-IP.0DI''IAV-PP-) | C.PreviousCalculated Dosesw/oMSIVLeakage>>>> | ||
D.Contribution fromMSIVs300SCFHTotal<<>>>>E.NewCalculated DosesUsingICTreatment A.10CFR100LimitB.DosesUsingMSIV-LCSTreatment<<>> | |||
C.PreviousCalculated Dosesw/oMSIVLeakage>>>> | |||
D.Contribution | |||
&omMSIVs300SCFHTotal>>>>>>E.NewCalculated DosesUsingICTreatment A.GDC-19B.DosesusingMSIV-LCSTreatment' C.PreviousCalculated Dosesw/oMSIVLeakage>>>> | |||
D.Contribution | |||
&omMSIVsat300SCFHTotal"'.NewCalculated DosesusingICTreatment WholeBodyrem252.472.210.0072.21725.0.370.330.040.3750.380.350.410.76Thyroidrem300127.8125.50.11125.61'00 30.429.612.1441.743014.1913.64.9518.55Betarem7512.011.01.1712.17Nolimitspecified Dosescalculated forPowerUpratedconditions inPP&LCalculation EC-RADN-1009 PerGEcorrespon4ences OG94-574-09 andOG93-1021-09 FORMNDAP-QA-0726-1, Rev.0Page16of16 | |||
$aap~0r~IIF,"If o9D+8Aca!TM)VLstIAMBSM-105SH.2~SD-fo00000CT-5PDT~0IuaerF.4HMDCdDESEllELL-IAE00H001MNTMTIIEIKTIMA.ELEAKKL8STE-LW-I2I+~SM~-0IO'p'n''9213630A.des-JI'EID-II~D50-12510OID~w-M-oao"~MAN-ooo~IRV-IP.0DI''IAV-PP-)OIOID TPe.-le15D~8-FKHO~MBA~AN--I IWWIIHMI~IRVVNT-)0lt 02'DSA-U5IIO.PT260001SIETM0WMSM'FE--IM52~IRV-Nl-10) | |||
IAI"'a--IIeF00-MILDE0"I100c~0la0HaMsI'OCS-DBS-3DWHLTLa.AD'~02DI~ICI2DVMW-DAD-~NM-O5011011000IAV-PT-I82NQ+H$8Tl":".I'"2'WoKETK0WM0Ia'N2-DN53oae-oILDEcIIeDBS30~BWPI-OO0INEH)T000~a-D-00C~ll-PDT-00CMD02ODD-seva0oeeMIrO'02TaRI->>-NL-0112-TL-101128IPR.-)IN)60 00POTHoC0~MV-PT-ION | |||
~aa-PP*RVVNT-)00DM-141SH.ISNIAE85toPots~N5-orw-~(Iaw-roMCrt:'*MB.6~tt125SetEII'ESD010alTNS12)-~HSM.IAK-TDI200DFM-155SH.IHIONI+0HAC0ESD-UM*5~laaoeeI-07&H007M-IOISH.3OYPA55VALVESB-La.IAVKSNM0DB.<<LIIM0ow.I3LK0MMILast0WHta"M-I0ISH.IH08IDIISehatt-~OIT...'Cl-IAl-PP-0000-10100~M-PP-DIWQUALITYRELATEDDAOM-149SH.I2MNrrsISECONNlMIP*8(CAEDTEDIAHECSIM.)RMNAM)MIIPT(CRtTEO)DLICRMLWMelSFBICIMMTMPSTNOC0.'.KA5NEOEOMIKAEPOIIIOEO WOOHCKENQF.INININISFIWKI~1)VECF0018TIEITN<CSIIEII)OBNTATE9Lili2~Olea-CjiQPttIOMSIVLEAKAGEALTERNATE FLOWPATHFIGUREHPENNSTLVSNTS PSNCR~LTSNTCSNPNDLLcersaa ps.AECR*I0H-101HSNETQH)DD)ODD 28}} |
Revision as of 03:43, 29 June 2018
ML18026A535 | |
Person / Time | |
---|---|
Site: | Susquehanna |
Issue date: | 10/31/1994 |
From: | PENNSYLVANIA POWER & LIGHT CO. |
To: | |
Shared Package | |
ML17164A434 | List: |
References | |
NUDOCS 9411290142 | |
Download: ML18026A535 (57) | |
Text
ATTACHMENT TOPLA-4228ENCLOSURE2 MSIVLEAKAGEALTERNATE TREATMENT METHODSEISMICEVALUATION 94112'Pat42 941i21PDRnoacKosooozs7pnR SUSQUEHANNA STFAMELECTRICSTATIONUNIT1AND2MSIVLEAKAGEALTERNATE TREATMENT METHODSEISMICEVALUATION OCTOBER19,1994 TABLEOFCONTENTS~PaeCOVERSHEETTABLEOFCONTENTSINTRODUCTION 1.SCOPEOFREVIEWTURBINEBUILDING2.1LateralForceResisting Systems2.2SeismicDesignCodes2.3SeismicDesignBasis2.4WindDesignCodes2.5WindDesignBasisMAINTURBINECONDENSERS 3.1GeneralDescription ofSusquehanna Condensers 3.2Comparison ofSusquehanna Condensers withDatabaseCondensers 3.3Capability ofAnchorstoWithstand DesignBasisEarthquake Loads10101018MSIVLEAKAGECONTROLPIPING4.1MainSteamandTurbineBypass4.1.1DesignBasis4.1.1.1PipingDesignCode4.1.1.2PipingDesign4.1.1.3PipeSupportDesignCode4.1.2MarginAssessment 4.1.3Verification WalkdownResults20202121212222224.2MainSteamDrainstoCondenser 4.2.1DesignBasis4.2.1.1PipingDesignCode4.2.1.2PipingDesign4.2.1.3PipingSupportDesignCode4.2.2MarginAssessment 4.2.2.1SeismicDemand4.2.2.2PipeSupportComponent Capacities 4.2.3Verification WalkdownResults222323232323242525 TABLEOFCONTENTS~Pae4.3Interconnected Systems4.3.1DesignBasis4.3.2MarginAssessment 4.3.3Verification WalkdownResults262626265.BLOCKWALLS 27
INTRODINTheevaluation inthisreportwasperformed todocumenttheseismicdesignadequacyofthe"MainSteamIsolation Valve(MSIV)LeakageAlternate Treatment Method".Thismethodisbeingevaluated forreplacing thedesignfunctionoftheMSIV-Leakage ControlSystem(LCS).TheMSIV-LCSlicensedbaseddesignfunctionis'toservetoredirectMSIVleakagebackintosecondary containment, whereitcanbeprocessed asafilteredreleaseandreducethepotential contribution tooff-siteandcontrolroomdose.Historically, theMSIV-LCShasbeensusceptible tonumerousfailuresandcostlyrepairs.Inordertoimprovetheperformance ofthepowerplant,bothfromanuclearsafetyviewpoint andelimination ofahighcostandhighmaintenance system,the"MSIVLeakageAlternate Treatment Method"hasbeenestablished, whichwillservetoprovideamoreeffective meanstoprocesstheMSIVleakage.Theprimarycomponents tobereliedupon,forpressureboundaryintegrity, inresolution oftheBWRMSIVleakageissueare:(1)themainturbinecondensers, (2)themainsteamlinestotheturbinestopandbypassvalves,and(3)themainsteamturbinebypassanddrainlinepipingtothecondensers.
Earthquake experience hasdemonstrated thattheweldedsteelpipingandanchoredcondensers insimilarsystemsareseismically rugged.Theearthquake experience isderivedfromanextensive databaseontheseismicperformance ofover100powerplantunitsandindustrial facilities inactualrecordedearthquakes.
Basedonthispost-earthquake reconnaissance, theBWROwnersGroup(BWROG)seismicexperience studyhasidentified limitedrealistic seismichazards,including supportdesignattributes andproximity interaction issues,aspotential sourcesofdamageonalimitednumberofcomponents.
TheBWROG'sstudyisdocumented inNEDC-31858P, "BWROGReportforIncreasing MSIVLeakageRateLimitsandElimination ofLeakageControlSystems".
Areviewandevaluation wasperformed forPennsylvania PowerandLight,Susquehanna SteamElectricStation(SSES),Units1and2,toensurethatnosuchissuesarepresent,thusproviding reasonable assurance oftheintegrity ofthesesystemsandcomponents.
Thisreportsummarizes themethodology usedandsomeoftheresultsoftheseismicadequacyreviewoftheMSIVLeakageAlternate Treatment Method.
1.0 OPEFREVIEWThemainturbinecondensers
formtheultimateboundaryofthe"MainSteamIsolation Valve(MSIV)LeakageAlternate Treatment Method".Boundaries wereestablished upstreamofthecondensers byutilizing existingvalvestolimittheextentoftheseismicverification walkdown.
Theboundaries areshowninFigure1ofthisevaluation.
TheboundaryvalveswereselectedusingthecriteriaoutlinedinNEDC-31858P anddocumented inPP&LEngineering Studies,Analyses, andevaluations (SEA),SEA-ME423, "MSIVLeakageSeismicVeriGcation BoundaryDetermination Study,SSESUnit1"andSEA-ME424, "MSIVLeakageSeismicVerification BoundaryDetermination Study,SSESUnit2.Thefollowing criteriawasusedinselecting theboundaryvalves:1.Normallyopenvalve,automatically closesasaresultofMSIVisolation signal2.Normallyopenvalve,whichcanberemotelyclosedfromcontrolroom3.Normallylockedclosed,manuallyoperatedvalve4.Normallyclosed,manuallyoperatedvalve5.Automatically orremotelyoperatedvalvesthatfailclosed,asaresultoflossofpowerorair(pneumatic operators) tothevalveoperator6.Normallyclosedvalve,whichcanberemotelyclosedfromthecontrolroom7.Normallyclosedvalve,whichcanberemotelydosedfromacontrolpaneloutsidethecontrolroomInNEDC-31858P, aseismicdatabasewasassembled.
'Msdatabaseservedashistorical documentation oftheperformance ofnon-seismic designedpipingsystemsandmainturbinecondensers, atvariouspowerplantsthroughout theworld,whichhavegonethroughvaryinglevelsofseismicevents.Thisdatabaseprovidedthebasisfordemonstration ofseismicadequacyofnon-'eismically designedsystems.Inordertodemonstrate thatSSESpipingandcomponents fallwithintheboundsoftheexperience
- database, tworeviewswereperformed.
TheQrstreviewconsisted ofreviewing theconstruction codestodemonstrate thatthedesignated pipingandcomponents werebuilttostandards similartothoseplantsidentified intheexperience databaseofNEDC-31858P.
Thesecondreviewconsisted ofseismicverification walkdowns toassurethatthecondensers andpipingsystemsfallwithintheboundsofthedesigncharacteristics oftheseismicexperience databasecontained inNEDC-31858P.
Conditions thatmightleadtopipingconfigurations whichareoutsidetheboundsoftheexperience databasewerenotedduringthewalkdowns.
Tables-5and r'1<~-z~z~y~geioz~vztAGod'U'~>~>
AT7g,Pipgze8.'f,BC'L2 6ofthisreportsummarize theidentified conditions (termed'"outliers"),
andtheirresolution status.Notethattheoutliersarebeingresolvedbydemonstrating analytically thattheydidnotcreatehazardsbeyondtheseismicinertialloading.Thesehazardsincludeinteraction, differential displacement, and/orfailure/falling.
Ifevaluation cannotqualifysomeoutliers, modiTications willbedesignedtoprovideseismically acceptable conQgurations.
Whereanalysiswasusedtoresolvethewalkdownoutliers, the5%dampedconservative Qoorcurvesareextrapolated fromtheexisting1/2%and1%dampedQoorcurvesthatwerebasedontheSSESgrounddesignbasisearthquake (DBE)anchoredat0.1gpeakgroundacceleration.
Asanalternate methodforgeneration ofseismicinput,5.0%dampedrealistic median-centered, withnointentional conservative bias,Qoorcurveswillbedeveloped, ifjudgedtobenecessary, basedontheNUREG/CR-0098 mediangroundspectraanchoredat0.1gand0.067gpeakgroundaccelerations forhorizontal andverticaldirections, respectively.
Variabilities associated withstructure frequency, structure damping,androckmodulusaresignificant inthedevelopment oftheseismicQoorcurves.Mescmodelparameters willbeselectedinarandomprocess.Anumberofearthquake timehistories willbeutilizedwiththerandomlyselectedsetsofmodelparameter values.Toaccountfortheuncertainty inthestructural frequency calculations, thepeaksoftheseismicQoorcurvesareshiftedratherthanbebroadened.
Inadditiontotheongoingresolution ofthewalkdownoutliers, seismicmarginassessment ofarepresentative boundingsampleofpipesupportsonthemaindrainlinewillbeconducted.
Thisassessment ismoreconservative andmorerestrictive thantheevaluation referenced inNEDC-31858P.
0
2.0 INEBILDINGPerformance
oftheturbinebuildingduringaseismiceventisofinteresttotheissueofMSIVleakagetotheextentthatnon-seismically designedstructures andcomponents shouldsurviveandnotdegradethecapabilities oftheselectedmainsteamandcondenser Quidpathways.
ABWROGsurveyofthistypeofstructure has,ingeneral,confirmed thatexcellent seismiccapability exists.Therearenoknowncasesofstructural collapseofeitherturbinebuildings atpowerstationsorstructures ofsimilarconstruction.
'heSSESturbinebuildinghousestwoin-lineabout1100megawattturbinegenerators withallauxiliary equipment including two220tonoverheadservicecranes.'Ihebuildingisentirelyfoundedonrockwithreinforced concreteretaining wallsextending uptogradelevel.Thesuperstructure isframedwithstructural steelandreinforced concrete.
Exteriorwallsarepre-castreinforced concretepanelsexceptfortheupper30feet,whichismetalsiding.'Iheroofhasmetaldeckingwithbuilt-uproofing.Eachofthetwoturbinegenerator unitsissupported onafreestandingreinforced concretepedestalextending downtorock.Separation jointsareprovidedbetweenthepedestals andtheturbinebuildingQoorsandslabstopreventtransferofvibration tothebuilding.
Theoperating Qoorissupported onvibration dampingpadsatthetopedgeofthepedestals.
Aseismicseparation gapisprovidednearthecenterofthebuildingbetweenthetwounits.Aseismicseparation gapisalsoprovidedagainstthereactorbuilding.
ThedesignoftheSSESturbinebuildingincludesbothseismicandtornadoloadings.
TheturbinebuildingisdesignedtopreventcollapseunderboththeDBEandtornadoloadconditions.
ThedeQections fromtheseloadingshavebeenkepttoavaluesuchthatinteraction withCategoryIstructures isavoided.Thegroundacceleration associated withtheDBEis0.10g.Theturbinebuildinghorizontal shearsresulting fromtheDBEarepresented inFigure2.Basedupontheabove,itisconcluded thattheSSESturbinebuildingisaseismically robuststructure withlittleriskofdamagetothestructure thatwoulddegradethecapability ofthemainsteamandcondenser fluidpathways.
Specificparameters includedintheevaluation arepresented below.2.1LateralForceResisting SystemsThelateralloadresisting systemsuperstructure type,abovetheturbineQoor,isabracedorrigidframestructure depending onthedirection oflateralloadconsistsofthefollowing:
ColumnlinesGandKcomprisealternating baysofcross-bracing thatresistN-Swindorseismiclateralloadingconditions.
E-Wlateralforcesareresistedbyrigidframebentsfromcolumnline12to29(Unit1).Lateralforceresisting systemsubstructure, belowtheturbineQoor:ConcretewallsserveasshearwallsforlateralloadsintheNCdirections.
FIGURE2ASeismicDesignForcesfortheSUSQUEHANNA TurbineBuildingIntheEast-West Direction Hev.762'ev.729'ev.699'ev.676'lev.656'500010000150002000025000East-West DBE(Klps)FIGURE28SeismicDesignForcesfortheSUSQUEHANNA TurbineBuildinglntheNorth-South Direction Elev.787'ev.762'lev.699'ev.676'lev.656'500010000150002000025000North-South DBE(Klps) 22SeismicDesignCodes'Allnon-category Istructures aredesignedtoconformtotherequirements of:AmericanInstitute ofSteelConstruction (AISC)Speci6cation fortheDesign,Fabrication, andErectionofSteelBuildings.
AmericanConcreteInstitute (ACI)BuildingCodeRequirements forReinforced Concrete(ACI318-71).AmericanWeldingSociety(AWS)Structural WeldingCodeAWSD1.1-72.23SeismicDesignBasisAseismicanalysisoftheturbinebuildingwasperformed fortheDBEloadinginthenorth-south, east-west, andverticaldirections inordertoassurethatthebuildingwillnotcollapse.
Theresulting deQections werealsoutilizedtoconfirmthatthereisnointeraction withthereactor,building.
2.4WindDesignCodesTheturbinebuildingisdesignedtoconformtotherequirements of:AmericanSocietyofCivilEngineers, papernumber3269,WindDesignRequirements.
AmericanInstitute ofSteelConstruction (AISC)Specification fortheDesign,Fabrication, andErectionofSteelBuildings.
AmericanConcreteInstitute (ACI)BuildingCodeRequirements forReinforced Concrete(ACI318-71).AmericanWeldingSociety(AWS)Structural WeldingCodeAWSD1.1-72.25WindDesignBasisThedynamic,windpressures usedinthedesignofSSESarederivedfromtheASCEPublication No.3269usingthefollowing equation.
q=0.002558'here qisthevelocitypressureinpsf,andVisthewindvelocity(mph).Itwas
assumedthat80%ofqisactingonthewindwardsideand50%issuctionontheleewardsideofthebuilding.
Thelocalpressureatanypointonthesurfaceofthebuildingisequalto:p=qCpwherepisthepressureandCisthepressurecoefficient.
Thetotalpressureonthebuildingisequalto:p=qCOwhereCoistheshapecoefficient andisequalto1.3.ThewindloadsareprovidedinTable1.Theturbinebuildingframeisdesignedtoresisttornadowindforcesassumingthattwothirdsofthesidingisblownaway.Inaddition, eachexteriorcolumnanditsconnections aredesignedforthefulltornadowindintheeventthatnosidingblowsawayinthetributary areaofthecolumn.Themaximuminteraction ratioforthestructural steel,resulting fromthecasewithnofailureofthesiding,isapproximately thesameasthatobtainedfromtheDBEload.Theloadcombinations utilizedforthedesignoftheturbinebuildingarepresented inTable2.
TABLE1TornadoWindLoadsWallLoadRoofLoadHeight(ft)BasicVelocity(mph)DynamicPressurewith1.1GustFactorPressure0.8qSuction0.5qTotalDesignPressure1.3qSuction0.6q0-5050-150150<00Over40080951101202030404516243236101520232639525912182427TABLE2LoadCombinations D+L+E'+L+WD+L+W'+L+E'ee Note1SeeNote1USDUSDD=DeadLoadL=LiveLoadW=WindLoadW'TornadoWindE'DesignBasisEarthquake (1)Innocaseshalltheallowable basemetalstressexceed0.9Fyinbending,0.85Fyinaxialtensionorcompression, and0.5Fyinshear.WhereFsisgovernedbyrequirements ofstability (Localorlateralbuckling),
fsshallnotexceed1.5Fs.Innocaseshallbeallowable boltorweldstressexceed1.7Fs.
3.MAINTURBINECONDENERS3.1GeneralDescription ofSusquehanna Condensers Themainturbinecondenser isatripleshellmultipressure surfacecondenser whichconsistsofthree(3)rectangular shapedweldedsteelplatecondensers ofthesinglepassquad-divided type.Thecirculating waterlowis448,000gallonperminute.Theheatexchangeareaofthehighpressureshellconsistsof28,0401-inchdiametertubes,approximately 50footlong,givingaheattransferareaof367,000squarefeet.Theheatexchangeareaoftheintermediate pressureshellconsistsof28,0081-inchdiametertubes,approximately 40footlong,givingaheattransferareaof293.300squarefeet.Theheatexchangeareaofthelowpressureshellconsistsof27,9721-inchdiametertubes,approximately 30footlong,givingaheattransferareaof219,700squarefeet.Thedryweightandtheoperating weightofthethreeshellsareasfollows:DrWeihtIb0eratinWeihtIbHighPressureCondenser 678,200Intermediate PressureCondenser 643,000LowPressureCondenser 567,8002,132,700 1,984,300 1,572,700 Thebaseofthecondenser (hotboxshell)is29'x49',29'x39',and29'x29'nplanforthehigh,intermediate, andlowpressurecondensers, respectively.
Eachcondenser shellissupported fromtheconcretebaseslaboftheturbinepedestalon6embeddedplateassemblies.
Positiveattachment isprovidedbyanchorboltsandweldstotheembeddedplateassemblies.
Theembeddedplatesassemblies onlyprojecttheirplatethickness abovethebaseslab,sotherearenolegsorpiersbetweenthecondenser andthebaseslab.Thecondenser shellsneckdownatthetopwheretheyweldtotheturbine.Thenecksincludearubberexpansion jointwhichstructurally isolatesthecondenser shellfromtheturbine,sothattheanchorstothebaseslabprovidetheentiresupportforthecondenser shell.Theheightofeachshelltotheexpansion jointisapproximately 56'.Thecondensers weretestedbyfillingtheshellwithwater.Thedesignconditions forthecondensers includeavacuumpressureof26"ofMercury,and"zone1"seismiccoefficients of0.03gverticaland0.05ghorizontal.
The.75"thickshellsofthecondensers arestiffened bythetubesupportplatesandbystrutsthatconnectthetubesupportplatestothesidewalls andtothecondenser bottom.Platedividers, whichseparateeachshellintofourflowpaths,alsoservetostiffentheshell.3.2Comparison ofSusquehanna Condensers withDatabaseCondensers ThisreportwillshowthateachSSEScondenser shelliscomparable tothedatabasecondensers initscapability toresistseismicforces.Inaddition, thisreportwillalsoshowthateachshellanchor10 systemshavethecapability towithstand theforcesassociated withDBEincombination withoperating loads.Sinceeachcondenser (high,intermediate, andlowpressure) isindependently supported fromtheothershellswecancompareitsstructural.
characteristics tothesimilarcondensers addressed inNEDC-31858P, "BWROGReportforIncreasing MSIVleakageRateLimitsandElimination ofLeakageControlSystem".Comparable condensers thathaveexperienced significant earthquakes asidentified inNEDC-31858P willbehereafter called"database" condensers.
EachSSEScondenser shellisspecifically comparedtothedatabasecondensers fromMossLanding,Units6and7,andfromOrmondBeach,Units1and2.Thesecondensers havesimilarphysicalarrangements ofcomponents andconstruction detailstotheSSEScondenser, andwouldfunctionsimilarly toresistseismicforces.FromTable3andfromFigures3through5,itisapparentthatmostofthephysicalfeaturesoftheSSEScondenser thatwouldbesignificant inseismicconsiderations, areeitherenveloped bythedatabasecondensers, orwouldbelesscriticalthanthedatabasecondensers.
Onepossibleexception isthegreaterheightoftheSSEScondensers.
Anotheristhecapacitytodemandratio(Figure5)fortheintermediate pressureshell.Thesignificanceof thisgreater heightisdiscussed intheparagraph below.Thecapabilityof theanchorsforallthreeshellsisdiscussed insubsection 3.3.TheSSEScondenser ishigherthanthedatabasecondensers (SeeFigure4a).Thisfeaturecannotbeconsidered aseitherenveloped byorlesscriticalthanthedatabasecondensers, sincelargerratiosofheighttobasewidthtendtogivelargeroverturning forces.InthecaseoftheSSEScondenser shells,wecansaythatthisgreaterheightisnotthatsignificant forthreereasons.Thefirstreasonisthattheoperating weightofeachshellincomparison totheshellsideareaiscomparable tothatofthedatabasecondensers; therefore theshearstressesintheshellplatewouldnotbeanyhigherthanthedatabasecondensers forthesame"g"load.ThisisapparentfromthedatainTable3.Thesecondreasonisthattheanchorboltshearareasincomparison tooperating weightsarecomparable tothedatabasecondensers forallshellsexcepttheintermediate pressureshell.Thisisillustrated inFigure5inwhichtheSSEScondenser anchorsareactuallylesscriticalthantheanchorsofthedatabasecondensers exceptfortheintermediate pressureshell,ThethirdreasonisthattheanchorsfortheSSEScondenser havemorethanenoughcapacitytowithstand theforcesfromaDBEeventincombination withoperating loads.Thisspecificanchorcapability isdiscussed insubsection 3.3.Theanchorconfiguration fortheSSEScondenser shellsisnotnecessarily thesameasthatoftheddatabasecondensers.
FortheSSEScondenser shells,baseshearloadsaretakenbyweldsofthecondenser toembeddedplatesatlocations 1and4ofFigure7.Theanchorboltsarenotdesignedforshearsbecausetheholesinthecondenser baseareoversized, andtheweldsandguidesareastifferloadpathforshearloads.Sincetheanchoratlocation4isaguideinonedirection, theweldsatlocation1aresizedtotakealltheshearinthedirection paralleltotheturbineaxis.Forloadsperpendicular totheturbineaxistheanchorsatlocation1and4bothcontribute toresisting shears.InFigure5the"lowerbound"anchorareaisonlytherootareaoftheweldsactiveinthegivendirections.
The"upperbound"areaisthetotalofanchorboltsareaonly.Thisconservatively
<<ssumesthattheweldsfailbeforetheanchorboltsareeffective inresisting shears.Thecapacityto11
TABLE3Comparison ofSUSQUEHANNA Condenser toDatabase'ondensers PlantNameHorizontal gLevelExperienced Manufacture WidthxLengthxHeight(Ft)(Ft"2)(Lbs)HeatExchangeOperating WeightShellThickness
/Mateial(In)/(ASTM)TubeSupportsThickness
/Number(tn)TubeSheetsThickness (In)TubeSizeDiameter(ln)/Length(Ft)MossLanding0.40Ingersoll Rand36x65x4743500031150003/4A-285C3/4-151/65'rmond Beach0.20South.Western27x52x2021000017675003/4A-285C5/8-141.251"/53'USQUEHANNA (HighPressure) 0.21"~Ingersoll Rand29x49x5621327003/4A-285C5/8-141.501/50'USQUEHANNA (Intermediate Pressure) 0,21'0Ingersoll Rand29x39x5619843003/4A-285C5/8-111/40'USQUEHANNA (LowPressure) 0.21*'ngersoll Rand29x29x5621970015727003/4'-285C5/8W1/30'atabase information fromNEDC-31858P Revision2,September 1993.AppendixD,Table4-1andTable4-3DBEdesignbasisis0.21ghorizontal for5hdamping,peakofgroundresponsecurve,atcondenser base(SeeFigure6)
FIGURE3SizeComparison oftheSUSQUEHANNA Condenser (Unit1or2)withRepresentative Condensers fromEarthquake Experience OrmondBeachSUSQUEHANNA HighPressureSUSQUEHANNA Intermediate PressureSUSQUEHANNA LowPressureMossLanding100000200000300000400000500000HeatTransferArea(Sq.Ft.PerShell)OrmondBeachSUSQUEHANNA HighPressureSUSQUEHANNA intermediate PressureSUSQUEHANNA LowPressureMossLanding0500000100000015000002000000250000030000003500000Operating Weight(LbsPerShell)13 FIGURE4Dimensional Comparison ofSUSQUEHANNA Condenser (Unit1or2)andRepresentative Condensers fromtheEarthquake Experience Database~50~40CQP-302010OrmondBeachSUSQUEHANNA (a)HeightComparison (BaseToExpansion Joint)MossLanding40'ighPreeeure39'termedlate Preeeure29'owPreeeure~MossLandlng6&7 (65'x36')
~SUSQUEHANNA Unlt1or2HighPressureIntermedhte PressureLowPressure(49'29')(89'29')(29'29')mmOrmondBeacht&2(52'2T)(b)ShellFootprint Comparison 14
FIGURE5AAnchorage Capacity-to-Demand Ratio:ParalleltoTurbineGenerator AxisComparison ofSUSQUEHANNA Condenser (Unit1or2)withRepresentative Condensers fromEarthquake Experience Database0.00020.00018E0.000160.00014O0.00012E0.0001V)0.000080.000060.00004~f)0.00002QUpperBoundgLowerBoundMossLandingEICentroSUSQUEHANNA SUSQUEHANNA SUSQUEHANNA HighPressureIntermediate PressureLowPressureFlGURE5BAnchorage Capacity-to-Demand Ratio:Perpendicular toTurbineGenerator AxisComparison ofSUSQUEHANNA Condenser (Unit1or2)withRepresentative Condensers fromEarthquake Experience Database0.00020.000180.00016a0.000140.00012M0.00010.000080.00006a)0.000040.00002QUpperBoundgLowerBoundMossLandingEICentroSUSQUEHANNA SUSQUEHANNA SUSQUEHANNA HighPressureIntermediate PressureLowPressure15 lAOIAOl.iOb0l.000O.IOt5IClOOAO0LEGENDELCENTROSTEhMPLhHT,1979IMPERIhLVhLLEYEQ~UhLLEYSTEAMPLhHT,1971ShNFERNANDOEQ~HOSSLhHDINGSTEhMPLhNT,1989LOMhPREThEQ~SUSQUEEOBfh DESIGNBhSISEhRTHQUhKE ORMONDBEhCHSTEhMPLhNT,1973 PT.MhGUEQPGh~0.208 FUKhSHMlNUCLEhRPLhNT,1978 MIYhGIKEN-OKIEQ.PGh~0.138 PI.OTTEDAT5%DAMPINGOAO0400.000.05.0IO.Ol5.0f0.030.0Frequency (Hz)Figure6:Comparison ofSusquehanna GroundResponseSpectrumtoDataBaseSpectra FlGVRE7AnchorSystemforSUSQUEHANNA Condenser Unit0or2Dhtributloo ofAnchorBoltsbyTensileArea/LocationShellUnitAxleofTurbineGenerator VarieaLocationTotal7.609.507.603.803.804S.80Intermediate Preaaure(ln"2)7.603.803.807.603.803.8030AO(In"2)7.6020.007.603.803.8062.80329IAnchorboltsresistloadInverticaldlrectlon.
Weldstoembeddedplateassemblyresistloadslnhorizontal dlrectlonL OAnchorBoltsresistloadlnverticaldirection.
Nohardrestraint inhorizontal directions (slidingfrictiononly).OAnchorBoltsresistloadlnverticaldlrecthn.
Guidebarsresistloadlndirection perpendicular toaxisofturbinegenerator.
Nohardrestraint peralleltoaxisofturbinegenerator (slidingfrictiononly).17 demandratiosfortheintermediate pressurecoridenser arelowerthanthecomparable databasecondensers.
Thisdoesnotrepresent aconcernwhentheactualanchorcapacityiscomparedtotheseismicloadsinsubsection 3.3.33Capability ofAnchorstoWithstand DesignBasisEarthquake Loads.HighPressureCondenser:
ThemaximumtensionfromtheDBEforcesincombination withtheoperating loadsis'estimated tobe493.4kipsatlocations 2or3comparetotheanchorboltscapacityofabout897kips.ThemaximumbaseshearfromDBEis448kips.Thisshearwouldberesistedinanumberofways:friction, shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovements todevelopboltshears.Itwouldbeunconservative toassumethattheweldsandanchorboltsactconcurrently toresistshearsincetheboltholesareoversize.
Capacities ofthethreeshearresistant phenomenon areasfollows:frictionfromresultant normalforcesbetweencondenser andembeddedplateusinga0.10frictionfactor=183kipsweldcapacity=445kipsshearcapacityofanchorboltsnotintension=1814kipsItisreasonable toassumethatthefrictionisavailable incombination withweldcapacityorincombination withboltcapacity.
ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.Intermediate PressureCondenser:
ThemaximumtensionfromtheDBEforcesincombination withtheoperating loadsisestimated tobe91kipsatlocations 2or3comparetotheanchorboltscapacityofabout359kips.ThemaximumbaseshearfromDBEis417kips.Thisshearwouldberesistedinanumberofways:friction, shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovements todevelopboltshears.Itwouldbeunconservative toassumethattheweldsandanchorboltsactconcurrently toresistshearsincetheboltholesareoversize.
Capacities ofthethreeshearresistant phenomenon areasfollows:/XJttsTttncvzvO.lofrictionfromresultant normalforcesbetweencondenser andembeddedplateusinga~frictionfactor=171kips18 weldcapacity=284kipsshearcapacityofanchorboltsnotintension=1814kipsItisreasonable toassumethatthefrictionisavailable incombination withweldcapacityorincombination withboltcapacity.
ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.LowPressureCondenser:
ThemaximumtensionfromtheDBEforcesincombination withtheoperating loadsisestimated tobe905kipsatlocations 2or3comparetotheanchorboltscapacityofabout1890kips.ThemaximumbaseshearfromDBEis330kips.Thisshearwouldberesistedinanumberofways:friction, shearintheweldstotheembeddedplates,andfinallybyanchorboltsassumingsmallmovements todevelopboltshears.Itwouldbeunconservative toassumethattheweldsandanchorboltsactconcurrently toresistshearsincetheboltholesareoversize.
Capacities ofthethreeshearresistant phenomenon areasfollows:Wt</tf4y.TypoCLIOfrictionfromresultant normalforcesbetweencondenser andembeddedplateusinga+28frictionfactor=135kipsweldcapacity=445kipsshearcapacityofanchorboltsnotintension=1814kipsltisreasonable toassumethatthefrictionisavailable incombination withweldcapacityorincombination withboltcapacity.
ItisapparentthattheanchorsystemhasmorethanenoughcapacitytoresistbaseshearsfromDBE.19
,
4.0 IVLEAKAEONYRLPIPINSeismically
analyzedpipingwithintheMSIVLeakageAlternate Treatment Methodincludesthemainsteamlinefromcontainment isolation valvestotheturbinestopvalves,thebypasspipingfromthemainsteamlinetothemaincondensers, themainsteamdrainlineheaderfromcontainment isolation valvestoin-linepipeanchors,andportionsofmainsteambranchconnection linestoin-linepipeanchors.Designmethodsfortheseanalyzedlinesareconsistent withseismiccategoryIqualification methodsfortheSSESanddesignmarginsareaccordingly adequatetoassureacceptable seismicperformance.
Portionsofthesemainsteamanddrainlinepipingsystemshavenotbeenseismically analyzed.
SincesystemredesigntoseismiccategoryIrequirements wouldbeexceedingly costly,analternate evaluation methodhasbeenutilizedtodemonstrate seismicadequacy.
Nonseismically analyzedpipingsystemswereassessedtodemonstrate thatSSESpipingandpipesupportsfallwithintheboundsofa"seismicexperience database".
Section1.0detailsthebackground forthishistorical databaseaswellastheconstruction codeandseismicwalkdownreviewsperformed todemonstrate seismicadequacy.
Thecodereviewpurposewastoinsureadequatedeadloadsupportmarginandductilesupportbehaviorwhensubjected tolateralloads.Seismicwalkdowns wereperformed toverifythatSSESpipingandinstrumentation arefreeofimpactinteractions fromfallingandtheproximity ordifferential motionhazards.Conditions outsidetheexperienced databaseboundary(outliers) arebeingreviewedtodemonstrate reasonable assurance oftheintegrity oftheassociated pipingsystemsandcomponents undernormalandearthquake loading.Inaddition, arepresentative boundingpipesupportsampleonthe4"maindrainlinewillbeevaluated todemonstrate anchorage margins.Thesereviewsdemonstrated thatthenon-seismic analyzedpipingsystemsconsistofweldedsteelpipeandstandardsupportcomponents, consistent withtheconstruction standards associated withtheseismicexperience databasepipingsystems.Reviewsalsodemonstrated thatadequatedesignmarginsexistfortypicalorboundingpipingsystemsupports.
Specificdatausedintheevaluations issummarized below.Forthemainsteamdraininterconnected piping,itwasdemonstrated thatadequatedesignmarginsexisttoprovidereasonable assurance thatpipingpositionretention willbemaintained bythepipingsystemdeadweightsupportsundernormalaswellasearthquake loadings.
Walkdownresultsindicated thatadditional supportswouldberequiredtoeliminate thepotential forpipingsysteminteractions.
4.1MainSteamandTurbineBypassNofailuresofmainsteampipingwerefoundintheearthquake experience databaseasdocumented inNEDC-31858P.
ThesepipingsystemsatSSESweredesignedinaccordance withtheASMECodeSectionIII,Class2andANSIB31.1requirements, usingresponsespectrumanalysistechniques.
Theanalysismodelsincludedthemainsteampiping,thebypasslines,andbranchpipinguptoseismicanchors.20
Themainsteamlinesenvelopthepipingfromcontainment isolation valvesFO28A/B/C/D totheturbinestopvalvesMSV-1/2/3/4 andincludethedriplegsplusportionsofthesupplylinestothesteamsealevaporators uptoin-linepipeanchors.Theturbinebypassanalysisincludespipingfromthemainsteamlinestothecondenser plusportionsofthesteamsupplylinestothereactorfeedpumpturbinesandsteamairejectorsuptoin-lineanchors.Thesepipingsystemsweredesignedusingreactorandturbinebuildingresponsespectrainputstoperformdynamicseismicanalysistowithstand theOBEandDBEloadingsincombination withotherapplicable designloadsinaccordance withtheSSESdefinedloadingcombinations.
Designmarginsforthereferenced mainsteamandturbinebypasspipingsystemsarethoseinherentbyapplication oftheseismicdesigncodes.4.1.1DesignBasis4.1.1.1PipingDesignCodeASMEIII,Class2,1971Editionincluding Winter1972AddendaandB31.1,1973Edition4.1.1.2PipingDesignA.DesignTemperature:
585FDesignPressure:
1350psi-mainsteam1350psi-turbinebypassB.Pipesize,schedule, andD/tSizeNPS24241810.7510.758.6254.500Quickness 1.0760.9411.1560.7190.5940.594OA38~Dt251615181410C,TypicalSupportSpacing:B31.1suggested spanD.SupportTypes:springs,struts,snubbers, boxtype,E.DesignLoading:weight,thermal,seismic,steamhammerF.AnalysisMethod:linearelastic,seismicresponsespectrum, steamhammertimehistory21 G.SeismicandDynamicDesignBasis:responsespectraanalysesusingQoorresponsespectrathatwerederivedbasedonthegroundDBEwithapeakgroundacceleration of0.10g.4.1.13PipeSupportDesignCodeAISCandANSIB31.14.1.2MarginAssessment Designmethodsfortheanalyzedmainsteamandturbinebypasspipingareconsistent withseismicCategoryIqualification methodsforSSES.Theseismicwalkdowns identified minorinteraction issuesthatcouldbepotential sourceofdamage.Actionshavebeeninitiated toresolvetheseissues.Basedonactionimplementation, thedesignmarginsassociated withthesesystemsandtheirsupporting structures willbeadequatetoinsurepipingsystemintegrity underprojected seismicperformance.
4.1.3VeriTication WalkdownResultsThewalkdownresultsarepresented inTables5and6forUnits1and2,respectively.
42MainSteamDrainstoCondenser Themainsteamdrainlinetothecondenser consistsofsafety(Class2)andnon-safety relatedpiping.Thesafetyrelatedpipeandportionsofthenon-safety pipinguptoin-linepipeanchorsdownstream ofisolation valvesHV-1/241F019 andF020wereseismically analyzed.
Thesepipingsystemsweredesignedinaccordance withtheASMECode,SectionIII,Class2andANSIB31.1requirements, usingresponsespectraanalysistechniques.
Theremaining mainsteamdrainandassociated pipingwereanalyzedfordeadweightandthermalloadsusingcomputeranalysisandspacingcriteria.
Thispipingissimilartopipingfoundintheseismicexperience database.
Theseismicverification walkdowns identified minorinteraction issuesthatcouldbepotential sourcesofdamage.Actionshavebeeninitiated toresolvetheseissues.22 4.2.1DesignBasis4.2.1.1PipingDesignCodesASMEIII,Class2,1971Editionincluding Winter1972AddendaandB31.1,1973Edition4.2.1.2PipingDesignA.DesignTemperature:
585FDesignPressure:
1350psiB.Pipesize,schedule, andD/tS~izeNPS'iisickness
~t'4.53.5131513150.4380.4380.2500.35810854C.TypicalSupportSpacing:B31.1suggested spanD.SupportTypes:springs,struts,snubbersE.DesignLoading:weight,thermal,seismicF.AnalysisMethod:linearelastic,seismicresponsespectrumG.SeismicandDynamicDesignBasis:responsespectraanalysesusingQoorresponsespectrathatwerederivedbasedonthegroundDBEwithapeakgroundacceleration of0.1g.4.2.1.3PipeSupportDesignCodeAISC,ANSIB31.1,andMSSSP584.2.2MarginAssessment Designmethodsfortheseismically analyzeddrainpipingareconsistent withseismicCategoryIqualification methodsforSSES.Therefore, thedesignmarginsassociated withthesesystemsandtheirsupporting structures willbeadequatetoinsurepipingsystemintegrity underprojected seismicperformance.
23 Theobjective oftheassessment ofthenon-seismic MainSteamDrainpipingistodemonstrate thatpipingpositionretention willbemaintained duringaseismiceventplusprovidesassurance thatthepipesupportswillbehaveinaductilemannerandthatalllinesarefreeofknownseismichazards.Inaddition, itwillestablish thattheseSSESpipingsystemswillperforminamannersimilartopipingandsupportsthathavebeenobservedtodemonstrate goodseismicperformance.
Themethodology utilizedtodemonstrate themarginsinherentintheSSESnon-seismic pipingsupportdesignsisbasedon:ThegroundseismicinputisbasedonthegroundDBEwhichisconservatively defined.Thecalculated pipingseismicresponseisbasedon5%dampedin-structure responsespectraasrecommended inEPRINP-6041.ThereaderisreferredtothefoHowingsubsection 4.2.2.1formoredetails.~Thecomponent supportcapacityisconservatively estimated basedonthevendorratedvalues.Theevaluations'oal istoproduceaHigh-Confidence-Low
-Probability ofFailure(HCLPF)forthewalkdownoutliersandarepresentative pipesupportsample.Thisshouldprovidethedesiredreasonable assurance ofgoodseismicperformance.
4.2.2.1SeismicDemandTheoriginalseismicdesignoftheTurbineBuildingincludedthedevelopment ofthreelumpedmassmodelsfortheeast-west, north-south, andverticaldirections.
TheseismicQoorcurvesweregenerated todetermine seismicanchorforcesanddisplacements forthepipingsystemsthatareattachedtotheTurbineBuilding.
TheseismicQoorcurveswereonlygenerated for1/2%and1.0%equipment dampingvalues.Theexisting1/2%and1%dampedQoorcurveswillbeextrapolated togenerate5%dampedDBEQoorcurvesfortheevaluation ofthewalkdownoutliersandarepresentative pipesupportsample.Duringthemarginassessment, 5.0%dampedrealistic median-centered, withnointentional conservative bias,Qoorcurveswillbedeveloped, ifnecessary, basedontheNUREG/CR-0098 mediangroundspectraanchoredat0.1gand0.067gpeakgroundaccelerations forhorizontal andverticaldirections, respectively.
Variabilities associated withstructure frequency, structure damping,androckmodulusaresigniQcant inthedevelopment oftheseismicQoorcurves.Thesemodelparameters willbeselectedinarandomprocess.Anumberofearthquake timehistories willbeutilizedwiththerandomlyselectedsetsofmodelparameter values.Toaccountfortheuncertainty inthestructural frequency calculations, thepeaksoftheseismicQoorcurvesareshiftedratherthanbebroadened.
24 Itshouldbenotedthattheidentified itemsduringtheseismicverification walkdowns aretaggedasoutlierssincetheydidnotfallwithintheboundsoftheearthquake experience database.
Thepeakacceleration valuesofthedatabasegroundspectraareusuallygreaterthan0.9gwhilethepeakacceleration valuefortheDBEatSSESisabout0.21gfor5%equipment dampingasshowninFigure6.InadditiontotheseismicDBEloads,deadweightandoperating mechanical loadsareaccounted for.Operating mechanical loadsforthissystemarethermalexpansion loadsanddesigndeadweightsupportloadsareconsistent withtributary areaweightprocedures.
4.2.2.2PipeSupportComponent Capacities Thesupplemental fieldverification determined thatthesupporttypesusedareconsidered tohavegoodseismicperformance.
Thesystemispredominantly supported fordeadweightutilizing rodhangers.'omponent designsareconstructed fromstandardsupportcatalogpartstypically consisting ofclamps,threadedrods,weldlesseyenuts,turnbuckles, weldinglugsandareattachedtoeitherconcreteorstructural steel.Thesesupporttypesaredesignedtoresistverticalloadsintension.Designcapacities areprovidedbymanufactures'oad ratingdatasheets.Loadcapacityratingsforcomponent standardsupportsaretypically basedontestingandutilizeafactorofsafetyoffiveinaccordance withMSSSP-58.Theloadonwhichtheloadcapacitydata(LCD)isbasedistherefore afactoroffivehigherthanthecatalogloadrating.Themargincapacities foreachsupportcomponent aretakenastheLCDx5x0.7(EPRINP-6041).
Including thermaleffectsonallowable loads,component standardsupportsdesignedbyloadratingiscalculated asfollows:TLx0.7Su/Su'here:
TL:Supporttestloadislessthanorequaltoloadunderwhichsupportfailstoperformitsintendedfunction; TL=LCDx5Su:Materialultimatestrengthattemperature Su:Materialultimatestrengthattesttemperature Structural steelsupportmembersareevaluated usingsectionstrengthbasedontheplasticdesignmethodsinPart2ofAISCor1.7timestheAISCworkingstressallowables.
Concreteanchorboltsareevaluated usingdatafromtheA46/SQUGcriteria, AppendixC.4.2.3Verification WalkdownResultsThewalkdownresultsarepresented inTables5and6forUnits1and2,respectively.
25
43Interconnected SystemsTheinterconnected systemsconsistoftheremaining pipingwithintheMSIVLeakageAlternate Treatment Methodthatwasnotseismically analyzed.
Thesesystemsarecomposedofweldedsteelpipingandstandardsupportcomponents.
Analyzedbyruleandapproximate methods,thesepipingsystemsaresimilartothepipingfoundintheseismicexperience databasethathaveexperienced seismiceventsinexcessoftheSSESdesignbasisearthquake.
Interaction issuesidentified inthewalkdownthatcouldbepotential sourcesofdamagewereevaluated, and,wherenecessary, actionshavebeeninitiated toeliminate thispotential.
Itwillbedemonstrated thatadequatedesignmarginsexistfortheseinterconnected systemstoprovidereasonable assurance thatpipingpositionretention willbemaintained bythepipingsystemdeadweightsupportsundernormalandDBEloadings.
4.3.1DesignBasisTable4liststhedesignparameters associated withtheseinterconnected pipingsystems.4.3.2MarginAssessment SameasforMainSteamDrainstoCondenser, Section4.2.2.Basedonthepipingsystemconstruction materialreviews,seismicwalkdowns performed forimpactinteraction assessment, andtherepresentative systemevaluations, interconnected systempipingpositionretention willbeinsuredandsystemsimilarity totheseismicexperience databasewillbedemonstrated.
Thegoalistodemonstrate thattheinterconnected systemsarecapableoffunctioning tosupporttheoperation oftheMISVLeakageAlternate Treatment Methodduringandfollowing theapplicable SSESDBE.4.3.3Verification WalkdownResultsThewalkdownresultsarepresented inTables5and6forUnits1and2,respectively.
MBlockwallsintheTurbineBuildinghavebeendesignedusingtheworkingstressmethodofreinforced concretedesigninaccordance withthe1973/1976 UBC.Thewallshavebeenrechecked forseismicloadsusingthe1979UBCwitharesulting seismicloadingof0.084g.minimum.Inadditionsomeofthewallshavebeendesignedforapiperupturepressureof480lb/ft>andlargebore(4"diameterandlarger)pipesupportloads.Allofthewallshavebeendesignedforthemaximumloadsfromfieldrunattachments.
Fieldrunattachments havebeencontrolled anddocumented
.Cuttingofreinforcing steelintheblockwallshasbeencontrolled anddocumented.
Construction ofthewallsperthecivildrawingsandspecifications hasassuredcompliance withtheblockwalldesignrequirements.
AlloftheblockwallswhichareofconcernfortheMSIVLCSElimination Projecthavebeendesignedascomposite wallsconstructed asdoublewythereinforced concreteblockwallswith3000psifillconcretebetweenthewythe'swithallopencellsgrouted.Thethickness ofthesewallsvariesfrom2'-0"minimumto4'06"maximum.OnewalllocatedintheReactorBuildingwhichwasdesignedforOBE/DBE,SRVandLOCAloadsisonly1'-9"thick.TheblockwallswhichareofconcernfortheMSIVLCSElimination Projectareevaluated withseismicloadsusingtheDBEQoorspectra.27
TABLE4INTERCONNECTED SYSTEMDESIGNPARAMETERS UNIT1AND2SystemDeslgnatlon PlplngDesignTempPres.t'F)(pslg)SzeSupportsD/tSpacingSupportTypesDesignCodeLoading(Note1)SelsmloDealnBasisToAnchorRemainder MainSteamDrainsFrom8'DripLegs812'DripLegASMESecthnIa831.140191607xxs4.8xxa3.7160531604$ANSI831.1RcdHangersSpringsConcreteAnchorsPipeStrapsStrucLMemb.AISCMSSSP58DWThermalHydroMainSteamDripLegLevelInstrumentatlon ASMESectionIIIANSI831.1RodHangersSpringsConc.Anch.PipeStrapsStruct.Memb.StrutsAISCMSSSP58DWThefnlalHydroNoneMainSteamAveraging ManifoldtoPressureTransducer PanelsASMESectIIIANSI831.1120118ANSI831.1xxa4.8xxa3.'7RodHangersSprtngsStrutsConc.Anch.RpeStrapsStrucLMembHSCMSSSP58DWThenllalHydroNoneMainSteamTurbineStopValveDrains831.18078160716053ANSI831.1RcdHangersSpringsBoxTypeStruct.MembAISCMSSSP58OWTheBllalHydroNoneNone TABLE4~INTERCONNECTED SYSTEMDESIGNPARAMETERS UNIT1AND2MSIVDrainh4lneAnchorstoHPCondenser Ilncludas DraintoUIW8BypassfromHV1/2lf-F021)ANQ831.1TempPreLtF)(pslg)Sae5851350I'03ANSI831.1184Supports0/tSpacingSupportTypesRodHangersSpringsStructMemb.Cono.Anch.DesignCodeLoading(Note1)ToAnchorNoneRemainder SelsmloDealnBasisHPCITurbineSteamDrainfromIn4lneAnchortoM.LDrainHeaderANSI831.15851350xxa"ANS831.1AISCMSSSPSSRCCTurbineSteamDrainfromh4lneAnchortoM.S.DrainHdr.SteamSupplytoAlrEjectorBeyondHV-1/2010'o firstaehmloanchorANSI831.1ANSI831.158513501'851350103ANS831.1ASMESect.IllANS831.1RodHangersPIpeStrapsCono.Anch.SnubbersStruct.Memb.AISCMSSSP58AISCMSSSP58OWThermalHydroSelsmloR.LAnalyshuslng OBERFPTSupplyBeyondValveHV-t/20111 tofirstselsmhanchor831.11I.SASMESect.IIIANSI831.1AISCMSSSP58DWThermalHydroSelsmlcRS.AnalystsUsingDBE(Note2)SteamSealEvaporator VneBeyondHV-1/20109 tofirstaelsmhanchorANSI831.1ASMESectIIIANSI831.1SpdngsSnubbereStruckMemb.ASCMSSSP58OWThermalHydroSelsmhRLAnalysisusingDBEINote2)
TABLE4INTERCONNECTED SYSTEMDESIGNPARAMETERS UNIT1AND2NOTES:1.ANALYSSMETHODISUNEAREIASTICFORBOTHHANDCALCULATIONS USINGSPACINGCRITERIAANDME101COMPUTERANALYSS.2.SHSMICAU.Y ANALYZEDFROMTHEMAINSTEAMBRANCHCONNECTION TOTHEFIRSTIN-UNEANCHOR.
7 TABLEdOutllerldentltlcathn andResolution StatusUNITfnSteanDraintoCoadcnser SS1Sf-i5upyortESD-LLt-big nayslideoCCtESD-litfnproxfnfty toblockeallSupportESD-LLi-Sgf5Sy-ESD-fit-58$
<<cyslideoCCValveSVfaf-7011 outsideIgbgfCriteriaiyDCESCXAI.
TAfIJDIEWOE>Ayyyfpesefsnfooovenentfsheingevaluated blockwallfsevaluated an4Coundacceptable as-lsDLCCerentfal sefsnfoanm<<atbetweenReactorSuffdfngandTurbineSufldlnglabefngevaluated ValvesefssLfooyerabflfty andpipeintegrity arebeingevaluated fnSteanCrc<<NITtostopTafnAl10ESD115attache4toblockeallblockwallsefsafacapacityfsbeingevaluate4 A0"DripLegsAl5SofateaboveWLTAthruDSoiatsereheingevaluated forpositionretention HainStean57pacstoCoodasorAS-5lnterectfon betweenESD-102-Sag A05crossaroundpipeDES-105-55, S7fnpro@Lofty toblockeall055-105-55, ESD-L00-55,055-105-ELE attachedtoblockwall5efsolopryingectionoCiblineonsuppoctfsbeingevaluated blockwallisevaluated andCoundacceptable asisblockwellfsevaluated endfoundacceptable es-fsHcfnStoatoEV10107SteanJctAfr+actorAS-IAS5TalveSV-LOL07fnyroxfnfty toblockeallValveET-10107inyrorfnfty totireprotection 5yra7blockwallfsevaluated sndCoundacceptable aa-fsTaInfshefngevaluated CorCallsaCeposition TABLE5OutllerMentNcatlon IndResolution StatuellHITInStoatoStemJetAirEJectorCi-1{frmIT-10101toET-I0701$
)2$0-100inproxinity toblock<<cLL(FOIESIIAL yAIUJEEIEOE)AypAcceptable as-ieCl2A~ESD-100Stenchicas nayslideoffTalesST-10701$
inprorinlty tepiroprotection SprayXAcceptable asisXAcceptable as-lslnSte>>DripLagDrains$11$12$1-5DI-a$15$1-0$17II/2Dbb-101,2 ga<<ndorCableTreyIatoracticn bot<<om1-1/2NS-1stA10"Bllineiaterectice bot<<oen1-1/2"N$101010WlineInteraction bot<<ocn1-1/2"NS-102C"Acr.StemlineInteraction betcem1"DS$105,ESD-I004block<<allINb-105,17'panbct<<ecnsepportsOAD-LIS,0$0-125endorcabletreyAdo0<<acyofcabletreys<<pportelabeinga<<el<<at<<4 Soimiono@mentsofbothlinesarebeingecslnatod SeimionovmontsofbothlinesarebolaseeaL<<atod SeimieawmmtsofbothLineaarobeingeoalaated Slack<<alLiseeelnated ondfo<<ndacceptable ea-isSolsaieno<<montofI"pipeisbeingoval<<atod 5<<pportevercpenisbeingeealnatod Adagaacyofcabletraysepportaisbeinge<<elected inStemDripLegLe<<elInstr<<aoatcticn
$21IDSS-105inpresiaity teblock<<cLLblock<<alLisoval<<ated endfo<<ndacceptable es-is TABLEIOutllarMentlflcatlon andReiolutlan StatusUNITStemAveraging Manifoldtopresserstraedncer panoLS5-I1"OCO-LLSinproriaity toblock<<aLL{ICTESTIAL FAILIEWDE)PDVSlock<<aLLseimiocapacityiobeingoealnated StopTalesSoa'tOscinetoCondanset Si-lPelvesSV-LOLOLA,S,C,Dmyrequireaeimiorestraints Si15MDliiSgiS10ASLL5tanchions nayslideoTESeimioloadsfrasvalvesarebeingovslnated Pilwseimlaaementlsbeingovelnated HICIStemDraintothisStemDrainSeederSS11"ESOillinprnrinity toblock<<elLSSS5PESDLli-S55,SSi AS555tanchions nayslideofTSlack<<aLLlsoealnated andTonndacceptable as-isPipesoimiannementlsbeingovsinated LnStempresserseasingLines00-21"PipeA5/0To@faglnproxiaity toblock<<allSlack<<aLLseimiacapacitylabeinga%sleeted EeytooatliertypcsiAAncbcrage orSnpportCapacityF-FallnreandFalling{IIII)PProrinity andIopsotDDitferential Dlsplacment 0-PaleoOperatorScreening
)
TABLEIOuNerldentlcathnand Reeotuthn StatueUNlf2StemDraintoCond<<verAS-I2ESD-Sfi420JED-22$interaatfon SS-LrESD-SfaSupportsblAE2attachedtotccodifferent buffdfns'IS-1TalveST2if7021 outsideSQQOorlterieSS2rESD-Slifnprosfofty tobleak<<allSSaESD-Sfa-a10,17,14,10 stanchion
~uyportsne7slideoff(PDIESIIAL PAILDSEIKIE)ypDSefmfo<<ovmentsoEbothLinesarebefnSevaluated Differential seimfonovmentbetweenReactorSuildinsA.turbfne SulldlnafsbelnSevaluated Valveeefsafooperability apipefntesrity esebelnSevaluated SfoekwalLfsevaluated and!oundacceptable asispfpesofmf0mvmeutfabefnSevaluated StemEronIOITtostopvalveA0"DripLessAl1SofstsabovetOITAthruDAl-2rESD-LLSfn~tytobmwaLLHoistsarsbelnsevaluated
!orpositionretention blockwaLLsefmfooapaoftplsbefnSevaluated StemS7pesstoCondenser AS-Llntereation betweenESD-202-Sa2 Aa2arsesaroundpipeAS-S2iNS-20540ESD-200~uyyortsattacbedtoSloek<<allAS-52"EElineandsteel.pfatforainteraotlon SefmfopryfnSaotlenoE02lfneonsupportlsbeinSevaluated SleekwalLfsevaluated andfoundeooepteble as-lsSteelplatfox<<was nodffiedtooleertbe2lineStemteST20107StemJetAirEfeaterASHValveST-20107endbrpclssupportsfuproxfnftr toblockweLLASSValveST-20107fnprorfnfty toTireProteetlon SpraySfookwelLlsevaluated sndSoundaoeeyteble as-isVaLvelsbeinsevaluated forSallsatepositfm TABLE6OuNerldenttftcathn andRaeotuthn StatueUNITnStemtoStemJetAlrMeet(fsmHT-20107toHT-207015)
Cl-1i"ESD-200lnprcnchslty toblochoeLLCl-2TalvesHT-2070)A/S lspeatcclthMaLLCl-5TelveHT-2470LS lnprorlcclty totireProtection Spray{ICIESIIAL PAILIE)ER)2)tOTAoeeptable u"lsAooepteble ulsAooeptebg ss-lsStepTalvoSeatDrainstoSi-ITalvesHT-2010)A,S,C,D nspre@cire~elmlorestraints Selmleloadsfrerevalvesarel>>lnSevalnatod SCICStemDraintoHainStemDrainHeaderS'71L"EADRliai"ESD-227lnteraetlan Selmioadam<<ctofi"linelsbelnSevaluated SICISteanDrainto)4alnStemDrainHeaderlnStemDripLaaOra)ns50-11"ERD.Rli4iHSD-227lntereetlon Sl-1TalvesHT-20104A aSnayroqalreaelsniarestraint SL-R1GSD-250aiESD-RLRilntereetlon Si-51CSD-250aERD-202-HIf lnteraotion Sl-i1-1/2"Nl-202a10IWlineLnteraetlca Sl5TalvsHT-ROLLRAL aiAces,StoaLinelnteraetlan S1-0i"CRD-250ccader0tireProtection lineSl-7TaLvesHT-2011251 A52neyr<<pclre~elm)arestraint.
Alsolntereatlen
<<ith4Aea.StemlineSl-01-1/2OSS-20i110IMLinelnteraetlon Sl-0Sp-DSS-205-H4040 a0"ESD-200Lb>>lnteraetlon 01-10L-L/2"O55.205a10Illlinelnteraetlon Solmlencvmentofi"linelsbeinsevslnated Sccpyorts forHT-20105A
~Saroboln0evalsatod 5elsala<<wmentsofbothlinnarebelnSevalnated SelmlenovmentsofbothLinesarebelnSevalnated SelmlenovmentsofbothlinesarobolnSevalsated Selmle<<vvmentsofHT-ROLLRAL 4iLinearebelnSevalsated Tlr~Proteetlon lineeccpperts arebelnSevalnated 5ccpporta forHT-ROLLRSL aSRaealmlemvmentefilineere)>>lnSevslseted SelmlamvmentsofbothLinesarebelnsevalsated Selealepxylsssationof0"StemLinemsepportlsbolasevalsated 5eleslesovmenteofbothlinesarebalsaevalaeted TABLEeQuttterIdeatlftCathn andRSSO}uthn StatueUNT2StecccDripLe0LevelIntcscentatian SR-lSR-RSR5SR-01MI-2054$0"LobeOillinelntereetlon 1D55-205410"Extraction SteanUnelnteraotlon VDRS-202410"Estraetlon Steanlineinteraction SP-DSS-20$
-E&00T410"PWEt!RAdraininteraction (POITIITIAL PAINREIRRIR)4PPSelssionoveoents ofbothlinesanbeln0evalsated Selsnlo~tsofbothlinesarebein0evalsate4 Selsaloeormmteofbothlinesarebeln0evalsated SelsslowhatofItilinelsbelnSevsloated SteanAvera0ln0 Ncnlfo14toSR-IPresserstrmsdoeer panelSSR5$-$1ICD-212Stanchion Sopports~lidooff1"DCD-RIRenderEVhCDuet1DCD-212inproxialty tobloch<<allSelsnleunmetof1linelsbeln0evslsated lÃhCseisaiosopportoapaeltylsbein0evalsated Rlocbeallselsaloeapaoltylsbelnsevalsate4 50-2Tubis0naderEVACTobis0inprorlaity ofblock<<alllÃhCselsnlosspportoapaeltylsbein0evalsated Slosh<<allselsolooapaoltylsbeln0evalsate4 EeytooetllestypeacA-hncbora0e orRapportCapacityPPallorean4tallis0(II/I)P-Precialty andIspaotDdifferential Dlspiaomeat 5-TslveOperatorSoroein0 ATTACHMENT TOPLA-422SENCLOSURE3 SUSQUEHANNA LOCADOSE
~y~
Attachment 2SUSQUEHANNA LOCADOSESFORACOMBINEDMSIVLEAKAGERATEOF300SCFHUSINGTHEISOLATEDCONDENSER TREATMENT METHODSUSQUEHANNA STEAMELECTRICSTATION-EACHUNITExclusion AreaBoundary(2-Hour)LowPopulation Zone.(30-Day)ControlRoom(30-Day)A.10CFR100LimitB.DosesusingMSIV-LCSTreatment>>>>
C.PreviousCalculated Dosesw/oMSIVLeakage>>>>
D.Contribution fromMSIVs300SCFHTotal<<>>>>E.NewCalculated DosesUsingICTreatment A.10CFR100LimitB.DosesUsingMSIV-LCSTreatment<<>>
C.PreviousCalculated Dosesw/oMSIVLeakage>>>>
D.Contribution
&omMSIVs300SCFHTotal>>>>>>E.NewCalculated DosesUsingICTreatment A.GDC-19B.DosesusingMSIV-LCSTreatment' C.PreviousCalculated Dosesw/oMSIVLeakage>>>>
D.Contribution
&omMSIVsat300SCFHTotal"'.NewCalculated DosesusingICTreatment WholeBodyrem252.472.210.0072.21725.0.370.330.040.3750.380.350.410.76Thyroidrem300127.8125.50.11125.61'00 30.429.612.1441.743014.1913.64.9518.55Betarem7512.011.01.1712.17Nolimitspecified Dosescalculated forPowerUpratedconditions inPP&LCalculation EC-RADN-1009 PerGEcorrespon4ences OG94-574-09 andOG93-1021-09 FORMNDAP-QA-0726-1, Rev.0Page16of16
$aap~0r~IIF,"If o9D+8Aca!TM)VLstIAMBSM-105SH.2~SD-fo00000CT-5PDT~0IuaerF.4HMDCdDESEllELL-IAE00H001MNTMTIIEIKTIMA.ELEAKKL8STE-LW-I2I+~SM~-0IO'p'n9213630A.des-JI'EID-II~D50-12510OID~w-M-oao"~MAN-ooo~IRV-IP.0DIIAV-PP-)OIOID TPe.-le15D~8-FKHO~MBA~AN--I IWWIIHMI~IRVVNT-)0lt 02'DSA-U5IIO.PT260001SIETM0WMSM'FE--IM52~IRV-Nl-10)
IAI"'a--IIeF00-MILDE0"I100c~0la0HaMsI'OCS-DBS-3DWHLTLa.AD'~02DI~ICI2DVMW-DAD-~NM-O5011011000IAV-PT-I82NQ+H$8Tl":".I'"2'WoKETK0WM0Ia'N2-DN53oae-oILDEcIIeDBS30~BWPI-OO0INEH)T000~a-D-00C~ll-PDT-00CMD02ODD-seva0oeeMIrO'02TaRI->>-NL-0112-TL-101128IPR.-)IN)60 00POTHoC0~MV-PT-ION
~aa-PP*RVVNT-)00DM-141SH.ISNIAE85toPots~N5-orw-~(Iaw-roMCrt:'*MB.6~tt125SetEII'ESD010alTNS12)-~HSM.IAK-TDI200DFM-155SH.IHIONI+0HAC0ESD-UM*5~laaoeeI-07&H007M-IOISH.3OYPA55VALVESB-La.IAVKSNM0DB.<<LIIM0ow.I3LK0MMILast0WHta"M-I0ISH.IH08IDIISehatt-~OIT...'Cl-IAl-PP-0000-10100~M-PP-DIWQUALITYRELATEDDAOM-149SH.I2MNrrsISECONNlMIP*8(CAEDTEDIAHECSIM.)RMNAM)MIIPT(CRtTEO)DLICRMLWMelSFBICIMMTMPSTNOC0.'.KA5NEOEOMIKAEPOIIIOEO WOOHCKENQF.INININISFIWKI~1)VECF0018TIEITN<CSIIEII)OBNTATE9Lili2~Olea-CjiQPttIOMSIVLEAKAGEALTERNATE FLOWPATHFIGUREHPENNSTLVSNTS PSNCR~LTSNTCSNPNDLLcersaa ps.AECR*I0H-101HSNETQH)DD)ODD 28