ML17191A301: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(2 intermediate revisions by the same user not shown)
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:f FSAR INDEX . -A -Section I *. -
{{#Wiki_filter:f FSAR INDEX
ACAD/CAM 6.8.3.3 Acceleratioa Response Spectrum Earthquake
              . ~.
: 12. 1. l :3 Access Control Access to the Site Access, Station Accident Analysis for 7 x 7 Fuel Accident Analysis for G2 8 x 8 Fuel 14.2.2.5 Accident Analysis for ENC 9 x 9 Fuel 14.2.2.6 Accident Analysis, Radwaste 9.2.5 Accident, Control Rod Drop Procedural
                                                - A-   Section I *. - .~ ~->.
: 14. 2 .1. 3 Acoustic Monitors 4.5.2 Acronyms and Initialisms 1.1.2.1 Action taken due to Reportable 13.6.2.2 Action taken due to Safety Exceeded 13.6.2.1 Administrative Controls 13.6 Administrative 12 .1. 4. 5 Admission Valves 6.2.3.4 Airborne Effects the Refueling Pool 14.2.2.6 Air Cleanup Appendix 8 (8-28) Air Ground Level Appendix A (2.1.1) System 10.11 11. 2. 2 Ejector Off-Gas Monitoring 7.6.2.3 Monitoring, Reactor Bldg 7. 6. 2. 5 Airlock Doors 5.3.2.2 i 1043v
ACAD/CAM                                               6.8.3.3 Acceleratioa Response Spectrum Earthquake             12. 1. l :3 Access Control Access to the Site Access, Station Accident Analysis for 7 x 7 Fuel Accident Analysis for G2 8 x 8 Fuel                   14.2.2.5 Accident Analysis for ENC 9 x 9 Fuel                   14.2.2.6 Accident Analysis, Radwaste                           9.2.5 Accident, Control Rod Drop Procedural                 14. 2 .1. 3 Acoustic Monitors                                     4.5.2 Acronyms and Initialisms                               1.1.2.1 Action taken due to Reportable                         13.6.2.2 Action taken due to Safety                   Exceeded 13.6.2.1 Administrative Controls                               13.6 Administrative                                         12 .1. 4. 5 Admission Valves                                       6.2.3.4 Airborne Effects                 the Refueling Pool   14.2.2.6 Air Cleanup                                           Appendix 8 (8-28)
.., ' FSAR INDEX -A -Analysis and Acceptance Criteria Inst & Control Analysis of Off-Site Electric Power Supply Analysis Supporting ECCS Clad Melt Criteria Analytical Methods Analytical Stability Model ANL Test Data on Clad Flailure Approval of Changes APRM Archifect  
Air                             Ground Level         Appendix A (2.1.1)
-Engineer Organization Area Radiation Monitoring System As-Built Safety-Related Piping Analysis ASKE Class A Nuclear Vessels Atmospheric Control System Atmospheric Pressure, Fuel Loading Atmospheric Weather/Wind Authority to Terminate Power Production Authorization of Changes Automatic Depressurization System Automatic Vacuum Relief Auxiliary and Emergency Systems Auxiliary Power supplies Auxiliary Power System Auxiliary Systems Auxiliary Transformers ii 1043v Section 7.2.6.3 8.2.1.4 6.2.7.6 3.3.3 7.2.2.3 6.2.7:25-28 13.6 7.4 .2 Appendix E (2.3.1) 7.6.3 9.1.2 9.5.3 12 .1. 2 .4 4.1.0.1 6.8 13.8.2.1 Appendix 13.6.1 13.6 6.2.6 5.2.2.9 10.1 13.7.3.42 1.2.4.3 8.2.1.3 1.2.4.4 8.2.1.3 G 
System                       10.11
-. ! FSAR INDEX -A -Auxiliaries, Turbine Generator Availability Analysis Average Power Range Monitor (APRM) iii 1043v
: 11. 2. 2 Ejector Off-Gas Monitoring                         7.6.2.3 Monitoring, Reactor Bldg                           7. 6. 2. 5 Airlock Doors                                         5.3.2.2 i
* Section 13.7.3.43 6.2.7.4 7.4.5.2
1043v
* *
 
* Balance of Plant -Aux Systems Bases for Design Biological Shield Batteries, Station Battery Tests and Inspection FSAR INDEX -B -Bio -Assay and Medical Exam Program Bodega Bay Tests Boron Blowoff Details, Rx Bldg. Burnable Neutron Absorber Burning in Drywell Bypass Valves, Turbine 1057v i Section 13.7.3.42 12 .1.1. 3 12.2.2.l 8.2.3.2 8.3 9. 5. 5. 7 5.2.3.5a & b 9.6.1.3.2 5.3.2:1 3.5.5 6.8.1:12 7.2.6.2 FSAR INDEX -c -* Cable Pans, Electric Cask Pad CB & I CECO and GE Startup Organization Channel Hydrodynamic Conformance Change Room Facilities
'                                   FSAR INDEX
/ -characteristics After Reactor Slowdown Charcoal Beds, Off-Gas CHASTE Chimney Chimney Effluent Monitoring
                                        - A-       Section Analysis and Acceptance Criteria Inst & Control 7.2.6.3 Analysis of Off-Site Electric Power Supply     8.2.1.4 Analysis Supporting ECCS Clad Melt Criteria     6.2.7.6 Analytical Methods                             3.3.3 Analytical Stability Model                     7.2.2.3 ANL Test Data on Clad Flailure                 6.2.7:25-28 Approval of Changes                             13.6 APRM                                           7.4 .2 Archifect - Engineer Organization               Appendix E (2.3.1)
'
Area Radiation Monitoring System               7.6.3 9.1.2 9.5.3 As-Built Safety-Related Piping Analysis         12 .1. 2 .4 ASKE Class A Nuclear Vessels                   4.1.0.1 Atmospheric Control System                     6.8 Atmospheric Pressure, Fuel Loading             13.8.2.1 Atmospheric Weather/Wind                       Appendix    G Authority to Terminate Power Production         13.6.1 Authorization of Changes                       13.6 Automatic Depressurization System               6.2.6 Automatic Vacuum Relief                         5.2.2.9 Auxiliary and Emergency Systems                 10.1 13.7.3.42 Auxiliary Power supplies                       1.2.4.3 Auxiliary Power System                          8.2.1.3 Auxiliary Systems                              1.2.4.4 Auxiliary Transformers                          8.2.1.3 ii 1043v
* Circuit Breakers Circulating Water Cladding Integrity Safety Limit (Fuel) Class I Structures
 
& Equipment Class II .Structures
FSAR INDEX
& Equipment Classification of Nuclear Systems Cleanup Demineralizer System Cleanup System Cleanup System (Rx Water) C02 Fire Protection System Coefficiency of Reactivity Cold Loop Startup -Transient Analysis
                                      - A-    Section Auxiliaries, Turbine Generator            13.7.3.43 Availability Analysis                      6.2.7.4 Average Power Range Monitor (APRM)         7.4.5.2 iii 1043v
* Common Auxiliary Systems i 1058v Section 8.2.2.3 10 .1.2 5.2.3:24 & 25 13 .1. 2 7.2.3.2 7.2.4.2 9.5.5.4 5.2.3.3 9.2.5 6.8.3.3.4 12 .1. 2 .3 7.6.2.4 9.1 & 9.2.2.2 8.2.2 11. 2. 2 3.2.2.3 12 .1. 2 12 .1. 3 Appendix E (Exhibit 2. 7) 13.7.3.22 10.2 10.3 10.7.2:1 & 2 3.3.5.1 4.3.3:lla
* FSAR INDEX
.& b 1.2.4.
                                    - B-    Section Balance of Plant - Aux Systems            13.7.3.42 Bases for Design                          12 .1.1. 3 Biological Shield                          12.2.2.l Batteries, Station                        8.2.3.2 Battery Tests and Inspection              8.3 Bio - Assay and Medical Exam Program      9. 5. 5. 7 Bodega Bay Tests                          5.2.3.5a & b Boron                                      9.6.1.3.2 Blowoff Details, Rx Bldg.                 5.3.2:1 Burnable Neutron Absorber                  3.5.5 Burning in Drywell                        6.8.1:12 Bypass Valves, Turbine                    7.2.6.2
* * ** FSAR INDEX -c -Conununication System "' Computer, Process CONCEN Conclusions on Site and Environs Condensate Demineralizer System Condensate
* 1057v i
-Feedwater System Condensate
 
-Feedwater Tests and Inspections Condensate Makeup Piping Conduct of Operations Conduct of Operations Construction Tests Containment Containment Atmospheric Control System I Containment Cooling System Containment Design Basis Containment Heat Removal Systems Containment Isolation Valves Containment Leakage Rate Testing Containment Penetrations Containment Response to LOCA Containment Shield Containment Spray System ii 1058v Sectfon 10.14 7 .11 8.2.2.4 6.8.3.3.4 2.4 7.8.2 13.7.3.13 11.1 11.3 11.3 10.12.2:2 13.1 thru 8 13.1 13.7.3 1.2.1.3 5.2.3:7 7. 7. 2: 1 6.8 6.2.4 Appendix 8 (B-26) Appendix B (B-26) 5. 2 .4.3; Appendix B ( B-2 7) Appendix B ( B-27) 5.2.4.2 5.2.3.2 12.2.2.2 13.7.3.34 6.2.4.2.2
FSAR INDEX
* *
                                        - c -
* FSAR INDEX -c -Containment Systems Containment Ventilation System Containment Vs Hydrogen Contractors Control and Instrumentation Control and Instrumentation, other Systems Control Curtains Control of Access to Radiation Zones Control Methods (Reactor)
Section Cable Pans, Electric                        8.2.2.3 Cask Pad                                    10 .1.2 CB & I                                      5.2.3:24 & 25 CECO and GE Startup Organization            13 .1. 2 Channel Hydrodynamic Conformance            7.2.3.2 7.2.4.2 Change Room Facilities                      9.5.5.4
Control Rods Control Rod Block Function Control Rod Drive Control Rod Drive Housing Section i.2.2.4 5.l;*Appendix C 5.2.4.4 6.8.1.3 1.3 1.2.1.4 1.2.2.6 7.10 3.5.2.2 9.5.5.l 3.5.2 3.5.2.1 7.3.2:1 13.7.3.21 10.6.3 Control Rod Drive Housing Supports 6.6 Control Rod Drive Housing Support Inspection
  /
& Testing 6.6.4 Control Rod .. i>ri ve Hydraulic System 10. 6 13.7.3.17 Control Rod Drive Mechanism 3.5.3.2 Control Rod Drive System 10.6.2:1 Control Rod Drop 14.2.1 Control Rod Drop Accident Procedural Safeguards 14.2.1.3 Control Rod Housing Support 6.1.2.4 Control Rod Hydraulic System 13.7:3.17 Control Rod Isometric 3.5.2:1 Control Rod Movement 7.3.2 iii 1058v FSAR INDEX -c -* Control Rod Sequence Control Rod Surveillance and Testing Control Rod Worth Control Rod Velocity Limiter Control Room Control Room Ventilation Cooling Lake . Core Cooling Core Cooling System
    -characteristics After Reactor Slowdown      5.2.3.3 Charcoal Beds, Off-Gas                      9.2.5 CHASTE                                      6.8.3.3.4 Chimney                                    12 .1. 2 .3 Chimney Effluent Monitoring                7.6.2.4 9.1 & 9.2.2.2 Circuit Breakers                            8.2.2 Circulating Water                          11. 2. 2 Cladding Integrity Safety Limit (Fuel)      3.2.2.3 Class I Structures & Equipment              12 .1. 2 Class II .Structures & Equipment            12 .1. 3 Classification of Nuclear Systems          Appendix E (Exhibit 2. 7)
* Core Internals, Thermal Shock Efforts Core Lattice Unit Core Nuclear Dynamic Characteristic Core Release, Non-Line Break Scenario Core Spray Tests and Inspection Core Spray System Core Thermal and Hydraulic Performance Crane, Reactor Building Crib.House Criteria & Bases for Design CPR Histogram for 8 x 8
Cleanup Demineralizer System                13.7.3.22 Cleanup System                              10.2 Cleanup System (Rx Water)                  10.3 C02 Fire Protection System                  10.7.2:1 & 2 Coefficiency of Reactivity                  3.3.5.1 Cold Loop Startup - Transient Analysis      4.3.3:lla  .& b
* ii ii 1058v Section 14.5.2 3.5.4 3.3.4.4 6.1.2.3 6.5 12 .1. 2. 2 12.2.2.4 12.2.3 14.2.5 12.2.2.5 2.2.4.1 2.2.1:2 2.2.4:1 14.2.3.9 6.2 3.6.3.3 3.4.2:2 3.3.5 12.3.2.2 6.2.3.4 6.2.3 13.7.3.32 6.2.3:6 8.2.3 14.5.4 10.1.2.2.2 2.2.6:2 12 .1. 3 .. 3 12 .1.1. 3 3.2.2:2 
* Common Auxiliary Systems 1058v i
* *
1.2.4.4
* FSAR INDEX -D -Data Analysis and Acceptance Criteria DC Systems Decay Ratio Dernineralizer System Description of Control Rods Description of ECCS Description of Fuel Assemblies Description of Hain Stearn Description of Reactor Vessel Internals Description of Safety Features Design Basis Accidents Design Basis Automatic Depressurization Design Basis Earthquake (Piping) Design Basis of Core Spray Design Bases Dependent On Site Characteristics Design Basis of Fuel Mechanical Characteristics Design Basis of Isolation Condenser Design Basis of LPCI Design Basis of Hain Stearn Design Basis of Nuclear Characteristics, Design Basis of Primary Containment System Design Basis Reactivity Control Mechanical Characteristics Design Basis of (Reactor) i 1045v Section 7.2.6.3 13.7.3.2 & 8.2.3.2 7.2 12.2.2.7 3.5.2.1 3.5.3 6.2.2 3.4.2 3.6.2 14.1 14.2 6.2.6 12. 1. 2. 4 .,4 6.2.3 1.2.2.1 3.4.1 4.6.1 6.2.4.1 4.4.1 3.3.1 3.5.1 3.2.1.1 3.2.1.3 FSAR INDEX -D -* Design Basis of Reactor Bldg. Design Basis of Reactor Recirculation System Design Basis of Reactor Vessel Internals Design Basis of Relief and Safety Valves Design Bases for Shielding Design Evaluation Containment System Design Evaluation (Fuel) Design Evaluation Main Stearn Design Evaluation Reactor Coolant System *Design Guide Limit Definition Design of Control Rods and Curtains Design of Electrical Systems
 
* Design Report, Reactor Designed Safeguards Determination of Radiation Environment Development of Technical Spec Diesel -Generator System Diesel Generator Tests and Inspection Discharge to the River Distances From Release Points Distribution System, Station Domestic Water Doppler Coefficient
FSAR INDEX
* Dose, External ii 1045v Section 5.3.1 4.3.1 3.6.1 4.5.1 1.2.2:1 5.2.3 3.4.3 4.4.3 4.2.3 7.2.4.1. 3.5.2.3 8.2 Appendix 14. 2 .1. 2 12.3.3.0 3.2.4 8.2.3.1 8.3.1 13.7.3.39 8.3 9.3.3 2.2.5:1 8.2.2 13.7.3.8 D 3.3.5:1,2,3,4,5 Appendix A ( 2. 2 .1) ..
                                      - c -
* *
Sectfon Conununication System "'                    10.14 Computer, Process                            7 .11 8.2.2.4 CONCEN                                      6.8.3.3.4 Conclusions on Site and Environs            2.4 Condensate Demineralizer System              7.8.2 13.7.3.13 Condensate - Feedwater System                11.1 11.3 Condensate - Feedwater Tests and Inspections 11.3 Condensate Makeup Piping                    10.12.2:2 Conduct of Operations                        13.1 thru 8 Conduct of Operations                        13.1 Construction Tests                          13.7.3
* FSAR INDEX -D -Dose, Hydrogen Addition Dose to the Control Room, etal Dresden Lock and Dam Dresden Containment Certification Dresden Units 2 & 3 Map Dropout Velocities Drywell Drywell Pneumatlc System Drywell and Suppression Chamber Inspection and Testing Drywell Expansion Gap Drywell Missile Protection Drywell Spray Drywell -Torus Leak Rate Measurement Drywell Ventilation iii 1045v Section 14. 2 .1.8 12. 3 .8. 2.2.6.1 Appendix C 3.2.3.1 6.5.3 5.2.2.1 5.2.4.1 5.2.3.26 10.8.2 5.2.4 5.2.3.6 5.2.3.7 6 .2 .4 .2 .. 13.7.3.18 13.7.3.40 FSAR INDEX -E -* Earthquake Earthquake Analysis of Rx Vessel ECCS ECCS Clad Melt Criteria ECCS*Flood Protection ECCS Pipe Whip Criteria ECCS Pump NPSH Economic Generation Control Effect of KSIV Closure Time
* Containment Containment Atmospheric Control System 1.2.1.3 5.2.3:7
* Effects of Postulated LOCA's EGC Operation El Centro Earthquake Electrical Penetration Seals Electric Power Electric System Electroslag Weld Report, Rx Vessel Elevated Release Point Discharge Emergency Core Cooling System
: 7. 7. 2: 1 6.8 I
* i 1059v Section 5.2.3:8+9 12 .1.1: 2 Appendix D 1.2.2.5 6.2 6.2.7.5 Appendix B (B-23&25) 6.2.7.6 6.2.8 6.2.7.7 6. 2. 7 .9 7.3.3.l 7.3.6 14.2.3.8 1.2.5.2 7.3.3.2 7.3.6:2 12 .1.1: 2 5.2.2.4 5.3.2.3 1.2.1.5 1. 2. 2 .10 8.1 Appendix F i4. 2 .1. 7 6.1.2.1 6.2.2 6.2.7.1 Appendix B (8-25)
Containment Cooling System                  6.2.4 Containment Design Basis                    Appendix 8 (B-26)
., FSAR INDEX -E -** Emergency Lighting Emergency Power Emergency Ventilation Engineered Safey Features Environs Radioactivity Monitoring Equipment Description, Computer Equipment Drain System Equipment Separation Equipment Supply -QA Essential Service System Exclusi_on Area Exfiltration
Containment Heat Removal Systems            Appendix B (B-26)
* Expansion Gap, Drywell
Containment Isolation Valves                5. 2 .4.3; Appendix B ( B-2 7)
* External Dose ii 1059v Section 10.13.2 8.2.3 13.7.3.4.1 Appendix B (B-21&24) 2.3 7 .11. 3 9.3.2.1 12 .1.4. 4 Appendix E (3.3) 8. 2 .2*.4 2.2.1.6 5.3.3.l 5.2.3.6 Appendix (2.2.1)
Containment Leakage Rate Testing            Appendix B ( B-27)
FSAR INDEX -F Section
Containment Penetrations                    5.2.4.2 Containment Response to LOCA                5.2.3.2 Containment Shield                          12.2.2.2
* Features of Plant Design 1.2.3:1 Feedwater Control System 7.8.3 Feedwater Flow, Reactor 7.5.2.4 Feedwater Nozzle Inner Bore 6.2.5.3.4 Feedwater Pumps 7.2.6.2 Feedwater Sparger Integrity 6.2.5.3.4 Feedwater System 11.1 11.3 14.2.3.5 Field Change Control Appendix E (3.4.3) Fire Alarm Systems 10.14.3 Fire Extinguishers, Portable 10.7.2 Fire Protection System 10.7
** Containment Spray System 1058v ii 13.7.3.34 6.2.4.2.2
* 13.7.3.11 8.2.2.1 Fire Suppression Water System 10.7.2 & 10.7.3 Fission Product Release from the Fuel 14.2.4.2 Fission Product Transport
 
: 14. 2 .1. 6 Flange Leak Detection, Reactor Vessel 7. 5 .2 .6 Floor Drain Surge Tank 9.3.2:5I Floor Drain System 9.3.2.2 'Flow Control Recirc System 7.3.3 Flow Factor, *Kf 3.2.2.9 Flow Monitors (Recirculation) 7.4.5.2.2 Flow Regulating Station (Circulating Water/Canal) 2.2.4 Fluid Pipe Penetration 5*. 2. 2. 5
FSAR INDEX
* Flux Response to Rods 14.5.3 i 1060v FSAR INDEX -F -* Fractional Control Rod Density FSAR Controlled Copy Recipient Fuel and Waste Storage Systems Fuel Assembly Isometric Fuel Cladding Integrity Safety Limit Fuel Cycle Fuel Damage Limits Fuel Design Analysis Fuel Handling
                                          - c -         Section
* Fuel Handling and Storage Fuel Loading Fuel Mechanical Characteristics Fuel Pool Cooling and Cleanup System Fuel Pool Damage Protection Fuel Recovery Plant Fuel Shipping Cask Fuel Storage and Fuel Handling Fuel Storage Criticality Fuel Storage Pool (Spent} --Fuel Storage Vault ii 1060v Section 3.3.4:4 1.1.1.4 Appendix B (B-29} 3.4.2:1 3.2.2.3 3.2.4.2 3.3.4.1 3.2.1.2 3.4.3.4 14.2.2.5.1 14.2.2.6 3.4.3.3 10.1 13 .1. 3. 2 13.7.3.20 1.2.1.8 1.2.2.8 13.8.2.1 3.4 10.2 13.7.3.19 10 .1.4 Appendix A (4.0} 10 .1. 2 .2 .2 10.1. 2 .3 10.1 Appendix B (B-30} 10.1. 2. 2 10.1. 2 .1 FSAR INDEX -G -*-Gadolinium Bearing Rods Gaseous Radioactive Wastes Gaseous Waste Effluents GE Startup Organization General Arrangement Crib House General Arrangement, Rx Bldg. General Arrangement, Turb. Bldg. General Conclusions General Description (Reactor)
* Containment Systems Containment Ventilation System i.2.2.4 5.l;*Appendix C 5.2.4.4 Containment Vs Hydrogen                                6.8.1.3 Contractors                                            1.3 Control and Instrumentation                            1.2.1.4 1.2.2.6 Control and Instrumentation, other Systems            7.10 Control Curtains                                      3.5.2.2 Control of Access to Radiation Zones                  9.5.5.l Control Methods (Reactor)                              3.5.2 Control Rods                                          3.5.2.1 Control Rod Block Function                            7.3.2:1
General Electric Safety Analysis General Electric Topical Reports Generating Station Emergency Plan (GSEP)
* Control Rod Drive Control Rod Drive Housing Control Rod Drive Housing Supports 13.7.3.21 10.6.3 6.6 Control Rod Drive Housing Support Inspection & Testing 6.6.4 Control Rod .. i>ri ve Hydraulic System                10. 6 13.7.3.17 Control Rod Drive Mechanism                            3.5.3.2 Control Rod Drive System                              10.6.2:1 Control Rod Drop                                      14.2.1 Control Rod Drop Accident Procedural Safeguards        14.2.1.3 Control Rod Housing Support                            6.1.2.4 Control Rod Hydraulic System                          13.7:3.17 Control Rod Isometric                                  3.5.2:1
* Generator Load Rejection Gee;> logy Ground Level Radiation Dose-Guide CRD
* Control Rod Movement                                  7.3.2 iii 1058v
* i 1067v Section 3.5.5.5 9.1 1.2.4.1 9.2 13 .1. 2 .1 12 .1. 3 :8 12.1.2:1-4 12.1.3:1 1.4 3.3.2 14.3 1.1.2.1 13.4.1 11.2.3.2 7.7.1.2 2.2.3 Appendix A (2.0) 6.5.2
 
* *
FSAR INDEX
* FSAR INDEX -H -Halon System Head Cooling System (Rx) Health Physics Health Physics Instrument Inspection and Testing Heat Generation Rate Heating Boiler Heating, Ventilating, and A-C System Heat up High Density Spent Fuel Storage Rack High Neutron Flux High Primary Containment System Pressure High Radiation Sampling System (HRSS) H,igh Reactor Pressure Histogram of XN-3 Predictions HPCI HPCI Room Coolers HPCI Tests and Inspection HRSS Hydraulic Control System (CRD) Hydraulic (Reactor)
                                      - c -   Section
Characteristics Hydro Tests Hydrodynamic Stability i 1046v Section 10.7.2 10.5 13.7.3.26 7.6.5 9.5.5 9.5.5.5 7.6.5.3 3.2.2.2 3.4.3.2 13.7.3.14 10.11 13.8.2.2 10 .1. 2: 2 7.7.1.2 7.7.1.2 9.6 7.7.1.2 3.2.2:11 6.2.5 13.7.3.33 6.2.5:1-5 8.2.3 10.9.3 6.2.5.4 9.6 3.5.3.3 3.2 13.7.3.16 7.2.2.2
* Control Rod Sequence Control Rod Surveillance and Testing Control Rod Worth 14.5.2 3.5.4 3.3.4.4 Control Rod Velocity Limiter                6.1.2.3 6.5 Control Room                                12 .1. 2. 2 12.2.2.4 12.2.3 14.2.5 Control Room Ventilation                    12.2.2.5 Cooling Lake .                             2.2.4.1 2.2.1:2 2.2.4:1 Core Cooling                                14.2.3.9 Core Cooling System                         6.2 Core Internals, Thermal Shock Efforts      3.6.3.3 Core Lattice Unit                          3.4.2:2 Core Nuclear Dynamic Characteristic        3.3.5 Core Release, Non-Line Break Scenario      12.3.2.2 Core Spray Tests and Inspection            6.2.3.4 Core Spray System                          6.2.3 13.7.3.32 6.2.3:6 8.2.3 Core Thermal and Hydraulic Performance      14.5.4 Crane, Reactor Building                    10.1.2.2.2 Crib.House                                  2.2.6:2 12 .1. 3 ..3 Criteria & Bases for Design                12 .1.1. 3 CPR Histogram for 8 x 8                    3.2.2:2
* *
* 1058v ii i i
* Hydrogen Addition Hydrogen from Radiolysis Hydrogen from -H20 Reactions Hydrogen in Containment Effects Hydrology Hypochlorite Chemical 1046v FSAR INDEX -H -ii Section 14. 2 .1.8 6.8.1.2 6.8.1.1 6.8.1.3 2.2.4 10.9.2
 
* * ** FSAR INDEX -I -Identification, CRD Identification of Contractor IEEE 279 Impact Forces Industrial Facility Near Station In-Core Probe (TIP) Inerting System Initial Operating Personnel Initialisms and Acronyms Inservice Inspection Inspection and Testing of Condensate and Feedwater and Testing of Core Spray Inspection and Testing of CRD Housing Support Inspection and Testin_g of Diesel Generators and Batteries Inspection and Testing of Drywell and Suppression Chamber Inspection and Testing of Health Physics Instruments I Inspection and Testing of HPCI Inspection and Testing of Isolation Condenser Inspection and Testing of Low Pressure Coolant Injection Inspection and Testing of Off gas and Ventilation Inspection and Testing of Main Steam Inspection and Testing of Reactor i 106lv Section 14. 2 .1.1 1.3 7.4.5 14.2.3.7 2.2.2:2 5.2.2.7 8.2.2.3 6.8.3.2 13 .1.4 .1 1.1.2.1 4.3.4.2 11.3 6.2.3.4 6.6.4 8.3 5.2.4 7.6.5.3 6.2.5.4 4.5.4 6.2.4.4 9.2.4 4.4.4 3.6.4 Cr FSAR INDEX -I -Inspection and Testing of Reactor Coolant Inspection and Testing of Reactor Vessel Inspection and Testing of Recirculation System Inspection and Testing of Safety and Relief Valves Inspection and Testing of Secondary Containment Inspection and Testing of Standby Coolant Supply Inspection and Testing of Standby Liquid Controi System Inspection and Testing of Stearn Flow Restrictors Inspection and Testing of Turbine Inspection, Weld, Visual Institutional Facilities Near Station Instrument and Service Air System Instrumentation and Control Instrumentation and Control-Containment Integrated Plant Safety Assessment etal (IPSEP) Integrated System Design Evaluation Inter-Plant Effects of Accidents Interaction of Units 1,2, & 3 Interconnection, Electrical Network Intermediate Range Monitor (!RM) Introduction and Summary Iodine Activities Iodine (I-131) Release IRM ii 106lv Section 4.2.4 4.3.4 4.2.4 4.3.4 4.4.4 5.3.4 6.3.4 6.7.4 6.4.4 11. 2. 4 12.1.2.4.4.1 2.2.2:3 10.8 13.7.3.12 7.1 6.8.3.4 14.4.0 6 2. 7 1.2.4.5 1. 2 .4 8.2.1 7.4.4 1.1. 9.2.5 Appendix A (3-4) 7.4 I FSAR INDEX -I -Section Isokinetic Sample 7.6.2.4.2 Isolation Condenser Inspection and Testing 4.6.4 Isolation Condenser Vent Monitor 7.6.2.9 Isolation Condenser
FSAR INDEX
-Piping Diagram 4.6.2:1 Isolation Valves 5.2.2.6 5.2.4.3 13.7.3.18 Appendix B (B-27) Isotope N 16 7.6.2 Isotopes in Liquid Waste Discharger 9.3.3 Investigative Function 13.6.2
                                      - D-        Section
* iii 106lv FSAR INDEX -J -Section
* Data Analysis and Acceptance Criteria DC Systems Decay Ratio 7.2.6.3 13.7.3.2 & 8.2.3.2 7.2 Dernineralizer System                           12.2.2.7 Description of Control Rods                    3.5.2.1 3.5.3 Description of ECCS                            6.2.2 Description of Fuel Assemblies                  3.4.2 Description of Hain Stearn Description of Reactor Vessel Internals        3.6.2 Description of Safety Features                  14.1 Design Basis Accidents                          14.2 Design Basis Automatic Depressurization        6.2.6
* Jet Pump Efficiency 4.3.3.1 Jet Pump Isometric 4.3.2:2 Jet Pump Operation 4.3.2.2 Jet Pump Stability 4.3.3.2 *
* Design Basis Earthquake (Piping)
* i 1047v 
Design Basis of Core Spray Design Bases Dependent On Site Characteristics
* *
: 12. 1. 2. 4 .,4 6.2.3 1.2.2.1 Design Basis of Fuel Mechanical Characteristics 3.4.1 Design Basis of Isolation Condenser            4.6.1 Design Basis of LPCI                            6.2.4.1 Design Basis of Hain Stearn                    4.4.1 Design Basis of Nuclear Characteristics,        3.3.1 Design Basis of Primary Containment System Design Basis o~ Reactivity Control Mechanical Characteristics                                3.5.1 Design Basis of (Reactor)                      3.2.1.1 3.2.1.3
* 1048v FSAR INDEX -K -i Section 
* 1045v i
* *
 
* FSAR INDEX -L -Laboratory Radiation Measuring Inst Lake Land Use Leakage of Reactor Internals During Rec ire Line Break . Leakage Test, Rx Bldg Lighting System Limiting Safety System Settings Liquid Radioactive Waste Discharge Liquid Waste Effluents Liquid Waste Performance Analysis Load Diagrams Load Set Mechanism LOCA's Loe.al Limits During Operations Local Power Range Monitor (LPRK) Local Power Peaking Lock and Dam Loss-of-Control Room Loss-of-Coolant Accident Loss of EHC System Oil Pressure Loss of Feedwater Low Reactor Water Level i 1062v \ Section 7.6.5 2.2.4.1 2.2.1:2 2.2.2.2 3.6.3.5 13.7.3.41 10.13 3.2.4.1 7.6.2.8 9.3 1.2.4.2 9.3.3 12 .1. 2. 28 7.3.3.2.C 1.2.5.2 5.2.3:2 3.2.2* 7.4.5.1 3.3.4.2 2.2.6.1 2.2.6:1 14.2.5 14.2.4 11.2.3.2 7.7.1.2 11:3.3:2-3C
FSAR INDEX Section
: 7. 7 .1: 2 FSAR INDEX
                                      - D-Design Basis of Reactor Bldg.               5.3.1 Design Basis of Reactor Recirculation System 4.3.1 Design Basis of Reactor Vessel Internals    3.6.1 Design Basis of Relief and Safety Valves    4.5.1 Design Bases for Shielding                  1.2.2:1 Design Evaluation Containment System        5.2.3 Design Evaluation (Fuel)                    3.4.3 Design Evaluation Main Stearn                4.4.3 Design Evaluation Reactor Coolant System    4.2.3
* LPCI LPCI Inspection and Testing LPCI Room Coolers LPRM * * *1062v -L -ii Section 6.2.4 13.7.3.33 6.2.4:1-6 8.2.3 6.2.4.4 10.9.3 7.4.5:2-8 7.4 FSAR INDEX ' -K -* Kain Condenser Condensate Kain Steam Kain Steam Flow Restrictors Kain Steam Isolation Valve "L--. Kain Steam Line Break Outside Drywell Kain Steam Line Flow Restrictor
  *Design Guide Limit Definition                7.2.4.1.
*Kain Steam Line Isolation Valve Closure Kain *Steam Line Koni toring Kain Steam Line Radiation Monitoring system Kain steam Line Restrictors
Design of Control Rods and Curtains          3.5.2.3 Design of Electrical Systems                 8.2
* Design Report, Reactor Designed Safeguards Determination of Radiation Environment Appendix D
: 14. 2 .1. 2 12.3.3.0 Development of Technical Spec                3.2.4 Diesel - Generator System                    8.2.3.1 8.3.1 13.7.3.39 Diesel Generator Tests and Inspection        8.3 Discharge to the River                      9.3.3 Distances From Release Points                2.2.5:1 Distribution System, Station                8.2.2 Domestic Water Syste~                        13.7.3.8 Doppler Coefficient                          3.3.5:1,2,3,4,5
* Dose, External                              Appendix A ( 2. 2 .1) ..
ii 1045v
 
FSAR INDEX
                                      - D -  Section
* Dose, Hydrogen Addition Dose to the Control Room, etal Dresden Lock and Dam
: 14. 2 .1.8
: 12. 3 .8.
2.2.6.1 Dresden Containment Certification          Appendix C Dresden Units 2 & 3 Opera~ing  Map          3.2.3.1 Dropout Velocities                          6.5.3 Drywell                                    5.2.2.1 5.2.4.1 5.2.3.26 Drywell Pneumatlc System                    10.8.2 Drywell and Suppression Chamber Inspection and Testing                                5.2.4 Drywell Expansion Gap                      5.2.3.6 Drywell Missile Protection                  5.2.3.7
* Drywell Spray Drywell - Torus Leak Rate Measurement Drywell Ventilation 6 .2 .4 .2 ..
13.7.3.18 13.7.3.40
* 1045v iii
 
FSAR INDEX
                                      - E-   Section
* Earthquake Earthquake Analysis of Rx Vessel 5.2.3:8+9 12 .1.1: 2 Appendix D ECCS                                        1.2.2.5 6.2 6.2.7.5 Appendix B (B-23&25)
ECCS Clad Melt Criteria                    6.2.7.6 ECCS*Flood Protection                      6.2.8 ECCS Pipe Whip Criteria                    6.2.7.7 ECCS Pump NPSH                              6. 2. 7 .9 Economic Generation Control                7.3.3.l 7.3.6 Effect of KSIV Closure Time                14.2.3.8
* Effects of Postulated LOCA's EGC Operation El Centro Earthquake 1.2.5.2 7.3.3.2 7.3.6:2 12 .1.1: 2 Electrical Penetration Seals                5.2.2.4 5.3.2.3 Electric Power                              1.2.1.5 Electric System                            1. 2. 2 .10 8.1 Electroslag Weld Report, Rx Vessel          Appendix F Elevated Release Point Discharge            i4. 2 .1. 7 Emergency Core Cooling System              6.1.2.1 6.2.2 6.2.7.1 Appendix B (8-25)
* 1059v i
 
FSAR INDEX
                                        - E -   Section
**    Emergency Lighting Emergency Power Emergency Ventilation 10.13.2 8.2.3 13.7.3.4.1 Engineered Safey Features                  Appendix B (B-21&24)
Environs Radioactivity Monitoring          2.3 Equipment Description, Computer            7 .11. 3 Equipment Drain System                    9.3.2.1 Equipment Separation                      12 .1.4. 4 Equipment Supply - QA                      Appendix E (3.3)
Essential Service System                  8. 2 .2*.4 Exclusi_on Area                            2.2.1.6 Exfiltration                              5.3.3.l Expansion Gap, Drywell
* 5.2.3.6 External Dose                              Appendix (2.2.1) ii 1059v
 
FSAR INDEX
                                      - F Section Features of Plant Design                          1.2.3:1 Feedwater Control System                         7.8.3 Feedwater Flow, Reactor                          7.5.2.4 Feedwater Nozzle Inner Bore                      6.2.5.3.4 Feedwater Pumps                                  7.2.6.2 Feedwater Sparger Integrity                      6.2.5.3.4 Feedwater System                                  11.1 11.3 14.2.3.5 Field Change Control                              Appendix E (3.4.3)
Fire Alarm Systems                                10.14.3 Fire Extinguishers, Portable                      10.7.2 Fire Protection System                            10.7
* Fire Suppression Water System Fission Product Release from the Fuel 13.7.3.11 8.2.2.1 10.7.2 & 10.7.3 14.2.4.2 Fission Product Transport                        14. 2 .1. 6 Flange Leak Detection, Reactor Vessel            7. 5 .2 .6 Floor Drain Surge Tank                            9.3.2:5I Floor Drain System                                9.3.2.2
  'Flow Control Recirc System                        7.3.3 Flow Factor, *Kf                                  3.2.2.9 Flow Monitors (Recirculation)                     7.4.5.2.2 Flow Regulating Station (Circulating Water/Canal) 2.2.4 Fluid Pipe Penetration                            5*. 2. 2. 5
* Flux Response to Rods                            14.5.3 i
1060v
 
I~
FSAR INDEX
                                        - F -  Section
* Fractional Control Rod Density FSAR Controlled Copy Recipient Fuel and Waste Storage Systems 3.3.4:4 1.1.1.4 Appendix B (B-29}
Fuel Assembly Isometric                    3.4.2:1 Fuel Cladding Integrity Safety Limit      3.2.2.3 3.2.4.2 Fuel Cycle                                3.3.4.1 Fuel Damage Limits                        3.2.1.2 3.4.3.4 14.2.2.5.1 14.2.2.6 Fuel Design Analysis                      3.4.3.3 Fuel Handling                              10.1 13 .1. 3. 2 13.7.3.20
* Fuel Handling and Storage Fuel Loading Fuel Mechanical Characteristics 1.2.1.8 1.2.2.8 13.8.2.1 3.4 Fuel Pool Cooling and Cleanup System       10.2 13.7.3.19 Fuel Pool Damage Protection                10 .1.4 Fuel Recovery Plant                        Appendix A (4.0}
Fuel Shipping Cask                        10 .1. 2 .2 .2 10.1. 2 .3 Fuel Storage and Fuel Handling            10.1 Fuel Storage Criticality                  Appendix B (B-30}
Fuel Storage Pool (Spent}                  10.1. 2. 2
--    Fuel Storage Vault 1060v ii 10.1. 2 .1
 
FSAR INDEX
                                      - G -  Section
*- Gadolinium Bearing Rods Gaseous Radioactive Wastes Gaseous Waste Effluents 3.5.5.5 9.1 1.2.4.1 9.2 GE Startup Organization                    13 .1. 2 .1 General Arrangement Crib House              12 .1. 3 :8 General Arrangement, Rx Bldg.              12.1.2:1-4 General Arrangement, Turb. Bldg.            12.1.3:1 General Conclusions                        1.4 General Description (Reactor)              3.3.2 General Electric Safety Analysis           14.3 General Electric Topical Reports            1.1.2.1 Generating Station Emergency Plan (GSEP)    13.4.1
* Generator Load Rejection Gee;> logy 11.2.3.2 7.7.1.2 2.2.3 Ground Level Radiation Dose-                Appendix A (2.0)
Guide    T~bes, CRD                        6.5.2
* 1067v i
 
FSAR INDEX
                                      - H-         Section Halon System                                    10.7.2 Head Cooling System (Rx)                        10.5 13.7.3.26 Health Physics                                  7.6.5 9.5.5 9.5.5.5 Health Physics Instrument Inspection and Testing 7.6.5.3 Heat Generation Rate                            3.2.2.2 3.4.3.2 Heating Boiler                                  13.7.3.14 Heating, Ventilating, and A-C System            10.11 Heat up                                          13.8.2.2 High Density Spent Fuel Storage Rack            10 .1. 2: 2 High Neutron Flux                                7.7.1.2
* High Primary Containment System Pressure High Radiation Sampling System (HRSS)
H,igh Reactor Pressure 7.7.1.2 9.6 7.7.1.2 Histogram of XN-3 Predictions                    3.2.2:11 HPCI                                            6.2.5 13.7.3.33 6.2.5:1-5 8.2.3 HPCI Room Coolers                                10.9.3 HPCI Tests and Inspection                        6.2.5.4 HRSS                                            9.6 Hydraulic Control System (CRD)                  3.5.3.3 Hydraulic (Reactor) Characteristics              3.2 Hydro Tests                                      13.7.3.16
* Hydrodynamic Stability 1046v i
7.2.2.2
 
FSAR INDEX
                                      - H-    Section
* Hydrogen Addition Hydrogen from Radiolysis Hydrogen from    -H20 Reactions
: 14. 2 .1.8 6.8.1.2 6.8.1.1 Hydrogen in Containment Effects            6.8.1.3 Hydrology                                  2.2.4 Hypochlorite Chemical                      10.9.2
* 1046v ii
 
FSAR INDEX Section
                                      - I -
Identification, CRD                              14. 2 .1.1 Identification of Contractor                      1.3 IEEE 279                                          7.4.5 Impact Forces                                    14.2.3.7 Industrial Facility Near Station                  2.2.2:2 In-Core Probe (TIP)                              5.2.2.7 8.2.2.3 Inerting System                                   6.8.3.2 Initial Operating Personnel                      13 .1.4 .1 Initialisms and Acronyms                          1.1.2.1 Inservice Inspection                              4.3.4.2 Inspection and Testing of Condensate and Feedwater                                        11.3 Ins~ection  and Testing of Core Spray            6.2.3.4 Inspection and Testing of CRD Housing Support    6.6.4 Inspection and Testin_g of Diesel Generators and Batteries                                    8.3 Inspection and Testing of Drywell and Suppression Chamber                              5.2.4 Inspection and Testing of Health Physics Instruments                                      7.6.5.3 I
Inspection and Testing of HPCI                    6.2.5.4 Inspection and Testing of Isolation Condenser    4.5.4 Inspection and Testing of Low Pressure Coolant Injection                                        6.2.4.4 Inspection and Testing of Off gas and Ventilation 9.2.4 Inspection and Testing of Main Steam              4.4.4 Inspection and Testing of Reactor                3.6.4
** 106lv i
 
Cr FSAR INDEX
                                      - I -          Section Inspection and Testing of Reactor Coolant  ~ystern 4.2.4 4.3.4 Inspection and Testing of Reactor Vessel            4.2.4 Inspection and Testing of Recirculation System      4.3.4 Inspection and Testing of Safety and Relief Valves  4.4.4 Inspection and Testing of Secondary Containment    5.3.4 Inspection and Testing of Standby Coolant Supply    6.3.4 Inspection and Testing of Standby Liquid Controi System                                              6.7.4 Inspection and Testing of Stearn Flow Restrictors  6.4.4 Inspection and Testing of Turbine                  11. 2. 4 Inspection, Weld, Visual                            12.1.2.4.4.1 Institutional Facilities Near Station              2.2.2:3 Instrument and Service Air System                  10.8 13.7.3.12 Instrumentation and Control                        7.1 Instrumentation and Control-Containment            6.8.3.4 Integrated Plant Safety Assessment etal (IPSEP)    14.4.0 Integrated System Design Evaluation                6 ~ 2. 7 Inter-Plant Effects of Accidents                    1.2.4.5 Interaction of Units 1,2, & 3                      1. 2 .4 Interconnection, Electrical Network                8.2.1 Intermediate Range Monitor (!RM)                   7.4.4 Introduction and Summary                            1.1.
Iodine Activities                                  9.2.5 Iodine (I-131) Release                              Appendix A (3-4)
IRM                                                7.4 ii 106lv
 
I FSAR INDEX
                                        - I -  Section Isokinetic Sample                          7.6.2.4.2 Isolation Condenser Inspection and Testing 4.6.4 Isolation Condenser Vent Monitor            7.6.2.9 Isolation Condenser - Piping Diagram        4.6.2:1 Isolation Valves                            5.2.2.6 5.2.4.3 13.7.3.18 Appendix B (B-27)
Isotope N16                                7.6.2 Isotopes in Liquid Waste Discharger        9.3.3 Investigative Function                      13.6.2
* 106lv iii
 
FSAR INDEX
                        - J -  Section
* Jet Pump Efficiency Jet Pump Isometric Jet Pump Operation 4.3.3.1 4.3.2:2 4.3.2.2 Jet Pump Stability            4.3.3.2
* 1047v i
 
FSAR INDEX
          - K-    Section
* 1048v i
 
FSAR INDEX
                                    - L -        Section
* Laboratory Radiation Measuring Inst Lake 7.6.5 2.2.4.1 2.2.1:2 Land Use                                        2.2.2.2 Leakage of Reactor Internals During Rec ire Line Break .                                   3.6.3.5 Leakage  Rat~ Test, Rx Bldg                    13.7.3.41 Lighting System                                 10.13 Limiting Safety System Settings                3.2.4.1 Liquid Radioactive Waste Discharge Monitorln~  7.6.2.8 9.3 Liquid Waste Effluents                          1.2.4.2 Liquid Waste Performance Analysis              9.3.3
                                                \
Load Diagrams                                  12 .1. 2. 28
* Load Set Mechanism LOCA's 7.3.3.2.C 1.2.5.2 5.2.3:2 Loe.al Limits During Operations                3.2.2*
Local Power Range Monitor (LPRK)                7.4.5.1 Local Power Peaking                            3.3.4.2 Lock and Dam                                    2.2.6.1 2.2.6:1 Loss-of-Control Room                            14.2.5 Loss-of-Coolant Accident                        14.2.4 Loss of EHC System Oil Pressure                11.2.3.2 7.7.1.2 Loss of Feedwater                              11:3.3:2-3C Low Reactor Water Level                        7. 7 .1: 2
* 1062v i
 
FSAR INDEX
                              - L - Section
* LPCI                              6.2.4 13.7.3.33 6.2.4:1-6 8.2.3 LPCI Inspection and Testing      6.2.4.4 LPCI Room Coolers                10.9.3 LPRM                              7.4.5:2-8 7.4
* *1062v ii
 
FSAR INDEX
                                            - K-       Section Kain Condenser Condensate                      7.8.2 Kain Steam                                    4.4 14.2.3:1 Kain Steam Flow Restrictors                    6.4 Kain Steam Isolation Valve                    5.2.2:9 7.7.2:2 14.2.3:1 11.2.3:4-6 "L--.
Kain Steam Line Break Outside Drywell          14.2.3 Kain Steam Line Flow Restrictor                6.4.3:1
        *Kain Steam Line Isolation Valve Closure        14.2.3.3 Kain *Steam Line Koni toring                  7.6.2.2 Kain Steam Line Radiation Monitoring system    7.6.2:1 Kain steam Line Restrictors                    6.1.2.2 6.4.2
* Kain Steam System Inspection and Testing Maintenance Department*
* Kain Steam System Inspection and Testing Maintenance Department*
Makeup Water System MAPLHGR Flow Controller Mathematical Model Maximum Rate of Load Change Maximum Recycle System Maximum Rod Worth KCPR Mechanical Design Limits (Fuel) Mechanical Vacuum Pump System * /" i 1068v 'j Section 7.8.2 4.4 14.2.3:1 6.4 5.2.2:9 7.7.2:2 14.2.3:1 11.2.3:4-6 14.2.3 6.4.3:1 14.2.3.3 7.6.2.2 7.6.2:1 6.1.2.2 6.4.2 4.4.4 13 .1. 3. 4 10.12 13 .. 7. 3. 8 7.4 7.3.3.2 12.1.2:5-7 11.2.3.3 9.3.2:5J-M 3.3.4:6 7.4 3.4.3.1 11.2 .2 FSAR INDEX -M -Section
Makeup Water System                         'j 4.4.4 13 .1. 3. 4 10.12 13 .. 7. 3. 8 MAPLHGR                                        7.4 Ka~t~r  Flow Controller                        7.3.3.2 Mathematical Model                            12.1.2:5-7 Maximum Rate of Load Change                    11.2.3.3 Maximum Recycle System                        9.3.2:5J-M Maximum Rod Worth                              3.3.4:6 KCPR                                          7.4 Mechanical Design Limits (Fuel)                3.4.3.1 Mechanical Vacuum Pump System                  11.2 .2
* Medical Exam Program 9. 5. 5. 7 Metal-Water Reactions 5.2.3.4 Meteorology 2.2.5 Meteorological Factors Appendix A (2.1) Midwest Fuel Recovery Plant Appendix A (4.0) Minimum Shift Manning Requirements 13 .1.4. 2 Missile Protection Appendix B (B-25) Mixture Impact Forces 14.2.3.7 Moderator Rod Worth 3.3.4:5 Moderator Temp. Coefficient of Reactivity 3.3.5:6 I-Moderator Void Coefficient of Reactivity 3.3.5:7
* 1068v
* Monitoring Systems, Personnel 9.5.5.2 Motor -Generator Sets 7.3.3 Movement of Control Rods 7.3.2 MSIV 11.2.3.2 MSIV Closure Time 14.2.3.8
                                      /"
* ii 1068v FSAR INDEX ' -N -Section
i
* N 16 Isotope 7.6.2 NOT Requirements Appendix B (B-26) Nearby Facilities
 
-Potential Hazards 2.2.2.3 NEBS Instrumentation Systems 13.7.3.36 Negative Feedback 7.2.2.1 Network Interconnection 8.2.1 Neutron Flux Level 7.4.2 Neutron Monitoring Reliability 8.2.3.2.3 New Features 1. 2. 5 New Fuel Storage Vault 10 .1. 2 .1 Noble Gas Release Appendix A (3.3) 3.2.3 4.3.2:3
FSAR INDEX
* Normal Operation Characteristics NPSH NPSH for ECCS Pumps 6.2.7.9 NSS Supply, Material Appendix E (2.2.2) NSS Periodic and On-Demand Programs, Computer 7.11.3.4 Nuclear Analysis Methods 3.5.5.4 Nuclear and Process Parameters 14.5 Nuclear Characteristics 3.3 Nuclear Instrumentation 7 .4 Nyquist Plot of Open-Loop Response 7. 2. 3: 7
                                      - M-    Section
* i 1063v FSAR INDEX Section
* Medical Exam Program Metal-Water Reactions Meteorology
* Off-Gas and Ventilation Inspection and Testing 9.2.4 Off-Gas Radiation Monitoring System 7.6.2:2 9.1 Off-Gas Treatment System 9.2.2:1 Off-Site Dose, Hydrogen Addition 14. 2 .1.8 Off-Site Electrical Power System 8.2.2.2 8.2.1.4 Off-Site Power and ECCS 6.2.7.5 Operability of the Units 1.2.5.3 On-Site Electrical Power System 8.2.2.1 On-Site Environs Radiation Monitoring System 9.5.4 Operating Basis Earthquake (Piping) 12 .1. 2. 4 Operating Basis (Reactor) 3.2.2.1 13 .1. 3 .1 3.4.3.2
: 9. 5. 5. 7 5.2.3.4 2.2.5 Meteorological Factors                    Appendix  A (2.1)
* Operating Group Operating Limit Heat Generation Rate Operating Limits (Reactor) 3.2.1.3 Operating Procedures 13.3 Operational Description Recirc System 4.3.2.3 Operational Description of Recirculation Pumps 4.3.2.3 C & D Operational Design Guide and Conformance 7.2.4 Operational Training 13.2 Organization and Responsibility 13.1 Organization of Report 1.1. 2 Overall Quality Program . Appendix E (3.1) 138 KV System 8.2.1.3 13.7.3.3
Midwest Fuel Recovery Plant                Appendix A (4.0)
* i 1049v 
Minimum Shift Manning Requirements        13 .1.4. 2 Missile Protection                        Appendix B (B-25)
* *
Mixture Impact Forces                      14.2.3.7 Moderator Rod Worth                        3.3.4:5 Moderator Temp. Coefficient of Reactivity  3.3.5:6 Moderator Void Coefficient of Reactivity  3.3.5:7 I-Monitoring Systems, Personnel              9.5.5.2 Motor - Generator Sets                    7.3.3 Movement of Control Rods                  7.3.2 MSIV                                      11.2.3.2 MSIV Closure Time                          14.2.3.8
* 115 Volt Systems FSAR INDEX 125 Volt DC Station Battery System ii 1049v Section ' 13.7.3.7 8.2.2:2
* 1068v ii
* *
 
* FSAR INDEX -p -Partical Closure of Main Steam Line Isolation Valves Particulate Release (Sr-90) Peak Fuel Enthalphy Pedestal, Reactor Penetrations, Testing of Performance Analysis (Rad Waste) Performance Analysis (Shielding)
FSAR INDEX
Performance Characteristic for Normal Operation Performance Evaluation of Reactor Vessel, Internals Performance Evaluation Recirc System Performance
                                '    - N-      Section
*Predictions Recirc System Peripheral Equipment, Computer Personnel Monitoring Systems Personnel Protection Equipment Personnel Qualifications Personnel Training Physical Description Reactor Coolant System Piping Pipe Penetrations Pipe Whip Criteria ECCS Plant Comparative Evaluation i 1069v Section 7.7.1.2 Appendix A ( 3. 5) . 14.2.1:1-3 12 .1.2. 5 Appendix B (8-27) 9.2.3 9.3.3 12.2.3 3.2.3 3.6.3 4.3.3 4.3.3.3 7.11.3.2 9.5.5.2 13.4.2.2 9.5.5.3 13.4.2.3 13 .1. 4 13.2.1:1 4.3.2.1 12 .1. 2 .4 12 .1. 3 .4 5.2.2.5 5.2.4.2 5.3.2.3 6. 2. 7 .7 Appendix B FSAR INDEX -p -Section
* N16 Isotope NOT Requirements 7.6.2 Appendix B (B-26)
* Plant Description 1.2 Plant Design 1.2.3:1 Plant Effluents Appendix B (B-31) Plant Electrical Cabling 8.2.2.3 Plant Heating Boiler 13. 7 .. 3 .14 Plant Safety (SEP) 14.4.0 Plant Stability Analysis 7.2 Plot Plan 12.1.1:1 Plume Reflection Effects Appendix A (2.1.3) Pool, Spent Fuel Storage 10 .1. 2 Population Data 2.2.2.1 2.2.2:1
Nearby Facilities - Potential Hazards        2.2.2.3 NEBS Instrumentation Systems                  13.7.3.36 Negative Feedback                            7.2.2.1 Network Interconnection                      8.2.1 Neutron Flux Level                            7.4.2 Neutron Monitoring Reliability                8.2.3.2.3 New Features                                  1. 2. 5 New Fuel Storage Vault                        10 .1. 2 .1 Noble Gas Release                            Appendix A (3.3)
* Portable Fire Extinguishers 10.7.2 Portable Instrumentation 9.5.5.6 Post-Accident Radiation Levels 12.3.1-1 Potential Hazards Due To Nearby Facilities 2.2.2.3 Power Flow Map 3.2.3:3 Power Range Instruments 7.4.5 Power Transient Analysis 14. 2 .1.4 Pre-Operational Training 13.2.1 Pre-Operational Test Program 13.7 Precautionary Planning 13.4 Pressure Forces During Blowdown (Reactor) 3.6.3.2 Pressure, Reactor Vessel 7.5.2.2
Normal Operation Characteristics              3.2.3 NPSH                                          4.3.2:3 NPSH for ECCS Pumps                          6.2.7.9 NSS Supply, Material                          Appendix E (2.2.2)
* Pressure Regulator and Turbine-Generator Controls 7.8.1 ii 1069v-
NSS Periodic and On-Demand Programs, Computer 7.11.3.4 Nuclear Analysis Methods                      3.5.5.4 Nuclear and Process Parameters                14.5 Nuclear Characteristics                      3.3 Nuclear Instrumentation                      7 .4 Nyquist Plot of Open-Loop Response            7. 2. 3: 7
* *
* 1063v i
* FSAR INDEX -p -Pressure Suppression Chamber Primary Containment Isolation Surveillance and Testing Primary Containment Isolation System Primary Containment Sizing Primary Containment System Primary Piping Primary System Expansion Primary System Hydro Principal Design Criteria Procedural Safeguards Procedure Designations and Categories Process and Area Monitoring Process and System Equip Chart \ Process Computer Process Liquid Monitoring .Process Radiation Monitoring Property Plat Protection Protection Systems Pump Back System Purge, Vent, and Inerting System iii 1069v Section 5.2.2.3 7.7.2.4 7.7.2 5.2.3.1 5.2 4.3.4.l 13.7.3.29 13.7.3.16
 
: 1. 2 .1 14. 2 .1. 3 14.2.2.3 13.3.0:1 9.1.2 1.1.2:1 7 .11 8.2.2.4 7.6.2.7 7.6.2 1.2.2:1 9.5.5.3 7. 7 10.8.2 6.8.3.2 FSAR INDEX -Q -Section
FSAR INDEX Section Off-Gas and Ventilation Inspection and Testing 9.2.4 Off-Gas Radiation Monitoring System            7.6.2:2 9.1 Off-Gas Treatment System                      9.2.2:1 Off-Site Dose, Hydrogen Addition              14. 2 .1.8 Off-Site Electrical Power System              8.2.2.2 8.2.1.4 Off-Site Power and ECCS                        6.2.7.5 Operability of the Units                      1.2.5.3 On-Site Electrical Power System                8.2.2.1 On-Site Environs Radiation Monitoring System   9.5.4 Operating Basis Earthquake (Piping)            12 .1. 2. 4 Operating Basis (Reactor)                      3.2.2.1
* Quality Assurance Records Appendix E (3. 7) Quality Control Reports Appendix E *
* Operating Group Operating Limit Heat Generation Rate Operating Limits (Reactor) 13 .1. 3 .1 3.4.3.2 3.2.1.3 Operating Procedures                          13.3 Operational Description Recirc System          4.3.2.3 Operational Description of Recirculation Pumps 4.3.2.3 C & D Operational Design Guide and Conformance      7.2.4 Operational Training                          13.2 Organization and Responsibility                13.1 Organization of Report                        1.1. 2 Overall Quality Program .                     Appendix E (3.1) 138 KV System                                  8.2.1.3 13.7.3.3
* i lOSOv FSAR INDEX -R -* Racks, High Density Spent Fuel Storage Radiation Control Standards Radiation Dose (Fuel Pool) Radiation Levels, Post-Accident Radiation Monitoring Systems / Radiation Protection Procedures Radiation Protection Radiation (High) Sampling System Radiation Shielding (HRSS) Radiation Zones Radioactive Waste Control
* 1049v i
* Radioactive Waste Disposal Radiological Effects Factors Radiolysis Radwaste Air Sparging System Radwaste Building Radwaste Process Systems Ventilation Ramp Rate Rate of Response (CRD)
 
* i 1064v Section 10.1. 2 13.4.2 10.1. 2. 2. 2 12.3 1.2.2.7 2.3 7.6 7.6.4 1.2.2.11 9.5 9.6 9.6.3.0 9.5.5.1 1. 2. 2 .12 9.1 1.2.1.6 13.7.3.35
FSAR INDEX Section
: 14. 2 .1. 5 14.2.3.10 14.2.4.2 Appendix A (2.2) 6.8.1.2 10.8.2 12 .1. 3. 2 13.7.3.44 7.3.6.3 3.5.3.1 FSAR INDEX -R -* RBCCW (Reactor Building Closed Cooling Water) Reactivity Control Reactivity Insertion Accidents Reactor* Slowdown Reactor Building Reactor Building Air Monitoring Reactor Building Closed Cooling Water System Reactor Building Crane
* 115 Volt Systems 125 Volt DC Station Battery System
* Reactor Building Leakage Rate Reactor Bldg Ventilation Reactor Building Ventilation Exhaust Reactor Building Ventilation Isolation Valves Reactor Building Ventilation Stack Monitoring
                                            ' 13.7.3.7 8.2.2:2
* Reactor Coolant System Reactor Coolant Slowdown Reactor Coolant Pressure Boundary Reactor Control Systems Reactor Core* Reactor Core and Channel Hydrodynamic Stability
* 1049v ii
* ii 1064v Section 7.6.2.7 10.10 13.7.3.15 3.3.4.3 3.3.5.1 3.5 1.2.5.1 5.2.3.3 5.3 5.3.2.1 12 .1. 2 .1 7.6.2.5 7.6.2.7 10.10 13.7.3.15 10 .1.2. 2 .2 5.3.4.1 13.7.3.41 13.7.3.44 9.2.2.1 5.3.2.4 7.6.2.6 9.1 4.1 4.1.0:1 14.2.3.6 Appendix B (8-18&26) 7.3 1.2.1.1 7.2.2.2 7. 2. 3. 3 
 
,, FSAR INDEX -R -Section Reactor Core Conformance 7.2.4.3 Reactor Core Cooling System 1.2.1.2 Reactor Core Shutdown 14.2.3.4 Reactor Design Basis 3.2.1.1 Reactor Operating Limits 3.2.1.3 Reactor Pedestal 12 .1. 2. 5 Reactor Pressure Control 7.3.5 Reactor Pressure Vessel Design Appendix D Reactor Protection System 7. 7 .1 13.7.3.37 Reactor Protection System Surveillance and Testing 7.7.1.4 Reactor Recirculation System 13.7.3.31 Reactor Relief Valves 4.5.2 Reactor Shutdown Cooling System 10.4 Reactor Systems 1.2.2.3 3.1 Reactor Vessel 4.2 4.2.1:1 Reactor Vessel Components 13.7.3.27 Vessel Designed Cycles 4.2.1:1 Reactor Vessel Weld Report Appendix F Reactor Vessel Head Cooling System 10.5 13.7.3.26 7.6.2.7 Reactor Vessel Instrumentation Surveillance and Testing 7.5.4 Reactor Vessel Isometric 4.3.2:1 Reactor Vessel Hydro 13.7.3.16 Reactor Vessel Instrumentation 7.5 9' 13.7.3.28 iii 1064v FSAR INDEX -R -Reactor Vessel Internals Reactor Vessel Lateral Supports Reactor Vessel Nozzle Safe Ends Reactor Vessel Inspection and Reactor Vessel Supporting Structure and Stabilizers Reactor Water Cleanup Piping Diagram Reactivity Control Recipient, FSAR Controlled Copy Recirculation Flow Monitors Recirculation Line Break Recirculation Pumps Operational Description Recirculation Speed Control Network Recirculation System Recirculation System Analysis Recirculation System Inspection and Testing Records Recreational Facility Near Station Refueling Refueling Accident Refueling Accident Procedural Safeguards Refueling Pool Airborne Effects Regional and Site Meteorology Relative Bundle Power Histogram ii ii 1064v Section 3.6 4.2.2:1 4.2.2.1 4.2.2 12 .1. 2. 5 10.3.1:1 10.3.2 Appendix B (B-15) 1.1.1.4 7.4.5.2.2 3.6.3.5 4.3.2.3.C
FSAR INDEX
& D 7.3.3:1 4.3 13.7.3.31 4.3.3.4 4.3.4 13.5 Appendix (3.7.1) 2.2.2:3 10 .1.2 .3 14.2.2 14.2.2.3 14.2.2.6 2.2.S E 3.2.2:1 & 3 FSAR INDEX -R -Section
                                      - p -          Section
* Release of Activity to Environment (Liquid) 9.3.3 Appendix B (B-31) Relief and Safety Valves 4.5 13.7.3.30 Reliability of Protection Systems Appendix B ( B-12 )" Reportable Occurrence 13.6.2.2 Resumes of Startup Personnel Appendix H Review and Investigative Function 13.6.2 Ring Header 5.2.3:18-23 Rod Block Monitor (RBM) 7.4.S.3 7.4.S.4 Rod Drop Accident Analysis 12 .1.4. 6 14.2.1:4 Rod Movement Tests 7.2.6.2 7.9 13.7.3.38
* Partical Closure of Main Steam Line Isolation Valves Particulate Release (Sr-90) 7.7.1.2 Appendix A
* Rod Worth
( 3. 5) .
\
Peak Fuel Enthalphy                                14.2.1:1-3 Pedestal, Reactor                                  12 .1.2. 5 Penetrations, Testing of                            Appendix B (8-27)
* iii ii 1064v FSAR INDEX -T -* T-Quencher Technical Spec. Development Technical Staff Temperature, Reactor Vessel Test Schedule, Pre-operational Testable Check-Isoiation Valves Testing and Surveillance (Reactor)
Performance Analysis (Rad Waste)                    9.2.3 9.3.3 Performance Analysis (Shielding)                    12.2.3 Performance Characteristic for Normal Operation    3.2.3 Performance Evaluation of Reactor Vessel, Internals 3.6.3 Performance Evaluation Recirc System                4.3.3 Performance *Predictions Recirc System             4.3.3.3 Peripheral Equipment, Computer                      7.11.3.2 Personnel Monitoring Systems                        9.5.5.2 13.4.2.2 Personnel Protection Equipment                      9.5.5.3 13.4.2.3 Personnel Qualifications                            13 .1. 4 Personnel Training                                  13.2.1:1 Physical Description Reactor Coolant System        4.3.2.1 Piping                                              12 .1. 2 .4 12 .1. 3 .4 Pipe Penetrations                                  5.2.2.5 5.2.4.2 5.3.2.3 Pipe Whip Criteria ECCS                             6. 2. 7 .7 Plant Comparative Evaluation                       Appendix B i
Thermal (Reactor)
1069v
Characteristics Thermal Shock Effect*s on Core Internals Thermal Shock Effects on Reactor Vessel Components Thermal Sleeves, Feedwater Nozzle TIP Topical Report (CECo)
 
* Topical Report (GE) Tornadoes Torus Torus Seismic Analysis Torus Water Contamination Total System Conformance Transient Operating Traversing Incore Probe (TIP) Trend Records Turbine Turbine Building i 1052v Section 4.5.2 3.2.4 13 .1.3. 3 7.5.2.1 13.7.2 6.2.3.4 3.4.4 3.2 3.6.3.3 3.6.3.4 6.2.5.3.4 7.4.2 13.2.2 1.1.2.1 2.2.5.l 5.2.2.3 5.2.3:17 6.2.7.8 7.2.3.4 7.2.4.4 3.2.4.3 5.2.2.7 7. 4. 5. 5 7.11.3.3 11. 2. 2 12 .1. 3 .1 r FSAR INDEX -T -Turbine Building Cooling Water System Turbine Building Ventilation Turbine Bypass System Turbine Condenser Turbine Generator Turbine Generator Controls Turbine Generator System Turbine Plant Control Systems Turbine Steam Handling Equipment Turbine Stop and Bypass Valves Turbine Stop Valve Closure Turbine System
FSAR INDEX
* Turbine Tests and Inspection Turbine Trip With Flux Scram Turbine Trip Without Bypass Turnkey Projects Operation Typical Core Lattice Unit 345 KV System 220 Volt and 115 Volt Ac Systems 250 Volt DC Station Battery System ii l052v Section 13.7.3.10 10.9.2 13.7.3.44
                                    - p -          Section
: 11. 2. 2 11. 2. 2 11.2 13.7.3.43 7.8.1 11. 2. 2 7.8 12.2.2.6 11. 2 .4 7.7.1.2 1.2.2.9 11. 2 .4 4.5.3:2a&b
* Plant Description Plant Design Plant Effluents 1.2 1.2.3:1 Appendix B (B-31)
: 11. 2. 3 3.2.2:10 Appendix E (2.2-1) 3.4.2:2 8.2.1.2 13.7.3.4 13.7.3.7 8.2.2:1 
Plant Electrical Cabling                          8.2.2.3 Plant Heating Boiler                              13. 7 .. 3 .14 Plant Safety (SEP)                                14.4.0 Plant Stability Analysis                          7.2 Plot Plan                                        12.1.1:1 Plume Reflection Effects                          Appendix A (2.1.3)
* *
Pool, Spent Fuel Storage                          10 .1. 2 Population Data                                  2.2.2.1 2.2.2:1
* FSAR INDEX -s -Standby Lighting Standby Liquid Control System Standby Liquid Control System Inspection and Testing Startup and Power Test Program Startup Program, Preoperational Startup Tests Inst and Control Station Access Station Arrangements
* Portable Fire Extinguishers Portable Instrumentation Post-Accident Radiation Levels 10.7.2 9.5.5.6 12.3.1-1 Potential Hazards Due To Nearby Facilities        2.2.2.3 Power Flow Map                                    3.2.3:3 Power Range Instruments                          7.4.5 Power Transient Analysis                          14. 2 .1.4 Pre-Operational Training                          13.2.1 Pre-Operational Test Program                      13.7 Precautionary Planning                            13.4 Pressure Forces During Blowdown (Reactor)        3.6.3.2 Pressure, Reactor Vessel                          7.5.2.2 Pressure Regulator and Turbine-Generator Controls 7.8.1 ii 1069v-
-station Batteries Station Computer Power Supply Station Distribution System Station Fire Protection System Station Generated Procedures Station Grounding-Construction Tests Station Instrument and Service Air System Station Organization/Management Station Procedure Designations and Steady State Steam Flow Steam Flow Restrictors Steam Handling Equipment, Turbine Steam Jet Air Ejectors Stock System Structures anq Equipment iii 105lv Section . 10.13 .3 6.7 7.3.4 13.7.3.25 6.7.4 13.8 13.7.1 7.2.6.2 13.4.3 1.2.2.2 2.2.1:1 8.2.3.2 8.3.2 8.2.2.4 8.2.2 10.7 & 13.7.3.11 13.3 13.7.3.1 10.8 13 .1. 3 13.3.0:1 3.3.4 7.5.2.5 6.4 12.2.2.6 . 11. 2. 2 9.4.2.1 12 .1.1.
 
* *
FSAR INDEX
* FSAR INDEX -s -Section Structural Design and Shielding 12.l Stock Rod Margin 3.3.4:3 Summary Evaluation of Safety
                                        - p -             Section
* 1.2.2.13 Summary of Off-Site Doses from Accidents 1.2.2:2 Summary of Pre-operational Test Content & Sequence 13.7.3 Summary of Technical Data 1.2.3 Supplementary Control 3.5.5 Suppression Chamber and Drywell Inspection and Testing 5.2.4 Surveillance and Testing of Control Rods 3.5.4 Surveillance and Testing of Nuclear Instruments 7.4.5.6 Surveillance and Testing of Primary Containment Isolation 7.7.2.4 Surveillance and Testing of Reactor Surveillance and Testing of Reactor Protection System 3.4.4 3.5.4 7.7.1.4 Surveillance and Testing of Reactor Vessel Instrumentation 7.5.9 System Performance Transients 6.2.7.2 iiii 1051v \
* Pressure Suppression Chamber Primary Containment Isolation Surveillance and Testing Primary Containment Isolation System 5.2.2.3 7.7.2.4 7.7.2 Primary Containment Sizing                            5.2.3.1 Primary Containment System                            5.2 Primary Piping                                        4.3.4.l Primary System Expansion                              13.7.3.29 Primary System Hydro                                  13.7.3.16 Principal Design Criteria                              1. 2 .1 Procedural Safeguards                                  14. 2 .1. 3 14.2.2.3 Procedure Designations and Categories                  13.3.0:1 Process and Area Monitoring                            9.1.2
FSAR INDEX )* -T -* Technical Spec. Development Technical staff Temperature, Reactor Vessel Test Schedule, Pre-operational Testing and Surveillance (Reactor)
* Process and  Instr~mentation Process Computer
Thermal (Reactor)
                      \
Characteristics Thermal Shock Effects on Core Internals Thermal Shock Effects on Reactor Vessel Components Thermal Sleeves, Feedwater Nozzle TIP Topical Report (CECo) Topical Report (GE)
System Equip Chart        1.1.2:1 7 .11 8.2.2.4 Process Liquid Monitoring                              7.6.2.7
* Tornadoes Torus Torus Seismic Analysis Torus Water Contamination Total System Conformance Transient Operating Conditions Traversing lncore Probe (TIP) Trend Records Turbine --Turbine Building Turbine Building Cooling Water System
  .Process Radiation Monitoring                          7.6.2 Property Plat                                          1.2.2:1 Protection  E~uipment, P~rsonnel                      9.5.5.3 Protection Systems                                    7. 7 Pump Back System                                      10.8.2 Purge, Vent, and Inerting System                      6.8.3.2
* i 1052v Section 3.2.4 13 .1. 3. 3 7.5.2.1 13.7.2 3 .4 .4. 3.2 3.6.3.3 3.6.3.4 6.2.5.3.4 7.4.2 13.2.2 1.1.2.1 2.2.5.1 5.2.2.3 5.2.3:17 5.2.3:2 6.2.7.8 7.2.3.4 7.2.4.4 3.2.4.3 5.2.2.7 7. 4. 5. 5 7.11.3.3 11.2 .2 . 12. 1. 3 .'1 13.7.3.10 10.9.2 FSAR INDEX -T -Section
* 1069v iii
* Turbine Building Ventilation 13.7.3.44 Turbine Bypass System 11. 2. 2 Turbine Condenser
 
: 11. 2. 2 Turbine Generator
FSAR INDEX
: 11. 2 13.7.3.43 Turbine Generator Controls 7.8.1 Turbine Generator System 11. 2. 2 Turbine Plant Control Systems 7.8 Turbine Steam Handling Equipment 12.2.2.6 Turbine Stop and Bypass Valves 11. 2 .4 Turbine Stop Valve Closure 7.7.1.2 Turbine System 1.2.2.9 Turbine Tests and Inspection
                              - Q-   Section
: 11. 2 .4
* Quality Assurance Records Quality Control Reports Appendix E (3. 7)
* Turbine Trip With Flux Scram 4.5.3:2a&b
Appendix E
: 11. 2. 3 Turbine Trip Without Bypass 3.2.2:10 Turnkey Projects Operation Appendix E (2.2-1) Typical Core Lattice Unit 3.4.2:2 345 KV System 8.2.1.2 13.7.3.4 220 Volt and 115 Volt Ac Systems 13.7.3.7 250 Volt DC Station Battery System 8.2.2:1
* lOSOv i
* ii 1052v FSAR INDEX -u -Ultimate Performance Limit Criteria Ultrasonic Resin Cleaners Unit Auxiliary Power Supplies Unit Control and Instrumentation Unit-1 Spent Fuel Updated FSAR i 1053v Section 7.2.3 9.3.2.4 1.2.4.3 1.2.2.6 10.1. 2. 2 .1 1.1.1.3 1.1.1.4 FSAR INDEX -v -* Vacuum* Pump System Vacuum Relief Velocity Limiter, CRD Vent Pipes Vent, Purge, and Inerting Systems Venting and Cooling System Ventilating Ventilation and Off-Gas Inspection and Testing Ventilation, Control Room Ventilation, Drywell Ventilation, Emergency Ventilation, Reactor, Radwaste, and Turbine Bldgs Ventilation Stack Monitoring, Reactor Bldg
 
* Ventilation System Containment Venturis, Hain Steam Line Vessel Components, Reactor Vessel Head Cooling System Vessel Instrumentation Vibration of Components (Rx Internals)
FSAR INDEX
Visual Weld Inspection Vulkene Insulation i 1054v Section 11. 2. 2 5.2.2.9 6.2.5 5.2.2.2 6.8.3.2 5.2.2.8 10.11 9.2.4 12.2.2.5 13.7.3.40 13.7.3.41 13.7.3.44 7.6.2.6 9.2.2.1 5.2.4.4 6.4.2 13.7.3.27 10.5 13.7.3.28 3.6.3.1 12.1.2.4.4.1.3 8.2.2.3 Waste Concentrator System Water Level, Reactor Vessel Water System (Clased Cooling) Water System (Service)
                                      - R-Section Racks, High Density Spent Fuel Storage      10.1. 2 Radiation Control Standards                13.4.2 Radiation Dose (Fuel Pool)                  10.1. 2. 2. 2 Radiation Levels, Post-Accident            12.3 Radiation Monitoring Systems  /            1.2.2.7 2.3 7.6 7.6.4 Radiation Protection Procedures            1.2.2.11 Radiation Protection                        9.5 Radiation (High) Sampling System            9.6 Radiation Shielding (HRSS)                  9.6.3.0 Radiation Zones                            9.5.5.1 Radioactive Waste Control                  1. 2. 2 .12
Weather, Wind Weld Inspection, Visual Well Water System Wind WINDOW 1065v FSAR INDEX -w -i Section 9.3.2.3 7.5.2.3 10.10 10.9 Appendix G 12.1.2.4.4.1.3 10.12,2:1 Appendix G 6.8.3.3.4
* Radioactive Waste Disposal Radiological Effects 9.1 1.2.1.6 13.7.3.35
* Xenon Equilibrium Xeno.n Stability X-Area Coolers
: 14. 2 .1. 5 14.2.3.10 14.2.4.2 Radiolo~ical Factors                        Appendix A (2.2)
* lOSSv FSAR INDEX -x -i Section 6.7.1 3.3.5.2 7.2.4.S 10.9.2 10.9.3 
Radiolysis                                  6.8.1.2 Radwaste Air Sparging System                10.8.2 Radwaste Building                          12 .1. 3. 2 Radwaste Process Systems Radwast~  Ventilation                      13.7.3.44 Ramp Rate                                  7.3.6.3 Rate of Response (CRD)                      3.5.3.1
* *
* 1064v i
* 1066v FSAR INDEX -y -i Section 
 
*
FSAR INDEX
* 1056v FSAR INDEX -z -. i Section -6. 8 .1.1 v TABLE OF CONTENTS -DRESDEN UNITS 2 & 3 UPDATED FINAL SAFETY ANALYSIS REPORT SECTION 1 INTRODUCTION AND  
                                    - R -       Section RBCCW (Reactor Building Closed Cooling Water)   7.6.2.7 10.10 13.7.3.15 Reactivity Control                             3.3.4.3 3.3.5.1 3.5 Reactivity Insertion Accidents                  1.2.5.1 Reactor* Slowdown                              5.2.3.3 Reactor Building                                5.3 5.3.2.1 12 .1. 2 .1 Reactor Building Air Monitoring                7.6.2.5 Reactor Building Closed Cooling Water System    7.6.2.7 10.10 13.7.3.15 Reactor Building Crane                          10 .1.2. 2 .2
* Reactor Building Leakage Rate Reactor Bldg Ventilation Reactor Building Ventilation Exhaust 5.3.4.1 13.7.3.41 13.7.3.44 9.2.2.1 Reactor Building Ventilation Isolation Valves  5.3.2.4 Reactor Building Ventilation Stack Monitoring
* 7.6.2.6 9.1 Reactor Coolant System                          4.1 4.1.0:1 Reactor Coolant Slowdown                        14.2.3.6 Reactor Coolant Pressure Boundary              Appendix B (8-18&26)
Reactor Control Systems                        7.3 Reactor Core*                                  1.2.1.1 Reactor Core and Channel Hydrodynamic Stability 7.2.2.2
* 1064v ii
: 7. 2. 3. 3
 
FSAR INDEX
                                          - R-               Section Reactor Core Conformance                                7.2.4.3 Reactor Core Cooling System                            1.2.1.2 Reactor Core Shutdown                                  14.2.3.4 Reactor Design Basis                                    3.2.1.1 Reactor Operating Limits                                3.2.1.3 Reactor Pedestal                                        12 .1. 2. 5 Reactor Pressure Control                                7.3.5 Reactor Pressure Vessel Design                          Appendix    D Reactor Protection System                              7. 7 .1 13.7.3.37 Reactor Protection System Surveillance and Testing      7.7.1.4 Reactor Recirculation System                            13.7.3.31 Reactor Relief Valves                                  4.5.2 Reactor Shutdown Cooling System                        10.4 Reactor Systems                                        1.2.2.3 3.1 Reactor Vessel                                          4.2 4.2.1:1 Reactor Vessel Components                              13.7.3.27 Reac~or Vessel Designed Cycles                          4.2.1:1 Reactor Vessel  Ele~troslog Weld Report                Appendix F Reactor Vessel Head Cooling System                      10.5 13.7.3.26 7.6.2.7 Reactor Vessel Instrumentation Surveillance and Testing 7.5.4 Reactor Vessel Isometric                                4.3.2:1 Reactor Vessel Hydro                                    13.7.3.16 Reactor Vessel Instrumentation                          7.5 13.7.3.28 9'
iii 1064v
 
FSAR INDEX
                                  - R-             Section Reactor Vessel Internals                            3.6 Reactor Vessel Lateral Supports                    4.2.2:1 Reactor Vessel Nozzle Safe Ends                    4.2.2.1 Reactor Vessel Inspection and Te~ting              4.2.2 Reactor Vessel Supporting Structure and Stabilizers 12 .1. 2. 5 Reactor Water Cleanup Piping Diagram                10.3.1:1 10.3.2 Reactivity Control                                  Appendix B (B-15)
Recipient, FSAR Controlled Copy                    1.1.1.4 Recirculation Flow Monitors                        7.4.5.2.2 Recirculation Line Break                            3.6.3.5 Recirculation Pumps Operational Description        4.3.2.3.C & D Recirculation Speed Control Network                7.3.3:1 Recirculation System                               4.3 13.7.3.31 Recirculation System Analysis                      4.3.3.4 Recirculation System Inspection and Testing        4.3.4 Records                                            13.5 Appendix E (3.7.1)
Recreational Facility Near Station                  2.2.2:3 Refueling                                          10 .1.2 .3 Refueling Accident                                  14.2.2 Refueling Accident Procedural Safeguards            14.2.2.3 Refueling Pool Airborne Effects                    14.2.2.6 Regional and Site Meteorology                      2.2.S Relative Bundle Power Histogram                    3.2.2:1 & 3 i i ii 1064v
 
FSAR INDEX
                                    - R-    Section
* Release of Activity to Environment (Liquid)
Relief and Safety Valves 9.3.3 Appendix B (B-31) 4.5 13.7.3.30 Reliability of Protection Systems          Appendix B
( B-12 )"
Reportable Occurrence                      13.6.2.2 Resumes of Startup Personnel                Appendix H Review and Investigative Function          13.6.2 Ring Header                                5.2.3:18-23 Rod Block Monitor (RBM)                    7.4.S.3 7.4.S.4 Rod Drop Accident Analysis                 12 .1.4. 6 14.2.1:4 Rod Movement Tests                          7.2.6.2
* Rod Worth Mini~izer                        7.9 13.7.3.38
                                                          \
* 1064v iii ii
 
FSAR INDEX
                                      - T -          Section
* T-Quencher Technical Spec. Development Technical Staff 4.5.2 3.2.4 13 .1.3. 3 Temperature, Reactor Vessel                        7.5.2.1 Test Schedule, Pre-operational                    13.7.2 Testable Check-Isoiation Valves                    6.2.3.4 Testing and Surveillance (Reactor)                3.4.4 Thermal (Reactor) Characteristics                  3.2 Thermal Shock Effect*s on Core Internals          3.6.3.3 Thermal Shock Effects on Reactor Vessel Components 3.6.3.4 Thermal Sleeves, Feedwater Nozzle                  6.2.5.3.4 TIP                                                7.4.2 Topical Report (CECo)                             13.2.2 Topical Report (GE)                                1.1.2.1 Tornadoes                                          2.2.5.l Torus                                              5.2.2.3 5.2.3:17 Torus Seismic Analysis                            5.2~3:2 Torus Water Contamination                          6.2.7.8 Total System Conformance                          7.2.3.4 7.2.4.4 Transient Operating Conditio~s                    3.2.4.3 Traversing Incore Probe (TIP)                     5.2.2.7
: 7. 4. 5. 5 Trend Records                                      7.11.3.3 Turbine                                            11. 2. 2 Turbine Building                                  12 .1. 3 .1 i
1052v r
 
FSAR INDEX
                                      - T -  Section Turbine Building Cooling Water System      13.7.3.10 10.9.2 Turbine Building Ventilation                13.7.3.44 Turbine Bypass System                      11. 2. 2 Turbine Condenser                          11. 2. 2 Turbine Generator                          11.2 13.7.3.43 Turbine Generator Controls                  7.8.1 Turbine Generator System                    11. 2. 2 Turbine Plant Control Systems              7.8 Turbine Steam Handling Equipment            12.2.2.6 Turbine Stop and Bypass Valves              11. 2 .4 Turbine Stop Valve Closure                  7.7.1.2 Turbine System                              1.2.2.9
* Turbine Tests and Inspection                11. 2 .4 Turbine Trip With Flux Scram                4.5.3:2a&b
: 11. 2. 3 Turbine Trip Without Bypass                3.2.2:10 Turnkey Projects Operation                  Appendix E (2.2-1)
Typical Core Lattice Unit                  3.4.2:2 345 KV System                               8.2.1.2 13.7.3.4 220 Volt and 115 Volt Ac Systems            13.7.3.7 250 Volt DC Station Battery System          8.2.2:1 ii l052v
 
FSAR INDEX
                                    - s -              Section
* Standby Lighting Standby Liquid Control System
                                                      . 10.13 .3 6.7 7.3.4 13.7.3.25 Standby Liquid Control System Inspection and Testing  6.7.4 Startup and Power Test Program                        13.8 Startup Program, Preoperational                        13.7.1 Startup Tests Inst and Control                        7.2.6.2 Station Access                                        13.4.3 Station Arrangements -                                1.2.2.2 2.2.1:1 station Batteries                                      8.2.3.2 8.3.2 Station Computer Power Supply                          8.2.2.4 Station Distribution System                            8.2.2
* Station Fire Protection System Station Generated Procedures Station Grounding-Construction Tests 10.7 & 13.7.3.11 13.3 13.7.3.1 Station Instrument and Service Air System            10.8 Station Organization/Management                      13 .1. 3 Station Procedure Designations and Categorie~        13.3.0:1 Steady State                                          3.3.4 Steam Flow                                            7.5.2.5 Steam Flow Restrictors                                6.4 Steam Handling Equipment, Turbine                     12.2.2.6 .
Steam Jet Air Ejectors                                11. 2. 2 Stock System                                         9.4.2.1 Structures anq Equipment                              12 .1.1.1 iii 105lv
 
FSAR INDEX
                                    - s -                Section
* Structural Design and Shielding Stock Rod Margin Summary Evaluation of Safety
* 12.l 3.3.4:3 1.2.2.13 Summary of Off-Site Doses from Accidents                1.2.2:2 Summary of Pre-operational Test Content & Sequence      13.7.3 Summary of Technical Data                              1.2.3 Supplementary Control                                  3.5.5 Suppression Chamber and Drywell Inspection and Testing  5.2.4 Surveillance and Testing of Control Rods                3.5.4 Surveillance and Testing of Nuclear Instruments        7.4.5.6 Surveillance and Testing of Primary Containment Isolation 7.7.2.4 Surveillance and Testing of Reactor                    3.4.4 3.5.4 Surveillance and Testing of Reactor Protection System  7.7.1.4 Surveillance and Testing of Reactor Vessel Instrumentation 7.5.9 System Performance Transients                          6.2.7.2
                                                                  \
* 1051v iiii
 
FSAR INDEX
)*
                                        - T -            Section
* Technical Spec. Development Technical staff Temperature, Reactor Vessel 3.2.4 13 .1. 3. 3 7.5.2.1 Test Schedule, Pre-operational                      13.7.2 Testing and Surveillance (Reactor)                  3 .4 .4.
Thermal (Reactor) Characteristics                    3.2 Thermal Shock Effects on Core Internals              3.6.3.3 Thermal Shock Effects on Reactor Vessel Components  3.6.3.4 Thermal Sleeves, Feedwater Nozzle                    6.2.5.3.4 TIP                                                  7.4.2 Topical Report (CECo)                                13.2.2 Topical Report (GE)                                  1.1.2.1
* Tornadoes Torus Torus Seismic Analysis 2.2.5.1 5.2.2.3 5.2.3:17 5.2.3:2 Torus Water Contamination                            6.2.7.8 Total System Conformance                            7.2.3.4 7.2.4.4 Transient Operating Conditions                      3.2.4.3 Traversing lncore Probe (TIP)                        5.2.2.7
: 7. 4. 5. 5 Trend Records                                        7.11.3.3 Turbine                                              11.2 .2 Turbine Building                                  . 12. 1. 3 .'1 Turbine Building Cooling Water System                13.7.3.10 10.9.2
* 1052v i
 
FSAR INDEX
                                      - T -  Section Turbine Building Ventilation                13.7.3.44 Turbine Bypass System                      11. 2. 2 Turbine Condenser                          11. 2. 2 Turbine Generator                          11. 2 13.7.3.43 Turbine Generator Controls                  7.8.1 Turbine Generator System                    11. 2. 2 Turbine Plant Control Systems              7.8 Turbine Steam Handling Equipment            12.2.2.6 Turbine Stop and Bypass Valves              11. 2 .4 Turbine Stop Valve Closure                  7.7.1.2 Turbine System                              1.2.2.9 Turbine Tests and Inspection                11. 2 .4
* Turbine Trip With Flux Scram Turbine Trip Without Bypass 4.5.3:2a&b
: 11. 2. 3 3.2.2:10 Turnkey Projects Operation                  Appendix E (2.2-1)
Typical Core Lattice Unit                  3.4.2:2 345 KV System                              8.2.1.2 13.7.3.4 220 Volt and 115 Volt Ac Systems            13.7.3.7 250 Volt DC Station Battery System          8.2.2:1
* 1052v ii
 
FSAR INDEX
                                    - u-    Section Ultimate Performance Limit Criteria        7.2.3 Ultrasonic Resin Cleaners                  9.3.2.4 Unit Auxiliary Power Supplies              1.2.4.3 Unit Control and Instrumentation           1.2.2.6 Unit-1 Spent Fuel                          10.1. 2. 2 .1 Updated FSAR                                1.1.1.3 1.1.1.4 i
1053v
 
FSAR INDEX
                                    - v -         Section
* Vacuum* Pump System Vacuum Relief Velocity Limiter, CRD
: 11. 2. 2 5.2.2.9 6.2.5 Vent Pipes                                        5.2.2.2 Vent, Purge, and Inerting Systems                6.8.3.2 Venting and Cooling System                        5.2.2.8 Ventilating                                      10.11 Ventilation and Off-Gas Inspection and Testing    9.2.4 Ventilation, Control Room                        12.2.2.5 Ventilation, Drywell                              13.7.3.40 Ventilation, Emergency                            13.7.3.41 Ventilation, Reactor, Radwaste, and Turbine Bldgs 13.7.3.44 Ventilation Stack Monitoring, Reactor Bldg        7.6.2.6 9.2.2.1 Ventilation System Containment                    5.2.4.4 Venturis, Hain Steam Line                        6.4.2 Vessel Components, Reactor                        13.7.3.27 Vessel Head Cooling System                        10.5 Vessel Instrumentation                            13.7.3.28 Vibration of Components (Rx Internals)            3.6.3.1 Visual Weld Inspection                            12.1.2.4.4.1.3 Vulkene Insulation                                8.2.2.3 i
1054v
 
FSAR INDEX
                                - w-    Section Waste Concentrator System                9.3.2.3 Water Level, Reactor Vessel              7.5.2.3 Water System (Clased Cooling)            10.10 Water System (Service)                  10.9 Weather, Wind                            Appendix G Weld Inspection, Visual                  12.1.2.4.4.1.3 Well Water System                        10.12,2:1 Wind                                    Appendix G WINDOW                                  6.8.3.3.4 i
1065v
 
FSAR INDEX
                        - x-Section Xenon Equilibrium            6.7.1 Xeno.n Stability            3.3.5.2 7.2.4.S X-Area Coolers              10.9.2 10.9.3
* lOSSv i
 
FSAR INDEX
          - y -  Section
* 1066v i
 
FSAR INDEX
          - z- . Section
*                  -6. 8 .1.1
* 1056v i
 
v TABLE OF CONTENTS
-                       DRESDEN UNITS 2 & 3 UPDATED FINAL SAFETY ANALYSIS REPORT SECTION 1     INTRODUCTION AND  


==SUMMARY==
==SUMMARY==
2 SITE 3 REACTOR CORE AND INTERNALS 4 REACTOR COOLANT SYSTEM 5 CONTAINMENT SYSTEMS 6 ENGINEERED SAFEGUARDS 7 CONTROL AND INSTRUMENTATION 8 ELECTRICAL SYSTEM 9 RADWASTE SYSTEM 10 REACTOR AUXILIARIES 11 TURBINE AND CONDENSATE SYSTEMS 12 STRUCTURES AND SHIELDING
 
: e. 13 CONDUCT OF OPERATION 14 SAFETY ANALYSIS APPENDIX A CHIMNEY RELEASE RATE CALCULATION B PLANT COMPARATIVE EVALUATION WITH DESIGN CRITERIA c CONTAINMENT CERTIFICATIONS D UNIT 2 REACTOR PRESSURE VESSEL DESIGN E QUALITY CONTROL F REACTOR VESSEL ELECTROSLAG WELD REPORT G METEOROLOGICAL DATA H RESUMES FOR STARTUP PERSONNEL -e
2   SITE 3   REACTOR CORE AND INTERNALS 4   REACTOR COOLANT SYSTEM 5   CONTAINMENT SYSTEMS 6   ENGINEERED SAFEGUARDS 7   CONTROL AND INSTRUMENTATION 8   ELECTRICAL SYSTEM 9   RADWASTE SYSTEM 10   REACTOR AUXILIARIES 11   TURBINE AND CONDENSATE SYSTEMS 12   STRUCTURES AND SHIELDING 13    CONDUCT OF OPERATION
*. *'
: e. 14   SAFETY ANALYSIS APPENDIX A   CHIMNEY RELEASE RATE CALCULATION B   PLANT COMPARATIVE EVALUATION WITH DESIGN CRITERIA c   CONTAINMENT CERTIFICATIONS D   UNIT 2 REACTOR PRESSURE VESSEL DESIGN E   QUALITY CONTROL F   REACTOR VESSEL ELECTROSLAG WELD REPORT G   METEOROLOGICAL DATA H   RESUMES FOR STARTUP PERSONNEL
* 1.1 1.1.1 1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.2 1.1.2.1 1.1.2.2 1.2 1.2 .1 1.2.1.1 1.2.1.2 1.2.1.3 1.2.1.4 1.2.1.5 1.2.1.6 1.2.1.7 1.2.1.8 1.2 .2 1.2.2.1 1.2.2.2 1.2.2.3 1.2.2.4 1.2.2.5 1.2.2.6 1.2.2.7 1.2.2.8 1.2.2.9 1. 2. 2 .10 1.2.2.11 1. 2. 2 .12 1. 2. 2 .13 1.2 .3 1. 2 .4 1.2.4.1 1.2.4.2 1.2.4.3 1.2.4.4 e 1.2.4.5 0013f OOOlf TABLE OF CONTENTS SECTION 1 --INTRODUCTION*AND  
-e
 
Rev. 4 June 1986 1i TABLE OF CONTENTS SECTION 1 -- INTRODUCTION*AND  


==SUMMARY==
==SUMMARY==
PURPOSE AND ORGANIZATION OF REPORT
 
* PURPOSE OF REPORT Introduction Purpose and Scope of Safety Analysis Report Updating of Original FSAR FSAR Controlled Copy Recipient ORGANIZATION OF REPORT General Format Revisions PLANT DESCRIPTION PRINCIPAL DESIGN CRITERIA Reactor Core Reactor Core Cooling Systems Containment Control and Instrumentation Electrical Power Radioactive Waste Disposal Shielding and Access Control Fuel Handling and Storage  
1.1        PURPOSE AND ORGANIZATION   OF REPORT               l.Ll-1 1.1.1
* PURPOSE OF REPORT                                 1.1.1:-1 1.1.1.1          Introduction                                   1.1.1-1 1.1.
 
==1.2          Purpose and Scope==
of   Safety Analysis Report   1.1.1-1 1.1.1.3          Updating of Original   FSAR                     1.1.1-2 1.1.1.4          FSAR Controlled Copy   Recipient               1.1.1-2 1.1.2          ORGANIZATION OF REPORT                           1.1. 2-1 1.1.2.1          General Format                                 1.1. 2-1 1.1.2.2          Revisions                                       1.1.2-1 1.2        PLANT DESCRIPTION                                   1. 2 .1-1 1.2 .1        PRINCIPAL DESIGN CRITERIA                         1.2.1-1 1.2.1.1          Reactor Core                                   1.2.1-1 1.2.1.2          Reactor Core Cooling Systems                   1. 2 .1-2 1.2.1.3          Containment                                     1. 2 .1-2 1.2.1.4          Control and Instrumentation                     1. 2 .1-3 1.2.1.5          Electrical Power                               1. 2 .1-3 1.2.1.6          Radioactive Waste Disposal                     1. 2 .1-3 1.2.1.7          Shielding and Access Control                   1. 2 .1-3 1.2.1.8          Fuel Handling and Storage                       1. 2 .1-4 1.2 .2       


==SUMMARY==
==SUMMARY==
DESIGN DESCRIPTION AND SAFETY ANALYSIS Design Bases Dependent On Site Characteristics Station Arrangements Reactor Systems Containment Systems Shutdown Cooling System and ECCS Unit.Control and Instrumentation Radiation Monitoring Systems Fuel Handling and Storage Turbine System Electrical System Shielding, Access Control, and Radiation Protection Procedures Radioactive Waste Control Summary Evaluation of Safety  
DESIGN DESCRIPTION AND SAFETY ANALYSIS   1.2.2-1 1.2.2.1          Design Bases Dependent On Site Characteristics 1.2.2-1 1.2.2.2          Station Arrangements                           1. 2. 2-3 1.2.2.3          Reactor Systems                                 1.2.2-3 1.2.2.4          Containment Systems                             1. 2. 2-4 1.2.2.5          Shutdown Cooling System and ECCS               1. 2. 2.,... 7 1.2.2.6          Unit.Control and Instrumentation               1. 2. 2-8 1.2.2.7          Radiation Monitoring Systems                   1.2.2-9 1.2.2.8          Fuel Handling and Storage                       1. 2. 2-9 1.2.2.9          Turbine System                                 1. 2 .2-10
: 1. 2. 2 .10      Electrical System                               1. 2. 2-10 1.2.2.11        Shielding, Access Control, and Radiation Protection Procedures                         1. 2. 2-10
: 1. 2. 2 .12      Radioactive Waste Control                       1.2.2-11
: 1. 2. 2 .13      Summary Evaluation of Safety                   1.2.2-11 1.2 .3       


==SUMMARY==
==SUMMARY==
OF TECHNICAL DATA INTERACTION OF UNITS 1, 2, & 3 Gaseous Waste Effluents Liquid Waste Effluents Unit' Auxiliary Power Supplies Common Auxiliary Systems Inter-Plant Effects of Accidents Rev. 4 June 1986 1i l.Ll-1 1.1.1:-1 1.1.1-1 1.1.1-1 1.1.1-2 1.1.1-2 1.1. 2-1 1.1. 2-1 1.1.2-1 1. 2 .1-1 1.2.1-1 1.2.1-1 1. 2 .1-2 1. 2 .1-2 1. 2 .1-3 1. 2 .1-3 1. 2 .1-3 1. 2 .1-3 1. 2 .1-4 1.2.2-1 1.2.2-1 1. 2. 2-3 1.2.2-3 1. 2. 2-4 1. 2. 2.,... 7 1. 2. 2-8 1.2.2-9 1. 2. 2-9 1. 2 .2-10 1. 2. 2-10 1. 2. 2-10 1.2.2-11 1.2.2-11 1. 2. 3-1 1.2.4-1 1.2.4-1 1.2.4-1 1. 2 .4-2 1. 2 .4-2 1. 2. 4-4 TABLE OF CONTENTS (Contd.) SECTION 1 --INTRODUCTION AND  
OF TECHNICAL DATA                         1. 2. 3-1
: 1. 2 .4        INTERACTION OF UNITS 1, 2, & 3                   1.2.4-1 1.2.4.1         Gaseous Waste Effluents                        1.2.4-1 1.2.4.2         Liquid Waste Effluents                          1.2.4-1 1.2.4.3         Unit' Auxiliary Power Supplies                  1. 2 .4-2 1.2.4.4         Common Auxiliary Systems                        1. 2 .4-2 e    1.2.4.5          Inter-Plant Effects of Accidents                1. 2. 4-4 0013f OOOlf
 
1ii TABLE OF CONTENTS (Contd.)
SECTION 1 -- INTRODUCTION AND  


==SUMMARY==
==SUMMARY==
1.2.5 NEW FEATURES 1.2.5.1 Features Reduce the Probability and Magnitude of Potential Reactivity Insertion Accidents 1.2.5.2 Features Which Mitigate Effects of Postulated LOCA 1 s 1.2.5.3 Features Which Improve Operability of the Units 1.3 IDENTIFICATION OF CONTRACTORS 1.4 GENERAL CONCLUSIONS 1 ii 1.2.5-1 1. 2. 5-1 1.2.5-1 1.2.5-2 1. 3. 0-1 1.4 .0-1
 
* *
1.2.5     NEW FEATURES                                       1.2.5-1 1.2.5.1     Features l~hich  Reduce the Probability and Magnitude of   Potential Reactivity Insertion Accidents                                       1. 2. 5-1 1.2.5.2     Features Which   Mitigate Effects of Postulated LOCA 1 s                                       1.2.5-1 1.2.5.3     Features Which   Improve Operability of the Units 1.2.5-2 1.3    IDENTIFICATION OF CONTRACTORS                        1. 3. 0-1 1.4    GENERAL CONCLUSIONS                                  1.4 .0-1
* 1.1.2:1 1.1.2:2 1.2.2:1 1.2.2:2 -1.2.3:1 LIST OF TABLES --SECTION INTRODUCTION General Electric Company Topical Reports Acronyms and Initialisms Design Bases For Shielding Rev. 2 June 1984 liv S1.DT1mary of Maximum Off-site Doses From Postulated Accidents Principal Features of Plant Design
 
*** ... e . . ... : .. . *: r . : . I :.*; .. . *. . . . . . . . . . * .. LL2:1 1.2.2:2 .* 1.2.3:1 \ '* .') *! .. .*LIST OF TABLES SECTION INTRODUCTION Rev. 1 June 1983 liv General Electric Company Jbpical Reports I Design Bases For Shfelding
Rev. 2 June 1984 liv
* Summary of Maximum Off-site Doses From Postulated AcCidents Principal Features of Design* *. *' *. ' . . *'. . ... .*.-.* .. **-* *! . .* .. :. .... :-.........  
* 1.1.2:1 1.1.2:2 LIST OF TABLES -- SECTION   1~ INTRODUCTION General Electric Company Topical Reports Acronyms and Initialisms 1.2.2:1  Design Bases For Shielding 1.2.2:2 - S1.DT1mary of Maximum Off-site Doses From Postulated Accidents 1.2.3:1  Principal Features of Plant Design
-. '* *'. . _: . ..,. t * * *
 
* l
Rev. 1 June 1983
,olJ ** -, .....  
  *. e                                                       .*LIST OF TABLES      -~ SECTION            1~      INTRODUCTION liv LL2:1 1.2~2:1 General Electric Company Jbpical Reports Design Bases For Shfelding
**-*------**  
* I 1.2.2:2 .*            Summary of Maximum Off-site Doses From Postulated AcCidents 1.2.3:1              Principal Features of Pl~nt Design*
*------:. *
:.. ~    .
* 1.1.1.3 Updating of original FSAR Rev. 4 June 1986 1.1.1-2 This documertt is the Updated Final Safety Analysis Report {UFSAR), a report separate and distinct from the original Final Safety Analysis Report. The original FSAR and the associated docket files {50-237 and 50-249) are the basis for the licensing of the plant. In the event that a discrepancy exists between the original FSAR and the UFSAR, the original FSAR will be the final authority.
                                                \
The Technical Specifications may reference the UFSAR. The UFSAR is revised annually as required in 10 CFR 50.7le. The UFSAR is designe*d to serve as a reference document, reflecting the current configuration of the plant, including information and analyses required by and submitted to the NRC since submission of the original FSAR, and containing the information in a contiguous format. 1.1.1.4 FSAR Controlled Copy Recipient  
t * * * *
                                                                                        .   ~'.     ...                               '* *'.
                                                  '* .')
  ~  r .:
  . I
            . *. .. . . .. . . ~ . *..                                                     ....   :-     ~*-* -~ ......... - .
l
 
,olJ **- ,..... ..w.--.~. **-*------** *--- ---
Rev. 4 June 1986 1.1.1-2
* 1.1.1.3   Updating of original FSAR This documertt is the Updated Final Safety Analysis Report {UFSAR), a report separate and distinct from the original Final Safety Analysis Report.
The original FSAR and the associated docket files {50-237 and 50-249) are the basis for the licensing of the plant. In the event that a discrepancy exists between the original FSAR and the UFSAR, the original FSAR will be the final authority. The Technical Specifications may reference the UFSAR.
The UFSAR is revised annually as required in 10 CFR 50.7le. The UFSAR is designe*d to serve as a reference document, reflecting the current configuration of the plant, including information and analyses required by and submitted to the NRC since submission of the original FSAR, and containing the information in a contiguous format.
1.1.1.4   FSAR Controlled Copy Recipient


==Subject:==
==Subject:==
FSAR Update Dresden Station has reviewed the FSAR for rev1s1ons, corrections, *and material information additions.
FSAR Update Dresden Station has reviewed the FSAR for rev1s1ons, corrections,
The changes contained herein will become Revision 4 {June, 1986) to the FSAR . The changes are in compliance with the 10 CFR 50.71{e) requirement to identify changes and which references the requirements defined in 10 CFR 50.59. The 50.59 report refers to changes in the facility as described in the FSAR, changes in procedures described in' the FSAR, and tests or experiments not described in the {original)
                                          *and material information additions. The changes contained herein will become Revision 4 {June, 1986) to the FSAR .
FSAR. All changes which have been implemented were previously reviewed to the 50.59 criteria and in our opinion do not constitute any additional unreviewed safety questions.
The changes are in compliance with the 10 CFR 50.71{e) requirement to identify changes and which references the requirements defined in 10 CFR 50.59. The 50.59 report refers to changes in the facility as described in the FSAR, changes in procedures described in' the FSAR, and tests or experiments not described in the {original) FSAR.
Dated 0013f OOOlf n Manager Dresden Nuclear Power Station
All changes which have been implemented were previously reviewed to the 50.59 criteria and in our opinion do not constitute any additional unreviewed safety questions.
* *
Dated n Manager Dresden Nuclear Power Station 0013f OOOlf
* APR APRM ASME BTP BWR CE Co CFR CSE CST CVTR DBE DER DG ECCS EHC EI&C FSAR FTOL FWCI GDC GE gpm HEPB hp HPCI IE IEEE IP SAR IREP IRK LCO LER LOCA LPCI LPRM LWR MCC MCPR MDC MOV mph MSIV MSL MWe MWt NRC ORNL PMF PMP POL 0013f OOOlf TABLE 1. 1. 2: 2 ACRONYMS AND INITIALISMS Automatic Pressure Relief average power range monitor American Society of Mechanical Engineers Branch Technical Position boiling-water reactor Commonwealth Edison Company Code of Federal Regulations Containment Systems Experiments condensate storage tank Carolina Virginia Tube Reactor design-basis event design electrical rating diesel generator emergency core cooling system electrohydraulic control electrical instrumentation and control Final Safety Analysis Report full-term operating license feedwater coolant injection General Design Criterion(a)
 
General Electric Company gallons per minute energy pipe break horsepower high-pressure coolant *injection Off ice of Inspection and Enforcement of Electrical and Electronics Engineers Integrated Plant Safety Assessment Report Integrated Reliability Evaluation Program intermediate range monitor limiting condition for operation licensee event report loss-of-coolant accident low-pressure coolant injection low power range monitor light-water reactor motor control center. minimum critical power ratio maximum dependable capacity motor-operated valve miles per hour main steam isolation valve
Rev. 3 June 1985 TABLE 1. 1. 2: 2
* mean sea level megawatt-electric megawatt-thermal U.S. Nuclear Regulatory Commission Oak Ridge National Laboratory probable maximum flood probable maximum precipitation provisional.operating license Rev. 3 June 1985
* APR APRM ASME ACRONYMS AND INITIALISMS Automatic Pressure Relief average power range monitor American Society of Mechanical Engineers BTP    Branch Technical Position BWR    boiling-water reactor CE Co  Commonwealth Edison Company CFR    Code of Federal Regulations CSE    Containment Systems Experiments CST    condensate storage tank CVTR  Carolina Virginia Tube Reactor DBE    design-basis event DER    design electrical rating DG    diesel generator ECCS  emergency core cooling system EHC    electrohydraulic control EI&C  electrical instrumentation and control FSAR  Final Safety Analysis Report FTOL  full-term operating license FWCI  feedwater coolant injection GDC    General Design Criterion(a)
* *
GE    General Electric Company gpm    gallons per minute
* PRA psi psig PWR RBCCW RCPB RPS RSCS RWCU SALP SAR SBGTS SEP SER -SOAD SRP STS **sws TMI UHS USI 0013f OOOlf TABLE 1.1.2:2 .(Cont'd) probabilistic risk assessment pounds per square inch pounds per square inch gage pressurized-water reactor reactor building closed cooling water reactor coolant pressure boundary reactor protection system reactor shutdown cooling system reactor water cleanup Systematic Appraisal of Licensee Performance safety analysis report standby gas treatment system Systematic Evaluation Program safety evaluation report Station Operational Analysis Department Standard Review Plan Standard Technical Specification service water system Three Mile Island ultimate heat sink unresolved safety issue Rev. 3 June 1985 1.2.2-4 The core is assembled in modules of four fuel assemblies set in the interstices of a crucifonn control rod. This modular core fonn, common to all General Electric boiling water reactors, permits substantial increase in thennal power with a small increase in core diameter and at the same time preserves the reactivity control characteristics demonstrated in the *operation of Dresden Unit 1 and other General Electric power reactors.
* HEPB hp HPCI IE IEEE IP SAR
The reactor pressure vessel contains the reactor core and structure, steam separators and dryers, jet pumps, control rod guide tubes, and water, emergency core cooling system (ECCS), and standby liquid control spargers and other components as shown in Figure 3.6.2:1. The inside diameter of the vessel is approximately 21 feet and the inside height between heads is approximately 68 feet. The main connections to the reactor vessel include the steam lines, jet pump lines, feedwater lines, and control rod drive thimbles.
        ~igh energy pipe break horsepower high-pressure coolant *injection Off ice of Inspection and Enforcement Instit~te of Electrical and Electronics Engineers Integrated Plant Safety Assessment Report IREP  Integrated Reliability Evaluation Program IRK    intermediate range monitor LCO    limiting condition for operation LER    licensee event report LOCA  loss-of-coolant accident LPCI  low-pressure coolant injection LPRM  low power range monitor LWR    light-water reactor MCC    motor control center.
Other connections are provided for the isolation condenser system, standby liquid control system, ECCS, and The fuel for the reactor core consists of uranium dioxide pellets contained in sealed Zircaloy-2 tubes. These fuel rods are assembled into square arrays in individual blies. The original assemblies were of a 7x7 configuration; later designs introduced in subsequent fuel cycles were of an 8x8 configuration.
MCPR  minimum critical power ratio MDC    maximum dependable capacity MOV    motor-operated valve mph    miles per hour MSIV  main steam isolation valve
The fuel enrichment is varied from rod to rod within an assembly to achieve desired neutron flux characteristics.
* MSL    mean sea level MWe    megawatt-electric MWt    megawatt-thermal NRC    U.S. Nuclear Regulatory Commission ORNL  Oak Ridge National Laboratory PMF    probable maximum flood PMP    probable maximum precipitation POL    provisional.operating license 0013f OOOlf
Some water rods may be included, and gadolinium is used in some rods as a burnable poison, in the fonn of Gd 2 0 3-U0 2* Each fuel assembly is surrounded by a Zircaloy-4 flow channel. Water serves as both the moderator and coolant for the core. The control rods consist of assemblies of 3/16-inch diameter, sealed, stainless steel tubes filled with compacted boron carbide powder and held in a crucifonn array by a stainless steel sheath of 1/16 inch wall thickness fitted with castings at each end. The design of such control rods is almost identical with those which have been used successfully in Unit 1 for more than six years except that control rods of current design are longer *due to the use of longer fuel assemblies.
 
The control rods are of the bottom entry type and are moved vertically within the core by individual, hydraulically operated, locking piston type control rod drives . The control rod drive hydraulic system is designed to allow control rod withdrawal or insertion at a limited rate, one rod at a time , for power level control and flux shaping during reactor operation.
Rev. 3 June 1985 TABLE 1.1.2:2 .(Cont'd)
Stored energy available fran gas charged accumulators and from reactor pressure provides hydraulic power for rapid simultaneous insertion of all control rods for reactor shutdown.
* PRA psi psig PWR probabilistic risk assessment pounds per square inch pounds per square inch gage pressurized-water reactor RBCCW reactor building closed cooling water RCPB  reactor coolant pressure boundary RPS  reactor protection system RSCS  reactor shutdown cooling system RWCU  reactor water cleanup SALP  Systematic Appraisal of Licensee Performance SAR  safety analysis report SBGTS standby gas treatment system SEP  Systematic Evaluation Program SER - safety evaluation report SOAD  Station Operational Analysis Department SRP  Standard Review Plan STS  Standard Technical Specification
Each drive has its own separate control and scram devices. The systems for reactivity control are of the same design as those used in the Oyster Creek and Nine Mile Point Plants, including two features which provide improved plant safeguards.
  **sws  service water system TMI  Three Mile Island UHS  ultimate heat sink USI  unresolved safety issue
1.2.3-1 1.2 .3  
* 0013f OOOlf
 
1.2.2-4 The core is assembled in modules of four fuel assemblies set in the interstices of a crucifonn control rod. This modular core fonn, common to all General Electric boiling water reactors, permits substantial increase in thennal power with a small increase in core diameter and at the same time preserves the reactivity control characteristics demonstrated in the
*operation of Dresden Unit 1 and other General Electric power reactors.
The reactor pressure vessel contains the reactor core and structure, steam separators and dryers, jet pumps, control rod guide tubes, and feed-water, emergency core cooling system (ECCS), and standby liquid control spargers and other components as shown in Figure 3.6.2:1. The inside diameter of the vessel is approximately 21 feet and the inside height between heads is approximately 68 feet. The main connections to the reactor vessel include the steam lines, jet pump lines, feedwater lines, and control rod drive thimbles. Other connections are provided for the isolation condenser system, standby liquid control system, ECCS, and in~trumentation syste~s.
The fuel for the reactor core consists of uranium dioxide pellets contained in sealed Zircaloy-2 tubes.
These fuel rods are assembled into square arrays in individual assem-blies. The original assemblies were of a 7x7 configuration; later designs introduced in subsequent fuel cycles were of an 8x8 configuration. The fuel enrichment is varied from rod to rod within an assembly to achieve desired neutron flux characteristics. Some water rods may be included, and gadolinium is used in some rods as a burnable poison, in the fonn of Gd 2 03 -U0 2
* Each fuel assembly is surrounded by a Zircaloy-4 flow channel.
Water serves as both the moderator and coolant for the core.
The control rods consist of assemblies of 3/16-inch diameter, sealed, stainless steel tubes filled with compacted boron carbide powder and held in a crucifonn array by a stainless steel sheath of 1/16 inch wall thickness fitted with castings at each end. The design of such control rods is almost identical with those which have been used successfully in Unit 1 for more than six years except that control rods of current design are longer *due to the use of longer fuel assemblies. The control rods are of the bottom entry type and are moved vertically within the core by individual, hydraulically operated, locking piston type control rod drives .
The control rod drive hydraulic system is designed to allow control rod withdrawal or insertion at a limited rate, one rod at a time , for power level control and flux shaping during reactor operation. Stored energy available fran gas charged accumulators and from reactor pressure provides hydraulic power for rapid simultaneous insertion of all control rods for reactor shutdown. Each drive has its own separate control and scram devices.
The systems for reactivity control are of the same design as those used in the Oyster Creek and Nine Mile Point Plants, including two features which provide improved plant safeguards.
 
1.2.3-1 1.2 .3    


==SUMMARY==
==SUMMARY==
OF TECHNICAL DATA Design features and data appropriate to achieve a reactor thermal output of 2527MW are summarized in Table 1.2.3:1. TABLE 1.2.3:1 PRINCIPAL FEATURES OF PLANT DESIGN Site Location Size of Site Site and Plant Ownership Plant Net Electrical Output Gross Electrical Output Net Heat Rate Feedwater Temperature Thermal and Hydraulic Design Design Thennal Output Reactor Pressure (dome) Steam Fl ow Rate Recirculation Flow Rate Fraction of Power Appear-ing as Heat Flux Power Density Heat Transfer Surface Area/ Assembly Average Heat Flux Maximum Heat Flux Maximum U0 2 Temperature Average Volumetric Fuel Temp. Core Subcool i ng Core Average Void Fraction, Active Coolant Core Average Exit Quality Minimum Critical Power Ratio Safety Limit GE 7x7 41.08 i ter 86.52 ft 2 131,200 Btu/(hr-ft
OF TECHNICAL DATA Design features and data appropriate to achieve a reactor thermal output of 2527MW are summarized in Table 1.2.3:1.
: 2) 405,000 Btu/(hr-ft ) 3470°F 1050°F 22.4 Btu/lb 0.299 0.101 1.06 Dresden Site, County of Grundy, State of Illinois 953 Acres plus 1275 acre cooling lake Commonwealth Edison Company 809 MW 850 mi 10,648 Btu/kw-hr 340.1 F 2527
TABLE 1.2.3:1 PRINCIPAL FEATURES OF PLANT DESIGN Site Location                                               Dresden Site, County of Grundy, State of Illinois Size of Site                                         953 Acres plus 1275 acre cooling lake Site and Plant Ownership                               Commonwealth Edison Company Plant Net Electrical Output                                 809 MW Gross Electrical Output                               850 mi Net Heat Rate                                         10,648 Btu/kw-hr Feedwater Temperature                                 340.1 F Thermal and Hydraulic Design Design Thennal Output                                 2527 M~*Jt
* 1020 psia 6 9.765 x 6 10 lb/hr 98 x 10 lb/hr 0.965 GE 8x8 41.09 97.6 117 ,100 354,400 1.06 GE 8x8R/P8x8R 40.74 94.9 120,400 362,000 1.07 1.2.3-2 TABLE 1.2.3:1 (Contd.) PRINCIPAL FEATURES OF PLANT DESIGN Nuclear Design Initial Fuel Enrichment: ( 7x7 assembly)
* Reactor Pressure (dome)                               1020 psia 6 Steam Fl ow Rate                                     9.765 x 10 lb/hr Recirculation Flow Rate                               98 x 10 6 lb/hr Fraction of Power Appear-                             0.965 ing as Heat Flux GE                      GE                GE 7x7                    8x8          8x8R/P8x8R Power Density                   41.08 kw~l i ter        41.09        40.74 Heat Transfer Surface Area/     86.52 ft               97.6          94.9 Assembly                                          2 Average Heat Flux              131,200 Btu/(hr-ft 2 ) 117 ,100      120,400 Maximum Heat Flux              405,000 Btu/(hr-ft ) 354,400          362,000 Maximum U0 2 Temperature        3470°F Average Volumetric Fuel Temp. 1050°F Core Subcool i ng              22.4 Btu/lb Core Average Void Fraction,    0.299 Active Coolant Core Average Exit Quality      0.101 Minimum Critical Power Ratio    1.06                   1.06         1.07 Safety Limit
Typical Reload Fuel Enrichment:
 
(8DRB265H 8x8 assembly)
1.2.3-2 TABLE 1.2.3:1 (Contd.)
Water/U0 2 Volume Ratio Core Average Neutron Flux Thenna 1 1 Mev GE 7x7 2.41 Burnup target (average assembly)
PRINCIPAL FEATURES OF PLANT DESIGN Nuclear Design Enrichment     No. of rods Wt % U-235     per assembly Initial Fuel Enrichment:                      2.44                   30
Power Coefficient for xenon stability Heat flux peaking factors: Relative Assembly Axial Local Overpower Gross . Reactivity Control: Cold shutdown keff all rods inserted Cold shutdown k ff rod of maximum worth stuck fO out Enrichment No. of rods Wt % U-235 per assembly 2.44 30 1.69 16 1.20 3 3.8 14 3.0 27 2.4 2 2.0 14 1. 7 4 1.3 1 water rods 2 GE GE 8x8 8x8R 2.60 2.76 13 2 3.50 x 10 13 n/cm 2-sec 3.67 x 10 n/cm -sec 28 ,ooo MvJD/ton More negative than -.Ol(dK/K)/(dP/P)
( 7x7 assembly)                              1.69                   16 1.20                     3 Typical Reload Fuel Enrichment:                3.8                     14 (8DRB265H 8x8 assembly)                      3.0                     27 2.4                     2 2.0                     14
Design Operating 1.47 1.47 1.57 1.57 1.30 1. 30 1.20 3.60 3.00 0.96 0.96 0.99 0.99 TABLE 1.2.3:1 (Contd.) PRINCIPAL FEATURES OF PLANT DESIGN Standby liquid control shutdown, dkeff Minimum Critical Power Ratio: Linear Heat Generation Rate (kw/ft): 7x7 fuel GE 8x8 fuel ENC fuel Approximate Coefficients:
: 1. 7                     4 1.3                     1 water rods               2 GE                 GE                  GE 7x7                8x8               8x8R Water/U0 2 Volume Ratio        2.41                2.60               2.76 Core Average Neutron Flux Thenna 1                                      3.50 x 10 13 13 n/cm 22-sec 1 Mev                                        3.67 x 10 n/cm -sec Burnup target (average assembly)                    28 ,ooo MvJD/ton Power Coefficient for xenon stability              More negative than
Moderator Coefficient [ ( d k/ k ) I ° F J Moderator Void Coefficient [ ( dk/k) /% Void] Fuel Temp. (Doppler)
                                                      -.Ol(dK/K)/(dP/P)
Coefficient
Design           Operating Heat flux peaking factors:
Relative Assembly                            1.47             1.47 Axial                                        1.57             1.57 Local                                        1.30             1. 30 Overpower                                    1.20 Gross                                        3.60             3.00
. Reactivity Control:
Cold shutdown keff all rods inserted          0.96             0.96 Cold shutdown k ff rod of maximum            0.99             0.99 worth stuck fO    out
: 1. 2. 3-3 TABLE 1.2.3:1 (Contd.)
PRINCIPAL FEATURES OF PLANT DESIGN Design        Operating Standby liquid control shutdown,                       0.16 dkeff Minimum Critical Power Ratio:                                   1.07          1.39 Linear Heat Generation Rate (kw/ft):
7x7 fuel                                               17.5          17.5 GE 8x8 fuel                                             13.4          13.4 ENC fuel                                               14.9          14.9 Hot Approximate Coefficients:                             Cold        (no voids)  Operating Moderator Tern~. Coefficient                 -8.9xl0- 5    -17.0xl0- 5
[ ( d k/ k ) I °FJ Moderator Void Coefficient                   less than_ 3 -1.0xlO -3    -1.4x10- 3
[ ( dk/k) /% Void]
Fuel Temp. (Doppler) Coefficient             -l~~~~~l~ -1.2xl0- 5      -1.2x10- 5
[(dk/k)/°F]
[(dk/k)/°F]
Excursion Parameters:
Excursion Parameters:
Design 0.16 1.07 17.5 13.4 14.9 Hot Cold (no voids) -8.9xl0-5 -17.0xl0-5 -3 less than_3 -1.0xlO
1* Prompt Neutron Lifetime                               48.9 microseconds
-1.2xl0-5 1. 2. 3-3 Operating 1.39 17.5 13.4 14.9 Operating
      .B Effective Delayed Neutron Fraction                     .0058 Core Equivalent Core Dia.               182. 2 inches Circumscribed Core                 189.7 inches Diameter Core Lattice Pitch                 12 inches (4 assemblies/unit cell)
-1.4x10-3 -1.2x10-5 1* Prompt Neutron Lifetime .B Effective Delayed Neutron Fraction 48.9 microseconds
Number of Fue 1
.0058 Core Equivalent Core Dia. Circumscribed Core Diameter Core Lattice Pitch Number of Fue 1 ,l\ssemb 1 i es Fuel Assembly Fuel Rod Array Fue 1 Rod Pitch Weight of U0 2 per Fuel Assembly Channel Material Total Assbly plus Channel Weight Fuel Rods Water Rods 182. 2 inches 189.7 inches 12 inches (4 assemblies/unit cell) GE 7x7 7x7 724 0.738 in. 492.5 lbs. Zircaloy-4 678.9 lbs. 49 0 GE 8x8 8x8 0.640 458.6 Zircaloy-4 650 63 1 GE 8x8R/Px8x8R 8x8R/P8x8R 0.640 441.6 Zircaloy-4 650 62 2 ENC 8x8 P8x8 0.641 434.4 Zircaloy-4 580 63 1 Fuel Rod, Cold Fuel Pellet Dia. Cladding Thickness Cladding O.D. Active Fuel Length Lgth of Gas Plenum Fuel Material Cladding Material Fi 11 Gas Fill Gas Pressure TABLE 1.2.3:1 (Contd.) PRINCIPAL FEATURES OF PLANT DESIGN GE GE GE 7x7 8x8 8x8R/Px8x8R 0.488 in. 0.416 0.410 0.032 in. 0.034 0.034 0.563 in. 0.493 0.483 144 in. 144 145.24 11.22 in. 11.24 9.48 U0 2 U0 2 U0 2 Zircaloy-2 Zircaloy-2 Zircaloy-2 He He He 1 atm 1 atm 1 atm/3 atm Movable Control Rods Number Shape Pitch Stroke \4 i dth 177 Cruciform 12.0 in. 144 in. 9.75 in. 143 in. 1. 2 .3-4 ENC 8x8 0.405 0.035 0.484 145.24 10.06 U0 2 Zircaloy-2 He 3 atm Control Length Control Material Number of Cntrl Mtrl c granules in stainless steel tubes and sheath Tubes per Rod Tube Di mens i ans 0.188 in. o.d. x 0.025 in. wall Temporary Control Curtains Number Shape Width Thickness Control Length Control Material Curtain Locations Burnable Neutron Absorber Control Material
  ,l\ssemb 1i es                   724 Fuel Assembly                 GE              GE                    GE      ENC 7x7            8x8              8x8R/Px8x8R    8x8 Fuel Rod Array                 7x7            8x8              8x8R/P8x8R    P8x8 Fue 1 Rod Pitch               0.738 in.      0.640            0.640          0.641 Weight of U0 2 per             492.5 lbs.     458.6            441.6          434.4 Fuel Assembly Channel Material              Zircaloy-4     Zircaloy-4       Zircaloy-4     Zircaloy-4 Total Assbly plus              678.9 lbs.      650              650            580 Channel Weight Fuel Rods                      49              63               62            63 Water Rods                      0              1                2              1
* Location Concentration Reactor Vessel Inside Diameter Overall Length Inside Design Pressure 340 Flat sheet 9.20 inches 0.0625 inches 141.25 inches Stainless steel containing 5400 ppm natural boron Between fuel assemblies in water gaps without control rods. Gd 2 0 3 Mixed with U0 2 in several fuel rods per fuel assbly Location and reload dependent.
: 1. 2 .3-4 TABLE 1.2.3:1 (Contd.)
20 ft.-11 in. 68 ft.-7-5/8in.
PRINCIPAL FEATURES OF PLANT DESIGN Fuel Rod, Cold      GE               GE                 GE       ENC 7x7             8x8           8x8R/Px8x8R   8x8 Fuel Pellet Dia. 0.488 in.       0.416         0.410         0.405 Cladding Thickness  0.032 in.       0.034         0.034         0.035 Cladding O.D.        0.563 in.       0.493         0.483         0.484 Active Fuel Length    144 in.         144           145.24        145.24 Lgth of Gas Plenum  11.22 in.       11.24         9.48           10.06 Fuel Material        U0 2             U0 2           U0 2           U0 2 Cladding Material    Zircaloy-2       Zircaloy-2   Zircaloy-2     Zircaloy-2 Fi 11 Gas            He               He             He             He Fill Gas Pressure    1 atm           1 atm         1 atm/3 atm    3 atm Movable Control Rods Number                     177 Shape                       Cruciform Pitch                     12.0 in.
1250 psig   
Stroke                      144 in.
***-.. ***e I*.'. *-'. ' . , ... 2.1 . 2.2 2;2;1 2 .. 2 .1.1 2:. 2.1.2 2.2.1.4' 2.2.1.5 2.2.1.6 2. 2. 2 . 2.2.2.1 2:2.
  \4 i dth                    9.75 in.
Control Length              143 in.
Control Material           ~a c granules in stainless steel tubes and sheath Number of Cntrl Mtrl Tubes per Rod Tube Di mens i ans         0.188 in. o.d. x 0.025 in. wall Temporary Control Curtains Number                     340 Shape                       Flat sheet Width                      9.20 inches Thickness                  0.0625 inches Control Length              141.25 inches Control Material            Stainless steel containing 5400 ppm natural boron Curtain Locations          Between fuel assemblies in water gaps without control rods.
Burnable Neutron Absorber Control Material            Gd 2 03
* Location                  Mixed with U0 2 in several fuel rods per fuel assbly Concentration              Location and reload dependent.
Reactor Vessel Inside Diameter                                      20 ft.-11 in.
Overall Length Inside                                68 ft.-7-5/8in.
Design Pressure                                      1250 psig
 
Rev. 1 June 1983
  ***-                                                              TABLE OF CONTENTS SECTION 2 -- SITE 2i Page .
 
==2.1                INTRODUCTION==
2.1. 0-1
 
==2.2                  DESCRIPTION==
Of SITE AND ADJACENT *AREAS                                2. 2.1-1.
2;2;1                  SITE                                                                2.2.-1-1*.
2.. 2 .1.1              Site Size and Location    , : .
: 2. 2.1-1 ...
* 2:. 2.1.2                Site Ownership                .                              '*2 .. 2.1-1 2.2~1.3
* Location of the Units on the.Site                                2.2.1-1:'
2.2.1.4'                Oth~r Activities on. the Site                                  . 2.2.1-2 2.2.1.5                  Access to the Site
* 2.2.1-2 2.2.1.6                  Exel us ion Area .                                                2.2.1-3;
: 2. 2. 2 .              POPULATION AND LAND USAGE IN ADJACENT AREAS                        2.2.2-1 2.2.2.1                  Popu 1at ion Data 2:2.2.2                  Land Use .. *
                      '2.2.*2.J                POTENTIAL. HAZARn&deg;S DUE TO)IEARBY FACilITIES .*              ' *,* 2. 2~ 2::.6: *_<;, *: :. ':
2 2 '2 3 1 :INTRODUCTION: **.. * * .. . *.. * .* ' *.                    "*              2*; 2'. 2:;.6 .* '.**,*. *: :. ;*; ' ': <<
              ,. ' .. 2*:i:*2 . : f 2 *.. HAZARDS FROM* EXPLOSIONS. *.                  .* ..
* i  . *. .        2.2.2..:.6'. *:
. ***e                 2:2.2.3.2.1 *
* industrial Facilities*
                      .2.2.2.J .. 2.2 * ~ighway Transportati~n
: 2. 2'. 2. 3. 2. 3        Rail way Transportatfori 2~2.2-6 ;
                                                                                                                    .2.2*. 2-8 2... 2. 2~9 .
                      . 2.2.2~3.2.4              vJaterway Transportation                                          2. 2. 2;..10 2.2.2.3.2.S: Military Facilities                                                          2.2.2-10.*.
2.2.2.3.2.6
* Pipelines                                                                    2. 2 .. 2-1 L
: 2. 2.. 2. 3. 3
* HAZARDS FROM. VAPOR CLOUDS AND FIRES                                2.2. 2-n.,. *..
2.2.~2.3.4        *. HAZARDS FROM TOXIC CHEMICALS.                                        2 .. 2.2-11' 2.2.2.3.5              HAZARDS FROM COLLISION WITH THE INTAKE                              2. 2.2-n STRUCTURE
                      . 2.2~.2.3.6              HAZARDS FROM .
LIQUID SPILLS. . .
: z. 2. 2:.12 2*. 2 *. 2 *. 3. 7    HAZARDS FROM AIRCRAFT.                                              2.2.2-12
                      * *2. 2. 2. J. 7 .1        Airports                                                          2.2.2~12 2.2 *.Z.3.T.2            Airways*                                                          2. 2. 2-1.4 2 .. 2:.2*.
 
==3.8        CONCLUSION==
S                                                        2.2.2;..15
* 2.2.2~
 
==3.9              REFERENCES==
2.2.2-16 I*.'.
 
Rev. 2 June 1984 2i ii LIST OF FIGURES -- SECTION 2, SITE 2.2.1:1  Station Property Plan 2.2.1:2  Cooling Lake General Arrangement 2.2.2.3:1 Dresden Nuclear Power Station Area Map 2.2.2.3:2 Pipelines Considered in the Evaluation of Hazard From Explosion 2.2.4:1  Cooling Water Flow Diagram -- Unit 2/3 2.2.4:2  Dresden Cooling Lake Dam 2.2.6:1  Site Flow Diagram at Illinois River Above Dresden Island Lock and Dam 2.2.6:2  General Arrangement .-- Crib House
 
2iii LIST OF TABLES -- SECTION 2, SITE 2.2.2:1 Population Centers .Surrounding Station 2.2.2:2 Industrial Facilities Near Station 2.2.2:3 Recreational and Institutional Facilities Near Station 2.2.5:1 Distances From Release Points To Various Points Near Site
 
.I.:
                                                                            **e*          .......
                                                          **Table 2.?.*2~_3:l                      Assessment Summary
                                                                                    .'      '1 HAZARD                                                              .*. REPORT .
    *NUMBER        SOURCE OF  POT~NTIAL HAZARD                      *... SECTION*.                            DESIGN BASIS EVENT?
Explosion from:*.
l*          Industrial facilities*                                              ,2.1 .                  No,  based Qh adequatE? separation distance**
2          Highway transportation                                              *2 .. 2 '              No ?  based on adequ~te separation distance 3          Railway transportation                                              *2:3' '                No,  .based on. adequate separation distance 4          Watt;!rway transportation                                          '2.4'                    No,  based on adequate separation di~tance 5          Military facilities                                          ,* 2. 5                        No,  based .on adequate separatigg distance 6          Pipelines                                                            2.6                    No,  based on frequency of 6x10 /yr using conservative ~ssumptions Vapor cloud expiqsion & fire from waterway transporation                                      3.t                    No, pased on    freq~en~Y    of 4xl0 -7 /yr 8          Toxic chemicals                                                      4                      Not part of SEP U-1.C 9          Collis{on with intake structure                                      5                      Nq, based on physii:al considerations 10          Li quid spi 11 s                                              .*~.                        *.No, based on physical considerations Aircraft .impact from:
                                                                                        '.< . *; ~*.                                  ' .** *.. ;          -7 '
11          Airports                                                          7:*1:                    No, based on frequency of 3.24x10 l&#xa5;ear 12          Airways*                                                            T:f .~.                No~ based on .f~egu~ncy of 0.93 x 10 /year
        'l'rData for facilities which responded to. the q~estion'nalre," * .
        **There is one exception to this conclusion .:. ~he:benie~&#xa2; .storage tank pn the Reichhold Chemical site.*                            :* * .. ; * <r .
                                                                      -~*    ...
 
* , e.                                      Table 2.2.2.3:2 Industries Within 5 Miles Dresden Station (Ref. 18)
I DISTANCE (MILES)
INDUSTRY                      & DIRECTION .                                    PRODUCT GE BWR Training Center
                                &Spent Fuel Storage                    0. 7 -:    SL~              Spent nuclear fuel storage Reichhold Chemicals                      1. 6. - w                  Resins and chemicals A.. P. Green-*                      .
* 2. 1 "". SSW-*              Br.iCk and clay Atrco 1ndustrial Gases
* 2.S        NW              co 2 . .
I.
Northern Illinois Gas
* 2*,5_,.. NW                Natl,J na 1 gas Alumax Mill Products                      2.8 - MW                  Aluminum sheet and co.il
* Northern Petrochemicals                    3. 3 -* MW                  Ethy\ene~ ethyl en~ oxide glycol*
Northern Petrochemical Dock          . 2~  1 -* W*
          ~*.    .
* ARMAK Chemicals                          3.6 - WNW                Fatty nitrogen chemi.CaJs
                    **
* Dur.kee scM~ Chemicals          :. *.*, J~ 2>- .EN{            .; Ed.i b le. oi-l
                        , Truck Tennina*i                            J.6*;,. ENE
* Under construction *.
* Dow Chemicals                          . 3. 7 - E            .. Polystyrene** pla-stic.
* Dow Chemical *Dock                      . 2. 7 -* E
            **~ *.
                            'Exxo_n (chemical plant)                  J.9 - ENE                  Under construction Hydrocarbon Transportation, Inc.                  4.0 ..: NW              .Propane Streator Industrial Supply                4. 0 -    .s                Industrial supplies Mobil Chemical  Co~                      -4.1 - NE              . Po.lystyrene sheets. & crystal Jal iet Livestock Market                  4.2 - ESE                  Livestock
* Mo_bn O:il Refi-nery                  .. 4. 5 - NE                  Petroleum** products Commonweal th Edison Co *
                              . Collins St~tion                        5 *. 0 -  WSW            Electricity*
 
                                                                                        ~    :.::..; *.:'".{      . .\*... .                      .., ._..... ** ....... .
e *.*
    . , a.,, .* t *** '.:.:* * . * . ;          .. . *' l'.:. :-.:~ .. i ..*. ;      ' '  ' '                  .. .            :~ - .  '
Table2.2.2.3:3 Dresden Island Traffic Statistics Fiscal Years 1~73:~ l9j8 (Refs. 6, 11)
CO~MODITY,TYPE                                                                                                    . FISCAL YEAR 1973              1974                  1975                        1976              1977                1978                      Average .
Total commodities, tons x 10                    28.476          30.853                  27.808                25.882                23.452            19. 521 .                      26.0 Hazardous mate5ials,*                    ~-
* tons x 10 .                    5.653 .          6.073                  5.358                      5.059              4.093              3.658                        5.0 Liquefied Gases,** tons                o.o*              0.0                    O*.O *
* 17 ,992                  0.0                0.0                    . 3000.0
*Hazardous materials are defined as all materials listed under the.
category of petroleum products in the lock statistics.
**Liquefied gases shown are the amounts transported on the entire navigable length of *the lliinois River.
 
Table 2.2.2.3:4 Casualty and Spill Statistics -
Fiscal Years 1969 thru 1972 (Ref. 10)
ILLINOIS      WESTERN CASUALTY/SPILL                                    RIVERS        *RIVERS Casualties** - all type barges                        178          2831 Casualties of hazardous material barges***.                                40          508 Spills from hazardous
    * .mat.erial barges                                      1          69 Casual ti es* of Liquefied gas barges                ._.;._
9 Spills from double-skinned vessels                                    7
... Total length of waterway (miles)                      333          3137
    *Lower Mississippi, Upper Mi-ssiss.ippi, Ohio, and Illinois Rivers; casualties from these rivers* constitut~ 97% of the casualties on western rfvers.                                                        .,
    **Casualtie.s whfch result in any of the following: loss of life,.
damage to cargo-irr excess of $1;500, or release of cargo. ~
    ***Hazardous material barges are generic type 17, 18, and 29 vessels.
See Reference 10 for description.
 
TABLE '2.2.2.3:5 DATA ON AIRPORTS WITHIN 10 MILES OF DRESDEN STATION.(REFS .. 22~ 23, 27)
APPROX. DIST.                DIRECTION          NO.        LENGTH OF    WIDTH OF  TYPE    ORIENTATION TYPE    FROM STATION              FROM STAT ION    OPERATIONS.      RUNWAY      RUNWAY  OF RUNWAY  OF RUNWAY FROMM            PVT. 4.5miles                        E              50*        2,773 ft. 100 ft. TURF. NNE-SSW MORRIS          PVT. 8      mil~s                    WNW        1~94.2*        2,400 ft. 135 ft. TURF. E-W
                                                                                                  ?,987 ft. 60 ft. ASPH. N-S ROSSI            PVT. 9      miles                    N              50**        2,400 ft. 70 ft. TURF. E-W BUSHBY          PVT. 9.9 miles                        NNE            45**        1,800 ft. 100 ft. TURF . N-S
          .JOLIET          . Pub. 10 miles                        NNE        10,000*        3,452 ft. 125 ft.*  TURF. NE-SW 2~970 ft. 100 ft. ASPH. NW-SE ADELMANN***      PVT.      1 mile                          NE              20*'11'    1,600 ft. 70 ft. TURF. SE-NW
                *Total peak month from FAA supplied documents.
              **Number per month as supplied by owner of airport
            ***Recent1y approved airstrip
 
e                                                          e Table 2.2.2.3:6 Data for Aircraft Crash and Probability Analysis 6             N OPERATING      r            0  D(r,O) 2                           .x 10 R              (OPERATIONS/        A          NARDx1C'i 7
. AIRPORT  MODE        (MILES)        (DEG) (/MILES )        (/OPERATION)                      YEAR)      (MILES 2)      (/YEAR)
FROMM      Landing        4.5        90          0.0014              2~4                        150        0.0056167      0.02833 4.5        90          0.0014              2.4                        150        q.0056167      0.02833 Take-Off      4.5        90          0.00167            0.9                        150        0.0056167      0.01267 4.5        90          0.00167            .a~      9                150        0.0056167      0.01267 MORRIS    Lanqing        8.0        25      . 0. 000883 :.        . 2.4                      1456        0.0056167      0.17333 8.0. 155            0.000043            2A                        1456        0.0056167      0.00833 8.0        65          0.00035            2.4                      4370        0.0056167      0.206 8.0      115            o. 00011            2.4                      4370        0.0056167      0.06467 Take-Off      8.0        25    . 0.000369              0.9
                                                                        ..~  '                    1456      . 0.0056167      0.027 8.o      155            0.000073            0.9                      1456        0.0056167      0.00533 8.0        65      *._ o. 00022            0. 9*                    4370        0.0056167'      0.04867 8.0      115            0.00012            0.9                      4370        0.0056167      0.02633 JOLIET    Landing      10.0      . 10          0.00045        , *2A .*                      6000.        0.0056167      0.364 10.0      170            0. 000011    . *. 2. 4                      9000      . 0. 0056167      0.01333 10.0        80          0.000088            2.4                      22500        0.005p167      0.26667 10.0      100          o. 000056 .        2.4                      22500        0.0056167      0.17 Take-Off      10.0      : 10          0.00013 .          0.9 *.                    7500        0.0056167      0.04933 10.0      170            0.000018            b. 9'                    7500 .      0.0056167      0.00667 10.0        80          0.000055            o.~                      22500        0.0056167      0.06267 10.0. 100            0.000043            0.9                      22500        0.0056167      0.049 ADE~MANN  Landing        1.0      115            0.01433            2.4                        60        0.0056167      0.116 0.9        80          0.0374            . 2. 4                        60        0.0056167      0.30233 Take-Off      LO      115            0.0317              0.9                        60        0.0056167      0.0906 0.9        80          0. 05734 .          0 *. 9                      60        0.0056167      0.174


==2.2 INTRODUCTION==
,*.JO.
Table 2.2.2.3:7  Pi~elines with 5. Miles of the Site PIPE SIZE                                    OPERATING      CLOSEST DISTANCE PIPELINE COMPANY        (in)      MATERIAL CARRIED            PRESSURE (PSI)  TO THE PLANT (MILtS)
Natural Gas              36        Natura 1 Gas                    858 \                1. 75 Pipeline Co.            36      **Natural  Gas                    858                  1. 70 30        Natura 1 Gas                    858                  1.60 36        Natural  Gas                    650                  1. 25 30        Natura 1 Gas                    858                  1. 70.
30        Natural  Gas                    858                  1.60 Hydrocarbon              10        Propane, Natural. Gas          2100                  4.0 Transportation, Inc. 10        Propane, Natural Gas            2100                  4.0 6        Propane, Butane                  500                  2.0 Northern lllinois Gas    36        Natural Gas                      740                  2.5 10        Out of Operation                                      2~5 4        Natural Gas                    Unknown                3.0 Amoco                    10        Crude Oi 1                                            3.0 12        Crude Oi 1                                            3.0 22        Crude Oi 1                                            3.0
                                                                *.'l-_


TABLE OF CONTENTS SECTION 2 --SITE DESCRIPTION Of SITE AND ADJACENT *AREAS SITE Site Size and Location , : . Site Ownership .
                                                                                                                        *1 ,. :
* Location of the Units on the.Site Activities on. the Site Access to the Site
e            *,,'
* Exel us ion Area . POPULATION AND LAND USAGE IN ADJACENT AREAS Popu 1 at ion Data Land Use . . * '2.2.*2.J POTENTIAL.
INDUSTRIAL SITES IN VICINlfY 1   MlOWEST FUELS REPROCESSING PLANT {GE).
HAZARn&deg;S DUE TO)IEARBY FACilITIES
2   NORTllER~ PETROCHEMICAL CO.
.* 2 2 '2 3 1 :INTRODUCTION:
3 /\LUMAX 4 REICllHOLO CHEMICAL CO
** .. * * .. . * .. * .* ' *. "* , .. ' . .. 2*:i:*2 .. : f 2 * .. HAZARDS FROM* EXPLOSIONS.  
: 5. A. P. GREEN*
*. .* ..
6 GENERAL ELECTRIC CO.TRAINING SCHOOL 1 MOBIL CHEMICAL 8
* i . * .. 2:2.2.3.2.1  
* MOBIL OIL 9  DURKEE SCH
*
:saL\ET ~l?.~Y t\MMUN ITION ~L.1'NT t              I    *I
* industrial Facilities*  
                                ...           PeN    .1 Mill~
.2.2.2.J .. 2.2 *
FIGURE 2.2.2.3:1 DRESOEN NUCLEAR POWER STATION AREA MAP
: 2. 2'. 2. 3. 2. 3 Rail way Transportatfori .
                                                                  . -~  .. *.
vJaterway Transportation 2.2.2.3.2.S:
                                                              . . =**
Military Facilities 2.2.2.3.2.6
* Pipelines
: 2. 2 .. 2. 3. 3
* HAZARDS FROM. VAPOR CLOUDS AND FIRES
*.* HAZARDS FROM TOXIC CHEMICALS.
2.2.2.3.5 HAZARDS FROM COLLISION WITH THE INTAKE STRUCTURE .
HAZARDS FROM LIQUID SPILLS. . . . ' 2*. 2 *. 2 *. 3. 7 HAZARDS FROM AIRCRAFT.
* *2. 2. 2. J. 7 .1 Airports 2.2 * .Z.3.T.2 Airways* 2 .. 2:.2*.


==3.8 CONCLUSION==
    *. - . ~ *'                   '.**.       . * ....
S
* i*'
* REFERENCES Rev. 1 June 1983 2i Page . 2.1. 0-1 2. 2.1-1. 2.2.-1-1*.
                                                                                                  , -*~ *.
: 2. 2.1-1 ... * '*2 .. 2.1-1 2.2.1-1:' . 2.2.1-2 2.2.1-2 2.2.1-3; 2.2.2-1 ' *,* 2. 2::.6: *_<;, *: :. ': 2*; 2'. 2:;.6 .* '.**,*. *: :. ;*; ' ': << 2.2.2..:.6'.
LEGEND                                      "*.               .
*:
36"                                                                                                                radius
; .2.2*. 2-8 2 ... 2. . 2. 2. 2;..10 2.2.2-10.*.
                  -.~.-   36"
: 2. 2 .. 2-1 L 2.2. 2-n.,. * .. 2 .. 2.2-11' 2. 2.2-n z. 2. 2:.12 2.2.2-12
                  .. -~~- JO"
: 2. 2. 2-1.4 2.2.2;..15 2.2.2-16 
                  - - 36"'
* *
                ' ...... 30 11
* 2.2.1:1 2.2.1:2 2.2.2.3:1 2.2.2.3:2 2.2.4:1 2.2.4:2 2.2.6:1 2.2.6:2 LIST OF FIGURES --SECTION 2, SITE Station Property Plan Cooling Lake General Arrangement Dresden Nuclear Power Station Area Map Rev. 2 June 1984 2i ii Pipelines Considered in the Evaluation of Hazard From Explosion Cooling Water Flow Diagram --Unit 2/3 Dresden Cooling Lake Dam Site Flow Diagram at Illinois River Above Dresden Island Lock and Dam General Arrangement
                    **
.--Crib House 2.2.2:1 2.2.2:2 2.2.2:3 2.2.5:1 LIST OF TABLES --SECTION 2, SITE Population Centers .Surrounding Station Industrial Facilities Near Station 2iii Recreational and Institutional Facilities Near Station Distances From Release Points To Various Points Near Site 
* JO"
.I.: **e* ' ....... ' -' ' ' **Table Assessment Summary HAZARD *NUMBER l* 2 3 4 5 6 8 9 10 11 12 SOURCE OF HAZARD ' ' Explosion from:*. Industrial facilities*
                                                                                        ., *SITB
Highway transportation Railway transportation Watt;!rway transportation Military facilities Pipelines Vapor cloud expiqsion
:"" . "'.**0*':**
& fire from waterway transporation Toxic chemicals Collis{on with intake structure Li quid spi 11 s Aircraft .impact from: Airports Airways* ** .. * **.: ... * .' '1 . . . . '. . . . .*. REPORT . * ... SECTION*.
                                                                      *.. **: ~. :.         .
,2.1 .. *2 .. 2 ' *2:3' ' '2.4' ,* 2. 5 2.6 3.t '*, '. 4 5
.1.*
'.< . *; 7:*1: T:f DESIGN BASIS EVENT? . .:*. No, based Qh adequatE?
                                                                          '.   : .:- . *' ~
separation distance**
FIGURE 2.2.2.3:2 PIPELINES
No ? based on separation distance No, .based on. adequate separation distance No, based on adequate separation No, based .on adequate separatigg distance No, based on frequency of 6x10 /yr using conservative
                                          . .       CONSIDERED
-7 No, pased on of 4xl0 /yr Not part of SEP U-1.C Nq, based on physii:al considerations
                                                        .   / .           . ' IN
*.No, based on physical considerations
                                                                              '.       .... :rnE .. '.. EVALIJAnoN  .. ' . '
' .** *.. ; -7 ' No, based on frequency of 3.24x10 l&#xa5;ear based on of 0.93 x 10 /year 'l'rData for facilities which responded to. the
OF
* . **There is one exception to this conclusion
                                                                                                                                . HAZARO FROM EXPLOSION'
.:. .storage tank pn the Reichhold Chemical site.* :* * .. ; ** <r . ... *'' .*' , *:*.;
                                                                                                . ...}}
Table 2.2.2.3:2 Industries Within 5 Miles I **, e. Dresden Station (Ref. 18) . *,' . *. ;,* DISTANCE (MILES) INDUSTRY & DIRECTION . GE BWR Training Center & Spent Fuel Storage Reichhold Chemicals A .. P. Green-* Atrco 1ndustrial Gases Northern Illinois Gas Alumax Mill Products
* Northern Petrochemicals Northern Petrochemical Dock
* ARMAK Chemicals
* *
* Dur.kee Chemicals . . . , Truck Tennina*i Dow Chemicals Dow Chemical *Dock 'Exxo_n (chemical plant) Hydrocarbon Transportation, Inc. Streator Industrial Supply Mobil Chemical Jal iet Livestock Market
* Mo_bn O:il Refi-nery Commonweal th Edison Co * . Collins
: 0. 7 -: 1. 6. -w .
* 2. 1 "". SSW-*
* 2.S NW
* 2*,5_,.. NW 2.8 -MW 3. 3 -* MW . 1 -* W* 3.6 -WNW :. *.*, 2>-.EN{ J.6*;,. ENE . 3. 7 -E . 2. 7 -* E J.9 -ENE 4.0 ..: NW 4. 0 -.s -4.1 -NE 4.2 -ESE .. 4. 5 -NE 5 *. 0 -WSW PRODUCT Spent nuclear fuel storage Resins and chemicals Br.iCk and clay co . 2 . ! I. Natl,J na 1 gas Aluminum sheet and co.il ethyl oxide glycol* Fatty nitrogen chemi.CaJs
.; Ed.i b le. oi-l -* . .
* Under construction
*. * . . ., .. Polystyrene**
pla-stic.
* Under construction .Propane Industrial supplies . Po.lystyrene sheets. & crystal Livestock Petroleum**
products Electricity*
;... ..  
. , a.,, .* t *** '.:.:* *. *.; .. . *' l'.:.  
.. i ..*. ; ' ' ' ' :.:: .. ; *.:'".{ . . . . .\* ... . -. ' ' ., :. ,,,._-.. . ._ ..... ** ....... . e *.** Table2.2.2.3:3 Dresden Island Traffic Statistics Fiscal Years l9j8 (Refs. 6, 11) . FISCAL YEAR Total commodities, tons x 10 Hazardous mate5ials,*
* tons x 10 . Liquefied Gases,** tons 1973 28.476 5.653 . o.o* 1974 1975 1976 30.853 27.808 25.882 6.073 5.358 5.059 0.0 O*.O *
* 17 ,992 *Hazardous materials are defined as all materials listed under the. category of petroleum products in the lock statistics.
**Liquefied gases shown are the amounts transported on the entire navigable length of *the lliinois River. . .. ' '.*. 1977 23.452 4.093 0.0 1978 19. 521 . 3.658 0.0 Average . 26.0 5.0 . 3000.0 Table 2.2.2.3:4 Casualty and Spill Statistics
-Fiscal Years 1969 thru 1972 (Ref. 10) CASUALTY/SPILL ILLINOIS RIVERS WESTERN *RIVERS Casualties**
-all type barges Casualties of hazardous material barges***.
Spills from hazardous
* .mat.erial barges Casual ti es* of Liquefied gas barges Spills from double-skinned vessels ... Total length of waterway (miles) 178 40 1 ._.;._ 333 *Lower Mississippi, Upper Mi-ssiss.ippi, Ohio, and Illinois Rivers; casualties from these rivers*
97% of the casualties on western rfvers. **Casualtie.s whfch result in any of the following:
loss of life,. damage to cargo-irr excess of $1;500, or release of cargo. 2831 508 69 9 7 3137 ***Hazardous material barges are generic type 17, 18, and 29 vessels. See Reference 10 for description.
., 
******-* -* **-****: ... TABLE '2.2.2.3:5 DATA ON AIRPORTS WITHIN 10 MILES OF DRESDEN STATION.(REFS
.. 23, 27) APPROX. DIST. DIRECTION NO. LENGTH OF TYPE FROM STATION FROM STAT ION OPERATIONS.
RUNWAY '> FROMM PVT. 4.5miles E 50* 2,773 ft. MORRIS PVT. 8 WNW 2,400 ft. ?,987 ft. ROSSI PVT. 9 miles N 50** 2,400 ft. BUSHBY PVT. 9.9 miles NNE 45** 1,800 ft. . JOLIET . Pub. 10 miles NNE 10,000* 3,452 ft. ., ._ . ...:.. ADELMANN***
PVT. 1 mile NE *Total peak month from FAA supplied documents.
**Number per month as supplied by owner of airport ***Recent1y approved airstrip ft. 20*'11' 1,600 ft. WIDTH OF TYPE ORIENTATION RUNWAY OF RUNWAY OF RUNWAY 100 ft. TURF. NNE-SSW 135 ft. TURF. E-W 60 ft. ASPH. N-S 70 ft. TURF. E-W 100 ft. TURF . N-S 125 ft.* TURF. NE-SW 100 ft. ASPH. NW-SE 70 ft. TURF. SE-NW 
' .. ' . ' . ;-. ..
* e e -' . ; *. Table 2.2.2.3:6 Data for Aircraft Crash and Probability Analysis R 10 6 N NARDx1C'i 7 OPERATING r 0 D(r,O) .x (OPERATIONS/
A . AIRPORT MODE (MILES) (DEG) (/MILES 2) (/OPERATION)
YEAR) (MILES 2) (/YEAR) FROMM Landing 4.5 90 0.0014 150 0.0056167 0.02833 4.5 90 0.0014 2.4 150 q.0056167 0.02833 Take-Off 4.5 90 0.00167 0.9 150 0.0056167 0.01267 4.5 90 0.00167 9 150 0.0056167 0.01267 MORRIS Lanqing 8.0 25 . 0. 000883 :. . 2.4 1456 0.0056167 0.17333 8.0. 155 0.000043 2A 1456 0.0056167 0.00833 8.0 65 0.00035 2.4 4370 0.0056167 0.206 8.0 115 o. 00011 2.4 4370 0.0056167 0.06467 Take-Off 8.0 25 . 0.000369 0.9 1456 . 0.0056167 0.027 8.o 0.000073 .. ' 155 0.9 1456 0.0056167 0.00533 8.0 65 *._ o. 00022 0. 9* 4370 0.0056167' 0.04867 8.0 115 0.00012 0.9 4370 0.0056167 0.02633 JOLIET Landing 10.0 . 10 0.00045 , *2A .* 6000. 0.0056167 0.364 10.0 170 0. 000011 . *. 2. 4 9000 . 0. 0056167 0.01333 10.0 80 0.000088 2.4 22500 0.005p167 0.26667 10.0 100 o. 000056 . 2.4 22500 0.0056167 0.17 Take-Off 10.0 : 10 0.00013 . 0.9 *. 7500 0.0056167 0.04933 10.0 170 0.000018 b. 9' 7500 .. 0.0056167 0.00667 10.0 80 0.000055 22500 0.0056167 0.06267 10.0. 100 0.000043 0.9 22500 0.0056167 0.049 Landing 1.0 115 0.01433 2.4 60 0.0056167 0.116 0.9 80 0.0374 . 2. 4 60 0.0056167 0.30233 Take-Off LO 115 0.0317 0.9 60 0.0056167 0.0906 0.9 80 0. 05734 .. 0 *. 9 60 0.0056167 0.174 
,*.JO. --Table 2.2.2.3:7 with 5. Miles of the Site PIPE SIZE OPERATING CLOSEST DISTANCE PIPELINE COMPANY (in) MATERIAL CARRIED PRESSURE (PSI) TO THE PLANT (MILtS) Natural Gas 36 Natura 1 Gas 858 \ 1. 75 Pipeline Co. 36 **Natural Gas 858 1. 70 30 Natura 1 Gas 858 1.60 36 Natural Gas 650 1. 25 30 Natura 1 Gas 858 1. 70. 30 Natural Gas 858 1.60 Hydrocarbon 10 Propane, Natural. Gas 2100 4.0 Transportation, Inc. 10 Propane, Natural Gas 2100 4.0 6 Propane, Butane 500 2.0 Northern lllinois Gas 36 Natural Gas 740 2.5 10 Out of Operation 4 Natural Gas Unknown 3.0 Amoco 10 Crude Oi 1 3.0 12 Crude Oi 1 3.0 22 Crude Oi 1 3.0 *.'l-_
INDUSTRIAL SITES IN VICINlfY 1 MlOWEST FUELS REPROCESSING PLANT {GE). 2 PETROCHEMICAL CO. 3 /\LUMAX 4 REICllHOLO CHEMICAL CO 5. A. P. GREEN* 6 GENERAL ELECTRIC CO.TRAINING SCHOOL 1 MOBIL CHEMICAL 8
* MOBIL OIL 9 DURKEE SCH .** t I
* I ... PeN .1 e *,,' FIGURE 2.2.2.3:1 DRESOEN .. NUCLEAR POWER STATION AREA MAP . .. .-,.'' ... , . ' . ' > . .. * . . . =** *1 ,. : :saL\ET t\MMUN ITION 
.1.* *. -. *' LEGEND 36" 36" .. JO" --36"' ' ...... 30 11 **
* JO" '.**. . * .... . *' . *
* i*' "*. . *'* .**.* , -*. ',' ., *SITB :"" .. "'.**0*':**  
... *' .. . * .. **: :. . . .. ** .... -, '' *. : .. *_ ',, .. : .... * '*. , '. : . :-. *' ........ radius FIGURE 2.2.2.3:2 PIPELINES CONSIDERED IN :rnE EVALIJAnoN OF HAZARO FROM EXPLOSION' . '" . . . / . . '. ' .... . . '.. . . ' . ' . ;. .. . ...}}

Latest revision as of 11:15, 24 February 2020

Final Safety Analysis Report
ML17191A301
Person / Time
Site: Dresden  Constellation icon.png
Issue date: 07/10/2017
From:
Commonwealth Edison Co
To:
Office of Nuclear Reactor Regulation
References
Download: ML17191A301 (76)


Text

f FSAR INDEX

. ~.

- A- Section I *. - .~ ~->.

ACAD/CAM 6.8.3.3 Acceleratioa Response Spectrum Earthquake 12. 1. l :3 Access Control Access to the Site Access, Station Accident Analysis for 7 x 7 Fuel Accident Analysis for G2 8 x 8 Fuel 14.2.2.5 Accident Analysis for ENC 9 x 9 Fuel 14.2.2.6 Accident Analysis, Radwaste 9.2.5 Accident, Control Rod Drop Procedural 14. 2 .1. 3 Acoustic Monitors 4.5.2 Acronyms and Initialisms 1.1.2.1 Action taken due to Reportable 13.6.2.2 Action taken due to Safety Exceeded 13.6.2.1 Administrative Controls 13.6 Administrative 12 .1. 4. 5 Admission Valves 6.2.3.4 Airborne Effects the Refueling Pool 14.2.2.6 Air Cleanup Appendix 8 (8-28)

Air Ground Level Appendix A (2.1.1)

System 10.11

11. 2. 2 Ejector Off-Gas Monitoring 7.6.2.3 Monitoring, Reactor Bldg 7. 6. 2. 5 Airlock Doors 5.3.2.2 i

1043v

' FSAR INDEX

- A- Section Analysis and Acceptance Criteria Inst & Control 7.2.6.3 Analysis of Off-Site Electric Power Supply 8.2.1.4 Analysis Supporting ECCS Clad Melt Criteria 6.2.7.6 Analytical Methods 3.3.3 Analytical Stability Model 7.2.2.3 ANL Test Data on Clad Flailure 6.2.7:25-28 Approval of Changes 13.6 APRM 7.4 .2 Archifect - Engineer Organization Appendix E (2.3.1)

Area Radiation Monitoring System 7.6.3 9.1.2 9.5.3 As-Built Safety-Related Piping Analysis 12 .1. 2 .4 ASKE Class A Nuclear Vessels 4.1.0.1 Atmospheric Control System 6.8 Atmospheric Pressure, Fuel Loading 13.8.2.1 Atmospheric Weather/Wind Appendix G Authority to Terminate Power Production 13.6.1 Authorization of Changes 13.6 Automatic Depressurization System 6.2.6 Automatic Vacuum Relief 5.2.2.9 Auxiliary and Emergency Systems 10.1 13.7.3.42 Auxiliary Power supplies 1.2.4.3 Auxiliary Power System 8.2.1.3 Auxiliary Systems 1.2.4.4 Auxiliary Transformers 8.2.1.3 ii 1043v

FSAR INDEX

- A- Section Auxiliaries, Turbine Generator 13.7.3.43 Availability Analysis 6.2.7.4 Average Power Range Monitor (APRM) 7.4.5.2 iii 1043v

- B- Section Balance of Plant - Aux Systems 13.7.3.42 Bases for Design 12 .1.1. 3 Biological Shield 12.2.2.l Batteries, Station 8.2.3.2 Battery Tests and Inspection 8.3 Bio - Assay and Medical Exam Program 9. 5. 5. 7 Bodega Bay Tests 5.2.3.5a & b Boron 9.6.1.3.2 Blowoff Details, Rx Bldg. 5.3.2:1 Burnable Neutron Absorber 3.5.5 Burning in Drywell 6.8.1:12 Bypass Valves, Turbine 7.2.6.2

  • 1057v i

FSAR INDEX

- c -

Section Cable Pans, Electric 8.2.2.3 Cask Pad 10 .1.2 CB & I 5.2.3:24 & 25 CECO and GE Startup Organization 13 .1. 2 Channel Hydrodynamic Conformance 7.2.3.2 7.2.4.2 Change Room Facilities 9.5.5.4

/

-characteristics After Reactor Slowdown 5.2.3.3 Charcoal Beds, Off-Gas 9.2.5 CHASTE 6.8.3.3.4 Chimney 12 .1. 2 .3 Chimney Effluent Monitoring 7.6.2.4 9.1 & 9.2.2.2 Circuit Breakers 8.2.2 Circulating Water 11. 2. 2 Cladding Integrity Safety Limit (Fuel) 3.2.2.3 Class I Structures & Equipment 12 .1. 2 Class II .Structures & Equipment 12 .1. 3 Classification of Nuclear Systems Appendix E (Exhibit 2. 7)

Cleanup Demineralizer System 13.7.3.22 Cleanup System 10.2 Cleanup System (Rx Water) 10.3 C02 Fire Protection System 10.7.2:1 & 2 Coefficiency of Reactivity 3.3.5.1 Cold Loop Startup - Transient Analysis 4.3.3:lla .& b

  • Common Auxiliary Systems 1058v i

1.2.4.4

FSAR INDEX

- c -

Sectfon Conununication System "' 10.14 Computer, Process 7 .11 8.2.2.4 CONCEN 6.8.3.3.4 Conclusions on Site and Environs 2.4 Condensate Demineralizer System 7.8.2 13.7.3.13 Condensate - Feedwater System 11.1 11.3 Condensate - Feedwater Tests and Inspections 11.3 Condensate Makeup Piping 10.12.2:2 Conduct of Operations 13.1 thru 8 Conduct of Operations 13.1 Construction Tests 13.7.3

  • Containment Containment Atmospheric Control System 1.2.1.3 5.2.3:7
7. 7. 2: 1 6.8 I

Containment Cooling System 6.2.4 Containment Design Basis Appendix 8 (B-26)

Containment Heat Removal Systems Appendix B (B-26)

Containment Isolation Valves 5. 2 .4.3; Appendix B ( B-2 7)

Containment Leakage Rate Testing Appendix B ( B-27)

Containment Penetrations 5.2.4.2 Containment Response to LOCA 5.2.3.2 Containment Shield 12.2.2.2

FSAR INDEX

- c - Section

  • Containment Systems Containment Ventilation System i.2.2.4 5.l;*Appendix C 5.2.4.4 Containment Vs Hydrogen 6.8.1.3 Contractors 1.3 Control and Instrumentation 1.2.1.4 1.2.2.6 Control and Instrumentation, other Systems 7.10 Control Curtains 3.5.2.2 Control of Access to Radiation Zones 9.5.5.l Control Methods (Reactor) 3.5.2 Control Rods 3.5.2.1 Control Rod Block Function 7.3.2:1

FSAR INDEX

- c - Section

  • Control Rod Sequence Control Rod Surveillance and Testing Control Rod Worth 14.5.2 3.5.4 3.3.4.4 Control Rod Velocity Limiter 6.1.2.3 6.5 Control Room 12 .1. 2. 2 12.2.2.4 12.2.3 14.2.5 Control Room Ventilation 12.2.2.5 Cooling Lake . 2.2.4.1 2.2.1:2 2.2.4:1 Core Cooling 14.2.3.9 Core Cooling System 6.2 Core Internals, Thermal Shock Efforts 3.6.3.3 Core Lattice Unit 3.4.2:2 Core Nuclear Dynamic Characteristic 3.3.5 Core Release, Non-Line Break Scenario 12.3.2.2 Core Spray Tests and Inspection 6.2.3.4 Core Spray System 6.2.3 13.7.3.32 6.2.3:6 8.2.3 Core Thermal and Hydraulic Performance 14.5.4 Crane, Reactor Building 10.1.2.2.2 Crib.House 2.2.6:2 12 .1. 3 ..3 Criteria & Bases for Design 12 .1.1. 3 CPR Histogram for 8 x 8 3.2.2:2
  • 1058v ii i i

FSAR INDEX

- D- Section

  • Data Analysis and Acceptance Criteria DC Systems Decay Ratio 7.2.6.3 13.7.3.2 & 8.2.3.2 7.2 Dernineralizer System 12.2.2.7 Description of Control Rods 3.5.2.1 3.5.3 Description of ECCS 6.2.2 Description of Fuel Assemblies 3.4.2 Description of Hain Stearn Description of Reactor Vessel Internals 3.6.2 Description of Safety Features 14.1 Design Basis Accidents 14.2 Design Basis Automatic Depressurization 6.2.6

Design Basis of Core Spray Design Bases Dependent On Site Characteristics

12. 1. 2. 4 .,4 6.2.3 1.2.2.1 Design Basis of Fuel Mechanical Characteristics 3.4.1 Design Basis of Isolation Condenser 4.6.1 Design Basis of LPCI 6.2.4.1 Design Basis of Hain Stearn 4.4.1 Design Basis of Nuclear Characteristics, 3.3.1 Design Basis of Primary Containment System Design Basis o~ Reactivity Control Mechanical Characteristics 3.5.1 Design Basis of (Reactor) 3.2.1.1 3.2.1.3
  • 1045v i

FSAR INDEX Section

- D-Design Basis of Reactor Bldg. 5.3.1 Design Basis of Reactor Recirculation System 4.3.1 Design Basis of Reactor Vessel Internals 3.6.1 Design Basis of Relief and Safety Valves 4.5.1 Design Bases for Shielding 1.2.2:1 Design Evaluation Containment System 5.2.3 Design Evaluation (Fuel) 3.4.3 Design Evaluation Main Stearn 4.4.3 Design Evaluation Reactor Coolant System 4.2.3

  • Design Guide Limit Definition 7.2.4.1.

Design of Control Rods and Curtains 3.5.2.3 Design of Electrical Systems 8.2

  • Design Report, Reactor Designed Safeguards Determination of Radiation Environment Appendix D
14. 2 .1. 2 12.3.3.0 Development of Technical Spec 3.2.4 Diesel - Generator System 8.2.3.1 8.3.1 13.7.3.39 Diesel Generator Tests and Inspection 8.3 Discharge to the River 9.3.3 Distances From Release Points 2.2.5:1 Distribution System, Station 8.2.2 Domestic Water Syste~ 13.7.3.8 Doppler Coefficient 3.3.5:1,2,3,4,5
  • Dose, External Appendix A ( 2. 2 .1) ..

ii 1045v

FSAR INDEX

- D - Section

  • Dose, Hydrogen Addition Dose to the Control Room, etal Dresden Lock and Dam
14. 2 .1.8
12. 3 .8.

2.2.6.1 Dresden Containment Certification Appendix C Dresden Units 2 & 3 Opera~ing Map 3.2.3.1 Dropout Velocities 6.5.3 Drywell 5.2.2.1 5.2.4.1 5.2.3.26 Drywell Pneumatlc System 10.8.2 Drywell and Suppression Chamber Inspection and Testing 5.2.4 Drywell Expansion Gap 5.2.3.6 Drywell Missile Protection 5.2.3.7

  • Drywell Spray Drywell - Torus Leak Rate Measurement Drywell Ventilation 6 .2 .4 .2 ..

13.7.3.18 13.7.3.40

  • 1045v iii

FSAR INDEX

- E- Section

  • Earthquake Earthquake Analysis of Rx Vessel 5.2.3:8+9 12 .1.1: 2 Appendix D ECCS 1.2.2.5 6.2 6.2.7.5 Appendix B (B-23&25)

ECCS Clad Melt Criteria 6.2.7.6 ECCS*Flood Protection 6.2.8 ECCS Pipe Whip Criteria 6.2.7.7 ECCS Pump NPSH 6. 2. 7 .9 Economic Generation Control 7.3.3.l 7.3.6 Effect of KSIV Closure Time 14.2.3.8

  • Effects of Postulated LOCA's EGC Operation El Centro Earthquake 1.2.5.2 7.3.3.2 7.3.6:2 12 .1.1: 2 Electrical Penetration Seals 5.2.2.4 5.3.2.3 Electric Power 1.2.1.5 Electric System 1. 2. 2 .10 8.1 Electroslag Weld Report, Rx Vessel Appendix F Elevated Release Point Discharge i4. 2 .1. 7 Emergency Core Cooling System 6.1.2.1 6.2.2 6.2.7.1 Appendix B (8-25)
  • 1059v i

FSAR INDEX

- E - Section

    • Emergency Lighting Emergency Power Emergency Ventilation 10.13.2 8.2.3 13.7.3.4.1 Engineered Safey Features Appendix B (B-21&24)

Environs Radioactivity Monitoring 2.3 Equipment Description, Computer 7 .11. 3 Equipment Drain System 9.3.2.1 Equipment Separation 12 .1.4. 4 Equipment Supply - QA Appendix E (3.3)

Essential Service System 8. 2 .2*.4 Exclusi_on Area 2.2.1.6 Exfiltration 5.3.3.l Expansion Gap, Drywell

  • 5.2.3.6 External Dose Appendix (2.2.1) ii 1059v

FSAR INDEX

- F Section Features of Plant Design 1.2.3:1 Feedwater Control System 7.8.3 Feedwater Flow, Reactor 7.5.2.4 Feedwater Nozzle Inner Bore 6.2.5.3.4 Feedwater Pumps 7.2.6.2 Feedwater Sparger Integrity 6.2.5.3.4 Feedwater System 11.1 11.3 14.2.3.5 Field Change Control Appendix E (3.4.3)

Fire Alarm Systems 10.14.3 Fire Extinguishers, Portable 10.7.2 Fire Protection System 10.7

  • Fire Suppression Water System Fission Product Release from the Fuel 13.7.3.11 8.2.2.1 10.7.2 & 10.7.3 14.2.4.2 Fission Product Transport 14. 2 .1. 6 Flange Leak Detection, Reactor Vessel 7. 5 .2 .6 Floor Drain Surge Tank 9.3.2:5I Floor Drain System 9.3.2.2

'Flow Control Recirc System 7.3.3 Flow Factor, *Kf 3.2.2.9 Flow Monitors (Recirculation) 7.4.5.2.2 Flow Regulating Station (Circulating Water/Canal) 2.2.4 Fluid Pipe Penetration 5*. 2. 2. 5

  • Flux Response to Rods 14.5.3 i

1060v

I~

FSAR INDEX

- F - Section

  • Fractional Control Rod Density FSAR Controlled Copy Recipient Fuel and Waste Storage Systems 3.3.4:4 1.1.1.4 Appendix B (B-29}

Fuel Assembly Isometric 3.4.2:1 Fuel Cladding Integrity Safety Limit 3.2.2.3 3.2.4.2 Fuel Cycle 3.3.4.1 Fuel Damage Limits 3.2.1.2 3.4.3.4 14.2.2.5.1 14.2.2.6 Fuel Design Analysis 3.4.3.3 Fuel Handling 10.1 13 .1. 3. 2 13.7.3.20

  • Fuel Handling and Storage Fuel Loading Fuel Mechanical Characteristics 1.2.1.8 1.2.2.8 13.8.2.1 3.4 Fuel Pool Cooling and Cleanup System 10.2 13.7.3.19 Fuel Pool Damage Protection 10 .1.4 Fuel Recovery Plant Appendix A (4.0}

Fuel Shipping Cask 10 .1. 2 .2 .2 10.1. 2 .3 Fuel Storage and Fuel Handling 10.1 Fuel Storage Criticality Appendix B (B-30}

Fuel Storage Pool (Spent} 10.1. 2. 2

-- Fuel Storage Vault 1060v ii 10.1. 2 .1

FSAR INDEX

- G - Section

  • - Gadolinium Bearing Rods Gaseous Radioactive Wastes Gaseous Waste Effluents 3.5.5.5 9.1 1.2.4.1 9.2 GE Startup Organization 13 .1. 2 .1 General Arrangement Crib House 12 .1. 3 :8 General Arrangement, Rx Bldg. 12.1.2:1-4 General Arrangement, Turb. Bldg. 12.1.3:1 General Conclusions 1.4 General Description (Reactor) 3.3.2 General Electric Safety Analysis 14.3 General Electric Topical Reports 1.1.2.1 Generating Station Emergency Plan (GSEP) 13.4.1
  • Generator Load Rejection Gee;> logy 11.2.3.2 7.7.1.2 2.2.3 Ground Level Radiation Dose- Appendix A (2.0)

Guide T~bes, CRD 6.5.2

  • 1067v i

FSAR INDEX

- H- Section Halon System 10.7.2 Head Cooling System (Rx) 10.5 13.7.3.26 Health Physics 7.6.5 9.5.5 9.5.5.5 Health Physics Instrument Inspection and Testing 7.6.5.3 Heat Generation Rate 3.2.2.2 3.4.3.2 Heating Boiler 13.7.3.14 Heating, Ventilating, and A-C System 10.11 Heat up 13.8.2.2 High Density Spent Fuel Storage Rack 10 .1. 2: 2 High Neutron Flux 7.7.1.2

H,igh Reactor Pressure 7.7.1.2 9.6 7.7.1.2 Histogram of XN-3 Predictions 3.2.2:11 HPCI 6.2.5 13.7.3.33 6.2.5:1-5 8.2.3 HPCI Room Coolers 10.9.3 HPCI Tests and Inspection 6.2.5.4 HRSS 9.6 Hydraulic Control System (CRD) 3.5.3.3 Hydraulic (Reactor) Characteristics 3.2 Hydro Tests 13.7.3.16

  • Hydrodynamic Stability 1046v i

7.2.2.2

FSAR INDEX

- H- Section

14. 2 .1.8 6.8.1.2 6.8.1.1 Hydrogen in Containment Effects 6.8.1.3 Hydrology 2.2.4 Hypochlorite Chemical 10.9.2
  • 1046v ii

FSAR INDEX Section

- I -

Identification, CRD 14. 2 .1.1 Identification of Contractor 1.3 IEEE 279 7.4.5 Impact Forces 14.2.3.7 Industrial Facility Near Station 2.2.2:2 In-Core Probe (TIP) 5.2.2.7 8.2.2.3 Inerting System 6.8.3.2 Initial Operating Personnel 13 .1.4 .1 Initialisms and Acronyms 1.1.2.1 Inservice Inspection 4.3.4.2 Inspection and Testing of Condensate and Feedwater 11.3 Ins~ection and Testing of Core Spray 6.2.3.4 Inspection and Testing of CRD Housing Support 6.6.4 Inspection and Testin_g of Diesel Generators and Batteries 8.3 Inspection and Testing of Drywell and Suppression Chamber 5.2.4 Inspection and Testing of Health Physics Instruments 7.6.5.3 I

Inspection and Testing of HPCI 6.2.5.4 Inspection and Testing of Isolation Condenser 4.5.4 Inspection and Testing of Low Pressure Coolant Injection 6.2.4.4 Inspection and Testing of Off gas and Ventilation 9.2.4 Inspection and Testing of Main Steam 4.4.4 Inspection and Testing of Reactor 3.6.4

    • 106lv i

Cr FSAR INDEX

- I - Section Inspection and Testing of Reactor Coolant ~ystern 4.2.4 4.3.4 Inspection and Testing of Reactor Vessel 4.2.4 Inspection and Testing of Recirculation System 4.3.4 Inspection and Testing of Safety and Relief Valves 4.4.4 Inspection and Testing of Secondary Containment 5.3.4 Inspection and Testing of Standby Coolant Supply 6.3.4 Inspection and Testing of Standby Liquid Controi System 6.7.4 Inspection and Testing of Stearn Flow Restrictors 6.4.4 Inspection and Testing of Turbine 11. 2. 4 Inspection, Weld, Visual 12.1.2.4.4.1 Institutional Facilities Near Station 2.2.2:3 Instrument and Service Air System 10.8 13.7.3.12 Instrumentation and Control 7.1 Instrumentation and Control-Containment 6.8.3.4 Integrated Plant Safety Assessment etal (IPSEP) 14.4.0 Integrated System Design Evaluation 6 ~ 2. 7 Inter-Plant Effects of Accidents 1.2.4.5 Interaction of Units 1,2, & 3 1. 2 .4 Interconnection, Electrical Network 8.2.1 Intermediate Range Monitor (!RM) 7.4.4 Introduction and Summary 1.1.

Iodine Activities 9.2.5 Iodine (I-131) Release Appendix A (3-4)

IRM 7.4 ii 106lv

I FSAR INDEX

- I - Section Isokinetic Sample 7.6.2.4.2 Isolation Condenser Inspection and Testing 4.6.4 Isolation Condenser Vent Monitor 7.6.2.9 Isolation Condenser - Piping Diagram 4.6.2:1 Isolation Valves 5.2.2.6 5.2.4.3 13.7.3.18 Appendix B (B-27)

Isotope N16 7.6.2 Isotopes in Liquid Waste Discharger 9.3.3 Investigative Function 13.6.2

  • 106lv iii

FSAR INDEX

- J - Section

  • Jet Pump Efficiency Jet Pump Isometric Jet Pump Operation 4.3.3.1 4.3.2:2 4.3.2.2 Jet Pump Stability 4.3.3.2
  • 1047v i

FSAR INDEX

- K- Section

  • 1048v i

FSAR INDEX

- L - Section

  • Laboratory Radiation Measuring Inst Lake 7.6.5 2.2.4.1 2.2.1:2 Land Use 2.2.2.2 Leakage of Reactor Internals During Rec ire Line Break . 3.6.3.5 Leakage Rat~ Test, Rx Bldg 13.7.3.41 Lighting System 10.13 Limiting Safety System Settings 3.2.4.1 Liquid Radioactive Waste Discharge Monitorln~ 7.6.2.8 9.3 Liquid Waste Effluents 1.2.4.2 Liquid Waste Performance Analysis 9.3.3

\

Load Diagrams 12 .1. 2. 28

  • Load Set Mechanism LOCA's 7.3.3.2.C 1.2.5.2 5.2.3:2 Loe.al Limits During Operations 3.2.2*

Local Power Range Monitor (LPRK) 7.4.5.1 Local Power Peaking 3.3.4.2 Lock and Dam 2.2.6.1 2.2.6:1 Loss-of-Control Room 14.2.5 Loss-of-Coolant Accident 14.2.4 Loss of EHC System Oil Pressure 11.2.3.2 7.7.1.2 Loss of Feedwater 11:3.3:2-3C Low Reactor Water Level 7. 7 .1: 2

  • 1062v i

FSAR INDEX

- L - Section

  • LPCI 6.2.4 13.7.3.33 6.2.4:1-6 8.2.3 LPCI Inspection and Testing 6.2.4.4 LPCI Room Coolers 10.9.3 LPRM 7.4.5:2-8 7.4
  • *1062v ii

FSAR INDEX

- K- Section Kain Condenser Condensate 7.8.2 Kain Steam 4.4 14.2.3:1 Kain Steam Flow Restrictors 6.4 Kain Steam Isolation Valve 5.2.2:9 7.7.2:2 14.2.3:1 11.2.3:4-6 "L--.

Kain Steam Line Break Outside Drywell 14.2.3 Kain Steam Line Flow Restrictor 6.4.3:1

  • Kain Steam Line Isolation Valve Closure 14.2.3.3 Kain *Steam Line Koni toring 7.6.2.2 Kain Steam Line Radiation Monitoring system 7.6.2:1 Kain steam Line Restrictors 6.1.2.2 6.4.2
  • Kain Steam System Inspection and Testing Maintenance Department*

Makeup Water System 'j 4.4.4 13 .1. 3. 4 10.12 13 .. 7. 3. 8 MAPLHGR 7.4 Ka~t~r Flow Controller 7.3.3.2 Mathematical Model 12.1.2:5-7 Maximum Rate of Load Change 11.2.3.3 Maximum Recycle System 9.3.2:5J-M Maximum Rod Worth 3.3.4:6 KCPR 7.4 Mechanical Design Limits (Fuel) 3.4.3.1 Mechanical Vacuum Pump System 11.2 .2

  • 1068v

/"

i

FSAR INDEX

- M- Section

  • Medical Exam Program Metal-Water Reactions Meteorology
9. 5. 5. 7 5.2.3.4 2.2.5 Meteorological Factors Appendix A (2.1)

Midwest Fuel Recovery Plant Appendix A (4.0)

Minimum Shift Manning Requirements 13 .1.4. 2 Missile Protection Appendix B (B-25)

Mixture Impact Forces 14.2.3.7 Moderator Rod Worth 3.3.4:5 Moderator Temp. Coefficient of Reactivity 3.3.5:6 Moderator Void Coefficient of Reactivity 3.3.5:7 I-Monitoring Systems, Personnel 9.5.5.2 Motor - Generator Sets 7.3.3 Movement of Control Rods 7.3.2 MSIV 11.2.3.2 MSIV Closure Time 14.2.3.8

  • 1068v ii

FSAR INDEX

' - N- Section

  • N16 Isotope NOT Requirements 7.6.2 Appendix B (B-26)

Nearby Facilities - Potential Hazards 2.2.2.3 NEBS Instrumentation Systems 13.7.3.36 Negative Feedback 7.2.2.1 Network Interconnection 8.2.1 Neutron Flux Level 7.4.2 Neutron Monitoring Reliability 8.2.3.2.3 New Features 1. 2. 5 New Fuel Storage Vault 10 .1. 2 .1 Noble Gas Release Appendix A (3.3)

Normal Operation Characteristics 3.2.3 NPSH 4.3.2:3 NPSH for ECCS Pumps 6.2.7.9 NSS Supply, Material Appendix E (2.2.2)

NSS Periodic and On-Demand Programs, Computer 7.11.3.4 Nuclear Analysis Methods 3.5.5.4 Nuclear and Process Parameters 14.5 Nuclear Characteristics 3.3 Nuclear Instrumentation 7 .4 Nyquist Plot of Open-Loop Response 7. 2. 3: 7

  • 1063v i

FSAR INDEX Section Off-Gas and Ventilation Inspection and Testing 9.2.4 Off-Gas Radiation Monitoring System 7.6.2:2 9.1 Off-Gas Treatment System 9.2.2:1 Off-Site Dose, Hydrogen Addition 14. 2 .1.8 Off-Site Electrical Power System 8.2.2.2 8.2.1.4 Off-Site Power and ECCS 6.2.7.5 Operability of the Units 1.2.5.3 On-Site Electrical Power System 8.2.2.1 On-Site Environs Radiation Monitoring System 9.5.4 Operating Basis Earthquake (Piping) 12 .1. 2. 4 Operating Basis (Reactor) 3.2.2.1

  • Operating Group Operating Limit Heat Generation Rate Operating Limits (Reactor) 13 .1. 3 .1 3.4.3.2 3.2.1.3 Operating Procedures 13.3 Operational Description Recirc System 4.3.2.3 Operational Description of Recirculation Pumps 4.3.2.3 C & D Operational Design Guide and Conformance 7.2.4 Operational Training 13.2 Organization and Responsibility 13.1 Organization of Report 1.1. 2 Overall Quality Program . Appendix E (3.1) 138 KV System 8.2.1.3 13.7.3.3
  • 1049v i

FSAR INDEX Section

  • 115 Volt Systems 125 Volt DC Station Battery System

' 13.7.3.7 8.2.2:2

  • 1049v ii

FSAR INDEX

- p - Section

( 3. 5) .

Peak Fuel Enthalphy 14.2.1:1-3 Pedestal, Reactor 12 .1.2. 5 Penetrations, Testing of Appendix B (8-27)

Performance Analysis (Rad Waste) 9.2.3 9.3.3 Performance Analysis (Shielding) 12.2.3 Performance Characteristic for Normal Operation 3.2.3 Performance Evaluation of Reactor Vessel, Internals 3.6.3 Performance Evaluation Recirc System 4.3.3 Performance *Predictions Recirc System 4.3.3.3 Peripheral Equipment, Computer 7.11.3.2 Personnel Monitoring Systems 9.5.5.2 13.4.2.2 Personnel Protection Equipment 9.5.5.3 13.4.2.3 Personnel Qualifications 13 .1. 4 Personnel Training 13.2.1:1 Physical Description Reactor Coolant System 4.3.2.1 Piping 12 .1. 2 .4 12 .1. 3 .4 Pipe Penetrations 5.2.2.5 5.2.4.2 5.3.2.3 Pipe Whip Criteria ECCS 6. 2. 7 .7 Plant Comparative Evaluation Appendix B i

1069v

FSAR INDEX

- p - Section

  • Plant Description Plant Design Plant Effluents 1.2 1.2.3:1 Appendix B (B-31)

Plant Electrical Cabling 8.2.2.3 Plant Heating Boiler 13. 7 .. 3 .14 Plant Safety (SEP) 14.4.0 Plant Stability Analysis 7.2 Plot Plan 12.1.1:1 Plume Reflection Effects Appendix A (2.1.3)

Pool, Spent Fuel Storage 10 .1. 2 Population Data 2.2.2.1 2.2.2:1

  • Portable Fire Extinguishers Portable Instrumentation Post-Accident Radiation Levels 10.7.2 9.5.5.6 12.3.1-1 Potential Hazards Due To Nearby Facilities 2.2.2.3 Power Flow Map 3.2.3:3 Power Range Instruments 7.4.5 Power Transient Analysis 14. 2 .1.4 Pre-Operational Training 13.2.1 Pre-Operational Test Program 13.7 Precautionary Planning 13.4 Pressure Forces During Blowdown (Reactor) 3.6.3.2 Pressure, Reactor Vessel 7.5.2.2 Pressure Regulator and Turbine-Generator Controls 7.8.1 ii 1069v-

FSAR INDEX

- p - Section

  • Process and Instr~mentation Process Computer

\

System Equip Chart 1.1.2:1 7 .11 8.2.2.4 Process Liquid Monitoring 7.6.2.7

.Process Radiation Monitoring 7.6.2 Property Plat 1.2.2:1 Protection E~uipment, P~rsonnel 9.5.5.3 Protection Systems 7. 7 Pump Back System 10.8.2 Purge, Vent, and Inerting System 6.8.3.2

  • 1069v iii

FSAR INDEX

- Q- Section

  • Quality Assurance Records Quality Control Reports Appendix E (3. 7)

Appendix E

  • lOSOv i

FSAR INDEX

- R-Section Racks, High Density Spent Fuel Storage 10.1. 2 Radiation Control Standards 13.4.2 Radiation Dose (Fuel Pool) 10.1. 2. 2. 2 Radiation Levels, Post-Accident 12.3 Radiation Monitoring Systems / 1.2.2.7 2.3 7.6 7.6.4 Radiation Protection Procedures 1.2.2.11 Radiation Protection 9.5 Radiation (High) Sampling System 9.6 Radiation Shielding (HRSS) 9.6.3.0 Radiation Zones 9.5.5.1 Radioactive Waste Control 1. 2. 2 .12

  • Radioactive Waste Disposal Radiological Effects 9.1 1.2.1.6 13.7.3.35
14. 2 .1. 5 14.2.3.10 14.2.4.2 Radiolo~ical Factors Appendix A (2.2)

Radiolysis 6.8.1.2 Radwaste Air Sparging System 10.8.2 Radwaste Building 12 .1. 3. 2 Radwaste Process Systems Radwast~ Ventilation 13.7.3.44 Ramp Rate 7.3.6.3 Rate of Response (CRD) 3.5.3.1

  • 1064v i

FSAR INDEX

- R - Section RBCCW (Reactor Building Closed Cooling Water) 7.6.2.7 10.10 13.7.3.15 Reactivity Control 3.3.4.3 3.3.5.1 3.5 Reactivity Insertion Accidents 1.2.5.1 Reactor* Slowdown 5.2.3.3 Reactor Building 5.3 5.3.2.1 12 .1. 2 .1 Reactor Building Air Monitoring 7.6.2.5 Reactor Building Closed Cooling Water System 7.6.2.7 10.10 13.7.3.15 Reactor Building Crane 10 .1.2. 2 .2

Reactor Control Systems 7.3 Reactor Core* 1.2.1.1 Reactor Core and Channel Hydrodynamic Stability 7.2.2.2

  • 1064v ii
7. 2. 3. 3

FSAR INDEX

- R- Section Reactor Core Conformance 7.2.4.3 Reactor Core Cooling System 1.2.1.2 Reactor Core Shutdown 14.2.3.4 Reactor Design Basis 3.2.1.1 Reactor Operating Limits 3.2.1.3 Reactor Pedestal 12 .1. 2. 5 Reactor Pressure Control 7.3.5 Reactor Pressure Vessel Design Appendix D Reactor Protection System 7. 7 .1 13.7.3.37 Reactor Protection System Surveillance and Testing 7.7.1.4 Reactor Recirculation System 13.7.3.31 Reactor Relief Valves 4.5.2 Reactor Shutdown Cooling System 10.4 Reactor Systems 1.2.2.3 3.1 Reactor Vessel 4.2 4.2.1:1 Reactor Vessel Components 13.7.3.27 Reac~or Vessel Designed Cycles 4.2.1:1 Reactor Vessel Ele~troslog Weld Report Appendix F Reactor Vessel Head Cooling System 10.5 13.7.3.26 7.6.2.7 Reactor Vessel Instrumentation Surveillance and Testing 7.5.4 Reactor Vessel Isometric 4.3.2:1 Reactor Vessel Hydro 13.7.3.16 Reactor Vessel Instrumentation 7.5 13.7.3.28 9'

iii 1064v

FSAR INDEX

- R- Section Reactor Vessel Internals 3.6 Reactor Vessel Lateral Supports 4.2.2:1 Reactor Vessel Nozzle Safe Ends 4.2.2.1 Reactor Vessel Inspection and Te~ting 4.2.2 Reactor Vessel Supporting Structure and Stabilizers 12 .1. 2. 5 Reactor Water Cleanup Piping Diagram 10.3.1:1 10.3.2 Reactivity Control Appendix B (B-15)

Recipient, FSAR Controlled Copy 1.1.1.4 Recirculation Flow Monitors 7.4.5.2.2 Recirculation Line Break 3.6.3.5 Recirculation Pumps Operational Description 4.3.2.3.C & D Recirculation Speed Control Network 7.3.3:1 Recirculation System 4.3 13.7.3.31 Recirculation System Analysis 4.3.3.4 Recirculation System Inspection and Testing 4.3.4 Records 13.5 Appendix E (3.7.1)

Recreational Facility Near Station 2.2.2:3 Refueling 10 .1.2 .3 Refueling Accident 14.2.2 Refueling Accident Procedural Safeguards 14.2.2.3 Refueling Pool Airborne Effects 14.2.2.6 Regional and Site Meteorology 2.2.S Relative Bundle Power Histogram 3.2.2:1 & 3 i i ii 1064v

FSAR INDEX

- R- Section

  • Release of Activity to Environment (Liquid)

Relief and Safety Valves 9.3.3 Appendix B (B-31) 4.5 13.7.3.30 Reliability of Protection Systems Appendix B

( B-12 )"

Reportable Occurrence 13.6.2.2 Resumes of Startup Personnel Appendix H Review and Investigative Function 13.6.2 Ring Header 5.2.3:18-23 Rod Block Monitor (RBM) 7.4.S.3 7.4.S.4 Rod Drop Accident Analysis 12 .1.4. 6 14.2.1:4 Rod Movement Tests 7.2.6.2

  • Rod Worth Mini~izer 7.9 13.7.3.38

\

  • 1064v iii ii

FSAR INDEX

- T - Section

  • T-Quencher Technical Spec. Development Technical Staff 4.5.2 3.2.4 13 .1.3. 3 Temperature, Reactor Vessel 7.5.2.1 Test Schedule, Pre-operational 13.7.2 Testable Check-Isoiation Valves 6.2.3.4 Testing and Surveillance (Reactor) 3.4.4 Thermal (Reactor) Characteristics 3.2 Thermal Shock Effect*s on Core Internals 3.6.3.3 Thermal Shock Effects on Reactor Vessel Components 3.6.3.4 Thermal Sleeves, Feedwater Nozzle 6.2.5.3.4 TIP 7.4.2 Topical Report (CECo) 13.2.2 Topical Report (GE) 1.1.2.1 Tornadoes 2.2.5.l Torus 5.2.2.3 5.2.3:17 Torus Seismic Analysis 5.2~3:2 Torus Water Contamination 6.2.7.8 Total System Conformance 7.2.3.4 7.2.4.4 Transient Operating Conditio~s 3.2.4.3 Traversing Incore Probe (TIP) 5.2.2.7
7. 4. 5. 5 Trend Records 7.11.3.3 Turbine 11. 2. 2 Turbine Building 12 .1. 3 .1 i

1052v r

FSAR INDEX

- T - Section Turbine Building Cooling Water System 13.7.3.10 10.9.2 Turbine Building Ventilation 13.7.3.44 Turbine Bypass System 11. 2. 2 Turbine Condenser 11. 2. 2 Turbine Generator 11.2 13.7.3.43 Turbine Generator Controls 7.8.1 Turbine Generator System 11. 2. 2 Turbine Plant Control Systems 7.8 Turbine Steam Handling Equipment 12.2.2.6 Turbine Stop and Bypass Valves 11. 2 .4 Turbine Stop Valve Closure 7.7.1.2 Turbine System 1.2.2.9

11. 2. 3 Turbine Trip Without Bypass 3.2.2:10 Turnkey Projects Operation Appendix E (2.2-1)

Typical Core Lattice Unit 3.4.2:2 345 KV System 8.2.1.2 13.7.3.4 220 Volt and 115 Volt Ac Systems 13.7.3.7 250 Volt DC Station Battery System 8.2.2:1 ii l052v

FSAR INDEX

- s - Section

. 10.13 .3 6.7 7.3.4 13.7.3.25 Standby Liquid Control System Inspection and Testing 6.7.4 Startup and Power Test Program 13.8 Startup Program, Preoperational 13.7.1 Startup Tests Inst and Control 7.2.6.2 Station Access 13.4.3 Station Arrangements - 1.2.2.2 2.2.1:1 station Batteries 8.2.3.2 8.3.2 Station Computer Power Supply 8.2.2.4 Station Distribution System 8.2.2

  • Station Fire Protection System Station Generated Procedures Station Grounding-Construction Tests 10.7 & 13.7.3.11 13.3 13.7.3.1 Station Instrument and Service Air System 10.8 Station Organization/Management 13 .1. 3 Station Procedure Designations and Categorie~ 13.3.0:1 Steady State 3.3.4 Steam Flow 7.5.2.5 Steam Flow Restrictors 6.4 Steam Handling Equipment, Turbine 12.2.2.6 .

Steam Jet Air Ejectors 11. 2. 2 Stock System 9.4.2.1 Structures anq Equipment 12 .1.1.1 iii 105lv

FSAR INDEX

- s - Section

  • Structural Design and Shielding Stock Rod Margin Summary Evaluation of Safety
  • 12.l 3.3.4:3 1.2.2.13 Summary of Off-Site Doses from Accidents 1.2.2:2 Summary of Pre-operational Test Content & Sequence 13.7.3 Summary of Technical Data 1.2.3 Supplementary Control 3.5.5 Suppression Chamber and Drywell Inspection and Testing 5.2.4 Surveillance and Testing of Control Rods 3.5.4 Surveillance and Testing of Nuclear Instruments 7.4.5.6 Surveillance and Testing of Primary Containment Isolation 7.7.2.4 Surveillance and Testing of Reactor 3.4.4 3.5.4 Surveillance and Testing of Reactor Protection System 7.7.1.4 Surveillance and Testing of Reactor Vessel Instrumentation 7.5.9 System Performance Transients 6.2.7.2

\

  • 1051v iiii

FSAR INDEX

)*

- T - Section

  • Technical Spec. Development Technical staff Temperature, Reactor Vessel 3.2.4 13 .1. 3. 3 7.5.2.1 Test Schedule, Pre-operational 13.7.2 Testing and Surveillance (Reactor) 3 .4 .4.

Thermal (Reactor) Characteristics 3.2 Thermal Shock Effects on Core Internals 3.6.3.3 Thermal Shock Effects on Reactor Vessel Components 3.6.3.4 Thermal Sleeves, Feedwater Nozzle 6.2.5.3.4 TIP 7.4.2 Topical Report (CECo) 13.2.2 Topical Report (GE) 1.1.2.1

  • Tornadoes Torus Torus Seismic Analysis 2.2.5.1 5.2.2.3 5.2.3:17 5.2.3:2 Torus Water Contamination 6.2.7.8 Total System Conformance 7.2.3.4 7.2.4.4 Transient Operating Conditions 3.2.4.3 Traversing lncore Probe (TIP) 5.2.2.7
7. 4. 5. 5 Trend Records 7.11.3.3 Turbine 11.2 .2 Turbine Building . 12. 1. 3 .'1 Turbine Building Cooling Water System 13.7.3.10 10.9.2
  • 1052v i

FSAR INDEX

- T - Section Turbine Building Ventilation 13.7.3.44 Turbine Bypass System 11. 2. 2 Turbine Condenser 11. 2. 2 Turbine Generator 11. 2 13.7.3.43 Turbine Generator Controls 7.8.1 Turbine Generator System 11. 2. 2 Turbine Plant Control Systems 7.8 Turbine Steam Handling Equipment 12.2.2.6 Turbine Stop and Bypass Valves 11. 2 .4 Turbine Stop Valve Closure 7.7.1.2 Turbine System 1.2.2.9 Turbine Tests and Inspection 11. 2 .4

11. 2. 3 3.2.2:10 Turnkey Projects Operation Appendix E (2.2-1)

Typical Core Lattice Unit 3.4.2:2 345 KV System 8.2.1.2 13.7.3.4 220 Volt and 115 Volt Ac Systems 13.7.3.7 250 Volt DC Station Battery System 8.2.2:1

  • 1052v ii

FSAR INDEX

- u- Section Ultimate Performance Limit Criteria 7.2.3 Ultrasonic Resin Cleaners 9.3.2.4 Unit Auxiliary Power Supplies 1.2.4.3 Unit Control and Instrumentation 1.2.2.6 Unit-1 Spent Fuel 10.1. 2. 2 .1 Updated FSAR 1.1.1.3 1.1.1.4 i

1053v

FSAR INDEX

- v - Section

  • Vacuum* Pump System Vacuum Relief Velocity Limiter, CRD
11. 2. 2 5.2.2.9 6.2.5 Vent Pipes 5.2.2.2 Vent, Purge, and Inerting Systems 6.8.3.2 Venting and Cooling System 5.2.2.8 Ventilating 10.11 Ventilation and Off-Gas Inspection and Testing 9.2.4 Ventilation, Control Room 12.2.2.5 Ventilation, Drywell 13.7.3.40 Ventilation, Emergency 13.7.3.41 Ventilation, Reactor, Radwaste, and Turbine Bldgs 13.7.3.44 Ventilation Stack Monitoring, Reactor Bldg 7.6.2.6 9.2.2.1 Ventilation System Containment 5.2.4.4 Venturis, Hain Steam Line 6.4.2 Vessel Components, Reactor 13.7.3.27 Vessel Head Cooling System 10.5 Vessel Instrumentation 13.7.3.28 Vibration of Components (Rx Internals) 3.6.3.1 Visual Weld Inspection 12.1.2.4.4.1.3 Vulkene Insulation 8.2.2.3 i

1054v

FSAR INDEX

- w- Section Waste Concentrator System 9.3.2.3 Water Level, Reactor Vessel 7.5.2.3 Water System (Clased Cooling) 10.10 Water System (Service) 10.9 Weather, Wind Appendix G Weld Inspection, Visual 12.1.2.4.4.1.3 Well Water System 10.12,2:1 Wind Appendix G WINDOW 6.8.3.3.4 i

1065v

FSAR INDEX

- x-Section Xenon Equilibrium 6.7.1 Xeno.n Stability 3.3.5.2 7.2.4.S X-Area Coolers 10.9.2 10.9.3

  • lOSSv i

FSAR INDEX

- y - Section

  • 1066v i

FSAR INDEX

- z- . Section

  • -6. 8 .1.1
  • 1056v i

v TABLE OF CONTENTS

- DRESDEN UNITS 2 & 3 UPDATED FINAL SAFETY ANALYSIS REPORT SECTION 1 INTRODUCTION AND

SUMMARY

2 SITE 3 REACTOR CORE AND INTERNALS 4 REACTOR COOLANT SYSTEM 5 CONTAINMENT SYSTEMS 6 ENGINEERED SAFEGUARDS 7 CONTROL AND INSTRUMENTATION 8 ELECTRICAL SYSTEM 9 RADWASTE SYSTEM 10 REACTOR AUXILIARIES 11 TURBINE AND CONDENSATE SYSTEMS 12 STRUCTURES AND SHIELDING 13 CONDUCT OF OPERATION

e. 14 SAFETY ANALYSIS APPENDIX A CHIMNEY RELEASE RATE CALCULATION B PLANT COMPARATIVE EVALUATION WITH DESIGN CRITERIA c CONTAINMENT CERTIFICATIONS D UNIT 2 REACTOR PRESSURE VESSEL DESIGN E QUALITY CONTROL F REACTOR VESSEL ELECTROSLAG WELD REPORT G METEOROLOGICAL DATA H RESUMES FOR STARTUP PERSONNEL

-e

Rev. 4 June 1986 1i TABLE OF CONTENTS SECTION 1 -- INTRODUCTION*AND

SUMMARY

1.1 PURPOSE AND ORGANIZATION OF REPORT l.Ll-1 1.1.1

  • PURPOSE OF REPORT 1.1.1:-1 1.1.1.1 Introduction 1.1.1-1 1.1.

1.2 Purpose and Scope

of Safety Analysis Report 1.1.1-1 1.1.1.3 Updating of Original FSAR 1.1.1-2 1.1.1.4 FSAR Controlled Copy Recipient 1.1.1-2 1.1.2 ORGANIZATION OF REPORT 1.1. 2-1 1.1.2.1 General Format 1.1. 2-1 1.1.2.2 Revisions 1.1.2-1 1.2 PLANT DESCRIPTION 1. 2 .1-1 1.2 .1 PRINCIPAL DESIGN CRITERIA 1.2.1-1 1.2.1.1 Reactor Core 1.2.1-1 1.2.1.2 Reactor Core Cooling Systems 1. 2 .1-2 1.2.1.3 Containment 1. 2 .1-2 1.2.1.4 Control and Instrumentation 1. 2 .1-3 1.2.1.5 Electrical Power 1. 2 .1-3 1.2.1.6 Radioactive Waste Disposal 1. 2 .1-3 1.2.1.7 Shielding and Access Control 1. 2 .1-3 1.2.1.8 Fuel Handling and Storage 1. 2 .1-4 1.2 .2

SUMMARY

DESIGN DESCRIPTION AND SAFETY ANALYSIS 1.2.2-1 1.2.2.1 Design Bases Dependent On Site Characteristics 1.2.2-1 1.2.2.2 Station Arrangements 1. 2. 2-3 1.2.2.3 Reactor Systems 1.2.2-3 1.2.2.4 Containment Systems 1. 2. 2-4 1.2.2.5 Shutdown Cooling System and ECCS 1. 2. 2.,... 7 1.2.2.6 Unit.Control and Instrumentation 1. 2. 2-8 1.2.2.7 Radiation Monitoring Systems 1.2.2-9 1.2.2.8 Fuel Handling and Storage 1. 2. 2-9 1.2.2.9 Turbine System 1. 2 .2-10

1. 2. 2 .10 Electrical System 1. 2. 2-10 1.2.2.11 Shielding, Access Control, and Radiation Protection Procedures 1. 2. 2-10
1. 2. 2 .12 Radioactive Waste Control 1.2.2-11
1. 2. 2 .13 Summary Evaluation of Safety 1.2.2-11 1.2 .3

SUMMARY

OF TECHNICAL DATA 1. 2. 3-1

1. 2 .4 INTERACTION OF UNITS 1, 2, & 3 1.2.4-1 1.2.4.1 Gaseous Waste Effluents 1.2.4-1 1.2.4.2 Liquid Waste Effluents 1.2.4-1 1.2.4.3 Unit' Auxiliary Power Supplies 1. 2 .4-2 1.2.4.4 Common Auxiliary Systems 1. 2 .4-2 e 1.2.4.5 Inter-Plant Effects of Accidents 1. 2. 4-4 0013f OOOlf

1ii TABLE OF CONTENTS (Contd.)

SECTION 1 -- INTRODUCTION AND

SUMMARY

1.2.5 NEW FEATURES 1.2.5-1 1.2.5.1 Features l~hich Reduce the Probability and Magnitude of Potential Reactivity Insertion Accidents 1. 2. 5-1 1.2.5.2 Features Which Mitigate Effects of Postulated LOCA 1 s 1.2.5-1 1.2.5.3 Features Which Improve Operability of the Units 1.2.5-2 1.3 IDENTIFICATION OF CONTRACTORS 1. 3. 0-1 1.4 GENERAL CONCLUSIONS 1.4 .0-1

Rev. 2 June 1984 liv

  • 1.1.2:1 1.1.2:2 LIST OF TABLES -- SECTION 1~ INTRODUCTION General Electric Company Topical Reports Acronyms and Initialisms 1.2.2:1 Design Bases For Shielding 1.2.2:2 - S1.DT1mary of Maximum Off-site Doses From Postulated Accidents 1.2.3:1 Principal Features of Plant Design

Rev. 1 June 1983

  • . e .*LIST OF TABLES -~ SECTION 1~ INTRODUCTION liv LL2:1 1.2~2:1 General Electric Company Jbpical Reports Design Bases For Shfelding
  • I 1.2.2:2 .* Summary of Maximum Off-site Doses From Postulated AcCidents 1.2.3:1 Principal Features of Pl~nt Design*
.. ~ .

\

t * * * *

. ~'. ... '* *'.

'* .')

~ r .:

. I

. *. .. . . .. . . ~ . *.. ....  :- ~*-* -~ ......... - .

l

,olJ **- ,..... ..w.--.~. **-*------** *--- ---

Rev. 4 June 1986 1.1.1-2

The original FSAR and the associated docket files {50-237 and 50-249) are the basis for the licensing of the plant. In the event that a discrepancy exists between the original FSAR and the UFSAR, the original FSAR will be the final authority. The Technical Specifications may reference the UFSAR.

The UFSAR is revised annually as required in 10 CFR 50.7le. The UFSAR is designe*d to serve as a reference document, reflecting the current configuration of the plant, including information and analyses required by and submitted to the NRC since submission of the original FSAR, and containing the information in a contiguous format.

1.1.1.4 FSAR Controlled Copy Recipient

Subject:

FSAR Update Dresden Station has reviewed the FSAR for rev1s1ons, corrections,

  • and material information additions. The changes contained herein will become Revision 4 {June, 1986) to the FSAR .

The changes are in compliance with the 10 CFR 50.71{e) requirement to identify changes and which references the requirements defined in 10 CFR 50.59. The 50.59 report refers to changes in the facility as described in the FSAR, changes in procedures described in' the FSAR, and tests or experiments not described in the {original) FSAR.

All changes which have been implemented were previously reviewed to the 50.59 criteria and in our opinion do not constitute any additional unreviewed safety questions.

Dated n Manager Dresden Nuclear Power Station 0013f OOOlf

Rev. 3 June 1985 TABLE 1. 1. 2: 2

  • APR APRM ASME ACRONYMS AND INITIALISMS Automatic Pressure Relief average power range monitor American Society of Mechanical Engineers BTP Branch Technical Position BWR boiling-water reactor CE Co Commonwealth Edison Company CFR Code of Federal Regulations CSE Containment Systems Experiments CST condensate storage tank CVTR Carolina Virginia Tube Reactor DBE design-basis event DER design electrical rating DG diesel generator ECCS emergency core cooling system EHC electrohydraulic control EI&C electrical instrumentation and control FSAR Final Safety Analysis Report FTOL full-term operating license FWCI feedwater coolant injection GDC General Design Criterion(a)

GE General Electric Company gpm gallons per minute

~igh energy pipe break horsepower high-pressure coolant *injection Off ice of Inspection and Enforcement Instit~te of Electrical and Electronics Engineers Integrated Plant Safety Assessment Report IREP Integrated Reliability Evaluation Program IRK intermediate range monitor LCO limiting condition for operation LER licensee event report LOCA loss-of-coolant accident LPCI low-pressure coolant injection LPRM low power range monitor LWR light-water reactor MCC motor control center.

MCPR minimum critical power ratio MDC maximum dependable capacity MOV motor-operated valve mph miles per hour MSIV main steam isolation valve

  • MSL mean sea level MWe megawatt-electric MWt megawatt-thermal NRC U.S. Nuclear Regulatory Commission ORNL Oak Ridge National Laboratory PMF probable maximum flood PMP probable maximum precipitation POL provisional.operating license 0013f OOOlf

Rev. 3 June 1985 TABLE 1.1.2:2 .(Cont'd)

  • 0013f OOOlf

1.2.2-4 The core is assembled in modules of four fuel assemblies set in the interstices of a crucifonn control rod. This modular core fonn, common to all General Electric boiling water reactors, permits substantial increase in thennal power with a small increase in core diameter and at the same time preserves the reactivity control characteristics demonstrated in the

  • operation of Dresden Unit 1 and other General Electric power reactors.

The reactor pressure vessel contains the reactor core and structure, steam separators and dryers, jet pumps, control rod guide tubes, and feed-water, emergency core cooling system (ECCS), and standby liquid control spargers and other components as shown in Figure 3.6.2:1. The inside diameter of the vessel is approximately 21 feet and the inside height between heads is approximately 68 feet. The main connections to the reactor vessel include the steam lines, jet pump lines, feedwater lines, and control rod drive thimbles. Other connections are provided for the isolation condenser system, standby liquid control system, ECCS, and in~trumentation syste~s.

The fuel for the reactor core consists of uranium dioxide pellets contained in sealed Zircaloy-2 tubes.

These fuel rods are assembled into square arrays in individual assem-blies. The original assemblies were of a 7x7 configuration; later designs introduced in subsequent fuel cycles were of an 8x8 configuration. The fuel enrichment is varied from rod to rod within an assembly to achieve desired neutron flux characteristics. Some water rods may be included, and gadolinium is used in some rods as a burnable poison, in the fonn of Gd 2 03 -U0 2

  • Each fuel assembly is surrounded by a Zircaloy-4 flow channel.

Water serves as both the moderator and coolant for the core.

The control rods consist of assemblies of 3/16-inch diameter, sealed, stainless steel tubes filled with compacted boron carbide powder and held in a crucifonn array by a stainless steel sheath of 1/16 inch wall thickness fitted with castings at each end. The design of such control rods is almost identical with those which have been used successfully in Unit 1 for more than six years except that control rods of current design are longer *due to the use of longer fuel assemblies. The control rods are of the bottom entry type and are moved vertically within the core by individual, hydraulically operated, locking piston type control rod drives .

The control rod drive hydraulic system is designed to allow control rod withdrawal or insertion at a limited rate, one rod at a time , for power level control and flux shaping during reactor operation. Stored energy available fran gas charged accumulators and from reactor pressure provides hydraulic power for rapid simultaneous insertion of all control rods for reactor shutdown. Each drive has its own separate control and scram devices.

The systems for reactivity control are of the same design as those used in the Oyster Creek and Nine Mile Point Plants, including two features which provide improved plant safeguards.

1.2.3-1 1.2 .3

SUMMARY

OF TECHNICAL DATA Design features and data appropriate to achieve a reactor thermal output of 2527MW are summarized in Table 1.2.3:1.

TABLE 1.2.3:1 PRINCIPAL FEATURES OF PLANT DESIGN Site Location Dresden Site, County of Grundy, State of Illinois Size of Site 953 Acres plus 1275 acre cooling lake Site and Plant Ownership Commonwealth Edison Company Plant Net Electrical Output 809 MW Gross Electrical Output 850 mi Net Heat Rate 10,648 Btu/kw-hr Feedwater Temperature 340.1 F Thermal and Hydraulic Design Design Thennal Output 2527 M~*Jt

  • Reactor Pressure (dome) 1020 psia 6 Steam Fl ow Rate 9.765 x 10 lb/hr Recirculation Flow Rate 98 x 10 6 lb/hr Fraction of Power Appear- 0.965 ing as Heat Flux GE GE GE 7x7 8x8 8x8R/P8x8R Power Density 41.08 kw~l i ter 41.09 40.74 Heat Transfer Surface Area/ 86.52 ft 97.6 94.9 Assembly 2 Average Heat Flux 131,200 Btu/(hr-ft 2 ) 117 ,100 120,400 Maximum Heat Flux 405,000 Btu/(hr-ft ) 354,400 362,000 Maximum U0 2 Temperature 3470°F Average Volumetric Fuel Temp. 1050°F Core Subcool i ng 22.4 Btu/lb Core Average Void Fraction, 0.299 Active Coolant Core Average Exit Quality 0.101 Minimum Critical Power Ratio 1.06 1.06 1.07 Safety Limit

1.2.3-2 TABLE 1.2.3:1 (Contd.)

PRINCIPAL FEATURES OF PLANT DESIGN Nuclear Design Enrichment No. of rods Wt % U-235 per assembly Initial Fuel Enrichment: 2.44 30

( 7x7 assembly) 1.69 16 1.20 3 Typical Reload Fuel Enrichment: 3.8 14 (8DRB265H 8x8 assembly) 3.0 27 2.4 2 2.0 14

1. 7 4 1.3 1 water rods 2 GE GE GE 7x7 8x8 8x8R Water/U0 2 Volume Ratio 2.41 2.60 2.76 Core Average Neutron Flux Thenna 1 3.50 x 10 13 13 n/cm 22-sec 1 Mev 3.67 x 10 n/cm -sec Burnup target (average assembly) 28 ,ooo MvJD/ton Power Coefficient for xenon stability More negative than

-.Ol(dK/K)/(dP/P)

Design Operating Heat flux peaking factors:

Relative Assembly 1.47 1.47 Axial 1.57 1.57 Local 1.30 1. 30 Overpower 1.20 Gross 3.60 3.00

. Reactivity Control:

Cold shutdown keff all rods inserted 0.96 0.96 Cold shutdown k ff rod of maximum 0.99 0.99 worth stuck fO out

1. 2. 3-3 TABLE 1.2.3:1 (Contd.)

PRINCIPAL FEATURES OF PLANT DESIGN Design Operating Standby liquid control shutdown, 0.16 dkeff Minimum Critical Power Ratio: 1.07 1.39 Linear Heat Generation Rate (kw/ft):

7x7 fuel 17.5 17.5 GE 8x8 fuel 13.4 13.4 ENC fuel 14.9 14.9 Hot Approximate Coefficients: Cold (no voids) Operating Moderator Tern~. Coefficient -8.9xl0- 5 -17.0xl0- 5

[ ( d k/ k ) I °FJ Moderator Void Coefficient less than_ 3 -1.0xlO -3 -1.4x10- 3

[ ( dk/k) /% Void]

Fuel Temp. (Doppler) Coefficient -l~~~~~l~ -1.2xl0- 5 -1.2x10- 5

[(dk/k)/°F]

Excursion Parameters:

1* Prompt Neutron Lifetime 48.9 microseconds

.B Effective Delayed Neutron Fraction .0058 Core Equivalent Core Dia. 182. 2 inches Circumscribed Core 189.7 inches Diameter Core Lattice Pitch 12 inches (4 assemblies/unit cell)

Number of Fue 1

,l\ssemb 1i es 724 Fuel Assembly GE GE GE ENC 7x7 8x8 8x8R/Px8x8R 8x8 Fuel Rod Array 7x7 8x8 8x8R/P8x8R P8x8 Fue 1 Rod Pitch 0.738 in. 0.640 0.640 0.641 Weight of U0 2 per 492.5 lbs. 458.6 441.6 434.4 Fuel Assembly Channel Material Zircaloy-4 Zircaloy-4 Zircaloy-4 Zircaloy-4 Total Assbly plus 678.9 lbs. 650 650 580 Channel Weight Fuel Rods 49 63 62 63 Water Rods 0 1 2 1

1. 2 .3-4 TABLE 1.2.3:1 (Contd.)

PRINCIPAL FEATURES OF PLANT DESIGN Fuel Rod, Cold GE GE GE ENC 7x7 8x8 8x8R/Px8x8R 8x8 Fuel Pellet Dia. 0.488 in. 0.416 0.410 0.405 Cladding Thickness 0.032 in. 0.034 0.034 0.035 Cladding O.D. 0.563 in. 0.493 0.483 0.484 Active Fuel Length 144 in. 144 145.24 145.24 Lgth of Gas Plenum 11.22 in. 11.24 9.48 10.06 Fuel Material U0 2 U0 2 U0 2 U0 2 Cladding Material Zircaloy-2 Zircaloy-2 Zircaloy-2 Zircaloy-2 Fi 11 Gas He He He He Fill Gas Pressure 1 atm 1 atm 1 atm/3 atm 3 atm Movable Control Rods Number 177 Shape Cruciform Pitch 12.0 in.

Stroke 144 in.

\4 i dth 9.75 in.

Control Length 143 in.

Control Material ~a c granules in stainless steel tubes and sheath Number of Cntrl Mtrl Tubes per Rod Tube Di mens i ans 0.188 in. o.d. x 0.025 in. wall Temporary Control Curtains Number 340 Shape Flat sheet Width 9.20 inches Thickness 0.0625 inches Control Length 141.25 inches Control Material Stainless steel containing 5400 ppm natural boron Curtain Locations Between fuel assemblies in water gaps without control rods.

Burnable Neutron Absorber Control Material Gd 2 03

  • Location Mixed with U0 2 in several fuel rods per fuel assbly Concentration Location and reload dependent.

Reactor Vessel Inside Diameter 20 ft.-11 in.

Overall Length Inside 68 ft.-7-5/8in.

Design Pressure 1250 psig

Rev. 1 June 1983

      • - TABLE OF CONTENTS SECTION 2 -- SITE 2i Page .

2.1 INTRODUCTION

2.1. 0-1

2.2 DESCRIPTION

Of SITE AND ADJACENT *AREAS 2. 2.1-1.

2;2;1 SITE 2.2.-1-1*.

2.. 2 .1.1 Site Size and Location , : .

2. 2.1-1 ...
  • 2:. 2.1.2 Site Ownership . '*2 .. 2.1-1 2.2~1.3
  • Location of the Units on the.Site 2.2.1-1:'

2.2.1.4' Oth~r Activities on. the Site . 2.2.1-2 2.2.1.5 Access to the Site

  • 2.2.1-2 2.2.1.6 Exel us ion Area . 2.2.1-3;
2. 2. 2 . POPULATION AND LAND USAGE IN ADJACENT AREAS 2.2.2-1 2.2.2.1 Popu 1at ion Data 2:2.2.2 Land Use .. *

'2.2.*2.J POTENTIAL. HAZARn°S DUE TO)IEARBY FACilITIES .* ' *,* 2. 2~ 2::.6: *_<;, *: :. ':

2 2 '2 3 1 :INTRODUCTION: **.. * * .. . *.. * .* ' *. "* 2*; 2'. 2:;.6 .* '.**,*. *: :. ;*; ' ': <<

,. ' .. 2*:i:*2 . : f 2 *.. HAZARDS FROM* EXPLOSIONS. *. .* ..

  • i . *. . 2.2.2..:.6'. *:

. ***e 2:2.2.3.2.1 *

  • industrial Facilities*

.2.2.2.J .. 2.2 * ~ighway Transportati~n

2. 2'. 2. 3. 2. 3 Rail way Transportatfori 2~2.2-6 ;

.2.2*. 2-8 2... 2. 2~9 .

. 2.2.2~3.2.4 vJaterway Transportation 2. 2. 2;..10 2.2.2.3.2.S: Military Facilities 2.2.2-10.*.

2.2.2.3.2.6

  • Pipelines 2. 2 .. 2-1 L
2. 2.. 2. 3. 3
  • HAZARDS FROM. VAPOR CLOUDS AND FIRES 2.2. 2-n.,. *..

2.2.~2.3.4 *. HAZARDS FROM TOXIC CHEMICALS. 2 .. 2.2-11' 2.2.2.3.5 HAZARDS FROM COLLISION WITH THE INTAKE 2. 2.2-n STRUCTURE

. 2.2~.2.3.6 HAZARDS FROM .

LIQUID SPILLS. . .

z. 2. 2:.12 2*. 2 *. 2 *. 3. 7 HAZARDS FROM AIRCRAFT. 2.2.2-12
  • *2. 2. 2. J. 7 .1 Airports 2.2.2~12 2.2 *.Z.3.T.2 Airways* 2. 2. 2-1.4 2 .. 2:.2*.

3.8 CONCLUSION

S 2.2.2;..15

  • 2.2.2~

3.9 REFERENCES

2.2.2-16 I*.'.

Rev. 2 June 1984 2i ii LIST OF FIGURES -- SECTION 2, SITE 2.2.1:1 Station Property Plan 2.2.1:2 Cooling Lake General Arrangement 2.2.2.3:1 Dresden Nuclear Power Station Area Map 2.2.2.3:2 Pipelines Considered in the Evaluation of Hazard From Explosion 2.2.4:1 Cooling Water Flow Diagram -- Unit 2/3 2.2.4:2 Dresden Cooling Lake Dam 2.2.6:1 Site Flow Diagram at Illinois River Above Dresden Island Lock and Dam 2.2.6:2 General Arrangement .-- Crib House

2iii LIST OF TABLES -- SECTION 2, SITE 2.2.2:1 Population Centers .Surrounding Station 2.2.2:2 Industrial Facilities Near Station 2.2.2:3 Recreational and Institutional Facilities Near Station 2.2.5:1 Distances From Release Points To Various Points Near Site

.I.:

    • e* .......
    • Table 2.?.*2~_3:l Assessment Summary

.' '1 HAZARD .*. REPORT .

  • NUMBER SOURCE OF POT~NTIAL HAZARD *... SECTION*. DESIGN BASIS EVENT?

Explosion from:*.

l* Industrial facilities* ,2.1 . No, based Qh adequatE? separation distance**

2 Highway transportation *2 .. 2 ' No ? based on adequ~te separation distance 3 Railway transportation *2:3' ' No, .based on. adequate separation distance 4 Watt;!rway transportation '2.4' No, based on adequate separation di~tance 5 Military facilities ,* 2. 5 No, based .on adequate separatigg distance 6 Pipelines 2.6 No, based on frequency of 6x10 /yr using conservative ~ssumptions Vapor cloud expiqsion & fire from waterway transporation 3.t No, pased on freq~en~Y of 4xl0 -7 /yr 8 Toxic chemicals 4 Not part of SEP U-1.C 9 Collis{on with intake structure 5 Nq, based on physii:al considerations 10 Li quid spi 11 s .*~. *.No, based on physical considerations Aircraft .impact from:

'.< . *; ~*. ' .** *.. ; -7 '

11 Airports 7:*1: No, based on frequency of 3.24x10 l¥ear 12 Airways* T:f .~. No~ based on .f~egu~ncy of 0.93 x 10 /year

'l'rData for facilities which responded to. the q~estion'nalre," * .

    • There is one exception to this conclusion .:. ~he:benie~¢ .storage tank pn the Reichhold Chemical site.*  :* * .. ; * <r .

-~* ...

  • , e. Table 2.2.2.3:2 Industries Within 5 Miles Dresden Station (Ref. 18)

I DISTANCE (MILES)

INDUSTRY & DIRECTION . PRODUCT GE BWR Training Center

&Spent Fuel Storage 0. 7 -: SL~ Spent nuclear fuel storage Reichhold Chemicals 1. 6. - w Resins and chemicals A.. P. Green-* .

  • 2. 1 "". SSW-* Br.iCk and clay Atrco 1ndustrial Gases
  • 2.S NW co 2 . .

I.

Northern Illinois Gas

  • 2*,5_,.. NW Natl,J na 1 gas Alumax Mill Products 2.8 - MW Aluminum sheet and co.il
  • Northern Petrochemicals 3. 3 -* MW Ethy\ene~ ethyl en~ oxide glycol*

Northern Petrochemical Dock . 2~ 1 -* W*

~*. .

  • ARMAK Chemicals 3.6 - WNW Fatty nitrogen chemi.CaJs
  • Dur.kee scM~ Chemicals  :. *.*, J~ 2>- .EN{ .; Ed.i b le. oi-l

, Truck Tennina*i J.6*;,. ENE

  • Under construction *.
  • Dow Chemicals . 3. 7 - E .. Polystyrene** pla-stic.
  • Dow Chemical *Dock . 2. 7 -* E
    • ~ *.

'Exxo_n (chemical plant) J.9 - ENE Under construction Hydrocarbon Transportation, Inc. 4.0 ..: NW .Propane Streator Industrial Supply 4. 0 - .s Industrial supplies Mobil Chemical Co~ -4.1 - NE . Po.lystyrene sheets. & crystal Jal iet Livestock Market 4.2 - ESE Livestock

  • Mo_bn O:il Refi-nery .. 4. 5 - NE Petroleum** products Commonweal th Edison Co *

. Collins St~tion 5 *. 0 - WSW Electricity*

~  :.::..; *.:'".{ . .\*... . .., ._..... ** ....... .

e *.*

. , a.,, .* t *** '.:.:* * . * . ; .. . *' l'.:. :-.:~ .. i ..*. ; ' ' ' ' .. .  :~ - . '

Table2.2.2.3:3 Dresden Island Traffic Statistics Fiscal Years 1~73:~ l9j8 (Refs. 6, 11)

CO~MODITY,TYPE . FISCAL YEAR 1973 1974 1975 1976 1977 1978 Average .

Total commodities, tons x 10 28.476 30.853 27.808 25.882 23.452 19. 521 . 26.0 Hazardous mate5ials,* ~-

  • tons x 10 . 5.653 . 6.073 5.358 5.059 4.093 3.658 5.0 Liquefied Gases,** tons o.o* 0.0 O*.O *
  • 17 ,992 0.0 0.0 . 3000.0
  • Hazardous materials are defined as all materials listed under the.

category of petroleum products in the lock statistics.

    • Liquefied gases shown are the amounts transported on the entire navigable length of *the lliinois River.

Table 2.2.2.3:4 Casualty and Spill Statistics -

Fiscal Years 1969 thru 1972 (Ref. 10)

ILLINOIS WESTERN CASUALTY/SPILL RIVERS *RIVERS Casualties** - all type barges 178 2831 Casualties of hazardous material barges***. 40 508 Spills from hazardous

  • .mat.erial barges 1 69 Casual ti es* of Liquefied gas barges ._.;._

9 Spills from double-skinned vessels 7

... Total length of waterway (miles) 333 3137

  • Lower Mississippi, Upper Mi-ssiss.ippi, Ohio, and Illinois Rivers; casualties from these rivers* constitut~ 97% of the casualties on western rfvers. .,
    • Casualtie.s whfch result in any of the following: loss of life,.

damage to cargo-irr excess of $1;500, or release of cargo. ~

      • Hazardous material barges are generic type 17, 18, and 29 vessels.

See Reference 10 for description.

TABLE '2.2.2.3:5 DATA ON AIRPORTS WITHIN 10 MILES OF DRESDEN STATION.(REFS .. 22~ 23, 27)

APPROX. DIST. DIRECTION NO. LENGTH OF WIDTH OF TYPE ORIENTATION TYPE FROM STATION FROM STAT ION OPERATIONS. RUNWAY RUNWAY OF RUNWAY OF RUNWAY FROMM PVT. 4.5miles E 50* 2,773 ft. 100 ft. TURF. NNE-SSW MORRIS PVT. 8 mil~s WNW 1~94.2* 2,400 ft. 135 ft. TURF. E-W

?,987 ft. 60 ft. ASPH. N-S ROSSI PVT. 9 miles N 50** 2,400 ft. 70 ft. TURF. E-W BUSHBY PVT. 9.9 miles NNE 45** 1,800 ft. 100 ft. TURF . N-S

.JOLIET . Pub. 10 miles NNE 10,000* 3,452 ft. 125 ft.* TURF. NE-SW 2~970 ft. 100 ft. ASPH. NW-SE ADELMANN*** PVT. 1 mile NE 20*'11' 1,600 ft. 70 ft. TURF. SE-NW

  • Total peak month from FAA supplied documents.
    • Number per month as supplied by owner of airport
      • Recent1y approved airstrip

e e Table 2.2.2.3:6 Data for Aircraft Crash and Probability Analysis 6 N OPERATING r 0 D(r,O) 2 .x 10 R (OPERATIONS/ A NARDx1C'i 7

. AIRPORT MODE (MILES) (DEG) (/MILES ) (/OPERATION) YEAR) (MILES 2) (/YEAR)

FROMM Landing 4.5 90 0.0014 2~4 150 0.0056167 0.02833 4.5 90 0.0014 2.4 150 q.0056167 0.02833 Take-Off 4.5 90 0.00167 0.9 150 0.0056167 0.01267 4.5 90 0.00167 .a~ 9 150 0.0056167 0.01267 MORRIS Lanqing 8.0 25 . 0. 000883 :. . 2.4 1456 0.0056167 0.17333 8.0. 155 0.000043 2A 1456 0.0056167 0.00833 8.0 65 0.00035 2.4 4370 0.0056167 0.206 8.0 115 o. 00011 2.4 4370 0.0056167 0.06467 Take-Off 8.0 25 . 0.000369 0.9

..~ ' 1456 . 0.0056167 0.027 8.o 155 0.000073 0.9 1456 0.0056167 0.00533 8.0 65 *._ o. 00022 0. 9* 4370 0.0056167' 0.04867 8.0 115 0.00012 0.9 4370 0.0056167 0.02633 JOLIET Landing 10.0 . 10 0.00045 , *2A .* 6000. 0.0056167 0.364 10.0 170 0. 000011 . *. 2. 4 9000 . 0. 0056167 0.01333 10.0 80 0.000088 2.4 22500 0.005p167 0.26667 10.0 100 o. 000056 . 2.4 22500 0.0056167 0.17 Take-Off 10.0  : 10 0.00013 . 0.9 *. 7500 0.0056167 0.04933 10.0 170 0.000018 b. 9' 7500 . 0.0056167 0.00667 10.0 80 0.000055 o.~ 22500 0.0056167 0.06267 10.0. 100 0.000043 0.9 22500 0.0056167 0.049 ADE~MANN Landing 1.0 115 0.01433 2.4 60 0.0056167 0.116 0.9 80 0.0374 . 2. 4 60 0.0056167 0.30233 Take-Off LO 115 0.0317 0.9 60 0.0056167 0.0906 0.9 80 0. 05734 . 0 *. 9 60 0.0056167 0.174

,*.JO.

Table 2.2.2.3:7 Pi~elines with 5. Miles of the Site PIPE SIZE OPERATING CLOSEST DISTANCE PIPELINE COMPANY (in) MATERIAL CARRIED PRESSURE (PSI) TO THE PLANT (MILtS)

Natural Gas 36 Natura 1 Gas 858 \ 1. 75 Pipeline Co. 36 **Natural Gas 858 1. 70 30 Natura 1 Gas 858 1.60 36 Natural Gas 650 1. 25 30 Natura 1 Gas 858 1. 70.

30 Natural Gas 858 1.60 Hydrocarbon 10 Propane, Natural. Gas 2100 4.0 Transportation, Inc. 10 Propane, Natural Gas 2100 4.0 6 Propane, Butane 500 2.0 Northern lllinois Gas 36 Natural Gas 740 2.5 10 Out of Operation 2~5 4 Natural Gas Unknown 3.0 Amoco 10 Crude Oi 1 3.0 12 Crude Oi 1 3.0 22 Crude Oi 1 3.0

  • .'l-_
  • 1 ,. :

e *,,'

INDUSTRIAL SITES IN VICINlfY 1 MlOWEST FUELS REPROCESSING PLANT {GE).

2 NORTllER~ PETROCHEMICAL CO.

3 /\LUMAX 4 REICllHOLO CHEMICAL CO

5. A. P. GREEN*

6 GENERAL ELECTRIC CO.TRAINING SCHOOL 1 MOBIL CHEMICAL 8

  • MOBIL OIL 9 DURKEE SCH
saL\ET ~l?.~Y t\MMUN ITION ~L.1'NT t I *I

... PeN .1 Mill~

FIGURE 2.2.2.3:1 DRESOEN NUCLEAR POWER STATION AREA MAP

. -~ .. *.

. . =**

  • . - . ~ *' '.**. . * ....
  • i*'

, -*~ *.

LEGEND "*. .

36" radius

-.~.- 36"

.. -~~- JO"

- - 36"'

' ...... 30 11

  • JO"

., *SITB

"" . "'.**0*':**
  • .. **: ~. :. .

.1.*

'.  : .:- . *' ~

FIGURE 2.2.2.3:2 PIPELINES

. . CONSIDERED

. / . . ' IN

'. .... :rnE .. '.. EVALIJAnoN .. ' . '

OF

. HAZARO FROM EXPLOSION'

. ...