ML23275A118: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:ENCLOSURE 2 VOLUME 8 ST. LUCIE PLANT UNIT 1 AND UNIT 2 IMPROVED TECHNICAL SPECIFICATIONS CONVERSION ITS SECTION 3.3 INSTRUMENTATION Revision 2      lR2
{{#Wiki_filter:}}
 
LIST OF ATTACHMENTS
: 1. 3.3.1, Reactor Protective System (RPS) Instrumentation
: 2. 3.3.2, Reactor Protective System (RPS) Logic and Trip Initiation
: 3. 3.3.3, Engineered Safety Features Actuation System (ESFAS)
Instrumentation
: 4. 3.3.4, Engineered Safety Features Actuation System (ESFAS)
Logic and Manual Actuation
: 5. 3.3.5, Diesel Generator (DG) - Loss of Voltage Start (LOVS)
: 6. 3.3.6, Containment Isolation Instrumentation - Refueling
: 7. 3.3.7, Control Room Isolation Signal (CRIS)
: 8. 3.3.8, Fuel Pool Area Radiation Instrumentation
: 9. 3.3.9, Post Accident Monitoring (PAM) Instrumentation
: 10. 3.3.10, Remote Shutdown System
: 11. 3.3.11, Logarithmic Neutron Flux Monitoring
: 12. ISTS Not Adopted
 
ATTACHMENT 1 3.3.1, Reactor Protective System (RPS) Instrumentation
 
Current Technical Specifications (CTS) Markup and Discussion of Changes (DOCs)
 
A01                                                            ITS 3.3.1 ITS 3/4.3        INSTRUMENTATION SYSTEM (RPS)
                                                                                          - OPERATING                                    lR2 3/4.3.1      REACTOR PROTECTIVE INSTRUMENTATION LIMITING CONDITION FOR OPERATION LCO 3.3.1    3.3.1.1      As a minimum, the reactor protective instrumentation channels and bypasses of Table 3.3-1 shall be OPERABLE.            Four RPS trip units and associated instrument and bypass A02 removal channels for each Function in Table 3.3.1-1 Applicability APPLICABILITY: As shown in Table 3.3-1.
Add proposed ACTIONS note.                                          A03 ACTIONS      ACTION:
As shown in Table 3.3-1.
SURVEILLANCE REQUIREMENTS SR 3.3.1.1 SR 3.3.1.2  4.3.1.1.1    Each reactor protective instrumentation channel shall be demonstrated OPERABLE SR 3.3.1.3                by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and SR 3.3.1.4 SR 3.3.1.5                CHANNEL FUNCTIONAL TEST operations during the modes and at the frequencies SR 3.3.1.6                shown in Table 4.3-1.
SR NOTE SR 3.3.1.7  4.3.1.1.2    The logic for the bypasses shall be demonstrated OPERABLE during the at power CHANNEL FUNCTIONAL TEST of channels affected by bypass operation. The total bypass function shall be demonstrated OPERABLE in accordance with the SR 3.3.1.8                Surveillance Frequency Control Program during CHANNEL CALIBRATION testing of each channel affected by bypass operation.
SR 3.3.1.9    4.3.1.1.3    The REACTOR TRIP SYSTEM RESPONSE TIME of each reactor trip function shall be demonstrated to be within its limit in accordance with the Surveillance Frequency SR 3.3.1.9                Control Program. Neutron detectors are exempt from response time testing. Each A04 NOTE                    test shall include at least one channel per function.
ST. LUCIE - UNIT 1                                3/4 3-1                      Amendment No. 128, 223
 
A01                                                          ITS 3.3.1 ITS TABLE 3.3-1        SYSTEM (RPS)
Table 3.3.1-1                                                                                                  - OPERATING REACTOR PROTECTIVE INSTRUMENTATION                                    OR OTHER SPECIFIED CONDITIONS LA01          LA01                          A02 MINIMUM LCO 3.3.1                                                      TOTAL NO. CHANNELS            CHANNELS          APPLICABLE Applicability FUNCTIONAL UNIT                                OF CHANNELS      TO TRIP          OPERABLE              MODES            ACTION
: 1. Manual Reactor Trip                      2                1                    2                1, 2 and
* 1    See ITS 3.3.2 Function 1                                                                          (b)                                                                    lR2 Footnote b    2. Power Level - High                        4                2(a)                3(f)  LA02      1, 2                2                  l Variable Function 3 Footnote b  3. Reactor Coolant Flow - Low                4/SG            2(a)/SG              3/SG            1, 2 (e)            2                  lR2 (b)                                                                    l Function 4  4. Pressurizer Pressure - High              4                2                    3                1, 2                2 Function 5    5. Containment Pressure - High              4                2                    3                1, 2                2 (d)                                                                      lR2 Function 6                                                                                                                                                  l Footnote d  6. Steam Generator Pressure - Low            4/SG            2(b)/SG              3/SG            1, 2                2                  l Function 7a  7. Steam Generator Water                    4/SG            2/SG                3/SG            1, 2                2 and b Level - Low Function 8                                                                          (g)                                (h)
Footnotes g    8. Local Power Density - High                4                2(c)                3                1                    2        L06 and h                                                                              (b)                                                                  lR2 Function 9a    9. Thermal Margin/Low Pressure              4                2(a)                3                1, 2 (e)            2                  l Footnote b                                                                                                                                                    l (b)                                                                  l Function 9b  9a. Steam Generator Pressure Footnote b                                                  4                2(a)                3                1, 2 (e)            2                  l Difference - High Function 10                                                                      (g)                                (h)
: 10. Loss of Turbine - Hydraulic Footnotes g                                                4                2(c)                3                1                    2          L06 and h          Fluid Pressure - Low Load - Turbine ST. LUCIE - UNIT 1                                          3/4 3-2                            Amendment No. 15, 43, 220
 
A01                                                      ITS 3.3.1 ITS SYSTEM (RPS)
Table 3.3.1-1                                                  TABLE 3.3-1 (Continued)
                                                                                                      - OPERATING REACTOR PROTECTIVE INSTRUMENTATION                                  OR OTHER SPECIFIED CONDITIONS A02 LA01            LA01 MINIMUM TOTAL NO.      CHANNELS      CHANNELS          APPLICABLE FUNCTIONAL UNIT                          OF CHANNELS        TO TRIP    OPERABLE              MODES            ACTION
: 11. Wide Range Logarithmic Neutron Flux Monitor                                                    a Power                                                                              See ITS 3.3.12    lR2 l
Function 2          a. Startup and Operating --              4                2(d)      3                  1**, 2 and
* 2                  l Footnotes a and c Rate of Change of Power -                                                                                                      l High                                                                                                                            l
: b. Shutdown                              4                0          2                  3, 4, 5              3    See ITS 3.3.11
: 12. Reactor Protection System                  4                2          4                  1, 2*                4 Logic                                                                                                                See ITS 3.3.2
: 13. Reactor Trip Breakers                      4                2          4                  1, 2*                4 ST. LUCIE - UNIT 1                                        3/4 3-3                    Amendment No. 15, 27, 220, 243
 
A01                                                                ITS 3.3.1 ITS Table 3.3.1-1                                                            TABLE 3.3-1 (Continued)
TABLE NOTATION See ITS 3.3.12        lR2 l
* With the protective system trip breakers in the closed position and the CEA drive system capable                                            lR2 l
of CEA withdrawal.                                                                                                                        l Trip not applicable when Thermal Power is > 15% RTP.
A01 lR2 Footnote c    ** Mode 1 applicable only when Power Range Neutron Flux power  15% of RATED THERMAL POWER.
Footnote b    (a)    Trip may be bypassed below 1% of RATED THERMAL POWER; bypass shall be automatically                                                    lR2 removed when Wide Range Logarithmic Neutron Flux power is > 1% of RATED THERMAL POWER.
Footnote d    (b)    Trip may be manually bypassed below 685 psig; bypass shall be automatically removed at or                                              lR2 above 685 psig.
is not applicable and                                                                                                  L06 Footnotes g & h (c)    Trip may be bypassed below 15% of RATED THERMAL POWER; bypass shall be automatically removed when Power Range Neutron Flux power is > 15% of RATED THERMAL POWER.
Footnote a    (d)    Trip may be bypassed below 10-4% and above 15% of RATED THERMAL POWER; bypass                                                          lR2 shall be automatically removed when Wide Range Logarithmic Neutron Flux power is > 10-4%
and Power Range Neutron Flux power < 15% of RATED THERMAL POWER.
(e)    Deleted.
(f)    There shall be at least two decades of overlap between the Wide Range Logarithmic Neutron                                        LA02 Flux Monitoring Channels and the Power Range Neutron Flux Monitoring Channels.
: h. Trip is only applicable in MODE 1  15% RTP.                                                                                  L06 ACTION STATEMENTS                                            See ITS 3.3.2 ACTION 1 -              With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, restore the inoperable channel to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in HOT STANDBY within the next 6 hours and/or open the protective system trip breakers.
ACTION 2 -              With the number of OPERABLE channels one less than the Total Number of ACTION A                              Channels, STARTUP and/or POWER OPERATION may proceed provided the following conditions are satisfied:
Place affected trip unit
: a. The inoperable channel is placed in either the bypassed or tripped condition within 1 hour. For the purposes of testing and maintenance, the inoperable channel may be bypassed for up to 48 hours from time of initial loss of OPERABILITY; however, the inoperable channel shall then be either restored to OPERABLE status or placed in the tripped condition.
One or more Functions with one RPS trip unit or associated                      AND instrument channel inoperable except for Condition C (excore                    Restore channel to Operable status within 48 hours.
channel not calibrated with incore detectors).
OR Place affected unit in trip within 48 hours.
ST. LUCIE - UNIT 1                                                3/4 3-4                      Amendment No. 15, 27, 45, 102, 159, 220, 243, 247
 
A01                                                ITS 3.3.1 ITS TABLE 3.3-1 (Continued)
ACTION STATEMENTS
: b. Within one hour, all functional units receiving an                                A07 input from the inoperable channel are also bypassed or tripped.
ACTION A
: c. The Minimum Channels OPERABLE requirement is met; however, one additional channel may be bypassed for up to 48 hours while performing tests and maintenance on than channel provided the other inoperable channel is placed in the tripped condition.
ACTION 3 -      With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, verify compliance with the SHUTDOWN MARGIN requirements of                        See ITS 3.3.11 Specification 3.1.1.1 or 3.1.1.2, as applicable, within 1 hour and at least once per 12 hours thereafter.
ACTION 4 -      With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, be in HOT See ITS 3.3.2 STANDBY within 6 hours; however, one channel may be bypassed for up to 1 hour for surveillance testing per Specification 4.3.1.1.1.
Add proposed L02 ACTIONS B and C Add proposed ACTIONS D and E.              L03 Add proposed ACTIONS G and F              L08 lR2 ST. LUCIE - UNIT 1                              3/4 3-5                  Amendment No. 15, 27, 202
 
A01                                ITS 3.3.1 ITS DELETED ST. LUCIE - UNIT 1    3/4 3-6 Amendment No. 27, 43, 128
 
lR2 A01 ITS 3.3.1 ITS Table 3.3.1-1                                                            TABLE 4.3-1 REACTOR PROTECTIVE INSTRUMENTATION SURVEILLANCE REQUIREMENTS SR 3.3.1.2, SR 3.3.1.3, SR 3.3.1.4, SR 3.3.1.6, SR 3.3.1.1        SR 3.3.1.5, SR 3.3.1.8      SR 3.3.1.7 CHANNEL              MODES IN WHICH            A01 CHANNEL                CHANNEL              FUNCTIONAL              SURVEILLANCE FUNCTIONAL UNIT                                      CHECK            CALIBRATION                  TEST                  REQUIRED
: 1. Manual Reactor Trip                          N/A                N.A.                  S/U(1)                    N/A          See ITS 3.3.2 Function 1      2. Power Level - High Variable
: a. Nuclear Power                              SFCP                SFCP(2),              SFCP                      1,2 SFCP(3),
SFCP(5)
: b. T Power                                  SFCP                SFCP(4), SFCP          SFCP                      1 Function 3      3. Reactor Coolant Flow - Low                    SFCP                SFCP                  SFCP                      1, 2 Function 4      4. Pressurizer Pressure - High                  SFCP                SFCP                  SFCP                      1, 2 Function 5      5. Containment Pressure - High                  SFCP                SFCP                  SFCP                      1, 2 Function 6      6. Steam Generator Pressure - Low                SFCP                SFCP                  SFCP            (e)(f)    1, 2                        lR2 Functions 7a      7. Steam Generator Water                        SFCP                SFCP                  SFCP(6, 7)                1, 2 and 7b              Level - Low Function 8      8. Local Power Density - High                    SFCP                SFCP                  SFCP                      1 Function 9a      9. Thermal Margin/Low Pressure                  SFCP                SFCP                  SFCP                      1, 2 Function 9b      9a. Steam Generator Pressure                      SFCP                SFCP                  SFCP 1, 2 Difference - High M03 Function 10      10. Loss of Turbine -- Hydraulic                                      N.A.
Load - Turbine  N.A.                                      S/U(1)                    N.A.
Fluid Pressure - Low SFCP Function 2      11. Wide Range Logarithmic Neutron                                                                                      1, 2, 3, 4,  See ITS 3.3.11 SFCP        M03    N.A.                  S/U(1)
Flux Monitor      Power Rate of Change - High                                                                      5 and
* lR2 See ITS 3.3.12 l
: 12. Reactor Protection System Logic                                                          SFCP and                  1, 2 and
* N.A.                N.A.
S/U(1)                                  See ITS 3.3.2
: 13. Reactor Trip Breakers                          N.A.                N.A.                  SFCP                      1, 2 and
* ST. LUCIE - UNIT 1                                            3/4 3-7                              Amendment No. 27, 43, 213, 223
 
A01                                                    ITS 3.3.1 ITS TABLE 4.3-1 (Continued)
TABLE NOTATION
              *    -  With reactor trip breaker closed.                                          See ITS 3.3.12                        lR2 SR 3.3.1.6    (1)  -  If not performed in previous 7 days.
Not required to be performed until 12 hours after THERMAL POWER is  15% RTP.
M04 SR 3.3.1.2    (2)  -  Heat balance only, above 15% of RATED THERMAL POWER; adjust NOTE 1 "Nuclear Power Calibrate" potentiometer to null "Nuclear Pwr - T Pwr." During PHYSICS TESTS, these daily calibrations                                  A01              lR2 of nuclear power and T power may be suspended provided these SR 3.3.1.2            calibrations are performed upon reaching each major test power NOTE 2              plateau and prior to proceeding to the next major test power plateau.
Not required to be performed until 12 hours after THERMAL POWER is  15% RTP.        M05 SR 3.3.1.3 (3)  -  Above 15% of RATED THERMAL POWER, recalibrate the excore and NOTE              detectors which monitor the AXIAL SHAPE INDEX by using the                                      LA03 incore detectors or restrict THERMAL POWER during subsequent Required            operations to < 90% of the maximum allowed THERMAL POWER level Action C.2                                                                                                            A05 with the existing Reactor Coolant Pump combination.
SR 3.3.1.2  (4)  -  Adjust "T Pwr Calibrate" potentiometers to make T power signals agree with calorimetric calculation.
SR 3.3.1.5 NOTE and SR 3.3.1.8 (5)  -  Neutron detectors may be excluded from CHANNEL CALIBRATION.
NOTE                                      instrument channel Table 3.3.1-1 (6)  -  If the as-found setpoint is either outside its predefined as-found acceptance criteria Footnote e            band or is not conservative with respect to the Allowable Value, then the channel shall                          lR2 A01 l be declared inoperable and shall be evaluated to verify that it is functioning as required before returning the channel to service.
Table 3.3.1-1 (7)  -  The instrument channel setpoint shall be reset to a value that is within the as-left Footnote f            tolerance of the Field Trip Setpoint, otherwise that channel shall not be returned to                            lR2 A01 l OPERABLE status. The Field Trip Setpoint and the methodology used to determine the Field Trip Setpoint, the as-found acceptance criteria band, and the as-left acceptance criteria are specified in the UFSAR Section 7.2.
The instrument channel setpoint shall be reset to a value that is within the as-left acceptance criteria band around the field trip setpoint at the completion of the                                lR2 surveillance; otherwise, the channel shall be declared inoperable. The field trip                              l l
setpoint and the methodologies used to determine the as-found and as-left l
acceptance criteria bands are specified in Section 7.2 of the Updated Final Safety                              l Analysis Report.                                                                                                l ST. LUCIE - UNIT 1                                          3/4 3-8                    Amendment No. 213
 
A01                                ITS 3.3.1 ITS SAFETY LIMITS AND LIMITING SAFETY SYSTEM SETTINGS 2.2    LIMITING SAFETY SYSTEM SETTINGS REACTOR TRIP SETPOINTS LCO 3.3.1 2.2.1 The reactor protective instrumentation setpoints shall be set consistent with the Trip Setpoint values shown in Table 2.2-1.                              lR2 3.3.1-1                  l l
APPLICABILITY:          AS SHOWN FOR EACH CHANNEL IN TABLE 3.3-1.                          l ACTION:
ACTION A  With a reactor protective instrumentation setpoint less conservative than 3.3.1-1          lR2 the value shown in the Allowable Values column of Table 2.2-1, declare                      l A01 the channel inoperable and apply the applicable ACTION statement require-                  l l
ment of Specification 3.3.1.1 until the channel is restored to OPERABLE                    l status with its trip setpoint adjusted consistent with the Trip Setpoint                    l LA04    l value.
ST. LUCIE - UNIT 1                                2-3
 
A01 ITS 3.3.1 ITS Table 3.3.1-1                                                                TABLE 2.2-1 REACTOR PROTECTIVE INSTRUMENTATION TRIP SETPOINT LIMITS lR2 l
l FUNCTIONAL UNIT                                TRIP SETPOINT                            ALLOWABLE VALUES                              l
: 1. Manual Reactor Trip                        Not Applicable                              Not Applicable (b)                                                                                                                      lR2 Function 1      2. Power Level - High (1)
Variable Four Reactor Coolant Pumps Operating      < 9.61% above THERMAL POWER, with            < 9.61% above THERMAL POWER, and                    A06  lR2 l
a minimum setpoint of 15% of RATED          a minimum setpoint of 15% of RATED                    l THERMAL POWER, and a maximum of              THERMAL POWER and a maximum of                        l
                                                                  < 107.0% of RATED THERMAL                    < 107.0% of RATED THERMAL                              l l
POWER.                                      POWER.                                                l (b)                                                                                                            l Function 3      3. Reactor Coolant Flow - Low (1)                                                    LA05                                              LA05        l l
Four Reactor Coolant Pumps Operating      > 95% of minimum reactor coolant flow        > 95% of minimum reactor coolant flow                A06 l with 4 pumps operating
* with 4 pumps operating
* l l
Function 4
: 4. Pressurizer Pressure - High                < 2400 psia                                  < 2400 psia                                              l l
Function 5      5. Containment Pressure - High                < 3.3 psig                                  < 3.3 psig                                              l l
Function 6                                                (d)                                                                                                      l
: 6. Steam Generator Pressure - Low (2)        > 600 psia                                  > 600 psia                                              l l
Functions 7a      7. Steam Generator Water Level - Low          > 35.0% Water Level - each steam            > 35.0% Water Level - each steam                        l and 7b generator                                    generator                                              l l
Function 8                                        (g)(h)                                                                                                          l
: 8. Local Power Density - High (3)            Trip setpoint adjusted to not exceed the    Trip set point adjusted to not exceed the          L06  l limit lines of Figures 2.2-1 and 2.2-2.      limit lines of Figures 2.2-1 and 2.2-2.                  l
* For minimum reactor coolant flow with 4 pumps operating, refer to Technical Specification LCO 3.2.5.        LA05 ST. LUCIE - UNIT 1                                                  2-4                      Amendment No. 3, 27, 32, 45, 105, 130, 145, 163, 213
 
A01 ITS 3.3.1 ITS TABLE 2.2-1 (Continued)
REACTOR PROTECTIVE INSTRUMENTATION TRIP SETPOINT LIMITS lR2 l
FUNCTIONAL UNIT                                          TRIP SETPOINT                              ALLOWABLE VALUES                  l (b)                                                                                                          l Function 9a 9. Thermal Margin/Low Pressure (1)                                                                                                                        l A06 Trip setpoint adjusted to not exceed the limit Trip setpoint adjusted to not exceed the limit l Four Reactor Coolant Pumps Operating                                                                                                                    l lines of Figures 2.2-3 and 2.2-4.              lines of Figures 2.2-3 and 2.2-4              l (b) l Function 9b 9a. Steam Generator Pressure Difference High (1) (logic                            < 135 psid                                    < 135 psid                  l in TM/LP)                                                                                                                                              l (g)(h)                                                                                      l Function 10
: 10. Loss of Turbine - Hydraulic Fluid Pressure - Low (3)                          > 800 psig                                    > 800 psig              L06 l
l (a)
Function 2  11. Rate of Change of Power - High (4)                                    < 2.49 decades per minute                      < 2.49 decades per minute          l l
Wide Range Logarithmic Neutron Flux Monitor Power                                                                                                    l and                                            and          l M06 1887 psia                                    1887 psia      l TABLE NOTATION                                                                          l Footnote b (1) Trip may be bypassed below 1% of RATED THERMAL POWER; bypass shall be automatically removed when Wide Range                                              lR2 Logarithmic Neutron Flux power is > 1% of RATED THERMAL POWER.
Footnote d  (2) Trip may be manually bypassed below 685 psig; bypass shall be automatically removed at or above 685 psig.                                                lR2 is not applicable and Footnote g  (3) Trip may be bypassed below 15% of RATED THERMAL POWER; bypass shall be automatically removed when Power Range                                      L06 Neutron Flux power is > 15% of RATED THERMAL POWER.
Footnote a  (4) Trip may be bypassed below 10-4 % and above 15% of RATED THERMAL POWER.                                                                                  lR2 ST. LUCIE - UNIT 1                                                        2-5                            Amendment No. 27, 43, 45, 159
 
A01                            ITS 3.3.1 ITS 3.3.1-3 (Page 1 of 2)
FIGURE 2.2-1 Local Power Density - High Trip Setpoint Part 1 (Fraction of RATED THERMAL POWER Versus QR2)
ST. LUCIE - UNIT 1                              2-6
 
A01                                                    ITS 3.3.1 ITS Figure 3.3.1-3 3.3.1-3 (Page 2 of 2)
FIGURE 2.2-2 Local Power Density - High Trip Setpoint Part 2 (QR2 Versus Y1)
ST. LUCIE - UNIT 1                          2-7                      Amendment No. 27, 32, 48, 106
 
A01                                                ITS 3.3.1 ITS Figure 3.3.1-1 3.3.1-1 (Page 1 of 1)
FIGURE 2.2-3 Thermal Margin/Low Pressure Trip Setpoint ST. LUCIE - UNIT 1                    2-8                      Amendment No. 27, 48
 
A01                                                ITS 3.3.1 ITS Figure 3.3.1-2 3.3.1-2 (Page 1 of 1)
FIGURE 2.2-4 Thermal Margin/Low Pressure Trip Setpoint Part 2 (Fraction of RATED THERMAL POWER Versus QR1)
ST. LUCIE - UNIT 1                            2-9                      Amendment No. 27, 48
 
A01                                                            ITS 3.3.1 ITS 3/4.3        INSTRUMENTATION SYSTEM (RPS)
                                                                                        - OPERATING                                    lR2 3/4.3.1      REACTOR PROTECTIVE INSTRUMENTATION LIMITING CONDITION FOR OPERATION LCO 3.3.1    3.3.1        As a minimum, the reactor protective instrumentation channels and bypasses of Table 3.3-1 shall be OPERABLE.            Four RPS trip units and associated instrument and bypass A02 removal channels for each Function in Table 3.3.1-1 Applicability APPLICABILITY: As shown in Table 3.3-1.
Add proposed ACTIONS note.                                          A03 ACTIONS      ACTION:
As shown in Table 3.3-1.
SURVEILLANCE REQUIREMENTS SR 3.3.1.1 SR 3.3.1.2  4.3.1.1      Each reactor protective instrumentation channel shall be demonstrated OPERABLE SR 3.3.1.3                by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and SR 3.3.1.4 SR 3.3.1.5                CHANNEL FUNCTIONAL TEST operations for the MODES and at the frequencies SR 3.3.1.6                shown in Table 4.3-1.
SR NOTE SR 3.3.1.7  4.3.1.2      The logic for the bypasses shall be demonstrated OPERABLE prior to each reactor startup unless performed during the preceding 92 days. The total bypass function shall be demonstrated OPERABLE in accordance with the Surveillance Frequency SR 3.3.1.8                Control Program during CHANNEL CALIBRATION testing of each channel affected by bypass operation.
SR 3.3.1.9    4.3.1.3      The REACTOR TRIP SYSTEM RESPONSE TIME of each reactor trip function shall be demonstrated to be within its limit in accordance with the Surveillance Frequency SR 3.3.1.9                Control Program. Neutron detectors are exempt from response time testing. Each A04 NOTE                    test shall include at least one channel per function.
ST. LUCIE - UNIT 2                                3/4 3-1                      Amendment No. 67, 173
 
A01 ITS 3.3.1 ITS TABLE 3.3-1 SYSTEM (RPS)                                      OR OTHER SPECIFIED
                                                                                                                  - OPERATING                CONDITIONS Table 3.3.1-1                                          REACTOR PROTECTIVE INSTRUMENTATION A02 LA01              LA01                          MINIMUM LCO 3.3.1                                                        TOTAL NO.            CHANNELS              CHANNELS        APPLICABLE Applicability                    FUNCTIONAL UNIT                OF CHANNELS              TO TRIP            OPERABLE          MODES          ACTION
: 1. Manual Reactor Trip                                4                      2                  4                1, 2            1 See ITS 3.3.2 4                      2                  4            3*, 4*, 5*          5 Function 1                                                                            (b)                                                                          lR2 Footnote b
: 2. Variable Power Level - High                        4                  2(a)(d)    A09 3                1, 2            2                l Function 4  3. Pressurizer Pressure - High                        4                      2                  3                1, 2            2 (b)                                                                          lR2 Function 9a  4. Thermal Margin/Low Pressure                        4                  2(a)(d)                3                1, 2            2                l Footnote b                                                                                            A09 l
Function 5  5. Containment Pressure - High                        4                      2                  3                1, 2            2 (d)                                                                            lR2 Function 6 Footnote d  6. Steam Generator Pressure - Low                    4/SG                  2/SG(b)              3/SG              1, 2            2                l (b)                                                                          l Function 9b  7. Steam Generator Pressure                            4                  2(a)(d)      A09      3                1, 2            2                l Footnote b Difference - High                                                                                                                                l Function 7a and 7b      8. Steam Generator Level - Low                      4/SG                    2/SG              3/SG              1, 2            2 Function 8                                                                          (g)                                              (h)                  L06 Footnote g  9. Local Power Density - High                          4                    2(c)(d)    A09        3                1              2 and h
: 10. Loss of Component Cooling Water                                                                                                            R01 4                      2                  3                1, 2            2 to Reactor Coolant Pumps
: 11. Reactor Protection System Logic                      4                      2                  3                1, 2            2 3*, 4*, 5*          5 See
: 12. Reactor Trip Breakers                                4                      2(f)                4                1, 2            4    ITS 3.3.2 3*, 4*, 5*          5 Function 2    13. Wide Range Logarithmic Neutron Footnotes a        Flux Monitor                  Power                                                                                                              lR2 and c          a. Startup and Operating -                                                          LA02 l
Rate of Change of Power -                      4                  2(e)(g)                3              1**, 2            2 High                                                          (a)                                                                            lR2
: b. Shutdown                                        4                      0                  2              3, 4, 5          3      See Function 3                                                                                                                                              ITS 3.3.11 Footnote b
: 14. Reactor Coolant Flow - Low                        4/SG              2/SG(a)(d)              3/SG              1, 2            2                lR2 (b)                      A09                  (h)
Function 10  15. Loss of Load (Turbine                                4                      2(c)                3                                2 l
Footnotes g        Hydraulic Fluid Pressure - Low)                                                                                  1                        L06 (g) and h ST. LUCIE - UNIT 2                                        3/4 3-2                                Amendment No. 60, 170, 194
 
A01                                        ITS 3.3.1 ITS Table 3.3.1-1                                                        TABLE 3.3-1 (Continued)
TABLE NOTATION See ITS 3.3.2
* With the protective system trip breakers in the closed position, the CEA drive system capable of CEA withdrawal, and fuel in the reactor vessel.
Footnote c                                                                                                                        lR2
                ** Mode 1 applicable only when Power Range Neutron Flux power  15% of RATED THERMAL POWER.                Trip not applicable when Thermal Power is > 15% RTP.                                  A01 Footnote b    (a)  Trip may be manually bypassed below 0.5% of RATED THERMAL POWER in conjunction with                            lR2 A09 (d) below; bypass shall be automatically removed when Wide Range Logarithmic Neutron Flux power is greater than or equal to 0.5% of RATED THERMAL POWER.
Footnote d    (b)  Trip may be manually bypassed below 705 psig; bypass shall be automatically removed at or                      lR2 above 705 psig.
is not applicable and                                                                        L06 Footnotes g & h (c)  Trip may be bypassed below 15% of RATED THERMAL POWER; bypass shall be automatically removed when Power Range Neutron Flux power is greater than or equal to 15% of RATED THERMAL POWER.
(d)  Trip may be bypassed during testing pursuant to Special Test Exception 3.10.3.                            A09 Footnote a    (e)  Trip may be bypassed below 10-4% and above 15% of RATED THERMAL POWER; bypass                                  lR2 shall be automatically removed when Wide Range Logarithmic Neutron Flux power is > 10-4%
and Power Range Neutron Flux power < 15% of RATED THERMAL POWER.
(f)  Each channel shall be comprised of two trip breakers; actual trip logic shall be one-out-of-two taken twice.                                                                                    See ITS 3.3.2 (g)  There shall be at least two decades of overlap between the Wide Range Logarithmic Neutron                LA02 Flux Monitoring Channels and the Power Range Neutron Flux Monitoring Channels.
: h. Trip is only applicable in MODE 1  15% RTP.
L06 ACTION STATEMENTS                    See ITS 3.3.2 ACTION 1 -            With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, restore the inoperable channel to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in at least HOT STANDBY within the next 6 hours and/or open the protective system trip breakers.
ST. LUCIE - UNIT 2                                            3/4 3-3      Amendment No. 98, 170, 194, 199
 
A01                                                                          ITS 3.3.1 ITS TABLE 3.3-1 (Continued)
A10 One or more Functions with one RPS trip unit                                              -----------------------NOTE-------------------------
or associated instrument channel inoperable          ACTION STATEMENTS                      Required Action A.2 must be completed except for Condition C (excore channel not                                                    whenever this Condition is entered.
calibrated with incore detectors).                                                      --------------------------------------------------------
ACTION 2 -            a. With the number of channels OPERABLE one less than the ACTION A                                    Total Number of Channels, STARTUP and/or POWER OPERATION Required Actions Place affected trip unit  may continue provided the inoperable channel is placed in A.1 and A.2 the bypassed or tripped condition within 1 hour. The channel shall be returned to OPERABLE status no later than during the next A01 COLD SHUTDOWN. Restore channel to OPERABLE status prior to entering MODE 2 following next MODE 5 entry.
ACTION B Required                      b. With the number of channels OPERABLE one less than the Action B.1 Minimum Channels OPERABLE, STARTUP and/or POWER OPERATION may continue provided the following conditions are One or more Functions with two          satisfied:                                                                                                  A01 RPS trip units or associated                              Place one trip unit in                                    trip unit instrument channels inoperable except for Condition C (excore          1. Verify that one of the inoperable channels has been channel not calibrated with incore          bypassed and place the other inoperable channel in detectors).
the tripped condition within 1 hour.
: 2. All functional units affected by the bypassed/tripped channel shall also be placed in the bypassed/tripped A07 condition.
With a channel process measurement circuit that affects multiple functional units inoperable or in test, bypass or trip all associated functional units as listed below:
Process Measurement Circuit                                  Functional Unit Bypassed
: 1. Safety Channel - Nuclear Instrumentation Wide Range                                          Rate of Change of Power - High (RPS)
Linear Range                                        Variable Power Level - High (RPS)
Local Power Density - High (RPS)
Thermal Margin/Low Pressure (RPS)
: 2. Pressurizer Pressure -                                Pressurizer Pressure - High (RPS)                                                  LA06 Thermal Margin/Low Pressure (RPS)
Pressurizer Pressure - Low (ESF)
: 3. Containment Pressure -                                Containment Pressure - High (RPS)
Containment Pressure - High (ESF)
: 4. Steam Generator Pressure -                            Steam Generator Pressure - Low (RPS)
Thermal Margin/Low Pressure (RPS)
AFAS-1 and AFAS-2 (AFAS)
Steam Generator Pressure - Low (ESF)
: 5. Steam Generator Level -                              Steam Generator Level - Low (RPS)
If SG-2A, then AFAS-1 (AFAS)
If SG-2B, then AFAS-2 (AFAS)
ST. LUCIE - UNIT 2                                          3/4 3-4                          Amendment No. 18, 73, 149
 
A01                                              ITS 3.3.1 ITS TABLE 3.3-1 (Continued)
ACTION STATEMENTS ACTION 2 -      (Continued)
: 6. Cold Leg Temperature                Variable Power Level - High (RPS)
Thermal Margin/Low Pressure (RPS)
Local Power Density - High (RPS)              LA06
: 7. Hot Leg Temperature                  Variable Power Level - High (RPS)
Thermal Margin /Low Pressure (RPS)
Local Power Density - High (RPS)
ACTION 3 -      With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, suspend all operations involving positive reactivity changes*. Verify                      See ITS 3.3.11 compliance with the SHUTDOWN MARGIN requirements of Specifica-tion 3.1.1.1 or 3.1.1.2, as applicable, within 1 hour and at least once per 12 hours thereafter.                                              See ITS 3.3.2 ACTION 4 -      With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirements, STARTUP and/or POWER OPERATION may continue provided the reactor trip breakers of the inoperable channel are placed in the tripped condition within 1 hour, otherwise, be in at least HOT STANDBY within 6 hours; however, one channel may be bypassed for up to 1 hour, provided the trip breakers of any inoperable channel are in the tripped condition, for surveillance testing per Specification 4.3.1.1.
ACTION 5 -      With the number of OPERABLE channels one less than the Minimum Channels OPERABLE requirement restore the inoperable channel to OPERABLE status within 48 hours or open the reactor trip breakers within the next hour.
See ITS 3.3.11
* Limited plant cooldown or boron dilution is allowed provided the change is accounted for in the calculated SHUTDOWN MARGIN.
Add proposed ACTION C L04 Add proposed ACTIONS D and E.
L03 Add proposed ACTIONS F and G                                  lR2 L08 ST. LUCIE - UNIT 2                                3/4 3-5                    Amendment No. 122
 
A01                            ITS 3.3.1 ITS DELETED ST. LUCIE - UNIT 2    3/4 3-6 Amendment No. 8, 67
 
A01                              ITS 3.3.1 ITS DELETED ST. LUCIE - UNIT 2    3/4 3-7 Amendment No. 50, 67
 
A01 ITS 3.3.1 ITS TABLE 4.3-1 Table 3.3.1-1 REACTOR PROTECTIVE INSTRUMENTATION SURVEILLANCE REQUIREMENTS SR 3.3.1.2, SR 3.3.1.3,  SR 3.3.1.4, SR 3.3.1.6,                      A01            lR2 SR 3.3.1.5, SR 3.3.1.8        SR 3.3.1.7 SR 3.3.1.1 LCO 3.3.1                                                                                              CHANNEL                MODES FOR WHICH Applicability                                                    CHANNEL                CHANNEL      FUNCTIONAL                SURVEILLANCE              A01 FUNCTIONAL UNIT              CHECK              CALIBRATION          TEST                  IS REQUIRED                        lR2
: 1. Manual Reactor Trip                            N/A                    N.A.          S/U(1)                1, 2, 3*, 4*, 5*    See ITS 3.3.2 Function 1    2. Variable Power Level - High Footnote b                                                                                                                                                        lR2
: a. Nuclear Power                            SFCP                  SFCP(2),          SFCP                        1,2 SFCP(3),
SFCP(4)
: b. T Power                                  SFCP                  SFCP(5),                                      1 SFCP(4)
Function 4    3. Pressurizer Pressure - High                  SFCP                    SFCP            SFCP                        1, 2 Function 9a Footnote b      4. Thermal Margin/Low Pressure                  SFCP                    SFCP            SFCP                        1, 2                        lR2 Function 5      5. Containment Pressure - High                  SFCP                    SFCP            SFCP                        1, 2 Function 6 Footnote d      6. Steam Generator Pressure - Low              SFCP                    SFCP            SFCP                        1, 2                        lR2 Function 9b      7. Steam Generator Pressure                    SFCP                    SFCP            SFCP                        1, 2 Footnote b                                                                                                                                                        lR2 Difference - High                                                                                (e)(f)                                      l Functions                                                                                                                                                          l 7a and b      8. Steam Generator Level - Low                  SFCP                    SFCP        SFCP(8, 9)                      1, 2 Function 8 Footnote g & h    9. Local Power Density - High                  SFCP                    SFCP            SFCP                          1
: 10. Loss of Component Cooling Water to N.A.                  N.A.          SFCP                        N.A.          R01 Reactor Coolant Pumps
: 11. Reactor Protection System                                                                                    1, 2, 3*, 4*, 5*
N.A.                  N.A.        SFCP(7)                                    See ITS 3.3.2 Logic ST. LUCIE - UNIT 2                                      3/4 3-8                          Amendment No. 1, 163, 173
 
A01 ITS 3.3.1 ITS TABLE 4.3-1 (Continued)
REACTOR PROTECTIVE INSTRUMENTATION SURVEILLANCE REQUIREMENTS A01          lR2 SR 3.3.1.2, SR 3.3.1.3, SR 3.3.1.4, SR 3.3.1.6, SR 3.3.1.1      SR 3.3.1.5, SR 3.3.1.8        SR 3.3.1.7 CHANNEL                MODES FOR WHICH CHANNEL              CHANNEL            FUNCTIONAL                    SURVEILLANCE FUNCTIONAL UNIT                      CHECK            CALIBRATION                  TEST                      IS REQUIRED                A01    lR2
: 12. Reactor Trip Breakers                                N.A.                  N.A.            S/U(1), SFCP,                    1, 2, 3*, 4*, 5*  See ITS 3.3.2 SFCP(6)
Function 2 13. Wide Range Logarithmic Neutron                      SFCP                  SFCP              S/U(1),SFCP                      1, 2, 3, 4, 5    See ITS 3.3.11 lR1 Flux Monitor      Power Rate of Change - High Function 3 14. Reactor Coolant Flow - Low                          SFCP                  SFCP                  SFCP                            1, 2 Function 10 15. Loss of Load (Turbine Hydraulic SFCP          SFCP    N.A.                  SFCP                              1 Fluid Pressure - Low)
M03 lR1 Once within 7 days                                l Add proposed Note to SR 3.3.1.8      L05          prior to reactor startup  L07                      l l
ST. LUCIE - UNIT 2                                            3/4 3-9                                Amendment No. 1, 173
 
A01                                                        ITS 3.3.1 ITS TABLE 4.3-1 (Continued)
TABLE NOTATION
              *    -  Only if the reactor trip breakers are in the closed position and the                        See ITS 3.3.2 CEA drive system is capable of CEA withdrawal.
SR 3.3.1.6  (1)  -  Each startup or when required with the reactor trip breakers closed and the CEA drive system capable of rod withdrawal, if not performed in the previous 7 days.
Not required to be performed until 12 hours after THERMAL POWER is  15% RTP.                M04 SR 3.3.1.2    (2)  -  Heat balance only (CHANNEL FUNCTIONAL TEST not included), above 15%
NOTE 1 of RATED THERMAL POWER; adjust "Nuclear Power Calibrate" poten-tiometer to null "Nuclear Power - T Power". During PHYSICS TESTS, these daily calibrations may be suspended provided these calibrations                                    A01        lR2 SR 3.3.1.2 NOTE 2              are performed upon reaching each major test power plateau and prior to proceeding to the next major test power plateau.
Not required to be performed until 12 hours after THERMAL POWER is  15% RTP.                M05 SR 3.3.1.3  (3)  -  Above 15% of RATED THERMAL POWER, recalibrate the excore detectors and NOTE              which monitor the AXIAL SHAPE INDEX by using the incore detectors or ACTION C.2              restrict THERMAL POWER during subsequent operations to < 90% of the maximum allowed THERMAL POWER level with the existing reactor coolant                                    A05 pump combination.
SR 3.3.1.5 NOTE and SR 3.3.1.8  (4)  -  Neutron detectors may be excluded from CHANNEL CALIBRATION.
NOTE SR 3.3.1.2    (5)  -  Adjust "T Pwr Calibrate" potentiometers to make T power signals agree with calorimetric calculation.                                                              See ITS 3.3.2 (6)  -  In accordance with the Surveillance Frequency Control Program and following maintenance or adjustment of the reactor trip breakers, the CHANNEL FUNCTIONAL TEST shall include verification of the independent OPERABILITY of the undervoltage and shunt trips.
(7)  -  The fuse circuitry in the matrix fault protection circuitry shall be determined to be OPERABLE by testing with the installed test circuitry.
instrument (8)  -  If the as-found channel setpoint is either outside its predefined as-found acceptance Table 3.3.1-1          criteria band or is not conservative with respect to the Allowable Value, then the Footnote e                                                                                                                              A01 lR2 channel shall be declared inoperable and shall be evaluated to verify that it is functioning as required before returning the channel to service.
(9)  -  The instrument channel setpoint shall be reset to a value that is within the as-left Table 3.3.1-1            tolerance of the Field Trip Setpoint, otherwise that channel shall not be returned to Footnote f                                                                                                                              A01 lR2 OPERABLE status. The Field Trip Setpoint and the methodology used to determine the Field Trip Setpoint, the as-found acceptance criteria band, and the as-left acceptance criteria are specified in UFSAR Section 7.2.
The instrument channel setpoint shall be reset to a value that is within the as-left acceptance criteria band around the field trip setpoint at the completion of the surveillance; otherwise, the channel shall be declared                  lR2 l
inoperable. The field trip setpoint and the methodologies used to determine the as-found and as-left l
acceptance criteria bands are specified in Section 7.2 of the Updated Final Safety Analysis Report.                              l ST. LUCIE - UNIT 2                                          3/4 3-10                    Amendment No. 1, 163, 173
 
A01                                ITS 3.3.1 ITS SAFETY LIMITS AND LIMITING SAFETY SYSTEM SETTINGS 2.2    LIMITING SAFETY SYSTEM SETTINGS REACTOR TRIP SETPOINTS LCO 3.3.1    2.2.1 The reactor protective instrumentation setpoints shall be set consistent with the Trip Setpoint values shown in Table 2.2-1.                                LA04 Allowable Applicability APPLICABILITY: As shown for each channel in Table 3.3-1.
ACTION:
ACTION A    With a reactor protective instrumentation setpoint less conservative than the value shown in the Allowable Values column of Table 2.2-1, declare the channel inoperable and apply the applicable ACTION statement requirement of Specification 3.3.1 until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.                                  LA04 Allowable ST. LUCIE - UNIT 2                              2-2
 
A01 ITS 3.3.1 ITS Table 3.3.1-1                                                            TABLE 2.2-1 REACTOR PROTECTIVE INSTRUMENTATION TRIP SETPOINT LIMITS lR2 l
FUNCTIONAL UNIT                          TRIP SETPOINT                ALLOWABLE VALUES                      l
: 1. Manual Reactor Trip                    Not Applicable                  Not Applicable (b)
Function 1  2. Variable Power Level - High(1)
Four Reactor Coolant Pumps            < 9.61% above THERMAL POWER,    < 9.61% above THERMAL POWER, and                  lR2 A06 l Operating                            with a minimum setpoint of      a minimum setpoint of 15% of                      l 15% of RATED THERMAL POWER,    RATED THERMAL POWER and a maximum                l l
and a maximum of < 107.0% of    of < 107.0% of RATED THERMAL POWER.              l RATED THERMAL POWER.                                                              l l
l Function 4    3. Pressurizer Pressure - High            < 2370 psia                    < 2374 psia                                      l l
(b)                                                                                  l Function 9a    4. Thermal Margin/Low Pressure(1) lR2 Four Reactor Coolant Pumps            Trip setpoint adjusted to not  Trip setpoint adjusted to not                A06 l Operating                            exceed the limit lines of      exceed the limit lines of                        l Figures 2.2-3 and 2.2-4.        Figures 2.2-3 and 2.2-4.                          l l
Minimum value of 1900 psia. Minimum value of 1900 psia.                      l l
Function 5    5. Containment Pressure - High            < 3.0 psig                      < 3.1 psig                                        l l
(d)                            (d) l Function 6  6. Steam Generator Pressure - Low                      (2)                            (2)                                  l
                                                        > 626.0 psia                    > 621.0 psia                                      l (b)                                                                                      l Function 9b  7. Steam Generator Pressure(1)            < 120.0 psid                    < 132.0 psid                                      l Difference - High (Logic in TM/LP Trip Unit) lR2 Functions 7a and 7b
: 8. Steam Generator Level - Low            > 35.0%(3)                      > 35.0%(3)                                        l ST. LUCIE - UNIT 2                                              2-4            Amendment No. 8, 23, 60, 163
 
A01 ITS 3.3.1 ITS TABLE 2.2-1 (Continued)
REACTOR PROTECTIVE INSTRUMENTATION TRIP SETPOINT LIMITS lR2 l
l FUNCTIONAL UNIT                                    TRIP SETPOINT                ALLOWABLE VALUES                                l (g)(h)                                                                                            l l
Function 8
: 9. Local Power Density - High(5)                            Trip setpoint adjusted to      Trip setpoint adjusted to                    L06 l
Operating                                                not exceed the limit lines      not exceed the limit lines                        l of Figures 2.2-1 and 2.2-2      of Figures 2.2-1 and 2.2-2.                      l l
: 10. Loss of Component Cooling Water                          > 636 gpm**                    > 636 gpm                                    R01 to Reactor Coolant Pumps - Low
: 11. Reactor Protection System Logic                          Not Applicable                  Not Applicable
: 12. Reactor Trip Breakers                                    Not Applicable                  Not Applicable Wide Range Logarithmic Neutron Flux Monitor Power        (a)                                                                                        lR2 l
(4)            < 2.49 decades per minute      < 2.49 decades per minute Function 2    13. Rate of Change of Power - High                                                                                                              l l
(b) l (1)                > 95.4% of minimum Reactor      > 94.9% of minimum Reactor Function 3
: 14. Reactor Coolant Flow - Low                                                                                                                  l Coolant flow with four          Coolant flow with four                      LA05 pumps operating*                pumps operating*
Function 10  15. Loss of Load (Turbine)                                    > 800 psig                      > 800 psig                                        lR2 (g)(h)                                                                                  L06 Hydraulic Fluid Pressure - Low(5)
* For minimum reactor coolant flow with four pumps operating, refer to Technical Specification LCO 3.2.5.                                LA05
            **    10-minute time delay after relay actuation.
R01                                                                                  lR2 ST. LUCIE - UNIT 2                                                        2-5                    Amendment No. 8, 60, 131, 138, 163
 
A01 ITS 3.3.1 ITS TABLE 2.2-1 (Continued)
REACTOR PROTECTIVE INSTRUMENTATION TRIP SETPOINT LIMITS TABLE NOTATION                                              A09 Footnote c  (1)  Trip may be manually bypassed below 0.5% of RATED THERMAL POWER during testing pursuant to Special Test Exception 3.10.3; bypass shall be automatically removed when Wide Range Logarithmic Neutron Flux power is greater than or equal to 0.5% of RATED THERMAL POWER.
Footnote f  (2)  Trip may be manually bypassed below 705 psig; bypass shall be automatically removed at or above 705 psig.
(3)  % of the narrow range steam generator level indication.                                                      LA07 Footnote d (4)  Trip may be bypassed below 10-4% and above 15% of RATED THERMAL POWER; bypass shall be automatically removed when Wide Range Logarithmic Neutron Flux power is > 10-4% and Power Range Neutron Flux power < 15% of RATED THERMAL POWER.
is not applicable and                                                                                                        L06 Footnotes  (5)  Trip may be bypassed below 15% of RATED THERMAL POWER; bypass shall be automatically removed when Power Range Neutron Flux power is g and h        greater than or equal to 15% of RATED THERMAL POWER.
ST. LUCIE - UNIT 2                                                  2-6                              Amendment No. 98
 
A01                              ITS 3.3.1 ITS 3.3.1-3 (Page 1 of 2)
FIGURE 2.2-1 Local power density - High trip setpoint Part 1 (Fraction of RATED THERMAL POWER versus QR2)
ST. LUCIE - UNIT 2                            2-7
 
A01                                            ITS 3.3.1 ITS 3.3.1-3 (Page 2 of 2)
FIGURE 2.2-2 LOCAL POWER DENSITY - HIGH TRIP SETPOINT PART 2 (QR2 versus Y1)
ST. LUCIE - UNIT 2                      2-8                      Amendment No. 42
 
A01                                                  ITS 3.3.1 ITS 3.3.1-1 (Page 1 of 1)
FIGURE 2.2-3 THERMAL MARGIN/LOW PRESSURE TRIP SETPOINT PART 1 (Y1 Versus A1)
ST. LUCIE - UNIT 2                      2-9                      Amendment No. 8, 138
 
A01                                            ITS 3.3.1 ITS 3.3.1-2 (Page 1 of 1)
FIGURE 2.2-4 THERMAL MARGIN/LOW PRESSURE TRIP SETPOINT PART 2 (FRACTION OF RATED THERMAL POWER VERSUS QR1)
ST. LUCIE - UNIT 2                      2-10                      Amendment No. 8
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                        lR2 OPERATING                                          l ADMINISTRATIVE CHANGES A01    In the conversion of the St. Lucie Plant (PSL) Unit 1 and Unit 2 Current Technical Specifications (CTS) to the plant specific Improved Technical Specifications (ITS), certain changes (wording preferences, editorial changes, reformatting, revised numbering, etc.) are made to obtain consistency with NUREG-1432, Rev. 5.0, "Standard Technical Specifications - Combustion Engineering Plants" (ISTS).
These changes are designated as administrative changes and are acceptable because they do not result in technical changes to the CTS.
A02    CTS Table 3.3-1 specifies the "TOTAL NO. OF CHANNELS" and the "MINIMUM CHANNELS OPERABLE" associated with each RPS Functional Unit. For Unit 1 CTS Table 3.3-1 Functional Units 2, 3, 4, 7, 8, 9, 9a, and 11a and for Unit 2 Functional Units 2 through 10, 13a, 14 and 15; the number of channels listed in the "TOTAL NO. OF CHANNELS" column is greater than that listed in the "MINIMUM OPERABLE CHANNELS" column. CTS Table 3.3-1 Action 2 specifies the actions to take with the number of channels OPERABLE one less than required by the "TOTAL NO. OF CHANNELS" column. ITS LCO 3.3.1 requires "Four RPS trip units and associated instrument and bypass removal channels for each Function in Table 3.3.1-1 shall be OPERABLE." The ITS 3.3.1 ACTIONS require entry when the OPERABLE channels are one less than required by the LCO statement. This changes the CTS by deleting the "MINIMUM CHANNELS OPERABLE" column and utilizing the channel requirements specified in the TOTAL NO. OF CHANNELS column in ITS LCO 3.3.1.
This change is acceptable because the requirements for when actions must be taken remain unchanged. The ITS LCO statement reflects the current requirements in the CTS Actions for when actions are required to be taken. The "MINIMUM CHANNELS OPERABLE" column for CTS Table 3.3-1 has been removed and the "TOTAL NO. OF CHANNELS" column numbers are reflected in ITS LCO 3.3.1. This change is a presentation preference consistent with NUREG-1432, Rev. 5 and PSL CTS Table 3.3-1 Functional Unit Total No. of Channels to Trip column. This change is designated as administrative because it does not result in technical changes to the CTS.
A03    Unit 1 CTS 3.3.1.1 ACTION, Unit 2 CTS 3.3.1 ACTION and CTS Table 3.3-1 provide the compensatory actions to take when RPS instrumentation is inoperable. ITS 3.3.1 ACTIONS provide the compensatory actions for inoperable RPS Instrumentation. The ITS 3.3.1 ACTIONS includes a Note that allows separate Condition entry for each Function. This modifies the CTS by providing a specific allowance to enter the Action for each inoperable RPS instrumentation Function and for certain Functions on a steam generator basis.
The purpose of the CTS Actions is to provide the appropriate compensatory actions for inoperable RPS Functions. This proposed change will allow separate condition entry for each RPS instrumentation Function. This change is St. Lucie Unit 1 and Unit 2            Page 1 of 17                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                        lR2 OPERATING                                        l acceptable because it clearly states the current requirement. The CTS considers each RPS instrumentation Function to be separate and independent from the others. In addition, the channels associated with Functions 3 and 6 are allowed separate Condition entry on the specified basis (i.e., per SG) since the channels associated with each steam generator will provide the associated RPS trip based on the logic associated with the channels on the specified basis. This change is designated as administrative because it does not result in technical changes to the CTS.
A04    Unit 1 CTS 4.3.1.1.3 and Unit 2 CTS 4.3.1.3 state, in part, that the RPS RESPONSE TIME test of each reactor trip function "shall include at least one channel per function." ITS SR 3.3.1.9 requires performance of an RPS RESPONSE TIME test but does not explicitly state that the RPS RESPONSE TIME test must include at least one channel per function.
The purpose of the CTS statement in the Surveillance Requirement associated with the RPS RESPONSE TIME test is to ensure required features are tested to verify the RPS instrument Functions are OPERABLE. However, this statement is redundant to the definition of RPS RESPONSE TIME provided in ITS Section 1.1 and therefore is not necessary.
The definition of the RPS RESPONSE TIME states, in part, that the test, "shall be that time interval from when the monitored parameter exceeds its RPS trip setpoint at the channel sensor until electrical power to the CEAs drive mechanism is interrupted." This encompasses the requirement that at least one    lR2 channel per Function be included in the RPS RESPONSE TIME. The required testing will continue, per the ITS SR wording and the definition provided in Section 1.1, to include the features necessary to verify the RPS instrument Functions are OPERABLE.
This change is designated as administrative because it does not result in technical changes to the CTS.
A05    CTS Table 4.3-1 footnote 3 states, in part, "with the existing Reactor Coolant Pump combination." ITS SR 3.3.1.3 and Required Action C.2 do not include this specific detail. This changes CTS by removing redundant detail. This change is acceptable because reactor coolant pump (RCP) OPERABILITY and required operation is addressed in other Specifications in CTS and retained in ITS 3.4.1 and 3.4.4. LCO 3.4.1 and LCO 3.4.4 require, in part, a minimum reactor coolant flow and both Reactor Coolant System (RCS) loops to be in operation, respectively (i.e., all four RCPs are in operation) in MODES 1 and 2. The "existing Reactor Coolant Pump combination" is determined by compliance with these LCOs and retention of the information in ITS SR 3.3.1.3 is unnecessary.
This change is acceptable because the requirements for RCP operation remain unchanged and are retained in ITS 3.4.1 and 3.4.4. This change is designated as administrative because it does not result in a technical change to CTS.
St. Lucie Unit 1 and Unit 2              Page 2 of 17                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                            lR2 OPERATING                                            l A06    CTS Table 2.2-1 Functional Units 2, 3 and 9 (Unit 1) and Functional Units 2 and 4 (Unit 2) specify "Four Reactor Coolant Pumps Operating." The equivalent RPS Functions in ITS Table 3.3.1-1 Functions 1, 3, and 9a do not include this detail. Requirements for reactor coolant pump OPERABILITY and required operation are provided in CTS 3.4.1.1. LCO 3.4.1 and LCO 3.4.4 require, in part, a minimum reactor coolant flow and both Reactor Coolant System (RCS) loops to be in operation, respectively (i.e., all four RCPs are in operation) in MODES 1 and 2. This changes the CTS by removing the "Four Reactor Coolant Pumps Operating" redundant detail from the RPS specification.
This change is acceptable because the requirements for reactor coolant pump operation remain unchanged. This change is designated as administrative because it does not result in a technical change to CTS.
A07    Unit 1 CTS Table 3.3-1, Action 2.b and Unit 2 CTS Table 3.3-1, Action 2.b.2 state, in part, that all functional units receiving an input from (or affected by) the inoperable channel are (shall be) also bypassed or tripped. ITS 3.3.1 ACTIONS for each Function include a Required Action to place the affected trip unit in trip or bypass within 1 hour. CTS LCO 3.0.2 and ITS LCO 3.0.2 establish that upon discovery of a failure to meet an LCO, the associated ACTIONS shall be met.
Therefore, when an instrument channel becomes inoperable, LCO 3.0.2 requires each Function affected by the inoperability shall be declared inoperable and the associated ACTIONS shall be met. Retention of these specific CTS Actions are not necessary and are deleted. This change is designated as administrative because it does not result in a technical change to the CTS.
A08    Not used.                                                                              lR2 A09    Unit 2 only: Current Technical Specifications (CTS) 3/4.10.3 provides an exception to the limitations of CTS 3.4.1 and the requirements of CTS Tables 2.2-1 and 3.3-1. This special test exception permits reactor criticality under reduced flow conditions and is required to perform certain startup and PHYSICS TESTS while at low THERMAL POWER levels. ITS does not contain this special test exception. This changes the CTS by eliminating a special test exception discussion from the footnotes.
This change is acceptable because this type of PHYSICS TEST is no longer performed and Special Test Exception 3.10.3 (Unit 2 CTS 3/4.10.3, Reactor            lR2 l
Coolant Loops,) is not included in ITS. As a result, the Special Test Exception is    l not needed and references to the exception are removed. This change is                l designated as administrative because it does not result in a technical change to the CTS and is consistent with the changes addressed in CTS 3/4.10.3.
A10    Unit 2 only: CTS 3.3.1 Table 3.3-1 Action 2a provides actions when one channel associated with the RPS Functional Units (except 1, 11, 12, and 13.b) is inoperable. The CTS Action states in part, "The channel shall be returned to OPERABLE status no later than during the next COLD SHUTDOWN." ITS 3.3.1 ACTION A includes this action to restore the channel to OPERABLE with a Completion Time of, "Prior to entering MODE 2 following the next MODE 5 St. Lucie Unit 1 and Unit 2                Page 3 of 17                                        lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                          lR2 OPERATING                                          l entry." This presentation preference is similar to the Completion Time specified in ISTS 3.3.1 (Digital), Required Action A.2. ITS 3.3.1, Condition A is modified by a Note which requires the action to restore the channel to OPERABLE status within the Completion Time to be performed whenever the Condition is entered.
This changes the CTS by explicitly stating that the Required Action must be performed within the Completion Time whenever the condition is entered.
This change is necessary to eliminate the conflict with the general CTS 3.0.2 (ITS LCO 3.0.2) requirement that if the LCO is met or is no longer applicable prior to expiration of the specified time interval(s), completion of the ACTIONS is not required, unless otherwise stated. The addition of the Note constitutes an "unless otherwise stated." The Note will require the action to be completed within the Completion Time even when the LCO is no longer applicable, to ensure the channel is restored to OPERABLE prior to the next reactor startup from MODE 5 conditions. This change is acceptable because it reflects the current understanding and application of the CTS Action requiring the applicable channel to be restored to OPERABLE status whenever the LCO is not met.
This change is designated as administrative as it clarifies the current understanding of the CTS requirement while providing an "unless otherwise stated," to the requirements of CTS 3.0.2 (ITS LCO 3.0.2).
A11    Footnote 2 to CTS Table 4.3-1 states in part, "During PHYSICS TESTS, these          lR2 l
daily calibrations of nuclear power" Note 2 to the proposed ITS SR 3.3.1.2        l states in part, "the calibration may be suspended during PHYSICS TESTS"            l This changes the CTS by removing the descriptive term "daily" from CTS              l l
footnote 2.                                                                        l l
This change is acceptable because it is a descriptive term unnecessary to ensure    l l
compliance with the Surveillance Frequency requirement. Specific detail            l associated with the Surveillance Frequency was approved for removal to the          l l
Surveillance Frequency Control Program, in Amendment 223 (Unit 1) and              l Amendment 173 (Unit 2), "St. Lucie Plant, Unit Nos. 1 and 2 - Issuance of          l Amendments Regarding Risk-Informed Justifications for the Relocation of            l l
Specific Surveillance Frequency Requirements to a Licensee-Controlled Program      l (TAC Nos. MF3495 and MF3469)," dated June 22, 2015 (ML15127A066). The              l removal of the term prevents a potential future conflict with respect to a proposed l l
change to the Surveillance Frequency evaluated by the licensee in accordance        l with the requirements of ITS 5.5.16. The change is designated as administrative    l l
because it does not result in a technical change to the CTS.                        l MORE RESTRICTIVE CHANGES M01    Not used.                                                                          lR2 M02    Not used.                                                                          lR2 St. Lucie Unit 1 and Unit 2              Page 4 of 17                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                          lR2 OPERATING                                          l M03    CTS Table 4.3-1 Functional Unit 10 (Unit 1) and Functional Unit 15 (Unit 2) Loss of Load channels and Unit 1 Functional Unit 11 Wide Range Logarithmic Neutron Flux Monitor channels do not require Channel Calibration. ITS SR 3.3.1.8 requires Channel Calibration of each appliable RPS instrument channel including bypass removal functions with a periodic surveillance frequency in accordance with the Surveillance Frequency Control Program (SFCP). A note to the SR excludes neutron flux detectors from the Channel Calibration. This changes the CTS by adding an additional surveillance requirement for the Wide Range Logarithmic Neutron Flux Monitor Power Rate of Change - High (ITS Table 3.3.1-1 Function 2) and the Loss of Load (ITS Table 3.3.1-1 Function 10 (Unit 1) and Function 15 (Unit 2)) RPS Functions.
The proposed change is acceptable because it provides additional assurance that the Wide Range Logarithmic Neutron Flux Monitor Power Rate of Change -
High and Loss of Load RPS Functions are functioning properly. This change is consistent with ISTS.
PSL controls periodic Frequencies for Surveillances in accordance with the SFCP per CTS 6.8.4.o (Unit 1) and CTS 6.8.4.q (Unit 2). Therefore, the initial Frequency in accordance with the Surveillance Frequency Control Program will be specified as 18 months consistent with ISTS 3.3.1.8. The periodic Frequency is acceptable based upon the assumption of a 22.5-month calibration interval (18 months plus 25% grace) for the determination of the magnitude of equipment drift and is consistent with the CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST Frequencies for the PSL Unit 2 wide range neutron monitoring instrumentation.
The SFCP was established as described in FPL (PSL Unit 1 and Unit 2)
        "Application for Technical Specification Change Regarding Risk-Informed Justifications for the Relocation of Specific Surveillance Frequency Requirements to a Licensee Controlled Program" (ADAMS Accession No. ML14070A087). The NRC issued Amendment No. 223 to Renewed Facility Operating License No.
DPR-67 and Amendment No. 173 to Renewed Facility Operating License No.
NPF-16 for the St. Lucie Plant, Unit Nos. 1 and 2 (St. Lucie 1 and 2), respectively (ADAMS Accession No. ML15127A066).
The proposed change is designated more restrictive because it includes additional requirements that are not specified in the CTS.
M04    The CTS channel calibration surveillance assigned to the power range neutron flux high setpoint on Table 4.3-1 consists of adjusting the power range instrument channels to match the calorimetric heat balance calculation. The CTS surveillance is modified by Note (2) that states the surveillance is only required above 15% RTP without specifying a time for first calibration during power escalation. ITS SR 3.3.1.2 is modified by a Note that states the surveillance is not required to be performed until 12 hours after THERMAL POWER is 15% RTP. The CTS is revised to be consistent with the ISTS. This changes the CTS by adding more specific requirements for the performance of the adjustment of the power range channels to the results of the calorimetric heat balance calculation.
St. Lucie Unit 1 and Unit 2              Page 5 of 17                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                        lR2 OPERATING                                        l The proposed change provides additional guidance for performing the power range instrumentation surveillance. The ISTS note establishes 12 hours for performing the first adjustment of the power range channels during power escalation. The proposed change is acceptable because it provides additional assurance that the power range instrument adjustments are accomplished in a timely and controlled manner such that the accuracy of the power range instrumentation is maintained within acceptable limits relative to the applicable safety analysis assumptions. As such, the proposed change enhances the assurance provided by the TS that the affected plant equipment is maintained OPERABLE and that the plant continues to be operated in a safe manner. The proposed change is designated more restrictive because it requires the first      lR2 l
calibration to be performed in a shorter time frame than CTS allows.              l M05    The CTS channel calibration requirement associated with the power range neutron flux high setpoint on Table 4.3-1 is modified by Note (3). CTS Table 4.3-1 Note (3) specifies that the surveillance recalibrate the excore detectors using the incore detectors above 15% RTP without specifying a first performance time. ITS SR 3.3.1.3 is modified by a Note that states the surveillance is not required to be performed until 12 hours after THERMAL POWER is  15% RTP. The CTS is revised to conform to the proposed ISTS surveillance requirement. This changes the CTS by placing a new time restriction on the first performance of the surveillance after exceeding the specified power.
The first performance of this surveillance after a shutdown or refueling outage is important to establish the instrument accuracy is within acceptable tolerances.
The proposed change is acceptable because it provides assurance that the surveillance is completed in a timely manner and that the instrument accuracy is verified within acceptable limits shortly after a plant startup. As such, the proposed change enhances the assurance provided by the TS that the instrument is maintained operable and that the plant continues to be operated in a safe manner. The proposed change is designated more restrictive because it requires the first calibration to be performed in a shorter time frame than CTS    lR2 l
allows.                                                                            l M06    Unit 1 only: CTS Table 2.2-1 Functional Unit 9 does not include a minimum Trip    lR2 l
Setpoint and Allowable Value for the reactor coolant pressure (RCS). The          l thermal margin/low pressure value is determined based on a RCS minimum            l pressure or a computed value that is a function of the higher T power or neutron power, reactor inlet temperature, the number of coolant pumps operating and the AXIAL SHAPE INDEX. The proposed ITS 3.3.1 Function 9a adds the minimum pressure value of 1887 psia to the values determined by ITS Figures 3.3.1-1        lR2 l
and 3.3.1-2. This changes the CTS Table 2.2-1 Functional Unit 9 Trip Setpoint      l and Allowable Value by adding a minimum pressure value.                            l The purpose of the thermal margin/low pressure trip is to protect against the occurrence of DNB during steady state operation. This change is acceptable because the RCS pressure (pressurizer pressure) minimum value is an St. Lucie Unit 1 and Unit 2              Page 6 of 17                                    lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                            lR2 OPERATING                                            l assumption considered in the accident analysis. The addition of the minimum            lR2 l
value is consistent with the PSL Unit 2 thermal margin/low pressure value. This        l changes CTS by adding a value requirement not currently required in CTS. The          l proposed change is designated more restrictive because it includes additional requirements that are not specified in the CTS.
RELOCATED SPECIFICATIONS R01    Unit 2 only: CTS Tables 2.2-1, 3.3-1, and 4.3-1 provides requirements, in part, for the Loss of Component Cooling Water to Reactor Coolant Pumps - Low reactor trip function. The RPS initiates a reactor trip to protect against violating the core specified acceptable fuel design limits and breaching the reactor coolant pressure boundary (RCPB) during anticipated operational occurrences (AOOs).
By tripping the reactor, the RPS also assists the Engineered Safety Features (ESF) systems in mitigating accidents. The protection and monitoring systems have been designed to ensure safe operation of the reactor. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the RPS, as well as Limiting Conditions for Operation on other reactor system parameters and equipment performance. Technical Specifications are required by 10 CFR 50.36 to include LSSS for variables that have significant safety functions.
The Loss of Component Cooling Water to Reactor Coolant Pumps - Low automatic reactor trip function specified in CTS Table 2.2-1, 3.3-1 and 4.3-1 is provided as a plant specific reactor trip as an equipment protective feature required as a stipulation by NRC staff in justifying acceptance of the Reactor Coolant Water Component Cooling Water piping design. This reactor trip is not required for reactor protection and is not assumed in any accident or transient analysis. In addition, this automatic reactor trip feature on a loss of component cooling water (CCW) flow to the reactor coolant pumps (RCPs) is not required to protect against violating the core specified acceptable fuel design limits or breaching the RCPB during AOOs and is not considered an LSSS for a variable that has a significant safety function. As a result, the Loss of Component Cooling Water to Reactor Coolant Pumps - Low reactor trip function will be relocated from the Technical Specifications to the Technical Requirements Manual (TRM).
10 CFR 50.36(c)(2)(ii) Criteria Evaluation:
: 1.      The Loss of Component Cooling Water to Reactor Coolant Pumps - Low automatic reactor trip function is not used for, nor capable of, detecting a significant abnormal degradation of the reactor coolant pressure boundary.
: 2.      The Loss of Component Cooling Water to Reactor Coolant Pumps - Low automatic reactor trip function is not a process variable, design feature, or operating restriction that is an initial condition of a DBA or transient analysis that either assumes the failure of or challenge to the integrity of a fission product barrier.
St. Lucie Unit 1 and Unit 2              Page 7 of 17                                          lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                        lR2 OPERATING                                        l
: 3.      The Loss of Component Cooling Water to Reactor Coolant Pumps - Low automatic reactor trip function is not a structure, system, or component that is part of the primary success path or which functions or actuates to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 4.      The loss of CCW flow to the RCPs is addressed in the PSL PRA with respect to requiring operator action to recover the CCW flow or remove the RCPs from service. The Loss of Component Cooling Water to Reactor Coolant Pumps - Low automatic reactor trip function is not a significant risk contributor to core damage frequency and offsite releases in the PSL PRA. Therefore, the Loss of Component Cooling Water to Reactor Coolant Pumps - Low automatic reactor trip function does not represent a structure, system, or component which operating experience or probabilistic risk assessment has shown to be significant to public health and safety.
Since the selection criteria have not been satisfied for Loss of Component Cooling Water to Reactor Coolant Pumps - Low automatic reactor trip function, the requirements of this reactor trip instrument may be relocated to a licensee controlled document outside the Technical Specifications. Other reactor trip functions that are necessary to protect against violating the core specified acceptable fuel design limits or breaching the RCPB during AOOs are retained in the Technical Specifications (e.g., Reactor Coolant Flow - Low reactor trip and manual reactor trip functions). The Technical Specification requirements for the RPS Loss of Component Cooling Water to Reactor Coolant Pumps - Low Function will be relocated to the TRM. Changes to the TRM will be controlled by the provisions of 10 CFR 50.59. This change is designated as a relocation because the requirements for this instrument do not meet the criteria in 10 CFR 50.36(c)(2)(ii) and have been relocated to the TRM.
REMOVED DETAIL CHANGES LA01 (Type 1 - Removing Details of System Design and System Description, Including Design Limits) CTS Table 3.3-1 for RPS instrumentation has three columns stating various requirements for each function. These columns are labeled, "TOTAL NO. OF CHANNELS," "CHANNELS TO TRIP," and "MINIMUM CHANNELS OPERABLE." ITS Table 3.3.1-1 does not retain the "TOTAL NO.
OF CHANNELS" or "CHANNELS TO TRIP" columns. This changes the CTS by moving the information of the "TOTAL NO. OF CHANNELS" and "CHANNELS TO TRIP" columns to the ITS Bases.
The removal of these details, which are related to system design, from the Technical Specifications is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. The ITS still retains the requirement for the number of required channels and the appropriate Condition to enter if a St. Lucie Unit 1 and Unit 2              Page 8 of 17                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                          lR2 OPERATING                                            l required channel becomes inoperable. Also, this change is acceptable because the removed information will be adequately controlled in the ITS Bases.
Changes to the Bases are controlled by the Technical Specification Bases Control Program in Chapter 5. This program provides for the evaluation of changes to ensure the Bases are properly controlled. This change is designated as a less restrictive removal of detail change because information relating to system design is being removed from the Technical Specifications.
LA02 (Type 1 - Removing Details of System Design and System Description, Including Design Limits) CTS 3.3.1 Table 3.3-1 Unit 1 footnote (f) and Unit 2 footnote (g) for Unit 1 CTS Function 2 and Unit 2 CTS Function 13a, respectively, state "There shall be at least two decades of overlap between the Wide Range Logarithmic Neutron Flux Monitoring Channels and the Power Range Neutron Flux Monitoring Channels." ITS 3.3.1 Functions 1 and 2 do not include this information. The ITS only specifies that channels be OPERABLE. This changes the CTS by moving the design/operational detail to the UFSAR.
The removal of these details, related to system design, from Technical Specifications is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. The excore instrumentation overlap requirement is a system design detail not related to any RPS reactor trip function. ITS still retains the requirements for Wide Range and Power Range monitoring channels to be OPERABLE. In addition, overlap of the range is checked during power transition to ensure the design requirement for continuous monitoring over the full reactor power range. Also, this change is acceptable because the removed information will be adequately controlled in the UFSAR. Any changes to the UFSAR are made under 10 CFR 50.59, which ensures changes are properly evaluated. This change is designated as a less restrictive change because information relating to system design is being removed from the Technical Specifications.
LA03 (Type 1 - Removing Details of System Design and System Description, Including Design Limits) CTS Table 4.3-1 Functional Unit 2 Note (3) states, in part, "recalibrate the excore detectors which monitor the AXIAL SHAPE INDEX." ITS SR 3.3.1.3 does not contain the system description detail "which monitor the AXIAL SHAPE INDEX." This changes the CTS by moving the system description detail that the excore detectors monitor the AXIAL SHAPE INDEX to the UFSAR.
The removal of these details, which are related to system design, from the Technical Specifications is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. The ITS still retains the requirements for performance of the surveillance requirement. Also, this change is acceptable because the removed information is adequately controlled in the UFSAR. The UFSAR is controlled under 10 CFR 50.59 which ensures changes are properly evaluated. This change is designated as a less restrictive removal of detail change because information relating to system design is being removed from the Technical Specifications.
St. Lucie Unit 1 and Unit 2            Page 9 of 17                                        lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                          lR2 OPERATING                                          l LA04 (Type 3 - Removing Procedural Details for Meeting TS Requirements or Reporting Requirements) CTS 2.2.1, Action a, requires an inoperable RPS            lR2 instrument channel due to the trip setpoint less conservative than the value        l l
shown in the Allowable Value column to be adjusted consistent with the Trip        l Setpoint value shown in Table 2.2-1 when restoring the channel to OPERABLE          l l
status. ITS does not explicitly include this detail. This changes the CTS by        l moving the procedural detail on what is needed to restore an instrument channel    l to OPERABLE status to the ITS Bases.                                                l The purpose of the trip setpoint requirements is to ensure required automatic safety systems are actuated to protect against violating core design limits, breaching the Reactor Coolant System pressure boundary, and to mitigate lR2 accidents. The removal of these details for restoring an inoperable instrument      l channel from the Technical Specifications is acceptable because this type of        l information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. The ITS still retains the requirement that instrument channels for each Function in Table 3.3.1-1 to be      lR2 l
OPERABLE, when applicable, with the Bases defining what is required for            l OPERABILITY, assuring protection of public health and safety. Also, this change    l is acceptable because these types of procedural details will be adequately lR2 controlled in the ITS Bases. Changes to the Bases are controlled by the            l Technical Specification Bases Control Program in Chapter 5. This program            l provides for the evaluation of changes to ensure the Bases are properly            l l
controlled. This change is designated as a less restrictive removal of detail      l change because information relating to system design is being removed from the      l l
Technical Specifications.
LA05 (Type 1 - Removing Details of System Design and System Description, Including Design Limits) CTS Table 2.2-1 Functional Unit 3 provides a Trip Setpoint and an    lR2 Allowable Value of " 95% of minimum reactor coolant flow with 4 pumps operating.*" Footnote
* refers to CTS LCO 3.2.5 for the minimum reactor coolant flow for 4 pumps operating. ITS Table 3.3.1-1 Function 3 provides a Trip            lR2 l
Setpoint and an Allowable Value for Reactor Coolant Flow - Low in terms of          l percent but does not include the detail of associated reactor coolant flow. This changes the CTS by moving the detail of what the setting in % is based on to the UFSAR.
The removal of this detail, related to system design, from the Technical Specifications is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. The ITS still retains the value for each of the Allowable Values. Also, this change is acceptable because the removed information will be adequately controlled in the UFSAR. Any changes to the UFSAR are made under 10 CFR 50.59, which ensures changes are properly evaluated. This change is designated as a less restrictive removal of detail change because information relating to system design is being removed from the Technical Specifications.
St. Lucie Unit 1 and Unit 2            Page 10 of 17                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                          lR2 OPERATING                                        l LA06 Unit 2 only: (Type 3 - Removing Procedural Details for Meeting TS Requirements or Reporting Requirements) CTS Table 3.3-1, Action 2 states, in part, that all functional units affected by the bypassed/tripped channel shall be placed in the bypassed/tripped condition. CTS Table 3.3-1, Action 2 provides a process instrument and Function bypass list that identifies the associated Functions that must be bypassed if the instrument becomes inoperable.
ITS 3.3.1 ACTION A includes a Required Action to place the affected trip unit in trip or bypass within 1 hour. CTS LCO 3.0.2 and ITS LCO 3.0.2 establish that upon discovery of a failure to meet an LCO, the associated ACTIONS shall be met. Therefore, when an instrument channel becomes inoperable, LCO 3.0.2 requires each Function affected by the inoperability shall be declared inoperable and the associated ACTIONS shall be met. The CTS process instrument and Function bypass list is not necessary in the Specifications. This information is removed from the Technical Specifications and moved to the UFSAR.
The removal of these details, which are related to system design, from the Technical Specifications is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. The ITS still retains the requirement that all functional units receiving an input from an inoperable channel are bypassed or tripped. ITS 3.3.1 ACTIONS for each Function include a Required Action to place the affected trip unit in trip or bypass within 1 hour. Also, this change is acceptable because the removed information will be adequately controlled in the UFSAR. The UFSAR is controlled under 10 CFR 50.59 which ensures changes are properly evaluated. This change is designated as a less restrictive removal of detail change because information relating to system design is being removed from the Technical Specifications.
LA07 Unit 2 only: (Type 1 - Removing Details of System Design and System Description, Including Design Limits) Table 2.2-1 Functional Unit 8, Trip Setpoint  lR2 l
and Allowable Values columns, include Note (3), that states, "% of the narrow      l range steam generator level indication." ITS Table 3.3.1-1 Steam Generator Level - Low Function (Functions 7.a and 7.b) do not include this design detail.
This changes the CTS by moving the detail of what the setting in % is based on to the UFSAR.
The removal of these details, which are related to system design, from the Technical Specifications is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate lR2 protection of public health and safety. The ITS still retains the Trip Setpoint and l Allowable Value requirements for the Steam Generator Level - Low RPS                l Function. Also, this change is acceptable because the removed information is currently provided in the UFSAR Section 7.2 where it is adequately controlled.
The UFSAR is controlled under 10 CFR 50.59 which ensures changes are properly evaluated. This change is designated as a less restrictive removal of detail change because information relating to system design is being removed from the Technical Specifications.
St. Lucie Unit 1 and Unit 2              Page 11 of 17                                    lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                        lR2 OPERATING                                        l LESS RESTRICTIVE CHANGES L01    Not Used.                                                                          lR2 L02    Unit 1 only: (Category 4 - Relaxation of Required Action) CTS Table 3.3-1 Action 2.a requires, with the number of OPERABLE channels one less than the Total Number of Channels, to place the inoperable channel in the bypassed or tripped condition but do not provide an action for more than one RPS channel inoperable. Thus, CTS 3.0.3 would be required if two or more RPS Function channels are inoperable. ITS 3.3.1 ACTION B provides an allowance for one or more Functions with two RPS trip units or associated instrument channels inoperable except for the condition when the excore channels are not calibrated with the incore detectors. ITS 3.3.1 ACTION C provides an allowance for one or more Functions with one or more power range excore channels not calibrated within the incore detectors. ITS 3.3.1 ACTION B requires one trip unit to be placed in bypass and the other trip unit must be placed in trip within 1 hour and one trip unit must be restored to OPERABLE status within 48 hours. ITS 3.3.1 ACTION C requires performing SR 3.3.1.3 (Calibrate the power range excore channels with the incore detectors) in 24 hours or restrict THERMAL POWER to 90% RTP. This changes the CTS by providing actions for the condition of two RPS Function trip units or associated instrument channels inoperable and allowing one or more excore channels not calibrated to within the incore detectors.
The RPS Function channels are configured in a two-out-of-four coincidence. The two-out-of-four RPS logic is changed to a two-out-of-three logic for a given input parameter in one channel at a time by bypassing one channel input to the logic.
With one channel of protective instrumentation bypassed, the RPS Function is in two-out-of-three logic, but with another channel failed the RPS may be operating with a two-out-of-two logic. This is outside the assumptions made in the analyses and should be corrected. To correct the problem, the second channel is placed in trip. This places the RPS in a one-out-of-two logic. If any of the other OPERABLE channels receives a trip signal, RPS actuation will occur.
Therefore, it is also acceptable to allow an additional channel to be inoperable.
When one or more power range excore channels are discovered not calibrated with the incore detectors, time is allowed to calibrate the power range instruments instead of placing the plant in a transient with the excore power range channels not calibrated. Alternatively, THERMAL POWER may be restricted to  90% RTP to provide additional margin to the fuel thermal limits.
This change is acceptable because the Required Actions are used to establish remedial measures that must be taken in response to the degraded conditions in order to minimize risk associated with continued operation while providing time to repair inoperable features. The Required Actions are consistent with safe operation under the specified Condition, considering the OPERABLE status of the remaining RPS instrument channels, a reasonable time for repairs or replacement, and the low probability of a DBA occurring during the repair period.
This change also provides appropriate remedial actions in lieu of requiring initiation of an unnecessary plant transient per ITS LCO 3.0.3 (CTS 3.0.3). The 48-hour Completion Time of proposed Required Action B.2 is based upon operating experience, which has demonstrated that a random failure of another St. Lucie Unit 1 and Unit 2            Page 12 of 17                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                          lR2 OPERATING                                            l channel occurring during the 48-hour period is a low probability event. The 24-hour Completion Time of proposed Required Actions C.1 and C.2 is adequate to calibrate the power range excore channels while minimizing the risk of operating in an unsafe condition. This change is designated as less restrictive because less stringent Required Actions are being applied in the ITS than were applied in the CTS.
L03    (Category 4 - Relaxation of Required Action) Unit 1 CTS 3.3.1.1 and Unit 2 CTS 3.3.1 do not explicitly provide requirements associated with the bypass removal feature associated with the following CTS Table 3.3-1 RPS Functional Units; Power Rate of Change - High (11.a), Reactor Coolant Flow - Low (3),
Steam Generator Pressure - Low (6), Local Power Density - High (8), Thermal Margin/Low Pressure (9), and Loss of Load (10). However, CTS 4.3.1.1.2 and Unit 2 CTS 4.3.1.2 require channel functional and calibration testing of the channel bypass logic, which includes the bypass removal feature. Therefore, per the requirements of CTS 4.0.1 (ITS SR 3.0.1), CTS 3.3.1.1 (Unit 1) and CTS 3.3.1 (Unit 2) encompass the RPS channel bypass removal feature. If an RPS bypass removal channel is inoperable, CTS 3.0.3 is entered since there are no Conditions and Actions specified in the CTS. ITS 3.3.1 also includes Surveillances for the channel bypass removal feature. In addition, ITS 3.3.1 ACTIONS D and E are added to provide remedial measures when the bypass removal capability is inoperable to a required RPS Function channel. ITS Required Actions D.1 and E.1 require disabling the inoperable bypass channel within 1 hour when one or two bypass removal channels is inoperable. When one bypass removal channel is inoperable, ITS 3.3.1 ACTION D alternately allows placing the affected channel in bypass or trip within 1 hour and restoring the channel to OPERABLE status within 48 hours. When two bypass removal channels are inoperable, ITS 3.3.1 ACTION E alternately allows placing one channel in trip and the other channel in bypass and restoring one channel to OPERABLE status within 48 hours. This changes the CTS by adding specific Technical Specification actions when one or two bypass removal channels are inoperable to the applicable Functions.
The purpose of the proposed actions is to provide appropriate remedial actions in the event the automatic bypass removal feature is inoperable. With one or two bypass removal channels inoperable, it is permissible to continue operation with the bypass permissive removal channels failed, providing the bypass is disabled.
The Completion Times are consistent with the completion times for the conditions of one or two inoperable RPS channels. This change is also consistent with the ISTS.
This change is considered acceptable because the proposed remedial actions will ensure the related RPS Functions can continue to perform their related safety function when required by the plant design basis and safety analysis by requiring the bypass removal channel to be disabled or take action consistent with the current actions for an inoperable RPS channel. This change also provides appropriate remedial actions in lieu of requiring initiation of an unnecessary plant transient per ITS LCO 3.0.3 (CTS 3.0.3). This change is designated as less restrictive because the ITS ACTIONS provide remedial actions that are less restrictive than the CTS Action requiring a plant shutdown.
St. Lucie Unit 1 and Unit 2            Page 13 of 17                                        lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                        lR2 OPERATING                                          l L04    Unit 2 only: (Category 4 - Relaxation of Required Action) CTS Table 3.3-1 Actions 2.a and 2.b provide actions for conditions with the number of OPERABLE channels one less than the Total Number of Channels and the condition with the number of channels OPERABLE one less than the Minimum Channels OPERABLE. ITS 3.3.1 Conditions A and B also provide Required Actions for these conditions except for the condition when the excore channels are not calibrated with the incore detectors. ITS 3.3.1 ACTION C provides an allowance for one or more Functions with one or more power range excore channels not calibrated within the incore detectors. ITS 3.3.1 ACTION C requires performing SR 3.3.1.3 (Calibrate the power range excore channels with the incore detectors) in 24 hours or restrict THERMAL POWER to  90% RTP. This changes the CTS by providing actions for the condition of one or more excore channels not calibrated to within the incore detectors.
When one or more power range excore channels is discovered not calibrated with the incore detectors, time is allowed to calibrate the power range instruments instead of placing the plant in a transient with the excore power range channels not calibrated. Alternatively, THERMAL POWER may be restricted to  90% RTP to provide additional margin to the fuel thermal limits.
This change is acceptable because the Required Actions are used to establish remedial measures that must be taken in response to the degraded conditions in order to minimize risk associated with continued operation while providing time to repair inoperable features. The Required Actions are consistent with safe operation under the specified Condition, considering the OPERABLE status of the remaining RPS instrument channels, a reasonable time for recalibration, and the low probability of a DBA occurring during the calibration period. The 24-hour Completion Time of proposed Required Actions C.1 and C.2 is adequate to calibrate the power range excore channels while minimizing the risk of operating in an unsafe condition. This change is designated as less restrictive because less stringent Required Actions are being applied in the ITS than were applied in the CTS.
L05    Unit 2 only: (Category 6 - Relaxation of Surveillance Requirement Acceptance Criteria) CTS 4.3.1.1 and Table 4.3-1, Functional Unit 13 (Wide Range Logarithmic Neutron Flux Monitor) require, in part, a CHANNEL CALIBRATION on a Frequency in accordance with the Surveillance Frequency Control Program (SFCP). ITS SR 3.3.1.8 also requires a CHANNEL CALIBRATION but is modified by a Note stating, "Neutron detectors are excluded from CHANNEL CALIBRATION." This changes the CTS by excluding neutron detectors from the CHANNEL CALIBRATION requirement for the Logarithmic Neutron Flux Monitoring channels.
The purpose of a CHANNEL CALIBRATION is to ensure that the channel responds within the necessary range and accuracy to known values of the parameter that the channel monitors. Thus, to perform a channel calibration of a neutron flux channel would require including the neutron flux detector in the calibration. Inclusion of neutron flux detectors in the CHANNEL CALIBRATION process is impractical in power reactor applications because to do so would require subjecting the detectors to known neutron fluxes. Because of the St. Lucie Unit 1 and Unit 2            Page 14 of 17                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                              lR2 OPERATING                                              l hazards associated with exposing the neutron detectors, CTS Table 4.3-1 Note (4) excludes the detectors of Functional Unit 2 (Variable Power Level High) from CHANNEL CALIBRATION. The logarithmic neutron flux monitoring channels also use neutron detectors, which are subject to the same hazards as the detectors of the RPS Variable Power Level - High function. The Note excluding the neutron detectors from the calibration is acceptable because they are passive devices with minimal drift and because of the difficulty of simulating a meaningful signal. This proposed change is consistent with historical and current NRC staff requirements as reflected in ISTS. This change is designated as less restrictive because less stringent Surveillance Requirements are being applied in the ITS than were applied in the CTS.
L06    (Category 2 - Relaxation of Applicability) CTS Table 3.3-1 requires the              lR1 OPERABILITY of Loss of Load (Turbine Hydraulic Fluid Pressure - Low) (Unit 1        l l
Functional Unit 10 and Unit 2 Functional Unit 15) and Local Power Density -          l lR2 High (Unit 1 Functional Unit 8 and Unit 2 Functional Unit 9) trip functions in      l MODE 1. Table 3.3-1 Notation (c) to the function(s) states, "Trip may be            l l
bypassed below 15% of RATED THERMAL POWER; bypass shall be                          l automatically removed when Power Range Neutron Flux power is > 15% of                l RATED THERMAL POWER." In addition, Unit 1 Table 2.2-1 Notation (3) and              l l
Unit 2 Notation (5) state, "Trip may be bypassed below 15% of RATED THERMAL POWER; bypass shall be automatically removed when Power Range Neutron Flux power is greater than or equal to 15% of RATED THERMAL POWER." Footnote (g) to ITS Table 3.3.1-1 Functions 8 and 10 provide(s) the same allowance for bypassing and automatically removing the bypass for the Loss of Load and Local Power Density functions. In addition, ITS Footnote (g) provides similar allowances and Footnote (h) is added to clarify the Loss of Load and Local Power Density trip functions are not applicable and may be bypassed when THERMAL POWER is < 15% RTP and the functions are applicable in MODE 1  15% RTP. This changes the CTS by relaxing the MODE 1 applicability requirement of the Loss of Load (turbine hydraulic fluid pressure -
low) and Local Power Density RPS Functions to MODE 1  15% RTP.
The purpose of the requirement for the Loss of Load (Turbine Hydraulic Fluid Pressure - Low) RPS Function to be OPERABLE in MODE 1 is to ensure the RPS trip function is OPERABLE in anticipation of a high pressurizer pressure RPS trip following a trip of the main turbine generator. The Loss of Load RPS trip is anticipatory for the loss of heat removal capabilities of the secondary system following a turbine trip. Thus, the trip minimizes the pressure and temperature transients on the reactor by initiating a trip before reaching the Pressurizer Pressure - High trip. The Loss of Load trip also prevents lifting the pressurizer safety valves, power operated relief valves (PORVs), and main steam safety valves (MSSVs) in the event of a main turbine generator trip. The proposed change to the Applicability is consistent with the ISTS.
The purpose of the requirement for the Local Power Density - High RPS Function to be OPERABLE in MODE 1 is to ensure excessive axial peaking will not cause fuel damage. It ensures that neither a DNBR less than the SAFETY LIMIT nor a peak linear heat rate corresponding to the temperature for fuel centerline melting will occur.
St. Lucie Unit 1 and Unit 2              Page 15 of 17                                          lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                            lR2 OPERATING                                            l These changes are acceptable because the Loss of Load and Local Power Density RPS trips are not required to support any accident or transient event
        < 15% RTP. The Loss of Load and Local Power Density trips are currently allowed to be bypassed when THERMAL POWER falls below 15%. In addition, the Loss of Load RPS and Local Power Density trips are not credited in any accident analysis as providing primary protection for any limiting case accident.
Appropriate reactor protection continues to be provided below 15% RTP by other reactor trips. This change is designated as less restrictive because the Loss of Load (turbine hydraulic fluid pressure - low) and Local Power Density RPS Functions are applicable in fewer plant conditions than in the CTS.
L07    Unit 2 only: (Category 7- Relaxation of Surveillance Frequency) CTS 4.3.1.1            lR1 l
and Table 4.3-1, Functional Unit 15 Loss of Load (Turbine Hydraulic Fluid              l Pressure - Low) requires, in part, a CHANNEL FUNCTIONAL TEST on a                      l l
Frequency in accordance with the Surveillance Frequency Control Program                l (SFCP). The Frequency specified in the SFCP is 31 days. ITS SR 3.3.1.6                l requires a CHANNEL FUNCTIONAL TEST to be performed for the Loss of Load                l l
RPS Function at a Frequency of "Once within 7 days prior to each reactor              l startup." This changes the CTS by requiring the CHANNEL FUNCTIONAL TEST                l for the Loss of Load RPS Function to be performed only during a reactor startup        l l
instead of on a periodicity.                                                          l l
The purpose of a CHANNEL FUNCTIONAL TEST is to verify successful                      l l
operation of the required contact(s) of a channel relay in between CHANNEL            l CALIBRATIONS by the verification of the change of state of the relay contacts.        l The Loss of Load (Turbine Hydraulic Fluid Pressure - Low) trip is anticipatory for    l l
events resulting in loss of heat removal capabilities of the secondary system          l following a turbine trip. The loss of load analysis provided in UFSAR Chapter 15      l demonstrates that the high pressurizer pressure RPS trip Function is the primary      l l
RPS trip Function for these events. Performing a CHANNEL FUNCTIONAL                    l TEST on a 31 day periodicity in accordance with the SFCP requires the                  l l
Surveillance to be performed during reactor operation. Performing this test            l during reactor operation could have the adverse effect of causing a pressure          l perturbation in the emergency trip fluid header common to all four channels            l l
resulting in a main turbine trip and reactor trip. Therefore, it is proposed to revise l the frequency to perform this test within 7 days prior to each reactor startup        l consistent with the Frequency specified for the same surveillance test for the        l l
Loss of Load RPS Function in Unit 1 CTS and the ISTS.                                  l l
This change is considered acceptable because the CHANNEL FUNCTIONAL                    l l
TEST for the Loss of Load RPS Function will still be performed at a frequency          l that assures the necessary quality of systems and components is maintained. A          l review of historical surveillance data has shown that this test consistently passes    l l
the Surveillance at the current Frequency and demonstrates that there are no          l failures that would invalidate an extended surveillance test interval from 31 days    l in accordance with the SFCP to prior to each reactor startup. Relaxation of this      l l
surveillance test interval from the current periodic frequency is offset by            l eliminating the need to perform the Surveillance during reactor operation, which      l l
could result in an unnecessary plant transient. Also, the proposed event based        l St. Lucie Unit 1 and Unit 2            Page 16 of 17                                          lR2
 
DISCUSSION OF CHANGES ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                              lR2 OPERATING                                              l frequency will be retained in the Technical Specifications instead of maintaining a    lR1 l
periodic frequency under licensee control. This change is designated as less          l restrictive because the Surveillance will be performed less frequently under the      l ITS than currently under the CTS.                                                      l L08    (Category 4 - Relaxation of Required Action) Unit 1 CTS 3.3.1.1 and Unit 2            lR2 l
CTS 3.3.1 do not contain a default action to perform when the Table 3.3-1 Actions      l cannot be completed within the required time; therefore, an entry into CTS 3.0.3      l would be required. ITS 3.3.1 ACTION F requires reducing THERMAL POWER to              l l
        < 15% RTP in 6 hours when Required Action and associated Completion Time for          l Local Power Density and Loss of Load Trip Functions are not met. ITS 3.3.1            l l
ACTION G requires the unit to be in MODE 3 in 6 hours when Required Action and        l associated Completion Time for RPS Functions other than the Local Power Density        l and Loss of Load Trip Functions are not met. (See DOC L06 for discussion of            l l
modification to Applicability) This changes the CTS by explicitly stating the required l ACTIONS when actions cannot be performed within the required time.                    l l
l The purpose of ITS 3.3.1 ACTIONS F and G is to ensure the plant is brought to a        l MODE in which the LCO for the RPS Functions does not apply within a                    l l
reasonable amount of time in a controlled manner because the Technical                l Specification actions cannot be completed as required. Unit 1 CTS 3.3.1.1 and          l Unit 2 CTS 3.3.1 are silent on these actions, deferring to CTS 3.0.3 for the          l l
actions to accomplish this. With the exception of the Local Power Density and          l Loss of Load Trip Functions, the RPS Functions are required to be OPERABLE            l in MODES 1 and 2. The Local Power Density and Loss of Load Trip Functions              l l
are required to be OPERABLE with THERMAL POWER  15% RTP per ITS                      l Table 3.3.1-1 Footnote (h) (CTS Table 3.3-1 Note (c)). The proposed change is          l l
acceptable because the ACTIONS specified in ITS 3.3.1 adopt the ISTS                  l structure for placing the unit outside the MODE of Applicability without changing      l the time to be below 15% RTP for the Local Power Density and Loss of Load Trip        l l
Functions and the time specified to enter MODE 3 for the other RPS Functions.          l Default Conditions eliminate the need to enter LCO 3.0.3 when one or more              l Required Actions cannot be met within the associated Completion Times. This            l l
change is designated as less restrictive because it changes the requirement from      l implementing a unit shutdown in accordance with LCO 3.0.3 to a requirement            l l
that places the unit outside of the MODE of Applicability.                            l St. Lucie Unit 1 and Unit 2            Page 17 of 17                                          lR2
 
Improved Standard Technical Specifications (ISTS) Markup and Justification for Deviations (JFDs)
 
RPS Instrumentation - Operating (Analog)                2 lR2 3.3.1 CTS 3.3 INSTRUMENTATION (Analog) 2 3.3.1          Reactor Protective System (RPS) Instrumentation - Operating (Analog)                                              lR2 LCO 3.3.1.1    LCO 3.3.1                    Four RPS trip units and associated instrument and bypass removal LCO 2.2.1 DOC LA04                                    channels for each Function in Table 3.3.1-1 shall be OPERABLE.
Applicability APPLICABILITY:              According to Table 3.3.1-1.
Table 3.3-1 ACTIONS      ACTIONS
                ------------------------------------------------------------NOTE-----------------------------------------------------------
DOC A03      Separate Condition entry is allowed for each RPS Function.
CONDITION                                  REQUIRED ACTION                          COMPLETION TIME Action 2      A. One or more Functions                  A.1        Place affected trip unit in            1 hour with one RPS trip unit or                        bypass or trip.
associated instrument channel inoperable                    AND except for Condition C (excore channel not                  A.2.1      Restore channel to                    [48] hours calibrated with incore                            OPERABLE status.
detectors).                                                                              [OR In accordance with the Risk Informed Completion Time Program]
OR                                                                          3 A.2.2      [ Place affected trip unit in          48 hours trip.
[OR In accordance with the Risk Informed Completion Time Program] ]
Combustion Engineering STS                                  3.3.1-1                                                Rev. 5.0 St. Lucie - Unit 1                                    Amendment XXX
 
RPS Instrumentation - Operating (Analog) 2 lR2 3.3.1 CTS ACTIONS (continued)
CONDITION                          REQUIRED ACTION                    COMPLETION TIME DOC L02  B. One or more Functions        B.1        Place one trip unit in          1 hour with two RPS trip units                  bypass and place the other or associated instrument                trip unit in trip.
channels inoperable except for Condition C      AND (excore channel not calibrated with incore      B.2        Restore one trip unit to        [48] hours detectors).                              OPERABLE status.
[OR 3
In accordance with the Risk Informed Completion Time Program]
DOC L02  C. One or more Functions        C.1        Perform SR 3.3.1.3.              24 hours with one or more power range excore channels        OR not calibrated with the incore detectors.            C.2        Restrict THERMAL                24 hours POWER to  90% RTP.
DOC L03  D. One or more Functions        D.1        Disable bypass channel.          1 hour with one automatic bypass removal channel      OR inoperable.
D.2.1      Place affected trip units in    1 hour bypass or trip.
AND D.2.2.1 Restore bypass removal              [48] hours channel and affected trip units to OPERABLE status.        [OR 3
In accordance with the Risk Informed Completion Time Program]
OR Combustion Engineering STS                      3.3.1-2                                    Rev. 5.0 St. Lucie - Unit 1                              Amendment XXX
 
RPS Instrumentation - Operating (Analog)    2 lR2 3.3.1 CTS ACTIONS (continued)
CONDITION                          REQUIRED ACTION                  COMPLETION TIME D.2.2.2 [ Place affected trip units in      48 hours trip.
[OR In accordance with          3 the Risk Informed Completion Time Program] ]
DOC L03    E. One or more Functions        E.1        Disable bypass channels.        1 hour with two automatic bypass removal              OR channels inoperable.
E.2.1      [ Place one affected trip unit  1 hour in bypass and place the other in trip for each affected trip Function.
AND 3
E.2.2      Restore one automatic          [48] hours bypass removal channel and the associated trip unit    [OR to OPERABLE status for each affected trip Function. In accordance with the Risk Informed Completion Time Program] ]
DOC L08    F. Required Action and          F.1        Reduce THERMAL                  6 hours                      lR2 associated Completion                    POWER to < 15% RTP.
Time not met for Axial                                                                            1 Local Power Density  Power Distribution and Loss of Load Trip Functions.
DOC L08    G. Required Action and          G.1        Be in MODE 3.                  6 hours                      lR2 associated Completion Time not met except for Local Power                                                                                                  1 Density  Axial Power Distribution or Loss of Load Trip Functions.
Combustion Engineering STS                        3.3.1-3                                    Rev. 5.0 St. Lucie - Unit 1                              Amendment XXX
 
RPS Instrumentation - Operating (Analog)                  2 lR2 3.3.1 CTS SURVEILLANCE REQUIREMENTS
                ------------------------------------------------------------NOTE-----------------------------------------------------------
4.3.1.1.1    Refer to Table 3.3.1-1 to determine which SR shall be performed for each RPS Function.
SURVEILLANCE                                                    FREQUENCY 4.3.1.1.1      SR  3.3.1.1            Perform a CHANNEL CHECK of each RPS                                      [ 12 hours Table 4.3-1 Functional Units                            instrument channel except Loss of Load.
2a, 2b, 3, 4, 5, 6,                                                                                                  OR 7, 8, 9, 9a and 11 In accordance                3 with the Surveillance Frequency Control Program ]
4.3.1.1.1      SR  3.3.1.2            ------------------------------NOTES-----------------------------
Functional Units 2a and 2b                                1. Not required to be performed until 12 hours Table 4.3-1                                      after THERMAL POWER is  [20]% RTP.                                                            3 Notation (2)                                                                                      15 DOC M04                                                                                                                                        8  lR2
: 2. The daily calibration may be suspended during Table 4.3-1                                      PHYSICS TESTS, provided the calibration is Notation (4) performed upon reaching each major test power plateau and prior to proceeding to the next major test power plateau.
Perform calibration (heat balance only) and adjust                      [ 24 hours the excore power range and T power channels to agree with calorimetric calculation if the absolute                      OR difference is  [1.5]%.
In accordance              3 with the Surveillance Frequency Control Program ]
Combustion Engineering STS                                  3.3.1-4                                                Rev. 5.0 St. Lucie - Unit 1                                      Amendment XXX
 
RPS Instrumentation - Operating (Analog)        2 lR2 3.3.1 CTS SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                                                    FREQUENCY SR 3.3.1.3      -------------------------------NOTE------------------------------
4.3.1.1.1                    Not required to be performed until 12 hours after Functional Units 2, 8, 9 and 11                  THERMAL POWER is  [20]% RTP. 15 Table 4.3-1                    ---------------------------------------------------------------------
Notation (3)
DOC M05 Calibrate the power range excore channels using                        [ 31 days the incore detectors.
OR In accordance with the Surveillance Frequency Control Program ]
SR 3.3.1.4      Perform a CHANNEL FUNCTIONAL TEST of each                              [ [92] days 4.3.1.1.1                    RPS channel except Loss of Load and Power Rate Functional Units                  of Change.
2a, 2b, 3, 4, 5, 6, OR 7, 8, 9 and 9a Table 4.3-1                                                                                            In accordance Notations (6)                                                                                                                3 and (7)                                                                                            with the Surveillance Frequency Control Program ]
SR 3.3.1.5      -------------------------------NOTE------------------------------
4.3.1.1.1                    Neutron detectors are excluded from CHANNEL Functional Unit 2, 8, 9 and 11 CALIBRATION.
Table 4.3-1                    ---------------------------------------------------------------------
Notation 5 Perform a CHANNEL CALIBRATION on excore                                [ 92 days power range channels.
OR In accordance with the Surveillance Frequency Control Program ]
Combustion Engineering STS                        3.3.1-5                                            Rev. 5.0 St. Lucie - Unit 1                                      Amendment XXX
 
RPS Instrumentation - Operating (Analog)                  2 lR2 3.3.1 CTS SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                                                    FREQUENCY 4.3.1.1.1                                                                                                                                lR1 Functional Units                                                                                                                              l 10 and 11 SR 3.3.1.6      Perform a CHANNEL FUNCTIONAL TEST of each                              Once within Table 4.3-1                      Power Rate of Change channel and each Loss of                          7 days prior to Notation (1)                      Load functional unit.                                                  each reactor    In accordance startup          with the Surveillance Frequency Control 4.3.1.1.2 Functional Units    SR 3.3.1.7      Perform a CHANNEL FUNCTIONAL TEST on each                              Once within      Program 2, 3, 8, 9, 9a,                    automatic bypass removal function.                                      92 days prior to and 10                                                                                                                              1 each reactor startup SR 3.3.1.8      -------------------------------NOTE------------------------------
4.3.1.1.2 Functional Units Neutron detectors are excluded from CHANNEL 2, 3, 4, 5, 6, 7,                  CALIBRATION.
8, 9, 9a, 10 and                    ---------------------------------------------------------------------
11 Table 4.3-1 Notation (5)                      Perform a CHANNEL CALIBRATION of each RPS                              [ [18] months DOC M03                          instrument channel, including bypass removal functions.                                                              OR 3
In accordance with the Surveillance Frequency Control Program ]
SR 3.3.1.9      -------------------------------NOTE------------------------------
4.3.1.1.3 Functional Units Neutron detectors are excluded.
2, 3, 4, 5, 6, 7,                  ---------------------------------------------------------------------
8, 9, 9a, and 11 Notation (5)
Verify RPS RESPONSE TIME is within limits.                              [ [18] months on a              lR1 STAGGERED TEST BASIS OR 3
In accordance with the Surveillance Frequency Control Program ]
Combustion Engineering STS                        3.3.1-6                                            Rev. 5.0 St. Lucie - Unit 1                                      Amendment XXX
 
RPS Instrumentation - Operating (Analog)                2 lR2 3.3.1 CTS Table 3.3.1-1 (page 1 of 3)
Reactor Protective System Instrumentation APPLICABLE MODES                                          9                                          lR2 OR OTHER SPECIFIED            SURVEILLANCE                                                              l FUNCTION                  CONDITIONS              REQUIREMENTS          TRIP SETPOINT      ALLOWABLE VALUE                l l
9.61 l
Functional Unit 2  1. Variable High                    1, 2                  SR 3.3.1.1        9.61% RTP above      [10]% RTP above              l 1
Table 2.2-1          Power Trip                                            SR 3.3.1.2        current THERMAL      current THERMAL                l Notation (1)                                                                                                                                          l Table 3.3.1-1                Power Level - High(b)                          SR 3.3.1.3          POWER but not          POWER but not                l Notation (a)                                                                SR  3.3.1.4(a)(b)    < 15% RTP nor        < [30]% RTP nor                l SR  3.3.1.5(a)(b)      > 107 % RTP          > [107] % RTP                l SR  3.3.1.8(a)(b)                                              15        l Wide Range Logarithmic                            SR 3.3.1.9                                                              l Functional Unit 11a            Neutron Flux Monitor                  (c)                                                                2.49            l Table 2.2-1                                                                                                                                            l Notation (4)
: 2. Power Rate of (a)                1, 2                  SR 3.3.1.1              2.49 dpm              [2.6] dpm Change - High(c)                                      SR  3.3.1.6(a)(b)                                                        l Table 3.3-1 l
Notation (d) and **                                                              SR 3.3.1.7 l
SR  3.3.1.8(a)(b)                                                        l Functional                                                                                                                                          3 l Unit 3      3. Reactor Coolant                  1, 2                  SR 3.3.1.1                95%                  [95]%                  l Table 2.2-1          Flow - Low(d)                                        SR  3.3.1.4(a)(b)                                                        l Notation (1)                            (b)
Table 3.3-1                                                                  SR 3.3.1.7                                                              l Notation (a)                                                                SR  3.3.1.8(a)(b)                                                        l SR 3.3.1.9                                                              l l
l Functional      4. Pressurizer                      1, 2                  SR 3.3.1.1              2400 psia            [2400] psia              l Unit 4            Pressure - High                                      SR  3.3.1.4(a)(b)                                                        l SR  3.3.1.8(a)(b)                                                        l SR 3.3.1.9                                                              l 3.3 l
Functional      5. Containment                      1, 2                [SR 3.3.1.1]              3.3 psig            [4.0] psig              l Unit 5            Pressure - High                                      SR  3.3.1.4(a)(b)                                                        l l
SR  3.3.1.8(a)(b) l SR 3.3.1.9 (a)    If the as-found channel setpoint is outside its predefined as-found tolerance, then the channel shall be evaluated                lR2 to verify that it is functioning as required before returning the channel to service.                                            l l
(b)    The instrument channel setpoint shall be reset to a value that is within the as-left tolerance around the Limiting                l Trip Setpoint (LTSP) at the completion of the surveillance; otherwise, the channel shall be declared inoperable.                  l l
Setpoints more conservative than the LTSP are acceptable provided that the as-found and as-left tolerances                        l apply to the actual setpoint implemented in the Surveillance procedures (Nominal Trip Setpoint) to confirm                        l channel performance. The LTSP and the methodologies used to determine the as-found and as-left tolerances                        l are specified in [insert the facility FSAR reference or the name of any document incorporated into the facility                  l FSAR by reference].
Table 2.2-1      (a)                                                                                                                                  lR2 Notation (4)  (c)    Trip may be bypassed when THERMAL POWER is < [1E-4]% RTP or > [13]% RTP. Bypass shall be Table 3.3.1-1 Notation (d)        automatically removed when THERMAL POWER is  [1E-4]% RTP and  [13]% RTP.
(b)                                                                                              15                              3 lR2 Table 2.2-1  (d) Trips may be bypassed when THERMAL POWER is < [1E-4]%. Bypass shall be automatically removed when Notation (1)        THERMAL POWER is  [1E-4]% RTP. During testing pursuant to LCO 3.4.17, RCS Loops - Test Exceptions,                            5 Table 3.3.1-1 Notation (a)        trips may be bypassed below 5% RTP. Bypass shall be automatically removed when THERMAL POWER is 5% RTP.
Table 2.2-1              (c) Trip not applicable when THERMAL POWER is > 15% RTP.                                                                  6 lR2 Notation **
lR2 Combustion Engineering STS                                      3.3.1-7                                            Rev. 5.0 St. Lucie - Unit 1                                    Amendment XXX
 
RPS Instrumentation - Operating (Analog)                          2 lR2 3.3.1 CTS Table 3.3.1-1 (page 2 of 3)
Reactor Protective System Instrumentation APPLICABLE MODES                                            9                                                lR2 OR OTHER SPECIFIED          SURVEILLANCE                                                                      l FUNCTION                    CONDITIONS              REQUIREMENTS            TRIP SETPOINT            ALLOWABLE VALUE                  l l
600          l
: 6.      Steam Generator                  1, 2                SR  3.3.1.1                600 psia                  [685] psia                l Functional                                                                                                                                                      l Unit 6                Pressure - Low(e)                                    SR  3.3.1.4(a)(b)
(d)                                                                                                              l Table 2.2-1                                                                    SR  3.3.1.7                                                                      l Notation (2)                                                                  SR  3.3.1.8(a)(b)                                                                  l Table 3.3-1 Notation (b)
SR  3.3.1.9                                                                      l l
35        l 7a.      Steam Generator A                1, 2                SR  3.3.1.1 (e)(f)            35%                      [24.7]%                  l Level - Low                                          SR  3.3.1.4(a)(b)                                                                  l Functional                                                                                                                                                    3  l Unit 7                                                                      SR  3.3.1.8(a)(b) l SR  3.3.1.9                                                                      l 35 l
7b.      Steam Generator B                1, 2                SR  3.3.1.1 (e)(f)            35%                      [24.7]%                  l Functional              Level - Low                                          SR  3.3.1.4(a)(b)                                                                  l Unit 7                                                                      SR  3.3.1.8(a)(b)                                                                  l SR  3.3.1.9                                                                      l Local Power Density                                                                                                              l (h) l Functional      [8.      Axial Power                    1(f) (g)              SR  3.3.1.1            Figure 3.3.1-3              Figure 3.3.1-3 ]
Unit 8                                                                                                                                                        l Distribution - High                                  SR  3.3.1.2                                                                    1 Table 2.2-1 Notation (3)                                                                    SR  3.3.1.3 Table 3.3-1                                                                    SR  3.3.1.4(a)(b)
Notation (c)                                                                                                                                                      lR2 SR  3.3.1.5(a)(b)
DOC L06                                                                                                                                                          l SR  3.3.1.7 SR  3.3.1.8(a)(b)                                                                  lR2 SR  3.3.1.9 (e)                        instrument            acceptance criteria band                                        acceptance criteria bands    lR2 Table 4.3-1    (a)      If the as-found channel setpoint is outside its predefined as-found tolerance, then the channel shall be evaluated                        l Footnote (6)            to verify that it is functioning as required before returning the channel to service.                                                      l (f)                                                                                                  field trip setpoint                    l acceptance criteria band l
(b)      The instrument channel setpoint shall be reset to a value that is within the as-left tolerance around the Limiting                        l Table 4.3-1                                                                                                                                                      4 Footnote (7)
Trip Setpoint (LTSP) at the completion of the surveillance; otherwise, the channel shall be declared inoperable.                          l Setpoints more conservative than the LTSP are acceptable provided that the as-found and as-left tolerances                              9  l field trip apply to the actual setpoint implemented in the Surveillance procedures (Nominal Trip Setpoint) to confirm                                  l setpoint channel performance. The LTSP and the methodologies used to determine the as-found and as-left tolerances                                      l are specified in [insert the facility FSAR reference or the name of any document incorporated into the facility                            l Reorder                                                                                                                                                              l FSAR by reference].                                                            Section 7.2 of the Updated Safety Analysis Report Table 2.2-1                                                                                                                                                      l Notation (2)
(d) l Table 3.3-1  (e)      Trip may be bypassed when steam generator pressure is < [785] psig. Bypass shall be automatically removed Notation (b)          when steam generator pressure is  [785] psig.                                                                                          3 685 (g)
Table 2.2-1 Notation (3)  (f)      Trip is not applicable and may be bypassed when THERMAL POWER is < [15]% RTP. Bypass shall be Table 3.3-1            automatically removed when THERMAL POWER is  [15]% RTP.
Notation (c)        (h)
DOC L06      (g) Trip is only applicable in MODE 1  [15]% RTP.
Combustion Engineering STS                                        3.3.1-8                                                      Rev. 5.0 St. Lucie - Unit 1                                        Amendment XXX
 
RPS Instrumentation - Operating (Analog)            2 lR2 3.3.1 CTS Table 3.3.1-1 (page 3 of 3)
Reactor Protective System Instrumentation APPLICABLE MODES                                          9                                        lR2 OR OTHER SPECIFIED            SURVEILLANCE                                                        l FUNCTION                  CONDITIONS              REQUIREMENTS          TRIP SETPOINT        ALLOWABLE VALUE          l l
l Functional    9a. Thermal                          1, 2                  SR  3.3.1.1      Figures 3.3.1-1 and    Figures 3.3.1-1 and      l Unit 9 Margin/Low              (b)                            SR  3.3.1.2            3.3. 1-2                3.3. 1-2          l Table 2.2-1                                                                                                                                        l Notation (1)            Pressure (TM/LP)(d)                                    SR  3.3.1.3                                                    1  l and Table 3.3-1                                                                    SR  3.3.1.4(a)(b)                                                    l Notation (a)                                                                                                          1887 psia SR  3.3.1.5(a)(b)                                                    l DOC M06 SR  3.3.1.7                                                        l
[SR  3.3.1.8](a)(b)                                                  l SR  3.3.1.9                                                        l Functional                                                                                                                                        l Unit 9a                                                                                                                                          l Table 2.2-1
[9b. Steam Generator                  1, 2                  SR  3.3.1.1            135 psid              [135] psid ]
l Notation (1)            Pressure      (b)                                    SR  3.3.1.4(a)(b)                                                    l Table 3.3-1            Difference(d)                                          SR  3.3.1.8(a)(b)                                                3  l Notation (a)                                                                    SR  3.3.1.9                                                        l Functional                                                          (h)                                                                            l Unit 10      10. Loss of Load                    1(f) (g)              SR 3.3.1.6(a)(b)        800 psig                [800] psig        l Table 2.2-1                                                                                                                                        l Notation (3)            (turbine stop valve                                    SR 3.3.1.7 Table 3.3-1            control oil pressure)                                  SR 3.3.1.8(a)(b)                                                    l Notation (c)                                                                                                                                        l hydraulic fluid pressure - low DOC L06 (a)    If the as-found channel setpoint is outside its predefined as-found tolerance, then the channel shall be evaluated            lR2 to verify that it is functioning as required before returning the channel to service.                                          l (b) The instrument channel setpoint shall be reset to a value that is within the as-left tolerance around the Limiting              lR2 l
Trip Setpoint (LTSP) at the completion of the surveillance; otherwise, the channel shall be declared inoperable.              l Setpoints more conservative than the LTSP are acceptable provided that the as-found and as-left tolerances                    l apply to the actual setpoint implemented in the Surveillance procedures (Nominal Trip Setpoint) to confirm                    l channel performance. The LTSP and the methodologies used to determine the as-found and as-left tolerances                      l are specified in [insert the facility FSAR reference or the name of any document incorporated into the facility                l FSAR by reference].
(b)                                                                                                                              lR2 Table 2.2-1                                                                                                                                        l Notation (1) (d)    Trips may be bypassed when THERMAL POWER is < [1E-4]%. Bypass shall be automatically removed when l
Table 3.3-1        THERMAL POWER is  [1E-4]% RTP. During testing pursuant to LCO 3.4.17, trips may be bypassed                              5  l Notation (a)        below 5% RTP. Bypass shall be automatically removed when THERMAL POWER is  5% RTP.
Table 2.2-1      (g) 3 Notation (3)  (f)    Trip is not applicable and may be bypassed when THERMAL POWER is < [15]% RTP. Bypass shall be Table 3.3-1 Notation (c) automatically removed when THERMAL POWER is  [15]% RTP.
(h)
DOC L06      (g) Trip is only applicable in MODE 1  [15]% RTP.
Combustion Engineering STS                                        3.3.1-9                                              Rev. 5.0 St. Lucie - Unit 1                                    Amendment XXX
 
RPS Instrumentation - Operating (Analog)      2 lR2 3.3.1 CTS Replace with CTS Figure 2.2-3                1 Figure 2.2-3 Combustion Engineering STS                    3.3.1-10                                    Rev. 5.0 St. Lucie - Unit 1                                Amendment XXX
 
RPS Instrumentation - Operating (Analog)            2 lR2 3.3.1 CTS Replace with CTS Figure 2.2-4                      1 Figure 2.2-4 Insert CTS Figure 2.2-1 as ITS Figure 3.3.1-3 (Page 1 of 2)                        1    lR2 Combustion Engineering STS                    3.3.1-11                                            Rev. 5.0 St. Lucie - Unit 1                                      Amendment XXX
 
RPS Instrumentation - Operating (Analog)          2  lR2 3.3.1 CTS Replace with CTS Figure 2.2-2 as ITS Figure 3.3.1-3 (Page 2 of 2)                  1  lR2 Figure 2.2-2 Combustion Engineering STS                      3.3.1-12                                          Rev. 5.0 St. Lucie - Unit 1                                      Amendment XXX
 
RPS Instrumentation - Operating (Analog)                2  lR2 3.3.1 CTS 3.3 INSTRUMENTATION (Analog) 2 3.3.1                Reactor Protective System (RPS) Instrumentation - Operating (Analog)                                          lR2 LCO 2.2.1        LCO 3.3.1                      Four RPS trip units and associated instrument and bypass removal LCO 3.3.1 DOC LA04                                        channels for each Function in Table 3.3.1-1 shall be OPERABLE.
Applicability  APPLICABILITY:                According to Table 3.3.1-1.
Table 3.3-1 ACTIONS        ACTIONS
                ------------------------------------------------------------NOTE-----------------------------------------------------------
DOC A03        Separate Condition entry is allowed for each RPS Function.
CONDITION                              REQUIRED ACTION                          COMPLETION TIME Action 2.a        A. One or more Functions                  A.1        Place affected trip unit in            1 hour DOC A10 with one RPS trip unit or                      bypass or trip.
associated instrument                                                                          Prior to entering channel inoperable                  AND                                                        MODE 2 following next MODE 5 entry.
except for Condition C (excore channel not                A.2.1      Restore channel to                    [48] hours calibrated with incore                          OPERABLE status.
detectors).                                                                            [OR
        ------------NOTE------------
Required Action A.2 must                                                                                  In accordance with be completed whenever                                                                                    the Risk Informed this Condition is entered.
Completion Time                  7 Program]
OR A.2.2      [ Place affected trip unit in          48 hours trip.
[OR In accordance with the Risk Informed Completion Time Program] ]
Combustion Engineering STS                                  3.3.1-1                                                  Rev. 5.0    1 Amendment XXX St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog) 2  lR2 3.3.1 CTS ACTIONS (continued)
CONDITION                          REQUIRED ACTION                    COMPLETION TIME Action 2.b  B. One or more Functions        B.1        Place one trip unit in          1 hour with two RPS trip units                  bypass and place the other or associated instrument                trip unit in trip.
channels inoperable except for Condition C      AND (excore channel not calibrated with incore      B.2        Restore one trip unit to        [48] hours detectors).                              OPERABLE status.
[OR 7
In accordance with the Risk Informed Completion Time Program]
DOC L02    C. One or more Functions        C.1        Perform SR 3.3.1.3.              24 hours with one or more power range excore channels        OR not calibrated with the incore detectors.            C.2        Restrict THERMAL                24 hours POWER to  90% RTP.
DOC L03    D. One or more Functions        D.1        Disable bypass channel.          1 hour with one automatic bypass removal channel      OR inoperable.
D.2.1      Place affected trip units in    1 hour bypass or trip.
AND D.2.2.1 Restore bypass removal              [48] hours channel and affected trip units to OPERABLE status.        [OR 3
In accordance with the Risk Informed Completion Time Program]
OR Combustion Engineering STS                      3.3.1-2                                    Rev. 5.0  1 Amendment XXX St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog) 2  lR2 3.3.1 CTS ACTIONS (continued)
CONDITION                          REQUIRED ACTION                  COMPLETION TIME D.2.2.2 [ Place affected trip units in      48 hours trip.
[OR In accordance with      3 the Risk Informed Completion Time Program] ]
DOC L03    E. One or more Functions        E.1        Disable bypass channels.        1 hour with two automatic bypass removal              OR channels inoperable.
E.2.1      [ Place one affected trip unit  1 hour in bypass and place the other in trip for each affected trip Function.
AND E.2.2      Restore one automatic          [48] hours bypass removal channel and the associated trip unit    [OR to OPERABLE status for 3
each affected trip Function. In accordance with the Risk Informed Completion Time Program] ]
DOC L08    F. Required Action and          F.1        Reduce THERMAL                  6 hours                    lR2 associated Completion                    POWER to < 15% RTP.
Time not met for Axial                                                                          1 Local Power Density  Power Distribution and Loss of Load Trip Functions.
DOC L08    G. Required Action and          G.1        Be in MODE 3.                  6 hours                    lR2 associated Completion Time not met except for Local Power                                                                                                  1 Density  Axial Power Distribution or Loss of Load Trip Functions.
Combustion Engineering STS                        3.3.1-3                                    Rev. 5.0  1 Amendment XXX St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                  2  lR2 3.3.1 CTS SURVEILLANCE REQUIREMENTS
                ------------------------------------------------------------NOTE-----------------------------------------------------------
4.3.1.1    Refer to Table 3.3.1-1 to determine which SR shall be performed for each RPS Function.
SURVEILLANCE                                                    FREQUENCY SR 3.3.1.1              Perform a CHANNEL CHECK of each RPS                                      [ 12 hours 4.3.1.1                              instrument channel except Loss of Load.
Table 4.3-1 Functional Units                                                                                                    OR 2a, 2b, 3, 4, 5, 6, 7, 8, 9, 13, and 14                                                                                                  In accordance                3 with the Surveillance Frequency Control Program ]
SR 3.3.1.2              ------------------------------NOTES-----------------------------
4.3.1.1                              1. Not required to be performed until 12 hours Table 4.3-1                                  after THERMAL POWER is  [20]% RTP.                                                            3 Functional Units                                                                                15 2a and 2b
: 2. The daily calibration may be suspended during                                                8 lR1  lR2 Notation (2)
Notation (5)                                  PHYSICS TESTS, provided the calibration is DOC M04 performed upon reaching each major test power plateau and prior to proceeding to the next major test power plateau.
Perform calibration (heat balance only) and adjust                      [ 24 hours the excore power range and T power channels to agree with calorimetric calculation if the absolute                      OR difference is  [1.5]%.
In accordance                3 with the Surveillance Frequency Control Program ]
Combustion Engineering STS                                  3.3.1-4                                                Rev. 5.0        1 Amendment XXX St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)        2  lR2 3.3.1 CTS SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                                                    FREQUENCY SR 3.3.1.3    -------------------------------NOTE------------------------------
4.3.1.1                    Not required to be performed until 12 hours after Table 4.3-1                  THERMAL POWER is  [20]% RTP. 15 Functional Unit 2, 4, 9, and 13a                ---------------------------------------------------------------------
Notation (3)
DOC M05                                                                                            [ 31 days Calibrate the power range excore channels using the incore detectors.
OR In accordance with the Surveillance Frequency Control Program ]
SR 3.3.1.4    Perform a CHANNEL FUNCTIONAL TEST of each                              [ [92] days 4.3.1.1                    RPS channel except Loss of Load and Power Rate Table 4.3-1                  of Change.
Functional Units OR 2a, 2b, 3, 4, 5, 6, 7, 8, 9, 10 and 14                                                                                      In accordance with the            3 Surveillance Frequency Control Program ]
SR 3.3.1.5    -------------------------------NOTE------------------------------
4.3.1.1                    Neutron detectors are excluded from CHANNEL Table 4.3-1 Functional Unit 2, CALIBRATION.
4, 9, and 13a                  ---------------------------------------------------------------------
Notation (4)
Perform a CHANNEL CALIBRATION on excore                                [ 92 days power range channels.
OR In accordance with the Surveillance Frequency Control Program ]
Combustion Engineering STS                        3.3.1-5                                            Rev. 5.0  1 Amendment XXX St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)        2  lR2 3.3.1 CTS SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                                                    FREQUENCY 4.3.1.1 Table 4.3-1 Functional Units    SR 3.3.1.6      Perform a CHANNEL FUNCTIONAL TEST of each                              Once within 13 and 15                        Power Rate of Change channel and each Loss of                          7 days prior to DOC L07                                                                                                                          lR1 Load functional unit.                                                  each reactor startup 4.3.1.2 Table 4.3-1    SR 3.3.1.7      Perform a CHANNEL FUNCTIONAL TEST on each                              Once within              lR1 Functional Units                                                                                                                    l 2, 4, 7, 9, 14 and                  automatic bypass removal function.                                      92 days prior to        l 15                                                                                                each reactor            l startup                  l SR 3.3.1.8      -------------------------------NOTE------------------------------
4.3.1.2 Functional Units Neutron detectors are excluded from CHANNEL 2, 3, 4, 5, 6, 7,                  CALIBRATION.
8, 9, 10, 13, 14                    ---------------------------------------------------------------------
and 15 Notation (4)
DOC M03                          Perform a CHANNEL CALIBRATION of each RPS                              [ [18] months DOC L04                          instrument channel, including bypass removal functions.                                                              OR 3
In accordance with the Surveillance Frequency Control Program ]
SR 3.3.1.9      -------------------------------NOTE------------------------------
4.3.1.3 Functional Units Neutron detectors are excluded.
2, 3, 4, 5, 6, 7,                  ---------------------------------------------------------------------
8, 9, 13, 14 and 15                                                                                                                            lR1 Notation (4)                      Verify RPS RESPONSE TIME is within limits.                              [ [18] months on a STAGGERED TEST BASIS OR 3
In accordance with the Surveillance Frequency Control Program ]
Combustion Engineering STS                        3.3.1-6                                            Rev. 5.0  1 Amendment XXX St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                  2  lR2 3.3.1 CTS Table 3.3.1-1 (page 1 of 3)
Reactor Protective System Instrumentation APPLICABLE MODES                                      9 lR2 OR OTHER SPECIFIED          SURVEILLANCE                                                              l FUNCTION                  CONDITIONS              REQUIREMENTS        TRIP SETPOINT      ALLOWABLE VALUE                  l l
9.61    l Functional Unit 2                                                                                                                                        l Table 3.3-1        1. Variable High                    1, 2                SR 3.3.1.1        9.61% RTP above      [10]% RTP above              1 Power Trip                                          SR 3.3.1.2                              current THERMAL                  l Footnote a                                                                                    current THERMAL l
Table 2.2-1                                                                  SR 3.3.1.3        POWER but not          POWER but not Power Level - High(b)                                                                                                    l Footnote (1)                                                                SR  3.3.1.4(a)(b)  < 15% RTP nor        < [30]% RTP nor                  l SR  3.3.1.5(a)(b)    > 107% RTP            > [107] % RTP                  l SR  3.3.1.8(a)(b)                                              15        l Functional Unit 13            Wide Range Logarithmic                          SR 3.3.1.9                                                                l Table 3.3-1                  Neutron Flux Monitor              (c)                                                                2.49              l Footnotes ** and e 2.      Power Rate of (a)                1, 2                SR 3.3.1.1            2.49 dpm              [2.6] dpm                  l Table 2.2-1            Change - High(c)                                    SR  3.3.1.6(a)(b)                                                          l Footnote (4)                                                                                                                                          l SR 3.3.1.7 l
SR  3.3.1.8(a)(b)                                                          l 94.9 Functional Unit 14                                                                                                                                      3 l Table 3.3-1        3. Reactor Coolant                  1, 2                SR 3.3.1.1              95.4%                [95]%                    l Footnote a            Flow - Low(d)                                      SR  3.3.1.4(a)(b)                                                          l Table 2.2-1                              (b)                                SR 3.3.1.7                                                                l Footnote (1)                                                                SR  3.3.1.8(a)(b)                                                          l SR 3.3.1.9                                                                l 2374                l l
Functional Unit 3    4. Pressurizer                      1, 2                SR 3.3.1.1            2370 psia            [2400] psia                l Pressure - High                                    SR  3.3.1.4(a)(b)                                                          l SR  3.3.1.8(a)(b)                                                          l SR 3.3.1.9                                                                l 3.1                l Functional Unit 5    5. Containment                      1, 2              [SR 3.3.1.1]            3.0 psig            [4.0] psig                l Pressure - High                                    SR 3.3.1.4(a)(b)                                                          l l
SR 3.3.1.8(a)(b) l SR 3.3.1.9 (a)  If the as-found channel setpoint is outside its predefined as-found tolerance, then the channel shall be evaluated                lR2 to verify that it is functioning as required before returning the channel to service.                                              l l
(b)  The instrument channel setpoint shall be reset to a value that is within the as-left tolerance around the Limiting                l l
Trip Setpoint (LTSP) at the completion of the surveillance; otherwise, the channel shall be declared inoperable.
l Setpoints more conservative than the LTSP are acceptable provided that the as-found and as-left tolerances                        l apply to the actual setpoint implemented in the Surveillance procedures (Nominal Trip Setpoint) to confirm                        l channel performance. The LTSP and the methodologies used to determine the as-found and as-left tolerances                          l are specified in [insert the facility FSAR reference or the name of any document incorporated into the facility                    l FSAR by reference].
Table 3.3-1      (a)
Footnote                                                                                                                                              lR2 Footnote e d (c) Trip may be bypassed when THERMAL POWER is < [1E-4]% RTP or > [13]% RTP. Bypass shall be Table 2.2-1 automatically removed when THERMAL POWER is  [1E-4]% RTP and  [13]% RTP.
Footnote (4)                                                                                                      15                                3 (b)                                    0.5                            0.5 lR2 Table 3.3-1 (d) Trips may be bypassed when THERMAL POWER is < [1E-4]%. Bypass shall be automatically removed when Footnote e        THERMAL POWER is  [1E-4]% RTP. During testing pursuant to LCO 3.4.17, RCS Loops - Test Exceptions,                              5 Table 2.2-1        trips may be bypassed below 5% RTP. Bypass shall be automatically removed when THERMAL POWER is Footnote (1)        5% RTP.
Table 2.2-1              (c) Trip not applicable when THERMAL POWER is > 15% RTP.                                                                  6 lR2 Notation **
lR2 Combustion Engineering STS                                    3.3.1-7                                              Rev. 5.0          1 Amendment XXX St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                            2  lR2 3.3.1 CTS Table 3.3.1-1 (page 2 of 3)
Reactor Protective System Instrumentation APPLICABLE MODES                                              9 lR2 OR OTHER SPECIFIED          SURVEILLANCE                                                                          l FUNCTION                  CONDITIONS              REQUIREMENTS              TRIP SETPOINT          ALLOWABLE VALUE                    l l
Functional Unit 6                                                                                                                                      621              l Table 3.3-1        6. Steam Generator                  1, 2                SR  3.3.1.1                626 psia                  [685] psia                  l Footnote b                Pressure - Low(e) (d)                                SR  3.3.1.4(a)(b)                                                                    l Table 2.2-1                                                                    SR  3.3.1.7                                                                          l Footnote (2)                                                                                                                                                          l SR  3.3.1.8(a)(b) l SR  3.3.1.9                                                                          l l
35          l (e)(f)
Functional    7a.      Steam Generator A                1, 2                SR  3.3.1.1                    35%                      [24.7]%                    l Unit 8                Level - Low                                          SR  3.3.1.4(a)(b)                                                                    l 3
SR  3.3.1.8(a)(b)                                                                    l SR  3.3.1.9                                                                          l 35            l (e)(f)                                                              l Functional    7b.      Steam Generator B                1, 2                SR  3.3.1.1                    35%                      [24.7]%                    l Unit 8                Level - Low                                          SR  3.3.1.4(a)(b)                                                                    l SR  3.3.1.8(a)(b)                                                                    l SR  3.3.1.9                                                                          l Local Power Density Functional Unit 9                                                      (h)                                                                                            l Table 3.3-1      [8. Axial Power                    1(f)(g)              SR  3.3.1.1              Figure 3.3.1-3            Figure 3.3.1-3 ]                l 1 l Footnote c              Distribution - High                                  SR  3.3.1.2 Table 2.2-1                                                                    SR  3.3.1.3 Footnote (5)                                                                    SR  3.3.1.4(a)(b)
DOC L06                                                                                                                                                            lR2 SR  3.3.1.5(a)(b) l SR  3.3.1.7 SR  3.3.1.8(a)(b)                                                                    lR2 SR  3.3.1.9 (e)                        instrument            acceptance criteria band                                          acceptance criteria bands    lR2 Table 4.3-1 (a)        If the as-found channel setpoint is outside its predefined as-found tolerance, then the channel shall be evaluated                            l Footnote (8)            to verify that it is functioning as required before returning the channel to service.                                                        l (f)                                                              acceptance criteria band              field trip setpoint                    l (b)    The instrument channel setpoint shall be reset to a value that is within the as-left tolerance around the Limiting                            l Table 4.3-1                                                                                                                                                          4 l Footnote (9)              Trip Setpoint (LTSP) at the completion of the surveillance; otherwise, the channel shall be declared inoperable.
l Setpoints more conservative than the LTSP are acceptable provided that the as-found and as-left tolerances                                  9 l field trip apply to the actual setpoint implemented in the Surveillance procedures (Nominal Trip Setpoint) to confirm                                    l setpoint channel performance. The LTSP and the methodologies used to determine the as-found and as-left tolerances                                        l Reorder                    are specified in [insert the facility FSAR reference or the name of any document incorporated into the facility                              l FSAR by reference].                                                                                                                          l (d)                                                                                Section 7.2 of the Updated Safety Analysis Report            l Table 3.3-1 Footnote b (e) Trip may be bypassed when steam generator pressure is < [785] psig. Bypass shall be automatically removed                                            l Table 2.2-1            when steam generator pressure is  [785] psig.
Footnote (2)                                                                        705 (g)                                                                                                                                            3 Table 3.3-1 (f) Trip is not applicable and may be bypassed when THERMAL POWER is < [15]% RTP. Bypass shall be Footnote c Table 2.2-1            automatically removed when THERMAL POWER is  [15]% RTP.
Footnote (5)          (h)
DOC L06 (g) Trip is only applicable in MODE 1  [15]% RTP.
Combustion Engineering STS                                        3.3.1-8                                                        Rev. 5.0        1 Amendment XXX St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)              2  lR2 3.3.1 CTS Table 3.3.1-1 (page 3 of 3)
Reactor Protective System Instrumentation APPLICABLE MODES                                          9 lR2 OR OTHER SPECIFIED            SURVEILLANCE                                                          l FUNCTION                    CONDITIONS              REQUIREMENTS          TRIP SETPOINT        ALLOWABLE VALUE            l l
l Functional Unit 4 9a.      Thermal                          1, 2                  SR  3.3.1.1      Figures 3. 3.1-1 and  Figures 3. 3.1-1 and        l Table 3.3-1              Margin/Low                                              SR  3.3.1.2              3.3.1-2                3.3.1-2              l Footnote a              Pressure (TM/LP)(d) (b)                                SR  3.3.1.3                                                        1  l Table 2.2-1                                                                                                                                            l SR  3.3.1.4(a)(b)                          and Footnote 1                                                                                                                                            l SR  3.3.1.5(a)(b)                        1900 psia l
SR  3.3.1.7                                                          l
[SR  3.3.1.8](a)(b)                                                    l Functional Unit 7                                                                  SR  3.3.1.9                                                          l Table 3.3-1                                                                                                                                  2          l Footnote a                                                                                                                                            l Table 2.2-1 9b.      Steam Generator                  1, 2                  SR  3.3.1.1            120 psid            [135] psid ]
Pressure        (b)                                    SR  3.3.1.4(a)(b)                                                      l Footnote (1)                                                                                                                                            l Difference(d)                                          SR  3.3.1.8(a)(b)                                                  3 l
SR  3.3.1.9                                                          l Functional Unit 15            hydraulic fluid pressure - low              (h)                                                                            l Table 3.3-1    10.      Loss of Load                    1 (f) (g)            SR 3.3.1.6(a)(b)        800 psig              [800] psig            l Footnote c              (turbine stop valve                                    SR 3.3.1.7                                                            l Table 2.2-1              control oil pressure)                                  SR 3.3.1.8(a)(b)                                                      l Footnote (5)                                                                                                                                          l DOC L06 (a)    If the as-found channel setpoint is outside its predefined as-found tolerance, then the channel shall be evaluated              lR2 to verify that it is functioning as required before returning the channel to service.                                            l (b)    The instrument channel setpoint shall be reset to a value that is within the as-left tolerance around the Limiting              lR2 Trip Setpoint (LTSP) at the completion of the surveillance; otherwise, the channel shall be declared inoperable.                l l
Setpoints more conservative than the LTSP are acceptable provided that the as-found and as-left tolerances l
apply to the actual setpoint implemented in the Surveillance procedures (Nominal Trip Setpoint) to confirm                      l channel performance. The LTSP and the methodologies used to determine the as-found and as-left tolerances                        l are specified in [insert the facility FSAR reference or the name of any document incorporated into the facility                  l Table 3.3-1        FSAR by reference].
Footnote a      (b) lR2 Table 2.2-1 (d) Trips may be bypassed when THERMAL POWER is < [1E-4]%. Bypass shall be automatically removed when 0.5 Footnote (1)        THERMAL POWER is  [1E-4]% RTP. During testing pursuant to LCO 3.4.17, trips may be bypassed                                  5 DOC A09            below 5% RTP. Bypass shall be automatically removed when THERMAL POWER is  5% RTP.
Table 3.3-1      (g)                                                                                                                              3 Footnote c (f) Trip is not applicable and may be bypassed when THERMAL POWER is < [15]% RTP. Bypass shall be Table 2.2-1          automatically removed when THERMAL POWER is  [15]% RTP.
Footnote (5)
(h)
DOC L06 (g) Trip is only applicable in MODE 1  [15]% RTP.
Combustion Engineering STS                                        3.3.1-9                                              Rev. 5.0    1 Amendment XXX St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)    2  lR2 3.3.1 CTS Replace with CTS Figure 2.2-3                1 Figure 2.2-3 Combustion Engineering STS                    3.3.1-10                                    Rev. 5.0  1 Amendment XXX St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)        2  lR2 3.3.1 CTS Replace with CTS Figure 2.2-4                    1 Figure 2.2-4 Insert CTS Figure 2.2-1 as ITS Figure 3.3.1-3 (Page 1 of 2)                        1  lR2 Combustion Engineering STS                    3.3.1-11                                            Rev. 5.0  1 Amendment XXX St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)      2  lR2 3.3.1 CTS Replace with CTS Figure 2.2-2 as ITS Figure 3.3.1-3 (Page 2 of 2)                1  lR2 Figure 2.2-2 Combustion Engineering STS                    3.3.1-12                                          Rev. 5.0  1 Amendment XXX St. Lucie - Unit 2
 
JUSTIFICATION FOR DEVIATIONS ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                          lR2 OPERATING                                          l
: 1. Changes are made (additions, deletions, and/or changes) to the ISTS that reflect the plant-specific nomenclature, number, reference, system description, analysis, or licensing basis description.
: 2. The heading for ISTS 3.3.1 includes the parenthetical expression (Analog). This identifying information is not included in the PSL ITS. This information is provided in the NUREG-1432, Rev. 5.0 to assist in identifying the appropriate Specifications to be used as a model for a plant-specific ITS conversion but serves no purpose in a plant-specific implementation.
: 3. The ISTS contains bracketed information and/or values that are generic to Combustion Engineering vintage plants. The brackets are removed and the proper plant information/value is inserted to reflect the current licensing basis.
: 4. PSL does not use the terms "as-found tolerance" and "Limiting Trip Setpoint (LTSP)" in plant specific instrument calculations or the Updated Final Safety Analysis Report. Therefore, the use of these terms in Footnotes (e) and (f) in    lR2 ISTS Table 3.3.1-1 are revised in the ITS to include the plant specific terminology. To comply with the guidance provided in NRC Regulatory Issue Summary 2006-17, "NRC Staff Position on the Requirements of 10 CFR 50.36,
        'Technical Specifications,' Regarding Limiting Safety System Settings During Periodic Testing and Calibration of Instrument Channels," the PSL setpoint calculations have been structured to include a Nominal Trip Setpoint (NTSP),
known as the field trip setpoint in CTS, and determination of an OPERABILITY      lR2 l
limit range, referred to in CTS as acceptance criteria band. For PSL, the Trip    l Setpoint is considered the Limiting Trip Setpoint and the as-found acceptance      l criteria band (i.e., OPERABILITY limit range) is synonymous with the as-found tolerance.
: 5. This Reactor Coolant System Loops - Test Exceptions Specification is not included in the PSL Unit 1 and Unit 2 ITS because the exception is not needed to perform any required startup or PHYSICS TESTS.
: 6. The addition of Footnote (c) to Function 2 (Wide Range Logarithmic Neutron Flux    lR2 Monitor Power Rate of Change - High) in ITS Table 3.3.1-1, reflects current licensing basis as approved in License Amendment 243 (Unit 1) and Amendment 194 (Unit 2), dated October 31, 2017 (NRC ADAMS Accession Number ML17257A015). In addition to allowing the Wide Range Logarithmic Neutron Flux Monitor Power Rate of Change - High RPS Function channels to be bypassed when THERMAL is > 15% RPT, this change allowed the RPS Function to not apply when THERMAL POWER is > 15% RTP. As stated in the NRC Safety Evaluation accompanying the license amendments, the NRC staff determined that the change to limit MODE 1 applicability for the Wide Range Logarithmic Neutron Flux Monitor Power Rate of Change - High RPS Function to 15% RTP neither physically changes any plant systems, structures, or components, nor modifies any plant procedure or methodology for this phase of plant operation, and therefore, is acceptable.
St. Lucie Unit 1 and Unit 2              Page 1 of 2
 
JUSTIFICATION FOR DEVIATIONS ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                        lR2 OPERATING                                      l
: 7. Unit 2 only: ISTS 3.3.1, Required Action A.2.2 is deleted and the Completion Time of Required Action A.2.1 (ITS 3.3.3, Required Action A.2) is modified in the Unit 2 ITS consistent with the PSL current licensing basis to allow the inoperable channel to be in trip or bypass until the next plant startup following entry into MODE 5. In addition, ISTS Required Action B.2 is unnecessary since ACTION A requires restoration of the channel to OPERABLE status with no option to place the trip unit in the trip condition indefinitely. These changes to the ISTS 3.3.1 ACTIONS A and B are similar to ISTS 3.3.1 (Digital) ACTIONS A and B. The Unit 2 RPS design includes independence of the four protection channels to ensure no single failure (e.g., circuit fault) can adversely affect more than one channel. As discussed in Section 7.2.4 of NUREG-0843, "Safety Evaluation Report - St. Lucie Unit 2," the NRC concluded that the RPS design enhancements were sufficient to ensure the independence of the four protection channels. Thus, the Unit 2 Technical Specifications allow a failed channel to be placed in long term trip or bypass condition provided the channel is restored no later than the next cold shutdown following the channel malfunction. A Note is added to ITS 3.3.1 Condition A stating that Required Action A.2 shall be completed when Condition A is entered. This Note constitutes an "unless otherwise stated" exception to LCO 3.0.2 to require the action to be completed within the associated Completion Time even when the LCO is no longer applicable. The added Note is similar to other Notes in the ISTS (e.g., Note to Condition A of ISTS 3.2.3 and the Note to Conditions A and C of ISTS 3.4.3.).
: 8. The term "daily" is deleted from the ITS references to SR 3.3.1.2.                  lR2 l
Amendment 223 (Unit 1) and Amendment 173 (Unit 2) approved the movement            l of specific Surveillance Frequency detail to the Surveillance Frequency Control    l Program (SFCP) in NRC letter "St. Lucie Plant, Unit Nos. 1 and 2 - Issuance of    l l
Amendments Regarding Risk-Informed Justifications for the Relocation of            l Specific Surveillance Frequency Requirements to a Licensee-Controlled Program      l l
(TAC Nos. MF3495 and MF3469)," dated June 22, 2015 (ML15127A066).                  l Periodic Frequencies for Surveillances in accordance with the SFCP are            l controlled per ITS 5.5.16 (ISTS 5.5.19). The term as used is unnecessary and      l l
retention of the term would be in conflict with the primary benefit for moving the l frequency detail to the SFCP (i.e., licensee control). Removal of the term        l prevents potential conflict with a proposed change to the frequency in            l l
accordance with the requirements of ITS 5.5.16.                                    l lR2
: 9. RPS Trip Setpoint values are included in ITS Table 3.3.1-1 consistent with the      l CTS. Additionally, Footnotes (e) and (f) are modified in the ITS to be consistent  l with the CTS requirements. Trip Setpoints are being retained in the Technical      l l
Specifications to reflect the current licensing basis supported by the St. Lucie  l Plant instrument setpoint methodology previously approved by the NRC.              l l
St. Lucie Unit 1 and Unit 2                Page 2 of 2
 
Improved Standard Technical Specifications (ISTS) Bases Markup and Justification for Deviations (JFDs)
 
RPS Instrumentation - Operating (Analog)        2    lR2 B 3.3.1 B 3.3 INSTRUMENTATION (Analog) 2 B 3.3.1 Reactor Protective System (RPS) Instrumentation - Operating (Analog)                                  lR2 BASES BACKGROUND          The Reactor Protective System (RPS) initiates a reactor trip to protect against violating the core specified acceptable fuel design limits and breaching the reactor coolant pressure boundary (RCPB) during anticipated operational occurrences (AOOs). By tripping the reactor, the RPS also assists the Engineered Safety Features (ESF) systems in mitigating accidents.
The protection and monitoring systems have been designed to ensure safe operation of the reactor. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the RPS, as well as LCOs on other reactor system parameters and equipment performance.
Technical Specifications are required by 10 CFR 50.36 to include LSSS for variables that have significant safety functions. LSSS are defined by the regulation as "Where a LSSS is specified for a variable on which a safety limit has been placed, the setting must be chosen so that automatic protective actions will correct the abnormal situation before a Safety Limit (SL) is exceeded." The Analytical Limit is the limit of the process variable at which a safety action is initiated, as established by the safety analysis, to ensure that a SL is not exceeded. Any automatic protection action that occurs on reaching the Analytical Limit therefore ensures that the SL is not exceeded. However, in practice, the actual settings for automatic protection channels must be chosen to be more conservative than the Analytical Limit to account for channel uncertainties related to the setting at which the automatic protective action would actually occur.
                    ---------------------------------REVIEWER'S NOTE-------------------------------------
The term "Limiting Trip Setpoint" [LTSP] is generic terminology for the calculated trip setting (setpoint) value calculated by means of the plant specific setpoint methodology documented in a document controlled under 10 CFR 50.59. The term [LTSP] indicates that no additional margin has been added between the Analytical Limit and the calculated trip setting.                                                                              4 "Nominal Trip Setpoint [NTSP]" is the suggested terminology for the actual setpoint implemented in the plant surveillance procedures where margin has been added to the calculated [LTSP]. The as-found and as-left tolerances will apply to the [NTSP] implemented in the Surveillance procedures to confirm channel performance.
Combustion Engineering STS                      B 3.3.1-1                  Revision XXX      Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)                  2  lR2 B 3.3.1 BASES BACKGROUND (continued)
Licensees are to insert the name of the document(s) controlled under 10 CFR 50.59 that contain the methodology for calculating the as-left and as-found tolerances in Note b of Table 3.3.1-1 for the phrase "[insert the name of a document controlled under 10 CFR 50.59 such as the Technical Requirements Manual or any document incorporated into the facility FSAR]" throughout these Bases.                                                                4 Where the [LTSP] is not included in Table 3.3.1-1, the plant specific location for the [LTSP] or [NTSP] must be cited in Note b of Table 3.3.1-1.
The brackets indicate plant specific terms may apply, as reviewed and approved by the NRC.
Allowable Value                                                                                                            lR2 The [Limiting Trip Setpoint (LTSP)] specified in Table 3.3.1-1 is a                                    1  l predetermined setting for a protection channel chosen to ensure automatic actuation prior to the process variable reaching the Analytical field trip setpoint      Limit and thus ensuring that the SL would not be exceeded. As such, the                                  lR2 value specified in        [LTSP] accounts for uncertainties in setting the channel (e.g., calibration),                            l plant procedures                                                                                                            3  5  l uncertainties in how the channel might actually perform (e.g.,                                            l repeatability), changes in the point of action of the channel over time (e.g., drift during surveillance intervals), and any other factors which may field trip setpoint  influence its actual performance (e.g., harsh accident environments). In lR2 this manner, the [LTSP] ensures that SLs are not exceeded. Therefore,                                    l between calibration intervals the [LTSP] meets the definition of an LSSS (Ref. 1).                                                  1  l The Allowable Value                                                                                                                  l considers the maximum                                                                                                                  l allowable instrument drift    Technical Specifications contain values related to the OPERABILITY of                                    l between calibration        equipment required for safe operation of the facility. OPERABLE is                                        l intervals and thus, is the                                                                                                              l defined in Technical Specifications as "...being capable of performing its                                l safety function(s)." Relying solely on the [LTSP] to define OPERABILITY                                  l in Technical Specifications would be an overly restrictive requirement if it were applied as an OPERABILITY limit for the "as-found" value of a protection channel setting during a Surveillance. This would result in Technical Specification compliance problems, as well as reports and corrective actions required by the rule which are not necessary to ensure Trip Setpoint safety. For example, an automatic protection channel with a setting that lR2 has been found to be different from the [LTSP] due to some drift of the                                3 setting may still be OPERABLE because drift is to be expected. This field trip setpoint expected drift would have been specifically accounted for in the setpoint lR2 methodology for calculating the [LTSP] and thus the automatic protective action would still have ensured that the SL would not be exceeded with the "as-found" setting of the protection channel. Therefore, the channel would still be OPERABLE because it would have performed its safety acceptance criteria band function and the only corrective action required would be to reset the channel within the established as-left tolerance around the [LTSP] to                                  5  lR2 account for further drift during the next surveillance interval. Note that, field trip setpoint                                                                                                            lR2 Combustion Engineering STS                                  B 3.3.1-2                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)        2  lR2 B 3.3.1 BASES BACKGROUND (continued)                                                            acceptance criteria band although the channel is OPERABLE under these circumstances, the trip setpoint must be left adjusted to a value within the as-left tolerance in            5  lR2 accordance with uncertainty assumptions stated in the referenced setpoint methodology (as-left criteria), and confirmed to be operating                  lR2 within the statistical allowances of the uncertainty terms assigned (as-                l l
found criteria).
However, there is also some point beyond which the channel may not be able to perform its function due to, for example, greater than expected drift. This value needs to be specified in the Technical Specifications in order to define OPERABILITY of the channels and is designated as the Allowable Value.
If the actual setting (as-found setpoint) of the channel is found to be acceptance criteria conservative with respect to the Allowable Value but is beyond the as-                  lR2 l
found tolerance band, the channel is OPERABLE, but degraded. The                        l degraded condition will be further evaluated during performance of the              5 SR. This evaluation will consist of resetting the channel setpoint to the              lR2 l
[Nominal Trip Setpoint (NTSP)] (within the allowed tolerance), and                  3  l evaluating the channel response. If the channel is functioning as required              l and is expected to pass the next surveillance, then the channel is OPERABLE and can be restored to service at the completion of the surveillance. After the surveillance is completed, the channel as-found condition will be entered into the Corrective Action Program for further evaluation.
During AOOs, which are those events expected to occur one or more times during the plant life, the acceptable limits are:
The departure from nucleate boiling ratio (DNBR) shall be maintained above the SL value to prevent departure from nucleate boiling, Fuel centerline melting shall not occur, and The Reactor Coolant System (RCS) pressure SL of [2750] psia shall              3 not be exceeded.
Maintaining the parameters within the above values ensures that the offsite dose will be within the 10 CFR 50 (Ref. 2) and 10 CFR 100                    1 (Ref. 3) criteria during AOOs.                                                          lR2 50.67              l Combustion Engineering STS                      B 3.3.1-3                    Revision XXX        Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)  2    lR2 B 3.3.1 BASES BACKGROUND (continued)
Accidents are events that are analyzed even though they are not expected to occur during the plant life. The acceptable limit during accidents is that the offsite dose shall be maintained within an acceptable 50.67                                                                                    1 fraction of 10 CFR 100 (Ref. 3) limits. Different accident categories allow      lR2 l
a different fraction of these limits based on probability of occurrence.
Meeting the acceptable dose limit for an accident category is considered having acceptable consequences for that event.
The RPS is segmented into four interconnected modules. These modules are:
Measurement channels, Bistable trip units, RPS Logic, and Reactor trip circuit breakers (RTCBs).
This LCO addresses measurement channels and bistable trip units. It also addresses the automatic bypass removal feature for those trips with operating bypasses. The RPS Logic and RTCBs are addressed in LCO 3.3.3, "Reactor Protective System (RPS) Logic and Trip Initiation."        1 2
The role of each of these modules in the RPS, including those associated with the logic and RTCBs, is discussed below.
Measurement Channels Measurement channels, consisting of field transmitters or process sensors and associated instrumentation, provide a measurable electronic signal based upon the physical characteristics of the parameter being measured.
The excore nuclear instrumentation and the analog core protection calculators (CPCs) are considered components in the measurement channels. The wide range nuclear instruments (NIs) provide a Power Rate of Change - High Trip. Three RPS trips use a power level designated as Q power as an input. Q power is the higher of NI power and primary calorimetric power (T power) based on RCS hot leg and cold leg temperatures. Trips using Q power as an input include the Level Variable High PowerTrip (VHPT) - High, Thermal Margin/Low Pressure                lR2 1
(TM/LP), and the Axial Power Distribution (APD) - High trips.
Local                            Density Combustion Engineering STS                  B 3.3.1-4                    Revision XXX    Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)    2  lR2 B 3.3.1 BASES BACKGROUND (continued)
Local Power Density    The analog CPCs provide the complex signal processing necessary to calculate the TM/LP trip setpoint, APD trip setpoint, VHPT trip setpoint,      1  lR2 Variable Power Level - High                                                                                        l and Q power calculation.
linear The excore NIs (wide range and power range) and the analog CPCs Local Power Density (TM/LP and APD calculators) are mounted in the RPS cabinet, with one            1 channel of each in each of the four RPS bays.
Four identical measurement channels, designated channels A through D, with electrical and physical separation are provided for each parameter used in the direct generation of trip signals. Measurement channels provide input to one or more RPS bistables within the same RPS channel.
In addition, some measurement channels may also be used as inputs to Engineered Safety Features Actuation System (ESFAS) bistables, and most provide indication in the control room. Measurement channels used as an input to the RPS are never used for control functions.
When a channel monitoring a parameter exceeds a predetermined setpoint, indicating an unsafe condition, the bistable monitoring the parameter in that channel will trip. Tripping two or more channels of the bistables monitoring the same parameter de-energizes Matrix Logic,              7 which in turn de-energizes the Initiation Logic. This causes all eight RTCBs to open, interrupting power to the control element assemblies (CEAs), allowing them to fall into the core.
Three of the four measurement and bistable channels are necessary to meet the redundancy and testability of GDC 21 in 10 CFR 50, Appendix A (Ref. 2). The fourth channel provides additional flexibility by allowing one    1  lR2 l
channel to be removed from service (trip channel bypass) for maintenance or testing while still maintaining a minimum two-out-of-three logic. Thus, even with a channel inoperable, no single additional failure in the RPS can either cause an inadvertent trip or prevent a required trip from occurring.
Since no single failure will either cause or prevent a protective system actuation, and no protective channel feeds a control channel, this arrangement meets the requirements of IEEE Standard 279-1971                    1 (Ref. 4).                                                                          lR2 l
field trip setpoint Many of the RPS trips are generated by comparing a single measurement        5    lR2 to a fixed bistable [LTSP]. Certain Functions, however, make use of more        3 than one measurement to provide a trip. The following trips use multiple measurement channel inputs:
Combustion Engineering STS                            B 3.3.1-5                    Revision XXX    Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog) 2  lR2 B 3.3.1 BASES BACKGROUND (continued)
Steam Generator Level - Low This trip uses the lower of the two steam generator levels as an input to a common bistable.
Steam Generator Pressure - Low This trip uses the lower of the two steam generator pressures as an input to a common bistable.
Level Variable High Power Trip (VHPT) - High                                      lR2 1 l Variable Power Level - High l
The VHPT uses Q power as its only input. Q power is the higher of            l NI power and T power. It has a trip setpoint that tracks power levels downward so that it is always within a fixed increment above current power, subject to a minimum value.
On power increases, the trip setpoint remains fixed unless manually reset, at which point it increases to the new setpoint, a fixed increment above Q power at the time of reset, subject to a maximum value. Thus, during power escalation, the trip setpoint must be repeatedly reset to avoid a reactor trip.
Thermal Margin/Low Pressure (TM/LP) and Steam Generator Pressure Difference Q power is only one of several inputs to the TM/LP trip. Other inputs include internal ASI and cold leg temperature based on the higher of two cold leg resistance temperature detectors. The TM/LP trip setpoint is a complex function of these inputs and represents a minimum acceptable RCS pressure to be compared to actual RCS pressure in the TM/LP trip unit.
Steam generator pressure is also an indirect input to the TM/LP trip via the Steam Generator Pressure Difference. This Function provides a reactor trip when the secondary pressure in either steam generator exceeds that of the other generator by greater than a fixed amount. The trip is implemented by biasing the TM/LP trip setpoint upward so as to ensure TM/LP trip if an asymmetric steam generator transient is detected.
Axial Power Distribution (APD) - High Local Power Density Q Power and ASI are inputs to the APD trip. The APD trip setpoint is      1 a function of Q power, being more restrictive at higher power levels.
It provides a reactor trip if actual ASI exceeds the APD trip setpoint.
Local Power Density Combustion Engineering STS                            B 3.3.1-6                  Revision XXX  Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)                2    lR2 B 3.3.1 BASES BACKGROUND (continued)
Bistable Trip Units Bistable trip units, mounted in the RPS cabinet, receive an analog input from the measurement channels, compare the analog input to trip setpoints, and provide contact output to the Matrix Logic. They also provide local trip indication and remote annunciation.
There are four channels of bistable trip units, designated A through D, for each RPS Function, one for each measurement channel. Bistable output relays de-energize when a trip occurs.
The contacts from these bistable relays are arranged into six coincidence matrices, comprising the Matrix Logic. If bistables monitoring the same parameter in at least two channels trip, the Matrix Logic will generate a reactor trip (two-out-of-four logic).
Some of the RPS measurement channels provide contact outputs to the RPS, so the comparison of an analog input to a trip setpoint is not necessary. In these cases, the bistable trip unit is replaced with an auxiliary trip unit. The auxiliary trip units provide contact multiplication so the single input contact opening can provide multiple contact outputs to the coincidence logic as well as trip indication and annunciation.
Local Power Density  Trips employing auxiliary trip units include the Loss of Load trip and the APD - High trip. The Loss of Load trip is a contact input from the Electro                          1 turbine generator control system hydraulic Hydraulic Control System control oil pressure on each of the four high                                lR1 pressure stop valves. switches mounted on the emergency            sensed by                          l l
Local Power Density                          trip fluid line common header The APD trip, described above, is a complex function in which the actual 1
trip comparison is performed within the CPC. Therefore the APD - High trip unit employs a contact input from the CPC.                              Local Power Density All RPS trips, with the exception of the Loss of Load trip, generate a pretrip alarm as the trip setpoint is approached.
Trip Setpoint        lR2 The trip setpoints used in the bistable trip units are based on the                                    l analytical limits stated in Reference 5. The calculation of the [LTSP]                              3  l specified in Table 3.3.1-1 is such that adequate protection is provided when all sensor and processing time delays are taken into account. To                          1 acceptance criteria bands allow for calibration tolerances, instrumentation uncertainties, instrument                          5 drift, and severe environment errors - for those RPS channels that must                                lR2 function in harsh environments, as defined by 10 CFR 50.49 (Ref. 6) -                                  l Allowable Values specified in Table 3.3.1-1, in the accompanying LCO, Combustion Engineering STS                          B 3.3.1-7                          Revision XXX      Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)        2    lR2 B 3.3.1 BASES BACKGROUND (continued) are conservatively adjusted with respect to the analytical limits. A detailed description of the methodology used to calculate the trip IC-3.17, Instrument Setpoint Methodology for        setpoints, including their explicit uncertainties, is provided in the "Plant        1  lR2 Nuclear Power Plants          Protection System Selection of Trip Setpoint Values" (Ref. 7). The trip                l setpoint entered into the bistable is normally still more conservative than that specified by the Allowable Value, to account for changes in random measurement errors detectable by a CHANNEL FUNCTIONAL TEST.
One example of such a change in measurement error is drift during the interval between surveillances.
field trip setpoint The [LTSP] is the value at which the bistable is set and is the expected 3  lR2 AV value to be achieved during calibration. The [LTSP] value is the LSSS                  l and ensures the safety analysis limits are met for the surveillance interval selected when a channel is adjusted based on stated channel uncertainties.
Trip Setpoint                                              acceptance criteria bands lR2
[LTSPs], in conjunction with the use of as-found and as-left tolerances,        3  5  l consistent with the requirements of the Allowable Value will ensure that SLs of Chapter 2.0 are not violated during AOOs and the consequences of DBAs will be acceptable, providing the plant is operated from within the LCOs at the onset of the AOO or DBA and the equipment functions as designed.
Note that in the accompanying LCO 3.3.1, the Allowable Values of Table 3.3.1-1 are the least conservative value of the as-found setpoint that a channel can have during a periodic CHANNEL CALIBRATION or CHANNEL FUNCTIONAL TEST.
RPS Logic 2
The RPS Logic, addressed in LCO 3.3.3, consists of both Matrix and                  1 Initiation Logic and employs a scheme that provides a reactor trip when bistables in any two out of the four channels sense the same input parameter trip. This is called a two-out-of-four trip logic. This logic and          6 the RTCB configuration are shown in Figure B 3.3.1-1.
Bistable relay contact outputs from the four channels are configured into six logic matrices. Each logic matrix checks for a coincident trip in the same parameter in two bistable channels. The matrices are designated the AB, AC, AD, BC, BD, and CD matrices to reflect the bistable channels being monitored. Each logic matrix contains four normally energized matrix relays. When a coincidence is detected, consisting of a trip in the same Function in the two channels being monitored by the logic matrix, all four matrix relays de-energize.
Combustion Engineering STS                              B 3.3.1-8                        Revision XXX  Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)    2  lR2 B 3.3.1 BASES BACKGROUND (continued)
The matrix relay contacts are arranged into trip paths, with one of the four matrix relays in each matrix opening contacts in one of the four trip paths.
Each trip path provides power to one of the four normally energized RTCB control relays (K1, K2, K3, and K4). The trip paths thus each have six contacts in series, one from each matrix, and perform a logical OR function, opening the RTCBs if any one or more of the six logic matrices indicate a coincidence condition.
Each trip path is responsible for opening one set of two of the eight RTCBs. The RTCB control relays (K-relays), when de-energized, interrupt power to the breaker undervoltage trip attachments and simultaneously apply power to the shunt trip attachments on each of the two breakers. Actuation of either the undervoltage or shunt trip attachment is sufficient to open the RTCB and interrupt power from the motor generator (MG) sets to the control element drive mechanisms (CEDMs).
When a coincidence occurs in two RPS channels, all four matrix relays in the affected matrix de-energize. This in turn de-energizes all four RTCB control relays, which simultaneously de-energize the undervoltage and energize the shunt trip attachments in all eight RTCBs, tripping them open.
Matrix Logic refers to the matrix power supplies, trip channel bypass contacts, and interconnecting matrix wiring between bistable and auxiliary trip units, up to but not including the matrix relays. Contacts in the bistable and auxiliary trip units are excluded from the Matrix Logic definition, since they are addressed as part of the measurement channel.
The Initiation Logic consists of the trip path power source, matrix relays and their associated contacts, all interconnecting wiring, and solid state (auxiliary) relays through the K-relay contacts in the RTCB control circuitry.
It is possible to change the two-out-of-four RPS Logic to a two-out-of-three logic for a given input parameter in one channel at a time by trip channel bypassing select portions of the Matrix Logic. Trip channel bypassing a bistable effectively shorts the bistable relay contacts in the three matrices associated with that channel. Thus, the bistables will function normally, producing normal trip indication and annunciation, but a reactor trip will not occur unless two additional channels indicate a trip condition. Trip channel bypassing can be simultaneously performed on Combustion Engineering STS                  B 3.3.1-9                    Revision XXX    Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)              2    lR2 B 3.3.1 BASES BACKGROUND (continued)
A mechanical interlock    any number of parameters in any number of channels, providing each (key capture) in          parameter is bypassed in only one channel at a time. An interlock                              1 conjunction with administrative control    prevents simultaneous trip channel bypassing of the same parameter in more than one channel. Trip channel bypassing is normally employed during maintenance or testing.
For those plants that have demonstrated sufficient channel to channel independence, two-out-of-three logic is the minimum that is required to provide adequate plant protection, since a failure of one channel still ensures a reactor trip would be generated by the two remaining OPERABLE channels. Two-out-of-three logic also prevents inadvertent trips caused by any single channel failure in a trip condition.
In addition to the trip channel bypasses, there are also operating bypasses on select RPS trips. Some of these bypasses are enabled manually, others automatically, in all four RPS channels when plant Zero Power Mode trips        conditions do not warrant the specific trip protection. All operating (Reactor Coolant Flow -      bypasses are automatically removed when enabling bypass conditions Low and Thermal Margin/Low Pressure),        are no longer satisfied. Trips with operating bypasses include Power Local Power Density -        Rate of Change - High, Reactor Coolant Flow - Low, Steam Generator High, Loss of Load -High,    Pressure - Low, APD - High, TM/LP, and Steam Generator Pressure 1
Local Power Density    Difference. [The Loss of Load trip, Power Rate of Change - High, and APD - High operating bypasses are automatically enabled and disabled.]                      3 lR1 lR2 The Variable Power Level - High bypass is manually enabled but automatically disabled.
Reactor Trip Circuit Breakers (RTCBs) 2 The reactor trip switchgear, addressed in LCO 3.3.3 and shown in                              6 Figure B 3.3.1-1, consists of eight RTCBs, which are operated in four sets of two breakers (four channels). Power input to the reactor trip switchgear comes from two full capacity MG sets operated in parallel such that the loss of either MG set does not de-energize the CEDMs.
There are two separate CEDM power supply buses, each bus powering half of the CEDMs. Power is supplied from the MG sets to each bus via two redundant paths (trip legs). Trip legs 1A and 1B supply power to CEDM bus 1. Trip legs 2A and 2B supply power to CEDM bus 2. This ensures that a fault or the opening of a breaker in one trip leg (i.e., for testing purposes) will not interrupt power to the CEDM buses.
Each of the four trip legs consists of two RTCBs in series. The two RTCBs within a trip leg are actuated by separate initiation circuits.
Combustion Engineering STS                              B 3.3.1-10                            Revision XXX      Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)    2    lR2 B 3.3.1 BASES BACKGROUND (continued)
The eight RTCBs are operated as four sets of two breakers (four channels). For example, if a breaker receives an open signal in trip leg A (for CEDM bus 1), an identical breaker in trip leg B (for CEDM bus 2) will also receive an open signal. This arrangement ensures that power is interrupted to both CEDM buses, thus preventing trip of only half of the CEAs (a half trip). Any one inoperable breaker in a channel will make the entire channel inoperable.
Each set of RTCBs is operated by either a Manual Trip push button or an RPS actuated K-relay. There are four Manual Trip push buttons, arranged in two sets of two, as shown in Figure B 3.3.1-1. Depressing          6 both push buttons in either set will result in a reactor trip.
When a Manual Trip is initiated using the control room push buttons, the RPS trip paths and K-relays are bypassed, and the RTCB undervoltage and shunt trip attachments are actuated independent of the RPS.
Manual Trip circuitry includes the push button and interconnecting wiring to both RTCBs necessary to actuate both the undervoltage and shunt trip attachments but excludes the K-relay contacts and their interconnecting wiring to the RTCBs, which are considered part of the Initiation Logic.
Functional testing of the entire RPS, from bistable input through the per the Surveillance  opening of individual sets of RTCBs, can be performed either at power or Frequency Control Program shutdown and is normally performed on a quarterly basis.                    1      lR2 U  FSAR, Section [7.2] (Ref. 8), explains RPS testing in more detail.              3  l APPLICABLE                Each of the analyzed accidents and transients can be detected by one                lR2 SAFETY                    or more RPS Functions. The accident analysis contained in Reference 5          1  l ANALYSES                  takes credit for most RPS trip Functions. Functions not specifically credited in the accident analysis are part of the NRC approved licensing basis for the plant. These Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function performance. Other Functions, such as the Loss of Load trip, are purely equipment protective, and their use minimizes the potential for equipment damage.
Permissive and interlock setpoints allow the blocking of trips during plant startups, and restoration of trips when the permissive conditions are not satisfied, but they are not explicitly modeled in the Safety Analyses.
These permissives and interlocks ensure that the starting conditions are consistent with the safety analysis, before preventive or mitigating actions occur. Because these permissives or interlocks are only one of multiple conservative starting assumptions for the accident analysis, they are generally considered as nominal values without regard to measurement accuracy.
Combustion Engineering STS                        B 3.3.1-11                    Revision XXX  Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)        2  lR2 B 3.3.1 BASES APPLICABLE SAFETY ANALYSES (continued)
The specific safety analyses applicable to each protective Function are identified below:
Level
: 1. Variable High Power Trip (VHPT) - High                                              lR2 l
Variable Power Level - High l
The VHPT provides reactor core protection against positive reactivity              l Variable Power Level - High trip excursions that are too rapid for a Pressurizer Pressure - High or                  l l
TM/LP trip to protect against. The following events require VHPT                    l protection:
Uncontrolled CEA withdrawal event, 1
Excess load, Excess feedwater heat removal event, CEA ejection event, and lR1 Main steam line break (MSLB) (outside containment).                          l two The first three events are AOOs, and fuel integrity is maintained. The third and fourth fourth and fifth are accidents, and limited fuel damage may occur.
: 2. Power Rate of Change - High The Power Rate of Change - High trip is used to trip the reactor when is not credited in the accident analysis as providing primary excore [logarithmic] power indicates an excessive rate of change.              3 protection for any limiting case        The Power Rate of Change - High Function minimizes transients for 1
AOO or accident.                events such as a continuous CEA withdrawal or a boron dilution event from low power levels. The trip may be bypassed when In addition, the trip is not required to be        THERMAL POWER is < 1E-4% RTP, when poor counting statistics OPERABLE and is            may lead to erroneous indication. It is also bypassed at > 15% RTP, where moderator temperature coefficient and fuel temperature          Neutron Flux coefficient make high rate of change of power unlikely. With the RTCBs open, the Power Rate of Change - High trip is not required to be OPERABLE; however, the indication and alarm Functions of at              3 least two channels are required by LCO 3.3.13, "[Logarithmic] Power is                                                                          11 1 Monitoring Channels," to be OPERABLE. LCO 3.3.13 ensures the
[logarithmic] channels are available to detect and alert the operator to 3 1 a boron dilution event.
Combustion Engineering STS                                B 3.3.1-12                  Revision XXX  Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)            2    lR2 B 3.3.1 BASES APPLICABLE SAFETY ANALYSES (continued)
: 3. Reactor Coolant Flow - Low The Reactor Coolant Flow - Low trip provides protection during the following events:
Loss of RCS flow, Loss of nonemergency AC power,            and 1
                                                  /sheared Reactor coolant pump (RCP) seized shaft, RCP sheared shaft, and 11  lR2 Certain MSLB events.
The loss of RCS flow and of nonemergency AC power events are AOOs                        1 and where fuel integrity is maintained. The RCP seized shaft, sheared shaft, and MSLBs are accidents where fuel damage may result.                                    11  lR2
: 4. Pressurizer Pressure - High The Pressurizer Pressure - High trip, in conjunction with pressurizer safety valves and main steam safety valves (MSSVs), provides protection against overpressure conditions in the RCS during the following events:
Loss of condenser vacuum with a concurrent loss of offsite                          lR1 l
power,                                                                              l l
Loss of condenser vacuum with a concurrent loss of one 6.9 kV                      l bus, Loss of External Load/Turbine trip Isolation of turbine at 102% power,                                            1 Feedwater System pipe breaks between the steam generator                      11  lR2 and check valve, CEA withdrawal, and Loss of feedwater flow.
Combustion Engineering STS                  B 3.3.1-13                    Revision XXX        Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog) 2    lR2 B 3.3.1 BASES APPLICABLE SAFETY ANALYSES (continued)
: 5. Containment Pressure - High The Containment Pressure - High trip prevents exceeding the containment design pressure during certain loss of coolant accidents (LOCAs) or feedwater line break accidents. It ensures a reactor trip prior to, or concurrent with, a LOCA, thus assisting the ESFAS in the event of a LOCA or MSLB. Since these are accidents, SLs may be violated. However, the consequences of the accident will be acceptable.
: 6. Steam Generator Pressure - Low The Steam Generator Pressure - Low trip provides protection against an excessive rate of heat extraction from the steam generators, which would result in a rapid uncontrolled cooldown of the RCS. This trip is needed to shut down the reactor and assist the ESFAS in the event of an MSLB. Since these are accidents, SLs may be violated.
However, the consequences of the accident will be acceptable.
7.a, 7.b. Steam Generator A and B Level - Low The Steam Generator A Level - Low and Steam Generator B Level -
Low trips are required for the following events:
Steam System piping failures,                                    11  lR2 Feedwater System pipe breaks, Excess Load Inadvertent opening of a steam generator atmospheric dump        1    lR1 valve (ADV),                                                          l Loss of normal feedwater, and Asymmetric loss of feedwater.
The Steam Generator Level - Low trip ensures that low DNBR, high local power density, and the RCS pressure SLs are maintained during normal operation and AOOs, and, in conjunction with the ESFAS, the consequences of the Feedwater System pipe break accident will be acceptable.
Combustion Engineering STS                B 3.3.1-14                  Revision XXX  Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)    2    lR2 B 3.3.1 BASES APPLICABLE SAFETY ANALYSES (continued)
Local Power Density
: 8.      Axial Power Distribution (APD) - High                                        1 The APD - High trip ensures that excessive axial peaking, such as that due to axial xenon oscillations, will not cause fuel damage. It ensures that neither a DNBR less than the SL nor a peak linear heat rate that corresponds to the temperature for fuel centerline melting will occur. This trip is the primary protection against fuel centerline melting.
: 9.      Thermal Margin
: a. Thermal Margin/Low Pressure (TM/LP)
The TM/LP trip prevents exceeding the DNBR SL during AOOs and aids the ESFAS during certain accidents. The following events require TM/LP protection:
Excess load (inadvertent opening of a steam generator              lR1 l
ADV),
RCS depressurization (inadvertent safety or power operated          lR1 l
relief valves (PORVs) opening),
Steam generator tube rupture, and LOCA accident.
The first two events are AOOs, and fuel integrity is maintained.
The third and fourth are accidents, and limited fuel damage may occur although only the LOCA is expected to result in fuel damage. The trip is initiated whenever the RCS pressure signal drops below a minimum value (Pmin) or a computed value (Pvar) as described below, whichever is higher. The computed value is and a Function Q power, ASI, as determined from the axially split excore detectors, reactor inlet (cold leg) temperature, and the      1 number of RCPs operating.
The minimum value of reactor coolant flow rate, the maximum azimuthal tilt TQ, and the maximum CEA deviation permitted for continuous            1 operation are assumed in the generation of this trip Function. In addition, CEA group sequencing in accordance with LCO 3.1.6, groups "Regulating Control Element Assembly (CEA) Insertion Limits,"
is assumed. Finally, the maximum insertion of CEA banks that          1 lR2 Variable Power Level - High trip                                                                                  l can occur during any AOO prior to a VHPT is assumed.                      l Combustion Engineering STS                                B 3.3.1-15                      Revision XXX Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)                        2  lR2 B 3.3.1 BASES APPLICABLE SAFETY ANALYSES (continued)
: b. Steam Generator Pressure Difference The Steam Generator Pressure Difference provides protection for those AOOs associated with secondary system malfunctions that result in asymmetric primary coolant temperatures. The most limiting event is closure of a single main steam isolation valve. Steam Generator Pressure Difference is provided by comparing the secondary pressure in both steam generators in the TM/LP calculator. If the pressure in either exceeds that in the other by the trip setpoint, a TM/LP trip will result.
: 10. Loss of Load Hydraulic Fluid Pressure - Low                    lR1 l
The Loss of Load (turbine stop valve (TSV) control oil pressure) trip                              1 l is anticipatory for the loss of heat removal capabilities of the secondary system following a turbine trip. The Loss of Load trip prevents lifting the pressurizer safety valves, PORVs, and MSSVs in the event of a turbine generator trip. Thus, the trip minimizes the pressure and temperature transients on the reactor by initiating a trip well before reaching the Pressurizer Pressure - High trip and pressurizer safety valve setpoints. The four RPS Loss of Load reactor trip channels receive their input from sensors mounted on the high pressure TSV actuators. Since there are four high pressure TSVs, one actuator per valve and one sensor per actuator, each sensor sends its signal to a different RPS channel. When the turbine trips, control oil is dumped from the high pressure TSVs. When the                                  1 control oil pressure drops to the appropriate setpoint, a reactor trip signal is generated.        four redundant pressure switches mounted on the emergency trip fluid line common header, to serve as the loss of load, turbine trip input to the Reactor Protective System logic matrices. Actuation Interlocks/Bypasses              of any two of the pressure switches on low hydraulic oil pressure causes a reactor trip.
The bypasses and their Allowable Values are addressed in footnotes to Table 3.3.1-1. They are not otherwise addressed as specific Table entries.
The automatic bypass removal features must function as a backup to manual actions for all safety related trips to ensure the trip Functions are not operationally bypassed when the safety analysis assumes the Functions are not bypassed. The RPS operating bypasses are:
Zero power mode bypass (ZPMB) removal on the TM/LP, Steam Generator Pressure Difference, and reactor coolant low flow trips when THERMAL POWER is < 1E-4% RTP. This bypass is manually enabled                                            1 below the specified setpoint to permit low power testing. The wide range NI Level 1 bistable in the wide range drawer permits manual bypassing below the setpoint and removes the bypass above the setpoint.
Combustion Engineering STS                  B 3.3.1-16                            Revision XXX        Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)      2    lR2 B 3.3.1 BASES APPLICABLE SAFETY ANALYSES (continued)
Power rate of change bypass removal. The Power Rate of Change - High trip is automatically bypassed at < 1E-4% RTP, as sensed by the wide 15  1 range NI Level 2 bistable, and at > 12% RTP by the power range NI Level 1 bistable, mounted in their respective NI drawers. Automatic bypass removal is also effected by these bistables when conditions are no longer satisfied.
Local Power Density Loss of Load and APD - High bypass removal. The Loss of Load and                            1 APD - High trips are automatically bypassed when at < 15% RTP as sensed by the power range NI Level 1 bistable. The bypass is automatically removed by this bistable above the setpoint. This same bistable is used to bypass the Power Rate of Change - High trip.
Steam Generator Pressure - Low bypass removal. The Steam Generator Pressure - Low trip is manually enabled below the pretrip setpoint. The permissive is removed, and the bypass automatically removed, when the Steam Generator Pressure - Low pretrip clears.
The RPS instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO                              The LCO requires all instrumentation performing an RPS Function to be OPERABLE. Failure of any required portion of the instrument channel renders the affected channel(s) inoperable and reduces the reliability of the affected Functions. The specific criteria for determining channel OPERABILITY differ slightly between Functions. These criteria are discussed on a Function by Function basis below.
Actions allow maintenance (trip channel) bypass of individual channels, is prevented by mechanical but the bypass activates interlocks that prevent operation with a second 1
interlock (key capture)        channel in the same Function bypassed. Plants are restricted to 48 hours                          lR1 in a trip channel bypass condition before either restoring the Function to four channel operation (two-out-of-four logic) or placing the channel in trip (one-out-of-three logic). At plants where adequate channel to channel independence has been demonstrated, specific exceptions may be 1
approved by the NRC staff to permit one of the two-out-of-four channels to be bypassed for an extended period of time.
Section 7.2 of the Updated Final Safety Analysis Report                  lR2 12 Allowable Values for RPS Instrumentation Functions are specified in acceptance    Table 3.3.1-1. [LTSPs] and the methodologies for calculation of the as-                          lR2 criteria bands left and as-found tolerances are described in [insert the name of a                              l 5    l document controlled under 10 CFR 50.59 such as the Technical field trip setpoints    Requirements Manual or any document incorporated into the facility                          3    lR2 FSAR]. The [LTSPs] are selected to ensure that the actual setpoints acceptance criteria remain conservative with respect to the as-found tolerance band between                      5    lR2 adjusted consistent with the Trip    successive CHANNEL CALIBRATIONS. After each calibration the trip                            12 l
Setpoint value.                                                                                                              l setpoint shall be left within the as-left band around the [LTSP].                                l Combustion Engineering STS                                    B 3.3.1-17                              Revision XXX Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)            2    lR2 B 3.3.1 BASES LCO (continued)
The following Bases for each trip Function identify the above RPS trip Function criteria items that are applicable to establish the trip Function OPERABILITY.
Level
: 1. Variable High Power Trip (VHPT) - High                                                lR2 l
Variable Power Level - High                                                                                            l This LCO requires all four channels of the VHPT to be OPERABLE in                      l MODES 1 and 2.
Variable Power Level The Allowable Value is high enough to provide an operating envelope                    lR2 that prevents unnecessary Linear Power Level - High reactor VHPT -                1 l
High trips during normal plant operations. The Allowable Value is low enough for the system to maintain a margin to unacceptable fuel cladding damage should a CEA ejection accident occur.
Variable Power Level - High Trip                                                                                                lR2 The VHPT setpoint is operator adjustable and can be set at a fixed                    l increment above the indicated THERMAL POWER level. Operator action is required to increase the trip setpoint as THERMAL POWER is increased. The trip setpoint is automatically decreased as THERMAL POWER decreases. The [LTSP] has a maximum and a                            3 field trip setpoint                                                                                        lR2 minimum setpoint.                                                              5      l the field trip setpoint                      l Adding to this maximum value the possible variation in [LTSP] due to              3 calibration and instrument errors, the maximum actual steady state THERMAL POWER level at which a trip would be actuated is 112%                          lR1 RTP, which is the value used in the safety analyses.                107                l conservative with respect to                                  of 112% RTP 1
Calibration and instrument errors            To account for these errors, the safety analysis minimum value is are considered within the setpoint          40% RTP. The 10% step is a maximum value assumed in the safety                        lR1 calculations. The stated minimum                                                                                                    l and maximum Allowable Values and            analysis. There is no uncertainty applied to the step.
step values are the assumed safety analysis values.                        2. Power Rate of Change - High MODE 1 with THERMAL        This LCO requires four channels of Power Rate of Change - High to POWER  15% RTP and MODE 2 be OPERABLE in MODES 1 and 2, as well as in MODES 3, 4, and 5                      8  lR2 when the RTCBs are closed and the CEA Drive System is capable of CEA withdrawal.
The high power rate of change trip serves as a backup to the administratively enforced startup rate limit. The Function is not credited in the accident analyses; therefore, the Allowable Value for the trip or bypass Functions is not derived from analytical limits.
Combustion Engineering STS                            B 3.3.1-18                          Revision XXX    Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)    2  lR2 B 3.3.1 BASES LCO (continued)
: 3. Reactor Coolant Flow - Low This LCO requires four channels of Reactor Coolant Flow - Low to be OPERABLE in MODES 1 and 2.
The trip may be manually bypassed when THERMAL POWER falls 1                                                                              1 below 1E-4% RTP. This bypass is part of the ZPMB circuitry, which also bypasses the TM/LP trip and provides a T power block signal to the Q power select logic. This ZPMB allows low power physics testing at reduced RCS temperatures and pressures. It also allows heatup and cooldown with shutdown CEAs withdrawn.
This trip is set high enough to maintain fuel integrity during a loss of flow condition. The setting is low enough to allow for normal operating fluctuations from offsite power. To account for analysis            lR2 l
uncertainty, the value in the safety analysis is 93% RTP.                  1 l
91                            l
: 4. Pressurizer Pressure - High This LCO requires four channels of Pressurizer Pressure - High to be OPERABLE in MODES 1 and 2.
The Allowable Value is set high enough to allow for pressure increases in the RCS during normal operation (i.e., plant transients) not indicative of an abnormal condition. The setting is below the lift setpoint of the pressurizer safety valves and low enough to initiate a reactor trip when an abnormal condition is indicated. The difference          lR2 1  l between the Allowable Value and the analysis setpoint of 2470 psia            l includes allowance for harsh environment.                    2430              l uncertainty                                                l The Pressurizer Pressure - High trip concurrent with PORV operation avoids unnecessary operation of the pressurizer safety valves.
: 5. Containment Pressure - High This LCO requires four channels of Containment Pressure - High to be OPERABLE in MODES 1 and 2.
The Allowable Value is high enough to allow for small pressure increases in containment expected during normal operation (i.e.,
plant heatup) that are not indicative of an abnormal condition. The setting is low enough to initiate a reactor trip to prevent containment pressure from exceeding design pressure following a DBA.
Combustion Engineering STS                B 3.3.1-19                    Revision XXX    Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)    2  lR2 B 3.3.1 BASES LCO (continued)
: 6. Steam Generator Pressure - Low This LCO requires four channels of Steam Generator Pressure - Low per steam generator to be OPERABLE in MODES 1 and 2.
The Allowable Value is sufficiently below the full load operating value for steam pressure so as not to interfere with normal plant operation, but still high enough to provide the required protection in the event of excessive steam demand. Since excessive steam demand causes the RCS to cool down, resulting in positive reactivity addition to the core, a reactor trip is required to offset that effect.
The difference between the Allowable Value and the safety analysis          1 lR2 l
value of 600 psia includes harsh environment uncertainties.                  l 400                                                                    l The Function may be manually bypassed as steam generator pressure is reduced during controlled plant shutdowns. This bypass is permitted at a preset steam generator pressure. The bypass, in conjunction with the ZPMB, allows testing at low temperatures and pressures, and heatup and cooldown with the shutdown CEAs withdrawn. From a bypass condition the trip will be reinstated automatically as steam generator pressure increases above the preset pressure.
7.a, 7.b. Steam Generator Level - Low This LCO requires four channels of Steam Generator Level - Low per steam generator to be OPERABLE in MODES 1 and 2.
The Allowable Value is sufficiently below the normal operating level for the steam generators so as not to cause a reactor trip during normal plant operations. The trip setpoint is high enough to ensure a reactor trip signal is generated before water level drops below the top of the feed ring. The difference between the Allowable Value and the          lR2 5%                                                                                l measurement value includes 10 inches of measurement uncertainty.              l The specified setpoint ensures there will be sufficient water inventory    1 l l
to provide a 10 minute margin before auxiliary feedwater is required          l for the removal of decay heat.                                                l Combustion Engineering STS                B 3.3.1-20                      Revision XXX Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)  2  lR2 B 3.3.1 BASES LCO (continued)
: 8. Axial Power Distribution (APD) - High Local Power Density This LCO requires four channels of APD - High to be OPERABLE in MODE 1  15% RTP.
The Allowable Value curve was derived from an analysis of many                1 axial power shapes with allowances for instrumentation inaccuracies and the uncertainty associated with the excore to incore ASI relationship.
Local Power Density The APD trip is automatically bypassed at < 15% RTP, where it is not required for reactor protection.
: 9. Thermal Margin
: a. Thermal Margin/Low Pressure (TM/LP)
This LCO requires four channels of TM/LP to be OPERABLE in MODES 1 and 2.
The Allowable Value includes allowances for equipment response time, measurement uncertainties, processing error, and a further allowance to compensate for the time delay associated with providing effective termination of the occurrence that exhibits the most rapid decrease in margin to the SL.
This trip may be manually bypassed when THERMAL POWER 1                                                                        1 falls below 1E-4% RTP. This bypass is part of the ZPMB circuitry, which also bypasses the Reactor Coolant Flow - Low trip and provides a T power block signal to the Q power select logic. This ZPMB allows low power physics testing at reduced RCS temperatures and pressures. It also allows heatup and cooldown with shutdown CEAs withdrawn.
: b. Steam Generator Pressure Difference This LCO requires four channels of Steam Generator Pressure Difference to be OPERABLE in MODES 1 and 2.
The Allowable Value is high enough to avoid trips caused by normal operation and minor transients, but ensures DNBR protection in the event of Design Basis Events. The difference          lR2 between the Allowable Value and the 175 psia analysis setpoint        1 l 215 psid                                                                            l allows for 40 psia of measurement uncertainty.                          l l
80 psi harsh Combustion Engineering STS                          B 3.3.1-21                  Revision XXX  Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)  2  lR2 B 3.3.1 BASES LCO (continued) 1 The trip may be bypassed when THERMAL POWER falls below 1E-4% RTP. The Steam Generator Pressure Difference is                1 subject to the ZPMB, since it is an input to the TM/LP trip and is not required for protection at low power levels.
: 10. Loss of Load The LCO requires four Loss of Load trip channels to be OPERABLE in MODE 1  15% RTP.
The Loss of Load trip may be bypassed when THERMAL POWER falls below 15%, since it is no longer needed to prevent lifting of the pressurizer safety valves, steam generator safety valves, or PORVs in the event of a Loss of Load. The Nuclear Steam Supply System and the Steam Dump System are capable of accommodating the Loss of Load without requiring the use of the above equipment.
Interlocks/Bypasses The LCO on bypass permissive removal channels requires that the automatic bypass removal feature of all four operating bypass channels be OPERABLE for each RPS Function with an operating bypass in the MODES addressed in the specific LCO for each Function. All four bypass removal channels must be OPERABLE to ensure that none of the four RPS channels are inadvertently bypassed.
The LCO applies to the bypass removal feature only. If the bypass enable Function is failed so as to prevent entering a bypass condition, operation may continue.
The interlock Allowable Values are based on analysis requirements for the bypassed functions. These are discussed above as part of the LCO discussion for the affected Functions.
APPLICABILITY        This LCO is applicable in accordance with Table 3.3.1-1. Most RPS trips are required to be OPERABLE in MODES 1 and 2 because the reactor is critical in these MODES. The trips are designed to take the reactor subcritical, maintaining the SLs during AOOs and assisting the ESFAS in providing acceptable consequences during accidents. Exceptions are addressed in footnotes to the table. Exceptions to this APPLICABILITY are:
Local Power Density The APD - High Trip and Loss of Load are only applicable in MODE 1          1 15% RTP because they may be automatically bypassed at
                            < 15% RTP, where they are no longer needed.
Combustion Engineering STS                      B 3.3.1-22                    Revision XXX    Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)            2    lR2 B 3.3.1 BASES APPLICABILITY (continued) lR2 The Power Rate of Change - High trip, RPS Logic, RTCBs, and                          l Manual Trip are also required in MODES 3, 4, and 5, with the RTCBs                    l closed, to provide protection for boron dilution and CEA withdrawal                  l l
events. The Power Rate of Change - High trip in these lower                          l 12 MODES is addressed in LCO 3.3.2, "Reactor Protective System                        1  l (RPS) Instrumentation - Shutdown." The RPS Logic in MODES 1, 2,                      l l
3, 4, and 5 is addressed in LCO 3.3.3.                                            1  l 2                                        l l
Most trips are not required to be OPERABLE in MODES 3, 4, and 5. In                        l MODES 3, 4, and 5, the emphasis is placed on return to power events.
The reactor is protected in these MODES by ensuring adequate SDM.
acceptance criteria band ACTIONS            The most common causes of channel inoperability are outright failure or drift of the bistable or process module sufficient to exceed the tolerance              5 allowed by the plant specific setpoint analysis. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination is generally made during the performance of a CHANNEL FUNCTIONAL TEST when the process instrument is set up for adjustment to bring it to within specification. If the trip setpoint is nonconservative with respect to the Allowable Value in Table 3.3.1-1, the channel is declared inoperable immediately, and the appropriate Condition(s) must be entered immediately.
In the event a channel's trip setpoint is found nonconservative with respect to the Allowable Value, or the channel is not functioning as required, or the transmitter, instrument loop, signal processing electronics, or RPS bistable trip unit is found inoperable, then all affected Functions provided by that channel must be declared inoperable, and the plant must enter the Condition for the particular protection Function affected.
When the number of inoperable channels in a trip Function exceeds that specified in any related Condition associated with the same trip Function, then the plant is outside the safety analysis. Therefore, LCO 3.0.3 is immediately entered if applicable in the current MODE of operation.
A Note has been added to the ACTIONS to clarify the application of the Completion Time rules. The Conditions of this Specification may be entered independently for each Function. The Completion Times of each inoperable Function will be tracked separately for each Function, starting from the time the Condition was entered.
Combustion Engineering STS                  B 3.3.1-23                    Revision XXX      Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)      2  lR2 B 3.3.1 BASES ACTIONS (continued)
A.1, A.2.1, and A.2.2 Condition A applies to the failure of a single channel in any RPS automatic trip Function. RPS coincidence logic is normally two-out-of-four.
If one RPS bistable trip unit or associated instrument channel is inoperable, startup or power operation is allowed to continue, providing the inoperable trip unit is placed in bypass or trip within 1 hour (Required Action A.1). With one channel in bypass, no additional random failure of a single channel could spuriously trip the reactor and a valid trip signal can still trip the reactor. With one channel in trip, an additional random failure of a single channel could spuriously trip the reactor. Therefore, it is preferable to place an inoperable channel in bypass rather than trip.
The Completion Time of 1 hour allotted to restore, bypass, or trip the channel is sufficient to allow the operator to take all appropriate actions for the failed channel while ensuring that the risk involved in operating with the failed channel is acceptable.
The failed channel is restored to OPERABLE status or is placed in trip within [48] hours [or in accordance with the Risk Informed Completion Time Program] (Required Action A.2.1 or Required Action A.2.2).
Required Action A.2.1 restores the full capability of the Function.
[ Required Action A.2.2 places the Function in a one-out-of-three configuration. In this configuration, common cause failure of dependent        3 channels cannot prevent trip. ]
The Completion Time of [48] hours is based on operating experience, which has demonstrated that a random failure of a second channel occurring during the [48] hour period is a low probability event.
B.1 and B.2 Condition B applies to the failure of two channels in any RPS automatic trip Function.
Required Action B.1 provides for placing one inoperable channel in bypass and the other channel in trip within the Completion Time of 1 hour.
This Completion Time is sufficient to allow the operator to take all appropriate actions for the failed channels while ensuring that the risk involved in operating with the failed channels is acceptable. With one channel of protective instrumentation bypassed, the RPS is in a two-out-of-three logic; but with another channel failed, the RPS may be operating Combustion Engineering STS                  B 3.3.1-24                    Revision XXX  Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)    2  lR2 B 3.3.1 BASES ACTIONS (continued) in a two-out-of-two logic. This is outside the assumptions made in the analyses and should be corrected. To correct the problem, the second channel is placed in trip. This places the RPS in a one-out-of-two logic. If any of the other OPERABLE channels receives a trip signal, the reactor will trip.
One channel should be restored to OPERABLE status within [48] hours
[or in accordance with the Risk Informed Completion Time Program] for reasons similar to those stated under Condition A. After one channel is restored to OPERABLE status, the provisions of Condition A still apply to    3 the remaining inoperable channel. Therefore, the channel that is still inoperable after completion of Required Action B.2 must be placed in trip if more than [48] hours have elapsed since the initial channel failure.
C.1 and C.2 Local Power Density The excore detectors are used to generate the internal ASI used as an input to the TM/LP and APD - High trips. Incore detectors provide a more    1    lR2 accurate measurement of ASI. If one or more excore detectors cannot be calibrated to match incore detectors, power is restricted or reduced during subsequent operations because of increased uncertainty associated with using uncalibrated excore detectors.
The Completion Time of 24 hours is adequate to perform the SR while minimizing the risk of operating in an unsafe condition.
D.1, D.2.1, D.2.2.1, and D.2.2.2 Condition D applies to one automatic bypass removal channel inoperable.
If the bypass removal channel for any operating bypass cannot be restored to OPERABLE status, the associated RPS channel may be considered OPERABLE only if the bypass is not in effect. Otherwise, the affected RPS channel must be declared inoperable, as in Condition A, and the bypass either removed or the bypass removal channel repaired.
The Bases for Required Actions and Completion Times are the same as discussed for Condition A.
E.1, E.2.1, and E.2.2 Condition E applies to two inoperable automatic bypass removal channels. If the bypass removal channels cannot be restored to OPERABLE status, the associated RPS channel may be considered OPERABLE only if the bypass is not in effect. Otherwise, the affected Combustion Engineering STS                      B 3.3.1-25                  Revision XXX    Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)  2  lR2 B 3.3.1 BASES ACTIONS (continued)
RPS channels must be declared inoperable, as in Condition B, and the bypass either removed or the bypass removal channel repaired. Also, Required Action E.2.2 provides for the restoration of the one affected automatic trip channel to OPERABLE status within the rules of Completion Time specified under Condition B. Completion Times are consistent with Condition B.
F.1 Condition F is entered when the Required Action and associated Completion Time of Conditions A, B, C, D, or E are not met for the Axial    1 Local Power Density Power Distribution and Loss of Load Trip Functions.
If the Required Actions associated with these Conditions cannot be completed within the required Completion Times, the reactor must be brought to a MODE in which the Required Actions do not apply. The allowed Completion Time of 6 hours to reduce THERMAL POWER to
                      < 15% RTP is reasonable, based on operating experience, to decrease power to < 15% RTP from full power conditions in an orderly manner and without challenging plant systems.
G.1 Condition G is entered when the Required Action and associated Completion Time of Conditions A, B, C, D, E, or F are not met.              1    lR2 E                        l If the Required Actions associated with these Conditions cannot be completed within the required Completion Times, the reactor must be brought to a MODE in which the Required Actions do not apply. The allowed Completion Time of 6 hours to be in MODE 3 is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems.
SURVEILLANCE          The SRs for any particular RPS Function are found in the SR column of REQUIREMENTS          Table 3.3.1-1 for that Function. Most Functions are subject to CHANNEL CHECK, CHANNEL FUNCTIONAL TEST, CHANNEL CALIBRATION, and response time testing.
Combustion Engineering STS                    B 3.3.1-26                  Revision XXX  Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)                  2  lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
                    -----------------------------------REVIEWERS NOTE-----------------------------------
In order for a plant to take credit for topical reports as the basis for justifying Frequencies, topical reports must be supported by an NRC staff SER that establishes the acceptability of each topical report for that plant (Ref. 9).
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Notes a and b are applied to the setpoint verification Surveillances for each RPS Instrumentation - Operating (Analog) Function in Table 3.3.1-1 unless one or more of the following exclusions apply:
: 1. Manual actuation circuits, automatic actuation logic circuits or instrument functions that derive input from contacts which have no associated sensor or adjustable device, e.g., limit switches, breaker lR2 position switches, manual actuation switches, float switches, proximity                      4 detectors, etc. are excluded. In addition, those permissives and interlocks that derive input from a sensor or adjustable device that is tested as part of another TS function are excluded.
: 2. Settings associated with safety relief valves are excluded. The performance of these components is already controlled (i.e., trended with as-left and as-found limits) under the ASME Code for Operation and Maintenance of Nuclear Power Plants testing program.
: 3. Functions and Surveillance Requirements which test only digital components are normally excluded. There is no expected change in result between SR performances for these components. Where separate as-left and as-found tolerance is established for digital component SRs, the requirements would apply.
SR 3.3.1.1 Performance of the CHANNEL CHECK ensures that gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION.
Combustion Engineering STS                    B 3.3.1-27                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)                    2  lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the transmitter or the signal processing equipment has drifted outside its limits.
[ The Frequency, about once every shift, is based on operating experience that demonstrates the rarity of channel failure. Since the probability of two random failures in redundant channels in any 12 hour period is extremely low, the CHANNEL CHECK minimizes the chance of loss of protective function due to failure of redundant channels. The CHANNEL                                3 CHECK supplements less formal, but more frequent, checks of channel OPERABILITY during normal operational use of the displays associated with the LCO required channels.
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                    4 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]    3 SR 3.3.1.2 A daily calibration (heat balance) is performed when THERMAL POWER                                          lR2 15                                                                                                      10      l is  20%. The daily calibration shall consist of adjusting the "nuclear                                    l power calibrate" potentiometers to agree with the calorimetric calculation if the absolute difference is > 1.5%. The "T power calibrate"                                    1 potentiometers are then used to null the "nuclear power - T power" indicators on the RPS Reactor Power Calibration and Indication panel.
Performance of the daily calibration ensures that the two inputs to the                            10      lR2 Q power measurement are indicating accurately with respect to the much more accurate secondary calorimetric calculation.
[ The Frequency of 24 hours is based on plant operating experience and takes into account indications and alarms located in the control room to detect deviations in channel outputs.                                                              3 OR Combustion Engineering STS                      B 3.3.1-28                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)                  2    lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                        -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                      4 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                        ------------------------------------------------------------------------------------------------ ]      3 The Frequency is modified by a Note indicating this Surveillance must be 15 performed within 12 hours after THERMAL POWER is  20% RTP. The                                        1 secondary calorimetric is inaccurate at lower power levels. The 12 hours allows time requirements for plant stabilization, data taking, and instrument calibration.
A second Note indicates the daily calibration may be suspended during                              10 lR1  lR2 PHYSICS TESTS. This ensures that calibration is proper preceding and following physics testing at each plateau, recognizing that during testing, changes in power distribution and RCS temperature may render the calorimetric inaccurate.
SR 3.3.1.3 It is necessary to calibrate the excore power range channel upper and Local Power Density lower subchannel amplifiers such that the internal ASI used in the TM/LP and APD - High trips reflects the true core power distribution as                                      1 determined by the incore detectors. A Note to the Frequency indicates 15 the Surveillance is required within 12 hours after THERMAL POWER is
[20]% RTP. Uncertainties in the excore and incore measurement process make it impractical to calibrate when THERMAL POWER is
                        < [20]% RTP. The Completion Time of 12 hours allows time for plant stabilization, data taking, and instrument calibration. If the excore detectors are not properly calibrated to agree with the incore detectors, power is restricted during subsequent operations because of increased uncertainty associated with using uncalibrated excore detectors. [ The 31 day Frequency is adequate, based on operating experience of the                                      3 excore linear amplifiers and the slow burnup of the detectors. The excore readings are a strong function of the power produced in the peripheral fuel bundles and do not represent an integrated reading across the core.
Slow changes in neutron flux during the fuel cycle can also be detected at this Frequency.
OR Combustion Engineering STS                        B 3.3.1-29                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)                2    lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                        -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                  4 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                        ------------------------------------------------------------------------------------------------ ]  3 SR 3.3.1.4 A CHANNEL FUNCTIONAL TEST is performed on each RPS instrument channel, except Loss of Load and Power Rate of Change to ensure the entire channel will perform its intended function when needed. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.
In addition to power supply tests, The RPS CHANNEL FUNCTIONAL                                          lR2 TEST consists of three overlapping tests as described in Reference 8.                                  l These tests verify that the RPS is capable of performing its intended function, from bistable input through the RTCBs. They include:
Bistable Tests The bistable setpoint must be found to trip conservative with respect to the Allowable Values specified in the LCO and left set consistent with the                            lR2 assumptions of the plant specific setpoint analysis (Ref. 7). As-found and                            l as-left values must also be recorded and reviewed for consistency with the assumptions of the frequency extension analysis. The requirements for this review are outlined in Reference 10.                                                          lR2 9                                                                                                              l A test signal is superimposed on the input in one channel at a time to acceptance criteria verify that the bistable trips within the specified tolerance around the                            1 setpoint. This is done with the affected RPS channel trip channel bypassed. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint analysis.
Combustion Engineering STS                          B 3.3.1-30                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)                  2    lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
For Functions 7a and 7b                                                                                                                          lR2 (Steam Generator Level A          SR 3.3.1.4 is modified by two Notes as identified in Table 3.3.1-1. The                                        l and B - Low, respectively),      first Note requires evaluation of channel performance for the condition                                        l where the as-found setting for the channel setpoint is outside its as-found acceptance criteria band tolerance but conservative with respect to the Allowable Value.                                            5 (e.g., outside the conservative      Evaluation of channel performance will verify that the channel will side of the as-found                continue to behave in accordance with safety analysis assumptions and acceptance criteria band) the channel performance assumptions in the setpoint methodology. The purpose of the assessment is to ensure confidence in the channel performance prior to returning the channel to service. For channels determined to be OPERABLE but degraded, after returning the channel to service the performance of these channels will be evaluated under the plant Corrective Action Program. Entry into the Corrective Action Program will ensure required review and documentation of the condition.
The second Note requires that the as-left setting for the channel be acceptance criteria band                                                                                                                5 returned to within the as-left tolerance of the [LTSP]. Where a setpoint                                      lR2 field trip setpoint more conservative than the [LTSP] is used in the plant surveillance                                    3      l Trip Setpoint                                                                                                                  l procedures [NTSP], the as-left and as-found tolerances, as applicable,                                      5 acceptance criteria bands will be applied to the surveillance procedure setpoint. This will ensure 1
that sufficient margin to the Safety Limit and/or Analytical Limit is maintained. If the as-left channel setting cannot be returned to a setting acceptance criteria band within the as-left tolerance of the [LTSP], then the channel shall be                                  3 declared inoperable.                field trip setpoint                                                        lR2 5 l the field trip setpoint l
The second Note also requires that [LTSP] and the methodologies for                                            l acceptance criteria bands                                                                                                                5 calculating the as-left and the as-found tolerances be in [insert the facility                          3 FSAR reference or the name of any document incorporated into the facility FSAR by reference].
Section 7.2 of the Updated Final Safety Analysis Report      12 lR2 Matrix Logic Tests 2
Matrix Logic tests are addressed in LCO 3.3.3. This test is performed                                      1 one matrix at a time. It verifies that a coincidence in the two input channels for each Function removes power from the matrix relays.
During testing, power is applied to the matrix relay test coils and prevents the matrix relay contacts from assuming their de-energized state. This test will detect any short circuits around the bistable contacts in the coincidence logic, such as may be caused by faulty bistable relay or trip channel bypass contacts.
Combustion Engineering STS                                  B 3.3.1-31                                  Revision XXX          Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)                2  lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
Trip Path Tests 2
Trip Path (Initiation Logic) tests are addressed in LCO 3.3.3. These tests                        1 are similar to the Matrix Logic tests, except that test power is withheld from one matrix relay at a time, allowing the initiation circuit to de-energize, opening the affected set of RTCBs. The RTCBs must then be closed prior to testing the other three initiation circuits, or a reactor trip may result.
[ The Frequency of [92] days is based on the reliability analysis presented in topical report CEN-327, "RPS/ESFAS Extended Test Interval Evaluation" (Ref. 10).                                                                            3 OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                              -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency 4
description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                              ------------------------------------------------------------------------------------------------ ] 3 SR 3.3.1.5 A CHANNEL CALIBRATION of the excore power range channels ensures The acceptance criteria band that the channels are reading accurately and within tolerance. The                                5 Surveillance verifies that the channel responds to a measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drift between successive calibrations to ensure that the channel remains operational between successive tests. CHANNEL CALIBRATIONS must be performed consistent with the plant specific setpoint analysis.
The as-found and as-left values must also be recorded and reviewed for                                lR1 l
consistency with the assumptions of the frequency extension analysis.                              1 l
The requirements for this review are outlined in Reference [10].                                      l A Note is added stating that the neutron detectors are excluded from CHANNEL CALIBRATION because they are passive devices with minimal drift and because of the difficulty of simulating a meaningful signal. Slow changes in detector sensitivity are compensated for by Combustion Engineering STS                              B 3.3.1-32                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)                2    lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued) performing the daily calorimetric calibration (SR 3.3.1.2) and the monthly                        10  lR2 linear subchannel gain check (SR 3.3.1.3). In addition, associated control room indications are continuously monitored by the operators.
[ The Frequency of 92 days is acceptable, based on plant operating experience, and takes into account indications and alarms available to the operator in the control room.                                                                      3 OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                  4 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]  3 SR 3.3.1.5 is modified by two Notes as identified in Table 3.3.1-1. The                                lR2 l
first Note requires evaluation of channel performance for the condition                                l where the as-found setting for the channel setpoint is outside its as-found                            l l
tolerance but conservative with respect to the Allowable Value.                                        l Evaluation of channel performance will verify that the channel will                                    l continue to behave in accordance with safety analysis assumptions and                                  l l
the channel performance assumptions in the setpoint methodology. The                                  l purpose of the assessment is to ensure confidence in the channel                                      l performance prior to returning the channel to service. For channels                                    l 12 l
determined to be OPERABLE but degraded, after returning the channel to                                l service the performance of these channels will be evaluated under the                                  l l
plant Corrective Action Program. Entry into the Corrective Action                                      l Program will ensure required review and documentation of the condition.                                l The second Note requires that the as-left setting for the channel be                                  l l
returned to within the as-left tolerance of the [LTSP]. Where a setpoint                              l more conservative than the [LTSP] is used in the plant surveillance                                    l procedures [NTSP], the as-left and as-found tolerances, as applicable,                                l l
will be applied to the surveillance procedure setpoint. This will ensure                              l that sufficient margin to the Safety Limit and/or Analytical Limit is                                  l l
maintained. If the as-left channel setting cannot be returned to a setting                            l within the as-left tolerance of the [LTSP], then the channel shall be                                  l declared inoperable.                                                                                  l Combustion Engineering STS                    B 3.3.1-33                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)    2    lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued) lR2 The second Note also requires that [LTSP] and the methodologies for                  l calculating the as-left and the as-found tolerances be in [insert the facility    lR1 l FSAR reference or the name of any document incorporated into the                12  l l
facility FSAR by reference].                                                          l SR 3.3.1.6 A CHANNEL FUNCTIONAL TEST on the Loss of Load and Power Rate of Change channels is performed prior to a reactor startup to ensure the entire channel will perform its intended function if required. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay.
This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical The Loss of Load trip          Specifications tests at least once per refueling interval with applicable        lR1 l
Function is not tested        extensions. The Loss of Load pressure sensor cannot be tested during              l during reactor operation because performing this        reactor operation without closing the high pressure TSV, which would              l test during operation could    result in a turbine trip or reactor trip. The Power Rate of Change - High      1  l cause a pressure                                                                                                l trip Function is required during startup operation and is bypassed when          l perturbation in the emergency trip fluid header    shut down or > 15% RTP.                                                          l common to all four                                                                                              l channels resulting in a                                                                                              lR2 turbine trip and reactor trip.
SR 3.3.1.6 is modified by two Notes as identified in Table 3.3.1-1. The l
first Note requires evaluation of channel performance for the condition              l where the as-found setting for the channel setpoint is outside its as-found          l l
tolerance but conservative with respect to the Allowable Value.                      l Evaluation of channel performance will verify that the channel will                  l continue to behave in accordance with safety analysis assumptions and                l l
the channel performance assumptions in the setpoint methodology. The                  l purpose of the assessment is to ensure confidence in the channel                      l performance prior to returning the channel to service. For channels                  l 12  l determined to be OPERABLE but degraded, after returning the channel to                l service the performance of these channels will be evaluated under the                l l
plant Corrective Action Program. Entry into the Corrective Action                    l Program will ensure required review and documentation of the condition.              l The second Note requires that the as-left setting for the channel be                  l l
returned to within the as-left tolerance of the [LTSP]. Where a setpoint              l more conservative than the [LTSP] is used in the plant surveillance                  l procedures [NTSP], the as-left and as-found tolerances, as applicable,                l l
will be applied to the surveillance procedure setpoint. This will ensure              l that sufficient margin to the Safety Limit and/or Analytical Limit is                l l
maintained. If the as-left channel setting cannot be returned to a setting            l within the as-left tolerance of the [LTSP], then the channel shall be                l declared inoperable.                                                                  l Combustion Engineering STS                          B 3.3.1-34                  Revision XXX    Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)    2  lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued) lR2 The second Note also requires that [LTSP] and the methodologies for                l calculating the as-left and the as-found tolerances be in [insert the facility 12  l FSAR reference or the name of any document incorporated into the                    l l
facility FSAR by reference].                                                        l SR 3.3.1.7 SR 3.3.1.7 is a CHANNEL FUNCTIONAL TEST similar to SR 3.3.1.4, except SR 3.3.1.7 is applicable only to bypass Functions and is                    lR1 1
performed once within 92 days prior to each startup. A successful test of          l the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay.
This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Proper operation of bypass permissives is critical during plant startup because the bypasses must be in place to allow startup operation and must be removed at the appropriate points during power ascent to enable certain reactor trips. Consequently, the appropriate time          lR1 to verify bypass removal function OPERABILITY is just prior to startup.            l l
The allowance to conduct this test within 92 days of startup is based on      1    l the reliability analysis presented in topical report CEN-327, "RPS/ESFAS            l l
Extended Test Interval Evaluation" (Ref. 10). Once the operating bypasses are removed, the bypasses must not fail in such a way that the associated trip Function gets inadvertently bypassed. This feature is verified by the trip Function CHANNEL FUNCTIONAL TEST, SR 3.3.1.4.
Therefore, further testing of the bypass function after startup is            1 lR1 l
unnecessary.
SR 3.3.1.8 SR 3.3.1.8 is the performance of a CHANNEL CALIBRATION.
CHANNEL CALIBRATION is a complete check of the instrument channel including the sensor. The Surveillance verifies that the channel responds to a measured parameter within the necessary range and accuracy.
CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drift between successive calibrations to ensure that the channel remains operational between successive tests. CHANNEL CALIBRATIONS must be performed consistent with the plant specific setpoint analysis.
Combustion Engineering STS                  B 3.3.1-35                    Revision XXX    Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)  2  lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
The as-found and as-left values must also be recorded and reviewed for            lR2 l
consistency with the assumptions of the frequency extension analysis.          1  l The requirements for this review are outlined in Reference [10].                  l SR 3.3.1.8 is modified by two Notes as identified in Table 3.3.1-1. The            lR2 l
first Note requires evaluation of channel performance for the condition            l where the as-found setting for the channel setpoint is outside its as-found        l l
tolerance but conservative with respect to the Allowable Value.                12 l
Evaluation of channel performance will verify that the channel will                l continue to behave in accordance with safety analysis assumptions and              l l
the channel performance assumptions in the setpoint methodology. The              l purpose of the assessment is to ensure confidence in the channel                  l performance prior to returning the channel to service. For channels                l l
determined to be OPERABLE but degraded, after returning the channel to            l service the performance of these channels will be evaluated under the              l l
plant Corrective Action Program. Entry into the Corrective Action                  l Program will ensure required review and documentation of the condition.            l l
l The second Note requires that the as-left setting for the channel be              l returned to within the as-left tolerance of the [LTSP]. Where a setpoint          l more conservative than the [LTSP] is used in the plant surveillance                l l
procedures [NTSP], the as-left and as-found tolerances, as applicable,        12  l will be applied to the surveillance procedure setpoint. This will ensure          l l
that sufficient margin to the Safety Limit and/or Analytical Limit is              l maintained. If the as-left channel setting cannot be returned to a setting        l within the as-left tolerance of the [LTSP], then the channel shall be              l l
declared inoperable.                                                              l l
The second Note also requires that [LTSP] and the methodologies for                l l
calculating the as-left and the as-found tolerances be in [insert the facility 12 l
FSAR reference or the name of any document incorporated into the                  l l
facility FSAR by reference] .                                                      l
[ The Frequency is based upon the assumption of an 18 month calibration 3
interval for the determination of the magnitude of equipment drift.
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Combustion Engineering STS                  B 3.3.1-36                  Revision XXX    Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)                    2  lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency 4
description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]
The Surveillance is modified by a Note to indicate that the neutron detectors are excluded from CHANNEL CALIBRATION because they are passive devices with minimal drift and because of the difficulty of simulating a meaningful signal. Slow changes in detector sensitivity are compensated for by performing the calorimetric calibration (SR 3.3.1.2) and the linear subchannel gain check (SR 3.3.1.3).
SR 3.3.1.9 This SR ensures that the RPS RESPONSE TIMES are verified to be less than or equal to the maximum values assumed in the safety analysis.
Individual component response times are not modeled in the analyses.
The analyses model the overall or total elapsed time from the point at which the parameter exceeds the trip setpoint value at the sensor to the point at which the RTCBs open. [ Response times are conducted on an
[18] month STAGGERED TEST BASIS. This results in the interval between successive surveillances of a given channel of n x 18 months, where n is the number of channels in the function. The Frequency of
[18] months is based upon operating experience, which has shown that random failures of instrumentation components causing serious response                            3 time degradation, but not channel failure, are infrequent occurrences.
Also, response times cannot be determined at power, since equipment operation is required.
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                4 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]  3 Combustion Engineering STS                    B 3.3.1-37                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)                  2    lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
Testing may be performed in one measurement or in overlapping segments, with verification that all components are tested.
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Applicable portions of the following TS Bases are applicable to plants adopting CEOG Topical Report CE NPSD-1167-1, "Elimination of                                          4 Pressure Sensor Response Time Testing Requirements," and the methodology contained in Attachment 1 to TSTF-569.
Response time may be verified by any series of sequential, overlapping or total channel measurements, including allocated sensor response time, such that the response time is verified. Allocations for sensor response times may be obtained from records of test results, vendor test data, or vendor engineering specifications. Topical Report CE NPSD-1167-A, 9
                    "Elimination of Pressure Sensor Response Time Testing Requirements,"                                        lR2 (Ref. 11) provides the basis and methodology for using allocated sensor                                lR1 l response times in the overall verification of the channel response time for                            l specific sensors identified in the Topical Report. The response time may                            1 be verified for components that replace the components that were                                            lR2 9
previously evaluated in Ref. 11 provided that the components have been                                  lR1 l evaluated in accordance with the NRC approved methodology as                                            l discussed in Attachment 1 to TSTF-569, Methodology to Eliminate 10 Pressure Sensor and Protection Channel (for Westinghouse Plants only)                                        lR2 Response Time Testing, (Ref. 12). Response time verification for other                            1    lR1 l sensor types must be demonstrated by test. The allocation of sensor                                    l response times must be verified prior to placing a new component in operation and reverified after maintenance that may adversely affect the sensor response time.
A Note is added to indicate that the neutron detectors are excluded from RPS RESPONSE TIME testing because they are passive devices with minimal drift and because of the difficulty of simulating a meaningful signal. Slow changes in detector sensitivity are compensated for by performing the daily calorimetric calibration (SR 3.3.1.2).                                          10    lR2 12    lR2 REFERENCES                                                                                                                    l
: 1. Regulatory Guide 1.105, Revision 3, "Setpoints for Safety-Related                                    l Instrumentation."                                                                                    l lR2
: 2. 10 CFR 50, Appendix A, GDC 21.                                                                  1 l
50.67                                                                            l
: 3. 10 CFR 100.                                                                                          l l
l
: 4. IEEE Standard 279-1971, April 5, 1972.                                                              l l
Combustion Engineering STS                    B 3.3.1-38                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)                2    lR2 B 3.3.1 BASES REFERENCES (continued) 3
: 5. FSAR, Chapter [14].                                                                            lR2 l
U                  15                                                                      l
: 6. 10 CFR 50.49.                                                                                  l IC-3.17, Instrument Setpoint Methodology for Nuclear Power Plants      l l
: 7.    "Plant Protection System Selection of Trip Setpoint Values."                                    l l
3    l
: 8. FSAR, Section [7.2].                                                                            l U                                                                                          l 1
: 9. NRC Safety Evaluation Report, [Date].
: 10. CEN-327, June 2, 1986, including Supplement 1, March 3, 1989.                              lR1 l
l
: 11. CEOG Topical Report CE NPSD-1167-A, "Elimination of Pressure                                l 9        Sensor Response Time Testing Requirements."                                                l  lR2 l
l
: 12. Attachment 1 to TSTF-569, "Methodology to Eliminate Pressure                                l 10                                                                                                    l  lR2 Sensor and Protection Channel (for Westinghouse Plants only)
Response Time Testing."
Combustion Engineering STS                B 3.3.1-39                            Revision XXX        Rev. 5.0          lR2 St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog) 2 lR2 B 3.3.1 BASES Combustion Engineering STS                B 3.3.1-40                Revision XXX    Rev. 5.0  lR2 St. Lucie - Unit 1
 
RPS Instrumentation - Operating (Analog)          2 lR2 B 3.3.1 B 3.3 INSTRUMENTATION (Analog) 2 B 3.3.1 Reactor Protective System (RPS) Instrumentation - Operating (Analog)                                    lR2 BASES BACKGROUND          The Reactor Protective System (RPS) initiates a reactor trip to protect against violating the core specified acceptable fuel design limits and breaching the reactor coolant pressure boundary (RCPB) during anticipated operational occurrences (AOOs). By tripping the reactor, the RPS also assists the Engineered Safety Features (ESF) systems in mitigating accidents.
The protection and monitoring systems have been designed to ensure safe operation of the reactor. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the RPS, as well as LCOs on other reactor system parameters and equipment performance.
Technical Specifications are required by 10 CFR 50.36 to include LSSS for variables that have significant safety functions. LSSS are defined by the regulation as "Where a LSSS is specified for a variable on which a safety limit has been placed, the setting must be chosen so that automatic protective actions will correct the abnormal situation before a Safety Limit (SL) is exceeded." The Analytical Limit is the limit of the process variable at which a safety action is initiated, as established by the safety analysis, to ensure that a SL is not exceeded. Any automatic protection action that occurs on reaching the Analytical Limit therefore ensures that the SL is not exceeded. However, in practice, the actual settings for automatic protection channels must be chosen to be more conservative than the Analytical Limit to account for channel uncertainties related to the setting at which the automatic protective action would actually occur.
                    ---------------------------------REVIEWER'S NOTE-------------------------------------
The term "Limiting Trip Setpoint" [LTSP] is generic terminology for the calculated trip setting (setpoint) value calculated by means of the plant specific setpoint methodology documented in a document controlled under 10 CFR 50.59. The term [LTSP] indicates that no additional margin has been added between the Analytical Limit and the calculated trip setting.                                                                              4 "Nominal Trip Setpoint [NTSP]" is the suggested terminology for the actual setpoint implemented in the plant surveillance procedures where margin has been added to the calculated [LTSP]. The as-found and as-left tolerances will apply to the [NTSP] implemented in the Surveillance procedures to confirm channel performance.
Combustion Engineering STS                      B 3.3.1-1                  Revision XXX      Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                2 lR2 B 3.3.1 BASES BACKGROUND (continued)
Licensees are to insert the name of the document(s) controlled under 10 CFR 50.59 that contain the methodology for calculating the as-left and as-found tolerances in Note b of Table 3.3.1-1 for the phrase "[insert the name of a document controlled under 10 CFR 50.59 such as the Technical Requirements Manual or any document incorporated into the facility FSAR]" throughout these Bases.                                                            4 Where the [LTSP] is not included in Table 3.3.1-1, the plant specific location for the [LTSP] or [NTSP] must be cited in Note b of Table 3.3.1-1.
The brackets indicate plant specific terms may apply, as reviewed and approved by the NRC.
Allowable Value                                                                                                        lR2 The [Limiting Trip Setpoint (LTSP)] specified in Table 3.3.1-1 is a                                1  l predetermined setting for a protection channel chosen to ensure automatic actuation prior to the process variable reaching the Analytical field trip setpoint        Limit and thus ensuring that the SL would not be exceeded. As such, the                              lR2 l
value specified in        [LTSP] accounts for uncertainties in setting the channel (e.g., calibration),                        l plant procedures uncertainties in how the channel might actually perform (e.g.,                                    3  l repeatability), changes in the point of action of the channel over time (e.g., drift during surveillance intervals), and any other factors which may field trip setpoint influence its actual performance (e.g., harsh accident environments). In                              lR2 this manner, the [LTSP] ensures that SLs are not exceeded. Therefore,                                l between calibration intervals the [LTSP] meets the definition of an LSSS (Ref. 1).                                              1  l The Allowable Value                                                                                                                l considers the maximum                                                                                                                l allowable instrument drift      Technical Specifications contain values related to the OPERABILITY of                                l between calibration        equipment required for safe operation of the facility. OPERABLE is                                    l intervals and thus, is the                                                                                                          l defined in Technical Specifications as "...being capable of performing its                            l safety function(s)." Relying solely on the [LTSP] to define OPERABILITY                              l in Technical Specifications would be an overly restrictive requirement if it were applied as an OPERABILITY limit for the "as-found" value of a protection channel setting during a Surveillance. This would result in Technical Specification compliance problems, as well as reports and corrective actions required by the rule which are not necessary to ensure Trip Setpoint safety. For example, an automatic protection channel with a setting that                              lR2 has been found to be different from the [LTSP] due to some drift of the 3
setting may still be OPERABLE because drift is to be expected. This field trip setpoint expected drift would have been specifically accounted for in the setpoint                            lR2 methodology for calculating the [LTSP] and thus the automatic protective action would still have ensured that the SL would not be exceeded with the "as-found" setting of the protection channel. Therefore, the channel would still be OPERABLE because it would have performed its safety acceptance criteria band function and the only corrective action required would be to reset the channel within the established as-left tolerance around the [LTSP] to                              5  lR2 account for further drift during the next surveillance interval. Note that, field trip setpoint                                                                                                        lR2 Combustion Engineering STS                                    B 3.3.1-2                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)          2 lR2 B 3.3.1 BASES BACKGROUND (continued)                                                            acceptance criteria band although the channel is OPERABLE under these circumstances, the trip setpoint must be left adjusted to a value within the as-left tolerance in            5 lR2 accordance with uncertainty assumptions stated in the referenced setpoint methodology (as-left criteria), and confirmed to be operating                lR2 within the statistical allowances of the uncertainty terms assigned (as-              l l
found criteria).
However, there is also some point beyond which the channel may not be able to perform its function due to, for example, greater than expected drift. This value needs to be specified in the Technical Specifications in order to define OPERABILITY of the channels and is designated as the Allowable Value.
If the actual setting (as-found setpoint) of the channel is found to be acceptance criteria conservative with respect to the Allowable Value but is beyond the as-                lR2 l
found tolerance band, the channel is OPERABLE, but degraded. The                      l degraded condition will be further evaluated during performance of the              5 SR. This evaluation will consist of resetting the channel setpoint to the              lR2 l
[Nominal Trip Setpoint (NTSP)] (within the allowed tolerance), and                  3 l evaluating the channel response. If the channel is functioning as required            l and is expected to pass the next surveillance, then the channel is OPERABLE and can be restored to service at the completion of the surveillance. After the surveillance is completed, the channel as-found condition will be entered into the Corrective Action Program for further evaluation.
During AOOs, which are those events expected to occur one or more times during the plant life, the acceptable limits are:
The departure from nucleate boiling ratio (DNBR) shall be maintained above the SL value to prevent departure from nucleate boiling, Fuel centerline melting shall not occur, and The Reactor Coolant System (RCS) pressure SL of [2750] psia shall              3 not be exceeded.
Maintaining the parameters within the above values ensures that the offsite dose will be within the 10 CFR 50 (Ref. 2) and 10 CFR 100                    1 (Ref. 3) criteria during AOOs.                                                        lR2 50.67            l Combustion Engineering STS                      B 3.3.1-3                    Revision XXX        Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)  2  lR2 B 3.3.1 BASES BACKGROUND (continued)
Accidents are events that are analyzed even though they are not expected to occur during the plant life. The acceptable limit during accidents is that the offsite dose shall be maintained within an acceptable 50.67                                                                                    1 fraction of 10 CFR 100 (Ref. 3) limits. Different accident categories allow      lR2 l
a different fraction of these limits based on probability of occurrence.
Meeting the acceptable dose limit for an accident category is considered having acceptable consequences for that event.
The RPS is segmented into four interconnected modules. These modules are:
Measurement channels, Bistable trip units, RPS Logic, and Reactor trip circuit breakers (RTCBs).
This LCO addresses measurement channels and bistable trip units. It also addresses the automatic bypass removal feature for those trips with operating bypasses. The RPS Logic and RTCBs are addressed in LCO 3.3.3, "Reactor Protective System (RPS) Logic and Trip Initiation."        1 2
The role of each of these modules in the RPS, including those associated with the logic and RTCBs, is discussed below.
Measurement Channels Measurement channels, consisting of field transmitters or process sensors and associated instrumentation, provide a measurable electronic signal based upon the physical characteristics of the parameter being measured.
The excore nuclear instrumentation and the analog core protection calculators (CPCs) are considered components in the measurement channels. The wide range nuclear instruments (NIs) provide a Power Rate of Change - High Trip. Three RPS trips use a power level designated as Q power as an input. Q power is the higher of NI power and primary calorimetric power (T power) based on RCS hot leg and cold leg temperatures. Trips using Q power as an input include the Level Variable High Power Trip (VHPT) - High, Thermal Margin/Low Pressure              lR2 (TM/LP), and the Axial Power Distribution (APD) - High trips.                  1 Local                            Density Combustion Engineering STS                  B 3.3.1-4                    Revision XXX    Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)    2 lR2 B 3.3.1 BASES BACKGROUND (continued)
Local Power Density    The analog CPCs provide the complex signal processing necessary to calculate the TM/LP trip setpoint, APD trip setpoint, VHPT trip setpoint,      1 lR2 Variable Power Level - High and Q power calculation.                                                        lR2 linear The excore NIs (wide range and power range) and the analog CPCs                1 Local Power Density (TM/LP and APD calculators) are mounted in the RPS cabinet, with one channel of each in each of the four RPS bays.
Four identical measurement channels, designated channels A through D, with electrical and physical separation are provided for each parameter used in the direct generation of trip signals. Measurement channels provide input to one or more RPS bistables within the same RPS channel.
In addition, some measurement channels may also be used as inputs to Engineered Safety Features Actuation System (ESFAS) bistables, and most provide indication in the control room. Measurement channels used as an input to the RPS are never used for control functions.
When a channel monitoring a parameter exceeds a predetermined setpoint, indicating an unsafe condition, the bistable monitoring the parameter in that channel will trip. Tripping two or more channels of the bistables monitoring the same parameter de-energizes Matrix Logic,            7 which in turn de-energizes the Initiation Logic. This causes all eight RTCBs to open, interrupting power to the control element assemblies (CEAs), allowing them to fall into the core.
Three of the four measurement and bistable channels are necessary to meet the redundancy and testability of GDC 21 in 10 CFR 50, Appendix A (Ref. 2). The fourth channel provides additional flexibility by allowing one  1 lR2 l
channel to be removed from service (trip channel bypass) for maintenance or testing while still maintaining a minimum two-out-of-three logic. Thus, even with a channel inoperable, no single additional failure in the RPS can either cause an inadvertent trip or prevent a required trip from occurring.
Since no single failure will either cause or prevent a protective system actuation, and no protective channel feeds a control channel, this arrangement meets the requirements of IEEE Standard 279-1971                  1 (Ref. 4).                                                                        lR2 l
Many of the RPS trips are generated by comparing a single measurement field trip setpoint                                                                                  lR2 to a fixed bistable [LTSP]. Certain Functions, however, make use of more      3 than one measurement to provide a trip. The following trips use multiple measurement channel inputs:
Combustion Engineering STS                              B 3.3.1-5                    Revision XXX    Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)  2 lR2 B 3.3.1 BASES BACKGROUND (continued)
Steam Generator Level - Low This trip uses the lower of the two steam generator levels as an input to a common bistable.
Steam Generator Pressure - Low This trip uses the lower of the two steam generator pressures as an input to a common bistable.
Level Variable High Power Trip (VHPT) - High                                      lR2 l
Variable Power Level - High                                                                              1 l The VHPT uses Q power as its only input. Q power is the higher of          l NI power and T power. It has a trip setpoint that tracks power levels downward so that it is always within a fixed increment above current power, subject to a minimum value.
On power increases, the trip setpoint remains fixed unless manually reset, at which point it increases to the new setpoint, a fixed increment above Q power at the time of reset, subject to a maximum value. Thus, during power escalation, the trip setpoint must be repeatedly reset to avoid a reactor trip.
Thermal Margin/Low Pressure (TM/LP) and Steam Generator Pressure Difference Q power is only one of several inputs to the TM/LP trip. Other inputs include internal ASI and cold leg temperature based on the higher of two cold leg resistance temperature detectors. The TM/LP trip setpoint is a complex function of these inputs and represents a minimum acceptable RCS pressure to be compared to actual RCS pressure in the TM/LP trip unit.
Steam generator pressure is also an indirect input to the TM/LP trip via the Steam Generator Pressure Difference. This Function provides a reactor trip when the secondary pressure in either steam generator exceeds that of the other generator by greater than a fixed amount. The trip is implemented by biasing the TM/LP trip setpoint upward so as to ensure TM/LP trip if an asymmetric steam generator transient is detected.
Axial Power Distribution (APD) - High Local Power Density Q Power and ASI are inputs to the APD trip. The APD trip setpoint is      1 a function of Q power, being more restrictive at higher power levels.
It provides a reactor trip if actual ASI exceeds the APD trip setpoint.
Local Power Density Combustion Engineering STS                          B 3.3.1-6                  Revision XXX  Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                2    lR2 B 3.3.1 BASES BACKGROUND (continued)
Bistable Trip Units Bistable trip units, mounted in the RPS cabinet, receive an analog input from the measurement channels, compare the analog input to trip setpoints, and provide contact output to the Matrix Logic. They also provide local trip indication and remote annunciation.
There are four channels of bistable trip units, designated A through D, for each RPS Function, one for each measurement channel. Bistable output relays de-energize when a trip occurs.
The contacts from these bistable relays are arranged into six coincidence matrices, comprising the Matrix Logic. If bistables monitoring the same parameter in at least two channels trip, the Matrix Logic will generate a reactor trip (two-out-of-four logic).
Some of the RPS measurement channels provide contact outputs to the RPS, so the comparison of an analog input to a trip setpoint is not necessary. In these cases, the bistable trip unit is replaced with an auxiliary trip unit. The auxiliary trip units provide contact multiplication so the single input contact opening can provide multiple contact outputs to the coincidence logic as well as trip indication and annunciation.
Local Power Density  Trips employing auxiliary trip units include the Loss of Load trip and the APD - High trip. The Loss of Load trip is a contact input from the Electro                        1 turbine generator control system hydraulic Hydraulic Control System control oil pressure on each of the four high                                lR1 pressure stop valves. switches S          mounted on the emergency    sensed by                            l trip fluid line common header                                                l Local Power Density The APD trip, described above, is a complex function in which the actual 1
trip comparison is performed within the CPC. Therefore the APD - High trip unit employs a contact input from the CPC.                            Local Power Density All RPS trips, with the exception of the Loss of Load trip, generate a pretrip alarm as the trip setpoint is approached.
The trip setpoints used in the bistable trip units are based on the              Trip Setpoint        lR2 l
analytical limits stated in Reference 5. The calculation of the [LTSP]                            3  l specified in Table 3.3.1-1 is such that adequate protection is provided when all sensor and processing time delays are taken into account. To                          1 acceptance criteria bands allow for calibration tolerances, instrumentation uncertainties, instrument                          5 drift, and severe environment errors - for those RPS channels that must                                lR2 function in harsh environments, as defined by 10 CFR 50.49 (Ref. 6) -                                  l Allowable Values specified in Table 3.3.1-1, in the accompanying LCO, Combustion Engineering STS                          B 3.3.1-7                            Revision XXX  Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)        2  lR2 B 3.3.1 BASES BACKGROUND (continued) are conservatively adjusted with respect to the analytical limits. A detailed description of the methodology used to calculate the trip IC-3.17, Instrument Setpoint Methodology for        setpoints, including their explicit uncertainties, is provided in the "Plant          lR2 1
Nuclear Power Plants          Protection System Selection of Trip Setpoint Values" (Ref. 7). The trip                l setpoint entered into the bistable is normally still more conservative than that specified by the Allowable Value, to account for changes in random measurement errors detectable by a CHANNEL FUNCTIONAL TEST.
One example of such a change in measurement error is drift during the interval between surveillances.
field trip setpoint The [LTSP] is the value at which the bistable is set and is the expected 3  lR2 value to be achieved during calibration. The [LTSP] value is the LSSS                  l AV and ensures the safety analysis limits are met for the surveillance interval selected when a channel is adjusted based on stated channel uncertainties.
Trip Setpoint                                              acceptance criteria bands                    lR2
[LTSPs], in conjunction with the use of as-found and as-left tolerances,        3  5 l consistent with the requirements of the Allowable Value will ensure that SLs of Chapter 2.0 are not violated during AOOs and the consequences of DBAs will be acceptable, providing the plant is operated from within the LCOs at the onset of the AOO or DBA and the equipment functions as designed.
Note that in the accompanying LCO 3.3.1, the Allowable Values of Table 3.3.1-1 are the least conservative value of the as-found setpoint that a channel can have during a periodic CHANNEL CALIBRATION or CHANNEL FUNCTIONAL TEST.
RPS Logic 2
The RPS Logic, addressed in LCO 3.3.3, consists of both Matrix and                  1 Initiation Logic and employs a scheme that provides a reactor trip when bistables in any two out of the four channels sense the same input parameter trip. This is called a two-out-of-four trip logic. This logic and        6 the RTCB configuration are shown in Figure B 3.3.1-1.
Bistable relay contact outputs from the four channels are configured into six logic matrices. Each logic matrix checks for a coincident trip in the same parameter in two bistable channels. The matrices are designated the AB, AC, AD, BC, BD, and CD matrices to reflect the bistable channels being monitored. Each logic matrix contains four normally energized matrix relays. When a coincidence is detected, consisting of a trip in the same Function in the two channels being monitored by the logic matrix, all four matrix relays de-energize.
Combustion Engineering STS                              B 3.3.1-8                      Revision XXX  Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)    2 lR2 B 3.3.1 BASES BACKGROUND (continued)
The matrix relay contacts are arranged into trip paths, with one of the four matrix relays in each matrix opening contacts in one of the four trip paths.
Each trip path provides power to one of the four normally energized RTCB control relays (K1, K2, K3, and K4). The trip paths thus each have six contacts in series, one from each matrix, and perform a logical OR function, opening the RTCBs if any one or more of the six logic matrices indicate a coincidence condition.
Each trip path is responsible for opening one set of two of the eight RTCBs. The RTCB control relays (K-relays), when de-energized, interrupt power to the breaker undervoltage trip attachments and simultaneously apply power to the shunt trip attachments on each of the two breakers. Actuation of either the undervoltage or shunt trip attachment is sufficient to open the RTCB and interrupt power from the motor generator (MG) sets to the control element drive mechanisms (CEDMs).
When a coincidence occurs in two RPS channels, all four matrix relays in the affected matrix de-energize. This in turn de-energizes all four RTCB control relays, which simultaneously de-energize the undervoltage and energize the shunt trip attachments in all eight RTCBs, tripping them open.
Matrix Logic refers to the matrix power supplies, trip channel bypass contacts, and interconnecting matrix wiring between bistable and auxiliary trip units, up to but not including the matrix relays. Contacts in the bistable and auxiliary trip units are excluded from the Matrix Logic definition, since they are addressed as part of the measurement channel.
The Initiation Logic consists of the trip path power source, matrix relays and their associated contacts, all interconnecting wiring, and solid state (auxiliary) relays through the K-relay contacts in the RTCB control circuitry.
It is possible to change the two-out-of-four RPS Logic to a two-out-of-three logic for a given input parameter in one channel at a time by trip channel bypassing select portions of the Matrix Logic. Trip channel bypassing a bistable effectively shorts the bistable relay contacts in the three matrices associated with that channel. Thus, the bistables will function normally, producing normal trip indication and annunciation, but a reactor trip will not occur unless two additional channels indicate a trip condition. Trip channel bypassing can be simultaneously performed on Combustion Engineering STS                  B 3.3.1-9                    Revision XXX  Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                  2 lR2 B 3.3.1 BASES BACKGROUND (continued)
A mechanical interlock    any number of parameters in any number of channels, providing each (key capture) in          parameter is bypassed in only one channel at a time. An interlock                              1 conjunction with administrative control prevents simultaneous trip channel bypassing of the same parameter in more than one channel. Trip channel bypassing is normally employed during maintenance or testing.
For those plants that have demonstrated sufficient channel to channel independence, two-out-of-three logic is the minimum that is required to provide adequate plant protection, since a failure of one channel still ensures a reactor trip would be generated by the two remaining OPERABLE channels. Two-out-of-three logic also prevents inadvertent trips caused by any single channel failure in a trip condition.
In addition to the trip channel bypasses, there are also operating bypasses on select RPS trips. Some of these bypasses are enabled manually, others automatically, in all four RPS channels when plant Zero Power Mode trips      conditions do not warrant the specific trip protection. All operating (Reactor Coolant Flow -    bypasses are automatically removed when enabling bypass conditions Low and Thermal Margin/Low Pressure),      are no longer satisfied. Trips with operating bypasses include Power Local Power Density -      Rate of Change - High, Reactor Coolant Flow - Low, Steam Generator High, Loss of Load -High,  Pressure - Low, APD - High, TM/LP, and Steam Generator Pressure                              1 Local Power Density    Difference. [The Loss of Load trip, Power Rate of Change - High, and APD - High operating bypasses are automatically enabled and disabled.]                          3 The Variable Power Level - High bypass is manually enabled but automatically disabled.              lR1 lR2 Reactor Trip Circuit Breakers (RTCBs) 2 The reactor trip switchgear, addressed in LCO 3.3.3 and shown in                                6 Figure B 3.3.1-1, consists of eight RTCBs, which are operated in four sets of two breakers (four channels). Power input to the reactor trip switchgear comes from two full capacity MG sets operated in parallel such that the loss of either MG set does not de-energize the CEDMs.
There are two separate CEDM power supply buses, each bus powering half of the CEDMs. Power is supplied from the MG sets to each bus via two redundant paths (trip legs). Trip legs 1A and 1B supply power to CEDM bus 1. Trip legs 2A and 2B supply power to CEDM bus 2. This ensures that a fault or the opening of a breaker in one trip leg (i.e., for testing purposes) will not interrupt power to the CEDM buses.
Each of the four trip legs consists of two RTCBs in series. The two RTCBs within a trip leg are actuated by separate initiation circuits.
Combustion Engineering STS                              B 3.3.1-10                            Revision XXX      Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)    2  lR2 B 3.3.1 BASES BACKGROUND (continued)
The eight RTCBs are operated as four sets of two breakers (four channels). For example, if a breaker receives an open signal in trip leg A (for CEDM bus 1), an identical breaker in trip leg B (for CEDM bus 2) will also receive an open signal. This arrangement ensures that power is interrupted to both CEDM buses, thus preventing trip of only half of the CEAs (a half trip). Any one inoperable breaker in a channel will make the entire channel inoperable.
Each set of RTCBs is operated by either a Manual Trip push button or an RPS actuated K-relay. There are four Manual Trip push buttons,                  6 arranged in two sets of two, as shown in Figure B 3.3.1-1. Depressing both push buttons in either set will result in a reactor trip.
When a Manual Trip is initiated using the control room push buttons, the RPS trip paths and K-relays are bypassed, and the RTCB undervoltage and shunt trip attachments are actuated independent of the RPS.
Manual Trip circuitry includes the push button and interconnecting wiring to both RTCBs necessary to actuate both the undervoltage and shunt trip attachments but excludes the K-relay contacts and their interconnecting wiring to the RTCBs, which are considered part of the Initiation Logic.
Functional testing of the entire RPS, from bistable input through the per the Surveillance  opening of individual sets of RTCBs, can be performed either at power or Frequency Control Program shutdown and is normally performed on a quarterly basis.                    1    lR2 U  FSAR, Section [7.2] (Ref. 8), explains RPS testing in more detail.              3 l APPLICABLE                Each of the analyzed accidents and transients can be detected by one              lR2 SAFETY                    or more RPS Functions. The accident analysis contained in Reference 5            1 l ANALYSES                  takes credit for most RPS trip Functions. Functions not specifically credited in the accident analysis are part of the NRC approved licensing basis for the plant. These Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function performance. Other Functions, such as the Loss of Load trip, are purely equipment protective, and their use minimizes the potential for equipment damage.
Permissive and interlock setpoints allow the blocking of trips during plant startups, and restoration of trips when the permissive conditions are not satisfied, but they are not explicitly modeled in the Safety Analyses.
These permissives and interlocks ensure that the starting conditions are consistent with the safety analysis, before preventive or mitigating actions occur. Because these permissives or interlocks are only one of multiple conservative starting assumptions for the accident analysis, they are generally considered as nominal values without regard to measurement accuracy.
Combustion Engineering STS                        B 3.3.1-11                    Revision XXX  Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)          2  lR2 B 3.3.1 BASES APPLICABLE SAFETY ANALYSES (continued)
The specific safety analyses applicable to each protective Function are identified below:
Level
: 1. Variable High Power Trip (VHPT) - High                                              lR2 l
Variable Power Level - High l
The VHPT provides reactor core protection against positive reactivity                l Variable Power Level - High trip excursions that are too rapid for a Pressurizer Pressure - High or                  lR2 TM/LP trip to protect against. The following events require VHPT                    l protection:
Uncontrolled CEA withdrawal event, Excess load,                                                                  lR1 1
Excess feedwater heat removal event, CEA ejection event, and Main steam line break (MSLB) (outside containment).                            lR1 l
l The first three events are AOOs, and fuel integrity is maintained. The              l fourth and fifth are accidents, and limited fuel damage may occur.                  l
: 2. Power Rate of Change - High The Power Rate of Change - High trip is used to trip the reactor when excore [logarithmic] power indicates an excessive rate of change.              3 is not credited in the accident        The Power Rate of Change - High Function minimizes transients for 1
analysis as providing primary          events such as a continuous CEA withdrawal or a boron dilution protection for any limiting case        event from low power levels. The trip may be bypassed when AOO or accident.
THERMAL POWER is < 1E-4% RTP, when poor counting statistics In addition, the trip is  may lead to erroneous indication. It is also bypassed at > 15% RTP,            1 not required to be      where moderator temperature coefficient and fuel temperature OPERABLE and is                                                                                Neutron Flux coefficient make high rate of change of power unlikely. With the RTCBs open, the Power Rate of Change - High trip is not required to be OPERABLE; however, the indication and alarm Functions of at 3
least two channels are required by LCO 3.3.13, "[Logarithmic] Power                1 is                                                                          11 Monitoring Channels," to be OPERABLE. LCO 3.3.13 ensures the
[logarithmic] channels are available to detect and alert the operator to 3 1 a boron dilution event.
Combustion Engineering STS                                B 3.3.1-12                  Revision XXX  Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)            2  lR2 B 3.3.1 BASES APPLICABLE SAFETY ANALYSES (continued)
: 3. Reactor Coolant Flow - Low The Reactor Coolant Flow - Low trip provides protection during the following events:
Loss of RCS flow, Loss of nonemergency AC power,                                                  lR1 l
and                1 l Reactor coolant pump (RCP) seized shaft,                                        l l
l RCP sheared shaft, and                                                          l Certain MSLB events.                                                            lR2 The loss of RCS flow and of nonemergency AC power events are AOOs and where fuel integrity is maintained. The RCP seized shaft, sheared shaft, and MSLBs are accidents where fuel damage may result.                                    lR2
: 4. Pressurizer Pressure - High The Pressurizer Pressure - High trip, in conjunction with pressurizer safety valves and main steam safety valves (MSSVs), provides protection against overpressure conditions in the RCS during the following events:
Loss of condenser vacuum with a concurrent loss of offsite                      lR1 l
power,                                                                          l l
Loss of condenser vacuum with a concurrent loss of one 6.9 kV                  l l
bus,                                                                            l Turbine trip Isolation of turbine at 102% power, line break (small)
Feedwater System pipe breaks between the steam generator                      1 and check valve, CEA withdrawal, and Loss of feedwater flow.
Combustion Engineering STS                B 3.3.1-13                          Revision XXX Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)  2 lR2 B 3.3.1 BASES APPLICABLE SAFETY ANALYSES (continued)
: 5. Containment Pressure - High The Containment Pressure - High trip prevents exceeding the containment design pressure during certain loss of coolant accidents (LOCAs) or feedwater line break accidents. It ensures a reactor trip prior to, or concurrent with, a LOCA, thus assisting the ESFAS in the event of a LOCA or MSLB. Since these are accidents, SLs may be violated. However, the consequences of the accident will be acceptable.
: 6. Steam Generator Pressure - Low The Steam Generator Pressure - Low trip provides protection against an excessive rate of heat extraction from the steam generators, which would result in a rapid uncontrolled cooldown of the RCS. This trip is needed to shut down the reactor and assist the ESFAS in the event of an MSLB. Since these are accidents, SLs may be violated.
However, the consequences of the accident will be acceptable.
7.a, 7.b. Steam Generator A and B Level - Low The Steam Generator A Level - Low and Steam Generator B Level -
Low trips are required for the following events:
Steam System piping failures, Feedwater System pipe breaks, Excess Load                          lR1 Inadvertent opening of a steam generator atmospheric dump            l l
valve (ADV),                                                        l and l
1 l Loss of normal feedwater, and                                        l Asymmetric loss of feedwater.
The Steam Generator Level - Low trip ensures that low DNBR, high local power density, and the RCS pressure SLs are maintained during normal operation and AOOs, and, in conjunction with the ESFAS, the consequences of the Feedwater System pipe break accident will be acceptable.
Combustion Engineering STS                B 3.3.1-14                  Revision XXX  Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)          2 lR2 B 3.3.1 BASES APPLICABLE SAFETY ANALYSES (continued)
Local Power Density
: 8.      Axial Power Distribution (APD) - High                                          1 The APD - High trip ensures that excessive axial peaking, such as that due to axial xenon oscillations, will not cause fuel damage. It ensures that neither a DNBR less than the SL nor a peak linear heat rate that corresponds to the temperature for fuel centerline melting will occur. This trip is the primary protection against fuel centerline melting.
: 9.      Thermal Margin
: a. Thermal Margin/Low Pressure (TM/LP)
The TM/LP trip prevents exceeding the DNBR SL during AOOs and aids the ESFAS during certain accidents. The following events require TM/LP protection:
Excess load (inadvertent opening of a steam generator                  lR1 ADV),                                                                  l RCS depressurization (inadvertent safety or power operated              lR1 relief valves (PORVs) opening),                                        l Steam generator tube rupture, and LOCA accident.
The first two events are AOOs, and fuel integrity is maintained.
The third and fourth are accidents, and limited fuel damage may occur although only the LOCA is expected to result in fuel damage. The trip is initiated whenever the RCS pressure signal drops below a minimum value (Pmin) or a computed value (Pvar) as described below, whichever is higher. The computed value is a Function Q power, ASI, as determined from the axially split and excore detectors, reactor inlet (cold leg) temperature, and the        1 number of RCPs operating.
The minimum value of reactor coolant flow rate, the maximum azimuthal tilt                                                                                  1 TQ, and the maximum CEA deviation permitted for continuous operation are assumed in the generation of this trip Function. In addition, CEA group sequencing in accordance with LCO 3.1.6, groups "Regulating Control Element Assembly (CEA) Insertion Limits,"
lR2 is assumed. Finally, the maximum insertion of CEA banks that                  l Variable Power Level - High trip                                                                              1 can occur during any AOO prior to a VHPT is assumed.                          l Combustion Engineering STS                                B 3.3.1-15                      Revision XXX Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                        2  lR2 B 3.3.1 BASES APPLICABLE SAFETY ANALYSES (continued)
: b. Steam Generator Pressure Difference The Steam Generator Pressure Difference provides protection for those AOOs associated with secondary system malfunctions that result in asymmetric primary coolant temperatures. The most limiting event is closure of a single main steam isolation valve. Steam Generator Pressure Difference is provided by comparing the secondary pressure in both steam generators in the TM/LP calculator. If the pressure in either exceeds that in the other by the trip setpoint, a TM/LP trip will result.
: 10. Loss of Load Hydraulic Fluid pressure - Low                            lR1 l
The Loss of Load (turbine stop valve (TSV) control oil pressure) trip                              1  l is anticipatory for the loss of heat removal capabilities of the secondary system following a turbine trip. The Loss of Load trip prevents lifting the pressurizer safety valves, PORVs, and MSSVs in the event of a turbine generator trip. Thus, the trip minimizes the pressure and temperature transients on the reactor by initiating a trip well before reaching the Pressurizer Pressure - High trip and pressurizer safety valve setpoints. The four RPS Loss of Load reactor trip channels receive their input from sensors mounted on the high pressure TSV actuators. Since there are four high pressure TSVs, one actuator per valve and one sensor per actuator, each sensor sends its signal to a different RPS channel. When the turbine trips, control oil is dumped from the high pressure TSVs. When the                                  1 control oil pressure drops to the appropriate setpoint, a reactor trip signal is generated.        four redundant pressure switches mounted on the emergency trip fluid line common header, to serve as the loss of load, turbine trip input to the Reactor Protective System logic matrices. Actuation Interlocks/Bypasses              of any two of the pressure switches on low hydraulic oil pressure causes a reactor trip.
The bypasses and their Allowable Values are addressed in footnotes to Table 3.3.1-1. They are not otherwise addressed as specific Table entries.
The automatic bypass removal features must function as a backup to manual actions for all safety related trips to ensure the trip Functions are not operationally bypassed when the safety analysis assumes the Functions are not bypassed. The RPS operating bypasses are:
Zero power mode bypass (ZPMB) removal on the TM/LP, Steam 0.5 Generator Pressure Difference, and reactor coolant low flow trips when THERMAL POWER is < 1E-4% RTP. This bypass is manually enabled                                          1 below the specified setpoint to permit low power testing. The wide range NI Level 1 bistable in the wide range drawer permits manual bypassing below the setpoint and removes the bypass above the setpoint.
Combustion Engineering STS                  B 3.3.1-16                            Revision XXX        Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                      2  lR2 B 3.3.1 BASES APPLICABLE SAFETY ANALYSES (continued)
Power rate of change bypass removal. The Power Rate of Change - High trip is automatically bypassed at < 1E-4% RTP, as sensed by the wide 15        1 range NI Level 2 bistable, and at > 12% RTP by the power range NI Level 1 bistable, mounted in their respective NI drawers. Automatic bypass removal is also effected by these bistables when conditions are no longer satisfied.
Local Power Density Loss of Load and APD - High bypass removal. The Loss of Load and                                  1 APD - High trips are automatically bypassed when at < 15% RTP as sensed by the power range NI Level 1 bistable. The bypass is automatically removed by this bistable above the setpoint. This same bistable is used to bypass the Power Rate of Change - High trip.
Steam Generator Pressure - Low bypass removal. The Steam Generator Pressure - Low trip is manually enabled below the pretrip setpoint. The permissive is removed, and the bypass automatically removed, when the Steam Generator Pressure - Low pretrip clears.
The RPS instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO                            The LCO requires all instrumentation performing an RPS Function to be OPERABLE. Failure of any required portion of the instrument channel renders the affected channel(s) inoperable and reduces the reliability of the affected Functions. The specific criteria for determining channel OPERABILITY differ slightly between Functions. These criteria are discussed on a Function by Function basis below.
Actions allow maintenance (trip channel) bypass of individual channels, but the bypass activates interlocks that prevent operation with a second is prevented by mechanical interlock (key capture)        channel in the same Function bypassed. Plants are restricted to 48 hours                              lR1 in a trip channel bypass condition before either restoring the Function to four channel operation (two-out-of-four logic) or placing the channel in trip 1
(one-out-of-three logic). At plants where adequate channel to channel independence has been demonstrated, specific exceptions may be approved by the NRC staff to permit one of the two-out-of-four channels to be bypassed for an extended period of time.
Section 7.2 of the Updated Final Safety Analysis Report  12 lR2 Allowable Values for RPS Instrumentation Functions are specified in acceptance  Table 3.3.1-1. [LTSPs] and the methodologies for calculation of the as-                              lR2 l
criteria bands left and as-found tolerances are described in [insert the name of a                                5 l
document controlled under 10 CFR 50.59 such as the Technical field trip setpoints    Requirements Manual or any document incorporated into the facility 3 lR2 FSAR]. The [LTSPs] are selected to ensure that the actual setpoints acceptance criteria remain conservative with respect to the as-found tolerance band between                            5 lR2 adjusted consistent with the Trip  successive CHANNEL CALIBRATIONS. After each calibration the trip                                    l Setpoint value.                                                                                                              12 l setpoint shall be left within the as-left band around the [LTSP].                                    l Combustion Engineering STS                              B 3.3.1-17                        Revision XXX        Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)          2  lR2 B 3.3.1 BASES LCO (continued)
The following Bases for each trip Function identify the above RPS trip Function criteria items that are applicable to establish the trip Function OPERABILITY.
Level
: 1. Variable High Power Trip (VHPT) - High                                              lR2 l
Variable Power Level - High l
This LCO requires all four channels of the VHPT to be OPERABLE in                  l MODES 1 and 2.
Variable Power Level        The Allowable Value is high enough to provide an operating envelope                lR2 that prevents unnecessary Linear Power Level - High reactor VHPT -              1  l High trips during normal plant operations. The Allowable Value is low enough for the system to maintain a margin to unacceptable fuel cladding damage should a CEA ejection accident occur.
Variable Power Level - High Trip                                                                                        lR2 The VHPT setpoint is operator adjustable and can be set at a fixed                  l increment above the indicated THERMAL POWER level. Operator action is required to increase the trip setpoint as THERMAL POWER is increased. The trip setpoint is automatically decreased as field trip setpoint THERMAL POWER decreases. The [LTSP] has a maximum and a                          3 lR2 l
minimum setpoint.                                                                5 l the field trip setpoint                    l Adding to this maximum value the possible variation in [LTSP] due to              3 calibration and instrument errors, the maximum actual steady state THERMAL POWER level at which a trip would be actuated is 112%                      lR1 RTP, which is the value used in the safety analyses.                107            l conservative with respect to                                    of 112% RTP 1
Calibration and instrument errors              To account for these errors, the safety analysis minimum value is are considered within the setpoint            40% RTP. The 10% step is a maximum value assumed in the safety                      lR1 calculations. The stated minimum                                                                                                  l and maximum Allowable Values and              analysis. There is no uncertainty applied to the step.
step values are the assumed safety analysis values.                          2. Power Rate of Change - High MODE 1 with THERMAL          This LCO requires four channels of Power Rate of Change - High to POWER  15% RTP and          be OPERABLE in MODES 1 and 2, as well as in MODES 3, 4, and 5                    8 lR2 MODE 2 when the RTCBs are closed and the CEA Drive System is capable of CEA withdrawal.
The high power rate of change trip serves as a backup to the administratively enforced startup rate limit. The Function is not credited in the accident analyses; therefore, the Allowable Value for the trip or bypass Functions is not derived from analytical limits.
Combustion Engineering STS                              B 3.3.1-18                          Revision XXX  Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)      2 lR2 B 3.3.1 BASES LCO (continued)
: 3. Reactor Coolant Flow - Low This LCO requires four channels of Reactor Coolant Flow - Low to be OPERABLE in MODES 1 and 2.
The trip may be manually bypassed when THERMAL POWER falls 0.5 below 1E-4% RTP. This bypass is part of the ZPMB circuitry, which also bypasses the TM/LP trip and provides a T power block signal to the Q power select logic. This ZPMB allows low power physics testing at reduced RCS temperatures and pressures. It also allows heatup and cooldown with shutdown CEAs withdrawn.
This trip is set high enough to maintain fuel integrity during a loss of flow condition. The setting is low enough to allow for normal operating fluctuations from offsite power. To account for analysis            lR2 l
uncertainty, the value in the safety analysis is 93% RTP.                  1 l
91.4                              l
: 4. Pressurizer Pressure - High This LCO requires four channels of Pressurizer Pressure - High to be OPERABLE in MODES 1 and 2.
The Allowable Value is set high enough to allow for pressure increases in the RCS during normal operation (i.e., plant transients) not indicative of an abnormal condition. The setting is below the lift setpoint of the pressurizer safety valves and low enough to initiate a reactor trip when an abnormal condition is indicated. The difference          lR2 1  l between the Allowable Value and the analysis setpoint of 2470 psia            l includes allowance for harsh environment.                    2464              l The Pressurizer Pressure - High trip concurrent with PORV operation avoids unnecessary operation of the pressurizer safety valves.
: 5. Containment Pressure - High This LCO requires four channels of Containment Pressure - High to be OPERABLE in MODES 1 and 2.
The Allowable Value is high enough to allow for small pressure increases in containment expected during normal operation (i.e.,
plant heatup) that are not indicative of an abnormal condition. The setting is low enough to initiate a reactor trip to prevent containment pressure from exceeding design pressure following a DBA.
Combustion Engineering STS                B 3.3.1-19                      Revision XXX  Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)    2 lR2 B 3.3.1 BASES LCO (continued)
: 6. Steam Generator Pressure - Low This LCO requires four channels of Steam Generator Pressure - Low per steam generator to be OPERABLE in MODES 1 and 2.
The Allowable Value is sufficiently below the full load operating value for steam pressure so as not to interfere with normal plant operation, but still high enough to provide the required protection in the event of excessive steam demand. Since excessive steam demand causes the RCS to cool down, resulting in positive reactivity addition to the core, a reactor trip is required to offset that effect.
The difference between the Allowable Value and the safety analysis          lR2 1
l value of 600 psia includes harsh environment uncertainties.                  l 541                                                                    l The Function may be manually bypassed as steam generator pressure is reduced during controlled plant shutdowns. This bypass is permitted at a preset steam generator pressure. The bypass, in conjunction with the ZPMB, allows testing at low temperatures and pressures, and heatup and cooldown with the shutdown CEAs withdrawn. From a bypass condition the trip will be reinstated automatically as steam generator pressure increases above the preset pressure.
7.a, 7.b. Steam Generator Level - Low This LCO requires four channels of Steam Generator Level - Low per steam generator to be OPERABLE in MODES 1 and 2.
The Allowable Value is sufficiently below the normal operating level for the steam generators so as not to cause a reactor trip during normal plant operations. The trip setpoint is high enough to ensure a reactor trip signal is generated before water level drops below the top of the feed ring. The difference between the Allowable Value and the        lR2 5%                                                                              l measurement value includes 10 inches of measurement uncertainty.            l 1
The specified setpoint ensures there will be sufficient water inventory      l l
to provide a 10 minute margin before auxiliary feedwater is required        l for the removal of decay heat.                                              l Combustion Engineering STS                B 3.3.1-20                      Revision XXX Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)    2 lR2 B 3.3.1 BASES LCO (continued)
: 8. Axial Power Distribution (APD) - High Local Power Density This LCO requires four channels of APD - High to be OPERABLE in MODE 1  15% RTP.
The Allowable Value curve was derived from an analysis of many            1 axial power shapes with allowances for instrumentation inaccuracies and the uncertainty associated with the excore to incore ASI relationship.
Local Power Density The APD trip is automatically bypassed at < 15% RTP, where it is not required for reactor protection.
: 9. Thermal Margin
: a. Thermal Margin/Low Pressure (TM/LP)
This LCO requires four channels of TM/LP to be OPERABLE in MODES 1 and 2.
The Allowable Value includes allowances for equipment response time, measurement uncertainties, processing error, and a further allowance to compensate for the time delay associated with providing effective termination of the occurrence that exhibits the most rapid decrease in margin to the SL.
This trip may be manually bypassed when THERMAL POWER 0.5                                                                        1 falls below 1E-4% RTP. This bypass is part of the ZPMB circuitry, which also bypasses the Reactor Coolant Flow - Low trip and provides a T power block signal to the Q power select logic. This ZPMB allows low power physics testing at reduced RCS temperatures and pressures. It also allows heatup and cooldown with shutdown CEAs withdrawn.
: b. Steam Generator Pressure Difference This LCO requires four channels of Steam Generator Pressure Difference to be OPERABLE in MODES 1 and 2.
The Allowable Value is high enough to avoid trips caused by normal operation and minor transients, but ensures DNBR protection in the event of Design Basis Events. The difference        lR2 1 l 247 psid  between the Allowable Value and the 175 psia analysis setpoint        l allows for 40 psia of measurement uncertainty.                        l 115 psi harsh                                                          l Combustion Engineering STS                      B 3.3.1-21                  Revision XXX    Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)      2 lR2 B 3.3.1 BASES LCO (continued) 0.5 The trip may be bypassed when THERMAL POWER falls below 1E-4% RTP. The Steam Generator Pressure Difference is              1 subject to the ZPMB, since it is an input to the TM/LP trip and is not required for protection at low power levels.
: 10. Loss of Load The LCO requires four Loss of Load trip channels to be OPERABLE in MODE 1  15% RTP.
The Loss of Load trip may be bypassed when THERMAL POWER falls below 15%, since it is no longer needed to prevent lifting of the pressurizer safety valves, steam generator safety valves, or PORVs in the event of a Loss of Load. The Nuclear Steam Supply System and the Steam Dump System are capable of accommodating the Loss of Load without requiring the use of the above equipment.
Interlocks/Bypasses The LCO on bypass permissive removal channels requires that the automatic bypass removal feature of all four operating bypass channels be OPERABLE for each RPS Function with an operating bypass in the MODES addressed in the specific LCO for each Function. All four bypass removal channels must be OPERABLE to ensure that none of the four RPS channels are inadvertently bypassed.
The LCO applies to the bypass removal feature only. If the bypass enable Function is failed so as to prevent entering a bypass condition, operation may continue.
The interlock Allowable Values are based on analysis requirements for the bypassed functions. These are discussed above as part of the LCO discussion for the affected Functions.
APPLICABILITY        This LCO is applicable in accordance with Table 3.3.1-1. Most RPS trips are required to be OPERABLE in MODES 1 and 2 because the reactor is critical in these MODES. The trips are designed to take the reactor subcritical, maintaining the SLs during AOOs and assisting the ESFAS in providing acceptable consequences during accidents. Exceptions are addressed in footnotes to the table. Exceptions to this APPLICABILITY are:
Local Power Density The APD - High Trip and Loss of Load are only applicable in MODE 1        1 15% RTP because they may be automatically bypassed at
                            < 15% RTP, where they are no longer needed.
Combustion Engineering STS                    B 3.3.1-22                    Revision XXX  Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)            2 lR2 B 3.3.1 BASES APPLICABILITY (continued)
The Power Rate of Change - High trip, RPS Logic, RTCBs, and                          lR2 l
Manual Trip are also required in MODES 3, 4, and 5, with the RTCBs                  l closed, to provide protection for boron dilution and CEA withdrawal                  l events. The Power Rate of Change - High trip in these lower                          l 12                                                                                          l MODES is addressed in LCO 3.3.2, "Reactor Protective System                        1 l (RPS) Instrumentation - Shutdown." The RPS Logic in MODES 1, 2,                      l l
3, 4, and 5 is addressed in LCO 3.3.3.      2                                    1 l l
Most trips are not required to be OPERABLE in MODES 3, 4, and 5. In                        l MODES 3, 4, and 5, the emphasis is placed on return to power events.
The reactor is protected in these MODES by ensuring adequate SDM.
acceptance criteria band ACTIONS            The most common causes of channel inoperability are outright failure or drift of the bistable or process module sufficient to exceed the tolerance              5 allowed by the plant specific setpoint analysis. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination is generally made during the performance of a CHANNEL FUNCTIONAL TEST when the process instrument is set up for adjustment to bring it to within specification. If the trip setpoint is nonconservative with respect to the Allowable Value in Table 3.3.1-1, the channel is declared inoperable immediately, and the appropriate Condition(s) must be entered immediately.
In the event a channel's trip setpoint is found nonconservative with respect to the Allowable Value, or the channel is not functioning as required, or the transmitter, instrument loop, signal processing electronics, or RPS bistable trip unit is found inoperable, then all affected Functions provided by that channel must be declared inoperable, and the plant must enter the Condition for the particular protection Function affected.
When the number of inoperable channels in a trip Function exceeds that specified in any related Condition associated with the same trip Function, then the plant is outside the safety analysis. Therefore, LCO 3.0.3 is immediately entered if applicable in the current MODE of operation.
A Note has been added to the ACTIONS to clarify the application of the Completion Time rules. The Conditions of this Specification may be entered independently for each Function. The Completion Times of each inoperable Function will be tracked separately for each Function, starting from the time the Condition was entered.
Combustion Engineering STS                  B 3.3.1-23                    Revision XXX      Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)        2 lR2 B 3.3.1 BASES ACTIONS (continued)
A.1, A.2.1, and A.2.2                                                          9 Condition A applies to the failure of a single channel in any RPS automatic trip Function. RPS coincidence logic is normally two-out-of-four.
If one RPS bistable trip unit or associated instrument channel is inoperable, startup or power operation is allowed to continue, providing the inoperable trip unit is placed in bypass or trip within 1 hour (Required Action A.1). With one channel in bypass, no additional random failure of a single channel could spuriously trip the reactor and a valid trip signal can still trip the reactor. With one channel in trip, an additional random failure of a single channel could spuriously trip the reactor. Therefore, it is preferable to place an inoperable channel in bypass rather than trip.
The Completion Time of 1 hour allotted to restore, bypass, or trip the channel is sufficient to allow the operator to take all appropriate actions for the failed channel while ensuring that the risk involved in operating with the failed channel is acceptable.
Insert 1 The failed channel is restored to OPERABLE status or is placed in trip within [48] hours [or in accordance with the Risk Informed Completion Time Program] (Required Action A.2.1 or Required Action A.2.2).
Required Action A.2.1 restores the full capability of the Function.
[ Required Action A.2.2 places the Function in a one-out-of-three configuration. In this configuration, common cause failure of dependent        9 channels cannot prevent trip. ]
The Completion Time of [48] hours is based on operating experience, which has demonstrated that a random failure of a second channel occurring during the [48] hour period is a low probability event.
B.1 and B.2                                                                    9 Condition B applies to the failure of two channels in any RPS automatic trip Function.
Required Action B.1 provides for placing one inoperable channel in bypass and the other channel in trip within the Completion Time of 1 hour.
This Completion Time is sufficient to allow the operator to take all appropriate actions for the failed channels while ensuring that the risk involved in operating with the failed channels is acceptable. With one channel of protective instrumentation bypassed, the RPS is in a two-out-of-three logic; but with another channel failed, the RPS may be operating Combustion Engineering STS                  B 3.3.1-24                    Revision XXX  Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation B 3.3.1 9              1 INSERT 1 Additionally, the failed channel must be restored to OPERABLE status prior to entering MODE 2 following the next MODE 5 entry. The Completion Time of Required Action A.2 is based on adequate channel to channel independence, which allows a two-out-of-three channel operation since no single failure will cause or prevent a reactor trip. However, it is expected that the inoperable channel will be restored to OPERABLE status at the first reasonable opportunity.
The determination of the first reasonable opportunity should include consideration of the impact on plant risk (from delaying restoration of the channel as well as any plant configuration changes required or shutting the plant down to repair the channel) and impact on any analysis assumptions, in addition to unit conditions, planning, availability of personnel, and the time required to repair the channel. This risk impact should be managed through the program in place to implement 10 CFR 50.65(a)(4) and NRC Regulatory Guide 1.160, "Monitoring the Effectiveness of Maintenance at Nuclear Power Plants."
Condition A is modified by a Note requiring Required Action A.2 to be completed whenever the Condition is entered even when the LCO is no longer applicable to ensure the channel is restored to OPERABLE prior to the next reactor startup from MODE 5 conditions.
Insert 1 Page B 3.3.1-24
 
RPS Instrumentation - Operating (Analog)  2 lR2 B 3.3.1 BASES ACTIONS (continued) in a two-out-of-two logic. This is outside the assumptions made in the analyses and should be corrected. To correct the problem, the second channel is placed in trip. This places the RPS in a one-out-of-two logic. If any of the other OPERABLE channels receives a trip signal, the reactor will trip.
Insert 2 One channel should be restored to OPERABLE status within [48] hours
[or in accordance with the Risk Informed Completion Time Program] for reasons similar to those stated under Condition A. After one channel is restored to OPERABLE status, the provisions of Condition A still apply to    9 the remaining inoperable channel. Therefore, the channel that is still inoperable after completion of Required Action B.2 must be placed in trip if more than [48] hours have elapsed since the initial channel failure.
C.1 and C.2 Local Power Density The excore detectors are used to generate the internal ASI used as an input to the TM/LP and APD - High trips. Incore detectors provide a more      1 lR2 accurate measurement of ASI. If one or more excore detectors cannot be calibrated to match incore detectors, power is restricted or reduced during subsequent operations because of increased uncertainty associated with using uncalibrated excore detectors.
The Completion Time of 24 hours is adequate to perform the SR while minimizing the risk of operating in an unsafe condition.
D.1, D.2.1, D.2.2.1, and D.2.2.2 Condition D applies to one automatic bypass removal channel inoperable.
If the bypass removal channel for any operating bypass cannot be restored to OPERABLE status, the associated RPS channel may be considered OPERABLE only if the bypass is not in effect. Otherwise, the affected RPS channel must be declared inoperable, as in Condition A, and the bypass either removed or the bypass removal channel repaired.
The Bases for Required Actions and Completion Times are the same as discussed for Condition A.
E.1, E.2.1, and E.2.2 Condition E applies to two inoperable automatic bypass removal channels. If the bypass removal channels cannot be restored to OPERABLE status, the associated RPS channel may be considered OPERABLE only if the bypass is not in effect. Otherwise, the affected Combustion Engineering STS                      B 3.3.1-25                  Revision XXX  Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation B 3.3.1 9            1 INSERT 2 One of the two inoperable channels will need to be restored to OPERABLE status prior to the next required CHANNEL FUNCTIONAL TEST, because channel surveillance testing on an OPERABLE channel requires that the OPERABLE channel be placed in bypass. However, it is not possible to bypass more than one RPS channel and placing a second channel in trip will result in a reactor trip. Therefore, if one RPS channel is in trip and a second channel is in bypass, a third inoperable channel would place the unit in LCO 3.0.3.
Insert 1 Page B 3.3.1-25
 
RPS Instrumentation - Operating (Analog)  2 lR2 B 3.3.1 BASES ACTIONS (continued)
RPS channels must be declared inoperable, as in Condition B, and the bypass either removed or the bypass removal channel repaired. Also, Required Action E.2.2 provides for the restoration of the one affected automatic trip channel to OPERABLE status within the rules of Completion Time specified under Condition B. Completion Times are consistent with Condition B.
F.1 Condition F is entered when the Required Action and associated Local Power Density Completion Time of Conditions A, B, C, D, or E are not met for the Axial    1 Power Distribution and Loss of Load Trip Functions.
If the Required Actions associated with these Conditions cannot be completed within the required Completion Times, the reactor must be brought to a MODE in which the Required Actions do not apply. The allowed Completion Time of 6 hours to reduce THERMAL POWER to
                        < 15% RTP is reasonable, based on operating experience, to decrease power to < 15% RTP from full power conditions in an orderly manner and without challenging plant systems.
G.1 Condition G is entered when the Required Action and associated Completion Time of Conditions A, B, C, D, E, or F are not met.              1  lR2 E                      l If the Required Actions associated with these Conditions cannot be completed within the required Completion Times, the reactor must be brought to a MODE in which the Required Actions do not apply. The allowed Completion Time of 6 hours to be in MODE 3 is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems.
SURVEILLANCE            The SRs for any particular RPS Function are found in the SR column of REQUIREMENTS            Table 3.3.1-1 for that Function. Most Functions are subject to CHANNEL CHECK, CHANNEL FUNCTIONAL TEST, CHANNEL CALIBRATION, and response time testing.
Combustion Engineering STS                      B 3.3.1-26                  Revision XXX  Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                2 lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
                    -----------------------------------REVIEWERS NOTE-----------------------------------
In order for a plant to take credit for topical reports as the basis for justifying Frequencies, topical reports must be supported by an NRC staff SER that establishes the acceptability of each topical report for that plant (Ref. 9).
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Notes a and b are applied to the setpoint verification Surveillances for each RPS Instrumentation - Operating (Analog) Function in Table 3.3.1-1 unless one or more of the following exclusions apply:
: 1. Manual actuation circuits, automatic actuation logic circuits or instrument functions that derive input from contacts which have no associated sensor or adjustable device, e.g., limit switches, breaker position switches, manual actuation switches, float switches, proximity                        4 lR2 detectors, etc. are excluded. In addition, those permissives and interlocks that derive input from a sensor or adjustable device that is tested as part of another TS function are excluded.
: 2. Settings associated with safety relief valves are excluded. The performance of these components is already controlled (i.e., trended with as-left and as-found limits) under the ASME Code for Operation and Maintenance of Nuclear Power Plants testing program.
: 3. Functions and Surveillance Requirements which test only digital components are normally excluded. There is no expected change in result between SR performances for these components. Where separate as-left and as-found tolerance is established for digital component SRs, the requirements would apply.
SR 3.3.1.1 Performance of the CHANNEL CHECK ensures that gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION.
Combustion Engineering STS                    B 3.3.1-27                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                2  lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the transmitter or the signal processing equipment has drifted outside its limits.
[ The Frequency, about once every shift, is based on operating experience that demonstrates the rarity of channel failure. Since the probability of two random failures in redundant channels in any 12 hour period is extremely low, the CHANNEL CHECK minimizes the chance of loss of protective function due to failure of redundant channels. The CHANNEL 3
CHECK supplements less formal, but more frequent, checks of channel OPERABILITY during normal operational use of the displays associated with the LCO required channels.
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                    4 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]    3 SR 3.3.1.2 A daily calibration (heat balance) is performed when THERMAL POWER                                      lR2 15                                                                                                        10 l is  20%. The daily calibration shall consist of adjusting the "nuclear                                l power calibrate" potentiometers to agree with the calorimetric calculation if the absolute difference is > 1.5%. The "T power calibrate"                                      1 potentiometers are then used to null the "nuclear power - T power" indicators on the RPS Reactor Power Calibration and Indication panel.
Performance of the daily calibration ensures that the two inputs to the                            10 lR2 Q power measurement are indicating accurately with respect to the much more accurate secondary calorimetric calculation.
[ The Frequency of 24 hours is based on plant operating experience and takes into account indications and alarms located in the control room to detect deviations in channel outputs.                                                                3 OR Combustion Engineering STS                      B 3.3.1-28                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                    2 lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                        -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency 4
description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                        ------------------------------------------------------------------------------------------------ ]      3 The Frequency is modified by a Note indicating this Surveillance must be 15 performed within 12 hours after THERMAL POWER is  20% RTP. The                                        1 secondary calorimetric is inaccurate at lower power levels. The 12 hours allows time requirements for plant stabilization, data taking, and instrument calibration.
A second Note indicates the daily calibration may be suspended during                              10 lR1 lR2 PHYSICS TESTS. This ensures that calibration is proper preceding and following physics testing at each plateau, recognizing that during testing, changes in power distribution and RCS temperature may render the calorimetric inaccurate.
SR 3.3.1.3 It is necessary to calibrate the excore power range channel upper and Local Power Density lower subchannel amplifiers such that the internal ASI used in the TM/LP and APD - High trips reflects the true core power distribution as                                      1 determined by the incore detectors. A Note to the Frequency indicates 15 the Surveillance is required within 12 hours after THERMAL POWER is
[20]% RTP. Uncertainties in the excore and incore measurement process make it impractical to calibrate when THERMAL POWER is
                        < [20]% RTP. The Completion Time of 12 hours allows time for plant stabilization, data taking, and instrument calibration. If the excore detectors are not properly calibrated to agree with the incore detectors, power is restricted during subsequent operations because of increased uncertainty associated with using uncalibrated excore detectors. [ The 31 day Frequency is adequate, based on operating experience of the                                      3 excore linear amplifiers and the slow burnup of the detectors. The excore readings are a strong function of the power produced in the peripheral fuel bundles and do not represent an integrated reading across the core.
Slow changes in neutron flux during the fuel cycle can also be detected at this Frequency.
OR Combustion Engineering STS                        B 3.3.1-29                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                2 lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                        -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency 4
description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                        ------------------------------------------------------------------------------------------------ ] 3 SR 3.3.1.4 A CHANNEL FUNCTIONAL TEST is performed on each RPS instrument channel, except Loss of Load and Power Rate of Change to ensure the entire channel will perform its intended function when needed. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.
In addition to power supply tests, The RPS CHANNEL FUNCTIONAL                                        lR2 TEST consists of three overlapping tests as described in Reference 8.                                l These tests verify that the RPS is capable of performing its intended function, from bistable input through the RTCBs. They include:
Bistable Tests The bistable setpoint must be found to trip conservative with respect to the Allowable Values specified in the LCO and left set consistent with the                            lR2 assumptions of the plant specific setpoint analysis (Ref. 7). As-found and                            l as-left values must also be recorded and reviewed for consistency with the assumptions of the frequency extension analysis. The requirements for this review are outlined in Reference 10.                                                        lR2 9                                                                                                            l A test signal is superimposed on the input in one channel at a time to acceptance criteria verify that the bistable trips within the specified tolerance around the                            5 setpoint. This is done with the affected RPS channel trip channel bypassed. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint analysis.
Combustion Engineering STS                          B 3.3.1-30                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                    2 lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
For Functions 7a and 7b                                                                                                                  lR2 (Steam Generator Level A        SR 3.3.1.4 is modified by two Notes as identified in Table 3.3.1-1. The                                  l and B - Low, respectively),                                                                                                              l first Note requires evaluation of channel performance for the condition where the as-found setting for the channel setpoint is outside its as-found acceptance criteria band tolerance but conservative with respect to the Allowable Value.                                        5 (e.g., outside the conservative      Evaluation of channel performance will verify that the channel will side of the as-found                continue to behave in accordance with safety analysis assumptions and acceptance criteria band) the channel performance assumptions in the setpoint methodology. The purpose of the assessment is to ensure confidence in the channel performance prior to returning the channel to service. For channels determined to be OPERABLE but degraded, after returning the channel to service the performance of these channels will be evaluated under the plant Corrective Action Program. Entry into the Corrective Action Program will ensure required review and documentation of the condition.
The second Note requires that the as-left setting for the channel be acceptance criteria band                                                                                                          5 returned to within the as-left tolerance of the [LTSP]. Where a setpoint                                lR2 field trip setpoint more conservative than the [LTSP] is used in the plant surveillance                              3      l Trip Setpoint                                                                                                            l procedures [NTSP], the as-left and as-found tolerances, as applicable,                                5 acceptance criteria bands will be applied to the surveillance procedure setpoint. This will ensure 1
that sufficient margin to the Safety Limit and/or Analytical Limit is maintained. If the as-left channel setting cannot be returned to a setting acceptance criteria band within the as-left tolerance of the [LTSP], then the channel shall be                            3    5 declared inoperable. field trip setpoint                                                                lR2 l
field trip setpoint                                                            l The second Note also requires that [LTSP] and the methodologies for                                      l acceptance criteria bands                                                                                                          5 calculating the as-left and the as-found tolerances be in [insert the facility                      3 FSAR reference or the name of any document incorporated into the facility FSAR by reference].
Section 7.2 of the Updated Final Safety Analysis Report      12 lR2 Matrix Logic Tests 2
Matrix Logic tests are addressed in LCO 3.3.3. This test is performed                                  1 one matrix at a time. It verifies that a coincidence in the two input channels for each Function removes power from the matrix relays.
During testing, power is applied to the matrix relay test coils and prevents the matrix relay contacts from assuming their de-energized state. This test will detect any short circuits around the bistable contacts in the coincidence logic, such as may be caused by faulty bistable relay or trip channel bypass contacts.
Combustion Engineering STS                                B 3.3.1-31                                Revision XXX        Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                  2 lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
Trip Path Tests 2
Trip Path (Initiation Logic) tests are addressed in LCO 3.3.3. These tests                        1 are similar to the Matrix Logic tests, except that test power is withheld from one matrix relay at a time, allowing the initiation circuit to de-energize, opening the affected set of RTCBs. The RTCBs must then be closed prior to testing the other three initiation circuits, or a reactor trip may result.
[ The Frequency of [92] days is based on the reliability analysis presented in topical report CEN-327, "RPS/ESFAS Extended Test Interval Evaluation" (Ref. 10).                                                                            3 OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                                -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency 4
description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                                ------------------------------------------------------------------------------------------------ ] 3 SR 3.3.1.5 A CHANNEL CALIBRATION of the excore power range channels ensures the acceptance criteria band that the channels are reading accurately and within tolerance. The                                5  lR1 Surveillance verifies that the channel responds to a measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drift between successive calibrations to ensure that the channel remains operational between successive tests. CHANNEL CALIBRATIONS must be performed consistent with the plant specific setpoint analysis.
The as-found and as-left values must also be recorded and reviewed for consistency with the assumptions of the frequency extension analysis.
9 The requirements for this review are outlined in Reference [10].                                  3  lR2 l
A Note is added stating that the neutron detectors are excluded from CHANNEL CALIBRATION because they are passive devices with minimal drift and because of the difficulty of simulating a meaningful signal. Slow changes in detector sensitivity are compensated for by Combustion Engineering STS                              B 3.3.1-32                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                  2 lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued) performing the daily calorimetric calibration (SR 3.3.1.2) and the monthly                        10  lR2 linear subchannel gain check (SR 3.3.1.3). In addition, associated control room indications are continuously monitored by the operators.
[ The Frequency of 92 days is acceptable, based on plant operating experience, and takes into account indications and alarms available to the operator in the control room.                                                                      3 OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                  4 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]  3 SR 3.3.1.5 is modified by two Notes as identified in Table 3.3.1-1. The                                lR2 l
first Note requires evaluation of channel performance for the condition                                l where the as-found setting for the channel setpoint is outside its as-found                            l l
tolerance but conservative with respect to the Allowable Value.                                        l Evaluation of channel performance will verify that the channel will                                    l continue to behave in accordance with safety analysis assumptions and                                  l l
the channel performance assumptions in the setpoint methodology. The                                  l purpose of the assessment is to ensure confidence in the channel                                      l performance prior to returning the channel to service. For channels                                    l l
determined to be OPERABLE but degraded, after returning the channel to                                l 12 service the performance of these channels will be evaluated under the                                  l l
plant Corrective Action Program. Entry into the Corrective Action                                      l Program will ensure required review and documentation of the condition.                                l The second Note requires that the as-left setting for the channel be                                  l l
returned to within the as-left tolerance of the [LTSP]. Where a setpoint                              l more conservative than the [LTSP] is used in the plant surveillance                                    l procedures [NTSP], the as-left and as-found tolerances, as applicable,                                l l
will be applied to the surveillance procedure setpoint. This will ensure                              l that sufficient margin to the Safety Limit and/or Analytical Limit is                                  l l
maintained. If the as-left channel setting cannot be returned to a setting                            l within the as-left tolerance of the [LTSP], then the channel shall be                                  l declared inoperable.                                                                                  l Combustion Engineering STS                    B 3.3.1-33                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)          2 lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued) lR2 The second Note also requires that [LTSP] and the methodologies for                    l calculating the as-left and the as-found tolerances be in [insert the facility      lR1 l 12 FSAR reference or the name of any document incorporated into the                        l l
facility FSAR by reference].                                                            l SR 3.3.1.6 A CHANNEL FUNCTIONAL TEST on the Loss of Load and Power Rate of Change channels is performed prior to a reactor startup to ensure the entire channel will perform its intended function if required. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay.
This is acceptable because all of the other required contacts of the relay The Loss of Load trip are verified by other Technical Specifications and non-Technical Function is not tested        Specifications tests at least once per refueling interval with applicable          lR1 l
during reactor operation      extensions. The Loss of Load pressure sensor cannot be tested during                l because performing this test during operation could reactor operation without closing the high pressure TSV, which would                l cause a pressure              result in a turbine trip or reactor trip. The Power Rate of Change - High      1    l l
perturbation in the            trip Function is required during startup operation and is bypassed when            l emergency trip fluid header common to all four            shut down or > 15% RTP.                                                            l channels resulting in a                                                                                            l turbine trip and reactor trip. SR 3.3.1.6 is modified by two Notes as identified in Table 3.3.1-1. The                lR2 l
first Note requires evaluation of channel performance for the condition                l where the as-found setting for the channel setpoint is outside its as-found            l tolerance but conservative with respect to the Allowable Value.                        l l
Evaluation of channel performance will verify that the channel will                    l continue to behave in accordance with safety analysis assumptions and                  l l
the channel performance assumptions in the setpoint methodology. The                    l purpose of the assessment is to ensure confidence in the channel                        l performance prior to returning the channel to service. For channels                    l l
determined to be OPERABLE but degraded, after returning the channel to            12  l service the performance of these channels will be evaluated under the                  l plant Corrective Action Program. Entry into the Corrective Action                      l l
Program will ensure required review and documentation of the condition.                l The second Note requires that the as-left setting for the channel be                    l l
returned to within the as-left tolerance of the [LTSP]. Where a setpoint                l more conservative than the [LTSP] is used in the plant surveillance                    l procedures [NTSP], the as-left and as-found tolerances, as applicable,                  l l
will be applied to the surveillance procedure setpoint. This will ensure                l that sufficient margin to the Safety Limit and/or Analytical Limit is                  l maintained. If the as-left channel setting cannot be returned to a setting              l l
within the as-left tolerance of the [LTSP], then the channel shall be                  l declared inoperable.                                                                    l Combustion Engineering STS                          B 3.3.1-34                  Revision XXX    Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)    2 lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
The second Note also requires that [LTSP] and the methodologies for              lR2 l
calculating the as-left and the as-foundtolerances be in [insert the facility  12 l FSAR reference or the name of any document incorporated into the                  l l
facility FSAR by reference].                                                      l SR 3.3.1.7 SR 3.3.1.7 is a CHANNEL FUNCTIONAL TEST similar to SR 3.3.1.4, except SR 3.3.1.7 is applicable only to bypass Functions and is performed once within 92 days prior to each startup. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay.
This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Proper operation of bypass permissives is critical during plant startup because the bypasses must be in place to allow startup operation and must be removed at the appropriate points during power ascent to enable certain reactor trips. Consequently, the appropriate time to verify bypass removal function OPERABILITY is just prior to startup.
The allowance to conduct this test within 92 days of startup is based on the reliability analysis presented in topical report CEN-327, "RPS/ESFAS Extended Test Interval Evaluation" (Ref. 10). Once the operating                  lR2 9                                                                                      l bypasses are removed, the bypasses must not fail in such a way that the associated trip Function gets inadvertently bypassed. This feature is verified by the trip Function CHANNEL FUNCTIONAL TEST, SR 3.3.1.4.
Therefore, further testing of the bypass function after startup is unnecessary.
SR 3.3.1.8 SR 3.3.1.8 is the performance of a CHANNEL CALIBRATION.
CHANNEL CALIBRATION is a complete check of the instrument channel including the sensor. The Surveillance verifies that the channel responds to a measured parameter within the necessary range and accuracy.
CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drift between successive calibrations to ensure that the channel remains operational between successive tests. CHANNEL CALIBRATIONS must be performed consistent with the plant specific setpoint analysis.
Combustion Engineering STS                  B 3.3.1-35                  Revision XXX    Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)    2 lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
The as-found and as-left values must also be recorded and reviewed for consistency with the assumptions of the frequency extension analysis.
The requirements for this review are outlined in Reference [10].                  lR2 9                                                                                      l l
SR 3.3.1.8 is modified by two Notes as identified in Table 3.3.1-1. The          l first Note requires evaluation of channel performance for the condition          l l
where the as-found setting for the channel setpoint is outside its as-found      l tolerance but conservative with respect to the Allowable Value.                  l Evaluation of channel performance will verify that the channel will              l l
continue to behave in accordance with safety analysis assumptions and            l the channel performance assumptions in the setpoint methodology. The              l purpose of the assessment is to ensure confidence in the channel                  l l
performance prior to returning the channel to service. For channels              l determined to be OPERABLE but degraded, after returning the channel to            l l
service the performance of these channels will be evaluated under the            l plant Corrective Action Program. Entry into the Corrective Action                l Program will ensure required review and documentation of the condition.          l l
l The second Note requires that the as-left setting for the channel be              l returned to within the as-left tolerance of the [LTSP]. Where a setpoint          l l
more conservative than the [LTSP] is used in the plant surveillance              l procedures [NTSP], the as-left and as-found tolerances, as applicable,            l l
will be applied to the surveillance procedure setpoint. This will ensure          l that sufficient margin to the Safety Limit and/or Analytical Limit is            l maintained. If the as-left channel setting cannot be returned to a setting        l l
within the as-left tolerance of the [LTSP], then the channel shall be            l declared inoperable.                                                              l l
l The second Note also requires that [LTSP] and the methodologies for              l calculating the as-left and the as-found tolerances be in [insert the facility    l l
FSAR reference or the name of any document incorporated into the                  l facility FSAR by reference].                                                      l
[ The Frequency is based upon the assumption of an 18 month calibration interval for the determination of the magnitude of equipment drift.
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Combustion Engineering STS                  B 3.3.1-36                  Revision XXX    Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                2  lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency 4
description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]
The Surveillance is modified by a Note to indicate that the neutron detectors are excluded from CHANNEL CALIBRATION because they are passive devices with minimal drift and because of the difficulty of simulating a meaningful signal. Slow changes in detector sensitivity are compensated for by performing the calorimetric calibration (SR 3.3.1.2) and the linear subchannel gain check (SR 3.3.1.3).
SR 3.3.1.9 This SR ensures that the RPS RESPONSE TIMES are verified to be less than or equal to the maximum values assumed in the safety analysis.
Individual component response times are not modeled in the analyses.
The analyses model the overall or total elapsed time from the point at which the parameter exceeds the trip setpoint value at the sensor to the point at which the RTCBs open. [ Response times are conducted on an
[18] month STAGGERED TEST BASIS. This results in the interval between successive surveillances of a given channel of n x 18 months, where n is the number of channels in the function. The Frequency of
[18] months is based upon operating experience, which has shown that random failures of instrumentation components causing serious response                              3 time degradation, but not channel failure, are infrequent occurrences.
Also, response times cannot be determined at power, since equipment operation is required.
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                  4 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]  3 Combustion Engineering STS                    B 3.3.1-37                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                  2 lR2 B 3.3.1 BASES SURVEILLANCE REQUIREMENTS (continued)
Testing may be performed in one measurement or in overlapping segments, with verification that all components are tested.
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Applicable portions of the following TS Bases are applicable to plants adopting CEOG Topical Report CE NPSD-1167-1, "Elimination of                                        4 Pressure Sensor Response Time Testing Requirements," and the methodology contained in Attachment 1 to TSTF-569.
Response time may be verified by any series of sequential, overlapping or total channel measurements, including allocated sensor response time, such that the response time is verified. Allocations for sensor response times may be obtained from records of test results, vendor test data, or vendor engineering specifications. Topical Report CE NPSD-1167-A, "Elimination of Pressure Sensor Response Time Testing Requirements,"
lR2 (Ref. 11) provides the basis and methodology for using allocated sensor                                l 10 response times in the overall verification of the channel response time for specific sensors identified in the Topical Report. The response time may be verified for components that replace the components that were previously evaluated in Ref. 11 provided that the components have been                                  lR2 10                                                                                                          l evaluated in accordance with the NRC approved methodology as discussed in Attachment 1 to TSTF-569, Methodology to Eliminate Pressure Sensor and Protection Channel (for Westinghouse Plants only)
Response Time Testing, (Ref. 12). Response time verification for other                                lR2 11                                                                                                          l sensor types must be demonstrated by test. The allocation of sensor response times must be verified prior to placing a new component in operation and reverified after maintenance that may adversely affect the sensor response time.
A Note is added to indicate that the neutron detectors are excluded from RPS RESPONSE TIME testing because they are passive devices with minimal drift and because of the difficulty of simulating a meaningful signal. Slow changes in detector sensitivity are compensated for by performing the daily calorimetric calibration (SR 3.3.1.2).                                        10  lR2 REFERENCES                                                                                                            12  lR2 l
: 1.      Regulatory Guide 1.105, Revision 3, "Setpoints for Safety-Related                                l Instrumentation."                                                                                l
: 2.      10 CFR 50, Appendix A, GDC 21.                                                                    lR2 l
50.67                                                                    1  l
: 3.      10 CFR 100.                                                                                      l l
l
: 4.      IEEE Standard 279-1971, April 5, 1972.                                                            l l
Combustion Engineering STS                    B 3.3.1-38                              Revision XXX        Rev. 5.0 1
St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)                  2 lR2 B 3.3.1 BASES REFERENCES (continued) 3
: 5. FSAR, Chapter [14].                                                                            lR2 U                  15                                                                      l l
: 6. 10 CFR 50.49.                                                                                  l IC-3.17, Instrument Setpoint Methodology for Nuclear Power Plants      l
: 7.    "Plant Protection System Selection of Trip Setpoint Values."                                  l l
l
: 8. FSAR, Section [7.2].                                                                          l l
U                                                                                          l
: 9. NRC Safety Evaluation Report, [Date].                                                    3 1
: 10. CEN-327, June 2, 1986, including Supplement 1, March 3, 1989.                                  lR2 l
9                              May                                                  January              l 1              11. CEOG Topical Report CE NPSD-1167-A, "Elimination of Pressure                                  l l
10        Sensor Response Time Testing Requirements."
: 12. Attachment 1 to TSTF-569, "Methodology to Eliminate Pressure                                  lR2 l
11        Sensor and Protection Channel (for Westinghouse Plants only)                                  l Response Time Testing."
Combustion Engineering STS                B 3.3.1-39                            Revision XXX        Rev. 5.0        lR2 St. Lucie - Unit 2
 
RPS Instrumentation - Operating (Analog)  2 lR2 B 3.3.1 BASES Combustion Engineering STS                B 3.3.1-40                Revision XXX    Rev. 5.0    lR2 St. Lucie - Unit 2                                                    1
 
JUSTIFICATION FOR DEVIATIONS ITS 3.3.1 BASES, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                      lR2 OPERATING                                        l
: 1. Changes are made (additions, deletions, and/or changes) to the ISTS that reflect the plant-specific nomenclature, number, reference, system description, analysis, or licensing basis description.
: 2. The heading for ISTS 3.3.1 includes the parenthetical expression (Analog). This      lR2 identifying information is not included in the PSL ITS. This information is provided in the NUREG-1432, Rev. 5.0 to assist in identifying the appropriate Specifications to be used as a model for a plant-specific ITS conversion but serves no purpose in a plant-specific implementation.
: 3. The ISTS contains bracketed information and/or values that are generic to Combustion Engineering vintage plants. The brackets are removed and the proper plant information/value is inserted to reflect the current licensing basis.
: 4. The Reviewer's Note has been deleted. This information is for the NRC reviewer to be keyed into what is needed to meet this requirement. This Note is not meant to be retained in the final version of the plant specific submittal.
: 5. PSL does not use the terms "as-found tolerance" and "Limiting Trip Setpoint (LTSP)" in plant specific instrument calculations or the Updated Final Safety Analysis Report. Therefore, the use of these terms in Footnotes (e) and (f) in ISTS  lR2 Table 3.3.1-1 are revised in the ITS to include the plant specific terminology. To comply with the guidance provided in NRC Regulatory Issue Summary 2006-17, "NRC Staff Position on the Requirements of 10 CFR 50.36, 'Technical Specifications,' Regarding Limiting Safety System Settings During Periodic Testing and Calibration of Instrument Channels," the PSL setpoint calculations have been structured to include a Nominal Trip Setpoint (NTSP), known as the field trip        lR2 setpoint in CTS, and determination of an OPERABILITY limit range, referred to in    l l
CTS as acceptance criteria band. For PSL, the Trip Setpoint is considered the        l Limiting Trip Setpoint and the as-found acceptance criteria band (i.e.,
OPERABILITY limit range) is synonymous with the as-found tolerance.
: 6. Figure B 3.3.1-1 is removed because the figure is included in the UFSAR.
: 7. Editorial clarification.
: 8. Changes made to reflect changes made to the Specification consistent with the current licensing basis as approved in License Amendment 243 (Unit 1) and Amendment 194 (Unit 2), dated October 31, 2017 (NRC ADAMS Accession Number ML17257A015).
: 9. Changes made to reflect changes made to the Specification consistent with the current licensing basis with Bases of ACTIONS A and B adapted from the Bases ISTS Specification 3.3.1 (Digital), and the Bases of Specification SR 3.0.3.
: 10. Changes made to reflect changes to the Specification. The term "daily" is deleted    lR2 from the ITS references to SR 3.3.1.2. Amendment 223 (Unit 1) and                    l l
Amendment 173 (Unit 2) approved the movement of specific Surveillance                l Frequency detail to the Surveillance Frequency Control Program in NRC letter "St. l St. Lucie Unit 1 and Unit 2              Page 1 of 2                                    lR2
 
JUSTIFICATION FOR DEVIATIONS ITS 3.3.1 BASES, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                      lR2 OPERATING                                        l Lucie Plant, Unit Nos. 1 and 2 - Issuance of Amendments Regarding Risk-Informed      lR2 l
Justifications for the Relocation of Specific Surveillance Frequency Requirements to l a Licensee-Controlled Program (TAC Nos. MF3495 and MF3469)," dated June 22,          l 2015 (ML15127A066).                                                                  l lR2
: 11. Changes made to delete events for which the respective Reactor Protective System      l function is not credited in the event analysis.                                      l lR2
: 12. FPL is retaining the PSL CTS Trip Setpoints in PSL ITS. Thus, changes are made        l (additions, deletions, and/or changes) to the ISTS Bases that reflect the plant      l specific licensing basis.                                                            l St. Lucie Unit 1 and Unit 2              Page 2 of 2                                      lR2
 
Specific No Significant Hazards Considerations (NSHCs)
DETERMINATION OF NO SIGNIFICANT HAZARDS CONSIDERATIONS ITS 3.3.1, REACTOR PROTECTIVE SYSTEM (RPS) INSTRUMENTATION -                  lR2 OPERATING                                    l There are no specific No Significant Hazards Considerations for this Specification.
St. Lucie Unit 1 and Unit 2            Page 1 of 1
 
ATTACHMENT 2 3.3.2, Reactor Protective System (RPS) Logic and Trip Initiation
 
Current Technical Specifications (CTS) Markup and Discussion of Changes (DOCs)
 
A01                                                                    ITS 3.3.2 ITS 3/4.3        INSTRUMENTATION SYSTEM (RPS) LOGIC AND TRIP INITIATION 3/4.3.1      REACTOR PROTECTIVE INSTRUMENTATION LIMITING CONDITION FOR OPERATION LCO 3.3.2    3.3.1.1      As a minimum, the reactor protective instrumentation channels and bypasses of                                          A02 Table 3.3-1 shall be OPERABLE.                Six channels of RPS Matrix Logic, four channels of RPS Initiation Logic, four channels of reactor trip circuit breakers    M01 (RTCB)s, and four channels of Manual Trip Applicability APPLICABILITY: As shown in Table 3.3-1.
MODES 1 and 2, MODES 3, 4, and 5, with any RTCBs closed and any control element ACTION:                                        assemblies capable of being withdrawn.
A03 As shown in Table 3.3-1.
SURVEILLANCE REQUIREMENTS SR 3.3.2.1    4.3.1.1.1    Each reactor protective instrumentation channel shall be demonstrated OPERABLE SR 3.3.2.2 SR 3.3.2.3                by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and                                                      A01 CHANNEL FUNCTIONAL TEST operations during the modes and at the frequencies shown in Table 4.3-1.
4.3.1.1.2    The logic for the bypasses shall be demonstrated OPERABLE during the at power CHANNEL FUNCTIONAL TEST of channels affected by bypass operation. The total bypass function shall be demonstrated OPERABLE in accordance with the Surveillance Frequency Control Program during CHANNEL CALIBRATION testing of each channel affected by bypass operation.
4.3.1.1.3    The REACTOR TRIP SYSTEM RESPONSE TIME of each reactor trip function shall be demonstrated to be within its limit in accordance with the Surveillance Frequency Control Program. Neutron detectors are exempt from response time testing. Each test shall include at least one channel per function.
See ITS 3.3.1 Add proposed SR 3.3.2.4                      M02 ST. LUCIE - UNIT 1                                  3/4 3-1                            Amendment No. 128, 223
 
A01                                                                      ITS 3.3.2 ITS TABLE 3.3-1              SYSTEM (RPS) LOGIC AND TRIP INITIATION REACTOR PROTECTIVE INSTRUMENTATION A03 MODES 3, 4, and 5, with any RTCBs closed and any control element assemblies capable of being withdrawn LA01 TOTAL NO.                                        MINIMUM OF CHANNELS                CHANNELS              CHANNELS              APPLICABLE FUNCTIONAL UNIT                                                      TO TRIP              OPERABLE                  MODES                ACTION LCO 3.3.2                                        4                                                4 Applicability 1. Manual Reactor Trip                2                          1                        2                    1, 2 and
* 1        A02 ACTION A
: 2. Power Level - High                4                          2(a)                    3(f)                1, 2                      2
: 3. Reactor Coolant Flow - Low        4/SG                        2(a)/SG                  3/SG                1, 2 (e)                  2
: 4. Pressurizer Pressure - High        4                          2                        3                    1, 2                      2
: 5. Containment Pressure - High        4                          2                        3                    1, 2                      2
: 6. Steam Generator Pressure - Low    4/SG                        2(b)/SG                  3/SG                1, 2                      2
: 7. Steam Generator Water              4/SG                        2/SG                    3/SG                1, 2                      2  See ITS 3.3.1 Level - Low
: 8. Local Power Density - High        4                          2(c)                    3                    1                        2
: 9. Thermal Margin/Low Pressure        4                          2(a)                    3                    1, 2 (e)                  2 9a. Steam Generator Pressure 4                          2(a)                    3                    1, 2 (e)                  2 Difference - High
: 10. Loss of Turbine - Hydraulic 4                          2(c)                    3                    1                        2 Fluid Pressure - Low ST. LUCIE - UNIT 1                                                3/4 3-2                                  Amendment No. 15, 43, 220
 
A01                                                                        ITS 3.3.2 ITS TABLE 3.3-1 (Continued)
SYSTEM (RPS) LOGIC AND TRIP INITIATION REACTOR PROTECTIVE INSTRUMENTATION LA01 CHANNELS                MINIMUM TOTAL NO.                  TO TRIP              CHANNELS              APPLICABLE FUNCTIONAL UNIT                              OF CHANNELS                                      OPERABLE                    MODES                ACTION
: 11. Wide Range Logarithmic Neutron Flux Monitor See ITS 3.3.1
: a. Startup and Operating --              4                        2(d)                  3                        1**, 2 and
* 2 Rate of Change of Power -
High
: b. Shutdown                              4                        0                      2                        3, 4, 5                  3      See ITS 3.3.11 LCO 3.3.2 Applicability 12. Reactor Protection System                  4                        2                      4                        1, 2*                    4 ACTION B          Logic      RPS initiation logic A03 LCO 3.3.2    13. Reactor Trip Breakers                      4                        2                      4                        1, 2*                    4 Applicability ACTION B                            Circuit        RTCBs MODES 3, 4, and 5, with any RTCBs closed and any control element assemblies capable of being withdrawn ST. LUCIE - UNIT 1                                                3/4 3-3                                  Amendment No. 15, 27, 220, 243
 
A01                                            ITS 3.3.2 ITS TABLE 3.3-1 (Continued)
TABLE NOTATION any RTCBs                                                any Applicability
* With the protective system trip breakers in the closed position and the CEA drive system capable of CEA withdrawal.                                                                                        A03 being
              ** Mode 1 applicable only when Power Range Neutron Flux power  15% of RATED THERMAL POWER.
(a)    Trip may be bypassed below 1% of RATED THERMAL POWER; bypass shall be automatically removed when Wide Range Logarithmic Neutron Flux power is > 1% of RATED THERMAL POWER.
(b)    Trip may be manually bypassed below 685 psig; bypass shall be automatically removed at or above 685 psig.
(c)    Trip may be bypassed below 15% of RATED THERMAL POWER; bypass shall be automatically removed when Power Range Neutron Flux power is > 15% of RATED THERMAL POWER.
(d)    Trip may be bypassed below 10-4% and above 15% of RATED THERMAL POWER; bypass shall be automatically removed when Wide Range Logarithmic Neutron Flux power is > 10-4%
and Power Range Neutron Flux power < 15% of RATED THERMAL POWER.
(e)    Deleted.
(f)    There shall be at least two decades of overlap between the Wide Range Logarithmic Neutron Flux Monitoring Channels and the Power Range Neutron Flux Monitoring Channels.
See ITS 3.3.1 ACTION STATEMENTS One manual trip channel inoperable in MODE 1 or 2 ACTION 1 -        With the number of channels OPERABLE one less than required by the Minimum ACTIONS A, C,                                                                                                                    lR2 and E                            Channels OPERABLE requirement, restore the inoperable channel to OPERABLE                      l (Manual Trip)                    status within 48 hours or in accordance with the Risk Informed Completion Time                  l Program, or be in HOT STANDBY within the next 6 hours and/or open the protective system trip breakers.
ACTION 2 -        With the number of OPERABLE channels one less than the Total Number of Channels, STARTUP and/or POWER OPERATION may proceed provided the following conditions are satisfied:
: a. The inoperable channel is placed in either the bypassed or tripped condition within 1 hour. For the purposes of testing and maintenance, the inoperable channel may be bypassed for up to 48 hours from time of initial loss of OPERABILITY; however, the inoperable channel shall then be either restored to OPERABLE status or placed in the tripped condition.
See ITS 3.3.1 Add proposed ACTION A (Matrix Logic)    M01 ST. LUCIE - UNIT 1                                        3/4 3-4      Amendment No. 15, 27, 45, 102, 159, 220, 243, 247
 
A01                                                          ITS 3.3.2 ITS TABLE 3.3-1 (Continued)
ACTION STATEMENTS
: b. Within one hour, all functional units receiving an input from the inoperable channel are also bypassed or tripped.
: c. The Minimum Channels OPERABLE requirement is met;                                    See ITS 3.3.1 however, one additional channel may be bypassed for up to 48 hours while performing tests and maintenance on than channel provided the other inoperable channel is placed in the tripped condition.
ACTION 3 -          With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, verify compliance with the SHUTDOWN MARGIN requirements of                                        See ITS 3.3.11 Specification 3.1.1.1 or 3.1.1.2, as applicable, within 1 hour and at least once per 12 hours thereafter.
ACTION 4 -          With the number of channels OPERABLE one less than required                                    L01 ACTIONS B and C                      by the Minimum Channels OPERABLE requirement, be in HOT                                                    lR2 (RTCBs and Initiation Logic)
STANDBY within 6 hours; however, one channel may be bypassed for up to 1 hour for surveillance testing per Specification                                    LA02 4.3.1.1.1.                                One channel of Manual Trip, RTCBs, or                            lR2 With one channel RTCB or initiation logic          initiation Logic inoperable in MODE 3, 4,                        l inoperable in MODE 1 or 2 open the affected          or 5 open the affected RTCBs within 48            L01            l RTCBs within 1 hour.                    hours                                                            l l
l Add proposed ACTION D                M03      L03                              l Add proposed ACTION E (for Initiation Logic, RTCBs and second condition)          M04 ST. LUCIE - UNIT 1                                        3/4 3-5                          Amendment No. 15, 27, 202
 
A01 ITS 3.3.2 ITS TABLE 4.3-1 REACTOR PROTECTIVE INSTRUMENTATION SURVEILLANCE REQUIREMENTS SYSTEM (RPS) LOGIC AND TRIP INITIATION CHANNEL            MODES IN WHICH CHANNEL            CHANNEL              FUNCTIONAL            SURVEILLANCE FUNCTIONAL UNIT                                      CHECK          CALIBRATION                TEST                REQUIRED SR 3.3.2.3    1. Manual Reactor Trip                            N/A              N.A.                  S/U(1)                  N/A
: 2. Power Level - High
: a. Nuclear Power                              SFCP            SFCP(2),              SFCP                    1,2 SFCP(3),
SFCP(5)
: b. T Power                                    SFCP            SFCP(4), SFCP        SFCP                    1
: 3. Reactor Coolant Flow - Low                    SFCP            SFCP                  SFCP                    1, 2
: 4. Pressurizer Pressure - High                    SFCP            SFCP                  SFCP                    1, 2
: 5. Containment Pressure - High                    SFCP            SFCP                  SFCP                    1, 2 See ITS 3.3.1
: 6. Steam Generator Pressure - Low                SFCP            SFCP                  SFCP                    1, 2
: 7. Steam Generator Water                          SFCP            SFCP                  SFCP(6, 7)              1, 2 Level - Low
: 8. Local Power Density - High                    SFCP            SFCP                  SFCP                    1
: 9. Thermal Margin/Low Pressure                    SFCP            SFCP                  SFCP                    1, 2 9a. Steam Generator Pressure                        SFCP            SFCP                  SFCP 1, 2 Difference - High
: 10. Loss of Turbine -- Hydraulic N.A.            N.A.                  S/U(1)                  N.A.
Fluid Pressure - Low
: 11. Wide Range Logarithmic Neutron                                                                                  1, 2, 3, 4, SFCP            N.A.                  S/U(1)
Flux Monitor                                                                                                  5 and
* SR 3.3.2.2    12. Reactor Protection System Logic                                                        SFCP and Applicability                                                    N.A.            N.A.                                          1, 2 and
* L02 RPS initiation logic                                                        S/U(1)
SR 3.3.2.1  13. Reactor Trip Breakers                          N.A.            N.A.                  SFCP                    1, 2 and
* Applicability                      Circuit        RTCBs ST. LUCIE - UNIT 1                                          3/4 3-7                            Amendment No. 27, 43, 213, 223
 
A01                                              ITS 3.3.2 ITS TABLE 4.3-1 (Continued)
TABLE NOTATION Applicability *    -  With reactor trip breaker closed.
(1)  -  If not performed in previous 7 days.                                                              lR2 (2)  -  Heat balance only, above 15% of RATED THERMAL POWER; adjust "Nuclear Power Calibrate" potentiometer to null "Nuclear Pwr - T Pwr." During PHYSICS TESTS, these daily calibrations of nuclear power and T power may be suspended provided these calibrations are performed upon reaching each major test power plateau and prior to proceeding to the next major test power plateau.
(3)  -  Above 15% of RATED THERMAL POWER, recalibrate the excore detectors which monitor the AXIAL SHAPE INDEX by using the incore detectors or restrict THERMAL POWER during subsequent operations to < 90% of the maximum allowed THERMAL POWER level with the existing Reactor Coolant Pump combination.
(4)  -  Adjust "T Pwr Calibrate" potentiometers to make T power signals agree with calorimetric calculation.
(5)  -  Neutron detectors may be excluded from CHANNEL CALIBRATION.
(6)  -  If the as-found setpoint is either outside its predefined as-found acceptance criteria band or is not conservative with respect to the Allowable Value, then the channel shall be declared inoperable and shall be evaluated to verify that it is functioning as required before returning the channel to service.
(7)  -  The instrument channel setpoint shall be reset to a value that is within the as-left tolerance of the Field Trip Setpoint, otherwise that channel shall not be returned to OPERABLE status. The Field Trip Setpoint and the methodology used to determine the Field Trip Setpoint, the as-found acceptance criteria band, and the as-left acceptance criteria are specified in the UFSAR Section 7.2.
See ITS 3.3.1 ST. LUCIE - UNIT 1                                3/4 3-8                Amendment No. 213
 
A01                                                                    ITS 3.3.2 ITS 3/4.3        INSTRUMENTATION SYSTEM (RPS) LOGIC AND TRIP INITIATION 3/4.3.1      REACTOR PROTECTIVE INSTRUMENTATION LIMITING CONDITION FOR OPERATION LCO 3.3.2    3.3.1        As a minimum, the reactor protective instrumentation channels and bypasses of M01 Table 3.3-1 shall be OPERABLE.              Six channels of RPS Matrix Logic, four channels of RPS Initiation Logic, four channels of reactor trip circuit breakers (RTCB)s, and four channels of Manual Trip Applicability APPLICABILITY: As shown in Table 3.3-1.
MODES 1 and 2, MODES 3, 4, and 5, with any RTCBs closed and any control element ACTION:                                      assemblies capable of being withdrawn.
As shown in Table 3.3-1.
SURVEILLANCE REQUIREMENTS SR 3.3.2.1    4.3.1.1      Each reactor protective instrumentation channel shall be demonstrated OPERABLE SR 3.3.2.2 SR 3.3.2.3                by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and                                                A01 CHANNEL FUNCTIONAL TEST operations for the MODES and at the frequencies shown in Table 4.3-1.
4.3.1.2      The logic for the bypasses shall be demonstrated OPERABLE prior to each reactor startup unless performed during the preceding 92 days. The total bypass function shall be demonstrated OPERABLE in accordance with the Surveillance Frequency Control Program during CHANNEL CALIBRATION testing of each channel affected by bypass operation.
4.3.1.3      The REACTOR TRIP SYSTEM RESPONSE TIME of each reactor trip function shall be demonstrated to be within its limit in accordance with the Surveillance Frequency Control Program. Neutron detectors are exempt from response time testing. Each test shall include at least one channel per function.
See ITS 3.3.1 ST. LUCIE - UNIT 2                                3/4 3-1                            Amendment No. 67, 173
 
A01                                                      ITS 3.3.2 ITS TABLE 3.3-1              SYSTEM (RPS) LOGIC AND TRIP INITIATION REACTOR PROTECTIVE INSTRUMENTATION LA01 TOTAL NO.                        MINIMUM OF CHANNELS      CHANNELS        CHANNELS        APPLICABLE FUNCTIONAL UNIT                                      TO TRIP      OPERABLE            MODES        ACTION ACTION A ACTION C 1. Manual Reactor Trip                                  4                2              4                1, 2          1 ACTION D 4                2              4            3*, 4*, 5*        5
: 2. Variable Power Level - High                          4            2(a)(d)            3                1, 2          2
: 3. Pressurizer Pressure - High                          4                2              3                1, 2          2
: 4. Thermal Margin/Low Pressure                          4            2(a)(d)            3                1, 2          2
: 5. Containment Pressure - High                          4                2              3                1, 2          2
: 6. Steam Generator Pressure - Low                    4/SG          2/SG(b)          3/SG                1, 2          2 See ITS 3.3.1
: 7. Steam Generator Pressure                            4            2(a)(d)            3                1, 2          2 Difference - High
: 8. Steam Generator Level - Low                        4/SG            2/SG            3/SG                1, 2          2
: 9. Local Power Density - High                          4            2(c)(d)            3                  1          2
: 10. Loss of Component Cooling Water 4                2              3                1, 2          2 to Reactor Coolant Pumps ACTION B 11. Reactor Protection System Logic                      4                2              3                1, 2          2    A04 ACTION C RPS initiation logic                                                          4        3*, 4*, 5*        5 ACTION B 12. Reactor Trip Breakers                                4              2(f)            4                1, 2          4 ACTION C                                      RTCBs                                                              3*, 4*, 5*        5 Circuit
: 13. Wide Range Logarithmic Neutron Flux Monitor See ITS 3.3.1
: a. Startup and Operating -                                                                                            2 Rate of Change of Power -                        4            2(e)(g)            3                1**, 2 High
: b. Shutdown                                          4                0              2              3, 4, 5        3  See ITS 3.3.11
: 14. Reactor Coolant Flow - Low                          4/SG          2/SG(a)(d)        3/SG                1, 2          2
: 15. Loss of Load (Turbine                                                                                                      See ITS 3.3.1 4              2(c)            3                  1          2 Hydraulic Fluid Pressure - Low)
ST. LUCIE - UNIT 2                                        3/4 3-2                        Amendment No. 60, 170, 194
 
A01                                            ITS 3.3.2 ITS TABLE 3.3-1 (Continued)
TABLE NOTATION any RTCBs                                              and any Applicability
* With the protective system trip breakers in the closed position, the CEA drive system capable of            A05 CEA withdrawal, and fuel in the reactor vessel.
being                                                                  See ITS 3.3.1
              ** Mode 1 applicable only when Power Range Neutron Flux power  15% of RATED THERMAL POWER.
(a)  Trip may be manually bypassed below 0.5% of RATED THERMAL POWER in conjunction with (d) below; bypass shall be automatically removed when Wide Range Logarithmic Neutron Flux power is greater than or equal to 0.5% of RATED THERMAL POWER.
(b)  Trip may be manually bypassed below 705 psig; bypass shall be automatically removed at or above 705 psig.
(c)  Trip may be bypassed below 15% of RATED THERMAL POWER; bypass shall be automatically removed when Power Range Neutron Flux power is greater than or equal to 15% of RATED THERMAL POWER.
(d)  Trip may be bypassed during testing pursuant to Special Test Exception 3.10.3.
(e)  Trip may be bypassed below 10-4% and above 15% of RATED THERMAL POWER; bypass shall be automatically removed when Wide Range Logarithmic Neutron Flux power is > 10-4%
and Power Range Neutron Flux power < 15% of RATED THERMAL POWER.
(f)  Each channel shall be comprised of two trip breakers; actual trip logic shall be one-out-of-two LA03 taken twice.
(g)  There shall be at least two decades of overlap between the Wide Range Logarithmic Neutron Flux Monitoring Channels and the Power Range Neutron Flux Monitoring Channels.
See ITS 3.3.1 ACTION STATEMENTS One manual trip channel inoperable in MODE 1 or 2 ACTION 1 -        With the number of channels OPERABLE one less than required by the Minimum ACTION A (Manual Trip)                    Channels OPERABLE requirement, restore the inoperable channel to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time ACTION E                      Program, or be in at least HOT STANDBY within the next 6 hours and/or open the (Manual Trip) protective system trip breakers.
Add proposed ACTION A (Matrix Logic)      M01 ST. LUCIE - UNIT 2                                        3/4 3-3        Amendment No. 98, 170, 194, 199
 
A01                                                                    ITS 3.3.2 ITS TABLE 3.3-1 (Continued)
ACTION STATEMENTS One channel of Initiation Logic inoperable in MODE 1 or 2.
ACTION 2 -        a. With the number of channels OPERABLE one less than the ACTION B                              Total Number of Channels, STARTUP and/or POWER OPERATION (Initiation Logic)                        may continue provided the inoperable channel is placed in the bypassed or tripped condition within 1 hour. The channel shall                                      A06    lR2 be returned to OPERABLE status no later than during the next COLD SHUTDOWN.                                                              open the affected RTCBs
: b. With the number of channels OPERABLE one less than the ACTION D                        Minimum Channels OPERABLE, STARTUP and/or POWER OPERATION (Initiation Logic Modes 1 and 2 only) may continue provided the following conditions are satisfied:          Two channels of Initiation Logic affecting the same trip leg inoperable in MODE 1 or 2.
: 1. Verify that one of the inoperable channels has been bypassed and place the other inoperable channel in the tripped condition within 1 hour.
M05 ACTION D                    2. All functional units affected by the bypassed/tripped (Initiation Logic                      channel shall also be placed in the bypassed/tripped Modes 1 and 2 only) condition.          Open the affected RTCBs immediately.
With a channel process measurement circuit that affects multiple functional units inoperable or in test, bypass or trip all associated functional units as listed below:
Process Measurement Circuit                                  Functional Unit Bypassed
: 1. Safety Channel - Nuclear Instrumentation Wide Range                                          Rate of Change of Power - High (RPS)
Linear Range                                        Variable Power Level - High (RPS)
Local Power Density - High (RPS)
Thermal Margin/Low Pressure (RPS)
: 2. Pressurizer Pressure -                                Pressurizer Pressure - High (RPS)
Thermal Margin/Low Pressure (RPS)
Pressurizer Pressure - Low (ESF)
: 3. Containment Pressure -                                Containment Pressure - High (RPS)
Containment Pressure - High (ESF)
: 4. Steam Generator Pressure -                            Steam Generator Pressure - Low (RPS)
Thermal Margin/Low Pressure (RPS)
AFAS-1 and AFAS-2 (AFAS)
Steam Generator Pressure - Low (ESF)
: 5. Steam Generator Level -                                Steam Generator Level - Low (RPS)
If SG-2A, then AFAS-1 (AFAS)
If SG-2B, then AFAS-2 (AFAS)
See ITS 3.3.1 Add proposed ACTION D (for Manual Trip, RTCBs; and Initiation Logic in Modes 3, 4 and 5)    M03      L03                        lR2 Add proposed ACTION E (for Initiation Logic and second Condition)                          M04 ST. LUCIE - UNIT 2                                          3/4 3-4                        Amendment No. 18, 73, 149
 
A01                                                            ITS 3.3.2 ITS TABLE 3.3-1 (Continued)
See ITS 3.3.1 ACTION STATEMENTS ACTION 2 -      (Continued)
: 6. Cold Leg Temperature                          Variable Power Level - High (RPS)
Thermal Margin/Low Pressure (RPS)
Local Power Density - High (RPS)
: 7. Hot Leg Temperature                          Variable Power Level - High (RPS)
Thermal Margin /Low Pressure (RPS)
Local Power Density - High (RPS)
ACTION 3 -      With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, suspend all operations involving positive reactivity changes*. Verify compliance with the SHUTDOWN MARGIN requirements of Specifica-tion 3.1.1.1 or 3.1.1.2, as applicable, within 1 hour and at least once per 12 hours thereafter.
One channel of RTCBs inoperable in MODE 1 or 2, open the affected RTCBs                See ITS 3.3.11 ACTION 4 -      With the number of channels OPERABLE one less than required by ACTION B                  the Minimum Channels OPERABLE requirements, STARTUP and/or POWER (RTCBs)                  OPERATION may continue provided the reactor trip breakers of the inoperable channel are placed in the tripped condition within ACTION E                1 hour, otherwise, be in at least HOT STANDBY within 6 hours; (RTCBs) however, one channel may be bypassed for up to 1 hour, provided the trip breakers of any inoperable channel are in the tripped                                      LA02 condition, for surveillance testing per Specification 4.3.1.1.
One channel of Manual Trip, RTCBs, or Initiation Logic inoperable in MODE 3, 4, or 5 ACTION 5 -      With the number of OPERABLE channels one less than the Minimum ACTION C                Channels OPERABLE requirement restore the inoperable channel to OPERABLE status within 48 hours or open the reactor trip                                            M06 breakers within the next hour.                                          affected RTCBs
* Limited plant cooldown or boron dilution is allowed provided the change is accounted for in the calculated SHUTDOWN MARGIN.
See ITS 3.3.11 ST. LUCIE - UNIT 2                                    3/4 3-5                          Amendment No. 122
 
A01                                                              ITS 3.3.2 ITS TABLE 4.3-1 SYSTEM (RPS) LOGIC AND TRIP INITIATION REACTOR PROTECTIVE INSTRUMENTATION SURVEILLANCE REQUIREMENTS CHANNEL            MODES FOR WHICH CHANNEL          CHANNEL          FUNCTIONAL              SURVEILLANCE FUNCTIONAL UNIT                  CHECK          CALIBRATION            TEST                IS REQUIRED SR 3.3.2.3 1. Manual Reactor Trip                              N/A              N.A.              S/U(1)                1, 2, 3*, 4*, 5*
: 2. Variable Power Level - High
: a. Nuclear Power                                SFCP            SFCP(2),            SFCP                      1,2 SFCP(3),
SFCP(4)
: b. T Power                                    SFCP            SFCP(5),                                        1 SFCP(4)
: 3. Pressurizer Pressure - High                    SFCP            SFCP                SFCP                      1, 2
: 4. Thermal Margin/Low Pressure                    SFCP            SFCP                SFCP                      1, 2
: 5. Containment Pressure - High                    SFCP            SFCP                SFCP                      1, 2 See ITS 3.3.1
: 6. Steam Generator Pressure - Low                  SFCP            SFCP                SFCP                      1, 2
: 7. Steam Generator Pressure                        SFCP            SFCP                SFCP                      1, 2 Difference - High
: 8. Steam Generator Level - Low                    SFCP            SFCP            SFCP(8, 9)                    1, 2
: 9. Local Power Density - High                      SFCP            SFCP                SFCP                        1
: 10. Loss of Component Cooling Water to N.A.            N.A.              SFCP                      N.A.
Reactor Coolant Pumps SR 3.3.2.2  11. Reactor Protection System N.A.            N.A.            SFCP(7)                1, 2, 3*, 4*, 5*  LA05 Logic                    RPS initiation logic ST. LUCIE - UNIT 2                                      3/4 3-8                        Amendment No. 1, 163, 173
 
A01                                                              ITS 3.3.2 ITS TABLE 4.3-1 (Continued)
SYSTEM (RPS) LOGIC AND TRIP INITIATION REACTOR PROTECTIVE INSTRUMENTATION SURVEILLANCE REQUIREMENTS CHANNEL            MODES FOR WHICH CHANNEL          CHANNEL          FUNCTIONAL              SURVEILLANCE FUNCTIONAL UNIT                  CHECK          CALIBRATION            TEST                IS REQUIRED SR 3.3.2.1 SR 3.3.2.4 12. Reactor Trip Breakers                            N.A.            N.A.          S/U(1), SFCP,            1, 2, 3*, 4*, 5*        L02 Circuit    RTCBs                                                    SFCP(6)
: 13. Wide Range Logarithmic Neutron                  SFCP            SFCP            S/U(1),SFCP              1, 2, 3, 4, 5 Flux Monitor See ITS 3.3.1
: 14. Reactor Coolant Flow - Low                      SFCP            SFCP                SFCP                      1, 2
: 15. Loss of Load (Turbine Hydraulic SFCP              N.A.              SFCP                        1 Fluid Pressure - Low)
ST. LUCIE - UNIT 2                                      3/4 3-9                        Amendment No. 1, 173
 
DISCUSSION OF CHANGES ITS 3.3.2, REACTOR PROTECTIVE SYSTEM (RPS) LOGIC AND INITIATION INSTRUMENTATION ADMINISTRATIVE CHANGES A01    In the conversion of the St. Lucie Plant (PSL) Unit 1 and Unit 2 Current Technical Specifications (CTS) to the plant specific Improved Technical Specifications (ITS), certain changes (wording preferences, editorial changes, reformatting, revised numbering, etc.) are made to obtain consistency with NUREG-1432, Rev. 5.0, "Standard Technical Specifications - Combustion Engineering Plants" (ISTS).
These changes are designated as administrative changes and are acceptable because they do not result in technical changes to the CTS.
A02    Unit 1 only: CTS Table 3.3-1 Functional Unit 1 provides requirements for Manual Reactor Trip. The Total No. Of Channels and Minimum Channels Operable columns specify 2 channels. ITS LCO 3.3.2, in part, requires four channels of Manual Trip to be OPERABLE. This changes the CTS by requiring four Manual Reactor Trip channels instead of two channels.
The purpose of the required number of channels is to ensure a manual reactor trip can be initiated coincident with a single failure. As shown in UFSAR Figure 7.2-1, the Reactor Protective System manual trip function is comprised of two manual trip push buttons per Manual Trip circuit; Manual Trip #1 and #2.
Two pushbuttons associated with either Manual Trip circuit are required to trip the reactor. CTS Table 3.3-1 Functional Unit 1 specifies a Manual Trip Circuit as a channel (i.e., Manual Trip #1 and #2). ISTS LCO 3.3.3 (ITS LCO 3.3.2) and the associated ACTIONS and Surveillances are formatted to address each individual manual trip push button as a channel. The PSL Unit 1 and Unit 2 manual reactor trip circuit design is consistent with the manual reactor trip circuit design discussed in the Bases of ISTS 3.3.3. The Background section of the ISTS 3.3.3 Bases states, in part, "Each set of RTCBs is operated by a Manual Trip push button. There are four Manual Trip push buttons, arranged in two sets of two. Depressing both push buttons in either set will result in a reactor trip." Therefore, changing the minimum number of required channels from 2 to 4 results is an equivalent requirement; two sets of two manual push buttons must be OPERABLE and one set of two manual push buttons are required to initiate a manual reactor trip.
This change is a presentation preference and is consistent with NUREG-1432, Rev. 5 and PSL Unit 2 CTS Table 3.3-1 Functional Unit 1 Total No. of Channels and Minimum Channels Operable columns. This change is designated as administrative because it does not result in technical changes to the CTS.
A03    Unit 1 only: CTS Table 3.3-1 lists the applicability of the RPS Manual Reactor Trip (Functional Unit 1) as MODES 1, 2 and
* CTS Table 3.3-1 also lists the applicability of the Reactor Protective System Logic (Functional Unit 12) and Reactor Trip Breakers (Functional Unit 13) as MODES 1, 2*. Footnote
* provides        lR2 the clarification that the applicability includes "with the protective system trip breakers in the closed position and the CEA drive system capable of CEA withdrawal." ITS 3.3.2 Applicability states MODES 1 and 2, and MODES 3, 4, St. Lucie Unit 1 and Unit 2                    Page 1 of 10                                  lR2
 
DISCUSSION OF CHANGES ITS 3.3.2, REACTOR PROTECTIVE SYSTEM (RPS) LOGIC AND INITIATION INSTRUMENTATION and 5, with any RTCBs closed and any control element assemblies capable of being withdrawn. This changes the CTS by specifically adding MODES 3, 4, and 5 to the specific condition of with any RTCBs closed and any control element assemblies capable of being withdrawn.
The purpose of the CTS Applicability is to ensure the RPS manual trip channel and logic and initiation instrumentation is also applicable when the plant is shutdown if the RTCBs are closed and the CEAs are capable of being withdrawn to ensure a withdrawn CEA can be inserted if required. Clarifying the Applicability of MODES 3, 4, and 5 avoids any confusion of the RPS requirements when the reactor vessel head is de-tensioned or removed (i.e.,
MODE 6). Other Technical Specifications (e.g., LCO 3.9.1, "Boron Concentration") ensure adequate Shutdown Margin is provided in MODE 6. This change is consistent with NUREG-1432, Rev. 5 and the Applicability for the same RPS Functions in Unit 2 CTS Table 3.3-1. This change is solely a clarification of the existing requirement and is designated as administrative because it does not result in technical changes to the CTS.
A04    Unit 2 only: Unit 2 CTS Table 3.3-1 Function 11 (Reactor Protection System Logic) requires 3 channels in the Minimum Channels Operable column for MODES 1 and 2. ITS 3.3.2 requires four channels for Function 11 (RPS Initiation Logic) to be OPERABLE for MODES 1 and 2. This changes the Unit 2 CTS to require four Reactor Protective System Logic (Function 11) channels instead of three channels.
The purpose of the required number of channels is to ensure the RPS Initiation Logic trip can be initiated coincident with a single failure. As shown in UFSAR Figure 7.2-1, the Reactor Protective System RPS Initiation Logic function is comprised of two channels per trip circuit. Changing the minimum number of required channels from 3 to 4 results in an equivalent requirement; two channels per trip circuit are required to satisfy single failure criteria.
This change is consistent with NUREG-1432, Rev. 5 and PSL Unit 2 CTS Table 3.3-1 Functional Unit 11 Total No. of Channels, Minimum Channels Operable, and Channels to Trip columns. This change is designated as administrative because it does not result in technical changes to the CTS.
A05    Unit 2 only: CTS 3.3.1 Table 3.3-1 Footnote* states, in part. "and fuel in the reactor vessel." ITS 3.3.2 Applicability does not include this specific detail          lR2 l
because the removed detail is inclusive to the ITS definition of MODE provided in        l ITS Section 1.1. This changes the CTS by removing redundant information                  l already addressed by the Technical Specification definitions.
The purpose of the statement regarding fuel in the reactor in CTS Table 3.3-1 Footnote
* is to clarify that the Applicability applies with fuel in the reactor vessel.
The equivalent ITS 3.3.2 Applicability clarifies the requirements are applicable in MODES 3, 4, and 5, which include fuel in the reactor vessel. The ITS definition of a MODE includes "with fuel in the reactor vessel." ITS 3.3.2 retains the                lR2 requirement for the RPS Logic and Trip Initiation to be OPERABLE in MODES 3, 4, and 5 with any RTCBs closed and any control element assemblies capable of St. Lucie Unit 1 and Unit 2                  Page 2 of 10                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.2, REACTOR PROTECTIVE SYSTEM (RPS) LOGIC AND INITIATION INSTRUMENTATION being withdrawn. This change is solely a presentation preference difference and is designated as administrative because it does not result in technical changes to the CTS.
A06    Unit 2 Only: CTS 3.3.1 Table 3.3-1 ACTION 2.a, states in part, "The channel        lR2 l
shall be returned to OPERABLE status no later than during the next COLD            l SHUTDOWN." ITS 3.3.2 does not include these procedural details. This                l changes the CTS by removing the unnecessary operational detail that is              l l
adequately addressed by the requirements of LCO 3.0.4.                              l l
The removal of these details from the Technical Specifications is acceptable        l l
because this type of information is not necessary to be included in the Technical  l Specifications to provide adequate protection of public health and safety.          l l
OPERABILITY requirements following a unit shutdown are governed by the              l Technical Specifications MODE requirements, Technical Specification rules of        l usage (specifically LCO 3.0.4) when transitioning from Cold Shutdown                l l
(MODE 5). This change is designated as administrative because it removes a          l duplicative requirement and does not result in a technical change to the CTS.      l MORE RESTRICTIVE CHANGES M01    Unit 1 CTS 3.3.1.1 and Unit 2 CTS 3.3.1 do not specifically identify the RPS Matrix Logic channels as a functional unit required to satisfy RPS logic OPERABILITY. ITS 3.3.2 requires six channels of RPS Matrix Logic to be OPERABLE. This changes CTS by specifically adding six channels of RPS Matrix Logic to the channel OPERABILITY requirements and adding the associated proposed ACTION for inoperable RPS Matrix Logic channels.
The proposed change results in more specific requirements for the RPS Logic and Trip Initiation channels including the actions to be taken for inoperability.
The proposed change is acceptable because the matrix logic is currently part of the RPS logic and trip initiation system but are not specifically identified within the OPERABILITY requirements. ITS 3.3.2 specifically identifies the six RPS Matrix Logic channels as an LCO requirement. The PSL Unit 1 and Unit 2 RPS matrix logic design is consistent with the RPS matrix logic design discussed in the Bases of ISTS 3.3.3. ITS 3.3.2 ACTION A requires the inoperable channels to be restored to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program when one Matrix Logic channel is inoperable or when three Matrix Logic channels are inoperable due to a common power source failure de-energizing three matrix power supplies. The Completion Time of 48 hours provides the operator time to take appropriate actions and still ensures that any risk involved in operating with a failed channel is acceptable.
Operating experience has demonstrated that the probability of a random failure of a second Matrix Logic channel is low during any given 48 hour interval. By providing specific requirements for the six RPS Matrix Logic channels, the proposed change provides additional assurance that the RPS function is available when required. This change conforms the PSL CTS to the ISTS. This change is considered a more restrictive change because additional specific requirements have been added that are not required by the CTS.
St. Lucie Unit 1 and Unit 2                  Page 3 of 10                                  lR2
 
DISCUSSION OF CHANGES ITS 3.3.2, REACTOR PROTECTIVE SYSTEM (RPS) LOGIC AND INITIATION INSTRUMENTATION M02    Unit 1 only: CTS 3.3.1.1 does not have a specific surveillance requirement that requires an additional CHANNEL FUNCTIONAL TEST that includes a separate verification of the undervoltage and shunt trips on each RTCB channel. ITS SR 3.3.2.4 requires the performance of a CHANNEL FUNCTIONAL TEST, including separate verification of the undervoltage and shunt trips on each RTCB channel in accordance with the SFCP. This changes the CTS by adding an additional surveillance requirement ITS SR 3.3.2.4.
The purpose of SR 3.3.2.4 is to individually test all four sets of undervoltage coils and all four sets of shunt trip coils. This change is acceptable because it ensures that every undervoltage coil and every shunt trip coil is capable of performing its intended function and that no single active failure of an RTCB component will        lR2 prevent a reactor trip. PSL controls periodic Frequencies for Surveillances in accordance with the SFCP per CTS 6.8.4.o (Unit 1) and CTS 6.8.4.q (Unit 2).
Therefore, the initial Frequency in accordance with the Surveillance Frequency Control Program will be specified as 18 months consistent with ISTS 3.3.3.4 and based on the need to perform the Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power.
The SFCP was established as described in FPL (PSL Unit 1 and Unit 2)
        "Application for Technical Specification Change Regarding Risk-Informed Justifications for the Relocation of Specific Surveillance Frequency Requirements to a Licensee Controlled Program" (ADAMS Accession No. ML14070A087). The NRC issued Amendment No. 223 to Renewed Facility Operating License No.
DPR-67 and Amendment No. 173 to Renewed Facility Operating License No.
NPF-16 for the St. Lucie Plant, Unit Nos. 1 and 2 (St. Lucie 1 and 2), respectively (ADAMS Accession No. ML15127A066).
This change is acceptable and is designated as more restrictive since the CTS does not currently require this verification for the undervoltage and shunt trips on each RTCB channel.
M03    Unit 1 CTS 3.3.1.1 does not provide specific Actions for two inoperable channels      lR2 l
of Manual Reactor Trip, Reactor Protection System Logic or Reactor Trip              l Breaker functions. Unit 2 CTS 3.3.1 does not provide specific Actions for two        l channels of Manual Reactor Trip, or Reactor Trip Breaker functions and when in        l l
MODES 3, 4, and 5, does not provide specific Actions for two inoperable              l channels of Reactor Protection System Logic. Therefore, CTS 3.0.3 is applicable      l for the Condition and requires action to be initiated within one hour to place the    l l
unit in a MODE in which the specification does not apply.                            l l
l If operating in MODE 3, 4, or 5 with the protective system trip breakers in the      l closed position and the CEA drive system capable of CEA withdrawal with two          l inoperable channels, one hour is provided to initiate action to place the unit in a  l l
MODE in which the specification does not apply. Because the unit is already in        l HOT STANDBY (MODE 3) or lower the appropriate action is to open the Reactor          l Trip Breakers to exit the Specification Applicability. CTS 3.0.3 allows up to one    l l
hour to initiate the action.                                                          l St. Lucie Unit 1 and Unit 2                  Page 4 of 10                                    lR2
 
DISCUSSION OF CHANGES ITS 3.3.2, REACTOR PROTECTIVE SYSTEM (RPS) LOGIC AND INITIATION INSTRUMENTATION ITS 3.3.2 ACTION D requires the affected RTCBs to be opened immediately with        lR2 l
two inoperable channels of Manual Trip, RTCBs, or Initiation Logic affecting the    l same trip leg when in any MODE of applicability. This changes Unit 1                l CTS 3.3.1.1 by adding a specific ACTION (ITS 3.3.2 ACTION D) for two                l l
inoperable channels of Manual Trip, RTCBs, or Initiation Logic affecting the same    l trip leg for all applicable MODES; and, changes Unit 2 CTS 3.3.1 by adding a        l l
specific ACTION (ITS 3.3.2 ACTION D) for two inoperable channels of Manual          l Trip, RTCBs, for all applicable MODES and for the Initiation Logic channel for      l MODES 3, 4, and 5 with any RTCB closed and any control element assemblies            l l
capable of being withdrawn. (See Discussion of Change (DOC) L03 when                l operating in MODE 1 or 2.)                                                          l l
l The purpose of ITS 3.3.2 ACTION D is to allow for a single failure when two trip    l function channels in the same trip leg fail in a non-trip condition. This change is  l l
acceptable because with both trip channels of a trip function in the same trip leg  l inoperable opening of the affected RTCBs ensures the trip capability is              l maintained through the redundant trip leg. This change is considered a more          l l
restrictive change because less time is allowed to place the unit in a condition    l where the instrument function is not required than CTS.                              l M04    Unit 1 CTS 3.3.1.1 and Unit 2 CTS 3.3.1 do not provide specific Actions when the    lR2 Action and Completion time is not met for more than one Initiation Logic or RTCB    l l
channel inoperable. Therefore, CTS 3.0.3 would be applied. ITS 3.3.2                l ACTION E requires the unit to be placed in MODE 3 in 6 hours and all RTCBs opened in 6 hours when the Required Action and Associated Completion Time of Condition A (manual trip channel or matrix logic channel inoperable), Condition B (RTCB or Initiation Logic channel inoperable) or Condition D (two channels affecting the same trip leg inoperable) are not met or "one or more Functions with two or more Manual Trip, Matrix Logic, Initiation Logic, or RTCB channels inoperable for reasons other than Condition A or D." This changes the CTS by adding Action E in its entirety for the Initiation Logic and RTCB functions and      lR2 adding the second Condition for the manual trip function.
The purpose of CTS 3.0.3 actions is to place the unit in a MODE where the LCO        lR2 does not apply and ensuring no CEA withdrawal occurs when Required Actions and associated Completion Times are not met or when one or more Functions have two or more channels inoperable for reasons other than Condition A or D.
CTS 3.0.3 requires, in part, action to be initiated within 1 hour, the unit to be in lR2 l
Hot Standby (MODE 3) in the next 6 hours (total of 7 hours from entry), and be in    l Hot Shutdown (MODE 4) in the following 6 hours (total of 13 hours from entry).      l l
This changes the CTS by requiring the plant to be placed in a condition where        l the LCO no longer applies within 6 hours (i.e., MODE 3 with all RTCBs open)          l instead of the CTS allowance to be in MODE 3 within 7 hours and an additional        l l
6 hours (13 hours total) to open the RTCBs, which would preclude requiring entry    l into MODE 4 within 13 hours. This change is acceptable because the ACTIONS          l specified in ITS 3.3.2 adopt ISTS for placing the unit outside the MODE of applicability. A Completion Time of 6 hours is reasonable, based on operating experience, to reach the required MODE from full power conditions in an orderly St. Lucie Unit 1 and Unit 2                  Page 5 of 10                                    lR2
 
DISCUSSION OF CHANGES ITS 3.3.2, REACTOR PROTECTIVE SYSTEM (RPS) LOGIC AND INITIATION INSTRUMENTATION manner and without challenging plant systems and to open RTCBs. This change is considered a more restrictive change because additional requirements have been added to the CTS.
M05    Unit 2 only: CTS 3.3.1 Table 3.3-1 ACTION 2b. with two Reactor Protective System Logic channels inoperable, states, "Verify that one of the inoperable channels has been bypassed and place the other inoperable channel in the tripped condition within 1 hour." ITS 3.3.2 ACTION D requires the affected RTCBs to be opened immediately with two channels of RPS Initiation Logic channel affecting the same trip leg inoperable. This changes Unit 2 CTS 3.3.1 by requiring the affected RTCBs to be opened immediately. The purpose of ITS 3.3.2 ACTION D is to allow for a single failure within a trip leg when one or both trip function channels in the same trip leg fails in a non-trip condition. This change is necessary because with both trip channels of a trip function in the same trip leg inoperable, opening of the affected RTCBs ensures the trip capability is maintained. This change is considered a more restrictive change because a more restrictive completion time is required to open the RTCBs than is required in the CTS.
M06    Unit 2 only: CTS 3.3.1 Table 3.3-1 ACTION 5 requires that with one channel of Manual Trip, RTCBs, or RPS Initiation Logic inoperable in MODE 3, 4, or 5 that the inoperable channel be restored within 48 hours or the reactor trip breakers must be opened within the next hour (total of 49 hours). ITS 3.3.2 ACTION C for the same condition that the affected RTCBs be opened in 48 hours. This changes the Unit 2 CTS by changing the time to open the RTCBs from 49 hours to 48 hours. This change is considered a more restrictive change because a more restrictive completion time is required to open the RTCBs than is required in the CTS.
RELOCATED SPECIFICATIONS None REMOVED DETAIL CHANGES LA01 (Type 1 - Removing Details of System Design and System Description, Including Design Limits) CTS Table 3.3-1 for RPS instrumentation has three columns stating various requirements for each function. These columns are labeled, "TOTAL NO. OF CHANNELS," "CHANNELS TO TRIP," and "MINIMUM CHANNELS OPERABLE." ITS 3.3.2 does not retain these columns but retains the requirements in the MINIMUM CHANNELS OPERABLE column in the LCO.
This changes the CTS by moving the information of the "TOTAL NO. OF CHANNELS" and "CHANNELS TO TRIP" columns to the ITS Bases.
The removal of these details, which are related to system design, from the Technical Specifications is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate St. Lucie Unit 1 and Unit 2                Page 6 of 10                                    lR2
 
DISCUSSION OF CHANGES ITS 3.3.2, REACTOR PROTECTIVE SYSTEM (RPS) LOGIC AND INITIATION INSTRUMENTATION protection of public health and safety. The ITS still retains the requirement for the number of required channels and the appropriate Condition to enter if a required channel becomes inoperable. Also, this change is acceptable because the removed information will be adequately controlled in the ITS Bases.
Changes to the Bases are controlled by the Technical Specification Bases Control Program in Chapter 5. This program provides for the evaluation of changes to ensure the Bases are properly controlled. This change is designated as a less restrictive removal of detail change because information relating to system design is being removed from the Technical Specifications.
LA02 (Type 3 - Removing Procedural Details for Meeting TS Requirements or Reporting Requirements) Unit 1 CTS 3.3.1.1 ACTION 4 and Unit 2 CTS 3.3.1 ACTION 4 states, in part. "one channel may be bypassed for up to 1 hour for surveillance testing." The equivalent ITS 3.3.2 ACTION B requires the affected RTCBs to be opened in 1 hour. ITS 3.3.2 does not include these procedural details because the channel may continue to be bypassed under the ITS ACTION B. This changes the CTS by moving the procedural detail to the ITS        lR2 Bases.
The removal of these details, related to methods of surveillance test performance, from the Technical Specifications is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. This change is acceptable because the removed information will be adequately controlled in the ITS Bases. Changes to the Bases are controlled by the Technical Specifications Bases Control Program in Chapter 5. This program provides for the evaluation of changes to the Bases to ensure the Bases are properly controlled. This change is designated as a less restrictive removal of detail change because information relating to methods of surveillance test performance is being removed from the Technical Specifications.
LA03 Unit 2 only: (Type 2 - Removing Descriptions of System Operation) CTS Table 3.3-1 Footnote (f) states, "Each channel shall be comprised of two trip breakers; actual trip logic shall be one-out-of-two taken twice." ITS 3.3.2 does not include these system details. This changes the CTS by moving the system detail to the ITS Bases.
The removal of these details, that are related to system operation, from the Technical Specifications is acceptable, because this type of information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. The ITS retains the requirement for the RTCBs to be OPERABLE and the relocated material describes aspects of the RTCB design. In addition, this change is acceptable, because the removed information will be adequately controlled in the ITS Bases. Changes to the Bases are controlled by the Technical Specification Bases Control Program in Chapter 5. This program provides for the evaluation of changes to ensure the Bases are properly controlled. This change is designated as a less restrictive removal of detail change because information relating to system operation is being removed from the Technical Specifications.
St. Lucie Unit 1 and Unit 2                  Page 7 of 10                                lR2
 
DISCUSSION OF CHANGES ITS 3.3.2, REACTOR PROTECTIVE SYSTEM (RPS) LOGIC AND INITIATION INSTRUMENTATION LA04 Not Used                                                                            lR2 LA05 Unit 2 only: (Type 2 - Removing Descriptions of System Operation) CTS 3/4.3.1        lR2 Table 4.3-1 Note 7, states, "The fuse circuitry in the matrix fault protection    lR1 circuitry shall be determined to be OPERABLE by testing with the installed test circuitry." ITS SR 3.3.2.2 requires a CHANNEL FUNCTIONAL TEST to be performed on each RPS Initiation logic channel but does not include these procedural/operational details. This changes the CTS by moving the procedural    lR1 detail to the ITS Bases.
The removal of these details, related to methods of surveillance test performance, from the Technical Specifications is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. The ITS retains the requirement to perform a CHANNEL FUNCTIONAL TEST. This change is acceptable because the removed information will be adequately controlled in the ITS Bases. Changes to the Bases are controlled by the Technical Specifications Bases Control Program in Chapter 5. This program provides for the evaluation of changes to the Bases to ensure the Bases are properly controlled. This change is designated as a less restrictive removal of detail change because information relating to methods of surveillance test performance is being removed from the Technical Specifications.
LESS RESTRICTIVE CHANGES L01    Unit 1 only: (Category 4 - Relaxation of Required Action) CTS 3.3.1.1            lR1 Table 3.3-1 Action 4, applicable to the Reactor Protective System Logic and Reactor Trip Breaker functions when in MODES 1, 2, and *, states "With the        lR2 number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, be in HOT STANDBY within 6 hours."
ITS 3.3.2 ACTION B, applicable in MODES 1 and 2, requires the affected RTCBs to be opened in 1 hour, which can allow continued plant operation. ITS 3.3.2      lR2 l
ACTION C, applicable in MODES 3, 4, and 5, requires the affected RTCBs to be      l opened within 48 hours rather than 6 hours to HOT STANDBY (MODE 3). This          l changes the CTS by requiring the affected RTCBs to be opened rather than requiring a shutdown to HOT STANDBY (MODE 3).
The purpose of ITS 3.3.2 ACTIONS B and C is to remove the need for the            lR2 affected channel to automatically perform its function by manually performing the associated safety function. This change is acceptable because the Required Actions are used to establish remedial measures that must be taken in response to the degraded conditions in order to minimize risk associated with continued operation while providing time to repair inoperable features. The Required Actions are consistent with safe operation under the specified Condition, considering the OPERABLE status of the redundant systems or features. In this    lR2 configuration, a single channel failure will not prevent a reactor trip. The Completion Time of 1 hour is adequate to open the affected RTCBs while the risk St. Lucie Unit 1 and Unit 2                  Page 8 of 10                                lR2
 
DISCUSSION OF CHANGES ITS 3.3.2, REACTOR PROTECTIVE SYSTEM (RPS) LOGIC AND INITIATION INSTRUMENTATION of having them closed for up to 1 hour is at an acceptable level. The Completion    lR2 l
Time of 48 hours when in MODES 3, 4, or 5 is consistent with that of other RPS      l instrumentation and should be adequate to repair most failures. This change is      l designated as less restrictive because the unit shutdown requirement has been revised to allow for opening of the affected RTCBs and the requirement when        lR2 l
already shutdown with RTCBs closed has been revised to allow for a longer          l period to repair. Therefore, less stringent Required Actions are being applied in  l the ITS than were applied in the CTS.
L02    (Category 7- Relaxation of Surveillance Frequency) Unit 1 CTS Table 4.3-1          lR2 l
Functional Unit 12 (Reactor Protection System Logic) and Unit 2 CTS                l Table 4.3-1 Functional Unit 12 (Reactor Trip Breakers), including Note 1,          l requires the performance of a CHANNEL FUNCTIONAL TEST prior to each reactor startup if not performed in the previous 7 days. In addition, CTS Table 4.3-1 also requires the CHANNEL FUNCTIONAL TEST associated with Functional Unit 12 to be performed in accordance with the Surveillance Frequency Control Program (SFCP). Unit 1 ITS SR 3.3.2.2 and Unit 2 ITS              lR2 l
SR 3.3.2.1 continue to require these Surveillances to be performed CHANNEL          l FUNCTIONAL TEST to be performed at a periodic frequency in accordance with the SFCP. However, the ITS does not specifically "during startup if not            lR2 performed in the previous 7 days" test. This changes the CTS by deleting the requirement to explicitly perform these startup CHANNEL FUNCTIONALTEST              lR2 l
Surveillances during each startup if not performed within the last 7 days.          l The purpose of the RPS CHANNEL FUNCTIONAL TEST is to ensure the reactor            lR2 trip breakers and reactor protection system logic are functioning properly. This change is consistent with the Frequency specified in the ISTS, which does not      lR2 l
require a conditional Frequency to perform the Surveillance prior to each startup. l ITS SR 3.0.4 (CTS 4.0.4) requires normal periodic Surveillances to be performed within the required Frequency prior to entry into the applicable operational        lR2 conditions. The periodic Surveillance Frequency in accordance with the SFCP        l l
has been determined by FPL to be acceptable. Surveillance Frequencies              l specified in accordance with the SFCP are determined acceptable using the          l l
guidance of NEI 04 10, "Risk-Informed Method for Control of Surveillance            l Frequencies," Revision 1 as required by CTS 6.8.4.o (Unit 1) and 6.8.4.q (Unit 2). l Consistent with this guidance, the surveillance test interval (STI) for the subject l l
Channel Functional Tests was extended over multiple STI periods to the current      l Frequency by performing 1) a regulatory review, 2) an engineering analysis, and    l
: 3) a probabilistic risk assessment analysis. The STI change evaluation did not      l l
include any consideration or assumption that the Surveillance be performed on a    l conditional basis prior to each reactor startup and concluded that the specified    l l
periodic Frequency is acceptable to assure that the necessary quality of systems    l and components is maintained, that facility operation will be within safety limits, l and that the limiting conditions for operation will be met pursuant to the          l l
requirements of 10 CFR 50.36(c)(3). Additionally, to comply with ITS SR 3.0.4      l (CTS 4.0.4) and ITS SR 3.0.1 (CTS 4.0.1), appropriate post maintenance testing      l is required to declare equipment OPERABLE upon completion of maintenance,          l l
which includes ensuring applicable Surveillances are not failed and their most      l recent performance is in accordance with SR 3.0.2. As a result, it is unnecessary  l St. Lucie Unit 1 and Unit 2                  Page 9 of 10                                    lR2
 
DISCUSSION OF CHANGES ITS 3.3.2, REACTOR PROTECTIVE SYSTEM (RPS) LOGIC AND INITIATION INSTRUMENTATION to require additional performance of the Surveillance prior to each reactor          lR2 startup. This change is designated as less restrictive because Surveillances will be performed less frequently under the ITS than under the CTS.
L03    (Category 4 - Relaxation of Required Action) Unit 1 CTS 3.3.1.1 does not            lR2 l
provide specific Actions for two inoperable channels of the Manual Reactor Trip,    l Reactor Protection System Logic or Reactor Trip Breakers functions when in          l MODE 1 or 2. Unit 2 CTS 3.3.1 does not provide specific Actions for two              l l
inoperable channels of the Manual Reactor Trip and Reactor Trip Breakers            l functions when in MODE 1 or 2. Therefore, CTS LCO 3.0.3 is applicable for the        l l
condition and requires action to be initiated within 1 hour to place the unit in a  l MODE in which the specification does not apply, which in MODE 1 or 2 would          l require shutdown to at least HOT STANDBY (MODE 3). ITS Condition D with              l l
two of channels of the Manual Trip, RTCBs, or Initiation Logic affecting the same    l trip leg requires the opening of the affected RTCBs immediately. Opening the        l affected RTCBs in one trip leg allows for continued unit operation. (See DOC        l l
M03 when operating in MODE 3, 4, or 5.)                                              l l
l The purpose of ITS 3.3.2 ACTION D is to remove the need for the affected            l channels to automatically perform their function by manually performing the          l associated safety function. This change is acceptable because the Required          l l
Actions are used to establish remedial measures that must be taken in response      l to the degraded conditions to minimize risk associated with continued operation      l while providing time to repair the inoperable features. In this configuration, a    l l
single channel failure will not prevent a reactor trip. With both channels failed in l a non-trip condition, the immediate opening of the affected RTCBs ensures            l l
automatic reactor trip capability is maintained through automatic actuation of the  l redundant trip leg. This change is designated as less restrictive because the unit  l shutdown requirement has been changed to allow for opening the affected              l l
RTCBs and allowing continued operation. Therefore, less stringent Required          l Actions are being applied in the ITS than were applied in the CTS.                  l St. Lucie Unit 1 and Unit 2                Page 10 of 10                                    lR2
 
Improved Standard Technical Specifications (ISTS) Markup and Justification for Deviations (JFDs)
 
RPS Logic and Trip Initiation (Analog)      2 3.3.3 2
CTS 3.3 INSTRUMENTATION (Analog) 2 3.3.3        Reactor Protective System (RPS) Logic and Trip Initiation (Analog) 2 LCO 3.3.1.1 2
Table 3.3-1  LCO 3.3.3                  Six channels of RPS Matrix Logic, four channels of RPS Initiation Logic, Functions 1, 12 and 13                                [four] channels of reactor trip circuit breakers (RTCBs), and [four]                  3 DOC M01                                  channels of Manual Trip shall be OPERABLE.
DOC A02 Table 3.3-1 Footnote *,  APPLICABILITY:              MODES 1 and 2, Function 1                              MODES 3, 4, and 5, with any RTCBs closed and any control element DOC A03 assemblies capable of being withdrawn.
ACTIONS CONDITION                                  REQUIRED ACTION              COMPLETION TIME DOC M01    A. One Matrix Logic                      A.1        Restore channel(s) to      48 hours channel inoperable.                              OPERABLE status.
Action 1              OR                                                                    [OR                          1 OR    One Manual Trip channel inoperable in MODE 1 or 2 In accordance with 3
Three Matrix Logic                                                          the Risk Informed channels inoperable due                                                      Completion Time DOC M01        to a common power                                                            Program]
source failure de-energizing three matrix power supplies.
Action 4  B. One channel of Manual                  B.1        Open the affected RTCBs. 1 hour                      1 DOC L01 Trip, RTCBs, or Initiation Logic inoperable in MODE 1 or 2.
Table 3.3-1  C. One channel of Manual                  C.1        Open the affected RTCBs. 48 hours Functions 1, 12 and 13          Trip, RTCBs, or Initiation DOC M03          Logic inoperable in MODE 3, 4, or 5.
Combustion Engineering STS                              3.3.3-1                                    Rev. 5.0  1 2                Amendment XXX                    2 St. Lucie - Unit 1
 
RPS Logic and Trip Initiation (Analog)      2 3.3.3 2
CTS ACTIONS (continued)
CONDITION                            REQUIRED ACTION              COMPLETION TIME DOC M03    D. Two channels of Manual          D.1        Open the affected RTCBs. Immediately Trip, RTCBs, or Initiation Logic affecting the same trip leg inoperable.
Action 1  E. Required Action and            E.1        Be in MODE 3.              6 hours DOC M04 associated Completion Time of Condition A, B,        AND or D not met.
E.2        Open all RTCBs.            6 hours OR One or more Functions DOC M04      with two or more Manual Trip, Matrix Logic, Initiation Logic, or RTCB channels inoperable for reasons other than Condition A or D.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                          FREQUENCY 2                                                                                                2 4.3.1.1.1  SR 3.3.3.1          Perform a CHANNEL FUNCTIONAL TEST on each                  [ [31] days Table 4.3-1 Function 13                      RTCB channel.
OR In accordance          3 with the Surveillance Frequency Control Program ]
Combustion Engineering STS                        3.3.3-2                                    Rev. 5.0    1 2                Amendment XXX                    2 St. Lucie - Unit 1
 
RPS Logic and Trip Initiation (Analog)      2 3.3.3 2
CTS SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                                      FREQUENCY 2                                                                                            2 4.3.1.1.1  SR 3.3.3.2      Perform a CHANNEL FUNCTIONAL TEST on each              [ [92] days Table 4.3-1 Function 12                  RPS Logic channel.
DOC L02                                                                              OR In accordance          3 with the Surveillance Frequency Control Program ]
2                                                                                            2 4.3.1.1.1  SR 3.3.3.3      Perform a CHANNEL FUNCTIONAL TEST on each              Once within Table 4.3-1 Function 1                    RPS Manual Trip channel.                                7 days prior to each reactor startup 2                                                                                            2 DOC M02    SR 3.3.3.4      [ Perform a CHANNEL FUNCTIONAL TEST,                    [ [18] months including separate verification of the undervoltage and shunt trips, on each RTCB channel.                  OR In accordance 3
with the Surveillance Frequency Control Program ] ]
Combustion Engineering STS                    3.3.3-3                                  Rev. 5.0    1 2              Amendment XXX                      2 St. Lucie - Unit 1
 
RPS Logic and Trip Initiation (Analog)      2 3.3.3 2
CTS 3.3 INSTRUMENTATION (Analog) 3.3.3        Reactor Protective System (RPS) Logic and Trip Initiation (Analog)                              2 2
LCO 3.3.1 2
Table 3.3-1    LCO 3.3.3                  Six channels of RPS Matrix Logic, four channels of RPS Initiation Logic, Functions 1, 11 and 12                                [four] channels of reactor trip circuit breakers (RTCBs), and [four]              3 DOC M01                                  channels of Manual Trip shall be OPERABLE.
Applicability APPLICABILITY:              MODES 1 and 2, Table 3.3-1 Footnote
* MODES 3, 4, and 5, with any RTCBs closed and any control element assemblies capable of being withdrawn.
ACTIONS CONDITION                                  REQUIRED ACTION              COMPLETION TIME DOC M01    A. One Matrix Logic                      A.1        Restore channel(s) to      48 hours channel inoperable.                              OPERABLE status.
OR                                                                    [OR                          1 Action 1        OR    One Manual Trip channel inoperable in MODE 1 or 2 In accordance with 3
Three Matrix Logic                                                          the Risk Informed channels inoperable due                                                      Completion Time DOC M01          to a common power                                                            Program]
source failure de-energizing three matrix power supplies.
Table 3.3-1  B. One channel of Manual                  B.1        Open the affected RTCBs. 1 hour                        1 Action 2 Action 4        Trip, RTCBs, or Initiation DOC M06          Logic inoperable in MODE 1 or 2.
Table 3.3-1    C. One channel of Manual                  C.1        Open the affected RTCBs. 48 hours Functions 1, 11, and 12        Trip, RTCBs, or Initiation Action 5          Logic inoperable in DOC M06            MODE 3, 4, or 5.
Combustion Engineering STS                              3.3.3-1                                    Rev. 5.0    1 2                Amendment XXX                    2 St. Lucie - Unit 2
 
RPS Logic and Trip Initiation (Analog)      2 3.3.3 2
CTS ACTIONS (continued)
CONDITION                            REQUIRED ACTION              COMPLETION TIME Action 2.b. D. Two channels of Manual          D.1        Open the affected RTCBs. Immediately (Initiation Logic in Modes 1 & 2)        Trip, RTCBs, or Initiation DOC M03            Logic affecting the same DOC M05 trip leg inoperable.
Actions 1 and 4    E. Required Action and            E.1        Be in MODE 3.              6 hours DOC M04 associated Completion Time of Condition A, B,        AND or D not met.
E.2        Open all RTCBs.            6 hours OR One or more Functions DOC M04        with two or more Manual Trip, Matrix Logic, Initiation Logic, or RTCB channels inoperable for reasons other than Condition A or D.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                          FREQUENCY 2                                                                                                2 4.3.1.1    SR 3.3.3.1          Perform a CHANNEL FUNCTIONAL TEST on each                  [ [31] days Table 4.3-1 Function 12                        RTCB channel.
DOC L02                                                                                      OR                              lR2 In accordance          3 with the Surveillance Frequency Control Program ]
Combustion Engineering STS                        3.3.3-2                                    Rev. 5.0    1 2                Amendment XXX                    2 St. Lucie - Unit 2
 
RPS Logic and Trip Initiation (Analog)        2 3.3.3 2
CTS SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                                      FREQUENCY 2                                                                                              2 4.3.1.1    SR 3.3.3.2      Perform a CHANNEL FUNCTIONAL TEST on each              [ [92] days Table 4.3-1 Function 11                  RPS Logic channel.
OR In accordance          3 with the Surveillance Frequency Control Program ]
2                                                                                            2 4.3.1.1    SR 3.3.3.3      Perform a CHANNEL FUNCTIONAL TEST on each              Once within Table 4.3-1 Function 1                    RPS Manual Trip channel.                                7 days prior to each reactor startup 2                                                                                            2 Table 4.3-1  SR 3.3.3.4      [ Perform a CHANNEL FUNCTIONAL TEST,                    [ [18] months Function 12 Notation 6                  including separate verification of the undervoltage and shunt trips, on each RTCB channel.                  OR In accordance 3
with the Surveillance Frequency Control Program ] ]
Combustion Engineering STS                    3.3.3-3                                  Rev. 5.0      1 2              Amendment XXX                      2 St. Lucie - Unit 2
 
JUSTIFICATION FOR DEVIATIONS ITS 3.3.2, REACTOR PROTECTION SYSTEM (RPS) LOGIC AND TRIP INITIATION
: 1. Changes are made (additions, deletions, and/or changes) to the ISTS that reflect the plant-specific nomenclature, number, reference, system description, analysis, or licensing basis description.
: 2. The heading for ISTS 3.3.3 includes the parenthetical expression (Analog). This identifying information is not included in the PSL ITS. This information is provided in the NUREG-1432, Rev. 5.0 to assist in identifying the appropriate Specifications to be used as a model for a plant-specific ITS conversion but serves no purpose in a plant-specific implementation. In addition, Reactor Protective System (RPS)            lR2 Instrumentation - Shutdown (ISTS 3.3.2) is renumbered as ITS 3.3.12. Therefore,        l l
the Reactor Protective System (RPS) Logic and Trip Initiation (ISTS 3.3.3) is          l renumbered as ITS 3.3.2 and subsequent Specifications renumbered accordingly.          l
: 3. The ISTS contains bracketed information and/or values that are generic to Combustion Engineering vintage plants. The brackets are removed and the proper plant information/value is inserted to reflect the current licensing basis.
St. Lucie Unit 1 and Unit 2              Page 1 of 1
 
Improved Standard Technical Specifications (ISTS) Bases Markup and Justification for Deviations (JFDs)
 
RPS Logic and Trip Initiation (Analog)        2 B 3.3.3 2
B 3.3 INSTRUMENTATION (Analog) 2 B 3.3.3 Reactor Protective System (RPS) Logic and Trip Initiation (Analog) 2 BASES BACKGROUND            The RPS initiates a reactor trip to protect against violating the core specified acceptable fuel design limits and reactor coolant pressure boundary integrity during anticipated operational occurrences (AOOs).
By tripping the reactor, the RPS also assists the Engineered Safety Features (ESF) systems in mitigating accidents.
The protection and monitoring systems have been designed to ensure safe operation of the reactor. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the RPS, as well as LCOs on other reactor system parameters and equipment performance.
The LSSS, defined in this Specification as the Allowable Value, in conjunction with the LCOs, establish the threshold for protective system action to prevent exceeding acceptable limits during Design Basis Accidents.
During AOOs, which are those events expected to occur one or more times during the plant life, the acceptable limits are:
* The departure from nucleate boiling ratio shall be maintained above the Safety Limit (SL) value to prevent departure from nucleate boiling,
* Fuel centerline melting shall not occur, and
* The Reactor Coolant System pressure SL of 2750 psia shall not be exceeded.
Maintaining the parameters within the above values ensures that the offsite dose will be within the 10 CFR 50 (Ref. 1) and 10 CFR 100 (Ref. 2)          1 criteria during AOOs.                                          50.67          1 Accidents are events that are analyzed even though they are not expected to occur during the plant life. The acceptable limit during 1
accidents is that the offsite dose shall be maintained within an acceptable fraction of 10 CFR 100 (Ref. 2) limits. Different accident categories allow          1 50.67 a different fraction of these limits based on probability of occurrence.
Meeting the acceptable dose limit for an accident category is considered having acceptable consequences for that event.
Combustion Engineering STS                  B 3.3.3-1                    Revision XXX    Rev. 5.0          2 St. Lucie - Unit 1          2                                                  1
 
RPS Logic and Trip Initiation (Analog)    2 B 3.3.3 2
BASES BACKGROUND (continued)
The RPS is segmented into four interconnected modules. These modules are:
* Measurement channels,
* Bistable trip units,
* RPS Logic, and
* Reactor trip circuit breakers (RTCBs).
This LCO addresses the RPS Logic and RTCBs, including Manual Trip capability. LCO 3.3.1, "Reactor Protective System (RPS) Instrumentation
                    - Operating," provides a description of the role of this equipment in the RPS. This is summarized below:
RPS Logic The RPS Logic, consisting of Matrix and Initiation Logic, employs a scheme that provides a reactor trip when bistables in any two of the four channels sense the same input parameter trip. This is called a two-out-of-four trip logic. This logic and the RTCB configuration are shown in                1 Figure B 3.3.1-1.            (one out of two taken twice) 5 Bistable relay contact outputs from the four channels are configured into six logic matrices. Each logic matrix checks for a coincident trip in the same parameter in two bistable channels. The matrices are designated the AB, AC, AD, BC, BD, and CD matrices to reflect the bistable channels being monitored. Each logic matrix contains four normally energized matrix relays. When a coincidence is detected, consisting of a trip in the same Function in the two channels being monitored by the logic matrix, all four matrix relays de-energize.
The matrix relay contacts are arranged into trip paths, with one of the four matrix relays in each matrix opening contacts in one of the four trip paths.
Each trip path provides power to one of the four normally energized RTCB control relays (K1, K2, K3, and K4). The trip paths thus each have six contacts in series, one from each matrix, and perform a logical OR function, opening the RTCBs if any one or more of the six logic matrices indicate a coincidence condition.
Combustion Engineering STS                B 3.3.3-2                          Revision XXX      Rev. 5.0        2 St. Lucie - Unit 1          2                                                      1
 
RPS Logic and Trip Initiation (Analog)      2 B 3.3.3 2
BASES BACKGROUND (continued)
Each trip path is responsible for opening one set of two of the eight RTCBs. The RTCB control relays (K-relays), when de-energized, interrupt power to the breaker undervoltage trip attachments and simultaneously apply power to the shunt trip attachments on each of the two breakers. Actuation of either the undervoltage or shunt trip attachment is sufficient to open the RTCB and interrupt power from the motor generator (MG) sets to the control element drive mechanisms (CEDMs).
When a coincidence occurs in two RPS channels, all four matrix relays in the affected matrix de-energize. This in turn de-energizes all four breaker control relays, which simultaneously de-energize the undervoltage and energize the shunt trip attachments in all eight RTCBs, tripping them open.
The Initiation Logic consists of the trip path power source, matrix relays and their associated contacts, all interconnecting wiring, and solid state (auxiliary) relays through the K-relay contacts in the RTCB control circuitry.
It is possible to change the two-out-of-four RPS Logic to a two-out-of-three logic for a given input parameter in one channel at a time by trip channel bypassing select portions of the matrix logic. Trip channel bypassing a bistable effectively shorts the bistable relay contacts in the three matrices associated with that channel. Thus, the bistables will function normally, producing normal trip indication and annunciation, but a reactor trip will not occur unless two additional channels indicate a trip condition. Trip channel bypassing can be simultaneously performed on any number of parameters in any number of channels, providing each parameter is bypassed in only one channel at a time. An interlock prevents simultaneous trip channel bypassing of the same parameter in more than one channel. Trip channel bypassing is normally employed during maintenance or testing.
Reactor Trip Circuit Breakers (RTCBs)
The reactor trip switchgear, shown in Figure B 3.3.1-1, consists of eight    5 RTCBs, which are operated in four sets of two breakers (four channels).
Power input to the reactor trip switchgear comes from two full capacity MG sets operated in parallel such that the loss of either MG set does not de-energize the CEDMs. There are two separate CEDM power supply Combustion Engineering STS                  B 3.3.3-3                  Revision XXX    Rev. 5.0        2 St. Lucie - Unit 1          2                                                1
 
RPS Logic and Trip Initiation (Analog)        2 B 3.3.3 2
BASES BACKGROUND (continued) buses, each bus powering half of the CEDMs. Power is supplied from the MG sets to each bus via two redundant paths (trip legs). Trip legs 1A and 1B supply power to CEDM bus 1. Trip legs 2A and 2B supply power to CEDM bus 2. This ensures that a fault or the opening of a breaker in one trip leg (i.e., for testing purposes) will not interrupt power to the CEDM buses.
Each of the four trip legs consists of two RTCBs in series. The two RTCBs within a trip leg are actuated by separate initiation circuits.
The eight RTCBs are operated as four sets of two breakers (four channels). For example, if a breaker receives an open signal in trip leg A (for CEDM bus 1), an identical breaker in trip leg B (for CEDM bus 2) will also receive an open signal. This arrangement ensures that power is interrupted to both CEDM buses, thus preventing trip of only half of the control element assemblies (CEAs) (a half trip). Any one inoperable breaker in a channel will make the entire channel inoperable.
Each set of RTCBs is operated by either a Manual Trip push button or an RPS actuated K-relay. There are four Manual Trip push buttons, arranged in two sets of two, as shown in Figure B 3.3.1-1. Depressing            5 both push buttons in either set will result in a reactor trip.
When a Manual Trip is initiated using the control room push buttons, the RPS trip paths and K-relays are bypassed, and the RTCB undervoltage and shunt trip attachments are actuated independent of the RPS.
Manual Trip circuitry includes the push button and interconnecting wiring to both RTCBs necessary to actuate both the undervoltage and shunt trip attachments, but excludes the K-relay contacts and their interconnecting wiring to the RTCBs, which are considered part of the Initiation Logic.
in accordance with the  Functional testing of the entire RPS, from bistable input through the Surveillance Frequency  opening of individual sets of RTCBs, can be performed either at power or Control Program 2
shutdown and is normally performed on a quarterly basis. FSAR,                  1 Section [7.2] (Ref. 3), explains RPS testing in more detail. U                        3 APPLICABLE          Reactor Protective System (RPS) Logic SAFETY ANALYSES            The RPS Logic provides for automatic trip initiation to maintain the SLs during AOOs and assist the ESF systems in ensuring acceptable consequences during accidents. All transients and accidents that call for a reactor trip assume the RPS Logic is functioning as designed.
Combustion Engineering STS                  B 3.3.3-4                      Revision XXX      Rev. 5.0        2 St. Lucie - Unit 1          2                                                  1
 
RPS Logic and Trip Initiation (Analog)    2 B 3.3.3 2
BASES APPLICABLE SAFETY ANALYSES (continued)
Reactor Trip Circuit Breakers (RTCBs)
All of the transient and accident analyses that call for a reactor trip assume that the RTCBs operate and interrupt power to the CEDMs.
Manual Trip There are no accident analyses that take credit for the Manual Trip; however, the Manual Trip is part of the RPS circuitry. It is used by the operator to shut down the reactor whenever any parameter is rapidly trending toward its trip setpoint. A Manual Trip accomplishes the same results as any one of the automatic trip Functions.
The RPS Logic and initiation satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO                  Reactor Protective System (RPS) Logic Failures of individual bistable relays and their contacts are addressed in LCO 3.3.1. This Specification addresses failures of the Matrix Logic not addressed in the above, such as the failure of matrix relay power supplies or the failure of the trip channel bypass contact in the bypass condition.
instrument Loss of a single vital bus will de-energize one of the two power supplies in        1 each of three matrices. This will result in four RTCBs opening; however, the remaining four closed RTCBs will prevent a reactor trip. For the purposes of this LCO, de-energizing up to three matrix power supplies due to a single failure is to be treated as a single channel failure, providing the affected matrix relays de-energize as designed, opening the affected RTCBs.
Each of the four Initiation Logic channels opens one set of RTCBs if any of the six coincidence matrices de-energize their associated matrix relays.
They thus perform a logical OR function. Each Initiation Logic channel has its own power supply and is independent of the others. An Initiation Logic channel includes the matrix relay through to the K-relay contacts, which open the RTCB.
It is possible for two Initiation Logic channels affecting the same trip leg to de-energize if a matrix power supply or vital instrument bus fails. This will    1 result in opening the two affected sets of RTCBs.
Combustion Engineering STS                  B 3.3.3-5                    Revision XXX      Rev. 5.0      2 St. Lucie - Unit 1          2                                                1
 
RPS Logic and Trip Initiation (Analog)    2 B 3.3.3 2
BASES LCO (continued)
If one set of RTCBs has been opened in response to a single RTCB channel, Initiation Logic channel, or Manual Trip channel failure, the affected set of RTCBs may be closed for up to 1 hour for Surveillance on the OPERABLE Initiation Logic, RTCB, and Manual Trip channels. In this case, the redundant set of RTCBs will provide protection if a trip should be required. It is unlikely that a trip will be required during the Surveillance, coincident with a failure of the remaining series RTCB instrument channel. If a single matrix power supply or vital bus failure has opened          1 two sets of RTCBs, Manual Trip and RTCB testing on the closed breakers cannot be performed without causing a trip.
: 1. Matrix Logic This LCO requires six channels of Matrix Logic to be OPERABLE in MODES 1 and 2, and in MODES 3, 4, and 5 when any RTCB is closed and any CEA is capable of being withdrawn.
: 2. Initiation Logic This LCO requires four channels of Initiation Logic to be OPERABLE in MODES 1 and 2, and in MODES 3, 4, and 5 when any RTCB is closed and any CEA is capable of being withdrawn.
: 3. Reactor Trip Circuit Breakers (RTCBs)
The LCO requires four RTCB channels to be OPERABLE in MODES 1 and 2, as well as in MODES 3, 4, and 5 when any RTCB is closed and any CEA is capable of being withdrawn.
Each channel consists of two breakers operated in a single set by the Initiation Logic or Manual Trip circuitry. This ensures that power is interrupted at identical locations in the trip legs for both CEDM buses, thus preventing power removal to only one CEDM bus (a half trip).
Failure of a single breaker affects the entire channel, and both breakers in the set must be opened. Without reliable RTCBs and associated support circuitry, a reactor trip cannot occur whether initiated automatically or manually.
Each channel of RTCBs starts at the contacts actuated by the K-relay, and the contacts actuated by the Manual Trip, for each set of breakers. The K-relay actuated contacts and the upstream circuitry are considered to be RPS Logic. Manual Trip contacts and upstream circuitry are considered to be Manual Trip circuitry.
Combustion Engineering STS                  B 3.3.3-6                      Revision XXX    Rev. 5.0      2 St. Lucie - Unit 1          2                                                1
 
RPS Logic and Trip Initiation (Analog)          2 B 3.3.3 2
BASES LCO (continued)
I A Note associated with the ACTIONS states that if one set of RTCBs            1 has been opened in response to a single RTCB channel, Initiation Logic channel, or Manual Trip channel failure, the affected set of RTCBs may be closed for up to 1 hour for Surveillance on the OPERABLE Initiation Logic, RTCB, and Manual Trip channels. In this case, the redundant set of RTCBs will provide protection. If a single matrix power supply or vital bus failure has opened two sets of RTCBs, Manual Trip and RTCB testing on the closed breakers cannot be performed without causing a trip. This Note is not 1
applicable to Condition A, with one Matrix Logic channel inoperable.
: 4. Manual Trip The LCO requires all four Manual Trip channels to be OPERABLE in MODES 1 and 2, and MODES 3, 4, and 5 when any RTCB is closed and any CEA is capable of being withdrawn.
Two independent sets of two adjacent push buttons are provided at separate locations. Each push button is considered a channel and operates two of the eight RTCBs. Depressing both push buttons in either set will cause an interruption of power to the CEDMs, allowing the CEAs to fall into the core. This design ensures that no single failure in any push button circuit can either cause or prevent a reactor trip.
APPLICABILITY        The RPS Matrix Logic, RTCBs, and Manual Trip are required to be OPERABLE in any MODE when any CEA is capable of being withdrawn from the core (i.e., RTCBs closed and power available to the CEDMs).
This ensures the reactor can be tripped when necessary, but allows for maintenance and testing when the reactor trip is not needed.
In MODES 3, 4, and 5 with all the RTCBs open, the CEAs are not capable of withdrawal and these Functions do not have to be          neutron flux    1 OPERABLE. However, two [logarithmic] power level channels must be OPERABLE to ensure proper indication of neutron population and to                      3 indicate a boron dilution event. This is addressed in LCO 3.3.13,                          1 Neutron Flux
                      "[Logarithmic] Power Monitoring Channels."                      11 ACTIONS              When the number of inoperable channels in a trip Function exceeds that specified in any related Condition associated with the same trip Function, then the plant is outside the safety analysis. Therefore, LCO 3.0.3 is immediately entered if applicable in the current MODE of operation.
Combustion Engineering STS                  B 3.3.3-7                    Revision XXX    Rev. 5.0            2 St. Lucie - Unit 1          2                                                    1
 
RPS Logic and Trip Initiation (Analog)      2 B 3.3.3 2
BASES ACTIONS (continued)
A.1
                                                      , one Manual Trip channel is inoperable,                1 Condition A applies if one Matrix Logic channel is inoperable or three Matrix Logic channels are inoperable due to a common power source failure de-energizing three matrix power supplies, in any applicable MODE. Loss of a single vital instrument bus will de-energize one of the                  1 two matrix power supplies in up to three matrices. This is considered a single matrix failure, providing the matrix relays associated with the failed power supplies de-energize as required.
Failure of the matrix relays to de-energize in all three affected matrices could, when combined with trip channel bypassing of bistable relay contacts in the other matrices, result in loss of RPS function.
The channel must be restored to OPERABLE status within 48 hours [or in              3 accordance with the Risk Informed Completion Time Program]. The Completion Time of 48 hours provides the operator time to take appropriate actions and still ensures that any risk involved in operating with a failed channel is acceptable. Operating experience has demonstrated that the probability of a random failure of a second Matrix Logic channel is low during any given 48 hour interval. If the channel cannot be restored to OPERABLE status within 48 hours, Condition E is entered.
B.1 or Condition B applies to one Initiation Logic channel, RTCB channel, or                1 Manual Trip channel in MODES 1 and 2, since they have the same actions. MODES 3, 4, and 5, with the RTCBs shut, are addressed in Condition C. These Required Actions require opening the affected RTCBs. This removes the need for the affected channel by performing its associated safety function. With the RTCB open, the affected Functions are in one-out-of-two logic, which meets redundancy requirements, but The inoperable testing on the OPERABLE channels cannot be performed without causing channel may be    a reactor trip unless the RTCBs in the inoperable channels are closed to 1
bypassed during the  permit testing.
one hour period to perform testing, if necessary, provided  Required Action B.1 provides for opening the RTCBs associated with the the RTCBs are opened  inoperable channel within a Completion Time of 1 hour. This Required within the required Completion Time. Action is conservative, since depressing the Manual Trip push button associated with either set of breakers in the other trip leg will cause a reactor trip. With this configuration, a single channel failure will not prevent a reactor trip. The allotted Completion Time is adequate to open the affected RTCBs while maintaining the risk of having them closed at an acceptable level.
Combustion Engineering STS                    B 3.3.3-8                              Revision XXX Rev. 5.0        2 St. Lucie - Unit 1          2                                                    1
 
RPS Logic and Trip Initiation (Analog)        2 B 3.3.3 2
BASES ACTIONS (continued)
C.1 Condition C applies to the failure of one Initiation Logic channel, RTCB channel, or Manual Trip channel affecting the same trip leg in MODE 3, 4,          1 or 5 with the RTCBs closed. The channel must be restored to OPERABLE status within 48 hours. If the inoperable channel cannot be restored to OPERABLE status within 48 hours, the affected RTCBs must be opened. In some cases, this condition may effect all of the RTCBs.              1 This removes the need for the affected channel by performing its associated safety function. With the RTCBs open, the affected functions are in a one-out-of-two logic, which meets redundancy requirements.
The Completion Time of 48 hours is consistent with that of other RPS instrumentation and should be adequate to repair most failures.
Testing on the OPERABLE channels cannot be performed without causing a reactor trip unless the RTCBs in the inoperable channels are closed to permit testing.
D.1 Condition D applies to the failure of both Manual Trip or Initiation Logic channels affecting the same trip leg. Since this will open two channels of RTCBs, this Condition is also applicable to the two affected channels of RTCBs. This Condition allows for loss of a single vital instrument bus or        1 matrix power supply, which will de-energize both Initiation Logic channels in the same trip leg. This will open both sets of RTCBs in the affected trip leg, satisfying the Required Action of opening the affected RTCBs.
Of greater concern is the failure of the initiation circuit in a nontrip condition (e.g., due to two initiation K-relay failures). With only one Initiation Logic channel failed in a nontrip condition, there is still the redundant set of RTCBs in the trip leg. With both failed in a nontrip condition, the reactor will not trip automatically when required. In either case, the affected RTCBs must be opened immediately by using the appropriate Manual Trip push buttons, since each of the four push buttons opens one set of RTCBs, independent of the initiation circuitry.
Caution must be exercised, since depressing the wrong push buttons may result in a reactor trip.
Combustion Engineering STS                B 3.3.3-9                    Revision XXX        Rev. 5.0      2 St. Lucie - Unit 1          2                                                  1
 
RPS Logic and Trip Initiation (Analog)                2 B 3.3.3 2
BASES ACTIONS (continued)
If two Manual Trip channels are inoperable and affecting the same trip leg, the associated RTCBs must be opened immediately to ensure Manual Trip capability is maintained. With the affected RTCBs open, any one of two Manual Trip push buttons being depressed will result in a reactor trip.
If the affected RTCB(s) cannot be opened, Condition E is entered. This would only occur if there is a failure in the Manual Trip circuitry or the RTCB(s).
E.1 and E.2 Condition E is entered if Required Actions associated with Condition A, B, or D are not met within the required Completion Time or if for one or more Functions more than one Manual Trip, Matrix Logic, Initiation Logic, or RTCB channel is inoperable for reasons other than Condition A or D.
If the RTCBs associated with the inoperable channel cannot be opened, the reactor must be shut down within 6 hours and all the RTCBs opened.
A Completion Time of 6 hours is reasonable, based on operating experience, to reach the required MODE from full power conditions in an orderly manner and without challenging plant systems and to open RTCBs. All RTCBs should then be opened, placing the plant in a MODE where the LCO does not apply and ensuring no CEA withdrawal occurs.
SURVEILLANCE        -----------------------------------REVIEWERS NOTE-----------------------------------
REQUIREMENTS        In order for a plant to take credit for topical reports as the basis for justifying Frequencies, topical reports must be supported by an NRC staff                            4 Safety Evaluation Report that establishes the acceptability of each topical report for that unit (Ref. 4).
2 SR 3.3.3.1                                                                                          2 A CHANNEL FUNCTIONAL TEST is performed on each RTCB channel.
This verifies proper operation of each RTCB. The RTCB must then be closed prior to testing the other RTCBs, or a reactor trip may result. [ The Frequency of 31 days is based on the reliability analysis presented in                              3 Topical Report CEN-327, "RPS/ESFAS Extended Test Interval Evaluation," (Ref. 5).
Combustion Engineering STS                B 3.3.3-10                              Revision XXX          Rev. 5.0          2 St. Lucie - Unit 1            2                                                                1
 
RPS Logic and Trip Initiation (Analog)                  2 B 3.3.3 2
BASES SURVEILLANCE REQUIREMENTS (continued)
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency 4
description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]
2 2
SR 3.3.3.2 A CHANNEL FUNCTIONAL TEST on each RPS Logic channel is performed to ensure the entire channel will perform its intended function when needed. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.
In addition to power supply tests, the RPS CHANNEL FUNCTIONAL                                  2 TEST consists of three overlapping tests as described in Reference 3.                              1 These tests verify that the RPS is capable of performing its intended function, from bistable input through the RTCBs. The first test, the bistable test, is addressed by SR 3.3.1.4 in LCO 3.3.1.
This SR addresses the two tests associated with the RPS Logic: Matrix Logic and Trip Path.
Matrix Logic Tests These tests are performed one matrix at a time. They verify that a coincidence in the two input channels for each Function removes power from the matrix relays. During testing, power is applied to the matrix relay test coils and prevents the matrix relay contacts from assuming their de-energized state. The Matrix Logic tests will detect any short circuits around the bistable contacts in the coincidence logic such as may be caused by faulty bistable relay or trip channel bypass contacts.
Combustion Engineering STS                B 3.3.3-11                              Revision XXX          Rev. 5.0          2 St. Lucie - Unit 1            2                                                                1
 
RPS Logic and Trip Initiation (Analog)                  2 B 3.3.3 2
BASES SURVEILLANCE REQUIREMENTS (continued)
Trip Path Tests These tests are similar to the Matrix Logic tests, except that test power is withheld from one matrix relay at a time, allowing the initiation circuit to de-energize, opening the affected set of RTCBs. The RTCBs must then be closed prior to testing the other three initiation circuits, or a reactor trip may result.
[ The Frequency of [92] days is based on the reliability analysis presented in topical report CEN-327, "RPS/ESFAS Extended Test Interval Evaluation" (Ref. 5).                                                                              3 OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                    4 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]    3 2
2 SR 3.3.3.3 A CHANNEL FUNCTIONAL TEST on the Manual Trip channels is performed prior to a reactor startup to ensure the entire channel will perform its intended function if required. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The Manual Trip Function can be tested either at power or shutdown. However, the simplicity of this circuitry and the absence of drift concern makes this Frequency adequate. Additionally, operating experience has shown that these components usually pass the Surveillance when performed once within 7 days prior to each reactor startup.
Combustion Engineering STS                B 3.3.3-12                              Revision XXX          Rev. 5.0          2 St. Lucie - Unit 1            2                                                                1
 
RPS Logic and Trip Initiation (Analog)                2 B 3.3.3 2
BASES SURVEILLANCE REQUIREMENTS (continued) 2
[ SR 3.3.3.4                                                                                          2    3 Each RTCB is actuated by an undervoltage coil and a shunt trip coil. The system is designed so that either de-energizing the undervoltage coil or energizing the shunt trip coil will cause the circuit breaker to open. When an RTCB is opened, either during an automatic reactor trip or by using the manual push buttons in the control room, the undervoltage coil is de-energized and the shunt trip coil is energized. This makes it impossible to determine if one of the coils or associated circuitry is defective.
Therefore, a CHANNEL FUNCTIONAL TEST is performed that individually tests all four sets of undervoltage coils and all four sets of shunt trip coils. During undervoltage coil testing, the shunt trip coils shall remain de-energized, preventing their operation. Conversely, during shunt trip coil testing, the undervoltage coils shall remain energized, preventing their operation. This Surveillance ensures that every undervoltage coil and every shunt trip coil is capable of performing its intended function and that no single active failure of any RTCB component will prevent a reactor trip. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. [ The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at 3
power. Operating experience has shown these components usually pass the Surveillance when performed at the Frequency of once every 18 months.
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                  4 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]  3 Combustion Engineering STS                B 3.3.3-13                              Revision XXX          Rev. 5.0          2 St. Lucie - Unit 1            2                                                                1
 
RPS Logic and Trip Initiation (Analog)    2 B 3.3.3 2
BASES SURVEILLANCE REQUIREMENTS (continued)
If one set of RTCBs has been opened in response to a single RTCB channel, Initiation Logic channel, or Manual Trip channel failure, the affected set of RTCBs may be closed for up to 1 hour for Surveillance on the OPERABLE Initiation Logic, RTCB, and Manual Trip channels. In this case, the redundant set of RTCBs will provide protection if a trip should be required. It is unlikely that a trip will be required during the Surveillance, coincident with a failure of the remaining series RTCB channel. If a single matrix power supply or vital bus failure has opened two sets of RTCBs, Manual Trip and RTCB testing on the closed breakers cannot be performed without causing a trip. ]                                    3 REFERENCES          1. 10 CFR 50, Appendix A.
1
: 2. 10 CFR 100.
50.67 2
: 3. FSAR, Section [7.2].                                                      1 U                                                                                      3
: 4. NRC Safety Evaluation Report, [Date].
: 5. CEN-327, June 2, 1986, including Supplement 1, March 3, 1989.
Combustion Engineering STS                B 3.3.3-14                      Revision XXX  Rev. 5.0      2 St. Lucie - Unit 1          2                                                1
 
RPS Logic and Trip Initiation (Analog)        2 B 3.3.3 2
B 3.3 INSTRUMENTATION (Analog) 2 B 3.3.3 Reactor Protective System (RPS) Logic and Trip Initiation (Analog) 2 BASES BACKGROUND            The RPS initiates a reactor trip to protect against violating the core specified acceptable fuel design limits and reactor coolant pressure boundary integrity during anticipated operational occurrences (AOOs).
By tripping the reactor, the RPS also assists the Engineered Safety Features (ESF) systems in mitigating accidents.
The protection and monitoring systems have been designed to ensure safe operation of the reactor. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the RPS, as well as LCOs on other reactor system parameters and equipment performance.
The LSSS, defined in this Specification as the Allowable Value, in conjunction with the LCOs, establish the threshold for protective system action to prevent exceeding acceptable limits during Design Basis Accidents.
During AOOs, which are those events expected to occur one or more times during the plant life, the acceptable limits are:
* The departure from nucleate boiling ratio shall be maintained above the Safety Limit (SL) value to prevent departure from nucleate boiling,
* Fuel centerline melting shall not occur, and
* The Reactor Coolant System pressure SL of 2750 psia shall not be exceeded.
Maintaining the parameters within the above values ensures that the offsite dose will be within the 10 CFR 50 (Ref. 1) and 10 CFR 100 (Ref. 2)          1 criteria during AOOs.                                          50.67          1 Accidents are events that are analyzed even though they are not expected to occur during the plant life. The acceptable limit during 1
accidents is that the offsite dose shall be maintained within an acceptable fraction of 10 CFR 100 (Ref. 2) limits. Different accident categories allow          1 50.67 a different fraction of these limits based on probability of occurrence.
Meeting the acceptable dose limit for an accident category is considered having acceptable consequences for that event.
Combustion Engineering STS                  B 3.3.3-1                    Revision XXX    Rev. 5.0          2 St. Lucie - Unit 2          2                                                  1
 
RPS Logic and Trip Initiation (Analog)        2 B 3.3.3 2
BASES BACKGROUND (continued)
The RPS is segmented into four interconnected modules. These modules are:
* Measurement channels,
* Bistable trip units,
* RPS Logic, and
* Reactor trip circuit breakers (RTCBs).
This LCO addresses the RPS Logic and RTCBs, including Manual Trip capability. LCO 3.3.1, "Reactor Protective System (RPS) Instrumentation
                    - Operating," provides a description of the role of this equipment in the RPS. This is summarized below:
RPS Logic The RPS Logic, consisting of Matrix and Initiation Logic, employs a scheme that provides a reactor trip when bistables in any two of the four channels sense the same input parameter trip. This is called a two-out-of-four trip logic. This logic and the RTCB configuration are shown in                1 5
Figure B 3.3.1-1.            (one out of two taken twice)
Bistable relay contact outputs from the four channels are configured into six logic matrices. Each logic matrix checks for a coincident trip in the same parameter in two bistable channels. The matrices are designated the AB, AC, AD, BC, BD, and CD matrices to reflect the bistable channels being monitored. Each logic matrix contains four normally energized matrix relays. When a coincidence is detected, consisting of a trip in the same Function in the two channels being monitored by the logic matrix, all four matrix relays de-energize.
The matrix relay contacts are arranged into trip paths, with one of the four matrix relays in each matrix opening contacts in one of the four trip paths.
Each trip path provides power to one of the four normally energized RTCB control relays (K1, K2, K3, and K4). The trip paths thus each have six contacts in series, one from each matrix, and perform a logical OR function, opening the RTCBs if any one or more of the six logic matrices indicate a coincidence condition.
Combustion Engineering STS                B 3.3.3-2                          Revision XXX      Rev. 5.0          2 St. Lucie - Unit 2          2                                                        1
 
RPS Logic and Trip Initiation (Analog)    2 B 3.3.3 2
BASES BACKGROUND (continued)
Each trip path is responsible for opening one set of two of the eight RTCBs. The RTCB control relays (K-relays), when de-energized, interrupt power to the breaker undervoltage trip attachments and simultaneously apply power to the shunt trip attachments on each of the two breakers. Actuation of either the undervoltage or shunt trip attachment is sufficient to open the RTCB and interrupt power from the motor generator (MG) sets to the control element drive mechanisms (CEDMs).
When a coincidence occurs in two RPS channels, all four matrix relays in the affected matrix de-energize. This in turn de-energizes all four breaker control relays, which simultaneously de-energize the undervoltage and energize the shunt trip attachments in all eight RTCBs, tripping them open.
The Initiation Logic consists of the trip path power source, matrix relays and their associated contacts, all interconnecting wiring, and solid state (auxiliary) relays through the K-relay contacts in the RTCB control circuitry.
It is possible to change the two-out-of-four RPS Logic to a two-out-of-three logic for a given input parameter in one channel at a time by trip channel bypassing select portions of the matrix logic. Trip channel bypassing a bistable effectively shorts the bistable relay contacts in the three matrices associated with that channel. Thus, the bistables will function normally, producing normal trip indication and annunciation, but a reactor trip will not occur unless two additional channels indicate a trip condition. Trip channel bypassing can be simultaneously performed on any number of parameters in any number of channels, providing each parameter is bypassed in only one channel at a time. An interlock prevents simultaneous trip channel bypassing of the same parameter in more than one channel. Trip channel bypassing is normally employed during maintenance or testing.
Reactor Trip Circuit Breakers (RTCBs)
The reactor trip switchgear, shown in Figure B 3.3.1-1, consists of eight      5 RTCBs, which are operated in four sets of two breakers (four channels).
Power input to the reactor trip switchgear comes from two full capacity MG sets operated in parallel such that the loss of either MG set does not de-energize the CEDMs. There are two separate CEDM power supply Combustion Engineering STS                  B 3.3.3-3                  Revision XXX    Rev. 5.0      2 St. Lucie - Unit 2          2                                              1
 
RPS Logic and Trip Initiation (Analog)        2 B 3.3.3 2
BASES BACKGROUND (continued) buses, each bus powering half of the CEDMs. Power is supplied from the MG sets to each bus via two redundant paths (trip legs). Trip legs 1A and 1B supply power to CEDM bus 1. Trip legs 2A and 2B supply power to CEDM bus 2. This ensures that a fault or the opening of a breaker in one trip leg (i.e., for testing purposes) will not interrupt power to the CEDM buses.
Each of the four trip legs consists of two RTCBs in series. The two RTCBs within a trip leg are actuated by separate initiation circuits.
The eight RTCBs are operated as four sets of two breakers (four channels). For example, if a breaker receives an open signal in trip leg A (for CEDM bus 1), an identical breaker in trip leg B (for CEDM bus 2) will also receive an open signal. This arrangement ensures that power is interrupted to both CEDM buses, thus preventing trip of only half of the control element assemblies (CEAs) (a half trip). Any one inoperable breaker in a channel will make the entire channel inoperable.
Each set of RTCBs is operated by either a Manual Trip push button or an RPS actuated K-relay. There are four Manual Trip push buttons, arranged in two sets of two, as shown in Figure B 3.3.1-1. Depressing            5 both push buttons in either set will result in a reactor trip.
When a Manual Trip is initiated using the control room push buttons, the RPS trip paths and K-relays are bypassed, and the RTCB undervoltage and shunt trip attachments are actuated independent of the RPS.
Manual Trip circuitry includes the push button and interconnecting wiring to both RTCBs necessary to actuate both the undervoltage and shunt trip attachments, but excludes the K-relay contacts and their interconnecting wiring to the RTCBs, which are considered part of the Initiation Logic.
in accordance with the    Functional testing of the entire RPS, from bistable input through the Surveillance Frequency Control Program opening of individual sets of RTCBs, can be performed either at power or 2
shutdown and is normally performed on a quarterly basis. FSAR,                    1 Section [7.2] (Ref. 3), explains RPS testing in more detail. U                          3 APPLICABLE          Reactor Protective System (RPS) Logic SAFETY ANALYSES            The RPS Logic provides for automatic trip initiation to maintain the SLs during AOOs and assist the ESF systems in ensuring acceptable consequences during accidents. All transients and accidents that call for a reactor trip assume the RPS Logic is functioning as designed.
Combustion Engineering STS                B 3.3.3-4                      Revision XXX      Rev. 5.0          2 St. Lucie - Unit 2          2                                                    1
 
RPS Logic and Trip Initiation (Analog)      2 B 3.3.3 2
BASES APPLICABLE SAFETY ANALYSES (continued)
Reactor Trip Circuit Breakers (RTCBs)
All of the transient and accident analyses that call for a reactor trip assume that the RTCBs operate and interrupt power to the CEDMs.
Manual Trip There are no accident analyses that take credit for the Manual Trip; however, the Manual Trip is part of the RPS circuitry. It is used by the operator to shut down the reactor whenever any parameter is rapidly trending toward its trip setpoint. A Manual Trip accomplishes the same results as any one of the automatic trip Functions.
The RPS Logic and initiation satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO                Reactor Protective System (RPS) Logic Failures of individual bistable relays and their contacts are addressed in LCO 3.3.1. This Specification addresses failures of the Matrix Logic not addressed in the above, such as the failure of matrix relay power supplies or the failure of the trip channel bypass contact in the bypass condition.
instrument Loss of a single vital bus will de-energize one of the two power supplies in      1 each of three matrices. This will result in four RTCBs opening; however, the remaining four closed RTCBs will prevent a reactor trip. For the purposes of this LCO, de-energizing up to three matrix power supplies due to a single failure is to be treated as a single channel failure, providing the affected matrix relays de-energize as designed, opening the affected RTCBs.
Each of the four Initiation Logic channels opens one set of RTCBs if any of the six coincidence matrices de-energize their associated matrix relays.
They thus perform a logical OR function. Each Initiation Logic channel has its own power supply and is independent of the others. An Initiation Logic channel includes the matrix relay through to the K-relay contacts, which open the RTCB.
It is possible for two Initiation Logic channels affecting the same trip leg to de-energize if a matrix power supply or vital instrument bus fails. This will      1 result in opening the two affected sets of RTCBs.
Combustion Engineering STS                  B 3.3.3-5                    Revision XXX      Rev. 5.0        2 St. Lucie - Unit 2          2                                                1
 
RPS Logic and Trip Initiation (Analog)    2 B 3.3.3 2
BASES LCO (continued)
If one set of RTCBs has been opened in response to a single RTCB channel, Initiation Logic channel, or Manual Trip channel failure, the affected set of RTCBs may be closed for up to 1 hour for Surveillance on the OPERABLE Initiation Logic, RTCB, and Manual Trip channels. In this case, the redundant set of RTCBs will provide protection if a trip should be required. It is unlikely that a trip will be required during the Surveillance, coincident with a failure of the remaining series RTCB instrument channel. If a single matrix power supply or vital bus failure has opened        1 two sets of RTCBs, Manual Trip and RTCB testing on the closed breakers cannot be performed without causing a trip.
: 1. Matrix Logic This LCO requires six channels of Matrix Logic to be OPERABLE in MODES 1 and 2, and in MODES 3, 4, and 5 when any RTCB is closed and any CEA is capable of being withdrawn.
: 2. Initiation Logic This LCO requires four channels of Initiation Logic to be OPERABLE in MODES 1 and 2, and in MODES 3, 4, and 5 when any RTCB is closed and any CEA is capable of being withdrawn.
: 3. Reactor Trip Circuit Breakers (RTCBs)
The LCO requires four RTCB channels to be OPERABLE in MODES 1 and 2, as well as in MODES 3, 4, and 5 when any RTCB is closed and any CEA is capable of being withdrawn.
Each channel consists of two breakers operated in a single set by the Initiation Logic or Manual Trip circuitry. This ensures that power is interrupted at identical locations in the trip legs for both CEDM buses, thus preventing power removal to only one CEDM bus (a half trip).
Failure of a single breaker affects the entire channel, and both breakers in the set must be opened. Without reliable RTCBs and associated support circuitry, a reactor trip cannot occur whether initiated automatically or manually.
Each channel of RTCBs starts at the contacts actuated by the K-relay, and the contacts actuated by the Manual Trip, for each set of breakers. The K-relay actuated contacts and the upstream circuitry are considered to be RPS Logic. Manual Trip contacts and upstream circuitry are considered to be Manual Trip circuitry.
Combustion Engineering STS                  B 3.3.3-6                      Revision XXX    Rev. 5.0      2 St. Lucie - Unit 2          2                                                1
 
RPS Logic and Trip Initiation (Analog)          2 B 3.3.3 2
BASES LCO (continued)
I A Note associated with the ACTIONS states that if one set of RTCBs            1 has been opened in response to a single RTCB channel, Initiation Logic channel, or Manual Trip channel failure, the affected set of RTCBs may be closed for up to 1 hour for Surveillance on the OPERABLE Initiation Logic, RTCB, and Manual Trip channels. In this case, the redundant set of RTCBs will provide protection. If a single matrix power supply or vital bus failure has opened two sets of RTCBs, Manual Trip and RTCB testing on the closed breakers cannot be performed without causing a trip. This Note is not 1
applicable to Condition A, with one Matrix Logic channel inoperable.
: 4. Manual Trip The LCO requires all four Manual Trip channels to be OPERABLE in MODES 1 and 2, and MODES 3, 4, and 5 when any RTCB is closed and any CEA is capable of being withdrawn.
Two independent sets of two adjacent push buttons are provided at separate locations. Each push button is considered a channel and operates two of the eight RTCBs. Depressing both push buttons in either set will cause an interruption of power to the CEDMs, allowing the CEAs to fall into the core. This design ensures that no single failure in any push button circuit can either cause or prevent a reactor trip.
APPLICABILITY        The RPS Matrix Logic, RTCBs, and Manual Trip are required to be OPERABLE in any MODE when any CEA is capable of being withdrawn from the core (i.e., RTCBs closed and power available to the CEDMs).
This ensures the reactor can be tripped when necessary, but allows for maintenance and testing when the reactor trip is not needed.
In MODES 3, 4, and 5 with all the RTCBs open, the CEAs are not capable of withdrawal and these Functions do not have to be          neutron flux    1 OPERABLE. However, two [logarithmic] power level channels must be OPERABLE to ensure proper indication of neutron population and to                      3 indicate a boron dilution event. This is addressed in LCO 3.3.13,                          1 Neutron Flux
                      "[Logarithmic] Power Monitoring Channels."                      11 ACTIONS              When the number of inoperable channels in a trip Function exceeds that specified in any related Condition associated with the same trip Function, then the plant is outside the safety analysis. Therefore, LCO 3.0.3 is immediately entered if applicable in the current MODE of operation.
Combustion Engineering STS                  B 3.3.3-7                    Revision XXX    Rev. 5.0            2 St. Lucie - Unit 2          2                                                    1
 
RPS Logic and Trip Initiation (Analog)      2 B 3.3.3 2
BASES ACTIONS (continued)
A.1
                                                        , one Manual Trip channel is inoperable,                1 Condition A applies if one Matrix Logic channel is inoperable or three Matrix Logic channels are inoperable due to a common power source failure de-energizing three matrix power supplies, in any applicable MODE. Loss of a single vital instrument bus will de-energize one of the                  1 two matrix power supplies in up to three matrices. This is considered a single matrix failure, providing the matrix relays associated with the failed power supplies de-energize as required.
Failure of the matrix relays to de-energize in all three affected matrices could, when combined with trip channel bypassing of bistable relay contacts in the other matrices, result in loss of RPS function.
The channel must be restored to OPERABLE status within 48 hours [or in                3 accordance with the Risk Informed Completion Time Program]. The Completion Time of 48 hours provides the operator time to take appropriate actions and still ensures that any risk involved in operating with a failed channel is acceptable. Operating experience has demonstrated that the probability of a random failure of a second Matrix Logic channel is low during any given 48 hour interval. If the channel cannot be restored to OPERABLE status within 48 hours, Condition E is entered.
B.1 or Condition B applies to one Initiation Logic channel, RTCB channel, or                  1 Manual Trip channel in MODES 1 and 2, since they have the same actions. MODES 3, 4, and 5, with the RTCBs shut, are addressed in Condition C. These Required Actions require opening the affected RTCBs. This removes the need for the affected channel by performing its associated safety function. With the RTCB open, the affected Functions are in one-out-of-two logic, which meets redundancy requirements, but The inoperable    testing on the OPERABLE channels cannot be performed without causing channel may be    a reactor trip unless the RTCBs in the inoperable channels are closed to bypassed during the                                                                                        1 one hour period to  permit testing.
perform testing, if necessary, provided  Required Action B.1 provides for opening the RTCBs associated with the the RTCBs are opened within the required inoperable channel within a Completion Time of 1 hour. This Required Completion Time. Action is conservative, since depressing the Manual Trip push button associated with either set of breakers in the other trip leg will cause a reactor trip. With this configuration, a single channel failure will not prevent a reactor trip. The allotted Completion Time is adequate to open the affected RTCBs while maintaining the risk of having them closed at an acceptable level.
Combustion Engineering STS                    B 3.3.3-8                              Revision XXX Rev. 5.0      2 St. Lucie - Unit 2          2                                                      1
 
RPS Logic and Trip Initiation (Analog)        2 B 3.3.3 2
BASES ACTIONS (continued)
C.1 Condition C applies to the failure of one Initiation Logic channel, RTCB channel, or Manual Trip channel affecting the same trip leg in MODE 3, 4,        1 or 5 with the RTCBs closed. The channel must be restored to OPERABLE status within 48 hours. If the inoperable channel cannot be restored to OPERABLE status within 48 hours, the affected RTCBs must be opened. In some cases, this condition may effect all of the RTCBs.            1 This removes the need for the affected channel by performing its associated safety function. With the RTCBs open, the affected functions are in a one-out-of-two logic, which meets redundancy requirements.
The Completion Time of 48 hours is consistent with that of other RPS instrumentation and should be adequate to repair most failures.
Testing on the OPERABLE channels cannot be performed without causing a reactor trip unless the RTCBs in the inoperable channels are closed to permit testing.
D.1 Condition D applies to the failure of both Manual Trip or Initiation Logic channels affecting the same trip leg. Since this will open two channels of RTCBs, this Condition is also applicable to the two affected channels of RTCBs. This Condition allows for loss of a single vital instrument bus or        1 matrix power supply, which will de-energize both Initiation Logic channels in the same trip leg. This will open both sets of RTCBs in the affected trip leg, satisfying the Required Action of opening the affected RTCBs.
Of greater concern is the failure of the initiation circuit in a nontrip condition (e.g., due to two initiation K-relay failures). With only one Initiation Logic channel failed in a nontrip condition, there is still the redundant set of RTCBs in the trip leg. With both failed in a nontrip condition, the reactor will not trip automatically when required. In either case, the affected RTCBs must be opened immediately by using the appropriate Manual Trip push buttons, since each of the four push buttons opens one set of RTCBs, independent of the initiation circuitry.
Caution must be exercised, since depressing the wrong push buttons may result in a reactor trip.
Combustion Engineering STS                B 3.3.3-9                    Revision XXX        Rev. 5.0      2 St. Lucie - Unit 2          2                                                  1
 
RPS Logic and Trip Initiation (Analog)                2 B 3.3.3 2
BASES ACTIONS (continued)
If two Manual Trip channels are inoperable and affecting the same trip leg, the associated RTCBs must be opened immediately to ensure Manual Trip capability is maintained. With the affected RTCBs open, any one of two Manual Trip push buttons being depressed will result in a reactor trip.
If the affected RTCB(s) cannot be opened, Condition E is entered. This would only occur if there is a failure in the Manual Trip circuitry or the RTCB(s).
E.1 and E.2 Condition E is entered if Required Actions associated with Condition A, B, or D are not met within the required Completion Time or if for one or more Functions more than one Manual Trip, Matrix Logic, Initiation Logic, or RTCB channel is inoperable for reasons other than Condition A or D.
If the RTCBs associated with the inoperable channel cannot be opened, the reactor must be shut down within 6 hours and all the RTCBs opened.
A Completion Time of 6 hours is reasonable, based on operating experience, to reach the required MODE from full power conditions in an orderly manner and without challenging plant systems and to open RTCBs. All RTCBs should then be opened, placing the plant in a MODE where the LCO does not apply and ensuring no CEA withdrawal occurs.
SURVEILLANCE        -----------------------------------REVIEWERS NOTE-----------------------------------
REQUIREMENTS        In order for a plant to take credit for topical reports as the basis for justifying Frequencies, topical reports must be supported by an NRC staff                            4 Safety Evaluation Report that establishes the acceptability of each topical report for that unit (Ref. 4).
2 SR 3.3.3.1                                                                                          2 A CHANNEL FUNCTIONAL TEST is performed on each RTCB channel.
This verifies proper operation of each RTCB. The RTCB must then be closed prior to testing the other RTCBs, or a reactor trip may result. [ The Frequency of 31 days is based on the reliability analysis presented in                              3 Topical Report CEN-327, "RPS/ESFAS Extended Test Interval Evaluation," (Ref. 5).
Combustion Engineering STS                B 3.3.3-10                              Revision XXX          Rev. 5.0          2 St. Lucie - Unit 2            2                                                                1
 
RPS Logic and Trip Initiation (Analog)                  2 B 3.3.3 2
BASES SURVEILLANCE REQUIREMENTS (continued)
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                              -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency 4
description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                              ------------------------------------------------------------------------------------------------ ]
2 2
SR 3.3.3.2 A CHANNEL FUNCTIONAL TEST on each RPS Logic channel is performed to ensure the entire channel will perform its intended function when needed. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.
In addition to power supply tests, the RPS CHANNEL FUNCTIONAL                                  2 TEST consists of three overlapping tests as described in Reference 3.                              1 These tests verify that the RPS is capable of performing its intended function, from bistable input through the RTCBs. The first test, the bistable test, is addressed by SR 3.3.1.4 in LCO 3.3.1.
This SR addresses the two tests associated with the RPS Logic: Matrix Logic and Trip Path.
Matrix Logic Tests These tests are performed one matrix at a time. They verify that a coincidence in the two input channels for each Function removes power from the matrix relays. During testing, power is applied to the matrix relay The matrix logic includes    test coils and prevents the matrix relay contacts from assuming their de-fuses in all matrix interbay connections as part of the energized state. The Matrix Logic tests will detect any short circuits fault protection circuitry. A around the bistable contacts in the coincidence logic such as may be test circuit is provided for  caused by faulty bistable relay or trip channel bypass contacts.
checking the fuses                                                                                                                1 associated with the matrix fault protection circuitry.
Combustion Engineering STS                      B 3.3.3-11                              Revision XXX          Rev. 5.0          2 St. Lucie - Unit 2            2                                                                1
 
RPS Logic and Trip Initiation (Analog)                  2 B 3.3.3 2
BASES SURVEILLANCE REQUIREMENTS (continued)
Trip Path Tests These tests are similar to the Matrix Logic tests, except that test power is withheld from one matrix relay at a time, allowing the initiation circuit to de-energize, opening the affected set of RTCBs. The RTCBs must then be closed prior to testing the other three initiation circuits, or a reactor trip may result.
[ The Frequency of [92] days is based on the reliability analysis presented in topical report CEN-327, "RPS/ESFAS Extended Test Interval Evaluation" (Ref. 5).                                                                              3 OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                    4 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]    3 2
2 SR 3.3.3.3 A CHANNEL FUNCTIONAL TEST on the Manual Trip channels is performed prior to a reactor startup to ensure the entire channel will perform its intended function if required. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The Manual Trip Function can be tested either at power or shutdown. However, the simplicity of this circuitry and the absence of drift concern makes this Frequency adequate. Additionally, operating experience has shown that these components usually pass the Surveillance when performed once within 7 days prior to each reactor startup.
Combustion Engineering STS                B 3.3.3-12                              Revision XXX          Rev. 5.0          2 St. Lucie - Unit 2            2                                                                1
 
RPS Logic and Trip Initiation (Analog)                  2 B 3.3.3 2
BASES SURVEILLANCE REQUIREMENTS (continued) 2
[ SR 3.3.3.4                                                                                        3      2 Each RTCB is actuated by an undervoltage coil and a shunt trip coil. The system is designed so that either de-energizing the undervoltage coil or energizing the shunt trip coil will cause the circuit breaker to open. When an RTCB is opened, either during an automatic reactor trip or by using the manual push buttons in the control room, the undervoltage coil is de-energized and the shunt trip coil is energized. This makes it impossible to determine if one of the coils or associated circuitry is defective.
Therefore, a CHANNEL FUNCTIONAL TEST is performed that individually tests all four sets of undervoltage coils and all four sets of shunt trip coils. During undervoltage coil testing, the shunt trip coils shall remain de-energized, preventing their operation. Conversely, during shunt trip coil testing, the undervoltage coils shall remain energized, preventing their operation. This Surveillance ensures that every undervoltage coil and every shunt trip coil is capable of performing its intended function and that no single active failure of any RTCB component will prevent a reactor trip. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. [ The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at 3
power. Operating experience has shown these components usually pass the Surveillance when performed at the Frequency of once every 18 months.
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                    4 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]    3 Combustion Engineering STS                B 3.3.3-13                              Revision XXX          Rev. 5.0            2 St. Lucie - Unit 2            2                                                                  1
 
RPS Logic and Trip Initiation (Analog)    2 B 3.3.3 2
BASES SURVEILLANCE REQUIREMENTS (continued)
If one set of RTCBs has been opened in response to a single RTCB channel, Initiation Logic channel, or Manual Trip channel failure, the affected set of RTCBs may be closed for up to 1 hour for Surveillance on the OPERABLE Initiation Logic, RTCB, and Manual Trip channels. In this case, the redundant set of RTCBs will provide protection if a trip should be required. It is unlikely that a trip will be required during the Surveillance, coincident with a failure of the remaining series RTCB channel. If a single matrix power supply or vital bus failure has opened two sets of RTCBs, Manual Trip and RTCB testing on the closed breakers cannot be performed without causing a trip. ]                                    3 REFERENCES          1. 10 CFR 50, Appendix A.
1
: 2. 10 CFR 100.
50.67 2
: 3. FSAR, Section [7.2].                                                      1 U                                                                                      3
: 4. NRC Safety Evaluation Report, [Date].
: 5. CEN-327, June 2, 1986, including Supplement 1, March 3, 1989.
Combustion Engineering STS                B 3.3.3-14                      Revision XXX  Rev. 5.0      2 St. Lucie - Unit 2          2                                                1
 
JUSTIFICATION FOR DEVIATIONS ITS 3.3.2 BASES, REACTOR PROTECTION SYSTEM (RPS) LOGIC AND TRIP INITIATION
: 1. Changes are made (additions, deletions, and/or changes) to the ISTS that reflect the plant-specific nomenclature, number, reference, system description, analysis, or licensing basis description.
: 2. The heading for ISTS 3.3.3 includes the parenthetical expression (Analog). This identifying information is not included in the PSL ITS. This information is provided in the NUREG-1432, Rev. 5.0 to assist in identifying the appropriate Specifications to be used as a model for a plant-specific ITS conversion but serves no purpose in a plant-specific implementation. In addition, Reactor Protective System (RPS)            lR2 Instrumentation - Shutdown (ISTS 3.3.2) is renumbered as ITS 3.3.12. Therefore,        l l
the Reactor Protective System (RPS) Logic and Trip Initiation (ISTS 3.3.3) is          l renumbered as ITS 3.3.2 and subsequent Specifications renumbered accordingly.          l
: 3. The ISTS contains bracketed information and/or values that are generic to Combustion Engineering vintage plants. The brackets are removed and the proper plant information/value is inserted to reflect the current licensing basis.
: 4. The Reviewer's Note has been deleted. This information is for the NRC reviewer to be keyed into what is needed to meet this requirement. This Note is not meant to be retained in the final version of the plant specific submittal.
: 5. Figure B 3.3.1-1 was removed from the ITS 3.3.1-1 Bases because the figure is included in the UFSAR.
St. Lucie Unit 1 and Unit 2              Page 1 of 1
 
Specific No Significant Hazards Considerations (NSHCs)
DETERMINATION OF NO SIGNIFICANT HAZARDS CONSIDERATIONS ITS 3.3.2, REACTOR PROTECTION SYSTEM (RPS) LOGIC AND TRIP INITIATION There are no specific No Significant Hazards Considerations for this Specification.
St. Lucie Unit 1 and Unit 2            Page 1 of 1
 
ATTACHMENT 3 3.3.3, ESFAS Instrumentation
 
Current Technical Specifications (CTS) Markup and Discussion of Changes (DOCs)
 
ITS                                                                                                                      ITS 3.3.3 A01 INSTRUMENTATION 3/4.3.2    ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION LIMITING CONDITION FOR OPERATION LCO 3.3.3        3.3.2.1    The Engineered Safety Feature Actuation System (ESFAS) instrumentation channels Table 3.3.3-1                and bypasses shown in Table 3.3-3 shall be OPERABLE with their trip setpoints set LA01 consistent with the values shown in the Trip Setpoint column of Table 3.3-4.
LCO 3.3.3        APPLICABILITY: As shown in Table 3.3-3.
Table 3.3.3-1 Add proposed ITS 3.3.3 ACTIONS Note                      A02 ACTION:
Table 3.3.3-1                a. With an ESFAS instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3-4, declare the channel inoperable and ACTIONS for associated            apply the applicable ACTION requirement of Table 3.3-3
* Table 3.3.3-1 Functions 1-6      until the channel is restored to OPERABLE status with the Table 3.3.3-1                    trip setpoint adjusted consistent with the Trip Setpoint Note (b)                        value.
ACTIONS for associated      b. With an ESFAS instrumentation channel inoperable, take the
* Table 3.3.3-1 Functions 1-6 ACTION shown in Table 3.3-3.
SURVEILLANCE REQUIREMENTS 4.3.2.1.1  Each ESFAS instrumentation channel shall be demonstrated OPERABLE by the SR 3.3.3.1, SR 3.3.3.4,    performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL SR 3.3.3.2 Table 3.3.3-1 FUNCTIONAL TEST operations during the modes and at the frequencies shown in Table 4.3-2.                      In accordance with the Surveillance Frequency Control Program Table 3.3.3-1  4.3.2.1.2  The logic for the bypasses shall be demonstrated OPERABLE during the at power SR 3.3.3.3                CHANNEL FUNCTIONAL TEST of channels affected by bypass operation. The total SR 3.3.3.4 bypass function shall be demonstrated OPERABLE in accordance with the Surveillance Frequency Control Program during CHANNEL CALIBRATION testing of                            A03 each channel affected by bypass operation.                include the bypass removal functions 4.3.2.1.3  The ENGINEERED SAFETY FEATURES RESPONSE TIME of each ESFAS function Table 3.3.3-1              shall be demonstrated to be within the limit in accordance with the Surveillance SR 3.3.3.5 Frequency Control Program. Each test shall include at least one channel per function.                    A03 ACTIONS for associated
*Table 3.3.3-1 Functions 1-6 ACTION A,E,I - CSAS ACTION B,F,I - RAS ACTION C,E,I - AFAS ACTION C,E,I - AUX FW ISOL ACTION D,F,I - SIAS, CIAS, MSIS ACTION G,H,I - BYPASSES ST. LUCIE - UNIT 1                                3/4 3-9                        Amendment No. 128, 223
 
ITS                                                                                                                                    ITS 3.3.3 A01 TABLE 3.3-3 ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION LA02 TOTAL NO.                                MINIMUM    REQUIRED                                        A04 OF              CHANNELS          CHANNELS        APPLICABLE FUNCTIONAL UNIT                            CHANNELS              TO TRIP        OPERABLE            MODES                  ACTION
: 1. SAFETY INJECTION (SIAS)
See
: a. Manual (Trip Buttons)                2                    1                2                1, 2, 3, 4                  8            ITS 3.3.4 Table 3.3.3-1      b. Containment Pressure -
1.a High                            4                    2                3    4            1, 2, 3                      9            A04 Table 3.3.3-1      c. Pressurizer Pressure -
1.b Low                            4                    2                3    4            1, 2, 3(a)                  9            A04    lR2
: 2. CONTAINMENT SPRAY (CSAS)
See
: a. Manual (Trip Buttons)                2                    1                2                1, 2, 3, 4                  8            ITS 3.3.4 Table 3.3.3-1      b. Containment Pressure -
2.a                        High-High                      4                    2(b)              3    4            1, 2, 3                10A, 10B            A04 Table 3.3.3-1 Note (b)                                                                                                                                                              lR2
: 3. CONTAINMENT ISOLATION (CIS)
See
: a. Manual (Trip Buttons)                2                    1                2                1, 2, 3, 4                  8        ITS 3.3.4 Table 3.3.3-1      b. Containment Pressure -
3.a                        High                            4                    2                3    4            1, 2, 3                      9              A04 Table 3.3.3-1      c. Containment Radiation -
3.b                                                                                                                                                              A04 High                            4                    2                3 4              1, 2, 3, 4                  9
: d. SIAS                                    ---------------------------- (See Functional Unit 1 above) -------------------------------
: 4. MAIN STEAM LINE ISOLATION (MSIS)
: a. Manual (Trip Buttons)                2/steam              1/steam          2/operating      1, 2, 3, 4                  8 See generator            generator        steam                                                      ITS 3.3.4 generator Table 3.3.3-1      b. Steam Generator                      4/steam              2/steam          3/steam 4        1, 2, 3(c)                  9              A04 4.a Pressure - Low                  generator            generator        generator Add Footnote (d)                                lR2 L01 ST. LUCIE - UNIT 1                                        3/4 3-10                            Amendment No. 15, 37, 188, 220, 247
 
ITS                                                                                                                    ITS 3.3.3 A01 TABLE 3.3-3 (Continued)
ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION LA02 MINIMUM  REQUIRED                                  A04 TOTAL NO.      CHANNELS  CHANNELS      APPLICABLE FUNCTIONAL UNIT                            OF CHANNELS        TO TRIP  OPERABLE        MODES                ACTION
: 5. CONTAINMENT SUMP RECIRCULATION (RAS)
See
: a. Manual RAS (Trip Buttons)              2                1        2              1, 2, 3, 4        8                ITS 3.3.4 Table 3.3.3-1 5.a
: b. Refueling Water Tank - Low            4                2        3  4          1, 2, 3            13                A04
: 6. LOSS OF POWER                                                                                                          See ITS 3.3.5
: a. 4.16 kv Emergency Bus Under-voltage (Loss of Voltage)            2/Bus            2/Bus    1/Bus          1, 2, 3            12
: b. 4.16 kv Emergency Bus Under-voltage (Degraded Voltage)            2/Bus            2/Bus    1/Bus          1, 2, 3            12
: c. 480 V Emergency Bus Under-voltage (Degraded Voltage)            2/Bus            2/Bus    1/Bus          1, 2, 3            12
: 7. AUXILIARY FEEDWATER (AFAS)
: a. Manual (Trip Buttons)                  4/SG            2/SG    4/SG            1, 2, 3            11                See ITS 3.3.4
: b. Automatic Actuation Logic              4/SG            2/SG    3/SG            1, 2, 3            11 Table 3.3.3-1      c. SG Level (1A/1B) - Low                4/SG            2/SG    3/SG            1, 2, 3            14a, 14b, 15      A04 6.a, 6.b
: 8. AUXILIARY FEEDWATER ISOLATION Table 3.3.3-1      a. SG 1A - SG 1B Differential 6.c                    Pressure                              4/SG            2/SG    3/SG            1, 2, 3            14a, 14b, 15      A04 Table 3.3.3-1      b. Feedwater Header 6.d                    1A - 1B Differential A04 Pressure                              4/SG            2/SG    3/SG            1, 2, 3            14a, 15 4
ST. LUCIE - UNIT 1                                    3/4 3-11                  Amendment No. 15, 37, 58, 72, 102, 121, 188, 220, 247
 
ITS                                                                                                                                    ITS 3.3.3 A01 TABLE 3.3-3 (Continued)
TABLE NOTATION                                                                      lR2 l
Pressurizer Pressure - Low      manually                                                                                                l Table 3.3.3-1  (a) Trip function may be bypassed in this MODE when pressurizer pressure is < 1725 psia; Note (a)              bypass shall be automatically removed when pressurizer pressure is > 1725 psia.                                                      lR2 also required as a permissive to initiate containment spray Table 3.3.3-1  (b)    An SIAS signal is first necessary to enable CSAS logic.
Note (b)    Steam Generator Pressure - Low        manually                            when steam generator pressure is <                                  lR2 Table 3.3.3-1  (c)    Trip function may be bypassed in this MODE below 685 psig; bypass shall be Note (c)              automatically removed at or above 685 psig.                                                                                  L01    lR2 Add Table 3.3.3-1 Footnote (d)                  l whenever steam generator pressure is Add proposed LCO 3.3.3 ACTIONS Note              A02 ACTION STATEMENTS ACTION 8 -            With the number of OPERABLE channels one less than the Total Number of Channels, restore the inoperable channel to OPERABLE status within 48 hours See or in accordance with the Risk Informed Completion Time Program, or be in at                                  ITS 3.3.4 least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.
ACTION 9 -            With the number of OPERABLE channels one less than the Total Number of Channels, operation may proceed provided the following conditions are ACTION D (Condition)                          satisfied:          One or more Functions with one ESFAS trip unit or associated instrument channel (except CSAS, RAS or AFAS).
Place affected trip unit ACTION D.1                            a. The inoperable channel is placed in either the bypassed or tripped condition within 1 hour. For the purposes of testing and maintenance, the inoperable channel may be bypassed for up to 48 hours from time of initial loss of ACTION D.2.1                                OPERABILITY; however, the inoperable channel shall then be either ACTION D.2.2                                restored to OPERABLE status or placed in the tripped condition.
channel                              affected trip unit                      within
: b. Within one hour, all functional units receiving an input from the inoperable                            A05 channel are also bypassed or tripped.
ACTION F                            c. The Minimum Channels OPERABLE requirement is met; however, one additional channel may be bypassed for up to 48 hours while performing                                  L02 tests and maintenance on that channel provided the other inoperable channel is placed in the tripped condition.
within 1 hour One or more Functions with two ESFAS trip units or                                                                      lR2 associated instrument channels (except CSAS or AFAS),                                                                      l ST. LUCIE - UNIT 1                                                3/4 3-12                        Amendment No. 15, 45, 202, 220, 247
 
ITS                                                                                                                            ITS 3.3.3 A01 TABLE 3.3-3 (continued)
TABLE NOTATION ACTION 10A            -      With the number of OPERABLE channels one less than the Total Number of Channels, operation may proceed provided the following conditions are ACTION D                                    satisfied:      One or more Functions with one ESFAS trip unit or associated (Condition)                                                instrument channel (except CSAS, RAS or AFAS).
Place affected trip unit
: a.      The inoperable channel is placed in the bypassed or tripped ACTION D.1 condition and the Minimum Channels OPERABLE requirement is demonstrated within 1 hour. If the inoperable channel can not be ACTION D.2.1                                        restored to OPERABLE status within 48 hours, then place the ACTION D.2.2                              channel  inoperable channel in the tripped condition.                              or affected trip unit
: b.      Within 1 hour, all functional units receiving an input from the                            A05 inoperable channel are also bypassed or tripped.
ACTION E                            Two CSAS trip units or associated instrument channels inoperable.
(Condition)  ACTION 10B            -      With the number of channels OPERABLE one less than the Minimum Channels OPERABLE, operation may proceed provided one of the ACTION E.1    Place one trip unit in        inoperable channels has been bypassed and the other inoperable                        trip unit place          channel has been placed in the tripped condition within 1 hour. Restore ACTION E.2                                  one of the inoperable channels to OPERABLE status within 48 hours or in trip unit accordance with the Risk Informed Completion Time Program, or be in at ACTION I                                    least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours. MODE 3                                          MODE 4 12 ACTION 11 - With the number of OPERABLE channels one less than the Total Number of Channels, restore the inoperable channels to OPERABLE status within 48 hours See or in accordance with the Risk Informed Completion Time Program, or be in at                            ITS 3.3.4 least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours. LCO 3.0.4.a is not applicable when entering HOT SHUTDOWN.
ACTION 12 - With the number of OPERABLE Channels one less than the Total Number of Channels, operation may proceed until performance of the next required                                  See ITS 3.3.5 CHANNEL FUNCTIONAL TEST provided the inoperable channel is placed in the tripped condition within 1 hour.
ST. LUCIE - UNIT 1                                              3/4 3-13                Amendment No. 15, 37, 58, 72, 188, 202, 234, 247
 
ITS                                                                                                                                            ITS 3.3.3 A01 TABLE 3.3-3 (continued)
TABLE NOTATION ACTION B      ACTION 13 - With the number of OPERABLE channels one less than the Total Number of (Condition)                            Channels, operation may proceed provided the following conditions are satisfied:          One Containment Sump Recirculation Actuation Signal                trip unit to OPERABLE (RAS) trip unit or associated instrument channel inoperable.      status Place affected trip unit
: a. The inoperable channel is placed in either the bypassed or tripped ACTION B.1 ACTION B.2                                    condition within 1 hour. If OPERABILITY cannot be restored within 48 hours or in accordance with the Risk Informed Completion Time Program, be in at least HOT STANDBY within 6 hours and in HOT ACTION I                                      SHUTDOWN within the following 6 hours. MODE 3                                                MODE 4 12                  48 hours                                      lR2 With one or more Functions ACTION F      with two ESFAS trip unit  b.or  The Minimum Channels OPERABLE requirement is met; however, one                                                L02 associated instrument channel (except CSAS or additional channel may be bypassed for up to 2 hours while performing                                                  lR2 AFAS),                          tests and maintenance on that channel provided the other inoperable channel is placed in the tripped condition.                    within 1 hour ACTION C NOTE                                  NOTE Required Action C.2.2.2 must be completed whenever this Condition is entered.                              A07 (Condition)
ACTION 14 - With the number of channels OPERABLE one less than the Total Number of ACTION C                                Channels, operation may proceed provided the following conditions are (Condition) satisfied:        One or more Functions with one Auxiliary Feedwater Actuation Signal (AFAS) trip unit or associated instrument channel inoperable.
Place affected trip unit
: a. The inoperable channel is placed in either the bypassed or tripped ACTION C.1 condition within 1 hour. If an inoperable SG level channel can not be                                              LA03 ACTION C.2.1                        trip unit  restored to OPERABLE status within 48 hours, then AFAS-1 or AFAS-2 ACTION C.2.2.1 affected trip unit  as applicable in the inoperable channel shall be placed in the bypassed                                    within condition. If an inoperable SG DP or FW Header DP channel can not be                                                LA03 ACTION C.2.1                        trip unit restored to OPERABLE status within 48 hours, then both AFAS-1 and ACTION C.2.2.1 AFAS-2 in the inoperable channel shall be placed in the bypassed affected trip unit ACTION C.2.2.2                                condition. The channel shall be returned to OPERABLE status no later than during the next COLD SHUTDOWN.                            Prior to entering MODE 3                          A07 Restore                                        following next MODE 5 entry
: b. Within 1 hour, all functional units receiving an input from the inoperable A05 channel are also bypassed or tripped.
ACTION E                        One or more Functions with two AFAS trip units or associated instrument channels inoperable.            one trip unit (Condition)
ACTION 15 - With the number of channels OPERABLE one less than the Minimum Channels Place one trip unit in OPERABLE, operation may proceed provided one of the inoperable channels ACTION E.1                              has been bypassed and the other inoperable channel has been placed in the tripped condition within 1 hour. Restore one of the inoperable channels to                                    trip unit ACTION E.2                              OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours. MODE 3 ACTION I                                            MODE 4                                            12 Add proposed ACTIONS G and H                        L03 Add proposed ACTION I for SIAS, CIS, MSIS, and RAS                                A06 ST. LUCIE - UNIT 1                                              3/4 3-13a                        Amendment No. 188, 202, 247
 
ITS                                                                                                                          ITS 3.3.3 A01 TABLE 3.3-4 ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION TRIP VALUES LA01 ALLOWABLE FUNCTIONAL UNIT                                          TRIP SETPOINT                          VALUES
: 1. SAFETY INJECTION (SIAS)
See
: a. Manual (Trip Buttons)                              Not Applicable                    Not Applicable                  ITS 3.3.4 Table 3.3.3-1      b. Containment Pressure - High                              < 5 psig                          < 5 psig 1.a Table 3.3.3-1      c. Pressurizer Pressure - Low                            > 1600 psia                      > 1600 psia 1.b
: 2. CONTAINMENT SPRAY (CSAS)
See
: a. Manual (Trip Buttons)                              Not Applicable                    Not Applicable                  ITS 3.3.4 Table 3.3.3-1 2.a
: b. Containment Pressure - High-High                        < 10 psig                        < 10 psig
: 3. CONTAINMENT ISOLATION (CIS)
See
: a. Manual (Trip Buttons)                              Not Applicable                    Not Applicable                  ITS 3.3.4 Table 3.3.3-1      b. Containment Pressure - High                              < 5 psig                          < 5 psig 3.a Table 3.3.3-1      c. Containment Radiation - High                            < 10 R/hr                        < 10 R/hr 3.b
: d. SIAS                                  -------------------------(See FUNCTIONAL UNIT 1 above)-----------------------
: 4. MAIN STEAM LINE ISOLATION (MSIS)
See
: a. Manual (Trip Buttons)                              Not Applicable                    Not Applicable                  ITS 3.3.4 Table 3.3.3-1
: b. Steam Generator Pressure - Low                        > 585 psig                        > 585 psig 4.a
: 5. CONTAINMENT SUMP RECIRCULATION (RAS)
See
: a. Manual RAS (Trip Buttons)                          Not Applicable                    Not Applicable                  ITS 3.3.4 Table 3.3.3-1                                                            48 inches above                    48 inches above 5.a                b. Refueling Water Tank - Low tank bottom                      tank bottom ST. LUCIE - UNIT 1                                      3/4 3-14                      Amendment No. 37, 45
 
ITS                                                                                                                ITS 3.3.3 A01 TABLE 3.3-4 (Continued)
ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION TRIP VALUES LA01 ALLOWABLE FUNCTIONAL UNIT                                          TRIP VALUE                    VALUES
: 6. LOSS OF POWER                                                                                                    See ITS 3.3.5
: a. 4.16 kv Emergency Bus Undervoltage        > 2900 volts with a          > 2900 volts with a (Loss of Voltage)                          1 + .5 second time delay      1 + .5 second time delay
: b. 4.16 kv Emergency Bus Undervoltage        > 3831 volts with a          > 3831 volts with a (Degraded Voltage)                        18 + 2 second time delay      18 + 2 second time delay
: c. 480 volts Emergency Bus Undervoltage      > 415 volts with a            > 415 volts with a (Degraded Voltage)                        < 9 second time delay        < 9 second time delay
: 7. AUXILIARY FEEDWATER (AFAS)
: a. Manual (Trip Buttons)                      Not Applicable                Not Applicable                      See ITS 3.3.4
: b. Automatic Actuation Logic                  Not Applicable                Not Applicable Table 3.3.3-1      c. SG 1A & 1B Level Low                      > 19.0%                      > 18.0 %
6.a, 6.b
: 8. AUXILIARY FEEDWATER ISOLATION Table 3.3.3-1 6.c                a. Steam Generator P - High                  < 275 psid                    89.2 to 281 psid Table 3.3.3-1 6.d                b. Feedwater Header High P                  < 150.0 psid                  56.0 to 157.5 psid ST. LUCIE - UNIT 1                                  3/4 3-15              Amendment No. 37, 58, 72, 102, 105, 121, 177
 
ITS 3.3.3 A01 DELETED ST. LUCIE - UNIT 1  3/4 3-16 Amendment No. 17, 37, 49, 72, 128
 
ITS 3.3.3 A01 DELETED ST. LUCIE - UNIT 1  3/4 3-17 Amendment No. 17, 37, 49, 72, 105, 128
 
ITS                                                                                                            ITS 3.3.3 A01 TABLE 4.3-2 ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS SR 3.3.3.1      SR 3.3.3.4  SR 3.3.3.2 CHANNEL          MODES IN WHICH CHANNEL          CHANNEL    FUNCTIONAL          SURVEILLANCE FUNCTIONAL UNIT                              CHECK        CALIBRATION      TEST              REQUIRED SR 3.3.3.3  1. SAFETY INJECTION (SIAS)
SR 3.3.3.5                                                                                                                      See
: a. Manual (Trip Buttons)                N.A.            N.A.          SFCP              N.A.                ITS 3.3.4
: b. Containment Pressure - High          SFCP            SFCP          SFCP              1, 2, 3
: c. Pressurizer Pressure - Low            SFCP            SFCP          SFCP              1, 2, 3 See
: d. Automatic Actuation Logic            N.A.            N.A.          SFCP(1)            1, 2, 3            ITS 3.3.4 SR 3.3.3.5  2. CONTAINMENT SPRAY (CSAS)
See
: a. Manual (Trip Buttons)                N.A.            N.A.          SFCP              N.A.                ITS 3.3.4
: b. Containment Pressure - --            SFCP            SFCP          SFCP              1, 2, 3 High-High See
: c. Automatic Actuation Logic            N.A.            N.A.          SFCP(1)            1, 2, 3            ITS 3.3.4 SR 3.3.3.5  3. CONTAINMENT ISOLATION (CIS)
See
: a. Manual (Trip Buttons)                N.A.            N.A.          SFCP              N.A.                ITS 3.3.4
: b. Containment Pressure - High          SFCP            SFCP          SFCP              1, 2, 3
: c. Containment Radiation - High          SFCP            SFCP          SFCP              1, 2, 3, 4 See
: d. Automatic Actuation Logic            N.A.            N.A.          SFCP(1)            1, 2, 3            ITS 3.3.4
: e. SIAS                                  N.A.            N.A.          SFCP              N.A.
SR 3.3.3.3 SR 3.3.3.5
: 4. MAIN STEAM LINE ISOLATION (MSIS)
See
: a. Manual (Trip Buttons)                N.A.            N.A.          SFCP              N.A.                ITS 3.3.4
: b. Steam Generator Pressure - Low        SFCP            SFCP          SFCP              1, 2, 3 See
: c. Automatic Actuation Logic            N.A.            N.A.          SFCP(1)            1, 2, 3            ITS 3.3.4 SR 3.3.3.5  5. CONTAINMENT SUMP RECIRCULATION (RAS)
See
: a. Manual RAS (Trip Buttons)            N.A.            N.A.          SFCP              N.A.                ITS 3.3.4
: b. Refueling Water Storage              SFCP            SFCP          SFCP 1, 2, 3 Tank - Low See
: c. Automatic Actuation Logic            N.A.            N.A.          SFCP(1)            1, 2, 3            ITS 3.3.4 ST. LUCIE - UNIT 1                                3/4 3-18                Amendment No. 17, 37, 223
 
ITS                                                                                                                ITS 3.3.3 A01 TABLE 4.3-2 (Continued)
ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS SR 3.3.3.1        SR 3.3.3.4  SR 3.3.3.2 MODES IN WHICH CHANNEL          CHANNEL    FUNCTIONAL          SURVEILLANCE FUNCTIONAL UNIT                                CHECK          CALIBRATION      TEST                REQUIRED
: 6. LOSS OF POWER                                                                                                      See ITS 3.3.5
: a. 4.16 kv Emergency Bus Undervoltage      SFCP              SFCP        SFCP                    1, 2, 3 (Loss of Voltage)
: b. 4.16 kv Emergency Bus Undervoltage      SFCP              SFCP        SFCP                    1, 2, 3 (Degraded Voltage)
: c. 480 V Emergency Bus Undervoltage        SFCP              SFCP        SFCP                    1, 2, 3 (Degraded Voltage)
SR 3.3.3.5  7. AUXILIARY FEEDWATER (AFAS)
See
: a. Manual (Trip Buttons)                  N.A.              N.A.        SFCP                    1, 2, 3          ITS 3.3.4
: b. SG Level (A/B) - Low                    SFCP              SFCP        SFCP                    1, 2, 3 See
: c. Automatic Actuation Logic              N.A.              N.A.        SFCP                    1, 2, 3          ITS 3.3.4 SR 3.3.3.5  8. AUXILIARY FEEDWATER ISOLATION
: a. SG Level (A/B) - Low and                N.A.              SFCP        SFCP                    1, 2, 3 SG Differential Pressure (BtoA/AtoB) - High
: b. SG Level (A/B) - Low and                N.A.              SFCP        SFCP                    1, 2, 3 Feedwater Header Differential Pressure (BtoA/AtoB) - High ST. LUCIE - UNIT 1                                  3/4 3-19                  Amendment No. 37, 58, 72, 102, 121, 223
 
ITS                                                                                            ITS 3.3.3 A01 TABLE 4.3-2 (Continued)
TABLE NOTATION (1)  The logic circuits shall be tested manually in accordance with the Surveillance Frequency      See ITS 3.3.4 Control Program.
ST. LUCIE - UNIT 1                            3/4 3-20                Amendment No. 223
 
ITS                                                                                                                      ITS 3.3.3 A01 INSTRUMENTATION 3/4.3.2      ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION LIMITING CONDITION FOR OPERATION LCO 3.3.3        3.3.2        The Engineered Safety Features Actuation System (ESFAS) instrumentation channels and Table 3.3.3-1                  bypasses shown in Table 3.3-3 shall be OPERABLE with their trip setpoints set consistent LA01 with the values shown in the Trip Setpoint column of Table 3.3-4.
LCO 3.3.3        APPLICABILITY: As shown in Table 3.3-3.
Table 3.3.3-1                                                                        Add proposed ITS 3.3.3 ACTIONS Note                  A02 ACTION:
: a. With an ESFAS instrumentation channel trip setpoint less conservative Table 3.3.3-1                      than the value shown in the Allowable Values column of Table 3.3-4, ACTIONS for                        declare the channel inoperable and apply the applicable ACTION
* Table 3.3.3-1 Functions 1-6        requirement of Table 3.3-3 until the channel is restored to OPERABLE status with the trip setpoint adjusted consistent with the Trip Table 3.3.3-1                      Setpoint value.
Note (b)
ACTIONS for                  b. With an ESFAS instrumentation channel inoperable, take the ACTION
* Table 3.3.3-1 Functions 1-6        shown in Table 3.3-3.
SURVEILLANCE REQUIREMENTS 4.3.2.1      Each ESFAS instrumentation channel shall be demonstrated OPERABLE by the SR 3.3.3.1, SR 3.3.3.4,    performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL SR 3.3.3.2                  FUNCTIONAL TEST operations during the MODES and at the frequencies shown in Table 3.3.3-1 Table 4.3-2.                        In accordance with the Surveillance Frequency Control Program 4.3.2.2      The logic for the bypasses shall be demonstrated OPERABLE during the at power Table 3.3.3-1 SR 3.3.3.3 CHANNEL FUNCTIONAL TEST of channels affected by bypass operation. The total bypass function shall be demonstrated OPERABLE in accordance with the Surveillance                      A03 SR 3.3.3.4                  Frequency Control Program during CHANNEL CALIBRATION testing of each channel affected by bypass operation.            include the bypass removal functions 4.3.2.3      The ENGINEERED SAFETY FEATURES RESPONSE TIME of each ESFAS function Table 3.3.3-1              shall be demonstrated to be within the limit in accordance with the Surveillance SR 3.3.3.5 Frequency Control Program. Each test shall include at least one channel per function.                    A03 ACTIONS for associated
*Table 3.3.3-1 Functions 1-6 ACTION A,E,I - CSAS ACTION B,F,I - RAS ACTION C,E,I - AFAS ACTION C,E,I - AUX FW ISOL ACTION D,F,I - SIAS, CIAS, MSIS ACTION G,H,I - BYPASSES ST. LUCIE - UNIT 2                                  3/4 3-11                      Amendment No. 67, 173
 
ITS                                                                                                                            ITS 3.3.3 A01 TABLE 3.3-3 ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION LA02 MINIMUM      REQUIRED                                      A04 TOTAL NO.      CHANNELS        CHANNELS          APPLICABLE FUNCTIONAL UNIT            OF CHANNELS      TO TRIP        OPERABLE              MODES              ACTION
: 1. SAFETY INJECTION (SIAS)
See
: a. Manual (Trip Buttons)                2              1                2              1, 2, 3, 4            12            ITS 3.3.4 Table 3.3.3-1        b. Containment Pressure -                4              2                3  4            1, 2, 3            13, 14          A04 1.a                              High Table 3.3.3-1        c. Pressurizer Pressure -                4              2                3  4          1, 2, 3(a)            13, 14          A04 1.b                              Low
: d. Automatic Actuation                  2              1                2              1, 2, 3, 4            12            See Logic                                                                                                              ITS 3.3.4
: 2. CONTAINMENT SPRAY (CSAS)
See
: a. Manual (Trip Buttons)                2              1                2              1, 2, 3, 4            12            ITS 3.3.4 Table 3.3.3-1        b. Containment Pressure -                4              2                3  4      1(b), 2(b), 3(b)      18A, 18B          A04 2.a                              High-High
: c. Automatic Actuation                  2              1                2              1, 2, 3, 4            12            See Logic                                                                                                              ITS 3.3.4
: 3. CONTAINMENT ISOLATION (CIAS)
See
: a. Manual CIAS (Trip                    2              1                2              1, 2, 3, 4            12            ITS 3.3.4 Buttons)
: b. Safety Injection (SIAS)                  See Functional Unit 1 for all Safety Injection Initiating Functions and Requirements Table 3.3.3-1        c. Containment Pressure -                4              2                3  4            1, 2, 3            13, 14          A04 3.a                              High Table 3.3.3-1        d. Containment Radiation -              4              2                3  4            1, 2, 3            13, 14          A04 3.b                              High
: e. Automatic Actuation                  2              1                2              1, 2, 3, 4            12            See Logic                                                                                                              ITS 3.3.4 ST. LUCIE - UNIT 2                                    3/4 3-12                            Amendment No. 132, 170, 199
 
ITS                                                                                                                    ITS 3.3.3 A01 TABLE 3.3-3 (Continued)
ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION LA02 MINIMUM REQUIRED                                A04 TOTAL NO.      CHANNELS  CHANNELS      APPLICABLE FUNCTIONAL UNIT              OF CHANNELS      TO TRIP  OPERABLE          MODES            ACTION
: 4. MAIN STEAM LINE ISOLATION (MSIS)
See
: a. Manual (Trip Buttons)                          2              1          2            1, 2, 3              16    ITS 3.3.4 Table 3.3.3-1        b. Steam Generator                            4/steam        2/steam    3/steam          1, 2, 3(c) 4.a                                                                                                      4                          13, 14    A04 Pressure - Low                    generator      generator  generator Table 3.3.3-1        c. Containment Pressure -                                                                  1, 2, 3                      A04 4.b                                                                      4              2          3  4                            13, 14 High See
: d. Automatic Actuation Logic                      2              1          2            1, 2, 3              12    ITS 3.3.4
: 5. CONTAINMENT SUMP RECIRCULATION (RAS)
See
: a. Manual RAS (Trip Buttons)                      2              1          2            1, 2, 3, 4            12    ITS 3.3.4 Table 3.3.3-1        b. Refueling Water 5.a                                                                      4              2          3  4          1, 2, 3              19      A04 Tank - Low
: c. Automatic Actuation Logic                      2              1          2            1, 2, 3              12    See ITS 3.3.4 Add Footnote (d)                    lR2 L01 ST. LUCIE - UNIT 2                                    3/4 3-13                  Amendment No. 60, 132, 170, 199
 
ITS                                                                                                                    ITS 3.3.3 A01 TABLE 3.3-3 (Continued)
ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION LA02 REQUIRED MINIMUM                                          A04 TOTAL NO.        CHANNELS CHANNELS    APPLICABLE FUNCTIONAL UNIT              OF CHANNELS        TO TRIP OPERABLE        MODES              ACTION
: 6. LOSS OF POWER (LOV)                                                                                                        See ITS 3.3.5
: a. (1) 4.16 kV Emergency Bus Undervoltage (Loss of Voltage)      2/Bus            2/Bus    1/Bus          1, 2, 3              17A (2) 480 V Emergency Bus 3/Bus            2/Bus    2/Bus          1, 2, 3              17B Undervoltage (Loss of Voltage)
: b. (1) 4.16 kV Emergency Bus 3/Bus            2/Bus    2/Bus          1, 2, 3              17B Undervoltage (Degraded Voltage)
(2) 480 V Emergency Bus 3/Bus            2/Bus    2/Bus          1, 2, 3              17B Undervoltage (Degraded Voltage)
: 7. AUXILIARY FEEDWATER (AFAS)
: a. Manual (Trip Buttons)                      4/SG            2/SG      4/SG          1, 2, 3                15          See ITS 3.3.4
: b. Automatic Actuation Logic                  4/SG            2/SG      3/SG          1, 2, 3                15 Table 3.3.3-1        c. SG Level (2A/2B) - Low                    4/SG            2/SG      3/SG          1, 2, 3          20a, 20b, 21      A04 6.a, 6.b
: 8. AUXILIARY FEEDWATER ISOLATION Table 3.3.3-1 6.c                  a. SG 2A - SG 2B Differential Pressure        4/SG            2/SG      3/SG          1, 2, 3          20a, 20b, 21      A04 Table 3.3.3-1
: b. Feedwater Header 2A - 2B 6.d                                                                4/SG            2/SG      3/SG          1, 2, 3            20a, 21 Differential Pressure                                                                                                    A04 4
ST. LUCIE - UNIT 2                                    3/4 3-14                  Amendment No. 28, 79, 132, 170, 199
 
ITS                                                                                                                                      ITS 3.3.3 A01 TABLE 3.3-3 (Continued)
TABLE NOTATION Pressurizer Pressure - Low    manually Table 3.3.3-1    (a)    Trip function may be bypassed in this MODE when pressurizer pressure is less than                                                    lR2 Note (a)              1836 psia; bypass shall be automatically removed when pressurizer pressure is greater                                                l than or equal to 1836 psia.
also required as a permissive to initiate containment spray Table 3.3.3-1    (b)    An SIAS signal is first necessary to enable CSAS logic.                                                                              lR2 Note (b)      Steam Generator Pressure - Low      manually                            when steam generator pressure is <                                    l l
Table 3.3.3-1    (c)    Trip function may be bypassed in this MODE below 700 psia; bypass shall be                                                            l Note (c)              automatically removed at or above 700 psia.                                                                                          l Add Table 3.3.3-1 Footnote (d)            L01        l whenever steam generator pressure is l
Add proposed LCO 3.3.3 ACTIONS Note                    l A02 ACTION OF STATEMENTS ACTION 12 - With the number of OPERABLE channels one less than the Total Number of                                                  See Channels, restore the inoperable channel to OPERABLE status within 48 hours                                    ITS 3.3.4 NOTE Required Action ACTION D    D.2 must be completed or in accordance with the Risk Informed Completion Time Program, or be in at (Condition) whenever this Condition least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within A07 NOTE        is entered.              the following 30 hours.
One or more Functions with one ESFAS trip unit or associated instrument channel (except CSAS, RAS or AFAS).
ACTION D (Condition)      ACTION 13 - With the number of channels OPERABLE one less than the Total Number of Channels, STARTUP and/or POWER OPERATION may continue provided the ACTION D.1 Place affected trip unit inoperable channel is placed in the bypassed or tripped condition within 1 hour.
ACTION D.2                Restore    The channel shall be returned to OPERABLE status no later than during the next COLD SHUTDOWN.                              Prior to entering MODE 3 following next MODE 5 entry            A07 With a channel process measurement circuit that affects multiple functional units inoperable or in test, bypass or trip all associated functional units as listed                                  A05 below.
Process Measurement Circuit                                          Functional Unit Bypassed
: 1. Containment Pressure -                          Containment Pressure - High (SIAS, CIAS, CSAS)
Containment Pressure - High (RPS)                                                LA04
: 2. Steam Generator Pressure -                      Steam Generator Pressure - Low (MSIS)
AFAS-1 and AFAS-2 (AFAS)
Thermal Margin/Low Pressure (RPS)
Steam Generator Pressure - Low (RPS)
: 3. Steam Generator Level -                          Steam Generator Level - Low (RPS)
If SG-2A, then AFAS-1 (AFAS)
If SG-2B, then AFAS-2 (AFAS)
: 4. Pressurizer Pressure -                          Pressurizer Pressure - High (RPS)
Pressurizer Pressure - Low (SIAS)
Thermal Margin/Low Pressure (RPS)
ST. LUCIE - UNIT 2                                              3/4 3-15                        Amendment No. 28, 73, 149, 170, 199
 
ITS                                                                                                                      ITS 3.3.3 A01 TABLE 3.3-3 (Continued)
TABLE NOTATION ACTION 14 - With the number of channels OPERABLE one less than the Minimum Channels OPERABLE, STARTUP and/or POWER OPERATION may continue provided ACTION F (Condition) the following conditions are satisfied: One or more Functions with two ESFAS trip unit or associated instrument channel (except CSAS or AFAS).
Place one trip unit in ACTION F.1                        a. Verify that one of the inoperable channels has been bypassed and place the other inoperable channel in the tripped condition within 1 hour.
trip unit                                                                                          lR2
: b. All functional units affected by the bypassed/tripped channel shall also be placed in the bypassed/tripped condition as listed below.                                        A04 Process Measurement Circuit                            Functional Unit Bypassed/Tripped                                  LA04
: 1. Containment Pressure -                      Containment Pressure - High (SIAS, CIAS, CSAS)
Containment Pressure - High (RPS)
: 2. Steam Generator Pressure -                  Steam Generator Pressure - Low (MSIS)
AFAS-1 and AFAS-2 (AFAS)
Thermal Margin/Low Pressure (RPS)
Steam Generator Pressure - Low (RPS)
: 3. Steam Generator Level -                      Steam Generator Level - Low (RPS)
If SG-2A, then AFAS-1 (AFAS)
If SG-2B, then AFAS-2 (AFAS)
: 4. Pressurizer Pressure -                      Pressurizer Pressure - High (RPS)
Pressurizer Pressure - Low (SIAS)
Thermal Margin/Low Pressure (RPS)
ACTION 15 - With the number of OPERABLE channels one less than the Total Number of Channels, restore the inoperable channels to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours. LCO 3.0.4.a is not applicable when entering HOT SHUTDOWN.                                See ITS 3.3.4 ACTION 16 - With the number of OPERABLE channels one less than the Total Number of Channels, restore the inoperable channel to OPERABLE status within 48 hours or declare the associated valve inoperable and take the ACTION required by Specification 3.7.1.5.
ACTION 17A - With the number of OPERABLE Channels one less than the Total Number of See Channels, restore the inoperable channel to OPERABLE status within 48 hours                        ITS 3.3.5 or place the inoperable channel in the tripped condition and verify that the Minimum Channels OPERABLE requirement is demonstrated within 1 hour; one additional channel may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.2.1.
ST. LUCIE - UNIT 2                                      3/4 3-16                    Amendment No. 28, 73, 184, 199
 
ITS                                                                                                                                    ITS 3.3.3 A01 TABLE 3.3-3 (Continued)
TABLE NOTATION ACTION 17B            -    With the number of OPERABLE Channels one less than the Total Number of                                    See Channels, restore the inoperable channel to OPERABLE status within 48                                      ITS 3.3.5 hours or in accordance with the Risk Informed Completion Time Program, or place the inoperable channel in the tripped condition and verify that the Minimum Channels OPERABLE requirement is demonstrated within 1 hour; one additional channel may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.2.1.
ACTION 18A            -    With the number of OPERABLE Channels one less than the Total Number of Channels, operation may proceed provided the following conditions are ACTION D                                  satisfied:        One or more Functions with one ESFAS trip unit or associated (Condition)                                                instrument channel (except CSAS, RAS or AFAS).
Place affected trip unit ACTION D.1                          a. The inoperable channel is placed in either the bypassed or tripped condition and the Minimum Channels OPERABLE requirement is demonstrated within 1 hour. If the inoperable channel can not be restored to OPERABLE ACTION D.2.1                              status within 48 hours, then place the inoperable channel in the tripped ACTION D.2.2                                                                                                          channel condition.                          or      affected trip unit
: b. With a channel process measurement circuit that affects multiple functional                                  A05 units inoperable or in test, bypass or trip all associated functional units as listed in ACTION 13.
Two CSAS trip units or associated instrument channels inoperable.
ACTION E (Condition)  ACTION 18B            -    With the number of channels OPERABLE one less than the Minimum Channels OPERABLE, operation may proceed provided one of the ACTION E.1    Place one trip unit in      inoperable channels has been bypassed and the other inoperable channel trip unit place      has been placed in the tripped condition within 1 hour. Restore one of the ACTION E.2                                inoperable channels to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in at least HOT ACTION I                                  STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours. MODE 3                                              MODE 4                                  12 ACTION B    ACTION 19 - With the number of OPERABLE Channels one less than the Total Number of (Condition)                        Channels, operation may proceed provided the following conditions are satisfied:          One Containment Sump Recirculation Actuation Signal          trip unit to OPERABLE (RAS) trip unit or associated instrument channel inoperable. status place affected trip unit ACTION B.1                          a. Within 1 hour the inoperable channel is placed in either the bypassed or ACTION B.2                                tripped condition. If OPERABILITY cannot be restored within 48 hours or in accordance with the Risk Informed Completion Time Program, be in ACTION I                                  at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours. MODE 3                                            MODE 4 12 With one or more ACTION F    Functions with two      b. The Minimum Channels OPERABLE requirement is met; however, one ESFAS trip unit or                                                                                                                L04          lR2 associated instrument additional channel may be bypassed for up to 2 hours for surveillance channel (except CSAS        testing per Specification 4.3.2.1.                    within 1 hour or AFAS),
ST. LUCIE - UNIT 2                                              3/4 3-16a                      Amendment No. 132, 199
 
ITS                                                                                                                                      ITS 3.3.3 A01 TABLE 3.3-3 (Continued)
TABLE NOTATION ACTION C NOTE                                NOTE Required Action C.2.2.2 must be completed whenever this Condition is entered.                          A07 (Condition)
ACTION 20 - With the number of channels OPERABLE one less than the Total Number of ACTION C Channels, operation may proceed provided the following conditions are (Condition)                          satisfied:        One or more Functions with one Auxiliary Feedwater Actuation Signal (AFAS) trip unit or associated instrument channel inoperable.          trip unit Place affected trip unit ACTION C.1
: a. The inoperable channel is placed in either the bypassed or tripped condition within 1 hour. If an inoperable SG level channel can not be restored to ACTION C.2.1                              OPERABLE status within 48 hours, then AFAS-1 or AFAS-2 as applicable                                          LA03 ACTION C.2.2.1                                                                                                                                                lR2 affected trip unit  in the inoperable channel shall be placed in the bypassed condition.                              within If an inoperable SG DP or FW Header DP channel can not be restored to ACTION C.2.1                              OPERABLE status within 48 hours, then both AFAS-1 and AFAS-2 in the trip unit ACTION C.2.2.2                                                                                                                                                lR2 inoperable channel shall be placed in the bypassed condition. The channel LA03 affected trip unit ACTION C.2.2.2                            shall be returned to OPERABLE status no later than during the next COLD SHUTDOWN. Prior to entering MODE 3                                              Restore A07 following next MODE 5 entry b    With a channel process measurement circuit that affects multiple functional                                    A05 units inoperable or in test, bypass or trip all associated functional units as listed in ACTION 13.
One or more Functions with two AFAS trip units or associated instrument channels inoperable. one trip unit ACTION E (Condition)    ACTION 21 - With the number of channels OPERABLE one less than the Minimum Channels Place one trip unit in OPERABLE, operation may proceed provided one of the inoperable channels has been bypassed and the other inoperable channel placed in the tripped ACTION E.1                            condition within 1 hour. Restore one of the inoperable channels to OPERABLE                                  trip unit status within 48 hours or in accordance with the Risk Informed Completion Time ACTION E.2 Program, or be in at least HOT STANDBY within 6 hours and in HOT ACTION I                              SHUTDOWN within the following 6 hours. MODE 3 MODE 4                                  12 Add proposed ACTIONS G and H                  L03 Add proposed ACTION I for SIAS, CIS, MSIS, CSAS, and AFAS                        A06 ST. LUCIE - UNIT 2                                            3/4 3-16b                      Amendment No. 132, 149, 199
 
ITS                                                                                                ITS 3.3.3 A01 TABLE 3.3-4 ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION TRIP VALUES LA01 ALLOWABLE FUNCTIONAL UNIT                  TRIP SETPOINT                VALUES
: 1. SAFETY INJECTION (SIAS)
See
: a. Manual (Trip Buttons)                          Not Applicable            Not Applicable        ITS 3.3.4 Table 3.3.3-1 1.a
: b. Containment Pressure - High                      < 3.5 psig              < 3.6 psig Table 3.3.3-1      c. Pressurizer Pressure - Low                      > 1736 psia              > 1728 psia 1.b See
: d. Automatic Actuation Logic                      Not Applicable            Not Applicable        ITS 3.3.4
: 2. CONTAINMENT SPRAY (CSAS)
See
: a. Manual (Trip Buttons)                          Not Applicable            Not Applicable        ITS 3.3.4 Table 3.3.3-1 2.a
: b. Containment Pressure - High-High                < 5.40 psig              < 5.50 psig See
: c. Automatic Actuation Logic                      Not Applicable            Not Applicable        ITS 3.3.4
: 3. CONTAINMENT ISOLATION (CIAS)
See
: a. Manual CIAS (Trip Buttons)                    Not Applicable            Not Applicable        ITS 3.3.4
: b. Safety Injection (SIAS)                        Not Applicable            Not Applicable Table 3.3.3-1 3.a                c. Containment Pressure - High                      < 3.5 psig              < 3.6 psig Table 3.3.3-1      d. Containment Radiation - High                      < 10 R/hr                < 10 R/hr 3.b See
: e. Automatic Actuation Logic                      Not Applicable            Not Applicable        ITS 3.3.4
: 4. MAIN STEAM LINE ISOLATION See
: a. Manual (Trip Buttons)                          Not Applicable            Not Applicable        ITS 3.3.4 Table 3.3.3-1 4.a                b. Steam Generator Pressure - Low                    > 600 psia              > 567 psia Table 3.3.3-1      c. Containment Pressure - High                      < 3.5 psig              < 3.6 psig 4.b See
: d. Automatic Actuation Logic                      Not Applicable            Not Applicable        ITS 3.3.4 ST. LUCIE - UNIT 2                                3/4 3-17              Amendment No. 8
 
ITS                                                                                                              ITS 3.3.3 A01 TABLE 3.3-4 (Continued)
ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION TRIP VALUES LA01 FUNCTIONAL UNIT                          TRIP VALUE            ALLOWABLE VALUES
: 5. CONTAINMENT SUMP RECIRCULATION (RAS)
See
: a. Manual RAS (Trip Buttons)                        Not Applicable              Not Applicable                ITS 3.3.4 Table 3.3.3-1      b. Refueling Water Tank - Low                            5.67 feet            4.62 feet to 6.24 feet 5.a above tank bottom          above tank bottom See
: c. Automatic Actuation Logic                        Not Applicable              Not Applicable                ITS 3.3.4
: 6. LOSS OF POWER
: a. (1) 4.16 kV Emergency Bus Undervoltage              > 3120 volts              > 3120 volts                See ITS 3.3.5 (Loss of Voltage)
(2) 480 V Emergency Bus Undervoltage                > 360 volts                > 360 volts (Loss of Voltage)
: b. (1) 4.16 kV Emergency Bus Undervoltage              > 3848 volts              > 3848 volts (Degraded Voltage)                  with < 10-second time delay with < 10-second time delay (2) 480 V Emergency Bus Undervoltage
                                                                          > 432 volts                > 432 volts (Degraded Voltage)
: 7. AUXILIARY FEEDWATER (AFAS)
: a. Manual (Trip Buttons)                            Not Applicable              Not Applicable                See ITS 3.3.4
: b. Automatic Actuation Logic                        Not Applicable              Not Applicable Table 3.3.3-1 6.a, 6.b
: c. SG 2A & 2B Level Low                                  > 19.0%                    > 18.0 %
: 8. AUXILIARY FEEDWATER ISOLATION Table 3.3.3-1 6.c
: a. Steam Generator P - High                            < 275 psid              89.2 to 281 psid Table 3.3.3-1      b. Feedwater Header P - High                        < 150.0 psid            56.0 to 157.5 psid 6.d ST. LUCIE - UNIT 2                                    3/4 3-18                Amendment No. 23, 28, 79, 199
 
ITS 3.3.3 A01 DELETED ST. LUCIE - UNIT 2  3/4 3-19 Amendment No. 67
 
ITS 3.3.3 A01 DELETED ST. LUCIE - UNIT 2  3/4 3-20 Amendment No. 8, 67
 
ITS 3.3.3 A01 DELETED ST. LUCIE - UNIT 2  3/4 3-21 Amendment No. 8, 28, 67
 
ITS                                                                                                          ITS 3.3.3 A01 TABLE 4.3-2 ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS SR 3.3.3.1      SR 3.3.3.4 SR 3.3.3.2 CHANNEL          MODES FOR WHICH FUNCTIONAL              CHANNEL        CHANNEL    FUNCTIONAL          SURVEILLANCE UNIT                CHECK        CALIBRATION      TEST              IS REQUIRED SR 3.3.3.3 SR 3.3.3.5  1. SAFETY INJECTION (SIAS)
See
: a. Manual (Trip Buttons)                  N.A.            N.A.      SFCP                  1, 2, 3, 4      ITS 3.3.4
: b. Containment Pressure - High          SFCP            SFCP        SFCP                    1, 2, 3
: c. Pressurizer Pressure - Low            SFCP            SFCP        SFCP                    1, 2, 3
: d. Automatic Actuation Logic              N.A.            N.A. SFCP(1),                1, 2, 3, 4      See SFCP(3)                                  ITS 3.3.4 SR 3.3.3.5  2. CONTAINMENT SPRAY (CSAS)                                                                                      See
: a. Manual (Trip Buttons)                  N.A.            N.A.      SFCP                  1, 2, 3, 4      ITS 3.3.4
: b. Containment Pressure - High-High      SFCP            SFCP        SFCP                    1, 2, 3
: c. Automatic Actuation Logic              N.A.            N.A. SFCP(1),                1, 2, 3, 4      See SFCP(3)                                  ITS 3.3.4 SR 3.3.3.5  3. CONTAINMENT ISOLATION (CIAS)
See
: a. Manual CIAS (Trip Buttons)            N.A.            N.A.      SFCP                  1, 2, 3, 4      ITS 3.3.4
: b. Safety Injection SIAS                  N.A.            N.A.      SFCP                  1, 2, 3, 4
: c. Containment Pressure - High          SFCP            SFCP        SFCP                    1, 2, 3
: d. Containment Radiation - High          SFCP            SFCP        SFCP                    1, 2, 3
: e. Automatic Actuation Logic                                        SFCP(1),                                  See N.A.            N.A.                              1, 2, 3, 4 SFCP(3)                                  ITS 3.3.4 SR 3.3.3.3 SR 3.3.3.5  4. MAIN STEAM LINE ISOLATION See
: a. Manual (Trip Buttons)                  N.A.            N.A.      SFCP                    1, 2, 3        ITS 3.3.4
: b. Steam Generator Pressure - Low        SFCP            SFCP        SFCP                    1, 2, 3
: c. Containment Pressure - High          SFCP            SFCP        SFCP                    1, 2, 3
: d. Automatic Actuation Logic                                        SFCP(1),                                  See N.A.            N.A.                              1, 2, 3, 4 SFCP(3)                                  ITS 3.3.4 SR 3.3.3.5  5. CONTAINMENT SUMP RECIRCULATION (RAS)
See
: a. Manual RAS (Trip Buttons)              N.A.            N.A.      SFCP                    N.A.          ITS 3.3.4
: b. Refueling Water Tank - Low            SFCP            SFCP        SFCP                    1, 2, 3
: c. Automatic Actuation Logic                                        SFCP(1),                                  See N.A.            N.A.                              1, 2, 3 SFCP(3)                                  ITS 3.3.4 ST. LUCIE - UNIT 2                                3/4 3-22                Amendment No. 90, 173, 199
 
ITS                                                                                                                                                              ITS 3.3.3 A01 TABLE 4.3-2 (Continued)
ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS SR 3.3.3.1            SR 3.3.3.4              SR 3.3.3.2 CHANNEL            MODES FOR WHICH FUNCTIONAL                                      CHANNEL                CHANNEL                FUNCTIONAL              SURVEILLANCE UNIT                                        CHECK            CALIBRATION                    TEST                IS REQUIRED
: 6. LOSS OF POWER (LOV)
See
: a. 4.16 kV and 480 V Emergency Bus Undervoltage                            SFCP                  SFCP                    SFCP                    1, 2, 3, 4    ITS 3.3.5 (Loss of Voltage)
: b. 4.16 kV and 480 V Emergency Bus Undervoltage                            SFCP                  SFCP                    SFCP                    1, 2, 3, 4 (Degraded Voltage)
SR 3.3.3.5  7. AUXILIARY FEEDWATER (AFAS)
See
: a. Manual (Trip Buttons)                                                    N.A.                  N.A.                  SFCP                      1, 2, 3    ITS 3.3.4
: b. SG Level (A/B) - Low                                                    SFCP                  SFCP                    SFCP                      1, 2, 3
: c. Automatic Actuation Logic                                                N.A.                  N.A.                SFCP(1),                    1, 2, 3      See SFCP(2)                                    ITS 3.3.4 SR 3.3.3.5  8. AUXILIARY FEEDWATER ISOLATION
: a. SG Level (A/B) - Low and SG Differential                                N.A.                  SFCP                    SFCP                      1, 2, 3 Pressure (B to A/A to B) - High
: b. SG Level (A/B) - Low and Feedwater Header                                                      SFCP                    SFCP N.A.                                                                    1, 2, 3 Differential Pressure (B to A/A to B) - High TABLE NOTATION (1)  Testing of Automatic Actuation Logic shall include energization/de-energization of each initiation relay (solid-state component) and verification of the OPERABILITY of each initiation relay (solid-state component).                                                                                                    See ITS 3.3.4 (2)  An actuation relay test shall be performed which shall include the energization/de-energization of each actuation relay and verification of the OPERABILITY of each actuation relay.
(3)  A subgroup relay test shall be performed which shall include the energization/de-energization of each subgroup relay and verification of the OPERABILITY of each subgroup relay. Testing of the ESFAS subgroup relays shall be performed in accordance with the Surveillance Frequency Control Program.
ST. LUCIE - UNIT 2                                                            3/4 3-23                                  Amendment No. 28, 90, 173
 
DISCUSSION OF CHANGES ITS 3.3.3, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
INSTRUMENTATION ADMINISTRATIVE CHANGES A01    In the conversion of the St. Lucie Plant (PSL) Unit 1 and Unit 2, Current Technical Specifications (CTS) to the plant specific Improved Technical Specifications (ITS), certain changes (wording preferences, editorial changes, reformatting, revised numbering, etc.) are made to obtain consistency with NUREG-1432, Rev. 5.0, "Standard Technical Specifications-Combustion Engineering Plants" (ISTS).
These changes are designated as administrative changes and are acceptable because they do not result in technical changes to the CTS.
A02    CTS Table 3.3-3 Actions describe the actions to be taken when ESFAS Function instrument channels are inoperable. ITS 3.3.3 also describes Actions to be taken when ESFAS Function instrument channels are inoperable and contains a note that separate condition entry is allowed for each ESFAS Function. This changes the CTS by adding a Note stating that separate condition entry is allowed for each Function, those ESFAS Functions being the SIAS, CSAS, CIS (Unit 1) and CIAS (Unit 2), MSIS, RAS, and AFAS Functions.
The purpose of the CTS Actions is to provide the appropriate compensatory actions for inoperable ESFAS Functions. This proposed change will allow separate condition entry for each ESFAS Function. The Note clarifies that ESFAS Functions are treated as separate entities, each with separate Completion Times. In addition, the AFAS Functions are allowed separate Condition entry on a per steam generator basis since the channels associated with each steam generator will provide the associated AFAS trip based on the logic associated with the channels on a steam generator basis. This change is acceptable because it clearly states the current requirement. The CTS considers each ESFAS Function to be separate and independent from the others. This change is designated as administrative because it does not result in technical changes to the CTS.
A03    Unit 1 CTS 4.3.2.1.2 and Unit 2 CTS 4.3.2.2 require the logic for the bypasses to be demonstrated OPERABLE during the at-power CHANNEL FUNCTIONAL TEST. These Surveillance Requirements also require, "The total bypass function shall be demonstrated OPERABLE in accordance with the Surveillance Frequency Control Program during CHANNEL CALIBRATION testing of each channel affected by bypass operation." Unit 1 CTS 4.3.2.1.3 and Unit 2 CTS 4.3.2.3 require ENGINEERED SAFETY FEATURE (ESF) RESPONSE TIME testing for each ESFAS function and includes a statement that each test shall include at least one channel per function. ITS SR 3.3.3.3 requires a CHANNEL FUNCTIONAL TEST on each automatic bypass removal function.
ITS SR 3.3.3.4 requires a CHANNEL CALIBRATION of each ESFAS instrument channel, including bypass removal functions. These ITS Surveillances do not explicitly state that the total bypass function shall be demonstrated OPERABLE during the Channel Calibration test of each channel affected by bypass operation or that the ESF RESPONSE TIME test must include at least one channel per function.
St. Lucie Unit 1 and Unit 2              Page 1 of 11                                    lR2
 
DISCUSSION OF CHANGES ITS 3.3.3, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
INSTRUMENTATION The purpose of the CTS statements in the Surveillance Requirements associated with the CHANNEL FUNCTIONAL TEST of the bypass channels and the ESF RESPONSE TIME test is to ensure required features are tested to verify the ESFAS instrument Functions are OPERABLE. However, these statements are redundant to the definition of a CHANNEL FUNCTIONAL TEST and ESF RESPONSE TIME provided in ITS Section 1.1 and therefore are not necessary.
The definition of a CHANNEL FUNCTIONAL TEST states, in part, that the test "may be performed by means of any series of sequential, overlapping, or total channel steps, and each step must be performed within the Frequency in the Surveillance Frequency Control Program for the devices included in the step."
Thus, the definition, combined with the requirement to include the bypass removal function in the CHANNEL CALIBRATION, ensures the total bypass function is demonstrated OPERABLE in accordance with the Surveillance Frequency Control Program during CHANNEL CALIBRATION testing of each channel affected by bypass operation.
The definition of the ESF RESPONSE TIME states, in part, that the test, "shall be that time interval from when the monitored parameter exceeds its ESF              lR2 actuation TIME setpoint at the channel sensor until the ESF equipment is capable of performing its safety function" This encompasses the requirement        lR2 that at least once channel per Function be included in an ESF RESPONSE TIME. The required testing will continue, per the ITS SR wording and the definitions provided in Section 1.1, to include the features necessary to verify the ESFAS instrument Functions are OPERABLE.
This change is designated as administrative because it does not result in technical changes to the CTS.
A04    CTS Table 3.3-3 for ESFAS instrumentation has three columns stating various requirements for each function. These columns are labeled, "TOTAL NO. OF CHANNELS," "CHANNELS TO TRIP," and "MINIMUM CHANNELS OPERABLE." ITS Table 3.3.3-1 does not retain the "TOTAL NO. OF CHANNELS" or "CHANNELS TO TRIP" columns. DOC LA01 describes the change that moves the information of the "TOTAL NO. OF CHANNELS" and "CHANNELS TO TRIP" columns to the Bases. This changes the CTS by changing the "MINIMUM CHANNELS OPERABLE" column to "REQUIRED CHANNELS OPERABLE" and changing the number of channels to four (4) channels for those Functions with a "MINIMUM CHANNELS OPERABLE" criteria less than four (4) channels. Additionally, the revised "MINIMUM CHANNELS OPERABLE criteria are moved to the ITS 3.3.3 LCO statement and the "MINIMUM CHANNELS OPERABLE" column is not included in ITS Table 3.3.3-1. This change is designated as administrative because it does not result in a technical change to the CTS.
A05    Unit 1 CTS Table 3.3-3, Actions 9.b, 10A.b, 14.b, and Unit 2 CTS Table 3.3-3, Actions 13, 14.b, 20.b state, in part, that all functional units receiving an input from the inoperable channel are also bypassed or tripped. The ITS St. Lucie Unit 1 and Unit 2            Page 2 of 11                                        lR2
 
DISCUSSION OF CHANGES ITS 3.3.3, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
INSTRUMENTATION instrumentation format is presented by Functions based on parameters the channels sense and systems the instrument Functions actuate. As a result, when a functional unit impacts OPERABILITY of multiple ESFAS Functions, each Function is addressed separately and independently depending on the nature of the inoperability. ITS 3.3.3 ACTIONS are applied to each Function, as applicable, and include a Required Action to place the affected trip unit in trip or bypass within 1 hour, as appropriate. CTS 3.0.2 (ITS LCO 3.0.2) establishes that upon discovery of a failure to meet an LCO, the associated ACTIONS shall be met. Therefore, when a common instrument becomes inoperable, LCO 3.0.2 requires each Function affected by the inoperability to be declared inoperable and the associated ACTIONS shall be met. The additional clarifying statement in the CTS Actions is not necessary and is not included in the presentation of the ITS 3.3.3 ACTIONS. This change is designated as administrative because it does not result in a technical change to the CTS.
A06    Unit 1 CTS 3.3.2.1 and Unit 2 CTS 3.3.2 do not contain a default action to perform when the Table 3.3-3 Actions cannot be completed within the required time; therefore, an entry into CTS 3.0.3 would be required. ITS 3.3.3 ACTION I      lR2 requires the unit to be in MODE 3 in 6 hours and MODE 4 in 12 hours when one or more Required Actions is not met within its associated Completion Time. This changes the CTS by explicitly stating shutdown ACTIONS when actions cannot be performed within the required time.
The purpose of ITS 3.3.3 ACTION I is to ensure the plant is brought to a MODE in which the LCO for the ESFAS Functions does not apply within a reasonable amount of time in a controlled manner because the Technical Specification actions cannot be completed as required. Unit 1 CTS 3.3.2.1 and Unit 2 CTS 3.3.2 are silent on these actions, deferring to CTS 3.0.3 for the actions to accomplish this. The proposed change is acceptable because the ACTIONS specified in ITS 3.3.3 adopt the ISTS structure for placing the unit outside the MODE of Applicability without changing the time specified to enter MODE 3 or MODE 4. A default Condition eliminates the need to LCO 3.0.3 when one or more Required Actions cannot be met within the associated Completion Times.
This change is designated as administrative because it does not result in a technical change to the CTS.
lR2 A07    Unit 1 CTS 3.3.2.1 Table 3.3-3 Action 14, and Unit 2 CTS 3.3.2 Table 3.3-3          l Action 20 provide actions when one channel of an AFAS Function is inoperable.        l Unit 2 CTS 3.3.2 Table 3.3-3 Action 13 provides actions when one channel of an      l l
SIAS, CIAS, or MSIS Function is inoperable. Each of these CTS Actions state in      l part, "The channel shall be returned to OPERABLE status no later than during        l l
the next COLD SHUTDOWN." Unit 1 ITS 3.3.3 ACTION D and Unit 2 ITS 3.3.3              l ACTIONS C and D include the action to restore the channel to OPERABLE with          l a Completion Time of, "Prior to entering MODE 3 following the next MODE 5            l l
entry." This change is a presentation preference similar to the Completion Time      l specified in ISTS 3.3.5 (Digital), Required Action A.2.                              l St. Lucie Unit 1 and Unit 2            Page 3 of 11                                        lR2
 
DISCUSSION OF CHANGES ITS 3.3.3, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
INSTRUMENTATION In addition, Unit 1 ITS 3.3.3 Condition C and Unit 2 ITS 3.3.3 Conditions C and D  lR2 l
are modified by a Note which requires the action to restore the channel to          l OPERABLE status within the Completion Time to be performed whenever the            l l
Condition is entered. This changes the CTS by explicitly stating that the          l Required Action must be performed within the Completion Time whenever the          l condition is entered.                                                              l This change is necessary to eliminate the conflict with the general CTS 3.0.2 (ITS LCO 3.0.2) requirement that if the LCO is met or is no longer applicable prior to expiration of the specified time interval(s), completion of the ACTIONS is not required, unless otherwise stated. The addition of the Note constitutes an "unless otherwise stated." The Note will require the action to be completed within the Completion Time even when the LCO is no longer applicable, to ensure the channel is restored to OPERABLE prior to the next reactor startup from MODE 5 conditions. This change is acceptable because it reflects the current understanding and application of the CTS Actions requiring the applicable channel to be restored to OPERABLE status whenever the LCO is not met.
These changes are designated as administrative because they provide a              lR2 l
presentation preference and clarify the current understanding of the CTS            l requirement while providing an "unless otherwise stated," to the requirements of    l CTS 3.0.2 (ITS LCO 3.0.2).                                                          l lR2 A08    CTS 3.3.2.1 (U1) and CTS 3.3.2 (U2) Action a state, in part, that with an ESFAS    l instrumentation channel trip setpoint less conservative than the value shown in    l the Allowable Values column of Table 3.3-4, declare the channel inoperable and      l l
apply the applicable ACTION requirement of Table 3.3 3 until the channel is        l restored to OPERABLE status. ITS LCO 3.3.3 states, "Four ESFAS trip units          l l
and associated instrument and bypass removal channels for each Function in          l Table 3.3.4-1 shall be OPERABLE," and ITS LCO 3.0.2 states, in part, "Upon          l discovery of a failure to meet an LCO, the Required Actions of the associated      l l
Conditions shall be met." This changes the CTS by replacing a specific Action      l with LCOs requiring similar actions to be taken.                                    l l
l This change is designated as administrative and is acceptable because ITS          l maintains the current requirement to declare the channel inoperable and apply      l l
the applicable ACTION when the trip setpoint is found less conservative than the    l Allowable Value and, therefore, do not result in a technical change to the CTS. l MORE RESTRICTIVE CHANGES M01    Not Used                                                                            lR2 M02    Not Used                                                                            lR2 St. Lucie Unit 1 and Unit 2              Page 4 of 11                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.3, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
INSTRUMENTATION RELOCATED SPECIFICATIONS None REMOVED DETAIL CHANGES lR2 LA01 Not Used LA02 (Type 1 - Removing Details of System Design and System Description, Including Design Limits) CTS Table 3.3-3 for ESFAS instrumentation has three columns stating various requirements for each function. These columns are labeled, "TOTAL NO. OF CHANNELS," "CHANNELS TO TRIP," and "MINIMUM CHANNELS OPERABLE." ITS Table 3.3.3-1 does not retain the "TOTAL NO.                  lR1 OF CHANNELS" or "CHANNELS TO TRIP" columns. This changes the CTS by moving the information of the "TOTAL NO. OF CHANNELS" and "CHANNELS TO TRIP" columns to the Bases. The MINIMUM CHANNELS OPERABLE column is deleted as described in discussion of change (DOC) A04.
The removal of these details, which are related to system design, from the Technical Specifications, is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. The ITS still retains the requirement for the number of required channels and the appropriate Condition to enter if a required channel becomes inoperable. Also, this change is acceptable because the removed information will be adequately controlled in the ITS Bases.
Changes to the Bases are controlled by the Technical Specification Bases Control Program in Chapter 5. This program provides for the evaluation of changes to ensure the Bases are properly controlled. This change is designated as a less restrictive removal of detail change because information relating to system design is being removed from the Technical Specifications.
LA03 (Type 3 - Removing Procedural Details for Meeting TS Requirements or Reporting Requirements) CTS Table 3.3-3 Action 14.a (Unit 1) and 20.a (Unit 2) require, in part, AFAS-1 or AFAS-2 associated with the inoperable channel to be placed in the bypass position when a steam generator (SG) level AFAS channel cannot be restored to OPERABLE status within the 48 hours. These CTS actions also require both AFAS-1 and AFAS-2 associated with the inoperable channel to be placed in the bypass position when a SG differential pressure or feedwater header differential pressure AFAS channel cannot be restored to OPERABLE status within the 48 hours. ITS 3.3.3 Required Action C.2.2.1                lR2 requires, in part, to place the affected trip unit in bypass as an option to restoring an AFAS instrument channel to OPERABLE status within 48 hours. ITS 3.3.3 ACTION C does not include the procedural details on which trip units to place in      lR2 bypass (i.e., AFAS-1 or AFAS-2) based on the inoperable AFAS function. This changes the CTS by moving the procedural detail on what AFAS channels to bypass to the Bases.
St. Lucie Unit 1 and Unit 2              Page 5 of 11                                          lR2
 
DISCUSSION OF CHANGES ITS 3.3.3, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
INSTRUMENTATION The removal of these details, which are related to details on how to perform a Technical Specification Required Action, is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. The ITS still retains the requirement to bypass the affected trip unit when a AFAS Function instrument channel is inoperable. Also, this change is acceptable because the removed information will be adequately controlled in the ITS Bases. Changes to the Bases are controlled by the Technical Specification Bases Control Program in Chapter 5. This program provides for the evaluation of changes to ensure the Bases are properly controlled. This change is designated as a less restrictive removal of detail change because information relating to how to perform an action is being removed from the Technical Specifications.
LA04 Unit 2 only: (Type 3 - Removing Procedural Details for Meeting TS Requirements or Reporting Requirements) CTS Table 3.3-3, Actions 13, 14.b, and 20.b state, in part, that all functional units receiving an input from the inoperable channel are also bypassed or tripped. CTS Table 3.3-3, Actions 13 and 14.b provide a process instrument and Function bypass list that identifies the associated Functions that must be bypassed if the instrument becomes inoperable, and Action 20.b references the Action 13 list. ITS 3.3.3 ACTIONS for each Function include a Required Action to place the affected trip unit in trip or bypass within 1 hour. CTS LCO 3.0.2 and ITS LCO 3.0.2 establish that upon discovery of a failure to meet an LCO, the associated ACTIONS shall be met.
Therefore, when an instrument channel becomes inoperable, LCO 3.0.2 requires each Function affected by the inoperability shall be declared inoperable and the associated ACTIONS shall be met. The CTS process instrument and Function bypass list is not necessary in the Specifications. This information is removed from the Technical Specifications and moved to the UFSAR.
The removal of these details, which are related to system design, from the Technical Specifications is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. The ITS still retains the requirement that all functional units receiving an input from an inoperable channel are bypassed or tripped. ITS 3.3.3 ACTIONS for each Function include a Required Action to place the affected trip unit in trip or bypass within 1 hour. Also, this change is acceptable because the removed information will be adequately controlled in the UFSAR. The UFSAR is controlled under 10 CFR 50.59 which ensures changes are properly evaluated. This change is designated as a less restrictive removal of detail change because information relating to system design is being removed from the Technical Specifications.
lR2 LA05 (Type 3 - Removing Procedural Details for Meeting TS Requirements or                  l Reporting Requirements) CTS 3.3.2.1 Action a requires an inoperable ESFAS          l instrumentation channel due to the trip setpoint less conservative than the value  l l
shown in the Allowable Value column to be adjusted consistent with the Trip        l Setpoint value shown in Table 3.3.3 when restoring the channel to OPERABLE        l status. ITS does not explicitly include this detail. This changes the CTS by      l l
moving the procedural detail on what is needed to restore an instrument channel    l to OPERABLE status to the Bases.                                                  l St. Lucie Unit 1 and Unit 2                Page 6 of 11                                    lR2
 
DISCUSSION OF CHANGES ITS 3.3.3, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
INSTRUMENTATION The removal of these details for restoring and inoperable instrument channel      lR2 l
from the Technical Specifications is acceptable because this type of information  l is not necessary to be included in the Technical Specifications to provide        l adequate protection of public health and safety. The ITS still retains the        l l
requirement that instrument channels for each Function in Table 3.3.4-1 to be    l OPERABLE when applicable with the Bases defining what is required for            l l
OPERABILITY, assuring protection of public health and safety. Also, this change  l is acceptable because these types of procedural details will be adequately        l controlled in the ITS Bases. Changes to the Bases are controlled by the          l l
Technical Specification Bases Control Program in Chapter 5. This program          l provides for the evaluation of changes to ensure the Bases are properly          l controlled. This change is designated as a less restrictive removal of detail    l l
change because procedural details for meeting Technical Specification            l requirements are being removed from the Technical Specifications.                l LESS RESTRICTIVE CHANGES L01    (Category 2 - Relaxation of Applicability) Unit 1 CTS 3.3.2.1 and Unit 2 CTS 3.3.2 require the MSIS Steam Generator Pressure - Low Function (Table 3.3-3 Functional Unit 4.b) to be OPERABLE in MODES 1, 2, and 3 except when bypassed as noted by Note (c). Unit 2 CTS 3.3.2 also requires the MSIS      lR2 Containment Pressure - High channel to be OPERABLE in MODES 1, 2, and 3.
ITS 3.3.3 requires the same MSIS Function to be OPERABLE. However, Unit 1        lR2 Table 3.3.3-1, Function 4.a (MSIS Steam Generator Pressure - Low) modifies MODES 2 and 3 by Footnote (d) that states the Main Steam Isolation Signal        lR2 (MSIS) Function Steam Generator Pressure - Low signal is not required to be OPERABLE when all associated valves isolated by the MSIS Function are closed and deactivated. Unit 2 Table 3.3.3-1, Functions 4.a (MSIS Steam Generator        lR2 Pressure - Low) and 4.b (MSIS Containment Pressure - High) modifies MODES 2 and 3 by Footnote (d) that states that the Main Steam Isolation Signal (MSIS)  lR2 Function Steam Generator Pressure - Low and Containment Pressure - High signals are not required to be OPERABLE when all associated valves isolated by lR2 the MSIS Function are closed and deactivated. This changes the CTS by            l relaxing the Unit 1 MODE 2 and 3 requirements of the MSIS Steam Generator        l Pressure - Low instrument Function and the Unit 2 MODE 2 and 3 requirements      l l
of the MSIS Steam Generator Pressure - Low instrument Function and MSIS          l Containment Pressure - High instrument Function.                                  l The purpose of the Applicability of the MSIS Steam Generator Pressure - Low and Unit 2 MSIS Containment Pressure - High instrument Functions is to ensure the ESFAS MSIS Functions are OPERABLE when the supported equipment (i.e.,
main steam isolation valves (MSIVs) and main feedwater isolation valves (MFIVs)) is required to be OPERABLE. Automatic steam line and feedwater line isolation is assumed in the mitigation of a major secondary system pipe rupture accident (e.g., main steam line break or feedwater line break). In MODES 1, 2, and 3, there is sufficient energy in the primary and secondary systems to warrant St. Lucie Unit 1 and Unit 2            Page 7 of 11                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.3, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
INSTRUMENTATION automatic ESF System response to ensure the main steam and feedwater lines can be isolated in the event of a high energy secondary system pipe rupture.
The exception to MODE 2 and 3 is added to clarify that the MSIS Functions are not required to be OPERABLE when the valves actuated by the MSIS instrumentation are in a position that supports the safety analyses. When the valves isolated by the MSIS Functions are in the closed position, they are in their assumed accident position. This change is acceptable, because when the MSIVs and MFIVs are closed and deactivated, the adverse effects of a high            lR2 energy secondary system pipe rupture are precluded and the requirements continue to ensure that the structures, systems, and components are maintained in the MODES and other specified conditions assumed in the safety analyses.
The proposed applicability change provides the same level of protection as the current requirements for the supported equipment and is consistent with the applicability for Function 4.a in ISTS Table 3.3.4-1 (Analog) and Function 4.b in ISTS Table 3.3.5-1 (Digital). This change is designated as less restrictive because the ITS LCO requirements are applicable in fewer operating conditions than in the CTS.
L02    Unit 1 only: (Category 4 - Relaxation of Required Action) CTS Table 3.3-3            lR2 l
Actions 9.c and 13.b, which apply to the SIAS, CIS and MSIS Functions and the RAS Function, respectively, require the minimum number of channels to be OPERABLE (i.e., three of four channels) except an additional channel may be bypassed for up to 48 hours (Action 9.c) or 2 hours (Action 13.b) while              lR2 l
performing tests and maintenance on that channel provided the other inoperable        l channel is placed in the trip condition within 1 hour.                                l ITS 3.3.3 ACTION F provides the same condition (i.e., two of four channels inoperable) for the SIAS, CIS, MSIS, and RAS Functions. When one or more Functions (except CSAS or AFAS) with two ESFAS trip units or associated instrument channels are inoperable, one trip unit must be placed in bypass and the other trip unit must be placed in trip within 1 hour and one trip unit must be restored to OPERABLE status within 48 hours. This changes the CTS by lR2 allowing, for each specified ESFAS Function, two instrument channels to be            l inoperable for reasons other than maintenance and testing and extends the time        l this condition is allowed for the RAS Function from 2 hours to 48 hours.              l The purpose of the CTS Actions is to allow an additional ESFAS channel to be inoperable for the purposes of testing and maintenance. The SIAS, CIS, MSIS,          lR2 and RAS ESFAS Function channels are configured in a two-out of-four coincidence. The two-out-of-four ESFAS logic is changed to a two-out-of-three logic for a given input parameter in one channel at a time by bypassing one channel input to the logic. With one channel of protective instrumentation bypassed, the ESFAS Function is in two-out-of-three logic, but with another channel inoperable the ESFAS may be operating with a two-out-of-two logic,            lR2 l
which would not be an acceptable logic configuration. In this condition, CTS          l would require application of CTS 3.0.3 for two inoperable channels of the            l l
specified ESFAS Functions for reasons other than testing or maintenance.              l Placing one trip unit in bypass and one trip unit in trip results in a one-out-of-two l logic. If any of the other OPERABLE channels receives a trip signal, an ESFAS        l St. Lucie Unit 1 and Unit 2              Page 8 of 11                                        lR2
 
DISCUSSION OF CHANGES ITS 3.3.3, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
INSTRUMENTATION actuation will occur. Therefore, it is also acceptable to allow an additional channel to be inoperable for reasons other than testing or maintenance provided    lR2 l
one trip unit is in bypass and the other trip unit is in trip. This change is      l acceptable because the Required Actions continue to establish remedial            l measures that must be taken in response to the degraded conditions in order to minimize risk associated with continued operation while providing time to repair inoperable features. The Required Actions are consistent with safe operation under the specified Condition, considering the OPERABLE status of the remaining ESFAS instrument channels and trip units, a reasonable time for          lR2 repairs or replacement, and the low probability of a DBA occurring during the repair period. This change also provides appropriate remedial actions in lieu of requiring initiation of an unnecessary plant transient per ITS LCO 3.0.3 (CTS 3.0.3). The 48-hour Completion Time is consistent with the NRC approved      lR2 l
ISTS and based upon operating experience, which has demonstrated that a random failure of another channel occurring during the 48-hour period is a low probability event. This change is designated as less restrictive because less stringent Required Actions are being applied in the ITS than were applied in the CTS.
L03    (Category 4 - Relaxation of Required Action) Unit 1 CTS 3.3.2.1 and Unit 2 CTS 3.3.2 do not explicitly provide requirements associated with the bypass removal feature associated with the SIAS or MSIS ESFAS Functions. However, CTS 4.3.2.1.2 and Unit 2 CTS 4.3.2.2 require channel functional and calibration testing of the channel bypass logic, which includes the bypass removal feature.
Therefore, per the requirements of CTS 4.0.1 (ITS SR 3.0.1), CTS 3.3.2.1 (Unit 1) and CTS 3.3.2 (Unit 2) encompass the ESFAS channel bypass removal feature. If an ESFAS bypass removal channel is inoperable, CTS 3.0.3 is entered since there is no Condition and Action specified in the CTS. ITS 3.3.3 also includes Surveillances for the channel bypass removal feature. In addition, ITS 3.3.3 ACTIONS G and H are added to provide remedial measures when the bypass removal capability is inoperable to an SIAS or MSIS ESFAS Function channel. ITS Required Actions G.1 and H.1 require disabling the inoperable bypass channel within 1 hour when one or two bypass removal channels is inoperable. When one bypass removal channel is inoperable, ITS 3.3.3 ACTION G alternately allows placing the affected channel in bypass or trip within 1 hour and restoring the channel to OPERABLE status within 48 hours.
When two bypass removal channels are inoperable, ITS 3.3.3 ACTION H alternately allows placing one channel in trip and the other channel in bypass and restoring one channel to OPERABLE status within 48 hours. This changes the CTS by adding specific Technical Specification actions when one or two bypass removal channels are inoperable to the SIAS or MSIS ESFAS Functions.
The purpose of the proposed actions is to provide appropriate remedial actions in the event the automatic bypass removal feature is inoperable. With one or two bypass removal channels inoperable, it is permissible to continue operation with the bypass permissive removal channels failed, providing the bypass is disabled.
This can be accomplished by removing the bypass with the manual bypass key switch, which disables the bypass in its respective train. Since the bypass Function must be manually enabled, the bypass permissive Function will not by St. Lucie Unit 1 and Unit 2              Page 9 of 11                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.3, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
INSTRUMENTATION itself cause an undesired bypass insertion. Alternatively, the bypass may be disabled by defeating the bypass permissive input in one or two of the four channels to the two-out-of-four bypass removal logic, placing the bypass removal feature in one-out-of-three logic. Thus, any of the remaining channels is capable of removing the bypass feature when the bypass enable conditions are no longer valid. The Completion Times are consistent with the completion times for one or two inoperable SIAS or MSIS ESFAS Function channels. This change is also consistent with the ISTS.
This change is considered acceptable because the proposed remedial actions will ensure the related ESFAS Functions can continue to perform their related safety function when required by the plant design basis and safety analysis by requiring the bypass removal channel to be disabled or take action consistent with the current actions for an inoperable ESFAS channel. This change also provides appropriate remedial actions in lieu of requiring initiation of an unnecessary plant transient per ITS LCO 3.0.3 (CTS 3.0.3). This change is designated as less restrictive because the ITS ACTIONS provide remedial actions that are less restrictive than the CTS Action requiring a plant shutdown.
lR2 L04    Unit 2 only: (Category 4 - Relaxation of Required Action) CTS Table 3.3-3            l Action 19.b, which applies to the RAS Function, requires the minimum number of        l channels to be OPERABLE (i.e., three of four channels) except an additional          l l
channel may be bypassed for up to 2 hours while performing surveillance testing      l per Specification 4.3.2.1.                                                            l l
l ITS 3.3.3 ACTION F provides the same condition (i.e., two of four channels            l inoperable) for the RAS Function. When one or more Functions (except CSAS            l l
or AFAS) with two trip units or associated instrument channels are inoperable,        l one trip unit must be placed in bypass and the other trip unit must be placed in      l trip within 1 hour. This changes the CTS by allowing two RAS trip units or            l l
associated instrument channels to be inoperable for reasons other than                l surveillance testing and eliminates the 2-hour restriction allowing continued        l operation for 48 hours or in accordance with the Risk Informed Completion Time        l l
Program.                                                                              l l
l The purpose of the CTS Actions is to allow an additional RAS channel to be            l inoperable for the purposes of testing. The RAS Function channels are                l configured in a two-out of-four coincidence. The two-out-of-four RAS logic is        l l
changed to a two-out-of-three logic for a given input parameter in one channel at    l a time by bypassing one channel input to the logic. With one channel of              l l
protective instrumentation bypassed, the RAS Function is in two-out-of-three          l logic, but with another channel inoperable the RAS Function may be operating          l with a two-out-of-two logic, which would not be an acceptable logic configuration. l l
In this condition, CTS would require application of CTS 3.0.3 for two inoperable      l RAS trip units or associated channels for reasons other than surveillance testing. l Placing one trip unit in bypass and one trip unit in trip results in a one-out-of-two l l
logic. If any of the other OPERABLE channels receives a trip signal, an RAS          l actuation will occur. Therefore, it is acceptable to allow an additional channel or  l associated trip unit to be inoperable for reasons other than testing provided one    l l
St. Lucie Unit 1 and Unit 2              Page 10 of 11                                        lR2
 
DISCUSSION OF CHANGES ITS 3.3.3, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
INSTRUMENTATION trip unit is in bypass and the other trip unit is in trip. This change is acceptable lR2 l
because the Required Actions continue to establish remedial measures that must      l be taken in response to the degraded conditions in order to minimize risk            l associated with continued operation while providing time to repair inoperable        l l
features. The Required Actions are consistent with safe operation under the          l specified Condition, considering the OPERABLE status of the remaining RAS            l instrument channels and trip units, a reasonable time for repairs or replacement,    l l
and the low probability of a DBA occurring during the repair period. This change    l also provides appropriate remedial actions in lieu of requiring initiation of an    l l
unnecessary plant transient per ITS LCO 3.0.3 (CTS 3.0.3). Elimination of the        l 2-hour restriction allows operation to continue up to the Completion Time limit of  l ITS 3.3.3 Required Action B.2 (48 hours or in accordance with the Risk Informed      l l
Completion Time Program) and is acceptable based upon operating experience,          l which has demonstrated that a random failure of another channel occurring            l during the applicable time period is a low probability event. This change is        l l
designated as less restrictive because less stringent Required Actions are being    l applied in the ITS than were applied in the CTS.                                    l St. Lucie Unit 1 and Unit 2            Page 11 of 11                                        lR2
 
Improved Standard Technical Specifications (ISTS) Markup and Justification for Deviations (JFDs)
 
CTS                                                                                                ESFAS Instrumentation (Analog)            3 3.3.4 3
3.3 INSTRUMENTATION (Analog)                                                                                                        3 3.3.4          Engineered Safety Features Actuation System (ESFAS) Instrumentation (Analog)                                        3 3
3.3.2.1          LCO 3.3.4                    Four ESFAS trip units and associated instrument and bypass removal 3              channels for each Function in Table 3.3.4-1 shall be OPERABLE.                                    3 3
3 According to Table 3.3.3-1                                            1    lR2 Table 3.3-3 APPLICABILITY:                  MODES 1, 2, and 3.
Functional Unit 1.b, 1.c, 2.b, 3.b, 3.c, 4.a, 5.b, 7.c, 8.a, 8.b ACTIONS
                  ------------------------------------------------------------NOTE-----------------------------------------------------------
DOC A02          Separate Condition entry is allowed for each ESFAS Function.
CONDITION                              REQUIRED ACTION                            COMPLETION TIME Table 3.3-3        A. [ One Containment                      A.1        Place affected trip unit in              1 hour ]                          2 Action 10A                Spray Actuation Signal                        bypass.          or trip (CSAS) trip unit or              AND associated instrument            A.2.1    Restore channel to OPERABLE status.      48 hours inoperable.                            OR INSERT 1                                                    A.2.2    Place affected trip unit in trip.        48 hours 5
Table 3.3-3 B. One or more Functions                  B.1        Place affected trip unit in              1 hour 5
Action 9          D      with one ESFAS trip unit          D          bypass or trip.
or associated instrument channel (except CSAS)              AND 1
inoperable. , RAS or AFAS B.2.1      Restore channel to                      [48] hours D
OPERABLE status.                                                        5  2
[OR In accordance with the Risk Informed Completion Time Program]                          2 OR 3
3 Combustion Engineering STS                                3.3.4-1                                                  Rev. 5.0      1 St. Lucie - Unit 1                                                                                          Amendment XXX
 
CTS                                                                              ESFAS Instrumentation 3.3.3 1
INSERT 1 Table 3.3-3  B. One Containment Sump            B.1    Place affected trip unit in 1 hour Action 13      Recirculation Actuation                  bypass or trip.
Signal (RAS) trip unit or associated instrument            AND inoperable.
B.2    Restore trip unit to        48 hours OPERABLE status.
OR In accordance with the Risk Informed Completion Time Program Table 3.3-3  C. ------------NOTE------------    C.1    Place affected trip unit in 1 hour Action 14.a,    Required Action C.2.2.2                bypass or trip.
14.b must be completed whenever this Condition          AND is entered.
                -------------------------------- C.2.1  Restore channel to          48 hours OPERABLE status.
One or more Functions with one Auxiliary                  OR Feedwater Actuation Signal (AFAS) trip unit or      C.2.2.1 Place affected trip unit in 48 hours associated instrument                    bypass.
inoperable.
AND C.2.2.2 Restore channel to          Prior to entering OPERABLE status.            MODE 3 following next MODE 5 entry Insert Page 3.3.3-1
 
CTS                                                                        ESFAS Instrumentation (Analog)    3 3.3.4 3
ACTIONS (continued)
CONDITION                      REQUIRED ACTION                  COMPLETION TIME B.2.2  [ Place affected trip unit in  48 hours                5  2 D
trip.
[OR In accordance with        2 the Risk Informed Completion Time Program] ]
INSERT 2 Table 3.3-3  C. One or more Functions            C.1    Place one trip unit in        1 hour                    5 Action 9, 13 F with two ESFAS trip            F bypass and place the other units or associated                    trip unit in trip.
instrument channels DOC L02 (except CSAS)                  AND                                                              1 inoperable.
or AFAS      C.2    Restore one trip unit to      [48] hours              1  2 F
OPERABLE status.
D. One or more Functions            D.1    Disable bypass channel.        1 hour                    5 DOC M01 G    with one automatic            G bypass removal channel          OR inoperable.
D.2.1  Place affected trip units in  1 hour                    5 Safety Injection Actuation          bypass or trip.
Signal (SIAS) or Main Steam G Isolation Signal (MSIS)
AND D.2.2.1 Restore bypass removal        [48] hours              5  2 G
channel and affected trip units to OPERABLE status.      [OR In accordance with the Risk Informed          2 Completion Time Program]
OR 3
3 Combustion Engineering STS                        3.3.4-2                                  Rev. 5.0    1 St. Lucie - Unit 1                                                                    Amendment XXX
 
ESFAS Instrumentation 3.3.3 1
INSERT 2 Table 3.3-3 E. One or more Functions    E.1    Place one trip unit in    1 hour Action 10B Action 15 with two or more AFAS          bypass and place the other trip units or associated        trip unit in trip.
instrument channels inoperable.              AND OR                      E.2    Restore one trip unit to  48 hours OPERABLE status.
Two CSAS trip units or                                    OR associated instrument channels inoperable.                                      In accordance with the Risk Informed Completion Time Program Insert Page 3.3.3-2                                  lR2
 
CTS                                                                  ESFAS Instrumentation (Analog)      3 3.3.4 3
ACTIONS (continued)
CONDITION                REQUIRED ACTION                  COMPLETION TIME D.2.2.2 [ Place affected trip units in 48 hours                5    2 G      trip.
[OR In accordance with the Risk Informed          2 Completion Time Program] ]
SIAS or MSIS E. One or more Functions      E.1    Disable bypass channels.      1 hour                    5 DOC M01 with two automatic      H H
bypass removal          OR channels inoperable.
E.2.1  Place one affected trip unit  1 hour                    3 H      in bypass and place the other in trip for each affected ESFAS Function.
AND E.2.2  [ Restore one bypass          48 hours                    5 H      channel and the associated trip unit to OPERABLE          [OR status for each affected trip                              2 Function.                      In accordance with the Risk Informed          2 Completion Time Program] ]
Action 10B,    F. Required Action and        F.1    Be in MODE 3.                  6 hours                    5 13, 15 I      associated Completion  I Time not met.            AND F.2    Be in MODE 4.                  [12] hours              5    2 I
3 3
Combustion Engineering STS                  3.3.4-3                                  Rev. 5.0    1 St. Lucie - Unit 1                                                              Amendment XXX
 
CTS                                                                  ESFAS Instrumentation (Analog)        3 3.3.4 3
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                      FREQUENCY 4.3.2.1.1  SR 3.3.4.1        Perform a CHANNEL CHECK of each ESFAS                  [ 12 hours            3      2 3      instrument channel.
OR In accordance with the Surveillance Frequency Control Program ]
4.3.2.1.1  SR 3.3.4.2        Perform a CHANNEL FUNCTIONAL TEST of each              [ [92] days          3      2 3
ESFAS instrument channel.
OR In accordance with the Surveillance Frequency Control Program ]        2 4.3.2.1.2  SR 3.3.4.3        Perform a CHANNEL FUNCTIONAL TEST on each              Once within 3      automatic bypass removal function.                      92 days prior to        1 In accordance with the      each reactor Surveillance Frequency      startup Control Program 4.3.2.1.1  SR 3.3.4.4        Perform a CHANNEL CALIBRATION of each                  [ [18] months        3      2 3
ESFAS instrument channel, including bypass removal functions.                                      OR In accordance with the Surveillance Frequency Control Program ]        2 3
3 Combustion Engineering STS              3.3.4-4                                        Rev. 5.0      1 St. Lucie - Unit 1                                                                Amendment XXX
 
CTS                                                            ESFAS Instrumentation (Analog)      3 3.3.4 3
SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                                FREQUENCY 4.3.2.1.3  SR 3.3.4.5        Verify ESF RESPONSE TIME is within limits.        [ [18] months on a    3    2 3
STAGGERED TEST BASIS OR                      2 In accordance with the Surveillance Frequency Control Program ]      2 3
3 Combustion Engineering STS            3.3.4-5                                    Rev. 5.0    1 St. Lucie - Unit 1                                                          Amendment XXX
 
CTS                                                                                            ESFAS Instrumentation (Analog)            3 3.3.4 3                                                            3 Table 3.3.4-1 (page 1 of 2)                                                      3 Engineered Safety Features Actuation System Instrumentation SURVEILLANCE              TRIP        ALLOWABLE                lR2 8
FUNCTION                          MODES      REQUIREMENTS            SETPOINT          VALUE                  l 3
3
: 1. Safety Injection Actuation Signal (SIAS)
Table 3.3-3          a. Containment Pressure - High                1,2,3        SR  3.3.4.1                            [19.0] psia          2 Function 1.b                                                                      SR  3.3.4.2(a)(b)        5 psig                                lR2 8
SR  3.3.4.4(a)(b)                          5 psig                l SR  3.3.4.5 a
: b. Pressurizer Pressure - Low(c)              1,2,3        SR  3.3.4.1                            [1687] psia            2 Table 3.3-3 lR2 Function 1.c                                                                      SR  3.3.4.2(a)(b)      1600 psia        1600            8    l SR  3.3.4.3                                                      l SR  3.3.4.4(a)(b)                                                l SR  3.3.4.5 b
: 2. Containment Spray Actuation Signal(d)                                                                                        8 Table 3.3-3        a. Containment Pressure - High                1,2,3        SR  3.3.4.1                            [19.0] psia          2 Function 2.b                                                                    SR  3.3.4.2(a)(b)        10 psig                        8 lR2 High-High                    SR  3.3.4.4(a)(b)                        10 psig                l SR  3.3.4.5
: 3. Containment Isolation Actuation Signal Table 3.3-3        a. Containment Pressure - High                1,2,3        SR  3.3.4.1                            [19.0] psia          2 Function 3.b                                                                    SR  3.3.4.2(a)(b)                                                lR2 5 psig          5 psig        8 SR  3.3.4.4(a)(b)                                                l SR  3.3.4.5 Table 3.3-3          [ b. Containment Radiation - High                1,2,3        SR  3.3.4.1                                [2x              2 Function 3.c                                                                      SR  3.3.4.2(a)(b)                    Background] ]              lR2 10 R/hr                        8 SR  3.3.4.4(a)(b)                                                l 10 R/hr SR  3.3.4.5 (a)  If the as-found channel setpoint is outside its predefined as-found tolerance, then the channel shall be evaluated        8 lR2 to verify that it is functioning as required before returning the channel to service.                                          l (b)  The instrument channel setpoint shall be reset to a value that is within the as-left tolerance around the Limiting              lR2 l
Trip Setpoint (LTSP) at the completion of the surveillance; otherwise, the channel shall be declared inoperable.
l Setpoints more conservative than the LTSP are acceptable provided that the as-found and as-left tolerances                  8  l apply to the actual setpoint implemented in the Surveillance procedures (Nominal Trip Setpoint) to confirm                      l channel performance. The LTSP and the methodologies used to determine the as-found and as-left tolerances                      l are specified in [insert the facility FSAR reference or the name of any document incorporated into the facility                l FSAR by reference].                                                                                                            l a                                                                                                                              lR2 Table 3.3-3  (c)  Pressurizer Pressure - Low may be manually bypassed when pressurizer pressure is < [1800] psia. The bypass            8    2  l Note (a)          shall be automatically removed whenever pressurizer pressure is  [1800] psia.
b                                                                                      1725                                  lR2
[(d) SIAS is also required as a permissive to initiate containment spray. ]                                                8    2    l Table 3.3-3 Note (b) 3 3
Combustion Engineering STS                                  3.3.4-6                                            Rev. 5.0        1 St. Lucie - Unit 1                                                                                      Amendment XXX
 
CTS                                                                                              ESFAS Instrumentation (Analog)                    3 3.3.4 3
3 Table 3.3.4-1 (page 2 of 2)
Engineered Safety Features Actuation System Instrumentation SURVEILLANCE              TRIP          ALLOWABLE                      lR2 8
FUNCTION                        MODES          REQUIREMENTS            SETPOINT            VALUE                      l 3
585 psig
: 4. Main Steam Isolation Signal                                            3 d
Table 3.3-3              a. Steam Generator Pressure -              1,2(f),3(f)      SR  3.3.4.1                              [495] psig                2 lR2 3.3.4.2(a)(b)        585 psig Function 4.b                  Low(e)                                                  SR                                                            8        l c                                            SR  3.3.4.3                                                            l SR 3.3.4.4(a)(b)                                                      l SR  3.3.4.5
: 5. Recirculation Actuation Signal 48 lR2 Table 3.3-3              a. Refueling Water Tank Level -              1,2,3        [SR  3.3.4.1]            48 inches      [ 24 inches 2  l Function 5.b                  Low                                                      SR 3.3.4.2(a)(b)      above tank        and  30]        8          l SR 3.3.4.4(a)(b)        bottom inches above                    l SR  3.3.4.5                              tank bottom
: 6. Auxiliary Feedwater Actuation Signal (AFAS)
Table 3.3-3              a. Steam Generator A Level - Low            1,2,3          SR  3.3.4.1                              [45.7] %                2 Function 7.c                                                                            SR 3.3.4.2(a)(b)                                                      lR2 19.0%              18 8
SR 3.3.4.4(a)(b)                                                      l SR  3.3.4.5 Table 3.3-3              b. Steam Generator B Level - Low            1,2,3        SR  3.3.4.1                                [45.7] %                2 Function 7.c                                                                            SR 3.3.4.2(a)(b)          19.0%                                      lR2 8
SR 3.3.4.4(a)(b)                              18                      l SR  3.3.4.5 Table 3.3-3              c. Steam Generator Pressure                  1,2,3          SR  3.3.4.1                              [48.3] psid              2 Function 8.a                  Difference - High (A > B) or                            SR 3.3.4.2(a)(b)        275 psid                          8          lR2 (B > A)                                                  SR 3.3.4.4(a)(b)                        89.2 and  281                l Table 3.3-3 SR  3.3.4.5
: d. Feedwater Header Pressure Difference - High      1, 2, 3  SR 3.3.3.1, SR 3.3.3.2  150 psid  56.0 and  157.5 psid    1      8 lR2 Function 8.b SR3.3.3.4, SR 3.3.3.5 (a)    If the as-found channel setpoint is outside its predefined as-found tolerance, then the channel shall be evaluated                        lR2 8      l to verify that it is functioning as required before returning the channel to service.
(b)    The instrument channel setpoint shall be reset to a value that is within the as-left tolerance around the Limiting                        lR2 Trip Setpoint (LTSP) at the completion of the surveillance; otherwise, the channel shall be declared inoperable.                          l Setpoints more conservative than the LTSP are acceptable provided that the as-found and as-left tolerances                                l 8
l apply to the actual setpoint implemented in the Surveillance procedures (Nominal Trip Setpoint) to confirm l
channel performance. The LTSP and the methodologies used to determine the as-found and as-left tolerances                                l are specified in [insert the facility FSAR reference or the name of any document incorporated into the facility                          l FSAR by reference].                                                                                                                      l c                                                                                                                                        l Table 3.3-3  (e)    Steam Generator Pressure - Low may be manually bypassed when steam generator pressure is < [785] psia.                              2    l Note (c)
The bypass shall be automatically removed whenever steam generator pressure is  [785] psia.
d                                                                                                                685 psig lR2 DOC L01 (f)    Only the Main Steam Isolation Signal (MSIS) Function and the Steam Generator Pressure - Low and                                          l Containment Pressure - High signals are not required to be OPERABLE when all associated valves isolated by                    1 the MSIS Function are closed and [de-activated].                                                                                    2 lR2 is              3 3
Combustion Engineering STS                                    3.3.4-7                                                  Rev. 5.0            1 St. Lucie - Unit 1                                                                                              Amendment XXX
 
CTS                                                                                                      ESFAS Instrumentation (Analog)              3 3.3.4 3
3.3 INSTRUMENTATION (Analog)                                                                                                        3 3.3.4            Engineered Safety Features Actuation System (ESFAS) Instrumentation (Analog)                                      3 3
3.3.2              LCO 3.3.4                    Four ESFAS trip units and associated instrument and bypass removal 3            channels for each Function in Table 3.3.4-1 shall be OPERABLE.                                    3 3
3 According to Table 3.3.3-1                                            1        lR2 Table 3.3-3 APPLICABILITY:                      MODES 1, 2, and 3.
Functional Unit 1.b, 1.c, 2.b, 3.b, 3.c, 3.d, 4.b, 4.c, 5.b, 7.c, 8.a, 8.b ACTIONS
                    ------------------------------------------------------------NOTE-----------------------------------------------------------
DOC A02            Separate Condition entry is allowed for each ESFAS Function.
CONDITION                            REQUIRED ACTION                            COMPLETION TIME Table 3.3-3            A. [ One Containment                    A.1        Place affected trip unit in              1 hour ]                            2 Action 18A                    Spray Actuation Signal                      bypass.          or trip (CSAS) trip unit or              AND associated instrument            A.2.1    Restore channel to OPERABLE status.      48 hours OR inoperable.                      A.2.2    Place affected trip unit in trip.        48 hours INSERT 1                                                                                                                                          5    6 Table 3.3-3 B. One or more Functions                B.1        Place affected trip unit in              1 hour                              5 Action 13              D with one ESFAS trip unit        D bypass or trip.
or associated instrument channel (except CSAS)            AND                                                                                    1 inoperable.
                                            , RAS or AFAS B.2.1      Restore channel to                      [48] hours                        5    2
    ------------NOTE------------
Required Action D.2 must                                    D OPERABLE status.                                Prior to entering be completed whenever                                                                                            [OR    MODE 3 following        5    6 this Condition is entered.                                                                                              next MODE 5 entry In accordance with the Risk Informed Completion Time Program]                            2 OR 3
3 Combustion Engineering STS                                3.3.4-1                                                    Rev. 5.0      1 St. Lucie - Unit 2                                                                                          Amendment XXX
 
CTS                                                                              ESFAS Instrumentation 3.3.3 1
INSERT 1 Table 3.3-3 B. One Containment Sump            B.1    Place affected trip unit in 1 hour Action 19      Recirculation Actuation                  bypass or trip.
Signal (RAS) trip unit or associated instrument            AND inoperable.
B.2    Restore trip unit to        48 hours OPERABLE status.
OR In accordance with the Risk Informed Completion Time Program Table 3.3-3 C. ------------NOTE------------    C.1    Place affected trip unit in 1 hour Action 20.a    Required Action C.2.2.2                bypass or trip.
20.b must be completed whenever this Condition          AND is entered.
              -------------------------------- C.2.1  Restore channel to          48 hours OPERABLE status.
One or more Functions with one Auxiliary                  OR Feedwater Actuation Signal (AFAS) trip unit or      C.2.2.1 Place affected trip unit in 48 hours associated instrument                    bypass.
inoperable.
AND C.2.2.2 Restore channel to          Prior to entering OPERABLE status.            MODE 3 following next MODE 5 entry Insert Page 3.3.3-1
 
CTS                                                                              ESFAS Instrumentation (Analog)        3 3.3.4 3
ACTIONS (continued)
CONDITION                      REQUIRED ACTION                  COMPLETION TIME B.2.2  [ Place affected trip unit in  48 hours                5      2 trip.
[OR In accordance with            2 the Risk Informed Completion Time INSERT 2 Program] ]
Table 3.3-3      C. One or more Functions            C.1    Place one trip unit in        1 hour                        5 Action 14, 19.b F with two ESFAS trip            F bypass and place the other lR2 units or associated                    trip unit in trip.
instrument channels DOC L04              (except CSAS)                  AND                                                                1    lR2 inoperable.                                                                                              l l
or AFAS      C.2    Restore one trip unit to      [48] hours                7      l OPERABLE status.                                                  l D. One or more Functions            D.1    Disable bypass channel.        1 hour                        5 DOC M01 G    with one automatic            G bypass removal channel          OR inoperable.
D.2.1  Place affected trip units in  1 hour                        5 Safety Injection Actuation          bypass or trip.
Signal (SIAS) or Main Steam G Isolation Signal (MSIS)
AND D.2.2.1 Restore bypass removal        [48] hours              5      2 G
channel and affected trip units to OPERABLE status.      [OR In accordance with the Risk Informed              2 Completion Time Program]
OR 3
3 Combustion Engineering STS                        3.3.4-2                                  Rev. 5.0        1 St. Lucie - Unit 2                                                                    Amendment XXX
 
ESFAS Instrumentation 3.3.3 1
INSERT 2 Table 3.3-3 E. One or more Functions    E.1    Place one trip unit in    1 hour Action 18B Action 21 with two or more AFAS          bypass and place the other trip units or associated        trip unit in trip.
instrument channels inoperable.              AND OR                      E.2    Restore one trip unit to  48 hours OPERABLE status.
Two CSAS trip units or                                    OR associated instrument channels inoperable.                                      In accordance with the Risk Informed Completion Time Program Insert Page 3.3.3-2                                  lR2
 
CTS                                                                        ESFAS Instrumentation (Analog)      3 3.3.4 3
ACTIONS (continued)
CONDITION                REQUIRED ACTION                  COMPLETION TIME D.2.2.2 [ Place affected trip units in 48 hours                5    2 G      trip.
[OR In accordance with the Risk Informed          2 Completion Time Program] ]
SIAS or MSIS E. One or more Functions      E.1    Disable bypass channels.      1 hour                    5 DOC M01 with two automatic      H H
bypass removal          OR channels inoperable.
E.2.1  Place one affected trip unit  1 hour                    5 H      in bypass and place the other in trip for each affected ESFAS Function.
AND E.2.2  [ Restore one bypass          48 hours                    5 H      channel and the associated trip unit to OPERABLE          [OR status for each affected trip                              2 Function.                      In accordance with the Risk Informed          2 Completion Time Program] ]
Action 18B,    F. Required Action and        F.1    Be in MODE 3.                  6 hours                    5 19, 21              associated Completion  I I
Time not met.            AND F.2    Be in MODE 4.                  [12] hours              5    2 I
3 3
Combustion Engineering STS                  3.3.4-3                                  Rev. 5.0    1 St. Lucie - Unit 2                                                              Amendment XXX
 
CTS                                                                  ESFAS Instrumentation (Analog)      3 3.3.4 3
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                      FREQUENCY 4.3.2.1  SR 3.3.4.1        Perform a CHANNEL CHECK of each ESFAS                  [ 12 hours            3    2 3      instrument channel.
OR In accordance with the Surveillance Frequency Control Program ]
4.3.2.1  SR 3.3.4.2        Perform a CHANNEL FUNCTIONAL TEST of each              [ [92] days          3    2 3
ESFAS instrument channel.
OR In accordance with the Surveillance Frequency Control Program ]      2 4.3.2.2  SR 3.3.4.3        Perform a CHANNEL FUNCTIONAL TEST on each              Once within 3      automatic bypass removal function.                      92 days prior to        1 In accordance with the      each reactor Surveillance Frequency Control Program startup 4.3.2.1  SR 3.3.4.4        Perform a CHANNEL CALIBRATION of each                  [ [18] months        3    2 3
ESFAS instrument channel, including bypass removal functions.                                      OR In accordance with the Surveillance Frequency Control Program ]      2 3
3 Combustion Engineering STS              3.3.4-4                                        Rev. 5.0    1 St. Lucie - Unit 2                                                                Amendment XXX
 
CTS                                                            ESFAS Instrumentation (Analog)      3 3.3.4 3
SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                                FREQUENCY 4.3.2.3  SR 3.3.4.5        Verify ESF RESPONSE TIME is within limits.        [ [18] months on a    3    2 3
STAGGERED TEST BASIS OR                      2 In accordance with the Surveillance Frequency Control Program ]      2 3
3 Combustion Engineering STS            3.3.4-5                                    Rev. 5.0    1 St. Lucie - Unit 2                                                          Amendment XXX
 
CTS                                                                                              ESFAS Instrumentation (Analog)              3 3.3.4 3                                                            3 Table 3.3.4-1 (page 1 of 2)                                                      3 Engineered Safety Features Actuation System Instrumentation SURVEILLANCE              TRIP          ALLOWABLE                  lR2 FUNCTION                        MODES      REQUIREMENTS                                VALUE              8 SETPOINT                                    l 3
: 1. Safety Injection Actuation Signal (SIAS)                          3 Table 3.3-3            a. Containment Pressure - High              1,2,3      SR  3.3.4.1                            [19.0] psia            2 3.5 psig                                lR2 Function 1.b                                                                    SR  3.3.4.2(a)(b)                                        8 3.6 psig                l SR  3.3.4.4(a)(b)                                                  l SR  3.3.4.5 a
Table 3.3-3            b. Pressurizer Pressure - Low(c)            1,2,3      SR  3.3.4.1                            [1687] psia            2 Function 1.c                                                                      SR  3.3.4.2(a)(b)                                                  lR2 1736 psia          1728          8        l SR  3.3.4.3 l
SR  3.3.4.4(a)(b)                                                  l SR  3.3.4.5 b
: 2. Containment Spray Actuation Signal(d)                                                                                  8 Table 3.3-3            a. Containment Pressure - High              1,2,3      SR  3.3.4.1                            [19.0] psia            2 Function 2.b                                                                    SR  3.3.4.2(a)(b)      5.40 psig                      8        lR2 High-High                  SR  3.3.4.4(a)(b)                        5.5 psig                l SR  3.3.4.5
: 3. Containment Isolation Actuation Signal Table 3.3-3            a. Containment Pressure - High              1,2,3      SR  3.3.4.1                            [19.0] psia 2
Function 3.c                                                                    SR  3.3.4.2(a)(b)      3.5 psig                        8 lR2 3.6 psig                l SR  3.3.4.4(a)(b)
SR  3.3.4.5 Table 3.3-3            [ b. Containment Radiation - High              1,2,3      SR  3.3.4.1                                [2x                2 Function 3.d                                                                    SR  3.3.4.2(a)(b)        10 R/hr    Background] ]        8      lR2 SR  3.3.4.4(a)(b)                          10 R/hr                l SR  3.3.4.5 (a)    If the as-found channel setpoint is outside its predefined as-found tolerance, then the channel shall be evaluated              lR2 to verify that it is functioning as required before returning the channel to service.                                            l (b)    The instrument channel setpoint shall be reset to a value that is within the as-left tolerance around the Limiting              lR2 Trip Setpoint (LTSP) at the completion of the surveillance; otherwise, the channel shall be declared inoperable.              8  l Setpoints more conservative than the LTSP are acceptable provided that the as-found and as-left tolerances                      l apply to the actual setpoint implemented in the Surveillance procedures (Nominal Trip Setpoint) to confirm                      l l
channel performance. The LTSP and the methodologies used to determine the as-found and as-left tolerances                        l are specified in [insert the facility FSAR reference or the name of any document incorporated into the facility                  l FSAR by reference].                                                                                                              l a                                                                                                                                l Table 3.3-3  (c)    Pressurizer Pressure - Low may be manually bypassed when pressurizer pressure is < [1800] psia. The bypass 8                2    l Note (a)          shall be automatically removed whenever pressurizer pressure is  [1800] psia.
b                                                                                      1836                                    lR2
[ (d) SIAS is also required as a permissive to initiate containment spray. ]                                                8      2 Table 3.3-3                                                                                                                                          l Note (b) 3 3
Combustion Engineering STS                                  3.3.4-6                                              Rev. 5.0          1 St. Lucie - Unit 2                                                                                      Amendment XXX
 
CTS                                                                                                ESFAS Instrumentation (Analog)                        3 3.3.4 3
3 Table 3.3.4-1 (page 2 of 2)
Engineered Safety Features Actuation System Instrumentation SURVEILLANCE                  TRIP            ALLOWABLE              8      lR2 FUNCTION                        MODES        REQUIREMENTS                SETPOINT              VALUE                      l 3
567 psia
: 4. Main Steam Isolation Signal                                            3 c                    d                                                                            2 Table 3.3-3            a. Steam Generator Pressure - Low(e)      1,2(f),3(f)      SR  3.3.4.1              600 psia            [495] psig                  lR2 Function 4.b                                                                          SR 3.3.4.2(a)(b)                                                    8 l
SR  3.3.4.3                                                                l Function 4.c            b. Containment Pressure - High              1,2(d),3(d)      SR 3.3.4.4(a)(b)                                                            l SR  3.3.4.5 SR 3.3.3.1, SR 3.3.3.2,      3.5 psig              3.6 psig
: 5. Recirculation Actuation Signal                            SR 3.3.3.4, SR 3.3.3.5                                                    8 Table 3.3-3            a. Refueling Water Tank Level - Low          1,2,3        [SR 3.3.4.1]                                [ 24 inches and              2 Function 5.b                                                                                              5.67 feet above                                      lR2 SR 3.3.4.2(a)(b)                              30] inches        8 l
tank bottom SR 3.3.4.4(a)(b)                              above tank                  l SR  3.3.4.5                                      bottom 4.62 feet and  6.24 feet
: 6. Auxiliary Feedwater Actuation Signal (AFAS)
Table 3.3-3            a. Steam Generator A Level - Low            1,2,3          SR  3.3.4.1                                    [45.7] %                2 Function 7.c                                                                                                  19.0%                                            lR2 SR 3.3.4.2(a)(b)                                                    8 l
18 SR 3.3.4.4(a)(b)                                                            l SR  3.3.4.5 Table 3.3-3            b. Steam Generator B Level - Low            1,2,3          SR  3.3.4.1 19.0%
[45.7] %              2 8        lR2 Function 7.c                                                                        SR 3.3.4.2(a)(b)                                                            l SR 3.3.4.4(a)(b)                                    18 l
SR  3.3.4.5 Table 3.3-3            c. Steam Generator Pressure                  1,2,3          SR  3.3.4.1                                    [48.3] psid            2 Function 8.a                Difference - High (A > B) or (B > A)                    SR 3.3.4.2(a)(b)                                                            lR2 275 psid                                8 SR 3.3.4.4(a)(b)                            89.2 and  281                l Table 3.3-3 SR  3.3.4.5
: d. Feedwater Header Pressure Difference - High      1, 2, 3    SR 3.3.3.1, SR 3.3.3.2    150.0 psid      56.0 and  157.5 psid          1 lR2 Function 8.b                                                                                                                                            8 SR3.3.3.4, SR 3.3.3.5 (a)    If the as-found channel setpoint is outside its predefined as-found tolerance, then the channel shall be evaluated                          lR2 to verify that it is functioning as required before returning the channel to service.                                                        l (b)    The instrument channel setpoint shall be reset to a value that is within the as-left tolerance around the Limiting                          lR2 Trip Setpoint (LTSP) at the completion of the surveillance; otherwise, the channel shall be declared inoperable.                            l 8        l Setpoints more conservative than the LTSP are acceptable provided that the as-found and as-left tolerances l
apply to the actual setpoint implemented in the Surveillance procedures (Nominal Trip Setpoint) to confirm l
channel performance. The LTSP and the methodologies used to determine the as-found and as-left tolerances                                    l are specified in [insert the facility FSAR reference or the name of any document incorporated into the facility                              l FSAR by reference].                                                                                                                          l c                                                                                                                                            l Table 3.3-3  (e)    Steam Generator Pressure - Low may be manually bypassed when steam generator pressure is < [785] psia.                            8      2  l Note (c)          The bypass shall be automatically removed whenever steam generator pressure is  [785] psia.
d                                                                                                                      700 psia lR2 DOC L01    (f)    Only the Main Steam Isolation Signal (MSIS) Function and the Steam Generator Pressure - Low and                            8                l Containment Pressure - High signals are not required to be OPERABLE when all associated valves isolated by                        1 the MSIS Function are closed and [de-activated].                                                                                            lR2 2
3 3
Combustion Engineering STS                                    3.3.4-7                                                      Rev. 5.0          1 St. Lucie - Unit 2                                                                                                Amendment XXX
 
JUSTIFICATION FOR DEVIATIONS ITS 3.3.3, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
INSTRUMENTATION
: 1. Changes are made (additions, deletions, and/or changes) to the ISTS that reflect the plant specific nomenclature, number, reference, system description, analysis, licensing basis, or licensing basis description.
: 2. The ISTS contains bracketed information and/or values that are generic to all Combustion Engineering vintage plants. The brackets are removed, and the proper plant specific information/value is provided. This is acceptable since the information/value is changed to reflect the current licensing basis.
: 3. The heading for ISTS 3.3.4 includes the parenthetical expression (Analog). This identifying information is not included in the PSL ITS. This information is provided in the NUREG-1432, Rev. 5.0 to assist in identifying the appropriate Specifications to be used as a model for a plant-specific ITS conversion but serves no purpose in a lR2 plant-specific implementation. In addition, Reactor Protective System (RPS)            l Instrumentation - Shutdown (ISTS 3.3.2) is renumbered as ITS 3.3.12. Therefore,        l the Engineered Safety Features Actuation System (ESFAS) Instrumentation                l l
(ISTS 3.3.4) is renumbered as ITS 3.3.3 and subsequent Specifications renumbered        l accordingly.                                                                            l
: 4. Not used.                                                                                lR2
: 5. Condition B is added to ITS 3.3.3 (ISTS 3.3.4) to provide specific actions for one inoperable Containment Sump Recirculation Actuation Signal (RAS) trip unit or associated instrument. In addition, Condition C is also added to provide specific actions for one or more inoperable Auxiliary Feedwater Actuation Signal (AFAS) trip unit or associated instrument. A Note is added to proposed ITS 3.3.3 Condition C (Insert 1 to ISTS 3.3.4) stating that Required Action C.2.2.2 shall be completed when Condition C is entered. This Note constitutes an "unless otherwise stated" exception to LCO 3.0.2 to require the action to be completed within the associated Completion Time even when the LCO is no longer applicable. The added Note is similar to other Notes in the ISTS (e.g., Note to Condition A of ISTS 3.2.3 and the Note to Conditions A and C of ISTS 3.4.3.). These additional ITS ACTIONS are consistent with the PSL current licensing basis and consider the differing actions related to RAS, AFAS, and the remaining ESFAS functions based on whether instruments must be restored in 48 hours, may be optionally restored in accordance with the Risk Informed Completion Time Program, or channel restoration is extended to prior to entering MODE 3 following the next MODE 5 entry. Subsequent Conditions and Required Actions have been renumerated, as applicable, and Condition exceptions revised to reflect the additional ITS ACTIONS.
: 6. Unit 2 only: ISTS 3.3.4, Required Action B.2.2 is deleted and the Completion Time of Required Action B.2.1 (ITS 3.3.3, Required Action D.2) is modified in the Unit 2 ITS consistent with the PSL current licensing basis to allow the channel to be in trip or bypass until the next plant startup following entry into MODE 5 and similar to ISTS 3.3.5 (Digital), Required Action A.2. The Unit 2 ESFAS design includes independence of the four protection channels to ensure no single failure (e.g., circuit fault) can adversely affect more than one channel. As discussed in Section 7.2.4 of NUREG-0843, "Safety Evaluation Report - St. Lucie Unit 2," the NRC concluded that the ESFAS design enhancements were sufficient to ensure the independence of the St. Lucie Unit 1 and Unit 2              Page 1 of 2
 
JUSTIFICATION FOR DEVIATIONS ITS 3.3.3, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
INSTRUMENTATION four protection channels. Thus, the Unit 2 Technical Specifications allow a failed channel to be placed in long term trip or bypass condition provided the channel is restored no later than the next cold shutdown following the channel malfunction. A Note is added to ITS 3.3.3 Condition D (ISTS 3.3.4, Condition B) stating that Required Action D.2 shall be completed when Condition D is entered. This Note constitutes an "unless otherwise stated" exception to LCO 3.0.2 to require the action to be completed within the associated Completion Time even when the LCO is no longer applicable. The added Note is similar to other Notes in the ISTS (e.g., Note to Condition A of ISTS 3.2.3 and the Note to Conditions A and C of ISTS 3.4.3.).
lR2
: 7. Unit 2 only: ISTS 3.3.4, Required Action C.2 is not included Unit 2 ITS 3.3.3,              l ACTION F consistent with the PSL current licensing basis that allows one inoperable        l trip unit to be in trip and the other inoperable trip unit in bypass similar to ISTS 3.3.5 l l
(Digital), Required Action B.1. The Unit 2 ESFAS design includes independence of          l the four protection channels to ensure no single failure can adversely affect more        l l
than one channel. As discussed in Section 7.2.4 of NUREG-0843, "Safety                    l Evaluation Report - St. Lucie Unit 2," the NRC concluded that the ESFAS design            l enhancements were sufficient to ensure the independence of the four protection            l l
channels. Thus, the Unit 2 Technical Specifications allow two inoperable ESFAS            l Function channels or trip units (except for CSAS and AFAS) long term with one trip        l unit in bypass and the other trip unit in trip allowing the channels to be restored in    l l
accordance with ITS 3.3.3 Required Actions B or D, as applicable.                          l lR2
: 8. FPL is retaining PSL's Trip Setpoints in ITS. Changes are made to the ISTS that            l reflect the plant specific nomenclature, number, reference, system description,            l analysis, licensing basis, or licensing basis description associated with retaining        l l
PSL's Trip Setpoints.
St. Lucie Unit 1 and Unit 2                Page 2 of 2
 
Improved Standard Technical Specifications (ISTS) Bases Markup and Justification for Deviations (JFDs)
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 B 3.3 INSTRUMENTATION (Analog)                                                                              3 B 3.3.4 Engineered Safety Features Actuation System (ESFAS) Instrumentation (Analog)                        3 3
BASES BACKGROUND          The ESFAS initiates necessary safety systems, based upon the values of selected unit parameters, to protect against violating core design limits and the Reactor Coolant System (RCS) pressure boundary and to mitigate accidents. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the ESFAS, as well as LCOs on other reactor system parameters and equipment performance.
Technical Specifications are required by 10 CFR 50.36 to include LSSSs for variables that have significant safety functions. LSSS are defined by the regulation as "Where a LSSS is specified for a variable on which a safety limit has been placed, the setting must be chosen so that automatic protective actions will correct the abnormal situation before a Safety Limit (SL) is exceeded." The Analytical Limit is the limit of the process variable at which a safety action is initiated, as established by the safety analysis, to ensure that a SL is not exceeded. Any automatic protection action that occurs on reaching the Analytical Limit therefore ensures that the SL is not exceeded. However, in practice, the actual settings for automatic protection channels must be chosen to be more conservative than the Analytical Limit to account for instrument loop uncertainties related to the setting at which the automatic protective action would actually occur.
                    ---------------------------------REVIEWER'S NOTE-------------------------------------
The term "Limiting Trip Setpoint" [LTSP] is generic terminology for the calculated trip setting (setpoint) value calculated by means of the plant specific setpoint methodology documented in a document controlled under 10 CFR 50.59. The term [LTSP] indicates that no additional margin has been added between the Analytical Limit and the calculated trip setting.                                                                                10  lR2 "Nominal Trip Setpoint [NTSP]" is the suggested terminology for the actual setpoint implemented in the plant surveillance procedures where margin has been added to the calculated [LTSP]. The as-found and as-left tolerances will apply to the [NTSP] implemented in the Surveillance procedures to confirm channel performance.
3 3
Combustion Engineering STS                B 3.3.4-1                                Rev. 5.0              1 St. Lucie - Unit 1                                                                      Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES BACKGROUND (continued)
Licensees are to insert the name of the document(s) controlled under 10 CFR 50.59 that contain the methodology for calculating the as-left and as-found tolerances, in Note b of Table 3.3.4-1 for the phrase "[insert the name of a document controlled under 10 CFR 50.59 such as the Technical Requirements Manual or any document incorporated into the facility FSAR]" throughout these Bases.                                                                    lR2 10 Where the [LTSP] is not included in Table 3.3.4-1, the plant specific location for the [LTSP] or [NTSP] much be cited in Note b of Table 3.3.4-1. The brackets indicate plant specific terms may apply, as required and approved by the NRC.
Allowable Value                                                      3                              lR2 9    l The [Limiting Trip Setpoint (LTSP)] specified in Table 3.3.4-1 is a                                        l predetermined setting for a protection channel chosen to ensure automatic actuation prior to the process variable reaching the Analytical Limit and thus ensuring that the SL would not be exceeded. As such, the                                    lR2 field trip setpoint                                                                                                            9    l value specified in        [LTSP] accounts for uncertainties in setting the channel (e.g., calibration),                              l plant procedures uncertainties in how the channel might actually perform (e.g.,                                            l repeatability), changes in the point of action of the channel over time (e.g., drift during surveillance intervals), and any other factors which may influence its actual performance (e.g., harsh accident environments). In field trip setpoint                                                                                                            lR2 this manner, the [LTSP] ensures that SLs are not exceeded. As such, the                                9  l between calibration intervals
[LTSP] meets the definition of an LSSS (Ref. 1).                                                          l The Allowable Value                                                                                                                          l considers the maximum                                                                                                                          l allowable instrument drift            Technical Specifications contain values related to the OPERABILITY of                                      l between calibration              equipment required for safe operation of the facility. OPERABLE is                                  2    l intervals and thus, is the          defined in Technical Specifications as "...being capable of performing its                                l l
Trip Setpoint  safety function(s)." Relying solely on the [LTSP] to define OPERABILITY                                9  l in Technical Specifications would be an overly restrictive requirement if it were applied as an OPERABILITY limit for the "as-found" value of a protection channel setting during a Surveillance. This would result in Technical Specification compliance problems, as well as reports and corrective actions required by the rule which are not necessary to ensure safety. For example, an automatic protection channel with a setting that Trip Setpoint    has been found to be different from the [LTSP] due to some drift of the                              9    lR2 setting may still be OPERABLE because drift is to be expected. This expected drift would have been specifically accounted for in the setpoint field trip setpoint    methodology for calculating the [LTSP] and thus the automatic protective                              9    lR2 action would still have ensured that the SL would not be exceeded with the "as-found" setting of the protection channel. Therefore, the channel would still be OPERABLE because it would have performed its safety acceptance criteria band function and the only corrective action required would be to reset the channel within the established as-left tolerance around the [LTSP] to                                  9  lR2 field trip setpoint                                                                                                                l account for further drift during the next surveillance interval. Note that, 3
3 Combustion Engineering STS                                B 3.3.4-2                                              Rev. 5.0            1 St. Lucie - Unit 1                                                                                                Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES BACKGROUND (continued) acceptance criteria band although the channel is OPERABLE under these circumstances, the trip                        1 setpoint must be left adjusted to a value within the as-left tolerance, in            9          lR2 accordance with uncertainty assumptions stated in the referenced setpoint methodology (as-left criteria), and confirmed to be operating                9 lR2 within the statistical allowances of the uncertainty terms assigned (as-                          l l
found criteria).                                                                                  l However, there is also some point beyond which the channel may not be able to perform its function due to, for example, greater than expected drift. This value needs to be specified in the Technical Specifications in order to define OPERABILITY of the channels and is designated as the Allowable Value.
If the actual setting (as-found setpoint) of the channel is found to be acceptance criteria conservative with respect to the Allowable Value but is beyond the as-              9 lR2 found tolerance band, the channel is OPERABLE, but degraded. The                                  l degraded condition will be further evaluated during performance of the SR. This evaluation will consist of resetting the channel setpoint to the                        lR2 9          l
[Normal Trip Setpoint (NTSP)] (within the allowed tolerance), and                            2 evaluating the channel response. If the channel is functioning as required and is expected to pass the next surveillance, then the channel is OPERABLE and can be restored to service at the completion of the surveillance. After the surveillance is completed, the channel as-found condition will be entered into the Corrective Action Program for further evaluation.
During anticipated operational occurrences (AOOs), which are those events expected to occur one or more times during the plant life, the acceptable limits are:
The departure from nucleate boiling ratio (DNBR) shall be maintained above the SL value to prevent departure from nucleate boiling, Fuel centerline melting shall not occur, and The Reactor Coolant System (RCS) pressure SL of [2750] psia shall                      2 not be exceeded.
Maintaining the parameters within the above values ensures that the offsite dose will be within the 10 CFR 50 (Ref. 2) and 10 CFR 100 (Ref. 3)                  1    lR2 criteria during AOOs.                                            50.67 Accidents are events that are analyzed even though they are not expected to occur during the plant life. The acceptable limit during accidents is that the offsite dose shall be maintained within an acceptable fraction of 10 CFR 100 (Ref. 3) limits. Different accident categories allow              1        lR2 50.67                                                                            3 3
Combustion Engineering STS                      B 3.3.4-3                                Rev. 5.0                    1 St. Lucie - Unit 1                                                                            Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES BACKGROUND (continued) a different fraction of these limits based on probability of occurrence.
Meeting the acceptable dose limit for an accident category is considered having acceptable consequences for that event.
The ESFAS contains devices and circuitry that generate the following signals when the monitored variables reach levels that are indicative of conditions requiring protective action:
: 1. Safety Injection Actuation Signal (SIAS),
: 2. Containment Spray Actuation Signal (CSAS),
1
: 3. Containment Isolation Signal (CIAS),
: 4. Main Steam Isolation Signal (MSIS),
: 5. Recirculation Actuation Signal (RAS), and
: 6. Auxiliary Feedwater Actuation Signal (AFAS).
Equipment actuated by each of the above signals is identified in the FSAR (Ref. 4).                                                                          lR2 1    l U
                                                            , except AFAS,                                          l Each of the above ESFAS actuation systems is segmented into four sensor subsystems and two actuation subsystems. Each sensor subsystem includes measurement channels and bistables. The actuation 1
subsystems include two logic subsystems for sequentially loading the diesel generators.
Each of the four sensor subsystem channels monitors redundant and independent process measurement channels. Each sensor is monitored by at least one bistable. The bistable associated with each ESFAS Trip Setpoint                                                                                  9      lR2 Function will trip when the monitored variable exceeds the [LTSP]. When              2 tripped, the sensor subsystems provide outputs to the two actuation subsystems.
The two independent actuation subsystems compare the four sensor subsystem outputs. If a trip occurs in the same parameter in two or more sensor subsystem channels, the two-out-of-four logic in each actuation subsystem will initiate one train of ESFAS. Each train can provide protection to the public in the case of a Design Basis Event. Actuation Logic is addressed in LCO 3.3.5, "Engineered Safety Features Actuation 3
System (ESFAS) Logic and Manual Trip."
4      Actuation Each of the four sensor subsystems is mounted in a separate cabinet, excluding the sensors and field wiring.
3 3
Combustion Engineering STS                      B 3.3.4-4                                Rev. 5.0            1 St. Lucie - Unit 1                                                                          Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES BACKGROUND (continued)
The AFAS logic consists of four The role of the sensor subsystem (measurement channels and bistables)                        3        lR2 actuation channels each with            is discussed below; actuation subsystems are discussed in LCO 3.3.5.                                  l separate auxiliary feedwater                                                                                                4                  l 1
actuation signals generated for                                                                                                                l each steam generator (AFAS-1            Measurement Channels                                                                                  l and AFAS-2). For each AFAS-1                                                                                                                    l and AFAS-2 there are four                Measurement channels, consisting of field transmitters or process                                      l independent measurement                                                                                                                        l channels. Upon actuation of the          sensors and associated instrumentation, provide a measurable electronic                                l logic, the appropriate AFAS              signal based upon the physical characteristics of the parameter being                                  l actuation relay (AFAS-1 or AFAS-2                                                                                                              l de-energizes to control the measured.                                                                                              l individual AFAS component.                                                                                                                      l Four identical measurement channels with electrical and physical separation are provided for each parameter used in the generation of trip signals. These are designated Channels A through D. Measurement channels provide input to ESFAS bistables within the same ESFAS channel. In addition, some measurement channels may also be used as inputs to Reactor Protective System (RPS) bistables, and most provide                            1 indication in the control room. Measurement channels used as an input to the RPS or ESFAS are not used for control Functions.
When a channel monitoring a parameter indicates an unsafe condition, the bistable monitoring the parameter in that channel will trip. Tripping two or more channels of bistables monitoring the same parameter will de-energize both channels of Actuation Logic of the associated Engineered Safety Features (ESF) equipment.
Three of the four measurement and bistable channels are necessary to meet the redundancy and testability of GDC 21 in Appendix A to 10 CFR 50 (Ref. 2). The fourth channel provides additional flexibility by allowing one channel to be removed from service (trip channel bypass) for maintenance or testing while still maintaining a minimum two-out-of-three logic. The single failure criterion is met during this condition.
1    lR2 Full advantage of the four-l channel design cannot be taken      In order to take full advantage of the four channel design, adequate                                  l for the following reasons:
Separation is not maintained channel to channel independence must be demonstrated, and approved                                    l throughout channel cable        by the NRC staff. Plants not currently licensed to credit four channel                                l l
routing.                        independence that may desire this capability must have approval of the                                l Independence of the four measurement channel power        NRC staff documented by an NRC Safety Evaluation Report (Ref. 5).                                      l 1      l supplies is not absolute since  Adequate channel to channel independence includes physical and                                        l there are only two safety        electrical independence of each channel from the others. Furthermore,                                  l related batteries.
The CSAS and RAS channels        each channel must be energized from separate inverters and station                                    l l
are designed to fail in the non- batteries. Plants not demonstrating four channel independence may                                      l tripped condition on loss of    operate in a two-out-of-three logic configuration for 48 hours.                                        l power which coincident with a l
single failure would disable l
two channels.                    Since no single failure will either cause or prevent a protective system                              l actuation and no protective channel feeds a control channel, this                    5                lR2 arrangement meets the requirements of IEEE Standard 79-1971 (Ref. 6).                        1        l 279 3
3 Combustion Engineering STS                    B 3.3.4-5                                              Rev. 5.0            1 St. Lucie - Unit 1                                                                                      Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES BACKGROUND (continued)
Bistable Trip Units Bistable trip units receive an analog input from the measurement channels, compare the analog input to trip setpoints, and provide contact output to the Actuation Logic. They also provide local trip indication and remote annunciation.
There are four channels of bistables, designated A through D, for each ESF Function, one for each measurement channel. In cases where two ESF Functions share the same input and trip setpoint (e.g., containment pressure input to CSAS, CIAS, and SIAS and a Pressurizer Pressure -                        7    lR2 Low input to the RPS and SIAS), the same bistable may be used to satisfy both Functions.
The trip setpoints and Allowable Values used in the bistables are based                          lR2 6
on the analytical limits stated in Reference 7. The selection of these trip                      l setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account. To allow for calibration tolerances, instrumentation uncertainties, instrument drift, and severe environment effects, for those ESFAS channels that must function                          lR2 7
in harsh environments as defined by 10 CFR 50.49 (Ref. 8), Allowable                            l Values specified in Table 3.3.4-1, in the accompanying LCO, are                              3 3
conservatively adjusted with respect to the analytical limits. A detailed 8
description of the method used to calculate the trip setpoints, including lR2 their explicit uncertainties, is provided in the "Plant Protection System                    1 l
IC-3.17, FPL Setpoint Standard      Selection of Trip Setpoint Values" (Ref. 9). The actual trip setpoint entered into the bistable is normally still more conservative than that specified by the Allowable Value to account for changes in random measurement errors detectable by a CHANNEL FUNCTIONAL TEST.
One example of such a change in measurement error is drift during the interval between surveillances.
AV                                            lR2 field trip setpoint                                                                                                  l The [LTSP] is the value at which the bistable is set and is the expected                    2 9
value to be achieved during calibration. The [LTSP] value is the LSSS and ensures the safety analysis limits are met for the surveillance interval selected when a channel is adjusted based on stated channel uncertainties.
acceptance criteria bands Trip Setpoints                                                                                                1 lR2
[LTSPs], in conjunction with the use of as-found and as-left tolerances, 9            2        l consistent with the requirements of the Allowable Value will ensure that Safety Limits of Chapter 2.0, "SAFETY LIMITS (SLs)," are not violated during AOOs and that the consequences of Design Basis Accidents (DBAs) will be acceptable, providing the plant is operated from within the LCOs at the onset of the AOO or DBA and the equipment functions as designed.
3 3
Combustion Engineering STS                          B 3.3.4-6                                      Rev. 5.0              1 St. Lucie - Unit 1                                                                                  Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES BACKGROUND (continued) 3                              3 Note that in the accompanying LCO 3.3.4, the Allowable Values of the            3 Table 3.3.4-1 are the least conservative value of the as-found setpoint that a channel can have during a periodic CHANNEL CALIBRATION or CHANNEL FUNCTIONAL TEST.
ESFAS Logic It is possible to change the two-out-of-four ESFAS logic to a two-out-of-three logic for a given input parameter in one channel at a time by 1
bypassing  disabling one channel input to the logic. Thus, the bistables will function normally, producing normal trip indication and annunciation, but ESFAS              lR2 l
One channel of a given              actuation will not occur since the bypassed channel is effectively removed          l measured parameter may be bypassed using a keylock            from the coincidence logic. Trip channel bypassing can be                            l switch. Only one key is              simultaneously performed on any number of parameters in any number of                l available for each measured                                                                                        1    l parameter that provides input to channels, providing each parameter is bypassed in only one channel at a              l an ESFAS function. Multiple          time. At some plants an interlock prevents simultaneous trip channel                l l
measured parameters for an          bypassing of the same parameter in more than one channel. Trip                      l ESFAS function may be bypassed; restricted by the one channel bypassing is normally employed during maintenance or testing.                l key per parameter limit.                                                          4                                      l 3  l ESFAS Logic is addressed in LCO 3.3.5.
APPLICABLE                  Each of the analyzed accidents can be detected by one or more ESFAS SAFETY                      Functions. One of the ESFAS Functions is the primary actuation signal ANALYSES                    for that accident. An ESFAS Function may be the primary actuation signal for more than one type of accident. An ESFAS Function may also be a secondary, or backup, actuation signal for one or more other Certain ESFAS functions may be        accidents. Functions such as Manual Initiation, not specifically credited in        lR2 blocked to prevent unnecessary        the accident analysis, serve as backups to Functions and are part of the            l actuation during plant startup and                                                                                        l shutdown that are not explicitly NRC approved licensing basis for the plant.                                          l modeled in the Safety Analyses. A                                                                                          l safety injection block is provided    Permissive and interlock setpoints allow the blocking of trips during plant          l to enable depressurization of the                                                                                          l RCS without initiation of ECCS.      startups, and restoration of trips when the permissive conditions are not            l Similarly, an MSIS block is          satisfied, but they are not explicitly modeled in the Safety Analyses.              l provided to allow depressurization    These permissives and interlocks ensure that the starting conditions are            l without the unnecessary closure of                                                                                  1    l the main steam and feedwater          consistent with the safety analysis, before preventive or mitigating actions        l isolation valves. The block circuits  occur. Because these permissives or interlocks are only one of multiple blocks      l meet single failure criteria, require                                                                                      l manual action to initiate, and the conservative starting assumptions for the accident analysis, they are                l blocks are automatically removed      generally considered as nominal values without regard to measurement                l when pressure exceeds the block      accuracy.                                                                            l permissive setpoint. An SIAS                                                                                              l permissive is used to preclude                                                                                            l unwarranted spurious actuation of    ESFAS protective Functions are as follows:                                          l containment spray.                                                                                                        l 3
3 Combustion Engineering STS                      B 3.3.4-7                                Rev. 5.0          1 St. Lucie - Unit 1                                                                        Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES APPLICABLE SAFETY ANALYSES (continued)
: 1. Safety Injection Actuation Signal The SIAS ensures acceptable consequences during loss of coolant accident (LOCA) events, including steam generator tube rupture, and main steam line breaks (MSLBs) or feedwater line breaks (FWLBs)
(inside containment). To provide the required protection, either a high containment pressure or a low pressurizer pressure signal will initiate SIAS. SIAS initiates the Emergency Core Cooling Systems (ECCS), control room isolation, and several other Functions, such as starting the emergency diesel generators.
: 2. Containment Spray Actuation Signal The CSAS initiates containment spray, preventing containment overpressurization during a LOCA or MSLB. At some plants, both a high- high containment pressure signal and an SIAS have to actuate to                              1 provide the required protection. This configuration reduces the likelihood of inadvertent containment spray.
: 3. Containment Isolation Signal                                                                  1 The CIS actuates the Containment Isolation System, ensuring acceptable consequences during LOCAs and MSLBs or FWLBs (inside containment). To provide protection, a high containment pressure signal will initiate CIS at the same setpoint at which an SIAS 1
is generated.          A high containment radiation signal will also initiate CIS.
: 4. Main Steam Isolation Signal The MSIS ensures acceptable consequences during an MSLB or FWLB by isolating both steam generators if either generator indicates a low steam generator pressure. The MSIS, concurrent with or following a reactor trip, minimizes the rate of heat extraction and subsequent cooldown of the RCS during these events.
1
: 5. Recirculation Actuation Signal At the end of the injection phase of a LOCA, the refueling water tank (RWT) will be nearly empty. Continued cooling must be provided by the ECCS to remove decay heat. The source of water for the ECCS pumps is automatically switched to the containment recirculation sump. Switchover from RWT to the containment sump must occur before the RWT empties to prevent damage to the ECCS pumps and 3
3 Combustion Engineering STS              B 3.3.4-8                                              Rev. 5.0              1 St. Lucie - Unit 1                                                                                  Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES APPLICABLE SAFETY ANALYSES (continued) a loss of core cooling capability. For similar reasons, switchover must not occur before there is sufficient water in the containment sump to support pump suction. Furthermore, early switchover must not occur to ensure sufficient borated water is injected from the RWT to ensure the reactor remains shut down in the recirculation mode.
An RWT Level - Low signal initiates the RAS.
: 6. Auxiliary Feedwater Actuation Signal        the affected An AFAS initiates feedwater flow to both steam generators if a low 1
level is indicated in either steam generator, unless the generator is ruptured.                                                                        lR2 the affected The AFAS maintains a steam generator heat sink during the following events:
MSLB, FWLB, Inadvertent opening of a steam generator atmospheric dump valve, and Loss of feedwater.
A low steam generator water level signal will initiate auxiliary feed to the affected steam generator.
or feedwater (FW) header                                                                                                    lR2 differential pressure (FW-A > FW-B)                                                                                        l or (FW-B > FW-A)                          Secondary steam generator (SG) differential pressure (SG-A > SG-B)          1 l
or (SG-B > SG-A) inhibits auxiliary feed to a generator identified as            l l
being ruptured. This input to the AFAS logic prevents loss of the                l This input to the Auxiliary Feedwater      intact generator while preventing feeding a ruptured generator during      1 l
l Isolation Function also prevents          MSLBs and FWLBs. This prevents containment overpressurization                    l feeding a ruptured feedwater line.        during these events.                                                              l The ESFAS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO                          The LCO requires all channel components necessary to provide an ESFAS actuation to be OPERABLE. Failure of any required portion of the instrument channel renders the affected channel(s) inoperable and reduces the reliability of the affected Functions. The specific criteria for determining channel OPERABILITY differ slightly between Functions.
These criteria are discussed on a Function by Function basis below.
3 3
Combustion Engineering STS                        B 3.3.4-9                                Rev. 5.0          1 St. Lucie - Unit 1                                                                          Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES LCO (continued)
Actions allow maintenance (trip channel) bypass of individual channels, but the bypass activates interlocks that prevent operation with a second                1 channel in the same Function bypassed. Plants are restricted to 48 hours in a trip channel bypass condition before either restoring the Function to four channel operation (two-out-of-four logic) or placing the channel in trip Although, one channel of the AFAS                                                                                                        lR2 is allowed to remain bypassed for (one-out-of-three logic). At plants where adequate channel to channel l
an extended period under the              independence has been demonstrated, specific exceptions may be                          1    l condition that both actuation relays      approved by the NRC staff to permit one of the two-out-of-four channels                        l within the associated channel are                                                                                                        l placed in bypass.                        to be bypassed for an extended period of time.                                                l 3      acceptance criteria bands Allowable Values for ESFAS Instrumentation (Analog) Functions are                              lR2 l
specified in Table 3.3.4-1. [LTSPs] and the methodologies for calculation                      l of the as-left and as-found tolerances are described in [insert the name of                    l Section 7.3 of the Updated                                                                                                    l Final Safety Analysis Report    a document controlled under 10 CFR 50.59 such as the Technical                        9  1  l (Ref. 4).                      Requirements Manual or any document incorporated into the facility                            l 3  2 field trip setpoints FSAR]. The [LTSPs] are selected to ensure that the actual setpoints                            l l
remain conservative with respect to the as-found tolerance band between                        l adjusted consistent with the Trip  successive CHANNEL CALIBRATIONS. After each calibration the trip                              l Setpoint value setpoint shall be left within the as-left band around the [LTSP].                              l acceptance criteria The Bases for the LCO on ESFAS Functions are:
: 1. Safety Injection Actuation Signal
: a. Containment Pressure - High This LCO requires four channels of SIAS Containment Pressure
                                                    - High to be OPERABLE in MODES 1, 2, and 3.
The Allowable Value for this trip is set high enough to allow for small pressure increases in containment expected during normal operation (i.e., plant heatup) and is not indicative of an offnormal condition. The setting is low enough to initiate the ESF Functions when an offnormal condition is indicated. This allows the ESF systems to perform as expected in the accident analyses to mitigate the consequences of the analyzed accidents.
: b. Pressurizer Pressure - Low This LCO requires four channels of SIAS Pressurizer Pressure -
Low to be OPERABLE in MODES 1, 2, and 3.
3 3
Combustion Engineering STS                          B 3.3.4-10                                    Rev. 5.0              1 St. Lucie - Unit 1                                                                                  Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES LCO (continued)
The Allowable Value for this trip is set low enough to prevent actuating the SIAS during normal plant operation and pressurizer pressure transients. The setting is high enough that with a LOCA or MSLB it will actuate to perform as expected, mitigating the consequences of the accidents.
The Pressurizer Pressure - Low trip may be blocked when pressurizer pressure is reduced during controlled plant shutdowns. This block is permitted below 1800 psia, and block          1 1725 permissive responses are annunciated in the control room. This allows for a controlled depressurization of the RCS, while maintaining administrative control of ESF protection. From a blocked condition, the block will be automatically removed as 1725 pressurizer pressure increases above 1800 psia, as sensed by lR2 two of the four sensor subsystems, in accordance with the                    l bypass philosophy of removing bypasses when the enabling                      l conditions are no longer satisfied.                                          l This LCO requires four channels of the bypass permissive removal for SIAS Pressurizer Pressure - Low to be OPERABLE in MODES 1, 2, and 3.
The bypass permissive channels consist of four sensor subsystems and two actuation subsystems. This LCO applies to failures in the four sensor subsystems, including sensors, bistables, and associated equipment. Failures in the actuation subsystems, including the manual bypass key switches, are considered Actuation Logic failures and are addressed in 3
LCO 3.3.5. 4 This LCO applies to the bypass removal feature only. If the bypass enable Function is failed so as to prevent entering a bypass condition, operation may continue.
The block permissive is set low enough so as not to be enabled during normal plant operation, but high enough to allow blocking prior to reaching the trip setpoint.
: 2. Containment Spray Actuation Signal CSAS is initiated either manually or automatically. At many plants, it      1 is also necessary to have an automatic or manual SIAS for complete actuation. The SIAS opens the containment spray valves, whereas 1
the CSAS actuates other required components. The SIAS requirement should always be satisfied on a legitimate CSAS, since 3
3 Combustion Engineering STS              B 3.3.4-11                              Rev. 5.0          1 St. Lucie - Unit 1                                                                  Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES LCO (continued) lower than the Containment the Containment Pressure - High signal setpoint used in the SIAS is Pressure - High-High signal      the same setpoint used in the CSAS. At many plants, the transmitters used to initiate CSAS are independent of those used in            1 The parameters used for CSAS (Containment          the SIAS to prevent inadvertent containment spray due to failures in Pressure High-High and SIAS) give direct indication of a LOCA. The time to actuate two sensor channels.
CSAS depends on the break size. The 1
Containment Pressure High-High set point is        a. Containment Pressure - High      -High the controlling parameter since for all break sizes it takes longer to reach this set point than the SIAS set point.                                    This LCO requires four channels of CSAS Containment Pressure
                                                        - High to be OPERABLE in MODES 1, 2, and 3.
                                                            -High                                                                1 The Allowable Value is set high enough to allow for small pressure increases in containment expected during normal operation (i.e., plant heatup) and is not indicative of an offnormal condition. The setting is low enough to initiate the ESF Functions when an offnormal condition is indicated. This allows the ESF systems to perform as expected in the accident analyses to mitigate the consequences of the analyzed accidents.
The Containment Pressure - High setpoint is the same in the SIAS (Function 1), CSAS (Function 2), and CIAS (Function 3).            1 However, different sensors and logic are used in each of these Functions.
: 3. Containment Isolation Actuation Signal                                      1
: a. Containment Pressure - High This LCO requires four channels of CIAS Containment Pressure            1
                                                        - High to be OPERABLE in MODES 1, 2, and 3.
The Allowable Value is set high enough to allow for small pressure increases in containment expected during normal operation (i.e., plant heatup) and is not indicative of an offnormal condition. The setting is low enough to initiate the ESF Functions when an offnormal condition is indicated. This allows the ESF systems to perform as expected in the accident analyses to mitigate the consequences of the analyzed accidents.
The Containment Pressure - High setpoint is the same in the SIAS (Function 1), CSAS (Function 2), and CIAS (Function 3).            1 However, different sensors and logic are used in each of these Functions.                              is 3
3 Combustion Engineering STS                        B 3.3.4-12                                Rev. 5.0          1 St. Lucie - Unit 1                                                                            Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES LCO (continued)
: b. Containment Radiation - High This LCO requires four channels of CIAS Containment Radiation          1
                            - High to be OPERABLE in MODES 1, 2, and 3.
The Allowable Value is high enough to avoid unnecessary actuation, but adequate to provide diverse actuation of the CIAS        1 in the event of a LOCA.
: 4. Main Steam Isolation Signal The MSIS is required to be OPERABLE in MODES 1, 2, and 3 except when all associated valves are closed.                              5      lR2
: a. Steam Generator Pressure - Low This LCO requires four channels of MSIS Steam Generator Pressure - Low for each steam generator to be OPERABLE in MODES 1, 2, and 3.
The Allowable Value is set below the full load operating value for steam pressure so as not to interfere with normal plant operation. However, the setting is high enough to provide the required protection for excessive steam demand. An excessive steam demand causes the RCS to cool down, resulting in a positive reactivity addition to the core. An MSIS is required to prevent the excessive cooldown.
This Function may be manually blocked when steam generator pressure is reduced during controlled plant cooldowns. The 685      block is permitted below 785 psig, and block permissive              1 lR2 responses are annunciated in the control room. This allows a controlled depressurization of the secondary system, while maintaining administrative control of ESF protection. From a blocked condition, the block will be removed automatically as 685    steam generator pressure increases above 785 psig, as sensed          1        lR2 by two of the four sensor subsystems, in accordance with the bypass philosophy of removing bypasses when the enabling              1 conditions are no longer satisfied.
This LCO requires four channels per steam generator of the bypass removal for MSIS Steam Generator Pressure - Low to be OPERABLE in MODES 1, 2, and 3.
3 3
Combustion Engineering STS            B 3.3.4-13                                Rev. 5.0            1 St. Lucie - Unit 1                                                                Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES LCO (continued)
The bypass removal channels consist of four sensor subsystems and two actuation subsystems. This LCO applies to failures in the four sensor subsystems, including sensors, bistables, and associated equipment. Failures in the actuation subsystems, including the manual bypass key switches, are considered Actuation Logic failures and are addressed in LCO 3.3.5. 4                3 This LCO applies to the bypass removal feature only. If the bypass enable Function is failed so as to prevent entering a bypass condition, operation may continue.
The block permissive is set low enough so as not to be enabled during normal plant operation, but high enough to allow blocking prior to reaching the trip setpoint.
: 5. Recirculation Actuation Signal
: a. Refueling Water Tank Level - Low This LCO requires four channels of RWT Level - Low to be OPERABLE in MODES 1, 2, and 3.
The upper limit on the Allowable Value for this trip is set low enough to ensure RAS does not initiate before sufficient water is transferred to the containment sump. Premature recirculation could impair the reactivity control Function of safety injection by limiting the amount of boron injection. Premature recirculation could also damage or disable the recirculation system if recirculation begins before the sump has enough water to prevent air containment in the suction. The lower limit on the          1 RWT Level - Low trip Allowable Value is high enough to transfer suction to the containment sump prior to emptying the RWT.
entrainment
: 6. Auxiliary Feedwater Actuation Signal The AFAS logic actuates auxiliary feedwater (AFW) to a steam generator on low level in that generator unless it has been identified as being ruptured.                                                                lR2 the steam          each steam                              l 1
A low level in either generator, as sensed by a two-out-of-four coincidence of four wide range sensors for any generator, will generate an AFAS start signal, which starts both trains of AFW              1 the affected 3
3 Combustion Engineering STS            B 3.3.4-14                                Rev. 5.0          1 St. Lucie - Unit 1                                                                Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES
                                                                                  , and the feedwater header differential LCO (continued)                                                                pressure in both feedwater headers,        1 the affected pumps and feeds both steam generators. The AFAS also monitors                          1 one steam generator is lower than    the secondary differential pressure in both steam generators and the other steam generator, or the    initiates an AFAS block signal to a ruptured generator, if the pressure                      lR2 pressure in one feedwater header                                                                                              1 is lower than the other feedwater    in that generator is lower than that in the other generator by the header,                              differential pressure setpoint.
: a. Steam Generator A/B Level - Low This LCO requires four channels for each steam generator of Steam Generator Level - Low to be OPERABLE in MODES 1, 2, and 3.
The Allowable Value ensures adequate time exists to initiate AFW while the steam generators can function as a heat sink.
: b. Steam Generator Pressure Difference - High (SG-A > SG-B) or (SG-B > SG-A)
This LCO requires four channels per steam generator of Steam Generator Pressure Difference - High to be OPERABLE in MODES 1, 2, and 3.
The Allowable Value for this trip is high enough to allow for small pressure differences and normal instrumentation errors between the steam generator channels during normal operation without an actuation. The setting is low enough to detect and inhibit feeding of a ruptured steam generator in the event of an MSLB                          lR2 or FWLB, while permitting the feeding of the intact steam generator.
INSERT 1 1
The ESFAS channels satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
APPLICABILITY                All ESFAS Functions are required to be OPERABLE in MODES 1, 2, and 3. In MODES 1, 2, and 3 there is sufficient energy in the primary and secondary systems to warrant automatic ESF System responses to:
Close the main steam isolation valves to preclude a positive reactivity addition, Actuate AFW to preclude the loss of the steam generators as a heat sink (in the event the normal feedwater system is not available),
Actuate ESF systems to prevent or limit the release of fission product radioactivity to the environment by isolating containment and limiting the containment pressure from exceeding the containment design pressure during a design basis LOCA or MSLB, and 3
3 Combustion Engineering STS                      B 3.3.4-15                                      Rev. 5.0              1 St. Lucie - Unit 1                                                                                  Revision XXX
 
ESFAS Instrumentation 3.3.3 1
INSERT 1
: b. Feedwater Header Pressure Difference - High (FW-A > FW-B) or (FW-B > FW-A)
This LCO requires four channels per feedwater subsystem of Feedwater Header Pressure Difference - High to be OPERABLE in MODES 1, 2, and 3.
The Allowable Value for this trip is high enough to allow for small pressure differences and normal instrumentation errors between the feedwater header channels during normal operation without an actuation. The setting is low enough to detect and inhibit feeding of a ruptured steam generator in the event of an MSLB        lR2 or FWLB, while permitting the feeding of the intact steam generator.
Insert Page B 3.3.3-15
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES APPLICABILITY (continued)
Actuate ESF systems to ensure sufficient borated inventory to permit adequate core cooling and reactivity control during a design basis LOCA or MSLB accident.
4 In MODES 4, 5, and 6, automatic actuation of ESFAS Functions is not required because adequate time is available for plant operators to evaluate plant conditions and respond by manually operating the ESF 4 3
components, if required, as addressed by LCO 3.3.5. In LCO 3.3.5, manual capability is required for Functions other than AFAS in MODE 4, even though automatic actuation is not required. Because of the large number of components actuated on each ESFAS, actuation is simplified by the use of the Manual Trip push buttons. Manual Trip of AFAS is not                  1 required in MODE 4 because AFW or shutdown cooling will already be in operation in this MODE.        Actuation                    Actuation The ESFAS Actuation Logic must be OPERABLE in the same MODES as the automatic and Manual Trip. In MODE 4, only the portion of the 1
ESFAS logic responsible for the required Manual Trip must be OPERABLE.                      Actuation              Actuation In MODES 5 and 6, ESFAS initiated systems are either reconfigured or disabled for shutdown cooling operation. Accidents in these MODES are slow to develop and would be mitigated by manual operation of individual components.
ACTIONS            The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by the plant specific setpoint analysis.
Typically, the drift is small and results in a delay of actuation rather than a total loss of function. Determination of setpoint drift is generally made during the performance of a CHANNEL FUNCTIONAL TEST when the process instrument is set up for adjustment to bring it to within specification. If the actual trip setpoint is nonconservative with respect to the Allowable Value in Table 3.3.4-1, the channel is inoperable and the                3 appropriate Condition(s) are entered. 3 3
In the event a channel's trip setpoint is found nonconservative with 3
respect to the Allowable Value in Table 3.3.4-1, or the channel is not functioning as required, or the sensor, instrument loop, signal processing electronics, or ESFAS bistable is found inoperable, then all affected Functions provided by that channel must be declared inoperable and the plant must enter the Condition statement for the particular protection Function affected.
3 3
Combustion Engineering STS            B 3.3.4-16                                    Rev. 5.0            1 St. Lucie - Unit 1                                                                        Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES ACTIONS (continued)
When the number of inoperable channels in a trip Function exceeds those specified in any related Condition associated with the same trip Function, then the plant is outside the safety analysis. Therefore, LCO 3.0.3 should be immediately entered if applicable in the current MODE of operation.
A Note has been added to clarify the application of the Completion Time rules. The Conditions of this Specification may be entered independently for each Function in Table 3.3.4-1. Completion Times for the inoperable            3 channel of a Function will be tracked separately.
3 INSERT A          [ A.1                                                                                2 Condition A applies to one CSAS Containment Pressure - High channel INSERT B            inoperable. CSAS logic is identical to that of the other ESFAS Functions; however, the inadvertent actuation of a CSAS is undesirable, since it may            1 INSERT C            damage equipment inside containment. For this reason, placing the inoperable channel in trip is not an option as it is in Conditions B and C. ]
[ For those plants in which the SIAS is required for a complete CSAS actuation, Condition B for one ESFAS channel inoperable and Condition C for two ESFAS channels inoperable may be preferable to Condition A.
If one CSAS channel is inoperable, operation is allowed to continue, providing the inoperable channel is placed in bypass within 1 hour. The Completion Time of 1 hour allotted to bypass the channel is sufficient to allow the operator to take all appropriate actions for the failed channel and still ensures that the risk involved in operating with the failed channel is acceptable. ]
D    D          D B.1, B.2.1, and B.2.2                                                            3 D
Condition B applies to the failure of a single channel of one or more input      3 parameters in the following ESFAS Functions:
: 1. Safety Injection Actuation Signal Containment Pressure - High
: 2. Containment Spray Actuation Signal      Pressurizer Pressure - Low Containment Pressure - High-High                                                                                    1
: 3. Containment Isolation Actuation Signal Containment Pressure - High Containment Radiation - High 3
3 Combustion Engineering STS                    B 3.3.4-17                                  Rev. 5.0          1 St. Lucie - Unit 1                                                                            Revision XXX
 
ESFAS Instrumentation 3.3.3 1
INSERT A A.1, A.2.1, and A.2.2 Condition A applies to the failure of a single channel of one or more input parameters in the        lR2 Containment Spray Actuation Signal (CSAS) ESFAS Function.
CSAS coincidence logic is normally two-out-of-four. If one CSAS channel is inoperable, startup or power operation is allowed to continue as long as action is taken to restore the design level of redundancy.
If one CSAS channel is inoperable, startup or power operation is allowed to continue, providing the inoperable channel is placed in bypass or trip within 1 hour (Required Action A.1). With one channel in bypass, no additional random failure of a single channel could spuriously cause an actuation and a valid trip signal can still cause an actuation. With one channel in trip, an additional random failure of a single channel could spuriously cause an actuation. Therefore, it is preferable to place an inoperable channel in bypass rather than trip.
The Completion Time of 1 hour allotted to bypass or trip the channel is sufficient to allow the operator to take all appropriate actions for the failed channel and still ensures that the risk involved in operating with the failed channel is acceptable.
One failed channel is restored to OPERABLE status or is placed in trip within 48 hours (Required Action A.2.1 or A.2.2). Required Action A.2.1 restores the full capability of the function. Required Action A.2.2 places the function in a one-out-of-three configuration. In this configuration, a common cause failure of the operable channels cannot prevent ESFAS                  lR2 actuation. The 48 hour Completion Time is based upon operating experience, which has demonstrated that a random failure of a second channel occurring during the 48 hour period is a low probability event.
Insert Page B 3.3.3-17
 
ESFAS Instrumentation 3.3.3 1
INSERT B B.1 and B.2 Condition B applies to the failure of a single channel of one or more input parameters in the Containment Sump Recirculation Actuation Signal (RAS) ESFAS Function.
ESFAS coincidence logic is normally two-out-of-four. If one ESFAS channel is inoperable, startup or power operation is allowed to continue as long as action is taken to restore the design level of redundancy.
If one ESFAS channel is inoperable, startup or power operation is allowed to continue, providing the inoperable channel is placed in bypass or trip within 1 hour (Required Action B.1). With one channel in bypass, no additional random failure of a single channel could spuriously cause an actuation and a valid trip signal can still cause an actuation. With one channel in trip, an additional random failure of a single channel could spuriously cause an actuation. Therefore, it is preferable to place an inoperable channel in bypass rather than trip.
The Completion Time of 1 hour allotted to bypass or trip the channel is sufficient to allow the operator to take all appropriate actions for the failed channel and still ensures that the risk involved in operating with the failed channel is acceptable.
The failed channel is restored to OPERABLE status within 48 hours (Required Action B.2).
Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program (Required Action B.2). The 48 hour Completion Time is based upon operating experience, which has demonstrated that a random failure of a second channel occurring during the 48 hour period is a low probability event.
Insert B Page 3.3.3-17
 
ESFAS Instrumentation 3.3.3 1
INSERT C C.1, C.2.1, C.2.2.1, C.2.2.2 Condition C applies to the failure of a single channel of one or more input parameters in the Auxiliary Feedwater Actuation Signal (AFAS) ESFAS Function.
AFAS coincidence logic is normally two-out-of-four. If one AFAS channel is inoperable, startup or power operation is allowed to continue as long as action is taken to restore the design level of redundancy.
If one AFAS channel is inoperable, startup or power operation is allowed to continue, providing the inoperable channel is placed in bypass or trip within 1 hour (Required Action C.1). With one channel in bypass, no additional random failure of a single channel could spuriously cause an actuation and a valid trip signal can still cause an actuation. With one channel in trip, an additional random failure of a single channel could spuriously cause an actuation. Therefore, it is preferable to place an inoperable channel in bypass rather than trip.
The Completion Time of 1 hour allotted to bypass or trip the channel is sufficient to allow the operator to take all appropriate actions for the failed channel and still ensures that the risk involved in operating with the failed channel is acceptable.
One failed channel is restored to OPERABLE status or is placed in bypass within 48 hours (Required Action C.2.1 or C.2.2.1). Required Action C.2.1 restores the full capability of the        lR1 function. If the inoperable channel cannot be restored to OPERABLE status within 48 hours            l  lR2 l
then both actuation relays (AFAS-1 and AFAS-2) in the inoperable channel must be placed in                l bypass. Required Action C.2.2.1 places the function in a two-out-of-three configuration by                l placing AFAS-1 and AFAS-2 in bypass. In this configuration, a single failure with one channel in          l l
indefinite trip will not result in actuation of the Auxiliary Feedwater System pumping water into a      l ruptured feedwater header. The 48 hour Completion Time is based upon operating experience,                l which has demonstrated that a random failure of a second channel occurring during the 48 hour period is a low probability event.
Additionally, the failed channel must be restored to OPERABLE status prior to entering MODE 3 following the next MODE 5 entry. The Completion Time of Required Action C.2.2.2 is based on a single failure evaluation, which allows a two-out-of-three channel operation since no single            lR2 failure will cause or prevent an actuation. However, it is expected that the inoperable channel          l will be restored to OPERABLE status at the first reasonable opportunity. The determination of the first reasonable opportunity should include consideration of the impact on plant risk (from delaying restoration of the channel as well as any plant configuration changes required or shutting the plant down to repair the channel) and impact on any analysis assumptions, in addition to unit conditions, planning, availability of personnel, and the time required to repair the channel. This risk impact should be managed through the program in place to implement 10 CFR 50.65(a)(4) and NRC Regulatory Guide 1.160, "Monitoring the Effectiveness of Maintenance at Nuclear Power Plants."
Condition C is modified by a Note requiring Required Action C.2.2.2 to be completed whenever the Condition is entered even when the LCO is no longer applicable to ensure the channel is restored to OPERABLE prior to the next reactor startup from MODE 5 conditions.
Insert Page B 3.3.3-17
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES ACTIONS (continued)
: 4. Main Steam Isolation Signal Steam Generator Pressure - Low
: 5. Recirculation Actuation Signal                                              1 Refueling Water Tank Level - Low
: 6. Auxiliary Feedwater Actuation Signal 1
Steam Generator Level - Low Steam Generator Pressure Difference - High ESFAS coincidence logic is normally two-out-of-four. If one ESFAS channel is inoperable, startup or power operation is allowed to continue as long as action is taken to restore the design level of redundancy.
D If one ESFAS channel is inoperable, startup or power operation is allowed to continue, providing the inoperable channel is placed in bypass or trip within 1 hour (Required Action B.1). With one channel in bypass, no                      3 additional random failure of a single channel could spuriously trip the cause an actuation reactor and a valid trip signal can still trip the reactor. With one channel              1 in trip, an additional random failure of a single channel could spuriously cause an actuation trip the reactor. Therefore, it is preferable to place an inoperable channel              1 in bypass rather than trip.                cause an actuation The Completion Time of 1 hour allotted to bypass or trip the channel is sufficient to allow the operator to take all appropriate actions for the failed channel and still ensures that the risk involved in operating with the failed channel is acceptable.
D          D            D One failed channel is restored to OPERABLE status or is placed in trip within [48] hours [or in accordance with the Risk Informed Completion D                  2 Time Program] (Required Action B.2.1 or B.2.2). Required Action B.2.1 3
restores the full capability of the function. Required Action B.2.2 places the function in a one-out-of-three configuration. In this configuration, common cause failure of the dependent channel cannot prevent ESFAS actuation. The [48] hour Completion Time is based upon operating                        2 experience, which has demonstrated that a random failure of a second channel occurring during the [48] hour period is a low probability event.
[Alternatively, a Completion Time can be determined in accordance with                  2 the Risk Informed Completion Time Program.]
INSERT E F        F 3
C.1 and C.2 F
Condition C applies to the failure of two channels in any of the following              3 ESFAS functions:
3 3
Combustion Engineering STS                  B 3.3.4-18                                    Rev. 5.0              1 St. Lucie - Unit 1                                                                          Revision XXX
 
ESFAS Instrumentation 3.3.3 1
INSERT E E.1 and E.2 Condition E applies to failure of two or more channels in the Auxiliary Feedwater Actuation Signal (AFAS) ESFAS Function or two channel in the Containment Spray Actuation System (CSAS) ESFAS Function.                                                                            lR2 With two inoperable channels, one channel should be placed in bypass, and the other channel should be placed in trip within the 1-hour Completion Time. With one channel of protective instrumentation bypassed, the ESFAS Function is in two-out-of-three logic, but with another channel failed the ESFAS may be operating with a two-out-of-two logic. This is outside the assumptions made in the analyses and should be corrected. To correct the problem, the second channel is placed in trip. This places the ESFAS in a one-out-of-two logic. If any of the other OPERABLE channels receives a trip signal, ESFAS actuation will occur.
One of the failed channels should be restored to OPERABLE status within 48 hours. The 48-hour Completion Time is based upon operating experience, which has demonstrated that a random failure of a second channel occurring during the 48-hour period is a low probability event. Alternatively, a Completion Time can be determined in accordance with the Risk            lR2 l
Informed Completion Time Program.                                                                l After one channel is restored to OPERABLE status, the provisions of Condition C still apply to lR2 the remaining inoperable AFAS channel and the provisions of Condition A still apply to the        l remaining inoperable CSAS channel. Therefore, the AFAS channel that is still inoperable after    l l
completion of Required Action E.2 must be placed in bypass and the CSAS channel that is still    l inoperable after completion of Required Action E.2 must be placed in trip.                        l Insert Page B 3.3.3-18
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES ACTIONS (continued)
: 1. Safety Injection Actuation Signal Containment Pressure - High Pressurizer Pressure - Low
: 3. Containment Isolation Actuation Signal                                                          1 Containment Pressure - High Containment Radiation - High
: 4. Main Steam Isolation Signal Steam Generator Pressure - Low
: 5. Recirculation Actuation Signal Refueling Water Tank Level - Low
: 6. Auxiliary Feedwater Actuation Signal                                                            1 Steam Generator Level - Low Steam Generator Pressure Difference - High With two inoperable channels, one channel should be placed in bypass, and the other channel should be placed in trip within the 1 hour Completion Time. With one channel of protective instrumentation bypassed, the ESFAS Function is in two-out-of-three logic, but with another channel failed the ESFAS may be operating with a two-out-of-two logic. This is outside the assumptions made in the analyses and should be corrected. To correct the problem, the second channel is placed in trip. This places the ESFAS in a one-out-of-two logic. If any of the other OPERABLE channels receives a trip signal, ESFAS actuation will occur.
One of the failed channels should be restored to OPERABLE status D 3
within [48] hours, for reasons similar to those stated under Condition B.
D After one channel is restored to OPERABLE status, the provisions of F
except for Function 5 - RAS      Condition B still apply to the remaining inoperable channel. Therefore,                              1      3 the channel that is still inoperable after completion of Required Action C.2 Function 1 - SIAS, Function 3 -
CIS, Function 4 - MSIS            must be placed in trip if more than [48] hours has elapsed since the initial                            2 channel failure.                  After one Function 5 - RAS channel is restored to OPERABLE status, the provisions of Condition B still apply to the remaining G    G      G            G      inoperable channel. The RAS channel that is still inoperable          1 after completion of Required Action F.2 must be restored to D.1, D.2.1, D.2.2.1, and D.2.2.2  OPERABLE status within 48 hours or in accordance with the G                    Risk Informed Completion Time since the initial channel failure.
3 Condition D applies to the failure of one bypass removal channel.
G The bypass removal channels consist of four sensor subsystems and two actuation subsystems. Condition D applies to failures in one of the four                              3 sensor subsystems, including sensors, bistables, and associated 3
3 Combustion Engineering STS                    B 3.3.4-19                                          Rev. 5.0                    1 St. Lucie - Unit 1                                                                                    Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES ACTIONS (continued) equipment. Failures in the actuation subsystems, including the manual bypass key switches, are considered Actuation Logic failures and are 3
addressed in LCO 3.3.5. 4 G
In Condition D, it is permissible to continue operation with one bypass              3 permissive removal channel failed, providing the bypass is disabled (Required Action D.1). This can be accomplished by removing the                      3 bypass with the manual bypass key switch, which disables the bypass in its respective  both trains. Since the bypass Function must be manually enabled, the                1 bypass permissive Function will not by itself cause an undesired bypass insertion.
Alternatively, the bypass may be disabled by defeating the bypass permissive input in one of the four channels to the two-out-of-four bypass removal logic, placing the bypass removal feature in one-out-of-three logic. Thus, any of the remaining three channels is capable of removing the bypass feature when the bypass enable conditions are no longer valid.
If the bypass removal feature in the inoperable channel cannot be defeated, actions to address the inoperability of the affected automatic G
trip channel must be taken. Required Action D.2.1, Required Action D.2.2.1, and Required Action D.2.2.2 are equivalent to the        D        3 G
Required Actions for a single automatic trip channel failure (Condition B).
The Completion Times have the same bases as discussed for Condition B. [Alternatively, a Completion Time can be determined in            3 accordance with the Risk Informed Completion Time Program.]                        2 D
H    H          H E.1, E.2.1, and E.2.2 H                                                                      3 Condition E applies to two inoperable bypass removal channels. The bypass removal channels consist of four sensor subsystems and two actuation subsystems. This Condition applies to failures in two of the four sensor subsystems. With two of the four sensor subsystems failed in a nonconservative direction (enabling the bypass Function), the bypass removal feature is in two-out-of-two logic. Failures in the actuation subsystems, including the manual bypass key switches, are considered              3 Actuation Logic failures and are addressed in LCO 3.3.5. 4 H
In Condition E, it is permissible to continue operation with two bypass permissive channels failed, providing the bypasses are disabled in a              3 similar manner as discussed for Condition D.
G 3
3 Combustion Engineering STS                  B 3.3.4-20                                Rev. 5.0            1 St. Lucie - Unit 1                                                                      Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES ACTIONS (continued)
If the failed bypasses cannot be disabled, actions to address the H inoperability of the affected automatic trip channels must be taken.
Required Action E.2.1 and Required Action E.2.2 are equivalent to the                                3 H
Required Actions for a two automatic trip channel failure (Condition C).
F Also similar to Condition C, after one set of inoperable channels is F G
restored, the provisions of Condition D still apply to the remaining                                  3 inoperable channel, with the Completion Time measured from the point of the initial bypass channel failure. The Completion Times have the same bases as discussed for Condition C. [Alternatively, a Completion Time                              3 2
can be determined in accordance with the Risk Informed Completion Time Program.]                              G I          I F.1 and F.2
                                            , F, G, or H                                                                    3 If the Required Actions and associated Completion Times of Condition A, B, C, D, or E are not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within
[12] hours. The allowed Completion Times are reasonable, based on                                      2 operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
3 SURVEILLANCE          The SRs for any particular ESFAS Function are found in the SRs column                                    3 REQUIREMENTS          of Table 3.3.4-1 for that Function. Most functions are subject to CHANNEL CHECK, CHANNEL FUNCTIONAL TEST, CHANNEL CALIBRATION, and response time testing.
                      -----------------------------------REVIEWERS NOTE-----------------------------------
In order for a unit to take credit for topical reports as the basis for justifying Frequencies, topical reports should be supported by an NRC 10  lR2 staff Safety Evaluation Report that establishes the acceptability of each topical report for that unit.
                      -------------------------------- REVIEWERS NOTE ------------------------------------
Notes a and b are applied to the setpoint verification Surveillances for each ESFAS Instrumentation (Analog) Function in Table 3.3.4-1 unless one or more of the following exclusions apply:
10  lR2
: 1. Manual actuation circuits, automatic actuation logic circuits or instrument functions that derive input from contacts which have no associated sensor or adjustable device, e.g., limit switches, breaker position switches, manual actuation switches, float switches, proximity 3
3 Combustion Engineering STS                  B 3.3.4-21                                            Rev. 5.0                1 St. Lucie - Unit 1                                                                                    Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES SURVEILLANCE REQUIREMENTS (continued) detectors, etc. are excluded. In addition, those permissives and interlocks that derive input from a sensor or adjustable device that is tested as part of another TS function are excluded.
: 2. Settings associated with safety relief valves are excluded. The performance of these components is already controlled (i.e., trended with as-left and as-found limits) under the ASME Code for Operation 10 lR2 and Maintenance of Nuclear Power Plants testing program.
: 3. Functions and Surveillance Requirements which test only digital components are normally excluded. There is no expected change in result between SR performances for these components. Where separate as-left and as-found tolerance is established for digital component SRs, the requirements would apply.
3 SR 3.3.4.1                                                                                          3 Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.
Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. If the channels are within the criteria, it is an indication that the channels are OPERABLE. If the channels are normally off scale during times when Surveillance is required, the CHANNEL CHECK will only verify that they are off scale in the same direction. Offscale low current loop channels are verified to be reading at the bottom of the range and not failed downscale.
[ The Frequency of about once every shift is based on operating experience that demonstrates channel failure is rare. Since the probability of two random failures in redundant channels in any 12 hour period is extremely low, the CHANNEL CHECK minimizes the chance of                                  2 loss of protective function due to failure of redundant channels. The 3
3 Combustion Engineering STS                  B 3.3.4-22                                            Rev. 5.0            1 St. Lucie - Unit 1                                                                                    Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES SURVEILLANCE REQUIREMENTS (continued)
CHANNEL CHECK supplements less formal, but more frequent, checks 2
of CHANNEL OPERABILITY during normal operational use of displays associated with the LCO required channels.
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                                      -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                    10  lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                                      ------------------------------------------------------------------------------------------------ ]
3 SR 3.3.4.2                                                                                            3
[ A CHANNEL FUNCTIONAL TEST is performed every [92] days to ensure 2
the entire channel will perform its intended function when needed.
OR The Surveillance Frequency is controlled under the Surveillance                                            lR2 6
Frequency Control Program.
                                      -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                  10    lR2 description, given above, and the appropriate choice of Frequency in the Move to end of this SR 3.3.3.2 description          Surveillance Requirement.
                                      ------------------------------------------------------------------------------------------------ ]
A CHANNEL FUNCTIONAL                  A successful test of the required contact(s) of a channel relay may be TEST on each ESFAS instrument                                                                                                              1 performed by the verification of the change of state of a single contact of channel is performed to ensure the entire channel will perform its  the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL intended function when needed.        TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.
The CHANNEL FUNCTIONAL TEST tests the individual sensor subsystems using an analog test input to each bistable.
3 3
Combustion Engineering STS                          B 3.3.4-23                                            Rev. 5.0              1 St. Lucie - Unit 1                                                                                          Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES SURVEILLANCE REQUIREMENTS (continued) acceptance criteria band A test signal is superimposed on the input in one channel at a time to verify that the bistable trips within the specified tolerance around the            1 setpoint. Any setpoint adjustment shall be consistent with the assumptions of the plant specific setpoint analysis.
The as-found and as-left values must also be recorded and reviewed for consistency with the assumptions of the surveillance interval extension analysis. The requirements for this review are outlined in Reference [10].          2      lR2 9                l l
SR 3.3.4.2 is modified by two Notes as identified in Table 3.3.4-1. The                      l first Note requires evaluation of channel performance for the condition                      l l
where the as-found setting for the channel setpoint is outside its as-found                  l tolerance but conservative with respect to the Allowable Value.                              l Evaluation of channel performance will verify that the channel will                          l l
continue to behave in accordance with safety analysis assumptions and                        l the channel performance assumptions in the setpoint methodology. The                        l l
purpose of the assessment is to ensure confidence in the channel                            l performance prior to returning the channel to service. For channels                          l determined to be OPERABLE but degraded, after returning the channel to                      l l
service the performance of these channels will be evaluated under the                        l plant Corrective Action Program. Entry into the Corrective Action                            l Program will ensure required review and documentation of the condition.                      l 9  l The second Note requires that the as-left setting for the channel be                        l returned to within the as-left tolerance of the [LTSP]. Where a setpoint                    l l
more conservative than the [LTSP] is used in the plant surveillance                          l procedures NTSP, the as-left and as-found tolerances, as applicable, will                    l be applied to the surveillance procedure setpoint. This will ensure that                    l l
sufficient margin to the Safety Limit and/or Analytical Limit is maintained.                l If the as-left channel setting cannot be returned to a setting within the as-                l left tolerance of the [LTSP], then the channel shall be declared                            l l
inoperable.                                                                                  l l
l The second Note also requires that [LTSP] and the methodologies for                          l calculating the as-left and the as-found tolerances be in [insert the facility              l FSAR reference or the name of any document incorporated into the                            l l
facility FSAR by reference].                                                                l 3
SR 3.3.4.3                                                                            3 3                                                        3 SR 3.3.4.3 is a CHANNEL FUNCTIONAL TEST similar to SR 3.3.4.2,                        3 except 3.3.4.3 is performed within 92 days prior to startup and is only            1 applicable to bypass Functions. These include the Pressurizer Pressure -
Low bypass and the MSIS Steam Generator Pressure - Low bypass. A successful test of the required contact(s) of a channel relay may be 3
3 Combustion Engineering STS            B 3.3.4-24                                    Rev. 5.0            1 St. Lucie - Unit 1                                                                    Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES SURVEILLANCE REQUIREMENTS (continued) performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.
The CHANNEL FUNCTIONAL TEST for proper operation of the bypass                                      lR2 l
removal Functions is critical during plant heatups because the bypasses                              l may be in place prior to entering MODE 3 but must be removed at the                                  l l
appropriate points during plant startup to enable the ESFAS Function.                                l Once the bypasses are removed, the bypasses must not fail in such a                          1      l way that the associated ESFAS Function is inappropriately bypassed.                                  l l
This feature is verified by the appropriate ESFAS Function CHANNEL                                  l FUNCTIONAL TEST.                                                                                    l Frequency                                                                                                          l l
The Surveillance is based upon the reliability analysis presented in                        1      l topical report CEN-327, "RPS/ESFAS Extended Test Interval Evaluation"                                l l
(Ref. ).                                                                                            l 9
The Surveillance Frequency is controlled under the                      1 3          Surveillance Frequency Control Program.
SR 3.3.4.4                                                                                  3 CHANNEL CALIBRATION is a complete check of the instrument channel, including the sensor. The Surveillance verifies that the channel responds to a measured parameter within the necessary range and accuracy.
CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drift between successive calibrations to ensure that the channel remains operational between successive surveillances.
CHANNEL CALIBRATIONS must be performed consistent with the plant specific setpoint analysis.
The as-found and as-left values must also be recorded and reviewed for consistency with the assumptions of the extension analysis. The                                      lR2 requirements for this review are outlined in Reference [10].                                        l 1
l 9
[ The Frequency is based upon the assumption of an [18] month calibration interval for the determination of the magnitude of equipment drift in the                      2 setpoint analysis.
OR The Surveillance Frequency is controlled under the Surveillance 6        lR2 Frequency Control Program.
Move to end of this SR 3.3.3.4 description 3
3 Combustion Engineering STS                    B 3.3.4-25                                          Rev. 5.0            1 St. Lucie - Unit 1                                                                                    Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES SURVEILLANCE REQUIREMENTS (continued)
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                  10  lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]
SR 3.3.4.4 is modified by two Notes as identified in Table 3.3.4-1. The                                  lR2 l
first Note requires evaluation of channel performance for the condition                                  l where the as-found setting for the channel setpoint is outside its as-found                              l tolerance but conservative with respect to the Allowable Value.                                          l l
Evaluation of channel performance will verify that the channel will                                      l continue to behave in accordance with safety analysis assumptions and                                    l l
the channel performance assumptions in the setpoint methodology. The                                      l purpose of the assessment is to ensure confidence in the channel                                          l performance prior to returning the channel to service. For channels                                      l l
determined to be OPERABLE but degraded, after returning the channel to                                    l service the performance of these channels will be evaluated under the                                    l plant Corrective Action Program. Entry into the Corrective Action                                        l l
Program will ensure required review and documentation of the condition.                                  l The second Note requires that the as-left setting for the channel be                                    9 l l
returned to within the as-left tolerance of the [LTSP]. Where a setpoint                                  l more conservative than the [LTSP] is used in the plant surveillance                                      l procedures [NTSP], the as-left and as-found tolerances, as applicable,                                    l l
will be applied to the surveillance procedure setpoint. This will ensure                                  l that sufficient margin to the Safety Limit and/or Analytical Limit is                                    l maintained. If the as-left channel setting cannot be returned to a setting                                l l
within the as-left tolerance of the [LTSP], then the channel shall be                                    l declared inoperable.                                                                                      l l
l The second Note also requires that [LTSP] and the methodologies for                                      l calculating the as-left and the as-found tolerances be in [insert the facility                            l l
FSAR reference or the name of any document incorporated into the                                          l facility FSAR by reference].                                                                              l 3
SR 3.3.4.5                                                                                          2 This Surveillance ensures that the train actuation response times are the maximum values assumed in the safety analyses. Individual component response times are not modeled in the analyses. The analysis models the overall or total elapsed time, from the point at which the parameter exceeds the trip setpoint value at the sensor to the point at which the equipment in both trains reaches the required functional state (e.g.,
3 3
Combustion Engineering STS                B 3.3.4-26                                            Rev. 5.0              1 St. Lucie - Unit 1                                                                                  Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES SURVEILLANCE REQUIREMENTS (continued) pumps at rated discharge pressure, valves in full open or closed position).
Response time testing acceptance criteria are included in Reference 5.
The test may be performed in one measurement or in overlapping segments, with verification that all components are measured.
                          -----------------------------------REVIEWERS NOTE-----------------------------------
Applicable portions of the following TS Bases are applicable to plants adopting CEOG Topical Report CE NPSD-1167-1, "Elimination of                                        10  lR2 Pressure Sensor Response Time Testing Requirements," and the methodology contained in Attachment 1 to TSTF-569.
Response time may be verified by any series of sequential, overlapping or total channel measurements, including allocated sensor response time, such that the response time is verified. Allocations for sensor response times may be obtained from records of test results, vendor test data, or vendor engineering specifications. Topical Report CE NPSD-1167-A,                                        lR2 l
10 "Elimination of Pressure Sensor Response Time Testing Requirements,"                                      l 1
(Ref. 12) provides the basis and methodology for using allocated sensor                                  l response times in the overall verification of the channel response time for                              l l
specific sensors identified in the Topical Report. The response time may                                  l 10 be verified for components that replace the components that were                                          l 1      l previously evaluated in Ref. 12 provided that the components have been l
evaluated in accordance with the NRC approved methodology as                                              l discussed in Attachment 1 to TSTF-569, "Methodology to Eliminate                                          l l
11 Pressure Sensor and Protection Channel (for Westinghouse Plants only)                                    l Response Time Testing," (Ref. 13). Response time verification for other                            1      l sensor types must be demonstrated by test. The allocation of sensor                                      l l
response times must be verified prior to placing a new component in                                      l operation and reverified after maintenance that may adversely affect the                                  l sensor response time.                                                                                    l
[ ESF RESPONSE TIME tests are conducted on a STAGGERED TEST BASIS of once every [18] months. This results in the interval between successive tests of a given channel of n x 18 months, where n is the number of channels in the Function. Surveillance of the final actuation devices, which make up the bulk of the response time, is included in the                            2 testing of each channel. Therefore, staggered testing results in response time verification of these devices every [18] months. The [18] month STAGGERED TEST BASIS Frequency is based upon plant operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences.
OR 3
3 Combustion Engineering STS                      B 3.3.4-27                                            Rev. 5.0              1 St. Lucie - Unit 1                                                                                        Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES SURVEILLANCE REQUIREMENTS (continued)
The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                          -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                      10  lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                          ------------------------------------------------------------------------------------------------ ]
REFERENCES                1. Regulatory Guide 1,105, "Setpoints for Safety-Related                                                  lR2 Instrumentation," Revision 3.
1
: 2. 10 CFR 50, Appendix A.                                                                                lR2
: 3. 10 CFR 100.          50.67                                                                            lR2 4.U    FSAR, Section [7.3].                                                                              2    lR2 2
: 5. NRC Safety Evaluation Report, [Date].
5  6. IEEE Standard 279-1971.                                                                                lR2 6    7. FSAR, Chapter [14].          15                                                                2    lR2 U
7    8. 10 CFR 50.49.                IC-3.17, FPL Setpoint Standard lR2 1
8    9.    "Plant Protection System Selection of Trip Setpoint Values."                                          lR2 2
: 10. FSAR, Section [7.2].
9 11. CEN-327, June 2, 1986, including Supplement 1, March 3, 1989.                                    1 lR2 May                                                                        l 10                                                                                                  January l
: 12. CEOG Topical Report CE NPSD-1167-A, "Elimination of Pressure                                          l 1
Sensor Response Time Testing Requirements."                                                            l l
11                                                                                                                        l
: 13. Attachment 1 to TSTF-569, "Methodology to Eliminate Pressure                                1        l Sensor and Protection Channel (for Westinghouse Plants only)                                          l l
Response Time Testing."                                                                                l 3
3 Combustion Engineering STS                        B 3.3.4-28                                            Rev. 5.0                1 St. Lucie - Unit 1                                                                                          Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 B 3.3 INSTRUMENTATION (Analog)                                                                              3 B 3.3.4 Engineered Safety Features Actuation System (ESFAS) Instrumentation (Analog)                        3 3
BASES BACKGROUND          The ESFAS initiates necessary safety systems, based upon the values of selected unit parameters, to protect against violating core design limits and the Reactor Coolant System (RCS) pressure boundary and to mitigate accidents. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the ESFAS, as well as LCOs on other reactor system parameters and equipment performance.
Technical Specifications are required by 10 CFR 50.36 to include LSSSs for variables that have significant safety functions. LSSS are defined by the regulation as "Where a LSSS is specified for a variable on which a safety limit has been placed, the setting must be chosen so that automatic protective actions will correct the abnormal situation before a Safety Limit (SL) is exceeded." The Analytical Limit is the limit of the process variable at which a safety action is initiated, as established by the safety analysis, to ensure that a SL is not exceeded. Any automatic protection action that occurs on reaching the Analytical Limit therefore ensures that the SL is not exceeded. However, in practice, the actual settings for automatic protection channels must be chosen to be more conservative than the Analytical Limit to account for instrument loop uncertainties related to the setting at which the automatic protective action would actually occur.
                    ---------------------------------REVIEWER'S NOTE-------------------------------------      lR2 The term "Limiting Trip Setpoint" [LTSP] is generic terminology for the                    l l
calculated trip setting (setpoint) value calculated by means of the plant                  l specific setpoint methodology documented in a document controlled                          l l
under 10 CFR 50.59. The term [LTSP] indicates that no additional margin                    l has been added between the Analytical Limit and the calculated trip                        l setting.                                                                                10  l l
l "Nominal Trip Setpoint [NTSP]" is the suggested terminology for the                        l actual setpoint implemented in the plant surveillance procedures where                      l l
margin has been added to the calculated [LTSP]. The as-found and as-                        l left tolerances will apply to the [NTSP] implemented in the Surveillance                    l l
procedures to confirm channel performance.
3 3
Combustion Engineering STS                B 3.3.4-1                                Rev. 5.0              1 St. Lucie - Unit 2                                                                      Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES BACKGROUND (continued)
Licensees are to insert the name of the document(s) controlled under 10 CFR 50.59 that contain the methodology for calculating the as-left and as-found tolerances, in Note b of Table 3.3.4-1 for the phrase "[insert the name of a document controlled under 10 CFR 50.59 such as the Technical Requirements Manual or any document incorporated into the facility FSAR]" throughout these Bases.                                                                10 lR2 Where the [LTSP] is not included in Table 3.3.4-1, the plant specific location for the [LTSP] or [NTSP] much be cited in Note b of Table 3.3.4-1. The brackets indicate plant specific terms may apply, as required and approved by the NRC.
Allowable Value                                                                                    lR2 3                                l 9
The [Limiting Trip Setpoint (LTSP)] specified in Table 3.3.4-1 is a                                        l predetermined setting for a protection channel chosen to ensure automatic actuation prior to the process variable reaching the Analytical field trip setpoint      Limit and thus ensuring that the SL would not be exceeded. As such, the                            9 lR2 l
value specified in        [LTSP] accounts for uncertainties in setting the channel (e.g., calibration),                              l plant procedures uncertainties in how the channel might actually perform (e.g.,                                            l repeatability), changes in the point of action of the channel over time (e.g., drift during surveillance intervals), and any other factors which may field trip setpoint influence its actual performance (e.g., harsh accident environments). In lR2 between calibration intervals      this manner, the [LTSP] ensures that SLs are not exceeded. As such, the                              9    l
[LTSP] meets the definition of an LSSS (Ref. 1).                                                          l The Allowable Value                                                                                                                        l considers the maximum                                                                                                                        l allowable instrument drift        Technical Specifications contain values related to the OPERABILITY of                                      l between calibration intervals and thus, is the equipment required for safe operation of the facility. OPERABLE is                                  2    l l
defined in Technical Specifications as "...being capable of performing its                                l safety function(s)." Relying solely on the [LTSP] to define OPERABILITY                              9 Trip Setpoint                                                                                                              l in Technical Specifications would be an overly restrictive requirement if it were applied as an OPERABILITY limit for the "as-found" value of a protection channel setting during a Surveillance. This would result in Technical Specification compliance problems, as well as reports and corrective actions required by the rule which are not necessary to ensure safety. For example, an automatic protection channel with a setting that Trip Setpoint has been found to be different from the [LTSP] due to some drift of the                              9    lR2 setting may still be OPERABLE because drift is to be expected. This expected drift would have been specifically accounted for in the setpoint methodology for calculating the [LTSP] and thus the automatic protective                              9 field trip setpoint                                                                                                              lR2 action would still have ensured that the SL would not be exceeded with the "as-found" setting of the protection channel. Therefore, the channel would still be OPERABLE because it would have performed its safety acceptance criteria band function and the only corrective action required would be to reset the field trip setpoint  channel within the established as-left tolerance around the [LTSP] to                                9    lR2 account for further drift during the next surveillance interval. Note that,                                l 3
3 Combustion Engineering STS                                B 3.3.4-2                                            Rev. 5.0              1 St. Lucie - Unit 2                                                                                                Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES BACKGROUND (continued) acceptance criteria band although the channel is OPERABLE under these circumstances, the trip                        1 setpoint must be left adjusted to a value within the as-left tolerance, in          9          lR2 accordance with uncertainty assumptions stated in the referenced setpoint methodology (as-left criteria), and confirmed to be operating                          lR2 l
within the statistical allowances of the uncertainty terms assigned (as-              9          l found criteria).                                                                                l However, there is also some point beyond which the channel may not be able to perform its function due to, for example, greater than expected drift. This value needs to be specified in the Technical Specifications in order to define OPERABILITY of the channels and is designated as the Allowable Value.
If the actual setting (as-found setpoint) of the channel is found to be acceptance criteria conservative with respect to the Allowable Value but is beyond the as-                          lR2 9      1    l found tolerance band, the channel is OPERABLE, but degraded. The degraded condition will be further evaluated during performance of the SR. This evaluation will consist of resetting the channel setpoint to the                        lR2 9          l
[Normal Trip Setpoint (NTSP)] (within the allowed tolerance), and                          2 evaluating the channel response. If the channel is functioning as required and is expected to pass the next surveillance, then the channel is OPERABLE and can be restored to service at the completion of the surveillance. After the surveillance is completed, the channel as-found condition will be entered into the Corrective Action Program for further evaluation.
During anticipated operational occurrences (AOOs), which are those events expected to occur one or more times during the plant life, the acceptable limits are:
The departure from nucleate boiling ratio (DNBR) shall be maintained above the SL value to prevent departure from nucleate boiling, Fuel centerline melting shall not occur, and The Reactor Coolant System (RCS) pressure SL of [2750] psia shall                    2 not be exceeded.
Maintaining the parameters within the above values ensures that the offsite dose will be within the 10 CFR 50 (Ref. 2) and 10 CFR 100 (Ref. 3)                  1    lR2 criteria during AOOs.                                            50.67 Accidents are events that are analyzed even though they are not expected to occur during the plant life. The acceptable limit during accidents is that the offsite dose shall be maintained within an acceptable fraction of 10 CFR 100 (Ref. 3) limits. Different accident categories allow            1        lR2 50.67                                                                          3 3
Combustion Engineering STS                      B 3.3.4-3                                Rev. 5.0                    1 St. Lucie - Unit 2                                                                            Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES BACKGROUND (continued) a different fraction of these limits based on probability of occurrence.
Meeting the acceptable dose limit for an accident category is considered having acceptable consequences for that event.
The ESFAS contains devices and circuitry that generate the following signals when the monitored variables reach levels that are indicative of conditions requiring protective action:
: 1. Safety Injection Actuation Signal (SIAS),
: 2. Containment Spray Actuation Signal (CSAS),
: 3. Containment Isolation Actuation Signal (CIAS),
: 4. Main Steam Isolation Signal (MSIS),
: 5. Recirculation Actuation Signal (RAS), and
: 6. Auxiliary Feedwater Actuation Signal (AFAS).
Equipment actuated by each of the above signals is identified in the FSAR (Ref. 4).                                                                      1  lR2 U                                                                                            l
                                                          , except AFAS,                                            l Each of the above ESFAS actuation systems is segmented into four sensor subsystems and two actuation subsystems. Each sensor subsystem includes measurement channels and bistables. The actuation 1
subsystems include two logic subsystems for sequentially loading the diesel generators.
Each of the four sensor subsystem channels monitors redundant and independent process measurement channels. Each sensor is monitored by at least one bistable. The bistable associated with each ESFAS Trip Setpoint                                                                                          lR2 Function will trip when the monitored variable exceeds the [LTSP]. When          9  2 tripped, the sensor subsystems provide outputs to the two actuation subsystems.
The two independent actuation subsystems compare the four sensor subsystem outputs. If a trip occurs in the same parameter in two or more sensor subsystem channels, the two-out-of-four logic in each actuation subsystem will initiate one train of ESFAS. Each train can provide protection to the public in the case of a Design Basis Event. Actuation Logic is addressed in LCO 3.3.5, "Engineered Safety Features Actuation 3
System (ESFAS) Logic and Manual Trip."
4      Actuation Each of the four sensor subsystems is mounted in a separate cabinet, excluding the sensors and field wiring.
3 3
Combustion Engineering STS                      B 3.3.4-4                                Rev. 5.0            1 St. Lucie - Unit 2                                                                          Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES BACKGROUND (continued)
The AFAS logic consists of four The role of the sensor subsystem (measurement channels and bistables) lR2 actuation channels each with          is discussed below; actuation subsystems are discussed in LCO 3.3.5.                        1 l
separate auxiliary feedwater                                                                                              4                    l actuation signals generated for                                                                                                        1      l each steam generator (AFAS-1          Measurement Channels l
and AFAS-2). For each AFAS-1                                                                                                                  l and AFAS-2 there are four              Measurement channels, consisting of field transmitters or process                                      l independent measurement                                                                                                                        l channels. Upon actuation of the        sensors and associated instrumentation, provide a measurable electronic                                l logic, the appropriate AFAS            signal based upon the physical characteristics of the parameter being                                  l actuation relay (AFAS-1 or AFAS-2 de-energizes to control the measured.                                                                                              l l
individual AFAS component.                                                                                                                    l Four identical measurement channels with electrical and physical separation are provided for each parameter used in the generation of trip signals. These are designated Channels A through D. Measurement channels provide input to ESFAS bistables within the same ESFAS channel. In addition, some measurement channels may also be used as inputs to Reactor Protective System (RPS) bistables, and most provide                              1 indication in the control room. Measurement channels used as an input to the RPS or ESFAS are not used for control Functions.
When a channel monitoring a parameter indicates an unsafe condition, the bistable monitoring the parameter in that channel will trip. Tripping two or more channels of bistables monitoring the same parameter will de-energize both channels of Actuation Logic of the associated Engineered Safety Features (ESF) equipment.
Three of the four measurement and bistable channels are necessary to meet the redundancy and testability of GDC 21 in Appendix A to 10 CFR 50 (Ref. 2). The fourth channel provides additional flexibility by allowing one channel to be removed from service (trip channel bypass) for maintenance or testing while still maintaining a minimum two-out-of-Physical and electrical separation  three logic. The single failure criterion is met during this condition.                              lR2 is maintained between cables for                                                                                                    1      l each protection channel and        In order to take full advantage of the four channel design, adequate                                    l isolation transformers are                                                                                                                  l installed for each measurement      channel to channel independence must be demonstrated, and approved                                      l channel vital bus. These features  by the NRC staff. Plants not currently licensed to credit four channel                                  l are sufficient to ensure                                                                                                                    l independence of the four independence that may desire this capability must have approval of the                                  l protection channels. With the      NRC staff documented by an NRC Safety Evaluation Report (Ref. 5).                                      l 1
exception of CSAS and RAS,          Adequate channel to channel independence includes physical and                                          l ESFAS is a 4 channel system                                                                                                                l that allows for a failed channel to electrical independence of each channel from the others. Furthermore,                                  l be placed in bypass for an          each channel must be energized from separate inverters and station                                      l indefinite period of time.          batteries. Plants not demonstrating four channel independence may                                      l operate in a two-out-of-three logic configuration for 48 hours.
Since no single failure will either cause or prevent a protective system actuation and no protective channel feeds a control channel, this                    5                lR2 arrangement meets the requirements of IEEE Standard 79-1971 (Ref. 6).                        1        l 279                            3 3
Combustion Engineering STS                    B 3.3.4-5                                              Rev. 5.0            1 St. Lucie - Unit 2                                                                                    Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES BACKGROUND (continued)
Bistable Trip Units Bistable trip units receive an analog input from the measurement channels, compare the analog input to trip setpoints, and provide contact output to the Actuation Logic. They also provide local trip indication and remote annunciation.
There are four channels of bistables, designated A through D, for each ESF Function, one for each measurement channel. In cases where two SIAS and MSIS Functions share the containment ESF Functions share the same input and trip setpoint (e.g., containment                  1    lR1 pressure input to CSAS, CIAS, and SIAS and a Pressurizer Pressure -                            l pressure measurement channel inputs and trip              Low input to the RPS and SIAS), the same bistable may be used to setpoints. The bistables are shared to satisfy both          satisfy both Functions.
Functions.
6 The trip setpoints and Allowable Values used in the bistables are based                        lR2 on the analytical limits stated in Reference 7. The selection of these trip                    l setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account. To allow for calibration tolerances, instrumentation uncertainties, instrument drift, and 7
severe environment effects, for those ESFAS channels that must function lR2 in harsh environments as defined by 10 CFR 50.49 (Ref. 8), Allowable                            l Values specified in Table 3.3.4-1, in the accompanying LCO, are                            3 3
conservatively adjusted with respect to the analytical limits. A detailed 8
description of the method used to calculate the trip setpoints, including lR2 their explicit uncertainties, is provided in the "Plant Protection System                  1 l
IC-3.17, FPL Setpoint Standard      Selection of Trip Setpoint Values" (Ref. 9). The actual trip setpoint entered into the bistable is normally still more conservative than that specified by the Allowable Value to account for changes in random measurement errors detectable by a CHANNEL FUNCTIONAL TEST.
One example of such a change in measurement error is drift during the interval between surveillances.
AV                                          lR2 field trip setpoint l
The [LTSP] is the value at which the bistable is set and is the expected              9    2  l value to be achieved during calibration. The [LTSP] value is the LSSS and ensures the safety analysis limits are met for the surveillance interval selected when a channel is adjusted based on stated channel uncertainties.
acceptance criteria bands                          1 Trip Setpoints                                                                                                lR2
[LTSPs], in conjunction with the use of as-found and as-left tolerances,          9    2      l consistent with the requirements of the Allowable Value will ensure that Safety Limits of Chapter 2.0, "SAFETY LIMITS (SLs)," are not violated during AOOs and that the consequences of Design Basis Accidents (DBAs) will be acceptable, providing the plant is operated from within the LCOs at the onset of the AOO or DBA and the equipment functions as designed.
3 3
Combustion Engineering STS                          B 3.3.4-6                                      Rev. 5.0              1 St. Lucie - Unit 2                                                                                  Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES BACKGROUND (continued) 3                              3 Note that in the accompanying LCO 3.3.4, the Allowable Values of the            3 Table 3.3.4-1 are the least conservative value of the as-found setpoint that a channel can have during a periodic CHANNEL CALIBRATION or CHANNEL FUNCTIONAL TEST.
ESFAS Logic It is possible to change the two-out-of-four ESFAS logic to a two-out-of-three logic for a given input parameter in one channel at a time by bypassing disabling one channel input to the logic. Thus, the bistables will function    1 lR2 normally, producing normal trip indication and annunciation, but ESFAS              l One channel of a given measured parameter may be            actuation will not occur since the bypassed channel is effectively removed          l bypassed using a keylock            from the coincidence logic. Trip channel bypassing can be                            l switch. Only one key is                                                                                                  l simultaneously performed on any number of parameters in any number of          1    l available for each measured parameter that provides input to    channels, providing each parameter is bypassed in only one channel at a              l an ESFAS function. Multiple          time. At some plants an interlock prevents simultaneous trip channel                l measured parameters for an                                                                                                l ESFAS function may be bypassing of the same parameter in more than one channel. Trip                      l bypassed; restricted by the one      channel bypassing is normally employed during maintenance or testing.                l key per parameter limit.                                                          4                                      l 3    l ESFAS Logic is addressed in LCO 3.3.5.
APPLICABLE                  Each of the analyzed accidents can be detected by one or more ESFAS SAFETY                      Functions. One of the ESFAS Functions is the primary actuation signal ANALYSES                    for that accident. An ESFAS Function may be the primary actuation signal for more than one type of accident. An ESFAS Function may also be a secondary, or backup, actuation signal for one or more other accidents. Functions such as Manual Initiation, not specifically credited in Certain ESFAS functions may be        the accident analysis, serve as backups to Functions and are part of the            lR2 blocked to prevent unnecessary                                                                                              l actuation during plant startup and    NRC approved licensing basis for the plant.                                          l shutdown that are not explicitly                                                                                            l modeled in the Safety Analyses. A      Permissive and interlock setpoints allow the blocking of trips during plant          l safety injection block is provided                                                                                          l to enable depressurization of the      startups, and restoration of trips when the permissive conditions are not            l RCS without initiation of ECCS.        satisfied, but they are not explicitly modeled in the Safety Analyses.              l Similarly, an MSIS block is                                                                                                l provided to allow depressurization These permissives and interlocks ensure that the starting conditions are      1    l without the unnecessary closure of    consistent with the safety analysis, before preventive or mitigating actions        l the main steam and feedwater          occur. Because these permissives or interlocks are only one of multiple blocks      l isolation valves. The block circuits                                                                                        l meet single failure criteria, require  conservative starting assumptions for the accident analysis, they are                l manual action to initiate, and the    generally considered as nominal values without regard to measurement                l blocks are automatically removed      accuracy.                                                                            l when pressure exceeds the block                                                                                            l permissive setpoint. An SIAS                                                                                                l permissive is used to preclude        ESFAS protective Functions are as follows:                                          l unwarranted spurious actuation of                                                                                          l containment spray.                                                                                                          l 3
3 Combustion Engineering STS                      B 3.3.4-7                                Rev. 5.0          1 St. Lucie - Unit 2                                                                        Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES APPLICABLE SAFETY ANALYSES (continued)
: 1. Safety Injection Actuation Signal The SIAS ensures acceptable consequences during loss of coolant accident (LOCA) events, including steam generator tube rupture, and main steam line breaks (MSLBs) or feedwater line breaks (FWLBs)
(inside containment). To provide the required protection, either a high containment pressure or a low pressurizer pressure signal will initiate SIAS. SIAS initiates the Emergency Core Cooling Systems (ECCS), control room isolation, and several other Functions, such as starting the emergency diesel generators.
: 2. Containment Spray Actuation Signal The CSAS initiates containment spray, preventing containment overpressurization during a LOCA or MSLB. At some plants, both a high- high containment pressure signal and an SIAS have to actuate to                        1 provide the required protection. This configuration reduces the likelihood of inadvertent containment spray.
: 3. Containment Isolation Actuation Signal                                                  1 The CIAS actuates the Containment Isolation System, ensuring acceptable consequences during LOCAs and MSLBs or FWLBs (inside containment). To provide protection, a high containment pressure signal will initiate CIAS at the same setpoint at which an 1
SIAS is generated. A high containment radiation signal will also initiate CIAS.
: 4. Main Steam Isolation Signal The MSIS ensures acceptable consequences during an MSLB or FWLB by isolating both steam generators if either generator indicates a low steam generator pressure. The MSIS, concurrent with or following a reactor trip, minimizes the rate of heat extraction and subsequent cooldown of the RCS during these events.
A high containment pressure signal will also initiate MSIS.                      1
: 5. Recirculation Actuation Signal At the end of the injection phase of a LOCA, the refueling water tank (RWT) will be nearly empty. Continued cooling must be provided by the ECCS to remove decay heat. The source of water for the ECCS pumps is automatically switched to the containment recirculation sump. Switchover from RWT to the containment sump must occur before the RWT empties to prevent damage to the ECCS pumps and 3
3 Combustion Engineering STS                  B 3.3.4-8                                      Rev. 5.0            1 St. Lucie - Unit 2                                                                              Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES APPLICABLE SAFETY ANALYSES (continued) a loss of core cooling capability. For similar reasons, switchover must not occur before there is sufficient water in the containment sump to support pump suction. Furthermore, early switchover must not occur to ensure sufficient borated water is injected from the RWT to ensure the reactor remains shut down in the recirculation mode.
An RWT Level - Low signal initiates the RAS.
: 6. Auxiliary Feedwater Actuation Signal the affected An AFAS initiates feedwater flow to both steam generators if a low 1
level is indicated in either steam generator, unless the generator is ruptured.            the affected lR2 The AFAS maintains a steam generator heat sink during the following events:
MSLB, FWLB, Inadvertent opening of a steam generator atmospheric dump valve, and Loss of feedwater.
A low steam generator water level signal will initiate auxiliary feed to the affected steam generator.
or feedwater (FW) header                                                                                                  lR2 differential pressure (FW-A > FW-B)                                                                                        l or (FW-B > FW-A)                        Secondary steam generator (SG) differential pressure (SG-A > SG-B)                l or (SG-B > SG-A) inhibits auxiliary feed to a generator identified as              l l
being ruptured. This input to the AFAS logic prevents loss of the          1 l
This input to the Auxiliary Feedwater intact generator while preventing feeding a ruptured generator during              l Isolation Function also prevents        MSLBs and FWLBs. This prevents containment overpressurization                      l l
feeding a ruptured feedwater line.      during these events.                                                              l The ESFAS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO                          The LCO requires all channel components necessary to provide an ESFAS actuation to be OPERABLE. Failure of any required portion of the instrument channel renders the affected channel(s) inoperable and reduces the reliability of the affected Functions. The specific criteria for determining channel OPERABILITY differ slightly between Functions.
These criteria are discussed on a Function by Function basis below.
3 3
Combustion Engineering STS                        B 3.3.4-9                                Rev. 5.0            1 St. Lucie - Unit 2                                                                            Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES LCO (continued)
Actions allow maintenance (trip channel) bypass of individual channels, but the bypass activates interlocks that prevent operation with a second                  1 channel in the same Function bypassed. Plants are restricted to 48 hours in a trip channel bypass condition before either restoring the Function to four channel operation (two-out-of-four logic) or placing the channel in trip Although, one channel of the AFAS                                                                                                          lR2 is allowed to remain bypassed for          (one-out-of-three logic). At plants where adequate channel to channel                          l an extended period under the              independence has been demonstrated, specific exceptions may be                                  l condition that both actuation relays                                                                                                1 within the associated channel are approved by the NRC staff to permit one of the two-out-of-four channels                        l l
placed in bypass.                          to be bypassed for an extended period of time.                                                  l 3              acceptance criteria bands Allowable Values for ESFAS Instrumentation (Analog) Functions are                              lR2 l
specified in Table 3.3.4-1. [LTSPs] and the methodologies for calculation                      l of the as-left and as-found tolerances are described in [insert the name of                    l Section 7.3 of the Updated                                                                                                      l Final Safety Analysis Report    a document controlled under 10 CFR 50.59 such as the Technical                          9  1  l (Ref. 4).                      Requirements Manual or any document incorporated into the facility                              l 3  2 field trip setpoints FSAR]. The [LTSPs] are selected to ensure that the actual setpoints                            l l
remain conservative with respect to the as-found tolerance band between                        l adjusted consistent with the Trip    successive CHANNEL CALIBRATIONS. After each calibration the trip                                l Setpoint value                                                                                                              l setpoint shall be left within the as-left band around the [LTSP].
acceptance criteria The Bases for the LCO on ESFAS Functions are:
: 1. Safety Injection Actuation Signal
: a. Containment Pressure - High This LCO requires four channels of SIAS Containment Pressure
                                                      - High to be OPERABLE in MODES 1, 2, and 3.
The Allowable Value for this trip is set high enough to allow for small pressure increases in containment expected during normal operation (i.e., plant heatup) and is not indicative of an offnormal condition. The setting is low enough to initiate the ESF Functions when an offnormal condition is indicated. This allows the ESF systems to perform as expected in the accident analyses to mitigate the consequences of the analyzed accidents.
: b. Pressurizer Pressure - Low This LCO requires four channels of SIAS Pressurizer Pressure -
Low to be OPERABLE in MODES 1, 2, and 3.
3 3
Combustion Engineering STS                          B 3.3.4-10                                        Rev. 5.0          1 St. Lucie - Unit 2                                                                                    Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES LCO (continued)
The Allowable Value for this trip is set low enough to prevent actuating the SIAS during normal plant operation and pressurizer pressure transients. The setting is high enough that with a LOCA or MSLB it will actuate to perform as expected, mitigating the consequences of the accidents.
The Pressurizer Pressure - Low trip may be blocked when pressurizer pressure is reduced during controlled plant shutdowns. This block is permitted below 1800 psia, and block          1 1836 permissive responses are annunciated in the control room. This allows for a controlled depressurization of the RCS, while maintaining administrative control of ESF protection. From a blocked condition, the block will be automatically removed as 1836 pressurizer pressure increases above 1800 psia, as sensed by two of the four sensor subsystems, in accordance with the                    lR2 l
bypass philosophy of removing bypasses when the enabling                      l conditions are no longer satisfied.                                          l This LCO requires four channels of the bypass permissive removal for SIAS Pressurizer Pressure - Low to be OPERABLE in MODES 1, 2, and 3.
The bypass permissive channels consist of four sensor subsystems and two actuation subsystems. This LCO applies to failures in the four sensor subsystems, including sensors, bistables, and associated equipment. Failures in the actuation subsystems, including the manual bypass key switches, are considered Actuation Logic failures and are addressed in 3
LCO 3.3.5. 4 This LCO applies to the bypass removal feature only. If the bypass enable Function is failed so as to prevent entering a bypass condition, operation may continue.
The block permissive is set low enough so as not to be enabled during normal plant operation, but high enough to allow blocking prior to reaching the trip setpoint.
: 2. Containment Spray Actuation Signal CSAS is initiated either manually or automatically. At many plants, it      1 is also necessary to have an automatic or manual SIAS for complete actuation. The SIAS opens the containment spray valves, whereas 1
the CSAS actuates other required components. The SIAS requirement should always be satisfied on a legitimate CSAS, since 3
3 Combustion Engineering STS              B 3.3.4-11                              Rev. 5.0          1 St. Lucie - Unit 2                                                                  Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES LCO (continued) lower than the Containment the Containment Pressure - High signal setpoint used in the SIAS is Pressure - High-High signal      the same setpoint used in the CSAS. At many plants, the transmitters used to initiate CSAS are independent of those used in            1 The parameters used for CSAS (Containment          the SIAS to prevent inadvertent containment spray due to failures in Pressure High-High and SIAS) give direct indication of a LOCA. The time to actuate two sensor channels.
CSAS depends on the break size. The 1
Containment Pressure High-High set point is        a. Containment Pressure - High      -High the controlling parameter since for all break sizes it takes longer to reach this set point than the SIAS set point.                                    This LCO requires four channels of CSAS Containment Pressure
                                                        - High to be OPERABLE in MODES 1, 2, and 3.
                                                            -High                                                                1 The Allowable Value is set high enough to allow for small pressure increases in containment expected during normal operation (i.e., plant heatup) and is not indicative of an offnormal condition. The setting is low enough to initiate the ESF Functions when an offnormal condition is indicated. This allows the ESF systems to perform as expected in the accident analyses to mitigate the consequences of the analyzed accidents.
The Containment Pressure - High setpoint is the same in the SIAS (Function 1), CSAS (Function 2), and CIAS (Function 3).            1 However, different sensors and logic are used in each of these Functions.
: 3. Containment Isolation Actuation Signal                                      1
: a. Containment Pressure - High This LCO requires four channels of CIAS Containment Pressure            1
                                                        - High to be OPERABLE in MODES 1, 2, and 3.
The Allowable Value is set high enough to allow for small pressure increases in containment expected during normal operation (i.e., plant heatup) and is not indicative of an offnormal condition. The setting is low enough to initiate the ESF Functions when an offnormal condition is indicated. This allows the ESF systems to perform as expected in the accident analyses to mitigate the consequences of the analyzed accidents.
The Containment Pressure - High setpoint is the same in the SIAS (Function 1), CSAS (Function 2), and CIAS (Function 3).            1 However, different sensors and logic are used in each of these Functions.                              is 3
3 Combustion Engineering STS                        B 3.3.4-12                                Rev. 5.0          1 St. Lucie - Unit 2                                                                            Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES LCO (continued)
: b. Containment Radiation - High This LCO requires four channels of CIAS Containment Radiation
                            - High to be OPERABLE in MODES 1, 2, and 3.
The Allowable Value is high enough to avoid unnecessary lR1 actuation, but adequate to provide diverse actuation of the CIAS              l in the event of a LOCA.
: 4. Main Steam Isolation Signal The MSIS is required to be OPERABLE in MODES 1, 2, and 3 except when all associated valves are closed.                              5      lR2
: a. Steam Generator Pressure - Low This LCO requires four channels of MSIS Steam Generator Pressure - Low for each steam generator to be OPERABLE in MODES 1, 2, and 3.
The Allowable Value is set below the full load operating value for steam pressure so as not to interfere with normal plant operation. However, the setting is high enough to provide the required protection for excessive steam demand. An excessive steam demand causes the RCS to cool down, resulting in a positive reactivity addition to the core. An MSIS is required to prevent the excessive cooldown.
This Function may be manually blocked when steam generator pressure is reduced during controlled plant cooldowns. The 700      block is permitted below 785 psia, and block permissive                1 responses are annunciated in the control room. This allows a controlled depressurization of the secondary system, while maintaining administrative control of ESF protection. From a blocked condition, the block will be removed automatically as 1
700    steam generator pressure increases above 785 psia, as sensed by two of the four sensor subsystems, in accordance with the bypass philosophy of removing bypasses when the enabling 1
conditions are no longer satisfied.
This LCO requires four channels per steam generator of the bypass removal for MSIS Steam Generator Pressure - Low to be OPERABLE in MODES 1, 2, and 3.
3 3
Combustion Engineering STS            B 3.3.4-13                                Rev. 5.0          1 St. Lucie - Unit 2                                                                Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES LCO (continued)
The bypass removal channels consist of four sensor subsystems and two actuation subsystems. This LCO applies to failures in the four sensor subsystems, including sensors, bistables, and associated equipment. Failures in the actuation subsystems, including the manual bypass key switches, are considered Actuation Logic failures and are addressed in LCO 3.3.5. 4                3 This LCO applies to the bypass removal feature only. If the bypass enable Function is failed so as to prevent entering a bypass condition, operation may continue.
The block permissive is set low enough so as not to be enabled during normal plant operation, but high enough to allow blocking prior to reaching the trip setpoint.
INSERT 1A                                                                            1
: 5. Recirculation Actuation Signal
: a. Refueling Water Tank Level - Low This LCO requires four channels of RWT Level - Low to be OPERABLE in MODES 1, 2, and 3.
The upper limit on the Allowable Value for this trip is set low enough to ensure RAS does not initiate before sufficient water is transferred to the containment sump. Premature recirculation could impair the reactivity control Function of safety injection by limiting the amount of boron injection. Premature recirculation could also damage or disable the recirculation system if recirculation begins before the sump has enough water to prevent air containment in the suction. The lower limit on the          1 RWT Level - Low trip Allowable Value is high enough to transfer suction to the containment sump prior to emptying the RWT.
entrainment
: 6. Auxiliary Feedwater Actuation Signal The AFAS logic actuates auxiliary feedwater (AFW) to a steam generator on low level in that generator unless it has been identified as being ruptured.                                                                lR2 the steam          each steam                              l 1
A low level in either generator, as sensed by a two-out-of-four coincidence of four wide range sensors for any generator, will              1 generate an AFAS start signal, which starts both trains of AFW the affected 3
3 Combustion Engineering STS                  B 3.3.4-14                                Rev. 5.0          1 St. Lucie - Unit 2                                                                      Revision XXX
 
ESFAS Instrumentation 3.3.3 1
INSERT 1A
: b. Containment Pressure - High This LCO requires four channels of MSIS Containment Pressure
  - High to be OPERABLE in MODES 1, 2, and 3.
The Allowable Value is set high enough to allow for small pressure increases in containment expected during normal operation (i.e., plant heatup) and is not indicative of an offnormal condition. The setting is low enough to initiate the ESF Functions when an offnormal condition is indicated. This allows the ESF systems to perform as expected in the accident analyses to mitigate the consequences of the analyzed accidents.
Insert B Page 3.3.3-14
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES
                                                                                  , and the feedwater header differential LCO (continued)                                                                pressure in both feedwater headers,        1 the affected pumps and feeds both steam generators. The AFAS also monitors                          1 one steam generator is lower than    the secondary differential pressure in both steam generators and the other steam generator, or the    initiates an AFAS block signal to a ruptured generator, if the pressure                      lR2 pressure in one feedwater header                                                                                            1 is lower than the other feedwater    in that generator is lower than that in the other generator by the header,                              differential pressure setpoint.
: a. Steam Generator A/B Level - Low This LCO requires four channels for each steam generator of Steam Generator Level - Low to be OPERABLE in MODES 1, 2, and 3.
The Allowable Value ensures adequate time exists to initiate AFW while the steam generators can function as a heat sink.
: b. Steam Generator Pressure Difference - High (SG-A > SG-B) or (SG-B > SG-A)
This LCO requires four channels per steam generator of Steam Generator Pressure Difference - High to be OPERABLE in MODES 1, 2, and 3.
The Allowable Value for this trip is high enough to allow for small pressure differences and normal instrumentation errors between the steam generator channels during normal operation without an actuation. The setting is low enough to detect and inhibit feeding of a ruptured steam generator in the event of an MSLB                          lR2 or FWLB, while permitting the feeding of the intact steam generator.
INSERT 1 1
The ESFAS channels satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
APPLICABILITY                All ESFAS Functions are required to be OPERABLE in MODES 1, 2, and 3. In MODES 1, 2, and 3 there is sufficient energy in the primary and secondary systems to warrant automatic ESF System responses to:
Close the main steam isolation valves to preclude a positive reactivity addition, Actuate AFW to preclude the loss of the steam generators as a heat sink (in the event the normal feedwater system is not available),
Actuate ESF systems to prevent or limit the release of fission product radioactivity to the environment by isolating containment and limiting the containment pressure from exceeding the containment design pressure during a design basis LOCA or MSLB, and 3
3 Combustion Engineering STS                      B 3.3.4-15                                      Rev. 5.0              1 St. Lucie - Unit 2                                                                                  Revision XXX
 
ESFAS Instrumentation 3.3.3 1
INSERT 1
: b. Feedwater Header Pressure Difference - High (FW-A > FW-B) or (FW-B > FW-A)
This LCO requires four channels per feedwater subsystem of Feedwater Header Pressure Difference - High to be OPERABLE in MODES 1, 2, and 3.
The Allowable Value for this trip is high enough to allow for small pressure differences and normal instrumentation errors between the feedwater header channels during normal operation without an actuation. The setting is low enough to detect and inhibit feeding of a ruptured steam generator in the event of an MSLB        lR2 or FWLB, while permitting the feeding of the intact steam generator.
Insert Page B 3.3.3-15
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES APPLICABILITY (continued)
Actuate ESF systems to ensure sufficient borated inventory to permit adequate core cooling and reactivity control during a design basis LOCA or MSLB accident.
4 In MODES 4, 5, and 6, automatic actuation of ESFAS Functions is not required because adequate time is available for plant operators to evaluate plant conditions and respond by manually operating the ESF 4 3
components, if required, as addressed by LCO 3.3.5. In LCO 3.3.5, manual capability is required for Functions other than AFAS in MODE 4, even though automatic actuation is not required. Because of the large number of components actuated on each ESFAS, actuation is simplified by the use of the Manual Trip push buttons. Manual Trip of AFAS is not required in MODE 4 because AFW or shutdown cooling will already be in                      1 operation in this MODE.        Actuation                    Actuation The ESFAS Actuation Logic must be OPERABLE in the same MODES as the automatic and Manual Trip. In MODE 4, only the portion of the ESFAS logic responsible for the required Manual Trip must be                              1 OPERABLE.                      Actuation              Actuation In MODES 5 and 6, ESFAS initiated systems are either reconfigured or disabled for shutdown cooling operation. Accidents in these MODES are slow to develop and would be mitigated by manual operation of individual components.
ACTIONS            The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by the plant specific setpoint analysis.
Typically, the drift is small and results in a delay of actuation rather than a total loss of function. Determination of setpoint drift is generally made during the performance of a CHANNEL FUNCTIONAL TEST when the process instrument is set up for adjustment to bring it to within specification. If the actual trip setpoint is nonconservative with respect to the Allowable Value in Table 3.3.4-1, the channel is inoperable and the                3 appropriate Condition(s) are entered. 3 3
In the event a channel's trip setpoint is found nonconservative with 3
respect to the Allowable Value in Table 3.3.4-1, or the channel is not functioning as required, or the sensor, instrument loop, signal processing electronics, or ESFAS bistable is found inoperable, then all affected Functions provided by that channel must be declared inoperable and the plant must enter the Condition statement for the particular protection Function affected.
3 3
Combustion Engineering STS            B 3.3.4-16                                    Rev. 5.0            1 St. Lucie - Unit 2                                                                        Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES ACTIONS (continued)
When the number of inoperable channels in a trip Function exceeds those specified in any related Condition associated with the same trip Function, then the plant is outside the safety analysis. Therefore, LCO 3.0.3 should be immediately entered if applicable in the current MODE of operation.
A Note has been added to clarify the application of the Completion Time rules. The Conditions of this Specification may be entered independently for each Function in Table 3.3.4-1. Completion Times for the inoperable              3 channel of a Function will be tracked separately.
3 INSERT A          [ A.1                                                                                  2 Condition A applies to one CSAS Containment Pressure - High channel INSERT B            inoperable. CSAS logic is identical to that of the other ESFAS Functions; however, the inadvertent actuation of a CSAS is undesirable, since it may            1 INSERT C            damage equipment inside containment. For this reason, placing the inoperable channel in trip is not an option as it is in Conditions B and C. ]
[ For those plants in which the SIAS is required for a complete CSAS actuation, Condition B for one ESFAS channel inoperable and Condition C for two ESFAS channels inoperable may be preferable to Condition A.
If one CSAS channel is inoperable, operation is allowed to continue, providing the inoperable channel is placed in bypass within 1 hour. The Completion Time of 1 hour allotted to bypass the channel is sufficient to allow the operator to take all appropriate actions for the failed channel and still ensures that the risk involved in operating with the failed channel is acceptable. ]
D  D          D B.1, B.2.1, and B.2.2                                                            3 D
Condition B applies to the failure of a single channel of one or more input      3 parameters in the following ESFAS Functions:
: 1. Safety Injection Actuation Signal Containment Pressure - High
: 2. Containment Spray Actuation Signal      Pressurizer Pressure - Low                                                    1 Containment Pressure - High-High
: 3. Containment Isolation Actuation Signal Containment Pressure - High Containment Radiation - High 3
3 Combustion Engineering STS                    B 3.3.4-17                                  Rev. 5.0          1 St. Lucie - Unit 2                                                                            Revision XXX
 
ESFAS Instrumentation 3.3.3 1
INSERT A A.1, A.2.1, and A.2.2 Condition A applies to the failure of a single channel of one or more input parameters in the        lR1 Containment Spray Actuation Signal (CSAS) ESFAS Function.
CSAS coincidence logic is normally two-out-of-four. If one CSAS channel is inoperable, startup or power operation is allowed to continue as long as action is taken to restore the design level of redundancy.
If one CSAS channel is inoperable, startup or power operation is allowed to continue, providing the inoperable channel is placed in bypass or trip within 1 hour (Required Action A.1). With one channel in bypass, no additional random failure of a single channel could spuriously cause an actuation and a valid trip signal can still cause an actuation. With one channel in trip, an additional random failure of a single channel could spuriously cause an actuation. Therefore, it is preferable to place an inoperable channel in bypass rather than trip.
The Completion Time of 1 hour allotted to bypass or trip the channel is sufficient to allow the operator to take all appropriate actions for the failed channel and still ensures that the risk involved in operating with the failed channel is acceptable.
One failed channel is restored to OPERABLE status or is placed in trip within 48 hours (Required Action A.2.1 or A.2.2). Required Action A.2.1 restores the full capability of the function. Required Action A.2.2 places the function in a one-out-of-three configuration. In this configuration, a common cause failure of the operable channels cannot prevent ESFAS                  lR2 actuation. The 48 hour Completion Time is based upon operating experience, which has demonstrated that a random failure of a second channel occurring during the 48 hour period is a low probability event.
Insert Page B 3.3.3-17
 
ESFAS Instrumentation 3.3.3 1
INSERT B B.1 and B.2 Condition B applies to the failure of a single channel of one or more input parameters in the Containment Sump Recirculation Actuation Signal (RAS) ESFAS Function.
ESFAS coincidence logic is normally two-out-of-four. If one ESFAS channel is inoperable, startup or power operation is allowed to continue as long as action is taken to restore the design level of redundancy.
If one ESFAS channel is inoperable, startup or power operation is allowed to continue, providing the inoperable channel is placed in bypass or trip within 1 hour (Required Action B.1). With one channel in bypass, no additional random failure of a single channel could spuriously cause an actuation and a valid trip signal can still cause an actuation. With one channel in trip, an additional random failure of a single channel could spuriously cause an actuation. Therefore, it is preferable to place an inoperable channel in bypass rather than trip.
The Completion Time of 1 hour allotted to bypass or trip the channel is sufficient to allow the operator to take all appropriate actions for the failed channel and still ensures that the risk involved in operating with the failed channel is acceptable.
The failed channel is restored to OPERABLE status within 48 hours (Required Action B.2).
Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program (Required Action B.2). The 48 hour Completion Time is based upon operating experience, which has demonstrated that a random failure of a second channel occurring during the 48 hour period is a low probability event.
Insert B Page 3.3.3-17
 
ESFAS Instrumentation 3.3.3 1
INSERT C C.1, C.2.1, C.2.2.1, C.2.2.2 Condition C applies to the failure of a single channel of one or more input parameters in the Auxiliary Feedwater Actuation Signal (AFAS) ESFAS Function.
AFAS coincidence logic is normally two-out-of-four. If one AFAS channel is inoperable, startup or power operation is allowed to continue as long as action is taken to restore the design level of redundancy.
If one AFAS channel is inoperable, startup or power operation is allowed to continue, providing the inoperable channel is placed in bypass or trip within 1 hour (Required Action C.1). With one channel in bypass, no additional random failure of a single channel could spuriously cause an actuation and a valid trip signal can still cause an actuation. With one channel in trip, an additional random failure of a single channel could spuriously cause an actuation. Therefore, it is preferable to place an inoperable channel in bypass rather than trip.
The Completion Time of 1 hour allotted to bypass or trip the channel is sufficient to allow the operator to take all appropriate actions for the failed channel and still ensures that the risk involved in operating with the failed channel is acceptable.
One failed channel is restored to OPERABLE status or is placed in bypass within 48 hours (Required Action C.2.1 or C.2.2.1). Required Action C.2.1 restores the full capability of the        lR1 function. If the inoperable channel cannot be restored to OPERABLE status within 48 hours            l  lR2 l
then both actuation relays (AFAS-1 and AFAS-2) in the inoperable channel must be placed in                l bypass. Required Action C.2.2.1 places the function in a two-out-of-three configuration by                l placing AFAS-1 and AFAS-2 in bypass. In this configuration, a single failure with one channel in          l l
indefinite trip will not result in actuation of the Auxiliary Feedwater System pumping water into a      l ruptured feedwater header. The 48 hour Completion Time is based upon operating experience,                l which has demonstrated that a random failure of a second channel occurring during the 48 hour period is a low probability event.
Additionally, the failed channel must be restored to OPERABLE status prior to entering MODE 3 following the next MODE 5 entry. The Completion Time of Required Action C.2.2.2 is based on a single failure evaluation, which allows a two-out-of-three channel operation since no single            lR2 failure will cause or prevent an actuation. However, it is expected that the inoperable channel          l will be restored to OPERABLE status at the first reasonable opportunity. The determination of the first reasonable opportunity should include consideration of the impact on plant risk (from delaying restoration of the channel as well as any plant configuration changes required or shutting the plant down to repair the channel) and impact on any analysis assumptions, in addition to unit conditions, planning, availability of personnel, and the time required to repair the channel. This risk impact should be managed through the program in place to implement 10 CFR 50.65(a)(4) and NRC Regulatory Guide 1.160, "Monitoring the Effectiveness of Maintenance at Nuclear Power Plants."
Condition C is modified by a Note requiring Required Action C.2.2.2 to be completed whenever the Condition is entered even when the LCO is no longer applicable to ensure the channel is restored to OPERABLE prior to the next reactor startup from MODE 5 conditions.
Insert Page B 3.3.3-17
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES ACTIONS (continued)
: 4. Main Steam Isolation Signal Steam Generator Pressure - Low                                                      1
: 5. Recirculation Actuation Signal                                                1 Refueling Water Tank Level - Low
: 6. Auxiliary Feedwater Actuation Signal 1
Steam Generator Level - Low Steam Generator Pressure Difference - High ESFAS coincidence logic is normally two-out-of-four. If one ESFAS channel is inoperable, startup or power operation is allowed to continue as long as action is taken to restore the design level of redundancy.
D If one ESFAS channel is inoperable, startup or power operation is allowed to continue, providing the inoperable channel is placed in bypass or trip within 1 hour (Required Action B.1). With one channel in bypass, no                        3 additional random failure of a single channel could spuriously trip the cause an actuation reactor and a valid trip signal can still trip the reactor. With one channel              1 in trip, an additional random failure of a single channel could spuriously cause an actuation trip the reactor. Therefore, it is preferable to place an inoperable channel              1 in bypass rather than trip.                  cause an actuation The Completion Time of 1 hour allotted to bypass or trip the channel is sufficient to allow the operator to take all appropriate actions for the failed channel and still ensures that the risk involved in operating with the failed channel is acceptable.
INSERT D  One failed channel is restored to OPERABLE status or is placed in trip within [48] hours [or in accordance with the Risk Informed Completion                      2 Time Program] (Required Action B.2.1 or B.2.2). Required Action B.2.1 restores the full capability of the function. Required Action B.2.2 places the function in a one-out-of-three configuration. In this configuration, common cause failure of the dependent channel cannot prevent ESFAS actuation. The [48] hour Completion Time is based upon operating experience, which has demonstrated that a random failure of a secod channel occurring during the [48] hour period is a low probability event.
[Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]
INSERT E F
3 C.1 and C.2                                                                              8    lR2 F
Condition C applies to the failure of two channels in any of the following            3 ESFAS functions:
3 3
Combustion Engineering STS                  B 3.3.4-18                                  Rev. 5.0              1 St. Lucie - Unit 2                                                                        Revision XXX
 
ESFAS Instrumentation 3.3.3 1
INSERT D Additionally, the failed channel must be restored to OPERABLE status prior to entering MODE 3 following the next MODE 5 entry. The Completion Time of Required Action D.2 is based on adequate channel to channel independence, which allows a two-out-of-three channel operation since no single failure will cause or prevent an actuation. However, it is expected that the        lR2 inoperable channel will be restored to OPERABLE status at the first reasonable opportunity.
The determination of the first reasonable opportunity should include consideration of the impact on plant risk (from delaying restoration of the channel as well as any plant configuration changes required or shutting the plant down to repair the channel) and impact on any analysis assumptions, in addition to unit conditions, planning, availability of personnel, and the time required to repair the channel. This risk impact should be managed through the program in place to implement 10 CFR 50.65(a)(4) and NRC Regulatory Guide 1.160, "Monitoring the Effectiveness of Maintenance at Nuclear Power Plants."
Condition D is modified by a Note requiring Required Action D.2 to be completed whenever the Condition is entered even when the LCO is no longer applicable to ensure the channel is restored to OPERABLE prior to the next reactor startup from MODE 5 conditions.
Insert Page B 3.3.3-18
 
ESFAS Instrumentation 3.3.3 1
INSERT E E.1 and E.2 Condition E applies to failure of two or more channels in the Auxiliary Feedwater Actuation Signal (AFAS) ESFAS Function or two channel in the Containment Spray Actuation System (CSAS) ESFAS Function.                                                                            lR2 With two inoperable channels, one channel should be placed in bypass, and the other channel should be placed in trip within the 1-hour Completion Time. With one channel of protective instrumentation bypassed, the ESFAS Function is in two-out-of-three logic, but with another channel failed the ESFAS may be operating with a two-out-of-two logic. This is outside the assumptions made in the analyses and should be corrected. To correct the problem, the second channel is placed in trip. This places the ESFAS in a one-out-of-two logic. If any of the other OPERABLE channels receives a trip signal, ESFAS actuation will occur.
One of the failed channels should be restored to OPERABLE status within 48 hours. The 48-hour Completion Time is based upon operating experience, which has demonstrated that a random failure of a second channel occurring during the 48-hour period is a low probability event. Alternatively, a Completion Time can be determined in accordance with the Risk            lR2 l
Informed Completion Time Program.                                                                l After one channel is restored to OPERABLE status, the provisions of Condition C still apply to lR2 the remaining inoperable AFAS channel and the provisions of Condition A still apply to the        l remaining inoperable CSAS channel. Therefore, the AFAS channel that is still inoperable after    l completion of Required Action E.2 must be placed in bypass and the CSAS channel that is still    l l
inoperable after completion of Required Action E.2 must be placed in trip.                        l Insert Page B 3.3.3-18
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES ACTIONS (continued)
: 1. Safety Injection Actuation Signal Containment Pressure - High Pressurizer Pressure - Low
: 3. Containment Isolation Actuation Signal Containment Pressure - High Containment Radiation - High
: 4. Main Steam Isolation Signal Steam Generator Pressure - Low Containment Pressure - High                                                  1
: 5. Recirculation Actuation Signal Refueling Water Tank Level - Low
: 6. Auxiliary Feedwater Actuation Signal                                      1 Steam Generator Level - Low Steam Generator Pressure Difference - High With two inoperable channels, one channel should be placed in bypass, and the other channel should be placed in trip within the 1 hour Completion Time. With one channel of protective instrumentation bypassed, the ESFAS Function is in two-out-of-three logic, but with another channel failed the ESFAS may be operating with a two-out-of-two logic. This is outside the assumptions made in the analyses and should be corrected. To correct the problem, the second channel is placed in trip. This places the ESFAS in a one-out-of-two logic. If any of the other The provisions of Condition B or D, as OPERABLE channels receives a trip signal, ESFAS actuation will occur.                lR2 applicable, continue to apply to the                                                                                        l inoperable channels requiring                                                                                              l restoration to OPERABLE status        One of the failed channels should be restored to OPERABLE status                    l within the Completion Times of        within [48] hours, for reasons similar to those stated under Condition B.      8 l
Required Action B.2 or D.2, as        After one channel is restored to OPERABLE status, the provisions of                  l applicable.                                                                                                                l Condition B still apply to the remaining inoperable channel. Therefore,              l the channel that is still inoperable after completion of Required Action C.2        l l
must be placed in trip if more than [48] hours has elapsed since the initial        l channel failure.                                                                    l G    G      G                G D.1, D.2.1, D.2.2.1, and D.2.2.2 G                                                                3 Condition D applies to the failure of one bypass removal channel.
G The bypass removal channels consist of four sensor subsystems and two actuation subsystems. Condition D applies to failures in one of the four      3 sensor subsystems, including sensors, bistables, and associated 3
3 Combustion Engineering STS                      B 3.3.4-19                              Rev. 5.0          1 St. Lucie - Unit 2                                                                      Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES ACTIONS (continued) equipment. Failures in the actuation subsystems, including the manual bypass key switches, are considered Actuation Logic failures and are 3
addressed in LCO 3.3.5. 4 G
In Condition D, it is permissible to continue operation with one bypass              3 permissive removal channel failed, providing the bypass is disabled (Required Action D.1). This can be accomplished by removing the                      3 bypass with the manual bypass key switch, which disables the bypass in its respective      both trains. Since the bypass Function must be manually enabled, the                  1 bypass permissive Function will not by itself cause an undesired bypass insertion.
Alternatively, the bypass may be disabled by defeating the bypass permissive input in one of the four channels to the two-out-of-four bypass removal logic, placing the bypass removal feature in one-out-of-three logic. Thus, any of the remaining three channels is capable of removing the bypass feature when the bypass enable conditions are no longer valid.
If the bypass removal feature in the inoperable channel cannot be defeated, actions to address the inoperability of the affected automatic G
trip channel must be taken. Required Action D.2.1, Required Action D.2.2.1, and Required Action D.2.2.2 are equivalent to the                3 G
Required Actions for a single automatic trip channel failure (Condition B).              lR2 l
The Completion Times have the same bases as discussed for                      5          l The Completion Time of 1 hour to disable the bypass              Condition B. [Alternatively, a Completion Time can be determined in                      l channel or place the affected            accordance with the Risk Informed Completion Time Program.]                      2        l trip units in bypass or trip is                                                                                                    l sufficient to allow the                                                                                                            l H    H        H                                                                        l operator to take all appropriate actions for the              E.1, E.2.1, and E.2.2                                                                    l failed channel and still                                                                                                          l H                                                                        3      l ensures that the risk involved in operating with the failed            Condition E applies to two inoperable bypass removal channels. The                        l l
channel is acceptable.                  bypass removal channels consist of four sensor subsystems and two                        l actuation subsystems. This Condition applies to failures in two of the four sensor subsystems. With two of the four sensor subsystems failed in a nonconservative direction (enabling the bypass Function), the bypass removal feature is in two-out-of-two logic. Failures in the actuation subsystems, including the manual bypass key switches, are considered                3 Actuation Logic failures and are addressed in LCO 3.3.5. 4 H
In Condition E, it is permissible to continue operation with two bypass permissive channels failed, providing the bypasses are disabled in a              3 similar manner as discussed for Condition D.
The 48 hour Completion Time is based upon                                                  G                                            lR2 operating experience, which has demonstrated that                                                                                        l a random failure of a second channel occurring                                                                                          l during the 48 hour period is a low probability event.                                                                                    l 3
3 Combustion Engineering STS                        B 3.3.4-20                                Rev. 5.0              1 St. Lucie - Unit 2                                                                          Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES ACTIONS (continued)
If the failed bypasses cannot be disabled, actions to address the H inoperability of the affected automatic trip channels must be taken.
Required Action E.2.1 and Required Action E.2.2 are equivalent to the                                3 H
Required Actions for a two automatic trip channel failure (Condition C).
F Also similar to Condition C, after one set of inoperable channels is F G
restored, the provisions of Condition D still apply to the remaining                                  3 inoperable channel, with the Completion Time measured from the point of the initial bypass channel failure. The Completion Times have the same bases as discussed for Condition C. [Alternatively, a Completion Time                              3 2
can be determined in accordance with the Risk Informed Completion Time Program.]                              G I          I F.1 and F.2
                                            , F, G, or H                                                                    3 If the Required Actions and associated Completion Times of Condition A, B, C, D, or E are not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within
[12] hours. The allowed Completion Times are reasonable, based on                                      2 operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
3 SURVEILLANCE          The SRs for any particular ESFAS Function are found in the SRs column                                    3 REQUIREMENTS          of Table 3.3.4-1 for that Function. Most functions are subject to CHANNEL CHECK, CHANNEL FUNCTIONAL TEST, CHANNEL CALIBRATION, and response time testing.
                      -----------------------------------REVIEWERS NOTE-----------------------------------
In order for a unit to take credit for topical reports as the basis for justifying Frequencies, topical reports should be supported by an NRC                                    10  lR2 staff Safety Evaluation Report that establishes the acceptability of each topical report for that unit.
                      -------------------------------- REVIEWERS NOTE ------------------------------------
Notes a and b are applied to the setpoint verification Surveillances for each ESFAS Instrumentation (Analog) Function in Table 3.3.4-1 unless one or more of the following exclusions apply:
10  lR2
: 1. Manual actuation circuits, automatic actuation logic circuits or instrument functions that derive input from contacts which have no associated sensor or adjustable device, e.g., limit switches, breaker position switches, manual actuation switches, float switches, proximity 3
3 Combustion Engineering STS                  B 3.3.4-21                                            Rev. 5.0                1 St. Lucie - Unit 2                                                                                    Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES SURVEILLANCE REQUIREMENTS (continued) detectors, etc. are excluded. In addition, those permissives and interlocks that derive input from a sensor or adjustable device that is tested as part of another TS function are excluded.
: 2. Settings associated with safety relief valves are excluded. The performance of these components is already controlled (i.e., trended with as-left and as-found limits) under the ASME Code for Operation 10 lR2 and Maintenance of Nuclear Power Plants testing program.
: 3. Functions and Surveillance Requirements which test only digital components are normally excluded. There is no expected change in result between SR performances for these components. Where separate as-left and as-found tolerance is established for digital component SRs, the requirements would apply.
3 SR 3.3.4.1                                                                                          3 Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.
Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. If the channels are within the criteria, it is an indication that the channels are OPERABLE. If the channels are normally off scale during times when Surveillance is required, the CHANNEL CHECK will only verify that they are off scale in the same direction. Offscale low current loop channels are verified to be reading at the bottom of the range and not failed downscale.
[ The Frequency of about once every shift is based on operating experience that demonstrates channel failure is rare. Since the probability of two random failures in redundant channels in any 12 hour period is extremely low, the CHANNEL CHECK minimizes the chance of                                  2 loss of protective function due to failure of redundant channels. The 3
3 Combustion Engineering STS                  B 3.3.4-22                                            Rev. 5.0            1 St. Lucie - Unit 2                                                                                    Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES SURVEILLANCE REQUIREMENTS (continued)
CHANNEL CHECK supplements less formal, but more frequent, checks 2
of CHANNEL OPERABILITY during normal operational use of displays associated with the LCO required channels.
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                                      -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                  10  lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                                      ------------------------------------------------------------------------------------------------ ]
3 SR 3.3.4.2                                                                                          3
[ A CHANNEL FUNCTIONAL TEST is performed every [92] days to ensure 2
the entire channel will perform its intended function when needed.
OR The Surveillance Frequency is controlled under the Surveillance                                    6      lR2 Frequency Control Program.
                                      -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                        lR2 10 description, given above, and the appropriate choice of Frequency in the Move to end of this            Surveillance Requirement.
SR 3.3.3.2 description
                                      ------------------------------------------------------------------------------------------------ ]
A CHANNEL FUNCTIONAL                  A successful test of the required contact(s) of a channel relay may be TEST on each ESFAS instrument        performed by the verification of the change of state of a single contact of                          1 channel is performed to ensure the entire channel will perform its the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL intended function when needed.        TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.
The CHANNEL FUNCTIONAL TEST tests the individual sensor subsystems using an analog test input to each bistable.
3 3
Combustion Engineering STS                          B 3.3.4-23                                            Rev. 5.0              1 St. Lucie - Unit 2                                                                                          Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES SURVEILLANCE REQUIREMENTS (continued) acceptance criteria band A test signal is superimposed on the input in one channel at a time to 1
verify that the bistable trips within the specified tolerance around the setpoint. Any setpoint adjustment shall be consistent with the assumptions of the plant specific setpoint analysis.
The as-found and as-left values must also be recorded and reviewed for consistency with the assumptions of the surveillance interval extension analysis. The requirements for this review are outlined in Reference [10].            2      lR2 9                l l
SR 3.3.4.2 is modified by two Notes as identified in Table 3.3.4-1. The                      l l
first Note requires evaluation of channel performance for the condition                      l where the as-found setting for the channel setpoint is outside its as-found                  l tolerance but conservative with respect to the Allowable Value.                              l l
Evaluation of channel performance will verify that the channel will                          l continue to behave in accordance with safety analysis assumptions and                        l the channel performance assumptions in the setpoint methodology. The                          l l
purpose of the assessment is to ensure confidence in the channel                              l performance prior to returning the channel to service. For channels                          l l
determined to be OPERABLE but degraded, after returning the channel to                        l service the performance of these channels will be evaluated under the                        l plant Corrective Action Program. Entry into the Corrective Action                            l l
Program will ensure required review and documentation of the condition.                      l 9
The second Note requires that the as-left setting for the channel be                          l returned to within the as-left tolerance of the [LTSP]. Where a setpoint                      l l
more conservative than the [LTSP] is used in the plant surveillance                          l procedures [NTSP], the as-left and as-found tolerances, as applicable,                        l l
will be applied to the surveillance procedure setpoint. This will ensure                      l that sufficient margin to the Safety Limit and/or Analytical Limit is                        l maintained. If the as-left channel setting cannot be returned to a setting                    l l
within the as-left tolerance of the [LTSP], then the channel shall be                        l declared inoperable.                                                                          l l
l The second Note also requires that [LTSP] and the methodologies for                          l calculating the as-left and the as-found tolerances be in [insert the facility                l l
FSAR reference or the name of any document incorporated into the                              l facility FSAR by reference].                                                                  l 3
SR 3.3.4.3                                                                              3 3                                                        3 SR 3.3.4.3 is a CHANNEL FUNCTIONAL TEST similar to SR 3.3.4.2,                          3 except 3.3.4.3 is performed within 92 days prior to startup and is only            1 applicable to bypass Functions. These include the Pressurizer Pressure -
Low bypass and the MSIS Steam Generator Pressure - Low bypass. A successful test of the required contact(s) of a channel relay may be 3
3 Combustion Engineering STS            B 3.3.4-24                                    Rev. 5.0            1 St. Lucie - Unit 2                                                                    Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES SURVEILLANCE REQUIREMENTS (continued) performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.
The CHANNEL FUNCTIONAL TEST for proper operation of the bypass                                    lR2 l
removal Functions is critical during plant heatups because the bypasses                            l may be in place prior to entering MODE 3 but must be removed at the                                l appropriate points during plant startup to enable the ESFAS Function.                              l 1      l Consequently, just prior to startup is the appropriate time to verify bypass                      l removal Function OPERABILITY. Once the bypasses are removed, the                                  l l
bypasses must not fail in such a way that the associated ESFAS Function                            l is inappropriately bypassed. This feature is verified by the appropriate                          l ESFAS Function CHANNEL FUNCTIONAL TEST.                                                            l l
Frequency l
The allowance to conduct this Surveillance within 92 days of startup is                    1 l
based upon the reliability analysis presented in topical report CEN-327,                          l l
                          "RPS/ESFAS Extended Test Interval Evaluation" (Ref. 11).                        9                  l The Surveillance Frequency is controlled under the                1 3              Surveillance Frequency Control Program.
SR 3.3.4.4                                                                                  3 CHANNEL CALIBRATION is a complete check of the instrument channel, including the sensor. The Surveillance verifies that the channel responds to a measured parameter within the necessary range and accuracy.
CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drift between successive calibrations to ensure that the channel remains operational between successive surveillances.
CHANNEL CALIBRATIONS must be performed consistent with the plant specific setpoint analysis.
The as-found and as-left values must also be recorded and reviewed for consistency with the assumptions of the extension analysis. The                                    lR2 l
requirements for this review are outlined in Reference [10].                              1      l 9
[ The Frequency is based upon the assumption of an [18] month calibration interval for the determination of the magnitude of equipment drift in the                  2 setpoint analysis.
OR The Surveillance Frequency is controlled under the Surveillance                              6    lR2 Move to end of this Frequency Control Program.
SR 3.3.3.4 description 3
3 Combustion Engineering STS                  B 3.3.4-25                                            Rev. 5.0          1 St. Lucie - Unit 2                                                                                  Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES SURVEILLANCE REQUIREMENTS (continued)
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                    10  lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]
SR 3.3.4.4 is modified by two Notes as identified in Table 3.3.4-1. The                                    lR2 l
first Note requires evaluation of channel performance for the condition                                    l where the as-found setting for the channel setpoint is outside its as-found                                l tolerance but conservative with respect to the Allowable Value.                                            l l
Evaluation of channel performance will verify that the channel will                                        l continue to behave in accordance with safety analysis assumptions and                                      l l
the channel performance assumptions in the setpoint methodology. The                                      l purpose of the assessment is to ensure confidence in the channel                                          l performance prior to returning the channel to service. For channels                                        l l
determined to be OPERABLE but degraded, after returning the channel to                                    l service the performance of these channels will be evaluated under the                                      l plant Corrective Action Program. Entry into the Corrective Action                                          l l
Program will ensure required review and documentation of the condition.                                    l The second Note requires that the as-left setting for the channel be                              9      l l
returned to within the as-left tolerance of the [LTSP]. Where a setpoint                                  l more conservative than the [LTSP] is used in the plant surveillance                                        l procedures [NTSP], the as-left and as-found tolerances, as applicable,                                    l l
will be applied to the surveillance procedure setpoint. This will ensure                                  l that sufficient margin to the Safety Limit and/or Analytical Limit is                                      l maintained. If the as-left channel setting cannot be returned to a setting                                l l
within the as-left tolerance of the [LTSP], then the channel shall be                                      l declared inoperable.                                                                                      l l
l The second Note also requires that [LTSP] and the methodologies for                                        l calculating the as-left and the as-found tolerances be in [insert the facility                            l l
FSAR reference or the name of any document incorporated into the                                          l facility FSAR by reference].                                                                              l 3
SR 3.3.4.5                                                                                            2 This Surveillance ensures that the train actuation response times are the maximum values assumed in the safety analyses. Individual component response times are not modeled in the analyses. The analysis models the overall or total elapsed time, from the point at which the parameter exceeds the trip setpoint value at the sensor to the point at which the equipment in both trains reaches the required functional state (e.g.,
3 3
Combustion Engineering STS                B 3.3.4-26                                            Rev. 5.0              1 St. Lucie - Unit 2                                                                                  Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES SURVEILLANCE REQUIREMENTS (continued) pumps at rated discharge pressure, valves in full open or closed position).
Response time testing acceptance criteria are included in Reference 5.
The test may be performed in one measurement or in overlapping segments, with verification that all components are measured.
                            -----------------------------------REVIEWERS NOTE-----------------------------------
Applicable portions of the following TS Bases are applicable to plants adopting CEOG Topical Report CE NPSD-1167-1, "Elimination of                                                lR2 10 Pressure Sensor Response Time Testing Requirements," and the methodology contained in Attachment 1 to TSTF-569.
Response time may be verified by any series of sequential, overlapping or total channel measurements, including allocated sensor response time, such that the response time is verified. Allocations for sensor response times may be obtained from records of test results, vendor test data, or vendor engineering specifications. Topical Report CE NPSD-1167-A,                                          lR2 l
                            "Elimination of Pressure Sensor Response Time Testing Requirements,"                                        l 10 (Ref. 12) provides the basis and methodology for using allocated sensor                            1        l response times in the overall verification of the channel response time for                                l l
specific sensors identified in the Topical Report. The response time may                                    l be verified for components that replace the components that were                                            l 10                                                                                                        1      l previously evaluated in Ref. 12 provided that the components have been                                      l evaluated in accordance with the NRC approved methodology as                                                l discussed in Attachment 1 to TSTF-569, "Methodology to Eliminate                                            l l
Pressure Sensor and Protection Channel (for Westinghouse Plants only)                                      l 11 Response Time Testing," (Ref. 13). Response time verification for other                            1      l sensor types must be demonstrated by test. The allocation of sensor                                        l l
response times must be verified prior to placing a new component in                                        l operation and reverified after maintenance that may adversely affect the                                    l l
sensor response time.
[ ESF RESPONSE TIME tests are conducted on a STAGGERED TEST BASIS of once every [18] months. This results in the interval between successive tests of a given channel of n x 18 months, where n is the number of channels in the Function. Surveillance of the final actuation devices, which make up the bulk of the response time, is included in the                              2 testing of each channel. Therefore, staggered testing results in response time verification of these devices every [18] months. The [18] month STAGGERED TEST BASIS Frequency is based upon plant operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences.
OR 3
3 Combustion Engineering STS                          B 3.3.4-27                                            Rev. 5.0              1 St. Lucie - Unit 2                                                                                            Revision XXX
 
ESFAS Instrumentation (Analog)
B 3.3.4 3
3 BASES SURVEILLANCE REQUIREMENTS (continued)
The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                          -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                      10  lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                          ------------------------------------------------------------------------------------------------ ]
REFERENCES                1. Regulatory Guide 1,105, "Setpoints for Safety-Related                                                  lR2 Instrumentation," Revision 3.
1
: 2. 10 CFR 50, Appendix A.                                                                                lR2
: 3. 10 CFR 100.          50.67                                                                            lR2
: 4. FSAR, Section [7.3].                                                                              2 lR2 U
2
: 5. NRC Safety Evaluation Report, [Date].
5  6. IEEE Standard 279-1971.                                                                                lR2 6  7. FSAR, Chapter [14].            15                                                                2    lR2 U
7  8. 10 CFR 50.49.                                                                                          lR2 IC-3.17, FPL Setpoint Standard.
1 8  9.    "Plant Protection System Selection of Trip Setpoint Values."                                          lR2 2
: 10. FSAR, Section [7.2].
lR2 9    11. CEN-327, June 2, 1986, including Supplement 1, March 3, 1989.                                1        l 10                                            May                                                  January                l
: 12. CEOG Topical Report CE NPSD-1167-A, "Elimination of Pressure                              1          l l
Sensor Response Time Testing Requirements."                                                            l 11                                                                                                                        l
: 13. Attachment 1 to TSTF-569, "Methodology to Eliminate Pressure                                1          l l
Sensor and Protection Channel (for Westinghouse Plants only)                                          l Response Time Testing."                                                                                l 3
3 Combustion Engineering STS                        B 3.3.4-28                                            Rev. 5.0                1 St. Lucie - Unit 2                                                                                          Revision XXX
 
JUSTIFICATION FOR DEVIATIONS ITS 3.3.3, BASES, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS) INSTRUMENTATION
: 1. Changes are made (additions, deletions, and/or changes) to the ISTS Bases that reflect the plant specific nomenclature, number, reference, system description, analysis, licensing basis, or licensing basis description.
: 2. The ISTS contains bracketed information and/or values that are generic to all Combustion Engineering vintage plants. The brackets are removed, and the proper plant specific information/value is provided. This is acceptable since the information/value is changed to reflect the current licensing basis.
: 3. The heading for ISTS 3.3.4 includes the parenthetical expression (Analog). This identifying information is not included in the PSL ITS. This information is provided in the NUREG-1432, Rev. 5.0 to assist in identifying the appropriate Specifications to be used as a model for a plant-specific ITS conversion but serves no purpose in a plant-specific implementation. In addition, Reactor Protective System (RPS)              lR2 Instrumentation - Shutdown (ISTS 3.3.2) is renumbered as ITS 3.3.12. Therefore,          l l
the Engineered Safety Features Actuation System (ESFAS) Instrumentation                  l (ISTS 3.3.4) is renumbered as ITS 3.3.3 and subsequent Specifications renumbered        l l
accordingly.
: 4. Not used.                                                                                lR2
: 5. Changes are made to reflect changes to the Specification consistent with the current      lR2 l
licensing basis.
: 6. Changes are made to reformat the positioning of text in ISTS for consistency with        lR2 l
similar text in other sections.
: 7. Text is deleted to reflect the Unit 1 logic design. The ESFAS logic does not include a    lR2 common bistable for measured parameters that satisfy multiple ESFAS functions.          l
: 8. ISTS 3.3.4, Required Action C.2 is not included Unit 2 ITS 3.3.3, ACTION F                lR2 l
consistent with the PSL current licensing basis that allows one inoperable trip unit to  l be in trip and the other inoperable trip unit in bypass similar to ISTS 3.3.5 (Digital), l l
Required Action B.1. Therefore, the corresponding Bases paragraph is modified to        l reflect the changes to the Specification and clarify the ITS requirements.              l Specifically, the provisions of Condition B or D, as applicable, continue to apply to    l l
the inoperable channels requiring restoration to OPERABLE status within the              l Completion Times of Required Action B.2 or D.2, as applicable.                          l lR2
: 9. FPL is retaining the PSL CTS Trip Setpoints in PSL ITS. Thus, changes are made            l (additions, deletions, and/or changes) to the ISTS Bases that reflect the plant          l specific licensing basis.                                                                l lR2
: 10. The Reviewer's Note has been deleted. This information is for the NRC reviewer to        l be keyed into what is needed to meet this requirement. This Note is not meant to be      l retained in the final version of the plant specific submittal.                          l St. Lucie Unit 1 and Unit 2              Page 1 of 1
 
Specific No Significant Hazards Considerations (NSHCs)
DETERMINATION OF NO SIGNIFICANT HAZARDS CONSIDERATIONS ITS 3.3.3, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
INSTRUMENTATION There are no specific No Significant Hazards Considerations for this Specification.
St. Lucie Unit 1 and Unit 2            Page 1 of 1
 
ATTACHMENT 4 3.3.4, ESFAS LOGIC AND MANUAL ACTUATION
 
Current Technical Specifications (CTS) Markup and Discussion of Changes (DOCs)
 
ITS                                                                                                                    ITS 3.3.4 A01 INSTRUMENTATION 3/4.3.2      ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION LIMITING CONDITION FOR OPERATION LCO 3.3.4        3.3.2.1      The Engineered Safety Feature Actuation System (ESFAS) instrumentation channels Table 3.3.4-1                and bypasses shown in Table 3.3-3 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3-4.
LCO 3.3.4        APPLICABILITY: As shown in Table 3.3-3.
Table 3.3.4-1 ACTION:
Table 3.3.4-1                a. With an ESFAS instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3-4, declare the channel inoperable and ACTIONS for associated            apply the applicable ACTION requirement of Table 3.3-3 Table 3.3.4-1 Functions 1-6        until the channel is restored to OPERABLE status with the trip setpoint adjusted consistent with the Trip Setpoint value.
ACTIONS for associated      b. With an ESFAS instrumentation channel inoperable, take the Table 3.3.4-1 Functions 1-6 ACTION shown in Table 3.3-3.
SURVEILLANCE REQUIREMENTS 4.3.2.1.1    Each ESFAS instrumentation channel shall be demonstrated OPERABLE by the SR 3.3.4.1                  performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL SR 3.3.4.2 FUNCTIONAL TEST operations during the modes and at the frequencies shown in Table 4.3-2.                      In accordance with the Surveillance Frequency Control Program 4.3.2.1.2    The logic for the bypasses shall be demonstrated OPERABLE during the at power See CHANNEL FUNCTIONAL TEST of channels affected by bypass operation. The total                          ITS 3.3.3 bypass function shall be demonstrated OPERABLE in accordance with the Surveillance Frequency Control Program during CHANNEL CALIBRATION testing of each channel affected by bypass operation.
4.3.2.1.3    The ENGINEERED SAFETY FEATURES RESPONSE TIME of each ESFAS function shall be demonstrated to be within the limit in accordance with the Surveillance Frequency Control Program. Each test shall include at least one channel per function.
ST. LUCIE - UNIT 1                                  3/4 3-9                      Amendment No. 128, 223
 
ITS                                                                                                                                              ITS 3.3.4 A01 TABLE 3.3-3 ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION LA01 TOTAL NO.                                MINIMUM                                                      A02 OF              CHANNELS          CHANNELS        APPLICABLE FUNCTIONAL UNIT                                      CHANNELS              TO TRIP          OPERABLE          MODES                  ACTION
: 1. SAFETY INJECTION (SIAS)
ACTION E, F      a. Manual (Trip Buttons)                          2                    1                2                  1, 2, 3, 4                  8
: b. Containment Pressure -
High                                    4                    2                3                  1, 2, 3                    9            See
: c. Pressurizer Pressure -                                                                                                                            ITS 3.3.3 Low                                    4                    2                3                  1, 2, 3(a)                  9 ACTION E, F    Add:      Automatic Actuation Logic                                                    2                  1,2,3,4                ACTION E, F          L02  A03
: 2. CONTAINMENT SPRAY (CSAS)                                                                                                                        L05 ACTION E, F      a. Manual (Trip Buttons)                          2                    1                2                  1, 2, 3, 4                  8
: b. Containment Pressure -                                                                                                                            See ITS 3.3.3 High-High                              4                    2(b)              3                  1, 2, 3                10A, 10B ACTION E, F      Add:        Automatic Actuation Logic                                                    2                  1,2,3,4              ACTION E, F L02  A03
: 3. CONTAINMENT ISOLATION (CIS)                                                                                                                      L05 ACTION E, F      a. Manual (Trip Buttons)                          2                    1                2                  1, 2, 3, 4                  8
: b. Containment Pressure -
High                                    4                    2                3                  1, 2, 3                    9            See
: c. Containment Radiation -                                                                                                                            ITS 3.3.3 High                                    4                    2                3                  1, 2, 3, 4                  9
: d. SIAS                                              ---------------------------- (See Functional Unit 1 above) -------------------------------
ACTION E, F                                                                                                                                                              L02 Add:        Automatic Actuation Logic                                                    2                  1,2,3,4              ACTION E, F                A03
: 4. MAIN STEAM LINE ISOLATION                                                                                                                        L05 (a)  (a)
(MSIS)                                                                                                                                              L01 ACTION C, D      a. Manual (Trip Buttons)                          2/steam              1/steam          2/operating        1, 2, 3, 4          C, D  8 A05 generator            generator        steam generator
: b. Steam Generator                                4/steam              2/steam          3/steam            1, 2, 3(c)                  9            See Pressure - Low                          generator            generator        generator                                                    ITS 3.3.3 ACTION C, D    Add:      Automatic Actuation Logic                                                    2                  1,2(a),3(a)            ACTION C, D L02  A03 L05 (a) except when all MSIVs are closed and deactivated                                                                                                      L01    lR2 ST. LUCIE - UNIT 1                                                  3/4 3-10                            Amendment No. 15, 37, 188, 220, 247
 
ITS                                                                                                                            ITS 3.3.4 A01 TABLE 3.3-3 (Continued)
ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION LA01 MINIMUM                                                A02 TOTAL NO.        CHANNELS    CHANNELS    APPLICABLE FUNCTIONAL UNIT                                  OF CHANNELS        TO TRIP    OPERABLE        MODES                ACTION
: 5. CONTAINMENT SUMP RECIRCULATION (RAS)
: a. Manual RAS (Trip Buttons)                  2                1          2              1, 2, 3, 4        8
: b. Refueling Water Tank - Low                  4                2          3              1, 2, 3          13 ACTION E, F    Add:      Automatic Actuation Logic                                        2                1,2,3,4            ACTION E, F        L02  A03
: 6. LOSS OF POWER                                                                                                                  L05
: a. 4.16 kv Emergency Bus Under-voltage (Loss of Voltage)                  2/Bus            2/Bus      1/Bus          1, 2, 3          12                    See ITS 3.3.5
: b. 4.16 kv Emergency Bus Under-voltage (Degraded Voltage)                  2/Bus            2/Bus      1/Bus          1, 2, 3          12
: c. 480 V Emergency Bus Under-voltage (Degraded Voltage)                  2/Bus            2/Bus      1/Bus          1, 2, 3          12
: 7. AUXILIARY FEEDWATER (AFAS)
ACTION A, B      a. Manual (Trip Buttons)                      4/SG              2/SG        4/SG          1, 2, 3          11                      A05 2
ACTION A, B      b. Automatic Actuation Logic                  4/SG              2/SG        3/SG          1, 2, 3          11
: c. SG Level (1A/1B) - Low                      4/SG              2/SG        3/SG          1, 2, 3          14a, 14b, 15
: 8. AUXILIARY FEEDWATER ISOLATION
: a. SG 1A - SG 1B Differential                                                                                                        See ITS 3.3.3 Pressure                                    4/SG              2/SG        3/SG          1, 2, 3          14a, 14b, 15
: b. Feedwater Header 1A - 1B Differential Pressure                                    4/SG              2/SG        3/SG          1, 2, 3          14a, 15 ST. LUCIE - UNIT 1                                          3/4 3-11                    Amendment No. 15, 37, 58, 72, 102, 121, 188, 220, 247
 
ITS                                                                                                                        ITS 3.3.4 A01 TABLE 3.3-3 (Continued)
TABLE NOTATION (a)  Trip function may be bypassed in this MODE when pressurizer pressure is < 1725 psia; bypass shall be automatically removed when pressurizer pressure is > 1725 psia.
See (b)  An SIAS signal is first necessary to enable CSAS logic.                                                                ITS 3.3.3 (c)  Trip function may be bypassed in this MODE below 685 psig; bypass shall be automatically removed at or above 685 psig.
Add proposed LCO 3.3.4 ACTIONS Note                  A06 Add proposed LCO 3.3.4 ACTIONS C and D          L02 ACTION STATEMENTS One or more Functions with one Manual Actuation or Actuation Logic channel inoperable except AFAS and MSIS.
ACTION 8 -        With the number of OPERABLE channels one less than the Total Number of ACTION E                  Channels, restore the inoperable channel to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in at MODE 5 ACTION F                  least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.          Add proposed ACTION F Condition: One or more Functions with two Manual        A04 MODE 3        36            Actuation or Actuation Logic channels inoperable except AFAS and MSIS.
ACTION 9 -        With the number of OPERABLE channels one less than the Total Number of Channels, operation may proceed provided the following conditions are satisfied:
See
: a. The inoperable channel is placed in either the bypassed or tripped condition                          ITS 3.3.3 within 1 hour. For the purposes of testing and maintenance, the inoperable channel may be bypassed for up to 48 hours from time of initial loss of OPERABILITY; however, the inoperable channel shall then be either restored to OPERABLE status or placed in the tripped condition.
: b. Within one hour, all functional units receiving an input from the inoperable channel are also bypassed or tripped.
: c. The Minimum Channels OPERABLE requirement is met; however, one additional channel may be bypassed for up to 48 hours while performing tests and maintenance on that channel provided the other inoperable channel is placed in the tripped condition.
ST. LUCIE - UNIT 1                                      3/4 3-12                        Amendment No. 15, 45, 202, 220, 247
 
ITS                                                                                                                ITS 3.3.4 A01 TABLE 3.3-3 (continued)
TABLE NOTATION ACTION 10A      -      With the number of OPERABLE channels one less than the Total Number of Channels, operation may proceed provided the following conditions are                      See ITS 3.3.3 satisfied:
: a.      The inoperable channel is placed in the bypassed or tripped condition and the Minimum Channels OPERABLE requirement is demonstrated within 1 hour. If the inoperable channel can not be restored to OPERABLE status within 48 hours, then place the inoperable channel in the tripped condition.
: b.      Within 1 hour, all functional units receiving an input from the inoperable channel are also bypassed or tripped.
ACTION 10B      -      With the number of channels OPERABLE one less than the Minimum Channels OPERABLE, operation may proceed provided one of the inoperable channels has been bypassed and the other inoperable channel has been placed in the tripped condition within 1 hour. Restore one of the inoperable channels to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours. One Auxiliary Feedwater Actuation Signal (AFAS) Manual Actuation or                lR2 Actuation Logic channel inoperable.
ACTION 11 - With the number of OPERABLE channels one less than the Total Number of ACTION A                Channels, restore the inoperable channels to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in at ACTION B                least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 12  6 hours. LCO 3.0.4.a is not applicable when entering HOT SHUTDOWN.                                        A07 MODE 3                                        MODE 4 ACTION 12 - With the number of OPERABLE Channels one less than the Total Number of Channels, operation may proceed until performance of the next required                                See ITS 3.3.5 CHANNEL FUNCTIONAL TEST provided the inoperable channel is placed in the tripped condition within 1 hour.
Add proposed ACTION B Condition: Two AFAS Manual                                A04 Actuation or Actuation Logic channels inoperable.
ST. LUCIE - UNIT 1                                    3/4 3-13                    Amendment No. 15, 37, 58, 72, 188, 202, 234, 247
 
ITS                                                                                                  ITS 3.3.4 A01 TABLE 3.3-3 (continued)
TABLE NOTATION ACTION 13 - With the number of OPERABLE channels one less than the Total Number of Channels, operation may proceed provided the following conditions are                    See ITS 3.3.3 satisfied:
: a. The inoperable channel is placed in either the bypassed or tripped condition within 1 hour. If OPERABILITY cannot be restored within 48 hours or in accordance with the Risk Informed Completion Time Program, be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours.
: b. The Minimum Channels OPERABLE requirement is met; however, one additional channel may be bypassed for up to 2 hours while performing tests and maintenance on that channel provided the other inoperable channel is placed in the tripped condition.
ACTION 14 - With the number of channels OPERABLE one less than the Total Number of Channels, operation may proceed provided the following conditions are satisfied:
: a. The inoperable channel is placed in either the bypassed or tripped condition within 1 hour. If an inoperable SG level channel can not be restored to OPERABLE status within 48 hours, then AFAS-1 or AFAS-2 as applicable in the inoperable channel shall be placed in the bypassed condition. If an inoperable SG DP or FW Header DP channel can not be restored to OPERABLE status within 48 hours, then both AFAS-1 and AFAS-2 in the inoperable channel shall be placed in the bypassed condition. The channel shall be returned to OPERABLE status no later than during the next COLD SHUTDOWN.
: b. Within 1 hour, all functional units receiving an input from the inoperable channel are also bypassed or tripped.
ACTION 15 - With the number of channels OPERABLE one less than the Minimum Channels OPERABLE, operation may proceed provided one of the inoperable channels has been bypassed and the other inoperable channel has been placed in the tripped condition within 1 hour. Restore one of the inoperable channels to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours.
ST. LUCIE - UNIT 1                              3/4 3-13a                Amendment No. 188, 202, 247
 
ITS                                                                                                                        ITS 3.3.4 A01 TABLE 3.3-4 ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION TRIP VALUES ALLOWABLE FUNCTIONAL UNIT                                          TRIP SETPOINT                          VALUES
: 1. SAFETY INJECTION (SIAS)
: a. Manual (Trip Buttons)                              Not Applicable                    Not Applicable
: b. Containment Pressure - High                              < 5 psig                          < 5 psig                    See ITS 3.3.3
: c. Pressurizer Pressure - Low                            > 1600 psia                      > 1600 psia
: 2. CONTAINMENT SPRAY (CSAS)
: a. Manual (Trip Buttons)                              Not Applicable                    Not Applicable See
: b. Containment Pressure - High-High                        < 10 psig                        < 10 psig                    ITS 3.3.3
: 3. CONTAINMENT ISOLATION (CIS)
: a. Manual (Trip Buttons)                              Not Applicable                    Not Applicable
: b. Containment Pressure - High                              < 5 psig                          < 5 psig                    See ITS 3.3.3
: c. Containment Radiation - High                            < 10 R/hr                        < 10 R/hr
: d. SIAS                                  -------------------------(See FUNCTIONAL UNIT 1 above)-----------------------
: 4. MAIN STEAM LINE ISOLATION (MSIS)
Not Applicable                    Not Applicable
: a. Manual (Trip Buttons)
                                                                  > 585 psig                        > 585 psig                  See
: b. Steam Generator Pressure - Low                                                                                        ITS 3.3.3
: 5. CONTAINMENT SUMP RECIRCULATION (RAS)
: a. Manual RAS (Trip Buttons)                          Not Applicable                    Not Applicable 48 inches above                    48 inches above                See
: b. Refueling Water Tank - Low tank bottom                      tank bottom                  ITS 3.3.3 ST. LUCIE - UNIT 1                                      3/4 3-14                      Amendment No. 37, 45
 
ITS                                                                                                                ITS 3.3.4 A01 TABLE 3.3-4 (Continued)
ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION TRIP VALUES ALLOWABLE FUNCTIONAL UNIT                                          TRIP VALUE                    VALUES
: 6. LOSS OF POWER
: a. 4.16 kv Emergency Bus Undervoltage        > 2900 volts with a          > 2900 volts with a (Loss of Voltage)                          1 + .5 second time delay      1 + .5 second time delay See
: b. 4.16 kv Emergency Bus Undervoltage        > 3831 volts with a          > 3831 volts with a                  ITS 3.3.5 (Degraded Voltage)                        18 + 2 second time delay      18 + 2 second time delay
: c. 480 volts Emergency Bus Undervoltage      > 415 volts with a            > 415 volts with a (Degraded Voltage)                        < 9 second time delay        < 9 second time delay
: 7. AUXILIARY FEEDWATER (AFAS)
: a. Manual (Trip Buttons)                      Not Applicable                Not Applicable
: b. Automatic Actuation Logic                  Not Applicable                Not Applicable
: c. SG 1A & 1B Level Low                      > 19.0%                      > 18.0 %
: 8. AUXILIARY FEEDWATER ISOLATION                                                                                    See ITS 3.3.3
: a. Steam Generator P - High                  < 275 psid                    89.2 to 281 psid
: b. Feedwater Header High P                  < 150.0 psid                  56.0 to 157.5 psid ST. LUCIE - UNIT 1                                  3/4 3-15              Amendment No. 37, 58, 72, 102, 105, 121, 177
 
ITS 3.3.4 A01 DELETED ST. LUCIE - UNIT 1  3/4 3-16 Amendment No. 17, 37, 49, 72, 128
 
ITS 3.3.4 A01 DELETED ST. LUCIE - UNIT 1  3/4 3-17 Amendment No. 17, 37, 49, 72, 105, 128
 
ITS                                                                                                                    ITS 3.3.4 A01 TABLE 4.3-2 ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS CHANNEL          MODES IN WHICH CHANNEL      CHANNEL    FUNCTIONAL          SURVEILLANCE FUNCTIONAL UNIT                                        CHECK      CALIBRATION    TEST                REQUIRED
: 1. SAFETY INJECTION (SIAS)
SR 3.3.4.2        a. Manual (Trip Buttons)                          N.A.          N.A.        SFCP                N.A.                              lR2
: b. Containment Pressure - High                    SFCP          SFCP        SFCP                1, 2, 3                  See
: c. Pressurizer Pressure - Low                    SFCP          SFCP        SFCP                1, 2, 3                  ITS 3.3.3 SR 3.3.4.1        d. Automatic Actuation Logic                      N.A.          N.A.        SFCP(1)            1, 2, 3                            lR2
: 2. CONTAINMENT SPRAY (CSAS)
SR 3.3.4.2        a. Manual (Trip Buttons)                          N.A.          N.A.        SFCP                N.A.                              lR2
: b. Containment Pressure - --                      SFCP          SFCP        SFCP                1, 2, 3                  See High-High                                                                                                        ITS 3.3.3 SR 3.3.4.1        c. Automatic Actuation Logic                      N.A.          N.A.        SFCP(1)            1, 2, 3                            lR2
: 3. CONTAINMENT ISOLATION (CIS)
SR 3.3.4.2        a. Manual (Trip Buttons)                          N.A.          N.A.        SFCP                N.A.                              lR2
: b. Containment Pressure - High                    SFCP          SFCP        SFCP                1, 2, 3                  See
: c. Containment Radiation - High                  SFCP          SFCP        SFCP                1, 2, 3, 4              ITS 3.3.3 SR 3.3.4.1        d. Automatic Actuation Logic                      N.A.          N.A.        SFCP(1)            1, 2, 3                            lR2 See
: e. SIAS                                          N.A.          N.A.        SFCP                N.A.                    ITS 3.3.3
: 4. MAIN STEAM LINE ISOLATION (MSIS)
SR 3.3.4.2        a. Manual (Trip Buttons)                          N.A.          N.A.        SFCP                N.A.                              lR2 See
: b. Steam Generator Pressure - Low                SFCP          SFCP        SFCP                1, 2, 3                  ITS 3.3.3 SR 3.3.4.1        c. Automatic Actuation Logic                      N.A.          N.A.        SFCP(1)            1, 2, 3                            lR2 (a) (a)                L01
: 5. CONTAINMENT SUMP RECIRCULATION (RAS)
SR 3.3.4.2        a. Manual RAS (Trip Buttons)                      N.A.          N.A.        SFCP                N.A.                              lR2
: b. Refueling Water Storage                        SFCP          SFCP        SFCP                                        See 1, 2, 3 Tank - Low                                                                                                        ITS 3.3.3 SR 3.3.4.1        c. Automatic Actuation Logic                      N.A.          N.A.        SFCP(1)            1, 2, 3                            lR2 (a) except when all MSIVs are closed and deactivated                                                                        L01          lR2 ST. LUCIE - UNIT 1                                        3/4 3-18              Amendment No. 17, 37, 223
 
ITS                                                                                                            ITS 3.3.4 A01 TABLE 4.3-2 (Continued)
ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS MODES IN WHICH CHANNEL        CHANNEL    FUNCTIONAL          SURVEILLANCE FUNCTIONAL UNIT                                CHECK        CALIBRATION    TEST                REQUIRED
: 6. LOSS OF POWER
: a. 4.16 kv Emergency Bus Undervoltage      SFCP            SFCP      SFCP                    1, 2, 3 (Loss of Voltage)
: b. 4.16 kv Emergency Bus Undervoltage      SFCP            SFCP      SFCP                    1, 2, 3 (Degraded Voltage)
: c. 480 V Emergency Bus Undervoltage        SFCP            SFCP      SFCP                    1, 2, 3 See (Degraded Voltage)                                                                                          ITS 3.3.5
: 7. AUXILIARY FEEDWATER (AFAS)
SR 3.3.4.2      a. Manual (Trip Buttons)                  N.A.            N.A.      SFCP                    1, 2, 3          R1 See
: b. SG Level (A/B) - Low                    SFCP            SFCP      SFCP                    1, 2, 3          ITS 3.3.3 SR 3.3.4.1      c. Automatic Actuation Logic              N.A.            N.A.      SFCP                    1, 2, 3          R1
: 8. AUXILIARY FEEDWATER ISOLATION
: a. SG Level (A/B) - Low and                N.A.            SFCP      SFCP                    1, 2, 3 SG Differential Pressure See (BtoA/AtoB) - High                                                                                          ITS 3.3.3
: b. SG Level (A/B) - Low and                N.A.            SFCP      SFCP                    1, 2, 3 Feedwater Header Differential Pressure (BtoA/AtoB) - High ST. LUCIE - UNIT 1                                3/4 3-19                Amendment No. 37, 58, 72, 102, 121, 223
 
ITS                                                                                                ITS 3.3.4 A01 TABLE 4.3-2 (Continued)
TABLE NOTATION (1)  The logic circuits shall be tested manually in accordance with the Surveillance Frequency          LA02 Control Program.
Add SR 3.3.4.1 Note 1                          A08 Add SR 3.3.4.1 Note 2                            L03 ST. LUCIE - UNIT 1                            3/4 3-20                      Amendment No. 223
 
ITS                                                                                                                    ITS 3.3.4 A01 INSTRUMENTATION 3/4.3.2      ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION LIMITING CONDITION FOR OPERATION LCO 3.3.4        3.3.2        The Engineered Safety Features Actuation System (ESFAS) instrumentation channels and Table 3.3.4-1                bypasses shown in Table 3.3-3 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3-4.
LCO 3.3.4        APPLICABILITY: As shown in Table 3.3-3.
Table 3.3.4-1 ACTION:
: a. With an ESFAS instrumentation channel trip setpoint less conservative Table 3.3.4-1                      than the value shown in the Allowable Values column of Table 3.3-4, ACTIONS for                      declare the channel inoperable and apply the applicable ACTION Table 3.3.4-1 Functions 1-6        requirement of Table 3.3-3 until the channel is restored to OPERABLE status with the trip setpoint adjusted consistent with the Trip Setpoint value.
ACTIONS for                b. With an ESFAS instrumentation channel inoperable, take the ACTION Table 3.3.4-1 Functions 1-6        shown in Table 3.3-3.
SURVEILLANCE REQUIREMENTS 4.3.2.1      Each ESFAS instrumentation channel shall be demonstrated OPERABLE by the SR 3.3.4.1                  performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL SR 3.3.4.2                  FUNCTIONAL TEST operations during the MODES and at the frequencies shown in Table 4.3-2.                        In accordance with the Surveillance Frequency Control Program 4.3.2.2      The logic for the bypasses shall be demonstrated OPERABLE during the at power CHANNEL FUNCTIONAL TEST of channels affected by bypass operation. The total See                      ITS 3.3.3 bypass function shall be demonstrated OPERABLE in accordance with the Surveillance Frequency Control Program during CHANNEL CALIBRATION testing of each channel affected by bypass operation.
4.3.2.3      The ENGINEERED SAFETY FEATURES RESPONSE TIME of each ESFAS function shall be demonstrated to be within the limit in accordance with the Surveillance Frequency Control Program. Each test shall include at least one channel per function.
ST. LUCIE - UNIT 2                                3/4 3-11                    Amendment No. 67, 173
 
ITS                                                                                                                            ITS 3.3.4 A01 TABLE 3.3-3 ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION LA01 MINIMUM                                                    A02 TOTAL NO.      CHANNELS        CHANNELS          APPLICABLE FUNCTIONAL UNIT            OF CHANNELS      TO TRIP        OPERABLE              MODES              ACTION
: 1. SAFETY INJECTION (SIAS)
ACTION E, F      a. Manual (Trip Buttons)                2              1                2              1, 2, 3, 4              12
: b. Containment Pressure -                4              2                3                1, 2, 3            13, 14 High                                                                                                                See ITS 3.3.3
: c. Pressurizer Pressure -                4              2                3              1, 2, 3(a)            13, 14 Low ACTION E, F      d. Automatic Actuation                  2              1                2              1, 2, 3, 4              12 Logic
: 2. CONTAINMENT SPRAY (CSAS)
ACTION E, F      a. Manual (Trip Buttons)                2              1                2              1, 2, 3, 4              12
: b. Containment Pressure -                4              2                3          1(b), 2(b), 3(b)      18A, 18B          See High-High                                                                                                            ITS 3.3.3 ACTION E, F      c. Automatic Actuation                  2              1                2              1, 2, 3, 4              12 Logic
: 3. CONTAINMENT ISOLATION (CIAS)
ACTION E, F      a. Manual CIAS (Trip                    2              1                2              1, 2, 3, 4              12 Buttons)
: b. Safety Injection (SIAS)                  See Functional Unit 1 for all Safety Injection Initiating Functions and Requirements
: c. Containment Pressure -                4              2                3                1, 2, 3            13, 14          See High                                                                                                                ITS 3.3.3
: d. Containment Radiation -              4              2                3                1, 2, 3            13, 14 High ACTION E, F      e. Automatic Actuation                  2              1                2              1, 2, 3, 4              12 Logic ST. LUCIE - UNIT 2                                    3/4 3-12                            Amendment No. 132, 170, 199
 
ITS                                                                                                                          ITS 3.3.4 A01 TABLE 3.3-3 (Continued)
ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION MINIMUM TOTAL NO.      CHANNELS  CHANNELS      APPLICABLE FUNCTIONAL UNIT                    OF CHANNELS        TO TRIP  OPERABLE          MODES            ACTION
: 4. MAIN STEAM LINE ISOLATION (MSIS)                                                                        (a)  (a)
L01 ACTION C, D      a. Manual (Trip Buttons)                                  2              1          2            1, 2, 3            16
: b. Steam Generator                                    4/steam        2/steam    3/steam                            13, 14 1, 2, 3(c)
Pressure - Low                          generator      generator  generator                                    See ITS 3.3.3
: c. Containment Pressure -
4              2          3            1, 2, 3          13, 14 High ACTION C, D      d. Automatic Actuation Logic                              2              1          2            1, 2, 3            12
: 5. CONTAINMENT SUMP RECIRCULATION                                                                          (a)  (a)
L01 (RAS)
ACTION E, F      a. Manual RAS (Trip Buttons)                              2              1          2            1, 2, 3, 4          12
: b. Refueling Water                                                                                                              See 4              2          3            1, 2, 3            19      ITS 3.3.3 Tank - Low ACTION E, F      c. Automatic Actuation Logic                              2              1          2            1, 2, 3            12 (a) except when all MSIVs are closed and deactivated                                                                          L01          lR2 ST. LUCIE - UNIT 2                                            3/4 3-13                  Amendment No. 60, 132, 170, 199
 
ITS                                                                                                                    ITS 3.3.4 A01 TABLE 3.3-3 (Continued)
ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION LA01 MINIMUM                                          A02 TOTAL NO.        CHANNELS CHANNELS    APPLICABLE FUNCTIONAL UNIT              OF CHANNELS        TO TRIP OPERABLE        MODES              ACTION
: 6. LOSS OF POWER (LOV)
: a. (1) 4.16 kV Emergency Bus Undervoltage (Loss of Voltage)      2/Bus            2/Bus    1/Bus          1, 2, 3              17A (2) 480 V Emergency Bus                                                                                              See 3/Bus            2/Bus    2/Bus          1, 2, 3              17B      ITS 3.3.5 Undervoltage (Loss of Voltage)
: b. (1) 4.16 kV Emergency Bus 3/Bus            2/Bus    2/Bus          1, 2, 3              17B Undervoltage (Degraded Voltage)
(2) 480 V Emergency Bus 3/Bus            2/Bus    2/Bus          1, 2, 3              17B Undervoltage (Degraded Voltage)
: 7. AUXILIARY FEEDWATER (AFAS)
ACTION A, B      a. Manual (Trip Buttons)                      4/SG            2/SG      4/SG          1, 2, 3                15 ACTION A, B      b. Automatic Actuation Logic                  4/SG            2/SG      3/SG          1, 2, 3                15
: c. SG Level (2A/2B) - Low                    4/SG            2/SG      3/SG          1, 2, 3          20a, 20b, 21
: 8. AUXILIARY FEEDWATER ISOLATION                                                                                          See ITS 3.3.3
: a. SG 2A - SG 2B Differential Pressure        4/SG            2/SG      3/SG          1, 2, 3          20a, 20b, 21
: b. Feedwater Header 2A - 2B 4/SG            2/SG      3/SG          1, 2, 3            20a, 21 Differential Pressure ST. LUCIE - UNIT 2                                    3/4 3-14                  Amendment No. 28, 79, 132, 170, 199
 
ITS                                                                                                                        ITS 3.3.4 A01 TABLE 3.3-3 (Continued)
TABLE NOTATION (a)  Trip function may be bypassed in this MODE when pressurizer pressure is less than 1836 psia; bypass shall be automatically removed when pressurizer pressure is greater than or equal to 1836 psia.
See ITS 3.3.3 (b)  An SIAS signal is first necessary to enable CSAS logic.
(c)  Trip function may be bypassed in this MODE below 700 psia; bypass shall be automatically removed at or above 700 psia.
Add proposed LCO 3.4.4 ACTIONS Note                A06 ACTION OF STATEMENTS One or more Functions with one Manual Actuation or Actuation Logic channel inoperable except AFAS and MSIS.
ACTION 12 - With the number of OPERABLE channels one less than the Total Number of ACTION E                  Channels, restore the inoperable channel to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in at ACTION F                  least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.
        `                        MODE 3        36                                                    MODE 5 ACTION 13 - With the number of channels OPERABLE one less than the Total Number of Channels, STARTUP and/or POWER OPERATION may continue provided the inoperable channel is placed in the bypassed or tripped condition within 1 hour.
The channel shall be returned to OPERABLE status no later than during the next COLD SHUTDOWN.                                                                                        See ITS 3.3.3 With a channel process measurement circuit that affects multiple functional units inoperable or in test, bypass or trip all associated functional units as listed below.
Process Measurement Circuit                                  Functional Unit Bypassed
: 1. Containment Pressure -                      Containment Pressure - High (SIAS, CIAS, CSAS)
Containment Pressure - High (RPS)
: 2. Steam Generator Pressure -                  Steam Generator Pressure - Low (MSIS)
AFAS-1 and AFAS-2 (AFAS)
Thermal Margin/Low Pressure (RPS)
Steam Generator Pressure - Low (RPS)
: 3. Steam Generator Level -                    Steam Generator Level - Low (RPS)
If SG-2A, then AFAS-1 (AFAS)
If SG-2B, then AFAS-2 (AFAS)
: 4. Pressurizer Pressure -                      Pressurizer Pressure - High (RPS)
Pressurizer Pressure - Low (SIAS)
Thermal Margin/Low Pressure (RPS)
ST. LUCIE - UNIT 2                                      3/4 3-15                        Amendment No. 28, 73, 149, 170, 199
 
ITS                                                                                                                                  ITS 3.3.4 A01 TABLE 3.3-3 (Continued)
TABLE NOTATION ACTION 14 - With the number of channels OPERABLE one less than the Minimum Channels OPERABLE, STARTUP and/or POWER OPERATION may continue provided                                              See the following conditions are satisfied:                                                                    ITS 3.3.3
: a. Verify that one of the inoperable channels has been bypassed and place the other inoperable channel in the tripped condition within 1 hour.
: b. All functional units affected by the bypassed/tripped channel shall also be placed in the bypassed/tripped condition as listed below.
Process Measurement Circuit                                Functional Unit Bypassed/Tripped
: 1. Containment Pressure -                        Containment Pressure - High (SIAS, CIAS, CSAS)
Containment Pressure - High (RPS)
: 2. Steam Generator Pressure -                    Steam Generator Pressure - Low (MSIS)
AFAS-1 and AFAS-2 (AFAS)
Thermal Margin/Low Pressure (RPS)
Steam Generator Pressure - Low (RPS)
: 3. Steam Generator Level -                        Steam Generator Level - Low (RPS)
If SG-2A, then AFAS-1 (AFAS)
If SG-2B, then AFAS-2 (AFAS)
: 4. Pressurizer Pressure -                        Pressurizer Pressure - High (RPS)
Pressurizer Pressure - Low (SIAS)
Thermal    Margin/Low One Auxiliary            Pressure Feedwater Actuation    (RPS)
Signal (AFAS) Manual Actuation or              lR2 Actuation Logic channel inoperable.
ACTION 15 - With the number of OPERABLE channels one less than the Total Number of ACTION A                            Channels, restore the inoperable channels to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in at ACTION B                            least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 12    6 hours. LCO 3.0.4.a is not applicable when entering HOT SHUTDOWN.                                              A07 ACTION B.2 Note                            MODE 3                                          MODE 4 ACTION 16 - With the number of OPERABLE channels one less than the Total Number of ACTION C.1                          Channels, restore the inoperable channel to OPERABLE status within 48 hours or declare the associated valve inoperable and take the ACTION required by                                  L03    lR2 Specification 3.7.1.5.                                                          Add ACTION D in accordance with the Risk Informed Completion Time Program                                                            L04 ACTION 17A - With the number of OPERABLE Channels one less than the Total Number of One Main Steam Isolation            Channels, restore the inoperable channel to OPERABLE status within 48 hours Signal (MSIS) Manual                or place the inoperable channel in the tripped condition and verify that the                                See Actuation or Actuation Logic                                                                                                                    ITS 3.3.5 channel inoperable.
Minimum Channels OPERABLE requirement is demonstrated within 1 hour; one additional channel may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.2.1.
ST. LUCIE - UNIT 2                                          3/4 3-16                      Amendment No. 28, 73, 184, 199
 
ITS                                                                                                  ITS 3.3.4 A01 TABLE 3.3-3 (Continued)
TABLE NOTATION ACTION 17B      -    With the number of OPERABLE Channels one less than the Total Number of Channels, restore the inoperable channel to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or            See ITS 3.3.5 place the inoperable channel in the tripped condition and verify that the Minimum Channels OPERABLE requirement is demonstrated within 1 hour; one additional channel may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.2.1.
ACTION 18A      -    With the number of OPERABLE Channels one less than the Total Number of Channels, operation may proceed provided the following conditions are              See satisfied:                                                                            ITS 3.3.3
: a. The inoperable channel is placed in either the bypassed or tripped condition and the Minimum Channels OPERABLE requirement is demonstrated within 1 hour. If the inoperable channel can not be restored to OPERABLE status within 48 hours, then place the inoperable channel in the tripped condition.
: b. With a channel process measurement circuit that affects multiple functional units inoperable or in test, bypass or trip all associated functional units as listed in ACTION 13.
ACTION 18B      -    With the number of channels OPERABLE one less than the Minimum Channels OPERABLE, operation may proceed provided one of the inoperable channels has been bypassed and the other inoperable channel has been placed in the tripped condition within 1 hour. Restore one of the inoperable channels to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours.
ACTION 19 - With the number of OPERABLE Channels one less than the Total Number of Channels, operation may proceed provided the following conditions are satisfied:
: a. Within 1 hour the inoperable channel is placed in either the bypassed or tripped condition. If OPERABILITY cannot be restored within 48 hours or in accordance with the Risk Informed Completion Time Program, be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours.
: b. The Minimum Channels OPERABLE requirement is met; however, one additional channel may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.2.1.
ST. LUCIE - UNIT 2                              3/4 3-16a                Amendment No. 132, 199
 
ITS                                                                                                  ITS 3.3.4 A01 TABLE 3.3-3 (Continued)
TABLE NOTATION ACTION 20 - With the number of channels OPERABLE one less than the Total Number of Channels, operation may proceed provided the following conditions are                    See ITS 3.3.3 satisfied:
: a. The inoperable channel is placed in either the bypassed or tripped condition within 1 hour. If an inoperable SG level channel can not be restored to OPERABLE status within 48 hours, then AFAS-1 or AFAS-2 as applicable in the inoperable channel shall be placed in the bypassed condition.
If an inoperable SG DP or FW Header DP channel can not be restored to OPERABLE status within 48 hours, then both AFAS-1 and AFAS-2 in the inoperable channel shall be placed in the bypassed condition. The channel shall be returned to OPERABLE status no later than during the next COLD SHUTDOWN.
b    With a channel process measurement circuit that affects multiple functional units inoperable or in test, bypass or trip all associated functional units as listed in ACTION 13.
ACTION 21 - With the number of channels OPERABLE one less than the Minimum Channels OPERABLE, operation may proceed provided one of the inoperable channels has been bypassed and the other inoperable channel placed in the tripped condition within 1 hour. Restore one of the inoperable channels to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours.
ST. LUCIE - UNIT 2                              3/4 3-16b                Amendment No. 132, 149, 199
 
ITS                                                                                                ITS 3.3.4 A01 TABLE 3.3-4 ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION TRIP VALUES ALLOWABLE FUNCTIONAL UNIT                  TRIP SETPOINT                  VALUES
: 1. SAFETY INJECTION (SIAS)
: a. Manual (Trip Buttons)                          Not Applicable            Not Applicable
: b. Containment Pressure - High                      < 3.5 psig              < 3.6 psig          See ITS 3.3.3
: c. Pressurizer Pressure - Low                      > 1736 psia              > 1728 psia
: d. Automatic Actuation Logic                      Not Applicable            Not Applicable
: 2. CONTAINMENT SPRAY (CSAS)
: a. Manual (Trip Buttons)                          Not Applicable            Not Applicable See
: b. Containment Pressure - High-High                < 5.40 psig              < 5.50 psig          ITS 3.3.3
: c. Automatic Actuation Logic                      Not Applicable            Not Applicable
: 3. CONTAINMENT ISOLATION (CIAS)
: a. Manual CIAS (Trip Buttons)                    Not Applicable            Not Applicable
: b. Safety Injection (SIAS)                        Not Applicable            Not Applicable See
: c. Containment Pressure - High                      < 3.5 psig              < 3.6 psig          ITS 3.3.3
: d. Containment Radiation - High                      < 10 R/hr                < 10 R/hr
: e. Automatic Actuation Logic                      Not Applicable            Not Applicable
: 4. MAIN STEAM LINE ISOLATION
: a. Manual (Trip Buttons)                          Not Applicable            Not Applicable
: b. Steam Generator Pressure - Low                  > 600 psia                > 567 psia          See ITS 3.3.3
: c. Containment Pressure - High                      < 3.5 psig              < 3.6 psig
: d. Automatic Actuation Logic                      Not Applicable            Not Applicable ST. LUCIE - UNIT 2                                3/4 3-17              Amendment No. 8
 
ITS                                                                                                              ITS 3.3.4 A01 TABLE 3.3-4 (Continued)
ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION TRIP VALUES FUNCTIONAL UNIT                          TRIP VALUE          ALLOWABLE VALUES
: 5. CONTAINMENT SUMP RECIRCULATION (RAS)
: a. Manual RAS (Trip Buttons)                          Not Applicable            Not Applicable
: b. Refueling Water Tank - Low                            5.67 feet          4.62 feet to 6.24 feet          See ITS 3.3.3 above tank bottom          above tank bottom
: c. Automatic Actuation Logic                          Not Applicable            Not Applicable
: 6. LOSS OF POWER
: a. (1) 4.16 kV Emergency Bus Undervoltage              > 3120 volts              > 3120 volts (Loss of Voltage)
(2) 480 V Emergency Bus Undervoltage                  > 360 volts              > 360 volts                See (Loss of Voltage)                                                                                    ITS 3.3.5
: b. (1) 4.16 kV Emergency Bus Undervoltage              > 3848 volts              > 3848 volts (Degraded Voltage)                  with < 10-second time delay with < 10-second time delay (2) 480 V Emergency Bus Undervoltage
                                                                  > 432 volts              > 432 volts (Degraded Voltage)
: 7. AUXILIARY FEEDWATER (AFAS)
: a. Manual (Trip Buttons)                              Not Applicable            Not Applicable
: b. Automatic Actuation Logic                          Not Applicable            Not Applicable
: c. SG 2A & 2B Level Low                                  > 19.0%                  > 18.0 %
: 8. AUXILIARY FEEDWATER ISOLATION                                                                                  See ITS 3.3.3
: a. Steam Generator P - High                            < 275 psid            89.2 to 281 psid
: b. Feedwater Header P - High                          < 150.0 psid          56.0 to 157.5 psid ST. LUCIE - UNIT 2                                    3/4 3-18              Amendment No. 23, 28, 79, 199
 
ITS 3.3.4 A01 DELETED ST. LUCIE - UNIT 2  3/4 3-19 Amendment No. 67
 
ITS 3.3.4 A01 DELETED ST. LUCIE - UNIT 2  3/4 3-20 Amendment No. 8, 67
 
ITS 3.3.4 A01 DELETED ST. LUCIE - UNIT 2  3/4 3-21 Amendment No. 8, 28, 67
 
ITS                                                                                                                      ITS 3.3.4 A01 TABLE 4.3-2 ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS CHANNEL        MODES FOR WHICH FUNCTIONAL                    CHANNEL      CHANNEL    FUNCTIONAL          SURVEILLANCE UNIT                      CHECK      CALIBRATION    TEST              IS REQUIRED SR 3.3.4.2  1. SAFETY INJECTION (SIAS)
: a. Manual (Trip Buttons)                            N.A.          N.A.      SFCP                  1, 2, 3, 4
: b. Containment Pressure - High                      SFCP          SFCP        SFCP                    1, 2, 3              See
: c. Pressurizer Pressure - Low                      SFCP          SFCP        SFCP                    1, 2, 3              ITS 3.3.3 SR 3.3.4.1        d. Automatic Actuation Logic                        N.A.          N.A.      SFCP(1),                1, 2, 3, 4 SFCP(3)
: 2. CONTAINMENT SPRAY (CSAS)
SR 3.3.4.2        a. Manual (Trip Buttons)                            N.A.          N.A.      SFCP                  1, 2, 3, 4 See
: b. Containment Pressure - High-High                SFCP          SFCP        SFCP                    1, 2, 3              ITS 3.3.3 SR 3.3.4.1        c. Automatic Actuation Logic                        N.A.          N.A.      SFCP(1),                1, 2, 3, 4 SFCP(3)
: 3. CONTAINMENT ISOLATION (CIAS)
SR 3.3.4.2        a. Manual CIAS (Trip Buttons)                        N.A.          N.A.      SFCP                  1, 2, 3, 4
: b. Safety Injection SIAS                            N.A.          N.A.      SFCP                  1, 2, 3, 4 See
: c. Containment Pressure - High                      SFCP          SFCP        SFCP                    1, 2, 3              ITS 3.3.3
: d. Containment Radiation - High                    SFCP          SFCP        SFCP                    1, 2, 3 SR 3.3.4.1        e. Automatic Actuation Logic                                                SFCP(1),
N.A.          N.A.                              1, 2, 3, 4 SFCP(3)
(a)        L01
: 4. MAIN STEAM LINE ISOLATION                                                                                  (a)
SR 3.3.4.2        a. Manual (Trip Buttons)                            N.A.          N.A.      SFCP                    1, 2, 3
: b. Steam Generator Pressure - Low                  SFCP          SFCP        SFCP                    1, 2, 3              See
: c. Containment Pressure - High                      SFCP          SFCP        SFCP                    1, 2, 3              ITS 3.3.3 SR 3.3.4.1        d. Automatic Actuation Logic                                                SFCP(1),
N.A.          N.A.                              1, 2, 3, 4              L01    lR2 SFCP(3)
: 5. CONTAINMENT SUMP RECIRCULATION (RAS)
SR 3.3.4.2        a. Manual RAS (Trip Buttons)                        N.A.          N.A.      SFCP                      N.A.
See
: b. Refueling Water Tank - Low                      SFCP          SFCP        SFCP                    1, 2, 3              ITS 3.3.3 SR 3.3.4.1        c. Automatic Actuation Logic                                                SFCP(1),
N.A.          N.A.                              1, 2, 3 SFCP(3)
(a) except when all MSIVs are closed and deactivated                                                                      L01          lR2 ST. LUCIE - UNIT 2                                          3/4 3-22              Amendment No. 90, 173, 199
 
ITS                                                                                                                                                              ITS 3.3.4 A01 TABLE 4.3-2 (Continued)
ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS CHANNEL          MODES FOR WHICH FUNCTIONAL                                        CHANNEL                CHANNEL              FUNCTIONAL              SURVEILLANCE UNIT                                          CHECK            CALIBRATION                    TEST                  IS REQUIRED
: 6. LOSS OF POWER (LOV)
: a. 4.16 kV and 480 V Emergency Bus Undervoltage                          SFCP                    SFCP                  SFCP                    1, 2, 3, 4 (Loss of Voltage)                                                                                                                                            See ITS 3.3.3
: b. 4.16 kV and 480 V Emergency Bus Undervoltage                          SFCP                    SFCP                  SFCP                    1, 2, 3, 4 (Degraded Voltage)
: 7. AUXILIARY FEEDWATER (AFAS)
SR 3.3.4.2      a. Manual (Trip Buttons)                                                  N.A.                    N.A.                  SFCP                      1, 2, 3 See
: b. SG Level (A/B) - Low                                                  SFCP                    SFCP                  SFCP                      1, 2, 3      ITS 3.3.3 SR 3.3.4.1      c. Automatic Actuation Logic                                              N.A.                    N.A.                SFCP(1),                    1, 2, 3 SFCP(2)
: 8. AUXILIARY FEEDWATER ISOLATION
: a. SG Level (A/B) - Low and SG Differential                                N.A.                  SFCP                  SFCP                      1, 2, 3 See Pressure (B to A/A to B) - High                                                                                                                              ITS 3.3.3
: b. SG Level (A/B) - Low and Feedwater Header                                                      SFCP                  SFCP N.A.                                                                    1, 2, 3 Differential Pressure (B to A/A to B) - High TABLE NOTATION SR 3.3.4.1  (1)  Testing of Automatic Actuation Logic shall include energization/de-energization of each initiation relay (solid-state component) and verification of the Note              OPERABILITY of each initiation relay (solid-state component).
(2)  An actuation relay test shall be performed which shall include the energization/de-energization of each actuation relay and verification of the OPERABILITY of    LA02 each actuation relay.
(3)  A subgroup relay test shall be performed which shall include the energization/de-energization of each subgroup relay and verification of the OPERABILITY of      LA02 each subgroup relay. Testing of the ESFAS subgroup relays shall be performed in accordance with the Surveillance Frequency Control Program.
Add SR 3.3.4.1 Note 2                            L03 ST. LUCIE - UNIT 2                                                            3/4 3-23                                  Amendment No. 28, 90, 173
 
DISCUSSION OF CHANGES ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION ADMINISTRATIVE CHANGES A01    In the conversion of the St. Lucie Plant (PSL) Unit 1 and Unit 2, Current Technical Specifications (CTS) to the plant specific Improved Technical Specifications (ITS), certain changes (wording preferences, editorial changes, reformatting, revised numbering, etc.) are made to obtain consistency with NUREG-1432, Rev. 5.0, "Standard Technical Specifications-Combustion Engineering Plants" (ISTS).
These changes are designated as administrative changes and are acceptable because they do not result in technical changes to the CTS.
A02    Unit 1 CTS 3.3.2.1 and Unit 2 CTS 3.3.2 specify requirements for ESFAS instrumentation and list the requirements for each functional unit in CTS Tables 3.3-3, 3.3-4, and 4.3-2, including the manual channels and automatic actuation logic (Unit 2 only). ITS 3.3.4 provides requirements for the ESFAS Actuation Logic and Manual Actuation channels and provides the requirements in the LCO, Applicability, ACTIONS, and Surveillance Requirements. Additionally, ITS Table 3.3.4-1 does not retain the "TOTAL NO. OF CHANNELS" or "CHANNELS TO TRIP" columns. DOC LA01 describes the change that moves the information of the "TOTAL NO. OF CHANNELS" and "CHANNELS TO TRIP" columns to the Bases. This changes the CTS by moving the "MINIMUM CHANNELS OPERABLE" requirements to the LCO statement and reformatting the content consistent with the ISTS. This change is designated as administrative because it does not result in a technical change to the CTS.
A03    Unit 1 only: CTS Table 3.3-3 Functional Unit 1 (SIAS), Functional Unit 2 (CSAS), Functional Unit 3 (CIS), Functional Unit 4 (MSIS) and Functional Unit 5 (RAS) do not specifically include the Automatic Actuation Logic and Actuation Relay Function. However, CTS Table 4.3-2 list Surveillance Requirements for the ESFAS automatic actuation logic associated with these Functions.
Therefore, per the requirements of CTS 4.0.1 (ITS SR 3.0.1), CTS 3.3.2.1 encompasses the ESFAS automatic actuation logic. ITS LCO 3.3.4 requires two ESFAS Actuation Logic channels to be OPERABLE in the MODES specified for each Function. This changes the CTS by explicitly requiring two channels of the ESFAS Actuation Logic Functions for SIAS, CSAS, CIS, MSIS, and RAS to be OPERABLE.
This change is considered acceptable because the SIAS, CSAS, CIS, MSIS and RAS Functions require the Actuation Logic channels to operate properly in order to actuate the associated function response. Two channels are required to be OPERABLE to ensure a single failure of a logic channel does not prevent the actuation of the associated SIAS, CSAS, CIS, MSIS or RAS function response.
The proposed Applicability is consistent with the Applicability of the Functions listed under CTS Table 3.3-3 Functional Units 1.a, 2.a, 3.a, 5.a and 4.a as modified by DOC L02. This change is designated as administrative because it does not result in a technical change to the CTS.
St. Lucie Unit 1 and Unit 2              Page 1 of 13                                    lR2
 
DISCUSSION OF CHANGES ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION A04    Unit 1 CTS 3.3.2.1 does not currently contain an ACTION when two Manual Actuation channels are inoperable and Unit 2 CTS 3.3.2 does not currently contain an ACTION when two Manual Actuation or Actuation Logic channels are inoperable; therefore, an LCO 3.0.3 entry would be required. ITS 3.3.4 ACTION B requires the unit to be in MODE 3 in 6 hours and MODE 4 in 12 hours when two Auxiliary Feedwater Actuation Signal (AFAS) Manual Actuation or Actuation Logic channels are inoperable. ITS 3.3.4 ACTION F requires the unit to be in MODE 3 in 6 hours and MODE 5 in 36 hours when either two Safety Injection Actuation Signal (SIAS), two Containment Spray actuation Signal (CSAS), two Containment Isolation Signal (CIS - Unit 1), two Containment Isolation Actuation Signal (CIAS - Unit 2), or two Containment Sump Recirculation Actuation Signal (RAS) Manual Actuation or Actuation Logic channels are inoperable. This changes the CTS by explicitly stating shutdown ACTIONS when two Manual Actuation or Actuation Logic channels are inoperable for an ESFAS Function.
The purpose of ITS 3.3.4 ACTIONS B, and F when two Manual Actuation or Actuation Logic channels are inoperable, is to ensure the plant is brought to a MODE in which the LCO for the ESFAS Functions does not apply within a reasonable amount of time in a controlled manner. Unit 1 CTS 3.3.2.1 and Unit 2 CTS 3.3.2 are silent on these actions, deferring to CTS 3.0.3 for the actions to accomplish this. The proposed change is acceptable because the ACTIONS specified in ITS 3.3.4 adopt ISTS structure for placing the unit outside the MODE of Applicability without changing the time specified to enter MODE 3, MODE 4, or MODE 5, as applicable. This change is designated as administrative because it does not result in a technical change to the CTS.
A05    Unit 1 only: CTS Table 3.3-3 Functional Unit 4.a provides requirements for MSIS manual actuation. The Total No. Of Channels and Minimum Channels Operable columns specify 2 channels per steam generator (SG) and the Channels to Trip column specifies 1 channel per SG. ITS LCO 3.3.4, in part, requires two channels of ESFAS Manual Actuation for each Function listed in Table 3.3.4-1 to be OPERABLE, which includes the main steam isolation signal (MSIS) Function. This changes the CTS by requiring two MSIS Manual Actuation channels instead of two channels per SG.
The purpose of the required number of channels is to ensure a manual MSIS trip can be initiated coincident with a single failure. The MSIS manual actuation function is comprised of one manual actuation push button per MSIS actuation train. A single pushbutton associated with either Manual Actuation channel is    lR2 required to initiate an isolation of both MSIVs. Each Manual Actuation channel actuates its associated MSIS Actuation Logic train and each MSIS Actuation        lR2 l
Logic train provides a signal to both MSIVs via interposing relays. CTS Table 3.3-3 Functional Unit 4.a specifies each logic input to each MSIV as a Manual Actuation channel (i.e., two Manual Actuation channels to each SG).
ISTS LCO 3.3.5 (ITS LCO 3.3.4) and the associated ACTIONS and Surveillances are formatted to address each individual manual actuation push button circuit to the MSIS logic train as a channel. Actuating either MSIS Manual Actuation train  lR2 will result in a full main steam isolation. Therefore, changing the minimum St. Lucie Unit 1 and Unit 2              Page 2 of 13                                    lR2
 
DISCUSSION OF CHANGES ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION number of required channels from 2 per steam generator to 2 results in an equivalent requirement; two manual push buttons must be OPERABLE and one manual push button is required to initiate a main steam isolation.
This change is a presentation preference is consistent with NUREG-1432, Rev. 5 and PSL Unit 2 CTS Table 3.3-1 Functional Unit 1 Total No. of Channels, Minimum Channels Operable, and Channels to Trip columns. This change is designated as administrative because it does not result in technical changes to the CTS.
A06    CTS Table 3.3-3 Actions describe the Actions to be taken when ESFAS Function manual actuations or actuation logic channels are inoperable. ITS 3.3.4 also describes Actions to be taken when ESFAS Function manual actuations or actuation logic channels are inoperable and contains a note that separate condition entry is allowed for each ESFAS Function. This changes the CTS by adding a Note stating that separate condition entry is allowed for each ESFAS Function, those Functions being the SIAS, CSAS, CIS (Unit 1) and CIAS (Unit 2),
MSIS, RAS, and AFAS Functions.
The purpose of the CTS Actions is to provide the appropriate compensatory actions for inoperable ESFAS Functions. This proposed change will allow separate condition entry for each ESFAS Function. The Note clarifies that ESFAS Functions are treated as separate entities, each with separate Completion Times. This change is acceptable because it clearly states the current requirement. The CTS considers each ESFAS Function to be separate and independent from the others including on a per steam generator basis. This change is designated as administrative because it does not result in technical changes to the CTS.
A07    Unit 1 CTS Table 3.3-3 Action 11 and Unit 2 CTS Table 3.3-3 Action 15 describe the actions to be taken when one Manual Actuation or Actuation Logic channel associated with an AFAS Functional Unit cannot be restored to OPERABLE status within the required Completion Time. ACTION 15 includes a statement that "LCO 3.0.4.a is not applicable when entering HOT SHUTDOWN." ITS 3.3.4 ACTION B also describes actions to be taken when one Manual Actuation or Actuation Logic channel associated with an AFAS Function cannot be restored to OPERABLE status within the required Completion Time but does not include the CTS statement regarding LCO 3.0.4.a because the AFAS instrumentation is not applicable in HOT SHUTDOWN (MODE 4). This changes the CTS by eliminating a note that is unnecessary for Technical Specification compliance.
The purpose of the CTS Actions is to provide the appropriate compensatory actions for inoperable AFAS Functions. This CTS statement that LCO 3.0.4.a is not appliable when entering Hot Shutdown is unnecessary. The purpose of CTS 3.0.4 (ITS LCO 3.0.4) is to prohibit entry into a MODE or other specified condition in which the LCO is applicable when the LCO is not met except as allowed by LCO 3.0.4.a, b, or c. CTS Table 3.3-3 Action 11 (Unit 1) and Action 15 (Unit 2) are only related to the AFAS Functions (CTS Table 3.3-3 Functional Units 7.a and 7.b). These Functions are not applicable in MODE 4 St. Lucie Unit 1 and Unit 2            Page 3 of 13                                    lR2
 
DISCUSSION OF CHANGES ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION (Hot Shutdown). Therefore, LCO 3.0.4 does not apply to the AFAS Functions when in MODE 4 resulting in the statement related to LCO 3.0.4.a not being applicable meaningless. This change is designated as administrative because it removes a requirement that serves no purpose and does not result in technical changes to the CTS.
A08    Unit 1 only: CTS Table 4.3-2 requires CHANNEL FUNCTIONAL TEST requirements for each ESFAS Functional Unit, including ESFAS automatic actuation logic channels. ITS SR 3.3.4.1 also requires a CHANNEL FUNCTIONAL TEST on each ESFAS logic channel and includes a Note (Note 1) that states, "Testing of Actuation Logic shall include verification of the proper operation of each initiation relay." The added Note is consistent with the ISTS.
This changes the CTS by explicitly stating that proper operation of each initiation relay is required to satisfy the CHANNEL FUNCTIONAL TEST requirement.
The purpose of the additional Note is to explicitly clarify the intent of the CHANNEL FUNCTIONAL TEST to include the initiation relays of the equipment.
CTS 1.6 definition of a CHANNEL FUNCTIONAL TEST requires the injection of a simulated signal into the channel as close to the primary sensor as practicable to verify OPERABILITY including alarm and/or trip functions. Similarly, the ITS definition of a CHANNEL FUNCTIONAL TEST states, in part, "the injection of a simulated or actual signal into the channel as close to the sensor as practicable to verify OPERABILITY of all devices in the channel required for channel OPERABILITY." Although it is inferred by the definition of a CHANNEL FUNCTIONAL TEST that testing the associated initiation relays is required to verify logic OPERABILITY, Note 1 to SR 3.3.4.1 provides explicit clarification of the requirement. This change is designated as administrative because it does not result in a technical change to the CTS.
MORE RESTRICTIVE CHANGES None RELOCATED SPECIFICATIONS None REMOVED DETAIL CHANGES LA01 (Type 1 - Removing Details of System Design and System Description, Including Design Limits) CTS Table 3.3-3 for ESFAS instrumentation has three columns stating various requirements for each function. These columns are labeled, "TOTAL NO. OF CHANNELS," "CHANNELS TO TRIP," and "MINIMUM CHANNELS OPERABLE." ITS Table 3.3.4-1 does not retain the "TOTAL NO.
OF CHANNELS" or "CHANNELS TO TRIP" columns. This changes the CTS by moving the information of the "TOTAL NO. OF CHANNELS" and "CHANNELS TO TRIP" columns to the Bases.
St. Lucie Unit 1 and Unit 2              Page 4 of 13                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION The removal of these details, which are related to system design, from the Technical Specifications, is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. The ITS still retains the requirement for the number of required channels and the appropriate Condition to enter if a required channel becomes inoperable. Also, this change is acceptable because the removed information will be adequately controlled in the ITS Bases.
Changes to the Bases are controlled by the Technical Specification Bases Control Program in Chapter 5. This program provides for the evaluation of changes to ensure the Bases are properly controlled. This change is designated as a less restrictive removal of detail change because information relating to system design is being removed from the Technical Specifications.
LA02 (Type 3 - Removing Procedural Details for Meeting TS Requirements or Reporting Requirements) Unit 1 CTS Table 4.3-2 contains Note (1) requiring, in part, that "logic circuits to be tested manually." Unit 2 CTS Table 4.3-2 contains Notes (2) and (3) modifying the Automatic Actuation Logic Channel Functional Test requirements. Note (2) requires an actuation relay test to be performed including the energization/de-energization of each actuation relay and verification of the OPERABILITY of each actuation relay. Note (3) requires a subgroup relay test to be performed including the energization/de-energization of each subgroup relay and verification of the OPERABILITY of each subgroup relay. ITS 3.3.4 does not retain these Notes, but rather, includes this testing procedural guidance in the ITS Bases. This changes the CTS by moving procedural details regarding testing to the Bases.
The purpose of the CTS Notes is to ensure the appropriate components are tested to demonstrate OPERABILITY of instrumentation actuation logic. The removal of these details, which are procedural details, from the Technical Specifications, is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. The ITS retains the CHANNEL FUNCTIONAL TEST requirement and the definition of a CHANNEL FUNCTIONAL TEST which ensures the appropriate components are tested to verify instrumentation OPERABILITY. Also, this change is acceptable because the removed information will be adequately controlled in the ITS Bases. Changes to the Bases are controlled by the Technical Specification Bases Control Program in Chapter 5. This program provides for the evaluation of changes to ensure the Bases are properly controlled. This change is designated as a less restrictive removal of detail change because information relating to system design is being removed from the Technical Specifications.
LESS RESTRICTIVE CHANGES L01    (Category 2 - Relaxation of Applicability) Unit 1 CTS 3.3.2.1, Table 3.3-3 Functional Unit 4 establishes the Applicability of main steam isolation signal      lR2 (MSIS) manual actuation as MODES 1, 2, 3, and 4. Unit 1 CTS Table 4.3-2            l St. Lucie Unit 1 and Unit 2                Page 5 of 13                                    lR2
 
DISCUSSION OF CHANGES ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION Functional Unit 4 establishes the Applicability of the MSIS automatic actuation      lR2 l
logic Surveillance as MODES 1, 2, and 3. Unit 1 CTS Table 3.3-3 does not            l specifically include an MSIS automatic actuation logic requirement although CTS      l Table 4.3-2 includes automatic actuation logic Surveillance Requirements when        l l
in MODES 1, 2, and 3 (See DOC L05 for additional discussion of the MSIS              l automatic actuation logic). Unit 1 CTS Table 4.3-2 states that the Applicability for l l
the MSIS manual actuation Surveillance is "N/A".
Unit 2 CTS 3.3.2, Table 3.3-3 Functional Unit 4 establishes the Applicability of    lR2 l
MSIS manual and automatic actuation logics as MODES 1, 2, and 3. Unit 2 CTS          l Table 4.3-2 Functional Unit 4 establishes the Applicability of the MSIS manual      l actuation logic Surveillance as MODES 1, 2, and 3 and the MSIS automatic            l l
actuation logic Surveillance as MODES 1, 2, 3, and 4. When one Unit 1 MSIS          l manual actuation channel is inoperable or one Unit 2 automatic actuation logic      l l
channel is inoperable, CTS Table 3.3-3 Action 8 (Unit 1) and Action 12 (Unit 2) require, in part, to restore the channel to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program.
ITS LCO 3.3.4 (Table 3.3.4-1) requires the MSIS manual actuation and automatic actuation channel to be OPERABLE in MODES 1, 2, and 3 except in MODES 2 and 3 when valves isolated by the MSIS Function are closed and deactivated as        lR2 specified in Footnote (a). Consistent with CTS, ITS 3.3.4 ACTION C requires restoring a channel to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program when one MSIS Manual Actuation or Actuation Logic channel is inoperable. However, ITS 3.3.4 ACTION D requires closing and deactivating the main steam isolation valves (MSIVs) and        lR2 the main feedwater isolation valves (MFIVs) in 6 hours, or be in MODE 3 in 6 hours and MODE 4 in 12 hours when two MSIS Manual Actuation or Actuation Logic channels are inoperable or when the action to restore one MSIS Manual Actuation or Actuation Logic channel cannot be completed within the required Completion Time. This changes the CTS by deleting the MODE 4 applicability requirement for Unit 1 MSIS manual actuation and the Unit 2 automatic actuation      lR2 l
surveillance requirement and also changes the MODE 2 and 3 Applicability for Unit 1 and Unit 2 to include "except when valves isolated by the MSIS Function are closed and deactivated." These changes align the Applicability of the MSIS      lR2 actuation instrumentation with the applicability requirements of the associated MSIS instrument channels (i.e., steam generator low pressure instrument channels and the Unit 2 containment high pressure instrument channels) and the supported equipment (i.e., the MSIVs and MFIVs). This change also revises the CTS Actions to add appropriate actions to reflect the change to the Applicability, which provides sufficient remedial actions to safely continue operation in lieu of a plant cooldown.
The purpose of the MSIS manual and automatic instrumentation in CTS Table 3.3-3 is to ensure the ESFAS MSIS Functions are OPERABLE when the lR2 supported equipment is required to be OPERABLE. The change aligns the                l Applicability of the MSIS actuation channels with the Applicability of the          l supported equipment. The MSIVs and MFIVs are not required to be OPERABLE            l l
in MODE 4. The MSIVs are required to be OPERABLE in MODE 1 and                      l St. Lucie Unit 1 and Unit 2              Page 6 of 13                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION lR2 MODES 2 and 3 except when all MSIVs are closed. The MFIVs are required to              l be OPERABLE in MODES 1, 2 and 3 except when the MFIV is closed and                      l deactivated. The change to the MSIS Applicability continues to ensure the              l l
MSIVs and MFIVs can isolate the main steam line and main feedwater lines in            l the event of a high energy secondary system pipe rupture (e.g., main steam line        l l
break (MSLB)). The MFIVs can also isolate the main feedwater lines in the event        l of a large feedwater line break or an excess feedwater flow event. The exception        l to MODES 2 and 3 clarifies that the MSIS that supports the MSIVs and MFIVs is          l l
not required to be OPERABLE when the isolation devices are closed and                  l deactivated. Automatic steam line and feedwater line isolation is assumed in the        l mitigation of a major secondary system pipe rupture accident (e.g., main steam line break or feedwater line break). The MSIS manual actuation instrumentation is not credited in the safety analysis and a safety analysis limit is not specified for this actuation function. MSIS automatic actuation instrumentation is credited in the safety analysis.
In MODES 1, 2, and 3, there is sufficient energy in the primary and secondary systems to warrant automatic ESF System response to ensure the main steam and feedwater lines can be isolated in the event of a high energy secondary system pipe rupture. The exception to MODE 2 and 3 is added to clarify that the MSIS manual and automatic actuation instrumentation is not required to be OPERABLE when the valves actuated by the MSIS instrumentation are in positions that support the safety analyses. When the valves isolated by the MSIS function are in the closed position, they are in their assumed accident position. This change is acceptable, because when the MSIVs and MFIVs are closed, the adverse effects of a high energy secondary system pipe rupture are precluded and the requirements continue to ensure that the structures, systems, and components are maintained in the MODES and other specified conditions assumed in the safety analyses. The proposed applicability and actions provide the same level of protection as the current requirements for the supported equipment.
Since the proposed actions provide the allowance to place the MSIVs and MFIVs in their accident position with the option to continue a plant cooldown, sufficient remedial measures continue to be provided to allow safe operation pursuant the requirements of 10 CFR 50.36(c)(2). Proposed ITS 3.3.4 ACTION D is acceptable because, if not restricted by plant operation, the action of closing the associated MSIVs and MFIVs isolates the affected secondary system line, which accomplishes the safety function of the inoperable MSIS manual and automatic actuation logic channel(s). This action is similar to the ACTIONS provided in ITS 3.7.2, "Main Steam Isolation Valves (MSIVs)," and ITS 3.7.3, "Main Feedwater Isolation Valves (MFIVs)," and may be preferable instead of placing the plant in an unnecessary plant cooldown transient. Alternately, if it is necessary to maintain the MSIVs and MFIVs open to support plant cooldown, the actions continue to allow the plant to be placed in MODE 3 within 6 hours and in MODE 4 within 12 hours consistent with the current time to reach these MODES in CTS 3.0.3 (ITS LCO 3.0.3) and the times used throughout the CTS and ITS to reach MODES 3 and 4. The Completion Time to close the associated MSIVs and MFIVs corresponds to the time to be in MODE 3. These Completion Times St. Lucie Unit 1 and Unit 2              Page 7 of 13                                          lR2
 
DISCUSSION OF CHANGES ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. This change is designated as less restrictive because the ITS LCO requirements are applicable in fewer operating conditions than in the CTS.
L02    Unit 1 only: (Category 4 - Relaxation of Required Action) CTS Table 3.3-3 Functional Unit 1 (SIAS), Functional Unit 2 (CSAS), Functional Unit 3 (CIS),
Functional Unit 4 (MSIS) and Functional Unit 5 (RAS) do not specifically include requirements for the automatic actuation logic channels, including actions when one or more automatic actuation logic channels are inoperable. However, CTS Table 4.3-2 list Surveillance Requirements for the ESFAS automatic actuation logic associated with these Functions. Therefore, per the requirements of CTS 4.0.1 (ITS SR 3.0.1), CTS 3.3.2.1 encompasses the ESFAS automatic actuation logic. ITS LCO 3.3.4 requires the two automatic actuation logic channels to be OPERABLE in the MODES specified for each Function.
Additionally, ITS 3.3.4 provides ACTIONS for one actuation logic channel inoperable and for two actuation logic channels inoperable. For CTS, if an automatic actuation channel is inoperable, CTS 3.0.3 is entered since there is no Condition and Action specified in the CTS. This changes the CTS by explicitly requiring the two ESFAS actuation logic channels be OPERABLE for each ESAFS Function and providing time to restore an automatic actuation channel to OPERABLE status when one channel (per Function) is inoperable. ITS ACTION C and ACTION E provide a Completion Time of 48 hours or in accordance with the Risk Informed Completion Time Program to restore an inoperable actuation logic channel to OPERABLE status before entry into ACTION D or F, respectively, which provide shutdown requirements. ACTION D requires the MSIVs and MFIVs be closed within 6 hours or be in MODE 3 within 6 hours and MODE 4 within 12 hours. ACTION F requires the unit be in MODE 3 within 6 hours and MODE 5 within 36 hours. This changes the CTS by providing specific ACTIONS to take when an actuation logic channel is inoperable before a shutdown ACTION is entered. CTS 3.0.3 requires the unit to be in MODE 5 within 37 hours from the time that one ESFAS actuation logic channel is discovered inoperable, whereas the ITS ACTIONS allow a Completion Time of 48 hours or in accordance with the Risk Informed Completion Time Program to restore the inoperable actuation logic channel to OPERABLE status before a shutdown ACTION is required.
The purpose of ITS 3.3.4 ACTIONS C and E is to provide a period of time to restore an inoperable actuation logic channel to OPERABLE status and the purpose of ITS 3.3.4 ACTIONS D and F is to place the unit outside the Applicability of the ESFAS Function with the inoperable actuation logic channel.
Currently, an inoperable automatic actuation logic channel requires entry into CTS 3.0.3 since no Action is provided for this case. CTS 3.0.3 allows 1 hour to initiate action, 7 hours for the unit to be placed in MODE 3, and 13 hours for the unit to be placed in MODE 4, and 37 hours for the unit to be in MODE 5.
St. Lucie Unit 1 and Unit 2              Page 8 of 13                                    lR2
 
DISCUSSION OF CHANGES ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION ITS ACTION C and ACTION E provide a Completion Time of 48 hours or in accordance with the Risk Informed Completion Time Program to restore an inoperable actuation logic channel to OPERABLE status before entry into ACTION D or F, respectively. ACTION D requires the MSIVs and MFIVs closed within 6 hours or be in MODE 3 within 6 hours and MODE 4 within 12 hours.
ACTION F requires the unit be in MODE 3 within 6 hours and MODE 5 within 36 hours. The proposed ACTIONS result in extending the time an ESFAS channel may be inoperable, which is less restrictive than the CTS 3.0.3 times of 13 hours for the unit to be placed in MODE 4, and 37 hours for the unit to be in MODE 5.
This change is considered acceptable because the SIAS, CSAS, CIS, MSIS and RAS Functions require the automatic actuation logic channels to operate properly in order to actuate the associated Function response. Two channels are required to be OPERABLE to ensure a single failure of a logic channel does not prevent the actuation of the associated SIAS, CSAS, CIS, MSIS or RAS Function response. The proposed Applicability is consistent with the Applicability of the Functions listed under CTS Table 3.3-3 Functional Units 1.a, 2.a, 3.a, 5.a and 4.a as modified by DOC L01. This change is designated as less restrictive because the ITS Actions are less restrictive than the CTS Actions L03    (Category 7 - Relaxation of Surveillance Frequency) CTS Table 4.3-2 requires CHANNEL FUNCTIONAL TEST requirements for each ESFAS Functional Unit, including ESFAS automatic actuation logic channels. ITS SR 3.3.4.1 also requires a CHANNEL FUNCTIONAL TEST on each ESFAS logic channel and includes a Note (Note 2) that states, "Relays associated with plant equipment that cannot be operated during plant operation are only required to be tested during each MODE 5 entry exceeding 24 hours unless tested during the previous 6 months." This changes the CTS by providing allowance to test components required to satisfy the CHANNEL FUNCTIONAL TEST at a frequency other than the frequency specified in accordance with the Surveillance Frequency Control Program.
The purpose of the additional Note is to allow certain components required to satisfy the CHANNEL FUNCTIONAL TEST to be tested during plant shutdown conditions. The allowance is necessary to allow for the fact that operating certain relays during power operation could cause plant transients or equipment damage. This change is acceptable because during plant operation actuation of certain systems and components could result in a plant transient. For example, isolation of the Component Cooling Water System valves to and from the reactor coolant pumps or closure of the MSIVs and feedwater isolation valves.
Appropriate equipment continues to be tested in a manner and at a frequency necessary to give confidence that the equipment can perform its assumed safety function and assure that the necessary quality of systems and components is maintained, and that facility operation will be within safety limits. Additionally, the relaxation of the testing frequency is offset by reducing the likelihood of a plant transient as a result of testing certain actuating relays during at-power conditions.
This change is also consistent with Note 2 in ISTS SR 3.3.5.1. This change is designated as less restrictive because portions of the Surveillance will be performed less frequently under the ITS than under the CTS.
St. Lucie Unit 1 and Unit 2              Page 9 of 13                                          lR2
 
DISCUSSION OF CHANGES ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION L04    Unit 2 only: (Category 4 - Relaxation of Required Action) When one MSIS manual trip button channel is inoperable, CTS Table 3.3-3 Action 16 requires the channel to be restored to OPERABLE status within 48 hours or declare the associated valve inoperable and take the ACTION required by Specification 3.7.1.5 (i.e., Main Steam Line Isolation Valves Specification).
ITS 3.3.4 ACTION C requires restoring a channel to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program.
This changes the CTS by optionally allowing the manual channel to be restored in accordance with the Risk Informed Completion Time (RICT) Program and eliminating the requirement to declare the associated valve inoperable and take ACTION required by the supported system Specification. This change aligns the action for one inoperable Unit 2 MSIS manual channel with the action for one inoperable Unit 1 MSIS manual channel and an inoperable channel for the other ESFAS manual actuation channels.
The purpose of the actions associated with the MSIS manual actuation instrumentation in CTS Table 3.3-3 is to ensure sufficient remedial measures are provided to allow safe operation pursuant the requirements of 10 CFR 50.36(c)(2).
Automatic steam line and feedwater line isolation is assumed in the mitigation of a major secondary system pipe rupture accident (e.g., main steam line break (MSLB) or feedwater line break (FWLB)). The consequences of a MSLB inside containment bounds the consequences of a FWLB accident. This change is acceptable because, in part, the MSIS manual actuation instrumentation is not credited in the safety analysis and a safety analysis limit is not specified for this actuation function. This change is also acceptable considering redundant manual actuation logic channels are available to ensure the required equipment supported by the MSIS (i.e., MSIVs and MFIVs) will be capable of actuating, diverse automatic actuation channels are available, and a Completion Time beyond 48 hours will be evaluated, and the risk managed in accordance with the RICT Program. Extending the time to restore a single ESFAS manual actuation channel to OPERABLE status has been previously evaluated and approved by the NRC for the other ESFAS manual channels and the Unit 1 ESFAS manual channels, including the Unit 1 MSIS manual channel. In the NRC safety evaluation (SE) accompanying PSL Unit 2 License Amendment 199 (RICT Amendment), dated July 2, 2019, (NRC ADAMS Accession No. ML19113A099) the NRC concluded that the proposed RICT for the manual ESFAS channels does not impede accomplishing their safety function and does not alter the existing diversity of the affected functions. The NRC staff stated that the change is consistent with the defense-in-depth philosophy, and therefore acceptable. The acceptability was based, in part, on confirmation that more than one diverse means existed to accomplish the safety function for each identified accident condition, as indicated in the Tables provided in FPL to NRC supplement letter, "Fourth Response to Request for Additional Information Regarding License Amendment Request to Adopt Risk Informed Completion Times TSTF-505, Revision 1, 'Provide Risk-Informed Extended Completion Times - RITSTF Initiative 4b,'" dated March 15, 2018 (NRC ADAMS Accession No. ML18074A116). Tables 2 and 4 of the supplement letter provided the Instrumentation Diversity for each Unit 1 and Unit 2 ESFAS Instrument Function, respectively. As indicated in Table 4 of the RICT St. Lucie Unit 1 and Unit 2            Page 10 of 13                                        lR2
 
DISCUSSION OF CHANGES ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION supplement letter, ESFAS diversity for the MSIS manual actuation instrumentation is provided by the Steam Generator Pressure - Low Function for a MSLB outside containment. ESFAS diversity for the MSIS manual actuation instrumentation for a MSLB inside containment is provided by the Steam Generator Pressure - Low Function and the Containment Pressure - High Function. This diversity is equivalent or better than the diversity for the Unit 1 MSIS manual actuation instrumentation, which has been approved to restore one inoperable channel to OPERABLE status in accordance with the RICT Program.
The NRC-approved RICT Program required by CTS 6.8.4.s (ITS 5.5.17) provides controls to calculate a RICT as implemented in accordance with NEI 06-09-A, Revision 0, "Risk-Managed Technical Specifications (RMTS) Guidelines." In the NRC SE accompanying the RICT Amendment, the NRC found that the PSL PRA maintenance and change process ensures that the configuration risk management program models used in the RICT calculations will continue to use PRA methods acceptable to the NRC and that the PRA model will be updated as necessary to reflect the as-built and as-operated plant. The NRC also found that appropriate programmatic and procedural controls for the RICT Program are consistent with the guidance of NEI 06-09, Revision 0-A. Therefore, use of the RICT Program specified in the Technical Specifications to determine a RICT to restore an inoperable MSIS manual actuation channel is acceptable.
Based on the considerations described herein, the change to the actions associated with one inoperable MSIS manual actuation channel continues to provide sufficient remedial measures to allow safe operation pursuant the requirements of 10 CFR 50.36(c)(2). This change is designated as less restrictive because the ITS Actions are less restrictive than the CTS Actions.
L05    Unit 1 only: (Category 4 - Relaxation of Required Action) CTS Table 3.3-3 Functional Unit 1 (SIAS), Functional Unit 2 (CSAS), Functional Unit 3 (CIS),
Functional Unit 4 (MSIS) and Functional Unit 5 (RAS) do not specifically include requirements for the automatic actuation logic channels, including actions when one or more automatic actuation logic channels are inoperable. However, CTS Table 4.3-2 list Surveillance Requirements for the ESFAS automatic actuation logic associated with these Functions. Therefore, per the requirements of CTS 4.0.1 (ITS SR 3.0.1), CTS 3.3.2.1 encompasses the ESFAS automatic actuation logic. ITS LCO 3.3.4 requires the two automatic actuation logic channels to be OPERABLE in the MODES specified for each Function.
Additionally, ITS 3.3.4 provides ACTIONS for inoperable actuation logic channels. For CTS, if an automatic actuation channel is inoperable, CTS 3.0.3 is entered since there is no Condition and Action specified in the CTS. When one MSIS automatic logic channel is inoperable, ITS 3.3.4 ACTION C requires restoring a channel to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time (RICT) Program. When one automatic logic channel associated with one or more ESFAS Functions (except MSIS and AFAS) is inoperable, ITS 3.3.4 ACTION E also requires restoring a channel to OPERABLE status within 48 hours or in accordance with the RICT Program.
This changes the CTS by providing time to restore one automatic logic channel of each ESFAS actuation Function within 48 hours or in accordance with the St. Lucie Unit 1 and Unit 2            Page 11 of 13                                    lR2
 
DISCUSSION OF CHANGES ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION RICT Program. This change aligns the action for one inoperable SIAS, CSAS, CIS, MSIS, and RAS automatic actuation logic channel with the action for one inoperable AFAS automatic actuation logic channel, one inoperable ESFAS manual channel, and an inoperable channel for the Unit 2 ESFAS automatic logic actuation channels.
The purpose of the actions associated with the SIAS, CSAS, CIS, MSIS, and RAS automatic actuation instrumentation in CTS Table 3.3-3 is to ensure sufficient remedial measures are provided to allow safe operation pursuant the requirements of 10 CFR 50.36(c)(2). The SIAS, CSAS, CIS, MSIS, and RAS automatic actuation logic channels are implicitly assumed to be functional to support automatic actuation of the supported ESF equipment during design basis accidents and transients. This change is acceptable considering redundant automatic actuation logic channels are available to ensure the required equipment supported by the ESFAS (e.g., ECCS and Containment Spray System) will be capable of automatically actuating, diverse manual actuation channels are available, and a Completion Time beyond 48 hours will be evaluated, and the risk managed in accordance with the RICT Program.
Extending the time to restore a single ESFAS automatic actuation logic channel to OPERABLE status has been previously evaluated and approved by the NRC for one inoperable AFAS automatic actuation logic channel, the ESFAS manual channels, and the Unit 2 ESFAS automatic actuation logic channels. In the NRC safety evaluation (SE) accompanying PSL Unit 1 License Amendment 247 (RICT Amendment), dated July 2, 2019, (NRC ADAMS Accession No. ML19113A099) the NRC concluded that the proposed RICT for the manual ESFAS channels and the Unit 2 automatic actuation logic channels does not impede accomplishing their safety function and does not alter the existing diversity of the affected functions. The NRC staff stated that the change is consistent with the defense-in-depth philosophy, and therefore acceptable. The acceptability was based, in part, on confirmation that more than one diverse means existed to accomplish the safety function for each identified accident condition, as indicated in the tables provided in FPL to NRC supplement letter, "Fourth Response to Request for Additional Information Regarding License Amendment Request to Adopt Risk Informed Completion Times TSTF-505, Revision 1, 'Provide Risk-Informed Extended Completion Times - RITSTF Initiative 4b,'" dated March 15, 2018 (NRC ADAMS Accession No. ML18074A116). Tables 2 and 4 of the supplement letter provided the Instrumentation Diversity for each Unit 1 and Unit 2 ESFAS Instrument Function, respectively. As indicated in Table 2 of the RICT supplement letter, ESFAS diversity for the SIAS, CSAS, CIS, MSIS, and RAS automatic actuation instrumentation is provided by the respective manual actuation channels for each specified accident condition. Equivalent actions in Unit 2 CTS (Table 3.3-3, Action 12) allow restoration of one inoperable automatic actuation channel to OPERABLE status in 48 hours or in accordance with the RICT Program.
The NRC-approved RICT Program required by CTS 6.8.4.r (ITS 5.5.17) provides controls to calculate a RICT as implemented in accordance with NEI 06-09-A, Revision 0, "Risk-Managed Technical Specifications (RMTS) Guidelines." In the NRC SE accompanying the RICT Amendment, the NRC found that the PSL PRA St. Lucie Unit 1 and Unit 2            Page 12 of 13                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION maintenance and change process ensures that the configuration risk management program models used in the RICT calculations will continue to use PRA methods acceptable to the NRC and that the PRA model will be updated as necessary to reflect the as-built and as-operated plant. The NRC also found that appropriate programmatic and procedural controls for the RICT Program are consistent with the guidance of NEI 06-09, Revision 0-A. Therefore, use of the RICT Program specified in the Technical Specifications to determine a RICT to restore an inoperable SIAS, CSAS, CIS, MSIS, or RAS automatic actuation logic channel is acceptable.
Based on the considerations described herein, the change to the Unit 1 CTS actions associated with one inoperable SIAS, CSAS, CIS, MSIS, or RAS automatic actuation logic channel continues to provide sufficient remedial measures to allow safe operation pursuant the requirements of 10 CFR 50.36(c)(2). This change is designated as less restrictive because the ITS Actions are less restrictive than the CTS Actions.
St. Lucie Unit 1 and Unit 2            Page 13 of 13                                        lR2
 
Improved Standard Technical Specifications (ISTS) Markup and Justification for Deviations (JFDs)
 
ESFAS Logic and Manual Trip (Analog) 3 CTS Actuation 3.3.5 4
3.3 INSTRUMENTATION (Analog)                                                                                    Actuation 3.3.2.1        3.3.5              Engineered Safety Features Actuation System (ESFAS) Logic and Manual Trip                                        3 4
(Analog)
Actuation 3.3.2.1        LCO 3.3.5                    Two ESFAS Manual Trip and two ESFAS Actuation Logic channels shall                                3 4
be OPERABLE for each ESFAS Function specified in Table 3.3.5-1.                                        3 4
Table 3.3-3 APPLICABILITY:                  According to Table 3.3.5-1.
Functional Unit 1.a, 2.a, 3.a, 4.a, 5.a., 7.a, 7.b                                          4 ACTIONS
                ------------------------------------------------------------NOTE-----------------------------------------------------------
DOC A06        Separate Condition entry is allowed for each Function.
CONDITION                            REQUIRED ACTION                            COMPLETION TIME Table 3.3-9        A. One or more Functions                A.1        Restore channel to                      48 hours                          1    lR2 l
Action 11                with one Auxiliary                            OPERABLE status.
Feedwater Actuation                                                                    [OR                              2 Signal (AFAS) Manual Trip or Actuation Logic                                                                In accordance with 3
Actuation channel inoperable.                                                                      the Risk Informed Completion Time Program]                          2 Actuation Table 3.3-9      B. Two AFAS Manual Trip                  B.1        Be in MODE 3.                            6 hours                            3 Action 11              or Actuation Logic DOC A04 channels inoperable.              AND OR                                B.2        Be in MODE 4.                            [12] hours                          2 Required Action and associated Completion Time of Condition A not met.
INSERT 1                                                                                                                          4 4
3 Combustion Engineering STS                                3.3.5-1                                                  Rev. 5.0      1 St. Lucie - Unit 1                                                                                          Amendment XXX
 
ESFAS Logic and Manual Actuation 3.3.4 4                                                    lR2 INSERT 1 CONDITION                REQUIRED ACTION                COMPLETION TIME Table 3.3-9 C. One Main Steam          C.1    Restore channel to          48 hours Action 8      Isolation Signal (MSIS)        OPERABLE status.                                    lR2 DOC L01 DOC L02        Manual Actuation or                                          OR DOC L05        Actuation Logic channel inoperable.                                                  In accordance with the Risk Informed Completion Time Program Table 3.3-9 D. Two MSIS Manual        D.1.1  Close and deactivate main    6 hours                lR2 Action 8      Actuation or Actuation          steam isolation valves.
DOC A03 DOC L01 Logic channels DOC L02        inoperable.            AND OR                      D.1.2  Close and deactivate main    6 hours                lR2 feedwater isolation valves.
Required Action and associated Completion    OR Time of Condition C not met.                    D.2.1  Be in MODE 3.                6 hours AND D.2.2  Be in MODE 4.                12 hours Insert Page 3.3.4-1
 
ESFAS Logic and Manual Trip (Analog) 3 CTS Actuation 3.3.5 4
ACTIONS (continued)
CONDITION                        REQUIRED ACTION                        COMPLETION TIME Actuation Table 3.3-9  C. One or more Functions                C.1 Restore channel to                    48 hours                    3 Action 8 E
with one Manual Trip or            E OPERABLE status.
DOC L02          Actuation Logic channel                                                      [OR                        2 inoperable except AFAS.
In accordance with          1 and MSIS the Risk Informed Completion Time Program]                    2 D. Required Action and                  D.1 Be in MODE 3.                        6 hours associated Completion Time of Condition C not            AND met.
D.2 --------------NOTE---------------                                1 LCO 3.0.4.a is not applicable when entering MODE 4.
Be in MODE 4.                        12 hours Actuation E. One or more Functions                E.1 Be in MODE 3.                        6 hours                    3 DOC A04 DOC L02      F with two Manual Trip or            F Actuation Logic channel            AND inoperable except AFAS.
and MSIS    E.2 Be in MODE 5.                        36 hours                    2 OR                                F                                                                    1 Required Action and associated Completion Time of Condition E not met.
4 3
Combustion Engineering STS                        3.3.5-2                                            Rev. 5.0  1 St. Lucie - Unit 1                                                                            Amendment XXX
 
ESFAS Logic and Manual Trip (Analog) 3 CTS Actuation 3.3.5 4
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                                  FREQUENCY Table 4.3-2    SR 3.3.5.1        ------------------------------NOTES-----------------------------
3 Functional Unit 4
: 1. Testing of Actuation Logic shall include 1.d, 2.c, 3.d,                          verification of the proper operation of each 4.c, 5.c, 7.c DOC L03                                  initiation relay.
: 2. Relays associated with plant equipment that cannot be operated during plant operation are only required to be tested during each MODE 5 entry exceeding 24 hours unless tested during the previous 6 months.
Perform a CHANNEL FUNCTIONAL TEST on each                            [ [92] days ESFAS logic channel.                                                                          2 OR In accordance with the Surveillance Frequency Control Program ]        2 Table 4.3-2    SR 3.3.5.2        Perform a CHANNEL FUNCTIONAL TEST on each                            [ [18] months Functional Unit                                                                                                                3 1.a, 2.a, 3.a,            4 ESFAS Manual Trip channel.                                                                    2 4.a, 5.a, 7.a Actuation                                            OR In accordance with the Surveillance Frequency Control Program ]        2 4
3 Combustion Engineering STS                          3.3.5-3                                            Rev. 5.0  1 St. Lucie - Unit 1                                                                              Amendment XXX
 
ESFAS Logic and Manual Trip (Analog) 3 CTS Actuation 3.3.5 4                                                        4 Table 3.3.5-1 (page 1 of 1)                                              3 Engineered Safety Features Actuation System Actuation Logic and Manual Channel Applicability FUNCTION                                          APPLICABLE MODES
: 1. Safety Injection Actuation Signal                                            1,2,3,[4]
: 2. Containment Spray Actuation Signal                                            1,2,3,[4]
: 3. Containment Isolation Actuation Signal                                        1,2,3,4  (a)
DOC L01                                                                                                                    4    lR2
: 4. Main Steam Isolation Signal                                                    1,2,3,4
: 5. Recirculation Actuation Signal                                                1,2,3,4
: 6. Auxiliary Feedwater Actuation Signal                                            1,2,3                        1 1
DOC L01    (a) except when valves isolated by the MSIS Function are closed and deactivated                                      lR2 4
4 3
Combustion Engineering STS                                3.3.5-4                                        Rev. 5.0    1 St. Lucie - Unit 1                                                                                  Amendment XXX
 
ESFAS Logic and Manual Trip (Analog) 3 CTS Actuation 3.3.5 4
3.3 INSTRUMENTATION (Analog)                                                                                    Actuation 3.3.2            3.3.5          Engineered Safety Features Actuation System (ESFAS) Logic and Manual Trip                                            3 4
(Analog)
Actuation 3.3.2            LCO 3.3.5                    Two ESFAS Manual Trip and two ESFAS Actuation Logic channels shall                                3 4
be OPERABLE for each ESFAS Function specified in Table 3.3.5-1.                                        3 4
Table 3.3-3 APPLICABILITY:                    According to Table 3.3.5-1.
Functional Unit 1.a, 1.d, 2.a, 2.c, 3.a, 3.e,                                                4 4.a, 4.d, 5.a., 5.c, 7.a, 7.b ACTIONS
                  ------------------------------------------------------------NOTE-----------------------------------------------------------
DOC A06          Separate Condition entry is allowed for each Function.
CONDITION                              REQUIRED ACTION                            COMPLETION TIME Table 3.3-3        A. One or more Functions                  A.1        Restore channel to                      48 hours                          1    lR2 Action 15                with one Auxiliary                            OPERABLE status.                                                                l Feedwater Actuation                                                                    [OR                              2 Signal (AFAS) Manual Trip or Actuation Logic                                                                In accordance with                3 Actuation channel inoperable.                                                                        the Risk Informed Completion Time Program]                            2 Actuation Table 3.3-3      B. Two AFAS Manual Trip                  B.1        Be in MODE 3.                            6 hours                              3 Action 15              or Actuation Logic DOC A04 channels inoperable.                AND OR                                  B.2        Be in MODE 4.                            [12] hours                          2 Required Action and associated Completion Time of Condition A not met.
INSERT 1                                                                                                                            4 4
3 Combustion Engineering STS                                3.3.5-1                                                  Rev. 5.0        1 St. Lucie - Unit 2                                                                                          Amendment XXX
 
ESFAS Logic and Manual Actuation 3.3.4 4
lR2 INSERT 1 CONDITION                REQUIRED ACTION                COMPLETION TIME Table 3.3-9 C. One Main Steam          C.1    Restore channel to          48 hours Action 8      Isolation Signal (MSIS)        OPERABLE status.                                    lR2 DOC L01 DOC L02        Manual Actuation or                                          OR DOC L05        Actuation Logic channel inoperable.                                                  In accordance with the Risk Informed Completion Time Program Table 3.3-9 D. Two MSIS Manual        D.1.1  Close and deactivate main    6 hours                lR2 Action 8      Actuation or Actuation          steam isolation valves.
DOC A03 DOC L01 Logic channels DOC L02        inoperable.            AND OR                      D.1.2  Close and deactivate main    6 hours                lR2 feedwater isolation valves.
Required Action and associated Completion    OR Time of Condition C not met.                    D.2.1  Be in MODE 3.                6 hours AND D.2.2  Be in MODE 4.                12 hours Insert Page 3.3.4-1
 
ESFAS Logic and Manual Trip (Analog) 3 CTS Actuation 3.3.5 4
ACTIONS (continued)
CONDITION                        REQUIRED ACTION                        COMPLETION TIME Actuation Table 3.3-3  C. One or more Functions                C.1 Restore channel to                    48 hours                    3 Action 12 E
with one Manual Trip or            E OPERABLE status.
Actuation Logic channel                                                      [OR                          2 inoperable except AFAS.
In accordance with          1 and MSIS the Risk Informed Completion Time Program]                    2 D. Required Action and                  D.1 Be in MODE 3.                        6 hours associated Completion Time of Condition C not            AND met.
D.2 --------------NOTE---------------                                  1 LCO 3.0.4.a is not applicable when entering MODE 4.
Be in MODE 4.                        12 hours Actuation E. One or more Functions                E.1 Be in MODE 3.                        6 hours                      3 DOC A04 F
with two Manual Trip or            F Actuation Logic channel            AND inoperable except AFAS.
and MSIS    E.2 Be in MODE 5.                        36 hours                    2 OR                                F                                                                    1 Required Action and associated Completion Time of Condition E not met.
4 3
Combustion Engineering STS                        3.3.5-2                                            Rev. 5.0  1 St. Lucie - Unit 2                                                                            Amendment XXX
 
ESFAS Logic and Manual Trip (Analog) 3 CTS Actuation 3.3.5 4
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                                  FREQUENCY Table 4.3-2    SR 3.3.5.1        ------------------------------NOTES-----------------------------
3 Functional Unit 4
: 1. Testing of Actuation Logic shall include 1.d, 2.c, 3.e,                          verification of the proper operation of each 4.d, 5.c, 7.c DOC L03                                  initiation relay.
: 2. Relays associated with plant equipment that cannot be operated during plant operation are only required to be tested during each MODE 5 entry exceeding 24 hours unless tested during the previous 6 months.
Perform a CHANNEL FUNCTIONAL TEST on each                            [ [92] days ESFAS logic channel.                                                                            2 OR In accordance with the Surveillance Frequency Control Program ]        2 Table 4.3-2    SR 3.3.5.2        Perform a CHANNEL FUNCTIONAL TEST on each                            [ [18] months Functional Unit                                                                                                                  3 1.a, 2.a, 3.a,            4 ESFAS Manual Trip channel.                                                                      2 4.a, 5.a, 7.a Actuation OR In accordance with the Surveillance Frequency Control Program ]        2 4
3 Combustion Engineering STS                          3.3.5-3                                              Rev. 5.0  1 St. Lucie - Unit 2                                                                                Amendment XXX
 
ESFAS Logic and Manual Trip (Analog) 3 CTS Actuation 3.3.5 4                                                        4 Table 3.3.5-1 (page 1 of 1)                                                3 Engineered Safety Features Actuation System Actuation Logic and Manual Channel Applicability FUNCTION                                          APPLICABLE MODES
: 1. Safety Injection Actuation Signal                                            1,2,3,[4]
: 2. Containment Spray Actuation Signal                                            1,2,3,[4]
: 3. Containment Isolation Actuation Signal                                        1,2,3,4  (a)
DOC L01                                                                                                                        4    lR2
: 4. Main Steam Isolation Signal                                                    1,2,3,4
: 5. Recirculation Actuation Signal                                                1,2,3,4
: 6. Auxiliary Feedwater Actuation Signal                                            1,2,3                          1 1
DOC L01    (a) except when valves isolated by the MSIS Function are closed and deactivated                                  4      lR2 4
3 Combustion Engineering STS                                3.3.5-4                                        Rev. 5.0      1 St. Lucie - Unit 2                                                                                  Amendment XXX
 
JUSTIFICATION FOR DEVIATIONS ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION
: 1. Changes are made (additions, deletions, and/or changes) to the ISTS that reflect the plant specific nomenclature, number, reference, system description, analysis, licensing basis, or licensing basis description.
: 2. The ISTS contains bracketed information and/or values that are generic to all Combustion Engineering vintage plants. The brackets are removed, and the proper plant specific information/value is provided. This is acceptable since the information/value is changed to reflect the current licensing basis.
: 3. The heading for ISTS 3.3.5 includes the parenthetical expression (Analog). This identifying information is not included in the PSL ITS. This information is provided in the NUREG-1432, Rev. 5.0 to assist in identifying the appropriate Specifications to be used as a model for a plant-specific ITS conversion but serves no purpose in a plant-specific implementation. In addition, Reactor Protective System (RPS)            lR2 l
Instrumentation - Shutdown (ISTS 3.3.2) is renumbered as ITS 3.3.12. The                l Engineered Safety Features Actuation System (ESFAS) Logic and Manual Actuation          l (ISTS 3.3.5) is renumbered as ITS 3.3.4 and subsequent Specifications renumbered        l l
accordingly.
: 4. ISTS Table 3.3.5-1, Function 4, Main Steam Isolation Signal, specifies an Applicability of MODES 1, 2, 3, and 4. ITS 3.3.4-1 (ISTS 3.3.5-1) requires the same function in MODES 1, 2, and 3 consistent with Unit 2 CTS for the same function.
MODES 2 and 3 are also modified by Footnote (a) that states, "except when valves isolated by the MSIS Function are closed and deactivated." As a result of the          lR2 change to the Applicability, ITS 3.3.4 includes proposed ACTIONS C and D. When one MSIS Manual Actuation or Actuation Logic channels is inoperable, proposed ACTION C requires restoring the channel to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program consistent with the Unit 1 CTS Actions. Discussion of Change L04 provides justification for the change to the Completion Time to restore the manual channel to OPERABLE status in the Unit 2 CTS Actions. When two MSIS Manual Actuation or Actuation Logic channels are inoperable or when the action to restore one MSIS Manual Actuation or Actuation Logic channel cannot be completed within the required Completion Time, proposed ACTION D requires closing and deactivating the main steam isolation valves and the      lR2 main feedwater isolation valves in 6 hours, or be in MODE 3 in 6 hours and MODE 4 in 12 hours.
This ISTS deviation aligns the Applicability of the MSIS actuation instrumentation with the applicability requirements of the associated MSIS instrument channels (i.e.,
Footnote (f) to ISTS 3.3.4-1 (ITS 3.3.3-1), Function 4.a) and similar to the applicability of the supported equipment Specifications ITS 3.7.2, "Main Steam Isolation Valves (MSIVs)" and ITS 3.7.3, "Main Feedwater Isolation Valves (MFIVs)."    lR2 l
The MSIVs and MFIVs are not required to be OPERABLE in MODE 4. The MSIVs                l are required to be OPERABLE in MODE 1 and MODES 2 and 3 except when all                l MSIVs are closed. The MFIVs are required to be OPERABLE in MODES 1, 2, and 3            l l
except when the MFIV is closed and deactivated. The change to the MSIS                  l Applicability continues to ensure the MSIVs and MFIVs can isolate the main steam        l l
line and main feedwater lines in the event of a high energy secondary system pipe      l rupture (e.g., main steam line break (MSLB)). The MFIVs can also isolate the main      l St. Lucie Unit 1 and Unit 2              Page 1 of 2
 
JUSTIFICATION FOR DEVIATIONS ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION feedwater lines in the event of a large feedwater line break or an excess feedwater    lR2 l
flow event. The exception to MODES 2 and 3 clarifies that the MSIS that supports      l the MSIVs and MFIVs is not required to be OPERABLE when the isolation devices          l are closed and deactivated. Proposed ITS 3.3.4 ACTION C is added to differentiate      l the ACTIONS for the MSIS from the ACTIONS of the other ESFAS Logic and Manual Actuation signals. ITS 3.3.4 ACTION D is added to provide appropriate actions to reflect the change to the Applicability, which provides sufficient remedial actions to safely continue operation in lieu of a plant cooldown. Discussion of Change L01 provides justification for the change to the CTS Applicability for the MSIS and proposed actions to close the MSIVs and MFIVs. This change is similar to      lR2 l
the Applicability for Function 2, "Steam Generator Low Pressure Signal (SGLPS)" in    l ITS Table 3.3.4-1 of the Palisades Nuclear Plant (PNP) Technical Specifications,      l l
which did not include MODE 4. The SGLPS Applicability change was approved              l during the conversion of the PNP technical specifications to the ITS in PNP License    l Amendment 189 (NRC ADAMS Accession Nos. ML993490085 and ML993510369).                  l The purpose of the MSIS in ISTS Table 3.3.5-1 (ITS 3.3.4-1) is to ensure the ESFAS MSIS Functions are OPERABLE when the supported equipment is required to be OPERABLE. The exception to MODE 2 and 3 is added to clarify that the MSIS manual and automatic actuation instrumentation is not required to be OPERABLE when the valves actuated by the MSIS instrumentation are in the closed position and    lR2 l
deactivated. Proposed ACTION D places the unit in a MODE or other specified            l condition in which the LCO does not apply by either closing and deactivating the      l MSIVs and MFIVs within 6 hours (proposed Required Actions D.1.1 and D.1.2) or be      l in MODE 3 within 6 hours and in MODE 4 within 12 hours (proposed Required Actions D.2.1 and D.2.2). The Completion Time of Required Actions D.1.1 and D.1.2 is consistent with the Completion Time to be in MODE 3. The 6-hour and 12-hour Completion Times of Required Actions D.2.1 and D.2.2, respectively, are based on the Completion Times to reach MODES 3 and 4 elsewhere in the ISTS and are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. Subsequent Conditions and Required Actions are renumerated, as applicable.
St. Lucie Unit 1 and Unit 2              Page 2 of 2
 
Improved Standard Technical Specifications (ISTS) Bases Markup and Justification for Deviations (JFDs)
 
ESFAS Logic and Manual Trip (Analog)
B 3.3.5 Actuation 3
4 B 3.3 INSTRUMENTATION (Analog) 3 B 3.3.5 Engineered Safety Features Actuation System (ESFAS) Logic and Manual Trip (Analog)                                                                                      3 4                                                                          Actuation BASES BACKGROUND            The ESFAS initiates necessary safety systems, based upon the values of selected unit parameters, to protect against violating core design limits and the Reactor Coolant System (RCS) pressure boundary and to mitigate accidents.
The ESFAS contains devices and circuitry that generate the following signals when the monitored variables reach levels that are indicative of conditions requiring protective action:
: 1. Safety Injection Actuation Signal (SIAS),
: 2. Containment Spray Actuation Signal (CSAS),
: 3. Containment Isolation Actuation Signal (CIAS),                              1
: 4. Main Steam Isolation Signal (MSIS),
: 5. Recirculation Actuation Signal (RAS), and
: 6. Auxiliary Feedwater Actuation Signal (AFAS).
Equipment actuated by each of the above signals is identified in the 1
FSAR (Ref. 1).
U                                                3 Each of the above ESFAS actuation systems is segmented into four 3
sensor subsystems addressed by LCO 3.3.4, "Engineered Safety Features Actuation System (ESFAS) Instrumentation," and two actuation subsystems addressed by this LCO. Each sensor subsystem includes measurement channels and bistables. The SIAS actuation subsystems include two logic subsystems for sequentially loading the diesel generators.
Each of the four sensor subsystem channels monitors redundant and independent process measurement channels. Each sensor is monitored by at least one bistable. The bistable associated with each ESFAS Function will trip when the monitored variable exceeds the trip setpoint.
When tripped, the sensor subsystems provide outputs to the two actuation subsystems.
4                                                            3 Combustion Engineering STS              B 3.3.5-1                                          Rev. 5.0 1 St. Lucie - Unit 1                                                                  Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
B 3.3.5 Actuation 3
4 BASES BACKGROUND (continued)
The two independent actuation subsystems each compare the four associated sensor subsystem outputs. If a trip occurs in two or more sensor subsystem channels, the two-out-of-four logic in each actuation subsystem will initiate one train of ESFAS. Each has sufficient equipment to provide protection to the public in the case of a Design Basis Event.
The sensor subsystem is addressed in LCO 3.3.4. This LCO addresses                3 the actuation subsystem.                          3 Each of the four sensor subsystems is mounted in a separate cabinet, excluding the sensors and field wiring.
The role of the sensor subsystem (measurement channels and bistables) is discussed in LCO 3.3.4. That of the actuation subsystem is discussed            3 below.                    3 ESFAS Logic The two independent actuation subsystems compare the four sensor subsystem outputs. If a trip occurs in the same parameter in two or more sensor subsystem channels, the two-out-of-four logic in each actuation subsystem initiates one train of ESFAS. Either train controls sufficient redundant and independent equipment.
INSERT 1 Each actuation subsystem channel is housed in two cabinets. One cabinet contains the logic circuitry for the actuation channel, while the other cabinet contains the power relay equipment. This power relay equipment includes the power relays (initiation relays) that actuate the ESFAS equipment in response to a signal from the Actuation Logic.
It is possible to change the two-out-of-four ESFAS Logic to a two-out-of-three logic for a given input parameter in one channel at a time by disabling one channel input to the logic. Thus, the bistables will function normally, producing normal trip indication and annunciation, but ESFAS actuation will not occur since the bypassed channel is effectively removed from the coincidence logic. Maintenance bypassing can be simultaneously performed on any number of parameters in any number of channels, providing each parameter is bypassed in only one channel at a time. At some plants an interlock prevents simultaneous maintenance                1 bypassing of the same parameter in more than one channel.
Maintenance bypassing is normally employed during maintenance or testing.
4                                                          3 Combustion Engineering STS              B 3.3.5-2                                        Rev. 5.0  1 St. Lucie - Unit 1                                                                  Revision XXX
 
ESFAS Logic and Manual Actuation 3.3.4 1
INSERT 1 Each ESFAS consists of four measurement channels (designated MA, MB, MC, and MD) for each input parameter, two logic matrix systems (SA and SB) and two actuation channels (A and B).
Each measurement channel consists of a sensor, power supply and bistable unit arranged in a current flow loop circuit. The bistable unit provides a digital signal to logic matrices where signals from all four measurement channels for that parameter are combined in a two-out-of-four logic network. Isolation devices are provided to maintain separation between the measurement channels and the logic matrices. Logic matrices (SA or SB) provide initiation signals to their associated actuation channels (A or B) when the logic for the particular signal is satisfied.
Insert Page B 3.3.4-2
 
ESFAS Logic and Manual Trip (Analog)
B 3.3.5 Actuation 3
4 BASES BACKGROUND (continued)
For plants that have demonstrated sufficient channel to channel                    1 independence, two-out-of-three logic is the minimum that is required to provide adequate plant protection, since a failure of one channel still ensures that ESFAS actuation would be generated by the two remaining OPERABLE channels. Two-out-of-three logic also prevents inadvertent actuation caused by any single channel failure in a trip condition.
In addition to the maintenance bypasses, there are operating bypasses (blocks) on the Pressurizer Pressure - Low input to the SIAS and on the Steam Generator Pressure - Low input to the MSIS when these inputs are no longer required for protection. These bypasses are enabled manually when the enabling conditions are satisfied in three of the four sensor subsystem channels. The operating bypass circuitry employs four bistable channels in the sensor subsystems, sensing pressurizer pressure (for the SIAS) and steam generator pressure (for the MSIS). These bistables provide contact output to the three-out-of-four logic in the two actuation subsystem channels. When the logic is satisfied, manual bypassing is permitted. There are two manual bypass actuation controls for each Function, one per train.
All operating bypasses are automatically removed when enabling bypass conditions are no longer satisfied.
Manual ESFAS initiation capability is provided to permit the operator to manually actuate an Engineered Safety Features (ESF) System when necessary. Two push buttons are provided in the control room for each ESFAS Function. Each push button actuates one train via the ESFAS Logic.
The Actuation Logic is tested by inserting a local test signal. A coincidence logic trip will occur if there is the simultaneous presence of a sensor channel trip, either legitimate or due to testing. Most ESFAS Functions employ several separate parallel two-out-of-four Actuation Logic modules, with each module actuating a subset of the ESFAS equipment associated with that Function. Each of these subchannels can be tested individually so that simultaneous actuation of an entire train can With the exception of    be avoided during testing.                                                            lR2 channels that actuate the                                                                                        l equipment and associated                                                                                        l devices listed below,    Except in the case of actuation subchannels SIAS Nos. 5 and 10, CIAS                  l No. 5, and MSIS No. 1, all Actuation Logic channels can be tested at                  l Testing of subchannels (SIAS,                                                                                  1    l CIS, and MSIS) that actuate power. The above designated subchannels must be tested when shut                      l the following equipment      down because they actuate the following equipment, which cannot be                    l l
actuated at power:                                                                    l (Ref. 1)                                                    l 4                                                            3 Combustion Engineering STS                B 3.3.5-3                                            Rev. 5.0 1 St. Lucie - Unit 1                                                                    Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
B 3.3.5 Actuation 3
4 BASES BACKGROUND (continued)
Reactor coolant pump (RCP) seal bleedoff isolation valves,                        lR2 Service water isolation valves,                                            1 lR2 Volume control tank (VCT) discharge valves,                                        l l
Letdown stop valves,                                                              l l
l Component cooling water (CCW) to RCPs,                                            l l
l CCW from RCPs,                                                                    l l
l Main steam isolation valves (MSIVs),                                              l l
l Feedwater isolation valves, and                                                    l l
l Instrument air containment isolation valves.                                      l APPLICABLE          Each of the analyzed accidents can be detected by one or more ESFAS SAFETY              Functions. One of the ESFAS Functions is the primary actuation signal ANALYSES            for that accident. An ESFAS Function may be the primary actuation signal for more than one type of accident. An ESFAS Function may also be a secondary, or backup, actuation signal for one or more other accidents. Functions such as Manual Initiation, not specifically credited in the accident analysis, serve as backups to Functions and are part of the NRC staff approved licensing basis for the plant.
ESFAS protective Functions are as follows:
: 1. Safety Injection Actuation Signal The SIAS ensures acceptable consequences during loss of coolant accident (LOCA) events, including steam generator tube rupture, and main steam line breaks (MSLBs) or feedwater line breaks (FWLBs)
(inside containment). To provide the required protection, either a high containment pressure or a low pressurizer pressure signal will initiate SIAS. SIAS initiates the Emergency Core Cooling Systems (ECCS) and performs several other Functions, such as initiating control room isolation and starting the diesel generators.
4                                                            3 Combustion Engineering STS              B 3.3.5-4                                          Rev. 5.0  1 St. Lucie - Unit 1                                                                  Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
B 3.3.5 Actuation 3
4 BASES APPLICABLE SAFETY ANALYSES (continued)
: 2. Containment Spray Actuation Signal The CSAS initiates containment spray, preventing containment overpressurization during a LOCA or MSLB. At some plants, both a              1 high containment pressure signal and an SIAS have to actuate to provide the required protection. This configuration reduces the likelihood of inadvertent containment spray.
: 3. Containment Isolation Actuation Signal                                        1 The CIAS actuates the Containment Isolation System, ensuring                  1 acceptable consequences during LOCAs and MSLBs or FWLBs (inside containment). To provide protection, a high containment pressure signal will initiate CIAS at the same setpoint at which an          1 SIAS is initiated.
: 4. Main Steam Isolation Signal The MSIS ensures acceptable consequences during an MSLB or FWLB by isolating both steam generators if either generator indicates a low steam generator pressure. The MSIS, concurrent with or following a reactor trip, minimizes the rate of heat extraction and subsequent cooldown of the RCS during these events.
: 5. Recirculation Actuation Signal At the end of the injection phase of a LOCA, the refueling water tank (RWT) will be nearly empty. Continued cooling must be provided by the ECCS to remove decay heat. The source of water for the ECCS pumps is automatically switched to the containment recirculation sump. Switchover from RWT to containment sump must occur before the RWT empties to prevent damage to the ECCS pumps and a loss of core cooling capability. For similar reasons, switchover must not occur before there is sufficient water in the containment sump to support pump suction. Furthermore, early switchover must not occur to ensure sufficient borated water is injected from the RWT to ensure the reactor remains shut down in the recirculation mode.
An RWT Level - Low signal initiates the RAS.
4                                                          3 Combustion Engineering STS            B 3.3.5-5                                          Rev. 5.0 1 St. Lucie - Unit 1                                                                  Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
B 3.3.5 Actuation 3
4 BASES APPLICABLE SAFETY ANALYSES (continued)
: 6. Auxiliary Feedwater Actuation Signal the affected An AFAS initiates feedwater flow to both steam generators if a low level is indicated in either steam generator, unless the generator is ruptured.          the affected lR2 The AFAS maintains a steam generator heat sink during the following events:
MSLB, FWLB, Inadvertent opening of a steam generator atmospheric dump valve, and Loss of feedwater.
A low steam generator water level signal will initiate auxiliary feed to the affected steam generator.
INSERT 3                                                                                        1 Secondary steam generator (SG) differential pressure (SG-A > SG-B) or (SG-B > SG-A) inhibits auxiliary feed to a generator identified as being ruptured. This input to the AFAS logic prevents loss of the                lR2 intact generator while preventing feeding a ruptured generator during            l MSLBs and FWLBs. This prevents containment overpressurization during these events.
INSERT 4                                                                                        1 The ESFAS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO                        The LCO requires that all components necessary to provide an ESFAS actuation be OPERABLE.
Actions allow maintenance bypass of individual channels. Plants are restricted to 48 hours in a maintenance bypass condition before either restoring the Function to four channel operation (two-out-of-four logic) or placing the channel in trip (one-out-of-three logic).
The Bases for the LCO on ESFAS automatic actuation Functions are addressed in the Bases for LCO 3.3.4. Those associated with the Manual              3 Trip or Actuation Logic are addressed below.
Actuation                                    3 4                                                          3 Combustion Engineering STS                      B 3.3.5-6                                          Rev. 5.0  1 St. Lucie - Unit 1                                                                          Revision XXX
 
ESFAS Logic and Manual Actuation 3.3.4 1
INSERT 3 A separate auxiliary feedwater actuation signal is generated for each Steam Generator      lR1 (AFAS-1, AFAS-2). For each AFAS-1 and AFAS-2 there are four independent level              l l
transmitters for Steam Generator level, four independent Steam Generator pressure          l transmitters, and four independent Feedwater Header pressure transmitters. The AFAS        l actuation logic actuates auxiliary feedwater to a Steam Generator on low level after a    l l
time delay period unless that Steam Generator or its associated auxiliary feedwater        l supply header have been identified as being ruptured.                                      l  lR2 1
INSERT 4 The AFAS actuation logic isolates auxiliary feedwater flow to a steam generator upon recovery of steam generator level.
Insert Page B 3.3.4-6
 
ESFAS Logic and Manual Trip (Analog)
B 3.3.5 Actuation 3
4 BASES LCO (continued)
: 1. Safety Injection Actuation Signal Actuation                                                        1
: a. Manual Trip Actuation 1
This LCO requires two channels of SIAS Manual Trip to be OPERABLE in MODES 1, 2, 3, and 4.
: b. Actuation Logic This LCO requires two channels of SIAS Actuation Logic to be OPERABLE in MODES 1, 2, 3, and 4.
Failures in the actuation subsystems, including the manual                          1 bypass key switches, are Actuation Logic failures and are addressed in this LCO.
Actuation Logic consists of all circuitry housed within the actuation subsystems, including the initiating relay contacts responsible for actuating the ESF equipment.
: 2. Containment Spray Actuation Signal CSAS is initiated either manually or automatically. At many plants it                  1 is also necessary to have an automatic or manual SIAS for a complete actuation. The SIAS opens the containment spray valves, 1
whereas the CSAS actuates other required components. The SIAS requirement should always be satisfied on a legitimate CSAS, since the Containment Pressure - High signal used in the SIAS is the same                      1 setpoint used in the CSAS. The transmitters used to initiate CSAS are independent of those used in the SIAS to prevent inadvertent containment spray due to failures in two sensor channels.
setpoint is less than the Containment Actuation                                                          1 Pressure - High High
: a. Manual Trip Actuation This LCO requires two channels of CSAS Manual Trip to be OPERABLE in MODES 1, 2, 3, and 4.
: b. Actuation Logic This LCO requires two channels of CSAS Actuation Logic to be OPERABLE in MODES 1, 2, 3, and 4.
Actuation Logic consists of all circuitry housed within the actuation subsystems, including the initiating relay contacts responsible for actuating the ESF equipment.
4                                                                    3 Combustion Engineering STS            B 3.3.5-7                                                  Rev. 5.0    1 St. Lucie - Unit 1                                                                        Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
B 3.3.5 Actuation 3
4 BASES LCO (continued)
: 3. Containment Isolation Actuation Signal 1
Actuation
: a. Manual Trip Actuation          1 This LCO requires two channels of CIAS Manual Trip to be OPERABLE in MODES 1, 2, 3, and 4.
: b. Actuation Logic This LCO requires two channels of Actuation Logic for CIAS to                            1 be OPERABLE in MODES 1, 2, 3, and 4.
Actuation Logic consists of all circuitry housed within the actuation subsystems, including the initiating relay contacts responsible for actuating the ESF equipment.
: 4. Main Steam Isolation Signal                                                                      lR2 except when the main steam isolation valves (MSIVs) and the main feedwater isolation                l Actuation                                                              1
: a. Manual Trip                          valves (FWIVs) are closed and deactivated                l l
l This LCO requires two channels per steam generator of the                        1    4 l
MSIS Manual Trip to be OPERABLE in MODES 1, 2, 3, and 4.                                      l Each channel actuates its associated l
MSIS Actuation Logic channel. Actuating                                Actuation                                and and in MODES                            1      l either MSIS Manual Actuation will result in a full main steam isolation.                b. Actuation Logic This LCO requires two channels of MSIS Actuation Logic to be Each MSIS Actuation Logic channel OPERABLE in MODES 1, 2, 3, and 4.except when the MSIVs and the                                lR2 MFIVs are closed and deactivated      1    4  l provides a signal to its respective MSIV.                        and in MODES    and                                                          l An interposing relay will cause the              Failures in the actuation subsystems, including the manual opposite train MSIV to close.
bypass key switches, are considered Actuation Logic failures and are addressed in the logic LCO.
: 5. Recirculation Actuation Signal Actuation                                                              1
: a. Manual Trip Actuation This LCO requires two channels of RAS Manual Trip to be                                  1 OPERABLE in MODES 1, 2, 3, and 4.
: b. Actuation Logic This LCO requires two channels of RAS Actuation Logic to be OPERABLE in MODES 1, 2, 3, and 4.
4                                                                            3 Combustion Engineering STS                      B 3.3.5-8                                                    Rev. 5.0      1 St. Lucie - Unit 1                                                                                    Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
B 3.3.5 Actuation 3
4 BASES LCO (continued)
: 6. Auxiliary Feedwater Actuation Signal the affected steam            steam A low level in either generator, as sensed by a two-out-of-four              1 coincidence of four wide range sensors for each generator, will its generate an auxiliary feedwater actuation signal (AFAS), which starts the affected      both trains of auxiliary feedwater (AFW) pumps and feeds both steam          1 generators. The AFAS also monitors the secondary differential pressure in both steam generators and initiates an AFAS block signal to a ruptured generator if the pressure in that generator is lower than          lR2 the other generator by the differential pressure setpoint.
Actuation                                          1
: a. Manual Trip Actuation 1
This LCO requires two channels of AFAS Manual Trip to be OPERABLE in MODES 1, 2, and 3.
: b. Actuation Logic This LCO requires two channels of AFAS Actuation Logic to be OPERABLE in MODES 1, 2, and 3.
Actuation Logic consists of all circuitry housed within the actuation subsystems, including the initiating relay contacts responsible for actuating the ESF equipment.
APPLICABILITY                  All ESFAS Functions are required to be OPERABLE in MODES 1, 2, and 3. In MODES 1, 2, and 3, there is sufficient energy in the primary and secondary systems to warrant automatic ESF System responses to:
Close the MSIVs to preclude a positive reactivity addition, Actuate AFW to preclude the loss of the steam generators as a heat sink (in the event the normal feedwater system is not available),
Actuate ESF systems to prevent or limit the release of fission product radioactivity to the environment by isolating containment and limiting the containment pressure from exceeding the containment design pressure during a design basis LOCA or MSLB, and Actuate ESF systems to ensure sufficient borated inventory to permit adequate core cooling and reactivity control during a design basis LOCA or MSLB accident.
4                                                        3 Combustion Engineering STS                        B 3.3.5-9                                          Rev. 5.0  1 St. Lucie - Unit 1                                                                              Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
B 3.3.5 Actuation 3
4 BASES APPLICABILITY (continued)
Actuation In MODES 4, 5, and 6, automatic actuation of ESFAS Functions is not required, because adequate time is available for plant operators to evaluate plant conditions and respond by manually operating the ESF components if required. ESFAS Manual Trip capability is required for                              1 and MSIS Functions other than AFAS in MODE 4 even though automatic actuation is not required. Because of the large number of components actuated on each ESFAS, actuation is simplified by the use of the Manual Trip push                            1 Actuation buttons. Manual Trip of AFAS is not required in MODE 4 because AFW or shutdown cooling will already be in operation in this MODE.                    Actuation 4    lR2 Manual Actuation of                                                                                                            l MSIS is not required    The ESFAS Actuation Logic must be OPERABLE in the same MODES as                                      l in MODE 4 because it                                                                                                          l is not required to      the Automatic and Manual Trips. In MODE 4, only the portion of the                                    l support the safety      ESFAS logic responsible for the required Manual Trip must be                                      1  l function of the MSIVs    OPERABLE.                            Actuations                    Actuation                          l or MFIVs.                                                                                                                      l In MODES 5 and 6, ESFAS initiated systems are either reconfigured or disabled for shutdown cooling operation. Accidents in these MODES are slow to develop and would be mitigated by manual operation of individual components.
ACTIONS                  When the number of inoperable channels in a trip Function exceeds those specified in any related Condition associated with the same trip Function, then the plant is outside the safety analysis. Therefore, LCO 3.0.3 should be immediately entered, if applicable in the current MODE of operation.
A Note has been added to the ACTIONS to clarify the application of the Completion Time rules. The Conditions of this Specification may be entered independently for each Function in Table 3.3.5-1 in the LCO.                          3 Completion Times for the inoperable channel of a Function will be tracked separately.                                                    4 A.1 similar                    Actuation Condition A applies to one AFAS Manual Trip or AFAS Actuation Logic                            1 channel inoperable. It is identical to Condition C for the other ESFAS Functions, except for the shutdown track imposed by Condition D.                              1 E                      F The channel must be restored to OPERABLE status to restore redundancy of the AFAS Function. The 48 hour Completion Time is commensurate with the importance of avoiding the vulnerability of a single failure in the only remaining OPERABLE channel. [Alternatively, a Completion Time can be determined in accordance with the Risk                                  2 Informed Completion Time Program.]
4                                                                        3 Combustion Engineering STS                    B 3.3.5-10                                                  Rev. 5.0    1 St. Lucie - Unit 1                                                                                Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
B 3.3.5 Actuation 3
4 BASES ACTIONS (continued)
B.1 and B.2 Actuation 1
If two Manual Trip or Actuation Logic channels are inoperable or the Required Action and associated Completion Time of Condition A cannot be met, the reactor should be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within [12] hours. The allowed                                  2 Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
INSERT 5                                                                                                              1 C.1                                        Actuation              and MSIS E          E                    F                                                                      3 Condition C applies to one Manual Trip or Actuation Logic channel inoperable for those ESFAS Functions that must be OPERABLE in MODES 1, 2, 3, and 4 (all Functions except AFAS). The shutdown track                                1 imposed by Condition D requires entry into MODE 5, where the LCO does not apply to the affected Functions. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed                                          2 Completion Time Program.]
The channel must be restored to OPERABLE status to restore redundancy of the affected Functions. The 48 hour Completion Time is commensurate with the importance of avoiding the vulnerability of a single failure in the only remaining OPERABLE channel.
D.1 and D.2                                                                                          1
                      -----------------------------------REVIEWERS NOTE ----------------------------------
Adoption of a MODE 4 end state requires the licensee to make the following commitments:
: 1. [LICENSEE] will follow the guidance established in Section 11 of                                  2 NUMARC 93-01, Industry Guidance for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants, Nuclear Management and Resource Council, Revision [4F].
: 2. [LICENSEE] will follow the guidance established in Revision 2 of WCAP-16364-NP, Implementation Guidance for Risk Informed Modification to Selected Required Action End States at Combustion Engineering NSSS Plants (TSTF-422), Westinghouse, May 2010.
4                                                                      3 Combustion Engineering STS                  B 3.3.5-11                                                      Rev. 5.0    1 St. Lucie - Unit 1                                                                                    Revision XXX
 
ESFAS Logic and Manual Actuation 3.3.4 1
INSERT 5 C.1 Condition C applies when one MSIS Manual Actuation or Actuation Logic channel is inoperable.
The 48 hour Completion Time is commensurate with the importance of avoiding the vulnerability of a single failure in the remaining OPERABLE MSIS Manual Actuation or Actuation Logic channel. Alternatively, the Completion Time can be determined in accordance with the Risk Informed Completion Time Program.
D.1.1, D.1.2, D.2.1, and D.2.2 If both MSIS Manual Actuation or Actuation Logic channels are inoperable or if the Required Actions and associated Conditions of Condition C are not met, the plant must be placed in a MODE or other specified condition in which the LCO does not apply. This is done by closing and deactivating the MSIVs and MFIVs within 6 hours (Required          lR2 Actions D.1.1 and D.1.2). If allowed, operation in MODES 2 or 3 with MSIVs and MFIVs closed and deactivated may continue because isolating the affected main steam line and    lR2 main feedwater line accomplishes the safety function of the inoperable channel.
Alternately, if the MSIVs and MFIVs cannot be closed and deactivated, the plant must be  lR2 placed in MODE 3 within 6 hours and in MODE 4 within 12 hours (Required Actions D.2.1 and D.2.2).
The Completion Times of Required Actions D.1.1 and D.1.2 is consistent with the Completion Time to be in MODE 3 for similar conditions and correspond to the Completion Time of D.2.1. The Completion Times of Required Actions D.2.1 and D.2.2 are based on the Completion Time to reach MODE 3 (i.e., 6 hours) and allow an additional 6 hours to reach MODE 4, respectively, if the MSIVs and MFIVs are not closed and deactivated within 12 hours. These Completion Times are reasonable,            lR2 based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
Insert Page B 3.3.4-11
 
ESFAS Logic and Manual Trip (Analog)
B 3.3.5 Actuation 3
4 BASES ACTIONS (continued)
Condition D is entered when the Required Action and associated 1
Completion Time of Condition C is not met. The plant must be brought to a MODE in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours.
Remaining within the Applicability of the LCO is acceptable because the plant risk in MODE 4 is similar to or lower than MODE 5 (Ref. 2). In MODE 4 there are more accident mitigation systems available and there is more redundancy and diversity in core heat removal mechanisms than in MODE 5. However, voluntary entry into MODE 5 may be made as it is also an acceptable low-risk state. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
Required Action D.2 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 4. This Note prohibits the use of LCO 3.0.4.a to enter MODE 4 during startup with the LCO not met.
However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 4, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.
F E.1 and E.2                                            and MSIS            Actuation F                                                                              3 F
Condition E is entered when one or more Functions have two Manual Trip or Actuation Logic channels inoperable except AFAS. The plant must be                  1 brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
SURVEILLANCE          SR 3.3.5.1 REQUIREMENTS              4 A CHANNEL FUNCTIONAL TEST is performed to ensure the entire channel will perform its intended function when needed. Sensor subsystem tests are addressed in LCO 3.3.4. This SR addresses Actuation Logic tests. A successful test of the required contact(s) of a 3
4                                                                3 Combustion Engineering STS              B 3.3.5-12                                            Rev. 5.0    1 St. Lucie - Unit 1                                                                      Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
B 3.3.5 Actuation 3
4 BASES SURVEILLANCE REQUIREMENTS (continued) channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.
Actuation Logic Tests Actuation subsystem testing includes injecting one trip signal into each two-out-of-four logic subsystem in each ESFAS Function and using a bistable trip input to satisfy the trip logic. Initiation relays associated with the affected channel will then actuate the individual ESFAS components.
Since each ESFAS Function employs subchannels of Actuation Logic, it is possible to actuate individual components without actuating an entire ESFAS Function.
Note 1 requires that Actuation Logic tests include operation of initiation relays. Note 2 allows deferred at power testing of certain relays to allow for the fact that operating certain relays during power operation could cause plant transients or equipment damage. Those initiation relays that                      lR2 l
cannot be tested at power must be tested in accordance with Note 2.                          l These include [SIAS No. 5, SIAS No. 10, CIAS No. 5, and MSIS No. 1.]                  2      l l
l These relays actuate the following components, which cannot be tested                        l at power:                                                                                    l l
l RCP seal bleedoff isolation valves,                                                      l 1
Service water isolation valves, VCT discharge valves,                                                                    lR2 l
l Letdown stop valves,                                                                    l l
l CCW to and from the RCPs,                                                                l l
l MSIVs and feedwater isolation valves, and                                                l l
l Instrument air containment isolation valves.                                            l l
The reasons that each of the above cannot be fully tested at power are                        l l
stated in Reference 1.
These tests verify that the ESFAS is capable of performing its intended function, from bistable input through the actuated components.
4                                                                3 Combustion Engineering STS            B 3.3.5-13                                              Rev. 5.0    1 St. Lucie - Unit 1                                                                      Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
B 3.3.5 Actuation 3
4 BASES SURVEILLANCE REQUIREMENTS (continued)
[ The Frequency of [92] days is based on the reliability analysis presented 2
in topical report CEN-327, "RPS/ESFAS Extended Test Interval Evaluation" (Ref. 3).
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                      -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency 2
description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                      ------------------------------------------------------------------------------------------------ ]
SR 3.3.5.2                                                                    Actuation 4
A CHANNEL FUNCTIONAL TEST is performed on the manual ESFAS actuation circuitry, de-energizing relays and providing Manual Trip of the Function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.
Actuation This Surveillance verifies that the trip push buttons are capable of opening contacts in the Actuation Logic as designed, de-energizing the initiation relays and providing Manual Trip of the Function. [ The
[18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for                          2 an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at a Frequency of once every [18] months.
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
4                                                                        3 Combustion Engineering STS                  B 3.3.5-14                                                      Rev. 5.0    1 St. Lucie - Unit 1                                                                                    Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
B 3.3.5 Actuation 3
4 BASES SURVEILLANCE REQUIREMENTS (continued)
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance 2
Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]
REFERENCES          1. FSAR, Section [7.3].                                                                        1    2 U
: 2. CE NPSD-1186-A, Technical Justification for the Risk Informed                                    1 Modification to Selected Required Action End States for CEOG PWRs, October, 2001.
: 3. CEN-327, June 2, 1986, including Supplement 1, March 3, 1989.                                    1 4                                                                        3 Combustion Engineering STS                  B 3.3.5-15                                                    Rev. 5.0      1 St. Lucie - Unit 1                                                                                  Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
Actuation B 3.3.5 3
4 B 3.3 INSTRUMENTATION (Analog)                                                                            3 B 3.3.5 Engineered Safety Features Actuation System (ESFAS) Logic and Manual Trip                        3 (Analog) 4                                                                          Actuation BASES BACKGROUND            The ESFAS initiates necessary safety systems, based upon the values of selected unit parameters, to protect against violating core design limits and the Reactor Coolant System (RCS) pressure boundary and to mitigate accidents.
The ESFAS contains devices and circuitry that generate the following signals when the monitored variables reach levels that are indicative of conditions requiring protective action:
: 1. Safety Injection Actuation Signal (SIAS),
: 2. Containment Spray Actuation Signal (CSAS),
: 3. Containment Isolation Actuation Signal (CIAS),                              1
: 4. Main Steam Isolation Signal (MSIS),
: 5. Recirculation Actuation Signal (RAS), and
: 6. Auxiliary Feedwater Actuation Signal (AFAS).
Equipment actuated by each of the above signals is identified in the 1
FSAR (Ref. 1).
U                                                3 Each of the above ESFAS actuation systems is segmented into four 3
sensor subsystems addressed by LCO 3.3.4, "Engineered Safety Features Actuation System (ESFAS) Instrumentation," and two actuation subsystems addressed by this LCO. Each sensor subsystem includes measurement channels and bistables. The SIAS actuation subsystems include two logic subsystems for sequentially loading the diesel generators.
Each of the four sensor subsystem channels monitors redundant and independent process measurement channels. Each sensor is monitored by at least one bistable. The bistable associated with each ESFAS Function will trip when the monitored variable exceeds the trip setpoint.
When tripped, the sensor subsystems provide outputs to the two actuation subsystems.
4                                                            3 Combustion Engineering STS              B 3.3.5-1                                          Rev. 5.0 1 St. Lucie - Unit 2                                                                    Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
Actuation B 3.3.5 3
4 BASES BACKGROUND (continued)
The two independent actuation subsystems each compare the four associated sensor subsystem outputs. If a trip occurs in two or more sensor subsystem channels, the two-out-of-four logic in each actuation subsystem will initiate one train of ESFAS. Each has sufficient equipment to provide protection to the public in the case of a Design Basis Event.
The sensor subsystem is addressed in LCO 3.3.4. This LCO addresses                3 the actuation subsystem.                          3 Each of the four sensor subsystems is mounted in a separate cabinet, excluding the sensors and field wiring.
The role of the sensor subsystem (measurement channels and bistables) is discussed in LCO 3.3.4. That of the actuation subsystem is discussed            3 below.                    3 ESFAS Logic The two independent actuation subsystems compare the four sensor subsystem outputs. If a trip occurs in the same parameter in two or more sensor subsystem channels, the two-out-of-four logic in each actuation subsystem initiates one train of ESFAS. Either train controls sufficient redundant and independent equipment.
INSERT 1 Each actuation subsystem channel is housed in two cabinets. One cabinet contains the logic circuitry for the actuation channel, while the other cabinet contains the power relay equipment. This power relay equipment includes the power relays (initiation relays) that actuate the ESFAS equipment in response to a signal from the Actuation Logic.
It is possible to change the two-out-of-four ESFAS Logic to a two-out-of-three logic for a given input parameter in one channel at a time by disabling one channel input to the logic. Thus, the bistables will function normally, producing normal trip indication and annunciation, but ESFAS actuation will not occur since the bypassed channel is effectively removed from the coincidence logic. Maintenance bypassing can be simultaneously performed on any number of parameters in any number of channels, providing each parameter is bypassed in only one channel at a time. At some plants an interlock prevents simultaneous maintenance                1 bypassing of the same parameter in more than one channel.
Maintenance bypassing is normally employed during maintenance or testing.
4                                                          3 Combustion Engineering STS              B 3.3.5-2                                        Rev. 5.0  1 St. Lucie - Unit 2                                                                  Revision XXX
 
ESFAS Logic and Manual Actuation 3.3.4 1
INSERT 1 Each ESFAS consists of four measurement channels (designated MA, MB, MC, and MD) for each input parameter, two logic matrix systems (SA and SB) and two actuation channels (A and B).
Each measurement channel consists of a sensor, power supply and bistable unit arranged in a current flow loop circuit. The bistable unit provides a digital signal to logic matrices where signals from all four measurement channels for that parameter are combined in a two-out-of-four logic network. Isolation devices are provided to maintain separation between the measurement channels and the logic matrices. Logic matrices (SA or SB) provide initiation signals to their associated actuation channels (A or B) when the logic for the particular signal is satisfied.
Insert Page B 3.3.4-2
 
ESFAS Logic and Manual Trip (Analog)
Actuation B 3.3.5 3
4 BASES BACKGROUND (continued)
For plants that have demonstrated sufficient channel to channel                    1 independence, two-out-of-three logic is the minimum that is required to provide adequate plant protection, since a failure of one channel still ensures that ESFAS actuation would be generated by the two remaining OPERABLE channels. Two-out-of-three logic also prevents inadvertent actuation caused by any single channel failure in a trip condition.
In addition to the maintenance bypasses, there are operating bypasses (blocks) on the Pressurizer Pressure - Low input to the SIAS and on the Steam Generator Pressure - Low input to the MSIS when these inputs are no longer required for protection. These bypasses are enabled manually when the enabling conditions are satisfied in three of the four sensor subsystem channels. The operating bypass circuitry employs four bistable channels in the sensor subsystems, sensing pressurizer pressure (for the SIAS) and steam generator pressure (for the MSIS). These bistables provide contact output to the three-out-of-four logic in the two actuation subsystem channels. When the logic is satisfied, manual bypassing is permitted. There are two manual bypass actuation controls for each Function, one per train.
All operating bypasses are automatically removed when enabling bypass conditions are no longer satisfied.
Manual ESFAS initiation capability is provided to permit the operator to manually actuate an Engineered Safety Features (ESF) System when necessary. Two push buttons are provided in the control room for each ESFAS Function. Each push button actuates one train via the ESFAS Logic.
The Actuation Logic is tested by inserting a local test signal. A coincidence logic trip will occur if there is the simultaneous presence of a sensor channel trip, either legitimate or due to testing. Most ESFAS Functions employ several separate parallel two-out-of-four Actuation Logic modules, with each module actuating a subset of the ESFAS equipment associated with that Function. Each of these subchannels can be tested individually so that simultaneous actuation of an entire train can With the exception of                                                                                              lR2 channels that actuate the be avoided during testing.
l equipment and associated                                                                                          l devices listed below,      Except in the case of actuation subchannels SIAS Nos. 5 and 10, CIAS                  l No. 5, and MSIS No. 1, all Actuation Logic channels can be tested at                  l Testing of subchannels (SIAS,                                                                                  1    l CIAS, and MSIS) that actuate  power. The above designated subchannels must be tested when shut                      l the following equipment      down because they actuate the following equipment, which cannot be                    l l
actuated at power:                                                                    l (Ref. 1) l 4                                                            3 Combustion Engineering STS                  B 3.3.5-3                                          Rev. 5.0  1 St. Lucie - Unit 2                                                                      Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
Actuation B 3.3.5 3
4 BASES BACKGROUND (continued)
Reactor coolant pump (RCP) seal bleedoff isolation valves,                        lR2 Service water isolation valves,                                        1 lR2 Volume control tank (VCT) discharge valves,                                      l l
Letdown stop valves,                                                              l l
l Component cooling water (CCW) to RCPs,                                            l l
l CCW from RCPs,                                                                    l l
l Main steam isolation valves (MSIVs),                                              l l
l Feedwater isolation valves, and                                                  l l
l Instrument air containment isolation valves.                                      l APPLICABLE          Each of the analyzed accidents can be detected by one or more ESFAS SAFETY              Functions. One of the ESFAS Functions is the primary actuation signal ANALYSES            for that accident. An ESFAS Function may be the primary actuation signal for more than one type of accident. An ESFAS Function may also be a secondary, or backup, actuation signal for one or more other accidents. Functions such as Manual Initiation, not specifically credited in the accident analysis, serve as backups to Functions and are part of the NRC staff approved licensing basis for the plant.
ESFAS protective Functions are as follows:
: 1. Safety Injection Actuation Signal The SIAS ensures acceptable consequences during loss of coolant accident (LOCA) events, including steam generator tube rupture, and main steam line breaks (MSLBs) or feedwater line breaks (FWLBs)
(inside containment). To provide the required protection, either a high containment pressure or a low pressurizer pressure signal will initiate SIAS. SIAS initiates the Emergency Core Cooling Systems (ECCS) and performs several other Functions, such as initiating control room isolation and starting the diesel generators.
4                                                          3 Combustion Engineering STS              B 3.3.5-4                                          Rev. 5.0  1 St. Lucie - Unit 2                                                                  Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
Actuation B 3.3.5 3
4 BASES APPLICABLE SAFETY ANALYSES (continued)
: 2. Containment Spray Actuation Signal The CSAS initiates containment spray, preventing containment overpressurization during a LOCA or MSLB. At some plants, both a              1 high containment pressure signal and an SIAS have to actuate to provide the required protection. This configuration reduces the likelihood of inadvertent containment spray.
: 3. Containment Isolation Actuation Signal The CIAS actuates the Containment Isolation System, ensuring acceptable consequences during LOCAs and MSLBs or FWLBs (inside containment). To provide protection, a high containment pressure signal will initiate CIAS at the same setpoint at which an SIAS is initiated.
: 4. Main Steam Isolation Signal The MSIS ensures acceptable consequences during an MSLB or FWLB by isolating both steam generators if either generator indicates a low steam generator pressure. The MSIS, concurrent with or following a reactor trip, minimizes the rate of heat extraction and subsequent cooldown of the RCS during these events.
: 5. Recirculation Actuation Signal At the end of the injection phase of a LOCA, the refueling water tank (RWT) will be nearly empty. Continued cooling must be provided by the ECCS to remove decay heat. The source of water for the ECCS pumps is automatically switched to the containment recirculation sump. Switchover from RWT to containment sump must occur before the RWT empties to prevent damage to the ECCS pumps and a loss of core cooling capability. For similar reasons, switchover must not occur before there is sufficient water in the containment sump to support pump suction. Furthermore, early switchover must not occur to ensure sufficient borated water is injected from the RWT to ensure the reactor remains shut down in the recirculation mode.
An RWT Level - Low signal initiates the RAS.
4                                                            3 Combustion Engineering STS            B 3.3.5-5                                          Rev. 5.0  1 St. Lucie - Unit 2                                                                  Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
Actuation B 3.3.5 3
4 BASES APPLICABLE SAFETY ANALYSES (continued)
: 6. Auxiliary Feedwater Actuation Signal the affected An AFAS initiates feedwater flow to both steam generators if a low level is indicated in either steam generator, unless the generator is ruptured.          the affected                                                  lR2 The AFAS maintains a steam generator heat sink during the following events:
MSLB, FWLB, Inadvertent opening of a steam generator atmospheric dump valve, and Loss of feedwater.
A low steam generator water level signal will initiate auxiliary feed to the affected steam generator.
INSERT 3                                                                                        1 Secondary steam generator (SG) differential pressure (SG-A > SG-B) or (SG-B > SG-A) inhibits auxiliary feed to a generator identified as being ruptured. This input to the AFAS logic prevents loss of the                lR2 intact generator while preventing feeding a ruptured generator during            l MSLBs and FWLBs. This prevents containment overpressurization during these events.
INSERT 4                                                                                        1 The ESFAS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO                        The LCO requires that all components necessary to provide an ESFAS actuation be OPERABLE.
Actions allow maintenance bypass of individual channels. Plants are restricted to 48 hours in a maintenance bypass condition before either restoring the Function to four channel operation (two-out-of-four logic) or placing the channel in trip (one-out-of-three logic).
The Bases for the LCO on ESFAS automatic actuation Functions are addressed in the Bases for LCO 3.3.4. Those associated with the Manual              3 Trip or Actuation Logic are addressed below.
3 Actuation 4                                                          3 Combustion Engineering STS                      B 3.3.5-6                                          Rev. 5.0  1 St. Lucie - Unit 2                                                                          Revision XXX
 
ESFAS Logic and Manual Actuation 3.3.4 1
INSERT 3 A separate auxiliary feedwater actuation signal is generated for each Steam Generator      lR1 (AFAS-1, AFAS-2). For each AFAS-1 and AFAS-2 there are four independent level              l l
transmitters for Steam Generator level, four independent Steam Generator pressure          l transmitters, and four independent Feedwater Header pressure transmitters. The AFAS        l actuation logic actuates auxiliary feedwater to a Steam Generator on low level after a    l l
time delay period unless that Steam Generator or its associated auxiliary feedwater        l supply header have been identified as being ruptured.                                      l  lR2 1
INSERT 4 The AFAS actuation logic isolates auxiliary feedwater flow to a steam generator upon recovery of steam generator level.
Insert Page B 3.3.4-6
 
ESFAS Logic and Manual Trip (Analog)
Actuation B 3.3.5 3
4 BASES LCO (continued)
: 1. Safety Injection Actuation Signal Actuation                                                        1
: a. Manual Trip Actuation 1
This LCO requires two channels of SIAS Manual Trip to be OPERABLE in MODES 1, 2, 3, and 4.
: b. Actuation Logic This LCO requires two channels of SIAS Actuation Logic to be OPERABLE in MODES 1, 2, 3, and 4.
Failures in the actuation subsystems, including the manual                          1 bypass key switches, are Actuation Logic failures and are addressed in this LCO.
Actuation Logic consists of all circuitry housed within the actuation subsystems, including the initiating relay contacts responsible for actuating the ESF equipment.
: 2. Containment Spray Actuation Signal CSAS is initiated either manually or automatically. At many plants it                  1 is also necessary to have an automatic or manual SIAS for a complete actuation. The SIAS opens the containment spray valves,                        1 whereas the CSAS actuates other required components. The SIAS requirement should always be satisfied on a legitimate CSAS, since the Containment Pressure - High signal used in the SIAS is the same                      1 setpoint used in the CSAS. The transmitters used to initiate CSAS are independent of those used in the SIAS to prevent inadvertent containment spray due to failures in two sensor channels.
setpoint is less than the Containment Actuation                                                          1 Pressure - High High
: a. Manual Trip Actuation This LCO requires two channels of CSAS Manual Trip to be                            1 OPERABLE in MODES 1, 2, 3, and 4.
: b. Actuation Logic This LCO requires two channels of CSAS Actuation Logic to be OPERABLE in MODES 1, 2, 3, and 4.
Actuation Logic consists of all circuitry housed within the actuation subsystems, including the initiating relay contacts responsible for actuating the ESF equipment.
4                                                                      3 Combustion Engineering STS            B 3.3.5-7                                                  Rev. 5.0    1 St. Lucie - Unit 2                                                                        Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
Actuation B 3.3.5 3
4 BASES LCO (continued)
: 3. Containment Isolation Actuation Signal 1
Actuation
: a. Manual Trip Actuation        1 This LCO requires two channels of CIAS Manual Trip to be OPERABLE in MODES 1, 2, 3, and 4.
: b. Actuation Logic This LCO requires two channels of Actuation Logic for CIAS to be OPERABLE in MODES 1, 2, 3, and 4.
Actuation Logic consists of all circuitry housed within the actuation subsystems, including the initiating relay contacts responsible for actuating the ESF equipment.
: 4. Main Steam Isolation Signal except when the main steam isolation valves            lR2 Actuation          (MSIVs) and the main feedwater isolation              l 1
: a. Manual Trip                        valves (FWIVs) are closed and deactivated              l l
l This LCO requires two channels per steam generator of the                        1    4    l Each channel actuates its associated              MSIS Manual Trip to be OPERABLE in MODES 1, 2, 3, and 4.                                  l MSIS Actuation Logic channel. Actuating                                Actuation                                                            l and in MODES      and                  1 either MSIS Manual Actuation will result in                                                                                                  l a full main steam isolation.                  b. Actuation Logic This LCO requires two channels of MSIS Actuation Logic to be Each MSIS Actuation Logic channel                OPERABLE in MODES 1, 2, 3, and 4. except when the MSIVs and the                  1    4  lR2 provides a signal to its respective MSIV.                                                      MFIVs are closed and deactivated              l and in MODES    and An interposing relay will cause the                                                                                                          l opposite train MSIV to close.                    Failures in the actuation subsystems, including the manual bypass key switches, are considered Actuation Logic failures and are addressed in the logic LCO.
: 5. Recirculation Actuation Signal Actuation                                                            1
: a. Manual Trip Actuation This LCO requires two channels of RAS Manual Trip to be                                1 OPERABLE in MODES 1, 2, 3, and 4.
: b. Actuation Logic This LCO requires two channels of RAS Actuation Logic to be OPERABLE in MODES 1, 2, 3, and 4.
4                                                                        3 Combustion Engineering STS                    B 3.3.5-8                                                    Rev. 5.0      1 St. Lucie - Unit 2                                                                                  Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
Actuation B 3.3.5 3
4 BASES LCO (continued)
: 6. Auxiliary Feedwater Actuation Signal the affected steam            steam A low level in either generator, as sensed by a two-out-of-four                1 coincidence of four wide range sensors for each generator, will its generate an auxiliary feedwater actuation signal (AFAS), which starts the affected      both trains of auxiliary feedwater (AFW) pumps and feeds both steam            1 generators. The AFAS also monitors the secondary differential pressure in both steam generators and initiates an AFAS block signal to a ruptured generator if the pressure in that generator is lower than            lR2 the other generator by the differential pressure setpoint.
Actuation                                            1
: a. Manual Trip Actuation 1
This LCO requires two channels of AFAS Manual Trip to be OPERABLE in MODES 1, 2, and 3.
: b. Actuation Logic This LCO requires two channels of AFAS Actuation Logic to be OPERABLE in MODES 1, 2, and 3.
Actuation Logic consists of all circuitry housed within the actuation subsystems, including the initiating relay contacts responsible for actuating the ESF equipment.
APPLICABILITY                  All ESFAS Functions are required to be OPERABLE in MODES 1, 2, and 3. In MODES 1, 2, and 3, there is sufficient energy in the primary and secondary systems to warrant automatic ESF System responses to:
Close the MSIVs to preclude a positive reactivity addition, Actuate AFW to preclude the loss of the steam generators as a heat sink (in the event the normal feedwater system is not available),
Actuate ESF systems to prevent or limit the release of fission product radioactivity to the environment by isolating containment and limiting the containment pressure from exceeding the containment design pressure during a design basis LOCA or MSLB, and Actuate ESF systems to ensure sufficient borated inventory to permit adequate core cooling and reactivity control during a design basis LOCA or MSLB accident.
4                                                        3 Combustion Engineering STS                        B 3.3.5-9                                          Rev. 5.0  1 St. Lucie - Unit 2                                                                              Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
Actuation B 3.3.5 3
4 BASES APPLICABILITY (continued)
Actuation In MODES 4, 5, and 6, automatic actuation of ESFAS Functions is not required, because adequate time is available for plant operators to evaluate plant conditions and respond by manually operating the ESF components if required. ESFAS Manual Trip capability is required for                              1 and MSIS Functions other than AFAS in MODE 4 even though automatic actuation is not required. Because of the large number of components actuated on each ESFAS, actuation is simplified by the use of the Manual Trip push 1
Actuation buttons. Manual Trip of AFAS is not required in MODE 4 because AFW or shutdown cooling will already be in operation in this MODE.                    Actuation lR2 4
Manual Actuation of                                                                                                          l MSIS is not required in MODE 4 because it The ESFAS Actuation Logic must be OPERABLE in the same MODES as                                    l l
is not required to      the Automatic and Manual Trips. In MODE 4, only the portion of the                                  l support the safety      ESFAS logic responsible for the required Manual Trip must be                                      1 l function of the MSIVs                                        Actuations                  Actuation                        l or MFIVs.                OPERABLE.
l In MODES 5 and 6, ESFAS initiated systems are either reconfigured or disabled for shutdown cooling operation. Accidents in these MODES are slow to develop and would be mitigated by manual operation of individual components.
ACTIONS                  When the number of inoperable channels in a trip Function exceeds those specified in any related Condition associated with the same trip Function, then the plant is outside the safety analysis. Therefore, LCO 3.0.3 should be immediately entered, if applicable in the current MODE of operation.
A Note has been added to the ACTIONS to clarify the application of the Completion Time rules. The Conditions of this Specification may be entered independently for each Function in Table 3.3.5-1 in the LCO.                          3 Completion Times for the inoperable channel of a Function will be tracked separately.                                                    4 A.1 similar                    Actuation Condition A applies to one AFAS Manual Trip or AFAS Actuation Logic                            1 channel inoperable. It is identical to Condition C for the other ESFAS Functions, except for the shutdown track imposed by Condition D.
1 E                    F The channel must be restored to OPERABLE status to restore redundancy of the AFAS Function. The 48 hour Completion Time is commensurate with the importance of avoiding the vulnerability of a single failure in the only remaining OPERABLE channel. [Alternatively, a Completion Time can be determined in accordance with the Risk                                  2 Informed Completion Time Program.]
4                                                                      3 Combustion Engineering STS                    B 3.3.5-10                                                  Rev. 5.0    1 St. Lucie - Unit 2                                                                                  Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
Actuation B 3.3.5 3
4 BASES ACTIONS (continued)
B.1 and B.2 Actuation If two Manual Trip or Actuation Logic channels are inoperable or the                                1 Required Action and associated Completion Time of Condition A cannot be met, the reactor should be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within [12] hours. The allowed                                  2 Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
INSERT 5                                                                                                              1 C.1                                        Actuation              and MSIS E          E                    F                                                                      3 Condition C applies to one Manual Trip or Actuation Logic channel inoperable for those ESFAS Functions that must be OPERABLE in MODES 1, 2, 3, and 4 (all Functions except AFAS). The shutdown track                                1 imposed by Condition D requires entry into MODE 5, where the LCO does not apply to the affected Functions. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed                                          2 Completion Time Program.]
The channel must be restored to OPERABLE status to restore redundancy of the affected Functions. The 48 hour Completion Time is commensurate with the importance of avoiding the vulnerability of a single failure in the only remaining OPERABLE channel.
D.1 and D.2                                                                                          1
                      -----------------------------------REVIEWERS NOTE ----------------------------------
Adoption of a MODE 4 end state requires the licensee to make the following commitments:
: 1. [LICENSEE] will follow the guidance established in Section 11 of                                  2 NUMARC 93-01, Industry Guidance for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants, Nuclear Management and Resource Council, Revision [4F].
: 2. [LICENSEE] will follow the guidance established in Revision 2 of WCAP-16364-NP, Implementation Guidance for Risk Informed Modification to Selected Required Action End States at Combustion Engineering NSSS Plants (TSTF-422), Westinghouse, May 2010.
4                                                                      3 Combustion Engineering STS                  B 3.3.5-11                                                      Rev. 5.0    1 St. Lucie - Unit 2                                                                                    Revision XXX
 
ESFAS Logic and Manual Actuation 3.3.4 1
INSERT 5 C.1 Condition C applies when one MSIS Manual Actuation or Actuation Logic channel is inoperable.
The 48 hour Completion Time is commensurate with the importance of avoiding the vulnerability of a single failure in the remaining OPERABLE MSIS Manual Actuation or Actuation Logic channel. Alternatively, the Completion Time can be determined in accordance with the Risk Informed Completion Time Program.
D.1.1, D.1.2, D.2.1, and D.2.2 If both MSIS Manual Actuation or Actuation Logic channels are inoperable or if the Required Actions and associated Conditions of Condition C are not met, the plant must be placed in a MODE or other specified condition in which the LCO does not apply. This is done by closing and deactivating the MSIVs and MFIVs within 6 hours (Required          lR2 Actions D.1.1 and D.1.2). If allowed, operation in MODES 2 or 3 with MSIVs and MFIVs closed and deactivated may continue because isolating the affected main steam line and    lR2 main feedwater line accomplishes the safety function of the inoperable channel.
Alternately, if the MSIVs and MFIVs cannot be closed and deactivated, the plant must be  lR2 placed in MODE 3 within 6 hours and in MODE 4 within 12 hours (Required Actions D.2.1 and D.2.2).
The Completion Times of Required Actions D.1.1 and D.1.2 is consistent with the Completion Time to be in MODE 3 for similar conditions and correspond to the Completion Time of D.2.1. The Completion Times of Required Actions D.2.1 and D.2.2 are based on the Completion Time to reach MODE 3 (i.e., 6 hours) and allow an additional 6 hours to reach MODE 4, respectively, if the MSIVs and MFIVs are not closed and deactivated within 12 hours. These Completion Times are reasonable,            lR2 based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
Insert Page B 3.3.4-11
 
ESFAS Logic and Manual Trip (Analog)
Actuation B 3.3.5 3
4 BASES ACTIONS (continued)
Condition D is entered when the Required Action and associated 1
Completion Time of Condition C is not met. The plant must be brought to a MODE in which overall plant risk is minimized. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours.
Remaining within the Applicability of the LCO is acceptable because the plant risk in MODE 4 is similar to or lower than MODE 5 (Ref. 2). In MODE 4 there are more accident mitigation systems available and there is more redundancy and diversity in core heat removal mechanisms than in MODE 5. However, voluntary entry into MODE 5 may be made as it is also an acceptable low-risk state. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
Required Action D.2 is modified by a Note that states that LCO 3.0.4.a is not applicable when entering MODE 4. This Note prohibits the use of LCO 3.0.4.a to enter MODE 4 during startup with the LCO not met.
However, there is no restriction on the use of LCO 3.0.4.b, if applicable, because LCO 3.0.4.b requires performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering MODE 4, and establishment of risk management actions, if appropriate. LCO 3.0.4 is not applicable to, and the Note does not preclude, changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.
F E.1 and E.2                                            and MSIS              Actuation F                                                                                3 F
Condition E is entered when one or more Functions have two Manual Trip or Actuation Logic channels inoperable except AFAS. The plant must be                    1 brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
SURVEILLANCE          SR 3.3.5.1 REQUIREMENTS              4 A CHANNEL FUNCTIONAL TEST is performed to ensure the entire channel will perform its intended function when needed. Sensor subsystem tests are addressed in LCO 3.3.4. This SR addresses Actuation Logic tests. A successful test of the required contact(s) of a 3
4                                                                  3 Combustion Engineering STS              B 3.3.5-12                                            Rev. 5.0      1 St. Lucie - Unit 2                                                                      Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
Actuation B 3.3.5 3
4 BASES SURVEILLANCE REQUIREMENTS (continued) channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.
Actuation Logic Tests Actuation subsystem testing includes injecting one trip signal into each two-out-of-four logic subsystem in each ESFAS Function and using a bistable trip input to satisfy the trip logic. Initiation relays associated with the affected channel will then actuate the individual ESFAS components.
Since each ESFAS Function employs subchannels of Actuation Logic, it is possible to actuate individual components without actuating an entire ESFAS Function.
Note 1 requires that Actuation Logic tests include operation of initiation relays. Note 2 allows deferred at power testing of certain relays to allow for the fact that operating certain relays during power operation could cause plant transients or equipment damage. Those initiation relays that                        lR2 cannot be tested at power must be tested in accordance with Note 2.                            l l
These include [SIAS No. 5, SIAS No. 10, CIAS No. 5, and MSIS No. 1.]                    2      l l
l These relays actuate the following components, which cannot be tested                          l at power:                                                                                      l l
l RCP seal bleedoff isolation valves,                                                        l Service water isolation valves,                                                  1 VCT discharge valves,                                                                      lR2 l
l Letdown stop valves,                                                                      l l
l CCW to and from the RCPs,                                                                  l l
l MSIVs and feedwater isolation valves, and                                                  l l
Instrument air containment isolation valves.                                              l l
l The reasons that each of the above cannot be fully tested at power are                          l l
stated in Reference 1.
These tests verify that the ESFAS is capable of performing its intended function, from bistable input through the actuated components.
4                                                                  3 Combustion Engineering STS            B 3.3.5-13                                              Rev. 5.0      1 St. Lucie - Unit 2                                                                        Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
Actuation B 3.3.5 3
4 BASES SURVEILLANCE REQUIREMENTS (continued)
[ The Frequency of [92] days is based on the reliability analysis presented 2
in topical report CEN-327, "RPS/ESFAS Extended Test Interval Evaluation" (Ref. 3).
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                      -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency 2
description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                      ------------------------------------------------------------------------------------------------ ]
SR 3.3.5.2 Actuation 4
A CHANNEL FUNCTIONAL TEST is performed on the manual ESFAS actuation circuitry, de-energizing relays and providing Manual Trip of the Function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.
Actuation This Surveillance verifies that the trip push buttons are capable of opening contacts in the Actuation Logic as designed, de-energizing the initiation relays and providing Manual Trip of the Function. [ The
[18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for                          2 an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at a Frequency of once every [18] months.
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
4                                                                        3 Combustion Engineering STS                  B 3.3.5-14                                                      Rev. 5.0    1 St. Lucie - Unit 2                                                                                    Revision XXX
 
ESFAS Logic and Manual Trip (Analog)
Actuation B 3.3.5 3
4 BASES SURVEILLANCE REQUIREMENTS (continued)
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance 2
Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]
REFERENCES          1. FSAR, Section [7.3].                                                                        1    2 U
: 2. CE NPSD-1186-A, Technical Justification for the Risk Informed 1
Modification to Selected Required Action End States for CEOG PWRs, October, 2001.
: 3. CEN-327, June 2, 1986, including Supplement 1, March 3, 1989.                                    1 4                                                                        3 Combustion Engineering STS                  B 3.3.5-15                                                    Rev. 5.0      1 St. Lucie - Unit 2                                                                                  Revision XXX
 
JUSTIFICATION FOR DEVIATIONS ITS 3.3.4 BASES, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS) LOGIC AND MANUAL ACTUATION
: 1. Changes are made (additions, deletions, and/or changes) to the ISTS Bases that reflect the plant specific nomenclature, number, reference, system description, analysis, licensing basis, or licensing basis description.
: 2. The ISTS contains bracketed information and/or values that are generic to all Combustion Engineering vintage plants. The brackets are removed, and the proper plant specific information/value is provided. This is acceptable since the information/value is changed to reflect the current licensing basis.
: 3. The heading for ISTS 3.3.5 includes the parenthetical expression (Analog). This identifying information is not included in the PSL ITS. This information is provided in the NUREG-1432, Rev. 5.0 to assist in identifying the appropriate Specifications to be used as a model for a plant-specific ITS conversion but serves no purpose in a plant-specific implementation. In addition, Reactor Protective System (RPS)            lR2 l
Instrumentation - Shutdown (ISTS 3.3.2) is renumbered as ITS 3.3.12. Therefore,        l the Engineered Safety Features Actuation System (ESFAS) Logic and Manual                l Actuation (ISTS 3.3.5) is renumbered as ITS 3.3.4 and subsequent Specifications        l l
renumbered accordingly.
: 4. Changes are made consistent with changes made to the Specification required              lR2 MODES of Applicability.                                                                l St. Lucie Unit 1 and Unit 2              Page 1 of 1
 
Specific No Significant Hazards Considerations (NSHCs)
DETERMINATION OF NO SIGNIFICANT HAZARDS CONSIDERATIONS ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION 10 CFR 50.92 EVALUATION FOR LESS RESTRICTIVE CHANGE L01 Florida Power & Light Company (FPL) is converting the St. Lucie Plant (PSL) Unit 1 and Unit 2 Technical Specifications to the Improved Technical Specifications (ITS) as outlined in NUREG-1432, "Standard Technical Specifications, Combustion Engineering Plants," Revision 5. The proposed change involves making the current technical specifications (CTS) less restrictive. Below is the description of the change and the determination of No Significant Hazards Considerations for conversion to NUREG-1432.
Unit 1 CTS 3.3.2.1, Table 3.3-3 Functional Unit 4 - main steam isolation signal (MSIS) manual actuation is applicable in MODES 1, 2, 3, and 4 and Table 4.3-2 Functional Unit 4 - MSIS automatic actuation logic is applicable in MODES 1, 2, and 3. Unit 2 CTS 3.3.2, Tables 3.3-3 and 4.3-2 Functional Unit 4 - MSIS manual and automatic actuation logic are applicable in MODES 1, 2, and 3. When one Unit 1 MSIS manual actuation channel is inoperable or one Unit 2 MSIS automatic actuation logic channel is inoperable, CTS Table 3.3-3 Action 8 (Unit 1) and Action 12 (Unit 2) require, in part, to restore the channel to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program.
ITS Limiting Condition for Operation (LCO) 3.3.4 (Table 3.3.4-1) requires the MSIS manual actuation and automatic actuation channel to be OPERABLE in MODES 1, 2, 3 except in MODES 2 and 3 when valves isolated by the MSIS Function are closed as specified in Footnote (a). ITS actions require closing the main steam isolation valves (MSIVs) and the main feedwater isolation valves (MFIVs) in 6 hours, or be in MODE 3 in 6 hours and MODE 4 in 12 hours when two MSIS Manual Actuation or Actuation Logic channels are inoperable or when the action to restore one MSIS Manual Actuation or Actuation Logic channel cannot be completed within the required Completion Time. This changes the CTS by deleting the MODE 4 applicability requirement for Unit 1 MSIS, and changing the MODE 2 and 3 Applicability for both units to include except when valves isolated by the MSIS Function are closed. This change aligns the Applicability of the MSIS actuation instrumentation with the applicability requirements of the associated MSIS instrument channels (i.e., steam generator low pressure instrument channels and the Unit 2 containment high pressure instrument channels) and the supported equipment (i.e., the MSIVs and MFIVs). The change also revises the CTS Actions to add appropriate actions to reflect the change to the Applicability, which provides sufficient remedial actions to safely continue operation in lieu of a plant cooldown.
The purpose of the MSIS manual and automatic instrumentation in CTS Table 3.3-3 is to ensure the Engineered Safety Features Actuation System (ESFAS) MSIS Functions are OPERABLE when the supported equipment is required to be OPERABLE. Automatic steam line and feedwater line isolation is assumed in the mitigation of a major secondary system pipe rupture accident (e.g., main steam line break or feedwater line break). The MSIS manual actuation instrumentation is not credited in the safety analysis and a safety analysis limit is not specified for this actuation function. MSIS automatic actuation instrumentation is credited in the safety analysis.
In MODES 1, 2, and 3, there is sufficient energy in the primary and secondary systems to warrant automatic ESF System response to ensure the main steam and feedwater St. Lucie Unit 1 and Unit 2                Page 1 of 7
 
DETERMINATION OF NO SIGNIFICANT HAZARDS CONSIDERATIONS ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION lines can be isolated in the event of a high energy secondary system pipe rupture. The exception to MODE 2 and 3 are added to clarify that the MSIS manual and automatic actuation instrumentation is not required to be OPERABLE when the valves actuated by the MSIS instrumentation are in positions that support the safety analyses. When the valves isolated by the MSIS function are in the closed position, they are in their assumed accident position. This change is acceptable, because when the MSIVs and MFIVs are closed, the adverse effects of a high energy secondary system pipe rupture are precluded and the requirements continue to ensure that the structures, systems, and components (SSCs) are maintained in the MODES and other specified conditions assumed in the safety analyses. The proposed applicability and actions provide the same level of protection as the current requirements for the supported equipment.
Since the proposed actions provide the allowance to place the MSIVs and MFIVs in their accident position with the option to continue a plant cooldown, sufficient remedial measures continue to be provided to allow safe operation pursuant to the requirements of 10 CFR 50.36(c)(2).
FPL has evaluated whether or not a significant hazards consideration is involved with these proposed Technical Specification changes by focusing on the three standards set forth in 10 CFR 50.92, "Issuance of amendment," as discussed below:
: 1. Does the proposed change involve a significant increase in the probability or consequences of any accident previously evaluated?
Response: No.
The proposed change does not affect accident initiators or precursors nor adversely alter the design assumptions, conditions, and configuration of the facility. The proposed change does not alter any plant equipment or operating practices with respect to such initiators or precursors in a manner that the probability of an accident is increased. The proposed change revises the applicability requirements for the ESFAS MSIS actuation instrumentation to align with the applicability requirements of the associated instrument channels and the supported equipment.
Changing the applicability requirements of the MSIS actuation instrumentation to be consistent with the applicability requirements of the associated instrument channels and the supported equipment does not alter the probability or consequences of previously evaluated accidents. In addition, the proposed actions provide sufficient remedial measures to continue safe operation in lieu of a plant cooldown. The proposed change does not involve a physical change to the ESFAS, nor does it change the safety function of the ESFAS instrumentation or the equipment supported by the ESFAS instrumentation. Automatic steam line and feedwater line isolation is assumed in the mitigation of a major secondary system pipe rupture accident. When the valves are in the closed position, they are in their assumed accident position.
Therefore, the adverse effects of a high energy secondary system pipe rupture are precluded. As a result, the proposed change does not alter assumptions relative to the mitigation of a previously evaluated accident.
Therefore, the proposed change does not involve a significant increase in the probability or consequences of an accident previously evaluated.
St. Lucie Unit 1 and Unit 2              Page 2 of 7
 
DETERMINATION OF NO SIGNIFICANT HAZARDS CONSIDERATIONS ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION
: 2. Does the proposed change create the possibility of a new or different kind of accident from any previously evaluated?
Response: No With respect to a new or different kind of accident, there are no proposed design changes to the ESFAS; nor are there any changes in the method by which safety related plant SSCs perform their specified safety functions. The proposed change will not affect the normal method of plant operation or revise any operating parameters. No new accident scenarios, transient precursor, failure mechanisms, or limiting single failures will be introduced as a result of this proposed change and the failure modes and effects analyses of SSCs important to safety are not altered as a result of this change.
The proposed change does not alter the design or performance of the ESFAS, rather, the change aligns the applicability requirements of the MSIS actuation instrumentation with the applicability requirements of the associated instrument channels and the supported equipment. The proposed actions provide sufficient remedial measures to continue safe operation in lieu of a plant cooldown. The process to close the MSIVs and the MFIVs or place the unit in a shutdown condition uses current procedures, methods, and processes already established and currently in use and, therefore, does not constitute a new type of test.
No changes are being proposed to the procedures that operate the plant equipment and the change does not have a detrimental impact on the manner in which plant equipment operates or responds to an actuation signal.
Therefore, the proposed change will not create the possibility of a new or different accident previously evaluated.
: 3. Does the proposed change involve a significant reduction in the margin of safety?
Response: No.
The margin of safety is related to the ability of the fission product barriers to perform their design functions during and following an accident. These barriers include the fuel cladding, the reactor coolant system, and the containment. The performance of these fission product barriers is not affected by the proposed change.
Instrumentation safety margin is established by ensuring the limiting safety system settings (LSSSs) automatically actuate the applicable design function to correct an abnormal situation before a safety limit is exceeded. Safety analysis limits are established for reactor trip system and ESFAS instrumentation functions related to those variables having significant safety functions. The proposed change aligns the applicability requirements of the MSIS actuation instrumentation with the applicability requirements of the associated instrument channels and the supported equipment.
The proposed actions provide sufficient remedial measures to continue safe operation in lieu of a plant cooldown. The MSIS manual actuation instrumentation is not credited in the safety analysis and a safety analysis limit is not specified for this actuation function. Therefore, the MSIS manual actuation instrumentation does not St. Lucie Unit 1 and Unit 2                Page 3 of 7
 
DETERMINATION OF NO SIGNIFICANT HAZARDS CONSIDERATIONS ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION represent an LSSS because this instrumentation does not monitor a plant variable on which a safety limit has been placed. In addition, the change to the applicability and actions of the MSIS automatic actuation logic does not alter the capability of the LSSSs to automatically actuate the applicable design function to correct an abnormal situation before a safety limit is exceeded because the applicability and optional remedial actions to close the associated valves ensure the components are in their safety position precluding adverse effects of a high energy secondary system pipe rupture. The proposed change does not alter the instrumentation used to monitor a plant variable on which a safety limit has been placed.
The controlling parameters established to isolate the steam and feedwater lines during an accident or transient are not affected by the proposed change and no design basis or safety limit is altered as a result of the proposed change. Therefore, the proposed change does not involve a significant reduction in a margin of safety.
Based upon the above analysis, FPL concludes that the proposed change does not involve a significant hazards consideration under the standards set forth in 10 CFR 50.92(c), and accordingly, a finding of no significant hazards consideration is justified.
St. Lucie Unit 1 and Unit 2              Page 4 of 7
 
DETERMINATION OF NO SIGNIFICANT HAZARDS CONSIDERATIONS ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION 10 CFR 50.92 EVALUATION FOR LESS RESTRICTIVE CHANGE L04 - UNIT 2 LESS RESTRICTIVE CHANGE L05 - UNIT 1 Florida Power & Light Company (FPL) is converting the St. Lucie Plant (PSL) Unit 1 and Unit 2 Technical Specifications to the Improved Technical Specifications (ITS) as outlined in NUREG-1432, "Standard Technical Specifications, Combustion Engineering Plants," Revision 5. The proposed change involves making the current technical specifications (CTS) less restrictive. Below is the description of the change and the determination of No Significant Hazards Considerations for conversion to NUREG-1432.
When one Unit 2 main steam isolation signal (MSIS) manual trip button channel is inoperable, CTS actions require the channel to be restored to OPERABLE status within 48 hours or declare the associated valve inoperable and take the actions required by the supported system specification. ITS requires restoring the channel to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time (RICT)
Program. This changes the CTS by optionally allowing the manual channel to be restored in accordance with the RICT Program provided the associated risk is assessed and managed and in accordance with an NRC approved RICT Program. This change aligns the action for one inoperable Unit 2 MSIS manual channel with the action for one inoperable Unit 1 MSIS manual channel and the action for one inoperable channel of the other Engineered Safety Features Actuation System (ESFAS) manual actuation channels.
Unit 1 CTS does not specifically include requirements for the ESFAS automatic actuation logic channels, including actions when one or more automatic actuation logic channels are inoperable. However, Surveillance Requirements associated with the ESFAS automatic actuation logic is included in the Unit 1 CTS. Because no actions are provided for the Unit 1 ESFAS automatic actuation logic channels, a plant shutdown is required when an automatic actuation channel is inoperable. When an ESFAS automatic actuation logic channel is inoperable, Unit 1 ITS actions allow restoring a channel to OPERABLE status within 48 hours or in accordance with the RICT Program consistent with the Unit 2 ITS actions. This changes the Unit 1 CTS by providing time to restore the redundant automatic actuation logic channel to OPERABLE status provided the associated risk is assessed and managed in accordance with an NRC approved RICT Program.
License Amendments 247 and 199, dated July 2, 2019, for PSL Unit 1 and Unit 2, respectively (NRC ADAMS Accession No. ML19113A099) incorporated an NRC approved RICT Program in the PSL Unit 1 and Unit 2 technical specifications. The RICT Program provides controls to assess and manage risk during the extended time to restore the redundant automatic actuation logic channel or manual actuation channel to OPERABLE status.
FPL has evaluated whether or not a significant hazards consideration is involved with these proposed Technical Specification changes by focusing on the three standards set forth in 10 CFR 50.92, "Issuance of amendment," as discussed below:
St. Lucie Unit 1 and Unit 2            Page 5 of 7
 
DETERMINATION OF NO SIGNIFICANT HAZARDS CONSIDERATIONS ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION
: 1. Does the proposed change involve a significant increase in the probability or consequences of any accident previously evaluated?
Response: No.
The proposed change does not affect accident initiators or precursors nor adversely alter the design assumptions, conditions, and configuration of the facility.
The proposed change does not alter any plant equipment or operating practices with respect to such initiators or precursors in a manner that the probability of an accident is increased. In addition, the actions continue to provide sufficient remedial measures to continue safe operation in lieu of a plant shutdown. The proposed change does not involve a physical change to the ESFAS, nor does it change the safety function of the ESFAS instrumentation or the equipment supported by the ESFAS instrumentation.
The proposed change permits the extension of the time to restore the redundant automatic actuation logic channel or manual actuation channel to OPERABLE status provided the associated risk is assessed and managed in accordance with an NRC approved RICT Program. The proposed change does not involve a significant increase in the probability of an accident previously evaluated because the change involves no change to the plant or its modes of operation. The proposed change does not increase the consequences of an accident because the design basis mitigation function of the ESFAS instrumentation and supported systems is not changed and the consequences of an accident during the extended Completion Time are no different from those during the existing Completion Time Therefore, the proposed change does not involve a significant increase in the probability or consequences of an accident previously evaluated.
: 2. Does the proposed change create the possibility of a new or different kind of accident from any previously evaluated?
Response: No With respect to a new or different kind of accident, there are no proposed design changes to the ESFAS; nor are there any changes in the method by which safety related plant structures systems and components perform their specified safety functions. The proposed change will not affect the method of plant operation or revise any operating parameters. No new accident scenarios, transient precursor, failure mechanisms, or limiting single failures will be introduced as a result of this proposed change and the failure modes and effects analyses of SSCs important to safety are not altered as a result of this change.
The proposed change does not alter the design or performance of the ESFAS, rather, the change permits the extension of the time to restore the redundant automatic actuation logic channel or manual actuation channel to OPERABLE status provided the associated risk is assessed and managed in accordance with an NRC approved RICT Program. The proposed actions provide sufficient remedial measures to continue safe operation in lieu of a plant shutdown. The process to return inoperable instrumentation to service or place the unit in a shutdown condition St. Lucie Unit 1 and Unit 2              Page 6 of 7
 
DETERMINATION OF NO SIGNIFICANT HAZARDS CONSIDERATIONS ITS 3.3.4, ENGINEERED SAFETY FEATURES ACTUATION SYSTEM (ESFAS)
LOGIC AND MANUAL ACTUATION uses current procedures, methods, and processes already established and currently in use and, therefore, does not constitute a new type of test.
No changes are being proposed to the procedures that operate the plant equipment and the change does not have a detrimental impact on the manner in which plant equipment operates or responds to an actuation signal.
Therefore, the proposed change will not create the possibility of a new or different accident previously evaluated.
: 3. Does the proposed change involve a significant reduction in the margin of safety?
Response: No.
The margin of safety is related to the ability of the fission product barriers to perform their design functions during and following an accident. These barriers include the fuel cladding, the reactor coolant system, and the containment. The performance of these fission product barriers is not affected by the proposed change.
Instrumentation safety margin is established by ensuring the limiting safety system settings (LSSSs) automatically actuate the applicable design function to correct an abnormal situation before a safety limit is exceeded. Safety analysis limits are established for reactor trip system and ESFAS instrumentation functions related to those variables having significant safety functions. The proposed actions provide sufficient remedial measures to continue safe operation in lieu of a plant shutdown.
In addition, the change does not allow continued operation with a loss of the actuation capability, and therefore, does not alter the capability of the LSSSs to automatically actuate the applicable design function to correct an abnormal situation before a safety limit is exceeded.
The proposed change does not alter the instrumentation used to monitor a plant variable on which a safety limit has been placed. The change permits the extension of the time to restore the redundant automatic actuation logic channel or manual actuation channel to OPERABLE status provided the associated risk is assessed and managed in accordance with an NRC approved RICT Program.
The controlling parameters established to actuate supporting systems during an accident or transient are not affected by the proposed change and no design basis or safety limit is altered as a result of the proposed change. Therefore, the proposed change does not involve a significant reduction in a margin of safety.
Based upon the above analysis, FPL concludes that the proposed change does not involve a significant hazards consideration under the standards set forth in 10 CFR 50.92(c), and accordingly, a finding of no significant hazards consideration is justified.
St. Lucie Unit 1 and Unit 2                Page 7 of 7
 
ATTACHMENT 5 3.3.5, Diesel Generator (DG) - Loss of Voltage Start (LOVS)
 
Current Technical Specifications (CTS) Markup and Discussion of Changes (DOCs)
 
ITS                                                                                                                          ITS 3.3.5 A01 INSTRUMENTATION 3/4.3.2      ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION LIMITING CONDITION FOR OPERATION See ITS 3.3.3 LCO 3.3.5        3.3.2.1      The Engineered Safety Feature Actuation System (ESFAS) instrumentation channels and bypasses shown in Table 3.3-3 shall be OPERABLE with their trip setpoints set                            LA03 lR2 consistent with the values shown in the Trip Setpoint column of Table 3.3-4.
Add proposed ITS 3.3.5 Applicabilities:                              lR2 MODE 4,                                                              l When associated DG is required to be OPERABLE by LCO 3.8.2, "AC Sources - Shutdown."
LCO 3.3.5        APPLICABILITY: As shown in Table 3.3-3.                                                                          M01 Applicability Add proposed ITS 3.3.5 ACTIONS Note                    A02 ACTION:
: a. With an ESFAS instrumentation channel trip setpoint less                                                    lR2 l
conservative than the value shown in the Allowable Values                                      A05 l
column of Table 3.3-4, declare the channel inoperable and                                                    l apply the applicable ACTION requirement of Table 3.3-3                                                      l l
until the channel is restored to OPERABLE status with the                                                    l trip setpoint adjusted consistent with the Trip Setpoint                                      LA03          l value.                                                                                                      l ACTION A for Table 3.3.3-1    b. With an ESFAS instrumentation channel inoperable, take the Functions 6.a, 6.b, 6.c ACTION shown in Table 3.3-3.
Add proposed ITS 3.3.5 ACTION B and C                  L01 SURVEILLANCE REQUIREMENTS 4.3.2.1.1    Each ESFAS instrumentation channel shall be demonstrated OPERABLE by the SR 3.3.5.1, SR 3.3.5.2,      performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL SR 3.3.5.3 FUNCTIONAL TEST operations during the modes and at the frequencies shown in Table 4.3-2.        In accordance with the Surveillance Frequency Control Program 4.3.2.1.2    The logic for the bypasses shall be demonstrated OPERABLE during the at power CHANNEL FUNCTIONAL TEST of channels affected by bypass operation. The total                                See bypass function shall be demonstrated OPERABLE in accordance with the                                      ITS 3.3.3 Surveillance Frequency Control Program during CHANNEL CALIBRATION testing of each channel affected by bypass operation.
4.3.2.1.3    The ENGINEERED SAFETY FEATURES RESPONSE TIME of each ESFAS function shall be demonstrated to be within the limit in accordance with the Surveillance                            A03 Frequency Control Program. Each test shall include at least one channel per function.
ST. LUCIE - UNIT 1                                    3/4 3-9                        Amendment No. 128, 223
 
ITS                                                                                                                                          ITS 3.3.5 A01 TABLE 3.3-3 (Continued)
ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION LA02 MINIMUM REQUIRED                                          A04 TOTAL NO.            CHANNELS        CHANNELS APPLICABLE FUNCTIONAL UNIT                              OF CHANNELS                TO TRIP        OPERABLE                MODES                  ACTION
: 5. CONTAINMENT SUMP                                                                                                                                See RECIRCULATION (RAS)                                                                                                                        ITS 3.3.4 ITS 3.3.3
: a. Manual RAS (Trip Buttons)                2                      1              2                      1, 2, 3, 4        8
: b. Refueling Water Tank - Low                4                      2              3                      1, 2, 3            13
: 6. LOSS OF POWER                        Add proposed ITS 3.3.5 Applicabilities:
M01  lR2 MODE 4,                                                                                                        l LCO 3.3.5                                                When associated DG is required to be OPERABLE by LCO 3.8.2, "AC Sources - Shutdown."
Loss of Voltage
: a. 4.16 kv Emergency Bus Under-ACTION A                voltage (Loss of Voltage)                2/Bus                  2/Bus      2  1/Bus                  1, 2, 3            12 LCO 3.3.5            b. 4.16 kv Emergency Bus Under-                                                                                              12 Degraded Voltage ACTION A                voltage (Degraded Voltage)              2/Bus                  2/Bus      2  1/Bus                  1, 2, 3 LCO 3.3.5 Degraded Voltage v    c. 480 V Emergency Bus Under-                                                                            1, 2, 3 ACTION A                voltage (Degraded Voltage)              2/Bus                  2/Bus      2  1/Bus                                    12
: 7. AUXILIARY FEEDWATER (AFAS)                                                                                                                    See ITS 3.3.4
: a. Manual (Trip Buttons)                    4/SG                  2/SG          4/SG                  1, 2, 3            11                ITS 3.3.3
: b. Automatic Actuation Logic                4/SG                  2/SG          3/SG                  1, 2, 3            11
: c. SG Level (1A/1B) - Low                    4/SG                  2/SG          3/SG                  1, 2, 3            14a, 14b, 15
: 8. AUXILIARY FEEDWATER ISOLATION                                                                                                                  See ITS 3.3.4
: a. SG 1A - SG 1B Differential                                                                                                                  ITS 3.3.3 Pressure                                4/SG                  2/SG          3/SG                  1, 2, 3            14a, 14b, 15
: b. Feedwater Header 1A - 1B Differential Pressure                                4/SG                  2/SG          3/SG                  1, 2, 3            14a, 15 Add proposed ITS 3.3.5 ACTION B and C              L01 ST. LUCIE - UNIT 1                                            3/4 3-11                                Amendment No. 15, 37, 58, 72, 102, 121, 188, 220, 247
 
ITS                                                                                                                    ITS 3.3.5 A01 TABLE 3.3-3 (continued)
TABLE NOTATION ACTION 10A          -      With the number of OPERABLE channels one less than the Total Number of Channels, operation may proceed provided the following conditions are                    See ITS 3.3.3 satisfied:
: a.      The inoperable channel is placed in the bypassed or tripped condition and the Minimum Channels OPERABLE requirement is demonstrated within 1 hour. If the inoperable channel can not be restored to OPERABLE status within 48 hours, then place the inoperable channel in the tripped condition.
: b.      Within 1 hour, all functional units receiving an input from the inoperable channel are also bypassed or tripped.
ACTION 10B          -      With the number of channels OPERABLE one less than the Minimum Channels OPERABLE, operation may proceed provided one of the inoperable channels has been bypassed and the other inoperable channel has been placed in the tripped condition within 1 hour. Restore one of the inoperable channels to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours.
ACTION 11 - With the number of OPERABLE channels one less than the Total Number of Channels, restore the inoperable channels to OPERABLE status within 48 hours See or in accordance with the Risk Informed Completion Time Program, or be in at                      ITS 3.3.4 least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours. LCO 3.0.4.a is not applicable when entering HOT SHUTDOWN.
ACTION 12 - With the number of OPERABLE Channels one less than the Total Number of Channels, operation may proceed until performance of the next required                              L02 ACTION A                        CHANNEL FUNCTIONAL TEST provided the inoperable channel is placed in the tripped condition within 1 hour.
One or more Functions with one ACTION A    channel per DG inoperable.
(Condition)
Add proposed ITS 3.3.5 ACTIONS Note                    A02 Add proposed ITS 3.3.5 ACTION B and C                  L01 ST. LUCIE - UNIT 1                                      3/4 3-13                  Amendment No. 15, 37, 58, 72, 188, 202, 234, 247
 
ITS                                                                                                                ITS 3.3.5 A01 TABLE 3.3-4 (Continued)
ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION TRIP VALUES LA01 ALLOWABLE FUNCTIONAL UNIT                                          TRIP VALUE                    VALUES
: 6. LOSS OF POWER SR 3.3.5.3        a. 4.16 kv Emergency Bus Undervoltage        > 2900 volts with a          > 2900 volts with a (Loss of Voltage)                          1 + .5 second time delay      1 + .5 second time delay SR 3.3.5.3        b. 4.16 kv Emergency Bus Undervoltage        > 3831 volts with a          > 3831 volts with a (Degraded Voltage)                        18 + 2 second time delay      18 + 2 second time delay SR 3.3.5.3        c. 480 volts Emergency Bus Undervoltage      > 415 volts with a            > 415 volts with a (Degraded Voltage)                        < 9 second time delay        < 9 second time delay
: 7. AUXILIARY FEEDWATER (AFAS)
See
: a. Manual (Trip Buttons)                      Not Applicable                Not Applicable                      ITS 3.3.4
: b. Automatic Actuation Logic                  Not Applicable                Not Applicable Table 3.3.3-1      c. SG 1A & 1B Level Low                      > 19.0%                      > 18.0 %
6.a, 6.b See
: 8. AUXILIARY FEEDWATER ISOLATION                                                                                    ITS 3.3.3
: a. Steam Generator P - High                  < 275 psid                    89.2 to 281 psid
: b. Feedwater Header High P                  < 150.0 psid                  56.0 to 157.5 psid ST. LUCIE - UNIT 1                                  3/4 3-15              Amendment No. 37, 58, 72, 102, 105, 121, 177
 
ITS                                                                                                                      ITS 3.3.5 A01 Add proposed ITS 3.3.5 Applicability:
When associated DG is required to be OPERABLE              M01 TABLE 4.3-2 (Continued)    by LCO 3.8.2, "AC Sources - Shutdown."
ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS MODES IN WHICH CHANNEL          CHANNEL      FUNCTIONAL                SURVEILLANCE FUNCTIONAL UNIT                              CHECK        CALIBRATION          TEST                        REQUIRED
: 6. LOSS OF POWER SR 3.3.5.3        a. 4.16 kv Emergency Bus Undervoltage    SFCP            SFCP            SFCP                          1, 2, 3 (Loss of Voltage)
SR 3.3.5.3        b. 4.16 kv Emergency Bus Undervoltage    SFCP            SFCP            SFCP                          1, 2, 3 (Degraded Voltage)
SR 3.3.5.3        c. 480 V Emergency Bus Undervoltage      SFCP            SFCP            SFCP                          1, 2, 3 (Degraded Voltage)
: 7. AUXILIARY FEEDWATER (AFAS)
See
: a. Manual (Trip Buttons)                  N.A.            N.A.            SFCP                          1, 2, 3          ITS 3.3.4 See
: b. SG Level (A/B) - Low                  SFCP            SFCP            SFCP                          1, 2, 3          ITS 3.3.3 See
: c. Automatic Actuation Logic              N.A.            N.A.            SFCP                          1, 2, 3          ITS 3.3.4
: 8. AUXILIARY FEEDWATER ISOLATION See
: a. SG Level (A/B) - Low and              N.A.            SFCP            SFCP                          1, 2, 3          ITS 3.3.3 SG Differential Pressure (BtoA/AtoB) - High
: b. SG Level (A/B) - Low and              N.A.            SFCP            SFCP                          1, 2, 3 Feedwater Header Differential Pressure (BtoA/AtoB) - High ST. LUCIE - UNIT 1                                3/4 3-19                      Amendment No. 37, 58, 72, 102, 121, 223
 
ITS                                                                                                                              ITS 3.3.5 A01 INSTRUMENTATION 3/4.3.2          ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION LIMITING CONDITION FOR OPERATION See ITS 3.3.3 LCO 3.3.5        3.3.2            The Engineered Safety Features Actuation System (ESFAS) instrumentation channels and bypasses shown in Table 3.3-3 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3-4.                                          LA03  lR2 Add proposed ITS 3.3.5 Applicabilities:                              l MODE 4,                                                              l When associated DG is required to be OPERABLE LCO 3.3.5        APPLICABILITY: As shown in Table 3.3-3.                                                                            M01 by LCO 3.8.2, "AC Sources - Shutdown."
Applicability                                                                                                                                  A02 Add proposed ITS 3.3.5 ACTIONS Note ACTION:
: a. With an ESFAS instrumentation channel trip setpoint less conservative                                      lR2 l
than the value shown in the Allowable Values column of Table 3.3-4,                          A05          l declare the channel inoperable and apply the applicable ACTION                                            l l
requirement of Table 3.3-3 until the channel is restored to OPERABLE                                      l status with the trip setpoint adjusted consistent with the Trip                                            l LA03 Setpoint value.                                                                                            l ACTION A for Table 3.3.3-1        b. With an ESFAS instrumentation channel inoperable, take the ACTION Function 6.a.(1)
ACTION B for Table 3.3.3-1              shown in Table 3.3-3.
Function 6.a.(2), 6.b.(1), 6.b.(2)
Add proposed ITS 3.3.5 ACTION C and D                  L01 SURVEILLANCE REQUIREMENTS 4.3.2.1          Each ESFAS instrumentation channel shall be demonstrated OPERABLE by the SR 3.3.5.1, SR 3.3.5.2,          performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL SR 3.3.5.3 FUNCTIONAL TEST operations during the MODES and at the frequencies shown in Table 4.3-2.        In accordance with the Surveillance Frequency Control Program 4.3.2.2          The logic for the bypasses shall be demonstrated OPERABLE during the at power CHANNEL FUNCTIONAL TEST of channels affected by bypass operation. The total See bypass function shall be demonstrated OPERABLE in accordance with the Surveillance ITS 3.3.3 Frequency Control Program during CHANNEL CALIBRATION testing of each channel affected by bypass operation.
4.3.2.3          The ENGINEERED SAFETY FEATURES RESPONSE TIME of each ESFAS function shall be demonstrated to be within the limit in accordance with the Surveillance                          A03 Frequency Control Program. Each test shall include at least one channel per function.
ST. LUCIE - UNIT 2                                      3/4 3-11                        Amendment No. 67, 173
 
ITS                                                                                                                          ITS 3.3.5 A01 TABLE 3.3-3 (Continued)
ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION LA02 A04 MINIMUM TOTAL NO.        CHANNELS  CHANNELS            APPLICABLE FUNCTIONAL UNIT                OF CHANNELS        TO TRIP  OPERABLE                MODES              ACTION Add proposed ITS 3.3.5 Applicabilities:                        lR2
: 6. LOSS OF POWER (LOV)                                                    MODE 4,                                                        l When associated DG is required to be OPERABLE M01 LCO 3.3.5            a. (1) 4.16 kV Emergency Bus                                          by LCO 3.8.2, "AC Sources - Shutdown."
Loss of Voltage ACTION A Undervoltage (Loss of Voltage)        2/Bus            2/Bus  2    1/Bus                1, 2, 3              17A LCO 3.3.5                (2) 480 V Emergency Bus Loss of Voltage                                                      3/Bus            2/Bus  3    2/Bus                1, 2, 3              17B ACTION B Undervoltage (Loss of Voltage)
LCO 3.3.5            b. (1) 4.16 kV Emergency Bus Degraded Voltage                                                    3/Bus            2/Bus  3    2/Bus                1, 2, 3              17B ACTION B Undervoltage (Degraded Voltage)
LCO 3.3.5                (2) 480 V Emergency Bus Degraded Voltage                                                    3/Bus            2/Bus  3    2/Bus                1, 2, 3              17B ACTION B                      Undervoltage (Degraded Voltage)
: 7. AUXILIARY FEEDWATER (AFAS)
: a. Manual (Trip Buttons)                      4/SG            2/SG        4/SG                1, 2, 3              15      See ITS 3.3.4
: b. Automatic Actuation Logic                  4/SG            2/SG        3/SG                1, 2, 3              15 See
: c. SG Level (2A/2B) - Low                      4/SG            2/SG        3/SG                1, 2, 3        20a, 20b, 21  ITS 3.3.3
: 8. AUXILIARY FEEDWATER ISOLATION
: a. SG 2A - SG 2B Differential Pressure        4/SG            2/SG        3/SG                1, 2, 3        20a, 20b, 21  See ITS 3.3.3
: b. Feedwater Header 2A - 2B 4/SG            2/SG        3/SG                1, 2, 3            20a, 21 Differential Pressure Add proposed ITS 3.3.5 ACTION C and D                L01 ST. LUCIE - UNIT 2                                      3/4 3-14                      Amendment No. 28, 79, 132, 170, 199
 
ITS                                                                                                                ITS 3.3.5 A01 TABLE 3.3-3 (Continued)
TABLE NOTATION ACTION 14 - With the number of channels OPERABLE one less than the Minimum Channels OPERABLE, STARTUP and/or POWER OPERATION may continue provided                                  See the following conditions are satisfied:                                                          ITS 3.3.3
: a. Verify that one of the inoperable channels has been bypassed and place the other inoperable channel in the tripped condition within 1 hour.
: b. All functional units affected by the bypassed/tripped channel shall also be placed in the bypassed/tripped condition as listed below.
Process Measurement Circuit                          Functional Unit Bypassed/Tripped
: 1. Containment Pressure -                      Containment Pressure - High (SIAS, CIAS, CSAS)
Containment Pressure - High (RPS)
: 2. Steam Generator Pressure -                  Steam Generator Pressure - Low (MSIS)
AFAS-1 and AFAS-2 (AFAS)
Thermal Margin/Low Pressure (RPS)
Steam Generator Pressure - Low (RPS)
: 3. Steam Generator Level -                    Steam Generator Level - Low (RPS)
If SG-2A, then AFAS-1 (AFAS)
If SG-2B, then AFAS-2 (AFAS)
: 4. Pressurizer Pressure -                      Pressurizer Pressure - High (RPS)
Pressurizer Pressure - Low (SIAS)
Thermal Margin/Low Pressure (RPS)
ACTION 15 - With the number of OPERABLE channels one less than the Total Number of Channels, restore the inoperable channels to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours. LCO 3.0.4.a is not applicable when entering HOT SHUTDOWN.                              See ITS 3.3.4 ACTION 16 - With the number of OPERABLE channels one less than the Total Number of Channels, restore the inoperable channel to OPERABLE status within 48 hours or declare the associated valve inoperable and take the ACTION required by Specification 3.7.1.5.
ACTION 17A - With the number of OPERABLE Channels one less than the Total Number of ACTION A                      Channels, restore the inoperable channel to OPERABLE status within 48 hours or place the inoperable channel in the tripped condition and verify that the Minimum Channels OPERABLE requirement is demonstrated within 1 hour; one additional channel may be bypassed for up to 2 hours for surveillance testing                      M02 ACTION A Note                          per Specification 4.3.2.1.                                                      48        s One 4.16 kV Loss of Voltage Function with one channel per DG inoperable.
Add proposed ITS 3.3.5 ACTIONS Note                    A02 Add proposed ITS 3.3.5 ACTIONS C and D                L01 ST. LUCIE - UNIT 2                                    3/4 3-16                      Amendment No. 28, 73, 184, 199
 
ITS                                                                                                                ITS 3.3.5 A01 One or more Functions with one TABLE 3.3-3 (Continued) channel per DG inoperable (except 4.16 kV Loss of Voltage Function).                    TABLE NOTATION ACTION 17B          -    With the number of OPERABLE Channels one less than the Total Number of ACTION B                                Channels, restore the inoperable channel to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or place the inoperable channel in the tripped condition and verify that the Minimum Channels OPERABLE requirement is demonstrated within 1 hour; ACTION B                                one additional channel may be bypassed for up to 2 hours for surveillance                  M02 Note testing per Specification 4.3.2.1.                                      48          s ACTION 18A          -    With the number of OPERABLE Channels one less than the Total Number of Channels, operation may proceed provided the following conditions are              See ITS 3.3.3 satisfied:
: a. The inoperable channel is placed in either the bypassed or tripped condition and the Minimum Channels OPERABLE requirement is demonstrated within 1 hour. If the inoperable channel can not be restored to OPERABLE status within 48 hours, then place the inoperable channel in the tripped condition.
: b. With a channel process measurement circuit that affects multiple functional units inoperable or in test, bypass or trip all associated functional units as listed in ACTION 13.
ACTION 18B          -    With the number of channels OPERABLE one less than the Minimum Channels OPERABLE, operation may proceed provided one of the inoperable channels has been bypassed and the other inoperable channel has been placed in the tripped condition within 1 hour. Restore one of the inoperable channels to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time Program, or be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours.
ACTION 19 - With the number of OPERABLE Channels one less than the Total Number of Channels, operation may proceed provided the following conditions are satisfied:
: a. Within 1 hour the inoperable channel is placed in either the bypassed or tripped condition. If OPERABILITY cannot be restored within 48 hours or in accordance with the Risk Informed Completion Time Program, be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours.
: b. The Minimum Channels OPERABLE requirement is met; however, one additional channel may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.2.1.
ST. LUCIE - UNIT 2                                    3/4 3-16a                Amendment No. 132, 199
 
ITS                                                                                                              ITS 3.3.5 A01 TABLE 3.3-4 (Continued)
ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION TRIP VALUES LA01 FUNCTIONAL UNIT                          TRIP VALUE          ALLOWABLE VALUES
: 5. CONTAINMENT SUMP RECIRCULATION (RAS)
See
: a. Manual RAS (Trip Buttons)                          Not Applicable            Not Applicable                ITS 3.3.4
: b. Refueling Water Tank - Low                            5.67 feet          4.62 feet to 6.24 feet          See above tank bottom                                          ITS 3.3.3 above tank bottom See
: c. Automatic Actuation Logic                          Not Applicable            Not Applicable                ITS 3.3.4
: 6. LOSS OF POWER SR 3.3.5.3        a. (1) 4.16 kV Emergency Bus Undervoltage              > 3120 volts              > 3120 volts (Loss of Voltage)
SR 3.3.5.3          (2) 480 V Emergency Bus Undervoltage                  > 360 volts              > 360 volts (Loss of Voltage)
SR 3.3.5.3        b. (1) 4.16 kV Emergency Bus Undervoltage              > 3848 volts              > 3848 volts (Degraded Voltage)                  with < 10-second time delay with < 10-second time delay SR 3.3.5.3          (2) 480 V Emergency Bus Undervoltage
                                                                          > 432 volts              > 432 volts (Degraded Voltage)
: 7. AUXILIARY FEEDWATER (AFAS)
: a. Manual (Trip Buttons)                              Not Applicable            Not Applicable                See ITS 3.3.4
: b. Automatic Actuation Logic                          Not Applicable            Not Applicable See
: c. SG 2A & 2B Level Low                                  > 19.0%                  > 18.0 %                  ITS 3.3.3
: 8. AUXILIARY FEEDWATER ISOLATION
: a. Steam Generator P - High                            < 275 psid            89.2 to 281 psid              See ITS 3.3.3
: b. Feedwater Header P - High                          < 150.0 psid          56.0 to 157.5 psid ST. LUCIE - UNIT 2                                    3/4 3-18              Amendment No. 23, 28, 79, 199
 
ITS                                                                                                                                                              ITS 3.3.5 A01 Add proposed ITS 3.3.5 Applicability:                  M01 When associated DG is required to be OPERABLE TABLE 4.3-2 (Continued)                      by LCO 3.8.2, "AC Sources - Shutdown."
ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS CHANNEL              MODES FOR WHICH FUNCTIONAL                                        CHANNEL                CHANNEL              FUNCTIONAL                  SURVEILLANCE UNIT                                          CHECK            CALIBRATION                    TEST                    IS REQUIRED
: 6. LOSS OF POWER (LOV)
SR 3.3.5.3        a. 4.16 kV and 480 V Emergency Bus Undervoltage                          SFCP                  SFCP                    SFCP                      1, 2, 3, 4 (Loss of Voltage)
SR 3.3.5.3        b. 4.16 kV and 480 V Emergency Bus Undervoltage                          SFCP                  SFCP                    SFCP                      1, 2, 3, 4 (Degraded Voltage)
: 7. AUXILIARY FEEDWATER (AFAS)                                                                                                                                        See ITS 3.3.4
: a. Manual (Trip Buttons)                                                  N.A.                  N.A.                    SFCP                        1, 2, 3 See
: b. SG Level (A/B) - Low                                                  SFCP                  SFCP                    SFCP                        1, 2, 3      ITS 3.3.3
: c. Automatic Actuation Logic                                              N.A.                  N.A.                  SFCP(1),                      1, 2, 3      See SFCP(2)                                    ITS 3.3.4
: 8. AUXILIARY FEEDWATER ISOLATION
: a. SG Level (A/B) - Low and SG Differential                                N.A.                  SFCP                    SFCP                        1, 2, 3 Pressure (B to A/A to B) - High                                                                                                                                See ITS 3.3.3
: b. SG Level (A/B) - Low and Feedwater Header                                                    SFCP                    SFCP N.A.                                                                      1, 2, 3 Differential Pressure (B to A/A to B) - High TABLE NOTATION (1)  Testing of Automatic Actuation Logic shall include energization/de-energization of each initiation relay (solid-state component) and verification of the OPERABILITY of each initiation relay (solid-state component).                                                                                                    See ITS 3.3.4 (2)  An actuation relay test shall be performed which shall include the energization/de-energization of each actuation relay and verification of the OPERABILITY of each actuation relay.
(3)  A subgroup relay test shall be performed which shall include the energization/de-energization of each subgroup relay and verification of the OPERABILITY of each subgroup relay. Testing of the ESFAS subgroup relays shall be performed in accordance with the Surveillance Frequency Control Program.
ST. LUCIE - UNIT 2                                                            3/4 3-23                                  Amendment No. 28, 90, 173
 
DISCUSSION OF CHANGES ITS 3.3.5, DIESEL GENERATOR (DG) - LOSS OF VOLTAGE START (LOVS)
ADMINISTRATIVE CHANGES A01    In the conversion of the St. Lucie Plant (PSL) Unit 1 and Unit 2, Current Technical Specifications (CTS) to the plant specific Improved Technical Specifications (ITS), certain changes (wording preferences, editorial changes, reformatting, revised numbering, etc.) are made to obtain consistency with NUREG-1432, Rev. 5.0, "Standard Technical Specifications-Combustion Engineering Plants" (ISTS).
These changes are designated as administrative changes and are acceptable because they do not result in technical changes to the CTS.
A02    CTS Table 3.3-3 Actions describe the Actions to be taken when diesel generator  lR2 (DG) loss of voltage start (LOVS) Function instrument channels are inoperable.
ITS 3.3.5 also describes Actions to be taken when DG - LOVS Function instrument channels are inoperable and contains a note that separate condition entry is allowed for each DG - LOVS Function. This changes the CTS by adding a Note stating that separate condition entry is allowed for each Function, those Functions being DG - LOVS 4.16 kV and 480 V loss of voltage and degraded voltage Functions.
The purpose of the CTS Actions is to provide the appropriate compensatory actions for inoperable DG-LOVS Functions. This proposed change will allow separate condition entry for each DG-LOVS Function. The Note clarifies that DG-LOVS Functions are treated as separate entities, each with separate Completion Times. The Conditions of this Specification may be entered independently for each DG-LOVS Function in the LCO. Completion Times for the inoperable channel of a Function will be tracked separately. These changes are acceptable since the proposed Required Actions provide sufficient time to satisfy the Required Actions. Inoperable instrument channels are normally found one at a time, not concurrently. Therefore, the Actions to be taken when DG-LOVS Function instrument channels are inoperable apply as each Function is found to be inoperable and not at the same time. This change is designated as an administrative change and is acceptable because it does not result in technical changes to the CTS.
A03    Unit 1 CTS 4.3.2.1.3 and Unit 2 CTS 4.3.2.3 require ENGINEERED SAFETY            lR2 FEATURES RESPONSE TIME testing of "each" ESFAS function. ITS 3.3.5 does not include response time testing for the DG-LOVS Instrumentation Functions. This changes the CTS by clearly identifying that the ENGINEERED SAFETY FEATURES RESPONSE TIME testing does not apply to the DG-LOVS Instrumentation Functions.
The purpose of Unit 1 CTS 4.3.2.1.3 and Unit 2 CTS 4.3.2.3 is to ensure that the actuation response times, when applicable to a Function, are less than or equal to the maximum values assumed in the accident analysis. The Unit 1 UFSAR Table 13.8.2-2, states that the ENGINEERED SAFETY FEATURES RESPONSE TIME testing is not applicable to the 4.16 kV Loss of Voltage and Degraded Voltage Functions, and the 480 V Degraded Voltage Function. The Unit 2 UFSAR Table 13.7.2-2, states that the ENGINEERED SAFETY FEATURES St. Lucie Unit 1 and Unit 2            Page 1 of 6                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.5, DIESEL GENERATOR (DG) - LOSS OF VOLTAGE START (LOVS)
RESPONSE TIME testing is not applicable to the 4.16 kV Loss of Voltage and Degraded Voltage Functions, and the 480 V Loss of Voltage and Degraded Voltage Functions. The response time surveillance test acceptance criteria for Technical Specification 3/4.3.2 was relocated by License Amendment No. 128 (Unit 1) and License Amendment No. 67 (Unit 2) and NRC Safety Evaluation dated July 12, 1994. The measurement of engineered safety features actuation systems instrumentation response times at the specified frequencies provides assurance that the ESF action function associated with each channel is completed within the time limit assumed in the accident analyses. No credit is taken in the analyses for those channels with response times indicated as not applicable. Therefore, this change is acceptable since ENGINEERED SAFETY FEATURES RESPONSE TIME testing of the Loss of Voltage and Degraded Voltage Functions is not required. This change is designated as administrative because it does not result in technical changes to the CTS.
A04    CTS Table 3.3-3 for ESFAS instrumentation has three columns stating various requirements for each function. These columns are labeled, "TOTAL NO. OF CHANNELS," "CHANNELS TO TRIP," and "MINIMUM CHANNELS OPERABLE." ITS 3.3.5 does not retain the "TOTAL NO. OF CHANNELS" or "CHANNELS TO TRIP" columns. DOC LA01 describes the change that moves the information of the "TOTAL NO. OF CHANNELS" and "CHANNELS TO TRIP" columns to the Bases. This changes the CTS by changing the "MINIMUM CHANNELS OPERABLE" column to "REQUIRED CHANNELS OPERABLE" and changes the number of channels to 2 per bus for Unit 1 Functional Units 6.a, 6.b, and 6.c, and changes the number of channels to 2 per bus for Unit 2 Functional    lR1 Unit 6.a.(1) and to 3 per bus for Unit 2 Functional Units 6.a.(2), 6.b.(1),
and 6.b.(2). Additionally, the revised "MINIMUM CHANNELS OPERABLE" criteria are moved to the ITS 3.3.5 LCO statement and the "MINIMUM CHANNELS OPERABLE" column is deleted from CTS Table 3.3-3. This change is designated as administrative because it does not result in a technical change to the CTS.
lR2 A05    CTS 3.3.2.1 (U1) and CTS 3.3.2 (U2) Action a state, in part, that with an ESFAS  l instrumentation channel trip setpoint less conservative than the value shown in  l the Allowable Values column of Table 3.3-4, declare the channel inoperable and    l l
apply the applicable ACTION requirement of Table 3.3 3 until the channel is      l restored to OPERABLE status. ITS LCO 3.3.5 states, "The following DG-LOVS        l Function instrumentation shall be OPERABLE: a) Two channels of 4.16 kV Loss      l l
of Voltage Function per DG; b) Two channels of 4.16 kV Degraded Voltage          l Function per DG; and c) Two channels of 480 V Degraded Voltage Function per      l l
DG," and ITS LCO 3.0.2 states, in part, "Upon discovery of a failure to meet an  l LCO, the Required Actions of the associated Conditions shall be met." This        l changes the CTS by replacing a specific Action with LCOs requiring similar        l l
actions to be taken.                                                              l l
This change is designated as administrative and is acceptable because ITS        l l
maintains the current requirement to declare the channel inoperable and apply    l the applicable ACTION when the trip setpoint is found less conservative than the  l l
Allowable Value and, therefore, do not result in a technical change to the CTS. l St. Lucie Unit 1 and Unit 2              Page 2 of 6                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.5, DIESEL GENERATOR (DG) - LOSS OF VOLTAGE START (LOVS)
MORE RESTRICTIVE CHANGES M01    CTS Tables 3.3-3 and 4.3-2 requirements for the Degraded Voltage and Loss of Voltage Functional Units are applicable in MODES 1, 2, and 3. ITS 3.3.5 requires the Degraded Voltage and Loss of Voltage Functions to be OPERABLE in MODES 1, 2, 3, and 4, and when the associated EDG is required to be OPERABLE by LCO 3.8.2, "AC Sources - Shutdown." This changes the CTS by expanding the conditions under which the Degraded Voltage and Loss of Voltage Functions must be OPERABLE.
This change is acceptable because requiring the Degraded Voltage and Loss of Voltage Functions to be OPERABLE in MODE 4 and when LCO 3.8.2 requires            lR2 an EDG to be OPERABLE ensures that the automatic loss of power start of the EDG is available when needed. This change is designated as more restrictive because it expands the applicability in which equipment is required to be OPERABLE.
M02    Unit 2 only: (Category 3 - Relaxation of Completion Time) CTS Table 3.3-3 Action 17A requires that, with the number of OPERABLE channels one less than the total number of channels per DG, restore the inoperable channel to OPERABLE status within 48 hours (2 channels per DG Function) or place the inoperable channel in trip within 1 hour. Action 17A applies to the 2 channels per DG 4.16 kV Loss of Voltage Function. CTS Table 3.3-3 Action 17B requires that, with the number of OPERABLE channels one less than the total number of channels per DG, restore the inoperable channel to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time (3 channels per DG Functions), or place the inoperable channel in trip within 1 hour.
Action 17B applies to the 3 channels per DG 4.16 kV Degraded Voltage Function, 3 channels per DG 480 Loss of Voltage Function, and 3 channels per DG 480V Degraded Voltage Function.
ITS 3.3.5 retains the current licensing basis with time allotted to restore the inoperable channel to OPERABLE status before requiring the inoperable channel be placed in trip. ITS 3.3.5 ACTION A is consistent with CTS Action 17A.
ITS 3.3.5 ACTION B is consistent with CTS Action 17B. The CTS Actions use an "or" connector. ITS ACTIONS that use an "OR" connector use the same Completion Time. This changes the CTS by eliminating the allowance to place the channel in trip within 1 hour after the channel is not restored within the required Completion Time and instead requires the channel to be placed in trip within 48 hours (ACTION A), and within the same 48 hours or in accordance with the Risk Informed Completion Time (ACTION B), consistent with the time currently allotted to restore the inoperable channel to OPERABLE status. If the actions (i.e., restore or trip the inoperable channel) cannot be completed within the required Completion Time, the associated DG must be immediately declared inoperable. This change is acceptable because if the inoperable channel is not restored to OPERABLE status within the associated Completion Time, the channel is placed in trip. However, the ITS 3.3.5 time to trip the channel is 1 hour less than the time allotted in CTS. If the inoperable channel is not restored to OPERABLE status with 48 hours (ACTION A), or within 48 hours or in St. Lucie Unit 1 and Unit 2                Page 3 of 6                                    lR2
 
DISCUSSION OF CHANGES ITS 3.3.5, DIESEL GENERATOR (DG) - LOSS OF VOLTAGE START (LOVS) accordance with the Risk Informed Completion Time (ACTION B), the DG is immediately declared inoperable (ACTION D). This change is designated as more restrictive because it reduces the Completion Time for a CTS Required Action.
RELOCATED SPECIFICATIONS None REMOVED DETAIL CHANGES LA01 Not Used.                                                                            lR2 LA02 (Type 3 - Removing Procedural Details for Meeting TS Requirements or                  lR1 Reporting Requirements) CTS Table 3.3-3 for ESFAS instrumentation has three columns stating various requirements for each function. These columns are labeled, "TOTAL NO. OF CHANNELS," "CHANNELS TO TRIP," and "MINIMUM CHANNELS OPERABLE." ITS 3.3.5 does not retain the "TOTAL NO. OF CHANNELS" or "CHANNELS TO TRIP" columns. This changes the CTS by moving the information of the "TOTAL NO. OF CHANNELS" and "CHANNELS TO TRIP" columns to the Bases. The "MINIMUM CHANNELS OPERABLE" column is deleted as described in discussion of change (DOC) A03.
The removal of these details, which are related to system design, from the Technical Specifications, is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. The ITS 3.3.5 LCO still retains the requirement for the number of required channels and the appropriate Condition to enter if a required channel becomes inoperable. Also, this change is acceptable because the removed information will be adequately controlled in the ITS Bases. Changes to the Bases are controlled by the Technical Specification Bases Control Program in Chapter 5. This program provides for the evaluation of changes to ensure the Bases are properly controlled. This change is designated as a less restrictive removal of detail change because information relating to system design is being removed from the Technical Specifications.
LA03 (Type 3 - Removing Procedural Details for Meeting TS Requirements or                  lR2 l
Reporting Requirements) CTS 3.3.2.1 (Unit 1) and CTS 3.3.2 (Unit 2) requires,      l in part that the instrument channels setpoint to be set consistent with the values l shown in the trip setpoint column of Table 3.3-4. CTS 3.3.2.1 (Unit 1) and        l l
CTS 3.3.2 (Unit 2) Action a requires that an inoperable ESFAS instrumentation      l channel due to the trip setpoint less conservative than the value shown in the    l l
Allowable Value column to be adjusted consistent with the Trip Setpoint value      l shown in Table 3.3.3 when restoring the channel to OPERABLE status. ITS            l does not explicitly include this detail. This changes the CTS by moving the        l l
procedural detail on the value an instrument channel is required to be set to and  l what is needed to restore an instrument channel to OPERABLE status to the          l Bases.                                                                            l l
St. Lucie Unit 1 and Unit 2              Page 4 of 6                                      lR2
 
DISCUSSION OF CHANGES ITS 3.3.5, DIESEL GENERATOR (DG) - LOSS OF VOLTAGE START (LOVS)
The removal of these details for setting and restoring and inoperable instrument    lR2 l
channel from the Technical Specifications is acceptable because this type of        l information is not necessary to be included in the Technical Specifications to      l provide adequate protection of public health and safety. The ITS still retains the  l l
requirement that instrument channels for each Function in Table 3.3.4-1 to be        l OPERABLE when applicable with the Bases defining what is required for                l l
OPERABILITY, assuring protection of public health and safety. Also, this change      l is acceptable because these types of procedural details will be adequately          l controlled in the ITS Bases. Changes to the Bases are controlled by the              l l
Technical Specification Bases Control Program in Chapter 5. This program            l provides for the evaluation of changes to ensure the Bases are properly              l controlled. This change is designated as a less restrictive removal of detail        l l
change because procedural details for meeting Technical Specification                l requirements are being removed from the Technical Specifications.                    l LESS RESTRICTIVE CHANGES L01    (Category 4 - Relaxation of Required Action) Unit 1 CTS Table 3.3-3 Functional Units 6.a - 4.16 kV Loss of Voltage, 6.b - 4.16 kV Degraded Voltage, and 6.c -
480 V Degraded Voltage require 2 channels per DG for each Function. Unit 2 CTS Table 3.3-3 Functional Units 6.a.(1) - 4.16 kV Loss of Voltage requires 2 channels per DG. Unit 2 CTS Functional Units 6.a.(2) 480 V Loss of Voltage, 6.b.(1) - 4.16 kV Degraded Voltage, and 6.b.(2) - 480 V Degraded Voltage each require 3 channels per DG. However, CTS Table 3.3-3 only describes the Actions to be taken when one channel per DG is inoperable for a DG-LOVS Function. ITS LCO 3.3.5 states the DG-LOVS Functions and maintains the same operable channels per DG requirements as CTS. ITS also provides actions to be taken when one diesel generator (DG) loss of voltage start (LOVS) Function instrument channel is inoperable (Unit 1 ACTION A and Unit 2 ACTIONS A and B). Note that the Unit 2 DG-LOVS Function channel operability requirements differ for the Unit 2 CTS Functional Units: 6.a.(1) ) - 4.16 kV Loss of Voltage requires 2 channels per DG (Unit 2 ACTION A), and Functional Units 6.a.(2) - 480 V Loss of Voltage, 6.b.(1) - 4.16 kV Degraded Voltage, and 6.b.(2)
        - 480 V Degraded Voltage each require 3 channels per DG (Unit 2 ACTION B).
Additionally, ITS provides Actions for one or more DG-LOVS Functions with two channels per DG inoperable requiring one inoperable channel be restored to OPERABLE status within 1 hour (Unit 1 ACTION B and Unit 2 ACTION C). ITS also provides Actions if the Required Actions and Associated Completion Times are not met requiring the associated DG be declared inoperable immediately (Unit 1 ACTION C and Unit 2 ACTION D). For CTS, if one or more Functions with two or more channels per DG are inoperable, or if the Required Action is not Completed in the associated Completion Time, CTS 3.0.3 is entered since there is no Condition and Action specified in the CTS. This changes the CTS by explicitly providing an ACTION for one or more Functions with two or more channels per DG inoperable, and an ACTION if the Required Action is not Completed in the associated Completion Time.
St. Lucie Unit 1 and Unit 2              Page 5 of 6                                        lR2
 
DISCUSSION OF CHANGES ITS 3.3.5, DIESEL GENERATOR (DG) - LOSS OF VOLTAGE START (LOVS)
The purpose of CTS is to ensure that the LOVS-DG logic is in a known configuration either by restoring the inoperable channel to OPERABLE status or by placing the inoperable channel in trip. This change is acceptable because the Completion Time is consistent with safe operation under the specified Condition, considering the OPERABLE status of the redundant systems or features. This includes the capacity and capability of remaining systems or features, a reasonable time for repairs or replacement, and the low probability of a DBA occurring during the allowed Completion Time. ITS 3.3.5 retains the CTS requirement to either restore the inoperable channel to OPERABLE status or place the channel in trip when one or more Functions with one channel per DG inoperable. Additionally, ITS provides Actions for one or more DG-LOVS Functions with two channels per DG inoperable requiring one inoperable channel be restored to OPERABLE status within 1 hour (Unit 1 ACTION B and Unit 2 ACTION C). ITS also provides Actions if the Required Actions and Associated Completion Times are not met requiring the associated DG be declared inoperable immediately (Unit 1 ACTION C and Unit 2 ACTION D). This change is designated as less restrictive because the ITS Actions are less restrictive than the CTS Actions.
L02    Unit 1 only: (Category 4 - Relaxation of Required Action) CTS Table 3.3-3 Action 12 states, in part, that with the number of OPERABLE channels one less than the total number of channels, "operation may proceed until performance of the next required CHANNEL FUNCTIONAL TEST." This CTS Action applies to the Loss of Voltage and Degraded Voltage Functions of CTS Table 3.3-3.
ITS 3.3.5 ACTION A is the applicable action for the Loss of Voltage and Degraded Voltage Functions when one channel is inoperable, and does not include the restoration time limit of "until performance of the next required CHANNEL FUNCTIONAL TEST." This changes the CTS by allowing operation with an inoperable channel for an unlimited amount of time provided the inoperable channel is in the tripped condition.
The purpose of CTS Table 3.3-3 Action 12 is to only allow operation until performance of the next required CHANNEL FUNCTIONAL TEST. This requirement is based upon the assumption that when it is time to test the other OPERABLE channels in the associated Function, the OPERABLE channels cannot be tested with the inoperable channel in trip. However, CTS 3.0.6 (ITS LCO 3.0.5) is a generic allowance that will allow the inoperable channel to be restored to service in order to perform Surveillances on the other OPERABLE channels in the associated Function. Thus, using this generic allowance, it is possible to test the remaining OPERABLE channels in the associated Function, and there is no reason to restrict the generic allowance from applying to these specific channels. As such, the CTS Table 3.3-3 Action 12 statement is not necessary and has been deleted. The administrative controls required by ITS LCO 3.0.5 will ensure the time the channel is returned to service in conflict with the requirements of ITS 3.3.5 ACTION A is limited to the time absolutely necessary to perform the required testing to demonstrate OPERABILITY of the other channels. In addition, this specific example (taking an inoperable channel out of the tripped condition) is discussed in the Bases of ISTS SR 3.0.5.
Therefore, this change is acceptable for the reasons described above. This change is designated as less restrictive because less stringent Required Actions are being applied in the ITS than were applied in the CTS.
St. Lucie Unit 1 and Unit 2              Page 6 of 6                                      lR2
 
Improved Standard Technical Specifications (ISTS) Markup and Justification for Deviations (JFDs)
 
DG - LOVS (Analog)            3 3.3.6 5
3.3 INSTRUMENTATION (Analog)                                                                                                      3 3
3.3.6          Diesel Generator (DG) - Loss of Voltage Start (LOVS) (Analog) 5      5 3.3.2.1        LCO 3.3.6                    [Four] channels of Loss of Voltage Function and [four] channels of                                  3  2 Table 3.3-3 INSERT 1        Degraded Voltage Function auto-initiation instrumentation per DG shall Functional Unit 6.a, 6.b, 6.c                                be OPERABLE.
Table 3.3-3    APPLICABILITY:              MODES 1, 2, 3, and 4, Functional Unit 6.a, 6.b, 6.c When associated DG is required to be OPERABLE by LCO 3.8.2, "AC DOC M01                                            Sources - Shutdown."
ACTIONS
                  ------------------------------------------------------------NOTE-----------------------------------------------------------
DOC A02        Separate Condition entry is allowed for each Function.
CONDITION                              REQUIRED ACTION                            COMPLETION TIME 1
Table 3.3-3        A. One or more Functions                  A.1        Place channel in bypass or              1 hour                              lR2 Action 12                with one channel per DG                        trip.
inoperable.
AND A.2.1      Restore channel to                      [48] hours                      2 OPERABLE status.
[OR In accordance with the Risk Informed              2 Completion Time Program]
OR                                                                            2 5
3 Combustion Engineering STS                                3.3.6-1                                                  Rev. 5.0      1 St. Lucie - Unit 1                                                                                          Amendment XXX
 
DG-LOVS 3.3.5 1
INSERT 1 Table 3.3-3    The following DG-LOVS Function instrumentation shall be OPERABLE:
Functional Unit 6.a, 6.b, 6.c
: a.      Two channels of 4.16 kV Loss of Voltage Function per DG;
: b.      Two channels of 4.16 kV Degraded Voltage Function per DG;
: c.      Two channels of 480 V Degraded Voltage Function per DG.
Insert Page 3.3.5-1
 
DG - LOVS (Analog)      3 3.3.6 5
ACTIONS (continued)
CONDITION            REQUIRED ACTION                COMPLETION TIME A.2.2  [ Place the channel in trip. 48 hours 2
[OR In accordance with the Risk Informed        2 Completion Time Program] ]
DOC L01  B. One or more Functions  B.1    Enter applicable Conditions  1 hour                  1 with two channels per        and Required Actions for DG inoperable.              the associated DG made inoperable by DG - LOVS instrumentation.
OR B.2.1  Place one channel in        1 hour                  1 bypass and the other channel in trip.
AND B.2.2  Restore one channel to      [48] hours              2 OPERABLE status.
[OR In accordance with the Risk Informed        2 Completion Time Program]
C. One or more Functions  C.1    Restore all but two          1 hour 2
with more than two          channels to OPERABLE channels inoperable.        status.                      [OR In accordance with the Risk Informed        2 Completion Time Program]
5 3
Combustion Engineering STS            3.3.6-2                                Rev. 5.0  1 St. Lucie - Unit 1                                                        Amendment XXX
 
DG - LOVS (Analog)      3 3.3.6 5
ACTIONS (continue)
CONDITION                  REQUIRED ACTION              COMPLETION TIME C                                C DOC L01        D. Required Action and          D.1  Enter applicable Conditions Immediately 1
associated Completion            and Required Actions for Time not met.            Declare the associated DG made inoperable by DG - LOVS instrumentation.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY 4.3.2.1.1      SR 3.3.6.1          [ Perform CHANNEL CHECK.                          [ 12 hours            2 Table 4.3-2 Function 6.a,            5 6.b, 6.c                                                                            OR In accordance with the Surveillance Frequency Control Program ] ]          2 4.3.2.1.1      SR 3.3.6.2          Perform CHANNEL FUNCTIONAL TEST.                  [ [92] days          2 Table 4.3-2 5
Function 6.a, 6.b, 6.c OR In accordance with the Surveillance Frequency Control Program ]    2 5
3 Combustion Engineering STS                3.3.6-3                                Rev. 5.0  1 St. Lucie - Unit 1                                                            Amendment XXX
 
DG - LOVS (Analog)        3 3.3.6 5
SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE              Trip Setpoints and    FREQUENCY              4 lR2 4.3.2.1.1      SR 3.3.6.3                Perform CHANNEL CALIBRATION with setpoint              [ [18] months        2    4 lR2 Table 4.3-2 5
Allowable Values as follows:
Function 6.a, 6.b, 6.c                                                                                        OR
: a. Degraded Voltage Function  [3180] V and                                  1
[3220] V                                        In accordance with the Time delay:  [ ] seconds and  [ ] seconds at    Surveillance            1
[ ] V and                                          Frequency Control Program ]            2
: b. Loss of Voltage Function  [3180] V and                                    1
[3220] V Time delay:  [ ] seconds and  [ ] seconds at                            1
[ ] V.
Table 3.3-4    a. 4.16 kV Loss of Voltage Function  2900 V Function 6.a Time delay: 1  0.5 seconds Table 3.3-4    b. 4.16 kV Degraded Voltage Function  3831 V Function 6.b Time delay: 18  2 seconds Table 3.3-4    c. 480 V Degraded Voltage Function  415 V Function 6.c Time Delay:  9 seconds 5
3 Combustion Engineering STS                          3.3.6-4                                    Rev. 5.0    1 St. Lucie - Unit 1                                                                        Amendment XXX
 
DG - LOVS (Analog)              3 3.3.6 5
3.3 INSTRUMENTATION (Analog)                                                                                                        3 3
3.3.6          Diesel Generator (DG) - Loss of Voltage Start (LOVS) (Analog) 5      5 3.3.2.1          LCO 3.3.6                    [Four] channels of Loss of Voltage Function and [four] channels of                                3    2 Table 3.3-3 INSERT 1 Degraded Voltage Function auto-initiation instrumentation per DG shall Functional Unit 6.a.(1), 6.a.(2),                              be OPERABLE.
6.b.(1), 6.b.(2)
Table 3.3-3      APPLICABILITY:              MODES 1, 2, 3, and 4, Functional Unit 6.a.(1), 6.a.(2),
When associated DG is required to be OPERABLE by LCO 3.8.2, "AC 6.b.(1), 6.b.(2)                                      Sources - Shutdown."
DOC M01 ACTIONS
                    ------------------------------------------------------------NOTE-----------------------------------------------------------
DOC A02          Separate Condition entry is allowed for each Function.
CONDITION                                  REQUIRED ACTION                        COMPLETION TIME 4.16 kV Loss of Voltage 1
Table 3.3-3          A. One or more Functions                  A.1            Place channel in bypass or          1 hour      48 hours Action 17A                with one channel per DG                            trip.
inoperable.                                                                                                                1 AND            OR A.2.1          Restore channel to                  [48] hours                        2 OPERABLE status.
[OR
                                                                  ---------------------NOTE------------------
One channel may be bypassed for up to 2 hours for surveillance                  In accordance with testing.                                        the Risk Informed
                                                                    -----------------------------------------------                                  2 Completion Time Program]
OR                                                                            2 INSERT 2 5
3 Combustion Engineering STS                                      3.3.6-1                                            Rev. 5.0      1 St. Lucie - Unit 2                                                                                          Amendment XXX
 
DG-LOVS 3.3.5 1
INSERT 1 Table 3.3-3      The following DG-LOVS Function instrumentation shall be OPERABLE:
Functional Unit 6.a.(1), 6.a.(2),
6.b.(1), 6.b.(2)
: a.      Two channels of 4.16 kV Loss of Voltage Function per DG;
: b.      Three channels of 4.16 kV Degraded Voltage Function per DG;
: c.      Three channels of 480 V Loss of Voltage Function per DG;
: d.      Three channels of 480 V Degraded Voltage Function per DG.
Insert Page 3.3.5-1
 
DG-LOVS 3.3.5 1
INSERT 2 Table 3.3-3 B. One or more Functions  B.1    -------------NOTE----------------
Action 17B    with one channel per DG        One channel may be inoperable (except 4.16        bypassed for up to 2 hours kV Loss of Voltage            for surveillance testing.
Function).                    -------------------------------------
Place channel in trip.                48 hours OR In accordance with the Risk Informed Completion Time Program OR B.2    Restore channel to                    48 hours OPERABLE status.
OR In accordance with the Risk Informed Completion Time Program Insert Page 3.3.5-1
 
DG - LOVS (Analog)      3 3.3.6 5
ACTIONS (continued)
CONDITION            REQUIRED ACTION                COMPLETION TIME A.2.2  [ Place the channel in trip. 48 hours 2
[OR In accordance with the Risk Informed        2 Completion Time Program] ]
DOC L01  B. One or more Functions    B.1    Enter applicable Conditions  1 hour                  1 C
with two channels per C and Required Actions for DG inoperable.                the associated DG made or more                  inoperable by DG - LOVS instrumentation.
OR B.2.1  Place one channel in        1 hour                  1 bypass and the other channel in trip.
AND B.2.2  Restore one channel to      [48] hours              2 OPERABLE status.
[OR In accordance with the Risk Informed        2 Completion Time Program]
C. One or more Functions    C.1    Restore all but two          1 hour 2
with more than two            channels to OPERABLE channels inoperable.          status.                      [OR In accordance with the Risk Informed        2 Completion Time Program]
5 3
Combustion Engineering STS              3.3.6-2                                Rev. 5.0  1 St. Lucie - Unit 2                                                        Amendment XXX
 
DG - LOVS (Analog)      3 3.3.6 5
ACTIONS (continue)
CONDITION                  REQUIRED ACTION              COMPLETION TIME D                                D DOC L01        D. Required Action and          D.1  Enter applicable Conditions Immediately 1
associated Completion            and Required Actions for Time not met.            Declare the associated DG made inoperable by DG - LOVS instrumentation.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY 4.3.2.1        SR 3.3.6.1          [ Perform CHANNEL CHECK.                          [ 12 hours            2 Table 4.3-2 Function 6.a,            5 6.b                                                                                  OR In accordance with the Surveillance Frequency Control Program ] ]          2 4.3.2.1.1      SR 3.3.6.2          Perform CHANNEL FUNCTIONAL TEST.                  [ [92] days          2 Table 4.3-2 5
Function 6.a, 6.b OR In accordance with the Surveillance Frequency Control Program ]    2 5
3 Combustion Engineering STS                3.3.6-3                                Rev. 5.0  1 St. Lucie - Unit 2                                                            Amendment XXX
 
DG - LOVS (Analog)        3 3.3.6 5
SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE              Trip Setpoints and FREQUENCY                4  lR2 4.3.2.1.1        SR 3.3.6.3                Perform CHANNEL CALIBRATION with setpoint                [ [18] months        2    4 lR2 Table 4.3-2 5
Allowable Values as follows:
Function 6.a, 6.b                                                                                                OR
: a. Degraded Voltage Function  [3180] V and                                  1
[3220] V                                        In accordance with the Time delay:  [ ] seconds and  [ ] seconds at    Surveillance            1
[ ] V and                                          Frequency Control Program ]            2
: b. Loss of Voltage Function  [3180] V and                                    1
[3220] V Time delay:  [ ] seconds and  [ ] seconds at                            1
[ ] V.
Table 3.3-4
: a. 4.16 kV Loss of Voltage Function  3120 V Function 6.a.(1)
Table 3.3-4      b. 480 V Loss of Voltage Function  360 V Function 6.a.(2)
Table 3.3-4      c. 4.16 kV Degraded Voltage Function  3848 V Function 6.b.(1)
Time Delay: < 10 seconds Table 3.3-4      d. 480 V Degraded Voltage Function  432 V Function 6.b.(2) 5 3
Combustion Engineering STS                          3.3.6-4                                    Rev. 5.0    1 St. Lucie - Unit 2                                                                        Amendment XXX
 
JUSTIFICATION FOR DEVIATIONS ITS 3.3.5, DIESEL GENERATOR (DG) - LOSS OF VOLTAGE START (LOVS)
: 1. Changes are made (additions, deletions, and/or changes) to the ISTS that reflect the plant specific nomenclature, number, reference, system description, analysis, licensing basis, or licensing basis description.
: 2. The ISTS contains bracketed information and/or values that are generic to all Combustion Engineering vintage plants. The brackets are removed, and the proper plant specific information/value is provided. This is acceptable since the information/value is changed to reflect the current licensing basis.
: 3. The heading for ISTS 3.3.6 includes the parenthetical expression (Analog). This identifying information is not included in the PSL ITS. This information is provided in the NUREG-1432, Rev. 5.0 to assist in identifying the appropriate Specifications to be used as a model for a plant-specific ITS conversion but serves no purpose in a lR2 plant-specific implementation. In addition, Reactor Protective System (RPS)            l Instrumentation - Shutdown (ISTS 3.3.2) is renumbered as ITS 3.3.12. Therefore,        l l
the Diesel Generator (DG) - Loss of Voltage Start (LOVS) (ISTS 3.3.6) is                l renumbered as ITS 3.3.5 and subsequent the Specifications renumbered                    l accordingly.                                                                            l lR2
: 4. FPL is retaining PSL's Trip Setpoints in ITS. Changes are made to the ISTS that          l reflect the plant specific nomenclature, number, reference, system description,        l analysis, licensing basis, or licensing basis description associated with retaining    l l
PSL's Trip Setpoints.
St. Lucie Unit 1 and Unit 2              Page 1 of 1
 
Improved Standard Technical Specifications (ISTS) Bases Markup and Justification for Deviations (JFDs)
 
DG - LOVS (Analog)
B 3.3.6      3 5
B 3.3 INSTRUMENTATION (Analog)
B 3.3.6 Diesel Generator (DG) - Loss of Voltage Start (LOVS) (Analog) 5 BASES BACKGROUND                  The DGs provide a source of emergency power when offsite power is either unavailable or insufficiently stable to allow safe plant operation.
Undervoltage protection will generate a LOVS in the event a Loss of Voltage or Degraded Voltage condition occurs. There are two LOVS Functions for each 4.16 kV vital bus.
INSERT 1 Four undervoltage relays with inverse time characteristics are provided on each 4.16 kV Class 1E instrument bus for the purpose of detecting a                    1 sustained undervoltage condition or a loss of bus voltage. The relays are combined in a two-out-of-four logic to generate a LOVS if the voltage is below 75% for a short time or below 90% for a long time. The LOVS initiated actions are described in Reference 1.
Trip Setpoints and Allowable Values The trip setpoints and Allowable Values are based on the analytical limits                  lR2 4 l presented in Reference 2. The selection of these trip setpoints is such                    l that adequate protection is provided when all sensor and processing time Trip Setpoints and delays are taken into account. To allow for calibration tolerances, lR2 instrumentation uncertainties, and instrument drift, Allowable Values              4 l
specified in SR 3.3.6.3 are conservatively adjusted with respect to the                3    l 5
analytical limits. A detailed description of the methodology used to calculate the trip setpoints, including their explicit uncertainties, is provided in Reference 3. The actual nominal trip setpoint is normally still              4 lR2 more conservative than that required by the plant specific setpoint calculations. If the measured setpoint does not exceed the documented surveillance trip acceptance criteria, the undervoltage relay is considered OPERABLE.
Setpoints in accordance with the Allowable Values will ensure that the consequences of accidents will be acceptable, providing the plant is operated from within the LCOs at the onset of the accident and the equipment functions as designed.
The undervoltage protection scheme has been designed to protect the plant from spurious trips caused by the offsite power source. This is                  1 made possible by the inverse voltage time characteristics of the relays used. A complete loss of offsite power will result in approximately a 1 second delay in LOVS actuation. The DG starts and is available to 3
5 1
Combustion Engineering STS                    B 3.3. 6-1                                            Rev. 5.0 St. Lucie - Unit 1                                                                            Revision XXX
 
DG-LOVS 3.3.5 1
INSERT 1 The 4.16 kV LOVS Functions include Loss of Voltage and Degraded Voltage Functions. The allowable values are provided in SR 3.3.5.3.
Each Class 1E 4.16 kV Bus utilizes two undervoltage definite time delay        R1 relays, in a two-out-of-two coincident logic for loss of voltage detection.
The function of these relays is to initiate source disconnection, load shedding, diesel generator starting, and load sequencing on the effected train (bus). The LOVS initiated actions are described in Reference 1.
Each Class 1E 4.16 kV Bus utilizes two sets of 2 undervoltage definite time delay relays in a two-out-of-two coincident logic for degraded voltage R1 detection. The function of these relays is the same as described for the loss of voltage detection.
Each Class 1E 480V Bus utilizes two undervoltage definite time delay relays in a two-out-of-two coincident logic scheme for degraded voltage        R1 detection.
Insert Page 3.3.5-1
 
DG - LOVS (Analog)
B 3.3.6    3 5
BASES BACKGROUND (continued) accept loads within a 10 second time interval on the Engineered Safety Features Actuation System (ESFAS) or LOVS. Emergency power is established within the maximum time delay assumed for each event analyzed in the accident analysis (Ref. 2).
INSERT 2  Since there are four protective channels in a two-out-of-four trip logic for each division of the 4.16 kV power supply, no single failure will cause or 1
prevent protective system actuation. This arrangement meets IEEE Standard 279-1971 criteria (Ref. 4).
APPLICABLE          The DG - LOVS is required for Engineered Safety Features (ESF)
SAFETY              systems to function in any accident with a loss of offsite power. Its design ANALYSES            basis is that of the ESFAS.
Accident analyses credit the loading of the DG based on a loss of offsite power during a loss of coolant accident. The actual DG start has historically been associated with the ESFAS actuation. The diesel loading has been included in the delay time associated with each safety system component requiring DG supplied power following a loss of offsite power. The analysis assumes a nonmechanistic DG loading, which does 1
not explicitly account for each individual component of the loss of power detection and subsequent actions. This delay time includes contributions from the DG start, DG loading, and Safety Injection System component actuation. The response of the DG to a loss of power must be demonstrated to fall within this analysis response time when including the contributions of all portions of the delay.
The required channels of LOVS, in conjunction with the ESF systems powered from the DGs, provide plant protection in the event of any of the analyzed accidents discussed in Reference 2, in which a loss of offsite power is assumed. LOVS channels are required to meet the redundancy and testability requirements of GDC 21 in 10 CFR 50, Appendix A (Ref. 5).
6 The delay times assumed in the safety analysis for the ESF equipment include the [10] second DG start delay and the appropriate sequencing delay, if applicable. The response times for ESFAS actuated equipment include the appropriate DG loading and sequencing delay.
The DG - LOVS channels satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
two              DG 1
LCO                The LCO for the LOVS requires that four channels per bus of each LOVS instrumentation Function be OPERABLE in MODES 1, 2, 3, and 4 and when the associated DG is required to be OPERABLE by LCO 3.8.2, "AC Sources - Shutdown." The LOVS supports safety systems associated 3
5 1
Combustion Engineering STS            B 3.3. 6-2                                        Rev. 5.0 St. Lucie - Unit 1                                                                Revision XXX
 
DG-LOVS 3.3.5 1
INSERT 2 The Class 1E 4.16 kV system and Class 1E 480 V system are designed to meet the single failure criteria as defined in IEEE 308 (Ref. 4) and IEEE 279 (Ref. 5). Specifically, any credible single failure shall not prevent the satisfactory performance of the minimum Class 1E 4.16 kV loads or Class 1E 480 V loads required to achieve and maintain safe shutdown or to monitor or mitigate the consequences of any design basis accident or event. The worst case single failure will disable only one train of the Class 1E 4.16 kV or Class  R1 1E 480 V system.
Insert Page 3.3.5-1
 
DG - LOVS (Analog)
B 3.3.6    3 5
BASES LCO (continued) two with the ESFAS. In MODES 5 and 6, the four channels must be OPERABLE whenever the associated DG is required to be OPERABLE to ensure that the automatic start of the DG is available when needed.                      lR2 Actions allow maintenance (trip channel) bypass of individual channels.
Plants are restricted to 48 hours in a trip channel bypass condition before either restoring the Function to four channel operation (two-out-of-four logic) or placing the channel in trip (one-out-of-three logic). At plants            1 where adequate channel to channel independence has been demonstrated, specific exceptions have been approved by the NRC staff to permit one of the two-out-of-four channels to be bypassed for an extended period of time.
Loss of LOVS Function could result in the delay of safety system initiation when required. This could lead to unacceptable consequences during accidents. During the loss of offsite power, which is an anticipated operational occurrence, the DG powers the motor driven auxiliary                      1 feedwater pumps. Failure of these pumps to start would leave only the one turbine driven pump as well as an increased potential for a loss of decay heat removal through the secondary system.
Trip Setpoints and                                                                                                    lR2 l
Only Allowable Values are specified for each Function in the LCO.                            l trip Nominal trip setpoints are specified in the plant specific setpoint                      4  l calculations. The nominal setpoints are selected to ensure that the                          l setpoint measured by CHANNEL FUNCTIONAL TESTS does not exceed the Allowable Value if the bistable is performing as required. Operation Trip Setpoint with a trip setpoint less conservative than the nominal trip setpoint, but                4 lR2 within the Allowable Value, is acceptable, provided that operation and testing are consistent with the assumptions of the plant specific setpoint calculation. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value.
[ For this unit, the Bases for the Allowable Values and trip setpoints are as          1 follows: ]
APPLICABILITY                  The DG - LOVS actuation Function is required in MODES 1, 2, 3, and 4 because ESF Functions are designed to provide protection in these MODES. Actuation in MODE 5 or 6 is required whenever the required DG must be OPERABLE, so that it can perform its function on a loss of power or degraded power to the vital bus.
ACTIONS                        A LOVS channel is inoperable when it does not satisfy the OPERABILITY criteria for the channel's Function. The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by the plant specific setpoint 3
5 1
Combustion Engineering STS                        B 3.3. 6-3                                            Rev. 5.0 St. Lucie - Unit 1                                                                                  Revision XXX
 
DG - LOVS (Analog)
B 3.3.6    3 5
BASES ACTIONS (continued) analysis. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. Determination of setpoint drift is generally made during the performance of a CHANNEL FUNCTIONAL TEST when the instrument is set up for adjustment to bring it within specification. If the actual trip setpoint is not within the Allowable Value, the channel is inoperable and the appropriate Conditions must be entered.
In the event a channel's trip setpoint is found nonconservative with respect to the Allowable Value, or the channel is found inoperable, then all affected Functions provided by that channel must be declared inoperable and the LCO Condition entered. The required channels are specified on a per DG basis.
When the number of inoperable channels in a trip Function exceeds those specified in any related Condition associated with the same trip Function, 1
then the plant is outside the safety analysis. Therefore, LCO 3.0.3 should be entered immediately if applicable in the current MODE of operation.
A Note has been added to the ACTIONS to clarify the application of Completion Time rules. The Conditions of this LCO may be entered independently for each Function. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function, starting from the time the Condition was entered for that Function.
A.1, A.2.1, and A.2.2                                                                1 Condition A applies if one channel is inoperable for one or more Functions per DG bus.
If the channel cannot be restored to OPERABLE status, the affected channel should either be bypassed or tripped within 1 hour (Required                1 Action A.1).
the              this Placing this channel in either Condition ensures that logic is in a known configuration. In trip, the LOVS Logic is one-out-of-three. In bypass, the LOVS Logic is two-out-of-three. The 1 hour Completion Time is sufficient            1 to perform these Required Actions.                            one Once Required Action A.1 has been complied with, Required Action A.2.1 allows [48] hours to repair the inoperable channel for those plants that have not demonstrated sufficient channel to channel independence on                  1 this Function. [Alternatively, a Completion Time can be determined in 3
5 1
Combustion Engineering STS            B 3.3. 6-4                                            Rev. 5.0 St. Lucie - Unit 1                                                                      Revision XXX
 
DG - LOVS (Analog)
B 3.3.6    3 5
BASES ACTIONS (continued) accordance with the Risk Informed Completion Time Program.] If the channel cannot be restored to OPERABLE status, it must be tripped in accordance with Required Action A.2.2. The time allowed to repair or trip the channel is reasonable to repair the affected channel while ensuring          1 that the risk involved in operating with the inoperable channel is acceptable. The [48] hour Completion Time is based upon operating experience, which has demonstrated that a random failure of a second channel is a rare event during any given [48] hour period. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]
B.1, B.2.1, and B.2.2                                                            3 Condition B applies if two channels are inoperable for one or more Functions per DG.
either Condition C is entered and        If the channel cannot be restored to OPERABLE status within 1 hour, the 1
the affected DG is declared        Conditions and Required Actions for the associated DG made inoperable inoperable.
by DG - LOVS instrumentation are required to be entered. Alternatively, one affected channel is required to be bypassed and the other is tripped,        1 in accordance with Required Action B.2.1. This places the Function in one-out-of-two logic. The 1 hour Completion Time is sufficient to perform the Required Actions.
Once Required Action B.2.1 has been complied with, Required Action B.2.2 allows [48] hours to repair the bypassed or inoperable channel. [Alternatively, a Completion Time can be determined in                  1 accordance with the Risk Informed Completion Time Program.]
After one channel is restored to OPERABLE status, the provisions of Condition A still apply to the remaining inoperable channel. Therefore, the channel that is still inoperable after completion of Required Action B.2.2 shall be placed in trip if more than [48] hours have elapsed since the initial channel failure. [Alternatively, a Completion Time can be      1 determined in accordance with the Risk Informed Completion Time Program.]
C.1 Condition C applies when more than two undervoltage or Degraded 1
Voltage channels on a single bus are inoperable.
3 5
1 Combustion Engineering STS                        B 3.3. 6-5                                        Rev. 5.0 St. Lucie - Unit 1                                                                          Revision XXX
 
DG - LOVS (Analog)
B 3.3.6        3 5
BASES ACTIONS (continued)
Required Action C.1 requires all but two channels to be restored to OPERABLE status within 1 hour [or in accordance with the Risk Informed Completion Time Program]. With more than two channels inoperable, the 1
logic is not capable of providing a DG - LOVS signal for valid Loss of Voltage or Degraded Voltage conditions. The 1 hour Completion Time is reasonable to evaluate and take action to correct the degraded condition in an orderly manner and takes into account the low probability of an event requiring LOVS occurring during this interval.
C  D.1                                                                                          3 C
Condition D applies if the Required Actions and associated Completion                        3 Times are not met.
requires declaring C
Required Action D.1 ensures that Required Actions for the affected DG                    3      1 inoperabilities are initiated. Depending upon plant MODE, the actions specified in LCO 3.8.1, "AC Sources - Operating," or LCO 3.8.2 are required immediately.                                      , AC Sources - Shutdown,      1 SURVEILLANCE            The following SRs apply to each DG - LOVS Function.
REQUIREMENTS                  5
[ SR 3.3.6.1                                                                            2      3 Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the indicated output of the potential transformers that feed the LOVS undervoltage relays. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two channels could be an indication of excessive drift in one of the channels or of something even more serious. CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION.
Agreement criteria are determined by the plant staff, based on a combination of the channel instrument uncertainties, including indication and readability. If the channels are within the criteria, it is an indication that the channels are OPERABLE. ]                                                          2
[ The Frequency, about once every shift, is based upon operating experience that demonstrates channel failure is rare. Since the probability of two random failures in redundant channels in any 12 hour 2
period is extremely low, the CHANNEL CHECK minimizes the chance of loss of protective function due to failure of redundant channels. The 3
5 1
Combustion Engineering STS                B 3.3. 6-6                                              Rev. 5.0 St. Lucie - Unit 1                                                                          Revision XXX
 
DG - LOVS (Analog)
B 3.3.6      3 5
BASES SURVEILLANCE REQUIREMENTS (continued)
CHANNEL CHECK supplements less formal, but more frequent, checks 2
of channel OPERABILITY during normal operational use of the displays associated with the LCO required channels.
OR                                                                                                  2 The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                      -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                  5    lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                      ------------------------------------------------------------------------------------------------ ]
5 SR 3.3.6.2                                                                                          3 A CHANNEL FUNCTIONAL TEST is performed to ensure that the entire channel will perform its intended function when needed. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay.
This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.
[ The Frequency of [92] days is based on plant operating experience with regard to channel OPERABILITY and drift, which demonstrates that failure of more than one channel of a given function in any [92] day                                2 Frequency is a rare event. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint analysis.
OR                                                                                                  2 The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                      -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency 5    lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                      ------------------------------------------------------------------------------------------------ ]
3 5
1 Combustion Engineering STS                  B 3.3. 6-7                                                      Rev. 5.0 St. Lucie - Unit 1                                                                                    Revision XXX
 
DG - LOVS (Analog)
B 3.3.6      3 5
BASES SURVEILLANCE REQUIREMENTS (continued)
The as-found and as-left values must also be recorded and reviewed for consistency with the assumptions of the surveillance interval extension analysis. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-                            1 found setting are consistent with those established by the setpoint methodology.
5 SR 3.3.6.3                                                                                            3 5
SR 3.3.6.3 is the performance of a CHANNEL CALIBRATION. The CHANNEL CALIBRATION verifies the accuracy of each component within the instrument channel. This includes calibration of the undervoltage relays and demonstrates that the equipment falls within the specified operating characteristics defined by the manufacturer.
The Surveillance verifies that the channel responds to a measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drift between successive calibrations to ensure that the channel remains Surveillance operational between successive tests. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology. CHANNEL CALIBRATIONS must be performed consistent with the plant specific setpoint analysis.
The setpoints, as well as the response to a Loss of Voltage and Degraded Voltage test, shall include a single point verification that the trip occurs within the required delay time as shown in Reference 1. [ The 2
Frequency is based upon the assumption of an [18] month calibration interval for the determination of the magnitude of equipment drift in the setpoint analysis.
OR                                                                                                  2 The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                          -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                  5    lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                          ------------------------------------------------------------------------------------------------ ]
3 5
1 Combustion Engineering STS                        B 3.3.6-8                                                      Rev. 4.0 St. Lucie - Unit 1                                                                                          Revision XXX
 
DG - LOVS (Analog)
B 3.3.6      3 5
BASES REFERENCES                1. FSAR, Section [8.3].                                                        2 U                                                                        1
: 2. FSAR, Chapter [15].                                                        2 U                  IC-3.17, FPL Setpoint Standard.                        1
: 3. "Plant Protection System Selection of Trip Setpoint Values."
: 4. IEEE Standard 308-1971.
5  4. IEEE Standard 279-1971.
6  5. 10 CFR 50, Appendix A, GDC 21.
3 5
1 Combustion Engineering STS                B 3.3.6-9                                        Rev. 5.0 St. Lucie - Unit 1                                                                Revision XXX
 
DG - LOVS (Analog)
B 3.3.6      3 5
B 3.3 INSTRUMENTATION (Analog)
B 3.3.6 Diesel Generator (DG) - Loss of Voltage Start (LOVS) (Analog) 5 BASES BACKGROUND                The DGs provide a source of emergency power when offsite power is either unavailable or insufficiently stable to allow safe plant operation.
Undervoltage protection will generate a LOVS in the event a Loss of Voltage or Degraded Voltage condition occurs. There are two LOVS Functions for each 4.16 kV vital bus.
INSERT 1 Four undervoltage relays with inverse time characteristics are provided on each 4.16 kV Class 1E instrument bus for the purpose of detecting a                    1 sustained undervoltage condition or a loss of bus voltage. The relays are combined in a two-out-of-four logic to generate a LOVS if the voltage is below 75% for a short time or below 90% for a long time. The LOVS initiated actions are described in Reference 1.
Trip Setpoints and Allowable Values The trip setpoints and Allowable Values are based on the analytical limits                  lR2 4  l presented in Reference 2. The selection of these trip setpoints is such                    l that adequate protection is provided when all sensor and processing time Trip Setpoints and delays are taken into account. To allow for calibration tolerances, lR2 instrumentation uncertainties, and instrument drift, Allowable Values              4 l
specified in SR 3.3.6.3 are conservatively adjusted with respect to the                3    l 5
analytical limits. A detailed description of the methodology used to calculate the trip setpoints, including their explicit uncertainties, is provided in Reference 3. The actual nominal trip setpoint is normally still            4    lR2 more conservative than that required by the plant specific setpoint calculations. If the measured setpoint does not exceed the documented surveillance trip acceptance criteria, the undervoltage relay is considered OPERABLE.
Setpoints in accordance with the Allowable Values will ensure that the consequences of accidents will be acceptable, providing the plant is operated from within the LCOs at the onset of the accident and the equipment functions as designed.
The undervoltage protection scheme has been designed to protect the plant from spurious trips caused by the offsite power source. This is                  1 made possible by the inverse voltage time characteristics of the relays used. A complete loss of offsite power will result in approximately a 1 second delay in LOVS actuation. The DG starts and is available to 5
3 Combustion Engineering STS                    B 3.3. 6-1                                            Rev. 5.0    1 St. Lucie - Unit 2                                                                          Revision XXX
 
DG-LOVS 3.3.5 1
INSERT 1 The 4.16 kV LOVS Functions include Loss of Voltage and Degraded Voltage Functions. The allowable values are provided in SR 3.3.5.3.
Each Class 1E 4.16 kV Bus utilizes two solid-state undervoltage relays, in R1 a two-out-of-two coincident logic, for loss of voltage detection. The function of these relays is to initiate source disconnection, load shedding, diesel generator starting, and load sequencing on the effected train (bus).
The LOVS initiated actions are described in Reference 1.
Each Class 1E 4.16 kV Bus utilizes three solid state undervoltage relays in a two-out-of-three coincident logic for degraded voltage detection. The        R1 function of these relays is the same as described for the loss of voltage detection.
Each Class 1E 480V Bus utilizes three solid state undervoltage relays in a two-out-of-three coincident logic scheme, for loss of voltage detection.      R1 Each Class 1E 480V Bus utilizes three solid state undervoltage relays in a two-out-of-three coincident logic scheme, for degraded voltage detection. R1 Insert Page 3.3.5-1
 
DG - LOVS (Analog)
B 3.3.6      3 5
BASES BACKGROUND (continued) accept loads within a 10 second time interval on the Engineered Safety Features Actuation System (ESFAS) or LOVS. Emergency power is established within the maximum time delay assumed for each event analyzed in the accident analysis (Ref. 2).
INSERT 2        Since there are four protective channels in a two-out-of-four trip logic for each division of the 4.16 kV power supply, no single failure will cause or      1 prevent protective system actuation. This arrangement meets IEEE Standard 279-1971 criteria (Ref. 4).
APPLICABLE                The DG - LOVS is required for Engineered Safety Features (ESF)
SAFETY                    systems to function in any accident with a loss of offsite power. Its design ANALYSES                  basis is that of the ESFAS.
Accident analyses credit the loading of the DG based on a loss of offsite power during a loss of coolant accident. The actual DG start has historically been associated with the ESFAS actuation. The diesel loading has been included in the delay time associated with each safety system component requiring DG supplied power following a loss of offsite power. The analysis assumes a nonmechanistic DG loading, which does                1 not explicitly account for each individual component of the loss of power detection and subsequent actions. This delay time includes contributions from the DG start, DG loading, and Safety Injection System component actuation. The response of the DG to a loss of power must be demonstrated to fall within this analysis response time when including the contributions of all portions of the delay.
The required channels of LOVS, in conjunction with the ESF systems powered from the DGs, provide plant protection in the event of any of the analyzed accidents discussed in Reference 2, in which a loss of offsite power is assumed. LOVS channels are required to meet the redundancy and testability requirements of GDC 21 in 10 CFR 50, Appendix A (Ref. 5).
6 The delay times assumed in the safety analysis for the ESF equipment include the [10] second DG start delay and the appropriate sequencing delay, if applicable. The response times for ESFAS actuated equipment include the appropriate DG loading and sequencing delay.
The DG - LOVS channels satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
1 LCO                      The LCO for the LOVS requires that four channels per bus of each LOVS two channels per DG of the 4.16 kV instrumentation Function be OPERABLE in MODES 1, 2, 3, and 4 and Loss of Voltage Function; and      when the associated DG is required to be OPERABLE by LCO 3.8.2, "AC three channels per DG of the 4.16 kV Degraded Voltage, 480 V Loss Sources - Shutdown." The LOVS supports safety systems associated of Voltage, and 480 V Degraded Voltage Functions 5
3 Combustion Engineering STS                  B 3.3. 6-2                                        Rev. 5.0  1 St. Lucie - Unit 2                                                                    Revision XXX
 
DG-LOVS 3.3.5 1
INSERT 2 The Class 1E 4.16 kV system and Class 1E 480 V system are designed to meet the single failure criteria as defined in IEEE 308 (Ref. 4) and IEEE 279 (Ref. 5). Specifically, any credible single failure shall not prevent the satisfactory performance of the minimum Class 1E 4.16kV loads or Class 1E 480 V loads required to achieve and maintain safe shutdown or to monitor or mitigate the consequences of any design basis accident or event. The worst case single failure will disable only one train of the Class 1E 4.16 kV or Class  R1 1E 480 V system.
Insert Page 3.3.5-1
 
DG - LOVS (Analog)
B 3.3.6    3 5
two channels per DG of the 4.16 kV BASES                                        Loss of Voltage Function; and three channels per DG of the 4.16 kV Degraded Voltage, 480 V Loss LCO (continued)                              of Voltage, and 480 V Degraded Voltage Functions with the ESFAS. In MODES 5 and 6, the four channels must be OPERABLE whenever the associated DG is required to be OPERABLE to ensure that the automatic start of the DG is available when needed.
Actions allow maintenance (trip channel) bypass of individual channels.
Plants are restricted to 48 hours in a trip channel bypass condition before either restoring the Function to four channel operation (two-out-of-four logic) or placing the channel in trip (one-out-of-three logic). At plants            1 where adequate channel to channel independence has been demonstrated, specific exceptions have been approved by the NRC staff to permit one of the two-out-of-four channels to be bypassed for an extended period of time.
Loss of LOVS Function could result in the delay of safety system initiation when required. This could lead to unacceptable consequences during accidents. During the loss of offsite power, which is an anticipated operational occurrence, the DG powers the motor driven auxiliary                      1 feedwater pumps. Failure of these pumps to start would leave only the one turbine driven pump as well as an increased potential for a loss of decay heat removal through the secondary system.
Trip Setpoints and                                                                                                  lR2 Only Allowable Values are specified for each Function in the LCO.                          l l
Nominal trip setpoints are specified in the plant specific setpoint                      4 l trip calculations. The nominal setpoints are selected to ensure that the                        l setpoint measured by CHANNEL FUNCTIONAL TESTS does not exceed the Allowable Value if the bistable is performing as required. Operation Trip Setpoint                                                                                              lR2 with a trip setpoint less conservative than the nominal trip setpoint, but                4 within the Allowable Value, is acceptable, provided that operation and testing are consistent with the assumptions of the plant specific setpoint calculation. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value.
[ For this unit, the Bases for the Allowable Values and trip setpoints are as          1 follows: ]
APPLICABILITY                  The DG - LOVS actuation Function is required in MODES 1, 2, 3, and 4 because ESF Functions are designed to provide protection in these MODES. Actuation in MODE 5 or 6 is required whenever the required DG must be OPERABLE, so that it can perform its function on a loss of power or degraded power to the vital bus.
ACTIONS                        A LOVS channel is inoperable when it does not satisfy the OPERABILITY criteria for the channel's Function. The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by the plant specific setpoint 5
3 Combustion Engineering STS                          B 3.3. 6-3                                          Rev. 5.0  1 St. Lucie - Unit 2                                                                                Revision XXX
 
DG - LOVS (Analog)
B 3.3.6      3 5
BASES ACTIONS (continued) analysis. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. Determination of setpoint drift is generally made during the performance of a CHANNEL FUNCTIONAL TEST when the instrument is set up for adjustment to bring it within specification. If the actual trip setpoint is not within the Allowable Value, the channel is inoperable and the appropriate Conditions must be entered.
In the event a channel's trip setpoint is found nonconservative with respect to the Allowable Value, or the channel is found inoperable, then all affected Functions provided by that channel must be declared inoperable and the LCO Condition entered. The required channels are specified on a per DG basis.
When the number of inoperable channels in a trip Function exceeds those specified in any related Condition associated with the same trip Function, 1
then the plant is outside the safety analysis. Therefore, LCO 3.0.3 should be entered immediately if applicable in the current MODE of operation.
A Note has been added to the ACTIONS to clarify the application of Completion Time rules. The Conditions of this LCO may be entered independently for each Function. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function, starting from the time the Condition was entered for that Function.
A.1, A.2.1, and A.2.2      4.16 kV Loss of Voltage Function channel per DG is inoperable.                                  1      lR2 Condition A applies if one channel is inoperable for one or more Functions per DG bus.
within 48 hours If the channel cannot be restored to OPERABLE status, the affected channel should either be bypassed or tripped within 1 hour (Required                        1 Action A.1).                                                48      s the              this Placing this channel in either Condition ensures that logic is in a known configuration. In trip, the LOVS Logic is one-out-of-three. In bypass, the LOVS Logic is two-out-of-three. The 1 hour Completion Time is sufficient                    1 to perform these Required Actions. 48                            one INSERT 3 Once Required Action A.1 has been complied with, Required Action A.2.1 allows [48] hours to repair the inoperable channel for those plants that 1
have not demonstrated sufficient channel to channel independence on this Function. [Alternatively, a Completion Time can be determined in 5
3 Combustion Engineering STS              B 3.3. 6-4                                                  Rev. 5.0  1 St. Lucie - Unit 2                                                                            Revision XXX
 
DG-LOVS 3.3.5 1
INSERT 3 The Required Actions are modified by a Note that allows one channel to be bypassed for up to 2 hours for surveillance testing. This allowance is based on the average time required to perform the channel surveillance.
Insert Page 3.3.5-4
 
DG - LOVS (Analog)
B 3.3.6    3 5
BASES ACTIONS (continued) accordance with the Risk Informed Completion Time Program.] If the channel cannot be restored to OPERABLE status, it must be tripped in accordance with Required Action A.2.2. The time allowed to repair or trip the channel is reasonable to repair the affected channel while ensuring          1 that the risk involved in operating with the inoperable channel is acceptable. The [48] hour Completion Time is based upon operating experience, which has demonstrated that a random failure of a second channel is a rare event during any given [48] hour period. [Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.]
INSERT 4 C B.1, B.2.1, and B.2.2                                                            3 C                              or more Condition B applies if two channels are inoperable for one or more Functions per DG.
Condition D is entered and    If the channel cannot be restored to OPERABLE status within 1 hour, the 1
the affected DG is declared  Conditions and Required Actions for the associated DG made inoperable inoperable.
by DG - LOVS instrumentation are required to be entered. Alternatively, one affected channel is required to be bypassed and the other is tripped,        1 in accordance with Required Action B.2.1. This places the Function in one-out-of-two logic. The 1 hour Completion Time is sufficient to perform the Required Actions.
Once Required Action B.2.1 has been complied with, Required Action B.2.2 allows [48] hours to repair the bypassed or inoperable channel. [Alternatively, a Completion Time can be determined in                  1 accordance with the Risk Informed Completion Time Program.]
or Condition B After one channel is restored to OPERABLE status, the provisions of Condition A still apply to the remaining inoperable channel. Therefore, the channel that is still inoperable after completion of Required Action B.2.2 shall be placed in trip if more than [48] hours have elapsed since the initial channel failure. [Alternatively, a Completion Time can be      1 determined in accordance with the Risk Informed Completion Time Program.]
C.1 Condition C applies when more than two undervoltage or Degraded 1
Voltage channels on a single bus are inoperable.
5 3
Combustion Engineering STS                    B 3.3. 6-5                                        Rev. 5.0  1 St. Lucie - Unit 2                                                                    Revision XXX
 
DG-LOVS 3.3.5 1
INSERT 4 B.1 and B.2 Condition B applies if one or more Functions with one channel per DG Table 3.3-3 Action 17B  inoperable (except 4.16 kV Loss of Voltage Function). The applicable Functions are the 4.16 kV Degraded Voltage Function, 480 V Loss of Voltage Function, and 480 V Degraded Voltage Function.
If the channel cannot be restored to OPERABLE status within 48 hours or in accordance with the Risk Informed Completion Time (Required Action B.1), the affected channel is placed in trip (Required Action B.2). Placing the channel in this Condition ensures that logic is in a known configuration. In trip, the LOVS Logic is one-out-of-two. The 48 hour Completion Time is sufficient to perform these Required Actions.
The time allowed to repair or trip the channel is reasonable to repair the affected channel while ensuring that the risk involved in operating with the inoperable channel is acceptable. The 48 hour Completion Time is based upon operating experience, which has demonstrated that a random failure of a second channel is a rare event during any given 48 hour period.
Alternatively, a Completion Time can be determined in accordance with the Risk Informed Completion Time Program.
The Required Actions are modified by a Note that allows one channel to be bypassed for up to 2 hours for surveillance testing. This allowance is based on the average time required to perform the channel surveillance.
Insert Page 3.3.5-5
 
DG - LOVS (Analog)
B 3.3.6        3 5
BASES ACTIONS (continued)
Required Action C.1 requires all but two channels to be restored to OPERABLE status within 1 hour [or in accordance with the Risk Informed Completion Time Program]. With more than two channels inoperable, the 1
logic is not capable of providing a DG - LOVS signal for valid Loss of Voltage or Degraded Voltage conditions. The 1 hour Completion Time is reasonable to evaluate and take action to correct the degraded condition in an orderly manner and takes into account the low probability of an event requiring LOVS occurring during this interval.
D.1                                                                                        3 Condition D applies if the Required Actions and associated Completion                      3 Times are not met.
requires declaring Required Action D.1 ensures that Required Actions for the affected DG                  3      1 inoperabilities are initiated. Depending upon plant MODE, the actions specified in LCO 3.8.1, "AC Sources - Operating," or LCO 3.8.2 are required immediately.                                      , AC Sources - Shutdown,      1 SURVEILLANCE          The following SRs apply to each DG - LOVS Function.
REQUIREMENTS                5
[ SR 3.3.6.1 2      3 Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the indicated output of the potential transformers that feed the LOVS undervoltage relays. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two channels could be an indication of excessive drift in one of the channels or of something even more serious. CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION.
Agreement criteria are determined by the plant staff, based on a combination of the channel instrument uncertainties, including indication and readability. If the channels are within the criteria, it is an indication that the channels are OPERABLE. ]                                                          2
[ The Frequency, about once every shift, is based upon operating experience that demonstrates channel failure is rare. Since the probability of two random failures in redundant channels in any 12 hour 2
period is extremely low, the CHANNEL CHECK minimizes the chance of loss of protective function due to failure of redundant channels. The 5
3 Combustion Engineering STS                B 3.3. 6-6                                              Rev. 5.0  1 St. Lucie - Unit 2                                                                        Revision XXX
 
DG - LOVS (Analog)
B 3.3.6      3 5
BASES SURVEILLANCE REQUIREMENTS (continued)
CHANNEL CHECK supplements less formal, but more frequent, checks 2
of channel OPERABILITY during normal operational use of the displays associated with the LCO required channels.
OR                                                                                                  2 The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                      -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                  5    lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                      ------------------------------------------------------------------------------------------------ ]
5 SR 3.3.6.2 3
A CHANNEL FUNCTIONAL TEST is performed to ensure that the entire channel will perform its intended function when needed. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay.
This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.
[ The Frequency of [92] days is based on plant operating experience with regard to channel OPERABILITY and drift, which demonstrates that failure of more than one channel of a given function in any [92] day                                2 Frequency is a rare event. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint analysis.
OR                                                                                                  2 The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                      -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency 5    lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                      ------------------------------------------------------------------------------------------------ ]
5 3
Combustion Engineering STS                    B 3.3. 6-7                                                      Rev. 5.0    1 St. Lucie - Unit 2                                                                                    Revision XXX
 
DG - LOVS (Analog)
B 3.3.6      3 5
BASES SURVEILLANCE REQUIREMENTS (continued)
The as-found and as-left values must also be recorded and reviewed for consistency with the assumptions of the surveillance interval extension analysis. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-                            1 found setting are consistent with those established by the setpoint methodology.
5 SR 3.3.6.3 3
5 SR 3.3.6.3 is the performance of a CHANNEL CALIBRATION. The CHANNEL CALIBRATION verifies the accuracy of each component within the instrument channel. This includes calibration of the undervoltage relays and demonstrates that the equipment falls within the specified operating characteristics defined by the manufacturer.
The Surveillance verifies that the channel responds to a measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drift between successive calibrations to ensure that the channel remains Surveillance operational between successive tests. There is a plant specific program which verifies that the instrument channel functions as required by verifying the as-left and as-found setting are consistent with those established by the setpoint methodology. CHANNEL CALIBRATIONS must be performed consistent with the plant specific setpoint analysis.
The setpoints, as well as the response to a Loss of Voltage and Degraded Voltage test, shall include a single point verification that the trip occurs within the required delay time as shown in Reference 1. [ The 2
Frequency is based upon the assumption of an [18] month calibration interval for the determination of the magnitude of equipment drift in the setpoint analysis.
OR                                                                                                  2 The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                          -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                  5    lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                          ------------------------------------------------------------------------------------------------ ]
3 5
1 Combustion Engineering STS                        B 3.3.6-8                                                      Rev. 4.0 St. Lucie - Unit 2                                                                                          Revision XXX
 
DG - LOVS (Analog)
B 3.3.6      3 5
BASES REFERENCES                1. FSAR, Section [8.3].                                                        2 U                                                                        1
: 2. FSAR, Chapter [15].                                                        2 U                  IC-3.17, FPL Setpoint Standard.                        1
: 3. "Plant Protection System Selection of Trip Setpoint Values."
: 4. IEEE Standard 308-1971.
5  4. IEEE Standard 279-1971.
6  5. 10 CFR 50, Appendix A, GDC 21.
3 5
1 Combustion Engineering STS                B 3.3.6-9                                        Rev. 5.0 St. Lucie - Unit 2                                                                Revision XXX
 
JUSTIFICATION FOR DEVIATIONS ITS 3.3.5 BASES, DIESEL GENERATOR (DG) - LOSS OF VOLTAGE START (LOVS)
: 1. Changes are made (additions, deletions, and/or changes) to the ISTS Bases that reflect the plant specific nomenclature, number, reference, system description, analysis, licensing basis, or licensing basis description.
: 2. The ISTS contains bracketed information and/or values that are generic to all Combustion Engineering vintage plants. The brackets are removed, and the proper plant specific information/value is provided. This is acceptable since the information/value is changed to reflect the current licensing basis.
: 3. The heading for ISTS 3.3.6 includes the parenthetical expression (Analog). This identifying information is not included in the PSL ITS. This information is provided in the NUREG-1432, Rev. 5.0 to assist in identifying the appropriate Specifications to be used as a model for a plant-specific ITS conversion but serves no purpose in a lR2 plant-specific implementation. In addition, Reactor Protective System (RPS)            l Instrumentation - Shutdown (ISTS 3.3.2) is renumbered as ITS 3.3.12. Therefore,        l the Diesel Generator (DG) - Loss of Voltage Start (LOVS) (ISTS 3.3.6) is                l l
renumbered as ITS 3.3.5 and subsequent the Specifications renumbered                    l accordingly.                                                                            l
: 4. FPL is retaining PSL's Trip Setpoints in ITS. Changes are made to the ISTS that          lR2 l
reflect the plant specific nomenclature, number, reference, system description,        l analysis, licensing basis, or licensing basis description associated with retaining    l PSL's Trip Setpoints.                                                                  l
: 5. The Reviewer's Note has been deleted. This information is for the NRC reviewer to        lR2 l
be keyed into what is needed to meet this requirement. This Note is not meant to be    l retained in the final version of the plant specific submittal.                          l St. Lucie Unit 1 and Unit 2              Page 1 of 1
 
Specific No Significant Hazards Considerations (NSHCs)
DETERMINATION OF NO SIGNIFICANT HAZARDS CONSIDERATIONS ITS 3.3.5, DIESEL GENERATOR (DG) - LOSS OF VOLTAGE START (LOVS)
There are no specific No Significant Hazards Considerations for this Specification.
St. Lucie Unit 1 and Unit 2            Page 1 of 1
 
ATTACHMENT 6 3.3.6, Containment Isolation Instrumentation - Refueling
 
Current Technical Specifications (CTS) Markup and Discussion of Changes (DOCs)
 
A01                                                              ITS 3.3.6 ITS INSTRUMENTATION CONTAINMENT ISOLATION 3/4.3.3      MONITORING INSTRUMENTATION                                  - REFUELING A02 RADIATION MONITORING and one automatic actuation logic train LIMITING CONDITION FOR OPERATION Three containment LCO 3.3.6    3.3.3.1      The radiation monitoring instrumentation channels shown in Table 3.3-6 shall be OPERABLE with their alarm/trip setpoints within the specified limits.
Applicability APPLICABILITY: As shown in Table 3.3-6.                                During movement of recently irradiated fuel assemblies within containment.
ACTION:
: a. With a radiation monitoring channel alarm/trip setpoint exceeding the value shown in Table 3.3-6, adjust the setpoint to                                                      M01 within the limit within 4 hours or declare the channel inoperable.
required                                                                  A02 Condition A                b      With one or more radiation monitoring channels inoperable, take the ACTION shown in Table 3.3-6.
one required automatic actuation logic train inoperable or
: c. The provisions of Specification 3.0.3 are not applicable.                                                  A03 SURVEILLANCE REQUIREMENTS required containment SR 3.3.6.1    4.3.3.1      Each radiation monitoring instrumentation channel shall be demonstrated SR 3.3.6.2 SR 3.3.6.4 OPERABLE by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations in accordance with                                                A02 the Surveillance Frequency Control Program.                            Add proposed SR 3.3.6.3 4.3.3.2      In accordance with the Surveillance Frequency Control Program, each Control Room Isolation radiation monitoring instrumentation channel shall be demonstrated OPERABLE by verifying that the response time of the channel is within limits.
See ITS 3.3.7 ST. LUCIE - UNIT 1                                          3/4 3-21                      Amendment No. 40, 177, 206, 220, 223
 
A01                                                      ITS 3.3.6 ITS TABLE 3.3-6 RADIATION MONITORING INSTRUMENTATION lR2 MINIMUM CHANNELS    APPLICABLE    ALARM/TRIP        MEASUREMENT                                        lR2 INSTRUMENT                                          OPERABLE        MODES      SETPOINT              RANGE              ACTION                      l
: 1. AREA MONITORS See ITS 3.3.8
: a. Fuel Storage Pool Area                          1        *            < 15 mR/hr        10 104 mR/hr          13 LCO 3.3.6 SR 3.3.6.2          b. Containment (CIS)        Radiation Monitor      3        ****          < 90 mR/hr        1 - 105 mR/hr            16      A      LA01
: c. Containment Area - Hi          Add Automatic 1        1, 2, 3, & 4  < 10 R/hr          1 - 107 R/hr              15        See ITS 3.3.9 Range                        Actuation Logic Function
: d. Control Room Isolation                          1 per    ALL MODES      320 cpm          10 - 107 cpm              17        See ITS 3.3.7 intake M02
: 2. PROCESS MONITORS
: a. Containment
: i. Gaseous Activity                            1        1, 2, 3 & 4  Not Applicable    10 - 106 cpm              14      See ITS 3.4.15 RCS Leakage Detection ii. Particulate Activity                        1        1, 2, 3 & 4  Not Applicable    10 - 106 cpm              14 RCS Leakage Detection
* With fuel in the storage pool or building.                                  See ITS 3.3.8 Applicability
              **** During movement of recently irradiated fuel assemblies within containment.
ST. LUCIE - UNIT 1                                                3/4 3-22                      Amendment No. 59, 123, 134, 197, 206, 223, 239
 
A01                                                ITS 3.3.6 ITS TABLE 3.3-6 (Continued)
TABLE NOTATION ACTION 12 - DELETED ACTION 13 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, perform area surveys of              See ITS 3.3.8 the monitored area with portable monitoring instrumentation at least once per 24 hours.
ACTION 14 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, comply with the ACTION              See ITS 3.4.15 requirements of Specification 3.4.6.1.
ACTION 15 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, either restore the inoperable Channel(s) to OPERABLE status within 72 hours, or:
: 1)  Initiate the preplanned alternate method of monitoring the appropriate parameter(s),and                                            See ITS 3.3.9
: 2)  Prepare and submit a Special Report to the Commission pursuant to Specification6.9.2 within 14 days following the event outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the system to OPERABLE status.
ACTION A ACTION 16 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirements, comply with the ACTION                    A04 requirements of Specification 3.9.9. Add proposed ACTION A ACTION 17 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, within 1 hour initiate and See ITS 3.3.7 maintain operation of the control room emergency ventilation system in the recirculation mode of operation. LCO 3.0.4.a is not applicable when entering HOT SHUTDOWN.
ST. LUCIE - UNIT 1                              3/4 3-23                Amendment No. 59, 206, 234, 239
 
A01                                                              ITS 3.3.6 ITS INSTRUMENTATION CONTAINMENT ISOLATION 3/4.3.3      MONITORING INSTRUMENTATION                                  - REFUELING A02 RADIATION MONITORING INSTRUMENTATION and one automatic actuation logic train LIMITING CONDITION FOR OPERATION Three containment LCO 3.3.6    3.3.3.1      The radiation monitoring instrumentation channels shown in Table 3.3-6 shall be OPERABLE with their alarm/trip setpoints within the specified limits.
Applicability APPLICABILITY: As shown in Table 3.3-6.                                  During movement of recently irradiated fuel assemblies within containment.
ACTION:
: a. With a radiation monitoring channel alarm/trip setpoint exceeding                                          M01 the value shown in Table 3.3-6, adjust the setpoint to within the limit within 4 hours or declare the channel inoperable.
required                                                                  A02 Condition A                b. With one or more radiation monitoring channels inoperable, take the ACTION shown in Table 3.3-6.
one required automatic actuation logic train inoperable or
: c. The provisions of Specification 3.0.3 are not applicable.                                                  A03 SURVEILLANCE REQUIREMENTS required containment SR 3.3.6.1    4.3.3.1      Each radiation monitoring instrumentation channel shall be demonstrated SR 3.3.6.2 SR 3.3.6.4 OPERABLE by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations in accordance with                                                A02 the Surveillance Frequency Control Program.                            Add proposed SR 3.3.6.3 4.3.3.2      In accordance with the Surveillance Frequency Control Program, each Control Room Isolation radiation monitoring instrumentation channel shall be demonstrated OPERABLE by verifying that the response time of the channel is within limits.
See ITS 3.3.7 ST. LUCIE - UNIT 2                                            3/4 3-24                      Amendment No. 152, 159, 170, 173
 
A01                                                        ITS 3.3.6 ITS TABLE 3.3-6 RADIATION MONITORING INSTRUMENTATION                                                                            lR2 Allowable Value MINIMUM CHANNELS        APPLICABLE      ALARM/TRIP            MEASUREMENT                                  lR2 INSTRUMENT                                OPERABLE            MODES        SETPOINT                  RANGE          ACTION                l
: 1. AREA MONITORS
: a. Fuel Storage Pool Area                                                                                                                      See ITS 3.3.8
: i. Criticality and                                        4                *        < 20 mR/hr          10 -1    4
                                                                                                                                          - 10 mR/hr          22 Ventilation System                                                                                                                            LA01 Isolation Monitor LCO 3.3.6                                                                                                                                                                        lR1 SR 3.3.6.2          b. Containment Isolation          Radiation Monitor            3              ****      < 90 mR/hr            1 - 107 mR/hr          25      A Add Automatic Actuation
: c. Containment Area - Hi                  Logic Function        1          1, 2, 3 & 4  Not Applicable            1 - 107 R/hr          27    See ITS 3.3.9 Range
: d. Control Room Isolation                                    1 per      ALL MODES        < 320 cpm            10 10-2 Ci/cc        26 See ITS 3.3.7 intake M02
: 2. PROCESS MONITORS
: a. Containment
: i. Gaseous Activity                                                                                                                        See ITS 3.4.15 RCS Leakage Detection                                  1          1, 2, 3 & 4  Not Applicable        10 10-2 Ci/cc        23 ii. Particulate Activity RCS Leakage Detection 1          1, 2, 3 & 4  Not Applicable          10 - 107 cpm            23
* With fuel in the storage pool or building.                                              See ITS 3.3.8 Applicability ****  During movement of recently irradiated fuel assemblies within containment.
ST. LUCIE - UNIT 2                                                        3/4 3-25                        Amendment No. 25, 61, 139, 152, 173, 190
 
A01                                                ITS 3.3.6 ITS TABLE 3.3-6 (Continued)
ACTION STATEMENTS ACTION 22 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, perform area surveys of See ITS 3.3.8 the monitored area with portable monitoring instrumentation at least once per 24 hours.
ACTION 23 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, comply with the ACTION              See ITS 3.4.15 requirements of Specification 3.4.6.1.
ACTION 24 - DELETED ACTION A ACTION 25 - With the number of channels OPERABLE less than required by the A04 Minimum Channels OPERABLE requirement, comply with the ACTION requirements of Specification 3.9.9. Add proposed ACTION A ACTION 26 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirements, within 1 hour initiate                      See ITS 3.3.7 and maintain operation of the control room emergency ventilation system in the recirculation mode of operation. LCO 3.0.4.a is not applicable when entering HOT SHUTDOWN.
ACTION 27 - With the number of OPERABLE Channels less than required by the Minimum Channels OPERABLE requirement, either restore the inoperable Channel(s) to OPERABLE status within 72 hours, or:
: 1)  Initiate the preplanned alternate method of monitoring the appropriate parameter(s), and                                              See ITS 3.3.9
: 2)  Prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within 14 days following the event outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the system to OPERABLE status.
ST. LUCIE - UNIT 2                              3/4 3-27                Amendment No. 73, 139, 184, 190
 
DISCUSSION OF CHANGES ITS 3.3.6, CONTAINMENT ISOLATION INSTRUMENTATION - REFUELING ADMINISTRATIVE CHANGES A01    In the conversion of the St. Lucie Plant (PSL) Unit 1 and Unit 2 Current Technical Specifications (CTS) to the plant specific Improved Technical Specifications (ITS), certain changes (wording preferences, editorial changes, reformatting, revised numbering, etc.) are made to obtain consistency with NUREG-1432, Rev. 5.0, "Standard Technical Specifications - Combustion Engineering Plants" (ISTS).
These changes are designated as administrative changes and are acceptable because they do not result in technical changes to the CTS.
A02    CTS 3.3.3.1 specifies requirements for radiation monitoring instrumentation and list the requirements for each functional unit in CTS Table 3.3-6, including the containment radiation monitoring instrumentation. ITS 3.3.6 provides requirements for the containment isolation instrumentation - refueling instrumentation and provides the requirements in the LCO, Applicability, ACTIONS, and Surveillance Requirements. This changes the CTS by presenting the instrument requirements without use of an instrument table. This change is acceptable as it results solely from the change in the format and presentation of the CTS necessary to conform to the ISTS. As the proposed change is the result of changes in the format and presentation of the CTS requirements, it is designated administrative.
A03    CTS 3.3.3.1 Action c states that the provisions of Specification 3.0.3 are not applicable. CTS 3.0.3 (ITS LCO 3.0.3) does not apply in MODES 5 and 6, which encompasses the condition of during movement of recently irradiated fuel assemblies within the containment. This changes the CTS by eliminating an action requirement that is redundant to other Technical Specification requirements.
The purpose of CTS 3.3.3.1 Action c is to preclude action be taken per Specification 3.0.3 (ITS LCO 3.0.3) to shutdown the unit in the event there are no actions to perform or the actions cannot be performed within the required time when the containment radiation monitoring instrumentation is inoperable. CTS 3.0.3 (ITS LCO 3.0.3) is not applicable while in MODE 5 or 6. Recently irradiated fuel is defined as fuel that has occupied part of a critical reactor core within the previous 72 hours. To access the fuel to begin movement of recently irradiated fuel requires the unit to be in MODE 6. Therefore, the only time recently irradiated fuel can possibly be moved in the containment is following entry into MODE 6 and only up to 72 hours after reaching subcritical conditions. Since LCO 3.0.3 is only applicable in MODES 1, 2, 3, and 4, stating that the provisions of Specification 3.0.3 are not applicable is redundant and unnecessary. This change is designated as administrative and is acceptable because it does not result in a technical change to the CTS.
A04    CTS 3.3.3.1 Action b requires, when one or more radiation monitoring channels are inoperable, to take the Action shown in Table 3.3-6. Thus, when the minimum number of required containment radiation monitor channels are inoperable CTS Table 3.3-6, Action 16 (Unit 1) and Action 25 (Unit 2) require compliance with the Action requirements of Specification 3.9.9. ITS 3.3.6 St. Lucie Unit 1 and Unit 2              Page 1 of 4
 
DISCUSSION OF CHANGES ITS 3.3.6, CONTAINMENT ISOLATION INSTRUMENTATION - REFUELING provides explicit actions consistent with the actions of Specification 3.9.9; place and maintain containment purge and exhaust valves in the closed position or suspend movement of recently irradiated fuel assemblies within the containment (per the action of Specification 3.9.3, Containment Penetrations.). This changes the action presentation of the CTS.
The purpose of the CTS action is to ensure the actions of the supported system, containment isolation valves, are performed consistent with the containment isolation system action requirements specified in CTS 3.9.9. CTS 3.9.9 action requires either suspending all operations involving movement of recently irradiated fuel assemblies within containment or close each of the containment penetrations providing direct access from the containment atmosphere to the outside atmosphere. ITS 3.3.6 Required Action A.1 requires immediately placing and maintaining at least one containment isolation valve in each penetration providing direct access from the containment atmosphere to outside atmosphere in the closed position. ITS 3.3.6 Required Action A.2 requires entering applicable ACTIONS for the affected valves of LCO 3.9.3, Containment Penetrations, made inoperable by the isolation instrumentation. The applicable ACTIONS in Specification 3.9.3 require immediate suspension of movement of recently irradiated fuel assemblies within containment. This change is designated as administrative and is acceptable because it results in changes in the format and presentation of the CTS requirements.
MORE RESTRICTIVE CHANGES M01    CTS 3.3.3.1 Action a allows the alarm/trip setpoint of Table 3.3-6 to exceed the setpoint for 4 hours and then to declare the channel inoperable. Upon declaring a required channel inoperable, CTS Table 3.3-6, Action 16 (Unit 1) and Action 25 (Unit 2) require compliance with the Action requirements of Specification 3.9.9.
ITS 3.3.6 requires the required channels to be declared inoperable immediately when the actuation setting exceeds the setpoint specified in SR 3.3.6.2 and associated actions must be performed. This changes the CTS by deleting the 4 hour allowance to declare a channel inoperable and requiring the channel to be declared inoperable immediately upon discovery that the channel is outside the required setpoint value.
The purpose of CTS 3.3.3.1 Action a is to provide a short time period to restore an inoperable channel prior to requiring additional action. CTS 3.3.3.1 Action a allows the alarm/trip setpoint of Table 3.3-6 to exceed the setpoint for 4 hours and then to declare the channel inoperable. When LCO 3.3.6 is not met (e.g.,
SR 3.3.6.2 not met), LCO 3.0.2 requires the associated ACTIONS to be entered with no delay. Each radiation channel provides input to the associated containment high radiation instrument train which actuates the associated containment isolation valves. Therefore, the ITS action is considered appropriate. This change is designated as more restrictive because the Completion Time to declare the instrument channel inoperable following discovery of the channel exceeding it associated trip setpoint has been reduced.
M02    CTS 3.3.3.1 specifies requirements for radiation monitoring instrumentation and list the requirements for each functional unit in CTS Table 3.3-6, including the St. Lucie Unit 1 and Unit 2              Page 2 of 4
 
DISCUSSION OF CHANGES ITS 3.3.6, CONTAINMENT ISOLATION INSTRUMENTATION - REFUELING containment radiation monitoring instrument channels. ITS 3.3.6 also includes requirements for the containment radiation monitoring instrument channels but also includes requirements for one automatic actuation logic train. LCO 3.3.6 requires, in part, one automatic Actuation Logic train to be OPERABLE and SR 3.3.6.3 requires performance of a CHANNEL FUNCTIONAL TEST on the required Actuation Logic train with a note specifying that testing of the Actuation Logic shall include verification of the proper operation of each initiation relay.
The SR Frequency is proposed to be in accordance with the Surveillance Frequency Control Program (SFCP). The proposed actions for the automatic Actuation Logic train are the same as for the containment radiation monitor channels. This changes the CTS by adding requirements in the ITS associated with one train of containment isolation instrument logic.
The purpose of the containment radiation monitoring instrumentation requirements is to ensure isolation capability is maintained to penetrations providing direct access from the containment atmosphere to the outside atmosphere during movement of recently irradiated fuel assemblies within the containment. At least one automatic actuation logic train is required to ensure the applicable containment isolation valves receive an isolation signal from the containment radiation monitoring instrument channels. Therefore, these requirements are appropriate and necessary to ensure the containment radiation monitoring instrumentation can perform its intended safety function. This change is consistent with ISTS 3.3.7.
PSL controls periodic Frequencies for Surveillances in accordance with the SFCP per CTS 6.8.4.o (Unit 1) and CTS 6.8.4.q (Unit 2). Therefore, the initial periodic Frequency for ITS SR 3.3.6.3 in accordance with the SFCP will be 31 days consistent with the CHANNEL FUNCTIONAL TEST testing frequency for ISTS SR 3.3.7.3. The periodic Frequency is acceptable based on plant operating experience with regard to channel OPERABILITY, which demonstrates that failure of one automatic actuation logic channel in any 31 day interval is a rare event.
The SFCP was established as described in FPL (PSL Unit 1 and Unit 2)
Application for Technical Specification Change Regarding Risk-Informed Justifications for the Relocation of Specific Surveillance Frequency Requirements to a Licensee Controlled Program (ADAMS Accession No. ML14070A087). The NRC issued Amendment No. 223 to Renewed Facility Operating License No.
DPR-67 and Amendment No. 173 to Renewed Facility Operating License No.
NPF-16 for the St. Lucie Plant, Unit Nos. 1 and 2 (St. Lucie 1 and 2), respectively (ADAMS Accession No. ML15127A066)
RELOCATED SPECIFICATIONS None St. Lucie Unit 1 and Unit 2              Page 3 of 4
 
DISCUSSION OF CHANGES ITS 3.3.6, CONTAINMENT ISOLATION INSTRUMENTATION - REFUELING REMOVED DETAIL CHANGES LA01 (Type 1 - Removing Details of System Design and System Description, Including Design Limits) CTS Table 3.3-6 for radiation monitoring instrumentation has a column specifying the Measurement Range and a specific measurement range for the containment radiation instrumentation. ITS 3.3.6 does not retain the "MEASUREMENT RANGE" column or the specific measurement range of the containment radiation monitor channels. This changes the CTS by moving the instrument measurement range to the Bases.
The removal of these details, which are related to system design, from the Technical Specifications is acceptable because this type of information is not necessary to be included in the Technical Specifications to provide adequate protection of public health and safety. The ITS still retains the requirement for the number of required channels and the appropriate Condition to enter if a required channel becomes inoperable. The low end of the measurement range for the Unit 2 containment radiation monitoring instrumentation is changed from 1 mR/hr to 10 mR/hr to be consistent with the current radiation monitor instrument measurement range. This change is acceptable because the removed information will be adequately controlled in the ITS Bases. Changes to the Bases are controlled by the Technical Specification Bases Control Program in Chapter
: 5. This program provides for the evaluation of changes to ensure the Bases are properly controlled. This change is designated as a less restrictive removal of detail change because information relating to system design is being removed from the Technical Specifications.
LESS RESTRICTIVE CHANGES None St. Lucie Unit 1 and Unit 2            Page 4 of 4
 
Improved Standard Technical Specifications (ISTS) Markup and Justification for Deviations (JFDs)
 
PIS (Analog) 1      3 Containment Isolation Instrumentation - Refueling                      3.3.7 CTS 6
3.3 INSTRUMENTATION (Analog)                                                                                              3 Instrumentation - Refueling 3.3.7        Containment Purge Isolation Signal (CPIS) (Analog)                                                        3      1 6
Three 3.3.3.1    LCO 3.3.7                [Four] CPIS containment radiation monitor channels and one CPIS                            3    2 1
automatic Actuation Logic and one Manual Trip train shall be OPERABLE.
Applicability APPLICABILITY:          During movement of [recently] irradiated fuel assemblies within                                    2 containment.
ACTIONS CONDITION                            REQUIRED ACTION                        COMPLETION TIME A. One radiation monitor            A.1          Place the affected channel            4 hours                              1 channel inoperable.                        in trip.
OR A.2          Suspend movement of                  Immediately                        1
[recently] irradiated fuel assemblies within containment.
A B. One required Manual              B.1          Place and maintain                    Immediately                        3      1 Action b.            Trip or automatic                    A    containment purge and Table 3.3-6 Actuation Logic train                      exhaust valves in closed Function 1.b inoperable.                                position.
at least one containment isolation valve in each penetration providing direct access from          1 OR      One or more          OR                            containment atmosphere to outside atmosphere required More than one radiation        B.2          Enter applicable Conditions          Immediately                        1      3 monitor channel                      A    and Required Actions for inoperable.          s                    affected valves of LCO 3.9.3, "Containment OR                                          Penetrations," made inoperable by isolation Required Action and                        instrumentation.
associated Completion                                                                                                1 Time of Condition A not met.
Combustion Engineering STS                            3.3.7-1                                              Rev. 5.0            3 St. Lucie - Unit 1            6                        Amendment XXX                    1 lR2
 
PIS (Analog) 1    3 Containment Isolation Instrumentation - Refueling                  3.3.7 CTS 6
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                                    FREQUENCY 4.3.3.1      SR 3.3.7.1      Perform a CHANNEL CHECK on each containment                            [ 12 hours            3    2 radiation monitor channel.
6                                                                required OR                      1 In accordance with the Surveillance Frequency Control Program ]        2 4.3.3.1      SR 3.3.7.2      Perform a CHANNEL FUNCTIONAL TEST on each                              [ [92] days            3    2 Table 3.3-6                    containment radiation monitor channel.
Function 1.b    6 containment                                          OR                      1 required Verify CPIS high radiation setpoint is less than or equal to the Allowable Value of [220 mR/hr].                            In accordance            4    lR2 with the 90 Surveillance Frequency Control Program ]        2 4.3.3.1      SR 3.3.7.3      -------------------------------NOTE------------------------------                                3 6            Testing of Actuation Logic shall include verification of the proper operation of each initiation relay.
Perform a CHANNEL FUNCTIONAL TEST on each                              [ [31] days            1    2 CPIS Actuation Logic channel.
required                                  1 OR train In accordance with the Surveillance Frequency Control Program ]        2 Combustion Engineering STS                        3.3.7-2                                            Rev. 5.0      3 St. Lucie - Unit 1            6                        Amendment XXX            1 lR2
 
PIS (Analog) 1    3 Containment Isolation Instrumentation - Refueling                3.3.7 CTS 6
SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                                                  FREQUENCY 4.3.3.1  SR 3.3.7.4      Perform a CHANNEL CALIBRATION on each                              [ [18] months          3    2 6            containment radiation monitor channel.
1 OR required In accordance with the Surveillance Frequency Control Program ]        2 SR 3.3.7.5      Perform a CHANNEL FUNCTIONAL TEST on each                          [ [18] months            2 CPIS Manual Trip channel.
OR In accordance with the Surveillance            2 Frequency Control Program ]
SR 3.3.7.6      Verify CPIS response time of each containment                      [ [18] months on a      2 radiation channel is within limits.                                STAGGERED TEST BASIS OR In accordance with the Surveillance            2 Frequency Control Program ]
Combustion Engineering STS                    3.3.7-3                                            Rev. 5.0      3 St. Lucie - Unit 1          6                      Amendment XXX              1 lR2
 
CPIS (Analog)        1      3 Containment Isolation Instrumentation - Refueling                      3.3.7 CTS 6
3.3 INSTRUMENTATION (Analog)                                                                                            3 Instrumentation - Refueling 3.3.7        Containment Purge Isolation Signal (CPIS) (Analog)                                                      3      1 6
Three 3.3.3.1      LCO 3.3.7                [Four] CPIS containment radiation monitor channels and one CPIS                            3    2 1
automatic Actuation Logic and one Manual Trip train shall be OPERABLE.
Applicability  APPLICABILITY:          During movement of [recently] irradiated fuel assemblies within                                  2 containment.
ACTIONS CONDITION                            REQUIRED ACTION                        COMPLETION TIME 1
A. One radiation monitor            A.1          Place the affected channel            4 hours channel inoperable.                        in trip.
OR A.2          Suspend movement of                  Immediately                      1
[recently] irradiated fuel assemblies within containment.
A B. One required Manual              B.1          Place and maintain                    Immediately                      3      1 Action b.              Trip or automatic                    A    containment purge and Table 3.3-6            Actuation Logic train                      exhaust valves in closed Function 1.b          inoperable.
4.3.3.1                                      position.        at least one containment isolation valve in each penetration providing direct access from        1 OR      One or more          OR                            containment atmosphere to outside atmosphere required More than one radiation        B.2          Enter applicable Conditions          Immediately                      1      3 monitor channel                      A    and Required Actions for inoperable.          s                    affected valves of LCO 3.9.3, "Containment OR                                          Penetrations," made inoperable by isolation Required Action and                        instrumentation.
associated Completion                                                                                              1 Time of Condition A not met.
Combustion Engineering STS                            3.3.7-1                                            Rev. 5. 0          3 St. Lucie - Unit 2            6                        Amendment XXX                  1          lR2
 
CPIS (Analog)  1      3 Containment Isolation Instrumentation - Refueling                  3.3.7 CTS 6
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                                    FREQUENCY 4.3.3.1      SR 3.3.7.1      Perform a CHANNEL CHECK on each containment                            [ 12 hours              3    2 radiation monitor channel.
6                                                                required                                      1 OR In accordance with the Surveillance Frequency Control Program ]        2 4.3.3.1      SR 3.3.7.2      Perform a CHANNEL FUNCTIONAL TEST on each                              [ [92] days            3    2 Table 3.3-6 6            containment radiation monitor channel.
Function 1.b                                                                                                                    1 containment                                          OR required Verify CPIS high radiation setpoint is less than or equal to the Allowable Value of [220 mR/hr].                                                        4  lR2 In accordance with the 90 Surveillance Frequency Control Program ]        2 4.3.3.1      SR 3.3.7.3      -------------------------------NOTE------------------------------                                3 6            Testing of Actuation Logic shall include verification of the proper operation of each initiation relay.
Perform a CHANNEL FUNCTIONAL TEST on each                              [ [31] days            1    2 CPIS Actuation Logic channel.
required                                  1 OR train In accordance with the Surveillance Frequency Control Program ]        2 Combustion Engineering STS                        3.3.7-2                                            Rev. 5. 0      3 St. Lucie - Unit 2            6                        Amendment XXX            1        lR2
 
CPIS (Analog)  1      3 Containment Isolation Instrumentation - Refueling                3.3.7 CTS 6
SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                                                  FREQUENCY 4.3.3.1  SR 3.3.7.4      Perform a CHANNEL CALIBRATION on each                              [ [18] months          3      2 6            containment radiation monitor channel.
1 OR required In accordance with the Surveillance Frequency Control Program ]          2 SR 3.3.7.5      Perform a CHANNEL FUNCTIONAL TEST on each                          [ [18] months            2 CPIS Manual Trip channel.
OR In accordance with the Surveillance              2 Frequency Control Program ]
SR 3.3.7.6      Verify CPIS response time of each containment                      [ [18] months on a        2 radiation channel is within limits.                                STAGGERED TEST BASIS OR In accordance with the Surveillance              2 Frequency Control Program ]
Combustion Engineering STS                    3.3.7-3                                          Rev. 5. 0      3 St. Lucie - Unit 2          6                      Amendment XXX              1          lR2
 
JUSTIFICATION FOR DEVIATIONS ITS 3.3.6, CONTAINMENT ISOLATION INSTRUMENTATION - REFUELING
: 1. Changes are made (additions, deletions, and/or changes) to the ISTS that reflect the plant specific nomenclature, number, reference, system description, analysis, licensing basis, or licensing basis description.
: 2. The ISTS contains bracketed information and/or values that are generic to all Combustion Engineering vintage plants. The brackets are removed, and the proper plant specific information/value is provided. This is acceptable since the information/value is changed to reflect the current licensing basis.
: 3. Changes are made to reflect the ITS Specification number and title. Numbering is changed from 3.3.7 to 3.3.6, title is changed to "Containment Isolation Instrumentation - Refueling" and "(Analog)" is deleted from the title.
: 4. FPL is retaining PSL's Trip Setpoints in ITS. Changes are made to the ISTS that      lR2 l
reflect the plant specific nomenclature, number, reference, system description,    l analysis, licensing basis, or licensing basis description associated with retaining l l
PSL's Trip Setpoints. Because the containment radiation monitors do not have an    l Allowable Value listed in CTS this term is deleted.                                l St. Lucie Unit 1 and Unit 2              Page 1 of 1
 
Improved Standard Technical Specifications (ISTS) Bases Markup and Justification for Deviations (JFDs)
 
CPIS (Analog)          3 Containment Isolation Instrumentation - Refueling              B 3.3.7            1 6
B 3.3 INSTRUMENTATION (Analog)
Instrumentation - Refueling                                        3 B 3.3.7 Containment Purge Isolation Signal (CPIS) (Analog)                                                            3        1 6
BASES BACKGROUND                This LCO encompasses CPIS actuation, which is a plant specific instrumentation system that performs an actuation Function required for Insert 1  plant protection but is not otherwise included in LCO 3.3.5, "Engineered Safety Features Actuation System (ESFAS) Logic and Manual Trip," or LCO 3.3.6, "Diesel Generator (DG) - Loss of Voltage Start (LOVS)." This is a non-Nuclear Steam Supply System ESFAS Function that, because of differences in purpose, design, and operating requirements, is not included in LCOs 3.3.5 and 3.3.6. Details of this LCO are for illustration only. Individual plants shall include those Functions and LCO requirements applicable to them.
containment high radiation instrumentation The CPIS provides protection from radioactive contamination in the containment in the event an irradiated fuel assembly should be severely damaged during handling.                                                recently containment isolation applicable containment isolation valves close to        The CPIS will detect any abnormal amounts of radioactive material in the isolate the containment        containment and will initiate purge valve closure to limit the release of atmosphere from the          radioactivity to the environment. The containment purge supply and outside atmosphere exhaust valves are closed on a CPIS when a high radiation level in containment is detected.
CIS logic                                                        logic channels Insert 2  The CPIS includes two independent, redundant actuation subsystems.                                1 Where two isolation control valves are provided for a single containment penetration, each valve is controlled by a separate actuation subsystem.
Where one valve is available, a single actuation subsystem initiates valve closure. One train also isolates the containment air exhaust fan, whereas the other train actuates the containment air supply fan. A list of actuated CIS valves and an additional description of the CPIS are included in Reference 1. Both trains of CPIS are actuated on a two-out-of-four coincidence from the same four containment radiation sensor                    s Insert 3 subsystems. Containment purge isolation also occurs on a Containment Isolation Actuation Signal (CIAS). The CIAS is addressed by LCO 3.3.4, "Engineered Safety Features Actuation System (ESFAS)
Logic and Manual Trip      Instrumentation."
Trip Setpoints and Allowable Values                                                                4 lR2 Trip setpoints used in the bistables are based on the analytical limits stated in Reference 2. The selection of these trip setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account. To allow for calibration tolerances, instrumentation uncertainties, and instrument drift, Allowable Values                              4 lR2 l
the trip setpoint                                          l 3
Combustion Engineering STS                      B 3.3.7-1                                                Rev. 5.0 St. Lucie - Unit 1      6                              Revision XXX                  1        lR2
 
1 INSERT 1 containment radiation instrumentation which monitors radiation levels in the containment to automatically close at least one containment isolation valve in each penetration that provides direct access from the containment atmosphere to the outside atmosphere following a fuel handling accident (FHA). The containment isolation requirements during refueling are specified in LCO 3.9.3, "Containment Penetrations."
1 INSERT 2 Four channels of containment high radiation instrumentation, with a sensing range of 10 mR/hr  lR1 to 105 R/hr, are provided to the containment isolation signal (CIS) logic.
1 INSERT 3 Each containment isolation valve is actuated by its associated CIS channel. The instrumentation requirements associated with containment isolation actuation while the unit is operating are addressed in LCO 3.3.3, Engineered Safety Features Actuation System (ESFAS)
Instrumentation, and Insert Page B 3.3.6-1
 
CPIS (Analog)  3 Containment Isolation Instrumentation - Refueling          B 3.3.7      1 6
BASES BACKGROUND (continued) 6            is specified in SR 3.3.7.2 are conservatively adjusted with respect to the design basis      analytical limits. A detailed description of the methodology used to calculate the trip setpoints, including their explicit uncertainties, is provided in "Plant Protection System Selection of Trip Setpoint Values" field                                                                                                lR2 (Ref. 3). The actual nominal trip setpoint entered into the bistable is                        l 4 l normally still more conservative than that specified by the Allowable SR 3.3.6.2                                                                                                    l Value to account for changes in random measurement errors detectable by a CHANNEL FUNCTIONAL TEST. One example of such a change in SR 3.3.6.2 value measurement error is drift during the surveillance interval. If the                            lR2 measured setpoint does not exceed the Allowable Value, the bistable is                      4 l considered OPERABLE.
Setpoints in accordance with the Allowable Value will ensure that Safety Limits are not violated during anticipated operational occurrences (AOOs) and the consequences of Design Basis Accidents will be acceptable, providing the plant is operated from within the LCOs at the onset of the Insert 4 AOO or accident and the equipment functions as designed.
APPLICABLE                  The CPIS satisfies the requirements of Criterion 3 of SAFETY                      10 CFR 50.36(c)(2)(ii).            containment high radiation instrumentation ANALYSES 1
lR2 LCO                          Only the Allowable Values are specified for each trip Function in the LCO.                    l Operation with a trip setpoint less conservative than the nominal trip                        l setpoint, but within its Allowable Value, is acceptable, provided that the                    l l
difference between the nominal trip setpoint and the Allowable Value is                    4  l equal to or greater than the drift allowance assumed for each trip in the                      l transient and accident analyses.                                                              l Trip Setpoint                                                                                                            l design basis                      l The Each Allowable Value specified is more conservative than the analytical                        l limit assumed in the transient and accident analysis in order to account for instrument uncertainties appropriate to the trip Function. These SR 3.3.6.2 value    uncertainties are defined in Reference 3. A channel is inoperable if its                      lR2 actual trip setpoint is not within its required Allowable Value.                            4 l containment high radiation instrumentation The Bases for the LCO on the CPIS are discussed below for each Function:
: a. Manual Trip The LCO on Manual Trip backs up the automatic trips and ensures operators have the capability to rapidly initiate the CPIS Function if any parameter is trending toward its setpoint. At least one channel must be OPERABLE to be consistent with the requirements of LCO 3.9.3, "Containment Penetrations."
3 Combustion Engineering STS                          B 3.3.7-2                                              Rev. 5.0 St. Lucie - Unit 1      6                              Revision XXX          1      lR2
 
1 INSERT 4 The FHA is a postulated event that involves dropping a single irradiated fuel assembly resulting in damage to the assembly (Ref. 2). The FHA analysis assumes movement of an irradiated fuel assembly that has not occupied part of a critical reactor core within the previous 72 hours.
Additionally, containment closure is not assumed for an FHA in the containment. The Technical Requirements Manual includes a decay time requirement that no fuel movement will commence until 72 hours after shutdown. This ensures that the FHA assumptions, including an open containment, are preserved. In the event an FHA in the containment occurs within 72 hours of a unit shutdown, actuation of the CIS when high radiation is indicated in the containment will isolate the containment from the outside environment to minimize the consequences of this improbable event.
Insert Page B 3.3.6-2
 
CPIS (Analog)    3 Containment Isolation Instrumentation - Refueling            B 3.3.7          1 6
BASES LCO (continued) a
: b. Containment Radiation - High Insert 5        The LCO on the radiation channels requires that all four be OPERABLE.
[ For this unit, the basis for the Containment Radiation - High setpoint                    2 is as follows: ]
b
: c. Actuation Logic Insert 6      One train of Actuation Logic must be OPERABLE to be consistent with the requirements of LCO 3.9.3. If one fails, it must be restored to OPERABLE status.
containment high radiation instrumentation APPLICABILITY                In MODE 5 or 6, the CPIS isolation of containment purge valves is not required to be OPERABLE. However, during movement of [recently]                                    2 irradiated fuel [(i.e., fuel that has occupied part of a critical reactor core 72 hours                                                                                                    2 within the previous [X] days)], there is the possibility of a fuel handling isolation of penetrations        accident requiring the CPIS on high radiation in containment.                    an FHA providing direct access        Accordingly, the CPIS must be OPERABLE during movement of [recently]
from the containment atmosphere to the            irradiated fuel in containment.                                                                1 containment high radiation instrumentation outside atmosphere In MODES 1, 2, 3, and 4, the containment purge valves are sealed                                    lR2 Insert 7      closed.
ACTIONS                    A CPIS channel is inoperable when it does not satisfy the OPERABILITY containment high      criteria for the channel's Function. The most common cause of channel radiation monitor      inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by the plant specific setpoint analysis. Typically, the drift is not large and would result in a delay of actuation rather than a total loss of function. This determination is generally made during the performance of a CHANNEL FUNCTIONAL TEST when the process instrument is set up for adjustment to bring it within specification. If the actual trip setpoint is not within the Allowable                    4 lR2 6                                                                                                            l Value in SR 3.3.7.2, the channel is inoperable and the appropriate Conditions must be entered.
In the event a channel's trip setpoint is found nonconservative with respect to the Allowable Value, or the sensor, instrument loop, signal processing electronics, or bistable is found inoperable, then all affected Functions provided by that channel should be declared inoperable and the LCO Condition entered for the particular protective function affected.
3 Combustion Engineering STS                          B 3.3.7-3                                                Rev. 5.0 St. Lucie - Unit 1      6                              Revision XXX            1        lR2
 
1 INSERT 5 With one Containment Radiation - High channel inoperable, three OPERABLE channels remain available to actuate the CIS logic train concurrent with an additional single failure. Therefore, the LCO requires three of four channels to be OPERABLE.
During refueling conditions, closure of containment isolation valves associated with containment penetrations with direct access from the containment atmosphere to the outside atmosphere on high containment radiation is particularly important since other CIS input parameters are not available (i.e., low pressurizer pressure is bypassed and there is no mechanism for creating a containment pressure transient). With the reactor shutdown, the background radiation seen by the CIS detectors drops by a factor of 10 or more. For these reasons the Containment Radiation - High setpoint requires a much lower setpoint during refueling.
1 INSERT 6 Since LCO 3.9.3 requires, in part, an OPERABLE containment isolation valve for each penetration providing direct access from the containment atmosphere to the outside atmosphere, only one train of Actuation Logic associated with the required containment isolation valves is required to be OPERABLE.
1 INSERT 7 When movement of irradiated fuel assemblies within containment is not being conducted, the potential for an FHA within the containment does not exist. Therefore, due to radioactive decay, an FHA that involves handling non-recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core longer than 72 hours) will result in doses that are well within the guideline values specified in 10 CFR 50.67 even with the containment atmosphere having direct access to the outside atmosphere. Therefore, under these conditions, isolation of the containment penetrations providing direct access to the outside environment, including the associated containment area high radiation instrumentation, is not required to be OPERABLE.
In MODES 1, 2, 3, and 4, LCO 3.3.3 provides instrumentation requirements associated with            lR2 containment isolation on high containment radiation.
Insert Page B 3.3.6-3
 
CPIS (Analog)    3 Containment Isolation Instrumentation - Refueling            B 3.3.7        1 6
BASES ACTIONS (continued)
When the number of inoperable channels in a trip Function exceeds those specified in any related Condition associated with the same trip Function, then the plant is outside the safety analysis. Therefore, LCO 3.0.3 should be immediately entered if applicable in the current MODE of operation.
A.1 and A.2 Condition A applies to the failure of one Containment Radiation - High CPIS channel. The Required Action is to place the affected channel in the trip condition within 4 hours. The Completion Time accounts for the fact that three redundant channels monitoring containment radiation are still available to provide a single trip input to the CPIS logic to provide the automatic mitigation of a radiation release. Alternately, action must be taken to place the unit in a condition where the LCO does not apply. This does not preclude the movement of fuel to a safe position.
at least one containment isolation valve in each                  1 A          A penetration providing direct access from B.1 and B.2                containment atmosphere to outside atmosphere or                                                                      3 A                                                or more required Condition B applies to the failure of the required Manual Trip or automatic Actuation Logic train, to the failure of more than one radiation monitoring channel, or if the Required Action and associated Completion Time of s
Condition A are not met. Required Action B.1 is to place the containment A
purge and exhaust isolation valves in the closed position. The Required Action immediately performs the isolation Function of the CPIS. Required CIS Action B.2 is to immediately enter the applicable Conditions and Required A
Actions for the affected isolation valves of LCO 3.9.3, "Containment Penetrations," that were made inoperable by the inoperable instrumentation of the CPIS LCO. The Required Action directs the operator to take actions that are appropriate for the containment isolation Function of the CPIS without initiating the containment air supply and exhaust fans. The Completion Time accounts for the fact that the automatic capability to isolate containment and initiate supply and exhaust fans on valid containment high radiation signals is degraded a
during conditions in which a fuel handling accident is possible and CPIS provides the only automatic mitigation of radiation release.
3 Combustion Engineering STS                B 3.3.7-4                                                Rev. 5.0 St. Lucie - Unit 1      6                              Revision XXX            1      lR2
 
CPIS (Analog)        3 Containment Isolation Instrumentation - Refueling                  B 3.3.7        1 6
BASES                      6 3
SURVEILLANCE        SR 3.3.7.1 REQUIREMENTS Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value.
Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.
Agreement criteria are determined by the plant staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the transmitter or the signal processing equipment has drifted outside its limits.
[ The Frequency, about once every shift, is based on operating experience that demonstrates the rarity of channel failure. Since the probability of two random failures in redundant channels in any 12 hour period is low, the CHANNEL CHECK minimizes the chance of loss of protective                                        2 function due to failure of redundant channels. The CHANNEL CHECK supplements less formal, but more frequent, checks of channel OPERABILITY during normal operational use of the displays associated with the LCO required channels.
OR                                                                                                  2 The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                  5    lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]
3 Combustion Engineering STS                  B 3.3.7-5                                                      Rev. 5.0 St. Lucie - Unit 1        6                                Revision XXX                1      lR2
 
CPIS (Analog)        3 Containment Isolation Instrumentation - Refueling                  B 3.3.7            1 6
BASES SURVEILLANCE REQUIREMENTS (continued) 6 SR 3.3.7.2                                                                                            3 A CHANNEL FUNCTIONAL TEST is performed on each containment radiation monitoring channel to ensure the entire channel will perform its intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other                                  1 Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. There is a plant specific program which verifies that the instrument channel functions as is required by verifying the as-left and as-found setting are consistent with                                4  lR2 those established by the setpoint methodology. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint analysis.
[ The Frequency of [92] days is based on plant operating experience with regard to channel OPERABILITY and drift, which demonstrates that                                      2 failure of more than one channel of a given Function in any [92] day interval is a rare event.
2 OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                      -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                      5    lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                      ------------------------------------------------------------------------------------------------ ]
6 SR 3.3.7.3                                                                                              3 Proper operation of the initiation relays is verified by de-energizing these relays during the CHANNEL FUNCTIONAL TEST of the Actuation Logic.
the This will actuate the Function, operating all associated equipment.
2 Proper operation of the equipment actuated by each train is thus verified.
the A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required                                  2 3
Combustion Engineering STS                    B 3.3.7-6                                                      Rev. 5.0 St. Lucie - Unit 1        6                                Revision XXX                1        lR2
 
CPIS (Analog)        3 Containment Isolation Instrumentation - Refueling                  B 3.3.7          1 6
BASES SURVEILLANCE REQUIREMENTS (continued) contacts of the relay are verified by other Technical Specifications and 1
non-Technical Specifications tests at least once per refueling interval with applicable extensions. A Note indicates this Surveillance includes verification of operation for each initiation relay.
[ The Frequency of [31] days is based on plant operating experience with regard to channel OPERABILITY, which demonstrates that failure of more                                2 than one channel of a given Function in any [31] day interval is a rare event.
OR                                                                                                    2 The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
                      -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance 5    lR2 Frequency Control Program should utilize the appropriate Frequency description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                      ------------------------------------------------------------------------------------------------ ]
6 SR 3.3.7.4                                                                                            3 CHANNEL CALIBRATION is a complete check of the instrument channel including the sensor. The Surveillance verifies that the channel responds to a measured parameter within the necessary range and accuracy.
CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drift between successive calibrations to ensure that the channel remains operational between successive tests. There is a plant is specific program which verifies that the instrument channel functions as                                    lR2 required by verifying the as-left and as-found setting are consistent with                              4  l those established by the setpoint methodology. CHANNEL CALIBRATIONS must be performed consistent with the plant specific setpoint analysis.
[ The Frequency is based upon the assumption of an [18] month calibration 2
interval for the determination of the magnitude of equipment drift in the setpoint analysis.
OR                                                                                                    2 The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
3 Combustion Engineering STS                    B 3.3.7-7                                                      Rev. 5.0 St. Lucie - Unit 1        6                                Revision XXX                1        lR2
 
CPIS (Analog)        3 Containment Isolation Instrumentation - Refueling                  B 3.3.7          1 6
BASES SURVEILLANCE REQUIREMENTS (continued)
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency 5    lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]
SR 3.3.7.5 A CHANNEL FUNCTIONAL TEST is performed on the manual CPIS actuation circuitry. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable 1
CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.
This Surveillance verifies that the trip push buttons are capable of                                  1 opening contacts in the Actuation Logic as designed, de-energizing the initiation relays and providing Manual Trip of the Function. [ The
[18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for                            2 an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at a Frequency of once every 18 months.
OR The Surveillance Frequency is controlled under the Surveillance                                        2 Frequency Control Program.
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency 5    lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]
3 Combustion Engineering STS                  B 3.3.7-8                                                      Rev. 5.0 St. Lucie - Unit 1        6                                Revision XXX                1      lR2
 
CPIS (Analog)        3 Containment Isolation Instrumentation - Refueling                  B 3.3.7        1 6
BASES SURVEILLANCE REQUIREMENTS (continued)
SR 3.3.7.6 This Surveillance ensures that the train actuation response times are less                            1 than or equal to the maximum times assumed in the analyses. [ The 18 month Frequency is based upon plant operating experience, which shows random failures of instrumentation components causing serious                                  2 response time degradation, but not channel failure, are infrequent occurrences.
OR The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.                                                                            2
                    -----------------------------------REVIEWERS NOTE-----------------------------------
Plants controlling Surveillance Frequencies under a Surveillance Frequency Control Program should utilize the appropriate Frequency                                    5  lR2 description, given above, and the appropriate choice of Frequency in the Surveillance Requirement.
                    ------------------------------------------------------------------------------------------------ ]
Testing of the final actuating devices, which make up the bulk of the response time, is included. Testing of the final actuating device in one                              1 channel is included in the testing of each actuation logic channel.
REFERENCES          1. FSAR, Section [6.2].
1          U                                                                                            1
: 2. FSAR, Section [7.3].
: 2. UFSAR, Chapter 15 1
: 3.    "Plant Protection System Selection of Trip Setpoint Values."
3 Combustion Engineering STS                  B 3.3.7-9                                                    Rev. 5.0 St. Lucie - Unit 1      6                                  Revision XXX                1      lR2
 
CPIS (Analog)          3 Containment Isolation Instrumentation - Refueling              B 3.3.7              1 6
B 3.3 INSTRUMENTATION (Analog)
Instrumentation - Refueling                                          3 B 3.3.7 Containment Purge Isolation Signal (CPIS) (Analog)                                                              3        1 6
BASES BACKGROUND                This LCO encompasses CPIS actuation, which is a plant specific instrumentation system that performs an actuation Function required for Insert 1  plant protection but is not otherwise included in LCO 3.3.5, "Engineered Safety Features Actuation System (ESFAS) Logic and Manual Trip," or LCO 3.3.6, "Diesel Generator (DG) - Loss of Voltage Start (LOVS)." This is a non-Nuclear Steam Supply System ESFAS Function that, because of differences in purpose, design, and operating requirements, is not included in LCOs 3.3.5 and 3.3.6. Details of this LCO are for illustration only. Individual plants shall include those Functions and LCO requirements applicable to them.
containment high radiation instrumentation The CPIS provides protection from radioactive contamination in the containment in the event an irradiated fuel assembly should be severely damaged during handling.                                                recently containment isolation applicable containment isolation valves close to        The CPIS will detect any abnormal amounts of radioactive material in the isolate the containment        containment and will initiate purge valve closure to limit the release of atmosphere from the          radioactivity to the environment. The containment purge supply and outside atmosphere exhaust valves are closed on a CPIS when a high radiation level in containment is detected.
CIAS logic                                                        logic channels Insert 2  The CPIS includes two independent, redundant actuation subsystems.                                  1 Where two isolation control valves are provided for a single containment penetration, each valve is controlled by a separate actuation subsystem.
Where one valve is available, a single actuation subsystem initiates valve closure. One train also isolates the containment air exhaust fan, whereas the other train actuates the containment air supply fan. A list of actuated CIAS valves and an additional description of the CPIS are included in Reference 1. Both trains of CPIS are actuated on a two-out-of-four coincidence from the same four containment radiation sensor                      s Insert 3 subsystems. Containment purge isolation also occurs on a Containment Isolation Actuation Signal (CIAS). The CIAS is addressed by LCO 3.3.4, "Engineered Safety Features Actuation System (ESFAS)
Logic and Manual Trip      Instrumentation."
Trip Setpoints and Allowable Values                                                                4    lR2 Trip setpoints used in the bistables are based on the analytical limits stated in Reference 2. The selection of these trip setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account. To allow for calibration tolerances, instrumentation uncertainties, and instrument drift, Allowable Values                              4    lR2 l
the trip setpoint                                            l 3
Combustion Engineering STS                      B 3.3.7-1                                                  Rev. 5.0 St. Lucie - Unit 2      6                                Revision XXX                  1          lR2
 
1 INSERT 1 containment radiation instrumentation which monitors radiation levels in the containment to automatically close at least one containment isolation valve in each penetration that provides direct access from the containment atmosphere to the outside atmosphere following a fuel handling accident (FHA). The containment isolation requirements during refueling are specified in LCO 3.9.3, Containment Penetrations.
1 INSERT 2 Four channels of containment high radiation instrumentation, with a sensing range of 10 mR/hr R1 to 107 R/hr, are provided to the containment isolation actuation signal (CIAS) logic.
1 INSERT 3 Each containment isolation valve is actuated by its associated CIAS channel. The              R1 instrumentation requirements associated with containment isolation actuation while the unit is operating are addressed in LCO 3.3.3, Engineered Safety Features Actuation System (ESFAS)
Instrumentation, and Insert Page B 3.3.6-1
 
CPIS (Analog)  3 Containment Isolation Instrumentation - Refueling          B 3.3.7        1 6
BASES BACKGROUND (continued) 6            is specified in SR 3.3.7.2 are conservatively adjusted with respect to the design basis      analytical limits. A detailed description of the methodology used to calculate the trip setpoints, including their explicit uncertainties, is field provided in "Plant Protection System Selection of Trip Setpoint Values" (Ref. 3). The actual nominal trip setpoint entered into the bistable is                          lR2 normally still more conservative than that specified by the Allowable                        4 l SR 3.3.6.2                                                                                                  l Value to account for changes in random measurement errors detectable                            l by a CHANNEL FUNCTIONAL TEST. One example of such a change in SR 3.3.6.2 value measurement error is drift during the surveillance interval. If the lR2 measured setpoint does not exceed the Allowable Value, the bistable is                        4  l considered OPERABLE.
Setpoints in accordance with the Allowable Value will ensure that Safety Limits are not violated during anticipated operational occurrences (AOOs) and the consequences of Design Basis Accidents will be acceptable, providing the plant is operated from within the LCOs at the onset of the Insert 4 AOO or accident and the equipment functions as designed.
APPLICABLE                    The CPIS satisfies the requirements of Criterion 3 of SAFETY                        10 CFR 50.36(c)(2)(ii).            containment high radiation instrumentation ANALYSES 1
LCO                          Only the Allowable Values are specified for each trip Function in the LCO.                      lR2 l
Operation with a trip setpoint less conservative than the nominal trip                          l setpoint, but within its Allowable Value, is acceptable, provided that the                      l l
difference between the nominal trip setpoint and the Allowable Value is                      4  l equal to or greater than the drift allowance assumed for each trip in the                        l transient and accident analyses.                                                                l Trip Setpoint                                                                                                              l design basis                        l The Each Allowable Value specified is more conservative than the analytical                          l limit assumed in the transient and accident analysis in order to account for instrument uncertainties appropriate to the trip Function. These SR 3.3.6.2 value    uncertainties are defined in Reference 3. A channel is inoperable if its                        lR2 actual trip setpoint is not within its required Allowable Value.                              4 l containment high radiation instrumentation The Bases for the LCO on the CPIS are discussed below for each Function:
: a. Manual Trip The LCO on Manual Trip backs up the automatic trips and ensures operators have the capability to rapidly initiate the CPIS Function if any parameter is trending toward its setpoint. At least one channel must be OPERABLE to be consistent with the requiremen}}

Latest revision as of 10:54, 13 November 2024

Improved Technical Specifications Conversion, Section 3.3, Instrumentation, Revision 2 - Volume 8
ML23275A118
Person / Time
Site: Saint Lucie  NextEra Energy icon.png
Issue date: 10/02/2023
From:
Florida Power & Light Co
To:
Office of Nuclear Reactor Regulation
Shared Package
ML23275A109 List:
References
L-2023-126
Download: ML23275A118 (1)


Text