ML17191A301: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(10 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML17191A301
| number = ML17191A301
| issue date = 07/10/2017
| issue date = 07/10/2017
| title = Dresden Nuclear Power Station, Units 2 and 3, Final Safety Analysis Report
| title = Final Safety Analysis Report
| author name =  
| author name =  
| author affiliation = Commonwealth Edison Co
| author affiliation = Commonwealth Edison Co
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:f FSAR INDEX . -A -Section I *. -ACAD/CAM 6.8.3.3 Acceleratioa Response Spectrum Earthquake 12. 1. l :3 Access Control Access to the Site Access, Station Accident Analysis for 7 x 7 Fuel Accident Analysis for G2 8 x 8 Fuel 14.2.2.5 Accident Analysis for ENC 9 x 9 Fuel 14.2.2.6 Accident Analysis, Radwaste 9.2.5 Accident, Control Rod Drop Procedural 14. 2 .1
{{#Wiki_filter:f FSAR INDEX
              . ~.
                                                - A-    Section I *. - .~ ~->.
ACAD/CAM                                              6.8.3.3 Acceleratioa Response Spectrum Earthquake              12. 1. l :3 Access Control Access to the Site Access, Station Accident Analysis for 7 x 7 Fuel Accident Analysis for G2 8 x 8 Fuel                    14.2.2.5 Accident Analysis for ENC 9 x 9 Fuel                  14.2.2.6 Accident Analysis, Radwaste                            9.2.5 Accident, Control Rod Drop Procedural                  14. 2 .1. 3 Acoustic Monitors                                      4.5.2 Acronyms and Initialisms                              1.1.2.1 Action taken due to Reportable                        13.6.2.2 Action taken due to Safety                    Exceeded 13.6.2.1 Administrative Controls                                13.6 Administrative                                        12 .1. 4. 5 Admission Valves                                      6.2.3.4 Airborne Effects                  the Refueling Pool  14.2.2.6 Air Cleanup                                            Appendix 8 (8-28)
Air                              Ground Level          Appendix A (2.1.1)
System                        10.11
: 11. 2. 2 Ejector Off-Gas Monitoring                        7.6.2.3 Monitoring, Reactor Bldg                          7. 6. 2. 5 Airlock Doors                                          5.3.2.2 i
1043v
 
'                                    FSAR INDEX
                                        - A-        Section Analysis and Acceptance Criteria Inst & Control 7.2.6.3 Analysis of Off-Site Electric Power Supply      8.2.1.4 Analysis Supporting ECCS Clad Melt Criteria    6.2.7.6 Analytical Methods                              3.3.3 Analytical Stability Model                      7.2.2.3 ANL Test Data on Clad Flailure                  6.2.7:25-28 Approval of Changes                            13.6 APRM                                            7.4 .2 Archifect - Engineer


==Subject:==
==Subject:==
FSAR Update Dresden Station has reviewed the FSAR for rev1s1ons, corrections, *and material information additions. The changes contained herein will become Revision 4 {June, 1986) to the FSAR . The changes are in compliance with the 10 CFR 50.71{e) requirement to identify changes and which references the requirements defined in 10 CFR 50.59. The 50.59 report refers to changes in the facility as described in the FSAR, changes in procedures described in' the FSAR, and tests or experiments not described in the {original) FSAR. All changes which have been implemented were previously reviewed to the 50.59 criteria and in our opinion do not constitute any additional unreviewed safety questions. Dated 0013f OOOlf n Manager Dresden Nuclear Power Station
FSAR Update Dresden Station has reviewed the FSAR for rev1s1ons, corrections,
* *
                                          *and material information additions. The changes contained herein will become Revision 4 {June, 1986) to the FSAR .
* APR APRM ASME BTP BWR CE Co CFR CSE CST CVTR DBE DER DG ECCS EHC EI&C FSAR FTOL FWCI GDC GE gpm HEPB hp HPCI IE IEEE IP SAR IREP IRK LCO LER LOCA LPCI LPRM LWR MCC MCPR MDC MOV mph MSIV MSL MWe MWt NRC ORNL PMF PMP POL 0013f OOOlf TABLE 1. 1. 2: 2 ACRONYMS AND INITIALISMS Automatic Pressure Relief average power range monitor American Society of Mechanical Engineers Branch Technical Position boiling-water reactor Commonwealth Edison Company Code of Federal Regulations Containment Systems Experiments condensate storage tank Carolina Virginia Tube Reactor design-basis event design electrical rating diesel generator emergency core cooling system electrohydraulic control electrical instrumentation and control Final Safety Analysis Report full-term operating license feedwater coolant injection General Design Criterion(a) General Electric Company gallons per minute energy pipe break horsepower high-pressure coolant *injection Off ice of Inspection and Enforcement of Electrical and Electronics Engineers Integrated Plant Safety Assessment Report Integrated Reliability Evaluation Program intermediate range monitor limiting condition for operation licensee event report loss-of-coolant accident low-pressure coolant injection low power range monitor light-water reactor motor control center. minimum critical power ratio maximum dependable capacity motor-operated valve miles per hour main steam isolation valve
The changes are in compliance with the 10 CFR 50.71{e) requirement to identify changes and which references the requirements defined in 10 CFR 50.59. The 50.59 report refers to changes in the facility as described in the FSAR, changes in procedures described in' the FSAR, and tests or experiments not described in the {original) FSAR.
* mean sea level megawatt-electric megawatt-thermal U.S. Nuclear Regulatory Commission Oak Ridge National Laboratory probable maximum flood probable maximum precipitation provisional.operating license Rev. 3 June 1985
All changes which have been implemented were previously reviewed to the 50.59 criteria and in our opinion do not constitute any additional unreviewed safety questions.
* *
Dated n Manager Dresden Nuclear Power Station 0013f OOOlf
* PRA psi psig PWR RBCCW RCPB RPS RSCS RWCU SALP SAR SBGTS SEP SER -SOAD SRP STS **sws TMI UHS USI 0013f OOOlf TABLE 1.1.2:2 .(Cont'd) probabilistic risk assessment pounds per square inch pounds per square inch gage pressurized-water reactor reactor building closed cooling water reactor coolant pressure boundary reactor protection system reactor shutdown cooling system reactor water cleanup Systematic Appraisal of Licensee Performance safety analysis report standby gas treatment system Systematic Evaluation Program safety evaluation report Station Operational Analysis Department Standard Review Plan Standard Technical Specification service water system Three Mile Island ultimate heat sink unresolved safety issue Rev. 3 June 1985 1.2.2-4 The core is assembled in modules of four fuel assemblies set in the interstices of a crucifonn control rod. This modular core fonn, common to all General Electric boiling water reactors, permits substantial increase in thennal power with a small increase in core diameter and at the same time preserves the reactivity control characteristics demonstrated in the *operation of Dresden Unit 1 and other General Electric power reactors. The reactor pressure vessel contains the reactor core and structure, steam separators and dryers, jet pumps, control rod guide tubes, and water, emergency core cooling system (ECCS), and standby liquid control spargers and other components as shown in Figure 3.6.2:1. The inside diameter of the vessel is approximately 21 feet and the inside height between heads is approximately 68 feet. The main connections to the reactor vessel include the steam lines, jet pump lines, feedwater lines, and control rod drive thimbles. Other connections are provided for the isolation condenser system, standby liquid control system, ECCS, and The fuel for the reactor core consists of uranium dioxide pellets contained in sealed Zircaloy-2 tubes. These fuel rods are assembled into square arrays in individual blies. The original assemblies were of a 7x7 configuration; later designs introduced in subsequent fuel cycles were of an 8x8 configuration. The fuel enrichment is varied from rod to rod within an assembly to achieve desired neutron flux characteristics. Some water rods may be included, and gadolinium is used in some rods as a burnable poison, in the fonn of Gd203-U02* Each fuel assembly is surrounded by a Zircaloy-4 flow channel. Water serves as both the moderator and coolant for the core. The control rods consist of assemblies of 3/16-inch diameter, sealed, stainless steel tubes filled with compacted boron carbide powder and held in a crucifonn array by a stainless steel sheath of 1/16 inch wall thickness fitted with castings at each end. The design of such control rods is almost identical with those which have been used successfully in Unit 1 for more than six years except that control rods of current design are longer *due to the use of longer fuel assemblies. The control rods are of the bottom entry type and are moved vertically within the core by individual, hydraulically operated, locking piston type control rod drives . The control rod drive hydraulic system is designed to allow control rod withdrawal or insertion at a limited rate, one rod at a time , for power level control and flux shaping during reactor operation. Stored energy available fran gas charged accumulators and from reactor pressure provides hydraulic power for rapid simultaneous insertion of all control rods for reactor shutdown. Each drive has its own separate control and scram devices. The systems for reactivity control are of the same design as those used in the Oyster Creek and Nine Mile Point Plants, including two features which provide improved plant safeguards.
 
1.2.3-1 1.2 .3 SUMMARY OF TECHNICAL DATA Design features and data appropriate to achieve a reactor thermal output of 2527MW are summarized in Table 1.2.3:1. TABLE 1.2.3:1 PRINCIPAL FEATURES OF PLANT DESIGN Site Location Size of Site Site and Plant Ownership Plant Net Electrical Output Gross Electrical Output Net Heat Rate Feedwater Temperature Thermal and Hydraulic Design Design Thennal Output Reactor Pressure (dome) Steam Fl ow Rate Recirculation Flow Rate Fraction of Power Appear-ing as Heat Flux Power Density Heat Transfer Surface Area/ Assembly Average Heat Flux Maximum Heat Flux Maximum U02 Temperature Average Volumetric Fuel Temp. Core Subcool i ng Core Average Void Fraction, Active Coolant Core Average Exit Quality Minimum Critical Power Ratio Safety Limit GE 7x7 41.08 i ter 86.52 ft 2 131,200 Btu/(hr-ft2) 405,000 Btu/(hr-ft ) 3470°F 1050°F 22.4 Btu/lb 0.299 0.101 1.06 Dresden Site, County of Grundy, State of Illinois 953 Acres plus 1275 acre cooling lake Commonwealth Edison Company 809 MW 850 mi 10,648 Btu/kw-hr 340.1 F 2527
Rev. 3 June 1985 TABLE 1. 1. 2: 2
* 1020 psia 6 9.765 x610 lb/hr 98 x 10 lb/hr 0.965 GE 8x8 41.09 97.6 117 ,100 354,400 1.06 GE 8x8R/P8x8R 40.74 94.9 120,400 362,000 1.07 1.2.3-2 TABLE 1.2.3:1 (Contd.) PRINCIPAL FEATURES OF PLANT DESIGN Nuclear Design Initial Fuel Enrichment: ( 7x7 assembly) Typical Reload Fuel Enrichment: (8DRB265H 8x8 assembly) Water/U02 Volume Ratio Core Average Neutron Flux Thenna 1 1 Mev GE 7x7 2.41 Burnup target (average assembly) Power Coefficient for xenon stability Heat flux peaking factors: Relative Assembly Axial Local Overpower Gross . Reactivity Control: Cold shutdown keff all rods inserted Cold shutdown k ff rod of maximum worth stuck fO out Enrichment No. of rods Wt % U-235 per assembly 2.44 30 1.69 16 1.20 3 3.8 14 3.0 27 2.4 2 2.0 14 1. 7 4 1.3 1 water rods 2 GE GE 8x8 8x8R 2.60 2.76 13 2 3.50 x 1013n/cm2-sec 3.67 x 10 n/cm -sec 28 ,ooo MvJD/ton More negative than -.Ol(dK/K)/(dP/P) Design Operating 1.47 1.47 1.57 1.57 1.30 1. 30 1.20 3.60 3.00 0.96 0.96 0.99 0.99 TABLE 1.2.3:1 (Contd.) PRINCIPAL FEATURES OF PLANT DESIGN Standby liquid control shutdown, dkeff Minimum Critical Power Ratio: Linear Heat Generation Rate (kw/ft): 7x7 fuel GE 8x8 fuel ENC fuel Approximate Coefficients: Moderator Coefficient [ ( d k/ k ) I ° F J Moderator Void Coefficient [ ( dk/k) /% Void] Fuel Temp. (Doppler) Coefficient [(dk/k)/°F] Excursion Parameters: Design 0.16 1.07 17.5 13.4 14.9 Hot Cold (no voids) -8.9xl0-5 -17.0xl0-5 -3 less than_3 -1.0xlO -1.2xl0-5 1. 2. 3-3 Operating 1.39 17.5 13.4 14.9 Operating -1.4x10-3 -1.2x10-5 1* Prompt Neutron Lifetime .B Effective Delayed Neutron Fraction 48.9 microseconds .0058 Core Equivalent Core Dia. Circumscribed Core Diameter Core Lattice Pitch Number of Fue 1 ,l\ssemb 1 i es Fuel Assembly Fuel Rod Array Fue 1 Rod Pitch Weight of U02 per Fuel Assembly Channel Material Total Assbly plus Channel Weight Fuel Rods Water Rods 182. 2 inches 189.7 inches 12 inches (4 assemblies/unit cell) GE 7x7 7x7 724 0.738 in. 492.5 lbs. Zircaloy-4 678.9 lbs. 49 0 GE 8x8 8x8 0.640 458.6 Zircaloy-4 650 63 1 GE 8x8R/Px8x8R 8x8R/P8x8R 0.640 441.6 Zircaloy-4 650 62 2 ENC 8x8 P8x8 0.641 434.4 Zircaloy-4 580 63 1 Fuel Rod, Cold Fuel Pellet Dia. Cladding Thickness Cladding O.D. Active Fuel Length Lgth of Gas Plenum Fuel Material Cladding Material Fi 11 Gas Fill Gas Pressure TABLE 1.2.3:1 (Contd.) PRINCIPAL FEATURES OF PLANT DESIGN GE GE GE 7x7 8x8 8x8R/Px8x8R 0.488 in. 0.416 0.410 0.032 in. 0.034 0.034 0.563 in. 0.493 0.483 144 in. 144 145.24 11.22 in. 11.24 9.48 U02 U02 U02 Zircaloy-2 Zircaloy-2 Zircaloy-2 He He He 1 atm 1 atm 1 atm/3 atm Movable Control Rods Number Shape Pitch Stroke \4 i dth 177 Cruciform 12.0 in. 144 in. 9.75 in. 143 in. 1. 2 .3-4 ENC 8x8 0.405 0.035 0.484 145.24 10.06 U02 Zircaloy-2 He 3 atm Control Length Control Material Number of Cntrl Mtrl c granules in stainless steel tubes and sheath Tubes per Rod Tube Di mens i ans 0.188 in. o.d. x 0.025 in. wall Temporary Control Curtains Number Shape Width Thickness Control Length Control Material Curtain Locations Burnable Neutron Absorber Control Material
* APR APRM ASME ACRONYMS AND INITIALISMS Automatic Pressure Relief average power range monitor American Society of Mechanical Engineers BTP    Branch Technical Position BWR    boiling-water reactor CE Co  Commonwealth Edison Company CFR    Code of Federal Regulations CSE    Containment Systems Experiments CST    condensate storage tank CVTR  Carolina Virginia Tube Reactor DBE    design-basis event DER    design electrical rating DG    diesel generator ECCS  emergency core cooling system EHC    electrohydraulic control EI&C  electrical instrumentation and control FSAR  Final Safety Analysis Report FTOL  full-term operating license FWCI  feedwater coolant injection GDC    General Design Criterion(a)
* Location Concentration Reactor Vessel Inside Diameter Overall Length Inside Design Pressure 340 Flat sheet 9.20 inches 0.0625 inches 141.25 inches Stainless steel containing 5400 ppm natural boron Between fuel assemblies in water gaps without control rods. Gd203 Mixed with U02 in several fuel rods per fuel assbly Location and reload dependent. 20 ft.-11 in. 68 ft.-7-5/8in. 1250 psig 
GE    General Electric Company gpm    gallons per minute
***-.. ***e I*.'. *-'. ' . , ... 2.1 . 2.2 2;2;1 2 .. 2 .1.1 2:. 2.1.2 2.2.1.4' 2.2.1.5 2.2.1.6 2. 2. 2 . 2.2.2.1 2:2.
* HEPB hp HPCI IE IEEE IP SAR
        ~igh energy pipe break horsepower high-pressure coolant *injection Off ice of Inspection and Enforcement Instit~te of Electrical and Electronics Engineers Integrated Plant Safety Assessment Report IREP  Integrated Reliability Evaluation Program IRK    intermediate range monitor LCO    limiting condition for operation LER    licensee event report LOCA  loss-of-coolant accident LPCI  low-pressure coolant injection LPRM  low power range monitor LWR    light-water reactor MCC    motor control center.
MCPR  minimum critical power ratio MDC    maximum dependable capacity MOV    motor-operated valve mph    miles per hour MSIV  main steam isolation valve
* MSL    mean sea level MWe    megawatt-electric MWt    megawatt-thermal NRC    U.S. Nuclear Regulatory Commission ORNL  Oak Ridge National Laboratory PMF    probable maximum flood PMP    probable maximum precipitation POL    provisional.operating license 0013f OOOlf
 
Rev. 3 June 1985 TABLE 1.1.2:2 .(Cont'd)
* PRA psi psig PWR probabilistic risk assessment pounds per square inch pounds per square inch gage pressurized-water reactor RBCCW reactor building closed cooling water RCPB  reactor coolant pressure boundary RPS  reactor protection system RSCS  reactor shutdown cooling system RWCU  reactor water cleanup SALP  Systematic Appraisal of Licensee Performance SAR  safety analysis report SBGTS standby gas treatment system SEP  Systematic Evaluation Program SER - safety evaluation report SOAD  Station Operational Analysis Department SRP  Standard Review Plan STS  Standard Technical Specification
  **sws  service water system TMI  Three Mile Island UHS  ultimate heat sink USI  unresolved safety issue
* 0013f OOOlf
 
1.2.2-4 The core is assembled in modules of four fuel assemblies set in the interstices of a crucifonn control rod. This modular core fonn, common to all General Electric boiling water reactors, permits substantial increase in thennal power with a small increase in core diameter and at the same time preserves the reactivity control characteristics demonstrated in the
*operation of Dresden Unit 1 and other General Electric power reactors.
The reactor pressure vessel contains the reactor core and structure, steam separators and dryers, jet pumps, control rod guide tubes, and feed-water, emergency core cooling system (ECCS), and standby liquid control spargers and other components as shown in Figure 3.6.2:1. The inside diameter of the vessel is approximately 21 feet and the inside height between heads is approximately 68 feet. The main connections to the reactor vessel include the steam lines, jet pump lines, feedwater lines, and control rod drive thimbles. Other connections are provided for the isolation condenser system, standby liquid control system, ECCS, and in~trumentation syste~s.
The fuel for the reactor core consists of uranium dioxide pellets contained in sealed Zircaloy-2 tubes.
These fuel rods are assembled into square arrays in individual assem-blies. The original assemblies were of a 7x7 configuration; later designs introduced in subsequent fuel cycles were of an 8x8 configuration. The fuel enrichment is varied from rod to rod within an assembly to achieve desired neutron flux characteristics. Some water rods may be included, and gadolinium is used in some rods as a burnable poison, in the fonn of Gd 2 03 -U0 2
* Each fuel assembly is surrounded by a Zircaloy-4 flow channel.
Water serves as both the moderator and coolant for the core.
The control rods consist of assemblies of 3/16-inch diameter, sealed, stainless steel tubes filled with compacted boron carbide powder and held in a crucifonn array by a stainless steel sheath of 1/16 inch wall thickness fitted with castings at each end. The design of such control rods is almost identical with those which have been used successfully in Unit 1 for more than six years except that control rods of current design are longer *due to the use of longer fuel assemblies. The control rods are of the bottom entry type and are moved vertically within the core by individual, hydraulically operated, locking piston type control rod drives .
The control rod drive hydraulic system is designed to allow control rod withdrawal or insertion at a limited rate, one rod at a time , for power level control and flux shaping during reactor operation. Stored energy available fran gas charged accumulators and from reactor pressure provides hydraulic power for rapid simultaneous insertion of all control rods for reactor shutdown. Each drive has its own separate control and scram devices.
The systems for reactivity control are of the same design as those used in the Oyster Creek and Nine Mile Point Plants, including two features which provide improved plant safeguards.
 
1.2.3-1 1.2 .3    


==2.2 INTRODUCTION==
==SUMMARY==
TABLE OF CONTENTS SECTION 2 --SITE DESCRIPTION Of SITE AND ADJACENT *AREAS SITE Site Size and Location , : . Site Ownership .
OF TECHNICAL DATA Design features and data appropriate to achieve a reactor thermal output of 2527MW are summarized in Table 1.2.3:1.
* Location of the Units on the.Site Activities on. the Site Access to the Site
TABLE  1.2.3:1 PRINCIPAL FEATURES OF PLANT DESIGN Site Location                                              Dresden Site, County of Grundy, State of Illinois Size of Site                                          953 Acres plus 1275 acre cooling lake Site and Plant Ownership                              Commonwealth Edison Company Plant Net Electrical Output                                809 MW Gross Electrical Output                              850 mi Net Heat Rate                                        10,648 Btu/kw-hr Feedwater Temperature                                340.1 F Thermal and Hydraulic Design Design Thennal Output                                2527 M~*Jt
* Exel us ion Area . POPULATION AND LAND USAGE IN ADJACENT AREAS Popu 1 at ion Data Land Use . . * '2.2.*2.J POTENTIAL. HAZARn°S DUE TO)IEARBY FACilITIES .* 2 2 '2 3 1 :INTRODUCTION: ** .. * * .. . * .. * .* ' *. "* , .. ' . .. 2*:i:*2 .. : f 2 * .. HAZARDS FROM* EXPLOSIONS. *. .* ..
* Reactor Pressure (dome)                              1020 psia 6 Steam Fl ow Rate                                      9.765 x 10 lb/hr Recirculation Flow Rate                              98 x 10 6 lb/hr Fraction of Power Appear-                            0.965 ing as Heat Flux GE                      GE                GE 7x7                    8x8          8x8R/P8x8R Power Density                  41.08 kw~l i ter        41.09        40.74 Heat Transfer Surface Area/    86.52 ft                97.6         94.9 Assembly                                          2 Average Heat Flux              131,200 Btu/(hr-ft 2 ) 117 ,100      120,400 Maximum Heat Flux              405,000 Btu/(hr-ft ) 354,400          362,000 Maximum U0 2 Temperature        3470°F Average Volumetric Fuel Temp. 1050°F Core Subcool i ng              22.4 Btu/lb Core Average Void Fraction,    0.299 Active Coolant Core Average Exit Quality      0.101 Minimum Critical Power Ratio    1.06                    1.06          1.07 Safety Limit
* i . * .. 2:2.2.3.2.1 *
* industrial Facilities* .2.2.2.J .. 2.2
* 2. 2'. 2. 3. 2. 3 Rail way Transportatfori . vJaterway Transportation 2.2.2.3.2.S: Military Facilities 2.2.2.3.2.6
* Pipelines 2. 2 .. 2. 3. 3
* HAZARDS FROM. VAPOR CLOUDS AND FIRES *.* HAZARDS FROM TOXIC CHEMICALS. 2.2.2.3.5 HAZARDS FROM COLLISION WITH THE INTAKE STRUCTURE . HAZARDS FROM LIQUID SPILLS. . . . ' 2*. 2 *. 2 *. 3. 7 HAZARDS FROM AIRCRAFT. * *2. 2. 2. J. 7 .1 Airports 2.2 * .Z.3.T.2 Airways* 2 .. 2:.2*.


==3.8 CONCLUSION==
1.2.3-2 TABLE 1.2.3:1 (Contd.)
S
PRINCIPAL FEATURES OF PLANT DESIGN Nuclear Design Enrichment      No. of rods Wt % U-235      per assembly Initial Fuel Enrichment:                      2.44                    30
* REFERENCES Rev. 1 June 1983 2i Page . 2.1. 0-1 2. 2.1-1. 2.2.-1-1*. 2. 2.1-1 ... * '*2 .. 2.1-1 2.2.1-1:' . 2.2.1-2 2.2.1-2 2.2.1-3; 2.2.2-1 ' *,* 2. 2::.6: *_<;, *: :. ': 2*; 2'. 2:;.6 .* '.**,*. *: :. ;*; ' ': << 2.2.2..:.6'. *: ; .2.2*. 2-8 2 ... 2. . 2. 2. 2;..10 2.2.2-10.*. 2. 2 .. 2-1 L 2.2. 2-n.,. * .. 2 .. 2.2-11' 2. 2.2-n z. 2. 2:.12 2.2.2-12 2. 2. 2-1.4 2.2.2;..15 2.2.2-16 
( 7x7 assembly)                              1.69                    16 1.20                    3 Typical Reload Fuel Enrichment:                3.8                    14 (8DRB265H 8x8 assembly)                      3.0                    27 2.4                      2 2.0                    14
* *
: 1. 7                    4 1.3                      1 water rods              2 GE                  GE                  GE 7x7                8x8              8x8R Water/U0 2 Volume Ratio        2.41                2.60              2.76 Core Average Neutron Flux Thenna 1                                     3.50 x 10 13 13 n/cm 22-sec 1 Mev                                        3.67 x 10 n/cm -sec Burnup target (average assembly)                    28 ,ooo MvJD/ton Power Coefficient for xenon stability              More negative than
* 2.2.1:1 2.2.1:2 2.2.2.3:1 2.2.2.3:2 2.2.4:1 2.2.4:2 2.2.6:1 2.2.6:2 LIST OF FIGURES --SECTION 2, SITE Station Property Plan Cooling Lake General Arrangement Dresden Nuclear Power Station Area Map Rev. 2 June 1984 2i ii Pipelines Considered in the Evaluation of Hazard From Explosion Cooling Water Flow Diagram --Unit 2/3 Dresden Cooling Lake Dam Site Flow Diagram at Illinois River Above Dresden Island Lock and Dam General Arrangement .--Crib House 2.2.2:1 2.2.2:2 2.2.2:3 2.2.5:1 LIST OF TABLES --SECTION 2, SITE Population Centers .Surrounding Station Industrial Facilities Near Station 2iii Recreational and Institutional Facilities Near Station Distances From Release Points To Various Points Near Site 
                                                      -.Ol(dK/K)/(dP/P)
.I.: **e* ' ....... ' -' ' ' **Table Assessment Summary HAZARD *NUMBER l* 2 3 4 5 6 8 9 10 11 12 SOURCE OF HAZARD ' ' Explosion from:*. Industrial facilities* Highway transportation Railway transportation Watt;!rway transportation Military facilities Pipelines Vapor cloud expiqsion & fire from waterway transporation Toxic chemicals Collis{on with intake structure Li quid spi 11 s Aircraft .impact from: Airports Airways* ** .. * **.: ... * .' '1 . . . . '. . . . .*. REPORT . * ... SECTION*. ,2.1 .. *2 .. 2 ' *2:3' ' '2.4' ,* 2. 5 2.6 3.t '*, '. 4 5 '.< . *; 7:*1: T:f DESIGN BASIS EVENT? . .:*. No, based Qh adequatE? separation distance** No ? based on separation distance No, .based on. adequate separation distance No, based on adequate separation No, based .on adequate separatigg distance No, based on frequency of 6x10 /yr using conservative -7 No, pased on of 4xl0 /yr Not part of SEP U-1.C Nq, based on physii:al considerations *.No, based on physical considerations ' .** *.. ; -7 ' No, based on frequency of 3.24x10 l&#xa5;ear based on of 0.93 x 10 /year 'l'rData for facilities which responded to. the * . **There is one exception to this conclusion .:. .storage tank pn the Reichhold Chemical site.* :* * .. ; ** <r . ... *'' .*' , *:*.;
Design            Operating Heat flux peaking factors:
Table 2.2.2.3:2 Industries Within 5 Miles I **, e. Dresden Station (Ref. 18) . *,' . *. ;,* DISTANCE (MILES) INDUSTRY & DIRECTION . GE BWR Training Center & Spent Fuel Storage Reichhold Chemicals A .. P. Green-* Atrco 1ndustrial Gases Northern Illinois Gas Alumax Mill Products
Relative Assembly                            1.47              1.47 Axial                                        1.57              1.57 Local                                        1.30              1. 30 Overpower                                    1.20 Gross                                        3.60            3.00
* Northern Petrochemicals Northern Petrochemical Dock
. Reactivity Control:
* ARMAK Chemicals * *
Cold shutdown keff all rods inserted          0.96            0.96 Cold shutdown k ff rod of maximum            0.99            0.99 worth stuck fO    out
* Dur.kee Chemicals . . . , Truck Tennina*i Dow Chemicals Dow Chemical *Dock 'Exxo_n (chemical plant) Hydrocarbon Transportation, Inc. Streator Industrial Supply Mobil Chemical Jal iet Livestock Market
: 1. 2. 3-3 TABLE 1.2.3:1 (Contd.)
* Mo_bn O:il Refi-nery Commonweal th Edison Co * . Collins 0. 7 -: 1. 6. -w .
PRINCIPAL FEATURES OF PLANT DESIGN Design        Operating Standby liquid control shutdown,                        0.16 dkeff Minimum Critical Power Ratio:                                   1.07          1.39 Linear Heat Generation Rate (kw/ft):
* 2. 1 "". SSW-*
7x7 fuel                                                17.5          17.5 GE 8x8 fuel                                            13.4          13.4 ENC fuel                                                14.9          14.9 Hot Approximate Coefficients:                              Cold        (no voids)  Operating Moderator Tern~. Coefficient                -8.9xl0- 5    -17.0xl0- 5
* 2.S NW
[ ( d k/ k ) I &deg;FJ Moderator Void Coefficient                    less than_ 3 -1.0xlO -3    -1.4x10- 3
* 2*,5_,.. NW 2.8 -MW 3. 3 -* MW . 1 -* W* 3.6 -WNW :. *.*, 2>-.EN{ J.6*;,. ENE . 3. 7 -E . 2. 7 -* E J.9 -ENE 4.0 ..: NW 4. 0 -.s -4.1 -NE 4.2 -ESE .. 4. 5 -NE 5 *. 0 -WSW PRODUCT Spent nuclear fuel storage Resins and chemicals Br.iCk and clay co . 2 . ! I. Natl,J na 1 gas Aluminum sheet and co.il ethyl oxide glycol* Fatty nitrogen chemi.CaJs .; Ed.i b le. oi-l -* . .
[ ( dk/k) /% Void]
* Under construction *. * . . ., .. Polystyrene** pla-stic.
Fuel Temp. (Doppler) Coefficient            -l~~~~~l~ -1.2xl0- 5      -1.2x10- 5
* Under construction .Propane Industrial supplies . Po.lystyrene sheets. & crystal Livestock Petroleum** products Electricity* ;... ..
[(dk/k)/&deg;F]
. , a.,, .* t *** '.:.:* *. *.; .. . *' l'.:. .. i ..*. ; ' ' ' ' :.:: .. ; *.:'".{ . . . . .\* ... . -. ' ' ., :. ,,,._-.. . ._ ..... ** ....... . e *.** Table2.2.2.3:3 Dresden Island Traffic Statistics Fiscal Years l9j8 (Refs. 6, 11) . FISCAL YEAR Total commodities, tons x 10 Hazardous mate5ials,*
Excursion Parameters:
* tons x 10 . Liquefied Gases,** tons 1973 28.476 5.653 . o.o* 1974 1975 1976 30.853 27.808 25.882 6.073 5.358 5.059 0.0 O*.O *
1* Prompt Neutron Lifetime                              48.9 microseconds
* 17 ,992 *Hazardous materials are defined as all materials listed under the. category of petroleum products in the lock statistics. **Liquefied gases shown are the amounts transported on the entire navigable length of *the lliinois River. . .. ' '.*. 1977 23.452 4.093 0.0 1978 19. 521 . 3.658 0.0 Average . 26.0 5.0 . 3000.0 Table 2.2.2.3:4 Casualty and Spill Statistics -Fiscal Years 1969 thru 1972 (Ref. 10) CASUALTY/SPILL ILLINOIS RIVERS WESTERN *RIVERS Casualties** -all type barges Casualties of hazardous material barges***. Spills from hazardous * .mat.erial barges Casual ti es* of Liquefied gas barges Spills from double-skinned vessels ... Total length of waterway (miles) 178 40 1 ._.;._ 333 *Lower Mississippi, Upper Mi-ssiss.ippi, Ohio, and Illinois Rivers; casualties from these rivers* 97% of the casualties on western rfvers. **Casualtie.s whfch result in any of the following: loss of life,. damage to cargo-irr excess of $1;500, or release of cargo. 2831 508 69 9 7 3137 ***Hazardous material barges are generic type 17, 18, and 29 vessels. See Reference 10 for description. .,
      .B Effective Delayed Neutron Fraction                    .0058 Core Equivalent Core Dia.               182. 2 inches Circumscribed Core                  189.7 inches Diameter Core Lattice Pitch                  12 inches (4 assemblies/unit cell)
******-* -* **-****: ... TABLE '2.2.2.3:5 DATA ON AIRPORTS WITHIN 10 MILES OF DRESDEN STATION.(REFS .. 23, 27) APPROX. DIST. DIRECTION NO. LENGTH OF TYPE FROM STATION FROM STAT ION OPERATIONS. RUNWAY '> FROMM PVT. 4.5miles E 50* 2,773 ft. MORRIS PVT. 8 WNW 2,400 ft. ?,987 ft. ROSSI PVT. 9 miles N 50** 2,400 ft. BUSHBY PVT. 9.9 miles NNE 45** 1,800 ft. . JOLIET . Pub. 10 miles NNE 10,000* 3,452 ft. ., ._ . ...:.. ADELMANN*** PVT. 1 mile NE *Total peak month from FAA supplied documents. **Number per month as supplied by owner of airport ***Recent1y approved airstrip ft. 20*'11' 1,600 ft. WIDTH OF TYPE ORIENTATION RUNWAY OF RUNWAY OF RUNWAY 100 ft. TURF. NNE-SSW 135 ft. TURF. E-W 60 ft. ASPH. N-S 70 ft. TURF. E-W 100 ft. TURF . N-S 125 ft.* TURF. NE-SW 100 ft. ASPH. NW-SE 70 ft. TURF. SE-NW 
Number of Fue 1
' .. ' . ' . ;-. ..
  ,l\ssemb 1i es                    724 Fuel Assembly                  GE              GE                    GE      ENC 7x7            8x8              8x8R/Px8x8R    8x8 Fuel Rod Array                7x7            8x8              8x8R/P8x8R    P8x8 Fue 1 Rod Pitch                0.738 in.      0.640            0.640          0.641 Weight of U0 2 per            492.5 lbs.     458.6            441.6          434.4 Fuel Assembly Channel Material              Zircaloy-4      Zircaloy-4      Zircaloy-4    Zircaloy-4 Total Assbly plus              678.9 lbs.     650              650            580 Channel Weight Fuel Rods                      49              63              62            63 Water Rods                      0              1                2             1
* e e -' . ; *. Table 2.2.2.3:6 Data for Aircraft Crash and Probability Analysis R 106 N NARDx1C'i7 OPERATING r 0 D(r,O) .x (OPERATIONS/ A . AIRPORT MODE (MILES) (DEG) (/MILES2) (/OPERATION) YEAR) (MILES2) (/YEAR) FROMM Landing 4.5 90 0.0014 150 0.0056167 0.02833 4.5 90 0.0014 2.4 150 q.0056167 0.02833 Take-Off 4.5 90 0.00167 0.9 150 0.0056167 0.01267 4.5 90 0.00167 9 150 0.0056167 0.01267 MORRIS Lanqing 8.0 25 . 0. 000883 :. . 2.4 1456 0.0056167 0.17333 8.0. 155 0.000043 2A 1456 0.0056167 0.00833 8.0 65 0.00035 2.4 4370 0.0056167 0.206 8.0 115 o. 00011 2.4 4370 0.0056167 0.06467 Take-Off 8.0 25 . 0.000369 0.9 1456 . 0.0056167 0.027 8.o 0.000073 .. ' 155 0.9 1456 0.0056167 0.00533 8.0 65 *._ o. 00022 0. 9* 4370 0.0056167' 0.04867 8.0 115 0.00012 0.9 4370 0.0056167 0.02633 JOLIET Landing 10.0 . 10 0.00045 , *2A .* 6000. 0.0056167 0.364 10.0 170 0. 000011 . *. 2. 4 9000 . 0. 0056167 0.01333 10.0 80 0.000088 2.4 22500 0.005p167 0.26667 10.0 100 o. 000056 . 2.4 22500 0.0056167 0.17 Take-Off 10.0 : 10 0.00013 . 0.9 *. 7500 0.0056167 0.04933 10.0 170 0.000018 b. 9' 7500 .. 0.0056167 0.00667 10.0 80 0.000055 22500 0.0056167 0.06267 10.0. 100 0.000043 0.9 22500 0.0056167 0.049 Landing 1.0 115 0.01433 2.4 60 0.0056167 0.116 0.9 80 0.0374 . 2. 4 60 0.0056167 0.30233 Take-Off LO 115 0.0317 0.9 60 0.0056167 0.0906 0.9 80 0. 05734 .. 0 *. 9 60 0.0056167 0.174 
: 1. 2 .3-4 TABLE 1.2.3:1 (Contd.)
,*.JO. --Table 2.2.2.3:7 with 5. Miles of the Site PIPE SIZE OPERATING CLOSEST DISTANCE PIPELINE COMPANY (in) MATERIAL CARRIED PRESSURE (PSI) TO THE PLANT (MILtS) Natural Gas 36 Natura 1 Gas 858 \ 1. 75 Pipeline Co. 36 **Natural Gas 858 1. 70 30 Natura 1 Gas 858 1.60 36 Natural Gas 650 1. 25 30 Natura 1 Gas 858 1. 70. 30 Natural Gas 858 1.60 Hydrocarbon 10 Propane, Natural. Gas 2100 4.0 Transportation, Inc. 10 Propane, Natural Gas 2100 4.0 6 Propane, Butane 500 2.0 Northern lllinois Gas 36 Natural Gas 740 2.5 10 Out of Operation 4 Natural Gas Unknown 3.0 Amoco 10 Crude Oi 1 3.0 12 Crude Oi 1 3.0 22 Crude Oi 1 3.0 *.'l-_
PRINCIPAL FEATURES OF PLANT DESIGN Fuel Rod, Cold      GE              GE                  GE        ENC 7x7              8x8            8x8R/Px8x8R    8x8 Fuel Pellet Dia. 0.488 in.       0.416          0.410          0.405 Cladding Thickness  0.032 in.       0.034          0.034          0.035 Cladding O.D.        0.563 in.        0.493          0.483          0.484 Active Fuel Length    144 in.          144            145.24        145.24 Lgth of Gas Plenum  11.22 in.        11.24        9.48            10.06 Fuel Material        U0 2             U0 2           U0 2           U0 2 Cladding Material    Zircaloy-2       Zircaloy-2   Zircaloy-2     Zircaloy-2 Fi 11 Gas            He              He            He            He Fill Gas Pressure    1 atm            1 atm          1 atm/3 atm    3 atm Movable Control Rods Number                    177 Shape                      Cruciform Pitch                      12.0 in.
INDUSTRIAL SITES IN VICINlfY 1 MlOWEST FUELS REPROCESSING PLANT {GE). 2 PETROCHEMICAL CO. 3 /\LUMAX 4 REICllHOLO CHEMICAL CO 5. A. P. GREEN* 6 GENERAL ELECTRIC CO.TRAINING SCHOOL 1 MOBIL CHEMICAL 8
Stroke                      144 in.
* MOBIL OIL 9 DURKEE SCH .** t I
  \4 i dth                    9.75 in.
* I ... PeN .1 e *,,' FIGURE 2.2.2.3:1 DRESOEN .. NUCLEAR POWER STATION AREA MAP . .. .-,.'' ... , . ' . ' > . .. * . . . =** *1 ,. : :saL\ET t\MMUN ITION 
Control Length              143 in.
.1.* *. -. *' LEGEND 36" 36" .. JO" --36"' ' ...... 3011 **
Control Material            ~a c granules in stainless steel tubes and sheath Number of Cntrl Mtrl Tubes per Rod Tube Di mens i ans          0.188 in. o.d. x 0.025 in. wall Temporary Control Curtains Number                      340 Shape                      Flat sheet Width                      9.20 inches Thickness                  0.0625 inches Control Length              141.25 inches Control Material            Stainless steel containing 5400 ppm natural boron Curtain Locations          Between fuel assemblies in water gaps without control rods.
* JO" '.**. . * .... . *' . *
Burnable Neutron Absorber Control Material            Gd 2 03
* i*' "*. . *'* .**.* , -*. ',' ., *SITB :"" .. "'.**0*':** ... *' .. . * .. **: :. . . .. ** .... -, '' *. : .. *_ ',, .. : .... * '*. , '. : . :-. *' ........ radius FIGURE 2.2.2.3:2 PIPELINES CONSIDERED IN :rnE EVALIJAnoN OF HAZARO FROM EXPLOSION' . '" . . . / . . '. ' .... . . '.. . . ' . ' . ;. .. . ... 
* Location                  Mixed with U0 2 in several fuel rods per fuel assbly Concentration              Location and reload dependent.
}}
Reactor Vessel Inside Diameter                                      20 ft.-11 in.
Overall Length Inside                                68 ft.-7-5/8in.
Design Pressure                                      1250 psig
 
Rev. 1 June 1983
  ***-                                                              TABLE OF CONTENTS SECTION 2 -- SITE 2i Page .
 
==2.1                INTRODUCTION==
2.1. 0-1
 
==2.2                  DESCRIPTION==
Of SITE AND ADJACENT *AREAS                                2. 2.1-1.
2;2;1                  SITE                                                                2.2.-1-1*.
2.. 2 .1.1              Site Size and Location    , :  .
: 2. 2.1-1 ...
* 2:. 2.1.2                Site Ownership                .                             '*2 .. 2.1-1 2.2~1.3
* Location of the Units on the.Site                                2.2.1-1:'
2.2.1.4'                 Oth~r Activities on. the Site                                  . 2.2.1-2 2.2.1.5                  Access to the Site
* 2.2.1-2 2.2.1.6                  Exel us ion Area .                                                 2.2.1-3;
: 2. 2. 2 .              POPULATION AND LAND USAGE IN ADJACENT AREAS                        2.2.2-1 2.2.2.1                  Popu 1at ion Data 2:2.2.2                  Land Use .. *
                      '2.2.*2.J                POTENTIAL. HAZARn&deg;S DUE TO)IEARBY FACilITIES .*              ' *,* 2. 2~ 2::.6: *_<;, *: :. ':
2 2 '2 3 1 :INTRODUCTION: **.. * * .. . *.. * .* ' *.                     "*               2*; 2'. 2:;.6 .* '.**,*. *: :. ;*; ' ': <<
              ,. ' .. 2*:i:*2 . : f 2 *.. HAZARDS FROM* EXPLOSIONS. *.                  .* ..
* i  . *. .       2.2.2..:.6'. *:
. ***e                  2:2.2.3.2.1 *
* industrial Facilities*
                      .2.2.2.J .. 2.2 * ~ighway Transportati~n
: 2. 2'. 2. 3. 2. 3        Rail way Transportatfori 2~2.2-6 ;
                                                                                                                    .2.2*. 2-8 2... 2. 2~9 .
                      . 2.2.2~3.2.4              vJaterway Transportation                                          2. 2. 2;..10 2.2.2.3.2.S: Military Facilities                                                          2.2.2-10.*.
2.2.2.3.2.6
* Pipelines                                                                    2. 2 .. 2-1 L
: 2. 2.. 2. 3. 3
* HAZARDS FROM. VAPOR CLOUDS AND FIRES                                2.2. 2-n.,. *..
2.2.~2.3.4        *. HAZARDS FROM TOXIC CHEMICALS.                                       2 .. 2.2-11' 2.2.2.3.5              HAZARDS FROM COLLISION WITH THE INTAKE                              2. 2.2-n STRUCTURE
                      . 2.2~.2.3.6              HAZARDS FROM .
LIQUID SPILLS. . .
: z. 2. 2:.12 2*. 2 *. 2 *. 3. 7    HAZARDS FROM AIRCRAFT.                                             2.2.2-12
                      * *2. 2. 2. J. 7 .1        Airports                                                          2.2.2~12 2.2 *.Z.3.T.2            Airways*                                                         2. 2. 2-1.4 2 .. 2:.2*.
 
==3.8        CONCLUSION==
S                                                        2.2.2;..15
* 2.2.2~
 
==3.9              REFERENCES==
2.2.2-16 I*.'.
 
Rev. 2 June 1984 2i ii LIST OF FIGURES -- SECTION 2, SITE 2.2.1:1  Station Property Plan 2.2.1:2  Cooling Lake General Arrangement 2.2.2.3:1 Dresden Nuclear Power Station Area Map 2.2.2.3:2 Pipelines Considered in the Evaluation of Hazard From Explosion 2.2.4:1  Cooling Water Flow Diagram -- Unit 2/3 2.2.4:2  Dresden Cooling Lake Dam 2.2.6:1  Site Flow Diagram at Illinois River Above Dresden Island Lock and Dam 2.2.6:2  General Arrangement .-- Crib House
 
2iii LIST OF TABLES -- SECTION 2, SITE 2.2.2:1 Population Centers .Surrounding Station 2.2.2:2 Industrial Facilities Near Station 2.2.2:3 Recreational and Institutional Facilities Near Station 2.2.5:1 Distances From Release Points To Various Points Near Site
 
.I.:
                                                                            **e*          .......
                                                          **Table 2.?.*2~_3:l                      Assessment Summary
                                                                                    .'      '1 HAZARD                                                              .*. REPORT .
    *NUMBER        SOURCE OF  POT~NTIAL HAZARD                      *... SECTION*.                            DESIGN BASIS EVENT?
Explosion from:*.
l*         Industrial facilities*                                               ,2.1 .                 No,  based Qh adequatE? separation distance**
2          Highway transportation                                              *2 .. 2 '              No ?  based on adequ~te separation distance 3          Railway transportation                                              *2:3' '                No,  .based on. adequate separation distance 4          Watt;!rway transportation                                          '2.4'                    No,   based on adequate separation di~tance 5          Military facilities                                          ,* 2. 5                        No,  based .on adequate separatigg distance 6          Pipelines                                                            2.6                    No,   based on frequency of 6x10 /yr using conservative ~ssumptions Vapor cloud expiqsion & fire from waterway transporation                                      3.t                    No, pased on    freq~en~Y    of 4xl0 -7 /yr 8          Toxic chemicals                                                      4                      Not part of SEP U-1.C 9          Collis{on with intake structure                                      5                      Nq, based on physii:al considerations 10           Li quid spi 11 s                                              .*~.                        *.No, based on physical considerations Aircraft .impact from:
                                                                                        '.< . *; ~*.                                  ' .** *.. ;          -7 '
11          Airports                                                          7:*1:                    No, based on frequency of 3.24x10 l&#xa5;ear 12          Airways*                                                             T:f .~.                 No~ based on .f~egu~ncy of 0.93 x 10 /year
        'l'rData for facilities which responded to. the q~estion'nalre," * .
        **There is one exception to this conclusion .:. ~he:benie~&#xa2; .storage tank pn the Reichhold Chemical site.*                            :* * .. ; * <r .
                                                                      -~*    ...
 
* , e.                                      Table 2.2.2.3:2 Industries Within 5 Miles Dresden Station (Ref. 18)
I DISTANCE (MILES)
INDUSTRY                      & DIRECTION .                                     PRODUCT GE BWR Training Center
                                &Spent Fuel Storage                    0. 7 -:    SL~              Spent nuclear fuel storage Reichhold Chemicals                      1. 6. - w                  Resins and chemicals A.. P. Green-*                       .
* 2. 1 "". SSW-*              Br.iCk and clay Atrco 1ndustrial Gases
* 2.S        NW              co 2 . .
I.
Northern Illinois Gas
* 2*,5_,.. NW                Natl,J na 1 gas Alumax Mill Products                      2.8 - MW                  Aluminum sheet and co.il
* Northern Petrochemicals                    3. 3 -* MW                  Ethy\ene~ ethyl en~ oxide glycol*
Northern Petrochemical Dock          . 2~  1 -* W*
          ~*.   .
* ARMAK Chemicals                          3.6 - WNW                Fatty nitrogen chemi.CaJs
                    **
* Dur.kee scM~ Chemicals          :. *.*, J~ 2>- .EN{            .; Ed.i b le. oi-l
                        , Truck Tennina*i                            J.6*;,. ENE
* Under construction *.
* Dow Chemicals                          . 3. 7 - E            .. Polystyrene** pla-stic.
* Dow Chemical *Dock                      . 2. 7 -* E
            **~ *.
                            'Exxo_n (chemical plant)                   J.9 - ENE                  Under construction Hydrocarbon Transportation, Inc.                   4.0 ..: NW              .Propane Streator Industrial Supply                4. 0 -    .s                Industrial supplies Mobil Chemical  Co~                      -4.1 - NE              . Po.lystyrene sheets. & crystal Jal iet Livestock Market                  4.2 - ESE                  Livestock
* Mo_bn O:il Refi-nery                  .. 4. 5 - NE                  Petroleum** products Commonweal th Edison Co *
                              . Collins St~tion                        5 *. 0 -  WSW            Electricity*
 
                                                                                        ~    :.::..; *.:'".{      . .\*... .                       .., ._..... ** ....... .
e *.*
    . , a.,, .* t *** '.:.:* * . * . ;          .. . *' l'.:. :-.:~ .. i ..*. ;      ' '   ' '                  .. .             :~ - . '
Table2.2.2.3:3 Dresden Island Traffic Statistics Fiscal Years 1~73:~ l9j8 (Refs. 6, 11)
CO~MODITY,TYPE                                                                                                    . FISCAL YEAR 1973              1974                  1975                        1976              1977                1978                      Average .
Total commodities, tons x 10                    28.476          30.853                  27.808                25.882                23.452            19. 521 .                     26.0 Hazardous mate5ials,*                    ~-
* tons x 10 .                   5.653 .           6.073                  5.358                      5.059              4.093              3.658                        5.0 Liquefied Gases,** tons                o.o*              0.0                   O*.O *
* 17 ,992                  0.0                 0.0                     . 3000.0
*Hazardous materials are defined as all materials listed under the.
category of petroleum products in the lock statistics.
**Liquefied gases shown are the amounts transported on the entire navigable length of *the lliinois River.
 
Table 2.2.2.3:4 Casualty and Spill Statistics -
Fiscal Years 1969 thru 1972 (Ref. 10)
ILLINOIS      WESTERN CASUALTY/SPILL                                    RIVERS        *RIVERS Casualties** - all type barges                        178          2831 Casualties of hazardous material barges***.                                 40          508 Spills from hazardous
    * .mat.erial barges                                      1          69 Casual ti es* of Liquefied gas barges                ._.;._
9 Spills from double-skinned vessels                                    7
... Total length of waterway (miles)                      333          3137
    *Lower Mississippi, Upper Mi-ssiss.ippi, Ohio, and Illinois Rivers; casualties from these rivers* constitut~ 97% of the casualties on western rfvers.                                                       .,
    **Casualtie.s whfch result in any of the following: loss of life,.
damage to cargo-irr excess of $1;500, or release of cargo. ~
    ***Hazardous material barges are generic type 17, 18, and 29 vessels.
See Reference 10 for description.
 
TABLE '2.2.2.3:5 DATA ON AIRPORTS WITHIN 10 MILES OF DRESDEN STATION.(REFS .. 22~ 23, 27)
APPROX. DIST.               DIRECTION          NO.         LENGTH OF    WIDTH OF  TYPE    ORIENTATION TYPE    FROM STATION              FROM STAT ION    OPERATIONS.      RUNWAY      RUNWAY  OF RUNWAY  OF RUNWAY FROMM            PVT. 4.5miles                        E              50*         2,773 ft. 100 ft. TURF. NNE-SSW MORRIS          PVT. 8      mil~s                    WNW        1~94.2*        2,400 ft. 135 ft. TURF. E-W
                                                                                                  ?,987 ft. 60 ft. ASPH. N-S ROSSI            PVT. 9      miles                    N              50**        2,400 ft. 70 ft. TURF. E-W BUSHBY          PVT. 9.9 miles                        NNE            45**        1,800 ft. 100 ft. TURF . N-S
          .JOLIET          . Pub. 10 miles                        NNE        10,000*        3,452 ft. 125 ft.*   TURF. NE-SW 2~970 ft. 100 ft. ASPH. NW-SE ADELMANN***     PVT.     1 mile                          NE              20*'11'    1,600 ft. 70 ft. TURF. SE-NW
                *Total peak month from FAA supplied documents.
              **Number per month as supplied by owner of airport
            ***Recent1y approved airstrip
 
e                                                          e Table 2.2.2.3:6 Data for Aircraft Crash and Probability Analysis 6            N OPERATING      r            0  D(r,O) 2                          .x 10 R              (OPERATIONS/        A          NARDx1C'i 7
. AIRPORT  MODE        (MILES)        (DEG) (/MILES )        (/OPERATION)                      YEAR)      (MILES 2)      (/YEAR)
FROMM      Landing        4.5        90          0.0014              2~4                        150        0.0056167      0.02833 4.5        90          0.0014              2.4                        150        q.0056167      0.02833 Take-Off      4.5        90          0.00167            0.9                        150        0.0056167      0.01267 4.5        90          0.00167            .a~      9                150        0.0056167      0.01267 MORRIS    Lanqing        8.0        25      . 0. 000883 :.       . 2.4                      1456        0.0056167      0.17333 8.0. 155            0.000043            2A                        1456        0.0056167      0.00833 8.0        65          0.00035            2.4                      4370        0.0056167      0.206 8.0      115            o. 00011            2.4                      4370        0.0056167      0.06467 Take-Off      8.0        25    . 0.000369              0.9
                                                                        ..~  '                    1456      . 0.0056167      0.027 8.o      155            0.000073            0.9                      1456        0.0056167      0.00533 8.0        65      *._ o. 00022            0. 9*                    4370        0.0056167'      0.04867 8.0      115            0.00012            0.9                      4370        0.0056167      0.02633 JOLIET    Landing      10.0      . 10          0.00045        , *2A .*                      6000.        0.0056167      0.364 10.0      170            0. 000011    . *. 2. 4                      9000      . 0. 0056167      0.01333 10.0        80          0.000088            2.4                      22500        0.005p167      0.26667 10.0      100          o. 000056 .        2.4                      22500        0.0056167      0.17 Take-Off      10.0      : 10          0.00013 .          0.9 *.                    7500        0.0056167      0.04933 10.0      170            0.000018            b. 9'                    7500 .      0.0056167      0.00667 10.0        80          0.000055            o.~                      22500        0.0056167      0.06267 10.0. 100            0.000043            0.9                      22500        0.0056167      0.049 ADE~MANN  Landing        1.0      115            0.01433            2.4                        60        0.0056167      0.116 0.9        80          0.0374            . 2. 4                        60        0.0056167      0.30233 Take-Off      LO      115            0.0317              0.9                        60        0.0056167      0.0906 0.9        80          0. 05734 .          0 *. 9                      60        0.0056167      0.174
 
,*.JO.
Table 2.2.2.3:7  Pi~elines with 5. Miles of the Site PIPE SIZE                                    OPERATING      CLOSEST DISTANCE PIPELINE COMPANY        (in)      MATERIAL CARRIED            PRESSURE (PSI)  TO THE PLANT (MILtS)
Natural Gas              36        Natura 1 Gas                    858 \                1. 75 Pipeline Co.            36      **Natural  Gas                    858                  1. 70 30        Natura 1 Gas                    858                  1.60 36        Natural  Gas                    650                  1. 25 30        Natura 1 Gas                    858                  1. 70.
30        Natural  Gas                    858                  1.60 Hydrocarbon              10        Propane, Natural. Gas          2100                  4.0 Transportation, Inc. 10        Propane, Natural Gas            2100                  4.0 6        Propane, Butane                  500                  2.0 Northern lllinois Gas    36        Natural Gas                      740                  2.5 10        Out of Operation                                      2~5 4        Natural Gas                    Unknown                3.0 Amoco                    10        Crude Oi 1                                            3.0 12        Crude Oi 1                                            3.0 22        Crude Oi 1                                            3.0
                                                                *.'l-_
 
                                                                                                                        *1 ,. :
e            *,,'
INDUSTRIAL SITES IN VICINlfY 1  MlOWEST FUELS REPROCESSING PLANT {GE).
2  NORTllER~ PETROCHEMICAL CO.
3 /\LUMAX 4 REICllHOLO CHEMICAL CO
: 5. A. P. GREEN*
6 GENERAL ELECTRIC CO.TRAINING SCHOOL 1 MOBIL CHEMICAL 8
* MOBIL OIL 9  DURKEE SCH
:saL\ET ~l?.~Y t\MMUN ITION ~L.1'NT t              I    *I
                                ...            PeN    .1 Mill~
FIGURE 2.2.2.3:1 DRESOEN NUCLEAR POWER STATION AREA MAP
                                                                  . -~  .. *.
                                                              . . =**
 
    *. - . ~ *'                  '.**.      . * ....
* i*'
                                                                                                  , -*~  *.
LEGEND                                      "*.              .
36"                                                                                                                radius
                  -.~.-  36"
                  .. -~~- JO"
                  - - 36"'
                ' ...... 30 11
                    **
* JO"
                                                                                        ., *SITB
:"" . "'.**0*':**
                                                                      *.. **: ~. :.          .
.1.*
                                                                          '.  : .:- . *' ~
FIGURE 2.2.2.3:2 PIPELINES
                                          .  .      CONSIDERED
                                                        .  / .          . ' IN
                                                                              '.        .... :rnE .. '.. EVALIJAnoN  .. ' . '
OF
                                                                                                                                . HAZARO FROM EXPLOSION'
                                                                                                . ...}}

Latest revision as of 11:15, 24 February 2020

Final Safety Analysis Report
ML17191A301
Person / Time
Site: Dresden  Constellation icon.png
Issue date: 07/10/2017
From:
Commonwealth Edison Co
To:
Office of Nuclear Reactor Regulation
References
Download: ML17191A301 (76)


Text

f FSAR INDEX

. ~.

- A- Section I *. - .~ ~->.

ACAD/CAM 6.8.3.3 Acceleratioa Response Spectrum Earthquake 12. 1. l :3 Access Control Access to the Site Access, Station Accident Analysis for 7 x 7 Fuel Accident Analysis for G2 8 x 8 Fuel 14.2.2.5 Accident Analysis for ENC 9 x 9 Fuel 14.2.2.6 Accident Analysis, Radwaste 9.2.5 Accident, Control Rod Drop Procedural 14. 2 .1. 3 Acoustic Monitors 4.5.2 Acronyms and Initialisms 1.1.2.1 Action taken due to Reportable 13.6.2.2 Action taken due to Safety Exceeded 13.6.2.1 Administrative Controls 13.6 Administrative 12 .1. 4. 5 Admission Valves 6.2.3.4 Airborne Effects the Refueling Pool 14.2.2.6 Air Cleanup Appendix 8 (8-28)

Air Ground Level Appendix A (2.1.1)

System 10.11

11. 2. 2 Ejector Off-Gas Monitoring 7.6.2.3 Monitoring, Reactor Bldg 7. 6. 2. 5 Airlock Doors 5.3.2.2 i

1043v

' FSAR INDEX

- A- Section Analysis and Acceptance Criteria Inst & Control 7.2.6.3 Analysis of Off-Site Electric Power Supply 8.2.1.4 Analysis Supporting ECCS Clad Melt Criteria 6.2.7.6 Analytical Methods 3.3.3 Analytical Stability Model 7.2.2.3 ANL Test Data on Clad Flailure 6.2.7:25-28 Approval of Changes 13.6 APRM 7.4 .2 Archifect - Engineer Organization Appendix E (2.3.1)

Area Radiation Monitoring System 7.6.3 9.1.2 9.5.3 As-Built Safety-Related Piping Analysis 12 .1. 2 .4 ASKE Class A Nuclear Vessels 4.1.0.1 Atmospheric Control System 6.8 Atmospheric Pressure, Fuel Loading 13.8.2.1 Atmospheric Weather/Wind Appendix G Authority to Terminate Power Production 13.6.1 Authorization of Changes 13.6 Automatic Depressurization System 6.2.6 Automatic Vacuum Relief 5.2.2.9 Auxiliary and Emergency Systems 10.1 13.7.3.42 Auxiliary Power supplies 1.2.4.3 Auxiliary Power System 8.2.1.3 Auxiliary Systems 1.2.4.4 Auxiliary Transformers 8.2.1.3 ii 1043v

FSAR INDEX

- A- Section Auxiliaries, Turbine Generator 13.7.3.43 Availability Analysis 6.2.7.4 Average Power Range Monitor (APRM) 7.4.5.2 iii 1043v

- B- Section Balance of Plant - Aux Systems 13.7.3.42 Bases for Design 12 .1.1. 3 Biological Shield 12.2.2.l Batteries, Station 8.2.3.2 Battery Tests and Inspection 8.3 Bio - Assay and Medical Exam Program 9. 5. 5. 7 Bodega Bay Tests 5.2.3.5a & b Boron 9.6.1.3.2 Blowoff Details, Rx Bldg. 5.3.2:1 Burnable Neutron Absorber 3.5.5 Burning in Drywell 6.8.1:12 Bypass Valves, Turbine 7.2.6.2

  • 1057v i

FSAR INDEX

- c -

Section Cable Pans, Electric 8.2.2.3 Cask Pad 10 .1.2 CB & I 5.2.3:24 & 25 CECO and GE Startup Organization 13 .1. 2 Channel Hydrodynamic Conformance 7.2.3.2 7.2.4.2 Change Room Facilities 9.5.5.4

/

-characteristics After Reactor Slowdown 5.2.3.3 Charcoal Beds, Off-Gas 9.2.5 CHASTE 6.8.3.3.4 Chimney 12 .1. 2 .3 Chimney Effluent Monitoring 7.6.2.4 9.1 & 9.2.2.2 Circuit Breakers 8.2.2 Circulating Water 11. 2. 2 Cladding Integrity Safety Limit (Fuel) 3.2.2.3 Class I Structures & Equipment 12 .1. 2 Class II .Structures & Equipment 12 .1. 3 Classification of Nuclear Systems Appendix E (Exhibit 2. 7)

Cleanup Demineralizer System 13.7.3.22 Cleanup System 10.2 Cleanup System (Rx Water) 10.3 C02 Fire Protection System 10.7.2:1 & 2 Coefficiency of Reactivity 3.3.5.1 Cold Loop Startup - Transient Analysis 4.3.3:lla .& b

  • Common Auxiliary Systems 1058v i

1.2.4.4

FSAR INDEX

- c -

Sectfon Conununication System "' 10.14 Computer, Process 7 .11 8.2.2.4 CONCEN 6.8.3.3.4 Conclusions on Site and Environs 2.4 Condensate Demineralizer System 7.8.2 13.7.3.13 Condensate - Feedwater System 11.1 11.3 Condensate - Feedwater Tests and Inspections 11.3 Condensate Makeup Piping 10.12.2:2 Conduct of Operations 13.1 thru 8 Conduct of Operations 13.1 Construction Tests 13.7.3

  • Containment Containment Atmospheric Control System 1.2.1.3 5.2.3:7
7. 7. 2: 1 6.8 I

Containment Cooling System 6.2.4 Containment Design Basis Appendix 8 (B-26)

Containment Heat Removal Systems Appendix B (B-26)

Containment Isolation Valves 5. 2 .4.3; Appendix B ( B-2 7)

Containment Leakage Rate Testing Appendix B ( B-27)

Containment Penetrations 5.2.4.2 Containment Response to LOCA 5.2.3.2 Containment Shield 12.2.2.2

FSAR INDEX

- c - Section

  • Containment Systems Containment Ventilation System i.2.2.4 5.l;*Appendix C 5.2.4.4 Containment Vs Hydrogen 6.8.1.3 Contractors 1.3 Control and Instrumentation 1.2.1.4 1.2.2.6 Control and Instrumentation, other Systems 7.10 Control Curtains 3.5.2.2 Control of Access to Radiation Zones 9.5.5.l Control Methods (Reactor) 3.5.2 Control Rods 3.5.2.1 Control Rod Block Function 7.3.2:1

FSAR INDEX

- c - Section

  • Control Rod Sequence Control Rod Surveillance and Testing Control Rod Worth 14.5.2 3.5.4 3.3.4.4 Control Rod Velocity Limiter 6.1.2.3 6.5 Control Room 12 .1. 2. 2 12.2.2.4 12.2.3 14.2.5 Control Room Ventilation 12.2.2.5 Cooling Lake . 2.2.4.1 2.2.1:2 2.2.4:1 Core Cooling 14.2.3.9 Core Cooling System 6.2 Core Internals, Thermal Shock Efforts 3.6.3.3 Core Lattice Unit 3.4.2:2 Core Nuclear Dynamic Characteristic 3.3.5 Core Release, Non-Line Break Scenario 12.3.2.2 Core Spray Tests and Inspection 6.2.3.4 Core Spray System 6.2.3 13.7.3.32 6.2.3:6 8.2.3 Core Thermal and Hydraulic Performance 14.5.4 Crane, Reactor Building 10.1.2.2.2 Crib.House 2.2.6:2 12 .1. 3 ..3 Criteria & Bases for Design 12 .1.1. 3 CPR Histogram for 8 x 8 3.2.2:2
  • 1058v ii i i

FSAR INDEX

- D- Section

  • Data Analysis and Acceptance Criteria DC Systems Decay Ratio 7.2.6.3 13.7.3.2 & 8.2.3.2 7.2 Dernineralizer System 12.2.2.7 Description of Control Rods 3.5.2.1 3.5.3 Description of ECCS 6.2.2 Description of Fuel Assemblies 3.4.2 Description of Hain Stearn Description of Reactor Vessel Internals 3.6.2 Description of Safety Features 14.1 Design Basis Accidents 14.2 Design Basis Automatic Depressurization 6.2.6

Design Basis of Core Spray Design Bases Dependent On Site Characteristics

12. 1. 2. 4 .,4 6.2.3 1.2.2.1 Design Basis of Fuel Mechanical Characteristics 3.4.1 Design Basis of Isolation Condenser 4.6.1 Design Basis of LPCI 6.2.4.1 Design Basis of Hain Stearn 4.4.1 Design Basis of Nuclear Characteristics, 3.3.1 Design Basis of Primary Containment System Design Basis o~ Reactivity Control Mechanical Characteristics 3.5.1 Design Basis of (Reactor) 3.2.1.1 3.2.1.3
  • 1045v i

FSAR INDEX Section

- D-Design Basis of Reactor Bldg. 5.3.1 Design Basis of Reactor Recirculation System 4.3.1 Design Basis of Reactor Vessel Internals 3.6.1 Design Basis of Relief and Safety Valves 4.5.1 Design Bases for Shielding 1.2.2:1 Design Evaluation Containment System 5.2.3 Design Evaluation (Fuel) 3.4.3 Design Evaluation Main Stearn 4.4.3 Design Evaluation Reactor Coolant System 4.2.3

  • Design Guide Limit Definition 7.2.4.1.

Design of Control Rods and Curtains 3.5.2.3 Design of Electrical Systems 8.2

  • Design Report, Reactor Designed Safeguards Determination of Radiation Environment Appendix D
14. 2 .1. 2 12.3.3.0 Development of Technical Spec 3.2.4 Diesel - Generator System 8.2.3.1 8.3.1 13.7.3.39 Diesel Generator Tests and Inspection 8.3 Discharge to the River 9.3.3 Distances From Release Points 2.2.5:1 Distribution System, Station 8.2.2 Domestic Water Syste~ 13.7.3.8 Doppler Coefficient 3.3.5:1,2,3,4,5
  • Dose, External Appendix A ( 2. 2 .1) ..

ii 1045v

FSAR INDEX

- D - Section

  • Dose, Hydrogen Addition Dose to the Control Room, etal Dresden Lock and Dam
14. 2 .1.8
12. 3 .8.

2.2.6.1 Dresden Containment Certification Appendix C Dresden Units 2 & 3 Opera~ing Map 3.2.3.1 Dropout Velocities 6.5.3 Drywell 5.2.2.1 5.2.4.1 5.2.3.26 Drywell Pneumatlc System 10.8.2 Drywell and Suppression Chamber Inspection and Testing 5.2.4 Drywell Expansion Gap 5.2.3.6 Drywell Missile Protection 5.2.3.7

  • Drywell Spray Drywell - Torus Leak Rate Measurement Drywell Ventilation 6 .2 .4 .2 ..

13.7.3.18 13.7.3.40

  • 1045v iii

FSAR INDEX

- E- Section

  • Earthquake Earthquake Analysis of Rx Vessel 5.2.3:8+9 12 .1.1: 2 Appendix D ECCS 1.2.2.5 6.2 6.2.7.5 Appendix B (B-23&25)

ECCS Clad Melt Criteria 6.2.7.6 ECCS*Flood Protection 6.2.8 ECCS Pipe Whip Criteria 6.2.7.7 ECCS Pump NPSH 6. 2. 7 .9 Economic Generation Control 7.3.3.l 7.3.6 Effect of KSIV Closure Time 14.2.3.8

  • Effects of Postulated LOCA's EGC Operation El Centro Earthquake 1.2.5.2 7.3.3.2 7.3.6:2 12 .1.1: 2 Electrical Penetration Seals 5.2.2.4 5.3.2.3 Electric Power 1.2.1.5 Electric System 1. 2. 2 .10 8.1 Electroslag Weld Report, Rx Vessel Appendix F Elevated Release Point Discharge i4. 2 .1. 7 Emergency Core Cooling System 6.1.2.1 6.2.2 6.2.7.1 Appendix B (8-25)
  • 1059v i

FSAR INDEX

- E - Section

    • Emergency Lighting Emergency Power Emergency Ventilation 10.13.2 8.2.3 13.7.3.4.1 Engineered Safey Features Appendix B (B-21&24)

Environs Radioactivity Monitoring 2.3 Equipment Description, Computer 7 .11. 3 Equipment Drain System 9.3.2.1 Equipment Separation 12 .1.4. 4 Equipment Supply - QA Appendix E (3.3)

Essential Service System 8. 2 .2*.4 Exclusi_on Area 2.2.1.6 Exfiltration 5.3.3.l Expansion Gap, Drywell

  • 5.2.3.6 External Dose Appendix (2.2.1) ii 1059v

FSAR INDEX

- F Section Features of Plant Design 1.2.3:1 Feedwater Control System 7.8.3 Feedwater Flow, Reactor 7.5.2.4 Feedwater Nozzle Inner Bore 6.2.5.3.4 Feedwater Pumps 7.2.6.2 Feedwater Sparger Integrity 6.2.5.3.4 Feedwater System 11.1 11.3 14.2.3.5 Field Change Control Appendix E (3.4.3)

Fire Alarm Systems 10.14.3 Fire Extinguishers, Portable 10.7.2 Fire Protection System 10.7

  • Fire Suppression Water System Fission Product Release from the Fuel 13.7.3.11 8.2.2.1 10.7.2 & 10.7.3 14.2.4.2 Fission Product Transport 14. 2 .1. 6 Flange Leak Detection, Reactor Vessel 7. 5 .2 .6 Floor Drain Surge Tank 9.3.2:5I Floor Drain System 9.3.2.2

'Flow Control Recirc System 7.3.3 Flow Factor, *Kf 3.2.2.9 Flow Monitors (Recirculation) 7.4.5.2.2 Flow Regulating Station (Circulating Water/Canal) 2.2.4 Fluid Pipe Penetration 5*. 2. 2. 5

  • Flux Response to Rods 14.5.3 i

1060v

I~

FSAR INDEX

- F - Section

  • Fractional Control Rod Density FSAR Controlled Copy Recipient Fuel and Waste Storage Systems 3.3.4:4 1.1.1.4 Appendix B (B-29}

Fuel Assembly Isometric 3.4.2:1 Fuel Cladding Integrity Safety Limit 3.2.2.3 3.2.4.2 Fuel Cycle 3.3.4.1 Fuel Damage Limits 3.2.1.2 3.4.3.4 14.2.2.5.1 14.2.2.6 Fuel Design Analysis 3.4.3.3 Fuel Handling 10.1 13 .1. 3. 2 13.7.3.20

  • Fuel Handling and Storage Fuel Loading Fuel Mechanical Characteristics 1.2.1.8 1.2.2.8 13.8.2.1 3.4 Fuel Pool Cooling and Cleanup System 10.2 13.7.3.19 Fuel Pool Damage Protection 10 .1.4 Fuel Recovery Plant Appendix A (4.0}

Fuel Shipping Cask 10 .1. 2 .2 .2 10.1. 2 .3 Fuel Storage and Fuel Handling 10.1 Fuel Storage Criticality Appendix B (B-30}

Fuel Storage Pool (Spent} 10.1. 2. 2

-- Fuel Storage Vault 1060v ii 10.1. 2 .1

FSAR INDEX

- G - Section

  • - Gadolinium Bearing Rods Gaseous Radioactive Wastes Gaseous Waste Effluents 3.5.5.5 9.1 1.2.4.1 9.2 GE Startup Organization 13 .1. 2 .1 General Arrangement Crib House 12 .1. 3 :8 General Arrangement, Rx Bldg. 12.1.2:1-4 General Arrangement, Turb. Bldg. 12.1.3:1 General Conclusions 1.4 General Description (Reactor) 3.3.2 General Electric Safety Analysis 14.3 General Electric Topical Reports 1.1.2.1 Generating Station Emergency Plan (GSEP) 13.4.1
  • Generator Load Rejection Gee;> logy 11.2.3.2 7.7.1.2 2.2.3 Ground Level Radiation Dose- Appendix A (2.0)

Guide T~bes, CRD 6.5.2

  • 1067v i

FSAR INDEX

- H- Section Halon System 10.7.2 Head Cooling System (Rx) 10.5 13.7.3.26 Health Physics 7.6.5 9.5.5 9.5.5.5 Health Physics Instrument Inspection and Testing 7.6.5.3 Heat Generation Rate 3.2.2.2 3.4.3.2 Heating Boiler 13.7.3.14 Heating, Ventilating, and A-C System 10.11 Heat up 13.8.2.2 High Density Spent Fuel Storage Rack 10 .1. 2: 2 High Neutron Flux 7.7.1.2

H,igh Reactor Pressure 7.7.1.2 9.6 7.7.1.2 Histogram of XN-3 Predictions 3.2.2:11 HPCI 6.2.5 13.7.3.33 6.2.5:1-5 8.2.3 HPCI Room Coolers 10.9.3 HPCI Tests and Inspection 6.2.5.4 HRSS 9.6 Hydraulic Control System (CRD) 3.5.3.3 Hydraulic (Reactor) Characteristics 3.2 Hydro Tests 13.7.3.16

  • Hydrodynamic Stability 1046v i

7.2.2.2

FSAR INDEX

- H- Section

14. 2 .1.8 6.8.1.2 6.8.1.1 Hydrogen in Containment Effects 6.8.1.3 Hydrology 2.2.4 Hypochlorite Chemical 10.9.2
  • 1046v ii

FSAR INDEX Section

- I -

Identification, CRD 14. 2 .1.1 Identification of Contractor 1.3 IEEE 279 7.4.5 Impact Forces 14.2.3.7 Industrial Facility Near Station 2.2.2:2 In-Core Probe (TIP) 5.2.2.7 8.2.2.3 Inerting System 6.8.3.2 Initial Operating Personnel 13 .1.4 .1 Initialisms and Acronyms 1.1.2.1 Inservice Inspection 4.3.4.2 Inspection and Testing of Condensate and Feedwater 11.3 Ins~ection and Testing of Core Spray 6.2.3.4 Inspection and Testing of CRD Housing Support 6.6.4 Inspection and Testin_g of Diesel Generators and Batteries 8.3 Inspection and Testing of Drywell and Suppression Chamber 5.2.4 Inspection and Testing of Health Physics Instruments 7.6.5.3 I

Inspection and Testing of HPCI 6.2.5.4 Inspection and Testing of Isolation Condenser 4.5.4 Inspection and Testing of Low Pressure Coolant Injection 6.2.4.4 Inspection and Testing of Off gas and Ventilation 9.2.4 Inspection and Testing of Main Steam 4.4.4 Inspection and Testing of Reactor 3.6.4

    • 106lv i

Cr FSAR INDEX

- I - Section Inspection and Testing of Reactor Coolant ~ystern 4.2.4 4.3.4 Inspection and Testing of Reactor Vessel 4.2.4 Inspection and Testing of Recirculation System 4.3.4 Inspection and Testing of Safety and Relief Valves 4.4.4 Inspection and Testing of Secondary Containment 5.3.4 Inspection and Testing of Standby Coolant Supply 6.3.4 Inspection and Testing of Standby Liquid Controi System 6.7.4 Inspection and Testing of Stearn Flow Restrictors 6.4.4 Inspection and Testing of Turbine 11. 2. 4 Inspection, Weld, Visual 12.1.2.4.4.1 Institutional Facilities Near Station 2.2.2:3 Instrument and Service Air System 10.8 13.7.3.12 Instrumentation and Control 7.1 Instrumentation and Control-Containment 6.8.3.4 Integrated Plant Safety Assessment etal (IPSEP) 14.4.0 Integrated System Design Evaluation 6 ~ 2. 7 Inter-Plant Effects of Accidents 1.2.4.5 Interaction of Units 1,2, & 3 1. 2 .4 Interconnection, Electrical Network 8.2.1 Intermediate Range Monitor (!RM) 7.4.4 Introduction and Summary 1.1.

Iodine Activities 9.2.5 Iodine (I-131) Release Appendix A (3-4)

IRM 7.4 ii 106lv

I FSAR INDEX

- I - Section Isokinetic Sample 7.6.2.4.2 Isolation Condenser Inspection and Testing 4.6.4 Isolation Condenser Vent Monitor 7.6.2.9 Isolation Condenser - Piping Diagram 4.6.2:1 Isolation Valves 5.2.2.6 5.2.4.3 13.7.3.18 Appendix B (B-27)

Isotope N16 7.6.2 Isotopes in Liquid Waste Discharger 9.3.3 Investigative Function 13.6.2

  • 106lv iii

FSAR INDEX

- J - Section

  • Jet Pump Efficiency Jet Pump Isometric Jet Pump Operation 4.3.3.1 4.3.2:2 4.3.2.2 Jet Pump Stability 4.3.3.2
  • 1047v i

FSAR INDEX

- K- Section

  • 1048v i

FSAR INDEX

- L - Section

  • Laboratory Radiation Measuring Inst Lake 7.6.5 2.2.4.1 2.2.1:2 Land Use 2.2.2.2 Leakage of Reactor Internals During Rec ire Line Break . 3.6.3.5 Leakage Rat~ Test, Rx Bldg 13.7.3.41 Lighting System 10.13 Limiting Safety System Settings 3.2.4.1 Liquid Radioactive Waste Discharge Monitorln~ 7.6.2.8 9.3 Liquid Waste Effluents 1.2.4.2 Liquid Waste Performance Analysis 9.3.3

\

Load Diagrams 12 .1. 2. 28

  • Load Set Mechanism LOCA's 7.3.3.2.C 1.2.5.2 5.2.3:2 Loe.al Limits During Operations 3.2.2*

Local Power Range Monitor (LPRK) 7.4.5.1 Local Power Peaking 3.3.4.2 Lock and Dam 2.2.6.1 2.2.6:1 Loss-of-Control Room 14.2.5 Loss-of-Coolant Accident 14.2.4 Loss of EHC System Oil Pressure 11.2.3.2 7.7.1.2 Loss of Feedwater 11:3.3:2-3C Low Reactor Water Level 7. 7 .1: 2

  • 1062v i

FSAR INDEX

- L - Section

  • LPCI 6.2.4 13.7.3.33 6.2.4:1-6 8.2.3 LPCI Inspection and Testing 6.2.4.4 LPCI Room Coolers 10.9.3 LPRM 7.4.5:2-8 7.4
  • *1062v ii

FSAR INDEX

- K- Section Kain Condenser Condensate 7.8.2 Kain Steam 4.4 14.2.3:1 Kain Steam Flow Restrictors 6.4 Kain Steam Isolation Valve 5.2.2:9 7.7.2:2 14.2.3:1 11.2.3:4-6 "L--.

Kain Steam Line Break Outside Drywell 14.2.3 Kain Steam Line Flow Restrictor 6.4.3:1

  • Kain Steam Line Isolation Valve Closure 14.2.3.3 Kain *Steam Line Koni toring 7.6.2.2 Kain Steam Line Radiation Monitoring system 7.6.2:1 Kain steam Line Restrictors 6.1.2.2 6.4.2
  • Kain Steam System Inspection and Testing Maintenance Department*

Makeup Water System 'j 4.4.4 13 .1. 3. 4 10.12 13 .. 7. 3. 8 MAPLHGR 7.4 Ka~t~r Flow Controller 7.3.3.2 Mathematical Model 12.1.2:5-7 Maximum Rate of Load Change 11.2.3.3 Maximum Recycle System 9.3.2:5J-M Maximum Rod Worth 3.3.4:6 KCPR 7.4 Mechanical Design Limits (Fuel) 3.4.3.1 Mechanical Vacuum Pump System 11.2 .2

  • 1068v

/"

i

FSAR INDEX

- M- Section

  • Medical Exam Program Metal-Water Reactions Meteorology
9. 5. 5. 7 5.2.3.4 2.2.5 Meteorological Factors Appendix A (2.1)

Midwest Fuel Recovery Plant Appendix A (4.0)

Minimum Shift Manning Requirements 13 .1.4. 2 Missile Protection Appendix B (B-25)

Mixture Impact Forces 14.2.3.7 Moderator Rod Worth 3.3.4:5 Moderator Temp. Coefficient of Reactivity 3.3.5:6 Moderator Void Coefficient of Reactivity 3.3.5:7 I-Monitoring Systems, Personnel 9.5.5.2 Motor - Generator Sets 7.3.3 Movement of Control Rods 7.3.2 MSIV 11.2.3.2 MSIV Closure Time 14.2.3.8

  • 1068v ii

FSAR INDEX

' - N- Section

  • N16 Isotope NOT Requirements 7.6.2 Appendix B (B-26)

Nearby Facilities - Potential Hazards 2.2.2.3 NEBS Instrumentation Systems 13.7.3.36 Negative Feedback 7.2.2.1 Network Interconnection 8.2.1 Neutron Flux Level 7.4.2 Neutron Monitoring Reliability 8.2.3.2.3 New Features 1. 2. 5 New Fuel Storage Vault 10 .1. 2 .1 Noble Gas Release Appendix A (3.3)

Normal Operation Characteristics 3.2.3 NPSH 4.3.2:3 NPSH for ECCS Pumps 6.2.7.9 NSS Supply, Material Appendix E (2.2.2)

NSS Periodic and On-Demand Programs, Computer 7.11.3.4 Nuclear Analysis Methods 3.5.5.4 Nuclear and Process Parameters 14.5 Nuclear Characteristics 3.3 Nuclear Instrumentation 7 .4 Nyquist Plot of Open-Loop Response 7. 2. 3: 7

  • 1063v i

FSAR INDEX Section Off-Gas and Ventilation Inspection and Testing 9.2.4 Off-Gas Radiation Monitoring System 7.6.2:2 9.1 Off-Gas Treatment System 9.2.2:1 Off-Site Dose, Hydrogen Addition 14. 2 .1.8 Off-Site Electrical Power System 8.2.2.2 8.2.1.4 Off-Site Power and ECCS 6.2.7.5 Operability of the Units 1.2.5.3 On-Site Electrical Power System 8.2.2.1 On-Site Environs Radiation Monitoring System 9.5.4 Operating Basis Earthquake (Piping) 12 .1. 2. 4 Operating Basis (Reactor) 3.2.2.1

  • Operating Group Operating Limit Heat Generation Rate Operating Limits (Reactor) 13 .1. 3 .1 3.4.3.2 3.2.1.3 Operating Procedures 13.3 Operational Description Recirc System 4.3.2.3 Operational Description of Recirculation Pumps 4.3.2.3 C & D Operational Design Guide and Conformance 7.2.4 Operational Training 13.2 Organization and Responsibility 13.1 Organization of Report 1.1. 2 Overall Quality Program . Appendix E (3.1) 138 KV System 8.2.1.3 13.7.3.3
  • 1049v i

FSAR INDEX Section

  • 115 Volt Systems 125 Volt DC Station Battery System

' 13.7.3.7 8.2.2:2

  • 1049v ii

FSAR INDEX

- p - Section

( 3. 5) .

Peak Fuel Enthalphy 14.2.1:1-3 Pedestal, Reactor 12 .1.2. 5 Penetrations, Testing of Appendix B (8-27)

Performance Analysis (Rad Waste) 9.2.3 9.3.3 Performance Analysis (Shielding) 12.2.3 Performance Characteristic for Normal Operation 3.2.3 Performance Evaluation of Reactor Vessel, Internals 3.6.3 Performance Evaluation Recirc System 4.3.3 Performance *Predictions Recirc System 4.3.3.3 Peripheral Equipment, Computer 7.11.3.2 Personnel Monitoring Systems 9.5.5.2 13.4.2.2 Personnel Protection Equipment 9.5.5.3 13.4.2.3 Personnel Qualifications 13 .1. 4 Personnel Training 13.2.1:1 Physical Description Reactor Coolant System 4.3.2.1 Piping 12 .1. 2 .4 12 .1. 3 .4 Pipe Penetrations 5.2.2.5 5.2.4.2 5.3.2.3 Pipe Whip Criteria ECCS 6. 2. 7 .7 Plant Comparative Evaluation Appendix B i

1069v

FSAR INDEX

- p - Section

  • Plant Description Plant Design Plant Effluents 1.2 1.2.3:1 Appendix B (B-31)

Plant Electrical Cabling 8.2.2.3 Plant Heating Boiler 13. 7 .. 3 .14 Plant Safety (SEP) 14.4.0 Plant Stability Analysis 7.2 Plot Plan 12.1.1:1 Plume Reflection Effects Appendix A (2.1.3)

Pool, Spent Fuel Storage 10 .1. 2 Population Data 2.2.2.1 2.2.2:1

  • Portable Fire Extinguishers Portable Instrumentation Post-Accident Radiation Levels 10.7.2 9.5.5.6 12.3.1-1 Potential Hazards Due To Nearby Facilities 2.2.2.3 Power Flow Map 3.2.3:3 Power Range Instruments 7.4.5 Power Transient Analysis 14. 2 .1.4 Pre-Operational Training 13.2.1 Pre-Operational Test Program 13.7 Precautionary Planning 13.4 Pressure Forces During Blowdown (Reactor) 3.6.3.2 Pressure, Reactor Vessel 7.5.2.2 Pressure Regulator and Turbine-Generator Controls 7.8.1 ii 1069v-

FSAR INDEX

- p - Section

  • Process and Instr~mentation Process Computer

\

System Equip Chart 1.1.2:1 7 .11 8.2.2.4 Process Liquid Monitoring 7.6.2.7

.Process Radiation Monitoring 7.6.2 Property Plat 1.2.2:1 Protection E~uipment, P~rsonnel 9.5.5.3 Protection Systems 7. 7 Pump Back System 10.8.2 Purge, Vent, and Inerting System 6.8.3.2

  • 1069v iii

FSAR INDEX

- Q- Section

  • Quality Assurance Records Quality Control Reports Appendix E (3. 7)

Appendix E

  • lOSOv i

FSAR INDEX

- R-Section Racks, High Density Spent Fuel Storage 10.1. 2 Radiation Control Standards 13.4.2 Radiation Dose (Fuel Pool) 10.1. 2. 2. 2 Radiation Levels, Post-Accident 12.3 Radiation Monitoring Systems / 1.2.2.7 2.3 7.6 7.6.4 Radiation Protection Procedures 1.2.2.11 Radiation Protection 9.5 Radiation (High) Sampling System 9.6 Radiation Shielding (HRSS) 9.6.3.0 Radiation Zones 9.5.5.1 Radioactive Waste Control 1. 2. 2 .12

  • Radioactive Waste Disposal Radiological Effects 9.1 1.2.1.6 13.7.3.35
14. 2 .1. 5 14.2.3.10 14.2.4.2 Radiolo~ical Factors Appendix A (2.2)

Radiolysis 6.8.1.2 Radwaste Air Sparging System 10.8.2 Radwaste Building 12 .1. 3. 2 Radwaste Process Systems Radwast~ Ventilation 13.7.3.44 Ramp Rate 7.3.6.3 Rate of Response (CRD) 3.5.3.1

  • 1064v i

FSAR INDEX

- R - Section RBCCW (Reactor Building Closed Cooling Water) 7.6.2.7 10.10 13.7.3.15 Reactivity Control 3.3.4.3 3.3.5.1 3.5 Reactivity Insertion Accidents 1.2.5.1 Reactor* Slowdown 5.2.3.3 Reactor Building 5.3 5.3.2.1 12 .1. 2 .1 Reactor Building Air Monitoring 7.6.2.5 Reactor Building Closed Cooling Water System 7.6.2.7 10.10 13.7.3.15 Reactor Building Crane 10 .1.2. 2 .2

Reactor Control Systems 7.3 Reactor Core* 1.2.1.1 Reactor Core and Channel Hydrodynamic Stability 7.2.2.2

  • 1064v ii
7. 2. 3. 3

FSAR INDEX

- R- Section Reactor Core Conformance 7.2.4.3 Reactor Core Cooling System 1.2.1.2 Reactor Core Shutdown 14.2.3.4 Reactor Design Basis 3.2.1.1 Reactor Operating Limits 3.2.1.3 Reactor Pedestal 12 .1. 2. 5 Reactor Pressure Control 7.3.5 Reactor Pressure Vessel Design Appendix D Reactor Protection System 7. 7 .1 13.7.3.37 Reactor Protection System Surveillance and Testing 7.7.1.4 Reactor Recirculation System 13.7.3.31 Reactor Relief Valves 4.5.2 Reactor Shutdown Cooling System 10.4 Reactor Systems 1.2.2.3 3.1 Reactor Vessel 4.2 4.2.1:1 Reactor Vessel Components 13.7.3.27 Reac~or Vessel Designed Cycles 4.2.1:1 Reactor Vessel Ele~troslog Weld Report Appendix F Reactor Vessel Head Cooling System 10.5 13.7.3.26 7.6.2.7 Reactor Vessel Instrumentation Surveillance and Testing 7.5.4 Reactor Vessel Isometric 4.3.2:1 Reactor Vessel Hydro 13.7.3.16 Reactor Vessel Instrumentation 7.5 13.7.3.28 9'

iii 1064v

FSAR INDEX

- R- Section Reactor Vessel Internals 3.6 Reactor Vessel Lateral Supports 4.2.2:1 Reactor Vessel Nozzle Safe Ends 4.2.2.1 Reactor Vessel Inspection and Te~ting 4.2.2 Reactor Vessel Supporting Structure and Stabilizers 12 .1. 2. 5 Reactor Water Cleanup Piping Diagram 10.3.1:1 10.3.2 Reactivity Control Appendix B (B-15)

Recipient, FSAR Controlled Copy 1.1.1.4 Recirculation Flow Monitors 7.4.5.2.2 Recirculation Line Break 3.6.3.5 Recirculation Pumps Operational Description 4.3.2.3.C & D Recirculation Speed Control Network 7.3.3:1 Recirculation System 4.3 13.7.3.31 Recirculation System Analysis 4.3.3.4 Recirculation System Inspection and Testing 4.3.4 Records 13.5 Appendix E (3.7.1)

Recreational Facility Near Station 2.2.2:3 Refueling 10 .1.2 .3 Refueling Accident 14.2.2 Refueling Accident Procedural Safeguards 14.2.2.3 Refueling Pool Airborne Effects 14.2.2.6 Regional and Site Meteorology 2.2.S Relative Bundle Power Histogram 3.2.2:1 & 3 i i ii 1064v

FSAR INDEX

- R- Section

  • Release of Activity to Environment (Liquid)

Relief and Safety Valves 9.3.3 Appendix B (B-31) 4.5 13.7.3.30 Reliability of Protection Systems Appendix B

( B-12 )"

Reportable Occurrence 13.6.2.2 Resumes of Startup Personnel Appendix H Review and Investigative Function 13.6.2 Ring Header 5.2.3:18-23 Rod Block Monitor (RBM) 7.4.S.3 7.4.S.4 Rod Drop Accident Analysis 12 .1.4. 6 14.2.1:4 Rod Movement Tests 7.2.6.2

  • Rod Worth Mini~izer 7.9 13.7.3.38

\

  • 1064v iii ii

FSAR INDEX

- T - Section

  • T-Quencher Technical Spec. Development Technical Staff 4.5.2 3.2.4 13 .1.3. 3 Temperature, Reactor Vessel 7.5.2.1 Test Schedule, Pre-operational 13.7.2 Testable Check-Isoiation Valves 6.2.3.4 Testing and Surveillance (Reactor) 3.4.4 Thermal (Reactor) Characteristics 3.2 Thermal Shock Effect*s on Core Internals 3.6.3.3 Thermal Shock Effects on Reactor Vessel Components 3.6.3.4 Thermal Sleeves, Feedwater Nozzle 6.2.5.3.4 TIP 7.4.2 Topical Report (CECo) 13.2.2 Topical Report (GE) 1.1.2.1 Tornadoes 2.2.5.l Torus 5.2.2.3 5.2.3:17 Torus Seismic Analysis 5.2~3:2 Torus Water Contamination 6.2.7.8 Total System Conformance 7.2.3.4 7.2.4.4 Transient Operating Conditio~s 3.2.4.3 Traversing Incore Probe (TIP) 5.2.2.7
7. 4. 5. 5 Trend Records 7.11.3.3 Turbine 11. 2. 2 Turbine Building 12 .1. 3 .1 i

1052v r

FSAR INDEX

- T - Section Turbine Building Cooling Water System 13.7.3.10 10.9.2 Turbine Building Ventilation 13.7.3.44 Turbine Bypass System 11. 2. 2 Turbine Condenser 11. 2. 2 Turbine Generator 11.2 13.7.3.43 Turbine Generator Controls 7.8.1 Turbine Generator System 11. 2. 2 Turbine Plant Control Systems 7.8 Turbine Steam Handling Equipment 12.2.2.6 Turbine Stop and Bypass Valves 11. 2 .4 Turbine Stop Valve Closure 7.7.1.2 Turbine System 1.2.2.9

11. 2. 3 Turbine Trip Without Bypass 3.2.2:10 Turnkey Projects Operation Appendix E (2.2-1)

Typical Core Lattice Unit 3.4.2:2 345 KV System 8.2.1.2 13.7.3.4 220 Volt and 115 Volt Ac Systems 13.7.3.7 250 Volt DC Station Battery System 8.2.2:1 ii l052v

FSAR INDEX

- s - Section

. 10.13 .3 6.7 7.3.4 13.7.3.25 Standby Liquid Control System Inspection and Testing 6.7.4 Startup and Power Test Program 13.8 Startup Program, Preoperational 13.7.1 Startup Tests Inst and Control 7.2.6.2 Station Access 13.4.3 Station Arrangements - 1.2.2.2 2.2.1:1 station Batteries 8.2.3.2 8.3.2 Station Computer Power Supply 8.2.2.4 Station Distribution System 8.2.2

  • Station Fire Protection System Station Generated Procedures Station Grounding-Construction Tests 10.7 & 13.7.3.11 13.3 13.7.3.1 Station Instrument and Service Air System 10.8 Station Organization/Management 13 .1. 3 Station Procedure Designations and Categorie~ 13.3.0:1 Steady State 3.3.4 Steam Flow 7.5.2.5 Steam Flow Restrictors 6.4 Steam Handling Equipment, Turbine 12.2.2.6 .

Steam Jet Air Ejectors 11. 2. 2 Stock System 9.4.2.1 Structures anq Equipment 12 .1.1.1 iii 105lv

FSAR INDEX

- s - Section

  • Structural Design and Shielding Stock Rod Margin Summary Evaluation of Safety
  • 12.l 3.3.4:3 1.2.2.13 Summary of Off-Site Doses from Accidents 1.2.2:2 Summary of Pre-operational Test Content & Sequence 13.7.3 Summary of Technical Data 1.2.3 Supplementary Control 3.5.5 Suppression Chamber and Drywell Inspection and Testing 5.2.4 Surveillance and Testing of Control Rods 3.5.4 Surveillance and Testing of Nuclear Instruments 7.4.5.6 Surveillance and Testing of Primary Containment Isolation 7.7.2.4 Surveillance and Testing of Reactor 3.4.4 3.5.4 Surveillance and Testing of Reactor Protection System 7.7.1.4 Surveillance and Testing of Reactor Vessel Instrumentation 7.5.9 System Performance Transients 6.2.7.2

\

  • 1051v iiii

FSAR INDEX

)*

- T - Section

  • Technical Spec. Development Technical staff Temperature, Reactor Vessel 3.2.4 13 .1. 3. 3 7.5.2.1 Test Schedule, Pre-operational 13.7.2 Testing and Surveillance (Reactor) 3 .4 .4.

Thermal (Reactor) Characteristics 3.2 Thermal Shock Effects on Core Internals 3.6.3.3 Thermal Shock Effects on Reactor Vessel Components 3.6.3.4 Thermal Sleeves, Feedwater Nozzle 6.2.5.3.4 TIP 7.4.2 Topical Report (CECo) 13.2.2 Topical Report (GE) 1.1.2.1

  • Tornadoes Torus Torus Seismic Analysis 2.2.5.1 5.2.2.3 5.2.3:17 5.2.3:2 Torus Water Contamination 6.2.7.8 Total System Conformance 7.2.3.4 7.2.4.4 Transient Operating Conditions 3.2.4.3 Traversing lncore Probe (TIP) 5.2.2.7
7. 4. 5. 5 Trend Records 7.11.3.3 Turbine 11.2 .2 Turbine Building . 12. 1. 3 .'1 Turbine Building Cooling Water System 13.7.3.10 10.9.2
  • 1052v i

FSAR INDEX

- T - Section Turbine Building Ventilation 13.7.3.44 Turbine Bypass System 11. 2. 2 Turbine Condenser 11. 2. 2 Turbine Generator 11. 2 13.7.3.43 Turbine Generator Controls 7.8.1 Turbine Generator System 11. 2. 2 Turbine Plant Control Systems 7.8 Turbine Steam Handling Equipment 12.2.2.6 Turbine Stop and Bypass Valves 11. 2 .4 Turbine Stop Valve Closure 7.7.1.2 Turbine System 1.2.2.9 Turbine Tests and Inspection 11. 2 .4

11. 2. 3 3.2.2:10 Turnkey Projects Operation Appendix E (2.2-1)

Typical Core Lattice Unit 3.4.2:2 345 KV System 8.2.1.2 13.7.3.4 220 Volt and 115 Volt Ac Systems 13.7.3.7 250 Volt DC Station Battery System 8.2.2:1

  • 1052v ii

FSAR INDEX

- u- Section Ultimate Performance Limit Criteria 7.2.3 Ultrasonic Resin Cleaners 9.3.2.4 Unit Auxiliary Power Supplies 1.2.4.3 Unit Control and Instrumentation 1.2.2.6 Unit-1 Spent Fuel 10.1. 2. 2 .1 Updated FSAR 1.1.1.3 1.1.1.4 i

1053v

FSAR INDEX

- v - Section

  • Vacuum* Pump System Vacuum Relief Velocity Limiter, CRD
11. 2. 2 5.2.2.9 6.2.5 Vent Pipes 5.2.2.2 Vent, Purge, and Inerting Systems 6.8.3.2 Venting and Cooling System 5.2.2.8 Ventilating 10.11 Ventilation and Off-Gas Inspection and Testing 9.2.4 Ventilation, Control Room 12.2.2.5 Ventilation, Drywell 13.7.3.40 Ventilation, Emergency 13.7.3.41 Ventilation, Reactor, Radwaste, and Turbine Bldgs 13.7.3.44 Ventilation Stack Monitoring, Reactor Bldg 7.6.2.6 9.2.2.1 Ventilation System Containment 5.2.4.4 Venturis, Hain Steam Line 6.4.2 Vessel Components, Reactor 13.7.3.27 Vessel Head Cooling System 10.5 Vessel Instrumentation 13.7.3.28 Vibration of Components (Rx Internals) 3.6.3.1 Visual Weld Inspection 12.1.2.4.4.1.3 Vulkene Insulation 8.2.2.3 i

1054v

FSAR INDEX

- w- Section Waste Concentrator System 9.3.2.3 Water Level, Reactor Vessel 7.5.2.3 Water System (Clased Cooling) 10.10 Water System (Service) 10.9 Weather, Wind Appendix G Weld Inspection, Visual 12.1.2.4.4.1.3 Well Water System 10.12,2:1 Wind Appendix G WINDOW 6.8.3.3.4 i

1065v

FSAR INDEX

- x-Section Xenon Equilibrium 6.7.1 Xeno.n Stability 3.3.5.2 7.2.4.S X-Area Coolers 10.9.2 10.9.3

  • lOSSv i

FSAR INDEX

- y - Section

  • 1066v i

FSAR INDEX

- z- . Section

  • -6. 8 .1.1
  • 1056v i

v TABLE OF CONTENTS

- DRESDEN UNITS 2 & 3 UPDATED FINAL SAFETY ANALYSIS REPORT SECTION 1 INTRODUCTION AND

SUMMARY

2 SITE 3 REACTOR CORE AND INTERNALS 4 REACTOR COOLANT SYSTEM 5 CONTAINMENT SYSTEMS 6 ENGINEERED SAFEGUARDS 7 CONTROL AND INSTRUMENTATION 8 ELECTRICAL SYSTEM 9 RADWASTE SYSTEM 10 REACTOR AUXILIARIES 11 TURBINE AND CONDENSATE SYSTEMS 12 STRUCTURES AND SHIELDING 13 CONDUCT OF OPERATION

e. 14 SAFETY ANALYSIS APPENDIX A CHIMNEY RELEASE RATE CALCULATION B PLANT COMPARATIVE EVALUATION WITH DESIGN CRITERIA c CONTAINMENT CERTIFICATIONS D UNIT 2 REACTOR PRESSURE VESSEL DESIGN E QUALITY CONTROL F REACTOR VESSEL ELECTROSLAG WELD REPORT G METEOROLOGICAL DATA H RESUMES FOR STARTUP PERSONNEL

-e

Rev. 4 June 1986 1i TABLE OF CONTENTS SECTION 1 -- INTRODUCTION*AND

SUMMARY

1.1 PURPOSE AND ORGANIZATION OF REPORT l.Ll-1 1.1.1

  • PURPOSE OF REPORT 1.1.1:-1 1.1.1.1 Introduction 1.1.1-1 1.1.

1.2 Purpose and Scope

of Safety Analysis Report 1.1.1-1 1.1.1.3 Updating of Original FSAR 1.1.1-2 1.1.1.4 FSAR Controlled Copy Recipient 1.1.1-2 1.1.2 ORGANIZATION OF REPORT 1.1. 2-1 1.1.2.1 General Format 1.1. 2-1 1.1.2.2 Revisions 1.1.2-1 1.2 PLANT DESCRIPTION 1. 2 .1-1 1.2 .1 PRINCIPAL DESIGN CRITERIA 1.2.1-1 1.2.1.1 Reactor Core 1.2.1-1 1.2.1.2 Reactor Core Cooling Systems 1. 2 .1-2 1.2.1.3 Containment 1. 2 .1-2 1.2.1.4 Control and Instrumentation 1. 2 .1-3 1.2.1.5 Electrical Power 1. 2 .1-3 1.2.1.6 Radioactive Waste Disposal 1. 2 .1-3 1.2.1.7 Shielding and Access Control 1. 2 .1-3 1.2.1.8 Fuel Handling and Storage 1. 2 .1-4 1.2 .2

SUMMARY

DESIGN DESCRIPTION AND SAFETY ANALYSIS 1.2.2-1 1.2.2.1 Design Bases Dependent On Site Characteristics 1.2.2-1 1.2.2.2 Station Arrangements 1. 2. 2-3 1.2.2.3 Reactor Systems 1.2.2-3 1.2.2.4 Containment Systems 1. 2. 2-4 1.2.2.5 Shutdown Cooling System and ECCS 1. 2. 2.,... 7 1.2.2.6 Unit.Control and Instrumentation 1. 2. 2-8 1.2.2.7 Radiation Monitoring Systems 1.2.2-9 1.2.2.8 Fuel Handling and Storage 1. 2. 2-9 1.2.2.9 Turbine System 1. 2 .2-10

1. 2. 2 .10 Electrical System 1. 2. 2-10 1.2.2.11 Shielding, Access Control, and Radiation Protection Procedures 1. 2. 2-10
1. 2. 2 .12 Radioactive Waste Control 1.2.2-11
1. 2. 2 .13 Summary Evaluation of Safety 1.2.2-11 1.2 .3

SUMMARY

OF TECHNICAL DATA 1. 2. 3-1

1. 2 .4 INTERACTION OF UNITS 1, 2, & 3 1.2.4-1 1.2.4.1 Gaseous Waste Effluents 1.2.4-1 1.2.4.2 Liquid Waste Effluents 1.2.4-1 1.2.4.3 Unit' Auxiliary Power Supplies 1. 2 .4-2 1.2.4.4 Common Auxiliary Systems 1. 2 .4-2 e 1.2.4.5 Inter-Plant Effects of Accidents 1. 2. 4-4 0013f OOOlf

1ii TABLE OF CONTENTS (Contd.)

SECTION 1 -- INTRODUCTION AND

SUMMARY

1.2.5 NEW FEATURES 1.2.5-1 1.2.5.1 Features l~hich Reduce the Probability and Magnitude of Potential Reactivity Insertion Accidents 1. 2. 5-1 1.2.5.2 Features Which Mitigate Effects of Postulated LOCA 1 s 1.2.5-1 1.2.5.3 Features Which Improve Operability of the Units 1.2.5-2 1.3 IDENTIFICATION OF CONTRACTORS 1. 3. 0-1 1.4 GENERAL CONCLUSIONS 1.4 .0-1

Rev. 2 June 1984 liv

  • 1.1.2:1 1.1.2:2 LIST OF TABLES -- SECTION 1~ INTRODUCTION General Electric Company Topical Reports Acronyms and Initialisms 1.2.2:1 Design Bases For Shielding 1.2.2:2 - S1.DT1mary of Maximum Off-site Doses From Postulated Accidents 1.2.3:1 Principal Features of Plant Design

Rev. 1 June 1983

  • . e .*LIST OF TABLES -~ SECTION 1~ INTRODUCTION liv LL2:1 1.2~2:1 General Electric Company Jbpical Reports Design Bases For Shfelding
  • I 1.2.2:2 .* Summary of Maximum Off-site Doses From Postulated AcCidents 1.2.3:1 Principal Features of Pl~nt Design*
.. ~ .

\

t * * * *

. ~'. ... '* *'.

'* .')

~ r .:

. I

. *. .. . . .. . . ~ . *.. ....  :- ~*-* -~ ......... - .

l

,olJ **- ,..... ..w.--.~. **-*------** *--- ---

Rev. 4 June 1986 1.1.1-2

The original FSAR and the associated docket files {50-237 and 50-249) are the basis for the licensing of the plant. In the event that a discrepancy exists between the original FSAR and the UFSAR, the original FSAR will be the final authority. The Technical Specifications may reference the UFSAR.

The UFSAR is revised annually as required in 10 CFR 50.7le. The UFSAR is designe*d to serve as a reference document, reflecting the current configuration of the plant, including information and analyses required by and submitted to the NRC since submission of the original FSAR, and containing the information in a contiguous format.

1.1.1.4 FSAR Controlled Copy Recipient

Subject:

FSAR Update Dresden Station has reviewed the FSAR for rev1s1ons, corrections,

  • and material information additions. The changes contained herein will become Revision 4 {June, 1986) to the FSAR .

The changes are in compliance with the 10 CFR 50.71{e) requirement to identify changes and which references the requirements defined in 10 CFR 50.59. The 50.59 report refers to changes in the facility as described in the FSAR, changes in procedures described in' the FSAR, and tests or experiments not described in the {original) FSAR.

All changes which have been implemented were previously reviewed to the 50.59 criteria and in our opinion do not constitute any additional unreviewed safety questions.

Dated n Manager Dresden Nuclear Power Station 0013f OOOlf

Rev. 3 June 1985 TABLE 1. 1. 2: 2

  • APR APRM ASME ACRONYMS AND INITIALISMS Automatic Pressure Relief average power range monitor American Society of Mechanical Engineers BTP Branch Technical Position BWR boiling-water reactor CE Co Commonwealth Edison Company CFR Code of Federal Regulations CSE Containment Systems Experiments CST condensate storage tank CVTR Carolina Virginia Tube Reactor DBE design-basis event DER design electrical rating DG diesel generator ECCS emergency core cooling system EHC electrohydraulic control EI&C electrical instrumentation and control FSAR Final Safety Analysis Report FTOL full-term operating license FWCI feedwater coolant injection GDC General Design Criterion(a)

GE General Electric Company gpm gallons per minute

~igh energy pipe break horsepower high-pressure coolant *injection Off ice of Inspection and Enforcement Instit~te of Electrical and Electronics Engineers Integrated Plant Safety Assessment Report IREP Integrated Reliability Evaluation Program IRK intermediate range monitor LCO limiting condition for operation LER licensee event report LOCA loss-of-coolant accident LPCI low-pressure coolant injection LPRM low power range monitor LWR light-water reactor MCC motor control center.

MCPR minimum critical power ratio MDC maximum dependable capacity MOV motor-operated valve mph miles per hour MSIV main steam isolation valve

  • MSL mean sea level MWe megawatt-electric MWt megawatt-thermal NRC U.S. Nuclear Regulatory Commission ORNL Oak Ridge National Laboratory PMF probable maximum flood PMP probable maximum precipitation POL provisional.operating license 0013f OOOlf

Rev. 3 June 1985 TABLE 1.1.2:2 .(Cont'd)

  • 0013f OOOlf

1.2.2-4 The core is assembled in modules of four fuel assemblies set in the interstices of a crucifonn control rod. This modular core fonn, common to all General Electric boiling water reactors, permits substantial increase in thennal power with a small increase in core diameter and at the same time preserves the reactivity control characteristics demonstrated in the

  • operation of Dresden Unit 1 and other General Electric power reactors.

The reactor pressure vessel contains the reactor core and structure, steam separators and dryers, jet pumps, control rod guide tubes, and feed-water, emergency core cooling system (ECCS), and standby liquid control spargers and other components as shown in Figure 3.6.2:1. The inside diameter of the vessel is approximately 21 feet and the inside height between heads is approximately 68 feet. The main connections to the reactor vessel include the steam lines, jet pump lines, feedwater lines, and control rod drive thimbles. Other connections are provided for the isolation condenser system, standby liquid control system, ECCS, and in~trumentation syste~s.

The fuel for the reactor core consists of uranium dioxide pellets contained in sealed Zircaloy-2 tubes.

These fuel rods are assembled into square arrays in individual assem-blies. The original assemblies were of a 7x7 configuration; later designs introduced in subsequent fuel cycles were of an 8x8 configuration. The fuel enrichment is varied from rod to rod within an assembly to achieve desired neutron flux characteristics. Some water rods may be included, and gadolinium is used in some rods as a burnable poison, in the fonn of Gd 2 03 -U0 2

  • Each fuel assembly is surrounded by a Zircaloy-4 flow channel.

Water serves as both the moderator and coolant for the core.

The control rods consist of assemblies of 3/16-inch diameter, sealed, stainless steel tubes filled with compacted boron carbide powder and held in a crucifonn array by a stainless steel sheath of 1/16 inch wall thickness fitted with castings at each end. The design of such control rods is almost identical with those which have been used successfully in Unit 1 for more than six years except that control rods of current design are longer *due to the use of longer fuel assemblies. The control rods are of the bottom entry type and are moved vertically within the core by individual, hydraulically operated, locking piston type control rod drives .

The control rod drive hydraulic system is designed to allow control rod withdrawal or insertion at a limited rate, one rod at a time , for power level control and flux shaping during reactor operation. Stored energy available fran gas charged accumulators and from reactor pressure provides hydraulic power for rapid simultaneous insertion of all control rods for reactor shutdown. Each drive has its own separate control and scram devices.

The systems for reactivity control are of the same design as those used in the Oyster Creek and Nine Mile Point Plants, including two features which provide improved plant safeguards.

1.2.3-1 1.2 .3

SUMMARY

OF TECHNICAL DATA Design features and data appropriate to achieve a reactor thermal output of 2527MW are summarized in Table 1.2.3:1.

TABLE 1.2.3:1 PRINCIPAL FEATURES OF PLANT DESIGN Site Location Dresden Site, County of Grundy, State of Illinois Size of Site 953 Acres plus 1275 acre cooling lake Site and Plant Ownership Commonwealth Edison Company Plant Net Electrical Output 809 MW Gross Electrical Output 850 mi Net Heat Rate 10,648 Btu/kw-hr Feedwater Temperature 340.1 F Thermal and Hydraulic Design Design Thennal Output 2527 M~*Jt

  • Reactor Pressure (dome) 1020 psia 6 Steam Fl ow Rate 9.765 x 10 lb/hr Recirculation Flow Rate 98 x 10 6 lb/hr Fraction of Power Appear- 0.965 ing as Heat Flux GE GE GE 7x7 8x8 8x8R/P8x8R Power Density 41.08 kw~l i ter 41.09 40.74 Heat Transfer Surface Area/ 86.52 ft 97.6 94.9 Assembly 2 Average Heat Flux 131,200 Btu/(hr-ft 2 ) 117 ,100 120,400 Maximum Heat Flux 405,000 Btu/(hr-ft ) 354,400 362,000 Maximum U0 2 Temperature 3470°F Average Volumetric Fuel Temp. 1050°F Core Subcool i ng 22.4 Btu/lb Core Average Void Fraction, 0.299 Active Coolant Core Average Exit Quality 0.101 Minimum Critical Power Ratio 1.06 1.06 1.07 Safety Limit

1.2.3-2 TABLE 1.2.3:1 (Contd.)

PRINCIPAL FEATURES OF PLANT DESIGN Nuclear Design Enrichment No. of rods Wt % U-235 per assembly Initial Fuel Enrichment: 2.44 30

( 7x7 assembly) 1.69 16 1.20 3 Typical Reload Fuel Enrichment: 3.8 14 (8DRB265H 8x8 assembly) 3.0 27 2.4 2 2.0 14

1. 7 4 1.3 1 water rods 2 GE GE GE 7x7 8x8 8x8R Water/U0 2 Volume Ratio 2.41 2.60 2.76 Core Average Neutron Flux Thenna 1 3.50 x 10 13 13 n/cm 22-sec 1 Mev 3.67 x 10 n/cm -sec Burnup target (average assembly) 28 ,ooo MvJD/ton Power Coefficient for xenon stability More negative than

-.Ol(dK/K)/(dP/P)

Design Operating Heat flux peaking factors:

Relative Assembly 1.47 1.47 Axial 1.57 1.57 Local 1.30 1. 30 Overpower 1.20 Gross 3.60 3.00

. Reactivity Control:

Cold shutdown keff all rods inserted 0.96 0.96 Cold shutdown k ff rod of maximum 0.99 0.99 worth stuck fO out

1. 2. 3-3 TABLE 1.2.3:1 (Contd.)

PRINCIPAL FEATURES OF PLANT DESIGN Design Operating Standby liquid control shutdown, 0.16 dkeff Minimum Critical Power Ratio: 1.07 1.39 Linear Heat Generation Rate (kw/ft):

7x7 fuel 17.5 17.5 GE 8x8 fuel 13.4 13.4 ENC fuel 14.9 14.9 Hot Approximate Coefficients: Cold (no voids) Operating Moderator Tern~. Coefficient -8.9xl0- 5 -17.0xl0- 5

[ ( d k/ k ) I °FJ Moderator Void Coefficient less than_ 3 -1.0xlO -3 -1.4x10- 3

[ ( dk/k) /% Void]

Fuel Temp. (Doppler) Coefficient -l~~~~~l~ -1.2xl0- 5 -1.2x10- 5

[(dk/k)/°F]

Excursion Parameters:

1* Prompt Neutron Lifetime 48.9 microseconds

.B Effective Delayed Neutron Fraction .0058 Core Equivalent Core Dia. 182. 2 inches Circumscribed Core 189.7 inches Diameter Core Lattice Pitch 12 inches (4 assemblies/unit cell)

Number of Fue 1

,l\ssemb 1i es 724 Fuel Assembly GE GE GE ENC 7x7 8x8 8x8R/Px8x8R 8x8 Fuel Rod Array 7x7 8x8 8x8R/P8x8R P8x8 Fue 1 Rod Pitch 0.738 in. 0.640 0.640 0.641 Weight of U0 2 per 492.5 lbs. 458.6 441.6 434.4 Fuel Assembly Channel Material Zircaloy-4 Zircaloy-4 Zircaloy-4 Zircaloy-4 Total Assbly plus 678.9 lbs. 650 650 580 Channel Weight Fuel Rods 49 63 62 63 Water Rods 0 1 2 1

1. 2 .3-4 TABLE 1.2.3:1 (Contd.)

PRINCIPAL FEATURES OF PLANT DESIGN Fuel Rod, Cold GE GE GE ENC 7x7 8x8 8x8R/Px8x8R 8x8 Fuel Pellet Dia. 0.488 in. 0.416 0.410 0.405 Cladding Thickness 0.032 in. 0.034 0.034 0.035 Cladding O.D. 0.563 in. 0.493 0.483 0.484 Active Fuel Length 144 in. 144 145.24 145.24 Lgth of Gas Plenum 11.22 in. 11.24 9.48 10.06 Fuel Material U0 2 U0 2 U0 2 U0 2 Cladding Material Zircaloy-2 Zircaloy-2 Zircaloy-2 Zircaloy-2 Fi 11 Gas He He He He Fill Gas Pressure 1 atm 1 atm 1 atm/3 atm 3 atm Movable Control Rods Number 177 Shape Cruciform Pitch 12.0 in.

Stroke 144 in.

\4 i dth 9.75 in.

Control Length 143 in.

Control Material ~a c granules in stainless steel tubes and sheath Number of Cntrl Mtrl Tubes per Rod Tube Di mens i ans 0.188 in. o.d. x 0.025 in. wall Temporary Control Curtains Number 340 Shape Flat sheet Width 9.20 inches Thickness 0.0625 inches Control Length 141.25 inches Control Material Stainless steel containing 5400 ppm natural boron Curtain Locations Between fuel assemblies in water gaps without control rods.

Burnable Neutron Absorber Control Material Gd 2 03

  • Location Mixed with U0 2 in several fuel rods per fuel assbly Concentration Location and reload dependent.

Reactor Vessel Inside Diameter 20 ft.-11 in.

Overall Length Inside 68 ft.-7-5/8in.

Design Pressure 1250 psig

Rev. 1 June 1983

      • - TABLE OF CONTENTS SECTION 2 -- SITE 2i Page .

2.1 INTRODUCTION

2.1. 0-1

2.2 DESCRIPTION

Of SITE AND ADJACENT *AREAS 2. 2.1-1.

2;2;1 SITE 2.2.-1-1*.

2.. 2 .1.1 Site Size and Location , : .

2. 2.1-1 ...
  • 2:. 2.1.2 Site Ownership . '*2 .. 2.1-1 2.2~1.3
  • Location of the Units on the.Site 2.2.1-1:'

2.2.1.4' Oth~r Activities on. the Site . 2.2.1-2 2.2.1.5 Access to the Site

  • 2.2.1-2 2.2.1.6 Exel us ion Area . 2.2.1-3;
2. 2. 2 . POPULATION AND LAND USAGE IN ADJACENT AREAS 2.2.2-1 2.2.2.1 Popu 1at ion Data 2:2.2.2 Land Use .. *

'2.2.*2.J POTENTIAL. HAZARn°S DUE TO)IEARBY FACilITIES .* ' *,* 2. 2~ 2::.6: *_<;, *: :. ':

2 2 '2 3 1 :INTRODUCTION: **.. * * .. . *.. * .* ' *. "* 2*; 2'. 2:;.6 .* '.**,*. *: :. ;*; ' ': <<

,. ' .. 2*:i:*2 . : f 2 *.. HAZARDS FROM* EXPLOSIONS. *. .* ..

  • i . *. . 2.2.2..:.6'. *:

. ***e 2:2.2.3.2.1 *

  • industrial Facilities*

.2.2.2.J .. 2.2 * ~ighway Transportati~n

2. 2'. 2. 3. 2. 3 Rail way Transportatfori 2~2.2-6 ;

.2.2*. 2-8 2... 2. 2~9 .

. 2.2.2~3.2.4 vJaterway Transportation 2. 2. 2;..10 2.2.2.3.2.S: Military Facilities 2.2.2-10.*.

2.2.2.3.2.6

  • Pipelines 2. 2 .. 2-1 L
2. 2.. 2. 3. 3
  • HAZARDS FROM. VAPOR CLOUDS AND FIRES 2.2. 2-n.,. *..

2.2.~2.3.4 *. HAZARDS FROM TOXIC CHEMICALS. 2 .. 2.2-11' 2.2.2.3.5 HAZARDS FROM COLLISION WITH THE INTAKE 2. 2.2-n STRUCTURE

. 2.2~.2.3.6 HAZARDS FROM .

LIQUID SPILLS. . .

z. 2. 2:.12 2*. 2 *. 2 *. 3. 7 HAZARDS FROM AIRCRAFT. 2.2.2-12
  • *2. 2. 2. J. 7 .1 Airports 2.2.2~12 2.2 *.Z.3.T.2 Airways* 2. 2. 2-1.4 2 .. 2:.2*.

3.8 CONCLUSION

S 2.2.2;..15

  • 2.2.2~

3.9 REFERENCES

2.2.2-16 I*.'.

Rev. 2 June 1984 2i ii LIST OF FIGURES -- SECTION 2, SITE 2.2.1:1 Station Property Plan 2.2.1:2 Cooling Lake General Arrangement 2.2.2.3:1 Dresden Nuclear Power Station Area Map 2.2.2.3:2 Pipelines Considered in the Evaluation of Hazard From Explosion 2.2.4:1 Cooling Water Flow Diagram -- Unit 2/3 2.2.4:2 Dresden Cooling Lake Dam 2.2.6:1 Site Flow Diagram at Illinois River Above Dresden Island Lock and Dam 2.2.6:2 General Arrangement .-- Crib House

2iii LIST OF TABLES -- SECTION 2, SITE 2.2.2:1 Population Centers .Surrounding Station 2.2.2:2 Industrial Facilities Near Station 2.2.2:3 Recreational and Institutional Facilities Near Station 2.2.5:1 Distances From Release Points To Various Points Near Site

.I.:

    • e* .......
    • Table 2.?.*2~_3:l Assessment Summary

.' '1 HAZARD .*. REPORT .

  • NUMBER SOURCE OF POT~NTIAL HAZARD *... SECTION*. DESIGN BASIS EVENT?

Explosion from:*.

l* Industrial facilities* ,2.1 . No, based Qh adequatE? separation distance**

2 Highway transportation *2 .. 2 ' No ? based on adequ~te separation distance 3 Railway transportation *2:3' ' No, .based on. adequate separation distance 4 Watt;!rway transportation '2.4' No, based on adequate separation di~tance 5 Military facilities ,* 2. 5 No, based .on adequate separatigg distance 6 Pipelines 2.6 No, based on frequency of 6x10 /yr using conservative ~ssumptions Vapor cloud expiqsion & fire from waterway transporation 3.t No, pased on freq~en~Y of 4xl0 -7 /yr 8 Toxic chemicals 4 Not part of SEP U-1.C 9 Collis{on with intake structure 5 Nq, based on physii:al considerations 10 Li quid spi 11 s .*~. *.No, based on physical considerations Aircraft .impact from:

'.< . *; ~*. ' .** *.. ; -7 '

11 Airports 7:*1: No, based on frequency of 3.24x10 l¥ear 12 Airways* T:f .~. No~ based on .f~egu~ncy of 0.93 x 10 /year

'l'rData for facilities which responded to. the q~estion'nalre," * .

    • There is one exception to this conclusion .:. ~he:benie~¢ .storage tank pn the Reichhold Chemical site.*  :* * .. ; * <r .

-~* ...

  • , e. Table 2.2.2.3:2 Industries Within 5 Miles Dresden Station (Ref. 18)

I DISTANCE (MILES)

INDUSTRY & DIRECTION . PRODUCT GE BWR Training Center

&Spent Fuel Storage 0. 7 -: SL~ Spent nuclear fuel storage Reichhold Chemicals 1. 6. - w Resins and chemicals A.. P. Green-* .

  • 2. 1 "". SSW-* Br.iCk and clay Atrco 1ndustrial Gases
  • 2.S NW co 2 . .

I.

Northern Illinois Gas

  • 2*,5_,.. NW Natl,J na 1 gas Alumax Mill Products 2.8 - MW Aluminum sheet and co.il
  • Northern Petrochemicals 3. 3 -* MW Ethy\ene~ ethyl en~ oxide glycol*

Northern Petrochemical Dock . 2~ 1 -* W*

~*. .

  • ARMAK Chemicals 3.6 - WNW Fatty nitrogen chemi.CaJs
  • Dur.kee scM~ Chemicals  :. *.*, J~ 2>- .EN{ .; Ed.i b le. oi-l

, Truck Tennina*i J.6*;,. ENE

  • Under construction *.
  • Dow Chemicals . 3. 7 - E .. Polystyrene** pla-stic.
  • Dow Chemical *Dock . 2. 7 -* E
    • ~ *.

'Exxo_n (chemical plant) J.9 - ENE Under construction Hydrocarbon Transportation, Inc. 4.0 ..: NW .Propane Streator Industrial Supply 4. 0 - .s Industrial supplies Mobil Chemical Co~ -4.1 - NE . Po.lystyrene sheets. & crystal Jal iet Livestock Market 4.2 - ESE Livestock

  • Mo_bn O:il Refi-nery .. 4. 5 - NE Petroleum** products Commonweal th Edison Co *

. Collins St~tion 5 *. 0 - WSW Electricity*

~  :.::..; *.:'".{ . .\*... . .., ._..... ** ....... .

e *.*

. , a.,, .* t *** '.:.:* * . * . ; .. . *' l'.:. :-.:~ .. i ..*. ; ' ' ' ' .. .  :~ - . '

Table2.2.2.3:3 Dresden Island Traffic Statistics Fiscal Years 1~73:~ l9j8 (Refs. 6, 11)

CO~MODITY,TYPE . FISCAL YEAR 1973 1974 1975 1976 1977 1978 Average .

Total commodities, tons x 10 28.476 30.853 27.808 25.882 23.452 19. 521 . 26.0 Hazardous mate5ials,* ~-

  • tons x 10 . 5.653 . 6.073 5.358 5.059 4.093 3.658 5.0 Liquefied Gases,** tons o.o* 0.0 O*.O *
  • 17 ,992 0.0 0.0 . 3000.0
  • Hazardous materials are defined as all materials listed under the.

category of petroleum products in the lock statistics.

    • Liquefied gases shown are the amounts transported on the entire navigable length of *the lliinois River.

Table 2.2.2.3:4 Casualty and Spill Statistics -

Fiscal Years 1969 thru 1972 (Ref. 10)

ILLINOIS WESTERN CASUALTY/SPILL RIVERS *RIVERS Casualties** - all type barges 178 2831 Casualties of hazardous material barges***. 40 508 Spills from hazardous

  • .mat.erial barges 1 69 Casual ti es* of Liquefied gas barges ._.;._

9 Spills from double-skinned vessels 7

... Total length of waterway (miles) 333 3137

  • Lower Mississippi, Upper Mi-ssiss.ippi, Ohio, and Illinois Rivers; casualties from these rivers* constitut~ 97% of the casualties on western rfvers. .,
    • Casualtie.s whfch result in any of the following: loss of life,.

damage to cargo-irr excess of $1;500, or release of cargo. ~

      • Hazardous material barges are generic type 17, 18, and 29 vessels.

See Reference 10 for description.

TABLE '2.2.2.3:5 DATA ON AIRPORTS WITHIN 10 MILES OF DRESDEN STATION.(REFS .. 22~ 23, 27)

APPROX. DIST. DIRECTION NO. LENGTH OF WIDTH OF TYPE ORIENTATION TYPE FROM STATION FROM STAT ION OPERATIONS. RUNWAY RUNWAY OF RUNWAY OF RUNWAY FROMM PVT. 4.5miles E 50* 2,773 ft. 100 ft. TURF. NNE-SSW MORRIS PVT. 8 mil~s WNW 1~94.2* 2,400 ft. 135 ft. TURF. E-W

?,987 ft. 60 ft. ASPH. N-S ROSSI PVT. 9 miles N 50** 2,400 ft. 70 ft. TURF. E-W BUSHBY PVT. 9.9 miles NNE 45** 1,800 ft. 100 ft. TURF . N-S

.JOLIET . Pub. 10 miles NNE 10,000* 3,452 ft. 125 ft.* TURF. NE-SW 2~970 ft. 100 ft. ASPH. NW-SE ADELMANN*** PVT. 1 mile NE 20*'11' 1,600 ft. 70 ft. TURF. SE-NW

  • Total peak month from FAA supplied documents.
    • Number per month as supplied by owner of airport
      • Recent1y approved airstrip

e e Table 2.2.2.3:6 Data for Aircraft Crash and Probability Analysis 6 N OPERATING r 0 D(r,O) 2 .x 10 R (OPERATIONS/ A NARDx1C'i 7

. AIRPORT MODE (MILES) (DEG) (/MILES ) (/OPERATION) YEAR) (MILES 2) (/YEAR)

FROMM Landing 4.5 90 0.0014 2~4 150 0.0056167 0.02833 4.5 90 0.0014 2.4 150 q.0056167 0.02833 Take-Off 4.5 90 0.00167 0.9 150 0.0056167 0.01267 4.5 90 0.00167 .a~ 9 150 0.0056167 0.01267 MORRIS Lanqing 8.0 25 . 0. 000883 :. . 2.4 1456 0.0056167 0.17333 8.0. 155 0.000043 2A 1456 0.0056167 0.00833 8.0 65 0.00035 2.4 4370 0.0056167 0.206 8.0 115 o. 00011 2.4 4370 0.0056167 0.06467 Take-Off 8.0 25 . 0.000369 0.9

..~ ' 1456 . 0.0056167 0.027 8.o 155 0.000073 0.9 1456 0.0056167 0.00533 8.0 65 *._ o. 00022 0. 9* 4370 0.0056167' 0.04867 8.0 115 0.00012 0.9 4370 0.0056167 0.02633 JOLIET Landing 10.0 . 10 0.00045 , *2A .* 6000. 0.0056167 0.364 10.0 170 0. 000011 . *. 2. 4 9000 . 0. 0056167 0.01333 10.0 80 0.000088 2.4 22500 0.005p167 0.26667 10.0 100 o. 000056 . 2.4 22500 0.0056167 0.17 Take-Off 10.0  : 10 0.00013 . 0.9 *. 7500 0.0056167 0.04933 10.0 170 0.000018 b. 9' 7500 . 0.0056167 0.00667 10.0 80 0.000055 o.~ 22500 0.0056167 0.06267 10.0. 100 0.000043 0.9 22500 0.0056167 0.049 ADE~MANN Landing 1.0 115 0.01433 2.4 60 0.0056167 0.116 0.9 80 0.0374 . 2. 4 60 0.0056167 0.30233 Take-Off LO 115 0.0317 0.9 60 0.0056167 0.0906 0.9 80 0. 05734 . 0 *. 9 60 0.0056167 0.174

,*.JO.

Table 2.2.2.3:7 Pi~elines with 5. Miles of the Site PIPE SIZE OPERATING CLOSEST DISTANCE PIPELINE COMPANY (in) MATERIAL CARRIED PRESSURE (PSI) TO THE PLANT (MILtS)

Natural Gas 36 Natura 1 Gas 858 \ 1. 75 Pipeline Co. 36 **Natural Gas 858 1. 70 30 Natura 1 Gas 858 1.60 36 Natural Gas 650 1. 25 30 Natura 1 Gas 858 1. 70.

30 Natural Gas 858 1.60 Hydrocarbon 10 Propane, Natural. Gas 2100 4.0 Transportation, Inc. 10 Propane, Natural Gas 2100 4.0 6 Propane, Butane 500 2.0 Northern lllinois Gas 36 Natural Gas 740 2.5 10 Out of Operation 2~5 4 Natural Gas Unknown 3.0 Amoco 10 Crude Oi 1 3.0 12 Crude Oi 1 3.0 22 Crude Oi 1 3.0

  • .'l-_
  • 1 ,. :

e *,,'

INDUSTRIAL SITES IN VICINlfY 1 MlOWEST FUELS REPROCESSING PLANT {GE).

2 NORTllER~ PETROCHEMICAL CO.

3 /\LUMAX 4 REICllHOLO CHEMICAL CO

5. A. P. GREEN*

6 GENERAL ELECTRIC CO.TRAINING SCHOOL 1 MOBIL CHEMICAL 8

  • MOBIL OIL 9 DURKEE SCH
saL\ET ~l?.~Y t\MMUN ITION ~L.1'NT t I *I

... PeN .1 Mill~

FIGURE 2.2.2.3:1 DRESOEN NUCLEAR POWER STATION AREA MAP

. -~ .. *.

. . =**

  • . - . ~ *' '.**. . * ....
  • i*'

, -*~ *.

LEGEND "*. .

36" radius

-.~.- 36"

.. -~~- JO"

- - 36"'

' ...... 30 11

  • JO"

., *SITB

"" . "'.**0*':**
  • .. **: ~. :. .

.1.*

'.  : .:- . *' ~

FIGURE 2.2.2.3:2 PIPELINES

. . CONSIDERED

. / . . ' IN

'. .... :rnE .. '.. EVALIJAnoN .. ' . '

OF

. HAZARO FROM EXPLOSION'

. ...