ML19309B618: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(One intermediate revision by the same user not shown)
Line 53: Line 53:
D. PHYT 0 PLANKTON ----------------------------------------------                                                D-1 h              Introduction ----------------------------------------                                                  D -1 W              Ma t e ri al s a nd M et hod s -------------------------------                                        D -3 l
D. PHYT 0 PLANKTON ----------------------------------------------                                                D-1 h              Introduction ----------------------------------------                                                  D -1 W              Ma t e ri al s a nd M et hod s -------------------------------                                        D -3 l
R es ul t s a nd D i sc us s i o n ------------------------------                                      D-8 I
R es ul t s a nd D i sc us s i o n ------------------------------                                      D-8 I
;
S u mma ry - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
S u mma ry - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
L i t era t u r e C i t ed ------------------------------------
L i t era t u r e C i t ed ------------------------------------
Line 321: Line 320:
   ,                                      o-v
   ,                                      o-v


I                                                                              i
I                                                                              i Seasonal reductions of unidentified phytoflagellates, cryptophytes, and prasinophytes between the intake and discharge canals contributed to greater diatom daninance in the discharge canal . No shift in canposition was observed at Station 1 as canpared to the other offshore stations, although apparent plant-related elevation of diatom and prasinophyte den-sities between the discharge canal and Station 1 contributed to over-all density increases at this station.
                                                                                  ;
Seasonal reductions of unidentified phytoflagellates, cryptophytes, and prasinophytes between the intake and discharge canals contributed to greater diatom daninance in the discharge canal . No shift in canposition was observed at Station 1 as canpared to the other offshore stations, although apparent plant-related elevation of diatom and prasinophyte den-sities between the discharge canal and Station 1 contributed to over-all density increases at this station.
Currently available data suggest that the increased phytoplankton density and chlorophyll-a_ concentration at Station 1 are attributable to power plant operation. However, plant effects on standing crop continue to be limited to the discharge canal and to Station 1.        There were no significant interstation differences in primary productivity offshore and I  comparison of baseline and operational data indicated that long-term or widespread impact on of fshore standing crop has not resulted frun St.
Currently available data suggest that the increased phytoplankton density and chlorophyll-a_ concentration at Station 1 are attributable to power plant operation. However, plant effects on standing crop continue to be limited to the discharge canal and to Station 1.        There were no significant interstation differences in primary productivity offshore and I  comparison of baseline and operational data indicated that long-term or widespread impact on of fshore standing crop has not resulted frun St.
Lucie Plant operation.
Lucie Plant operation.
Line 442: Line 439:
l                                              .
l                                              .
                                                           ~
                                                           ~
                                                                  ;.                                            '
l                                                                          .
l                                                                          .
                                                                                                                                                                         .s.      "
                                                                                                                                                                         .s.      "
Line 456: Line 452:
1 e_                        Q                ._
1 e_                        Q                ._
                                                                                                                                 ~                    s 1
                                                                                                                                 ~                    s 1
;
                                           '~' ~ b
                                           '~' ~ b
[                        l        M            __
[                        l        M            __
Line 474: Line 469:
l                                                            ;s                                                                                                          r,,2, :;n 4ff\
l                                                            ;s                                                                                                          r,,2, :;n 4ff\
: u. ~.
: u. ~.
;
MW                  C., .                              ,
MW                  C., .                              ,
_g      o u .....
_g      o u .....
Line 608: Line 602:
O Y
O Y
i.00--                                                                8 S
i.00--                                                                8 S
S
S z                                                                        B                                          S S
                                                                                                                                                      ;
z                                                                        B                                          S S
l a.
l a.
B                    S    B      I                    O o.50 --                                                                    S
B                    S    B      I                    O o.50 --                                                                    S
Line 645: Line 637:
             % eu      . 77777      noenn    55555 5555% 55$$5 5553% 55%55 %55%S              eaaam    8988a    55555 AMn8m 88888      AAA88 d          I  77777  namP9    5%%%%    55555 55555 S$$%5 55555 5? " .5          e56A4    An#As  55555 $$555 88888 55555
             % eu      . 77777      noenn    55555 5555% 55$$5 5553% 55%55 %55%S              eaaam    8988a    55555 AMn8m 88888      AAA88 d          I  77777  namP9    5%%%%    55555 55555 S$$%5 55555 5? " .5          e56A4    An#As  55555 $$555 88888 55555
             "                                $5555 55555 5%$55 $5S45 55555 SS 25              99ada    neeee 55555 55555 88886 55555 1  5555% ceans 4  555S%  hkaha    SSSSS 5555$ $5555        **e*e  55555 SS5S5    #A8ha    A949e 55555 55555 55555 55555 36 . 55%5$ 55$$$          $$$ss 5555% 55555 essee %%555 5%555              e8Ame Ae888 55555 55$55 55555 55555 i  %S%%%    3%55S    55%%%    $5555 55$55    seese  55%5% 5555%    #^888    M8A96  55555 55555 55555 55555 i  S5%5% 5%555      $55%S SS%55 SSSS5 easee          55555 SSS$5    asMae 55555 55555 $$S55 55555 5555$
             "                                $5555 55555 5%$55 $5S45 55555 SS 25              99ada    neeee 55555 55555 88886 55555 1  5555% ceans 4  555S%  hkaha    SSSSS 5555$ $5555        **e*e  55555 SS5S5    #A8ha    A949e 55555 55555 55555 55555 36 . 55%5$ 55$$$          $$$ss 5555% 55555 essee %%555 5%555              e8Ame Ae888 55555 55$55 55555 55555 i  %S%%%    3%55S    55%%%    $5555 55$55    seese  55%5% 5555%    #^888    M8A96  55555 55555 55555 55555 i  S5%5% 5%555      $55%S SS%55 SSSS5 easee          55555 SSS$5    asMae 55555 55555 $$S55 55555 5555$
       -r                i  %$%S% S$555      55555 55555 SSS%S emees $5555 desse              $%555 5S555 %5555 5%555 55555 55555 20 +      ese== 55555      eeese $5555 eeeeg eense          esses eeees    55555 55555 eeeen essee 55555 55555 i eeees 5555%        essee 55555 eeees eseee weeee seees              S$555 55555 esees sense 55555 Illit (t___]]
       -r                i  %$%S% S$555      55555 55555 SSS%S emees $5555 desse              $%555 5S555 %5555 5%555 55555 55555 20 +      ese== 55555      eeese $5555 eeeeg eense          esses eeees    55555 55555 eeeen essee 55555 55555 i eeees 5555%        essee 55555 eeees eseee weeee seees              S$555 55555 esees sense 55555 Illit (t___))
:;              I esese tilli        eseee eeeee      esee*    33$$3 eeeee easee      5$55g tilli esene 11111 55555 tillt 11111    enese esses eeene 33333 assee 11111                tilli till      TTT71 tilli tillt tillt hb:!Z()            I  tillt 10 + lillt        11111    eeees    illit seees      liill  tiill    tillt  11111 tillt tillt tilli          tilli tilli 18111    11111                      liill Illit      lilli 11111    11111 11111 tillt Illit 11111 tillt
:;              I esese tilli        eseee eeeee      esee*    33$$3 eeeee easee      5$55g tilli esene 11111 55555 tillt 11111    enese esses eeene 33333 assee 11111                tilli till      TTT71 tilli tillt tillt hb:!Z()            I  tillt 10 + lillt        11111    eeees    illit seees      liill  tiill    tillt  11111 tillt tillt tilli          tilli tilli 18111    11111                      liill Illit      lilli 11111    11111 11111 tillt Illit 11111 tillt
     !!Trr) 3(C                6 6  Illit    11111 18111 tillt liill 11111 11111 tillt        11111 18111    11111 11111 18111 11111 11111 tills 1  11111    11111    11111    tillt 11111 11111 tillt Illit            11111 19111 Illit          tilli tilli Illit
     !!Trr) 3(C                6 6  Illit    11111 18111 tillt liill 11111 11111 tillt        11111 18111    11111 11111 18111 11111 11111 tills 1  11111    11111    11111    tillt 11111 11111 tillt Illit            11111 19111 Illit          tilli tilli Illit
Line 660: Line 652:
I' I
I' I
E' I'
E' I'
N
N V      Of Ihj                  "e Y),%gg g
                                                                              ;
V      Of Ihj                  "e Y),%gg g
                                                 ~
                                                 ~
f.
f.
Line 740: Line 730:
                                                                                                                                           -m-          w                                      k i
                                                                                                                                           -m-          w                                      k i
sasacaccesscet ta reeaccesececceccccee---e 4                                      e e        e                                  E eeeeeccesesczecreert ezesceeeec.ceccco---e                                                                                  e C E E cott emet C E E E E CC CE C E tE mee@C E@@@@@@                                                      -m e 0            0                                  g        i CCC C E GE setC KE t t t CE E 4 C T E E eCCCE t e@@@@@                                                    m**    ,  w      e s( seact t eetzt t srzt
sasacaccesscet ta reeaccesececceccccee---e 4                                      e e        e                                  E eeeeeccesesczecreert ezesceeeec.ceccco---e                                                                                  e C E E cott emet C E E E E CC CE C E tE mee@C E@@@@@@                                                      -m e 0            0                                  g        i CCC C E GE setC KE t t t CE E 4 C T E E eCCCE t e@@@@@                                                    m**    ,  w      e s( seact t eetzt t srzt
* eC E E rzecett#c#ccO                                                            ---g              e                                  O        j
* eC E E rzecett#c#ccO                                                            ---g              e                                  O        j m e - o                                            M I
                                                                                                                                                                                                        ;
m e - o                                            M I
C CateeECE e@ &E eCECE C t aCCE c G e e t el# # # @ @ @                                                                    8 l
C CateeECE e@ &E eCECE C t aCCE c G e e t el# # # @ @ @                                                                    8 l
e        e                                hf          ,
e        e                                hf          ,
Line 891: Line 879:
l l
l l
1 i
1 i
  ;
O f e e g$r fss f ?s    ng        .1
O f e e g$r fss f ?s    ng        .1
                                                                                             /j e/ /
                                                                                             /j e/ /
Line 1,341: Line 1,328:
:                  i
:                  i
                                                                                   )
                                                                                   )
29,0 "o]& ,O     *
29,0 "o]& ,O
                                                                ;
* I 4N yg'#
I 4N yg'#
V                    -
V                    -
U )y,4          &43            o enz          N  5?
U )y,4          &43            o enz          N  5?
Line 1,491: Line 1,477:
I 1
I 1
I:
I:
D
D s
                                                                                                                                                ;
j i                                                                                        #          ##        -
s j
i                                                                                        #          ##        -
Q,y%                                                                                                                  l
Q,y%                                                                                                                  l
                                                                                                                                                 .u                                                              ,
                                                                                                                                                 .u                                                              ,
Line 1,508: Line 1,492:
f+y                                                                                                      \
f+y                                                                                                      \
CD                          UC I
CD                          UC I
I
I Il  ,
;
Il  ,
l Il 1
l Il 1
Il  ,
Il  ,
Line 1,582: Line 1,564:
   - - - " -md._ a - _ __.A    .      s --,A.a_            .a        _,,_#_    , . _ . _ , , 2 a    _ - - - - - --- - - - -___- _ _ _ _ - _ _ . _ _ --
   - - - " -md._ a - _ __.A    .      s --,A.a_            .a        _,,_#_    , . _ . _ , , 2 a    _ - - - - - --- - - - -___- _ _ _ _ - _ _ . _ _ --
l f
l f
;
i i
i i
l f
l f
Line 1,807: Line 1,788:
50 -                                                                          ;
50 -                                                                          ;
I                  -
I                  -
_                                                ;
M  A M J                          M    M J              O N        J<lM      M J J A    S  O          I D F      M        J J        S  O      J F                  J A S O h 7    ,_
M  A M J                          M    M J              O N        J<lM      M J J A    S  O          I D F      M        J J        S  O      J F                  J A S O h 7    ,_
J A S O N                A_      J  A S            D    JF"    A                      N        J -
J A S O N                A_      J  A S            D    JF"    A                      N        J -
Line 1,957: Line 1,937:
76
76
                                                                                                                 ;;;J e45i; 77 J
                                                                                                                 ;;;J e45i; 77 J
79
79 79 l
                                                                                                                                                                    ;; ''; ; ; ';;;;
79 l
t 1
t 1
Figure D-20.                            Active chlorophyll-a_ at Stations 0 through 5, St. Lucie Plant, November 1971 - Lecember 1979.
Figure D-20.                            Active chlorophyll-a_ at Stations 0 through 5, St. Lucie Plant, November 1971 - Lecember 1979.
Line 2,184: Line 2,162:
                                                         ,        s' 'l i i , , , s , s , , i , i i i , s . . ,
                                                         ,        s' 'l i i , , , s , s , , i , i i i , s . . ,
sY '*, , , i . '. .          s i,        O          M AM J J A S oN D J F M AM J J A son D J F MA M J J A O    '4 p
sY '*, , , i . '. .          s i,        O          M AM J J A S oN D J F M AM J J A son D J F MA M J J A O    '4 p
  ;
g                STATION 2 to].________s______________________________._______.7.L_
g                STATION 2 to].________s______________________________._______.7.L_
4                                                                                                  '
4                                                                                                  '
Line 2,330: Line 2,307:
(<1)        (  )    (        (<1)      (  )
(<1)        (  )    (        (<1)      (  )
(    )      (    )      (  )    (<1)        (    )      (    )      (    )      ( )      (    )      (    )                                )                        (            )
(    )      (    )      (  )    (<1)        (    )      (    )      (    )      ( )      (    )      (    )                                )                        (            )
7415                5141          1295              .          .                          2373      IGEg LUJLENOPdYTA (I WIL( NO[[5 )                4181              .      2091          .            .          .                      .                                                        .        .
7415                5141          1295              .          .                          2373      IGEg LUJLENOPdYTA (I WIL( NO((5 )                4181              .      2091          .            .          .                      .                                                        .        .
C3                                              (<1)        (    )      (<1)      (    )      (    )      (    )      (<1)        (  )    (<1)        (<1l        (    )      (  )    (  )    (    )    (<1)      (<1) e 15679        75628      15659 122340 151256              74541        34700        39149      75183      63146    42411    1210J5      95u25 b) CdYPTvedY r*. (CRYPT 0PdYrEs)            2216D3 127945 174774 (10)        ( 7)      ( 9)      ( 1)          ( 6)      { 7)        ( 4)      ( 5)      ( 5)        ( 2)        ( 2)        ( 3)      ( 5)    ( 4)      ( B)      ( 71 AANTdJr YfA (AANfd)PdYrEs)                        .                            3135                          .          .          .                        .          .          .        .          .        ,                      ,
C3                                              (<1)        (    )      (<1)      (    )      (    )      (    )      (<1)        (  )    (<1)        (<1l        (    )      (  )    (  )    (    )    (<1)      (<1) e 15679        75628      15659 122340 151256              74541        34700        39149      75183      63146    42411    1210J5      95u25 b) CdYPTvedY r*. (CRYPT 0PdYrEs)            2216D3 127945 174774 (10)        ( 7)      ( 9)      ( 1)          ( 6)      { 7)        ( 4)      ( 5)      ( 5)        ( 2)        ( 2)        ( 3)      ( 5)    ( 4)      ( B)      ( 71 AANTdJr YfA (AANfd)PdYrEs)                        .                            3135                          .          .          .                        .          .          .        .          .        ,                      ,
(<1)          (    )      (  )      (  )      (  )    (    )      (    )      (    )      (  )    (  )    (    )    (  )      (            )
(<1)          (    )      (  )      (  )      (  )    (    )      (    )      (    )      (  )    (  )    (    )    (  )      (            )
Line 2,468: Line 2,445:
CrANJPdfTA (BLUE-GdEEN A LGA E )              . 51930      25965        3763          .      452    836      1613      3337        458        .        .          .        ,            ,          ,
CrANJPdfTA (BLUE-GdEEN A LGA E )              . 51930      25965        3763          .      452    836      1613      3337        458        .        .          .        ,            ,          ,
g) a                                          (    )      ( 1)        ( 1)        (<1)      ( )      (<1)    (<1)      (<1l      (<1)      (<!)      (  )    ( )        (    )    (  )    (    )      ( )
g) a                                          (    )      ( 1)        ( 1)        (<1)      ( )      (<1)    (<1)      (<1l      (<1)      (<!)      (  )    ( )        (    )    (  )    (    )      ( )
Ln U1 EJGLENOPdYTA ([[$L[NCIM)                  1747            .        874          .      6773        .        .        . 1112          .      903      941        g28      336            .      1241
Ln U1 EJGLENOPdYTA ((($L[NCIM)                  1747            .        874          .      6773        .        .        . 1112          .      903      941        g28      336            .      1241
(<1)        (  )      (<1l        ( )        (<1)    (  )  (    )    (  )    (<1l      (  )    (<!)    (<1)      (<1)      (<1)      (    )      (<1)
(<1)        (  )      (<1l        ( )        (<1)    (  )  (    )    (  )    (<1l      (  )    (<!)    (<1)      (<1)      (<1)      (    )      (<1)
CNYPf0PdffA (CdfPTCPHYTES)              45426 146760            96093      43933      33868    28223  10752      8870      7785    9914      9031    6585      7451      8362      24514      24811
CNYPf0PdffA (CdfPTCPHYTES)              45426 146760            96093      43933      33868    28223  10752      8870      7785    9914      9031    6585      7451      8362      24514      24811
Line 2,593: Line 2,570:
5 t,
5 t,


TABLE D-Il
TABLE D-Il PHYTOPLANKTON DENSITY AND PERCENTAOE COMPOSITION ST. LUCIE PLANT
  ;                                                                                                                        .                                        ..
PHYTOPLANKTON DENSITY AND PERCENTAOE COMPOSITION ST. LUCIE PLANT
+
+
2 OCTOBER            1979 1          .....................................................................................................                                        ........................................,,,,,,,,..,,,,,,,
2 OCTOBER            1979 1          .....................................................................................................                                        ........................................,,,,,,,,..,,,,,,,
Line 3,204: Line 3,179:
I      Larvaceans were second to copepods in total zooplankton abundance.
I      Larvaceans were second to copepods in total zooplankton abundance.
Oikopleura spp.                      comprised 4.4 percent of the total zooplankton density observed in 1979.                      This genus was present year-round, occurring in over E-13
Oikopleura spp.                      comprised 4.4 percent of the total zooplankton density observed in 1979.                      This genus was present year-round, occurring in over E-13
                                                                                                    ;


1 lI h
1 lI h
Line 3,318: Line 3,292:


i b
i b
;
YARDS                                  KILOM ETE RS c..;                                                                          ; _ _ _- _ _ _                                            ,    ,              ;
YARDS                                  KILOM ETE RS
;
c..;                                                                          ; _ _ _- _ _ _                                            ,    ,              ;
  ;                                      '4                                                                2000                    1000        0                            1    2              3
  ;                                      '4                                                                2000                    1000        0                            1    2              3
                                           ~
                                           ~
Line 3,355: Line 3,326:
:                                                        ~,
:                                                        ~,
                                                                 ~
                                                                 ~
lt
lt IE                                                                                                                              '4-iW t                                                                                    .                              :.                  .
;                                                                      !.,                                                      ,
IE                                                                                                                              '4-iW
-                                                                            ;                                                    ..
t                                                                                    .                              :.                  .
l j                    Figure E-1.                      Locations of zooplankton sampling stations,1979.
l j                    Figure E-1.                      Locations of zooplankton sampling stations,1979.
i l                                                                                                                                        qm                                    9
i l                                                                                                                                        qm                                    9
Line 3,393: Line 3,360:
                                                                                                                                                                                                   \
                                                                                                                                                                                                   \
                 <t                                                        e                                        e
                 <t                                                        e                                        e
_.;
: o.                                                      ,'
: o.                                                      ,'
s ss        ,/
s ss        ,/
Line 3,473: Line 3,439:
j                                    ;ca +          .....      .....        .....      .....        .....
j                                    ;ca +          .....      .....        .....      .....        .....
6t__---)}                            i        .....      .....        .....      .....        .....
6t__---)}                            i        .....      .....        .....      .....        .....
g_[[]}
g_((]}
g
g
   . r ycgj                        lou +          *****
   . r ycgj                        lou +          *****
Line 3,483: Line 3,449:
C-7 76          77            78          79          76          77          78                    79  YEAR r-r                                l_........___.._... 1g
C-7 76          77            78          79          76          77          78                    79  YEAR r-r                                l_........___.._... 1g
   !                                                                            __..__._...~.._..l        l__.__..........__. g2 ......_..........l              STATION
   !                                                                            __..__._...~.._..l        l__.__..........__. g2 ......_..........l              STATION
_=0 f)                                                  IMTAKE CANAL                                    DISCHARGE CANAL                        LOCAT!98
_=0 f)                                                  IMTAKE CANAL                                    DISCHARGE CANAL                        LOCAT!98 tP c :2=a M          '
    ;
tP c :2=a M          '
Figure E-4.        Annual mean density of zooplankton at Stations 11 and 12, St. Lucie Plant, b                                                      March 1976 - October 1979.
Figure E-4.        Annual mean density of zooplankton at Stations 11 and 12, St. Lucie Plant, b                                                      March 1976 - October 1979.


Line 3,493: Line 3,457:
g                                        ..
g                                        ..
3500 +                                        ** **
3500 +                                        ** **
                                  ;                                        .. ..
g                                        .. ..
g                                        .. ..
g                                        .. ..
g                                        .. ..
Line 3,516: Line 3,479:
                         ,        g                      ..    .. .. .. ..          ..        ..        ..        ..
                         ,        g                      ..    .. .. .. ..          ..        ..        ..        ..
o                  ..          ..
o                  ..          ..
                                  ;                            .. .. .. ..          .. .. ..            ..        ..        ..
O 15c3 ,            ..            ..
O 15c3 ,            ..            ..
                                                                 .. .. .. ..          .. .. ..            ..        e.        ..
                                                                 .. .. .. ..          .. .. ..            ..        e.        ..
Line 3,532: Line 3,494:
g        .. .. ..            .. ..  ..  ..    .. ..  ..  ..      .. .. .. ..          ..  ..  .. ..
g        .. .. ..            .. ..  ..  ..    .. ..  ..  ..      .. .. .. ..          ..  ..  .. ..
;                            500        .. .. .. ..            .. ..  ..  ..                                                                  .. .. .. ..
;                            500        .. .. .. ..            .. ..  ..  ..                                                                  .. .. .. ..
                                  ;    ..  ..    ..  ..
g    ..  ..    ..    ..      .. .. .. ..
g    ..  ..    ..    ..      .. .. .. ..
(C-63                                                                                    ..  ..  ..  ..
(C-63                                                                                    ..  ..  ..  ..
Line 3,590: Line 3,551:
_3)-                      g .. .. .. ..                              .. .. .. ..                      .. .. .. ..                      .. .. .. ..                .. .. .. ..                    ..  ..      .. ..
_3)-                      g .. .. .. ..                              .. .. .. ..                      .. .. .. ..                      .. .. .. ..                .. .. .. ..                    ..  ..      .. ..
(c s-__
(c s-__
                                                    ; .. .. .. ..                              .. .. .. ..                      .. .. .. ..
g    .. .. .. ..                        .. .. .. ..                                                        .. .. .. ..                .. .. .. ..                    .. .. .. ..
g    .. .. .. ..                        .. .. .. ..                                                        .. .. .. ..                .. .. .. ..                    .. .. .. ..
L--                                                                        .. .. .. ..                      .. .. .. ..                      ..  ..  ..  ..          .. .. .. ..                    .. .. .. ..
L--                                                                        .. .. .. ..                      .. .. .. ..                      ..  ..  ..  ..          .. .. .. ..                    .. .. .. ..
Line 3,600: Line 3,560:
:;-                                  76 77 76 79                        76 77 78 79                      76 77 78 79                      76 77 78 79                76 77 78 79                    76 77 78 79              Y EAR c'X a
:;-                                  76 77 76 79                        76 77 78 79                      76 77 78 79                      76 77 78 79                76 77 78 79                    76 77 78 79              Y EAR c'X a
c_      r I----- 0 ----t                      I-----    1  ----!              l-----      2  ----I            l-----        3  ----!    l-----        4  ----I        l----- 5 ----l          STATION        ,
c_      r I----- 0 ----t                      I-----    1  ----!              l-----      2  ----I            l-----        3  ----!    l-----        4  ----I        l----- 5 ----l          STATION        ,
C gg5']])
C gg5')))
0FF5HORE BOTT0"                                                                                    LOCATION E-7) e-,
0FF5HORE BOTT0"                                                                                    LOCATION E-7) e-,
   ,                                                  Figure E-6.                    Annual mean density of zooplankton at Stations 0 though 5, St. Lucie Plant, g'6' March 1976 - October 1979.
   ,                                                  Figure E-6.                    Annual mean density of zooplankton at Stations 0 though 5, St. Lucie Plant, g'6' March 1976 - October 1979.
Line 3,720: Line 3,680:
* DA" AGE D          298.7      103.2    531.1      326.3    2167.8          178.9 E
* DA" AGE D          298.7      103.2    531.1      326.3    2167.8          178.9 E
8 0enstty ts espressed in number of rooplankters per cubic meter.
8 0enstty ts espressed in number of rooplankters per cubic meter.
                                                                                                                                                                                            ;
bNunter in parentheses is percentage cuaposition capressed in percent.
bNunter in parentheses is percentage cuaposition capressed in percent.
l Cd = Obitque; 5 = Surf ace; 8 = Bottom.                                                                                                                                                l E-31
l Cd = Obitque; 5 = Surf ace; 8 = Bottom.                                                                                                                                                l E-31
Line 3,745: Line 3,704:
((1) 87.6 (2)
((1) 87.6 (2)
I i
I i
l
l Polychaeta          20.7        0.0    14.8      14.1        5.7        1.5        3.4      4.3    2.9      2.4    C.0        9.1    *1.      8.8 l (5)                (<1)      (<!)    (<!)          (<1)      ((1)      (<1)  (<1)    (<1)              (<l)    (<1)        (<1)
                                                                                                                                                                  ;
Polychaeta          20.7        0.0    14.8      14.1        5.7        1.5        3.4      4.3    2.9      2.4    C.0        9.1    *1.      8.8 l (5)                (<1)      (<!)    (<!)          (<1)      ((1)      (<1)  (<1)    (<1)              (<l)    (<1)        (<1)
<          Crustacea naspilt          10.1        0.0    22.2      7.0    17.1            0.0        3.4      0.0  14.3      4.9    2.5        9.1  20.4      8.8 (2)                (<1)      (<1)      (1)                  ((1)            (<!)    ((l)  (<1)      (<!)    (<!)      (<l) cladocera        0.0        0.0      0.0      7.0      2.8          0.0        0.0      0.0    0.0      0.0    0.0        0.0    0.0      0.0
<          Crustacea naspilt          10.1        0.0    22.2      7.0    17.1            0.0        3.4      0.0  14.3      4.9    2.5        9.1  20.4      8.8 (2)                (<1)      (<1)      (1)                  ((1)            (<!)    ((l)  (<1)      (<!)    (<!)      (<l) cladocera        0.0        0.0      0.0      7.0      2.8          0.0        0.0      0.0    0.0      0.0    0.0        0.0    0.0      0.0
(<1)    (<1) estrac oda        1.2        0.1    541.4    732.3    62.6          90.4      20.3    755.9    22.8    43.6      9.9  2949.8  183.8 2705.4
(<1)    (<1) estrac oda        1.2        0.1    541.4    732.3    62.6          90.4      20.3    755.9    22.8    43.6      9.9  2949.8  183.8 2705.4
Line 4,038: Line 3,995:
(<1) 0.0
(<1) 0.0
((1) 7.6  1 l
((1) 7.6  1 l
;
j I                        deca pode others 16.8
j I                        deca pode others 16.8
((1)
((1)
Line 4,245: Line 4,201:
ST LUCIE PLANT                                                                    I i                                                                    30 OCTWER 1979 l
ST LUCIE PLANT                                                                    I i                                                                    30 OCTWER 1979 l
5t.tton and depthC 11      12          0                  1                  2            3              4                    5        ,
5t.tton and depthC 11      12          0                  1                  2            3              4                    5        ,
;
8    5          8          5        8 l    Tanon                    8        9      5        8      5          8        5        8    5                                                l 1
8    5          8          5        8 l    Tanon                    8        9      5        8      5          8        5        8    5                                                l 1
UNDAMAGE D                                                                                                                                        l s      Protozoa              1.3      0.0    0.0      0.0    0.0        0.0      0.0      0.0  0.0      0.0  0.0        0.0        0.0    0.0
UNDAMAGE D                                                                                                                                        l s      Protozoa              1.3      0.0    0.0      0.0    0.0        0.0      0.0      0.0  0.0      0.0  0.0        0.0        0.0    0.0
Line 4,262: Line 4,217:
;        cladocera          0.0      0.0    0.0      0.0    0.0        0.0      0.0      0.0  0.0      0.0  6.6      0.9        0.0    0.0 1                                                                                                                  (<!)      (<1) estrac oda          0.0      0.0    0.0      0.0    0.0        0.0      0.0      0.0  0.0      0.0  0.0      0.0        0.0    0.0 cope poda        228.6    194.8 1770.0    1205.9  1843.0    4026.0      429.2    156.8 463.2  249.1  602.6    344.4      213.4    89.6 l
;        cladocera          0.0      0.0    0.0      0.0    0.0        0.0      0.0      0.0  0.0      0.0  6.6      0.9        0.0    0.0 1                                                                                                                  (<!)      (<1) estrac oda          0.0      0.0    0.0      0.0    0.0        0.0      0.0      0.0  0.0      0.0  0.0      0.0        0.0    0.0 cope poda        228.6    194.8 1770.0    1205.9  1843.0    4026.0      429.2    156.8 463.2  249.1  602.6    344.4      213.4    89.6 l
(8)    (32)    (67)      (88)    (84)      (92)      (41)      (61)  (54)    (42)  (64)      (68)        (25)    (70)
(8)    (32)    (67)      (88)    (84)      (92)      (41)      (61)  (54)    (42)  (64)      (68)        (25)    (70)
'I
'I j
;
ctrripedia (barnacle) naupitt    2474.9    398.8    32.3      16.2  135.4        6.7      10.9      6.0  13.3    12.1    9.2      12.3        2.5    0.9 1                          (89)    (65)    (1)      (1)    (6)      (<1)      (1)      (2)  (2)    (2)    (1)      (2)        ((1)    (<l) deca poda          20.5      7.9    28.2      34.6    33.9      67.3      28.6      23.6 114.8  106.7  31.8      35.7        14.8    11.5
j ctrripedia (barnacle) naupitt    2474.9    398.8    32.3      16.2  135.4        6.7      10.9      6.0  13.3    12.1    9.2      12.3        2.5    0.9 1                          (89)    (65)    (1)      (1)    (6)      (<1)      (1)      (2)  (2)    (2)    (1)      (2)        ((1)    (<l) deca poda          20.5      7.9    28.2      34.6    33.9      67.3      28.6      23.6 114.8  106.7  31.8      35.7        14.8    11.5
(<1)      (1)    (1)      (3)    (2)        (2)      (3)      (9)  (13)    (18)    (3)      (7)        (2)    19) 4 i      others              3.2      4.6    0.0      4.6    3.8      13.5      0.0      0.G  0.0      1.2  0.0      0. ')      0.0    0.4
(<1)      (1)    (1)      (3)    (2)        (2)      (3)      (9)  (13)    (18)    (3)      (7)        (2)    19) 4 i      others              3.2      4.6    0.0      4.6    3.8      13.5      0.0      0.G  0.0      1.2  0.0      0. ')      0.0    0.4
(<!)    (<!)              (<!)    (<1)      ((1)                              (<l)                                ((l)
(<!)    (<!)              (<!)    (<1)      ((1)                              (<l)                                ((l)
Line 4,353: Line 4,307:


TABLE E-16
TABLE E-16
  ,              STATISTICAL COMPARIS0N OF TOTAL ZOOPLANKTON DENSITY CANAL STATIONS 11 AND 12 ST. LUCIE PLANT 6 DECEMBER 1978 - 30 OCTOBER 1979
  ,              STATISTICAL COMPARIS0N OF TOTAL ZOOPLANKTON DENSITY CANAL STATIONS 11 AND 12 ST. LUCIE PLANT 6 DECEMBER 1978 - 30 OCTOBER 1979 ANALYSIS OF VARIANCE:  STATIONS
                                                                                                  ;
ANALYSIS OF VARIANCE:  STATIONS
[
[
Source                  DF    Sum of squares            Mean square Model                  1        2.64003669              2.64003669 Error                  22      39.72216939                1.805555315 1
Source                  DF    Sum of squares            Mean square Model                  1        2.64003669              2.64003669 Error                  22      39.72216939                1.805555315 1
Line 4,459: Line 4,411:
i
i
\
\
t
t 1
;
E E-52 I
1 E
E-52 I
i                                                                            _ _ . _ _ , , . . , , , _ , . _ , _ _ . . . - _ .                                                      . _ _ .
i                                                                            _ _ . _ _ , , . . , , , _ , . _ , _ _ . . . - _ .                                                      . _ _ .


Line 4,481: Line 4,431:
Error                    66              62.89382322                        0.95293672 Corrected total          71                67.64579289 l      Source                  DF                        Type I SS          F value                    PR > F Station                  5                    4.75196967                  1.00                    0.4271 I
Error                    66              62.89382322                        0.95293672 Corrected total          71                67.64579289 l      Source                  DF                        Type I SS          F value                    PR > F Station                  5                    4.75196967                  1.00                    0.4271 I
i DUNCAN'S MULTIPLE RANGE TEST:                          STATIONSa Alpha level =0.05                                      DF=66                            MS=0.952937 GROUPING                              MEAN                                N                          STATION A                          2.951444                                  12                              1 2.916422                                  12                              3 A
i DUNCAN'S MULTIPLE RANGE TEST:                          STATIONSa Alpha level =0.05                                      DF=66                            MS=0.952937 GROUPING                              MEAN                                N                          STATION A                          2.951444                                  12                              1 2.916422                                  12                              3 A
l A                          2.748999                                  12                              0
l A                          2.748999                                  12                              0 A                          2.512990                                  12                              2 A                          2.486965                                  12                              5 l        A                          2.226284                                  12                              4 I
;
A                          2.512990                                  12                              2 A                          2.486965                                  12                              5 l        A                          2.226284                                  12                              4 I
i aMeans with the same letter are not significantly different.
i aMeans with the same letter are not significantly different.
1 E-54 I
1 E-54 I
Line 4,657: Line 4,605:
w l
w l
g l                                                            ;
g l                                                            ;
                                                                                  ;
l                                                                              '
l                                                                              '
l        Figure F-1.          Locations of macrophyte sampling stations,1979.
l        Figure F-1.          Locations of macrophyte sampling stations,1979.
Line 4,682: Line 4,629:


I i
I i
4
4 l
  ;
4 i
l 4
1                                                                                                                            TABLE F-1
i 1                                                                                                                            TABLE F-1
,                                                                                                                          (cont i nued )
,                                                                                                                          (cont i nued )
j                                                                                                  MACROPHYTE SPECIES COLLECTED AT OFFSHCRE STAT 10t6
j                                                                                                  MACROPHYTE SPECIES COLLECTED AT OFFSHCRE STAT 10t6
Line 4,810: Line 4,756:
1                                                                                  1 Sal i nity l
1                                                                                  1 Sal i nity l
Sal i nity , or the salt content of the water, is the chief factor which makes marine life distinct from other faunal assemblages.        Because of the salt, the ocean provides a medium which is          1) similar to salt
Sal i nity , or the salt content of the water, is the chief factor which makes marine life distinct from other faunal assemblages.        Because of the salt, the ocean provides a medium which is          1) similar to salt
;
                                                                                 \
                                                                                 \
l concentrations in internal body fluids, and thus limits the necessity of      )
l concentrations in internal body fluids, and thus limits the necessity of      )
Line 4,825: Line 4,770:
  !    mi ni ng factor in the distribution and abunda nce of most ma ri ne life I
  !    mi ni ng factor in the distribution and abunda nce of most ma ri ne life I
however, since it is generally well supplied throughout the oceans.      The
however, since it is generally well supplied throughout the oceans.      The
:                                                                                                                I saturation level of dissolved oxygen in sea water is temperature depen-
:                                                                                                                I saturation level of dissolved oxygen in sea water is temperature depen-1 dent and, for conditions at St. Lucie, would range from 8.1 mg/l at 15 C l    to 6.1 mg/l at 30 C.
                                                                                                                  ;
1 dent and, for conditions at St. Lucie, would range from 8.1 mg/l at 15 C l    to 6.1 mg/l at 30 C.
1 I                                                                                                            i 1
1 I                                                                                                            i 1
G-6                                                                    l
G-6                                                                    l
Line 4,999: Line 4,942:
2 e@
2 e@
St.Lucie Plant. '      "h '
St.Lucie Plant. '      "h '
;                                              ..                        ,
w  ' i; . ..
w  ' i; . ..
t
t x                ,                            e
                                                              . : ,;:
x                ,                            e
.I                                                                                                            ,.
.I                                                                                                            ,.
                                                                               ;~
                                                                               ;~
Line 5,048: Line 4,988:
0.09
0.09
* 1 i
* 1 i
;
               )E    0.08 o
               )E    0.08 o
                                             ,    o z
                                             ,    o z
Line 5,056: Line 4,995:
4 0.04 e
4 0.04 e
0.03                                              o                            e a
0.03                                              o                            e a
O.02
O.02 e
;
0.01
e 0.01
                     <O.01                                one                one  one    one  one J      .F    M      A    M    J      J      h    S      O    N  D Figure G-3. Mean amonia values for offshore Stations 0 through 5 combined, St. Lucie Plant, 1979.
                     <O.01                                one                one  one    one  one J      .F    M      A    M    J      J      h    S      O    N  D Figure G-3. Mean amonia values for offshore Stations 0 through 5 combined, St. Lucie Plant, 1979.
l l
l l
Line 5,133: Line 5,071:
;                            l-J    F    M    A      M    J      J    A      S      O        N                          D Figure G-7. Mean total organic carbon values for offshore
;                            l-J    F    M    A      M    J      J    A      S      O        N                          D Figure G-7. Mean total organic carbon values for offshore
{                                              Stations 0 through 5 combined, St. Lucie Plant, 1979.
{                                              Stations 0 through 5 combined, St. Lucie Plant, 1979.
;


m- ' 3 -' a            m  m      m    m      m    m        m- 1    Ful F
m- ' 3 -' a            m  m      m    m      m    m        m- 1    Ful F
Line 5,187: Line 5,124:
t-j Z
t-j Z
O.02 -
O.02 -
                                                                              ;
3 f,._      -
3 f,._      -
0.01 -        .
0.01 -        .
Line 5,212: Line 5,148:
[,                  $
[,                  $
2                                                            3
2                                                            3
;                                                                                                        ._                          a
;                                                                                                        ._                          a 1
;
O.0 01 --                                                "
1 O.0 01 --                                                "
                         , g-                                                              ;,,,,,,,,,,;,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
                         , g-                                                              ;,,,,,,,,,,;,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
j                                                                                                                                                                        ,,,,,,,,,,,          ,,,,,,,.
j                                                                                                                                                                        ,,,,,,,,,,,          ,,,,,,,.
FMAMJJASONDJFMAMJJAMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASOND
FMAMJJASONDJFMAMJJAMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASOND 1
;
1
                         ?'; j-                                                          1972                      1973                    1976      1977        1978                1979 j'                      -
                         ?'; j-                                                          1972                      1973                    1976      1977        1978                1979 j'                      -
I
I
Line 5,247: Line 5,180:
8          04-- ' '                                      !                      l 1
8          04-- ' '                                      !                      l 1
1 0.3 --                                                      l 1
1 0.3 --                                                      l 1
                                                                    ,;
i          U            O2--
i          U            O2--
:          0  0 M                                                        s'                !
:          0  0 M                                                        s'                !
Line 5,256: Line 5,188:
!        b" O
!        b" O
FMAMJJASONDJFMAMJJAMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASOND 1976
FMAMJJASONDJFMAMJJAMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASOND 1976
                                                                                                                           . ..ii i                              1972                  1973                        1977          1978            1979 i        M i        D
                                                                                                                           . ..ii i                              1972                  1973                        1977          1978            1979 i        M i        D k
;
Figure G-ll.          Mean silica values for 1972-1973 baseline study (Stations 1 through 5 combined) and 1976-1979 operational study (Stations 0 through 5 combined), St. Lucie Plant.
k Figure G-ll.          Mean silica values for 1972-1973 baseline study (Stations 1 through 5 combined) and 1976-1979 operational study (Stations 0 through 5 combined), St. Lucie Plant.


M  M M        M                                    M      M            M              8 18 --                    ,
M  M M        M                                    M      M            M              8 18 --                    ,
Line 5,464: Line 5,395:
Regardless of year, however, the spatial distribution of turtle nests fonned a gradient with the lowest densities being found on the northern              l I  portion of the island. Li near regression analysis of variance of nest density with respect to location describes the gradient of nesting during each year. The linear regression equations were derived as.
Regardless of year, however, the spatial distribution of turtle nests fonned a gradient with the lowest densities being found on the northern              l I  portion of the island. Li near regression analysis of variance of nest density with respect to location describes the gradient of nesting during each year. The linear regression equations were derived as.
l j                                      Y = a + bx                                          l I
l j                                      Y = a + bx                                          l I
;
l Year          Equation            Coefficient of Detennination, (r 2) l l
l Year          Equation            Coefficient of Detennination, (r 2) l l
I        1971 1973 1975 Y=  70.03 + 7.39X Y = 110.24 + 2.53X Y= 67.20 + 3.29X 0.74 0.61 0.59 l
I        1971 1973 1975 Y=  70.03 + 7.39X Y = 110.24 + 2.53X Y= 67.20 + 3.29X 0.74 0.61 0.59 l
Line 5,648: Line 5,578:
                   \84                    (\ oar  4        macc mer l
                   \84                    (\ oar  4        macc mer l
                               ,c r
                               ,c r
'                          ;                      ,,
v b*
v b*
i                                                    '){                                                                                        c l                                .L                    !                                    -
i                                                    '){                                                                                        c l                                .L                    !                                    -
Line 5,717: Line 5,646:
                                               \          saa n    c.,  ',-
                                               \          saa n    c.,  ',-
l
l
                                 . s            s
                                 . s            s l                                }                .
                                                                        ;    .
l                                }                .
_ g \.                    .,
_ g \.                    .,
                                                                                               \
                                                                                               \
Line 5,753: Line 5,680:
Z Z              Z      Z        Z l          $  100 - _
Z Z              Z      Z        Z l          $  100 - _
Z                Z              Z      Z        Z
Z                Z              Z      Z        Z
;
             @        Z            Z              Z    Z      _
             @        Z            Z              Z    Z      _
l                    Z            Z              Z    Z              Z                Z              Z      Z        Z Z            Z              Z    Z              Z                Z              Z      Z      Z j                    Z            Z              Z    Z Z              Z      Z      Z
l                    Z            Z              Z    Z              Z                Z              Z      Z        Z Z            Z              Z    Z              Z                Z              Z      Z      Z j                    Z            Z              Z    Z Z              Z      Z      Z l          2              3          4            5                6          7      8      9 I                                                                  SAMPLE AREA i
;
l          2              3          4            5                6          7      8      9 I                                                                  SAMPLE AREA i
i Figure H-3. Number of loggerhead turtle nests in each sample area for each study year, 1971,1973,1975,1977, and 1979, Hutchinson Island.
i Figure H-3. Number of loggerhead turtle nests in each sample area for each study year, 1971,1973,1975,1977, and 1979, Hutchinson Island.
I
I
  ;


m                                        W                      W    W      m            W          m            m              M        m              W            W          W W m e m l
m                                        W                      W    W      m            W          m            m              M        m              W            W          W W m e m l
Line 5,800: Line 5,723:
l          6. .
l          6. .
:          8IE i                                                                                              --                    '                          '
:          8IE i                                                                                              --                    '                          '
  !          (M                                                                                    i              2          3              4        5          6    7            8            9 t, m                                                                                                                                  SAMPLE AREA
  !          (M                                                                                    i              2          3              4        5          6    7            8            9 t, m                                                                                                                                  SAMPLE AREA i.w::p                                                                              Figure H-4.            Loggerhead turtle nesting success by sample area
;
i.w::p                                                                              Figure H-4.            Loggerhead turtle nesting success by sample area
]          2Q                                                                                                          and year, 1973,1975,1977, and 1979, Hutchinson gg                                                                                                          Island.
]          2Q                                                                                                          and year, 1973,1975,1977, and 1979, Hutchinson gg                                                                                                          Island.
(f~- ,a
(f~- ,a
Line 5,833: Line 5,754:
j i                ej    40 --
j i                ej    40 --
4 M
4 M
;
60        '
60        '
W2)        t
W2)        t
Line 5,867: Line 5,787:
z 4[#
z 4[#
i LLS                          {                                          \ .
i LLS                          {                                          \ .
                                                                                                                        ;
M                                                                          \i\
M                                                                          \i\
g  lo --                  f'                                                \
g  lo --                  f'                                                \
Line 5,969: Line 5,888:
g-                                                                                  :        :
g-                                                                                  :        :
l 1
l 1
                                                                                                                                                                  ;
I
I


Line 6,017: Line 5,935:
1973          N=26 0 2E FORT PIERCE INLET
1973          N=26 0 2E FORT PIERCE INLET
                                                                             'N h                                                                ,
                                                                             'N h                                                                ,
l 1975          N= 37 0
l 1975          N= 37 0 i ..                                                            15 FORT PIERCE INLET C J (C'ef                7 F '= -I mym
  ;
i ..                                                            15 FORT PIERCE INLET C J (C'ef                7 F '= -I mym
                                                                                       'F{" :
                                                                                       'F{" :
L                                          -
L                                          -
Line 6,033: Line 5,949:
jpr= t x-o 44,_y, , Q, JU41-34 t S!ar . 9r-
jpr= t x-o 44,_y, , Q, JU41-34 t S!ar . 9r-
   ,-                        -      o    e    c.
   ,-                        -      o    e    c.
t 1979            N=15 0 FORT PIERCE INLET
t 1979            N=15 0 FORT PIERCE INLET M      CE L
                      ;
M      CE L
                                                                         ]p *
                                                                         ]p *
* lD lD  3'I Of f      Al  1JL XL
* lD lD  3'I Of f      Al  1JL XL
Line 6,098: Line 6,012:
a197.. and 1979 recapture data were insufficient to contrib>::e to this ana;ysis.
a197.. and 1979 recapture data were insufficient to contrib>::e to this ana;ysis.
:I l
:I l
I
I I
;
l I
I l
1 I
I 1
l I
I l
1 I
I 1
H-35
I H-35
                                               - , , .          - - - - - - - - . , , , - , - . , - -    ,---.---,,,,,------------.--.vn
                                               - , , .          - - - - - - - - . , , , - , - . , - -    ,---.---,,,,,------------.--.vn
                                                                                                           -                                        . - , . ,}}
                                                                                                           -                                        . - , . ,}}

Latest revision as of 07:54, 16 March 2020

Annual Nonradiological Environ Monitoring Rept,1979, Vol 3,biotic Monitoring
ML19309B618
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 02/29/1980
From:
APPLIED BIOLOGY, INC.
To:
Shared Package
ML17266A162 List:
References
AB-244, NUDOCS 8004040448
Download: ML19309B618 (150)


Text


_ -- _

APPLIED BIOLOGY, INC. ! i AB-244 0

l i l FLORIDA POWER S. LIGHT COMPANY ST. LUCIE PLANT 1 ANNUAL NON-RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT 1979 P312 2%11L VOLUME 111 BIOTIC MONITORING

'e., m.m. ,~ouermi.< seco v . m.~r., eeo. ,. game -

I I AB-244 l

FLORIDA POWER & LIGHT COMPANY t

! ST. LUCIE PLANT i

1 f

3 ANNUAL NON-RADIOLOGICAL ENVIRONMENTAL ig lg MONITORING REPORT Ig

\E i i i

li VOLUME III l BIOTIC MONITORING f I

I 1979 h ,

i l

l l1 ,

APPLIED BIOLOGY, INC. l 1

ATLANTA, GEORGIA j February 1980

BIOTIC MONITORING l TABLE OF CONTENTS l VOLUME II Page i TABLE OF CONVERSION FACTORS FOR METRIC UNITS -------------- iV j EXECUTIVE

SUMMARY


v l

A. INTRODUCTION ----------------------------------------------- A-1 B a c k g r o u nd - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - A-1 l Area Description ------------------------------------ A-3 Sampling rhsign ------------------------------------- A-4 Figures --------------------------------------------- A-6 l Tables ---------------------------------------------- A-8 B. FISH AND SHELLFISH ----------------------------------------- B-1 I n t r od uc t i o n - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - B-1 l

I m p i ng eme nt - - - --- --- - -- - -- - ---- - -- - - - -- - - ---- - ---- -- B-9 C a na l G i l 1 N e t s ------------------------------------- B-11 1

0 f f s ha re G i l 1 N et s ---------------------------------- B-15 l Trawl ----------------------------------------------- B-21 hW Beach Seine -----------------------------------------

I c h t hy o pl a nk t o n -- --- - - - ---- - --- - - ---- - - - - ---- --- - - - -

B-23 B-26 Summary --------------------------------------------- B-42 g L i t e ra t u re C i t ed ------------------------------------ B-46 g Figures --------------------------------------------- B-49 Tables ---------------------------------------------- B-70 l

C. MACR 0 INVERTEBRATES ----------------------------------------- C-1 I n t r o d uc t i o n - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C-1 l Ma t e ri al s a nd Met hod s ------------------------------- C-2

( R es ul t s a nd D i sc u s s i o n ------------------------------

S u mma ry - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

L i t e ra t u re C i t ed - -----------------------------------

C-4 C-32 C-3 5 C3 I

l Figures ---------------------------------------------

Tables ---------------------------------------------- C-63 VOLUME III l

D. PHYT 0 PLANKTON ---------------------------------------------- D-1 h Introduction ---------------------------------------- D -1 W Ma t e ri al s a nd M et hod s ------------------------------- D -3 l

R es ul t s a nd D i sc us s i o n ------------------------------ D-8 I

S u mma ry - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

L i t era t u r e C i t ed ------------------------------------

Figures ---------------------------------------------

D-20 D-23 D -26 Tables ---------------------------------------------- D-49 I

I ii I.

l I

l E. ZOOPLANY, TON -----------------------------------------------

Introduction ---------------------------------------

E-1 E-1 I

l Ma t e ri al s a nd Met hcd s ------------------------------

R es ul t s a nd D i sc u s s i o n -----------------------------

S umma ry - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

E-4 E-7 E-18 g L i t era t u re C i t ed ----------------------------------- E-20 g Figures -------------------------------------------- E-22 Tables --------------------------------------------- E-29 l

Il F. AQUATIC MACR 0PHYTES ---------------------------------------

I n t r od uc t i o n - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - - - - -

Ma t e ri al s a nd Met had s ------------------------------

F-1 F -1.

F-2 I

l P es ul t s a nd D i sc u s s i o n -----------------------------

S u mma ry - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

L i t e ra t u re C i t ed -----------------------------------

F-3 F-5 F-6 F-7 I

Figure ---------------------------------------------

Table ---------------------------------------------- F-8 l G. WATER QUALITY --------------------------------------------- G-1 l I n t r od uc t i o n - - - - - - - - -- -- - -- - - - -- - -- - - -- ---- -- ---- --

P hy s i c a l Pa rame t e rs --------------------------------

R es ul t s a nd D i sc u s s i o n -----------------------------

G-1 G-1 G-4 C h emic al Pa rame t e rs -------------------------------- G-9

.i R es ul t s a nd D i sc u s s i o n -----------------------------

S u mma ry - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

G-10 G-16 L i t e ra t u r e C i t ed -----------------------------------

I Figures --------------------------------------------

Tables ---------------------------------------------

G-18 G-20 G-32

. H. TURTLES --------------------------------------------------- H-1 l I n t r od uc t i o n - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H-1 Ma t e ri al s a nd Met had s ------------------------------ H-2 R es ul t s a nd D i sc u s s i o n ---- r- ----------------------- H-5

,I S u mma ry - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H-17 L i t e ra t u re C i t ed ----------------------------------- H-19 I Figures --------------------------------------------

Tables ----------- -------------------------------

H-21 H-32 I

I I

1 I

1 I( iii I

I l

i D. PHYTOPLANKTON I

Enviromental Technical Specification (3.1.B.b) l Plankton - Plankton samples will be collected monthlj.

p Both zoopla nkton and phytopla nkton species will be identified as to kind and abundance. Chlorophyll "a" analysis will be perfomed as a measure of prima ry I product ivity.

INTRODUCTION l The purposes of the phytoplankton study at the St. Lucie Plant are

1) to monitor cha nges in phytoplankton density, relative abunda nce, pigment levels, and productivity and 2) to examine the relationships between these variables and power plant operation with regard to physi-cal and chemical parameters.

Phytoplankton consists of the chlorophyll-bearing algae which drift passively or have limited means of locomotion and are, therefore, carried largely by waves and currents in aquatic environments. Phytopla nkters ,

along with macrophytes which are important contributors only in shallow water (Reid,1961), form the basis of the aquatic food chain using solar energy to convert i norga nic nutrients into protoplasm by mea ns of photosynthesis. Phytopla nkters are consumed by zooplankters and other I filter feeders which, in turn, provide food for larger carnivores. Thus, phytoplankton abundance and composition in aquatic ecosys tems ultimately determi ne the qua ntity and quali ty of va rious larger organisms which depend on phytoplankters for food.

I D-1

1 I

l 5  !

Physical and chemical factors which influence phytoplankton standing crop and productivity include water temperature, light, nutrient availa-bility, salinity, and current. Because major groups of algae vary both l in temperature tolerance ranges and in temperature ranges for optimum growth (Patrick,1969), themal additions from power plants may affect the composition as well as the density of entrained phytopla nkton.

Alterations of phytoplankton species composition, diversity, and popula-tion succession have been attributed to power plant themal addition in various studies (Carpenter, 1973; Patrick, 1974; B ri a nd , 1975).

Extensive changes in phytoplankton composition may disrupt food chain relationships and affect the diversity and condition of consumer forms because various phytoplankton groups differ in their relative food value.

I Investigators have found that adverse environmental factors in addi-tion to increased water temperature create a combined impact on the phy-toplankton community which may be greater than that of either parameter alone (Grayum, 1971; Fisher and Wurster, 1973; Griffiths,1973; Thomas and Dodson,1974; Fox and Moyer,1975; Flemer and Sherk,1977; Roberts, 1977). Even when water temperatures are not high enough to cause death, these synergistic effects may profoundly disturb phytopla nkton

!I productivity , species compattion, and physiology; this may directly or indirectly lead to impact at higher trophic levels.

Recent studies have addressed the combined effects of thermal addi-tion and chlorination on phytoplankton standing crop and productivity.

Mixed phytoplankton cultures taken from the intake and discharge canals

'I D-2 I

{

l of a coastal power plant indicated substantial growth recovery potential I

of entrained phytopla nkton (Goldma n and Quinby, 1979). In another coastal power pla nt study, however, phytopla nkton nitrate reductase 1

(enzyme) activity was depressed as a result of entrainment and showed no l~ sign of recovery following a 24-hour incubation period (Peck and Warren, 1978). One hundred percent mortality of entrained phytoplar.kton was observed at total residual chlorine concentrations of greater than 1.0 part per million in a power plant study in Connecticut (Gentile et al.,

1976). Variability among these results as well as among those previously l cited show that power plant effects are difficult to generalize; they must be assessed on the basis of individual pla nt location and opera-tional cha racteristics. Factors commonly associated with coastal power plants, which include the proportionately small percentage of available 1

water entrained, complete dissipation of chlorine in seawater, and rapid return of cooling water to ambient temperature, minimize the impact of entrainment on phytoplankton (Goldman and Quinby,1979).

l.

MATERIALS AfiD METHODS l

Phytoplankton Analysis l

)

Monthly phytoplankton samples were collected from surface and bottom levels of the water column at six offshore stations (Stations 0 through l 5) and in the intake canal (Station 11; Figure D-1). After flovember 1976, only the surface level was sampled in the discharge canal (Station l

12). Replicate 1-1 whole-water samples were collected at each station with a pump designed to minimize damage to the phytoplankters (Figure D-2). Each 1-1 water sample was preserved in the field with 5 percent I D-3 I

l l

l buffered formalin and returned to the laboratory. The preserved samples were allowed to settle for a minimum period of 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> per centimeter of height of sample before concentration (EPA,1973). Whole-water samples were used in conjunction with the sedimentation technique for qualitative  ;

analyses and quantitative estimates of standing crop.

l Microscopic analysis was performed by the Utemohl (1958) technique with inverted compound mic roscopes equipped with cal ibrated ocula r mic rometers. Identifications and counts were made af ter the sample con-centrates had settled a minimum of 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> in counting chambers. Through l the use of random field counts, phytoplankton species were enumerated i (Littleford et al . ,1940; APHA,1971; EP A,1973) in two identically pre-pared counting chambers per replicate sample. A minimum of one-half the entire counting chamber was examined to enumerate large and relatively scarce phytoplankters. Statistical analyses (hierarchical design analy-sis of variance) were used to detemine the examined volume of sample concentrate necessary to ensure 90 percent accuracy in counts at the 95 percent confidence interval .

All phytopla nkters , except some green and blue-green al ga e , were

, counted i ndi vid ual ly. Filamentous green and blue-green al ga e were measured in 100u sta nda rd lengths , with each length representi ng one counting unit. Colonial forms exclusive of diatoms were counted, with each colony representing one counting unit. An average number of indivi-duals per colony was specified where possible. Cells per liter (N) were calculated by:

D-4 t_ , . .

[

c Vs I N =

V c

C I

i l Vj where: C = Units counted; Vs = Volume of sample concentrate, in milliliters; V c = Counted concentrate volume detennined by multiplyi.ng the aliquot volume, in miliiliters, by the proportion of the counting chamber which was examined; Vi = Initial sample volume, in liters.

As part of the ABI quality assurance program, a minimum of two indi-viduals verified both qualitative analyses and counts for each group of monthly samples. Analysis of variance was used to detennine significant differences between counts. If discrepancies were greater than 10 per-cent or if significant di f ferences exi sted between operators at the 95-percent confidence level , counts were repeated. Qualitative verifica-tions of new species were performed on each sample as new species were encountered. All samples were retained in the Applied Biology laboratory as permanent references.

I Samples for water chemistry were collected and physical measurements I a nd weather observations were made concurrently wi th phytopla nkton collections at each station. These data, which are presented in Section G of this report, were examined as potential factors infl uenci ng phy-topiankton populatians.

D-5 L -- - - - - - - - - - -

i l

l l Pigment Analysis Replicate water samples for pigment detenninations were collected monthly concurrently with phytoplankton samples. Samples were pumped from specified surface and bottom depths at each station, stored in 25-1 l

polyethylene containers, and tra nsported to the on-site laboratory as quickly as possible to minimize chlorophyll degradation.

I Samples were processed accordi ng to the method of Strickland and Parsons (1972) and the recommendations of UNESCO (1966). Samples were l

filtered on the day of collection through Whatman GFC filters; these were folded in half with the filtered particulates on the inside, immediately frozen under darkened conditions, and shipped frozen in light-proof con-tainers to the Atlanta laboratory for extraction and analysis.

I Filters from replicate samples were extracted by gri ndi ng in a 90 percent aqueous solution of acetone. The volume of the extract was measured ard extinction values were read with a spectrophotometer at a slit width of 1.0 nanometer (nm), using 1-cm cuvettes.

Chl orophyll-a_, - b_ , ard -c concentrations were detennined from readings at 665, 645, and 630 nm, respectively. Carotenoid concentration was determined from exti nction at 480 nm. The amount of nonactive l chl orophyll-a , in tenns of the quantity of phaeopigments present, was ercimated from extinction at 665 nm 1 minute after acidification with 50-percent hcl . All extinctions were corrected by subtracting the tur-bidity reading at 750 nm. Excessive turbidity readings were reduced by 0-5

, additional centrifugation. Results were obtained from the equations of l

Strickla nd aM Parsons (1972), and chlorophyll and phaeopigment values l were expressed in milligrams per cubic meter. Carotenoid values were expressed in millispecified pigment units per cubic meter (m-SPU/m3 ),

l l

l Statistical Procedures For statistical a nalysis , phytoplankton density data were trans-fonned to logn (density /l iter + 1) to red uce the effect of non-homogeneous variation and skewness in density data, and geometrical means l

were calculated. The single discharge ca nal value was compared to the average of surface and bottom intake ca nal val ues. The Statistical l

Analysis System (SAS; Barr et al.,1976) was used in all analyses. The l General Linear Model s (GLM) Proced ure, vhich provides the regression approach to analysis of va ria nce, was the method used to examine 1

interstation and annual variation in phytoplankton density and va rious pigments for 1979 and for monitoring data over all 4 years. Examples of individual variables, class variables, and models used are shown in Table l D-1. Duncan's multiple range tests were used to determine which means were significantly different. The relationships between phytoplankton l

parameters (dens ity a nd pigments) a nd selected physical and chemical variables were exami ned through simpl e correlations utilizi ng the l

Correlation (CORP) Procedure and stepwise regression utilizing the maxi-2 l mum R technique. To eliminate seasonality from the data, variables were either sine or cosine adjusted. The residual variation in each variable, 1

after seasonal variation had been removed, was then used in regression analyses. The 0.05 level of significance was employed in all statistical comparisons, unless otherwise noted.

D-7 I

I l

l

[ December 1979 phytoplankton abundance, percentage composition, and pigment data were included in this report; however, because of the length of time between phytoplankton sample collection and completion of species analysis, statistical treatments did not include this last month's data.

l December data will be statistically analyzed in the 1980 Annual Non-Radiological Environmental Monitoring Report.

I RESULTS AND DISCUSSION Phytoplankton Density Total phytoplankton densities in 1979 ranged from 38,512 x 103 cells per liter to 265 x 103 cells per liter at offshore Stations 0 through 5 and from 30,199 x 103 to 809 x 103 cells per liter at Stations 11 and 12, (the intake and discharge canals, respectively; Tables D-2 through D-13).

Densities in the intake and discharge canals and at Station 1 were generally higher than at offshore Stations 0 and 2 through 5 in 1979 and in all previous monitoring studies (Figures D-3 through D-5). Densities at Station 0 in 1979 and 1978 were al so frequently higher than at Stations 2 through 5. Lowest densities occurred most often at Station 3 as in all previous years. Contrary to the results of previous studies, densities at offshore bottom stations were not consistently higher than corresponding surface densities in 1979. Higher surface densities, higher bottom densities, and nearly equal surface and bottom densities occurred with similar frequency.

Annual mean phytoplankton densities both in the intake and discharge canals and at offshore stations were generally similar in 1979 and 1976 D-8

I l

B l and were higher than in 1977 and 1978 (Figures D-3 through D-5). Annual variation in mean densities was similar at all stations. A bimodal pat-l tern of seasonal variation in total phytoplankton density resulted from spring maxima, sunmer reductions, and secondary autumn increases at the l

offshore stations (Figure D-6) and in the intake and discharge canals in l 1976,1978, and 1979, whereas a unimodal pattern was observed in 1977.

The variation in mean densities and seasonal abundance was typical of l natural variation observed in the St. Lucie area (Youngbluth et al . ,

1976) and did not provide evidence of St. Lucie Plant impact.

I l

Phytoplankton Community Composition In 1979, diatoms were the nest abundant phytoplankton group at all I stations. Diatoms are the dominant phytoplankters in East Coast neritic waters (Smayda , 1957; Patten et al . 1963; Carpenter, 1971; Mulford and l

Norcross.1971; Marshall ,1976). Diatom relative abundance ranged from 7 to 95 percent, (Tables D-2 through D-13) and diatoms were dominant on l

most sampling dates (Figures D-7 through D-17).

l The relative abundance of unidentified phytoflagellates ranged from 4 to 57 percent. This group sometimes achieves seconda ry importance I (Smayda ,1957; Youngbluth et al . ,1976) and was occasionally dominant or codominant with diatoms in 1979.

I Phytoplankton composition was similar in 1977,1978, and 1979 and in each of these years, representation of non-diatom groups was greater than in 1976. As in previous studies, variation in offshore phytoplankton D-9

E l

composition during 1979 was seasonally influenced and did not reflect l

plant impact.

l \

Seasonal Occurrence of Species The seasonal composition of dominant phytoplankton species in 1979 was similar to that in previous years (Table D-14). Skeletonema costatum and Nitzschia delicatissima continued to be the most abundant phytoplank-ters. Seasonal variations in the abundance of dominant phytoplankton species were either bimodal or unimodal. Many of these species were present in low density or were not observed during the warmer nonths (June through September), or during the cooler nonths (December through February). The only consistent long-term seasonal patterns were the exclusion of species from certain seasons; Asterionella japonica never occurred as a dominant in sunmer or autumn, and Nitzschia closterium, Prasinophyte sp. 1, Thalassionema nitzschioides, and Tropidoneis lepi-doptera were excluded as major species from either or both of the spring and summer periods. Numbers of dominant species and variation in the seasonal occurrence of dominant species has remained similar during all operational monitoring. This simila rity indicated that neither major shifts in species composition nor alteration of natural, annual suc-cession has resulted from St. Lucie Plant cooling water discharge.

Statistical Evaluation of Offshore Phytoplankton Data As in previous years, both surface and bottom annual mean phy-toplankton densities at Station 1 were higher than at all other offshore stations (Figures D-4 and D-5). Surface densities at Stations 0 and 1 I D-10

were significantly higher than those at other offshore stations (Table D-15). At the bottom, densities at Station 1 were significantly higher l than at Stations 2, 3, ard 4 and densities at Station 0 were signifi-ca ntly higher than at Station- 3 a nd 4 (Table D-16). In general ,

increased densities of various taxa contributed proportionately to the increased density at Station 1 and no qualitative shift in phytoplankton composition was attributable to plant operation.

I The persistence of significantly higher densities on the surface and bottom at Station 1 in 1978 and 1979 and over 4 years of pooled data can-not be adequately explained by natural variation alone (Tables D-17 and D-18). Although the occasional xcurrence of significantly higher den-sities at Station 0 may indicate a natural influence of nearshore proxi-mity on phytopla nkton density, the consistently higher annual mean j densities observed at Station 1 indicate enhanced phytoplankton densities in the immediate area of the offshore discharge.

I The means of offshore surface and bottom phytoplankton densities in 1979 were not significantly different from those in 1976 (Tables D-17 and D-18). In the 1978 annual report (ABI,1979), plant effects were con-sidered to be a possible factor in the significant reduction of 1977 and 1978 annual phytopla nkton densities at surface and bottom bel ow the respective 1976 densities. However, the simila rity of 1979 a nd 1976 a nnual means indicated that those dif ferences were within a . a nge of natural va riation and that widespread pl a nt impact has not occurred offshore during the 4 years of monitoring.

D-11

l I

l l At of fshore surface stations, total phytoplankton density for 1979 showed a significant negative correlation with temperature and a signifi-cant positive correlation with dissolved oxygen (Table D-19). At the bottom, there were significant negative correlations with several variables (Table D-20). Multiple regression of phytoplankton densities with temperature and ammonia at the surface and wi th temperature, ammonia , and phosphate at the bottom, accounted for 22 and 34 percent, respectively, of the residual variation. in phytoplankton density after seasonal adjetment (Table D-21). As in previous studies, temperature was the most important single variab e which infl uenced of fshore phy-toplankton density.

Entrainment and Temperature Relationships Total phytopla nkton densities in the intake ca nal (Station 11) ra nged from 638 x 103 to 24,435 x 103 cells per liter and , in the discharge canal (Station 12) from 500 x 103 to 18,683 x103 cells per I

liter. Values of AT (change in measured water temperature between intake and discharge canals) ranged from 0.8 C to 13.5 C (Table D-22).

)

Reductions in total phytoplankton density between the intake and discharge canals occurred on all but three sampling dates in 1979. As in previous studies, there was no consistent relationship between percentage change in phytoplankton density and AT. Pressure changes, accelerat%n, 1

shear, abrasion, and chlorination have been well documented as factors other than temperature which can contribute to power plant impact from entrainment (Marcy et al . ,1978; Morgan and Carpenter,1978). All or any D-12

I combination of these factors may interact with temperature increnent in l determining net entrainment ef fect s. Al so , envi ronmental di f ferences between the canals may result in differential phytoplankton growth during i

periods of reduced circulation.

1 Since the beginning of sustai ned St. Lucie Pla nt operation in i

l December 1976, phytopla nkton densities have been reduced between the intake and the discharge ca nal on 86 percent of all sampling dates.

However, as observed in 1978, the much lower incidence of density reduc-l tions between the discharge canal and Station 1 (37 percent), and the persistence of higher densities at Station 1 than at other offshore sta-tions indicated no chronic density decreases offshore due to pla nt operation.

I Statistical Evaluation of Canal Phytoplankton Data Phytoplankton density in the discharge canal (Station 12) was not significantly lower than in the intake canal (Station 11) in 1979 (Table D-23). However, over the 4 years of pooled monitoring data, densities in the discharge canal were significantly lower (a=0.1; Table D-24). Trends of reduced density between the intake and discharge canals were observed for certain cujor phytopla nkton groups in 1979, but these differences

{ were generally not statistically significant. Correlation of phytopla nkton density in the ca nal s with phys icochemical pa rameters l

showed a significant negative correlation with ' / ,erature and signifi-cant positive correla tions with dissol,eu oxygen ard ammonia (Table D-25). The negative correlation of density with temperature may have D-13 1

1 I

I reflected adverse plant impact due to thennal addition in the discharge ca nal .

I Seasonally Recurrent Density Changes and Plant Effect As in previous studies, several major phytoplankton groups exhibited seasonal trends of density increase or decrease between the intake and discharge canals, and between the discharge canal and Station 'l. These trends were considered to reflect variable plant effect on phytoplankton composition aM abunda nce in response to seasonal factors such as changing ambient water temperature and natural species succession. Over the 4 years of operational monitoring, diatom densities were generally reduced between the intake (Station 11) and discharge (Station 12) canals (Figure D-18). These reductions were most consistently observed during spring (March, April , and t'ay ) . Seasonal trends of red uced densities between the intake aM discharge canals were also appa rent for pras i-nophytes during the autumn (Saptember, October, and November); for dinoflagellates during the winter (December, January, and February); for unidentified phytoflagellates during the summer (June, July, and August) and winter; and for cryptophytes in all seasons, except spring (Figures 1

0-18 a rd D-19). No trend s in cryptophyte density changes between the discharge canal and Station 1 were apparent, wnile the most consistent seasonal trends for diatoms and prasinophytes were increased densities

( duri ng the autumn. Prasinophyte densities also increased between the discharge canal and Station 1 in sumner.

i I

I D-14 5

E l

l l

During some months, entrainment losses in major groups, includi ng ,

unidentified phytoflagellates, cryptophytes , di noflagellates, and l prasinophytes, caused an increase in diatcm relative abundance. However, this change in the discharge canal phytoplankton composition was not reflected at Station 1 where composition was general ly within the variability observed at other offshore surface stations. l B

Pigment Analysis and Primary Productivity Because chlorophyll-a_ is the primary photosynthetic pigment found in all phytoplankton species, it is widely used as an index of phytoplankton standing crop. In the St. Lucie area, chlorophyll-a_ provides a very good estimate of standing crop, because this pigment has generally exhibited a significant positive correlation with phytoplankton density during all 4 years of operational monitoring.

I Distribution of Offshore Chlorophyll-a During 1979, chlorophyll-a_ at of fshore surface stations ranged from 0.24 to 8.03 mg/m3 a nd bottom chlorophyll-a_ val ues ranged from 0.35 to 13.55 mg/m3 (Table D-26). Surface chlorophyll-a_ val ues continued to be slightly lower than bottom values as observed in all prior monitoring (ABI, 1977, 1978, 1979; Worth and Hol l i nger, 1977; Figure D-20 ) .

Offshore chlorophyll-a level s in 1979 were within the range of annual means observed duri ng previous operational monitori ng. As with phy-toplankton density, chl orophyll-a_ levels in 1979 were more similar to 1976 levels than to those observed in 1977 and 1978 (Tables D-27 and D-28).

D-15

l The bimodal seasonal pattern in chlorophyll-a_ corresponded to that observed for phytoplankton during 1979. Chl orophyll-a level s in the l spring (Ma rch , April a rd May) decreased in the summer months and increased again from August through flovember (Figure D-20). At both sur-l face and bottom stations during 1979, chlorophyll-a_ exima occurred in flovember at Stations 0 and 1 and during the spring at Stations 2 through

5. Higher chlorophyll-a_ levels in the late autumn months have been observed during all previous monitoring.

Relationship Between Offshore Chlorophyll-a Levels and I

Physicoe,hemical Parameters Chl orophyll-a level s exhibited significant correlations with tem-perature, salinity, phosphate, and nitrite at offshore stations although the correlation coefficients were not high (Tables D-19 and D-20). The t rend of decreasing chlorophyll-a_ with increasing water temperature was strongest in the spring and autumn and probably reflected the seasonality in chl orophyll-a_ distribution rather than pl a nt effect. For the variables exami ned , the best surface ard bottom regression mdels accounted for 30 and 27 percent, respectively, of the residual variation in chl orophyl l-a after seasonal adjustment. fio single independent variable was important in both models of residual variation (Table D-29).

The relationships between chlorophyll-a_ and physicochemical pa rameters observed at offshore stations were not indicative of adverse pla nt 1

impact.

1 I

I D-16 1

I I Interstation Comparisons of Offshore Chlorophyll-a Levels l

Chlorophyll-a_ at Station 1 remai ned cons i stentl y, although not significantly, higher than that observed at other offshore stations (Tables D-30 and D-31). Pooled data from all 4 years of operational l

monitoring exhibited significantly higher chlorophyll-a levels at Station 1 than at Stations 3 a nd 4 at the surface and signi fica ntly higher chlorophyll-a_ at Stations 0 and 1 than at Station 3 at the bottom (Tables D-27 and D-28). Results of the 1978 monitoring study suggested that chl orophyl l-a_ levels at Station 1 were becoming more similar to those generally observed at other offshore stations and the inclusion of the 1979 data support this trend, although standing crop at Station 1 con-tinues to be higher.

Seasonal and Interstation Distribution of Chlorophyll-a in the Canals In 1979, chlorophyll-a_ levels continued to be higher in the canals than offshore and higher in the intake canal than in the discharge canal (Figure D-21; Table D-26). Seasonal and annual trends in chl orophyll-a_

l evel s in the ca nal s conti nued to correspond to those observed at offshore sta t ions. Although not significant in 1979, comparison of pooled data indicated significantly lower (a=0.1) chl orophyll-a_ in the discharge canal (Tables D-32 and D-33). There was also a significant negative correlation between chlorophyll-a_ and temperature in the canals.

Seasonally, this relationship was strongest during the summer months. As observed for phytopla nkton density, red uced standi ng c rop in the discharge canal indicated adverse impact due to plant entraiment. Even with this reduction, however, chlorophyll-a levels in the discharge canal D-17 l

l

\

!g 4+%>i+%\

bb\\

v> .

IMAGE EVALUATION i

$<.4h NNN TEST TARGET (MT-3) l.0 eBa m 5 88 En m na

==

l 1.1 L"LM I.8

\ 1 1.25 l1.4 1.6 I l

1

  • 6" >

MICROCOPY RESOLUTION TEST CHART l

b

  1. 4 ' /'%b 4%
    • ${f'N /

y-m mm . xe $< S ;

Szfz 3

i. - ~ . ,- . a: as -
k

, u. il

6 continued to be higher than the levels observed offshore, and water high l

in chlorophyll-a_ continues to be discharged at Station 1.

l l Offshore Phaeopigment Levels Phaeopigment levels continued to be higher on the bottom than at the l surface for of fshore stations (Figure D-22). Phaeopigments result from the breakdown of chlorophyll, thus higher concentrations with increasing l depth is an expected occurrence because dying or dead phytoplankters more readily sink out of the wa ter col umn. There were no significant interstation differences in offshore phaeopigment levels in 1979 (Tables D-34 and D-35). Over all years of operational moni to ri ng , surface phaeopigment levels at Station 1 were significantly higher than at Stations 2 and 5 (Tables D-36 and D-37). Higher phaeopigment levels in the immediate area of the offshore discharge may resul t from a limited plant operational effect and could be derived from several sources or a combi nation of so urc es , that is, 1) discha rge of water high in phaeopigments; 2) nomal breakdowr / the large phytoplankton standing c rop at Station 1; 3) themal death of certai n phytopla nkton taxa resulting in subsequent chlorophyll degradation; or 4) increased feeding l

by herbivores because of the large starding crop in the area.

Annual offshore phaeopigment levels did not continue to decrease in 1979 as they had from 1976 through 1978. Cha nges in observed phaeopigment level s continued to general ly correspond to cha nges in c hl orophyl l-a_ concentration. After sea sonal ad j ustment, the best regression model accounted for only 8 percent of the residual va riation  ;

I D-18 i l

L u

[ in surface phaeopigment (Table D-38). Seasonal adjustment did not signi-L ficantly improve the regression model for bottom phaeopigment and the r

variables exami ned accounted for less than 24 percent of the total variation at this depth.

L

[ Phaeopigment Levels in the Canals _

H There were no significant differences in phaeopigment levels between F

L the canals (Tables D-39 and D-40 ) . Phaeopigment levels in the intake canal continued to be higher than in the discharge canal during 1979 and e

did not correspond to the finding of reduced phytoplankton density and

{ chlorophyll-a_ between the intake and discharge canals.

I Gross Primary Productivity l

Gross primary productivity was calculated from active chl orophyll-a_

l a nd light data, using the total curve of Ryther and Yentsch (1957) for photosynthetic rate with an assimilation rate of 3.7 grams of carbon per hour per gram (g C/hr/g) of chlorophyll. The bimodal seasonal pattern in l produ .ivity during 1979 generally corresponded to that observed for chlorophyll-a_ (Figure D-23). Productivity ranged from 0.09 to 1.91 grams I

of carbon per square meter per day (g C/m2/ day) with values lowest in the summer (June, July, and August) and highest in March (April 6 sampling date; Table D-41). There were no significant differences in productivity l between offshore stations (Table D-42).

t .

\ D-19 C __ - - - - - - - - - - - - - - - - - - . - - . - )

L Comparisons Between Baselin_e and Operation 61 Monitoring Data Baseli ne collecti( ns were bi-monthly duri ng the fi rst 12-month

~

period (September 1971 through August 1972) and monthly during the second

" peri od" (September 1972 through August 1973). The conplete year of L (Walker and Steidi nger, monthly baseli ne chl orophyl l -a_ data, 1979) p designated 1973 in statistical tables, was pooled with the monthly opera-L tional data for statistical comparison.

I L ,

The annual va riabil ity in chlorophyll-a at of fshore stations ta s generally comparable between baseline and operational monitoring (Figure D-20). The trend of higher surface chlorophyll-a_ at Station 1 during  !

operational monitori ng was al so observed in baseli ne data and mea n l chlorophyll-a_ was significantly higher at Station 1 than at Stations 2 through 5 (Table D-43). For bottom stations, the inclusion of baseline l

data with operational data resulted in significant differenc?s similar to I

l those obtained for operational data alone (Table D-44). The comparison of baseline and operational data indicated that long-tenn or widespread l impact on offshore standing crop has not resulted fran plant operation.

I

SUMMARY

I Seasonal variation of total phytopla nkton densities a nd chl oro-

{

phyll-a_ was bimodal in 1979, as in 1976 and 1978. The similarity of the l 1976 and 1979 annual mean densities and chlorophyll-a_ both offshore and in the canals indicated that no long-term change in phytopla nkton abun-dance has resulted fran St. Luc ie Pla nt ope ra tion. As in prev ious I studies, phytoplankton densities and chlorophyll-a_ levels were higher in l

I l D-20 1 - - - - - - -

I .

I the intake and discharge canals and offshore at Stations 0 and 1 (Figure D-1). The significantly higher phytoplankton standing crop at Station 1 as compared to other offshore stations was attributable partly to plant I effect. However, natural causes were also a factor as reflected in ele-vated phytoplankton densities at Station 0, the control station.

Phytopla nkton composition in 1979 was general ly simil a r to that observed in 1977 a nd 1978 with diatoms being the dominant taxonomic group. Non-diatom species were relatively more abundant in each of these three years than in 1976. The diatoms Skeletonema costatum and Nitzschia del icatissima were the most abunda nt species, as in previous studies.

The composition and seasonal distribution of major phytoplankton species did not show changes between years which could be attributed to plant impact. Although higher densities of some taxonomic groups occurred at Station 1, phytoplankton composition at this station remained within the range of natural variation observed between other offshore stations.

The red uction in phytopla nkton density between the intake and discharge canals during 1979 was a direct result of entraiment. Factors other than just temperature increases apparently caused this reduction because there was no consistent relationship between percentage change in phytopla nkton density and AT. C hl o rophyll -a_ reductions were al so observed between the intake and discharge canals; however, levels in the discharge canal continued to be higher than those offshore and water high in chlorophyll-a_ continues to be discharged at Station 1.

l I

, o-v

I i Seasonal reductions of unidentified phytoflagellates, cryptophytes, and prasinophytes between the intake and discharge canals contributed to greater diatom daninance in the discharge canal . No shift in canposition was observed at Station 1 as canpared to the other offshore stations, although apparent plant-related elevation of diatom and prasinophyte den-sities between the discharge canal and Station 1 contributed to over-all density increases at this station.

Currently available data suggest that the increased phytoplankton density and chlorophyll-a_ concentration at Station 1 are attributable to power plant operation. However, plant effects on standing crop continue to be limited to the discharge canal and to Station 1. There were no significant interstation differences in primary productivity offshore and I comparison of baseline and operational data indicated that long-term or widespread impact on of fshore standing crop has not resulted frun St.

Lucie Plant operation.

I I

I

I I

I' D-22 1

I LITERATURE CITED APHA. 1971. Staa methods for the examination of water and waste-water,13th ed. !aerican Public Health Association, Washington, D.C.

874 pp.

ABI. 1977. Ecological monitoring at the Florida Power & Light Co. St.

Lucie Plant, annual report 1976. Vol . 1 a nd 2. AB-44. Prepa red I by Applied Biology, Inc. , for Florida Power & Light Co. , Miami, Fla.

. 1978. Ecological monitoring at the Florida Power & Light Co. St.

I Lucie Plant, annual report 1977. Vol . I and 2. AB-101. Prepa red by Applied Biology, Inc., for Florida Power & Light Co., Miami, Fla.

1979. Annual non-radiological environmental monitoring report, St.

I .

Lucie P! ant, Vol. III biotic monitoring,1978. AB-177. Prepa red by Applied Biology, Inc. for Florida Power & Light Co. , Miami, Fla.

Barr, J. A. , J.H. Goodnight , J.P. Sal l , a nd J .T. Hel wig. 1976. The user's guide to SAS 76. Sparks Press of Raleigh. 329 pp.

B ria nd , F.J -P. 1975. Effects of power-plant cooling systems on marine phytopla nkton. Mar. Biol. 33:135-146.

Carpenter, E. J . Annual phytoplankton cycle of Cape Fear, North I 1971.

Caroli na. Chesapeake Sci. 12:95-104.

. 1973. Brackish-water phytoplankton response to tempera-ture elevation. Estuarine and Coastal Mar. Sci. 1(1):37-44.

EPA. 1973. Biological field and laboratory methods for measuring the I quality of surface waters and effluents. EPA 670/4-73-001.

renmental Protection Agency, National Environment Research Center, Cinci nnati, Ohio.

E nv i-Fisher, N.S. , and C.F. Wurster. 1973. Individual arri combined effects of temperature and polychlorinated biphenyls on the growth of three species of phytoplankton. Environ. Poll. 5:205-212.

Flemer, D. , a nd J . A. Sherk , Jr. 1977. The effects of steam electric l station operation on entrained phytoplankton. Hydrobiologica 55(1):

33-44.

Fox, J.L. , and M.S. Moyer. 1975. Effect of power plant chlorination on g estuarine productivity. Cheasapeake Sci. 16:66-68.

g Gentil e , J.H. , ' J. Ca rd i n , M. Johnson, and S. Sosnowski. 1976. Power plants, chlorine, and estua ries. EPA Ecological Resea rch Series EPA-600/3-76-055. 26 pp.

1 1

I D-23 I

I I

LITERATURE CITED (continued)

Goldman, J.C. , artl H.L. Qui nby. 1979. Phytopla nkton recovery after power plant entraiment. Journal WPCF 51(7):1816-1823.

Grayum, M. 1971. Effects of themal shock and ionizing radiation on primary productivity. NTIS No. CONF-710501-Pl . Proc. Third Nat.

Symp. on Radioecology, Oak Ridge, Tenn. 1:639-644.

Griffiths, D.J. 1973. Factors affecting the photosynthetic capacity of laboratory cultures of the diatom Phaeodactylum tricornutum. Mar.

Biol. 21(2):91-97.

Littleford , R. A. , C.L. Newcombe, and B.B. Shepherd. 1940. An experimen-tal study of certain qua ntitative plankton methods. Ecol ogy 21(3):309-322.

Marcy, B.C. , A.D. Beck , and R. E. Vl a nowicz. 1978. Effects and impacts I of physical stress on entrained orga nisms. Pages 135-188 h J.R.

Schubel and B.C. Marcy Jr. , eds. Power plant entraiment, a biolog-ical assessment. Academic Press, New York, San Francisco, London.

271 pp.

Marshall , H.G. 1976. Phytoplankton distribution along the East Coast of the USA. I. Phytoplankton composition. Mar. Biol . 38:81-89.

Morga n, R.P. II, and E.J. Carpenter. 1978. Biocides. Pages95-134 h J.R. Schubel and B.C. Ma rcy Jr. , ed s . Power plant entraiment, a I biological assessment.

Lond o n. 271 pp.

Academic Press, New Yo rk , San Fra nci sc o ,

I Mul ford , R. , and J. Norc ros s. 1971. Species composition and abundance of net phytoplankton in Virginia coastal waters, 1963-1964.

peake Sci. 12:142-155.

Chesa-Patrick, R. 1969. Some effects of temperature on freshwater al gae.

Pages 161-185 M P. A. Krenkel and F.L. Parker, eds. Biological as-pects of themal pollution. Vanderbilt University Press, Nashville, Tenn. 407 pp.

. 1974. Effects of abnormal temperatures on algal conmuni-ties. Pages 335-349 M J.W. Gibbons and R.R. Sharitz, eds. Themal ecol ogy. NTIS No. CONF-730505. Technical Information Center, U.S.

Atomic Energy Commission, Oak Ridge, Tenn. 670 pp.

Patten, B.C. , R.A. Mul fo rd , a nd J .E. Wa ri n ner. 1963. An annual phy-topla nkton cycle in the lower Chesapeake Bay. Chesapeake Sci.

4:1-20.

I

"~

I

I I

LITCRATURE CITED (continued)

Peck, B.B. , and R.S. Warren. 1978. Nitrate reductase activity and pri-mary productivity of phytoplankton entrained through a nuclear power I station on northeastern Long Island Sound. Pages 392-409 in, J.H.

Thorp and J.W. Gibbons , eds. Energy and envi romental stress in aquatic systems. CONF-771114. Technical Information Center, U.S.

Dept. of Energy. 854 pp.

Reid , G.K. 1961. Ecology of inland waters and estuaries. Reinhold, New York, N.Y. 719 pp.

Roberts, M.H. , Jr. 1977. Bioassay procedures for narine phytoplankton with special reference to chlorine. Chesapeake Sci. 18(1):130-136.

Ryther, J.H. , and C.S. Yentsc h. 1957. The estimation of phytoplankton production in the ocean from chlorophyll and light data. Limnol .

Oceanog. 2:281-286.

Smayda, T.J. 1957. Phytoplankton studies in lower Narragansett Bay.

Limnol . Oceanogr. 2:343-359.

Strickl a nd , J.D.H. , and T.R. Pa rsons. 1972. A practical handbook of seawater analysis. Fish. Res. Bd. Canada. Ottawa, Bulletin No.167.

310 pp.

Thomas , W.H. , a nd A. N. Dodson. 1974. Effect of interactions between t emperature a nti nitrate supply on the cell-division rates of two marine phytoflagellates. Mar. Biol . 24:213-217.

UNESCO. 1966. Detemination of photosynthetic pigments in seawater.

United Nations Educational , Scientific , and Cultural Orga niza t ion.

Place de Fontenoy, Paris-7. 69 pp.

Utermohl , H. 1958. Zur vervollkommung der quantitativen phytoplankton I methodik. Mitt. Int. Ass. Theor. Appl . Limnol . 9. 38 pp.

Wal ker , L.M., a nd K. A. Steid i nger. 1979. Nearshore marine ecology at I Hutchi nson I sl a nd , Fl orida :

1971-1973.

1971-1974, VI. Pla nkton dynamics, Florida Marine Research Publications, Number 34, Florida Depa rtment of Natural Resources Marine Research Laboratory , St.

Petersburg, Fla.

Worth, D.F., and M.L. Hol l i nger. 1977. Nearshore marine ecology at Hutchinson Island , Florida: 1971-1974. III. Physical and chemical envi ronment. Fla. Dept. Nat. Res. Ma r. Res. Lab. No. 23. pp.

25-85.

I Youngbl uth, M.,

Mahoney.

R.

1976.

n 0.K. Young, ed.

i_n Gibson, P. Blades, D.

Plankton in the Indian River Meyer , C. Stephens , a nd R.

lagoon. Pages 40-60 Ind ian River coastal zone study 1975-1976, a nnual report. Vol ume 1. Harbor Branch Consortium, Fort Pi erc e ,

Fla. 187 pp.

, 0-25 i

I YARDS KILOMETERS I

I.i 7 i i p, 2000 1000 o 1 2 3 JJ

C; }i SCALE

' '. y

,s -

l

$:f 3 C

.., g l : / 7 l .

I4 i

,,* t

-N- ,

/

l Q

?.', s n,

h  :.

e.

4 O

, ,,' '~..'c O p i

.- . h.', (G L:.

l y

f_

l .

4 l St.gi g  : , +

l .

~

l .

.s. "

(.; .. s-

f "8 e Figure D-l. Locations of phytoplankton sampling stations,1979.

I o-28 PZ3:ll]L

m e e e e e m e M M M M M i

4 i

1 W 6 1 E v.Lu.

4 l l p __ _ _ _ _ __ _ _ g 2

tw r

1 e_ Q ._

~ s 1

'~' ~ b

[ l M __

1 1

i l

3

) a 8

1 y ._ _-

-- a ..,, -. \

7 j

!I

......<e.

1]

1 RESERVOIR  :

{'h

/ -

l ;s r,,2, :;n 4ff\

u. ~.

MW C., . ,

_g o u .....

l g%g . .  %..,........

gi?m c$ kwmM7/6%m'v&wmM%Em M&wwxMwxweDx%wawn (w) . <<<

yg .....

ch$

d'#

Figure D-2. Pump design for whole water sample collections, ca St. Lucie Plant.

k-- --y W-,

b

R l 1 l' I R F- 1 R 1 1 f I R CM T F1 F1 Fl fl Fl T1 Fl f 1 I l

3.o e **...

7 ,.. . ..... .....

e. , ..... .....
s . ..... .....

e ,.i . ..... .....

I , ..... .....

s 7

-. i., . ..... .....

v,,. ..... ..... .....

w ..... ..... .....

a .....

o is. ..... ..... ..... ..... .....

g , ..... ..... ..... ..... ..... .....

no  ; , ..... ..... .....

m , , ..... ..... .....

_, i., . ..... ..... .....

a ..... ..... ..... .....

o , ..... .....

e, , ..... .....

c , ..... ..... ..... ..... .....

m ..... ..... .....

43 o., . ..... ..... ..... ..... ..... ..... ..... .....

3_ , ..... ..... ..... .....

,x_t) <

.N , .....

C 9_, o.,. ..... ..... .....

m .....

gpg ,

C;) .................___...........__..........................____.......................................

1 >> r. 1 7 ,, v,

7. ,, n ..

c0ia c-ua

................... .................. ....._____......... i,................ , starin.

L -. >

Figure D-3. Comparison of annual mean density of phytoplankton at the dra intake (Station ll) and the discharge (Station 12) canal, a-v St. Lucie Plant, March 1976-October 1979.

b

OO m.. m ) 1 U m m I t .O O O O O O m._ l 1 f) T i ..

r.. . .. .. ..

i

i. . .. .. ..

.m ..

i.. . .. ..

_ i .. .. ..

q; .

. i.. . .. .. .. .. ..

i .. .. .. .. . . . . .. .. .. .. ..

i .. .. .. .. .. .. .. .. .. .. ..

3, i., . .. .. .. .. .. .. .. .. .. .. .. ..

g i .. .. .. .. .. .. .. .. .. .. .. .. ...

i .. .. .. .. .. .. .. .. .. .. .. .. ..

c3 i a

, i.. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

no i .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

ua & . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

e i .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

e.,... .. .. .. .. .. . . . . .. .. .. .. .. .. .. .. .. .. .. ..

i .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

s . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

2 o,s . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

e

  • i .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

i .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

M i .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

(< 9 i .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

e,a . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

(7 --), . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

1 M i .. .. .. ..

7n 77 78 74 76 77 78 79 76 77 78 79 7h 77 78 79 76 77 78 79 76 77 76 79 flee 6 0 ...... ,.....

i .... . ....i ...... i ..... ...... s ..... ...... . ..... ...... s ..... 37 33o.

.h?L52) i

[Ec cd Figure D-4. Comparison of annual mean density of phytoplankton at the M

surface at Stations 0 through 5, St. Lucie Plant, M March 1976-October 1979.

b Y

r.. . .. ..

an , .. .. .. .. ..

_O , .. .. .. .. .. ..

. i.. . .. .. .. .. .. ..

,o , .. .. .. .. .. .. .. ..

c,, - i.3 .. .. .. .. .. .. .. .. ..

co - , .. .. .. .. .. .. .. .. .. .. .. .. ..

o  ; , .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

a ,., . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

a , .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

t C

g , .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

s , .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

a o,,. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

e , .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

h- o < , .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

2 b=2:d o.3 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

p==9 e _-

! cg=q , .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

m --------.--------------------------------------------------------------------------------------------------

i 7 ., ,, 1 2 1. 71 1. ><. 1. 17 in 1 1. 77 1. 1 7. 11 7. 7. 1 71 1, 2. ve.=

j (F=3

,-.--- r. ----, ,----- i ----, .----- e ----, ,----- 3 ----, i ---- . ----, .----- 3 ----, 31 130,,

PAa_)

e _,

L ._a, c =a

) Figure D-5. Comparison of annual mean density of phytoplankton l

g M at the bottom at Stations 0 through 5, St. Lucie Plant, March 1976-October 1979.

l 4

I l,

m M M M M W m m m m m W m M M M M M M 1

64.00 -- S = SURFACE B= BOTTOM 4

X=MEAN 32.00 - -

b

& B

] 16.0 0 -

& H W

A 8.00 -- S e B B E 9 g x B 4.00 - S h, B B S a3 J B J

S B B B a y 2.00 -

SS S

b z S B B

B e $S S

" s S l

O Y

i.00-- 8 S

S z B S S

l a.

B S B I O o.50 -- S

\

O W B y g S

a. o.25 -

t 8 a n

.t 3 JAN 1JAN IJAN 30 DEC 30 DEC 1976 1977 1978 1979 Figure D-6. The mean of the average monthly surface and bottom phytoplankton densities at Stations 0 through 5, St. Lucie Plant, March 1976 -

October 1979.

I l I E

I, U

V) NJ

%g

% = ,

E 4y1

,,'*c0, 5$ ,

~w 0),13~,'V 'aq2 q eC Nj ,N+, -. ,

h]4 N YQ & 6 ed dcy Ec I V l'O t g Em V

is i "Msy,' l Oy,I b. b

l Op, l CD P%

l I

I I

I I

I

- - -__ w ______ _

Il

non

  • hamea 8888M M8MMn 88ama Ap4M4 4BMA9 RAmnh n***M An498 88888 BReAR 888A8 88488 c%.ga n>%he Mehnh an9aa emmen Ana#% 4eAma Aanna **aga nnman 888am 8A486 88888 n8 men e

i annae san *= annnn segna Annan Annen RA%an annAM aamaa angen a6864 84A88 8A886 Annen i nnas, nann, na=An canan emana Aenan panna e*4ah e9aan asseA AAAnn 88ABA 8R888 8abMa 99 . manan camae annAa esenn nenma maene nnga4 neman Mamaa ann 89 88888 A8nA8 888Ma MAben i manga maems naman nonna ebena engma ap*Ma BAman hea9a Ah4Ae en88M AAAA4 888A8 An8eA e manar neama manna sAnan ehehm Asena menAn Aname en4*M AnA4m me8AA 88888 888An Aa888 annon anna, aseen >=nna namen ennnA MAnnh PAAen caan* nanAP se8se An868 88848 A8Ame no , nsaam gan=n amman anenk AMAnn mee*M M8 Men nge4A agaan manna eenne 489As 88888 8 essa 1 nea3m 4=Sp4 nA44A anA4h A9aMA mASAA aAAAA Ranem 64448 9haea AAAe# A8888 84aA8 488e6 l nennt nenas nanna ennse egepA nnMob enn8m An8MA n49an ennA* Aeo8A 48884 Anahm essen e Annar sanna ennAn peame A8eng $555% 48A4m BMANA ana*d adm8h menen 889Pn eM8An AmanA Ph , mamme naamn nMaM4 MnAPM An>Ma $$55S MMMMM M9A9f 99M96 SA4aa MA8MS MA686 eSn8e MesnM t annnh e4949 mmeen 6sMea eenen $5S55 M6 Man nenom M499a seema en886 8888M 848Ae Masse t can4A AAAAA nnen. MMaee 66666 S$$$$ AAesa enh8A #8AA9 bedae a8888 A8A84 ea888 AAA8n l mshmn ammen mRA9e Saman anhA6 5S555 A8844 B4888 eMa94 Mena8 8H888 88888 858mm mea 88

-Il c e e Remak eAMP4 mRhe9 ARnso $555% 55555 55555 SAM 8" 94R44 Annas RSR98 8888R SA488 8AAAA w , axmaa ennaa aanns nsaae $ss5s %355s 55555 555s5 Aaean mA=8m n88a8 88ns8 eA88n 88n8A y I anank enAAn maae4 eseep 5555g 55555 55555 $$555 enAAq AeA6A BA888 A8Ah8 AA8A8 Anee8 N neona nname S5555 Asene 55555 5555S SS$55 $5$5% na9dA AAAAA 88888 A8A88 884A8 eneas c3  ? Su , .ea a era *= 355s% aanse Ss55s Ss55s sss5s $s5Ss aaaae daana eA8es een88 888an 8AA8n

[g $ s anaaa ne. = $$5s5 eaame $$$55 SS555 55555 55$55 h*M*9 A9MAh 898A8 88888 88488 8A888 88888 pg w I 77777 emen8 S$$55 hMAeh 55555 *$$55 55555 5$$55 AA8e8 15555 88488 88888 88888 C e 77777 shang $55SS AMPMe $5555 55555 %5555 55555 kam*8 M8888 55555 88n8A 88888 88888

% eu . 77777 noenn 55555 5555% 55$$5 5553% 55%55 %55%S eaaam 8988a 55555 AMn8m 88888 AAA88 d I 77777 namP9 5%%%% 55555 55555 S$$%5 55555 5? " .5 e56A4 An#As 55555 $$555 88888 55555

" $5555 55555 5%$55 $5S45 55555 SS 25 99ada neeee 55555 55555 88886 55555 1 5555% ceans 4 555S% hkaha SSSSS 5555$ $5555 **e*e 55555 SS5S5 #A8ha A949e 55555 55555 55555 55555 36 . 55%5$ 55$$$ $$$ss 5555% 55555 essee %%555 5%555 e8Ame Ae888 55555 55$55 55555 55555 i %S%%% 3%55S 55%%% $5555 55$55 seese 55%5% 5555% #^888 M8A96 55555 55555 55555 55555 i S5%5% 5%555 $55%S SS%55 SSSS5 easee 55555 SSS$5 asMae 55555 55555 $$S55 55555 5555$

-r i  %$%S% S$555 55555 55555 SSS%S emees $5555 desse $%555 5S555 %5555 5%555 55555 55555 20 + ese== 55555 eeese $5555 eeeeg eense esses eeees 55555 55555 eeeen essee 55555 55555 i eeees 5555% essee 55555 eeees eseee weeee seees S$555 55555 esees sense 55555 Illit (t___))

I esese tilli eseee eeeee esee* 33$$3 eeeee easee 5$55g tilli esene 11111 55555 tillt 11111 enese esses eeene 33333 assee 11111 tilli till TTT71 tilli tillt tillt hb
!Z() I tillt 10 + lillt 11111 eeees illit seees liill tiill tillt 11111 tillt tillt tilli tilli tilli 18111 11111 liill Illit lilli 11111 11111 11111 tillt Illit 11111 tillt

!!Trr) 3(C 6 6 Illit 11111 18111 tillt liill 11111 11111 tillt 11111 18111 11111 11111 18111 11111 11111 tills 1 11111 11111 11111 tillt 11111 11111 tillt Illit 11111 19111 Illit tilli tilli Illit

- --A 2 a

- 79 11 le o I  ? 3 e  % o i 3 5

_ _ _ _ _ ,0F F E

w 5),

CA W S W IONS 3.......==-. FFSHO f 5 RFACE_ _ _ _ _ ,_ , OM_ _ _

W62 hM Figure D-7. Phytoplankton percentage composition, St. Lucie Plant,17 January 1979.

N

u .- -.sm - ,,- w as -. a ._ -a n _e ., - - aaa1 a au.. ..- - - -

I I

I' I

E' I'

N V Of Ihj "e Y),%gg g

~

f.

r,,,*eq <,s+y+, -

N f L'

+

. #v O oo sj_, F,4 '4 ,p es,

~

E 'W4 hy lj,V " '?

"3 f 1s -4 ?G

\

i e,4j{1f1s, , o- p. i d *c ifg p',

'4,4 & h ';

4 4 ,u,O k, n5 h N ~u

' ,v71/3 CD

[{

I1 I I: ,

I I'

I, I; ,

l

F L

I N

cemessccesesencess4 ersesccmecrocaceee---e - O Ceet eee mam o F*

CeeCC EeE 4 Cmmet ectetst4eet eestE}eceeerec I CSSC &CCC CCE CC oeCeEe##@@#@@ l eee -pe 0 @ e edeeC C C EeedeesseeeC EE & eEC Cie A @ @ # # d @ ese -mm t e I C4CeE ECC EEEE E seCE E&E C C e C E El# @ @ @ @ @ @ @ e e e - a m e L e 0

e b-cemomecseE nesseeceeeeeeemceaemeccc@c- ..e e e

e m

E E f f C EE E E E EE CE eEEeK E t eCE CTEE Eic@@@cO# --aa t I seezescesseecesceeccacecceemmeccc#@c ===-ee e b tK twK t tt ttttt eteatetet t stteemfcfffff e --*8 e D f eeCC CcCCCC&&4eeteECCCCCCCeeeCC@@@#c@a--= 0 e g I

u.

b sar cr

< < E .s e . e a . s . saaaaa e s a c .e .t .c <s as .e eac.eeewecceseeer s s t e c c c c!c c e n a c @ @ c

- a -

o 8

e m

E C arst ecrecett

====eseescercE cCCCeferC c e c eC CE s eteos s m e c e c.je rArecccc ccc@recco

-mm eM

---e or g

F=

( C EC C CCE SCE t edefCEE T CCCE t eeel@####@@@@am- e GO r e, w"- -

escaessecesaccect erscar erct cecescr easeececcemocceeeE c e c c c @ c et- -- e r e s s e e e c r ee @ @ c ei= = = a $$

zo M

C c& a u ceseeeSCC C CE e s e sEeEeeeCc c e44c EeCeeeE eC s@ sC ze eC ee e em ef e@ e

@ e # e

  1. 'ac m-e n ic o c c c ci- - - e, m M b g CGrC ceE C E C EE t t 54t E SE CCe@ eeeeeee!OerO##$a -- e o F*

e e

e e

a t i re s t ra ert e rK 4 ea st E s E tt sweg etEjec(##ee--e e eft C C C t eeCE eet e4T C E e& EeC aeE meC &l#O@cc ee e h DC ES E C C E E E CE seteeCE E t teCeceeeeEl@@@@( ee m -- te m e are eE E cE eCCet et ceSeeE @ C E C.E m e G e s e @t#O@@C oe m--O e g i

i CE CE C CCCC CC rec eGE reCC CTCr i C e e C fi# @ @ @ # e e = = 0 e l B e U f eenaseenseessesesaE e s e c c c e s'O c e c e e r e - ~ ~ e e e e

J l E C EC C CC CEE E E CC C C C C C E S Cl###@#@ cec @##

== ccereC e c e r c e c c e c e s s ele c o c c a c c c c c

.e ,ee s---eo c .

-me e e eccet e=< eC < < < e --- e a a < .r ea.c .c e .s .e .t .. . . eEgocrecereccce.se.

e

< <<ae ceree,ocee@c e-- - ,a, e

e a

. .. aaa-a.... ...aa. accre++cerer ee----e - O

@ f C E eCCC E E et t eC CCoeE E 2 ####c#cr### . = ==== e e *P*

K E % t se K t et K t i t K WE GR E E t ffPerfffffr eee -mem ef e g t i t t t t tet t et K K t szt C E $K PPfffffffPr ewe emm e l l K GC E C E C E ECE E 4 ESC CCCE C E@cO###c##r#see-===0 e *"

e e @

O l

< s sea te < sseE aareeseE t t t t t st set t t i stL&t t L e Llt E s errrrrrrrrr-rfreffeffPff --w

~ ~ ~ ~ e em e e

e k  ?

crerzsu acceera ee ==

e<<ccr acscere< <ic c r e c c e r c r e c - --- se

---s e E i cureses<<zu ce4 a4 s4 e r easse ecericercreoccc----

s e c elc e r c e c c c c c c e.

e e

e o i I

e i O l we 4es4crEes4ces C aca tsea cceses4 4 4 dea 4cet4 et 4 &C 4 4 E C & EE E LE 44 t s#ecce@#m m e U I

o

< U St E K 5 5 t4 K K t K L E & K 4 K 4 t t t eG emL c= <<< cecree e escerscas crea es et zetmecocer ececemceev e L K le P P P P,Pc cc o--e M

$a @z O

e q esasescssesE scessaca rs e s s c r o s s ele c c c c c c - - e mo y a wE We C ercea acreas c<st re<< c=4 errerece@erree---e CE se kM o C E. t. e. E. , E. E. <,Ee e . C E. .d E. E. C. = Eocr< coco #@

& E d C EE ##@rc###@# -=-0 l E. E. < < ee m U E t t tt tat esc KL E LE Cd Lt LK tL f@efffffff ee -- ,i~

-m- w k i

sasacaccesscet ta reeaccesececceccccee---e 4 e e e E eeeeeccesesczecreert ezesceeeec.ceccco---e e C E E cott emet C E E E E CC CE C E tE mee@C E@@@@@@ -m e 0 0 g i CCC C E GE setC KE t t t CE E 4 C T E E eCCCE t e@@@@@ m** , w e s( seact t eetzt t srzt

  • eC E E rzecett#c#ccO ---g e O j m e - o M I

C CateeECE e@ &E eCECE C t aCCE c G e e t el# # # @ @ @ 8 l

e e hf ,

! C

.s .u .e t a 1m . . .s .o s.ee. .a t a, er .c .4 a.fr#recerecese--

a s e .a .t ,a <a -s ce .re<<cco<cr eee ---.

e e  !

C& E t t cEE E E SE Cf C E E E 1 8 t T E S ####c( ###c ese "*-eo e M. '

et t K L atexttt tt t t t i 46 t3 tt fcPrePctec ese **e 9 8 Q

CE t aC E CeEECE C C E E 4 C # t a E 4 d l# # # # # # # # c c e s e - - - e -

e O l

e 9 h

e. - 2:

t e c . ccc e sav s

= cea e e c ee a e = ( < < e .

car ce 4 r a ca. r cs 4 ercs c& cart sa cors er cer#@ - -- e rres---eN y a a

l l

l t t t t 9 t 5 t G t t af t t t t t t S t L 5 & 5 C L G K L C K L 4 5 4 4 4 E t K a a t t e a C & & e # 1 4 4 4 4 A 4 & E 4 4 & 44 C C t i t s eC E E C S L t C 6 f s t . a C 4 1 P O f C C 4 C & &

Pcff--*m

        1. a m r r # #4- - -

ee-O m

H 4 e I l M @

. . . . . . . . . . . , .. t . . .. . . . 4 , re<<<<<<<W e ---. a e t t L t t t L t S 5 e C L t E L i t t t % S $ rOfOrfffec ese **-9 - 4 C}

aea en sa sa sa s a s n- a a a s z < < < < rcrecrcre ee* ~~~e- a ese ***e Ggg t a . . < i. sasat t t et S L t K

. .C .S E t t C S t S. e4 fPfPrPerof

.t - < < t a-<rcercrecrees---e f b b

+---,---, -- - , -- - , --- s --- s ---e --- e---+---l 3 I o s a p i s

o e

(t) mycus; mmu a

T o

M

=

N "

= .CD Q

e I

D-33 9Ld d wna pudbl '! __,

- - - - - .- w I I I

i 1

Il I!

I I

I

"%,0 i

2 I

l _  %.

JV),, --

1$

l

\ #%3 y fk ou 4 4y y,%o, 9 OC s,'O <

e

.,,*dop o __

e r t5

/

\ # g ~.#% ~

a c,

,,,y v-CO t';

I I

I l

I I

I I

l . . ......... ...... ... . - .. . .... . .

st eeeeemseeestess et st es& memessec EE & e4CeeeeESE CGEE Ee4 E E EC 4 4 eeE C eC E eCeCCEE CeeeeeeCeet t SE 6t C emeet eE ECEE SCEEE et@ CS EC@ CE E eC E s4 E met t & E e@@@@l---

O@@#@---

@@@##---e O@@##---e

,e @

3 e

e e

e e

g b

o I

e e EC C eWCCC eC E dseCOCS C G C 6 ett eest s e @ @ @ @ e S i- - e e ceaag t eg cea ett eEE E te raccreecrest A##r e e l- - e e eC 4 efCE S S=S E EeC oC eC( ted eCK EemeeC O@@C ee--ee e em EE C eC 4C E et Ed CE E CCF tr( E E C E C et ts CE @@#f ee--e e ,p CE K C eSeCCeeCE geGEnE E SC &TCE@eseSS@@@@t e--e e e a b e a ese44 ccecceera cescat esascea 44a ri@ @ e c c e s - - e $e 4 I

ace sesecceemsessaesa 4 sssaweees ciececr e= =-e E C C E E E f fE E E E Cr eK E E T K E ea 4 C E eC C C E #@@@# S S -- eM esc E E C 4 C SE ECEGee&E C EC e&Ee4 adecep@@@c 4 secacesseesccusaut res c<reee<< cccc@ce.--a ea --e o(

m o @

... .. . . .. . .... . . . . . . . . . . . . . .e.,,,@,,< --- e l rog M e

ces ssecascca stessass a est eeeeemcr ecrce ---e I

@@ g EC C 6eE EEE C S S & S T SE E 4CCemeEeeeceSE #@@@( --- eN

  • --e D &

I Ed t cessenA L K E E et t i eet E E S g t L SL L es efeff es esecse<4sces seesseecescocescaee@@@@--~ e o m e

. . . . . . . . . . . . .. . e.... ....., ,, , e..e.,,<<---e e

& & 4 GE deE t E X 4 eE E CS E EE L &oE eecesee@@@c EEdeM@ d eEl#@@@ --- ---e-e o Q ceaesess seeaesescuerecce e --- e e ,y CE F E ECEE 4 SCeet eeestreteeteeets CCE @@C@ e U

E E t t2 E 4tnistEteGt s Et tKKEmeeeemettefff---s e e e o e--  !  ! J e ...e.a c a s. a m. e. c ,e c e. c. a. c S e .c e.aaa.a sre e.me... aa.

c..c

.e c

a c>oc@ce@ce==S a.,,c@sne,@co<

at e.et e ---e

. w e ---ee e

e .

et 4 4 t eet et et C E C CW 4 t t t i t t tl# @ @ @ @ s* # eeeee ---e e p ssa s toreseveressenes a s e e str @ e e c e r e e e e e - - - e -

e Vi e

I e e cm. 4 saaesserras esa excanseeeseeseec@c@i-- e E oseesaaeers cceess eseeseeeeeeeeerreer---e e

o E t 6 4 K 3 %8 8 et t ett ted K t tt esatoeg ersaf@ffe-- ef e W*

    • C E 4E eC C C C C TE E tr i t E C E stCC cessere##CC---e e M eczcaesseca st sccc<sececcessssess e i @ @ r cr- - - e e .r
l m I .a...aaa,-aa ase aa a,,,eaa..aa seasea<< asea es e s e s s e e e s a s e m e e e :r e e c e e e m - - ,

escrrsau aesesses i 4 etearcer efforce# e---ee t& S et i t t t t t 8A S t t et K S t cK ttK tee-e}p@ @tet e---e K t e ( E rt C C C E E t s E C 4 T 8 4 et O s a s c e s t ic # @ # S we==-e

,,,,,..e,---,

e e

e e

e 4

e a

a O

y ec4

r. e. e. a. s, 4ee . a .s e. s. 4

< a.ta.

. . en es sc< e es c e. coroc ccc#,@r -_-- el d'

< o I

c. . < r < cecceecee w g crass c4 4 ceecrecasesecaecceC eceec e A cc@c@r f P @ f f f - e e

--e=

y a

.t .t 4

.t .L .t 4 .t .e G L L

. . .G . 6 5. .L .L .L E .L .C Ae .G .t .e . e. s..t e .e .e .s #@cr@r--e ao O e - M e ww g a

, ,c a

.t .o .t .a s.. a. .e 4 ,a s....s c 4 4 4. .e t s. t eocee.

. .meme

. .r .s o#@<@

ecree e e - o ee-a a5 g@ o a c4 esa es4 cree ese cea cces Eeeeeseeesc@@cr ee- o% @ v E 4 E E E E X Ce C& C Ed E E 4 eW Ett teteeseC E@@@@#

s4esseseeceser@@@@ee! e ee e w w (

sc < esast ecesesseest e ce W e e a ze4 s e r e z a a a. c z s eesss a ceseseensesecerroe-- e eV -- e e

K t L L & K Se6 L 6- 2 3 5 K S et t S C t $tt L GGGG Offfff e E

E S E 4 5 4 @ E s 4 O E EE E EE G e4 Ceeert eeet C #@@C@ ee --e- e secaessue= = < ese ceseceeeeeeeeee oce@@ ve --e e p

o

<secesaseemssesseseseeeeeeeemes e @ + c. e e n - - e e I l  ! x

,, , . . . . . . . , , . . . . ... . 4 . .. ,@o,,,<<eeee---e eeee ---e e c g ( C CSC C C reE E S E C ECE 4 @ E ssee ####@### e g re tt Cet t t f4 t tf E 4 4 E E C & g t ( s ######## eeee ---eQ e mit 9 1t tt rt eK tt L Kt t t t t est cpf@?? Pet ewee ---e e W

E K & SCE tt e& G %EC E s( C E E S et eT(#@##f@@ t eee---e a 1

' O M

I e

e E

x en e ea e ee n ee t at esse es e t zss sean et etteer--e e ca a aarrer a ssasse a<serasec<caeczee=Vc-- ---e-eN g 1 t r a ceerce4 seac c et t s s ( 4 ct oss ces E r a 4 d 2 4 4 5 4 4 8 4 4 & E 4 1 8 4 d 1 5 d at a re d e

C 4eE cE eEe ej(e Fr ---e H

rceeet est ta t aea4 sessss e<ect ce4 ce c e cir e - - - e <

  • e
  • I e

sat s. 4 4 4 1 s a a s4 = = < aa a = .4 sa S . se cr earea. -- e - e et t et t t t & L 6 ei et 3 S 1 5 .t t t t Q K K L t t & teeeC aed -- e-g E d S E S E E 4 E E E E S E 4 4 E S E CL E E E E 11E 44E 2C neC4 -- g- -

$2 C Cf4 E E CC T C O f L E E F E E C t f f Cest esc C eetEE E -- e gCE E Et t C E E E &G T s&C E L E 4 etC E E K 4 &4 C edneeSE -- e Q

.---.---, ---,---. .. ..--...--.---.---,---, o' I o o

e 3 0 e

3 3

a c 3

(1) 33hvCM8V D11V13d c

e 3

m m

3 k

I I m f M-4 xjw dm9 b mmI u n D-34

1 1

1 1

l l

1 i

O f e e g$r fss f ?s ng .1

/j e/ /

i 4

Es t / 8 e 1 8 7 6 5 4 3l2 l I

a Any groap representing <51 of the total density

.as inclucca in the OihE45 category.

I M M M M M M M M M M M M e a e m e

I I 1 I

J I

eccecsceesseseeeeeeeeeeeeeeeseece.rcer cesceasat reeceeecesecesesseceseeee a==cessesesezcseeecesecessemeeeeeececcl--ee occe a e e -

e a

N m

<<seseeaoaseeessseeeece=<esecameas C E4teCEE testegst esEE E EecEC@ @EeeGee#@##--0 rece~~s 5

e m 8

I ocee......E ..ee,O. < e ....aeeee.#,,,o#---. . *-

E t eet CE eccet zeEEEE E Ct eEEE E m e E E E8@ @ @ @ @ # ---# 8 L cseeseeeeeesececesscameceaecesecccccc ---ee e a

Et eeeeCE secdccecCE E t efCCEteeC eC o@@@@@ --- O O meCeeeeCSEmeteeeeE E C&E sseeeeeCe@@C@@#---O 9 EceeC@ECeC t sfrEC E E tat t tt eE E4fcccc#----0 esseeessecat ----e N I

ct eccEeessesssaeceseccccc eet eett et t t t t t tt est t ett KK tt E S t PfPFPf ---*CM e@ E e@ See@ Ctenect@ EeE#@#@@#

e<<eaeW< a.C 4 at C

E, g E E EE

< aaa E

< eact < < tce-acrece+----.


9 9 wm o p e

0 MW C esseeeeees t eacessa . s meersr emeccceceer---s sece4ecuecec ccere<sc szt erecreec recere ---e c5 I g C. seeeec e e e e e e e. e. G. r.t. s, s c, CE E4 4

= e. s. e. s, e. r. Ce c = m e . E. E. e. C

    1. @@@#---6 s ooooor ---.N (m F a

I seeemenasw<< cesns<s east cosns<ctercere---e  ;

canseet a r. - - - e i

e 8

i o 4 e . rss< s . . . s c4 t t a st eer s w-E E E cestE t t et v eeg g a g 4 g t r a s C 4 E ale c c @rcrec ecre ---t t g

uses<eezt rat zcrewa scewees sn ezrecrever ---e- e

& K eK &GE t t t t t eL LGE C & L L E 5 L G A t K EPPff@fff -**C 0 O sstecce4 etacat et t ra ossaczaz r.c r e c c c c c - - - e e J I

E e I e i E C t t f et t eC K C 4 5 2 4 1 4 t a ( f 4 S E 1 4 a Et t s#####@( -0 0

  • l 6 K $ G4 6 % K K L t t t tA t t 2 E t C & L L A t & S 6 t ef fPfffff - 9 9 &

t t K esCterst eCt rag E 4 K E E C f t f 4 E E et t eA##@@( - 0 0 0 g

as cean ez<zwz st tsaa < r a s ccz et et s ea rrrevtr ~e a S t t% C S 5 t t t tt K & E t swt t t4% % e5 % K Ctet P&Pffff-9 =

4 e I t K tt t t t t s w c e e = c c r e. Secet cct rett Ls % 2 %

ct ret se ce 3 t tK ett &K t K t tt t t t4 C C Lett i & 5 GK CS t L t a L i t 6 E nt f@fff---9 t e set e c E K 4 C C K E E C E E t t 2 4 K E E rt & K E K eK teet t C 4 &E E CE eE4 & CE C4 4et &C E TC K 6C4 Et t &###O#---9 recre fefff

    1. re(

---e

---t

---t 6

P

=

e G

9 0

g O

ops 4*

M O d a

I see e <<a cz acasssars t ra 4 f a t et acererce--e E 4u ,s resc

= se ca secc,st r. r ca e c= = = e .a 4 r<ccce --.

1 L t E 7 4 t t t t u % t at t ret t t t e t E t t a 4 4 tg efffff -- C e e

e o E t t t C rK 4 C & E 4 5 4 2 C C C 4 i t S T E E E &t aa t a ###@## --0 0 V L L L E &

  • 4 E L K i t K 4 5 t se i t i et a t t & t t a o t #####( --0 $

b m

f

. . . . . . . . . . . . . . . . e. . . . . . .. . < . u

..!,o<<<,----.

I 4 es a ccesse es et er r4 ax cs et ci t 4 csrfrope----e 4 g e s u 1

. 4 .

ec4 ma r

.t .e .c .= 4.c,oe.sc cc ce c(

.t .s m ceea cecas usercer----,-

- oer##<----.

..=..z. c e. . .c .c .c .cet.ct eotoo#o----.

xt k; 2

ro p

c l l @ O '

< < e raseat a . .c a wa a - a e a ea < < < a s aerert><--- , =< u E T E C S C E E C C CS K C CE T & E s t E S C t CC 1 t C'c h] h aa 4 4 sssee4 4 ces ca ct es cc4 c a r e s c elo #f @e r#cC o rct-( l--- -- 9e% e g I

assesa seen esseeaseesz s e x s s e4 sosae a4 <lr e c e r e ew -- e w ceccessea cacacact< < csa 44c e c oc c cu -- s a 4

a t ezu sa swzsa a ersa zsresse r e s ere r r e v e r e - - - e e

e a

c 4 4 C 4 E E L E E E t t t 4 Ed C E t t at C E & C E t #c(@@@@#I---4 0 O es=ca zct eeset ere<=a4 ecca e c s e r c e.r c r e ci- - - e - e 4 4 5 t 4 & C E g a 4 E C & a e t 4 4 C t t s C t res apeppppe --e e y aecessccccatesssaest*<csecasterccre ---e e g

I s s ste seces eenxe ssen seet Et t 2E t E E L E et t at eK t t d K S ^

8 C E E C C E E CCf t f t et t t t L C 2 , A a rg g rg (

eecet eneaces ressces esc <rceeaeee t t t A t t t t t t t ti f t t erK t eG K t tt tK RR AP@@@@f---9 t" <sassezrecrer---s

& t t eL t t reffff Appect cococc

---t

---g

---e Q

=

9 e

e g

m y

m a

O I

. r a

A ee.Sc.,,,,e.. < ,.,, , < . , e, c,e<eme..,,,,,---.

- l t t t K C

6. L. t. e = = < . R. c< t.

C CCCC R 4C 4 4 1 4 2 4 4 K K t t Lt zt t t K S C E t L t st tet Pfff

, ee, cza ez er < < ceseemlocc@f#

", K rt a L Ci t t g eogg g @ppre

--t

--g f

p med eeC KE E 4 C OK 4 et C C L C C f C C E E & eCeeC@@@@@w-- t C l

t .......<t cecoesces se ce r c c s s ea seseecce..,,,--.

. <.ee....

c occ--e-m

< Q EE C EC S T CCL &C cc4 . CE 8 &K d E t K CCCCEEE #@@-- 0 L T4 CEfECTd E2C4 & K s T . K L P I E C& 4ECCC =4CE ###--O

- E CeeeeeE serseczeesest carcer: 4 < < < sc<<scessescer--e Q '

g l

. O e---en-- e---s---, --- o---,---o---,---,---e p 1 3 3  : C 3 3 l e

,3 - a, ,3 e - ~ o_ m" l

I I eUNJ m&mm" d e.u R a n 1 D-35 I

l l

l i

1

- - - , - - - - - - - - - ,,p , _ , , --m---- - a -

l I

I I

I a

I I

l 3

t l'

t en n

I l b),1 /

~

"vos ,oi

,3

-- 3&

.o N SE I

%, ab 23,F '%g.

' Q),%,

'V W  ?*

l 4,,s -

, ec hl4,,JC

] b

  1. 0 E 3.

p,44  % '

@ 2.

s ,s y",

doj , '%

q:, _9 --

5$

N _(D_ #'

I I

I I

I l

t I

I I

I . E......e...e....ee.

E eG emeeE SC E emeeE t et eE 4E meeeeeeeeeECeeOO ,

K CE ceE SCCeCEeWe4 CS E E E me& CEemeeeeC&eeE caseessceezeseeE eet ececometaceeeeeeeEcce ccE cEcccessasscect sEc4 E st ettesenceseEcce

. . . .E .G. . .ee.ee.....

    1. e@

e e

e e

g N

m l l I a...meseC ee-e.ee....

ECE C TEC4 t eeget t ag rg commeesec=cecoce4E, C CSE EseE CeCC Ce4Eset E eCe& seE EeEeosomCCe&E t r c

W. . ..

aCCEeecctcEE C see eCo t

..ee.....eC Cm- e EE E. E.aseE eeet eEcceE eEC ceeEceSeeeeeeEmm e Cecomee ece mme

--ee

== e e

e e

e e

e e

e e

h e

s& ccresert eE a4 zeeresesc< cessa reseesece--e E -

I CE SCCCEeC 4eCeC eCCe& 4 e; & 4 4 GE E CE eCemeC Ce==e E E t t Ct t t t t t tt t t teet eitt Ct t LGt GEtt tC Ct3 ** em e4 E CCC CEE eeE 44C &4eGeCCE E EK GEE CCeeE eECe eg etseseCesseseesteC eseC< CeessEseeeeee-~e am e op D

o y a w=

e an C ea cceeccaecoceezecE accec4 s4 ccceeeeeeerr-e c4 m sme c e e rc -e e I

.o .c a. e .c e EC e c e s .s<es a .c c. .ree e c .e E cet ca CeeC=C o c e s .e ece c s c s eee-f or-e~ aG -

esCeaceeeeeeeeeececceeeseseCzemeeemes ec -e i 1 eeaseeEeE wesseessaaemenesesseeCereEeeee~e o

, , . .,,,! l c

.....C E E c. ..E .. . .. e . . . .. ... e -

C C C t eee@ E eC E C4 4 F eed a secasescemeet ceet ac. neen seeecceeeeeeeeccea

. . . meL EE C teCCCE e4 E C r oO@ e e e

e Q

cecececccccceeE ceeE4 cresseeeeeet 3 asecseceercret eceet ceee4eseecesesest seeeelcece aect e e

e _J I

e e e e C ereEE CE t t eeCee=C E EE oE 4 4 t =4E E E E 4 set C E r## e e X t t E 4C E E E E C T E rfC4 K C t erE 4 E C E E cE E & t f ret ##re a y t ret eceerecrecescrece.csczesacome a resseccreeE rcsE cascee C FCE CS EE eEE teCCit eE E EE t eE E cec C eE CC& ee@@@ e cececcecerece < <

eE en ecceo ncee

=

e e

g s e I

e e O e w-f4eC E t t CE && eeCKEC E etfE C@

E EeCeE 4C CetCEt aEeE C E4 CEccameceE E E E C EE E E E EC S Ecer ( @g#f-m o e e -

e g

C eE eE C TE C CC KeCE E E C Ci tE E C r E E EE E tE ce rO#6 r e e@ e T" E K E d C E E E C4 et teCEE E E C CC E E rrd eCC E cec ###. P - e e M E E C E CC E* C C CE CseeCE CEC CE E E E LE CCE eSeE @@@e#"' '

O a

I l l

.E . . .. ...... . < , ,, . . E . . . , , , . ., , . . eeC, massenstec=EE C

,---e m- - e e e ec===<<<=c.<cce==E ceene C Cerett C $ eceserts t 1 4 2 g C E E E CEC C t e ==*e9 e

e o

CC C E feCC teCS t eK eE eC et CC E E C 4 ff f C E@eeeE c e. E C =wm U

& & EC C Cf ( E E 4S ECC TE f fC 1 f 5 t E ( t E E & E ta eE CK = == e e e

e e e g

.r a. <se c a,ets e tres= --el O' US I

E. 4, ee cee s s. .c .a n. .c< c4<a e<r a. . .c E.

ee E e c .e. c e. e c e ce ec.a cr c c < m ecC reesst ercs 4 E mescazE sceceE mer cEcccscr acesecrEn a et escast er4csa as esecaset c c r.c e

-em

-o gg p E tE E CE4 Ed 4 eE S G E ECCC t4E C 44 E E&CE&EECC C E<( 0 - e 3r E gO e @

e w W"

& C i t( CE S C L C R d Cf t C E E Cft etaf f t E C T EE ######m 2" a ceeesecrEescess ea rscesastseesecc occerc a ee pgg L

< e cceee4 4 a44 e< sE 4 cC4 csee creassecu a ct sccese<cecE ceE E ce4 Ee rE cscurEe=

recccc

  1. ccccc

-em mm

-e o a

'I

4 C C Ed C CC E e*& CE E e4 C E CSE C E CE seCEcGC ######- e W e Ce a mast eceressessac
a t acacE ccEEssesemeerr-e e e C a & 4 S t SCC t et t CE SEC E CE T C C C E C eCC CC E C C E E ##@ w e e O l 4 eW R C E C C EE CeRC E EE C E C E 8 E E E % CE ceEE EEWE ### m ea e M l C C CeeE E E E CE E E E E E C & C t rE EC CW t oC C C E E eKe G.' r#ec-e a s e M l eseCcC eeEze=ErCeecaccesscacccezEE m ## e g

'I l

i l

E na sea cec 4 rr E CCE eC Eeeef EteE 4 ecs4 4e czC4 creeseccE zzee EE C E @ EEC TCmCE CeECEceEC=e---am--e*eo W C es C E E C C CC C t f & et 1 4 rf tC K E t tree CCE ccet a4 cecceseececcccerre4rcececceeeEceesC ac4 sescE rsecc4 cesrzescsceseeeeeteceecam- e em- s e e e

e e

e m

p m

Q O

e r e

e A

2 et L t t et t t t t et t t be 2 L 4 t t t t 4 2 8 ReE Steerfm m - e @

" mm- eN E g g g t E E C eCZ E K 4CC4 4E E t tE S S K E EE M E C F Cff # @

t

.f c .C

(

,t ,f .C .C .C E C E E C E t s= 4 .t .E ttC T E E s eoCCC

. < < < = = .C .C .it# # O L'. --m ea h .

4 44=4 K eemfC Ctd CK t CC4 CC C K 1 5 CCC C E < zE 4 .

etCC EddjerevO@@d'am- 4 e -

(

W -

I e

e e I ssassszst asnEE et as wereaast<sas sseE E setve e s er eoccenec: ecce4 est reeceeesceszeceeo rc -e- a y

a g g at taE st eeK S E K Et a t K 4 E ed E t tt Cet eE et E # #@ = ew r t $$ seet t eet tt

,K E4 4 seecceE sock e5 et t et t&4 e 4 .t emel et et t t tf - e. &

cE n4 me=E en esessee==4ce-o g

. ___. ___. _m _. ___ .___.___.___.___.___.___e 3 o>

I e

3  : O O C 3 J S O .D c @ C k 4 C 1 m N a m

(s) mycsney nym I

I aqno e s, D-36 _a I

--- w ,

P

! I I

I I

I M)g Mg sqs "003 ~

Bi

'V),'N  %, -

.b J N 5?

y,# %e  %$

l S24y Nao, x yy 03,'$V1 o 4 Yb 1,n,cp,  :..

l, 5 Aj,h 10 g)

e voy, VJ '# h

%,0,), 9 s az

'e h

I I .

I I

I 1 I 1 . . . . ..

I I

I .......

m

~

a

..m.

... .............. .,.cccc.. ---ee ---, e e.. .....e ... . e. . . .... . . e e e. . . . c c ,r e c

.4 . . ......

.. . . t. ... . . . . . . . f f ,f f ,e ,@ f f ,f - - m- - - ,e

.t

,=

. C

. t . . 8  % . . .. . . . . . =

.f .. .. .s...C . . e. .. ... ~ ~> ,,c, P,ccccccl ,P rece+~e

@ , f f , {m t f.

I ...t .. . .

. .. . . ... n

.. .t .t

. ..t t .t t.

c e..t 2....8 T. . s.

. t% .

T.

4.

T e.......,~~,,

, ,e,@ f e f @ famT. ;~m

'W h @ @ , 0 @ @ @ @ @l= 0 9

e 9 k o gr E O 9

$"M H U

.. c w. ... . . . ,,rre t

. .e ..

.. e.

....e

.. .. . c..s e.z. e.

c s . . . . . . . , , ,c o c,- - - e Sym c

...... .......... - ~ _~ e

_ , m

.......................,,,__,~r I

m -

a.

o.

.a.c ee .......crec,cc,cc<---.e

, c # p f c p g. . . . ., @

e.

.. C.....

. t

. C. .

. . . . . . .. ......, . .#,,,C@#cCamm t o

3 I

. . a

. . ~~ ., ,., ,., ,.,.,.,----, ,

.. ...... . ... .. ........m..~, . .. .,

,,cc ,... . --.. . a

. ... .. . . .e.e.....T.*..

C .. .. . f ,#v cc@p .-g

. K ..~k g

.F . . . .... . =~###r,@@@ ram e - N

.e .

I . . . .

.T

.f .s ..4

.#,,(.

pp

,o . . e c .t a

.O e

or=

, , ....,,..  :  : O

.. ..re

,.....~___,,,,,,,,

. . . . e. =*~m a

. -- ,c c, ,r e, ,c ,c e .

e g

......................... . . .cc...r ... . c. . . .

. - ~ ~ ~

c,ccvcro c c c c c,e, O ca .e...e....e.....t..

c . . . . . c.... . . . * *~~

e v

m. ... .. . . m m.m.<..,.....,,,, ,-_.e wf m o m....

I m s e 4 . . . . . . a .c . . ....c ,,cc, --, <

. s .4 e . e z s.c.c c, g,

.e s.e e. 4 .....c......s......,c.,,,,r--s....

. c.... .....,<,ee,r--sm m

4. 4 ..m m . . . . . ......, -- , ,o eg u

- c e

.m. . . . . . m.

. .. ... .m. c... .. .. m.

d.

..m. m...,,,,,,,,,__-.

. . .C r e .

S . . .

  1. ,@ ( r,#,0(

--a 3 k u r eet

, , ,c , ,s o ,c ,- - - a m a

, L I

.e .t

. ....cc.

.t . . .t

. .. . . . . .T ......

C . . . . ..... .

..,(,@,c(,

=

== 0

...K . ,

. .......re.....

. 4...

. . ...Kr

.s .. . C. . . .

.....~~(

. .. .< .. c< ~ ~jr,c ,cec( C,r c #,#,@ c,-

c ci- 4, s

g O

. . . . . ~ ~~ m , , r c c c c c c c . e, -

a

.s .....

. < . . a .s .. ... .. . . .. .....

. r .e .e .. . . .~n,,cccccerc recerree-s e

u g

I . . .

t t . .

e4 . .

,,.c.

m.

~

...t.

. t

..............e...~~c.e

.m.

t. . . . . 4 .

t t t

.-~,,,

Cf= ~

,r a , , , ,r ,< ,,- - ,

,ee.,..cccccc--e.

C~~creeecercer--e.

r, f@@ff@@ ~e ,,,- ,.

l s

8 y

c e

O O

I C e .r .

o.Sct rr ee K.

...t.

r .

t . &. C. eC.

.. m.. .t. .r....i. s.6 m.c. .e .e

t. C ...

.ee... s.s o<,o,,,,----

, t r f .. .

, ,,,-----.~

. .. f, V, 4, 4,e i f, @,-a-me f , m mme

  • 8 "s

H 4

r x

Q-G N l

l I . ............d

.e

.e ....

. . . .... o.m..

. t u t t. . . . . . t t . . . L t C Ct t t

.C .........

.4

..e.

K . . . . 4

...........m.......,,,,,,____._

.s

.. .. ... .#,Oeptp

. . . .l

  1. # # #,wm --eemgem

,r c,e,,,,c e, - - - - s

.s e

3 a

u g

. ---.---.---.---. --- ---.---.---.---.---, o l

. . , , , . . . . . m l s a . n i e a m m ~ *P i

m (s) m.vanav unv13a I

I O O

~

Mlh ') '

I D-37 3

- - -- m- - ,-. -

w - v. aaa y a 1

i l

I l

l l

I f

1 l

l l

l l

M

i

)

29,0 "o]& ,O

  • I 4N yg'#

V -

U )y,4 &43 o enz N 5?

P&q p ou A .;

sj,, ',4+so, 0),,'jQ'r

    1. 2 4 k

=.

. 4vogg

w. e p

.c

'N O f

p, vo# vg# 6 te %2

,#P7 '/ N eM

]q m P I

I I

I I

I I

g I

l l

.E F. .& c e e . .tset e .f.c,c C 4 C4 e64 E D

=,

. .C f. .C .T. L e. t. t. .e E. &m e . .e te.C E. .C d. e . 4. E.

ES E E S E S S C ett C C E d &E CE C 44 4 E t t et et eEE cc##

- I @ 6 m

est eeeesescezresesse eszcecemeczese cccc -a e N c s a c c a a s s e s s a c e a e c a e s c r a e s c a s s a c e mic e c c c - e e m I I "

ecesessenn asseseecasccesesseesssereccrr-e et L S K t tE K & t t t LK6 E K t t i & K t & L K & K L 4 E Kccefcf - 9 a

9 h eseseesesseecesecrece ecesesecmesocccer -ee E E C E TE mett eC CCC eC E E CC eet E meEE oCeeE rccc#c eeststreocet eesseett emesemececesseccrec-6

-9 8

e s

9 4

7 U

s e se a caeerc4z cresecacecese4 st remeceecerer,-s 4< sssneest esttenezseemswasecesesses 6 g reersecce<<cse<<st teseccee<<eccccce crcer e r cb- eaa C N e r e. e. s. .e .c=a. c e. s. s e. s. .a c cce. a. c e c. c.. .e c ec e. c .ce .e e e c ec c cl e c.

ccc< .c c.e. of =0 i c N<

o M

C

. . . s seeczesecseese ea<<eaassa sece, re,et c...

aaarweresezssueeaae<asacaaaaaeeesecece zweecescelccer<-.

e. < t t . @ < etc e cerer -e my 1 q E t eemt t t t tt t sLt t esct E Kt K t eCE St GeetDcffe

<esat acast czas eseart caecessmececeeccccc-e

-s~$o

-6 W A

e a e G a 1 4 s 1 4 4 4 4 4 4 4 f aa a a s t aC TE t e c e r #.# # - t 4 t r 2 4 4 a ceearsed ecreerr esec=es sc= csecececee cccc -i e 0

.O r

E f et C E E E C C t es t i OE 4 C E fE && 1 4 MEG E 4mt cwc# 8 g

s e e s e < = = c = = = = = = = o r e e e s e a r e c a s e e m e .e e c occc -e e 0

SE C C C C E C eX C C C & E C C dCC C CC E ECCC ECeCF@ ecfcc-0 $

I

  • * ~J 0 t E d 2 4 CE EE C T@ C E E & E t @ 4 C E s&C E CCE O4E E mCE #ce#- 0 -6 e

E & L S K t eet t L 4 t t t t t t t i A t t oK s t K KK st et t fcer 9 srscesseeecceceececececaeccesseessa cerr -eo e p escen cecrecescreen ce crecesseseecrec erec -e e S S E C & EE4 &c&G ECE E & c( CE teeE C %EeGecoeC r@@c-0

  • e I e eses eescrassescaersacect euescerecccc--e K f *
  • Ct ret t 1 2 & C C CE t t 4 OC E C LT EECC rCAc#co#-- S et t & erE E E E CE t4 E F E st t ret t E E teeE st rccccc--e#

L t d t et t t t T 4 t t t K K t ett tt t tt t t t tt t t ?occcf-- t C E & SE CE CC CeCf &K eGeE E 4t & C&& CeEEC E#ccccc--6 e

9 9

t e

C O

.y N

'g P

l, C I , . . . . .

E. .e C.

.....C.

< < < r==<ces sc<<<t erceeeca e

, .,,,,...,.. . . . , < . . c,ccoc--.

E ccetEE e4 4 C C &c%4C C KE4E E tt erC =C CE fet t eC&C CE C fE && &ct eE sec4 rcacerzers t e at ercctracreer E reccc/

E C t e E. &. . coccre C#c##cc t ir r e r. r e - - ,

--0 a- 9 0

Y e.

0 s

a

{

0 O

5 t on as twt i et st s& & t t s v.zs e a a 5 4 e s st occccc-e s < m I

sa ra ccxs res esa4 c t 4 s tccca 4 - ru sseerece --s sessaczec ase t c4 cz cesera cccecec<rcrecc --sm -

g ercepc --e c

.t .e n4 s. 4 .t %. 4L .t .L .K c4t S C E e e. K d t L ct e .t .L .t .t c < < . .t c c .A .e t. .t occccc--. {g-e u e C e MW Q c4 c crese e <4 e es cessema carcaermes- erce--e W U E E E E E E E E E CE C C C S C C E 4t t eE E SC C E eEEC G 4[c # r --eN re cca 4 cece<<ee set s c4 ces s c scoevecec e --9 "k<

cm L e < e c c e e < e s s e c e s slc c c c --e I

esee4 escescesecece cccc a g ecceesseescecc4 cccscces< t 4 e s e e c e s co c c # -- e i

4 e Et t & C E cC EK EErt C 4 1 T E AC E t t C Edd eCCC C C.c c # # # i- 0 0 g ger t aeascaet a css cz cet t t Et cCt e E C C e cic # # c cl- t t asrecessceccsececa s e O a t o rce caea sen assea ccerect e s e r e sc <e cc sc =e =araeczecle s:cc rc ec ce cl e - a u a s c s c s s s e e s s s c e s e c e s e c c c e t s e e c e s e e6c c c c ci- s a y I rz cr: 4 ce4ec6 4 4 <<<<screest a s m e s c ece s e c t E E CC E C Et t CeE Ci tt E t eeC CC E E eCC C E C Cl# # c # # --

E t aE f t t C 9C C it E t E t 4 41 8 e&K C C E GE C E Eiccc#c --t E tt et T EC CEE E C CEE Cf CE &sCES C t &eCC Clo c c c c ecescceestset ets e c c c a c c s e s s e c c c cle c c c c -- s

- - e

--t O

a 8

o e

e e

0 4

p C

m O

M h

I cer t ecese ceet crer ere eare cesceseecreesc--e K, &, &. f. C. K. C. &. C. e t a & # E K E E C ase cC t zt et E C F *

  • C e. d. E. e,<c.

4E4 s 4

O C. d. .e t. . C, C. Ce E, E. E. 4. E 4 E 1 4 4 4 d E E E 4 1 C K 44 E 4E e4C &E t e a "s e c t scczeccesesseccomest s--e

&E E ce .C En --8 s --e-

--9 a.

e h

W c

1 g

e I

a m L

1 4 5 4T 8 oc5t et et5C&C EC tfSfA& 4C &E LE K t sdC CLKt C LaE Af & K A C CA CEEA eC&CCC && ocec#

t K/cfPJ-* 8 a 4 g g

L st SeK E S 4 d4t t it A 6 K $ 4 t et Kt t M et

,c ,s ,c .a .s,e.,e s e. .e .e .r a. e. .c a. .e s, , e 6 6 K e ( E t c cceo c .t .a .t . < s=<

ecccc r c r e r e c a .c .c .e reccc-.

- e6 -- 5 6 e e

e L s---,---,---. -- -, -- -+--- +---+---,---,---* 3 I = a o a o G o 2 o e 2 o e e s 4 r e e m -

- 1 (1) EWChAEV 3A11V13d I

I TW mp p%p%n . 3Us D-38

.I ss? +

.? k e 5 t' 5e$ e3p, Nqr/49 he /

8 7 6 5 4 3 2 I a

Any group representing <5% of the total density was included in the OTHERS category, E E W @ g g g

m M M M M M M m m m M m

\bg . Mkhth p%M4m pm>A% AMAng mAAAm ganR4 Appgm qmmhg eqppg

, ..... ..... ..... ..... ..... ....A on..n annn, n...e an,., .4na. ...e. .ano. ... .

I M4Pak eMema %mnMa MMmma Peamm ma#M* MMAM% BMnMM An844 h858A Mp54e M6AAM man 4n PMm8P meMoe ##g#g happa AMAsm menen meqqp A&pha $4RM8 AMA4R Ahehm AMAMR 77777 6nn44 memqh ay ekAmt e4A4M m44$r $nanA PAphh Ahnom A6964 ANASA 446AR AAnge SA8AA 77777 $A686 Agg$m g Mmmen MSMA4 menAA AsanM parte amm>n nMMA4 AMRSA Anhan M4h4h neses 77777 benne pampa

, o,no, ... . -a a= easan aaaa- aa. A *eann eneas neaAs aAn a esena 77777 annan 77 77

. ... - ..... .a4A> anA n ...n. ... . .a aa aaa4e canaA rirF7 seana 77777 enbea 77777 mAgh5 mAppm *AMMM 4h . nahn> 44mM= Mgm>> Preer ph488 enann 77777 A a_4_9_m 77777 manae 77777

, a**at aae** asaam enene eacea acMa* aM944 anshp 898ne 77777 77777 66666 p MaM 77777 l #4 POP 6#489 MP4M4 hMReh m>aPm Pebh> dakmA 4486P S$$$8 77777 77??? 6666h 77777 7????

e Annen aaemm enan> anmad am%e. aca=a ama%. masah enn48 777F7 77777 66666 77777 7777F Fa. a ... c.4=. 34.n .. 4% ..-n- .,a . ...a* aaa a casen 77777 7r777 6656. 77777 6666.

, ...e. . ..- ..... ..... ..... ...a -5. . .ns.. sanAs 77777 77777 sssss 77777 66,66 g ennan n=ama amasA neman osaea 77777 en444 me4n9 66868 66666 46666 sssss 77777 66666

,, g 7F777 c9mhn >AARe AMASA emph> 77777 *mRP4 MARAM 86A48 66666 66666 sssss th666 h666h

6 ,, . 777,7 ..... n4. . . . . . - *ena- 77777 ea=aa enaan nasae 66666 66366 sssss 666a6 **6b6 m , 77777 e.... ananA n.n ann ** 77777 anaan canne sanaa 66666 sssss sssss 64**6 6666.

y i sssss ama=. 4=nA- Ann an=a, 77777 ae4aa saAna FFF77 sssss sssss sssss ss55s e6nen g i sssss - .. e. -- Aa, a an.*a 77777 a.aa> annea '7777 sssss sssss s,5ss ss5ss sssss g7 5 sq . sssss eaaea e**se easeA P98aa 7777F 889 9 48mne 77F77 sssss sssss sssss sss5s sssss i g , sssss ...., as .. As an eaaaa 6. 6* . ana saanh s>sss sssss sssss sssss sssss sssss LJ V3 m i sssss FFFFF A444a Senhp AAehn ee6hh MB38R 77777 sssss sssss sssss sssss sssss sssss

% g sssss 77777 k%*4A amane apAg* men *> amnem 77777 sssss sssss issss sssss sssss ssssg Q ee . ssssA 3*gss -aamp neann emm4* sss5A *pamA 77777 sssss s3sss sssss sssss sssss sssss d

~~

a sssss 3%sss anger Renan anean ss5ss cesar 77777 sssss sssss 55sss sssss sssss sssss g sssss sssss 6 A -* > annen enama 35sss ceanA 66666 sssss sssss sssss sssss sssss ssss5 e sss,s sssss eAnna ege** 77777 ssss5 Anhem 66666 sssss sssss sssss sssss sssss 55sss so , sssss ssss, == ann aansA 77777 sssss aansa ***** s5sss sssss sssss sssss sssss sssss i ssss% sssss amane penhe 7777F sssss canea sssss sssss sssss sssss ss5ss sssss 55555 g sssss sssss maank P9n>M 77777 ss%s5 77777 sssss sssss sssss sssss sssss sssss sssss g sssss s%sss NAP 4" eoaPM sssss sssss 77777 sssss sss5s sssss sssss sssss sssss sssss

2. . sssss sssss e ne na afeta sssss sssss 77777 sssss sssss sssss sssss sssss sssss sssss i sssss sssss ekMne 77777 sssss sssss ss5ss sssss sssss sssss 5555s sssss sssss ssss5 s sssss sssss sssss 7FF77 sssss sssss sss5s sssss ssss5 sssss sssss ssssi sssss sssss

, , ama.. sssss sssss sssss sssss sssss sssss sssss saaaa sssss sssss sssss sssss sssss

, _ _ in. ..... sssss sssss sssss sssss sssss sssss sssss ===== **a== sssss aaaaa issss sssss

-- i .aa.. tiin sssss sssss sssss sssss sssss sssss ===== ===== ===== aaaaa esasa  ::::

27 " i iniil lii istit sssss liiin sssss sssss sssss stint initi sessa ***** ***a.
::::

, C ;) I tilti 11111 liill tilll 18333 liill tillt 18131 Illit 18318 tills till! 18311 litkl

[ 18 12 0 1 2 3 a s 0 1 2 1 a s CAN4 STAU CNS t............. OFFSHORESTAMONm SURFACE~~~~~~~~~~~~~' ' ~ ~ ~ ~ ~~~ ~~~~ ~ ~OF FSHORE BOTTOM ST AT UAs *************'

M M

=a Figure D-14. Phytoplankton percentage composition, St. Lucie Plant, 21 August 1979.

.m q

-J C

p ,J f . I W

r a.*a-- A.-.._ a - _ . - A.m_ _aa e ,.ha.au .a m aJ -.. - , *y ah. a_h_m.--m- _m-%_ a-4_. _m. Aa3-a _d 4m4 - A .,

i i

l l s v I

1 I

I 1

I:

D s

j i # ## -

Q,y% l

.u ,

4/ -

., h i 4*eq'%g N t, C y, %c,

%l"y 'a'b m;

s,,,1y%<d 4N) q 0j,'I <r '

ts ~<y -

g, y ,

V 2 D ***

4, f, i

  1. 4,, $ciO w .n 044 ' yy 'f og//,, 9 s aa 5 <

f+y \

CD UC I

I Il ,

l Il 1

Il ,

1

I I '

a r%

I .......................,.--,,,,,..s.

a

.u

. . o I ., .e

.............. ._ _-.. ..................,,,,,,,,,, .,-,m v

... ... ......... o,,,,,,,,,,,. ... -.

. s.

n. s I

.........---,,,,,,,,,,,,,..._., .s m

~

,,,,,,,,'. . w=.

c c

. .,,,,,,,,s..

. . . . . . . . . . . . . -- . . ,I m y

. .t .t . .............--,,,,,,,,, ~

...... . . . . . . . . . . . - ,,,,,,,,,,,. e -

I

. o. a.

. .e s... __. .

. o

.. . .. .,,,,s.._--. .. -. . o

.I .........................

v, l

C o

. . C.. . .... .....................@ .

: o

.......................... ....,,,,,,---. . a e

. . . . . . ... ......,,,,,,. . . . . . . . . , . , . . , . . . . _ - - . . . o

. .. . . ... . . . . . . . . . . . . . . . ... , , , , __. . o m ,

..... . ............ ....... ,,,,,,,, --- .  : m

. . .. .. ........ e. , , . . . . . , , ---.m g

. t..

.... .e.e g

O

.c

... .. ... . e. .............e.e

. . . . . . . . . ....... . 9g y

.C..

.L.,.,.,,, ,., ____.

_.- = . _, ..~e,,, .. , . .b.m, . ,

e .......................

.....e.

. . . .....e...e......

M c

o c

m m

o

r x

, m.

--.~ s n a,.

. . . . ............v,,,,,,,,,,,,,...--.

. .. --.- c,

,, . . 3 .

's w

l

\

I .

~

b I *, , - / \ . As_

[ghJ g

+ >

o-40 J %r I ,a

- - - " -md._ a - _ __.A . s --,A.a_ .a _,,_#_ , . _ . _ , , 2 a _ - - - - - --- - - - -___- _ _ _ _ - _ _ . _ _ --

l f

i i

l f

l l t

l i

u

]pI]4h $)k10 "3 }

vg. - o i V h -

\

I)y "rc+,& y a l '

s5*  :

"4 a l SJ y,,%o , m'a Jy7

  • W vw 7

M/ /j Y [

Jsjlg 4 1 ..

A

/ g% '? 'l, g) 56 Ce kg# 024 a y, %g. O NE

^Voty,, #'4

'/Jr,

} }h l

1 O EO- ,

4

)

1 I ,

i I

E E E E E ino , semon annan na8mn Bannn a8aan annan neana anana penan an488 manna mansa 4888n i amane naasa annan anann enana saman nanna annea == san asa8e pe884 een8s 88een nemen i nanna ape 8 annan nenna nennn ennae annen naans aaace a888n ennen ena8n 8s8n8 annen annme emane nanna 8enna m a s s e. crane naena neane asaae annea an8dn amann 8n8n8 annee 9e . n8aec nanna nanna 8mann anaan na8ao enasa naa48 naeae 8ense se88n annan Sne86 88888

eamen neen, enc =* ename annan penan ennan naa8m amaae ga88n 888n6 Scena 88 ann ann 88 e annen enn8. anse8 77777 n8 ann naaee conna neana meene $3SSS enaan conna -see8 o88en aM8An 5555% panen menee 8nsAA 88888 s anaem nnenn eSenn 77777 nense aconn A46mP asmnp 77777 $555S en888 88M68 e88n8 en888 40 , nnman etnne 77777 $5S5% nR9en neone onePM 98Jnn g RMesA opnas 77777 555%5 8enBe PAnen ne8An 88 AMP 77777 55555 Pn888 A8Mne F888n 84888 l 77777 nnenn (7777 55555 868P4 AmanM ne88M 8eAAA 77777 55555 888SA Sn8na 88888 88888 t 77777 ep8An 7t777 5%555 nAnnA apea4 Aepen nA49e 77777 5555$ n8888 n8Re# Aa888 88888 7e , 77777 namn4 77777 $5555 nPeed MePSA P868% 8MAen 77777 $$555 an8an nem8e 848a8 88888 t 77777 884M5 55555 55555 Anoma 88An8 ne888 annem $5555 55555 BsBA8 eA886 an888 88888 l 55%%% 8n94% 5555% 5555% enbeh nbee8 88888 88n66 55555 55555 88884 A88n8 88888 88888 6 55%%% en844 55555 $555S 77777 68Ae8 888M8 nAAna 55555 55555 77777 A8888 68848 enn8B I*-.

- nd

  • SS%5% 8AAne 55555 55$$5 77777 pea 88 88888 PABM8 55555 55555 77777 77777 88888 888n8 w e 5SSS% nP9am 5%SSS 5%55% 77777 88888 55555 88aA8 55555 55555 77777 77777 88An8 5$555 E e %SSS% Bena9 55555 55%55 5%SSS 48nA8 55555 888n8 555%% 55555 55SSS 77777 088mS 5%555 8 i S$%3% 8edna 5555% SSSS% $$555 55555 55555 WM38 55555 55555 55555 55555 77777 $5555 53 s So . %55%S amenn 5555% 55555 s5SSS 55555 55555 B8B3B Ss555 S5555 55555 55555 77777 SsS55 4b $ i 5555% 77777 55555 55555 55555 55555 $$555 S5555 55555 55555 55555 55555 55555 55555 d w I SSSS% 77777  %%55% 55555 55S$5 55555 55555 55555 SS555 55SSS 55555 55555 55555 55555

$ 4 55SSN 77777 SSSSS 5%%5S $5555 55555 55555 55555 55555 SSSS% $5555 55555 55555 55555 7 40 . 5555% 77777 55555 55555 5S%55 55555 55555 55555 55555 55553 5555% 55555 55555 55555 d

i SSSS% 77777 55555 55$$5 5555% SSS%S 55555 55555 $5 555 eeee# $5555 555$5 55555 55555 i 55555 77777 SSSSS eseet 55555 55555 55555 55555 5555% 44444 5555% $5555 $555% 55555 g $555% SsS55 esees sesee 5555$ $5555 55555 55555 55$5+ 4 essa 55555 $5555 5555S 55555 30 , eeeea $55%$ e44e4 eneae 55555 5555% 5555S 5555% eessa sense 55555 55555 55555 55555

===.4 $5555 enese meane $5555 55555 55555 55555 eague asene 55533  %%%* 5 ggg55 5555S e

eseee 55555 eseee seees 55555 55555 55555 es==a eeeea seeen 5555% $g555 55555 55555 6

__, 3 esaae $5555 eease masse eages 55555 eases seems meses saeae 55555 55555 55555 etees t 20 . esage $5555 eeees seeen oseae mesea seeen eeese maase easee 55555 eseas $5555 eeeee p:ZZZ, 3 asene $5555 eenae eense eense amene seeme eeees seeen egese stees essee eases seees

- Zr" eenea 55555 seese sessa assee esaae geese easse eseea eeeee eases asete assee esses e asees 5%555 53333 eesee masse sease esame messa masse anaea asene esaae seese eseas

\q?ZZ Q, 33333 esene seeee 18131 11113 seema 33333 11111 seese seese aseen tanti

/ to, eeeen 55555 a- g 33333 11111 33333 11133 eneae Illit 11111 11111 33333 tilst easea sense 11111 11:11 33333 11111 11:13 11111 tillt 11118 35333 11111 aseen tills 11111 gatti 6 33333 11111 1 33333 18111 lla11 11111 11111 11111 11111 11111 litti 11111 11131 11111 11111 11111 Q it ie o i e

..._........ 0.FFSHOR,E, 3 e 5 SURFACE....___.......

e i a B

3 4 5

.~.OFFSHO,RE,g,OTTOM.............,

tgggr:3 canat sia7:ons 37 7 gns 37 7 3 c

w Figure D-16. Phytoplankton percentage composition, St. Lucie Plant, 2 October 1979.

r-g .

- - - - - - - - - - - - - - - - _ . _ _ _ _ _A 2 s_ .2 -L-_-._-..a__ e - -.-- -.e.

I I

l I

I i

l 1

l:

E i I e4 b

m V) NJ

' #OS4

~

05 jY)h,'d U] 9 ~ sb N

f s ,5.?;

c'i'/ p#v ou S Fjj# g hy,1,3jog #1, e 5$

=w E

/j J Jo I Y E5 s ,,,8, .

Vs z~'t) g} E5 Y

  1. 0 - $5

&cl4) g L' .,

us

=

Vj'A J 4 dog #

dC,8 h4 y)

FyI b ov l24 UE CD D:=

l l ,

I Ii l

l l

I

I O

N O

cedeE e64 4 4 4tsgsas g as 4eatssaa ase aeg 2 ee e Ee eeeCEd eeE 4 4 &&&

Eg@C@Cfry 4 4Cl#######mme mme e e

=

e &

E C Ee4 E E S S eS S EE eEE 4 44 &E4 eS E .ESf@@###C amm e @ e eC eS = S et E 8 E E q 4 d at a FE e=E mme e (

sessesssaseessasseE ssE ssesse<I@@OCOr(

&eE E E E cceeccccamp e e

e e

e &

steeneraseemcasaesacaeseeeeeweeccccc=mme a e e a st reseseE ncascareeneesseeecea ccccccr a mma e e

e O ESS CE G E CE E E EeWet se E sseCS eC4CE @#O#### p ap a eG e E E et eC E t t eeg eECE G E eeerE E E reE f #@@@f## mmmm e e O sE E4eEE E E GCEeeEE q E dEE EE eE EE EE #@CCfC#pam* e a Q

e e E4Eteet & q e agaCE g est eg 44 4 Efce##@e####-mem e h O s44 SE EE &asse&s& E eE E EE E E E El# COO @#C@#(O m a== e s M asreessacsesecceacecacass#ccccccccer E d E ast E E E e asE st estesE EEE E #VC#@( #FFC(

amma e mm a er e rCpe eK St t A S E S tssEttLE d ses4 & etltffffffffff**** e E' O M

w[

95 C e sa s e. as e. a.aat e r e.se .seme e .a ee escarse sucrescer-am e

.a s

e..

. e E..est e . e . e

. .. c.. E. .aec... . sac.a

. .a . . e..ea.aree<<e<--m q

. . . see. .e##cccormam l

eeeere<-ma o es cSm 8

m G S E E E eS e4 5 S E E EE EE 4 eeS E ee S eE EE EICCCCCCCamm e m o a e e e e o

=cu eset c ee e..

. . . . . . . m===ecesee4 e e e' E E e4 e .CF#@C ccccram =e m e a P

I S E GE ee t ere st ees t . E sa a eE Ge6 4 m= e f reeE E E eE E E E C e64 t zt eE E E 4 saaeaass===E ssaenaseecaE meseeen eeeS 8 @@@@C t' e rpr ee e amm ea m= =

e O

= = = sweassessasessassesereessess Screccam e e

e m

e e 2 e e aetssaa ease st et es asu cett ette etg a t s # c r g gia e e ,

4 st et 4 4 K aE E 4 e 4 t e s CEE @ S E E E eE eE E C E G # # # # #l= e e E E LE E .t 4 S S S t &E aE E E eE E S e e4 eE C E eE S @ C E ( (f( ( m se . N t eE t eet e en t es& st re t est i t t et eese neet I

ffPffm e e f

est esesansce sa ceasesesassesses severcerem e -

e 8

  • e c

l O-

. aaaa................q . ..ac.wa<<<<<<=m -m mmm em -

E EEE E C eecese24 C est cE C E E scree;######(7 o e M E & S E S S E seE sq 6 0 E se med t E S 4 44 S tE R E C E &C E E E E E E ECeEK C G E E G &E E ( E st e E E E E E E E E E E E K E E S O(C@(#Cramm a e EEEeEE 6########

E 6 ffffffff a ==

  • et mmme e

e e

.p N

e e o 14ea areasecacecaceuseea sersecccccere.===e e '

e CL rueene.asesggccee.egetcs..E E Et##@@(C#r@@teg E

e. d.

ceeeese E tt sS E E es t t E = . crecccccerc n a s e s e e s e c a c e = c e a le c e r e c c c c c r e .. == = e. ===ee mma e e e O

- = = a y I

E et E E EE osE SE C @4 OC E Egg e4 EI@####@@@OC( @ G e e a es e e w e W et t aCe sca4sg eg gaeeq a s aeaaaeesaf s e e nEsewc e e ee ,gs eeEe !< < + c r e e+eeccemam am=m--mmm (O#O@#@@@#c(O(

e e

u 4 m s<E sea <<<< s=<coceerervere< ee g m esert asse E ag = E s escaeeeeemsecE e. a E sessassasrerecorrocorrrmo m =mme=ee ap cecirecerecccccccc e ooa 4

C I

e WW @

t t se eeeen t eeseweed e c e' L t es& ffff@ptm m m o "4 y EE e c .e Et E d e E s e se W eaet aq es 6 4 4 @ S E S S E;O @ C C O ( # mme e esed eas cae seesses eg g g eeset assc#ccccppamm eem o E eW 4 4 S e sea es t ag eed g g ( E E E E E E ES El( C@(Ocrema 6 @

eeeseesst. s c e s e s s e e c a s a s s s s s s e:c c c c c c c.m m a e g cL e e

=R eS eA 6 & se es t en - ett LK SE K eE C E fffffffmmm e e C een cees s .e .e .sa a .. .n . e a,.sset se.. e.. eeceseeeeeensocccccc!=m s.eree======saccccres t am e mm ea e

e o

p eE t E ateG t o es e essgg get t t t e t e t e e O f f f f f f ge m me

  • e4 EW W 44 EC i tee EE esE E E E E ' sE EEeEE@@cercr%mm e a M e

! C cesse eac. esee

<E secceseeseseeceeeeeccrer===I st esue4E se=E m t esees eE eseesse creccccLa w a &

seed et esreest raeseaweE E E E et t et e r @ @ @ c (I eo e CL esences.seen=<ecce caeweseremec c c c c e c rl=m = ===e e o

ceceEesecceces ..e essas<csesseccccers-mm  ;

a p

c e a.

eccE oct a < < es c e t e . e e e e e r t e e e e e.c c c e r r e c o m m e o W e6 e tt t re e se S etet m eet E t e t w e e e :f f f f f f f f amm sh E eet ett eE E t Seet Geemteem@ eeeeeefffff@Pf mom em O e eag E E eE E E JE EVO##rW OV

e. e. eS a se a 4 A E t e S e e c e .s e aeees ea t eeseeeeeeeeeeocececc<=mm m==

.e 4

[ N' M

same.aa..E se aa.e ...<as.<<e<<<<<<<+<<,...a m e mm e* ee j e

44 CE E C s4 & E CE & EE EC t s e e d # # # @ @ @ # # # # # C (f. W see 6 6 4 an a e t o e ea se ase eE fffffff6 d d ifVeno e

g C

5 6 etsG D et t en t eE @e f@ffffOfffPff t e4 m - e

==

S e 4 4 L 6 eed = te ies teteem K K LL ffffffffd id fV 9 eom m e 4

U N e L

.---.=-a ,m .. . --= . .mm . -m- .m m- . - a - . -.-. - -m  ! 3 O O O 3 O O O O O O

@ ec=

O m

O e n 4 e 9 9 N =

I (t) 3mnsv 3mvm i

I

\

O g

1h g 0 iPh" f I u de 9,u,u ie vo <

o -

I D-42 l I

1 1

L J

n:< -

t

'{ i. [

1I

'4 e ll \.

',;)

Qw(OwZl40W

. r - o$ZoW._Z owZtn>

F 1

- 1 1 1 1 1 51 0 5 5 0 5 5 10 5 5 0 5 0 0 0 0 0 0 0 0 0 0 0- 0-7 6 _ M 7 LM A - 6 - A M _ - M

- J J -

J - J -

A . _ A S . 7 S P O _ - O R - N _ N A D _ - D F

S 7 7 I

- J ID _ J g

i N 7 _ F A 7 F _

u O - M T M _

r P A O e H - - A Y - M M M D S

- T - J

- _ J 1

E _ J J _

8 S A S

- - T _ A S _ S A _ S cC T - O T O _

ah I na an A N - O _ N lg T I

- O N _ D se O 7 J . 1

' - J s 1 8

a si N 8 F - v _ F n l l

- M s - M w v A _

S _ A ed s M g M l e T _

ln s S J

A _

J J

T ai st be i

T A

T '

_ J S

A -

I O

N - S A k es I O

t O O 1 2

wo ef N - N - N e 1 D i, D -

nd 2 7 '

J

_ 7' ll l

150- o e -

E

  • E 100- - - -

l _ _

50-p _

s _

M N <1 F M J O N J F M J A O N F JlA S O N A J S O N D F M J S S <1 MlA M J M M J A J A J A O D J _

A v J A D M A J d 4_

-10 0-

) 76 77 78 79

-15 0- DIATOMS- STATION 12 vs STATION I 15 0 -  ; a s 2 a s  ;  ? 2 3  ? ?

e. .a . .-

?. - - x x x x x x s 4 . x x x 10 0 - -

50 -  ;

I -

M A M J M M J O N J<lM M J J A S O I D F M J J S O J F J A S O h 7 ,_

J A S O N A_ J A S D JF" A N J -

A M A N O M A M J _

_[o0 _l -

3. 76 77 78 79

-15 0 - PRASINOPHYTES- STATION 12 vs STATION I i.

atoms and prasinophytes between intake (Station 11 average) arid discharge (Station 12) the discharge canal and Station 1, St. Lucie Plant, March 1976 - November 1979.

t 9

15 0 - g a a

% I  ? -

{ 10 0-r-

50- -

I o -

<l A M J S M A J M D M A M S

[ M J A O N D J F M J J A S O N D F M A J J A S O N J F - J J A 0 N i > -

l-- _

r. m -

!. Z _ _ _

w O _

~ ~

Z -10 0 -

W 76 77 78 79 0

Z 4 -15 0- CRYPTOPHYTES- STATION ll vs STATION 12 I

O g 15 0- _

O 4 _

l-Z 10 0-W _

O _

E  :'

w l _

50-Q.

- l M u J J S o J F E A N M F M M -

A A NlD M J J A S O D J F M A J J A S 0 N D J A J J A S O N

- ]t_ _

r -

i

-10 0 -

t 1

76 77 78 79

( ,

Li -15 0 - UNIDENTIFIED PHYT 0 FLAGELLATES-STATION ll vs STATION 12 I" Figure D-19. Changes in densities of cryptophytes, uni, L (Station 11 average) and discharge (Stati 7- , , , _

1 l

15 0 - -

8 a e-

- a -

l 100-l 50- _

- J S 0 N A J -

0 J M F M M S ri M A M J A D J F M M J A S N D F M A J J A S O N D J A J A .-{Oj N

-10 0- - -

i 76 77 78 79

! -15 0 DINOFLAGELLATES- STATION il vs STATION 12 I

l

,entified phytoflagellates, and dinoflagellates between intake n 12) canals, St. Lucie Plant, 1976 - 1979.

5

,a - '

-iz

,, ; STATION O -  !-#-. ' : M'CE J ,

., i. U1S Si% C ATA -

g- j ----- CHA%t OF SCALE -.

{t -

0* g

f I, =.

t i [l ig -

4- g .t / t

-4

.____ ___-.__________.__ __g-4 ,-t______ si ,7. rt . Ei *- ./- .:,

6 \\ i\  ! \'

  • ] , M, e' L 9' w

h*] c.j S

... w . . ,

[.

k hh; dk ' hE J  ; u U ; h5 ) Eh d bU  ; h 42 73 F2 . 73 5. E ) d k 7 77 78 79 -(2

,, ; STATION 1 1

.- r ,

p

  • s.

e; ui F l

'I t

[\

,1 u

/ $

    • ).-

s : .- - - - . _ _ L----- _- -- - - - --L--# 1---- - :s

': V 9 A,.,j v igl lh/ !:'

ir -

i k_-_____-['E'E' b~s'4 ;'i'4 STATION.2 J

i$ 4 J i 4 $ 4 '

4"> i 4 ; w J'3'd'4 ! E E'! s 4

-it m- -o

.- -e

'a .-. -.

E -

I t  : -

y <- I 1. n Q -<

E 8 ~*-- -~-#4 i's ': M~ ~/ ~ ~ ~~. S ~ .-y- - ~s.4. ...m.p - - - --/\/-~t. -/ b ~~ '[~-~[~ - ' ':'S ~~:

e

;; ; ; n > ;-l. c
; ;m ; . ; ; ; ; ; ; .m ;~ ; ; m a I ir - -ir
o. STATION 3 -

O m; :S E .- -.

31 .-

s

?

U l\

n  :.

. . _ g _ _ , _ _ _ _ _ _ _ ff_ _ _ . t - _ ../._.____.

.d y 3- _ . _ _ _ _ _ Q _ . . _ _ _ _ h __ _ _ _ _ _ _ :3 _

\/

  • b  : *

./ k

/p 44 ; i'E 5 E E';

[.

se -

4 J Ew 5 s4!4 45 s 4 ; s 4~$'s'4 ; u u ;i4

- iz

,,: STATION 4 -

e jA f -.

9 L -

4*

j \ j' '

-4 s-.______

'g,,- -- -- [ .' _ t

___3.- -._-._r,___.4 3 a-o

'\t.,v, /g , . .\ ,s, j i

i $

.,u '

.[,\ l

, e.n, ,r e w

, y j; g (* .p _ . a,([_ _ _ _ 4 _ . :

/ ,i us \u-r .

, , ,- . , - r, . H - , , . .-- , , , , o 4 J W W J $ 4 J WM J # W J $ N J W W J 5 4 w w J S N J U U J $ 4 12 - I -f g STATION 5 -

so; j - io

.- 1 -.

. y -

.4 1 ,. t .

e.

  • 3 h _ _ _ _ _~,___ __,__L.____._. o

./\.._.

?

7

. 7 '.

54

=3 E [' .  ; e e ; i's ; J'; ;

71 72 3(73 S/ O,5,/:y:j/My(i.sp.-0 :'

o .

76

J e45i; 77 J

79 79 l

t 1

Figure D-20. Active chlorophyll-a_ at Stations 0 through 5, St. Lucie Plant, November 1971 - Lecember 1979.

1 l

l D-45 om m n

. D 3 ,-

DJ g 100 uJ 2 o 1

w ..- - , . - - - . , - - . - . , ---- .-

M M M M M M M m m m m m m M M M M M M 15 - -15

- INTAKE CANAL -

ix 12 - -

DISCHARGE CANAL -12 N

-4

-10

{ 10 -  %

], 8 - 7 8 g

_______ __ ._. . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ._ _ _ _ _ _ l. _ _ _ _ _ __1 ___________ -6 4- -4

/

f .

h 3- / -3 l

p { l 2- -2 g

4 l-O i > > > > > > > i i . ..

u

, y iiiiiiiia MAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASOND iii>>>

iiiiiiiiiiiiiii x M. s.

-l 3

76 77 78 79

$ 2.0 - - 2.0 1.8 - - 1.8 4

is 1.6 - - 1.6 rn

~

[ I.4- - 1.4 Q 1.2 _

\\#. [i - 1.2 I5 H [.s

$ l.O - g \ - 1.0 E N b O.8 - \u -0 8 ?

Q 5" -

j\ \ l -

B o

w O.6 - 4  ! t  ?

\ -0 6 *'

(7 -

/\ y g / -

I d

~

i i i . , , ,

, /,

y _.

> > > i i . . i , i i i i , i

( f / ,.>>i .. '

',, .i .

g MAMJJASONDJFMAMJJASONDJFMAMJJASONDJ FMAMJJASOND 77 79 m 76 78 M Figure D-21. Active chlorophyll-a and phaeopigment concentrations in g

c ~,

the intake (Station ll) and discharge (Station 12) canals, St. Lucie Plant, March 1976 - December 1979.

u

k 06- . _

m

\/h \ -06 0.4 - \, - 0.4

~

F

'2~

O

\A / \ Wi7i.s A u )/A N?7ii*j~, x i i i i . i i ,

x i i i i i . 7

^

i i i . . i i . . . . . . .

~ '*

O M A M J J A SON DJ FMA M J J A SO N DJ FM A M JJ A S ONDJ F MA M J J ASOND 3- -

-3 2 STATION 3 o - 2.0 g-- 2.0 -

O ' --------------------------------------l-----------.---=1.0 ggj l .0 =- - - - - - - - - - - N

<[ l /\

g 0.8 - - 0.8 1 0.6 - < / - 0.6 l

i  ! . /

O4- [ / \ - 0.4 O

  • s IN_

i , i . . i i . . , , ,i i iiiiiii,iiiiii

- .a m_A 4,__

M A M J J A SON D J F M A M J J A SO N D J FM A M J J A S ON D J FM A

[*b s_.d...,.

M J A S OND

. i O 3.0 -

.J - 3' STATION 4 (4 ')

I 2.0 - j - 2.0 I.O:----------------------------------------------------- - - - - - - - - -* ---- =l.0 b O .8 - -O 8 0.6 - ,/ \ -0.6 0.4 -

/

[ k /\

e g -0.4 O'g - / \. ' '

, -0. 2 O

wkj-.R'sss= w .  % : J " L . ~ - ,

O i i i i a i i i i i i i i iiiiiiiiiiiiiiiiiiiiiii i i i i i i i i

, M A M J J A SO N D J F M A M J J A SO N D J F M A M J J A S ON D J F M AM J J A SO N D 3U~ -3' (3 4i> STATION 5 2.0 - k - 2.0

\ h \

1.0 - t--- I.0 O8- / 08 O6- i \ - 0.6

0. 4 - m' - 0.4

{

, \ , j _' '

\ ,4 /

O i . . , , . . . . .

M A M J J A S ON DJ F MA 7 {i . . i i i t=f=f[

M J J A S O N D J FM A M g ,

i i i i i i i , i i i i , i . . . i i i O J J A S O N D J F M A M J J A S ON D 76 77 78 79 Figure D-22. PhaeOpigment concentration at Stations 0 thrOugh 5, St. Lucie Plant, March 1976 -

December 1979.

d I

R 9 4Mm:?. Mph.a'2 bf_%

p t f 0 0 8 6 4 ' o. 0 0 8 6 4 e 0 0 8 3 2 IO. 0 0- e - " -O 3 2 4 0 O 0 eo - 3' 2 1

= -

0

- -  : - - - ~ -

- .D - ,D -

\

\

\' - \

.N ,N

\

,O

,S

'}T ,O

,S

.A * ,A -

,J ,J

,J - \ .J -

.l f '

,M

,A L .M iA h/ -

\

,M , iM -

,F .F - 1 E

L 7'R l

,,J7 9 ,.J A

C

- / / ,D - .D -

S - -

.N iN -

F - '

E O - ,O - ).O -

C E - - -

AuG ,S . iS d

fen - - ' -

R T T A - ,A - - iA -

Uc H SsC - - - -

_ ,J iJ

- - ,J - ,J -

b.v,, M ,M

,A

- ,x iM iA iM

- F - ;iF -

- 8 - - -

J7 c.J J !'

w ,, D

,N

_.,O

.D

,N

,O

- /,S -

.S

.s .A -

o._,, A J .J

.,J

,.TM N_ iJ

.M

.A

_ - ..A -

d

.M -

% .M -

- . .F -

, [\ ,FJ77 -

.J

- )It ,D - .D -

/l :/

\'

\

N N

,, O

,E *-

.N

,O

,S A , o_.,A -

b._

O ,, J I - 2 -

,J o N - N -

N IO T

' .- ,J

,M O

IT A ,J

,M O

I T

A < ,A TA A r__ .A T T S .,M76S

.M S -

- - - - - ~ - - = - - - - - - = -

8 6 4 2 O 0 0 0 8 0

3 0

2 0 08 060 4 " O 1

0 3

0 2

O.

1 0 O 0 e 3 2 1 O

^m

-- DATA NoT AVAILABLE I


CH ANGE OF SCALE STATION O l.4 -

~

, \

j i .o -

_______4_____________________________________________________..

o.7 - \ /

o.5 "*-*~'~*~ j ,e ._.'

j

o. 3 ,

o.1 -

,f

'. s ~ . -./ >/ \ .-._ / ,

/

i , I i i i I i i i i [ i i i i i i i i i i i i iiiiii a M AM J J A S oN D J F M A M J J A S oND J F M A M J J A y-l',

kO l4 3 76 STATION I 77 78 (229

/

i.o j

y. g o.7 - Q t

2 o.5 - . /

O o3- , ,. _ / \ < 7 \. m ,__ . , . _ /' . y n

z 4

o. \ -

. I i

, s' 'l i i , , , s , s , , i , i i i , s . . ,

sY '*, , , i . '. . s i, O M AM J J A S oN D J F M AM J J A son D J F MA M J J A O '4 p

g STATION 2 to].________s______________________________._______.7.L_

4 '

i a o.7 : N

  • j\

E o3 V /\*/

\

l \

g 03: .fx./ '/N%p/ w x, sj k V ./

p oi - , ,

t- bib 5$IS oN D F b J S oN D F F STATION 3 O '1o2

'.4 -_________ _______________._______________________d_______.

0.7 : I a

o5-o3- p.s*

P*~w.

N .

[*N. , "

p o.i , N. * '< ~ .' ' x._/

Oc

' ' ' ' ' ' ' ' ' ' ' ' ' ' I I I I 3 ' i ' 'i' 4 M AM J J A S o' N D J F M AM J J A S o' N D J F M A M J J A '

2 i.4 - STATION 4

[ t.o@_______2__________________._______.__________________

o.7 - \

O o.5-o.32 'N ' . -

o

\

- x - ., ..

x*.. ._* ./

O o.1 - , ,

i I i I i i i i i i l I I i i l [ l I i i l l I I I I I i I M AM J J A S oN D J F MAM J J A S oN D J F M A M J J A i.

i 4._ STATION 5 (;.se 7

1.03_ _ ___ __ _ __ _ l_\'_ _ _ _p, _ _ _ _ _ _ _ _ _-. _

o.7 - ,

o.5 - \

r .

/ N a N x o.3 .- ._

v~ *~m,~.-.

  • f i o. -

, . , s. *-

i i i I i i i i i i I e i e i i i i i i  :  :

M AM J J A S oN D J FM AM J J A S oND J F M A M J J A 76 77 78 Figure D-23. Gross primary productivity of phytoplankton, St. Lucie l

l l

-- 1.4

~

Is g,o e

  • " -07 n

N

-05 9 er -03

\ A .- f

..O. i I i l l I I i i i i i I i i i i ON D J F M A M J J A S ON 79

-l.4 fl0

-07

\- ~

-05

~

'r d, /* s' -0. 3

'N -0.1 i i i fiiiiiiiir i E' O N D J F M A M J J A SON (1.91)

, - 1.4

\

. . _ _ . . _ _ _ _ _ . _ - _ _ _ _ _ _ _ . _ _ _ _ _ _ _ . _ _ - l.O l' ,

IO7 l \ . -0. 5

~

[x j '

! -o. 3

-0.1 I i i I i i i i i i i i i i sO N D J F MA M J J A S ON

- l.4

.____ __ _ _ _ _ . . _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _p l.O

-0.7

/

e

-0.5

/ \ \ - 0.3 l d b" ~

- o. i l i i i i i i I I I I I I I 3 SON D J F M A M J J A SON l

l (1.65) ,

- i .4

/ . - _ _ _ _ _ _ _ _ _ _ . - l.o

- 0.7

-o.5

/ L_ _./

- o.3

, -o. :

I i i i i i i i i i i i i

)ON DJ FM A M J J A S ON (2 19) _ g,4 h _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ . . _ _ _ _

____Pi.O

_-0.7

-os '

/\['*\ }-o.3

, -0.1 I I I I I i i i i i i i i : i ON DJ F MA M J J AS ON 79 Plant, March 1976 - November 1979.

TABLE D-1 EXAMPLES OF THE INDIVIDUAL VARIABLES, CLASS VARIABLES AND MODELS USED WITH THE GENERAL LINEAR MODELS PROCEDURE ST. LUCIE PLANT 1979 INDIVIDUAL VARIABLES (Y1 ) (X1,2) (X3,4) ( 0)

Density _

Station Year Intercept Yi y 1 A 1 Yi y 1 B 1 Yi 2 A -

1 7

Y1 2 B 1 1

I CLASS VARIABLES Station Year 1 2_ A B X X il 12 i3 44 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 MODELS For station and year effects:

Y = B j 00+BXy jy + B2 i2 + B X3 i3 + B Xy $4 + Ej For station effects:

=

Y j B 00+BXy i1 + B X2 i2 + Ei 1

where: B is the respective slope E j is the error term D-49

_ _ _ __m _

1 TA9LE 0-2 PHYrOPLANKTON DENSITY AND PEdCENTAOE COMPOSITION Sr. LJCIE PLANT 17 JANJ%HY 1979

.................................................................................................... 7 .........................................................

STATION AND DEPTH

.............................................................................*.........*.......*.e.................................

I 11 12 0 2 3 4 5 TAAJS j ................................................................................*.S....*..

$ e AVG. S S u S B S B 8..........................................s........a........s........o.....

i

l BACILLAR 10PHVrA 1034646 1218575 1126711 1071292 1160234 2558220 1754299 2841280 650581 1342166 420166 605059 e56393 1536356 d56823 839324 (62) (51) (56) (70) (49) (77) (58) (77) (32) (56) (27) (64) (4U) (68) (42) (65)

Piddd3PnYrA (DINOFLAJELLATES) 34102* 447u9 192914 9408 61689 29559 73256 17795 17203 37631 62202 20761 71179 11663 66063 14846 (20) 1 2) (11) ( 1) ( 3) ( 1) ( 2) (<1) ( 1) ( 2) ( 4) ( 2) ( 3) ( 1) ( 3) g g) l CnLOH0PntrA (Gw TEN ALG u) 47339 80637 63938 70 55 ts 26099 66731 46267 41521 141062 81533 26990 19278 37d14 3559J 24023 17795 j ( 3) ( 3) ( 3) ( 5) 1) ( 2) ( 2) ( 1) ( 7) ( 3) ( 2) ( 2) ( 2) ( 2) ( 1) ( 1)

! O CrANJenyrA ( m Lut-Sn t L N ALuAL) 10584 .a $292 . 2373 . 3856 17795 123 % 6272 . 444*; 6673 6304 2002 h

j ( 1) ( ) ( 1) ( ) (<1) ( ) (<1) (<1) ( 1) (<1) ( ) (<1) (<1) (<13 (<1) ( )

1 j

o EdvLENJPdyTA (( UQ[OIDS) 11863 15422 3441 5042

. . . . . 6673 . 8038 ,

( ) ( ) ( ) ( ) (<1) ( ) ( 1) ( ) (tl) ( ) (<1) ( ) (<1) ( ) (<1) ( )

l C n f viced Y r A (CHYPTurafrLS) 141115 179194 160155 70559 272855 14829 161933 94936 275242 200697 277303 48936 23SJ06 59316 206196 44467 i ( t2 f 8) ( 6) ( 5) (11) ((1) ( 5) ( 3) (13) ( 8) (18) ( 5) (11) ( 3) gig) g 3) l l C rM YS ord N E AL ( Y E LLO -d H N N 59 50 . 2940 . 11863 7711 5932 3441 . 11764 4449 11122 . 800B 5932 l ALGAL AND S I LICCF LAGE LLATES) (<1) ( ) (<1) ( ) (<l) ( ) (<1) (<ll (<1) ( ) ( 1) (<l) ( 1) ( ) ((1) (<1) i i FdASINJPHYCEAE (FAASINOFHYrds) . 8960 4480 9408 42708 7415 26989 . 72251 31359 89073 1483 62282 5932 78u75 .

( ) (<1) (<1) ( 1) ( 2) (<1) ( 1) ( ) ( 3) ( 1) ( 6) (<1) g 3) g<g) ( 4) g 3 UN I J:.N r 1 FI LD Pd Y rCF LAG E LLATLS 573421 286711 221091 766365 355B97 794244 344034 846370 593277 631915 154122 #t5259 450803 732703 246162

! ( ) (24) (24) (14) (32) (11) (; ) ( 9) (41) (24) (40) (16) (39) (20) (36) (19)

O rd r.4 5 93957 265791 184374 89373 28472 281752 154222 344034 44727 131709 47059 80377 31141 136427 5 :$ 0 56 13a496

( 6) (11) ( 9) ( 6) ( 1) ( 9) ( 5) ( 9) ( 2) ( 5) ( 3) ( 9) ( 1) ( 61 ( 3) (10) 1 TOTAL PdfrCPLAW TON 1680449 2027413 2394520 303B198 2076702 1571414 2166540 2039959

) 156 3314501 3707296 2414663 939712

....................................... 2374178.............

. .. 1677..............................................................................2244.W.2.........1293041 . . ..

VA1)Ea AWL E APaESSLD AS CLLLS F6R LITER AND REPMLSENT THE MEAN OF Td9EE R EFLIC ATES.

j ..

PERCENrAGt VALUES Akt GIVEN IN PARENTHESES l ...

L=SJdFACE; d.dOTrO9; AVG..TdE AVEHACE OF STATION 11 S AND B VALUES.

  • ( ) . NGT 085ERVED.

I

E E W W W tM E E E E E E E E l R R Cl R C TAsLE D- 3 vHYT0 PLANKTON DENSITY AND PEROENTAGE C3*PO3IT10N ST. LUCIE PLANT 13 FEHRUAWY 1979 STATIDN AND DEP

.....................................................................T.H.. ...............*.....****..**.............................

2 3 4 5 11 12 0 1 l s a s a l

rAx3N s a Av s a s a

................................................ . 2 ...............................................................................s........e.......

s 3.......s 1

l 717959 713277 772297 9J5462 mACILLARIOPHYfA 1312918 993452 115)185 1097564 722175 125459 2650714 2159951 934773 1193670 (78) 1587322 (78) 1596199 (72) (56) (73) (54) (65) l (59) (57) (57) (84) (60) (57) (76) (78) (61) 3763 12335 28223 14829 4806 59316 26592 39570 16715 24913 29938 45313 14651 30544 25633 PfdddJPdYfA ( DI N OF LA C E LLATt s ) 20906

( 1) ( 2) ( 2) ( 1) ( J) ( 1) ( 1) ( 1) ( 4) ( 2) ( 2) ( 2)

( 1) ((1) ( 1) ( 2) 40767 5932 1632 51932 22244 12851 17993 8897 11567 12355 6169 2609d 32031 CdLunJPnifA (ddLLN ALGAE) 58537 41394 49955

( 2) ( 2) ( 3) (<1l ( 1) ( 11 ( 1) ( 1) ( 1) (<1l ( 1) ( 1) ( 1) ( 2) ( 2)

( 3) 6272 1783 . . 771 , ,

CfANJPHYTA teLUE-adtLN ALGAE) .a . . . .

(<1) ( ) ( (<1) ( )

( ) ( ) ( ) (<1) ( ) ( ) ( ) ( ) ( ) ( ) ) ( )

7415 5141 1295 . . 2373 IGEg LUJLENOPdYTA (I WIL( NO((5 ) 4181 . 2091 . . . . . .

C3 (<1) ( ) (<1) ( ) ( ) ( ) (<1) ( ) (<1) (<1l ( ) ( ) ( ) ( ) (<1) (<1) e 15679 75628 15659 122340 151256 74541 34700 39149 75183 63146 42411 1210J5 95u25 b) CdYPTvedY r*. (CRYPT 0PdYrEs) 2216D3 127945 174774 (10) ( 7) ( 9) ( 1) ( 6) { 7) ( 4) ( 5) ( 5) ( 2) ( 2) ( 3) ( 5) ( 4) ( B) ( 71 AANTdJr YfA (AANfd)PdYrEs) . 3135 . . . . . . . . , ,

(<1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

4181 11289 7735 7415 712 11122 4449 6426 3856 5339 3856 4118 2313 9491 4271 CasY30&dfCEAE ( Y E LLaw-3 R Ow N .

(<1) ((1) ( ) ( 1) (<1) (<1) (<!) (<!) (<1) (<1) (<!) (<1) (<1) ( 1) (<1)

A LGA L A sa SILIC0F LAGELLATES) ( 1) 41812 30105 35958 23726 2491 14829 17795 16707 3856 3559 9539 24709 6940 36776 8542 FMASINO cdYCEAE (PRASINOPdYTES) .

(<1)

( 2) ( 2) ( 2) ( ) ( 2) ( 1) (<l) ( 1) ( 11 (<1) I<II ( 2) ( ( 3) ( 1)

UNIDiNT16?ED P9;'f 0FLA;E LLATES 539374 496726 518050 116028 309927 63984 526431 355897 377844 233904 353559 478089 395351 169644 402164 284006 (24) (28) (26) ( 9) (26) (29) (15) (13) (25) (15) (17) (22) (31) (17) (28) (21) 62718 45157 53937 38556 4093 33365 44487 47552 30944 24913 19278 15100 16193 3440) 27760 OTd645

( 3) ( 3) ( 3) ( ) i 3) ( 2) ( 1) ( 2) ( 3) ( 2) ( 1) ( 1) ( 1) ( 2) ( 2) ( 21 1JfAL PdifRFLANnf0s 2265231 2009331 1199187 3477433 14R4403 2046429 1278a51 1435452 174993 2732671 1526321 2222748

............................................. 1......... 1307669............

... 218705..............................................................9.7237G..........13.d.37v.6 . .

VALuds AHL LAPAESSED AS CELLS PER LITEM AWD REPR ESENT THE MEAN OF THALE REPLICATES.

konCLNTALE VALUES ARE CIV6N IN PA4LNTdESEs b.6JdfACE; e.sOTTu1; AVO..TdE AVsRAGE OF STATION 11 S AND B VALUES,

( h=NOTCBLEGED.

l U U b E N E b1 .f ] . [ I I .I ( I k }

TAB LE D-4

. e.

Pet Y T0P LAN KT ON CE%SITY AND PESCENTAOE CONPOSITION ST. LUO1E PLANT 6 APRIL 1979 eeeeeeeeeeeeeeeeeen.ee.ee...................ee.......eeeeeeeeeeeeeee.ee..ee..eeeee.***esee.*******..e.**.e.***e.***.ee.**********......e......e..............

ee.

STATION AND DEFTH

...........e.ee....................ee..4.**...=***..e=***.*****************ee****************************.**e.e............ee.e..

12 0 1 2 3 4 5 11 S 4 AVO. S S B S 9 S 9 S 9 5 s S e TACJw ese....ee...........................ee...................ee..e.**********e.**************.*****************e*********e************.***e**.e.*****e..ee.........e.

OA0!LLAR10PHYTA 17535937 23477033 23306510 16245202 2004591 2026478 3459565 3493131 5205200 3147063 2470659 2106912 (78) 2556892 3074442 3121936 (32) 2912662 (94) (94) (94) (87) (63) (64) (78) (81) (61) (82) (80) (75) (80) (81) 75262 56446 55854 249363 82746 106769 117oSr 69400 96107 42716 14749 46775 41394 41402 51269 42709 PfddH3rdffA (DI N 3F LAS E LLATL S )

(<1) (<1) (<1) ( 1) ( 31 ( 3) ( ') ( 2) ( 1) ( 1) ( 2) ( 2) ( 1) ( 1) ( 1) ( 1) 64913 112892 59723 36301 34700 23133 43241 24023 21354 19640 135471 94077 34437 34166 LoLonavn f f A (;d t LN ALGAL) 45157 34669

( 1) ( 1) ( 1) ( 1) ( 1) ( 4) ( 2) ( 11 ( 1)

(<1) (<1) (<1) ( 1) ( 2) ( 1) ( 1)

C3 CfANJvngfA (b;U(-OhEEN A La t ) 7526 .a 3763 . . . . 2669 . . . . . .

8

(<1) ( ) ((1) ( ) ( ) ( ) ( ) ( ) I ) MII I I I I I I I I I I ( I U1 Lu;LEh0PHffA (10Q(N3IC51 752t . 3763 22578 . . 3470 . . . . . 3763 . 2135 2135

(<1) ( ) (<1)  :<1) ( l ( ) (41) ( ) ( ) ( ) ( ) ( ) (<1) ( ) (<1) M1)

Cnf P f 0PetY TA (CH gPf 0Frtifis) 278403 336677 308572 711221 3n*34 360593 249340 2053C8 326714 168161 . 136292 233311 233311 136665 139800

( 1) ( 1) ( 1) ( 4) (1b; (11) ( 6) ( 5) ( 5) ( 4) ( ) ( 5) ( 7) ( 6) ( 4) ( 4) 15352 20223 2163S 2669 6406 . . . SN8 2135 . . . . ,

C nd Yi JPd YC EA E ( f t LLJw -d R3vv 4 AL AE AND SILICCFLAGELLATES) (<l) (<1) (<1) ( ) (<1) (<1) ( ) ( ) ( # (<1) (<1) ( ) ( ) ( ) ( ) ( }

84669 102544 349966 E4061 79309 59993 37592 14414 21354 44843 56944 63972 41394 36301 363c1 P4ALIN3PHYOEAL (PAAh!N)Pd V f ES) 120418 ( 21

( 1) (<1) (<1) ( 2) ( 2) ( 3) ( 1) ( 1) (<1) ( 1) ( 1) ( 2) ( 1) ( 1) ( 1)

WICE% f!F IED Pd i f 0FLACELLATES 587040 1128923 857992 993452 624600 535991 520500 465558 763933 437754 461243 32335S 376308 349966 399317 450566

( 3) ( 4) ( 3) ( 5) (20) (17) (12) (11) (12) (11) (15) (12) (11) ( 9) (11) (12) 2669 3470 2892 . 2669 . 2034 3763 2135 .

c f rit s3 . . . . .

( ) ( ) ( ) ( ) (A.) ( ) (<1) (<1) ( ) (<1) ( ) (<1) (<!) ( ) g1) ( )

TOTAL PHYTOPLAN%fcv 16672387 24435539 3171044 4448537 6'52609 3074933 3416874 3788195 3151825 4297C14 3854417 2712954 38

.......** .........ee..................30193691.......

e...... 18683676..........e...... .........e**. ...ee......... eee** e...ee.......e.e.. .e.ee..e.ee.34592.........361733.b e

WALJE5 A4 LAPAESSED AS CELLS ped LITER AND REPR ESENT THE atEAN OF TdMEE REPLICATES.

Ft40tNTA0E VALJES AnE CIVEh IN PARENTHESES S=5ueFACE; n=33ff09; AVO.=THE AVEk%0E OF STATION 11 S AND B VALUES.

'( h = W CBSEEWID.

O M l

l l

TAeLE D-5

. e.

PdY TOF LANK TJN DENSITY AND PERCEN TAOE COMP 3SITION ST. LUCIE PLANT 27 APRIL 1979

.. .............ee.......................

eeee.e..............................................e.ee...............ee...............ee.............................

......................................................S..

11 12 0 TAT..IO.N..A.NDDE.PT.d............................................................

1 2 ,

3 4 5

.1AAON................................S........J.......AVJ .....S........S........e....... 5.......B.......S........B........S....... 8..........S........a....... 5.......m.....

y uACILLANIOPdYfA 12182361 7700868 9941614 6278962 1247024 2535768 761547 1421699 639933 628522 814706 1179724 690915 590G77 2C87782 1676466 (86) (87) (86) (81) (79) (81) (71) (73) (75) (78) (76) (76) (bul (79) (79) (85)

PfMHH0PdYTA ( DI N 3 FLAG 6 LLATE S ) 170897 26679 93388 53758 48441 20761 20820 33635 14244 21362 22584 31936 26578 2d476 5v168 21374

( 1) (<!) ( 1) ( 1) ( 3) ( 1) ( 2) ( 2) ( 2) ( 3) ( 2) ( 2) ( 3) ( 4) ( 2) ( 1)

C d Lud u Pd i f A (Jaits ALGAE) 32031 94077 63054 75261 12456 11863 12011 7909 7118 9251 22578 3763 2491 7630 8453 7118

(<1) ( 1) ( 1) ( 1) ( 1) (<!) ( 1) (<1) ( 1) (<1)

( 1) ( 2) (<1) ( 1) (<1) (g1)

CfANJPHYTA ( u LV E -G4 E E h ALGAL) .a . 10752 . . 925 1882 I I I I

. . . . , 717 g7gg e ( ) (<Il I I I I ( ) ( ) I I I<II (<II ( ) (

t?t

) ((1) ( ) (<1) to EUGLENOPPYTA (E UGLE N0! DS) 10677 $338 . . . . 712 . . ,

(<1) ( ) (<1) ( ) ( ) ( ) ( ) ( ) ((1) ( ) ( ) ( )

( ) ( ) g y g 3 CafPr0PdYrA (CRYPTCPHYTEC) 437754 147d35 292794 268791 26297 17795 48847 83043 35593 15659 48920 75262 12456 8542 9d613 44487

( 3) ( 2) ( 2) ( 3) ( 2) ( 1) ( 5) ( 4) ( 4) ( 2) ( 5) ( 5) ( 1) ( 13 ( 4) ( 2)

CH4Y50PHYCLAE (fLLL3a-3H0aN . 2768 . 1602 . 1424 . . .

ALGAL AND SILICOf LAJELLAT65) ( ) ( ) ( ) ( ) (<1) ( ) (<!) ( ) (<1) ( ) ( ) ( )

( ) ( ) ( ) ( )

PHASIN 3PdYOLAE (P A ASINJP .s tES) 138800 53758 9627v 86013 4152 . 3203 1977 4271 3559 3763 7526 830 2135 16v05 1780

( 1) ( 1) ( 1) ( 1) (<1l ( ) (<1) (<1) ( ll (<1) ((1) (<!) (<1) (<1) ( 1) ((1)

UNIDENTIFIED Pdf10r'LAGELLATES 1174461 833253 1003857 946145 220063 536812 221913 391487 140935 118158 155168 235192 124564 108935 346555 1904u5

( 8) ( 9) ( 9) (12) (14) (17) (21) (20) (17) (15) (15) (15) (14) (15) (13) (go)

UTHEas 13440 6720 10752 8304 23727 3203 13840 3559 13524 3763 18815 5813 4271 36628

( ) (<1) (<1) ((1) ( 1) ( 1) (<1) (<1) 37369

( 1) ( 2) (<1) ( 1) ( 1) ( 1) ( 1) ( 21 TorAL PdYTorLANHros 14146933 11508545 1569506 1073046 347755 1074364 8 77 e63649 2654104 81096

.....e...................................370.109.........ee..30434..**.e... 3

....146725......*.. 4...1953580.....................3........ 1552269...................50947 7 1980778 e.

VALUES AhL EAPdESSED AS CELLS ped LITER AND HEPRESENT THE MEAN OF TH4LE REPLICATES.

PLdOLNTAss vALJZS ARE GIVEN IN PAkENfMLSE$

e..

5 5ddFACE; o=d3ITUm; AVG.=THE AVERAGE OF STATION 11 S AND B VALUES.

a g *) = h07 OBSERVED.

TABLE D-6 PHYTOPLANKTON DENSITY AND PERCENTAGE COMPOSITION ST. LUCIE PLANT 15 M AY 1979 STAT AND OEP

........................................................... ION..........T.H.............................................................

11 12 0 1 2 3 4 5 TAAGN S S A VG

....................................e..........................................S.......

S S b S S S B S S 6 5 5

WACILLARIOPHYTA 1220365 11126163 11664911 7958907 3627135 23398462 12954015 17962419 2436472 7535234 2617090 9545163 5361414 36515087 2C67763 2107s013 (91) (92) (92) (8 3) (93) (93) (90) (92) (84) (93) (93) (94) (w4) (35) (35) (93)

PfNdMOPHYTA (DINJFLAGELLATES) 124182 100349 112265 131708 36311 133461 117408 25087 34166 68065 41106 88110 73422 256246 48046 97872

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) (<1) ( 11 ( 1) ( 1) ( 1) ( 1) ( 1) ( 2) (<!)

CnLudOPH Y f A (G d L L t. ALOAE) .a . 112892 9075 21354 26091 . 21354 16015 5372 a6015 146S1 53385 1YS74 26692

. ) ( ) ( ) ( 1) (<1) ((1) (<1) ( ) ( 1) (<1) (<1) (<1) (<1) (<!) ( 1) (<!)

C CYANJPdYTA (blUf G EEN AL34L) . 13793 6899 . . . . . . . . . . . .

h

( ) (C1) (<!) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

EUGLENOPHYTA (EUCLEN0!D5) 11289 . 5645 . . . . . . 8008 . . . . . .

(<1) ( ) (<1) ( ) ( ) ( ) ( ) ( ) ( ) (<1) ( ) ( ) ( ) ( ) ( ) ( )

CdrPTOPHYTA (CRYPTOPHYTE5) 146760 112832 129926 150523 33276 42708 78272 62718 2135 8008 11745 . 46978 106769 5336 26692

( 1) ( 1) ( 1) ( 2) i 11 (<1) ( 1) ((1) (<1) (<1) (<1) ( ) ( 1) (<1) (<13 (<1)

CHRYSOPHYCEAE (fELLO4-SHOaN . 25087 12544 . . . 26091 . 2135 12012 . 8008 . . 1730 .

ALGAE AND SILICOt LAGELLAT65) ( ) (<!) (<1) ( ) ( ) ( ) (<1) ( ) (<1) (<1) ( ) (<1) ( ) ( ) (<1) ( )

Pd451N]PnYCEAE (PdASINJPHYTES) 101603 62718 82161 235192 3025 5338 . 50174 2135 4004 1957 24023 5872 . 1780 8897

( 1) ( 1) ( 1) ( 2) (<1) (<1) ( ) (<1) (<1) (<1) (<1) ((1) (<!) ( ) (<!) (<1)

UNICENf1FILD PH Y TOF LA 3 E L LA T E b 835403 614636 725019 959585 184533 1692291 1213216 1417426 19931; 448430 148765 416400 226084 1558830 302513 1352409

( 6) ( 5) ( 6) (10) ( 5) ( 7) ( 8) ( 7) (14) ( 6) ( 5) ( 4) ( 4) ( 4) (12) ( 6)

Jrneds . 12544 6272 . . . . . . . 1957 8008 2936 21354 . 35590

( ) (<1) (<1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (<1) (<1l (<1) (<1) ( ) (<1) J total PdfrOPLAsnrai 13422595 12745541 3893356 14415093 2897714 2828493 5731357 2446794 195178 10105727

.......................................12068187............... 9 548807............ 2 5293615.....................24.

8099776

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 5.1 1 6......

. 71. . . . . . . 2. 2 6 2 61 VALuis ARE EAFdLSSE3 AS CELLS PER LITEH AND REPRESENT THE MEAN OF THMEE REPLICATES.

PLnCENTALE VALUES AHE GIVEN IN PAHLNTdESES b=hJdFACL; n=6]TTO9; AVO. .THE AVERAOE OF STATION 11 S AND B VALUES.

( h = MT GBSE RVED.

TABLE D-7 PHYTOPLANKTON DENSITY AND PERCENTAGE COMPOSITION ST. LUCIE PLANT 12 JUNE 1979 1

AN 1 ......................................................S.. TAT. ION. . . . . D. . D E.

.. PT.

. . d .............................................................

11 12 0 1 2 3 4 5 0 A VG

. T. A KON................................S.........................S........S........B........S.......9.......5.......B........S......8..........h........d........S........d....e

. e l

uACILLAH10PdfTA 590534 3556108 2073321 981536 1045383 573497 569838 405606 820788 472075 596974 239426 559645 373799 731542 656264 (56) (80) (68) (67) (61) (67) (69) (70) (74) (79) (82) (69) (75) (71) (69) (66)

FidRHJPHYfA (01NOFLA0ELLATES) 48920 79025 63972 72126 106119 47415 43007 27417 43383 17546 22596 20730 33943 18399 47737 32255

( 5) ( 2) ( 3) ( 5) ( 61 ( 6) ( 5) ( 5) ( 41 ( 3) ( 3) ( 6) (59) ( 3) ( 5) ( 3)

Cn LOM OPH Y T A (JhEEN ALOAE) 20966 45157 33061 9403 2258 2258 1344 .a 10010 5338 . . . 1672 2580 2481

( 2) ( 1) ( 2) ( 1) (<!) (<1) (<1) ( ) ( 1) ( 1) ( ) ( ) ( ) (<1) (<1) (<1)

CrANJPdfTA (BLUE-GdEEN A LGA E ) . 51930 25965 3763 . 452 836 1613 3337 458 . . . , , ,

g) a ( ) ( 1) ( 1) (<1) ( ) (<1) (<1) (<1l (<1) (<!) ( ) ( ) ( ) ( ) ( ) ( )

Ln U1 EJGLENOPdYTA ((($L[NCIM) 1747 . 874 . 6773 . . . 1112 . 903 941 g28 336 . 1241

(<1) ( ) (<1l ( ) (<1) ( ) ( ) ( ) (<1l ( ) (<!) (<1) (<1) (<1) ( ) (<1)

CNYPf0PdffA (CdfPTCPHYTES) 45426 146760 96093 43933 33868 28223 10752 8870 7785 9914 9031 6585 7451 8362 24514 24811

( 4) ( 3) ( 4) ( 3) ( 2) ( 3) ( 1) ( 2) ( 1) ( 2) ( 1) ( 2) ( 1) ( 2) ( 2) ( 2)

CndYs0PHYCEAE (tELLCa-sRDwN 1747 11289 6518 3116 . 1129 . . . 763 . . . . 129J 1241 ALJAE AND SILICJFLAGELLATES) (<!) (<1) (<1) (<!) ( ) (<1) ( ) ( ) ( ) ((1) ( ) ( ) ( ) ( ) ((1) (<!)

PM AS INJPd YC EA E (PdAS!h0PHYTES) 20966 11289 16127 14495 24816 14676 4032 6451 2224 1525 . 1411 . 1672 3871 7443

( 2) (<1) ( 1) ( 2) ( 1) ( 2) (<1) ( 1) (<1) ((1) ( ) (<1) ( ) (<1l (<1) ( 1)

UNIDEN r1FIED PHYTOFLA'JELLATES 312739 541883 427311 310454 483921 193788 200249 124998 214650 87703 102055 77343 145706 121255 243847 265483 (30) (12) (21) (21) (28) (22) (24) (22) (19) (15) (14) (22) (19) (23) (23) (27)

CTnERS 3494 11289 7392 12544 6774 2259 1344 1613 3337 2288 . 470 82e 3345 5161 1241

(<1) (<1) (<1) ( 1) (<1) ((1) (<1) (<1) (<1) (<1) ( ) (<!) (<!) ( 1) (<!) (<1)

TurAL PdYr0PLANKroN 1046538 2750634 1706931 831371 1106626 731550 74840) 1060343 1471 060695 576 346677

........................................4454730..................363.............................. 557........... ...........................529341.........

597611..... .

992459 1

VALVES ARE EAPRESSED AS CELLS PER LITER AND REPRESENT THE "EAN OF THREE REPLICATES. l PEHOLNTAGE VALUES AHE GIVEh IN PARENTHESES S.SudFACE; menDTTOM; AVO. .THE AVERAOE OF STATION 11 S AND B VALUES.

3(

  • NOT OSSERVED.

)

-- w- w m p~ m a er ame um aus uma e um aus sur giu 1 l

l TABLE D-8

(

PHYTOPLANKTO4 DENSITY AND PERCENTAGE COMPOSITION ST. LUCIE PLANT 26 JULY 1979 e..............................................................................e...............e****.*****..e*********.**..*.**..****.e..ee......................

AND DEPTH

..................... ..............e..e....eee**.....S.TATION ...... . .....e.e.e.ee.....e.**.e.e.... ...s... .eeeeee....... ............

11 12 0 1 2 3 4 5 S S 8 S B TAXON

.........................e..

S 8 AVG S S B B

.....e..*****...**. esse......... .........**...S........B........S.......d....e BACILLAR 10ParTA 1763852 1934261 1849057 2104313 1297542 2263536 2449788 2455732 703790 1592640 886237 2909490 790092 1692307 1012180 1891926 (89) (81) (85) (94) (81) (8 9) (87) (89) (85) (SS) (78) (89) (80) (83) (60) (85)

PYRRHQPdYTA (DINOFLAGELLATES) 13596 15062 14329 15052 71):9 21364 3761 8008 32034 28482 47453 40038 26344 40068 35882 24043

( 1) ( 1) ( 1) ( 1) ( 4) ( 1) (<1) (<1) ( 4) ( 2) ( 4) ( 1) ( 3) ( 2) ( 3} g 1)

CHLOROPHYTA (GREEN ALGAE) .a 15052 7526 3010 1483 8008 7526 8008 2669 3559 7118 5338 5694 5339 6406 12012

( ) ( 11 ( 1) (<1) (<1l (<1) (<1) (<1) (<1) ((1). ( 1) (<1) ( }) (<1) ( 13 g 1) g CYANOFWTTA ( 8LUE.GR EEN ALGA E ) 8153 4077 . . 1602 . . . . . . . . . .

e (<1) ( ) (<1) ( ) ( ) (<1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Ln m EUGLENOPdrTA (EUGLEN0!DS) 3763 1882 . . 2669 . . . . . . . . . 2002

( ) (<!) (<1) ( ) ( ) (<1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (<1)

CRYPTOPHYTA (CRYPTOPHYTES) . 11289 5645 3010 8897 18685 11289 26692 3559 10677 10677 8008 2135 8008 8969 14013

( ) (<1) (<1) (<1) ( 1) ( 1) (<1) ( 1) (<1) ( 1) ( 13 (<1) (<1) (<1) ( 13 ( 1)

CHRYSOPHYC EAE (YE LLC. -SRNN . . *

  • 4449 * * . 2669 . 3559 . 2847 . 1281 4004 A1JGAE AND SILICOFIAGELLATES) ( ) ( ) ( ) ( ) (<II I I I I I I I<II I I I<II I I ICII I I I<II I<II PRASINO Pd YC EA E (PRASINOPHYTES) 2718 3763 3240 . . . 11289 8008 5338 . 1186 2f69 712 2669 5125 .

(<1) (<1) (<1) ( ) ( ) ( ) (<1) (<1l ( 1) ( ) (<1) (<1) (<1) (<1) (<1) ( )

UNIDENTIFIED PHYTOFIAGELLATES 195680 387597 2,.o38 111397 213470 245559 327388 248238 82746 233113 183880 314969 158730 293615 198591 274263 (10) (16) (13) ( 5) (14) (10) (12) ( 9) (10) (12) (16) (10) (16) (14) (16) (12)

OTHERS . 3763 1882 3010 2966 2669 3763 . . . . . 5338

( ) (<1) (<1) (<1) (<1l (<1) (<1) ( ) ( ) ( ) ( ) ( ) (

) (<1) ( )

( ),

TOTAL PHYrOPLANKTON 1983999 2179275 1605996 2814806 832806 1140111 986555 12m 34 18

...e....................................2374551........

... 2239783........ 2564102........

... .. .... 2754686..............

.. 6.8470............3280513.......e....... 2047344...e....

.... 2222263 e

VALUE3 ARE EAPRESSED AS CELLS PER LITER AND NEPRESENT THE MEAN OF THREE REPLICATES.

e.

PERCENTAGE VALUES ARE GIVEN IN PARENTHESES

..e S= SURFACES B=8OTTOMs AVG.=THE AVERAGE OF STATION 11 S AND B VALUES.

8( ) = NOT CSSE RVED.

MM M TABLE D-9 e e.

PHYTOPLANKTON DENSITY AND PERCENTAGE COMPOSITION ST. LUCIE PLANT 21 AUGUST 1979 eeeeeeeeeeeeeeeeeeeee................eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees *e eeee**ee**eeeeeeeeeeeeeeeeeeeee ese STATION AND DEPTH

..e eeeeeeeeeeeeeeeee ..e e e e.e e e e e e e e e ee e e e e e e ee e e e e e e e e e e e e e ee e e e e e ee ee e ee e ee e e e e ee ee e e e e e e e e * *e s e e e e e ee e e e.o o e e e e ee e e ee e e ee e e...

11 12 0 1 2 3 4 5 TAXON S 8 A VG . S S 8 S B S 8 S B 5 d S B eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee***eseeeeee**eee*****eee******eeeeeeeeeeeeeeeeeeeeeee. eeeeeeeeeeeeee BAC I LLA H 10 PH V r A 173913 303364 238638 267889 1114104 290613 856230 103440 406179 95121 111805 21952 565597 71243 191300 46430 (37) (37) (37) (54) (85) (41) (91) (18) (69) (20) (37) ( 7) (75) (23) (55) (18)

PENRHOPHYTA (DI N 3F LAC E LLAT ES ) 40529 66427 53478 27646 39037 59316 54025 95265 62152 56590 50537 48049 58723 40928 34558 39617

( 9) ( 8) ( 8) ( 6) ( 3) ( 8) ( 5) (17) (11) (12) (17) (16) ( g) (13) (13) gg5) l C H LOM OPH YT A (GNEEN ALGAE) 6537 18321 12429 13346 8008 26692 12919 56113 14191 40928 23433 28768 15605 23430 26198 44275 l ( 1) ( 2) ( 2) ( 3) ( 1) ( 4) ( 1) (10) ( 2) ( 9) ( 8) ( 9) ( 2) ( 8) ( 8) (g7)

CrANOPHYTA (BLUE =GHEEN ALGAE) 654 1019 836 5815 .a . 1292 457 979 819 . 415 246 3e 717 466 f

m

(<1) ((1) (<1) ( 1) ( ) ( ) (<1) (<1) (<1) (<1) ( ) (<!) (<1) (<1) ((1) (<1)

%J LUGLENOPHYTA (EUGLEN0!DS) . . . . . . . . . . . . 411 297 . 212 l

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ((1) (<1) ( , ((1)

Cv f PTOPH YTA (CRYPTOPnurES) 30723 64274 47499 17159 4004 54571 11157 30666 3915 28116 7340 23726 3285 18388 2966 9533

( 7) ( 8) ( 7) ( 3) (<1) ( 8) ( 1) ( 5) ( 1) ( 6) ( 2) ( 8) ((1) ( 6) ( 1) ( 43 l CHH YS OPH YC LA E ( Y E LLOW-B ROW M 654 . 327 953 3003 1186 4698 9135 1468 7474 847 1779 1643 3856 2472 3601 ALGAE AND SILICOFLAGELLATES) {<1) ( ) (<1) (<1) (<1) t(1) (<1) ( 2) (<1) ( 2) (<1) ( 1) (<1) ( 1) ( 1) g 1)

Prt A SI N O PH YC EA E (PA ASINO PHYTES) 9152 25509 17330 1907 8008 9491 4698 15007 489 6762 . 6228 411 2373 494 2542

( 2) ( 3) ( 3) (<1) ( 1) ( 1) ((1) ( 3) (<1) ( 1) ( ) ( 2) (<1) ( 1) (<1) ( 13 UNIDt.N f1FIED PHYT 0f LACE LLATES 206566 329589 268077 163967 130125 254467 113923 262296 101297 238807 110670 175873 115393 147104 84278 117361 (44) (41) (42) (33) (10) (36) (11) (46) (17) (50) (36) (57) (15) (47) (24) (44) urHEHS . 728 364 1907 . 5932 . 3262 . 2135 565 297 821 2966 247 1059

( ) ((1) ((1) ((1) ( ) ( 1) ( ) ( 11 ( ) ((1) (<1) (<1) (<1) ( 1) (<1) (<1)

TOTAL PHYTOPLANKTON 469726 638979 1306289 1058942 590671 305198 782135 347231 809231 500%89 702267 575642 4767 307088 265098

.eeee.eee.eeeeeeeeeeeee...eeeeee...o**eeeeeeeeee...eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee..eeeeee...eeeee..... 51eeee ......eeeeeee.ooe ee ...310969 ... e... .eeeeeeeeeee e

VALUES ARE EXPHESSED AS CELLS PER ITER AND REPRESENT THE MEAN OF THREE REPLICATES.

e.

PEHCENTAOE VALUES ARE GIVEN IN PAHENTHESES S=SUHFACE; 8=80TTON; AVG.=THE AVERACE OF STATION 11 S AND B VALUES.

( ha NOT OBSE WED.

_ - . - . - __ _ - . - _ _ - . .- ~ - .- _ _ - - _

TAsLE D-10 PHff0PLANKf0N DENSITY AND PERCENIACE CD= POSITION ST. LUCIE PLANT 7 SEPTEMBER 1979 e................eeeeeeee.ee............ ..e.ee .................................................ee................. wee........ee.e...ee.4 .e.eee se.. .ee....eeee AND DE e......................ee............................ S.T.ATION. . . . . . .. . . . . . P .T H. . . . . . . . . . . . e . . . . . e e e e e e e e e e e e e e . . . . . . . . . . . . . . . . . . . .

11 12 0 1 2 3 4 5 TAXJN $ 8 AV3 S S B S B 5 B S B S d S B

...ee................eeeeee.. ....ee .. ..ee. .ee................... .............ee. ee.ee....eeeeeeee...................ee.. .e**.ee...... .. ... .............

mAC IL LA R10 PH i rA 457593 8897 3 673693 1067691 1747995 579146 916084 691454 508541 258253 570918 216509 539148 346463 756574 226004 (45) (5 9) (52) (62) 184) (64) (76) (66) (73) (61) (73) ($3) (76) (55) (66) (62)

PYdRd]PdYfA (DINOFLAGELLATES) 45753 42263 44011 40039 26341 27417 36704 36035 26692 25027 22837 26395 2021L 31498 12812 25209 l

( 4) ( 3) ( 4) ( 2) ( 1) ( 3) ( 3) ( 3) ( 4) ( 6) ( 3) ( 6) ( 3) ( 5) ( 1) ( 7)

CdL0dJPdiTA (JdELN ALGAL) 12711 6573 9692 23356 .a 6451 6606 9509 4805 3033 10440 6821 5389 11745 4484 6228

( 1) (<1) ( 1) ( 1) ( ) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 2) ( 1) ( 2) ( 13 ( 2)

CtANJPdftA t u LU E-G N E L N ALOAE) . . 4 . . . 1602 534 . 652 297 . . . ,

, C3 ( ) ( ) ( ) 1 ( ) ( ) ( ) ((1) (<1) ( ) (<1) ((1) ( ) ( ) ( ) ( )

i 1613 1!86

] [' EdGLENordf rA N0!D51

( E UGLE

( ) ( ) (

) (

) (

) (<1) (

) (

) ( )

(

) (

) (<1) (

) (

) ( )

( )

l 4

! cdrProenYtA (CMYPfuPdYTts) 96601 91199 93933 136793 77141 53221 46244 57655 20820 26025 14354 26999 14871 49114 16656 24913

( 9) ( 6) ( 8) ( 8) ( 4) ( 5) ( 4) ( 6) ( 3) ( 6) ( 2) ( 7) ( 2) ( 5) ( 2) ( 7)

CadYSUPdfCEAL ( t E LLOw-B R 3w N . . . . . . . . . 501 . 297 . , , ,

l (<1) (<1) i ALeAE AND S!LIC0 FLAGELLA TES) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

! Pd431m3PdYCLAL (Fd A51N)PHY rz0 ) 7626 22244 14935 6673 20697 4838 9542 9609 4271 5505 . 3262 2669 2669 1281 3559 l ( 1) ( 1) ( 11 (<1) ( 1) (<1) ( 1) ( 1) ( 1) ( 11 ( ) ( ll (<1) (<!) (<1l ( 1)

UNIDENTIFIEJ ntirOF LAOL LLATES 395571 442647 419509 440423 210732 291937 179839 240231 129724 106102 16J510 129313 125835 190583 91608 75925

{ (39) (33) (34) (26) (10) (27) (15) (2 3) (19) (25) (21) (31) (18) (30) (10) (21)

OrdEd3 . 2224 1112 . . . 1469 1632 . 2001 652 . . . . 2966

, ( ) (<1) (<1) ( ) ( ) ( ) (<?) ((1) ( ) (<l) (<1) ( ) ( ) ( ) ( ) ( 1) l total e TCPLA%nr0N 1016S50 1256952 2052939 1196438 695387 783364 711163 963416 i 1497043 1715313 1064593 1037795 425416 410769 632078 364808 5 .. ........................................................................................ee......... ............+ .................ee....... .................

WAs h3 AnE E APdESSED AS CELLS PER LITEM AND REPRESENT THE MEAN OF THREE REPLICATES.

e.

ped,LNTAGE VALULS ARE GIV6N IN F Ak EN THES ES e..

b.S.mFACE; neeJTT04; AV3.=THE AVER 40E OF STATION 11 S AND B VALUES.

8( i NOT e OBSERVED.

t 9

5 t,

TABLE D-Il PHYTOPLANKTON DENSITY AND PERCENTAOE COMPOSITION ST. LUCIE PLANT

+

2 OCTOBER 1979 1 ..................................................................................................... ........................................,,,,,,,,..,,,,,,,

l j

AND D

......................................................ST.ATION...........EPTH i 11 12 0 1 2 3 4 5 l 7gagg S d AV3 S

, .................................................... .....S.......S........B........S........B........................S....... 6..........S....... 6....... 5......

B

. 8.....

B ACI LLARIO PH y rA 241470 370287 305878 428092 310912 350203 778525 777306 354807 438543 360905 578659 (24) 403276 412130 450499 474313 j (24) (24) (54) (19) (19) (15) (16) (38) (40) (46) (42) (43) (46)

, (51) (44) pggaHJPdYrA ( DI N O F LAO E LLAT E S ) 114983 144502 129742 115602 211670 228495 293064 226351 61170 72074 31197 98193 44376 46932 34405 46254 (12) ( 9) (10) (15) (13) (13) ( 6) ( 5) ( 7) ( 7) ( 4) ( 7) ( 5) ( 5) ( 4) ( 4) i CdLOdOPHYTA (,dELN A LGA E ) 11499 14450 12974 21675 32618 34166 80077 t

  • 41 20793 14236 24469 20972 24913 32031 7526 29007 t

( 1) ( 1) ( 1) ( 3) ( 2) ( 2) ( 2) .) ( 2) ( 1) ( 3) ( 2) ( 3) ( 4) ( 1) ( 3)

! CtANOPdfTA ( a tu E-G d E EN A LCA L ) 1045 .a 523 3071 833 2135 1783 1223 156

. . . 2829 645 1568 l g (<1) ( ) (<1) (<1) (<1) (<1) (<1) ( ) (<1) ( ) ( (<1) (<1) i e

) ( ) (<1) (<1)

) Ul EJGLENOPdYTA ([@t E N0!DS) . . . . 1388 . 12812 612 1779 j @ . . . . . 1075

( ) ( ) ( ) ( ) (<1) ( ) ( ) (<1) (<1) (<1) ( ) ( )

i ( ) ( ) (<1) ( )

CHYPTOPdYrA (CHyProPHYTLS) 235192 335v68 285580 27094 349082 379030 1441394 1264147 169029 153036 97473 196379 114443

(24) (22) (23) 85415 145147 124652

( 3) (21) (21) (28) (26) (18) (14) (11) (14) (12) (10) (16) (12)

I CHRYSOPHYCEAL (Y E LLow-B h oa N . 694 1068 8897 4271 1779 953 4

. . . 534 ALGAE AND SILICOf LAGE LLATES) ( ) ( ) ( ) ( ) (<1) (<l) (<1) (<l) ( ) (<l) ( ) (<l) ( ) (<1)

! ( ) ( )

vg4S1saPHyctAE (PdASINJPdYfES) 73171 113795 93493 3613 144352 146274 235782 222080 16516 15126 13457 30505 14014 36301 13977 16463

( 7) ( 7) ( 7) (<1) ( 9) ( 8) ( 5) ( 5) ( 2) ( 1) ( 2) ( 2) ( 1) ( 4) ( 2) ( 2) l ONIDEN f1FILO PH Y r0FLAGE LLATES 313593 578009 445799 191465 594758 657698 2273293 2233611 298509 403054 261807 452816 336658 278134 (32) (37) (34) (24) (36) (37) 234386 380228 (44) (46) (32) (37) (34) (33) (36) (31) (26) (35)

OrdEds 3136 . 1568 1806 694 . 4449 890

. . . . . 1075 184

(<l) ( ) (<l) (C1) (<l) ( ) (<l) ( ) ( ) (<l) ( ) ( ) ( ) ( ) (<l)

! (<l)

. TOTAL PdYf aPLANK roN 994085 1275548 1647000 5122250 922463 779307 939836

! 888736 i

...................................*....1557011*..*..**....

.. 792418*..*....****.e.1799070****..**.e..

4 11 804639...**.*.....****.00617.

1378475

. . * . * . . . * . . . * . . * . . *. * . . . . . . ... . . 8..9 4 3 VALUES ARE ExPdESJED AS CELLS PER LITEd AND REPRESENT THE MEAN OF THREE REPLICATES.

pggcggrAag VALUES ARE GIVEN IN PARENTHESES S.SudFACL; O*dOTTOd; AVO.=THE AVEHAOE OF STATION 11 S AND B VALUES.

a( ) . NOT OBSERVED.

1

5 TA6LE 0-)?

PHYTOPLANKTON DENSITY AND PERCEN TAGE COMPOSITION ST. LUCIE PLANT 30 OCTOBEN 1979 i

..............e............ ...........e......... ..........................................ee.................e.................ee.......ee..e...........e...... l

..e j STATION AND D PT

..............ee.................................eee.ee..e.ee.....E.e.H.....ee..e....e.e.e........e....eeeeee.....................

e l

11 12 0 1 2 3 4 5 5 e AVG S S B S B S B

.. ....e.8e**.e...**.e.......*.**.**....e******.**...******e*.e.e.s...eees.e.eeee..S.......8....

TAAON e..................es ...................ee......... .ee ..e...e..S o dAC I LLAH I OPd y r A 1916714 2738795 2327754 3075515 2598309 1805M37 316565 3612189 865525 1281037 64520R 950411 872213 775010 e70057 1123541 (58) (56' (57) (74) (75) (94) (75) (76) (74) (75) (54) (62) (60) (72) (70) (73)

PfMkHJPHyrA (DI N J F LA C E LLATES ) 110364 51265 81324 85610 85415 59316 10796 94376 42925 60490 48931 47621 53207 42801 52050 54827

( 3) ( 1) ( 2) ( 2) ( 2) (C1) ( 3) ( 2) ( 4) ( 4) ( 4) ( 3) ( 4) ( 4) ( 4) ( 4)

CnLJddPd f rA (JHLch ALGAE) 5017 41812 23415 52653 .a . 386 20019 3844 7931 18345 18527 6940 4627 1652 3915

(<1) ( 1) ( !) ( 1) ( ) ( ) (<1) :1) (<1) ((1) ( 2) ( 1) (<1) (<1) g(1) g<1)

C3 CfANOPHYrA (dLUE-OREEN A LCA E) 2007 15680 8843 19756 14592 . 308 . 3203 3569 . 2070 4164 925 1487 979 j (<.) (<1) (<1) (<1) (<1) ( ) ((1) ( ) (<1) (<1) ( ) (<1) f(1) (<1) (<1) (<1)

LUGLEh0PdYrA (EJM(NOIDS) . . . 386 . . . 3058 . , , , 979

( ) ( ) ( ) ( ) ( ) ( ) (<1) ( ) ( ) ( ) (<1) ( ) ( ) ( ) ( ) (<1) careroPatrA (CafPTCParrES) 165575 365855 265715 111952 124564 433008 16193 177313 33312 49571 51978 76579 g2123 35857 47919 60680

( 5) ( 8) ( 6) ( 3) ( 4) ( 2) ( 4) ( 4) ( 3) ( 3) ( 4) ( 5) ( 6) ( 3) ( 4) ( 4)

CddYS OPH YC L A E (YELLOW-dR0WN 5017 . 2509 . . . 386 5720 641 2974 . . 2313 2313 . 1957 ALGAE AND SILICOFLAGELLATES) (<1) ( ) (<1) ( ) ( ) ( ) (<1) (<1) (<l) (<1) ( ) ( ) (<1) (<1) ( ) (<1)

PwASIwaParCEAE (Pa ASINOPd VTES) 15052 83624 49338 . 14236 . 4241 37179 5125 991 9173 24836 16193 17350 18176 2936

((1) ( 2) ( 1) ( ) (<1) ( ) ( 1) ( 1) (<1) 61) ( 1) ( 2) ( 1) ( 2) ( 1) (<1)

UNIC6NT!FIF. *d Y TOF LAG E LLATES 1068714 1547043 1307878 810002 593789 2817520 72099 737851 208200 303377 409705 418078 394423 198947 254467 288722 (32) (32) (32) (19) (17) (13) (17) (16) (18) (18) (35) (27) (27) (18) (20) (19) urHtn3 . 10453 5227 13171 14236 41521 1928 48618 2562 2974 . . 1u410 1157 3305 4894

( ) (<1) (<1) (<1) (<1) (C1) (<1) ( 1) (<l) (C1) ( ) ( ) ( 1) ((1) (<!) (<!)

total PartorLANx tas 3288480 4072003 3442141 423287 1165337 1185397 1441937 1249113 2140185

...................*................... 4855525....ee..

... .e. 4168589..................... 2........

. 4733265........

....... 1712915.e..........

1 548222.

.. . . . . . . . . . . . .10.

eee 7 8 9 9 6. .. .. . .. . . . 15 4 3 5 3 v. .

VALucS ARE EAPHESSED AS CELLS PER LITER AND REPHESENT THE MEAN OF THREE REPLICATES.

PLMCENTAGL VALUES ARE GIV6N IN PARENTHESES SeSudFACE; b=s3rT04; AVG.=THE AVERAGE OF STATION 11 S AND B VALUES.

  • ( h.NOTOBSERVEC.

k {A 5 $ I TABLE D- 13 l

PHYTOPLANKTON DENSITY AND PERCENTAGE COMPOSITION ST. LUCIE PLANT 23 NOVEN ER 1979

............................................................................................................................................................... .e.

S AND DEP

..e....................................................T.ATIO.N.........T.H ... ..................................*.**.*................e..

4 5 11 12 0 1 2 3

..TA.A.J.N.............................S.......3.......A.VO........S........S.......8........$.......8.......5......8........S.......8........$........d........S.......d.....

mACILLANTJFHffA 1895716 216650 1056189 2163836 693052 6569603 1962409 1716879 288014 1307130 215870 2647310 206936 542813 584293 865638 (69) (72) (71) (79) (62) (77) (68) (71) (35) (76) (36) (77) (27) (69) (59) (69)

PfMdMOPHYfA (DINOFLAGELLATES) 42335 5376 23855 56446 25872 88974 32255 50184 43724 19278 24636 40063 23834 14251 16237 22803

( 2' ( 2) ( 2) ( 1) ( 1) ( 2) ( 5) ( 1) ( 4) ( 1) ( 3) ( 2) ( 2) ( 2)

( 2) ( 2)

CHLOR 0/dtfA (GdEEN ALCAE) 14112 538 7325 6272 4957 . 32255 28671 11104 3856 5186 13346 3737 6228 7687 6940

( 1) (<1) (C1) (<1) (<1) ( ) ( 1) ( 1) ( 1) (C1) ( 1) (<1) (<1) ( 1) ( 1) I !)

CdANovdifA (oldt-ONEEN ALOAE) ,a 1344 672 18815 991 26879 7168 4303 5783 4343 4894 2102 . 1110 .

qy .

8 ( ) (<1) (<1) ( 1) (<!) ( ) ( 1) (<1) ( 1) (<1) ( 1) (<1) (<1) ( ) (<1) ( )

Ch t;dG L E N0 Pd i f A (EUGLENGIDS) . . . 6272 991 . . . . . 2593 . 1868 . . .

( ) ( ) ( ) (<1) (<1) ( ) ( ) ( ) ( ) ( ) (<1) ( ) (<1) ( ) ( ) ( )

CHfvf0Pdf fA (CRYvf0ParfES) 216377 22578 119478 75262 71383 177949 215033 175610 77728 53978 71955 66731 197436 43597 69186 63451

( 8) ( 8) ( 8) ( 3) ( 6) ( 2) ( 7) ( 7) ( 9) ( 3) (12) ( 2) (14) ( 6) ( 7) ( 5)

CHd id O Pd (C EA C ( f E LLOW -d ROWN 4704 . 2352 .

. 991 . . 3584 4858 . 3889 4449 4204 890 854 3966 ALuAt AND S I L I C0F LACE L LATES ) (<1) ( ) (<!) ( ) (<!) ( ) ( ) (<1) ( 1) ( ) ( 1) (<1) ( 1) (<1) (<1) (<1)

FwASINapsicEAE ( Pg As g N OPH Y TES ) . 2150 1075 . 21811 . 21503 7169 39558 7711 27874 . 46244 890 17083 5949

( ) ( 1) (<1) ( ) ( 2) ( ) ( 1) (<1) ( 5) (<1) ( 5) ( ) ( 6) (<!) ( 2) (<!)

u4idtNf! PIE 9 edif0 FLAGELLATES 564462 50533 307497 426482 282557 1408760 564461 394227 345612 291094 241146 591679 357343 162823 286996 257771 (21) (17) (19) (15) (25) (17) (20) (16) (42) (18) (40) (17) (47) (21) (29) (21)

OfMEd3 9403 , (704 . 23794 237265 26379 39423 7634 2$061 5185 5733) 3375 16935 1025Q 2$777

(<1) ( ) (<1) ( ) ( 2) ( 3) ( 1) ( 2) ( 1) ( 2) ( 1) ( 2) ( 1) ( 2) ( 11 ( 2)

T0fAL Pdif0PLANKf0N 2747113 1523146 1126401 2881675 822535 602678 762581 9w3697

........................................ 299179......... 2753185.

. ... ... . . . . . . . . .. .. 8 4 8 2 5 51..... .... . . . . 2 4 2 2 913. . . . . . . . . ..

171389).

. . . . . . . . . .. 3 4 2 6 3 0 5.. . . .... . . . . 7 8 8 3 97.

dALotS AME E ArdESSED AS CELLS PER LITER AND HEPRESENT THE MEAN OF TH4EE REPLICATES.

reaCtNTAGE VALUTA ARE GIVEN IN PARENfMESES s e., a r AC E : n- s]fTom s AVO. =THE AVt;M AGE 01P STATION 11 S A43 8 VALUES.

l

'( i . NOT 085ERVED I

(

N W~WWMM V TABLE D-14 SEASONAla OCCURRENCE OF MAJOR PHYTOPLANKTON SPECIES ST. LUCIE PLANT MARCH 1976 - NOVEMBER 1979 1976 Winter Spring Summer Autumn Asterionella japonica Nitzschia delicatissima Nitzschia closterium Leptocylindrus danicus Skeletonema costatum Skeletonema costatum Nitzschia delicatissima Thalassiosira sp.1 Thalassiosira sp.1 Skeletonema costatum Chlorophyte sp.1 Prasinophyte sp.1 Chl orophyte sp.1

?

O 1977 Winter Spring Summer Autumn Nitzschia closterium Asterionella japonica Chlorophyte sp.1 Nitzschia closterium Skeletonema costatum Leptocylindrus danicus N. delicatissima Chl orophyte sp.1 Chl orophyte sp.1 Skeletonema costatum Prasinophyte sp. 1 Thalassiosira sp. 1 Thalassionema nitzschioides Tropidoneis lepidoptera l

l

3 m y - w m w~ m m m m m umu um um unut unus sus amm us TABLE D-14 (continued )

SEASONAla OCCURRENCE OF MAJOR PHYTOPLANKTON SPECIES ST. LUCIE PLANT MARCH 1976 - NOVEMBER 1979 1978 Winter Spring Summer Autumn Asterionella japonica Asterionella japonica Leptocylindrus danicus Leptocylindrus danicus Nitzschia delicatissima Nitzschia closterium Nitzschia delicatissima Nitzschia closterium Skeletonema costatum N. delicatissima Skeletonema costatum N. delicatissima Skeletonema costatum Skeletonema costatum Thalassionema nitzschioides Thalassiosira sp. 1 Chl orophyte sp.1 Thalassionema nitzschioides Tropidoneis lepidoptera Chlorophyte sp.1 Prasinophyte sp.1

?

O 1979 Winter Spring Summer Autumn Asterionella japonica Leptocylindrus danicus Leptocylindrus danicus Nitzschia closterium Nitzschia closterium Nitzschia closterium Nitzschia delicatissima N. delicatissima Skeletonema costatum N. delicatissima Rhizosolenia stolterfothii Leptocylindrus danicus Thalassicsira sp. 1 Skeletonema costatum Skeletonema costatum Skeletonema costatum Tropidoneis lepidoptera Thalassionema nitzschioides Thalassiosira sp. 1 Thalassiosira sp. 1 Chlorophyte sp.1 aWinter = December (of preceding year), January and February.

Spri ng = March , April , May.

Summer = June, July, August.

Autumn = September, October, November.

l i B

L i

TABLE D-15 STATISTICAL COMPARIS0N 0F TOTAL PHYTOPLANKTON DENSITY OFFSHORE SURFACE STATIONS 0 THROUGH 5 ST. LUCIE PLANT DECEMBER 1978 - NOVEMBER 1979 ANALYSIS OF VARIANCE: STATIONS l

Source DF Sum of squares Mean square Model 5 12.94531067 2.58906213 Error 209 102.59794173 0.49089924 l Corrected total 214 115.54325240 I

Source DF Type 1 SS F value PR > F Station 5 12.94531067 5.27 0.0002  !

l DUNCAN'S MULTIPLE RANGE TEST: STATIONSa {

Alpha level =0.05 DF=209 MS=0.490899 GROUPING MEAN N STATION A 14.532400 36 1 A 14.468734 36 0 B 14.068496 36 5 B 14.065866 36 4 8 14.039303 36 I

2 B 13.847990 35 3 I aMeans with the same letter are not significantly different.

I D-64 I

1 L

?

L TABLE D-16 4

( i STATISTICAL COMPARIS0N OF TOTAL PHYTOPLANKTON DENSITY 0FFSHORE BOTTOM STATIONS 0 THROUGH 5 ST. LUCIE PLANT

{ DECEMBER 1978 - NOVEMBER 1979 ANALYSIS OF VARIANCE: STATIONS Source DF Sum of squares Mean square I Model 5 16.47070597 3.29414119 Error 208 253.99865825 1.22114740 I

l Corrected total 213 270.46936421 1

1 Source DF Type I SS F value . PR > F l Station 5 16.47070597 2.70 0.0218 DUNCAN'S MULTIPLE RANGE TEST: STATIONSa I Alpha level =0.05 DF=208 MS=1.22115 GROUPING MEAN N STATION A 14.704598 36 1 B A 14.641334 36 0 B A C 14.188633 36 5 B C 14.115034 35 2 C 14.058031 35 4 C 14.025721 . 36 3 aMeans with the same letter cre not significantly different.

l D-65

y-a TABLE D-17 STATISTICAL COMPARISON OF TOTAL PHYTTLANKTON DENStTY OFFSHTE SURFACE STATIONS 0 TIROUOi 5 ST. LUCIE PLANT MAR 01 1976 - NOVEMBER 1979

_ ANALYSIS OF VARIANCE: STATIONS X YEARS Source DF Sum of squares Mean square

?

Model 23 28.76289748 1.25056076 H

Error 246 147./9059696 0.60077478 Corrected total 269 176.55349444 I Source DF Type i SS F value PR > F Year 3 16.33919146 9.07 0.0001 Stat ion 5 10.66129229 3.55 0.0042 Station x Year 15 1.76241373 0.20 0.9995 I

j DUfC AN'S MULTIPLE RANGE TEST: STATIONSa Alpha level =0.05 DF=246 MS =0. 600775 GROUPING MEAN N STATION A 14.237177 45 1 I BA 14.116186 45 0 B C 13.892352 45 5 B C 13.862140 45 2 B C 13.789382 45 4 C 13.643011 45 3 l

DUNC AN'S MULTIPLE RANGE TEST: YEARSd Alpha level =0.05 DF=246 MS=0.600775 GROUP lNG MEAN YEAR N_

A 14.234651 66 79 I

A 14.102640 60 76 8 13.797779 72 78 l

l B 13.614246 72 77 I aMeans with the same letter are not significantly dif ferent.

f D-66 I

i -

1 1

i L

M l

TABLE D-18 g STATISTICAL COMPARISON OF TOTAL PHYT 0 PLANKTON DENSITY

! OFFSHCRE BOTT04 STATIONS O THROUGi 5 ST. LUCIE PLANT MARO1 1976 - NOVEMBER 1979 ANALYSIS OF VARIANCE: STATIONS X YEARS i

  • l Source DF Sum of squares Mean square _

Model 33.03815209 1.43644140

[

L 23 i

Error 246 201.42393263 0.81879647 i Corrected total 269 234.46208472 Source DF Type i SS F value PR > F Year 3 17.42366379 7.09 0.0002 Station 5 13.72485518 3.35 0.0061 Station x Year 15 1.88963312 0.15 1.0000 E

DUNC AN'S MULTIPLE RANGE TEST: STATI CNSa l

Alpha level =0.05 DF=246 Ri=0.818796 GROUPING MEAN N STATION A 14.495863 45 1 8A 14.404814 45 0 B C 14.089892 45 5 8 C 14.013752 45 2 B C 13.999840 45 4 C 13.874690 45 3 DutC AN'S MULTIPLE RANGE TEST: YEARSa Alpha level =0.05 DF=246 MS =0.818 796 GROUP lNG MEAN N_ YEAR A 14.433692 60 76 8 A 14.351700 66 79 B C 14.079842 72 78 C 13.785638 72 77 aMeans wIth the same letter are not sIgnificantiy dif ferent.

D-67

TABLE D-19 CORRELATIOP6 0F PHYTOPLANKTON OENSITIES, CHL@CPHYLtS-a - b AND -c ,

PHAEG)tGKNTS AND CArTTENGIDS VERSJS CHD41 CAL AND PHYSl!$L FARAKlTRS OFFSW.RE SURFAC STATIONS O Tm0004 5 S T. LLCIE PLANT CECEMBER 1978 - NOVEMBER 1979 D i sso l ved Parameter Temeerature Salinity crygen Nitrate Nitrite Ammonia Phosphate Silicate Dens i ty -0.56656o -0.18320 0.48999 0.06013 -0.04877 0.15122 -0.02039 -0.t0857 0.0001b 0.1235 0.0001 0.6159 0.6641 0.2048 0.8650 0.3640 72C 72 66 72 72 72 72 72 ChiorcphyIt-a- -0.37191 -0.33395 -0.06257 0.10966 0.26012 0.03800 -0.33558 0.02796 0.0013 0.0041 0.6177 0.3591 0.0273 0.7513 0.0040 0.8157 72 72 66 72 72 72 72 72 Chlorg hy i l-b- 0.32135 -0.18283 -0.51314 -0.16888 0.17066 -0.50322 -0.46527 -0.02477 0.0059 0.1242 0.0001 0.1561 0.1518 0.0001 0.0001 0.8364 c

7 m

72 72 66 72 72 72 72 72

  • -0.36834 -0.41969 -).03856 0.18857 -0.32523 -0.49206 -0.06217 l Chlorco ry li-c" -0.00788 0.0053 0.6039 0.9476 0.0015 0.0005 0.7478 0.1127 0.0001 72 72 66 72 72 72 72 72 i

l Phae @ i gment s 0.02978 -0.26845 -0.13363 0.06149 -0.14187 -0.06781 0.02143 -0.13390 0.8039 0.0226 0.2848 0.6079 0.2345 0.5714 0.8582 0.2621 l 72

72 72 66 72 72 72 72 i

! Carc+ enoi d s -0.40845 -0.46519 -0.13752 0.25467 0.19624 0.10702 -0.33983 -0.00268 l 0.0004 0.0001 0.2708 0.0309 0.0985 0.3709 0.0035 0.9822 72 72 66 72 72 72 72 72 l

i l

aCorrelation coef fIclent.

l b Prota bi l i ty of a gr ea ter R va l ue f o r t he nu l l hy pot hes i s.

i CNteter of cbservations (n).

}4

)

4

M W W W W MV TABLE D-20 CORRELATIONS OF RiYT0 PLANKTON DENSITIES, CHL@0PHYLLS-a, -b AND -c, PHAE (PIGKNTS AND CAROTEN0 IDS VERSUS CHEMICAL AND PHYSlfAL FARAKfERS OFFSHmE BOTTP STATIONS 0 THROUW 5 ST. LUCIE PL/,NT DECEMBER 1978 - NOVEMBER 1979 l

D i sso l ed Parameter Temperature Salinity oxygen Nitrate Nitrite Ammonia Phosphate Silicate, Dens ity -0. 437 50a -0.32609 0.29944 4).20754 -0.11078 0.00354 -0.25201 -0.26638 0.0001 D 0.0052 0.0146 0.0802 0.3542 0.9765 0.0327 0.0237 72c 72 66 72 72 72 72 72 Chl orop hy ! !-a- -0.25260 -0.41432 -0.01923 -0.13599 0.01747 -0.02581 -0.39794 -0.17330 0.0323 0.0003 0.8782 0.2547 0.8842 0.8296 0.0005 0.1455 72 72 66 72 72 72 72 72 Chl orop hy l l-b- 0.28174 -0.20391 -0.37160 0.05043 0.11030 -0.44819 -0.52697 -0.00248 0.0165 0.0858 0.0021 0.6740 0.3563 0.0001 0.0001 0.9835 72 72 66 72 72 72 72 72

$ Ch l orcp hy l i-c~~ -0.01610 -0.40714 -0.24190 -0.01880 0.01016 '0.30106

-0.56968 -0.12287 0.8932 0.0004 0.0504 0.8755 0.9325 0.0102 0.0001 0.3038 72 72 66 72 72 72 72 72 Phaecp igment s -0.16231 -0.33675 0.01760 0.08025 -0.20323 -0.20044 -0.16210 -0.11764 0.1731 0.0038 0.8884 0.5028 0.0869 0.0914 0.1737 0.3250 72 72 66 72 72 72 72 72 Carotenoid s -0.25732 -0.47309 -0.08452 -0.05233 0.00836 -0.00685 -0.42892 -0.15756 0.0291 0.0001 0.4999 0.6624 0.9445 0.9544 0.0002 0.1862 72 72 66 72 72 72 72 72 aCorrelat ion coef f icient.

bProtrsbility of a greater R value for the null hypothesis.

cNumber of observat ions (n).

I TABLE D-21 PHYT 0 PLANKTON STEPWISE ANALYSISa 3 0FFSHORE STATIONS 0 THROUGH 5 W ST. LUCIE PLANT DECEMBER 1978 - NOVEMBER 1979 SURFACE R square = 0.22151630 DF Sum of squares Mean square F PROB >F Regression 2 6.42469556 3.21234778 9.82 0.0002 I Error 69 22.57856794 0.32722562 Total 71 29.00326350 B value Standard error Type II SS F PROB >F I ntercept 0.00000000 R Temperatureb -0.13123682 0.03254336 5.32149692 16.26 0.0001 I R Ammonia -5.86070124 2.04030609 2.69995059 8.25 0.0054 I

BOTTOM R square = 0.33811460 DF Sum of squares Mean square F PROB >F Regression 3 26.17239996 8.72413332 11.58 0.0001 I Error Total 68 71 51.23449186 77.40689182 0.75344841 B val ue Standard error Type II SS F PROB >F 1ntercept 0.00000000 R Temperature -0.18242435 0.04885984 10.50304049 13.94 0.0004 I R Ammonia R Phosphate

-8.30239808

-68.96478756 2.60196303 21.92383135 7.67111306 7.45207730 10.18 9.89 0.0021 0.0025 I aThe last step to include only significant type II sums of squares was selected as the best model .

,I b The prefix R indicates residual variance for each variable af ter seasonal adjustment.

I D-70 i

I

I I

TABLE D-22 COMPARISON OF INTAKE (STATION 11) AND DISCHARGE (STATION 12) PHYT 0 PLANKTON ST. LUCIE PLANT JANUARY 1979 - NOVEMDER 1979 smperature in *F (*C) I ntake a D i scharge Change in cel I count b Date intakea Discharge AT ( *C) (cells / liter) (ce t is/l i ter) (%)

17 Jan 69.4 92.3 22.9 2,027,413 1,561,677 -23.0 (20.8) (33.5) (12.7) 13 Feo 65.5 87.6 22.1 2,008,031 1,307,670 -34.9 (18.6) (30.9) (12.3) 6 Apr 70.5 2.9 24,435,540 18,683,676 -23.5 I

73.4 (21.4) (23.0) (1.6) 27 Apr 74.8 76.3 1.5 11,508,545 7,730,434 -32.8 (23.8) (24.6 ) (0.8) 15 May 74.3 77.2 2.9 12,745,541 9,548,808 -25.1 (23.5) (25.1) (1.6) 12 Jun 77.7 91.8 2,750,634 1,471,363 -46.5 I

14.1 (25.4) (3'.2) (7.8) 26 Jul 75.0 99.3 24.3 2,179,276 2,239,783 +2.8 (23.9) (37.4) (13.5) 21 Aug 78.8 99.5 20.7 638,979 500,589 -21.7 (26.0) (37.5) ( l 1.5 )

I 7 Sep 72.C 94.6 22.6 1,256,952 1,715,313 +3 6. 5 (22.2) (34.8) ( 12.6 )

i 2 Oct 80.6 94.6 13.8 1,275,548 792,418 -37.9 (27.1) (34.8) (7.7) 30 Oct 76.3 98.6 22.3 4,072,003 4,168,689 +2.4 (24.6) (37.0) ( 12.4 )

Average of surf ace and bottom val ues.

Discharqe count - intake count Change in cell count =

intake count I

I I

D-71

I TABLE D-23 STATISTICAL COMPARIS0N OF TOTAL PHYTOPLANKTON DENSITY CANAL STATIONS 11 AND 12 l ST. LUCIE PLANT l DECEMBER 1978 - NOVEMBER 1979 I

ANALYSIS OF VARIANCE: STATIONS Source DF Sum of squares Mean square l

l Model 1 0.25576742 0.25576742 I Error 22 27.02887031 1.22858501 Corrected total 23 27.28463773 l

Source DF Type I SS F value PR > F Station 1 0.25576742 0.21 0.6527 I

I DUNCAN'S MULTIPLE RANGE TEST: STATIONSa Al pha 1evel =0.05 DF=22 MS=1.22859 GROUPING MEAN N STATION A 14.877602 12 11 A 14.671137 12 12 I aMeans with the same letter are not significantly different.

E 5

l I

'I o.72 g

i

L I

TABLE D-24 STATISTICAL COMPARISON OF TOTAL PHYTCPLANKTON DENSITY C#4AL STATIONS 11 AND 12 ST. LUCIE PLANT MAROi 1976 - NOVEMBER 1979 ANALYSIS OF VARIANCE: STATIONS X YEARS Source DF Sum of squares Mean square Model 7 13.49271304 1.92753043 Error 82 70.72824787 0.86253961 I Corrected total 89 84.22096091 Source DF Type i SS F value PR > F S tat ion 1 2.70421437 3.14 0.0803 Year 3 10.04279253 3.88 0.0120 Station x Year 3 0.74570614 0.29 0.8350 I

DUNC#J'S MULTIPLE R ANGE TEST: STAT 10NSa Alpha level =0.05 DF=82 MS =0.86254 GROUPlNG MEAN N STAT 10N A 14.657820 45 11 A 14.311140 45 12 I DUfCAN'S MULTIPLE R44uE TEST: WAR $a Alpha levol=0.05 DF=82 MS=0.86254 GROUP lNG MEAN N YLAR I A A

14.860317 14.716584 22 20 79 76 A B 14.438430 I

24 78 B 13.992593 24 77 eMeans with the same letter are not significantly dif ferent.

I I

I D-73

O M M M M M M M M M & M & M & & & M TABLE D-25 CORRELATIONS OF PHYTOPL ANKTON DENSITIES, CHLm0PHYLLS- -b AND -c, PHAEmlGKNTS AND CARCTENGIDS VERSUS CHEMICAL AND PHYSl[aAL FARAE1TRS C#4AL STATICNS 11 AND 12 S T. LUCIE PLANT OECEMBER 1978 - NOVEMBER 1979 D i sso l ved Parameter Ternperature Sallnity oxy gen Nitrate Nitrite Ammonia Phosphato Silicate Dens i ty -0.47815e -0.11751 0.51806 -0.28236 -0.30188 0.46686 -0.23454 0.01730 0.0181 b 0.6025 0.0135 0.1813 0.1517 0.0214 0.2700 0.9361 24c 22 22 24 24 24 24 24 Ch l orrp hy I l-a- -0.54638 0.03476 0.57568 -0.26367 -0.19544 0.51991 -0.16586 0.07402 0.0058 0.8780 0.0051 0.2132 0.3601 0.0092 0.4386 0.73 10 24 22 22 24 24 24 24 24 Ch l or@hy l l-b- 0.26164 -0.34194 -0.66247 0.35600 0.16333 -0.33613 -0.12998 -0.06276 0.2168 0.1193 0.0008 0.0877 0.4457 0.1093 0.5449 0.7708

?

N 24 22 22 24 24 24 24 24

  • Ch l or@ hy l l-c- -0.56233 -0.03574 0.42173 -0.17919 -0.21907 0.43164 -0.23361 0.08158 0.0043 0.8745 0.0506 0.4022 0.3037 0.0352 0.2719 0.7047 24 22 22 24 24 24 24 24 Phaeop i gments 0.12827 0.07867 -0.38353 0.35576 0.20561 -0.37504 -0.04426 0.44572 0.5503 0.7279 0.0781 0.0880 0.3351 0.0709 0.8373 0.0290 24 22 22 24 24 24 24 24 Carotenoid s -0.60808 0.04889 0.47971 -0.25190 -0.20845 0.44131 -0.13254 0.03787 0.0016 0.8290 0.0239 0.2351 0.3283 0.0309 0.5370 0.8605 24 22 22 24 24 24 24 24 aCorrelation coef f icient.

b Proba b i l i ty of a gr eater R va l ue f or t he nu l l hy pot hes i s, cNumber of observations (n).

I l I

TABLE D-26 a

ACTIVE CHLOROPHYLL-a AND PHAEOPIGMENTS ST. LUCTE PLANT 1979 Pigment and Depthb Chlorophyll-a (mg/m3 ) Phaeopigment (mg/m3 )

Date Station S B A S B A 17 JAN 0 2.34 2.83 2.59 1.07 1.65 1.36 1 3.06 3.29 3.18 0.76 0.98 0.87 I 2 3

2.06 2.53 2.29 1.69 2.17 2.11 1.06 0.71 1.25 1.29 1.16 1.00 4 1.80 0.96 1.38 1.06 1.73 1.39 5 2.85 4.51 3.68 0.58 0.55 0.57 11 2.8P 3.77 3.33 0.79 0.74 0.76 12 1.36 -

1.36 1.21 -

1.21 13 FEB 0 1.25 2.00 1.63 0.75 0.66 0.71 1 3.35 2.80 3.07 0.78 0.75 0.77 I 2 3

1.18 0.66 1.16 0.70 1.17 C 68 0.70 0.90 0.84 0.87 0.77 0.88 4 0.75 0.73 0.7' O.74 0.97 0.85 5 0.80 1.12 0.96 1.22 1.34 1.28 11 2.21 2.14 2.17 0.90 1.45 1.17 12 1.48 -

1.48 0.93 -

0.93 I aPhaeopigment = Phaeophyti n-a_ pl us phaeophorbide-a_.

bS = Surface; B = Bottom; A = Average. S and B values represent mean of duplicate determinations.

I .

I D-75 t

I I

TABLE D-26 (continued ) a ACTIVE CHLOROPHYLL-a AND PHAE 0 PIGMENTS ST. LUCTE PLANT 1979 Pigment and Depthb Chlorophyll-a (mg/m3 ) Phaeopigment (mg/m3 )

Date Station S B A S B A c

I 6 APR 0 1

4.62 6.10 5.01 4.80 4.82 5.45 ND ND 0.06 ND ND 0.03 2 6.52 7.01 6.76 ND ND ND 3 5.57 5.35 5.46 ND ND ND 4 5.90 6.13 6.01 ND 0.04 0.02 5 8.03 7.57 7.80 ND ND ND 11 9.79 12.30 11.04 1.74 0.68 1.21 12 14.49 -

14.49 0.30 -

0.30 27 APR 0 1.42 3.06 2.24 2.42 0.21 1.32 1 1.60 2.63 2.12 0.31 0.35 0.33 2 1.36 1.04 1.20 0.43 0.33 0.38 3 1.32 0.87 1.09 0.22 0.44 0.33 4 1.61 0.68 1.15 0.50 0.40 0.65 5 2.30 3.39 2.84 0.11 0.26 0.18 11 5.77 6.68 6.23 0.20 0.08 0.14 12 8.23 -

8.23 0.34 -

0.34 aPhaeopigment = Phaeophytin-a_ plus phaeophorbide-a.

bi = Surface; D = Bottom; A = Average. S and B values represent mean of duplicate determinations.

cND = Not detected.

D-76

1 1

TABLE D-26 (continued ) a 7 ACTIVE CHLOROPHYLL-a AND PHAE 0 PIGMENTS Sf. LUCTE PLANT 1979 l

Pigment and Depthb Chlorophyll-a (mg/m3) Phaeopigment (mg/m3 ).

l Date Station S B A S B A l

lf MAY 1.84 6.79 4.31 0.52 3.90 2.21 I

0 1 1.37 5.38 3.37 0.75 1.85 1.30 l

2 0.91 2.71 1.81 0.42 1.31 0.87 3 1.33 1.55 1.44 0.60 0.73 0.67 l 4 2.73 8.40 5.56 0.80 4.10 2.45 5 0.94 3.65 2.30 0.63 1.63 1.13 c

11 17.90 5.66 11.78 ND 1.44 0.72 l

12 8.01 -

8.01 0.17 -

0.17 1

0.46 0.80 0.49 0.46 0.47 I 12 JUN 0 1

1.14 0.55 0.55 0.55 0.41 0.54 0.47 2 0.52 0.56 0.54 0.31 0.47 0.39 3 0.36 0.35 0.36 0.46 0.47 0.46 l 4 0.43 0.51 0.47 0.32 0.41 0.36 5 0.76 0.61 0.68 0.40 0.49 0.44 l 11 1.14 1.82 1.48 0.52 0.90 0.71 12 1.06 -

1.06 0.64 -

0.64 l

aPhaeopigment = Phaeophytin-a plus phaeophorbide-a.

I b5 = Surface; B = Bottom; A = Average. S and B values represent mc3n of duplicate determinations.

cND = Not detected.

u

~

0-77 I

i l

E l i

TABLE D-26 (

(conti nued ) a ACTIVE CHLOROPHYLL-a AND PHAEOPIGMENTS ST. LUCTE PLANT 1979 l l

Pigment and Depthb _

l Chlorophyll-a (mg/m3) Phaeopigment (mg/m3)

Date Station S B A S B A l

I 26 JUL 0 1

0.61 1.16 1.29 1.17 0.95 1.16 0.71 0.83 0.75 0.76 0.73 0.80 0.49 0.60 I 1.27 0.88 0.59 0.59 2

3 0.51 1.87 1.19 0.61 0.54 0.58 4 0.55 1.24 0.90 0.61 0.78 0.69 5 0.55 1.66 1.10 0.59 0.76 0.67 11 1.15 1.20 1.17 0.67 0.55 0.61 12 0.42 -

0.42 0.88 -

0.88 21 AUG 0 1.12 0.83 0.98 0.80 0.62 0.71 1 0.64 0.79 0.72 0.87 0.80 0.83 I 2 3

0.44 0.24 0.68 0.67 0.56 0.45 0.79 0.82 0.80 0.80 0.80 0.81 4 0.43 0.60 0.51 0.97 1.04 1.00 5 0.34 0.43 0.38 0.94 0.97 0.95 11 1.02 1.13 1.07 0.67 0.76 0.72 12 0.11 -

0.11 0.86 -

0.86 I aPhaeopigment = Phaeophytin-a_ pl us phaeophorbide-a_.

bS = Surface; B = Bottom; A = Average. S and B val ues represent mean of duplicate determinations.

I D-78 I

i

I TABLE D-26 E

(continued )

ACTIVE CHLOROPHYLL-a AND PHAE 0 PIGMENTS a

, ST. LUCTI PLANT 197 )

Pigment and Depth b Chlorophyll-a (mg/m3 ) Phaeopigment (mg/m3 )

Date Station S B A S B A 7 SEP 0 2.41 1.32 1.87 0.78 0.86 0.82 1 2.22 1.64 1.93 0.94 0.97 0.96 2 1.00 0.92 0.96 0.93 0.93 1.93 3 0.68 0.88 0.78 0.66 0.97 3.81 4 0.62 0.82 0.72 0.86 0.96 0.91 5 1.70 0.94 1.32 0.82 0.81 v.82 11 1.92 1.88 1.90 1.42 1.26 1.34 12 1.47 -

1.47 1.39 - 1.39 2 OCT 0 3.10 3.99 3.55 0.42 0.51 0.47 1 3.78 2.30 3.04 1.08 0.92 1.00 2 2.03 2.15 2.09 0.96 0.90 0.93 3 1.35 1.91 1.63 1.05 0.80 0.93 4 2.10 1.87 1.99 0.82 0.64 0.73 5 1.98 1.88 1.93 0.59 0.79 0.69 11 2.80 3.55 3.18 0.71 2.11 1.41 12 0.84 -

0.84 1.06 -

1.06 aPhaeopigment = Phaeophytin-a_ plus phaeophorbide-a_.

bS = Surface; B = Bottom; A = Average. S and B values represent mean of duplicate determinations.

I D-79 I

I l

TABLE D-26 (continued)

ACTIVE CHLOROPHYLL-a_ AND PHAE 0 PIGMENTS ^

ST. LUCIE PLANT 1979 l -

Pigment and Depthb Chlorophyll-a (mg/m3) Phaecoigment (mg/m3 )

Date Station S B A S B A 6

30 0CT 0 6.99 13.55 10.27 0.86 1.93 1.39 g

1 6.62 7.40 7.01 1.70 2.80 2.25 l

2 2.70c 2.79 2.74 0.67c 0.84 0.75 3 2.22 2.43 2.33 0.83 0.51 0.67 4 2.50 2.99 2.74 0.68 0.88 0.78 5 2.48 2.68 2.58 0.57 1.77 1.17 lE 11 4.14 4.27 4.21 0.70 0.54 0.62 12 1.09 -

1.09 1.29 -

1.29 28 NOV 0 1.73 3.24 2.48 0.25 0.70 0.48 1 2.63 1.26 1.94 0.27 1.15 0.71 2 1.93 1.28 1.61 0.14 0.31 0.23 3 1.35 1.49 1.42 0.32 0.38 0.35 1.12 1.26 1.19 0.37 0.40 0.39 I

4 5 1.74 2.26 2.00 0.33 0.42 0.37 11 2.42 1.85 2.13 0.46 0.47 0.46 3

12 0.71 -

0.71 0.71 -

0.71 l

i aPhaeopigment = Phaeophytin-a_ plus phaeophorbide-a.

b5 = Surface; B = Bottom; A = Average. S and B values represent mean of duplicate determinations.

cSinge determination.

l l D-80 I

m u

l r

TABLE D-27 STATISTICAL COMPARISON OF CHLm0 PHYLL-a OFFSHmE SURFACE STATIONS 0 Tm0001 F ST. LUCIE PLANT MAROi 1976 - NOVEMBER 1979 .

ANALYSIS OF VARIANCE: STATIONS X YEARS Source DF Sum of squares Mean square

{ Model 23 85.70657367 3.72637277 Error 246 700.25142818 2.84655052 l Corrected total '269 785.95800185 l

Source DF Type 1 SS F value PR > F Year 3 43.44804392 5.09 0.0021 Station 5 36.49475296 2.56 0.0276 Station x Year 15 5.76377678 0.13 1.0000 I

f DutC AN'S MULTIPLE RANGE TEST: STAT 10NSa Alpha level =0.05 DF=246 M5=2.84655 GROUPING MEAN N STATION A 2.512889 45 1 B A 2.054444 45 0 B A 1.776222 45 5 I B A 1.765556 45 2 B 1.621333 45 4 B 1.335111 45 3 DUFCAN'S MULTIPLE RANGE TEST: YEARSa Alpha level =0.05 DF=246 MS =2.84 655 GROUP 1NG MEAN N YEAR A 2.403500 60 76 B A 2.051818 66 79 I 8 C 1.725833 72 78 C 1.306389 72 77 aMeans with the sam letter are not significaatly dif ferent.

I D-81

I  !

I TABLE D-28 STATISTICAL COMPARISON OF CHLOROPHYLL-a OFFSHWE BOTT04 STATIONS O THROUW f ST. LUCIE PLANT MARW 1976 - NOVEMBER 1979 ANALYSIS OF VARfANCE: STATIONS X YEARS I Source OF Sum of squares Mean square Model 23 131.16433288 5.70279708 Error 246 1089.29281379 4.42801957  !

Corrected total 269 1220.45714667 Source DF Type i SS F value PR > F Year 3 47.56691134 3.58 0.0145 S tat ion 5 62.01206222 2.80 0.0176 Station x Year 15 21.58535932 0.32 0.9922 l

I DUfCAN'S MULTIPLE RANGE TEST: STAT 10NS 3

, Alpha level =0.05 DF=246 K3 =4. 42802 GROUPING MEAN N STATION A 2.810889 45 1 l A 2.805333 45 0 B A 2.122444 45 5 )

B A 1.902222 45 4 8 A 1.858444 45 2  !

B 1.543333 45 3 DUNCAN'S MULTIPLE RANGE TEST: YEARSa _

i Alpha level =0.05 DF=246 MS=4.42802 GROUPING MEAN N YEAR A 2.548500 60 76 A 2.546970 66 79 B A 2.164306 72 78 8 1.528889 72 77 I

r I aMeans wi th the same let ter are not sign i f icantl y di f ferent.

E i D-82 I

I l.

I TABLE D-29 i CHLOROPHYLL-a STEPWISE ANALYSISa l 0FFSHORE STATIONS 0 THROUGH 5 t ST. LUCIE PLANT DECEMBER 1978 - NOVEMBER 1979 SURFACE l

R square = 0.29799296 DF Sum of squares Mean square F PROB >F Regression 3 55.50357986 18.50119329 9.62 0.0001 Error 68 130.75444136 1.92285943 Total 71 186.25802122 l.

B value Standard error Type II SS F PROB >F Intercept 0.00000000 l R Temperatureb -0.38430722 0.08095048 43.33769299 22.54 0.0001 R Dissolved Oxygen -0.68465114 0.19565270 23.54585676 12.25 0.0008 R Nitrite 704.16608263 168.07829546 33.75005400 17.55 0.0001 BOTTOM R s- e = 0.27346375 I DF Sum t squa res Mean square F PROB >F 5

{ Regression Error 69 2 104.48904334 277.60563450 52.24452167 4.02327007 12.99 0.0001 Total 71 382.09467785 B value Standard error Type II SS F PROB >F Intercept 0.00000000 R Phosphate -171.71112666 54.31204764 40.21459583 10.00 0.0023 R Salinity -1.24192513 0.53864872 21.38743731 5.32 0.0241 aThe last step to include only significant type II sums of squares was selected as the best model.

i bThe prefix R indicates residual variance for each variable after seasonal l adj ustment .

5 D-83 I

l

I l

1

[ TABLE 0-30 STATISTICAL COMPARIS0N OF CHLOROPHYLL-a l OFFSHORE SURFACE STATIONS 0 THROUGH 5-g ST. LUCIE PLANT g DECEMBER 1978 - NOVEMBER 1979 l

ANALYSIS OF VARIANCE: STATIONS Source DF Sum of squares liean square Model 5 14.06202361 2.81240472 l

Error 66 207.34404167 3.14157639 Corrected total 71 221.40606528 Source DF Type I SS F value PR > F Station 5 14.06202361 0.90 0.4909 I

DUNCAN'S ftULTIPLE RANGE TEST: STATIONSa Alpha 1evel=0.05 DF=66 MS=3.14158 GROUPING MEAN N STATION A 2.787500 12 1 i A A

2.355000 2.rJ5000 12 12 0

5 A 1.784167 12 4 A 1.735000 12 2 A 1.442500 12 3 5

aMeans with the same letter are not significantly different.

I D-84 5

I \

B I

) TABLE D-31 STATISTICAL COMPARIS0N OF CHLOROPHYLL-a-l~ OFFSHORE BOTTOM STATIONS 0 THROUGH 5 ST. LUCIE PLANT DECEMBER 1978 - NOVEMBER 1979 ANALYSIS OF VARIANCE: STATIONS Source DF Sum of squares Mean square Model 5 30.73391250 6.14678250 Error 66 363.30467500 5.50461629 Corrected total 71 394.03858750 Source DF Type I SS F value PR > F Station 5 30.73391250 1.12 0.3603 I

I DUNCAN'S MULTIPLE RANGE TEST: STA'IONSa Alpha 1evel =0.05 DF=66 MS=5.50462 GROUPING MEAN N STATION A 3.535833 12 0 A 3.048333 12 1 N A 2.501667 12 5 A 2.196667 12 4 A 1.980833 12 2 j A 1.589167 12 3 aMeans with the same letter are not significantly different.

D-85 I

_ _ _ _ _ _ _ _ _ b

L I

{ TABLE D-32 STATISTICAL COMPARISON OF CHLOROPHYLL-a_

CANAL STATIONS 11 AND 12 F.

. ST. LUCIE PLANT DECEMBER 1978 - NOVEMBER 1979 l

ANALYSIS OF VARIANCE: STATIONS l Source DF Sum of squares Mean square Model 1 5.96505104 5.96505104 Error 22 365.49132292 16.61324195 i

Corrected total 23 371.45637396 Source DF Type I SS F value PR > F Station 1 5.96505104 0.36 0.5552

/

, DUNCAN'S MULTIPLE RANGE TEST: STATIONSa Al pha level =0.05 DF=22 MS=16.6132 GROUPING MEAN N STATION A 4.337083 12 11 A 3.340000 12 12 afteans with the same letter are not significantly different. l l

l

^

l 1 1 l

(

D-86 i l

i

l L>

I N

TABLE D-33 STATISTICAL COMPARISON OF CHLm0 PHYLL-a P CANAL STATIONS 11 AND 12

~-

t_ ST. LUCIE PLANT MARCH 1976 - NOVEMBER 1979 ANALYSIS OF VARI ANCE: STATIONS X YEARS Source DF Sum of squares Maan square f' Model 7 148.55966620 21.22280946 l

I Error 82 1004.58927519 12.25108872 Corrected total 89 1153.14894139 ,

l Source DF Type i SS F value PR > F Year 3 96.50805198 2.63 0.0550 Station 1 41.12108029 3.36 0.0706 Station x Year 3 10.93053395 0.30 0.8286 DUNC AN'S MULTIPLE RANGE TEST: STAT I ONSa A f pha levet =0.05 DF=82 MS=12.2511 GROUPING MEAN p[ STATION A 4.085333 45 11 A 2.733444 45 12 DUNC AN'S MULTIPLE R ANGE TEST: YEARSa Alpha level =0.05 DF=82 MS=12.2511 GROUPING MEAN p[ YEAR A 4.544500 20 76 B A 3.914545 22 79 8 A 3.632500 24 78 8 1.777292 24 77 aMeans with the same letter are not sign if icantly di f ferent.

D-87 L

1

F

( TABLE D-34 STATISTICAL COMPARISON OF PHAE 0 PIGMENT f 0FFSHORE SURFACE STATIONS 0 THROUGH 5 ST. LUCIE PLANT I

l DECEMBER 1978 - NOVEMBER 1979 ANALYSIS OF VARIANCE: STATIONS l Source DF Sum of squares Mean square Model 5 0.39305694 0.07861139 l

Error 66 11.76577500 0.17826932 Corrected total 71 12.15883194 l

Source DF Type I SS F value PR > F Station 5 0.39305694 0.44 0.8198 I

i DUNCAN'S MULTIPLE RANGE TEST: STATIONSa Alpha 1evel=0.05 DF=66 MS=0.178269 GROUPING MEAN N_ STATION A 0.740000 12 0 A 0.715833 12 1 ,

A 0.646667 12 4 l A 0.578333 12 3 A 0.577500 12 2 A 0.542500 12 5 l I

l aMeans with the same letter are not significantly different.

l 0 88

I l-i TABLE D-35 STATISTICAL COMPARIS0N OF PHAE 0 PIGMENT OFFSH0RE BOTTOM STATIONS 0 THROUGH 5 ST. LUCIE PLANT DECEMBER 1978 - NOVEMBER 1979 ANALYSIS OF VARIANCE: STATIONS l Source DF Sum of squares Mean square Model 5 1.39564028 0.27912806 Errur 66 38.35622500 0.58115492 Corrected total 71 39.75186528 Source DF Type I SS F value PR > F Station 5 1.39564028 0.48 0.7915 I

I DUNCAN'S MULTIPLE. RANGE TEST: STATIONSa l

l Alpha 1,evel=0.05 DF=66 MS=0.581155 GROUPING MEAN N STATION A 1.000833 12 4 l A 0.992500 12 0 A 0.911667 12 1 A 0.792 00 12 5 g

A 0.695833 12 2 A 0.642500 12 3 1

I aMeans with the same letter are not significantly different.

l D-89 I

1 E

h b

q TABLE D-36 STATISTICAL CDMPARISON OF RIAE 0'lGENT y OFFSHORE SURFACE STATIONS 0 THROUGi 5 l ST. LUCIE PLANT L MAROI 1976 - NOVEMBER 1979 ANALYSIS OF VARIANCE: STATIONS X YEARS Source DF Sum of squares Mean square I Model 23 20.51234286 0.89184099 Error 246 11.96727788 0.04864747 Corrected total 269 32.47962074

. Source DF Type l SS F value PR > F Year 3 19.65433549 134.6/ 0.0001 Station 5 0.44444741 1.83 0.1070 Station x Year 15 0.41355997 0.57 0.8988 DUFC AN'S MULTIPLE RANGE TEST: STATION $a Alpha level =0.05 0F=246 kS=0.0486475 GROUP 1NG MEAN N_ $TATION A 0.291333 45 1 B A 0.228667 45 0 0 A 0.200889 45 4 B A 0.195333 45 3 0 0.180444 45 2 B 0.168222 45 5 DUfCAN'S MULTIPLE RANGE TEST: YET.RSa Alpha level =0.05 DF=246 MS =0. 048 6475 GROUP 1NG MEAN N, YEAR A 0.684545 66 79 0 0.080333 60 76 8 0.054722 72 77 8 0.041389 72 78 eMeans with the same letter are not significantly di f ferent.

D-90

l A

TABLE D-37 STATISTICAL COMPARISON OF THAECPIGENT OFFSH04E BOTTCN STATIONS 0 THROUGi 5 ST. LUCIE PLANT MAROi 1976 - NOVEMBER 1979 ANALYSIS OF VARIANCE: STATIONS X YEARS Source DF Sum of squares Mean square Model 23 31.94858008 1.38906870 Error 246 58.68898288 0.23857310 Corrected total 269 90.63756296 Source DF Type i SS F value PR > F Year 3 28.25471168 39.48 0.0001 Station 5 1.58371852 1.33 0.2521 Station x Year 15 2.11014989 0.59 0.8821 l -

DUFCAN'S MULTIPLE RANGE TEST: ST A~.' l ONSa Alpha level =0.05 DF=246 kS =0. 238 573 GROUPING MEAN N STATION A 0.500667 45 0 A 0.400667 45 5 A 0.393111 45 I

1 A 0.364889 45 4 A 0.287556 45 2 A 0.270889 45 3 DU?C AN'S MULTIPLE RANGE TEST: YE ARSa Alpha levol=0.05 DF=246 MS =0. 238 573 GROUPlNG MEAN YEAR N_

A 0.899091 66 79 O 0.408833 60 76 I C 0.112917 72 77 C 0.108333 72 78 aMeans with the same letter are not significantly dif ferent.

l D-91

)

E l

l l

TABLE D-38 I PHAE 0 PIGMENT STEPWISE ANALYSISa 0FFSHORE STATIONS 0 THROUGH 5 ST. LUCIE PLANT DECEMBER 1978 - NOVEMBER 1979 l

SURFACE l

R square = 0.07881100 DF Sum of squares Mean square F PROB >F I Regression Error 70 1 0.88547836 10.34998809 0.88547836 0.14785697 5.99 0.0169 Total 71 11.23546645 B value Standard error Type II SS F PROB >F Intercept 0.00000000 I R Salinity b -0.17781363 0.07266027 0.88547836 5.99 0.0169 BOTTOM R square = 0.23414273 DF Sum of squares Mean square F PROB >F Regression 3 9.30761035 3.10253678 6.93 0.0004 Error 68 30.44425492 0.44770963 Total 71 39.75186528 8 value Standard error Type II SS F PROB >F l Intercept 19.84064393 Temperature -0.08547664 0.03462506 2.72841396 6.09 0.0161 Armionia -5.45660027 1.73882755 4.40887406 9.85 0.0025 1 Salinity -0.47183159 0.16601959 3.61619449 8.08 0.0059 I aThe last step to include only significant type II sums of squares was selected as the best model . 1 b The prefix R indicates residual variance for each variable after seasonal adjustment. '

I D-92 I

{ TABLE D-39 STATISTICAL COMPARIS0N OF PHAE 0 PIGMENT CANAL STATIONS 11 AND 12 ST. LUCIE PLANT DECEMBER 1978 - NOVEMBER 1979 ANALYSIS OF VARIANCE: STATIONS Source DF Sum of Squares Mean square Model 1 0.09690104 0.09690104 Error 22 3.80269792 0.17284991 Corrected total 23 3.89959896 Source DF Type I SS F vilue PR > F Station 1 0.09690104 0.256 0.4619 I

DUNCAN'S MULTIPLE RANGE MST: STATIONSa Alpha level =0.05 DF=22 MS=0.17285 GROUPING MEAN N STATION A 0.899583 12 11 A 0.772500 12 12 l l '

aMeans with the same letter are not significantly different.

I l l l

1 l I l D-93

E l l

v 1 I TABLE D-40 L

STATISTICAL COMPARISON OF THAE0'IGFENT C#JAL STATIONS 11 AND 12 ST. LUCIE PLANT MAROi 1976 - NOVEMUER 1979 l ANALYSIS OF VARIANCE: STATIONS X YEARS Source DF Sum of squares Mean square Model 7 7.56127275 1.08018182 Error 82 6.14468530 0.07493519 Corrected total 89 13.70595806 Source DF Type i SS F value PR > F Year 3 7.30655419 32.50 0.0001 Station 0.01950694 0.26 0.6113 I

1 Station x Year 3 0.23521162 1.05 0.3775 I DUNCMJ'$ MULTIPLE RANCE TEST: STAT IONSa I GROUPING Alpha levol =0.05 MEAN DF=82 N

MS =0.07493 52 STATION A 0.356444 45 11 A 0.327000 45 17 I DUrC#J'S MULTIPLE RANGE TEST: WARS8 A lpha level =0.05 I

DF=82 MS =.07493 52 GROUP 1NG MEAN YEAR N_

A 0.840227 22 79 0 0.223750 24 78 8 0.161250 24 77 B 0.151500 20 76 eMoans with the same letter are not signif icantly dif ferent.

I l

I D-94 I

W W W W W W W W W W W W M M W~M7 CW-

} TABLE D-41 GROSS PRIMARY PRODUCTIVITY (P)a, EXTINCTION COEFFICIENT PER METER (k) AND SURFACE RADIATION (g-cal /cm2 / day)

ST. LUCIE PLANT JANUARY-NOVEMBER 1979 Station and parameter 0 1 2 3 4 5 Surface Date P k P k P k P k P k P k radiation 17 Jan 0.17 1.03 0.24 0.88 0.20 0.72 0.18 0.78 0.14 0.67 0.41 0.61 333 13 Feb 0.21 0.59 0.39 0.60 0.23 0.39 0.66 0.08 0.16 0.36 0.16 0.46 420 6 Apr 1.05 0.39 0.90 0.51 1.91 0.30 1.23 0.37 1.65 0.31 2.19 0.30 521 27 Apr 0.24 0.82 0.29 0.65 0.30 0.35 0.28 0.34 0.41 0.25 0.45 0.57 570 15 May 0.85 0.49 0.68 0.47 0.56 0.31 0.40 0.35 1.37 0.39 0.77 0.29 654 12 Jun 0.30 0.24 0.21 0.24 0.26 0.19 0.14 0.23 0.27 0.16 0.28 0.22 602 26 Jul b 577 21 Aug 0.33 0.27 0.09 0.70 0.08 0.63 0.18 0.22 0.29 0.16 0.21 0.16 596 7 Sep 1.16 0.14 0.53 0.33 0.42 0.21 0.26 0.26 0.29 0.22 0.61 0.19 586 l 2 Oct 0.84 0.35 0.39 0.64 1.02 0.17 0.67 0.20 1.00 0.17 0.90 0.18 511 1 1

30 Oct 0.75 0.92 0.52 0.91 0.50 0.37 0.33 0.48 0.61 0.30 0.34 0.51 339 P = grams of organic carbon produced per square meter per day. I b Insufficient data for calculation because of instrument failure during sampling.

I TABLE D-42 ANALYSIS OF VARIANCE FOR GROSS PRIMARY PRODUCTIVITY OFFSHORE STATIONS 0 THROUGH 5 ST. LUCIE PLANT l

JANUARY-NOVEMBER 1979a l Degrees of Sum of Mean Source freedom squares square F Stations 5 0.42168 0.08434 1.39 Months 9 8.58684 0.95409 15.70*

Error 45 2.73402 0.06076 Total 11.74254 5 MARCH 1976-NOVEMBER 1979b Degrees of Sum of Mean Source squares square l

freedom F Stations 5 0.76457 0.15291 1.24 Error 230 28.41363 0.12354 Total 235 29.17820 aduly 1979 results were not available because of instrument fail ure during sampling. l b

The following dates are not included in the analysis because 5 data were not available at one or more stations: Ma rch ,

August, and October 1976; January, February, April , August, 1

I and December 1977; and July 1979.  !

I *Significa nt at a=0.05. l i

,I I

I D-96 l -. -_ _

5 TABLE D-43 STATISTICAL COMPARISON OF BASELINE AND OPERAT10tML CHLO10 PHYLL-a SURFA& STATIONS 1 THROUdi 5 ST. LUCIE PLANT 1973 AND 1976 Ttf10UO' 1979 g ANALYSIS OF VARIANCE: STATIONS X YEARS Source OF Sum of squares Mean square s

Model 24 97.64411787 4.06850491 Error 260 764.46383652 2.94 024553 I Correc+cd total 284 862.10795439 L

Sourco DF Typo I SS F value PR > F Year 4 36.46897987 3.10 0.0162 l Station 4 53.66076842 4.56 0.0014 l l

Year x Station 16 7.51436958 0.16 1.0000 L

f DUfCM'S MULTIPLE RANGE TEST: STAT 10NSa l

Alpha level =0.05 DF=260 Mi=2.94025 B GROUPING MEAN N STATION A 2.552281 57 1 B 1.693509 57 5 B 1.674561 57 2 B 1.546667 57 4 B 1.252281 57 3 E DUNCM'S MULTIPLE RANGE TEST: YEARSa Alpha level =0.35 DJ=260 MS =2.94 025 B GROUP lNG MEAN N, YEAR A 2.348200 50 76 A B 1.974182 55 79 A B 1.700833 60 78 B 1.525000 60 73 B 1.291000 60 77 f

B aM-,.,,,h..-,e...,.,..,,,,,-,,,,,,.,...

D-97 E

I L

TABLE D-44 I

l STATISTICAL COMPARISON OF BASELINE AND OPERATIOreL CHLOROPHYLL-a BOTTG4 STATIONS 1 THROUGO ST. LUCIE PLANT I 1973 AND 1976 TFf10VGi 1979 ANALYSIS OF VARfANCE: STATIONS X YEARS Source DF Sum of squares Mean sque e f Model 24 110.25051997 4.59377167 Error 259 1146.02181242 4.42479464 Corrected total 283 1256.27233239 l

Source DF Type i SS F value PR > F Year 4 35.59912670 2.01 0.0933 Station 4 47.16666190 2.66 0.033t Year x Station 16 27.48473136 0.39 0.9845 DUFCAN'S MULTIPLE RANGE TEST: STATIONSa Alpha level =0.05 DF=259 MS =4.42479 i

GROUPING MEAN N_ STATION A 2.698070 57 1 A B 2.361579 57 5 A B 1.911053 57 2 B 1.833333 51 4 B 1.547321 56 3 DUtC AN'S MULT IFLE RANGE TEST: W ARSa Alpha level =0.05 DF=259 MS=4.42479 i CROUPlNG MEAN N YEAR A 2.389400 50 76 A 2.308545 55 79 A B 2.166102 59 73 A B 2.162833 60 78 L

B 1.407833 60 77 aMeans with the same letter are not significantly dif ferent.

D-98 L

L

[

[ E. ZOOPLANKTON Environmental Technical Specification (3.1.B.b) l Plankton -

Plankton samples will be collected J monthly. Both zooplankton and phytoplankton species be identified ki nd and abundance.

I as will to Chl orophyll "a" analysis will be performed as a l measure of primary productivity.

INTRODUCTION Zooplankters are aquatic invertebrates that have limited mobility or passively drift with water currents. Ecol ogical ly, zooplankton repre-sents the second trophic level in an aquatic food chain and can be divided into two main groups: 1) holoplankters, which spend their entire life cycle in the water column, and 2) meroplankters, which consist pre-dominantly of larvae of benthic mac roinvertebrates, who are temporary members of the zooplankton community. Zooplankton are an integral part of the total marine enviroceent found n' the St. Lucie Plant because zooplankters are the major consume,. of primary producers, such as phytoplankton, and in turn provide an important food source for larger macroinvertebrates and fishes. Zooplankton conmunity cmposition and density reflect the influences of temperature, salinity, food availabil- i ity, and various other physicochemical pa rameters . Zooplankton popula-tions of a nearshore environment such as that at the St. Lucie Plant are likely to vary considerably in both space and time.

I I

E-l I

I I General Effects of Power Plant Operation Because of their size and limited mobility, zooplankton are easily entrained and subj ected to the ef fect s of power plant operation.

Perturbations to the zooplankton conmunity may occur as a result of entrainment in 1) power plant condenser cooling waters and 2) themally elevated plant discharae waters.

The effects of plant entrainment on zooplankters may include lethal or sublethal exposure to rapid thennal elevation, mechanical stresses, and biocides, such as chlorine. These factors can act separately or synergistically with various other physicochemical parameters in causing stress to an organism. Pertinent studies on the effects of power plant entrainment on zooplankton have demonstrated impaired swimming and feeding capabilities, lowered resistance to predation, and increased susceptibility to disease (Mihursky and Ken nedy, 1967; Coutant, 1970; Davies et al . , 1976; Polgar et al . , 1976). Mortality of entrained zooplankton may ranga from 15 to 100 percent and appea rs to be site s peci fic , depending on species and environmental conditions (Marcy et al.,1978).

I The nearshore zooplankton, which potentially include the larval stages of the vast majority of local bentiic communities, are subject to plant entrainment. These meroplanktonic groups include la rvae of echinoderms, molluscs, barnacles and decapod crustaceans (shrimp and I

c rab s) . The impact of entrainment mortality of these larvt upon adult i

populations is important because most benthic invertebratm isve: sl ow I

E E-2

l l

l 1

generation time and limited spawning periods. Power plant entrainment of l

these meroplankters could result in a decrease in abundance of recruitable larvae in the waters adjacent to the power plant (Enright, 1978). Holoplanktonic organisms, such as copepods, appendicularians and chaetognaths have rapid generation times, and thus, potential losses i

attributable to plant passage would be minimized by recruitment from  !

offshore communities.

1 The effects of entrainment on zooplankton in thermal ef fl uent I discharges are difficult to assess because the duration and extent of exposure is dependent on the response of the individual as well as on the movement and mixing of water masses. The dissipation of waste heat into receiving waters is a function of its assimilative capacity. An open coastal environment, such' as that found at the St. Lucie Plarit, most l likely provides rapid dissipation of waste heat over relatively short distance and time. Thennal pl ume entrainment effects are therefore likely to be negligible.

I Effects of Other Envirormental Components Physical factors which potentially influence zooplankton distribu-tion include salinity, dissolved oxygen, and temperature. The interac-tion of zooplankton with these physical components and other biological elements of the ecosystem may result in uneven zooplankton distribution (i.e., patchiness). Patchiness compounds the difficulty of est ~ ating power plant influence on zooplankton densities and species compos"io.i.

I E-3

l l

l l

This section examines the cmposition and density of t: 3 zooplankton l community during the 1979 monitoring period at the St. Lucie Plant. The 1979 data were compared to those of previous operational phase studies l

(1976-1978) and to baseline data (1972-1973) to evaluate the potential 5 effects of power plant operation.

MATERIALS AND METHODS Duplicate zooplankton samples were collected monthly at six offshore locations (Stations 0 through 5) and in the intake and discharge canals (Stations 11 and 12, respectively; Figure E-1). Collections wre made wi th 0.5-m, 202u-mesh plankton nets equipped with flowmeters to record the volume of seawater fil tered . Discrete offshore samples were l collected from surface and bottom depths by making horizontal tows for 5-minute intervals at speeds of 0.5 to 2 knots. Intake and discharge samples were collected by 10 minute step-oblique tows , by fi shing the nets at spaced intervals from .the bottom to the surface. Zooplankton samples were preserved immediately after collection in a 5-percent for-malin solution buffered to pH 7-8 with sodium borate.

l For qualitative and quantitative analysis, zooplan!. ton samples were l

1 split with a Folsom plankton splitter and diluted to a wockable volume. l Three replicate 1-ml aliquots were withdrawn with a Stempel pipette and placed in grided counting trays for examination, looplankters were iden-tified to the lowest practicable taxon.

I I E-4

l I

1 l Zooplankters per cubic meter were cal culated by multiplying the j number of organisms in the subsample by appropriate dilution factors, and then dividing by the volume of water filt ered in cubic meters. The l volume of water filtered was calculated by: j V = w( r2)1 where: V = Volume of water filtered, in cubic meters; r = Radius of net at the mouth, in meters; 1 = Distance the net is towed , in meters.

Whole zooplankton samples were retained as vouchers in a pennanent collection.

I Zooplankton biomass for each station and depth was detennined by the ash-free dry weight method (EPA,1973). Results of these detenninations were expressed as milligrams of ash-free dry weight per cubic meter of water sampled.

I The designation of damaged zooplankton was based on observation of major structural impainnent to any zooplankter. This category was dif-ferentiated in attempting to estimate mortali ty resulting from plant operation by compa ring the number of damaged zooplankters between stations. Mean percent damaged for offshore stations between January and September 1979 ranged from 2.96 to 7.32 and was not expected to exceed 10.84 (a=0.05). Intake and discharge mean percent damaged during this period was 2.09 and 1.47, respectively. 1.iterature estimates of net damage to zooplankters often exceed 10 percent and vary according to spe-I E-5 I

l l

cies and collection method. Because of the relatively small percentage l of zooplankters damaged observed at St. Lucie duri ng the 1979 l

l collections, discussion of damaged zooplankton will not be presented.

\

I Statistical Procedures l l 1 For statistical analysis, zooplankton density data were transfonned to logn (number /m + 1), in order to reduce the effect of nonhomogeneous variation and skewness in these data. Geometric means were al so calculated. The Statistical Analysis System (SAS; Barr et al .,1976) was used in all statistical analyses. The General Linear Models (GLM)

Procedure, which provides the regression approach to analysis of variance, was used to examine interstation and annual variation in zooplankton density and biomt.ss for 1979 and for all previous operational monitoring (March 1976 through November 1978) and baseline studies (1972 through 1973). Examples of the indi vidual va riables , class variables, and models used are shown in Table E-1. Duncan's multiple range tests were used to detennine which means were significantly different. The relationships between zooplankton density and biomass and selected variables were examined by means of simple correla tions , using the

.prelation (CORR) Procedure, and stepwise regression, using the maximum R2 technique. To eliminate seasonal i ty from the data , variables were sine or cosine adjusted. The residual for each parameter, af ter seasonal variation had been removed, wa s then used in regression analysis to determine whether significant relationships between va riables ex i st ed .

The 0.05 level of significance was used in all statistical conpa ri so ns.

Because of the lag betwer collection of zooplankton samples and comple-I E.e I

l l

tion of sample analyses, statistical analyses included data collected through November 1979. The December data will be statistically analyzed in the 1980 annual non-radiological report.

I RESULTS AND DISC.SSION Community Composition Zooplankton composition during 1979 was similar to that observed during previous operational phase monitoring at the St. Lucie Plant (ABI, 1977-1979). Generally, the zooplankton community was characterized by neritic (nearshore) holoplanktonic species . Copepods, as in previous study periods, were the dominant component of the conmunity, comprising 70 percent of the annual mean zooplankton density at the offshore sta-tions (Figure E-2). Paracalanus aculeatus was the dominant copepod spe-cies and was observed during each sampling period at all stations.

Paracalanus was also the most frequently observed zooplankter in baseline and prior operational phase studies at the St. Lucie Fiant.

Other holoplankters which were major contributors to the zooplankton community in 1979 include the copepods Acartia tonsa, Temora turbinata, Oithona sp., and Euterpina acutifrons; the sergestid shrimp Lucifer sp.; t the appendicularian Oikopleura sp.; and chaetognaths. Cladoceran and ostracod species occurred infrequently and were numerically abundant only during brief periods.

I I The meroplankton conmunity observed during 1979 collections con-sisted largely of barnacle, mollusc, echinoderm, and decapod larvae. The E-7

i 1

decapods included penaeidean, claidean, and thalassinid shrimps as well as anomuran and brachyuran crabs. Brachyuran crabs were the major contributors to the decapod population in 1979. Meroplanktonic stages of 1 commercially important decapod species included the stone crab Menippe mercenaria; the Cuban stone crab Menippe nodifrons; the blue crab 1

Callinectes sp.; ar.d the bait shrimp Trachypenaeus constrictus. These commercially important decapod species have been identified in previous l

collections at the St. Lucie Plant.

Density Trends During 1979, average zooplankton densities offshore ranged fran 638/m3 in November to 6678/m3 in July (Figure E-2). Peak zooplankton abundance of 14,157/m3 occurred at Station 1 surface in August, while the lowest recorded density for any station was 65/m3 at Station 2 bottom in April (Tables E-2 through E-13). These offshore densities were con-sistent with previous collections at the St. Lucie Plant (Figure E-3);

they fall within the range of recorded densities for other Florida waters (Grice,1957; Owre and Foyo,1967; Reeve,1970; ABI,1979).

Zooplankton densities in the canals were highest in June with 13,772 and 7175 zooplankters/m3 at Stations 11 and 12, respectively. Minimal zooplankton abundance occurred in February for the intake station (294/m3) and in March for the discharge station (76/m3). Annual mean zooplankton density for the intake canal was higher in 1979 than in any

(

previous monitoring period at the St. Lucie Plant while that of Station l

! 12 was greater than those for 1977 and 1978 (Figure E-4). However, as in I

1 E-8 l

L -

~

I l

l l

previous studies, zooplankton densities in the canals were consistently less than those observed offshore (Figures E-4 through E-6).

l Seasonal zooplankton abundance during 1979 was similar to that during previous operational monitoring periods at the St. Lucie Plant l (Figure E-3). Peak zooplankton densities were usually observed in the wa rmer summer months with variable autumn and winter-spring periods of abundance. Fluctuations in zooplankton densities in 1979 were generally consistent with variations in biomass (Table E-14). Zooplankton seasona-lity is influenced by various physicochemical parameters. Most zooplank-ters are opportunistic organi sms , having rapid reproductive and maturation rates that allow them to quickly take advantage of favorable environmental conditions. Seasonal and annual fluctuations in zooplank-ton density, composition, and biomass are nonnal occurrences and reflect the response of zooplankters to temporal and spacial variations in the environment.

Differences in zooplankton densities between surface and bottom depths in 1979 often varied among stations and between sampling dates.

However, 72 percent of the time, the average surface density was greater than the average bottom density. This trend was not consistent with the previous operational monitoring data where bottom zooplankton densities were generally greater than surface densities.

I I

E-9 I

I Canal Station Comparison I Zooplankton community composition at the canal stations was dani-nated by barnacle nauplii and copepods during most of year. Peak zooplankton densities observed in June were the result of high copepod abundance (Table E-6). The copepods Acartia tonsa and Paracalanus aculeatus together accounted for nearly 74 percent of the total 13,772 zooplankters/m3 at Station 11 during this period. Similar species can-position was also observed at Station 12, although total zooplankton den-sity between the intake and discharge canals showed a 48 percent decrease on this date (Table E-15). Other copepod species that were frequently observed in the canals include Euterpina acutifrons and Temora turbinata.

Copepod densities were greatest in the months of June and July and generally lowest during winter and spring periods. Over-all , copepod densities showed an annual mean decrease of 39 percent between intake and discharge canals during 1979.

Barnacle nauplii were collected at the intake and discharge stations throighout the year, with highest densities occurring in April . Barnacle nauplii comprised 24 and 34 percent of the total annual mean zooplankton density at St.ations 11 and 12, res pect i vely, in 1979. The spawning of resident populations of barnacles in the canals most likely was respon-sible for fl uctuations in total zooplankton abundance between stations and sampling dates. Barnacle nauplii, like most zoopla xters , exhibit seasonal peaks in density when environmental conditions are optimal for reproduction and growth. Patel and Crisp (1960) studied the breeding habits of four tropical species of cirripedes and found optimum enbryo I

E-10 l

1

I

I production between 22 and 25 C. Water temperatures in the canals during March and April collection periods provided favorable reproductive con-ditions for barnacle species (Table E-15).

Larval decapods and molluscs exhibited similar peak abundance periods during summer months. Decapod densities were greatest in June and July (Tables E-7 and E-8, respectively) and were composed largely of pinnotherid (pea) crabs. As with other zooplankton groups observed in the canals, Station 11 annual mean decapod densities were greater than those at Station 12. Larvae of the blue crab Callinectes was the only commercially important decapod species collected in the canals during 1979.

I There were no significant differences in total zooplankton density or biomass between the intake and discharge canals in 1979 or in over-all (1976-1979) data comparisons (Tables E-16 through E-19). Also, no signi-ficant variability of individual groups that ware important constituents of the zooplankton community (i.e., copepods, barnacle nauplii, brachyuran crabs, or sergestid shrimps) were observed between canals in 1979. No significant annual variation was noted, although 1979 annual mean densities were generally greater than those of prior monitoring years (Figure E-4). Zooplankton densities and biomass showed similar peak periods of occurrence and were significantly correlated to each I other at the canal stations during 1979 (Table E-20).

I E-11

I E

Zooplankton species live within a temperature range where growth and reproduction are optimal, and they have upper and lower thennal limits past which they cannot survive. Temperatures above 35*C approach maximum lethality for all plankton (Storr,1974). During summer months, tropical and subtropical zooplankton species, such as those found at St. Luc i e ,

may be sensitive '.o thennal addition because discharge water temperatures often approach or exceed upper thennal limits of ma ny zoopla nkters (Naylor,1965; Drost-Hansen,1969; Bader et al . ,1970; Reeve and Cosper, I 1970; Gonzal es , 1974). Discharge temperatures measured during sampling at the St. Lucie Plant were 35 C or greater in the 6-month period of July through December 1979 (Table E-15). Reductions in zooplankton density between the intake and discharge canals occurred in 75 percent of the collections made during 1979. Reductions were also observed in 60, 58, I and 75 percent of the collections during 1976,1977, and 1978, respec-tively ( ABI,1979).

Although no significant variation existed in total zooplankton den-sities between ca nal s , an annual 42 percent red uction in abunda nce I occurred between the intake and discharge stations in 1979. The effect of plant entrainment on zooplankton is shown by density reductions in total zooplankton abundance as well as individ ual hol opla nktonic and meroplanktonic groups between canals.

I Offshore Station Comparisons In July, total zooplankton densities were highest for the year with an average offshore density of 6678/m 3. Fluctuations in total zooplank-ton abunda nce were generally attributable to variation in total copepod E-12

I l

l density (Figure E-2). Copepods constituted 70 percent of the total annual mean zooplankton density at offshore stations durirg 1979. Total copeped densities at St. Lucie were highest in the summer months with j decreasing abundance through winter (Figure E-3). The most frequently observed copepod genera included Paracalanus, Acartia , Temora , Oithona ,

Labidocera, and Euterpina. Paracalanus aculeatus wa s the daninant zooplankton taxon collected offshore, occurring in every sample.

Annually, Paracalanus accounted for over 40 percent of the total offshore copepod community. Paracalanus is a conmon inhabitant of Florida waters and occurs in both oceanic and neritic habitats.

I Acartia tonsa (previously identified a s A_. bermudensis) was the second most frequently occurring copepod species and wa s often co-Janinant wi+.h Paracalanus. Youngbluth et al. (1976) found A_. tonsa to be the dominant copepod species collected in the Indian River, while Grice (1957) observed this species 4 miles seaward of the Ft. Pierce inlet during surmier and winter collection periods. A. tonsa is an eurythennal '

and euryhaline copepod species found from the Gulf of St.

I the Gulf of Mexico and is the daninant copepod species in many semi-Lawrence to enclosed waters (Deevey, H60). Species of Acartia and Paracalanus have demonstrated many similarities, both in occurrence and time of greatest abundance in Florida waters (Reeve, 1964).

I Larvaceans were second to copepods in total zooplankton abundance.

Oikopleura spp. comprised 4.4 percent of the total zooplankton density observed in 1979. This genus was present year-round, occurring in over E-13

1 lI h

l 93 percent of the zooplankton collections at St. Lucie. Peak Oikopleura densities were recorded between May c.id August. The larval stages of 1

crabs and shrimp were also collected throughout the year at the offshore stations. Decapod abundance displayed a bimodal pattern with greatest densities occurring in March and August. Pinnotherid (pea) crabs and portunid (swimmina) crabs were the major constituents of the decapod com-munity in 1979. Decapod densities at Station 1 were greater than those at any other station and surface densities were generally greater than those at the bottom. The larval stages of the commercially important blue crab and stone crab occurred infrequently and were not a numerically important part of the total deca;. d community observed at St. Lucie.

Decapods accounted for only 2 percent of the total annual mean zooplank-ton abundance at offshore stations.

I Seasonally, other zooplankton groups were characterized by absence or low abundance during most of the year with relatively high densities for brief periods. The ostracod Conchoecia elegans and molluscan larvae were exemplary of this seasonal trend of occurrence (Figure E-2).

Seasonal fluctuations in zooplankton densities and biomass are nonnal occurrences (Figure E-3). Zooplankters respond to temporal variations in environmental conditions through changes in community conposi tion and abundance. Total zooplankton densities in 1979 were significantly corre-lated with biomass and salinity at surface and bottom depths (Tables E-21 and E-22, respecti vely) . Residual stepwise regression analysi s for zooplankton densities showed a significant relationship with the variable salinity at offshore surface stations. Salinity accounted for 9.2 per-I E-14

I I

cent of the non-seasonal variation in zooplankton abundance (Table E-23).

I No other significant relationships for total density or biomass were observed with the variables examined (Table E-24).

Mean zooplankton densities and biomass were generally greater at Station 1 than at other offshore locations with signficantly greater total zooplankton abundance at Station 1 surface than at Stations 0, 2, and 4 during 1979 (Tables E-25 through E-28). Variations in copepod and decapod densities were not significantly different between stations but they exhibited similar increased abundance at Station 1. Increased zooplankton density and biomass in the vicinity of Station 1 during 1979 suggests the influence of power plant operation. However, zooplankton composition between stations and depths were consistent within sampling dates.

Results of annual interstation comparisons (1976-1979) were similar to those observed in the previous study periods. Surface zooplankton densities in 1979,1978, and 1977 were significantly greater than those observed in 1976 while bottom zooplankton densities in 1977 and 1978 were significantly greater than those in 1976 and 1979. No significant dif-ferences in bottom zooplankton densities or biomass between stations were found (Tables E-29 and E-30, res pectively) . However, significant variation in surface densities between stations occurred. Surface zooplankton densities at Station 1 were significantly greater than those at all other surface stations during the 1976-1979 study period (Table E-31). Variations in zooplankton biomass at the surface indicated simi-  !

E-15 I i

I I

lar results (Table E-32). These data suggest an appa rent long tenn influence on zooplankton abundance in the vici nity of the immediate l discharge area as a result of St. Lucie Plant operations.

I 1

The observed increase in total zooplankton abundance and biomass at Station 1 surface most likely is in response to the higher food availa-bility in the area. Total phytoplankton density during operational moni-toring has consistently been greater at Station 1 surface than at other offshore locations (Section D. Phytoplankton). The zooplankton community at St. Lucie is composed largely of herbaceous copepods and although it is unlikely that resident populations of these organi sms are found offshore, zooplankters could emigrate into the vicinity of Station 1 to graze on high surface phytoplankton densities. Studies or. the rel a-tionships between zooplankton and phytoplankton demonstrate that stations with increased phytoplankton abundance generally have high zooplankton abundance. No adverse plant effects on the of fshore zooplankton cqa-munity at St. Lucie were indicated during 1979 or for pooled da ta (1976-1979).

I Baseline Versus Operational Study Comparisons Baseline zooplankton collections were bimonthly during the first year (September 1971 through August 1972) and monthly the second year (September 1972 through August 1973; Walker et al .,1979). The monthly 1972-1973 zooplankton data were statistically compared to operational l phase data (March 1976 through November 1979) to evaluate yearly and interstation differences in zooplankton density.

l l E-16 l

I Interstation and seasonal trends in total zooplankton densities were variable between and within baseline and operational studies. Over-all, similar peak zooplankton densities occurred during the warmer summer months, with variable winter / spring periods of production (Figures E-3 and E-7).

Zooplankton species collected during baseline monitoring did not differ greatly from those collected during subsequent operational moni-toring. Holoplanktonic speciel daninated the zooplankton conmunity during most of the year. Adult copepods were the most abundant zooplank-ton group with the calanoid Paracalanus being the daninant taxon recorded. Paracalanus was observed in all of the baseline and opera-tional zooplankton collections at the St. Lucie Plant. Other numerically important copepod genera that were frequently observed during both stud-ies include Acartia, Temora, Oithona, Labidocera and Euterpina.

Seasonally, other holoplanktonic and maroplanktonic species occurred infrequently and in low densities during most of the year, becaning numerically abundant in the plankton only during brief pe riods .

Zooplankters that followed this seasonal trend of occurrench during all years of monitoring at St. Lucie include the larvacean Oikopleura; jastropod, pelecypod, and echinoderm larvae; the cladoceran Evadne; the ostracod Conchoecia; and barnacle nauplii . These organisms were often responsible for large fluctuations in total zooplankton densities between stations and between years.

l l

l E-17 E

1

I Comparisons of baseli ne a nd operational data indicated that zooplankton densities during 1973 and 1977 were significantly creater than those observed in 1976 and 1979 (Table E-33). Annual mean zooplank-ton densities between stations over all years (1973-1979) exhibited no significant variation. However, during baseline nonitoring, zooplankton abundance was greatest at Station 5, while densities during operational periods have consistently been higher at Station 1.

Annual and station differences in total zooplankton densities were generally the result of fluctuatic in abundance of various holoplank-tonic and meroplanktonic groups (i.e., copepods, larvaceans, and mollusc and echinoderm larvae). The trend of increased zcoplankton abundance at Station 1 from baseli ne monitoring and duri ng subsequent operational lI studies, again suggests an indirect influence of St. Lucie Plant opera-tions on the zooplankton community in the immediate discharge area.

l Zoopla nkton community composition, however, has va ried little between years. No detrimental effects of power plant operations on the nearshore zooplankton community of St. Lucie were indicated.

1

SUMMARY

L The zooplankton community in 1979 was characterized by neritic holoplanktonic species. Copepods, as in prior monitoring periods, were the dominant component of the community, cceprisi ng 70 percent of the a nnual mean zooplanktar, density at the offshore stations. Zooplankton densities in 1979 ranged from a low of 65/md at Station 2 (Figure E-1) bottom in April to 14,158/m3 at Station 1 surface in August. Seasonal E-18

l l l

l peaks in density fluctuated between years but generally occurred ded g the summer months with va riable autumn and wi nter-s pri ng periods of l

abunda nce. Zooplankton community composition however has varied little j between study periods at the St. Lucie Plant.

I I Variations in zooplankton density and biomass between the canal sta-tions in 1979 or for pooled (1976-1979) data demonstrated no significant plant entrainment effects. However, pertubations to the zooplankton com- f i

munity were apparent as indicated by an annual 42 percent reduction in e

total zooplankton abundance between Stations 11, the intake canal , and 12, the discharge canal , during 1979. Zoopla nkton densities in the intake canal have consistently been greater than those of the discharge canal during all operational monitoring years.

Mean zoopla nkton densities and biomass were generally greater at Station 1 than at other offshore stations during 1979. These findings, combi ned with baseli ne (1972-1973) and pooled (1976-1979) resul ts ,

suggest an indirect effect of St. Lucie plant operations on the nearshore f zooplankton community. Si9nificant increases in zooplankton densities and biomass were observed at the immediate discharge area in comparison to various other of fshore locations. Increased zooplankton abundance in the vicinity of Station 1 appears to be in response to high food availa-bility (i.e., high phytoplankton density). However, increased densities have not resul ted in al tered zoopla nkton cammunity compos i tion. No adverse plant-related effects were apparent offshore.

E-19

l LITERATURE CITED ABI. 1977. Ecological monitoring at the Florida Power & Light Co. St.

l Lucie Plant, annual report 1976. Vol. 1. AB-4 4. Prepared by Applied Biology, Inc., for Florida Power & Light Co., Miami, Fla.

1 . 1978. Ecological monitoring at the Florida Power & Light Co. St.

Lucie P1 ant, annual report 1977. Vol. 1. AB-101. Prepa red by Applied Biology, Inc., for Florida Power & Light Co., Miami, Fla.

l . 1979. Florida Power & Light Co. St. Lucie Plant annual non-radiological environmental monitoring report 1978. Vol . 2 and 3.

AB-177. Prepa red by Applied Biology, Inc., fo r Florida Power &

l Light Co., Miami, Fla.

Bader, R.G., M.A. Roessler , and A. Thorhaug. 1970. Pages 425-428 in l

Thermal pollution of a tropical marine estuary. FAO Tech. Conf.

FIR: MP/70/E-4.

Barr, A.J. , J.H. Goodnight , J.P. Sall , and J .T. Hel wig. 1976. A user's l guide to SAS 76. SAS Institute, Inc. Raleigh, N.C. 329 pp.

Coutant, C.C. 1970. Biological aspects of thermal pol l ution. I.

Entrainment and discharge canal ef fect s. CRC Critical Reviews in g Environmental Control 1(3):341-381.

3 Davies, R.M., Hanson, and L.D. Jensen.

C.H. 1976. Entrainment of estuarine zooplankton into a mid-Atlantic power plant : Delayed

,I effects. Pages 349-357 in G.W. Esch and R.W. McFarla ne, ed s .

Thermal ecology II. ERDA Symposium (CONF-750425). Augusta, Ga.

I Deevey, G.B. 1960. Plankton studies. The zooplankton of the surface waters of the Delaware Bay region. Bull . Bingham Oceanogr. Collect.

Yale Univ.17:5-53.

Drost-Hansen, W. 1969. Allowable thermal pollution limits -- a physico-chemical approach. Chesapeake Sci. 10(3/4):281-288.

I EPA. 1973. Biological field und laboratory methods for measuring the quality of surface waters and ef fl uents.

Ervironmental r'rotection Agency.

EPA-670/4-73-001.

National Environmental Research U.S.

Center, Cincinrati, Ohio.

Enright, J.T. 1978. Power plants and plankton. Marine Pollution Bull, 8(7):158-160.

Gonzalez, J.G. 1974. Critical thennal maxima and upper lethal tem-peratures for the calanoid copepods Acartia tonsa and A_. clausi.

Mar. Biol. 27:219-223.

Grice, G.D. 1957. The copepods of the Florida West Coast. Ph.D.

j Dissertation. Florida State University, Tallahassee, Fla. 253 pp.

E-20 1

I LITERATURE CITED (continued)

Marcy, B.C. , Jr. , A.D. Beck, and R.E. Ulanowicz. 1978. Effects and

{E impacts of phy>1 cal stress on entrained organisms. Pages 136-165 M l J.R. Schubel and B.C. Marcy, Jr., eds. Power plant entrainment, a biological assessment. Academic Press, New York. 271 pp.

Mihursky, J.A. , and V.S. Kennedy. 1967. Water temperature criteria to protect aquatic li fe . Amer. Fish. Society. S pec . Publ. No.

4:20-32.

Naylor, E. 1965. Effects of heated effluents upon marine and estuarine organi sms. Adv. Mar. Biol. 3:63-103.

Owre , H.B. , and M. f ayo. 1967. Copepods of the Florida current fauna caribaea No. : Crustacea, Part 1: Copepoda. Inst. Mar. Sci.,

I Univ. , Miami , Fla .137 pp.

Patel , B. , and J.D. Crisp. 1960. The influence of temperature on the I breeding and the moulting activities of some wam-water species of operculate barnacles. J. Mar. Biol . Assn. U.K. 39:667-680.

I Polgar, T.T., L.H. Bongers, and G.M. Krainak.

powerplant effects on zooplankton in the near field.

i_n G .W . Esch and R.W. McFarlane, eds.

1976. Assessment of Pages 358-367 Themal ecology II. ERDA Symposium (CONF-750425). Augusta, Ga.

Reeve, M.R. 1964. Studies on the seasonal variation of the zooplankton in a marine sub-tropical inshore environment. Bull. Mar. Sci.

14(1):102-123.

Reeve, M.R. 1970. Seasonal changes in zooplankton of South Biscayne I Bay and some problems of assessing the effects on the zooplankton of natural and arti ficial themal and other fl uctua tions .

Mar. Sci . 20:894-921.

Bull.

Reeve, M.R. , and E. Cosper. 1970. Acute effects of heated effluents on the copepod Arcatia tonsa f.'om a sub-tropical bay and some problems of assessment. FAO Technical Conference on marine pollution and its I effects on living resources and fi shing . Rome , Italy 9-18 Dec.

1-4.

Storr, J.F. 1974. Plankton entrainment by the condenser systems of I nuclear power stations on Lake Ontario. Pages 291-295 h J.W.

Gibbons and R.R. Sharitz, eds. Themal Ecology I. AEC Symposium l (CONF-730505) Augusta, Ga.

Wal ker, L.M. , B.M. Glass , and B.S. Roberts. 1979. Nearshore marine eco-logy at Hutchinson Island, Florida: 1971-1974. IV. Zooplankton. )

Fla. Mar. Res. Publ . No. 23. 122 pp.

Youngbl uth , M., R. Gibson, P. Blades, D. Meyer, C. Stephens, and R. i

.g Mahoney. 1976. Plankton in the Indian River Lagoon. Pages 40-60 g

_i,r1 Indian River coastal zone study, third annual report (1975-1976).

l l

Harbor Branch Consortium. Ft. Pierce, Fla .

E-21

i b

YARDS KILOM ETE RS c..;  ; _ _ _- _ _ _ , ,  ;

'4 2000 1000 0 1 2 3

~

i 5

~)! SCALE y

$. A a

y ,.d. (

! 1,

. ,, . 'A. ..

l 't 7 M .... h l1 o -N- ,

j* ' , .:. '

/

Q.

0

':3 -

l

. i

' 1 l

u /N O Q R.:# O

!g

, w ..

g ,

g 7 I

I -

2

. j g @ '

l St.Luci

"""':.@j -

l . @

v ll  :

w, -

' 49 iE i 1.6 t-

~,

~

lt IE '4-iW t .  :. .

l j Figure E-1. Locations of zooplankton sampling stations,1979.

i l qm 9

,g '

l E-22  :

j .

7000 -

  • ----* TOTAL ZOOPLANKTON g  : TOTAL COPEPODA

/ '\ e- -* TOTAL DECAPODA 6000-- / \s e-- --e TOTAL OSTRACOOA

/ 's e- - -e TOTAL MOLLUSCA

,/ 's

! e '

i f

w 5000-- / i 2

/ \

l \

o ,4 i' m s o

4000--

i k

,- i x f k w i i i

e / s i

3000- / \

g /

\

a: ,A s / \

y ,'

\

/ \

/ \

z 2000-- ,'

\ <

\

<t e e

o. ,'

s ss ,/

s

\, ,-

4 ' ,,

o e- --4 s k ', - ,' s

/

o w- \ * ~~,

N 1000-- 'd .A. ',

,- ~.. ~,

) @ 500-- '

~,

00 - ~ - _a.cC' -& - ~ -r- - w ' . . *~~ ~ T. , .

. -,. -- .~h. _ . _ . :. - . m. . _ . - .

Q 17 JAN 13 FEB 6 APR 27 APR 15 MAY 6 JUN 26 JUL 21AUG 7 SEP 2 oCT 30 oCT 28 NOV 5@

==

'::::s Figure E-2. Average densities of major zooplankton groups at Stations 0 through 5, St. Lucie Plant,1979.

M m

0===

I st000 +

I i $

l tOOoO i S = SURFACE l B = BOTTOM i a X = MEAf1 Z 9000 +

0 l 8

, O l i P j L 6000 +

f A l B N i n I a i 700C B E 8 8L I

. S 8 6000 + $

i 9 8 m E i S

., e R l S B i N 5000 + S S S A C l S

.i' u i B I S s t 1 4000

  • 8 C l $ 8 1 8 m I a s E 3000 + 8 8 8 5 T l 8 s S S E l 6 8 $

R l $ ,

2000 + 8 8 5 l 8 S S S B i S B S l S '

4000 + S l 1 5 5 8 8 8 I 5 S S B 8 8 8 8 g

! 0+

-.----,---,--_w-.--+---,---+----,----m--+--,__+-_w-_-.--+---+---+--+_.+-+-__,---+---+

JAN MAR VY JUL SEP NOV JAN MAR MAY JUL SEP NOV JAN MAR MAY JUL SEP NOV JAN MAA MV JUL SEP NOV i 1976 1977 1978 1979 l Figure E-3. The mean of the average monthly surface and bottom zooplankton j densities at Stations 0 through 5, St. Lucie Plant, March 1976-tiovember 1979.

{ .

l k

I I

h I

i 1 .....

l .....

i .....

1300 + .....

i .....

l .....

l ..... .....

900 + ..... .....

l ..... ..... .....

l ..... ..... .....

l ..... ..... ..... .....

d03 . .**** ..... ..... .....

3 ..... ..... ..... ..... .....

., g ..... ..... ..... ..... .....

! m, ..... ..... ..... .....

l .....

s 703 + ***** ..... ..... *..*. .....

J l ..... ..... ..... ..... .....

z, g ..... ..... ..... ..... ..... .....

g ..... ..... ..... ..... ..... .....

- 603 . ***** *...* ....* .*... .*.** .*...

l ..... ..... ..... ..... ..... ..... .....

, s ..... ..... ..... ..... ..... ..... ..... .....

na a i ..... ..... ..... ..... ..... ..... ..... .....

U1 7 500 + ..... ..... ..... ..... ....* **.** .*.*. .....

! o i ..... ..... ..... ..... ..... ..... ..... .....

I O i ..... ..... ..... ..... ..... ..... ..... .....

l z  ; ..... ..... ..... ..... ..... ..... ..... .....

1 - 433 + **..* *.... .*... .5... **.** *..** .*.*. .*...

e t j ..... ..... ..... ..... ..... ..... ..... .....

R i ..... ..... ..... ..... ..... ..... ..... .....

g ..... ..... ..... ..... ..... ..... ..... .....

303 . ..... ..... ..... ..... ..... ..... ..... .....

, g ..... ..... ..... ..... ..... ..... ..... .....

'333; i i

j ;ca + ..... ..... ..... ..... .....

6t__---)} i ..... ..... ..... ..... .....

g_((]}

g

. r ycgj lou + *****

  • a...

i ..... ..... .....

l ..... ..... ..... ..... ..... ..... ..... .....

l ..... ..... ... . ..... ..... ..... ..... .....

I' sr_ ..____..____.......____....____..........___....___... .................__.....__......__. ........ ._=____

C-7 76 77 78 79 76 77 78 79 YEAR r-r l_........___.._... 1g

! __..__._...~.._..l l__.__..........__. g2 ......_..........l STATION

_=0 f) IMTAKE CANAL DISCHARGE CANAL LOCAT!98 tP c :2=a M '

Figure E-4. Annual mean density of zooplankton at Stations 11 and 12, St. Lucie Plant, b March 1976 - October 1979.

{~-

g] -] { ' g '~ @ ]

g ..

g ..

3500 + ** **

g .. ..

g .. ..

g .. ..

3000 + ** **

g .. .. ..

t ** ** **

_ g .. .. .. ..

m g .. .. ..

E ..

s 2500 + ** ** ** **

i f g .. .. ..

1 ..

g .. .. ..

rn ~

g .. .. .. ..

L Ch

l ..

? 2030 . ** ** ** **

1 g .. .. .. .. .. .. .. .. ..

a g .. .. .. .. .. .. .. .. ..

, g .. .. .. .. .. .. .. .. ..

o .. ..

O 15c3 , .. ..

.. .. .. .. .. .. .. .. e. ..

g  ; .. ..

.. .. .. .. .. .. .. .. .. .. .. e. .. e.

a g .. .. .. .. .. .. .. .. .. .. .. e. .. .. ..

b .. .. ..

]t]; g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

_m. R .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

1030 + ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

If_]_7,)

[_-

i g

g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

500 .. .. .. .. .. .. .. .. .. .. .. ..

g .. .. .. .. .. .. .. ..

(C-63 .. .. .. ..

g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

c_ g_., , .. .. .. .. .. .. .. .. .. .. .. ..

G= .--..

E_

e. , - 76 77 78 79 76 77 78 79 76 77 78 79 76 77 78 79 76 77 78 79 i is 76 77 78 79 YEAR i ad g.--. o ....; g.... ----g ;----- 2 r 1 ----I l----- 3 ----l t

l----- 4 ----I I ----- 5 --- l STATIow c- JQ OFFSHORE SURFACE c~ LOCATION i

3~~

f Figure E-5.

) Annual mean density of zooplankton at Stations 0 through 5, St. Lucie Plant, O

i March 1976 - October 1979.

l i

l

I i

i I

I l

t I

i .. ..

, g .. ..

( 30G0 + ** **

I g .. ..

l l .. ..

i .. .. ..

2703 + ** ** **

g .. .. ..

i  ; .. .. .. .. ..

l

< 2400 + ** ** ** *. ** ** ** *. ..

g .. .. .. .. .. .. .. .. ..

_ g .. .. .. .. .. .. .. .. .. ..

E i

~ 210p . ** ** ** ** ** ** ** ** ** **

g g .. .. .. .. .. .. .. .. .. .. .. .. ..

r i .. .. .. .. .. .. .. .. .. .. .. .. ..

g .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

E 1b00 + ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

g3 i .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

i a g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

na g g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

  • a 15ao . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

e g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

i i  ; g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

I r .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

1 3;go , .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

g  ; .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

o g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

ya3 , .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

. g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

t .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

[ tg i g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

9 saa . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

L, ..

_3)- g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

(c s-__

g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

L-- .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

3:3 . .. .. .. ..

g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

d~~~) . . . . . . . . . . . . . . . . . - - . . . . . . . . . . . . . . . . . . . . - - . . . . - - . . . . - - - - . . . . . . . . . . - - _ _ - -- --..._ _ _

- 76 77 76 79 76 77 78 79 76 77 78 79 76 77 78 79 76 77 78 79 76 77 78 79 Y EAR c'X a

c_ r I----- 0 ----t I----- 1 ----! l----- 2 ----I l----- 3 ----! l----- 4 ----I l----- 5 ----l STATION ,

C gg5')))

0FF5HORE BOTT0" LOCATION E-7) e-,

, Figure E-6. Annual mean density of zooplankton at Stations 0 though 5, St. Lucie Plant, g'6' March 1976 - October 1979.

l 110 00 +

l 1

1 10000 +

1 1

I Z 9000 +

0 1 O l

A 1 N I K I T 70C0 +

E l R l 5 i ,

60oo + \

P l m E I ,

e g l y C sooo .

4 U i B j 1 4000 +

C 1 i

M L I

E 3G00 +

T I E l R l

$ M i

i 1000 +

l 1

I o+

. _ , _ _ , - - - , _ . ~ _ , - _ , - - - - + - _ _ , _ _ , _ _ _ . - + - - - - , - - + - . . , _ _ , _ _ . . . _ . , . , _ ..

JAN MAR MAY JUL SEP NOV JAN MAR MAf JUL SEP NOV ;AN "A R MAY JUL AUG 6 1971 1972 1973 Figure E-7. Average density of zooplankton at Stations 1 through 5 i during baseline monitoring, St. Lucie Plant, September 1971 - August 1973.

l l

l TABLE E-1 EXAMPLES OF THE INDIVIDUAL VARIABLES, CLASS VARIABLES AND MODELS USED WITH THE GENERAL LINEAR MODELS PROCEDURE

(

l ST. LUCIE PLANT 1979 INDIVIDUAL VARIABLES (Y1 ) (X1 2) (X3,4) ( 0)

Density Station I Yi 1

1 Year A

Intercept 1

l l

Yi y 1 B 1 Yi y 2 A 1 Yi 2 B 1 1

I CLASS VARIABLES l Station Year 1 2 A B X X 11 12 i3 j4 1 0 1 0 1 0 0 1 B 0 1 1 0 0 1 0 1 MODELS E For station 'd year effects:

Y j= g0+BXy X

$1 + B2 12 + B3 i3 + OyX;4 + Ej For station effects:

Y j= B00+BX1jy+BX2 i2 + Ei 1

where: B is the respective slope r; is the error term l

E-29 I

I l

TABLE E-2 DEN 5!Tf8 AND PERCENTAGE COMP 051T10@ OF MAJCR 200PLAhKTCN TA1A i

- ST. LUCIE PLANT I 17 JANUARY 1979 Station and depthC l

2 3 4 5

! 11 12 0 1 8 5 8  % B 5 8 5 8 Taxon 0 0 5 8 5 UNOMAGE D l

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Protozoa 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.2 0.0 0.0 Coelenterata

(<1) (<1) (<1) l

' 0.0 3.1 7.8 21.6 94 .4 106.7 11.1 4.8 0.0 1.0 2.3 1.1 9.2 10.2 Mollusca (1) (1) (3) (4) (1) (1) ((1) (<!) (1) (1) (1)

(1)

Polychaeta 0.0 0.0 2.6 8.6 5.? 0.0 3.7 0.0 0.0 0.0 0.0 0.2 3.7 0.0

(<1) (<1) (<1) (<1) ((1) (<1)

Crustacea I 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 14.7 0.0 naup111 0.0

(<1) (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 cladocera O'. 0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 2.3 0.2 0.0 0.0 estracoda

(<1) ((1) (<1) 957.8 2495.1 2791.9 2789.7 899 o 257.8 405.7 367.8 1032.0 80.9 689.4 889.9 i l copepoda 206.8 101.7 '

(21) (20) (87) (94) (91) (91) (82) (??) (63) (76) (82) (82) (71 ) (92) cirrtpedte (barnacle) 3.1 4.7 0.4 25.7 0.0 naupttt 783.5 371.6 10.4 0.0 17.7 5.6 25.8 0.0 12.1 (78) (73) (1) (1) (<1) (2) (2) (1) (<1) ((1) (3) 4.0 0.0 10.4 60.6 23.6 44.8 66.6 5.6 27.5 17.7 44.3 5.0 102.6 22.0 decapoda

(<1) (1) (2) (1) (2) (6) (2) (4) (4) (4) (5) (11) (2) 2.0 16.9 5.2 0.0 23.6 5.6 0.0 0.0 3.3 1.0 0.0 0.0 0.0 0.0 cthe rs

(<1l (3) (1) (1) ((l) (1) (<!)

0.0 25.9 5.9 67.3 4.9 1.6 6.6 3.1 9.3 0.2 11.0 3.4 Chaetognatha 0.0 1.5 (1) (1) (<1)

B (<1) (1) (<1) (2) (1) (1) 2.4 (1) 0.0 (1) 0.0 0.0

(<1) 0.0 0.0 0.0 Echinodermata 0.0 1.5 0.0 0.0 0.0 0.0 1.2

(<1) (<1) (1)

Chorda t a 11.9 0.0 1.5 0.0 4.3 0.0 0.0 4.9 1.6 0.0 0.0 2.3 0.2 3.7 urocho rdata

(<1) (<1) (1) (1) (<1) ((1) (<1) (1) fish (e99s 2.5 0.8 4.4 1.0 2.3 0.0 3.6 1.7 and larvae) 0.0 0.0 2.6 0.0 11.8 5.6 I

6

(<1) (<1) (<1) ((1) (<1) (1) (<1) ((1) (<1) (<!)

34.6 100.3 44.9 75.1 58.0 185.1 86.7 153.7 9.9 113.7 22.0 Eggs 5.9 13.9 106.7 l

(17) (29) (18) (12) (10) (12) (2)

I (1) (3) (10) (1) (3) (2) (7) 5.9 0.0 0.0 0.8 0.0 0.0 0.0 0.4 0.0 1.7 Mtstel?aneous 0.0 1.5 0.0 0.0

(<1) (<1) (<ll (<!)

. ((1)

I 3081.0 3070.2 1099.1 333.4 646.4 481.4 1253.2 98.7 977.3 962.8 SUBTOTAL UNDAMAGED 1002.2 513.2 1106.1 2650.7 41.3 50.5 19.7 17.5 28.7 11.4 23.3 3.6 16.5 10.2 SUBTOTAL OMAGED 2.0 1.5 33.8 82.1 (1) (2) (2) (5) (4) (2) (2) (4) (2) (1) i (<1) (<1) (3) (3) t l TOTAL UNDAMAGED 993.8 973.0

+ DAMAGED 1004.2 514.7 1139.9 2732.8 3122.3 3120.7 1188.8 350.9 675.1 492.8 1276.5 102.3 f 80ensity is empressed in punter of zooplankters per cubic meter.

I l

l bNueer in parentheses is percentage conposttton empressed to percent.

(0 = Obitque; 5 = Surf ace; B = Bottom.

l E-30 l  !

I _ _ _ . _ _ _ , _

L

~

TA8tf E.3 I

}

l DEN 51Tya AND PEkCENTAGE COMP 051110Nb 0F MAJOR 200 PLANKTON TAXA 5T. LUCIE PLANT 13 FEBRUARY 1979 Station and depthC 3 4 5 11 12 0 1 2 5 B 5 8 5 8 B 5 8 I

Tanen d e 5 8 5 UhDMAGE O 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Protozoa 0.0 12.6 0.0 0.0 6.6 (13) (<1) ((1) 0.4 0.0 0.0 18.6 0.0 0.0 2.0 0.0 3.6 Coelenterata 0.0 0.0 0.0 0.0 2.2

(<!) (<!) (1)

' (<!) (<!)

Mollusca 14.2 0.0 8.0 18.0 1.2 5.6 1.4 0.0 1.1 26.3 1.1 2.6 9.2 43.3 (1) (1)  :<1) (1) (1) (1) (1) (1) (<l)

(2) (1) (1)

Polychaeta 0.0 0.9 2.0 0.0 2.4 5.6 0.2 0.0 0.0 122.6 2.1 0.0 5.5 0.0 (6) (1) (1) (<!) (<!) (<!)

(2) (<!)

Crustacea 1.8 12.0 9.0 0.0 naupitt 0.0 0.2 2.o 1.1 26.3 0.0 0.0 0.0 0.0 3.5

(<!) (1) (<!) (1) (<!) (!) (1) (<l) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 cladxera 0.0 0.0 0.0 0.0 0.0 0.0 10.0 4.5 13.1 I 0.6 0.2 0.0 0.6 2.2 0.0 5.2 9.2 68.1 24.8 ostrac oda (1) ((1) (3)

(<l) ((1) (<l) (<l) (<l) (1) (2) (1) 927.3 4012.6 1686.2 339. 3 957.5 2571.5 444.8 copepoda 40.3 25.8 448.5 272.0 1696.8 136.2 1167.1 (82) (92) (90) (94 ) (92) (89) (81) (95) (83)

(14) (26) (85) (86) (80) ctrripedia I (barnacle) nawpilt 217.0 47.9 1.3 3.3 89.8 8.2 0.0 0.C 12.4 14.2 (1) 0.0 97.9 (a) 9.0

(<1) 26.1 (5)

(74) (48) (<1) (1) (4) (5) (<!)

0.4 18.2 13.8 18.6 53.0 7.2 33.0 9.0 9.6 decapoda 4.0 0.7 3.9 6.3 4.4

(<l) (1) (2) (C) (3) (2) (3) (<!) (2)

(1) (<l) (1) (2) (<l) 2.3 0.0 0.0 0.0 7.0 0.0 2.0 0.0 1.2 others 1.1 1.4 0.0 0.0 4.4

(<!) (1) (<!) (<!) (<!)

(<l) (1) 4.4 0.4 5.2 3.7 18.6 1.1 0.9 0.0 4.5 0.0 Chaetognatha 0.0 0.0 2.6 1.1 (1) (<!) (<!) ((1) (<!) (<!) (<!) (<!) (<!) ((l) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Echinodemata 0.0 0.0 3.9 0.0 2.2 (1) (<l)

Chorda ta 7.1 2.7 16.0 13.5 5.9 5.7 0.0 6.5 9.c 109.5 3.2 0.0 5.5 12.4 uroc horda ta (2) (1) (3) (5) (2) (1) (<l) (<!) (I) (1) (1) (1)

I [995 ftsh (eggs a nd larvae)

(<l) 0.6 12.5 0.5

(<!)

9.7 7.8 (1) 48.7 5.5 (2) 14.9 0.0 26.3

(<!)

0.7 11.0 33.9 (3) 31.3 14.7 (1) 33.0 24.8 (1) 55.8

(<!)

3.5 21.3 4.5 (1) 25.3 0.0 46.0 0.0 63.0

(<1) 2.4 23.7 (1) (7) (3) (1) (1) (1) (7) (4) (2) (4)

(4) (10) (9) (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mi sc el laneous 0.6 0.0 0.0 0.0

(<l) 1263.5 1031.9 4285.2 1841.9 382.6 1183.4 2702.0 534.0 SU8 TOTAL UCMAGED 293.6 100.6 525.8 316.4 2124.0 166.4 13.0 32.9 55.8 21.3 6.3 20.0 54.0 14.3 SATOT AL DMAG[0 5.1 2.6 5.3 9.9 43.8 12.5 (2) (7) (1) (3) (1) (1) (2) (2) (2) (3)

(2) (3) (1) (3) l NTAL u%DMAGEO 1276.5 1064.8 43al.0 1863.2 336.9 1203.4 2/t6.0 54d.3 l

  • DA" AGE D 298.7 103.2 531.1 326.3 2167.8 178.9 E

8 0enstty ts espressed in number of rooplankters per cubic meter.

bNunter in parentheses is percentage cuaposition capressed in percent.

l Cd = Obitque; 5 = Surf ace; 8 = Bottom. l E-31

'l I

TABLE E-4 OEN5grya AND PERCENTAGE COMPOSIT!0Nb 0F FAJOR 200 PLANKTON TAXA ST. LUCIE PLANT 6 APRIL 1979 l

Station and depthC 11 12 0 1 2 3 4 5 Ta on 6 6 5 8 5 8 5 8 5 8 5 5 8 UNDAMAGED I- Protozoa 0.0 48.6 7.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 l (64) (<1) l 1

I Coelenterata Mollusca 0.0 5.4 (1) 0.8 (1) 3.1 (4) 29.6

((1) 133.5 (3) 14.0

(<!)

56.4 (2) 14.2

(<1) 17.0 (1) 5.8

(<1) 19.0 (2) 16.8

(<!)

37.2 (2) 12.8

(<!)

42.7 (2) 8.6

(<1) 8.6

(<1) 4.8

(<1) 29.1 (2) 4.9

(<1) 34.6 (2) 36.4

(<1) 63.1 (1) 4.1

(<1) 40.8 (2) 35.1

((1) 87.6 (2)

I i

l Polychaeta 20.7 0.0 14.8 14.1 5.7 1.5 3.4 4.3 2.9 2.4 C.0 9.1 *1. 8.8 l (5) (<1) (<!) (<!) (<1) ((1) (<1) (<1) (<1) (<l) (<1) (<1)

< Crustacea naspilt 10.1 0.0 22.2 7.0 17.1 0.0 3.4 0.0 14.3 4.9 2.5 9.1 20.4 8.8 (2) (<1) (<1) (1) ((1) (<!) ((l) (<1) (<!) (<!) (<l) cladocera 0.0 0.0 0.0 7.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(<1) (<1) estrac oda 1.2 0.1 541.4 732.3 62.6 90.4 20.3 755.9 22.8 43.6 9.9 2949.8 183.8 2705.4

((1) ((1) (13) (26) (4) (11) (1) (30) (1) (3) ((1) (54 ) (8) (49)

I copepoda 62.8 11.7 2202.6 1366.1 857.1 399.8 1147.8 1161.7 1323.4 980.5 983.0 1702.5 1515.1 1646.0 l (15) (15) (52) (48) (51) (48) (61) (46) (73) (65) (62) (31) (62) (30) cirr t ped ta

, (Darracle) nauplii 188.2 7.5 111.2 14.1 37.0 11.7 47.2 17.1 20.0 21.8 7.4 18.~ 77.6 70.0 (45) (10) (3) (<l) (2) (1) (3) (<1) (1) (1) (<1) (<!) (3) (1) j I deca poda others 23.1 (6) 0.0 1.1 (1) 0.0 348.3 (8) 14.8 309.8 (11) 0.0 85.4 (5) 0.0 45.4 (5) 5.9 97.9 (5) 0.0 183.1 (7) 0.0 105.8 (6) 0.0 128.3 (9) 14.5 11 .9 (5) 5.0 364.1 (7) 9.1 143.0 (6) 4.1 315.4 (6) 8.8 i

(<!) ('l) (<l) (<!) (<1) (<1) (<!)

Chaetognatha 0.0 0.0 133.5 42.3 14.2 10.2 13.5 4.3 5.7 31.5 37.1 36.4 24.5 78.8 (3) (2) (s!) (1) (<1) (<1) (<1) (2) (2) (<1) (1) (1)

)

Echinodemata 0.6 0.0 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0

?

((1) (<l)

Chorda t a

uroceorcata 50.3 0.0 363.4 147.9 227.8 113.8 226.2 94.0 71.3 104.1 200.6 118.4 187.8 210.1 (12) (9) (5) (14) (14) (12) (4) (4) (7) (13) (2) (8) (4) l I fish (eggs and larvae) 15.4 (4) 0.0 7.4

(<1) 28.2 (1) 48.4 (3) 27.7 (3) 23.6 (1) 0.0 8.6

(<!) (<1) 2.4 19.8 (1) 18.2

(<1) 106.3 (4) 157.7 (3)

E995 42.0 3.2 304.0 105.6 293.3 99.2 236.3 213.5 211.1 142.8 222.9 154.8 151.1 166.3 (10) (4) (7) (4) (17) (12) (13) (9) (12) (10) (14) (3) (6) (3)

Mi sc el laneous 1.2 0.1 0.0 0.0 0.0 0.0 3.4 8.5 11.4 0.0 2.5 0.0 0.0 0.0

(<!) ((1) (<1) (<1) (<1) (<l) 2502.8 1814.5 1510.7 1607.1 5489.8 2462.7 5498.8 I

SuST0iAL UNDAMAoE0 421.0 16.2 4234.1 2844.8 1682.6 830.4 1877.0 SuaTOTAL DAMAGE 0 32.6 1.8 296.5 204.1 105.3 65.6 101.4 89.5 34.3 55.5 69.4 209.3 183.9 332.8 j (8) (2) (7) (7) (6) (8) (5) (4) (2) (4) (4) (4) (7) (6) l TOTAL UNOA % E0

  • CAMAd[0 453.6 78.0 4530.6 3048.9 17R7.9 896.0 1018.4 2592.3 1848.8 1566.2 16/6.5 5699.1 2646.6 5831.6 l

aDensity is empressed in nutter of zooplankters per cubic meter.

bNumber in parentheses is percentage composttion empressed in percent.

(J = Oblique; 5 = Surface; 8 = Bottom.

E-32

)

I TABtE E-5 Of N51TV3 AhD P(RC[NTAGE COMP 05.fl0hb 0F MAJOR 200PLAhKTQn TAXA ,

ST. LUCIE PLANT l 27 APRIL 1979 station and dept hC 3 4 5 11 12 0 1 2 5 8 5 8 5 8 fason g 9 5 8 5 B 5 8 UNDAMAGIO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 Protozoa 0.0 6.8 0.0 0.0

((l) (<!)

7.8 0.0 0.5 1.8 3.6 2.7 0.0 0.0 1.9 Coelenterata 0.0 0.0 2.0 8.5 6.E

(<l) (<!) (<!) (1) (<!) (<l) (<!) (<ll (<!)

116.0 2.0 1.3 17.0 10.5 64.2 0.9 40.0 11.0 4.0 4.0 15.2 7.6 Mallusca 142.6

((l) (1) (2) (4) (1) (3) (1) (<l) (1) (2) (1.1) t3) (2) ((l) 20.5 2.0 1.2 15.3 3.9 11.7 0.9 1.8 3.6 2.4 2.'4 3.9 0.0 Polychaeta 106.9 (3) f(l) (<!) (<!) (1) ((1) ((l) (1) ((l) ((l) (<!) (<!) (G)

)

Crustacea 1.9 nawplit 0.0 1.0 4e.5 20.4 9.2 11.7 0.2 1.8 3.7 1.3 2.4 15.6 11.9

(<!) ((l) (5) (2) (1) (<!) ((l) (<!) ((1) ((1) ((l) (<!) (<l) 9.8 3.4 2.6 11.7 0.9 3.6 5.4 2.7 2.4 3.9 11.4 cladocera 0.0 0.0 3.0

((1) (1) ((1) (<!) ((1) (1) (<l) (<!) ((l) ((l) ((l) (2) 0.0 0.0 11.0 5.1 0.0 0.0 0.0 0.0 1.8 0.0 2.4 0.0 0.0 ostracoda 0.0

((l) (<!)

I (1) (<!)

463.6 495.2 206.9 163.1 759.4 343.8 copepoda 499.0 64'.5 236.2 515.3 651.2 436.0 668.1 29.6 (23) (57) (51) (60) (39) (46) (34) (52) (20) (51) ( 38) (49)  ;

(12) (12)

I ctrripedia (barnacle) cawplit 2821.1 4538.4 (67) (85) (<!)

2.0

(<!)

7.4 64.6 (5) 57.8 (8) 8.8

(<!) ((l) 0.2

(<!)

3.7 113.0 (12) ((l) 1.3 3.2 (1) 19.6 (1) 13.2 (2) l I dec apoda others 53.3 (1) 0.0 20.4

((l) 0.0 31.9 (5) 1.0 28.1 (3) 1.2 10.2

((1) 0.0 26.2 (4) 0.0

((1) 5.8 0.0 1.6 (3) 0.0

(<!)

3.6 0.0 94 .7 (10) 32.8

((l) 2.6 1.3 46.4 (15) 0.0 58.7 (3) 0.0 126.7 (18) 0.0

(<l) ((l) (4) ((l)

I Ceaeto9natha 0.0 0.0 0.0 0.0

((l) 8.0 2.0 (Cl) 6.1 20.8

(<!)

6.8 5.1

((l) 2.6 1.3 17.5 (1) 8.8

(<!)

0.5 0.0 18.2 (1) 5.5 14.5 (2) 1.8

((l) 6.7 1.3 9.6 (3) 4.8 31.3 (2) 7.8 (1) 7.6 0.0 ich t ooderwata

((l)

I (<!) (2) ((l) ((l) (<!) (<!) (<!) (2) (<!)

Cho rda t a 6.8 27.9 20.8 81.6 40.7 90.4 2.6 101.9 56.4 25.5 14.4 62.7 58.6 urochorda ta 439.6 (11) (<l) (3) (2) (6) (6) (5) (4) (8) (6) (3) (5) (3) (8) fish (e995 34.0 I and larvae)

(<!)

5.9 0.0 74.8 (9) 25.8 (3) (<!)

5.1

((1) 1.3 253.8 (15) 14.2 (22) 134.5 (10) 1.8

((1) 178.1 (17) 12.0 (4) 156.6 (8) (5) 443.5 199.3 387.6 123.4 560.2 12.4 563.6 101.9 593.1 45.6 837.7 86.9 106.9 20.5 I

Eggs

((l) (52) (22) (30) (17) (33) (19) (42) (11) (58) (14) (42) (13)

(3) 0.0 0.0 0.0 2.4 1.7 0.0 5.8 0.2 5.5 3.6 2.7 6.4 0.0 3.8 Miscellaneous

(<!) (<!) ((l) ((l) ((1) ((l) ((l) (2) (<!)

849.3 910.5 1281.9 123.3 1718.5 64.1 1349.1 944.8 1031.4 319.9 1992 .4 697.4 SUBf0fAL UhDAPAGt0 4187.8 5370.9 I 508f0TAL GAPAGED 100.8 (2) 27.3 (1) 13.0 (2) 13.4 (1) 43.8 (3) 18.4 (3) 32.1 (2) (10) 6.5 23.6 (2) 112.8 (lz) 29.5 (3) 4R.0 (15) 42.9 (2) 47.4 (7)

TOTAL UNDAPAL[0

+ OAPAGE O 4288.6 5398.2 862.3 92 3.9 1322.7 141.7 1750.6 11.2 1372.7 1057.6 1000.9 367.9 2035.3 144.8 l

40ensity is espressed in Dumber of gooplankters Ier Cubic mter, b%ecer ta parentheses is tercenta9e cmposition empressed in Iercent.

cJ

  • Ob11,pe; 5 Surf ace; 8 = Bottom.

E-33 i i

I

I I

TABLE E-6 I DEh51TYa AND PERCENTAGE COMP 051110Nb Of MAJCR 200PL4hATON TAKA ST. LUCIE PLANT 15 MAY 1979 Station and depthC 3 8 5 11 12 0 1 2 f _ ._

~

5 8 5 B 8 5 8 0 0 5 B la=en UNDAMAGID Protozoa 5.9 2.7 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

((l) (<1)

Coelenterata 3.9 0.9 6.5 34.1 9.0 0.0 0.0 8.3 0.0 10.3 1.8 10.1 12.7 0.0

((l) ((l) (<!) (<l) (41)

I (<l) (<!) (<!) (<1) (<l) 7.7 1.8 0.0 6.3 5.6 Mollusca 4.0 8.1 6.5 113.6 13.4 0.0 0.0 4.2 11.5

{

((l) (1) (<1) (2) (<1) ((l) (<l) (<!) (<!) ((l) (<!)

Polychaets 9.8 0.0 0.0 68.1 4.5 0.0 0.0 0.0 0.0 0.0 1.8 0.0 6.3 0.0

(<!) (<l) (<1) (<l) ((l)

! Crustacea 0.0 60.8 0.0 22.3 I

nawplit 17.7 0.0 0.0 45.4 0.0 0.0 0.0 45.9 0.0 17.9 (2) ((l) (2) (1) (<ll (<1)

Cladoc era 11.4 4

1 0.0 0.0 0.0 ((l) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 J

ostracoda 0.0 0.0 0.0 34.1 4.5 0.0 0.0 20.9 0.0 7.7 1.8 40.5 0.0 695.7

(<!) (<1) (<1) (<1) (<1) ((l) (20) copepoda 528.7 89.0 3363.5 5950.4 2198.1 1755.9 2711.9 2415.5 1703.8 1359.6 906.3 5147.7 2655.5 2376.4 (48) (15) (89) (82) (81) (78) (87) (81) (79) (14) (86) (78) (86) (70) l cirr t ped ia j (barracle) 0.0 0.0 caupitt 316.4 471.1 0.0 0.0 0.0 0.0 21.9 20.8 0.0 2.6 1.8 50.7

} (29) (82) ((1) (<!) ((1) (<!) ((l) decapoda 27.6 1.8 19.5 2S4.0 44.6 22.0 27.4 154.5 3.8 12.9 7.1 1023.4 6.3 100.2

. (3) ((l) ((l) (4) (2) (1) (<!) (5) ((1) ((l) (<1) (15) (<l) (3)

I others 0.0 0.0 0.0 56.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.1 0.0 0.0

(<!) (<3) f Chaetcgnatha 0.0 0.0 19.5 0.0 8.3 4.4 0.0 0.0 3.8 0.0 0.0 0.0 6.3 0.0

(<!) ((l) (<l) (<1) (<1) t Ech t nodemata 5.9 0.0 0.0 193.0 22.3 0.0 0.0 87.7 0.0 5.1 0.0 81.1 0.0 11.1

((l) (3) ((l) (3) (<1) (1) (41)

( Cha rca t a 0.0 454.3 178.3 61.8 32.8 192.0 206.3 38 6.4 69.2 141.9 164.4 89.1 urochorda ta 90.4 2C8.2 (8) (6) (6) (7) (3) (1) (6) (10) (21) (7) (2) (5) (3) fish (eggs and larvae) 9.P 0.9 84.6 0.0 142.7 326.4 262.5 0.0 141.3 5.1 23.1 0.0 145.4 33.4

((1) (<!) (2) (5) (15) (8) (7) ((l) (2) (5) (1)

E9gs 16.6 3.6 84.6 11.4 89.2 88.2 71.1 41.7 16.4 17.9 37.2 30.4 82.2 50.1 (7) (<!) (2) (<!) (3) (4) (2) (1) (4) (1) (4) ((l) (3) (2)

Mtscellaneous 5.9 0.0 0.0 22.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(<!) (<!)

578.1 3792.9 7279.3 2715.5 2258.7 3127, 3051.5 2146.9 1835.2 1051.9 6596.7 3085.4 3333.9

,I SU8T0iAt UNDAMACfD 1102.6 SUBI0f AL DMAGED 15.7 4.5 143.2 522.4 209.6 88.2 (4) 93.0 (3) 100.2 (3)

!!0.8

'5) 163.5 (9) 63.9 (6) 101.3 (2) 101.2 (3) 78.0 (2)

(1) (1) (4) (7) (8)

I 707AL UNDAMAGED

+ OAPAGt0 1118.3 582.6 3936.1 7801.7 2925.1 2346.9 3220.6 3151.7 2257.7 1998.7 1115.8 6698.0 3186.6 3461.9 80ensity is espressed in number of 200plankters Wr cubic meter.

bhumber in parentheses is grcentage ccenposttion empressed in prcent,

, . _. , 5 5 u,,. . . 8 8 0t t _ .

E-34

TABLE E-7 DEN 5ITY8 AND PCRCEhTAGE COMPOS! TIONh Of MAJOR 200 PLANKTON TAAA ST. LUCIf PLANT 12 JUNE 1979 4

Station and depthC l

! 11 12 0 1 2 3 e__ 5 5 8 Tason 9 9 5 8 5 B 5 8 5 B 5 L  ;

U E4MAGl0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 0.0 Protozoa 0.0 31.4 4.7

(<!)

((l) ((l) 44.1 3.3 0.0 11.7 9.8 4.7 19.9 22.1 21.2 Coelenterata 39.2 83.7 7.0 44.3 37.1

) ((1) (1) ((l) (1) ((l) (1) ((l) (<!) (<!) ((l) (3) (1) (<!)

67.6 33.2 1242.3 611.0 122.0 56.0 351.8 29.3 18.7 23.9 337.2 191.1 Mollusca 2123.0 1453.0 (10) (4)

(5) (1) (11) (8) (6) (2) (5) (1) (<!) (1)

I (20) (20) 0.0 0.0 44.1 0.0 0.0 0.0 4.9 0.0 4.0 0.0 7.1 i Pol ychae ta 0.0 41.9 2.3

((l) ((l) (<!) (<!) l

((l) (1) l Crustacea '

naupilt 98.0 31.4 0.0 0.0 37.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 7.1 (1) ((l) ((l) ((!) ((l) l 0.0 0.0 39.6 7.0 0.0 0.0 4.7 8.0 132.7 7.1 Cladoc era 19.6 0.0 0.0 0.0

{

((l) (2) (<!) ((l) ((1) (4) (<!) )

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ostrac oda 0.0 0.0 0.0 l

c opepode 10461.2 4989.2 1012.9 2781.6 9567.5 6290.8 1526.7 1722.5 5382.7 1951.7 2413.7 1751.1 2382.6 2377.4 )

l (75) (70) (80) (77) (66) (79) (66) (88) (75) (73) (55)

(76) (70) (B2 )

I c t rriped ia f

(ba rnacle) 4.9 4.7 4.0 0.0 28.3 j

3 naupfti 58.8 94.1 0.0 44.3 37.0 33.1 0.0 42.0 0.0 (ci) ((l) (2) ((1) (<l) ((1) (1)

(<!) (1) (1) 27.6 1501.4 i

'I decapoca 235.1 (2) 167.6 (2) 1316 (10) 554.0 (14) 129.1 (1) 396.8 (5) 82.4 (4) 0.0 357.0 (14) 7.0 375.2 (6) 0.0 312.4 (11) 9.8

$1.4 (2) 0.0 187.6 (8) 0.0 (1) 0.0 (35) 0.0 d others 19.6 0.0 2.3 0.0 0.0 0.0

((l) (<l) ((l)

I

(<!)

0.0 10.5 37.3 22.2 37.1 55.1 3.3 21.0 e2.! 14.6 14.4 8.0 0.0 7.1 Chaetognatea

(<!) (3) (1) ((l) (1) ((l) (1) (1) (<!) (!) (<!) (<!)

f 0.0 0.0 0.0 0.0 11.0 0.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0 Ec h t nodema t a 0.0

((1) (<!)

.I Cho rda ta uro(hordata 78.4 193.7 37.3 443.3 432.1 308.5 148.4 329.1 527.7 527.0 182.1 295.2 231.7 127.4 l'

(3) (11) (4) (4) (1) (13) (8) (16) (7) (13) (1) (3)

((1) (3) i I fish (eggs and larvae) 0.0 0.0 11.1 (1) 22.1 (1) 92.7 (1) 0.0 13.2 (1) 49.0 (2) 0.0 68.4 (2) 4.7

(<!)

51.3 12.0 (1) 12.0 h3.0 (3) 11.1 0.0 35.4 39.2 73.2 32.7 44.3 18.5 33.1 49.5 0.0 58.6 39.0 Eggs (1) (<!) ((l) (2) (1) (1) (2) (1) (<!) (1)

. (<!) (1) (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Miscellaneous 0.0 0.0 0.0 3%9.3 11681.1 7633.6 1988.4 2591.6 6789.8 2971.8 2750.0 2333.7 3 . >6. 4 4316.6 SJBf 0T AL UNDMAal0 13712.1 1175.5 1346.4 l

I SUMTOTAL CAPAGEO TOTAL uhDAMAIJ D 137.1 (1) 167.4 (2) 39.7 (3) 432.2 (11) 259.6 (2) 495.8 (6)

R9.0 (4) 231.1 (9) 6 91 . 9 (10) 283.0 (10) to.7 (2) 103.7 (4) 68.5 (3) 141.7 (3)

I 4421.5 11940.7 H329.4 2077.4 2H21.7 7481.7 3254.8 2810.1 2437.4 3344.9 4458.3

+ DAMAJ O 13909.2 7342.9 1386.1 i 80ensity ts espr *ssed in Nmber of rooplarkters per cubic reter, bMmber in parentheses 15 percentage camposit ion espressed in percent.

(J = Obitque; 5 = Surf ace; B = Bottwi.

l E-35

TABLE E-8 DEh51TV8 AND PERCENTAGE COMP 051T!0th Of MAJOR 200PLAhKTON TAIA ST. LUCIE PLANT 20 JULY 1979 Station and deptbC 11  !? 0 1 2 3 4 5 Taxon p g

{ 5 8 5 8 5 8 5 8 5 8 5 8 UNOAMAGE O Protozoa 4.3 4.3 0.0 0.0 6.7 0.0 6.7 0.0 0.0 0.0 20.9 0.0 0.0 0.0

((l) ((l) (<!) ((l) (<l)

Coelenterata 13.0 6.6 23.0 10.6 6.7 13.7 0.0 0.0 0.0 0.0 10.4 16.7 12.8 10.0

((1) (<l) ((l) ((l) ((l) ((l) ((l) ((l) ((l) ((l)

Moll usc a 171.5 25.9 34.4 42.4 101.2 54.9 0.0 29.7 23.3 33.4 20.9 16.7 0.0 19.9 (7) (<!) ((l) ((l) (3) (<!) ( 1) (<l) ((l) ((l) ((l) ((l)

I Polychaeta Crustacea 64.9 (3) ((1) 25.8

(<l) 23.0 0.0 81.0 (2) 27.5

((l) 13.4

((1) 29.7

(<!)

0.0 102.3 (1) 10.4

(<!)

50.1

(<!)

0.0 10.0

((1) newplit 116.9 129.4 0.0 c.0 33.7 96.1 0.0 9.9 0.0 25.6 0.0 183.7 0.0 29.9 I cladocera (5) 91.0 (4) (<!)

(5) 8.6

((l) 34.4 10.6

((l)

(<!)

74.2 (2)

(1) 192.1 (2) 53.5 (2)

(* l) l'8.5 (2) 116.6 (2)

(<!)

524.2

(?)

135.6 (2)

(2) 454.2 (5) 433.5 (5)

(<!)

69.1 (1)

I ostrac oda Copepoda 0.0 0.0 796.4 1483.9 5762.9 6218.7 0.0 0.0 0.0 2773.5 13.7

((l) 6286.3 0.0 3144.4 0.0 0.0 4240,7 6728.7 6341.6 5589.1 25.6

((l) 0.0 0.0 0.0 7246.4 7345.1 4138.7 10.0

(<!)

(31) (52) (84 ) (85) (73) (76) (90) (EI) (90 ) (82 ) (84) (78) (82) (83)

I ctrripedia (tarnacle) nawpilt 675.2 (26) 509.0 (18) (<l) 11.5 10.6

((l) 20.2

((l) 41.2

((l) 0.0

(<1) 9.9 0.0 12.8

(<l) 0.0 0.0 0.0 19.9

((1)

I decapoda cthers 1 38.6 (5) 4.3 142.3 (5) 0.0 126.2 (2) 0.0 201.4 (3) 21.2 209.1 (6) 6.7 521.5 (6) 13.7 20.1

((l) 0.0 3C 6.6 (6) 0.0

((l) 11.7 0.0 217.6 (3) 0.0 0.0 10.4 267.2 (3) 16.7 12.8

(<!)

0.0 219.4 (4)

IJ.0

(<!) (0) (<!) (<!) (<!) ((l) ((11 I Chaetognatha Ethinode rmat a 13.0

((1) 51.9 0.0 4.3

(<!)

34.4 34.4 74.1 (1) 211.9 20.2

(<!)

27.5

(<!)

13.4

((l) 0.0 29.7

((l) ((l) 23.3 25.6

(<!)

0.0 33.4

(<!)

76.5

(<!)

19.9

((1) 6.7 27.5 113.6 0.0 25.6 41.7 150.3 0.0 149.6

(<!)

I (2) (<!) (3) (<!) (<!) (2) (<!) (<!) (2) (3)

Chcrdata urocho rda ta 26.0 0.0 218.1 2P6.1 135.0 4 39. 2 46.8 177.9 46.7 281.3 260.7 500.9 25.5 159.6 (1) (3) (4) (4) (5) (1) (3) ((l) (4) (4) (5) (<!) (3)

I fish (eggs and larvae) 0.0 0.0 103.3 P

0.0 47.2 (1) 0.0 113.8 (3) 69.2 (1) 279.9 (4) 51.2

( I) 181.7 (3) 33.4

(<l) 803.4 (9) 10.0

((l)

I 1

Eggs 398.2 500.4 459.2 264.9 303.7 507.6 66.9 1C8.7 209.9 76.7 323.2 333.9 216.8 13.6 I Miscellaneous (16) 4.3

(<!)

(18 )

0.0 (7) 0.0 (4) 0.0 (8) 0.0 (6) 0.0 (2) 0.0 (2) 0.0 (4) 0.0 (1) 0.0 (5) 10.4

(<!)

(4) 0.0 (2) 0.0 (3) 0.0 SU8 TOTAL UNDAMAGED 2575.5 2842.5 6864.8 7352.5 3825.8 8262.7 3479.0 5259.1 7440.1 7748.5 6621.4 9333.6 8926.4 5016.2 508f07AL CAMAGEO 125.5 73.2 183.7 190.8 67.3 288.1 100.4 454.9 128.3 281.4 146.0 250.5 204.1 2 29 .5 (5) (3) (3) (3) (2) (3) (3) (8) (2) (4) (2) (3) (2) (4)

TOTAL UNCA"AGLD I + CAMAGED 2701.0 2915.7 7048.5 8 Density is espresui in number of zooplankters per cubic meter.

154;.3 3893.1 8550.8 3579.4 5714,0 1568.4 8029.9 6767.4 9584.1 9130.5 5245.7 hw mber in parentheses is percentage compcsttton espressed In p.rcent.

Cg = ObItque; 5 = Surf ace; 8 = Bottom.

E-36 l

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ J

- . . - ~ _ _ _ - - . _ - .-

p 1

I I

l TABLE E-9 I

I OEN51Tf8 AND PERCENTAGE COMP 051TIONb 0F MAJ0W 2OOPLANKTON TAXA ST. LUCIE PLANT 21 AUGUST 1979 Station and depthC I Taaen 11 12 0 1 8

2 3 8 5 4

8 5 5

8 9 9 5 8 5 5 B 5 UNCAMAMD 0.0 lI 0.0 0.0 Protozoa 3.1 15.8 0.0 17.5 5.7 8.1 0.0 0.0 6.1 5.6 7.6

(<1) (<!) (<!) (<1) (<!) (<1) (<1) (<1) h Coelenterata 0.0 0.0 213.7 56.1 17.5 5.7 20.2 2i.? , 7.4 12.1

((1) 47.7 (3) 11.2

(<!)

60.5 (4) (2) (<1) (<1) '1) (2) (4, 'l) (4)

Mollusca 49'.1 221.4 622.8 601.4 8 % 7. 5 974.8 2 38 .7 128.7 270.2 0 88.3 157.2 683.8 103.3 l (1. (5) (9i (21) (7) l

>6) (51) (16) (21) (63) (31) (12) (10) (15)

Polychaeta 0.0 u 7.9 9.9 0.0 11.4 0.0 2.5 3.3 0.0 0.0 0. ') 0.0 0.0

((1) (<1) (<!) (<!) (<1)

I Crustacea I naupilt 1.4 ,.1 U . .' 3.3 11.5 22.8 0.0 7.4 0.0 1.9 0.0 0.0 33.6 0.0

((1) ;i' 4- (<l) (<!) i(1) (<!) (<1) (1)

I

. cladocera 0.0

(<1) 1.5 182.0 (4) 112.4 (4) 140.0 (1) 45.6 (1) 271.1 (14) 442.6 (36) 309.7 (18) 91.4 (12) 109.7 P) 583.9 (34) 448.4 (14) 357.8 (24)

I ostrac oda 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .0 ') . 0 0.0 0.0 0.0 h- c opepoda 62.0 104.9 3624.1 e45.8 4165.0 1618.9 1238.3 363.5 675.4 352.2 959.* 583.9 1793.6 665.4 j (1) (24) ( 72 ) (29) (29) (51) (62) (29) (38) (48) (57) (34) (54) (45) ctrrtpedta

.I (barnacle) naupitt

(<1) 7.1 81.2 (19) 0.0 13.2

(<!)

17.5

((1) 11.4

(<!)

0.0

(<l) 2.5 0.0 0.0 0.0 11.2

(<1) 0.0

((1) 7.6 1 l

j I deca pode others 16.8

((1)

((1) 1.4 (2)

(<1) 8.5 2.3 15.8

(<l) 0.0 270.8 (9) 3.3

(<1) 595.0 (4) 17.5

(<1) 313.5 (10) 5.7

(<1) 36.4 (2) 0.0 131.0 (11)

(<1) 9.9 72.5 (4) 0.0 143.0 (19) 11.3 (2) 30.5 (2)

(<1) 3.0 218.8 (13)

(<1) 2.8 100.8 (3) 0.0 156.2 (11)

(<1) 5.0 l

I Chaetognatha Ech t noceruats

((1) 1.4 0.0 0.0 0.0 87.0 (2) 7.9 85.9 (3) 120.3 122.5

(<!)

17.5 74.1 (2) 17.1 129.5 (1) 0.0 64.3 (5) 2.5 168.0 (10) 0.0 30.1 (4) 0.0 158.4 (9) 0.0 61.7 (4) 5.6 112.1 (3) 5.6 55.4 (4) 10.1

(<!) (25) ((1) ((1) (<1) (<1) (<!) ((1)

I Chorda t a uroc ho rda t a

(<1) 1.4

(<1) 1.5 31.6

(<!)

181.7 (6) 122.5

((1) 28.5

(<1) 44.5 (2) 47.0 (4) 253.7 (14) 11.3 (2) 323.0 (19) 44.9 (3) 61.6 (2) 42.8 (3) fish (eggs

I a nd 14ciae) 0.0 0.0 31 6

(<!)

0.0 0.0 0.0 0.0 0.0 3.3

(<1) 7.5 (1) 0.0 0.0 50.4 (2) 0.0 Eg95 0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0

(<1) (<1)

Miscellaneous 83.2 2.3 7.9 0.0 0.0 11.4 0.0 7.5 0.0 0.0 0.0 2.8 0.0 5.0 (2) ((1) (<1) (<1) (<1) (<!) ((1)

SUBTOT4L UNCAMAGED 4171.8 432.1 5071.8 2904.1 14157.5 3146.6 1986.8 1236.6 1762.7 736.1 16 90.9 1720.5 3306.1 1476.1 50Bf 0TAL 07#AMD 4.2 1.6 87.0 122.1 192.5 51.3 84.9 113.8 66.0 114.7 94.4 137.3 2 18 .6 9).2

(<1) (<!) (2) (4) (1) (2) (4) (8) (4) (14) (5) (1) (6) (6)

TOTAL UNCAMAGED

+ DAMAGED 4716.0 433.7 5158.8 3026.2 14350.0 3137.9 2071.7 1350.4 1828.7 850.8 1785.3 1857.8 3525.3 1569.9 80ensity is espressed in number cf acoplankters per cubic meter.

b %ccer in parentheses is percentage cunposition empressed .n percent.

I I

(8

  • Ot:11gue; 5 = Surf ace; B = Bottom.

l E-37 I

I

t. - _.~ . - - - - , _ . - - - - - - - _ _ - _ _ - - _ - - , _ - - . - - _ - _ -___ _ _ _ - __ - _. -

L, E

L F

TABLE E-10 OEh51TY8 AND PEilC[hTAGE COMP 051T!0hb 0F MAJOR 200PLANxTON TAIA ST. LUCIE PLANT F SEPTEMBER 1979 Station and depthC 11 12 0 1 2 3 4 5 Tason 3 9 5 B 5 8 5 8 5 B 5 B 5 B UMAMAGE D Protozoa 0.0 2.9 0.0 0.0 22.8 0.0 0.0 0.0 1.2 0.2 0.0 0.0 0.0 0.0

(<1) (<!) (<1) (<1)

Ccelenterata 0.0 0.0 0.0 1.7 30.4 0.0 1.9 0.0 2.5 0.0 9.7 2.8 4.2 2.8

(<l) (<l) (<1) (<!) (2) ((l) (<l) (<l)

Mallusca 144.0 45.4 2.3 22.2 99.0 6.0 7.5 4.1 9.9 2.0 5.8 7.4 14.6 7.5 (7) (4) (<1) (2) (2) (<1) (1) (2) (1) (1) (1) (1) (<l) (2)

Polyd aeta 27.6 7.3 9.1 22.2 83.7 60.4 18.9 1.2 29.7 0.2 31.9 2.8 18.8 3.8

- (1) (<!) (<l) (2) (2) (2) (3) (<l) (4) (<!) (7) (<!) (1) (<l)

Crustacea naapitt 9.2 5.9 0.0 0.0 33.1 19.1 3.8 0.6 7.4 0.7 2.9 2.8 2.1 1.9 I clacocera

(<l) 0.0

(<!)

0.0 0.0 0.0

(<1) 0.0

(<l) 0.0

(<')

0.-

(<l) 0.0

((1) 0.0

((1) 0.0

(<l) 0.0

((l) 0.0

(<l) 0.0

(<!)

0.0 I ostrac oda copepoda 0.0 1230.9 0.0 0.0 640.9 1116.2 1.7

(<l) 723.6 0.0 3587.1 6.0

(<l) 2330.6 0.0 259.7 5.2 (2) 125.7 2.5

((l) 524.4 1.5 (1) 19.9 196.0 0.0 3.7

((l) 0.0 311.4 1370.5 0.0 209.0 (51) (62) (85) (19) (15) (81) (45) (48) (61) (51) (41) (53) (82 ) (50)

I cirripedia (ta rnac le) naupitt 468.5 (22) 92.4 (9) 0.0 22.2 (2) 342.7 (7) 96.6 (3) 0.0 7.0 (3) 0.0 1.0

(<1) ((l) 1.9 11.2 (2) 4.2

(<!)

9.5 (2) l l

I decapoda others 76.7 (4) 3.1 85.1 (8) 5.9 4.6

((l) 0.0 42.7 (5) 1.7 190.3 (4) 7.6 229.3 (8) 12.1 39.7 (7) 0.0 16.3 (6) 0.0 65.7 (8) 0.0 8.2 (5) 0.0 25.2 (5) 0.0 41.8 (1) 1.8 54.4 (3) 2.1 39.6 (10l 0.0 l

l

(<1) (<l) (<!) (<l) (<l) (<1) (<l)

I Chaetognatha Ech inodema ta 0.0 0.0 1.5

(<!)

3.0 9.1

(<!)

2.3 5.1

(<l) 0.0 15.2

(<l) 0.0 24.1

(<l) 6.0 2.8

(<1) 5.7 3.5 (1) 0.6 3.7

(<!)

3.7 0.7

(<l) 0.5

((1) 2.9 5.8 3.7 l<!)

0.9 2.1

(<l) 2.1 2.8

(<1) 0.9 I Chorda t a urocho rda ta 24.5 (1)

(<l) 1.5

(<l)

(<l) 11.4

(<!)

8.5

(<!)

76.1 (2)

(<l) 12.1

(<l)

(1) 96.3 (17)

(L) 16.8 (6)

(<l) 23.6 (3)

(<l) 9.0 (6) (11)

(1) 50.2 (41) 19.6 (3)

((l) 18.8 (1)

((1) 22.8 (6)

I fish (eggs and larvae) 0.0 0.0 20.4 (2) 1.7

(<l) 45.6 (1) 0.0 50.0 (9) 1.7

(<1) 26.0 (3) 0.5

(<!)

17.4 (4) 4.7 (41) 14.6

(<l) 6.6 (2)

Eggs 196.0 149.6 142.9 61.4 243.7 84.5 95.4 81.1 151.2 51.0 126.5 172.9 173.4 108.3 I Mi sc el la neous (9) 0.0 (14) 0.0

(!!)

0.0 (7) 0.0 (5) 0.0 (3) 0.0 (16) 0.9

(<l)

(31) 0.0 (18) 3.7

((l)

(33) 0.2

(<1)

(27)

((l) 1.0 (29) 0.0 (10) 0.0 (26) 0.0 855.2 477.2 587.5 1681.9 415.5 I

Su8 TOTAL UNDAMAGED 2180.5 1041.4 1318.3 914.7 4782.3 2885.8 582.6 263.8 155.6 SLBTOTAL CM AGED 6.2 5.9 29.4 11.0 106.5 108.6 63.1 14.6 35.9 16.9 46.5 15.8 14.7 21.7

(<!) (<!) (2) (2) (2) (4) (10) (5) (4) (10) (9) (3) (<!) (5)

T0fAL UNCAMAGEO I + CMAJE0 2186.7 1047.3 1347.7 931.7 4888.8 3Censity is empressed in number of zooplankters wr cubic meter.

2994.4 645.7 278.4 8 91 . 1 172.5 523.7 603.3 1696.6 437.2 bNumber in parentheses is percentage canposttton espressed in p rcent.

cd . Oblique; 5 = Surf ace; B = Bottom.

E-38

l, L-Y l

e TABLE E-Il DEN 51Tva AND PERCtNTAGE C0MP05tT10Nb 0F MAJOR 200PLAhKTON TAIA ST. LUCIE PLANT 2 OCITER 1979 L,

5tatton and depthC 11 12 0 1 2 3 4 5 Ta'on f 6 5 B 5 8 5 8 5 B 5 8 5 B UNDAMA000 Protozoa 2.5 1.2 0.0 0.0 0.0 15.2 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(<1) (<1) (<!) (<!)

Coelenterata 0.0 0.0 0.0 1.7 15.0 12.1 0.0 4.7 0.0 9.3 4.3 2.6 0.0 1.0

(<!) (<!) ((l) (1) (2) (<!) (1) (<!)

NIlusca 72.3 46.5 17.5 22.5 240.2 124.3 4.2 19.4 12.1 9.4 4.3 5.2 5.5 12.0 L (19) (6) (<!) (3) (6) (8) (<!) (4) (<1) (2) (<l) (31 (<!) (6)

Polyc haet e 0.0 0.0 0.0 0.0 5.0 0.0 8.5 0.0 0.0 1.3 0.0 0.4 0.0 0.0

- (<!) (<!) ((l) (<!)

Crustacea 0.0 0.0 0.0 0.0 0.0 0.0 1. 0.0 0.0 0.0 0.0 I

neopitt 0.0 0.0 3.1

(<!) (<!)

cladocera 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ostrac oda 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 cou podd 182.1 353.3 2233.0 191.8 3026.5 976.4 2272.4 103.9 4019.9 253.1 2215.0 63.4 652.7 92 .7 (47) (47) (69) (27) (73) (61) (87) (24) (79) (47) (87) (32) (75) (45)

I c t rriped ia (barnacle) naupilt 5.9 (2) 26.7 (4) 0.0 0.0 40.0 (1) 21.2 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

)

I decapoda others 1.6

(<!)

1.7 3.5

(<1) 8.2 10.5

(<!)

0.0 67.5 (10) 1.7

!10.0 (3) 10.0 145.6 (9) 18.2 12.7

(<l) 0.0 47.2 (11) 2.3 36.3

(<!)

0.0 19.8 (15) 2.6 4.3

(<1) 0.0 9.8 (5) 0.0 19.6 (2) 1.1 19.3 (9) 2.3

(<!) ((l) (1)

I

((1) (1) (<!) (1) (<1) (<1)

Chaetognatha 1.7 0.0 4d.8 8.7 25.0 18.2 0.0 3.9 42.4 8.0 21.6 4.3 6.5 2.4

(<!) (2) (1) ((1) (1) (<!) (<l) (2) (<!) (2) (<!) (1)

E ch t nodema ta 0.8 0.0 0.0 0.0 40.0 12.1 0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.0 I urochorda t a

(<!)

0.8

(<!)

1.2

(<!) (<!)

3.5

((l) 3.4 (1) 0.0

(<!)

12.1

(<!)

0.0

(<!)

(2) 1.0 205.9 (4) 54.3 (10) 4.3

(<!)

4.3 (2) 3.3

(<!)

2.9 (1) fish (e9gs I Eggs and larvae) 0.0 122.3 0.0 302.2 0.0 910.1 0.0 411.3 0.0 625.3 0.0 242.6 0.0 313.1 0.0 247.3 6.1

((l) 150.7 1.3

(<l) 115.3 0.0 307.1 0.4

(<!)

105.6 0.0 181.7 0.0 15.8 (31) (41) (28) (58) (15) (15) (12) (56) (15) (22) (12) (54) (21) (36)

Mi scel laneous 0.0 2.3 0.0 0.0 10.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(<!) (<1) (<l) suBT0fAL UNWAGED 391.7 745.1 3224.0 708.6 4147.0 1601.0 2615.1 441.1 5073.4 535.7 2560.9 196.0 870.4 208.4 I $UBf0fAL PtrAGIO TOILL UNDAMAGED 13.3 (3) 4.7

(<!)

52.3 (2) 22.4 (3) 35.0

(<1) 36.3 (2) 38.1 (1) 14.1 (3) 151.4 (3) 31.9 (6) 17.4

(<!)

13.8 (7) 13.1 (2) 15.9 (7)

  • DAMLEO 405.0 749.8 3276.3 131.0 4ta2.0 1637.3 2653.2 455.2 5224.8 567.6 257tl. 3 209.8 893.5 224.3 80 ensity is espressed in number of rooplankters we cuhtc meter.

I thurter in parentreses is wrcenta9e cceposition espressed in percent.

Ce = Obitque; 5 Surf ace; 8 = Bottom.

l E-39 l

i l

1 I

l

' 1ABLE E-12 I

1 DEN 5!Tya AND PERCENIAGE COMPO5!TIONb GF MAJOR 200PLAhKTON TA1A )

ST LUCIE PLANT I i 30 OCTWER 1979 l

5t.tton and depthC 11 12 0 1 2 3 4 5 ,

8 5 8 5 8 l Tanon 8 9 5 8 5 8 5 8 5 l 1

UNDAMAGE D l s Protozoa 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

! (<1) l Coelenterata 1.3 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0

(<l) (<l) (<1)

Mollusca 8.3 1.1 8.1 4.6 30.1 53.8 2.8 3.0 11.8 15.7 2.7 2.8 3.7 1.3 l (<l) (<1) (<l) (<l) (1) (1) ((1) (1) (1) (3) (<l) (<l) (<1) (1) i I Polychaeta Crustacea 4.5

(<1) 0.0 44.4 (2) 2.3

(<1) 11.3

(<1) 0.0 46.5 (5) 0.6

(<1) 4.4

(<1) 0.0 4.0

(<!)

0.0 36.0 (4) 0.4

(<1) naupilt 18.0 2.3 319.2 4.6 37.6 20.2 139.4 4.2 0.0 0.0 66.1 7.5 186.0 0.0

(<l) (<l) (12) (<!) (2) (<1) (14) (2) (7) (2) (22)

cladocera 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6 0.9 0.0 0.0 1 (<!) (<1) estrac oda 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 cope poda 228.6 194.8 1770.0 1205.9 1843.0 4026.0 429.2 156.8 463.2 249.1 602.6 344.4 213.4 89.6 l

(8) (32) (67) (88) (84) (92) (41) (61) (54) (42) (64) (68) (25) (70)

'I j

ctrripedia (barnacle) naupitt 2474.9 398.8 32.3 16.2 135.4 6.7 10.9 6.0 13.3 12.1 9.2 12.3 2.5 0.9 1 (89) (65) (1) (1) (6) (<1) (1) (2) (2) (2) (1) (2) ((1) (<l) deca poda 20.5 7.9 28.2 34.6 33.9 67.3 28.6 23.6 114.8 106.7 31.8 35.7 14.8 11.5

(<1) (1) (1) (3) (2) (2) (3) (9) (13) (18) (3) (7) (2) 19) 4 i others 3.2 4.6 0.0 4.6 3.8 13.5 0.0 0.G 0.0 1.2 0.0 0. ') 0.0 0.4

(<!) (<!) (<!) (<1) ((1) (<l) ((l)

I I Chaetagnatha 10.3

(<1) 0.0 0.0 173.7 (7) 60.1 (4) 56.4 (3) 0.0 154.9 (4) 0.0 73.8 (7) 49.2 17.5 (7) 9.0 22.1 (3) 155.9 21.9 (4) 62.1 (7) 26.4 34.8 (7) 8.4 49.6 (6) 81.8 3.1 (2) 6.7 Echinodemata 0.0 28.3 4.6 1 28.8 l

I urocho rda ta 5.1

(<1) 5.7

(<1)

(1) 194.0 (7)

((1) 11.5

(<1) 33.9 (2) 26.9

(<1)

(5) 221.5 (21)

(4) 13.3 (5)

(18) 25.0 (3)

(22) 19.4 (3)

(3) 103.1 (11)

(2) 26.4 (5)

(10) 236.9 (28)

(5) 1.3 (1)

I fish (e995 a nd larvae) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0

(<!)

1.3 1.1 20.2 16.2 11.3 13.5 28.7 23.6 44.1 30.4 22.5 33.0 14.9 13.8 I

E995

(<1) (<1) (<l) (1) (<l) (<!) (3) (9) (5) (5) (2) (7) (2) (11)

Mi sc el laneous 2.6 0.0 4.0 0.0 3.8 13.5 5.5 0.6 1.5 1.2 0.0 0.9 0.0 0.0 I (<1) (<1) (<1) ((l) (<1) (<1) (<1) (<1) (<l) i I SUBT0!At UNDAMAGEO 2719.9 616.3 2626.4 1365.2 2200.5 4396.3 1036.1 258.2 857.6 587.7 937.1 507.1 839.6 129 . 0 SUBTOTAL DAMAGLO 7.6 14.8 36.3 25.4 86.5 94.2 24.7 5.4 13.3 4.8 17.2 17.8 13.6 4.4

(<1) (2) (1) (2) (4) (2) (2) (2) (2) (1) (2) (3) (2) (3)

TOTAL UNDAMAGEO

+ DAM LEO 2787.5 631.1 2662.7 1390.6 2287.0 4490.5 1060.8 263.6 870.9 542.5 954.3 524.9 853.2 133.4

)

, 80ensity is capressed in number of zooplankters rer cubic peter, bhumber tn parentheses is percentage compositton capressed in percent.

l

<J = Oblique; 5 = Surf ace; 8 = Bottom.

I E-40 I

o . _ _ _ _ _ . _

L

[

E TABLE E.13 DENSITVa AND PEliCENTAGE COMPOSITIONb 0F MAJOR 200PLAhKf 0N TAXA ST. LUCIE PLANT 28 NOVEMBEli 1979 5tation and depthC 11 12 0 1 2 3 4 5 Tason 0 0 5 8 5 8 5 8 5 8 5 9 5 8 UNDAMAGEO Protozoa 0.7 0.6 0.5 0.0 3.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(<1) (<!) (<l) (<1) (<1)

Ccelenterata 0.0 0.0 2.7 1.2 0.0 1.2 2.8 0.8 0.9 0.0 3.0 4.8 1.9 0.8 (1) (<!) (<1) (2) (<l) ((1) (2) (<!) (<l) (<l)

L tollusca 3.7 0.2 0.0 2.4 3.0 4.7 0.0 0.4 0.0 0.0 0.0 0.7 0.0 0.0

(<!) (<!) (<l) (<1) ((1) (<!) (<!)

Polychaeta 3.0 0.4 1.1 13.8 45.2 10.4 8.3 0.4 5.2 0.6 14.9 9.0 9.1 0.8

((1) (<!) (<!) (4) (1) (1) (5) (<1) (<!) (<l) (8) (2) (2) (<l)

Crustacea nauplil 0.0 0.0 0.0 1.8 0.0 3.5 9.9 1.2 32.3 1.3 4.3 4.8 9.6 1.2

(<1) (<!) (5) (<!) (5) ~ (<!) (2) (<!) (2) (<!)

cladocera 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ostrac oda 0.7 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(<!) (<l) copepoda 142.3 151.5 290.8 257.0 2438.8 727.0 58.4 105.4 243.8 201.1 61.7 230.8 127.8 162.2 (25) (72) (71) (8G) (18) (76) (32) (37) (38) (65) (32) (39) (33) (71) c t rripedia (barnacle) naup111 403.8 47.4 6.0 3.6 69.3 26.6 1.2 3.2 9.6 5.8 2.3 6.2 11.9 6.6 (71) (23) (2) (1) (2) (3) (<1) (1) (2) (2) (1) (1) (3) (3) decapoda 5.2 1.2 4.2 10.2 42.1 15.0 2.4 13.2 16.6 20.5 1.6 12.5 2.9 10.6

(<l) (<1) (1) (3) (1) (2) (1) (5) (3) (7) (<l) (2) ((l) (5) others 4.5 5.5 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0

(<l) (3) (<1) (<l)

Chaeto9nathe 0.0 0.0 1.6 1.8 9.0 1.2 1.2 0.4 5.2 0.6 0.3 2.8 3.8 0.8

(<!) (41) (<1) (<1) ('l) (<!) (<l) (<l) ((l) (<l) ((l) (<l)

Echinodermata 0.0 0.0 9.3 3.6 352.3 91.2 38.9 129.1 211.5 16.7 30.2 236.4 1 39. 2 26.1 (2) (1) (11) (10) (21) (45) (33) (5) (16) (40) (35) (11)

Chordata urocho rda ta 0.0 0.8 20.0 7. 2 1 38.5 33.5 7.5 5.9 33.3 5.2 15.9 28.4 61.5 1.5

(<!) (5) (2) (4) (4) (4) (2) (5) (2) (8) (5) (16) O) fish (e995 and f arvae) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 h

L E99s 1.5

(<l) 0.0 73.7 (18) 20.4 (6) 30.1

(<!)

40.4 (4) 52.8 (29) 28.1 (10) 76.1 (12) 56.6 (18) 59.7 (31) 56.7 (10) 24.8 (6) 10.5 (5) att sc el laneous 0.0 2.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 s (1) (<1)

SU810TAL UNDAMAJ D 565.4 209.7 412.1 323.0 3134.3 955.9 183.4 288.1 634.5 308.4 193.9 593.8 392.5 2 30.1 SUBTOTAL DAMAGED 5.1 4.2 6.5 2.4 42.1 8.1 2.0 2.0 3.5 3.2 1.6 4.2 1.5 6.7

(<1) (2) (2) (<1) (1) (<!) (1) (<!) (<1) (1) ((1) (<1) ((1) (3)

[ T0 fat UhDAMAGEO

+ DAMAGEO 570.5 213.9 418.6 3".4 3176.4 964.0 185.4 290.1 638.0 311.6 195.5 598.0 394.0 236.8

  1. 0ensity is empressed in number of rooplankters per cubic meter, bhunter in parentheses is percentage ctpposition espressed in percent.

CO = Oblique; 5 a surf ace; 8 = Bottom.

[ E-41

TABLE E-14 ZGGPLA'd!0% B:!PA55 AWY515

$! LUC:( K ANT 1979 5 tat ten a-3 dept h' 4 5 11 _12 0 1 2 3 Oate 3 3 5 B T 5 8 T s a T s e T 5 8 Y 5 B I 17JA% 0.56 2.59 6.06 4.33 5.20 19.01 44.82 31.92 3.22 1.73 2.43 3.55 1.22 2. fc 7.40 6.27 1.45 1.77 1.61 13 FE5 0.29 0.67 2.66 3.74 3.20 7.95 2.73 5.34 2.98 4.52 3.75 11.41 3.51 7.46 1.25 1.90 2.58 5.01 3.26 4.14 6 APR 4.20 1.18 21.17 30.43 25.83 10.33 3.35 7.09 14. 29 31.79 23.04 10.30 10.10 10.70 17.93 105.93 61.93 15.76 34.99 25. 38 27 APa 13.69 35.34 2.74 3.23 2.99 4.0; 4.M 4.50 5.11 5.97 5.54 5.21 7.17 6.19 4.06 11.84 7.95 6.13 9.24 7.67 i 15 He 2.87 1.23 43.20 23.17 38.19 27.21 57.78 42.50 58.23 22.36 40.30 36.51 2.80 19.65 36.19 22.52 29.36 45.74 20.16 33.45 12 1 % 31.53 35.69 18.11 40.43 23.27 57.02 24.7S 40.90 22.98 11.71 17.35 103.38 19.32 61.35 23.38 17.00 23.19 41.14 18.62 29 .8 8

g 26 E e.24 14.05 58.29 36.20 47.25 22.03 36.05 29.04 35.37 31.39 37.33 59.70 69.31 64.51 64.10 17.55 40.83 27. 39 34.43 30.91 b

N 21 AcG 4.05 -D 41.46 60.94 51.20 51.30 45.13 45. 71 11.54 49.25 30.41 9.48 26.57 18.02 7.26 29.13 18.19 15.81 28.75 22.28

7 MP 2.9e 3.07 15.38 15.53 15.46 17.85 12.23 15.04 6.35 5.63 5.99 8.51 2.70 5.61 2.85 7.00 4.93 6.79 4.24 5.52 21T d.27 6.11 20.99 15.35 18.17 20.45 36.71 23.60 39.12 7.12 23.12 45.46 21.81 33.64 10.35 8.34 9.35 4.13 9.39 6.76 33 OCT 5.43 2.15 12.26 3.66 7.95 12.88 14.27 13.58 2.47 1.47 1.97 3.75 1.36 2.56 3.08 2.30 2.59 2.37 2.86 2.62 23 EV 0.69 1.20 0.69 2.23 1.49 7.59 4.31 5.95 0.65 0.21 0.43 0.77 1.09 0.93 3.07 0.97 2.02 0.77 0.21 0.49 i.

8J = colig.e t;.; 5 = Sarface; B

  • Battcr; I = "ean vah.e.

l

}

t',0t a* sly u 2.

i 4

n i

I 1

h L

TABLE E-15 u

COMPARIS0N OF ZOOPLANKTON DENSITY AND TEMPERATURE IN THE INTAKE (STATION 11) AND DISCHARGE (STATIONS 12) CANALS ST. LUCIE PLANT 1979 Temperature ( C) Percentage l Date Intake Discharge AT( C) Intake (no./m3) Discharge (no./m 3) change (%)a 17 JAN 21.0 33.7 +12.7 1002.2 513.2 -48.8 13 FEB 18.7 30.9 +12.2 293.6 100.6 -65.7 6 APR 21.4 22.5 + 1.1 421.0 76.2 -81.9b l 27 APR 25.1 25.6 + 0.5 4187.8 5370.9 +28.3b 15 MAY 25.2 27.2 + 2.0 1102.6 578.1 -47.5b 6 JUN 26.1 32.2 + 6.1 13,772.1 7175.5 -47.6b 26 JUL 24.9 38.8 +13.9 2575.5 2842.5 +10.4 21 AUG 27.3 37.0 + 9.7 4771.8 432.1 -90.9 7 SEP 23.5 35.1 +11.6 2180.5 1041.4 -52.2 2 OCT 27.7 35.0 + 7.3 391.7 745.1 +90.2 30 OCT 24.7 37.5 +12.8 2779.9 616.3 -77.8 28 NOV 24.9 36.2 +11.3 565.4 209.7 -62.9 Percentage change = Discharge - Intake x 100  ;

Intake j b Plant down or in limited operational capacity only.

I I E-43

TABLE E-16

, STATISTICAL COMPARIS0N OF TOTAL ZOOPLANKTON DENSITY CANAL STATIONS 11 AND 12 ST. LUCIE PLANT 6 DECEMBER 1978 - 30 OCTOBER 1979 ANALYSIS OF VARIANCE: STATIONS

[

Source DF Sum of squares Mean square Model 1 2.64003669 2.64003669 Error 22 39.72216939 1.805555315 1

Corrected total 23 42.36220608 Source DF Type I SS F value PR > F 7

Station 1 2.64003669 1.46 0.2394 DUNCAN'S MULTIPLE RANGE TEST: STATIONSa Alpha level =0.05 DF=22 MS=1.80555 GROUPING MEAN N STATION A 7.227751 12 11 A 6.564422 12 12 I aMeans with the same letter are not significantly different.

I F

I I

E-44

I

+

H r

TABLE E-17 l STATISTICAL CDMPARISON OF TOTAL ZOCPLANKTON DENSITY r C#4AL STATIONS 11 N4D 12 ST. LUCIE PLANT 26 MAROi 1976 - 30 CETOBER 1979 ANALYSIS OF VARIANCE: STATIONS X YEARS _

Source DF Sum of squares Mean square L- Model 7 4.74706871 0.67815267 Error 83 126.08128555 1.51905163 L

L Corrected total 90 130.82835426 l'

ro PR > F Source DF Type 1 SS F value Year 3 2.96171180 0.65 0.5890 Station 1 1.34606736 0.89 0.3493 0.10 0.9569 Year x Station 3 0.43928955 DUNCAN'3 MULTIPLE RANGE TEST: STATIONSa A lpha level =0.05 DF=83 MS=1.51905 GROUPING MEAN N STATION A 6.747327 46 11 A 6.4997E 45 12 DUtCAN'S MULTIPLE RANGE TEST: YEARSa A lpha level =0.05 DF=83 Ri= 1. 5 00 5 GROUPING MEAN N YE*R A 6.821883 23 19 A 6.8015:' 20 76 I

, A 6.500612 24 78 h

A 6.413290 24 77 f aMeans with the same letter are not sign if icantly di f ferent.

I I E-45 I '

o TABLE E-18

_ STATISTICAL COMPARISON OF ZOOPLANKTON BIOMASS CANAL STATIONS 11 AND 12 ST. LUCIE PLANT 6 DECEMBER 1978 - 30 OCTOBER 1979

~

ANALYSIS OF VARIANCE: STATIONS Source DF Sum of Squares Mean square L Model 1 0.14650379 0.14650379

- Error 19 22.44909488 1.18153131

~

Corrected total 20 22.59559868 7

L Scurce DF Type I SS F value PR > F Station 1 0.14650379 0.12 0.7286 I

l l DUNCAN'S MULTIPLE RANGE TEST: STATIONSa Alpha level =0.05 l DF=19 MS=1.18153 GROUPING MEAN N STATION A 1.745942 10 12 A 1.578702 11 11 l afteans with the same letter are not significantly different.

w m

i E

E-46

I  :

I TABLE E-19 l 5iATISTICAL COMPARISON OF 200'LANKTON 8lCMA5S CN4A' STATIONS 11 NJD 12 I

S T. LtElE PLANT 26 MAROi 1976 - 30 OCTWER 1979 l

ANALYSIS OF VARIANCE: STATIONS X YEAks Source DF Sum of squares Mean square l Model 7 5.10818973 0.72974139 Error 78 50.92156&57 0.65284062 Corrected total 85 56.02975810 Sourco DF Type i SS F valuo FH>F Year 3 1.937f1544 0.99 0.4037 Station 1 1.25344383 1.92 0.1698 Year x Station 3 1.91763047 0.98 0.4 084 DutCMJ'S MULTIPLE HN4GE TEST: STAitor6a A lpha level =0.05 DF=78 M5 =0.6 52841 GROLPING MEAN N_ STATION A 1.655314 42 12 A 1.417483 44 11 I DUFC AN'S MULT IPLE RN4GE TLST: 17. AR S O

A lpha levol =0.05 DF=78 Ki=0.6 52841 GROUPING MEAN YEAR N_

1.776554 79 I

A 19 A 1.573162 24 77 A 1.445654 19 76 A 1.371441 24 78 aMoans wi t h the same le tter are not sign i f icantl y di f f erent.

I 4

I E-47

L F

L

[ TABLE E-20 CORRELATIONS OF ZOOPLANKTON DENSITY AND VARIOUS PARAMETERS CANAL STATIONS 11 AND 12 ST LUCIE PLANT 6 DECEMBER 1978 - 30 0CTOBER 1979 Parameters Dissolved Biomass Chl orophyll-a Temperature Salinity oxygen Density 0.71226a -0.24553 -0.04448 -0.04853 0.50504 0.000lb 0.2475 0.8365 0.8302 0.0165 23c 24 24 22 22 E

4 Biomass 1.00000 -0.08687 0.06342 0.21920 -0.27880 0.0000 0.6935 0.7737 0.3397 0.2090 23 23 23 21 22 i

} aCorrelation coefficient.

b Probability of a greater R value for the null hypothesis.

cNumber of observations (n).

1

~ \

l l

- 1 M

4 w

P W

m M

E-48

l .

E f

I '

l TABLE E-21 l

CORRELATIONS OF ZOOPLANKTON DENSITY AND VARIOUS PARAMETERS l l OFFSHORE SURFACE STATIONS 0 THROUGH 5 l ST. LUCIE PLANT i 6 DECEMBER 1978 - 30 0CTOBER 1979 I Parameters ,

l Dissolved Biomass Chl orophyll-a Temperature Salinity oxygen l

Density 0.74321a -0.11650 0.18829 0.45561 0.11975 0.000lb 0.3298 0.1132 0.0001 0.3499 I Biomass 72c 1.00000 -0.27523 72 72 0.21566 72 0.37392 0.18257 63 0.0000 0.0193 0.0689 0.0012 0.1521 72 72 72 72 63 I aCorrelation coefficient.

bProbability of a greater R value for the null hypothesis, cNumber of observation (n).

I I

l I

I I

1 5

1 E-49 I

1 F

TABLE E-22 CORRELA'TIO'.S OF 200PLANYTON DENSITY AND VARIOUS PHYSICAL 'ARAMETERS OFFSHORE BOTTOM STATIONS 0 THROUGH 5 ST. LUCIE PLANT i 6 DECEMBER 1978 - 30 0CTOBER 1979 L

Parameters Dissolved Biomass Chl orophyll-a Temperature Salinity oxygen Density 0.60226a 0.19060 0.01400 0.27143 0.10213 0.000lb 0.1088 0.9078 0.0211 0.4296 72c 72 71 72 62 Biomass 1.00000 0.06178 0.10357 0.30373 0.14372 0.0000 0.6062 0.3901 0.0095 0.2651 72 72 71 72 62 l aCorrelation coefficient.

b Probability of a greater R value for the null hypothesis, cNumber of observations (n).

I I

l I

I l I

I E-50 I

i

~

3 I

~

~

TABLE E-23 STEPWISE ANALYSIS OF ZOOPLANKTON DENSITY q OFFSHmE STATIONS 0 TmOUGi 5 ST. LUCIE PLANT 6 DECEMBER 1978 - 30 OCTWER 1979 SURFACE Variable RSAa R sq ua re = 0.10997843 C(P) = 0.29148235 DF Sum of squares Mean square F PROB >F Regres s ion 1 4.08128001 4.08128001 8.65 0.0044 Error 70 33.02854354 0.47183634 Total 71 37.10982355 B value Standard error Type ll SS F PROB >F y i ntercept 0.00000000 RSA 0.42929349 0.14596603 4.08128001 8.65 r-BOTTOM l Variable RSA R sq ua re = 0.02229676 C(P) = 1.49878285 DF Sum of sqmres Mean square F PROB >F Regres s ion 1 1.92745114 1.92745114 1.60 0.2106 g Error 70 84.51790961 1.20739871 Total 71 86.44536075 8 value Standard error Type il SS F FROB>F

intercept 0.00000000 l RSA 0.34938813 0.27652972 1.92745114 1.60 0.2106 I aihe prefly R indica tes res idual variance for each variable af ter seasonal (cas ine) adjustment.

? 1 E

[

E I

E-51 I

I 1

L TABLE E-24 4 STEPWISE ANALYSIS OF ZO(PLANKTON Bl(NASS OFFSHmE STATIONS 0 Tm0UGi 5

~

ST. LUCIE PLANT 6 DECEMBER 1978 - 30 OCTWER 1979 SURFACE Variable RSAa R sq ua r e = 0.04027460 C(P) = 0.86498091 DF Sum of squares Mean sqmre F FH00>F

{

Reyression 1 995.51109745 995.51109745 2.94 0.0910 Error 70 23722.57819099 338.89397416 Total 71 24718.08928844 8 value Standard error Ty;m 11 SS F PROB >F 1

Intercept -0.00000000 RSA 6.70469704 3.91190256 995.51109745 2.94 0.0910 .

BOTTOM Variable RSA R square = 0.04929968 C(P) = 0.39348799 DF Sum of sq ua res Mean sqmre F FH00 >F Reycession 1 1229.15629038 1229.15629038 3.63 0.0609 Error 70 23703.18200611 338.61688580 I Total 71 24932.33829649 0 value Standard error Type Il SS F FH00 >F Intercupt -0.00000000 RSA 8.82307574 4.63095711 1229.15629038 3.63 0.0609 aihe pref ix R Indicates res idual variance for each verlable af ter seasonal (cas i ne) l adjustment.

i

\

t 1

E E-52 I

i _ _ . _ _ , , . . , , , _ , . _ , _ _ . . . - _ . . _ _ .

l l

TABLE E-25 STATISTICAL COMPARIS0N OF TOTAL ZOOPLANKTON DENSITY OFFSHORE SURFACE STATIONS 0 THROUGH 5 ST. LUCIE PLANT 6 DECEMBER 1978 - 30 OCTCBER 1979 1

ANALYSIS OF VARIANCE: STATION Source DF Sum of squares Mean square l

Model 5 6.90160773 1.38032155 Error 66 37.02394914 0.56096893 m Corrected total 71 43.92555688 Source DF Type I SS F value PR > F Station 5 6.90160773 2.46 0.0415 I

I DUNCAN'S MULTIPLE RANGE TEST: STATIONSa Alpha level =0.05 0F=66 MS=0.560969 GROUPING MEAN N STATION A 8.175259 12 1 B A 7.766297 12 3 l

l j B A 7.736061 12 5 4 B A 7.592722 12 0 l B 7.471477 12 2 I B 7.156893 12 4 I aMeans with the same letter are not significantly different. ,

I '

E-53

TABLE E-26 STATISTICAL COMPARISON OF ZOOPLANKTON BIOMASS

' 0FFSHORE SURFACE STATIONS 0 THROUGH 5 I

l l

ST. LUCIE PLANT 6 DECEMBER 1978 - 30 OCTOBER 1979 ANALYSIS OF VARIANCE: STATION l

Source DF Sum of squares Mean square Model 5 4.75196967 0.95039393 j

Error 66 62.89382322 0.95293672 Corrected total 71 67.64579289 l Source DF Type I SS F value PR > F Station 5 4.75196967 1.00 0.4271 I

i DUNCAN'S MULTIPLE RANGE TEST: STATIONSa Alpha level =0.05 DF=66 MS=0.952937 GROUPING MEAN N STATION A 2.951444 12 1 2.916422 12 3 A

l A 2.748999 12 0 A 2.512990 12 2 A 2.486965 12 5 l A 2.226284 12 4 I

i aMeans with the same letter are not significantly different.

1 E-54 I

- .- . . _ _ . . . - - . - _ _ - . _ _ _ - . ~ _ _ _ ____ __ __ _ _ _ __ _ ___ _-

I l

TABLE E-27 l

STATISTICAL COMPARIS0N OF TOTAL ZOOPLANKTON DENSITY

, 0FFSH0RE BOTTOM STATIONS 0 THROUGH 5 I

ST. LUCIE PLANT 6 DECEMBER 1978 - 30 0CTOBER 1979 ANALYSIS OF VARIANCE: STATION

, Source DF Sum of squares Mean square Model 5 7.28744701 1.45748940 Error 66 96.29429361 1.45900445 Corrected total 71 103.58174062 i Source DF Type I SS F val ue PR > F Station 5 7.28744701 1.00 0.4261 i

I j DUNCAN'S MULTIPLE RANGE TEST: STATIONSa Alpha 1evel=0.05 DF=66 F.S =1. 4 59 GROUPING MEAN fl STATION A 7.713551 12 1 A 7.544031 12 0

< A 7.089731 12 5 A 7.046428 12 4 A 7.009197 12 3 l

A 6.808760 12 2 I oMeans with the same letter are not significantly different.

I E-55

TABLE E-28 STATISTICAL COMPARISON OF Z00 PLAN:'. TON BIOMASS OFFSH0RE BOTTOM STATIONS 0 THROUGH 5 ST. LUCIE PLANT

] 6 DECEMBER 1978 - 30 0CTOBER 1979 ANALYSIS OF VARIANCE: STATI0ft Source DF Sum of squares Mean square Model 5 3.27173063 0.65434613 Error 66 68.81555728 1.04265996 Corrected total 71 72.08728791 Source DF Type I SS F val ue PR > F Station 5 3.27173063 0.63 0.6816 l

I l

I

! DUNCAN'S MULTIPLE RANGF TEST: STATIONSa I

l Alpha level =0.05 0F=66 MS=1.04266 l

GROUPING MEAN N STATION j A 2.980318 12 1 A 2.801940 12 0 l A 2.650604 12 4 l

I A 2.513896 12 5 A 2.507147 12 2 A 2.327740 12 3 I aMeans with the same letter are not significantly different.

E-56 I l l

1 TABLE E-29 STATISTICAL COMPARISON OF TOTAL ZO(PLANKTON DENSITY OFFSHmE BOTTOM STATIOr6 0 Tm0Um 5 ST. LUCIE PLANT 26 MARW 1976 - 30 OCT%ER 1979 ANALYSIS OF VARIANCE: STATIONS X YEARS l Source DF Sum of squares Mean square _

Model 23 45.51008007 1.97869913 Error 245 356.35341861 1.45450375 Corrected total 268 401.86349868 Source DF Type i SS F value PR > F Year 3 22.43473658 5.14 0.0020 Station 5 2.18714216 0.34 0.8873  :

I Year x Station 15 20.58820133 0.94 0.5166 j DutC#4'S MULTIPLE RN4GE TEST: STAT 10t6" A f pha leveI =0.05 DF=245 tE=1.4545 l

I GROUP 1NG MEAN N_ STATION A 7.651925 45 4 A 7.577252 45 5 A 7.548433 45 1 A 7.441822 45 3 A 7.430375 44 2 A 7.377242 45 0 DUtCNJ'S MULTIPLE RANOE TEST: EARSa Alpha level =0.05 DF=245 PE = 1.4 545 GROUPING MEAN N YEAR A 7.774633 72 77 A 7.767121 72 78 I 8 7.264528 59 76 I

l B 7.138992 66 79 l

aMoans with the sam letter are not significantly dif ferent.

E-57 I

TABLE E-30 STATISTICAL COMPARISON OF ZOOPLANKTON BICP4 ASS OFFSHmE BOTTOM STATIONS 0 THROUW 5 ST. LUCIE PLANT 26 MARW 1976 - 30 OCT W ER 1979 ANALYSIS OF VARIANCE: STATIONS X YEARS Source DF Sum of squares Mean square Model 23 25.52136919 1.10962475 Error 242 240.55750785 0.9 A 03929 Corrected total 265 266.07887704 1

Source DF Type ! SS F value PR > F Year 3 10.26445475 3.44 0.0174 Station 5 3.94163581 0.79 0.5575 Year x Station 15 11.31527863 0.76 0.7231 DUPON4'S MULTIPLE RANGE TEST: STATIONSa I Alpha level =0.05 GROUP lNG MEAN DF=2 .2 N_

kE =0.994 039 STAT lON A 2.847634 44 1 A 2.841809 44 2 A 2.812998 44 3 A 2.781932 45 5 A 2.701597 44 4 A 2.498979 45 0 DurCAN'S MULTIPLE RANGE TEST: YEARS 3 A lpha level =0.05 DF=242 AG =0.994 039 GROUP 1NG MEAN YEAR N_

A 2.955960 72 78 A 2.904353 69 77 B 2.547611 66 79 I 2.529607 B 59 76 aMeans with the same letter are not significantly dif ferent.

E-58

i B

TABLE E-31 W STATISTICAL COMPARISON OF TOTAL ZOTLANKTON DENSITY

! 0FFSHm E SURFA% STATIONS 0 Tm0UGi 5

' ST. LLCIE PLANT 26 MARDI 1976 - 30 OCTWER 1979

! ANALYSIS OF VARIANCE: STATIONS X YEARS Source DF Sum of squares Mean square Model 23 50.05876166 2.17646790 Error 245 241.82961215 0.98705964 Corrected total 268 291.88837381 i

Source DF Type i SS F value PR > F Year 3 22.42213192 7.57 0.0001 Station 5 20.31745722 4.12 0.0014 Year x Station 15 7.31917252 0.49 0.9423 DufCAN'S MULTIPLE RANCE TEST: STAT 10NSa

Alpha levol=0.05 DF=245 MS -0.98706 GROUPING MEAN N STATION i

A 7.984257 44 1 5 6 7.538809 45 5 B 7.341404 45 2 0 7.297671 45 3 j B 7.192560 45 4 0 7.162586 45 0 i

DutCAN'S MULTIPLE RANGE TEST: YEARSa l A lpha f evel =0.05 DF =24 5 kG=0.98706 GROUPlNG MEAN N_ YEAR l

A 7.639367 66 79 A 7.611940 72 77 j A 7.451159 72 78 B 6.890763 59 76 ,

I aMeans wI tb the same let ter are not sign if Icanti y di f ferent. l lI E-59  !

I

l I

1 l

I TABLE E-32 STATISTICAL (X)MPARISON OF ZOOPLANKTON BIOMASS OFFSHWE SURFA& 'jTATIONS 0 Tm0Um 5 l

l ST. LUCIE PLANT I 26 MARW 1976 - 30 OCTOBER 1979 l

ANALYSIS OF VARIANCE: STATIONS X YEARS Source DF Sum of squares Mean square l

Model 23 39.01983959 1.69651476 Error 243 211.25740380 0.86937203 Corrected total 266 250.27724338 Source DF Type i SS F value PR > F Year 3 17.50513774 6.71 0.0003 Station 5 13.78351902 3.17 0.0087 Year x Station 15 7.73118283 0.59 0.8797 I DutCAN'S MULTIPLE RANGE TEST: STATIONSa A lpha leveI=0.05 DF=243 k6 =0.869372 GROUPlNG MEAN N STATION I 2.892627 A 44 1 B A 2.552257 44 5 8 2.468737 45 3 B 2.292747 45 2 8 2.237449 45 0 B 2.229660 44 4 DufC AN'S MULTIPLE RN4GE TEST: YEARS 8 A lpha leveI=0.05 DF=243 kE =0. 869372 GROUP 1NG MEAN N YEAR A 2.650482 71 77 A 2.624327 66 79 A 2.447683 72 78 8 1.982912 58 76 aMeans with the same letter are not sign i f icantl y di f ferent.

I E-60

W r T ABLE E-33 STATISTICAL COMPARISON OF ZOCPLANKTON DENSITIES BASELINE VERSUS OPERATIOPAL 60NITORIPG DATA 0FFSHmE STATIONS 1 THROU0i 5 ST. LUCIE PLANT SLP TEPBE R 1972 - 30 OCTWER 1979 ANALYSIS OF VARIANCE: STATIONS X YEARS Source DF Sum of squares Mean s,quare Modet 24 25.03319115 1.04304963 Error 259 205.17546001 0.79218324 Corrected total 283 230.20065116 Sourco DF Type i SS F valuo PR > F Year 4 12.41331220 3.92 0.0042 S ta t ion 4 5.14179872 1.62 0.1689 Year x Station 16 7.47808023 0.59 0.8905 DU?CAN'S MULTIPLE RANGE TEST: STAT 10NSa A lpha levol =0.05 DF=259 MS =0. 792183 I GROUPING A

MEAN 7.891032 N

56 STATION 1

A 7.865217 57 5 A 7.669806 57 2 A 7.659679 57 4 A 7.538195 57 3 I DUPC AN'S MULTIPLE RANGE TEST: YE AR$0 Alpha level =0.05 DF=259 MS =0. 792163 GRCUPING MEAN N YEAR A 7.936587 59 73 A 7.915617 60 77 I B A 7.783362 60 78 8 7.492076 55 79 8 7.428227 50 76 aMeans wi th the same letter are not signi f icantly di f forent.

I E-61

l l

l l F. AQUATIC MACR 0PHYTES I

l Environmental Technical Specification (Section 3.1.B.d.)

Macrophytes - Macrcscopic aquatic vegetation will be collected quarterly and identified as to species 1 and abundance.

IflTRODUCTI0ft The purpose of the offshore macrophyte study is to detennine whether operation of the St. Lucie Plant is affecting the species compostion and abundance of the macrophyte community of the area. The tenn " aquatic l

macrophytes" refers to aquatic plants, including seagrasses and seaweeds or algae, large enough to be seen with the unaided eye. Attached benthic macrophytes are good indicators of env;ronmental change because they can-not avoid environmental stresses as more mobile species can. Therefore changes in environmental conditions can result in alteration of the spe-cies composition and abundance of the benthic macrophyte community.

B The distribution of aquatic mac rophytes is limited by substrate, l I temperature and light. An unstable bottom, such as sa nd or mud , is j

l l

1 generally unsuitable for attachment of nucrophytes except in quiet bays and estua ries where agitation by wind and waves is slight. In areas exposed to these forces, detached , or drift, algae are usually washed upon the beach or swept out of the photic zone (Eiseman et al . ,1974).

I Along the east coast of Florida , marine macrophytes are found on rock outcroppings, worm reefs, shell rubble, and artificial substrates.

I F-1

]

] Most marine plants are found from the intertidal zone to a depth of 30 to 40 m. Beyond this depth, the light-absorbi ng properties of m seawater reduce the availability of light to levels below that nee <ied for

- photosynthesis. Light penetration is also attenuated by turbidity and u

plankton which decrease the transparency of water. One group of algae,

[ however, has adapted to low light levels; red algae have been dredged from depths of 170 m in clear, tropical waters (McConnaughey,1970).

I I Temperature controls the growth and distribution of marine macrophy-tes directly by influencing the rate of photosynthesis and respiration l a nd indirectly by affecting the level of dissolved oxygen in the water.

Consequently, many marine plants tolerate only a narrow temperature range (Dawson,1966). Marine plants in subtropical and tropical areas are par-ticularly vul nerable to temperature changes because normal water tem-1 peratures are usually high and do not vary greatly over the course of a year (Steidinger ard Van Breedveld,1971).

l l MATERIALS AND METHODS Aquatic macrophytes were collected quarterly at each of six offshore stations during 1979 (Figure F-1). Each sample was collected by towing a box-type dredge (46 cm X 46 cm X 25 cm) along the ocean bottom for5 minutes. The speed of each tow was recorded and used to compute the sur-face area sampled. The area sampled at all stations in 1979 was approxi-mately 190 m2 Duplicate samples were collected at each station and preserved in a solution of 5 percent buffered formalin-seawater.

I I

F-2 I

I I

Attached macrophytes were scraped from shell and rock surfaces and the preserved samples were sorted in the laboratory. The al gae were identified to the lowest practicable taxon and the number of species per I unit area of sample substrate was deteminEd. Representative material was retained for voucher specimens and species lists were prepared for each sample. Where apparent, the presence of the most abundant or domi-nant species was not ed . The presence of reproductive structures was detemined by microscopic examination.

RESULTS AND DISCUSSION A total of 60 taxa of marine algae were collected in 1979. Of this number, 38 (63.3 percent) were red algae (Rhodophyta),12 (20 percent) were brown al gae (Phaeophyta), and 9 (15 percent ) were green al ga e (Chl orophyta ). One speci es of blue-green al gae (Cya nophyta ), was collected .

Species composition for each station during each collection period is given in Table F-1. Only one taxa, Gracilaria sp. , was collected during all four sampling trips. Thirteen taxa were found only during June and 27 were found only during September. Three additional species of algae were collected only during November.

I As noted in 1978, drift algae was the main contributor to increased

!I algal diversity and abundance in the 1979 summer and fall samples. The abundance of drift algae was most obvious at Station 0, the control sta-tion to the south, where the fine, gray sand substrate is unsuitable for I F-3 I

l l

l l

algal attachment, but where the shallow depth apparently allows the drift algae carried inshore by prevailing winds and currents to collect. Drift l

algae were less abundant at Stations 1 through 5. Station 1, at the l discharge, is about the same depth as Station 0 but the stronger currents at Station 1, at the di sc ha rge , may prevent drift al ga e from accumulati ng. Attached algae were collected only at Stations 2 and 4 and I were generally small individual plants or fragments found on pieces of 1

rock and shel l . The year's data indicate that the biomass of attached algae was insignificant when compared to that of drift algae.

I Fif ty of the 60 species collected in 1979 were found at Station 0.

Of the 50 species, 98 percent were collected in June and September and c ons isted of drift al gae only. The smallest amount of algae collected for the year was found at Station 3. In March, macrophytes were found j only at Station 4. flo significant di f ferences in algal abundance or I

diversity between stations were found in September except for the absence I of any algae at Stations 2 and 3. fio general trend in the occurrence or abundance of a species between stations was observed, although dominant species were noted at two stations. Large, unattached mats of Ceramium were collected in all replicates at Stations 0 and 1 in June. Hypnea sp., Halymenia sp. , and Codium spp. were abunda nt at Station 0 in September. Otherwise, most of the al gae was represented by small fragments of pl a nts. Reproductive al gae were collected in June and September.

I I I I F-4

j i L

F L

e L Algal diversity and abundance reflected the seasonal trend charac-

{ teristic of Hutchinson Island's location in a subtropical zone (Phillips, 1961). Tropical and subtropical mrine plants display greatest species

( diversity and abundance in summer and early fall. In 1979, algal diver-sity and abundance were greatest in September (42 species) and June (29 l

species) and lowest in November (7 species) and March (6 species). This l

trend was observed in the previous 3 years' collections of macrophytes at l l St. Lucie (ABI, 1977,1978,1979). As previously reported , this seasonal t rend is unrelated to power pla nt operation. No baseli ne data is ,

available on the macrophyte community.

l I

SUMMARY

The lack of suitable substrate for algal attachment and growth at all stations limits the occurrence of macrophytes in the study area. The j substrates in the study area are either shell hash or fine sand with very 1

little hard surfaces suitable for algal attachment. The importance of this community as primary producers in the study area, therefore, is i i

l imi ted .

j Differences in the number of algal taxa between stations and between sampl i ng periods were ev id e nt.

l Al gal diversity and abunda nce were greatest in June and September and at Station 0 (Figure F-1) during these 1

j months. This trend reflects the seasonality of the drift algal community a nd the tendency of drift al gae to collect on the beach terrace. )

Attached algae were found only at Stations 2 and 4 during the year. No 1

effects of power plant operation on the macrophyte community were noted.

I l F-5 m _ _ . . _ _ _ _ _ _ _ _

I l LITERATURE CITED ABI. 1977. Ecological monitoring at the Florida Power & Light Co. St.

Lucie Plant, annual report 1976. Vol. 1. AB-44. Prepa red by Applied Biology, Inc. , for Florida Power & Light Co. , Miami, Fla.

. 1978. Ecological monitoring at the Florida Power & Light Co. St.

Lucie Plant, annual report 1977. Vol. 1. AB-101. Prepa red by Applied Biology, Inc. , for Florida Power & Light Co. , Miami, Fla.

. 1979. Florida Power & Light Company St. Lucie Plant annual non-a radiological environmental monitoring report 1978. Vol . 2. Biotic g monitori ng AB-177. Prepa red by Applied Florida Power & Light Co. , Miami, Fla.

Biol ogy, Inc., for l

Dawson, E. Y. 1966. Marine botany. Holt, Rinehart and Winston, Inc. ,

New York. 371 pp.

Eisema n, N.J. , M. Meagher, R. Richards, and G. Stanton. Studies I 1974.

on the benthic and shoreline plants of the I <11an River region.

Harbor Branch Consortium, Indian River Study, unpublished annual report (1973-74) 2:257-292.

McConnaughey, B. H. 1970. Introduction to marine biology. C. V. Mcsby Co., St. Louis. 449 pp.

Phillips , R. C. 1961. Seasonal aspects of the marine algal flora of the St. Lucie inlet and adjacent Indian River, Florida. Qua rt. Jour.

Fla. Acad. Sci. 24(2).

Steidinger, K. A. , and J. F. Van Breedveld. 1971. Benthic narine algae from waters adjacent to the Crystal River electric power pla nt (1969 and 1970). Fla. D.ep t . Nat. Resour. Ma r. Res. Lab. , Prof.

Pap. Ser. 16: 46 pp.

I 1

I 1

I 1

I I F-6 I

l I '

, .;, YARDS KILOMETFRS 2000

, 000 O k 2 3

._, '- : SCALE 7

. ,d d 2 ._g <

L 'f b N Y D -N- ,

+

l

?

I s

& .' % O l .

C  ::@

@ o

, ~~O @

\

k 7 7

g g , '

I s

~

i M

9 St.Luci eie et. p .

g i , -

w l

g l  ;

l '

l Figure F-1. Locations of macrophyte sampling stations,1979.

I "'

PIR f11EN1

t i

4 i

I l ,

I 1

a i l i

TABLE F-1

. MACROPHYTE SPECIES COLLECTED AT OFFSHCRE STATIONS 1 ST. LUCIE PLANT

] 1979 I

i March June September November I

l Species Station: 0 1 2 3 4 5 0 1 2 3 4 5 0 t 2 3 4 5 0 1 2 3 4 5 i

CYANTHYTA (blue green al gae) j Microcoleus lynqbyaceous X CHLUKlPHYTA (green al gae) j Caulerpa microphysa X ,

C. racemosa v. macrophysa X X i j flacophora fascicularis X X y l Claccphora sp. X i

y Codium isthomocladum X X X f I C. Taylori X j O fodium sp. X Ernodesmis verticillata X X Utva iactuca X l

1 PHAECPHYTA (brown al gae) ,

i D i cty op ter i s p l ag i ocrarvne X D. justii X Dictyota cervicornis X X O. dichotoma X X Fictyota sp. X X X X X X Ectocarpus sp. X Giffordia sp. X X Sargassum sp. X X X X X X l Spatoglossum schroederl X I

Spnacelarla furcigera X X i Sphacetaria sp. A Stypcoodium zonale X RHCI)CPHYTA (red algae)

Aqarchinula brownea X Amph i roa bras i l i ana X Antithamnion elecans X Sotryociad G occidentalis X Bryothamnion seaforthii X X X

I i

4 l

4 i

1 TABLE F-1

, (cont i nued )

j MACROPHYTE SPECIES COLLECTED AT OFFSHCRE STAT 10t6

.i ST. LUCIE PLANT 1979 4

i March June September November

) Species Station: 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

!' RHODOPHYTA (cont inued )

Centroceras clavulatum X i Ceramium fastiagatum f. flaccida X X X X 1 Ceramium sp. X X X X l Champia parvula X X X j Champia sp. X i

Chondria littoralis X X

, Chondria sp. X X X i' y Cryptarachne sp. X X X s Dasya sp. X X X X X l

  • Gracliaria follifera X X X X X X G. mammiilaris X i U. verrucosa X X X
Gracilaria sp. X X X X X
Grinnellia americana X X j Halymenia aqardhli X X J H. vinaceae X X l Halymenia sp. X X X X X X Hypnea cervicornis X X H. musciformis X X X W. volubilis X l

IIypnea sp. X X X X I

Jania sp. X X Kallymenia fimminghii X X Polysiphonia denudata X P. subtiiissima X X Folysiphonis,sp. X X X

5 4

E r e 3 b

m e 2 v

o N

E 1

0 5 . X r 4 e

b m 3 e

E t p

e 2 X S

1 X S

N 0 XXXXXX O

E I T

A T

S 5 E -

4 H

S F

F e

n u

3 -

O J 2 XX _

T TN E 1 d

)AA

- eDP L

1 F uE 0 X RTE 9 EiCI7 LtEC9 B nLU1 A oLL O T cO (C .

T 5

SS 4 E

I h C c 3 E r P a S M 2 E

T 1 Y

H 0

T O R C

A n

M i o

t a

t E S s

m n u a E )

d a et pa e t a n s t o u a ua st g r i

} nn a a r c n ia r n e o n i tl e io l g i m

np n u om en c a

( co

( c t m a

a QrH an a h n Aa i t . p a

}

Ti r oa r o m Y a e m ia n e s Hn i r r f a c ie Pi e yf t r Oc lo p pi i u

[

c DS S S S T T W e O p H

) S P l

}

[

7w l

I

I I G. WATER QUALITY INTRODUCTION Envircrraental Technical Specification (Sectian 3.1.B.e.)

I Water Quality - Analysis will be made on water sam-ples taken at bottom, mid-depth and surface levels at the same time as the biotic samples are col-Pa rameters studied will be tempera ture, I l ect ed .

sal i nity , dissolved oxygen content and turbidity.

Water samples for selected nutrient analysis will be collected at the time of plankton sampling.

This study was designed to monitor selected phys ical arti chemical parameters of the waters of fshore of the St. Lucie Plant and within the intake and dischargo canals immediately adjacent to the plant. The pur-pose of monitoring these parameters was to 1) detennine if selected phy-sical and chemical parameters of the water discharged by the plant were significantly different from of fshore waters, 2) provide a more unified view of the of fshore habitat than would be obtained fran sampling only the biotic components of the area, and 3) enable examination of the relationships between the abiotic a nd biotic canponents of the aquatic anv i ronment.

PHYSICAL PARAMETERS Materials and Methods Physical oceanographic pa rameters neasured at designated offshore stations (0 through 5; Figure G-1) at surface, middle and bottom depths were water temperature, salinity, dissolved oxygen, turbidity and light G-1

I 1 E

transmittance (Table G-1). Water current direction and velocity, wind E direction and velocity, and general weather conditions were also deter-

{ mined at the offshore stations. Parameters measured within the intake and discharge canal s (Stations 11 and 12) were temperature, sal i nity, dissolved oxygen and turbidity. These were measured at surface and bot-tom depths in the intake canal and at U.c surface in the discharge canal .

Physical parameters were measured monthly for all stations, at the same ,

time that sampling for phytoplankton and chemical parameters (nutrients) l was being conducted.

l Water Temperature Water temperature was measured jn situ with a Yellow Springs Instru-ment Co. (YSI) Model 33 salinity-conductivity-temperature meter with an accuracy of +0.1 C. Data were recorded in degrees Celsius.

Salinity Salinity was measured in the field with a YSI Model 33 salinity-con-ductivity-temperature meter or in the laboratory with an American Optical refractometer (Model 10419 Goldberg; tempe rature com pensati ng ) . Both instruments were precalibrated using stock solutions containing known sea-salt concentrations. Data were recorded in parts per thousand.

I Dissolved oxygen Dissolved oxygen was measured in sit . s ti either a YSI Model 54 or 51B oxygen meter. These meters &G r slib rated by using readings l taken from oxygen saturated seawat.. Data mre recorded in miliigrams l per liter.

G-2 I i

i u

r L

r Turbidity L

Turbic ty was measured with a Hellige turbidimeter. Turbidity was

[ measured as a function of light attenuation over a fixed path length, 'as recommended by the EPA (1974). Conventional units of turbidity were I

L based upon FTU (Formazine Turbidity Units).

I  !

L Light Transmittance

[ Light transmittance (luminosity) was measured at the offshore sta-l tions with an Interocean Marine Illuminance Meter Model 510. Incident l P

6 solar radiation at the surface and at various depths was recorded as I luminosity in foot candles.

[ Other Physical Parameters Other physical parameters were measured when considered pertinent to r-L the ecological investigations. Water current velocity was measured at offshore stations with a General Oceanics Model 2C30 digital flowmeter icwered from the surface to a depth of 0.5 m. Surface currents were recorded in centimetars per second. Water current direction was deter-

[%

mined by comparing water position of the flowmeter to a magnetic marine compa ss. Wind direction and velocity were recorded according to Marine Forecast reports issued by the National Oceanographic and Atmospheric Administration (NOAA), U.S. Weather Bureau. Other weather conditions were expressed as clear, partly cloudy, rainy, or by similar descriptors.

Data on water currents and weather conditions, as well as those obtained on tidal cycles and lunar phases, are maintained in the laboratory and are not included in this report.

G-3 F -

E l

l Two-way analysis of variance (ANOVA) was used to detennine if water temperature, salinity, dissolved oxygen and turbidity were significantly l (a=0.05) different at the offshore stations and depths. When significant differences occurred. Duncan's Multiple Range Test was i, sed . detennine l l l which stations or depths differed from the others.

l Results and Discussion l Water Temperature l Water temperature is of prime importance in the marine environment l

because it acts 1) directly upon the physiological processes of the biota and 2) indirectly through its influence on solubility of gases and solids, water viscosity and density distribution. Throughout the oceans there are temperature barriers controlled by latitude, water depth and

(

general circulation, which segregate faunas into geographical regions (

(Sverdrup et al., 1942). l I

1 l

l Organisms within a pa rticular geographical region are general ly adapted to prevailing temperature conditions and may be adversely {

affected if temperatures shift too far or too rapidly. For example, l t mas. > mortalities of fishes have occurred in Florida during unusually {

l cold winters (Snelson and Bradley, 1978). Organisms can be similarly e

arfected by unusually warm conditions; this is pertinent to the present study, since the St. Lucie Plant discharges water offshore at tempera-tures generally higher than the receiving waters. ,

l l

G-4 l

Water temperatures measured during 1979 at the stations offshore of a the St. Lucie Plant ranged from 17.9 to 29.2 C, in the intake canal from 18.6 to 27.2 C, and in the discharge canal from 23.0 .o 37.5 C (Table

] G-2). Temperatures in the discharge canal were often nigh enough (>32 C) to a;, . cach or exceed what are considered to be upper tolerance limits r

5 for much of the local (indigenous) fauna. Nevertheless, these high tem-r peratures were not found at the offshore discharge (Station 1) because of L

rapid temperature dilution at the discharge diffuser.

r L

Analysis of variance indicated no significant (a=0.05) differences among the six offshore stations at either surface, middle or bottom 1

depths. As expected, variations between months were significant because l I

of seasonal temperature differences (Figure G-2). A general decrease in l temperature with depth was al so observed. This vertical temperature l stratification was especially noticeable in the summer months.

1 1 Sal i nity l

Sal i nity , or the salt content of the water, is the chief factor which makes marine life distinct from other faunal assemblages. Because of the salt, the ocean provides a medium which is 1) similar to salt

\

l concentrations in internal body fluids, and thus limits the necessity of )

sal t regulatory mechanisms, and 2). of high density, which is important i i to swimming forms and to those which depend entirely on the water to sup-port their weight. As is the case with temperature limits, animals in l

the sea are also bound by salinity limits. Animals which are sensitive 1 to relatively small salinity changes are particularly characteristic of 1

G-5 l

1

deep water and the open sea, where salinity ranges only from 34 to 36 ppt. Those which have a high degree of tolerance are characteristic of the coastal regions and estuaries, where wide salinity variations may occur.

The salinities measured at the St. Lucie Plant, both offshore and in the canals, were in a narrow range between 32.3 and 37.5 ppt (Table G-2).

This salinity range is more characteristic of the open sea than of a nearshore location. This is probably a result of the plant being located relatively far from sources of less saline waters such as Indian River inlets and extensive land areas where runoff from rainfall could occur.

No significa nt di f ferences in sal i nity were indicated at the various stations or depths.

I Oxygen Oxygen is indispensable for the maintenance of life processes in all organisms, with the notable exception of anaerobic bacteria. Oxygen is available for the normal metabolic activities of aquatic organisms only when it is in solution in a free state. Free oxygen is comparable to carbon dioxide (necessa ry for photosynthesis) in being one of the two most important dissolved gases in the sea. Oxygen is seldom a deter-II

! mi ni ng factor in the distribution and abunda nce of most ma ri ne life I

however, since it is generally well supplied throughout the oceans. The

I saturation level of dissolved oxygen in sea water is temperature depen-1 dent and, for conditions at St. Lucie, would range from 8.1 mg/l at 15 C l to 6.1 mg/l at 30 C.

1 I i 1

G-6 l

'I i

I I

Dissolved oxygen values ranged from 4.3 to 9.8 mg/l at the offshore stations (Table G-2), and differences between these stations and depths were not significant. Measurements in the intake canal ranged from 5.2 to 9.5 mg/1. Dissolved oxygen concentrations were about the same in the discharge canal (5.1 to 9.4 mg/l) as offshore, even though temperatures were higher, because of the added effect of water turbulence. Dissolved oxygen concentrations at all stations exceeded the minimum requirenents of the indigenous aquatic biota.

1 Turbidity Turbidity, which affects the clarity of seawater, is the presence of I suspended matter in the water column. It is often quite variable in shallow coastal waters, where wind or tidal currents can stir up bottom sediments and where runoff from the land can add additional ma terial s.

Turbidity may be a direct limiting factor to certain animals, such as filter feeders which strain food from the water. It is more often an I indirect limiting factor, however, because it restricts light penetration through the water column and, in this way, limits growth and reproduction of phytoplankton in the deeper waters where light would ot herwi se penetrate.

I Turbidity measurements at the six offshore stations ranged from 0.0 l to 14.2 FTU (Table G-2). The turbidity at Stations 0 and 1 was signif t-cantly higher than at Stations 2 through 5. Stations 0 and 1 are closer l

to shore than the other stations and , therefore, are subject to wave l

action that stir, up bottom sediments. These factors also explain why 4

,I h l G-7

I turbidity levels were significantly higher at the bottom than at mid-I depth or surface. Measurements in the intake canal ranged from 0.3 to 5.1 FTU. Turbidities were similar in the discharge canal (0.7 to 5.2 FTU).

I Light Light in the sea directly affects chemical reactions associated with the metabolism of organisms, and its greatest importance is as an energy source for the photosynthetic processes of plants upon which all animals depend for their nourishment. Considering this tremendous importance, it is noteworthy that light sufficient for photosynthesis extends from the I surface only to a depth of about 80 m.

E Light transmittance measured at the six offshore stations ranged from 0.8 to 1640 foot candles. This considerable variation reflected such light-influencing factors as turbidity in the water, wave action, cloud cover, time of day, season and depth. With the exception of the expected decreased light with increased depth, no consistent patterns of light transmittance were apparent at the offshore stations. It is doubtful if light reduction would ever exclude photosynthetic processes offshore of Hutchinson Island, since the waters are so shallow.

I 1

I 1l l

G-8

J CHEMICAL PARAMETERS Materials and Methods Chemical parameters (nutrients) measured during the study were ammo-

~

nia nitrogen, nitrate nitrogen, nitrite nitrogen, silicates, orthophos-phate and total organic carbon. These nutrients were measured from samples collected monthly at offshore Stations 0 through 5, intake canal Station 11 and discharge canal Station 12 (Figure G-1; Table G-1). Off-shore samples were taken from surface, middle and bottom depths; intake E canal samples from surface and bottom depths; and discharge canal samples L

from the surface. Subsurface samples were obtained either by pumping or F

L with a Niskin bottle; surface samples were obtained directly. Water sam- l ples to be analyzed for ammonia nitrogen, nitrate nitrogen, nitrite r nitrogen, reactive silica, and orthophosphate were passed through 0.45p membrane filters, placed in acid-washed polyethylene bottles, and frozen.

Water samples to be analyzed for total organic carbon were spiked with 5 ml of concentrated sul furic acid. All samples for chemical analysis were shipped to the laboratory on the day of collection.

l l

l l_

Methods of analysis used to measure these selected nutrients (Table l i

G-3) appear in either Strickland and Parsons (1972) or the American l 'ublic Health Association manual ( APHA , 1976 ) . Each chemical pa rameter was independently compared over the entire year by a two-way analysis of 1

variance. Offshore Stations 0 through 5 were statistically compared, in order to detect significant differences both between stations and for surface, middle, and bottom depths. Nutrient concentrations measured in l the intake and discharge canals (Stations 11 and 12) were statistically l

G-9 I

l _ - _ -------

I l

1 compared to control Station 0, to determine di f ferences between the canals and offshore. Statistical procedures used in the following dis-l cussion of chemical parameters were perfonned at the 0.05 level of significance.

l I

Results and Discussion Nutrients such as the forms of inorganic nitrogen, silicates, phos-phates and total organic carbon are essential for the growth of phyto-plankton popu ations (Yent sch , 1962). Since phytoplankton provides the basis for the ,ceanic food chain, upon which all higher fonns subsist either directly or indirectly, the inclusion of nutrients is particularly {

relevant to any marine biological study.

I The distribution of nutrients in the marine environment is a func-l I

tion of diffusion, currents and biological turnover. High concentrations of nutrients are spatially limited and usually associated with upwelling (Spencer, 1975), a river-ocean interface (Steffansson and Richardson, 1963), or ocean waste disposal outfalls (EPA,1971). Concentrations in nearshore localities are generally considered homogeneous, because of turbulence induced by winds or currents (Bowden,1970). However, runof f from the land can have substantial effects on nutrient concentration.

I l Nitrogen Nitrogen, an essential constituent of living matter, is found within organic compounds both in organi sms and in pa rticulate and dissolved organic material , it occurs within seawater as ammonia (NH 3 -N), nitrate G-10

I l

l l

(NO 3 -N) and nitrite (N0 2 -N) in various organic compounds and as free dissolved nitrogen gas. Only the first three nitrogen forms have been measured extensively in the environmental monitoring studies.

l These inorganic nitrogen coupounds show a wide range of con-l centration val ues in the sea and are generally present in low con-centrations. Additional variability is due to turnover rates, when these compounds are utilized by aquatic organisms. In coastal areas, rivers and water runoff from the land can have substantial influence on the concentrations of these nutrients.

Concentrations measured at the stations offshore of the St. Lucie Plant during 1979 ranged from (0.01 to 0.23 mg/l for ammonia nitrogen,

<0.001 to 0.113 mg/l for nitrate nitrogen, and <0.001 to 0.005 mg/l for nitrite nitrogen (Table G-4). These concentrations were generally simi-lar to those reported in earlier studies at St. Lucie (Table G-5). No I significant differences that could be related to plant operation were l

l found in ammonia and nitrate concentrations at the offshore stations. No significant di f ferences in ammonia and nitrate concentrations were detected between the intake canal, discharge canal and offshore control Station 0. Nitrite concentrations were significantly higher at Station 5 than at Stations 0, 1, and 2. This difference does not appear to be rel ated to St. Lucie Plant operations because the increased con-centrations are not near the discharge.

I

I I

Based on average concentrations at the six offshore stations over 1

the 1979 study year, ammonia values steadily diminished during the year from the peak val ues observed in January (Figure G-3). Nitrate and nitrite were highest during the fall and winter (Figures G-4 and G-b).

Neither the concentration values of these nitrogen compounds nor their variations by season were considered unusual .

1I Silicon Silicon has been studied extensively because it is utilized by diatoms (the predomi na nt phytopla nkters offshore of St. Luci e).

Silicate-silicon (S102 -Si) concentrations measured duri ng 1979 at the stations offshore of the St. Lucie Plant ranged from (0.02 to 0.41 mg/l (Table G-4). No significant di f ferences were found in silicon con-centrations when the offshore stations were compa red by depth, but Station 5 had higher values than offshon e Stations 0, 2, 3, and 4. The reason for this difference is not known, but plant operation was not the cause. Significantly higher silica concentration would have also been observed at Stations 1 through 4 if this difference was plant related.

Based on the time of year sampled, the highest silica concentrations were found during the fall (Figure G-6). Silicate values were usually higher in the intake (not signi fica ntly) and discharge (significantly) ca nal s than offshore. There was no significant difference in silica concentrations between intake and discharge canals. This could have been rela ted to high diatom concentrations (Section D. Phytoplankton, Tables D-2 through D-13), since silicates result from diatom shell dissolution, G-12

l l

B or to the higher turbulence in the canals which stirs up higher amounts of filtrable SiO2 from the bottom.

l Phosphorus Phosphorus is present in sea water almost solely in the fonn of various types of phosphate and is an essential constituent of livi ng orga nisms. In addition to the nitrogen and silicon compounds, phosphate-  !

I phosphorus has been considered one of the substances that may limit pro- j duction of plant life (Sverdrup et al . , 194 2 ). Orthophosphate (P04 -P) concentrations measured during 1979 at stations offshore of the St. Lucie Pla nt ranged from <0.01 to 0.02 mg/l (Table G-4). These val ues were slightly lower than those in canal stations where phosphate values ranged from <0.01 to 0.06. However, no significant statistical differences were found comparing Station 0 and canal phosphate values.

I Total Organic Carbon Total organic carbon (TOC) is the sum of the suspended organic car-bon and the dissolved organic carbon in the water. It thus includes car-bon in detritus and within living organisms, such as the phytoplankton, and that which is in the water and available for use by orga ni sms.

Because different water masses can vary considerably in their levels of organic production, TOC level s can al so show cons iderable va riation.

Stations offshore of the St. Lucie Pla nt duri ng 1979 nad TOC con-centrations of from 1 to 14 mg/l (Table G-4). flo significar e. di. erences were found in TOC concentrations between offshore station locnions, but surface values were higher than at bottom and mid-depth levels. TOC con-I G-13 I

l I

l B

\

l centrations offsnure were not very va riable over the year, al t hough spring values were generally higher than others (Figure G-7). Canal sta-l tions' TOC values were in the same general range of 1 to 5 mg/l as l offshore stations. No significant differences in TOC concentrations were detected between the intake canal, discharge canal and offshore control l Station 0.

Comparison of 1979 Chemistry Data to 1976-1978 Monitoring and 1972-1973 Baseline Data Ranges of nutrient concentrations recorded at offshore Stations 0 through 5 at the St. Lucie Plant are listed in Table G-5 as well as ranges of nutrient concentrations found during the baseline study (Worth a nd llol l i nger, 1977) at offshore Stations 1 through 5. The baseline study. which was perfonned from February 1972 to August 1973, monitored the same nutrients as the current study with the exception of TOC.

Canbi ned (depth and stations) nut ri ent val ues for the 1976-1979 moni-toring study and the 1972-1973 baseline study are sho n in Figures G-8 through G-12. Within the limits of the analyt ical methoas used ,

orthophosphate values did not vary appreciably during the 1976-1979 moni-toring study and are not discussed in this report.

Ammonia concentrations measured from 1976 through 1979 were generally in the same range but these values were higher than those in the baseline study (Table G-5). Mean ammonia val ues (Figure G-8) also l showed the same pattern of higher values during operational noni to ri .3 periods. Analyses of the data fran 1976 through 1979 (ABI,1977,1978, 1979) showed that there was r.o significant difference in ammonia val ues I between the control Station 0 and Stations 1 through 5.

)

G-14 l l

l B

l Presently, there is no explanation for the lower ammonia val ues reported in the baseline study, but comparisons between control and other l

stations show that operation of the St. Lucie Plant is not the cause of l

the difference.

t l Nitrate concentrations monitored during operational monitoring and baseline studies were generally in the same ranges except in 1976 when l nitrate values were much higher (Table G-5). Mean nitrate values showed the same characteristics during this period (Figure G-9). The excep-l tionally high values in 1976 were probably caused by preservation tech-niques that have since been shown to be inadequate.

I Nitrite concentrations and mean values were similar during each year of operational monitoring but these values were slightly lower than those measured during the baseline study (Table G-5; Figure G-10). Analysis of the 1976 through 1979 data (ABI, 1977,1978,1979) showed that there was no significant difference in nitrite values between the control Station 0 and Stations 1 through 5. This shows that St. Lucie Plant operation is not the cause of observed differences in nitrate concentrations between operational monitoring and baseline studies.

Silica concentrations and mean concentrations were similar in the baseline and operational studies except in 1976 when values were much higher (Table G-5; Figure G-11). The high values recorded in 1976 are  !

probably erroneous due to error in methodology. If the 1976 data are deleted, a seasonal pattern of high sr.ica concentrations in the fall can l

be seen.

G-15 l I

I

1 Orthophosphate concentrations were similar during operational moni-l toring with most of the values below the detection limit of 0.01 ppm l

PO4 -P (Table G-5). These values were considerably below the highest con-i centration reported during the baseline study (>1.40 mg/1; Table G-5).

1 Reasons for the high concentration during the baseline study are not j known, although it was apparently not related to runoff from the land during heavy rains (Worth and Hollinger,1977) which is the usual cause l l

of high phosphate concentrations.

1 Total organic carbon concentrations at the of fshore stations have j shown a downward trend from 1976 to 1979 (Table G-5). Mean TOC values observed duri ng this period exhibited the same pattern (Figure G-12).

Still, seasonal variations were obvious with spring TOC values generally higher than in other seasons. The reasons for the decline in offshore TOC concentrations are not apparent. It should be noted that phytoplank-ton and zooplankton standi ng crop did not decline during this period (Sections D. Phytoplankton and E. Zooplankton). TOC concentrations were not measured during the baseline study.

I l l

SUMMARY

No significant di f ferences in temperature, sal i nity , or dissolved oxygen were found among the six offshore sampling stations. Turbidity was significantly higher at the discharge and control stations. The i ncrease in turbidity at both near-shore stations suggests that vave action and possibly surface runoff are contributory factors.

I G-16

1 l

l Nutrients in the nearshore enviroment adjacent to the plant were dispersed homogeneously but varied with the time of year. No differences were found when stations near the plant were compared with the control station, and analysis of nutrient concentrations indicated that plant operation had no significant effects on the selected nutrients measured in this study. The yearly range in nutrient concentrations offshore of l the St. Lucie Plant was generally similar with data collected in previous studies.

These physical and chemical measurements provided a more unified view of the offshore habitat than would have been obtained by sampling only the biotic components, and enabled examination of the relationships between the abiotic and biotic components of the aquatic enviroment offshore of the St. Lucie Plant. Offshore plant effects related to these 3

fy selected physical and chemical parameters were apparently minimal .

I I

I I

I I G-17 I

l l

l I

l LITERATURE CITED I ABI. 1977. Ecological monitoring of selected parameters at the Florida l Power & Light Company, St. Lucie Plant, annual report, 1976. Pre-pared by Applied Biol ogy, Inc., for Florida Power & Light Co.,

Miami, Fla.

1978. Ecological monitoring of selected parameters at the Florida I

Power & Light Company, St. Lucie Plant, annual repo rt , 1977. Pre- l pared by Applied Biology, Inc., for Florida Power & Light Co., l Miami, Fla. 1 I . 1979. Florida Power & Light Company St. Lucie Plant annual non-radiological monitoring report 1978. Vol . II-III. Biotic Monitor-I ings. Prepared by Applied Biology, Inc., for Florida Power & Light Co. , Miami , Fla .

APHA. 1976. Standard methods for the examination of water and waste-I water,14th ed. Anerican Public Health Association, Washington, D.C.

874 pp. 1 i Bowden, K.F.

8:11-32.

1970. Turbulence II. Oceanogr. Ma r . Biol. Ann. Rev. I I EPA. 1971.

Grant Limitations and effects of waste disposal on an ocean shelf.

16070EFG. U.S. Environmental Protection Agency, Pollution Control Res. Ser.

Water i

{

. 1974. Proceedings of a seimnar on methodology for monitoring the marine environment. Environmental Protection Agency, Office of Monitoring Systems Program Element No.1HA326. Washington, D.C.

Snel son , F.F. , Jr. , and W.K. Bradley, Jr. 1978. Mortality of fishes due to cold on the east coast of Florida, January,1977. Fla. Scientist 41(1):1-12.

Spencer, C.P. 1975. Nutrient di stributions. Pages 245-300 _in J.P. l Riley and G. Ski rrow, eds. Chemical oceanography, Vol . 2. Academic I Press, New York, N.Y.

Stef fansson , 0. , and F. A. Richa rd son.

j 1963. Processes contributing to I the nutrient distributions of the Columbia River and Strait of Juan de Fuca. Limnol . and Ocean. 8(4):394-410.

Strickland , J.D. , and T.R. Parsons. 1972. A practical handbook of sea-I water analysis.

310 pp.

Fi sh. Res. Bd. Canada , Ottawa , Bulletin No. 167.

Sverdrup, H.U., M.W. Johnson, and R.H. Fleming. 1942. The oceans :

Their physics, chemistry, and general biology. Prentice-Hal l , Inc . ,

Englewood Cliffs, N.J. 1087 pp.

I G-18

P LITERATURE CITED (continued)

Worth, D.F. and M.L. Hol li nger. 1977. Nearshore marine ecology at Hutchinson Island, Florida: 1971-1974. III. Physical and Chemical

-nvi ronment. Fla. Mar. Res. Publ . 23. Florida Depa"tment of Natur-al resources, St. Petersburg, Fla.

Yentsch, C.S. 1962. Marine plankton M R. A. Lewin, ed. Physiology and biochemistry of al gae. Academic Press, New York, N.Y.

I I

I I

I I

I I

I I

I I

I G-19

I - .

~- YARDS KILOM ETE RS

,_ .j s F-- r - - , , ,

-j 2000 1000 0 1 2 3

' 'I# l SCALE 4 -

E

  • n

.... I E O

-N- ,

,ee pf*

s E

I

,$ O

) :li o ,Q @ o l _.

e i - ~ o.

y 7

g t

fa I -

2 e@

St.Lucie Plant. ' "h '

w ' i; . ..

t x , e

.I ,.

~

ll

_ , .i . .

l Figure G-1. Locations of water quality sampling stations,1979.

I "o

?]SR DlHIL

il' m

W m =.

o :D m e s

O  : N s n

o i

m " .O t

t a .

~ S9 7

e9 r1 o

0 E * .S h ,

st f n f a ol P

_ , e .A r oe fi c

) u CL O s * .J ( .

t sS e

r ,

g e Oa .J ud t e an ri eb pm mo m se :M t ec r

5

  • eh t g

- au e H T

O  : A wor nh P at E e EM M0 C DO eOa ;M e A F

R D T UI O T

e 2 SMB n G O e* O .F e m r u

g s i F

Oe .J 8 6 4 2 0 2 2 2 2 18 2

_ O':a?ewIW

?5 m

~M M M M WM M M

~

M ~ M M M M M M M M M O.15 m

e O.13 , o SURFACE f a MID -DEPTH O.11 o *

  • BOTT W O.IO e o

5

=

0.09

  • 1 i

)E 0.08 o

, o z

'o t 0.07 e E o 0.06
  • 4 T b

$ E O.05 -

4 0.04 e

0.03 o e a

O.02 e

0.01

<O.01 one one one one one J .F M A M J J h S O N D Figure G-3. Mean amonia values for offshore Stations 0 through 5 combined, St. Lucie Plant, 1979.

l l

E M E E E E S E M M E W W W W W W W O.0 2 o SURFACE e MID-DEPTH 0.01i e BOTTOM 0 o

0.010 ** os

O.009 -

2

=

\ O.008 E

e z GOO 7 m

O O.006 - "

o s -

h @ O.005 o*

b e z

QOO4 g 0.003 -

  • O 0.002 - " U ** "

0.0 01 *

< 0.001 oa. os.

l  ; . .  : , , .

J F M A M J J A S O N D Figure G-4. Mean nitrate values for offshore Stations 0 through 5 combined, St. Lucie Plant, 1979.

W W W W W W W W W W WR M M WU 1 I f

o SURFACE e MID-DEPTH e BOTTOM O.007 -

OOO6

=

f 0.005 -

D E

O.004 se o .

k z

  • 'm 0 O.003 w one b O.002 m.

E

  • o e ..

O.001 - .

os one on. os om ca. o om.

<Q001 on.

l

, l F M A M J J A S O N D O J Figure G-5. Mean nitrite values for offshore Stations 0 through 5 combined, St. Lucie Plant,1979.

l l

W W ' W ' ~ W W W W W W W W W V J l_ F W-i O.3 -

1 o SURFACE ,

e MID - DEPTH

  • BOTTOM O.2 - e

/

,/ o

- O.80 o o E

.O 5 0.09--

e 0.08 e N

o 9

$ $ O.07 -

9

_> QO6 -

en 0.05 - .. . .

0.04 -

o.

OD3 -

o o

< aO2 o , o., 00, o. o. o, on.

J F M A M J J A S O N D l

Figure G-6. Mean silica values for offshore Stations 0 through 5 combined, St. Lucie Plant,1979.

I

10 g o SURFA E '

e MID - DEPTH g e BOTTOM s 8-N e.

E 7--

5 x 6-- o 5

o a 5-s W e o e 4

  • e one 0 o o e J 3- " 0

< e

  • e o se ,

& a e a os e e

$ 2-- one se e i

l-J F M A M J J A S O N D Figure G-7. Mean total organic carbon values for offshore

{ Stations 0 through 5 combined, St. Lucie Plant, 1979.

m- ' 3 -' a m m m m m m m- 1 Ful F

.20 - -

\

.18 -- =

.l 6 --

i (

t 14 --

E>

E

'12 --

N os E

.t o --

z ,

i c> rn

' I O Z .oa -- 'i 1

~ ^

a ,

\

<1 , 8, p

.06 -- >-

, u

\

W q m-q 9

L3 D .o 2 --

M <O'-

, i, , , ,

kb1bbbAbbbbbdbkbbJkhkbbbkbbbbbhbkbbbdbbhbbhbkhbb bbbb)hbkb)bkbbhb 19 72 1973 1976 1977 19 78 1979 as Figure G-8. Mean ammonia values for 1972-1973 baseline study (Stations 1 through 5 combined) and 1976-1979 operational study (Stations 0 through 5 combined), St. Lucie Plant.

~~~' W W W W W W W W W1 C

0. 6 - 3 : .. . ,.- -e-,,,---,;r-,---  ;
t

+

,;d: ,

0. 5 - Li l3 l:5 9

0.4 - -

b

  • d, 0.3 -- -

q w .6 E

z 0.2 - '

l, ,

~

i ' '

ro .

9 O Z

0, i --

y *

<.t i /

L

/j.  ; /j w / e H 0.03 -  :

<t (r .)

t-j Z

O.02 -

3 f,._ -

0.01 - .

$$) < 00I hbAbbbAbbbb$hbkbb) bhb)$Abbbb3hb bbbAbbbb$hbAbbbAbbbb)[$Ab5$Abb$b 1972 1973 1976 1977 1978 1979 I-. a Figure G-9. Mean nitrate values for 1972-1973 baseline study (Stations hhh l through 5 combined) and 1976-1979 operational study t-CQ FF3 (Stations 0 through S combined), St. Lucie Plant.

22 #

(7_

5174_.q

E E E E E E E E E E E E E E 1

O.OO7 - m , - e -m erm .-.- , : e - .-

l .,

^

O006-- . ': -

3.

1E N :s g 0.005 ---

E

._ 'i 1 i f 0004--- .;j cn N '!

k O .i l

' e Z a 0.003 -

m - 3 l =-)

bJ 1

t- Ei

% 0002 -- ,;

[, $

2 3

._ a 1

O.0 01 -- "

, g-  ;,,,,,,,,,,;,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

j ,,,,,,,,,,, ,,,,,,,.

FMAMJJASONDJFMAMJJAMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASOND 1

?'; j- 1972 1973 1976 1977 1978 1979 j' -

I

Figure G-10. Mean nitrite values for 1972-1973 baseline study (Stations l 1 through 5 combined) and 1976-1979 operational study l '

(Stations 0 thro.gh 5 combined), St. Lucie Plant.

~

l hM l 'N3 cy==9 l

l

E E E E E E E E E E E E 9 -.. . -.,, - . . . .. .

6-- ,

3--'

fY o 0.9 '

~

08--

~

t (o

5 O.7 ---  %

E ^

oa O.6 --

9m

~

q 0.5 -- '

52 J

? D

'y.

8 04-- ' '  ! l 1

1 0.3 -- l 1

i U O2--

0 0 M s'  !

O. I - -

l 6 3 '

O.05 --

i M In i i i i i i i i [ In i i i ii1l iiiii iiiiiiiiii> iiie ii .. . iliii

! b" O

FMAMJJASONDJFMAMJJAMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASOND 1976

. ..ii i 1972 1973 1977 1978 1979 i M i D k

Figure G-ll. Mean silica values for 1972-1973 baseline study (Stations 1 through 5 combined) and 1976-1979 operational study (Stations 0 through 5 combined), St. Lucie Plant.

M M M M M M M 8 18 -- ,

17 --

16 --

^

15 -- f b <f

, s 14 --

N

, 13 --

E 12 --

Z l1--

O 10 --

'{ ,,

U 9__

52 8--

o z O

4

'S 7--

O'

O 6--

1

_J i 4 5--

F--

h 4--

i 3-- -

I 2--

I i__

.i>>i... .l . ..i... i. .... .i.  !... ..i ..

MAMJJ ASONDJ FM AMJ J ASONDJ FMAMJ J AS ONDJ FMAMJ J ASOND 1976 1977 1978 1979

Figure G-12. fiean total organic carbon values for offshore i

Stations 0 through 5 combined, St. Lucie Plant, 1976-1979.

l TABLE G-1 PHYSICAL / CHEMICAL PARAMETERS MEASURED FOR EACH STATI0f4 ST. LUCIE PLAf1T 1979 Station Offshore Offshore Parameter 0 1 2 3 4 5 11 12 intake discharge Water temperature (continuous) x x Water temperature (e situ) x x x x x x x x Sal i nity x x x x x x x x Dissolved oxygen x x x x x x x x Turbidity x x x x x x x x a Light transmittance x x x x x x a

k Current direction and velocity x x x x x x Wind directiop, velocity, x x cloud cover x x x x x x a

Tidal cycle, lunar phases x x x x x x x x Ammonia nitrogen x x x x x x x x flitrate nitrogen x x x x x x x x flitrite nitrogen x x x x x x x x Silicates x x x x x x x x Orthophosphate x x x x x x x x Total organic carbon x x x x x x x x Data records are mairtained in the laboratory and are not included in this report.

i L

r I

L TABLE G-2 p RANGES OF SELECTED PHYSICAL PARAMETERS RECORDED AT OFFSH0RE

  • L AND INSHORE (CANAL) STATIONS ST. LUCIE PLANT 1979 Dissol ved 7 Station and Temperature Sal i nity oxygen Turbidity L deptha (oC) (ppt) (mg/l) (FTU) l offshore

[ 0 S M

18.2-28.5 18.1-27.4 34.5-36.7 34.5-36.6 4.7-8.6 4.6-8.3 0.2- 2.8 0.0- 2.4 l

B 18.1-27.4 34.5-36.6 4.4-7.7 0.3-14.2 1 S 18.7-28.2 34.5-36.1 4.5-8.6 0.2- 4.3 M 18.7-27.2 34.5-36.7 4.4-8.4 0.2- 4.9 0 18.6-27.3 33.4-36.1 4.3-7.9 0.27.2 2 S 18.2-28.0 34.5-36.1 4.7-8.6 0.3- 2.0 M 18.3-27.8 34.5-36.6 4.7-8.8 0.2- 3.0

[ B 17.9-27.3 34.5-36.1 4.4-7.8 0.3- 3.2 3 S 18.8-28.8 34.5-36.1. 4.8-8.6 0.9- 1.5 r M 18.8-28.3 34.5-36.1 5.6-8.7 0.2- 2.0 L B 18.9-27.2 34.5-36.1 4.8-8.3 0.3- 2.5 4 5 18.4-29.2 34.-3-37.2 4.8-8.5 0.2- 2.0

[ M 18.5-27.4 34.5-36.1 4.8-8.2 0.3- 2.6 18.6-27.4 35.0-35.5 4.5-7.7 0.3- 2.7

{ 5 S M

18.1-28.3 18.2-27.3 34.5-36.1 34.5-36.1 4.6-9.1 4.6-9.4 0.3- 2.0 0.3- 2.7 8 18.2-27.5 35.0-36.1 4.3-9.8 0.5- 4.0 inshore 11 S 18.7-27.2 32.3-35.5 5.6-9.5 0.3- 2.6 M 18.6-27.0 33.4-35.5 5.2-7.5 0.9- 5.1 E

12 B 23.0-37.5 34.5-37.5 5.1-9.4 0.7- 5.2 E

as = Surface; M = Middle; B = Bottom.

E l E G-33

TABLE G-3 METHODS OF ANALYSIS USED T0 fEASURE SELECTED CHEMICAL PARAMETERS ST. LUCIE PLANT 1979 Parameter Method Reference Ammonia nitrogen (NH -N) Indophenol Strickland and Parsons, 3 1972, p. 87 Nitrate nitrogen (NO3-N) Cadmium reduction APHA, 1976, p. 423 Nitrite nitrogen (N0 -N) Diazotization APHA,1976, p. 434 2

5 Silicates (SiO2 -Si) Heteropoly blue APHA, 1976, p. 490 Orthophosphate (P04-P) Ascorbic acid APHA, 1976, p. 481 Total organic carbon (TOC) Comb ustion-i nf ra red APHA, 1976, p. 532 i

4 1

1 J

J i

1 I

I e

- O ON eOc ewe ceW eWM c-4 e c O C7 e s 6 e e I e a e e a e e e e H E NNN NNN NMN NMN NNN I C- -

e N

e-4 -4 M O. O. O.

COO e i e e-o e-4 e-4 C. O. O.

C00 e a e N e-4 e-4 C. O. O.

000 a e a e-4 e-4 r 4 C. 0 0 000 e e a e-4 e-4 ee 000 000 I I e QO e-o e-4 e-4 e-. MM e-4 e-o e-o e-4 e-4 c-4 c-e e-o e-4 OE l m MM

n. v O. O. Oe 000 vvv O. O. O.

000 vvv O. O. O.

70 0 vv O. O. O.

000 vvv O. O. O.

000 vvv HZ com I

ZO Ove Occ 0 4 Os NOM W- - e 4 e-4 e-4 e-* H Me c-e

. N. N. e-o

. N. N. c-4

. e-4

. N. . . . O. N. N.

E< s- COO C00 000 000 000 HH NN e e I e e e a a e e e a e I e DM O CD NNN NNN NNN N N CV NNN Z -

E OOO vm Mv e e e O. O. O. O. O. Oe O. O. O. O. O. O.

J C00 000 000 000 000 M a:t* vvv vvv vvv vvv vvv EZ W <C F- U MNM N 4 LA <t N 4 M4e eCe Wu

  • ^

OOO OOO C00 000 000 000 000 000 000 000

, NWH NMZ Z e-- e e e e e e e sN 000 000 000 000 000

<O< N C7 e e e e a e e e e e e a e e QIJ OE c-4 -* e-* -* e-o e-4 e-4 e-4 e-4 e-4 c-4 e-4 M e-4 e-4 (A Q. Zv OOO 000 000 000 000 I O W

CD

<C J

JZ

<C *-* W C)

U

- Q U C)

-N E Z D e-e W <C J O. O. O.

000 vvv O. O. O.

000 vvv O. O. O.

OOO vvv O. O. O.

000 vvv O. O. O.

OC0 vvv H i OW

  • 4 <t to OOO CO W to CO @ CO M C) e TH LA CO C) e CO C1 M Ln O MM@ M LO Ch COM e 000 WI Z- O. O. O. O. O. O. O. O. e-o. O. O. Oe HM sN 000 000 000 000 000 0W M C7 I e I e e a e I e a a e e e e WW OE M -e e-4 I

-e e-4 e-4 -* e-4 e-e e-4 e-4 e-4 e-o e-4 e-4

-.J O Zv OOO 000 000 000 000 W

D F- O. O. Oe C. Oe O. Ce O. O. O. Oe Oe O. O. Oe

<C 000 000 000 000 OOO A VVV VVV VVV VVV VVv OO I

W MC C1 M C1 4Me CO v N <t N CO 4 e-4 C) l W% ^ e-4 e-4 e-4 M e-4 e-4 e-4 N M l 00 Ze Oe N. e-4. . . e O. e-4

. e-4 e . . e e . l ZU eN 000 000 000 000 000

<C W MD I I e s I I 1 I I e e e s

%m T E e-4 e-4 e-4 e-4 e-4 .-4 -e e-a e-4 e-4 c-4 e-4 e-e e-4 e-4 l Z" O. O. O.

000 VVV O. O. O.

000 VVV O. O. O.

000 VVV O. O. O.

000 VVV O. O. O.

000 vvv i m C .c O +J

- C1 C CJ M E CC L.

O

.c M E CO Os E CC M E CD M E CD

+J I

GJ to m "O  %

4.J  %

M i OO e-4 N M C i

G-35

i r

M Y

l V

l W

l l

i n

- e ON e-4 in M Lo to e QO 8 8 8 8 8 8 p HE NNN N c-4 e-4 l

6 e-e M e 4 vc N 000 CO O i e o e e o e e r CL. - OOO OO O f fN 8 I I I 8 8 40 MMM MM M CE OOO OO O O. v e e e e o e

~3 O O OO O

~

vvv vv v m

MM HZ ZO c-e Ch m WO N Ww *e- v wH Me 4. N Ne M. v. e

% =C I - COO CO O H >-- NN a e e e e a DM OO NNN NN N Z *e- E OOO OO O 1

vm Mw e e e o e e J OOO OO O M< vvv vv v MM W4 r- U v Lo in Ln W W LJ v OOO OO O

^ 000 CO O RWH Z- e e o e e e NMZ I N 000 CC O

^ =C O sC NO 8 I I I e I T y Q. I a OE MMM e-4 e-o e-o a w M Q. Zv C"3 O O OO O O 2. l Z OOO OO O C =C w W Ch e e e e e e W ** U MN COO OO O

_.J 4J w O U Os vvv vv v CD CEMDM

<C O W % J HUI v0W e COM N CO W e EH NOM OO O E COM e OMM MM e-4 O WI Z- e . . e e e 4J HM i % OOO OO O 42 U LA. MO 8 0 t I I I O W La. OE e c-4 c-4 e-4 e-4 cc JC Zv OOO OO O W 31 M F-- O. O. O. O. O. O.

A <C 000 CO O CO La., vvv vv v OO .a W h Mo to CO N Wv N -

W% e O O e-e OO e-4 t OO Z- e e o e e e V ZU I N 000 CO O *-

cC W MO I e e I I I C E% ZE M e- 4 e-o M c-4 ee Zv COO OO O Il e e e e e e 000 CO O E t vvv vv v h

t u C 10 90  %=

IG M E CQ M CD M L

~ C .C 3 O 4J M ar= C1

+ +J GJ ll tG %

4J M N D M M M M IG E

G-36

. . _ _ . _ _ . _ _ _ _ _ . . +

m M M M WW Wm a e m>M MEM m M Mmm TABLE G-5 RANGES OF NUTRIENT CONCENTRATIONS (mg/ liter) RECORDED AT OFFSHORE STATIONS ST. LUCIE PLANT 1972-1979 Feb 1972-Au9 1973 Mar-Dec 1976 Jan-Dec 1977 Jan-Dec 1978 Jan-Dec 1979 Pa rameter (Worth and Hollinger,1977) (ABI, 1977) (ABI, 1978) (ABI, 1979) (ABI, present study)

NH3 -N <0.01 - 0.07 <0.01 - 0.34 <0.01 - 0.12 0.02 - 0.35 <0.01 - 0.23 NO3 -N <0.001 - 0.075 <0.10 - 0.58 <0.001 - 0.024 <0.001 - 0.211 <0.001 - 0.113 NO2 -N <0.001 - 0.022 <0.031 - 0.007 <0.001 - 0.002 <0.001 - 0.013 <0.001 - 0.005 SiO2 -Si 0.03 - 0.90 <0.02 - 13.70 <0.02 - 0.61 <0.02 - 0.99 <0.01 - 0.41 P04 -P <0.01 - >1.40 <0.01 - 0.14 <0.01 - 0.07 <0.01 - 0.02 <0.01 - 0.02 TOC not available 3 - 36 1 - 25 1 - 23 1 - 14 i

E l

I H. TURTLES I

l Environmental Technical Specification (Section 3.1.B.f.)

R l

Migratory Sea Turtl es -

The species, nunbe rs , a nd nesting characteristics of sea turtles that migrate in I

from the sea and nest along the east coast of Florida will be determined on the FPL shoreline property and l selected adjacent control areas in 1975 and 1977. A I study shall be conducted to detennine the ef fects of the discharge thermal plume on turtle nesting patterns and turtle hatchling migration. In addition, control studies on temperature stress, hatching, and rea ri ng I, factors will be conducted usi ng turtle eggs fran l displaced nests.

If1TRODUCTI0f1 Hutchinson I sl a nd , Fl orida , is an important nesti ng area for Atlantic loggerhead turtles (Caretta caretta; Gallagher et al . ,1972).

Each year, from about May to September, female loggerhead turtles energe from the water and crawl up on the beach at night to nest. Each female deposics approximately 120 eggs in a 60-cm-deep nest hole and the eggs hatch 50 to 70 days later. The hatchling turtles dig out of the sand-covered nest, usually at night, and crawl rapidly across the beach into the sea. The rest of their lives is spent in the sea except for the periodic nesting on the beach by nature females. Af ter nesting , adult turtles may disperse along migratory routes or remain at sea in the vi-cinity of the nesting area.

In addition to the loggerhead turtl es , Hutchinson Island supports limited nesting of Atlantic green turtles (Chelonia mydas) and leather-back turtles (Dermochelys coriacea; Gallagher et al . ,1972). All marine l

turtles in Florida are protected by the Federal government and by Florida l

H-1 Il

1 I

statutes. The Federal government classifies the leatherback turtle as an endangered species, the green turtle as endangered in Florida (threatened l

throughout the remainder of its range) and the loggerhead turtle as a l

threatened species. Maintaining the vitality of i.he Hutchinson Island rookery is of importance in view of the declining world populations of marine turtles caused by coastal development and fishing pressure (IUCN, 1969, 1971; NMFS, 1978).

i l

In 1970, FPL received a construction pennit for an 810-MW nuclear- '

powered electric generating station on Hutchinson Island. It has been of concern to FPL that the construction and subsequent operation of this plant would not adversely affect the turtle populations offshore of the i sl a nd . As a result of this conc ern , FPL, in conjunction with the Florida Department of Natural Resources, surveyed the nesting sea turtle populations of Hutchinson Island in 1971. Since that time FPL has sur-veyed turtle nesting activity every other year (1973, 1975, 1977, and 1979). This report documents the results of this ongoing study through 1979 and discusses the observed spatial and temporal trends in turtle nesting density and behavior. Because loggerheads dominate the nesting i i

populations , discussions are based on this species unless othenvise not ed .  !

I MATERIALS AND METHODS Nine 1.25-km-long segments of beach established as sample areas by Gallagher at al . (1972) have been used throughout the 5 years of study (Figure H-1). The total length of the sample areas was 11.25 km which I

H-2

comprises 31 percent of the 36.3-km long island. The nine sample areas were approximately equidistant from each other along the island and were 1 typical of nearby beach habitats. Accordi ngly, it was assumed that the

nine sampl e areas were representative of the entire isla nd and that turtle activity within these areas refl ected activity on the entire j i sla nd.

The number and distribution of turtle nestr on Hutchinson Island for he 1979 survey was determined by counting the nunber of loggerhead turtle nests in Areas 1 through 9. Nest counts were mde by observers patrolling the beach on small off-road motorcycles, Monday through Friday frca 15 May through 30 August. All nests located were numbered , dated ,

a nd ma rked with an identifyi ng stake to assist observers in keepi ng I accurate counts and to monitor nest predation by raccoons.

I In addition, as in previous study years, the entire beach from Area 1 south through Area 9 was routinely surveyed for evidence of green and leatherback turtle nests. Each nest location was recorded and these data I were transmitted to the Florida Department of Natural Resources as part of a cooperative study on these less frequently occurring species.

To collect data on 1979 turtle populations and nesting behavior, a tagging / recapture program was begun on 23 May and continued through 17 l 1

E August 1979. Tagging was conducted south of Area 4 in 1971,1973, and l l

1975, and from Area 2 through 7 in 1977 and 1979. This study was done at l

night when the female turtles crawl onto the beach to nest. About 19 km H -3 I

- , ,. n ,

I l

I l of beach (Areas 2 through 7, Figure H-2) were surveyed five to seven nights per week from approximately 9:00 PM until 4:00 AM. Each of three 1

observers patrolled a 6.4-km region in as short a time as half an hour.

l The site at which each turtle energed from the sea to nest wa s l recorded . Once a turtle had begun to deposit eggs or was seen returning l to the sea, an identification tag (Monel self-piercing, National Band and l Tag Co. , No. 4-1005, size No. 49) was affixed to the posterior proximal I margin of the right foreflipper. Straight-line measurements of carapace l

l length (from precentral lamina to the notch between postcentral laminae) and maximum width were nude using specially designed calipers. Turtl es were not weighed because of the difficulty in placing specimens, which l can weigh in excess of 100 kg, on scales. The presence of marine para-sites as well as any obvious physical ir. juries to the turtle were noted.

I Often a turtle will crawl up on the beach and begin nest excavation but will return to the sea without depositing eggs. Although such false )

)

crawls are natural phenomena, extraneous light, sound, movement or other I

l

{

factors may increase their likelihood. The presence of biologists in the j turtle rookery areas at night may have affected turtl e behavior by increasing the number of fal se crawls, but the effect would have been constant throughout the survey areas. In addition, care was taken not to disturb turtles prior to nesting to reduce the likelihood of a nesting crawl becoming a fal se crawl .

I I

H-4 I

I l

l The data derived from this ongoi ng study include daytime nest counts, raccoon predation of nests, and nighttime tag and recapture studies. The intensity and efficiency of the daytime nest count and pre-dation study remained relatively constant over the entire study period.

However, the nighttime tagging studies in 1971 arW 1973 were affected by variables such as study effort intensity, numbers of availabla observers,

'I a nd study efficiency (differing ncdes of transportation). Accordi ngly, comparisons between each of the study years should be interpreted with caution.

RESULTS Af1D DISCUSS 10ft I fiumher and Distribution of flests During the five nesting periods studied, a considerable year-to-year variation in nest density occurred in each study area (Figure H-3 ) .  ;

Regardless of year, however, the spatial distribution of turtle nests fonned a gradient with the lowest densities being found on the northern l I portion of the island. Li near regression analysis of variance of nest density with respect to location describes the gradient of nesting during each year. The linear regression equations were derived as.

l j Y = a + bx l I

l Year Equation Coefficient of Detennination, (r 2) l l

I 1971 1973 1975 Y= 70.03 + 7.39X Y = 110.24 + 2.53X Y= 67.20 + 3.29X 0.74 0.61 0.59 l

l j

1977 Y= 33.17 + 5.91X 0.74  !

1979 Y= 16.00 + 12.22X 0.96 I

l 1

l I

H-5 l I l

I where Y = the nunber of nests, a = the Y intercept, b = the slope of the regression line, X = miles from Ft. Pierce inlet.

The only study year in which the nesting density was fairly uniform l along the island (b=2.53) was 1973. This distribution was associated with beach accretion in Areas 1 through 3 during that year (Worth and Smith,1976). The nesting density gradient was most marked (b=12.22) in 1979 when early season storms eroded considerable portions of Areas 1 through 3. Historically, the northern portion of Hutchinson Island has been subject to heavy stonn erosion which has reduced the beach at times to a minimum of 3 m from the water to the primary dune. In addition, wave action frequently forms cliff-like ledges that prevent turtles from crawling to the upper beach which they prefer for nesting. The simi-larity between the gradients of beach stability and nest numbers indica-tes that relative beach stability can influence the nesting preferences of turtles. This behavioral trait may account for much of the annual I

variation in nesting between sample areas (Worth and Smith,1976).

I The influence of the St. Lucie Plant on nest distribution was eval-uated by comparing the observed nesting density in each sample area with the number of nests predicted by the regression li ne cal cula tions.

Except for 1975, when construction activity on the beach was greatest, nest density at Area 4 (plant site) deviated from the expected value by less than 14 percent. The 1975 decline in nesting at Area 4 was attri-buted to the construction of the St. Lucie Plant offshore intake and l

discharge systems. During construction, nesting dropped to 50 percent of the expected number. At this time, construction crews were operating on I

H-6

l l

l l

l a 24-hour schedule using drag lines and other heavy equipment and strong lights. Additionally, the cofferdam used to construct the discharge pipe l

extended 350 m perpendicula r from shore and presented a ba rrier to turtles swimming close in along the shore to select a nesting site. It is reasonable to presume that this barrier made Area 4 less desirable as a nesting beach. In 1977 and 1979, however, nesting activity in Area 4 returned to the general pattern observed during the other study years.

I The total number of nests produced in all sample areat has remained fairly stable during the 5 study years except for 1977 when the number of nests produced was only 66 percent of the average of the other years (Table H-1). However, the simila rity of the sl ope val ues in the regression equations shows that nest distribution in the nine areas in 1977 was similar to that observed in 1971 and 1975. The similarity of the distribution and number of nests between years indicates that construction activities and the operation of the St. Lucie Plant has not affected long-term nest production on the island.

I The total number of nests produced on Hutchinson Island was calcu-l ated by extrapolati ng from the total number of nests in all sampl e a rea s. Thus, in 1979, the 1449 nests observed along the 11.25 km of the 36.3-km beach extrapolate to 4676 nests on all of Hutchinson Island.

I In past years, various methods have been used to estimate the total nest production on the island (Table H-1). Gallagher et al. (1972) used a conservative weighted estimate to arrive at the nuaber of nests on the H-7 l

I

\

southernmost 31 km of beach in 1971. The northern 5 km of beach were not i ncl uded in the 1971 survey because a beach dredge and fill project pre-vented access. A similar but less conservative method was applied to 1973 nesting data by Worth and Smith (1976). To allow comparison of total nesting trends, data from past surveys were recalculated using the method appl ied to 1979 data. Total nesti ng estimates for the entire island are presented in Table H-1. An estimate of over 4000 nests on the island appears to be fairly consistent since 1971.

Nesting Behavior Nesting Success As di sc ussed previously, turtles my crawl up on the beach but return to the sea without digging a nest or depositing egos. The causes lI of these false crawls are not clearly understood, but their frequency may reflect the over-all suitabili ty of a beach for nasting. Beach suit-ability depends on characteristics such as sand texture, beach stability, primary dune vegetation, beach slope, lighting, and human activity. The frequency of false crawls, therefore, can provide an index of the sen-sitivity of nesting turtles to changes in environmental variables which could be affected by island development and power plant operation. The l

index derived from false crawl data used in this report has been tenned

" nesting success" and is defined as:

1 I nesting success = number of nests x 100 nunter of nests + number of false crawls I

, a-e

R t

l Nesting success varied with both area and month during each survey year (false crawls were not recorded in 1971), but no consistent pattern in these variations was noted (Figures H-4 and H-5). Over-all nesting success declined each year fran a maximum of 70 in 1973 to a minimum of 52 in 1979. These observed decreases were not significant (Veuskal-Wallis test, P 10.05; Zar,1974) except for the large decline observed between 1973 a nd 1975. This decrease may have refl ected i nc reased sampling ef fort in 1975, so this data should be interpreted with caution. Nesting success data show that power plant operation had little ef fect on turtle nesting success. Two observations support this contention: 1) the largest decline in nesting success occurred fran 1973 to 1975, prior to pla nt opera t ion, and 2) the spatial va riation in nesti ng success wa s not rel a ted to power pla nt proximity. If pla nt operation was a factor, the lowest nesting success would be expected in Area 4. However, in both 1977 and 1979, Area 4 had a mean nesting suc-cess (53 in 1977; 51 in 1979) equal to or only slightly below the over-all success.

I In 1975, construction activities appa rentl y reduced the nesting suitability of portions of the beach near the plant as indicated by low nesting success in Area 4 (51 percent, the minimum for the year) relative to over-all nesting success (58 percent). Low nesting success may have contributed to the low ratio of observed to expected nest nunbers for the

,I area, but beach avoidance was apparently the primary cause of the reduc-tion in Area 4 nesting. The ef fects of power plant construction were l ocal ized and short tem because in subsequent years nest nunbers and nesting success in Area 4 were near expected values.

H-9

The most important factor affecting nesting success appears to be short-term changes in beach characteristics resulting from natural causes such as stonn-induced beach erosion. For example, a tropical depression which occurred offshore of Hutchinson Island during 11-17 June 1979 pro-duced abnormally high tides and rough seas and caused beach flooding and erosion pa rtic ula rly in Areas 1, 2, and 5 (D. Worth, personal communication). During the stonn, and for several weeks after, nesting success was very low in the affected areas.

Long-tenn effects on nesti ng success may be caused by inc reased beachfront development and increased nighttime pedenrian traffic on the beach. A slight long-term decline in nesting success has been observed between 1975 and 1979 (1971 and 1973 data cannot be compared with con-I fidence with these latter years ). Presently, it is not possible to determine whether this decline reflects commercial devel opment of the l beach or a reduction in the quality of the nesting beach as a result of extensive beach erosion.

I The slight long-term decline in nesting success has not yet had an l

observable effect on the total number of nests produced. However, it l should be noted that a decline in nesting success implies an increase in effort expended per nest. There may be a threshold of effort per nest t

I beyond which the total number of nests produced will decline. At this point, turtle populations would be adversely affected.

I I

H-10

I I

Timing of Nesting Nesting in the nine sample areas usually occurred from May through August. However, in 1975, nests were first observed in April , and in 1971 and 1973 nests were observed into September (Figure H-6). The onset of nesting occurred in the spring when ocean temperatures increased to 23 or 24 C. Nesting activity inc reased with ocean temperature to a maximum in June (except in 1973 when the rmximum occurred in July), and then decli ned so that nesting activity wa s very low or absent in September.

I To detemine whether pla nt operation ms affecting the timing of nesting, the nesting patterns for preoperational years (1971,1973,1975) a nd for operational years (1977,1979) were detemined fran pooled data (Figure H-7) and statistically compared (Kolmogorov-Smirnov goodness of fit, p10.05; Zar, 1974). This analysis indicated that there has been no significant alteration of the temporal distribution of nesting during the years of plant operation.

Renesting Behavior Green and loggerhead turtles frequently produce more than one nest per surmier. The di stance between successive nests is temed the renesting distance while the time between deposition of successive nests is the renesting interval . For green turtles, the renesting distance can be quite small (Carr, 1972), a behavior temed site-specific nest i ng.

Although loggerhead turtle nesting behavior is not as site-specific as green turtles (Caldwell et al . ,1959; Worth and Smith,1976), changes in I

H-11 (I

1 I

E l the mean renesting distance could indicate an alteration of nesting behavior. Consequently, the renesti ng di stance of loggerheads at 1

Hutchinson Island was examined by analyzing information from the turtle tagging program.

The renestirg distance for undisturbed femal e loggerhead turtles ranged from less than 0.1 km to 15.9 km. Average renesting distances were calculated from pooled observations for each study year and sta-tistically compa red (Student-Newma n-Keul s Test, p10.05; Zar, 1974).

There were no significant differences between mean renesting distances before plant operation (1975, 4.6 km) and during plant operation (1977 4.6 km; 1979, 5.0 km; Table H-2). Power plant environmental effects such as heated water discharge are most pronounced in the immediate vicinity I of the pla nt (Area 4 ). For this reason, the 1979 distribution of renestir;; distances for turtles observed nesting at least once in Area 4 was compared to that of turtles that were never observed nesting in Area 4 (Figure H-8). This analysis indicates no significant difference be-tween the two groups (Kolmogorov-Smir ov goodness of fit, p10.05; Za r ,

1974).

I Th< renesting interval of loggerhead turtles is canerally 14 days, but 'due geographical and individ ual variations occur (Cal dwel l , 1962; Hughes et al . , 1967 ). The renesting interval cay also vary according to environmental condi tions. For example, as water temperature increases during the summer, the renesting interval may decrease (Hughes and Brent, 1972). The apparent sensitivity of the renesting interval to environnen-  !

H-12 I

l

tal temperature makes it an important component of the nesting behavior in evaluations of plant thermal effects. As with renesting distance, information on the renesting interval was provided by the turtle tagging program.

l The renesting interval prior to plant operation (1975) ranged from 11 to 19 days with a mean of 13.9 days. During plant operation (1977 and 1979), the renesting interval ra nged from 11 to 20 days with means of 13.8 and 14.1 days in 1977 and 1979, respectively. Analysis of variance l

i ndicates no significant differences between the neans for 1975, 1977, l and 1979 (Table H-3).

8 Operation of the St. Lucie Plant has not significantly affected the renesting distance or renesti ng i nterval of l oggerhead turtles on Hutchinson Island.

1 Population Estimates Population estimates for nesting femal e loggerhead turtles were derived from the calculated total nest production divided by the esti-mated number of nests produced by each femal e. The accuracy of this l methodology depends on the degree to which the nine sample areas are representative of the entire island and the accuracy of the estimate of the mean number of nests produced per female per season.

I i

The number of nests produced by indi vid ual females during the 5 l study years has ranged from one to nine nests. Several authors have l I

H-13 1 1

- suggested that four to five nests per female might generally be expected

- (Husnes,1974; Kaufman,1975; Worth and Smith, 1976). This figure is supported by the 14 day internesti ng period observed for recaptured t urtl es. However, on Hutchinson Island, approximately 55 percent of the population observed on the beach are seen only once during a season and u the rema.ider of the turtles generally are recaptured less than four times. A comparison of the numbers of nests produced by tagged turtles duri ng 1975, 1977 and 1979 study years (Table H-4) suggests that one turtle visits the Hutchinson Island tagging beach for every two nests produced. The implied nesting frequency of two per season can be recon-

~

l ciled with the 14 day internesti ng period only by assumi ng that the balance of the nests laid by tagged turtles are deposited outside the l

study area.

I Estimates of turtle populations in previus years can be obtained by l dividing the calculated total number of nests by the estimated number of nests per female (2). Using this method, the number of nesting female turtles in 1979 is calculated to be 2338. Likewise, it was estimated that 2291 females nested on Hutchinson Island in 1971, 2036 in 1973, 2404 in 1975, and 1505 in 1977. Previous estimates of nesting femal es calculated on the basis of higher renesting frequencies tended to underestimate the turtle population. Upper and lower limits of popula-tion estimates were calculated for all study years usi ng the corresponding upper and lower limits for total nest estimates each year (Figure H-9). These values indicate that the populations are fairly stable with approximately 2000 females nesting on Hutchinson Island each year.

H-14 i I l l

)

Annual fluctuations in nesting marine turtle populations are common.

These fl uctuations have been attributed to envi romental factors affecting food supply and reproductive potential, variation in individual reproductive cycles, and variation in population fecundity due to changes in age structure (Hughes,1974; Carr et al .,1978).

b Predation l

The raccoon , Procyon lotor, is a signi fica nt predator of turtl e l

l eggs. Raccoons typically forage al ong the beach at right digging up nests and consuming the eggs. During the years of study, nest predation va ried widely from year to year. Presumbly preda tion rates refl ect fluctuations in the size of the raccoon population.

Raccoon predation in the nine sample areas destroyed 28 percent of the nests in 1971, 43.6 percent in 1973 (study maximum), and 20.8 percent lg in 1975 (Figure H-10). Preda tion rose to 38.5 percent in 1977, but

,3 declined to 8.8 percent (study minimum) in 1979. In 1979, the percentage of total nests destroyed by predation was significantly lower than in all previous survey years. This low predation rate coincided with high nest densi ty. However, no significant correlation (F10.05) was found between nest abundance and predation within the study areas. When the numbers of nests destroyed in each area are compared over the 5 s tudy yea rs , a general drsline in nest predation is seen.

I I

H-15 s.

1 l

l A decline in turtle nest predation probably reflects a reduction in raccoon populations. While no data are available to document reduced l

raccoon popula tions , the decline in predation in the relatively l

undisturbed Areas 1 through 3 indicates some factor, besides disturbance due to beach development, is working to reduce raccoon activity.

Green and Leatherback Turtles The green and leatherback turtles nest on Hutchinson Island but less commonly than the loggerhead. Since 1971, the number of green turtle nests has ranged between 5 and 37 per year while leatherback nests were between 1 and 7. Leatherback turtle nesting generally begins in late April or early May whilt green turtle nesting begins in late June. Si nce 1971, there has been a grad ual shift in the preferred location for nesting on the island (Figure H-11). In the study years between 1971 and j 1975, 81.3 percent of the nests of these species were deposited between Areas 6 and 9. In the combined study years 1977 and 1979, the percentage {

of nests south of Area 6 declined to 24.1 percent of the nests on the i sl a nd. Since this trend has not been evidenced by loggerhead turtles, it appears that the green and leatherback turtles may be more sensitive to some environmental change that has occurred on the south end of the i sla nd.

The number of green turtl e nests on the isla nd appears to have decli ned slightly during the years of study; however, in 1978 (a non-survey year), 62 green turtle nests were located on the island by the Florida Depa rtment of Natural Resources (Ross Witham; personal communica tion).

H -16

l L

E The size of the endangered Florida population of green turtles has been estimated to be less than 100 adults (NMFS,1978) with 8 to 13 fe-I males nesting on Hutchinson Island (Worth and Smith,1976). Using an l approximation of two nests per female, the 1978 population was 31 females l while the survey years between 1971-1979 produced estimated populations l

of between 3 and 19 females.

l

SUMMARY

During the five nesting periods studied, there was a considerable variation in nest density in each study area. Nest density fonned a gra-dient along the length of the beach. The lowest densities were observed on the northern portion of the island because of the instability of the nesting beach. Operation of the St. Lucie Plant has not significantly 1

affected over-all nesting density of loggerhead turtles.

In 1975, duri ng construction of the St. Lucie Pla nt intake and discharge systems, nest density and nesting success was reduced in Area 4 (plant site). However, in 1977 and 1979, there was a return to the {

j general pattern previously observed. (

l l

The total number of nests produced on Hutchinson Island was calcu- I lated to be 4676 during 1979. An estimate of over 4000 nests produced on I

the island by approximately 2000 females appears to be fairly consistent  !

since 1971.

H-17

I .

No significant alteration of temporal distribution of nesti ng ,

I renesting behavior, or nesting success has occurred during the years of power plant operation.

Nest predation by the raccoon, Procyon lotor, varied widely. No i

significant correlation was found between nest abundance and predation within study areas. A general decline in nest predation was observed which may refl ect a decli ne in the raccoon popula tion on Hutchinson I sla nd.

I I  ;

i

)

l I

1 I

I 1

I H-18 l

- - - - - . . - . - - - - - . .-----l

~

- LITERATURE CITED Cal dwel l , D.K. 1962. Comments on the nesting behavior of Atlantic loggerhead sea turtles, based primarily on tagging returns. Qua rt.

- J. Fla. Acad. Sci. 25(4):287-302.

Cal dwel l , D.K., F.H. Berry, A. Carr, and R. A. Ragotzkie. 1959. The Atlantic loggerhead sea turtle, Caretta caretta caretta (L.), in

~

America. Bull. Fla. State Mus. Biol. Sci. 4(10):293-348.

Carr, A. 1972. Site fixity on the Carribbean green turtle. Ecolo;;  :

- 425-429.

Carr, A. , M.C. Carr, A.B. Mel a n. 1978. Ecology and migration of sea

~

turtles, 7. The West Carribbean green turtle colony. Bull . Am.

Mus. flat. History. Vol .162 :1. pp 1-4 6.

Gallagher, R.M., M.C. Hollinger, R. M. Ingle, and C.R. Futch. 1972.

~ Marine turtle nesting on Hutchinson Island, Florida in 1971. Spec.

Sci. Report tio. 37, FDNR Mar. Res. Pub.11 pp.

Hughes , G.R. 1974. The sea turtle of South-east Africa. II. The biology of the Tongaland loggerhead turtle, Carretta caretta L.,

with comments on the leatherback turtle, Dermochelys coriacea L. ,

and the green turtle, Chelonia mydas L. in the study region. Rep.

No. 36, Oceanogr. Res. Inst. , Durban, South Africa. Pages 1-96.

Hughes, G.R . , A.J. Bass, and M.T. Mentis. 1967. Further studies on marine turtles in Tongaland, I. The Lammergeyer 7:5-54.

Hughes , G.R. , and B. Brent. 1972. The marine turtles of Tongaland, 7.

The Lammergeyer 17:40-62.

Marine turtles - proceedings of working meetings, marine I IUCri. 1969.

turtle specialists. IUCN Publ . News Ser. , Suppl . Pap. 20. 100 pp.

. 1971. Marine turtles - proceedings of 2nd working meeting, marine turtle specialists. IUCN Publ . News Ser. Suppl . Pap. 31. 109 pp.

Kaufman, R. 1975. Studies on the loggerhead sea turtle Caretta caretta caretta in Columbia, South America. Herpetologica 31(3):323325.

NMFS. 1978. Final EIS listing and protect ing the green sea turtle (Chelonia mydas), loggerhead sea turtle (Caretta caretta) and the Pacific Ridley sea turtle (Lepidochelys olivacea) under the Endangered Species Act of 1973. National Marine Fisheries Service, Dept. of Commerce, Washington, D.C.

Worth, D.F. , and J.B. Smith. 1976. Marine turtle nesting on Hutchinson Island, Florida, in 1973. Fla. Dept. Nat. Res. Mar. Res. Lab. No.

18:1-17.

H-19

L E

[ LITERATURE CITED (continued)

Zar, J.H. 1974. Biostatistical analysis. Prentice-Hall , Inc. Englewood Cliffs, N.J. 620 pp.

PERSONAL COMMJNICATION Ross Witham, Florida Department of Natural Resources.

. D.F. Worth, Applied Biology, Inc., Jensen Beach, Florida.

I I

I I 1 I

I  !

I I

I I

I I

I H-20

I I

w

\k,e; v J

q s c\ -'O \ j

\84 (\ oar 4 macc mer l

,c r

v b*

i '){ c l .L  ! -

\ .

a' g W t 4.A p

~Y

~ N

\ "d- o l .

} . .-

s p g

j

~,..,,

13 .g a

.s y

2 j

f m, \\\ I

'I \ 0, ST. LUCIE (W

i l

6\ PLANT l l

.k ^h. k

  • Y*\.. i. 1\,

s

.e T.i. .e

., 9 i ,

I Q\ 'o. 'k

__ l Q ' ** '.,

n.

g

+

/ @

ST LUCIE ComTY sr tucsg .

- - -- - ;gs sy- - - - -- - ---

. s_ .

~ r 'x 4' ,

O cf.7 SJ,,yr'E f

g Figure H-l. Locations of turtle nesting areas surveyed' 1979, Hutchinson Island.

E

{

I 001 3!)(FYo A_,

I  !

L i 1

- ( v l

g :. , .

--- (

A (O .T g

\'\ , h E} FORT PIERCE WLET

\ V

^

l *( \

'N - l

!  : \..Of ' n'a. o  !

o l \ "}.' O I

i h

, T x e v

< .y.

^ "

d, . s i iu

( s ST. LUCIE ff ~ \ PLANT

' M. *i""

  • i,z. s

, A C

<.e.

l I <

\\

x\,

cqL A

\ saa n c., ',-

l

. s s l } .

_ g \. .,

\

S


y ,g_(? ,'j___.____ tuc$

( ,

,,.X ,

J n 1 e

.d. ..

y{e; w r T,i 0 5

. '7 s}\e,i  :

e

"* C AYa N

{ Figure H-2. Locations of turtle tagging areas surveyed, I

I 1977 and 1979, Hutchinson Island.

H-22

] 6 .o

(---

T ~M 1 F1 ID M ~ ~

1 300 " gggg _

74 73 75 77 79 Z

l m _

Z

' Z -

Us zoo-- Z z y _- _~

i C Z Z Z O u. _ _

Z Z T Z Z i

Z

~

Z E Z Z l $ ~

~

Z Z Z Z Z l $ 100 - _

Z Z Z Z Z

@ Z Z Z Z _

l Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z j Z Z Z Z Z Z Z Z l 2 3 4 5 6 7 8 9 I SAMPLE AREA i

i Figure H-3. Number of loggerhead turtle nests in each sample area for each study year, 1971,1973,1975,1977, and 1979, Hutchinson Island.

I

m W W W m W m m M m W W W W m e m l

i I

90 . .

  • - - - -
  • 1973
  • ---* 1975

(

i *----* 1977 80-- *----* 1979 A

/

/\ \

g /

/ ,h ~ ,' A  %

/ g / \

/ \ / \

70-- j

,A \/ \ ,h'

- g j 'y \s /

e g -

/

- s \

m m

d'

\ b/

td o 60-- 's 4 o \

\ p

- m \

i [ g - _

AN k '

/

!

  • z ,

i H 50-- 's ~ ~ ,/

, m

$ '*~~,~,,,,/

1 4

40 I C~

l 6. .

8IE i -- ' '

! (M i 2 3 4 5 6 7 8 9 t, m SAMPLE AREA i.w::p Figure H-4. Loggerhead turtle nesting success by sample area

] 2Q and year, 1973,1975,1977, and 1979, Hutchinson gg Island.

(f~- ,a

l I

i 1

t I

I 90 - -

l *---* 1973

  • ---* 1975
  • - - - -
  • 1977 l +--- - + 1979 l 80 --

l I

, s,, ,# g m /  %

gt 70 -- 's, s ,'

N

- s ,

i m N ,v ,',-

  • m 1

w g, O

4 O \

3 60-- N
r 'N g g

~

N,'

r '*,

m 's, w s, j z 50 --

's,'

s-.-,

j i ej 40 --

4 M

60 '

W2) t

, l l l l l l l

@ APR MAY JUN JUL AUG SEP OCT I

uba0 MONTH I@cD Figure H-5. Loggerhead turtle nesting success by month and j

623 j p

[1;- f.,' year, 1973, 1975, 1977, and 1979, Hutchinson Island.

rY137

F='

i 4

R rm u r 1_ U1 r t _ r - t ___r u1 r- o t__f y 50 -- .... ... ig7 i e- - --* 1973

,As o.--e 1975 I

\, ,A *----e l977 l

40-- ' ^c A...,\, ~ 1979

, r v) l ,. N 7%

& f \ *\

W l '/

,/ s

\ .

) \\ 1. s y 30-- l l \ \\

l H l :l \\ \.\

., \

$ / //

o is s i

.\

s '\

  • ll

= 0 l' ll \'\\

~ 20-- a y \ \\

  • d s 1. s is\\is 6

z 4[#

i LLS { \ .

M \i\

g lo -- f' \

h .,N

\\.',\

r .s

% 't S.!,s C3  %

GD  :  :  :  :  : Y------%

M MAR APR MAY JUN JUL AUG SEP OCT g MONTH PE

- Figure H-6. Comparison of the percentage of the annual total 5)) number of loggerhead turtle nests produc, d each month, c' 1971, 1973, 1975, 1977, and 1979, Hutchitson Island.

$2A

$3 r=

e

~~~ M M' W W W W W W W W W M M M M-E M ~ 'M so --

o--- -* 1971-1975 40-- *--* 1977-1979 Q

(/) /

j ~.%,

W / ,

/ \

30-- ,!

l ,

l T R 8

j g 20--

N z < s i U s' 's 1

m / \

N 10 -- ,/

'\

' ~,

N N,

,  :  :  :  : 7  :

MAR APR MAY JUN JUL AUG SEP OCT MONTH

Figure H-7. Comparison of the percentage of the total number of
locgerhead turtle nests observed during each month
for pooled preoperational years (1971,1973,1975) and operational years (1977, 1979), Hutchinson Island.

i

20 - -

TURTLES OBSERVED IN

$ SAMPLE AREA 4 (N=59) 5: 15 --

I d to _.

5 5 6 8

5--

--I l .

I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 DISTANCE (KM) 20-- TURTLES OBSERVED IN m SAMPLE AREAS OTHER '

6 THAN AREA 4 (N=256)

I M 8

15 -- --

E a g -

10 --

U 5

5--

I I R i l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 DISTANCE (KM)

E Figure H-8. Comparison of the percentage distribution of the distance between recapture sites of loggerhead turtles observed in sample area 4 and turtles i

observed in sample areas other than 4,1979,

! Hutchinson Island.

H-28 l -_. _-. -- .

62-H I

1 I

! NUMBER OF FEMALE LOGGERHEAD TURTLES 4

s o

s 8

s a

s

' 3 8 I I a y a.

C 7

G I

e O

h N~ ~

l C l am -

@O m NO rt

@O s.

  • O 3 7@

T 3* r+

C (D G r+ W CL O G J B d rt C 3 C 3 M 1 tr $..

q a y x )

HW m K. a 3 et

@ (D 7 3 m O. C+ W

. .m 3

C 'O

  • (D j

w .

wa M~~ . l 1 N3 Ut

--a r+

b "O

W3 N

w -h..

  • b w

wa NO Q

  • %~ *

, a.

3 H

- r+

@ (D N7 l t S$

i

  • D

~-

3 O I Q. -%

g  :

g-  :  :

l 1

I

OC-H NUMBER OF NESTS U

d  !

s 8

0l T. Il l I I I I I I l132 %

y NMNMWWMMMMN 73 % l m - l 14o %

  • g 8888888288888883 75 %

l 5 ps% 3 l ez ll l 1 1 1 11 11132 %

l *5 NMMMWWMMNN 54 % l

%K m1 125 %

22 88888883 33 %

g* E5% E g

, a- F we 1111 l l l l l l l 1 l l l l l l l l l 162 %

$i Wl NWWMWhWMMMMMN%\N 79 % g'

? 165 % 3 G 8. 7o %

6%

?

= c. IllIIIIIIIll19%

0* NMMMMN 44 %

  • ss*1 i@ N 47 %

13 %

l P g f;; y 7% g 2" > ll 1 1 1 1 1 1 l l l l l 1 11 l l l l135 % 5 S El N%%%%%Wh\N 14 %

  • A > a l lii% g 33 %

2%

xn lllIIIIIIlll2%

M 9% 2 l

En m o%  :

$, E .o % 3 ag 0%

0 S$ 3% g E S- . 2%

g[ w i% j a, 17 %

  • 6%

e l i l l I 1111 l l l l l l l 1 l l l29 %

$ K\MMWMMMWN 4i% l q mi 19 % i i /. l

@ ll 1 I I I I I I I I I I I I I I I I I I I I I I ll44 %

2 NMNMMMMMMM\N 50 % l R e1 42 %

i giggggign===5====se3

  • g

i

! 19 71 A T L A N T I C 0 N= 22 0 I ,I FORT PIERCE INLET hh h

(

qmQ (

2l =l 5 .l

! ~ ~~ 'pgFk p ,ghn b3jlRii %,

1973 N=26 0 2E FORT PIERCE INLET

'N h ,

l 1975 N= 37 0 i .. 15 FORT PIERCE INLET C J (C'ef 7 F '= -I mym

'F{" :

L -

- i j]hl --

1 LJ) p ,

1977 N= 5 0

! 2E

__ FORT PIERCE INLET l

[, /

fx:4i

__ i , 5

[

jpr= t x-o 44,_y, , Q, JU41-34 t S!ar . 9r-

,- - o e c.

t 1979 N=15 0 FORT PIERCE INLET M CE L

]p *

  • lD lD 3'I Of f Al 1JL XL

C E A N O I GREEN TURTLE NEST l l LEATHERBACK TURTLE NEST ,

l l SAMPLE AREA i,

?

E 2H @ :1 E l

?~,1 -.6_l21Q 'Q,ff Nj_ I.h mIM \

s r/ Lucie

,) \

I 5 00I $ I l a e p x t"qyy

?; _

ll 7 I Il

. l . 6_ l sT Lucie

'A'

' 'hl. kJ -]t /f

o E

7 1._  ! ="

I S - si Lucit T j[ TQ 6l NQjy INtET f ,

V b

] I II E 6 37 - - I si Lucie "f' (

yn ~'HIS INtET figure H-ll, j 5

~

Location and number of green ,

and leatherback turtle nests 0 3 observed during each study KM yea r, 1971, 1973, 1975, 1977, and 1979, Hutchinson Island.

o _ .

I l TABLE H-1 COMPARISON OF NUMBERS OF ll)RTLE NESTS ON HUTCHINSON ISLAND l ESTIMATEDBYVARj0VSAUTHORS WITH 95% CONFIDENCE INTERVALS OF THE PRESENT ESTIMATES ST. LUCIE PLANT 1979 l

Estimates for entire island l

Nests counted Gallagher et al., Worth and Smith, ABI, Year in 9 areas 1972 1976 1978 Present E 1971 1420 3350 6067 4582 236 5

1973 1262 5359 4072 578

1975 1490 4808 245 b

1977 930 280l 3001 116 1979 1449 4676 152 I aThe confidence intervals (P10.05) were calculated from the residual variance of the mean. The residual variance is obtained by subtracting the regression variance from the total variance.

b Erroneously reported as 2108. ,

I I

,I l 1  :

I l l

I l

I H-32

TABLE H-2 RENESTING DISTANCE DATA RANGES AND MEANS FOR LOGGERHEAD TURTLEi NESTING ON HUTCHINS0h ISLAND ST. LUCIE PLANT 1971, 1c/3, 1975, 1977, AND 1979 Year Pa rameter 19,'1 1973 1975 1977 1979 Range, km 0.8-10.4 0.3-15.9 0.1-15.4 0.1-14.8 0.1-15.9 Mean, km -a _a 4.6 4.6 5.0 a _a Standard deviation -

2.8267 2.9932 3.1267 l Y l

g Number 17 30 1013 746 961 avalues not calculated because of extremely small sample size.

j t

E TABLE H-3 ANALYSIS OF VARIANCE COMPARING OBSERVED LOGGERHEAD RENESTING

[-_ INTERVALS (days) BETWEEN SUCCESSIVE RENESTING ATTEMPTS ST. LUCIE PLANT 1975, 1977, AND 1979 Source of Degrees of Sum of Mean

( variation freedom squares square F value a

Between years 2 10.7510 5.3755 2.2455 Within years 774 1852.8976 2.3939 Total 776 1863.6486 aNot significant at P 10.05.

[

[

[

[

w W

E H-34 msn m

l TABLE H-4 CALCULATED MULTIPLE NESTING FREQUENCY DERIVED FROM ,

TAG / RECAPTURE DATA l ST. LUCIE PLANT .

1975,1977, and 1979 l Number of Number of known nests Ratio number a

Year tagged turtles by tagged turtles nests / individual j I 1975 946 1706 1.8 i 1977 579 1091 1.9 f 1979 739 1322 1.8 l

a197.. and 1979 recapture data were insufficient to contrib>::e to this ana;ysis.

I l

I I

l I

1 I

l I

1 I

H-35

- , , . - - - - - - - - . , , , - , - . , - - ,---.---,,,,,------------.--.vn

- . - , . ,