ML18150A450: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
Line 7,531: Line 7,531:
* tr:l                                                                                REC-XHE-FO-DGHWS    REC-XHE-FO-SCOOL  +
* tr:l                                                                                REC-XHE-FO-DGHWS    REC-XHE-FO-SCOOL  +
* RCP-LOCA-467-150
* RCP-LOCA-467-150
* I
* I 1415                            /QS-SBO IE-T1            .
.;..
1415                            /QS-SBO IE-T1            .
MCW-CCF-VF-SBO
MCW-CCF-VF-SBO
* NOTL-SBOU1        *
* NOTL-SBOU1        *

Latest revision as of 03:35, 23 February 2020

Analysis of Core Damage Frequency: Surry,Unit 1,INTERNAL Events Appendices
ML18150A450
Person / Time
Site: Surry Dominion icon.png
Issue date: 04/30/1990
From: Bertucio R, Julius J
EI SERVICES, INC., SANDIA NATIONAL LABORATORIES
To:
NRC OFFICE OF NUCLEAR REGULATORY RESEARCH (RES)
References
CON-FIN-A-1228 NUREG-CR-4550, NUREG-CR-4550-V3R1P2, NUREG-CR-4550P2, SAND86-2084, NUDOCS 9006080169
Download: ML18150A450 (700)


Text

NUREG/CR-4550 SAND86-2084 Vol. 3, Rev. 1, Part 2 Analysis of Core Damage Frequency:

Surry, Unit 1 Internal Events Appendices Prepared by R. C. Bertucio, J. A Julius Sandia National Laboratories Prepared for U.S. Nuclear Regulatory Commission

  • :,,- - 9006080169 900430 PDR p

ADOC!il. 05000280 PDR

AVAILABILITY NOTICE Availability of Reference Materials Cited in NRC Publications Most documents cited In NRC publlcatlons wlll be available from one of the following sources:

1. The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DC 20555
2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082
3. The National Technical Information Service, Sprlngfleld, VA 22161 Although the listlng that follows represents the majority of documents cited In NRC publications, It Is not Intended to be exhaustive.

Referenced documents available for Inspection and copying for a fee from the NRC Public Document Room Include NRC correspondence and Internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, Information notices, Inspection and Investigation notices: Licensee Event Reports; ven-dor reports and correspondence: Commission papers: and applicant and licensee documents and corre-spondence.

The following documents In the NUREG series are avallable for purchase from the GPO Sales Program:

formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations In the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service Include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commis-sion, forerunner agency to the Nuclear Regulatory Commission.

Documents avallable from public and special technical llbrarles Include .all open literature Items, such as books, Journal and periodical articles, and transactions. Federal Register notices, federal and state leglsla-tlon, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference pro-ceedings are available for purchase from ~he organization sponsoring the publication cited.

Slngle copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Information Resources Management, Distribution Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Coples of Industry codes and standards used In a substantive manner In the NRC *regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are avallable there for refer-ence use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, If they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

DISCLAIMER NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government.

Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expresed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

NtJREG/CR-4550 SAND86-2084 Vol. 3, Rev. 1, Part 2 Analysis of Core* Damage Frequency:

Surry, Unit 1 Internal Events Appendices Manuscript Completed: February 1990 Date Published: April 1990

  • Prepared by R. C. Bertucio,
  • J. A Julius*

Program Manager: AL. Camp Principal Investigator: W.R. Cramond Team Leader: R. C. Bertucio*

Sandia National Laboratories Albuquerque, NM 87185

  • E. I. Services Kent, WA 98031 Prepared for Division of Systems Research Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 NRC FIN Al228
  • ABSTRACT This document contains the appendices for the accident sequence analyses of internally initiated events for the Surry Nuclear Station, Unit 1.

This is one of the five plant analyses conducted as part of the NUREG-1150 effort by the Nuclear Regulatory Commission. NUREG-1150 documents the risk of a selected group of nuclear power plants. The work performed and described here is an extensive reanalysis of that published in November 1986 as NUREG/CR-4550, Volume 3. It addresses comments from numerous reviewers and significant changes to the plant systems and procedures made since the first report. The uncertainty analysis and presentation of results are also much improved. The context and detail of this report are directed toward PRA practitioners who need to know how the work was performed and the details for use in further studies.

The mean core damage frequency at Surry was calculated to be 4.0E-5 per year, with a 95% upper bound of l.3E-4 and 5% lower bound of 6.8E-6 per year. Station blackout type accidents (loss of all AC power) were the largest contributors to the core damage frequency, accounting for approximately 68% of the total. The next type of dominant contributors were Loss of Coolant Accidents (LOCAs). These sequences account for 15%

of core damage frequency. No other type of sequence accounts for mr re than 10% of core damage frequency.

The numerical results are dominated by the frequency of loss of offsite power, probabilities for non-recovery of off site power, and diesel generator failure probabilities. Considerable' effort was expended on the

_ modeling of station blackout sequences, including the development of a reactor coolant pump seal LOCA model through elicitation of expert judgment. The study results can also be used to show the benefit of cross ties of important systeins, between the two units at the Surry Station.

This report evaluates core damage frequency from internally initiated events. The consequences of these accidents are evaluated and reported under separate cover. Core damage sequences from externally initiated events are reported in Part 3 of this volume .

  • i ii
  • CONTENTS A. PLANT SPECIFIC THERMAL-HYDRAULIC CALCULATIONS B. SURRY BOOLEAN EQUATIONS AND FAULT TREES C. HUMAN RELIABILITY ANALYSIS - DETAILED RESULTS D. PLANT SPECIFIC ANALYSES E. IMPORTANCE VALUES AND CUT SETS FOR THE DOMINANT ACCIDENT SEQUENCES AND PLANT DAMAGE STATE GROUPS
  • V
  • FOREWORD This is one of numerous documents that support the preparation of the NUREG-1150 document by the NRG Office of Nuclear Regulatory Research.

Figure 1 illustrates the front-end documentation. There are three interfacing programs at Sandia National Laboratories performing this work:

the Accident Sequence Evaluation Program (ASEP), the Severe Accident Risk Reduction Program ( SARRP), and the Phenomenology and Risk Uncertainty Evaluation Program (PRUEP). The Zion PRA was performed at Idaho National Engineering Laboratory and Brookhaven National Laboratory.

Table 1 is a list of the original primary documentation and the corresponding revised documentation. There are several items that should be noted. First, in the original NUREG/CR-4550 report, Volume 2 was to be a summary of the internal analyses. This report was deleted. In Revision 1, Volume 2 now is the expert judgment elicitation covering all plants.

Volumes 3 and 4 include external events analyses for Surry and Peach Bottom, respectively.

The revised NUREG/CR-4551 covers the analysis included in the original NUREG/CR-4551 and NUREG/CR-4700. However, it is different from NUREG/CR-4550 in that the results from the expert judgment elicitation are given in four parts to Volume 2 with each part covering one category of issues. The accident progression event trees are given in the appendices for each of the plant analyses.

Originally, NUREG/CR-4550 was published without the designation "Draft for Comment." Thus, this revision of NUREG/CR-4550 is designated Revision 1.

The label Revision 1 is used consistently on all volumes except Volume 2, which was not part of the original documentation. NUREG/CR-4551 was originally published as a "Draft for Comment" so, in its final form, no Revision 1 designator is required to distinguish it from the previous documentatation.

There are several other reports published in association with NUREG-1150.

These are:

NUREG/CR-5032, SAND87-2428, Modeling Time to Recovery and Initiating Event Frequency for Loss of Off-site Power Incidents at Nuclear Power Plants, R. L. Iman and S. C. Hora, Sandia National Laboratories, Albuquerque, NM, January 1988.

NUREG/CR-4840, SAND88-3102, Recommended Procedures for External Event Risk Analyses for NUREG-1150, M. P. Bohn and J. A. Lambright, Sandia National Laboratories, Albuquerque, NM, November 1989 .

  • vii

((ETHODOLOGY <

~

..A

  • ~

EXPERT PANEL RESULTS PROJECT STAFF RESULTS ~

N z

C

tin l'TI 0 G")  ::ti

..... ,,, INTERNAL EVENTS APPENDIX <en n oc

_::i,

ao * ::n

,l:ll, 3: w-<

u,> (/)

u, G")

"Tl

.=,,, C G") "Tl "'tJ C  ::ti  ::a INTERNAL EVENTS ,::,

a l'TI ,,, a,

,,, < C INTERNAL EVENTS APPENDIX <0,, 0 MC V,,,, o :tm

..... MZ

- > :a on ~on -I

!: ::E:

Z<

0 C 0 ....

n en 0 C INTERNAL EVENTS m 3: <0 0 l'TI oc z INTERNAL EVENTS APPENXIX ~o C

-4 UI< z

> -c:

Z::a s::

-4 >

E: :am m 0 nc:,

z INTERNAL EVENTS !O I Q> ...a.

z "Tl <C>c:, -I INTERNAL EVENTS APPENXIX =...a. (/)

0 0 c::D -u,

a ~r-> C a,.,,z -I z C C 0
ic, l'TI G") "ERNAL EVENTS <N z I o-

........ ~o C u,  ! ..... z :D

.= m G')

MANAGEMENT I

"K ~ .....

l'TI

< U1

> 0 z >r (""") c::

c:n>

,
, 1-t -f IT! C t-t G") rr, 0

,zz DOCUMENTATION n-t

,
, 0 I ,0 .,,

~ ....

u,v,v, u, "' IT!

..... V,<

IT!

ti l'T1

Table 1.

NUREG-1150 Analysis 'Documentation Original Documentation NUREG/CR-4550 NUREG/CR-4551 NUREG/CR-4700 Analysis of Core Damage Frequency Evaluation of Severe Accident Containment Event Analysis From Internal Events Risks and the Potential for for Potential Severe Accidents Risk Reduction Volume 1 Methodology Volume 1 Surry Unit 1 Volume 1 Surry Unit 1 2 Summary (Not Published) 2 Sequoyah Unit 1 2 Sequoyah Unit 1 3 Surry Unit 1 3 Peach Bottom Unit 2 3 Peach Bottom Unit 2 4 Peach Bottom Unit 2 4 Grand Gulf Unit 1 4 Grand Gulf Unit 1 5 Sequoyah Unit 1 5 Zion Unit 1 6 Grand Gulf Unit 1 7 Zion Unit 1 Revised Documentation NUREG/CR-4550, Revision 1 NUREG/CR-4551, Evaluation Analysis of Core Damage Frequency of Severe Accident Risks Volume 1 Methodology Volume l Methodology 2 Part l Expert Judgment Elicit. Expert Panel 2 Part l Expert Judgment Elicit.--ln-vessel Part 2 Expert Judgment Elicit.--Project Staff Part 2 Expert Judgment Elicit.--Containment 3 Part l Surry Unit l Internal Events Part 3 Expert Judgment Elicit.--Structural Part 2 Surry Unit l Internal Events App. Part 4 Expert Judgment Elicit.--Source-Term Part 3 Surry Unit l External Events Part 5 Expert Judgment Elicit.--Supp. Cale.

4 Part l Peach Bottom Unit 2 Internal Events Part 6 Expert Judgment Elicit.--Proj. Staff Part 2 Peach Bottom Unit 2 Internal Events App. Part 7 Expert Judgment Elicit.--Supp. Cale.

Part 3 Peach 'Bottom Unit 2 External Events Part 8 Expert Judgment Elicit.--MACCS Input 5 Part l Sequoyah Unit 1 Internal Events 3 Part l Surry Unit l Anal. and Results Part 2 Sequoyah Unit 1 Internal Events App. Part 2 Surry Unit l Appendices 6 Part l Grand Gulf Unit l Internal Events 4 Part l Peach Bottom Unit 2 Anal. and Results Part 2 Grand Gulf Unit 1 Internal Events App. Part 2 Peach Bottom Unit 2 Appendices 7 Zion Unit l Internal Events 5 Part l Sequoyah Unit 2 Anal. and Results Part 2 Sequoyah Unit 2 Appendices 6 Part l Grand Gulf Unit l Anal. and Results Part 2 Grand Gulf Unit l Appendices 7 Part l Zion Unit l Anal. and Results Part 2 Zion Unit 1 Appendices

NUREG/CR-4772, SAND86-1996, Accident Sequence Evaluation Program Human Reliability Analysis Procedure, A. D. Swain III, Sandia National Laboratories, Albuquerque, NM, February 1987.

NUREG/CR-5263, SAND88-3100, The Risk Management Implications of NUREG-1150 Methods and Results, A. C. Camp et al., Sandia National Laboratories, Albuquerque, NM, December 1988.

A Human Reliability Analysis for the ATWS Accident Sequence with MSIV Closure at the Peach Bottom Atomic Power Station, A-3272, W. J.

Luckas, Jr. et al., Brookhaven National Laboratory, Upton, NY, 1986.

A brief flow chart for the documentation is given in Figure 2. Any related supporting documents to the back-end NUREG/CR-4551 analyses are delineated in NUREG/CR-4551. A complete list of the revised NUREG/CR-4550, volumes and parts is given below.

General NUREG/CR-4550, Volume 1, Revision 1, SAND86-2084, Analysis of Core Damage Frequency: Methodology Guidelines for Internal Events ..

NUREG/CR-4550, Volume 2, SAND86-2084, Analysis of Core Damage Frequency from Internal Events: Expert Judgment Elicitation on Internal Events Issues - Part 1: Expert Panel Results, Part 2:

Project Staff Results.

Parts 1 and 2 of Volume 2, NUREG/CR-4550 are bound together. This volume was not part of the original documentation and was first published in April 1989 and distributed in May 1989 with the title: Analysis of Core Damage Frequency from Internal Events: Expert Judgment Elicitation. In retrospect, a more descriptive title would be: Analysis of Core Damage Frequency: Expert Judgment Elicitation on Internal Events Issues.

NUREG/CR-4550, Volume 3, Revision 1, Part 1, SAND86-2084, Analysis of Core Damage Frequency: Surry Unit 1 Internal Events.

NUREG/CR-4550, Volume 3, Revision 1, Part 2, SAND86-2084, Analysis of Core Damage Frequency: Surry Unit 1 Internal Events Appendices.

NUREG/CR-4550, Volume 3, Revision 1, Part 3, SAND86-2084, Analysis of Core Damage Frequency: Surry Unit 1 External Events.,

X

FRONT-END ANALYSIS BACK-END ANALYSIS NUREG/CR-4550 NUREG/GR-4551 REVISION l PLANT DAHAGE STATE FREQIJEHGIES SURRY ACCIDENT PROGRESSION SURRY UNI'f I UNIT 1 & RISK REDUCTION AND AND RISK UNCERTAINTY MEASURES I

I I

_ NUREO/CR-4550 REVISION 1 I VOL. l HETIIODOLOGY I BACK-END SUPPORT I DOCUHENTATION I-NUREO/GR-4550 REVISION l VOL. 2 EXPERT OPINION _SURD.Y

~ PEACH BOU9" NURE0-

- NUREO/GR-4840 EXTERNAL EVENTS HETIIDDS 1150 ~~ggyQJAH_

~~!f!~f!I> GlJLf

,._ZION

,_ NUREG/GR-4772 JIRA PROCEDURES

- NUREG/GR-5032 LOSP IE FREQ AND RECOVERY Figure 2. Surry Related Documentation.

Peach Bottom NUREG/CR-4697, EGG-2464, Containment Venting Analysis for the Peach Bottom Atomic Power Station, D. J. Hansen et al., Idaho National Engineering Laboratory (EG&G Idaho, Inc.) February 1987.

NUREG/CR-4550, Volume 4, Revision l, Part 1, SAND86-2084, Analysis of Core Damage Frequency: Peach Bottom Unit 2 Internal Events .

  • NUREG/CR-4550, Volume 4, Revision 1, Part 2, SAND86-2084, Analysis of Core Damage Frequency: Peach Bottom Unit 2 Internal Events Appendices.

NUREG/CR-4550, Volume 4, Revision l, Part 3, SAND86-2084, Analysis of Core Damage Frequency: Peach Bottom Unit 2 External Events.

Sequoyah NUREG/CR-4550, Volume 5, Revision 1, Part 1, SAND86-2084, Analysis of Core Damage Frequency: Sequoyah Unit 1 Internal Events.

NUREG/CR-4550, Volume 5, Revision 1, Part 2, SAND86-2084, Analysis of Core Damage Frequency: Sequoyah Unit 1 Internal Events Appendices .

Grand Gulf NUREG/CR-4550, Volume 6, Revision 1, Part 1, SAND86-2084, Analysis of Core Damage Frequency: Grand Gulf Unit 1 Internal Events.

NUREG/CR-4550, Volume 6, Revision 1, Part 2, SAND86-2084, Analysis of Core Damage Frequency: Grand Gulf Unit 1 Internal Events Appendices.

NUREG/CR-4550, Volume 7, Revision 1, EGG-2554, Analysis of Core Damage Frequency: Zion Unit 1 Internal Events.

xii

Table of Contents Section A. l Containment Pressure Rise After Loss of r.ontainment Heat R.emoval .*..* ID ******************* Q * * * * * * * * * * * * * * *

  • A-3 A.l.l Excerpt from l'llJREG/C'R-4551, Vol 1 * * * * * * * . * * * * * * * * * * * * * * * *
  • A-4 A.1.2 Evaluation of Loss of Containment Heat Sink Scenarios for Surry *....**... " ****.*****************. A-11 A.2 Buildup of Sump Inventory After Containment Spray Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . A-21 A.2.2 Thermal Hydraulic Analyses of Sump Inventory after Containment Spray Failure * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • A-21 A.3 Success Criteria for Containment Heat Removal ***************** A-23 A.4 References . . * . . . . . . . . . . G ****************************** A-23 A-2

APPENnIX A A. Plant Specific Thermal Hydraulic ralculations This appendix describes the plant specific thermal hydraulic calculations performed in the revised Surry probabilistic risk assessment. There were three. important thermal hydraulic analyses performed for this study. A description and summary of these calculations was not available for this draft publication. They will be included in the final report. The three analyses are briefly described below.

A.1 Containment Pressure Rise After Loss of Containment Heat Removal Several sequences in the Surry study involve loss of containment heat removal, with success of core make-up. These conditions were called core vulnerable conditions. Part of the resolution of core vulnerable conditions involved prediction of containment pressure rise versus time. Sandia performed a series of calculations in the Evaluation of Severe Accident Risks and the Potential for Risk Reduction: Surry Power Station, Unit 1, NUREG-45.51 Volume 1(lfraft for Comment, February 1987, A.S. Benjamin, et al. The portion of this report describing the calculations is shown in an excerpt whic'1 follows. The results of the analysis calculated the best estimate probability of core vulnerable sequences resulting in core damage as 0.02. This probability was user! for event tree heading CV and basic event CON-VFC-RP-COR EM.

An additional analysis was conducted by Battelle( 3) to determine whether containment failure could be predicted and the timing of such faiJure. This analysis was evaluated for various size tOCAs followed by failure of containment heat removal scenarios. It has been reprinted in Section A.1.2.

A-3

A.1.1 Excerpt from NUREG/CR-4551, VOL. 1: DRAFT REPORT FOR COMMENT (SEPTEMBER, 1986)

A.2.2 Core-Vulnerable Seguences One type of sequence is not addressed specifically by this set of plant-damage states.

This type of sequence involves conditions in which the core is being cooled by high- or low-pressure recirculation, with decay heat rejected to the containment through a break or through the pressurizer relief valves. Under these circumstances, heat removal must be provided by the containment spray recirculation systems and their heat exchangers. Because of the mass and energy discharged to containment, failure of the containment heat removal system is likely to lead eventually to overpressurization of the containment. These sequences may or may not result in core melt, and were therefore designated by ASEP as "core-vulnerable" sequences.

Several of these scenarios were examined by Battelle to ascertain whether or not containment failure would occur, and if so, when the failure would be expected. In consultation with the ASEP analysts, the SARRP team constructed a bridge event tree which identifies phenomenological events, system failures, and operator actions that might detennine whether a core-vulnerable sequence proceeds to a core-damage sequence. Assessing the probabilities of the individual pathways resulted in a fraction that detennines the percent of core-vulnerable sequences expected to result in core melt as a result of the initial containment failure.

Affected Sequences For small LOCAs and transients, it was determined that the removal of decay heat via the steam generators would prevent overpressurization of containment, provided feedwater were available [2]. Even if feedwater were unavailable, the time it would take for containment to be overpressurized would be very long, although this case was retained for further analysis using the bridge event tree. The thennal hydraulic analysis of containment cooling modeled the specific Surry conditions and procedures as closely as possible.

For large and intermediate LOCAs however, the Battelle analysis showed that containment would be likely to fail at 51 hours5.902778e-4 days <br />0.0142 hours <br />8.43254e-5 weeks <br />1.94055e-5 months <br />. This result may well be conservative for two reasons. First, the Source Term Code Package does not adequately model containment heat sinks and the loss of heat to the environment is probably greater than the value calculated.

Second, although the non-emergency fan coolers at Surry are at least partially submerged when A-4

NUREGICR-4551, VOL 1: DRAFT REPORT FOR COMMENT (SEPTEMBER, 1986) the RWST is injected, and are therefore unavailable during these acddents, the operations staff could continue to supply cooling water to the fans cooling units, achieving some degree of heat removal.

Brid2e Event Tree It is recognized that the containment failure does not automatically lead to core damage.

First of all, the core cooling systems could continue to operate after the containment failure.

Second, if the systems did fail, other systems could potentially be used to perform the cooling function. Third, because of the duration of the accident, the operators possibly could act to prevent overpressuriu,.tion altogether, by a controlled depressurization. The ASEP sequence frequency already accounted for recovery of the heat removal systems in the time frames presented by these accidents.

In consultation with ASEP analysts, the bridge event tree illustrated in Figure A-1 was constructed to determine the probability of core-vulnerable sequences resulting in core damage.

The events and phenomena that could lead to a consequential failure of emergency core systems are described below:

  • Containment pressure relief. Pressure could be maintained within the containment capacity if operator action were taken to accomplish venting.

The operations staff, and support personnel would have two days to take this ty~ of corrective action.

  • Injection pipin~ not damai:ed. If the containment were to fail strµcturally, there is a potential that the injection piping itself could be damaged by the failure.
  • Net-positive suction head CNPSID for the low-pressure injection pumps maintained. As the containment depressurizes after failure, some of the water in the containment sump will flash to steam; sump water will also continue to evaporate in the ensuing period. If sufficient subcooling of the sump water is lost, the low-pressure injection pumps may fail due to a lack of adequate NPSH. *
  • Low-pressure 'injection pump in standby. In the long period following the early phases of the accident, it is very possible that the operators will secure equipment that is not needed for the immediate preservation of core cooling.

If a low-pressure injection pump has been returned to a standby condition, it may be possible to maintain core cooling even if the operating pump fails due to loss of NPSH. It was judged to be likely that, in this situation, the operators would start the standby pump and take measures to protect it from failure. For example, because this situation would only arise many hours into the accident, it would be possible to stop the pump periodically if it were to begin to overheat due to NPSH problems .

  • A-5

NUREG/CR-4551, VOL 1: DRAFf REPORT FOR COMMENT (SEPTEMBER, 1986)

CONTAINMENT ltU:CTION OPERATING ST ANOBY USE OF UNIT 2 PRESSURE PIPING DOES LOW LOW HGH RELIEF NOT FAIL PRESSURE PRESSURE PRESSURE PUMP PUMP PUMPS SURVIVES AVAILABLE QVTCQME 1 OK 20K CORE 30K VULNERABLE I SEQUENCE I 4CO SOK 60K 70K I

I aco IICO Figure A-1. Bridge Event Tree for Evaluation of Core-Vulnerable Sequences

  • Use Hi~h Pressure Pump from Other Unit or Refill RWST and Use Hi~h-Pressure Injection. The high pressure systems are Surry are cross -

connected between units, and the RWST inventory of Unit 2 is part of the technical specification of Unit 1. The high pressure pumps can be used to inject into the hot legs to avoid any problems with the buildup of boron. A final possibility considered in the event tree was the restoration of a level in the RWST adequate to provide suction to the high-pressure injection pumps. Again, it was judged to be likely that the operators could establish such a pathway for core cooling. Because of the reduced requirements for decay-heat removal at this point, the flow could be throttled back to prevent runout of the high-pressure injection pumps, while still providing adequate core cooling.

  • Of the five events, the second and third were referred to the containment review experts for consideration. The other three and the actual tree constructions were examined jointly by SARRP and ASEP.

Expert Review Input Tables A-3 and A-4 illustrate the inputs of the reviewers for the probability of ECCS pump and piping failure as a function of containment failure size. Table A-5 shows the A-6

NUREG/CR-4551, VOL 1: DRAFI' REPORT FOR COMMENT (SEPTEMBER, 1986)

.probability estimates of these same reviewers for containment failure pressure and Table A-6 illustrates their estimates of containment hole size as a function of containment failure pressure.

Only three of the reviewers responded to all four questions as indicated. The inputs for containment failure pressures of 67 and 180 psig were added to those of 85 and 143 psig, respectively, for the purposes of this analysis.

These inputs were combined into composites as illustrated in Table A- 7. The composite results of each reviewer were used for three distinct walkthroughs of the bridge tree.

TABLEA-3 EFFECT OF CONTAINN1ENT FAILURE ON ECCS PUMP OPERABil..ITY OUTCOME WEIGHTING FACTORS CORRELATED Reviewer TO FAILURE SIZE 1 2 3

1. 4 sq. in. 0.0 0.0 0.0
2. .1 sq. fL 0.0 0.0 0.0
3. .7 sq.fL .2 .2 .1
4. 7 sq. fL .3 .4 .3 TABLEA-4 EFFECT OF CONTAINMENT FAILURE ON INJECTION AND SUCTION PIPING OUTCOME WEIGHTING FACTORS CORRELATED Reviewer TO FAILURE SIZE 1 2 3
1. 4 sq. in. 0.0 0.0 0.0
2. .1 sq. fL 0.0 0.0 0.0
3. .7 sq.ft. 0.0 0.0 0.0
4. 7 sq. fL .1 .01 .1 TABLEA-5 REVIEWER INPUT FOR :MEAN CONTAINMENT FAILURE PRESSURE MEAN WEIGHTING FACTORS FAil..URE Reviewer PRESSURE 1 2 3

.3. 1. 67 psi 0.0 0.0 0.0

2. 85 psi .25 .2 .1 119 psi .5 .5 .3
4. 143 psi .2 .2 .5
5. 180 psi .OS .1 .OS

NUREG/CR-4551, VOL 1: DRAFT REPORT FOR COMMENT (SEPTEMBER, 1986)

TABLEA-6 CONTAINMENT FAILURE SIZE GIVEN SLOW PRESSURIZATION OUTCOME WEIGHTING FACTORS Size of Opening Reviewer 1 2 3 For Containment Failure Pressure 119 psi&

1. 4 sq. in. .15 .35 .2
2. . 1 sq. ft .2 .35 .2
3. . 7 sq.ft .2 .2 .3
4. 7 sq. ft. .45 .1 .3 For Containment Failure Pressure 85 psi&
1. 4 sq. in. .15 .5 .4
2. . 1 sq. ft .2 * .4 .5
3. .7 sq.ft .2 .1 .1
4. 7 sq. ft. .45 0.0 0.0 For Containment Failure Pressure 143 or 180 psi&
1. 4 sq. in. .15 .3 0.0 2.

3.

4.

.1 sq. ft

.7 sq.ft 7 sq. ft.

.2

.2

.45

.3

.2

.2 0.0

.4

.6 *

. TABLEA-7 OVERALLPROBABILITIESOFECCSFAILURE OUTCOME WEIGHTING FACTORS CORRELATED Reviewer TO FAILURE SIZE 1 2 3 PUMP FAILURE PROBABILITY .08 .17 .1 PIPING FAILURE PROBABILITY .0014 .03 .019 A-8

NUREGICR-4551, VOL 1: DRAFT REPORT FOR COMMENT (SEPTEMBER, 1986)

  • Event Tree Seguence Description The sequences of the bridge event tree are described briefly below. The quantification of the other events is also discussed.

Sequence 1. No core or containment damage results from this sequence. The containment pressure has been relieved and the operating pumps have not failed. The pressure relief is assumed to be controlled such that cavitation is not a problem with the operating pumps.

Sequence 2. Once again there is no core damage. The operating pump does fail, but the operator then uses the pump he previously placed in standby.

Sequence 3. This is similar to sequence 2, but the operator uses the high pressure injection pumps from Unit 2.

Sequence 4. Core damage results if the depressutj.zation is large enough to cavitate the pumps and the operations staff does not perform any recovery action.

Sequence 5. The containment fails, bu~ the core is maintained by the operating pumps which are not damaged by the depressurization .

  • Sequence 6. This is analagous to sequence 2, except that the containment does fail. The core is in a stable, cooled state.

Sequence 7. This is analagous to sequence 3, except that the containment does fail. The core is in a stable, cooled state.

Sequence 8. Core damage results because depressurization is large enough to cavitate the pumps and the operations staff does not perform any recovery action.

Sequence 9. Core damage results because the containment failure causes the injection piping to fail directly.

For the first event in the tree, containment pressure relief, a probability of 0.5 was assigned. This value was chosen because the analysts are nearly completely uncertain considering the likelihood of this event. There is certainly the time and means to affect containment venting, but to our knowledge, there are no procedures to do so. Also, both the ASEP and SARRP analyses have assumed that the instrumentation will continue to operate. If it does not, the operations staff may be very reluctant to create a containment opening without good knowledge of core and containment conditions. In addition, state and federal authorities could intervene, how, we cannot speculate.

For the fourth and fifth events, it was assessed "likely" that the staff will succeed if the operator has successfully recognized the situation and vented the containment. In keeping with A-9

NUREG/CR-4551, VOL 1: DRAFI' REPORT FOR COMMENT (SEPTEMBER, 1986) the philosophy of verbal descriptor probabilities used in the containment analysis, a value of 0.9 for success of each of these events was assigned If venting did not occur, the fourth and fifth events are believed to be "uncertain", and a probability of 0.5 was assigneq.. At this point in time it is outside the scope to assess all of the reasons for failure to vent, but it is this event which is closely coupled with the other operator recoveries.

Results of the Bridee Tree Assessment Three separate walkthroughs of the tree were quantified. All three used the split fractions of the first, fourth and fifth events discussed above. Each wallcthrough differed in the second and third events by using the separate estimates of the three individual reviewers.

The probabilities of core vulnerable sequences resulting in core damage were calculated as 0.01, 0.02, and 0.04. These were used as the optimistic, central and pessimistic in the OCP analysis, respectively. In the limited Latin hypercube analysis, each result was weighted equally.*

  • The resulting spread in the results is limited, perhaps more than if the uncertainty in this issue had been addressed by a larger group, or if their input had been manipulated differently.

A-10

  • A.1.2 EVALUATION OF LOSS OF CONTAINMENT HEAT SINK SCENARIOS FOR SURRY IntrodLlction This note summarizes the results of the MARCH 3. calculations performed for the Surry S3G, S2G, S1G, and AG sequences. In these sequences. a break in the primary system is accompanied by failure of the containment heat removal system; the emergency core cooling and containment spray systems are available. At the start of the incident the normal containment cooling system as well as the primary coolant pumps would be operating. Both of these woLlld be turned off upon reaching the 25 psia containment spray initiation and containment isolation level. The operator would be expected to manually depressurize the secondary side of the steam generators over a period of four hours. For pLlrposes of these analyses the water available to the auxiliary feedwater system was assumed to be unlimited. (The value of 100 psia for the steam generator secondary depressurization level used in the present analyses is hard-wired into MARCH; the more representa-tive level may be 150 psia.)

The principal question to be answered by these analyses is whe-ther containment failure would be predicted, and what would be the timing of such failure. In the event that containment fai-lure did take place, it could be followed by failure of the emergency core cooling systems and eventLlal core melting.

A-11

S3G Sequence The most probable initiating event for the S3G sequence has been indicated to be pump seal failure. ASEP analysed ~ad previously indicated that pump seal failures would be characterized by primary system water leakages of 50 to 500 gallons per minute.

In the present analysis a break area of 0.0044 sq ft, correspon-ding ~o a 0.9 inch diameter opening was used. With this break area and the predicted conditions of temperature and pressure, primary leakages of about 400 gallons per minute were observed.

The emergency core cooling systems supplying makeup to the prima-ry system were assumed to be available at their full capacities, with the pump performance curves being modeled in the analysis.

With the limited break area associated with pump seal failure and the operability of the emergency core cooling systems, the prima-ry system pressure was predicted to be maintained at about 770 psi a. The balance between the leakage from the primary system and the coolant makeup rate was such that all the decay heat as well as that input by the primary pumps could be removed with no net steam generation in the primary system. With the combination of steam generator heat removal, containment cooler heat removal, and heat loss to structures, only a relatively small fraction of the total available energy was predicted toga into heating and pressurizing th~ containment atmosphere. The containment isola-tion and spray initiation setpoint of 25 psia was predicted to be reached at 3793 minutes after the start of the accident. Just prior to spray initiation about 60 percent of the decay and primary pump energy was being removed by the steam generators, A-12

about 20 percent by the building coolers, and approximately 10 percent was being absorbed by containment structures.

The primary pumps as well as the building coolers were tripped off at spray initiation. The containment continued to pressurize slowly, with the sprays keeping the containment sump and atmos-phere in equilibrium. The calculation was carried out for 12,000 minutes of accident time. At the end of the calculation the containment pressure was predicted to be 64 psia, with both the atmosphere and sump temperatures at 282 F. At this time approxi-mately 60 percent of the decay heat was being removed by the steam gener~tors, about 34 percent was going to structures, and the balance went to heating of the containment water inventory.

At the end of the calculation the inside surface of the contain-ment dome was predicted to be at 282 F, with the outside at 149 F. With the outside surface being predicted to have risen by 49 F, considerable heat loss to the environment would be possible.

The latter is not included in the analysis.

S2G Sequence The S2G sequence was assumed to be initiated by a primary system pipe rupture equivalent to two inches in diameter. As in the preceding S3G scenario, the auxiliary feedwater system as well as the full complement of emergency core cooling systems were as-sumed to be available For the 2 inch break the containment spray setpoint pressure was predicted to be reached in about 33 minutes after the start of the accid*nt. The primary system pumps were initially on but were assumed to trip upon reaching the containment spray initia-A-13

tion pressure, as in the preceding case.

With the larger break size the primary system pressure decreased failrly rapidly; this combined with the cold water injection by the emergency core cooling system resulted in primary system temperature dropping to the point where the steam gene~ators were ineffective for heat removal. As the water supply to the primary system heated up ~ith time, however, the steam generators were predicted to come b~ck into play. The primary system pressure was predicted to be maintained between about 570 and 600 psia du~irig the course of this transient. The leakage from the prima-ry system was balanced by makeup by the emergency core cooling systems. As in the preceeding case, it was predicted that all the decay heat could be removed with no net steam generation .

Thus, again, the scenario was characterized by slow heatup of the containment water inventory, with significant heat removal by the steam generators. At the end of the calculation, at 11,880 minutes into the accident, the containment pressure was p~edicted to be 108 psi.a. The atmosphere and sump water temperatures at that time were 323 and 325 F, respectively. With the sump water being supplied to the primary system at an elevated temperature, about 72 percent of the decay heat was predicted to be removed by the steam generators, with about 26 percent of the decay heat being absorbed by containment struct~res. Thus only a small fraction of the decay heat was going into the heatup and ~ressu-rization of the containment atmosphere. At the end of the calculation the insi~~ surface of the containment dome was predi-cted to be at 323 F, with the outside at 177 F. At*the latter A-14

    • outside temperature considerable heat loss to the environment would be possible; the latter is not included in the analysis.

S1G Sequence Two examples of the intermediate CS1) size break were considered for this study, one with a break diameter of four inches, and the other with a six inch diameter break.

For the four inch diameter break the primary system depressurized rapidly and the containment spray initiation pressure was reached at about 5 minutes into the accident. Thus neither the contain-ment coolers nor the primary system pumps had a significant impact on this scenario. The emergency core cooling systems switched ~o the recirculation mode at about 65 minutes .

  • Since the primary system was predicted to depressurize rapidly, the steam generators lost their effectiveness as heat sinks early in the sequence. Due to the continuing operation of the emergen-cy core cooling systems, however, the primary system never com-pletely depressurized. Late in time, as the sump water being pumped to the primary system heated up, the primary system pres-sure was predicted to increase. With increasing primary system pressure and temperature the steam generators were predicted to be able to remove a significant fraction of the decay heat. The latter is predicated on depressurization of the steam generator secondary side to 100 psia. At the end of the calculation at 12,000 minutes, for the four inch break case the containment pressure was predicted to be 116 psia, with the atmosphere and
  • sump temperatures at 329 and 330 F, respectively. At that time approximately 75 percent of the decay heat was going to the steam A-15

generators and about 23 percent to the containment structures.

Thus only a very small fraction of the decay heat was going into the heating of the containment sump and atmosphere. Under these conditions substantial additional time would be required to reach the failure pressure of 135 psia.

The results for the 6 inch break are very similar to the prece-ding case. With the larger break area the containment spray initiation setpoint was reached in about 2 minutes. Thus, again, the containment coolers and the primary system pumps were turned off very early in the sequence. The primary system pressure was predicted to,drop rapidly to about 140 psia, with the emergency core cooling sytem injection precluding complete depressuriza-tion. The switch to emergency core cooling recirculatian was predicted at about 45 minutes. The steam generators were ineffective for heat removal during the initial part of the accident sequence. As the containment sump water heated up, the primary system pressure and temperature increased, and heat remo-val from the now depressurized steam generators became possible.

At 12,000 minutes into the accident the containment pressure appeared to have leveled off at 118 psia, with the atmosphere and sump temperatures at 330 and 332 F, respectiv~ly. At this time the heat removal by the steam generators and the heat losses to structures were equal tp the decay heat. At the end of the calculation the inside surface of the dome was predicted to be at 330 F, with the outside at 183 F; at the latter temperature considerable heat loss to the environment would be possible, .but is not considered in the analysis.

A-16

AG Sequence In a large break loss-of-coolant-accident the MARCH code pre-cludes heat removal by the steam generators. This is an assump-tion built into the code which may not be applicable under all circumstances. For the accident scenario in question, i.e., a large pipe break with loss of containment heat removal, but with all the other safety systems operational, if the break is in the cold leg the effluent from the core would have to pass through the steam generabors to get to the break in the system. If the temperature of the coolant leaving the core were higher than the secondary side of the steam generators, heat removal by the steam'

~enerators would be possible. Thus the assumption of no steam generator heat removal ,is *strictly applicable only to large hot leg break cases; the latter would be the limiting cases from the point of view of containment pressurization~

The sequence cif events predicted for the AG sequence is given in Tabl~ I. At the predicted time of containment failure at 3054 minutes the ~ontainment atmosphere and s~mp are at 340 F. The average water temperature in the primary system is. about 350 F; at this level steam generator heat removal may be possible if the flow were through the steam generators~ At the time of predicted containment failure the inside surface of the containment dome is predicted to be at 340 F, with the exterior surface at 104 F.

Sihc~ the latter has only inc~eased four degrees above the as-sumed initial temperature, little heat loss to the environment would be indicated. The latter is not included in these ana-lyses.

A-17

Discussion For the small and intermediate break cases accompanied by loss of containment heat removal the present analyses indicate the steam generators to be very effective in removing decay heat and thus limiting containment pressurization. With the low containment pressurization rates indicated, it would appear highly likely that time would be available for recov~ry actions and containment failure could be precluded in most of the scenarios considered.

This conclusion is subject to effective depressurization of the steam generator secondary, continued availability of auxiliary feedwater, and of course, the approximations inherent in the MARCH modeling of the systems and their performance.

For all the small and intermediate break cases considered here the MARCH analyses predicted that the primary system would not completely depressurize. This aspect of the analysis may be somewhat questionable due to the quite simplified modeling of the primary system by MARCH. The essential indication that the steam generators can be quite effective in these scenarios appears to be valid, however. As the sump water temperature being supplied to the primary system approaches that of the steam generator secondary; and is further elevated by core decay heat, heat transfer from the primary to the secondary will take place. The efficiency of the steam generators under the conditions in ques-tion is quite uncertain. The present analyses indicate that a substantial fraction of the decay heat can be removed even at very small temperature differences between the primary and secon-dary sides of the steam generators. In this regard, MARCH has hard-wired into it a secondary depressurization pressure of 100 A-18

psia, with a corresponding saturation temperature of 327.8 F. If the actual secondary side pressure is higher, the effectiveness of the steam generators would be lower than indicated in the present analyses.

In the analyses considered here no consideration was given to heat losses from the containment to the environment. For the extended scenarios associated with the small and intermediate break cases it was observed that the outside surface of the containment would experience considerable temperature increases.

With such temperature rises considerable heat losses to the environment would be possible. The latter would further limit containment pressurization during the already extended scenarios.

Possible heat losses to the environment would not significantly influence the containment pressurization history for the limiting case of a large hot leg pipe break.

A-19

TABLE I. ACCIDENT EVENT TIMES FOR SURRY AG SEQUENCE t;~§;t'::!I Ilt:!t;it:!lb!

Spray On 1 ECCS Recirculation 29 Containment Fails 3054 Core Uncovers 3081 Start Melt 3156 Core Slump 3207 Core Collapse Head Fails Concrete Attack 3210 3371 3372 A-20

  • A.2 Buildup of Sump Inventory After Containment Spray Failure An important sequence in WASH-1400 was s2c. This represents a small LOCA followed by failure of the containment spray system. Failure of the containment spray system prevented injection of the RWST directly into containment. Because the initiator is a small, only limited break flow is discharged into containment. The result is that insufficient water is in the containment sump to support inside and outside spray recirculation systems (ISR and CSR) operation. Automatic activation of these systems without sufficient water in the sump led -to pump failure.

Battelle performed a thermal hydraulic ana~ysii 2) on these sequences to find accurate condensation rates and sump inventory levels versus time. This analysis is included in section A.2.2.

A.2.2 Thermal Hydraulic Analyses of Sump Inventory after Containment Spray Failure SARRP SOURCE TERM ANALYSES FOR SURRY DESIGN Introduction The s2c sequence was found to be one of the risk dominant sequences for the Surry design in the WASH-1400 analyses. In this sequence the initiating event is a small break in the primary coolant system and it is accompanied by failure of the containment spray injection system. In the Surry design the containment spray injection and spray recircu-lation systems utilize separate pumps and headers. The recirculation sprays are started

  • automatically after a preset delay after the receipt of the sp:-ay actuation signal. For a small pipe break coupled with failure of spray injection, the automatic actuation of the recirculation sprays has been postulated to lead to the operation of the spray recircula-tion pumps while the sump is still dry; the latter could lead to the burnout of the pumps.

Since containment heat removal is associated with the spray recirculation system, loss of the latter would imply loss of the former as well. In the absence of containment heat removal the containment pressure would increase to the failure level; the latter would be followed by the failure of the emergency core cooling system due to pump cavitation and eventual core melting. In the WASH-1400 analyses for Surry, it was postulated that the initiating event was a break in one of the in-core instrument penetrations in the reactor vessel, leading to the discharge of the primary coolant into the reactor cavity rather than the containment sump; in these analyses it was also assumed that the spray actua-tion signal would be received at the start of the accident. The latter would be true for a large break loss-of-eoolant-accident but not necessarily applicable to other initiating events.

The likelihood that the s2c sequence would lead to core melting is expected to be sub-stantially lower in the current view than it was at the time of WASH-1400; however, since this sequence could still be risk significant, the availability of up to date results on the possible course of such an event would be useful in the development of an updated risk perspective for the Surry design. It will be recalled that the WASH-1400 analyses were limited in scope, focusing largely on large break initiated events, and are generally considered to be conservative in light of today's knowledge.* Several MARCH 2 calcula-tions were performed to model the s2c sequence, considering the specific scenario postulated in WASH-1400 as well as some alternate assumptions. The key results from these analyses were the time of the receipt of the spray actuation signal and the quantity of water in the containment sump at that time. The basis for and the details of these analyses are discussed below.

A-21

Assumptions The detailed description of the Surry plant design for the present analyses was identical to that used for the BMI-2104 source term calculations. The containment ventilation heat removal system was considered operable. The latter would be isolated at a contain-ment pressure of 25 psia (10 psig), the containment spray actuation level. The emergency core cooling as well as the auxiliary feedwater systems were assumed to be*

available at their full capacities; the latter is in contrast to the WASH-1400 assumption*

of only minimal safety system operation. In the modeling of the emergency core cooling system the pump curve option was utilized, making pump capacity dependent on the pri-mary system pressure. While heat removal by the steam generators was considered, depressurization of the steam generator secondary side was not included in the present analysis.

Results The results of the WASH-1400 s2c scenario, i.e., a break in an in-core instrument penetration in the bottom head of the reactor vessel, are discussed below. The break area for this analysis was taken to be 0.0205 sq. ft., corresponding to a 2 inch instrument line with a 0.5 inch instrument lead inside. The break was assumed to be in the vessel bottom head and discharged into the reactor cavity; when the latter as well as the in-core instrument tunnel were filled, at a total volume of 11,680 cu. ft., water was allowed to overflow into the containment sump. The MARCH 2 results for the above case indicate that the earliest time at which the containment pressure would approach the spray initiation setpoint of 25 psia is about 50 minutes from the start of the accident; though it is not clear if the sprays would be actuated at this time. At 50 minutes into the accident the reactor cavity .would not have been completely filled, but there would

  • be an excess of 130,000 lb of water on the containment floor due to steam condensation on structures. If the spray pumps were actuated at this time there would be sufficient water in the containment sump for their opera tiori. Overflow of water from the reactor cavity into the containment sump is predicted to start at about 60 minutes.

At the time that the containment pressure first approaches the spray initiation setpoint the pressure rise is not monotonic, and is actually predicted to decrease somewhat after that due to the fact that the emergency core cooling system is able to cool off the pri-mary system. Eventually, however, the containment pressure will start to increase again if heat removal is not restored. The containment pressure is predicted to exceed 25 psia at about 430 minutes from the start of the accident. If the sprays have not been started until this time, there is little question of their ability to operate since the inventory of the refueling water storage tank has been exhausted by this time and the containment sump is predicted to* have about 2.3E+6 lb of water at a temperature of 197 F.

In addition to the above sequence of events, an alternate scenario was considered in which the pipe break was assumed to be at a high elevation in the primary system so that it would discharge steam instead of water to the containment. For this situation the containment spray actuation pressure would be reached in about 60 minutes, with about 100,000 lb of water in the containment sump at that time. Thus operability of the recirculation sprays would seem likely under these assumptions.

Conclusions Based on the present analyses it appears that given the initiating events associated with the sic sequence, there would be more than adequate wa.ter in the containment sump at the time of recirculation spray actuation. Thus this combination of initiating events

  • would not be expected to lead to containment failure or core melting.

A-22

A.3 Success Criteria for Containment Heat Removal Surry design provides two systems for containment heat removal; the outside spray recir-culation system and the inside spray recirculation system. Each of these systems is a two train system. The design basis for containment heat removal is that one heat exchanger in each train is sufficient. The utility performed an analysis to show that one heat exchanger was.sufficient to provide containment heat removal. One heat exchanger will not provide* s.ufficient containment pressure reduction to satisfy 10 CFR 100 site dosage limitations, but wilt keep the containment significantly below design pressure at all times. The single heat exchanger success criteria was used in this study.

A.4 References A-1. A.S. Benjamin, et al., Evaluation of Severe Accident Risks and the Potential for Risk Reductions: Surry Power Station, Unit 1, NUREG/CR-4551 Vol 1, Draft for Comment, February 1987.

A-2. Peter Cybulskis, SAARP Source Term Analyses for Surry Design, Battelle Columbus Laboratories.

A-3. Peter Cybulskis, Evaluation of Loss of Containment Heat Sink Scenarios for Surr ,

Draft, Battelle Columbus La oratories, November 1985.

A-23

  • APPENDIX B Surry Boolean Equa. tions and Fault Trees
  • B-1

Table of Contents Section Page B.1. BOOLEAN EQUATIONS B.1.1 Consequence Limiting Control System B-4 B.1.2 Auxiliary Feedwater System during Station Blackout B-5 B.1.3 Primary Pressure Relief System B-6 B.1.4 Power Conversion System: Steam Generator Integrity B-7 B.1.5 Recirculation Mode Transfer System B-8 B.1.6 Safety Injection Actuation System B-8 B.1.7 Reactor Coolant Pump Seal Cooling from Unit 2 B-9 B.1.8 Station Blackout B-10 B.2 FAULT TREES B-12 Surry Fault Tree Summary B-13 Auxiliary Feedwater System (AFW-L) B-16 Auxiliary Feedwater System - ATWS (AFW-L2). B-25 Auxiliary Feedwater System - SGTR (AFW-L3) B-35 Containment Spray System (CSS) B-43 Charging Pump Cooling System (CPCA) B-45 Charging Pump Cooling System CPCB) B-48 Charging Pump Cooling System (CPCC) B-50 High Pressure Injection - Automatic (Dl) B-51 High Pressure Injection - Manual (D2) B-58 High Pressure Injection - RCP Seals (D3) B-65 High Pressure Injection - Emergency Bora tion (D4) B-67 Accumulators* * (D5) B-69 Low Pressure Injection (D) B-72 Electrical Power - Stub Bus lH (EST~lH) B-74 Electrical Power - Stub Bus lJ (ESTBlJ) B-75 Electrical Power - MCC lHl-1 (EHl) B-76 Electrical Power - MCC lHl-2 (EH2) B-77 Electrical Power - MCC lJ 1-1 (EJl) B-78 Electrical Power - MCC lJ 1-2 (EJ2) B-79 Electrical Power - 480V lH Bus (E4801H) B-80 Electrical Power - 480V lJ Bus (E4801J) B-81 Electrical Power - Vital Bus 11 Ell B-82 Electrical Power - Vital Bus 1II Elli B-83 Electrical Power - Vital Bus 1111 El III B-84 Electrical Power - Vital Bus lIV ElIV B-85 Electrical Power - DC Bus IA ElA B-86 Electrical Power - DC Bus lB E1B B-87 High Pressure Recirculation System HPR B-88 Low Pressure Recirculation System - to HPR LPR-HH B-94 Low Pressure Recirculation System - to RCS LPR-LH B-100 Inside Spray Recirculation System JSR B-105 Outside Spray Recirculation System OSR B-111 Operator Depressurization - LOCA OD B-119 Operator Depressurization - SGTR OD-SG B-126 Primary Pressure Relief System p B-132 Primary Pressure Relief System - S2 Pl B-133 B-2

Table of Contents (Continued)

B.2 FAULT TREES (Cont'd)

Primary Pressure Relief System - ATWS P2 B-135 Residual Heat Removal W3 B-137 Component Cooling Water w B-142 B-3

APPENDIX B B. Appendix B contains the Boolean equations and fault trees of the systems modeled for the Surry probabilistic risk assessment. The Boolean equations modeling for station blackout are also included. The appendix is organized into two subappendices as follows:

  • B.l Boolean Equations System Event Equations Station Blackout Equations
  • B.2 Fault Trees B.l Boolean Equations Boolean equations were used to model actuation systems, relief valves failing to reclose, steam generator integrity, station blackout (SBO) events, and several Unit 2 systems used in the SBO analysis. The system descriptions, nomenclature and identifiers used, assumptions made, and success criteria are contained in Section 4.6*, System Analysis.

The following systems, or portions of systems, were modeled by Boolean equations shown.

and described in this appendix.

  • Consequence Limiting Control System
  • Primary Pressure Relief System failing to reclose following a Transient
  • Power Conversion System: SG Integrity
  • Recirculation Mode Transfer System
  • Safety Injection Actuation System

- HPI seal cooling from Unit 2

- CCW thermal barrier cooling from Unit 2 In addition to the systems modeled, two Boolean equations were developed to model the SBO at Unit 1 and SBO at Units 1 and 2. These equations are also included.

B.1.1 Consequence Limiting Control System As shown in Section 4.6.6, the consequence limiting control system is modeled as two events. The Boolean equations for these two events are as follows:

CLS-ACT-FA-2A = CLS-ACT-FA-CLS2A + DCP-TDC-LP-BUS1A.

CLS-ACT-FA-2B = CLS-ACT-FA-CLS2B + DCP-TDC-LP-BUS1B.

The CLS-ACT-FA-CLS2A and CLS-ACT-FA-CLS2B terms represent the CLCS actuation train A and B unavailabilities. The DCP-TDC-LP-BUS1A and DCP-TDC-LP-BUSlB terms represent developed events, providing power to the actuation trains. The power events are developed as fault trees in the Emergency Power System, Section 4.6.8

  • B-4

B.1.2 Auxiliary Feedwater System during Station Blackout As shown in Section 4.6.3, the success criteria for the auxiliary feedwater (AFW) system during a transient is that flow from at least one of three AFW pumps supply one of three steam generators (SG). During SBO, the motor driven pumps are unavailable, so that the AFW-L fault tree reduces to the following equations representing failure of the turbine driven AFW pump at Unit 1.

AFW-TDP-Ul =

AFW-TDP-FR-2P6HR +

AFW-TDP-FS-FW2 +

AFW-TDP-MA-FW2 +

AFW-CKV-OO-CV172 +

AFW-PSF-FC-XCONN +

AFW-CCF-FT-102AB +

AFW-CKV-FT-CV142 +

AFW-CCF-LK-STMBD +

AFW-XVM-PG-XV153 +

AFW-AOV-FT-102A

  • AFW-AOV-FT-102B +

AFW-TNK-VF-CST +

AFW-CKV-FT-CV138

  • AFW-CKV-FT-CV131 +

AFW-CKV-FT-CV131

  • AFW-CKV-FT-CV136 +

AFW-CKV-FT-CV133

  • AFW-CKV-FT-CV136 +

AFW-CKV-FT-CV138

  • AFW-CKV-FT-CV133 +

AFW-AOV-PG-102A

  • AFW-AOV-PG-102B.

From the equation for failure of the turbine driven AFW pump at Unit 1, a similar equation was developed to model the turbine driven AFW pump at Unit 2. The motor driven pumps were not modeled at Unit 2. For the SBO at Unit 1 only, the loss of one bus (due to the loss of offsite power and failure of diesel 2 or 3) leaves only one motor driven pump which was assumed to have insufficient capacity to supply two units. For SBO at both units, there is no power to supply a motor driven pump at Unit 2.

AFW-TDP-U2 =

AFW-TDP-FR-6HRU2 +

AFW-TDP-FS-U2FW2 +

AFW-TDP-MA-U2FW2 +

AFW-CKV-OO-CV272 +

AFW-CCF-LK-2STMB +

AFW-CCF-FT -202AB +

AFW-CKV-FT-CV242 +

AFW-XVM-PG-XV253 +

AFW-MOV-FT-260A

  • AFW-MOV-FT-260B +

'AFW-AOV-FT-202A

  • AFW-AOV-FT-202B +

AFW-TNK-VF-V2CST +

A.FW-CKV-FT-CV238

  • AFW-CKV-FT-CV232 +

AFW-CKV-FT-CV232

  • AFW-CKV-FT-CV236 +

AFW-CKV-FT-CV233

  • AFW-CKV-FT-CV236 +

AFW-CKV-FT-CV238

  • AFW-CKV-FT-CV233 +

AFW-AOV-PG-202A

  • AFW-AOV-PG-202B.

The top event heading L in the SBO event tree combines failures of the Unit 1 and 2 turbine driven pumps with an operator error. The top events for SBO at Unit 1 only and SBO at Units 1 and 2, are an expansion of the equations shown below.

B-5

L-SBOUl = AFW-:-TDP-Ul * (AFW-XHE-FO-UlSBO + AFW-TDP-U2).

-L-SB0UiU2 = AFW-TDP-Ul * (AFW-XHE-FO-U2SBO + AFW-TDP-U2 +

UNIT2-LOW-POWER + QS-UNIT2).

The equation for SBO at Unit 1 and 2 also includes terms for failure of AFW from Unit 2 due to low initial power (no steam for the pump turbine) and a stuck open SG power operated relief valve at Unit 2 due to the SBO transient. Additionally, for SBO sequences with a stuck open SG relief valve, a cross connect to the Unit 2 condensate storage tank was required. These "extra" failures occur because if only Unit 1 has an

- --SBO, the Unit 2 AFW motor driven pumps are still available.

B.1.3 Primary Pressure Relief System The portion of the Primary Pressure Relief System (PPRS) modeled by Boolean equations is the failure of the reactor coolant system (RCS) power operated relief valves (PORV) to reclose following a transient demanding PORV opening. Section 4*.6.14 describes the success criteria for event Q as one or more POR Vs failing to reclose following a transient other then s3* Event Q during an s3 loss of coolant accident is modeled as a

black box" event in Appendix D.1. Event Q was modeled slightly differently for SBO (Q-SBO), steam generator tube rupture (Q-SGTR), and all other transients (Q). The expression for the failure of the RCS POR Vs to reclose for generic transients, other than SBO or SGTR follows.

Q = PORV-DEMAND

  • PPS-SOV-00-1455 *

(ACP-TAC-LP-lJl-2 + PPS-MOV-00-1536 + PPS-MOV-FC-OPER) +

PORV-DEMAND

  • PPS-SOV-00-1456 *

- (ACP-TAC-LP-lHl-2 + PPS-MOV-00-1535 + PPS-MOV-FC-OPER).

Each-of the cut sets represent the POR V being demanded, PORV failing to reclose, and failure to shut the POR V block valve. Failure to shut the POR V block valve is due to loss of electrical power, failure of the motor operated block valve to shut, or failure of the operator to shut the block valve. The electrical power events (ACP-TAC-LP-1H1-2 and ACP-TAC-LP-lJl-:-2) ~re top events of fault trees developed in the Emergency Power System, Section 4.6.8. ihe PORV-DEMAND event consists of three terms multiplied together: the probability of i2itially being at high power (0.90), the probability that each

___re lief is not blocked 1 "'" (.3) * , and the POR V demand probaoility. The POR V demand 2

probability is 0.1 for T 1 and 0.014 for all other sequences except SGTR and SBO. The POR V demand probability for SGTR and SBO are described below.

The expression for failure of the RCS POR Vs to reclose during SBO is a reduction of the generic Q equation, with the loss of AC power failing the block valves, and the POR V demand rate equal to 1.0.

Q-SBO = SBO-PORV-DMD

  • PPS-SOV-00-14556 +

SBO-POR V-DMD

  • PPS-SOV-00-1456.

For the steam generator tube rupture event tree, there are three different versions of the Q-SGTR. Each variation depends on the success or failure of the operator B-6

depressurization and high pressure injection (HPI) events. Each version is identical to the

  • generic Q expression*, with a different identifier specifying the PORV demand rate. For successful operator depressurization and HPI, the PORV demand rate is 0.1 and the identifier is RCS-PORV-DMD. For successful operator depressurization and failure of HPI, the PORV demand rate is 0.25 and the identifier is RCS-PORV-ODMD. For failure to depressurize, the demand rate is 1.0 and the identifier is RCS-PORV-DlDMD. The resulting Boolean equations are shown below.

For success of operator depressurization and HPI:

Q-SGTR =

RCS-PORV-DMD

  • PPS-S0V-OO-l455C *

(ACP-TAC-LP-lJl-2 + PPS-MOV-00-1536 + PPS-MOV-FC-OPER) +

RCS-PORV-DMD

  • PPS-SOV-00-1456 *

(ACP-TAC-LP-lHl-2 + PPS-MOV-00-1535 + PPS-MOV-FC-OPER).

For successful depressurization, but HPI fails:

Q-OD-SGTR =

RCS-PORV-ODMD

  • PPS-S0V-00-1455C *

(ACP-TAC-LP-lJl-2 + PPS-MOV-00-1536 + PPS-MOV-FC-OPER) +

RCS-PORV-ODMD

  • PPS-SOV-00-1456 *

(ACP-TAC-LP-lHl-2 + PPS-MOV-00-1535 + PPS-MOV-FC-OPER).

For failure to depressurize:

Q-00-Dl-SGTR =

RCS-PORV-DlDMD

  • PPS-S0V-00-1455C*

(ACP-TAC-LP-lJl-2 + PPS-MOV-00-1536 + PPS-MOV-FC-OPER) +

RCS-PORV-DlDMD

  • PPS-SOV-00-1456 *

(ACP-TAC-LP-lHl-2 + PPS-MOV-00-1535 + PPS-MOV-FC-OPER).

B.1.4 Power Conversion System: Steam Generator Integrity The success criterion for the SG portion of the power conversion system (PCS) was defined as closure of all SG penetrations following a transient. The PCS system assumptions and success criteria are further described in Section 4.6.13. This success criterion translates into three separate Boolean equations, one equation for SBO and two equations for SGTR. The Boolean equation derived for SBO follows:

QS - SBO = SBO-SGSRV-DMD

  • MSS-SRV-00-SGSRV.

The probability for SBO-SGSRV-DMD is derived in Appendix D. For steam generator tube rupture, there are two equations, depending on the success of the operator depres-surization event. If the operator succeeds in depressurization and cooldown, then the equation for Qs is as follows:

B-7

QS- SGTR =

PORV-BLK

  • SGTR-SGSRV-DMD
  • MSS-SRV-00-SGSRV +

POR V-NOT-BLK

  • SGTR-SGADV-DMD
  • MSS-SOV-00-SGADV
  • MSS-XHE-FO-BLOCK +

MSS-XHE-FO-ISAFW +

MSS-CCF-FT-TVAB

  • MSS-XHE-FO-ISBDN +

MSS-AOV-FT-TVBDA

  • MSS-AOV-FT-TVBDB
  • MSS-XHE-FO-ISBDN.

The first cut set in the equation represents the SG power operated relief valve (PORV) as; blocked, the SG safety relief valve (SRV) being demanded, and the SR V failing to reclose. The second cut set models the SG POR V as not blocked, the SG PORV demanded, opens, fails to reclose*, and the operator fails to block.

The equation for Os, when the operator fails to depressurize or cooldown, is very similar to the equation shown above. The SG relief valve demand rates change in response to the failure to depressurize. Also, the SG SRV is demanded even if the PORV is not blocked.

The equation for Qs then becomes the following:

QS-OD-SGTR =

PORV-BLK

  • SGTR-SGSRV-ODMD1
  • MSS-SRV-00-0DSRV +

PORV-NOT-BLK

  • SGTR-SGSRV-ODMD2
  • MSS-SRV-00-0DSRV +

PORV..:NOT-BLK

  • SGTR-SGADV-ODMD
  • MSS-SOV-00-0DADV
  • MSS-XHE-FO-BLOCK +

MSS-XHE-FO-ISAFW +

MSS-CCF-FT-TVAB

  • MSS-XHE-FO-ISBDN +

MSS-AOV-FT-TVBDA

  • MSS-AOV-FT-TVBDB
  • MSS-XHE-FO-ISBDN.

B.1.5 Recirculation Mode Transfer System As shown in Section 4.6.16, the recirculation mode transfer (RMT) system is modeled as two events. The Boolean expressions for these events are as follows:

RMT-ACT-F A-A = RMT-ACT-F A-RMTSA +

RMT-CCF-FA-MSCAL +

ACP-T AC-LP-BUSll.

RMT-ACT-FA-B = RMT-ACT-FA-RMTSB +

RMT-CCF-FA-MSCAL +

ACP-TAC-LP-BSlIV.

The RMT-ACT-FA-RMTSA and RMT-ACT-FA-RMTSB terms represent the RMT actua-tion train A or B unavailabilities. The ACP-T AC-LP-BUSH and ACP-T AC-LP-BSlIV terms represent developed events, top events in the vital AC power fault trees. The AC power fault trees are developed in Section 4.6.8. The RMT-CCF-FA-MSCAL represents common cause failure of RMT due to miscalibration of the sensors.

B.1.6 Safety Injection Actuation System The safety injection actuation system (SIS) is modeled as two events, as shown in Section 4.6.18. The Boolean equation for these two events follows.

SIS-ACT-FA-A= SIS-ACT-FA-SISA + ACP-TAC-LP-BUSll + DCP-TDC-LP-BUSlA.

B-8

SIS-ACT-FA-B = SIS-ACT-FA-SISB + ACP-TAC-LP-BS1IV + DCP-TDC-LP-BUS1B.

The SIS-ACT-F A-SISA and SIS-ACT-F A-SISB terms represent the SIS actuation train A or B unavailabilities. The other terms model electrical power dependencies. The electrical power events are described in Section 4.6.8 and are developed as top events in fault trees.

B.1.7 Reactor Coolant Pump Seal Cooling from Unit 2 Modeling of the reactor coolant pump (RCP) seal cooling supplied by Unit 2 (event W2) il)volved modeling two Unit 2 systems, HPI and component cooling water (CCW). Ttie Unit 2 HPI cools the RCP seals directly, whereas the CCW cools the RCP thermal barrier. The success criterion for top event W2 was Unit 1 RCP seal cooling provided from Unit 2 HPI or CCW. This translated into the following top event and Boolean equation.

w2 - Failure of the operator to provide seal cooling from Unit 2 or failure of Unit 2 HPI and Unit 2 CCW. .

w2 = REC-XHE-FO-SCOOL + (D3U2

  • WU2).

D3U2 represents failure of HPI from Unit 2 and is modeled by the following equation.

D3U2 =

MCW-CCF-VF-SBO +

CPC-MDP-FS-SW20A +

HPI-MDP-FS-CH2C +

CPC-MDP-FS-2CC2A +

HPI-CKV-00-267U2 +

HPI-CKV-00-276U2 +

CPC-MDP-FR-SW20A +

HPI-MDP-FR-2C6HR +

CPC-STR-PG-2AU26 +

CPC-STR-PG-1 AU26 +

CPC-MDP-FR-2CC2A +

ACP-BAC-ST-4KV2H +

ACP-BAC-ST-2Hl +

ACP-BAC-ST-2Hl-1 +

ACP-TFM-N0-2Hl +

ACP-CRB-C0-24H14 +

ACP-CRB-C0-25H7 +

ACP-CRB-C0-24H 15.

The. equation for D3U2 was derived from the solution of the Unit 1 D3 fault tree.

Similarly, the* equation for CCW from Unit 2 (WU2) was based on the Unit 1 W fault tree. The equation for CCW from Unit 2 is shown below.

WU2=

MCW-CCF-VF-SBO +

ACP-XHE-FO-STBBS +

CCW-MDP-FS-CCP2A +

CCW-MDP-MA-CCP2A +

CCW-CKV-00-563U2 +

CCW-MDP-FR-CCP2A +

B-9

CCW-HTX-PG-U2ElA +

ACP-BAC-ST-4KV2H +

ACP-BAC-ST-STB2H +

. CCW-HTX-LK-U2ElA +

SWS-XVM-PG-39U2 +

CCW-XVM-PG-.580U2 IAS-AOV-PG-CC107 +

CCW-XVM-PG-.583U2 +

SWS-XVM-PG-37U2 +

ACP-CRB-C0-2.5H9 +

IAS-AOV-LK-CC107 +

IAS-AOV-OC-CC107.

B.1.8 Station Blackout The methods used to develop the equations for SBO at Unit 1 and SBO at Units 1 and 2 are described in Section 4.6.8. The expanded version of the equation for SBO at Unit 1 only, with double maintenance terms which violate Technical Specifications deleted, is shown below. Note that a term NOTDG appears in each cut zet for SBO-Ul, accounting for the success of the third diesel generator.

SBO-Ul =

Tl* OEP-DGN-FS-DG02

  • OEP-DGN-FS-DGOl
  • NOTDG +

Tl* OEP-DGN-FS-DG03

  • OEP-DGN-FS-DGOl
  • NOTDG +

Tl* OEP-CCF-FS-DG13

  • NOTDG-CCF +

Tl* OEP-DGN-FR-6HDG2

  • OEP-DGN-FS-DGOl
  • NOTDG +

Tl* OEP-DGN-FR-6HDG3

  • OEP-DGN-FS-DGOl
  • NOTDG +

T 1

  • OEP-DGN-FS-DG02
  • OEP-DGN-FR-6HDG 1
  • NOTDG +

Tl* OEP-DGN-F~-DG03

  • OEP-DGN-FR-6HDG1
  • NOTDG +

Tl* OEP-DGN-FR-6HDG3

  • OEP-DGN-FR-6HDG1
  • NOTDG +

Tl* OEP-DGN-FR-6HDG2

  • OEP-DGN-FR-6HDG1
  • NOTDG +

. Tl

  • OEP-DGN-MA-DG03
  • OEP-DGN-FS-DGOl
  • NOTDG +

Tl* OEP-DGN-MA-DGOl

  • OEP-DGN-FS-DG03
  • NOTDG +

Tl* OEP-DGN-MA-DG02

  • OEP-DGN-FS-DGOl
  • NOTDG +

Tl* OEP-DGN-MA-DGOl

  • OEP-DGN-FS-DG02
  • NOTDG +

Tl* OEP-DGN-MA-DG02

  • OEP-DGN-FR-6HDG1
  • NOTDG +

Tl* OEP-DGN-MA-DGOl

  • OEP-DGN-FR-6HDG2
  • NOTDG +

T 1

  • OEP-DGN-MA-DG03
  • OEP-DGN-FR-6HDG 1
  • NOTDG +

T 1

  • OEP-DGN-MA-DGOl
  • OEP-DGN-FR-6HDG3
  • NOTDG +

Tl* 0EP-CRB-FT-15J3

  • OEP-DGN-FS-DGOl
  • NOTDG +

Tl

  • OEP-DGN-FS-DG02
  • OEP-CRB-FT-15H3
  • NOTDG +

Tl* OEP-DGN-FS-DG03

  • OEP-CRB-FT-15H3
  • NOTDG +

Tl* OEP-DGN-FR-6HDG2

  • OEP-CRB-FT-l.5H3
  • NOTDG +

Tl-* OEP-DGN-FR-6HDG3

  • OEP-CRB-FT-15H3
  • NOTDG +

Tl* OEP-CRB-FT-l.5J3

  • OEP-DGN-FR-6HDG1
  • NOTDG +

Tl* OEP-DGN-MA-DGOl

  • OEP-CRB-FT-15J3
  • NOTDG +

Tl

  • OEP-DGN-MA-DG03
  • OEP-CRB-FT-15H3
  • NOTDG +

Tl* OEP-DGN-MA-DG02

  • OEP-CRB-FT-15H3
  • NOTDG +

Tl

  • OEP-CRB-FT-15J3
  • OEP-CRB-FT-15H3
  • NOTDG.

The sum of the terms, or frequency of SBO-Ul is 2.9E-4.

The expanded version of the equation for SBO at Units 1 and 2, with double maintenance terms which violate Technical Specifications deleted, is shown below. In the SB0-U1U2 B-10

equation, all three site diesel generators are explicitly modeled to fail *. The sum of the terms, or frequency of SBO-U 1U3 is 3.7E-5.

SB0-U1U2 =

T 1

  • OEP-CCF-FS-DG 123 +

T 1

  • OEP-DGN-FS-DG02
  • OEP-DGN-FS-DG03
  • OEP-DGN-FS-DGOl +

Tl* OEP-DGN-FR-6HDG2

  • OEP-DGN-FS-DG03
  • OEP-DGN-FS-DGOl +

Tl* OEP-DGN-FS-DG02

  • OEP-DGN-FS-DG03
  • OEP-DGN-FR-6HDG1 +

Tl* OEP-DGN-FS-DG02

  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DGOl +

Tl* OEP-DGN-FR-6HDG2

  • OEP-DGN-FS-DG03
  • OEP-DGN-FR-6HDG1 +

Tl* OEP-DGN-FS-DG02

  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FR-6HDG1 +

Tl* OEP-DGN-FR-6HDG2

  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DGOl +

Tl* 0EP-DGN-MA-DG03

  • OEP-DGN-FS-DG02
  • OEP-DGN-FS-DGOl +

Tl* OEP-DGN-MA-DG02

  • OEP-DGN-FS-DG03
  • OEP-DGN-FS-DGOl +

Tl* OEP-DGN-MA-DGOl

  • OEP-DGN-FS-DG02
  • OEP-DGN-FS-DG03 +

Tl* OEP-DGN-MA-DG03

  • NOTDG-CFF
  • OEP-CCF-FS-DG12 +

Tl* OEP-DGN-MA-DG01

  • NOTDG-CCF
  • OEP-CCF-FS-DG23 +

Tl* OEP-DGN-MA-DG02

  • OEP-CCF-FS-DG13
  • NOTDG-CCF +

Tl* OEP-DGN-FR-6HDG2

  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FR-6HDG1 +

Tl* OEP-DGN-MA-DG02

  • OEP-DGN-FS-DG03
  • OEP-DGN-FR-6HDG1 +

Tl* OEP-DGN-MA-DG03

  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DGOl +

Tl* OEP-DGN-MA-DG02

  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DGOl +

Tl* OEP-DGN-MA-DGOl

  • OEP-DGN-FR-6HDG2

Tl* OEP-DGN-MA-DGOl

  • OEP-DGN-FS-DG02
  • OEP-DGN-FR-6HDG3 +

T 1

  • OEP-DGN-MA-DG03
  • OEP-DGN-FS-DG02
  • OEP-DGN-FR-6HDG 1 +

Tl

  • OEP-DGN-FS-DG02
  • OEP-CRB-FT-15J3
  • OEP-DGN-FS-DGOl +

Tl* OEP-DGN-FS-DG02

  • OEP-DGN-FS-DG03
  • OEP-CRB-FT-15H3 +

Tl

  • OEP-DGN-FS-DG03
  • OEP-DGN-FS-DGOl
  • OEP,...CRB-FT-25H3 +

Tl* NOTDG-CCF

  • OEP-CCF-FS-DG12
  • OEP-DGN-FR-DG03 +

Tl* OEP-CCF-FS-DG13

  • NOTDG-CCF
  • OEP-DGN-FR-DG02 +

Tl* NOTDG-CCF

  • OEP-CCF-FS-DG23
  • OEP-DGN-FR-DGOl +

Tl* OEP-DGN-MA-DG02

  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FR-6HDG1 +

Tl* OEP-DGN-MA-DGOl

  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FR-6HDG3 +

Tl* OEP-DGN-MA-DG03

  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FR-6HDG1 +

Tl* OEP-DGN-FR-6HDG3

  • OEP-DGN-FS-DGOl
  • OEP-CRB-FT-25H3 +

Tl* OEP-DGN-FS-DG02

  • OEP-CRB-FT-15J3
  • OEP-DGN-FR-6HDG1 +

Tl

  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG03
  • OEP-CRB-FT-15H3 +

Tl* OEP-DGN-FS-DG03

  • OEP-DGN-FR-6HDG1
  • OEP-CRB-FT-25H3 +

T.l

  • OEP-DGN-FR-6HDG2
  • OEP-CRB-FT-1533
  • OEP-DGN-FS-DGOl +

Tl

  • OEP-DGN-FS-DG02
  • OEP-DGN-FR-6HDG3
  • OEP,..CRB-FT-15H3 +

T 1

  • OEP-DGN-FR.:.6HDG3
  • OEP-DGN-FR-6HDG 1
  • OEP-CRB-FT-25H3 +

T 1

  • OEP-DGN-FR-6HDG2
  • OEP-CRB-FT-1533
  • OEP-DGN-FR-6HDG 1 +

Tl* OEP-DGN-FR-6HDG2

  • OEP-DGN-FR-6HDG3
  • OEP-CRB-FT-15H3 +

Tl

  • OEP-DGN-MA-DG02
  • OEP-CRB-FT-15J3
  • oep.:.bGN-FS-DGOl +

Tl* OEP-DGN-MA-DG03

  • OEP-DGN-FS-DG02
  • OEP-CRB-FT-15H3 +

Tl

  • OEP-DGN-MA-DGOl
  • OEP-DGN-FS-DG02
  • OEP-CRB-FT-1533 +

Tl* OEP-DGN-MA-DGOl

  • OEP-DGN-FS-DG03
  • OEP-CRB-FT-25H3 +

Tl* OEP-DGN-MA-DG02

  • OEP-DGN-FS-DG03
  • OEP-CRB-FT-15H3 +

Tl* 0EP-DGN-MA-DG03

  • OEP-DGN-FS-DGOl
  • OEP-CRB-FT-25H3 +

Tl

  • OEP-DGN-MA-DGOl
  • OEP-DGN-FR-6HDG2
  • OEP-CRB-FT-1533 +

Tl* OEP-DGN-MA-DGOl

  • OEP-DGN-FR-6HDG3
  • OEP-CRB-FT-25H3 +

Tl

  • OEP-DGN-MA-DG02
  • OEP-DGN-FR-6HDG3
  • OEP-CRB-FT-15H3 +

Tl* 0EP-DGN-MA-DG02

  • OEP-CRB-FT-1533
  • OEP-DGN-FR-6HDG1 +

Tl

  • OEP-DGN-MA-DG03 * .OEP-DGN-FR-6HDG2
  • OEP-CRB-FT-15H3 +

B-11

Tl*

Tl*

Tl

  • Tl*

Tl*

Tl*

OEP-DGN-MA-DG03

  • OEP-DGN-FR-6HDG1
  • OEP-CRB-FT-25H3 +

OEP-CRB-FT-15J3

  • OEP-DGN-FS-DGOl

OEP-DGN-FS-DG03

  • OEP-CRB-FT-15H3
  • OEP-CRB-FT-25H3 +

OEP-DGN-FS-DG02

  • OEP-CRB-FT-15J3

OEP-CRB-FT-15J3

  • OEP-DGN-FR-6HDG1
  • OEP-CRB-FT-25H3 +

OEP-DGN-FR-6HDG2

  • OEP-CRB-FT-15J3
  • OEP-CRB-FT-15H3 +

Tl

  • OEP-DGN-FR-6HDG3
  • OEP-CRB-FT-15H3
  • OEP-CRB-FT-25H3 +

Tl* OEP-DGN-MA-DG03

  • OEP-CRB-FT-15H3
  • OEP-CRB-FT-25H3 +

Tl

  • OEP-DGN-MA-DG02
  • OEP-CRB-FT-15J3
  • OEP-CRB-FT-15H3 +

Tl* OEP-DGN-MA-DGOl

  • OEP-CRB-FT-15J3
  • OEP-CRB-FT-25H3 +.

B.2 Fault Trees This section contains the drawings of all of the fault trees used in the Surry probabilistic risk assessment. The fault tree name, system modeled, and top event heading are shown in Table B-1.

B-12

Table B-1 Surry Fault Tree Sunmary Fault Tree Event Tree Name System Heading Top Gate Name AFW-L Auxiliary Feedwater to 1 of 3 SG L AFW-1 AFW-L2 Auxiliary Feedwater to 2 of 3 SG L2 AF~J-2 AFW-L3 Auxiliary Feedwater to 1 of 2 SG L3 AFW-3 css Containment Spray System C css tp

.w CPCA Charging Pump Cooling None, support CPCA CPCB Charging Pump Cooling system to HPI CPCB CPCC Charging Pump Cooling pumps A,B, & C CPCC D1 High Pressure Injection - Automatic D1 01 D2 High Pressure Injection - Manua 1 D2 D2 D3 High Pressure Injection - RCP seals D3 D3 D4 High Pressure Injection - Emergency Boration D4 HPI-EB D5 Accumulators D5 ACC D6 Low Pressure Injection D6 LPI

Table B-1 (Continued)

Surry Fault Tree Su11111ary Fault Tree Event Tree Name System Heading Top Gate Narne ESTBlH Electrical Power - Stub Bus lH None, support ACP-TAC-LP-STBlH ESTBlJ Electrical Power - Stub Bus lJ systems to ACP-TAC-LP-STBlJ EHl* Electrical Power - MCC lHl-1 front line ACP-TAC-LP-lHl-1 EH2 Electrical Power - MCC lHl-2 systems. ACP-TAC-LP-lHl-2 EJl* Electrical Power - MCC lJl-1 ACP-TAC-LP-lJl-1 EJ2 Elect ri ca 1 Power - MCC lJl-2 ACP-TAC-LP-lJl-2 E4801H Elect ri ca 1 Power - 4801H Bus ACP-TAC-LP-4801H llJ I E4801J Electrical Power - 4801J Bus ACP-TAC-LP-4801J I-'

ii::.

Ell El ectri ca 1 Power - Vital Bus 1I ACP-TAC-LP-BUS1I E21II Electrical Power - Vital Bus 1I I ACP-TAC-LP-BS1II E31I II Electrical Power - Vital Bus 1III ACP-TAC-LP-BSIII E41IV Electrical Power - Vital Bus lIV ACP-TAC-LP-BS1IV ElA Electrical Power - DC Bus lA DCP-TDC-LP-BUSlA ElB Electrical Power - DC Bus 1B DCP-TDC-LP-BUSlB HPR-H2 High Pressure Recirculation H2 HPR LPR-HH Low Pressure Recirculation - to HPR H1(s 2 ,s 3 ,T) LPR-HH LPR-LH Low Pressure Recirculation - to RCS H1 (A,S 1) LPR-LH

Table B-1 (Continued)

Surry Fault Tree Sunmary Fault Tree Event Tree Name System Heading Top Gate Name ISR Inside Spray Recirculation Fl ISR-Fl OSR Outside Spray Recirculation F2 OSR OD Power Conversion System Oo OD 00-SG Power Conversion System Oo (T7) 00-SG p Primary Pressure Relief - 2 of 2 p p tp P1 Primary Pressure Rel.i ef - 1 of 2 pl Pl I-'

U1 P2 Primary Pressure Relief - AHIS P2 P2 RHR Residual Heat Removal W3 W3 w Component Cooling Water w CCWl

  • The 4160 VAC lH and lJ bus events (ACP~TAC-LP-4KV1H and ACP-TAC-LP-4KV1J) are contained in the EHl and EJl fault trees, respectively.

INSUF FLOW TO Tree: AF\.1-L MIN 1 SG FRM AT Project: SURRY LEAST 1 AFW PUMP Page 1 of 9 Date Last Modified:

AFW-1 Wed Jul 06 13:11:54 1988

~

I I I INSUF FLOW INSUF FLOW - INSUF FLOW THRU PIPE SEG THRU PIPE SEG THRU PI PE SEG PS93 TO SG A IPS92 TO SG B PS91 TO SG C AF\.11 AF\.12 AFW3 t=-i\I t=-i\I ~

I I I I INSUF FLOW ~HECK VALVE CV27 INSUF FLO\.I ~HECK VALVE CV58 INSUF FLOW ~HECK VALVE CV89

~HRU PIPE SEG FAILS TO OPEN THRU PIPE SEG FAILS TO OPEN THRU PIPE SEG FAILS TO OPEN PS89 & PS90 IPS87 & PS88 PS85 & PS86 AF\.14 AFW-CKV-FT-CV27 AF\15 AF\.l*CKV-FT-CV58 AF\.16 AF\.l*CKV-FT-CV89

~ u 1.0E-004 £:::,. Page 8 U 1.0E-004 l,J. u 1.0E-004 I I I I INSUFFICIENT INSUFFICIENT INSUFFICIENT INSUFFICIENT FLO\.I THROUGH PIPE FLOW THROUGH PIPE FLOW THROUGH PIPE FLO\.I THROUGH PIPE SEGMENT PS89 SEGMENT PS90 SEGMENT PS85 SEGMENT PS86 AFW7 AF\.18 AF\.111 AF\112 L..::::.. Page 9 t=-i\I I t=-i\I I t=-i\I I INSUFFICIENT MOTOR OPERATED INSUFFICIENT MOTOR OPERATED INSUFFICIENT MOTOR OPERATED FLOW THROUGH.PIPE VALVE F\.1151E FLOW THROUGH PIPE VALVE F\.1151F FLO\.I THROUGH PIPE VALVE F\11518

~EGMENT PS83 PLUGGED SEGMENT PS84 PLUGGED SEGMENT PS84 PLUGGED AF\.113 AF\.I-MOV-PG-151E AF\.114 AFW-MOV-PG-151F AF\.114 AF\.l*MOV-PG-1518

£:::,. Page 1 u 4.0E-005 £:::,. Page 7 u 4.0E-005 £:::,. Page 7 u 4.0E-005 INSUFFICIENT FLOW THROUGH PIPE SEGMENT PS83 AFW13 Trans ers from Page(s) 1 8 9 HECK VALVE CV136 FLO\.I DIVERSION TO HECK VALVE CV138 INSUF FLO\.I FAILS TO OPEN NIT 2 lHRU PIPE FAILS TO OPEN HRU PIPE SEG EG PS94 S80,PS81, &PS82 AFW-CKV-FT-CV136 AF\.1-PSF-FC-XCONN AFW-CKV-FT-CV138

.OE-004 .SE-004 1.0E-004

INSUF FLOW THRU PIPE SEG PS80,PS81, & PS82

  • Tree: AFW -L Project: SURRY Pdge 2 of 9 Date Last Modified:

AF1115 lled Jul 06 13:11:54 1988 Q Transfers from Page(s) 1 7 I I I INSUFFICIENT INSUFFICIENT INSUFFICIENT FLOII THROUGH PIPE FLOW THROUGH PIPE FLOW THROUGH PIPE SEGMENT PS82 SEGMENT PS80 SEGMENT PS81 AFW16 AFW18 AFW17 6 Page 5 6 Page 4

/.-r4.

I I I I I I FAULTS IN PIPE FAILURE OF 4KV AC FAILURE OF 120V NO ACTUA Tl ON INSUF IIATER µNDETECT LKAGE SEGMENT PS82 PTRN aus 1J DC BUS 18 SIGNAL TO AFII AVAILABLE FROM rJ"HRU CHK VLV 138 PUMP 38 110,000 GALLON ~V27,CV58,0R CV89 r.!:T AF\123 ACP-TAC-LP-4KV1J DCP-TDC-LP-BUS1B AFW*ACT*FA-PMP3B AFII-TNK-VF-CST AFII-CCF*LK-STMBD

~ ~ ~ <._.> 6.0E-004 u 1.0E-006 * <._.> 1.0E-004 I I I I I I I INSUFFICIENT ~HECK VALVE CVlfl MANUAL VALVE MDP AFW :SB FAILS COMMON CAUSE MDP AFW 38 FAILS !TEST AND FLOII THRU PUMP FAILS TO OPEN ~V183 PLUGGED TO START FAILURE OF AFII rro RUN 6 HOURS MAINTENANCE ON DUE TO BACKFLOII MOTOR DRIVEN PUMP ~FW MDP 38 AFW27 AFII-CKV *FT* CV172 AFW*XVM*PG-XV183 AFW-MDP-FS*FW3B AFII-CCF-FS-Fll3AB AFW-MDP*FR-3B6HR AFII-MDP-MA-Fll3B

/.-A u 1.0E*UU't U 4.0E-uu:, LJ 6.3E-003 U 3.5E*UU't LJ 1.8E*UUlf U 2.0E-uu:s I I BACKFLOII BACKFLOII rrHROUGH MDP FW3A THROUGH TDP FW2 AF\129 AFW31 6 Page 2 6 Page 3 BACKFLOW HROUGH MDP FW3A AF\129 Trans ers from Page(s) 2 5 DP AFII 3A FAILS ACKFLOW THROUGH 0 START V157 AF\I-MDP*FS-F\13A 6.3E*003

BACKFLOW Tree: AFW-L HROUGH TDP FW2 Project: SURRY Page 3 of 9 Date Last Modified:

AFW31 Wed Jul 06 13:11:54 1988 Transfers from Page(s) 2 4 URBINE DRIVEN ACKFLOW THROUGH FW PUMP FAILS TO V142 TART AFW*TDP-FS-FW2 AFW-CKV-OO-CV142

  • E*
  • E*
  • INSUFFICIENT FLO\.I THROUGH PIPE

!SEGMENT PS81 AF\.117

  • Tree: AF\.I -L Project: SURRY Page 4 of 9 Date Last Modified:

\.led Jul 06 13:11:54 1988

~ Transfer from Page 2 I I I I I I FAULTS IN PIPE FAILURE OF 4KV AC FAILURE OF '120V ~O ACTUATION INSUF \.IATER UNDETECT LKAGE SEGMENT PS81 PTRN BUS 1H DC BUS 1A ISIGNAL TO AF\.I AVAILABLE FROM THRU CHK VLV 3A PUMP 3A 110,000 GALLON CV27,CV58,0R CV89

~<::T AF\.124 ACP-TAC-LP-4KV1H DCP*TDC-LP*BUS1A AF\.I-ACT*FA-PMP3A AF\.1-TNK-VF-CST AF\.1-CCF-LK-STMBD

~ <g> <e> <..> 6.UE-uu1t U l.UE-uuo <..> l .UE-uu<t I I. I I I I I INSUFFICIENT HECK VALVE.CV157 MANUAL VALVE MDP AF\.I 3A FAILS ~OMMON CAUSE MDP AF\.I 3A FAILS TEST AND FLO\.I THRU PUMP FAILS TO OPEN XV168 PLUGGED TO START FAILURE OF AF\.I !TO RUN 6 HOURS MAINTENANCE ON DUE TO BACKFLO\.I MOTOR DRIVEN PUMP M\.I MDP 3A AF\.126 AFU-CKV-FT*CV157 AF\.I-XVM-PG*XV168 AF\.l*MDP-FS-F\.13A AF\.l*CCF-FS-F\.13AB AF\.I-MDP-FR-3A6HR AF\.l*MDP-MA-F\.13A

~ u 1.0E-004 U 4.0E-005 u 6.3E-003 u 3.SE-004 U 1.SE-004 u 2.0E-003 I I BACKFLO\.I BACKFLO\.I THROUGH MDP F\.13B !THROUGH TDP F\.12 AF\.130 AF\.131

~ Page 4 ~ Page 3 BACKFLO\.I HROUGH MDP F\.13B Transfers from Page(s) 4 5 ACKFLOII THROUGH V172 AF\.I-MDP-FS-F\.13B AF\.I-CKV-OO-CV172

  • E-
  • E*

INSUFFICIENT Tree: Anl-L FLOW THROUGH PIPE Project: SURRY SEGMENT PS80 Page 5 of 9 Date Last Modified:

AFW18 Wed Jul 06 13:11:54 1988

,l.0 Transfer from Page 2 I I I I FAULTS IN PIPE INSUF WATER UNDETECT LKAGE INSUF STM FLOW SEGMENT PS80 TDP ~VAILABLE FROM THRU CHK VLV !TO TDPFW2 THRU P TRAIN 110,000 GALLON CV27,CV58,0R CV89 SEG PS98,PS99 r"C:T AFW25 AFW-TNK*VF*CST AFW-CCF-LK-STMBD AFW19 U 1.uE-uuo <..._;> 1*UE-004

.l-0 ~

I I I I I I I I INSUFFICIENT HECK VALVE CV142 MANUAL VALVE TURBINE DRIVEN JEST AND TURBINE DRIVEN INSUF STEAM INSUF STEAM FLOW THRU PUMP FAILS TO OPEN XV153 PLUGGED AFW PUMP FAILS TO MAINTENANCE ON PUMP FAILS TO RUN FLOW TO TDPFW2 FLOM TO TDPFW2 DUE TO BACKFLOW START AFW TDP 2 FOR 6 HOURS JHRU PIPE SEG ITHRU PIPE SEG oc:OA DCOO AFW28 AFW-CKV-FT*CV142 AFW-XVM*PG*XV153 AFW*TDP*FS-FW2 AFW-TDP-MA*FW2 AFW-TDP*FR*2P6HR AFW20 AFW21

~

LJ 1.0E-004 u 4.0E-005 u 1.lE-002 LJ 1.0E-002 LJ .s.OE-002

~

L::::.. Page 6 I I I I I I I BACKFLOW BACKFLOW AIR OPERATED NO ACTUATION AIR OPERATED .,QMHON CAUSE INSUF STM FLOM ifHROUGH MDP FW3A THROUGH MDP FW3B VALVE MS102A SIGNAL TO VALVE MS102A FAILURE OF MS102A ITHRU PIPE SEG FAILS TO OPEN AOV*MS102A PLUGGED AND B TO OPEN PS95,PS96, PS97 tp Ni 0 AFW29 AFW30 AFW-AOV-FT-102A AFW-ACT*FA-VLVA AFW*AOV-PG-102A AFW-CCF*FT-102AB AFW22 L::::.. Page 2 L::::.. Page 4 u 1.UE-uu.:i <...> b.UE-uu<t u 4.0E-uu::, u 1.uE-uu<t L::::.. Page 5 INSUF STM FLOW THRU PIPE SEG PS95,PS96, PS97 AFW22

~ Transfers from Page(s) 5 6

  • I I I INSUF STH FLOW INSUF STM FLOW INSUF STM FLOW THRU PIPE SEG iTHRU PIPE SEG ITHRU PIPE SEG PS95 DS96 PS97 AFW32 AFW33 AFW34

.l-0 I I 1-0I I 1-0I I

.,HECK VALVE CV182 MANUAL VALVE XV87 CHECK VALVE CV178 MANUAL VALVE CHECK VALVE CV176 MANUAL VALVE FAILS TO OPEN PLUGGED FAILS TO OPEN XV120 PLUGGED FAILS TO OPEN ~V158 PLUGGED AFW-CKV*FT-CV182 Afl.l-XVM-PG-XV87 AFW-CKV-FT-CV178 AFW-XVM-PG-XV120 AFW-CKV-FT*CV176 AFW-XVM*PG-XV158 LJ 1.0E-004 u 4.0E-005 u 1.0E-004 U 4.0E-005 u 1.0E-004 LJ 4.0E-005

Tree: AFW-L Project: SURRY Page 6 of 9 Date Last Modified:

AFW21 Wed Jul 06 13:11:54 1988 Transfer from Page 5 INSUF STM FLOW 0 ACTUATION IR OPERATED IR OPERATED OMMON CAUSE HRU PIPE SEG IGNAL TO ALVE MS102B ALVE MS102B FAILURE OF MS102A S95,PS96, PS97 OV-MS102B FAILS TO OPEN LUGGED ND B TO OPEN AF\.122 AFW-AOV-FT-102B AFW-AOV-PG-102B AFW-CCF-FT-102AB Page

  • E-
  • E-
  • E-

INSUFFICIENT Tree: AF\1-L FLOW THROUGH PIPE Project: SURRY EGMENT PS84 Page 7 of 9 Date Last Modified:

AF\114 \led Jul 06 13:11:54 1988 from Page(s) 1 8 FLOY DIVERSION TO HECK VALVE CV INSUF FLOW NIT 2 THRU PIPE FAILS TO OPEN HRU PIPE SEG EG PS94 S80,PS81, & PS82 AF\I-CKV-FT-CV131 . AF\115

  • E-

INSUF FLOY Tree: AFIJ-L THRU PIPE SEG Project: SURRY PS87 & PS88 Page 8 of 9 Date last Modified:

AFYS \led Jul 06 13:11:54 1988 Transfer from Page 1 41 I I INSUFFICIENT INSUFFICIENT FLOY THROUGH PIPE FLOY THROUGH PIPE SEGMENT PS87 SEGMENT PS88 AFIJ9 AFIJ10 t'.-0I I 1-0 I I INSUFFICIENT MOTOR OPERATED INSUFFICIENT MOTOR OPERATED FLOY THROUGH PIPE VALVE Fll151C FLOY THROUGH PIPE VALVE Fll151D SEGMENT PS83 PLUGGED SEGMENT PS84 PLUGGED AF\l13 AF\l-MOV-PG-151C AF\l14 AF\l-MOV-PG-151D L:::,. Page 1 u 4.0E-005 L:::,. Page 7 u 4.0E-005

INSUFFICIENT Tree: AFll*L FLOY THROUGH PIPE Project: SURRY SEGMENT PS85 Page 9 of 9 Date Last Modified:

AFY11 lled Jul 06 13:11:54 1988 Transfer from Page INSUFFICIENT OTOR OPERATED FLOII THROUGH PIPE ALVE FY151A SEGMENT PS83 LUGGED AFY13 Page

INSUF FLO\./ TO Tree: AF\./-L2 2 OR MORE SG FROM Project: SURRY THE AF\./ PUMPS Page 1 of 10 Date Last Modified:

AF\.1-2 \.led Jul 06 13:11:56 1988

~

I I I INSUFFICIENT INSUFFICIENT INSUFFICIENT FLO\./ TO STEAM FLO\./ TO STEAM FLO\./ TO STEAM GENERATORS A AND ,.GENERATORS BAND GENERATORS A AND

~

R L2-2 L2-3 L2-4

~ QI QI I I I I INSUF FLO\./ INSUF FLO\./ INSUF FLO\J INSUF FLO\./ INSUF FLO\./ INSUF FLO\./

THRU PIPE SEGMENT THRU PIPE SEGMENT THRU PIPE SEGMENT THRU PIPE SEGMENT THRU PIPE SEGMENT THRU PIPE SEGMENT PS93 TO SG A PS92 TO SG B PS92 TO SG B PS91 TO SG C PS93 TO SG A PS91 TO SG C AF\.11 AF\.12 AFW2 AF\./3 AFW1 AF\.13 L.::::. Page 1 L..::::. Page 9 £::,.. Page 9 £::,.. Page 10 £::,.. Page 1 L.::::. Page 1O INSUF FLO\./

THRU PIPE SEGMENT PS93 TO SG A AF\./1 Ir\ Trans ers from Page(s) 1 I I INSUF FLO\./ CHECK VALVE CV27 THRU PIPE SEGMENT FAILS TO OPEN PS89 AND PS90 AF\.14 AF\.I-CKV-FT-CV27

~ u 1.0E-004 I I INSUF FLO\./ INSUFFICIENT THROUGH PIPE FLO\I THROUGH PIPE SEGMENT PS89 SEGMENT PS90 AF\./7 AF\./8 ti\I I ti\I I INSUFFICIENT MOTOR OPERATED INSUFFICIENT MOTOR OPERATED FLO\./ THROUGH PIPE VALVE F\./151E FLO\I THROUGH PIPE VALVE F\1151F SEGMENT PS83 PLUGGED SEGMENT PS84 PLUGGED AF\.113 AFIJ-MOV-PG-151E AF\.114 AF\.I-MOV-PG-151F L..::::. Page 2 u 4.0E-005 £::,.. Page 8 u 4.0E-005

INSUFFICIENT Tree: AFll*L2 FLOII THROUGH PIPE Project: SURRY EGMENT PS83 Page 2 of 10 Date Last Modified:

AFll13 lled Jul 06 13:11:56 1988 Transfers from Page(s) 1910 FLOII DIVERSION TO HECK VALVE CV INSUF FLOW NIT 2 THRU PIPE FAILS TO OPEN THRU PIPE SEG EG PS94 S80 & PS81 OR AFW15 Page INSUF FLOW ITHRU PIPE SEG PS80 & PS81 OR bcA:1 AFll15 L;1 Transfers from Page(s) 2 8 I I INSUFFICIENT INSUF FLOW FLOII THROUGH PIPE THRUM DRIVEN AFII SEGMENT PS80 PMP PS81 OR PS82 AFW18 AFll16 f..r\ -~ Page .s I I I I FAULTS IN PIPE INSUF WATER UNDETECT LKAGE INSUF S FLOW SEGMENT PS80 11\VAILABLE FROM THRU CHK VLV TO TDPFW2 THRU P 110,000 GALLON CV27,CV58,0R CV89 SEG PS98 & PS99 r.~T AFW25 AFW*TNK*VF*CST AFW*CCF*LK*STMBD AFW19

/,.rl, u 1.0E-006 <> 1.0E-004 L;1 I I I I I I I I INSUFFICIENT ~HECK VALVE CV142 MANUAL VALVE TURBINE DRIVEN TEST AND TURBINE DRIVEN INSUF STEAM INSUF STEAM FLOII DUE TO FAILS TO OPEN XV153 PLUGGED AFII PUMP FAILS TO MAINTENANCE ON AFW PUMP FAILS TO FLOW TO TDPFll2 FLOW TO TDPFW2 BACKLEAKAGE START AFW TDP 2 RUN 1 HOUR :rHRU PIPE SEG THRU PIPE SEG bcOA DCOO AF1128 AFW*CKV*FT*CV142 AFW*XVM-PG*XV153 AFll*TDP*FS*F112 AFW*TDP-MA-Fll2 AFII-TDP-FR-2P1HR AF1120 AFW21 f..r\ U l.OE-004 U 4.0E-005 U 1.1E-uu~ u 1.0E-002 u s.uE-uu.s f..r\ L,:::,. Page r I I I I I I I BACKFLOW BACKFLOW AIR OPERATED NO ACTUA Tl ON AIR OPERATED COMMON CAUSE INSUF STMFLOW THROUGH MDP FW3A THROUGH MDP Fll3B VALVE MS102A SIGNAL TO VALVE MS102A FAILURE OF MS102A THRU PIPE SEG FAILS TO OPEN AOV-MS102A PLUGGED AND B TO OPEN PS95, PS96, &

DC,07 AFll31 AFll32 AFW-AOV-FT-102A AFII-ACT-FA-VLVA AFII-AOV-PG-102A AFW-CCF-FT-102AB AFW22 L,:::,. Page 5 L,:::,. Page 4 u l.OE-003 <> 6.0E-004 u 4.0E-005 u 1.0E-004 ~ Page 6

INSUF FLO\I Tree: AFW-L2 HRU MDRIVEN AFW Project: SURRY MP PS81 OR PS82 Page 3 of 10 Date Last Modified:

AFW16 Wed Jul 06 13:11:56 1988 Transfer from Page 2 INSUFFICIENT INSUFFICIENT FLOW THROUGH PIPE FLOW THROUGH PIPE EGMENT PS82 SEGMENT PS81 AFW23 AFW17 Page FAULTS IN PIPE FAILURE OF 4KV AC FAILURE OF 20V 0 ACTUATION INSUF WATER EGMENT PS82 US 1J C BUS 18 IGNAL TO AF\I VAILABLE FROM UMP 38 110,000 GALLON AFW-ACT-FA-PMP3B 6.0E-00 EST AND AINTENANCE ON FW MOP 38 AF\129 AFW-CKV*FT-CV172 AFW-XVH*PG*XV183 AFW-MDP*FS*FW3B AFW-CCF*FS-F\13AB AFW-MDP*FR-3B1HR AFW-MDP*MA-F\138

  • E-
  • E*
  • E*
  • E-
  • E-
  • E-BACKFLOW HROUGH TDP F\12 BACK LOW HROUGH TDP F\12 AFW30 Trans ers from Page(s) 3 4 URBINE DRIVEN ACKFLO\I THROUGH F\I PUMP FAILS TO V142 TART AFW-CKV-OO*CV142

.OE-003

INSUFFICIENT Tree: AFW -L2 FLOW THROUGH PIPE Project: SURRY SEGMENT PS81 Page 4 of 10 Date Last Modified:

AFW17 Wed Jul 06 13:11:56 1988 t'.-r\ Transfer from Page 3 I I I I I I FAULTS IN PIPE FAILURE OF 4KV AC FAILURE OF 120V NO ACTUA Tl ON INSUF WATER UNDETECT LKAGE SEGMENT PS81 BUS 1H DC BUS 1A !SIGNAL TO AFW ~VAILABLE FROM THRU CHK VLV J>UMP 3A 110,000 GALLON V27,CV58,0R CV89

~ST AFW24 ACP-TAC-LP-4KV1H DCP-TDC-LP-BUS1A AFW-ACT-FA-PMP3A AFW-TNK-VF-CST AFW-CCF-LK-STMBD

~ ~ ~ <._> b.UE-004 u 1.0E-UOb <._> 1.UE-004 I I I I I I I INSUFFICIENT HECK VALVE CV157 MANUAL VALVE MDP AFW 3A FAILS ~OMMON CAUSE MDP AFW 3A FAILS ITEST AND FLO\./ DUE TO FAILS TO OPEN KV168 PLUGGED !TO START FAILURE OF AF\I !TO RUN 1 HOUR ~AINTENANCE ON BACKLEAKAGE MOTOR DRIVEN PUMP ~FW MOP 3A AFW27 AFW-CKV-FT-CV157 AFW-XVM-PG-XV168 AFW-MDP-FS-FW3A AFW-CCF-FS-FW3AB AFW-MDP-FR-3A1HR AFW-MDP-MA-FW3A

~ u 1.0E-004 u 4.0E-005 u 6.3E-003 u 3.SE-004 u 3.0E-005 u 2.0E-003 I I BACKFLOW BACKFLOW

!THROUGH TOP F\12 THROUGH MOP FW3B AF\130 AFW32 L.::::.. Page j L.::::.. Page 4 BACKFLOW HROUGH MOP FW3B AF\132 Transfers from Page(s) 4 2 ACKFLOW THROUGH V172 AFW-MDP-FS-FW3B AFW*CKV-OO-CV172

  • E-
  • E-

BACKFLOW HROUGH MDP FIJ3A Tree: AFIJ-L2 Project: SURRY P~ge 5 of 10 Date Last Modified:

AFIJ31

\Jed Jul 06 13:11:56 1988 Transfers from Page(s) 3 2 ACKFLOIJ THROUGH V157

INSUF STMFLO\.I Tree: AF\I-L2 1"HRU PIPE SEG Project: SURRY PS95, PS96, & Page 6 of 10 DC:07 Date Last Modified:

AF\.122 \led Jul 06 13:11:56 1988 y Transfers from Page(s) 2 7 I I I INSUF STEAM INSUF STEAM INSUF S FLO\.I FLO\.I THRU PIPE FLO\.I THRU PIPE THRU PIPE SEG SEG PS95 SEG PS96 bS97 AF\.133 AF\.134 AF\.135

~ ~ ~

I I I I I I

~HECK VALVE CV182 MANUAL VALVE XV87 ~HECK VALVE CV178 MANUAL VALVE CHECK VALVE CV176 MANUAL VALVE FAILS TO OPEN PLUGGED FAILS TO OPEN XV120 PLUGGED FAILS TO OPEN XV158 PLUGGED AF\.l*CKV-FT*CV182 AF\.l*XVM-PG*XV87 AF\.I-CKV*FT*CV178 AF\.I-XVM*PG*XV120 AF\.I-CKV-FT*CV176 AF\.I-XVM-PG*XV158 u 1.0E-004 u 4.0E-005 u 1.0E-004 u 4.0E-005 u 1.0E-004 u 4.0E-005

INSUF STEAM FLOW TO TDPF\./2 THRU PIPE SEG

  • Tree: AF\l*L2 Project: SURRY Page 7 of 10 Date Last Modified:

AFY21 Wed Jul 06 13:11:56 1988 Transfer from Page 2 0 ACTUATION IR OPERATED IR OPERATED OMMON CAUSE IGNAL TO ALVE MS102B ALVE MS102B FAILURE OF MS102A OV-MS102B FAILS TO OPEN LUGGED ND B TO OPEN AFW-AOV*FT*102B

  • E-

INSUFFICIENT Tree: AF\l*L2 FLOW THROUGH PIPE Project: SURRY EGMENT PS84 Page 8 of 10 Date Last Modified:

AFW14 \led Jul 06 13:11:56 1988 Transfers from Page(s) 1 9 10 FLOW DIVERSION TO HECK VALVE CV NIT 2 THRU PIPE FAILS TO OPEN SEG PS94 AFW-CKV-FT-CV131 AF\I-CKV-FT*CV133 AF\115

  • E-
  • E- Page

Tree: AF\l*L2 Project: SURRY PaQe 9 of 10 Date Last Modified:

AHl2 \led Jul 06 13:11:56 1988 Transfers from Page(s)

INSUF FLO\I HECK VALVE CV HRU PIPE SEGMENT FAILS TO OPEN S87 AND PS88 AF\15 INSUFFICIENT INSUFFICIENT LO\I THROUGH PIPE FLO\I THROUGH PIPE EGMENT PS87 SEGMENT PS88 AF\110 INSUFFICIENT OTOR OPERATED INSUFFICIENT OTOR OPERATED FLO\I THROUGH PIPE ALVE F\1151C FLO\I THROUGH PIPE ALVE F\1151D EGMENT PS83 LUGGED SEGMENT PS84 LUGGED ttl AF\113 AF\I-MOV*PG-151C AF\114 AF\l*MOV-PG-151D I

c:.:,

c:.:,

  • E-
  • E-

INSUF FLOY Tree: AHI-L2 HRU PIPE SEGMENT Project: SURRY S91 TO SG C Page 10 of 10 Date Last Modified:

AFY3 Wed Jul 06 13:11:56 1988 Transfers from Page(s) 1 INSUF FLOY HECK VALVE CV HRU PIPE SEGMENT FAILS TO OPEN S85 AND PS86 AFW6 INSUFFICIENT INSUFFICIENT FLOW THROUGH PIPE FLOW THROUGH PIPE SEGMENT PS85 SEGMENT PS86 INSUFFICIENT OTOR OPERATED INSUFFICIENT OTOR OPERATED FLOY THROUGH PIPE ALVE FW151A FLOY THROUGH PIPE ALVE FW151B SEGMENT PS83 LUGGED EGMENT PS84 LUGGED tp AFW13

~

Page Page

INSUF FLOW TO 1/2 SG FRM AT EAST 1 AFW PUMP AF\1-3 Tree: AFW-L3 Project: SURRY Page 1 of 8 Date Last Modified:

\led Jul 06 13:11:56 1988 l,J.

I I INSUF FLOW INSUF FLO\I THRU PIPE SEG THRU PIPE SEG PS92 TO SG B PS91 TO SG C AF\12 AF\13

~ ~

I I I I INSUF FLOW ~HECK VALVE CV58 INSUF FLOW CHECK VALVE CV89

~HRU PIPE SEG FAILS TO OPEN THRU PIPE SEG FAILS TO OPEN l>S87 &PS88 l>S85 &PS86 AF\15 AFW-CKV-FT-CV58 AFW6 AF\I-CKV-FT-CV89

~ u 1.0E-004 ~ Page 8 U 1.0E-004 I I INSUFFICIENT INSUFFICIENT FLOW THROUGH PIPE FLOW THROUGH PIPE

~EGMENT PS87 SEGMENT PS88 AF\19 AF\110

/.-A h\I I I I INSUFFICIENT MOTOR OPERATED INSUFFICIENT MOTOR OPERATED FLO\I THROUGH PIPE VALVE F\1151C FLO\I THROUGH PIPE ~ALVE F\1151D SEGMENT PS83 PLUGGED SEGMENT PS84 l>LUGGED AF\113 AFW-MOV*PG-151C AF\114 AF\l*MOV*PG*151D L.::::,. Page 1 U

  • 4.0E-005 L.::::,. Page 7 U 4.0E-005 INSUFFICIENT FLO\I THROUGH PIPE EGMENT PS83 AF\113 Trans ers from Page(s) 1 8 HECK VALVE CV136 FLO\I DIVERSION TO HECK VALVE CV 38 INSUF FLO\I FAILS TO OPEN NIT 2 THRU PIPE FAILS TO OPEN HRU PIPE SEG EG PS94 S80,PS81, & PS82 AF\l*CKV*FT-CV136 AFW-PSF-FC-XCONN AF\l*CKV-FT-CV138 AF\115 1.0E-004 1.5E-004 1.0E-004 Page

INSUF FLOW Tree: AF \I-L3 THRU PIPE SEG Project: SURRY PS80,PS81, & PS82 Page 2 of 8 Date Last Modified:

AFW15 \led Jul 06 13: 11 :56 1988 L.;1 Transfers from Page(s) 1 7 I I I INSUFFICIENT INSUFFICIENT INSUFFICIENT FLOW THROUGH PIPE FLOW THROUGH PIPE FLOW THROUGH PIPE SEGMENT PS82 SEGMENT PSBO SEGMENT PS81 AFW16 AF\118 AF\117 L.::::,. Page 5 L.::::,. Page 4

~

I I I I I I FAULTS IN PIPE FAILURE OF 4KV AC FAILURE OF 120V NO ACTUA Tl ON INSUF WATER UNDETECT LKAGE SEGMENT PS82 PTRN BUS 1J ~C BUS 1B SIGNAL TO AF\I !AVAILABLE FROM THRU CHK VLV 13B PUMP 3B 110,000 GALLON CV27,CV58,0R CV89

~!:T AFW23 ACP-TAC-LP-4KV1J DCP-TDC-LP-BUS1B AFW-ACT-FA*PMP3B AF\1-TNK-VF-CST AF\1-CCF-LK-STMBD

<..;> 6.0E-004 U l .OE-006 <..;> l .OE-004

~ ~ ~

I I I I I I I INSUFFICIENT vHECK VALVE CV1{2 MANUAL VALVE MDP AFW 3B FAILS ~OMMON CAUSE MDP AFW 3B FAILS TEST AND FLOW THRU PUMP FAILS TO OPEN ~V183 PLUGGED TO START FAILURE OF AF\I TO RUN 6 HOURS MAINTENANCE ON DUE TO BACKFLOW MOTOR DRIVEN PUMP 11\FW MDP 3B AFW27 AFW-CKV-FT-CV172 AFW-XVM-PG-XV183 AFW-MDP-FS-FW3B AF\I-CCF-FS-FW3AB AFW-MDP-FR-3B6HR AFW-MDP-MA- F\13B

~ u 1.0E-004 U 4.0E-UU) U 6.jE-uu.> U j.5E-uu<t u l.BE-uu<t U 2.0E-003 I I BACKFLOW BACKFLOW THROUGH MDP FW3A THROUGH TDP FW2 AFW29 AFW31 L.::::,. Page 2 L.::::,. Page 3 BACKFLOW HROUGH MDP FW3A AFW29 Trans ers from Page(s) 2 5 DP AFW 3A FAILS ACKFLOW THROUGH TO START V157 AFW-MDP-FS-FW3A AFW-CKV-OO-CV157 6.3E-003 .OE-003

BACKFLOIJ Tree: AFIJ-L3 HROUGH TDP F\12 Project: SURRY Page 3 of 8 Date Last Modified:

AFIJ31 Wed Jul 06 13:11:56 1988 Transfers from Page(s) 2 4 TURBINE DRIVEN ACKFLOIJ THROUGH FIJ PUMP FAILS TO V142 TART tJ:I I

-~

i:,.:,

INSUFFICIENT Tree: AFW -L3 FLO\I THROUGH PIPE Project: SURRY SEGMENT PS81 Page 4 of 8 Date Last Modified:

AFW17 Wed Jul 06 13:11:56 1988 t-0, Transfer from Page 2 I I I I I I FAULTS IN PIPE FAILURE OF 4KV AC FAILURE OF 120V NO ACTUA Tl ON INSUF WATER UNDETECT LKAGE SEGMENT PS81 PTRN BUS 1H DC BUS 1A SIGNAL TO AFW AVAILABLE FROM THRU CHK VLV 3A PUMP 3A 110,000 GALLON CV27,CV58,0R CV89 r'C::T AFW24 ACP-TAC-LP-4KV1H DCP-TDC-LP-BUS1A AFW-ACT-FA-PMP3A AFW*TNK-VF-CST AFW-CCF-LK-STMBD

<g> <g> <...;> 6.0E-uu<+ U 1.0E-uuo <...;> 1*OE-_uu<t h\ I I I I I I I INSUFFICIENT CHECK VALVE CV157 MANUAL VALVE MDP AFW 3A FAILS .,OMMON CAUSE MDP AFW 3A FAILS !TEST AND FLOW THRU PUMP FAILS TO OPEN XV168 PLUGGED ITO START FAILURE OF AFW TO RUN 6 HOURS MAINTENANCE ON DUE TO BACKFLO\I MOTOR DRIVEN PUMP 1\FW MDP 3A AFW26 AFW-CKV-FT-CV157 AFW-XVM-PG-XV168 AFW-MDP-FS-FW3A AFW-CCF-FS-FW3AB AFW-MDP-FR-3A6HR AFW-MDP-MA-FW3A t-0, U 1.0E-004 u 4.0E-005 u 6.3E-003 u 3.SE-004 u 1.BE-004 u 2.0E-003 I I BACKFLOW BACKFLOW THROUGH MDP F\13B THROUGH TDP FW2 AF\130 AFW31 L,::::,,. Page 4 6. Page 3 BACKFLOW HROUGH MDP FW3B AFW30 Transfers from Page(s') 4 5 ACKFLOW THROUGH V172 AFW-CKV-OO-CV172

  • E-

Tree: AFW-L3 Project: SURRY Page 5 of 8 Date Last Modified:

AF\118 Wed Jul 06 13:11:56 1988 Transfer from Page 2 FAULTS IN PIPE INSUF WATER INSUF STH FLOW EGMENT PS80 TDP VAILABLE FROM 0 TDPFW2 THRU P RAIN 110,000 GALLON EG PS98,PS99 AFW19 URBINE DRIVEN INSUF STEAM INSUF STEAM UMP FAILS TO RUN FLOW TO TDPFW2 FLOW TO TDPFW2 FOR 6 HOURS HRU PIPE SEG THRU PIPE SEG AFW-CKV-FT-CV142 AFW-XVM-PG-XV153 AFW-TDP-FR-2P6HR AFW20 AFW21

.OE-004 .OE-005 3.0E-002 Page 6 BACKFLOW IR OPERATED INSUF STM FLOW HROUGH MDP FW3B ALVE HS102A HRU PIPE SEG FAILS TO OPEN S95,PS96, PS97 AFW-AOV-FT-102A AFW-ACT-FA-VLVA AFW-AOV-PG-102A AFW-CCF-FT-102AB AFW22 Page

  • E-
  • E-
  • E-
  • E-I NSUF STM FLOW THRU PIPE SEG PS95,PS96, PS97' AFW22 l;J,. Transfers from Page(s) 5 6 I I I INSUF STM FLOW INSUF STM FLOW INSUF STM FLOW THRU PIPE SEG THRU PIPE SEG ITHRU PIPE SEG PS95 PS96 1>597 AFW32 AFW33 AFW34

~ ~ ~

I I I I I I CHECK VALVE CV182 MANUAL VALVE XV87 CHECK VALVE CV178 MANUAL VALVE ~HECK VALVE CV176 MANUAL VALVE FAILS TO OPEN ~LUGGED FAILS TO OPEN KV120 PLUGGED FAILS TO OPEN XV158 PLUGGED AFW-CKV-FT-CV182 AFW-XVM-PG-XV87 AFW-CKV-FT-CV178 AFW-XVM-PG-XV120 AFW-CKV-FT-CV176 AFW-XVM-PG-XV158 U

  • 1.0E-004 u 4.0E-005 u 1.0E-004 u 4.0E-005 u 1.0E-004 u 4.0E-005

INSUF STEAM Tree: AF\.I-L3 FLO\.I TO TDPF\.12 Project: SURRY THRU PIPE SEG Page 6 of 8 Date Last Modified:

AF\.121 \.led Jul 06 13:11:56 1988 Transfer from Page 5 INSUF STM FLOW 0 ACTUATION IR OPERATED IR OPERATED OMMON CAUSE THRU PIPE SEG IGNAL TO ALVE MS102B ALVE MS102B FAILURE OF MS102A S95,PS96, PS97 OV-MS102B FAILS TO OPEN LUGGED ND B TO OPEN AF\.122 AF\.1-ACT-FA-VLVB AF\.I-AOV-FT-1028 AF\.I-AOV-PG-1028 AF\.I-CCF-FT-102AB Page

  • E-
  • E-
  • E-
  • E-

INSUFFICIENT Tree: AFII-L3 FLOII THROUGH PIPE Project: SURRY EGMENT PS84 Pl\ge 7 of 8 Date Last Modified:

Af!,114 Wed Jul 06 13:11:56 1988 Transfers from Page(s) 1 8 FLOl,I DIVERSION TO HECK VALVE CV I NSUF FLOY NIT 2 THRU PIPE FAILS TO OPEN HRU PIPE SEG EG PS94 S80,PS81, & PS82 AFW-CKV*FT*CV133 AFII-PSF-FC-XCONN AFW-CKV*FT-CV131 AFW15

  • E*
  • E-
  • E- Page

INSUF FLOII Tree:* AFI./-L3 HRU PIPE SEG Project: SURRY S85 &PS86 Page 8 of 8 Date Last Modified:

AFll6 1./ed Jul 06 13:11:56 1988 Transfer from Page 1 INSUFFICIENT INSUFFICIENT FLOII THROUGH PIPE FLOII THROUGH PIPE EGMENT PS85 EGMENT PS86 AFW11 AFll12 INSUFFICIENT OTOR OPERATED INSUFFICIENT OTOR OPERATED FLOII THROUGH PIPE ALVE Fll151A FLOII THROUGH PIPE ALVE Fll151B SEGMENT PS83 LUGGED EGMENT PS84 LUGGED AFl./13 AFII-MOV-PG-151A AFl./14 AFII-MOV-PG-151 B Page 4.0E-005 Page 4.0E-005

.--------------------------------------------------------~

INSUF FLOII FROM BOTH CSS PMPS TO SPRAY IUCA"J:DC::

Tree: CSS Project: SURRY Page 1 of 2 Date Last Modified:

css Hon Aug 29 07:09:16 1988 L;1 I I INSUFFICIENT INSUFFICIENT FLOY FROM CSS FLOY FROM CSS

!TRAIN A !TRAIN B CSS1 CSS2 L::::::.. Page 2

~

I I I I I I I I INSUF FLOII ~HECK VALVE CV13 INSUFFICIENT FAILURE OF 480V FAILURE OF 120V NO SIGNAL FROM MANUAL VALVE xva INSUFFICIENT THRU PSSO CPMP FAILS TO OPEN ON IIATER AVAILABLE ~C BUS 1H PC BUS 1A CLCS TRAIN A ~EFT OPEN FLOII THROUGH PIPE TRAIN CS1A CONTD) PEMAND FROM THE RWST FOLLOYING PUMP ~EG PS52 &PS53

ri:c::r CSS11 CSS-CKV*FT*CV13 RIIT-TNK-LF-RIIST ACP-TAC-LP-4801H DCP-TDC-LP-BUS1A CLS-ACT-FA-CLS2A CSS-XVM-RE-XV8 CSS3

/.-0 u 1.0E-004 u 2.7E-006 ~ ~ <.,> 1.6E*003 U 3.0E-003

~

I I I I I I I I

~ss MOP 1A FAILS ~ss MOP lA FAILS  ::OMMON CAUSE FILTER FLCSlA MOTOR OPERATED TEST AND INSUFFICIENT INSUFFICIENT TO START ON !TO RUN FOR 1 HOUR FAILURE OF CSS PLUGGED ~ALVE 100A MAINTENANCE ON FLOY THROUGH PIPE FLOY THROUGH PIPE DEMAND MDPS TO START PLUGGED CSS MOP 1A !SEGMENT PS52 SEGMENT PS53 CSS-MDP-FS-CS1A CSS-MDP-FR-1A1HR CSS-CCF*FS-CS1AB CSS-FLT-PG-CS1A CSS-MOV-PG-100A CSS-MDP-MA*CS1A csss CSS6 U j.UE*UOj U 3.UE*UU) LJ 3.3E*UU't U 3.0E*UU.> u 1.0E*UU't u 2.0E*UUj ~ Page 1

~

I I I I FAILURE OF 480V MOTOR OPER VALVE NO SIGNAL FROM ~OMMON CAUSE

~C HCC 1H1*2 101A FAILS TO CLCS TRAIN A FAILURE OF CSS OPEN ON DEMAND MOVS 101A AND 101 ACP-TAC-LP*1H1-2 CSS-MOV-FT-101A CLS-ACT-FA-CLS2A CSS-CCF-FT-101AB

~ U 3.0E-003 <.> 1.6E-003 U 2.6E*004 INSUFFICIENT FLO\I THROUGH PIPE EGMENT PS53 CSS6 Trans er from Page 1 FAILURE OF 480V OTOR OPER VALVE 0 SIGNAL FROM OMMON CAUSE C MCC 1J1-2 101B FAILS TO LCS TRAIN B FAILURE OF CSS PEN ON DEMAND OVS 101A AND 101 ACP*TAC-LP*1J1*2 CSS-MOV-FT-101B CLS-ACT-FA-CLS2B CSS-CCF*FT-101AB

~ 3.0E-003 .6E-003 2.6E-00

INSUFFICIENT Tree: css FLOIJ FROM CSS Project: SURRY TRAIN B Page 2 of 2 Date Last Modified:

CSS2 Mon Aug 29 07:09:16 1988 Transfer from Page 1

?-0I I I I I I I I INSUF FLOIJ wHECK VALVE CV24 INSUFFICIENT FAILURE OF 480V FAILURE OF 120V NO SIGNAL FROM MANUAL VLV xvi:, INSUFFICIENT THRU PS51 (PMP FAILS TO OPEN ON \./ATER AVAILABLE AC BUS 1J pc BUS 1B CLCS TRAIN B LEFT OPEN FLOIJ THROUGH PIPE

~RAIN CS1B CONTD) DEMAND FROM THE RIJST FOLLOIJING PUMP SEG PS54 & PS55 n:c:T CSS12 CSS-CKV-FT-CV24 RIJT-TNK-LF-RIJST ACP-TAC-LP-4801J DCP-TDC-LP-BUS1B CLS-ACT-FA-CLS2B CSS-XVM-RE-XV15 CSS4 t'.-r\ u 1.0E-U04 u l.fE-UUo ~ ~ <> l.oE-003 LJ .S.UE-UO.S L;1 I I I I I I I I CSS MDP 1B FAILS CSS MDP 1B FAILS COMMON CAUSE FILTER FLCS1B r,IOTOR OPERATED TEST AND INSUFFICIENT INSUFFICIENT TO START ON TO RUN 1 HOUR FAILURE OF CSS PLUGGED i',IALVE 100B MAINTENANCE ON FLOIJ THROUGH PIPE FLOIJ THROUGH PIPE DEMAND MDPS TO START PLUGGED ... SS MOP 1B !SEGMENT PS54 SEGMENT PS55 CSS-MDP-FS-CSlB CSS-MDP-FR-1B1HR CSS-CCF-FS-CS1AB CSS-FLT-PG-CSlB CSS-MOV-PG-100B CSS-MDP-MA-CS1B CSS7 CSS8 U 3.0E-003 u 3.0E-005 u 3.3E-004 u 3.0E-003 u 1.0E-004 u 2.0E-003 /,.r\ £:::,. Page 2 I I I I FAILURE OF 480V ~O SIGNAL FROM MOTOR OPER VALVE ~OMMON CAUSE

~C HCC 1H1-2* ~LCS TRAIN A 101C FAILS TO FAILURE OF CSS OPEN ON DEMAND MOVS 101C AND 101 ACP-TAC-LP-1H1-2 CLS-ACT-FA-CLS2A CSS-MOV-FT-101C CSS-CCF-FT-101CD

~ <.,_> 1.oE-UU.) u 3.0E-UU.) u 2.6E-004 INSUFFICIENT FLOIJ THROUGH PIPE EGMENT PS55 CSS8 Transfer from Page 2 0 SIGNAL FROM OTOR OPER VALVE OMMON CAUSE LCS TRAIN B 101D FAILS TO FAILURE OF CSS PEN ON DEMAND OVS 101C AND 101 ACP-TAC-LP-1J1-2 CLS-ACT-FA-CLS2B CSS-MOV-FT-101D CSS-CCF-FT*101CD

~

  • E-
  • E-
  • E-

rnru INSF CPC CH1A:SII TO LUBE OIL/CC TO SEAL CD CPCA Tree: CPCA Project: SURRY Page 1 of 3 Dbte Last Modified:

lled Jul 06 13:43:50 1988

-~

I I INSUFFICIENT INSUFFICIENT COOL! NG OF LUBE FLO\I THRU SEAL OIL HX TO HDPCH1A COOLER OF HDPCH1A CPCA1 CPCA2

~ Page 3

~

I I INSUFFICIENT INSUF FLO\I FLOII THROUGH PIPE THRU PIPE SEGMENT PS100 SEGMENTS PS102 OR 11ff~

CPC1 CPCA3

~ I I t:-0I I I I I INSUFFICIENT FAILURE OF 480V INSUFFICIENT MDP CC2A FAILS TO INSUFFICIENT MANUAL VALVE MANUAL VALVE FLO\I THROUGH AC HCC 1H1-1 INTAKE CANAL RUN AS LONG AS FLOII THROUGH PIPE XV171 PLUGGED )(V118 PLUGGED PS100 STRAINERS LEVEL CHRGNG PUMPS SEGMENT PS101 CPC8 ACP-TAC-LP-1H1-1 MCII-CCF-VF-INLVL CPC-MDP-FR-Sll10A CPC2 CPC-XVM-PG-XV171 CPC-XVM-PG-XV118

~ ~ u 1.0E-UOY u 8.0E-U0.) ~ u 8.4E-006 u 8.4E-006 I I I I I I I I STRAINER 1A COMMON MODE LOSS STRAINER 2A FAULTS IN PIPE FAILURE OF 480V NO ACTUATION COMMON CAUSE FAULTS IN PIPE PLUGGED OF FLII STRAINERS PLUGGED (18 HOUR) SEGMENT PS101 AC MCC 1J1-1 SIGNAL TO START FAILURES IN PIPE SEGMENT PS101 2A AND 2B SIi PUMP 10B SEGMENT PS101 CONTD CPC-STR-PG-STR1A CPC-CCF-LF-STRAB CPC-STR-PG-STR2A CPC5 ACP-TAC-LP-1J1-1 CPC-ICC-FA-SIIPBS CPC9 CPC7 U. 1.8E-004 u 4.7E-005 u l.BE-004 t:-0I ~ <...;> 3.2E-004 L::,. Page 2 L::,. Page 1 I I I I I MANUAL VALVE STRAINER lB MANUAL VALVE MANUAL VALVE STRAINER 2B CHECK VALVE CV108

)(V305 PLUGGED PLUGGED XV306 PLUGGED )(V261 PLUGGED PLUGGED FAILS TO OPEN CPC-XVM-PG-XV305 CPC-STR-PG-STR1B CPC-XVM-PG-XV306 CPC-XVM-PG-XV261 CPC-STR-PG-STR2B CPC-CKV-FT-CV108 u 8.4E-006 u l .8E-UU4 u 8.4E-006 u 8.4E-uuo u l.8E-UU<t u 1.0E-UU<t FAULTS IN PIPE EGMENT PS101 ONTD CPC7 Transfer from Page 1 OP CC B FAILS TO EST AND ANUAL VALVE ANUAL VALVE HECK VALVE CV UN AS LONG AS AINTENANCE ON V109 PLUGGED V119 PLUGGED FAILS TO OPEN HRGNG PUMPS DP Sll10B CPC-MDP-FS-Sll10B CPC-MDP-FR-Sll10B CPC-MDP-MA-Sll10B CPC-XVM:PG-XV109 CPC-XVM-PG-XV119 CPC-CKV*FT-CV262

  • E-
  • E-
  • E-
  • E-
  • E- .OE-00

COMMON CAUSE Tree: CPCA FAILURES IN PIPE Project: SURRY EGMENT PS101 Page 2 of 3 Date Last Modified:

CPC9 lled Jul 06 13:43:50 1988 Transfer from Page 1 BACKFLOII OMMON MODE LOSS INSUFFICIENT HROUGH PS100 F FLY STRAINERS INTAKE CANAL A AND 2B EVEL CPC10 MCll*CCF-VF-INLVL

  • E-CPC-CKV-OO-CV113 CPC-MDP-FR-Sll10A 1.0E-003 8.0E-003

INSUFFICIENT FLO\I THRU SEAL OOLER OF MDPCH1A Tree: CPCA Project: SURRY Page 3 of 3 Date Last Modified:

CPCA2 Ued Jul 06 13:43:50 1988 Transfer from Page 1 INSUFFICIENT INSUFFICIENT FLO\I THROUGH PIPE FLOU THROUGH PIPE EGMENT PS111 EGMENT PS118 FAULTS IN PIPE FAILURE OF 480V 0 ACTUATION DP CC2A FAILS TO FAILURE OF 80V EGMENT PS111 C MCC 1J1*1 IGNAL TO START UN AS LONG AS C MCC 1H1*1 ONTO PC PUMP 2B HRGNG PUMPS CPC6 CPC*MDP*FR*CC2A

.8E*OO BACKFLOW ANUAL VALVE HECK VALVE CV HROOGH PS118 V781 PLUGGED FAILS TO OPEN lr3

.r:.

-:i CPC11 CPC*MDP*FS*CC2B CPC*MDP*FR*CC2B CPC*MDP*MA*CC2B CPC*XVM*PG*XV701 CPC*XVM*PG*XV781 CPC*CKV*FT*CV752

  • E*
  • E*
  • E*
  • E*
  • E*
  • E*

CPC*CKV*OO*CV764 CPC*MDP*FR*CC2A

.OE*003 .BE*OO

Tree: CPCB Project: SURRY Page 1 of 2 Date Last Modified:

Wed Jul 06 13:12:00 1988 INSUFFICIENT DOLING OF LUBE IL HX TO MDPCH1B CPCB1 CPCB2 Page FAULTS IN PIPE INSUFFICIENT EGMENT PS105 FLOW THROUGH PIPE EG PS102 &103 CPCB3 ANUAL VALVE ANUAL VALVE ANUAL VALVE INSUFFICIENT INSUFFICIENT V126 PLUGGED V117 PLUGGED V170 PLUGGED FLOW THROUGH PIPE FLOW THROUGH PIPE EGMENTS PS102 EGMENTS PS103 CPC-XVM-PG-XV122 CPC-XVM-PG-XV125 CPC-XVM-PG-XV126 CPC-XVM-PG-XV117 CPC-XVM-PG-XV170 CPC-AOV-FT-108B CPCB5 CPCB6

  • E-
  • E-
  • E-
  • E-
  • E-
  • E- Page CPC-XVM-PG-XV171 CPC1 8.4E-006 INSUFFICIENT FLOW THROUGH PIPE EGMENTS PS103 Ci>CB6 Trans er from Page 1 ANUAL VALVE INSUF FLOW THRU V118 PLUGGED PC PIPE SEGMENT S101 CPC-XVM-PG-XV118 CPC2 8.4E-006 ~
  • Tree: CPCB Project: SURRY Pape 2 of 2 Date Last Modified:

CPCB2 \Jed Jul 06 13:12:00 1988 Transfer from Page 1 INSUF FLO\J THRU INSUF FLO\J THRU PC PIPE SEGMENT PC PIPE SEGMENT S111 S118 CPC3 CPC4

INSF CPC Tree: CPCC

~H1C:Sll TO LUBE Project: SURRY OIL/CC TO SEAL Page 1 of 1 rnnl CD Date Last Modified:

CPCC lled Jul 06 13:12:02 1988

~

I I INSUFFICIENT INSUFFICIENT COOLING OF LUBE FLOII THRU SEAL OIL HX TO MDPCH1C COOLER OF un1>.r.111r.

CPCC1 CPCC2 Page 1

~

L,:::,,.

I I I FAULTS IN PIPE NO ACTUATION INSUFFICIENT SEGMENT PS106 SIGNAL TO LUBE FLOII THROUGH PIPE OIL COOLING TCV8 SEG PS101 & 103 CPCC7 CPC*ICC*FA*TCVSC CPCC3

<;> 1.6E*003

~ ~

I I I I I I I I MANUAL VALVE MANUAL VALVE MANUAL VALVE MANUAL VALVE MANUAL VALVE AOV Sll108C FAILS INSUFFICIENT INSUF FLOII THRU

~V120 PLUGGED ~V123 PLUGGED XV124 PLUGGED ~V172 PLUGGED KV173 PLUGGED TO OPEN FLOII THRU PIPE *~PC PIPE SEGMENT

$EG PS102 OR 103 l>S101 CPC*XVM*PG*XV120 CPC*XVM*PG~XV123 CPC*XVH*PG*XV124 CPC*XVM*PG*XV172 CPC*XVM*PG*XV173 CPC*AOV-FT-108C CPCCS CPC2 U 4.0E-uu::, U 4.0E-uu::, U 4.0E-uu::, U 4.0E-uu::, u 4.uE-uu::, u 1.UE*UO.S 1--A ~

I I I MANUAL VALVE ,-,ANUAL VALVE INSUF FLOII THRU

~V118 PLUGGED ~V171 PLUGGED CPC PIPE SEGMENT PS1DO CPC*XVM*PG*XV118 CPC*XVM*PG*XV171 CPC1 u 8.4E*006 u 8.4E*006 ~

Trans er from Page 1 INSUF FLOII THRU INSUF FLOII THRU PC PIPE SEGMENT PC PIPE SEGMENT S111 S118 CPC3 CPC4

FAIL HIGH PRES FLOW-CLD LEGS FRH

~ CHRG PHP AUTO Tree: D1 Project: SURRY Page 1 of 7 Date Last Modified:

D1 Fri Jul 08 09: 17:54 1988

~

I I I INSUF FLOW HECK VALVE CVU.) INSUF FLOW FROM CHARGING FAILS TO OPEN THRU PIPE PUMP DISCHARGE SEGMENTS

... .,..,.., PS21 AND lucAncn HPl2 HPI-CKV-FT-CV225 HP13 U l.OE-uu<+

~ ~

I I I I I INSUFFICIENT INSUFFICIENT INSUF FLOW I NSUFF I Cl ENT INSUFFICIENT FLOW THROUGH PIPE FLOW THROUGH PIPE THROUGH PIPE FLOW THROUGH PIPE FLOW THROUGH PIPE SEGMENT PS12 SEGMENT PS13 SEGMENT PS11 SEGMENT PS22 SEGMENT PS21 HPl5 HP16 HPl4 HPl7 HPIB L::!. Page 5 ~ Page 1 L::!. Page 6 L::!. Page 7

~

I I I I I I I INSUFFICIENT COMMON CAUSE NO SIGNAL FROM MOTOR OPERATED J,IOTOR OPERATED CHECK VALVE CV267 INSUF FLOW FLOW THROUGH MDP FAILURE TO START SIS TRAIN B VALVE 1269A VALVE 1286B FAILS TO OPEN FROM CHARGING t:H-1B IN PS12 MDPS CH1B,CH1C PLUGGED PLUGGED PUMP SUCTION UCftnCD HPl17 HPI-CCF-FS-CH1BC SIS-ACT-FA-SI SB HPI-MOV-PG-1269A HPI-MOV-PG-1286B HPI-CKV-FT-CV267 HPl9 U 6.4E-uu<+ <.,> l .6E-UU.> U 4.0E-UU) U 4.0E-UU) U l.OE-uuc+ ~ Page 2

~

I I I I I I I FAILURE OF 4KV AC FAILURE OF 120V INSF CPC CH1B:SW HPI MDP CH1B J,IDPCH1B FAILS TO !TEST AND INSUF FLOW FM BUS 1J DC BUS 1B TO LUBE OIL,CC TO FAILS TO START ON ~UN FOR 6 HCXJRS "1AINTENANCE ON "1DP CH-1B,1C DUE SEAL COOLER DEMAND MDP CH1B ITO BACKFLOW ACP-TAC-LP-4KV1J DCP-TDC-LP-BUS1B CPCB HPI-MDP-FS-CH1B HPI-MDP-FR-1B6HR HPI-MDP-MA-CH1B HPl21

~ ~ ~ U 4.0E-003 U 4.0E-004 u 2.0E-003 L::!. Page 4 INSUF FLOW HROUGH PIPE EGMENT PS11 HPl4 Trans er from Page 1 HARGING PUMP FAILURE OF 4KV AC INSF CPC CH A:SW H1A FAILS TO RUN US 1H O LUBE OIL,CC TO FOR 6 HCXJRS EAL COOLER HPI-MDP-FR-1A6HR ACP-TAC-LP-4KV1H CPCA HPl9 4.0E-00 ~ Page 2

INSUF FLO\.I Tree: D1 FROM CHARGING Project: SURRY PUMP SUCTION Page 2 of 7 llFAnFR Date Last Modified:

HPl9 Fri Jul 08 09:17:54 1988

~ Transfers from Page(s) 1 5 I I I I I I INSUFFICIENT CHECK VALVE CV25 INSUFFICIENT CHECK VALVE CV410 MANUAL VALVE XV24 FAIL TO CLOSE FLO\.I THROUGH PIPE FAILS TO OPEN ~ATER AVAILABLE FAILS TO OPEN PLUGGED MOV1115C/1115E SEG PS3 AND PS4 FROM THE R\.IST (INTLK \.I 1115B/D)

HPl11 HPl *CKV-FT-CV25 *R\.IT-TNK-LF-R\.IST HPI-CKV-FT-CV410 HPI-XVM-PG-XV24 HPI 12

~ u 1.0E-004 u 2.7E-uuc, u 1.0E-004 u 4.0E*UU)

~

I I I I INSUFFICIENT INSUFFICIENT FAILURE OF FAILURE OF FLO\.I THROUGH PIPE FLO\.I THROUGH PIPE MOV1115C TO CLOSE J,IOV1115E TO CLOSE SEGMENT PS3 SEGMENT PS4 HPl13 HPI 14 HPl15 HPI 16 Page 2 ~ Page 3

~ ~

~

I I I I I I I I NO SIGNAL FROM FAILURE OF 480V HPI MOV 1115B 10TOR OPERATED !COMMON CAUSE NO SIGNAL FROM FAILURE OF 4BUV HPI MOV 111'.>E SIS TRAIN A AC MCC 1H1-2 FAILS TO OPEN ON VALVE 1115B FAILURE OF MOVS SIS TRAIN B ~C HCC 1J1-2 FAILS TO CLOSE DEMAND PLUGGED 11159 AND 1115D SIS-ACT-FA-SI SA ACP-TAC-LP*1H1-2 HPl*MOV-FT*1115B HPl*MOV-PG-1115B HPI-CCF-FT-115BD SIS-ACT-FA-SI SB ACP-TAC-LP-1J1*2 HPI-MOV-FT-1115E

<..> 1.6E*UUJ ~ u 3.0E*UUJ u 4.0E*UU) u 2.6E-004 <..> 1.6E*UUJ ~ U J.UE-uu.>

INSUFFICIENT FLO\.I THROUGH PIPE EGMENT PS4 HPI 14 Transfer from Page 2 0 SIGNAL FROM FAILURE OF V OTOR OPERATED OMMON CAUSE SIS TRAIN B C MCC 1J1*2 ALVE 1115D FAILURE OF MOVS LUGGED 1115B AND 1115D SI S*ACT

  • FA*.SI SB ACP-TAC*LP-1 J 1-2 HPI -MDV* FT-1115D HPI-CCF-FT-115BD
  • E-
  • E- . E-

FAILURE OF OV1115C TO CLOSE HPI 15 Tree: D1 Project: SURRY Page 3 of 7 o,te Lest Modified:

Fri Jul 08 09:17:54 1988 Transfer from Page 2 0 SIGNAL FROM FAILURE OF V HPI MOV C IS TRAIN A C MCC 1H1*2 FAILS TO CLOSE ACP*TAC*LP-1H1*2 HPl*MOV-FT*1115C

  • E*

INSUF FLOIJ FM Tree: D1 DP CH-1B,1C DUE Project: SURRY TO BACKFLO\I Page 4 of 7 Date Last Modified:

Fri Jul 08 09: 17:54 1988 Transfers from Page(s) 1 5 HARGING PUMP H1A FAILS TO RUN FOR 6 HOURS

INSUFFICIENT FLO\I THROUGH PIPE SEGMENT PS13 Tree: 01 Project: SURRY Page 5 of 7 Date Last Modified:

HP16 Fri Jul 08 09:17:54 1988

~ Transfer from Page 1 I I I INSUFFICIENT NO ACTUA Tl ON INSUF FLO\I FLO\I THROUGH MOP SIGNAL TO FROM CHARGING H-1C IN PS13 CHARGING PUMP l>UMP SUCTION unD-rM1r lucAncD HPl18 HP110 HPI9

~ Page:, ~ Page_2

~

I I I I I I I I FAILURE OF 4KV AC FAILURE OF 120V INSF CPC CH1C:S\I HPI MOP CH1C HPI MOP CH1C TEST AND OMMON CAUSE OPERATOR FAILS TO BUS 1H DC BUS 1A ~O LUBE OIL,CC TO FAILS TO START ON FAILS TO RUN FOR MAINTENANCE ON FAILURE TO START ~EMOVE PULL LOCK SEAL COOLER DEMAND 12 HOURS MOP CH1C MOPS CH1B,CH1C ~ONO IT ION ACP-TAC-LP-4KV1H DCP-TDC-LP-BUS1A CPCC HPI-MDP-FS-CH1C HPI-MDP-FR-1C12H HPI-MDP-MA-CH1C HPI-CCF-FS-CH1BC HPI-XHE-FO-PLLCK

~ ~ ~ u 4.0E-003 u 8.0E-004 u 2.0E-003 u 8.4E-004 u 2.7E-003 I I I I J'IOTOR OPERATED MOTOR OPERATED ~HECK VALVE cv~,o INSUF FLO\I FM 11/ALVE 1270A 11/ALVE 1286C FAILS TO OPEN MOP CH-1B,1C DUE PLUGGED PLUGGED TO BACKFLO\I tp c:.n HPI-MOV-PG-1270A HPI-MOV-PG-1286C HPl-CKV-FT-CV276 HPl21

,:Jl U 4.0E-UU) U 4.0E-UU) U 1.0E-uu<t ~ Page 4 Transfer from Page 5 0 SIGNAL FROM SIS TRAIN B SIS-ACT-FA-SI SA

  • E-

INSUFFICIENT Tree: D1 FLOW THROUGH PIPE Project: SURRY SEGMENT PS22 Page 6 of 7 Date Last Modified:

HPl7 Fri Jul 08 09:17:54 1988 Transfer from Page 1 FAILURE OF OTOR OPERATED HPI HOV C OMMON CAUSE C MCC 1H1*1 ALVE 1867C FAILS TO OPEN ON FAILURE OF HPI LUGGED EMANO OVS 1867C,1867D ACP*TAC*LP-1H1*1 HPl*MOV*PG-1867C HPl*MOV*FT*1867C

  • E*
  • E*

Tree: D1 Project: SURRY Pdge 7 of 7 Date Last Modified:

Fri Jul 08 09:17:54 1988 Transfer from Page 1 FAILURE OF OTOR OPERATED HP! MOV OMMON CAUSE C HCC 1J1*1 ALVE 18670 FAILS TO OPEN ON FAILURE OF HPI LUGGED EMANO OVS 1867C, 18670 HP! *MOV*PG* 18670 HPl*MOV*FT-18670 HPl*CCF*FT*867CD

, E*

  • E* , E*

ttl

.1.

  • u,

-::i

FAIL HIGH PRES Tree: D2 FLOY TO CLD Project: SURRY EGS*3 CHRG PMP Page 1 of 7 MIIUIIIII Date Last Modified:

D2 Fri Jul 08 09:19:40 1988

~

I I I I INSUF FLOY ~HECK VALVE CV££~ OP FAILS TO INSUF FLOY FROM CHARGING FAILS TO OPEN STABLISH FEED ITHRU PIPE PUMP DISCHARGE AND BLEED ~EGMENTS PS21 AND 11s:11nr::D nt>CD&TIO r,c,')')

HPl2 HPl *CKV-FT*CV225 HP I* XHE

  • FO* FDBLD HPl3 Q u l.UE*UU't U 7.1E*UU2 Q I I I I I INSUFFICIENT INSUF FLOY INSUFFICIENT INSUFFICIENT INSUFFICIENT FLO\I THROUGH PIPE THROUGH PIPE FLOY THROUGH PIPE FLOY THROUGH PIPE FLO\I THROUGH PIPE SEGMENT PS12 SEGMENT PS11 SEGMENT PS13 SEGMENT PS22 SEGMENT PS21 HP15 HPl4 HPl6 HPl7 HPIB

~ Page 1 ~ Page 5 ~ Page 6 ~ Page 7

?-r'I I I I I I I I INSUFFICIENT FAILURE OF 4KV AC FAILURE OF 120V INSF CPC CHlB:S\.I MOTOR OPERATED MOTOR OPERATED rHECK VALVE CV£or INSUF FLOY FLO\.I THROUGH aus 1J OC BUS 1B TO LUBE OIL,CC TO ~ALVE 1286B ~ALVE 1269A FAILS TO OPEN FROM CHARGING SEGMENT PS12 PTRN SEAL COOLER PLUGGED PLUGGED PUMP SUCTION R 11canr::D HP117 ACP*TAC*LP*4KV1J DCP*TDC*LP*BUS1B CPCB HPl*MOV*PG-1286B HPl*MOV*PG*1269A HPl*CKV-FT*CV267 HPl9 f--r4, ~ ~ ~ U 4.0E*UU) U 4.UE*UU) u 1.UE*uu't ~ Page j I I I I I I NSUF FLO\.I COMMON CAUSE TEST AND IHPI MDP CH1B MDPCH1B FAILS TO FROM CHARGING FAILURE TO START 1AINTENANCE ON FAILS TO START ON RUN FOR 6 HOURS PUMP DUE TO MOPS CH1B,CH1C MDP CH1B DEMAND

,~rvc1 n11 HP121 HPl*CCF*FS*CH1BC HPl*MDP*MA*CH1B HPl*MDP*FS*CH1B HPl*MDP*FR*1B6HR 6 Page 2 u 8.4E*004 U 2.0E-003 U 4.0E-003 U 4.0E-004 INSUF FLOY HROUGH PIPE EGMENT PS11 HPl4 Trans er from Page 1 HARGING PUMP FAILURE OF 4KV AC INSF CPC CH1A:S\.I H1A FAILS TO RUN US 1H TO LUBE OIL,CC TO FOR 6 HOURS EAL COOLER HPl*MDP*FR*1A6HR ACP*TAC*LP*4KV1H CPCA HPl9 4.0E-004  :<>; Page 3

  • Tree: D2 Project: SURRY Page 2 of 7 Date Last Modified:

Fri Jul 08 09:19:40 1988 Transfers from Page(s) 1 5 H.I\RGING PUMP H1A FAILS TO RUN FOR 6 HOURS HPI-CKV-OO-CV258

  • E-

INSUF FLOW Tree: D2 FROM CHARGING Project: SURRY PUMP SUCTION Page 3 of 7 Jll:AnCD Date last Modified:

HPl9 Fri Jul 08 09:19:40 1988

~ Transfers from Page(s) 1 5 I I I I I I INSUF FLOW ~HECK VALVE CV25 INSUFFICIENT CHECK VALVE CV410 ~ANUAL VALVE XV24 FAIL TO CLOSE THRU PIPE FAILS TO OPEN WATER AVAILABLE FAILS TO OPEN PLUGGED MOV1115C/1115E SEGMENTS PS3 AND FROM THE RIJST (INTLK IJ 11159/D) be,/.

HPI11 HPI-CKV-FT-CV25 RIJT-TNK-LF-RIJST HPI-CKV-FT-CV410 HPI-XVM-PG-XV24 HPI 12 Q u 1.0E-004 u 2.7E-006 U. l.OE-UU<+ u 4.0E-005 [_,)

I I I I INSUFFICIENT INSUFFICIENT FAILURE OF FAILURE OF FLOIJ THROUGH PIPE FLOIJ THROUGH PIPE MOV1115C TO CLOSE MOV1115E TO CLOSE SEGMENT PS3 ~EGMENT PS4 HPl13 HPl14 HP115 HP! 16

~ Page 3 ~ Page 4

~ ~

I I I I I I I I FAILURE OF 480V HPI MOV 1115B MOTOR OPERATED COMMON CAUSE FAILURE OF 480V HPI MOV 111::,D MOTOR OPERATED ~OMMON CAUSE AC HCC 1H1-2 FAILS TO OPEN ON VALVE 1115B FAILURE OF HOVS "C HCC 1J1-2 FAILS TO OPEN ON VALVE 1115D FAILURE OF HOVS OEMAND PLUGGED 1115B AND 1115D DEMAND PLUGGED 1115B AND 1115D ACP-TAC-LP-1H1-2 HPI-MOV-FT-1115B HPI-MOV-PG-1115B HPI-CCF-FT-115BD ACP-TAC-LP-1J1-2 HPI-MOV-FT-1115D HPI-HOV-PG*1115D HPI-CCF-FT-115BD

~ u 5.UE-UU5 U 4.UE-uu::, u <!.6E-UU4 ~ u 3.0E-UU.l u 4.0E-uu, LJ 2.6E-UU4 FAILURE OF OV1115C TO CLOSE HP! 15 Transfer from Page 3 FAILURE OF V HPI MOV C C HCC 1H1-2 FAILS TO CLOSE ACP-TAC-LP-1H1-2 HPI-HOV-FT*1115C

~

  • E-

FAILURE OF Tree: D2 OV1115E TO CLOSE Project: SURRY Page 4 of 7 Date Last Modified:

HPl16 Fri Jul 08 09:19:40 1988 Transfer from Page 3 FAILURE OF V HPI HOV E C MCC 1J1*2 FAILS TO CLOSE ACP*TAC*LP*1J1*2 HPl*MOV*FT*1115E

~

  • E*

INSUFFICIENT Tree: D2 FLOW THROUGH PIPE Project: SURRY SEGMENT PS13 Page 5 of 7 Date Last Modified:

HPI6 Fri Jul 08 09:19:40 1988 t-2', Transfer from Page 1 I I I I I I I I INSUFFICIENT FAILURE OF 4KV AC FAILURE OF 120V OPERATOR FAILS TO '10TOR OPERATED INSF CPC CH1C:SW .;oMMON CAUSE INSUF FLOW FLOW THROUGH BUS 1H l>C BUS 1A REMOVE PULL LOCK !VALVE 1270A TO LUBE OIL,CC TO FAILURE TO START FROM CHARGING SEGMENT PS13 PTRN .:ONDITION PLUGGED SEAL COOLER MOPS CH1B,CH1C PUMP SUCTION R LICA"J:11 HPl18 ACP*TAC*LP*4KV1H DCP*TDC*LP*BUS1A HPl*XHE*FO*PLLCK HPl*MOV*PG*1270A CPCC HPl*CCF*FS*CH1BC HPl9

/.-A ~ ~ u 2./E*UO.S u 4.UE*uu::, ~ U H.4E*UU4 ~ Page .s I I I I I I INSUF FLOW ~HECK VALVE CV276 MOTOR OPERATED HPI MOP CH1C HPI MOP CH1C TEST AND FROM CHARGING FAILS TO OPEN !VALVE 1286C FAILS TO START ON FAILS TO RUN FOR MAINTENANCE ON PUMP DUE TO PLUGGED DEMAND 12 HOURS MOP CH1C RAr'.11'1=1 nu HPI21 HPI *CKV*FT*CV276 HPl*MOV*PG*1286C HPl*MDP*FS*CH1C HPl*MDP*FR*1C12H HPl*MDP*MA*CH1C 6 Page 2 u 1.0E-004 U 4.0E*OOS u 4.0E*003 u 8.0E-004 u 2.0E-003

Tree: D2 Project: SURRY Page 6 of 7 Date Last Modified:

HP17 Fri Jul 08 09:19:40 1988 Transfer from Page 1 FAILURE OF V OTOR OPERATED OMHON CAUSE C HCC 1H1*1 ALVE 1867C FAILURE OF HPI LUGGED . OVS 1867C, 18670 ACP*TAC-LP*1H1*1 HPI-HOV-FT*1867C HPI-HOV-PG-1867C HPl*CCF-FT-867CD

~

  • E-
  • E*
  • E-

INSUFFICIENT Tree: 02 FLOY THROUGH PIPE Project: SURRY SEGMENT PS21 Page 7 of 7 Date Last Modified:

HPl8 Fri Jul 08 09:19:40 1988 Transfer from Page 1 FAILURE OF OTOR OPERATED OMMON CAUSE C MCC 1J1-1 ALVE 18670 FAILURE OF HP!

LUGGED OVS 1867C, 18670 ACP-TAC-LP-1J1-1 HPI-MOV-FT-18670 HPI-MOV-PG-18670 HPI-CCF-FT-867CD

~

  • E-
  • E-
  • E-

INSUF FLO\I FROM ALL CHRG PMP

~O THE RCP SEALS

  • Tree: D3 Project: SURRY Page 1 of 2 D9te Last Modified:

D3 Fri Jul 08 12:08:32 1988

~

I I I INSUFFICIENT INSUFFICIENT INSUFFICIENT FLO\I THROUGH PIPE FLO\I THROUGH PIPE FLO\I THROUGH PIPE SEGMENT PS13 SEGMENT PS11 SEGMENT PS12 HPl6 HPl4 HPIS

~ Page 1 ~ Page 2

~

I I I I I I I I INSUFFICIENT FAILURE OF 4KV AC INSF CPC CH1C:S\I FAILURE OF 120V OPERATOR FAILS TO MOTOR OPERATED MOTOR OPERATED CHECK VALVE CV276 FLO\I THROUGH BUS 1H TO LUBE OIL,CC TO PC BUS 1A REMOVE PULL LOCK 1/ALVE 1270A WALVE 1286C FAILS TO OPEN SEGMENT PS13 PTRN SEAL COOLER ~ONDITION PLUGGED PLUGGED r

HPl8 ACP-TAC-LP-4KV1H CPCC DCP-TDC-LP-BUS1A HPI-XHE*FO-PLLCK HPI-HOV-PG-1270A HPI-HOV-PG-1286C HPI-CKV-FT-CV276

~ <©> ~ ~ u 2.7E-003 u 4.0E-005 U 4.0E-005 u 1.0E-004 I I I I I INSUFFICIENT COMMON CAUSE TEST AND HPI HOP CHlC HPI HOP CH1C FLO\I FM CH HOP FAILURE TO START MAINTENANCE ON FAILS TO START ON FAILS TO RUN FOR DUE TO BACKFLO\I MOPS CH1B,CH1C MDP CH1C DEMAND 12 HOURS HPl21 HPI-CCF-FS-CH1BC HPI-MDP-MA-CH1C HPI-MDP-FS-CH1C HPI-MDP-FR-1C12H

~ Page 2 U 8.4E*UU4 U 2.0E*UU.) U 4.0E*UU.) U 8.0E*UU4 INSUFFICIENT FLOW THROUGH PIPE EGMENT PS11 HPl4 Transfer from Page 1 HARGING PUMP FAILURE OF KV AC INSF CPC CH A:S\I H1A FAILS TO RUN US 1H O LUBE OIL,CC TO FOR 6 HOURS EAL COOLER CPCA

INSUFFICIENT Tree: D3 FLOW THROUGH PIPE Project: SURRY SEGMENT PS12 Page 2 of 2 Date Lest Modified:

HPl5 Fri Jul 08 12:08:32 1988

~ Transfer from Page 1 I I I I I INSUFFICIENT MOTOR OPERATED FAILURE OF 4KV AC !NSF CPC CHlB:SW FAILURE OF 120V FLOW THROUGH VALVE 1269A BUS 1J ~O LUBE OIL,CC TO DC BUS 18 SEGMENT PS12 PLUGGED SEAL COOLER rnuTn HPl7 HPl*MOV-PG*1269A ACP*TAC*LP*4KV1J CPCB DCP-TDC*LP*BUS1B LJ l+.UE*UU!J ~

~ ~ ~

I I I I I I I r,IOTOR OPERATED OMMON CAUSE tHECK VALVE CV267 HP! MOP CH1B MDPCH1B FAILS TO TEST AND INSUFFICIENT VALVE 1286B FAILURE TO START FAILS TO OPEN FAILS TO START ON RUN FOR 6 HOURS MAINTENANCE ON FLOW FM CH MOP PLUGGED MDPS CH1B,CH1C PEMAND MOP CH1B PUE TO BACKFLOW HPl*MOV-PG-1286B HPI-CCF*FS*CH1BC HPl*CKV*FT*CV267 HPl*MDP-FS-CH1B HP1-MDP-FR-1B6HR HPI-MDP-MA-CH1B HPl21 u 4.0E-005 u 8.4E-004 u 1.0E-004 LJ 4.0E-003 LJ 4.0E-004 u 2.0E-003 ~ Page 2 INSUFFICIENT FLOW FM CH MOP tp UE TO BACKFLOW 0:,

0:, HPl21 Trans ers from Page(s) 2 1 HARGING PUMP H1A FAILS TO RUN FOR 6 HOURS HPI-MDP-FR-1A6HR HPl*CKV-OO-CV258 4.0E-004 1.0E-003

INSUFFICIENT l=MERGENCY BORATION FLO\I Tree: D4 Project: SURRY Page 1 of 2 Date Last Modified:

HPl*EB Fri Jul 08 09:22:58 1988 f.r\I I I I INSUF INSUF FLOW FM CHG OPER FAILS TO FAILURE TO OPEN A FLO\l*BORIC ACID DISCH HEADER CORRECTLY'PERFORM RCS PORV TRAN PMP TO CHG (6HRS) EMERG BORATIOt,l nun cmrT CVC1 03 PPS*XHE*FO*EMBOR PPS11 f..A ~ u l.OE*UU.l w.

I I I I I I BORIC ACID FAILURE OF 480V HPI HOV 1350 HPI MOTOR INSUFFICIENT INSUFFICIENT

!TRANSFER PUMP ~C HCC 1H1*2 FAILS TO OPEN OPERATED VALVE FLOW THROUGH PIPE FLO\I THROUGH PIPE FAIL TO RUN 1 1350 PLUGGED SEGMENT PS130 SEGMENT PS131 IUnllD CVC*HDP*FR*2A1HR ACP*TAC*LP*1H1*2 HPl*MOV*FT-1350 HPl *HOV*PG-1350 PPS3 PPS4 u 3.0E-005 ~ U 3.0E-003 U 4.0E-005

~

~ Page 2 I I I I PORV BLOCK VLV FAILURE OF 120V PORV PCV1456 COMMON CAUSE MOV1535 FAILS IN DC BUS 1B FAILS TO OPEN ON FAILURE OF THE ITHE CLOSED POS DEMAND l>ORVS TO OPEN PPS5 DCP*TDC*LP*BUS1B PPS*SOV*FT-1456 PPS*CCF*FT*PORV L,) ~ u 1.0E*UU.l U 7.0E*UU)

I I PORV BLOCK VLV BLOCK VALVE HOV MOV1535 FAILS TO. 1535 SHUT DUE TO PPEN ~EAKING PORV PPS7 PPS*MOV*FC-1535 U 3.0E-001 f..AI I I I DORV BLOCK VALVE FAILURE OF 480V ~OMMON CAUSE PORV BLOCK VALVE 1535 FAILS TO ~C HCC 1H1*2 FAILURE OF PORV 1535 PLUGGED OPEN BLOCKING VALVES PPS*MOV*FT-1535 ACP*TAC*LP*1H1*2 PPS*CCF*FT-15356 PPS*HOV*PG-1535 U 4.UE*UUI! ~ U 3.5E*UUj U 4.UE*uu:>

INSUFFICIENT Tree: D4 FLO\.I THROUGH PIPE Project: SURRY SEGMENT PS131 Page 2 of 2 Date Last Modified:

PPS4 Fri Jul 08 09:22:58 1988 Transfer from Page 1 PORV BLOCK VLV FAILURE OF V OMMON CAUSE OV1536 FAILS IN C BUS 1A FAILURE OF THE HE CLOSED POS ORVS TO OPEN PPS6 DCP-TDC-LP-BUS1A PPS-CCF-FT-PORV

  • E-PORV BLOCK VLV OV1536 FAILS TO PEN PPS8 PPS-MOV-FC-1536 3.0E-001 ORV BLOCK VALVE FAILURE OF V OMMON CAUSE ORV BLOCK VALVE 1536 FAILS TO C HCC 1J1-2 FAILURE OF PORV 1536 PLUGGED PEN LOCKING VALVES ACP-TAC-LP-1J1-2 PPS-CCF-FT-15356 PPS-MOV-PG-1536
  • E-
  • E-

INSUF FLO\./ FRM

= 2 ACCUM TO SSOC. COLD LEGS Tree: DS Project: SURRY Page 1 of 3 Date Last Modified:

ACC Wed Jul 06 13:12:08 1988 INSUF FLO\./

THRU PIPE SEGMENTS PS120 INSUF FLO\./ INSUF FLO\./ INSUF FLO\./ INSUF FLO\./ INSUF FLO\./ INSUF FLO\./

HRU PIPE SEGMENT HRU PIPE SEGMENT HRU PIPE SEGMENT HRU PIPE SEGMENT HRU PIPE SEGMENT HRU PIPE SEGMENT S120 S121 S120 S122 S121 S122 ACC4 ACCS ACC4 ACC6 ACCS ACC6 Page Page 2 Page 1 Page 3 Page 2 Page 3 INSUF FLO\./

t:d HRU PIPE SEGMENT I

Cl S120 cc ACC4 Trans ers from Page(s)

CCURRENCE OF A CC MOTOR HECK VALVE CV107 HECK VALVE CV109 LARGE (A) LOSS OF PERATED VALVE FAILS TO OPEN FAILS TO OPEN OOLANT ACC 1865A PLUGGED ALOCA ACC-MOV-PG-1865A ACC-CKV-FT-CV107 ACC-CKV-FT-CV109 O.OE+OOO 6.SE-004 1.0E-004 .OE-004 1*

INSUF FLOY Tree: D5 THRU PIPE SEGMENT Project: SURRY S121 Page 2 of 3 Date Last Modified:

Wed Jul 06 13:12:08 1988 Transfers from Page(s) 1 CC MOTOR HECK VALVE CV PERATED VALVE FAILS TO OPEN 1865B PLUGGED

INSUF FLOW HRU PIPE SEGMENT S122

  • Tree: DS Project: SURRY Page 3 of 3 Date Last Modified:

ACC6 Wed Jul 06 13:12:08 1988 Transfers from Page(s)

CC MOTOR HECK VALVE CV PERATED VALVE FAILS TO OPEN 1865C PLUGGED

INSUF FLO\.I FRM Tree: D6 12 LO\.I PRES SI Project: SURRY PMPS TO CLO LEGS Page 1 of 2 Date Last Modified:

LPI Thu Jul 07 15:38:52 1988 tr\I I I I INSUF FLO\.I TO LPI MOTOR INSUFFICIENT INSUFFICIENT ALL 3 COLD LEGS OPERATED VALVE ~ATER AVAILABLE FLOW TO MOV1890C FROM MOV1890C 1890C PLUGGED FROM THE R\./ST LP! 1 LPI-MOV-PG-1890C RIIT-TNK-LF-R\./ST LPl2

~ LJ 4.4E-UU4 U 2.7E-uuo

~

I I I . I I I I OCCURRENCE OF A ~HECK VALVE CV242 ~HECK VALVE CV82 HECK VALVE CV243 HECK VALVE CV85 INSUF FLO\./ TO INSUF FLOW TO LARGE (A) LOSS OF FAILS TO OPEN FAILS TO OPEN FAILS TO OPEN FAILS TO OPEN MOV1890C FROM LOW MOV1890C FROM LOW COOLANT ACC HEAD SI TRN A HEAD SI TRN B ALOCA LPI-CKV-FT-CV242 LPI-CKV-FT-CV82 LPI-CKV-FT-CV243 LPI-CKV-FT-CV85 LPl3 LPl4 u O.OE+OOO u 1.0E-004 u 1.0E-004 u 1.0E-004 u 1.0E-004 ~

L:::,. Page 2 I I I I I I I INSUF FLO\.I TO .~Pl MOTOR FAILURE OF 48UV FAILURE OF 120V NO SIGNAL FROM Pl MOTOR OPER CHECK VALVE CV46A MOV1890C FROM LPI bPERATED VALVE AC BUS 1H PC BUS 1A ~IS TRAIN A VALVE 1862A FAILS TO OPEN PTRN A 1864A PLUGGED PLUGGED LPl5 LPI-MOV-PG-1864A ACP-TAC-LP-4801H DCP-TDC-LP-BUS1A SIS-ACT-FA-SI SA LPI-MOV-PG-1862A LPI-CKV-FT-CV46A

~

LJ 4.4E-UU4 ~ <g> <.,;> 1.6E-UU.> u 4.0E-uu:, u 1.0E-UU4 I I I I I I I INSUFFICIENT MANUAL VALVE XV57 ~HECK VALVE CV58 .~Pl MDP SI 1A ~Pl MDP Sl1A TEST AND COMMON CAUSE FLOW FM LHSI 1A PLUGGED FAILS TO OPEN FAILS TO START ON FAILS TO RUN 1 MAINTENANCE ON FAILURE OF MOPS DUE TO BACKFLO\./ DEMAND HOUR II.Pl MDPSI 1A SI 1A AND SI 18 LPI 10 LPI-XVM-PG-XV57 LPI-CKV-FT-CV58 LPI-MOP-FS-SI 1A LPI-MOP-FR-1A1HR LPI-MDP-MA-SI 1A LPI-CCF-FS-S11AB Lr1I u 4.0E-005 U 1.0E-004 u 3.0E-003 u 3.0E-005 U 2.0E-003 U 4.5E-004 I

~Pl MDP Sl1B CHECK VALVE CVSO FAILS TO START ON FAILS TO DEMAND SHUT,CAUSE n .. r1r~1 nu LPI-MDP-FS-Sl1B LPI-CKV-OO-CV50 U .5.0E-uu.> . U . 1.0E-uu.>

INSUF FLOW TO OV1890C FROM LOW HEAD SI TRN B Tree: D6 Project: SURRY Page 2 of 2 Date Last Modified:

LPl4 Thu Jul 07 15:38:52 1988 Transfer from Page 1 FAILURE OF V FAILURE OF 0 SIGNAL FROM HECK VALVE CV B C BUS 1J C BUS 1B IS TRAIN B FAILS TO OPEN LPl9 LPI-XVM-PG-XV48 LPI-CKV-FT-CV50 LPI -MDP-FS-SI 1B LP1-MDP-FR-1B1HR LPI -MDP-MA-Sl1B LPI-CCF-FS-SI 1AB

.OE-005 .OE-00 .OE-003 3.0E-005 2.0E-003

  • E-004 LPI MDP SI A FAILS TO START ON EMANO LPI-MDP-FS-SI 1A LPI-CKV-OO-CV58
  • E-
  • E-

FAILURE OF 4KV Tree: ESTB1H C STUB BUS 1H Project: SURRY Page 1 of 1 Date Last Modified:

Wed Jul 06 13:12:20 1988 FAILURE OF VKV C CIRCUIT V AC STUB BUS C BUS 1H REAKER 15H9 1H BUS\.IORK TRANSFERS OPEN FAILURE EPS11DC ACP*TAC*LP*4KV1H ACP*CRB*C0-15H9 ACP*BAC*ST*STB1H

  • E*
  • E*

ACP*XHE*FO-STBBS LOSP 1.4E*002 2.2E*004

FAILURE OF 4KV C STUB BUS 1J

  • Tree: ESTB1J Project: SURRY Page 1 of 1 Date Last Modified:

Wed Jul 06 13:12:22 1988 FAILURE OF VKV V AC STUB BUS C CIRCUIT C BUS 1J 1J BUS~ORK, REAKER 15J9 FAILURE RANSFERS ACP-TAC-LP-4KV1J ACP-BAC-ST-STB1J ACP-CRB-C0-15J9

  • E-
  • E-ACP-XHE-FO-STBBS LOSP 1.4E-002 2.2E-004

FAILURE OF Tree: EH1

~aov AC MCC-1H1-1 Project: SURRY Page 1 of 1 Date Last Modified:

ACP-TAC-LP-1H1-1 Wed Jul 06 13:12:16 1988

~

I I I FAILURE OF AC CIRCUIT ~ouV AC HCC lHl-1 480V AC BUS 1H1 BREAKER 14H14 BUS\IORK FAILURE TRANSFERS OPEN EPSS ACP-CRB-C0-14H14 ACP-BAC-ST-1H1-1

~ u 2.9E-UUJ u 9.0E-UUJ I I I I I FAILURE OF 4KV AC CIRCUIT FAILURE OF POYER /IC CIRCUIT 480V AC BUS 1H1 AC BUS 1H BREAKER 14H15 TRANSFORMER TO BREAKER 15H7 BUS\IORK FAILURE TRANSFERS OPEN BUS 1H1 TRANSFERS OPEN ACP-TAC-LP-4KV1H ACP-CRB-C0-14H15 ACP-TFM-N0-1H1 ACP-CRB-C0-15H7 ACP-BAC-ST-1H1

~ u 2.9E-005 u 4.1E-005 u 2.9E-005 u 9.0E-005 I I FAILURE OF 4lbUV AC BUS 1H

~OYER SUPPLIED TO BUS\IORK FAILURE

~KV AC BUS 1H EPS6 ACP-BAC-ST-4KV1H y u 9.0E-UUJ I I UNAVAILABILITY FAILURE OF PF DIESEL NORMAL POYER TO

~ENERATOR #1 4160V BUS 1H EPS7 EPS8

~ ~

I I I I I I I I DIESEL GENERATOR DIESEL GENERATOR TEST AND DIESELS COMMON DIESEL GEN #1 CKT ~C CIRCUIT RANDOM LOSP, RESERVE STATION

  1. 1 FAILS TO START #1 FAILS TO RUN ~AINTENANCE ON ~AUSE FAIL TO ~RKR 15H3 FAILS ~REAKER 15H8 AFTER ANOTHER ~ERVICE FEEDER F DIESEL GENERATOR START TO CLOSE ~RANSFERS OPEN INITIATOR. ~US\IORK FAILS 1

OEP-DGN-FS-DG01 OEP-DGN-FR-DG01 OEP*DGN-MA*DG01 OEP*CCF-FS*DG13 OEP-CRB-FT-15H3 ACP*CRB-C0-15H8 LOSP OEP*BAC*ST-FDRF u 2.2E-002 u 2.0E-uu.> U 6.0E*uu.> u 8.4E*UU4 u 3.0E-uu.> u 2.9E*UUJ u 2.2E*004 u \11.UE*UU)

FAILURE OF Tree: EH2

~BOV AC MCC-1H1-2 Project: SURRY Page 1 of 1 Date last Modified:

ACP*TAC-LP-1H1-2 Wed Jul 06 13:12:18 1988 1-r\

I I I FAILURE OF AC CIRCUIT 480V AC MCC 1H1*2 480V AC BUS 1H1 BREAKER 14H13 BUSWORK FAILURE TRANSFERS OPEN EPSS ACP-CRB-C0-14H13 ACP-BAC-ST-1H1-2 U 2.9E*U05 U 9.UE*UU)

~

I I I I I FAILURE OF 4KV AC CIRCUIT FAILURE OF POWER AC CIRCUIT 480V AC BUS 1H1

~C BUS 1H BREAKER 14H15 !TRANSFORMER TO BREAKER 15H7 '3USWORK FAILURE TRANSFERS OPEN '3US 1H1 TRANSFERS OPEN ACP-TAC-LP-4KV1H ACP-CRB-C0-14H15 ACP-TFM-N0-1H1 ACP-CRB-C0-15H7 ACP-BAC-ST-1H1 1-r\ u 2.9E-OOS U 4.1E-OOS u 2.9E-005 u 9.0E-005 I I FAILURE OF 416UV AC BUS 1H POWER SUPPLIED TO BUSWORK FAILURE

~KV AC BUS 1H EPS6 ACP*BAC-ST-4KV1H L,j U 9.0E*UU)

I I UNAVAILABILITY FAILURE OF PF DIESEL NORMAL POWER TO

~ENERATOR #1 4160V BUS 1H EPS7 EPS8

?0 I I I I I

~

I I I DIESEL GENERATOR DIESEL GENERATOR TEST AND DIESELS COMMON DIESEL GEN #1 CKT AC CIRCUIT RANDOM LOSP, RESERVE STATION

  1. 1 FAILS TO START #1 FAILS TO RUN MAINTENANCE ON CAUSE FAIL TO BRKR 15H3 FAILS BREAKER 15H8 MTER ANOTHER SERVICE FEEDER F DIESEL GENERATOR START TO CLOSE TRANSFERS OPEN INITIATOR. 13USWORK FAILS 1

OEP-DGN-FS-DG01 OEP-DGN-FR-DG01 OEP-DGN*MA-DG01 OEP-CCF-FS-DG13 OEP-CRB-FT-15H3 ACP-CRB-C0-15H8 LOSP OEP-BAC-ST-FDRF U 2.2E-002 U 2.0E-003 U 6.0E*UU.) U 8.4E*UU'+ U 3.0E*UU.> U 2.9E*UU) U 2.2E-UU'+ U 9.0E*UU)

FAILURE OF Tree: EJ1 aov AC MCC-1J1-1 Project: SURRY Page 1 of 1 Date Last Modified:

ACP-TAC-LP*1J1-1 \.led Jul 06 13:12:18 1988 FAILURE OF 80V AC BUS 1J1 C CIRCUIT 80V AC BUS J1 REAKER 15J7 US\./ORK FAILURE TRANSFERS OPEN ACP-CRB-C0-15J7 ACP-BAC-ST-1J1 2.9E*OOS 9.0E-005 EPS9 ACP-BAC-ST*4KV1J

  • E-UNAVAILABILITY F DIESEL ENERATOR #3 TEST AND IESELS COMMON IESEL GEN AINTENANCE ON AUSE FAIL TO NAVAIL, ALIGNED IESEL GENERATOR TART 0 UNIT 2 OEP-DGN-FS-DG03 OEP-DGN*FR-DG03 OEP*DGN*MA-DG03 OEP-CCF-FS-DG13 OEP-CRB*FT-15J3
2. 2E-002
  • E-
  • E-
  • E-
  • E-FAILURE OF ORMAL PO\./ER TO KV BUS 1J EPS4 Transfer from Page 1 ANDOH LOSP, ESERVE STATION FTER ANOTHER SERVICE FEEDER D INITIATOR. US\./ORK FAILS OEP-BAC-ST-FDRD 9.0E-00

Tree: EJ2 Project: SURRY Page 1 of 1 Date Last Modified:

ACP-TAC-LP-1J1-2 1./ed Jul 06 13:12:20 1988

. FAILURE OF C CIRCUIT 80V AC BUS 1J1 REAKER 14J14 TRANSFERS OPEN EPS1 ACP-CRB-C0-14J14 ACP-BAC-ST-1J1-2

  • E-
  • E-C CIRCUIT REAKER 15J7 TRANSFERS OPEN ACP-TAC-LP-4KV1J ACP-CRB-C0-14J11 ACP-TFH-N0-1J1 ACP-CRB-C0-15J7 ACP-BAC-ST-1J1

.9E-005

  • E-005 2.9E-005 9.0E-005 EPS9 ACP-BAC-ST-4KV1J
  • E-UNAVAILABILITY F DIESEL .

ENERATOR #3

  • EPS3 TEST AND IESELS COMMON AINTENANCE ON AUSE FAIL TO IESEL GENERATOR TART OEP-DGN-FS-DG03 OEP-DGN- FR-DG03 OEP-DGN-HA-DG03 OEP-CCF-FS-DG13 OEP-CRB-FT-15J3 OEP-DGN-FC-DG3U2 2.2E-002
  • E-
  • E-
  • E-
  • E-
  • E-FAILURE OF ORHAL POWER TO 160V BUS 1J EPS4 Transfer from Page 1 C CIRCUIT ANDOH LOSP, ESERVE STATION REAKER 15J8 FTER ANOTHER SERVICE FEEDER D TRANSFERS OPEN INITIATOR. USI./ORK FAILS

FAILURE OF Tree: E4801H 80V AC BUS 1H Project: SURRY Page 1 of 1 Date Last Modified:

ijecf Jul 06 13:12:14 1988 C CIRCUIT FAILURE OF PQ\.IER C CIRCUIT V AC BUS H REAKER 14H1 RANSFORMER TO REAKER 15H7 US\IORK FAILURE RANSFERS OPEN US 1H RANSFERS OPEN ACP-TAC-LP-4KV1H ACP-CRB-C0-14H1 ACP-CRB-C0-15H7 ACP-BAC-ST-4801H

~

  • E-
  • E-
  • E-tp 00 0

OF Tree: E4801J 80V AC BUS 1J Project: SURRY Page 1 of 1 Date Last Modified:

Wed Jul 06 13:12:16 1988 C CIRCUIT FAILURE OF POWER C CIRCUIT V AC BUS J REAKER 14J1 RANSFORMER TO REAKER 15J7 USWORK FAILURE RANSFERS OPEN us 1J RANSFERS OPEN ACP-TAC-LP-4KV1J ACP-CRB-C0-14J1 ACP-CRB-C0-15J7 ACP-BAC-ST-4801J

~

  • E-
  • E-
  • E-b:l I

00

FAILURE OF Tree: E1 I 120V AC POYER TO Project: SURRY VITAL BUS 11 Page 1 of 1 Date last Modified:

ACP-TAC-LP-BUS11 Thu Aug 18 13:50:22 1988

~

I I I FAILURE OF UPS !VITAL BUS 11 AC VITAL BUS 11 1A1 SUPPLY TO DC t::KT BREAKER 35 BUSYORK FAILURE AND VITAL BUS !TRANSFERS OPEN EPS2 ACP-CRB-C0-1135 ACP-BAC-ST-VB 11 U 2.9E-uu::, U 9.0E-005

~

I I FAILURE OF FAILURE OF POYER VIA THE UPS POYER VIA THE UPS TRANSFORMER PATH INVERTER PATH EPS23 EPS22

~ l-r\

I I I I I FAILURE OF UPS FAILURE OF 480V ~C CIRCUIT FAILURE OF UPS lA l INVERTER 1A 1 TRANSFORMER iflC MCC 1H1-2 llREAKER FE9AJ POYER TO UPS1A1 OUTPUT FAILS PYR FM1H1-1 TRANSFERS OPEN INVERTER ACP-TFM-N0-1A1-2 ACP-TAC-LP-1H1-2 ACP-CRB-CO-FE9AJ EPS24 ACP-INV-NO-UPSA1 U 4. lE-005 ~ U 2.9E-005 I

w. U 4.0E-002 I

FAILURE OF FAILURE OF POYER POYER FROM MCC FROM DC BUS 1A TO 1H1-1 TO UPS 1A1 UPS 1A1 It.JV EPS26 EPS25 l-r\I ~

I I I I I I UPS lAl RECTIFIER AC CIRCUIT FAILURE OF 411UV FAILURE OF UPS FAILURE OF DC PC CIRCUIT 1125V DC BUS 1A OUTPUT FAILURE BREAKER FE9AE IAC MCC 1H1-1 1A1 TRANSFORMER BUS 1A POYER BREAKER 20 llUSYORK FAILURE TRANSFERS OPEN PYR 1H1-1 ~OURCES TRANSFERS OPEN ACP-REC-NO-UPSA1 ACP-CRB-CO-FE9AE ACP-TAC-LP-1H1-1 ACP*TFM-N0-1A1-1 EPS27 DCP-CRB-C0-20 DCP-BDC-ST-BUS1A LJ 4.0E-004 LJ 2.YE-UU) ~ LJ 4. lE-005 I

w. U 2.9E-005 I

LJ Y.UE-Ou::,

FAILURE OF FAILURE OF POYER FROM UPS1A2 BATTERY 1A OUTPUT ITO DC BUS 1A EPS28 EPS29

~ ~

I I I I I I I pc CIRCUIT UPS lA2 RECTIFIER FAILURE OF 480V OUTPUT FAILURE AC MCC 1H1-2

,c CIRCUIT BREAKER FE9AK

~ E OF UPS TRANSFORMER FAILURE OF t::OMMON CAUSE

~

BATTERY 1A POYER FAILURE OF TRA OPEN TRANSFERS OPEN M1H1-2 IN 4 HOURS BATTERY 1A AND 1B D -C0-19 ACP-REC-NO-UPSA2 ACP-TAC-LP-1H1-2 ACP-CRB-CO-FE9AK -TFM-N0-1A2-1 DCP-BAT-LP-BAT1A DCP-CCF-LP-BT1AB U 2.YE-uu) LJ 4.0E-UU4 ~ LJ 2.YE-uu) LJ 4. lE-UU) U 7.2E-004 U ::,.11E-uuo

FAILURE OF Tree: E11 I 120V AC PO\IER TO Project: SURRY VITAL BUS 111 Page 1 of 1 Date Last Modified:

ACP-TAC-LP-BS111 Thu Aug 18 13:51 :30 1988

~

I I I FAILURE OF UPS ~C CIRCUIT ~ITAL BUS 111 1B1 SUPPLY TO DC aREAKER TO 111 aus\lORK FA~LURE

~ND VITAL BUS !TRANSFERS OPEN EPS11 ACP-CRB-C0-111 ACP-BAC-ST-VB111 U 2.9E-uu:, U 9.0E-uu:,

~

I I FAILURE OF FAILURE OF PO\JER VIA THE UPS PO\IER VIA THE UPS TRANSFORMER PATH INVERTER PATH EPS13 EPS12

~ ~

I I I I I FAILURE OF UPS FAILURE OF 480V "C CIRCUIT FAILURE OF UPS 181 INVERTER 1B1 TRANSFORMER "C HCC 1J1-2 aREAKER FE9BJ PO\.IER TO UPS1B1 OUTPUT FAILS P\.IR FM 1J1-2 !TRANSFERS OPEN INVERTER ACP-TFH-N0-1B1-2 ACP-TAC-LP-1J1-2 ACP*CRB-CO-FE9BJ EPS14 ACP*INV-NO-UPSB1 U 4.1E*UU) ~ U 2.YE*UO)

I u U 4.0E-002 I

FAILURE OF FAILURE OF PO\.IER FROM HCC PO\.IER FROM DC BUS 1J1-1 TO UPS 1B1 1B TO UPS 1B1 IIIJV EPS16 EPS15

~ ~

I I I I I I I

µps 181 RECTIFIER AC CIRCUIT FAILURE OF 480V FAILURE OF UPS FAILURE OF DC PC CIRCUIT .12'.>V DC BUS 18 Pl,JTPUT FAILURE BREAKER FE9BE ~C HCC 1J1-1 181 TRANSFORMER BUS 18 PO\.IER aREAKER 24 BUS\IORK FAILURE TRANSFERS OPEN P\.IR FM 1J1-1 SOURCES !TRANSFERS OPEN ACP-REC-NO-UPSB1 ACP-CRB-CO-FE9BE ACP-TAC*LP-1J1-1 ACP-TFM-N0-1B1-1 EPS17 DCP-CRB*C0-24 DCP-BDC-ST-BUS1B U 4.0E*UU4 U 2.9E*UU) ~ U 4.1E*UU) l,J. U 2.YE*UU) U 9.UE*UU)

I I FAILURE OF FAILURE OF PO\.IER FROM UPS1B2 SATTERY 1B OUTPUT TO DC BUS 1B EPS18 EPS19

~ ~

I I I I I I I pC CIRCUIT µps 1B2 RECTIFIER FAILURE OF 480V "C CIRCUIT FAILURE OF UPS FAILURE OF OMMON CAUSE aREAKER 23 Pl,JTPUT FAILURE ~C HCC 1J1-2 ~REAKER FE9BIC 182 XFHR, P\.IR FM BATTERY 1B PO\.IER FAILURE OF

!TRANSFERS OPEN !TRANSFERS OPEN 1J1-2 IN 4 HOURS BATTERY 1A AND 1B DCP-CRB-C0-23 ACP-REC-NO-UPSB2 ACP-TAC-LP-1J1-2 ACP-CRB-CO-FE9BK ACP-TFH*N0*1B2-1 DCP-BAT-LP-BAT1B DCP-CCF-LP-BT1AB U 2.9E*UU) U 4.0E-004 ~ U 2.9E*UU) U 4.1E*UU) u 7.2E*UU4 U 5.BE-006

FAILURE OF Tree: E1 111 120V AC POYER TO Project: SURRY WITAL BUS 1111 Page 1 of 1 Date Las t Modified:

ACP*TAC-LP-BSIII Thu Aug 18 13:24:50 1988

~

I I I FAILURE OF UPS VITAL BUS 1111 AC VITAL BUS 11 I I 1A2 SUPPLY TO DC KT BRKR 35 BUSIJORK FAILURE AND VITAL BUS TRANSFERS OPEN EPS31 ACP-CRB-C0-11135 ACP-BAC-ST-V1111

~ u 2.IIE-uu:, u 11.UE-uu:,

I I FAILURE OF FAILURE OF POYER VIA THE UPS POYER VIA THE UPS

~RANSFORMER PATH INVERTER PATH EPS33 EPS32

~ I I

~

I I I

FAILURE OF UPS FAILURE OF 480V 11\C CIRCUIT FAILURE OF UPS lAi! INVERTER 1A2 TRANSFORMER AC MCC 1H1-1 BREAKER FE9AF POWER TO UPS1A2 Pl.lTPUT FAILS PWR FM1H1-1 TRANSFERS OPEN INVERTER to I ACP-TFM-N0-1A2-2 ACP-TAC-LP-1H1 -1 ACP*CRB-CO-FE9AF EPS34 ACP-INV-NO-UPSA2 00

.i,.. U 4. 1E-005 ~ u 2.IIE-005 ~ u 4.0E-002 I I FAILURE OF FAILURE OF POYER FROM MCC POWER FROM DC BUS 1H1-2 TO UPS 1A2 1A TO UPS 1A1 IINV EPS36 EPS35

~  ?-0 I I I I I I I

'-'PS 1A2 RECTIFIER AC CIRCUIT FAILURE OF 480V FAILURE OF UPS FAILURE OF DC PC CIRCUIT 1125V DC BUS lA PlJTPUT FAILURE BREAKER FE9AK li\C MCC 1H1-2 1A2 TRANSFORMER BUS 1A POYER llREAKER 19 llUSYORK FAILURE rRANSFERS OPEN PYR FM1H1-2 SOURCES TRANSFERS OPEN ACP-REC-NO-UPSA2 ACP-CRB-CO*FE9AK ACP-TAC-LP-1H1-2 ACP-TFM-N0-1A2*1 EPS37 DCP-CRB-C0-19 DCP-BDC-ST-BUS1A u 4.UE-004 u i!.YE-U05 ~ u 4.1E*UU) [,) u 2.YE*UU) u Y.UE*UOS I I FAILURE OF FAILURE OF POYER FROM UPS1A1 BATTERY 1A OUTPUT TO DC BUS 1A EPS38 EPS39

~  ?-0I I I I I I I DC CIRCUIT UPS 1A1 RECTIFIER FAILURE OF 480V AC CIRCUiT FAILURE OF UPS FAILURE OF ... OMMON CAUSE BREAKER 20 OUTPUT FAILURE AC HCC 1H1-1 BREAKER FE9AE > 1A1 TRANSFORMER BATTERY 1A POYER FAILURE OF

~RANSFERS OPEN TRANSFERS OPEN PWR 1H1-1 IN 4 HOURS llATTERY 1A AND 18 D -C0-20 ACP-REC*NO-UPSA1 ACP-TAC-LP-1H1-1 ACP*CRB-CO-FE9AE -TFM-N0-1A1-1 DCP-BAT-LP-BAT1A DCP-CCF-LP-BT1AB

.9E-uu:, u 4.UE*UU'+ ~ u i!.YE-u 4.lE-uu:, u (.2E*UU'+ U 5.BE-uuc,

FA VITAL BUS 1IV E OF 120V AC POYER TO ACP-TAC-LP-BS11V

  • Tree: E1 I V Project: SURRY Page 1 of 1 Date Last Modified:

Thu Aug 18 13:26:10 1988 t'.-0I I I FAILURE OF UPS t1C CIRCUIT VITAL BUS 1IV 1B2 SUPPLY TO DC BREAKER TO 11V BUSYORK FAILURE AND VITAL BUS TRANSFERS OPEN EPS21 ACP-CRB-C0-11V ACP-BAC-ST-VB11V

~ u 2.9E-005 u 9.0E-uu:,

I I FAILURE OF FAILURE OF PO\.IER VIA THE UPS PO\.IER VIA THE UPS

~RANSFORMER PATH INVERTER PATH EPS23 EPS22 t'.-0I I I t'.-0I I FAILURE OF UPS FAILURE OF 480V t1C CIRCUIT FAILURE OF UPS 1B2 INVERTER IXFMR, PYR FM ~C MCC 1J1-1 ~REAKER FE9BF POYER TO UPS1B2 OUTPUT FAILS 1J1-1 TRANSFERS OPEN INVERTER ACP-TFM-N0-1B2-2 ACP-TAC-LP-1J1-1 ACP-CRB-CO-FE9BF EPS24 ACP-INV-NO-UPSB2 u 4. lE-005 ~ u 2.9E-005 [_,) u 4.0E-002 I I FAILURE OF FAILURE OF POYER FROM MCC POYER FROM DC BUS 1J1-2 TO UPS 1B2 1B TO UPS 1B1 IHJV EPS26 EPS25 I I t'.-0I I t'.-0I I I UPS 1B2 RECTIFIER AC CIRCUIT FAILURE OF 480V FAILURE OF UPS FAILURE OF DC DC Cl RCUIT 125V DC BUS 18 OUTPUT FAILURE BREAKER FE9BK AC MCC 1J1-2 182 XFMR, PYR FM ~us 18 POYER BREAKER 23 BUSYORK FAILURE TRANSFERS OPEN 1J1-2 SOURCES TRANSFERS OPEN ACP-REC-NO-UPSB2 ACP-CRB-CO-FE9BK ACP-TAC-LP-1J1-2 ACP-TFM-N0-182-1 EPS27 DCP-CRB*C0-23 DCP-BDC-ST-BUS1B u 4.UE-004 u l.YE-uu::, ~ u 4.1E-uu:, y u l.YE-Ou:, u Y.OE-00:,

I I FAILURE OF FAILURE OF POYER FROM UPS1B1 BATTERY 18 OUTPUT ITO DC BUS 1B EPS28 EPS29 I I I t'.-0I I t'.-r\

I I DC CIRCUIT UPS 181 RECTIFIER FAILURE OF 480V AC CIRCUIT FAILURE OF UPS FAILURE OF OMMON CAUSE llREAKER 24 OUTPUT FAILURE AC MCC 1J1-1 BREAKER FE9BE 181 TRANSFORMER BATTERY 1B PO\.IER FAILURE OF

!TRANSFERS OPEN !TRANSFERS OPEN PYR FM 1J1-1 IN 4 HOURS BATTERY 1A AND 1B DCP-CRB*C0-24 ACP-REC-NO*UPSB1 ACP-TAC-LP-1J1-1 ACP-CRB-CO*FE9BE ACP-TFM-N0-1B1-1 DCP-BAT-LP-BAT1B DCP-CCF-LP-BT1AB u 2.9E-uu:, u 4.UE-UU4 ~ u 2.9E-uu:, u 4.1E-uu:, u 7.2E-004 u 5.8E-uuo

FAILURE OF Tree: E1A 125V DC BUS 1A Project: SURRY Page 1 of 1 Date Last Modified:

DCP*TDC*LP*BUS1A Thu Jun 30 10:12:26 1988

~ I I

FAILURE OF DC 1 125V DC BUS 1A 8US 1A PO\IER 8US\IORK FAILURE SOURCES EPS10DC DCP*BDC*ST*BUS1A D U 9.0E*uu:,

I I I FAILURE OF FAILURE OF FAILURE OF POWER TO DC BUS PO\IER TO DC BUS 125V DC POWER 1A FROM UPS 1A2 1A FROM UPS 1A1 FROM BATTERY 1A EPS6DC EPS7DC EPS8DC

~ ~ ~

I I I I I I FAILURE OF DC CIRCUIT FAILURE OF DC CIRCUIT FAILURE OF COMMON CAUSE POWER FROM UPS BREAKER 19 POWER FROM UPS BREAKER 20 ~ATTERY 1A POWER FAILURE OF 1A2 TRANSFERS OPEN 1A1 TRANSFERS OPEN IN 4 HOURS MTTERY 1A AND 18 EPS12DC DCP*CRB*C0-19 EPS11DC DCP*CRB*C0-20 DCP*BAT-LP-BAT1A DCP-CCF-LP-BT1AB

~

U 2.9E-uu:, ~ Page 1 U 2.9E-uu:, u 7.2E-004 U 5.8E-uuo I I I I FAILURE OF 480V ~C CIRCUIT µps 1A2 RECTIFIER FAILURE OF UPS AC HCC 1H1*2 BREAKER FE9AK ~TPUT FAILURE 1A2 TRANSFORMER TRANSFERS OPEN PWR FM1H1 *2 ACP-TAC-LP-1H1-2 ACP-CRB-CO-FE9AK ACP*REC-NO-UPSA2 ACP-TFM-N0-1A2-1

~ u 2.9E-005 u 4.0E-004 LJ 4.1E*005 FAILURE OF POWER FROM UPS 1A1 EPS11DC

~ Trans er from Page 1 I I I I FAILURE OF 480V ~C CIRCUIT µps 1A1 RECTIFIER FAILURE OF UPS AC MCC 1H1-1 '3REAKER FE9AE ~TPUT FAILURE 1A1 TRANSFORMER

- TRANSFERS OPEN l>l,IR 1H1-1 ACP-TAC-LP-1H1-1 ACP*CRB*CO-FE9AE ACP-REC-NO-UPSA1 ACP*TFM-N0-1A1-1

~ u 2.9E-005 u 4.0E-004 u 4. lE-005

  • FAILURE OF 125V DC BUS 18 Tree: E18 Project: SURRY Page 1 of 1 Date Last Modified:

DCP*TDC*LP*BUS1B \led Jul 06 13:12:10 1988

~

I I FAILURE OF DC 125V DC BUS 18 BUS 1B PO\IER BUSUORK FAILURE SOURCES EPS9DC DCP*BDC*ST*BUS1B L;i u 9.0E-uu:,

I I I FAILURE OF FAILURE OF FAILURE OF PO\IER TO DC BUS PO\IER TO DC BUS 125V DC PO\IER 1B FROM UPS 1B1 1B FROM UPS 1B2 FROM BATTERY 1B EPS1DC EPS2DC EPS5DC

/.;l. /.;l. ~

I I I I I I FAILURE OF DC CIRCUIT FAILURE OF DC CIRCUIT FAILURE OF COMMON CAUSE PCJ\IER FROM UPS BREAKER 24 bCJ\IER FROM UPS BREAKER 23 BATTERY 1B PO\IER FAILURE OF 1B1 TRANSFERS OPEN 1B2 TRANSFERS OPEN IN 4 HOURS BATTERY 1A AND 1B EPS3DC DCP-CRB-C0-24 EPS4DC DCP-CRB-C0-23 DCP-BAT*LP-BAT1B DCP-CCF-LP-BT1AB

~

U Z.9E-uu:, ~ Page 1 U Z.9E-uu::i u 7.ZE-uu<t . U 5.8E-uuo I I I I FAILURE OF 480V ~C CIRCUIT UPS 181 RECTIFIER FAILURE OF UPS AC MCC 1J1-1 BREAKER FE9BE OUTPUT FAILURE 1B1 TRANSFORMER

!TRANSFERS OPEN P\IR FM 1J1*1 ACP-TAC-LP-1J1-1 ACP-CRB*CO-FE9BE ACP-REC-NO-UPSB1 ACP*TFM-N0-1B1-1

~ u 2.9E-005 U 4.0E-004 U 4.1E-005 FAILURE OF O\IER FROM UPS 182 EPS4DC Trans er from Page 1 FAILURE OF 480V C CIRCUIT PS 1B2 RECTIFIER FAILURE OF UPS C MCC 1J1-2 REAKER FE9BK TPUT FAILURE 1B2 XFMR, P\IR FM RANSFERS OPEN 1J1-2 ACP-TAC*LP-1J1-2 ACP-CRB-CO-FE9BK ACP-REC-NO-UPSB2 ACP-TFM-N0-182-1

c;; 2.9E-005 4.0E-004 4.1E-005

INSUF FLO\./ FRM Tree: HPR-H2

~ CHRG PMPS IN Project: SURRY THE RECIR MOOE Page 1 of 6 Date Last Modified:

HPR Fri Jul 08 08:43:54 1988 t'.-r.\

I I INSUF FLO\./ TO INSUF FLO\./ TO THE COLD LEGS FRM ~HRG SUCT HD FM 3 CHRG PUMPS LPSI MOVS1863A/B HPRS HPR1

~ Page 1

~

I I I INSUFFICIENT INSUFFICIENT INSUFFICIENT FLO\./ FROM FLO\./ FROM FLO\J FROM CHARGING PUMP ~HARGING PUMP CHARGING PUMP MnP-rll1A Mno-r111r ,.mo-r111R HPR6 HPR8 HPR7 6 Page 5 t'.-r.\ ~

I I I I I I CHARGING PUMP ~HARGING PMP FAILURE OF 4KV AC !NSF CPC CH1A:S\J INSUFFICIENT INSUFFICIENT CH1A FAILS TO RUN MDP-CH1A FAILS TO BUS 1H TO LUBE OIL,CC TO FLO\J FROM FLO\J FROM FOR 6 HOURS RUN FOR 18 HRS SEAL COOLER CHARGING PUMP ~HARGING PUMP Mno-r11111 MnD-r.ll1R tp 00 HPI-MDP-FR-1A6HR HPR-MDP-FR-A18HR ACP-TAC-LP-4KV1H CPCA HPR11 HPR13 00 u 4.0E-UU4 u 1.2E-U05 ~ ~ I-AI ~ Page 4 I I I I I I I MOTOR OPERATED HECK VALVE CV267 HP! MOP CH1B MDPCH1B FAILS TO TEST ANO COMMON CAUSE I NSUF FLO\,/ DUE INSUF FLO\J DUE

~ALVE 1286B FAILS TO OPEN FAILS TO START ON RUN FOR 6 HOURS J,IAINTENANCE ON FAILURE TO START TO BACKLEAKAGE TO BACKLEAKAGE PLUGGED DEMAND J,IOP CH1B MOPS CH1B,CH1C THRU MOP CH-1A 18 THRU MOP CH-1A 6 HR IID HPI-MOV-PG-12868 HPI-CKV-FT-CV267 HPI-MDP-FS-CH1B HPI-MDP-FR-1B6HR HPI-HDP-MA-CH1B HPI-CCF-FS-CH1BC HPR14 HPR15 u 4.0E-005 u 1.0E-004 u 4.0E-003 u 4.0E-004 u 2.0E-003 u 8.4E-004 ~ Page 2 ~ Page 3 IIISUF FLO\J TO HRG SUCT HD FM PSI MOVS1863A/B HPR1 Trans er from Page 1 INSUFFICIENT FLO\J INSUFFICIENT FLO\J FROM LPR HOV FROM LPR HOV 1863A 18638 LPR-HHA LPR-HHB

INSUF FLOW DUE 0 BACKLEAKAGE HRU HDP CH*1A 18

  • Tree: HPR*H2 Project: SURRY Page 2 of 6 Date Last Modified:

HPR14 Fri Jul 08 08:43:54 1988 Transfers from Page(s) 1 5 HARGING PMP DP*CH1A FAILS TO UN FOR 18 HRS tp 00 (C

INSUF FLOIJ DUE Tree: HPR*H2 TO BACKLEAKAGE Project: SURRY THRU MOP CH-1A 6 Page 3 of 6 Date Lest Modified:

HPR15 Fri Jul 08 08:43:54 1988 Transfers from Pege(s) 1 5 HARGING PUMP H1A FAILS TO RUN FOR 6 HOURS HPl*MDP*FR-1A6HR HPl*CKV*OO*CV258

  • E-
  • E-
  • Tree: HPR*H2 Project: SURRY Page 4 of 6 Date Last Modified:

HPR13 Fri Jul 08 08:43:54 1988 Transfer from Page 1 FAILURE OF KV AC FAILURE OF V !NSF CPC CH B:SIJ HARGING PUMP 0 SIGNAL FROM US 1J C BUS 18 0 LUBE Olt,CC TO DP*CH1B FAILS TO IS TRAIN B EAL COOLER UN FOR 18 HRS ACP*TAC*LP-4KV1J DCP*TDC*LP*BUS1B CPCB HPR*MDP*FR*B18HR SIS*ACT*FA*SISB

~ ~

  • E*
  • E*

Tree: HPR-H2 Project: SURRY Page 5 of 6 Date Last Modified:

Fri Jul 08 08:43:54 1988 Transfer from Page HECK VALVE CV276 HPI MOP CH1C EST AND OMMON CAUSE INSUF FLO\J DUE INSUF FLO\J DUE FAILS TO OPEN FAILS TO RUN 6 AINTENANCE ON FAILURE TO START TO BACKLEAKAGE 0 BACKLEAKAGE HOURS DP CH1C DPS CH1B,CH1C HRU MOP CH-1A 18 HRU MOP CH-1A 6 HPI-MOV-PG-1286C HPI-CKV-FTsCV276 HPI-MDP-FS-CH1C HPI-MDP-FR-1C6HR HPI-MDP-MA-CH1C HPI-CCF-FS-CH1BC HPR14 HPR15 4.0E-005 1.0E-004 .OE-003 4.0E-004 2.0E-003 8.4E-004 Page 2 Page Transfer from Page~

0 SIGNAL FROM O SIGNAL FROM IS TRAIN A SIS TRAIN B SIS-ACT-FA-SI SA SIS-ACT-FA-SI SB 1.6E-003 .6E-003

  • Tree: HPR-H2 Project: SURRY Page 6 of 6 Date Last Modified:

HPR12 Fri Jul 08 08:43:54 1988 Transfer from Page 5 INSF CPC CH C:SW HPR MOTOR DRIVEN PERATOR FAILS TO FAILURE OF KV AC FAILURE OF V 0 LUBE OIL,CC TO PUMP FAILS TO EMOVE PULL LOCK US 1H C BUS 1A EAL COOLER ~UN 12 HRS ONDITION CPCC HPR-MDP-FR-1C12H HPl*XHE-FO-PLLCK ACP*TAC-LP*4KV1H DCP*TDC*LP-BUS1A

  • E-
  • E* ~

INSUF FLOW FM Tree: LPR-HH LPSI PMPS TO Project: SURRY CHARG PUMP suer Page 1 of 6 llnD Date Last Modified:

LPR-HH Wed Jul 06 13:12:24 1988 lr1I I INSUFFICIENT INSUFFICIENT FLOW FROM LPR HOV FLO\I FROM LPR HOV 1863A 1863B LPR-HHA LPR-HHB L:::,.. Page 6

~

I I I INSUFFICIENT FAILURE TO COMMON CAUSE FLOW THROUGH HOV PELIVER FLOW TO FAILURES OF LPR 1863A ~PR HOV 1863A ~ovs 1B63A/B LPR-HHC LPR-HHD LPR-HHE L:::,.. Page 1 t-0 I I I

~

I I I LPR MOTR OP VLV NO SIGNAL FROM LPR MOTOR OPER FAILURE OF 480V INS FUI TO INSUF FLO\I 1863A FAILS TO RMTS TRAIN A WALVE 1863A AC MCC 1H1-2 1863A FM LPSI PMP FROM LPSI PMP TRN OPEN PLUGGED B VIA DISCH XCONN ~ TO HOV 1863A LPR-MOV-FT-1863A RMT-ACT-FA-RMTSA LPR-MOV-PG-1863A ACP-TAC-LP-1H1-2 LPR-HHH LPR-HH1 U 3.0E-uu.> <..,,> 1.6E-uu.> U 6.5E-UU4 ~ ~

L:::,.. Page 2 I I I

~Pl MOTOR Pl MOTOR INSUF FLO\I OPERATED VALVE OPERATED VALVE FROM LPSI PMP TRN 1864A PLUGGED 1864B PLUGGED B TO MOV 1863B LPI-MOV-PG-1864A LPI-MOV-PG-1864B LPR-HH2

      • --'. u 4.4E-004 u 4.4E-004 L:::,.. Page 4 COMMON CAUSE FAILURES OF LPR "10VS 1863A/B LPR-HHE t'.-r\. Trans ers from Page(s) 1 6 I I

~OMMON CAUSE OMMON CAUSE FAILURE OF HOV FAILURE RMT DUE 1863A/B TO MISCALIBRATION LPR-CCF-FT-863AB RMT-CCF-FA-MSCAL u 2.6E-004 u 3.0E-004

INSUF FLOU Tree: LPR-HH FROM LPSI PMP TRN Project: SURRY TO HOV 1863A Page 2 of 6 Date Last Modified:

LPR-HH1 Ued Jul 06 13:12:24 1988 Transfers from Page(s) 1 6 INSUFFICIENT INSUFFICIENT INSUF FLOU FLO\I THROUGH FLO\I FROM LPSI THRU PS37 OR EGMENT PS32 PTRN MP TRNA FAILURE TO ISOL LPI MOP SI A LPI MDP FAILS TO OMMON CAUSE TEST AND FAILS TO START ON UN FOR 6 HOURS FAILURE OF MDPS AINTENANCE ON EMANO SI 1A AND SI 1B Pl MDPSI 1A LPR-HH9 LPI-XVM-PG*XV57 LPI-CKV-FT-CV58 LPI-MDP-FS*Sl1A LPI-MDP-FR-1A6HR LPI-CCF*FS*S11AB LPI-MDP-MA-SI 1A

.OE-005 1.0E-004 3.0E-003 1.8E-004 4.SE-004 2.0E-003 Pl MDP SI B FAILS TO START ON to EMANO I

(C

~

LPI-MDP*FS-S11B LPI-CKV-00-CVSO

  • E*
  • E-INSUFFICIENT FLO\I FROM LPSI MP TRNA LPR-HH3 Transfer from Page 2 LUGGING OF THE OTOR DRIVEN PUMP 0 SIGNAL FROM FAILURE OF OMMON CAUSE FAILURE OF V ONTAINMENT SUMP 11A FAILS TO RUN MTS TRAIN A C BUS 1A FAILURE RMT DUE C BUS 1H FOR 24 HR 0 MISCALIBRATION LPI-MDP*FR-A24HR RMT*ACT-FA-RMTSA DCP*TDC-LP-BUS1A RMT*CCF-FA-MSCAL ACP-TAC-LP-4801H
  • E-
  • E-
  • E*

INSUF FLOW Tree: LPR-HH THRU PS37 OR Project: SURRY FAILURE TO !SOL Page 3 of 6 Date Last Modified:

LPR-HHS Wed Jul 06 13:12:24 1988 Transfer from Page 2 LPR MOTOR OMMON CAUSE LPR-MOV- A OMMON CAUSE HECK VALVE CV FAILURE OF V PERATED VALVE FAILURE OF HOV FAILS TO OPEN FAILURE OF MOV FAILS TO OPEN C HCC 1H1-2 1862A FAILS TO 1862A/B 1860A/B LPR-MOV-FT-1862A

  • E-

r---------------------------------------------------------------

INSUF FLO\.I Tree: LPR *HH FROM LPSI PMP TRN Project: SURRY

'3 TO MOV 1863B Page 4 of 6 Date Last Modified:

LPR*HH2 \.led Jul 06 13:12:24 1988

/--0 Transfers from Page(s) 1 6 I I I INSUFFICIENT INSUFFICIENT INSUF FLO\.I FLO\.I THROUGH FLO\.I FROM LPSI ITHRU PS38 OR SEGMENT PS33 PTRN PMP TRN B FAILURE TO !SOL R bc,~1 LPR-HH7 LPR-HH6 LPR*HH8 L,.::,,. Page 4 Page :,

~

L.:l..

I I I I I I I INSUF FLO\.I DUE MANUAL VALVE XV48 HECK VALVE CV50 LPI MDP Sl1B LP! MDP FAILS TO COMMON CAUSE TEST AND TO BACKFLO\.I PLUGGED FAILS TO OPEN FAILS TO START ON RUN FOR 6 HOURS FAILURE OF MDPS MAINTENANCE ON THROUGH MDP Sl1A DEMAND $11A AND Sl1B LPI MDPSl1B LPR*HH10 LPl*XVM-PG*XV48 LPl*CKV-FT-CV50 LPI-MDP*FS*Sl1B LPl*MDP*FR-1B6HR LPl*CCF-FS-Sl1AB LPl *MDP*MA*Sl1B y u 4.0E-005 u 1.0E-004 u 3.0E-003 u 1.BE-004 u 4.SE-004 u 2.0E-003 I I LP! MDP Sl1A ~HECK VALVE CV58 FAILS TO START ON FAILS TO DEMAND $HUT,CAUSE DArV~I nu LPl*MDP*FS*Sl1A LPl*CKV-00-CVSB u j.UE*UU.) u 1.UE*UU.)

INSUFFICIENT FLO\.I FROM LPSI MP TRN B LPR*HH6 Transfer from Page 4 LUGGING OF THE OTOR DRIVEN PUMP O SIGNAL FROM FAILURE OF OMMON CAUSE FAILURE OF V ONTAINMENT SUMP l1B FAILS TO RUN MTS TRAIN B C BUS 1B FAILURE RMT DUE C BUS 1J FOR 24 HR 0 MISCALIBRATION RMT*ACT*FA*RMTSB DCP-TDC-LP*BUS1B RMT*CCF*FA*MSCAL ACP*TAC*LP-4801J

  • E-
  • E-

INSUF FLOW Tree: LPR-HH THRU PS38 OR Project: SURRY FAILURE TO !SOL Page 5 of 6 Date Last Modified:

LPR-HH8 Wed Jul 06 13:12:24 1988 Transfer from Page 4 OMMON CAUSE OTOR OP VALVE OMMON CAUSE HECK VALVE CV FAILURE OF V FAILURE OF HOV 1860B FAILS TO FAILURE OF HOV FAILS TO OPEN C MCC 1J1-2 1862A/B PEN 1860A/B LPR-CCF-FT-860AB LPR-CKV-FT-CV47 ACP-TAC-LP-1J1-2

  • E-
  • E-

INSUFFICIENT FLOW FROM LPR HOV 1863B

  • Tree: LPR-HH Project: SURRY Page 6 of 6 Date Last Modified:

LPR-HHB Wed Jul 06 13:12:24 1988

(,.2', Transfer from Page 1 I I I INSUFFICIENT FAILURE TO COMMON CAUSE FLOW THROUGH HOV DELIVER FLOW TO FAILURES OF LPR 1863B PR HOV 1863B MOVS 1863A/B LPR-HHF LPR-HHG LPR-HHE

~ Page 1

~ l;1 I I I I I I LPR MTR OP VLV NO SIGNAL FROM ~PR MOTOR OPER FAILURE OF 480V INS FLW TO INSUF FLOW 1863B FAILS TO RMTS TRAIN B ~ALVE 1863B ~C MCC 1J1-2 1863B FM LPSI PMP FROM LPSI PMP TRN PPEN l>LUGGED B VIA DISCH XCONN B TO HOV 1863B LPR-MOV-FT-1863B RMT-ACT-FA-RMTSB LPR-MOV-PG-1863B ACP-TAC-LP-1J1-2 LPR-HHI LPR-HH2 u 3.0E-003 <> 1.6E-003 u 6.SE-004 ~ t'.-r\I 6 Page 4 I I

"-Pl MOTOR LPI MOTOR INSUF FLOW OPERATED VALVE OPERATED VALVE FROM LPSI PMP TRN 1864A PLUGGED 1864B PLUGGED A TO HOV 1863A LPI-MOV-PG-1864A LPI-MOV-PG-1864B LPR-HH1 U 4.4E-UU4 LJ 4.4E-004 ~ Page 2

INSUF FL\.I FRM Tree: LPR-LH L\.I PRES SI Project: SURRY PMP*CLD LGS RECIR Page 1 of 5 MDF Date Last Modified:

LPR-LH Fri Jul 08 09:15:40 1988

~

I I I INSUFFICIENT PLUGGING OF THE FAIL TO S\.IITCH FLO\.I TO MOV1890C CONTAINMENT SUMP TO HOT LEG RECIR AT 16 HCXJRS LPR1 LPR-CCF-PG-SUMP LPR4

~ u 5.0E-uu:, £::::.. Page 5 I I INS INS FL\.I-MOV1890C FRM FL\.I-MOV1890C FRM L\.I HD SI PMP TRN L\.I HD SI PMP TRN ta 111=r111 R 11Fr'l11 LPR2 LPR3

~ ~

I I I I PIPE SEGMENT PIPE SEGMENT PIPE SEGMENT PIPE SEGMENT l>S32 FAULTS PS30 OR PS37 PS33 FAULTS PS31 OR PS38 FAULTS FAULTS LPRB LPR9 LPR10 LPR11

£::::,.. Page 2 £::::.. Page £::::.. Page 4

~

j tp

..... I I I I I I I I 0 COMMON CAUSE LP! MDP SI1A LP! MDP Sl1A !TEST AND ~HECK VALVE CV58 MANUAL VALVE XV57 LP! MOTOR FAILURE OF 480V 0 FAILURE OF MDPS FAILS TO START ON FAILS TO RUN 18 ~AINTENANCE ON FAILS TO OPEN PLUGGED PPERATED VALVE lt\C BUS 1H SI 1A AND SI 1B DEMAND HCXJRS LPI MDPSI 1A 1864A PLUGGED LPl*CCF*FS*Sl1AB LPI-MDP*FS-SI1A LP I *MDP- FR-A 18HR LPl *MDP-MA-SI 1A LPl*CKV*FT*CV58 LPI-XVM*PG-XV57 LPI-MOV*PG-1864A ACP*TAC*LP-4801H u 4.5E-004 u 3.0E-003 u 5.4E-004 u 2.0E-003 u 1.0E-004 u 4.0E-005 u 4.4E-004 ~

I I I I FAILURE OF 12uv NO SIGNAL FROM COMMON CAUSE INSUF FLO\.I DUE PC BUS 1A RMTS TRAIN A FAILURE RMT DUE TO BACKLEAKAGE TO MISCALIBRATION THRU MDP Sl1B DCP*TDC-LP*BUS1A RMT*ACT*FA-RMTSA RMT*CCF-FA-MSCAL LPR14

~ <._> 1.6E-003 u 3.0E-004

~

I I LP! MDP Sl1B HECK VALVE CV50 FAILS TO START ON FAILS TO DEMAND SHUT,CAUSE llllrVFlnU LPI-MDP-FS-Sl1B LPI-CKV-00-CVSO u 3.0E-003 u 1.0E-003

PIPE SEGMENT S30 OR PS37 FAULTS Tree: LPR-LH Project: SURRY Page 2 of 5 Date Last Modified:

Fri Jul 08 09:15:40 1988 Transfer from Page 1 FAILURE OF V LPR-MOV- A OMMON CAUSE HECK VALVE CV C MCC 1H1-2 FAILS TO OPEN FAILURE OF HOV FAILS TO OPEN 1860A/B ACP-TAC-LP-1H1-2 LPR-MOV-FT-1862A LPR-CCF-FT-860AB LPR-CKV-FT-CV56

  • E-
  • E-
  • E-00

PIPE SEGMENT Tree: LPR*LH S33 FAULTS Project: SURRY Page 3 of 5 Date Last Modified:

LPR10 Fri Jul 08 09:15:40 1988 Transfer from Page 1 OMMON CAUSE LPI MDP SIB Pl MDP SIB TEST AND HECK VALVE CV ANUAL VALVE XV LPI MOTOR FAILURE OF V FAILURE OF MOPS FAILS TO START ON FAILS TO RUN 18 AINTENANCE ON FAILS TO OPEN LUGGED PERATED VALVE C BUS 1J 11A AND Sl1B EMANO HOURS LPI MDPSI1B 1864B PLUGGED LPl*MDP-FS-SI1B LPI-MDP-FR-B18HR LPI-XVM-PG-XY48 LPI-MOV-PG-1864B ACP-TAC-LP-4801J

  • E-
  • E-
  • E-
  • E-RMT*ACT*FA-RMTSB RMT-CCF-FA*MSCAL DCP-TDC-LP-BUS1B 1.6E*003 3.0E-004 ~

LPI MDP SI A FAILS TO START ON EMANO

PIPE SEGMENT S31 OR PS38 FAULTS LPR11 Tree: LPR*LH Project: SURRY Page 4 of 5 Date Last Modified:

Fri Jul 08 09:15:40 1988 Transfer from Page 1 FAILURE OF V OTOR OP VALVE OMMON CAUSE HECK VALVE CV C MCC 1J1-Z 1860B FAILS TO FAILURE OF HOV FAILS TO OPEN PEN 1860A/B LPR-CCF-FT-862AB ACP-TAC-LP-1J1-2 LPR-CCF_.FT-860AB LPR*CKV-FT*CV47

  • E-
  • E-
  • E-

FAIL TO SWITCH Tree: LPR*LH TO HOT LEG RECIR Project: SURRY T 16 HOURS Page 5 of 5 Date last Modified:

LPR4 Fri Jul 08 09:15:40 1988 Transfer from Page 1 FA! L TO P FAILS TO ALIGN ROVIDE FLOW THRU THE SYSTEM FOR

!PE SEG PS14 HOT LEG REC!

LPR5 NO FLOW THROUGH PIPE SEGMENT PS47 LPR MOTOR LPR MOTOR OP VLV OMMON CAUSE PERATED VALVE 18908 FAILS TO FAILURE OF MOV 18908 PLUGGED PEN 1890A/8 LPR*CKV-FT*CV228 ACP-TAC*LP-1J1-2 LPR-MOV-FT-18908 LPR-CCF-FT-890A8 E-

  • E-
  • E-NO FLOW THROUGH PIPE SEGMENT PS46 LPR7 Transfer from Page 5 FAILURE OF V LPR MOTR OP VLV LPR MOTOR OPER OMMON CAUSE C HCC 1H1*2 1890A FAILS TO ALVE 1890A FAILURE OF HOV PEN LUGGED 1890A/8 ACP*TAC-LP-1H1-2 LPR-MOV-FT-1890A LPR-HOV-PG-1890A LPR*CCF*FT-890A8
  • E*
  • E-

INSUF FLOW/COOLING FROM

~OTH ISR SYSTEM TPAUI~

ISR-F1

  • Tree: ISR Project: SURRY Page 1 of 6 Date Last Modified:

Thu Aug 11 00:18:40 1988

~

I I INSUF INSUF FLOW/COOLING FROM FLOW/COOLING FROM PIPE SEGMENT PS60 PIPE SEGMENT PS61 ISR1 ISR2 L::::,. Page 6

~

I I I I I I INSUF FAILURE OF 120V FAILURE OF 480V ~O SIGNAL FROM PLUGGING OF THE INSUF COOLING FLOW/COOLING FROM DC BUS 1A AC BUS 1H tLCS TRAIN A ONTAINMENT SUMP OF PIPE SEGMENT PS60 PTRN A PS60 FLOW ISR3 DCP-TDC-LP-BUS1A ACP-TAC-LP-4801H CLS-ACT-FA-CLS2A LPR-CCF-PG-SUMP SI./S1

~ ~ ~ <..;> 1.6E-003 u 5.0E-005

~

I I I I I I I I ISR MDP RSlA ISR MOTOR DR PUMP lEST AND ~OMMON CAUSE FAIL ISR STRAINER INSUF FLOI./ INSUFF I Cl ENT INSUF FLOI./

FAILS TO START ON RS1A FAILS TO RUN MAINTENANCE ON ~O START ISR PMPS RS1AS PLUGGED THRU PIPE SEG INTAKE CANAL THROUGH PIPE SEG bEMAND MDP RS1A PS67,PS68,PS66 - LEVEL PS62 lln A ISR-MDP-FS-RS1A ISR-MDP-FR-RS1A ISR-MDP-MA-RS1A ISR-CCF-FS-RS1AB ISR-STR-PG-RS1AS SI./S3 MCI./-CCF-VF-INLVL SI./S5 LJ 3.BE-002 U 7.2E-004 U 2.0E-003 LJ 4.2E-003 u 7.2E-uu<t LJ l.OE-009

~ ~

I I I I I INSUF FLOW INSUFFICIENT INSUFFICIENT SI./S MOTOR OPER SI./S MOTOR OPER THROUGH PIPE SEG FLOI./ THROUGH PIPE FLOI./ THROUGH PIPE !VALVE 104A VALVE 105A PS66 TO HEADER A SEGMENT PS67 SEGMENT PS68 PLUGGED PLUGGED S1./S11 SI./S9 S1./S10 SI./S-MOV-PG-104A SI./S-MOV-PG-105A

~

~ Page 2 Le:,,. Page 3 u 6.SE-004 u 6.SE-004 I I I INSUF FLOI./ SI./S MOTOR OPER SI./S MOTOR OPER THROUGH PIPE SEG WALVE 106A VALVE 106B PS69 AND PS70 PLUGGED PLUGGED SIIS15 S1./S-MOV-PG-106A SI./S-MOV-PG-106B U 6.SE-004 U 6.:,E-UU4

~

I I INSUFFICIENT INSUFFICIENT FLOW THROUGH PIPE FLOW THROUGH PIPE SEGMENT PS69 SEGMENT PS70 SIIS12 SIIS13 L::::,. Page 4 L::::,. Page 5

INSUFFICIENT Tree: JSR FLOW THROUGH PIPE Project: SURRY EGMENT PS67 Page 2 of 6 Date Lest Modified:

SWS9 Thu Aug 11 00:18:40 1988 Transfers from Page(s) 1 6 0 SIGNAL FROM SYS MOTOR OP VLV TEST AtlD OMMON CAUSE LCS TRAIN A 103A FAILS TO AINTENANCE SWS FAILURE OF SWS PEN OV 103A !SOL MOVS 103ABCO ACP-TAC-LP-1H1-1 SWS-MOV-FT-103A SWS-CCF-FT-3ABCD

~

  • E-
  • E-00

INSUFFICIENT FLO\I THROUGH PIPE EGMENT PS68 Tree: ISR Project: SURRY Page 3 of 6 Date Last Modified:

SIIS10 Thu Aug 11 00:18:40 1988 Transfers from Page(s) 1 6 0 SIGNAL FROM WS MOTOR OP VLV OMMON CAUSE EST AND LCS TRAIN B 103B FAILS TO FAILURE OF SWS AINTENANCE SIIS PEN ISOL MOVS 103ABCD OV 103B ACP-TAC-LP-1J1-1 SIIS-CCF-FT-3ABCD

~

  • E-

INSUFFICIENT Tree: ISR FLOW THROUGH PIPE Project: SURRY EGMENT PS69 Page 4 of 6 Date Last Modified:

S\JS12 Thu Aug 11 00:18:40 1988 from Page(s) 1 6 0 SIGNAL FROM S\JS MOTOR OP VLV TEST AND OMMON CAUSE LCS TRAIN B 103C FAILS TO AINTENANCE S\JS FAILURE OF S\JS PEN OV 103C !SOL MOVS 103ABCD ACP-TAC-LP-1J1-1

~

tp t--'

0 00


~-----

INSUFFICIENT FLO\./ THROUGH PIPE EGMENT PS70

  • Tree: ISR Project: SURRY Page 5 of 6 Date Last Modified:

S\.IS13 Thu Aug 11 00:18:40 1988 Transfers from Page(s) 1 6 0 SIGNAL FROM S\.IS MOTOR OP VLV TEST AND OMMON CAUSE LCS TRAIN A 103D FAILS TO AINTENANCE ON FAILURE OF S\.IS PEN \.IS MOV103D ISOL MOVS 103ABCD ACP-TAC-LP-1H1-1 S\.IS-MOV-FT-103D S\.IS-MOV-MA-103D S\.1S-CCF-FT-3ABCD

~

  • E-
  • E-
  • E-

INSUF Tree: ISR FLOW/COOLING FROM Project: SURRY PIPE SEGMENT PS61 Page 6 of 6 Date Last Modified:

ISR2 Thu Aug 11 00:18:40 1988

~ Transfer from Page 1 I I I I I I INSUF NO SIGNAL FROM PLUGGING OF THE FAILURE OF 480V FAILURE OF 120V INSUFFICIENT FLOW/COOLING FROM ~LCS TRAIN B CONTAINMENT SUMP AC BUS 1J DC BUS 1B tOOLING OF PIPE PS61 PTRN B SEGMENT PS61 FLOY ISR4 CLS-ACT-FA-CLS2B LPR-CCF-PG-SUMP ACP-TAC-LP-4801J DCP-TDC-LP-BUS1B SWS2

<;> 1.6E-UU.) U 5.0E-UU) ~

~ ~ ~

I I I I I I I I ISR MOP RS1B ISR MOTOR DR PUMP TEST AND COMMON CAUSE FAIL ISR STRAINER INSUF FLOY INSUFFICIENT INSUF FLOY FAILS TO START ON RS1B FAILS TO RUN MAINTENANCE ON TO START ISR PMPS RS1BS PLUGGED ITHRU PIPE SEG INTAKE CANAL THROUGH PIPE SEG DEMAND MOP RS1B PS69,PS70,PS66 - LEVEL PS63

un R ISR-MDP-FS-RS1B ISR-MDP-FR-RS1B ISR-MDP-MA-RS1B ISR-CCF-FS-RS1AB ISR-STR-PG-RS1BS SYS4 MCY-CCF-VF-INLVL SWS6 u 3.BE-002 u 7.2E-004 u 2.0E-003 u 4.2E-003 u 7.2E-004 L,) u 1.0E-009 ~

I I I I I INSUF FLOW INSUFFICIENT INSUFFICIENT SYS MOTOR OPER ISWS MOTOR OPER THROUGH PIPE SEG FLOY THROUGH PIPE FLOY THROUGH PIPE VALVE 104B !VALVE 105B PS66 TO HEADER B [sEGMENT PS69 [sEGMENT PS70 PLUGGED PLUGGED SYS14 SYS12 SWS13 SWS-MOV-PG-104B SWS-MOV-PG-105B 6 Page 4 6 Page 5 U 6.5E-uu,. U 6.5E-uu,.

~

I I I INSUF FLOW SYS MOTOR OPER SYS MOTOR OPER

!THROUGH PIPE SEG VALVE 106A VALVE 106B PS67 AND PS68 PLUGGED PLUGGED SWS16 SYS-MOV-PG-106A SWS-MOV-PG-106B

~ u 6.SE-004 u 6.SE-004 I I INSUFFICIENT INSUFFICIENT FLOW THROUGH PIPE FLOU THROUGH PIPE SEGMENT PS67 SEGMENT PS68 SWS9 SWS10 6 Page 2 6 Page 3

INSUF FLOW/COOLING FROM 130TH OSR SYSTEM h"RA Ill<:

Tree: OSR Project: SURRY Page 1 of 8 Date Last Modified:

OSR Wed Jul 06 13:12:32 1988

~

I I INSUFFICIENT INSUFFICIENT FLOW/COOLING FROM FLOW/COOLING FROM PIPE SEG PS71 PIPE SEG PS72 0SR1 OSR2 1--A I I

?AI I I I I I INSUFFICIENT INSUFFICIENT FLOW INSUFFICIENT INSUFFICIENT INSUFFICIENT INSUFFICIENT FLOW INSUFFICIENT INSUFFICIENT FLOW IN PMP TRAIN FROM CSS TRAIN A COOLING OF PIPE FLOW/COOLING FROM FLOW IN PMP TRAIN FROM CSS TRAIN B ~OOLING OF PIPE FLOW/COOLING FROM A OF PS71 SEGMENT PS71 FLOW PIPE SEG PS71 B OF PS72 SEGMENT PS72 FLOW PIPE SEG PS72 0SR3 CSS1 SWS5 0SR5 OSR4 CSS2 SWS6 OSR6

£::::,. Page 2 £:::::.. Page 1 £:::::.. Page 7 £:::::.. Page 6 £:::::.. Page 8

~ ~ ~

I I I I I I OSR MOTOR OPER OSR MDP RS2A ~OMMON CAUSE FAIL OSR MDP RS2A CSR MOTOR OPER TEST AND VALVE 155A FAILS TO START ON ~O START OSR MDPS FAILS TO RUN 24 VALVE 156A MAINTENANCE ON PLUGGED PEMAND HOURS PLUGGED '1SR MDPRS2A OSR-MOV-PG-155A OSR-MDP-FS-RS2A OSR-CCF-FS-RS2AB OSR-MDP-FR-A24HR OSR-MOV-PG-156A 0SR-MDP-MA-RS2A U 4.0E-UU) U 3.0E-uu.> U 3.3E-UUt+ u 7.2E-UUt+ LJ 4.0E-UU) U 2.0E-uu.>

INSUFFICIENT FLOW/COOLING FROM IPE SEG PS71 Transfer from Page 1 0 SIGNAL FROM FAILURE OF LUGGING OF THE FAILURE OF HECK VALVE CV SR MDP RS A SUMP LCS TRAIN A C BUS 1A ONTAINMENT SUMP C BUS 1H FAILS TO OPEN TRAINER PLUGGED DCP-TDC-LP-BUS1A LPR-CCF-PG-SUMP ACP-TAC-LP-4801H OSR-CKV-FT-CV17 OSR-STR-PG-RS2A

  • E-
  • E-
  • E-

INSUFFICIENT Tree: OSR OOLING OF PIPE Project: SURRY EGMENT PS71 FLOW Page 2 of 8 Date Last Modified:

SWSS Wed Jul 06 13:12:32 1988 Transfer from Page 1 INSUF FLOW WS MOTOR OPER INSUFFICIENT SWS MOTOR OPER THRU PIPE SEG ALVE 104C INTAKE CANAL ALVE 105C S69,PS70,PS66 TO LUGGED LEVEL LUGGED SWS7 MCW*CCF*VF*INLVL SWS*MOV*PG-105C

  • E-
  • E-INSUF FLOW HRU PIPE SEG S66 TO HEADER B SWS16 SWS-HOV*PG-106A SWS-MOV-PG-1068
  • E*
  • E-INSUFFICIENT FLOW THROUGH PIPE SEGMENT PS67 SWS9 SWS10 Page Page 5 INSUFFICIENT FLOW THROUGH PIPE r,;EGMENT PS69 SWS12 t'.-r\ Trans ers from Page(s) 2 6 I I I I I FAILURE OF 480V NO SIGNAL FROM SWS MOTOR OP VLV TEST AND -.OMMON CAUSE AC HCC 1J1-1 ~LCS TRAIN B 103C FAILS TO MAINTENANCE SllS FAILURE OF SllS OPEN MOV 103C ISOL MOVS 103ABCD ACP*TAC*LP-1J1-1 CLS*ACT*FA*CLS2B SllS*HOV*FT*103C .SWS*MOV*MA* 103C S1lS-CCF*FT-3ABCD

~ <.._;> 1.6E-003 u 3.0E-003 u 2.0E-004 u 6.3E-004

Tree: OSR Project: SURRY Page 3 of 8 Date Last Modified:

SWS13 IJed Jul 06 13:12:32 1988 Transfers from Page(s) 2 6 0 SIGNAL FROM SWS MOTOR OP VLV EST AND OMMON CAUSE LCS TRAIN A 103D FAILS TO AINTENANCE ON FAILURE OF SIJS PEN IJS MOV103D ISOL MOVS 103ABC~

ACP-TAC-LP-1H1-1 SIJS-MOV-FT-103D S1JS-CCF-FT-3ABCD

~

  • E-
  • E-

INSUFFICIENT Tree: OSR FLO\I THROUGH PIPE Project: SURRY SEGMENT PS67 Page 4 of 8 Date Last Modified:

SIJS9 \led Jul 06 13:12:32 1988 Transfers from Page(s) 2 6 0 SIGNAL FROM S\IS MOTOR OP VLV TEST AND OMMON CAUSE LCS TRAIN A 103A FAILS TO AINTENANCE S\IS FAILURE OF S\IS PEN OV 103A !SOL MOVS 103ABCD ACP-TAC-LP-1H1-1 S\.IS-MOV-FT-103A SIIS-CCF-FT-3ABCD

~

  • E-00
  • E-

INSUFFICIENT Tree: OSR FLOW THROUGH PIPE Project: SURRY EGMENT PS68 Page 5 of 8 Date Last Modified:

SWS10 Wed Jul 06 13:12:32 1988 Transfers from Page(s) 2 6 0 SIGNAL FROM WS MOTOR OP VLV TEST AND OMMON CAUSE LCS TRAIN B 103B FAILS TO AINTENANCE SWS FAILURE OF SWS PEN OV 103B ISOL MOVS 103ABCD ACP-TAC-LP-1J1-1 CLS-ACT-FA-CLS2B SWS-MOV-FT-103B SWS-MOV-MA-103B SWS-CCF-FT-3ABCD

~

  • E-
  • E-
  • E-
  • E-

INSUFFICIENT Tree: OSR OOLING OF PIPE Project: SURRY EGMENT PS72 FLOI./ Page 6 of 8 Date Last Modified:

SI./S6 I.Jed Jul 06 13:12:32 1988 Transfer from Page INSUF FLOI./ I.JS MOTOR OPER INSUFFICIENT SI.JS MOTOR OPER HRU PIPE SEG ALVE 104D INTAKE CANAL ALVE 105D S67,PS68,PS66 TO LUGGED LEVEL LUGGED SI./S8 SI./S-MOV-PG-104D MCI./-CCF-VF-INLVL

  • E-
  • E-INSUF FLOI./

HROUGH PIPE SEG S66 TO HEADER A SI./S15 S1./S-MOV-PG-106A SI./S-MOV-PG-106B

  • E-
  • E-INSUFFICIENT FLOI./ THROUGH PIPE EGMENT PS69 SI./S12 SI./S13 Page 2 Page 3

INSUFFICIENT FLOW IN PMP TRAIN OF PS72 OSR4

  • Tree: OSR Project: SURRY Page 7 of 8 Date Last Modified:

Wed Jul 06 13:12:32 1988 Transfer from Page 1 SR MOTOR OPER SR MOP RS B OMMON CAUSE FAIL SR MOTOR OPER EST AND ALVE 155B FAILS TO START ON O START OSR MOPS ALVE 156B AINTENANCE ON LUGGED EMANO LUGGED SR MDPRS2B

--1 OSR-MDP*FR-B24HR OSR*MOV-PG-156B OSR-MDP-MA-RS2B

  • E*
  • E*
  • E-

INSUFFICIENT Tree: OSR FL0\1/COOLING FROM Project: SURRY

!PE SEG PS72 Page 8 of 8 Date Last Modified:

OSR6 ~ed Jul 06 13:12:32 1988 Transfer from Page 1 0 SIGNAL FROM FAILURE OF LUGGING OF THE FAILURE OF HECK VALVE CV SR MDP RS B SUMP LCS TRAIN B C BUS 1B ONTAINMENT SUMP C BUS 1J FAILS TO OPEN TRAINER PLUGGED CLS-ACT-FA-CLS2B DCP-TDC-LP-BUS1B ACP-TAC-LP-4801J OSR-CKV-FT-CV11 OSR-STR-PG-RS2B

  • E- ~ ~ E-
  • E;.

FAILURE TO COOLDO\JN AND DEPRESSURIZE 00 Tree: 00 Project: SURRY Page 1 of 7 Date Last Modified:

Mon Aug 29 13:43:44 1988

~

I I FAILURE OF OPERATOR FAILS TO HARDWARE TO  ::oOLDO\JN AND

~UPPORT DEPRESS rnn1 nn11111ni:DDS:C:

002 RCS-XHE-FO-DPRES

~ u 2.2E-uu" I I FAILURE OF FAILURE OF DEPRESSURIZATION COOLDO\JN HARD\JARE HARD\JARE FM AT LEAST 1 SG 003 004

~ ~

I I I I I I FAILURE OF FAILURE OF l OF 2 FAILURE OF FAILURE TO FAILURE TO FAILURE TO NORMAL SPRAY RCS PORVS TO OPEN ~UXILIARY SPRAY  ::OOLDO\JN VIA SG A tOOLDO\JN VIA SG B OOLDO\IN VIA SG C ODS PPS11 RCS-FCV-FT-AUXSP 006 007 008

~ <.._;> 1.0E-UU.) ,L:::,. Page 2 L::::. Page 6 ,L:::,. Page 7

~

I I FAILURE OF FAILURE OF NORMAL SPRAY F~OM NORMAL SPRAY FROM LOOP #1-- OOP #3 009 0010 t'.-0 ~

I I I I I I I RCP lA FAILS TO FAILURE OF NORMAL OMMON CAUSE FAILURE OF 4KV AC RCP lC FAILS TO FAiLURE--cli= NORMAL ~OMMON CAUSE FAILURE OF 4KV AC RUN SPRAY VLV 1455A FAILURE OF NORMAL nus 1J RUN SPRAY VLV 1455B FAILURE OF NORMAL IIUS 1H TO OPEN SPRAY VLVS TO TO OPEN SPRAY VLVS TO RCS-MDP-FR-RCP1A RCS-AOV-FT-1455A RCS-CCF-FT-455AB ACP-TAC-LP-4KV1J RCS-MDP-FR*RCP1C RCS-AOV-FT-1455B RCS-CCF-FT-455AB ACP-TAC-LP-4KV1H u 3.0E-UU) u 1.0E-UU.) u 1.0E-UU4 ~ U 3.0E-UOl u l.UE-UU.) u l.UE-004 ~

FAILURE TO Tree: OD COOLDO\IN VIA SG A Project: SURRY Page 2 of 7 Date Lest Modified:

OD6 Mon Aug 29 13:43:44 1988 L;i Transfer from Page 1 I I I I I FAILURE TO FAILURE TO FAILURE TO FAILURE TO FAILURE TO COOLDYN VIA SG A COOLDOYN VIA A ~OOLDOYN VIA A rooLDO\IN VIA B COOLDO\IN VIA B PORV ITURB BYPASS ITURB BYP VLV BYP TURB BYPASS TURB BYP VLV BYP 0011 0014 OD15 0016 OD17 L,.:::,. Page 2 L.:::. Page L.:::. Page 4 L,.:::,. Page 5 h-\I I I j

I I

~GA PORV FAILS ~GA PORV PLUGGED SG A PORV BLOCKED ~OMMON CAUSE FAIL ..OMMON CAUSE ITO DPEN ~ovs DUE TO LOSS FAILURE OF SG PF AIR PORVS MSS-AOV-FT-101A MSS-AOV-PG-101A MSS-AOV-FC-101A IAS-CCF-LF-INAIR MSS-CCF-FT-01ABC u 1.0E-003 u 4.0E-005 u 1.SE-001 u 2.7E-005 u 1.0E-004 FAILURE TO OOLDO\IN VIA A URB BYPASS OD14 Trans ers from Page(s) 2 6 7 TURB BYPASS OMMON CAUSE FAIL LUGGED OVS DUE TO LOSS FAIR PCS-AOV-FT-HSTVA PCS-AOV-PG-HSTVA PCS-CCF-FT-TRBYP IAS-CCF-LF-INAIR 1.0E-003 4.0E-005 4.3E-005 2. E-00

Tree: 00 Project: SURRY Page 3 of 7 Date Lest Modified:

Hon Aug 29 13:43:44 1988 Transfers from Pege(s) 2 6 7 BYP TO TURB BYP TO TURB OMMON CAUSE FAIL YPASS FAILS TO YPASS PLUGGED OVS DUE TO LOSS PEN FAIR PCS*AOV*FT*BYP*A PCS*AOV*PG*BYP*A PCS*CCF*FT*TRBYP IAS*CCF*LF*INAIR

  • E*
  • E*
  • E*
  • E*

FAILURE TO Tree: 00 OOLDOIIN VIA B Project: SURRY TURB BYPASS Page 4 of 7 Date Last Modified:

0016 Mon Aug 29 13:43:44 1988 Transfers from Page(s) 2 6 7 TURB BYPASS TURBINE BYPASS OMMON CAUSE FAIL FAILS TO OPEN LUGGED OVS DUE TO LOSS FAIR PCS-AOV-PG*MSTVB PCS-CCF-FT-TRBYP

  • E-

FAILURE TO OOLDO\./N VIA B URB BYP VLV BYP Tree: OD Project: SURRY Page 5 of 7 Date Last Modified:

0017 Mon Aug 29 13:43:44 1988 Transfers from Page(s) 2 6 7 BYP TO TURB BYP TO TURB OMMON CAUSE FAIL YPASS FAILS TO YPASS PLUGGED OVS DUE TO LOSS PEN FAIR PCS-AOV-FT-BYP-B PCS-AOV-PG-BYP-B PCS-CCF-FT-TRBYP IAS-CCF-LF-INAIR

  • E-
  • E-
  • E-
  • E-

FAILURE TO Tree: OD COOLDO\./N VIA SG B Project: SURRY Page 6 of 7 Date Last Modified:

OD7 Mon Aug 29 13:43:44 1988 Transfer from Page 1

~ I I I I I FAILURE TO FAILURE TO FAILURE TO FAILURE TO FAILURE TO COOLD\./N VIA SG B COOLDO\./N VIA B COOLDO\./N VIA B COOLDO\./N VIA A COOLDO\./N VIA A PORV JURB BYPASS TURB BYP VLV BYP iTURB BYPASS TURB BYP VLV BYP OD12 0016 0017 0014 0015

~ Page 4 Li. Page 5 L.:::,. Page 2 Page

~

L_:::,._ j I I I I I SG B PORV FAILS SG E PORV PLUGGED SG B PORV COMMON CAUSE FAIL -.OMMON CAUSE TO OPEN BLOCKED AOVS DUE TO LOSS FAILURE OF SG OF AIR PORVS MSS-AOV-FT-101B MSS-AOV-PG-101B MSS-AOV-FC-101B IAS-CCF-LF-INAIR MSS-CCF-FT-01ABC u 1.0E-003 u 4.0E-005 u 1.SE-001 u 2.7E-005 u 1.0E-004

FAILURE TO COOLDO\.IN VIA SG C Tree: OD Project: SURRY Page 7 of 7 Date Last Modified:

008 Mon Aug 29 13:43:44 1988 Transfer from Page 1

~

I I I I I FAILURE TO FAILURE TO FAILURE TO FAILURE TO FAILURE TO COOLD\.IN VIA SG C COOLDO\.IN VIA A tOOLDO\.IN VIA A tOOLDO\.IN VIA B ..OOLDO\.IN VIA B PORV TURB BYPASS ~URB BYP VLV BYP TURB BYPASS TURB BYP VLV BYP 0013 0014 0015 0016 0017 Page 2 Page 3 L::::,. Page 4 L::::,. Page 5

~

L::::,. L::::,.

I I I I I SG C PORV FAILS ~G C PORV PLUGGED SG C PORV BLOCKED COMMON CAUSE FAIL COMMON CAUSE TO OPEN ~ovs DUE TO LOSS FAILURE OF SG PF AIR PORVS MSS-AOV-FT-101C MSS-AOV-PG-101C MSS-AOV-FC-101C IAS-CCF-LF-INAIR MSS-CCF-FT-01ABC u 1.0E-003 u 4.0E-005 u 1.SE-001 u 2.7E-OOS u 1.0E-004

FAILURE TO COOL Tree: 00-SG AND DEPRESS-SGTR Project: SURRY Page 1 of 6 Date Last Modified:

oo-s~ Mon Aug 29 13:07:16 1988 t-r\

I I FAILURE OF OPERATOR FAILS HARDIJARE TO OOLDOIJN AND SUPPORT DPRESS FOR SGTR rnn1 nm1111ni:01n:c:

002 RCS-XHE-FO-DPRT7 tr\ U 2.9E-uu~

I I FAILURE OF FAILURE OF PEPRESSURIZATION COOLDOIJN HARDIJARE HARDIJARE FM AT LEAST 1 SG 003 004 Q ~

I I I I I FAILURE OF FAILURE OF l OF 2 FAILURE OF FAILURE TO FAILURE TO NORMAL SPRAY RCS PORVS TO OPEN !AUXILIARY SPRAY COOLDOIJN VIA SG B COOLDO\JN VIA SG C ODS PPS11 RCS-FCV-FT-AUXSP 007 008 Q ~ <> l.OE-UU.) ~ Pagel ~ Page 6 I I FAILURE OF FAILURE OF NORMAL SPRAY FROM NORMAL SPRAY FROM LOOP #1 OOP #3 009 0010 tr\ ~

I I I I I I I I RCP 1A FAILS TO FAILURE OF NORMAL ~OMMON CAUSE FAILURE OF 4KV AC RCP lC FAILS TO FAILURE OF NORMAL COMMON CAUSE FAILURE OF 4KV AC RUN $PRAY VLV 1455A FAILURE OF NORMAL aus 1J RUN SPRAY VLV 1455B FAILURE OF NORMAL BUS 1H

!TO OPEN SPRAY VLVS TO TO OPEN SPRAY VLVS TO RCS-MDP-FR-RCP1A RCS-AOV-FT-1455A RCS-CCF-FT-455AB ACP-TAC-LP-4KV1J RCS-MDP-FR-RCP1C RCS-AOV-FT-1455B RCS-CCF-FT-455AB ACP-TAC-LP-4KV1H U .s.oE-uu, u l.UE-UU.) U l.UE-004 ~ U .S.UE-UU:> U l.UE-UU.) u l.UE-004 ~

FAILURE TO

~OOLDOWN VIA SG B

  • Tree: 00-SG Project: SURRY Page 2 of 6 Date Last Modified:

007 Hon Aug 29 13:07:16 1988 Transfer from Page 1

~

I I I I I FAILURE TO FAILURE TO FAILURE TO FAILURE TO FAILURE TO

~OOLDWN VIA SG B COOLDOWN VIA B COOLDOWN VlA B ~OOLDOWN VIA A COOLDOWN VIA A l>ORV TURB BYPASS TURB BYP VLV BYP ITURB BYPASS TURB BYP VLV BYP 0012 0016 0017 0014 0015

~ Page z ~ Page 3 ~ Page 4 ~ Page:,

"14I I I I I SG B PORV FAILS SG B PORV PLUGGED SG B PORV ~OMMON CAUSE FAIL COMMON CAUSE TO OPEN BLOCKED ~ovs DUE TO LOSS FAILURE OF SG PF AIR PORVS MSS-AOV-FT-101B HSS-AOV-PG*101B HSS-AOV-FC-101B IAS-CCF-LF-INAIR HSS-CCF-FT-01ABC U 1.0E-003 U 4.0E-005 U 1.5E-001 u 2.7E-005 u 1.0E-004 FAILURE TO OOLDOWN VIA B URB BYPASS 0016 Trans ers from Page(s) 2 6 TURB BYPASS TURBINE BYPASS OMMON CAUSE FAIL FAILS TO OPEN LUGGED OVS DUE TO LOSS FAIR PCS-AOV-PG-HSTVB PCS-CCF-FT-TRBYP IAS*CCF*LF-INAIR

.OE-005 .3E-005 .7E-005

FAILURE TO Tree: 00-SG OOLDO\.IN VIA B Project: SURRY URB BYP VLV BYP Page 3 of 6 Date Last Modified:

0017 Mon Aug 29 13:07:16 1988 Transfers from Page(s) 2 6 BYP TO TURB BYP TO TURB OMMON CAUSE FAIL YPASS FAILS TO YPASS PLUGGED OVS DUE TO LOSS PEN FAIR PCS-AOV-FT-BYP-B PCS*CCF-FT-TRBYP IAS-CCF-LF-INAIR

  • E-
  • E-
  • E-

FAILURE TO OOLDO\JN VIA A TURB BYPASS Tree: 00-SG Project: SURRY Page 4 of 6 Date Last Modified:

0014 Mon Aug 29 13:07:16 1988 Transfers from Page(s) 2 6 TURB BYPASS OMMON CAUSE FAIL LUGGED OVS DUE TO LOSS FAIR PCS-AOV*FT-MSTVA PCS-AOV-PG-MSTVA PCS-CCF-FT-TRBYP IAS-CCF-LF*INAIR

  • E-
  • E-
  • E-
  • E-

FAILURE TO Tree: 00-SG OOLDO\.IN VIA A Project: SURRY URB BYP VLV BYP Page 5 of 6 Date Last Modified:

OD15 Mon Aug 29 13:07:16 1988 Transfers from Page(s) 2 6 BYP TO TURB BYP TO TURB OMMON CAUSE FAIL YPASS FAILS TO YPASS PLUGGED OVS DUE TO LOSS PEN FAIR PCS-AOV-FT**BYP-A PCS-CCF-FT-TRBYP IAS-CCF-LF-INAIR

  • E-
  • E-
  • E-

FAILURE TO Tree: 00-SG

~OOLDOYN VIA SG C Projec~: SURRY Page 6 of 6 Date Last Modified:

008 Hon Aug 29 13:07:16 1988

4) Transfer from Page 1 I I I I I FAILURE TO FAILURE TO FAILURE TO FAILURE IU FAILURE TO tOOLDWN VIA SG C COOLDOYN VI A A ~OOLDOYN VIA A OOLDOYN VIA B OOLDOWN VIA B PORV JURB BYPASS JURB BYP VlV BYP TURB BYPASS TURB BYP VLV BYP OD13 0014 0015 0016 0017 L::::,.. Page 4 L::::,.. Page 5 L::::,.. Page 2 L::::,.. Page 3

/.-A I I I I I SG C PORV FAILS SG C PORV PLUGGED SG C PORV BLOCKED COMMON CAUSE FAIL COMMON CAUSE TO OPEN AOVS DUE TO LOSS FAILURE OF SG OF AIR PORVS MSS-AOV-FT-101C HSS-AOV-PG-101C MSS-AOV-FC-101C IAS-CCF-LF-INAIR HSS-CCF-FT-01ABC u 1.0E-003 U 4.0E-005 u l.SE-001 u 2.7E-OOS u 1.0E-004

FAILURE TO Tree: P OPEN BOTH PORVS Project: SURRY FOR FEED AND Page 1 of 1 111ccn Date Last Modified:

p Thu Aug 18 13:34:28 1988

~

I I I INSUFFICIENT FAILURE OF THE INSUFFICIENT FLOY THROUGH PIPE OPERATOR TO OPEN FLOY THROUGH PIPE SEGMENT PS130 IBOTH PORVS ~EGMENT PS131 PPS31 PPS-XHE-FO-PORVS PPS41 f.-M U 4.4E-002 I I

~

I I I I I I PORV BLOCK VLV FAILURE OF 120V PORV PCV1456 ..OMHON CAUSE PORV BLOCK VLV J'ORV PCV1455C FAILURE OF 120V ICOMHON CAUSE MOV1535 FAILS IN DC BUS 1B FAILS TO OPEN ON FAILURE OF THE MOV1536 FAILS IN FAILS TO OPEN ON be BUS 1A FAILURE OF THE THE CLOSED POS bEHAND PORVS TO OPEN ~HE CLOSED POS PEHAND bORVS TO OPEN PPS51 DCP-TDC-LP-BUS1B PPS-SOV-FT-1456 PPS-CCF-FT-PORV PPS61 PPS-SOV-FT-1455C DCP-TDC-LP-BUS1A PPS-CCF-FT-PORV QI ~ u 1.0E-003 u 7.0E-005 QI u 1.0E-003 <©> u 7.0E-005 I I PORV BLOCK VLV BLOCK VALVE MOV PORV BLOCK VLV BLOCK VALVE MOV MOV1535 FAILS TO 1535 SHUT DUE TO MOV1536 FAILS TO 1536 SHUT DUE TO bPEN LEAKING PORV OPEN LEAKING PORV PPS71 PPS-MOV-FC-1535 PPS81 PPS-HOV-FC-1536

~ U 3.0E-001 ~ Page 1 U 3.0E-001 I I I I bORV BLOCK VALVE FAILURE OF 480V :COMMON CAUSE DORV BLOCK VALVE 1535 FAILS TO AC HCC 1H1-2 FAILURE OF PORV 1535 PLUGGED bPEN ~LOCKING VALVES PPS-HOV-FT-1535 ACP-TAC-LP-1H1-2 PPS-CCF-FT-15356 PPS-HOV-PG-1535 u 4.0E-002 <@> u 3.5E-003 u 4.0E-005 PORV BLOCK VLV MOV1536 FAILS TO OPEN PPS81

~ Transfer from Page 1 I I I I coRV BLOCK VALVE FAILURE OF 480V iCOMMON CAUSE DORV BLOCK VALVE 1536 FAILS TO ~C HCC 1J1-2 FAILURE OF PORV 1536 PLUGGED bPEN BLOCKING VALVES PPS-HOV-FT-1536 ACP-TAC-LP-1J1-2 PPS-CCF-FT-15356 PPS-MOV-PG-1536 u 4.0E-002 <©> u 3.5E-003 u 4.0E-005

FAILURE TO Tree: P1 PPEN 1 OF 2 PORV Project: SURRY FOR FEED AND Page 1 of 2 RI ccn Date Last Modified:

P1 Thu Aug 18 13:35:26 1988 y

I I INSUFFICIENT INSUFFICIENT FLOW THROUGH PIPE FLOW THROUGH PIPE

$EGMENT PS130 SEGMENT PS131 PPS3 PPS4

.L:::. Page .::

1--r\I I I I I PORV BLOCK VLV FAILURE OF 120V PORV PCV1456 -.OMMON CAUSE FAILURE OF THE MOV1535 FAILS IN DC BUS 1B FAILS TO OPEN ON FAILURE OF THE OPERATOR TO OPEN THE CLOSED POS DEMAND PORVS TO OPEN PNE PORV PPS5 DCP*TDC*LP*BUS1B PPS*SOV*FT-1456 PPS-CCF-FT-PORV PPS-XHE-F0-1PORV y ~ u 1.0E-003 u 7.0E-005 u 7.lE-002 I I PORV BLOCK VLV BLOCK VALVE MOV MOV1535 FAILS TO 1535 SHUT DUE TO PPEN LEAKING PORV PPS7 PPS-MOV-FC-1535 U 5.UE-001 1--r\I I I I PORV BLOCK VALVE FAILURE OF 480V COMMON CAUSE PORV BLOCK VALVE 1535 FAILS TO AC MCC 1H1*2 FAILURE OF PORV 1535 PLUGGED OPEN ~LOCKING VALVES PPS-MOV-FT-1535 ACP-TAC-LP-1H1-2 PPS-CCF-FT-15356 PPS-MOV-PG-1535 u 4.0E-002 ~ u 3.SE-003 u 4.0E-005 I

INSUFFICIENT Tree: P1 FLOY THROUGH PIPE Project: SURRY EGMENT PS131 Page 2 of 2 Date Last Modified:

PPS4 Thu Aug 18 13:35:26 1988 Transfer from Page 1 PORV BLOCK VLV FAILURE OF OMMON CAUSE FAILURE OF THE OV1536 FAILS IN C BUS 1A FAILURE OF THE PERATOR TO OPEN HE CLOSED POS ORVS TO OPEN NE PORV PPS*XHE*F0*1PORV

  • E*

tlj ORV BLOCK VALVE OMMON CAUSE ORV BLOCK VALVE I

I-'

1536 FAILS TO FAILURE OF PORV 1536 PLUGGED c.,,:, PEN LOCKING VALVES

,la:.

PPS-MOV*FT-1536 ACP-TAC*LP-1J1*2 PPS*CCF-FT-15356 PPS-MOV-PG-1536

.OE-00 ~

  • E*OO
  • E*OO

Tree: P2 Project: SURRY Page 1 of 2 Date Last Modified:

P2 Mon Aug 29 13:59:32 1988 FAILURE OF OF FAILURE TO OPEN SRVS TO OPEN F 3 SRVS AND 2 F 2 PORVS P23 FAILURE OF 2 SRVS OMMON CAUSE FAILURE OF 2 SRVS TO OPEN DURING FAILURE OF RCS TO OPEN DURING TIJS RVS TO OPEN TIJS P25 PPS-CCF-FT-SRVS P26 7.0E-005 AFETY RELIEF AFETY RELIEF AFETY RELIEF AFETY RELIEF AFETY RELIEF AFETY RELIEF to ALVE 1551A FAILS ALVE 1551B FAILS ALVE 1551A FAILS ALVE 1551C FAILS ALVE 1551C FAILS ALVE 1551B FAILS I 0 OPEN TO OPEN TO OPEN TO OPEN TO OPEN 0 OPEN f-"

e,..:,

C.11 PPS-SRV-FT-1551A PPS-SRV-FT-1551B PPS-SRV-FT-1551A PPS-SRV-FT-1551C PPS-SRV-FT-1551C PPS-SRV-FT-1551B

  • E-
  • E-
  • E-
  • E-
  • E-
  • E-

FAILURE TO OPEN 2 Tree: P2 OF 3 SRVS AND 2 Project: SURRY OF 2 PORVS Page 2 of 2 Date Last Modified:

P22 Mon Aug 29 13:59:32 1988 Transfer from Page 1

~

I I FAILURE OF 1 SRV FAILURE TO OPEN TO OPEN DURING !IOTH PORVS FOR ATWS MWS P24 PPS1P2 h\ ~

I I I I I

!SAFETY RELIEF SAFETY RELIEF SAFETY RELIEF INSUFFICIENT INSUFFICIENT

~ALVE 1551A FAILS ~ALVE 1551B FAILS VALVE 1551C FAILS FLOW THROUGH PIPE FLOW THROUGH PIPE TO OPEN !TO OPEN TO OPEN SEGMENT PS130 SEGMENT PS131 PPS-SRV-FT-1551A PPS-SRV-FT-1551B PPS-SRV-FT-1551C PPS31 PPS41 u 1.0E-003 LJ 1.0E-003 u 1.0E-003 ~ ~

I I I I I I I I PORV BLOCK VLV FAILURE OF 1,uv PORV PCVi456 ~OMMON CAUSE PORV BLOCK VLV PORV PCVi455C FAILURE OF 12UV OMMON CAUSE MOV1535 FAILS IN PC BUS 1B FAILS TO OPEN ON FAILURE OF THE MOV1536 FAILS IN FAILS TO OPEN ON pc BUS 1A FAILURE OF THE ITHE CLOSED POS DEMAND PORVS TO OPEN !THE CLOSED POS DEMAND PORVS TO OPEN PPS51 DCP-TDC-LP-BUS1B PPS-SOV-FT-1456 PPS-CCF-FT-PORV PPS61 PPS-SOV-FT-1455C DCP-TDC-LP-BUS1A PPS-CCF-FT-PORV

~ LJ l .UE-uu.3 U 7.0E-uu:, {,J U 1.0E-uu.> ~ U 7.0E-uu:,

~

I I I I PORV BLOCK VLV !!LOCK VALVE MOV PORV BLOCK VLV BLOCK VALVE HOV MOV1535_FAILS TO 1535 SHUT DUE TO MOV1536 FAILS TO 1536 SHUT DUE TO OPEN ~EAKING PORV OPEN EAKING PORV PPS71 PPS-MOV-FC-1535 PPS81 PPS-MOV-FC-1536

~

LJ 3.0E-001 ~ Page 2 u 3.0E-001 I I I I I PORV BLOCK VALVE FAILURE OF 46UV _:OMMON CAUSE PORV BLOCK VALVE FAILURE OF THE 1535 FAILS TO AC MCC 1H1-2 FAILURE OF PORV 1535 PLUGGED OPERATOR TO OPEN OPEN BLOCKING VALVES PORV BLOCK VL PPS-MO.V-FT-1535 ACP-TAC-LP-1H1-2 PPS-CCF-FT-15356 PPS-MOV-PG-1535 PPS-XHE-FO-UNBLK LJ 4.0E-Ou, ~ LJ 3.5E-003 LJ 4.0E-UU) LJ 1.0E-001 PORV BLOCK VLV OV1536 FAILS TO

.PEN PPS81 Transfer from Page 2 ORV BLOCK VALVE FAILURE OF OMMON CAUSE ORV BLOCK VALVE 1536 FAILS TO C MCC 1J1-2 FAILURE OF PORV 1536 PLUGGED PEN . LOCKING VALVES

FA YSTEM TO COOL OF RHR HE REACTOR, 10F2 Tree: RHR Project: SURRY Page 1 of 5 Date Last Modified:

Thu Aug 18 13:33:18 1988 INSUF FLO\I INSUF FLO\I

-FROM SEGMENT PSB, FROM SEGMENT PS9, I SCH TO LOOP 2 ISCH TO LOOP 3 INSUF FLO\I HECK VALVE HR MOV 720A HR MOTOR OMMON CAUSE THROUGH SEGMENT VRC23 FAILS TO FAILS TO OPERATE PERATED VALVE FAILURE OF RHR S 7,HX DISCH HDR PEN N DEMAND. 1720A PLUGGED. OVS 1720A, 1720B RHR4 ACP*TAC*LP*1H1*2 RHR*CKV*FT*RC23 RHR*MOV*FT*1720A RHR*MOV*PG*1720A RHR*CCF*FT*720AB Page ~ 1.0E-004 3.0E-003 4.0E-005 2.6E*004 INSUF FLO\I THROUGH SEGMENT PS 7,HX DISCH HDR RHR4

/--0 Trans ers from Page(s) 1 5 I I I I INSUFFICIENT HCV-1758 FAILS RHR FLO\I ORIFICE SRV-1721 RELIEF FLO\I TO SEGMENT $HUT. .,LUGGED. ~ALVE INADVERTENT PS 7,FM EACH HX PPEN.

RHRS RHR*AOV*OC-1758 RHR*ASF*PG-1605 RHR*SRV*C0-1721

~ u 7.SE-007 U 3.0E-004 u 9.4E*005 I I INSUFFICIENT INSUFFICIENT FLOY THROUGH FLO\I THROUGH SEGMENT PS4, HX SEGMENT PSS, HX i:14 S:1A RHR6 RHR7 6 Page 4 1--0 I I I I I SEGMENTS PS4 MANUAL VALVE XV19 MANUAL VALVE XV15 RHR HEAT RHR HEAT

~ND 5 COMMON PLUGGED PLUGGED ~XCHANGER E1A ~XCHANGER E1A FAULTS PLUGGED ~UBE LEAKS.

RHRB RHR*XVM*PG*XV19 RHR*XVM*PG*XV15 RHR*HTX*PG*E1A RHR*HTX*LK*E1A

~ Page 2 LJ 4.4E*004 U 4.4E*004 u 1.4E*004 u 7.2E*005

SEGMENTS PS4 Tree: RHR

~ND 5 COMMON Project: SURRY FAULTS Page 2 of 5 Date Last Modified:

RHR8 Thu Aug 18 13:33: 18 1988 Transfers from Page(s) 1 4

~

I I I INSUF FLO\.I TO INSUFFICIENT FCV-1605 SEGMENT PS4 AND roMPONENT COOLING TRANSFERS FULLY 5,FM RHR PUMPS FROM CC\.I OPEN AND REMAINS hoi:u RHR9 CC\.11 RHR-AOV-00-1605 LJ 2.4E-006

~ ~

I I INSUFFICIENT INSUFFICIENT FLO\.I THROUGH FLO\.I THROUGH SEGMENT PS3 PTRN SEGMENT PS2 PTRNA R

RHR10 RHR11

~ Page 3

~ I I I I I I I INSUF FLO\.I MANUAL VALVE XV2 .. HECK VALVE CV5 RHR MOP 18 FAILS RHR MOP 18 FAILS K:OMMON CAUSE INSUF FLO\.I DUE

!THROUGH SEGMENT PLUGGED FAILS TO OPEN TO START ON TO RUN FOR 24 FAILURE OF MOP 1A ITO BACKLEAKAGE

~S3 PTRN B CONTD DEMAND HOURS ~ND 18 TO START ~HRU MOP RHR1A RHR13 RHR-XVM-PG-XV2 RHR-CKV-FT-CV5 RHR-MDP-FS-RHR1B RHR-MDP-FR-B24HR RHR-CCF-FS-MDPAB RHR16

~

LJ 4.4E-004 u 1.0E-004 LJ J.OE-OOJ u 7.2E-004 LJ 4.SE-004

~

I I I I I I I INSUF FLO\.I MANUAL VALVE XV6 FAILURE OF 4 KV FAILURE OF 120V INSUFFICIENT RHR MOP 1A FAILS BACKFLO\.I THROUGH THRU SEGMENT PLUGGED AC STUB BUS 1J DC BUS 18 COMPONENT COOLING TO START ON CV11 PS1,PMP SUCTION FROM CC\.I DEMAND

~M I P1 RHR14 RHR*XVM-PG-XV6 ACP-TAC-LP-STB1J DCP-TDC-LP-BUS1B CC\.11 RHR*MDP-FS-RHR1A RHR-CKV-OO-CV11 6 Page 2 LJ 4.4E-004 ~ ~ ~ u 3.0E-003 U 1.0E-003 RHR14 Trans ers from Page(s) 2 3 FAILURE OF 480V FAILURE OF 480V C HCC 1J1-2 C HCC 1H1-2 RHR-MOV-FT-1701

  • E-00

INSUFFICIENT Tree: RHR FLml THROUGH Project: SURRY SEGMENT PS2 PTRNA Page 3 of 5 Date Last Modified:

RHR11 Thu Aug 18 13:33:18 1988 Transfer from Page 2 INSUF FLOII ANUAL VALVE XV HECK VALVE CV HR MOP A FAILS HR MOP A FAILS INSUF FLOII DUE HROUGH SEGMENT LUGGED FAILS TO OPEN TO START ON TO RUN 24 HOURS 0 BACKLEAKAGE S2 PTRN A CONTD EMANO HRU HOP RHR1B RHR12 RHR14 RHR-XVM-PG-XV12 ACP-TAC-LP-STB1H DCP*TDC*LP-BUS1A CCll1 RHR-MDP-FS-RHR1B RHR*CKV-00-CVS Page 2 4.4E-004 :i::>- ~ 3.0E-003 .OE-003

INSUFFICIENT Tree: RHR FLOII THROUGH Project: SURRY SEGMENT PSS, HX Page 4 of 5 Date Last Modified:

RHR7 Thu Aug 18 13:33:18 1988 Transfer from Page 1 ANUAL VALVE XV ANUAL VALVE XV HR HEAT HR HEAT LUGGED LUGGED XCHANGER E1B XCHANGER E1B LUGGED. UBE LEAKS RHR8 RHR-XVM-PG-XV24 RHR-HTX-PG-E1B Page

  • E-
  • E-

I LOW FROM SEGMENT PS9, ISCH TO LOOP 3 RHR3 Transfer from Page 1 Tree: RHR Project: SURRY Page 5 of 5 Date Last Modified:

Thu Aug 18 13:33:18 1988 INSUF FLOII HECK VALVE FAILURE OF HR MOTOR OMMON CAUSE HROUGH SEGMENT VRC24 FAILS TO C MCC 1J1-2 PERATED VALVE FAILURE OF RHR S 7,HX DISCH HDR PEN. 1720B PLUGGED. OVS 1720A, 1720B RHR4 RHR-CKV-FT-RC24 ACP-TAC-LP-1J1-2 RHR-MOV-FT-1720B Page

  • E-

LOSS OF Tree: \I OMPONENT COOLING Project: SURRY

~ATER Page 1 of 2 Date Last Modified:

CCll1 lled Jul 06 13:12:36 1988 l-0I I I I FAILURE OF AOV TV-CC-lOf AOV TV-CC*lUf INSTRUMENT AIR COOLED FLOII TRANSFERS CLOSED PLUGGED EAK TO TV-CC-107 112 IAS-AOV-OC-CC107 IAS*AOV-PG-CC107 IAS-AOV-LK-CC107

~ u f.)E*uu, u 4.UE*UU) u l.4E*UU)

I I FAILURE OF FAILURE OF PUMP TRAINS TO HEAT EXCHANGER PROVIDE FLOII TRAINS 113 114 Page 2

~

~

I I NO FLOII NO FLOII

!THROUGH PUMP !THROUGH PUMP TRAIN 1-CC-P*1B !TRAIN 1-CC-P*1A 116 \IS

/.-r4. ~

I I I I I I I I BACKFLOII FAILURE OF 4 KV MDP CC-P1B FAILS MDP CC-P1B FAILS TEST AND ~HECK VALVE CV557 FAILURE OF 4 KV 1-CC-P-1A FAILS

!THROUGH 1*CC-P-1A AC STUB BUS 1J !TO START ON TO RUN MAINTENANCE ON FAILS TO CLOSE AC STUB BUS 1H !TO RUN PEMAND MDP CC*P1B

\18 ACP-TAC-LP-STB1J CC\l*MDP-FS-CCP1B CCII-MDP-FR-CCP1B CCII-MDP-MA-CCP1B CCII-CKV-FT-CV557 ACP-TAC-LP*STB1H CCII-MDP-FR-CCP1A l,'1 <©> u .S.OE*U03 u 7.2E-004 u 2.0E-003 u 1.0E-004 ~ u 7.2E-004 I I l *CC-P* lA FAILS ~HECK VALVE CV557 TO RUN FAILS TO SHUT,CAUSE D0.f"l(FI nu CCII-MDP-FR-CCP1A CCII-CKV-OO-CV557 u f.lE*UU4 u 1.0E-uO.s

FAILURE OF HEAT EXCHANGER

~RAINS Tree: II Project: SURRY Page 2 of 2 Date Last Modified:

114 lled Jul 06 13:12:36 1988 Transfer from Page 1

~

I I FAILURE OF FAILURE OF HEAT EXCHANGER HEAT EXCHANGER

"*1A "*1B W9 1110 L::::.. Page 2

/.-A I I I I I I MANUAL VALVE MANUAL VALVE MANUAL VALVE XV37 MANUAL VALVE XV39 CCII HEAT !CCII HEAT XV580 PLUGGED )(V583 PLUGGED PLUGGED PLUGGED EXCHANGER E1A l:XCHANGER E1A PLUGGED LEAKS CCII-XVM-PG-XVSBO CCll*XVM*PG-XV583 SIIS-XVM*PG-XV37 SIIS-XVM-PG*XV39 CCll*HTX*PG*E1A CCII-HTX*LK*E1A u 4.0E-005 u 4.0E-005 u 4.0E-005 u 4.0E-005 u 1.4E*004 u 7.2E*005 FAILURE OF HEAT EXCHANGER

  • 1B 1110 Trans er from Page 2 ANUAL VALVE ANUAL VALVE ANUAL VALVE XV33 ANUAL VALVE XV35 CII HEAT TEST AND V584 PLUGGED V587 PLUGGED LUGGED LUGGED XCHANGER E1B AINTENANCE HT LUGGED XCHGR E1B CCll*XVM*PG*XV~84 CCll*XVM*PG*XV587 SIIS*XVM*PG*XV33 SIIS*XVM-PG*XV35 CCll*HTX*PG*E1B CCll*HTX*MA*E1B 4.0E-005 .OE-005 .OE-005 4.0E-005 .4E*004 2.0E-004

APPENDIX C Human Reliability Analysis - Detailed Results

  • C-1

Table of Contents Section Page.

c. Human Reliability Analysis - Detailed Results . .................... . C-3 C.1 Pre-Initiator Error Analysis*. ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • C-3 C.2 Post-Initiator Error Analysis * * * * * * * * * * * * * * * * * * * * * * * * * * * . * * . * * *
  • C-3 List of Tables C-1 Feed and Bleed Cooling Sequences ******************.************ C-10 C-2 Station Blackout Sequences ************************************ C-22 C-3 SGTR with a Faulted SG Sequence *************.***************** C-34 C-4 SGTR with HPI Failure Sequence ******************************** C-46 C-5 Large and Intermediate LOCA Recirculation Sequences *************** C-58 C-6 Small and Very Small LOCA ECCS Sequences *********************** C-70 C-7 CPC Service Water Failure During LOCA Sequences ***********.****** C-82 C-8 A T~'S Sequences **************..*****.*********.*********** C-94 C-2
  • C. Human Reliability Analysis - Detailed Results This appendix contains the analysis performed to calculate the probabilities for human actions used in the revised Surry probabilitic risk assessment (PRA). This section presents the detailed results of the Human Reliability Analysis (HRA) described in Section 4.8 of the main report *. Two types of human errors, pre-initiator and post initiator, were studied for the PRA.

Pre-initiator error analysis was entirely concerned with miscalibration errors and equipment restoration errors~ Human actions which lead to these errors were done under normal plant operating conditions with stress levels appropriate for everyday work environments. The calculation of error probabilities for these actions was concerned with the adequacy of the maintenance and inspection procedures, the dependence of related tasks, and the administrative redundancy of restoration procedures. The pre-initiator analysis is detailed in Section C.1.

The other category of human errors was post-initiator errors. Post-initiator error analysis was concerned with human errors made in response to the mitigation of an initiating event. The human actions from which these errors derive were procedure directed. Calculation of error probabilities for these actions was primarily concerned with the amouf\t of time available to complete the task, the stress level under which the task was performed, and the amount of redundant verification that was possible within the allowable time period. The post-initiator error analysis is detailed in Section C.2.

C.l Pre-Initiator Error Analysis

  • The pre-initiator error analysis started with the establishment of a set of screening criteria. The screening criteria determined which systems wre susceptible to pre-initiator errors. Only two pre-initiator errors survived the screening process. These were restoration of the containment spray pump test lines and miscalibration of the R WST level sensors. A more detailed discussion of the screening process and the two pre-initiator errors is contained in Section 4.8 of the main report.

C.2 Post-Initiator Error Analysis Post-initiator human actions are those operator actions performed after the accident has started. The methodology used to evaluate post-accident human actions is described in detail in reference C-1. In summary, the evaluation was performed in eight major steps:

(1) Identification of the sequence ancf subsequent accident conditions.

(2) Based on the cut set (and sequence), the timing of the events (i.e.,

occurrences, failures, alarms, indications, etc.) was established.

(3) Based on the cut set (and sequence), the symptoms and therefore the possible recovery actions (and required activities) were identified.

(4) The time available to the operator to diagnose and perform the action (and activities) was established.

(.5) The probability of the operator failing to properly diagnose the accident was determined. This considered operator training, simulator exercises, and other factors.

C-3

(6) The type of recovery action (whether 'dynami<;:' or 'step-by-step') was determined by the plant using symptom-oriented procedures or not, and operator training, etc.

(7) The stress level of the operator was determined, considering the time available, difficulty of the action, and training.

(8) The probability of the operator failing to perform the recovery action was evaluated.

In evaluating the accident sequences for potential recovery credit, the HRA process was documented in a series of eleven tables, as follows:

(1) The first table identifies the accident sequence. with a detailed description of the accident scenario.

(2) The second table establishes the timing of the accident: timing of the events, annunciators, and alarms.

(3) Based on Table 1, this third table identifies the symptoms, potential recovery actions, and those activities associated with them.

(4) The time available for the operator to perform the recovery action is determined and shown in Table 4.

(5) The time it takes the operator to perform the action is calculated in Table 5.

(6) The amount of time the opera tor has to diagnose problems is displayed in Table 6.

(7) Diagnosis error probabilities are evaluated and documented in two tables (Table 7, more than one abnormal event, and Table 8, one abnormal event).

(8) Table 9 identifies the 'type' of action the operator performed.

(9) The 'stress' level of operators, considering the accident sequence, is documented in Table 10.

(10) Using the information from the previous tables, the probability of the operator failing to recover from the faults of the accident sequence is evaluated in Table 11.

The event identifiers with an HRA subscript represent the HRA portion of a recovery action. See Section 4.9 for the hardware contribution and the total unavailability. The event identifiers without subscripts represent basic events whose sole contributor is an HRA unavailability. The notes that describe each column in the tables are presented below.

C-lf

Table 1 Notes:

  • (1) This should include a detailed description of the accident sequence under consideration -- what functions and systems are failing and succeeding, what phenomena are occurring because of the failures and successes and their resulting effects, what is the final outcome of the sequence, etc.

(2) The basic accident type is described here.

(3) Because of the accident type and the "symptoms" of the accident, certain immediate conditions, (i.e., entry conditions) are generated (e.g., reactor trip, low reactor water level, high drywell pressure, etc.). ThesF? immediate conditions are listed here.

(4) From the accident conditions or symptoms, the operator is immediately directed into certain EOPs. These are listed here. Additionally, other relevant procedures are also listed here.

Table 2 Notes:

  • See Step II 1, page 6-9 and Step 113, page 8-3 of ASEP HRA procedures.

(1) Identify the major events which are expected to comprise the accident sequence.

(2) Identify the time at which each event is expected to occur, beginning with the initiating event at T:0. Subsequent events are expressed in minutes following the initiating event.

(3) Identify any annunciators or other indicators notifying the operators that each event has occurred.

(4) Provide any additional comments which serve to clarify information on this table, as required.

Table 3 Notes:

  • See Step 112, page 6-10 and Step 114, page 8-3 of ASEP HRA procedures.

(1) Identify the principal component functional failures which comprise the cut sets for the accident sequence. *

(2) Identify the specific symptoms which will indicate to the operators that the component functional failure has occurred.

(3) Identify all actions which may be taken by* the operator in response to each component functional failure.

(4) Identify the individual activities (tasks) which comprise each potential operator action. List only significant operator ac:tioris as opposed to decisions, diagnoses, etc.

(5) Any additional comments required to clarify the information on this table.

Table 4 Notes:

(1) The actions listed in Column 3, Table 3, are listed here.

(2) The last possible time at which, if the operator establishes the required function, subsequent core damage is prevented.

(3) In many_ cases, the operator is not alerted to the failure at the time of the initiator. Lisst the time at which the operator recognizes that the failure has occurred.

(4) The difference between the time in which the operator must successfully perform the action following the initiating event and the time at which the operator recognizes that the action must be taken. Ted - To= Tm Table 5 Notes:

  • See Step /13, page 6-10 and Steps 115, 6, and 7, pages 8-3 and 8-4 of ASEP HRA procedures.

(1) The major activities (tasks) which comprise the operator actions are listed.

(2) Identify the location in which each activity must be performed.

(3) Identify the travel time required for an operator to transit from his likely location at the time the requirement for the action is recognized to the loction at which the activity must be performed. Assume that the operator knows the proper location.

(4) Identify the time which is required to perform the activity, given that the operator has reached the location at which the activity must be performed.

Assume that the operator knows how to perform the required activity. Any anticipated difficulties or complexities should be reflected in this estimate.

Table 6 Notes:

  • See Step /14, page 6-10 and Step 117, page 8-4 of the ASEP HRA procedures.

(1) Tm is determined in Table 4.

(2) Ta is determined in Table 5 (3) Time available to disgnoses is equal to Tm less Ta.

(4) Any additional comments required to clarify the information in. this table.

C-6

Table '7 Notes:

  • See Step 9, pages 8-4 to 8-7 of the ASEP HP A procedures.

(1) In order to accomplish the action, if the operator must diagnose for each activity, the probability of mis-diagnosis for each activity needs to be determined.

(2) If the analyst can determine that the probability of the operator failing to diagnose the event is negligible, then remainder table is not applicable. Reasons for determining that the diagnosis error is negligible should be discussed in the comment column.

(3) See Table 3 for definition of abnormal event.

(4) If there is more than one abnormal event, there is the probability that the operator will fail to recognize an additional occurrence of another event.

Therefore, the probability that the signal of subsequent abnormal events are not noticed needs to be estimated. These HEPs are added to the final HEP. At the time of the second, third, etc. abnormal event, you need to determine the total number of annunciators being alarmed. Read down the column marked "Number of ANNs" to the total number of annunciators you have determined, then read straight across to the column marked Pr(F 1), this is the HEP that the opera tor will fail to respond to the signal of the second, etc. abnormal event in the midst of the other annunciators.

(5) Based on Td (from Table 6) an initial HEP for failure to diagnose is selected from Table 8-2. Use mean value.

(6) Indicate whether or not the action is "skill-based" as defined in Table 2-1, Page 2-6 of the ASEP HRA procedures.

(7) It is assumed that mis-diagnosis of scram is "epsilon" ( lE:-4). The HEP*for each action (or activity) should be adjusted accordingly (up or down) depending on whether the event is covered in training, the event is practiced by the opera tors, the event is well recognized and interviews indicate that all operators are familiar with the accident, the event is practicied by the operators in simulator requalification exercises and the complexity of sequence (e.g., conflicting readings). To adjust the HEP upward and downward, use the associated error factor to. adjust.

(8) Any additional comments required to clarify the information in this table.

Table 8 Notes:

  • See Step 9, pages 8-4 to 8-7 of the ASEP fTRA procedures.

(1) List the actions identified in Table 3, Column 3 which are part of one abnormal event.

(2) If the analyst determines that the probability of the operator failing to diagnose the event is negligible, then the remainder of the table is not applicable. Reasons for determining. that the diagnosis error is negligible should be discussed in comment column.

{3) Based on Td {from Table 6), an initial HEP for failure to diagnoses is selected from Figure 8-1. Use mean value.

{4) Indicate whether or not the action is "skill-based" as defined in Table 2-1, page 2-6 .of the ASEP HRA procedures.

{5) It is assumed that mis-diagnosis of scram is "epsilon" {

  • lE-4). The initial HEP is adjusted downward (use lower bound) or upward {use upper bound) depending on whether the plant uses symptom-oriented EOPs, event is covered in the EOPs, operators are trained on the EOPs and the EOPs are well designed. Additionally, the HEP for each action (or activity) should be adjusted to reflect any special complexity of the sequence (e.g., conflicting readings).

(6) Any additional comments required to clarify the information in this table.

Table 9 Notes:

  • See Step /110, pages 8-7 and 8-8 in the ASEP HRA procedures.

(1) List the actions identified in Table 3, Column 3.

{2) List any safety systems that were functioning and then failed.

{3) Indicate whether or not EOPs are well designed, operators use EOPs, and operators are well trained on procedures.

(4) Indicate whether or not an individual operator performs more than one safety function using a system without good indication (cues) that he must shift from one activity to another.

(5) If any safety systems fail after initially operating (/12), EOP design or training is not adequate (/13), or if operator performs more than one function (//4) without adequate indication, then the action (or activity) should be classified as "dynamic" and not "step-by-step". Generally, step-by-step is defined as a routine, procedurally-guided set of steps when performed one-at-a-time.

(6) Any additional comments required to clarify the information in this table.

Table 10 Notes:

  • See Step /110, pages 8-7 and 8-8 in the ASEP HRA procedures.

(1) List the*actions identified in Table 3, Column 3.

(2) Indicate whether or not the time available to diagnose and perform the action (activities) is less than two hours.

(3) Indicate whether or not more than two safety systems fail in the course of the sequence.

C-8

(4) Indicate whether ot not operator is very experienced in the sequence, regardless of items 2 and 3 above.

(5) Extremely high stress is assessed if the response to Items 112 or 112 is yes and the response to item $3 is no. However. if Item /14 is yes, moderately high stress can be assessed. Additionally, the stress should be adjusted accordingly, taking into account such things as "degree of burden", complexity of action (activity), action (activity) needs to be performed "quickly", action location not easily accessible, etc. Any PWR large LOCA is presumed to involve extremely high stress until recirculation is established.

(6) Any additional comments required to clarify the information in this table.

Table l 1 Notes:

  • See Table 8-5, pages 8-13 and 8-14 in the ASEP HRA procedures.

(1) List the actions identified in Table 3, Column 3 (2) List the activities (tasks) which comprise each action as identified in Table 3, Column 4.

(3) The failure probability of the original operator performing the activity. The HEP is based on whether the activity is step-by-step, dynamic, moderately high stress, extremely high stress (refer to Tables 9 and 10). The HEP is taken from either Item 1/3, 114, or 115 of Table 8-5 of the ASEP HRA procedures.

(4) If recovery of the activity <action) made by the original operator is possible, identify the probability that a second person (generally the shift supervisor) fails to correct the original operator. This HEP is based on whether the activity is step-by-step, dynamic, moderately high stress, extremely high stress (refer to Tables 9 and 10). The HEP is taken from either Item 116, 117, or 118 of Table 8-5 of the ASEP HRA procedures.

(5) If the accident sequence is such that a third independent check (e.g., accident management team, second shift, etc.) is performed, the probability for failing to do so is assessed. This HEP is based on whether the activity is step-by-step, dynamic, moderately high stress, extrememly high stress (refer to Tables 9 and 10). The HEP is taken from Item 116, 117 or 118 of Table 8-5 of the ASEP HRA procedures.

(6) The probability of failing to perform an action is the multiplication of the HEPs of

  • Items 113, 114, and 115.

(7) Any comments required to clarify the information in this table.

C. Reference

  • C-1 A.D. Swain, Accident Se uence Evaluation Pro Procedure, N REG CR- , February 1987.

C-9

Table C-1 Feed and Bleed Cooling Sequences The following sheets calculate human error probabilities for:

AFW-XHE-FO-UNIT2HRA - Failure to cross connect AFW from Unit 2 HPI-XHE-FO-FDBLD - Failure to initiate HPI for feed and bleed PPS-XHE-FO-PORVS - Failure to open PORVs for feed and bleed for s3 , T2 , T3 , and T1 sequences with two nGs operable.

0 I

r-'

0

TABLE 1 ACCIDENT SEQUENCE DESCRIPTION SEQUENCE NUMBER:

SEQUENCE DESCRIPTION:

( 1)

Turbine trip with or without main feedwater Is the Initiating event. Main feedwater wlll be Isolated when TAVE reaches 543°F - which Is shortly after turbine trip. After Immediate post trip recovery, operator wlll attempt to restore MFW via opening of the main feed regulating bypass valves, or wl 11 go to AFW. If this Is unaval I able, he wl 11 go to AFW at Unit 2. IAFW from Unit I wl 11 start automatically on low steam generator water level). If AFW from Unit 2 Is unavailable, he wlll go to feed and bleed, using at least one charging pump and 2 PORVs.

0

....I APPLICABLE PROCEDURES:

(4)

EP 1.0 - Reactor Trip or St EPl.01 - Reactor Trip Recovery FRP H.1 - Loss of Secondary Heat Sink

TABLE 2 SEQUENCE ANO CUT SET TIMING*

EVENT/OCCURRENCE (I) TIME (2) ANNUNCIATOR/INDICATION (3) COMMENTS/

SOURCE OF INFORMATION (4)

I* Reactor trip/turbine trip t =0 Yes

2. Main teedwater Isolate t = 3m
3. Operator attempts to restore MFW t = 5m thru bypass valve
4. Lo level In SG t = !Om Yes 0

I I-'

N) 5. AFW - Unit I tal Is to start t = 10m Yes

6. Operator attempts AFW from Unit 2 t = *1sm
7. Operator tal Is to Initiate teed t = 35m and bleed
  • TABLE 3 CUT SET FAILURE AND POTENTIAL OPERATOR ACTIONS*

CUT SETS:

DESCRIPTION SYMPTOMS POTENTIAL OPERATOR ACTIVITIES (TASKS) COMMENTS/

OF EVENT ACTIONS REQUIRED TO PERFORM SOURCE OF INFORMATION

( 1) (2) ( 3) ACTION AND (5 )

PROCEDURAL I ZED ( 4) 1* Loss of MFW AFW from Unlt 1 1) start pumps

2. Loss of AFW-Ul a> no flow AFW from Unlt 2 1 ) close 251 valves at Unlt 2

<? b) lo SG level 2) open 160 A/B MOV w 3) start AFWP at Un lt 2

3. Loss of AFW-U2 a> no f I ow Feed and bleed 1 ) start charglng pump b) lo SG level 2) open both PORVs and block valves 1 f necess.

TABLE 4 SEQUENCE AND CUT SET AVAILABLE TIME CUT SETS:

ACTION TIME BY WHICH OPERATOR MUST ACT TIME AT WHICH OPERATOR IS MAXIMUM TIME AVAILABLE TO COMMENTS/

CI ) TO PREVENT SUBSEQUENT CORE ALERTED THAT SYMPTOM HAS PERFORM THE IDENTIFIED SOURCE OF DAMAGE <Ted) (2) OCCURRED (To) (3) OPERATOR ACTIVITIES (Tm) (4) INFORMATION (5)

AFW-XHE-FO-UNIT2HRA 35m 10m 25m HPI-XHE-FO-FDBLD 35m 15m 20m 0 PPS-XHE-FO-PORVS 35m 15m 20m

....I

CUT SETS:

OPERATOR ACTION PERFORMANCE TIME*

ACTION ACTIVITIES LOCATION TRAVEL PERFORMANCE TOTAL COMMENTS/

( 1) (2) TIME TIME TIME (Ta) SOURCE OF INFORMATION (3) (4) ( 5) (6)

AFW-XHE-FO-UNIT2HRA a) close 251 valves CR Im Im 2m b) open 160 A/B CR Im 2m vlv c) start AFW P CR Im Im 4m - It actually can all be done In 2 minutes or less.

PPS~XHE-FO-PORVS open PORVs CR Im Im 2m HPl~XHE-FO-FOBLD start charging CR Im Im 2m pumps

TABLE 6 DIAGNOSIS TIME OF SEQUENCE CUT SET*

SEQUENCE/CUT SET MAX I MUM Tl ME TOT AL ACTION TIME AVAi LABLE COMMENTS/

AVAILABLE (Tm) TIME (Ta) TO DIAGNOSIS (Td) SOURCE OF INFORMATION

( 1) (2) ( 3) (4)

AFW-XHE-FO-UNIT2HRA 25m 2m 23m HPI-XHE-FO-FDBLD 20m 2m 18m PPS-XHE-FO-PORVS 20m 2m 18m

CUT SETS:

TABLE 7 DIAGNOSIS ANALYSIS -- MORE THAN ONE ABNORMAL EVENT*

ACTION DIAGNOSIS NUMBER ANNUNCIATOR FAILURE TO SK I LL-BASED ADJUSTMENT COMMENTS/

(Symptom) NEGLIGIBLE OF ABN HEP DIAGNOSE IN FINAL SOURCE OF (1) (2) EVENT (Table 8-4) (Table 8-2) ( 6) HEP C7) INFORMATION (3) (4) (5 ) (8 )

NOT APPLICABLE

TABLE 8 DIAGNOSIS ANALYSIS - ONE ABNOR~AL EVENT*

CUT SETS:

ACTION DIAGNOSIS FAILURE TO SKILL-BASED ADJUSTMENT COMMENTS/

(Symptom) NEGLIGIBLE DIAGNOSE (4) - IN FINAL SOURCE OF INFORMATION CI) (2) (Figure 8-1) HEP ( 5) (6)

(3)

AFW-XHE-FO-UNIT2HRA Yes This Is procedure directed by FRP H,1; which wlll be entered directly on low teed flow.

Feed and bleed Appl !cable to 2.66E-2 It AFW at Unit 2 Is unavailable because of mechanical 0 sequences where failures, the operator would recognize this and go to

.._.I CX) F&B Is required the next steps In the procedure which tell him to feed because of operator and bleed. If the operator makes an error In align-errors Involving ment of AFW from U2, then he must diagnose that an AFW. error has been made. The STA wlll be monitoring the core status trees and wlll have the opportunity to recognize that there Is no AFW

  • CUT SETS:

E 9 POST-DIAGNOSIS ACTION-TYPE IDENTIFICATION*

  • ACTION SAFETY SYSTEMS FAILED EOPs, TRAINING, USE EOPs, OPERATOR PERFORMS DYNAMIC OR COMMENTS/

(Activities) (2) WELL-DESIGNED EOPs ONE ACTIVITY STEP-BY-STEP SOURCE OF INFORMATION

( 1) (3) (4) ( 5) (6)

AFW - U2 Yes Yes Step by Step Feed and bleed Yes Yes Step by Step If AFW has previously falled due to operator error, the time to do feed and bleed Is shortened and time stress Is present.

0 I

~

cc

TABLE 10 POST-DIAGNOSIS STRESS-LEVEL INDICATION*

CUT SETS:

ACTION Tm 2 h MORE THEN TWO OPERATOR STRESS LEVEL COMMENTS/

(Activities) AFTER IE SAFETY SYSTEMS FAMILIAR (5) SOURCE OF INFORMATION CI> (2) FAIL W/SEQUENCE (6)

(3) (4)

AFW - Unit 2 NA No Yes Moderate Feed and bleed NA No Yes Moderate

(")

I t~

0

CUT SETS:

TABLE 11 POST-DIAGNOSIS ANALYSIS*

ACTION ACTIVITIES ORIGINAL SUPERVISOR FAILS THIRD INDEPENDENT TOTAL HEP COMMENTS/

(1) (2 ) OPERATOR TO CORRECT CHECK/CORRECTION (6) SOURCE OF INFORMATION HEP OPERATOR HEP HEP ( 7)

( 3) (4 ) ( 5)

AFW - U2 a) close 251 3. 2E-2 3.2E-1 1.04E-2 va~ves b) open 160 3.2E-2 3.2E-1 1. 04E-2 valves c> start pumps 3. 2E-2 3.2E-1 1. 04E-2 3 .1 E-2 HPI-XHE-FO-FDBLD start HPI pump 6.4E-2 6. 4E-1 4.lE-2 PPS-XHE-FO-PORVS open PORV 6. 4E-2 6.4E-1 4.lE-2 (after prevlous oper. error)

HPI-XHE-FO-FDBLD start HPI pump 3.2E-2 3. 2E-1 1.04E-2 PPS-XHE-FO-PORVS open PORV 3. 2E-2 3.2E-1 1.04E-2 (no prevlous oper.

error>

Table C-2 Station Blackout Sequences The following sheets calculate human error probabilities for events during a station hlackout. These are:

0 - Operator fails to depressurize and cooldown the RCS AFW-CST-FO-CST2HRA Operator fails to connect CST #2 to the emergency CST~ in the event of a stuck open SG safety valve.

AFW-XHE-FO-U2SBO - Operator fails to feed both units with one turbine driven AFW purno.

0 I

AFW-XHE-FO-UlSBOHRA - Operator fails to cross connect AFW from Unit 2, when U-2 has the TDP and a MOP operable, NI NI REC-XHE-FO-SCOOL - Operator fails to cross connect seal cooling from Unit 2.

MCW-CCF-VF-SBOHRA - Failure to isolate condenser water box to supply service water to CPC suction *

  • EVENT TREE: Tis - Station Blackout 1

ACCIDENT SEQUENCE DESCRIPTION SEQUENCE NUMBER:

SEQUENCE DESCRIPTION:

( 1)

Loss of offslte power Is the Initiating event. Both diesels are unavailable to Unit 1. For some sequences, Unit 2 may have power. The four sequences listed above Involve different failures. In T 15 -L, the turbine driven AFW pump from Unit 1 ls unavailable. In sequence T15 -Q , a SG-SV falls to reclose, leading to uncontrolled blowdown In one SG. This leads to a greater AFW demand. The operator must 5

manually align the normal CST to the emergency CST In order to assure long term feedwater supply. The third sequence (T 15 -o> Is an extended SBO where the operators fall to cooldown and depressurlze the RCS. This Is not a crltlcal failure In Itself, but does affect the timing of other sequences. The fourth sequence represents failure to provide seal cool Ing from Unit 2.

APPLICABLE PROCEDURES:

(4)

EGA - 1.0 Loss of all AC power AP - 11 Station Blackout

TABLE 2 SEQUENCE AND CUT SET TIMING*

CUT SETS:

EVENT/OCCURRENCE (1) TIME (2) ANNUNCIATOR/INDICATION (3) COMMENTS/

SOURCE OF INFORMATION (4)

1. Loss offslte power t = 0 Yes, Many
2. AH DG unavaHable t = 1m Yes
3. AFW-TDP - Unlt 1 unavaHable t = 1m Yes n!

N 4. Stuck open SG-SV t = 5m, 25m, 45m Yes

~

5. Operator fall to depressurlze t = >1 hr No
6. SW lntake canal fall to lsolate t = lm Yes
  • .E3 CUT SET FAILURE AND POTENTIAL OPERATOR ACTIONS*

CUT SETS:

DESCRIPTION SYMPTOMS POTENTIAL OPERATOR ACTIVITIES (TASKS) COMMENTS/

OF EVENT ACTIONS REQUIRED TO PERFORM SOURCE OF INFORMATION

( 1) (2) (3) ACTION AND (5)

PROCEDURALIZED (4)

1. Loss AFW-Ul a) TDP not operable cross connect from a) start TDP Unit 2 b) open cross connect valves b) no AFW flow c) balance flow by manually throttle valves
2. Stuck open SG-SV a) continued loud cross connect CST a) Isolate CST from hotwell nol se In yard to ensure AFW feed b) open CST transfer valves b) uncontro 11 ed supply to emergency CST decrease In SG pressure
3. Station Blackout No AC power Operator directed a) manual line up of valves-to cooldown RCS bypass MSTV, dump to condenser

- vent condenser Cross connect RCP a) open valves In a) assumes only one pump seal cooling from cross tie header Is operable at Unit 2 b) throttle valves Unit 2.

on Unit 2 to balance flows between headers.

c) Isolate condenser water boxes to provide suction source for CPC pumps

TABLE 4 SEQUENCE AND CUT SET AVAILABLE TIME CUT SETS:

ACTION TIME BY WHICH OPERATOR MUST ACT TIME AT WHICH OPERATOR IS MAXIMUM TIME AVAILABLE TO COMMENTS/

( 1) TO PREVENT SUBSEQUENT CORE ALERTED THAT SYMPTOM HAS PERFORM THE IDENTIFIED SOURCE OF DAMAGE (Ted) (2) OCCURRED (To) (3) OPERATOR ACTIVITIES (Tm) (4) INFORMATION (5) 0 NA NA NA AFW-CST-FO-CSTHRA 100m 5m 95m AFW-XHE-FO-UlSBOHRA 35m 5m 30m AFW-XHE-FO-U2SBO 0 REC-XHE-FO-SCOOL 90m 5m 35m I

N>

0)

MCW-CCF-VF-SBO 90m 5m 85m HRA

E 5 OPERATOR ACTI ERFORMANCE TIME*

CUT SETS:

ACTION ACTIVITIES LOCATION TRAVEL PERFORMANCE TOTAL COMMENTS/

( 1) (2) TIME TIME TIME (Ta) SOURCE OF INFORMATION (3) (4) ( 5) (6) 0 a) Bypass MSTV Local 10 10 20 Multiple people perform these tasks. Travel time b) Close x-tle Local 10 10 20 additive.

c) Open bypass Local 10 10 20 d) Open hoggers Local 10 10 20 30m AFW-CST-FO-CST2HRA a) Isolate CST2 Local 10 10 20 Travel time Is not additive.

from hotwe 11 b) X-tle CST2 to Local 10 10 20 CST1A 30 0 AFW-XHE-FO-UISBOHRA a) Isolate CR lm 5m 6 I

NI

-;J headers at Unit 2 b) Open X-tle CR lm 2m 3 valves AFW-XHE-FO-U2SBO a) throttle dis- Local !Om continua I NA charge valves to balance flows REC-XHE-FO-SCOOL a) open x-tle Local 10m 10m 20m valves b) throttle valves CR lm continua I NA at U-2 to balance flow MCW-CCF-VF-SBOHRA a) manually close Local 10m 45m 55m condenser lsol.

valve

TABLE 6 DIAGNOSIS TIME OF SEQUENCE CUT SET*

SEQUENCE/CUT SET MAX IMUM Tl ME TOT AL ACTI ON TIME AVAILABLE COMMENTS/

AVAILABLE <Tm> TIME (Ta) TO DIAGNOSIS CTd) SOURCE OF INFORMATION

( 1) (2) (3) (4) 0 NA 30m NA AFW-CST-FO-CST2HRA 95m 30m 65m AFW-XHE-FO-UlSBOHRA 30m 10m 20m AFW-XHE-FO-U2SBO 30m NA 20m REC-XHE-FO-SCOOL 85m 20m 65m MCW-CCF-VF-SBOHRA 85m 55m 30m 0

I N) 00

CUT SETS:

LE 7 DIAGNOSIS ANALYSIS -- MORE THAN ONE ABNORMAL EVENT*

  • ACTION DIAGNOSIS NUMBER ANNUNCIATOR FAILURE TO SK I LL-BASED ADJUSTMENT COMMENTS/

(Symptom) NEGLIGIBLE OF ABN HEP DIAGNOSE IN FINAL SOURCE OF (1) (2) EVENT <Tab ie 8-4)

(2) FAIL W/SEQUENCE (6) (3) (4) 0 No Moderate AFW-XHE-FO-CST2HRA No Moderate AFW-XHE-FO-UISBOHRA No Moderate AFW-XHE-FO-U2SB0 No Moderate REC-XHE-FO-SCOOL No Moderate () I MCW-CCF-VF-SBOHRA No Moderate ~ N) CUT SETS: ACTION ACTIVITIES ORIGINAL POST-DI SUPERVISOR FAILS tlt/11 SIS ANALYSIS* THIRD INDEPENDENT TOTAL HEP COMMENTS/ ( 1) (2) OPERATOR TO CORRECT CHECK/CORRECTION (6) SOURCE OF INFORMATION HEP OPERATOR HEPHEP (7) (3) (4) ( 5) 0 a>. Bypass MSTV .032 .32 .011 b) Close x-tle .032 .32 .011 c) Open bypass .032 .32 .011 d) Open Hoggers .032 .32 .011 .044 AFW-XHE-FO-CST2HRA a) Isolate CST2 .032 .032 from hotwe I I b) X-tle CST2 .032 .032 to CSTlA .064 () AFW-XHE-FO-U1SB0HRA a) Isolate .032 .32 .011 I c..:, c..:, headers at U-2 b) open X-tle .032 .32 .011 valves .022 AFW-XHE-FO-U2SB0 a) open X-tle .032 .32 .011 b) throttle dis- .os .s .064 charge vlvs .075 REC-XHE-FO-SCOOL a) open X-tle .032 .032 b) close MOV .032 .32 .0104 1287C c) throttle vlvs .os .s .064 at U-2 to balance flow d) start HPI pp .032 .32 .0104 e) start CPC pp .032 .32 .0104 .127 MCW-CCF-VF-SBOHRA a) close .032 .032 condenser lsol valves Table C-3 SGTR with a Faulted SG Sequence These tables explain the derivation of human error probabilities for the following events: MSS-XHE-FO-BLOCK - Manually isolate block valve on SG ADV MSS-XHE-FO-ISAFWHRA - Manually close AFWTOP steam supply valve MSS-XHE-FO-ISBLDN - Manually close isolation valve on SG blowdown line RCS-XHE-FO-DPRT7 - Depressurize RCS in time to prevent pressure relief demand in SG REC-XHE-FO-DPRES - Cooldown and depressurize the RCS in time to prevent break flow. They all appear at various times in T7o0os and T70000s SEQUENCE DESIGNATOR: SEQUENCE DESCRIPTION: (1) Steam genera~or tube rupture of 600 gpm. Safety Injection comes on due to .low pressurizer pressure. Ruptured steam generator (SG) starts to be pressurized due to break flow. Operator Is expected to close MSIV on high radiation Indication. In order to mitigate the accident, the operator must depressurlze the reactor to a pressure less than the SG-SV and ADV set point; and Isolate all other lines which represent blowdown paths from the SG. In this sequence the operator falls to depressurlze the RCS and the ruptured SG loses Its Integrity (becomes faulted) thus leadlng to uncontrolled blowdown from the RCS. The operator error In this case represents the failure to depressurlze before a SG-RV CSV or ADV) demand. Should this event occur and should there be an uncontrolled blowdown, there Is still an additional 8-10 hours to reco~er. Recovery can be accomplished by lsolatlon of the faulted SG (If possible) or RCS depressurlzatlon to a point where the break flow Is ~ of little consequence. Addltlonally, In T70DQQS an RCSPORV sticks open. c.) C.11 APPLICABLE PROCEDURES: (4) EP 1.0 - Reactor TripEP 4.0 - Steam Generator Tube Rupture EP 3.0 - Faulted St.earn Generator Isolation ECA 4.01 - SGTR with Loss of Reactor Coolant, Subcooled Recovery TABLE 2 SEQUENCE AND CUT SET TIMING* EVENT/OCCURRENCE (1) TIME (2) ANNUNCIATOR/INDICATION (3) COMMENTS/ SOURCE OF INFORMATION (4)
t. Steam generator tube rupture t = 0 high condenser radiation low pressurizer pressure
2. Safety Injection t = 0 + many
3. SG blowdown line fall to close on SI Indicated In CR
4. AFW TDP - steam valve fall to close < 10m none
5. SG pressure relief demand 45m after oper noise Operator assumed to close MSIV soon closes MSIV opening Indicated In CR 0
I t.,:> C') 6. SG ADV opens and sticks 45m position Indicated In CR
1. SG SV opens and sticks 45m
CUT SETS: LE 3 CUT SET FAILURE AND POTENTIAL OPERATOR ACTIONS* DESCRIPTION SYMPTOMS REQUIRED OPERATOR ACTIVITIES (TASKS) COMMENTS/ OF EVENT ACTIONS REQUIRED TO PERFORM SOURCE OF INFORMATION ( 1) (2) (3) ACTION AND ( 5) PROCEDURALIZED (4)
1. SGTR See Table 2 - #1 Must depressurlze RCS to 1. Oper. must cooldown by dumping steam terminate break flow and 2. Enhanced AFW Is desired, but not necessary Isolate SG 3. After he coolsdown 50°F or more, can begin depressurlzatlon
4. Must depressurlze using pzr. spray, PORV, or aux spray
2. Stuck open ADV a) uncontrolled Close block valve or 1. Locally close valve SG pressure drop depressurlze RCS to 2. Cooldown and depressurlze within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> b) position terminate. Inventory loss Indicated In CR c) loud noises In yard
3. Stuck open SV a) uncontro I I ed Depressurlze RCS to 1. Cooldown and depressurlze within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> SG pressure drop terminate Inventory loss b) loud noises In yard
4. Stuck open SG a) Indicated In a) Manual close valve same as column 3 blowdown I lne CR b) Close block valve c) depressurlze
5. Fal I to close a) none a) stop TD pump same as column 3 AFW-TDP steam CR b) close supply valve supply valve c) depressurlze
TABLE 4 SEQUENCE AND CUT SET AVAILABLE TIME ACTION TIME AT WHICH OPERATOR IS MAXIMUM TIME AVAILABLE TO COMMENTS/ ( 1) TIME BY WHICH ALERTED THAT SYMPTOM HAS PERFORM THE IDENTIFIED SOURCE OF OPERATOR MUST ACT OCCURRED (To) (3) OPERATOR ACTIVITIES (Tm) (4) INFORMATION (5) I. Depressurlze to 45m 5m 40m prevent SG pressure re I I ef demand
2. Close SG ADV block 10hr 50m 9h 10m
3. Close AFW TOP supply 10hr 15m 9h 45m 0
I t,j 00
4. Close SG blowdown 10hr 10m 9h 50m
5. Depressurlze to 10hr 50m 9h !Om conserve RCS/RWST Inventory
CUT SETS: BLE 5 OPERATOR ACTION PERFORMANCE TIME* ACTION ACTIVITIES LOCATION TRAVEL PERFORMANCE TOTAL COMMENTS/ (1) ( 2) TIME TIME TIME <Ta> SOURCE OF INFORMATION (3) ( 4) ( 5) ( 6) 1
  • Depressurlze a.> Open stm CR 1m 25m Although the actions are to prevent SG dump or SG-PORV very quick and simple, the SV /RV demand b) Depressurlze CR 1m 25m reactor takes time to depressurlze RCS via spray and cooldown. It Is estimated or PORV that cooldown and depressurlzatlon wll I take 25m. At North Anna It was accomplished In 12m, at Glnna It wasn't done by 27m.
r;:i. 2. Close SG ADV a> manually local 10m 10m 20m w \,,C) block close valve
3. Close AFW TOP a) close valve local 10m 10m 20m supply 4*. Close SG a> close valve local 10m 10m 20m blowdown
5. Depressurlze a> open steam CR 1m 5hr To depressurlze enough to to conserve dumps term I nate RCS leakage, If there RCS/RWST b) depressurlze CR 1m 5hr Is a faulted SG, requires that Inventory RCS oper. cool down to 300°F or so. At 50°/hr, this w111 take approx.
5 hr. TABLE 6 DIAGNOSIS TIME OF SEQUENCE CUT SET* ACTION MAXIMUM TIME TOTAL ACTION TIME AVAILABLE COMMENTS/ AVAILABLE <Tm) TIME <Ta) TO DIAGNOSIS CTd) SOURCE OF INFORMATION (1) ( 2) (3) (4 ) 1* Depressurlze RCS to prevent SG 40m 25m 15m SV/RV demand
2. Close SG ADV block 9h - !Om 20m 8hr - 50m I*
3. Close AFW TDP supply 9h - 45m 20m 9h 25m
? ~ 0
4. Close SG blowdown llne 9h - 50m 20m 9h - 30m
5. Depressurlze to conserve 9h - !Om 5hr 4h - !Om Inventory
DIAGNOSIS ANALYSIS -- MORE THAN ONE ABNORMAL EVENT* CUT SETS: ACTION DIAGNOSIS NUMBER ANNUNCIATOR FAILURE TO SK I LL-BASED A.DJ USTMENT COMMENTS/ (Symptom) NEGLIGIBLE OF ABN HEP DIAGNOSE IN FINAL SOURCE OF (1) (2) EVENT <Tab le 8-4 l (Table 8-2) ( 6) HEP ( 7 l INFORMATION ( 3) ( 4) (5 ) (8 ) NOT APPLICABLE TABLE 8 DIAGNOSIS ANALYSIS - ONE ABNORMAL EVENT* ACT1 ON D1AGN0S1S FA1LURE TO SK1 LL-BASED ADJUSTMENT COMMENTS/ (1) NEGL1 G1 BLE D1AGNOSE ( 4) 1N F1NAL SOURCE OF 1NFORMAT10N ( 2) <Frgure 7-1) HEP ( 5 l ( 6) ( 3)
1. Depressurrze to No 6.BE-3 Lower Bound A dragnosrs error rs assrgned prevent SG SV/RV here, even though actron rs demand procedure drrected because operator must dragnose SGTR and Jump !nto EP 4.0 !n order to start depress. rn t !me. Lower bound used because recent North
(') Anna SGTR cons!dered to make I. ~ operators hrghly aware of SGTR at N VEPCO.
2. Close SG ADV block Yes Procedure d!rected. Trme avarlable to work through procedures.
3. Close AFW TDP Yes See above supply
4. Close SG blowdown Yes See above
5. Depressurrze to Yes Operator has 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> to rnrtrate conserve rnventory cooldown. 1t rs procedure d!rected. T!me avartable to work through procedures.
E 9 POST-DIAGNOSIS. ACTION-TYPE IDENTIFICATION* ACTION SAFETY SYSTEMS FAILED EOPs, TRAINING, USE EOPs, OPERATOR PERFORMS DYNAMIC OR COMMENTS/ <Actlv ltles > (2) WELL-DESIGNED EOPs ONE ACTIVITY STEP-BY-STEP SOURCE OF INFORMATION (1) (3) ( 4) (5) ( 6) 1* Depress. RCS No Yes Yes Step by Step
2. Close SG ADV block No Yes Yes Step by Step
3. Close AFW TOP No Yes Yes Step by Step supply
4. Close SG blowdown No Yes Yes Step by Step 1 lr,ie n
J,.; W. 5. Depress. ln long No Yes Yes Step by Step term TABLE 10 POST-DIAGNOSIS STRESS-LEVEL INDICATION* ACTION Tm 2 h MORE THEN TWO OPERATOR STRESS LEVEL COMMENTS/ (Actlvltles) AFTER IE SAFETY SYSTEMS FAM I LIAR (5 ) SOURCE OF INFORMATION (1) ( 2) FAIL W/SEQUENCE ( 6) ( 3) (4 ) 1* Depressurlze NA No Yes Moderate hl RCS to prevent SG S V-R V demand
2. Close SG ADV No Yes Moderate hl block nI 3. Close AFW TDP No Yes Moderate hl
~ ~
4. Close SG No Yes Moderate hl blowdown llne
5. Depressurlze RCS No Yes Moderate hl to conserve lnventory
Table 11 Post-Diagnosis Analysis* Original Supervisor Fails Third Independent Operator to correct check/correction Comments/ Action Activities HEP operator HEPHEP Total HEP Source of Information l (2) (3) (4) (5) (6) 7
1. Depressurize a) Dwnp steam 3.2E-2 3.2E-l 1.04E-2 RCS to prevent b) Spray pzr 3.2E-2 3.2E-l 1.04E-2 SG SV/RV demand or open PORV 2.0SE-2
2. Close SG ADV 6.4E-2 6.4E-2 BHEP of .032 was doubled for this block valve event to account for potentially harsh or stressful environmental conditions for this action.
C":l I 3. Close AFW TDP 3.2E-2 3.2E-1 3.2E-1 3.3E-3 .po V, .supply
4. Close*SG 3.2E-2 3.2E-l 3.2E-l 3.3E-3 blowdown
5. Depressurize to The value of 2.lE-4 was not used conserve RCS in the quantification. This inventory a) Dwnp stream 3.2E-2 3.2E-l action is found in cut sets 3.2E-2 x 3.2E-l - 2.16E-04 along with action nwnber 1. The b) Spray pzr 3.2E-2 3.2E-l
  • compound human error probability or open PORV would then be 4E-6. The HRA guidelines for minimum human error probabilities and the guidelines for maximum attempts at one action were consulted to modify the probability of action
  1. 5, in order that the overall cut set HEP met these guidelines.
The resulting HEP for action #5 was calculated to be l.4E-2. Table C-4 SGTR with HPI Failure Sequence (') I .i::. O'I
  • 1 ACCIDENT SEQUENCE DESCRIPTION
SEQUENCE DESIGNATOR: T7D10D SEQUENCE DESCRIPTION: ( 1) Steam generator tube rupture with subsequent failure-of HPI. Operator must cope with the tube rupture and the HPI failure. The tube rupture requires cooldown and depressurlzatlon of the primary, whll.e the HPI failure requires opening alternate lnjecton paths, or cross-connect of HPI from Unit 2. The beginning of the sequence Is previously described In the Tables for T70DQS. However, HPI falls when responding to low pressurizer pressure. At this point, the operator must diagnose two events, and respond to each one. For the purposes of this HRA, the HPI failure was considered to be the first event to be observed and thus the focus of his attention. The tube rupture was the second event. APPLICABLE PROCEDURES: (4) EP 4.0 Steam Generator Tube Rupture EP 1.0 Reactor Trip, Safety Injection FRP C.2 Inadequate Core Cool Ing TABLE 2 SEQUENCE AND CUT SET TIMING* CUT SETS: EVENT/OCCURRENCE (1) TI ME C2 > ANNUNCIATOR/INDICATION (3) COMMENTS/ SOURCE OF I NF OR MAT I ON (4)
1. Steam Generator Tube Rupture t 0
2. SI signal on low pressurizer t = O+ yes 3* Fa 1 I u re to 1n I t I ate S I f I ow t = O+ 1. SI flow Indicates zero
2. Possible Indication of mispositioned valves
3. Possible Indication of pump failure
  • CUT SET FAILURE AND POTENTIAL OPERATOR ACTIONS*
CUT SETS: DESCRIPTION SYMPTOMS POTENTIAL OPERATOR ACTIVITIES (TASKS) COMMENTS/ OF EVENT ACTIONS REQUIRED TO PERFORM SOURCE OF INFORMATION (1) ( 2) (3) ACTION AND (5 ) PROCEDURALIZED (4) 1* SGTR (T 7) 1
  • Hl condenser 1
  • Operator must cool- 1
  • Open steam dump valves radfatfon lnd. down and depressurlze 2. Enhance feed flow
2. Low pressurfzer RCS to termfnate flow 3. Depressurfze RCS through pressure 2. Must also fsolate SG pressurfzer spray or PORV opentng
? ,cl, 4. Isolate SG effluent I t nes. Y)
2. Fat lure of HPI 1
  • No tndtcatton 1
  • Open alternate 1
  • Open alternate paths as (D 1) of SI flow tnJectton paths necessary of SI flow 2. Cross connect from 2. Isolate pump at Untt 2
2. Possfble valve Unft 2 3. Open cross-connect valve mfsposftton I ocal I y
3. Posstble pump 4 * . Start pump Untt 2 malfunctton
TABLE 4 SEQUENCE AND CUT SET AVAILABLE TIME CUT SETS: ACTION TIME BY WHICH OPERATOR MUST ACT TIME AT WHICH OPERATOR IS MAXIMUM TIME AVAILABLE TO COMMENTS/ ( 1) TO PREVENT SUBSEQUENT CORE ALERTED THAT SYMPTOM HAS PERFORM THE IDENTIFIED SOURCE OF DAMAGE (Ted) (2) OCCURRED (To) (3) OPERATOR ACTIVITIES (Tm) (4) INFORMATION ( 5)
1. RCS-XHE-FO-DPT7D 60m 5m 55m Time In column 2 Is longer than for T7 with HPI.
2. HPI-XHE-FO-ALTS3HRA 150m 5m 145m
3. HPI-XHE-FO-UN2S3HRA 150m 5m 145m
() I <:.n 0 CUT SETS: 5 OPERATOR ACTION PERFORMANCE TIME*
  • ACTION ACTIVITIES LOCATION TRAVEL PERFORMANCE TOTAL COMMENTS/
( 1) (2) TIME TIME TIME (Ta) SOURCE OF INFORMATION (3) (4) ( 5) ( 6)
1. RCS-XHE-FO-DPT7D CR 35m 35m
2. HPI-XHE-FO-ALTS3HRA CR Local 10m 10m 20m
3. HPI-XHE-FO-UN2S3HRA CR Local 10m 10m 20m 0
I C,J1 f....& TABLE 6 DIAGNOSIS TIME OF SEQUENCE CUT SET* SEQUENCE/CUT SET MAXIMUM TIME TOTAL ACTION TIME AVAILABLE COMMENTS/ AVAi LABLE (Tm) TIME (Ta) TO DIAGNOSIS (Td) SOURCE OF INFORMATION ( 1) (2) (3) (4)
1. RCS-XHE-FO-DPT7D 55m 35m 20m
2. HPI-XHE-FO-ALTS3HRA 145m 20m 125m
3. HPI-XHE-FO-UN2S3HRA 145m 20m 125m 0
I 1:11 N) . CUT SETS: E 7 DIAGNOSIS ANALYSIS -- MORE THAN ONE ABNORMAL EVENT*
  • ACTION DIAGNOSIS NUMBER ANNUNCIATOR FAILURE TO SKILL-BASED ADJUSTMENT COMMEt:,ITS/
(Symptom) NEGLIGIBLE OF ABN HEP DIAGNOSE IN FINAL SOURCE OF ( 1) (2) EVENT (Table 8-4) (Table 8-2) (6) HEP ( 7) INFORMATION (3) (4) (5) (8)
1. RCS-XHE-FO-DPT7D 2 2.66E-1 0
I C.11 t.:, TABLE 8 OIAGNOSIS ANALYSIS - ONE ABNORMAL EVENT* CUT SETS: ACTION DIAGNOSIS FAILURE TO SKILL-BASED ADJUSTMENT COMMENTS/ (Symptom) NEGLIGIBLE DIAGNOSE (4) IN FINAL SOURCE OF INFORMATION ( 1) (2) (Figure 8-1) HEP C5) (6) (3)
1. HPI-XHE-FO-ALTS3HRA Yes Yes
2. RCS-XHE-FO-DPT7D No 5.2E-4 0
I c.,, E 9 POST-DIAGNOSIS AC -TYPE IDENTIFICATION* CUT SETS: ACTION SAFETY SYSTEMS FAILED EOPs, TRAINING, USE EOPs, OPERATOR PERFORMS DYNAMIC OR COMMENTS/ (Activities) (2) WELL-DESIGNED EOPs ONE ACTI VITY STEP-BY-STEP SOURCE OF INFORMATION ( 1) (3) (4) ( 5) (6)
1. RCS-XHE-FO-DPT7D HPI Yes Dynamic
2. HPI-XHE-FO-ALTS3HRA HPI Yes Step by Step HPI Yes Step by Step
3. HPI-XHE-FO-UN2S3HRA 0
I c:.n c:.n TABLE 10 POST-DIAGNOSIS STRESS-LEVEL INDICATION* CUT SETS: ACTION Tm 2 h MORE THEN TWO OPERATOR STRESS LEVEL COMMENTS/ (Activities) AFTER IE SAFETY SYSTEMS FAMILIAR (5) SOURCE OF INFORMATION (I> (2) FAIL W/SEQUENCE (6) (3) (4) I. RCS-XHE-FO-DPT7D No No No Moderate
2. HPI-XHE-FO-ALTS3HRA No No No Moderate 3 0 HPI-XHE-FO-UN2S3HRA No No No Moderate 0
I c.n a:, CUT SETS: 11 POST-DIAGNOSIS ANALYSIS*
  • ACTtON ACTtvtnES ORtGtNAL SUPERVtSOR FAtLS THtRD tNDEPENDENT TOTAL HEP COMMENTS/
( 1) (2) OPERATOR TO CORRECT CHECK/CORRECTION (6) SOURCE OF tNFORMATtON HEP OPERATOR HEPHEP (7) (3) (4) (5) 1.RCS-XHE-FO-DPT7D A. Cool down .os .s .064 B. Depressud ze .os .s .064 .128
2. HPt-XHE-FO-ALTS3HRA A. Open local valve .064 .064 No andependent verJfacatJon due to local nature of task. SHEP of .032 doubled to account for possable harsh env~ronments
3. HPt-XHE-FO-UN2S3HRA A. tsol ate chargJ ng .032 .32 .011 pump UnJt 2 B. Open cross- .032 .32 .011 connect
c. Start pump .032 .32 .011
.033 Table C-5 Large and Intermediate LOCA Recirculation Sequences ~ U1 CX) TABLE 1 ACCIDENT SEQUENCE DESCRIPTION EVENT TREE: Large and Intermediate LOCA (A and S ) 1 SEQUENCE NUMBER: SEQUENCE DESIGNATOR: AH , S H 1 1 1 SEQUENCE DESCRIPTION: ( 1) Large or Intermediate LOCA, which has successfully gone through the ECCS Injection phase. RWST Is down to 28% and It Is time to go to recirculation. The Recirculation Transfer system falls to actuate and the operator must manually activate systems. In the large LOCA sca,1cldo, tile o:>a.-ator must also swatch to hot leg reclrculatlon at 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> after the Initiator. () I <:11 (0 APPLICABLE PROCEDURES: (4) EP 2.03 - Transfer to cold leg reclrc EP 2.04 - Transfer to hot leg reclrc ECA 2.01 - Loss of emergency coolant reclrc TABLE 2 SEQUENCE AND CUT SET TIMING* CUT SETS: EVENT/OCCURRENCE Cl) TI ME C2) ANNUNCIATOR/INDICATION (3) COMMENTS/ SOURCE OF INFORMATION (4) Fallure of RMT Actuatlon System 30m Yes
  • TABLE 3 CUT SET FAILURE AND POTENTIAL OPERATOR ACTIONS*
CUT SETS: DESCRIPTION SYMPTOMS POTENTIAL OPERATOR ACTIVITIES (TASKS) COMMENTS/ OF EVENT ACTIONS REQUIRED TO PERFORM SOURCE OF INFORMATION ( 1) ( 2) ( 3) ACTION AND C5 l PROCEDURALIZED (4)
1. Failure of RMT 1. Manual actuatlon of valves actuatlon systems
2. 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> after 1. Swltch to hot leg reel re LOCA
TABLE 4 SEQUENCE AND CUT SET AVAILABLE TIME CUT SETS: ACTION TIME BY WHICH OPERATOR MUST ACT TIME AT WHICH OPERATOR IS MAXIMUM TIME AVAILABLE TO COMMENTS/ (1) TO PREVENT SUBSEQUENT CORE ALERTED THAT SYMPTOM HAS PERFORM THE IDENTIFIED SOURCE OF DAMAGE (Ted) (2) OCCURRED (To) (3) OPERATOR ACTIVITIES (Tm) (4) INFORMATION (5)
1. Manual RMT 45m 30m 15m
2. Hot leg reclrc 32hr 1 6hr 1 6hr
,_____----1.i---- CUT SETS: TABLE 5 OPERATOR ACTION PERFORMANCE TIME* ACTION ACTIVITIES LOCATION TRAVEL P ERF ORMA NCE TOTAL COMMENTS/ (1) (2 ) TIME TIME TIME (Ta) SOURCE OF INFORMATION ( 3) ( 4) (5) ( 6)
1. Manual RMT CR 5m 5m
2. Hot leg CR 20m 20m reclrc
TABLE 6 DIAGNOSIS TIME OF SEQUENCE CUT SET* SEQUENCE AVAILABLE <Tm) TIME <Ta) TO DIAGNOSIS CTd) SOURCE OF INFORMATION ( 1) ( 2) (3) ( 4) NOT APPLICABLE J-----------1*- CUT SETS: DIAGNOSIS ANALYSIS -- MORE THAN ONE ABNORMAL EVENT*
  • ACTION DIAGNOSIS NUMBER ANNUNCIATOR FAILURE TO SKILL-BASED ADJUSTMENT COMMENTS/
(Symptom) NEGLIGIBLE OF ABN HEP DIAGNOSE IN FINAL SOURCE OF (1) (2) EVENT (Table 8-4) <Table 8-2) ( 6) HEP (7) INFORMATION (3) ( 4) (5 ) (8) NOT APPLICABLE <? O'I iJl TABLE 8 DIAGNOSIS ANAtYSIS - ONE ABNORMAL EVENT* CUT SETS: ACTION DIAGNOSIS FAILURE TO SK I LL-BASED ADJUSTMENT COMMENTS/ (Symptom) NEGLIGIBLE DIAGNOSE (4 ) IN FINAL SOURCE OF INFORMATION (1) ( 2) (FTgure 8-1 > HEP ( 5) ( 6) ( 3) 1* Manuaf RMT Yes Procedure dTrected ECA 2. 01
2. Hot teg Yes Procedure dTrected nI recTrc Tn EP 2.04 O'I O'I
TABLE 9 POST-DIAGNOSIS ACTION-TYPE IDENTIFICATION* CUT SETS: ACTION SAFETY SYSTEMS FAILED EOPs, TRAINING, USE EOPs, GPERATOR PERFORMS DYNAMIC OR COMMENTS/ (Actlvltles) (2 ) WELL-DESIGNED EOPs ONE ACTIVITY STE P-B Y-S TEP SOURCE OF INFORMATION (1) ( 3) ( 4) ( 5) (6 )
1. Manual RMT Yes Step by Step
2. Hot leg reclrc Yes Step by Step 0
I O'\ .....J TABLE 10 POST-DIAGNOSIS STRESS-LEVEL INDICATION* CUT SETS: ACTION Tm 2 h MORE THEN TWO OPERATOR STRESS LEVEL COMMENTS/ <Actlvltles) AFTER IE SAFETY SYSTEMS FAMILIAR (5 ) SOURCE OF INFORMATION {1) ( 2) FAIL W/SEQUENCE ( 6) ( 3) { 4) 1* Manuat RMT No Extreme Per guldetlnes l n NUREG/CR-4 772, extreme stress present l n a large LOCA u n t l t reclrculatlon complete. (') I 2. Hot teg reel re Y,3s Low °'00 CUT SETS: 11 POST-DIAGNOSIS ANALYSIS*
  • ACTION ACTIVITIES ORIGINAL SUPERVISOR FAILS THIRD INDEPENDENT TOTAL HEP COMMENTS/
(1) (2) OPERATOR TO CORRECT CHECK/CORRECT! ON (6) SOURCE OF INFORMATION HEP OPERATOR HEPHEP (7) (3) (4) (5)
1. Manual RMT .oa .a .064
2. Switch to hot .02 .02 *1 4E-5 Due to low stress for this leg reclrc event, median value of operator error used. Due to extended timing, three Independent checks were postulated.
0 I en co Table C-6 Small and Very Small LOCAECCSSP.quences The following sheets present HRA for the following events: HPI-XHE-FO-UN2S2HRA - Failure to cross connect SI flow from Unit 2 in the event of HPI failure at Unit 1, after an s2 break HPI-XHE-F0-1JN2S3HRA Failure to cross connect SI flow from llnit 2 in the event of HPI failure at llnit 1, after an s3 break HPI-XHE-FO-ALTS3HRA - Failure to open alternate injection paths for SI flow 0 I -.:i 0 HPI-XHE-FO-llN2HlHRA - Failure to recovery emergency cool ant reci rcul ati on during s2 events RCS-XHE-FO-DPRES - Failure to cooldown and depressurize the RCS during s2 and s3 events HPI-XHE-F0-20DH2HRA - Failure to recover emergency cool ant reci rcul ati on during s2 events, after previous failure to depressurize HPI-XHE-F0-30DH2HRA - Failure to recover emergency coolant recirculation during s3 events, after previous failure to depressurize
  • EVENT TREE: Small and Very Small LOCA (S , and S J 2 3 1
ACCIDENT SEQUENCE DESCRIPTION SEQUENCE NUMBER: SEQUENCE DESCRIPTION: ( 1) These sequences involve smal I and very small LOCAs with failure of emergency coolant Injection or emergency coolant recirculation. The failures Involve mechanical failures of equipment. Operator depressurlzatlon of the RCS Is an expected occurrance during small break scenarios. Failure to do this does not lead to core damage, but does affect sequence timing, and Impacts other failures. 0 I -~ I-' APPLICABLE PROCEDURES: (4) EP 2.0 Loss of Primary or Secondary Coolant EP 2.02 Post LOCA Cooldown and Depressurizatlon EP 2.03 Transfer to Cold Leg Recirculation ECA 2.01 Loss of Emergency Coolant Recirculation TABLE 2 SEQUENCE AND CUT SET TIMING* CUT SETS: EVENT/OCCURRENCE Cl) TI ME C2) ANNUNCIATOR/INDICATION (3) COMMENTS/ SOURCE OF INFORMATION (4) 1* Break t 0 Yes
2. Fal iure of HPI t = 1m Yes
3. Operator Depressurlze t 60m
4. Fallure of Reclrculatlon t = 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> to 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />, dependlng on sequence nI
-.J I\.) -* LE 3 CUT SET FAILURE AND OTENTIAL OPERATOR ACTIONS* CUT SETS: DESCRIPTION SYMPTOMS POTENTIAL OPERATOR ACTIVITIES (TASKS) COMMENTS/ OF EVENT ACTIONS REQUIRED TO PERFORM SOURCE OF INFORMATION C1 l C2 l C3 l ACTION AND C5 l PROCEDURAL I ZED (4 l
1. Fal iure of HPI a) no SI How ll open alternate lnjectlon paths lf appllcable bl posslble valve lll cross connect from U-2 lf mlsposltlons appllcable cl posslble pump 9 malfunctlons
-...J w
2. Loss of sump same as above ll cross connect HPI from Unlt 2 reclrculatlon lll cross connect RWST from Unlt 2
TABLE 4 SEQUENCE AND CUT SET AVAILABLE TIME CUT SETS: ACTION TIME BY WHICH OPERATOR MUST ACT TIME AT WHICH OPERATOR IS MAXIMUM TIME AVAILABLE TO COMMENTS/ (1) TO PREVENT SUBSEQUENT CORE ALERTED THAT SYMPTOM HAS PERFORM THE IDENTIFIED SOURCE OF DAMAGE (Ted) (2) OCCURRED (To) (3) OPERATOR ACTIVITIES (Tm) (4) INFORMATION (5) I* HPI-XHE-F0-ALTS3HRA 150m 5m 145m
2. HPI-XHE-FO-UN2S2HRA 45m 5m 40m
3. HPI-XHE-FO-UN2S3HRA 150m 5m 145m 0 4. HPI-XHE-FO-UN2H1HRA tt + 60m tt + 5 55m I
-.:i
5. HPI-XHE-F0-20DH2HRA tt + 60m tf +5 55m
6. HPI-XHE-F0-30DH2HRA \ + 150 \ + 5 145m
CUT SETS: BLE 5 OPERATOR ACTION PERFOR~ANCE TIME* ACTION ACTIVITIES LOCATION TRAVEL PERFORMANCE TOTAL COMMENTS/ ( 1) (2) TIME TIME TIME (Ta) SOURCE OF INFORMATION (3) (4) ( 5) (6)
1. HPI-XHE-FO-ALTS3HRA a) local valve local 10m 10m 20m operation
2. HPI-XHE-FO-UN2S2HRA a) open X-tle local 10m 10m 20m b) I sol chp U2 CR lm 2m 3m 0 c) start chp U2 CR lm 2m 3m I
-::i 20m Time Is not additive (;JI
3. HPI-XHE-FO-UN2S3HRA Same as HPI-XHE-FO-UN2S2HRA
4. HPI-XHE-FO-UN2H1HRA Same as HPI-XHE-FO-UN2S2HRA for for cross connect RWST: for cross connect of HPI a) open 1 of 2 CR lm 4m 5m
5. HPI-XHE-F0-20DH2HRA Same as HPI-XHE-FO-UN2HIHRA HPI-XHE-F0-30DH2HRA Same as HPI-XHE-FO-UN2H1HRA
TABLE 6 DIAGNOSIS TIME OF SEQUENCE CUT SET* SEQUENCE/CUT SET MAXIMLl\1 TIME TOT AL ACTI ON TIME AVAILABLE COMMENTS/ AVAILABLE (Tm) TIME (Ta) TO DIAGNOSIS CTd) SOURCE OF INFORMATION ( 1) (2) (3) (4) 1* HPI-XHE-FO-ALTS3HRA 145m 20m 125m
2. HPI-XHE-FO-UN2S2HRA 40m 20m 20m
3. HPI-XHE-FO-UN2S3HRA 145m 20m 125m
4. HPI-XHE-FO-UN2H1HRA 55m 25m 30m
() I -::i O')
5. HPI-XHE-F0-20DH2HRA 55m 25m 30m
6. HPI-XHE-F0-30DH2HRA 145m 25m 120m
BLE 7 DIAGNOSIS ANALYSIS -- MORE THAN ONE ABNORMAL EVENT* CUT SETS: ACTION DIAGNOSIS NUMBER ANNUNCIATOR FAILURE TO SKILL-BASED ADJUSTMENT COMMENTS/ (Symptom) NEGLIGIBLE OF ABN HEP DIAGNOSE IN FINAL SOURCE OF (1) (2) EVENT (Table 8-4) <Table 8-2) ( 6) HEP C 7) INFORMATION (3 ) (4 ) ( 5) ( 8) NOT APPLICABLE TABLE 8 DIAGNOSIS ANALYSIS - ONE ABNORMAL EVENT* CUT SETS: ACTION DIAGNOSIS FAILURE TO SKILL-BASED ADJUSTMENT COMMENTS/ (Symptom) NEGLIGIBLE DIAGNOSE (4) IN FINAL SOURCE OF INFORMATION (I) (2) (Figure 8-1) HEP ( 5) (6) (3) I. HPI-XHE-FO-ALTS3HRA Yes
2. HPI-XHE-FO-UN2S2HRA No .266 Diagnosis error Included because x- onnect of HPI Is not directly referenced from the EPs.
X-connect from U2 Is directed In FRP C.1 and FRP C.2, which are entered on cond.ltlons of Inade-quate core cool Ing. There Is Insufficient time to hook up x-connect after Indications of lnade-Ci Qllate core cooling occur. Therefore, ne'3d for I -'l 00 x-connect must be diagnosed.
3. HPI-XHE-FO-UN2S3HRA No 5.2E-4 See -com,nent above
4. HPI-XHE-FO-UN2HIHRA Yes Procedure directed In ECA 2.01
5. HPI-XHE-F0-20DH2HRA No 2.66E-3 No Diagnosis error *as Included here, because of previous failure to depressurlze 6 0 HPI-XHE-F0-30DH2HRA No 5.2E-4 No See above comment
CUT SETS: TA LE 9 POST-DIAGNOSIS ACTION-TYPE IDENTIFICATION* ACTION SAFETY SYSTEMS FAILED EOPs, TRAINING, USE EOPs, OPERATOR PERFORMS DYNAMIC OR C°'1MENTS/ (Activities) (2) WELL-DESIGNED EOPs ONE ACTIVITY STEP-BY-STEP SOURCE OF INFORMATION ( 1) (3) (4) ( 5) (6)
1. HPI-XHE-FO-ALTS3HRA Yes One Step by Step
2. HPI-XHE-FO-UN2S2HRA Yes One Step by Step
3. HPI-XHE-FO-UN2S3HRA Yes One Step by Step
4. HPI-XHE-FO-UN2H1HRA Yes One Step by Step 0 5. HPI-XHE-F0-20DH2HRA Yes One Step by Step I
-1 cc
6. HPI-XHE-F0-30DH2HRA Yes One Step by Step
7. RCS-XHE-FO-DPRES Yes One Step by Step
TABLE 10 POST-DIAGNOSIS STRESS-LEVEL INOICATION* CUT SETS: ACTION Tm 2 h MORE THEN TWO OPERATOR STRESS LEVEL COMMENTS/ (Activities) AFTER IE SAFETY SYSTEMS FAMILIAR (5) SOURCE OF INFORMATION ( 1) (2) FAIL W/SEQUENCE (6) (3) (4)
1. HPI-XHE-FO-ALTS3HRA No No Moderate
2. HPI-XHE-FO-UN2S2HRA No No Moderate
3. HPI-XHE-FO-UN2S3HRA No No Moderate
4. HPI-XHE-FO-UN2H1HRA Yes No Moderate For RWST x-connect: time stress Is 0 present for second operation. This was I
00 assumed to be HPI x-connect 0
5. HPI-XHE-F0-20DH2HRA Yes- No see above
6.
  • HPI-XHE-F0-30DH2HRA Yes No see above 7* RCS-XHE-FO-DPRES Yes No Moderate
CUT SETS: POST-DIAGNOSIS ANALYSIS*
  • ACTION ACTIVITIES ORIGINAL SUPERVISOR FAILS THIRD INDEPENDENT TOTAL tiEP COMMENTS/
( 1) (2) OPERATOR TO CORRECT CHECK/CORRECTION (6) SOURCE OF INFORMATION HEP OPERATOR HEPHEP (7) (3) (4) ( 5)
1. HPI-XHE-FO-ALTS3HRA al open valve .064 .064 SHEP doubled to account for locally potential harsh environments.
2. HPI-XHE-FO-UN2S2HRA a) Isolate chp .032 .32 .011 b) open x-tle .032 .32 .011 cl start pump .032 .32 .011
.033 0 3. HPI-XHE-FO-UN2S3HRA same as #2 above I 00 I-'
4. HPI-XHE-FO-UN2H1HRA a) x-tle RWST .032 .32 .011 b) x-connect I ) Isolate chp .064 .64 .041 time stress present
11) open x-tle .064 .64 .041 Ill) start pp .064 .64 .041
.132
5. HPI-XHE-F0-20DH2HRA - same as #4
6. HPI-XHE-F0-30DH2HRA - same as #4
7. RCS-XHE-FO-DPRES a) dump steam .032 .32 .011 b) depress. .032 .32 .011
.022 Table C-7 CPCService Water Failure during LOCA Sequences E1 ACCIDENT S CE DESCRIPTION EVENT TREE: Intermediate, Small, and Very Small LOCACS , 1 s2 , and S ) 3 SEQUENCE NUMBER: SEQUENCE DESCRtPTtON: ( 1) Any size LOCA followed by failure of the high pressure Injection system due to faUure of component cooHng to the HPt pumps. 0 I 00 ~ APPLtCABLE PROCEDURES: (4) EP 2.0 Loss of Primary or Secondary Coolant EP 2.02 Post LOCA :ooldown and Daµressudza*taon EP 2.03 Transfer to Cold Leg ReclrculatGon ECA 2.01 Loss of Emergency Coolant Reclrculataon TABLE 2 SEQUENCE AND CUT SET TIMING* CUT SETS: EVENT/OCCURRENCE Cl) TI ME C2) ANNUNCIATOR/INDICATION (3) COMMENTS/ SOURCE OF INFORMATION (4)1 NOT APPL I CABLE LE 3 CUT SET FAILURE AN TENTIAL OPERATOR ACTIONS* CUT SETS: DESCRIPTION SYMPTOMS POTENTIAL OPERATOR ACTIVITIES CTASKS) COMMENTS/ OF EVENT ACTIONS REQUIRED TO PERFORM SOURCE OF INFORMATION (1) (2) ( 3) ACTION AND (5) PROCEDURALIZED (4) 1* Faflure of CPC 1
  • Mfsposftfon Manual actlvatfon actuation valves
2. Inoperable pumps
3. High Bearing temperatures
() I* 00 Ul 2. Service water 1
  • low flow to Re- a I I g n suction of servfce strainer plugging CPC-SW pumps system
TABLE 4 SEQUENCE AND CUT SET AVAILABLE TIME CUT SETS: ACTION TIME BY WHICH OPERATOR MUST ACT TIME AT WHICH OPERATOR IS MAXIMUM TIME AVAILABLE TO COMMENTS/ (1) TO PREVENT SUBSEQUENT CORE ALERTED THAT SYMPTOM HAS PERFORM THE IDENTIFIED SOURCE OF DAMAGE (Ted) (2) OCCURRED (To) (3) OPERATOR ACTIVITIES (Tm) (4) INFORMATION (5)
1. Manual actlvatlon 30m
2. Re-allgn of SW 30m suctlon
() I co O'I LE 5 OPERATOR ACTION PERFORMANCE TIME* CUT SETS: LOCATION TRAVEL PERFORMANCE TOTAL COMMENTS/ ACTION ACTIVITIES (1) ( 2) TIME TIME TIME (Ta) SOURCE OF INFORMATION (4) ( 5) (6) (3) Manual CR 1m 1* actlvatlon CPC
2. Re-a Ilg n CR 1m SW suctton 0
I 00 -...] TABLE 6 DIAGNOSIS TIME OF SEQUENCE CUT SET* SEQUENCE/CUT SET MAXIMUM TIME TOTAL ACTION TIME AVAILABLE COMMENTS/ AVAILABLE CTml TIME CTal TO DIAGNOSIS CTdl SOURCE OF INFORMATION (1) ( 2) ( 3) ( 4)
1. Manual CPC actuation 30m 1m 30m
2. Re-align SW suction 30m 1m 30m nI CX)
CX) CUT SETS:
  • LE 7 DIAGNOSIS ANALYSIS -- MORE THAN ONE ABNORMAL EVENT*
  • ACTION DIAGNOSIS NUMBER ANNUNCIATOR FAILURE TO SKI LL-BASED ADJUSTMENT COMMENTS/
CSymptom) NEGLIGIBLE OF ABN HEP DIAGNOSE . IN FINAL SOURCE OF (1) (2) EVENT <Table 8-4)
INFORMATION (3 ) (4 ) (5 ) (8 ) NOT APPLICABLE TABLE 8 DIAGNOSIS ANALYSIS - ONE ABNORMAL EVENT* CUT SETS: ACTION DIAGNOSIS FAILURE TO SKILL-BASED ADJUSTMENT COMMENTS/ (Symptom) NEGLIGIBLE DIAGNOSE (4) IN FINAL SOURCE OF INFORMATION ( 1) (2) <Figure 8-1 > HEP ( 5) (6) (3)
1. Manual CPC No 2.6E-2 No Used upper bound for diagnosis. This Actuation failure may not be visible during a LOCA.
2. Re-al lgn SW No 2.6E-2 No Used upper bound for diagnosis. This Suction tal lure may not .be visible during a LOCA.
0 I c.c 0 CUT SETS:
  • LE9 POST-DIAGNOSIS ACTION-TYPE IDENTIFICATION*
  • ACTION SAFETY SYSTEMS FAILED EOPs, TRAINING, USE EOPs, OPERATOR PERFORMS DYNAMIC OR COMMENTS/
(Actlvltles) (2) WELL-DESIGNED EOPs ONE ACTIVITY STEP-BY-STEP SOURCE OF INFORMATION ( 1) ( 3) ( 4) ( 5) ( 6)
t. Manual CPC one Step by Step Actuatlon
2. Re-allgn Sw one Step by Step Suctlon
TABLE 10 POST-DIAGNOSIS STRESS-LEVEL INDICATION* CUT SETS: ACTION Tm 2 h MORE THEN TWO OPERATOR STRESS LEVEL COMMENTS/ (Actlvltles) AFTER IE SAFETY SYSTEMS FAMILIAR (5 ) SOURCE OF INFORMATION (1) ( 2) FAIL W/SEQUENCE ( 6) (3 ) (4 ) 1, Manua I CPC Moderate Actuatlon 2, Re- a I lg n SW Moderate S ucHon ? \.0 N CUT SETS: 11 POST-DIAGNOSIS ANALYSIS*
  • ACTION ACTIVITIES ORIGINAL SUPERVISOR FAILS THIRD INDEPENDENT TOTAL HEP COMMENTS/
(1) (2 ) OPERATOR TO CORRECT CHECK/CORRECTION (6 ) SOURCE OF INFORMATION HEP OPERATOR HEPHEP ( 7) ( 3) (4) (5 )
1. Manual CPC a) start pump .032 .32
  • 011 Actuatfon
2. Re-al fgn SW a> open cross- .~32 .032 Suctfon tfe valves
() . I I.C). w Table C-8 ATWS Sequences 1 ACCIDENT SEQUENCE DESCRIPTION EVENT TREE: ATWS SEQUENCE NUMBER: SEQUENCE DEStGNATOR: TKRD , TKRT, TKRL 4 2 SEQUENCE DESCRtPTtON: ( 1) ATWS event tor whach manual scram has talled. Manual scram has been lnetfectJ~e either due to operator error (2.7E-3) or taJlures which are not recoverable by manual scram (.157). The event has progressed tor 2 to 5 minutes. Primary pressure has r~sen to the point that the pressurizer safety valves are open. The operator must lnltJate emergency boratlon In order to reduce the primary pressure, thus closlng the rel let valves and conserving coolant Inventory. During some ATWS events, the operator may need to trip the turbJne and start AFW, Jt these actions do not occur automatlcally. 0 I c.c i:.,1 APPLtCABLE PROCEDURES: (4) EP 1.0 - Reactor Tr3p FRP S.1 - Response to Nuclear Power Genaratlon/ATWS TABLE 2 SEQUENCE AND CUT SET TIMING* CUT SETS: EVENT /OCCURRENCE C1 ) TI ME C2) ANNUNCIATOR/INDICATION (3) COMMENTS/ SOURCE OF INFORMATION (4)
1. lnltlator t 0
2. Falfure of RPS t O+ Yes
3. Falture of Manuaf Scram t = 1m
4. Falfure of Turblne Trlp t = 1m
5. Falfure of AFW Actuatlon t 1m
CUT SET FAILURE AND POTENTIAL OPERATOR ACTIONS* CUT SETS: DESCR1PT10N SYMPTOMS POTENT1AL OPERATOR ACT1V1T1ES (TASKS) COMMENTS/ OF EVENT ACT1 ONS REQU1RED TO PERFORM SOURCE OF 1NFORMAT10N (1) ( 2) ( 3) ACT10N AND ( 5) PROCEDURAL1ZED (4) 1* Fa II ure of RPS 1. Man ua I scram 1* Push manual scram
2. Emergency boratfon 1* Open valve from BAT pumps to chargfng pump suctfon
2. Turn BAT pump to fast speed
3. Open PORV
3. Trfp turbfne ff necessary
4. Start AFW ff necessary
TABLE 4 SEQUENCE AND CUT SET AVAILABLE TIME CUT SETS: ACTION TIME BY WHICH OPERATOR MUST ACT TIME AT WHICH OPERATOR IS MAXIMUM TIME AVAILABLE TO COMMENTS/ (1) TO PREVENT SUBSEQUENT CORE ALERTED THAT SYMPTOM HAS PERFORM THE IDENTIFIED SOURCE OF DAMAGE (Ted) ( 2 ) OCCURRED CTo) C3) OPERATOR ACTIVITIES (Tm) (4) INFORMATION (5) 1* Manuat scram NA
2. Emergency boratlon 10m 2m 8m
3. Trlp turblne 2m 1m 1m*
('). I I..O (X) 4 *. Start AFW 2m 1m 1m CUT SETS:
  • ABLE 5 OPERATOR ACTION PERFORMANCE TIME*
  • ACT10N ACT1 V1T1 ES LOCAT10N TRAVEL PERFORMANCE TOTAL COMMENTS/
(1) (2) T1ME T1ME T1ME (Ta) SOURCE OF 1NFORMAT10N (3) (4) ( 5) ( 6) 1* Manual scram CR 10 sec 10 sec
2. Turbfne trfp CR 10 sec 1 0 sec
3. Start AFW CR 10 sec 1 0 sec
("') I 4. Emergency a) open MOV 1350 CR . \0 b) switch BAT \0 boratlon CR pump to fast c> open PORV CR 1m 1m TABLE 6 DIAGNOSIS TIME OF SEQUENCE CUT SET* SEQUENCE/CUT SET MAXIMUM TIME TOTAL ACTION TIME AVAILABLE COMMENTS/ AVAILABLE <Tm> TIME <Ta) TO DIAGNOSIS (Td) SOURCE OF INFORMATIO ( 1) ( 2) ( 3) ( 4) NOT APPLICABLE '?I-' 0 0 CUT SETS:
  • BLE 7 DIAGNOSIS ANALYSIS -- MORE THAN ONE ABNORMAL EVENT*
  • ACTION DIAGNOSIS NUMBER ANNUNCIATOR FAILURE TO SKILL-BASED ADJUSTMENT COMMENTS/
(Symptom) NEGLIGIBLE OF ABN HEP DIAGNOSE IN FINAL SOURCE OF (1) ( 2) EVENT
SOURCE OF INFORMATION C1 > C2 > FAIL W/SEQUENCE C6 > C3 > (4) 1* Emergency No No Yes Moderate Boratfon CUT SETS: E 11 POST-DIAGNOSIS ANALYSIS*
  • ACT10N ACT1 V1T 1 ES OR1G1NAL SUPERV1SOR FA1LS TH1RD 1NDEPENDENT TOTAL HEP COMMENTS/
(1) ( 2) OPERATOR TO CORRECT CHECK/CORRECT10N ( 6) SOURCE OF 1NFORMAT10N HEP OPERATOR HEPHEP ( 7) ( 3) ( 4) (5 ) 1* Manual scram 2.7E-3 2. 7E-3
2. Trip turbine 2.7E-3 2.7E-3
3. Start AFW 2.7E-3 2.7E-3
'?I-' 0 4. Emergency borate u, a> open 1350 .032 .032 .32 3.3E-4 b) switch BAT .032 .032 .32 3.3E-4 pump to fast c> open PORV .032 .032 .32 3.3E-4
1. OE-3
Section Table of Contents D. l Failure Mode and Effect Analysis on Support Systems ***************** D.2 Small Break Initiating Event Frequency Assessment ****************** Page D-3 D-54 D.3 Development of the T J Initiating Event Frequency and Non-Recovery Probabilities for AC Power ************************* D-58 D.4 Estimation of Core Uncovery Time Versus Break Size ***************** D-62 D.5 Development of Plant Specific Reactor Coolant Pump Seal LOCA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-66 D.6 Failure Data Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-73 D.7 Discussion of Mission Time for Diesel Generators for LOSP Initiators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-86 List of Figures D.3-1 Distribution of Initiating Frequency for Surry ******************** .- D-59 D.3-2 Recovery Curve for Surry . . . . . * * . * . . . * * . * . * * * * * . * * . * * * * * . * * . D-61 D.4-1 Time to Core Uncovery and Core Melt Variation with LOCA Break Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-64 D.4-2 Time to Core Uncovery Variation with LOCA Break Size and Secondary Depressurization. * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  • D-65 List of Tables D.l Surry Failure Modes and Effects Analyses Containment Instrument Air FMEA **************************** D-4 Component Cooling Water FMEA ****************************** D-7 Instrument Air FMEA . . . . . . . . . . . . . . . . . . . . . . . "' . . . . . . . . . . . . . . D-18 120 VAC Power FMEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-30 480 VAC Power FMEA *....*....*..*****.*.**.****....*.**. D-41 4160 VAC Power FMEA ****.**********************.******** D-43 Service Water FMEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-45 Auxiliary Ventilation FMEA ********************************* D-49 D.2-1 Summary of Small Break Experience *************************** D-55 D.3-1 Distribution of Initiating Event Frequency for Surry **************** D-60 D.4-1 Times from Start of Accident to Uncovery of the Core ************** D-63 D.5-1 Aggregated RCP Seal LOCA Probabilities - Three Pumps ************ D-67 D.5-2 Surry RCP Seal LOCA Model Paths ************************ ***** D-68 D.5-3 Surry RCP Seal LOCA Model ********************************* D-71 D.6-1 Mission Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-74 D.6-2 Plant Specific Failure Data ********************************** D-76 D.7-1 Typical Core Uncovery Frequency Due to Battery Depletion During Station Blackout and the Effect of Modeling Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-90 D-2
D.1 Failure Mode and Effect Analysis on Support Systems D.2 Small Break Initiating Event Frequency Assessment D.3 T 1 Initiating Event Frequency and Non-Recovery of AC Power Probabilities D.4 Core Uncovery Time Versus Break Size D.5 RCP Seal LOCA !\flodel D.6 Failure Data Development D.7 Discussion of Mission Time for T)iesel Gei1erators for LOSP Initiators D.1 Failure Mode and Effect Analysis on Support Systems The effects of the loss of support systems were examined on an individual basis to deter-mine if they should be included as initiating events. This section describes the analysis erformed on the support systems as part of the initiating event identification and group-ing task, described in Section 4.3 of the main report. A list of systems at Surry which provide supporting services to components in front line safety systems and normally operating systems was developed. Each of these systems was viewed as a potential initiator. A Failure Mode and Effect Analysis (FMEA) was done on the support systems in order to support this investigation. The FMEA identifies the failure causes for the support systems. Then, the FMEA qualitatively assesses the impact of each of these failure causes on the unit's front line systems. FMEA's were performed on the following systems:
  • Containment Instrument Air e Component Cooling Water
  • Instrument Air
  • 120 VAC Power
  • 480 VAC Power
  • 4160 VAC Power
  • Auxiliary Ventilation The FMEAS follow *
  • D-3
SYSTEM LEVEL FAILURE l\10DES AND EFFECTS ANALYSIS SYSTEM CIA (Inside Cntmt) UNIT Surry-1 DRAWING NO. 11448-FM-25E, J SHEET 1 of 3 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Entire Inside CIA compressors CIA pressure If CIA not restored in a Cross-connect valves Containment IA fail (1 FTR and ind. (PI-IA-101) reasonable period of (l-IA-1003, 440, and 447) can System (All Loads) 1 FTS) < 85 psi time, begin a normal be opened for IA backup to CIA - or - reactor shutdown to a if air header pressure CIA separator or Cont instr air cold shutdown condition decreases below 85 psi compressor HX rupture compr 4A or 48 (Tech. Spec. 3.8) and failure to al arm If IA system is cross-isolate train and Prolonged operation with connected to supply CIA, start other Cont instr air outside air being sup- the containment partial air compressor hdr lo-press plied to containment will pressure must be monitored - or - alarm increase containment CIA air dryer partial pressure Air* leaks must be stopped to rupture and failure Charging pump prevent overheating and to isolate and open re gen HX hi -1 o tripping of air compressors cross-connect to fl ow al arm other dryer - or - CIA receiver (2A or 28) ruptures and failure to isolate (or both rupture) - or - CIA supply isolation valve (TV-IA-100) transfers closed - or - CIA suction isolation valve (TV-IA-101A or 8) transfers closed and alternate suction (TV-IA-103) fails to open* - or - CIA header rupture SYSTFZ CIA (Inside Cntmt) DRAWING NO. 11448-FM-25E SYSTEM LEVEL FAIL~DES AND EFFECTS ANALYSIS . UNIT Surry-I SHEET 2 of 3 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS PORVs Local air line Local air leakage No effect Alternate supply from high-(PCV-1455C, 1456) rupture pressure nitrogen bottles - or - Manual valve plug I sol ate 1i nes affected by air - or - leak - Check valve to prevent Check valve loss from high pressure air transfer shut Norma 1 (RCP) Local air line Loss of normal On pressure surge, PORVs Spray valves fail closed on Pressurizer Spray rupture pressurizer spray may open and possible loss of CIA Valves (PCV-1455A,B) - or - capabi 1ity reactor trip on high pres-t:1 Manual valve plug surizer P, unless one Isolate lines affected by air I CJl (2 must plug for Local air leakage normal spray or aux. spray 1eaks. The normal spray valve each PCV to lose is available air supply is isolated air supply) separately from aux spray May be able to valves supply control pressurizer pressure during hot standby justing SG level Aux (Chg PP) Local air 1i ne Loss of auxiliary On pressure surge, PORVs Spray valve fails closed on Pressurizer Spray rupture pressurizer spray may open and possible loss of CIA Valve - or - capability reactor trip on high pres-(HCV-1311) Manual valve plug surizer P, unless normal Isolate lines affected by air Local air leakage sprays available leaks - aux spray valve air supply is isolated separately May be able to control from normal spray valves pressurizer pressure air supply during hot standby by adjusting SG level SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSHZ CIA (Inside Cntmt) UNIT Surry-I DRAWING NO. 11448-FM-25E SHEET 3 of 3 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Letdown Flow To Regen Local air line Loss of letdown No effect Valves fail closed on loss HX (LCV-1460A,B) rupture flow (comply with requirements of IA (valves are in series) - or - for restoring letdown Manual valve plug fl ow) Close air line valves or crimp line to isolate leaks Letdown Orifice Valves Local air line Charging pump to Seal water return is only Valves fail closed on loss of (HCV-1200A,B,C) rupture regen HX low flow letdown available, may IA (valves are in parallel. - or - alarm cause pressurizer level to A and C normally closed) Manual valve plug increase Close air line valves or crimp line to isolate leaks t:J I O') Seal Leak Off Lines Local air line Local air leakage No effect Valves HCV-1303A,B,C fail No. 1 & 2 rupture open on loss of IA and (HCV-1303A,B,C; - or - Reduced seal flow RCP seal fl ow is HCV-1307 fails closed HCV-1307) Manual valve plug (HCV-1307) functional, but reduced due to full charging flow Close air line valves or crimp if FCV-1122 fails open line to isolate leaks CCW Load Isolation Local air line Neutron shield No effect Valves fail closed on loss Valves (Neutron Shield rupture tank cooler flow of IA Tank Coolers: - or - high temperature Comply with requirements FCV-CC-112A,B; Manual valve plug for operation without NST Stop letdown flow (close 113A,B; Excess letdown or primary drain cooling HCV-1200A,B,C) on loss of Excess LD HX: fl ow high temp cooling HCV-CC-108; Comply with requirements Prim Crain Cl r: for operation without Close air line valves or crimp HCV-CC-114) l etdown fl ow line to isolate leaks SYSTEM LEVEL FAILU DES AND EFFECTS ANALYSIS SYSTEM CCW llNIT Surry - 1 0 RAW ING NO. 11448-FM-22A-D SHEET 1 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD FAILURE EFFECT ON UNIT REMARKS Entire CCW Surge Tank Surge tank If CCW flow not re- Addressed as event W System at Unit 1 (l-CC-TK-1) rupture 1ow 1evel established immediately: on T2 event tree (All Loads) -or- - Stop affected RCP Surge tank makeup Pump motor Trip the reactor CCW pumps trip on low fai 1ure, valve protection Initiate Reactor Tri p/EP 11 NPSH - caused by 1ow LCV-CC-100 closed a1arm Safety Injection 11 surge tank 1eve l -or- Request initiation Surge tank vent Disch. header of "Station Emergency RCP must be stopped within (HCV-CC-100) 1ow fl ow Manager Controlling 2 minutes or before either closed Procedure 11 upper or lower bearing -or- Disch. header Prepare to backup temps reach 200°F tJ Surge tank level low pressure containment IA with . I -.;:J transmitter fail Turb. Bldg. IA F9llowing loss of offsite low (LT-CC-100) RCP flow Cooldown plant using power ttle. Qperator must -or- high temp. natural circulation re-connect the stub bus Surge tank drain and steam dumps for CC~! pumps opened Excess letdown -or- flow high temp. If standby CCW purnp doesn't Operating pump fails start, pumps lC and 1n which and standby pump Primary shield normally supply llnit 2 can fails to start pen. cooling supply Unit 1 (1-CC-P-lA,lB) coils 1ow pressure Surge tank rnake-up LCV and can be hand-operated on Failure to align Primary shield loss of IA Pumps lC or 10 water wall coolers 1ow pressure Neutron shield tank coolers fl ow high temp. SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM CCW UNIT Surry - 1 DRAWING NO. 11448-FM-22A-D SHEET 2 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD FAILURE EFFECT ON UNIT REMARKS Entire CCW -or- (see previous page) CCvJ st and by heat exchanger System at Unit 1 CCW heat exchanger Reactor con- must be aligned manually (All Loads) tube rupture or tainment air plug coolers high (cont'd) and temp. Failure to align standby HX Non-regen. HX -or- (main cool ant) Loss of SW to CCW high temp. HXs (refer to SWFMEA) ? 00 -or-Return/discharge header rupture SYSTEM- - - - - CCW------ SYSTEM LEVEL FAILUR MODES AND EFFECTS ANALYSIS UNIT Surry - 1 DRAWING NO. 11448-FM-22A SHEET 3 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Reactor cool ant Pipe rupture RCP motor bear- If CCW flow to RCPs not RCP must be stopped within pumps (RCP) -or- ings high temp re-established imme- 2 minutes or before either 1-RC-P-lA,lB,lC Manual valve plug diately: upper or lower bearing upper bearing -or- - Stop affected RCPs temps reach 200°F lube oil coolers Check valve - Trip Reactor transfer shut - Initiate "Reactor Trip/ -or- EP Safety Injection" Containment valve closure will Containment isol. cause- 1oss of all CCW 1oads valve closure inside containment. (TV-CC-105A,B ,C) -or-Loss of IARCP lower bearing see above see above see above see above 1 ube oi 1 coolers RCPstator see above see above see above see above coolers RtP thermal Pipe rupture see above see above see above barriers -or-Manual valve plug -or-Check valve transfer shut SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM CCW UNIT Surry - 1 DRAWING NO. 11448-FM-22A SHEET 4 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS RCP thermal -or- -------------------refer to previous page-------------------- barriers Containment valve (cont'd) closure (TV-CC-107) -or-Loss of IA Reactor shroud Pipe rupture cooling coils -or- No effect unless amount of For pipe rupture, isolate (1-VS-E-6A,6B,6C) Manual valve plug time required to restore affected coils and return t) -or- exceeds time allowed for unaffected coils to opera-I I-' Check va 1ve operation with shroud to operation 0 transfer shut coils isolated (Tech. -or- Specs.). Containment valve Containment valve closure will closure (TV-CC- cause loss of all CCW inside I05A,B,C) containment. -or-Loss of IA Residual heat Loss of all CCW No effect if RHR not re- Used for unit cooldown. removal pumps -or- quired. Otherwise RNR not Isolated during normal (l-RH-P-IA,18) Failure to align available for unit cooldown. operations CCW to pumps -or-Pipe rupture SYSTEM- - - - - CCW SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS UNIT Surry - 1 DRAWING NO. 11448-FM-22A SHEET 5 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS \ Residual heat Loss of a11 CC\~ No effect if RHR not re- Used for unit cooldown. removal* -or- quired. Otherwise RHR Isolated during normal exchfngers Pipe rupture unavailable for unit operations (1-RPI-E-lA, lB) -or- cool down. Failure to align CCt,J to RHRHXs \ Primary drain Pipe rupture No effect unless amount of For pipe rupture, isolate cooler -or- time required to restore cocler and return unaffected (l-DC-E-1) Manual valve plug exceeds time allowed for CCW loads to operation -or- operation with cooler iso-Check valve lated (Tech. Specs.). transfer shut -or-Valve closure (HCV-CC-114; TV-CC-1098) -or-Loss of IA Excess 1etdown Pipe rupture Excess letdown No effect if amount of time Stop letdown flow by clos-heat exchanger -or- fl ow high temp required to restore ing valves HCV-1200A, B, C (1'.""CH-E-4) Manual valve plug exceeds time allowed for -or- operation without letdown Insure flow is maintained Check valve flow, comply with Tech. to RCP seals transfer shut Specs. -or- For pipe rupture, isolate HX Valve closure (HCV-CC-108; TV-CC-109B) -or-Loss of IA I I SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM ccw UNIT Surrt - 1 DRAWING NO. 11448-FM-22A,B SHEET 6 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Inner pipe Pipe rupture No effect unless amount of For pipe rupture, isolate penetration -or- time required to restore affected coils and return cooling coils Manual valve plug exceeds time allowed for unaffected coils to opera- -or- operation with coils tion Check valve isolated (Tech. Specs.). I , transfer shut -or-Valve closure (TV-CC-1098) tj -or-I f,-l Loss of IA Nl Outer pipe Pipe rupture see above see above see above penetration -or-cooling coils Manual valve plug Reactor Pipe rupture Reactor No effect unless amount of For pipe rupture, isolate containment -or- containment time required to restore affected coolers and return air reci re Manual valve plug air recirc exceeds time allowed for unaffected coolers to opera-coolers -or- coolers high for operation with air tion (1-VS-E-2A,2B,2C) Check valve( s) temp coolers isolated (Tech. transfer shut Specs.). -or- For loss of all CCW or Valve closure closure of HCV-lOlA or B, (HCV-CC-101A,B; shift to chilled component TV-CC-llOA,B ,C) cooling, start chiller and -or- place on chilled component Loss of IA cooling HX SYSTEM ccw SYSTEM LEVEL FAIL MODES AND EFFECTS ANALYSIS UNIT Surr,i'. - 1 DRAWING NO. 11448-FM-228 SHEET 7 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Primary shield Pipe rupture Primary shield No effect unless amount of For pipe rupture, isolate penetration -or- penetration time required to restore affected coils and return cooling coils Manual valve plug cooling coils exceeds time allowed for unaff etted coi 1s to opera-(l-CC-E-3A, *** ,3F) -or- low pressure operation with shield coils tion Check valve isolated (Tech. Specs.). transfer shut -or-Valve closure (TV-CC-109 B) t:l -or- ....I w Loss of IA Primary shield Pipe rupture Primary shield see above see above water wall -or- water wal 1 cool er panel Manual valve plug coolers low sections -or- pressure (1-NS-E-2A, *** ,2L) Check valve transfer shut -or-Valve closure (TV-CC-1098) -or-Loss of IA Ne.ut ran shi e1d Pipe rupture Neutron shield No effect unless amount of For loss of all CCW or tank coolers -or- tank coolers time required to restore closure of HCV-lOlA or (1-NS-E-lA, 18) Manual valve plug flow high temp exceeds time allowed for B, shift to chilled -or- operation with NST cooler component cooling, Check valve isolated (Tech. Specs.). start chiller and place transfer shut on CD HX SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM CCW UNIT Surry - 1 DRAWING NO. 11448-FM-22B,C,D SHEET 8 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD ( s) FAILURE EFFECT ON UNIT REMARKS Neutron shield Valve closure --------refer to previous page-------- For pipe rupture, isolate tank coolers ( FCV-CC-112A, B; affected cooler and align (cont'd) HCV-CC-lOlA ,B; unaffected cooler for TV-CC-llOA,C) operation -or-Loss of IA Liquid waste Pipe rupture No effect unless amount of For lost LW CCW, shutdown disposal system -or- time required to restore LW disposal by placing Evap (l-SS-E-7) Manual valve plug exceeds time allowed for pump 1-LW-P-8 to 11 off 11 Cooler (l-LW-E-3) -or- operation without liquid Cond (l-LW-E-2) Valve closure waste disposal , (Tech. For loss of IA, bypass Dist PP(l-LW-P-4) (PCV-LW-111; Specs.) TCV-CC-105 Circ PP(l-LW-P-8) FICV-CC-108A,B HLWDT PP(l-LW-P-2A,B) FICV-109, 110) For pipe rupture, isolate -or- affected sections and return Loss of IA unaffected sections to operation Boron recovery Pipe rupture No effect unless amount of For lost BR CCW, shutdown system -or- time required to restore boron recovery by placing Cooler(l-BR-E-2A,B) Manual valve plug exceeds time allowed for pumps l-RR-P-4A,B; and 6A,B Cond(l-BR-E-7A,B) -or- operation without boron to 11 off 11 Dist PP(l-BR-P-3A,B) Check valve recovery, (Tech. Specs.) Circ PP(l-BR-P-6A,B) transfer shut For pipe rupture, isolate Str Circ PP{l-BR-P-7A,B) -o~- affected sections and return PDT PP(l-BR-P-4A,B) Valve closure unaffected sections to Ovhd Cond(l-BR-E-8) (PCV-BR-109A,B; operation Chlr Cond(l-BR-E-9) TCV-BR-lllA,B; Str Trim Clr{l-BR-E-12) HCV-BR-101D,G; TCV-BR-128,129; FICV-CC-104-107A,B SYSTEM CCW SYSTEM LEVEL FAILU ODES AND EFFECTS ANALYSIS UNIT Surry - 1 DRAWING NO. 11448-FM-22C SHEET 9 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Boron recovery system Loss of IA --------refer to previous page-------- For loss of IA,
  • (cont I d) throttle HCV-BR-101D
& G and bypass TCV-BR-129 Sample Coolers Pipe rupture No effect unless For pipe rupture, RHR (l-SS-E-9) -or- amount of time required isolate affected PZR(l-SS-E-10) Manual valve plug to restore exceeds time coolers and restore Gas Str(l-SS-E-5) allowed for operation unaffected coolers Cold Leg(l-SS-E-12) with sample coolers to operation Hot Leg(l-SS-E-4) isolated (Tech. Specs.). SG BD(l-SS-E-3A,B,C) Recombiner Pipe rupture No effect unless amount of Shutdown gaseous waste aftercooler -or- time required to restore disposal by placing compressors (l-GW-HC-1) Manual valve plug exceeds time allowed 1GW-C-2A or B to stop 11 11 for operation without GW disposal, (Tech. For pipe rupture, Specs.). isolate aftercooler Fuel pit coolers Pipe Rupture Fuel pool No effect unless amount of For pipe rupture, isolate (1-FC-E-lA-lB) -or- water high time required to restore affected cooler and align Manual valve plug temp. exceeds time allowed unaffected cooper for for operation with fuel operation pit cooler isolated, (Tech. Specs.) SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM CCW UNIT Surry - 1 DRAWING NO. 11448-FM-22C,D SHEET 10 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Non-regenerative Pipe rupture Non-reg en No effect unless amount of Stop charging flow by heat exchanger -or- HX (main time required to restore closing FCV-1122 (l-CH-E-2) Manual valve plug coolant) high exceeds time allowed for -or- temp operation without charging Insure flow is maintained Valve closure fl ow, (Tech. Specs.) to RCP seals (TCV-CC-103) Car pipe rupture, isolate HX For Loss of IA, throttle TV-CC-103 Seal water heat Pipe rupture Seal water No effect, unless amount of Stop charging flow by exchanger -or- high temp. time required to restore closing FCV-1122 {l-CH-E-1) Manual valve plug exceeds time allowed for operation without charging Insure flow is maintained flow,(Tech. Specs.) to RCP seals (HCV-1303A,B,C) Fuel Casks Loss of all CCW (refer to loss None Isolated during normal (Decontamination -or- of all CCW) operation Building) Pipe rupture -or-Failure to align Waste.gas diaphram Pipe rupture Waste gas flow No effect, unless amount of Shutdown GW disposal by compressors -or- high temp. time required to restore placing compressors (l-GW-C-lA,18) Manual valve plug exceeds time allowed for 1-GW-C-2A or B to 11 stop 11 operation without GW disposal (Tech. Specs.) For pipe rupture, isolate affected c~ssor SYSTEM CCW DRAWING NO. 11448-FM-22,C,D LOAD/ SYSTEM LEVEL FAI FAILURE/LOSS OF DETECTION MODES ~ND EFFECTS ANALYSIS UNIT Surry -1 SHEET 11 of 11 COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Refueling water Loss of all CCW (refer to loss No effect, possible Used during refueling - storage tank -or- of all CCW) delay when refueling isolated during normal coolers Pipe rupture operations (1-CD-E-2A,B) -or- RWST use by injection Failure to align systems not affected Chilled water system Pipe rupture Chilled compon~nt No effect,unless amount of For pipe rupture, isolate Pumps(l-CD-P-lA,B,C) -or- cooling water flow time to restore exceeds affected sections and Cooler(l-CD-E-lA,B,C) Manual valve plug high temp. time allowed for opera- return unaffected sections Condensate -or- tion with components to operation Air.EJ(l-CD-EJ-l,2A,B) Check valve isolated, (Tech. Specs.), Circ PPs(l-CD-P-2A,B) transfer shut ) SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM IA (Outside Cntmt) UNIT Surry-1 DRAWING NO. 11448-FM-25A-D,L SHEET 1 of 12 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Entire IA System IA compressor failure IA press ind RCPs tripped manually due CCW from containment Outside Containment and loss of service (P I-IA-100 < (to loss of CCW to isolated (All Loads) air (SA) to IA rcvr 85 psi containment) - or - MSIVs fail closed, main IA aftercool er Unit 1 IAReactor trip (due to main feed reg valve fails rupture and loss compr al arm MSIV closure or SG closed & lo-lo SG level of SA to IA rcvr low level ) signal given - or - Local air IA receiver l eaks/decr Loss of MFW (due to MFW reg valves fail rupture, or relief pressure reg. valves closure) closed 9 I-" valve sticks open, 00 and failure to MSIVs closed TDAFW pumps start TDAFW pump steam align SA to IA al arm (due to open steam admission valves fail header admission valves) open - or - SG lo-lo IA dehydrator level al arm (also refer to entries Loss of IA also causes rupture and failure for these individual a false 1o-1 o canal level to use bypass Charging pump loads) s i gnal - a s i gnal < 18 FT - or - to regen HX will cause turbine tripIAheader rupture Hi -Lo fl ow al arm Air leaks must be stopped to prevent overheating & tripping of air compressors SA receiver acts as backup to IA system. SA use can be limited or SA loads isolated to ensure sufficient IA pressure IA from condensate polishing building can be ved in SYSTEM DRAWING NO. IA (Outside Cntmt) 11448-FM-25A-D,L SYSTEM LEVEL FAIL ODES AND EFFECTS ANALYSIS UNIT Surry-I SHEET 2 of 12 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS MFW Regulator Local air line rupture Reg valves(s) Loss of MFWMFW loss addressed as Valves (FCV-1478, - or - fail closed initiating event T2 1488, 1498) Manual Valve Plug Local leakage Feed pumps shift to recirc, operator should secure For air leaks, can isolate air to one or all valves with air line valves, or crimp air line MFW Minimum Flow Local air line Min flow No effect - when not in Min flow valve(s) used at low Valves rupture valve(s) fail startup or low FW flow FW flow (FCV-FW-150A,B) - or - closed (comply with any re-Manual valve plug quirements for min flow For air leaks, can isolate air Local leakage valve operability) to one or all valves with air line valves, or crimp air line Feedwater Bypass Local air line Unable to No effect FW bypass valves normally Valves rupture open FW by- (comply with any re- closed and fail closed on loss (HCV-FW-155A,B,C) - or - pass valve(s) quirements for FW of IA Manual valve plug bypass operability) Local 1eakage For air leaks, can isolate air to one or all valves with air line valves, or crimp air line SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM IA (Outside Cntmt) UNIT Surry-1 DRAWING NO. 11448-FM-25B SHEET 3 of 12 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Condensate Fl ow Local air line Valve fails No effect Upstream valve (MOV-CP-100) Control Valve To rupture closed normally closed Ext rac. Steam - or - (LCV-CN-101) Manual valve plug Local leakage Flow to extrac. steam available from CST Decreased condenser level control capability Can isolate air leak upstream of LCV or crimp air line Condenser Level Local air line Valve(s) fail No effect Can isolate air leak(s) Control Makeup Valves rupture closed upstream of either LCV or from CST - or - crirnp air line (LCV-CN-102A,B) Manual valve plug Local 1eakage Condensate Recirc Local air line Valves fail No effect Condensate pumps functional To Condenser Flow rupture closed through air ejector and gland Control Valve - or - steam condenser to main (FCV-CN-107) Manual valve plug Local leakage condenser via FCV-CN-107 Close upstream air valves or crimp line to isolate air leak SYSTEM DRAWING NO. IA (Outside Cntmt) 11448-FM-258, L SYSTEM LEVEL FAIL DES AND EFFECTS ANALYSIS UNIT Surry-I SHEET 4 of 12 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS MSIVs (TV-MS-101A, Local air line MSIV(s) F.C. Reactor tripMSIV closure included as B,C) rupture T2 initiator - or - High dP between Manual valve plug steam line(s) Operator can bypass around - or - and steam line trip valves (1-MS-84, 116, Check valveheader 155) to supply steam to header transfer shut SG ADVs Local air line ADV(s) fail to None Two air isol valves for each (RV-MS-lOlA,B,C) rupture open if needed ADV - Both must be closed to - or - isolate air to ADV, or a single Manual valve plug Local 1eakage upstream valve closed, or air (2 must plug at line crimped ADV) - or - Check valve transfer shut Decay Heat Release see above Unable to open None Two air line valves, or a Valve (HCV-MS-104) decay ht rel vl v single valve upstream must be closed, or air line crimped to Local 1eakage isolate air to decay heat rel ease valve. Turbine Control Local air line Turbine control Loss of H.P. turbine Valves rupture valve(s) fail control (PCV-MS-111, *** , - or - closed 114) Manual valve Turbine trip on loss of plug air to turbine SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM IA (Outside Cntmt) UNIT Surry-1 DRAWING NO. 11448-FM-258, L SHEET 5 of 12 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Turbine Bypass Valves Local air line Unable to open No effect Bypass valves normally closed (TCV-MS-105A,B; rupture turbine bypass (comp 1y with any re-106A,B,107A,B; - or - valve(s) quirements for minimum Steam dumps (TCV-MS-1058, 1068) 108A ,B) Manual valve plug number of operable bypass can be hand-operated for Local leakage valves) temperature control Can isolate air leaks for individual bypass valves and continue to operate with air available to unaffected bypass valves or crimp line TDAFW Pump Steam Local air line Steam admission TDAFW pump starts Can isolate air leaks with a Admission Valves rupture valves fail open single valve (air to both PCVs (PCV-MS-1021\,B) - or - isolated) Manual valve plug TDAFW pump starts - or - Nitrogen bottle backup to Check valve operate PCVs on loss of air transfer shut IA not needed for AFW operation Maintain SG levels by throttling AFWMOVs and/or securing AFW pumps SYSTEM DRAWING NO. IA (Outside Cntmt) 11448-FM-25C SYSTEM LEVEL FAIL~DES AND EFFECTS ANALYSIS UNIT Surry-1 SHEET n of 12 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAIL 1JRE EFFECT ON UNIT REMARKS Makeup Line (HPI/HPR) Local air line rptr Unable to close No effect ~akeup line FCV fails open (FCV-1122) - or - FCV to stop on loss of IA Manual valve plug makeup flow Full charging flow, (2 must plug at charging pump recirc Can isolate air leaks by FCV) is functional but re- closing one or both valves - or - duced due to full immediately upstream or single Check valve charging fl ow valve farther upstream Fill Line (FCV-1160) Local air line Unable to open No effect Fi 11 1i ne FCV normally closed rupture FCV for fil 1 (comply with any re- and fails closed on loss of IA -or- quirements for restoring Manual valve plug fil 1 capability) Sea 1 Injection Fl ow Local air line Unable to close No effect. Throttle Seal Injection HCV fails open Valve (HCV-1186) rupture HCV to stop seal seal water injection to on loss of IA - or - injection 6 gpm per pump ~anual valve plug Can isolate air leaks by (2 rnust plug at closing one or both valves HCV) immediately upstream or single - or - valve farther upstream Check valve transfer shut SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM IA (Outside Cntmt) UNIT Surry-I DRAWING NO. 11448-FM-25A-D,L SHEET 7 of 12 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Letdown Line Local air line Loss of letdown Close letdown flow Letdown flow TV fails closed (TV-1204) rupture flow orifice valves (HCV- on loss of IA - or - 1200A,B,C, see CIA) Manual valve plug Can isolate air leaks at - or - Seal water return is TV-1204 only, or isolate with Check valve only letdown available, other valve(s) air supply at transfer shut may cause pressurizer a point farther upstream, or level to increase crimp ai r 1i ne VCT Level Control Local air line Loss of VCT No effect Cycle LCV-11158&0 to maintain Valve rupture automatic 1evel VCT level between 14 and 34% (LCV-1115A) - or - cont ro 1 Manual valve plug VCT hi/low level Manually vent VCT to primary drain tank SYSTEM LEVEL FAIL~DES AND EFFECTS ANALYSIS SYSTEM IA (Outside Cntmt) UNIT Surry-1 DRAWING NO. 11448-FM-25C, D SHEET 8 of 12 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS CCW Containment Local air line Valves fail Trip RCP(s) manually, Loss of CCW to RCP bearing & Isolation Valves rupture closed and trip reactor. stator coolers and thermal (TV-CC-105A,B ,C; - or - barrier and TV-CC-107) Manual valve plug RCP increasing - or - bearing temp Loss of air to TV-CC-107 Check valve addressed in event Wfault transfer shut tree CCW Surge Tank Vent Local air line Surge tank low No effect Vent and makeup fail closed and Makeup ruptur~ level indication (refer to CCWFMEA) on loss of IA (HCV-CC-100; - dr - LCV-CC-100) Manual valve plug CC surge tank contains - or - sufficient inventory to handle Check valve short term loss of makeup transfer shut capahil ity Surge tank makeup can be hand-operated Isolate local air leaks Reactor CNTMT Air Local air line Air reci re No effect Valves fail closed on loss of Recirc Coolers CCW/ rupture coolers high (refer to CCWFMEA) IA Chilled Water Supply - or - temperature Valves Manual valve plug i ndi cation If only CCW valve(s) close, (HCV-CC-lOlA,B; - or - align chilled water for air HCV-CC-102A,B) Check valve recirc cooling, if only chilled transfer shut water valves lose air - No effect - these are normally closed Can isolate local air leaks upstream of individual valves A -., I SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM IA (Outside Cntmt) UNIT Surry-I DRAWING NO. 11448-FM-25A-D,L SHEET 9 of 12 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS CCW Load Isolation Local air line Non-regen HX No effect TCV-CC-103 fails open, Valves rupture (main coolant) TV-CC-109A,B; llOA,B,C fail (TCV-CC-103; - or - deer temp If CCW unavailable to RHR, closed on loss of IA TV-CC-109A,B; Manual valve plug cooldown to cold shutdown TV-CC-llOA,B) (2 must plug for Excess letdown not possible Throttle NRHX CCW (TCV-CC-103) TCV-CC-103) fl ow high temp - or - Can isolate local air leaks up-Check valve Air reci re Comply with requirements stream of individual TV/TCVs transfer shut coolers high for operation without air with one or more valves temp reci re cooling SYSTEM IA (Outside Cntmt) SYSTEM LEVEL FAIL ODES AND EFFECTS ANALYSIS UNIT Surry-1 DRAWING NO. 11448-FM-25A-D SHEET 10 of 12 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Intake Canal Level Local air line False lo-lo Turbine trip and reactor Check confirming indications Transmitter rupture canal 1evel trip on lo-lo canal level (LT-CW-101) - or - signal signal Can isolate air leak upstream Manual valve plug of transmitter Condenser inlet and outlet MOVs, BCHXMOVs, and CCHXMOVs close on 18ft signal Charging Pump Lube Local air line Charging pump No effect TCVs fail open on loss of IA Oil Cooler Temp rupture bearing Control Valves - or - decreasing temp Air leaks can be isolated up-(TCV-SW-108A,B,C) Manual valve plug stream of individual TCVs - or - Check valve transfer shut Chiller Cond Temp Local air line Chi 11 ed water No effect Chilled water unit TCVs fail Control Valves rupture unit decreasing (comply with any re- open on loss of IA (TCV-SW-108A,B,C) - or - temperature quirements for chilled Manual valve plug water unit TCVs oper- Isolate air leaks for affected ability) individual valves Control & Relay Room Room temperature No effect (refer to Ventilation system is sized to AC Chillers Temp indications Auxiliary ventilation limit temperatures to l00°F in Control Valves FMEA) occupied spaces and 120°F in (TCV-SW-lOOA,B,C) machinery spaces SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM IA (Outside Cntmt) IINIT Surry-1 DRAWING NO. 11448-FM-25A-D SHEET 11 of 12 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Liquid Waste Local air line Discharges to No effect (comply with Secure liquid waste evap. (miscellaneous AOVs) rupture ci re. water any requirements for bottoms pump and evaporator -or- cease liquid waste operability) Manual valve plug Line up drain header to low- -or- LW evap level LW tanks Check valveinoperable transfer shut All discharges to circ water secured on loss of IABoron Recovery Loe a1 air 1 i ne Primary drain No effect, (comply with Evaporator feed pumps shift (miscellaneous AOVs) rupture tank pumps trip any requirements for to recirc, bottoms draining and t:l -or- due to level boron recovery opera- circulating is securen, bottoms I 1..:l Manual valve plug transmitter bility) tank is secured and BRTT 00 -or- fai 1ure discharge is secured on loss of Check valveIA transfer shut Gas stripper pumps trip Operator should secure boron recovery evap. bottoms pumps & OVHD Gas com- evaporators pressor inoperable SYSTEM LEVEL FAILU~DES AND EFFECTS ANALYSIS SYSTEM IA (Outside Cntmt) UNIT Surry - 1 DRAWING NO. 11448-FM-25A-D SHEET 12 of 12 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REf>'1ARKS Gaseous Waste Local air line No effect, (comply with Process vent discharge FCV (miscellaneous AOVs) rupture any requirements for fails open -or- gaseous waste operahility) Manual valve plug Feed and bleed to and frorn AT -or- secured, and WG diaphragmCheck valve compressors inoperable on loss transfer shut of IA Bearing cooling Local air line High RC temp No effect BC-2 makeup is securerl on loss (miscellaneous AOVs) rupture of IA, BC is supplied to all -or- equipment Manual valve plug -or- Makeup available via fire rnain Check valve transfer shut SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM 120 VAC POWER UNIT Surry - 1 DRAWING NO.- - - - - - - - SHEET 1 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Loss of Vital Bus short Loss of corres- Turbine auto runback Bu.s I (Red) ponding VB -or- voltage indica- Low condenser vacuum Load short tion One SI train lost (not -or- Loss of cor- energized) - manual acti-UPS failure responding vation available on both instrument trains. Loss of ai"r ejectors vent channel to atmosphere causing low One CLS-Hi sensor input condensor vacuum NI S rod drop , activated. One CLS-Hi-Hi turbine run- sensor input lost. High RCP bearing temperatures; hack without may necessitate reactor trip IPRI rod drop CC to RCP Thermal Barrier i ndi cation isolated. NIS rod drop, Containment Air isolated. rod stop and turbine run-back annunciators SYSTEM LEVEL FAIL ODES AND EFFECTS ANALYSIS SYSTEM 120 VAC POWER UNIT Surry - 1 DRAWING NO. SHEET 2 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Loss of Vital Bus II Bus short Loss of corres- Reactor trip required (White) ponding VB -or- voltage indica- RCP-B trip required Load short tion Manual primary system Cooling to RCP-B radial -or- Loss of corres- pressure control required bearings lost (TV-CC-1058 UPS failure ponding nuclear fails closed) instrument One SI train lost (not channel energized) - manual acti- PORVs will not operate in -or- vation available on both auto Loss of Inverter trains 1-II Normal letdown flow lost One CLS-Hi sensor input (TV-1204 fails closed) activated, One CLS-Hi-Hi sensor input lost Charging and letdown flow indications inoperable SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM 120 VAC POWER UNIT Surry - 1 DRAWING NO.-------- SHEET 3 of 11 LO AD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Loss of Vital Bus short Loss of cor- Reactor trip required Bus Ill (Blue) responding -or- VB voltage RCP-A trip required Load short Loss of cor- Cooling to RCP-A radial -or- responding bearings lost (TV-CC-105A Failure of UPS nuclear in- One SI train lost (not fa i1 s cl o sed ) strument energized) manual acti- -or- vation available on both trains FW bypass valves, AFW flow to SG-C indication, and SG-C One CLS-Hi sensor input WR level indication inoperable activated. One CLS-Hi-Hi sensor input lost Pressurizer level is maintained FW bypass valves fail with letdown orifice bypass shut valves SYSTEM 120 VAC POWER DRAWING NO.- - - - - - - - SYSTEM LEVEL FAIL ODES AND EFFECTS ANALYSIS UNIT Surry - 1 SHEET 4 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Loss of Vital Bus short Loss of cor- Reactor trip required Bus IV (Yellow) responding -or- VB voltage RCP-C trip required Load short indication Manual pressurizer pres- Cooling to RCP-C radial -or Loss of cor- sure control required bearings lost (TV-CC-105C UPS failure responding fail s cl o sed ) nuclear in- MSW bypass valves fail strument closed PC-444J input fails low channel Manual control of charg-ing flow required t:I Control charging with FCV-1122; w I One SI train lost (not LCV-1460 fails open w energized) manual acti-vation available on both trains One CLS-Hi sensor input activated. One CLS-Hi-Hi sensor input lost RMT control power lost SYSTEM LEVEL FAILURE MODES ANO EFFECTS ANALYSIS SYSTEM 120 VAC POWER UNIT Surry - 1 DRAWING NO. 11448-ESK-6CD2,3 SHEET 5 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS RHRCCW Discharge 109A: VB-I,ckt 16 Excess letdown RHR-CCW unavailable SOVs energized to open valves Valves (TV-CC- trip flow high tern- for unit cooldown. 109A, B) 109B: VR-II, ckt perature CLS signal de-energizes SOV 21 trip on Hi-Hi containment pressure Primary shield coolers 1ow pressure RCPCCW Discharge 105A: VB-III, ckt Increasing RCPRCP must be tripped within SOVs energized to open valves Valves (TV-CC- 18 trip bearing tem- 2 minutes of CCW loss or 105A, B, C) 105B: VB-II, ckt perature before bearing tempera- CLS signal de-energizes SOV on 20 trip tures reach 200°F Hi-Hi containment pressure 105C: VB-IV, ckt 18 trip Reactor must be tripped RCPCCW Thermal VB-I, ckt 13 trip RCP fl ow No effect SOV from VB-I energized to open Barrier Discharge increasing valve Valve (TV-CC-107) temperature CLS signal de-energizes SOV on Hi-Hi containment pressure. Cont. Air Recirc. llOA: VB-III, ckt Reactor con- None unless amount of S0Vs energized to open valves Coolers CCW Dis- 18 trip tainment air time required to charge Valves 1108: VB-II, ckt reci rcul ati on restore CCW flow CLS signal de-energizes SOV on (TV-CC-llOA, B, C) 20 trip coolers high exceeds time allowed for Hi-Hi containment pressure llOC: VB-IV, ckt temperature operation without cont. 16 trip air recirc. cooling, (Tech. Specs.) SYSTEM 120 VAC POWER DRAWING NO. 11448-ESK-6EJ,6CD6 SYSTEM LEVEL FAIL MODES AND EFFECTS ANALYSIS UNIT Surry - 1 SHEET 6 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD ( s) FAILURE EFFECT ON UNIT REMARKS FW Recirc. Valves VB-I, ckt 16 trip Decrease in No effect. AFW required (FCV-FW-150A,B) SOVs energized to close HJ flow to to feed SGs valves reactor FW Bypass Valves VB-III, ckt 23 Bypass fl ow No effect. Feed SGs via (HCV-FW-155A,B,C) trip and Either SOV energized to indication bypass valves close associated valve (2 SOVs per valve) VB-IV, ckt 26 trip Containment In- 101A: VB-I, ckt CIA low No effect. Open alternate SOVs energized to open strument Ai r 27 trip pressure suction valve (SOV-IA- valves Suction Valves 1-lB: VB-IV, ckt indication 103) or cross-connect (TV-IA-lOlA, B) 21 trip with IA system Containment In- 1-DP-IAC, ckt 1 No effect. Alternate strument Air Alt. trip SOV energized to open Suction Valve suction valve normally valve closed (SOV-IA-103) Containment In- VB-I, ckt 17 CIA header No effect. Cross-connect SOV energized to open strument Air trip low pressure with IA system valve Discharge Valve al arm (TV-IA-100) SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM 120 VAC POWER UNIT Surry - 1 DRAWING NO. 11448-ESK-6CD3,9;6EJ SHEET 7 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS MS Condenser VB-I, ckt 13 Valve closure No effect. Loss of main SOV energized to open Drain Valve trip stream line drain flow valve (TV-MS-109) SG Blowoff Tank VB-I, ckt 13 Valve closure No effect. Slowdown SOV energized to open Drain Valve trip line manual valves nor- valve (TV-MS-110) mally closed Cond. Air Eject VB-IV, ckt 13 No effect. Vent valve SOV energized to open Vent Valve trip normally closed valve (TV-SV-102A) Condensate VB-I, ckt 16 No effect. Valve normally SOV energized to close Reci re. Valve trip open, unable to regulate valve (FCV-CN-107) recirc. flow to condenser Steam Generator lOOA,B,C: unident Slowdown lOOA,B,C: SOVs energized Blowdown Valves vital bus valve closure Loss of SG blowdown to open valves (SOV-BD-lOOA,B,C; 102A,B,C: VB-I 102A,B,C: S0Vs energized SOV-BD-102A,B,C; unident. ckt to close valves TV-BD-lOOA,C,E; lOOA,C,E: VB-I, Trip valves energized to TV-BD-lOOB,D,F) ckt 15 trip open lOOB,D,F: VB-II, ckt 21 trip SYSTEM LEVEL FAI MODES AND EFFECTS ANALYSIS SYSTEM 120 VAC POWER UNIT Surry - 1 \DRAWING NO. 11448-ESK-6CD1,5;6F'F SHEET 8 of 11 LOAD/ FAILURE/LOSS OF* DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Letdown Line VB-I I, \ckt 21 Loss of normal No effect SOV energized to open* Trip Valve trip letdown flow valve (TV-1204) RWST Cross- 102Al:VB-I, None No effect Cross-tie valves fail open tie Valves ckt 29 trip Cross-tie valves normally on loss of IA or loss of (SOV-SI-102Al,A2; 102Bl: VB-II, closed. associated VB SOV-SI-102Bl,B2) ckt 30 trip 102A2,B2:U-2 VB N2 Supply Valve VB-IV, ckt 17 SOV energized to open valve (TV-SI-100) trip t::J ~ I N2 Relief Trip 101A: VB-I, ckt Valve closure No effect. SOVs energized to open valves -.:i Valves 15 trip Control/relief valves (TV-SI-lOlA,B) 1018: VB-I I, ckt HCV-1898 and HCV-1936 21 trip normally closed. SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYST~ 120 VAC POWER UNIT Surry - 1 DRAWING NO. 11448-ESK-6FB,6KD,J SHEET 9 of 11 LOAD/ FAILURE/LOSS OF . DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Control & Relay 4A,C: VB-II, ckt Increased No effect One chiller can provide Room AC Chi 11 ers 25 trip control room Ventilation system is sufficient cooling (VS-E-4A,B,C) 48: VB-IV, ckt temperature sized to limit tempera-29 trip tures to 120°F in Aux. Ventil. machinery spaces Control Panel Cable Vault & MCC Aux. Ventil. No effect Damper energized to close Room Ventilation Control Panel Supply Damper (VS-HV-2) flux. Building I07A,B: VB-I, Aux. Ventil. No effect 107A,B: SOVs energize to t:1 I Chg. PP Cubicle ckt 19 and VB-II, Control Panel Loss of one circuit, to open dampers ~ 00 Exhaust Dampers ckt 33 trip dampers on other circuit 108, 116 SOVs energize to (SOV-VS-107A,B; 108: VB-I I, ckt remain open to provide close dampers 116A, 108) 33 trip sufficient ventilation 116: VB-I, ckt 19 trip Charging Pump 101A,C: VB-I, ckt Aux. Vent il
  • No effect Dampers energized to close Cubicle Exhaust 19 trip Control Panel Dampers 1018: VB-II, ckt (MOD-VS-lOlA,B,C) 33 trip
SYSTEM LEVEL FAIL~ODES AND EFFECTS ANALYSIS SYSTEM 120 VAC POWER UNIT Surry - 1 DRAWING NO. 11448-ESK-6KH,L,S SHEET 10 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Safeguards Area lOOA,llOA: VB-I, Aux. Ventil. No effect. M.O. Dampers energized to Exhaust Dampers ckt 19 trip Control Panel Loss of one circuit, AOD open, SOVs energized to (MOD-VS-lOOA,B; 1008,1108: VB-II, fails open and MOD on close A.O. dampers SOV-VS-llOA,B) ckt 33 trip other circuit remains open to provide sufficient ventilation. Aux. Building VB-III, ckt 21 Aux. Ventil. No effect. One fan provides sufficient Supply Fans trip and VB-IV, Control Panel Loss of one circuit, venti 1ati on (VS-HV-lA,B) ckt 21 trip alternate fan still operable Ventilation 112A: VB-I, ckt Aux. Ventil. No effect. SOVs energize to open dampers Vent Stack 19 trip Control Panel Utilize bypass flow Isolation 1128: VB-II, ckt path(s), as when ven-Dampers 33 trip tilation vent high (AOD-VS-112A, B) radiation detected Miscellaneous Misc. circuit(s) Aux. Ventil. No effect. Redundancy for fans, dampers, Ventilation System trip Control Panel Loss of decon or fuel and bypasses Dampers, Fans & building ventilation - Bypasses possible contamination SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS DRAWING NO. _______ SYSTEM------,-~,.,,.....~,--,,..,,,...,---,-- 120 VAC POWER 11448-ESK-6EF,G,H .._,_;___ UNIT Surry - 1 SHEET 11 of 11 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(s) FAILURE EFFECT ON UNIT REMARKS Miscellaneous unidentified VB Valve closure No effect. Operator should secure pumps Boron Recovery circuit(s) trip Comply with requirements and tank discharges. Redun-System Valves for operation with por- dancy of some valves tions of boron recovery inoperable Miscellaneous VB-II, ckt 29 Valve closure No effect. SOVs energize valves to open Gaseous Waste trip or VB-III, Comply with requirements System Valves ckt 30 trip for operation without or with reduced capacity of gaseous waste system Miscellaneous VB-I, ckt 15 or Valve closure No effect. Valves energized to open 0 Sample Sy§tem trip or VB-IV, Comply with requirements I .i::- 0 Trip Valves ckt 17 ot 18 for operation without trip sample systems SYSTEM DRAWING NO. 480 VAC POWER (lHl-1) 11448-FE-IL SYSTEM LEVEL FAI~MODES AND EFFECTS ANALYSIS UNIT SHEET Surry-1 1 of 1 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(S) FAILURE EFFECT ON UNIT REMARKS All MOVs No immediate effect MOVs fail as is Service Water Pump Loss of A train B train is normally lOA ( 1-SW-P-lOA) charging pump cooling available, or can cross-(1-SW-P-lOA) connect charging pump from Unit 2. Component Cooling Loss of A train B train is normally Pump 2A (l-CC-P-2A) component cooling to avai*l able to charging pump Containment Vacuum No immediate effect Pump (1-CV-P-lA) Gradual containment pressure increase may lead to Tech Spec violation AC Chiller Pump 2A See Aux. Vent. FMEA (l-VS-P-2A) Emergency Makeup None Feedwater Pump (1-FW-P-lA) SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM 480 VAC POWER (IH) UNIT Surry-I DRAWING NO. II448-FE-IF SHEET I of I LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(S) FAILURE EFFECT ON UNIT REMARKS Pressurizer Heater Reduced pressure heater B train of heaters is Bank (Backup Group) capacity is normally available Low Head Safety None LPI pumps in standby Injection Pump lA during normal operation (I-SI-P-IA) Inside Spray Recirc None ISR pumps in standby Pump lA (1-RS-P-IA) during normal operation Outside Spray Recirc None OSR pumps in standby Pump IA (I-RS-P-2A) during normal operation Containment Recirc None Fan lA (I-VS-F-lA) Containment Spray None CS pumps in standby during Pump (1-CS-P-lA) normal operation SYSTEM LEVEL FAIL DES AND EFFECTS ANALYSIS SYSTEM 4160 VAC POWER (H Bus) UNIT Surry-1 DRAWING NO. 1148-FE-10 SHEET 1 of 1 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(S) FAILURE EFFECT ON UNIT REMARKS Auxiliary Feedwater None, if unit at power AFW pump in standby Pump (1-FW-P-3A) during manual operation Charging Pump Loss of normal charging B pump is normally (1-CH-P-lA) and seal injection flow available and will provide charging flow. If B pump inoperable, C pump required to be operable. 480V Bus Feeders Loss 480V buses See 480V Bus FMEA Component Cooling Loss of one CCW pump B pump is normally Pump lA (1-CC-P-lA) available and will provide CCW fl ow. RHR Pump 1A None, if unit at power RHR pump in standby during (1-RH-P-lA) normal operation SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM 4160 VAC POWER (H Bus) UNIT Surry-1 DRAWING NO. 1148-FE-lD SHEET 1 of 1 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(S) FAILURE EFFECT ON UNIT REMARKS Auxiliary Feedwater None, if unit at power AFW pump in standby Pump (1-FW-P-3A) during manual operation Charging Pump Loss of normal charging B pump is normally (1-CH-P-lA) and seal injection flow available and will provide charging flow. If B pump inoperable, C pump required to be operable. 480V Bus Feeders Loss 480V buses See 480V Bus FMEA Component Cooling Loss of one CCW pump B pump is normally Pump lA (1-CC-P-lA) available and will provide CCW flow. RHR Pump 1A None, if unit at power RHR pump in standby during (1-RH-P-lA) normal operation SYSTEM LEVEL FAI[ MODES AND EFFECTS ANALYSIS SYSTEM SW UNIT Surry-1 DRAWING NO. 11448-FM-21A-D SHEET 1 of 4 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD FAILURE EFFECT ON UNIT REMARKS Entire SW System Monumental Chi 11 ed water Low canal level causes: (Al 1 Loads) biofouling unit high temp - turbine trip - or - - reactor trip Dam Failure Condenser - condenser isol - or - vacuum priming (Trips related to loss LOSP and failure seal reci re of circ water not loss to isolate multiple pump 1ow fl ow of S~J) condensers Lo canal 1evel Traveling screens must block SW pump discharge 80% to fail SW low pressure Rupture of 42" SW line - Component cooling low probability pumps suction high temperature Dam failure not included in internal events analysis Bearing cooling water HXs outlet high temperature , I SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM SW UNIT Surry-1 DRAWING NO. 11448-FM-21A SHEET 2 of 4 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(S) FAILURE EFFECT ON UNIT REMARKS Component Cooling Pipe rupture Component cooling If RCP motor bearings Valve plug addressed in Water Heat - or - pumps suction (CCW load) reach 200°F, event W fault tree Exchangers Manual valve plug high temperature stop RCP and trip reactor (1-CC-E-lA, lC) - or - Local pipe rupture or valve plug (St and by: 1B, 1D) MOVs SW-102A&B - align standhy CCWHX and i sol transfer shut affected HX Both MOVs must close (or CCF) to fail load Unit 1 Bearing Pipe rupture Bearing cooling Turbine plant equipment Cooling Water - or - water HX outlet designed for max CW temp Heat Exchangers Manual valve plug high temperature of l05°F (1-BC-E-lA,lC) - or - (Standby: 1B) MOVs SW-101A&B IA compressor jacket transfer shut may be cooled by fire protection well water Rupture or plug: isol affected HX - align standby HX Both MOVs must close (or CCF) to fail load Unit 1 Reci re Pipe rupture (refer to loss of Loss of recirc spray Addressed in ISR and OSR Spray Heat - or - all SW) cooling fault trees - events Fl and F2 Exchangers Check valve(s) fail (1-RS-E-lA,lB, to transfer Recirc spray HXs normally lC ,lD) - or - isolated MOVs SW-103A,B,C,D all fail to open SYSTEM LEVEL FA~HODES AND EFFECTS ANALYSIS SYSTEM SW UNIT Surry-1 DRAWING NO. 11448-FM-218 SHEET 3 of 4 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(S) FAILURE EFFECT ON UNIT REMARKS Charging Pump Pipe rupture Charging pump Loss of charging pump Addressed in CPC fault Intermediate - or - bearing increasing seal cooling, impacts tree Seal Cooler Manual valve/ temperature pump operation for seal (1-SW-E-18) strainer plug injection flow and SI Rupture - isol affected (Standby: lA) (1-DS-S-28, flow cooler and align standby 1-VS-S-lA) - or - Plugged valve/strainer - Check valve align standby loop or transfer shut X connect from Unit 2 - or - Charging pump Pump fails/check valve d I SW pumps fail closed - start standby pump ""'-~ (1-SW-P-lOA, B) Charging Pump (refer to above) see above see above see above Lube Oil Coolers - or - (1-CH-E-5A, 58, Coolers plugged Plugged cooler - isolate 5C) (l-CH-E-5A,58,5C) affected cooler and stop - or - affected pump TCVs SW-108A,B,C transfer shut SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM SW UNIT Surry-I DRAWING NO. 11448-FM-21C SHEET 4 of 4 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(S) FAILURE EFFECT ON UNIT REMARKS Unit 1 Chiller Pipe rupture Chilled water unit No effect unless amount Strainer plug - blowdown Condenser - or - high temperature of time required to or rotate (1-CD-REF-lA) Check valve restore exceeds the transfer shut SW pumps discharge allowed for operation Pump fails - start standby - or - low pressure without chilled water Manual Valve/ unit, (Tech Specs) Loss of SW - shutdown Strainer plug chilled water unit (l-CW-S-4) - or - SW pumps fail (1-SW-P-4A, 48) - or - TCV-SW-107A Transfers shut Control & Relay Pipe rupture High room Room AC Chill er - or - temperatures Condensers Manual valve/ "{1-VS-E-4A, 48, strainer plug 4C) (l-VS-S-lA,18) - or - Pumps fail (l-VS-P-lA,18,lC) - or - PCVs SW-lOOA,B,C Transfer shut SYSTEM Auxiliary Ventilation SYSTEM LEVEL FAIL~DES AND EFFECTS ANALYSIS UNIT - -Surry-1 DRAWING NO. SHE ET 1 of 5 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(S) FAILURE EFFECT ON UNIT REMARKS Entire System Loss of all AC Auxiliary ventila- Possible contamination. One fan can provide 70% capacity ( a11 vent il at ion ticn control panel No effect on unit opera- exhaust and a step flow reduction 1oads) (VNTX) & annuncia- tion capability tor Parallel arrangement of safety-related filter system provides an effective standby filter Safety-related fans draw air through ECCS equipment areas to safety-related filters Loss of SW No effect. Degraded fil-ter performance and Fan inlet dampers fail open on reduced exhaust flow loss of compressed air rate Exhaust bypasses allow for selective filtration of any exhaust system. Other exhaust systems have dampers in series to provide redundant closure after a LOCA SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM Auxiliqry Ventilation UNIT Surry-1 DRAWING NO. ----------- SHEET 2 of 5 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(S) FAILURE EFFECT ON UNIT REMARKS Control & Relay Failure of both .air Increased control No effect. Ventilation Each AC system consists of 1 Room Area conditioning systems room temperature systems sized to limit air handling unit for each (1 FTR and 1 FTS) temperatures to 100°F space (2 for control room & -or- Auxiliary Venti- in occupied spaces and 1 for relay room) Failure of all 3 lation Control 120°F in normally un-refrigeration Panel (VNTX) occupied machinery One refrigeration chiller can chillers (or CCF) & Annunciator spaces, assuming heat- support both AC systems - pro- -or- producing equipment is viding redundant chilled water Loss of SW flow to operating supplies all 3 chiller con-densers (1-VS-E- SW flow provided by 2 independent 4A,4B ,4C) sources (see SWFMEA) tJ -or-I 01 Failure of all 3 Normally, exhaust & makeup air is 0 condenser SW pumps provided by other service build-(l-VS-P-lA,18,lC) ing ventilation systems -or-Failure of normal During emergency conditions, the exhaust & makeup control and relay room area is and sealed. A 1-hour supply of bot-Failure of bottled tled air provides breathing air air supply and pressurization; upon and depletion of bottled air, Failure of emergency emergency ventilators supply venti 1ators breathing air and pressurization indefinitely. AC systems con-tinue to operate normally (powered from emergency buses) SYSTEM DRAWING NO. Auxiliary Ventilation SYSTEM LEVEL FAI~ MODES AND EFFECTS ANALYSIS UNIT Surry-I SHEET --=-3-o_,fc---::--5~~ LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(S) FAILURE EFFECT ON UNIT REMARKS Auxiliary Both air handling Auxiliary Venti-Building Possible contamination. The supply fans and one exhaust units fail lation Control No effect on unit opera- -or- fan for the central area and Panel (VNTX) & tion general area are tripped on Central area and potentially con- ventilation vent hi-radiation taminated general from unidentified source area exhaust fans fail If general area exhaust stream -or- is contaminated, it is manually Both exhaust fans diverted through the non-safety-to ventilation vent related filter subsyste~ by fail stopping the ventilation vent -or- exhaust fans, realigning dampers, Charging pump cubi- and starting high-head NSR fan cle(s) exhaust darnper(s) fail to open when pump(s) operating -or-Non-safety-rel atect Possible contamination. high-head fans fail No effect on unit operation and General area exhaust stream contaminated -or-Heating steam system Auxiliary Building Low Auxiliary Building failure decreasing tempera- temperatures tures SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS SYSTEM Auxiliary Ventilation UNIT Surry-1 DRAWING NO. SHEET 4 of 5 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(S) FAILURE EFFECT ON UNIT REMARKS Safeguards Both exhaust fans Auxiliary Ventila- Possible contamination Exhaust systems automatically Area for potentially tion Control Panel or area high tempera- bypassed on CLCS signal to contaminated areas (VNTX) & Annuncja- tures (may exceed 120°F ensure any radioactive leakage fail tor in pump cubicles) is removed -or-Intake supply sys- Safeguards areas Redundant intake systems, ex-tems fail increasing tempera- haust fans and exhaust stream -or- tures dampers provide flow paths to Both exhaust stream filters following a LOCAdampers fail closed -or-Heating steam sys- Safeguards areas tem fails decreasing temperatures Service Al 1 exhaust fans Auxiliary Ventila- Possible contamination Ventilation provided for Building for potentially tion Control Panel No effect on unit radioactive contamination contaminated areas (VNTX) & Annuncia- operation removal fai 1 tor SYSTEM Auxiliary Ventilation SYSTEM LEVEL FAIL~MODES AND EFFECTS ANALYSIS UNIT ~S_u_r_r_y-_l~- DRAWING NO. SHEET 5 of 5 LOAD/ FAILURE/LOSS OF DETECTION COMPONENT LOAD CAUSES METHOD(S) FAILURE EFFECT ON UNIT REMARKS Decontamination Supply fan fails Auxiliary Ventila- Possible contamination Normally venti 1 ated at 15 Building -or- tion Control Panel No effect on unit air changes per hour Both exhaust fans (VNTX) & Annuncia- operations fail tor Dampers designed to provide -or- redundant closure following An exhaust duct a LOCAdamper fails closed -or-Heating steam Decon building system failure decreasing tem-tj peratures I <:.n <:,:) Fuel Building Spent fuel pit Auxiliary Ventila- Possible contamination, During refuel, exhaust is con-supply fan f ai 1s tion Control Panel buildup of condensation, tinuously bypassed through -or- (VNTX) & Annun- or spent-fuel pool cloud- filters to ensure radioactivity Both exhaust fans ciator  ; ng removal f ai 1 -or-An exhaust duct Dampers designed to provide damper fails redundant closure following a closed LOCA -or-Heating steam Fuel building system failure decreasing tem-peratures D.2 Assessment of Frequency of Small Breaks, Based on Hist0rical Experience The original NUREG/CR-4550 analysis used a frequency of 2E-2 for very small breaks. One of the industry comments received during the review cycle indicated that if the value of 2E-2 was accurate, there should have been approximately 20 small breaks in the history of nuclear power. This is based on an accumulated U.S. LWR experience of approximately 350 reactor years for BWRs and 600 reactor years for PWRs. This number of failures would be visible and thus provide an accurate historical basis for calculation of small break frequency. As a results of these comments, a survey of historical experience was done to assess the frequency of small breaks. This survey resulted in the assessment of a frequency of 1.3E-2 per year for this event. D.2.1 Scope of Search Very small LOCA is defined as a loss of coolant inventory which is large enough to cause a safety injection signal but not large enough to be put in the s2 event category. Very small LOCAs could result from the following: *
  • Pipe Breaks
  • Component Failures A search of operating experience was made for each of these type of events. The results are summarized in Table D.2-1 and discussed individually ih the following sections.
D.2.2 Reactor Coolant Pump Seal Failures This event category involves LOCAs due to random interna! failures of the seal. Seal failures due to loss of cooling are not included in this category. NUREG/CR-4400 (Reference D.2-1) provides a survey of seal failure events from 1974 to January 1984. Five of these events were considered applicable to this effort. Plant Date Leakrate Total Leakage Oconee 2 Tfi4 90 gpm 50,000 gallons H.B. Robinson 5/75 500 gpm 200,000 gallons Indian Point 2 7/77 75 gpm 90,000 gallons Salem 1 10/78 15,000 gallons ANO 1 5/80 400 gpm 60,000 gallons These five events were applicable due to leak size and total leakage as compared with the other events. A sixth event, at Connecticut Yankee in August 1977, resulted in total leakage of 4020 gallons at an unspecified leak rate. This event was not included as an applicable seal failure because of the limited total leakage, compared with the other events. The survey in NUREG/CR-4400 covers operational experience up to January 1984. An LER search was performed for all PWR seal LOCA events from January 1984 to January 1988. No events were found. PWR operating experience through January 1984 was calculated to be 418 reactor years. Total PWR experience through January 1988 was calculated to be 610 reactor years. At first it would seem appropriate to divide 5 failures by 610 years, for a point estimate of 8.2E-3 per year. However, comparison of the dates when the five large seal failures occurred with the dates of all the non-serious seal failures listed in NUREG/CR-4400, it D-54
  • D.2-1

SUMMARY

OF SMALL BREAK EXPERIENCE

  • Number of Point Break LER Survey Number of Applicable Number of Estimate Type or Reference Occurrences Occurrences Reactor Years Frequency Comments RCP Seal LOCA Ref. D.2-1 Many 5 418 Frequency represents the mean of a Bayesian LER Survey 0 0 192 .0039 update of pre 1 81 data 1/84 - 1/88 with post 1 81 data Pipe Break Ref. D.2-2 19 8 741 Combined PWR and BWR experience. Assumed 20%

LER Survey 2 0 216 .0017 of PWR piping was LOCA t:1 1/85 - 1/88 sensitive.

I

<:ll

<:ll Component Leakage Ref. D.2-3 20 14 370 .0076 PWR experience only.

( PWR Cat. 5) Assumed 20% LOCA sensitive piping

.0132

is clear that seal problems have significantly decreased over the years. The experience was therefore correlated, based on the hypothesis that seal quality has improved over the years, and that seal failures were predominately an early-industry problem. The data was split into two time periods, and the performance of the first time period was combined with the performance of the second time period through Bayesian update, as summarized below:

Time Period Seal Failures Reactor Years 1/74 - 1/81 5 281 1/81 - 1/88 0 329 The prior used 5 failures in 281 years with a range factor of 5. The resultant mean frequency, after updating the data was 3.9E-3, error factor 2.7.

D.2.3 Pipe Breaks NUREG/CR-4407 was reviewed for occurrences of pipe break events. Pipe breaks are different from component failures as described in the next section. This category represents failures in pipes themselves rather than pumps, heat exchangers, valves or thermocouples. NUREG/CR-4407 reports on pipe failures in nuclear grade systems, including steam generator systems, steam, and feedwater systems. The survey shows that through 1985, 19 pipe failures had occurred. An LER search was done to survey experience through 1988. This yielded two additional failure~; a Surry MFW pipe failure and a Farley charging system pipe crack. Of these 21 failures, none have occurred in

  • LOCA sensitive piping connected to the reactor coolant system. The failures have oc-curred in steam genera tor, feedwa ter, steam systems, and non-LOCA sensitive portions of the primary systems. It was therefore necessary to correlate the total number of failures and apportion the frequency to LOCA sensitive piping.

This apportioning was based on the following estimates of pipe lengths in a typical Westinghouse PWR. The values below are based on Table 6 in NUREG/CR-4407.

Pipe Length (ft)

A. Reactor Coolant System 960 B. High Pressure Injection System 2280 C. Residual Heat Removal System 2380 D. Chemical Volume and Control System 6110 E. Main Steam System 4300 F. Main Feedwater System 1000 For purposes of determining the percentage of LOCA sensitive piping, it was considered that 100% of A, 33% of Band C, and 10% of D were LOCA sensitive. This yields an over all ratio of 18% (or approximately 20%) for LOCA sensitive piping.

Of the 19 pipe failures in Reference D.2-2, eight were classified as large (greater than 15 gpm), and occurring during startup or power operation. None were assumed to be large enough to be a larger size LOCA. Of the two additional failures uncovered by the LER search, only the Surry MFW break was categorized as large. However, it is clearly too large to be counted as a very small break. Therefore, there were eight applicable fail-ures in 957 reactor years. Multiplying by the 20% LOCA sP.nsitive ratio results in an

  • estimate of 1.7E-3 for pipe break frequency in LOCA sensitive piping.

D-56

D.2.4 Component Boundary Failures NUREG/CR-3862 was surveyed for component boundary failures. The referenced docu-ment lists 41 categories for PWR transient initiators. PWR category 5 was considered applicable to this evaluation. Category 5 is "leakage in primary system." Category 4, "leakage from control rods" was initially examined, but it wa~ concluded that it was not physically possible to get control rod leakage of sufficient magnitude to require safety injection flow (i.e., definition of a LOCA). NUREG/CR-3862 surveys experience through January 1984, accounting for 418 PWR years. Twenty events are reported in category

5. Of these, 6 were eliminated. Two events were seal LOCAs at AN0-1 and Salem, which have been previously counted in Section D.2.2. Four other events occurred in the first year of reactor operation and were eliminated on that basis. Fourteen events in 370 reactor years (i.e., eliminate first year), times 20% LOCA sensitive piping = 7 .6E-3 per year.

D.2.5 References 0.2-1 Azarm, M.A., Boccio, J.L., !Vitra, S., The Impact of Mechanical and Maintenance Induced Failures of Main Reactor Coolant Pump Seals on Plant Safety, NUREG/CR-4400, Brookhaven National Laboratory, Upton, New York, December 1985.

D.2-2 Wright, R.E., Steverson, J.A., Suroff, W.F ., Pipe Rreak Frequency Estimation for Nuclear Power Plants, NUREG/CR-4407, FG&G Idaho, Inc., May 1987.

D.2-3 Mackowiak, D.P., et al, Develo ment of Initiatin Event Fre uencies for Use in Probabilistic Risk Assessments, NUR EG CR-3862, EG&G Tdaho Inc., May 198.5.

D-57

D.3 Development of the T 1 Initiating Event Frequency and Non-Recovery Probabilities for Offsite AC Power A Bayesian statistical analysis was performed in support of NUR.EG-1150, in order to derive a plant specific frequency for loss of offsite AC power and the probabilities for non-recovery of offsite power by various times. The methodology and supporting data for this analysis is described in detail in Reference D.3-1. This section provides a sum-mary of the methodology, the plant specific data used in the calculation, and the results.

Reference D.3-1 provides a statistical analysis of 63 loss of offsite power events at nuclear plants in 721 calendar years. The 721 calendar years represent 503 operating years of experience. For each of the 63 events, the actual time for recovery of offsite power is known. The 63 events are divided into three categories, based on the cause of power loss. The categories and events are ct 43 plant centered events: caused by faults in the switchyard

  • 7 weather related events: grid failure due to severe weather
  • 13 grid related events: grid failures or instabilities.

The plant centered events were further divided into three categories, based on switchyar_d configuration. These groups are Tl, 12 and 13 as described in NllREG-1032.

The number of events in each category are:

  • 14 events for group 11 8 13 events for group 12 I) 16 events for group 13 A generic distribution for frequency of loss of off site power was generated, based on a two component model. The plant centered component included 43 events in 503 operat-ing years. The grid/weather component included 20 events in 721 calendar years. Each part of the two component model was analyzed using Bayesian methods to generate a plant specific distribution. The two components were combined to form the cumulative distribution for frequency of loss of offsite power at Surry. The Surry specific exper-ience is zero plant centered failures in 12.3 opera ting years and zero grid/weather fail-ures in 15.1 calendar years. The resultant distribution for loss of offsite power frequency is shown in Figure D.3-1. The statistical characteristics are shown in Table D.3-1.

A three component model for probability of non-recovery of AC power was similarly de-veloped. However, it was not possible to include plant specific experience in this model. Rather, a model was developed for each switchyard type. All plants with a par-ticular switchyard type can be represented by the same non-recovery curve. The non-recovery model included grid and weather components applicable to all plants, and a plant centered component representative of the switchyard. Surry has an 13 switchyard configuration. The resultant recovery curve is shown in Figure D.3-2.

D.3.1 Reference Iman, R.L., Hora, S.D., Modelin Time to Recover Loss of Off-Site Power Incidents at Nuclear Power 1988.

D-58

  • DISTRIBUTION OF INITIATING FREQUENCY FOR SURRY 1

u>- 0.8 z

w b

I 0 CJl cc w 0.6 e:::

La...

_J w 0.4 e:::

~

u 0.2 0--f'"---.-------....-----,.---,..---....---.----,

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 FREQUENCY OF INITIATING EVENT Figure D.3-1

Table D.3-1 DISTRIBUTION OF INITIATING EVENT FREQUENCY FOR SURRY 9:56 TUESDAY, JANUARY 12, 1988 UNIVARIATE VARIABLE=FREO MOMENTS N 1000 SUM WGTS 1000 MEAN 0.0768503 SUM 76.B5e3 STD D~V 0.0389527 VARIANCE 0.00151732 SKEWNESS 0.728448 KURTOSIS 1.87615 USS 7.42177 css 1 . 5158 CV 50.6865 STD MEAN 0.00123179 T:MEAN=0 62.3889 PROB>ITI 0.0001 SGN RANK 250250 PROB>ISI 0.0001 NUM 0 1000 OUANTILES(DEF=4) EXTREMES 100,:; MAX 0.284425 99,; 0.198115 LOWEST HIGHEST 75~ 03 0_098.3:122 95~ 0. 140835 .000026496" *0*:226643.

~e~ t.'ED 0.0766992 90,; 0.120537 .00022?286 0.::?6011 2!;.~ 01 0.0514392 10:r. 0.0270755 .000459511 0.2.36C11 c~ MIN CCC02E496 5,:; 0.0156033 . 0 e , :. 0 1 0 3 9 0.2427i

, re 0.00202154 .00081148 0.2E4425 RANGE 0.284399 03-01 0.046873 MODE 0.236011 D-60

  • RECOVERY CURVE FOR SURRY 1

0.8 t:)

e /\I 0.6 0.2 o _L_ ___,.._-=:::==:~;;;;;;;;;~~~

0 2 4 6 8 10 TIME TO RECOVER LOSP Figure D.3-2

D.4 Core Uncovery Time Versus Break Size Core uncovery times versus break size for sequences with no high pressure makeup were developec! based on a survey of existing analyses on Surry, Sequoyah and generic Westinghouse plants. P.ased on the results of the survey, it was decided that modeling assumptions and computer code differences produced greater variations in results than plant-to-plant variability could produce. All analysis on Westinghouse plants was therefore considered applicable to this generic evaluation. The applicable data (i.e.,

small break sequences) listed in Table D.4-1 plus results from in NUREG-1032, '"'CAP 9763, and Westinghouse seat LOC' A analysis have formed the basis for the development of the core uncovery curve.

The times to core uncovery and core damage of the individual analyses were plotted versus break size. The distinction between core uncovery and core damage was retained in the correlation of data. In addition, some analyses{eport break size and some report flow rate. A mass flux constant of 11,000 lb/s-ft

  • was used to put the data on a consistent hasis. This value is taken from the ~i'oody critical flow chart, saturatec! 1J. ater 1

at 2200 psi. The plot of core uncovery time versus break size is shown in Figure D.4-1.

A curve was constructec' for core uncovery, and another curve was constructed for core melt. The uncovery curve, not the core melt curve, became the basis for determining recovery times in the recovery analysis. The next step was to develop a curve which included the effect of operator induced depressurization of the primary system. The data points in Figure D.4-1 represent analysis with no operator depressurization .

The effect of operator induced depressurization on the extension of core uncovery times depends upon when depressurization begins, how fast it occurs, and how low the RCS pressure is reduced. These parameters are sequence and reactor specific. In order to provide a generic estimate, the depressurization curve was based on results from a Westinghouse seal L0CA analysis (Ref. n.4-3), which developed uncovery times with and without depressurization. The percent increase in uncovery time for specific break size from the Westinghouse analysis was used to develop the uncovery curve shown in Figure D.4-2.

D.4.1 References D.4-1 WCAP-9763 - Inadequate Core Cooling Studies of Scenarios with Feedwater Available, Using the J\TOTRUMP Com~uter Code, Westinghouse Electric Corp.,

Pittsburgh, Pennsylvania, \\Tovember I 80.

D.4-2 Baranowsky, P., Evaluation of Station 'Rlackout Accidents at Nuclear Power Plants, NUR EG-1032, U.S. Nuclear Regulatory Commission, May 1985.

D.4-3 Presentation to NUREG-1150 Expert Elicitation !Veeting by 1\/!. Hitchler, Westinghouse Electric Corporation, November 1987.

D-62

Table D.4-1 Times from Start of Accident to Core Uncovery Time to Plant Sequence Uncovery (Min) Source Surry TMLB' 95.5 BMI-2104 Surry S2D 27.8 BMI-2104 Surry V 20.6 BMI-2104 Surry AB (2 Vol.) 9.4 BMI-2104 Surry AB (4 Vol.) 7 .1 BMJ-2104 Surry AG 3081. B~ftl-2139 Surry TMLB' 97.2 BMI-2139 Surry S2D 28.5 BMI-2139 Surry S3B 87.6 BMI-2160 Sequoyah S3HF 272.4 BMI-2139 Sequoyah S3HF 273.7 BMJ-2160

.Sequoyah S3B 236.6 BMI-2139 Sequoyah S3B (delayed) 362. Bl\~J-2160 Sequoyah TMLU-SGTR 104.0 BMI-2139 Sequoyah TBA 517.8 BMI-2139 Seabrook TMLB' (fast) 120. W MAAP Seabrook TMLB' (slow) 420. after FW loss W MAAP Sequoyah S2D 48. ldcor ~,IIAAP Sequoyah S2H 78. ldcor MAAP Sequoyah S2HF 72. ldcor MAAP Sequoyah TMLB' 105. ldcor MAAP Sequoyah T23ML 90. ldcor MAAP Sequoyah TMLB' 97.8 BMJ-2104 Sequoyah S2 HF 163. BMI-210'.J.

Sequoyah TML 97.2 BMJ-2104 D-63

105 9,_ _~.....:....;--;--f-..;-c-'-;-;.;.-c;;'-;*""'--.';-,*.;,,*-+'-,--;--;-~--+-+-;--,*-;cr~'i"':*'rc-ic;-;-+c;;-+~;-+.....:...+'-"~"'-"8-;-"-:-;..c..;c+~-'-".;.-,-Jc..;.-~"'""+-""='-'--,J~c',-'-,-'-.'"'1'--'-'-'-'-'-'--'-I 8-+-'-~+-"-~-+.--c~f-'c~~-:-c:-::-r,;_;:.:;-:.::..+-:;~-;-+-'--!'--'---'-+~-:'--;-+-'-c-:-:-~~'-:'-c-t~~~~:"C""'.j--'--'--'-'-I i,*

7_-t-:c-:--c:::::::J---,::,:-:--;-:::J--::-:::-:-:--:,-:--c-:-:-:-;-"t-:-:::--:-7-:-t:-:-,c:-;-::-+:-:-'c--::',-,-,i-:-:-:-,,--:-:-::-+~c':-':--'-'::i---;--.,:::-,--::-+c-':-:,':::=:':'-t:=:="::"-:-+:c:.:_:.::..;_..:..-;:__;__;_;;__:*--=1*-

5*

1*

TIME  !

(SECONDS) .. !

I

( 3Hr. ) 1_4-<----+----!c+-'-++c++;c--;--,.;.--e1ll:H::;j:;H-,-;c-ct 9-+,;-~*'-::*,;c***=1='-=':'~t==:+/-c'-::-'::='=;-:--J:'!fi!lli:'+/-+/-'l='i'

.. ::-;:__+.'7'.-':':;-;:;--:-J.::::::c=":'-1"~'::'°'-+":~!icEE~

8--1':.;:;._:"_:"'

(2Hr.) 7 (lHr.)

0.5" l" l.S." 2" 2.5" 3" *3.5" BREAK SIZE (INCHES)

Figure D. 4-1. Time to Core Uncovery and Core Melt Variation With LOCA Break Size D-64

(2Hr.)

(lltr.)

0.5" l" 1.5" 2" 2.5" 3" 3.5" BREAK SIZE (INOIBS)

Figure D.4-2. Time to Core Uncovery Variation With LOCA Break Size and Secondary Depressurization D-65

D.5 Integration of Reactor Coolant Pump Seal LOCA Model into Station Blackout Sequences Prediction of reactor coolant pump seal behavior under loss of all seal cooling conditions is an integral part of station blackout model development. Due to the unavailability of seal performance data to this project, the issue of seal performance was resolved through expert elicitation. The process of this elicitation and the results are presented in NUREG/CP-4550, Volume 2, Revision 1. This section provides a discussion of how the elicitation results were used to develop a plant specific model and how this model was integratec! into the event tree analysis and quantification process.

The expert elicitation process resulted in a series of leak rates, probabilities, and times for seal failure. This information became the starting point for seal LOCA model development. Table r:.4-9. from Volume 2, Rev. 1 presents these results. This table is included here as Table n.5-1. lt shows probabilities of RCS leak rates for various times after loss of seal cooling. The leak rates represent total leakage from all three pumps.

The three pumps were not necessarily postulated to fail in the same manner, thus they may have different leak rates. The probabilities for a given leak rate changed with time in a manner that indicates that the leak rates increase with time. The experts generally considered seal behavior to be dynamic with loss of seal integrity increasing with time.

i=:.ach seal stage was modeled individually, and each seal stage was allowed to fail in different modes, thus resulting in different leak rates through that stage. Overall leak rate was dependent on the combination of each stage failure. A series of individual seal LOCA scenarios was therefore possible, each scenario being a distinct combination and progression of seal stage failures.

In order to incorporate this information into the sequence models, it is necessary to calculate a time of initial seal failure and a core uncovery time for each possible failure scenario. Therefore, it is necessary to define a series of individual scenarios which identify the time of seal failure, the initial leak rate, the progression of the leak rate, and the probability of the scenario. The data in Table D.5-1 were used to develop these scenarios.

A total of 20 scenarios were identified and are shown in Table D.5-2. They include the initial leak rate, the time of initial seal failure, any increases in leak rate, the time at which the leak rate increases, and the probability. These 20 scenarios were used to develop point estimate probabilities (i.e., no uncertainty stated) for seal failure and core uncovery. These values were not used in the uncertainty analysis. In order to calculate the probability distributions for seal tOCA sequences, the 20 scenarios were consolidated into eight states. There are seven failure states and one success state (the 63 gpm state is a success state). The eight seal states are summarized below:

Time to Leak Path (gpm) Transfer Probability 750* 1 1/2 .5302 183 - 750 2 1/2 .1270 J 83~~ 2 1/2 .0161 183* 3 1/2 .01(.1 1440* 1 1/2 .0043 183* 1 1/2 .0140 372 - 750 2 1/2 .0062 63* (success) .274

  • Constant leak rate D-66

Table D.5-1 Aggregated RCP Seal LOCA Probabilities - Three Pumps Old 0-Ring*

ff- O-Ring1 Tim* (Rn.)

Leak Reta Tim* (Hrs.)

(gpn) 1.5 2.5 3,5 4.5 5.5 1.5 2.5 3.5 4.5 5.5 83 .3011 ,290 .274 .274(.258)* .2H(.2U) .817 .818 .BU ,812 .1111 103

7. 7p;.,._3_ 71 .'7E-3 7.7E-3 7.7!-3 7. 71!:-3 1113/224 .UII .0370 .0502 .0478(.0840) .0466(,0790) .0138 .OU2 .OlS7 .0173 .019 294 l.9E-3 l.9!-3 1. 9E-3 l.9!-3 1. 9!-3 372 11.5!-3 5.0E-3 4.5!-3 3.7E-3 b 3.3E-3 4.5E-4 5.0!-3 5.3E-3 5.7!-3 11.0!-3 I
0) 425

--:J 1. 9E-3 l.9£-3 l.9E-3 l.9!-3 l.9!-3 518/526/5411 3.5!-4 3.4!-4 3,2!-4 3.2E-4 3.2E-4 .U5 .U5 .U5 .us .145 602/614 ,001 0 0 0 0 4.7!-4 4.7!-4 4.7E-4 4.7!-4 4.7!-4 750 .530 ,11110 .11110 .660 .860 7.7!-3 7.7!-3 7.7E-3 7.7!-3 7.7!-3 1440 4.3!-3 4.3!-3 4.3!-3 4.3!-3 4.3!-3 5.0E-3 5.0E-3 5.0E-3 5.01'!-3 5.0!-3

  • Parenthese1 denote calculation* which change if no depreaaurization la assumed.

Thea* value1 1r1 th* prob1bilitie1 of being at I particular leak rate at a particular time.

Table D.5-2 Surry RCP Seal LOCA Model Paths Time to Leak Path Transfer (Gpm) (Hours) Probability 63* .274 63 - 183 2 1/2 .0161 63 - 183 3 1/2 .0161

  • 183* .0140 183 - 372 2 1/2 .0005 183 - 372 3 1/2 .0005 183 - 750 2 1/2 .1270 183 - 750 3 1/2 .0024 183 - 750 4 1/2 .0024 183-750 5 1/2 .0012 372* .0022 372 - 750 2 1/2 .0040 372-750 3 1/2 .0009 372 - 750 4 1/2 .0009 372 - 750 5 1/2 .0005 530* .0003 602 - 980 2 1/2 .0010 750* .5302 980* .001:;

1440* .0043 Total 1.006

  • Constant Leak Rate D-68

. This probability distribution is interpreted as a representation of the experts collective degrees of belief in the eight states that represent possible outcomes for seal LOCA.

The occurrence of a seal LOCA is therefore treated as a modeling uncertainty with respect to time and size. These states were sampled as either a zero or unity probability in the TEMAC.. uncertainty analysis. The following discussion illustrates how the seal LOCA model was integrated into the station blackout event trees. Two constraining criteria were applied to this task: 1) the event heading for non-recovery of AC power would be separate from the event heading for seal LOCA, and 2) a minimum number of headings for seal failure and non recovery would be used.

The conclusion of the expert panel was that at 90 minutes after loss of all seal cooling, the seal temperatures have increased enough to be at risk of failure. Prior to 90 minutes, there is no risk of seal failure. If AC power is restored before 90 minutes, seal.

failure is averted. After 90 minutes, with no cooling, the seal may fail or may remain intact. It may develop a small leak which increases with time, or may have a constant leak rate. If a seal failure occurs, core uncovery can be averted if AC power is restored in sufficient time, thus enabling restoration of safety injection flow.

The mathematical development of the core damage probability due to seal LOCA is given as a weighted average of the 20 seal states as follows:

Prob. at Prob. Prob. no Prob. Core= risk for

  • SLOCA
  • recovery AC Damage SLOCA occurs prior to core uncovery The probability of being at risk for a seal LOCA is the probability that AC power has not been restored (within 90 minutes after loss of seal cooling). The probability of a seal LOCA is given by the results of the expert elicitation. There are 20 seal LOCA scenarios, each with a characteristic uncovery time and a specific probability. All seal scenarios start at 90 minutes from loss of cooling. Finally, the probability of not recovering is just the probability of non-recovery of AC power prior to the characteristic core uncovery time associated with each seal scenario. Note that in developing the probabilities for this equation, the non-recovery term must be conditional on non-recovery of AC power in the first 90 minutes. The core damage (CD) equation can be written as:

Prob. CD=

where i = seal LOCA scenario index, and t, in this case, equals 90 minutes.

Ai = core uncovery time associated with the ith scenario.

f 51 .(t) = probability of ith seal LOCA scenario.

1 PNRAC(t) = probability of non-recovery of AC power by time t, given loss of power at t = 0 (shown in Figure D.3-2). PNRAC(t) = 1 -

FNRAC(t), where F is the cumulative probability of recovery of AC power.

D-69

CNRAC(t +A) = conditional probability of non-recovery of AC power by time t+ A, given no recovery at time t.

\

PNRAC(t +A) l - FNRAC(t +A)

CNRAc(t + A ) = - - - - - - - = - - - - - - - -

recognizing the form for CNRAc, the equation reduces to:

The values :for fsli' A i, and PNRAc(t + A i) are shown in Table D.5-3. Core uncovery times were calculated for the case with and without secondary depressurization. The core uncovery times were calculated from the data in Appendix D.4.

D-70

  • Time to Time to able D.5-3 Surry RCP Seal LOCA Model 1 Time to Prob. Prob. Time to Time to Prob
  • Prob Leak Path Transfer Prob. CU (Hrs) RAC (Hrs) NRAC co CU (Hrs) RAC (Hrs) NRAC co (Gpm} (Hours) (with secondary depressurization) (without secondary depressurization) 63 C .274 24 24 .05 10.6 10.6 .05 63 - 183 2 1/2 .0161 12.0 13.5 .05 .00081 6.3 7.8 .05 .00081 63 - 183 3 1/2 .0161 12.2 13.7 .05 .00081 6.9 8.4 .05 .oomn 183 C .0140 10.9 12.4 .05 .00070 5.6 7.1 .05 .00070 183 - 372 2 1/2 .0005 5.81 7.3 .05 .00003 3.87 5.4 .077 .00004 183 - 372 3 1/2 .0005 6.32 7.8 .05 .00003 4.38 5.9 .067 .00003 183 - 750 2 1/2 .1270 2.75 4.3 .108 .01372 2.61 4.1 .115 .01461 183 - 750 3 1/2 .0024 3.51 5.0 .086 .00021 3.36 4.9 .088 .0002.1 t:J I

183 - 750 4 1/2 .0024 4.34 5.8 .070 .00017 4.12 5.6 o. 72 .00017

-.:i

...... 183 - 750 5 1/2 .0012 5.17 6.7 .054 .00006 4.88 6.4 .058 .00007 372 C .0022 5.23 6.7 .054 .00012 3.73 5.2 .082 .00018 372 - 750 2 1/2 .0040 2.6 4.1 .115 .00047 2.36 3.9 .123 .00049 372 - 750

.f'-

3 1/2 .0009 3.14 4.6 .096 .00008 2.86 4.4 .104 .00009 372 - 750 4 1/2 .0009 3.79 5.3 .08 .00007 3.36 4.9 .008 .00008 372 - 750 5 1/2 .0005 4.44 5.9 .067 .00003 3.73 5.2 .082 .00004 530 C .0003 3.15 4.7 .093 .00003 2.62 4.1 .115 .00004 602 - 980 2 1/2 .0010 1.88 3.4 .147 .00015 1.80 3.3 .15 .00015 750 C .5302 2.07 3.6 .138 .07317 1.85 3.35 .15 .07953 980 C .0013 1.4 2.9 .18 .00024 1.4 2.9 .18 .00024 1440 C .0043 .97 2.5 .21 .00091 .97 2.5 .21 .00091

    • .....-~ .09920 TotaJ 1.006 .09181

Table D.5-3 (Cont'd)

Surry PCP Seal LOCA Mode)

Notes to Table D.5-3 (1) Abbreviations used:

C Constant Leak Rate CD Core namage CU ('ore Uncovery GP~! Gallon Per r.~inute Hrs Hours

\\TRAC Non-Recovery of AC Power Prob. Probability

RAC Recover AC Power D-72

D.6 Failure Data Development The derivation of selected event failure probabilities is detailed in the following sections. In addition, failure rates calculated from plant specific data are discussed.

Undeveloped events from the fault trees and "black box" events from the event trees are also detailed.

D.6.1 Mission Times An event in a fault tree may have several different unavailability values, depending on the accident scenario in which the fault tree is involved. The length of time that a system is required to run for the different accident initiators is defined as the mission time. The mission times used in the Surry analysis are shown in Table D.6-1. The elec-trical power system components (except diesel generators) were required to remain operating for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, regardless of the accident sequence they were involved in.

Selection of the mission time for Diesel Generators for l.oss of Offsite Power Initiators is discussed in Appendix D.7.

D.6.2 Failure Rates from Plant Specific Data Surry maintenance records for the five years preceeding this study were searched in order to get plant specific failure history on selected components at both Units 1 and 2.

The number of demands and hours of use for these components was estimated. Failure probability distributions for the plant specific data were developed as follows. First, it was assumed that all components could be represented by log normal failure

  • distributions.

The 95% upper bound of the log normal distribution was determined by the 95% Chi-square value associated with the component data. The nurr.!:,er of degrees of freedom used was 2n+2, where n is the number of failures. For example, the AFW motor driven pumps experienced six failures in 960 demands. The 95% Chi-square value for 14 degrees of freedom is 23.68. The 95% upper bound is then 23.68 or 1.2E-2/D.

2x40x24 The mean of the log normal distribution was determined to be the point estimate, or the number of failures divided by the number of demands (or hours). In the AFW motor driven pump example, this is 6 failures divided by 960 demands (40D/c-y x 24c-y/ AFW pump) or 6.E-3/D.

Finally, the median and error factor of the log normal distribution was calculated from the known mean and 95% upper bound. For the AFW motor driven pump example, the 95% upper bound is l.2E-2D and the mean is 6.3E-3/D. The error factor comes out to be 2.2 and the median 5.6E-3/D.

The results of the quantification of the plant specific data are displayed in Table D.6-2.

D.6.3 AFW Actuation AFW-ACT-FA-PMP3A AFW-ACT-FA-PMP3B AFW-ACT-FA-VLVA AF\V-ACT-FA-VLVB

  • The AFW actuation circuitry is much simpler than the RMT /CLS/SIS actuation circui-try. Therefore, it was not considered appropriate to use the generic failure probability of 1.6E-3. A value of 6.0E-4 was estimated for AFW pump and valve actuation D-73.

Table D.6-1 Mission Times (Hours)

Event Tree Heading _Tl.- SBO _Tl. _T,1 _T.2. _Tz _A _Q_1. _Q_J. _Q_.1 ATWS C 1 1 1 1 1/2 1 1 1 1 Dl 24 3 6 24 D2 6 6 6 6 D3 6 6 6 6 D4 1 D5 DMD DMD t:J I

-::i

,j:s. D6 1/2 3 Fl 24 24 24 24 24 24 24 24 24 F2 24 24 24 24 24 24 24 24 24 Hl 18 18 18 18 24 21 24 24 H2 18 18 18 18 18 18 L 24 6 24 24 6 6 24 L2 1 L3 24 K DMD DMD DMD DMD DMD DMD DMD DMD M 6 24 1

Event Tree Heading --1'._1- SBO T s s

--1'.z.- --1'.,1- -.2- --1'.z- JL -.l- -J.- _Q.1- ATWS p 24 24 24 24 24 Pl 6 P2 1

Q DMD DMD DMD DMD DMD DMD R DMD DMD T

DMD t:!

w 24 24 24 24 I

-1

<:)I W2 6 W3 24 z DMD

Table D.6-2 Plant Specific Failure Data 1 Number Components Component Demands Failure of in Cal. Yrs. or Hours Com2onent Mode Failures Po2ulation {C-Y} Per C-Y 95% x2. Mean Median EF AFW Motor FS 6 4 24 40D l.2E-2/D 6. 3E-3/D 5. 6E-3/D 2.2 Driven Pump AFW Turbine FS/FR 2 2 6 30.2D 3.5E-2/D 1.lE-2/D 7. 5E-3/D 4.6 Driven Pump CPC Service Water FS 3 4 20 19.lD 2.0E-2/D 7. 9E-3/D 5.9E-3/D 3.5 Pump t:, FR 15 4 20 4380H 2.6E-4/H 1.7E-4/H 1.6E-4/H 1.6 I

-.::i O'l 6 Charging Pump FS 3 30 23.BD 1.lE-2/D 4. 2E-3/D 3.lE-3/D 3.5 FR 4 6 30 1920H 1.6E-4/H 6.9E-5/H 5.6E-5/H 2.9 Diesel Generator FS 11 3 484D 2.2E-3 1. 7 Inside Spray FS 10 4 20 13D 6. 5E-2/D 3. BE-2/D 3.6E-2 1. 8 Recirc. Pump PORV Block Valve FT 5 4 20 6.lD 8.6E-2 4.lE-2 3.6E-2 2.4 Note 1 C-Y - Calendar Year D - Demand EF - Error Factor FS l

- Fail to Start FR - Fail to Run F! - Failure to Transfer Open H - Hours X - Chi-Square

unavailability, based on the number of relays and switches which must operate. An error factor of five was assigned, to be consistent with SIS actuation.

D.6.4 AFW Condensate Storage Tank AFW-TNK-VF-CST AFW-TNK-VF-U2CST An unavailability of l.OE-6 was selected based on engineering judgment. The Condensate Storage Tank can be filled from multiple water sources. An error factor of three was assigned.

D.6.5 AFW Diversion Flow AF';f-PSF-FC-XCONN Diversion of the AFW frow from of Unit 1 to Unit 2 via the cross connect header was calculated to have an unavailability of 1.5E-4/demand. T'iis was based on spurious transfer of one of two motor operated valves at a failure rate of 3E-6 per hour per valve over 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. The failure rate of 3E-6 was selected based on a survey of other PRA (references D.6-1 through D.6-6) values for the probability of spurious transfer of a MOV. The probabilities ranged from 9.7E-8 at Indian Point to 4.6E-6 for Millstone.

D.6.6 AFW Pumps AFW-l't:1DP-FS-FW3A AFW-lVIDP-FS-FW3B AFW-TDP-FS-FW2 AFW-TDP-FS-U2FW2 AFW Motor Driven Pump Fail to Start.

Sufficient plant specific data was gathered to determine a plant specific failure rate for the AFW pump failure to start on demand. A mean value of 6.3E-3/D was derived based on plant specific data of six failures in 960 demands to start. A 9596 upper bound of l.2E-2 and an error factor of 2.2 were calculated. An error factor of 3 was assigned.

AFW Turbine Driven Pump Fail to Start.

Sufficient plant specific data also existed to calculate the unavaila~ility of the AFW turbine driven pump to start on demand. A mean unavailability of 1.1 E-2 was derived for failure of the AFW turbine driven pump to start on demand. This was hased on two failures in 181 demands. The 95% upper bound was calculated to be 3.5E-2.

An error factor of ten was assigned, consistent with ASEP generic turbine driven pump error factors.

D.6.7 AFW Steambinding AFW-CCF-LK-ST MBD AFW-CCF-LK-2ST lVIB Reference D.6-4 indicates steambinding of AFW pumps may be a generic problem at PWRs. The report was reviewed for its applicability to Surry. Three instances of steambinding in the AFW system occurred at Surry during the years of the survey, 1981 through 1983, inclusive. One occurrence failed tv,ro pumps and the other two occurrences failed one pump. The three events occurred very close in time and all occurred a.t Surry Unit 2. This indicates that it was a plant specific problem, which is consistent with the D-77

Surry troubleshooting that found steam cuts on the valve seats of the AFW check

  • valves. The valves were rebuilt, and other remedial measures were taken, such as shiftly checking of the AFW discharge piping temperature, and removal of piping insulation to aid in condensation of any steam which did appear in the system. No subsequent steambinding has occurred.

Although the reported occurrences of steambinding at Surry appear to be specifically caused by leaking check valves, and the problem appears to have been corrected, AFW failure due to steambinding was included in the AFW system model. The problem appears to be widespread, based on the referenced report and the causes of steambinding at other plants may appear at Surry. In addition, steambinding can potentially be a common cause failure of all AFW pumps and therefore may be dominant even though it has a low proba-bility. For these reasons, it was desired to include steambinding in the AF\I/ model.

Steambinding was conservatively assumed to be a common cause failure of all three AFW pumps in the AFW model.

  • The probability of steambinding was calculated based on generic data in NRC report AE0D/C404.

The data is as follows:

  • 22 occurrences of steambinding of an AFW pump,
  • 3 years of operating experience -- 1981 - 1983,
  • 47 operating units in this 3-year period,
  • 38 estimated AFW demands per unit per year. This includes 8 per year for reactor trip, 30 per year for monthly pump testing. All testing is staggered.

This data results in a point estimate for steambinding of:

22 events ,- 4.lE-3/demand 47 X 3 X 38 The root cause of steambinding is considered to be check valve leakage, which is properly modeled with an hourly failure rate. The value of .0041 demand shows the probability that check valve leakage occurred between pump demands. In order to find an hourly failure rate, it was necessary to calculate a demand period.

Each reactor had averaged 38 AFW demands per year. This is an average demand period of 9.6 days. The hourly check valve failure rate is therefore:

.0041/demand = 1.8E-5/hr 231 hour0.00267 days <br />0.0642 hours <br />3.819444e-4 weeks <br />8.78955e-5 months <br />s/demand Accounting for the shiftly (eight hours) check, the probability of steambinding being undetected during a random AFW demand is:

1.&E-5/hr x 8 hr = l.4E-4/demand This was rounded to lE-4 for use in the fault tree quantification. An error factor of 30 was subjectively chosen. The large error factor reflects' the estimation in this calcula-

  • tional process.

D-78

D.6.8 Beta for Common Cause Failure of CPC Service Water Strainers BETA - STR CPC-CCF-LF-STRlH CPC-CCF-LF-STRAB CPC-CCF-LF-STR6H CPC-CCF-LF-STR3H CPC-CCF-LF-STR24 CPC-CCF-LF-STR18 The components of interest here are the passive strainers in the suction of the dedicated HPI service water system. An LER review of Surry 1 and Surry 2 indicated several instances of degraded flow through the CPC service water strainers 2A and 2B (2A is in the A train and 2B is in the B train). Degraded flow was considered to be insufficient flow through the strainers, or strainer failure. Note that it is conservative to assume that the strainer has failed when flow is only degraded. Between 1980 and 1984, there were nine instances of single strainer failure and three instances of of both strainers (common cause) failing. Each of these failures was due to plugging. In 1984, the strainers were replaced with duplex strainers. Between 1984 and 1987 there were no instances of single train strainer failure, but two instances involving dual train strainer failure (common cause). These two instances were due to air binding of the CPC Service Water pump due to improper venting of the duplex strainer. Because there have been no single train strainer failures while using the duplex strainers, generic data (3E-5hr) was used for the single strainer failure rate.

However, since there have been five instances of common cause failure out of 19 total individual strainer (common cause and random independent) failures, a plant specific Beta factor of 0.263 (5/ 19) was calculated. A maximum entropy distribution was assigned to the Beta with a lower bound of 2.6E-2 and an upper bound at 1.0. This Beta

  • only applies to CPC Service Water (duplex) Strainers 2A and 2B. The lA and lB CPC service water strainers and rota ting basket type strainers with no history of degraded flow.

D.6.9 Service Water Isolation Valve Common Cause Failure BETA-SW SWS-CCF-FT-3ABCD An LER review of Surry 1 and 2 identified one occurrence of common cause failure of the four containment spray heat exchanger service water valves to open when activated from the control room. This occurrence formed the basis for inclusion of common cause failure of these valves in the ISR and OSR fault trees.

The one failure incident occurred in 1983. Since that time, the test interval on the valve has been reduced from yearly to quarterly. Also, the valves have been replaced with an improved design and new material. Although the valves have been replaced, they still operate in the same brackish water environment, which is thought to be the root cause of the 1983 failure. As such, they are considered to be more susceptible to failure than the generic motor operated valve that works in a fresh water environment. Therefore, the Beta factor for common cause failure of these valves was set equal to the 95% upper bound of the generic beta (or .21).

D-79

D.6.10 Charging/HPI/HPR Pumps HPI-MDP-FS-CH 1P., HPI-MDP-FS-CH 1C HPI-MDP-FS-CH2A HPI-MDP-FS-CH2C HPI-MDP-FR-1 A3HR HPI-MDP-FR-1 B3 HR HPI-M. DP-FR-1 C3HR HPI-M DP-FR-1 A6HR HPI-MDP-FR-1B6HR HPI-MDP-FR-1C6HR HPI-MDP-FR-2A6HR HPI-MDP-FR-2C6HR HPI-MDP-FR-:_1C12H HPI-MDP-FR-Cl 2HR HPR-MDP-FR-A18HR HPR-MDP-FR-B18HR HPR-MDP-FR-Cl8HR HPI-MDP-FR-1A24H HPI-MDP-FR-1B24H HPI-MDP-FR-1C24H Plant specific data was also available for the chargin~pumps (the HPI/HPR pumps) failure to start and failure to run. A failure to start. on demand mean probability of 4E-3 was calculated based on three failures in 714 demands.

The 95% upper bound was found to be 1.1 E-2 and the error factor 3.5, using the method described in section D.6.3.

A mean failure rate of 6.9E-5/hr for failure to run was calculated based on four failures in 57,400 hours0.00463 days <br />0.111 hours <br />6.613757e-4 weeks <br />1.522e-4 months <br />. The 95% upper bound was determined to be 1.6E-4/hr, and the error factor 2.9. The error factor was rounded off to 3.0.

D.6.11 CPC Actuation CPC-ICC-F A-CC PBS CPC-ICC-F A-SWPBS CPC-ICC-F A-TCV8B CPC-ICC-F A-TCV8C CPC Pump Actuation (CPC-ICC-FA-CCPBS, CPC-ICC-FA-SWPBS)

The CPC actuation was approximated as a simple circuit with a single switch and a single relay. Both the switch and the relay were assumed to have a median failure probability of 1E-4 with an error factor of 5. Thus, the total unavailability was 3.2E-4.

CPC Containment Isolation Valve Actuation (CPC-ICC-FA-TCV8B, CPC-ICC-FA-TCV8C).

Assumed to be the same as CLS actuation, which is a containment isolation actuation system. An unavailability of 1.6E-3 with an error factor of 5 was assigned using the ASEP generic data.

D.6.12 CPC Service Water Pump CPC-MDP-FS-SW lOA CPC-MDP-FS-S'"' 1OB CPC-MDP-FS-SW20A CPC-MDP-FR-SW lOA CPC-MDP-FR-SW lOB CPC-MDP-FR-SW A3H CPC-MDP-FR-SWB3H CPC-MDP-FR-SWA6H CPC-MDP-FR-SWB6H CPC-MDP-FR-SW A 18 CPC-MDP-FR-SWB18 CPC-MDP-FR-SWA24 CPC-MDP-FR-SWB24 Plant specific data was available for the CPC service water pump failure to start and failure to run. A mean failure to start on demand probability of 7 .9E-3 was calculated based on three failures in 382 demands. The 95% upper bound was calculated to be 2.0E-D-80

2/D, and the error factor 3.5. The procedure for calculating these values is described in Section D.6.3.

A probability of 1.7E-4/hr for failure to run was calculated based on 15 failures in 87,600 hours0.00694 days <br />0.167 hours <br />9.920635e-4 weeks <br />2.283e-4 months <br />. The 95% upper bound was determined to be 2.64E-4/hr, and the error factor J .6.

An error factor of 3 was assigned to failure to run, to be consistent with the generic error factor for motor driven pump fail to run.

D.6.13 Diesel Generator OEP-DGN-FS-DGOl OEP-DGN-FS-DG02 OEP-DGN-FS-DG03 OEP-DGN-FC-DGU3 DGN-FTO Plant specific data was available to calculate the emergency diesel generator failure to start probability. Between 1980 and 1988, there were a total of 19 diesel generator failures to start. Seven of the eleven failures occurred when the plant was in cold shutdown, with the diesel generator not required by Technical Specification. These failures were included even though the diesels were not required administratively because 1) they were honest failures and 2) it was not possible to partition the number of demands into corresponding categories. Post-maintenance testing failures were excluded. This left eleven failures to start in 484 start demands. From this a failure to start probability of 2.2E-2 was derived. The ratio of the 95% Chi square and the 50% Chi square (mean) of eleven failures in 484 demands yields an error approximation of 1.56.

The error factor was then conservatively assigned to be 3*

  • Events DGN-FTO and OEP-DGN-FC-DG3U2 are failures of djesel generator 113 to supply Unit 1, due to being aligned .to Unit 2. The probability of these events was calculated based on faults (failure to start and failure to run) with Unit 2's diesel generator 112. The sum of the unavailabilities for diesel generator 112 failure to start and failure to run equals 3.4E-2. An error factor of 3 was assigned based on the failure to start.

D.6.14 ISR Pump ISR-MDP-FS-RSIA ISR-MDP-FS-RS1B The ISR motor driven pumps had plant specific data from which a failure to start on demand probability was calculated. The ten failures in 260 start demands yielded a mean unavailability of 3.8E-2. An error factor of 1.8 was calculated, as described in Section D.6.3. An error factor of 3 was assigned. The 95% upper bound was determined to be 6.5E-2.

D.6.15 Instrument Air IAS-CCF-LF-INAIR IAS-AOV-LK-CC107 IAS-AOV-OC-CCJ 07 Event IAS-CCF-LF-INAIR, common cause loss of instrument air to air operated valves, was assumed to be caused by total loss of instrument air. Probability was calculated as follows:

(0.01 incidents/yr ) (24 hr) = 2.7E-5 (8760 hr/yr)

D-81

Event IAS-AOV-LK-CC 107, leak in the air supply to containment isolation valve TVCC:.-

  • 107, was calculated by assuming a lE-6/hr leak rate and applying a 24-hour mission time.

The probability of spurious transfer for TVCC-107 (JAS-AOV-OV-CC107) was determined by surveying several other PRAs for the probability of an air operated valve to transfer closed. Values ranged from 1.7E-7 in the Indian Point PPA to 8.0E-7 for the Oconee PR A. The other sources surveyed were Zion, Seabrook, Millstone 3, and JREP (references D.6-1 through D.6.6). A median value of 6E-7 with an error factor of 3 was chosen, resulting in a mean value of 7.5E-7.

0.6.16 Insufficient ('anal Level

!\.'CW-CCF-VF-JNLVL !\ftCW-CCF-VF-SBO An unavailability of l E-9 was assumed for insufficient canal level from non external event sources to supply service water during normal plant operations (N'CW-CCF-VF-INL VL). During station blackout the unavailability of for insufficient canal level is made up of two parts, -5.86E-2 is the HRA contribution and 9E-4 is for failure of one diesel driven pump to start. The 1E-3 failure probability is from the ASEP generic data base.

D.6.17 LPR Motor Operated Valve LPR-MOV-FT-1862A LPR-MOV-FT-l 862B LPR motor operated valves 1862A and 1862B event probabilities include failure to trans-fer and plugging. The flow test interval for these valves is once every five years. Thus

  • 3E-3/D for failure to transfer plus 1/2 OE-7 /hr) (5 yr) (8760 hr/yr) equals 5.2E-3/D. An error factor of 10 was assigned to be consistent with the failure to transfer error factor.

D.6.18 Tv'ain Feedwater Event

!\ft The event tree heading representing failure of Main Feedwater was modeled by failure of two motor driven pumps to run, failure of the feed regulating valves and their bypasses, and operator failure to feed the steam generators with Main Feedwater. A total unavail-ability of 2. 91:.-3 was derived as follows:

!\! = MFW-~JDP-FR-PMPl

  • MFW-MDP-FR-PlVP2 +

MFW-AOV-FT-FRVBYPl

  • MFW-AOV-FT-FRVBP2 +

MFW-CCF-FT-FRVBYP +

Loss of Instrument Air +

l\~FW-XHE-FO-FLOW.

(3E-5/HR)24HR * (3E-5/HR)24Hr +

(1 E-3) * (1 E-3) +

OE-3) 0.1 +

(0.01/YR)(24HR) +

8760 HR/YR 2.7E-3 M= 2. 9E-3 D-82

D.6.19 Time Averaged ]\Ton-Recovery of AC Power

  • NRAC-6HR-AVG NP. AC-24:HR-AVG Time averaged non-recovery of AC' power was calculatect for use in the station blackout cut sets where the AF\V turbine driven pump failed to run. This was done to estimate more accurately the average unavailability of the AF\T' turbine driven pump and A(',

power. Using a half hour after loss of feect flow for steam generator dryout, the time averaged non-recovery value was derived as follows:

Let 6HR-SlJI\LTOTAL = (AFW-TDP-FR)lst HR* (NP.AC 1 HR)+

(AF\lL TDP-FR)2nd HR * (NRA(: 2 HR)+

(AFW-TDP-FP)3rd HR * (NF AC 3 HR)+

(AFW-TDP-FR.)4th HR * (NRAC 4 HR)+

(AF\'"-TDP-FR)5th HR * (NRAC 5 HR) +

(AFW-TDP-FR)6th HR * (NP.AC 6 HR)

= 5.82E-3 Where AFW-TDP-FR = Hourly Failure Rate for the AFW-TDP(5E-3/hr) l'!R AC 1 HR = The probability of non-recovery of AC power by 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> after the LOSP. Taken from Appendix f'-3. The other NRAC factors are determined in a similar manner.

The 61-lR-SUM:-TOT AL = the probability of: AF\Y!-TDP-FR-2P6HR

  • NRAC-6:HR-A VG and since AF\t'-TDP-FR-2P6T--TR is 3.00E-2, J\TRAC-6HR-AVG = 5.82E-3 = l.94E-l 3.00E-2 Similarly, the 24-hour time averaged non-recovery factor can be calculated:

Let 24HR-SUM-T0TAL = (AF'"'-TDP-FR)lHR * (NRAf' 1 HR)+

(AFW-TDP-FR)?.HR * (NRAC 2 PR)+

(AFW-TDP-FR.)24HP * (NR AC 74 HR)

Then, NRAC-24-A VG = 7 .32E-2 = 6.1 E-2 l.2E--l-D.6.20 PPRS Block Valves FPS-~lOV-FC-1535 PPS-~i'OV-FC-1536 PPS-MOV-FT-1535 PPS-MOV-FT-1536 PPS-rv~OV-00-1535 PPS-!VCV-00-1536 The RCS power operated relief valves have historically had occasional leakage requiring the associated block valve to he shut. Based on plant experience from l 982-1987, the probability of an RCS PORV being blocked is estimated at 0.3, and was assigned to

.events PPS-MC'V-FC-1535 and PPS-~.~OV-FC-1536.

n-83

Plant specific data was available for failure of the block valve to transfer. A mean unavailability of 4E-2/demand was derived from five failures in 122 demands. The 95%

upper bound was determined to be 8.6E-2. An error factor of 2.4 was calculated, but an error factor of 3 was conservatively assigned. The identifiPrs PPS-MOV-00-1535 and PPS-MOV-00-1536 for these events mean failure to shut the valves. The PPS-MOV-FT-1535 and PPS-!\,~OV-FT-1536 identifiers mean failure to open the valves.

D.6.21 RCS PORV Failure to Reclose Event Qc Event Qc is failure of the RCS POR V to reshut during an s3 LOCA. During the very small LOCA, the HPI capacity exceeds the LOCA leak rate and demands the PORV if the operator fails to control injection flow. Therefore, Qc = (PROB OPER FAIL TO CONTROL SI) * (PROB PORV NOT BLOCKED) *

.1 0.9 (PROB POR V FAILS TO RECLOSE) * (PROB OPERATOR SHUTS BLOCK VAL VE 3E-2 2.7E-3

+ PROB BLOCK VAL VE FAILS TO CLOSE) *

  • 04

= l.2E-4 The action of the operator to shut the block valve was considered to be a skill-based

  • action, and thus accorded a probability of 2.7E-3, independent of the previous operator error.

D.6.22 Station Blackout Relief Demand Rate SBO-PORV-DMD SBO:...SGSRV-DMD QS-SBO The probability for pressurizer PORV demand during station blackout was assessed to be 1.0, due to the unavailability of the SG ADV. It was necessary to calculate a per valve demand basis. The probability of having at least one PORV unblocked is 1-(0.3) * (0.3) or 0.91. The probability for each PORV opening then is 0.91 = SBO-PORV-DMD.

2 A maximum entropy distribution was assigned with an upper bound of 1.0 and a lower bound of 4.5E-2.

The probability for a SG PORV to be demanded during station blackout was estimated to be one SG POR V demanded every 20 minutes on each steam genera tor for one hour.

Thus, there are 9 demands on a SG PORV.

The probability of a SG PCRV being demanded and failing to reclose (QS-SBO) is the number of demands times the probability for failure to reclose.

QS-SBO = (9 Demands) (3E-2) = 2.7E-1. A maximum entropy distribution was assigned with an upper bound of 1.0 and a lower bound of 2.7E-2.

D-84

n.6.23 SG Tube Rupture Relief Valve Demand Rate SGTP-SGSP V-DMD SGTR-SGADV-DMD SGTR-SGSR V-0ntVD 1 SGTR-SGADV-ODMD SGTR-SGSP V-C"DMD2 The probability of a SG PCRV (ADV) being demanded during a SC tube rupture (SGTR) transient was estimated to be 0.3 if the opera tor depressurized the RCS and controlled safety injection flow (SGTR-SGADV-DMD). If the operator failed to depressurize the RCS, the demand probability was assumed to be 1.0 (SGTR-SGADV-ODMD).

The probability of c1. SG safety relief valve (SRV) being demanded during SGTR with operator depressurization was also estimated to be 0.3 (SGTP-SGSRV-DMD) if the ADV is blocked. If the operator failed to depressurize the RCS and the PORV is not blocked, the demand probability was assumed to be 0.15 (SGTR-SGSRV-ODMD2). If the operator failed to depressurize the RCS and if the PORV is blocked, then it was estimated (con-servatively) that the demand probability for the SG SRV is l.00 (SGTR-SGSRV-ODMDl).

Each was assigned a maximum entropy distribution with an upper bound of 1.0 and a lower bound of one-tenth the failure rate.

D.6.24 SG Relief Block Valves)

~" SS-AOV-FC' -101 A MSS-AOV-FC-101B ~.~ S-AOV-FC-101 C' The steam generator power operated relief valves (MSS-l OJ A, !IJSS-10 JB, MSS-101C) have historically had occasional leakage requiring the associated block valve to be shut.

Based on plant cfa ta from 1984-1987, the probability of a SG POR V being blocked is 0.15. This number is a. point estimate only, a.nd an error factor was not assigned.

D.6.75 SWS Cross Connect Plugging_

SWS-PSF-LF-XCON!\T The probability of Service Water flow being lost through the cross connect is equal to plugging of either one of two motor operated valves, or 2E-4. An error factor of 3 was assigned, to be consistent with generic MOV plugging.

D.6.26 References D.6-1 Oconee PRA, A

D.6-2 7ion Probabilistic Safety Study, Commonwealth Edison Company, 1981.

D.6-3 Seabrook Station Probabilistic Safety Assessment, PLG-0300; Pickard, Lowe and Garrick, Inc., Irvine, C' A. December 1983.

D.6-4 Millstone Unit 3 Probabilistic Safety Study, Northeast Utilities Company, August 1983.

D.6-5 Indian Point Probabilistic Safety Study, Power Authority of the State of New York and Con so Iida ted Edison Co., 1982.

D-85

D.7 Discussion of Mission Time for Diesel Generators for Loss of Offsite Power Initiators D. 7.1 Introduction Modeling for loss of offsite power (LOSP) initiators involves two important parts. One is the AC power status model and the other is the plant response model. The two parts must be integrated to calculate accident sequence frequencies. The nature of LOSP is such that the characteristics of the plant response model determine features of the power status model and vice versa.

D.7.2 Power Status Model The power status model has three states: a) offsite power restored, b) onsite emergency power available, c) and station blackout. In general, if offsite power is restored, the initiator is considered to be successfully terminated and no further analysis is done. The second state, availability of onsite emergency power, is an interim state which can flip to the first state if offsite power is restored, or can lead to station blackout if the diesel generators fail to provide emergency power. Plant response for this state is similar to loss of main feedwater with offsite power available. Station blackout is an undesirable state in that the plant response model has constraining characteristics such that AC power must be restored in a given time or else core damage occurs. The maximum allowable duration of station blackout is determined by the plant response model.

Development of the power status model involves modeling of the diesel generators (DG) fail to start, fail to run, and maintenance outage, as well as recovery of offsite power, onsite non-diesel generator sources of AC power, and recovery of diesel generator failures.

D.7.3 Plant Response Model The plant response model characterizes the response of the plant to reduced power availability. The plant response to the onsite-AC-available state is quite similar to other transients. The plant response to station blackout is very different from any other transient. For typical PWRs, there are four major station blackout types of scenarios with potential for core damage. These are a) stuck open PORVs, b) unavailability of auxiliary feedwater, c) RCP seal LOCA, and d) battery depletion. Each scenario has two important timing considerations; the time at which the critical failure occurs, and the duration for which the failure can continue unmitigated without resulting in core uncovery. Typical times for PWRs, for station blackouts occurring at the time of LOSP, are shown below:

Time Critical Time to Core Uncovery Failure Incurred from Failure Occurrence PORV Open 5m 1 1/2 hr AFW Fail 5m 1 hr RCP Seal LOCA 1 1/2 hr 2 hr (approx)

Battery Depletion 4 hr 3 hr These response times are only applicable for station blackouts occurring at the time of the LOSP (t = 0). If a LOSP originally went into the DG available state, and then slipped into the blackout state at 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />, the plant response model would be quite different.

After six hours on diesel generators, the plant may be cooled down, depressurized, or D-86

possibly in shutdown cooling. If so, the PORV scenario would not apply and the seal LOCA scenario would not apply. If the plant was in shutdown cooling, the AFW scenarios would not apply, but other scenarios involving failure of shutdown cooling systems may be appropriate. A rigorous plant response model could include plant response at several time phases throughout the event.

D.7.4 Discussion of Six Hour Mission Time The previous discussion has been provided as background information. The following discusses the power state modeling for the Surry study, and shows that a six-hour mission time for diesel generators is acceptable for station blackout.

The power status model for this study calculates the total probability of both diesel generators failing at any time in the first six hours after LOSP. The probabilities for all failure combinations are lumped together and modeled as if all DG failures occurred at time zero (hereafter referred to as the lumping method). All station blackout occurrences are thus integrated with the time zero plant response model. Some refinements were made to the cut sets, such as removing the long term failures (fail to run) from the blackout frequency associated with the PORV scenarios. The PORV scenario only occurs during the initial scram.

Recovery of offsite AC power and recovery of diesel generator failures were applied to the lumped SBO frequency, as a function from time zero.

Since recovery of offsite power is more probable as time goes on, this technique underestimates recovery for the long term diesel failures.

The adequacy of the six-hour mission time for diesel generators has been questioned. It is possible that a significant portion of diesel generator failures which could occur after six hours are being omitted from the calculation. Previous attempts to justify mission time have been directed only at the power status model. That is, the justification is only in terms of the DG failure probabilities and the AC power non-recovery probabilities. Addressing this issue is better done on the basis of the overall core damage frequencies, thus including the impact of the plant response model. This discussion will show that extension of mission time beyond six hours is not necessary, even though a substantial portion of diesel generator failures are omitted. The reason for this is that a significant portion of the SBO frequency is incurred at time zero.

That is, the fail-to-start and maintenance terms are very large compared to the hourly fail-to-run terms. AT time periods when the fail-to-run terms approach the magnitude of the initial unavailability, the recovery of AC power becomes so probable that these failure combinations present an ever decreasing contribution to SBO. In addition, it will be shown that the method chosen for this study underestimates recovery of AC power and thus tends to compensate for any core damage frequency omitted by selection a six-hour mission time.

The following calculations are based on a two train DG model. The Surry plant has a 3 DG-4 train power system, and thus the numbers quoted below may not be the same as found in the PRA study. The simpler model is used here for purposes of illustration.

D-87

  • Using Surry specific failure probabilities for diesel generators, the probability of both diesel generators being unavailable at time zero is
1. 6E-3. AFter six hours, the probability of both DGs being failed in 2.2E-3, and after 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> it is 6.SE-3. Including the probability of non-recovery of offsite power, the conditional probability (given LOSP) of being in station blackout at one hour is 7.6E-4. At six hours after the event, the (cumulative) probability of having been in a station blackout at any time is 2. 2E-3; and the (cumulative) probability of having been in an SBO at 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> is 3.25E-3 (note, the probability of being in SBO at six hours is l.6E-4 and the probability at 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> is
2. 7E-5). It is clear that a significant portion of diesel generator failures are neglected. However, the following discussion will show that D-87a

when the plant response model is combined with the power stat.us model, core damage

  • frequency is not underestimated.

D.7.5 Comparison of Modeling Methods and Mission Times In order to provide a comparison of results it is necessary to choose a specific core damage scenario. Of the four scenarios discussed in the plant response model, the battery depletion scenario is used here for demonstration.

The "lumping" method used in this study generates cut sets, representing core damage due to battery depletion, which combine diesel failures at six hours with non-recovery of offsite AC at seven hours. Obviously, if SBO is entered six hours after LOSP, offsite AC power does not need to be recovered until 13 hours1.50463e-4 days <br />0.00361 hours <br />2.149471e-5 weeks <br />4.9465e-6 months <br /> to prevent core uncovery. An accu-rate recovery for this cut set would be non-recovery of AC by 13 hours1.50463e-4 days <br />0.00361 hours <br />2.149471e-5 weeks <br />4.9465e-6 months <br />. In the lumped model, it is recovered with a probability of 5E-2, (NRAC-7hr) when accurate recovery would be l.7E-2 (NRAC-13hr). This cut set accounts for 7% of the total SBO frequency. A similar situation exists for the 5-hour cut set which accounts for 6.7% of the total frequency and is under recovered by .05/ .02. Sample calculations were made to determine the extent of underestimation of recovery and the impact of DG mission time.

The results are shown in Table D.7-1. Calculations of core uncovery probability were made using one-hour, six-hour, and 24-hour diesel generator mission times combined with the lumped and actual recovery methods. Method A represents what was done in this study. Method A underestimates the total probability of DG failure, but also underestimates the probability of recovery of offsite AC power (i.e., one counters the other). Method B provides accurate estimation of recovery probabilities, but under-

  • estimates the total diesel failure probability. Method C is obviously the most conservative. Method C includes the total diesel generator failure probability in the first 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, but provides recovery on the lumped frequency, thus underestimating the true probability of recovery of offsite AC power. As expected, the representative core uncovery frequency for Method C is the highest. Method D can be considered the most accurate method. It includes all of the diesel failure probability in 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, and provides actual non-recovery probabilities. Method E was used to provide a lower bound core uncovery frequency. Method E only counts the initial diesel generator failures, so obviously it underestimates the true station blackout frequency. Because only initial DG failures are included, lumped recovery and actual recovery are the same. Therefore, recovery is actual in Method E.

D.7.5 Summary Method E represents the lower bound and Method C represents the upper bound. Method C is obviously conservative, because it provides unrealistic recovery, and Method E is obviously non conservative because it only accounts for initial DG failures. Method D is the most accurate and will be considered as a baseline for comparison. Although Method D is the most accurate, it was not used in the PRA because it is the most time consuming, significantly increasing the number of cut sets in the SBO sequences.

Method A was used for this study because it offers a convenient technique advantage. It typically understima tes core uncovery frequency, but not significantly, as can be seen by comparison with the results of Method D.

It should be noted that the numbers in Table D.7-1 were calculated using Surry specific event probabilities, and that use of different event probabilities would result in different numbers and possibly different conclusions.

D-88

  • However, the conclusions for Surry are that, for long term scenarios, selection of six-hour mission time in combination with the lumped recovery method leads to acceptable results for SBO modeling. This is because 1) for reasonably short mission times, diesel generator failure probability is determined by initial unavailability and 2) in the long term, recovery of offsite power is so probable that the impact of later diesel failures on core damage is minimal.

n-&9

Table f'.7-1 Typical Core Uncovery Frequency Due to Battery Depletion During Station Blackout and the Effect of Modeling Considerations Average Prob. for Non-Conditional Prob. Pecovery of AC Power Prob. Core Method of SBC' in 7 hrs from SBO Uncovery A. Six hour mission 2.2E-3 .05 1.11 E-4 time, lumped at t=O. Recovery on lumped frequency.

B. Six hour mission 2.2E-3 .046 1.00E-4 time. Failures recovered at actual time.

(:. 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> mission 6.5E-3 .050 3.25E-4 time, Jumped at t=O. Recovery on lumped frequency.

D. 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> mission 6.5E-3 .018 1.20E-4 time. Failures recovered at actual time.

E. J hour mission l.7E-3 .050 8.50E-5 time.

APPENDIX E Importance Values and Cut Sets for the Dominant Accident Sequences and Plant Damage State Groups E-1

Table of Contents Section Page Surry Accident Sequence Core Damage Frequencies E-5 Surry Plant Damage State Group Frequencies ***** E-6 Importance Values and Top Cut Sets for the Total Surry Core Damage Frequency *********** E-7 Importance Values and Top Cut Sets for the Surry Dominant Accident Sequences

1. SBO-BATT ...................... E-75
2. SBO-SLOCA. ....... E-82
3. SBO-L ***** .. . .. E-94
4. SB0-SLOCA2 ..... E-103
5. V * .** . ...... . E-110
6. SBO-Q. . ............................. . E-114
7. S1H 1 ******* E-121
8. T70DQS **** ..... .. . . . ... . . . E-126
9. T 2 LD 2 . . . . . . . . . . . . . . . .. . .. . . . . ......... . E-131
10. Sl Dl
  • E-136
11. TKRZ E-141
12. AH 1 ....... . E-146
13. T LP.

2 . . . . . . . . . . .. . . . . .......... .

~ E-151

14. Sl D6 . . . . . . . .. E-157
15. SB0-L2 ** E-162
16. AD 5 ******** E-170
17. TKRD 4 . ............. . E-175
18. S3D1 E-180
19. S2Dl E-185
20. SB0-BATT2 E-190
21. SB0-Q2 *** E-197
22. AD E-203 6
23. T7DlOD . ..... E-208
24. T jALP . . . * . * . . * . . . . * . . * * . * . . ... E-213 25 T 58 LP ** .... E-218
26. T 7L3 ***** . .. E-223 27 T70DQQS .... E-228
28. T 7KR ..*****.**.********..**..** . ... E-233 E-2
  • Section Table of Contents (ront'd)

Importance Values and Top Cut Sets for F.ach Plant Damage State Group PDS-1 .......... E-238 PDS-2 ........................... E-257 PDS-3 ................................................ E-267 PDS-4 ............................................... E-279 PDS-5 ************************************** Q ************ E-283 PDS-5 ................................................... E-295 PDS-6 ................................................... E-295 PDS-7 ................................................... E-300 E-3

APPENDIX E E. Importance Values and Cut Sets for the nominant Accident Sequences and Plant Damage State Groups.

This appendix presents the results of the TEl\.1AC importance measures and uncertainty analysis. There are three levels of detail used in documenting the TEM AC results. First, the top twenty events (in terms of importance) and the top page of cut sets for the total core damage frequency (CDF) model are shown and discussed in Section 5 of the main report. Second, an intermediate level is presented in this appendix, which gives all events for each importance measure and nearly all of the cut sets contributing to the core damage frequency; at least those cut sets contributing 90% or more of the frequency. Last, the complete listing of events and cut sets for the total core damage frequency, each accident sequence, and each plant damage state is available on diskettes from the the l'..'Rr upon request. This complete listing also includes other lists with the results sorted differently.

The purpose for not providing all the TEMAC output is to reduce the size of the document, especially since only a very limited number of readers will want the additional detail contained on the diskettes.

There are five lists given in this appendix. The following table shows the extent of each list provided in this appendix.

Each P l a n t .

Each Accident namage Total cnF Seguence State Grou~

1. Descriptive Statistics All (1 Page) All (1 Page) All (1 Page
2. Risk Reduction All (5 Pages) All (1 Page) All (1 Page)
3. Risk Increase All (4 Pages) All ( t Page) All (1 Page)
4. Uncertainty Importance All (5 Pages) All ( 1 Page) All (1 Page)
5. Ranked r,ut Sets All Cut Sets 8 Pages Max. 12 Pages Max.

Above 9.2E-10 (52 Pages)

All of the importance measure results are included for the total Surry core damage frequency, each accident sequences, and each plant damage state group. However, the number of cut sets presented was limitecl in a few instances as shown above. netailed explanations of the ri.sk measures are given in Section 4.12.

Tables E-1 and E-2 show a summary of the accident sequence and plant damage state ,group frequencies. The accident sequence results are arranged in order of descending frequency, as shown in Table E-1. Plant damage state results are for a.II plant damage state groups and are arranged numerically.

E-4

Table E-1 SURRY ACCIDENT SEQUENCE CORE DAMAGE FREQUENCIES Accident  % of Sequence Description 5% Median Mean 95% Total SBO-BATT STATION BLACKOUT (Ul) - BATTERY DEPLETION 2.4E-7 3.JE-6 1. lE-5 4.lE-5 26.0 SBO-SLOCA STATION BLACKOUT (SBO) (Ul)-RCP SEAL LOCA 0 1. OE-6 5.JE-6 2.0E-5 13.1 SBO-L STATION BLACKOUT (Ul) - AFW FAILURE 7.9E-8 1.JE-6 4.7E-6 2.lE-5 11. 6 SBO-SLOCA2 STATION BLACKOUT (Ul, U2) - RCP SEAL LOCA 0 1. lE-6 3.JE-6 1. 4E-5 8.2 SBO-Q STATION BLACKOUT (Ul) - STUCK OPEN PORV 9.lE-9 3.4E-7 2.2E-6 8.7E-6 5.4 s 1 H1 MEDIUM LOCA - RECIRCULATION FAILURE 1.lE-7 7.7E-7 1.7E-6 5.6E-6 4.2 V INTERFACING LOCA 3.8E-11 4.9E-8 1.6E-6 5.JE-6 4.0 T70DQs SGTR - NO DEPRESS. - SG INTEGRITY FAILS 3.4E-8 3.7E-7 1.4E-6 5.lE-6 3.5 T 2 LD 2 LOSS OF MFW/AFW - FEED AND BLEED FAILS 1. 4E-8 2. OE-7 9.8E-7 2.5E-6 2.4 S1D1 MEDIUM LOCA - INJECTION FAILURE 1.lE-7 4.6E-7 8.6E-7 2.4E-6 2.1 TKRZ ATWS - UNFAVORABLE MOD. TEMP. COEFF. 6.JE-9 1.5E-7 8.2E-7 3.2E-6 2.0 AH 1 LARGE LOCA - RECIRCULATION FAILURE 6.JE-8 3.8E-7 8.2E-7 3.0E-6 2.0 T 2 LP LOSS OF MFW/AFW - FLEED AND BLEED FAILS 2.JE-8 2.6E-7 7.4E-7 2.6E-6 1.8 S1D6 MEDIUM LOCA - INJECTION FAILURE 4.2E-8 2.JE-7 6.7E-7 2.2E-6 1. 7 SBO-L 2 SBO (Ul, U2) - AFW FAILURE 1.7E-8 2.JE-7 6.5E-7 2.6E-6 1. 6 AD 5 LARGE LOCA - ACCUMULATOR FAILURE 1.lE-7 4.6E-7 6.4E-7 1.SE-6 1. 6 TKRD 4 ATWS - EMERGENCY BORATION FAILURE 9. 5E-9 1. 5E-7 6.4E-7 2.8E-6 1. 6 S3D1 VERY SMALL LOCA - INJECTION FAILURE 4.2E-8 2.7E-7 6.JE-7 2.4E-6 1.5 S2D1 SMALL LOCA - INJECTION FAILURE 4.2E-8 2.JE-7 4.4E-7 1.4E-6 1.1 SBO-BATT2 SBO (Ul, U2) - BATTERY DEPLETION 0 0 4. JE-7 1. 7E-6 1.1 SBO-Q2 SBO (Ul, U2) - STUCK OPEN PORV 1.8E-9 5.9E-8 3.2E-7 1.3E-6 0.8 AD 6 LARGE LOCA - INJECTION FAILURE 2. lE-8 1. 2E-7 3. lE-7 l. lE-6 0.8 T7D10o SGTR - INJECTION FAILURE - NO DEPRESS 6.6E-9 7.0E-8 2.lE-7 7.7E-7 0.5 T 5 ALP LOSS OF DC BUS-FAIL AFW-NO FEED AND BLEED 1.lE-9 2.6E-8 1. 3E-7 4. 5E-7 0.3 T 5 BLP LOSS OF DC BUS-FAIL AFW-NO FEED AND BLEED 1.lE-9 2.6E-8 1. 3E-7 4. 5E-7 0.3 T7L3 SGTR - AFW FAILURE 4.8E-9 4.lE-8 1.lE-7 3.4E-7 0.3 T70DQQS SGTR-NO DEPRESS-SG INTEG FAILS,PORV FAILS 8.8E-10 2.lE-8 1.lE-7 5.0E-7 0.3

.'.rzKR SGTR - ATWS 3.2E-9 3.4E-8 1.0E-7 4.0E-7 0.2 TOTAL CORE DAMAGE FREQUENCY 4.0E-5 100

Table E-2 Surry Plant Damage State Frequencies Freguenc1  % of Plant Oamage 5% Median Mean 95% Total State Group Description 6.lE-7 8.2E-6 2.2E-5 9.5E-5 54.6 PDS-1 Long Term Station Blackout 1.2E-6 3.8E-6 6.0E-6 1.6E-5 14.7

  • PDS-2 LOCA - Injection/Recirculation Fai 1ure 1.lE-7 1. 7E-6 5.4E-6 2.3E-5 13.3 PDS-3 Station Blackout - AFW Failure 3.8E-11 4.9E-8 1.6E-6 5.3E-6 4.0 PDS-4 Interfacing LOCA 7.2E-8 6.9E-7 2.lE-6 6.0E-6 4.8 PDS-5 Transient - AFW and Feed/Bleed Failure trj I

O'l 3.2E-8 4.2E-7 1.6E-6 5.9E-6 3.8 PDS-6 Anticipated Transient without Scram 1.2E-7 7.4E-7 1.8E-6 6.0E-6 4.8 PDS-7 Steam Generator Tube Rupture Total Plant Damage State Frequency 4.0E-5

SURRY TOTAL CORE DAMAGE MOD(L TOP EVENT SURRY-TOTAL CONTAINS 222 EVENTS IN 2774 CUT SETS THE FREQUENCY OF TOP EVENT SURRY-TOTAL IS 3.30E-05 DESCRl~TIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT SURRY-TOTAL N 1000 MEAN 4.01E-05 STD DEV 5.73E-05 LOWER 6% 6.68E-06 LOWER 25" 1.35E-05 MEDIAN 2.28E-05 UPPER 25% 4.36E-05 UPPER 6" 1.29E-04 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN) 5"

  • 6.SSE-06 ***LOG SCALE**** 95" a 1.29E-04 1-----------------------[------------------*------------N*-----M--J--**--------------~----------**-*-**-1 NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF

  • FREQUENCY OF THE TOP EVENT EV(J)
  • PROBABILITY OF EVENT J FOR BASE EVENTS
1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION= PD x EV(J) ,

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION s PD x (1 ~ EV(J))

s TEF(EVALUATED WITH EV(J)

  • 1) - TEF

SURRY TOTAL CORE DAMAGE MODAL RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

NOTQ 2307 9.73E-01 ( 6.0) 1.79E-05 ( 1.0)

NOTL-SBOU1 1316 9.93E-01 ( 5.0) 1.33E-05 ( 2.0)

OEP-DGN-FS-DG01 725 2.20E-02 ( 79.5) 8.22E-06 ( 3.0) 2.38E-07 4.38E-05 NRAC-7HR 986 5.00E-02 ( 60.0) 8.04E-06 ( 4.0) 2.64E-07 4.26E-05 NOTW2 54 8.15E-01 ( 10.0) 7.15E-06 ( 5.0)

REC-XHE-FO-DGHWB 159 6.00E-01 ( 14. 5) 6.90E-06 ( 6.0) 2.16E-07 3.66E-05 REC-XHE-FO-DGHWS 1407 8.00E-01 ( 11.0) 5.98E-08 ( 7.0) O.OOE+OO 2.97E-05 REC-XHE-FO-DGEN 382 9.00E-01 ( 8.0) 6.68E-06 ( 8.0) 1.21E-07 2.67E-05 RCP-LOCA-750-90M 262 5.30E-01 ( 16.0) 5.20E-06 ( 9.0) O. OOE+OO. 3.16E-05 NRAC-216M 200 1.3BE-01 ( 41. 0) 5.00E-06 ( 10.0) O.OOE+OO 2.89E-05 OEP-DGN-FS 299 2.20E-02 ( 79.5) 4;88E-06 ( 11. 0) 2.08E-07 1.82E-05 OEP-DGN-FS-DG02 521 2.20E-02 ( 79.5) 4.38E-06 ( 12.0) 1.31E-07 2.36E-06 OEP-DGN-FS-DG03 526 2.20E-02 ( 79.5) 4.38E-08 ( 13. 0) 1.32E-07 2.36E-05 NRAC-1HR 157 4.40E-01 ( 21.0) 4.24E-08 ( 14.0) 5.39E-08 2.15E-05 OEP-DGN-FR-6HDG1 639 1.20E-02 ( 91.0) 4.08E-06 ( 15.0) 2.80E-08 2.97E-05 NOTL-SBOU1U2 842 9.68E-01 ( 7.0) 3.24E-06 ( 16.0)

QS-SBO 2435 2.70E-01 ( 28.5) S.04E-08 ( 17. 0) 5.45E-08 1.75E-05 REC-XHE-FO-SCOOL 597 1.25E-01 ( 43.0) 2.88E-06 ( 18.0) 3.71E-08 1.81E-05 l:rj 1.08E-07 8.72E-06 I BETA-2MOV 25 8.80E-02 ( 48.0) 2.72E-06 ( 19.0) 00 BETA-3DG 58 1.60E-02 ( 83.0) 2.66E-06 ( 20,0) 7.41E-08 1.0SE-05 OEP-DGN-FR-6HDG3 467 1.20E-02 ( 91.0) 2.32E-06 ( 21.0) 1.58E-06 1.87E-05 SBO-PORV-DMD 128 4.50E-01 ( 20.0) 2.27E-06 ( 22.0) 1.17E-08 9.56E-06 BETA-2DG 271 3.80E-02 ( 69.0) 2.25E-06 ( 23.0) 8.69E-08 8.32E-08 NOTDG-CCF 240 5.20E-01 ( 17.0) 2.22E-06 ( 24.0)

OEP-DGN-FR-6HDG2 468 1.20E-02 ( 91. 0) 2.09E-06 ( 26.0) 1.48E-08 1.48E-06 AFW-XHE-FO-CST2 33 6.50E-02 ( 55.0) 1.97E-06 ( 26.0) 2.39E-08 1.16E-05 AFW-XHE-FO-UNIT2 151 3.60E-02 ( 70.0) 1.94E-06 ( 27.0) 8.10E-08 6.20E-08 OEP-DGN-MA-DG01 393 6.00E-03 (102.0) 1.85E-06 ( 28.0) 1.42E-08 7.34E-06 R 16 1.70E-01 ( 35.0) 1.51E-06 ( 29.5) 3.23E-08 5.87E-06 K 16 6.00E-05 (195.0) 1.51E-06 ( 28,5) 3.23E-08 5.87E-06 RCS-XHE-FO-DPRT7 15 2.90E-02 ( 77. 0) 1.48E-06 ( 31.0)

MCW-CCF-VF-SBO 573 6.00E-02 ( 58.0) 1.38E-06 ( 32.0) 1.61E-08 7.82E-06 REC-XHE-FO-DPRES 3 1.40E-02 ( 87.5) 1.35E-06 ( 33.0) 2.0SE-08 4.88E-06 MSS-SRV-00-0DSRV 12 1.00E+OO ( 2.5) 1.25E-06 ( 34.0)

HPI -MQVsfT 8 3.00E-03 (121.0) 1.20E-06 ( 35.0) 2.03E-08 3.87E-06 PPS-SOV-00-1455C 69 3.00E-02 ( 74.5) 1.20E-06 ( 36.5) 1.02E-06 5.12E-06 PPS-SOV-00-1456 69 3.00E-02 ( 74.5) 1.20E-06 ( 36.5) 1.02E-08 5.12E-06 NRAC-HALFHR 162 6.00E-01 ( U.5) 1.09E-06 ( 38.0) 1.83E-08 5.85E-06 OEP-CRB-FT-16H3 418 3.00E-03 (121.0) 1.06E-06 ( 38.0) 8.40E-09 4.22E-06 OEP-DGN-UA-DG02 278 6.00E-03 (102.0) 1.01E-06 ( 40,0) 7.46E-09 4.01E-06 RCP-LOCA-467-160 262 1.27E-01 ( 42.0) 8.74E-07 ( 41.0) O.OOE+OO 6.42E-06 OEP-DGN-UA-0803 273 6.00E-03 (102.0) 8.58E-07 ( 42.0) 7.13E-08 3.85E-06 NR,'\C-258M 200 1.08E-01 ( 47. 0) 8.38E-07 ( 43.0) O.OOE+OO 8.18E-08 AFW-PSF-FC-XCONN 25 1.60E-04 (178.0) 8.75E-07 ( 44.0) 3.74E-08 3.07E-08 z :, 1 1.40E-02 ( 87.6) 8.43E-07 ( 45.0) 6.29E-09 3.16E-08 PORV-NOT-BLK 10 8.50E-01 ( 9.0) 8.30E-07 ( 48.0) 2.21E-08 3.30E-06 LPR-MOV-FT-1862A 13 5.20E-03 (105.6) 7.95E-07 ( 47.0) 1.80E-08 3.69E-08

NSLOCA H~I-XHE-FO-FDBLD PORV-BLK S'.GTR- SGSRV-ODMD1 146 2.70E-01 ( 28.6) 14 7.10E-02 ( 52.0) 6 1.50E-01 ( 38.6) 6 1.00E+OO ( 2.6) 7.26E-07 7.10E-07 6.77E-07 6.77E-07

(

(

(

(

48.0) 49.0) 50.5) 60.6)

O.OOE+OO

1. 42E-08 1.15E-08 3.90E-06 2.45E-06 2.35E-06 LPI-LtDP-FS 2 3.00E-03 ( 121. 0) 6.75E-07 ( 52.5) 1.26E-08 2.53E-06 BETA-LPI 2 1.50E-01 ( 38.5) 6.75E-07 ( 52.6) 1.26E-08 2.53E-06 AFW-TDP-FR-2P6HR 92 3.00E-02 ( 74". 5) 6.60E-07 ( 54.0) 6.16E-09 3.16E-06 LPI-LtOV-PG-1890C 2 4.40E-04 (170.0) 6.60E-07 ( 56.0) 2.56E-08 3.97E-07 AFW-TDP-FS-FW2 104 1.10E-02 ( 93.5) 6.42E-07 ( 56.0) 6.45E-09 3.58E-06 AFW-CCF-LK-STMBD 21 1.00E-04 (181.5) 5.82E-07 ( 57.0) 8.09E-10 1. 56E-06 SGTR-SGSRV-ODMD2 6 1.60E-01 ( 38.6) 5.76E-07 ( 58.0) 9.88E-09 2;10E-06 AFW-TDP-MA-FW2 97
  • 1.00E-02 ( 95.5) 5.75E-07 ( 59.0) 4.70E-09 2.99E-06 OEP-CRB*FT-15J3 273 3.00E-03 (121.0) 5.65E-07 ( 60.0) 4.30E-09 2.37E-06 NRAC*6HR-AVG 77 1.94E-01 ( 34.0) 5.29E-07 ( 61. 0) 1.64E-09 2.72E-06 PPS-XHE-FO-PORVS 11 4.40E-02 ( 62.5) 4,91E-07 ( 62.0) 1.09E-08 1.84E-06 LPR-MOV-FT-1860A 12 3.00E-03 (121.0) 4.58E-07 ( 63.0) 8.90E-09 1.63E-06 RMT-CCF-FA-MSCAL 2 3.00E-04 (172.0) 4.50E-07 ( 64.0) 1.41E-08 1.86E-06 PPS-MOV-FC-1536 30 3.00E-01 ( 26.0) 4.31E-07 ( 66.0) 1. 36E-08 1.82E*06 PPS-MOV-FC-1535 27 3.00E-01 ( 26.0) 4.26E-07 ( 66.0) 1.33E-08 1.79E-06 LPR-MOV-FT-1890A 4 3.00E-03 (121.0) 4.09E-07 ( 67.0) 7.30E-09 1.52E-06 HPI-XHE-FO-UN2S3 18 4.40E-02 ( 62.6) 4.02E-07 ( 68.0) 2.28E-08 1.62E-06 PPS-MOV*FT-1535 16 4.00E-02 ( 66.0) 3.87E-07 ( 69.0) 1.20E-08 1.70E-06 HPI-XHE-FO-ALTS3 2 7.40E-02 ( 51.0) 3.32E-07 ( 70.0) 2.67E-09 1.24E-06 ACC-MOV*PG-1866C 1 6.60E-04 (162.6) 3.26E-07 ( 71.6) 3.03E-08 6.61E-07 ACC-MOV-PG-1865B 1 6.50E-04 (162.5) 3.25E-07 ( 71.5) 3.03E-08 6.51E-07 HPI-XHE-FO-ALT 2 6.10E-01 ( 13.0) 3.22E-07 ( 73.0) 3.64E-09 1.07E-06 trj I AFW-XHE-FO-U1SB0 73 8.20E-02 ( 49.0) 2.84E-07 ( 74.0) 2.62E-09 1.66E-06 tC REC*XHE-FO-DGTMB 18 5.00E-01 ( 18.6) 2.78E-07 ( 75.0) 6.63E-10 9.35E-07 USS*XHE-FO-BLOCK 4 6.40E-02 ( 56.5) 2.54E-07 ( 77. 0) 5.03E-09 9.31E-07 MSS-SOV-00-0DADV 4 1.00E+OO ( 2.5) 2.54E-07 ( 77. 0)

SGTR-SGADV-ODMD 4 1.00E+OO ( 2.5) 2.54E-07 ( 77. 0)

HPI-CKV-FT-CV225 5 1.00E-04 (181.5) 2.10E-07 ( 79.0) 3.77E-08 5.82E-07 HPI-CKV-FT-CV410 5 1.00E-04 (181.5) 2.06E-07 ( 80.5) 3.52E-08 5.90E-07 HPI-CKV-FT-CV26 6 1.00E-04 (181.6) 2.06E-07 ( 80.6) 3.62E-08 6.90E-07 HPI -LtOV-FT-1350 1 3.00E-03 (121.0) 2.02E-07 ( 82.0) 8. 17E-10 7.56E-07 NRAC-201M 62 1.50E-01 ( 38.6) 1.95E-07 ( 83.0) O.OOE+OO 1.00E-08 RCS-XHE*FO-DPT7D 12 4.00E-01 ( 22.0) 1.95E-07 ( 84.0) 6.57E-09 7.72E-07 AFW-LtDP-FS 26 6.30E-03 ( 99.0) 1.73E-07 ( 85.5) 2.62E-09 7.08E-07 BETA-AFW 26 5.60E-02 ( 59.0) 1.73E-07. ( 85.5) 2.52E-09 7.08E-07 REC-XHE-FO-DGTMS 217 7.00E-01 ( 12.0) 1.66E-07 ( 87.0) O.OOE+OO 6.86E-07 HPI-XHE-FO-UN2S2 7 3.10E-01 ( 24.0) 1.63E-07 ( 88.0) 7.61E-09 6.53E-07 PPS-MOV-FT-1536 15 4.00E-02 ( 66.0) 1.45E-07 ( 89.0) 3.02E-09 5.02E-07 AFW-TDP*FR-2P24H 23 1.20E-01 ( 45.0) 1.26E-07 ( 90.0) 1.57E-09 5.07E-07 RCS-PORV-ODMD 10 6.00E-01 ( 18.6) 1.22E-07 ( 91.0) 8.79E-10 5.04E-07 LPR-LtOV-FT-1862B 11 5.20E-03 (105.5) 1.0BE-07 ( 92.0) 1.02E-09 8.24E-07 OEP-DGN-FR-DG01 23 2.00E-03 (136.5) 1.02E-07 ( 93.0) 1.89E-10 3.52E-07 AFW-MDP*FS-FW3A 24 6.30E-03 ( 99.0) 1.00E-07 ( 94.0) 2.39E-09 3.39E-07 AFW-MDP-FS-FW3B 23 6.30E-03 ( 99.0) 9.93E-08 ( 95.0) 2.25E-09 3.36E-07 HPl*XVM-PG-XV24 4 4.00E-05 (188.5) 8.23E-08 ( 86.0) 1.40E-08 2.26E-07 LPR-CCF*PG-SUMP 5 6.00E-06 (196.0) 7.75E-08 ( 87.0) 2.02E-09 2.87E-07 LPI -MDP-FS-8118 14 3.00E-03 (121.0) 7.41E-08 ( 98.6) 1.12E-09 3,67E-07 LP I -MDP-FS-S 11A 14 3.00E-03 (121.0) 7.41E-08 ( 98.5) 1.12E-08 3.67E-07 NRAC-246M 262 1.15E-01 ( 46.0) 6.74E-08 (100.0) O.OOE+OO 1.60E-07 PPS-XHE~FO-EMBOR 1 1.00E-03 (162.0) 6.73E-08 ( 101. 0) 2.68E-10 2.40E-07 NRAC-150Lt 262 2.10E-01 ( 32.5) 6.40E-08 (102.5) O.OOE+OO O.OOE+OO RCP-LOCA-1440-90 262 4.30E-03 (107.0) 6.40E-08 (102.5) O.OOE+OO O.OOE+OO

LPR-MOV-FT-18608 10 3.00E-03 ( 121.. 0) 6.24E-08 (104.0) 6.67E-10 4.25E-07 AFW-CKV-OO-CV142 8 1.00E-03 (152.0) 6.10E-08 (105:0) 4.56E-10 2. 55E.-07 LPR-XHE-FO-HOTL0 2 4.00E-05 (199.5) 6.00E-08 (106.0) 1.78E-09 2.16E-07 PPS-MOV-00-1636 3 4.00E-02 ( 66. 0) 6.78E-08 (107.6) 4. 23E-.10 2.43E-07 PPS-UOV-00-1535 3 4.00E-02 ( 66.0) 5.78E-08 (107.5) 4.23E-10 2.43E-07 RCP-LOCA-183-210 262 1.61E-02 ( 84.5) 5.70E-08 (109.5) O.OOE+OO O.OOE+OO RCP-LOCA-183-150 262 1.61E-02 ( 84.6) 5.70E-08 (109.5) O.OOE+OO 0-. OOE+OO RWT-TNK-LF-RWST 5 2.70E-06 (207.0) 5.2.7E-08 (111.0) 1.26E-09 2.01E-07 OEP-DGN-FR-DG02 14 2.00E-03 (136.5) 5.13E-08 (112.0) 8.00E-11 1.78E-07 AFW-CKV-00-CV172 23 1.00E-03 (152.0) 5.09E-08 (113.0) 3.10E-09 1.90E-07 OEP-DGN-FR-DG03 12 2.00E-03 (136.5) 5.06E-08 (114.0) 8.06E-11 1.76E-07 ACC-CKV-FT-CV145 1 1.00E-04 (181.5) 5.00E-08 (116.5) 6.43E-09 1.63E-07 ACC-CKV-FT-CV128 1 1.00E-04 (181.5) 5.00E-08 (116.5) 6.43E-09 1.63E-07 ACC-CKV-FT-CV130 1 1.00E-04 (181.6) 6.00E-08 (116.5) 6.43E-09 1.63E-07 ACC-CKV-FT-CV147 1 1.00E-04 (181.5) 5.00E-08 (116.5) 6.43E-09 1.63E-07 RCP-LOCA-183-90 262 1.40E-02 ( 67.5) 4.96E-08 (119.0) O.OOE+OO O.OOE+OO PPS-MOV-FT 7 4.00E-02 ( 66.0) 4.22E-08 (120.0) 8.06E-10 1.68E-07 LPI -UDP-MA-SI 18 10 2.00E-03 (136.5) 4.04E-08 (121.5) 6.04E-10 1.58E-07 LPI -MOP-MA-SI 1A 10 2.00E-03 (136.5) 4.04E-08 (121.5) 6.04E-10 1.58E-07 IAS-CCF-LF-INAIR 3 2.70E-05 (205.0) 3.72E-08 (123.0) 5.11E-10 1.35E-07 AFW-TDP-FR-6HRU2 22 3.00E-02 ( 74.6) 3.58E-08 (124.0) 3.12E-11 3.18E-07 BETA-STR 5 2.63E-01 ( 30.0) 3.34E-08 (125.0) 6.46E-09 1.01E-07 RCP-LOCA-561-150 262 4.00E-03 (108.5) 3.27E-08 (126.0) O.OOE+OO O.OOE+OO 818-ACT-FA-SISA 8 1.60E-03 (144.0) 2.86E-08 (127.6) 7.94E-10 2.16E-07 SIS-ACT-FA-SI SB 8 1.60E-03 (144.0) 2.86E-08 (127.5) 7.94E-10 2.16E-07

~ 8.48E-08 AFW-CKV-00-CV157 7 1.00E-03 (152.0) 2.56E-08 (129.0) 7.36E-10

.....I OEP-CRB-FT-25H3 106 3.00E-03 (121.0) 2.46E-08 (130.0) 2.20E-11 1.45E-07 0

CPC-STR-P0-3HR 1 9.00E-05 (190.5) 2.37E-08 (131.0)

REC-XHE-FO-GAGRV 2 3.00E-01 ( 26.0) 2.25E-08 (132.0) 1.79E-10 7.97E-08 HPI-CKV-00-CV258 2 1.00E-03 (152.0) 2.24E-08 (133.0) 1.96E-09 7.24E-08 AFW-TDP-FS-U2FW2 22 1. 10E-02 ( 93.5) 2.18E-08 (134.0) 3.56E-11 1.98E-07 HPI-MDP-FR-1A24H 2 1.60E-03 (144.0) 2.16E-08 (135.0) 1. 95E a*09 6.93E-08 AFW-MDP-MA-FW3B 7 2.00E-03 (136.5) 2.12E-08 (136.5) 4.79E-11 6.59E-08 AFW-MDP-MA-FW3A 7 2.00E-03 (136.5) 2.12E-08 (136.6) 4.79E-11 6.69E-08 HPI-UOV-FT-1115B 5 3.00E-03 (121.0) 1.92E-08 (138.0) 5.07E-11 2.29E-07 AFW-TDP-MA-U2FW2 20 1.00E-02 ( 96.5) 1.89E-08 (139.0) 3.37E-11 1.26E-07 HPI-MOV-FT-1115E 3 3.00E-03 (121.0) 1.69E-08 (141.0) 1.47E-11 2.20E-07 HPI-MOV-FT-1115D 3 3.00E-03 (121.0) 1.69E-08 (141.0) 1.47E-11 2.20E-07 HPI-MOV-FT-1115C 3 3.00E-03 (121.0) 1.69E-08 (141.0) 1.47E-11 2.20E-07 LPR-MOV-FT-18908 2 3.00E-03 (121.0) 1.35E-08 (143.0) 1.23E-11 1.59E-07 UNIT2-LOW-POWER 20 3.50E-01 ( 23.0) 1.29E-08 (144.0)

ACP-BAC-ST-4KV1H 5 9.00E-05 (190.5) 1.18E-08 *(145.0) 3.81E-10 4.74E-08 CPC-XHE-FO-REALN 5 7.00E-02 ( 53.5) 1.10E-08 (146.0) 4.93E-10 4.35E-08 HPI-UOV-FT-18670 5 3.00E-03 (121.0) 1.07E-08 (141.0) 1.69E-10 3.96E-08 PPS-SOV-FT-1456 4 1.00E-03 (152.0) 1.07E-08 (148.5) 3.66E-10 3.54E-08 PPS-S0V-FT-1455C 4 1.00E-03 (152.0) 1.07E-08 (148.5) 3.66E-10 3.54E-08 ACP-BAC-ST-1H1 3 9.00E-05 (190.5) 1.06E-08 (150.0) 2.77E-10 3.90E-08

.CON-VFC-RP-COREM 6 2.00E-02 ( 82.0) 1.01E-08 (151.0) 7.48E-10 3.17E-08 HPI-XHE-FO-ALTIN 2 5.70E-03 (104.0) 9.69E-09 (152.0) 1.54E-10 4.34E-08 LPI-MDP-FR-B21HR 4 6.30E-04 (165.0) 8.32E-09 (153.5) 9.43E-11 2.93E-08 LPI-MDP-FR-A21HR 4 6.30E-04 (165.0) 8.32E-09 (153.6) 9.43E-11 2.93E-08 MSS-XHE-FO-ISDHR 1 1.40E-02 ( 87.5) 8 .12E-09 (155.5) 1.24E-10 3.09E-08

  • MSS-CKV-FT-SGDHR 1 2.00E-03 (136.5) 8.12E-09 (165.5) 1.24E-10 3.09E-08 CPC-STR-PG-24H 1 7.20E-04 (169.6) 7.68E-09 (167.0) sws- E-FO-OPEN 3 2.40E-01 ( 31.0) 7.56E-09 (158.5) 4.66E-10 2.42E-08 SW FT-3ABCD 3 6.30E-04 (165.0) 7.56E-09 (158.

PPS-MOV-FC-OPER 4 2.70E-03 ( 131. 0) 6.62E-09 (160.0) 1.33E-11 2.76E-08 ACP-BAC-ST-1H1*2 1 9.00E-05 (190.6) 8.0&E-09 (181.0) 8.02E-11 2.23E-08 CPC-MDP-FS*SW10B 3 8.00E-03 ( 97.0) 6.78E-09 (182.0) 4.30E-10 1.96E-08 AFW-ACT*FA*PMP3B 3 6.00E-04 (167.6) 6.61E-09 (163.6) 1.69E-11 1.60E-08 AFW-ACT*FA-PMP3A 3 6.00E-04 (167.5) 5.51E-09 (163.5) 1.69E-11 1.60E-08 OEP-DGN-FC-DG3U2 3 3.40E-02 ( 71. 0) 5.42E-09 (165.0) 8.97E-11 1.95E-08 CPC-MDP-FR*SWA3H 2 4.80E-04 (169.0) 4.80E-09 (166.0) S.38E-10 1.60E-08 LPI-MDP-FR-B24HR 4 7.20E-04 (159.5) 4.75E-09 (167.5) 5.27E-11 1.99E-08 LPI-MDP-FR*A24HR 4 7.20E-04 (159.5) 4.75E-09 (167.5) 5.27E-11 1.99E*08 BETA-SRV 1 7.00E-02 ( 53.5) 4.71E-09 (169.5) 5.25E-11 1.74E*08 PPS-SOV-FT 1 1.00E-03 (162.0) 4.71E-09 (169.5) 5.25E-11 1.74E-08 LPI-CKV-OO-CV58 2 1.00E-03 (152.0) 4.50E-09 (171.5) 8.17E-11 1.91E-08 LPI-CKV-00-CV50 2 1.00E-03 (152.0) 4.50E-09 (171.5) 8.17E-11 1.91E*08 RMT-ACT-FA*RMTSB 3 1.60E-03 (144.0) 4.37E-09 (173.5) 7.13E-11 3.79E*08 RUT-ACT-FA-RUTSA 3 1.SOE-03 (144.0) 4.37E-09 (173.5) 7.13E-11 3.79E-08 ACP-TFM-N0-1H1 2 4.00E-05 (199.5) 4.25E-09 (175.0) 1.78E-10 1.63E*08 CPC-MDP-FR-SWA24 8 3.SOE-03 (110.5) 3.97E-09 (176.0) 1.S5E-10 1.56E-08 DCP-BDC-ST-BUS18 3 9.00E-05 (190.5) 3.52E-09 (177.5) 3.33E-11 1.35E-08 DCP-BDC*ST*BUS1A 3 9.00E-05 (190.5) 3.52E-09 (177.5) 3.33E-11 1.35E-08 QS-UNIT2 6 1.60E-01 ( 36.0) 3.31E-09 ( 179. 0) 2.89E-11 1.74E-08 AFW-TNK-VF*CST 3 1.00E-06 (208.0) 2.76E-09 (180.0) 8.44E-11 1.05E-08 HPI -MOV-PG-1350 1 4.00E-05 (199.5) 2.69E-09 ( 181. 0) 4.77E-11 1.08E-08 HPI-MOV-FT-1887C 2 3.00E-03 ( 121. 0) 2.23E-09 (182.0) 9.41E-12 7.51E-09 CPC-CKV-OO-CV113 1 1.00E-03 (152.0) 2.17E-09 (183.0) 7.76E-11 8.77E-09 CPC-MDP-FR-CCA24 2 7.20E-04 (159.5) 2.0SE-09 (184.0) 8.97E-12 6.85E*09 CVC-MDP-FR-2A1HR 1 3.00E-05 (203.5) 2.02E-09 (185.0) 8.51E-12 6.51E-09 tr:l MSS-XHE-FO*ISAFW 1 6.80E-06 (206.0) 1.97E-09 (186.0) 4.39E-11 7.32E-09 I

....... AFW-MDP-FR-386HR 3 1.80E-04 (174.0) 1.65E-09 (187.5) 1.83E*12 4.44E-09

....... AFW-UDP-FR-3A6HR 3 1.BOE-04 (174.0) 1.65E-09 (187.5) 1.83E-12 4.44E-09 0 1300 4.90E-02 ( 61. 0) 1.65E-09 (189.0) -9.53E-08 8.02E-08 CPC-STR-PG-6HR 2 1.80E-04 (174.0) 1.61E-09 (190.0)

HPI-MDP-FR-1A6HR 1 4.00E-04 (171.0) 1.60E-09 ( 191. 0) 5.94E-11 5.71E-09 CPC-MDP-Fs-ec2e 1 3.00E-03 ( 121. 0) 1.24E-09 (192.0) 2.89E-12 4.35E-09 NRAC-234M 62 1.23E-01 ( 44. 0) 1.21E-09 ( 193. 0) O.OOE+OO O.OOE+OO ACP-BAC-ST-4KV1J 2 9.00E-05 (190.5) 1.18E-09 (194.0) 9.07E-12 3.83E-09 RMT-XHE-FO-MANS1 2 8.40E-02 ( 56.5) 1.06E-09 (195.0) 5. 1 OE -12 3.57E-09 AFW-XHE-FO-U2SBO 4 7.50E-02 ( 50.0) 1.06E-09 (196.0) 6.60E-12 4.72E-09 CPC-MDP-MA-SW10B 1 2.00E-03 (136.5) 9.60E-10 (197.0) 1.51E-11 3.61E-09 CPC-MDP-MA-CC28 1 2.00E-03 (136.5) B.24E~10 (198.0) 1.35E-12 2.64E-09 BETA-HP I 1 2.10E-01 ( 32.5) 7.69E-10 (199.5) 1.BOE-11 3.14E-09 HPI-MDP-FS 1 4.00E-03 (108.5) 7.69E-10 (199.5) 1.80E-11 3.14E-09 CPC-STR-PG-2A3HR 1 9.00E-05 (190.5) 7.20E-10 (201.0) 9.84E-12 2.43E-09 CPC-UDP-FR-SWB24 1 3.80E-03 (110.5) 5.78E-10 (202.0) 5.84E-12 3.57E-09 AFW-CKV-FT-CV167 1 1.00E-04 ( 181. 5) 6.40E-10 (203.5) 1.01E-12 1.80E-09 AFW-CKV-FT-CV172 1 1.00E-04 (181.5) 5.40E-10 (203.5) 1.01E-12 1.80E-09

  • CPC-STR-PG-1HR 1 3.00E-05 (203.5) 5.31E-10 (205.0)

AFW-XVM-PG-XV183 1 4.00E-05 (199.5) 2.16E-10 (206.5) 4.05E*13 6.29E-10 AFW-XVM-PG-XV168 1 4.00E-05 (199.5) 2.16E-10 (206.5) 4.05E-13 6.29E*10 DGN-FTO 1460 3.39E-02 ( 72.0) -5.19E-07 (208,0) -2.96E-06 *8. 17E-09 RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

E**T1 2463 7.70E-02 C 4.0) 2.02E-05 C 1. 0) 9.09E-07 1.12E-04 E-S1 57 1.00E-03 C 9.6) 3.31E-06 C 2.0) 3.66E-07 9.73E-06 E-A 48 6.00E-04 C 11.0) 2.10E-06 C 3.0) 2.SOE-07 6.48E-06 E-T7 38 1.00E-02 C 6.0) 1.92E-06 C 4.0) 1.42E-07 6.12E-06 E-T2 66 9.40E-01 ( 3.0) 1.48E-06 C 5.0) 4.82E-08 4.88E-06 E-TN 1 5.80E+OO ( 2.0) 8.43E-07 C 6.0) 6.29E-08 3.16E-06 E-S3 20 1.30E-02 C 5.0) 6.39E-07 C 7.0) 4.24E-08 2.35E-06 E-T 14 6.60E+OO ( 1. 0) 6.65E-07 ( 8.0) 9.48E-09 2.82E-06 E-S2 13 1.00E-03 ( 8.6) 4.33E-07 ( 9.0) 4.35E-08 1.39E-06 E-V-TRAIN-3 1 4.00E-07 ( 13.0) 4.00E-07 ( 11.0) 1.27E-11 1.82E-06 E-V-TRAIN-2 1 4.00E-07 C 13.0) 4.00E-07 ( 11. 0) 1.27E-11 1.82E-06 E-V-TRAIN-1 1 4.00E-07 ( 13.0) 4.00E-07 ( 11. 0) 1.27E-11 1.82E-06 E-T6Ei 25 6.00E-03 ( 7.6) 1.38E-07 ( 13.6) 1.20E-09 4.62E-07 E-T5A 25 5.00E-03 ( 7.5) 1.38E-07 ( 13.5) 1.20E-09 4.62E-07

SURRY TOTAL CORE DAMAGE MODAL RISK INCREASE BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

K 18 8.00E-05 (195.0) 2.52E-02 ( 1. 0) 1.45E-03 9.58E-02 RWT-TNK-LF-RWST 5 2.70E-06 (207.0) 1.95E-02 ( 2.0) 7.93E-03 3.88E-02 AFW-PSF-FC-XCONN 25 1.50E-04 (176.0) 5:83E-03 ( 3.0) 4.48E-04 1.89E-02 AFW-CCF-LK-STMBD 21 1.00E-04 (181.5) 5.82E-03 ( 4.0) 4.48E-04 1.88E-02 AFW-TNK-VF-CST 3 1.00E-08 (208.0) 2.76E-03 ( 6.0) 1.46E-04 1. OOE.-02 HPI-CKV-FT-CV225 5 1.00E-04 (181.5) 2.10E-03 ( 6.0) 8.68E-04 4.13E-03 HP I -CKV-FT -CV25 5 1.00E-04 (181.5) 2.0BE-03 ( 7.5) 7.31E-04 4.36E-03 HPI-CKV-FT-CV410 6 1.00E-04 (181.5) 2. 08E--03 ( 7.5) 7.31E-04 4.38E-03 HPI-XVM-P0-XV24 4 4.00E-05 (199.5) 2.06E-03 ( 9.0) 7.13E-04 4.36E-03 LPR-CCF-PG-SUMP 5 5.00E-05 (196.0) 1.55E-03 ( 10.0) B.08E-04 3.05E-03 LPR-XHE-FO-HOTL0 2 4.00E-05 (199.5) 1.50E-03 ( 11.0) 5.89E-04 2.98E-03 RMT-CCF-FA-MSCAL 2 3.00E-04 (172.0) 1 . 50E

  • 03 ( 12. 0) 6.89E-04 2.98E-03 LPI-MOV-P0-1890C 2 4.40E-04 (170.0) 1. 50E-03 ( 13. 0) 5.89E-04 2.98E-03 IAS-CCF-LF-INAIR 3 2.70E-05 (205.0) 1.38E-03 ( 14.0) 1.69E-04 4.35E-03 ACC-CKV-FT-CV130 1 1.00E-04 (181.6) 6.00E-04 ( 16.6) 1.33E-04 1.20E-03 t:rj ACC-CKV-FT-CV128 1 1.00E-04 (181.5) 5.00E-04 ( 16.5) 1.33E-04 1.20E-03 I ACC-CKV-FT-CV145 1 1.00E-04 (181.5) 5.00E-04 ( 16.5) 1.33E-04 1.20E-03 I-' 1.20E-03

~

ACC-CKV-FT-CV147 1 1.00E-04 (181.5) 5.00E-04 ( 18.5) 1.33E-04 ACC-MOV-P0-1865B 1 6.50E-04 (162.6) 5.00E-04 ( 19.6) 1.33E-04 1.20E-03 ACC-MOV-P0-1865C 1 6.50E-04 (162.6) 5.00E-04 ( 19.5) 1.33E-04 1.20E-03 HPI -MOV-FT 8 3.00E-03 (121.0) 3.98E-04 ( 21.0) 7.12E-05 1.07E-03 OEP-DGN-FS-DG01 725 2.20E-02 ( 79.5) 3.65E-04 ( 22.0) 2.26E-05 1.12E-03 OEP-CRB-FT-15H3 418 3.00E-03 (121.0) 3.54E-04 ( 23.0) 2.25E-05 1.12E-03 OEP-D0N-FR-8HD01 839 1.20E-02 ( 91.0) 3.38E-04 ( 24.0) 2.33E-05 1.04E-03 OEP-DGN-MA-0601 393 8.00E-03 (102.0) 3.07E-04 ( 26.0) 1.78E-05 1.01E-03 USS-XHE-FO-ISAFW 1 6.80E-06 (206.0) 2.90E-04 ( 26.0) 7.74E-05 6.97E-04 CPC-STR-P0-3HR 1 9.00E-05 (190.5) 2.83E-04 ( 27.0)

LPI -MDP-FS 2 3.00E-03 (121.0) 2.24E-04 ( 28.0) 3.90E-05 8.03E-04 OEP-D0N-FS 299 2.20E-02 ( 79.5) 2.17E-04 ( 29.0) 1.52E-05 6.54E-04 OEP-DGN-FS-D002 521 2.20E-02 ( 79.5) 1.95E-04 ( 30.0) 1.25E-05 6.02E-04 OEP-DGN-FS-D003 526 2.20E-02 ( 79.5) 1.95E-04 ( 31.0) 1.27E-05 8.00E-04 OEP-DGN-FR-6HDG3 467 1.20E-02 ( 91.0) 1.91E-04 ( 32.0) 1.38E-05 6.11E-04 OEP-CRB-FT-15J3 273 3.00E-03 (121.0) 1.88E-04 ( 33.0) 1.34E-05 6.04E-04 OEP-D0N-FR-~HD02 458 1.20E-02 C 91.0) 1.72E-04 ( 34.0) 1.04E-05 5.32E-04 OEP-DGN-UA-DG02 279 6.00E-03 (102.0) 1.68E-04 ( 36.0) 9.77E-06 6.67E-04 OEP-D0N-UA-DG03 273 6.00E-03 (102.0) 1.59E-04 ( 36.0) 9.16E-08 6.56E-04 NRAC-7HR 988 5.00E-02 ( 60.0) 1.53E-04 ( 37.0) 6.19E-06 8.47E-04 LPR-MOV-FT-18SOA 12 3.00E-03 (121.0) 1.52E-04 ( 38.0) 3.23E-05 3.92E-04 LPR-UOV-FT-1862A 13 5.20E-03 (105.5) 1.52E-04 ( 39.0) 3.22E-06 3.92E-04 BETA-3DG 69 1.80E-02 ( 83.0) 1.45E-04 ( 40.0) 6.07E-06 6.00E-04 LPR-MOV-FT-1890A 4 3.00E-03 (121.0) 1. 36E-O:.t ( 41. 0) 2.41E-05 3.6SE-04 ACP-BAC-ST-4KV1H 6 9.00E-06 (190.6) 1.31E-04 ( 42.0) 1.34E-05 4.02E-04 ACP-BAC-ST-1H1 3 9.00E-05 (190.5) 1.18E-04 ( 43.0) 8.94E-06 3.82E-04 ACP-TFM-N0-1H1 2 4.00E-05 (199.5) 1.06E-04 ( 44.0) 7.55E-06 3.46E-04 REC-XHE-FO-DPRES 3 1.40E-02 ( 87.6) 9.49E-06 ( 46.0) 1.63E-06 2.62E-04 CVC-UDP-FR-2A1HR 1 3.00E-05 (203.5) 6.73E-05 ( 46.5) 1.80E-06 2.49E-04 HPI-UOV-PG-1360 1 4.00E-05 (199.5) 6.73E-05 ( 46.5) 1.80E-06 2.49E-04

ACP-BAC-ST-1H1-2 1 9.00E-06 (190.6) 6.73E-06 ( 48.0) 1.80E-08 2.49E-04 PPS-XHE-FO-EMBOR 1 1.00E-03 (152.0) 8.73E-06 ( 49.0) 1.79E-08 2.48E-04 HPI-MOV-FT-1350 1 3.00E-03 (121.0) 8.71E-06 ( 50.0) 1.80E-08 2.48E-04 AFW-CKV-OO-CV142 8 1.00E-03 (162.0) 6.09E-06 ( 61.0) 6.79E-07 2.43E-04 z 1 1.40E-02 ( 87.5) 5.93E-05 ( 52.0) 1.BOE-08 2.18E-04 AFW-TDP-FS-FW2 104 1.10E-02 ( 93.5) 5.77E-06 ( 53.0) 6.41E-08 2.42E-04 AFW-TDP-MA-FW2 97 1.00E-02 ( 95.5) 6.89E-05 ( 54.0) 3.87E-0S 2.51E-04 BETA-2DG 271 3.80E-02 ( 69.0) 5.69E-05 ( 55.0) 3.18E-08 1.85E-04 AFW-XHE-FO-UNIT2 151 3.60E-02 ( 70.0) 5.20E-05 ( 56.0) 8.80E-08 1.57E-04 OEP-DGN-FR-D001 23 2.00E-03 (136.5) 5.10E-05 ( 57.0) 5.27E-07 1.S5E-04 AFW-CKV-OO-CV172 23 1.00E-03 (152.0) 5.09E-05 ( 58.0) 5.70E-08 1.80E-04 RCS-XHE-FO-DPRT7 15 2.90E-02 ( 77. 0) 4.95E-05 ( 59.0)

DCP-BDC-ST-BUS1A 3 9.00E-05 (190.5) 3.91E-05 ( 80.6) 1. OSE-08 1.49E-04 DCP-BDC-ST-BUS1B 3 9.00E-06 (190.5) 3.91E-05 ( 60.6) 1.05E-08 1.49E-04 PPS-S0V-00-1455C 69 3.00E-02 ( 74.5) 3.87E-05 ( 62.5) 2.38E-06 1.79E-04 PPS-SOV-00-1456 69 3.00E-02 ( 74.5) 3.87E-05 ( 62.5) 2.38E-08 1.79E-04 NRAC-216M 200 1.38E-01 ( 41.0) 3.13E-05 ( 64.0) O.OOE+OO 1.96E-04 AFW-XHE-FO-CST2 33 6.50E-02 ( 55.0) 2.83E-05 ( 65.0) 7.87E-07 1.38E-04 BETA-2MOV 25 8.80E-02 ( 48.0) 2.82E-05 ( 66.0) 2.21E-06 9.84E-05 AFW-MDP-FS 26 8.30E-03 ( 99.0) 2.74E-05 ( 67.0) 8.22E-07 1.09E-04 OEP-DGN-FR-DG02 14 2.00E-03 (136.5) 2.56E-06 ( 68 .. 0) 1.82E-07 9.71E-05 AFW-CKV-OO-CV157 7 1.00E-03 (152.0) 2.55E-05 ( 69.0) 1.20E-08 9.30E-05 OEP-DGN-FR-DG03 12 2.00E-03 (138.5) 2.53E-05 ( 70.0) 1.83E-07 9.02E-05 LPi -MDP-FS-SI 1B 14 3.00E-03 (121.0) 2.46E-05 ( 71.6) 4.22E-06 6.98E-05 LPI-MDP-FS-S11A 14 3.00E-03 (121.0) 2.46E-05 ( 71.5) 4.22E-06 6.98E-05 tzj HPI-CKV-OO-CV258 2 1.00E-03 (152.0) 2.24E-05 ( 73.0) 3.70E-06 6.78E-05 I

MCW-CCF-VF-SBO 573 6.00E-02 ( 58.0) 2.16E-05 ( 74.0) 4.62E-07 1.26E-04 f-'

AFW-TDP-FR-2P6HR 92 3.00E-02 ( 74.5) 2.13E-06 ( 75.0) 1.18E-06 9.66E-05

""' LPR-MOV-FT-1862B 11 5.20E-03 (105.5) 2.0BE-05 ( 76.0)

77. 0) 2.79E-06 2.74E-06 6.36E-05 6.46E-05 LPR-MOV-FT-1860B 10 3.00E-03 (121.0) 2.07E-05 (

RECsXHE-FO-SCOOL 597 1.25E-01 ( 43.0) 2.02E-05 ( 78.0) 3.91E-07 1.10E-04 LPI -MDP-MA-SI 1B 10 2.00E-03 (136.5) 2.01E-05 ( 79.5) 2.81E-08 5.71E-05 LPI -MOP-MA-SI 1A 10 2.00E-03 (138.5) 2.01E-05 ( 79.5) 2.81E-08 5.71E-05 SIS-ACT-FA-SISA 8 1.60E-03 (144.0) 1.79E-05 ( 81.6) 2.78E-08 6.48E-06 SIS-ACT-FA-SI SB 8 1.60E-03 (144.0) 1.79E-05 ( 81. 5) 2.76E-08 5.46E-05 CPC-STR-PG-1HR 1 3.00E-05 (203.5) 1. 77E-05 ( 83.0)

AFW-MDP-FS-FW3A 24 6.30E-03 ( 99.0) 1.58E-05 ( 84.0) 7.09E-07 4.99E-05 AFW-MDP-FS-FW3B 23 6.30E-03 ( 99.0) 1.57E-05 ( 85.0) 6.62E-07 4.98E-05 RCP-LOCA-1440-90 262 4.30E-03 (107.0) 1.48E-05 ( 86.0) 5.15E-07 7.58E-05 HPI-MDP-FR-1A24H 2 1.60E-03 (144.0) 1.35E-05 ( 87.0) 1.84E-06 3.93E-05 LPI-MDP-FR-B21HR 4 6.30E-04 (165.0) 1.32E-05 ( 88.5) 1.30E-06 4.11E-05 LPI-MDP-FR-A21HR 4 6.30E-04 (165.0) 1.32E-05 ( 88.5) 1.30E-06 4.11E-05 ACP-BAC-ST-4KV1J 2 9.00E-05 (190.5) 1.31E-05 ( 90.0) 3.0BE-07 4.48E-05 SWS-CCF-FT-3ABCD 3 6.30E-04 (165.0) 1.20E-06 ( 91.0)

PPS- SOV-FT- 1456 4 1. OOE-03 (152.0) 1.07E-05 ( 92.5) 8.57E-07 3.57E-05 PPS-S0V-FT-1455C 4 1.00E-03 (152.0) 1.07E-05 ( 92.5) 8.57E-07 S.57E-05 PPS-XHE-FO-PORVS 11 4.40E-02 ( 62.5) 1.07E-05 ( 94.0) 6.16E-07 S.47E-05 AFW-MDP-UA-FW3B 7 2.00E-03 (136.5) 1. 06E-05 ( 95.5) 1.63E-07 3.38E-05 AFW-MDP-UA-FW3A 7 2.00E-03 (136.5) 1. 06E-05 ( 95.5) 1.63E-07 3.36E-05 CPC-STR-PG-24H 1 7.20E-04 (159.5) 1.05E-05 ( 97.0)

CPC-MDP-FR-SWA3H 2 4.80E-04 (169.0) 1.00E-05 ( 98.0) 1.23E-06 3.25E-05 PPS-MOV-FT-1535 16 4.00E-02 ( 66.0) 9.30E-06 ( 99.0) 4.59E-07 4.24E-05 HPI-XHE-FO-FDBLD 14 7.10E-02 ( 52.0) 9.29E-06 (100.0) 4.25E-07 2.89E-05 AFW-UDP-FR-3B6HR 3 1.80E-04 (174.0) 9.18E-06 (101.5) 6.33E-08 2.96E-06 AFW-UDP-FR-3A6HR 3 1.SOE-04 (174.0) 9.18E-06 (101.5) 6.33E-08 2.95E-05 AFW-ACT-FA-PMP3B 3 6.00E-04 (187.5) 9.17E-06 (103.5) 8.33E-08 2.95E-05

AFW~ACT-FA-PMP3A 3 8.00E-04 (187.5) 9.17E-08 (103.5) 8.33E-08 2.95E-05 CP.C-STR-PG-8HR 2 1.80E-04 (174.0) 8.95E-08 (105.0)

HPI-XHE-FO-UN283 18 4.40E-02 ( 82.5) 8.74E-08 (108.0) 1.28E-08 2.57E-05 Qs-seo 2436 2.70E-01 ( 28.5) 8.21E-08 (107.0) 2.14E-07 3.92E-05 OEP-CRB-FT-25H3 108 3.00E-03 (121.0) 8.19E-08 (108.0) 3.00E-08 4.93E-05 RCP-LOCA-561-150 282 4.00E-03 (108.5) 8.14E-08 (109.0) 3.59E-07 4.29E-05 CPC-STR-PG-2A3HR 1 9.00E-05 (190.5) 8.00E-08 (110.0) 9.10E-07 2.73E-05 NRAC-258M 200 1.08E-01 ( 47.0) 7.75E-08 (111.0) O.OOE+OO 5.03E-05 R 18 1.70E-01 ( 35.0) 7.37E-06 (112.0) 3.46E-07 3.12E-05 RCP-LOCA-487-150 282 1. 27E-01 ( 42.0) 8.70E-08 (113.0) O.OOE+OO 3.88E-05 LPI-MDP-FR-824HR 4 7.20E-04 (159.5) 8.60E-06 (114.5) 6.52E-07 2.15E-05 LPI-MDP-FR-A24HR 4 7.20E-04 (159.5) 8.60E-06 (114.5) 8.52E-07 2.15E-05 HPI-MOV-FT-1115B 5 3.00E-03 (121.0) 8.37E-08 (118.0) 3.88E-07 2.35E-05 HPI-MOV-FT-1115D 3 3.00E-03 (121.0) 5.63E-08 (118.0) 1.25E-07 2.09E-05 HPI-MOV-FT-1115E 3 3.00E-03 (121.0) 5.83E-06 (118.0) 1.25E-07 2.09E-05 HPI-MOV-FT-1115C 3 3.00E-03 (121.0) 5.83E-08 (118.0) 1.25E-07 2.09E-05 AFW-XVM-PG-XV183 1 4.00E-05 (199.5) 5.40E-08 (120.5) 1.45E-08 1.81E-05 AFW-XVM-PG-XV168 1 4.00E-05 (199.5) 5.40E-08 (120.5) 1.45E-08 1.81E-05 AFW-CKV-FT-CV157 1 1.00E-04 (181.5) 5.40E-08 (122.5) 1.45E-08 1.81E-05 AFW-CKV-FT-CV172 1 1.00E-04 (181.5) 5.40E-08 (122.5) 1.45E-08 1.81E-05 NRAC-1HR 167 4.. 40E-01 ( 21. 0) 6.39E-08 (124.0) 7.06E-08 3.05E-05 PPS-SOV-FT 1 1.00E-03 (152.0) 4.71E-08 (125.0) 8.54E-08 1.69E-05 RCP-LOCA-750-90M 282 5.30E-01 ( 18.0) 4.81E-08 (128.0) O.OOE+OO 2.89E-05 REC-XHE-FO-DGHWB 159 6.00E-01 ( 14. 6) 4.60E-06 (127.0) 6.18E-08 2.27E-05 LPI-CKV-OO-CV58 2 1.00E-03 (152.0) 4.50E-06 (128.5) 1.45E-07 1.69E-05 tzj LPI-CKV-OO-CV50 2 1.00E-03 (152.0) 4.50E-08 (128.5) 1.45E-07 1.89E-05 I LPR-MOV-FT-1890B 2 3.00E-03 (121.0) 4.49E-08 (130.0) 1.12E-07 1.72E-05 t--' 4. 18E-08 (131.0) 7.18E-08 1.59E-05 C]1 HPI-XHE-FO-ALTS3 2 7.40E-02 ( 51.0)

MSS-CKV-FT-SGDHR 1 2.00E-03 (138.5) 4.05E-08 (132.0) 1.00E-07 1.67E-05 HPI-MDP-FR-1A8HR 1 4.00E-04 (171.0) 4.00E-08 (133.0) 2.30E-07 1.29E-05 PORV-BLK 8 1.50E-01 ( 38.5) 3.84E-08 (134.0) 1.41E-07 1.25E-05 BETA-LPI 2 1.50E-01 ( 38.5) 3.83E-08 (135.0) 1.11E-07 1.49E-05 MSS-XHE-FO-BLOCK 4 8.40E-02 ( 58.5) 3.72E-08 (138.0) 1.52E-07 1.18E-05 HPI-MOV-FT-18870 5 3.00E-03 (121.0) 3.57E-08 (137.0) 4.57E-07 1.12E-05 RCP-LOCA-183-90 282 1.40E-02 ( 87.5) 3.49E-08 (138.0) 1.27E-07 2.03E-05 RCP-LOCA-183-210 282 1.81E-02 ( 84.5) 3.49E-08 (139.5) 8.75E-08 1.99E-05 RCP-LOCA-183-150 262 1.611:-02 ( 84.5) 3.49E-08 (139.5) 9.22E-08 2.03E-05 PPS-MOV-FT-1538 15 4.00E-02 ( 86.0) 3.48E-08 (141.0) 1.24E-07 1.18E-05 SGTR-SGSRV-0DMD2 6 1.50E-01 ( 38.5) 3.26E-08 (142.0) 1.18E-07 1.01E-05 AFW-XHE-FO-U1SBO 73 8.20E-02 ( 49.0) 3.18E-06 (143.0) 5.48E-08 1.67E-05 BETA-AFW 26 5.60E-02 ( 59.0) 2.92E-06 (144.0) 7.09E-08 1.21E-05 CPC-MDP-FR-CCA24 2 7.20E-04 (159.5) 2.86E-06 (145.0) 7.55E-08 1.0BE-05 SBO-PORV-DMD 128 4.50E-01 ( 20.0) 2.77E-08 (148.0) 1.31E-08 1.29E-05 RMT-ACT-FA-RMTSB 3 1.60E-03 (144.0) 2.73E-08 (147.5) 2.79E-07 8.82E-08 RMT-ACT-FA-RMTSA 3 1.60E-03 (144.0) 2.73E-08 (147.5) 2.79E-07 8.82E-08 PPS-MOV-FC-OPER 4 2.70E-03 .(131.0) 2.41E-08 (149.0) 2.51E-08 1.03E-05 NRAC-8HR-AVG 77 1.94E-01 ( 34.0) 2.20E-08 (150.0) 1.16E-08 9.32E-08 CPC-CKV-OO-CV113 1 1.00E-03 (152.0l 2.17E-06 ( 151. 0) 1.18E-07 8.73E-08 NOTDG-CCF 240 5.20E-01 ( 17. 0) 2.05E-06 (152.0)

AFW-TDP-FS-U2FW2 22 1.10E-02 ( 93.5) 1.98E-08 (153.0) 3.25E-08 1.01E-05 NSLOCA 146 2.70E-01 ( 28.5) 1.96E-08 (154.0) O.OOE+OO 1.06E-05 AFW-TDP-MA-U2FW2 20 1.00E-02 ( 95.5) 1.87E-06 (155.0) 2.94E-08 8.97E-08 HPI-XHE-FO-ALTIN 2 5.70E-03 (104.0) 1.89E-08 (158.0) 2.75E-07 4.99E-08 NOTW2 54 8.16E-01 ( 10.0) 1.82E-08 (167.0)

REC-XHE-FO-DGHWS 1407 8.00E-01 ( 11. 0) 1.49E-08 (158.0) O.OOE+OO 7.99E-08 PPS-MOV-00-1538 3 4.00E-02 ( 68. 0) 1.3~E-08 (159.5) 1.51E-08 5.98E-08

PPS-MOV-00-1535 3 4.00E-02 ( 66.0) 1.39E-06 (159.6) 1.51E-08 6.96E-06 AFW-TDP-FR-6HRU2 22 3.00E-02 ( 74.5) 1.16E-06 (161.0) 9.19E-09 6.27E-06 NRAC-201M 62 1.50E-01 ( 38.5) 1.11E-06 (1ti2.0) O.OOE+OO 6.36E-06 CPC-MDP-FR-SWA24 3 3.80E-03 (110.5) 1.04E-06 (163.0) 6.32E-08 3.81E-06 PPS-UOV-FT 7 4.00E-02 ( 66.0) 1.01E-06 (164.0) 3.07E-08 4.26E-06 PPS-MOV-FC-1536 30 3.00E-01 ( 26.0) 1.01E-06 (165.0) 6.19E-08 3.07E-06 PPS-MOV-FC-1535 27 3.00E-01 ( 26.0) 9.93E-07 (166.0) 4.90E-08 3.02E-06 AFW-TDP-FR-2P24H 23 1.20E-01 ( 45.0) 9.21E-07 (167.0) 2.09E-08 3.91E-06 HPI-MOV-FT-18870 2 3.00E-03 (121.0) 7.42E-07 (168.0) 1.60E-08 2.47E-06 NRAC-HALFHR 182 6.00E-01 ( 14. 5) 7.24E-07 (169.0) 1.07E-08 3.98E-06 CPC-L1DP-FS-SW10B 3 8.00E-03 ( 97.0) 7.16E-07 (170.0) 1.11E-07 2.09E-06 REC-XHE-FO-DGEN 382 9.00E-01 ( 8.0) 6.31E-07 (171.0) 3.01E-09 2.96E-06 MSS-XHE-FO-ISDHR 1 1.40E-02 ( 87.5) 5.72E-07 (172.0) 7.83E-08 1.62E-06 NRAC-246M 262 1.15E-01 ( 46.0) 5.18E-07 (173.0) O.OOE+OO 1.30E-06 NOTQ 2307 9.73E-01 ( 6.0) 4.96E-07 (174.0)

CON-VFC-RP-COREM 8 2.00E-02 ( 82.0) 4.93E-07 (175.0) 8.78E-08 1.33E-06 CPC-MDP-MA-SW108 1 2.00E-03 (136.5) 4.79E-07 (176.0) 6.83E-08 1.43E-06 CPC-MDP-MA-CC28 1 2.00E-03 (136.5) 4.11E-07 (177.0) 4.82E-09 1.70E-06 CPC-MDP-FS-CC28 1 3.00E-03 (121.0) 4.11E-07 (178.0) 4.82E-09 1.70E-06 HPI-XHE-FO-UN2S2 7 3.10E-01 ( 24.0) 3.62E-07 (179.0) 2.74E-08 1.25E-06 RCS-XHE-FO-DPT7D 12 4.00E-01 ( 22.0) 2.92E-07 (180.0) 1.07E-08 1.08E-06 I- REC-XHE-FO-DGTMB 18 5.00E-01 ( 18.5) 2.78E-07 (181.0) 5.61E-10 1.14E-06 NRAC-150M 262 2.10E-01 ( 32.5) 2.41E-07 (182.0) O.OOE+OO O.OOE+OO HPI-XHE-FO-ALT 2 6. 10E-01 ( 13.0) 2.06E-07 (183.0) 1.18E-09 7.78E-07 HPI -MDP-FS 1 4.00E-03 (108.5) 1.91E-07 (184.0) 7.96E-09 7.31E-07 OEP-DGN-FC-DG3U2 3 3.40E-02 ( 71.0) 1.54E-07 (185.0) 4.12E-09 5.61E-07 t:rj CPC-MDP-FR-SW824 1 3.80E-03 (110.5) 1.52E-07 (186.0) 3.31E-09 6.45E-07 I PORV-NOT-BLK 10 8.50E-01 ( 9.0) 1.46E-07 (187.0) 8.88E-10 6.93E-07 O') CPC-XHE-FO-REALN 5 7.00E-02 ( 53.5) 1.46E-07 (188.0) 1.52E-08 5,28E-07 RCS-PORV-ODMD 10 5.00E-01 ( 18.5) 1.22E-07 (189.0) 7.02E-10 4.79E-07 NOTL-SB0U1U2 842 9.68E-01 ( 7.0) 1.07E-07 (190.0)

NOTL-S80U1 1316 9.93E-01 ( 5.0) 9.40E-08 (191.0)

BETA-STR 5 2.63E-01 ( 30.0) 9.36E-08 (192.0) 2.52E-08 2.24E-07 REC-XHE-FO-DGTMS 217 7.00E-01 ( 12.0) 7.11E-08 (193.0) O.OOE+OO 2.45E-07 BETA-SRV 1 7.00E-02 ( 53.5) 6.26E-08 (194.0) 1.12E-09 2.36E-07 REC-XHE-FO-GAGRV 2 3.00E-01 ( 26.0) 5.24E-08 (195.0) 6.04E-10 2.04E-07 0 1300 4.90E-02 ( 61 . 0) 3.19E-08 (196.0) -1.83E-06 1.42E-06 UNIT2-LOW-POWER 20 3.50E-01 ( 23.0) 2.40E-08 (197.0)

SWS-XHE-FO-OPEN 3 2.40E-01 ( 31.0) 2.39E-08 (198.0) 3.85E-09 6.38E-08 QS-UNIT2 6 1.60E-01 ( 36.0) 1.74E-08 (199.0) 1.86E-10 1.28E-07 RMT-XHE-FO-MANS1 2 6.40E-02 ( 56.5) 1.56E-08 (200.0) 1.46E-10 6.27E-08 AFW-XHE-FO-U2SBO 4 7.50E-02 ( 50.0) 1.30E-08 (201.0) 1.87E-10 5.49E-08 NRAC-234M 62 1.23E-01 ( 44.0) 8.62E-09 (202.0) O.OOE+OO O.OOE+OO BETA-HP I 1 2.10E-01 ( 32.5) 2.89E-09 (203.0) 7.81E-11 1.10E-08 USS-SRV-00-0DSRV 12 1.00E+OO ( 2.5) O.OOE+OO (205.5)

MSS-SOV-00-0DADV 4 1.00E+OO ( 2 . f!) O.OOE+OO (205.5)

SGTR-SGSRV-ODMD1 6 1.00E+OO ( 2.5) O.OOE+OO (205.5)

SGTR-SGADV-ODUD 4 1.00E+OO ( 2.5) O.OOE+OO (205.5)

DGN-FTO 1460 3.39E-02 ( 72.0) -1.48E-05 (208.0) -8.84E-05 -4,94E-07

SURRY TOTAL CORE DAMAGE MODAL UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK) Y.05/TE.05" Y .. 95/TE.95" OEP-DGN-FS 299 2.20E-02 ( 79.5) 20.7 ( 2.5) 1.23 0.75 OEP-DGN-FS-DG02 521 2.20E-02 ( 79.5) 20.7 ( 2.5) 1. 23 0.75 OEP-DGN-FS-DG01 725 2.20E-02 ( 79.5) 20.7 ( 2.5) 1. 23 0.75 OEP-DGN-FS-DG03 526 2.20E-02 ( 79.5) 20.7 ( 2.5) 1.23 0.75 OEP-DGN-FR-DG02 14 2.00E-03 (136.5) 18.9 ( 6.0) 1. 00 1.00 OEP-DGN-FR-DG03 12 2.00E-03 (136.5) 18.9 ( 6.0) 1. 00 1. 00 OEP-OGN-FR*DG01 23 2.00E-03 (136.5) 18.9 ( 6.0) 1. 00 1. 00 OEP*DGN-FR-6HDG1 639 1.20E-02 ( 91. 0) 18.9 ( 9.0) 1. 14 0.80 OEP-DGN-FR-6HOG3 467 1.20E-02 ( 91.0) 18.9 ( 9.0) 1.14 0.80 OEP-OGN-FR-6HDG2 458 1.20E-02 ( 91. 0) 18.9 ( 9,0) 1. 14 0.80 NRAC-7HR 986 5.00E-02 ( 60.0) 5.4 ( 11. 0) 1. 04 0.99 NRAC-201M 62 1.50E-01 ( 38.5) 5. 1 ( 12.0) 1. 00 1. 00 NRAC-216M 200 1.38E-01 ( 41.0) 5.0 ( 13.0) 1. 01 0.99 NRAC-234M 62 1.23E-01 ( 44.0) 5.0 ( 14.0) 1. 00 1. 00 NRAC-258M 200 1.08E-01 ( 47.0) 4.9 ( 16.0) 1. 00 1. 00 NRAC-246M 262 1.15E-01 ( 46.0) 4.9 ( 16.0) 1. 00 1. 00 NRAC-HALFHR 182 6.00E-01 ( 14.5) 4.9 ( 17. 0) 1. 01 1.00 NRAC-1HR 157 4.40E-01 ( 21.0) 4.9 ( 18.0) 1.01 0.99 t:r:l NRAC-150M 262 2.10E-01 ( 32.5) 4.7 ( 19.0) 1. 00 1. 00 I

I-' z 1 1.40E-02 ( 87.5) 4.4 ( 20.0) 1.04 0.99

-:i OEP-DGN-MA-DG03 273 6.00E-03 (102.0) 3.6 ( 22.0) 1. 03 1.04 OEP-DGN-MA-DG02 279 6.00E-03 (102.0) 3.6 ( 22.0) 1. 03 1.04 OEP-DGN-MA-DG01 393 8.00E-03 (102.0) 3.6 ( 22.0) 1. 03 1. 04 HPI-MOV-FT-1115E 3 3.00E-03 (121.0) 3.6 ( 29.5) 1.12 0.98 LPR-MOV-FT-1890B 2 3.00E-03 (121.0) 3,8 ( 29.5) 1.12 0.98 LPR-UOV-FT-1860A 12 3.00E-03 ( 121. 0) 3.6 ( 29.5) 1.12 0.98 HPl*MOV-FT-1887C 2 3.00E-03 (121.0) 3.6 ( 29.5) 1.12 0.98 LPR-MOV-FT-1860B 10 3.00E-03 (121.0) 3.6 ( 29.5) 1.12 0.98 HPI-MOV-FT-1867D 5 3.00E-03 (121.0) 3.6 ( 29.5) 1.12 0.98 HPI-UOV-FT-1115B 5 3.00E-03 (121.0) 3.6 ( 29.5) 1.12 0.98 HPI-MOV-FT-1115C 3 3.00E-03 (121.0) 3.6 ( 29.5) 1.12 0.98 HPI-MOV-FT-1350 1 3.00E-03 (121.0) 3.6 ( 29.5) 1. 12 0.98 HPI-MOV-FT-1115D 3 3.00E-03 (121.0) 3.6 ( 29.5) 1.12 0.98 LPR-MOV-FT-1890A 4 3.00E-03 (121.0) 3.6 ( 29.5) 1.12 0.98 HP I -MOV-FT 8 3.00E-03 (121.0) 3.6 ( 29.6) 1. 12 0.98 REC-XHE-FO-DGHWS1407 8.00E-01 ( 11. 0) 3. 1 ( 36.0) 1.01 1. 00 REC-XHE-FO-DGTMB 18 5.00E-01 ( 18.5) 3 ..1 ( 37.0) 1. 00 1. 00 REC-XHE-FO-DGHWB 159 6.00E-01 ( 14.5) 3.1 ( 38.0) 1. 02 1. 00 REC-XHE-FO-DGEN 382 9.00E-01 ( 8.0) 2.9 ( 39.0) 1.01 1. 01 REC-XHE-FO-DGTMS 217 7.00E-01 ( 12.0) 2.8 ( 40.0) 1. 00 1. 00 QS-UNIT2 6 1.60E-01 ( 36.0) 2.3 ( 41.0) 1. 00 1. 00 PPS-SOV-00-1455C 69 3.00E-02 ( 74.5) 2.2 ( 42.5) 1. 03 0.99 PPS-SOV-00-1456 69 3.00E-02 ( 74.5) 2.2 ( 42.5) 1. 03 0.99 QS*SBO 2435 2.70E-01 ( 26.5) 2.1 ( 44.0) 1. 03 1.02 AFW-XHE-FO-UNIT2 161 3.60E-02 ( 70.0) 1. 9 ( 45.0) 1. 06 1. 00 REC-XHE-FO-GAGRV 2 3.00E-01 ( 26.0) 1.7 ( 46.0) 1. 00 1. 00 AFW-CCF-LK-STMBD 21 1.00E-04 (181.6) 1. 5 ( 47.0) 1. 05 1. 00 r

BETA-SRV 1 7.00E-02 ( 53.5) 1. 5 ( 48.0) 1. 00 1. 00 146 2.70E-01 ( 28.5) 1. 5 ( 49.0) 0.99 1. 01 NSl:OCA 1. 00 ACP-TFM-N0-1H1 2 4.00E-05 (199.5) 1. 4 ( 50.0) 1. 00 OEP-CRB-FT-25H3 106 3.00E-03 (121.0) 1. 3 ( 52.0) 1.00 0.98 OEP-CRB-FT-15J3 273 3.00E-03 (121.0) 1. 3 ( 52.0) 1. 00 0.98 OEP-CRB-FT-15H3 418 3.00E-03 (121.0) 1.3 ( 52.0) 1. 00 0.98 13 5.20E-03 (105.5) 1. 3 ( 54.5) 1.03 1. 01 LPR-MOV-FT-1862A 1. 01 LPR-MOV-FT-1862B 11 5.20E-03 (105.5) 1. 3 ( 54.5) 1. 03 6 1.50E-01 ( 38.5) 1. 2 ( 56.0) 1. 02 1. 00 PORV-BLK 1. 00 0 1300 4.90E-02 ( 61.0) 1.1 ( 57.0) 1. 00 REC-XHE-FO-SCOOL 597 1.25E-01 ( 43.0) 1. 0 ( 58.0) 1. 01 0.99 30 3.00E-01 ( 26.0) 1. 0 ( 59.5) 0.99 1. 00 PPS-MOV-FC-1536 1. 00 PPS-MOV-FC-1535 27 3.00E-01 ( 28.0) 1. 0 ( 59.5) 0.99 16 1.70E-01 ( 35.0) 1. 0 ( 61. 0) 1. 00 0.99 R 1. 00 REC-XHE-FO-DPRES 3 1.40E-02 ( 87.5) 1. 0 ( 62.0) 1. 08 3 8.00E-04 (187.5) 0.9 ( 83.5) 1. 00 1. 00 AFW-ACT-FA-PMP3B 1. 00 AFW-ACT-FA-PMP3A 3 8.00E-04 (187.5) 0.9 ( 83.5) 1. 00 1 1.00E-03 (152.0) 0.9 ( 65.0) 1. 00 1.00 PPS-XHE-FO-EMBOR 1.02 BETA-2DG 271 3.80E-02 ( 69.0) 0.9 ( 66.0) 1. 01 1 1.40E-02 ( 87.5) 0.9 ( 87.0) 1.00 1. 00 MSS-XHE-FO-ISDHR 0.97 RCP-LOCA-750-90M 262 5.30E-01 ( 16.0) 0.9 ( 68.0) 1. 04 77 1.94E-01 ( 34.0) 0.8 ( 69.0) 1. 00 1.01 NRAC-6HR-AVG 1. 00 PPS-XHE-FO-PORVS 11 4.40E-02 ( 62.5) 0.8 ( 70.0) 1. 00 25 8.80E-02 ( 48.0) 0.8 ( 71.0) 1.04 1. 00 BETA-2MOV 1. 00 AFW-MDP-MA-FW3A 7 2.00E-03 (136.5) 0.8 ( 74.5) 1. 00 1 2.00E-03 (136.5) 0.8 ( 74.5) 1. 00 1. 00 CPC-MDP-MA-SW10B 1.00 t:,j CPC-MDP-MA-CC2B 1 2.00E-03 (136.5) 0.8 ( 74.5) 1. 00 I

7 2.00E-03 (136.5) 0.8 ( 74.5) 1. 00 1. 00 I-' AFW-MDP-MA-FW3B 1.00 00 LPI -UDP-MA-SI 1B 10 2.00E-03 (136.5) 0.8 ( 74.5) 1. 00 10 2.00E-03 (136.5) 0.8 ( 74.5) 1. 00 1. 00 LPI-MDP-MA-Sl1A 1. 00 AFW-PSF-FC-XCONN 25 1.50E-04 (176.0) 0.7 ( 78.0) 1. 00 4.00E-01 ( 22.0) 0.7 ( 79.0) 1. 00 1.00 RCS-XHE-FO-DPT7D 12 1. 00 MCW-CCF-VF-SBO 573 S.OOE-02 ( 58.0) 0.7 ( 80.0) 1. 00 7.10E-02 ( 62.0) 0.7 ( 81.0) 1.02 0.99 HPI-XHE-FO-FDBLD 14 1. 00 SBO-PORV-DMD 128 4.50E-01 ( 20.0) 0.7 ( 82.0) 0.99 59 1.80E-02 ( 83.0) 0.7 ( 83.0) 1. 00 0.99 BETA-3DG 1. 00 1. 00 CPC-STR-PG-2A3HR 1 9.00E-05 (190.5) 0.7 ( 84.0) 1 4.00E-05 (199.5) 0.7 ( 86.0) 1. 00 1. 00 AFW-XVM-PG-XV168 1. 00 HPI-XVM-PG-XV24 4 4.00E-05 (199.5) 0.7 ( 86.0) 1. 00 1 4.00E-05 (199.5) 0.7 ( 86.0) 1.00 1. 00 AFW-XVM-PG-XV183 1. 00 CVC-MDP-FR-2A1HR 1 3.00E-05 (203.5) 0.7 ( 88.0) 1.00 14 3.00E-03 (121.0) 0.6 ( 90.5) 1.04 1. 00 LPI -MDP-FS-811A 1. 00 CPC-MDP-FS-CC2B 1 3.00E-03 (121.0) 0.6 ( 90.5) 1.04 14 3.00E-03 (121.0) 0.6 ( 90.5) 1.04 1. 00 LPI -MDP-FS-8118 1. 00 LPI-MDP-FS 2 3.00E-03 (121.0) 0.8 ( 90.5) 1. 04 3 2.40E-01 ( 31. 0) 0.6 ( 93.0) 1. 00 1.00 SWS-XHE-FO-OPEN 1. 00 AFW-MDP-FR-3B6HR 3 1.80E-04 (174.0) 0.6 ( 94.5) 1. 00 3 1.80E-04 (174.0) 0.6 ( 94.5) 1. 00 1.00 AFW-MDP-FR-3A6HR 1. 00 RCP-LOCA-183-150 262 1.61E-02 ( 84.5) 0.6 ( 96.0) 1. 00 2 7.40E-02 ( 51. 0) 0.5 ( 97.0) 1. 00 1. 00 HPI-XHE-FO-ALTS3 1. 00 MSS-XHE-FO-ISAFW 1 6.80E-06 (206.0) 0.5 ( 98.0) 1. 00 4 6.30E-04 (165.0) 0.5 ( 99.5) 1. 00 1. 00 LPI-MDP-FR-B21HR 1.00 LPI-MDP-FR-A21HR 4 6.30E-04 (165.0) 0.5 ( 99.5) 1. 00 ACP-BAC-ST-1H1 3 9.00E-06 (190.5) 0.5 (103.5)

ACP-BAC-ST-4KV1J 2 9.00E-05 (190.5) 0.5 (103.5)

ACP-BAC-ST-4KV1H 5 9.00E-05 (190.5) 0.5 (103.5)

DCP-BDC-ST-BUS1B

,DCP- BOC- ST - BUS 1A ACP-BAC-ST-1H1-2 3

3 1

9.00E-05 9.00E-05 9.00E-05 (190.5)

(190.5)

(190.5) 0.5 0.5 0.5 (103.5)

(103.5)

(103.5)

LPI-MDP-FR-A24HR 4 7.20E-04 (159.5) 0.5 (108.0)

CPC-MDP-FR-CCA24 2 7.20E-04 (159.5) 0.5 (108.0)

LPI-MDP-FR-B24HR 4 7.20E-04 (159.5) 0.5 (108.0)

HPI-XHE-FO-UN2S3 18 4.40E-02 ( 62.5) 0.6 (110.0)

AFW-MDP-FS-FW3B 23 6.30E-03 ( 99.0) 0.6 (112.0)

AFW-MDP-FS-FW3A 24 6.30E-03 ( 91J.O) 0.5 (112.0)

AFW-MDP-FS 26 6.30E-03 ( 99.0) 0.5 (112.0)

LPI-MOV-PG-1890C 2 4. 40E-04 ( 170. 0) 0.5 (114.0)

BETA-AFW 2S 5.60E-02 ( 59.0) 0.4 (115.0)

CPC-MDP-FS-SW10B 3 8.00E-03 ( 97.0) 0.4 (118.0)

SGTR-SGSRV-ODMD2 6 1.50E-01 ( 38.6) 0.4 (117.0)

AFW-CKV-FT-CV157 1 1.00E-04 (181.5) 0.4 (122.0)

ACC-CKV-FT-CV145 1 1.00E-04 (181.5) 0.4 (122.0)

ACC-CKV-FT-CV128 1 1.00E-04 (181.5) 0.4 (122.0)

HPI-CKV-FT-CV410 6 1.00E-04 (181.5) 0.4 (122.0)

HPI-CKV-FT-CV25 5 1.00E-04 (181.5) 0.4 (122.0)

HPI-CKV-FT-CV225 5 1.00E-04 (181.5) 0.4 (122.0)

ACC-CKV-FT-CV130 1 1.00E-04 (181.5) 0.4 (122.0)

AFW-CKV-FT-CV172 1 1.00E-04 (181.5) 0.4 (122.0)

ACC-CKV-FT-CV147 1 1.00E-04 (181.5) 0.4 (122.0)

RMT-CCF-FA-MSCAL 2 3.00E-04 (172.0) 0.4 (127.0)

DGN-FTO 1460 3.39E-02 ( 72.0) 0.4 (128.0) l:rj BETA-LP I 2 1.50E-01 ( 38.5) 0.4 (129.0)

MSS-CKV-FT-SGDHR 1 2.00E-03 (138.5) 0.4 (130.0)

.....I HPI-XHE-FO-ALTIN 2 5.70E-03 (104.0) 0.4 (131.0) tC CPC-MDP-FR-SWB24 1 3.80E-03 (110.5) 0.4 (132.5)

CPC-MDP-FR-SWA24 3 3.80E-03 (110.5) 0.4 (132.5)

CPC-CKV-OO-CV113 1 1.00E-03 (152.0) 0.4 (137.0)

LPI-CKV-OO-CV58 2 1.00E-03 (152.0) 0.4 (137.0)

LPI-CKV-0J)-CV50 2 1.00E-03 (152.0) 0.4 (137.0)

AFW-CKV-OO-CV172 23 1.00E-03 (152.0) 0.4 (137.0)

AFW-CKV-OO-CV157 7 1.00E-03 (152.0) 0.4 (137.0)

HPI-CKV-OO-CV258 2 1.00E-03 (152.0) 0.4 (137.0)

AFW-CKV-OO-CV142 8 1.00E-03 (152.0) 0.4 (137.0)

MSS-XHE-FO-BLOCK 4 8.40E-02 ( 56.5) 0,3 (141.0)

AFW-TDP-FR-2P24H 23 1.20E-01 ( 45.0) 0.3 (142.0)

AFW-TDP-MA-U2FW2 20 1.00E-02 ( 95.5) 0.3 (143.5)

AFW-TDP-MA-FW2 97 1.00E-02 ( 95.5) 0.3 (143.5)

ACC-MOV-PG-1865C 1 6.50E-04 (162.5) 0.3 (145.5)

ACC-MOV-PG-1885B 1 8.50E-04 (162.5) 0.3 (145.5)

AFW-XHE-FO-CST2 33 6.50E-02 ( 55.0) 0.2 (147.0)

AFW-XHE-FO-U1SBO 73 8.20E-02 ( 49.0) 0.2 (148.0)

RCP-LOCA-581-150 282 4.00E-03 (108.5) 0.2 (149.0)

PORV-NOT-BLK 10 8.50E-01 ( 9.0) 0.2 (150.0)

RCP-LOCA-467-150 262 1.27E-01 ( 42.0) 0.2 (151.0)

HPI-MDP-FS 1 4.00E-03 (108.5) 0.2 (152.0)

PPS-SOV-FT-1456 4 1.00E-03 (152.0) 0. 1 (154.0)

PPS-S0V-FT-1455C 4 1.00E-03 (152.0) 0 .1 (154.0)

PPS-SOV-FT 1 1.00E*03 (152.0) 0. 1 (154.0)

RCP-LOCA-183-210 282 1.81E-02 ( 84.5) 0.0 (158.0)

RCP-LOCA-1440-90 262 4.30E-03 (107.0) o.o (167.0)

RCP-LOCA-183-90 282 1.40E-02 ( 87.5) 0.0 (158.0)

AFW-TDP-FS-FW2 104 1.10E-02 ( 93.5) o.o (175.5)

AFW-TDP-FR-6HRU2 22 3.00E-02 ( 74.5) 0.0 (175 .. 5)

AFW-TDP-FR-2P6HR 92 3.00E-02 ( 74.5) 0.0 (175.5)

LPR-XHE-FO-HOTLG 2 4.00E-05 (199.5) 0. c. (175.5)

CPC-MDP-FR-SWA3H 2 4.80E-04 (169.0) 0.0 (175.5)

LPR-CCF-PG-SUUP 5 5. OOE-*05 (196.0) 0.0 (175.5)

SIS-ACT-FA-SI SB 8 1.60E-03 (144.0) o.o (175.5)

SIS-ACT-FA-SI SA 8 1.60E-03 (144.0) 0.0 (175.5)

CON-VFC-RP-COREM 6 2.00E-02 ( 82.0) 0.0 (175.5)

RWT-TNK-LF-RWST 5 2.70E-06 (207.0) o.o (175.5)

RMT-XHE-FO-MANS1 2 6.40E-02 ( 56.5) 0.0 (175.5)

BETA-STR 5 2.63E-01 ( 30.0) 0.0 (175.5)

RMT-ACT-FA-RMTSB 3 1.60E-03 (144.0) 0.0 (175.5)

RMT-ACT-FA-RMTSA 3 1.60E-03 (144.0) 0.0 (175.5)

K 16 6.00E-05 (195.0) 0.0 ( 175. 6)

IAS-CCF-LF-INAIR 3 2.70E-05 (205.0) o.o (175.5)

BETAsHPI 1 2.10E-01 ( 32.5) o.o (175.5)

RCS-PORV-OOMD 10 5.00E-01 ( 18.5) 0.0 (175.5)

HPI-XHE-FO-UN2S2 7 3.10E-01 ( 24.0) 0.0 (175.5)

HPI-XHE-FO-ALT 2 6.10E-01 ( 13.0) o.o (175.5)*

HP I -MOV-PG-1350 1 4.00E-05 (199.5) o.o (175.5)

PPS-MOV-00-1536 3 4.00E-02 ( 66.0) o.o (175.5)

PPS-MOV-00-1535 3 4.00E-02 ( 66.0) 0.0 (175.5)

PPS-MOV-FT-1536 15 4.00E-02 ( 66.0) o.o (175.5)

PPS-MOV-FT-1536 16 4.00E-02 ( 66.0) 0.0 (176.6)

PPS-MOV-FT 7 4.00E-02 ( 66.0) o.o (175.5)

PPS-MOV-FC-OPER 4 2.70E-03 (131.0) 0.0 (175.5) t,cj AFW-XHE-FO-U2SBO 4 7.50E-02 ( 50.0) 0.0 (175.5)

I I...:) HPI-UDP-FR-1A6HR 1 4.00E-04 (171.0) 0.0 (175.6) 0 HPI-MDP-FR-1A24H 2 1.60E-03 (144.0) o.o ( 175. 5)

OEP-DGN-FC-DG3U2 3 3.40E-02 ( 71. 0) 0.0 (175.5)

AFW-TNK-VF-CST 3 1.00E-06 (208.0) 0.0 (175.5)

CPC-XHE-FO-REALN 5 7.00E-02 ( 53.5) 0.0 (175.5)

AFW-TDP-FS-U2FW2 22 1.10E-02 ( 93.6) 0.0 ( 175. 5)

NOTW2 64 8.15E-01 ( 10.0)

CPC-STR-PG-3HR 1 9.00E-05 (190.5)

NOTQ 2307 9.73E-01 ( 8.0)

NOTL-S80U1U2 842 9.68E-01 ( 7.0)

NOTL-SBOU1 1316 9.93E-01 ( 5.0)

NOTDG-CCF 240 5.20E-01 ( 17. 0)

CPC-STR-PG-24H 1 7.20E-04 (159.5)

CPC-STR-PG-1HR 1 3.00E-05 (203.5)

USS-SRV-00-0DSRV 12 1.00E+OO ( 2.5)

MSS-SOV-00-0DADV 4 1.00E+OO ( 2.5)

UNIT2-LOW-POWER 20 3.50E-01 ( 23.0) sws~ccF-FT-3ABCD 3 6.30E-04 (165.0)

SGTR-SGSRV-ODMD1 8 1.00E+OO ( 2.5)

SGTR-SGADV-ODMD 4 1.00E+OO ( 2.5)

RCS-XHE-FO-DPRT7 15 2.BOE-02 ( 77. 0)

CPC-STR-PG-6HR 2 1.80E-04 (174.0)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY

INIT EVENT

  • E-T1

,IE-V-TRAIN-3 OCCUR FREQ (RANK) 2463 7.70E-02 ( 4.0) 1 4.00E-07 ( 13.0)

OF LOG RISK 12.8 4.6 (RANK)

( 1. 0)

( 3.0)

Y. 06/TE. 05*

1.19 1.18 Y. 95/TE. 95*

0 .. 99

1. 00 IE-V-TRAIN-1 1 4.00E-07. ( 13.0) 4.6 ( 3.0) 1. 16 1. 00 IE-V-TRAtN-2 1 4.00E-07 ( 13.0) 4.5 ( 3.0) 1. 16 1. 00 IE-S1 57 1.00E-03 ( 9.5) 0.8 ( 6.0) 1. 04 0.99 IE-A 49 5.00E-04 ( 11.0) 0.7 ( 8.0) 1. 06 1.01 IE-TN 1 5.90E+OO ( 2.0) 0.6 ( 7.0) 1.01 1.01 IE-T 14 6.60E+OO ( 1.0) 0.4 ( 8.0)

IE-T7 39 1.00E-02 ( 6.0) 0.4 ( 9.0)

IE-T2 65 9.40E-01 ( 3.0) 0.0 ( 12.0)

IE-S2 13 1.00E-03 ( 9.5). 0.0 ( 12.0)

IE-T58 25 5.00E-03 ( 7.5) 0.0 ( 12.0)

IE-T5A 26 5.00E-03 ( 7.5) 0.0 ( 12.0)

IE-S3 20 1.30E-02 ( 5.0) 0.0 ( 12.0)

  • Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS NOT HELD CONSTANT

SURRY TOTAL CORE DAMAGE MODEL CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT SURRY-TOTAL WITH TOP EVENT FREQUENCY 3.30E-05 (THE FIRST COLUMN OF NUMBERS IS THE LI NE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 1805 10 1.17E-06 0.03537 BETA-3DG

  • IE-T1
  • NOTL-SBOU1U2
  • NOTQ
  • 3 NRAC-216M
  • 10
  • OEP-DGN-FS * /QS-SBO
  • 4 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

5 2589 4 8.43E-07 0.06092 IE-TN

  • K
  • R
  • z +

a 141 10 6.21E-07 0.07974 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 7 NOTW2
  • NRAC-7HR
  • OEP-DGN-FS-D001
  • OEP-DGN-FS-D002
  • 8 /QS-SBO
  • REC-XHE-FO-DGHWB

. +

9 140 10 6.21E-07 0.09857 /DGN-FTO IE-T1 NOTL-SBOU1

  • NOTQ
  • 10 NOTW2
  • NRAC-7HR
  • OEP-DGN-FS-0001
  • OEP-DGN-FS-D003

/QS-SBO REC-XHE-FO-DGHWB 11 12 2764 6 6.09E-07 0. 11703 IE-T7 .

MSS-SRV-00-0DSRV

+

  • PORV-BLK
  • RCS-XHE-FO-DPRT7
  • 13 REC-XHE-FO-DPRES
  • SGTR-SGSRV-ODMD1 +

IE-T1 NOTDG-CCF

  • NOTL-SBOU1 .*

14 15 142 10 5.77E-07 0.13453 BETA-2DG NOTQ

  • NOTW2 . NRAC-7HR
  • OEP-DGN-FS 16 17 2765 6 5.18E-07 0.15023

/QS-SBO IE-T7 REC-XHE-FO-DGHWB MSS-SRV-00-0DSRV

+

  • PORV-NOT-BLK . RCS-XHE-FO-DPRT7
  • REC-XHE-FO-DPRES * *SGTR-SGSRV-0DMD2 +

18 19 79 3 4.58E-07 0 .16410 BETA-2MOV . IE-S1

  • LPR-MOV-FT-1862A + .

tr1 NOTL-S80U1U2 NOTQ I

t..:>

20 21 1806 9 4.54E-07 0.17786 BETA-308 NRAC-216M IE-T1 OEP-DGN-FS

  • QS-SBO .

RCP-LOCA-750-90M" t..:> REC-XHE-FO-DGHWS +

22 +

BETA-LPI IE-S1

  • LPI -MDP-FS 23 24 64 65 3

2 4.50E-07 4.40E-07 0.19150 0.20484 IE-S1 .*

LPI-MOV-PG-1890C +

25 2773 1 4.00E-07 0.21697 IE-V-TRAIN-2 +

26 2772 1 4.00E-07 0.22910 IE-V-TRAIN-1 +

27 2774 1 4.00E-07 0.24123 IE-V-TRAIN-3 +

HPI-XHE-FO-FDBLD . IE-T2 +

28 29 2618 144 4

10 3.60E-07 3.39E-07 0.25215 0.26242 AFW-PSF-FC-XCONN

/DGN-FTO .* AFW-XHE-FO-UNIT2 IE-T1 .* NOTL-SBOU1 . NOTQ 30 NOTW2

  • NRAC-7HR
  • OEP-DGN-FR-6HD01
  • OEP-DGN-FS-0003
  • REC-XHE-FO-DGHWB +

31 32 146 10 3.39E-07 0.27269

/QS-SBO

/DGN-FTO .*

IE-T1

  • NOTL-SBOU1
  • NOTQ
  • 33 NOTW2
  • NRAC-7HR
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-0001
  • 34 /QS-SBO
  • REC-XHE-FO-DGHWB +

IE-T1

  • NOTL-SBOU1
  • NOTQ
  • 35 36 145 10 3.39E-07 0.28296 /DGN-FTO NOTW2
  • NRAC-7HR . OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG01
  • 37 /QS-SBO
  • REC-XHE-FO-DGHWB +

NOTQ 38 39 143 10 3.39E-07 0.29323 /DGN-FTO NOTW2 IE-T1 NRAC-7HR NOTL-S80U1

  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02 .*

REC-XHE-FO-DGHWB +

40 41 1 2 3.25E-07 0.30308

/QS-SBO ACC-MOV-PG-1865C .

IE-A +

42 2 2 3.25E-07 0.31293 ACC-MOV-PG-1865B

  • IE-A +

43 147 9 3.08E-07 0.32227 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 44 NOTW2
  • NRAC-7HR
  • OEP-DGN~FR-6HDG1
  • OEP-DGN-FR-6HDG3
  • 45 /QS-SBO +

46 77 2 3.00E-07 0.33136 IE-S1

  • RMT-CCF-FA-MSCAL +

47 48 50 78 3

3 2.64E-07 2.64E-07 0.33937 0.34737 BETA-2MOV BETA-2MOV HPI-MOV-FT IE-S1 IE-S1

... IE-S1 +

LPR-MOV-FT-1860A +

LPR-MOV-FT-1890A +

49 80 3 2.84E-07 0.35538 BETA-2MOV .

BETA-2MOV HPI -MOV-FT HPI-XHE-FO-ALTS3 IE-S3 +.

50 51 120 341 4

9 2.54E-07 2.43E-07 0.36308 0.37046 AFW-XHE-FO-CST2 . /DGN-FTO . IE-T1 . NOTQ 52 NRAC-1HR . OEP-DGN-FS-DG01 OEP-DGN-FS-DG03 QS-SBO

  • 53 REC-XHE-FO-DGEN +

54 340 9 2.43E-07 0.37784 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 55 NRAC-1HR
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • QS-SBO
  • 58 57 2575 6 2.42E-07 0.38519 REC-XHE-FO-DGEN IE-T

+

. K

  • PPS-MOV-FC-1535
  • PPS-MOV-FC-1538 .

58 PPS-MOV-FT-1535

  • R +

AFW-XHE-FO-UNIT2 HPI-XHE-FO-FDBLD

  • IE-T2 +

59 ao 2819 4 2.40E-07 0.39247 AFW-CCF-LK-STMBD

  • IE-T1 NOTL-SB0U1 . NOTQ
  • 81 148 10 2.30E-07 0.39944 /DGN-FTO NOTW2
  • NRAC-7HR .

OEP-DGN-FS-DG01

  • OEP-DGN-FS-DG02 "

REC-XHE-FO-DGHWB 82 63 149 10 2.30E-07 0.40640 QS-SBO

/DGN-FTO .*

IE-T1

+

.* NOTL-S80U1 .* NOTO

  • 84 NOTW2
  • NRAC-7HR OEP-DGN-FS-DG01 OEP-DGN-.FS-DG03
  • 55 86 24 3 2.29E-07 0.41334 QS-SBO BETA-2MOV .
  • REC-XHE-FO-DGHWB IE-A

+

  • LPR-MOV-FT-1882A +

BETA-2DG IE-T1 NOTDG-CCF

  • 67 68 342 9 2.26E-07 0.42020 AFW-XHE-FO-CST2 NOTO
  • NRAC-1HR .* OEP-DGN-FS .* 08-SBO
  • 89 REC-XHE-FO-DGEN +

.,. . LPI -MDP-FS +

70 71 7

2639 3

4 2.25E-07 2.23E-07 0.42702 0.43379 BETA-LP I AFW-PSF-FC-XCONN IE-A AFW-XHE-FO-UNIT2 . IE-T2

  • PPS-XHE-FO-PORVS +.

tx1 I

72 2766 7 2.21E-07 0.44049 IE-T7 RCS-XHE-FO-DPRT7 REC-XHE-FO-DPRES .

MSS-SOV-00-0DADV

  • MSS-XHE-FO-BLOCK SGTR-SGADV-ODMD +
  • PORV-NOT-BLK N

73

  • w 74 75 8

1915 2

10 2.20E-07 2.19E-07 0.44716 0.45379 IE-A BETA-3DG LPI-MOV-PG-1890C +

IE-T1

  • NOTL-SB0U1U2 . NOTQ ,.

76 NRAC-258M * /0

  • OEP-DGN-FS " /QS-SBO 77 78 150 10 2.14E-07 0.46027 RCP-LOCA-467-150
  • BETA-2DG *.

REC-XHE-FO-DGHWS +

IE-T1 . NOTDG-CCF . NOTL-SB0U1 .

79 NOTQ NOTW2

  • NRAC-7HR
  • OEP-D0N-FS
  • 80 QS-SBO
  • REC-XHE-FO-DGHWB +

81 2576 4 2.02E-07 0.46639 HPI-MOV-FT-1350

  • IE-T
  • K
  • R +

82 151 10 1.85E-07 0.47199 /DGN-FTO

  • IE-T1
  • NOTQ
  • NOTW2 NRAC-7HR OEP-DGN-FR-6HDG1
  • OEP-D8N-FR-6HDG2
  • 83 84 /QS-SBO .
  • REC-XHE-fO-DGHWB +

NOTL-SBOU1 NOTQ .*

85 86 742 12 1.77E-07 0.47735 /DGN-FTO NRAC-218M .* /0 IE-T1 OEP-DGN-FS-D801 . OEP-DGN-FS-D803 87 88 741 12 1.77E-07 0.48270

/QS-SBO

/DGN-FTO

.* IE-T1 .

RCP-LOCA-750-90M,. REC-XHE-FO-DGHWS N0TL-S80U1 REC-XHE-FO-SCOOL NOTQ

+

89 NRAC-218M /0

  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-D802 90 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

91 92 152 10 1.69E-07 0.48783 /DGN-FTO NOTW2 .

  • IE-T1 NRAC-7HR .

REC-XHE-FO-DGHWB +

NOTL-SBOU1 OEP-DGN-FS-DG02 .* NOTQ OEP-DGN-MA-DG01 93 /QS-SBO

  • 0.49297 /DGN-FTO IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 94 95 155 10 1.69E-07 NOTW2 .* NRAC-7HR
  • OEP-DGN-FS-D803
  • OEP-DGN-MA-D801
  • 98 /QS-SBO
  • REC-XHE-FO-DGHWB +

97 154 10 1.69E-07 0.49810 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 98 NOTW2
  • NRAC-7HR
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG03 *

/QS-SBO REC-XHE-FO-DGHWB +

99 100 153 10 1.69E-07 0.5032* /DGN-FTO .* IE-T1

  • NOTL-SBOU1
  • NOTQ
  • 101 102 NOTW2

/QS-SBO .* NRAC-7HR

  • REC-XHE-FO-DGHWB +

OEP-DGN-FS-DG01

  • OEP-DGN-UA-D802
  • 103 743 12 1.64E-07 0.50822 BETA-2DG IE-T1

" NRAC-216M " NOTDG-CCF " NOTL-S80U1 "

104 NOTQ " RCP-LOCA-750-90M" " 10REC-XHE-FO-DGHWS "* OEP-DGN-FS "

REC-XHE-FO-SCOOL +

105 /QS-SBO

  • 106 300 10 1.61E-07 0.51311 BETA-3DG
  • IE-T1
  • NOTL-S80U1U2
  • NOTQ
  • 107 NRAC-7HR " NSLOCA " 10
  • OEP-DGN-FS
  • 108 /QS-SBO
  • REC-XHE-FO-DGHWB +

51 4 1.61E-07 0.51800 BETA-2MOV

  • HPI -MOV-FT " HPI-XHE-FO-ALT
  • IE-S1 +

109 HPI-XHE-FO-ALT IE-S2 +

110 107 4 1.61E-07 0.52288 BETA-2MOV

  • 111 121 4 1.51E-07 0.52746 BETA-2MOV " HPI -MOV-FT
  • HP1-XHE-F0-UN2S3 " IE-S3 +

112 113 22 2640 2

4 1.50E-07 1.49E-07 0.53200 0.53652 IE-A AFW-CCF.-LK-STMBD RMT-CCF-FA-MSCAL AFW-XHE-FO-UNIT2 ..

+

IE-T2

  • PPS-XHE-FO-PORVS +

114 617 10 1.40E-0.7 0.54075 /DGN-FTO " IE-T1 NOTL-S80U1 " NRAC-1HR "

115 OEP-DGN-FS-DG01

  • OEP-DGN-FS-DG02
  • PPS-SOV-00-1456
  • IQS-SBO
  • 116 REC-XHE~FO-DGEN " SBO-PORV-DMD +

117 619 10 1.40E-07 0.54498 /DGN-FTO " IE-T1

  • NOTL-SBOU1
  • NRAC-1HR
  • 118 OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • PPS-S0V-00-1455C * /QS-SBO
  • REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

119 120 121 620 10 1.40E-07 0.54921 /DGN-FTO OEP-DGN-FS-DG01

  • IE-T1
  • OEP-DGN-FS-DG03 NOTL-SBOU1
  • NRAC-1HR PPS-S0V-00-1455C * /QS-SBO .

122 REC-XHE-FO-DGEN

  • SBO-PORV-DMD +

123 618 10 1.40E-07 0.55344 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NRAC-1HR
  • 124 OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03
  • PPS-SOV-00-1456 * /QS-SBO
  • 125 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

126 345 9 1.33E-07 0.55747 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 127 NRAC-1HR
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG01
  • QS-SBO
  • 128 REC-XHE-FO-DGEN +

J:zj IE-T1 NOTQ .*

I 129 344 9 1.33E-07 0.56149 AFW-XHE-FO-CST2 NRAC-1HR

  • /DGN-FTO
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG03 .* QS-SBO N)

.i:::,.

130 131 REC-XHE-FO-DGEN +

132 346 9 1.33E-07 0.56552 AFW-XHE-FO-CST2 " /DGN-FTO " IE-T1 " NOTQ "

133 NRAC-1HR

  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02
  • QS-SBO
  • 134 REC-XHE-FO-DGEN +

135 343 9 1.33E-07 0.56955 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ *

'136 NRAC-1HR

  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • QS-SBO
  • 137 REC-XHE-FO-DGEN +

138 25 3 1.32E-07 0.57355 BETA-2MOV

  • IE-A
  • LPR-MOV-FT-1890A +

139 23 3 1.32E-07 0.57755 BETA-2MOV

  • IE-A
  • LPR-MOV-FT-1860A +

140 622 10 1.30E-07 0.58148 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-SBOU1
  • 141 NRAC-1HR
  • OEP-DGN-FS
  • PPS-S0V-00-1455C
  • IQS-SBO "

142 REC-XHE-FO-DGEN

  • SBO-PORV-DMD +

143 621 10 1.30E-07 0.58542 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-S80U1
  • 144 NRAC-1HR " OEP-DGN-FS
  • PPS-SOV-00-1456 * /QS-SBO
  • 145 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

146 158 10 1.25E-07 0.58921 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • NRAC-7HR
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG01
  • 147 148 NOTW2 QS-SBO .

REC-XHE-FO-DGHWB +

149 157 10 1.25E-07 0.59301 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • 150 NOTW2
  • NRAC-7HR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG03
  • 151 QS-SBO " REC-XHE-FO-DGHWB +

NOTL-S80U1 NOTQ

  • 152 153 156 10 1.25E-07 0.59681 /DGN-FTO NOTW2 .* IE-T1 NRAC-7HR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02
  • 154 QS-SBO
  • REC-XHE-FO-DGHWB +

, .155 159 10 1.25E-07 0.60061 /DGN-FTO

  • IE-T1
  • NOTQ
  • 156 NOTW2
  • NRAC-7HR
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • 157 QS-SBO
  • REC-XHE-FO-DGHWB +

1.15E-07 0.60410 BETA-3DG

  • IE-T1
  • NOTL-S80U1U2
  • NRAC-1HR
  • 710 9

159 180 181 162 709 9 1.15E-07 0.80759 OEP-DGN-FS SBO-PORV-DMD BETA-3DG OEP-DGN-FS

+

PPS-SOV-00-1456 l*E-T1

  • /QS-SBO
  • NOTL-S80U1U2 PPS-S0V-00-1455C * /QS-SBO NRAC-1HR REC-XHE-FO-DGEN REC-XHE-FO-DGEN 183 SBO-PORV-DMD +

NOTL-S80U1 NOTQ 184 165 180 9 1.14E-07 0.81105 /DGN-FTO NOTW2 IE-T1 NRAC-7HR

  • OEP-DGN-FR-6HDG1 .

OEP-DGN-FR-6HDG3

  • 168 167 2745 3 1.02E-07 0.61414 QS-SBO IE-T7 .

+

K . R +

188 52 2 1.00E-07 0.61717 HPI-CKV-FT-CV25

  • IE-S1 +

169 108 2 1.00E-07 0.62020 HPI-CKV-FT-CV225

  • IE-S2 +

170 54 2 1.00E-07 0.62323 HPI-CKV-FT-CV410

  • IE-S1 +

171 53 2 1.00E-07 0.82627 HPI-CKV-FT-CV225

  • IE-S1 +

172 746 12 9.63E-08 0.62919 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • 173 NRAC-216M * /0
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • 174 /QS-SBO . RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS *

. REC-XHE-FO-SCOOL +

175 745 12 9.63E-08 0.63211 /DGN-FTO

  • IE-T1
  • NOTL-S80U1 NOTQ
  • OEP-DGN-FR-6HDG1 OEP-DGN-FS-DG02 176 177 NRAC-216M

/QS-SBO .* 10

  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL

+

178 747 12 9.63E-08 0.63503 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • OEP-DGN-FR-6HDG1 OEP-DGN-FS-DG03 179 180 NRAC-216M

/QS-SBO 10

  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS .*

REC-XHE-FO-SCOOL

+

181 744 12 9.63E-08 0.83795 /DGN-FTO

  • NOTQ
  • 182 NRAC-216M * /0
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG01 *
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

183 184 182 10 9.24E-08 0.64075

/QS-SBO

/DGN-FTO

  • NOTQ
  • trj 185 NOTW2
  • NRAC-7HR
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-MA-DG01
  • I N) 186 /QS-SBO
  • REC-XHE-FO-DGHWB +

<:J1 187 161 10 9.24E-08 0.64355 /DGN-FTO IE-T1

  • NOTL-SB0U1 NOTQ 188 NOTW2
  • NRAC-7HR
  • OEP-DGN-FR-6HDG1 OEP-DGN-MA-DG02
  • 189 /QS-SBO
  • REC-XHE-FO-DGHWB +

190 1918 9 8.51E-08 0.64613 BETA-3DG

  • IE-T1
  • NOTL-S80U1U2
  • NOTQ
  • 191 NRAC-258M
  • OEP-DGN-FS
  • QS-SBO
  • RCP-LOCA-487-150
  • 192 REC-KHE-FO-DGHWS +

193 749 12 8.48E-08 0.64870 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 194 NOTQ
  • NRAC-218M
  • 10
  • OEP-DGN-FS-DG01
  • 195 OEP-DGN-FS-DG02 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

IE-T1

  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 198 197 748 12 8.48E-08 0.85127 /DGN-FTO NOTQ
  • NRAC-218M

. 10

  • OEP-DGN-FS-DG01
  • 198 OEP-DGN-FS-DG03 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

199 185 10 8.47E-08 0.65384 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 200 NOTW2
  • NRAC-7HR
  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG03
  • 201 /QS-SBO
  • REC-XHE-FO-DGHWB +

202 183 10 8.47E-08 0.85841 /DGN-FTO " IE-T1

  • NOTL-S80U1
  • NOTQ
  • 203 NOTW2
  • NRAC-7HR
  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG02
  • 204 /QS-SBO
  • REC-XHE-FO-DGHWB +

205 184 10 8.47E-08 0.65897 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • 208 207 NOTW2

/QS-SBO .

  • NRAC-7HR
  • OEP-CRB-FT-15J3 REC-XHE-FO-DGHWB +
  • OEP-DGN-FS-DG01 IE-S2

+

208 109 4 8. 18E-08 0.88148 BETA-2MOV

  • HP1-XHE-FO-UN2S2
  • 209 210 347 8 8.05E-08 0.88390 AFW-XHE-FO-CST2 NRAC-1HR
  • /DGN-FTO
  • IE-T1
  • OEP-DGN-FR-BHDG1
  • OEP-DGN-FR-8HDG3

.* NOTQ QS-SBO

+

211 750 12 7.88E-08 0.88829 BETA-2DG

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTDG-CCF
  • NOTL-S80U1
  • NOTQ
  • NRAC-218M
  • 10
  • 212 213 OEP-DGN-FS . /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +.

214 2733 5 7.81E-08 0.88885 BETA-2MOV

  • HPI-XHE-FO-ALTS3
  • IE-T7

215 RCS-XHE-FO-DPT7D +

216 '167 10 7.70E-08 0.67099 /DGN-FTO

  • IE-T1
  • NOTQ
  • 217 NOTW2
  • NRAC-7HR
  • OEP-DGN-FR-8HDG1
  • OEP-DGN-MA-DG03
  • 218 /QS-SBO
  • REC-XHE-FO-DGTMB +

219 168 9 7.70E-08 0.67332 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 220 NOTW2
  • NRAC-7HR
  • OEP-CRB-FT-15H3
  • OEP-DGN-FR-6HDG3
  • 221 /QS-SBO +

222 166 10 7.70E-08 0.67566 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • NOTW2
  • NRAC-7HR
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-MA-D801 223 224 /QS-SBO
  • REC-XHE-FO-DGTMB +
  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 225 226 169 9 7.70E-08 0. 67799 /DGN-FTO NOTW2 . NRAC-7HR
  • OEP-CRB-FT-15J3
  • OEP-DGN-FR-6HDG1
  • 227 /QS-SBO +

7.24E-08 0.68019 AFW-XHE-FO-CST2 " /DGN-FTO

  • IE-T1
  • NOTQ
  • 228 348 9 OEP-DGN-FR-6HDG2
  • QS-SBO
  • 229 NRAC-1HR
  • OEP-DGN-FR-6HDG1
  • 230 REC-XHE-FO-DGEN +.

751 11 6.87E-08 0.68227 /DGN-FTO IE-T1

  • NOTL-S80U1
  • NOTQ
  • 231 OEP-DGN-FS-0002
  • QS-SBO
  • 232 NRAC-216M
  • OEP-DGN-FS-0001
  • 233 RCP-LOCA-750-90M" REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

234 752 11 6.87E-08 0.68435 /DGN-FTO

  • IE-T1
  • NRAC-216M
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03
  • QS-SBO
  • 235 REC-XHE-FO-SCOOL +

RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS
  • 236 237 170 10 8.83E-08 0.68842 /DGN-FTO NOTW2
  • IE-T1
  • NRAC-7HR NOTL-SB0U1 OEP-DGN-FR-6HDG1 .* NOTQ OEP-DGN-FR-6HDG2 *

~

238 239 240 2577 4 6.73E-08 0.68846 QS-SBO IE-T ..

  • REC-XHE-FO-DGHWB K

.* PPS-XHE-FO-EMBOR

+ .. R NOTQ

+

I 241 351 9 6.64E-08 0.69048 AFW-XHE-FO-CST2 . /DGN-FTO IE-T1 N)

~ 242 NRAC-1HR OEP-DGN-FS-0801

  • OEP-DGN-MA-0003
  • QS-SBO 243 6.84E-08 0.89249 REC-XHE-FO-DGEN +

AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1 . NOTQ
  • 244 350 9 OEP-DGN-MA-0001
  • QS-SBO
  • 245 NRAC-1HR
  • OEP-DGN-FS-0002
  • 246 REC-XHE-FO-DGEN +

247 352 9 8.84E-08 0.89450 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • NRAC-1HR
  • OEP-DGN-FS-0003 * .OEP-DGN-MA-D001
  • QS-SBO
  • 248 249 REC-XHE-FO-DGEN +

349 9 6.64E-08 0.89852 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 250 OEP-DGN-MA-DG02
  • QS-SBO
  • 251 NRAC-1HR
  • OEP-DGN-FS-DG01
  • 252 REC-XHE-FO-DGEN +

753 11 6.57E-08 0.69851 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 253 OEP-DGN-FR-8HDG1
  • OEP-DGN-FR-8HDG3
  • 254 NRAC-216M
  • 10
  • 255 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-SCOOL +

256 1807 10 6.53E-08 0.70049 BETA-3DG

  • IE-T1
  • NOTQ
  • 257 NRAC-201M
  • 0
  • OEP-DGN-FS * /QS-SBO
  • 258 RCP-LOCA-7J0-90M
  • REC-XHE-FO-DGHWS +

IE-T1

  • NOTDG-CCF
  • NOTL-SBOU1
  • 259 260 754 11 6.39E-08 0.70243 BETA-2DG NOTQ .

NRAC-216M

  • OEP-DGN-FS
  • QS-SBO
  • 281 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

6.30E-08 0.70434 AFW-MDP-FS

  • AFW-TDP-FR-2P24H
  • AFW-XHE-FO-UNIT2
  • BETA-AFW
  • 262 2641 6 263 IE-T2
  • PPS-XHE-FO-PORVS +

301 9 8.28E-08 0.70824 BETA-3DG

  • IE-T1
  • NOTL-S80U1U2
  • NOTQ
  • 284 QS-SBO
  • 265 NRAC-7HR
  • NSLOCA
  • OEP-DGN-FS
  • 286 REC-XHE-FO-DGHWB +

174 10 6.28E-08 o. 70814 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ *

,267 OEP-DGN-MA-0001

  • 268 NOTW2
  • NRAC-7HR
  • OEP-DGN-FS-DG03
  • 269 QS-SBO
  • REC-XHE-FO-DGHWB +

171 10 6.28E-08 0.71004 /DGN-FTO IE-T1

  • NOTL-S80U1
  • NOTQ
  • 271 272 273 173 10 6. 26E-*06 0.71194 NOTW2 QS-SBO

/DGN-FTO

  • NRAC-7HR
  • REC-XHE-FO-DGHWB
  • IE-T1

+

OEP-DGN-FS-DG01 NOTL-S80U1

  • NOTQ OEP-DGN-MA-DG02
  • 274 NOTW2
  • NRAC-7HR
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG03
  • 275 QS-SBO
  • REC-XHE-FO-DGHWB +

276 172 10 6.26E-08 0.71384 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 277 NOTW2
  • NRAC-7HR
  • OEP-DGN-FS-DG02
  • OEP-DGN-MA-DG01
  • 278 279 2642 5 6.09E-08 0.71568 QS-SBO AFW-PSF-FC-XCONN
  • REC-XHE-FO-DGHWB
  • AFW-XHE-FO-UNIT2

+

IE-T2

  • PPS-MOV-FC-1535
  • 280 PPS-MO\J-FT-1535 +

281 2843 5 6.09E-08 o. 71753 AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2
  • IE-T2
  • PPS-MOV-FC-1536
  • 282 PPS-MOV-FT-1536 +

283 123 3 5.72E-08 0.71927 HPI-CKV-FT-CV25

  • HPI-XHE-F0-UN2S3
  • IE-S3 +

284 122 3 5.72E-08 0.72100 HPI-CKV-FT-CV410

  • HP1-XHE-FO-UN2S3
  • 1E-*s3 +

285 353 9 5.62E-08 0.72270 AFW-TDP-FS-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 286 NRAC-HALFHR
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • QS-SBO
  • 287 REC-XHE-FO-DGEN +

288 354 9 5.62E-08 0.72441 AFW-TDP-FS-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 289 NRAC-HALFHR
  • OEP-DGN-FS-0001
  • OEP-DGN-FS-0003
  • QS-SBO
  • 290 REC-XHE-FO-DGEN +

291 2746 3 5.40E-08 0.72604 AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2
  • IE-T7 +

292 755 12 5.26E-08 0.72764 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 293 NRAC-216M
  • 10
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG2
  • 294 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

295 355 9 5.22E-08 0.72922 AFW-TDP-FS-FW2

  • BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • 296 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS
  • QS-SBO
  • l:7j 297 REC-XHE-FO-DGEN +

N)

I

-.:i 298 299 623 10 5. 16E-08 0.73079 /DGN-FTO OEP-DGN-FS-DG01 IE-T1 OEP-DGN-FS-DG03 .* NOTL-SBOU1 PPS-S0V-00-1455C *

  • NRAC-1HR QS-SBO REC-XHE-FO-DGEN SBO-PORV-DMD +

300 301 625 10 5. 16E-08 0.73235 /DGN-FTO .* IE-T1

  • NOTL-SB0U1
  • NRAC-1HR
  • 302 OEP-DGN-FS-D801
  • OEP-DGN-FS-D802
  • PPS-S0V-00-1455C
  • QS-SBO
  • 303 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

304 626 10 5.16E-08 0.73391 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 305 OEP-D8N-FS-DG01
  • OEP-DGN-FS-D802
  • PPS-SOV-00-1456 A QS-SBO
  • 306 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

307 624 10 5. 16E-08 0.73548 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 308 OEP-D8N-FS-DG01
  • OEP-DGN-FS-D803
  • PPS-SOV-00-1456
  • QS-SBO
  • 309 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

310 357 9 5.11E-08 0.73703 AFW-TDP-MA-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 311 NRAC-HALFHR
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • QS-SBO
  • 312 313 356 9 5.1iE-08 0.73858 REC-XHE-FO-DGEN AFW-TDP-MA-FW2

+

  • /DGN-FTO
  • IE-T1 NOTQ .

314 NRAC-HALFHR

  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03 QS-SBO
  • 315 REC-XHE-FO-DGEN +..

316 6 2 5.00E-08 0.74009 ACC-CKV-FT-CV130 IE-A +

317 4 2 5.00E-08 0.74161 ACC-CKV-FT-CV147 IE-A +

318 3 2 5.00E-08 0.74312 ACC-CKV-FT-CV128

  • IE-A +

319 320 81 5

2 2

5.00E-08 5.00E-08 0.74464 0.74616 IE-S1 ACC-CKV-FT-CV145 ..

  • LPR-CCF-PG-SUMP IE-A

+

+

IE-T1 NOTO' 321 322 37* 9 4.95E-08 0.74768 AFW-TDP-FR-2P6HR NRAC-6HR-AVG . /DGN-FTO OEP-D8N-FS-DG01 . OEP-DGN-FS-DG03 . QS-SBO REC-XHE-FO-DGEN + .. . .

323 32* 376 9 4.96E-08 0.7.916 AFW-TDP-FR-2P6HR /DGN-FTO IE-T1 NOTO .

325 NRAC-6HR-AVG OEP-DGN-FS-DG01 OEP-DGN-FS-DG02

  • QS-SBO 326 REC-XHE-FO-DGEN +

327 758 12 4.82E-08 0.75062 /DGN-FTO NRAC-216M .. IE-T1 10

.. NOTL-SB0U1 OEP-DGN-FS-DG03

. NOTO OEP-DGN-MA-DG01 ....

328 329 /OS-SBC *. RCP-LOCA-750-90M" . REC-XHE-FO-DGHWS" NOTL-SB0U1 . REC-XHE-FO-SCOOL NOTO .

+

330 331 759 12 4.82E-08 0.75208 /DGN-FTO NRAC-216M . I E-T.1 10

. OEP-DGN-FS-DG02

  • OEP-.DGN-MA-DG01 *

/OS-SBO

  • RCP-LOCA-750*90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

332 NOTL-SB0U1

  • NOTQ
  • 333 756 12 4.82E-08 0.75354 /DGN-FTO
  • IE-T1
  • OEP-DGN-MA-DG02
  • 334 NRAC-216M .
  • 10
  • OEP-DGN-FS-DG01
  • REC-XHE-FO-DGHWS . REC-XHE-FO-SCOOL .

+

335 757 12 4.82E-08 0.75500

/QS-SBO

/DGN-FTO

  • RCP-LOCA-750*90M" IE-T1 . NOTL-SBOU1 . NOTQ 338 OEP-DGN-FS-0801
  • OEP-DGN-MA-DG03
  • 337 NRAC-218M
  • 10
  • RCP-LOCA-750-90M
  • .. REC-XHE-FO-DGHWS ". REC-XHE-FO-SCOOL +

338 339 828 10 4.80E-08 0.75848

/QS-SBO BETA-2DG . IE-T1 . NOTDG-CCF . NOTL-S80U1

  • NRAC-1HR
  • OEP-DGN-FS PPS-SOV-00-1458 QS-SBO
  • 340 341 REC-XHE-FO-DGEN BETA-2DG SBO-PORV-DMD IE-T1

+

. NOTDG-CCF

  • NOTL-SB0U1 .

342 627 10 4.80E-08 0.75791 QS-SBO

  • 343 NRAC-1HR " OEP-DGN-FS
  • PPS-S0V-00-1455C
  • 344 REC-XHE-FO-DGEN
  • SBO-PORV-DMD .

+

IE-T1 . NOTDG-CCF .

345 362 9 4.75E-OB 0.75935 AFW-TDP-MA-FW2 NOTQ BETA-2DG NRAC-HALFHR

  • OEP-DGN-FS . QS-SBO
  • 346 347 4.65E-08 0.76076 REC-XHE-FO-DGEN BETA-2MOV

+

. HPI-MOV-FT . HPI-XHE-F0-UN2S3

  • IE-T7 .

348 2734 5 349 RCS-XHE-FO-DPT7D +

783 12 4.62E-08 0.76216 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • 350
  • OEP-DGN-FR-6HDG1
  • 351 NOTQ
  • NRAC-216M
  • 10
  • /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

t?1 I

352 353 762 12 4.62E-08 0.78357 OEP-DGN-FS-DG03

/DGN-FTO

  • IE-T1 . MCW-CCF-VF-SBO .
  • NOTL-SB0U1 *

.OEP-DGN-FR-6HDG1

  • t--.:1 Oo 354 355 NOTQ OEP-DGN-FS-DG02 .
  • NRAC-216M

/QS-SBO .

  • 10 RCP-LOCA-750-90M" REC-XHE-FO-DGHWS +.

761 12 4.62E-08 0.76497 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-S80U1 356
  • OEP-DGN-FR-6HD83
  • 357 NOTQ
  • NRAC-216M * /0 OEP-DGN-FS-DG01 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

358 IE-T1

  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 359 780 12 4.62E-08 0.76837 /DGN-FTO
  • NOTQ
  • NRAC-216M
  • 10
  • OEP-DGN-FR-8HDG2
  • 360 381 OEP-DGN-FS-DG01 * /QS-SBO
  • RCP-LOCA-750-90M
  • NOTL-SB0U1 REC-XHE-FO-DGHWS NOTQ .

+

362 363 175 10 4.62E-08 0. 78777 /DGN-FTO NOTW2 .

  • IE-T1 NRAC-7HR . OEP-CRB-FT-15H3
  • OEP-DGN-FR-8HDG2
  • 364 /QS-SBO *. .

REC-XHE-FO-DGHWB + .

365 376 9 4.61E-08 0. 76917 AFW-TDP-FR-2P6HR NOTQ . BETA-2DG NRAC-8HR-AVG

  • IE-T1 OEP-DGN-FS NOTDG-CCF QS-SBO .

388 367 REC-XHE-FO-DGEN +

. IE-T1 . NOTL-SB0U1U2 . NRAC-1HR .

368 389 711 9 4.28E-08 0.77048 BETA-3DG OEP-DGN-FS . PPS-SOV-00-14550

  • QS-SBO
  • REC-XHE-FO-DGEN 370 SBO-PORV-DMD +

. . . NRAC-1HR .

371 712 9 4.28E-08 0.77175 BETA-3DG OEP-DGN-FS . IE-T1 PPS-SOV-00-1458 . NOTL-SB0U1U2 QS-SBO . REC-XHE-FO-DGEN .

372 373 2844 5 4.08E-08 0.77298 SBO-PORV-DMD AFW-CCF-LK-STMBD

+

  • AFW-XHE-FO-UNIT2
  • IE-T2 . PPS-MOV-FC-1536
  • 374 375 4.0SE-08 0.77421 PPS-MOV-FT-1538 AFW-CCF-LK-STMBD

+

  • AFW-XHE-FO-UNIT2 . IE-T2 . PPS-MOV-FC-1535 .

378 2845 5 377 PPS-MOV-FT-1535 .

+

LPR-XHE-FO-HOTLG +

378 379 82 55 2

2 4.00E-08 4.00E-08

0. 77543 0.77664 IE-S1 HPI-XVM-PG-XV24 . IE-S1 +

380 631 10 3.81E-08 o. 77779 /DGN-FTO .* IE-T1 OEP-DGN-MA-0801 .

  • NOTL-SBOU1 PPS-SOV-00-1458
  • NRAC-1HR
  • /QS-SBO 381 382 OEP-DGN-FS-DG03 REC-XHE-FO-DGEN . SBO-PORV-DMD +

383 384 385 388 838 833 10 10 3.81E-08 3.81E-08 0.77895 0.78010

/DGN-FTO

  • OEP-DGN-FS-DG01 REC-XHE-FO-DGEN

/DGN-FTO 1e;r1 OEP-DGN-MA-DG03 SBO-PORV-DMD IE-T1

+

NOTL-SB0U1 PPS-S0V-00-1455C * /QS-SBO NOTL-SB0U1

  • NRAC-1HR
  • NRAC-1HR 387 OEP-DGN-FS-DG01
  • OEP-DGN-MA-0603
  • PPS-SOV-00-1458 * /QS-SBO
  • 388 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

389 834 10 3.81E-08 0.78125 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NRAC-1HR
  • 390 OEP-DGN-FS-0803
  • OEP-DGN-MA-0801
  • PPS-S0V-00-1455C * /QS-SBO
  • 391 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

392 832 10 3.81E-08 0.78241 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR .*

393 OEP-DGN-FS-DG01

  • OEP-DGN-MA-DG02
  • PPS-SOV-00-1458 * /QS-880 394 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

395 835 10 3.81E-08 0.78358 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NRAC-1HR
  • 398 OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG02
  • PPS-SOV-00-1455C * /QS-880
  • 397 REC-XHE-FO-DGEN
  • SBO-PORV-DMD .

+

398 829 10 3.81E-08 0.78471 /DGN-FTO

  • IE-T1 NOTL-S80U1
  • NRAC-1HR
  • 399 OEP-DGN-FS-DG02
  • OEP-DGN-MA-D001
  • PPS-SOV-00-1458 * /QS-SBO
  • 400 401 630 10 3.81E-08 0.78587 REC-XHE-FO-DGEN

/DGN-FTO ..

  • SBO-PORV-DMD IE-T1 OEP-D0N-MA-DG01

+

  • NOTL-SBOU1
  • NRAC-1HR PPS-S0V-00-1455C * /QS-SBO 402 OEP-DGN-FS-DG02 403 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

404 768 11 3.75E-08 0.78700 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 405 NRAC-218M
  • OEP-D0N-FR-8HD01
  • OEP-DGN-FS-D002
  • QS-SBO
  • 406 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

407 408 767 11 3.75E-08 0.78814 /DGN-FTO NRAC-218M .

  • IE-T1 OEP-DGN-FR-8HDG2 .
  • NOTL-SBOU1 OEP-DGN-FS-DG01 .
  • NOTQ QS-SBO .*

tr::1 409 RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

I t,.:>

~

410 411 765 11 3.75E~08 0.78928 /DGN-FTO NRAC-216M .* IE-T1 OEP-DGN-FR-8HDG1 NOTL-SBOU1 OEP-DGN-FS-DG03 .

  • NOTQ QS-SBO ft 412 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

413 764 11 3.75E-08 0.79041 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 414 NRAC-216M
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • QS-880
  • 415 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

418 361 9 3.62E-08 0.79151 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 417 NRAC-1HR
  • OEP-DGN-FR-8HD01
  • OEP-DGN-MA-DG02
  • QS-SBO
  • 418 REC-XHE-FO-DGEN +

419 358 9 3.62E-08 0.79281 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 420 NRAC-1HR
  • OEP-DGN-FR-6HD83
  • OEP-DGN-MA-D801
  • QS-880
  • 421 REC-XHE-FO-DGEN +

422 359 9 3.82E-08 0.79371 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 423 NRAC-1HR
  • OEP-D0N-FR-6HDG1
  • OEP-DGN-MA-D803
  • QS-SBO
  • 424 REC-XHE-FO-DGEN +

425 380 9 3.82E-08 0.79481 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 428 NRAC-1HR
  • OEP-D8N-FR-6HDG2
  • OEP-DGN-MA-DG01
  • QS-SBO
  • 427 REC-XHE-FO-DGEN +

428 2747 3 3.80E-08 0.79590 AFW-CCF-LK-STMBD

  • AFW-XHE-FO-UNIT2
  • IE-T7 +

429 124 2 3.51E-08 0.79696 IE-S3

  • RWT-TNK-LF-RWST +

430 177 10 3.42E-08 0.79800 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • 431 NOTW2
  • NRAC-7HR
  • OEP-DGN-FR-8HD82
  • OEP-DGN-MA-D001
  • 432 QS-SBO
  • REC-XHE-FO-DGHWB +

433 178 10 3.42E-08 0.79903 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • 434 NOTW2
  • NRAC-7HR
  • OEP-DGN-FR-8HDG1
  • OEP-DGN-MA-0602
  • 435 QS-SBO
  • REC-XHE-FO-DGHWB +

436 2683 4 3.40E-08 0.80008 AFW-MDP-FS-FW3B

  • AFW-TDP-FR-2P8HR
  • AFW-XHE-FO-UNIT2
  • IE-T5A +

437 2708 4 3.40E-08 0.80110 AFW-MDP-FS-FW3A

  • AFW-TDP-FR-2P6HR
  • AFW-XHE-FO-UNIT2
  • IE-T5B +

438 385 9 3.32E-08 0.80210 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 439 NRAC-1HR
  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-0803
  • QS-SBO
  • 440 REC-XHE-FO-DGEN +

441 363 9 3.32E-08 0.80311 AFW-XHE-FO-CST2 * /DGN-FTO*

  • IE-T1
  • NOTO
  • 442 NRAC-1HR
  • OEP-CRB-FT -15H3
  • OEP-DGN-FS-DG02
  • QS-SBO
  • 443 REC-XHE-FO"-DGEN +

444 364 9 3.32E-08 0.80412 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • NRAC-1HR
  • OEP-CRB-FT-15J3
  • OEP-DGN-FS-DG01
  • QS-SBO
  • 445 446 447 894 12 3.31E-08 0.80512 REC-XHE-FO-DGEN

/DGN-FTO .*

+

IE-T1 .. NOTL-SBOU1

  • NOTQ .*

OEP-DGN-FS-0801

  • OEP-DGN-FS-DG03 448 NRAC-258M

/QS-SBO . /0 RCP-LOCA-467-150

  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

449 450 451 893 12 3.31E-08 0.80612 /DGN-FTO NRAC-258M

  • 10 IE-T1
  • NOTL-SBOU1 OEP-DGN-FS-DG01
  • . NOTQ OEP-DGN-FS-D802 .*

RCP-LOCA-467-150 REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

452 453 768 11 3.30E-08 0.80712

/QS-SBO

/DGN-FTO

  • IE-T1 .

MCW-CCF-VF-880

  • NOTL-SBOU1
  • NOTQ
  • NRAC-216M
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • 454 455 456 769 11 3.30E-08 0.80812 QS-SBO

/DGN-FTO .

RCP-LOCA-750-90M IE-T1 REC-XHE-FO-DGHWS MCW-CCF-VF-SBO

+

  • NOTL-SB0U1 ..

457 NOTQ NRAC-216M OEP-DGN-FS-DG01 OEP-DGN-FS-DG03 458 QS-SBO

  • RCP-LOCA-750-90M REC-XHE-FO-DGHWS +

459 770 11 3. 15E-08 0.80908 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • 460 NOTQ
  • NRAC-216M * /0
  • OEP-DGN-FR-6HDG1
  • 461 OEP-DGN-FR-6HDG3 * /QS-SBO
  • RCP-LOCA-750-90M +

462 1808 11 3. 14E-08 0.81003 IE-T1

  • NOTL-SB0U1U2
  • NOTQ
  • NRAC-216M
  • 463 10
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • OEP-DGN-FS-DG03
  • t"rj I

464 465 179 10 3. 13E-08 0.81098

/QS-SBO

/DGN-FTO .*

  • RCP-LOCA-750-90M IE-T1 NRAC-7HR .

REC-XHE-FO-DGHWS NOTL-SB0U1 OEP-CRB-FT-15H3

+

.* NOTQ OEP-DGN-FS-DG03 c...:> 468 NOTW2 0

467 QS-SBO

  • REC-XHE-FO-DGHWB +

468

  • 178 10 3.13E-08 0.81193 /DGN-FTO
  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 469 NOTW2
  • NRAC-7HR
  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG02
  • 470 QS-SBO
  • REC-XHE-FO-DGHWB +

471 180 10 3. 13E-08 0.81288 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 472 NOTW2
  • NRAC-7HR
  • OEP-CRB-FT-15J3
  • OEP-DGN-FS-DG01
  • 473 QS-SBO
  • REC-XHE-FO-DGHWB +

HPI-CKV-FT-CV410

  • HP1-XHE-F0-UN2S2
  • IE-S2 +

474 475 476 110 111 895 3

3 12 3 .10E-08

3. 10E-08
3. 08E-08 0.81382 0.81476 0.81569 HPI -CKV-FT-CV25 BETA-200 .
  • HP1-XHE-FO-UN2S2 IE-T1 .
  • IE-S2 NOTDG-CCF

+

.* N0TL-SB0U1 .*

477 NOTQ NRAC-258M 10 OEP-DGN-FS 478 /QS-SBO

  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

479 771 11 3.07E-08 0.81662 BETA-2DG

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTDG-CCF
  • 480 NOTL-SBOU1
  • NOTQ
  • NRAC-216M
  • OEP-DGN-FS
  • 481 QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

482 366 9 3.06E-08 0. 81755 AFW-TDP-FS-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 483 NRAC-HALFHR
  • OEP-DGN-FR-6HD03
  • OEP-DGN-FS-D001
  • QS-SBO
  • 484 REC-XHE-FO-DGEN +

485 368 9 3.06E-08 0.81848 AFW-TDP-FS-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 486 NRAC-HALFHR
  • OEP-DGN-FR-8HDG2
  • OEP-DGN-FS-DG01
  • QS-SBO
  • 487 REC-XHE-FO-DGEN +

488 367 9 3.06E-08 0.81941 AFW-TDP-FS-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 489 NRAC-HALFHR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02
  • QS-SBO
  • REC-XHE-FO-DGEN +

490 491 181 10 2.85E-08 0.82027 /DGN-FTO NOTW2 IE-T1 NRAC-7HR .

  • NOTL-SBOU1 OEP-DGN~FR-6HDG1 *
  • NOTQ OEP-DGN-MA-0003 492 493 QS-SBO
  • REC-XHE-FO-DGTMB +

IE-T1

  • NOTL-SBOU1
  • NOTQ .

0.82114 /DGN-FTO 184 9 2.85E-08 it

495 496 NOTW2 QS-SBO +

  • NRAC-7HR
  • OEP-CRB-FT-15J3
  • NOTQ OEP-DGN-FR-6HDG1
  • 497 498 183 9 2.85E-08 0.82200 /DGN-FTO NOTW2 IE-T1 NRAC-7HR .* NOTL-S80U1 OEP-CRB-FT-15H3 OEP-DGN-FR-6HDG3 .

499 500 182 10 2.85E-08 0.82288 QS-SBO

/DGN-FTO ... REC-XHE-FO-DGTMB

+

IE-T1 .* NOTL-S80U1 .. NOTQ OEP-DGN-MA-D001 501 NOTW2 NRAC-7HR OEP-DGN-FR-6HD03 502 QS-SBO +

503 372 9 2.79E-08 0. 8*2371 AFW-TDP-MA-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ *.

504 NRAC-HALFHR

  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG01
  • QS-SBO 505 REC-XHE-FO-DGEN +

506 371 9 2.79E-08 0.82455 AFW-TDP-MA-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 507 NRAC-HALFHR
  • OEP-DGN-FR-6HD01
  • OEP-DGN-FS-D003
  • QS-SBO
  • 508 REC-XHE-FO-DGEN +

509 370 9 2.79E-08 0.82540 AFW-TDP-MA-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 510 NRAC-HALFHR
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • QS-SBO
  • 511 REC-XHE-FO-DGEN + . NOTQ .*

512 513 369 9 2.79E-08 0.82624 AFW-TDP-MA-FW2 NRAC-HALFHR

  • /DGN-FTO
  • OEP-DGN-FR-6HDG1 . IE-T1 OEP-DGN-FS-DG02 .* QS-SBO 514 REC-XHE-FO-DGEN +

515 83 3 2.70E-08 0.82706 IE-S1

  • LPR-MOV-FT-1862A
  • LPR-MOV-FT-18620 + . .
  • /DGN-FTO IE-T1 NOTQ OEP-DGN-FS-DG02 .

516 392 9 2.70E-08 0.82788 AFW-TDP-FR-2P6HR .*

517 NRAC-8HR-AVG

  • OEP-D0N-FR-6HDG1 QS-SBO
  • 518 519 391 9 2.70E-08 0.82870 REC-XHE-FO-DGEN AFW-TDP-FR-2PSHR

+

  • /DGN-FTO

. IE-T1 . NOTQ .*

l:zj 520 NRAC-6HR-AVG

  • OEP-DGN-FR-8HD02
  • OEP-DGN-FS-D001
  • QS-SBO I

521 REC-XHE-FO-DGEN +

. /DGN-FTO . IE-T1 .* NOTQ .*

<:.:)

522 523 390 9 2.70E-08 0.82952 AFW-TDP-FR-2P6HR NRAC-6HR-AVG . OEP-DGN-FR-6HDG1 . OEP-DGN-FS-DG03 QS-SBO 524 525 389 9 2.70E-08 0.83034 REC-XHE-FO-DGEN AFW-TDP-FR-2P6HR

+

.. /DGN-FTO . IE-T1 . NOTQ

  • 526 NRAC-SHR-AVG OEP-D0N-FR-6HDG3
  • OEP-DGN-FS-D001
  • QS-SBO
  • 527 REC-XHE-FO-DGEN +

528 2709 3 2.70E-08 0.83118 AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2
  • IE-T58 +

529 2684 3 2.70E-08 0.83198 AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2
  • IE-T5A +

530 2820 5 2.84E-08 0.83278 AFW-CKV-OO-CV142

  • AFW-TDP-FS-FW2
  • AFW-XHE-FO-UNIT2
  • HPI-XHE-FO-FDBLD
  • 531 IE-T2 +

532 773 12 2.83E-08 0.83357 /DGN-FTO

  • IE-T1 .* NOTL-S80U1 OEP-DGN-FR-6HD02 .* NOTQ OEP-DGN-MA-DG01 .*

533 NRAC-216M

/QS-SBO .

  • 10 RCP-LOCA-750-90M .. REC-XHE-FO-DGHWS *. REC-XHE-FO-SCOOL +.

534 535 772 12 2.83E-08 0.83437 /DGN-FTO . IE-T1 NOTL-S80U1 NOTQ OEP-DGN-FR-6HDG1 ". OEP-DGN-MA-DG02

  • 536 NRAC-216M .
  • 10 .* REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

537 538 2755 8 2.61E-08 0.83516

/QS-SBO IE-T7 RCP-LOCA-750-90M

" MSS-SRV-00-0DSRV

. PORV-BLK

  • PPS-MOV-00-1536
  • 539 PPS-S0V-00-1455C
  • RCS-PORV-ODMD
  • RCS-XHE-FO-DPRT7
  • SGTR-SGSRV-ODMD1 +

IE-T7

  • MSS-SRV-00-0DSRV
  • PORV-BLK
  • PPS-MOV-00-1535
  • 540 541 2754 8 2.81E-08 0.83595 PPS-SOV-00-1456 . RCS-PORV-ODMD
  • RCS-XHE-FO-DPRT7
  • SGTR-SGSRV-ODMD1 +

542 774 10 2.55E-08 0.83673 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • 543 NRAC-216M
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG3
  • QS-SBO
  • 544 RCP-LOCA-750-90M
  • REC-XHE-FO-SCOOL
  • AFW-TDP-FR-2P8HR

+

  • AFW-XHE-FO-UNIT2
  • BETA-AFW .

545 546 2621 8 2.54E-08 0.83750 AFW-MDP-FS HPI-XHE-FO-FDBLD . IE-T2 + . NOTL-S80U1

  • 547 548 775 12 2.52E-08 0.83828 /DGN-FTO NOTQ
  • IE-T1
  • NRAC-218M
  • MCW-CCF-VF-SBO 10 . OEP-DGN-FR-8HDG1
  • OEP-D0N-FR-8HDG2 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

549 550 26 2 2.SOE-08 0.83902 IE-A . LPR-CCF-PG-SUMP +

561 186 12 2.46E-08 0.83976 /DGN-FTO .

. IE-T1 ... NOTL-S80U1 .

. NOTQ OEP-DGN-FS-0601 ..

REC-XHE-FO-DGHWB .

NSLOCA 10 652 653 NRAC-7HR OEP-DGN-FS-0003 . /QS-SBO

. REC-XHE-FO-SCOOL +

12 2.46E-08 0.84060 /DGN-FTO

  • IE-T1 NOTL-S80U1
  • NOTQ .

564 186 OEP-DGN-FS-0001 NRAC-7HR

  • NSLOCA .* 10 *.

556 REC-XHE-FO-SCOOL 566 OEP-DGN-FS-0602 /QS-SBO . REC-XHE-FO-DGHWB . + .

567 776 12 2.41E-08 0.84123 /DGN-FTO IE-T1 . NOTL-SBOU1 OEP-CRB-FT-16H3 . NOTQ OEP-DGN-FS-0603 .

568 569 NRAC-216M IQS-SBO .. 10 RCP-LOCA-760-90M". REC-XHE-FO-DGHWS .

  • REC-XHE-FO-SCOOL NOTQ

+ ..

IE-T1 NOTL-SBOU1 .

560 778 12 2.41E-08 0.84196 /DGN-FTO .. . .. OEP-DGN-FS-0602 RCP-LOCA-760-90M ..

NRAC-216M 10 OE.P-CRB-FT-16H3 561 REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +.

562 /QS-SBO . IE-T1 . NOTL-SBOU1 . *NOTQ .

563 777 12 2.41E-08 0.84269 /D0N-FTO NRAC-216M . /0 OEP-CRB-FT-15J3 OEP-DGN-FS-DG01 564

/QS-SBO . RCP-LOCA-750-90M .* REC-XHE-FO-DGHWS

  • REC-XHE-FO-SCOOL +

565 566 56 3 2.37E-08 0.84341 BETA-STR . CPC-STR-PG-3HR . IE-S1 +

MCW-CCF-VF-SBO

  • 567 568 780 12 2.31E-08 0.84411 /DGN-FTO NOTQ .* IE-T1 NRAC-216M . 10
  • OEP-DGN-FS-DG01
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

569 OEP-DGN-MA-D603 * /QS-SBO IE-T1 .* MCW-CCF-VF-SBO . NOTL-SB0U1 570 782 12* 2.31E-08 0.84481 /DGN-FTO NOTQ

  • . NRAC-216M . 10
  • OEP-DGN-FS-DG02 671 572 OEP-DGN-MA-DG01

/DGN-FTO

  • . /QS-SBO IE-T1
  • . RCP-LOCA-760-90M .*

UCW-CCF- 'o/F-SBO REC-XHE-FO-DGHWS N0TL-SB0U1

+

- 573 574 781 12 2.31E-08 0.84552-NOTQ . NRAC-216M

  • 10
  • OEP-DGN-FS-DG03
  • OEP-DGN-MA-DG01 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

575 IE-T1

  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 576 779 12 2.31E-08 0.84622 /DGN-FTO
  • OEP-DGN-FS-D001
  • NOTQ
  • NRAC-216M
  • 10
  • 577 REC-XHE-FO-DGHWS

+

/:?j I 578 OEP-DGN-MA-D002 .* /QS-SBO IE-T1 .

  • RCP-LOCA-750-90M NOTL-SBOU1 .*

NOTQ c.-,

1:-..:i 579 580 187 10 2.31E-08 0.84692 /DGN-FTO NOTW2 . NRAC-7HR

  • OEP-CRB-FT-15H3
  • OEP-D0N-MA-D002 581 /QS-SBO *. REC-XHE-FO-DGHWB + . NOTQ ..

582 784 12 2.30E-08 0.84761 /OGN-FTO NRAC-218M . /0 IE-T1

  • NOTL-S80U1 OEP-D0N-FR-8HDG1 . OEP-D0N-MA-DG03 583 REC-XHE-FO-DGTMS
  • REC-XHE-FO-SCOOL +

584 /QS-SBO .* RCP-LOCA-750-90M *

. NOTQ

  • OEP-DGN-MA-0001 .

NOTL-S80U1 *.

585 783 12 2.30E-08 0.84831 /DGN-FTO . 10IE-T1 . OEP-DGN-FR-6HDG3 .

586 NRAC-216M

/QS-SBO . RCP-LOCA-750-90M . . REC-XHE-FO-DGTMS REC-XHE-FO-SCOOL +

HPI-XHE-FO-UN2S3 . HPI-XVM-PG-XV24 587 588 125 3 2.29E-08 0.84900 . . IE-S3 +

589 188 12 2.27E-08 0.84969 BETA-2DG . IE-T1 NRAC-7HR .. NOTDG-CCF NSLOCA . NOTL-SB0U1

/0 .

590 NOTQ . /QS-SBO .. REC-XHE-FO-DGHWB *. REC-XHE-FO-SCOOL +.

591 OEP-DGN-FS IE-T7 . MSS-SRV-00-0DSRV PORV-NOT-BLK . PPS-MOV-00-1636 PPS-SOV-00-1456 . RCS-PORV-ODMD 592 2766 8 2.22E-08 0.86037 SGTR-SGSRV-0DMD2 +

593 2767 8 2.22E-08 0.85104 IE-T7 .. MSS-SRV-00-0DSRV *.

RCS-XHE-FO-DPRT7 PORV-NOT-BLK .. PPS-MOV-00-1536

  • 694 696 PPS-S0V-00-1466C . RCS-PORV-ODMD . RCS-XHE-FO-DPRT7 K . S0TR-SGSRV-ODMD2 PPS-MOV-FC-1535

+ .

598 2578 7 2.13E-08 0.85169 BETA-2MOV IE-T PPS-MOV-FC-1536

  • PPS-MOY-FT R + .

597 598 302 9 2.09E-08 0.85232 IE-T1 NSLOCA NOTL-S80U1U2 OEP-DGN-FS-0003

  • NOTQ OEP-DGN-MA-DG01
  • . NRAC-7HR QS-SBO .

599 600 REC-XHE-FO-DGHWB +.

HPI-MDP-FR-1A24H . . IE-S3 +

601 126 3 2.08E-08 0.85295 HP I -CKV-OO-CV258 . IE-T1 . NOTL-SBOU1 . NOTQ .

602 603 785 11 2.04E-08 0.85357 /DGN-FTO NRAC-216M . OEP-DGN-FR-6HDG1 . OEP-DGN-FR-6HD02 QS-SBO RCP-LOCA-760-90M" REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

604 805

. 606 27 191 2

9 2.00E-08 1.92E-08 0.85418

'O. 85476 IE-A IDGN-FTO

. LPR-XHE-FO-HOTLG IE-T1

+

. NOTL-SBOU1 . NOTQ .

607 NOTW2

  • NRAC-7HR
  • OEP-CRB-FT-15H3
  • OEP-CRB-FT-15J3
  • 608 /QS-SBO +

NOTQ 609 610 190 10 1.92E-08 0.85534 /DGN-FTO NOTW2 IE-T1 NRAC-7HR .* NOTL-SB0U1 OEP-CRB-FT-15J3

  • OEP-DGN-MA-DG01 611 /QS-SBO
  • REC-XHE-FO-DGTMB +

612 189 10 1.92E-08 0.65593 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 613 NOTW2
  • NRAC-7HR
  • OEP-CRB-F.T-15H3
  • OEP-DGN-MA-DG03
  • 614 /QS-SBO
  • REC-XHE-FO-DGTMB +

615 639 10 1.90E-08 0.85650 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NRAC-1HR
  • 616 OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG02
  • PPS-S0V-00-1455C * /QS-SBO
  • 617 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

618 619 841 10 1.90E-08 0.85708 /DGN-FTO OEP-CRB-FT-15H3 IE-T1 OEP-DGN-FS-DG02 .* NOTL-SB0U1 PPS-SOV-00-1456

  • NRAC-1HR
  • /QS-SBO 620 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

621 640 10 1.90E-08 0.85766 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NRAC-1HR
  • 622 OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG03
  • PPS-S0V-00-1455C * /QS-SBO
  • 623 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

624 637 10 1.90E-08 0.85823 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NRAC-1HR
  • 625 OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG03
  • PPS-SOV-00-1456 * /QS-SBO
  • 626 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

627 642 10 1.90E-08 0.85881 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NRAC-1HR
  • 628 OEP-CRB-FT-15J3
  • OEP-DGN-FS-DG01
  • PPS-SOV-00-14550 * /QS-SBO
  • 629 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

630. 638 10 1.90E-08 0.85939 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NRAC-1HR
  • 631 OEP-CRB-FT-15J3
  • OEP-DGN-FS-DG01
  • PPS-SOV-00-1456 * /QS-SBO
  • 632 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

IE-T1 NOTL-S80U1 NOTQ t:r:J 833 834 788 11 1.87E-08 0.85996 /DGN-FTO NRAC-216M .

OEP-DGN-FS-DG01

  • OEP-DGN-MA-DG02 .* QS-SBO w

I 635 RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

w 836 786 11 1.87E-08 0.86052 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 637 NRAC-216M
  • OEP-DGN-FS-DG02
  • OEP-DGN-MA-0801
  • QS-SBO
  • 838 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

639 787 11 1.87E-08 0.88109 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 840 NRAC-216M
  • OEP-DGN-FS-DG03
  • OEP-DGN-MA-DG01
  • QS-SBO
  • 641 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

842 789 11 1.87E-08 0.86168 /DGN-FTO . IE-T1

  • NOTL-SB0U1
  • NOTQ
  • 643 NRAC-216M
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG03
  • QS-SBO
  • 644 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL + *.J 377 AFW-TDP-FS-FW2 /DGN-FTO
  • IE-T1
  • NOTQ
  • 645 646 8 1.86E-08 0.86222 NRAC-HALFHR .

OEP-DGN-FR-6HDG1

  • OEP-DGN-FR-6HDG3
  • QS-SBO +

647 2590 4 1.83E-08 0.86278 AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2
  • IE-T1
  • PPS-XHE-FO-PORVS +

848 373 9 1.81E-08 0.86333 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 649 NRAC-1HR
  • OEP-CRB-FT-15H3
  • OEP-DGN-FR-6HDG2
  • QS-SBO
  • 660 REC-XHE-FO-DGEN +

651 896 12 1.81E-08 0.86388 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 652 NRAC-258M
  • 10
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG01
  • 653 /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

654 899 12 1.81E-08 0.86442 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 655 NRAC-258M
  • 10
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG03
  • 656 /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

657 897 12 1.81E-08 0.86497 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 858 NRAC-258M
  • 10
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-0802
  • 659 /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

660 898 12 1.81E-08 0.86552 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • 661 NRAC-258M
  • 10
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • 662 /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

663 2710 3 1.80E-08 0.86806 AFW-CCF-LK-STMBD

  • AFW-XHE-FO-UNIT2
  • IE-T58 +

AFW-CCF-LK-STMBD AFW-XHE-FO-UNIT2

  • IE-T5A +

664 665 2685 793 3

11 1.SOE-08 1.80E-08

0. 8"6661 0.86718 /DGN-FTO .*

IE-T1 .* MCW-CCF-VF-SBO

  • NOTL-SBOU1
  • NRAC-218M OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG03
  • 666 667 NOTQ QS-SBO .* RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

668 689 791 11 1.80E-08 0. 86770 /DGN-FTO NOTQ *

  • IE-T1 NRAC-216M ..
  • MCW-CCF-VF-SBO OEP-DGN-FR-6HDG3 NOTL-SBOU1 OEP-DGN-FS-DG01 670 671 790 11 1.BOE-08 0.86825 QS-SBO

/DGN-FTO ..* RCP-LOCA-750-90M IE-T1 NRAC-218M REC-XHE-FO-DGHWS MCW-CCF-VF-S80 OEP-DGN-FR-6HDG2

+

NOTL-SBOU1 OEP-DGN-FS-DG01 672 NOTQ.

673 QS-SBO

  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

792 11 1.80E-08 0.86879 /DGN*-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 674 675 NOTQ QS-SBO *
  • NRAC-216M RCP-LOCA-750-90M .* OEP-DGN-FR-6HDG1 REC-XHE-FO-DGHWS

+

OEP-DGN-FS-DG02

  • 676 677 678 2736 2735 4

4 1.76E-08 1.76E-08 0.86933 0.86986 HPI-CKV-FT-CV25 HPI -CKV-FT-CV410 .

HPI-XHE-FO-UN2S3 HP1-XHE-FO-UN2S3 .* IE-T7 IE-T7 AFW-XHE-FO-UNIT2

  • RCS-XHE-FO-DPT7D +

RCS-XHE-FO-DPT7D +

BETA-AFW

  • 679 2646 7 1.72E-08 0.87038 AFW-MDP-FS AFW-TDP-FR-2P24H *
  • 680 IE-T2
  • PPS-MOV-FC-1536
  • PPS-MOV-FT-1536 +

1.72E-08 0.87090 AFW-MDP-FS

  • AFW-TDP-FR-2P24H
  • AFW-XHE-FO-UNIT2
  • BETA-AFW
  • 681 2647 7 682 683 1809 11 1.71E-08 0.87142 IE-T2 IE-T1 PPS-MOV-FC-1535 NOH-S80U1U2 .* PPS-MOV-FT-1535 NOTQ OEP-DGN-FS-DG02

+

  • NRAC-216M OEP-DGN-FS-DG03 684 10
  • OEP-DGN-FR-6HDG1 *
  • 685 JQS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

1810 11 1.71E-08 0.87194 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-216M
  • 686 OEP-DGN-FR-6HDG3 OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • 687 JO *
  • 688 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

1811 11 1.71E-08 0.87246 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-218M
  • 689 OEP-DGN-FS-DG01 OEP-DGN-FS-DG03
  • f:rj 690 JO
  • OEP-DGN-FR-6HDG2 *
  • I REC-XHE-FO-DGHWS +

w 691 /QS-SBO

  • RCP-LOCA-750-90M
  • 192 10 1.71E-08 0.87298 JDGN-FTO
  • IE-T1
  • NOTL-SB0U1
  • NOTQ *

""" 892 693 NOTW2

  • NRAC-7HR
  • OEP-CRB-FT-15H3
  • OEP-DGN-FR-6HDG2
  • 694 QS-SBO
  • REC-XHE-FO-DGHWB +

378 8 1.89E-08 0.87349 AFW-TDP-MA-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 895 OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG3
  • QS-SBO +

696 NRAC-HALFHR

  • 379 1.67E-08 0. 87399 AFW-TDP-FS-FW2
  • JDGN-FTO
  • IE-T1
  • NOTQ
  • 697 9 OEP-DGN-FR-8HDG1
  • OEP-DGN-FR-8HDG2
  • QS-SBO
  • 698 NRAC-HALFHR
  • 699 REC-XHE-FO-DGEN +

794 1.64E-08 0.87449 JDGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ .

700 11 OEP-CRB-FT-15J3

  • OEP-DGN-FR-6HDG1 701 NRAC-216M * /0
  • 702 IQS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-SCOOL +

703 795 11 1.64E-08 0.87499 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • 704 NRAC-216M
  • 10
  • OEP-CRB-FT-15H3
  • OEP-DGN-FR-6HDG3
  • 705 JQS-SBO
  • RCP-LOCA-750-SOM
  • REC-XHE-FO-SCOOL +

706 2648 5 1.64E-08 0.87549 AFW-CKV-OO-CV142

  • AFW-TDP-FS-FW2
  • AFW-XHE-FO-UNIT2
  • IE-T2
  • 707 PPS-XHE-FO-PORVS +

708 404 8 1.64E-08 0.87598 AFW-TDP-FR-2P6HR * /DGN-FTO

  • IE-T1
  • NOTQ
  • NRAC-8HR-AVG
  • OEP-DGN-FR-8HD01
  • OEP-DGN-FR-6HDG3
  • QS-SBO +

709 NOTL-SB0U1 *

  • MCW-CCF-VF-SBO .
  • 710 711 901 12 1.59E-08 0.87647 /DGN-FTO NOTQ .* IE-T1 NRAC-258M * /0

.

  • OEP-DGN-FS-DG01
  • REC-XHE-FO-DGHWS +

712 OEP-DGN-FS-DG02

  • JQS-SBO RCP-LOCA-467-150
  • 713 900 12 1.59E-08 0.87695 JDGN-FTO
  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-S80U1
  • 714 NOTQ
  • NRAC-258M
  • JO
  • OEP-DGN-FS-DG01
  • 715 OEP-D8N-FS-D803 * /QS-SBO
  • RCP-LOCA-487-150
  • REC-XHE-FO-DGHWS +

716 3 1.58E-08 0.87742 IE-S1

  • LPR-MOV-FT-1860A
  • LPR-MOV~FT-1862B +
  • 717 718 84 85 88 3

3 1.56E-08 1.58E-08

0. 87789 0.87837 IE-S1 IE-S1 .
  • LPI -MDP-FS-SI 18 LPI -MDP-FS-SI 1A .
  • LPR-MOV-FT-1862A LPR-MOV-FT-18828

+

+

720 721 722 723 87 1814 1813 3

12 12 1.58E-08 1.54E-08 1.54E-08 0.87884 0.87931 0.87977 IE-S1 BETA-2DG NOTQ OEP-DGN-FS BETA-2DG LPR-MOV-FT-18808

  • LPR-MOV-FT-1882A IE-T1
  • NRAC-218M
  • /QS-SBO
  • IE-T1
  • NOTDG-CCF
  • 10
  • RCP-LOCA-750-90M
  • NOTDG-CCF

+

NOTL-S80U1U2 OEP-DGN-FR-8HDG1 REC-XHE-FO-DGHWS NOTL-SB0U1U2 OEP-DGN-FR-6HD02

+

724 725 NOTQ OEP-DGN-FS *

  • NRAC-218M

/QS-SBO .* 10

  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

728 727 1812 12 1.54E-08 0.88024 BETA-2DG NOTQ

  • IE-T1
  • NRAC-218M

.* NOTDG-CCF 10 RCP-LOCA-750-SOM

  • NOTL-SB0U1U2 OEP-DGN-FR-6HDG3 REC-XHE-FO-DGHWS

+

728 OEP-DGN-FS * /QS-SBO "

  • 729 382 9 1.53E-08 0.88070 AFW-TDP-FS-FW2 * /DGN-FTO
  • IE-T1 NOTQ
  • 730 NRAC-HALFHR
  • OEP-DGN-FS-DG03
  • OEP-DGN-MA-DG01
  • QS-SBO
  • 731 REC-XHE-FO-DGEN .

+

732 381 9 1.53E-08 0.88117 AFW-TDP-FS-FW2 /DGN-FTO

  • IE-T1
  • NOTQ
  • 733 NRAC-HALFHR
  • OEP-DGN-FS-DG02
  • OEP-DGN-MA-DG01
  • QS-SBO
  • 734 REC-XHE-FO-DGEN +

735 380 9 1. 53E-08 0.88183 AFW-TDP-FS-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 736 NRAC-HALFHR
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG02
  • QS-SBO
  • 737 REC-XHE-FO-DGEN +

738 383 9 1.53E-08 0.88210 AFW-TDP-FS-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 739 NRAC-HALFHR
  • OEP-DGN-FS-D001
  • OEP-DGN-MA-D003
  • QS-SBO
  • 740 REC-XHE-FO-DGEN +

741 384 9 1.52E-08 0.88258 AFW-TDP-MA-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 742 NRAC-HALFHR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG2
  • QS-SBO
  • 743 REC-XHE-FO-DGEN +

744 2622 5 1.51E-08 0.88302 AFW-CKV-OO-CV157

  • AFW-MDP-FS-FW3A
  • AFW-XHE-FO-UNIT2
  • HPI-XHE-FO-FDBLD *

/:!'j IE-T2 +

745 w

I 746 2823 5 1.51E-08 0.88347 AFW-CKV-OO-CV172

  • AFW-MDP-FS-FW3B
  • AFW-XHE-FO-UNIT2
  • HPI-XHE-FO-FDBLD
  • c:.rr 747 IE-T2 +

MCW~CCF-VF-SBO

  • NOTDG-CCF 748 749 902 12 1.48E-08 0.88392 BETA-2DG NOTL-SBOU1 .

IE-T1 NOTQ .* NRAC-258M

  • 10 750 OEP-DGN-FS /QS-SBO
  • RCP-LOCA-487-150
  • REC-XHE-FO-DGHWS +

751 409 9 1.47E-08 0.88437 AFW-TDP-FR-2P8HR * /DGN-FTO

  • IE-T1
  • NOTQ
  • 752 NRAC-8HR-AVG
  • OEP-DGN-FR-8HDG1
  • OEP-DGN-FR-8HDG2
  • QS-SBO
  • 753 REC-XHE-FO-DGEN +

754 2770 8 1.47E-08 0.88481 IAS-CCF-LF-INAIR

  • IE-T7
  • MSS-SOV-00-0DADV
  • MSS-XHE-FO-BLOCK
  • 755 PORV-NOT-BLK
  • SGTR-SGADV-ODMD +

758 2245 10 1.44E-08 0.88525 BETA-3DG

  • IE-T1
  • NOTL-SB0U1U2
  • NOTQ
  • 757 NRAC-150M
  • 10
  • OEP-DGN-FS * /QS-SBO
  • 758 RCP-LOCA-1440-90
  • REC-XHE-FO-DGHWS +

759 848 10 1.41E-08 0.88588 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 760 OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG03
  • PPS-SOV-00-1458
  • QS-SBO
  • 781 REC-XHE-FO-DGEN
  • SBO-PORV-DMD

. +

782 647 10 1 ... 1E-08 0.88610 /DGN-FTO IE-T1

  • NOTL-SBOU1
  • NRAC-1HR
  • OEP-DGN-FS-DG03 OEP-DGN-UA-DG01
  • PPS-S0V-00-1455C
  • QS-SBO
  • 783 784 REC-XHE-FO-DGEN .* SBO-PORV-DMD +

785 845 10 1.41E-08 0.88653 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 768 OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG02
  • PPS-SOV-00-1456
  • QS-SBO
  • 787 788 848 10 1.41E-08 0.88898 REC-XHE-FO-DGEN

/DGN-FTO SBO-PORV-DMD IE-T1

+

  • NRAC-1HR .

789 OEP-DGN-FS-DG03

  • OEP-DGN-MA-DG01
  • PPS-SOV-00-1458 ** QS-SBO
  • 770 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +
  • NRAC-1HR
  • 771 772 850 10 1.41E-08 0.88738 /DGN-FTO OEP-DGN-FS-DG01 " OEP-DGN-MA-DG03 .

PPS-S0V-00-1455C

  • QS-SBO
  • 773 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

774 849 10 1.41E-08 0.88781 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NRAC-1HR
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG02
  • PPS-S0V-00-1455C
  • QS-SBO
  • 775 776 777 843 10 1.41E-08 0.88824 REC-XHE-FO-DGEN

/DGN-FTO SBO-PORV-DMD IE-T1 .

+

NOTL-SB0U1 PPS-S0V-00-1455C *

  • NRAC-1HR QS-SBO
  • 778 OEP-DGN-FS-DG02
  • OEP-DGN-MA-DG01
  • 779 REC-XHE-FO-DGEN
  • SBO-PORV-DUD +

1.41E-08 0.88886 /DGN-FTO

  • IE-T1
  • NRAC-1HR
  • 780 844 10 PPS-SOV-00-1458
  • QS-SBO
  • 781 OEP-DGN-FS-DG02
  • OEP-DGN-MA-DG01
  • 782 783 388 9 1.39E-08 0.88909 REC-XHE-FO-DGEN AFW-TDP-MA-FW2 .** SBO-PORV-DUD

/DGN-FTO OEP-DGN-FS-DG01

+

IE-T1 OEP-DGN-MA-DG02 NOTQ QS-SBO 784 NRAC-HALFHR 785 REC-XHE-FO-DGEN +

1. 39E-08 0.88951 AFW-TDP-MA-FW2 * /DGN-FTO
  • IE-T1
  • NOTQ
  • 786 386 9 OEP-DGN-MA-D003
  • QS-880
  • OEP-DGN-FS-D801
  • 787 NRAC-HALFHR REC-XHE-FO-DGEN +

.. /DGN-FTO .. ..

OEP-DGN-FS-0802 .

788 IE-T1 NOTQ 789 385 9 1.39E-08 0.88993 AFW-TDP-MA-FW2

  • OEP-DGN-MA-DG01 QS-880 790 NRAC-HALFHR REC-XHE-FO-DGEN + . .. ..

OEP-DGN-FS-DG03 .

791 792 793 387 9 1.39E-08 0.89035 AFW-TDP-MA-FW2 NRAC-HALFHR . /DGN-FTO

  • IE-T1 OEP-DGN-MA-DG01 NOTQ QS-SBO 794 REC-XHE-FO-DGEN +

795 28 3 1.35E-08 0:89076 IE-A

  • LPR-MOV-FT-1862A
  • LPR-MOV-FT-18628 +

0.89117 AFW-TDP-FR-2P6HR * /DGN-FTO

  • IE-T1
  • NOTQ
  • 796 418 9 1.35E-08
  • OEP-OGN-MA-0003
  • QS-SBO
  • 797 NRAC-6HR-AVG
  • OEP-DGN-FS-0801 798 REC-XHE-FO-DGEN +
  • trj 799 800 417 9 1.35E-08 0.89158 AFW-TDP-FR-2P6HR NRAC-6HR-AVG .* /DGN-FTO OEP-DGN-FS-DG01 IE-T1 OEP-DGN-MA-0802 NOTQ QS-SBO
  • I i:,.:>

O")

801 802 803 419 9 1.35E-08 0.89199 REC-XHE-FO-DGEN AFW-TDP-FR-2P6HR NRAC-6HR-AVG

+

  • /DGN-FTO
  • OEP-DGN-FS-DG02 IE-T1 OEP-DGN-MA-DG01 .. NOTQ QS-SBO .

REC-XHE-FO-DGEN +

804 805 420 9 1.35E-08 0.89240 AFW-TDP-FR-2P6HR . /DGN-FTO

  • IE-T1
  • NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FS-DG03
  • OEP-DGN-MA-0801
  • QS-SBO
  • 806 807 REC-XHE-FO-DGEN + .. .. NOTQ .

808 195 12 1.33E-08 0.89281 /DGN-FTO *. IE-T1 NSLOCA NOTL-SB0U1

/0 OEP-DGN-FR-6HDG3 .

809 810 NRAC-7HR OEP-DGN-F.S-0801 . /QS-SBO

  • REC-XHE-FO-DGHWB *

. REC-XHE-FO-SCOOL +

0.89321 /OGN-FTO

  • IE-T1 NOTL-SBOU1
  • NOTQ 811 812 813 193 12 1.33E-08 NRAC-7HR OEP-DGN-FS-0802 .* NSLOCA

/QS-SBO .* 10 REC-XHE-FO-DGHWB .* OEP-DGN-FR-6HDG1 REC-XHE-FO-SCOOL +

814 196 12 1.33E-08 0.89362 /DGN-FTO NRAC-7HR *

/0 NOTQ OEP-DGN-FR-6HDG1 .*

815 * /QS-SBO

  • REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL +

816 OEP-DGN-FS-DG03 *

  • 817 194 12 1.33E-08 0.89402 /DGN-FTO
  • IE-T1
  • NOTL-SBOU1 NOTQ NRAC-7HR
  • NSLOCA
  • 10
  • OEP-DGN-FR-6HDG2
  • 818 819 820 798 12 1.31E-08 0.89442 OEP-DGN-FS-DG01

/DGN-FTO

/QS-SBO IE-T1 REC-XHE-FO-DGHWB N0TL-S80U1 REC-XHE-FO-SCOOL NOTQ ..

+

821 822 NRAC-218M

/QS-SBO ..

  • 10 IE-T1 RCP-LOCA-750-90M
  • OEP-CRB-FT-15H3 REC-XHE-FO-DGHWS NOTL-SBOU1 OEP-DGN-FR-8HDG2 REC-XHE-FO-SCOOL NOTQ

+

823 903 11 1.29E-08 0.89481 /DGN-FTO *

  • 824 NRAC-258M
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02 QS-SBO RCP-LOCA-487-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

825 904 11 1.29E-08 0.89520 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ *

'826 NRAC-258M

  • OEP-D8N-FS-DG01
  • OEP-D8N-FS-DG03
  • QS-SBO *
  • 827 REC-XHE-FO-DGHWS
  • 828 1.28E-08 0.89559 RCP-LOCA-467-150
  • BETA-3DG
  • IE-T1
  • REC-XHE-FO-SCOOL NOTL-S80U1U2

+ . NOTQ

  • 829 2135 10 * * /QS-SBO
  • NRAC-7HR
  • 10 OEP-DGN-FS

831 832 833 834 2025 10 1.28E-08 0.89598 RCP-LOCA-183-210

  • BETA-3DG NRAC-7HR REC-XHE-FO-DGHWS +
  • 10 IE-T1 RCP-LOCA-183-150
  • REC-XHE-FO-DGHWS

+

NOTL-SB0U1U2 OEP-DGN-FS

  • NOTO
  • /QS-SBO 835 658 10 1.27E-08 0.89836 /DGN-FTO
  • IE-T1
  • NOTL-SB0U1
  • NRAC-1HR
  • 836 OEP-DGN-FR-0801
  • OEP-DGN-FS-0803
  • PPS-SOV-00-14550 * /QS-SBO
  • 837 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

838 654 10 1.27E-08 0.89675 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 839 OEP-DGN-FR-0803
  • OEP-DGN-FS-0801
  • PPS-SOV-00-14550 * /QS-SBO
  • 840 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

841 657 10 1.27E-08 0.89713 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 842 OEP-DGN-FR-0801
  • OEP-DGN-FS-0802
  • PPS-SOV-00-1456 * /QS-SBO
  • 843 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

844 656 10 1.27E-08 0.89752 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 845 OEP-DGN-FR-DG01
  • OEP-DGN-FS-DG03
  • PPS-SOV-00-1456 * /QS-SBO
  • 846 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

847 651 10 1.27E-08 0.89790 /DGN-FTO IE-T1

  • NOTL-SBOU1
  • NRAC-1HR
  • 848 OEP-DGN-FR-DG02 .

OEP-DGN-FS-DG01

  • PPS-SOV-00-14550 * /QS-SBO
  • 849 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

/DGN-FTO IE-T1 NOTL-S80U1

  • NRAC-1HR
  • 850 851 655 10 1.27E-08 0.89829 OEP-DGN-FR-DG01 .* OEP-DGN-FS-DG02
  • PPS-S0V-00-1455C * /QS-SBO
  • 852 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

853 652 10 1.27E-08 0.89867 /DGN-FTO

  • IE-T1
  • NRAC-1HR
  • 854 OEP-DGN-FR-DG02
  • OEP-DGN-FS-DG01
  • PPS-SOV-00-1456 * /QS-SBO
  • l:rj 855 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

I

,:...:, 856 653 10 1.27E-08 0.89905 /DGN-FTO

  • IE-T1
  • NRAC-1HR *

-::i 857 OEP-DGN-FR-DG03

  • OEP-DGN-FS-D801
  • PPS-SOV-00-1456 * /QS-SBO
  • 858 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

859 787 12 1.26E-08 0.88844 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-S80U1
  • 860 NOTQ
  • NRAC-216M
  • 10
  • OEP-D8N-FR-6HDG1
  • 861 OEP-DGN-MA-DG02 * /QS-SBO
  • RCP-LOCA-750-80M
  • REC-XHE-FO-DGHWS +

862 788 12 1.26E-08 0. 88882 . /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • 863 NOTQ
  • NRAC-216M
  • JO
  • OEP-D8N-FR-6HDG2
  • 864 OEP-DGN-MA-D801 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

865 2686 4 1.25E-08 0.80020 AFW-UDP-FS-FW3B

  • AFW-TDP-FS-FW2
  • AFW-XHE-FO-UNIT2
  • IE-T5A +

866 2711 4 1.25E-08 0.80058 AFW-MDP-FS-FW3A

  • AFW-TDP-FS-FW2
  • AFW-XHE-FO-UNIT2
  • IE-T5B +

867 393 10 1.25E-08 0.90095 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 888 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS-D801
  • OEP-DGN-FS-D803
  • 869 /QS-SBO
  • REC-XHE-FO-DGEN +

870 394 10 1.25E-08 0.90133 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 871 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • 872 /QS-SBO
  • REC-XHE-FO-DGEN +

873 112 3 1.24E-08 0.90171 HP1-XHE-FO-UN2S2

  • HPI-XVM-PG-XV24
  • IE-S2 +

874 905 11 1.23E-08 0.90208 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ 875 NRAC-258M
  • 10
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG3
  • 876 /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-SCOOL +

877 799 10 1.23E-08 0.90245 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-880
  • NOTL-SBOU1
  • 878 NOTQ
  • NRAC-216M
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG3
  • 878 QS-SBO
  • RCP-LOCA-750-80M +

880 1815 10 1.22E-08 0.90282 IE-T1

  • NOTL-SB0U1U2
  • NOTQ
  • NRAC-216M
  • 881 OEP-DGN-FS-DG01
  • OEP-DGN-FS-0802
  • OEP-DGN-FS-0803
  • QS-SBO
  • 882 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

883 2591 4 1.22E-08 0.90319 AFW-CCF-LK-STMBD

  • AFW-XHE-FO-UNIT2
  • IE-T1
  • PPS-XHE-FO-PORVS +

884 2767 6 1.22E-08 0.90356 IAS-CCF-LF-INAIR

  • IE-T7
  • MSS-SRV-00-0DSRV
  • PORV-BLK
  • 885 REC-XHE-FO-GAGRV
  • SGTR-SGSRV-0DUD1 +

886 197 11 1.21E-08 0.90393 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 887 NRAC-7HR
  • NSLOCA * /0
  • OEP-DGN-FR-6HDG1
  • 888 OEP-DGN-FR-6HDG3 * /QS-SBO
  • REC-XHE-FO-SCOOL +

889 1917 10 1.20E-08 0.90429 BETA-3DG

  • IE-T1
  • NOTQ
  • 890 NRAC-246M
  • 0
  • OEP-DGN-FS * /QS-SBO
  • 891 RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

892 906 11 1.20E-08 0.90466 BETA-2DG

  • IE-T1
  • NOTDG-CCF*
  • 893 NOTQ
  • NRAC-258M
  • OEP-DGN-FS
  • QS-SBO
  • 894 RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL

. +

IE-T1 MCW-CCF-VF-SBO

  • NOTL-SBOU1 .*

895 896 198 12 1. 17E-08 0.90501 /DGN-FTO NOTQ

  • NRAC-7HR . NSLOCA " 10 897 OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02 * /QS-SBO
  • REC-XHE-FO-DGHWB +

898 199 12 1.17E-08 0.90537 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • 899 NOTQ
  • NRAC-7HR
  • NSLOCA
  • 10
  • 900 OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03 * /QS-SBO
  • REC-XHE-FO-DGHWB +

901 396 10 1.16E-08 0.90572 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SBO
  • BETA-2DG
  • IE-T1
  • 902 NOTDG-CCF
  • NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS
  • 903 801 12 1.16E-08 0.90607

/QS-SBO

/DGN-FTO REC-XHE-FO-DGEN IE-T1

+

. MCW-CCF-VF-SBO

  • NOTL-S80U1 .

904 OEP-CRB-FT-15J3

  • 905 NOTQ
  • NRAC-216M
  • 10
  • 906 OEP-DGN-FS-0801 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

907 800 12 1.16E-08 0.90642 /OGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 908 NOTQ
  • NRAC-21SM
  • 10
  • OEP-CRB-FT-15H3
  • 909 OEP-DGN-FS-0003 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

910 802 12 1.16E-08 0.90677 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 911 NOTQ
  • NRAC-21SM
  • 10
  • OEP-CRB-FT-15H3
  • t:rj 012* OEP-DGN-FS-DG02 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

I 913 2712 4 1.13E-08 0.90711 AFW-MDP-FS-FW3A

  • AFW-TDP-MA-FW2
  • AFW-XHE-FO-UNIT2
  • IE-T5B +

c,.:,

00 914 2687 4 1.13E-08 0.90746 AFW-MDP-FS-FW3B

  • AFW-TDP-MA-FW2
  • AFW-XHE-FO-UNIT2
  • IE-T5A +

915 397 10 1.13E-08 0.90780 AFW-TDP-MA-FW2

  • AFW-XHE-FO-U1SBO * /OGN-FTO
  • IE-T1
  • 916 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS-0801
  • OEP-DGN-FS-DG03
  • 917 /QS-SBO
  • REC-XHE-FO-DGEN +

918 398 10 1.13E-08 0.90814 AFW-TDP-MA-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 919 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS-D001
  • OEP-DGN-FS-D002
  • 920 /QS-SBO
  • REC-XHE-FO-DGEN +

921 2355 10 1.12E-08 0.90848 BETA-3DG

  • IE-T1
  • NOTL-SB0U1U2
  • NOTQ
  • 922 NRAC-7HR
  • 10
  • OEP-DGN-FS * /QS-SBO
  • 923 RCP-LOCA-183-90
  • REC-XHE-FO-DGHWS +

924 803 12 1.10E-08 0.90882 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • 925 NOTQ
  • NRAC-216M
  • 10
  • OEP-DGN-FR-6HDG1
  • 926 OEP-DGN-MA-0003 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-D0TMS +

927 804 12 1.10E-08 0.90915 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 928 NOTQ
  • NRAC-216M
  • 10
  • OEP-DGN-FR-6HDG3
  • 929 OEP-DGN-MA-DG01 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGTMS +

930 425 10 1.10E-08 0.90948 AFW-TDP-FR-2P6HR

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 931 NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • 932 933 426 10. 1.10E-08 0.90982

/QS-SBO

  • REC-XHE-FO-DGEN AFW-TDP-FR-2P6HR
  • AFW-XHE-FO-U1SBO

+

  • /DGN-FTO
  • IE-T1 .

934 NOTQ

  • NRAC-6HR-AVG
  • OEP-DGN-FS-D001
  • OEP-DGN-FS-D003
  • 935 /QS-SBO
  • REC-XHE-FO-DGEN +

936 200 12 1.09E-08 0.91015 BETA-200

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTDG-CCF
  • 937 NOTL-SB0U1
  • NOTQ
  • NRAC-7HR
  • NSLOCA
  • 938 10
  • OEP-DGN-FS * /QS-SBO
  • REC-XHE-FO-DGHWB +

939 2737 3 1.08E-08 0.91048 IE-T7

  • RCS-XHE-FO-DPT70
  • RWT-TNK-LF-RWST +

4 0.91080 AFW-MDP-MA-FW3A

  • AFW-TDP-FR-2P6HR
  • AFW-XHE~FO-UNIT2
  • IE-T5B +

940 2713 1.08E-08 IE-T5A +

2688 4 1.0SE-08 0.91113 AFW-MDP-MA-FW3B

  • AFW-TDP-FR-2P6HR
  • AFW-XHE-FO-UNIT2 *

~

399 10 1.05E-08 0.91145 AFW-TDP-MA*F~ AFW-XHE-FO-U1SBO

  • BETA-208
  • IE-T1
  • 943 NOTDG-CCF
  • . NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS
  • 944 /QS-SBO
  • REC-XHE-FO-DGEN +

945 89 3 1. 04E-08 0.91177 IE-S1

  • LPI -MDP-MA-SI 1A
  • LPR-MOV-FT-18628 +

9,46 947 88 2768 3

6 1.04E-08 1.03E-08 0.91208 0.91239 IE-S1 IAS-CCF-LF-INAIR LPI -MDP-MA-SI 18

  • IE-T7
  • LPR-MOV-FT-1862A +

MSS-SRV-00-0DSRV

  • PORV-NOT-BLK .

948 REC-XHE-FO-GAGRV

  • SGTR-SGSRV-ODMD2 +

SIS-ACT-FA-SISA SIS-ACT-FA-SI SB +

RCS-XHE-FO-DPT7D * .*

949 2738 4 1.02E-08 0.91270 IE-T7

  • NOTL-SBOU1 NOTQ .

950 951 806 11 1.02E-08 0.91301 /DGN-FTO NRAC-216M .

  • IE-T1 OEP-DGN-FR-6HD81 OEP-DGN-MA-D802
  • QS-SBO RCP-LOCA-750-90M REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

952 953 805 11 1.02E-08 0.91332 /DGN-FTO .* IE-T1

  • NOTL-SBOU1
  • NOTQ
  • 954 NRAC-216M
  • OEP-D8N-FR-6HDG2
  • OEP-DGN-MA-D801
  • QS-SBO
  • 955 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

956 957 430 10 1.02E-08 0.91363 AFW-TDP-FR-2P6HR NOTDG-CCF .* AFW-XHE-FO-U1SBO" NOTQ

  • BETA-2DG NRAC-6HR-AVG . IE-T1 OEP-DGN-FS .

/QS-SBO

  • REC-XHE-FO-DGEN + .

958 IE-T1 NOTL-SB0U1

  • NOTQ 959 808 12 9.89E-09 0.91393 /DGN-FTO .*

OEP-DGN-FS-DG01 ..* OEP-DGN-FS-DG02

  • 960 NRAC-201M 0 RCP-LOCA-750-90M . REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL .

+

961 12 0.91423

/QS-SBO

/DGN-FTO

  • IE-T1 . NOTL-SB0U1 . NOTQ 962 963 809 9.89E-09 NRAC-201M . 0
  • OEP-DGN-FS-DG01 . OEP-DGN-FS-DG03
  • RCP-LOCA-750-90M " REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

964 /QS-SBO *

/DGN-FTO IE-T1 NOTL-SB0U1 NOTQ

  • tc:l 965 966 907 12 9.86E-09 0.91453 NRAC-258M
  • . 10
  • OEP-DGN-FR-6HDG1 OEP-DGN-FR-6HDG2 I 967 /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-OGHWS
  • REC-XHE-FO-SCOOL +

~

c.o 968 807 11 9.81E-09 0.91483 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO .
  • NOTL-SB0U1 NRAC-216M OEP-DGN-FR-6HDG1 OEP-DGN-FR-6HDG2
  • NOTQ .*

969

  • 970 QS-SBO RCP-LOCA-750-90M REC-XHE-FO-DGHWS +

NOTQ .

971 202 11 9.51E-09 0.91512 /DGN-FTO IE-T1 NSLOCA

" NOTL-SBOU1 OEP-DGN-FS-DG01 OEP-DGN-FS-D003 .

972 973 NRAC-7HR QS-SBO

  • REC-XHE-FO-DGHWB .*

REC-XHE-FO-SCOOL +

974 201 11 9.51E-09 0.91541 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ 975 NRAC-7HR
  • NSLOCA
  • OEP-DGN-FS-D801
  • OEP-DGN-FS-D802
  • REC-XHE-FO-DGHWB REC-XHE-FO-SCOOL + .

976 977 2759 9 9.47E-09 0.91569 QS-SBO IE-T7

  • MSS-SOV-00-0DADV .

MSS-XHE-FO-BLOCK PORV-NOT-BLK

  • 978 PPS-MOV-00-1536
  • PPS-S0V-00-1455C
  • RCS-PORV-ODMD
  • RCS-XHE-FO-DPRT7
  • 979 980 2758 9 9.47E-09 0.91598 SGTR-SGADV-ODMD I E-T7

+

  • MSS-SOV-00-0DADV
  • MSS-XHE-FO-BLOCK . PORV-NOT-BLK
  • 981 PPS-MOV-00-1535
  • PPS-SOV-00-1456
  • RCS-PORV-ODMD
  • RCS-XHE-FO-DPRT7
  • 982 983 811 11 9.37E-09 0.91626 SGTR-SGADV-ODMD

/DGN-FTO

+

  • IE-T1
  • NOTL-SBOU1
  • NOTQ .

OEP-CRB-FT-15J3 OEP-DGN-FS-DG01

  • QS-SBO
  • 984 985 NRAC-216M RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS .*

REC-XHE-FO-SCOOL +

NOTQ 986 987 810 11 9.37E-09 0.91655 /DGN-FTO NRAC-21SM IE-T1 OEP-CRB-FT-15H3 NOTL-SBOU1 OEP-DGN-FS-D802 .*

QS-SBO 988 RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

NOTL-SBOU1 NOTQ

  • 989 812 11 9.37E-09 0.91683 /DGN-FTO .* IE-T1 OEP-CRB-FT-15H3 .*

OEP-DGN-FS-0803 .* QS-SBO

  • 990 NRAC-216M REC-XHE-FO-DGHWS . REC-XHE-FO-SCOOL + .

991 992 1818 11 9.33E-09 0.91712 RCP-LOCA-750-90M

  • NOTQ
  • NRAC-218M 993 /0
  • OEP-DGN-FR-6HD82
  • OEP-DGN-FR-6HD83
  • OEP-DGN-FS-D801
  • 994 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

. NRAC-216M .

995 996 1816 11 9.33E-09 0.91740

/0 IE-T1

  • N0TL-S80U1U2 OEP-DGN-FR-6HD81 NOTQ OEP-D8N-FR-6HDG3 . OEP-DGN-FS-D802 .

997 /QS-SBO

  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

998 1817 11 9.33E-09 0.91768 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-216M *

. OEP-DGN-FR-6HDG1 . OEP-DGN-FR-6HDG2 . OEP-DGN-FS-DG03 "

999 1000 10

/QS-SBO . RCP-LOCA-750-90M *" REC-XHE-FO-DGHWS +

1001 2624 6 9.32E-09 0.91796 AFW-MDP-FS

  • AFW-TDP-FS-FW2
  • AFW-XHE-FO-UNIT2
  • BETA-AFW 1002 HPI-XHE-FO-FDBLD" IE-T2 BETA-2DG . IE-T1

+

. NOTDG-CCF

1003 1004 813 12 9.20E-09 0.91824 NOTQ . NRAC-201M

  • 0
  • OEP-DGN-FS
  • REC-XHE-FO-SCOOL + .
  • RCP-LOCA-750-BOM REC-XHE-FO-DGHWS
  • 1005 /QS_.SBO 9.05E-09 0.91852 AFW-XHE-FO-CST2 /DGN-FTO IE-T1 NOTQ 1006 395 9 OEP-CRB-FT-15H3 OEP-DGN-MA-DG02 QS-SBO
  • 1007 NRAC-1HR 1008 0.91879 REC-XHE-FO-DGEN +

/DGN-FTO . IE-T1 . NOTL-SBOU1

  • NOTQ .

1009 911 12 9.03E-09 OEP-DGN-FS-DG02

  • OEP-DGN-MA-0801
  • 1010 NRAC-258M
  • 10
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +.
  • RCP-LOCA-467-150
  • 1011 /QS-SBO 12 0.91907 /DGN-FTO IE-T1 NOTL-SBOU1 .
  • NOTQ .

1012 1013 1014 909 9.03E-09 NRAC-258M

/QS-SBO . 10 RCP-LOCA-467-150 .. OEP-DGN-FS-DG01 REC-XHE-FO-DGHWS NOTL-SBOU1 OEP-DGN-MA-DG03 REC-XHE-FO-SCOOL NOTQ

+ .

0.91934 /DGN-FTO

  • IE-T1 1015 1016 1017 908 12 9.03E-09 NRAC-258M

/QS-SBO *

  • 10 RCP-LOCA-467-150 .* OEP-DGN-FS-DG01 REC-XHE-FO-DGHWS .*

OEP-DGN-MA-DG02 REC-XHE-FO-SCOOL NOTQ

+

  • IE-T1
  • NOTL-SB0U1

. 1018 1019 910 12 9.03E-09 0.91961 /DGN-FTO NRAC-258M . /0 .

  • OEP-DGN-FS-DG03
  • OEP-DGN-MAaDG01

" RCP-LOCA-467-150 REC-XHE-FO-DGHWS" REC-XHE-FO-SCOOL +

,1020 /QS-SBO IE-S1 . LPI -MDP-FS-SI 1B * . LPR-MOV-FT-1860A +

HPI-MOV-FT-1115C .. HPI-MOV-FT-1115E 1021 90 3 9.00E-09 0.91989 +

IE-S1 57 3 9.00E-09 0.92016 .

t:x:J 1022 1023 92 3 9.00E-09 9.00E-09 0.92043 0.92070 IE-81 IE-S1 ..

. LPR-MOV-FT-1890A LPI -MDP-FS-SI 1A .* LPR-MOV-FT-1890B +

LPR-MOV-FT-1860B +

I 1024 91 3 LPR-MOV-FT-1860A LPR-MOV-FT-1860B +

I
:. 1025 93 3 9.00E-09 0.92098 IE-S1 LPI -MDP-FS-SI 1A LPI-UDP-FS-S11B +

0 1026 66 3 9.00E-09 0.92125 0.92152 IE-S1 HPI-MOV-FT-11158 . HPI-MOV-FT-1115D IE-S1 +

1027 1028 58 817 3

11 9.00E-09 8.99E-09 0.92180 /DGN-FTO NOTO

  • IE-T1

. NRAC-216M .. MCW-CCF-VF-SBO OEP-DGN-FS-DG01 .* NOTL-SB0U1 OEP-DGN-MA-DG03 .*

1029 *. RCP-LOCA-750-90M REC-XHE-FO-DGHWS +

1030 OS-SBO

  • NOTL-SBOU1
  • 1031 815 11 8.99E-09 0.92207 /DGN-FTO NOTQ *.

IE-T1 NRAC-216M .* MCW-CCF-VF-SBO OEP-DGN-FS-DG02

  • OEP-DGN-MA-DG01
  • 1032 1033 1034 816 11 8.99E-09 0.92234 OS-SBO

/DGN-FTO .

RCP-LOCA-750-90M" IE-T1 ..* MCW-CCF-VF-SBO ..

REC-XHE-FO-DGHWS +

NOTL-SBOU1 OEP-DGN-MA-DG02 .

NOTO NRAC-218M OEP-DGN-FS-DG01 1035

  • REC-XHE-FO-DGHWS +

1038 1037 814 11 8.99E-09 0.92261 OS-SBO

/DGN-FTO . RCP-LOCA-750-90M IE-T1 .. MCW-CCF-VF-SBO NOTL-SBOU1

  • NRAC-216M OEP-DGN-FS-DG03 OEP-DGN-MA-DG01
  • 1038 1039 NOTQ QS-SBO . RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +. ..

1040 818 11 8.94E-09 0.92289 /DGN-FTO

  • IE-T1 *. NOTL-SB0U1 NOTO
  • OEP-DGN-FR-8HDG3 OEP-DGN-MA-DG01
  • QS-SBO 1041 1042 NRAC-216M RCP-LOCA-750-90M . REC-XHE-FO-DGTMS .

. REC-XHE-FO-SCOOL +. .

  • NOTQ 1043 819 11 8.94E-09 0.92316 /DGN-FTO NRAC-216M . IE-T1 OEP-DGN-FR-6HDG1 . N0TL-SB0U1 OEP-DGN-MA-DG03 . QS-SBO
  • 1044 1045 1046 203 11 8.84E-09 0.92342 RCP-LOCA-750-90M" BETA-2DG
  • REC-XHE-FO-DGTMS IE-T1 .* REC-XHE-FO-SCOOL +

NOTDG-CCF .. NOTL-SBOU1

  • NOTQ
  • NRAC-7HR
  • NSLOCA OEP-DGN-FS
  • 1047 REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL +

QS-SBO

  • 1048 1049 912 12 8.87E-09 0.92389 /DGN-FTO .
  • IE-T1
  • MCW-CCF-VF-SBO ..* NOTL-SBOU1 OEP-DGN-FR-6HDG2 .*

1050 1051 NOTQ OEP-DGN-FS-D801 *.

NRAC-258M

/QS-SBO .* /0 RCP-LOCA-467-150

. REC-XHE-FO-DGHWS +..

  • MCW-CCF-VF-SBO NOTL-SBOU1 IE-T1 1052 1

915 12 8.87E-09 0.92395 /DGN-FTO NOTQ . NRAC-258M 10 OEP-DGN-FR-6HD81 OEP-DGN-FS-D * /QS-SBO

  • RCP-LOCA-467-150 REC-XHE -DGHWS +

1055 1056 1057 1058 914 913 12 12 8:67E-09 8.67E-09 0.92421 0.92448

/DGN-FTO NOTQ OEP-DGN-FS-DG02

/DGN-FTO IE-T1 NRAC-258M

/QS-SBO IE-T1 MCW-CCF-VF-SBO 10 RCP-LOCA-467-150 MCW-CCF-VF-SBO N0TL-S80U1 OEP-DGN-FR-6HDG1 "

REC-XHE-FO-DGHWS +.

N0TL-S80U1 OEP-DGN-FR-6HDG3 1059 NOTQ

  • NRAC-258M

/QS-SBO .. 10 RCP-LOCA-467-150 .. REC-XHE-FO-DGHWS + .

1080 OEP-DGN-FS-DG01 NRAC-216M 1061 1062 1821 11 8.56E-09 0.92474 10 IE-T1 NOTL-S80U1U2 OEP-DGN-FS-DG02 . NOTQ OEP-DGN-FS-DG03 . OEP-DGN-MA-DG01 .

1063 /QS-SBO

. RCP-LOCA-750-90M" .. REC-XHE-FO-DGHWS +

.. NRAC-216M .

1064 1820 11 0. 9249.9 IE-T1 N0TL-S80U1U2 NOTQ .

8.56E-09 1065 10 OEP-DGN-FS-DG01 OEP-DGN-FS-DG03 OEP-DGN-MA-DG02 RCP-LOCA-750-90M" REC-XHE-FO-DGHWS . ..

1066 /QS-SBO +

1067 1819 11 0.92525 IE-T1 NOTL-S80U1U2 NOTQ . NRAC-216M 1068 8.56E-09 10 .. OEP-DGN-FS-DG01 OEP-DGN-FS-DG02 OEP-DGN-MA-DG03 1069 /QS-SBO

/DGN-FTO . RCP-LOCA-750-90M

  • IE-T1 . REC-XHE-FO-DGHWS NOTL-SBOU1

+

NOTQ .

1070 1071 204 10 8.54E-09 0.92551 NOTW2. . NRAC-7HR . OEP-CRB-FT-15H3

  • OEP-DGN-MA-DG02
  • 1072 QS-SBO
  • REC-XHE-FO-DGHWB +

1073 2625 6 8.48E-09 0.92577 AFW-MDP-FS

  • AFW-TDP-MA-FW2
  • AFW-XHE-FO-UNIT2
  • BETA-AFW
  • 1074 0.92602 HPI-XHE-FO-FDBLD AFW-TDP-FS-FW2 .
  • IE-T2

/DGN-FTO

+

IE-T1 . NOTQ

  • 1075 1076 403 9 8.36E-09 NRAC-HALFHR
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-MA-DG01 . QS-SBO
  • REC-XHE-FO-DGEN +

1077 400 8.36E-09 0.92628 AFW-TDP-FS-FW2 * /DGN-FTO IE-T1 . NOTQ

  • 1078 1079 8

NRAC-HALFHR . OEP-DGN-FR-6HDG1

  • OEP-DGN-MA-DG03
  • QS-SBO
  • 1080 1081 402 8.36E-09 0.92653 REC-XHE-FO-DGEN AFW-TDP-FS-FW2

+

  • /DGN-FTO

. IE-T1 .. NOTQ trj 1082 9

NRAC-HALFHR . OEP-DGN-FR-6HDG2

  • OEP-DGN-MA-D001 QS-SBO I

,.i:,. 1083 REC-XHE-FO-DGEN AFW-TDP-FS-FW2

+

. /DGN-FTO .

. IE-T1 .. NOTQ .

~ 1084 1085 401 9 8.S8E-09 0.92878 NRAC-HALFHR . OEP-DGN-FR-8HDG1 OEP-DGN-MA-DG02 QS-SBO

  • 1086 REC-XHE-FO-DGEN +

1087 303 10 8.32E-09 0.92704 BETA-3DG IE-T1 NOTL-SBOU1U2 NOTQ NSLOCA OEP-DGN-FS 1088 NRAC-7HR

. REC-XHE-FO-DGHWB .

0

/QS-SBO +

1089 MSS-CKV-FT-SGDHR MSS-XHE-FO-ISDHR RCS-XHE-FO-DPRT7 +

1090 1091 2789 821 4

11 8 .12E-09 7.88E-09 0.92728 0.92752 IE-T7

/DGN-FTO IE-T1 .. MCW-CCF-VF-SBO NOTL-S80U1 .*

10 OEP*CRB-FT-15J3 1092 NOTQ . NRAC-216M RCP-LOCA-750-90M OEP-DGN-FR-6HDG1 /QS-SBO +

1093 . MCW-CCF-VF-SBO NOTL-SBOU1 1094 1095 820 11 7.88E-09 0.92776 /DGN-FTO NOTQ . IE-T1 NRAC-216M .* 10 OEP-CRB-FT-15H3 1096 OEP-DGN-FR-6HDGS * /QS-SBO

  • RCP-LOCA-750-90M +

1097 556 9 7.84E-09 0.92800 AFW-XHE-FO-CST2

  • BETA-2DG
  • BETA-3DG
  • IE-T1 *.

1098 NOTQ

  • NRAC-1HR
  • OEP-DGN-FS
  • QS-SBO 1099 REC-XHE-FO-DGEN +

. LP I -MDP-FS-S 118 . LPR-MOV-FT-1862A +

1100 30 3 7.80E-09 0.92823 IE-A 1101 32 3 7.80E-09 0.92847 IE-A

  • LPR-MOV-FT-1860B LPR-MOV-FT-1862A +

1102 29 3 7.80E-09 0.92871 IE-A

  • LPR-MOV-FT-1860A LPR-MOV-FT-18628 +

1103 31 3 7.80E-09 0.92894 IE-A

  • LPI -MDP-FS-SI 1A
  • LPR-MOV-FT-18628 +

1104 1823 12 7.68E-09 0.92918 BETA-2DG IE-T1 NOTDG-CCF NOTL-S80U1U2 1105 NOTQ NRAC-216M

  • 10

.. OEP-DGN-FS 1108 OEP-DGN-MA-DG03 * /QS-SBO RCP-LOCA-750-90M *

. REC-XHE-FO-DGHWS .

+

1107 1824 12 7.68E-09 0.92941 BETA-2DG

  • IE-T1

. . NOTDG-CCF NOTL-S80U1U2 .

1108 NOTQ NRAC-218M 10 *. OEP-DGN-FS 1109 1110 1822 12 7.88E-09 0.92964 OEP-DGN-UA-DG01 BETA-2DG

  • /QS-SBO

. IE-T1

  • RCP-LOCA-750-90U

. NOTDG-CCF

REC-XHE-FO-DGHWS +

1111 NOTQ

  • NRAC-218M
  • 10
  • OEP-DGN-FS
  • 1112 OEP-DGN-MA-DG02 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

1113 408 9 7.80E-09 0.92987 AFW-TDP-MA-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 1114 NRAC-HALFHR
  • OEP-DGN-FR-8HDG1
  • OEP-DGN-MA-DG03
  • QS-SBO
  • 1115 REC-XHE-FO-DGEN +

1118 407 9 7.80E-09 0.93010 AFW-TDP-MA~FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 1117 NRAC-HALFHR
  • OEP-DGN-FR-8HDG3
  • OEP-DGN-MA-DG01
  • QS-SBO
  • 1118 REC-XHE-FO-DGEN +

1119 406 9 7.60E-09 0.93033 AFW-TDP-MA-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FR-8HDG1
  • OEP-DGN-MA-DG02
  • QS-SBO
  • 1120 1121 REC-XHE-FO-DGEN +

1122 405 9 7.80E-09 0.93056 AFW-TDP-MA-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FR-8HDG2
  • OEP-DGN-MA-DG01
  • QS-SBO
  • 1123 1124 REC-XHE-FO-DGEN +

127 5 7.58E-09 0.93079 BETA-STR

  • CPC-STR-PG-24H
  • CPC-XHE-FO-REALN
  • HPI-XHE-FO-UN2S3
  • 1125 1126 IE-S3 +

7.41E-09 0.93102 HPI-CKV-FT-CV225

  • HPI-XHE-FO-ALTIN
  • IE-S3 +

1127 128 3 IE-T1

  • NOTQ
  • 1128 437 9 7.37E-09 0.93124 AFW-TDP-FR-2P6HR * /DGN-FTO
  • 1129 NRAC-6HR-AVG
  • OEP-D0N-FR-6HDG1
  • OEP-DGN-MA-DG03
  • QS-SBO
  • 1130 REC-XHE-FO-DGEN +

436 9 7.37E-09 0.93147 AFW-TDP-FR-2P8HR " /DGN-FTO

  • IE-T1 "' NOTQ
  • 1131 OEP-DGN-MA-0~01
  • QS-SBO
  • 1132 NRAC-6HR-AVG
  • OEP-DGN-FR-6HDG3
  • 1133 REC-XHE-FO-DGEN +
  • /DGN-FTO "' IE-T1 . NOTQ
  • t,j 1134 1135 439 9 7.37E-09 0.93169 AFW-TDP-FR-2P6HR NRAC-6HR-AVG
  • OEP-DGN-FR-6HDG1

. OEP-DGN-MA-DG02

  • QS-SBO
  • I

.I'> 1136 REC-XHE-FO-DGEN +

/DGN-FTO . IE-T1

  • NOTQ
  • N) 1137 1138 438 9 7.37E-09 0.93191 AFW-TDP-FR-2P6HR NRAC-6HR-AVG .* OEP-DGN-FR-6HDG2 . OEP-DGN-UA-DG01
  • QS-SBO
  • 1139 REC-XHE-FO-DGEN +

1140 2465 10 7.34E-09 0.93214 BETA-3DG *. IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • 1141 NRAC-246M 10
  • OEP-DGN-FS * /QS-SBO
  • 1142 RCP-LOCA-561-150
  • REC-XHE-FO-DGHWS +

12 7.28E-09 0.93236 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • 1143 205 OEP-DGN-FR-6HDG1
  • 1144 NRAC-7HR
  • NSLOCA
  • 10
  • OEP-DGN-FR-6HDG2 * /QS-SBO
  • REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL +

1145 NOTQ

  • 1146 208 9 7.12E-09 0.93257 /DGN-FTO
  • IE-T1
  • NOTL-SBOU1
  • NOTW2
  • NRAC-7HR
  • OEP-CRB-FT-15H3
  • OEP-CRB-FT-15J3
  • 1147 1148 QS-SBO +

10 7.12E-09 0.93279 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 1149 206 OEP-CRB-FT-15J3
  • OEP-DGN-MA-0001
  • 1150 NOTW2
  • NRAC-7HR
  • 1151 QS-SBO
  • REC-XHE-FO-DGTMB +

207 10 7.12E-09 0.93300 /OGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 1152 NRAC-7HR OEP-CRB-FT-15H3
  • OEP-DGN-MA-D003
  • 1153 NOTW2 *
  • 1154 1155 2739 4 7.04E-09 0.93322 QS - 880 - , ____-,

HPI-XHE-F0-0N2S3 .* REC-XHE-FO-DGTMB HPI-XVM-PG-XV24

+

  • IE-T7
  • RCS-XHE-FO-DPT7D +

661 10 7.04E-09 0.93343 /OGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 1156 QS-880 1157 OEP-CRB-FT-15H3
  • OEP-DGN-FS-D003
  • PPS-SOV-00-1465C *
  • 880-PORV-DMD +

1158 1159 662 10 7.04E-09 0.93364 REC-XHE-FO-DGEN

/OGN-FTO .* IE-T1

  • NOTL-SBOU1
  • NRAC-1HR
  • 1160 OEP-CRB-FT-15J3
  • OEP-DGN-FS-D001
  • PPS-SOV-00-14550
  • QS-SBO
  • 1181 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

1162 659 10 7.04E-09 0.93386 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 1163 OEP-CRB-FT-15H3
  • OEP-D0N-FS-DG02
  • PPS-SOV.-00-1456
  • QS-SBO
  • 1184 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

660 10 7.04E-09 0.93407 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 1165 PPS-S0V-00-1455C
  • QS-SBO
  • 1166 OEP-CRB-FT-15H3
  • OEP-DGN-FS-D002
  • 1167 REC-XHE-FO-DGEN ... SBO-PORV-DMD + . .

NOTL-SBOU1 NRAC-1HR 1168 1169 663 10 7.04E-09 0.93428 /DGN-FTO OEP-CRB-FT-15H3 IE-T1 OEP-DGN-FS-D803 . PPS-SOV-00-1456 . QS-SBO

  • REC-XHE-FO-DGEN . SBO-PORV-DMD +. . .

1170 1171 10 7.04E-09 0.93450 /DGN-FTO . IE-T1 NOTL-SBOU1 NRAC-1HR 1172 684 OEP-CRB-FT-15J3 . OEP-DGN-FS-D801 PPS-SOV-00-1458

  • QS-SBO
  • 1173 REC-XHE-FO-DGEN . SBO-PORV-DMD +

1174 916 11 7.03E-09 0.93471 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 1175 NRAC-258M
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • QS-SBO
  • 1176 RCP-LOCA-467-150 *

/DGN-FTO REC-XHE-FO-DGHWS IE-T1

  • REC-XHE-FO-SCOOL NOTL-SBOU1

+ . NOTQ .

1177 1178 917 11 7.03E-09 0.93492 NRAC-258M .*

OEP-DGN-FR-6HDG1

  • OEP-DGN-FS-DG03
  • QS-SBO
  • 1179 1180 11 0.93514 RCP-LOCA-487-150 *

/DGN-FTO ,. REC-XHE-FO-DGHWS IE-T1 ..

  • REC-XHE-FO-SCOOL NOTL-SB0U1

+

. NOTQ

. os~seo 1181 919 7.03E-09 NRAC-258M . OEP-DGN-FR-6HD82 . OEP-DGN-FS-DG01

  • 1182 RCP-LOCA-467-150 . REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

1183 918 11 7.03E-09 0.93535 /DGN-FTO . IE-T1

  • NOTL-SB0U1
  • NOTQ
  • NRAC-258U OEP-DGN-FR-6HD01 OEP-DGN-FS-D002 QS-SBO
  • 1184 * .*
  • 1185 1186 411 9 6.97E-09 0.93556 RCP-LOCA-467-150 AFW-TDP-MA-FW2 .*. REC-XHE-FO-DGHWS

/DGN-FTO . REC-XHE-FO-SCOOL IE-T1

+

. NOTQ

  • 1187 NRAC-HALFHR OEP-CRB-FT-15J3
  • OEP-DGN-FS-DG01
  • QS-SBO
  • 1188 410 6.97E-09 o. 93577 REC-XHE-FO-DGEN AFW-TDP-MA-FW2

+

  • /D0N-FTO . IE-T1
  • NOTQ .

1189 1190 9

NRAC-HALFHR

  • OEP-CRB-FT-15H3 . OEP-DGN-FS-DG02
  • QS-SBO *

~ 1191 REC-XHE-FO-DGEN + .

I NOTQ

,i::,. 1192 412 9 6.97E-09 0.93598 AFW-TDP-MA-FW2 /DGN-FTO

  • IE-T1
  • c,.:, 1193 NRAC-HALFHR OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG03
  • QS-SBO
  • 1194 REC-XHE-FO-DGEN +.. . IE-T1 .

1195 416 10 6.79E-09 0.93619 AFW-TDP-FS-FW2 NOTQ AFW-XHE-FO-U1SBO" /DGN-FTO NRAC-HALFHR

  • OEP-DGN-FR-6HDG2 . OEP-DGN-FS-D801 .

1196 1197 /QS-SBO . REC-XHE-FO-.DGEN + ..

  • AFW-XHE-FO-U1SBO" /DGN-FTO IE-T1 *.

1198 414 10 6.79E-09 0.93639 AFW-TDP-FS-FW2 NOTQ . NRAC-HALFHR . OEP-DGN-FR-6HD81 OEP-DGN-FS-DG03 1199 1200 /QS-SBO . REC-XHE-FO-DGEN + ..

1201 415 10 6.79E-09 0.93660 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SBO /DGN-FTO .
  • IE-T1 .*

NOTQ . NRAC-HALFHR OEP-DGN-FR-6HDG3 OEP-DGN-FS-DG01 1202 . REC-XHE-FO-DGEN +

1203 /QS-SBO IE-T1 1204 1205 413 10 8.79E-09 0.93681 AFW-TDP-FS-FW2 NOTQ .

. NRAC-HALFHR .

AFW-XHE-FO-U1SBO" /DGN-FTO OEP-DGN-FR-6HD81 . OEP-DGN-FS-D802 1206 /QS-SBO

.. REC-XHE-FO-DGEN + . IE-T1 . NOTQ .

1207 1208 447 9 6.76E-09 0.93701 AFW-TDP-FR-2P6HR NRAC-6HR-AVG

/DGN-FTO OEP-CRB-FT-15H3

  • OEP-DGN-FS-DG03 . QS-SBO 1209 REC-XHE-FO-DGEN + .. .. . .

1210 1211 446 9 6.76E-09 0.93722 AFW-TDP-FR-2P6HR NRAC-6HR-AVG

/DGN-FTO OEP-CRB-FT-15J3 IE-T1 OEP-DGN-FS-D801 . NOTQ QS-SBO

  • 1212 REC-XHE-FO-DGEN + .. . . NOTQ .

1213 1214 446 9 6.76E-09 0.93742 AFW-TDP-FR-2P6HR NRAC-6HR-AVG

/DGN-FTO OEP-CRB-FT-15H3 . IE-T1 OEP-DGN-FS-D802 . QS-SBO .

1215 REC-XHE-FO-DGEN + .. .. NOTL-SB0U1 NOTQ .

1216 210 12 6.67E-09 0.93762 /DGN-FTO IE-T1 .*

OEP-DGN-FS-D801 1217 NRAC-7HR NSLOCA 10

  • REC-XHE-FO-DGHWB . REC-XHE-FO-SCOOL +

1218 OEP-DGN-MA-D802 * /QS-SBO

. . .. NOTQ .

1219 1220 211 12 6.67E-09 0.93783 /DGN-FTO NRAC-7HR IE-T1 NSLOCA . NOTL-S80U1 10

. OEP-DGN-FS-DG01

  • REC-XHE-FO-DGHWB REC-XHE-FO-SCOOL +.

1221 1222 209 12 6.67E-09 0.93803 OEP-DGN-UA-0803

/DGN-FTO

/QS-SBO IE-T1 . NOTL-SBOU1

  • NOTQ

NRAC-7HR

  • NSLOCA
  • 10
  • OEP-DGN-FS-DG02
  • 12'23 REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL +

1224 OEP-DGN-MA-DG01 * /QS-SBO

  • 1225 212 12 8.87E-09 0.93823 IDGN-FTO * *I E-T1
  • NOTL-S80U1
  • NOTO
  • NRAC-7HR
  • NSLOCA
  • 10
  • OEP-DGN-FS-DG03
  • 1226 ,* REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL +

1227 OEP-DGN-MA-0801 * /QS-SBO 10 0.93843 IE-T1

  • NOTL-S80U1U2
  • NOTO
  • NRAC-218M
  • 1228 1828 6.85E-09 OEP-DGN-FS-DG03
  • OS-SBO
  • 1229 OEP-DGN-FR-8HDG1
  • OEP-DGN-FS-0802
  • 1230 RCP-LOCA-750-90U
  • REC-XHE-FO-DGHWS +

1825 10 6.65E-09 o.93863 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-216M
  • 1231 OEP-DGN-FS-DG02
  • QS-SBO
  • 1232 OEP-DGN-FR-6HD83
  • OEP-DGN-FS-DG01
  • 1233 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

1827 10 6.65E-09 0.93884 IE-T1

  • NOTQ
  • NRAC-216M
  • 1234 OEP-DGN-FS-DG03
  • QS-SBO
  • 1235 OEP-DGN-FR-6HD82
  • OEP-DGN-FS-DG01
  • 1233 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

/DGN-FTO

  • IE-T1 .
  • NOTL-S80U1
  • NOTQ
  • 1237 822 12 6.57E-09 0.93903 OEP-CRB-FT-15H3 OEP-DGN-MA-DG02
  • 1238 NRAC-216M
  • 10 *
  • IQS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

1239 MCW-CCF-VF-SBO

  • NOTL-S80U1
  • 1240 215 12 6.40E-09 0.93923 /DGN-FTO
  • IE-T1
  • NOTQ
  • NRAC-7HR
  • NSLOCA
  • 10
  • 1241 IQS-SBO
  • REC-XHE-FO-DGHWB +

1242 OEP-DGN-FR-6HDG3

  • OEP-DGN-FS-D001
  • 1243 216 12 6.40E-09 0.93942 /DGN-FTO
  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-S80U1
  • NOTO
  • NRAC-7HR
  • NSLOCA
  • 10
  • 1244
  • REC-XHE-FO-DGHWB +

.1245 OEP-DGN-FR-8HD81

  • OEP-DGN-FS-D003 * /OS-SBO
  • 1246 214 12 6.40E-09 0.93962 /DGN-FTO
  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • NOTO
  • NRAC-7HR
  • NSLOCA
  • 10
  • 1247 /QS-SBO
  • REC-XHE-FO-DGHWB +

t:11 1248 OEP-DGN-FR-6HDG1

  • OEP-DGN-FS-DG02
  • I 213 12 6.40E-09 0.93981 /DGN-FTO
  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1 *

.i::. 1249 NSLOCA

  • 10 *

.i::. 1250 NOTQ

  • NRAC-7HR
  • OEP-D0N-FR-6HDG2
  • OEP-DGN-FS-DG01 * /OS-SBO
  • REC-XHE-FO-DGHWB +

1251

  • IE-T1 NOTL-SB0U1
  • NOTQ
  • 1252 823 10 6.39E-09 0.94000 /DGN-FTO
  • NRAC-216M
  • OEP-CRB-FT-15H3
  • OEP-DGN-FR-6HD03
  • QS-SBO
  • 1253 1254 RCP-LOCA-750-90M
  • REC-XHE-FO-SCOOL +

10 6.39E-09 0.94020 /DGN-FTO

  • IE-T1
  • NOTO
  • 1255 824 OEP-DGN-FR-6HD01
  • QS-SBO
  • 1256 NRAC-216M
  • OEP-CRB-FT-15J3
  • 1257 RCP-LOCA-750-90M
  • REC-XHE-FO-SCOOL +

1828 10 6.36E-09 0.94039 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-216M
  • 1258 OEP-DGN-FR-6HDG2
  • OEP-DGN-FR-6HD03
  • 1259 10
  • OEP-DGN-FR-6HD01
  • 1260 /QS-SBO
  • RCP-LOCA-750-90U +

1261 825 12 6.31E-09 0.94058 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-S80U1
  • 1262 NOTQ
  • NRAC-216M
  • 10
  • OEP-CRB-FT-15H3
  • OEP-D0N-FR-6HDG2
  • IQS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

1263 NOTL-S80U1

  • 1264 921 11 6 .18E-09 0.94077 IDGN-FTO
  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTQ
  • NRAC-258M
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03
  • 1285 REC-XHE-FO-DGHWS +

1266 QS-SBO

  • RCP-LOCA-467-150
  • 920 11 6. 18E-09 0.94096 /DGN-FTO
  • IE-T1
  • UCW-CCF-VF-SBO
  • NOTL-S80U1
  • 1267 OEP-DGN-FS-0001
  • OEP-DGN-FS-DG02
  • 1268 NOTQ
  • NRAC-258M
  • 1269 QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

1270 421 10 6.18E-09 0.94114 AFW-TDP-UA-FW2

  • AFW-XHE-FO-U1SBO
  • IDGN-FTO
  • IE-T1
  • NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-0001
  • 1271 1272 IQS-SBO
  • REC-XHE-FO-DGEN +

423 10 6.18E-09 0.94133 AFW-TDP-MA-FW2 AFW-XHE-FO-U1S80 * /DGN-FTO

  • IE-T1
  • 1273 OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG03
  • 1274 NOTQ
  • NRAC-HALFHR
  • 1275 IQS-SBO
  • REC-XHE-FO-DGEN + IE-T1 424 10 6.18E-09 0.94152 AFW-TDP-MA-FW2
  • AFW-XHE-FO-U1SBO * /DGN-FTO *
  • 1276 OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-0001
  • 1277 NOTQ
  • NRAC-HALFHR
  • 1278 /QS-S80
  • REC-XHE-FO-DGEN +

1279 422 10 8.18E-09 0.94171 AFW-TDP-MA-FW2 .. .

AFW-XHE-FO-U1S80" /DGN-FTO .. IE-T1 OEP-DGN-FS-DG02 ..

NOTQ NRAC-HALFHR OEP-DGN-FR-8HDG1 1280

/QS-SBO . REC-XHE-FO-DGEN + .. .

1281 1282 2679 4 0.94189 ACP-8AC-ST-1H1-2 . IE-T K

.. R +

1283 8.08E-09 8.08E-09 0.94207 ACP-BAC-ST-4KV1H . 1e-*r

. K R +

2580 4 0.94228 ACP-8AC-ST-1H1 . IE-T . K R +

1284 2581 4 8.08E-09 0.94244 IE-S1 . LPI -MUP-MA-SI 1A .. LPR-MOV-FT-18808 +

1285 94 3 8.00E-09 1288 95 3 8.00E-09 0.94282 IE-S1 LPI -MOP-MA-SI 18 LPR-MOV-FT-1880A +

LPI -MOP-MA-SI 18 1287 88 3 6.00E-09 0:94280 IE-S1 LPI-MDP-FS-S11A LPI -MDP-FS-SI 18 . LPI sMDP-MA-SI 1A

+

+

1288 1289 87 455 3

10 8.00E-09 5.99E-09 0.94299 0.94317 IE-S1 AFW-TDP-FR-2P8HR .. AFW-XHE-FO-U1S80" /DGN-FTO

. IE-T1 NOTQ NRAC-6HR-AVG OEP-DGN-FR-6HDG2 OEP-DGN-FS-DG01 1290 . REC-XHE-FO-DGEN + . .

1291 1292 454 10 5.99E-09 0.94335

/QS-S80 AFW-TDP-FR-2P6HR .. AFW-XHE-F0-U1S80" /DGN-FTO

. IE-T1 1293 NOTQ NRAC-6HR-AVG OEP-DGN-FR-6HDG1

  • OEP-DGN-FS-DG02
  • 1294 /QS-S80 . REC-XHE-FO-DGEN +. .

1295 453 10 5.99E-09 0.94353 AFW-TDP-FR-2P6HR .. AFW-XHE-FO-U1S80 . /DGN-FTO .* IE-T1 .

1296 NOTQ NRAC-6HR-AVG OEP-DGN-FR-6HDG1 OEP-DGN-FS-0803 1297 /QS-SBO ..

  • REC-XHE-FO-DGEN + .. IE-T1 .

1298 452 10 5.99E-09 0.94371 AFW-TDP-FR-2P6HR NOTQ AFW-XHE-FO-U1S80" /DGN-FTO NRAC-6HR-AVG

  • OEP-DGN-FR-6HDG3 OEP-DGN-FS-DG01 .

1299 . REC-XHE-FO-DGEN + . .

1300 /QS-SBO . NOTDG-CCF N0TL-SB0U1U2 .

1301 1302 1829 11 5.98E-09 0.94389 BETA-2DG NOTQ IE-T1 NRAC-216M OEP-DGN-FR~6HDG3 . OEP-DGN-FS

/:tj 1303 .

RCP-LOCA-750-90M . REC-XHE-FO-DGHWS + ...

I 1304 1831 11 0.94407 QS-SBO BETA-2DG . IE-T1 .. NOTDG-CCF .

  • NOTL-SB0U1U2 .

.i:,.

en 5.98E-09 NOTQ . NRAC-216M OEP-DGN-FR-6HDG2 OEP-DGN-FS 1305 . RCP-LOCA-750-90M .. REC-XHE-FO-DGHWS + . ..

1308 QS-SBO BETA-2DG . IE-T1 NOTDG-CCF . NOTL-SB0U1U2 1307 1830 11 5.98E-09 0.94426

.. OEP-DGN-FR-8HDG1 OEP-DGN-FS 1308 NOTQ NRAC-218M 1309 1310 922 11 5.91E-09 0.94444 QS-SBO

/DGN-FTO .. RCP-LOCA-750-90M IE-T1 REC-XHE-FO-DGHWS MCW-CCF-VF-SBO

+

.. NOTL-SB0U1 ..

10 OEP-DGN-FR-8HDG1 NRAC-258M 1311 NOTQ

. /QS-SBO RCP-LOCA-467-160 + . .

1312 OEP-DGN-FR-6HDG3 IE-T1 . NOTL-SB0U1U2 NOTQ . NRAC-258M 1313 1918 11 5.88E-09 0.94461

.. OEP-DGN-FS-DG02 OEP-DGN-FS-DG03 RCP-LOCA-487-150 ..

1314 10 OEP-DGN-FS-DG01 REC-XHE-FO-DGHWS + .

1315 /QS-SBO 1316 217 11 5.82E-09 0.94479 /DGN-FTO NOTQ .* IE-T1 NRAC-7HR . NSLOCA MCW-CCF-VF-SBO NOTL-SB0U1 10 .

1317 OEP-DGN-FR-8HDG1 . OEP-DGN-FR-8HDG3 ". . /QS-SBO +

1318 MCW-CCF-VF-SBO NOTDG-CCF 1319 923 11 5.75E-09 0.94496 BETA-2DG IE-T1 ... OEP-DGN-FS RCP-LOCA-487-150 .

NOTL-SB0U1 NOTQ NRAC-258M 1320 1321 1322 826 12 5.76E-09 0.94514 QS-SBO

/DGN-FTO IE-T1 .. REC-XHE-FO-DGHWS NOTL-SB0U1

+ .. NOTQ ..

OEP-DGN-UA-DG01 RCP-LOCA-750-90M" REC-XHE-FO-DGTMS ..

10 OEP-CRB-FT-15J3 1323 NRAC-216M

. REC-XHE-FO-SCOOL + ..

.. OEP-CR8-FT-15H3

/QS-SBO 1324 1325 12 /DGN-FTO . IE-T1 NOTL-S80U1 . NOTQ 827 5.75E-09 0.94531 1326 NRAC-218U 10 OEP-DGN-MA-DG03 REC-XHE-FO-SCOOL +.

1327 /QS-S80 IE-T1 . NOTL-S80U1U2 RCP-LOCA-750-90M" REC-XHE-FO-DGTMS".

. . NOTQ .

1328 1329 2248 9 5.SOE-09 0.94548 8ETA-3DG NRAC-150M . OEP-DGN-FS QS-S80 RCP-LOCA-1440-90 1330 REC-XHE-FO-DGHWS +

1331 588 9 5.54E-09 0.94585 AFW-XHE-FO-CST2 IE-T1 NOTQ NRAC-1HR 1332 OEP-DGN-FS-DG01 OEP-DGN-FS-DG02 OEP-DGN-FS-DG03 QS-SBO 1333 1334 828 12 5.40E-09 0.94581 REC-XHE-FO-DGEN +

/DGN-FTO . IE-T1 . NOTL-S80U1 . NOTQ .

NRAC-201M

  • 0
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02
  • 1335 1336 /QS-SBO .
  • RCP-LOCA-750-90M
  • IE-T1 . REC-XHE-FO-DGHWS NOTL-S80U1 .* REC-XHE-FO-SCOOL NOTQ

+.

1337 1338 831 12 5.40E-09 0.94598 /DGN-FTO NRAC-201M . 0 *. OEP-DGN-FR-6HDG3

  • OEP-DGN-FS-DG01 *

/QS-SBO

  • RCP-LOCA~750-90M REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

1339 IE-T1 NOTL-SB0U1

  • NOTQ
  • 1340 830 12 5.40E-09 0.94614 /DGN-FTO *
  • NRAC-201M
  • 0
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG03
  • 1341 RCP~LOCA-750-90M REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

1342 /QS-SBO *

  • NOTQ 1343 829 12 5.40E-09 0.94631 /DGN-FTO NRAC-201M .

0 IE-T1 ..

OEP-DGN-FS-D001 1344 1345 /QS-SBO . RCP-LOCA-750-90M REC-XHE-FO-DGHWS

  • REC-XHE-FO-SCOOL +

AFW-PSF-FC-XCONN AFW-XHE-FO-UNIT2

  • BETA-2MOV
  • IE-T2
  • 1346 2649 6 5.36E-09 0.94647 PPS-MOV-FC-1536 .

PPS-MOIJ-FT +

1347 1348 2650 .6 5.36E-09 0.94663 AFW-PSF-FC-XCONN . AFW-XHE-FO-UNIT2

  • BETA-2MOV
  • IE-T2
  • 1349 PPS-MOV-FC-1535
  • PPS-MOV-FT +

1350 34 3 5.20E-09 0.94679 IE-A

  • LPI -MDP-MA-SI 1A
  • LPR-MOV-FT-18628 +

1351 33 3 5.20E-09 0.94695 IE-A

  • LPI -MDP-MA-SI 18
  • LPR-MOV-FT-1862A + .

1352 668 10 5.19E-09 0.94710 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NRAC-1HR 1353 OEP-CRB-FT-15H3
  • OEP-DGN-MA-DG03
  • PPS-S0V-00-1455C * /QS-SBO
  • 1354 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

1355 667 10 5.19E-09 0.94726 /DGN-FTO

  • I E-T1.
  • NOTL-SB0U1
  • NRAC-1HR
  • 1356 OEP-CRB-FT-15H3
  • OEP-DGN-MA-DG02
  • PPS-S0V-00-1455C * /QS-SBO
  • 1357 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

1358 669 10 5.19E-09 0.94742 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NRAC-1HR
  • l:!j 1359 OEP-CRB-FT-15H3 " OEP-DGN-MA-0002
  • PPS-SOV-00-1456 * /QS-SBO *

+

I

.i::,. 1360 REC-XHE-FO-DGEN

  • SBO-PORV-DMD IE-T1 . NOTL-S80U1
  • NRAC-1HR
  • m 1361 1362 670 10 5.19E-09 0.94757 /DGN-FTO OEP-CRB-FT-15H3 .* OEP-DGN-MA-DG03
  • PPS-SOV-00-1456 * /QS-SBO
  • REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

1363 IE-T1

  • NOTL-S80U1
  • NRAC-1HR
  • 1364 1365 666 10 5. 19E-09 0.94773 /DGN-FTO OEP-CRB-FT-15J3 .* OEP-DGN-MA-0001
  • PPS-SOV-00-14550 * /QS-SBO
  • 1366 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

NOTL-SB0U1

  • NRAC-1HR
  • 1367 1368 665 10 5. 19E-09 0.94789 /DGN-FTO OEP-CRB-FT-15J3 *
  • IE-T1 OEP-DGN-MA-0001 .* PPS-SOV-00-1456 * /QS-SBO
  • REC-XHE-FO-DGEN SBO-PORV-DUD +

1369 1370 221 11 5.19E-0.9 0.94805 /DGN-FTO .*

IE-T1

  • NOTL-SB0U1
  • NOTQ
  • NRAC-7HR
  • NSLOCA
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-0801
  • 1371 1372 1373 220 11 5.19E-09 0.94820 QS-SBO

/DGN-FTO ..

  • REC-XHE-FO-DGHWB IE-T1 .
  • REC-XHE-FO-SCOOL NOTL-SB0U1 .

+

NOTQ OEP-D0N-FS-DG03 .*

1374 NRAC-7HR NSLOCA OEP-DGN-FR-6HDG1

  • REC-XHE-FO-DGHWB " REC-XHE-FO-SCOOL +

1375 QS-SBO . IE-T1

  • NOTL-SB0U1
  • NOTQ
  • 1376 1377 218 11 5.19E-09 0.94836 /DGN-FTO NRAC-7HR . NSLOCA
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-0001
  • REC-XHE-FO-SCOOL +

1378 1379 219 11 5.19E-09 0.94852 QS-SBO

/DGN-FTO REC-XHE-FO-DGHWB IE-T1 .

NOTL-SB0U1

  • NOTQ
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02
  • 1380 1381 NRAC-7HR QS-SBO .* NSLOCA REC-XHE-FO-DGHWB
  • . REC-XHE-FO-SCOOL +

6 5.16E-09 0.94868 AFW-MDP-FS

  • AFW-TDP-FR-2P24H
  • AFW-XHE-FO-UNIT2
  • BETA-AFW
  • 1382 2592 PPS-XHE-FO-PORVS +

1383 IE-T1 * +

129 4 5. 15E-09 0.94883 HPI-MOV-FT-11150

  • HPI-MOV-FT-1115E
  • HP1-XHE-FO-UN2S3
  • IE-S3 1384 1385 130 832 11 4 5.15E-09 5.11E-09 0.94899 0.94914 HPI-UOV-FT-11158

/DGN-FTO HPI-MOV-FT-1115D IE-T1 HP1-XHE-FO-UN2S3 NOTL-SB0U1 IE-S3 NOTQ .

+

1388 OEP-CRB-FT-15H3 OEP-DGN-FR-6HDG2

  • QS-SBO
  • 1387 NRAC-21SM *
  • 1388 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE.-FO-SCOOL +

NOTQ

  • 429 9 5.11E-09 0.94930 AFW-CKV-00-CV * /DGN-FTO
  • IE-T1
  • NRAC-HALFHR
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • QS-SBO
  • 1391 REC-XHE-FO-DGEN +

1392 428 9 5.11E-_09 0.94945 AFW-CKV-00-CV172 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 1393 NRAC-HALFHR
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03
  • QS-SBO
  • 1394 REC-XHE-FO-DGEN +

AFW-TDP-FS.-FW2 /DGN-FTO IE-T1

  • NOTQ
  • 1395 1396 427 9 5.11E-09 0.94961 NRAC-HALFHR .* OEP-DGN-FR-DG01
  • OEP-DGN-FS-DG03
  • QS-SBO
  • 1397 REC-XHE-FO-DGEN +

AFW-XHE-FO-UNIT2

  • IE-T2 PPS-S0V-FT-1455C +

1398 2652 4 5.08E-09 0.94976 AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2 . IE-T2
  • PPS-SOV-FT-1456 +

1399 1400 2651 2026 4

9 5.08E-09 4.99E-09 o."94991 0.95007 AFW-PSF-FC-XCONN BETA-308

  • IE-T1 . NOTL-S80U1U2
  • NOTQ
  • 1401 NRAC-7HR
  • OEP-DGN-FS
  • QS-SBO " RCP-LOCA-183-150
  • 1402 REC-XHE-FO-DGHWS +

1403 2136 9 4.99E-09 0.95022 BETA-3DG

  • IE-T1
  • NOTL-S80U1U2
  • NOTQ
  • 1404 NRAC-7HR
  • OEP-DGN-FS
  • QS-SBO
  • RCP-LOCA-183-210
  • 1405 1406 2593 5 4.99E-09 0.95037 REC-XHE-FO-DGHWS AFW-PSF-FC-XCONN .

+

AFW-XHE-FO-UNIT2 . IE-T1 . PPS-MOV-FC-1536

  • 1407 1408 2594 5 4.99E-09 0.95052 PPS-MOV-FT - 1536 AFW-PSF-FC-XCONN

+

" AFW-XHE-FO-UNIT2

  • IE-T1
  • PPS-MOV-FC-1535 .

1409 PPS-MOV-FT-1535 +

NOTL-SBOU1 NOTQ

  • 1410 924 12 4.93E-09 0.95067 /DGN-FTO "
  • /0 IE-T1
  • OEP-DGN-FR-6HDG1 .* OEP-DGN-MA-DG02 .
  • 1411 1412 NRAC-258M

/QS-SBO

  • RCP-LOCA-467-150

.* REC-XHE-FO-DGHWS

  • REC-XHE-FO-SCOOL +

1413 925 12 4.93E-09 0.95082 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 1414 NRAC-258M * /0
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-MA-DG01
  • tr:l REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +
  • RCP-LOCA-467-150
  • I 1415 /QS-SBO IE-T1 .

MCW-CCF-VF-SBO

  • NOTL-SBOU1 *

-:i 1416 1417 834 11 4.91E-09 0.95097 /DGN-FTO NOTQ

  • NRAC-216M

. OEP-DGN-FR-6HDG2

  • OEP-DGN-MA-D001 "

1418 QS-SBO

  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

1419 833 11 4.91E-09 0.95112 /DGN-FTO

  • IE-T1 " MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • 1420 NOTQ
  • NRAC-216M
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-DG02
  • 1421 QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +
  • LPI-MDP-FS-S11A SIS-ACT-FA-SI SB +

1422 69 3 4.80E-09 0.95126 IE-S1 IE-S1 LP I -MDP-FS-S 118 .

SIS-ACT-FA-SI SA +

1423 1424 70 926 3

10 4.80E-09 4.79E-09 0.95141 0.95155 /DGN-FTO .* IE-T1

  • NOTL-SBOU1
  • NOTQ
  • 1425 NRAC-258M
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG3
  • QS-SBO
  • 1426 1427 431 9 4.75E-09 o. 95170 RCP-LOCA-467-150 AFW-CKV-OO-CV172 REC-XHE-FO-SCOOL BETA-2DG .

+

IE-T1

  • NOTDG-CCF .

1428 NOTQ

  • NRAC-HALFHR
  • OEP-DGN-FS
  • QS-SBO
  • 1429 REC-XHE-FO*DGEN +

/DGN-FTO IE-T1

  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 1430 1431 836 12 4.75E-09 0.95184 NOTQ .* NRAC-201M
  • 0
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

1432 1433 835 12 4.75E-09 0.95198 /DGN-FTO .* IE-T1

  • MCW-CCF-VF-SBO .* NOTL-SBOU1
  • OEP-DGN-FS-DG01
  • 1434 1435 NOTQ OEP-DGN-FS-DG02 .* NRAC-201M

/QS-SBO 0

RCP-LOCA-750-90Y

  • REC-XHE-FO-DGHWS +

1436 927 12 4.73E-09 0.95213 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1 1437 NOTQ
  • NRAC-258M * /0
  • OEP-D8N-FR-6HDG1 *

/QS-SBO RCP-LOCA-467-150

  • REC-XHE-FO-DGHWS +

1438 OEP-DGN-FR-6HDG2 * .

N0TL-SB0U1

  • NOTQ .*

1439 1440 222 10 4.72E-09 0.95227 /DGN-FTO NRAC-7HR IE-T1 NSLOCA . OEP-DGN-FR-6HDG1

  • OEP-D0N-FR-6HDG3 1441 1442 2582 5 4.71E-09 0.95241 QS-SBO BETA-SRV .* REC-XHE-FO-SCOOL IE-T .

+

K

  • PPS-SOV-FT
  • 1443 1444 676 10 4.69E-09 0.95256 R

/DGN-FTO

+

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR .

1445 OEP-DGN-FR-DG01

  • OEP-DGN-FS-DG02
  • PPS-S0V-00-1455C
  • QS-SBO
  • 1448 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

. NOTL-SBOU1

  • NRAC-1HR .

1447 678 10 4.69E-09 0.95270 /DGN-FTO IE-T1 OEP-DGN-FS-DG01 .* PPS-S0V-00-1455C" QS-SBO 1448 1449 OEP-DGN-FR-DG03 REC-XHE-fO-DGEN . 880-PORV-DMD +

671 10 4.69E-09 0.95284 /DGN-FTO " IE-T1

  • NOTL-SBOU1
  • NRAC-1HR
  • 1450 OEP-DGN- FS-DG.02 PPS-SOV-00-1456
  • QS-SBO
  • 1451 OEP-DGN-FR-DG01 *
  • 1452 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

678 10 4.69E-09 0.95298 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 1453 OEP-DGN-FS-D801 PPS-SOV-00-1456
  • QS-SBO
  • 1454 OEP-DGN-FR-DG03 *
  • 1455 REC-XHE-FO-DGEN R SBO-PORV-DMD +

/DGN-FTO IE-T1

  • NOTL-S80U1
  • NRAC-1HR
  • 1458 674 10 4.89E-09 0.95313 " OEP-DGN-FS-DG01
  • PPS-S0V-00-1455C
  • QS-SBO
  • 1457 OEP-DGN-FR-DG02
  • 1458 4.69E-09 0.95327 REC-XHE-FO-DGEN

/DGN-FTO SBO-PORV-DMD IE-T1

+

  • NOTL-SBOU1
  • NRAC-1HR .

1459 677 10 PPS-S0V-00-1455C

  • QS-SBO
  • 1460 OEP-DGN-FR-DG01
  • OEP-DGN-FS-DG03 *
  • SBO-PORV-DMD +

1461 1462 1463 672 10 4.69E-09 0.95341 REC-XHE-FO-DGEN

/DGN-FTO OEP-DGN-FR-DG01 IE-T1 OEP~DGN-FS-DG03 *

  • NOTL-SB0U1 PPS-SOV-00-1456
  • NRAC-1HR
  • QS-SBO .
  • 880-PORV-DMD +

1464 1465 675 10 4.69E-09 0.95355 REC-XHE-FO-DGEN

/DGN-FTO . IE-T1

  • NOTL-SBOU1
  • NRAC-1HR
  • QS-SBO 1466 OEP-DGN-FR-DG02
  • OEP-DGN-FS-DG01
  • PPS-SOV-00-1456

' 1467 1833 11 4.S7E-09 0.95369 REC-XHE-FO-DGEN IE-T1 SBO-PORV-DMD NOTL-SB0U1U2

+

  • NOTQ
  • NRAC-216M .

1468

/0

  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG02
  • 1489 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

1470 /QS-880 *

  • trj 1471 1472 1837 11 4.87E-09 0.95383

/0 IE-T1 ..

  • NOTL-SB0U1U2 OEP-DGN-FR-6HDG3 RCP-LOCA-750-90M"

.* NOTQ OEP-DGN-FS-DG02 REC-XHE-FO-DGHWS

+

NRAC-216M OEP-DGN-MA-DG01

  • I 1473 /QS-SBO . .*

~

00 1474 1475 1836 11 4.87E-09 0.95398 10 IE-T1 .** NOTL-S80U1U2 OEP-DGN-FR-6HDG2 RCP-LOCA-750-90M *

. NOTQ OEP-DGN-FS-DG01 REC-XHE-FO-DGHWS

  • NRAC-216M
  • OEP-DGN-MA-DG03

+

1478 /QS-880

  • NRAC-218M
  • 1477 1832 11 4.67E-09 0.95412 IE-T1
  • NOTL-S80U1U2 .* NOTQ 10
  • OEP-DGN-FR-8HDG1 OEP-DGN-FS-DG03
  • OEP-DGN-MA-DG02
  • 1478
  • RCP-LOCA-750-90M" REC-XHE-FO-DGHWS +

1479 /QS-880

  • 1480 1835 11 4.67E-09 0.95426 IE-T1
  • NOTL-SBOU1U2
  • NOTQ
  • NRAC-216M 1481 10
  • OEP-DGN-FR-8HDG2
  • OEP-DGN-FS-DG03
  • OEP-DGN-MA-DG01 *

/QS-SBO

  • RCP-LOCA-750-90M" REC-XHE-FO-DGHWS +

1482 11 4.S7E-09 0.95440 IE-T1

  • NOTL-SBOU1U2
  • NOTQ
  • NRAC-218M
  • 1483 1834
  • . OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-D002
  • OEP-DGN-MA-D003
  • 1484 1485

/0

/QS-880 RCP-LOCA-750-90M . REC-XHE-FO-DGHWS +

  • NOTL-SB0U1
  • 1486 224 11 4.58E-09 0.95454 /DGN-FTO NOTQ IE-T1 NRAC-7HR
  • MCW-CCF-VF-SBO NSLOCA .* OEP-DGN-FS-DG01
  • 1487 *
  • REC-XHE-FO-DGHWB +

1488 OEP-DGN-FS-D003 QS-SBO 223 11 4.56E-09 0.95488 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-880
  • 1489 NOTQ
  • NRAC-7HR
  • NSLOCA
  • OEP-DGN-FS-DG01
  • 1490 *
  • REC-XHE-FO-DGHWB +

1491 1492 929 12 4.52E-09 0.95481 OEP-DGN-FS-D002

/DGN-FTO **

QS-SBO IE-T1 . NOTL-SBOU1

  • NOTQ
  • NRAC-258M * /0
  • OEP-CRB-FT-15J3
  • OEP-DGN-FS-D001
  • 1493 1494 1495 928 12 4.52E-09 0.95495

/QS-880

/DGN-FTO .** RCP-LOCA-467-150

  • IE-T1 .

REC-XHE-FO-DGHWS NOTL-SBOU1 OEP-CRB-FT-15H3

  • REC-XHE-FO-SCOOL
  • NOTQ
  • OEP-DGN-FS-D003

+

1498 NRAC-258M /0

/QS-SBO

  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

1497 *

  • NOTL-SB0U1
  • NOTQ
  • 1498 930 12 4.52E-09 0.95509 /DGN-FTO IE-T1
  • 1499 NRAC-258M * /0
  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-D002

/QS-880

  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

1500 1501 37 3 3

4.50E-09 4.50E-09 0.95522 0.95536 IE-A IE-A LPR-UOV-FT-1890A

  • LP I -MDP-FS-S 11 A . LPR-MOV-FT-18908 LPR-MOV-FT-18608

+

+

1502 36

  • 1503 1504 1505 35 38 9 3 3

3 4.50E-09 4.50E-09 4.50E-09 o*. 95550 0.95583

o. 95577 IE-A IE-A IE-A LP I -MDP-FS-S 11A LPI -MDP-FS-SI 18 LPR-MOV-FT-1860A *

.* LP I -MDP-FS-SI 18 LPR-MOV-FT-1880A +

LPR-MOV-FT-18608 +

+

1506 839 11' 4.50E-09 0.95591 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-S80
  • NOTL-S80U1
  • 1507 NOTQ
  • NRAC-218M
  • OEP-CR8-FT-15H3
  • OEP-DGN-FS-DG03
  • 1508 QS-S80 . RCP-LOCA-750-90M" REC-XHE-FO-DGHWS + . .

/DGN-FTO IE-T1

  • MCW-CCF-VF-S80 NOTL-S80U1 1509 83'7 11 4.50E-09 0.95604 NOTQ .* NRAC-216M
  • OEP-CR8-FT-15J3
  • OEP-DGN-FS-0601
  • 1510.

1511 QS-S80 . RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS .

+ .

/OGN-FTO IE-T1 MCW-CCF-VF-SBO NOTL-SBOU1 1512 1513 838 11 4.50E-09 0.95818 NOTQ .* .NRAC-216M

  • OEP-CR8-FT-15H3
  • OEP-DGN-FS-0602
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

1514 1515 2854 8 4.47E-09 0.95831 QS-SBO AFW-CKV-OO-CV142 .* AFW-TDP-FS-FW2

  • AFW-XHE-FO-UNIT2
  • IE-T2
  • 1516 PPS-MOV-FC-1535
  • PPS-MOV-FT-1535 +

1517 2653 6 4.47E-09 0.95645 AFW-CKV-OO-CV142

  • AFW-TDP-FS-FW2
  • AFW-XHE-FO-UNIT2
  • IE-T2
  • 1518 PPS-MOV-FC-1536
  • PPS-MOV-FT-1536 + .

IE-T1 MCW-CCF-VF-SBO NOTDG-CCF

  • 1519 840 12 4.41E-09 0.95658 BETA-2DG * * .

1520 1521 0.-9*55*72 NOTL-SB0U1 OEP-DGN-FS 11:-11**----

  • NOTQ

/QS*SBO

  • NRAC-201M RCP-LOCA-750*90M NOTQ 0

REC-XHE-FO-DGHWS NRAC-7HR

+

1522 1523 304 11 4.34E*0-9 NSLOCA

  • 10 NOTL-S80U1U2
  • . OEP-DGN-FS-0801 . OEP-DGN-FS-0002
  • OEP-DGN-FS-DG03 * /QS-SBO REC-XHE-FO-DGHWB +

1524 BETA-306 . IE-T1

  • NOTQ
  • 1525 1526 2358 9 4.34E-09 0.95885 NRAC-7HR . OEP-DGN-FS
  • QS-SBO
  • RCP-LOCA-183-90
  • I* 1527 REC-XHE-FO-DGHWS +

t:rj 1528 932 12 4.S4E-09 0.95898 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1 .*

I

,I:,.

- 1529 NOTO OEP-DGN-MA-DG03

  • NRAC-258M
  • /QS-S80
  • 10 RCP-LOCA-467-150 .
  • OEP-DGN-FS-0601 REC-XHE-FO-DGHWS +

tO 1530 934 12 4.34E-09 0.95711 /DGN-FTO . IE-T1

  • 1531 1532 NOTQ . NRAC-258M * /0 OEP-DGN-FS-0802
  • REC-XHE-FO-DGHWS 1*533. OEP-DGN-MA-D001 .* /QS-SBO

.* RCP-LOCA-467-150

+

1534 1535 933 12 4.34E-09 0.95724 /DGN-FTO NOTQ IE-T1

  • NRAC-258M

. /0

  • OEP-DGN-FS-D603 *
  • RCP-LOCA-467-150 REC-XHE-FO-DGHWS .

+

1536 1537 931 12 4.34E-09 0.95737 OEP-DGN-MA-D001

/DGN-FTO

  • /QS-S80
  • IE-T1
  • MCW-CCF-VF-SBO NOTL-SB0U1 NOTQ
  • NRAC-258M
  • 10
  • OEP-DGN-FS-D601
  • 1538 1539 OEP-DGN-MA-0802 . /QS-S80
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

1540 936 12 4.31E-09 0.95750 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • 1541 NRAC-258M
  • 10
  • RCP-LOCA-467-150
  • OEP-DGN-FR-6HDG1
  • REC-XHE-FO-DGTMS
  • OEP-DGN-MA*DG03
  • REC-XHE-FO-SCOOL +

1542 /QS-S80 . IE-T1 . NOTL-SBOU1 . NOTQ .

1543 935 12 4.31E-09 0.95763 /DGN-FTO NRAC-258M .. OEP-DGN-FR-8HD63 . OEP-DGN-MA-D601 1544 .* 10 RCP-LOCA-487-150 . REC-XHE-FO-DGTMS . .

REC-XHE-FO-SCOOL +

1545 /QS-S80

/DGN-FTO . IE-T1 . MCW-CCF-VF-SBO . NOTL-S80U1 1546 1547 841 11 4.29E-09 0.95777 NOTQ . NRAC-218U OEP-DGN-FR-6HD63 OEP-DGN-UA-D601

  • 1548 QS-SBO
  • RCP-LOCA-750-90M" REC-XHE-FO-DGTMS +

1549 842 11 4.29E-09 0.95790 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-S80U1
  • 1550 NOTQ
  • NRAC-216U
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-UA-DG03
  • 1551 QS*S80
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGTMS +

1552 1840 11 4.28E-09 0.95802 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-216M
  • 1553 /0
  • OEP-CR8-FT-25H3
  • OEP-DGN-FS-D001
  • OEP-DGN-FS-DG03
  • 1554 /QS-S80
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

1555 1838 11 4.28E-09 0.95815 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-216M
  • 1556 /0
  • OEP-CR8-FT-16J3
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-D802
  • 1557 /QS-SBO * . RCP-LOCA-750-9014
  • REC-XHE-FO-DGHWS +

1558 1839 11 4.28E-09 0.95828 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-216M *

. OEP-DGN-FS-DG02 . OEP-DGN-FS-DG03 .

1559 1560 10

/QS-SBO .

  • OEP-CRB-FT 15H3 0

RCP-LOCA-750-90M . REC-XHE-FO-DGHWS .

+

225 4.24E-09 0.95841 BETA-2DG

  • IE-T1
  • MCW-CCF-VF-SBO NOTDG-CCF
  • 1561 11 NRAC-7HR
  • NSLOCA
  • 1562 NOTL-SB0U1
  • NOTQ
  • 1563 OEP-DGN-FS
  • QS-880
  • REC-XHE-FO-DGHWB +

432 4.12E-09 0.95854 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 1564 9 NRAC-HALFHR OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG3
  • 1565 NOTQ *
  • 1566 /QS-SBO .

+

IE-T1 . NOTL-SB0U1 . NOTQ

  • 1567 1568 843 11 4.11E-09 0.95866 /DGN-FTO NRAC-216M . 10
  • OEP-CRB-FT-15H3
  • OEP-CRB-FT-15J3
  • 1569 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-SCOOL +

AFW-TDP-FR-6HRU2 * /DGN-FTO

  • IE-T1
  • 1570 1571 458 10 4.02E-09 0. 95"878 AFW-TDP-FR-2P6HR NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FS-DG01

. OEP-DGN-FS-DG03

  • 1572 1573 457 10 4.02E-09 0.95891

/QS-SBO AFW-TDP-FR-2P6HR REC-XHE-FO-DGEN +

AFW-TDP-FR-6HRU2 . /DGN-FTO . IE-T1

  • 1574 NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • 1575 /QS-SBO
  • REC-XHE-FO-DGEN +

3.96E-09 0.95903 AFW-MDP-MA-FW38

  • AFW-TDP-FS-FW2
  • AFW-XHE-FO-UNIT2
  • IE-T5A +

1576 2689 4 AFW-XHE-FO-UNIT2

  • IE-T7 +

AFW-TDP-FS-FW2

  • 1577 1578 2748 2714 4

4 3.96E-09 3.96E-09 0.95915 0.95927 AFW-CKV-OO-CV142 AFW-MDP-MA-FW3A .

AFW-TDP-FS-FW2 .* AFW-XHE-FO-UNIT2

  • IE-T59 +

- 1579 59 3 3.84E-09 0.95938 CPC-MDP-FR-SWA3H

  • CPC-MDP-FS-SW108 IE-S1 +

937 11 3.83E-09 0.95950 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 1580 OEP-DGN-FR-6HDG1 OEP-DGN-FR-8HDG2
  • QS-SBO *
1581 NRAC-258M *
  • 1*582 RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

2749 5 3.81E-09 0.95961 AFW-MDP-FS

  • AFW-TDP-FR-2P6HR
  • AFW-XHE-FO-UNIT2
  • BETA-AFW
  • 1583

~ 1584 IE-T7 + . IE-T1

  • NOTQ .*

I i:.n 0

1585 1586 433 9 3.80E-09 0.95973 AFW-TDP-MA-FW2 NRAC-HALFHR

  • /DGN-FTO
  • OEP-CRB-FT-15H3

. OEP-DGN-FR-6HDG2

  • QS-SBO 1587 434 9 3.74E-09 0.95984 REC-XHE-FO-DGEN AFW-TDP-MA-FW2

+

. AFW-XHE-FO-U1SBO * /DGN-FTO

  • IE-T1 .

1588 OEP-DGN-FR-6HDG3 1589 NOTQ

  • NRAC-HALFHR
  • OEP-DGN-FR-8HDG1
  • 1590 /QS-880 +

1591 464 10 3.74E-09 0.95998 AFW-TDP-FR-2P8HR

  • AFW-TDP-FR-6HRU2 NOTQ ...* BETA-2DG NRAC-6HR-AVG IE-T1 OEP-DGN-FS 1592 1593 NOTDG-CCF

/QS-880 .

REC-XHE-FO-DGEN +

1594 435 10 3.71E-09 0.96007 AFW-TDP-FS-FW2 NOTO AFW-XHE-FO-U1SBO NRAC-HALFHR .* /DGN-FTO OEP-DGN-FR-6HDG1 *

  • IE-T1 OEP-DGN-FR-6HDG2 .

1595 1596 /QS-SBO

  • REC-XHE-FO-DGEN + .

1597 465 9 3.69E-09 0.96018 AFW-TDP-FR-2P6HR NRAC-8HR-AVG

/DGN-FTO OEP-CRB-FT- 15H3

  • . IE-T1 OEP-DGN-FR-8HDG2 *
  • NOTO OS-SBO .

1598 1599 REC-XHE-FO-DGEN .

+

IE-T1

  • NOTL-S80U1 . NOTQ
  • 1600 844 11 3.68E-09 0.96029 /DGN-FTO . 0
  • OEP-DGN-FR-8HDG1
  • OEP-DGN-FR-8HDG3
  • 1801 1602 NRAC-201M

/OS-SBO . RCP-LOCA-750-90M

  • REC-XHE-FO-SCOOL +

227 12 3.84E-09 0.96040 /DGN-FTO

  • IE-T1 " NOTL-S80U1
  • NOTQ
  • 1603
  • OEP-DGN-FR-8HDG1
  • 1804 NRAC-7HR
  • NSLOCA
  • 10 OEP-DGN-MA-DG02
  • IQS-SBO
  • REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL +

1805

  • NOTQ
  • 1606 226 12 3.64E-09 0.96051 /DGN-FTO
  • IE-T1 .
  • NOTL-S80U1 NSLOCA 10
  • OEP-DGN-FR-6HDG2
  • 1607 1608 NRAC-7HR OEP-DGN-MA-0001 .

/QS-SBO

  • REC-XHE-FO-DGHWB " REC-XHE-FO-SCOOL .

+

466 9 3.63E-09 0.96062 AFW-TDP-FR-2P6HR

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1 1609 OEP-DGN-FR-6HDG3
  • 1610 NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FR-6HDG1
  • 1611 /OS-SBO +

1612 1842 10 3.63E-09 0.96073 IE-T1

  • NOTL-S80U1U2 OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG2 .
  • NOTO OEP-DGtil-FS-DG03
  • . NRAC-216M QS-SBO 1613 . REC-XHE-FO-DGHWS +

RCP-LOCA-750-9

1615 1616 1841 10 3.63E-09 0.96084 IE-T1 OEP-DGN-FR-6HDG2 .* NOTL-S80U1U2 OEP-DGN-FR-6HDG3

  • . NOTQ OEP-DGN-FS-DG01 .* QS-SBO NRAC-216M REC-XHE-FO-D0HWS + . ..

1617 RCP-LOCA-750-90M" 1618 1843 10 3.63E-09 0.96096. IE-T1 NOTL-S80U1U2 NOTQ NRAC-216M 1619 1620 OEP-DGN-FR-6HD81 RCP-LOCA-750-90M

.. OEP-DGN-FR-6HD83 REC-XHE-FO-DGHWS +.

OEP-DGN-FS-D802

  • QS-SBO AFW-MDP-MA-FW3A AFW-TDP-MA-FW2 AFW-XHE-FO-UNIT2
  • IE-T58 +

1621 1622 2715 2890 4

4 3.60E-09 3.80E-09 0.98108 0.96117 AFW-MDP-.MA- FW38 ..

  • AFW-TDP-UA-FW2 .* AFW-XHE-FO-UNIT2 *. IE-T5A .

+

AFW-CCF-LK-STMBD AFW-XHE-FO-UNIT2 BETA-2MOV IE*T2 1623 1624 2656 6 3.57E-09 o.. 0e12a PPS-MOV-FC-1535 . PPS-MOV-FT +

1625 2655 6 3.57E-09 0.96139 AFW-CCF-LK-STMBD *. AFW-XHE-FO-UNIT2 BETA-2MOV IE-T2 PPS-MOV-FT +

1626 1627 940 11 3.51E-09 0.96149 PPS-MOV-FC-1536

/D0N-FTO . IE-T1

  • NOTL-SBOU1
  • NOTQ .*

1628 NRAC-268M

  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG02
  • QS-SBO RCP-LOCA-467-150 REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

1629

  • IE-T1 .* NOTL-SBOU1 NOTQ
  • 1630 938 11 3.51E-09 0.96160 /DGN-FTO NRAC-258M OEP-DGN-FS-DG02 . OEP-DGN-MA-DG01
  • QS-SBO
  • 1631
  • 1632 1633 939 11 3.51E-09 0.96171 RCP-LOCA-467-150

/DGN-FTO REC-XHE-FO-DGHWS IE-T1 .* REC-XHE-FO-SCOOL NOTL-SBOU1 ..

+

NOTQ .

OEP-DGN-FS-DG03

  • OEP-DGN-MA-0801 QS-SBO
  • 1634 1635 NRAC-258M RCP-LOCA-467-150 .. REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL + .

1636 941 11 3.51E-09 0.96181 /DGN-FTO IE-T1

  • NOTL-SBOU1
  • NOTQ OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG03
  • QS-SBO
  • 1637 NRAC-258M
  • REC-XHE-FO-DGHWS . REC-XHE-FO-SCOOL +

1638 RCP-LOCA-467-150

  • ACP-BAC-ST-4KV1H
  • HPI-MOV-FT-1867D . IE-83 +

1639 131 3 3.51E-09 0.96192 ACP-BAC-ST-1H1 . HPI-MOV-FT-1867D

  • IE-S3 + .

tr:!

I 1640 1641 132 228 3

12 3.51E-09 3.49E-09 0.96203 0.96213 /DGN-FTO . IE-T1 .* MCW-CCF-VF-SBO .

  • NOTL-SBOU1 o:.11

....... 1642 1643 NOTQ OEP-D8N-FR-6HDG1 .

  • NRAC-7HR OEP-DGN-FR-6HD82 . NSLOCA

/QS-SBO 10

  • REC-XHE-FO-DGHWB +

1644 885 10 3.46E-09 0.96224 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • PPS-SOV-00-1456 * /QS-SBO
  • 1645 OEP-DGN-FR-DG03

..* OEP-DGN-MA-D801

  • 1646 REC-XHE-FO-DGEN SBO-PORV-DMD +

NOTL-SBOU1 NRAC-1HR 1647 1648 679 10 3.46E-09 0.96234 /DGN-FTO OEP-DGN-FR-DG01 .. IE-T1 OEP-DGN-MA-DG02 PPS-SOV-00-1466 . /QS-SBO

  • 1649 REC-XHE-FO-DGEN SBO-PORV-DMD +

/DGN-FTO IE-T1 NOTL-SBOU1 NRAC-1HR 1650 680 10 3.46E-09 0.96245

  • 1651 OEP-DGN-FR-D001 OEP-DGN-MA-DG02
  • PPS-S0V-00-1455C * /QS-SBO 1652 REC-XHE-FO-DGEN . SBO-PORV-DMD IE-T1

+

. NOTL-SBOU1

  • NRAC-1HR .*

1653 1654 686 10 3.46E-09 0.96255 /DGN-FTO OEP-DGN-FR-D803 .. OEP-DGN-MA-D801 . PPS-S0V-00-1455C * /QS-SBO 1655 REC-XHE-FO-DGEN ... SBO-PORV-DMD + . NRAC-1HR .

1656 1657 684 10 3.46E-09 0.96266 /DGN-FTO OEP-DGN-FR-DG02 . IE-T1 OEP-DGN-MA-0801 NOTL-SBOU1 PPS-SOV-00-1456 * /QS-SBO 1658 REC-XHE-FO-DGEN

  • SBO-PORV-DMD +

" NRAC-1HR 1659 1880 883 10 3.46E-09 0.96276 /DGN-FTO OEP-DGN-FR-DG02 IE-T1 OEP-DGN-MA-DG01 NOTL-SBOU1 PPS-S0V-00-1455C * /QS-SBO .

1661 1662 682 10 3.46E-09 0.96287 REC-XHE-FO-DGEN

/DGN-FTO .

  • SBO-PORV-DMD IE-T1 OEP-DGN-MA-DG03

+.

NOTL-SBOU1

  • NRAC-1HR PPS-S0V.-00-1455C * /QS-SBO
  • 1683 OEP-DGN-FR-0801
  • 1864 1865 681 10 3.48E-09 0.96297 REC-XHE-FO-DGEN

/DGN-FTO .* SBO-PORV-DMD IE-T1 ..

+

NOTL-S80U1 .. NRAC-1HR

  • 1666 OEP-DGN-FR-D801
  • OEP-DGN-MA-DG03 PPS-SOV-00-1456 /QS-SBO
  • 1887 REC-XHE-FO-DGEN *. SBO-PORV-DMD +

IE-T1 .

1668 1689 443 10 3.40E-09 0.96307 AFW-TDP-FS-FW2 NOTQ .* NRAC-HALFHR .

AFW-XHE-FO-U1SBO * /DGN-FTO OEP-DGN-FS-DG02

  • OEP-D0N-MA-DG01
  • 1870 /QS-SBO REC-XHE-FO-DGEN +

10 3.40E-09 0.96318 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 1671 440
  • OEP-DGN-MA-DG02
  • 1672 1673 NOTQ

/QS-SBO .

  • NRAC-HALFHR REC-XHE-FO-DGEN
  • OEP-DGN-FS-DG01

+

IE-T1

  • 1674 441 10 3.40E-09 0.96328 AFW-TDP-FS-FW2
  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • NRAC-HALFHR
  • OEP-DGN-FS-DG01
  • OEP-.DGN-MA-DG03
  • 1675 1676 1677 442 10 3.40E-09 0.96338 NOTQ

/QS-SBO AFW-TDP-FS-FW2

  • REC-XHE-FO-DGEN AFW-XHE-FO-U1SBO

+

  • /DGN-FTO .. IE-T1 .

NOTQ

  • NRAC-HALFHR
  • OEP-DGN-FS-DG03 OEP-DGN-MA-DG01
  • 1678 +

1679 /QS-SBO

  • REC-XHE-FO-DGEN AFW-CCF-LK-STMBD
  • AFW-XHE-FO-UNIT2
  • IE-T2
  • PPS-SOV-FT-1456 +

1680 2658 4 3.38E-09 0.96349 PPS-S0V-FT-1455C +

1681 2657 4 3.38E-09 0.96359 AFW-CCF-LK-STMBD

  • AFW-XHE-FO-UNIT2
  • IE-T2
  • 11 3.37E-09 0. 963.69 /DGN-FTO
  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 1682 943 OEP-DGN-FS-D801
  • 1883 NOTQ
  • NRAC-258M
  • OEP-DGN-FR-6HD83
  • 1684 QS-SBO

/DGN-FTO RCP-LOCA-467-150 IE-T1

  • REC-XHE-FO-DGHWS
  • MCW-CCF-VF-SBO

+

  • NOTL-SBOU1 .

1685 942 11 3.37E-09 0.96379 OEP-DGN-FS-DG01

  • 1686 NOTQ
  • NRAC-258M
  • OEP-DGN-FR-6HDG2
  • 1687 QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

NOTL-SBOU1

  • 1688 944 11 3.37E-09 0.96390 /DGN-FTO
  • IE-T1
  • MCW-CCF-VF-SBO .* OEP-DGN-FS-DG02
  • 1689 1690 NOTQ QS-SBO NRAC-258M RCP-LOCA-467-150 .
  • OEP-DGN-FR-6HDG1 REC-XHE-FO-DGHWS +

3.37E-09 0.96400 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1 1691 945 11 OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG03
  • NOTQ
  • NRAC-258M
  • 1692 1693 1694 444 10 3.37E-09 0.96410 QS-SBO AFW-TDP-MA-FW2 RCP-LOCA-467-150 AFW-XHE-FO-U1SBO
  • REC-XHE-FO-DGHWS
  • /DGN-FTO

+

IE-T1 OEP-DGN-FR-6HDG2

  • 1695 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FA-6HDG1
  • 1696 /QS-SBO
  • REC-XHE-FO-DGEN +

t,:j 3.33E-09 0.96420 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 1697 230 12 I

CJ1 1:-,:) 1698 1699 NRAC-7HR OEP-DGN-FS-0803 .

  • NSLOCA

/QS-SBO

  • 10
  • REC-XHE-FO-DGHWB *
  • OEP-CRB-FT-15H3 REC-XHE-FO-SCOOL NOTQ

+

IE-T1

  • NOTL-S80U1
  • 1700 229 12 3.33E-09 0.96430 /DGN-FTO
  • 1701 NRAC-7HR NSLOCA
  • 10

.

  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG02 /QS-SBO REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL +

1702 NOTQ

  • 1103* 231 12 3.33E-09 0.96440 /DGN-FTO
  • IE-T1
  • NOTL-S80U1
  • NRAC-7HR
  • NSLOCA * /0
  • OEP-CRB-FT-15J3
  • 1704 REC-XHE-FO-SCOOL +

1705 OEP-DGN-FS-DG01 * /QS-S80

  • REC-XHE-FO-DGHWB
  • 3.33E-09 0.96450 IE-T1
  • NOTL-S80U1U2
  • NOTQ
  • NRAC-216M
  • 1706 1846 10 *
  • OEP-DGN-FS-0802
  • OEP-DGN-MA-DG03
  • QS-SBO 1707 1708 1709 1844 10 3.33E-09 0.96460 OEP-DGN-FS-0801 RCP-LOCA-750-90M IE-T1
  • REC-XHE-FO-DGHWS
  • NOTL-S80U1U2

+

  • NOTQ
  • NRAC-216M ..

1710 OEP-DGN-FS-0802

  • OEP-DGN-FS-0803
  • OEP-DGN-MA-0801
  • QS-SBO 1711 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

3.33E-09 0.96471 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-216M
  • 1712 1845 10
  • 1713 OEP-DGN-FS-0801
  • OEP-DGN-FS-0803
  • OEP-DGN-MA-DG02
  • QS-SBO 1714 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS

+

3.33E-09 0.96481 AFW-CCF-LK-STMBD AFW-XHE-FO-UNIT2 IE-T1

  • PPS-MOV-FC-1536
  • 1715 2596 5 1716 PPS-MOV-FT-1536 +

3.33E-09 0.96491 AFW-CCF-LK-STMBD

  • AFW-XHE-FO-UNIT2
  • IE-T1
  • PPS-MOV-FC-1535
  • 1717 2596 5 1718 1719 97 3 3.28E-09 0.96501 PPS-MOV-FT-1535 IE-S1 .

+

.LPI-MDP-FR-821HR

  • LPR-MOV-FT-1862A LPI-MDP-FR-A21HR
  • LPR-MOV-FT-18628

+

+

1720 96 3 3.28E-09 0.96511 IE-S1

  • IE-T1
  • 1721 476 10 3.27E-09 0.96521 AFW-TDP-FR-2P6HR
  • NOTQ
  • AFW-XHE-FO-U1SBO * /DGN-FTO NRAC-6HR-AVG
  • OEP-DGN-FR-6HD81 OEP-DGN-FR-6HD82
  • 1722 REC-XHE-FO-DGEN +

1723 /QS-SBO * +

1724 2716 4 3.24E-09 0.96630 AFW-ACT-FA-PMP3A

  • AFW-TDP-FR-2P6HR
  • AFW-XHE-FO-UNIT2
  • IE-T68 AFW-ACT-FA-PMP38
  • AFW-TDP-FR-2P6HR
  • AFW-XHE-FO-UNIT2
  • IE-TSA +

1725 2691 4 3.24E-09 0.96540 NRAC-258M

  • 1921 11 3.21E-09 0.96550 IE-T1
  • NOTQ
  • 1727 1728 1729 1730 1919 11 3.21E-09 0.98580 10

/QS-SBO 10 IE-T1

  • OEP-DGN-FR-6HDG2 RCP-LOCA-467-150 NOTL-S80U1U2 OEP-DGN-FR-6HDG1 OEP-DGN-FS-DG01 REC-XHE-FO-DGHWS NOTO OEP-DGN-FS-DG02

+

OEP-DGN-FS-DG03 NRAC-258M OEP-DGN-FS-DG03 RCP-LOCA-467-150 REC-XHE-FO-DGHWS +

1731 1732 1920 11 3.21E-09 0.98569

/QS-SBO IE-T1

  • . NOTQ
  • NRAC-258M
  • 1733 10
  • OEP-DGN-FR-8HDG3
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02 *

/QS-SBO RCP-LOCA-467-150 . REC-XHE-FO-DGHWS +

1734 *

  • 1735 235 12 3.20E-09 0.96579 /DGN-FTO IE-T1 MCW-CCF-VF-SBO NOTL-SB0U1 1736 NOTQ NRAC-7HR
  • NSLOCA * /0 *
  • REC-XHE-FO-DGHWB 1737 1738 234 12 3.20E-09 0.96589 OEP-DGN-FS-DG01

/DGN-FTO OEP-DGN-MA-DG02 IE-T1 .* /QS-SBO MCW-CCF-VF-SBO

  • NOTL-SB0U1

+

1739 NOTQ

  • NRAC-7HR
  • NSLOCA
  • 10
  • 1740 OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG03 * /QS-SBO
  • REC-XHE-FO-DGHWB +

1741 232 12 3.20E-09 0.96598 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 1742 NOTQ
  • NRAC-7HR
  • NSLOCA
  • JO
  • REC-XHE-FO-DGHWB 1743 OEP-DGN-FS-DG02
  • OEP-DGN-MA-DG01 * /QS-SBO +

1744 233 12 3.20E-09 0.96608 /DGN-FTO NOTQ .* IE-T1 NRAC-7HR ..

  • UCW-CCF-VF-SBO NSLOCA ..
  • NOTL-SB0U1 10 1745 1748 OEP-DGN-FS-DG03 . OEP-DGN-MA-DG01 . /QS-SBO REC-XHE-FO-DGHWB +

LPI-MDP-UA-Sl1B SIS-ACT-FA-SI SA +

1747 1748 71 72 3

3 3.20E-09 3.20E-09 0.96618 0.96628 IE-S1 IE-S1 .* LPI-MDP-MA-S11A . SIS-ACT-FA-SI SB +

IE-T1 MCW-CCF-VF-SBO

  • NOTL-SB0U1
  • 1749 1750 845 12 3.15E-09 0.96637 /DGN-FTO NOTQ .* NRAC-216M .* 10 . OEP-CRB-FT-15H3
  • 1751 OEP-DGN-MA-DG02 * /QS-SBO
  • RCP-LOCA-750-90M" REC-XHE-FO-DGHWS +.

N0TL-SB0U1U2 NRAC-1HR

  • OEP-DGN-FS-DG01 .

tr1 1752 1753 714 10 3. 10E-09 0.96647 IE-T1 OEP-DGN-FS-DG02

  • OEP-DGN-FS-DG03 .* PPS-SOV-00-1456 * /QS-SBO I REC-XHE-FO-DGEN SBO-PORV-DMD .

+

~

c:n 1754

,:.., 1755 713 10 3 .10E-09 0,96656 IE-T1 NOTL-SB0U1U2 NRAC-1HR OEP-DGN-FS-DG01 1'756 OEP-DGN-FS-DG02 OEP-DGN-FS-D803

  • PPS-S0V-00-1455C" /QS-SBO *

.1757 1758 451 10 3.09E-09 0.96665 REC-XHE-FO-DGEN AFW-TDP-MA-FW2 . SBO-PORV-DMD +

AFW-XHE-FO-U1SBO * /DGN-FTO . IE-T1

  • 1759 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG03
  • 1760 /QS-SBO
  • REC-XHE-FO-DGEN +

AFW-XHE-FO-U1SBO" /DGN-FTO . IE-T1

  • 1761 1762 450 10 3.09E-09 0.98675 AFW-TDP-UA-FW2 NOTQ
  • NRAC-HALFHR . OEP-DGN-FS-DG03
  • OEP-DGN-MA-DG01
  • 1763 /QS-SBO
  • REC-XHE-FO-DGEN +

1764 449 10 3.09E-09 0.96884 AFW-TDP-MA-FW2

  • AFW-XHE-FO-U1SBO" /DGN-FTO
  • IE-T1
  • 1765 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS-DG02
  • OEP-DGN-MA-D801
  • 1766 /OS-SBO REC-XHE-FO-DGEN +

1767 1768 448 10 3.09E-09 0.96693 AFW-TDP-MA-FW2 NOTO AFW-XHE-FO-U1SBO * /DGN-FTO NRAC-HALFHR

  • OEP-DGN-FS-DG01 IE-T1 OEP-DGN-MA-DG02 .*

1789 1770 946 11 3.08E-09 0.96703

/QS-SBO

/DGN-FTO .

  • REC-XHE-FO-DGEN +

IE-T1 . NOTL-SB0U1 . NOTO .

1771 NRAC-258M

  • 10
  • OEP-CRB-FT-15J3
  • OEP.DGN-FR-8HDG1
  • 1772 /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-SCOOL +

1773 947 11 3.08E-09 0.98712 /DGN-FTO

  • IE-T1
  • NOTQ OEP-DGN-FR-6HDG3
  • 1774 1775 NRAC-258M

/QS-SBO .

  • 10 RCP-LOCA-467-150 .
  • OEP-CRB-FT-15H3 REC-XHE-FO-SCOOL ..

+

1778 1777 847 10 3.07E-09 0.96721 /DGN-FTO NOTO .* IE-T1 NRAC-216M

  • MCW-CCF-VF-SBO

1778 QS-SBO

  • RCP-LOCA-750-90M +

1779 846 10 3.07E-09 0.96731 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • 1780 NOTO
  • NRAC-21SM
  • OEP-CRB-FT-15H3
  • OEP-DGN-FR-6HDG3
  • 1781 QS-SBO
  • RCP-LOCA-750-90M +

1782 239 11 3.03E-09 0.98740 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 178.3 1784 NRAC-7HR .. NSLOCA OEP-DGN-FR-6HDG1 . /QS-SBO ... /0 REC-XHE-FO-SCOOL +.

OEP-CRB-FT-15J3 NOTL-SBOU1 NOTQ * .

1785 236 12 3.03E-09 0.96749 /DGN-FTO IE-T1

. NSLOCA . . OEP-DGN-FR-6HDG1 1786 NRAC-7HR .

OEP-DGN-MA-DG03 . /QS-SBO . 10 REC-XHE-FO-DGTMB . REC-XHE-FO-SCOOL + .

1787 . NOTL-SBOU1 *. NOTQ .

1788 1789 238 11 3.03E-09 0.98758 /DGN-FTO NRAC-7HR IE-T1

. NSLOCA . /0 OEP-CRB-FT-15H3 1790 OEP-DGN-FR-8HDG3 * /QS-SBO

  • REC-XHE-FO-SCOOL +

NOTQ *.

1791 237 12 3.03E-09 0.96767 /DGN-FTO

  • IE-T1 NSLOCA .* NOTL-SBOU1

/0 ..

OEP-D0N-FR-8HD03 1792 NRAC-7HR * . REC-XHE-FO-DGTMB . REC-XHE-FO-SCOOL +

1793 1794 573 9 3.02E-09 0.96777 OEP-DGN-MA-DG01 AFW-XHE-FO-CST2 ..

  • /QS-SBO IE-T1 . NOTQ NRAC-1HR .

OEP-DGN-FR-8HDG3 OEP-DGN-FS-DG01

  • OEP-DGN-FS-DG02
  • QS-S80 1795 1796 REC-XHE-FO-DGEN + . NOTQ . NRAC-1HR .

1797 572 9 3.02E-09 0.96786 AFW-XHE-FO-CST2

  • IE-T1 OEP-DGN-FR-6HDG1 . OEP-DGN-FS-DG02 . OEP-DGN-FS-DG03 . QS-S80
  • 1798 1799 REC-XHE-FO-DGEN + .

574 9 3.02E-09 0.96795 AFW-XHE-FO-CST2 IE-T1 NOTQ NRAC-1HR 1800 OEP-DGN-FS-DG03 QS-880

  • 1801 OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG01 1802 REC-XHE-FO-DGEN + . . SWS-CCF-FT-3A8CD . SWS-XHE-FO-OPEN +

1803 119 4 3.02E-09 0.96804 CON-VFC-RP-COREM . IE-S2 . SWS-CCF-FT-3ABCD" SWS-XHE-FO-OPEN +

1804 76 4 3.02E-09 0.96813 CON-VFC-RP-COREM .

IE-A IE-S1 LPI -MOP-MA-SI 18 . . LPR-MOV-FT-1860A +

1805 40 3 3.00E-09 0.96822 . LPI-CKV-00-CV50 LP I -MDP-FS-S 118 +

1806 1807 73 74 3

3 3.00E-09 3.00E-09 0.96831 0.96841 IE-S1 IE-S1 . LPI-CKV-00-CV58

  • LPI -MDP-FS-SI 1A +
  • LPI -MDP-MA-SI 1A
  • LPR-MOV-FT-18608 +

1808 39 3 3.00E-09 0.98850 IE-A ... LPI -MDP-MA-SI 18 +

t:,:j 1809 11 3 3.00E-09 0.96859 IE-A . LPI-MDP-FS-S11A .

LPI -MDP-MA-SI 1A + .

I C)l

~

1810 1811 10 485 3

10 3.00E-09 3.00E-09 0.96868

0. 96877 IE-A AFW-TDP-FR-2P6HR .. LPI -MDP-FS-SI 18 AFW-XHE-F0-U1S80 * . /DGN-FTO .
  • IE-T1 .

NRAC-6HR-AVG OEP-DGN-FS-DG01 OEP-DGN-MA-DG02 1812 NOTQ .

1813 1814 1815 487 10 3.00E-09 0.96886

/QS-S80 NOTQ ..

REC-XHE-FO-DGEN +

AFW-TDP-FR-2P6HR" AFW-XHE-F0-U1S80" NRAC-6HR-AVG . /DGN-FTO OEP-DGN-FS-DG01

. IE-T1 OEP-D0N-MA-D003 ..

1816 /QS-S80

. REC-XHE-FO-DGEN +

/D0N-FTO *

. IE-T1 ..

1817 488 10 3.00E-09 0.96895 AFW-TDP-FR-2P6HR . AFW-XHE-FO-U1S80" NRAC-6HR-AVG . OEP-DGN-FS-D003 OEP-DGN-MA-D001 1818 NOTQ . REC-XHE-FO-DGEN + . .

1819 /QS;-SBO AFW-TDP-FR-2P6HR . AFW-XHE-FO-U1SBO" /DGN-FTO IE-T1 1820 1821 486 10 3.00E-09 0.96904 NOTQ . NRAC-6HR-AVG

  • OEP-D0N-FS-DG02
  • OEP-DGN-MA-DG01
  • 1822 /QS-SBO
  • REC-XHE-FO-DGEN +

NOTDG-CCF . NOTL-S80U1U2

  • 1823 1848 11 2.99E-09 0.96913 BETA-2DG
  • IE-T1
  • OEP-DGN-FS . OEP-DGN-MA-D002
  • 1824 1825 NOTQ QS-SBO .* NRAC-216M RCP-LOCA-750-90M . .

REC-XHE-FO-DGHWS +

1826 1847 11 2.99E-09 0.96922 BETA-2DG

  • IE-T1
  • NRAC-216U
  • NOTDG-CCF OEP-DGN-FS NOTL-S80U1U2 OEP-DGN-MA-D003 .*

1827 1828 NOTQ QS-SBO . RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS + .

1829 1849 11 2.99E-09 0.98931 8ETA-2DG

  • IE-T1
  • 1830 NOTQ
  • NRAC-216M
  • OEP-DGN-FS
  • OEP-DGN-MA-D001
  • 1831 QS-SBO
  • RCP-LOCA-750-BOM
  • REC-XHE-FO-DGHWS +
  • *.
  • NOTQ *.

1832 848 12 2.94E-09 0.96940 /DGN-FTO IE-T1 NOTL-SBOU1 OEP-DGN-FR-6HD01 . OEP-DGN-FR-6HD02 1833 NRAC-201M 0 . REC-XHE-FO-DGHWS" . REC-XHE-FO-SCOOL +

RCP-LOCA-750-90M 1834 /QS-SBO N0TL-S80U1U2 .

1835 1923 12 2.88E-09 0.96949 BETA-2DG IE-T1 NOTDG-CCF . OEP-DGN-FR-6HDG2 1836 NOTQ NRAC-258M

/QS-SBO . 10 RCP-LOCA-467-150 . REC-XHE-FO-DGHWS +

1837 1838 1924 12 2.88E-09 0.98958 OEP-DGN-FS BETA-2DG .* IE-T1

  • NOTDG-CCF
  • 1839 1640 1841 1922 12 2.88E-09 0.98986 NOTQ OEP-DGN-FS BETA-208
  • NRAC-258M
  • /QS-SBO
  • IE-T1
  • 10

. NOTDG-CCF RCP-LOCA-467-150

  • OEP-DGN-FR-6HDG1 REC-XHE-FO-DGHWS NOTL-S80U1U2

+

OEP-DGN-FR-6HDG3

  • 1842 1643 NOTQ OEP-DGN-FS
  • NRAC-258M
  • /QS-SBO
  • 10
  • RCP-LOCA-467-150 REC-XHE-FO-DGHWS +

1844 2828 8 2.88E-09 0.98975 AFW-MDP-FS-FW3A

  • AFW-MDP-FS-FW3B
  • AFW-TDP-FR-2P6HR
  • AFW-XHE-FO-UNIT2
  • 1845 HPI-XHE-FO-FDBLD
  • IE-T2 +

1846 2466 9 2.65E-09 0.96964 BETA-3DG

  • IE-T1
  • NOTL-S80U1U2
  • NOTQ
  • 1847 NRAC-248M
  • OEP-DGN-FS
  • QS-SBO
  • RCP-LOCA-561-150
  • 1848 REC-XHE-FO-DGHWS +

. IE-T1 NOTL-SBOU1 NOTQ *

  • OEP~DGN-FR-6HDG1 . OEP-D8N-FR-6HDG2
  • 1849 240 11 2.83E-09 0.96992 /DGN-FTO *
  • 1850 NRAC-7HR
  • NSLOCA 1851 QS-SBO
  • REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL +

1852 114 4 2.79E-09 0.97001 HPI-MOV-FT-1115B

  • HPI-MOV-FT-1115D
  • HPI-XHE-FO-UN2S2
  • IE-S2 +

1853 113 4 2.79E-09 0.97009 HPI -MOV-FT-1115C

  • HPI-MOV-FT-1115E
  • HP1-XHE-F0-UN2S2
  • IE-S2 +

1854 456 9 2.79E-09 0.97018 AFW-CKV-OO-CV172 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 1855 NRAC-HALFHR
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG01
  • QS-SBO
  • 1856 1857 850 12 2.76E-09 0.97026 REC-XHE-FO-DGEN

/DGN-FTO

+

  • IE-T1 . MCW-CCF-VF-SBO . NOTL-SBOU1 .

1858 NOTQ

  • NRAC-216M
  • 10
  • OEP-CRB-FT-15H3
  • 1859 OEP-DGN-MA-DG03 * /OS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGTMS +

1860 849 12 2.76E-09 0.97034 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 1861 NOTO
  • NRAC-218M
  • 10
  • OEP-CRB-FT-15J3
  • 1862 OEP-DGN-MA-DG01 * /OS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGTMS +

t:zj I

1863 1864 576 10 2.72E-09 0.97043 AFW-XHE~FO-CST2 NOTQ .* BETA-2DG NRAC-1HR REC-XHE-FO-DGEN

  • IE-T1
  • OEP-DGN-FR-6HDG2

+

NOTDG-CCF OEP-DGN-FS C.11 1865 OS-SBO

  • C.11 1866 577 10 2.72E-09 0.97051 AFW-XHE-FO-CST2
  • BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • 1867 NOTO
  • NRAC-1HR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS
  • 1868 QS-SBO
  • REC-XHE-FO-DGEN +

1869 575 10 2.72E-09 0.97059 AFW-XHE-FO-CST2

  • BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • 1870 NOTQ
  • NRAC-1HR
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS
  • 1871 QS-SBO
  • REC-XHE-FO-DGEN +

1872 60 2 2.70E-09 0.97067 IE-S1

  • RWT-TNK-LF-RWST +

1873 115 2 2.70E-09 0.97076 IE-S2

  • RWT-TNK-LF-RWST +

1874 852 12 2.70E-09 0.97084 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 1875 NRAC-201M
  • 0
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG03
  • 1876 /OS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

1877 854 12 2.70E-09 0.97092 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 1878 NRAC-201M
  • 0
  • OEP-DGN-FS-D803
  • OEP-DGN-MA-DG01
  • 1879 /OS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

1880 853 12 2.70E-09 0.97100 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 1881 NRAC-201M
  • 0
  • OEP-DGN-FS-DG02
  • OEP-DGN-MA-DG01
  • 1882 /QS-SBO
  • RCP-LOCA-760-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

1883 851 12 2.70E-09 0.97108 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 1884 NRAC-201M
  • 0
  • OEP-DGN-FS-0801
  • OEP-DGN-MA-DG02
  • 1886 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

1886 2584 4 2.69E-09 0.97116 ACP-TFM-N0-1H1

  • IE-T
  • K
  • R +

1887 2583 4 2.69E-09 0.97125 HPI-MOV-PG-1350

  • IE-T
  • K
  • R +

1888 242 11 2.59E-09 0.97132 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • NRAC-7HR NSLOCA OEP-DGN-FS-0802
  • OEP-DGN-MA-DG01
  • 1889 1890 QS-SBO .* REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL +

1891 243 11 2.59E-09 0. 97140 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 1892 NRAC-7HR
  • NSLOCA
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG03
  • 1893 QS-SBO
  • REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL .

+

1894 244 11 2.59E-09 0. 97148 /DGN-FTO

  • IE-T1
  • OEP-DGN-MA-DG01
  • 1895 1896 NRAC-7HR QS-SBO ..* NSLOCA
  • REC-XHE-FO-DGHWB
  • .. OEP-DGN-FS-DG03
  • REC-XHE-FO-SCOOL +

241 11 2.59E-09 0.97156 /DGN-FTO IE-T1 N0TL-S80U1

  • NOTQ
  • 1897 OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG02
  • 1898 NRAC-7HR
  • NSLOCA REC-XHE-FO-DGHWB .

REC-XHE-FO-SCOOL +. .

1899 1900 856 12 2.59E-09 0.97164 QS-SBO

/DGN-FTO

  • IE-T1 . MCW-CCF-VF-SBO . NOTL-SB0U1 OEP-DGN-FR-6HDG2
  • NRAC-201M ..
  • 0 1901 NOTQ
  • REC-XHE-FO-DGHWS 1902 OEP-DGN-FS-DG01 /QS-SBO RCP-LOCA-750-90M" . NOTL-SBOU1

+

1903 855 12 2.59E-09 0.97172 /DGN-FTO NOTQ

  • IE-T1 NRAC-201M
  • MCW-CCF-VF-SBO 0
  • OEP-DGN-FR-6HDG1 .

1904 REC-XHE-FO-DGHWS 1905 0.97180 OEP-DGN-FS-DG03

/DGN-FTO

/QS-SBO IE-T1 RCP-LOCA-750-90M

  • MCW-CCF-VF-SBO . NOTL-SB0U1

+

1906 857 12 2.59E-09

  • OEP-DGN-FR-8HD83
  • 1907 NOTQ
  • NRAC-201M
  • 0 OEP-DGN-FS-DG01 * /QS-SBO
  • RCP-LOCA-750-90M" REC-XHE-FO-DGHWS +

1908 IE-T1

  • MCW-CCF-VF-SBO
  • NOTL-SB0U1 1909 858 12 2.59E-09 0.97187 /DGN-FTO * . OEP-DGN-FR-6HDG1 NOTQ NRAC-201M
  • 0
  • 1910 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

1911 OEP-DGN-FS-DG02 .* /QS-SBO SIS-ACT-FA-SI SA .

  • SIS-ACT-FA-SI SB +

1912 116 3 2.56E-09 0.97195 IE-S2 +

1913 1914 61 98 3

3 2.56E-09 2.56E-09 0.97203 0.97211 IE-S1 IE-S1 SIS-ACT-FA-SI SA RMT-ACT-FA-RMTSA . SIS-ACT-FA-SI SB RMT-ACT-FA-RMTSB + .

2.56E-09 0.97218 AFW-CKV-OO-CV172 AFW-MDP-FS-FW3B

  • AFW-XHE-FO-UNIT2
  • IE-T2 1915 2662 6 1916 PPS-MOV-FC-1535 AFW-CKV-OO-CV157
  • PPS-MOV-FT-1535 AFW-MDP-FS-FW3A

+

  • AFW-XHE-FO-UNIT2
  • IE-T2 .

1917 2880 6 2.56E-09 0.97226 .* PPS-MOV-FT-1535 +

1918 PPS-MOV-FC-1535 2.56E-09 0.97234 AFW-CKV-OO-CV172 AFW-MDP-FS-FW3B AFW-XHE-FO-UNIT2

  • IE-T2 1919 2659 6 1920 PPS-MOV-FC-1536 AFW-CKV-OO-CV157 PPS-MOV-FT-1536 AFW-MDP-FS-FW3A

+

  • AFW-XHE-FO-UNIT2
  • IE-T2 .

trj I

1921 1922 2661 6 2.56E-09 0.97242 PPS-MOV-FC-1536 . PPS-MOV-FT-1536 +

CJl 11 2.55E-09 0.97249 /DGN-FTO

  • QS-SBO
  • 0:,

1924 NRAC-216M

  • OEP-CRB-FT-15H3 .

19.25 1926 2597 6 2.54E-09 0.97257 RCP-LOCA-7.50-90M AFW-PSF-FC-XCONN ..

  • REC-XHE-FO-DGHWS AFW-XHE-FO-UNIT2 . REC-XHE-FO-SCOOL +

IE-T1 NRAC-HALFHR 1927 OEP-DGN-FC-DG3U2 . PPS-MOV-FC-1538 IE-T1

+

.. MCW-CCF-VF-SBO .. NOTL-S80U1 ..

1928 1929 247 11 2.49E-09 0.97265 /DGN-FTO NOTQ . NRAC-7HR . NSLOCA OEP-DGN-FR-6HDG1 REC-XHE-FO-DGHWB +.

1930 OEP-DGN-FS-0803 *. QS-SBO . MCW-CCF-VF-SBO . NOTL-SB0U1 1931 248 11 2.49E-09 0.97272 /OGN-FTO . IE-T1 . OEP-DGN-FR-6HDG3 1932 NOTQ NRAC-7HR QS-SBO .. NSLOCA REC-XHE-FO-DGHWB + . .

1933 OEP-DGN-FS-DG01 .* MCW-CCF-VF-SBO . NOTL-SB0U1 IE-T1 1934 246 11 2.49E-09 0.97280 /DGN-FTO . NRAC-7HR NSLOCA OEP-DGN-FR-6HDG1

  • 1935 NOTQ OEP-DGN-FS-DG02 . QS-SBO REC-XHE-FO-DGHWB + .

1936 . IE-T1 . MCW-CCF-VF-SBO .* NOTL-SBOU1 .

1937 1938 245 11 2.49E-09 0.97287 /DGN-FTO NOTQ .. NRAC-7HR . NSLOCA OEP-DGN-FR-6HDG2 1939 OEP-DGN-FS-DG01 .. QS-SBO .. REC-XHE-FO-DGHWB +. .

1940 1850 9 2.47E-09 0.97295 IE-T1 OEP-DGN-FR-6HDG1 N0TL-SB0U1U2 OEP-DGN-FR-6HDG2 NOTQ OEP-DGN-FR-6HDG3 . NRAC-216M QS-SBO .

1941 1942 RCP-LOCA-750-90U +

. .. NOTQ .

1943 948 12 2.46E-09 0.97302 /DGN-FTO NRAC-258M . 10 IE-T1 NOTL-SB0U1 OEP-CRB-FT-15H3 .* OEP-DGN-FR-6HDG2

  • 1944 1945 /QS-SBO .* RCP-LOCA-467-150
  • IE-T1 . REC-XHE-FO-DGHWS MCW-CCF-VF-SBO
  • NOTL-SB0U1 ..

REC-XHE-FO-SCOOL +

1946 860 11 2.45E-09 0.97310 /DGN-FTO . NRAC-216M

  • OEP-CRB-FT-15H3
  • OEP-DGN-FR-6HDG2 1947 1948 NOTQ QS-SBO . RCP-LOCA-750-90M" . REC-XHE-FO-DGHWS +. +

4 2.40E-09 0.97317 AFW-TNK-VF-CST

  • AFW-XHE-FO-UNIT2 HPI-XHE-FO-FDBLD IE-T2 1949 2627 LPI -MDP-FS-SI 18
  • SIS-ACT-FA-SISA +

1950 13 3 2.40E-09 0.97324 IE-A

  • 1951 1952 12 306 3

11 2.40E-09 2.37E-09 0.97332 0.97339 IE-A IE-T1 LP I -MDP-FS-S 11A NOTL-S80U1U2 ... SIS-ACT-FA-SI SB NOTQ

+

. NRAC-7HR

  • 1953 NSLOCA
  • 10 OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • 1954 OEP-DGN-FS-0802 * /QS-SBO
  • REC-XHE-FO-DGHWB +

1955 305 11 2.37E-09 0.97346 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-7HR
  • 1958 NSLOCA
  • 10
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG01
  • 1957 OEP-DGN-FS-0803 * /QS-SBO
  • REC-XHE-FO-DGHWB +

1958 307 11 2.37E-09 0.97353 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-7HR
  • 1959 NSLOCA
  • 10
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02
  • 1980 OEP-DGN-FS-DG03 * /QS-SBO
  • REC-XHE-FO-DGHWB +

1961 949 12 2.37E-09 0.97360 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-S80U1
  • 1962 NOTQ
  • NRAC-258M
  • 10
  • OEP-DGN-FR-8HDG1
  • 1983 OEP-DGN-MA-DG02 * /QS-SBO
  • RCP-LOCA-487-150
  • REC-XHE-FO-DGHWS +
  • MCW-CCF-VF-SBO NOTL-S80U1 1964 1965 950 12 2.37E-09 0.97368 /DGN-FTO NOTQ IE-T1 NRAC-258M
  • 10
  • QEP-DGN-FR-6HDG2 .*

1966 OEP-DGN-MA-DG01 * /QS-SBO

  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

1967 1852 11 2.33E-09 0.97375 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-216M
  • 1968 10
  • OEP-CRB-FT-15H3
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG02
  • 1969 /QS-SBO *. RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

IE-T1 N0TL-S80U1U2 NOTQ

  • NRAC-216M .*

1970 1851 11 2.33E-09 0.97382 OEP-CRB-FT-25H3 .* OEP-DGN-FR-6HDG1 OEP-DGN-FS-DG03 1971 1972 10

/QS-SBO

  • . RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

1973 1855 11 2.33E-09 0.97389 IE-T1 . N0TL-S80U1U2

  • NOTQ .
  • NRAC-216M
  • 1974 10 *. OEP-CRB-FT-15J3
  • OEP-DGN-FR-6HDG1 QEP-DGN-FS-DG02
  • 1975 /QS-SBO RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

IE-T1 N0TL-S80U1U2 NOTQ NRAC-216M

  • trj I

C)1 1976 1977 1853 11 2.33E-09 0.97396 10

  • OEP-CRB-FT-15H3 .
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG03
  • RCP-LOCA-750-90M REC-XHE-FO-DGHWS +

-.;J 1978 /QS-SBO *

  • NOTQ NRAC-216M 1979 1980 1854 11 2.33E-09 0.97403

/0 IE-T1 .. NOTL-S80U1U2 OEP-CRB-FT-15J3 OEP-DGN-FR-8HDG2 . OEP-DGN-FS-DG01 1981 1982 1856 11 2.33E-09 0.97410

/QS-SBO IE-T1 . RCP-LOCA-750-90M N0TL-S80U1U2 . REC-XHE-FO-DGHWS NOTQ

+

  • NRAC-216M .

1983 10

  • OEP-CRB-FT-25H3
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • 1984 /QS-SBO
  • RCP-LOCA-760-90M
  • REC-XHE-FO-DGHWS +

1985 2663 5 2.30E-09 0. 97417 AFW-MDP-FS-FW3A

  • AFW-TDP-FR-2P24H
  • AFW-XHE-FO-UNIT2
  • DCP-BDC-ST-BUS1B
  • 1986 IE-T2 +

1987 2684 5 2.30E-09 0.97424 AFW-MDP-FS-FW3B

  • AFW-TDP-FR-2P24H
  • AFW-XHE-FO-UNIT2
  • DCP-BDC-ST-BUS1A
  • 1988 1989 951 10 2.30E-09 0.97431 IE-T2

/DGN-FTO

+

  • IE-T1
  • MCW-CCF-VF-SBO

1990 NOTQ

  • NRAC-268M
  • OEP-DGN-FR-8HDG1
  • OEP-DGN-FR-8HDG3
  • 1991 QS-SBO
  • RCP-LOCA-467-160 +

NOTL-S80U1U2 NOTQ NRAC-258M .*

1992 1993 1925 10 2.29E-09 0.97438 IE-T1 OEP-DGN-FS-DG01

  • OEP-DGN-FS-DG02 .* OEP-DGN-FS-DG03

. QS-SBO 1994 ...

RCP-LOCA-467-160

  • REC-XHE-FO-DGHWS HPI-XHE-FO-ALTIN

+

IE-T7 RCS-XHE-FO-DPT7D +

1995 2740 4 2.28E-09 0.97445 HPI-CKV-FT-CV225 AFW-MDP-FS-FW3A . *

  • AFW-XHE-FO-UNIT2 .* IE-T7 +

1998 2751 4 2.27E-09 0.97452 AFW-CKV-OO-CV157 AFW-CKV-OO-CV172 AFW-MDP..:fS-FW38 . AFW-XHE-FO-UNIT2 IE-T7 +

1997 1.998 2750 249 4

10 2.27E-09 2.2SE-09 0.97469 0.97465 /DGN-FTO

  • . IE-T1
  • MCW-CCF-VF-SBO .
  • NOTL-S80U1 1999 NOTQ
  • NRAC-7HR
  • NSLOCA OEP-DGN-FR-6HD81 2000 OEP-DGN-FR-6HDG3
  • QS-SBO +

2001 862 11 2.24E-09 0.97472 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1 *. NOTQ
  • 2002 NRAC-21SM
  • OEP-CRB-FT-15H3
  • OEP-DGN-MA-0803 QS-SBO
  • 2003 RCP-LOCA-750-90M
  • REC-XHE-FO-DGTMS
  • REC-XHE-FO-SCOOL +
  • NOTL-SBOU1
  • NOTQ *
  • . OEP-DGN-MA-0801 . QS-SBO 861 11 2.24E-09 0.97479 /DGN-FTO IE-T1

. .,~-

00!> NRAC-216M

  • OEP-CRB-FT-15J3
  • 2006 RCP-LOCA-750-90M
  • REC-XHE-FO-DGTMS REC-XHE-FO-SCOOL +

1857 11 2.23E-09 0.97486 IE-T1

  • NOTL-SB0U1U2
  • NOTQ
  • NRAC-216M
  • 2007 OEP-DGN-MA-0801
  • 2008 10
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FR-6HDG3
  • 2009 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGTMS +

11 2.23E-09 0.97492 IE-T1

  • NOTL-SB0U1U2
  • NOTQ
  • NRAC-216M
  • 2010 1858 OEP-DGN-UA-0803
  • 2011 10
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG2
  • 2012 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGTMS +

1859 11 2.23E-09 0.97499 IE-T1

  • NOTL-SB0U1U2
  • NOTQ
  • NRAC-216M
  • 2013 OEP-DGN-UA-DG02
  • 2014 10
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG3
  • 2015 IQS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGTMS +

2016 498 10 2 .19E-09 0.97506 AFW-TDP-FR-2P6HR

  • AFW-TDP-FR-6HRU2 * /DGN-FTO
  • IE-T1
  • NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • 2017 +

2018 /QS~SBO

  • REC-XHE-FO-DGEN 497 10 2. 19E-09 0.97512 AFW-TDP-FR-2P6HR
  • AFW-TDP-FR-6HRU2 * /DGN-FTO
  • IE-T1
  • 2019 OEP-DGN-FS-DG03
  • 2020 NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FR-6HDG1
  • 2021 /QS-SBO
  • REC-XHE-FO-DGEN +

AFW-TDP-FR-2P6H~

  • AFW-TDP-FR-6HRU2 * /DGN-FTO
  • IE-T1
  • 2022 500 10 2.19E-09 0.97519 NOTQ . NRAC-6HR-AVG
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02
  • 2023 2024 2025 499 10 2.19E-09 0.97526

/QS-SBO AFW-TDP-FR-2P6HR *

  • REC-XHE-FO-DGEN AFW-TDP-FR-6HRU2

+

  • IDGN-FTO .* IE-T1 .

NOTQ

  • NRAC-6HR-AVG
  • OEP-DGN-FR-6HDG2 OEP-DGN-FS-DG01
  • 2028 2027 /QS-SBO
  • REC-XHE-FO-DGEN +

. NOTL-SB0U1 . NOTQ

  • 2028 1350 12 2.18E-09 0.97532 /DGN-FTO NRAC-150M
  • 10 IE-T1
  • OEP-DGN-FS-DG81 . OEP-DGN-FS-DG03
  • 2029 REC-XHE-FO-SCOOL +

2030 /QS-SBO

/DGN-FTO

  • RCP-LOCA-1440-90 IE-T1 *
  • REC-XHE-FO-DGHWS NOTL-S80U1 .* NOTQ .

2031 2032 1349 12 2. 18E-09 0.97539 NRAC-150M .* 10

  • OEP-DGN-FS-DG01 .,.* OEP-DGN-FS-DG02 REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

tI:l 2033 2034 133 4 2.17E-09 0.97546 IQS-SBO

  • CPC-CKV-OO-CV113
  • RCP-LOCA-1440-90 CPC-MDP-FR-SWA24
  • . HPI-XHE-FO-UN2S3 IE-83 +

I 954 12 2. 17E-09 0.97552 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1 C.11 2035
  • OEP-CRB-FT-15H3
  • CXl 2036 NOTQ
  • NRAC-258M
  • 10 OEP-DGN-FS-DG02
  • IQS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

2037 NOTL-SB0U1

  • 2038 953 12 2.17E-09 0.97559 /DGN-FTO
  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTQ
  • NRAC-258M
  • 10
  • OEP-CRB-FT-15J3
  • 2039 REC-XHE-FO-DGHWS +

2040 OEP-DGN-FS-DG01 * /QS-SBO

  • RCP-LOCA-467-150 *

/DGN-FTO

  • IE-T1
  • UCW-CCF-VF-SBO
  • NOTL-SB0U1
  • 2041 2042 952 12 2.17E-09 0.97565 NOTQ . NRAC-258M * /0
  • OEP-CRB-FT-15H3
  • 2043 OEP-DGN-FS-DG03 * /QS-SBO *. RCP-LOCA-467-150 *. REC-XHE-FO-DGHWS +

IE-T1 NOTDG-CCF NOTL-SB0U1U2

  • 2044 309 12 2 .13E-09 0.97572 BETA-2DG .*
  • NRAC-7HR
  • NSLOCA
  • 10
  • 2045 2046 NOTQ OEP-DGN-FR-6HDG3 . OEP-DGN-FS * /QS-SBO
  • REC-XHE-FO-DGHWB +

2047 308 12 2 .13E-09 0.97578 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-S80U1U2
  • 2048 NOTQ
  • NRAC-7HR
  • NSLOCA * /0
  • 2049 OEP-DGN-FR-6HDG2
  • OEP-DGN-FS * /QS-SBO
  • REC-XHE-FO-DGHWB +

2050 310 12 2 .13E-09 0.97685 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-S80U1U2
  • NOTQ
  • NRAC-7HR
  • NSLOCA
  • 10
  • 2051 OEP-DGN-FS * /QS-SBO
  • REC-XHE-FO-DGHWB +

2052 OEP-DGN-FR-6HDG1

  • 2053 956 12 2.07E-09 0.97591 /DGN-FTO
  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-S80U1
  • 2054 NOTQ
  • NRAC-258U
  • 10
  • OEP-DGN-FR-6HDG3
  • 2055 OEP-DGN-MA-DG01 * /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGTMS +

2056 955 12 2.07E-09 0.97597 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • 2057 NOTQ
  • NRAC-258M
  • 10
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-0803 * /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGTMS +

2058 IE-T1

  • NOTDG-CCF
  • NOTL-SB0U1
  • 2059 1351 12 2.03E-09 0.97603 BETA-200
  • 2060 NOTQ
  • NRAC-150M
  • 10
  • OEP-DGN-FS

/QS-SBO

  • RCP-LOCA-1440-90
  • REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

2061

  • R +

2062 2585 4 2.02E-09 0.97609 CVC-MDP-FR-2A1HR

  • IE-T
  • K

2063 2084 2692 2717 4

4 1.98E-09 1.98E-09 0.97615 0.97621 AFW-CKV-OO-CV142 AFW-CKV-OO-CV142 .. AFW-TDP-FS-FW2 AFW-TDP-FS-FW2 . AFW-XHE-FO-UNIT2 AFW-XHE-FO-UNIT2 . IE-T5A IE-T5B

+

+

2085 2066 2771 863 3

11 1.97E-09 1.97E-09 0.97627 0.97633 IE-T7

/DGN-FTO MSS-XHE-FO-ISAFW" RCS-XHE-FO-DPRT7 IE-T1

  • MCW-CCF-VF-SBO

+

. NOTL-SBOU1 .

NOTQ NRAC-216M

  • 10
  • OEP-CRB-FT-15H3
  • 2067 2068 OEP-CRB-FT-15J3 .

/QS-SBO

  • RCP-LOCA-750-90M +

2069 2070 1198 12 1.94E-09 0.97639 /DGN-FTO NRAC-7HR IE-T1 10

  • NOTL-SBOU1
  • OEP-DGN-FS-D801 .*

NOTQ OEP-DGN-FS-DG03 .

2071 /QS-SBO RCP-LOCA-183-21-0 REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

2072 2073 1197 12 1,94E-09 0.97645 /DGN-FTO NRAC-7HR

  • 10 IE-T1
  • OEP-DGN-FS-D801 .* NOTQ OEP-DGN-FS-0602 REC-XHE-'FO-SCOOL

+

  • RCP-LOCA-183-210 REC-XHE-FO-DGHWS .

2074 /QS-SBO

/DGN-FTO . IE-T1 NOTL-SBOU1

  • NOTQ OEP-DGN-FS-0601 .

2075 1046 12 1.94E-09 0.97651 .*

2076 NRAC-7HR

  • 10 OEP-DGN-FS-0603
  • 2077 /QS-SBO
  • RCP-LOCA-183-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

/DGN-FTO IE-T1 NOTL-SB0U1

  • NOTQ
  • OEP-DGN-FS-D801 .

2078 1045 12 1.94E-09 0.97857 *

  • 2079 *NRAC-7HR * /0
  • OEP-DGN-FS-0802
  • 2080 /QS-SBO
  • RCP-LOCA-183-150
  • REC-XHE-FO-DGHWS" REC-XHE-FO-SCOOL +

2081 2665 7 1.93E-09 0.97663 AFW-MDP-FS-FW3A

  • AFW-MDP-FS-FW3B
  • AFW-TDP-FR-2P24H
  • AFW-XHE-FO-UNIT2
  • 2082 IE-T2
  • PPS-MOV-FC-1535
  • PPS-MOV-FT-1535 +

2083 2084 2666 7 1.93E-09 0.97669 AFW-MDP-FS-FW3A IE-T2

  • AFW-MDP-FS-FW3B
  • PPS-MOV-FC-1538

.* AFW-TDP-FR-2P24H

  • AFW-XHE-FO-UNIT2 PPS-MOV-FT-1536 +

2085 690 9 1.92E-09 0.97675 /DGN-FTO

  • IE-T1
  • NRAC-1HR
  • 2086 OEP-CRB-FT-15J3
  • OEP-DGN-FR-DG01
  • PPS-SOV-00-1466 * /QS-SBO "

2087 SBO-PORV-DMD +

~ 2088 689 9 1.92E-09 0.97680 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NRAC-1HR
  • I 2089 OEP-CRB-FT-15H3
  • OEP-DGN-FR-DG03
  • PPS-S0V-00-1455C * /QS-SBO
  • C]I i:c 2090 2091 687 9 1.92E-09 0.07686

. SBO-PORV-DUD

/DGN-FTO

+

  • IE-T1 . NOTL-SBOU1
  • NRAC-1HR
  • 2092 OEP-CRB-FT-15H3
  • OEP-DGN-FR-D803
  • PPS-SOV-00-1458 * /QS-SBO
  • 2093 SBO-PORV-DMD +

2094 688 9 1.92E-09 0.97692 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NRAC-1HR
  • 2095 OEP-CRB-FT-15J3
  • OEP-DGN-FR-DG01
  • PPS-S0V-00-1455C * /QS-SBO
  • 2096 SBO-PORV-DMD +

2097 692 10 1.92E-09 0.97698 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NRAC-1HR
  • 2098 OEP-CRB-FT-15H3
  • OEP-DGN-MA-DG02
  • PPS-SOV-00-1456
  • QS-SBO
  • 2099 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

2100 2101 691 10 1.92E-09 o. 97704 /DGN-FTO OEP-CRB-FT-15H3 IE-T1 OEP-DGN-MA-DG02 .* NOTL-S80U1 PPS-S0V-00-1455C *

  • NRAC-1HR QS-SBO 2102 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

2103 958 11 1.92E-09 0.97710 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 2104 NRAC-258M
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-DG02
  • QS*SBO
  • RCP-LOCA-487-150 REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

2105 2106 957 11 1.92E-09 0.97716 /DGN-FTO .

IE-T1

  • NOTL-S80U1
  • NOTQ
  • 2107 NRAC-258M
  • OEP-DGN-FR-8HDG2
  • OEP-DGN-MA-D801
  • QS-SBO
  • REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

2108 2109 2718 5 1.91E-09 0.97721 RCP-LOCA-467-150

  • AFW-MDP-FS
  • AFW-TDP-FR-2P6HR .*

AFW-XHE-FO-UNIT2 . BETA-AFW

  • 2110 2111 2893 5 1.91E-09 0.97727 IE-TSB AFW-MDP-FS

+

  • AFW-TDP-FR-2P6HR

. AFW-XHE-FO-UNIT2 . BETA-AFW

  • 2112 IE-TSA + . . .

2113 2114 459 9 1.90E-09 0.97733 AFW-TDP-MA-FW2 NRAC-HALFHR .

  • /DGN-FTO OEP-CRB-FT-15H3 . IE-T1 OEP-DGN-MA-DG02
  • NOTQ QS-SBO .

2115 2116 102 3 1.89E-09 0.97738 REC-XHE-FO-DGEN +

IE-S1 . LPI-MDP-FR-B21HR

  • LPR-MOV-FT-1860A +

2117 101 3 1.89E-09 0.97744 IE-S1

  • LPI-MDP-FR-A21HR
  • LPI-MDP-FS-Sl1B +

2118 100 3 1.89E-09 o. 97750 IE-S1

  • LPI-MDP-FR-A21HR
  • LPR-MOV-FT-18608 +

2119 99 3 1.89E-09 0.97756 IE-S1

  • LPI -MDP-FR-B21HR
  • LPI -MDP-FS-SI 1A +

2120 42 3 1. 87E-09 0.97761 IE-A

  • LPI-MDP-FR-B24HR
  • LPR-MOV-FT-1862A +

2121 41 3 1.87E-09 0.97767 IE-A .

  • LPI-MDP-FR-A24HR
  • LPR-MOV-FT-1.8828 +.

/DGN-FTO IE-T1 ..

OEP-DGN-FR-6HDG2 .

2122 463 10 1.85E-09 0.97773 AFW-TDP-FS-FW2 AFW-XHE-FO-U1SBO

  • NOTQ
  • NRAC-HALFHR
  • OEP-DGN-MA-0801 2123 . REC-XHE-FO-DGEN +

2124 2125 482 10 1.85E-09 0.97778

/QS-SBO AFW-TDP-FS-FW2 . AFW-XHE-FO-U1SB0 * /DGN-FTO

  • IE-T1
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-MA-DG01
  • 2128 2127 NOTQ

/QS-SBO .

  • NRAC-HALFHR REC-XHE-FO-DGEN +

IE-T1 461 10 1.85E-09 0.97784 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SB0" /DGN-FTO *
  • 2128 OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-DG03
  • 2129 NOTQ
  • NRAC-HALFHR
  • 2130 /QS-SBO *. REC-XHE-FO-DGEN +

460 10 1.85E-09 0.97789 AFW-TDP-FS-FW2 AFW-XHE-FO-U1SB0 * /DGN-FTO

  • IE-T1
  • 2131 OEP-DGN-MA-DG02 2132 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FR-6HDG1 *
  • 2133 /QS-SBO
  • REC-XHE-FO-DGEN +
  • 1.84E-09 0. 97795 AFW-TDP-FR-2P6HR
  • IDGN-FTO
  • IE-T1
  • NOTQ 2134 507 9 OEP-DGN-MA-0802
  • QS-SBO
  • 2135 NRAC-6HR-AVG
  • OEP-CRB-FT-15H3
  • 2136 0.97801 REC-XHE-FO-DGEN +

/DGN-FTO

  • IE-T1 . MCW-CCF-VF-SBO
  • NOTL-SB0U1 .

2137 959 11 1.84E-09 OEP-DGN-FR-6HDG2

  • 2138 NOTQ " NRAC-258M
  • OEP-DGN-FR-6HDG1 *
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

2139 2140 250 12 1.S2E-09 0.97806 QS-SBO

/DGN-FTO

  • IE-T1 . NOTL-SB0U1
  • NOTQ
  • 2141 NRAC-7HR
  • NSLOCA
  • 10
  • OEP-CRB-FT-15H3
  • OEP-DGN-FR-6HDG2 .* /QS-SBO
  • REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL +.

2142 NOTL-SB0U1

  • NOTQ

. 0IE-T1 OEP-DGN-FS-0801 .

2143 960 12 1.82E-09 0.97812 /DGN-FTO *

  • OEP-DGN-FS-DG02
  • 2144 NRAC-246M . REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL

+

tr:l I

CP 2145 2146 2147 961 12 1.82E-09 0.97817

/QS-SBO

/DGN-FTO NRAC-246M ...

RCP-LOCA-467-150

  • 0 IE-T1 ..

NOTL-SB0U1 OEP-DGN-FS-DG01 ... NOTQ OEP-DGN-FS-DG03 0

RCP-LOCA-467-150 . REC-XHE-FO-DGHWS . REC-XHE-FO-SCOOL .

+

2148 /QS-SBO 1.81E-09 0.97823 IE-T1 NOTL-SB0U1U2 NOTQ NRAC-216M 2149 1863 10 OEP-DGN-MA-DG03

  • QS-SBO
  • 2150 OEP-DGN-FR-6HDG1 OEP-DGN-FS-DG02
  • 2151 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +
  • NOTL-SB0U1U2
  • NOTQ
  • NRAC-216M .

2152 2153 1861 10 1.81E-09 0.97828

OEP-DGN-FR-6HDG1 . OEP-DGN-FS-DG03

  • OEP-DGN-MA-DG02
  • QS-SBO
  • 2154 1.81E-09 0.97834 RCP-LOCA-750-90M IE-T1 REC-XHE-FO-DGHWS +
  • NOTL-SBOU1U2

. NOTQ .,. NRAC-216M

  • 2155 1860 10 OEP-DGN-MA-DG01 QS-SBO
  • 2156 OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG02
  • 2157 RCP-LOCA-750-90M" REC-XHE-FO-DGHWS + . .

2158 1865 10 1.81E-09 0.97839 IE-T1 OEP-DGN-FR-6HDG3 .

  • NOTL-SBOU1U2 OEP-DGN-FS-DG01
  • . NOTQ OEP-DGN-MA-DG02 . NRAC-216M QS-880 .

2159 2160 RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS +.

. NOTQ . NRAC-216M .

2161 1864 10 1.81E-09 0.97845 IE-T1 OEP-DGN-FR-6HDG2 . NOTL-SBOU1U2 OEP-DGN-FS-DG01 . OEP-DGN-MA-DG03 . QS-880

  • 2162 2163 1.81E-09 0.97850 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

IE-T1

  • NOTL-SB0U1U2
  • NOTQ . NRAC-218M .

2164 1862 10

  • QS-880 2165 OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG03
  • OEP-DGN-MA-DG01
  • 2166 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

2167 557 9 1.81E-09 0.97856 AFW-TDP-FS-FW2 NOTQ . BETA-2DG NRAC-HALFHR . BETA-3DG OEP-DGN-FS IE-T1 QS-SBO .*

2168 2169 REC-XHE-FO-DGEN +

  • IE-T1

.. NOTDG-CCF . NOTL-SBOU1

  • 2170 1047 12 1.81E-09 0.97861 BETA-2DG . NRAC-7HR 10

.* OEP-DGN-FS

  • 2171 NOTQ . RCP-LOCA-183-150
  • REC-XHE-FO-DGHWS .. REC-XHE-FO-SCOOL .

+

2172 2173 2174 1199 12 1.81E-09 0.97867

/QS-SBO BETA-2DG NOTQ

.. IE-T1 NRAC-7HR .. NOTDG-CCF 10 NOTL-SBOU1 OEP-DGN-FS

  • 2175 2176 2177 864 11 1.77E-09 0.97872

/QS-SBO

/DGN-FTO NOTQ OEP-DGN-FR-6HDG3 RCP-LOCA-183-210

  • IE-T1 NRAC-201M .

MCW-CCF-VF-SBO 0

RCP-LOCA-750-90M +

REC-XHE-FO-DGHWS

  • OEP-DGN-FR-8HD01

+

2178 * /QS-SBO 2179 2761 8 1.76E-09 0.97877 IE-T7

  • MSS-SRV-00-0DSRV
  • PORV-BLK
  • PPS-UOV-FC-OPER
  • 2180 PPS-S0V-00-1455C
  • RCS-PORV-ODMD
  • RCS-XHE-FO-DPRT7
  • SGTR-SGSRV-ODMD1 +

2181 2760 8 1.76E-09 0.97883 IE-T7

  • MSS-SRV-00-0DSRV
  • PORV-BLK
  • PPS-MOV-FC-OPER
  • 2182 2183 1866 11 1.76E-09 0.97888 PPS-SOV-00-1456 IE-T1
  • RCS-PGRV-ODMD
  • NOTL-SB0U1U2 NOTQ .

R*cs- XHE-FO-DPRT7

  • SGTR-SGSRV-ODMD1 NRAC-201M

+

2184 0

  • OEP-DGN-FS-D001
  • OEP-DGN-FS-DG02
  • OEP-DGN-FS-D003 2185 /QS-SBO
  • RCP- LOCA- 750-.90M
  • REC-XHE-FO-DGHWS +

2186 964 11 1.76E-09 0.97893 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 2187 NRAC-258M
  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG03
  • QS-SBO
  • 2188 RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL*+

2189 963 11 1.76E-09 0.97899 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 2190 NRAC-258M
  • OEP-CRB-FT-15J3
  • OEP-DGN-FS-D001
  • QS-SBO
  • 2191 RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +
  • NOTQ 2192 2193 962 11 1.76E-09 0.97904 /DGN-FTO NRAC-258M .
  • IE-T1 OEP-CRB-FT-15H3 *.
  • NOTL-S80U1 OEP-DGN-FS-DG02
  • QS-SBO 2194 RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

2195 1928 11 1.75E-09 0.97909 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-258M
  • 2196 10
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • 2197 2198 1926 11 1.75E-09 0.97914

/QS-SBO IE-T1 RCP-LOCA-467-150 NOTL-S80U1U2 REC-XHE-FO-D0HWS +

NOTQ

  • NRAC-258M l:rj 2199 10
  • OEP-D0N-FR-6HDG1
  • OEP-DGN-FR-6H0G3
  • OEP-DGN-FS-DG02
  • RCP-LOCA-467-150 REC-XHE-FO-DGHWS +

I O")

2200 2201 1927 11 1.75E-09 0.97920

/QS-SBO IE-T1

  • NOTL-S80U1U2 .* NOTQ
  • NRAC-258M
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG03 2202 2203 10

/QS-SBO OEP-D0N-FR-6HDG1 RCP-LOCA-467-150 .* REC-XHE-FO-DGHWS +

2204 251 12 1.75E-09 0.97925 /D0N-FTO

  • IE-T1 NRAC-7HR
  • MCW-CCF-VF-SBO NSLOCA
  • NOTL-S80U1
  • 10 2205 2206 NOTQ
  • OEP-D0N-FR-6HDG2
  • OEP-DGN-MA-D001 .* /QS-SBO
  • REC-XHE-FO-DGHWB +

2207 252 12 1.75E-09 0.97930 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • 2208 NOTQ
  • NRAC-7HR
  • NSLOCA
  • 10
  • 2209 OEP-DGN-FR-6HD01
  • OEP-D0N-MA-DG02 * /QS-SBO
  • REC-XHE-FO-DGHWB + .

2210 694 10 1.73E-09 0.97936 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR 2211 OEP-CRB-FT-15H3
  • OEP-DGN-FR-D002
  • PPS-S0V-00-1455C * /QS-SBO
  • 2212 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

2213 693 10 1.73E-09 0.97941 /DGN-FTO

  • IE-T1
  • NOTL*SB0U1
  • NRAC-1HR
  • 2214 OEP-CRB-FT-15H3
  • OEP-D0N-FR-DG02
  • PPS-SOV-00-1456 * /QS-SBO
  • 2215 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

2216 558 10 1.71E-09 0.97946 AFW-TDP-FS-FW2

  • BETA-2DG
  • BETA-3DG
  • IE-T1
  • 2217 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS * /QS-SBO
  • 2218 REC-XHE-FO-DGEN
  • UNIT2-LOW-POWER +

2219 469 10 1.70E-09 0.97951 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 2220 NOTQ
  • NRAC-HALFHR
  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-D002
  • 2221 /QS-SBO
  • REC-XHE-FO-DGEN +

2222 468 10 1.70E-09 0.97956 AFW-TDP-FS-FW2

  • AFW-XHE~FO-U1SBO * /DGN-FTO
  • IE-T1
  • 2223 NOTQ
  • NRAC-HALFHR
  • OEP-CRB-FT-15J3
  • OEP-DGN-FS-D801
  • 2224 /QS-SBO
  • REC-XHE-FO-DGEN +

2225 467 10 1.70E-09 0.97961 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 2226 NOTQ
  • NRAC-HALFHR
  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-D003
  • 2227 /QS-SBO
  • REC-XHE-FO-DGEN +

2228 2698 6 1.70E-09 0.97967 AFW-CCF-LK-STMBD

  • AFW-XHE-FO-UNIT2
  • IE-T1
  • NRAC-HALFHR
  • 2229 OEP-DGN-FC-DG3U2
  • PPS-MOV-FC-1536 +

2230 1502 12 1.69E-09 0.97972 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 2231 NRAC-7HR
  • 10

. OEP-DGN-FS-DG01

  • OEP-DGN-FS-DG03 *

/QS-SBO

  • RCP-LOCA-183-90
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

2232 2233 2234 1501 12 1.89E-09 0.97977 /DGN-FTO NRAC-7HR .* IE-T1 10 NOTL-SBOU1 OEP-DGN-FS-DG01 REC-XHE-FO-DGHWS NOTQ OEP-DGN-FS-DG02 REC-XHE-FO-SCOOL

+

2235 2238 985 12 1.89E-09 0.97982

/QS-SBO BETA-2DG *

  • RCP-LOCA-183-90 IE-T1 .

NOTDG-CCF

  • NOTL-SBOU1
  • NOTQ
  • NRAC-246M
  • 0
  • OEP-DGN-FS
  • 2237 2238 2239 311 10 1.69E-09 0.97987

/QS-SBO IE-T1 .*

NOTL-SBOU1U2 .

RCP-LOCA-467-150

  • REC-XHE-FO-DGHWS NOTQ REC-XHE-FO-SCOOL NRAC-7HR OEP-DGN-FS-0803

+

2240 NSLOCA OEP-DGN-FS-0801

  • OEP-DGN-FS-0802
  • 2241 2242 968 11 1.69E-09 0.97992 QS-SBO

/DGN-FTO

  • IE-T1 .

REC-XHE-FO-DGHWB +

MCW-CCF-VF-SBO

  • NOTL-SBOU1
  • NOTQ
  • NRAC-258M
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG02 2243 REC-XHE-FO-DGHWS 2244 QS-SBO .* .

RCP-LOCA-467-150 * +.

2245 2246 966 11 1.69E-09 0.97997 /DGN-FTO NOTQ .. IE-T1 NRAC-258M .

MCW-CCF-VF-SBO OEP-DGN-FS-DG03

  • N0TL-SB0U1 OEP-DGN-MA-DG01 2247 QS-SBO RCP-LOCA-467-150 . REC-XHE-FO-DGHWS MCW-CCF-VF-SBO .

+

NOTL-SB0U1 .

2248 967 11 1.69E-09 0.98002 /DGN-FTO

  • IE-T1 NRAC-258M . OEP-DGN-FS-DG02
  • OEP-DGN-MA-DG01
  • 2249 2250 NOTQ QS-SBO . RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS .

+

11 1.89E-09 0.98008 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO NOTL-SBOU1
  • 2251 969 OEP-DGN-FS-0601
  • OEP-DGN-MA-DG03
  • 2252 NOTQ
  • NRAC-258M
  • 2253 QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

2254 473 10 1.68E-09 0.98013 AFW-TDP-MA-FW2

  • AFW-XHE-FO-U1SBO" /OGN-FTO
  • IE-T1
  • NOTQ NRAC-HALFHR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-0602
  • 2255 2256 /QS-SBO .

REC-XHE-FO-DGEN + . .

AFW-XHE-FO-U1SBO * /DGN-FTO IE-T1 trj I

er.,

2257 2258 471 10 1.88E-09 0.98018 AFW-TDP-MA-FW2 NOTQ NRAC-HALFHR . OEP-DGN-FR-6HDG1

  • OEP-DGN-MA-0803
  • N) 2259 /QS-SBO *. REC-XHE-FO-DGEN +

2280 470 10 1.68E-09

  • 0. 98023 AFW-TDP-MA-FW2 AFW-XHE-FO-U1SBO * /OGN-FTO .* IE-T1
  • NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FR-6HDG3 OEP-DGN-MA-DG01
  • 2261
  • REC-XHE-FO-DGEN +

2262 /OS-SBO

  • 2283 472 10 1.88E-09 0.98028 AFW-TDP-MA-FW2
  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1 2264 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-MA-0801
  • 2265 /QS-SBO
  • REC-XHE-FO-DGEN + .

2266 971 11 1.68E-09 0.98033 /DGN-FTO *. IE-T1

  • NOTL-SBOU1 NOTQ
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-DG03
  • QS-SBO
  • 2267 2268 2269 970 11 1.68E-09 0.98038 NRAC-258M RCP-LOCA-467-150 *

/DGN-FTO

  • REC-XHE-FO-DGTMS
  • REC-XHE-FO-SCOOL IE*T1
  • NOTL-SBOU1

+

NOTQ .

2270 NRAC-258M

  • OEP-DGN-FR-6HDG3
  • OEP-DGN-MA-0801 QS-SBO
  • 2271 RCP-LOCA-467-150
  • REC-XHE-FO-DGTMS
  • REC-XHE-FO-SCOOL +

2272 474 10 1. 67E-09 0.98043 AFW-TDP-FS-FW2

  • AFW-TDP-FS-U2FW2 * /DGN-FTO
  • IE-T1
  • 2273 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS-0801
  • OEP-DGN-FS-DG03
  • 2274 /OS-SBO
  • REC-XHE-FO-DGEN +

2275 2278 475 10 1.67E-09 0.98048 AFW-TDP-FS-FW2 NOTQ .*

  • AFW-TDP-FS-U2FW2 * /DGN-FTO NRAC-HALFHR REC-XHE-FO-DGEN +
  • OEP-DGN-FS-0801 IE-T1 OEP-DGN-FS-0802 2277 2278 1868 10 1.86E-09 0.98053

/OS-SBO IE-T1 . NOTL-S80U1U2

  • NOTQ

.

  • NRAC-216M
  • 2279 OEP-CRB-FT-15J3
  • OEP-DGN-FS-0801 OEP-DGN-FS-0802
  • QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS + .

2280

  • NOTO NRAC-216M
  • 2281 1867 10 1.86E-09 0.98058 IE-T1 NOTL-S80U1U2 .

OEP-CRB-FT-25H3 OEP-DGN-FS-DG01 OEP-DGN-FS-DG03

  • OS-SBO
  • 2282 REC-XHE-FO-DGHWS +

2283 RCP-LOCA-750-90M

  • 2284 1869 10 1.66E-09 0.98063 IE-T1
  • NOTL-SB0U1U2
  • NOTO
  • NRAC-216M
  • 2285 OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG02
  • OEP-DGN-FS-DG03
  • QS-SBO
  • 2286 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

2287 2288 2289 2290 2800 2599 8

8 1.85E-09 1.85E-09 0.98088 0.98073 AFW-PSF-FC-XCONN OEP-DGN-FS-DG01 AFW-PSF-FC-XCONN OEP-DGN-FS-DG03 AFW-XHE-FO-UNIT2 PPS-MOV-FC-1535 AFW-XHE-FO-UNIT2 PPS-MOV-FC-1538

+

+

IE-T1 IE-T1 NRAC-HALFHR NRAC-HALFHR 2291 559 9 1.84E-09 0.98078 AFW-TDP-MA-FW2

  • BETA-2DG
  • BETA-3DG
  • IE-T1
  • 2292 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS
  • QS-SBO
  • 2293 REC-XHE-FO-DGEN +

2294 524 10 1.83E-09 0.98083 AFW-TDP-FR-2P8HR

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 2295 NOTQ
  • NRAC-8HR-AVG
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-MA-DG01
  • 2298 /QS-SBO
  • REC-XHE-FO-DGEN +

AFW-XHE-FO-U1SBO * /DGN-FTO

  • IE-T1
  • 2297 2298 523 10 1.63E-09 0.98088 AFW-TDP-FR-2P8HR NOTQ
  • NRAC-6HR-AVG . OEP-DGN-FR-6HDG2
  • OEP-DGN-MA-0801
  • 2299 /QS-SBO
  • REC-XHE-FO-DGEN +

2300 522 10 1.83E-09 0.98093 AFW-TDP-FR-2P8HR

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 2301 NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-DG03
  • 2302 /QS-SBO
  • REC-XHE-FO-DGEN +*

2303 521 10 1.83E-09 0.98098 AFW-TDP-FR-2P8HR

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 2304 NOTQ
  • NRAC-8HR-AVG
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-DG02
  • 2305 /QS-SBO
  • REC-XHE-FO-DGEN +

2308 1930 11 1.60E-09 o. 98103 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-258M
  • 2307 10
  • OEP-DGN-FS-0001
  • OEP-DGN-FS-0803
  • OEP-DGN-MA-DG02
  • 2308 /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

2309 1929 11 1.SOE-09 0.98108 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-258M
  • 2310 /0
  • OEP-DGN-FS-0801
  • OEP-DGN-FS-DG02
  • OEP-DGN-MA-DG03
  • 2311 /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

trj 2312 1931 11 1.80E-09 0. 98113 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-258M
  • 0)

I 2313 /0

  • OEP-DGN-FS-0002
  • OEP-DGN-FS-0803
  • OEP-DGN-MA-0801
  • c.,::, 2314 2315 253 12 1.60E-09 0.98118

/QS-SBO

/DGN-FTO RCP-LOCA-467-150 IE-T1

  • REC-XHE-FO-DGHWS +
  • MCW-CCF-VF-880
  • NOTL-SBOU1 2316. NOTQ
  • NRAC-7HR
  • NSLOCA * /0
  • 2317 OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG02 * /QS-SBO
  • REC-XHE-FO-DGHWB +
  • NOTL-SBOU1 2318 2319 254 12 1. SOE-09 0.98123 /DGN-FTO NOTQ
  • . IE-T1 NRAC-7HR
  • MCW-CCF-VF-SBO
  • NSLOCA
  • 10 OEP-DGN-FS-DG01 " /QS-SBO
  • REC-XHE-FO-DGHWB +

2320 2321 255 12 1.80E-09 0.98127 OEP-CRB-FT-15J3

/DGN-FTO

  • IE-T1 . MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 2322 NOTQ
  • NRAC-7HR
  • NSLOCA
  • 10
  • 2323 OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG03 * /QS-SBO
  • REC-XHE-FO-DGHWB +

2324 2325 14 15 3

3 1.60E-09 1.SOE-09 0.98132 0.98137 IE-A IE-A .

  • LPI -UDP-MA-SI 18 LPI-MDP-MA-S11A .
  • SIS-ACT-FA-SI SA +

SIS-ACT-FA-SI SB +

2328 2741 4 1.80E-09 0.98142 HPI-CKV-00-CV258

  • HPI-MDP-FR-1A8HR
  • IE-T7
  • RCS-XHE-FO-DPT7D +

0.98147 /DGN-FTO IE-T1

  • NOTL-SBOU1
  • NOTQ
  • 2327 2328 885 10 1.80E-09 NRAC-218M ." OEP-CRB-FT-15H3
  • OEP-CRB-FT-15J3
  • QS-SBO
  • 2329 RCP-LOCA-750-90M
  • REC-XHE-FO-SCOOL +

2330 561 9 1.59E-09 0.98152 AFW-TDP-FR-2P8HR

  • BETA-200
  • BETA-306
  • IE-T1
  • 2331 NOTQ
  • NRAC~8HR-AVG
  • OEP-DGN-FS
  • QS-SBO
  • 2332 REC-XHE-FO-DGEN +

2333 1872 10 1.59E-09 0.98168 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-218M
  • 2334 2335 0.98161 10

/QS-SBO IE-T1

  • OEP-CRB-FT-15H3 RCP-LOCA-750-90M NOTL-S80U1U2

+

OEP-DGN-FR-8HD02

  • NOTQ
  • OEP-DGN-FR-8HDG3
  • NRAC-218M
  • 2338 1871 10 1.59E-09 .

2337 10 OEP-CRB-FT-15J3

  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-8HDG2
  • 2338 /QS-SBO
  • RCP-LOCA-750-90M +

2339 1870 10 1.59E-09 0.98186 I E.-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-218M
  • 2340 10
  • OEP-CRB-FT-25H3
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-8HDG3
  • RCP-LOCA-750-90M + .

2341 2342 2887 1 1.58E-09 0.98171

/QS-SBO AFW-MDP-FS .

AFW-TDP-FS-FW2

  • AFW-XHE~FO-UNIT2 BETA-AFW
  • IE-T2
  • PPS-MOV-FC-1535
  • PPS-MOV-FT-1535 +

2343 AFW-TDP-FS-FW2

  • AFW-XHE-FO-UNIT2
  • BETA-AFW
  • 2344 2668 7 1.58E-09 0.98176 AFW-MDP-FS
  • IE-T2
  • PPS-MOV-FC-1536
  • PPS-MOV-FT-1536 +

2345 IE-T1

  • NOTDG-CCF
  • NOTL-SB0U1
  • 2346 1503 12 1.57E-09 0.98180 BETA-2DG*
  • NOTQ
  • NRAC-7HR
  • 10
  • OEP-DGN-FS
  • 2347 RCP-LOCA-183-90
  • REC-XHE-.FO-DGHWS
  • REC-XHE-FO-SCOOL +

2348 /QS-SBO

  • 0.98185 ACP-TFM-N0-1H1
  • HPI-MOV-FT-1887D
  • IE-S3 +

'2349 134 3 1.58E-09

  • IE-T1
  • AFW-TDP-MA-FW2 BETA-2DG
  • BETA-3DG 2350 2351 560 10 1.58E-09 0.98190 NOTQ .

NRAC-HALFHR

  • OEP-DGN-FS * /QS-SBO
  • UNIT2-LOW-POWER +

2352 2353 477 10 1.55E-09 0.98195 REC-XHE-FO-DGEN AFW-TDP-FS-FW2 .* AFW-TDP-FS-U2FW2

  • BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS
  • 2354 *. REC-XHE-FO-DGEN +

2355 /QS-SBO 1.54E-09 0.98199 AFW-TDP-MA-FW2 AFW-XHE-FO-U1SBO * /DGN-FTO

  • IE-T1
  • 2356 480 10 OEP-DGN-FS-DG01
  • 2357 NOTQ
  • NRAC-HALFHR
  • OEP-CRB-FT-15J3 *
  • 2358 /QS-SBO
  • REC-XHE-FO-DGEN +

1.54E-09 0.98204 AFW-TDP-MA-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 2359 479 10 OEP-DGN-FS-DG03
  • 2360 NOTQ
  • NRAC-HALFHR
  • OEP-CRB-FT-15H3
  • 2361 /QS-SBO
  • REC-XHE-FO-DGEN +

0.98209 AFW-TDP-MA-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 2362 478 10 1.54E-09 OEP-DGN-FS-DG02 *

. 2363 NOTQ

  • NRAC-HALFHR
  • OEP-CRB-FT-15H3 *

/QS-SBO

  • REC-XHE-FO-DGEN +

2364 AFW-TDP-MA-U2FW2 * /DGN-FTO

  • IE-T1
  • 2365 484 10 1.52E-09 0.98213 AFW-TDP-FS-FW2
  • OEP-DGN-FS-DG02
  • 2366 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS-DG01
  • 2367 /QS-SBO
  • REC-XHE-FO-DGEN AFW-TDP-MA-FW2

+

. /DGN-FTO . IE-T1 .

t:rj 2368 482 10 1.52E-09 0.98218 AFW-TDP-FS-U2FW2

  • NOTQ
  • NRAC-HALFHR . OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03
  • I 2369

~

2370 /QS-SBO .* REC-XHE-FO-DGEN + .. IE-T1 .

.i,.

2371 2372 481 10 1.52E-09 0.98222 AFW-TDP-FS-FW2 NOTQ

  • AFW-TDP-MA-U2FW2 NRAC-HALFHR . * /DGN-FTO OEP-DGN-FS-DG01 OEP-DGN-FS-DGOS
  • 2373 1.52E-09 0.98227

/QS-SBO AFW-TDP-FS-U2FW2 ..

  • REC-XHE-FO-DGEN AFW-TDP-MA-FW2

+

  • /DGN-FTO
  • IE-T1 .

2374 483 10 OEP-DGN-FS-DG02

  • NRAC-HALFHR
  • OEP-DGN-FS-DG01
  • 2375 2376 NOTQ

/QS-SBO . REC-XHE-FO-DGEN +

. NOTDG-CCF N0TL-SB0U1U2

  • 2377 720 11 1.52E-09 0.98232 BETA-2DG .* IE-T1 OEP-DGN-FR-6HDG1 *. OEP-DGN-FS .* PPS-SOV-00-1458
  • 2378 NRAC-1HR ..

SBO-PORV-DMD +

2379 /QS-SBO REC-XHE-FO-DGEN NOTDG-CCF NOTL-SB0U1U2 2380 719 11 1.52E-09 0.98236 BETA-2DG . IE-T1 OEP-DGN-FR-6HDG2 OEP-DGN-FS .* PPS-SOV-00-1456 2381 2382 NRAC-1HR

/QS-SBO . REC-XHE-FO-DGEN

  • SBO-PORV-DMD +

0.98241 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-SB0U1U2
  • 2383 718 11 1.52E-09 OEP-DGN-FS
  • PPS-SOV-00-1456
  • 2384 NRAC-1HR
  • OEP-DGN-FR-6HDG3 *

/QS-SBO

  • REC-XHE-FO-DGEN * *seo-PORV-DMD +

2385 NOTDG-CCF

  • NOTL-SB0U1U2
  • BETA-2DG
  • IE-T1
  • 2386 2387 717 11 1.52E-09 0.98245 NRAC-1HR . OEP-DGN-FR-6HDG1
  • OEP-DGN-FS
  • PPS-S0V-00-1455C *

/QS-SBO

  • REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

2388 IE-T1

  • NOTDG-CCF
  • 2389 716 11 1.52E-09 0:09250 BETA-200
  • PPS-S0V-00-1455C
  • OEP-DGN-FS
  • 2390 2391 NRAC-1HR

/QS-SBO OEP-DGN-FR-6HDG2 REC-XHE-FO-DGEN .

SBO-PORV-DMD +

BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-S80U1U2 .

2392 715 11 1.52E-09 0.98255 OEP-DGN-FS

  • PPS-S0V-00-1455C 2393 NRAC-1HR
  • OEP-DGN-FR-6HDG3 *

/QS-SBO

  • REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

2394 AFW-TDP-FR-2P24H

  • AFW-XHE-FO-UNIT2
  • BETA-2MOV
  • 2395 2670 8 1.51E-09 0.98259 AFW-MDP-FS
  • PPS-MOV-FT +

BETA-AFW

  • IE-T2
  • PPS-MOV-FC-1535
  • 2396 AFW-TDP-FR-2P24H
  • AFW-XHE-FO-UNIT2
  • BETA-2MOV
  • 2397 2669 8 1.51E-09 0.98264 AFW-MDP-FS *

. PPS-MOV-FT +

BETA-AFW IE-T2

  • PPS-MOV-FC-1538
  • 2398

2399 2400 2401 2402 2403 21 563 17 4

10 3

1.51E-09 1.51E-09 1.50E-09 0.98268 0.98273 0.98278 NOTQ CON-VFC-RP-COREM

  • AFW-TDP-FR-2P6HR
  • REC-XHE-FO-DGEN IE-A IE-A BETA-208 NRAC-BHR-AVG UNIT2-LOW-POWER +

LPI-CKV-OO-CV58

  • SWS-:CCF-FT-3ABCD
  • BETA-308
  • OEP-DGN-FS
  • LPI -MDP-FS-SI 1A
  • IE-T1

+

  • /QS-SBO
  • SWS-XHE-FO-OPEN +

2404 16 3 1.50E-09 0.98282 IE-A

  • LPI-CKV-OO-CV50
  • LPI -MDP-FS-SI 18 +

2405 531 10 1.50E-09 0.98287 AFW-TDP-FR-2PBHR

  • AFW-XHE-FO-U1SBO
  • IDGN-FTO
  • IE-T1 *
  • O.EP-CRB-FT-15J3 OEP-DGN-FS-DG01
  • 2406 2407 NOTQ IQS-SBO .
  • NRAC-6HR-AVG REC-XHE-FO-DGEN +

AFW-XHE-FO-U1SBO" /D0N-FTO IE-T1 .*

2408

  • 2409 530 10 1.SOE-09 0.98291 AFW-TDP-FR-2P6HR
  • NOTQ
  • NRAC-6HR-AVG
  • OEP-CRB-FT-15H3

.* OEP-DGN-FS-DG03 2410 /QS-SBO

  • REC-XHE-FO-DGEN +

2411 529 10 1.50E-09 0.98296 AFW-TDP-FR-2P6HR

  • AFW-XHE-FO-U1SBO * /D0N-FTO
  • IE-T1
  • 2412 NOTQ
  • NRAC-6HR-AVG
  • OEP-CRB-FT-15H3
  • OEP-D0N-FS-DG02
  • 2413 /QS-SBO
  • REC-XHE-FO-DGEN +

2414 2762 8 1.50E-09 0.98300 IE-T7

  • MSS-SRV-00-0DSRV
  • PORV-NOT-BLK
  • PPS-MOV-FC-OPER
  • 2415 PPS-SOV-00-1456
  • RCS-PORV-ODMD
  • RCS-XHE-FO-DPRT7

2416 2763 8 1.50E-09 0.98305 IE-T7

  • MSS-SRV-00-0DSRV
  • PORV-NOT-BLK
  • PPS-MOV-FC-OPER
  • 2417 PPS-S0V-00-1455C
  • RCS-PORV-ODMD
  • RCS-XHE-FO-DPRT7
  • SGTR-SGSRV-ODMD2 +

2418 972 11 1.48E-09 0.98309 IDGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • 2419 NOTQ
  • NRAC-258M
  • 10
  • OEP-CRB-FT-15H3
  • 2420 OEP-DGN-FR-6HDG3 * /QS-880
  • RCP-LOCA-467-150 +

2421 973 11 1.48E-09 0.98314 /D0N-FTO

  • IE-T1
  • MCW-CCF-VF-880
  • NOTL-SBOU1
  • 2422 NOTQ
  • NRAC-258M
  • 10
  • OEP-CRB-FT-15J3
  • RCP-LOCA-467-150 +

trj 2423 2424 534 10 1.47E-09 0.98318 OEP-DGN-FR-6HDG1 AFW-TDP-FR-6HRU2

  • /QS-SBO
  • AFW-TDP-FS-FW2

/DGN-FTO

  • IE-T1
  • I 2425 NOTQ
  • NRAC-6HR-AV0
  • OEP-D0N-FS-DG01
  • OEP-DGN-FS-D002
  • CT) 2426 /QS-880
  • REC-XHE-FO-DGEN +

<:)1 2427 535 10 1.47E-09 0.98323 AFW-TDP-FR-2P6HR" AFW-TDP-FS-U2FW2

  • IDGN-FTO
  • IE-T1
  • 2428 NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FS-0801
  • OEP-DGN-FS-0803
  • 2429 2430 533 10 1.47E-09 0.98327

/QS-SBO AFW-TDP-FR-6HRU2 .* REC-XHE-FO-DGEN +

AFW-TDP-FS-FW2 * /DGN-FTO

  • IE-T1
  • 2431 NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FS-D801
  • OEP-D8N-FS-DG03
  • 2432 /QS-SBO
  • REC-XHE-FO-DGEN +

2433 532 10 1. 47E-09 0.98332 AFW-TDP-FR-2P6HR

  • AFW-TDP-FS-U2FW2 * /DGN-FTO
  • IE-T1
  • 2434 NOTQ
  • NRAC-6HR-AVG
  • OEP-D8N-FS-DG01
  • OEP-DGN-FS-DG02
  • 2435 /QS-SBO
  • REC-XHE-FO-DGEN +

2436 867 12 1.47E-09 0.98336 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 2437 NRAC-201M
  • 0
  • OEP-DGN-FR-6HD02
  • OEP-DGN-MA-DG01
  • 2438 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

2439 866 12 1.47E-09 0.98341 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 2440 NRAC-201M
  • 0
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-DG02
  • 2441 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

2442 257 12 1.46E-09 0.98345 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • 2443 NOTQ
  • NRAC-7HR
  • NSLOCA
  • 10
  • 2444 OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-DG03 * /QS-SBO
  • REC-XHE-FO-DGTMB +

2445 258 11 1.46E-09 0.98349 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • 2446 NOTQ
  • NRAC-7HR
  • NSLOCA
  • 10
  • 2447 OEP-CRB-FT-15H3
  • OEP-D0N-FR-6HDG3 * /QS-SBO +

2448 259 11 1.46E-09 0.98354 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 2449 NOTQ
  • NRAC-7HR
  • NSLOCA
  • 10
  • 2450 OEP-CRB-FT-15J3
  • OEP-DGN-F:R-6HD81 * /QS-SBO +

2451 256 12 1.46E-09 0.98358 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • 2452 NOTQ
  • NRAC-7HR
  • NSLOCA
  • 10
  • 2453 OEP-DGN-FR-6HDG3
  • OEP-DGN-MA-DG01 * /QS-SBO
  • REC-XHE-FO-DGTUB +

2454 1934 12 1.44E-09 0.98363 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-S80U1U2 * '

2455 NOTQ

  • NRAC-258M * /0
  • OEP-DGN-FS
  • OEP-DGN-MA-DG01 * /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

2456 *

  • NOTDG-CCF
  • NOTL-S80U1U2
  • 2457 1933 12 1.44E-09 0.98387 BETA-2DG IE-T1 NOTQ
  • NRAC-258M * /0
  • OEP-DGN-FS
  • 2458 2459 OEP-DGN-MA-DG03 * /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

2480 1932 12 1.44E-09 0.98371 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-SBOU1U2
  • 2481 NOTQ
  • NRAC-258M * /0
  • OEP-DGN-FS
  • 2462 OEP-DGN-MA-DG02 * /QS-880
  • RCP-LOCA~467-150
  • REC-XHE-FO-DGHWS +

2463 2672 6 1.43E-09 0.98376 AFW-MDP-FS

  • AFW-TDP-FR-2P24H
  • AFW-XHE-FO-UNIT2
  • BETA-AFW
  • 2484 IE-T2
  • PPS-S0V-FT-1455C +

AFW-MDP-FS

  • AFW-TDP-FR-2P24H
  • AFW-XHE-FO-UNIT2
  • BETA-AFW
  • 2465 2466 2467 2671 2674 6

7 1.43E-09 1.43E-09 0.98380 0.98384 IE-T2 AFW-MDP-FS

  • PPS-SOV-FT-1456 +
  • AFW-TDP-MA-FW2
  • AFW-XHE-FO-UNIT2
  • BETA-AFW .

2468 IE-T2

  • PPS-MOV-FC-1535
  • PPS-MOV-FT-1535 +

2469 2673 7 1.43E-09 0.98389 AFW-MDP-FS

  • AFW-TDP-MA-FW2
  • AFW-XHE-FO-UNIT2
  • BETA-AFW
  • IE-T2
  • PPS-MOV-FC-1538
  • PPS-MOV-FT-1536 +

2470

  • NOTL-SBOU1
  • NOTQ
  • 2471 261 11 1.41E-09 0.98393 /DGN-FTO IE-T1
  • NRAC-7HR
  • NSLOCA
  • OEP-D0N-FR-6HDG2
  • OEP-DGN-MA-DG01
  • 2472 REC-XHE-FO-SCOOL +

2473 QS-SBO

  • REC-XHE-FO-DGHWB
  • 2474 280 11 1.41E-09 0.98397 /DGN-FTO
  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • NRAC-7HR
  • NSLOCA
  • OEP-D0N-FR-6HDG1
  • OEP-DGN-MA-DG02
  • 2475 REC-XHE-FO-SCOOL +

2476 QS-SBO

  • REC-XHE-FO-DGHWB
  • 888 12 1.41E-09 0.98402 /DGN-FTO
  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 2477 0
  • OEP-DGN-FR-6HDG1
  • 2478 NOTQ
  • NRAC-201M
  • OEP-DGN-FR-6HDG2 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

2479 BETA-2DG

  • IE-T1
  • 2480 489 10 1.41E-09 0.98406 AFW-TDP-FS-FW2
  • AFW-TDP-MA-U2FW2
  • trj I 2481 NOTDG-CCF
  • NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS
  • 0) 2482 /QS-SBO
  • REC-XHE-FO-DGEN +

IE-T1 .*

0) 2483 2484 490 10 1.41E-09 0.98410 AFW-TDP-FS-U2FW2 NOTDG-CCF *

  • AFW-TDP-MA-FW2 NOTQ .
  • BETA-2DG NRAC-HALFHR .* OEP-DGN-FS 2485 /QS-880
  • REC-lCHE-FO-DGEN AFW-TDP-FR-2P24H

+

  • AFW-XHE-FO-UNIT2
  • BETA-AFW .

2486 2602 7 1.41E-09 0.98414 AFW-MDP-FS .*

PPS-MOV-FC-1535

  • PPS-MOV-FT-1535 +

2487 IE-T1 . AFW-XHE-FO-UNIT2

  • BETA-AFW 2488 2489 2601 7 1.41E-09 0.98419 AFW-MDP-FS IE-T1 . AFW-TDP-FR-2P24H PPS-MOV-FC-1536
  • PPS-MOV-FT-1536 +

2752 5 1.40E-09 0.98423 AFW-MDP-FS

  • AFW-TDP-FS-FW2
  • AFW-XHE-FO-UNIT2
  • BETA-AFW
  • 2490 2491 2492 491 9 1.39E-09 0.98427 IE-T7 AFW-CKV-OO-CV172

+

. /DGN-FTO

  • IE-T1
  • NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG02
  • QS-SBO
  • 2493 2494 REC-XHE-FO-DGEN +

. IE-T1 .

2495 493 10 1.38E-09 0.98431 AFW-TDP-MA-FW2 AFW-TDP-MA-U2FW2 NRAC-HALFHR

  • /DGN-FTO
  • OEP-D0N-FS-DG01
  • OEP-DGN-FS-DG02 .

2496 2497 NOTQ

/QS-SBO .* REC-XHE-FO-DGEN .

+

2498 492 10 1.38E-09 0.98435 AFW-TDP-MA-FW2 NOTQ AFW-TDP-MA-U2FW2 NRAC-HALFHR *

/DGN-FTO OEP-DGN-FS-DG01 IE-T1 OEP-DGN-FS-DG03 .*

2499 2500 /QS-SBO

  • REC-XHE-FO-DGEN +

2501 537 10 1.37E-09 0.98440 AFW-TDP-FR-2P6HR

  • AFW-TDP-FS-U2FW2
  • BETA-2DG
  • IE-T1
  • NRAC-6HR-AVG
  • OEP-DGN-FS
  • 2502 2503 NOTDG-CCF

/QS-SBO ..

  • NOTQ REC-XHE-FO-DGEN

+

BETA-2DG IE-T1 2504 2505 536 10 1.37E-09 0.98444 AFW-TDP-FR-6HRU2 NOTDG-CCF .. AFW-TDP-FS-FW2 NOTQ

  • NRAC-6HR-AVG
  • OEP-DGN-FS
  • 2508 /QS-SBO REC-XHE-FO-DGEN .

+

MCW-CCF-VF-880 .* NOTL-S80U1

  • 2507 2508 282 11 1.38E-09 0.98448 /DGN-FTO NOTQ .* IE-T1 NRAC-7HR . NSLOCA OEP-DGN-FR-BHDG1
  • 2509 OEP-DGN-FR-8HDG2
  • QS-SBO
  • REC-XHE-FO-DGHWB +

AFW-XHE-FO-CST2

  • BETA-2DG
  • IE-T1 NOTDG-CCF
  • 580 10 1.38E-09 0.98452

2511 2512 2513 581 10 1.38E-09 0.98458 NOTQ QS-SBO AFW-XHE-FO-CST2 NRAC-1HR REC-XHE-FO-DGEN BETA-2DG NRAC-1HR

+

OEP-DGN-FS IE-T1 OEP-DGN-FS OEP-DGN-MA-DG02 NOTDG-CCF OEP-DGN-MA-DG01 2514 NOTQ

  • 2515 QS-SBO
  • REC-XHE-FO-DGEN +

2518 579 10 'i.38E-09 0.98480 AFW-XHE-FO-CST2

  • BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • 2517 NOTQ
  • NRAC-1HR
  • OEP-DGN-FS
  • OEP-DGN-MA-DG03
  • 2518 QS-SBO
  • REC-XHE-FO-DGEN +

2519 18 2 1.35E-09 0. "98464 IE-A

  • RWT-TNK-LF-RWST +

2520 871 12 1.35E-09 0.98468 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 2521 NRAC-201M
  • 0
  • OEP-CRB-FT-15J3
  • OEP-DGN-FS-DG01
  • 2522 IQS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

2523 870 12 1.35E-09 0.98473 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 2524 NRAC-201M
  • 0
  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG02
  • 2525 IQS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

2526 869 12 1.35E-09 0.98477 /DGN-FTO

  • IE-T1
  • NOTQ
  • 2527 NRAC-201M
  • 0
  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG03
  • 2528 /QS-SBO . RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

2529 2603 5 1.34E-09 0.98481 AFW-CKV-OO-CV142

  • AFW-TDP-FS-FW2
  • AFW-XHE-FO-UNIT2
  • IE-T1
  • 2530 PPS-XHE-FO-PORVS +

2531 2629 5 1.34E-09 0.98485 AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2
  • BETA-2MOV
  • HPI-MOV-FT-1867C
  • 2532 IE-T2 +

2533 2628 5 1.34E-09 0.98489 AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2
  • BETA-2MOV
  • HPI-MOV-FT-11158
  • 2534 IE-T2 +

2535 2536 541 10 1.34E-09 0.98493 AFW-TDP-FR-6HRU2 NOTQ AFW-TDP-MA-FW2 NRAC-6HR-AVG

  • /DGN-FTO
  • OEP-DGN-FS-DG01
  • IE-T1 OEP-DGN-FS-DG03 t?j 2537 IQS-SBO
  • REC-XHE-FO-DGEN +

I a:, 2538 540 10 1.34E-09 0.98497 AFW-TDP-FR-2P6HR

  • AFW-TDP-MA-U2FW2
  • IDGN-FTO
  • IE-T1
  • 2539 NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03 *

-.:i 2540 2541 539 10 1.34E-09 0.98501

/QS-SBO AFW-TDP-FR-2P6HR *

  • REC-XHE-FO-DGEN +

AFW-TDP-MA-U2FW2 * /DGN-FTO

  • IE-T1 .*

2542 NOTQ

  • NRAC-6HR-AVG
  • OEP-DGN-FS-DG01 OEP-DGN-FS-DG02 2543 /QS-SBO
  • REC-XHE-FO-DGEN +

254 .. 538 10 1.34E-09 0.98505 AFW-TDP-FR-6HRU2

  • AFW-TDP-MA-FW2
  • IDGN-FTO
  • IE-T1
  • 2545 NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • 2546 IQS-SBO
  • REC-XHE-FO-DGEN +

2547 263 11 1.30E-09 0.98509 IDGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 2548 2549 NRAC-7HR QS-SBO .
  • NSLOCA
  • OEP-CRB-FT-15H3 REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL

+

OEP-DGN-FS-DG02 NOTQ 2550 265 11 1.30E-09 0.98513 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1 NSLOCA
  • OEP-CRB-FT-15J3
  • OEP-DGN-FS-DG01
  • 2551 2552 NRAC-7HR QS-SBO .

REC-XHE-FO-DGHWB

  • REC-XHE-FO-SCOOL +

NOTQ 2553 2554 264 11 1.30E-09 0.98517 IDGN-FTO NRAC-7HR IE-T1 NSLOCA .* N0TL-SB0U1 OEP-CRB-FT-15H3

  • OEP-DGN-FS-DG03 2555 QS-SBO
  • REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL +

2556 875 12 1.30E~09 0.98521 IDGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 2557 NOTQ
  • NRAC-201M
  • 0
  • OEP-DGN-FS-DG02
  • 2558 OEP-DGN-MA-DG01 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

2559 874 12 1.30E-09 0.98525 IDGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 2560 NOTQ
  • NRAC-201M
  • 0
  • OEP-DGN-FS-0801
  • 2561 OEP-DGN-MA-0803
  • IQS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

2562 873 12 1.30E-09 0.98529 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • NOTQ NRAC-201M
  • 0
  • OEP-DGN-FS-D803
  • 2563 256 .. OEP-DGN-MA-DG01 .

/QS-SBO

  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

2565 872 12 1.30E-09 0.98533 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • 2566 NOTQ
  • NRAC-201M
  • 0
  • OEP-DGN-FS-0801
  • 2587 OEP-DGN-MA-DG02 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

313 11 29E-09 0.98538 IE-T1

  • NOTL-SBOU1U2
  • NOTQ
  • NRAC-7HR
  • 2588 1.
  • OEP-DGN-FR-8HDG1
  • OEP-DGN-FR-8HDG2
  • 2*589 NSLOCA
  • 10 2670 OEP-DGN-FS-DG03 * /QS-SBO
  • REC-XHE-FO-DGHWB +

2571 314 11 1. 29E-09 0.98540 IE-T1 NSLOCA .

  • NOTL-S80U1U2 10 NOTQ OEP-DGN-FR-8HDG1 NRAC-7HR OEP-DGN-FR-8HDG3

'2572 REC-XHE-FO-DGHWB +

2673 OEP-- DGN - FS- DG02 * /QS-SBO

  • 2574 312 11 1.29E-09 0.98544 IE-T1 .* NOTL-SBOU1U2 .* NOTQ OEP-DGN-FR-8HDG2 .* NRAC-7HR OEP-DGN-FR-6HDG3
  • 2575 2578 NSLOCA OEP-DGN-FS-DG01 . 10

/QS-SBO . REC-XHE-FO-DGHWB +

2577 877 12 1.29E-09 0.98548 /DGN-FTO

  • IE-T1
  • NOTL-S80U1 NOTQ
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-DG03
  • 2578 2579 NRAC-201M

/QS-SBO .

  • 0 RCP-LOCA-750-90M .*

REC-XHE-FO-DGTMS

  • REC-XHE-FO-SCOOL +

876 12 1.29E-09 0.98562 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 2580 OEP-DGN-FR-6HDG3
  • OEP-DGN-MA-DG01
  • 2581 NRAC-201M

/QS-SBO

  • . 0 RCP-LOCA-750-90M .* REC-XHE-FO-DGTMS . REC-XHE-FO-SCOOL +

2582 AFW-TDP-MA-U2FW2 BETA-2DG

  • IE-T1
  • 2583 494 10 1.28E-09 0.98558 AFW-TDP-MA-FW2 *
  • NOTDG-CCF
  • NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS
  • 2584 +

REC-XHE-FO-DGEN 2585 2586 896 9 1.28E-09 0.98560

/QS-SBO

/DGN-FTO

  • . IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 2587 OEP-D0N-FR-DG01
  • OEP-DGN-FR-DG03
  • PPS-SOV-00-1456 * /QS-880
  • 2588 880-PORV-DMD +

2589 695 9 1.28E-09 0.98564 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 2590 OEP-DGN-FR-DG01
  • OEP-DGN-FR-DG03
  • PPS-S0V-00-1455C * /QS-SBO
  • tp 2591 2592 43 3 1.28E-09 0.98568 SBO-PORV-DMD IE-A

+ . RMT-ACT-FA-RMTSA

  • RMT-ACT-FA-RMTSB +

a SIS-ACT-FA-SI SA

  • SIS-ACT-FA-SI SB +

O') 2593 19 1.28E-09 0.98572 IE-A

  • Oo 704 10 1.28E-09 0.98575 /DGN-FTO IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 2594 PPS-SOV-00-1456 QS-SBO
  • 2595 OEP-DGN-FR-DG01 OEP-DGN-MA-DG03 * "

2596 REC-XHE-FO-DGEN SBO-PORV-DMD IE-T1

+

.. NOTL-SBOU1 . NRAC-1HR .*

2597 2598 703 10 1.28E-09 0.98579 /DGN-FTO OEP-DGN-FR-DG03 .* OEP-DGN-MA-DG01 PPS-S0V-00-1455C

  • QS-SBO 2599 2800 702 10 1.28E-09 0.98583 REC-XHE-FO-DGEN

/DGN-FTO SBO-PORV-DMD IE-T1

+

. NOTL-S80U1

  • NRAC-1HR .*

OEP-DGN-UA-DG03

  • PPS-S0V-00-1455C
  • QS-SBO 2801 OEP-DGN-FR-DG01 .
  • 2602 REC-XHE-FO-DGEN SBO-PORV-DMD +

IE-T1 NOTL-SBOU1 NRAC-1HR 2603 2604 701 10 1.28E-09 0.98587 /DGN-FTO OEP-DGN-FR-0603 ..* OEP-DGN-MA-DG01 PPS-SOV-00-1456 QS-SBO 2605 REC-XHE-FO-DGEN .. SBO-PORV-DMD +

. NOTL-SBOU1 . NRAC-1HR .

2606 700 10 1.28E-09 0.98591 /DGN-FTO OEP-DGN-FR-DG01 IE-T1 OEP-DGN-MA-DG02

  • PPS-SOV-00-1458 . QS-880
  • 2607 2808 REC-XHE-FO-DGEN . SBO-PORV-DMD +

2609 2810 699 10 1.28E-09 0.98595 /DGN-FTO OEP-DGN-FR-DG01 .* IE-T1 OEP-DGN-MA-DG02 .

  • NOTL-SBOU1 PPS-S0V-00-1466C *
  • NRAC-1HR QS-SBO .*

2611 REC-XHE-FO-DGEN

  • SBO-PORV-DMD .

+

NOTL-SBOU1 . NRAC-1HR .*

2812 898 10 1.28E-09 0.98599 /DGN-FTO OEP-D8N-FR-DG02 IE-T1 OEP-DGN-MA-DG01

  • PPS-SOV-00-1455C . QS-SBO 2613 2614 REC-XHE-FO-DGEN .
  • 880-PORV-DUD .

+

NOTL-SBOU1 . NRAC-1HR .*

2615 697 10 1.28E-09 0.98603 /DGN-FTO OEP-DGN-FR-DG02 . IE-T1 OEP-DGN-MA-D001 . PPS-SOV-00-1456 . QS-SBO 2618 +

2617 REC-XHE-FO-DGEN

  • SBO-PORV-DMD 2618 2753 5 1.27E-09 0.98606 AFW-MDP-FS
  • AFW-TDP-MA-FW2
  • AFW-XHE-FO-UNIT2
  • BETA-AFW
  • 2819 IE-T7 +

2820 104 3 1.28E-09 0.98610 IE-S1

  • LPI-MDP-FR-A21HR
  • LP I -MDP-MA-S 118 +

103 3 1.26E-09 0. 98614 IE-S1

  • LPI-UDP-FR-B21HR .* LPI -UDP-MA-SI 1A + .

267 12 1.26E-09 0.98618 /DGN-FTO IE-T1 NOTL-SBOU1

  • NOTQ

2623 2624 2625 2826 266 12 1.26E-09 0.98822 NRAC-7HR OEP-DGN-FS-DG02

/DGN-FTO NRAC-7HR

  • NSLOCA
  • /QS-SBO
  • IE-T1 NSLOCA 0

REC-XHE-FO-DGHWB NOTL-S80U1 0

. NOTQ OEP-DGN-FS-DG01 REC-XHE-FO-SCOOL +

OEP-DGN-FS-DG01

  • 2627 OEP-DGN-FS-DG03 * /QS-SBO REC-XHE-FO-DGHWB REC-XHE-FO-SCOOL +

2828 1937 10 1.25E-09 0.98626 IE-T1

  • NOTQ
  • NRAC-258M
  • 2829 OEP-DGN-FR-6HD82
  • OEP-DGN-FS-D801
  • OEP-DGN-FS-D803
  • QS-SBO
  • 2830 RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

NOTQ .* NRAC-258M .

2631 2832 1936 10 1.25E-09 0.98629 IE-T1 OEP-DGN-FR-8HD81

  • NOTL-S80U1U2

,.* OEP-DGN-FS-D802 OEP-DGN-FS-D803 QS-SBO "

2833 2634 1935 10 1.25E-09 0.98633 RCP-LOCA-467-150 IE-T1

  • REC-XHE-FO-DGHWS NOTL-S80U1U2

+.

NOTQ . NRAC-258M .

2635 OEP-DGN-FR-6HD83

  • OEP-DGN-FS-D801
  • OEP-DGN-FS-D802
  • QS-SBO
  • 2836 RCP-LOCA-487-150 * . REC-XHE-FO-DGHWS AFW-TDP-MA-U2FW2

+

. BETA-208

  • IE-T1 .

2837 2638 546 10 1.25E-09 0.98637 AFW-TDP-FR-2P6HR NOTDG-CCF . NOTQ . NRAC-6HR-AVG

  • OEP-DGN-FS *

+

2639 /QS-SBO

  • REC-XHE-FO-DGEN . ,. IE-T1 .*

547 1.25E-09 0.98641 AFW-TDP-FR-8HRU2 AFW-TDP-MA-FW2 . BETA-2DG .

2840 10

  • 2641 NOTDG-CCF NOTQ NRAC-6HR-AVG OEP-DGN-FS 2842 2643 269 11 1.24E-09 0.98644

/QS-SBO

/DGN-FTO REC-XHE-FO-DGEN IE-T1

+

. MCW-CCF-VF-SBO

  • NOTL-S80U1 .

2644 NOTQ

  • NRAC-7HR
  • NSLOCA
  • OEP-DGN-FS-DG01
  • 2645 OEP-DGN-MA-D803 . QS-SBO *. REC-XHE-FO-DGHWB +

MCW-CCF-VF-SBO NOTL-S80U1

  • 2646 270 11 1.24E-09 0.98648 /DGN-FTO NOTQ
  • IE-T1 NRAC-7HR . NSLOCA
  • OEP-DGN-FS-DG02
  • 2647 2648 OEP-DGN-MA-D801 ..*

QS-SBO . REC-XHE-FO-DGHWB +

2649 271 11 1.24E-09 0.98652 /DGN-FTO IE-T1

  • MCW-CCF-VF-SBO
  • NOTL-SBOU1 *

/:lj I

O')

c.c 2650 2651 NOTQ OEP-DGN-MA-DG01 *

  • NRAC-7HR QS-SBO ..
  • NSLOCA REC-XHE-FO-DGHWB MCW-CCF-VF-SBO

+

  • OEP-DGN-FS-D803 NOTL-SBOU1 ..

2852 2863 268 11 1.24E-09 0.98858 /DGN-FTO NOTQ

  • IE-T1 NRAC-7HR . NSLOCA
  • OEP-DGN-FS-DG01 2654 OEP-DGN-MA-0802
  • QS-SBO *. REC-XHE-FO-DGHWB +

2655 135 4 1.24E-09 0.98659 ..

CPC-MDP-FR-CCA24 *

/DGN-FTO CPC-MDP-FS-CC2B IE-T1 . HPI-XHE-FO-UN2S3 NOTL-S80U1 .

IE-S3 NOTQ ..

+

2858 974 12 1.23E-09 0.98683 . OEP-CRB-FT-15H3 OEP-DGN-MA-0802 2657 2658 NRAC-258M

/QS-SBO . 10 RCP-LOCA-467-150 . REC-XHE-FO-DGHWS .* REC-XHE-FO-SCOOL +

2659 878 11 1.23E-09 0.98667 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO NOTL-SBOU1 .*

NOTQ NRAC-216M

  • OEP-CRB-FT-15H3
  • OEP-DGN-MA-D802 2660 *. RCP-LOCA-750-90M" REC-XHE-FO-DGHWS .

2661 2862 136 5 1.22E-09 0.98671 QS-SBO CPC-MDP-FR-SWA24 . CPC-MDP-FS-SW10B . CPC-XHE-FO-REALN

+

HP1-XHE-FO-UN2S3

  • 2663 IE-S3 + ,.

2664 586 10 1.21E-09 0.98674 AFW-TDP-FS-FW2

  • IE-T1 NOTQ
  • NRAC-HALFHR
  • 2885 OEP-DGN-FS-0801
  • OEP-DGN-FS-D802
  • OEP-DGN-FS-D803 * /QS-SBO
  • 2686 REC-XHE-FO-DGEN .. UNIT2-LOW-POWER IE-T1

+

.* NOTL-SB0U1 NOTQ .*

OEP-DGN-FR-6HD83 .

/DGN-FTO

  • 2667.

2688 975 10 1.20E-09 0.98678 NRAC-258M . OEP-CRB-FT-15H3 QS-SBO REC-XHE-FO-SCOOL 2689 RCP-LOCA-467-150 +

2670 2671 978 10 1.20E-09 0.98682 /DGN-FTO NRAC-258M .* IE-T1 OEP-CRB-FT-15J3 NOTL-SBOU1 OEP-DGN-FR-6HD81 NOTQ QS-SBO .*

2672 2873 549 10 1.20E-09 0.98685 RCP-LOCA-467-150 AFW-TDP-FR-2P6HR ..* REC-XHE-FO-SCOOL AFW-TDP-FA-6HRU2

+

.. /DGN-FTO .

. IE-T1 ..

NOTQ NRAC-6HR-AVG OEP-DGN-FR-6HDG1 OEP-DGN-FR-6HDG3 2874 2875 /QS-SBO REC-XHE-FO-DGEN +

.. . IE-T1 .

2676 548 10 1.20E-09 0.98689 AFW-TDP-FR-2P6HR NOTQ AFW-TDP-FR-6HRU2 NRAC-6HR-AVG

/DGN-FTO OEP-DGN-FR-6HDG1

  • OEP-DGN-FR-6HDG2 .

2677 2678 /QS-SBO . REC-XHE-FO-DGEN +

2679 1938 10 1.19E-09 0.98692

/0 IE-T1 .* N0TL-S80U1U2

  • OEP-DGN-FR-6HDG1 .
  • NOTQ
  • OEP-DGN-FR-6HDG2
  • NRAC-258M OEP-DGN-FR-6HDG3 .*

2680 2681 /QS-SBO

/DGN-FTO

  • RCP-LOCA-467-150 +
  • IE-T1
  • NOTL-SBOU1
  • NOTQ .

2682 1362 12 1.19E-09 0.98696 OEP-DGN-FR-6HDG2

  • OEP-DGN-FS-0601
  • 2683 2884 NRAC-150U

/QS-SBO

  • 10
  • RCP-LOCA-1440-90 REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

12 1.19E-09 0.98700 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 2685 1355 OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-0603
  • 2686 NRAC-150M
  • 10
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

2687 12 1.19E-09 0.98703

/QS-SBO

/DGN-FTO RCP-LOCA-1440-90 IE-T1

  • NOTL-SBOU1 . NOTQ .

2'688 1354 OEP-DGN-FR-6HDG3

  • OEP-DGN-FS-DG01

/0

  • 2689 2690 NRAC-150M

/QS-SBO .*

RCP-LOCA-1440-90 .

  • REC-XHE-FO-DGHWS .
  • REC-XHE-FO-SCOOL +

NOTL-SB0U1 NOTQ .

2691 1353 12 1.19E-09 0.98707 /DGN-FTO NRAC-150M *

/0 IE-T1

  • OEP-DGN-FR-6HDG1 . OEP-DGN-FS-0602 2692 RCP-LOCA-1440-90 REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

2693 /QS-SBO *

  • AFW-XHE-FO-UNIT2 IE-T5B +

2694 2719 4 4

1.19E-09 1.19E-09 0.98710 0.98714 AFW-ACT-FA-PMP3A AFW-ACT-FA-PMP3B

. AFW-TDP-FS-FW2 AFW-TDP-FS-FW2

  • AFW-XHE-FO-UNIT2 .

IE-T5A +

2695 2696 2694 315 11 1.18E-09 0.98718 IE-T1 . NOTL-SB0U1U2

  • NOTQ
  • NRAC-7HR NSLOCA
  • 10
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03
  • 2697
  • REC-XHE-FO-DGHWB +

2698 OEP-DGN-MA-0802 * /QS-SBO NOTQ

  • NRAC-7HR
  • 2699 2700 316 11 1.18E-09 0.98721 IE-T1 NSLOCA .* /0 NOTL-SB0U1U2 .

OEP-DGN-FS-DG02

  • OEP-DGN-FS-DG03
  • OEP-DGN-MA-DG01 * /QS-SBO
  • REC-XHE-FO-DGHWB +

2701 IE-T1 . NOTL-SB0U1U2

  • NOTQ
  • NRAC-7HR
  • 2702 2703 2704 317 11 1.18E-09 0.98725 NSLOCA OEP-DGN-MA-DG03 ... 10

/QS-SBO

. OEP-DGN-FS-DG01 REC-XHE-FO-DGHWB MCW-CCF-VF-SBO

+

  • OEP-DGN-FS-DG02 NOTL-SB0U1 2705 977 12 1.18E-09 0.98728 /DGN-FTO NOTQ . IE-T1 NRAC-258M
  • /0 . OEP-CRB-FT-15H3
  • 2706 RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

b::J 2707 OEP-DGN-FR-6HDG2 * /QS-SBO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ *

-.;J 0

2708 2709 272 11 1.18E-09 0.98732 /DGN-FTO NRAC-7HR

  • NSLOCA
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-0803
  • 2710 QS-SBO
  • REC-XHE-FO-DGTMB
  • REC-XHE-FO-SCOOL +

273 11 1.18E-09 0.98736 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 2711 OEP-DGN-FR-6HDG3
  • OEP-DGN-JAA-DGO 1
  • 2712 NRAC-7HR
  • NSLOCA
  • 2713 QS-SBO
  • REC-XHE-FO-DGTMB
  • REC-XHE-FO-SCOOL +

/DGN-FTO IE-T1

  • NOTL-SB0U1
  • NOTQ
  • 2714 2715 275 10 1.18E-09 0.98739 NRAC-7HR .
  • NSLOCA
  • OEP-CRB-FT-15H3
  • OEP-DGN-FR-6HDG3
  • 2716 QS-SBO
  • REC-XHE-FO-SCOOL +

NOTQ .

2717 274 10 1.18E-09 0.98743 /DGN-FTO NRAC-7HR

  • IE-T1
  • NSLOCA NOTL-SB0U1 OEP-CRB-FT-15J3 .* OEP-DGN-FR-6HDG1
  • 2718 +

2719 QS-SBO

  • REC-XHE-FO-SCOOL 7 1.18E-09 0.98746 AFW-MDP-FS-FW3A
  • AFW-TDP-FS-FW2
  • AFW-XHE-FO-UNIT2
  • IE-T1
  • 2720 2604 2721 10 1.17E-09 0.98750 NRAC-HALFHR IE-T1
  • OEP-D8N-FC-DG3U2
  • NOTL-SB0U1U2 PPS-MOV-FC-1536 NOTQ

+

  • NRAC-7HR .

2722 318 OEP-DGN-FR-6HDG1

  • OEP-DGN-FR-6HDG2
  • 2723 NSLOCA
  • 10
  • 2724 OEP-DGN-FR-6HDG3 * /QS-SBO +

276 12 1.17E-09 0.98753 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-SB0U1
  • 2725 NSLOCA
  • 0
  • 2726 NOTQ
  • NRAC-7HR
  • OEP-DGN-FS * /QS-SBO
  • REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL +

2727 NOTQ

  • NRAC-216M
  • 2728 1878 11 1.17E-09 0.98757 IE-T1
  • NOTL-SB0U1U2 *

/0

  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-0803
  • OEP-DGN-MA-0002
  • 2729 REC-XHE-FO-DGHWS +

2730 /QS-SBO

  • RCP-LOCA-750-90M
  • 1877 11 1.17E-09 0.98760 IE-T1
  • NOTL-SB0U1U2
  • NOTQ
  • NRAC-216M
  • 2731 OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG02
  • 2732 /0
  • OEP-CRB-FT-16J3
  • 2733 /QS-SBO * *RcP-LOCA-750-90U
  • REC-XHE*FO-DGHWS +

2734 1876 11 1.17E-09 0.98764 IE-T1

  • NOTL-S80U1U2
  • NOTQ NRAC-216M
  • 2735 /0

/QS-SBO

  • OEP-CRB-FT-26H3
  • RCP-LOCA-750-90M
  • OEP-DGN-FS-DG03
  • REC-XHE-FO-DGHWS +

OEP-DGN-MA-DG01

  • 2736
  • 2737 2738 1874 11 1.17E-09 0.98788

/0 IE-T1 NOTL-S80U1U2 OEP-CRB-FT-16H3

  • NOTQ OEP-DGN-FS-DG02
  • NRAC-216M OEP-DGN-MA-DG03 .*

2739 /QS-SBO

  • RCP-LOCA-750-90M
  • REC-XHE-FO-D8HWS +

2740 2741 1873 11 1.17E-09 0.98771

/0 IE-T1

  • NOTQ OEP-DGN-FS-DG02 *
  • NRAC-218M OEP-DGN-MA-DG01 .*

2742 2743 1875 11 1.17E-09 o. 98775

/QS-SBO IE-T1 .* RCP-LOCA-750-90M NOTL-S80U1U2 .* REC-XHE-FO-DGHWS NOTQ .

+

NRAC-216M

  • 2744 /0
  • OEP-CRB-FT-25H3
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG03
  • 2745 /QS-SBO
  • RCP-LOCA-750-90M

+

NRAC-1HR .

2746 2747 706 10 1.15E-09 0.98778 /DGN-FTO OEP-DGN-FR-DG01 ..

  • IE-T1 OEP-DGN-FR-DG02
  • PPS-SOV-00-1456 * /QS-SBO
  • 2748 REC-XHE-FO-DGEN

. SBO-PORV-DMD +

. NOTL-SBOU1 . NRAC-1HR ..

2749 2750 705 10 1.15E-09 0.98782 /DGN-FTO OEP-DGN-FR-DG01 .. IE-T1 OEP-DGN-FR-DG02 . PPS-SOV-00-14560 . /QS-SBO 2751 REC-XHE-FO-DGEN . 880-PORV-DMD +

. . OEP-DGN-FS-0001 .*

2752 2753 722 10 1.15E-09 0.98785 IE-T1 OEP-DGN-FS-DG02 .

NOTL-SBOU1U2 OEP-DGN-FS-DG03 . NRAC-1HR PPS-SOV-00-1456

  • QS-SBO 2754 REC-XHE-FO-DGEN . SBO-PORV-DMD +

.* NRAC-1HR . OEP-DGN-FS-DG01 .

2755 2756 721 10 1.15E-09 0.98789 IE-T1 OEP-DGN-FS-DG02 . NOTL-SBOU1U2 OEP-DGN-FS-DG03 PPS-SOV-00-14550

  • QS-SBO
  • 2757 REC-XHE-FO-DGEN SBO-PORV-DMD +

2758 2721 4 1.13E-09 *o.98792 AFW-CKV-OO-CV157

  • . AFW-MDP-FS-FW3A
  • AFW-XHE-FO-UNIT2 .* IE-T58 +

IE-T5A +

2759 2695 4 1.13E-09 0.98795 AFW-CKV-00-CV172

  • AFW-MDP-FS-FW3B AFW-MDP-FS-FW3A . AFW-XHE-FO-UNIT2 AFW-XHE-FO-UNIT2
  • IE-T5A +

tr:J 2760 2696 4 1.13E-09 0.98799 AFW-CKV-OO-CV167 AFW-CKV-OO-CV172 AFW-MDP-FS-FW3B . AFW-XHE-FO-UNIT2

  • IE-T58 +

I

-::i 2761 2762 2720 496 4

10 1.13E-09 1.13E-09 0.98802 0.98806 AFW-CKV-OO-CV172

  • . AFW-XHE-FO-U1SB0 . * /DGN-FTO
  • IE-T1
  • 2763 NOTQ
  • NRAC-HALFHR OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03
  • 2764 2765 495 10 1.13E-09 0.98809

/QS-SBO AFW-CKV-00-CV172 .

  • REC-XHE-FO-DGEN AFW-XHE-FO-U1SBO

+

  • /DGN-FTO

.. IE-T1

  • 2766 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS-DG01 OEP-DGN-FS-DG02
  • 2787 /QS-SBO
  • REC-XHE-FO-DGEN +

NOTQ NRAC-6HR-AVG

  • 2768 2769 614 9 1.13E-09 0.98813 OEP-DGN-FS-D801 .

AFW-TDP-FR-2P6HR

  • IE-T1 OEP-DGN-FS-D802
  • OEP-DGN-FS-D803 QS-SBO
  • 2770 REC-XHE-FO-DGEN +

NOTDG-CCF . NOTL - SBOU 1U2 2771 2772 1940 11 1.12E-09 0.98818 BETA-2DG NOTQ .* IE-T1 NRAC-258M

  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS REC-XHE-FO-DGHWS +

2773 2774 1939 11 1.12E-09 0.98819 QS-SBO BETA-200 .* RCP-LOCA-467-160

  • IE-T1 .* NOTDG-CCF *
  • NOTL-S80U1U2
  • 2775 NOTQ
  • NRAC-258M OEP-DGN-FR-8HDG3
  • OEP-DGN-FS
  • 2776 2777 1941 11 1.12E-09 0.98823 QS-SBO BETA-200 RCP-LOCA-467-150
  • IE-T1 .. REC-XHE-FO-DGHWS NOTDG-CCF

+

  • NOTL-SB0U1U2
  • OEP-DGN-FS 2778 2779 NOTQ QS-SBO .
  • NRAC-258M RCP-LOCA-467-150 . OEP-DGN-FR-6HDG2 REC-XHE-FO-DGHWS +

2780 1654 12 1.11E-09 0.98826 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ .*

OEP-DGN-FS-DG03 2781 NRAC-246M

  • 10
  • OEP-DGN-FS-DG01
  • 2782 /QS-880 ..
  • RCP-LOCA-561-150
  • REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL NOTQ

+

2783 2784 1653 12 1.11E-09 0. 98829 /DGN-FTO NRAC-246M IE-T1 10 ..* NOTL-SBOU1 OEP-DGN-FS-DG01

  • OEP-DGN-FS-DG02
  • REC-XHE-FO-SCOOL 2785 2786 588 10 1.10E-09 0.98833

/QS-SBO AFW-TDP-MA-FW2 .* RCP-LOCA-561-150 IE-T1 .. REC-XHE-FO-DGHWS NOTQ

  • NRAC-HALFHR

+

OEP-DGN-FS-DG02 OEP-DGN-FS-DG03 /QS-SBO

  • 2787 2788 OEP-DGN-FS-DG01 REC-XHE-FO-DGEN ..* UNIT2-LOW-POWER .

+

IE-T1 NRAC-HALFHR 2789 2790 2605 6 1.10E-09 0.98836 AFW-CCF-LK-STMBD OEP-DGN-FS-DG01 . AFW-XHE-FO-UNIT2 PPS-MOV-FC-1535 +

6 1.10E-09 0.98839 AFW-CCF-LK-STMBD

  • AFW-XHE-FO-UNIT2
  • IE-T1
  • NRAC-HALFHR
  • 2791 2606 +

2792 OEP-DGN-FS-DG03

  • PPS-MOV-FC-1536 10 1.10E-09 0.98843 AFW-TDP-,FR-2P8HR
  • AFW-TDP-FR-6HRU2 * /DGN-FTO
  • IE-T1
  • 2793 551 OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG02
  • 2794 NOTQ
  • NRAC-6HR-AVG
  • 2795 /QS-SBO
  • REC-XHE-FO-DGEN +

554 10 1.10E-09 0.98848 AFW-TDP-FR-2P8HR

  • AFW-TDP-FR-6HRU2 * /DGN-FTO
  • IE-T1
  • 2796 OEP-DGN-MA-DG01
  • 2797 NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FS-DG02
  • 2798 /QS-SBO
  • REC-XHE-FO-DGEN +

10 1.10E-09 0.98849 AFW-TDP-FR-2P6HR

  • AFW-TDP-FR-6HRU2 * /DGN-FTO
  • IE-T1
  • 2799 553 OEP-DGN-MA-D801
  • 2800 NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FS-DG03
  • 28.01 /QS-SBO
  • REC-XHE-FO-DGEN +

2802 552 10 1.10E-09 0.98853 AFW-TDP-FR-2P6HR

  • AFW-TDP-FR-6HRU2 * /DGN-FTO
  • IE-T1
  • 2803. NOTQ
  • NRAC-8HR-AVG
  • OEP-DGN-FS-D801
  • OEP-DGN-MA-D803
  • 2804 /QS-880
  • REC-XHE-FO-DGEN +

2805 47 3 1.08E-09 0.98856 IE-A

  • LPf-MDP-FR-B24HR
  • LPR-MOV-FT-1860A +

2806 46 3 1.08E-09 0.98859 IE-A

  • LPI-MDP-FR-A24HR
  • LPI -MDP-FS-8118 +

2807 45 3 1.08E-09 0.98863 IE-A

  • LPI-MDP-FR-A24HR
  • LPR-MOV-FT-1860B +

2808 44 3 1.08E-09 0.98866 IE-A

  • LPI-UDP-FR-B24HR
  • LPI -MDP-FS-811A +

2743 4 1.08E-09 0.98869 ACP-BAC-ST-4KV1H

  • HPI-MOV-FT-1867D
  • IE-T7
  • RCS-XHE-FO-DPT7D +

2809

  • RCS-XHE-FO-DPT7D +

2810 2742 4 1.08E-09 0.98872 ACP-BAC-ST-1H1

  • HPI-MOV-FT-1867D" IE-T7 AFW-ACT-FA-PMP3A
  • AFW-TDP-MA-FW2
  • AFW-XHE-FO-UNIT2
  • IE-T5B +

2811 2722 4 1.08E-09 0.98876 +

2812 2697 4 1.08E-09 0.98879 AFW-ACT-FA-PMP3B

  • AFW-TDP-MA-FW2
  • AFW-XHE-FO-UNIT2
  • IE-T5A 2813 978 12 1.08E-09 0.98882 /DGN-FTO
  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • 2814 NRAC-258M .* /0
  • OEP-CRB-FT-15J3
  • OEP-DGN-MA-DG01 RCP-LOCA-467-150 REC-XHE-FO-DGTMS .* REC-XHE-FO-SCOOL +

l:I:l 2815 /QS-SBO . N0TL-SB0U1 NOTQ

. OEP-CRB-FT-15H3 . OEP-DGN-MA-DG03 I

2816 979 12 1.06E-09 0.98885 /DGN-FTO IE-T1 *

....::i NRAC-258M

  • 10
  • Nl 2817 RCP-LOCA-467-150
  • REC-XHE-FO-DGTMS
  • REC-XHE-FO-SCOOL +

2818 11 1.07E-09 0.98889

/QS-SBO

/DGN-FTO .*

IE-T1

  • MCW-CCF-VF-SBO . NOTL-SB0U1
  • 2819 880 NRAC-216M
  • OEP-CRB-FT-15H3
  • OEP-DGN-MA-DG03
  • 2820 NOTQ
  • 2821 0.98892 QS-880

/DGN-FTO *

  • RCP-LOCA-750-90M" REC-XHE-FO-DGTMS +

IE-T1

  • MCW-CCF-VF-SBO . NOTL-SBOU1 .

2822 879 11 1.07E-09

  • OEP-CRB-FT-15J3
  • OEP-DGN-MA-DG01
  • 2823 NOTQ
  • NRAC-216M 2824 QS-880
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGTMS +

2825 321 12 1.06E-09 0.98895 BETA-2DG

  • IE-T1 *. NOTDG*CCF
  • NOTL-S80U1U2 .*

NOTQ

  • NRAC-7HR NSLOCA
  • 10 2826 2827 2828 320 12 1.06E-09 0.98898 OEP-DGN-FS BETA-2DG OEP-DGN-MA-DG01 * /QS-SBO IE-T1 . NOTDG-CCF .* REC-XHE-FO-DGHWB NOTL-SB0U1U2 .*

+

2829 NOTQ

  • NRAC-7HR
  • NSLOCA
  • 10 OEP-DGN-MA-DG03 * /QS-SBO
  • REC-XHE-FO-DGHWB

.. +

2830 OEP-DGN-FS 8ETA-2DG .* IE-T1 . NOTDG-CCF NOTL-SB0U1U2

  • 2831 2832 319 12 1.06E-09 0.98902 NOTQ . NRAC-7HR
  • NSLOCA /0
  • 2833 OEP-DGN-FS
  • OEP-DGN-MA-DG02 * /QS-SBO
  • REC-XHE-FO-DGHWB +

2834 1201 12 1.06E-09 0.98905 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • NRAC-7HR * /0
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-D802 2835 2836 /QS-SBO . RCP-LOCA-183-210 REC-XHE-FO-DGHWS" REC-XHE-FO-SCOOL +
  • NOTL-SBOU1
  • NOTQ .*

2837 2838 1203 12 1.0BE-09 0.98908 /DGN-FTO NRAC-7HR IE-T1

/0 . OEP-DGN-FR-6HDG1

  • OEP-DGN-FS-DG03 2839 /QS-880
  • RCP-LOCA-183-210
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

2840 1200 12 1.0SE-09 0.98911 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ NRAC-7HR
  • 10
  • OEP-DGN-FR-6HDG2 OEP-DGN-FS-DG01
  • 2841
  • RCP-LOCA-183-210
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

2842 /QS-SBO 2843 1202 12 1.0BE-09 0.98915 /DGN-FTO *. IE-T1

  • NOTL-SB0U1
  • NOTQ *.

NRAC-7HR 10

  • OEP-DGN-FR-6HD83 .* OEP-DGN-FS-D801 2844

/QS-SBO * .

RCP-LOCA-183-210

  • REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

28 IE-T1 N0TL-SB0U1

  • NOTQ
  • 2 1051 12 1.0SE-09 0.98918 /DGN-FTO
  • 2847 2848 NRAC-7HR

/QS-SBO

  • 10
  • RCP-LOCA-183-150 *
  • OEP-DGN-FR-6HDG1 REC-XHE-FO-DGHWS .*

OEP-DGN-FS-DG03 REC-XHE-FO-SCOOL

+

2849 2850 1050 12 1. OSE-09 0.98921 /DGN-FTO NRAC-7HR

  • IE-T1

. 10 .

  • NOTL-SBOU1 OEP-DGN-FR-6HDG3 NOTQ OEP-DGN-FS-DG01 .

2851 /QS-SBO

  • RCP-LOCA-183-150 *. REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL .

+

2852 1049 12 1.0SE-09 0.98924 /DGN-FTO

  • IE-T1 NOTL-S80U1
  • NOTQ

'2853 NRAC-7HR

  • 10
  • OEP-DGN-FR-iiHDG1
  • OEP-DGN-FS-DG02
  • REC-XHE-FO-SCOOL
  • 2854 2855 1048 12 1.0SE-09 0.98927

/QS-SBO

/DGN-FTO ..

  • RCP-LOCA-183-150 IE-T1 REC-XHE-FO-DGHWS NOTL-SBOU1 .*

NOTQ

+

2856 NRAC-7HR 10

  • OEP-DGN-FR-6HD02
  • OEP-D0N-FS-D001
  • 2857 2858 501 10 1. 05E-09 0.98931

/QS-SBO AFW-CKV-OO-CV172 *

  • RCP-LOCA-183-150
  • AFW-XHE-F0-U1SB0
  • REC-XHE-FO-DGHWS BETA-2DG REC-XHE-FO-SCOOL IE-T1 .

+

2859 NOTDG-CCF

  • NOTQ
  • NRAC-HALFHR
  • OEP-D0N-FS
  • 2860 2.861 2630 6 1.05E-09 0.98934

/QS-SBO

  • REC-XHE-FO-DGEN +

AFW-MDP-FS-FW3A

  • AFW-MDP-FS-FW3B . AFW-TDP-FS-FW2
  • AFW-XHE-FO-UNIT2
  • 2862 HPI-XHE-FO-FDBLD
  • IE-T2 +

2883 1358 12 1.05E-09 0.98937 /DGN-FTO

  • IE-T1 MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • 2864 NOTQ
  • NRAC-150M
  • 10
  • OEP-DGN-FS-DG01
  • 2865 OEP-DGN-FS-DG03 * /QS-SBO
  • RCP-LOCA-1440-90
  • REC-XHE-FO-DGHWS +

2866 1357 12 1.05E-09 0.98940 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • 2867 NOTQ
  • NRAC-150M
  • 10
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02 * /QS-SBO RCP-LOCA-1440-90
  • REC-XHE-FO-DGHWS +

2868 2889 1855 12 1.03E-09 0.98943 BETA-2DG . IE-T1

  • NOTDG-CCF
  • NOTL-SB0U1
  • 2870 NOTQ
  • NRAC-246M
  • 10
  • OEP-DGN-FS
  • 2871 /QS-SBO
  • RCP-LOCA-561-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

/:l1 I 2872 502 9 1.03E-09 0.98946 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1 *

'.;;J 2873 NOTQ

  • NRAC-HALFHR
  • OEP-CRB-FT-15H3
  • OEP-DGN-FR-8HDG3
  • c..:, /QS-SBO +

2874 2875 503 9 1.03E-09 0.98949 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 2878 NOTQ
  • NRAC-HALFHR
  • OEP-CRB-FT-15J3
  • OEP-DGN-FR-8HD01
  • 2877 /QS-SBO +

2878 117 5 1.03E-09 0.98953 BETA-STR

  • CPC-STR-PG-6HR
  • CPC-XHE-FO-REALN
  • HPI-XHE-FO-UN2S2
  • 2879 IE-S2 +

2880 118 3 1.00E-09 0.98958 CON-VFC-RP-COREM

  • IE-S2
  • LPR-CCF-PG-SUMP +

2881 75 3 1.00E-09 0.98959 CON-VFC-RP-COREM

  • IE-S1
  • LPR-CCF-PG-SUMP +

2882 983 12 9.91E-10 0.98982 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 2883 NRAC-248M
  • 0
  • OEP-DGN-FR-8HDG3
  • OEP-DGN-FS-DG01
  • 2884 IQS-SBO
  • RCP-LOCA-487-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

/DGN-FTO IE-T1

  • NOTL-SB0U1
  • NOTQ
  • 2885 2888 980 12 9.91E-10 0.98985 NRAC-248M .

0

  • OEP-DGN-FR-8HDG1
  • OEP-DGN-FS-DG02
  • 2887 /QS-SBO
  • RCP-LOCA-487-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

2888 981 12 9.91E-10 0.98968 /DGN-FTO

  • IE-T1
  • NOTQ
  • 2889 NRAC-24SM
  • 0
  • OEP-DGN-FR-8HDG2
  • OEP-DGN-FS-DG01
  • 2890 /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

2891 982 12 9.91E-10 0.98971 /DGN-FTO

  • NOTQ
  • 2892 NRAC-24SM
  • 0
  • OEP-D8N-FR-6HD01
  • OEP-DGN-FS-D003
  • 2893 /QS-SBO
  • RCP-LOCA-487-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +
  • NOTD0-CCF 2894 2895 1358 12 9.73E-10 0.98974 BETA-2DG NOTL-SBOU1 .* IE-T1 NOTQ .
  • MCW-CCF-VF-SBO NRAC-150M
  • 10
  • REC-XHE-FO-DGHWS 2898 2897 2723 4 9.72E-10 0.98977 OEP-DGN-FS * /QS-SBO AFW-MDP-FR-3A8HR" AFW-TDP-FR-2P8HR .
  • RCP-LOCA-1440-90 AFW-XHE-FO-UNIT2
  • IE-T5B

+

+

2898 2898 4 9.72E-10 0.98980 AFW-MDP-FR-3BSHR" AFW-TDP-FR-2PSHR

  • AFW-XHE-FO-UNIT2
  • IE-T5A +

2899 2900 82 1881 3

11 9.SOE-10 9.58E-10 0.98982 0.98985 CPC-MDP-FR-SWA3H

  • IE-T1
  • CPC-MDP-MA-SW108
  • NOTL-SB0U1U2
  • IE-81 NOTQ

+

. NRAC-201M .

2901 0

  • OEP-D0N-FR-6HDG2
  • OEP-DGN-FS-0801
  • OEP-DGN-FS-D003
  • 2902 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

2903 2904 1880 11 9,58E-10 0.98988 0

IE-T1

. NOTL-S80U1U2 OEP-DGN-FR-6HDG1 .. NOTQ OEP-DGN-FS-DG02 NRAC-201M OEP-DGN-FS-DG03 2905 IQS-SBO

  • RCP- LOCA' - 750- 90M
  • REC-XHE-FO-DGHWS +

2906 1879 11 9.58E-10 0.98991 IE-T1

  • NOTQ
  • NRAC-201M
  • 2907 0
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-0801
  • OEP-DGN-FS-DG02.
  • 2908 /QS-SBO
  • RCP-LOCA~750-90M
  • REC-XHE-FO-DGHWS +

2909 2910 984 11 9.58E-10 o .. 98994 IDGN-FTO NRAC-.258M *

  • IE-T1
  • NOTL-S80U1 OEP-CRB-FT-15H3
  • OEP-DGN-FR-6HDG2
  • NOTQ
  • QS-SBO .*

2911 RCP-LOCA-467-150 *.

AFW-MDP-FS-FW3A REC-XHE-FO-DGHWS" REC-XHE-FO-SCOOL AFW-MDP-FS-FW38

  • AFW-TDP-MA-FW2

+ . AFW-XHE-FO-UNIT2

  • HPl~XHE-FO-FDBLD .

2912 2631 6 9.54E-10 0.98997 2913 IE-T2 +

504 9 9.3SE-10 0.99000 AFW-TDP-MA-FW2

  • AFW-XHE-FO-U1SBO" /DGN-FTO
  • IE-T1
  • 2914
  • OEP-CRB-FT-15J3
  • OEP-D8N-FR-6HDG1
  • 2915 NOTQ
  • NRAC-HALFHR 2916 /QS-SBO +

. IE-T1 .

2917 505 9 9.36E-10 0.99003 AFW-TDP-MA-FW2 NOTQ . AFW-XHE-FO-U1SBO * /DGN-FTO NRAC-HALFHR . OEP-CRB-FT-15H3

  • OEP-DGN-FR-6HDG3 .

2918 2919 /QS-SBO +

. NOTL-SBOU1 .

2920 1204 12 9.33E-10 0.99005 /DGN-FiO . IE-T1 .* MCW-CCF-VF-SBO

  • OEP-DGN-FS-DG01 .

2921 NOTQ . NRAC-7HR .. 10 RCP-LOCA-183-210 ..

REC-XHE-FO-DGHWS +

2922 0.99008 OEP-DGN-FS-DG03

/DGN-FTO . /QS-SBO IE-T1 . MCW-CCF-VF-SBO . NOTL-S80U1 2923 2924 1205 12 9.33E-10 NOTQ . NRAC-7HR 10 OEP-DGN-FS-DG01

  • RCP-LOCA-183-210 REC-XHE-FO-DGHWS +

2925 OEP-DGN-FS-D002 * /QS-SBO IE-T1 MCW-CCF-VF-SBO .* NOTL-SBOU1

  • 2926 2927 1053 12 9.33E-10 0.99011 /DGN-FTO NOTQ .
  • NRAC-7HR

. /QS-SBO *. 10 .* OEP-DGN-FS-DG01

  • RCP-LOCA-183-150 REC-XHE-FO-DGHWS +

tr:l 2928 OEP-DGN-FS-D002 IE-T1 . MCW-CCF-VF-SBO . NOTL-S80U1 I

-.:i 2929 1052 12 9.33E-10 0.99014 /DGN-FTO NOTQ .*

NRAC-7HR *. /0 .* OEP-DGN-FS-D801

,i,. 2930 . /QS-SBO

. RCP-LOCA-183-150 REC-XHE-FO-DGHWS +

2931 2932 506 10 9.27E-10 0.99017 OEP-DGN-FS-DG03 AFW-TDP-FS-FW2 . AFW-XHE-FO-U1SBO ,,,. /DGN-FTO

  • IE-T1
  • 2933 NOTQ
  • NRAC-HALFHR OEP-CRB-FT-15H3
  • OEP-D8N-FR-6HDG2 *
  • REC-XHE-FO-DGEN +

2934 2935 1507 12 9.22E-10 0.99020

/QS-SBO

/DGN-FTO . IE-T1

  • NOTL-SBOU1
  • NOTQ .*

2936 NRAC-7HR " 10 *. OEP-DGN-FR-6HDG1

  • OEP-DGN-FS-DG03 REC-XHE-FO-SCOOL +.

2937 /QS-SBO *. RCP-LOCA-183-90 . REC-XHE-FO-DGHWS". NOTQ .

2938 1506 12 9.22E-10 0.99022 /DGN-FTO IE-T1

/0 NOTL-S80U1 OEP-DGN-FR-6HDG3 . OEP-DGN-FS-0801 2939 NRAC-7HR

  • 2940 2941 1505 12 9.22E-10 0.99025

/QS-SBO

/DGN-FTO RCP-LOCA-183-90 IE-T1 . NOTL-SBOU1 .

REC-XHE-FO-DGHWS

  • REC-XHE-FO-SCOOL NOTQ

+

  • OEP-DGN-FR-6HD81
  • OEP-DGN-FS-D802
  • 2942 2943 NRAC-7HR

/QS-SBO .. 10 RCP-LOCA-183-90

  • REC-XHE-FO-DGHWS" REC-XHE-FO-SCOOL +

NOTQ 2944 2945 1504 12 9.22E-10 0.99028 /DGN-FTO NRAC-7HR . 10 IE-T1 .* NOTL-SBOU1 OEP-DGN-FR-6HD82

  • OEP-DGN-FS-D801 *

/QS-SBO

  • RCP-LOCA-183-90
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

2946 2947 2948 324 10 9.21E-10 0.99031 IE-T1 NSLOCA NOTL-S80U1U2 OEP-DGN-FR-6HDG3 NOTQ OEP-DGN-FS-D801 .* NRAC-7HR OEP-DGN-FS-DG02 2949 QS-SBO

  • REC-XHE-FO-DGHWB +

323 10 9.21E-10 0.99034 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-7HR
  • 2950
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03
  • 2951 NSLOCA
  • OEP-DGN-FR-6HDG2 2952 QS-SBO
  • REC-XHE-FO-DGHWB +

322 10 9.21E-10 0.99036 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-7HR *.

2953 OEP-DGN-FS-DG03 2954 NSLOCA

  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-0802
  • 2955 QS-SBO
  • REC-XHE-FO-DGHWB +

985 11 9.20E-10 0.99039 /DGN-FTO

  • IE-T1 "' MCW-CCF.-VF-SBO
  • NOTL-S80U1
  • 2956
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-DG02
  • 2957 NOTQ
  • NRAC-258M
  • REC-XHE-FO-DGHWS +

29 QS-SBO ~CP-LOCA-487-160

SEQUENCE SBO-BATT TOP EVENT SBO-BATT CONTAINS 27 EVENTS IN 160 CUT SETS THE FREQUENCY OF TOP EVENT SBO-BATT IS 7.57E-06 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT SBO-BATT N 1000 MEAN 1.05E-05 STD DEV 2.44E-05 LOWER 5% 2.44E-07 LOWER 25% 1.25E-06 MEDIAN 3.33E-06 UPPER 25% 9.56E-06 UPPER 5% 4.0SE-05 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION= PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

= TEF(EVALUATED WITH EV(J) = 1) - TEF

SEQUENCE 880-BATT RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5'l' UPPER 5'l' NRAC-7HP. 160 5.00E-02 ( 11. 0) 7.57E-06 ( 2.0) 2.44E-07 4.08E-05 NOTQ 160 9.73E-01 ( 2.0) 7.57E-06 ( 2.0)

NOH-SB'JU1 160 9.93E-01 ( 1. 0) 7.57E-06 ( 2.0)

NOTW2 54 8. 15E-01 ( 3.0) 7. 15E-06 ( 4.0)

REC-XHE-FO-DGHWB 120 6.00E-01 ( 4.0) 6.SOE-06 ( 5.0) 1.94E-07 3.53E-05 OEP-DGN-FS-DG01 48 2.20E-02 ( 16.5) 3.40E-06 ( 6.0) 8.45E-08 1.74E-05 OEP-DGN-FR-6HDG1 45 1.20E-02 ( 20.0) 2.0SE-06 ( 7.0) 1.30E-08 1.47E-05 OEP-DGN-FS-DG02 27 2.20E-02 ( 16.5) 1.76E-06 ( 8.5) 4.28E-08 8.77E-06 OEP-DGN-FS-DG03 27 2.20E-02 ( 16.5) 1.7SE-06 ( 8.5) 4.28E-08 8.77E-06 OEP-DGN-FR-6HDG3 26 1.20E-02 ( 20.0) 1.16E-06 ( 10.0) 7.0BE-09 8.64E-0B OEP-DGN-FR-6HDG2 24 1.20E-02 ( 20.0) 9.61E-07 ( 11.0) 5.84E-09 5.88E-06 NOTDG-CCF 8 5.20E-01 ( 5.0) 8.39E-07 ( 13.0)

OEP-DGN-FS 8 2.20E-02 ( 16.5) 8.39E-07 ( 13.0) 2.82E-08 3.37E-06 BETA-2D0 8 3.80E-02 ( 13.0) 8.39E-07 ( 13.0) 2.82E-08 3.37E-06 OEP-DGN-MA-DG01 27 6.00E-03 ( 23.0) 7.64E-07 ( 15.0) 4.46E-09 3.05E-06

~ OEP-CRB-FT-15H3 32 3.00E-03 ( 25.5) 5.11E-07 ( 16.0) 3.44E-09 2.27E-06 I

-.:i NSLOCA 106 2.70E-01 ( 7.5) 4.27E-07 ( 17. 0) O.OOE+OO 2.65E-06 O')

OEP-DGN-MA-0802 15 6.00E-03 ( 23.0) 4.12E-07 ( 18.0) 2.47E-09 1.72E-06 OEP-DGN-MA-DG03 15 6.00E-03 ( 23.0) 3.84E-07 ( 19.0) 2.32E-09 1.55E-06 REC-XHE-FO-SCOOL 58 1.25E-01 ( 9.0) 2.91E-07 ( 20.0) O.OOE+OO 1.88E-0B OEP-CRB-FT-15J3 18 3. OOE-03 ( 25.5) 2.89E-07 ( 21.0) 2.00E-09 1.3SE-06 REC-XHE-FO-DGTUB 18 5.00E-01 ( 6.0) 2.78E-07 ( 22.0) 6.63E-10 9.35E-07 MCW-CCF-VF-SBO 48 6.00E-02 ( 10.0) 1.36E-07 ( 23.0) O.OOE+OO 7.18E-07 QS-SBO 180 2.70E-01 ( 7.5) 9.20E-10 ( 24.0) -5.96E-10 3.85E-09 0 61 4.90E-02 ( 12.0) -6.76E-09 ( 26.0) -2.82E-08 O.OOE+OO DGN-FTO 1.52 3.39E-02 ( 14. 0) -2.36E-07 ( 26.0) -1.33E-06 -3.05E-09 RISK REDUCTION BY INITIATING EVENT (WI TH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-T1 160 7.70E-02 ( 1. 0) 7.57E-06 ( 1.0) 2.44E-07 4.08E-06

SEQUENCE SBO-BATT RISK INCREASE BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

OEP-CRB-FT-15H3 32 3.00E-03 ( 25.5) 1.70E-04 ( 1. 0) 9.67E-06 5.30E-04 OEP-DGN-FR-6HDG1 45 1.20E-02 ( 20.0) 1.69E-04 ( 2.0) 9.67E-06 5.22E-04 OEP-DGN-FS-DG01 48 2.20E-02 ( 16.5) 1.51E-04 ( 3.0) 7.62E-06 4.50E-04 NRAC-7HR 160 5.00E-02 ( 11. 0) 1.44E-04 ( 4.0) 5.90E-06 7.99E-04 OEP-DGN-MA-DG01 27 6.00E-03 ( 23.0) 1.27E-04 ( 5.0) 5.78E-06 4.06E-04 OEP-CRB-FT-15J3 18 3.00E-03 ( 25.5) 9.60E-05 ( 6.0) .5.96E-06 3.17E-04 OEP-D8N-FR-6HD83 26 1.20E-02 ( 20.0) 9.57E-05 ( 7.0) 6.21E-06 3.13E-04 OEP-DGN-FR-6HDG2 24 1.20E-02 ( 20.0) 7.91E-05 ( 8.0) 3.93E-06 2.43E-04 OEP-DGN-FS-DG03 27 2.20E-02 ( 16.5) 7.84E-05 ( 9.5) 3.91E-06 2.40E-04 OEP-DGN-FS-DG02 27 2.20E-02 ( 16.5) 7.84E-05 ( 9.5) 3.91E-06 2.40E-04 OEP-DGN-MA-DG02 15 6.00E-03 ( 23.0) 8.83E-05 ( 11 . 0) 3.14E-06 2.20E-04 OEP-DGN-MA-DG03 15 6.00E-03 ( 23.0) 6.37E-05 ( 12.0) 2.82E-06 2.12E-04 OEP-DGN-FS 8 2.20E-02 ( 16.5) 3.73E-05 ( 13.0) 1.78E-08 1.22E-04 BETA-2DG 8 3.80E-02 ( 13.0) 2.12E-05 ( 14.0) 1.06E-06 7. 19E-05 REC-XHE-FO-DGHWB 120 6.00E-01 ( 4.0) 4.40E-06 ( 15.0) 6.15E-08 2.20E-05 l:'lj MCW-CCF-VF-SBO 48 6.00E-02 ( 10.0) 2.14E-06 ( 16.0) O.OOE+OO 1.30E-05 I REC-XHE-FO-SCOOL

-CJ 58 1.25E-01 ( 9.0) 2.04E-06 ( 17.0) O.OOE+OO 1.20E-05

-CJ NOTW2 54 8.15E-01 ( 3.0) 1.62E-06 ( 18.0)

NSLOCA 106 2.70E-01 ( 7.5) 1. 16E-06 ( 19.0) O.OOE+OQ 6.02E-06 NOTDG-CCF 8 5.20E-01 ( 5.0) 7.75E-07 ( 20.0)

REC-XHE-FO-DGTMB 18 5.00E-01 ( 6.0) 2.78E-07 ( 21. 0) 5.61E-10 1.14E-06 NOTQ 160 9.73E-01 ( 2.0) 2.10E-07 ( 22.0)

NOTL-SBOU1 160 9.93E-01 ( 1. 0) 5.34E-08 ( 23.0)

QS-SBO 160 2.70E-01 ( 7.5) 2.49E-09 ( 24.0) -2.40E-09 1.52E-08 0 61 4.90E-02 ( 12.0) -1.31E-07 ( 25.0) -6.12E-07 O.OOE+OO DGN-FTO 152 3.39E-02 ( 14. 0) -6.74E-06 ( 26.0) -3.76E-05 -1.74E-07

SEQUENCE SBO-BATT UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK) Y.05/TE.05" Y.95/TE.95" OEP-DGN-FR-6HDG2 24 1.20E-02 ( 20.0) 21.8 ( 2.0) 1.79 0.70 OEP-DGN-FR-6HDG1 45 1.20E-02 ( 20.0) 21. 8 ( 2.0) 1.79 0.70 OEP-DGN-FR-6HDG3 26 1.20E-02 ( 20.0) 21.8 ( 2.0) 1.79 0.70 OEP-DGN-FS-DG03 27 2.20E-02 ( 16.5) 21.6 ( 5.5) 1.45 0.73 OEP-DGN-FS 8 2.20E-02 ( 16.5) 21. 6 ( 5.5) 1.45 0.73 OEP-DGN-FS-DG02 27 2.20E-02 ( 16.5) 21.6 ( 5.5) 1. 45 0.73 OEP-DGN-FS-DG01 48 2.20E-02 ( 16.5) . 21. 6 ( 5.5) 1.45 0.73 REC-XHE-FO-DGTMB 18 5.00E-01 ( 6.0) 13.3 ( 8.0) 0.99 1. 00 REC-XHE-FO-DGHWB 120 6.00E-01 ( 4.0) 13.0 ( 9.0) 1.27 1. 00 NRAC-7HR 160 5.00E-02 ( 11. 0) 11.6 ( 10.0) 1.25 1. 05 OEP-DGN-MA-DG03 15 6.00E-03 ( 23.0) 3.3 ( 12.0) 1. 10 1. 02 OEP-DGN-MA-DG01 27 6.00E-03 ( 23.0) 3.3 ( 12.0) 1. 10 1. 02 OEP-DGN-MA-DG02 15 6.00E-03 ( 23.0) 3.3 ( 12.0) 1.10 1. 02 OEP-CRB-FT-15J3 18 3.00E-03 ( 25.5) 1. 9 ( 14.5) 1.07 1.00 OEP-CRB-FT-15H3 32 3.00E-03 ( 25.5) 1. 9 ( 14.5) 1. 07 1. 00 BETA-2DG 8 3.SOE-02 ( 13.0) 1.1 ( 16.0) 0.96 0.98 61 4.90E-02 ( 12.0) 0.9 ( 17.0) 1.00 1. 00 trj 0 0.99 I REC-XHE-FO-SCOOL 58 1.25E-01 ( 9.0) 0.6 ( 18.0) 1. 01

'1 QS-SBO 160 2.70E-01 ( 7.5) 0.4 ( 19.0) 00 NSLOCA 106 2.70E-01 ( 7.5) o.o ( 20.0)

MCW-CCF-VF-SBO 48 6.00E-02 ( 10.0) o.o ( 21.5)

DGN-FTO 152 3.39E-02 ( 14.0) 0.0 ( 21.5)

NOTW2 54 8.15E-01 ( 3.0)

NOTQ 160 9.73E-01 ( 2.0)

NOTL-SBOU1 160 9.93E-01 ( 1. 0)

NOTDG-CCF 8 5.20E-01 ( 5.0)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y.05/TE.05* Y.95/TE.95*

I E-T1 160 7. 70E-02 ( 1. 0) 27.4 ( 1.0) 1. 76 0.99

  • Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT

'. IS NOT HELD CONSTANT I)

SEQUENCE SBO-BATT CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT SBO-BATT WITH TOP EVENT FREQUENCY 7.57E-06 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 1 10 6.21E-07 0.08197 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 3 NOTW2
  • NRAC-7HR
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS~DG03
  • 4 /QS-SBO
  • REC*XHE-FO-DGHWB +

5 2 10 6.21E-07 0.16394 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 6 NOTW2
  • NRAC-7HR
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • 7 /QS-SBO
  • REC-XHE-FO-DGHWB +

8 9

3 10 5.77E-07 0.24015 BETA-2DG NOTQ .* IE-T1 NOTW2 .* NOTDG-CCF NRAC-7HR .

  • NOTL-SB0U1 OEP-DGN-FS 10 11 6 10 3.39E-07 0.28487

/QS-SBO

/DGN-FTO REC-XHE-FO-DGHWB IE-T1

+

  • NOTL-SB0U1 . NOTQ
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG01
  • 12 13 NOTW2

/QS-SBO ..

  • NRAC-7HR REC-XHE-FO-DGHWB +

14 5 10 3.39E-07 0.32968 /DGN-FTO IE-T1

  • NOTL-SB0U1
  • NOTQ
  • 15 NOTW2
  • NRAC-7HR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG03
  • trj I

16 17 7 10 3.39E-07 0.37429

/QS-SBO

/DGN-FTO REC-XHE-FO*DGHWB IE-T1

+

  • NOTL-SBOU1
  • OEP-DGN-FR-6HDG3 *

. NOTQ OEP-DGN-FS-0801

-'l c:o 18 NOTW2 NRAC-7HR 19 /QS-SBO

  • REC*XHE-FO*DGHWB +

20 4 10 3.39E-07 0.41900 /DGN-FTO

  • IE-T1 NOTL-SBOU1
  • NOTQ 21 22 NOTW2

/QS-SBO .

  • NRAC-7HR REC-XHE-FO-DGHWB +
  • OEP-DGN-FR-8HDG1
  • NOTL-SBOU1 OEP-DGN-FS-0802 NOTQ 23 24 8 9 3.0SE-07 0.45965 /DGN-FTO NOTW2 .
  • IE-T1 NRAC-7HR OEP-DGN-FR-8HDG1
  • OEP-DGN-FR-8HDG3
  • 25 28 10 1_0 2.30E-07 0.48997

/QS-SBO

/DGN-FTO .

+

IE-T1 . NOTL-S80U1 OEP-DGN-FS-0801

  • NOTQ OEP-DGN-FS-0803 27 NOTW2
  • NRAC-7HR *
  • 28 29 9 10 2.30E-07 0.52029 QS-SBO

/DGN-FTO .* REC-XHE-FO-DGHWB IE*T1

+

  • NOTL-SBOU1 . NOTQ .

30 NOTW2

  • NRAC-7HR
  • OEP-DGN-FS-0801
  • OEP-DGN-FS-DG02
  • 31 QS-880
  • REC-XHE-FO-DGHWB +

32 11 10 2.14E-07 0.54847 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-SBOU1
  • 33 NOTQ
  • NOTW2
  • NRAC-7HR
  • OEP-DGN-FS
  • 34 QS-SBO
  • REC-XHE-FO-DGHWB ..

+ .

/DGN-FTO IE-T1 NOTL-SBOU1 NOTQ

  • 35 38 12 10 1.85E-07 0.57286 NOTW2 .* NRAC-7HR OEP-DGN-FR-8HDG1
  • OEP-DGN-FR-8HDG2
  • 37 /QS-SBO
  • REC-XHE-FO-DGHWB +
  • NOTL-SBOU1
  • NOTQ
  • 38 39 15 10 1.69E-07 0.59522 /DGN-FTO NOTW2 .* IE-T1 NRAC-7HR
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG03
  • 40 /QS-SBO
  • REC-XHE-FO-DGHWB +

41 14 10 1.69E-07 0.61757 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 42 NOTW2
  • NRAC-7HR
  • OEP-DGN-FS-0801
  • OEP-DGN-MA-0802
  • 43 /QS-SBO
  • REC-XHE-FO*DGHWB +

IE-T1 NOTL-SBOU1 NOTQ *

,U 13 10 1.69E-07 0.63993 /DGN-FTO

  • NRAC-7HR . OEP-DGN-FS-DG02
  • OEP-DGN-MA-D801
  • 45 48 NOTW2 IQS-SBO .

REC-XHE-FO-DGHWB +

47 48.

16 10 1.S9E-07 0.66229 /DGN-FTO NOTW2 IE-T1 NRAC-7HR .. NOTL-S80U1 OEP-DGN-FS-DG03 NOTQ OEP-DGN-MA-DG01

  • 49 /QS-SBO
  • REC-XHE-FO-DGHWB +

20 10 1.25E-07 0.67882 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • 50 OEP-DGN-FR-6HD03
  • OEP-DGN-FS-D001
  • 51 NOTW2
  • NRAC-7HR
  • 52 QS-SBO
  • REC-XHE-FO-DGHWB +

IE-T1

  • NOTL-S80U1
  • NOTQ
  • 53 54 18 10 1.25E-07 0.69536 /DGN-FTO NOTW2 .

NRAC-7HR

  • OEP-DGN-FR-SHD01
  • OEP-DGN-FS-DG03
  • 55 QS-SBO
  • REC-XHE-FO-DGHWB +

/DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • 56 17 10 1.25E-07 0.71190 . NRAC-7HR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02
  • 57 NOTW2 . .

58 59 19 10 1.25E-07 0.72844 QS-SBO

/DGN-FTO NOTW2 ..

REC-XHE-FO-DGHWB IE-T1 NRAC-7HR

+

  • NOTL-SBOU1 OEP-DGN-FR-6HDG2 .. NOTQ OEP-DGN-FS-DG01
  • 60 61 62 21 9 1.14E-07 0.74347 QS-SBO

/DGN-FTO *

. REC-XHE-FO-DGHWB IE-T1

+

. NOTL-SBOU1 . NOTQ OEP-D0N-FR-6HDG3

  • 63 NOTW2
  • NRAC-7HR
  • OEP-DGN-FR-6HD01
  • 64 0.75566 QS-SBO

/DGN-FTO ..

+

IE-T1 . NOTL-SBOU1 . NOTQ .

65 23 10 9.24E-08 OEP-DGN-FR-6HDG2

  • OEP-DGN-MA-0001
  • 66 NOTW2 NRAC-7HR
  • 67 /QS-SBO
  • REC-XHE-FO-DGHWB +

NOTL-SBOU1

  • NOTQ .

68 22 10 9.24E-08 0.76786 /DGN-FTO

  • IE-T1 NRAC-7HR .

OEP-DGN-FR-8HD01

  • OEP-DGN-MA-0002
  • 89 NOTW2

/QS-SBO .

  • REC-XHE-FO-DGHWB +

70 71 26 10 8.47E-08 0. 77904 /DGN-FTO . IE-T1 *. NOTL-SBOU1 .

  • NOTQ
  • t:rj NRAC-7HR OEP-CRB-FT-15H3 OEP-DGN-FS-DG03
  • 00 I 72 73 NOTW2

/QS-SBO .

REC-XHE-FO-DGHWB + .

0 25 10 8.47E-08 0.79021 /D6N-FTO

  • IE-T1
  • NOTL-SBOU1 NOTQ .*

74 OEP-CRB-FT-15J3

  • OEP-DGN-FS-0801 75 NOTW2
  • NRAC-7HR
  • 76 /QS-SBO
  • REC-XHE-FO-DGHWB +

N0TL-SB0U1 . NOTQ .

77 78 24 10 8.47E-08 0.80139 /DGN-FTO NOTW2 IE-T1 NRAC-7HR

  • . OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG02
  • 79 /QS-SBO
  • REC-XHE-FO-DGHWB +

28 10 7.70E-08 0.81155 /DGN-FTO

  • IE-T1 NOTL-S80U1
  • NOTQ
  • 80 OEP-DGN-FR-6HD81
  • OEP-DGN-MA-D803
  • 81 NOTW2
  • NRAC-7HR 82 /QS-SBO
  • REC-XHE-FO-DGTMB +

NOTL-SBOU1

  • NOTQ
  • 83 84 29 9 7.70E-08 0. 82172 /DGN-FTO NOTW2 IE-T1 NRAC-7HR .

OEP-CRB-FT-15H3

  • OEP-DGN-FR-6HDG3
  • 85 /QS-SBO +

IE-T1 *. NOTL-SBOU1 . NOTQ .*

86 87 27 10 7.70E-08 0.83188 /DGN-FTO NOTW2 .

NRAC-7HR OEP-DGN-FR-8HDG3

  • OEP-DGN-MA-DG01 88 89 30 9 7.70E-08 0.84204

/QS-SBO

/DGN-FTO .*

  • REC-XHE-FO-DGTMB +

IE-T1 NRAC-7HR .* N0TL-S80U1 OEP-CRB- FT- 15J3 NOTQ OEP-DGN-FR-6HDG1 .*

NOTW2 90 91 92 31 10 6.83E-08 0.85106

/QS-SBO

/DGN-FTO

+

. IE-T1

  • NOTL-SBOU1 . NOTQ .

93 94 NOTW2 QS-SBO .. NRAC-7HR REC-XHE-FO-DGHWB IE-T1 .*

+

  • OEP-DGN-FR-6HD01
  • NOTL-SB0U1 "

OEP-DGN-FR-6HDG2

  • NOTQ .

95 32 10 6.26E-08 0.85933 /DGN-FTO NOTW2

  • NRAC-7HR OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG02
  • 98 97 98 35 10 S.26E-08 0.86760 QS-SBO

/DGN-FTO

. REC-XHE-FO-DGHWB IE-T1 ..

+

NOTL-S80U1 OEP-DGN-FS-0803 NOTO OEP-DGN-MA-0801 99 NOTW2 * . NRAC-7HR REC-XHE-FO-DGHWB +

100 QS-SBO .

6.26E-08 0.87587 /DGN-FTO IE-T1

  • NOTL-SBOU1
  • NOTQ 101 33 10 OEP-DGN-FS-0802
  • NOTW2
  • NRAC-7HR
  • OEP-DON--01

103 104 34 10 6.26E-0B 0.88414 QS-SBO

/DGN-FTO

. REC-XHE-FO-DGHWB IE-T1 ..

+

NOTL-SBOU1 .. NOTQ 105 NOTW2 .* NRAC-7HR REC-XHE-FO-DGHWB +

OEP-DGN-FS-DG01 OEP-DGN-MA-DG03 108 107 36 10 4.62E-08 0.89023 QS-SBO

/DGN-FTO . IE-T1

  • NOTQ 108 NOTW2
  • NRAC-7HR
  • OEP-CRB-FT-15H3
  • OEP-DGN-FR-8HDG2
  • 109 110 38 10 3.42E-08 0.89474

/QS-SBO

/DGN-FTO *

  • REC-XHE-FO-DGHWB IE-T1

+

.. NOTL-SBOU1 .

  • NOTQ .*

i11 NOTW2

  • NRAC-7HR OEP-DGN-FR-6HDG2 OEP-DGN-MA-DG01 112 113 37 10 3.42E-08 0.89925 QS-SBO

/DGN-FTO REC-XHE-FO-DGHWB IE-T1

+

  • NOTL-SBOU1 . NOTQ
  • 114 NOTW2
  • NRAC-7HR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-DG02
  • 115 118 41 10 3.13E-08 0.90339 QS-SBO

/DGN-FTO .* REC-XHE-FO-DGHWB IE-T1

+

  • NOTL-SBOU1
  • NOTQ .

117 NOTW2

  • NRAC-7HR
  • OEP-CRB-FT-15J3
  • OEP-DGN-FS-DG01
  • 118 QS-SBO
  • REC-XHE-FO-DGHWB +

IE-T1 NOTL-SBOU1 NOTQ

  • 119 40 10 3.13E-08 0.90752 /DGN-FTO * .

OEP-DGN-FS-DG03 120 121 NOTW2 QS-SBO .

  • NRAC-7HR REC-XHE-FO-DGHWB +

OEP-CRB-FT-15H3 *

  • NOTL-S80U1 NOTQ 122 123 39 10 3.13E-08 0.91188 /DGN-FTO NOTW2 IE-T1 NRAC-7HR
  • OEP-CRB-FT-15H3 .* OEP-DGN-FS-DG02 124 QS-SBO
  • REC-XHE-FO-DGHWB +

125 45 9 2.85E-08 0.91541 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 126 NOTW2
  • NRAC-7HR
  • OEP-CRB-FT-15J3
  • OEP-DGN-FR-6HDG1
  • 127 QS-SBO +

IE-T1 NOTL-S80U1

  • NOTQ ,.*

t:rj I

(XI 128 129 44 9 2.85E-08 0.91917 /DGN-FTO NOTW2

  • NRAC-7HR .* OEP-CRB-FT-15H3
  • OEP-DGN-FR-8HD03 I-' 130 QS-SBO +

131 43 10 2.85E-08 0.92293 /DGN-FTO

  • IE-T1 *. NOTL-S80U1
  • NOTQ
  • 132 NOTW2
  • NRAC-7HR OEP-D0N-FR-8HDG3
  • OEP-DGN-MA DG01 0

REC-XHE-FO-DGTMB .

133 134 42 10 2.85E-08 0.92669 QS-SBO

/DGN-FTO .* IE-T1

+

NOTL-SBOU1

  • NOTQ
  • 135 NOTW2
  • NRAC-7HR
  • OEP-DGN-FR-8HD01
  • OEP-DGN-MA-D003
  • 136 QS-SBO
  • REC-XHE-FO-DGTMB +

137 47 12 2.45E-08 0.92992 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • NRAC-7HR NSLOCA " OEP-DGN-FS-DG01
  • 138 139 OEP-DGN-FS-DG03 .* /QS-SBO 10 REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL +

140 141 46 12 2.45E-08 0.93315 /DGN-FTO NRAC-7HR IE-T1 NSLOCA *

  • NOTL-SBOU1

/0 NOTQ OEP-DGN-FS-DG01 .*

142 OEP-DGN-FS-DG02 * /QS-SBO

  • REC-XHE-FO-DGHWB REC-XHE-FO-SCOOL +

143 48 10 2.31E-08 0.93619 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 144 NOTW2
  • NRAC-7HR
  • OEP-CRB-FT-15H3
  • OEP-DGN-MA-DG02
  • 145 /QS-SBO
  • REC-XHE-FO-DGHWB +

0.98920 BETA-2DG IE-T1

  • NOTDG-CCF
  • NOTL-SBOU1
  • 146 147 49 12 2.27E-08 NOTQ
  • NRAC-7HR . NSLOCA * /0
  • 148 OEP-DGN-FS * /QS-SBO
  • REC-XHE-FO-DGHWB
  • REC-XHE-FO-SCOOL +

IE-T1 NOTL-SBOU1

  • NOTQ
  • 149 150 52 9 1.92E-08 0.94174 /DGN-FTO NOTW2
  • NRAC-7HR .* OEP-CRB-FT-15H3
  • OEP-CRB-FT-15J3
  • 151 /QS-SBO +

152 51 10 1.92E-08. 0.94428 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 153 NOTW2
  • NRAC-7HR
  • OEP-CRB-FT-15J3
  • OEP-DGN-MA-DG01
  • 154 /QS-SBO
  • REC-XHE-FO-DGTMB +

NOTL-S80U1

  • NOTQ
  • 155 50 10 1.92E-08 0.94882 /DGN-FTO NOTW2 *
  • IE-T1 NRAC-7HR .
  • OEP-CRB-FT-15H3
  • OEP-DGN-MA-DG03
  • 156 157 /QS-SBO . REC-XHE-FO-DGTMB +

158 53 10 1.71E-08 0.94907 /DGN-FTO

  • NOTQ
  • SEQUENCE SBO*SLOCA TOP EVENT SBO-SLOCA CONTAINS 38 EVENTS IN 1064 CUT SETS THE FREQUENCY OF TOP EVENT SBO-SLOCA IS 3.84E-06 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT SBO-SLOCA N 1000 MEAN 5.31E-06 STD DEV 1.67E-05 LOWER 5% O.OOE+OO LOWER 25% O.OOE+OO MEDIAN 1.01E-06 UPPER 25% 4.13E-06 UPPER 5% 1.99E-05 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

J::rj I PD = PARTIAL DERIVATIVE CX)

~

TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS

  • MEASURES:
1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION= PD x EV(J)

= TEF

  • TEF(EVALUATED WITH EV(J) = 0)
2. FOR BASE EVENTS ONLY:

RISK INCREASE =PD* RISK REDUCTION

= PD x (1

  • EV(J))

= TEF(EVALUATED WITH EV(J) = 1)

  • TEF

SEQUENCE 880** SLOCA RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5" UPPER 5" NOTQ 1064 9.73E-01 ( 2.0) 3.84E-06 ( 1. 5)

NOTL-SBOU1 1064 9.93E-0:1 ( 1. 0) 3.84E-06 ( 1. 5)

REC-XHE-FO-DGHWS 777 8.00E-01 ( 3.0) 3.42E-06 ( 3.0) O.OOE+OO 1.72E-05 RCP-LOCA-750-90M 152 5.30E-01 ( 5.0) 3. 10E-06 ( 4.0) O.OOE+OO 1.73E-05 NRAC-216M 107 1.38E-01 ( 10.0) 2.99E-06 ( 5.0) O.OOE+OO 1.65E-05 REC-XHE-FO-SCOOL 539 1.25E-01 ( 12.0) 2.60E-06 ( 6.0) O.OOE+OO 1.43E-05 OEP-DGN-FS-DG01 294 2.20E-02 ( 22.5) 1.76E-06 ( 7.0) O.OOE+OO 1.05E-05 MCW-CCF-VF-SBO 525 6.00E-02 ( 16.0) 1.25E-06 ( 8.0) O.OOE+OO 7.40E-06 OEP-DGN-FR-6HD01 294 1.20E-02 ( 29.0) 9.97E-07 ( 9.0) O.OOE+OO 5.62E-06 OEP-DGN-FS-DG03 168 2.20E-02 ( 22.5) 9.14E-07 ( 10.5) O.OOE+OO 5.29E-06 OEP-DGN-FS-D002 168 2.20E-02 ( 22.5) 9.14E-07 ( 10.5) O.OOE+OO 5.29E-06 RCP-LOCA-467-150 152 1.27E-01 ( 11 . 0) 5.82E-07 ( 12.0) O.OOE+OO 3.71E-06 NRAC-258M 107 1.08E-01 ( 15.0) 5.60E-07 ( 13.0) O.OOE+OO 3.50E-06 OEP-DGN-FR-6HD03 168 1.20E-02 ( 29.0) 5.33E-07 ( 14.0) O.OOE+OO 3.06E-06 OEP-DGN-FR-6HDG2 161 1.20E-02 ( 29.0) 4.98E-07 ( 15.0) O.OOE+OO 2.79E-06 OEP-DGN-FS 42 2.20E-02 ( 22.5) 4.35E-07 ( 17.0) O.OOE+OO 2.17E-06

~ 4.35E-07 17.0) O.OOE+OO 2 .17E-06 I BETA-2DG 42 3.80E-02 ( 19.0) (

00 NOTD8-CCF 42 5.20E-01 ( 6.0) 4.35E-07 ( 17.0) c:..:, 19.0) O.OOE+OO 1.60E-06 OEP-DGN-UA-D001 196 6.00E-03 ( 32.0) 4.00E-07 (

OEP-CRB-FT-15H3 238 3.00E-03 ( 36.5) 2.46E-07 ( 20.0) O.OOE+OO 9.65E-07 OEP-DGN-MA-D802 112 6.00E-03 ( 32.0) 2.14E-07 ( 21. 0) O.OOE+OO 8.91E-07 OEP-DGN-UA-D803 112 6.00E-03 ( 32.0) 2.03E-07 ( 22.0) O.OOE+OO 8.51E-07 REC-XHE-FO-DGTMS 133 7.00E-01 ( 4.0) 1.50E-07 ( 23.0) O.OOE+OO 5.67E-07 OEP-CRB-FT-15J3 133 3.00E-03 ( 36.5) 1.31E-07 ( 24.0) O.OOE+OO 5.64E-07 NRAC-201M 45 1.50E-01 ( 9.0) 1.18E-07 ( 25.0) O.OOE+OO 5.45E-07 NRAC-7HR 456 5.00E-02 ( 17.0) 9.77E-08 ( 26.0) O.OOE+OO O.OOE+OO NRAC-246M 152 1.15E-01 ( 14.0) 4.05E-08 ( 27.0) O.OOE+OO 8.93E-08 NRAC-150M 152 2. 10E-01 ( 8.0) 3. 82E-.08 ( 28.5) O.OOE+OO O.OOE+OO RCP-LOCA-1440-90 152 4.30E-03 ( 34.0) 3.82E-08 ( 28.5) O.OOE+OO O.OOE+OO RCP-LOCA-183-210 152 1.61E-02 ( 25.5) 3.41E-08 ( 30.5) O.OOE+OO O.OOE+OO RCP-LOCA-183-150 152 1.61E-02 ( 25.5) 3.41E-08 ( 30.5) O.OOE+OO O.OOE+OO RCP-LOCA-183-90 152 1.40E-02 ( 27.0) 2.96E-08 ( 32.0) O.OOE+OO O.OOE+OO RCP-LOCA-561-150 152 4.00E-03 ( 35.0) 1.95E-08 ( 33.0) O.OOE+OO O.OOE+OO 0 693 4.90E-02 ( 18.0) 8.BBE-09 ( 34,0) -3.0BE-09 5.29E-08 NRAC-234M 46 1.23E-01 ( 13.0) 7.33E-10 ( 35.0) O.OOE+OO O.OOE+OO QS-SBO 1064 2.70E-01 ( 7.0) -4. 15E-09 ( 36.0) -3.22E-08 O.OOE+OO DGN-FTO 1022 3.39E-02 ( 20.0) -1.20E-07 ( 37.0) -8.62E-07 O.OOE+OO RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5" UPPER 5%

IE-T1 1084 7.70E-02 ( 1. 0) 3.84E-06 ( 1. 0) O.OOE+OO 1.99E-05

SEQUENCE SBO-SLOCA RISK INCREASE BV BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5~ UPPER 5~

OEP-D0N-FR-6HDG1 294 1.20E-02 ( 29.0) 8.21E-05 ( 1. 0) O.OOE+OO 3.17E-04 OEP-CRB-FT-15H3 238 3.00E-03 ( 36.5) 8. 18E-05 ( 2.0) O.OOE+OO 3.22E-04 OEP-DGN-FS-D001 294 2.20E-02 ( 22.5) 7.84E-05 ( 3.0) O.OOE+OO 3.06E-04 OEP-DGN-MA-D001 196 6.00E-03 ( 32.0) 6.63E-05 ( 4.0) O.OOE+OO 2.69E-04 OEP-DGN-FR-6HDG3 168 1.20E-02 ( 29.0) 4.39E-05 ( 5.0) O.OOE+OO 1.68E-04 OEP-CRB-FT-15J3 133 3.00E-03 ( 36.5) 4.36E-05 ( 6.0) O.OOE+OO 1.71E-04 OEP-DGN-FR-6HDG2 161 1.20E-02 ( 29.0) 4.10E-05 ( 7-. 0) O.OOE+OO 1. 63E-04 OEP-D0N-FS-D003 168 2.20E-02 ( 22.5) 4.06E-05 ( 8.5) O.OOE+OO 1.60E-04 OEP-DGN-FS-DG02 168 2.20E-02 ( 22.5) 4.06E-05 ( 8.5) O.OOE+OO 1.60E-04 OEP-DGN-MA-D002 112 6.00E-03 ( 32.0) 3.54E-05 ( 10.0) O.OOE+OO 1.42E-04 OEP-D0N-MA-DG03 112 8.00E-03 ( 32.0) 3.37E-05 ( 11.0) O.OOE+OO 1. 36E-04 MCW-CCF-VF-SBO 525 6.00E-02 ( 16.0) 1.95E-05 ( 12.0) O.OOE+OO 1.14E-04 OEP-DGN-FS 42 2.20E-02 ( 22.5) 1.93E-05 ( 13.0) O.OOE+OO 7.98E-05 NRAC-218M 107 1.38E-01 ( 10.0) 1.88E-05 ( 14.0) O.OOE+OO 1.12E-04 REC-XHE-FO-SCOOL 539 1.25E-01 ( 12.0) 1.82E-05 ( 15.0) O.OOE+OO 1.01E-04 trj BETA-2DG 42 3.BOE-02 ( 19.0) 1.10E-05 ( 16.0) O.OOE+OO 4.51E-05 I

00 RCP-LOCA-1440-90 152 4.30E-03 ( 34.0) 8.85E-08 ( 17.0) 1.90E-07 4.90E-05

~ RCP-LOCA-581-150 152 4.00E-03 ( 35.0) 4.88E-08 ( 18.0) 1.28E-07 2.63E-05 NRAC-258M 107 .1. 08E-01 ( 15.0) 4.S2E-06 ( 19.0) O.OOE+OO 2.81E-05 RCP-LOCA-467-150 152 1.27E-01 ( 11. 0) 4.00E-06 ( 20.0) O.OOE+OO 2. 15E-05 RCP-LOCA-750-90M 152 5.30E-01 ( 5.0) 2.75E-06 ( 21.0) O.OOE+OO 1.66E-05 RCP-LOCA-183-90 152 1.40E-02 ( 27. 0) 2.09E-06 ( 22.0) 4.73E-08 1.11E-05 RCP-LOCA-183-210 152 1.51E-02 ( 25.5) 2.0BE-06 ( 23.5) 3.72E-08 1.0BE-05 RCP-LOCA-183-150 152 1.81E-02 ( 25.5) 2.08E-08 ( 23.5) 3.44E-08 1.11E-05 NRAC-7HR 456 5.00E-02 ( 17. 0) 1.86E-08 ( 25.0) O.OOE+OO O.OOE+OO REC-XHE-FO-DGHWS 777 8.00E-01 ( 3.0) 8.55E-07 ( 26.0) O.OOE+OO 4.98E-06 NRAC-201M 45 1.50E-01 ( 9.0) 8.71E-07 ( 27.0) O.OOE+OO 3.83E-08 NOTDG-CCF 42 5.20E-01 ( 6.0) 4.01E-07 ( 28.0)

NRAC-246M 152 1.15E-01 ( 14.0) 3.12E-07 ( 29.0) O.OOE+OO 7.04E-07 0 693 4.90E-02 ( 18.0) 1.68E-07 ( 30.0) -9.58E-08 1.12E-06 NRAC-150M 152 2.10E-01 ( 8.0) 1.44E-07 ( 31. 0) O.OOE+OO O.OOE+OO NOTQ 1064 9.73E-01 ( 2.0) 1.07E-07 ( 32.0)

REC-XHE-FO-DGTMS 133 7.00E-01 ( 4.0) 6.44E-08 ( 33.0) O.OOE+OO 2.21E-07 NOTL-SBOU1 1084 9.93E-01 ( 1. 0) 2.71E-08 ( 34.0)

NRAC-234M 46 1.23E-01 ( 13.0) 5.23E-09 ( 35.0) O.OOE+OO O.OOE+OO QS-SBO 1064 2.70E-01 ( 7.0) -1.12E-08 ( 36.0) -9.57E-08 O.OOE+OO DGN~FTO 1022 3.39E-02 ( 20.0) -3.41E-08 ( 37.0) -1.82E-05 O.OOE+OO

SEQUENCE SBO-SLOCA UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK) V.05/TE.05" V.95/TE.95" RC~-LOCA-750-90M 152 5.30E-01 ( 5.0) 44.3 ( 1. 0) NA 1.12 RGP-LOCA-467-150 152 1.27E-01 ( 11.0) 5.0 ( 2.0) NA 0.99 OEP-DGN-FS-DG01 294 2.20E-02 ( 22.5) 2.3 ( 4.5) NA 0.88 OEP-DGN-FS 42 2.20E-02 ( 22.5) 2.3 ( 4.5) NA 0.88 OEP-DGN-FS-0603 168 2.20E-02 ( 22.5) 2.3 ( 4.5) NA 0.88 OEP-DGN-FS-DG02 168 2.20E-02 ( 22.5) 2.3 ( 4.5) NA 0.88 OEP-DGN-FR-6HDG1 294 1.20E-02 ( 29.0) 2.0 ( 8.0) NA 1.00 0EP-DGN-FR-6HDG2 161 1.20E-02 ( 29.0) 2.0 ( 8.0) NA 1.00 OEP-DGN-FR-6HDG3 168 1.20E-02 ( 29.0) 2.0 ( 8.0) NA 1.00 NRAC-216M 107 1.38E-01 ( 10.0) 1. 5 ( 10.0) NA 1.07 NRAC-150M 152 2.10E-01 ( 8.0) 1. 3 ( 11. 0) NA 1. 00 NRAC-7HR 456 5.00E-02 ( 17.0) 1. 3 ( 12.0) NA 1. 00 NRAC-246M 152 1.15E-01 ( 14.0) 1.3 ( 13.0) NA 1. 00 NRAC-201M 45 1.50E-01 ( 9.0) 1. 3 ( 14.0) NA 1. 03 NRAC-234M 45 1.23E-01 ( 13.0) 1. 3 ( 15.0) NA 1. 00 NRAC-258M 107 1.08E-01 ( 15.0) 1. 3 ( 16.0) NA 1. 00 REC-XHE-FO-DGTMS 133 7.00E-01 ( 4.0) 1.2 ( 17.0) NA 1. 00 l:zj REC-XHE-FO-DGHWS 777 8.00E-01 ( 3.0) 1. 1 ( 18.0) NA 1.02 I RCP-LOCA-1440-90 152 4.30E-03 ( 34.0) 0.8 ( 19.0) NA 1. 01 00 C11 0 693 4.90E-02 ( 18.0) 0.8 ( 20.0) NA 1. 00 OEP-CR8-FT-15H3 238 3.00E-03 ( 36.5) 0.8 ( 21.5) NA 1. 00 OEP-CR8-FT-15J3 133 3.00E-03 ( 36.5) 0.8 ( 21.5) NA 1. 00 MCW-CCF-VF-SBO 525 6.00E-02 ( 16.0) 0.7 ( 23.0) NA 1. 01 OEP-DGN-MA-D803 112 6.00E-03 ( 32.0) 0.7 ( 25.0) NA 1.08 OEP-DGN-MA-D802 112 6.00E-03 ( 32.0) 0.7 ( 25.0) NA 1. 08 OEP-DGN-MA-DG01 196 6.00E-03 ( 32.0) 0.7 ( 25,0) NA 1. 08

. DGN-FTO 1022 3.39E-02 ( 20.0) 0.5 ( 27.0)

RCP-LOCA-183-210 152 1.61E-02 ( 25.5) 0.4 ( 28.0)

REC-XHE-FO-SCOOL 539 1.25E-01 ( 12.0) 0.3 ( 29.0)

BETA-2DG 42 3.80E-02 ( 19.0) 0.3 ( 30.0)

RCP-LOCA-561-150 152 4.00E-03 ( 35.0) 0.2 ( 31. 0)

RCP-LOCA-183-150 152 1.61E-02 ( 25.5) 0. 1 ( 32.0)

RCP-LOCA-183-90 152 1.40E-02 ( 27.0) o. 1 ( 33.0)

QS-SBO 1064 2.70E-01 ( 7.0) 0.0 ( 34.0)

NOTQ 1064 9.73E-01 ( 2.0)

NOTL-SB0U1 1064 9.93E-01 ( 1. 0)

NOTDG-CCF 42 5.20E-01 ( 6.0)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y.05/TE.05" Y. 95/TE. 95" IE-T1 1064 7.70E-02 ( 6.0) 1. 6 ( 36.0) NA 1.04

  • Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS

SEQUENCE 880-SLOCA CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT SBO-SLOCA WITH TOP EVENT FREQUENCY 3.84E-06 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 1 12 1.77E-07 0.04599 /DGN-FTO

  • IE*T1
  • NOTL-SB0U1
  • NOTQ .

2 OEP-D0N-FS-DG02

  • 3 NRAC-216M * /0
  • OEP-DGN-FS-DG01 *

/QS-SBO

  • RCP-LOCA-760-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

4 NOTQ 5 2 12 1.77E-07 0.09197 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1 *
  • NRAC-216M * /0
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03
  • 6 REC-XHE-FO-SCOOL +

7 /QS-SBO

  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • 3 12 1.64E-07 0. 13472 BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • NOTL-S80U1
  • 8 *
  • OEP -DGN - FS
  • 9 NOTQ " NRAC-216M
  • 10

/QS-SBO

  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

10 NOTQ

  • 11 6 12 9.63E-08 0.15981 /DGN-FTO
  • IE-T1
  • NOTL-SBOU1
  • NRAC-216M * /0
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • 12 REC-XHE-FO-SCOOL +

13 /QS-SBO

  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • 14 6 12 9.63E-08 0.18489 /DGN-FTO
  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • NRAC-216M * /0
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02
  • 15 REC-XHE-FO-SCOOL +

16 /QS-SBO

  • RCP-LOCA-760-90M
  • REC-XHE-FO-DGHWS
  • 9.83E-08 0.20997 /DGN-FTO
  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • trj I

00 17 18 19 4 12 NRAC-216M

/QS-SBO

/0

  • RCP~LOCA-750-90M
  • OEP-DGN-FR-6HDG2 REC-XHE-FO-DGHWS .
  • OEP-DGN-FS-DG01 REC-XHE-FO-SCOOL NOTQ

+

en 20 7 12 9.83E-08 0.23505 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1 *
  • NRAC-216M * /0
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG03 '
  • 21 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

22 /QS*SB0

  • 12 8.48E-08 0.25713 /DGN-FTO
  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • 23 8
  • OEP-DGN-FS-DG01
  • 24 NOTQ
  • NRAC-216M
  • 10
  • RCP-LOCA-750-90U
  • REC-XHE-FO-DGHWS +

25 26 9 12 8.48E-08 0.27920 OEP-DGN-FS-D003

/DGN-FTO

/QS*SBO IE-T1 . MCW*CCF-VF-SBO

  • NOTL-SB0U1
  • NOTQ
  • NRAC-218M
  • 10
  • OEP-DGN-FS-D001
  • 27 REC-XHE-FO-DGHWS +

28 OEP-DGN-FS-DG02 * /QS-SBO

  • RCP-LOCA-750-90M
  • 10 12 7.88E*08 0.29972 BETA-2DG
  • IE-T1
  • MCW*CCF-VF-SBO
  • NOTDG*CCF
  • 29
  • 10
  • 30 NOTL-SB0U1
  • NOTQ
  • NRAC-216M OEP-DGN-FS * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

31 NOTQ

  • 32 12 n 6.67E-08 0. 31761 /DGN-FTO
  • IE-T1
  • NOTL-SB0U1
  • 33 NRAC-218M
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03
  • QS-SBO
  • 34 RCP-LOCA-760*90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

35 11 11 6.87E-08 0.33549 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 36 NRAC-218M
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS*DG02
  • QS-SBO
  • 37 13 11 6.57E-08 0.35259 RCP-LOCA-750*90M *

/DGN-FTO

  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL IE-T1
  • NOTL-SB0U1

+

  • NOTQ .

38

  • OEP-DGN*FR-6HDG3 *
  • ,39 NRAC-216M
  • 10
  • OEP-DGN-FR-6HDG1 40 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-SCOOL +

41 14 11 6.39E-08 0.36922 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-SB0U1
  • NOTQ
  • NRAC-218M
  • OEP-DGN-FS
  • QS-SBO
  • 42 REC-XHE-FO-DBHWS
  • REC-XHE-FO-SCOOL +

43 RCP-LOCA-750*90M *

,U 16 12 6.26E-08 0.38290 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • NRAC-216U
  • 10
  • OEP-DGNsFR-6HDG1
  • OEP-D8N-FR-6HD82
  • 45 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

46 /QS-SBO

  • 47 17 12 4.82E-08 0.39544 /DGN-FTO
  • IE-T1
  • NOTL-SB0U1 * . NOTQ
  • 48 NRAC-216M
  • 10
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG03
  • 49 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-_SCOOL +

/DGN-FTO IE-T1

  • NOTL-SB0U1
  • NOTQ .*

60 19 12 4.82E~08 0.40798

  • 51 NRAC-216M
  • 10
  • OEP-DGN-FS-DG02
  • OEP-DGN-MA-D801
  • 52 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

63 16 12 4.82E-08 0.42063 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 54 NRAC-216M
  • 10
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG02
  • REC-XHE-FO-DGHWS" REC-XHE-FO-SCOOL 55 56 18 12 4.82E-08 0. *43307

/QS-SBO

/DGN-FTO

  • RCP-LOCA-750-90M

. IE-T1 ..

. NOTQ

+

OEP-DGN-MA-DG01 57 58 NRAC-216M

/QS-SBO . 10 RCP-LOCA-750-90M . OEP-DGN-FS-DG03 REC-XHE-FO-DGHWS"' REC-XHE-FO-SCOOL +

IE-T1 MCW-CCF-VF-SBO

  • N0TL-SB0U1 59 23 12 4.62E-08 0.44511 /DGN-FTO NOTQ .

NRAC-216M ..* 10 OEP-DGN-FR-6HDG1 60 61 OEP-DGN-FS-DG03 . . /QS-SBO RCP-LOCA-750-90M" REC-XHE-FO-DGHWS +

IE-T1 MCW-CCF-VF-SBO

  • N0TL-SB0U1 62 20 12 4.62E-08 0.45715 /DGN-FTO NRAC-216M .* 10 OEP-DGN-FR-6HDG2 RCP-LOCA-750-90M . REC-XHE-FO-DGHWS 63 NOTQ
  • 64 OEP-DGN-FS-DG01 *

/DGN-FTO . /QS-SBO IE-T1 MCW-CCF-VF-SBO

+

65 22 12 4.62E-08 0,46919 NOTQ . NRAC-216M 10

  • OEP-DGN-FR-6HDG1
  • 66 67 OEP-DGN-FS-DG02 . /QS-SBO .* RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

68 21 12 4.62E-08 0.48123 /DGN-FTO

  • IE-T1 MCW-CCF-VF-SBO
  • NOTL-SBOU1 69 NOTQ
  • NRAC-216M
  • 10
  • OEP-DGN-FR-6HDG3 *

/QS-SBO RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS +

70 0.49098 OEP-DGN-FS-DG01 *

/DGN-FTO . IE-T1 .* NOTL-SB0U1

  • NOTQ l:rj 71 72 24 11 3.75E-08 NRAC-216M . OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01 QS-SBO REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

I 73 RCP-LOCA-750-90M * .

  • 0.50074 /DGN-FTO IE-T1 NOTL-SB0U1 NOTQ .

00

-::i 74 75 25 11 3.75E-08 NRAC-216M . OEP-DGN-FR-6HDG1 OEP-DGN-FS-DG03 QS-SBO 76 0.51049 RCP-LOCA-750-90M"

/DGN-FTO . REC-XHE-FO-DGHWS I E-T1 . . NOTL-SB0U1 .

REC-XHE-FO-SCOOL +

NOTQ *.

77 78 26 11 3.75E-08 NRAC-216M . OEP-DGN-FR-6HDG1

  • OEP-DGN-FS-0802
  • QS-SBO REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

79 RCP-LOCA-750-90M *

  • 80 27 11 3.76E-08 0.62026 /DGN-FTO
  • IE-T1 NOTL-SBOU1
  • NOTQ
  • 81 NRAC-216U
  • OEP-DGN-FR-6HDG2 OEP-DGN-FS-DG01
  • QS-SBO
  • 82 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +
o. 62887 /DGN-FTO IE-T1 .* NOTL-S80U1
  • NOTQ
  • 83 154 12 3.31E-08
  • 84 NRAC-258M 10 OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03
  • 85 /QS-SBO RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS" REC-XHE-FO-SCOOL

. +

N0TL-S80U1 NOTQ 0.53750 /DGN-FTO IE-T1 .

86 153 12 3.31E-08 OEP-DGN-FS-DG02 RCP-LOCA-467-150 ..

87 NRAC-258M 10 OEP-DGN-FS-DG01 REC-XHE-FO-SCOOL +.

88 /QS-SBO REC-XHE-FO-DGHWS . NOTL-SBOU1 .

89 29 11 3.30E-08 0.54608 /DGN-FTO *. IE-T1 MCW-CCF-VF-SBO OEP-DGN-FS-DG01 . OEP-DGN-FS-DG03 90 91 NOTQ QS-SBO .. NRAC-216M RCP-LOCA-750-90U" REC-XHE-FO-DGHWS +

NOTL-SBOU1 .

92 93 28 11 3.30E-08 0.55466 /DGN-FTO NOTQ . IE-T1 NRAC-216M . MCW-CCF-VF-SBO OEP-DGN-FS-DG01 . OEP-DGN-FS-DG02 94 95 30 11 3. 15E-08 0.56287 QS-SBO

/DGN-FTO ..

  • RCP-LOCA-750-90M"'

. IE-T1 .. MCW-CCF-VF-880 .

REC-XHE-FO-DGHWS +

. NOTL-SB0U1 .

OEP-DGN-FR-6HDG1 98 97 NOTQ OEP-DGN-FR-6HDG3 ..

NRAC-216M

/QS-880 .. 10 RCP-LOCA-750-SOM + .

NOTDG-CCF . N0TL-SB0U1 .

98 155 12 3.08E-08 0.57089 BETA-2DG IE-T1 NRAC-258M OEP-DGN-FS 99 100 NOTQ

/QS-SBO .. RCP-LOCA-467-150 10 REC-XHE-FO-DGHWS" REC-XHE-FO-SCOOL

. +

UCW-CCF-VF-SBO NOTDG-CCF *.

101 102 31 11 3.07E-08 0.57887 BETA-2DG N0TL-SB0U1 . IE-T1 NOTQ

  • . NRAC-218M . OEP-DGN-FS

103 104 32 12 2.63E-08 0.58571 QS-SBO

/DGN-FTO .. RCP-LOCA-750-90M

  • IE-T1 . REC-XHE-FO-DGHWS +

NOTL-SBOU1 . NOTQ OEP-DGN-MA-0802 OEP-DGN-FR-8HDG1 *

  • 105 106 NRAC-216M

/QS-SBO

  • 10
  • RCP-LOCA-750-90M REC-XHE-FO-DGHWS" REC-XHE-FO-SCOOL +

NOTQ 107 108 33 12 2.63E-08 0.59255 /DGN-FTO NRAC-218M

  • IE-T1
  • . /0
  • NOTL-SBOU1
  • OEP-DGN-FR-8HDG2
  • . OEP-DGN-MA-0801 109 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS *
  • NOTL-SBOU1
  • REC-XHE-FO-SCOOL +

NOTQ ..

110 111 34 10 2.55E-08 0.59920 /DGN-FTO NRAC-218M .* IE-T1 OEP-DGN-FR-8HDG1

  • OEP-DGN-FR-6HDG3
  • QS-SBO 112 RCP-LOCA-750-90M
  • REC-XHE-FO-SCOOL +

NOTL-SBOU1 .

113 35 12 2.52E-08 0.60577 /DGN-FTO

  • IE-T1 ..
  • MCW-CCF-VF-SBO .

OEP-DGN-FR-8HDG1 .

114 NOTQ

  • NRAC-218M

. 10 RCP-LOCA-750-90M . REC-XHE-FO-DGHWS +

115 OEP-DGN-FR-8HDG2 . /QS-SBO . NOTL-SBOU1

  • NOTQ .

116 117 38 12 2.41E-08 0.61204 /DGN-FTO NRAC-216M

  • 10 IE-T1 . OEP - CRB - FT - 15H3 * . OEP-DGN-FS-DG02
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

118 /QS-SBO . NOTQ 119 37 12 2.41E-08 0.61831 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • OEP-CRB-FT-15J3

.. OEP-DGN-FS-DG01

  • 120 121 NRAC-218M

/QS-SBO ..

  • 10 RCP-LOCA-750-90M" REC-XHE-FO-DGHWS

. REC-XHE-FO-SCOOL +

122 38 12 2.41E-08 0.82458 /DGN-FTO IE-T1 NOTL-SB0U1

  • NOTQ
  • 123 NRAC-216M
  • 10
  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG03
  • 124 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

125 39 12 2.31E-08 0.83080 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SB0U1
  • 126 NOTQ
  • NRAC-216M
  • 10
  • OEP-DGN-FS-DG01
  • REC-XHE-FO-DGHWS +

i:rj 127 OEP-DGN-MA-0802 * /QS-SBO

.

  • RCP-LOCA-750-90M *
  • MCW-CCF-VF-SBO

. NOTL-SB0U1

  • I 00 128 129 42 12 2.31E-08 0.83882 /DGN-FTO NOTQ IE-T1
  • NRAC-218M

. 10

  • OEP-DGN-FS-DG02
  • 00 130 131 40 12 2.31E-08 0.64264 OEP-DGN-UA-DG01 * /QS-SBO

/DGN-FTO

  • IE-T1 /

I

.

  • RCP-LOCA-750-90M" MCW-CCF-VF-SBO
  • REC-XHE-FO-DGHWS NOTL-SB0U1

+

NOTQ

  • NRAC-218M
  • 10
  • OEP-DGN-FS-DG01
  • 132 133 OEP-DGN-MA-D803 * /QS-SBO,
  • RCP-LOCA-750-90M
  • MCW-CCF-VF-SBO
  • REC-XHE-FO-DGHWS NOTL-SBOU1

+

134 41 12 2.31E-08 0.64866 /DGN-FTO

  • IE-T1 *
  • NRAC-216M 10
  • OEP-DGN-FS-DG03 135 136 NOTQ OEP-DGN-MA-DG01 . /QS-SBO RCP-LOCA-760-90M
  • REC-XHE-FO-DGHWS +

NOTL-SB0U1 NOTQ 137 44 12 2.30E-08 0.65485 /DGN-FTO

  • IE-T1
  • OEP-DGN-FR-8HDG1 OEP-DGN-MA-0803
  • 138 NRAC-218M .
  • 10 RCP-LOCA-750-90M" REC-XHE-FO-DGTMS"

.. REC-XHE-FO-SCOOL +

139 /QS-SBO . IE-T1 NOTL-SB0U1 .

  • NOTQ .

140 141 43 12 2.30E-08 0.88083 /DGN-FTO NRAC-216M . 10 OEP-DGN-FR-6HDG3 . OEP-DGN-MA-0801 REC-XHE-FO-SCOOL +

142 /QS-SBO

.

  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGTMS

. NOTL-SBOU1

  • NOTQ .

143 144 46 11 2.04E-08 0.66696 /DGN-FTO NRAC-216M IE-T1

  • OEP-DGN-FR-6HDG1

.. OEP-DGN-FR-6HDG2

  • QS-SBO
  • RCP-LOCA-750-90M" REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL + .. .

145 NOTQ 146 48 11 1.87E-08 0.67083 IDGN-FTO IE-T1

  • NOTL-SB0U1 OEP-DGN-FS-0801
  • OEP-DGN-UA-DG02 QS-SBO .

147 NRAC-216M .. . ..

RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

148 149 49 11 1.87E-08 0.87571 /DGN-FTO .. IE-T1 . NOTL-SBOU1 . NOTQ 150 NRAC-216U OEP-DGN-FS-0801 OEP-DGN-UA-DG03 QS-SBO 151 RCP-LOCA-750-90M". REC-XHE-FO-DGHWS" REC-XHE-FO-SCOOL +

NOTQ .

152 47 11 1.87E-08 0.88059 /DGN-FTO . IE-T1

  • NOTL-S80U1
  • QS-SBO .

153 154 NRAC-218M RCP-LOCA-750-90M".

OEP-DGN-FS-0803

  • REC-XHE-FO-DGHWS .. OEP-DGN-MA-0801 REC-XHE-FO-SCOOL +

NOTL-SBOU1

  • NOTQ .*

155 48 11 1.87E-08 0.88547 /DGN-FTO . IE-T1 . OEP-DGN-MA-0801

  • QS-SBO 166 157 NRAC-216M RCP-LOCA-750-90U" OEP-DGN-FS-0802 REC-XHE-FO-DGHWS . REC-XHE-FO-SCOOL + .

157 12 1.81E-08 0.89017 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 159 160 161 156 12 1.61E-08 0.69487 NRAC-258M

/QS-SBO

/DGN-FTO

/0 RCP-LOCA-467-150 IE-T1 OEP-DGN-FR-6HDG1 REC-XHE-FO-DGHWS NOTL-SBOU1

  • NOTQ OEP-DGN-FS-DG02 REC-XHE-FO-SCOOL +

162 NRAC-258M * /0

  • OEP-DGN-FR.-6HDG2 * .OEP -DGN-F S-DGO 1

.163 /QS-SBO

  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

164 158 12 1.81E-08 0.69958 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ *
  • 165 NRAC-258M
  • 10
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • 166 167 159 12 1.81E-08 0.70428

/QS-SBO

/DGN-FTO RCP-LOCA-467-150

  • REC-XHE-FO-DGHWS
  • IE-T1
  • NOTL-S80U1
  • REC-XHE-FO-SCOOL NOTQ .*

+

168 NRAC-258M * /0 *. OEP-DGN-FR-6HDG1 *. OEP-DGN-FS-DG03 169 /QS-SBO

  • RCP-LOCA-467-.150 REC-XHE-FO-DGHWS REC-XHE-FO-SCOOL +

170 51 11 1.80E-08 0.70896 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 171 NOTQ
  • NRAC-216M
  • OEP-DGN-FR-6HD03
  • OEP-D0N-FS-D001
  • 172 QS-SBO
  • RCP- LOCA - 75,0- 90M
  • REC-XHE-FO-DGHWS +

173 174 50 11 1.SOE-08 0.71365 /DGN-FTO NOTQ IE-T1 NRAC-216M RCP-LOCA-750-90M

.

  • MCW-CCF-VF-SBO OEP-DGN-FR-6HDG2 REC-XHE-FO-DGHWS

+

NOTL-SBOU1 OEP-DGN-FS-0001 175 QS-SBO *

  • 176 177 53 11 1.80E-08 0.71833 /DGN-FTO NOTQ IE-T1 RCP-LOCA-750-90M .

NRAC-216M .* MCW-CCF-VF-SBO OEP-DGN-FR-6HDG1 REC-XHE-FO-DGHWS

  • NOTL-SB0U1
  • OEP-DGN-FS-DG03

+

178 QS-SBO .

. /DGN-FTO IE-T1 MCW-CCF-VF-SBO

  • NOT L- SBOU 1.

179 180 52 11 1.80E-08 0.72301 NOTQ . NRAC-216M

  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-0002
  • 181 QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-D0HWS +

182 55 11 1.64E-08 0.72729 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • tr:l 183 NRAC-216M * /0
  • OEP-CRB-FT-15H3
  • OEP-00N-FR-6HDG3
  • I RCP-LOCA-750-90M REC-XHE-FO-SCOOL +

00 184 /QS-SBO * *

~ 185 54 11 1.64E-08 0.73156 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • 186 187 NRAC-216M

/QS-SBO .* 10 RCP-LOCA-750-90M

  • IE-T1
  • OEP-CRB-FT-15J3 REC-XHE-FO-SCOOL MCW-CCF-VF-SBO

+

OEP-D0N-FR-6HD01

  • NOTL-SBOU1 .

188 160 12 1.59E-08 0.73570 /DGN-FTO *

  • 189 NOTQ
  • NRAC-258M
  • 10
  • OEP-DGN-FS-0001
  • 190 191 181 12 1.59E-06 0.73984 OEP-DGN-FS-0003

/DGN-FTO

/QS-SBO IE-T1 RCP-LOCA-467-150 MCW-CCF-VF-SBO REC-XHE-FO-DGHWS +

NOTL-S80U1 .

192 NOTQ NRAC-258M

  • 10
  • OEP-DGN-FS-0001
  • 193 OEP-DGN-FS-DG02 * /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

194 162 12 1.48E-08 0.74369 BETA-200

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTDG-CCF
  • 195 NOTL-SBOU1
  • NOTQ
  • NRAC-258M
  • 10
  • 196 197 56 12 1.31E-06 0.74711 OEP-DGN-FS

/DGN-FTO *

  • /QS-SBO IE-T1 RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS NOTL-SBOU1
  • NOTQ

+

OEP-CRB-FT-15H3

  • OEP-DGN-FR-6HDG2
  • 198 199 NRAC-216M

/QS-SBO .

  • /0 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

200 163 11 1.29E-08 0.75046 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 201 NRAC-258M
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • QS-SBO
  • 202 RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

203 164 11 1.29E-08 0.75382 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 204 NRAC-258M
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-0803
  • QS-SBO
  • 205 RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

206 207 57 12 1.26E-08 0.75710 /DGN-FTO NOTQ

  • IE-T1
  • NRAC-216M .
  • MCW-CCF-VF-SBO 10
  • . RCP-LOCA-750-90M NOTL-S80U1 OEP-DGN-FR-6HDG1
  • REC-XHE-FO-DGHWS +

208 OEP-DGN-MA-0802 * /QS-SBO 209 58 12 1.26E-08 0.78039 /DGN-FTO

  • IE-T1 MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 210 NOTQ
  • NRAC-216M * /0
  • OEP-DGN-FR-6HD82
  • 211 OEP-DGN-MA-0801 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

212 165 11 1.23E-08 0.78359 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 213 NRAC-258M * /0
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG3
  • 214 /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-SCOOL +

215 216 59 10 1. 23E-08 0.78679 /DGN-FTO NOTQ IE-T1

" NRAC-216M " MCW-CCF-VF-SBO " NOTL-SB0U1

" RCP-LOCA-750-90M +" OEP-DGN-FR-6HDG1 " OEP-DGN-FR-6HDG3 217 QS-SBO ". .. . NOTL-SB0U1 .

218 168 11 1.2.0E-08 0.76990 BETA-2DG . IE-T1 NOTDG-CCF OEP-DGN-FS . QS-SBO .

219 NOTQ . NRAC-25.8M . REC-XHE-FO-SCOOL +. ..

220 221 62 12 1.16E-08 o. 77291 RCP-LOCA-467-150

/DGN-FTO .. REC-XHE-FO-DGHWS IE-T1 . MCW-CCF-VF-SBO . NOTL-S80U1 OEP-CRB-FT-15H3 222 223 NOTQ OEP-DGN-FS-DG02 . NRAC-216M

/QS-SBO .

  • 10 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

MCW-CCF-VF-SBO NOTL-S80U1 *

  • 0.77592 /DGN-FTO
  • IE-T1 * * .

224 60 12 1.16E-08 OEP-CRB-FT-15H3 225 NOTQ NRAC-216M

  • 10 .*

REC-XHE-FO-DGHWS ..

226 227 61 12 1.16E-08 0.77893 OEP-DGN-FS-DG03

/DGN-FTO

/QS-SBO IE-T1 RCP-LOCA-750-90M MCW-CCF-VF-SBO .. NOTL-SBOU1

+

  • . 10 OEP-CRB-FT-15J3 RCP-LOCA-750-90M .

NRAC-216M 228 NOTQ OEP-DGN-FS-DG01 .* /QS-SBO

  • REC-XHE-FO-DGHWS +

229 . IE-T1

  • MCW-CCF-VF-SBO *. . NOTL-S80U1 .

230 64 12 1.10E-08 0.78181 /DGN-FTO . NRAC-216M

  • 10 OEP-DGN-FR-6HDG3 231 NOTQ OEP-DGN-MA-DG01 . /QS-SBO .
  • RCP-LOCA-750-90M * . REC-XHE-FO-DGTMS +

232 . IE-T1 MCW-CCF-VF-SBO NOTL-SB0U1 .

233 63 12 1.10E-08 0.78468 /DGN-FTO . NRAC-216M

  • 10 .* OEP-DGN-FR-6HDG1 234 235 NOTQ OEP-DGN-MA-DG03 . /QS-SBO
  • RCP-LOCA-750-90M REC-XHE-FO-DGTMS +

IE-T1

  • NOTL-SBOU1
  • NOTQ 236 237 65 11 1.02E-08 0.78734 /DGN-FTO NRAC-216M .." OEP-DGN-FR-6HDG2
  • OEP-DGN-MA-0001
  • QS-SBO
  • 238 RCP-LOCA-750-90M REC-XHE-FO-DGHWS .
  • REC-XHE-FO-SCOOL +

NOTL-SBOU1 . NOTQ .

t:zj I

239 240 66 11 1.02E-08 0.79000 /DGN-FTO NRAC-216M

  • . IE-T1 OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-0002 . QS-SBO cc REC-XHE-FO-SCOOL +

0 241 RCP-LOCA-750-90M *

. REC-XHE-FO-DGHWS * . NOTQ 242 243 68 12 9.89E-09 0.79258 /DGN-FTO NRAC-201M . IE-T1 0 .

  • NOTL-SBOU1 OEP-DGN-FS-0801
  • OEP-DGN-FS-0802 .*

REC-XHE-FO-DGHWS

  • REC-XHE-FO-SCOOL +

244 /QS-SBO

  • RCP-LOCA-750-90M IE-T1 ..* NOTL-SBOU1
  • NOTQ .

245 246 69 12 9.89E-09 0.79515 /DGN-FTO NRAC-201M .*

0 . OEP-DGN-FS-0801

  • OEP-DGN-FS-0803 247 IQS-880
  • RCP-LOCA-750-90M REC-XHE-FO-DGHWS . REC-XHE-FO-SCOOL NOTQ

+

248 167 12 9.86E-09 0.79772 IDGN-FTO *

  • 10 IE-T1
  • NOTL-SB0U1 OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG2 249 250 NRAC-258M

/QS-SBO . RCP-LOCA-467-150

  • REC-XHE-FO-DGHWS It REC-XHE-FO-SCOOL

. .NOTL-SBOU1 +

251 67 11 9.61E-09 0.80027 /DGN-FTO

  • IE-T1 NRAC-216M MCW-CCF-VF-SBO OEP-DGN-FR-6HDG1 It OEP-DGN-FR-6HDG2 .*

252 253 NOTQ QS-SBO .

It RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS +

NOTL-S80U1 NOTQ 254 255 71 11 9.37E-09 0.80271 /DGN-FTO NRAC-216M It IE-T1 OEP-CRB-FT-15J3

  • OEP-DGN-FS-0801 .It QS-SBO It 256 RCP-LOCA-750-90M It REC-XHE-FO-DGHWS * . REC-XHE-FO-SCOOL +

NOTQ .

257 258 72 11 9.37E-09 0.80515 /DGN-FTO NRAC-216M .* IE-T1 OEP-CRB-FT-15H3

  • NOTL-SBOU1 OEP-DGN-FS-DG03 .* QS-SBO It 259 RCP-LOCA-750-90M"It REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

NOTQ 260

  • 251 70 11 9.37E-09 0.80759 /DGN-FTO NRAC-216M It IE-T1 OEP-CRB-FT-15H3 NOTL-SBOU1 OEP-DGN-FS-0802 .* QS-880 It REC-XHE-FO-SCOOL +

262 RCP-LOCA-750-90M". REC-XHE-FO-DGHWS .

It NOTDG-CCF .

It NOTL-SBOU1 It 263 73 12 9.20E-09 0.80998 BETA-2DG IE-T1 NRAC-201M . 0 OEP-DGN-FS It 264 NOTQ .

RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +It 265 266 168 12 9.03E-09 0.81233

/QS-SBO

/DGN-FTO . IE-T1

  • N0TL-S80U1 .* NOTQ 10 It OEP-DGN-FS-0801 OEP-DGN-MA-0802 It 267 268 NRAC-258M

/QS-880 .

It RCP-LOCA-467-150

  • REC-XHE.-FO-DGHWS ". REC-XHE-FO-SCOOL +

269 169 12 9.03E-09 0.81469 /DGN-FTO

  • IE-T1 It NOTL-SBOU1 NOTQ
  • 270 NRAC-258M
  • 10 It OEP-DGN-FS-DG01
  • OEP-DGN-MA-0803 It

271 272 -171 12 9.03E-09 0.81704 IQS-SBO

/DGN-FTO RCP-LOCA-467-150

  • IE-T1 .*

REC-XHE-FO-DGHWS

  • NOTL-SBOU1 OEP-DGN-FS-0802 .
  • NOTQ REC-XHE-FO-SCOOL OEP-D8N-MA-DG01

+

273 274 NRAC-258M IQS-SBO

  • 10 RCP-LOCA-467-150 . REC-XHE-FO-DGHWS" . REC-XHE-FO-SCOOL +

275 170 12 9.03E-09 0.81939 IDGN-FTO *

  • NOTL-SBOU1 NOTQ *
  • OEP-DGN-FS-0803
  • OEP-DGN-MA-0801
  • 276 NRAC-258M
  • 10 RCP-LOCA-487-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

277 IQS-SBO 278 77 11 8.99E-09 0.82173 /DGN-FTO IE-T1 MCW-CCF-VF-SBO

  • NOTL-SBOU1 279 NOTQ
  • NRAC-216M OEP-DGN-FS-0801
  • OEP-DGN-MA-0803
  • 280 QS-SBO
  • RCP-LOCA-750-90M * . REC-XHE-FO-DGHWS +

281 75 11 8.99E-09 0.82407 /DGN-FTO

  • IE-T1 MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 282 NOTQ
  • NRAC-216M
  • OEP-DGN-FS-0802
  • OEP-DGN-MA-DG01
  • 283 QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

/DGN-FTO IE-T1 MCW-CCF-VF-SBO

  • NOTL-SBOU1
  • 284 285 74 11 8.99E-09 0.82641 NOTQ .A NRAC-216M
  • OEP-DGN-FS-DG03
  • OEP-DGN-MA-DG01
  • 286 QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

287 76 11 8.99E-09 0.82875 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1 *
  • OEP-DGN-FS-0801
  • OEP-DGN-MA-DG02 288 289 NOTQ QS-SBO ." NRAC-216M RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

290 79 11 8.94E-09 0.83108 IDGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • OEP-DGN-FR-6HDG1 OEP-DGN-MA-DG03
  • QS-SBO
  • 291 NRAC-216M
  • REC-XHE-FO-DGTMS .*

REC-XHE-FO-SCOOL +

292 RCP-LOCA-750-90M *

/DGN-FTO . IE-T1 . NOTL-SBOU1

  • NOTQ
  • OEP-DGN-MA-DG01 .

293 78 11 8.94E-09 0.83341 .

294 NRAC-216M OEP-DGN-FR-6HDG3 *. QS-SBO

  • t:p 295 296 174 12 8.67E-09 0.83567 RCP-LOCA-750-90M"

/DGN-FTO .. REC-XHE-FO-DGTMS IE-T1 .* REC-XHE-FO-SCOOL +

MCW-CCF-VF-SBO

  • NOTL-SBOU1
  • OEP-DGN-FR-6HDG1 .

c:c 297 NOTQ NRAC-258M 10 298 299 173 12 8.67E-09 0.83793 /DGN-FTO .

OEP-DGN-FS-DG02 * /QS-SBO IE-T1

  • NRAC-258M

..* RCP-LOCA-467-150

  • REC-XHE-FO-DGHWS +

MCW-CCF-VF-SBO 10

  • NOTL-SBOU1 *
  • . OEP-DGN-FR-8HDG3
  • 300 301 NOTQ OEP-DGN-FS-D801 .. /QS-SBO . RCP-LOCA-467-150 . REC-XHE-FO-DGHWS +

/DGN-FTO IE-T1

  • MCW-CCF-VF-SBO NOTL-SBOU1
  • 302 303 172 12 a.67E-09 0.84018 NOTQ . NRAC-258M *. 10
  • OEP-DGN-FR-6HDG2
  • REC-XHE-FO-DGHWS +.

3M OEP-DGN-FS-0801 * /QS-SBO .. RCP-LOCA-467-150 *

. NOTL-SB0U1 305 306 175 12 8.67E-09 0.84244 /DGN-FTO NOTQ

  • IE-T1
  • NRAC-258M MCW-CCF-VF-SBO 10 . OEP-DGN-FR-6HDG1
  • /QS-SBO
  • RCP-LOCA-487-150
  • REC-XHE-FO-DGHWS +

307 308 81 11 7.88E-09 0.84449 OEP-DGN-FS-D803

/DGN-FTO. . IE-T1 .* MCW-CCF-VF-SBO .

  • NOTL-SBOU1
  • 309 NOTQ
  • NRAC-216M 10 OEP-CRB-FT-15J3
  • 310 OEP-DGN-FR-6HDG1 * /QS-SBO
  • RCP-LOCA-750-90M +

311 80 11 7.88E-09 0.84855 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 312 NOTQ
  • NRAC-216M
  • JO
  • OEP-CRB-FT-15H3
  • 313 OEP-DGN-FR-6HD83 * /QS-SBO
  • RCP-LOCA-750-90M +

314 177 11 7.03E-09 0.84838 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ .*

315 316 NRAC-258M "' OEP-DGN-FR-6HDG1 RCP-LOCA-467-150

  • REC-XHE-FO-DGHWS .
  • OEP-DGN-FS-DG03
  • REC-XHE-FO-SCOOL +

NOTL-SBOU1 QS-SBO NOTQ

  • 817 178 11 7.0SE-09 0.85020 /DGN-FTO
  • IE-T1 *
  • 318 NRAC-258M
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • QS-SBO
  • 319 RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO*SCOOL +

320 178 11 7.03E-09 0.85203 /DGN-FTO

  • IE-T1
  • NOTQ
  • 321 NRAC-258M
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-0802
  • QS-SBO
  • 322 RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

IE-T1 NOTL-SBOU1

  • NOTQ
  • 323 324 179 11 7.03E-09 0.85386 /DGN-FTO NRAC-258M ..*

OEP-DGN-FR-6HDG2 ..

OEP-DGN-FS-0801

  • QS-SBO
  • 325 328 82 12 6.57E-09 0.85557 RCP~LOCA-467-150

/DGN-FTO . REC-XHE-FO-DGHWS IE-T1 REC-XHE-FO-SCOOL +

NOTL-SBOU1 . NOTQ .

NRAC-216M

  • 10
  • OEP-CRB-FT-15H3
  • OEP-DGN-MA-DG02
  • 327 REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

328 /QS-SBO

  • RCP-LOCA-750-90M
  • 6.39E-09 0.85724 /DGN-FTO
  • IE-T1
  • NOTL-S80U1
  • NOTQ
  • 329 83 10 OEP-DGN-FR-6HDG3
  • QS-SBO
  • 330 NRAC-216M
  • OEP-CRB-FT-16H3
  • 331 RCP- LOCA- 750-9.0M
  • REC-XHE-FO-SCOOL +

IE-T1

  • NOTL-S80U1
  • NOTQ
  • 332 84 10 6.39E-09 0.85890 /DGN-FTO NRAC-216M .

OEP-CRB-FT-15J3

  • OEP-DGN-FR-6HDG1
  • QS-SBO
  • 333 334 335 85 12 6.31E-09 0.86054 RCP-LOCA-750-90U

/DGN-FTO

  • IE-T1 .

REC-XHE-FO-SCOOL +

MCW-CCF-VF-SBO

  • NOTL-SB0U1 OEP-CRB-FT-15H3 336 NOTQ
  • NRAC-216M
  • 10 337 OEP-DGN-FR-6HDG2 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

6.18E-09 0.86215 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO
  • NOTL-SBOU1
  • 338 181 11 OEP-DGN-FS-DG01
  • OEP-DGN-FS-0803
  • 339 NOTQ
  • NRAC-258M
  • 340 QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

11 6. 18E-09 0.86376 /DGN-FTO

  • IE-T1
  • MCW-CCF-VF-SBO OEP-DGN-FS-DG01 .
  • NOTL-S80U1 .*

341 342 180 NOTQ

  • NRAC-258M
  • RCP-LOCA-467-150 REC-XHE-FO-DGHWS +

OEP-DGN-FS-DG02 343 344 345 182 11 5.91E-09 0.86530 QS-SBO

/DGN-FTO NOTQ

  • IE-T1
  • NRAC-258M
  • MCW-CCF-VF-SBO 10 NOTL-SB0U1 OEP-DGN-FR-6HDG1 .*

OEP-DGN-FR-6HDG3 * /QS-SBO

  • RCP-LOCA-467-150 +

346 IE-T1

  • MCW-CCF-VF-SBO
  • NOTDG-CCF
  • 347 183 11 5.75E-09 0.86680 BETA-200
  • OEP-DGN-FS NOTL-SB0U1
  • NOTQ
  • NRAC-258M *
  • 348
  • REC-XHE-FO-DGHWS +

349 QS-SBO

  • RCP-LOCA-467-150 0.86829 /DGN-FTO
  • IE-T1
  • NOTL-SB0U1
  • NOTQ
  • 350 87 12 5.75E-09 OEP-CRB-FT-15H3
  • OEP-DGN-UA-D003
  • t'rj I 351 NRAC-216M
  • 10
  • RCP-LOCA-750-90M

...* REC-XHE-FO-DGTMS

  • REC-XHE-FO-SCOOL .

+

c:o N

352 353 86 12 5.75E-09 0.86979

/QS-SBO

/DGN-FTO . IE-T1

  • NOTL-SBOU1
  • NOTQ NRAC-216U
  • 10
  • OEP-CRB-FT-15J3
  • OEP-DGN-UA-DG01 354
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGTMS
  • REC-XHE-FO-SCOOL +

355 /QS-SBO 5.40E-09 0.87119 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NOTQ
  • 356 91 12 OEP-D0N-FR-6HDG3
  • OEP-DGN-FS-D001
  • 357 NRAC-201M
  • 0
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL .

+

358 359 90 12 5.40E-09 0.87260

/QS-SBO

/DGN-FTO .

IE-T1

  • NOTL-SBOU1
  • NOTQ 360 NRAC-201M
  • 0
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-D003
  • 361 /QS-SBO
  • RCP-LOCA-750-90U
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

NOTL-SBOU1

  • NOTQ
  • 362 363 88 12 5.40E-09 0.87400 /DGN-FTO NRAC-201M IE-T1 0 .* OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-0002 *

/QS-SBO

  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

364 IE-T1

  • NOTL-SB0U1
  • NOTQ
  • 365 89 12 5.40E-09 0.87541 /DGN-FTO
  • OEP-DGN-FS-0001
  • OEP-DGN-FR-6HDG2
  • 366 367 NRAC-201M

/QS-SBO *

  • 0 RCP-LOCA-750-90M .*

REC-XHE-FO-DGHWS .* REC-XHE-FO-SCOOL .

+

368 92 11 5.11E-09 0.87674 /DGN-FTO

  • IE-T1
  • NOTL-SB0U1 NOTQ NRAC-216M
  • OEP-CRB-FT-15H3
  • OEP-DGN-FR-6HDG2
  • QS-SBO
  • 369 REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

370 371 184 12 4.93E-09 0.87802 RCP-LOCA-750-90M *

/DGN-FTO

  • NOTQ
  • NRAC-258M
  • 10
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-D802
  • 372 REC-XHE-FO-SCOOL +

373 /QS-SBO

  • RCP-LOCA-467-150 *

. REC-XHE-FO-DGHWS .* .

374 185 12 4.93E-09 0.87931 /DGN-FTO IE-T1

  • NOTL-S80U1 . ll!OTQ OEP-DGN-MA-0001 .

375 NRAC-258M

  • 10
  • RCP-LOCA-467-150 .
  • OEP-DGN-FR-6HDG2 REC-XHE-FO-DGHWS . REC-XHE-FO-SCOOL +

376 /QS-SBO . IE-T1 .

  • MCW-CCF-VF-SBO .* NOTL-S80U1 .

377 378 93 11 4.91E-09 0.88058 /DGN-FTO NOTQ . NRAC-216M OEP-DGN-FR-6HD81 OEP-DGN-MA-D802 379 QS-SBO

  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +
  • . MCW-CCF-VF-SBO
  • NOTL-S80U1
  • 380 94 11 4.91E-09 0.88186 /DGN-FTO IE-T1 .

OEP-DGN-FR-6HDG2

  • OEP-DGN-UA-0001
  • NOTQ NRAC-216U .

381 RCP-LOCA-750-90M REC-XHE-FO-DGHWS +

QS-SBO

383 384 188 10 4.79E-09 0.88311 /DGN-FTO NRAC-258M .. IE-T1 OEP-DGN-FR-6HDG1

.. NOTL-S80U1 OEP-DGN-FR-6HDG3 . . NOTQ QS-SBO 885 RCP-LOCA-487-150" . REC-XHE-FO-SCOOL + . MCW-CCF-VF-SBO . NOTL-SBOU1 388 95 12 4.75E-09 0.88434 /DGN-FTO IE-T1 NRAC-201M . 0 . OEP-DGN-FS-0801

  • 387 NOTQ . *

/QS-SBO . RCP-LOCA-750-90M" REC-XHE-FO-DGHWS +

388 OEP-DGN-FS-0802 .

IDGN~FTO IE-T1 MCW-CCF-VF-SBO .

  • NOTL-SBOU1 .

389 96 12 4.75E-09 0.86556 390 NOTQ NRAC-201M 0 . OEP-DGN-FS-DG01 REC-XHE-FO-DGHWS +

391 OEP-DGN-FS-D803 /QS*SBO IE-T1 . RCP-LOCA-750*90M" MCW-CCF-VF-SBO . NOTL-SBOU1 892 187 12 4.73E-09 0.88881 /DGN-FTO NOTQ .

NRAC-258M .. 10 .

  • OEP-DGN-FR-6HD81.
  • 393 OEP-DGN-FR-6HDG2 . /QS-SBO RCP-LOCA-467-150 . REC-XHE-FO-DGHWS +.

394

/DGN-FTO . IE-T1 . NOTL-SBOU1 NOTQ .

895 396 188 12 4.52E-09 0.88799 NRAC-258M . 10

  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-D803 RCP-LOCA-467-150 *. *REC-XHE-FO-DGHWS
  • REC-XHE-FO-SCOOL +

397 /QS-SBO

/DGN-FTO .

  • IE-T1 NOTL-S80U1 . NOTQ 398 399 190 12 4.52E-09 0.88916 NRAC-258M . 10
  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-D802
  • 400 /QS-SBO * . RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS"

. NOTL-SBOU1 . REC-XHE-FO-SCOOL NOTQ

+

401 189 12 4.52E-09 0.89034 /DGN-FTO . IE-T1

  • OEP-CRB-FT-15J3

. OEP-DGN-FS-D801 402 NRAC-258M . 10

. REC-XHE-FO-DGHWS . . REC-XHE-FO-SCOOL +

403 404 99 11 4.50E-09 0.89151

/QS-SBO

/DGN-FTO . .

RCP-LOCA-467-150 IE-T1 .

. MCW-CCF-VF-SBO . NOTL-SB0U1 .

NOTQ NRAC-218M OEP-CRB-FT-15H3 OEP-DGN-FS-DG03 405 406 QS-SBO . RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS +

. NOTL-S80U1 .

qi 407 97 11 4.50E-09 0.89268 /DGN-FTO NOTQ . IE-T1 NRAC-218M . MCW-CCF-VF-SBO OEP-CRB-FT-15J3 . OEP-DGN-FS-D801 RCP-LOCA-750-90M . REC-XHE-FO-DGHWS +

408 co c.,.:, 409 QS-SBO .. *

  • MCW-CCF-VF-SBO

.. NOTL-SB0U1 410 98 11 4.50E-09 0.89385 /DGN-FTO IE-T1 . OEP-CRB-FT-15H3 OEP-DGN-FS-D002 411 412 NOTQ QS-SBO . NRAC-216M RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS +.

NOTDG-CCF 413 100 12 4.41E-09 0.89500 BETA-2DG NOTL-S80U1 .

  • IE-T1 NOTO MCW-CCF-VF-SBO
  • NRAC-201M

. 0

  • 414 415 OEP-DGN-FS . /QS-SBO
  • RCP-LOCA-750-90M"

.. .. REC-XHE-FO-DGHWS +

IE-T1 MCW-CCF-VF-SBO NOTL-SBOU1 416 417 193 12 4.34E-09 0.89813 IDGN-FTO NOTO .

  • NRAC-258M

. 10 OEP-DGN-FS-0803 418

0. 89.726 OEP-DGN-MA-0801 *.. /QS-SBO IE-T1 . RCP-LOCA-467-150
  • MCW-CCF-VF-SBO . REC-XHE-FO-DGHWS NOTL-SBOU1

+

419 194 12 4.34E-09 /DGN-FTO . . OEP-DGN-FS-DG02 420 NOTQ NRAC-258M . 10

. REC-XHE-FO-DGHWS

+

421 OEP-DGN-MA-D801 * /OS-SBO IE-T1 . RCP-LOCA-467-150 MCW-CCF-VF-SBO .. NOTL-SBOU1

/DGN-FTO .

422 191 12 4.34E-09 0.89839

  • OEP-DGN-FS-D801 423 424 NOTO OEP-DGN-MA-0802 NRAC-258M

/OS-SBO 10 RCP-LOCA-467-150 .

. REC-XHE-FO-DGHWS +

425 192 12 4.34E-09 0.89952 /DGN-FTO . IE-T1 NRAC-258M . MCW-CCF-VF-SBO 10 . NOTL-SBOU1 OEP-DGN-FS-0801 .*

426 427 NOTQ OEP-DGN-MA-DG03 . IQS-SBO . RCP-LOCA-487-15Q .* REC-XHE-FO-DGHWS +

NOTQ

  • 428 195 12 4.31E-09 0.90084 /DGN-FTO
  • IE-T1
  • NOTL-SBOU1 OEP-DGN-FR-6HD88 . OEP-DGN-MA-DG01
  • 429 NRAC-258M
  • 10
  • 430 /QS-880 RCP-LOCA-487-150 * .. REC-XHE-FO-DGTMS *. REC-XHE-FO-SCOOL NOTQ

+

431 196 12 4.31E-09 0. 90176 /DGN-FTO IE-T1 NOTL-SBOU1 OEP-DGN-FR-6HDG1 . OEP-DGN-MA-0803 432 433 NRAC-258M IQS-SBO .. 10 RCP-LOCA-487-150 .. REC-XHE-FO-DGTMS *. REC-XHE-FO-SCOOL + .

434 102 11 4.29E-09 0.90288 /DGN-FTO IE-T1 NRAC-216M .. MCW-CCF-VF-SBO OEP-DGN-FR-8HD81 . NOTL-SBOU1 OEP-DGN-MA-D803 .

435 438 NOTO QS*SBO ..* RCP-LOCA-750-90M . REC-XHE-FO-DGTMS +

437 101 11 4.29E-09 0.90399 /DGN-FTO IE-T1 MCW-CCF-VF-SBO

  • NOTL-S80U1 .

438 NOTO

  • NRAC-218M
  • OEP-DGN-FR-8HDG3
  • OEP-DGN-MA-DG01

SEQUENCE *SBO-L TOP EVENT SBO-L CONTAINS 32 EVENTS IN 216 CUT SETS THE FREQUENCY OF TOP EVENT SBO-L IS 3.50E-06 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT SBO-L N 1000 MEAN 4.72E-06 STD DEV 1.34E-05 LOWER 5% 7.92E-08 LOWER 25% 3.87E-07 MEDIAN 1.31E-06 UPPER 25% 3.S8E-06 UPPER 5% 2.05E-05 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD PARTIAL DERIVATIVE TEF FREQUENCY OF THE TOP EVENT EV(J) PROBABILITY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION= PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

= TEF(EVALUATED WITH EV(J) = 1) - TEF

SEQUENCE SBO-L RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

NOTQ 218 9.73E-01 ( 1. 0) 3.50E-06 ( 1. 0)

REC-XHE-FO-DGEN 203 9.00E-01 ( 2.0) 3.36E-06 ( 2.0) 7.62E-08 1.78E-05 QS-SBO 216 2.70E-01 ( 6.0) 3.01E-06 ( 3.0) 5.41E-08 1.74E-05 NRAC-1HR 22 4.40E-01 ( 5.0) 1. 93E-06 ( 4.5) 2.34E-08 1.13E-05 AFW-XHE-FO-CST2 22 8.50E-02 ( 9.0) 1.93E-06 ( 4.5) 2.34E-08 1.13E-05 OEP-DGN-FS-DG01 86 2.20E-02 ( 15.5) 1.70E-06 ( 6.0) 3.09E-08 8.82E-06 NRAC-HALFHR 127 6.00E-01 ( 3.0) 1.05E-06 ( 7.0) 1.49E-08 5.68E-06 OEP-D0N-FS-DG02 45 2.20E-02 ( 15.5) 8.72E-07 ( 8.0) 1.SSE-08 4.58E-06 OEP-DGN-FR-6HDG1 59 1.20E-02 ( 19.0) 8.64E-07 ( 9.0) 4.30E-09 5.58E-06 OEP-DGN-FS-D003 45 2.20E-02 ( 15.5) 8.46E-07 ( 10.0) 1.61E-08 4.43E-06 NRAC-6HR-AVG 67 1.94E-01 ( 7.0) 5.24E-07 ( 11. 0) 1.58E-09 2.70E-06 AFW-TDP-MA-FW2 63 1.00E-02 ( 23.5) 5.17E-07 ( 12.0) 2.38E-09 2.64E-06 AFW-TDP-FR-2P6HR 61 3.00E-02 ( 12.5) 5.15E-07 ( 13.0) 1.53E-09 2.69E-06 t'rj AFW-TDP-FS-FW2 58 1.10E-02 ( 21.5) 5.13E-07 ( 14. 0) 2.41E-09 2.59E-06 I OEP-DGN-FR-6HDG2 34 1.20E-02 ( 19.0) 4.69E-07 ( 15.0) 2.42E-09 2.96E-06 c:o OEP-DGN-FR-6HDG3 32 1.20E-02 ( 19.0) 4.56E-07 ( 16.0) 2.33E-09 3.03E-06 c:n NOTD0-CCF 18 5.20E-01 ( 4.0) 4.25E-07 ( 18.0)

OEP-DGN-FS 18 2.20E-02 ( 15.5) 4.25E-07 ( 18.0) 8.99E-09 1.6SE-08 BETA-2DG 18 3.80E-02 ( 10.0) 4.25E-07 ( 18.0) 8.99E-09 1.66E-06 OEP-DGN-MA-DG01 30 6.00E-03 ( 26.0) 3.69E-07 ( 20.0) 1.89E-09 1.43E-06 AFW-XHE-FO-U1SBO 73 8.20E-02 ( 8.0) 2.84E-07 ( 21.0) 2.82E-09 1.58E-06 OEP-DGN-MA-DG02 19 8.00E-03 ( 26.0) 1.99E-07 ( 22.0) 1.08E-09 7.85E-07 I

OEP-DGN-MA-D003 15 6.00E-03 ( 26.0) 1.84E-07 ( 23.0) 9.44E-10 7.14E-07 1

  • OEP-CRB-FT-15H3 22 3.00E-03 ( 28.5) 1.45E-07 ( 24.0) 7.36E-10 5.51E-07 OEP-CRB-FT-15J3 8 3.00E-03 ( 28.6) 6.36E-08 ( 25.0) 3.0BE-10 2.11E-07 AFW-TDP-FR-6HRU2 19 3.00E-02 ( 12.5) 3.5SE-08 ( 26.0) 3.11E-11 3.17E-07 AFW-CKV-OO-CV172 12 1.00E-03 ( 31. 0) 2.49E-08 ( 27.0) 6.43E-10 1.14E-07 AFW-TDP-FS-U2FW2 19 1.10E-02 ( 21.5) 2.17E-08 ( 28.0) 3.54E-11 1.96E-07 AFW-TDP-MA-U2FW2 17 1.00E-02 ( 23.5) 1.87E-08 ( 29.0) 3.32E-11 1.25E-07 OEP-DGN-FR-DG01 1 2.00E-03 ( 30.0) 5.11E-09 ( 30.0) 6.69E-12 1.41E-08 DGN-FTO 198 3.39E-02 ( 11. 0) -1.08E-07 ( 31. 0) -6.13E-07 -8.91E-10 RISK REDUCTION BY INITIATINQ EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ. (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-T1 216 7.70E-02 1. 0) 3.SOE-06 ( 1. 0) 7.92E-08 2.0SE-05

SEQUENCE SBO-L RISK INCREASE BV BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

OEP-DGN-FS-DG01 86 2.20E-02 ( 15.5) 7.54E-05 ( 1. 0) 2.84E-06 2.86E-04 OEP-DGN-FR-6HDG1 59 1.20E-02 ( 19.0) 7.12E-05 ( 2.0) 2.64E-06 2.58E-04 OEP-DGN-MA-DG01 30 6.00E-03 ( 26.0) 6.11E-05 ( 3.0) 2.05E-06 2.26E-04 AFW-TDP-MA-FW2 63 1.00E-02 ( 23.5) 5. 11E-05 ( 4.0) 2 .15E-06 2.46E-04 OEP-CRB-FT-15H3 22 3.00E-03 ( 28.5) 4.83E-05 ( 5.0) 1.71E-06 1.69E-04 AFW-TDP-FS-FW2 58 1.10E-02 ( 21.5) 4.62E-05 ( 6.0) 1.88E-06 2.29E-04 OEP-DGN-FS-DG02 45 2.20E-02 ( 15.5) 3.88E-05. ( 7.0) 1.49E-06 1.45E-04 OEP-DGN-FR-6HDG2 34 1.20E-02 ( 19.0) 3.86E-05 ( 8.0) 1.46E-06 1.43E-04 OEP-DGN-FS-DG03 45 2.20E-02 ( 15.5) 3.76E-05 ( 9.0) 1.40E-06 1.40E-04 OEP-DGN-FR-6HDG3 32 1.20E-02 ( 19.0) 3.76E-05 ( 10.0) 1.40E-06 1.33E-04 OEP-DGN-MA-DG02 19 6.00E-03 ( 26.0) 3.29E-05 ( 11.0) 1.15E-06 1.23E-04 OEP-DGN-MA-DG03 15 6.00E-03 ( 26.0) 3.06E-05 ( 12.0) 1.03E-06 1.13E-04 AFW-XHE-FO-CST2 22 6.50E-02 ( 9.0) 2.78E-05 ( 13.0) 7.74E-07 1.36E-04 AFW-CKV-OO-CV172 12 1.00E-03 ( 31.0) 2.49E-05 ( 14.0) 9.30E-07 1.22E-04 OEP-DGN-FS 18 2.20E-02 ( 15.5) 1.89E-05 ( 15.0) 6.96E-07 7.39E-05 trj I OEP-CRB-FT-15J3 8 3.00E-03 ( 28.5) 1.78E-05 ( 16.0) 5.95E-07 6.65E-05

<:o AFW-TDP-FR-2P6HR 61 3.00E-02 ( 12.5) 1.67E-05 ( 17. 0) 2.97E-07 8.96E-05 0)

BETA-2DG 18 3.80E-02 ( 10.0) 1.08E-05 ( 18.0) 3.49E-07 4.24E-05 QS-SBO 216 2.70E-01 ( 6. 0). 8.14E-06 ( 19.0) 2.29E-07 3.90E-05 AFW-XHE-FO-U1SBO 73 8,20E-02 ( 8.0) 3.18E-06 ( 20.0) 5.48E-08 1.67E-05 OEP-DGN-FR-DG01 1 2.00E-03 ( 30.0) 2.55E-06 ( 21.0) 1.74E-08 9.69E-06 NRAC-1HR 22 4.40E-01 ( 5.0) 2.46E-06 ( 22.0) 3.02E-08 1.41E-05 NRAC-6HR-AVG 137 1.94E-01 ( 7.0) 2.18E-06 ( 23.0) 1.12E-08 9. 13E-06 AFW-TDP-FS-U2FW2 19 1.10E-02 ( 21.5) 1.95E-06 ( 24.0) 3.20E-08 9.99E-06 AFW-TDP-MA-U2FW2 17 1.00E-02 ( 23.5) 1.86E-06 ( 25.0) 2.92E-08 8.88E-06 AFW-TDP-FR-6HRU2 19 3.00E-02 ( *12. 5) 1.15E-06 ( 26.0) 9.08E-09 6.15E-06 NRAC-HALFHR 127 6.00E-01 ( 3.0) 6.98E-07 ( 27.0) 8.10E-09 3.80E-06 NOTDG-CCF 18 5.20E-01 ( 4.0) 3.92E-07 ( 28.0)

REC-XHE-FO-DGEN 203 9.00E-01 ( 2.0) 3.73E-07 ( 29.0) 1.76E-09 1.58E-06 NOTQ 216 9,73E-01 ( 1. 0) 9.73E-08 ( 30,0)

DGN-FTO 198 3.39E-02 ( 11.0) -3.08E-06 ( 31. 0) -1.90E-05 -5.73E-08

SEQUENCE SBO-L UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK) Y. 05/TE. 05" Y. 95/TE. 95" OEP-DGN-FS-D002 45 2.20E-02 ( 14.5) 20.6 ( 2.5) 1.89 0.70 OEP-DGN-FS-DG03 45 2.20E-02 ( 14.5) 20.6 ( 2.5) 1.89 0.70 OEP-DGN-FS-DG01 86 2.20E-02 ( 14.5) 20.6 ( 2.5) 1.89 0.70 OEP-DGN-FS 18 2.20E-02 ( 14.5) 20.6 ( 2.5) 1.89 0.70 OEP-DGN-FR-6HDG2 34 1.20E-02 ( 18.0) 16.9 ( 6.0) 1.58 0.71 OEP-DGN-FR-6HDG1 59 1.20E-02 ( 18.0) 16.9 ( 6.0) 1. 58 0.71 OEP-DGN-FR-6HDG3 32 1.20E-02 ( 18.0) 16.9 ( 6.0) 1.58 0.71 OEP-DGN-FR-DG01 1 2.00E-03 ( 29.0) 16.4 ( 8.0) 1.00 1. 00 QS-SBO 216 2.70E-01 ( 5.0) 16.3 ( 9.0) 1.73 0.87 AFW-XHE-FO-CST2 22 6.50E-02 ( 8.0) *10. 6 ( 10.0) 1.43 0.80 OEP-DGN-MA-D002 19 6.00E-03 ( 25.0) 3.0 ( 12.0) 1.22 0.87 OEP-DGN-MA-D001 30 6.00E-03 ( 25.0) 3.0 ( 12.0) 1.22 0.87 OEP-DGN-MA-DG03 15 6.00E-03 ( 25.0) 3.0 ( 12.0) 1.22 0.87 AFW-TDP-MA-U2FW2 17 1.00E-02 ( 22.5) 2.2 ( 14.5) 1.23 1. 03 AFW-TDP-MA-FW2 63 1.00E-02 ( 22.5) 2.2 ( 14.5) 1.23 1.03 AFW-TDP-FS-U2FW2 19 1.10E-02 ( 20.5) 2.0 ( 16.5) 1.15 0.97 AFW-TDP-FS-FW2 58 1.10E-02 ( 20.5) 2.0 ( 16.5) 1.15 0.97 trj REC-XHE-FO-DGEN 203 9.00E-01 ( 2.0) 1. 3 ( 18.0) 1. 01 0.98 I NRAC-6HR-AVG 67 9.SOE-02 ( 6.0) 1.2 ( 19.0) 1.13 1. 00 co

....:i AFW-CKV-OO-CV172 12 1.00E-03 ( 30.0) 0.8 ( 20.0) 0.99 1. 00 BETA-2DG 18 3.80E-02 ( 9.0) 0.8 ( 21. 0) 0.97 0.99 OEP-CRB-FT-15J3 8 3.00E-03 ( 27.5) 0.6 ( 22.5) 1.10 1. 00 OEP-CRB-FT-15H3 22 3.00E-03 ( 27.5) 0.6 ( 22.5) 1.10 1. 00 DGN-FTO 198 3.39E-02 { 10.0) 0.4 ( 24.0)

NRAC-HALFHR 149 6.00E-01 { 3.0) 0.3 ( 25.0)

AFW-TDP-FR-6HRU2 19 3.00E-02 ( 11. 5) o.o ( 27.0)

AFW-XHE-FO-U1SBO 73 8.20E-02 ( 7.0) o.o ( 27.0)

AFW-TDP-FR-2P6HR 61 3.00E-02 ( 11 . 5) 0.0 ( 27.0)

NOTQ 216 9. 7.3E-01 ( 1. 0)

NOTDG-CCF 18 5.20E-01 ( 4.0)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y. 05/TE. 05* Y. 95/TE. 95*

IE-T1 216 7.70E-02 ( 1.0) 23.1 ( 1.0) 1. 95 0.98

~ Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS NOT HELD CONSTANT

SEQUENCE SBO*L CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT SBO-L WITH TOP EVENT FREQUENCY 3.50E-06 (THE FIRST coq.1uN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 3

2 9 2.43E-07 0.06947 AFW-XHE-FO-CST2 NRAC-1HR

  • /DGN-FTO
  • OEP-DGN-FS-DG01 .
  • IE-T1 OEP-DGN-FS-DG03 NOTQ
  • QS-SBO 4 REC-XHE-FO-DGEN +

5 1 9 2.43E-07 0. 13893 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 6 NRAC-1HR
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • QS-SBO
  • 7 REC-XHE-FO-DGEN +

8 3 9 2.26E-07 0.20351 AFW-XHE-FO-CST2

  • BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • 9 NOTQ
  • NRAC-1HR
  • OEP-DGN-FS
  • QS-SBO
  • 10 REC-XHE-FO-DGEN +

AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 11 12 6 9 1.33E-07 0.24140 NRAC-1HR . OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG01
  • QS-SBO
  • 13 REC-XHE-FO*DGEN +

14 5 9 1.33E-07 0.27929 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 15 NRAC-1HR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG03
  • QS-SBO
  • 16 REC-XHE-FO-DGEN +

17 4 9 1.33E-07 0.31718 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE*T1
  • NOTQ
  • trj 18 NRAC-1HR
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • QS-SBO
  • I 19 REC-XHE-FO*DGEN +

c.o 20 7 9 1.33E-07 0.35507 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 00 21 NRAC-1HR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02
  • QS-SBO
  • 22 REC-XHE-FO-DGEN +

23 8 8 8.05E-08 0.37804 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 24 NRAC-1HR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG3
  • QS-SBO +

25 9 9 7.24E-08 0.39871 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 26 NRAC-1HR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG2
  • QS-SBO
  • 27 REC-XHE-FO-DGEN +

28 11 9 6.64E-08 0. 41765 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 29 NRAC-1HR
  • OEP*DGN-FS-DG02
  • OEP-DGN*MA*DG01
  • QS*SBO
  • 30 REC-XHE-FO-DGEN +

31 10 9 6.64E-08 0.43660 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 32 NRAC-1HR
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG02
  • QS-SBO
  • 33 REC-XHE-FO-DGEN +

34 13 9 6.64E-08 0.4555"4 AFW-XHE-FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 35 NRAC-1HR
  • OEP-DGN-FS-DG03
  • OEP-DGN-MA-DG01
  • QS-SBO
  • 36 REC-XHE-FO*DGEN +

37 12 9 6.64E-08 0.47"449 AFW-XHE.:FO-CST2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 38 NRAC-1HR
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG03
  • QS-SBO
  • 39 40 41 15 9 5.62E-08 0.49052 REC-XHE-FO*DGEN AFW-TDP-FS-FW2 NRAC-HALFHR

+

  • /DGN-FTO
  • OEP-DGN-FS-DG01 IE-T1 OEP-DGN-FS-DG03
  • NOTQ
  • QS-SBO ..*

42 REC-XHE-FO-DGEN +

43 14 9 5.62E-08 0.50655 AFW-TDP-FS-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 44 NRAC*HALFHR
  • OEP-DGN-FS-DG01
  • OEP-DGN.-FS-DG02
  • QS-SBO
  • 45 REC-XHE-FO-DGEN +
  • 46 16 9 5.22E-08 0. 52145 AFW-TDP-FS-FW2
  • BETA-2DG
  • IE*T1
  • NOTDG*CCF

47 48 49 17 9 5.11E-08 0.53802 NOTQ REC-XHE-FO-DGEN AFW-TDP-MA-FW2

+

NRAC-HALFHR

/DGN-FTO OEP-DGN-FS IE-T1 QS-SBO NOTQ 50 NRAC-HALFHR OEP-DGN-FS-DG01 OEP-DGN-FS-DG03 QS-SBO 51 REC-XHE-FO-DGEN +.

NOTQ 52 53 18 9 5.11E-08 0.55080 AFW-TDP-MA-FW2 NRAC-HALFHR . /DGN-FTO OEP-DGN-FS-DG01 . IE-T1 OEP-DGN-FS-DG02 QS-880 54 REC-XHE-FO-DGEN +

NOTQ .*

55 58 36 9 4.95E-08 o.56473 AFW-TDP-FR-2P6HR NRAC-8HR-AVG

  • /DGN-FTO

. OEP-DGN-FS-DG01 .* IE-T1 OEP--DGN-FS-DG02

  • . QS-S60 57 REC-XHE-FO-DGEN AFW-TDP-FR-2P6HR

+

/DGN-FTO .. IE-T1 .. NOTQ ..

58 59 35 9 4.95E-08 0.57887 NRAC-8HR-AVG .* OEP-DGN-FS-DG01 OEP-DGN-FS-DG03 QS-SBO 60 REC-XHE-FO-DGEN + .. . IE-T1 . NOTDG-CCF .

61 82 23 9 4.75E-08 0.59242 AFW-TDP-MA-FW2 NOTQ-BETA-2DG NRAC-HALFHR . OEP-DGN-FS . QS-SBO .

REC-XHE-FO-DGEN .

83 +

64 37 9 4.61E-08 0.80556 AFW-TDP-FR-2P6HR BETA-2DG IE-T1

  • NOTDG-CCF
  • 65 NOTQ NRAC-6HR-AVG
  • OEP-DGN-FS
  • QS-SBO
  • 86 REC-XHE-FO-DGEN + . /DGN-FTO . IE-T1 . NOTQ .

67 68 22 9 3.62E-08 0.61589 AFW-XHE-FO-CST2 NRAC-1HR

  • OEP-DGN-FR-6HDG1 . OEP-DGN-MA-DG02
  • QS-SBO
  • 89 REC-XHE-FO-DGEN + . IE-T1 . NOTQ .

/:rj I

70 71 21 9 3.62E-08 0.62623 AFW-XHE-FO-CST2 NRAC-1HR .* /DGN-FTO OEP-DGN-FR-6HD02

  • OEP-DGN-MA-DG01 . QS-SBO *

<:o

<:o 72 REC-XHE-FO-DGEN +*

. /DGN-FTO IE-T1 .. NOTQ ..

  • OEP-DGN-FR-6HDG1 .

73 20 9 3.62E-08 0.83656 AFW-XHE-FO-CST2

  • 74 NRAC-1HR OEP-DGN-MA-D003 QS-SBO 75 REC-XHE-FO-DGEN +. . IE-T1 NOTQ 76 77 19 9 3.62E-08 0.64690 AFW-XHE-FO-CST2 NRAC-1HR . /DGN-FTO OEP-DGN-FR-8HDG3 . OEP-DGN-MA-DG01 .* QS-SBO 78 REC-XHE-FO-DGEN +

NOTQ .*

79 80 24 9 3.32E-08 0.65637 AFW-XHE-FO-CST2 NRAC-1HR .* /DGN-FTO OEP-CRB-FT-15H3 .

  • IE-T1 OEP-DGN-FS-DG02 .* QS-SBO 81 REC-XHE-FO-DGEN + . IE-T1 . NOTQ .*

82 83 25 9 3.32E-08 0.66584 AFW-XHE-FO-CST2 NRAC-1HR .* /DGN-FTO OEP-CRB-FT-15J3 . OEP-DGN-FS-0801 QS-SBO 84 REC-XHE-FO-DGEN + . NOTQ 85 86 28 9 3. 3_2E-08 0.67531 AFW-XHE-FO-CST2 NRAC-1HR .

  • /DGN-FTO OEP-CRB-FT-15H3
  • IE-T1 OEP-DGN-FS-DG03
  • QS-SBO 87 REC-XHE-FO-DGEN + . /DGN-FTO IE-T1 NOTQ 88 89 28 9 3.06E-08 0.68406 AFW-TDP-FS-FW2 NRAC-HALFHR
  • OEP-DGN-FR-8HDG1 . OEP-DGN-FS-DG02 QS-SBO
  • 90 REC-XHE-FO-DGEN +

. . IE-T1 NOTQ .

91 92 29 9 3.0SE-08 0.69280 AFW-TDP-FS-FW2 NRAC-HALFHR *

/DGN-FTO OEP-DGN-FR-6HDG2

  • OEP-DGN-FS-DG01 .* QS-SBO
  • REC-XHE-FO-DGEN + . . .

93 94 95 27 9 3.0SE-08 0.70155 AFW-TDP-FS-FW2 NRAC-HALFHR

/D8N-FTO OEP-DGN-FR-8HDG3

  • IE-T1 OEP-DGN-FS-DG01 . NOTQ QS-SBO .

96 REC-XHE-FO-DGEN +

97 98 33 9 2.79E-08 0.70949 AFW-TDP-MA-FW2 NRAC-HALFHR

  • /DGN-FTO

. OEP-DGN-FR-8HDG2 .

  • IE-T1 OEP-DGN-FS-DG01 .* NOTQ QS-SBO 99 REC-XHE-FO-DGEN +

/DGN-FTO IE-T1 . NOTQ ..

100 101 32 9 2.79E-08 o. 717.U AFW-TDP-MA-FW2 NRAC-HALFHR .* OEP-DGN-FR-8HDG1 .

OEP-DGN-FS-DG03

  • QS-SBO 102 REC-XHE-FO-DGEN +

103 104 30 9 2.79E-08 0.72539 AFW-TDP"-MA-FW2 NRAC-HALFHR .. /DGN-FTO OEP-DGN-FR-6HDG1 .. IE-T1 OEP-DGN-FS-0802 . NOTQ QS-SBO

  • 105 REC-XHE-:=O-DGEN +. . IE-T1 .. NOTQ ..

106 107 31 9 2.79E-08 0.73334 AFW-TDP-MA-FW2 NRAC-HALFHR . /DGN-FTO OEP-DGN-FR-6HDG3 . OEP-DGN-FS-0801 QS-SBO 108 REC-XHE-FO-DGEN +

109 53 9 2.70E-08 0.74105 AFW-TDP-FR-2P8HR NRAC-8HR-AVG

/DGN-FTO OEP~DGN-FR-8HDG1 IE-T1 OEP-DGN-FS-0802 NOTQ QS-SBO .

110 111 REC-XHE-FO-DGEN AFW-TDP-FR-2P8HR

+

. /DGN-FTO .. IE-T1 .. NOTQ ..

112 113 51 9 2.70E-08 0.74878 NRAC-6HR-AVG . OEP-DGN-FR-8HDG1 OEP-DGN-FS-0803 QS-SBO 114 REC-XHE-FO-DGEN +

115 52 9 2.70E-08 0.75847 AFW-TDP-FR-2P8HR NRAC-6HR-AVG . /DGN-FTO OEP-DGN-FR-6HDG2 . IE-T1 OEP-DGN-FS-0601 . NOTQ QS-SBO .

116 117 REC-XHE-FO-DGEN +

118 50 9 2.70E-08 0.76418 AFW-TDP-FR-2P6HR NRAC-8HR-AVG . /DGN-FTO OEP-DGN-FR-6HDG3 . IE-T1 OEP-DGN-FS-DG01 . NOTQ QS-SBO .

119 120 REC-XHE-FO-DGEN +

. . . NOTQ .

  • 121
  • 38 8 1.86E-08 0.76948 AFW-TDP-FS-FW2 . /DGN-FTO OEP-DGN-FR-8HDG1 .. IE-T1 OEP-DGN-FR-6HDG3 .. QS-SBO +

122 123 34 9 1.81E-08 0.77465 NRAC-HALFHR AFW-XHE-FO-CST2 .. /DGN-FTO . IE-T1 . NOTQ NRAC-1HR OEP-CRB-FT-15H3 OEP-DGN-FR-6HDG2 QS-SBO 124 125 126 39 8 1.69E-08 0.77947 REC-XHE-FO-DGEN AFW-TDP-MA-FW2

+

.. /DGN-FTO .. IE-T1 . . NOTQ .

NRAC-HALFHR OEP-DGN-FR-6HDG1 OEP-DGN-FR-6HDG3 QS-SBO +

tr1 I

1-->

127 128 129 40 9 1.67E-08 0.78424 AFW-TDP-FS-FW2 NRAC-HALFHR

  • /DGN-FTO
  • OEP-DGN-FR-8HDG1 *
  • IE-T1 OEP-DGN-FR-6HDG2 .
  • NOTQ QS-SBO 0

0 130 65 8 1.64E-08 0.78891 REC-XHE-FO-DGEN AFW-TDP-FR-2P6HR

+

  • /DGN-FTO

.. IE-T1 . NOTQ

  • 131 132 NRAC-SHR-AVG
  • OEP-DGN-FR-8HDG1

.. . OEP-DGN-FR-8HDG3 IE-T1 .* QS-SBO NOTQ

+

133 43 9 1.53E-08 0.79328 AFW-TDP-FS-FW2 NRAC-HALFHR

/DGN-FTO OEP-DGN-FS-0803

  • OEP-DGN-MA-0601 . QS-SBO 134 135 136 41 9 1.53E-08 0.79765 REC-XHE-FO-DGEN AFW-TDP-FS-FW2 .

+

/DGN-FTO . IE-T1

  • NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS-0801
  • OEP-DGN-MA-0802
  • QS-SBO
  • 137 138 REC-XHE-FO-DGEN +

NOTQ .

139 140 44 9 1.53E-08 0.80203 AFW-TDP-FS-FW2 NRAC-HALFHR

  • /DGN-FTO

. OEP-DGN-FS-0801 IE-T1 OEP-DGN-MA-0803 .* QS-SBO

  • 141 REC-XHE-FO-DGEN +

AFW-TDP-FS-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 142 143 42 9 1.53E-08 0.80840 NRAC-HALFHR . OEP-DGN-FS-0802
  • OEP-DGN-MA-D801
  • QS-SBO
  • 144 REC-XHE-FO-DGEN +

IE-T1

  • NOTQ .*

145 45 9 1.52E-08 0.81073 AFW-TDP-MA-FW2 NRAC-HALFHR . * /DGN-FTO OEP-DGN-FR-6HDG1 .* OEP-DGN-FR-6HDG2

  • QS-SBO 148 147 148 70 9 1.47E-08 0.81494 REC-XHE-FO-DGEN AFW-TDP-FR-2P8HR

+

  • /DGN-FTO

. IE-T1

  • NOTQ .

NRAC-8HR-AVG

  • OEP-DGN-FR-8HD81
  • OEP-DGN-FR-8HD82
  • QS-SBO
  • 149 150 151 48 9 1.39E-08 0.81891 REC-XHE-FO-DGEN AFW-TDP-MA-FW2 .

+

/DGN-FTO

  • IE-T1 . NOTQ .

152 NRAC-HALFHR

  • OEP-DGN-FS-DG02
  • OEP-DGN-MA-D801
  • QS-SBO
  • 153 REC-XHE-FO-DGEN +

154 49 9 1.39E-08 0.82289 AFW-TDP-MA-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 155 NRAC-HALFHR
  • OEP-DGN-FS-0801
  • OEP-DGN-MA-0802
  • QS-SBO
  • 166 REC-XHE-FO-DGEN +
  • /DGN-FTO

. IE-T1

  • NOTQ
  • 157 158 48 9 1.39E-08 0.82686 AFW-TDP-MA-FW2 NRAC-HALFHR
  • OEP-DGN-FS-DG03

. OEP-DGN-MA-D801

  • QS-SBO
  • 15.9 REC-XHE-FO-DGEN +

160 47 9 1.39E-08 0.83084 AFW-TDP-MA-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 181 NRAC-HALFHR
  • OEP-D8N-FS-DG01
  • OEP-DGN-MA-D803
  • QS-SBO
  • 162 REC-XHE-FO-DGEN +

163 81 9 1.35E-08 0.83469 AFW-TDP-FR-2P6HR * ./DGN-FTO

  • IE-T1
  • NOTQ
  • 164 NRAC-6HR-AV8
  • OEP-D8N-FS-D803
  • OEP-D8N-MA-D801
  • QS-880
  • 165 REC-XHE-FO-D8EN +

166 167 80 9 1.35E-08 0.83855 AFW-TDP-FR-2P6HR * /D8N-FTO NRAC-6HR-AVG . OEP-DGN-FS-DG02 .* IE-T1 OEP-DGN-MA-DG01 NOTQ QS-SBO REC-XHE-FO-D8EN + . ..

168 169 79 9 1.35E-08 0.84240 AFW-TDP-FR-2P6HR /DGN-FTO IE-T1 NOTQ .

170 NRAC-6HR-AVG

  • OEP-DGN-FS-0801 OEP-DGN-MA-DG03 QS-SBO 171 REC-XHE-FO-DGEN + . .

172 173 78 9 1.35E-08 0.84626 AFW-TDP-FR-2P6HR NRAC-6HR-AVG

/DGN-FTO

  • OEP-DGN-FS-DG01 IE-T1 OEP-DGN-MA-DG02 .
  • NOTQ QS-SBO
  • 174 REC-XHE-FO-DGEN +

175 55 10 1.25E-08 0.84981 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • OEP-DGN-FS-DG01 OEP-DGN-FS-DG02 176 177 NOTQ

/QS-SBO .* NRAC-HALFHR REC-XHE-FO-DGEN +

AFW-XHE-FO-U1SBO * /DGN-FTO IE-T1 178 54 10 1.25E-08 0.85337 AFW-TDP-FS-FW2 NOTQ

". NRAC-HALFHR . OEP-DGN-FS-DG01

  • OEP-DGN-FS-DG03
  • 179

/QS-880 . REC-XHE-FO-DGEN + ..

180 181 57 10 1.16E-08 0.85667 AFW-TDP-FS-FW2 .. AFW-XHE-FO-U1SBO * . BETA-2DG IE-T1 .

182 NOTDG-CCF NOTQ NRAC-HALFHR OEP-DGN-FS 183 /QS-SBO

  • REC-XHE-FO-DGEN +

t:rj 184 59 10 1.13E-08 0.85990 AFW-TDP-MA-FW2 . AFW-XHE-FO-U1SB0" /DGN-FTO

  • IE-T1
  • I 185 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • 1--'

REC-XHE-FO-DGEN +

0 1--'

186 187 58 10 1.13E-08 0.86313

/QS-SBO AFW-TDP-MA-FW2 .

AFW-XHE-FO-U1SBO" . /DGN-FTO

  • IE-T1 A NOTQ NRAC-HALFHR OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03
  • 188 189 /QS-880 .* REC-XHE-FO-DGEN + ..

AFW-XHE-FO-U1SBO" /DGN-FTO IE-T1 .

190 86 10 1.10E-08 0.86627 AFW-TDP-FR-2P6HR * . OEP-DGN-FS-DG01 OEP-DGN-FS-DG02 191 192 NOTQ

/QS-SBO .." NRAC-8HR-AVG REC-XHE-FO-DGEN + .

/D8N-FTO IE-T1 193 194 87 10 1.10E-08 0.86940 AFW-TDP-FR-2P6HR NOTQ . AFW-XHE-FO-U1SBO

  • NRAC-8HR-AV8 . OEP-DGN-FS-DG01 . OEP-D8N-FS-DG03 195 /QS-SBO .* REC-XHE-FO-D8EN + . IE-T1 .

196 197 60 10 1.05E-08 0.87240 AFW-TDP-UA-FW2 NOTDG-CCF . AFW-XHE-FO-U1SBO

  • NOTQ . BETA-2DG NRAC-HALFHR
  • OEP-DGN-FS .

198 /QS-SBO .* REC-XHE-FO-DGEN + . .

199 200 91 10 1.02E-08 0.87532 AFW-TDP-FR-2P6HR NOTDG-CCF . AFW-XHE-FO-U1SBO" NOTQ . BETA-2DG NRAC-6HR-AVG

  • IE-T1 OEP-DGN-FS .

201 /QS-880

  • REC-XHE-FO-DGEN + .. IE-T1 . NOTQ .

202 203 56 9 9.06E-09 0.87790 AFW-XHE-FO-CST2 NRAC-1HR

/DGN-FTO OEP-CRB-FT-15H3 OEP-DGN-UA-DG02 .* QS-SBO

  • 204 REC-XHE-FO-DGEN +

. /DGN-FTO . IE-T1 .* NOTQ .*

205 206 83 9 8.38E-09 0.88029 AFW-TDP-FS-FW2 NRAC-HALFHR

  • OEP-DGN-FR-6HDG2

. OEP-DGN-UA-DG01 QS-SBO 207 REC-XHE-FO-DGEN AFW-TDP-FS-FW2

+

  • /DGN-FTO ,
  • IE-T1 .. NOTQ .

208 209 81 9 8.3SE-09 0.88287 NRAC-HALFHR . OEP-DGN-FR-8HDG1

  • OEP-DGN-UA-DG03 QS-SBO 210 211 62 9 8.38E-09 0.88508 REC-XHE-FO-DGEN AFW-TDP-FS-FW2 .

+

/DGN-FTO

  • IE-T1
  • NOTQ
  • 212 NRAC-HALFHR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-DG02
  • QS-SBO
  • 213 REC-XHE-FO-DGEN +

21*4 64 9 8.36E-09 o. 88744 AFW-TDP-FS-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FR-8HDG3
  • OEP-DGN-MA-DG01
  • QS-SBO
  • 215 216 217 69 9 7.60E-09 0.88961 REC-XHE-FO-DGEN AFW-TDP-MA-FW2

+

  • /DGN-FTO
  • IE-T1
  • NOTQ .

218 NRAC-HALFHR

  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-DG03
  • QS-SBO
  • 219 REC-XHE-FO-DGEN +

220 68 9 7.60E-09 0.89178 AFW-TDP-MA-FW2 * /DGN-FTO

  • IE-T1
  • _NOTQ
  • 221 NRAC-HALFHR
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-MA-0001
  • QS-SBO
  • 222 REC-XHE-FO-DGEN +

67 9 7.60E-09 0.89394 AFW-tDP-MA-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 223 * -OEP-D0N-FR-6HDG1
  • OEP-D0N-MA-DG02
  • QS-SBO
  • 224 NRAC-HALFHR 225_ REC-XHE-FO-DGEN +

9 7.60E-09 0.89611 AFW-TDP-MA-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 226 66 OEP-DGN-FR-6HD02
  • OEP-DGN-MA-D001
  • QS-SBO
  • NRAC-HALFHR
  • 227 228 229 98 9 7.37E-09 0.89822 REC-XHE-FO-DGEN AFW-TDP-FR-2P6HR

+

  • /DGN-FTO .
  • IE-T1 .. NOTQ QS-880 230 NRAC-6HR-AVG
  • OEP-DGN-FR-6HD01 OEP-DGN-MA-D003 REC-XHE-FO-DGEN +

231 232 233 99 9 7.37E-09 0.90032 AFW-TDP-FR-2P6HR NRAC-6HR-AVG

  • /DGN-FTO

. OEP-D0N-FR-6HDG2 .

  • IE-T1 OEP-DGN-MA-0001 NOTQ QS-580 234 7.37E-09 0.90242 REC-XHE-FO-DGEN AFW-TDP-FR-2P6HR

+

  • /DGN-FTO . IE-T1 . NOTQ *.

235 100 9

  • QS-SBO 236 NRAC-6HR-AVG
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-MA-DG02 237 REC-XHE-FO-DGEN +
  • 238 97 9 7.37E-09 0.90452 AFW-TDP-FR-2P6HR * /DGN-FTO
  • IE-T1
  • NOTQ NRAC-6HR-AVG
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-MA-DG01
  • QS-SBO
  • 239 240 REC-XHE-FO-DGEN +

t,:j 241 242 73 9 6.97E-09 0.90651 AFW-TDP-MA-FW2 NRAC-HALFHR .

  • /DGN-FTO OEP-CRB-FT-15H3 *
  • IE-T1 OEP-D0N-FS-DG03
  • NOTQ
  • QS-SBO I 243 REC-XHE-FO-DGEN +

f--'

244 72 9 6.97E-09 0.90850 AFW-TDP-MA-FW2 * /DGN-FTO

  • IE-T1
  • NOTQ
  • 0 NRAC-HALFHR
  • OEP-CRB-FT-15J3
  • OEP-DGN-FS-D001
  • QS-SBO **

i,.:i 245 246 -REC-XHE-FO-DGEN +

NOTQ

  • 247 248 71 9 6.97E-09 0.91049 AFW-TDP-MA-FW2 NRAC-HALFHR

/DGN-FTO OEP-CRB-FT-15H3 IE-T1 OEP-DGN-FS-DG02 .* QS-880

  • 249 REC-XHE-FO-DGEN +

17 10 6.79E-09 0.91242 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 250 NRAC-HALFHR
  • OEP-D0N-FR-6HDG2
  • OEP-DGN-FS DG01 0

251 NOTQ

  • 252 /QS-SBO ** REC-XHE-FO-DGEN +

6.79E-09 0. 91436 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 253 76 10 OEP-DGN-FR-6HD03
  • OEP-D0N-FS-DG01
  • 254 NOTQ
  • NRAC-HALFHR
  • 255 /QS-SBO
  • REC-XHE-FO-DGEN +

10 6.79E-09 0.91630 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 256 75 NRAC-HALFHR OEP-DGN-FR-6HD01
  • OEP-DGN-FS-D003
  • 257 NOTQ *
  • 258 /QS-SBO
  • REC-XHE-FO-DGEN +

74 10 6.79E-09 0.91824 AFW-TDP-FS-FW2

  • AFW-XHE-FO-U1SBO * /DGN-FTO
  • IE-T1
  • 259 NRAC-HALFHR OEP-DGN-FR-6HD01
  • OEP-DGN-FS-D002
  • 260 NOTQ *
  • 261 /QS-880
  • REC-XHE-FO-DGEN +

262 108 9 6.76E-09 0. 92017 AFW-TDP-FR-2P6HR * /DGN-FTO

  • IE-T1
  • NOTQ
  • 263 NRAC-6HR-AVG * *OEP-CRB-FT-15H3
  • OEP-DGN-FS-D003
  • QS-SBO
  • 264 REC-XHE-FO-DGEN +

265 106 9 6.76E-09 0.92210 AFW-TDP-FR-2P6HR * /DGN-FTO

  • IE-T1
  • NOTQ
  • NRAC-6HR-AVG
  • OEP-CRB-FT-15J3
  • OEP-DGN-FS-D001
  • QS-SBO
  • 266 267 REC-XHE-FO-DGEN +

107 9 6.76E-09 o. 92402 AFW-TDP-FR-2P8HR * /DGN-FTO

  • IE-T1
  • NOTQ
  • 268 OEP-CRB-FT-15H3 OEP-DGN-FS-D002
  • QS-SBO
  • 269 NRAC-6HR-AVG *
  • 270 REC-XHE-FO-DGEN +

SEQUENCE SBO-SLOCA2 TOP EVENT .SBO-SLOCA2 CONTAINS 37 EVENTS IN 770 CUT SETS THE FREQUENCY OF TOP EVENT SBO-SLOCA2 IS 2.69E-06 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT SBO-SLOCA2 N 1000 MEAN 3.34E-06 STD DEV 7.22E-06 LOWER 6% O.OOE+OO LOWER 25% O.OOE+OO MEDIAN 1.09E-06 UPPER 25% 3.44E-06 UPPER 5% 1.44E-05 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF ~ FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

1. FOR BASE EVENTS AND iNITIATING EVENTS:

RISK REDUCTION* PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

~ PD x (1 - EV(J))

  • TEF(EVALUATED WITH EV(J) ~ 1) - TEF

SEQUENCE SBO-SLOCA2 RISK REDUCTION BY BASE EVENT {WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB {RANK) REDUCTION (RANK) LOWER 5~ UPPER 5%

NOTO 770 9.73E-01 ( 1. 0) 2.59E-OB ( 1.5)

NOTL-SB0U1U2 770 9.68E-01 ( 2.0) 2.59E-OB ( 1.5)

REC-XHE-FO-DGHWS 630 8.00E-01 ( 3.0) 2.56E-06 { 3.0) O.OOE+OO 1.27E-05 OEP-D0N-FS 147 2.20E-02 { 19.5) 2.21E-06 ( 4.0) O.OOE+OO 9.67E-06 RCP-LOCA-750-90M 110 5.30E-01 ( 5.0) 2.09E-06 ( 5.0) O.OOE+OO 1.27E-05 BETA-3DG 21 1.SOE-02 ( 22.0) 2.0SE-06 ( 6.0) O.OOE+OO 9.32E-06 NRAC-216M 93 1.38E-01 ( 10.0) 2.02E-06 ( 7.0) O.OOE+OO 1.21E-05 RCP-LOCA-467-150 110 1.27E-01 ( 11.0) 3.93E-07 ( 8.0) O.OOE+OO 2.60E-06 NRAC-258M 93 1.0SE-01 ( 14.0) 3.78E-07 ( 9.0) O.OOE+OO 2.48E-0S OEP-DGN-fS-DG03 231 2.20E-02 ( 19. 5). 2.07E-07 ( 11. 0) O.OOE+OO 1.86E-06 OEP-DGN-FS-DG02 231 2.20E-02 ( 19.5) 2.07E-07 ( 11. 0) O.OOE+OO 1.86E-06 OEP-DGN-FS-DG01 231 2.20E-02 ( 19.5) 2.07E-07 ( 11. 0) O.OOE+OO 1.86E-06 OEP-DGN-FR-6HDG3 217 1.20E-02 ( 27.0) 1.40E-07 ( 14.0) O.OOE+OO 1.23E-06 OEP-DGN-FR-6HDG2 217 1.20E-02 ( 27.0) 1.40E-07 ( 14.0) O.OOE+OO 1.23E-06 OEP-DGN-FR-6HDG1 217 1.20E-02 ( 27.0) 1.40E-07 { 14.0) O.OOE+OO 1.23E-06 txJ 4.88E-07 I BETA-2DG 126 3.SOE-02 ( 17.0) 1.24E-07 ( 16.5) O.OOE+OO I-'

NOTDG-CCF 126 5.20E-01 ( 6.0) 1.24E-07 ( 16.5) 0 NRAC-201M 17 1.50E-01 ( 9.0) 7.68E-08 ( 18.0) O.OOE+OO 4.04E-07

~

NRAC-7HR 330 5.00E-02 ( 15.0) 6.60E-08 ( 19.0) O.OOE+OO O.OOE+OO OEP-DGN-MA-DG03 112 6.00E-03 ( 30.0) 5.32E-08 C 21. 0) O.OOE+OO 2.7BE-07 OEP-D0N-MA-DG02 112 6.00E-03 ( 30.0) 5.32E-08 ( 21.0) O.OOE+OO 2.76E-07 OEP-DGN-MA-DG01 112 6.00E-03 ( 30.0) 5.32E-08 ( 21.0) O.OOE+OO 2.76E-07 NRAC-246M 110 1.15E-01 ( 13.0) 2.68E-08 ( 23.0) O.OOE+OO 8.49E-08 RCP-LOCA-1440-90 110 4.30E-03 ( 32.0) 2.58E-08 ( 24.5) O.OOE+OO O.OOE+OO NRAC-150M 110 2. 10E-01 ( 8.0) 2.68E-08 ( 24.6) O.OOE+OO O.OOE+OO OEP-CRB-FT-15J3 105 3.00E-03 ( 35.0) 2.40E-08 ( 27.0) O.OOE+OO 1. 45E-07 OEP-CRB-FT-15H3 105 3.00E-03 ( 35.0) 2.40E-08 ( 27.0) O.OOE+OO 1.45E-07 OEP-CRB-FT-26H3 105 3.00E-03 ( 35.0) 2.40E-08 ( 27.0) O.OOE+OO 1.45E-07 RCP-LOCA-183-210 110 1.61E-02 ( 23.5) 2.30E-08 ( 29.5) O.OOE+OO O.OOE+OO RCP-LOCA-183-150 110 1.61E-02 ( 23.5) 2.30E-08 ( 29.5) O.OOE+OO O.OOE+OO RCP-LOCA-183-90 110 1.40E-02 ( 25.0) 2.00E-08 ( 31. 0) O.OOE+OO O.OOE+OO REC-XHE-FO-DGTMS 84 7.00E-01 ( 4.0) 1.56E-08 ( 32.0) O.OOE+OO 8. 10E-08 RCP-LOCA-561-150 110 4.00E-03 ( 33.0) 1.32E-08 ( 33.0) O.OOE+OO O.OOE+OO 0 518 4.90E-02 ( 16.0) 1.5BE-09. ( 34.0) -2.85E-08 2.92E-08 NRAC-234M 17 1.23E-01 ( 12.0) 4.7BE-10 ( 36.0) O.OOE+OO O.OOE+OO QS-SBO 770 2.70E-01 ( 7.0) -9.27E-09 ( 36.0) -4.28E-08 O.OOE+OO RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-T1 770 7.70E-02 1. 0) 2.69E-06 ( 1.0) O.OOE+OO 1. UE-06

SEQUENCE SBO-SLOCA2 RISK INCREASE BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

BETA-3DG 21 1.80E-02 ( 22.0) 1.14E-04 ( 1. 0) O.OOE+OO 4.25E-04 OEP-DGN-FS 147 2.20E-02 ( 19.5) 9.82E-05 ( 2.0) O.OOE+OO 4.01E-04 NRAC-216M 93 1.38E-01 ( 10.0) 1.26E-05 ( 3.0) O.OOE+OO 7.54E-05 OEP-DGN-FR-6HD01 217 1.20E-02 ( 27.0) 1.15E-05 ( 5.0) O.OOE+OO 6.41E-05 OEP-DGN-FR-6HDG2 217 1.20E-02 ( 27.0) 1.15E-05 ( 5.0) O.OOE+OO 6.41E-05 OEP-DGN-FR-6HDG3 217 1.20E-02 ( 27.0) 1.15E-05 ( 5.0) O.OOE+OO 6.41E-05 OEP-DGN-FS-D003 231 2.20E-02 ( 19.5) 9.20E-06 ( 8.0) O.OOE+OO 5.27E-05 OEP-DGN-FS-D001 231 2.20E-02 ( 19.5) 9.20E-06 ( 8.0) O.OOE+OO 5.27E-05 OEP-DGN-FS-DG02 231 2.20E-02 ( 19.5) 9.20E-06 ( 8.0) O.OOE+OO 5.27E-05 OEP*DGN-MA-D002 112 6.00E-03 ( 30.0) 8.81E-06 ( 11.0) O.OOE+OO 5 .18E-05 OEP-DGN-MA-DG01 112 6.00E-03 ( 30.0) 8.81E-06 ( 11.0) O.OOE+OO 5 .18E-05 OEP-DGN-MA-DG03 112 6.00E-03 ( 30.0) 8.81E-06 ( 11.0) O.OOE+OO 5.18E-05 OEP-CRB-FT-15J3 105 3.00E-03 ( 35.0) 7.99E-06 ( 14.0) O.OOE+OO 4.93E-05 OEP-CRB-FT-25H3 105 3.00E-03 ( 35.0) 7.99E-06 ( 14.0) O.OOE+OO 4.93E-05 trj 105 3.00E-03 35.0) 7.99E-06 ( 14.0) O.OOE+OO 4.93E-05 I OEP-CRB-FT-16H3 (

f--1 RCP-LOCA-1440-90 110 4.30E-03 ( 32.0) 5.97E-06 ( 16.0) 2.09E-07 3.03E-05 0 RCP-LOCA-561-150 110 4.00E-03 ( 33.0) 3.28E-06 ( 17.0) 1.69E-07 1.69E-05 CJl BETA-2DG 126 3.80E-02 ( 17. 0) 3.13E-06 ( 18.0) O.OOE+OO 1.34E-05 NRAC-258M 93 1.08E-01 ( 14. 0) 3. 13E-06 ( 19.0) O.OOE+OO 2.29E-05 RCP*LOCA-467-150 110 1.27E-01 ( 11.0) 2.70E-06 ( 20.0) O.OOE+OO 1.51E-05 RCP*LOCA-750-90M 110 5.30E-01 ( 5.0) 1.86E-06 ( 21.0) O.OOE+OO 1.04E-05 RCP-LOCA-183-90 110 1.40E-02 ( 25.0) 1.41E-06 ( 22.0) 5.71E-08 7.78E-06 RCP-LOCA-183-210 110 1.61E-02 ( 23.5) 1.40E-06 ( 23.5) 3.99E-08 7.68E-06 RCP-LOCA-183-150 110 1.61E-02 ( 23.5) 1.40E-06 ( 23.5) 4.05E-08 7.78E-06 NRAC-7HR 330 5.00E-02 ( 15.0) 1.25E-06 ( 25.0) O.OOE+OO O.OOE+OO REC-XHE-FO-DGHWS 630 8.00E-01 ( 3.0) 6.40E-07 ( 26.0) O.OOE+OO 2.86E-06 NRAC-201M 17 1.50E-01 ( 9.0) 4.35E-07 ( 27.0) O.OOE+OO 2.25E-06 NRAC-248M 110 1.15E-01 ( 13.0) 2.0BE-07 ( 28.0) O.OOE+OO 5.12E-07 NOTDG-CCF 126 5.20E-01 ( 6.0) 1.14E-07 ( 29.0)

NRAC*150M 110 2.10E*01 ( 8.0) 9.70E-08 ( 30.0) O.OOE+OO O.OOE+OO NOTL-SBOU1U2 770 9.68E-01 ( 2.0) 8.57E-08 ( 31. 0)

NOTQ 770 9.73E-01 ( 1. 0) 7. 19E-08 ( 32.0) 0 518 4.90E-02 ( 16.0) 3.02E-08 ( 33.0) -6.73E-07 5.42E-07 REC-XHE-FO-DGTMS 84 7.00E-01 ( 4.0) 6.69E-09 ( 34.0) O.OOE+OO 2.42E-08 NRAC-234M 17 1.23E-01 ( 12.0) 3.39E-09 ( 35.0) O.OOE+OO O.OOE+OO QS-SBO 770 2.70E-01 ( 7.0) -2.51E-08 ( 36.0) -1.50E-07 O.OOE+OO

SEQUENCE S80-SLOCA2 UNCERTAINTY IMPORTANCE BY BASE EVENT.

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK) Y. 05/TE. 05" Y.95/TE.95" RCP-LOCA-750-90M 110 5.30E-01 ( 5.0) 44.8 ( 1.0) NA 0.98 RCP-LOCA-467-150 110 1.27E-01 ( 11. 0) 5.3 * ( 2.0) NA 1. 00 OEP-DGN-FS-DG03 231 2.20E-02 ( 19.5) 2.4 ( 4.5) NA 0. 77 OEP-DGN-FS 147 2.20E-02 ( 19.5) 2.4 ( 4.5) NA 0.77 OEP-DGN-FS-DG01 231 2.20E-02 ( 19.5) 2.4 ( 4.5) NA 0.77 OEP-DGN-FS-DG02 231 2.20E-02 ( 19.5) 2.4 ( 4.5) NA 0. 77 BETA-3DG 21 1.80E-02 ( 22.0) 1.7 ( 7.0) NA 0.89 NRAC-216M 93 1.38E-01 ( 10.0) 1. 5 ( 8.0) NA 0.95 OEP-DGN-FR-6HDG3 217 1.20E-02 ( 27.0) 1. 4 ( 10.0) NA* 0.84 OEP-DGN-FR-6HD02 217 1.20E-02 ( 27.0) 1. 4 ( 10.0) NA 0.84 OEP-DGN-FR-6HDG1 217 1.20E-02 ( 27.0) 1. 4 ( 10.0) NA 0.84 REC-XHE-FO-DGTMS 84 7.00E-01 ( 4.0) 1. 3 ( 12.0) NA 1.00 NRAC-150M 110 2.10E-01 ( 8.0) 1. 3 ( 13.0) NA 1. 00 NRAC-7HR 330 5.00E-02 ( 15.0) 1.3 ( 14.0) NA 1.00 NRAC-258M 93 1.08E-01 ( 14.0) 1. 3 ( 15.0) NA 1. 02 NRAC-201M 17 1. 50E-01 ( 9.0) 1. 3 ( 16.0) NA 1. 00 t:rj NRAC-246M 110 1.15E-01 ( 13.0) 1.3 ( 17.0) NA 1. 00 I REC-XHE-FO-DGHWS 630 8.00E-01 ( 3.0) 1. 2 ( 18.0) NA 0.99 I-'

0 NRAC-234U 17 1.23E-01 ( 12.0) 1.2 ( 19.0) NA 1. 00 O')

RCP-LOCA-1440-90 110 4.30E-03 ( 32.0) 0.8 ( 20.0) NA 1. 01 0 518 4.90E-02 ( 16.0) 0.7 ( 21.0) NA 1. 00 OEP-CRB-FT-15J3 105 3.00E-03 ( 35.0) 0.5 ( 23.0) NA 0.95 OEP-CRB-FT-15H3 105 3.00E-03 ( 35.0) 0.5 ( 23.0) NA 0.95 OEP-CRB-FT-25H3 105 3.00E-03 ( 35.0) 0.5 ( 23.0) NA 0.95 OEP-DGN-MA-DG03 112 6.00E-03 ( 30.0) 0.4 ( 26.0)

OEP-DGN-UA-DG02 112 6.00E-03 ( 30.0) 0.4 ( 26.0)

OEP-DGN-MA-D001 112 6.00E-03 ( 30.0) 0.4 ( 26.0)

RCP-LOCA-183-210 110 1.61E-02 ( 23.5) 0.3 ( 28.0)

BETA-2DG 126 3.SOE-02 ( 17. 0) 0.2 ( 29.0)

RCP-LOCA-561-150 110 4.00E-03 ( 33.0) 0.2 ( 30.0)

RCP-LOCA-183-150 110 1.61E-02 ( 23.5) 0.2 ( 31. 0)

RCP-LOCA-183-90 110 1.40E-02 ( 25.0) 0. 1 ( 32.0)

QS-SBO 770 2.70E-01 ( 7.0) 0.0 ( 33.0)

NOTDG-CCF 126 5.20E-01 ( 6.0)

NOTQ 770 9.73E-01 ( 1. 0)

NOTL-SBOU1U2 770 9.68E-01 ( 2.0)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

"'REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y. ostTE. os* Y. 95/TE. 95*

IE-T1 770 7.70E-02 ( 2.0) 1. 8 ( 36.0) NA 0.96

  • Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS D CONSTANT AT ITS MEAN VALUE

SEQUENCE S80-SLOCA2 CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT SBO-SLOCA2 WI-TH TOP EVENT FREQUENCY 2.59E-06 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF)

BETA-3DG . IE-T1 .. NOTL-S80U1U2 .. NOTQ ..

2 3

1 10 1.17E-06 0.45000 NRAC-216M . 10 OEP-DGN-FS /QS-SBO 4 RCP-LOCA-750-BOM" REC-XHE-FO-DGHWS +

.. NOTL-SBOU1U2 NOTQ

  • 5 6

2 9 4.54E-07 0.62502 BETA-3DG NRAC-216M

  • IE-T1
  • OEP-DGN-FS QS-SBO .* RCP-LOCA-750-90M
  • 7 8 111 10 2. 19E-07 0.70941 REC-XHE-FO-DGHWS +

BETA-3DG . IE-T1 . NOTL-S80U1U2 . NOTQ

  • 9 NRAC-258M
  • 10
  • OEP-DGN-FS * /QS-SBO
  • 10 RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

11 112 9 8.51E-08 0.74223 BETA-3DG

  • IE-T1
  • NOTL-S80U1U2
  • NOTQ
  • 12 NRAC-258M
  • OEP-DGN-FS
  • QS-SBO
  • RCP-LOCA-467-150
  • 13 REC-XHE-FO-DGHWS +

NOTQ 14 15 3 10 6.53E-08 0.76743 BETA-3DG NRAC-201M

  • 0 IE-T1
  • NOTL-SBOU1U2 OEP-DGN-FS .* /QS-SBO ti:j I 16 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

1--' 17 4 11 3 .14E-08 o. 77953 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-216M
  • 0

-.::i 18 10

  • OEP*DGN-FS-0801
  • OEP-DGN-FS-DG02
  • OEP-DGN-FS-DG03 "
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

19 20 5 11 1.71E-08 0.78613

/QS-SBO IE-T1 . NOTL-SBOU1U2

  • NOTQ NRAC-216M
  • 21 10
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02
  • OEP-DGN*FS-DG03
  • 22 JQS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

23 7 11 1.71E-08 0.79273 IE-T1

  • NOTL-SBOU1U2
  • NOTQ
  • NRAC-218M
  • 24 /0 *. OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03
  • 25 JQS-SBO RCP-LOCA-750-90U
  • REC-XHE-FO-DGHWS +

28 8 11 1.71E-08 0.79933 IE-T1

  • NOTL-SBOU1U2
  • NOTQ
  • NRAC-216M
  • 27 /0
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-0802
  • 28 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

29 8 12 1.54E-08 0.80526 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-SBOU1U2
  • 30 NOTQ
  • NRAC-216M * /0
  • OEP-DGN-FR-6HDG3
  • 31 OEP-DGN-FS * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

32 9 12 1.54E-08 0.81119 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-SBOU1U2
  • 33 NOTQ
  • NRAC-218M
  • 10
  • OEP-DGN-FR-6HDG2
  • 34 OEP-DGN-FS * /QS-SBO
  • RCP-LOCA-760-90M
  • REC-XHE-FO-DGHWS +

35 10 12 1.54E-08 0.81711 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-SBOU1U2
  • 38 NOTQ
  • NRAC-216M * /0
  • OEP-DGN-FR-6HDG1
  • 37 OEP-DGN-FS * /QS-SBO
  • RCP-LOCA-750-90M .* REC-XHE-FO-DGHWS +

38 39 441 10 1.44E-08 0.82267 BETA-3DG NRAC-150M

  • IE-T1
  • 10
  • NOTL-SBOU1U2
  • OEP-DGN-FS

. NOTQ JQS-SBO .*

40 RCP-LOCA-1440-90" REC~XHE-FO-DGHWS IE-T1

+

  • NOTL-SBOU1U2

. NOTQ *.

41 42 331 10 1.28E-08 0.82762 BETA-308 NRAC-7HR .

JO

  • OEP-DGN-FS * /QS-SBO 43 RCP-LOCA-183-210
  • REC-XHE-FO-DGHWS +
  • IE-T1
  • NOTL-SB0U1U2
  • NOTQ .

44 45 221 10 1.28E-08 0.83268 BETA-3DG NRAC-7HR

  • JO . OEP-DGN-FS
  • JQS-SBO
  • 46 RCP-LOCA-183-150
  • REC-XHE-FO-DGHWS +

NOTL-S80U1U2

  • NOTQ
  • NRAC-218M
  • 47 48 11 10 1.22E-08 0.83728 IE-T1 OEP-DGN-FS-DG01 .* OEP-DGN-FS-DG02
  • OEP-DGN-FS-DG03
  • QS-SBO
  • 49 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

113 10 1.20E-08 0.84191 BETA-3DG

  • IE-T1
  • NOTL-S80U1U2
  • NOTQ
  • 60
  • OEP-DGN-FS * /QS-SBO
  • 51 NRAC-248M
  • 0 52 RCP-LOCA-487-150
  • REC-XHE-FO-DGHWS +

551 10 1.12E-08 0.84822 BETA-3DG

  • IE-T1
  • NOTL-S80U1U2
  • NOTQ
  • 53 10
  • OEP-DGN-FS * /QS-SBO
  • 54 NRAC-7HR
  • 55 56 14 11 9.33E-09 0.84982 RCP-LOCA-183-90 IE-T1
  • NOTL-S80U1U2 .

REC-XHE-FO-DGHWS +

NOTQ

  • NRAC-216M *

/0

  • OEP-DGN-FR-8HDG2
  • OEP-DGN-FR-6HDG3
  • OEP,DGN-FS-DG01
  • 57 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

58 /QS-SBO

  • NRAC-218M 0.85342 IE-T1
  • NOTL-S80U1U2
  • NOTQ *
  • 59 13 11 9.33E-09 OEP-DGN-FR-6HDG2 OEP-DGN-FS-DG03
  • 60 /0 ** OEP-DGN-FR-6HDG1 * *

/QS-SBO

  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

61 N0TL-S80U1U2

  • NOTQ
  • NRAC-216M
  • 62 12 11 9.33E-09 0.85702 IE-T1
  • OEP-DGN-FS-DG02 *

/0

  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG3
  • 63 RCP-LOCA-750-90M REC-XHE-FO-DGHWS +

64 /QS-SBO *

  • NOTQ
  • NRAC-216M
  • 65 16 11 8.56E-09* 0.86032 IE-T1

/0

  • NOTL-S80U1U2 OEP-DGN-FS-DG01 .

OEP-DGN-FS-DG03

  • OEP-DGN-MA-DG02
  • 66 67 /QS-SBO .

RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS +

0.86362 IE-T1

  • NOTL-SB0U1U2
  • NOTQ
  • NRAC-216M
  • 68 15 11 8.56E-09 OEP-DGN-FS-DG02
  • OEP-DGN-MA-DG03
  • 69 /0
  • OEP-DGN-FS-DG01
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

t?j I

70 71 72 17 11 8.56E-09 0.86692

/QS-SBO IE,T1

/0 N0TL-SB0U1U2 OEP-DGN-FS-DG02 NOTQ OEP-DGN-FS-DG03 NRAC-216M OEP-DGN-MA-DG01 .*

I-"

0 73 /QS-SBO BETA-2DG RCP-LOCA-750-90M IE-T1 REC-XHE-FO-DGHWS NOTDG-CCF .

+

NOTL-SB0U1U2 .

00 74 20 12 7.68E-09 0. 86988 NOTQ

  • NRAC-216M
  • 10
  • OEP-DGN-FS
  • 75 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

76 OEP-DGN-MA-DG01

  • NOTDG-CCF
  • NOTL-SB0U1U2
  • 77 78 18 12 7.68E-09 0.87285 BETA-2DG NOTQ .
  • IE-T1 NRAC-216M
  • 10
  • OEP-DGN-FS
  • OEP-DGN-MA-DG02 * /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

79 IE-T1

  • NOTDG-CCF
  • NOTL-S80U1U2
  • 80 19 12 7.68E-09 0.87581 BETA-2DG *
  • 10
  • OEP-DGN-FS
  • 81 NOTQ OEP-DGN-MA-DG03 NRAC-216M

/QS-SBO . RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS +

82 IE-T1

  • NOTL-SB0U1U2
  • NOTQ
  • 83 681 10 7.34E-09 0.87884 BETA-3DG
  • NRAC-246M
  • 10
  • OEP-DGN-FS * /QS-SBO
  • 84 REC-XHE-FO-DGHWS +

85 RCP-LOCA-561-150 *

. NRAC-216M 0.88121 IE-T1 NOTL-SB0U1U2

  • NOTQ *
  • 88 21 10 6.65E-09 QS-SBO
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • 87 88 OEP-DGN-FR-6HDG3 RCP-LOCA-750-90M .

REC-XHE-FO-DGHWS +

0. 88377 IE-T1
  • NOTL-S80U1U2
  • NOTQ
  • NRAC-216M
  • 89 22 10 6.65E-09 QS-SBO *
  • 90 OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02
  • OEP-DGN-FS-DG03
  • 91 RCP-LOCA-750-90U
  • REC-XHE-FO-DGHWS +

92 23 10 6.65E-09 0,88634 IE-T1

  • NOTL-SB0U1U2
  • NOTQ.
  • NRAC-218M
  • OEP-DGN-FR-8HDG2
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03
  • QS-SBO
  • 93 REC-XHE-FO-DGHWS +

94 RCP-LOCA-750-90M

  • 95 24 10 6.36E-09 0.88880

/0 IE-T1

  • NOTL-S80U1U2 OEP-DGN-FR-6HDG1
  • NOTQ *
  • *OEP-D8N-FR-6HDG2
  • NRAC-216M OEP-D8N-FR-6HDG3 .

96 RCP-LOCA-750-90M +

97 /QS-SBO

  • NOTL-S80U1U2
  • 98 27 11 5.98E-09 0.89110 BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • NOTQ
  • NRAC-218M
  • OEP-DGN-FR-8HDG2
  • OEP-DGN-FS
  • 99 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

100 QS-SBO

  • NOTL-SB0U1U2 101 25 11 5.98E-09 0.89341 BETA-2DG NOTQ IE-T1 NRAC-218M
  • NOTDG-CCF
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS .

102

103 104 26 11 5.98E-09 0.89571 QS-SBO BETA-2DG RCP-LOCA-750~90M

  • IE-T1
  • REC-XHE-FO-DGHWS NOTDG-CCF OEP-DGN-FR-.8HDG1

+

NOTL-SB0U1U2 OEP-DGN-FS 105 NOTQ

  • NRAC-218M
  • 106 QS-SBO
  • RCP-LOCA-760-90M
  • REC-XHE-FO-DGHWS +

107 114 11 5.88E-09 0.89798 IE-T1

  • NOTL-SB0U1U2
  • NOTQ
  • NRAC-258U
  • 108 10
  • OEP-DGN-FS-0801
  • OEP-DGN-FS-0802
  • OEP-DGN-FS-DG03
  • 109 /QS-SBO
  • RCP-LOCA-467-150
  • REC-XHE-FO-DGHWS +

110 442 9 5.60E-09 0.90014 BETA-3DG

  • IE-T1
  • NOTL-S80U1U2
  • NOTQ
  • 111 NRAC-150M
  • OEP-DGN-FS
  • QS-SBO
  • RCP-LOCA-1440-90
  • 112 REC-XHE-FO-DGHWS +.

113 332 9 4.99E-09 0.90207 BETA-3DG IE-T1

  • NOTL-SB0U1U2
  • NOTQ
  • 114 NRAC-7HR
  • OEP-DGN-FS
  • QS-SBO
  • RCP-LOCA-183-210
  • 115 116 222 9 4.99E-09 0.90399 REC-XHE-FO-DGHWS BETA-3DG .

+

IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • 117 NRAC-7HR
  • OEP-DGN-FS
  • QS-SBO
  • RCP-LOCA-183-150
  • 118 REC-XHE-FO-DGHWS +

NOTQ NRAC-216M 119 120 30 11 4.67E-09 0.90579 IE-T1 10 *

  • NOTL-S80U1U2 OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02 .* OEP-DGN-MA-DG03

/QS-SBO RCP-LOCA-750-90M

  • REC-XHE-FO-DGHWS +

121 122 28 11 4.87E-09 0.90759 IE-T1 ..

NOTL-S80U1U2 .* NOTQ

  • NRAC-216M
  • 123 10 OEP-DGN-FR-6HDG1 OEP-DGN-FS-DG03
  • OEP-DGN-MA-DG02
  • 124 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

125 32 11 4.67E-09 0.90939 IE-T1

  • NOTL-SB0U1U2
  • NOTQ
  • NRAC-216M
  • 126 10
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG01
  • OEP-DGN-MA-DG03
  • 127 128 31 11 4.67E-09 0.91119

/QS-SBO IE-T1 .* RCP-LOCA-750-90M' NOTL-S80U1U2 OEP-DGN-FR-6HDG2 REC-XHE-FO-DGHWS NOTQ OEP-DGN-FS-DG03

+

  • NRAC-216M
  • OEP-DGN-MA-DG01 tp

,_. 129 10 *

  • 0 130 131 29 11 4.67E-09 0.91299

/QS-SBO IE-T1 ..* RCP-LOCA-750-90M NOTL-SB0U1U2 ..* REC-XHE-FO-DGHWS NOTQ

+

.. NRAC-216M ..

co OEP-DGN-FR-6HDG3 OEP-DGN-FS-DG01 OEP-DGN-MA-DG02 132 133 10

/QS-SBO .. RCP-LOCA-750-90M . REC-XHE-FO-DGHWS +

134 33 11 4.67E-09 0.91479 IE-T1 NOTL-S80U1U2

  • NOTQ
  • NRAC-216M
  • 135 10
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG02
  • OEP-DGN-MA-DG01
  • 136 /QS-SBO
  • RCP-LOCA-760-90M
  • REC-XHE-FO-DGHWS +

137 552 9 4.34E-09 0.91647 BETA-3DG

  • IE-T1
  • NOTL-SBOU1U2
  • NOTQ
  • 138 NRAC-7HR
  • OEP-DGN-FS
  • QS-SBO
  • RCP-LOCA-183-90
  • 139 REC-XHE-FO-DGHWS +

IE-T1 NOTL-SBOU1U2

  • NOTQ
  • NRAC-216M
  • 140 141 34 11 4.28E-09 0.91812 10 .*

OEP-CRB-FT-15J3

  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • 142 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

143 35 11 4.28E-09 0.91977 IE-T1

  • NOTL-SB0U1U2
  • NOTQ
  • NRAC-216M
  • 144 10
  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG02
  • OEP-DGN-FS-DG03
  • 145 /QS-SBO
  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

146 36 11 4.28E-09 0.92142 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-216M
  • 147 /0
  • OEP-CRB-FT-25H3
  • OEP-DGN-FS-0801
  • OEP-DGN-FS-DG03 "

148 /QS-SBO

  • RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

149 39 10 3.63E-09 0.92282 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-216M
  • 150 OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG02
  • QS-SBO
  • 151 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

152 38 10 3.63E-09 0.92422 IE-T1

  • NOTL-SBOU1U2
  • NOTQ
  • NRAC-216M
  • 153 OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG03
  • QS-SBO
  • 154 RCP-LOCA-750-90M
  • REC-XHE-FO-DGHWS +

155 37 10 3.63E-09 0.92562 IE-T1

  • NOTL-SBOU1U2
  • NOTQ
  • NRAC-216M
  • 166 OEP-DGN-FR-6HDG2
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • QS-SBO
  • 157 RCP-LOCA-750-90U
  • REC-XHE-FO-DGHWS +

158 41 10 3.33E-09 0.92890 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-218M
  • SEQUENCE V TOP EVENT V CONTAINS 3 EVENTS IN 3 CUT SETS THE FREQUENCY OF TOP EVENT V IS 1.20E-06 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT V N 1000 MEAN 1.62E-06 STD DEV 8.02E-08 LOWER 5% 3.77E-11 LOWER 25% 3.31E-09 MEDIAN 4.88~-08 UPPER 25% 3.72E-07 UPPER 5% 5.26E-06 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN) 5%= 3.77E-11 ***LOG SCALE*** 95%= *5.28E-08 1--------------------------------------[-----------------------*-----------------J---------N-M----------1 NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION= PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

= TEF(EVALUATED WITH EV(J) = 1) - TEF

SEQUENCE V RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INI T EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-V-TRAIN-2 1 4.00E-07 2.0) 4.00E-07 2.0) 1.26E-11 1.75E-06 IE-V-TRAIN-3 1 4.00E-07 2.0) 4.00E-07 2.0) 1.26E-11 1.75E-06 IE-V-TRAIN-1 1 4.00E-07 2.0) 4.00E-07 2.0) 1.26E-11 1.75E-06

SEQUENCE V UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK)

IE-V-TRAIN-2 1 4.00E-07 ( 2.0) 100.0 ( 2.0)

IE-V-TRAIN-3 1 4.00E-07 ( 2.0) 100.0 ( 2.0)

IE-V-TRAIN-1 1 4.00E-07 ( 2.0) 100.0 ( 2.0)

  • Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS tHE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS NOT HELD CONSTANT

SEQUENCE V CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT V WITH TOP EVENT FREQUENCY 1.20E-06 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 2 1 4.00E-07 0.33333 IE-V-TRAIN-2 +

3 3 1 4.00E-07 0.66667 IE-V-TRAIN-3 +

4 1 1 4.00E-07 1.00000 IE-V-TRAIN-1

SEQUENCE SBO-Q TOP EVENT SBO-Q CONTAINS 23 EVENTS IN 92 CUT SETS THE FREQUENCY OF TOP EVENT SBO-Q IS 1.92E-06 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT SBO-Q N 1000 MEAN 2.21E-06 STD DEV 8.99E-08 LOWER 6% 9.09E-09 LOWER 26% 8.31E-08 MEDIAN 3.36E-07 UPPER 26% 1.21E-06 UPPER 6% 8.68E-08 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION= PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

= TEF(EVALUATED WITH EV(J) = 1) - TEF

SEQUENCE SBO-Q RISK REDUCTION BY BASE EVENT {WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5" UPPER 5%

SBO-PORV-DMD 92 4.50E-01 ( 4.0) 1.92E-08 ( 2.0) 9.09E-.09 8.88E-08 NRAC-1HR 92 4.40E-01 { 5.0) 1. 92E-08 ( 2.0) 9.09E-09 8.88E-08 NOTL-SB0U1 92 9.93E-01 ( 1. 0) 1. 92E-06 ( 2.0)

REC-XHE-FO-DGEN 88 9.00E-01 ( 2.0) 1.91E-08 ( 4.0) 8.95E-09 8.84E-08 OEP-DGN-FS-DG01 28 2.20E-02 ( 12.5) 1.09E-08 ( 5.0) 4.17E-09 5.03E-08 PPS-SOV-00-1456 46 3.00E-02 ( 9.5) 9.61E-07 ( 8.5) 4.55E-09 4.34E-06 PPS-SOV-00-14550 46 3.00E-02 ( 9.5) 9.61E-07 ( 6.5) 4.55E-09 4.34E-06 OEP-DGN-FS-D803 18 2.20E-02 ( 12.5) 5.73E-07 ( 8.5) 2.32E-09 2.83E-06 OEP-DGN-FS-D002 16 2.20E-02 ( 12.5) 5.73E-07 ( 8.5) 2.32E-09 2.63E-08 BETA-2DG 4 3.80E-02 ( 7.0) 3.55E-07 ( 11.0) 1.67E-09 1.42E-06 OEP-DGN-FS 4 2.20E-02 ( 12.5) 3.55E-07 ( 11.0) 1.87E-09 1.42E-08 NOTDG-CCF 4 5.20E-01 ( 3.0) 3.55E-07 ( 11. 0)

OEP-DGN-MA-DG01 18 6.00E-03 ( 16.0) 2.38E-07 ( 13.0) 2.76E-10 7.10E-07 OEP-CRB-FT-15H3 20 3.00E-03 ( 18.5) 1.37E-07 ( 14. 0) 1.95E-10 3.85E-07 OEP-DGN-MA-DG02 12 8.00E-03 ( 18.0) 1.28E-07 ( 15.0) 1.39E-10 4.04E-07 OEP-DGN-MA-0803 10 6.00E-03 ( 16.0) 1.24E-07 ( 16.0) 1.39E-10 3.71E-07 trj OEP-DGN-FR-D801 22 2.00E-03 ( 21. 0) 9.72E-08 ( 17. 0) 1.49E-10 3.39E-07 I OEP-CRB-FT-15J3 8 3.00E-03 ( 18.5) 8.83E-08 ( 18.0) 9.89E-11 1.87E-07 I-' OEP-DGN-FR-0802 14 2.00E-03 ( 21.0) 5.13E-08 ( 19.0) 8.00E-11 1.78E-07 I-'

Ul OEP-DGN-FR-0803 12 2.00E-03 ( 21. 0) 5.06E-08 ( 20.0) 8.06E-11 1.76E-07 QS-SBO 92 2.70E-01 ( 8.0) -1.23E-08 ( 21.0) -9.84E-08 -2.83E-12 DGN-FTO 88 3.39E-02 ( 8.0) -5.50E-08 ( 22.0) -2.47E-07 -1.38E-10 RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-T.1 92 7.70E-02 1. 0) 1.92E-08 ( 1. 0) 9.09E-09 8.88E-08

SEQUENCE SBO-Q RISK INCREASE BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5" OEP-DGN-FS-DG01 28 2.20E-02 ( 12.5) 4.87E-05 ( 1. 0) 3.52E-07 1.91E-04 OEP-DGN-FR-DG01 22 2.00E-03 ( 21.0) 4.85E-05 ( 2.0) 3.58E-07 1.79E-04 OEP-CRB-FT-15H3 20 3.00E-03 ( 18.5) 4.57E-05 ( 3. O*) 3.4SE-07 1.70E-04 OEP-DGN-MA-DG01 18 6.00E-03 ( 16.0) 3.94E-05 ( 4.0) 3.25E-07 1.46E-04 PPS-SOV-00-1455C 46 3.00E-02 ( 9.5) 3.11E-05 ( 5.5) 1.05E-06 1.54E-04 PPS-SOV-00-1456 46 3.00E-02 ( 9.5) 3.11E-05 ( 5.5) 1.05E-06 1.54E-04 OEP-DGN-FR-DG02 14 2.00E-03 ( 21.0) 2.56E-05 ( 7.0) 1.82E-07 9.71E-05 OEP-DGN-FS-DG03 16 2.20E-02 ( 12.5) 2.55E-05 ( 8.5) 1.79E-07 1.04E-04 OEP-DGN-fS-DG02 16 2.20E-02 ( 12.5) 2.55E-05 ( 8.5) 1.79E-07 1.04E-04 OEP-DGN-FR-DG03 12 2.00E-03 ( 21.0) 2.53E-05 ( 10.0) 1.83E-07 9.02E-05 OEP-CRB-FTs15J3 8 3.00E-03 ( 18.5) 2.21E-05 ( 11. 0) 1.71E-07 7. 17E-05 OEP-DGN-MA-DG02 12 6.00E-03 ( 16.0) 2.12E-05 ( 12.0) 1.67E-07 8.02E-05 OEP-DGN-MA-DG03 10 S.OOE-03 ( 16.0) 2.06E-05 ( 13.0) 1. 6SE-07 7.45E-05 OEP-DGN-FS 4 2.20E-02 ( 12.5) 1.58E-05 ( 14.0) 1.15E-07 5.41E-05 BETA-2DG 4 3.BOE-02 ( 7.0) 9.00E-06 ( 15.0) 6.55E-08 3.34E-05 NRAC-1HR 92 4.40E-01 ( 5.0) 2.45E-06 ( 16.0) 1.10E-08 9.80E-06 SBO-PORV-DMD 92 4.50E-01 ( 4.0) 2.35E-06 ( 17.0) 9.19E-09 1.07E-05 NOTDG-CCF 4 5.20E-01 ( 3.0) 3.28E-07 ( 18.0) l:rj I REC-XHE-FO-DGEN 36 9.00E-01 ( 2.0) 2.12E-07 ( 19.0) 2.49E-10 9.14E-07 I-' NOTL-SBOU1 92 9.93E-01 ( 1. 0) 1.36E-08 ( 20.0)

I-'

O") QS-SBO 92 2.70E-01 ( 6.0) -3.33E-08 ( 21.0) -8.67E-08 -3.59E-11 DGN-FTO 88 3.39E-02 ( 8.0) -1.57E-06 ( 22.0) -7.51E-06 -6.85E-09

SEQUENCE SBO-Q UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK) Y. 05/TE. 05* Y. 95'/TE. 95*

PPS-SOV-00-1456 46 3.00E-02 ( 9.5) 44.8 ( 1. 5) 7.31 1.12 PPS-SOV-00-1455C 46 3.00E-02 ( 9.5) 44.8 ( 1. 5) 7.31 1.12 QS-SBO 92 2.70E-01 ( 6.0) 43.8 ( 3.0) 0.99 1. 00 OEP-DGN-FS 4 2.20E-02 ( 12.5) 20.2 ( 5.5) 1.75 0.97 OEP-DGN-FS-DG01 28 2.20E-02 ( 12.5) 20.2 ( 5.5) 1.75 0.97 OEP-DGN-FS-DG03 16 2.20E-02 ( 12.5) 20.2 ( 5.5) 1.75 0.97 OEP-DGN-FS-D002 16 2.20E-02 ( 12.5) 20.2 ( 5.5) 1.75 0.97 SBO-PORV-DMD 92 4.50E-01 ( 4.0) 14.8 ( 8.0) 1.92 1.10 OEP-DGN-UA-0001 18 6.00E-03 ( 16.0) 2.7 ( 10.0) 1.32 0.93 OEP-DGN-MA-D003 10 6.00E-03 ( 16.0) 2.7 ( 10.0) 1.32 0.93 OEP-DGN-MA-0002 12 6.00E-03 ( 16.0) 2.7 ( 10.0) 1.32 0.93 OEP-DGN-FR-DG03 12 2.00E-03 ( 21.0) 1. 6 ( 13.0) 1.02 0.98 OEP-DGN-FR-0002 14 2.00E-03 ( 21.0) 1. 6 ( 13.0) 1.02 0.98 OEP-DGN-FR-D001 22 2.00E-03 ( 21.0) 1.6 ( 13.0) 1. 02 0.98 REC-XHE-FO-DGEN 86 9.00E-01 ( 2.0) 1. 2 ( 15.0) 1.02 0.97 BETA-200 4 3.SOE-02 ( 7. 0) 1. 0 ( 16.0) 1.12 1. 01 NRAC-1HR 92 4.40E-01 ( 5.0) 0.6 ( 17.0) 0.97 0.92 OEP-CRB-FT-15J3 8 3.00E-03 ( 18.5) 0.4 ( 18.5)

OEP-CRB-FT-15H3 20 3.00E-03 ( 18.5) 0.4 ( 18.5)

DGN-FTO 88 3.39E-02 ( 8.0) o.o ( 20.0)

NOTDG-CCF 4 5.20E-01 ( 3.0)

NOTL-SBOU1 92 9.93E-01 ( 1. 0)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y.05/TE.05* Y.95/TE.95*

IE-T1 92 7.70E-02 ( 1.0) 16.1 ( 1.0) 1.85 0.97

  • Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS NOT HELD CONSTANT

SEQUENCE SBO-Q CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT SBO-Q WITH TOP EVENT FREQUENCY 1.92E-06 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF)

.. .. . NRAC-1HR .

2 2 10 1.40E-07 0.07258 /DGN-FTO OEP-DGN-FS-DG01 IE-T1 OEP-DGN-FS-DG03 NOTL-SBOU1 PPS-SOV-00-1456 . /QS-SBO .

3 . .

SBO-PORV-DMD . .. /QS-SBO REC-XHE-FO-DGEN +

4 . IE-T1 NOTL-SBOU1 NRAC-1HR .

5 3 10 1.40E-07 0.14515 /DGN-FTO OEP-DGN-FS-D801 . OEP-DGN-FS-D802

  • PPS-SOV-00-14550 6

7 8 4 10 1.40E-07 0.21773 REC-XHE-FO-DGEN

/DGN-FTO .*

880-PORV-DMD IE-T1

+

.. NOTL-S80U1

  • NRAC-1HR OEP-DGN-FS-DG03 PPS-SOV-00-14550 /QS-SBO 9 OEP-DGN-FS-DG01 . . ..

SBO-PORV-DMD +

10 REC-XHE-FO-DGEN . IE-T1 . NOTL-S80U1 *. NRAC-1HR 11 1 10 1.40E-07 0.29030 /DGN-FTO . OEP-DGN-FS-DG02 PPS-SOV-00-1456 /QS-SBO 12 OEP-DGN-FS-DG01 REC-XHE-FO-DGEN . SBO-PORV-DMD +

13 NOTL-SBOU1 14 6 10 1.30E-07 0. 36778 BETA-2DG NRAC-1HR IE-T1 OEP-DGN-FS . NOTDG-CCF PPS-SOV-00-1455C /QS-SBO .

15 16 REC-XHE-FO-DGEN . SBO-PORV-DMD +

.. . NOTL-SBOU1 .

17 6 10 1.30E-07 0.42525 BETA-2DG NRAC-1HR .. IE-T1 OEP-DGN-FS NOTDG-CCF PPS-SOV-00-1456 . /QS-SBO .

l:rj 18 +

I 19 REC-XHE-FO-DGEN SBO-PORV-DMD NOTL-SBOU1 NRAC-1HR

  • 1-l 1-l 20 7 10 5. 16E-08 0.45209 /DGN-FTO
  • IE-T1 OEP-DGN-FS-D803
  • PPS-S0V-00-1455C .

QS-SBO

  • 00 21 22 OEP-DGN-FS-DG01 REC-XHE-FO-DGEN .
  • SBO-PORV-DMD +

23 24 10 10 5 .16E-08 0.47894 /DGN-FTO OEP-DGN-FS-D801 *

  • IE-T1 OEP-DGN-FS-D802
  • NOTL-SBOU1 PPS-SOV-00-1456 NRAC-1HR QS-SBO .*

25 REC-XHE-FO-DGEN * . SBO-PORV-DMD +

26 9 10 5.16E-08 0.50578 /DGN-FTO OEP-DGN-FS-DG01 IE-T1 OEP-DGN-FS-DG02

  • NOTL-SB0U1 PPS-S0V-00-1455C . NRAC-1HR QS-SBO .

27 28 REC-XHE-FO-DGEN .

SBO-PORV-DMD +

0.53262 /DGN-FTO

  • IE-T1 NOTL-SBOU1 NRAC-1HR 29 8 10 5.16E-08 PPS-SOV-00-1456
  • QS-SBO
  • OEP-DGN-FS-DG01 OEP-DGN-FS-DG03
  • 30 31 REC-XHE-FO-DGEN ..*

SBO-PORV-DMD + . .

NOTDG-CCF NOTL-SB0U1 .

IE-T1 .*

32 12 10 4.80E-08 0.55758 BETA-2DG NRAC-1HR OEP-DGN-FS PPS-SOV-00-1456

  • QS-SBO 33 34 35 11 10 4.80E-08 0.58253 REC-XHE-FO-DGEN BETA-2DG *.

SBO-PORV-DMD IE-T1 .

+

NOTDG-CCF .

. NOTL-SB0U1 ..

OEP-DGN-FS

  • PPS-S0V-00-1455C QS-SBO 36 NRAC-1HR . .

REC-XHE-FO-DGEN SBO-PORV-DMD +

,37 NRAC-1HR 38 15 10 3.81E-08 0.60233 /DGN-FTO OEP-DGN-FS-DG03 IE-T1 OEP-DGN-MA-DG01 NOTL-SBOU1 PPS-SOV-00-1456 . /QS-SBO 39 SBO-PORV-DMD +

40 41 14 10 3.81E-08 0.82212 REC-XHE-FO-DGEN

/DGN-FTO .. IE-T1 NOTL-SBOU1 NRAC-1HR PPS-SOV-00-14550 /QS-SBO 42 43 OEP-DGN-FS-DG02 REC-XHE-FO-DGEN .. OEP-DGN-MA-DG01 SBO-PORV-DMD +

44 16 10 3.81E-08 0.64191 /DGN-FTO . IE-T1 OEP-DGN-MA-DG02 . NOTL*SBOU1 PPS-SOV*-00-1456 NRAC-1HR

/QS-SBO .

45 46 OEP-DGN-FS-DG01 REC-XHE-FO-DGEN . SBO-PORV-DMD +

  • 47 48 18 10 3.81E-08 0. 66171 /DGN-F.TO OEP-DGN-FS-D003
  • .. IE-T1 OEP-DGN-MA-D001 .
  • NOTL-SB0U1
  • NRAC-1HR PPS-SOV-00-1455C" /QS-SBO 49 REC-XHE-FO-DGEN

.. SBO-PORV-DMD +

. NOTL-8BOU1 .. NRAC-1HR .

50 51 13 10 3.81E-08 0.68150 /DGN-FTO OEP-DGN-FS-DG02 IE-T1 OEP-DGN-MA-DG01 . PPS-SOV-00-1456 /QS-SBO .

52 REC-XHE*FO-DGEN *. SBO-PORV-DMD IE-T1

+. NOTL-8BOU1

  • NRAC-1HR
  • 53 54 19 10 3.81E-08 0.70129 /DGN-FTO OEP-DGN-FS-0001
  • OEP-DGN-UA-0002 . PPS-SOV-00-1455C" IQS-SBO
  • 55 REC-XHE-FO-DGEN

.* SBO-PORV-DMD +

NOTL-8BOU1 . NRAC-1HR

  • 56 57 17 10 3.81E-08 0.72109 IDGN-FTO OEP-DGN-fS-DG01 *.

IE-T1 OEP-DGN-MA-D003 .

PPS-SOV-00-1456 . IQS-SBO

  • 58 59 20 10 3.81E-08 0.74088 REC-XHE-FO-DGEN

/DGN-FTO

  • SBO-PORV-DMD IE-T1 .

+

N0TL-SB0U1 .. NRAC-1HR .

60 OEP-DGN-FS-DG01

  • OEP-DGN-MA-DG03
  • PPS-SOV-00-1455C /QS-SBO 61 REC-XHE-FO-DGEN . SBO-PORV-DMD + ...

NOTL-SB0U1 NRAC-1HR 62 63 26 10 1.90E-08 0.75078 /DGN-FTO OEP-CRB-FT-15J3

  • . IE-T1 OEP-DGN-FS-DG01
  • PPS-SOV-00-1455C . /QS-SBO 64 65 25 10 1.90E-08 0.76067 REC-XHE-FO-DGEN

/DGN-FTO .* SBO-PORV-DUD IE-T1

+

.* NOTL-SB0U1

  • NRAC-1HR .*

OEP-CRB-FT-15H3 OEP-DGN-FS-DG02 PPS-SOV-00-1458 * /QS-SBO 86 87 REC-XHE-FO-DGEN .* SBO-PORV-DMD + . ..

0.77057 /DGN-FTO . IE-T1 .* N0TL-SB0U1 . NRAC-1HR 68 69 24 10 1.90E-08 OEP-CRB-FT-15H3 . OEP-DGN-FS-0003 PPS-S0V-00-1455C /QS-SBO 70 REC-XHE-FO-DGEN

  • SBO-PORV-DMD .

+ .

t:,cj 71 23 10 1.90E-08 0.78047 /OGN-FTO

  • IE-T1 NOTL-SB0U1 NRAC-1HR *

~

I 72 OEP-CRB-FT-15H3

  • OEP-DGN-FS-DG02
  • PPS-SOV-00-1455C
  • IQS-SBO
  • REC-XHE-FO-DGEN SBO-PORV-DMD +

~

i:o 73 74 21 10 1.90E-08 0.79036 /DGN-FTO .*

IE-T1

  • NOTL-SB0U1
  • NRAC-1HR
  • 75 OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG03
  • PPS-SOV-00-1456 * /QS-SBO
  • 78 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

77 22 10 1.90E-08 0.80026 /DGN-FTO

  • IE-T1
  • NOTL-8BOU1
  • NRAC-1HR
  • 78 OEP-CRB-FT-15J3
  • OEP-DGN-FS-0001
  • PPS-SOV-00-1456 * /QS-SBO
  • 79 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

IE-T1 NOTL-SB0U1 NRAC-1HR

  • 80 30 10 1.41E-08 0.80758 IDGN-FTO * .*
  • 81 82 OEP-DGN-FS-0001 REC-XHE-FO-DGEN

/DGN-FTO

.

  • OEP-DGN-MA-0003 SBO-PORV-DMD IE-T1

+

PPS-SOV-00-1456 NOTL-SB0U1

  • QS-SBO
  • NRAC-1HR
  • 83 29 10 1.41E-08 0.81490 *
  • 84 85 OEP-DGN-FS-DG01 REC-XHE-FO-DGEN ..* OEP-DGN-UA-0002 SBO-PORV-DMD

+

PPS-SOV-00-1456

  • QS-SBO
  • NRAC-1HR 86 87 28 10 1.41E-08 0.82222 /DGN-FTO OEP-DGN-FS-0002 . IE-T1 OEP-DGN-MA-0001 NOTL-SB0U1 PPS-SOV-00-1456
  • QS-SBO .*

88 REC-XHE-FO-DGEN

  • SBO-PORV-DMD +
  • NRAC-1HR
  • 89 90 31 10 1.41E-08 0.82954 /DGN-FTO OEP-DGN-FS-0003 . OEP-DGN-MA-DG01
  • PPS-S0V-00-1455C
  • QS-SBO .

91 REC-XHE-FO-DGEN

  • SBO-PORV-DMD +

92 27 10 1.41E-08 0.83888 /DGN-FTO

  • IE-T1
  • NOTL*SB0U1
  • NRAC-1HR
  • 93 OEP-DGN-FS-DG02
  • OEP-DGN-MA-DG01
  • PPS-SOV-00-1455C
  • QS-SBO
  • 94 95 34 10 1.41E-08 0.84419 REC-XHE-FO-DGEN

/DGN-FTO SBO-PORV-DMD IE-T1

+

  • OEP-DGN-MA-DG03
  • PPS-S0V-00-1455C
  • QS-SBO 97 98 33 10 1.41E-08 0.85151 REC-XHE-FO-DGEN

/DGN-FTO SBO-PORV-DMD IE-T1

+

  • NOTL-SB0U1
  • NRAC-1HR .

99 OEP-DGN-FS-DG01

  • OEP-DGN-MA-0002
  • PPS-SOV-00-1455C
  • QS-SBO
  • 100 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

101 32 10 1.41E-08 0.85883 /DGN-FTO

  • IE-T1 NOTL-SB0U1
  • NRAC-1HR
  • 102 OEP-DGN-FS-0803
  • OEP-DGN-MA-0001
  • PPS-SOV-00-1458
  • QS-SBO
  • 103 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

104 42 10 1.27E-08 0.86542 /DGN-FTO

  • IE-T1
  • NRAC-1HR
  • 105 OEP-DGN-FR-D801
  • OEP-DGN-FS-D803
  • PPS-SOV-00-14550 * /QS-SBO
  • 106 REC-XHE-FO-DGEN
  • SBO-POR.V-DMD +

107 41 10 1.27E-08 0.87202 /DGN-FTO

  • I E-.T 1
  • NOTL-SB0U1
  • NRAC-1HR
  • OEP-DGN-FR-DG01
  • OEP-DGN-FS-DG02
  • PPS-SOV-00-1458 * /QS-SBO
  • 108
  • SBO-PORV-DMD +

109 REC-XHE-FO-DGEN 110 40 10 1.27E-08 0.87862 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 111 OEP-DGN-FR-DG01
  • OEP-DGN-FS-DG03
  • PPS-SOV-00-1456 * /QS-SBO
  • 112 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

113 39 10 1. 27E-08 0.88522 . /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 114 OEP-DGN-FR-DG01
  • OEP-DGN-FS-DG02
  • PPS-SOV-00-14550 * /QS-SBO
  • 115 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

1.16 38 10 1.27E-08 0.89.182 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NRAC-1HR
  • 117 OEP-DGN-FR-DG03
  • OEP-DGN-FS-DG01
  • PPS-SOV-00-14550 * /QS-SBO
  • 118 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

119 37 10 1.27E-08 0.89841 /DGN-FTO

  • IE-T1
  • NOTL-S80U1
  • NRAC-1HR
  • OEP-DGN-FR-DG03
  • OEP-DGN-FS-DG01
  • PPS-SOV-00-1456 * /QS-SBO
  • 120 SBO-PORV-DMD +

121 REC-XHE-FO-DGEN

  • 122 36 10 1.27E-08 0.90501 /DGN-FTO
  • IE-T1
  • NOTL-S80U1
  • NRAC-1HR
  • OEP-DGN-FR-DG02
  • OEP-DGN-FS-DG01
  • PPS-SOV-00-1456 * /QS-SBO
  • 123 SBO-PORV-DMD +

124 REC-XHE-FO-DGEN

  • 125 35 10 1.27E-08 0.91181 /DGN-FTO
  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 126 OEP-DGN-FR-DG02
  • OEP-DGN-FS-DG01
  • PPS-S0V-00-1455C * /QS-SBO
  • 127 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

7.04E-09 0.91527 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • f:rj 128 48 10 PPS-SOV-00-1456
  • QS-SBO
  • I 129 OEP-CRB-FT-15J3
  • OEP-DGN-FS-DG01
  • f-..1

,:...:, 130 REC-XHE-FO-DGEN

  • SBO-PORV-DMD +

7.04E-09 0.91893 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 0 131 47 10 OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG03
  • PPS-SOV-00-1456
  • QS-SBO
  • 132 SBO-PORV-DMD +

133 REC-XHE-FO-DGEN

  • 0.92259 /DGN-FTO
  • IE-T1
  • NRAC-1HR
  • 134 46 10 7.04E-09 PPS-S0V-00-1455C
  • QS-SBO
  • 135 OEP-CRB- FT-15J3
  • OEP-DGN-FS-DG01
  • REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

136 IE-T1

  • NOTL-SBOU1
  • NRAC-1HR
  • 137 45 10 7.04E-09 0.92625 /DGN-FTO
  • OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG03
  • PPS-SOV-00-14550
  • QS-SBO
  • 138 SBO-PORV-DMD +

REC-XHE-FO-DGEN

  • 139 140 141 44 10 7.04E-09 0.92991 /DGN-FTO OEP-CRB-FT-15H3 IE-T1 OEP-DGN-FS-DG02 .

+

NOTL-SBOU1

  • PPS-SOV-00-14550
  • NRAC-1HR QS-SBO REC-XHE-FO-DGEN
  • SBO-PORV-DMD 142 43 10 7.04E-09 0.93357 /DGN-FTO
  • IE-T1
  • NOTL-SB0U1
  • NRAC-1HR
  • 143 OEP-DGN-FS-DG02
  • PPS-SOV-00-1456
  • QS-SBO
  • 144 OEP-CRB-FT-15H3
  • REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

145

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 146 64 10 6 .19E-09 0.93627 /DGN-FTO
  • 147 OEP-CRB-FT-15H3
  • OEP-DGN-MA-DG03
  • PPS-SOV-00-1456 * /QS-SBO 148 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

0.93897 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 149 53 10 6. 19E-09 PPS-SOV-00-1456
  • IQS-SBO
  • 150 OEP-CRB-FT-15H3
  • OEP-DGN-MA-DG02
  • 151 52 10 5. 19E-09 0.94167 REC-XHE-FO-DGEN

/DGN-FTO SBO-PORV-DMD IE-T1

+

  • 152
  • OEP-DGN-MA-DG03
  • PPS-S0V-00-1455C
  • IQS-SBO
  • 153 OEP-CRB- FT-15H3 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

154 IE-T1

  • NOTL-SBOU1
  • NRAC-1HR
  • 155 51 10 5.19E-09 0.94437 /DGN-FTO
  • 166 OEP-CRB-FT-16H3
  • OEP-DGN-MA-DG02
  • PPS-S0V-00-1466C
  • IQS-SBO
  • 157 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

10 5.19E-09 0.94707 /DGN-FTO

  • IE-T1
  • NOTL-SBOU1
  • NRAC-1HR
  • 50 158

SEQUENCE S1-H1 TOP EVENT S1-H1-CU CONTAINS 20 EVENTS IN 30 CUT SETS THE FREQUENCY OF TOP EVENT S1-H1-CM IS 1.55E-06 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT S1-H1-CM N 1000 MEAN 1.74E-06 STD DEV 4.43E-06 LOWER 51' 1. 09E-07 LOWER 2.51' 3.62E-07 MEDIAN 7.67E-07 UPPER 251' 1.63E-06 UPPER 5% 5.56E-06 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS c FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION* PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

i. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

  • TEF(EVALUATED WITH EV(J)
  • 1) - TEF

SEQUENCE S1-H1 RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

BETA-2MOV 3 8.BOE-02 ( 1. 0) 9.86E-07 ( 1. 0) 2.62E-08 3. 15E-06 LPR-MOV-FT-1862A 7 5.20E-03 ( 3.5) 5.30E-07 ( 2.0) 7.86E-09 2.52E-06 LPR-MOV-FT-1860A 6 3.00E-03 ( 7.5) 3.05E-07 ( 3.0) 4.56E-09 1.15E-06 RMT-CCF-FA-MSCAL 1 3.00E-04 ( 17. 0) 3.00E-07 ( 4.0) 7.36E-09 1.25E-06 LPR-MOV-FT-1890A 2 3.00E-03 ( 7.5) 2.73E-07 ( 5.0) 4.02E-09 1.00E-06 LPR-MOV-FT-18628 6 5.20E-03 ( 3.5) 7.24E-08 ( 6.0) 5.93E-10 5.40E-07 LPR-CCF-PG-SUMP 1 5.00E-05 ( 18.0) 5.00E-08 ( 7.0) 1.14E-09 2.05E-07 LPR-MOV-FT-18608 5 3.00E-03 ( 7.5) 4. 15E-08 ( 8.0) 3.88E-10 2.63E-07 LPR-XHE-FO-HOTLG 1 4.00E-05 ( 19.0) 4.00E-08 ( 9.0) 9.44E-10 1.40E-07 LPI -MDP-FS-SI 18 3 3.00E-03 ( 7.5) 2.65E-08 ( 10.5) 2.40E-10 9.57E-08 LP I -MDP-FS-S 11 A 3 3.00E-03 ( 7.5) 2.65E-08 ( 10.5) 2.40E-10 9.57E-08 LPI -MDP-MA-SI 18 3 2.00E-03 ( 11.5) 1.77E-08 ( 12.5) 1.41E-10 7.SOE-08 LPI -MDP-MA-SI 1A 3 2.00E-03 ( 11.5) 1.77E-08 ( 12.5) 1.41E-10 7.SOE-08 LPR-MOV-FT-18908 1 3.00E-03 ( 7.5) 9.00E-09 ( 14.0) 7.37E-12 1.0BE-07 LPI-MDP-FR-B21HR 4 6.30E-04 ( 15.5) 8.32E-09 ( 15.5) 9.43E-11 2.93E-08 LPI-MDP-FR-A21HR 4 6.30E-04 ( 15.5) 8.32E-09 ( 15.5) 9.43E-11 2.93E-08 l:rj RMT-ACT-FA-RMTSB 2 1.60E-03 ( 13.5) 3.09E-09 ( 17. 5) 4.32E-11 2.51E-08

.....I RMT-ACT-FA-RMTSA 2 1.60E-03 ( 13.5) 3.09E-09 ( 17.5) 4.32E-11 2.51E-08 N)

N)

RMT-XHE-FO-MANS1 2 6.40E-02 ( 2.0) 1.06E-09 ( 19.0) 5.10E-12 3.57E-09 RISK REDUCTION BY INITIATING EVENT (WI TH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-S1 30 1.00E-03 1.0) 1.55E-06 ( 1. 0) 1.09E-07 5.58E-06

SEQUENCE S1-H1 RISK INCREASE BY BASE EVENT {WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB {RANK) INCREASE (RANK) LOWER 5% UPPER 5%

LPR-XHE-FO-HOTLG 1 4.00E-05 ( 19.0) 1.00E-03 ( 1.5) 2.66E-O~ 2.40E-03 LPR-CCF-PG-SUMP 1 5.00E-05 ( 18.0) 1.00E-03 ( 1. 5) 2.86E-04 2.40E-03 RMT-CCF-FA-MSCAL 1 3.00E-04 ( 17. 0) 1. OOE-03 ( 3.0) 2.66E-04 2.40E-03 LPR-MOV-FT-1860A 6 3.00E-03 ( 7.5) 1.02E-04 ( 4.0) 1.54E-05 2.91E-04 LPR-MOV-FT-1882A 7 5.20E-03 { 3.5) 1.01E-04 ( 5.0) 1.55E-05 2.92E-04 LPR-MOV-FT-1890A 2 3.00E-03 ( 7.5) 9.07E-05 { 6.0) 1.30E-05 2.73E-04 LPR-MOV-FT-18628 6 5.20E-03 ( 3.5) 1.39E-05 ( 7.0) 1.47E-06 4.35E-05 LPR-MO.V-FT-18808 5 3.00E-03 ( 7.5) 1.38E-05 ( 8. 0) - 1.44E-06 4.28E-05 LPI-MDP-FR-821HR 4 8.30E-04 ( 15.5) 1.32E-05 ( 9.5) 1.30E-06 4.11E-05 LPI-MDP-FR-A21HR 4 6.30E-04 ( 15.5) 1.32E-05 ( 9.5) 1.30E-06 4.11E-05 BETA-2MOV 3 8.80E-02 ( 1.0) 1.02E-05 ( 11.0) 5.0SE-07 3.49E-05 LPI -MDP-MA-SI 18 3 2.00E-03 ( 11.5) 8.81E-06 ( 12.5) 5.94E-07 2.82E-05 LPI -MDP-MA-SI 1A 3 2.00E-03 ( 11.5) 8.81E-06 ( 12.5) 5.94E-07 2.82E-05 LP I -MDP-FS-S I 18 3 3.00E-03 ( 7.5) 8.SOE-06 ( 14.5) 5.93E-07 2.82E-05 LP I -MDP-FS-S 11A 3 3.00E-03 ( 7.5) 8.SOE-06 ( 14.5) 5.93E-07 2.82E-05 LPR-MOV-FT-18908 1 3.00E-03 ( 7.5) 2.99E-08 ( 16.0) 6.55E-08 1.10E-05 RMT-ACT-FA-RMTSB 2 1.&0E-03 ( 13.5) 1.93E-06 ( 17 .5) 1.51E-07 6.17E-08 RMT-ACT-FA-RMTSA 2 1.BOE-03 ( 13.5) 1.93E-06 ( 17. 5) 1.51E-07 6.17E-06 l:rj RMT-XHE-FO-MANS1 2 6.40E-02 ( 2.0) 1.56.E-08 ( 19.0) 1.46E-10 6.27E-08

.....I t,.:)

w

SEQUENCE S1-H1 UNCERTAINTY IMPORTANCE av BASE EVENT "REDUCTION IN THE UNCERTAINTY

. PROB (RANK) OF LOG RISK (RANK) V.05/TE.05* Y. 95/TE. 95*

BASE EVENT OCCUR 0.90 LPR-MOV-FT-1882A 7 6.20E-03 ( 3.5) 23.4 ( 1.5) 1.80 LPR-MOV-FT-1882B 8 6.20E-03 ( 3.6) 23.4 ( 1.6) 1.80 0.90 LPR-MOV-FT-1860A 6 3.00E-03 ( 7.5) 19.8 ( 4.5) 1. 85 0.99 LPR-MOV-FT-1890B 1 3.00E-03 ( 7.5) 19.8 ( 4. 5) 1.85 0.99 LPR-MCV-FT-1860B 6 3.00E-03 ( 7.6) 19.8 ( 4.6) 1.86 0.99 LPR-MOV-FT-1890A 2 3.00E-03 ( 7.5) 19.8 ( 4.5) 1.85 0.99

~MT~CCF-FA-MSCAL 1 3.00E-04 ( 17.0) 10.3 ( 7.0) 1.67 0.92 8.80E-02 ( 1. 0) 8.8 ( 8.0) 1.17 0.97 BETA-2MOV 3 1. 06 1. 01 LPR-XHE-FO-HOTLG 1 4.00E-05 ( 19.0) 1.2 ( 9.0) 2.00E-03 ( 11.5) 1.0 ( 10.5) 1. 02 1. 00 LPI-MDP-MA-Sl1B 3 1.02 1. 00 LPI-MDP-MA-Sl1A 3 2.00E-03 ( 11.5) 1. 0 ( 10.5) 3.00E-03 ( 7.5) 0.8 ( 12.5) 1.02 1. 01 LPI-MDP-FS-Sl1B 3 1. 01 LPI-MDP-FS-Sl1A 3 3.00E-03 ( 7.5) 0.8 ( 12.5) 1. 02 5.00E-05 ( 18.0) 0.7 ( 14.0) 1.09 1. 01 LPR-CCF-PG-SUMP 1 LPI-MDP-FR-B21HR 4 6.30E-04 ( 15.5) o.o ( 17.0)

RMT-XHE-FO-MANS1 2 6.40E-02 ( 2.0) 0.0 ( 17.0)

RMT-ACT-FA-RMTSB 2 1.&0E-03 ( 13.5) o.o ( 17.0)

RMT-ACT-FA-RMTSA 2 1.60E-03 ( 13.6) 0.0 ( 17.0)

LPI-UDP-FR-A21HR 4 6.30E-04 ( 15.5) o.o ( 17.0)

UNCERTAINTY IMPORTANCE av INITIATING EVENT

% REDUCT ION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) v. 05/TE. 05* V. 95/TE. 95*

IE-S1 30 1.00E-03 ( 1.0) 32.6 ( 1.0) 1.98 1. 01

  • V.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT

- IS NOT HELD CONSTANT

SEQUENCE S1-H1 CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT S1-H1-CM WITH TOP EVENT FREQUENCY 1.55E-06 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 3 3 4.58E-07 0.29445 BETA-2MOV . IE-S1 . LPR-MOV-FT-1882A +

IE-S1 . RMT-CCF-FA-MSCAL +

3 1 2 3.00E-07 0.48749 0.65736 BETA-2MOV . IE-S1 . LPR-MOV-FT-1890A +

4 5

4 2

3 2.64E-07 3 2.64E-07 0.82723 BETA-2MOV . IE-S1 . LPR-MOV-FT-1860A +

6 5 2 5.00E-08 0.85941 E-S1 . LPR-CCF-PG-SUMP +

. LPR-XHE-FO-HOTLG +

7 6 7

2 4.00E-08 3 2.70E-08 0.88514 0.90254 E-S1 E-81 . LPR-MOV-FT-1862A . LPR-MOV-FT-18628 +

8 10 3 1.56E-08 E-S1 . LPI -MDP-FS-SI 1A ". LPR-MOV-FT-18628 +

9 0.91258 10 9 3 1.56E-08 0.92262 E-81 LPI -MDP-FS-SI 18 LPR-MOV-FT-1862A +

11 11 3 1.56E-08 0.93266 E-81 LPR-MOV-FT-18608 ". LPR-MOV-FT-1862A +

12 8 3 1.56E-08 0.94270 E-S1 LPR-MOV-FT-1860A LPR-MOV-FT-18628 +

13 12 3 1. 04E-08 0.94939 E-S1 . LPI -MOP-MA-SI 18 *. LPR-MOV-FT-1862A +

trj 14 15 13 16 3 1.04E-08 3 9.00E-09 0.96608 0.96187 E-S1 E-S1 ..* LPI-MOP-MA-S11A LPI-MDP-FS-Sl1A . .

LPR-MOV-FT-18628 LPR-MOV-FT-18608

+

+

16 14 3 9.00E-09 E-S1 LPI -MDP-FS-SI 18 LPR-MOV-FT-1860A +

I 1--'

NI 17 17 3 9.00E-09 0.96766 0.97345 E-S1 .. LPR-MOV-FT-1860A

  • LPR-MOV-FT-18608 +

LPR-MOV-FT-18908 c:.,, 18 19 16 19 3 9.00E-09 3 6.00E-09 0.97924 0.98310 E-81 E-S1 . LPR-MOV-FT-1890A LP I -MOP-MA-SI 18

  • LPR-MOV-FT-1860A

+

+

E-81 LPI -MOP-MA-SI 1A LPR-MOV-FT-18608 +

20 21 18 21 3 6.00E-09 0.98697 0.98907 E-S1 .* LPI-MOP-FR-821HR LPR-MOV-FT-1862A +

3 .3.28E-09 E-S1 . LPI-MDP-FR-A21HR LPR-MOV-FT-18628 +

22 23 20 22 3 3.28E-09 3 2.66E-09 0.99118 0.99283 E*S1 . RMT-ACT-FA-RMTSA

  • RMT-ACT-FA-RMTS8 +

24 26 3 1.89E-09 0.99404 E-S1

  • LPI-MOP-FR-821HR
  • LPR-MOV-FT-1860A +

26 3 1. 89E-09 0 ..99626 E-S1

  • LPI-MDP-FR-A21HR
  • LPI -MOP-FS-SI 18 +

26 26 24 3 1.89E-09 0.99648 E-S1 . LPI-MOP-FR-A21HR

  • LPR-MOV-FT-18608 +

27 23 3 1.89E-09 0.99769 E-S1

  • LPI -MOP-FR-821HR
  • LP I -MOP-FS-S 11 A +

LPI-MOP-FR-A21HR LPI -MOP-MA-SI 18 +

28 28 27 3 1.26E-09 3 1.26E-09 0.99860 0.99931 E-S1 E*S1 LPI-MOP-FR-821HR .*

LPI -MOP-MA-SI 1A +

RMT-ACT-FA-RMTSB .

29

  • LPR-MOV-FT-1862A RMT-XHE-FO-MANS1 +

30 31 30 29 4 5.32E-10 4 5.32E-10 0.99966 1.00000 E-S1 E-S1 .

LPR-MOV-FT-18628 .* RMT-ACT-FA-RMTSA

  • RMT-XHE-FO-MANS1

SURRY SEQUENCE T7-0D-QS TOP EVENT T7-0D-QS CONTAINS 16 EVENTS IN 8 CUT SETS THE FREQUENCY OF TOP EVENT T7-0D-QS IS 1.39E-06 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT T7-0D-QS N 1000 MEAN 1.41E-06 STD DEV 4.48E-06 LOWER 5% 3.44E-08 LOWER 25% 1.45E-07 MEDIAN 3.74E-07 UPPER 25% 1.0SE-06 UPPER 5% 5.0SE-06 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN) 5% = 3.44E-08 ***LOG SCALE*** 95% = 5.06E-06 I - - - - - - - - - - - - - - - - - - - - - - - - - - - - [ - - - - - - - - - - - - - - - - - - - - * - - - - - - - - - - - - - - - - - - - - - ] - - - -M- - - - - - - - - - - - - - - - - - - - - - - - - - I NOMENCLATURE:

PD PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION= PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE PD - RISK REDUCTION

= PD x (1 - EV(J))

= TEF(EVALUATED WITH EV(J) 1) - TEF

SURRY SEQUENCE T7-0D-QS RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IAS-CCF-LF-INAIR 3 2.70E-05 ( 14.0) 4.59E-04 ( 1. 0) 5.11E-10 1.35E-07 MSS-XHE-FO-ISAFW 1 6.SOE-06 ( 15.0) 2 .10E-04 ( 2.0) 4.39E-11 7.32E-09 REC-XHE-FO-DPRES 3 1.40E-02 ( 11. 5) 3.15E-05 ( 3.0) 2.06E-08 4.88E-06 PORV-BLK 2 1.50E-01 ( 7.5) 2.48E-05 ( 4.0) 8.15E-09 2.14E-06 MSS-XHE-FO-BLOCK 2 6.40E-02 ( 9.0) 1.82E-05 ( 5.0) 3.63E-09 9.14E-07 SGTR-SGSRV-ODMD2 2 1.50E-01 ( 7.5) 1.82E-05 ( 6.0) 6.31E-09 2.00E-06 PORV-NOT-BLK 4 8.SOE-01 ( 5.0) 3.SOE-06 ( 7.0) 1.48E-08 3.09E-06 MSS-CKV-FT-S0DHR 1 2.00E-03 ( 13.0) 2.58E-06 ( 8.0) 1.24E-10 3.09E-08 RCS-XHE-FO-DPRT7 5 2.90E-02 ( 10.0) 1.36E-06 ( 9.0)

MSS-SRV-00-0DSRV 4 1.00E+OO ( 2.5) 1.15E-06 ( 10.0)

SGTR-SGSRV-ODMD1 2 1.00E+OO ( 2.5) 6.21E-07 ( 11. 0)

MSS-XHE-FO-ISDHR 1 1.40E-02 ( 11.5) 5.30E-07 ( 12.0) 1.24E-10 3.09E-08 SGTR-SGADV-ODMD 2 1.00E+OO ( 2.5) 2.36E-07 ( 13.5)

MSS-SOV-00-0DADV 2 1.00E+OO ( 2.5) 2.36E-07 ( 13.5)

REC-XHE-FO-GAGRV 2 3.00E-01 ( 6.0) 1.23E-08 ( 15.0) 1.79E-10 7.97E-08 trj I RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS) f--4 N)

~

RISK INI T EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

I E-T7 8 1.00E-02 1.0) 5.14E-04 ( 1. 0) 3.49E-08 5.06E-06

SURRV SEQUENCE T7-0D-QS RISK INCREASE BV BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

RCS-XHE-FO-DPRT7 5 2.90E-02 ( 10.0) 4.55E-05 ( 1. 0)

REC-XHE-FO-DPRES 3 1.40E-02 ( 11. 5) 3.71E-06 ( 2.0) 1.53E-05 2.62E-04 PORV-NOT-BLK 4 8.50E-01 ( 5.0) 2.42E-06 ( 3.0) 6.57E-10 5.52E-07 SGTR-SGSRV-ODMD2 2 1.50E-01 ( 7.5) 1.51E-06 ( 4.0) 7.58E-08 9.SOE-06 PORV-BLK 2 1.50E-01 ( 7.5) 1.30E-06 ( 5.0) 9.64E-08 1.16E-05 MSS-XHE-FO-BLOCK 2 6.40E-02 ( 9.0) 9.09E-07 ( 6.0) 1.13E-07 1.09E-05 IAS-CCF-LF-INAIR 3 2.70E-05 ( 14.0) 6.90E-09 ( 7.0) 1.59E-04 4.35E-03 MSS-CKV-FT-SGDHR 1 2.00E-03 ( 13.0) 6.51E-09 ( 8.5) 1.00E-07 1.S7E-05 MSS-XHE-FO-ISDHR 1 1.40E-02 ( 11. 5) 6.51E-09 ( 8.5) 7.83E-08 1.S2E-06 REC-XHE-FO-GAGRV 2 3.00E-01 ( 6.0) 2.93E-09 ( 10.0) 6.04E-10 2.04E-07 MSS-XHE-FO-ISAFW 1 6.80E-06 ( 15.0) 1.08E-10 ( 11.0) 7.74E-05 6.97E-04 SGTR-SGSRV-ODMD1 2 1.00E+OO ( 2.5) O.OOE+OO ( 13.5)

SGTR-SGADV-ODMD 2 1.00E+OO ( 2.5) O.OOE+OO ( 13.5)

MSS-SOV-00-0DADV 2 1.00E+OO ( 2.5) O.OOE+OO ( 13.5)

MSS-SRV-00-0DSRV 4 1.00E+OO ( 2.5) 0.00E+OO ( 13.5)

J:rj I

f--'

t-.:>

00

SURRY SEQUENCE T7-0D-QS UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK) Y.05/TE.05* Y.95/TE.95*

REC-XHE-FO-DPRES 3 1.40E-02 ( 11.5) 63.1 ( 1. 0) 6.72 o. 77 PORV-BLK 2 1.50E-01 ( 7.5) 5.2 ( 2.0) 1.25 1. 07 SGTR-SGSRV~ODMD2 2 1.50E-01 ( 7.5) 4.4 ( 3.0) 1. 13 0.94 IAS-CCF-LF-INAIR 3 2.70E-05 ( 14.0) 1.2 ( 4.0) 1. 10 1.00 MSS-XHE-FO-BLOCK 2 6.40E-02 ( 9.0) 1. 0 ( 5.0) 0.97 1.02 PORV-NOT-BLK 4 8.50E-01 ( 5.0) 0.9 ( 6.0) 1.00 0.97 MSS-XHE-FO-ISAFW 1 6.SOE-06 ( 15.0) 0.6 ( 7.0) 1.02 1. 00 MSS-XHE-FO-ISDHR 1 1.40E-02 ( 11.5) 0.4 ( 8.0)

REC-XHE-FO-GAGRV 2 3.00E-01 ( 6.0) o.o ( 9.5)

MSS-CKV-FT-SGDHR 1 2.00E-03 ( 13.0) o.o ( 9.5)

SGTR-SGSRV-ODMD1 2 1.00E+OO ( 2.5)

SGTR-SGADV-ODMD 2 1.00E+OO ( 2.5)

MSS-SOV-00-0DADV 2 1.00E+OO ( 2.5)

RCS-XHE-FO-DPRT7 5 2.90E-02 ( 10.0)

MSS-SRV-00-0DSRV 4 1.00E+OO ( 2.5)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y.05/TE.05* Y.95/TE.95*

IE-T7 8 1.00E-02 ( 1.0) 20.2 ( 1.0) 1. 74 1. 03

  • Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS NOT HELD CONSTAN~

SURRY SEQUENCE T7-0D-QS CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT T7-0D-QS WITH TOP EVENT FREQUENCY 1.39E-06 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF)

o. 43663 .

2 3

1 2

6 6.09E-07

5. 18E-07 IE-T7 REC-XHE-FO-DPRES MSS-SRV-00-0DSRV SGTR-SGSRV-ODMD1 ..* PORV-BLK RCS-XHE-FO-DPRT7
  • 4 6 0. 80777 I E-T7
  • MSS-SRV-00-0DSRV PORV-NOT-BLK
  • RCS-XHE-FO-DPRT7 5

6 3 7 2.21E-07 0.96612 REC-XHE-FO-DPRES IE-T7 .

~

SGTR-SGSRV-ODMD2 MSS-SOV-00-0DADV

+

  • MSS-XHE-FO-BLOCK . PORV-NOT-BLK
  • 7 8

9 7 6 1.47E-08 0.97665 RCS-XHE-FO-DPRT7 IAS-CCF-LF-INAIR PORV-NOT-BLK REC-XHE-FO-DPRES IE-T7 SGTR-SGADV-ODMD +

  • SGTR-SGADV ODMD +

MSS-SOV-00-0DADV . MSS-XHE-FO-BLOCK

  • 10 4 fl 1.22E-08 o.~8536 I AS-CCF *!..!=-I NAIR
  • IE-T7 MSS ** SRV **00* ODSRV
  • PORV-3LK 11 REC-XHE-FO-GAGRV ." S1)TR-!;;6~RV-ODM01 +

12 5 6

6 1. 03E 08 12E-09 0.99276 IAS-CCF-lf-iNAiR REC-)1!-!E FO-GAGRV IE-T, ."

IE-TT

$GTR- SGSIW-c::,:.m2 +

Mf:'S-.SRV-00-<"1DSkV " PORV-NOT-BLK "

14 4 &. 0.99859 MSS-CKV-FT-$GOHR MSS* XHE* FO- ! ~OHR

  • RCS-XHE-FO-DPRT7 .;.

15 a 3 1.9?[-09 1.00000 I E-17 MSS-XHE-FO-iSAFW " RCS-XHE-!'0-DPR17 l:rj I

I-'

l,J

  • o

SEQUENCE T2-L-D2 TOP EVENT T2-L-D2 CONTAINS 24 EVENTS IN 21 CUT SETS THE FREQUENCY OF TOP EVENT T2-L-D2 IS 7.16E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT T2-L-D2 N 1000 MEAN S.82E-07 STD DEV S.62E-08 LOWER 5% 1. 44E-08 LOWER 25~ 6.S9E-08 MEDIAN 1.HE-07 UPPER 25% 5.SSE-07 UPPER 5% 2.45E-06 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS n FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION* PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

= TEF(EVALUATED WITH EV(J) = 1) - TEF

SEQUENCE T2-L-D2 RISK REDUCTION BV BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

AFW-XHE-FO-UNIT2 21 3.80E-02 ( 4.0) 7. 16E-07 ( 1.0) 1.44E-08 2.45E-08 HPI-XHE-FO-FDBLD 14 7.10E-02 ( 2.0) 7.10E-07 ( 2.0) 1.42E-08 2.45E-06 AFW-PSF-FC-XCONN 6 1.50E-04 ( 18.0) 3.65E-07 ( 3.0) 8.74E-09 1.42E-06 AFW-CCF-LK-STMBD 3 1.00E-04 ( 20.5) 2.42E-07 ( 4.0) 1.86E-10 8.11E-07 BETA-AFW 3 5.60E-02 ( 3.0) 4.32E-08 ( 5.5) 2.72E-10 1.92E-07 AFW-MDP-FS 3 6.30E-03 ( 9.0) 4.32E-08 ( 5.5) 2.72E-10 1.92E-07 AFW-TDP-FS-FW2 3 1.10E-02 ( 6.0) 3.68E-08 ( 7.0) 1.62E-10 1.60E-07 AFW-TDP-FR-2P6HR 4 3.00E-02 ( 5.0) 3.01E-08 ( 8.0) 7.00E-11 1.09E-07 AFW-CKV-OO-CV142 1 1.00E-03 ( 16.0) 2.64E-08 ( 9.0) 9.71E-11 1.15E-07 AFW-MDP-FS-FW3B 5 6.30E-03 ( 9.0) 2.09E-08 ( 10.5) 2.68E-10 9.26E-08 AFW-MDP-FS-FW3A 5 6.30E-03 ( 9.0) 2.09E-08 ( 10.5) 2.68E-10 9.28E-08 AFW-CKV-OO-CV157 1 1.00E-03 ( 16.0) 1.51E-08 ( 12.5) 1.98E-10 5.17E-08 AFW-CKV-OO-CV172 1 1.00E-03 ( 16.0) 1.51E-08 ( 12.5) 1.98E-10 5.17E-08 AFW-TDP-MA-FW2 2 1.00E-02 ( 7.0) 9.43E-09 ( 14.0) 2.19E-11 3.03E-08 BETA-2MOV 4 8.80E-02 ( 1. 0) 4.47E-09 ( 15.0) 1.88E-11 1.50E-08 AFW-TNK-VF-CST 1 1.00E-06 ( 23.0) 2.40E-09 ( 18.0) 5.44E-11 9.69E-09 t:rj HPI-MOV-FT-1867C 2 3.00E-03 ( 11.5) 2.23E-09 ( 17.5) 9.41E-12 7.51E-09 I HPI-MOV-FT-1115B 2 3.00E-03 ( 11. 5) 2.23E-09 ( 17. 5) 9.41E-12 7.51E-09 I-'

~ AFW-MDP-MA-FW3B 1 2.00E-03 ( 13.5) 9.0SE-10 ( 19.5) 6.82E-13 2.59E-09 N> AFW-MDP-MA-FW3A 1 2.00E-03 ( 13.5) 9.0BE-10 ( 19.5) 6.82E-13 2.59E-09 HPI-CKV-FT-CV410 1 1.00E-04 ( 20.5) 5.0SE-10 ( 22.0) 1.54E-11 1.83E-09 HPI-CKV-FT-CV25 1 1.00E-04 ( 20.5) 5.0SE-10 ( 22.0) 1.54E-11 1.83E-09 HPI-CKV-FT-CV225 1 1.00E-04 ( 20.5) 5.0BE-10 ( 22.0) 1.54E-11 1.83E-09 RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-T2 21 9.40E-01 1. 0) 7.16E-07 ( 1. 0) 1.44E-08 2.45E-06

SEQUENCE T2-L-D2 RISK INCREASE BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

AFW-PSF-FC-XCONN 6 1.50E-04 ( 18.0) 2.43E-03 ( 1. 0) 8.75E-05 9.05E-03 AFW-CCF-LK-STMBD 3 1.00E-04 ( 20.5) 2.42E-03 ( 2.0) 8.63E-05 9.03E-03 AFW-TNK-VF-CST 1 1.00E-06 ( 23.0) 2.40E-03 (

  • 3. 0) 8.40E-05 9.02E-03 AFW-CKV-00-CV142 1 1.00E-03 ( HLO) 2.64E-05 ( 4.0) 1.22E-07 1.0BE-04 AFW-XHE-FO-UNIT2 21 3.BOE-02 ( 4.0) 1.92E-05 ( 5.0) 9.47E-07 6.25E-05 AFW-CKV-00-CV 172 1 1.00E-03 ( 16.0) 1.51E-05 ( 6.5) 3.42E-07 5.67E-05 AFW-CKV-OO-CV157 1 1.00E-03 ( 16.0) 1.51E-05 ( 6.5) 3.42E-07 5.67E-05 HPI-XHE-FO-FDBLD 14 7. 10E-02 ( 2.0) 9.29E-06 ( 8.0) 4.25E-07 2.89E-05 AFW-MOP-FS 3 6.30E-03 ( 9.0) 6.82E-06 ( 9.0) 6.78E-08 2.90E-05 HPI-CKV-FT-CV410 1 1.00E-04 ( 20.5) 5,0BE-06 ( 11. 0) 2.64E-07 1.70E-05 HPI-CKV-FT-CV225 1 1.00E-04 ( 20.5) 5.0BE-06 ( 11. 0) 2.64E-07 1.70E-05 HPI-CKV-FT-CV25 1 1.00E-04 ( 20.5) 5.0SE-06 ( 11. 0) 2.64E-07 1.70E-05 AFW-TDP-FS-FW2 3 1.10E-02 ( 6.0) 3.31E-06 ( 13.0) 7.97E-08 1.20E-05 AFW-MDP-FS-FW3B 5 6.30E-03 ( 9.0) 3.30E-06 ( 14.5) 7.01E-08 1.24E-05 AFW-MDP-FS-FW3A 5 6.30E-03 ( 9.0) 3.30E-06 ( 14.5) 7.01E-08 1.24E-05 AFW-TDP-FR-2PSHR 4 3.00E-02 ( 5.0) 9.73E-07 ( 16.0) 1.53E-08 4.47E-0S AFW-TDP-MA-FW2 2 1.00E-02 ( 7.0) 9.34E-07 ( 17.0) 1.47E-08 4.16E-06 trj HPI-MOV-FT-1867C 2 3.00E-03 ( 11.5) 7.42E-07 ( 18.5) 1.60E-08 2.47E-06 HPI-MOV-FT-1115B 2 3.00E-03 ( 11. 5) 7.42E-07 ( 18.5) 1.60E-08 2.47E-06

.....I BETA-AFW 3 5.60E-02 ( 3.0) 7.29E-07 ( 20.0) 6.36E-09 2.91E-06

,:..., AFW-MDP-MA-FW3B 1 2.00E-03 ( 13.5) 4.53E-07 ( 21.5) 1.BOE-09 1.68E-06 AFW-MDP-MA-FW3A 1 2.00E-03 ( 13.5) 4.53E-07 ( 21.5) 1.BOE-09 1.68E-06 BETA-2MOV 4 8.80E-02 ( 1. 0) 4.63E-08 ( 23.0) 2.37E-10 1.71E-07

SEQUENCE T2-L-D2 UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK)

HPI-XHE-FO-FDBLD 14 7. 10E-02 ( 2.0) 32.5 ( 1. 0)

AFW-XHE-FO-UNIT2 21 3.60E-02 ( 4.0) 32.1 ( 2.0)

AFW-CCF-LK-STMBD 3 1. OOE-04 ( 20.5) 9.8 ( 3.0)

AFW-PSF-FC-XCONN 6 1.50E-04 ( 18.0) 7.4 ( 4.0)

AFW-TDP-FR-2P6HR 4 3.00E-02 ( 5.0) 1. 6 ( 5.0)

BETA-AFW 3 5.60E-02 ( 3.0) 1. 2 ( 6.0)

AFW-TDP-FS-FW2 3 1.10E-02 ( 6.0) 0.9 ( 7.0)

AFW-MDP-FS-FW3B 5 6.30E-03 ( 9.0) 0.8 ( 9.0)

AFW-MDP-FS-FW3A 5 6.30E-03 ( 9.0) 0.8 ( 9.0)

AFW-MDP-FS 3 6.30E-03 ( 9.0) o.e ( 9.0)

AFW-TDP-MA-FW2 2 1.00E-02 ( 7.0) 0.7 ( 11. 0)

AFW-CKV-OO-CV157 1 1.00E-03 ( 16.0) 0.4 ( 13.0)

AFW-CKV-OO-CV172 1 1.00E-03 ( 16.0) 0.4 ( 13.0)

AFW-CKV-OO-CV142 1 1.00E-03 ( 16.0) 0.4 ( 13.0)

AFW-TNK-VF-CST 1 1.00E-06 ( 23.0) o.o ( 19.0)

HPI-MOV-FT-1867C 2 3.00E-03 ( 11. 5) o.o ( 19.0) t:zj HPI-MOV-FT-11158 2 3.00E-03 ( 11.5) o.o ( 19.0)

I f-' HPI-CKV-FT-CV410 1 1.00E-04 ( 20.5) o.o ( 19.0) w HPI-CKV-FT-CV25 1 1.00E-04 ( 20.5) o.o ( 19.0)

,I>-

HPI-CKV-FT-CV225 1 1.00E-04 ( 20.5) o.o ( 19.0)

AFW-MDP-MA-FW3B 1 2.00E-03 ( 13.5) 0.0 ( 19.0)

BETA-2MOV 4 8.BOE-02 ( 1. 0) 0.0 ( 19.0)

AFW-MDP-MA-FW3A 1 2.00E-03 ( 13.5) 0.0 ( 19.0)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

'lf. REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK)

IE-T2 21 9.40E-01 ( 1.0) 17. 9 ( 1. 0)

SEQUENCE T2-L-D2 CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT T2-L-D2 WITH TOP EVENT FREQUENCY 7. 16E-07 (THE FIRST COLUMN Of NUMBERS IS THE "LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 1 4 3.60E-07 0.50358 AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2
  • HPI-XHE-FO-FDBLD
  • IE-T2 +

3 2 4 2.40E-07 0.83930 AFW-CCF-LK-STMBD

  • AFW-XHE-FO-UNIT2
  • HPI-XHE-FO-FDBLD
  • IE-T2 +

4 3 5 2.64E-08 0.87623 AFW-CKV-00-CV142

  • AFW-TDP-FS-FW2
  • AFW-XHE-FO-UNIT2
  • HPI-XHE-FO-FDBLD
  • 5 IE-T2 +

6 4 6 2.54E-08 0.91177 AFW-MDP-FS

  • AFW-TDP-FR-2P6HR
  • AFW-XHE-FO-UNIT2
  • BETA-AFW
  • 7 HPI-XHE-FO-FDBLD IE-T2 8 6 5 1.51E-08 0.93292 AFW-CKV-OO-CV172 .* AFW-UDP-FS-FW3B *

+

AFW-XHE-FO-UNIT2

  • HPI-XHE-FO-FDBLD .

IE-T2 +

9 10 5 5 1.51E-08 0.95407 AFW-CKV-OO-CV157

  • AFW-MDP-FS-FW3A . AFW-XHE-FO-UNIT2
  • HPI-XHE-FO-FDBLD
  • 11 IE-T2 +

12 7 6 9.32E-09 0.96710 AFW-MDP-FS

  • AFW-TDP-FS-FW2
  • AFW-XHE-FO-UNIT2
  • BETA-AFW
  • 13 HPI-XHE-FO-FDBLD IE-T2 14 8 6 8.48E-09 0.97894 AFW-MDP-FS .

AFW-TDP-MA-FW2

+

  • AFW-XHE-FO-UNIT2
  • BETA-AFW
  • t,:j 15 HPI-XHE-FO-FDBLD
  • IE-T2 +

I 16 9 6 2.86E-09 0.98294 AFW-MDP-FS-FW3A

  • AFW-MDP-FS-FW38
  • AFW-TDP-FR-2P6HR
  • AFW-XHE-FO-UNIT2
  • f--' 17 HPI-XHE-FO-FDBLD
  • IE-T2 +

HPI-XHE-FO-FDBLD .

c..:,

c.n 18 10 4 2.40E-09 0.98629 AFW-TNK-VF-CST

  • AFW-XHE-FO-UNIT2
  • IE-T2 +

19 12 5 1.34E-09 0. 98817 AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2
  • BETA-2MOV
  • HPI-MOV-FT-18670
  • 20 IE-T2 +

21 11 5 1.34E-09 0.99004 AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2
  • BETA-2MOV
  • HPI-MOV-FT-1115B
  • 22 IE-T2 +

23 13 6 1.05E-09 0.99151 AFW-MDP-FS-FW3A AFW-MDP-FS-FW38

  • AFW-TDP-FS-FW2
  • AFW-XHE-FO-UNIT2
  • 24 HPI-XHE-FO-FDBLD IE-T2 +

25 14 6 9.54E-10 0.99284 AFW-UDP-FS-FW3A ..* AFW-MDP-FS-FW38 . AFW-TDP-MA-FW2

  • AFW-XHE-FO-UNIT2
  • 26 HPI-XHE-FO-FDBLD IE-T2 27 15 a 9.08E-10 0.99411 AFW-MDP-FS-FW3B
  • AFW-MDP-MA-FW3A .

+

AFW-TDP-FR-2P6HR

  • AFW-XHE-FO-UNIT2
  • 28 29 16 6 9.0BE-10 0.99538 HPI-XHE-FO-FDBLD AFW-MDP-FS-FW3A .* IE-T2 AFW-MDP-MA-FW3B

+

  • AFW-TDP-FR-2P6HR
  • AFW-XHE-FO-UNIT2
  • 30 HPI-XHE-FO-FDBLD
  • IE-T2 +

31 18 5 8.93E-10 0.99662 AFW-CCF-LK-STMBD

  • AFW-XHE-FO-UNIT2
  • BETA-2MOV " HP1-MOV-FT-18S7C
  • 32 IE-T2 +

33 17 5 8.93E-10 0.99787 AFW-CCF-LK-STMBD

  • AFW-XHE-FO-UNIT2
  • BETA-2MOV
  • HPI-MOV-FT-11158
  • 34 IE-T2 + .

35 21 4 5.0BE-10 0 ..99858 AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2
  • HPI-CKV-FT-CV225 IE-T2 +

36 20 4 5.0SE-10 0.99929 AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2
  • HPI-CKV-FT-CV410
  • IE-T2 +

37 19 4 5.08E-10 1.00000 AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2
  • HPI -CKV-FT-CV25
  • IE-T2

SEQUENCE S1-D1 TOP EVENT S1-D1-CM CONTAINS 21 EVENTS IN 14 CUT SETS THE FREQUENCY OF TOP EVENT S1-D1-CM IS 8. 17E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT S1-D1-CM N 1000 MEAN 8.59E-07 STD DEV 2.02E-08 LOWER 5% 1. 05E-07 LOWER 25% 2.37E-07 MEDIAN 4.55E-07 UPPER 25% 8.S9E-07 UPPER 51' 2.38E-06 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE.RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION* PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J)) -

= TEF(EVALUATED WITH EV(J) = 1) - TEF

SEQUENCE S1-D1 RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

HPI -MOY-FT 2 3.00E-03 ( 7.0) 4.25E-07 ( 1. 5) 5.90E-09 1.33E-06 BETA-2MOV 2 8.80E-02 ( 3.0) 4.25E-07 ( 1.5) 5.90E-09 1.33E-06 HPI-XHE-FO-ALT 1 6.10E-01 ( 1. 0) 1.61E-07 ( 3.0) 1.41E-09 .5.50E-07 HPI-CKV-FT-CV410 1 1.00E-04 ( 15.0) 1.00E-07 ( 5 ..0) 1.34E-08 3.0SE-07 HPI-CKV-FT-CV25 1 1.00E-04 ( 15.0) 1.00E-07 ( 5.0) 1.34E-08 3.03E-07 HPI-CKV-FT-CV225 1 1.00E-04 ( 15.0) 1.00E-07 ( 5.0) 1.34E-08 3.03E-07 HPI-XVM-PG-XV24 *1 4.00E-05 ( 19.0) 4.00E-08 ( 7.0) 5.43E-09 1.17E-07 CPC-STR-PG-3HR 1 9.00E-05 ( 17. 5) 2.37E-08 ( 8.5)

BETA-STR 1 2.63E-01 ( 2.0) 2.37E-08 ( 8.5) 4.15E-09 7.18E-08 HPI-MOV-FT-1115D 1 3.00E-03 ( 7.0) 9.00E-09 ( 11. 5) 7.37E-12 1.08E-07 HPI-MOV-FT-11150 1 3.00E-03 ( 7.0) 9.00E-09 ( 11.5) 7.37E-12 1.0SE-07 HPI-MOV-FT-1115B 1 3.00E-03 ( 7.0) 9.00E-09 ( 11.5) 7.37E-12 1.08E-07 HPI-MOV-FT-1115E 1 3.00E-03 ( 7.0) 9.00E-09 ( 11. 5) 7.37E-12 1.0SE-07 CPC-MDP-FR-SWA3H 2 4.SOE-04 ( 13.0) 4.SOE-09 ( 14.0) 3.38E-10 1.50E-08 CPC-MDP-FS-SW10B 2 8.00E-03 ( 4.0) 4.56E-09 ( 15.0) 3.0SE-10 1.50E-08 RWT-TNK-LF-RWST 1 2.70E-06 ( 20.0) 2.70E-09 ( 16.0) 6.12E-11 1.07E-08 SIS-ACT-FA-SI SB 1 1.60E-03 ( 11.5) 2.56E-09 ( 17.5) 2.87E-11 2.38E-08 t:rj SIS-ACT-FA-SI SA 1 1.60E-03 ( 11.5) 2.56E-09 ( 17.5) 2.87E-11 2.38E-08 CPC-MDP-MA-SW10B 1 2.00E-03 ( 10.0) 9.SOE-10 ( 19.0) 1.51E-11 3.61E-09

.....I CPC-STR-PG-2A3HR 1 9.00E-05 ( 17.5) 7.20E-10 ( 20.0) 9.84E-12 2.43E-09

~

-.:i RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-S1 14 1. OOE-03 ( 1. 0) 8.17E-07 ( 1. 0) 1.05E-07 2.38E-06

SEQUENCE S1-D1 RISK INCREASE BY .BASE EVENT {WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB {RANK) INCREASE (RANK) LOWER 5% UPPER 5%

RWT-TNK-LF-RWST 1 2.70E-06 ( 20.0) 1.00E-03 ( 1. 0) 2.66E-04 2.40E-03 HPI-XVM-PG-XV24 1 4.00E-05 ( 19.0) 1.00E-03 { 2.0) 2.66E-04 2.40E-03 HPI-CKV-FT-CV25 1 1.00E-04 ( 15.0) 1.00E-03 ( 4.0) 2.66E-04 2.40E-03 HPI-CKV-FT-CV410 1 1.00E-04 ( 15.0) 1.00E-03 ( 4.0) 2.66E-04 2.40E-03 HPI-CKV-FT-CV225 1 1.00E-04 ( 15.0) 1.00E-03 ( 4.0) 2.66E-04 2.40E-03 CPC-STR-PG-3HR 1 9.00E-05 ( 17.5) 2.63E-04 ( 6.0)

HPI -MOY-FT 2 3.00E-03 ( 7.0) 1.41E-04 ( 7.0) 1.84E-05 4.29E-04 CPC-MDP-FR-SWA3H 2 4.80E-04 { 13.0) 1.00E-05 { 8.0) 1.23E-06 3.25E-05 CPC-STR-PG-2A3HR 1 9.00E-05 ( 17. 5) 8.00E-06 ( 9.0) 9. 10E-07 2.73E-05 BETA-2MOV 2 8.80E-02 ( 3.0) 4.40E-06 ( 10.0) 9.44E-08 1.69E-05 HPI-MOV-FT-1115D 1 3.00E-03 ( 7.0) 2.99E-06 ( 12.5) 6.55E-08 1.10E-05 HPI-MOV-FT-1115C 1 3.00E-03 ( 7.0) 2.99E-06 ( 12.5) 6.55E-08 1. 10E-05 HPI-MOV-FT-1115B 1 3.00E-03 ( 7.0) 2.99E-06 ( 12.5) 6.55E-08 1.10E-05 HPI-MOV-FT-1115E 1 3.00E-03 ( 7.0) 2.99E-08 ( 12.5) 6.55E-08 1.10E-05 SIS-ACT-FA-Si SB 1 1.SOE-03 ( 11.5) 1.SOE-06 ( 15.5) 1.16E-07 5.25E-06 SIS-ACT-FA-SI SA 1 1.SOE-03 ( 11.5) 1.60E-06 ( 15.5) 1.16E-07 5.25E-06 CPC-MDP-FS-SW10B 2 8.00E-03 ( 4.0) 5.65E-07 ( 17.0) 8.64E-08 1.64E-08 trj CPC-MDP-MA-SW10B 1 2.00E-03 ( 10.0) 4.79E-07 ( 18.0) 6.83E-08 1.43E-06 I 5.00E-10 3.72E-07 f--' HPI-XHE-FO-ALT 1 6.10E-01 ( 1. 0) 1.03E-07 ( 19.0) c,=, BETA-STR 1 2.63E-01 ( 2.0) 6.63E-08 ( 20.0) 1.51E-08 1.59E-07 00

SEQUENCE S1-D1 UNCERTAINTY IMPORTANCE BY BASE EVENT

'l' REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (R.ANK) OF LOG RISK (RANK) Y.05/TE.05* Y.95/TE.&5*

HPI-MOV-FT-1115C 1 3.00E-03 ( 15.0) 30.0 ( 3.5) 1.85 0.80 HPI-MOV-FT-1115D 1 3.00E-03 ( 15.0) 30.0 ( 3.5) 1.85 0.80 HPI-MOV-FT-1867D 3 3.00E-03 ( 15.0) 30.0 ( 3.5) 1.85 0.80 HPI-MOV-FT-1115B 1 3.00E-03 ( 15.0) 30.0 ( 3.5) 1.85 0.80 HP I -MOY - FT 2 3.00E-03 ( 15.0) 30.0 ( 3.5) 1.85 0.80 HPI-MOV-FT-1115E 1 3.00E-03 ( 15.0) 30.0 ( 3.5) 1.85 0.80 HPI-XHE-FO-UN2S3 13 4.40E-02 ( 8.0) 19.3 ( 7.0) 1.52 0.80 BETA-2MOV 2 8.80E-02 ( 3.0) 4.5 ( 8.0) 1. 05 0.98 HPI-CKV-FT-CV25 1 1.00E-04 ( 28.0) 3.9 ( 10.0) 1.18 0.92 HP1-CKV-FT-CV410 1 1.00E-04 ( 28.0) 3.9 ( 10.0) 1.18 0.82 HPI-CKV-FT-CV225 1 1.00E-04 ( 28.0) 3.9 ( 10.0) 1.18 0.92 HPI-XHE-FO-ALTS3 1 5.50E-02 ( 5.0) 3.2 ( 12.0) 1. 08 1. 00 RWT-TNK-LF-RWST 1 2.70E-06 ( 32.0) 2.4 ( 13.0) 1.16 1. 02 HPI -MDP-FS 1 4.00E-03 ( 9.0) 0.9 ( 14.0) 1.00 1.00 CPC-CKV-OO-CV113 1 1.00E-03 ( 21.5) 0.6 ( 15.6) 1. 07 1.00 HPI-CKV-OO-CV258 1 1.00E-03 ( 21.5) 0.6 ( 15.5) 1. 07 1. 00 HPI-XHE-FO-ALTIN 1 5.70E-03 ( 8.0) 0.5 ( 17.0)

CPC-XHE-FO-REALN 3 7.00E-02 ( 4.0) 0.5 ( 18.0)

CPC-MDP-FS-CC2B 1 3.00E-03 ( 15.0) 0.5 ( 19.0)

CPC-MDP-MA*CC2B 1 2.00E-03 ( 19.0) 0.4 ( 20.0)

ACP-TFM-N0-1H1 1 4.00E-05 ( 30.5) 0.4 ( 21.0)

HPI-MDP-FR-1A24H 2 1.80E-03 ( 20.0) 0.1 ( 22.0)

HPI-XVM-PG-XV24 1 4.00E-05 ( 30.5) 0.0 ( 27.0)

CPC-MDP-FS-SW108 1 8.00E-03 ( 7.0) 0.0 ( 27.0)

BETA-STR- 1 2.63E-01 ( 1.0) 0.0 ( 27.0)

ACP-BAC-ST-1H1 1 9.00E-05 ( 28.5) o.o ( 27.0)

CPC-MDP-FR-SWB24 1 3.80E-03 ( 10.5) 0.0 ( 27.0)

BETA-HP I 1 2. 10E-01 ( 2.0) o.o ( 27.0)

CPC-MDP-FR-SWA24 3 3.BOE-03 ( 10.5) o.o ( 27.0)

CPC-MDP-FR-CCA24 2 7.20E-04 ( 23.5) 0.0 ( 27.0)

ACP-BAC-ST-4KV1H 1 9.00E-05 ( 28.5) 0.0 ( 27.0)

CPC-STR-PG-24H 1 7.20E-04 ( 23.5)

UNCERTAINTY IMPORTANCE av INITIATING EVENT "REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y.05/TE.OS* V. 85/TE. 95*

IE-S3 20 1.30E-02 ( 1.0) 32.3 ( 1.0) 1. 94 0.88

  • V.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT

. IS NOT HELD CONSTANT

SEQUENCE S1-D1 CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT S1-D1-CM WITH TOP EVENT FREQUENCY 8 .17E-07 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 1 3 2.64E-07 0.32294 BETA-2MOV

  • HPI-MOV-FT
  • IE-S1 +

3 2 4 1.61E-07 0.51993 BETA-2MOV

  • HPI-XHE-FO-ALT
  • IE-S1 4 3 2 1.00E-07 0.64226 HP I -CKV-FT-CV25
  • IE-81 +

5 5 2 1. OOE-07 0.76458 HPI-CKV-FT-CV410

  • IE-S1 +

6 4 2 1.00E-07 0.88691 HPI-CKV-FT-CV225

  • IE-S1 +

7 6 2 4.00E-08 0.93584 HPI-XVM-P8-XV24

  • IE-S1 +

8 7 3 2.37E-08 0.96479 BETA-STR

  • CPC-STR-P8-3HR
  • IE-S1 +

9 9 3 9.00E-09 0.97580 HPI-MOV-FT-1115B

  • HPI-MOV-FT-1115D
  • IE-S1 +

10 8 3 9.00E-09 0.98881 HPI-MOV-FT-1115C

  • HPI-MOV-FT-1115E
  • IE-S1 +

11 10 3 3.84E-09 0.99151 CPC-MDP-FR-SWA3H

  • CPC-MDP-FS-SW10B
  • IE-S1 +

12 11 2 2.70E-09 0.99481 IE-S1

  • RWT-TNK-LF-RWST +

13 12 3 2.56E-09 0.99795 IE-S1

  • SIS-ACT-FA-SI SA
  • SIS-ACT-FA-SISB +

14 13 3 9.60E-10 0.99912 CPC-MDP-FR-SWA3H

  • CPC-MDP-MA-SW10B
  • IE-S1 +

15 14 3 7.20E-10 1.00000 CPC-MDP-FS-SW10B

  • CPC-STR-PG-2A3HR
  • IE-S1 t:rj I

~

0

  • SEQUENCE T-K-R-Z TOP EVENT T-K-R-Z CONTAINS 4 EVENTS IN 1 CUT SETS THE FREQUENCY OF TOP EVENT T-K-R-Z IS 8.43E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT T-K-R-Z N 1000 MEAN 8.23E-07 STD DEV 3.39E-06 LOWER 5% 6.29E-09 LOWER 25% 3.79E-08 MEDIAN 1.52E-07 UPPER 25% 5.00E-07 UPPER 5% 3. 16E-06 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) PROBABILITY OF EVENT J FOR BASE EVENTS m FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION* PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

  • TEF(EVALUATED WITH EV(J)
  • 1) - TEF

SEQUENCE T-K-R-Z RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5~ UPPER 5~

K 1 8.00E-05 ( 3.0) 8.43E-07 ( 2.0) 8.29E-09 3. 16E-08 z 1 1.40E-02 ( 2.0) 8.. 43E-07 ( 2.0) 6.29E-09 3. 16E-06 R 1 1.70E-01 ( 1. 0) 8.43E-07 ( 2.0) 6.29E-09 3. 16E-06 RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-TN 1 5.90E+OO ( 1.0) 8.43E-07 ( 1.0) 6.29E-09 3.16E-06

SEQUENCE T-K-R-Z RISK INCREASE BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY


---- ----- ---- -- -- INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

K 1 6.00E-05 ( 3.0) 1.40E-02 (

z 1. 0) 2.56E-04 5.21E-02 1 1.40E-02 ( 2.0) 5.9SE-05 ( 2.0) 1.SOE-06 2.18E-04 R 1 1.70E-01 ( 1. 0) 4.11E-08 ( 3.0) 8.48E-08 1.94E-05

SEQUENCE T-K-R-Z UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK) z 1 1.40E-02 ( 2.0) 39.5 ( 1.0)

K 1 8.00E-05 ( 3.0) 26.8 ( 2.0)

R 1 1. 70E-01 ( 1. 0) 22.5 ( 3.0)

UNCERTAINTY IMPORTANCE BY iNITIATING EVENT

% REDUCTION IN THE UNCERTAINTY iNIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK)

IE-TN 1 5.90E+OO ( 1.0) 13.3 ( 1.0)

SEQUENCE T-K-R-Z CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT T-K-R-Z WITH TOP EVENT FREQUENCY 8.43E-07 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 1 4 8.43E-07 1.00000 IE-TN

  • K
  • R
  • z

SEQUENCE A-H1 TOP EVENT A-H1-CU CONTAINS 19 EVENTS IN 28 CUT SETS THE FREQUENCY OF TOP EVENT A-H1-CU IS 7.78E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT A-H1-CU N 1000 MEAN 8. 16E-07 STD DEV 1.70E-06 LOWER 5,r, 8.34E-08 LOWER 25% 1. 68E-07 MEDIAN 3.75E-07 UPPER 25% 8.,48E-07 UPPER 5% 2.97E-08 90% UNCERTAINTY INTERVAL .FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION* PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

= TEF(EVALUATED WITH EV(J)

  • 1) - TEF

SEQUENCE A*H1 RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5" UPPER 51' BETA-2MOV 3 8.80E-02 ( ,. 0) 4.93E-07 ( 1. 0) 1.56E-08 1.93E-06 LPR-MOV-FT-1862A 8 5.20E-03 ( 2.5) 2.65E-07 ( 2.0) 4.89E-09 1.23E-06 LPR-MOV-FT-1880A 8 3.00E-03 ( 8.5) 1.53E-07 ( 3.0) 2.29E-09 8.24E-07 RMT-CCF-FA-MSCAL 1 3.00E-04 ( 18.0) 1.50E-07 ( 4.0) 3.25E-09 5.78E-07 LPR-MOV-FT-1890A 2 3.00E-03 ( 6.5) 1.37E-07 ( 5.0) 1.84E-09 5.65E-07 LPR-MOV-FT-1862B 5 5.20E-03 ( 2.5) 3.62E-08 ( 6.0) 2.81E-10 2.79E-07 LPR-CCF-PG-SUMP 1 5.00E-05 ( 17.0) 2.50E-08 ( 7.0) 5.31E-10 8.88E-08 LPR-MOV-FT-18608 5 3.00E-03 ( 6.5) 2.09E-06 ( 8.0) 2.20E-10 1.44E-07 LPR-XHE-FO-HOTLG 1 4.00E-05 ( 18.0) 2.00E-08 ( 9.0) 4.72E-10 7.72E-08 LPI -MDP-FS-SI 18 3 3.00E-03 ( 6.5) 1.34E-08 ( 10.5) 1.20E-10 5.22E-08 LP I -MDP-FS-S 11A 3 3.00E-03 ( 6.5) 1.34E-08 ( 10.5) 1.20E-10 5.22E-08 LPI -MOP-MA-SI 18 3 2.00E-03 ( 10.5) 8.92E-09 ( 12.5) 7.22E-11 3.07E-08 LPI -MOP-MA-SI 1A 3 2.00E-03 ( 10.5) 8.92E-09 ( 12.5) 7.22E-11 3.07E-08 LPI-MDP-FR-824HR 4 7.20E-04 ( 14.5) 4.75E-09 ( 14.5) 5.27E-11 1.99E-08 LPI-MDP-FR-A24HR 4 7.20E-04 ( 14.5) 4.75E-09 ( 14.5) 5.27E-11 1.99E-08 LPR-MOV-FT-18908 1 3.00E-03 ( 6.5) 4.50E-09 ( 16.0) 4.55E-12 5.85E-08 RMT-ACT-FA-RMTSB 1 1.SOE-03 ( 12.5) 1.28E-09 ( 17.5) 1.27E-11 1.04E-08 trj I

RMT-ACT-FA-RMTSA 1 1.60E-03 ( 12.5) 1.28E-09 ( 17. 5) 1.27E-11 1.04E-08 f--'

-:i RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 6% UPPER 5%

IE-A 28 5.00E-04 ( 1. 0) 7.78E-07 ( 1. 0) 6.34E-08 2.97E-06

SEQUENCE A-H1 RISK INCREASE BV BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

LPR-XHE-FO-HOTLG 1 4.00E-05 ( 18.0) 5.00E-04 ( 1. 5) 1.33E-04 1.20E-03 LPR-CCF-PG-SUMP 1 5.00E-05 ( 17.0) 5.00E-04 ( 1. 5) 1.33E-04 1.20E-03 RMT-CCF-FA-MSCAL 1 3.00E-04 ( 16.0) 5.00E-04 ( 3.0) 1.33E-04 1.20E-03 LPR-MOV-FT-1880A LPR-MOV-FT-1862A 8

6 3.00E-03 5.20E-03

(

(

8.5) 2.5) 5.08E-05 5.07E-05 (

( 4. or 5.0) 7.88E-08 7.84E-06 1.51E-04 1.50E-04 LPR-MOV-FT-1890A 2 3.00E-03 ( 6.5) 4.54E-05 ( 6.0) 6. 13E-06 1.34E-04 LPR-MOV-FT-1860B 5 3.00E-03 ( 6.5) 6.94E-06 ( 7.0) 7. 15E-07 2.19E-05 LPR-MOV-FT-1882B 5 5.20E-03 ( 2.5) 8.92E-06 ( 8.0) 7. 16E-07 2. 19E-05 LP I -UDP-FR-824HR 4 7.20E-04 ( 14.5) 6.60E-06 ( 9.5) 6.52E-07 2. 15E-05 LPI-MOP-FR-A24HR 4 7.20E-04 ( 14.5) 6.60E-06 ( 9.5) 6.52E-07 2.15E-05 BETA-2MOV 3 8.80E-02 ( 1. 0) 5.11E-06 ( 11. 0) 3.18E-07 1.83E-05 LPI -MOP-MA-SI 18 3 2.00E-03 ( 10.5) 4.45E-06 ( 12.5) 3. 18E-07 1.55E-05 LP I -MOP-MA-SI 1A 3 2.00E-03 ( 10.5) 4.45E-06 ( 12.5) 3.18E-07 1. 55E-05 LP I - MOP - F S - S I 1 B 3 3.00E-03 ( 8.5) 4.45E-08 ( 14.5) 3.18E-07 1.54E-05 LPI -MOP-FS-SI 1A 3 3.00E-03 ( 6.5) 4.45E-06 ( 14.5) 3.18E-07 1.54E-05 LPR-MOV-FT-1890B 1 3.00E-03 ( 6.5) 1.50E-06 ( 16.0) 3.30E-08 5.83E-06 t::rj I RMT-ACT-FA-RMTSB 1 1.60E-03 ( 12.5) 7.99E-07 ( 17.5) 5.38E-08 2.79E-06 r-' RMT-ACT-FA-RMTSA 1 1.60E-03 ( 12.5) 7.99E-07 ( 17.5) 5.38E-08 2.79E-06

.i::,.

00

SEQUENCE A-H1 UNCERTAINTY I MPORT.ANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK) Y.05/TE.05* Y.95/TE.95*

LPR-MOV-FT-1862B 5 5.20E-03 ( 2.5) 22.9 ( 1.5) 1.54 0.87 LPR-MOV-FT-1862A 6 5.20E-03 ( 2.5) 22.9 ( 1.5) 1. 64 0.87 LPR-MOV-FT-1860A 6 3.00E-03 ( 6.5) 20.8 ( 4.5) 1. 62 0.84 LPR-MOV-FT-1860B 5 3.00E-03 ( 6.5) 20.8 ( 4.5) 1.62 0.84 LPR-MOV-FT-1890A 2 3.00E-03 ( 6.5) 20.8 ( 4.5) 1. 62 0.84 LPR-MOV-FT-1890B 1 3.00E-03 ( 6.5) 20.8 ( 4.5) 1.62 0.84 RMT-CCF-FA-MSCAL 1 3.00E-04 ( 16.0) 9.5 ( 7.0) 1.52 0.98 BETA-2MOV 3 8.80E-02 ( 1. 0) 9. 1 ( 8.0) 1.07 0.90 LPR-XHE-FO-HOTLG 1 4.00E-05 ( 18.0) 1. 4 ( 9.0) 1. 04 0.99 LPI-MDP-FS-Sl1B 3 3.00E-03 ( 6.5) 1.2 ( 10.5) 1.01 1. 00 LPI-MDP-FS-Sl1A 3 3.00E-03 ( 6.5) 1.2 ( 10.5) 1. 01 1. 00 LPR-CCF-PG-SUMP 1 5.00E-05 ( 17.0) 0.8 ( 12.0) 1.03 1. 00 LPI-MDP-MA-Sl1B 3 2.00E-03 ( 10.5) 0.4 ( 13.5)

LPI-MDP-MA-Sl1A 3 2.00E-03 ( 10.5) 0.4 ( 13.5)

LPI-MDP-FR-B24HR 4 7.20E-04 ( 14.5) 0.2 ( 15.5)

LPI-MDP-FR-A24HR 4 7.20E-04 ( 14.5) 0.2 ( 15.5)

RMT-ACT-FA-RMTSB 1 1.BOE-03 ( 12.5) o. 1 ( 17.5)

RMT-ACT-FA-RMTSA 1 1.60E-03 ( 12.5) o. 1 ( 17.5)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y.05/TE.05* Y. 95/TE. 95*

IE-A 28 5.00E-04 ( 1.0) 30.4 ( 1.0) 1.71 0.95

  • Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS NOT HELD CONSTANT

SEQUENCE A-H1 CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT A-H1-CM WITH TOP EVENT FREQUENCY 7.78E-07 (THE FIRST COLUMN OF NUMBERS IS THE LI NE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 3 3 2.29E-07 0.29420 BETA-2MOV

  • IE-A
  • LPR-MOV-FT-1862A +

3 1 2 1.50E-07 0.48707 IE-A

  • RMT-CCF-FA-MSCAL +

4 4 3 1.32E-07 0.65681 BETA-2MOV

  • IE-A
  • LPR-MOV-FT-1890A +

5 2 3 1.32E-07 0.82654 BETA-2MOV

  • IE-A
  • LPR-MOV-FT-1860A +

6 5 2 2.50E-08 0.85868 E-A

  • LPR-CCF-PG-SUMP +

7 6 2 2.00E-08 0.88440 E-A

  • LPR-XHE-FO-HOTLG +

8 7 3 1.35E-08 0. 90178 E-A

  • LPR-UOV-FT-1862A
  • LPR-UOV-FT-18628 +

9 10 3 7.80E-09 0.91181 E-A

  • LP I -MDP-FS-SI 1A
  • LPR-MOV-FT-18628 +

10 9 3 7.80E-09 0.92184 E-A

  • LPI -MDP-FS-SI 18
  • LPR-MOV-FT-1862A +

7.80E-09 0.93187 E-A

  • LPR-MOV-FT-18608
  • LPR-MOV-FT-1862A +

11 11 3 LPR-MOV-FT-18628 +

12 8 3 7.80E-09 0.94190 E-A

  • LPR-MOV-FT-1860A
  • 13 12 3 5.20E-09 0.94859 E-A
  • LPI -MOP-MA-SI 18
  • LPR-MOV-FT-1862A +

5.20E-09 0.95527 E-A

  • LP I -MDP-MA-S 11 A
  • LPR-MOV-FT-1&628 +

14 13 3 LPR-MOV-FT-18608 +

15 15 3 4.50E-09 0.96106 E-A

  • LPI -MDP-Fs~s11A
  • 16 14 3 4.50E-09 0.96685 E-A
  • LPI -MDP-FS-SI 18
  • LPR-MOV-FT-1860A +

17 17 3 4:50E-09 0.97263 E-A

  • LPR-MOV-FT-1860A
  • LPR-MOV-FT-18608 +

t,:j 18 16 3 4.50E-09 0.97842 E-A

  • LPR-MOV-FT-1890A
  • LPR-MOV-FT-18908 +

I 19 19 3 3.00E-09 0.98228 E-A

  • LP I -MDP-MA-S 118
  • LPR-MOV-FT-1860A +

I-'

CJl 20 18 3 3.00E-09 0.98613 E-A

  • LPI -MOP-MA-SI 1A
  • LPR-MOV-FT,18608 +

0 21 21 3 1.87E-09 0.98854 E-A

  • LPI-MDP-FR-824HR
  • LPR-MOV-FT-1862A +

22 20 3 1.87E-09 0.99095 E-A

  • LPI-MDP-FR-A24HR
  • LPR-MOV-FT-18628 +

23 22 3 1.28E-09 0.99259 E-A

  • RMT-ACT-FA-RMTSA
  • RMT-ACT-FA-RMTS8 +

24 26 3 1.08E-09 0.99398 E-A

  • LPI-MDP-FR-824HR
  • LPR-MOV-FT-1860A +

25 1. 08E-09 0.99537 E-A

  • LPI-UDP-FR-A24HR
  • LPI -UDP-FS-SI 18 +

25 3 LPI-MDP-FR-A24HR LPR-MOV-FT-18608 +

26 24 3 1.08E-09 0.99676 E-A *

  • 27 23 3 1.08E-09 0.99815 E-A
  • LPI-MDP-FR-824HR
  • LPI -MDP-FS-SI 1A +

28 28 3 7.20E-10 0.99907 E-A

  • LPI-UDP-FR-A24HR
  • LPI -UDP-MA-SI 18 +

29 27 3 7.20E-10 1.00000 E-A

  • LPI-MDP-FR-824HR
  • LPI -MOP-MA-SI 1A

SEQUENCE T2-L-P TOP EVENT T2-L-P 29 EVENTS IN 44 CUT SETS THE FREQUENCY *oF TOP EVENT T2-L-P IS 7.69E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT T2-L-P N 1000 MEAN 7.36E-07 STD DEV 1.72E-06 LOWER 5'l' 2.27E-08 LOWER 25" 9.78E-08 MEDIAN 2.61E-07 UPPER 25% 6.66E-07 UPPER 5'l' 2.62E-06 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF

  • FREQUENCY OF THE TOP EVENT EV ( J) = PROB AB IL I TV OF EVENT J* FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION* PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

  • TEF(EVALUATED WITH EV(J) = 1) - TEF

SEQUENCE T2*L*P RISK REDUCTION BY BASE EVENT. (WITH ASSOCIATED UNCERTAINT"V INTERVALS*)

RISK BASE' EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5" UPPER 5" AFW-XHE-FO-UNIT2 44 3.80E-02 ( 1(). 0) 7.89E-07 ( 1. 0) 2.27E-08 2.82E-08 PPS-XHE-FO-PORVS 4 4.40E-02 ( 8.0) 4.52E-07 ( 2.0) 8.80E-09 1.88E-08 AFW-PSF-FC-XCONN 7 1.50E-04 ( 23.0) 3.88E-07 ( 3.0) 1 .. 21E-08 1.28E*08 AFW-CCF-LK-STMBD 7 1.00E-04 ( 24.0) 2.44E-07 ( 4.0) 2.88E-10 8.33E-07 PPS-MOV-FC-1538 16 3.00E-01 ( 1.6) 1.48E-07 ( 6.6) 2.72E-09 6.13E-07 PPS-MOV-FC-1535 15 3.00E-01 ( 1. 5) 1.48E-07 ( 5.5) 2.72E-09 5.13E-07 PPS-MOV-FT-1538 11 4.00E-02 ( 8.0) 1.34E-07 ( 7.5) 2.50E-09 4.71E-07 PPS-MOV-FT-1535 11 4.00E-02 ( 8.0) 1.34E-07 ( 7.5) 2.60E-09 4.71E-07 AFW-TDP-FR-2P24H 19 1.20E-01 ( 3.0) 1.17E-07 ( 9.0) 1.44E-09 4.83E-07 AFW-MDP-FS 11 6.30E-03 ( 14.0) 1.09E-07 ( 10.5) 1. OSE-09 4.40E-07 BETA-AFW 11 5.60E-02 ( 5. 0) . 1.09E-07 ( 10.5) 1.0SE-09 4.40E-07 AFW-TDP-FS-FW2 5 1.10E-02 ( 11.0) 2.86E-08 ( 12.0) 1.31E-10 1.39E-07 AFW-CKV-00-CV142 3 1.00E-03 ( 20.0) 2.53E-08 ( 13.0) 1.20E-10 1.19E-07 PPS-MOV-FT 8 4.00E-02 ( 8.0) 2.09E-08 ( 14. 5) 2.72E-10 8.93E-08 BETA-2MOV 6 8.80E-02 ( 4.0) 2.09E-08 ( 14.5) 2.72E-10 6.93E-08 AFW-MDP-FS-FW3B 8 8.30E-03 ( 14. 0) 1.32E-08 ( 18.5) 1.87E-10 5.70E-08 t,:j AFW-MDP-FS-FW3A 8 8.30E-03 ( 14. 0) 1.32E-08 ( 18.5) 1.87E-10 5.70E-08 I ( 18.5) 2.54E-10 3.36E-08 I-' PPS-S0V-FT-1455C 3 1.00E-03 ( 20.0) 9. 89E-.09 CJ1 PPS-SOV-FT-1458 3 1.00E-03 ( 20.0) 9.89E-09 ( 18.5) 2.54E-10 3.38E-08 t,,:)

AFW*CKV-OO-CV172 2 1.00E-03 ( 20.0) 5,12E-09 ( 20.5) 7.77E-11 1.85E-08 AFW-CKV-OO-CV157 2 1.00E-03 ( 20.0) 5.12E-09 ( 20.5) 7.77E-11 1.85E-08 DCP-BDC-ST~BUS18 2 9.00E-05 ( 28.5) 3.03E-09 ( 22.5) 2.57E-11 1.11E-08 DCP-BDC*ST-BUS1A 2 9.00E-05 ( 26.5) 3.03E-09 ( 22.5) 2.57E-11 1.11E-08 AFW-TDP-MA-FW2 2 1.00E-02 ( 12.0) 2.87E-09" ( 24.0) 5.72E-12 9.04E-09 AFW-MDP-MA-FW3B 3 2.00E-03 ( 18.5) 1.96E-09 ( 25.5) 5. 19E-12 6.83E-09 AFW-MDP-MA-FW3A 3 2.00E-03 ( 16.5) 1.96E-09 ( 25.5) 5.19E-12 6.83E-09 ACP*BAC-ST-4KV1J 1 9.00E-05 ( 26.5) 6.91E-10 ( -27. 5) 4.25E-12 3.00E-09 ACP-BAC-ST-4KV1H 1 9.00E-05 ( 28.5) 8.91E-10 ( 27.5) 4.25E-12 3.00E-09 RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5" UPPER 5" IE-T2 44 9.40E-01 ( 1. 0) 7.89E-07 ( 1. 0) 2.27E-08 2.82E*08

SEQUENCE T2-L-P RISK INCREASE BY BASE EVENT {WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

AFW-CCF-LK-STMBD 7 1.00E-04 ( 24.0) 2.44E-03 ( 1. 0) 1.29E-04 8.90E-03*

AFW-PSF-FC-XCONN 7 1.50E-04 ( 23.0) 2.44E-03 ( 2.0) :1.29E-04 8.90E-03 DCP-BDC-ST-BUS1A 2 9.00E-05 ( 26.5) 3.37E-05 ( 3.5) 7.77E-07 1.36E-04 DCP-BDC-ST-BUS1B 2 9.00E-05 ( 26.5) 3.37E-05 ( 3.5) 7.77E-07 1.36E-04 AFW-CKV-OO-CV142 3 1.00E-03 ( 20.0) 2.53E-05 ( 5.0) 1.70E-07 1.02E-04 AFW-XHE-FO-UNIT2 44 3.60E-02 ( 10.0) 2.06E-05 ( 6.0) 1.64E-06 6.58E-05 AFW-MDP-FS 11 6.30E-03 .( 14.0) 1.72E-05 ( 7.0) 2.52E-07 6.78E-05 PPS-SOV-FT-1455C 3 1.00E-03 { 20.0) 9.88E-06 { 8.5) 4.21E-07 3.22E-05 PPS-SOV-FT-1456 3 1.00E-03 ( 20.0) 9.88E-06 ( 8.5) 4.21E-07 3.22E-05 PPS-XHE-FO-PORVS 4 4.40E-02 ( 6.0) 9.81E-06 ( 10.0) 4.28E-07 '3. 19E-05 ACP-BAC-ST-4KV1H 1 9.00E-05 { 26.5) 7.67E-06 ( 11.5) 1.22E-07 3.09E-05 ACP-BAC-ST-4KV1J 1 9.00E-05 ( 26.5) 7.67E-06 ( 11.5) 1.22E-07 3.09E-05 AFW-CKV-OO-CV172 2 1.00E-03 ( 20.0) 5.11E-06 ( 13.5) 1.07E-07 1.94E-05 AFW-CKV-OO-CV157 2 1.00E-03 ( 20.0) 5.11E-06 ( 13.5) 1.07E-07 1.94E-05 PPS-MOV-FT-1536 11 4.00E-02 ( 8.0) 3.23E-06 ( 15.5) 1.03E-07 1.14E-05 PPS-MOV-FT-1535 11 4.00E-02 ( 8.0) 3.23E-06 ( 15.5) 1. 03E-07 1.14E-05 AFW-TDP-FS-FW2 5 1.10E-02 ( 11.0) 2.56E-06 ( 17.0) 8.64E-08 1.04E-05 AFW-MDP-FS-FW3B 8 6.30E-03 ( 14.0) 2.0SE-06 ( 18.5) 5.72E-08 7.43E-06 trj AFW-MDP-FS-FW3A 8 6.30E-03 ( 14. 0) 2.0SE-06 ( 18.5) 5.72E-08 7.43E-06

....I

'11 BETA-AFW AFW-MDP-MA-FWSB 11 3

5.60E-02 2.00E-03

(

(

5.0) 16.5) 1.84E-06 9.78E-07

(

(

20.0) 21.5) 2.99E-08 1.67E-08 7.81E-06 3.75E-06

<:., AFW-MDP-MA-FW3A 3 2.00E-03 ( 16.5) 9.78E-07 ( 21.5) 1.67E-08 3.75E-06 AFW-TDP-FR-2P24H 19 1.20E-01 ( 3.0) 8.59E-07 ( 23.0) 1. 88E-08 3.64E-06 PPS-MOV-FT 8 4.00E-02 ( 8.0) 5.01E-07 ( 24.0) 1. 04E-08 1.80E-08 PPS-MOV-FC-1536 15 3.00E-01 ( 1. 5) 3.40E-0.7 ( 25.5) 8.65E-09 1.31E-06 PPS-MOV-FC-1535 15 3.00E-01 ( 1. 5) 3.40E-07 ( 25.5) 8.65E-09 1.31E-06 AFW-TDP-MA-FW2 2 1.00E-02 ( 12.0) 2.84E-07 ( 27.0) 4.01E-09 1.12E-08 BETA-2MOV 8 8.80E-02 ( 4.0) 2.17E-07 ( 28.0) 3.72E-09 7.55E-07

SEQUENCE T2-L-P UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK) Y.05/TE.05* Y. 95/TE. 95" AFW-XHE-FO-UNIT2 44 3.60E-02 ( 10.0) 38.0 ( 1. 0) 2.63 0.96 PPS-XHE-FO-PORVS 4 4.40E-02 ( 6.0) 11.9 ( 2.0) 1.40 0.92 AFW-CCF-LK-STMBD 7 1.00E-04 ( 24.0) 8.0 ( 3.0) 1.50 1.07 AFW-PSF-FC-XCONN 7 1.50E-04 ( 23.0) 7.9 ( 4.0) 1.21 1.01 PPS-MOV-FT-1535 11 4.00E-02 ( 8.0) 3.6 ( 6.0) 1.05 1. 04 PPS-MOV-FT-1536 11 4.00E-02 ( 8.0) 3.6 ( 6.0) 1. 05 1.04 PPS-MOV-FT 6 4.00E-02 ( 8.0) 3.6 ( 6.0) 1.05 1.04 PPS-MOV-FC-1535 15 3.00E-01 ( 1.5) 3.3 ( 8.5) 1.11 0.96 PPS-MOV-FC-1536 15 3.00E-01 ( 1. 5) 3.3 ( 8.5) 1 . 11 0.96 AFW-TDP-FR-2P24H 19 1.20E-01 ( 3.0) 2.4 ( 10.0) 1. 09 1.01 AFW-TDP-FS-FW2 5 1.10E-02 ( 11. 0) 2.3 ( 11.0) 1.08 1. 00 BETA-AFW 11 5.60E-02 ( 5.0) 2.2 ( 12:0) 1. 02 1. 02 AFW-TDP-MA-FW2 2 1. OOE-02 ( 12.0) 0.9 ( 13.0) 0.99 1.00 AFW-MDP-FS 11 6.30E-03 ( 14.0) 0.9 ( 15.0) 1.02 1.06 AFW-MDP-FS-FW3B 8 6.30E-03 ( 14.0) 0.9 ( 15.0) 1. 02 1. 06 AFW-MDP-FS-FW3A 8 6.30E-03 ( 14.0) 0.9 ( 15.0) 1. 02 1. 06 AFW-MDP-MA-FW38 3 2.00E-03 ( 16.5) 0.6 ( 17. 5) 1. 00 1. 00 AFW-MDP-MA-FW3A 3 2.00E-03 ( 16.5) 0.6 ( 17.5) 1. 00 1. 00 BETA-2MOV 6 8.80E-02 ( 4.0) 0.5 ( 19.0) t::i::l PPS-SOV-FT-1456 3 1.00E-03 ( 20.0) 0.4 ( 20.5)

I PPS-SOV-FT-1455C 3 1.00E-03 ( 20.0) 0.4 ( 20.5) t--'

CJl DCP-B0C-ST-BUS1B 2 9.00E-05 ( 26.5) 0.4 ( 23.5)

~ ACP-BAC-ST-4KV1H 1 9.00E-05 ( 26.5) 0.4 ( 23.5)

DCP-BDC-ST-BUS1A 2 9.00E-05 ( 26.5) 0.4 ( 23.5)

ACP-BAC-ST-4KV1J 1 9.00E-05 ( 26.5) 0.4 ( 23.5)

AFW-CKV-OO-CV172 2 1.00E-03 ( 20.0) o.o ( 27.0)

AFW-CKV-OO-CV157 2 1.00E-03 ( 20.0) o.o ( 27.0)

AFW-CKV-OO-CV142 3 1.00E-03 ( 20.0) o.o ( 27.0)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y.05/TE.05* Y.95/TE.95*

9.40E-01 ( 1. 0) 22.3 ( 1. 0) 1.71 1. 08 IE-T2 44

  • Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE. xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS NOT HELD CONSTANT

SEQUENCE T2

  • L.;p CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT T2-L-P WITH TOP EVENT FREQUENCY 7.69E-07 (THE FIRST COLUMN OF NUMBERS IS THE*LINE NUMBERS FOR THE ~ILE TEMACSETS.DNF) 2 1 4 2.23E-07 0.29054 AFW-PSF*FC-XCONt,1 . AFW-XHE-FO-UNIT2
  • IE-T2
  • PPS-XHE-FO-PORVS +

AFW-CCF-LK-STMBD

  • AFW-XHE-FO-UNIT2 IE-T2
  • PPS-XHE-FO-PORVS +

AFW-XHE-FO-UNIT2 .

3 2 4 1.49E-07 0.48424

  • BETA-AFW 4

5 3 6 6.30E-08 0.56624 AFW-MDP-FS IE-T2 .

  • AFW-TDP-FR-2P24H PPS-XHE-FO-PORVS +

6 4 5 8.09E-08 0.84548 AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2
  • IE-T2 PPS-MOV-FC-1535
  • 7 8 5 5 6.09E-08 0.72472 PPS-MOV-FT-1535 +

AFW-PSF-FC-XCONN . AFW-XHE-FO-UNIT2 . IE-T2

  • PPS-UOV-FC-1536
  • 9 PPS-MOV-FT-1536 +

10 6 5 4.0&E-08 0.77754 AFW-CCF-LK-STMBD

  • AFW-XHE-FO-UNIT2
  • IE-T2
  • PPS-MOV-FC-1538
  • 11 PPS-MOV-FT-1536 * + .

12 7 5 4.06E-08 0.83037 AFW-CCF-LK-STMBD AFW-XHE-FO-UNIT2

  • IE-T2
  • PPS-MOV-FC-1535
  • 13 14 9 7 1.72E-08 0.85273 PPS-MOV-FT-1535 +

AFW-MDP-FS . AFW-TDP-FR-2P24H

  • AFW-XHE-FO-UNIT2
  • BETA-AFW .

15 18 8 7 1.72E-08 0.87510 IE-T2 AFW-MDP-FS

  • PPS-MOV-FC-1535
  • AFW-TDP-FR-2P24H

. PPS-MOV-FT-1535 AFW-XHE-FO-UNIT2

+

  • BETA-AFW .
  • PPS-MOV-FC-1538 PPS-MOV-FT-1538 + .

17 18 10 5 1.S4E-08 0.89640 IE-T2 AFW-CKV-OO-CV142

  • AFW-TDP-FS-FW2 .* AFW-XHE-FO-UNIT2
  • IE-T2 tr:! 19 PPS-XHE-FO-PORVS +

AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2 BETA-2MOV . IE-T2
  • I I-"

c:.n 20 21 12 8 5.38E-09 0.90338 PPS-MOV-FC-1535 . PPS-.MOV - FT +

c:.n AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2 BETA-2MOV IE-T2
  • 22 23 11 6 5.38E-09 0.91035 PPS-MOV-FC-1536 . PPS-MOV-FT +

PPS-S0V-FT-1455C +

24 25 14 13 4

4 5.08E-09 5.0BE-09 0.91695 0.92356 .

AFW-PSF-FC-XCONN

  • AFW-XHE-FO-UNIT2 AFW-PSF-FC-XCONN . AFW-XHE-FO*UNIT2 IE-T2 IE-T2
  • PPS-SOV-FT-1456 +

26 15 6 4.47E-09 0.92937 AFW-CKV-OO-CV142 AFW-TDP-FS-FW2

  • AFW-XHE-FO-UNIT2
  • IE-T2
  • 27 28 16 6 4.47E-09 0.93518 PPS-MOV-FC-1536
  • PPS-MOV-FT-1536 AFW-CKV-OO-CV142
  • AFW-TDP-FS-FW2

+

  • AFW-XHE-FO-UNIT2 . IE-T2 .

29 PPS-MOV*FC-1535

  • PPS*MOV-FT-1535 +.

30 18 6 3.57E-09 0.93983 AFW-CCF-LK-STMBD" AFW-XHE-FO-UNIT2 BETA-2MOV

  • IE-T2
  • 31 PPS-MOV-FC-1535 * *PPS-MOV-FT +

32 17 6 3.57E-09 0.94448 AFW-CCF-LK-STMBD

  • AFW-XHE-FO-UNIT2
  • BETA-2MOV
  • IE-T2
  • 33 PPS-MOV-FC-1538
  • PPS-MOV-FT AFW-CCF-LK-STMBD
  • AFW-XHE-FO-UNIT2 ..

+

IE-T2 .. PPS-SOV-FT-1456 +

34 35 20 19 4

4 3.38E-09 3.36E-09 0.94888 0.95328 .

AFW-CCF-LK-STMBD . AFW-XHE-FO-UNIT2 . IE-T2 . PPS-S0V-FT-1455C +

AFW-XHE-FO-UNIT2 IE-T2 36 37 24 6 2.58E-09 0.95881 AFW-CKV-OO-CV172 PPS-MOV-FC-1535 .. AFW-MDP-FS-FW3B PPS-MOV-FT-1535 +. . .

AFW-XHE-FO-UNIT2 IE-T2 38 39 23 8 2.56E-09 0.95994 AFW-CKV-OO-CV157 PPS-MOV-FC-1536 .. AFW-MDP-FS-FW3A PPS-MOV-FT-1536 +

AFW-XHE-FO-UNIT2 IE-T2 40 41 22 6 2.56E-09 0.96326 AFW-CKV*OO-CV157 PPS-MOV-FC-1535 .. AFW-MDP-FS-FW3A PPS-MOV-FT-1535 +. .

42 21 6 2.58E-09 0.96659 AFW-CKV-00-CV172 AFW-MDP-FS-FW3B AFW-XHE-FO-UNIT2

  • IE-T2 43 u 26 5 2.30E-09 0.96959 AFW-MDP-FS-FW3B .

PPS-MOV-FC-1536

  • PPS-MOV-FT-1536 AFW-TDP-FR*2P24H

+

.,. AFW-XHE-FO-UNIT2

  • DCP-BDC-ST-BUS1A .

45 48 25 5 2.30E-09 0.97258 IE-T2 AFW-MDP*FS-FW3A

+ . AFW-TDP-FR-2P24H . AFW-XHE-FO-UNIT2 . DCP-BDC-ST-BUS1B .

47 IE-T2 +

48 28 7 1. 93E-0.9 0.97510 *AFW-MDP-FS-FW3A

  • AFW-MDP-FS-FW3B
  • AFW-TDP-FR-2P24H
  • AFW-XHE-FO-UNIT2
  • 49 IE-T2
  • PPS-MOV-FC-1538
  • PPS-MOV-FT-1538 +

AFW-MDP-FS-FW3A AFW-MDP-FS-FW3B

  • AFW-TDP-FR-2P24H
  • AFW-XHE-FO-UNIT2
  • 60 51 27 7 1.93E-09 0.97762 IE-T2 .

PPS-MOV-FC-1535 .

  • PPS-MOV-FT-1535 +

52 30 7 1.58E-09 0.97987 AFW-MDP-FS

  • AFW-TDP-FS-FW2 AFW-XHE-FO-UNIT2 BETA-AFW
  • 53 IE-T2
  • PPS-MOV-FC-1538
  • PPS-MOV-FT-1536 +

BETA-AFW .

54 55 29 7 1.58E-09 0.98172 AFW-MDP-FS IE-T2 AFW-TDP-FS-FW2 PPS-MOV-FC-1535 .

  • AFW-XHE-FO-UNIT2 PPS-MOV-FT-1535

+ .

AFW-TDP-FR-2P24H

  • AFW-XHE-FO-UNIT2 .BETA-2MOV 56 57 31 8 1.51E-09 0.98368 AFW-MDP-FS BETA-AFW .

IE-T2

  • PPS-MOV-FC-1536 PPS-MOV-FT .

+

58 32 8 1.51E-09 0.98565 AFW-MDP-FS

  • AFW-TDP-FR-2P24H
  • AFW-XHE-FO-UNIT2
  • BETA-2MOV IE-T2
  • PPS-MOV-FC-1535
  • PPS-MOY-FT +

59 60 34 6 1.43E-09 0.98762 BETA-AFW AFW-MDP-FS .*

AFW-TDP-FR-2P24H

  • AFW-XHE-FO-UNIT2
  • BETA-AFW
  • 61 1.43E-09 0.98938 IE-T2 AFW-MDP-FS

. PPS-S0V-FT-1455C AFW-TDP-FR-2P24H

+

  • AFW-XHE-FO-UNIT2
  • BETA-AFW .

62 33 6 63 IE-T2

  • PPS-SOV-FT-1456 +

64 65 36 7 1.43E-09 0.99124 AFW-MDP-FS IE-T2 .

  • AFW-TDP-MA-FW2 PPS-MOV-FC-1535 AFW-TDP-MA-FW2 AFW-XHE-FO-UNIT2
  • PPS-MOV-FT-1535 +

AFW-XHE-FO-UNIT2 .

BETA-AFW BETA-AFW

  • 66 67 35 7 1.43E-09 0.99311 AFW-MDP-FS IE-T2 .* PPS-MQV.:fC-1536
  • PPS-MOV-FT-1536 + . .

5 7.31E-10 0.99406 *AFW-MDP-MA-FW3A

  • AFW-TDP-FR-2P24H
  • AFW-XHE-FO-UNIT2 DCP-BDC-ST-BUS1B 68 38 89 0.99601 IE-T2 AFW-MDP-MA-FW3B

+

. AFW-TDP-FR-2P24H . AFW-XHE-FO-UNIT2 . DCP-BDC-ST-BUS1A .

70 37 5 7.31E-10 71 IE-T2 ACP-BAC-ST-4KV1H

+.

AFW-MDP-FS-FW3B . AFW-TDP-FR-2P24H . AFW-XHE-FO-UNIT2 .

72 40 6 8.91E-10 0.99591 73 IE-T2 PPS-MOV-FC-1535 AFW-MDP-FS-FW3A

+

. AFW-TDP-FR-2P24H . AFW-XHE-FO-UNIT2 .

trj

~

I 74 75 39 6 6.91E-10 0.99681 .ACP-BAC-ST-4KV1J IE-T2 .. PPS-MOV-FC-1536 +

AFW-MDP-MA-FW3B AFW-TDP-FR-2P24H" AFW-XHE-FO-UNIT2 C:.,'1

0) 76 44 7 8.14E-10 0.99760 AFW-MDP-FS-FW3A . . PPS-MOV-FT-1535 + .

77 IE-T2 PPS-MOV-FC-1535 AFW-MDP-MA-FW3A .. AFW-TDP-FR-2P24H

  • AFW-XHE~FO-UNIT2 78 79 43 7 6.14E-10 0.99840 AFW-MDP-FS-FW3B IE-T2 .

PPS-MOV-FC-1535 .. PPS-MOV-FT -1535 + .

AFW-MDP-FS-FW3A

  • AFW-MDP-MA-FW3B AFW-TDP-FR-2P24H" AFW-XHE-FO-UNIT2 80 42 7 6.14E-10 0.99920 IE-T2 . PPS-MOV-FC-1536 .. PPS-MOV-FT-1536 +. .

81 AFW-MDP-FS-FW3B . AFW-MDP-MA-FW3A AFW-TDP-FR-2P24H AFW-XHE-FO-UNIT2 82 83 41 7 6. 14E-10 1.00000 IE-T2 . PPS-MOV-FC-1536 PPS-MOV-FT-1536

SEQUENCE S1-D8 TOP EVENT S1-D8-CM CONTAINS 12 EVENTS IN 11 CUT SETS THE FREQUENCY OF TOP EVENT S1-D8-CM IS 9.33E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT S1-D8-CM N 1000 MEAN 8.88E-07 STD DEV 2.85E-08 LOWER 5% 4.20E-08 LOWER 25% 1.0BE-07 MEDIAN 2.27E-07 UPPER 25% 5.17E-07 UPPER 6% 2.17E-08 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF m FREQUENCY OF THE TOP EVENT EV(J) D PROBABILITY OF EVENT J FOR BASE EVENTS a FREQUENCY OF EVENT J FOR INl~IATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION* PD x EV(J) m TEF

  • TEF(EVALUATED WITH EV(J)
  • 0)
2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

m TEF(EVALUATED WITH EV(J)

  • 1) - TEF

SEQUENCE S1-D6 RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY 'INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5" UPPER 5" BETA-LPI 1 1.50E-01 ( 1. 0) 4.50E-07 ( 1.5) 6.85E-09 1.66E-06 LP I -MDP-FS 1 3.00E-03 ( 3.0) 4.50E-07 ( 1.5) 8.85E-09 1.66E-OB LPI-MOV-PG-1890C 1 4.40E-04 ( 11.0) 4.40E-07 ( 3.0) 1.34E-08 2.79E-07 LP I -MDP-FS-S 11 B 4 3.00E-03 ( 3.0) 2.28E-08 ( 4.5) 2.48E-10 1.49E-07 LPI -MDP-FS-SI 1A 4 3.00E-03 ( 3.0) 2.28E-08 ( 4.5) 2.48E-10 1.49E-07 LPI -MDP-MA-SI 1A 2 2.00E-03 ( 5.5) 9.20E-09 ( 6.5) 8.45E-11 3.74E-08 LPI -MDP-MA-SI 18 2 2.00E-03 ( 5.5) 9.20E-09 ( 6.5) 8.45E-11 3.74E-08 SIS-ACT-FA-SI SB- 2 1.60E-03 ( 7.6) 8.00E-09 ( 8.6) 1.65E-10 2.86E-08 SIS-ACT-FA-SI SA 2 1. 60E-03 ( 7.5) 8.00E-09 ( 8.5) 1.65E-10 2.86E-08 LPI-CKV-OO-CV58 1 1.00E-03 ( 9.5) 3. OOE- 09. ( 10. 5) 4.70E-11 1.19E-08 LP I -CKV-OO-CV50 1 1.00E,03 ( 9.5) 3.00E-09 ( 10.5) 4.70E-11 1.19E-08 RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

~

I RISK f-'

<:.11 INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5" UPPER 5%

00 IE-S1 11 1.00E-03 ( 1. 0) 9.33E-07 ( 1. 0) 4.20E-08 2.17E-06

SEQµENCE S1*D8 RISK INCREASE BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (R.ANK) INCREASE (RANK) LOWER 5% UPPER 5%

LPI-MOV-PG-1890C 1 4.40E-04 ( 1.1. 0) 1.00E-03 ( 1. 0) 2.66E-04 2.40E*03 LPI-MDP*FS 1 3.00E-03 ( 3.0) 1.50E-04 ( 2.0) 2.0BE-05 4.B5E-04 LPI-MDP-FS-S11B 4 3,00E-03 ( 3.0) 7.58E-08 ( 3.5) 9.71E-07 2.4BE-05 LPI -MDP-FS-SI 1A 4 3.00E-03 ( 3.0) 7.58E-06 ( 3.5) 9.71E-07 2.4BE-05 SIS-ACT-FA-SI SA 2 1.80E-03 ( 7.5) 4.99E-08 ( 5.5) 2.72E-07 1.83E-05 SIS-ACT-FA-SI SB 2 1.80E-03 ( 7.5) 4.99E-08 ( 5.5) 2.72E-07 1.83E-05 LPI-MDP-MA-S11A 2 2.00E-03 ( 5.5) 4.59E-08 ( 7.5) 3.49E-07 1.55E-05 LPI -MDP-MA-SI 18 2 2.00E-03 ( 5.5) 4.59E-06 ( 7.5) 3.49E-07 1.65E-05 LPI-CKV-OQ-CV58 1 1.00E-03 ( 9.5) 3.00E-06 ( 9.5) 7.56E*OB 1.20E-05 LPI-CKV-OO-CV50 1 1.00E-03 ( 9.5) 3.00E-08 ( 9.5) 7.5BE-08 1.20E-05 BETA-LP I 1 1.50E-01 ( 1. 0) 2.55E-06 ( 11. 0) 5.98E-08 1.05E-05

SEQUENCE S1-06 UNCERTAINTY IMPORTANCE BY BASE EVENT

'l' REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK)

LPI-MDP-FS-S119 4 3.00E-03 ( 3.0) 52.9 ( 2.0)

LPI-MDP-FS-S11A 4 3.00E-03 ( 3. 0) 52.9 ( 2.0)

LPI-MDP-FS 1 3.00E-03 ( 3.0) 52.9 ( 2.0)

BETA-LP I 1 1.50E-01 ( 1.0) 7.9 ( 4.0)

LPI-MOV-P0-1890C 1 4.40E-04 ( 11.0) 5.2 ( 5.0)

LPI-MDP-MA-S11A 2 2.00E-03 ( 5.5) 1.1 ( 8.5)

LPI-MDP-MA-S119 2 2.00E-03 ( 5.5) 1. 1 ( 6.5)

SIS-ACT-FA-SI SB 2 1.SOE-03 ( 7.5) 0.7 ( 8.5)

SIS-ACT-FA-SI SA 2 1.BOE-03 ( 7.5) 0.7 ( 8.5)

LPI-CKV-00-CV58 1 1.00E-03 ( 9.5) 0.8 ( 10.5)

LPI-CKV-OO-CV50 1 1.00E-03 ( 9.5) 0.8 ( 10.5)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK)

IE-S1 11 1.00E-03 ( 1.0) 30.8 ( 1.0)

SEQUENCE S1-DB CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT S1-D8-CM WITH TOP EVENT FREQUENCY 9.33E-07 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 1 3 4.50E-07 0.48232 BETA-LPI

  • IE-S1
  • LPI-MDP-FS +

3 2 2 4.40E-07 0.95391 IE-S1

  • LPI-MOV-PG-1890C +

4 5

3 5

3 3

9.00E-09 8.00E-09 0.98358 0.96999 IE-S1 IE-S1 .** LPI -MDP-FS-SI 1A LPI -MDP-FS-SI 1A LPI-MDP-FS-Sl18 LPI -MDP-MA-SI 18

+

+

6 4 3 8.00E-09 0.97842 IE-S1 LPI -MOP-FS-SI 1B LPI -MOP-MA-SI 1A +

7 7 3 4.80E-09 0.98158 IE-S1

  • LPI-MOP-FS-SI 18
  • SIS-ACT-FA-SI SA +

8 9

10 6

9 8

3 3

3 4.80E-09 3.20E-09 3.20E-09 0.98671 0.99014 0.99357 IE-S1 IE-S1 IE-S1

..* LPI-MOP-FS-Sl1A LPI -MOP-MA-SI 1A LPI -MOP-MA-SI 18 SIS-ACT-FA-SI SB SIS-ACT-FA-SI SB SIS-ACT-FA-SI SA

+

+

+

11 11 3 3.00E-09 0.99878 IE-S1

  • LPI-CKV-OO-CV58
  • LPI-MOP-FS-SI 1A +

12 10 3 3.00E-09 1.00000 IE-S1

  • LPI-CKV-OO-CV50
  • LPI-MOP-FS-S118

SURRY SEQUENCE SBO-L2 TOP EVENT SBO-L2 CONTAINS 35 EVENTS IN 61 CUT SETS THE FREQUENCY OF TOP EVENT SBO-L2 IS 6.17E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT SBO-L2 N 1000 MEAN 6.49E-07 STD DEV 1*.29E-06 LOWER 5% 1.74E-08 LOWER 25% 9.40E-08 MEDIAN 2.29E-07 UPPER 25% 6.28E-07 UPPER 5% 2.59E-06 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN) 5% = 1.74E-08 ***LOG SCALE*** 95%*= 2.59E-06 1----------------------------------[-------------~----*-------------------NM----------------------------I NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION= PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

= TEF(EVALUATED WITH EV(J) = 1) - TEF

SURRY SEQUENCE SBO-L2 RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

REC-XHE~FO-DGEN 61 9.00E-01 ( 2.0) 6.17E-07 ( 1. 0) 1.74E-08 2.59E-06 NOTQ 57 9.73E-01 ( 1. 0) 6. 15E-07 ( 2.0)

OEP-DGN-FS 46 2.20E-02 ( 19.5) 5.94E-07 ( 3.0) 1.65E-08 2.41E-06 BETA-3DG 31 1.80E-02 ( 22.0) 5.77E-07 ( 4.0) 1.55E-08 2.38E-06 QS-SBO 61 2.70E-01 ( 8.0) 2.85E-07 ( 5.0) 4.45E-09 1. 17E-06 NRAC-HALFHR 40 6.00E-01 ( 3.0) 2.66E-07 ( 6.0) 5.60E-09 1.16E-06 NRAC-1HR 11 4.40E-01 ( 6.0) 2.33E-07 ( 7.5) 3.13E-09 1. 05E-06 AFW-XHE-FO-CST2 11 6.50E-02 ( 12.0) 2.33E-07 ( 7.5) 3. 13E-09 1.05E-06 UNI T2-LOW-POWER 20 3.50E-01 ( 7.0) 1.41E-07 ( 9.0)

AFW-TDP-FS-FW2 20 1.10E-02 ( 26.5) 1.35E-07 ( 10.0) 1.18E-09 5.78E-07 AFW-TDP-MA-FW2 17 1.00E-02 ( 28.5) 1.22E-07 ( 11. 0) 7.70E-10 4.90E-07 NRAC-6HR-AVG 10 1.94E-01 ( 9.0) 1.18E-07 ( 12.0) 4.61E-10 5.64E-07 AFW-TDP-FR-2P6HR 8 3.00E-02 ( 15.5) 1.15E-07 ( 13.0) 4.47E-10 5.34E-07 QS-UNIT2 6 1.60E-01 ( 10.0) 6.04E-08 ( 14.0) 7.72E-10 1.95E-07 AFW-XHE-FO-U2SBO 4 7.50E-02 ( 11.0) 2.78E-08 ( 15.0) 2.33E-10 1.16E-07 OEP-DGN-FS-DG03 12 2.20E-02 ( 19.5) 1.86E-08 ( 17.0) 1.2SE-10 1.85E-07 OEP-DGN-FS-DG01 12 2.20E-02 ( 19.5) 1.86E-08 ( 17. 0) 1.28E-10 1.85E-07 trj OEP-DGN-FS-D002 12 2.20E-02 ( 19.5) 1.86E-08 ( 17.0) 1.28E-"10 1.85E-07

.....I NOTDG-CCF 15 5.20E-01 ( 4.0) 1.76E-08 ( 19.5)

  • O')

BETA-2DG 15 3.80E-02 ( 13.0) 1.76E-08 ( 19.5) 1.13E-10 6.89E-0S

<:,:, 4. 16E-10 4.04E-08 AFW-CKV-OO-CV172 4 1.00E-03 ( 33.0) 1.12E-08 ( 21.0)

OEP-DGN-FR-6HDG3 7 1.20E-02 ( 24.0) 8.79E-09 ( 23.0) 4.17E-11 3.93E-08 OEP-DGN-FR-6HDG2 7 1.20E-02 ( 24.0) 8.79E-09 ( 23.0) 4.17E-11 3.93E-08 OEP-DGN-FR-6HDG1 7 1. 20E-02 ( 24.0) 8.79E-09 ( 23.0) 4.17E-11 3.93E-08 AFW-TDP-FR-6HRU2 3 3.00E-02 ( 15.5) 5.79E-09 ( 25.0) 6.62E-12 4.50E-08 AFW-TDP-FS-U2FW2 3 1.10E-02 ( 26.5) 3.95E-09 ( 26.0) 6.44E-12 2.34E-08 AFW-TDP-MA-U2FW2 3 1.00E-02 ( 28.5) 3.59E-09 ( 27.0) 6.68E-12 2.44E-08 SBO-PORV-DMD 4 4.50E-01 ( 5.0) 2.39E-09 ( 28.0) 5.52E-12 4.94E-09 OEP-D8N-MA-DG03 1 6.00E-03 ( 31.0) 1.36E-09 ( 30.0) 3.13E-12 4.34E-09 OEP-DGN-MA-DG02 1 6.00E-03 ( 31. 0) 1.36E-09 ( 30.0) 3.13E-12 4.34E-09 OEP-D8N-MA-DG01 1 6.00E-03 ( 31.0) 1.36E-09 ( 30.0) 3.13E-12 4.34E-09 PPS-SOV-00-1456 2 3.00E-02 ( 15.5) 1.19E-09 ( 32.5) 2.76E-12 2.47E-09 PPS-S0V-00-1455C 2 3.00E-02 ( 15.5) 1.19E-09 ( 32.5) 2.76E-12 2.47E-09 AFW-PSF-FC-XCONN 1 1.50E-04 ( 34.0) 6.14E-10 ( 34.0) 1.90E-11 2.50E-09 RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK ll'!IT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-T1 61 7.70E-02 1. 0) 6.17E-07 ( 1. 0) 1.74E-08 2.59E-06

SURRY SEQUENCE SBO-L2 RISK INCREASE BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

BETA-3DG .31 1.80E-02 ( 22.0) 3. 15E-05 ( 1. 0) 1.38E-06 1.13E-04 OEP-DGN-FS 46 2.20E-02 ( 19.5) 2.64E-05 ( 2.0) 1.34E-06 1.05E-04 AFW-TDP-FS-FW2 20 1.10E-02 ( 26.5) 1.22E-05 ( 3.0) 7.63E-07 4.37E-05 AFW-TDP-MA-FW2 17 1.00E-02 ( 28.5) 1.20E-05 ( 4.0) 7.32E-07 4.32E-05 Ai=W-CKV-OO-CV172 4 1.00E-03 ( 33.0) 1.12E-05 ( 5.0) 6.71E-07 3.81E-05 AFW-PSF-FC-XCONN 1 1.50E-04 ( 34.0) 4.09E-06 ( 6.0) 1.71E-07 1.54E-05 AFW-TDP-FR-2P6HR 8 3.00E-02 ( 15.5) 3.73E-06 ( 7.0) 1.00E-07 1.44E-05 AFW-XHE-FO-CST2 11 6.50E-02 ( 12.0) 3.35E-06 ( 8.0) 1.04E-07 1.43E-05 OEP-DGN-FS-DG02 12 2.20E-02 ( 19.5) 8.27E-07 ( 10.0) 1.77E-08 4.36E-06 OEP-DGN-FS-DG03 12 2.20E-02 ( 19.5) 8.27E-07 ( 10.0) 1. 77E-08 4.36E-06 OEP-DGN-FS-0601 12 2.20E-02 ( 19.5) 8.27E-07 ( 10.0) 1.77E-08 4.36E-06 QS-SBO 61 2.70E-01 ( 8.0) 7.71E-07 ( 12.0) 1.69E-08 3. 12E-06 OEP-DGN-FR-6HDG3 7 1.20E-02 ( 24.0) 7.24E-07 ( 14.0) 1.73E-08 3.72E-06 OEP-DGN-FR-6HD02 7 1.20E-02 ( 24.0) 7.24E-07 ( 14.0) 1.73E-08 3.72E-06 OEP-DGN-FR-6HDG1 7 1.20E-02 ( 24.0) 7.24E-07 ( 14.0) 1.73E-08 3.72E-06 NRAC-6HR-AVG 10 1.94E-01 ( 9.0) 4.89E-07 ( 16.0) 3.68E-09 2.04E-06 BETA-2DG 15 3.80E-02 ( 13.0) 4.45E-07 ( 17.0) 3.96E-09 1.66E-06 trj AFW-TDP-MA-U2FW2 3 1.00E-02 ( 28.5) 3.55E-07 ( 18.0) 5.99E-09 1.44E-06 I AFW-TDP-FS-U2FW2 3 1.10E-02 ( 26.5) 3.55E-07 ( 19.0) 5.98E-09 1.44E-06 1--'

O') AFW-XHE-FO-U2SBO 4 7.50E-02 ( 11. 0) 3.43E-07 ( 20.0) 6.32E-09 1.40E-06

..i:,. QS-UNIT2 6 1.60E-01 ( 10.0) 3. 17E- 07 ( 21 . 0) 5.46E-09 1.41E-06 NRAC-1HR 11 4.40E-01 ( 6.0) 2.97E-07 ( 22.0) 4.02E-09 1.36E-06 UNIT2-LOW-POWER 20 3.50E-01 ( 7.0) 2.61E-07 ( 23.0)

OEP-DGN-MA-D003 1 6.00E-03 ( 31.0) 2.25E-07 ( 25.0) 2.91E-09 9.30E-07 OEP-DGN-MA-DG02 1 6.00E-03 ( 31.0) 2.25E-07 ( 25.0) 2.91E-09 9.30E-07 OEP-DGN-MA-DG01 1 6.00E-03 ( 31.0) 2.25E-07 ( 25.0) 2.91E-09 9.30E-07 AFW-TDP-FR-6HRU2 3 3.00E-02 ( 15.5) 1.87E-07 ( 27.0) 1.82E-09 7.72E-07 NRAC-HALFHR 40 6.00E-01 ( 3.0) 1.78E-07 ( 28.0) 3.71E-09 7.16E-07 REC-XHE-FO-DGEN 61 9.00E-01 ( 2.0) 6.86E-08 ( 29.0) 4.38E-10 2.49E-07 PPS-SOV-00-1456 2 3.00E-02 ( 15.5) 3.86E-08 ( 30.5) 3.05E-10 1.47E-07 PPS-SOV-00-1455C 2 3.00E-02 ( 15.5) 3.86E-08 ( 30.5) 3.05E-10 1.47E-07 NOTQ 57 9.73E-01 ( 1. 0) 1.71E-08 ( 32.0)

NOTDG-CCF 15 5.20E-01 ( 4.0) 1.62E-08 ( 33.0)

SBO-PORV-DMD 4 4.50E-01 ( 5.0) 2.92E-09 ( 34.0) 5.15E-12 5.41E-09

SURRY SEQUENCE SBO-L2 UNCERTAINTY IMPORTANCE BY BASE EVENT


~--------------

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK) Y.05/TE.05" Y.95/TE.95" OEP-DGN-FS-0003 12 2.20E-02 ( 19.5) 22.6 ( 2.5) 1.88 0.93 OEP-DGN-FS 46 2.20E-02 ( 19.5) 22.6 ( 2.5) 1. 88 0.93 OEP-DGN-FS-DG01 12 2.20E-02 ( 19.5) 22.6 ( 2.5) 1.88 0.93 OEP-DGN-FS-DG02 12 2.20E-02 ( 19.5) 22.6 ( 2.5) 1.88 0.93 BETA-3DG 31 1.80E-02 ( 22.0) 17.9 ( 5.0) 1.56 0.91 QS-SBO 61 2.70E-01 ( 8.0) 7.7 ( 6.0) 1. 29 0.97 QS-UNIT2 6 1.60E-01 ( 10.0) 7.5 ( 7.0) 1.08 1. 06 PPS-SOV-00-1455C 2 3.00E-02 ( 15.5) 7.0 ( 8.5) 1. 00 1. 00 PPS-SOV-00-1456 2 3.00E-02 ( 15.5) 7.0 ( 8.5) 1. 00 1. 00 AFW-XHE-FO-CST2 11 6.50E-02 ( 12.0) 5.5 ( 10.0) 1.27 1.00 AFW-TDP-MA-FW2 17 1.00E-02 ( 28.5) 4.9 ( 11.5) 1.38 0.98 AFW-TDP-MA-U2FW2 3 1.00E-02 ( 28.5) 4.9 ( 11.5) 1.38 0.98 AFW-TDP-FS-U2FW2 3 1.10E-02 ( 26.5) 4.9 ( 13.5) 1. 29 1.08 AFW-TDP-FS-FW2 20 1.10E-02 ( 26.5) 4.9 ( 13.5) 1.29 1.08 AFW-TDP-FR-2P6HR 8 3.00E-02 ( 15.5) 3.0 { 15.5) 1.19 0.93 AFW-TDP-FR-6HRU2 3 3.00E-02 ( 15.5) 3.0 ( 15.5) 1.19 0.93 NRAC-6HR-AVG 10 1.94E-01 ( 9.0) 1. 5 ( 17.0) 1.02 0.98 trj REC-XHE-FO-DGEN 61 9.00E-01 ( 2.0) 1.3 ( 18.0) 1.01 0.94 I 5.0) 0.9 ( 19.0) 1. 00 1. 00 f--', SBO-PORV-DMD 4 4.50E-01 (

O') AFW-PSF-FC-XCONN 1 1.50E-04 ( 34.0) 0.9 ( 20.0) 1. 00 1. 00 C.11 AFW-XHE-FO-U2SBO 4 7.50E-02 ( 11. 0) 0.8 ( 21.0) 0.98 1.02 OEP-DGN-FR-6HDG3 7 1.20E-02 ( 24.0) 0.7 { 23.0) 0.99 1. 01 OEP-DGN-FR-6HDG2 7 1.20E-02 ( 24.0) 0.7 ( 23.0) 0.99 1.01 OEP-DGN-FR-6HDG1 7 1.20E-02 { 24.0) 0.7 ( 23.0) 0.99 1. 01 NRAC-1HR 11 4.40E-01 ( 6.0) 0.6 ( 25.0) 0.96 1.01 NRAC-HALFHR 40 6.00E-01 ( 3.0) 0,5 ( 26.0) 0.97 1.00 BETA-2DG 15 3.BOE-02 ( 13.0) 0.5 ( 27.0) 1. 00 1.00 AFW-CKV-00-CV172 4 1.00E-03 ( 33.0) 0.4 ( 28.0)

OEP-DGN-MA-DG03 1 6.00E-03 ( 31. 0) o.o ( 30.0)

OEP-DGN-MA-DG02 1 6.00E-03 ( 31.0) o.o ( 30.0)

OEP-DGN-MA-DG01 1 6.00E-03 ( 31.0) o.o ( 30.0)

NOTQ 57 9.73E-01 ( 1. 0)

NOTDG-CCF 15 5.20E-01 ( 4.0)

UNIT2-LOW-POWER 20 3.50E-01 ( 7.0)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y. 05/TE. 05" Y.95/TE.95" IE-T1 61 7.70E-02 ( 1. 0) 28.6 { 1 . 0,) 1. 79 1. 05

. Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD. CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS NOT HELD CONSTANT

SURRY SEQUENCE SB0-L2 CUT SET NUMB.ERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT SB0-L2 WITH TOP EVENT FREQUENCY 6.17E-07 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 1 8 2.06E-07 0.33418 AFW-XHE-FO-CST2 .. BETA-3DG

  • IE-T1
  • NOTQ .

3 NRAC-1HR AFW-TDP-FS-FW2 .. OEP-DGN-FS BETA-3DG

  • QS-SBO
  • IE-T1 REC-XHE-FO-DGEN NOTQ

+

4 5

6 2

3 8

9 4.76E-08 4.50E-08 0.41129 0.48427 NRAC-HALFHR AFW-TDP-FS-FW2 .. OEP-DGN-FS BETA-3DG .

  • QS-SBO IE-T1 REC-XHE-FO-DGEN NOTQ ..

+

NRAC-HALFHR OEP-DGN-FS * /QS-SBO

  • REC-XHE-FO-DGEN 7

8 9 4 8 4.33E-08 0.55438 UNIT2-LOW-POWER AFW-TDP-MA-FW2

+

  • BETA-3DG . IE-T1 .* NOTQ
  • 10 NRAC-HALFHR
  • OEP-DGN-FS
  • QS-SBO REC-XHE-FO-DGEN +

4.20E-08 0.62238 AFW-TDP-FR-2P6HR

  • BETA-3DG
  • IE-T1
  • NOTQ
  • 11 6 8 QS-SBO
  • REC-XHE-FO-DGEN +

NRAC-6HR-AVG

  • OEP-DGN-FS
  • 12 13 5 9 4.09E-08 0.68872 AFW-TDP-MA-FW2 NRAC-HALFHR .* BETA-300 OEP-DGN-FS . /QS-SBO
  • IE-T1
  • NOTQ REC-XHE-FO-DGEN 14 15 16 8 9 3.97E-08 0.75307 UNIT2-LOW-POWER AFW-TDP-FR-2P6HR

+ . BETA-3DG .. /QS-SBO IE-T1 . NOTQ REC-XHE-FO-DGEN .*

trj NRAC-6HR-AVG

  • OEP-DGN-FS
  • I 1--'

O'a O'a 17 18 19 7 9 2.06E-08 0.78643 UN I T2 ~ LOW-POWER AFW-TDP-FS-FW2

+

.* BETA-306 .. /QS-SBO IE-T1

  • NOTQ
  • QS-UNIT2 NRAC-HALFHR OEP-DGN-FS 20 21 22 9 9 1.87E-08 0.81676 REC-XHE-FO-DGEN AFW-TDP-MA-FW2

+

  • BETA-3DG .. IE-T1
  • NOTQ QS-UNIT2 .*

NRAC-HALFHR

  • OEP-DGN-FS /QS-SBO
  • 23 24 25 11 9 1.82E-08 0.84618 REC-XHE-FO-DGEN AFW-TDP-FR-2P6HR

+

. BETA-3DG

. OEP-DGN-FS . /QS-SBO

  • IE-T1
  • NOTQ ..

26 NRAC-6HR-AVG

  • QS-UNIT2 REC-XHE-FO-DGEN +

27 28 10 9 9.65E-09 0.86182 AFW-TDP-FS-FW2 NOTQ

  • AFW-XHE-FO-U2SBO .* BETA-3DG

. NRAC-HALFHR OEP-DGN-FS . /QS-SBO

  • IE-T1 .*

29 30 31 12 9 8.77E-09 0.87603 REC-XHE-FO-DGEN AFW-TDP-MA-FW2

+

.* NRAC-HALFHR AFW-XHE-FO-U2SBO

  • BETA-3DG .* /QS-SBO IE-T1 .*

NOTQ

  • OEP-DGN-FS 32 REC-XHE-FO-DGEN +

33 34 35 15 9 8.51E-09 0.88982 AFW-TDP-FR-2P6HR NOTQ AFW-XHE-FO-U2SB0

  • NRAC-6HR-AVG
  • BETA-3DG OEP-DGN-FS .* /QS-SBO IE-T1 36 37 13 9 5.54E-09 0.89881 REC-XHE-FO-DGEN AFW-XHE-FO-CST2

+

  • IE-T1 . NOTQ
  • NRAC-1HR
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • OEP-DGN-FS-DG03
  • QS-SBO
  • 38 39 REC-XHE-FO-DGEN +

14 4.33E-09 0.90582 AFW-CKV-00-CV172

  • BETA-3DG
  • IE-T1
  • NOTQ
  • 40 8 OEP-DGN-FS
  • QS-SBO .* REC-XHE-FO-DGEN +.

41 42 16 9 4.09E-09 0.91245 NRAC-HALFHR AFW-CKV-OO-CV172 .

BETA-3DG

  • IE-T1 . NOTQ NRAC-HALFHR
  • OEP-DGN-FS * /QS-SBO REC-XHE-FO-DGEN
  • 43 44 UNIT2-LOW-POWER + . AFW-TDP-FR-6HRU2 . BETA-300 .* IE-T1
  • 45 27 9 3.40E-09 0. 91797 AFW-TDP-FR-2P6HR . .

46 NOTQ NRAC-6HR-AVG OEP-DGN-FS

47 48 49 19 9 3.02E-09 0.92287 REC-XHE-FO-DGEN AFW-XHE-FO-CST2 OEP-DGN-FR-6HD02

+

IE-T1 OEP-DGN-FS-DG01

.. NOTQ OEP-DGN-FS-DG03 NRAC-1HR QS-SBO 50 51 18 9 3.02E-09 0. 92777 REC-XHE-FO-DGEN AFW-XHE-FO-CST2

+

. IE-T1 . NOTQ

  • NRAC-1HR
  • 52 OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • QS-SBO
  • 53 REC-XHE-FO-DGEN +

54 17 9 3.02E-09 0.93267 AFW-XHE-FO-CST2

  • IE-T1
  • NOTQ
  • NRAC-1HR
  • 55 OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02
  • OEP-DGN-FS-DG03
  • QS-SBO
  • 56 REC-XHE-FO-DGEN +

57 22 10 2.72E-09 0.93708 AFW-XHE-FO-CST2

  • BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • 58 NOTQ
  • NRAC-1HR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS
  • 59 QS-SBO
  • REC-XHE-FO-DGEN +

60 21 10 2.72E-09 0.94148 AFW-XHE-FO-CST2

  • BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • 61 NOTQ
  • NRAC-1HR
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS
  • 62 QS-SBO
  • REC-XHE-FO-DGEN +

63 20 10 2.72E-09 0.94588 AFW-XHE-FO-CST2

  • BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • 64 NOTQ
  • NRAC-1HR
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS
  • 65 QS-SBO
  • REC-XHE-FO-DGEN +

66 23 9 1.87E-09 0.94891 AFW-CKV-OO-CV172

  • BETA-3DG
  • IE-T1
  • NOTQ
  • 67 NRAC-HALFHR
  • OEP-DGN-FS * /QS-SBO
  • QS-UNIT2
  • 68 REC-XHE-FO-DGEN +

69 28 9 1.42E-09 0.95121 AFW-TDP-FS-FW2

  • AFW-TDP-FS-U2FW2
  • BETA-3DG
  • IE-T1
  • 70 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS * /QS-SBO
  • 71 REC-XHE-FO-DGEN +

t:rj 72 26 10 1.36E-09 0.95341 AFW-XHE-FO-CST2

  • BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • I t--'

73 NOTQ

  • NRAC-1HR
  • OEP-DGN-FS
  • OEP-DGN-MA-0801
  • C) 74 QS-SBO
  • REC-XHE-FO-DGEN +

--1 75 25 10 1.36E-09 0.95561 AFW-XHE-FO-CST2

  • BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • 76 NOTQ
  • NRAC-1HR
  • OEP-DGN-FS
  • OEP-DGN-MA-DG02
  • 77 QS-SBO
  • REC-XHE-FO-DGEN +

78 24 10 1.36E-09 0.95781 AFW-XHE-FO-CST2

  • BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • 79 NOTQ
  • NRAC-1HR
  • OEP-DGN-FS
  • OEP-DGN-MA-DGOS
  • 80 QS-SBO
  • REC-XHE-FO-DGEN +

81 30 9 1.29E-09 0.95990 AFW*-TDP-FS-U2FW2

  • AFW-TDP-MA-FW2
  • BETA-3DG
  • IE-T1
  • 82 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS * /QS-SBO
  • 83 REC-XHE-FO-DGEN +

84 29 9 1.29E-09 0.96198 AFW-TDP-FS-FW2

  • AFW-TDP-MA-U2FW2
  • BETA-3DG
  • IE-T1
  • 85 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS * /QS-SBO
  • 86 REC-XHE-FO-DGEN +

81 44 9 1.25E-09 0.96400 AFW-TDP-FR-2P6HR

  • AFW-TDP-FS-U2FW2
  • BETA-3DG
  • IE-T1
  • 88 NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FS * /QS-SBO
  • 89 REC-XHE-FO-DGEN AFW-TDP-FR-6HRU2

+

AFW-TDP-FS-FW2 . BETA-3DG . IE-T1 90 91 43 9 1.25E-09 0.96603 NOTQ .

NRAC-6HR-AVG

  • OEP-DGN-FS * /QS-SBO 92 REC-XHE-FO-DGEN +

93 31 10 1.21E-09 0.96799 AFW-TDP-FS-FW2

  • IE-T1
  • NOTQ
  • NRAC-HALFHR
  • 94 OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG02
  • OEP-DGN-FS-0003 * /QS-SBO
  • REC-XHE-FO-DGEN UNIT2-LOW-POWER .

+

95 96 32 9 1. 17E-09 0.96988 AFW-TDP-MA-FW2 .

AFW-TDP-MA-U2FW2 BETA-3DG

  • IE-T1
  • 97 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FS * /QS-SBO
  • 98 99 58 9 1.13E-09 0.97172 REC-XHE-FO-DGEN AFW-TDP-FR-2P6HR

+

  • AFW-TDP-MA-U2FW2
  • BETA-3DG . IE-T1 .

100 NOTQ

  • NRAC-6HR-AVG
  • OEP-DGN-FS * /QS-SBO
  • 101 REC-XHE-FO-DGEN +

102 57 9 1.13E-09 0.97356 AFW-TDP-FR-6HRU2

  • AFW-TDP-MA-FW2
  • BETA-3DG
  • IE-T1
  • 103 NOTQ
  • NRAC-6HR-AVG
  • OEP-DGN-FS * /QS-SBO
  • 104 REC-XHE-FO-DGEN +

105 106 59 9 1.13E-09 0.97539 AFW-TDP-FR-2P6HR

  • OEP-DGN-FS-DG01
  • IE-T1 OEP-DGN-FS-DG02 NOTQ OEP-DGN-FS-DG03 .* NRAC-6HR-AVG QS-SBO
  • 107 33 10 1.10E-09 0. 97717 REC-XHE-FO-DGEN +

AFW-TDP-MA-FW2

  • IE-T1
  • NOTQ *. NRAC-HALFHR .

108 OEP-DGN-FS-DG03 /QS-SBO

  • OEP-DGN-FS-D601
  • OEP-DGN-FS-D602
  • 109 .

110 111 34 9 8. 77E-10 0.97859 REC-XHE-FO-DGEN AFW-CKV-00-CV172 . UNIT2-LOW-POWER +

AFW-XHE-FO-U2SBO" NRAC-HALFHR . BETA-3DG OEP-DGN-FS

. IE-T1

  • /QS-SBO 112 NOTQ
  • 113 REC-XHE-FO-DGEN +

IE-T1 . NOTQ

  • NRAC-HALFHR
  • 114 37 10 6.60E-10 0.97966 AFW-TDP-FS-FW2 .

OEP-DGN-FS-DG01

  • OEP-DGN-FS-DG02 * /QS-SBO
  • 115 116 OEP-DGN-FR-6HDG3 REC-XHE-FO-DGEN . UNIT2-LOW-POWER +

117 36 10 6.60E-10 0.98073 AFW-TDP-FS-FW2

  • IE-T1
  • NOTQ
  • NRAC-HALFHR
  • 118 OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02
  • OEP-DGN-FS-0803 * /QS-SBO
  • 119 REC-XHE-FO-DGEN
  • UNIT2-LOW-POWER +

120 35 10 6.60E-10 0.98181 AFW-TDP-FS-FW2

  • IE-T1
  • NOTQ
  • NRAC-HALFHR
  • 121 OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03 * /QS-SBO
  • 122 REC-XHE-FO-DGEN
  • UNIT2-LOW-POWER +

IE-T1

  • NOTDG-CCF
  • 123 124 42 10 6.27E-10 0.98282 AFW-TDP-FS-FW2 NOTQ BETA-2DG NRAC-HALFHR .* OEP-DGN-FR-6HDG2
  • OEP-DGN-FS
  • 125 QS-SBO
  • REC-XHE-FO-DGEN +

126 41 10 6.27E-10 0.98384 AFW-TDP-FS-FW2

  • BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • 127 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS
  • 128 QS-SBO
  • REC-XHE-FO-DGEN + -1 tc:I BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • I 129 40 10 6.27E-10 0.98485 AFW-TDP-FS-FW2
  • I-"' NRAC-HALFHR
  • OEP-DGN-FR-6HDG1
  • OEP-OGN-FS
  • O')

00 130 131 NOTQ QS-SBO .* REC-XHE-FO-DGEN +

AFW-TDP-FS-FW2 BETA-3DG

  • IE-T1
  • NRAC-HALFHR
  • 132 133 39 10 6.25E-10 0.98587 OEP-DGN-FS .* PPS-S0V-00-1455C * /QS-SBO
  • REC-XHE-FO-DGEN
  • 134 SBO-PORV-OMD
  • UNIT2-LOW-POWER +

135 38 10 6.25E-10 0.98688 AFW-TDP-FS-FW2

  • BETA-3DG
  • IE-T1
  • NRAC-HALFHR
  • 136 OEP-DGN-FS
  • PPS-SOV-00-1456 * /QS-SBO
  • REC-XHE-FO-DGEN *
  • 137 SBO-PORV-DMD
  • UNIT2-LOW-POWER +

138 45 9 6.14E-10 0.98787 AFW-PSF-FC-XCONN

  • BETA-3DG
  • IE-T1
  • NOTQ 139 NRAC-HALFHR
  • OEP-DGN-FS
  • IQS-SBO
  • REC-XHE-FO-DGEN
  • 140 UNIT2-LOW-POWER +

NOTQ

  • NRAC-HALFHR
  • 141 142 48 10 6.00E-10 0.98885 AFW-TDP-MA-FW2 OEP-DGN-FR-6HDG2 .* IE-T1 OEP-DGN-FS-DG01
  • OEP-DGN-FS-DG03
  • IQS-SBO
  • 143 REC-XHE-FO-DGEN
  • UNIT2-LOW-POWER +

144 47 10 6.00E-10 0.98982 AFW-TOP-MA-FW2

  • IE-T1
  • NOTQ
  • NRAC-HALFHR
  • 145 OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-0602
  • OEP-DGN-FS-DG03
  • IQS-SBO
  • 146 147 46 10 . 6.00E-10 0.99079 REC-XHE-FO-DGEN AFW-TDP-MA-FW2 UNIT2-LOW-POWER IE-T1 .

+

NOTQ

  • NRAC-HALFHR
  • 148 OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-0601
  • OEP-DGN-FS-0002
  • IQS-SBO
  • 149 REC-XHE-FO-DGEN
  • UNIT2-LOW-POWER +

150 151 51 11 5.93E-10 0.99175 AFW-TDP-FS-FW2 NOTQ BETA-2DG NRAC-HALFHR IE-T1 OEP-OGN-FR-6HDG1 .* NOTDG-CCF OEP-DGN-FS .*

152 IQS-SBO

  • REC-XHE-FO-DGEN
  • UNIT2-LOW-POWER +

153 50 11 5.93E-10 0.99271 AFW-TDP-FS-FW2

  • BETA-206
  • IE-T1
  • NOTDG-CCF
  • 154 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS
  • 155 IQS-SBO
  • REC-XHE-FO-DGEN
  • UNIT2-LOW-POWER +

156 49 11 5.93E-10 0.99368 AFW-TDP-FS-FW2

  • BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • 157 NOTQ
  • NRAC-HALFHR
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS
  • 158 IQS-SBO
  • REC-XHE-FO-DGEN
  • UNIT2-LOW-POWER +

159 160 181 162 56 55 10 10 5.70E-10 5.70E 10 0

0.99460 0.99552 AFW-TDP-MA-FW2 NOTQ QS-SBO AFW-TDP-MA-FW2 BETA-2DG NRAC-HALFHR REC-XHE-FO-DGEN BETA-2DG

+

IE-T1 IE-T1 OEP-DGN-FR-6HDG3

  • NOTDG-CCF OEP-DGN-FS NOTDG-CCF OEP-DGN-FS 163 NOTQ
  • NRAC-HALFHR
  • OEP-D0N-FR-6HDG2 *
  • 164 QS-SBO
  • REC-XHE-FO-DGEN +

165 54 10 5.70E-10 0.99645 AFW-TDP-MA-.FW2

  • BETA-2DG
  • IE-T1
  • NOTDG-CCF
  • 166 NOTQ
  • NRACaHALFHR
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS
  • 167 QS-SBO
  • REC-XHE-FO-DGEN +

168 53 10 5.68E-10 0.99737 AFW-TDP-MA-FW2 BETA-3D0

  • IE-T1
  • NRAC-HALFHR
  • 169 OEP-DGN-FS .

PPS-S0V-00-1455C * /QS-SBO

  • REC-XHE-FO-DGEN
  • 170 SBO-PORV-DMD
  • UNIT2-LOW-POWER +

IE-T1 . NRAC-HALFHR

  • 171 52 10 5.88E-10 0.99829 AFW-TDP-MA-FW2

.* BETA-3DG PPS-SOV-00-1456

  • /QS-SBO REC-XHE-FO-DGEN
  • 172 173 OEP-DGN-FS SBO-PORV-DMD . UNIT2-LOW-POWER +

IE-T1

  • NOTQ
  • NRAC-HALFHR
  • 174 175 60 10 5.53E-10 0.99918 AFW-TDP-FS-FW2 OEP-DGN-FS-D001 .* OEP-DGN-FS-0002
  • OEP-DGN-FS-D003 * /QS-SBO
  • 176 QS-UNIT2 " REC-XHE-FO-DGEN +

177 61 10 5.03E-10 1.00000 AFW-TDP-MA-FW2

  • IE-T1
  • NOTQ
  • NRAC-HALFHR
  • 178 OEP-DGN-FS-D001
  • OEP-DGN-FS-0002
  • OEP-DGN-FS-0603 * /QS-SBO
  • 179 QS-UNIT2
  • REC-XHE-FO-DGEN

SEQUENCE A- D5 TOP EVENT A-D5 CONTAINS 7 EVENTS IN 6 CUT SETS THE FREQUENCY OF TOP EVENT A-D5 IS 8.50E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT A-D5 N 1000 MEAN 6.37E-07 STD DEV 6.32E-07 LOWER 5% 1.12E-07 LOWER 25% 2.58E-07 MEDIAN 4.58E-07 UPPER 25% 7.90E-07 UPPER 5% 1.77E-06 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURc:

PD = PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION= PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

= TEF(EVALUATED WITH EV(J) m 1) - TEF

SEQUENC£ A- D5 RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5~ UPPER 5" ACC-MOV-PG-1865B 1 6.50E-04 ( 1.5) 3.25E-07 ( 1.5) 3.03E-O't 6.51E-07 ACC-MOV-PG-1865C 1 8.50E-04 ( 1.5) 3.25E-07 ( 1.5) 3.03E-08 6.51E-07 ACC-CKV-FT-CV145 1 1.00E-04 ( 4.5) 5.00E-08 ( 4.5) 6.43E-09 1.63E-07 ACC-CKV-FT-CV147 1 1.00E-04 ( 4.5) 5.00E-08 ( 4.5) 6.43E-09 1.63E-07 ACC-CKV-FT-CV130 1 1.00E-04 ( 4.6) 6.00E-08 ( 4.6) 6.43E-09 1.63E-07 ACC-CKV-FT-CV128 1 1.00E-04 ( 4.5) 5.00E-08 ( 4.5) 6.43E-09 1. 63E-07 RISK REDUCTION BY INITIATIN8 EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-A 6 6.00E-04 ( 1.0) 8.60E-07 ( 1.0) 1.12E-07 1.77E-06

SEQUENCEA-D5 RISK INCREASE BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

ACC-CKV-FT-CV128 1 1.00E-04 ( 4.5) 5.00E-04 ( 2.5) 1.33E-04 1.20E-03 ACC-CKV-FT-CV145 1 1. OOE-04 ( 4.5) 5.00E-04 ( 2.5) 1.33E-04 1.20E-03 ACC-CKV-FT-CV147 1 1.00E-04 ( 4.5) 5.00E-04 ( 2.5) 1.33E-04 1.20E-03 ACC-CKV-FT-CV130 1 1. OOE-04 ( 4.5) 5.00E-04 ( 2.5) 1.33E-04 1.20E-03 ACC-MOV-PG-1865C 1 6.50E-04 ( 1.5) 6.00E-04 ( 6.6) 1.33E-04 1.20E-03 ACC-MOV-PG-18658 1 6.50E-04 ( 1. 5) 5.00E-04 ( 5.5) 1.33E-04 1.20E-03

SEQUENCl:A-D5 UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK)

ACC-MOV-PG-1885B 1 8.50E-04 ( 1. 5) 28.0 ( 1.5)

ACC-MOV-PG-1885C 1 8.50E-04 ( 1.5) 28.0 ( 1. 5)

ACC-CKV-FT-CV145 1 1. OOE-04 ( 4.5) 9,0 ( 4.5)

ACC-CKV-FT-CV147 1 1.00E-04 ( 4.5) 9.0 ( 4.5)

ACC-CKV-FT-CV130 1 1.00E-04 ( 4.5) 9.0 ( 4.5)

ACC-CKV-FT-CV128 1 1.00E-04 ( 4.5) 9.0 ( 4.5)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK)

IE-A 6 5.00E-04 ( 1.0) 63.6 ( 1.0)

SEQUENCfA-D5 CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT A-D5 WITH TOP EVENT FREQUENCY 8.50E-07 (THE FIRST COLUMN OF NUMBERS IS THE LI NE NUMBERS FOR THE ~ILE TEMACSETS.DNF) 2 1 2 3.25E-07 0.38235 ACC-MOV-PG-1865C

  • IE-A +

3 2 2 3.25E-07 0.78471 ACC-MOV-PG-1885B

  • IE-A +

4 3 2 5.00E-08 0.82353 ACC-CKV-FT-CV128

  • IE-A +

5 5 2 5.00E-08 0.88235 ACC-CKV-FT-CV145

  • IE-A +

8 8 2 5.00E-08 0.94118 ACC-CKV-FT-CV130

  • IE-A +

7 4 2 5.00E-08 1.00000 ACC-CKV-FT-CV147

  • IE-A
  • SEQUENCE T-K-R-D4 TOP EVENT T-K-R-D4 CONTAINS 23 EVENTS IN' 14 CUT SETS THE FREQUENCY OF TOP EVENT T-K-R-D4 IS 5.65E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT T-K-R-D4 N 1000 MEAN 6.36E-07 STD DEV 1.SOE-06 LOWER 5% 9.48E-09 LOWER 25% 4.77E-08 MEDIAN 1.50E-07 UPPER 25% 4.S9E-07 UPPER 5% 2.82E-06 go,r, UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

~ FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION= PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

= TEF(EVALUATED WITH EV(J) = 1) - TEF

SEQUENCE T-K-R-D4 RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5" UPPER 5" R 14 1.70E-01 ( 4.0) 5.65E-07 ( 1.5) 9.48E-09 2.82E-06 K 14 8.00E-05 ( 18.0) 5.65E-07 ( 1. 5) 9.48E-09 2.82E-0S PPS-MOV-FC-1538 3 3.00E-01 ( 1.5) 2.64E-07 ( 3.5) 2.00E-09 1.46E-0S PPS-MOV-FC-1535 3 3.00E-01 ( 1.5) 2.64E-07 ( 3.5) 2.00E-09 1.46E-08 PPS-MOV-FT-1535 2 4.00E-02 ( 8.0) 2.43E-07 ( 5.0) 1.82E-09 1.29E-06 HPI -MOV-FT-1350 1 3.00E-03 ( 10.0) 2.02E-07 ( 8.0) 8.17E-10 7.5SE-07 PPS-XHE-FO-EMBOR 1 1.00E-03 ( 12.5) 6.73E-08 ( 7.0) 2.58E-10 2.40E-07 BETA-2MOV 1 8.BOE-02 ( 5.0) 2.13E-08 ( 8.5) 1.11E-10 1.15E-07 PPS-MOV-FT 1 4.00E-02 ( 8.0) 2. 1SE-08 ( 8.5) 1.11E-10 1.15E-07 ACP-BAC-ST-4KV1H 1 9.00E-05 ( 16.0) 6.0SE-09 ( 11. 0) 6.02E-11 2.23E-08 ACP-BAC-ST-1H1-2 1 9.00E-05 ( 16.0) 6.0BE-09 ( 11. 0) 6.02E-11 2.2SE-08 ACP-BAC-ST-1H1 1 9.00E-05 ( 16.0) 6.0SE-09 ( 11. 0) 6.02E-11 2.23E-08 BETA-SRV 1 7.00E-02 ( 6.0) 4.71E-09 ( 13.5) 5.25E-11 1.74E-08 PPS-SOV-FT 1 1.00E-03 ( 12.5) 4.71E-09 ( 13.5) 5.25E-11 1.74E-08 HP I -MOV-PG-1350 1 4.00E-05 ( 19.5) 2.S9E-09 ( 15.5) 4.77E-11 1.08E-08 ACP-TFM-N0-1H1 1 4.00E-05 ( 19.5) 2.S9E-09 ( 15.5) 4.79E-11 1.15E-08 CVC-MDP-FR-2A1HR 1 3.00E-05 ( 21.5) 2.02E-09 ( 17.0) 8.51E-12 6.51E-09 Q::l PPS-SOV-FT-1456 1 1.00E-03 ( 12*. 5) 8.0BE-10 ( 19.0) 7.S9E-12 3.22E-09 I ( 12.5) 8.08E-10 ( 19.0) 7.39E-12 3.22E-09 I-' PPS-SOV-FT-1455C 1 1.00E-03

-:i PPS-MOV-FT-1536 1 4.00E-02 ( 8.0) 8.0BE-10 ( 19.0) 7.39E-12 3.22E-09 m BETA-STR 1 2.63E-01 ( 3.0) 5.31E-10 ( 21.5) 1.11E-11 1.BBE-09 CPC-STR-PG-1HR 1 3.00E-05 ( 21.5) 5.31E-10 ( 21.5)

RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5" IE-T 14 6.60E+OO ( 1. 0) 5.S5E-07 ( 1. 0) 9.48E-09 2.82E-06

  • SEQUENCE T-K-R-D4 RISK INCREASE BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

K 14 8.00E-05 ( 18.0) 9.42E-03 ( 1. 0) 4.23E-04 4.43E-02 CVC-MDP-FR-2A1HR 1 3.00E-05 ( 21.5) 8.73E-05 ( 3.0) 1.80E-08 2.49E-04 HP I -MOV-PG-1350 1 4.00E-05 ( 19.5) 6.73E-05 ( 3.0) 1.SOE-06 2.49E-04 ACP-TFM-N0-1H1 1 4.00E-05 ( 19.5) 8.73E-05 ( 3.0) 1.SOE-08 2.49E-04 ACP-BAC-ST-1H1 1 9.00E-05 ( 16.0) 6.73E-06 ( 6.0) 1.SOE-06 2.49E-04 ACP-BAC-ST-4KV1H 1 9.00E-05 ( 16.0) 6.73E-05 ( 6.0) 1.SOE-06 2.49E-04 ACP-BAC-ST-1H1-2 1 9.00E-05 ( 18.0) 8.73E-05 ( 8.0) 1.80E-08 2.49E-04 PPS-XHE-FO-EMBOR 1 1.00E-03 ( 12.5) 8.73E-05 ( 8.0) 1.79E-06 2.48E-04 HPI -MOV-FT-1350 1 3.00E-03 ( 10.0) 6.71E-05 ( 9:0) 1.80E-06 2.48E-04 CPC-STR-PG-1HR 1 3.00E-05 ( 21.5) 1.77E-05 ( 10.0)

PPS-MOV-FT-1535 2 4.00E-02 ( 8.0) 5.84E-08 ( 11.0) 7.32E-08 3.20E-05 PPS-SOV-FT 1 1.00E-03 ( 12.5) 4.71E-08 ( 12.0) 8.64E-08 1.69E-05 R 14 1.70E-01 ( 4.0) 2.7SE-08 ( 13.0) 8.63E-08 1.21E-05 PPS-SOV-FT-1458 1 1.00E-03 ( 12.5) 8.07E-07 ( 14.5) 1.18E-08 3.27E-08 PPS-S0V-FT-1455C 1 1. OOE-03 ( 12.5) 8.07E-07 ( 14.6) 1. 1SE-08 3.27E-06 PPS-UOV-FC-1536 3 3.00E-01 ( 1. 5) 6.17E-07 ( 18.5) 8.65E-09 2.03E-06 tij PPS-MOV-FC--1535 3 3.00E-01 ( 1. 5) 8.17E-07 ( 16.5) 8.85E-09 2.0SE-08 I PPS-MOV-FT 1 4.00E-02 ( 8.0) 5.12E-07 ( 18.0) 4.12E-09 2.79E-08 1--'

-.;J BETA-2UOV 1 8.80E-02 ( 5.0) 2.21E-07 ( 19.0) 1.87E-09 1.19E-08

-.;J BETA-SRV 1 7. OOE-.02 ( 6.0) 6.26E-08 ( 20.0) 1.12E 2.38E-07 PPS-MOV-FT-1538 1 4.00E-02 ( 8.0) 1.94E-08 ( 21.0) 2.91E-10 8.88E-08 BETA-STR 1 2.S3E-01 ( 3.0) 1.49E-09 ( 22.0) 3.74E-11 8.09E-09

SEQUENCE T-K-R-D4 UNCERTAINTY IMPORTANCE BY BASE EVENT

'K, REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK)

K 14 6.00E-05 ( 18.0) 31. 9 ( 1.0)

R 14 1.70E-01 ( 4.0) 26.6 ( 2.0)

PPS-MOV-FC-1535 3 3.00E-01 ( 1.5) 11. 0 ( 3.5)

PPS-MOV-FC-1536 3 3.00E-01 ( 1.5) 11.0 ( 3.5)

HPI-MOV-FT-1360 1 3.00E-03 ( 10.0) 8.3 ( 5.0)

PPS-MOV-FT 1 4.00E-02 ( 8.0) 3.9 ( 7.0)

PPS-MOV-FT-1536 1 4.00E-02 ( 8.0) 3.9 ( 7.0)

PPS-MOV-FT-1535 2 4.00E-02 ( 8.0) 3.9 ( 7.0)

PPS-XHE-FO-EMBOR 1 1.00E-03 ( 12.5) 1. 3 ( 9.0)

BETA-SRV 1 7.00E-02 ( 6.0) 0.8 ( 10.0)

CVC-MDP-FR-2A1HR 1 3.00E-05 ( 21.5) 0.8 ( 11. 0)

ACP-TFM-N0-1H1 1 4.00E-05 ( 19.5) 0.5 ( 12.0)

\ PPS-SOV-FT-1456 1 1. OOE-03 ( 12.5) 0.4 ( 14.0)

\ PPS-S0V-FT-1455C 1 1.00E-03 ( 12.5) 0.4 ( 14.0)

PPS-SOV-FT 1 1.00E-03 ( 12.6) 0.4 ( 14.0)

\ BETA-STR 1 2.63E-01 ( 3.0) 0.3 ( 16.0)

\ ~ ACP-8AC-ST-4KV1H 1 9.00E-05 ( 16.0) o.o ( 19.0)

\ I HPI -MOV-PG-1350 1 4.00E-05 ( 19.5) o.o ( 19.0)

'1--' BETA-2MOV 1 8.80E-02 ( 5.0) o.o ( 19.0)

\-.;J ACP-BAC-ST-1H1-2 1 9.00E-05 ( 16.0) o.o ( 19.0)

<r> ACP-BAC-ST-1H1 1 9.00E-05 ( 16.0) 0.0 ( 19.0)

CPC-STR-PG-1HR 1 3.00E-05 ( 21.5)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

'K, REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK)

IE-T 14 6.60E+OO ( 1. 0) 16.1 ( 1. 0)

SEQUENCE T-K-R-04 CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT T-K-R*D* WITH TOP EVENT FREQUENCY 5.65E-07 (THE FIRST COLUMN OF NUMBERS IS THE* LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 1 6 2.42E-07 0.42864 IE-T

  • K
  • PPS-MOV-FC-1535
  • PPS-MOV-FC-1536
  • 3 PPS-MOV-FT-1535
  • R +

4 2 4 2.02E-07 0.7858' HPI -MOV-FT-1350

  • IE-T
  • K
  • R *+

5 3 4 6.73E-08 0.90490 IE-T

  • K
  • PPS-XHE-FO-EMBOR
  • R +

6 4 7 2. 13E-08 0.94282 BETA-2MOV

  • IE-T
  • K
  • PPS-MOV-FC-1535
  • 7 PPS-MOV-FC-1536
  • PPS-MOY-FT
  • R +

8 6 4 6.06E-09 0.95334 ACP-BAC-ST-4KV1H

  • IE-T
  • K
  • R +

9 7 4 6.06E-09 0.96406 ACP-BAC-ST-1H1

  • IE-T
  • K
  • R +

10 5 4 6.06E-09 0.97477 ACP-BAC-ST-1H1-2

  • IE-T
  • K
  • R +

11 8 5 4.71E-09 0.98311 BETA-SRV

  • IE-T
  • K
  • PPS-SOV-FT
  • 12 +

R 13 10 4 2.69E-09 0.98787 ACP-TFM-N0-1H1 IE-T

  • K
  • R +

14 9 4 2.69E-09 0.99263 HPI-MOV-PG-1350 IE-T

  • K
  • R +

15 16 11 13 4

8 2.02E-09 8.08E-10 0.99620 0.99783 CVC-MDP-FR-2A1HR IE-T .** IE-T K .

  • K PPS-MOV-FC-1538 .
  • R PPS-MOV-FT-1536

+.

~

17 18 12 6 8.0SE-10 0.99906 PPS-SOV-FT-1456 IE-T

  • R K

+

  • PPS-MOV-FC-1535
  • PPS-MOV-FT-1535 .

.....I 19 PPS-S0V-FT-1455C

  • R +

-:i 20 14 5 5.31E-10 1.00000 BETA-STA

  • CPC-STR-PG-1HR
  • IE-T
  • K
  • c:c 21 R

SURRY SEQUENCE 83-01 TOP EVENT 83-01-CM CONTAINS 33 EVENTS IN 20 CUT SETS THE FREQUENCY OF TOP EVENT S3-D1-CM IS 6.39E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT S3-D1-CM N 1000 MEAN 6.25E-07 STD DEV 1.34E-06 LOWER 5% 4.24E-08 LOWER 25% 1.30E-07 MEDIAN 2.70E-07 UPPER 25% 6.16E-07 UPPER 5%. 2.35E-06 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN) 5% = 4.24E-08 ***LOG SCALE*** 95% = 2.35E-06 I ----------------------------[------------------~--------------------MN---------------------------------1 t.I:I I NOMENCLATURE:

f-'

00 0 PD PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION= PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION PD x ( 1 - EV ( J))

= TEF(EVALUATED WITH EV(J) = 1) - TEF

SURRY SEQUENCE S3-D1 RISK REDUCTION BY BASE EVENT (WI TH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

BETA-2MOV 2 8.80E-02 ( 3.0) 4.05E-07 ( 1. 5) 3.72E-09 1.56E-06 HPI-MOV-FT 2 3.00E-03 ( 15.0) 4.05E-07 ( 1.5) 3.72E-09 1.56E-06 HP1-XHE-FO-UN2S3 13 4.40E-02 ( 6.0) 3.13E-07 ( 3.0) 1.52E-08 1.29E-06 HPI-XHE-FO-ALTS3 1 7.40E-02 ( 4.0) 2.54E-07 ( 4.0) 2.00E-09 9.24E-07 HPI -CKV-FT-CV25 1 1.00E-04 ( 26.0) 5.72E-08 ( 5.5) 3.04E-09 2.08E-07 HPI-CKV-FT-CV410 1 1.00E-04 ( 26.0) 5.72E-08 ( 5.5) 3.04E-09 2.08E-07 RWT-TNK-LF-RWST 1 2.70E-06 ( 32.0) 3.51E-08 ( 7.0) 7.12E-10 1.29E-07 HPI-XVM-P0-XV24 1 4.00E-05 ( 30.5) 2.29E-08 ( 8.0) 1.22E-09 8.29E-08 HPI-MDP-FR-1A24H 2 1.60E-03 ( 20.0) 2.16E-08 ( 9.0) 1.95E-09 6.93E-08 HPI-CKV-OO-CV258 1 1.00E-03 ( 21 . 5) 2.08E-08 ( 10.0) 1.77E-09 6.71E-08 CPC-XHE-FO-REALN 3 7.00E-02 ( 5.0) 9.38E-09 ( 11. 0) 2.61E-10 3.62E-08 HPI -MOV-FT-1867D 3 3.00E-03 ( 15.0) 8.58E-09 ( 12.0) 1.16E-10 3.33E-08 BETA-STR 1 2.63E-01 ( 1 . 0) 7.58E-09 ( 13.5) 2.00E-10 2.96E-08 CPC-STR-P0-24H 1 7.20E-04 ( 23.5) 7.58E-09 ( 13.5)

HPI-XHE-FO-ALTIN 1 5.70E-03 ( 8.0) 7.41E-09 ( 15.5) 9.74E-11 3.25E-08 Dj HPI-CKV-FT-CV225 1 1.00E-04 ( 26.0) 7.41E-09 ( 15.5) 9.74E-11 3.25E-08 I HPI-MOV-FT-1115E 1 3.00E-03 ( 15.0) 5.15E-09 ( 18.5) 2.41E-12 6.23E-08 I--'

00 HPI-MOV-FT-1115D 1 3.00E-03 ( 15.0) 5. 15E-09 ( 18.5) 2.41E-12 6.23E-08 I--' HPI-MOV-FT-1115C 1 3.00E-03 ( 15.0) 5. 15E-09 ( 18.5) 2.41E-12 6.23E-08 HPI-MOV-FT-11158 1 3.00E-03 ( 15.0) 5.15E-09 ( 18.5) 2.41E-12 6.23E-08 CPC-MDP-FR-SWA24 3 3.BOE-03 ( 10.5) 3.97E-09 ( 21.0) 1.35E-10 1.56E-08 ACP-BAC-ST-4KV1H 1 9.00E-05 ( 28.5) 3.51E-09 ( 22.5) 3.30E-11 1.33E-08 ACP-BAC-ST-1H1 1 9.00E-05 ( 28.5) 3.51E-09 ( 22.5) 3.30E-11 1.33E-08 CPC-CKV-OO-CV113 1 1.00E-03 ( 21.5) 2.17E-09 ( 24.0) 7.76E-11 8.77E-09 CPC-MDP-FR-CCA24 2 7.20E-04 ( 23.5) 2.06E-09 ( 25.0) 8.97E-12 6.85E-09 ACP-TFM-N0-1H1 1 4.00E-05 ( 30.5) 1.56E-09 ( 26.0) 2.60E-11 6.43E-09 CPC-MDP-FS-CC2B 1 3.00E-03 ( 15.0) 1.24E-09 ( 27.0) 2.69E-12 4.35E-09 CPC-MDP-FS-SW10B 1 8.00E-03 ( 7.0) 1.22E-09 ( 28.0) 1.70E-11 4.86E-09 CPC-MDP-MA-CC2B 1 2.00E-03 ( 19.0) 8.24E-10 ( 29.0) 1.35E-12 2.64E-09 BETA-HP! 1 2.10E-01 ( 2.0) 7.69E-10 ( 30.5) 1.80E-11 3.14E-09 HPI-MDP-FS 1 4.00E-03 ( 9.0) 7.69E-10 ( 30.5) 1.80E-11 3.14E-09 CPC-MDP-FR-SWB24 1 3.80E-03 ( 10.5) 5.78E-10 ( 32.0) 5.84E-12 3.57E-09 RISK REDUCTION BY INITIATING EVENT (WI TH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-S3 20 1.30E-02 1.0) 6.39E-07 ( 1. 0) 4.24E-08 2.35E-06

SURRY SEQUENCE S3-D1 RISK INCREASE BY BASE EVENT (WI TH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

RWT-TNK-LF-RWST 1 2.70E-06 ( 32.0) 1.30E-02 ( 1 . 0) 3.47E-03 3. 12E-02 HPI-XVM-PG-XV24 1 4.00E-05 ( 30.5) 5.72E-04 ( 2.0) 4.80E-05 2.01E-03 HPI-CKV-FT-CV410 1 1.00E-04 ( 26.0) 5.72E-04 ( 3.5) 4.BOE-05 2.01E-03 HPI-CKV-FT-CV25 1 1.00E-04 ( 26.0) 5.72E-04 ( 3.5) 4.80E-05 2.01E-03 HPI -MOV-FT 2 3.00E-03 ( 15.0) 1.35E-04 ( 5.0) 1.01E-05 4.71E-04 HPI -CKV-FT-CV225 1 1.00E-04 ( 26.0) 7.41E-05 ( 6.0) 1.66E-06 3.04E-04 ACP-TFM-N0-1H1 1 4.00E-05 ( 30.5) 3.90E-05 ( 7.0) 9.10E-07 1.52E-04 ACP-BAC-ST-1H1 1 9.00E-05 ( 28.5) 3.90E-05 ( 8.5) 9.10E-07 1.51E-04 ACP-BAC-ST-4KV1H 1 9.00E-05 ( 28.5) 3.90E-05 ( 8.5) 9.10E-07 1.51E-04 HPI -CKV-OO-CV258 1 1.00E-03 ( 21.5) 2.08E-05 ( 10.0) 3.16E-06 6.41E-05 HPI-MDP-FR-1A24H 2 1.60E-03 ( 20.0) 1.35E-05 ( 11.0) 1.84E-06 3.93E-05 CPC-STR-PG-24H 1 7.20E-04 ( 23.5) 1.05E-05 ( 12.0)

HP1-XHE-FO-UN2S3 13 4.40E-02 ( 6. 0 )' S.80E-06 ( 13.0) 8.38E-07 2.30E-05 BETA-2MOV 2 8.80E-02 ( 3.0) 4.20E-06 ( 14.0) 5.65E-08 1.66E-05 HPI-XHE-FO-ALTS3 1 7.40E-02 ( 4.0) 3.18E-06 ( 15.0) 4.96E-08 1.22E-05 CPC-MDP-FR-CCA24 2 7.20E-04 ( 23.5) 2.86E-06 ( 16.0) 7.55E-08 1.08E-05 HPI -MOV-FT-1867D 3 3.00E-03 ( 15.0) 2.85E-06 ( 17. 0) 3.31E-07 9.46E-06 CPC-CKV-OO-CV113 1 1.00E-03 ( 21.5) 2 .17E-06 ( 18.0) 1.18E-07 8.73E-06 t:rj HPI-MOV-FT-1115E 1 3.00E-03 ( 15.0) 1.71E-06 ( 20.5) 1.76E-08 7.48E-06 1 3.00E-03 ( 15.0) 1.71E-06 ( 20.5) 1.76E-08 7.48E-06

......I HPI-MOV-FT-1115D HPI-MOV-FT-1115C 1 3.00E-03 ( 15.0) 1.71E-06 ( 20.5) 1.76E-08 7.48E-06 00 7.48E-06 N) HPI-MOV-FT-1115B 1 3.00E-03 ( 15.0) 1.71E-06 ( 20.5) 1.76E-08 HPI -XHE-FO-ALTIN 1 5.70E-03 ( 8.0) 1.29E-06 ( 23.0) 1.74E-07 3.90E-06 CPC-MDP-FR-SWA24 3 3.BOE-03 ( 10.5) 1.04E-06 ( 24.0) 6.32E-08 3.81E-06 CPC-MDP-MA-CC2B 1 2.00E-03 ( 19.0) 4.11E-07 ( 25.0) 4.82E-09 1.70E-06 CPC-MDP-FS-CC2B 1 3.00E-03 ( 15.0) 4.11E-07 ( 26.0) 4.82E-09 1.70E-06 HPI -MDP-FS 1 4.00E-03 ( 9.0) 1.91E-07 ( 27.0) 7.96E-09 7.31E-07 CPC-MDP-FR-SWB24 1 3.BOE-03 ( 10.5) 1.52E-07 ( 28.0) 3.31E-09 6.45E-07 CPC-MDP-FS-SW10B 1 8.00E-03 ( 7.0) 1.51E-07 ( 29.0) 3.29E-09 6.47E-07 CPC-XHE-FO-REALN 3 7.00E-02 ( 5.0) 1.25E-07 ( 30.0) 8.10E-09 4.54E-07 BETA-STR 1 2.63E-01 ( 1.0) 2.12E-08 ( 31.0) 7.16E-10 8.46E-08 BETA-HP I 1 2.10E-01 ( 2.0) 2.89E-09 ( 32.0) 7.81E-11 1.10E-08

SURRY SEQUENCE S3-D1 UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK) Y.05/TE.05" Y. 95/TE. 95" HPI-MOV-FT-1115E 1 3.00E-03 ( 15.0) 32.1 ( 3.5) 1. 90 0.85 HPI-MOV-FT-1115C 1 3.00E-03 ( 15.0) 32.1 ( 3.5) 1.90 0.85 HPI-MOV-FT-1115D 1 3.00E-03 ( 15.0) 32.1 ( 3.5) 1.90 0.85 HPI-MOV-FT-1867D 3 3.00E-03 ( 15.0) 32.1 ( 3.5) 1. 90 0.85 HPI-MOV-FT-11158 1 3.00E-03 ( 15.0) 32.1 ( 3.5) 1. 90 0.85 HPI-MOV-FT 2 3.00E-03 ( 15.0) 32.1 ( 3.5) 1.90 0.85 HPI-XHE-FO-UN2S3 13 4.40E-02 ( 6.0) 17.0 ( 7.0) 1.48 0.84 BETA-2MOV 2 8.80E-02 ( 3.0) 5.4 ( 8.0) 1.07 0.99 HPI-XHE-FO-ALTS3 1 7.40E-02 ( 4.0) 4.4 ( 9.0) 1. 08 0.99 HPI-CKV-FT-CV225 1 1.00E-04 ( 26.0) 3.5 ( 11 . 0) 1 . 16 0.99 HPI-CKV-FT-CV410 1 1.00E-04 ( 26.0) 3.5 ( 11 . 0) 1.16 0.99 HPI -CKV-FT-CV25 1 1.00E-04 ( 26.0) 3.5 ( 11. 0) 1.16 0.99 RWT-TNK-LF-RWST 1 2.70E-06 ( 32.0) 2.3 ( 13.0) 1.16 1.00 HPI -MDP-FS 1 4.00E-03 ( 9.0) 0.9 ( 14.0) 1. 00 1. 00 ACP-TFM-N0-1H1 1 4.00E-05 ( 30.5) 0.6 ( 15.0) 1. 00 1.00 CPC-CKV-OO-CV113 1 1.00E-03 ( 21.5) 0.5 ( 16.5) 1.06 0.98 HPI-CKV-OO-CV258 1 1.00E-03 ( 21 . 5) 0.5 ( 16.5) 1.06 0.98 t:,:j 0.5 18.0) 1.00 1.00 I

HPI-XHE-FO-ALTIN 1 5.70E-03 ( 8.0) (

f--' CPC-XHE-FO-REALN 3 7.00E-02 ( 5.0) 0.5 ( 19.0) 00

(:,-)

CPC-MDP-FS-CC2B 1 3.00E-03 ( 15.0) 0.4 ( 20.0)

CPC-MDP-MA-CC2B 1 2.00E-03 ( 19.0) 0.4 ( 21.0)

HPI-XVM-PG-XV24 1 4.00E-05 ( 30.5) 0.0 ( 26.5)

CPC-MDP-FS-SW10B 1 8.00E-03 ( 7.0) 0.0 ( 26.5)

BETA-STR - 1 2.63E-01 ( 1.0) 0.0 ( 26.5)

ACP-BAC-ST-1H1 1 9.00E-05 ( 28.5) 0.0 ( 26.5)

HPI-MDP-FR-1A24H 2 1.60E-03 ( 20.0) 0.0 ( 26.5)

CPC-MDP-FR-SWB24 1 3.80E-03 ( 10.5) 0.0 ( 26.5)

BETA-HP! 1 2.10E-01 ( 2.0) 0.0 ( 26.5)

CPC-MDP-FR-SWA24 3 3.80E-03 ( 10.5) 0.0 ( 26.5)

CPC-MDP-FR-CCA24 2 7.20E-04 ( 23.5) o.o ( 26.5)

ACP-BAC-ST-4KV1H 1 9.00E-05 ( 28.5) 0.0 ( 26.5)

CPC-STR-PG-24H 1 7.20E-04 ( 23.5)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y.05/TE.05" Y. 95/TE. 95" 20 1.30E-02 ( 1. 0) 31. 4 ( 1.0) 1.93 0.93 IE-S3 Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS NOT HELD CONSTANT

SURRY SEQUENCE S3-D1 CUT SET NUMBERS, CUT SET ORDERS, CUT SET. FREQUENC I ES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT S3-D1-CM WI TH TOP EVENT FREQUENCY 6.39E-07 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 1 4 2.54E-07 0.39756 BETA-2MOV

  • HPI-XHE-FO-ALTS3
  • IE-S3 +

3 2 4 1.51E-07 0.63394 BETA-2MOV

  • HPI-MOV-FT
  • HPI-XHE-FO-UN2S3
  • IE-S3 +

4 3 3 5.72E-08 0.72348 HPI-CKV-FT-CV410

  • HPI-XHE-FO-UN2S3
  • IE-S3 +

5 4 3 5.72E-08 0.81302 HPI-CKV-FT-CV25

  • HPI-XHE-FO-UN2S3
  • IE-S3 +

6 5 2 3.51E-08 0.86797 IE-S3

  • RWT-TNK-LF-RWST +

7 6 3 2.29E-08 0.90378 HP1-XHE-F0-UN2S3

  • HPI-XVM-PG-XV24
  • IE-S3 +

8 7 3 2.08E-08 0.93634 HP I -CKV-00-CV258

  • HPI-MDP-FR-1A24H
  • IE-S3 +

9 8 5 7.58E-09 0.94821 BETA-STR

  • CPC-STR-PG-24H
  • CPC-XHE-FO-REALN
  • HPI-XHE-F0-UN2S3
  • 10 IE-S3 +

11 9 3 7.41E-09 0.95981 HPI-CKV-FT-CV225

  • HPI -XHE-FO-ALTIN
  • IE-S3 +

12 11 4 5. 15E-09 0.96787 HPI-MOV-FT-1115B

  • HPI -MOV-FT-11°15D
  • HPI-XHE-FO-UN2S3
  • IE-S3 +

13 10 4 5. 15E-09 0.97593 HPI-MOV-FT-1115C

  • HPI-MOV-FT-1115E
  • HP1-XHE-FO-UN2S3
  • IE-S3 +

14 13 3 3.51E-09 0.98142 ACP-BAC-ST-1H1

  • HPI-MOV-FT-1867D
  • IE-S3 +

15 12 3 3.51E-09 0.98692 ACP-BAC-ST-4KV1H

  • HPI-MOV-FT-1867D
  • IE-S3 +

t,j 16 14 4 2 .17E-09 0.99032 CPC-CKV-00-CV113

  • CPC-MDP-FR-SWA24
  • HPI-XHE-FO-UN2S3
  • IE-S3 +

I 17 15 3 1.56E-09 0.99276 ACP-TFM-N0-1H1

  • HPI-MOV-FT-1867D
  • IE-S3 +

18 16 4 1.24E-09 0.99470 CPC-MDP-FR-CCA24

  • CPC-MDP-FS-CC2B
  • HP1-XHE-FO-UN2S3
  • IE-S3 +

00

.i::,. 19 17 5 1.22E-09 0.99660 CPC-MDP-FR-SWA24

  • CPC-MDP-FS-SW10B
  • CPC-XHE-FO-REALN
  • HPI-XHE-FO-UN2S3
  • 20 IE-S3 +

21 18 4 8.24E-10 0.99789 CPC-MDP-FR-CCA24

  • CPC-MDP-MA-CC2B
  • HPI-XHE-FO-UN2S3
  • IE-S3 +

22 19 5 7.69E-10 0.99909 BETA-HP I

  • HPI-MDP-FR-1A24H
  • HPI-XHE-FO-UN2S3
  • 23 IE-S3 +

24 20 6 6.78E-10 1.00000 CPC-MDP-FR-SWA24

  • CPC-MDP-FR-SWB24
  • CPC-XHE-FO-REALN
  • HPI-XHE-FO-UN2S3
  • 25 IE-S3

SEQUENCE S2-D1 TOP EVENT S2-D1-CU CONTAINS 19 EVENTS IN 11 CUT SETS THE FREQUENCY OF TOP EVENT S2-D1-CM IS 4.29E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT S2-D1-CM N 1000 MEAN 4.37E-07 STD DEV 8.81E-07 LOWER 5% 4.18E-08 LOWER 25% 1.0SE-07 MEDIAN 2.27E-07 UPPER 259' 4.46E-07 UPPER 5% 1.38E-06

- 9(),r, UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE t:zj TEF

  • FREQUENCY OF THE TOP EVENT

.....I 00 EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

<:.fl

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION* PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BAS.E EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

  • TEF{EVALUATED WITH EV(J)
  • 1) - TEF

SEQUENCE S2-D1 RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5'1' UPPER 5%

BETA-2MOV 2 8.80E-02 ( 4.0) 2.43E-07 ( 1.5) 2.96E-09 8.86E-07 HPI -MOV-FT 2 3.00E-03 ( 8.0) 2.43E-07 ( 1.5) 2.96E-09 8.86E-07 HPI-XHE-FO-UN2S2 7 3.10E-01 ( 2.0) 1.63E-07 ( 3.0) 7.61E-09 6.53E-07 HPI-XHE-FO-ALT 1 6. 10E-01 ( 1.0) 1.61E-07 ( 4.0) 1.80E-09 5.41E-07 HPI-CKV-FT-CV225 1 1.00E-04 ( 15.0) 1.00E-07 ( 5.0) 1.32E-08 3.01E-07 HPI-CKV-FT-CV25 1 1.00E-04 ( 15.0) 3.10E-08 ( 6.5) 1. 55E-09 1.11E-07 HPI-CKV-FT-CV410 1 1.00E-04 ( 15.0) 3 .10E-08 ( 6.5) 1.55E-09 1.11E-07 HPI-XVM-PG-XV24 1 4.00E-05 ( 17.0) 1.24E-08 ( 8.0) 6.18E-10 4.11E-08 HPI-MOV-FT-1115E 1 3.00E-03 ( 8.0) 2.79E-09 ( 10.5) 1.52E-12 3.07E-08 HPI-MOV-FT-1115D 1 3.00E-03 ( 8.0) 2.79E-09 ( 10.5) 1.52E-12 3.07E-08 HPI-MOV-FT-1115C 1 3.00E-03 ( 8.0) 2.79E-09 ( 10.5) 1.52E-12 3.07E-08 HPI-MOV-FT-1115B 1 3.00E-03 ( 8.0) 2.79E-09 ( 10.5) 1.52E-12 3.07E-08 RWT-TNK-LF-RWST 1 2.70E-06 ( 18.0) 2.70E-09 ( 13.0) 6.15E-11 1.06E-08 SIS-ACT-FA-SISB 1 1.BOE-03 ( 11.5) 2.56E-09 ( 14.5) 2.70E-11 2.53E-08 SIS-ACT-FA-SI SA 1 1.60E-03 ( 11.5) 2.56E-09 ( 14.5) 2.70E-11 2.53E-08 CPC-STR-PG-6HR 1 1.SOE-04 ( 13.0) 1. 03E-09 ( 17.0)

CPC-XHE-FO-REALN 1 7.00E-02 ( 5.0) 1.0SE-09 ( 17.0) 2.87E-11 4.34E-09 BETA-STR 1 2.83E-01 ( 3.0) 1.03E-09 ( 17.0) 2.87E-11 4.34E-09 t:rj

.....I RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

(X)

O'l -- ------ ---- ---- -- ---- ----- -- --- --

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 6% UPPER 6%

IE-S2 11 1.00E-03 1. 0) 4.29E-07 ( 1. 0) 4.18E-08 1.38E-06

SEQUENCE S2-D1 RISK INCREASE BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

RWT-TNK-LF-RWST 1 2.70E-08 ( 18.0) 1.00E-03 ( 1. 0) 2.88E-04 2.40E-03 HPI-CKV-FT-CV225 1 1.00E-04 ( 15.0) 1.00E-03 ( 2.0) 2.88E-04 2.40E-03 HPI-XVM-PG-XV24 1 4.00E-05 *( 17.0) 3. 10E-04 ( 3.0) 2.53E-05 9.25E-04 HPI-CKV-FT-CV410 1 1.00E-04 ( 15.0) 3. 10E-04 ( 4.5) 2.53E-05 9.25E-04 HPI-CKV-FT-CV25 1 1.00E-O* ( 16.0) 3. 10E-04 ( 4.6). 2.53E-05 9.25E-04 HPI-MOV-FT 2 3. OOE-03 .( 8.0) 8.07E-05 ( 6.0) 8.22E-06 2.50E-04 CPC-STR-P8-6HR 1 1.80E-04 ( 13.0) 5.71E-06 ( 7.0)

BETA-2MOV 2 8.80E-02 ( 4.0) 2.52E-06 ( 8.0) 4.31E-08 1.00E-05 SIS-ACT-FA-SI SB 1 1 . SOE - 03 ( 11 . 5) 1.60E-08 ( 9.5) 1.14E-07 5.59E-06 SIS-ACT-FA-SI SA 1 1.60E-03 ( 11.5) 1. 60E-06 ( 9.5) 1.14E-07 5.59E-06 HPI-MOV*FT-1115E 1 3.00E-03 ( 8.0) 9.27E-07 ( 12.5) 1.16E-08 3.62E-06 HPI-MOV-FT-1115D 1 3.00E-03 ( 8.0) 9.27E-07 ( 12.5) 1.16E-08 3.62E-06 HPl*MOV-FT-1115C 1 3.00E-03 ( 8.0) 9.27E-07 ( 12.5) 1.16E-08 3.62E-06 HPI-MOV-FT-11158 1 3.00E-03 ( 8.0) 9.27E-07 ( 12.5) 1.16E-08 3.62E-06 HPI-XHE-FO-UN2S2 7 3. 10E-01 ( 2.0) 3.62E-07 ( 15.0) 2.74E-08 1.26E-06 HPI-XHE-FO-ALT 1 6.10E-01 ( 1. 0) 1. 03E-07 ( 16. 0) 4.60E-10 3.88E-07 CPC-XHE-FO-REALN 1 7.00E-02 ( 5.0) 1.36E-08 ( 17.0) 8.42E-10 4.66E-08 BETA-STR 1 2.63E-01 ( 3.0) 2.88E-09 ( 18.0) 9.75E-11 1.21E-08 l:rj

.....I 00

-.::i

SEQUENCE S2-D1 UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT

  • OCCUR PROB (RANK) OF LOG RISK (RANK) Y. 05/TE. os* Y.95/TE.95*

HPI -MOV-FT 2 3.00E-03 ( 8.0) 31.8 ( 3.0) 1. 60 0.87 HPI-MOV-FT-1115E 1 3.00E-03 ( 8.0) 31. 8 ( 3.0) 1.60 o ..&1 HPI-MOV-FT-1115C 1 3.00E-03 ( 8.0) 31.8 ( 3.0) 1. 60 0.87 HPI-MOV-FT-1115B 1 3.00E-03 ( 8.0) 31.8 ( 3.0) 1.60 0.87 HPI-MOV-FT-1116D 1 3.00E-03 ( 8.0) 31. 8 ( 3.0) 1.60 0.87 HPI-CKV-FT-CV25 1 1.00E-04 ( 15.0) 11. 7 ( 7.0) 1.37 0.91 HPI-CKV-FT-CV225 1 1. OOE-04 ( 15.0) 11.7 ( 7.0) 1.37 0.91 HPI-CKV-FT-CV410 1 1.00E-04 ( 15.0) 11. 7 ( 7.0) 1.37 0.91 HPI-XHE-FO-UN2S2 7 3 .10E-01 ( 2.0) 7.2 ( 9.0) 1.09 1. 00 BETA-2MOV 2 8.80E-02 ( 4.0) 5.0 ( 10.0) 1.07 1.12 HPI-XHE-FO-ALT 1 6.10E-01 ( 1. 0) 2. 1 ( 11.0) 1. 03 1.01 RWT-TNK-LF-RWST 1 2.70E-06 ( 18.0) 0.6 ( 12.0) 0.98 1.01 CPC-XHE-FO-REALN 1 7.00E-02 ( 5;0) 0.3 ( 13.0)

SIS-ACT-FA-SI SB 1 1.SOE-03 ( 11.5) 0.3 ( 14.5)

SIS-ACT-FA-SI SA 1 1.60E-03 ( 11.5) 0.3 ( 14.5)

HPI-XVM-PG-XV24 1 4.00E-05 ( 17.0) 0.0 ( 16.5)

BETA-STA 1 2.63E-01 ( 3.0) o.o ( 16.5) trj CPC-STR-PG~6HR 1 1.80E-04 ( 13.0)

I t--'

00 00 UNCERTAINTY IMPORTANCE BY INITIATING EVENT

'Jt, REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y.05/TE.os* Y. 95/TE. 95*

IE-S2 11 1.00E-03 ( 1.0) 39.1 ( 1.0) 1.98 0.90

  • Y.xx IS THE .xx QUANTfLE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS NOT HELD CONSTANT

SEQUENCE S2-D1 CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT S2-D1-CM. WITH TOP EVENT FREQUENCY 4.29E-07" (THE FIRST COLUMN OF NUMBERS IS THE L l*NE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 1 4 1.61E-07 0.37526 BETA-2MOV

  • HP I -MOY-FT
  • HPI -XHE-FO-ALT
  • IE-S2 +

3 2 2 1.00E-07 0.60828 HPI-CKV-FT-CV225

  • IE-S2 +

4 3 4 8. 18E-08 0.79898 BETA-2MOV

  • HP1-XHE-FO-UN2S2
  • IE-S2 +

5 5 3 3. 10E-08 0.87122 HPI-CKV-FT-CV25

  • HPI-XHE-FO-UN2S2
  • IE-S2 +

8 4 3 3 .10E-08 0.94345 HPI-CKV-FT-CV410

  • HP1-XHE-FO-UN2S2
  • IE-S2 +

7 6 ..3 1.24E-08 0.97235 HPI-XHE-FO-UN2S2

  • HPI-XVM-P0-XV24
  • IE-S2 +

8 7 4 2.79E-09 0.97885 HPI-UOV-FT-1115C

  • HPI-UOV-FT-1115E
  • HPI-XHE-FO-UN2S2
  • IE-S2 +

9 8 4 2.79E-09 0.98535 HPI -MOV-FT-11158

  • HPI-MOV-FT-1115D
  • HPI-XHE-FO-UN2S2
  • IE-S2 +

10 9 2 2.70E-09 0.99164 IE-S2

  • RWT-TNK-LF-RWST +

11 10 3 2.56E-09 0.99761 IE-S2

  • SIS-ACT-FA-SI SA
  • SIS-ACT-FA-SISB +

12 11 5 1.03E-09 1.00000 BETA-STR

  • CPC-STR-PG-6HR
  • CPC-XHE-FO-REALN
  • HPI-XHE-FO-UN2S2
  • 13 IE-S2 trj I

t--'

(X) tC r_

SEQUENCE SBO-BATT2 TOP EVENT ~BO-BATT2 CONTAINS 24 EVENTS IN 40 CUT SETS THE FREQUENCY OF TOP EVENT SBO-BATT2 IS 2.97E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT SBO-BATT2 N 1000 MEAN 4.33E-07 STD DEV 1.98E-06 LOWER 5% O.OOE+OO LOWER 25% O.OOE+OO MEDIAN O.OOE+OO UPPER 25% 1. 03E-07 UPPER 5% 1.70E-06 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION= PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

-RISK INCREASE PD - RISK REDUCTION

= PD x (1 - EV(J))

= TEF(EVALUATED WITH EV(J) = 1) - TEF

  • SEQUENCE S80-BATT2 RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5" UPPER 51' NRAC-7HR 40 5.00E-02 ( 7.0) 2.97E-07 ( 2.5) O.OOE+OO 1.70E-06 NOTL-SBOU1U2 40 9.68E-01 ( 2.0) 2.97E-07 ( 2.5)

NOTQ 40 9.73E-01 ( 1. 0) 2.97E-07 ( 2.5)

NSLOCA 40 2.70E-01 ( 5.5) 2.97E-07 ( 2.5) O.OOE+OO 1.70E-08 REC-XHE-FO-DGHWB 39 8.00E-01 ( 3.0) 2.98E-07 ( 5.0) O.OOE+OO 1.83E-08 OEP-DGN-FS 12 2.20E-02 ( 11.5) 2.45E-07 ( 8.0) O.OOE+OO 1.19E-06 BETA-3DG 3 1.SOE-02 ( 14.0) 2.33E-07 ( 7.0) O.OOE+OO 1.14E-06 OEP-DGN-FS-DG03 15 2.20E-02 ( 11.5) 4.02E-08 ( 8.0) O.OOE+OO 2.68E-07 OEP-DGN-UA-0801 5 8.00E-03 ( 19.0) 2.45E-08 ( 9.0) O.OOE+OO 8.83E-08 OEP-DGN-FS-D802 14 2.20E-02 ( 11.5) 1. 93E-08 ( 10.5) O.OOE+OO 1.48E-07 OEP-DGN-FS-D801 14 2.20E-02 ( 11.5) 1.93E-08 ( 10.5) O.OOE+OO 1.48E-07 QS-SBO 40 2.70E-01 ( 5.5) 1.83E-08 ( 12.0) O.OOE+OO 5.48E-08 OEP-DGN-FR-6HDG3 11 1.20E-02 ( 16.0) 1.23E-08 ( 14.0) O.OOE+OO 5.79E-08 OEP-DGN-FR-8HD82 11 1.20E-02 ( 18.0) 1.23E-08 ( 14.0) O.OOE+OO 5.79E-08 OEP-DGN-FR-8HDG1 11 1.20E-02 ( 18.0) 1.23E-08 ( 14.0) O.OOE+OO 5.79E-08 NOTDG-CCF 9 5.20E-01 ( 4.0) 1.21E-08 ( 16.5)

BETA-2DG 9 3.80E-02 ( 9.0) 1.21E-08 ( 16.5) O.OOE+OO 4.23E-08 tzj ( 19.0) 1.20E-08 I OEP-DGN-MA-D803 4 6.00E-03 3.54E-09 ( 18.5) O.OOE+OO

..... OEP-DGN-UA-D802 4 8.00E-03 ( 19.0) 3.54E-09 ( 18.5) O.OOE+OO 1.20E-08 c:c 1 ( 22.0) 5.92E-10 21. 0) O.OOE+OO 2.22E-09

..... OEP-CRB-FT-25H3 OEP-CRB-FT-15J3 1 3.00E-03 3.00E-03 ( 22.0) 5.92E-10

(

( 21.0) O.OOE+OO 2.22E-09 OEP-CRB-FT-15H3 1 3.00E-03 ( 22.0) 5.92E-10 ( 21. 0) O.OOE+OO 2.22E-09 0 28 4.90E-02 ( 8.0) -1.82E-09 ( 23.0) -1.16E-08 O.OOE+OO RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-T1 40 7.70E-02 ( 1. 0) 2.97E-07 ( 1. 0) O.OOE+OO 1.70E-08

SEQUENCE SBO-BATT2 RISK INCREASE BY BASE EVENT {WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

BETA-300 3 1.80E-02 ( 14.0) 1.27E-05 ( 1. 0) O.OOE+OO 7.34E-05 OEP-DGN-FS 12 2.20E-02 ( 11.5) 1. 09E-05 ( 2.0) O.OOE+OO 6. 18E-05 NRAC-7HR. 40 5.00E-02 ( 7.0) 5.65E-06 ( 3.0) O.OOE+OO 3.86E-05 OEP-DGN-MA-0001 5 6.00E-03 ( 19.0) 4.05E-06 ( 4.0) O.OOE+OO 2.21E-05 OEP-DGN-FS-0003 15 2.20E-02 ( 11.5) 1.79E-06 ( 5.0) O.OOE+OO 9.83E-06 OEP-DGN-FR-6HD02 11 1.20E-02 ( 16.0) 1.01E-06 ( 7.0) O.OOE+OO 6.36E-06 OEP-DGN-FR-6HDG1 11 1.20E-02 ( 16.0) 1.01E-06 ( 7.0) O.OOE+OO 6.36E-06 OEP-DGN-FR-6HDG3 11 1.20E-02 ( 16.0) 1.01E-06 ( 7.0) O.OOE+OO 6.36E-06 OEP-DGN-FS-0002 14 2.20E-02 ( 11. 5) 8.56E-07 ( 9.5) O.OOE+OO 5.14E-06 OEP-DGN-FS-0001 14 2.20E-02 ( 11.5) 8.56E-07 ( 9.5) O.OOE+OO 5.14E-06 NSLOCA 40 2.70E-01 ( 5.5) 8.04E-07 ( 11.0) O.OOE+OO 4.05E-06

.QEP-DGN-MA-0003 4 6.00E-03 ( 19.0) 5.86E-07 ( 12.5) O.OOE+OO 3.19E-06

. OEP-DGN-MA-DG02 4 6.00E-03 ( 19.0) 5.86E-07 ( 12.5) O.OOE+OO 3.19E-06 BETA-2DG 9 3.SOE-02 ( 9.0) 3.05E-07 ( 14.0) O.OOE+OO 1.30E-06 REC-XHE-FO-DGHWB 39 6.00E-01 ( 3.0) 1.97E-07 ( 15.0) O.OOE+OO 1.02E-06 OEP-CRB-FT-25H3 1 3.00E-03 ( 22.0) 1. 97E-07 ( 17.0) O.OOE+OO 1.17E-06 OEP-CRB-FT-15J3 1 3.00E-03 ( 22.0) 1.97E-07 ( 17.0) O.OOE+OO 1.17E-06 trj I OEP-CRB-FT-15H3 1 3.00E-03 ( 22.0) 1.97E-07 ( 17.0) O.OOE+OO 1.17E-06

>-" QS-SBO 40 2.70E-01 ( 5.5) 4.42E-08 ( 19.0) O.OOE+OO 1.48E-07 co NOTDG-CCF 9 5.20E-01 ( 4.0) 1.11E-08 ( 20.0)

N)

NOTL-SBOU1U2 40 9.68E-01 ( 2.0) 9.83E-09 ( 21.0)

NOTQ 40 9.73E-01 ( 1. 0) 8.25E-09 ( 22.0) 0 28 4.SOE-02 ( 8.0) -3.53E-08 ( 23.0) -2.59E-07 O.OOE+OO

SEQUENCE SBO-BATT2 UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB .(RANK) OF LOG RISK (RANK) v. 05/TE. 05* Y.95/TE.95*

NSLOCA 40 2.70E-01 ( 5.5) 95.5 ( 1. 0) NA 0.91 OEP-DGN-FS-DG02 14 2.20E-02 ( 11.5) :1. 3 ( 3.5) NA 1. 05 OEP-DGN-FS-DG01 14 2.20E-02 ( 11.5) 1.3 ( 3.5) NA 1. 05 OEP-DGN-FS 12 2.20E-02 ( 11.5) 1. 3 ( 3.5) NA 1.05 OEP-DGN-FS-DG03 15 2.20E-02 ( 11.5) 1. 3 ( 3.5) NA 1. 05 BETA-3DG 3 1.SOE-02 ( 14.0) 1. 2 ( 6.0) NA 1. 12 OEP-DGN-FR-8HDG3 11 1.20E-02 ( 16.0) 1. 1 ( 8.0) NA 0.93 OEP-DGN-FR-6HDG2 11 1.20E-02 ( 16.0) 1. 1 ( 8.0) NA 0.93 OEP-DGN-FR-6HDG1 11 1.20E-02 ( 16.0) 1.1 ( 8.0) NA 0.93 OEP-DGN-MA-0802 4 6.00E-03 ( 19.0) 0.6 ( 11:0) NA 0.98 OEP-DGN-MA-0801 5 6.00E-03 ( 19.0) 0.6 ( 11.0) NA 0.98 OEP-DGN-MA-DG03 4 6.00E-03 ( 19.0) 0.6 ( 11.0) NA 0.98 NRAC-7HR 40 5.00E-02 ( 7.0) 0.5 ( 13.0) NA 1.16 OEP-CRB-FT-25H3 1 3.00E-03 ( 22.0) 0.4 ( 15.0)

OEP-CRB-FT-15J3 1 3.00E-03 ( 22.0) 0.4 ( 15.0)

OEP-CRB-FT-15H3 1 3.00E-03 ( 22.0) 0.4 ( 15.0)

QS-SBO 40 2.70E-01 ( 5.5) 0.0 ( 18.5)

BETA-2DG 9 3.80E-02 ( 9.0) 0.0 ( 18.5) 0 28 4.90E-02 ( 8.0) o.o ( 18.5)

REC-XHE-FO-DGHWB 39 6.00E-01 ( 3.0) o.o ( 18.5)

NOTDG-CCF 9 5.20E-01 ( 4.0)

NOTQ 40 9. 73E-01 ( 1.0)

NOTL-SB0U1U2 40 9.68E-01 ( 2.0)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y.05/TE.05* Y. 95/TE. 95*

IE-T1 40 7.70E-02 ( 1.0) 0.3 ( 1.0)

  • Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS NOT HELD CONSTANT

SEQUENCE SBO-BATT2 CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES,

  • CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT SBO-BATT2 WITH TOP EVENT FREQUENCY 2.97E-07 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 1 10 1.61E-07 0.54324 BETA-3DG
  • IE-T1
  • NOTL-SBOU1U2
  • NOTQ
  • 3 NRAC-7HR
  • NSLOCA
  • 10
  • OEP-DGN-FS
  • REC-XHE-FO-DGHWB + .

4 /QS-SBO IE-T1 NOTL-SBOU1U2 NOTQ .

5 8

2 9 6.28E-08 0.75452 BETA-3DG NRAC-7HR NSLOCA . OEP-DGN-FS QS-SBO REC-XHE-FO-DGHWB +

7 NRAC-7HR 8 3 9 2.09E-08 0.82495 IE-T1 NSLOCA NOTL-S80U1U2 OEP-DGN-FS-DG03 NOTQ OEP-DGN-MA-DG01 QS-SBO .

9 10 REC-XHE-FO-DGHWB + . NOTL-SBOU1U2 . NOTQ

  • 11 4 10 8.32E-09 0.85294 BETA-3DG IE-T1 NSLOCA .*

0

  • OEP-DGN-FS
  • 12 NRAC-7HR .

13 14 5 11 4.34E-09 0.86754

/QS-SBO IE-T1 . REC-XHE-FO-DGHWB +

NOTL-SBOU1U2 .. NOTQ .* NRAC-7HR

  • 15 16 NSLOCA OEP-DGN-FS-DG03
  • 10

..* /QS-SBO .*

OEP-DGN-FS-0601 REC-XHE-FO-DGHWB NOTQ

+

OEP-DGN-FS-DG02 NRAC-7HR 17 7 11 2.37E-09 0.87551 IE-T1 NOTL-SBOU1U2 trj I 18 NSLOCA OEP-DGN-FS-0802 ..

10

/QS-SBO *

  • OEP-DGN-FR-6HDG3 REC-XHE-FO-DGHWB +
  • OEP-DGN-FS-D001
  • I-'

i:o 19 20 21 6 11 2.37E-09 0.88348 IE-T1 NSLOCA * /0 NOTL-SBOU1U2

  • NOTQ OEP-DGN-FR-6HDG2 .* NRAC-7HR OEP-DGN-FS-DG01 22 OEP-DGN-FS-0803 * /QS-SBO REC-XHE-FO-DGHWB + .

23 8 11 2.37E-09 0.89145 IE-T1

  • NOTL-SBOU1U2
  • NOTQ
  • NRAC-7HR 24 NSLOCA * /0
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-DG02
  • 25 OEP-DGN-FS-DG03 * /QS-SBO
  • REC-XHE-FO-DGHWB +

28 11 12 2. 13E-09 0.89860 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-SBOU1U2
  • 27 NOTQ
  • NRAC-7HR
  • NSLOCA * /0
  • 28 OEP-DGN-FR-6HDG1
  • OEP-DGN-FS * /QSsSBO * . REC-XHE-FO-DGHWB +
  • *
  • 29 10 12 2.13E-09 0.90576 BETA-208 NOTQ
  • IE-T1 NRAC-7HR
  • NOTDG-CCF NSLOCA * /0 .

30 31 32 9 12 2.13E-09 0.91291 OEP-DGN-FR-6HDG3 BETA-2DG OEP-DGN-FS IE-T1

/QS-SBO NOTDG-CCF .

REC-XHE-FO-DGHWB NOTL-S80U1U2

/0

+

33 NOTQ

  • NRAC-7HR NSLOCA OEP-DGN-FR-6HDG2
  • OEP-DGN-FS * /QS-SBO
  • REC-XHE-FO-DGHWB +

34 35 12 10 1.69E-09 0.91860 IE-T1 NSLOCA NOTL-SBOU1U2 OEP-DGN-FS-DG01 NOTQ OEP-DGN-FS-DG02 NRAC-7HR OEP-DGN-FS-DG03 .

36 37 38 15 11 1.29E-09 0.92294 QS-SBO IE-T1

.* NOTL-SBOU1U2 .*

REC-XHE-FO-DGHWB +

NOTQ OEP-DGN-FR-6HDG1 NRAC-7HR OEP-DGN-FR-6HDG3 39 NSLOCA 10 40 OEP-DGN-FS-D002 * /QS-SBO

  • REC-XHE-FO-DGHWB +

41 14 11 1.29E-09 0.92729 IE-T1

  • NOTL-SBOU1U2
  • NOTQ
  • NRAC-7HR *
  • *
  • OEP-DGN-FR-6HDG2
  • 42 43 NSLOCA OEP-DGN-FS-DG03
  • 10

/QSsSBO . OEP-DGN-FR-8HDG1 REC-XHE-FO-DGHWB +

44 13 11 1.29E-09 0.93163 IE-T1

  • NOTL-SBOU1U2
  • NOTQ
  • NRAC-7HR
  • 45 46 NSLOCA OEP-DGN-FS-DG01 10

/QS-SBO .

  • OEP-DGNsFR-6HDG2
  • REC-XHE-FO-DGHWB +

OEP-DGN-FR-6HDG3 *

  • 47 48 49 18 11 1.18E-09 0.93562 IE-T1 NSLOCA OEP-DGN-MA-0803 NOTL-SBOU1U2 10

/QS-SBO NOTQ OEP-DGN-FS-DG01 REC-XHE-FO-DGHWB

+

NRAC-7HR OEP-DGN-FS-DG02 60 17 11 1.18E-09 0.93960 IE-T1

  • NOTQ
  • NRAC-7HR
  • 51 NSLOCA
  • 10
  • OEP-DGN-FS-0802
  • OEP-DGN-FS-0803
  • 52 OEP-DGN-MA-0801 * /QS-SBO
  • REC-XHE-FO-DGHWB +

53 16 11 1.18E-09 0.94358 IE-T1

  • NOTL-SBOU1U2
  • NOTQ
  • NRAC-7HR
  • 54 NSLOCA * /0
  • OEP-DGN-FS-D801
  • OEP-DGN-FS-DG03
  • REC-XHE-FO-DGHWB +

55 56 19 10 1.17E-09 0.94754 OEP-DGN-MA-0802 IE-T1

/QS-SBO N0TL-S80U1U2 .

  • NOTQ
  • NRAC-7HR
  • 57 NSLOCA * /0
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FR-6HDG2
  • 58 OEP-DGN-FR-6HDG3 * /QS-SBO +

59 22 12 1.06E-09 0.95111 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-S80U1U2
  • 60 NOTQ
  • NRAC-7HR
  • NSLOCA
  • 10 *"

61 OEP-DGN-FS

  • OEP-DGN-MA-DG01 * /QS-SBO
  • REC-XHE-FO-DGHWB +

62 21 12 1.06E-09 0.95469 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-S80U1U2
  • 63 64 NOTQ OEP-DGN-FS .
  • NRAC-7HR OEP-DGN-UA-DG03 ..* NSLOCA

/QS-880

  • 10
  • REC-XHE-FO-DGHWB

. +

IE-T1 NOTDG-CCF NOTL-S80U1U2

  • 65 66 20 12 1.0BE-09 0.95827 BETA-2DG NOTQ
  • NRAC-7HR .. NSLOCA
  • 10
  • REC-XHE-FO-DGHWB +

87 68 25 10 9.21E-10 0.96137 OEP-DGN-FS IE-T1 .* OEP-DGN-MA-DG02 NOTL-S80U1U2. . /QS-880 NOTQ

  • NRAC-7HR
  • 69 NSLOCA
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-D801
  • OEP-DGN-FS-DG02
  • 70 QS-880
  • REC-XHE-FO-DGHWB +

71 24 10 9.21E-10 o. 96'447 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-7HR
  • trj 72 NSLOCA
  • OEP-DGN-FR-6HD82
  • OEP-DGN-FS-0801
  • OEP-DGN-FS-DGOS *

.....I 73 QS-SBO

  • REC-XHE-FO-DGHWB +

~

C}1 74 75 23 10 9.21E-10 0.96757 IE-T1 NSLOCA NOTL-SBOU1U2 OEP-DGN-FR-6HDG1 *

  • NOTQ OEP-DGN-FS-D802 NRAC-7HR OEP-DGN-FS-0803 .*

76 QS-880

  • REC-XHE-FO-DGHWB +

77 28 11 8.27E-10 0.97035 BETA-208

  • IE-T1
  • NOTDG-CCF
  • NOTL-SBOU1U2
  • 78 NOTQ
  • NRAC-7HR
  • NSLOCA
  • OEP-DGN-FR-6HDG3
  • 79 OEP-DGN-FS
  • QS-880
  • REC-XHE-FO-DGHWB +

80 81 27 11 8.27E-10 0.97313 BETA-208 NOTQ IE-T1 NRAC-7HR NOTDG-CCF NSLOCA NOTL-S80U1U2 OEP-DGN-FR-6HDG1 .

82 OEP-DGN-FS

  • QS-SBO
  • REC-XHE-FO-DGHWB +

0.97592 BETA-208 IE-T1

  • NOTDG-CCF
  • NOTL-S80U1U2
  • 83 84 26 11 8.27E-10 NOTQ .*

NRAC-7HR

  • NSLOCA
  • OEP-DGN-FR-6HDG2" 85 OEP-DGN-FS
  • QS-SBO
  • REC-XHE-FO-DGHWB +

NRAC-7HR 86 87 31 11 6.48E-10 0.97609 IE-T1 NSLOCA NOTL-SBOU1U2 10 .

  • NOTQ OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-0803 88 OEP-DGN-MA-DG01 * /QS-880
  • REC-XHE-FO-DGHWB +

89 30 11 6.46E-10 0.98026 IE-T1

  • NOTQ
  • NRAC-7HR
  • 90 NSLOCA
  • 10
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-0801
  • 91 OEP-DGN-UA-D802 * /QS-SBO
  • REC-XHE-FO-DGHWB +

92 29 11 6.46E-10 0.98243 IE-T1

  • NOTL-SB0U1U2
  • NOTQ
  • NRAC-7HR
  • 93 NSLOCA
  • 10
  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS-0803
  • 94 OEP-DGN-UA-0802 * /QS-880
  • REC-XHE-FO-DGHWB +

95 34 11 6.46E-10 0.98461 IE-T1

  • NOTL-SBOU1U2
  • NOTQ
  • NRAC-7HR
  • 96 NSLOCA
  • 10
  • OEP-DGN-FR-6HDG2
  • OEP-DGN-FS-D801
  • 97 OEP-DGN-UA-DG03 * /QS-880
  • REC-XHE-FO-DGHWB +

98 33 11 B.4BE-10 o. 98678 IE-T1

  • NOTL-SB0U1U2
  • NOTQ
  • NRAC-7HR
  • 99 NSLOCA
  • 10
  • OEP-DGN-FR-6HD81
  • OEP-DGN-FS-D802
  • 100 OEP-DGN-MA-DG03 * /QS-SBO
  • REC-XHE-FO-DGHWB +

101 32 11 B.4BE-10 0.98895 IE-T1

  • NOTL-S80U1U2
  • NOTQ
  • NRAC-7HR
  • 102 NSLOCA
  • 10
  • OEP-DGN-FR-6HDG3
  • OEP-DGN-FS-DG02
  • 103 OEP-DGN-MA-DG01
  • IQS-SBO
  • REC-XHE-FO-DGHWB +

104 37 11 5.92E-10 0.99095 IE-T1

  • NOTL-SB0U1U2 *. NOTQ
  • NRAC-7HR 105 NSLOCA
  • 10 OEP-CRB-FT-15H3
  • OEP-DGN-FS-DG02
  • 106 OEP-DGN-FS-DG03 * /QS-SBO
  • REC-XHE-FO-DGHWB +

107 108 36 11 5.92E-10 0.99294 IE-T1 NSLOCA .* NOTL-S80U1U2

.* NOTQ OEP-CRB-FT-15J3

. NRAC-7HR OEP-DGN-FS-0801 .*

. 10 109 110 35 11 5.92E-10 0.99493 OEP-DGN-FS-0802 IE-T1 .. /QS-SBO NOTL-S80U1U2 REC-XHE-FO-DGHWB NOTQ

+

. NRAC-7HR

  • 111 NSLOCA OEP-DGN-FS-0803 . /QS-SBO 10 OEP-CRB-FT-25H3 REC-XHE-FO-DGHWB +

OEP-DGN-FS-0801 112 IE-T1 NOTL-S80U1U2 NOTQ NRAC-7HR .

113 114 40 10 5.02E-10 0.99662 NSLOCA

  • OEP-DGN-FR-6HDG2 . OEP-DGN-FR-6HDG3 OEP-DGN-FS.-0001 REC-XHE-FO-DGHWB +.

115 116 39 10 5.02E-10 0.99831 QS-SBO IE-T1 ..* NOTL-S80U1U2 . NOTQ .

. NRAC-7HR .

117 NSLOCA OEP-DGN-FR-6HDG1 OEP-DGN-FR-6HDG2 OEP-DGN-FS-0003 QS-SBO . REC-XHE-FO-DGHWB +.

118 .

1.00000 IE-T1 NOTL-S80U1U2 NOTQ NRAC-7HR 119 38 10 5.02E-10 NSLOCA . OEP-DGN-FR-6HDG1 . OEP-DGN-FR-6HDG3 .

OEP-DGN-FS-0002 120 121 QS-SBO . REC-XHE-FO-DGHWB

SEQUENCE. SBO-Q2 TOP EVENT SBO-Q2 CONTAINS 21 EVENTS IN 32 CUT SETS THE FREQUENCY OF TOP EVENT SBO-Q2 IS 3.46E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT SBO-Q2 N 1000 MEAN 3.23E-07 STD DEV 1.10E-06 LOWER 5% 1.83E-09 LOWER 25% 1.44E-08 MEDIAN 5.91E-08 UPPER 25% 2.21E-07 UPPER 5% 1. 25E-06 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION E PD X EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

= TEF{EVALUATED WITH EV(J) = 1) - TEF

SEQUENCE SBO-Q2 RISK REDUCTION av BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

NOTL-SBOU1U2 32 9.68E-01 ( 1. 0) 3.46E-07 ( 2.5)

NRAC-1HR 32 4.40E-01 ( 5.0) 3.46E-07 ( 2.5) 1.83E-09 1.25E-06 SBO-PORV-DMD 32 4.50E-01 ( 4.0) 3.46E-07 ( 2.5) 1.83E-09 1.25E-06 REC-XHE-FO-DGEN 32 9.00E-01 ( 2.0) 3.46E-07 ( 2.5) 1.83E-09 1.25E-08 OEP-DGN-FS 22 2.20E-02 ( 11. 5) 3.33E-07 ( 5.0) 1.70E-09 1.20E-06 BETA-3DG 4 1.80E-02 ( 14.0) 3.16E-07 ( 6.0) 1.61E-09 1.15E-06 PPS-SOV-00-1456 16 3.00E-02 ( 8.5) 1.73E-07 ( 7.5) 9.13E-10 6.26E-07 PPS-SOV-00-1455C 16 3.00E-02 ( 8.5) 1.73E-07 ( 7.5) 9.13E-10 6.26E-07 NOTDG-CCF 18 5.20E-01 ( 3.0) 1;70E-08 ( 9.5)

BETA-2DG 18 3.80E-02 ( 7.0) 1.70E-08 ( 9.5) 3.47E-11 4.38E-08 OEP-DGN-FS-0803 *e 2.20E-02 ( 11.5) 1.19E-08 ( 12.0) 1.87E-11 1.01E-07 OEP-DGN-FS-DG02 .. 8 2.20E-02 ( 11. 5) 1. 19E-08 ( 12.0) 1.87E-11 1.01E-07 OEP-DGN-FS-DG01 8 2.20E-02 ( 11. 5) 1.19E-08 ( 12.0) 1.87E-11 1.01E-07 OEP-DGN-FR-6HDG2 4 1.20E-02 ( 18.0) 4.16E-09 ( 15.0) 4.32E-12 1.17E-08 OEP-DGN-FR-6HDG1 4 1.20E-02 ( 16.0) 4.16E-09 ( 15.0) 4.32E-12 1. 17E-08 OEP-DGN-FR-6HDG3 4 1.20E-02 ( 16.0) 4 .16E-09 ( 15.0) 4.32E-12 1.17E-08 OEP-DGN-MA-0003 4 6.00E-03 ( 19.0) 3.21E-09 ( 18.0) 3.13E-12 9.44E-09 tzj OEP-DGN-MA-0802 4 6.00E-03 ( 19.0) 3.21E-09 ( 18.0) 3.13E-12 9.44E-09 I OEP-DGN-MA-0801 4 6.00E-03 ( 19.0) 3.21E-09 ( 18.0) 3.13E-12 9.44E-09 I-' QS-SBO 32 2.70E-01 ( 6.0) -3.56E-09 ( 20.0) -2.37E-08 -6.73E-13 to 00 RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-T1 32 7.70E-02 1. 0) 3.46E-07 ( 1.0) 1.83E-09 1.25E-06

  • SEQUENCE SBO-Q2 RISK INCREASE BY BASE .EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5" UPPER 5%

BETA-3D8 4 1.80E-02 ( 14.0) 1.72E-05 ( 1. 0) 1.25E-07 8.31E-05 OEP-DGN-FS 22 2.20E-02 ( 11.5) 1.48E-05 ( 2.0) 1.14E-07 5.38E-05 PPS-SOV-00*1455C 16 3.00E-02 ( 8.5) 5.SOE-06 ( 3.5) 1.82E-07 2.51E-05 PPS-SOV-00-1458 18 3.00E-02 ( 8.5) 5.80E-08 ( 3.5) 1.82E-07 2.51E-05 OEP-DGN-MA-DG03 4 6.00E-03 ( 19.0) 5.31E-07 ( 6.0) 2.90E-09 1.42E-08 OEP-D8N-MA-DG02 4 6.00E-03 ( 19.0) 5.31E-07 ( S.0) 2.90E-09 1.42E-06 OEP-DGN-MA-D801 4 8.00E-03 ( 19.0) 5.31E-07 ( 8.0) 2.90E-09 1.42E-08 OEP-DGN-FS-D803 8 2.20E-02 ( 11.5) 5.27E-07 ( 9.0) 1.85E-09 2.03E-08 OEP-DGN-FS-DG02 8 2.20E-02 ( 11.5) 5.27E-07 ( 9.0) 1.85E-09 2.03E-06 OEP-D8N-FS-D801 8 2.20E-02 ( 11.5) 5.27E-07 ( 9.0) 1.85E-09 2.03E-06 NRAC-1HR 32 4.40E-01 ( 5.0) 4. 41 E-07 ( 11. 0) 2.58E-09 1.84E-08 BETA-208 18 3.80E-02 ( 7.0) 4.31E-07 ( 12.0) 1.23E-09 1.32E-06 SBO-PORV-DMD 32 4.50E-01 ( 4.0) 4.23E-07 ( 13.0) 2.03E-09 1.81E-06 OEP-DGN-FR-8HD82 4 1.20E-02 ( 18.0) 3.42E-07 ( 15.0) 1.81E-09 1.38E-06 OEP-DGN-FR-6HDG1 4 1.20E-02 ( 16.0) 3.42E-07 ( 15.0) 1.61E-09 1.38E-06 OEP-DGN-FR-6HDG3 4 1.20E-02 ( 18.0) 3.42E-07 ( 15.0) 1.61E-09 1.3SE-06 REC-XHE-FO-DGEN 32 9.00E-01 ( 2.0) 3.85E-08 ( 17.0) 4.5SE-11 1.32E-07 NOTDG-CCF 18 5.20E-01 ( 3.0) 1.57E-08 ( 18.0) trj NOTL-SBOU1U2 32 9.S8E-01 ( 1. 0) 1.14E-08 ( 19.0)

QS-SBO 32 2.70E-01 ( 6,0) -9.62E-09 ( 20.0) -2.83E-08 -9.38E-12

.....I tO tO

SEQUENCE SBO-Q2 UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR* PROB (RANK) OF LOG RISK (RANK) Y.05/TE.05* Y.95/TE.95*

PPS-SOV-00-1456 16 3.00E-02 ( 8.5) 46. 1 ( 1. 5) 6.23" 1.21 PPS-SOV-00-1455C 16 3. ooE*-.02 ( 8.5) 46.1 ( 1.5) 6.23 1.21 QS-SBO 32 2.70E-01 ( 6.0) 45.2 ( 3.0) 1. 00 1. 02 SBO-PORV-DMD 32

  • 4.50E-01 ( 4.0) 15.3 ( 4.0) 1.69 1.14 OEP-DGN-FS-DG03 8 2.20E-02 ( 11.5) 13.9 ( 6.5) 1.51 0.99 OEP DGN-FS 0 22 2.20E-02 ( 11.5) 13.9 ( 6.5) 1.51 0.99 OEP-DGN-FS-DG01 8 2.20E-02 ( 11.5) 13.9 ( 6.5) 1.51 0.99 OEP-DGN-FS-DG02 8 2.20E-02 ( 11.5) 18.9 ( 6.5) 1.51 0.99 BETA-3DG 4 1.80E-02 ( 14.0) 9.3 ( 9.0) 1.39 1.04 REC-XHE-FO-DGEN 32 9.00E-01 ( 2.0) 1. 1 ( 10.0) 1. 01 1.03 NRAC-1HR 32 4.40E-01 ( 5.0) 0.7 ( 11.0) 1.12 1. 02 BETA-2DG 18 3.80E-02 ( 7.0) 0.6 ( 12.0) 0.97 1. 00 OEP-DGN-FR-6HDG2 4 1.20E*-02 ( 16.0) 0.5 ( 14.0)

OEP-DGN-FR-6HDG1 4 1.20E-02 ( 16.0) 0.5 ( 14.0)

OEP-DGN-FR-6HDG3 4 1.20E-02 ( 16.0) 0.5 ( 14.0)

OEP-DGN-MA-DG03 4 6.00E-03 ( 19.0) 0.0 ( 17.0)

OEP-DGN-MA-DG02 4 6.00E-03 ( 19.0) o.o ( 17.0)

OEP-DGN-MA-DG01 4 6.00E-03 ( 19.0) 0.0 ( 17.0) trj NOTDG-CCF 18 5.20E-01 ( 3.0)

.I 9.68E-01 (

t-:> NOTL-SBOU1U2 32 1. 0) 0 0

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT ~VENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y. 05/TE. 05* Y.95/TE.95*

IE-T1 32 7.70E-02 ( 1.0) ~7.0 (. 1.0) 1. 52 1.10

  • Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS NOT HELD CONSTANT

SEQUENCE SBO-Q2 CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES,*

CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT SBO-Q2 WITH TOP EVENT FREQUENCY 3.48E-07 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 2 9 1.15E-07 0.33278 BETA-3DG

  • IE-T1
  • NOTL-SBOU1U2
  • NRAC-1HR
  • 3 OEP-DGN-FS
  • PPS-SOV-00-1458 * /QS-SBO
  • REC-XHE-FO-DGEN
  • 4 SBO-PORV-DMD +

5 1 9 1.15E-07 0.66552 BETA-3DG

  • IE-T1
  • NRAC-1HR
  • 8 OEP-DGN-FS
  • PPS-SOV-00-14550 * /QS-SBO
  • REC-XHE-FO-DGEN
  • 7 SBO-PORV-DMD +

8 3 9 4.26E*-o8 0.78859 BETA-3DG

  • IE-T1
  • PPS*SOV-00-14550
  • QS-SBO REC-XHE-FO-DGEN
  • 10 SBO-PORV-DMD + .

11 4 9 4.26E-08 0.91167 BETA-3DG IE-T1

  • NOTL-SBOU1U2
  • NRAC-1HR
  • 12 OEP-DGN-FS
  • PPS-SOV-00-1456
  • QS-SBO
  • REC-XHE-FO-OGEN
  • 13 SBO-PORV-DMD +

14 15 5 10 3.10E-09 0.92061 IE-T1 OEP-DGN-FS-DG02 NOTL-SBOU1U2 OEP-DGN-FS-DG03 NRAC-1HR

  • OEP-DGN-FS-DG01 PPS-SOV-00-14550 * /QS-SBO .
  • 16 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

~ 17 8 10 3. 10E-09 0.92956 IE-T1

  • NOTL-S80U1U2
  • NRAC-1HR
  • OEP-DGN-FS-DG01
  • I I),:,

0 18 19 OEP-DGN-FS-DG02 REC-XHE-FO-DGEN .* OEP-DGN-FS-DG03 SBO-PORV-DMD +

PPS-SOV-00-1456 * /QS-SBO f--'

20 11 11 1.52E-09 0.93394 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-S80U1U2
  • 21 NRAC-1HR *. OEP-DGN-FR-6HDG2
  • OEP-DGN-FS
  • PPS-SOV-00-1456
  • 22 /QS-SBO REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

23 12 11 1.52E-09 0.93833 BETA-2D8

  • IE-T1
  • NOTDG-CCF
  • NOTL-SBOU1U2 .*

24 NRAC-1HR

  • OEP-DGN-FR-6HDG1
  • OEP-DGN-FS
  • PPS-SOV-00-1456 25 /QS-SBO
  • REC-XHE-FO-DGEN
  • SBO-PORV-DUD +

26 10 11 1.52E-09 0.94271 BETA-2DG

  • IE-T1 OEP-DGN-FR-8HD83
  • NOTDG-CCF
  • OEP-DGN-FS
  • NOTL-S80U1U2
  • PPS-SOV-00-1458 ...*

27 NRAC-1HR 28 29 9 11 1.52E-09 0.94709

/QS-SBO BETA-2DG .*

  • REC-XHE-FO-DGEN IE-T1 OEP-DGN-FR-SHDG1
  • SBO-PORV-DMD
  • NOTDG-CCF
  • . OEP-DGN-FS

+*

N0TL-S80U1U2 PPS-S0V-00-1455C

  • 30 NRAC-1HR 31 /QS-SBO *. REC-XHE-FO-DGEN SBO-PORV-DMD +

32 8 11 1.52E-09 0.95148 BETA-2DG IE-T1

  • NOTDG-CCF
  • NOTL-SBOU1U2
  • 33 NRAC-1HR
  • OEP-DGN-FR-8HDG2
  • OEP-DGN-FS
  • PPS-S0V-00-1455C
  • 34 /QS-SBO
  • REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

35 7 11 1.52E-09 0.95586 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • NOTL-S80U1U2
  • 38 NRAC-1HR
  • OEP-DGN-FR-8HDG3
  • OEP-DGN-FS
  • PPS-SOV-00-14550
  • 37 /QS-SBO
  • REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

38 39 14 10 1.15E-09 0.95917 IE-T1 OEP-DGN-FS-DG02 *

  • NOTL-SBOU1U2 OEP-DGN-FS-DG03 NRAC-1HR PPS-SOV-00-1456 *
  • OEP-DGN-FS-DG01 QS-SBO .*

40 REC-XHE-FO-DGEN

  • SBO-PORV-DMD +

41 13 10 1.15E-09 0.96248 IE-T1

  • NOTL-SBOU1U2
  • NRAC-1HR
  • OEP-DGN-FS-DG01
  • 42 OEP-DGN-FS-DG02
  • OEP-DGN-FS-DG03
  • PPS-SOV-00-1455C
  • QS-SBO
  • 43 REC-XHE-FO-D8EN
  • SBO-PORV-DMD +

44 15 10 8.45E-10 0.96492 IE-T1

  • NOTL-SBOU1U2
  • NRAC* 1HR
  • OEP-DGN-FS-DG01
  • 45 OEP-DGN-FS-DG03
  • OEP-DGN-UA-DG02
  • PPS-SOV-00-1455C * /QS-SBO
  • 46 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

NOTL-S80U1U2 . NRAC-1HR

  • OEP-DGN-FS-DG01
  • 47 48 20 10 8.45E-10 0.96736 IE-T1 OEPaDGN-FS-DG02 .* OEP-DGNaMA-DG03
  • PPS-SOV-00-1456 * /QS-SBO
  • 49 60 19 10 8.46E-10 0.96980 REC-XHE-FO-DGEN IE-T1 SBO-PORV-DMD NOTL-S80U1U2 .

+

NRAC-1HR

  • OEP-DGN-FS-DG02
  • 51 OEP-DGN-FS-0803
  • OEP-DGN-MA-0801
  • PPS-SOV-00-1456 * /QS-SBO
  • 52 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +  ;.

53 18 10 8.45E-10 0.97224 IE-T1

  • NOTL-S80U1U2
  • NRAC-1HR
  • OEP-DGN-FS-0802 .

54 OEP-DGN-FS-0803

  • OEP-DGN-MA-0801
  • PPS-SOV-00-1455C" IQS-SBO 55 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

IE-T1

  • NOTL-SBOU1U2
  • NRAC-1HR
  • OEP-DGN-FS-0801
  • 56

.57 17 10 8.45E-10 0.97468 OEP-DGN-FS-0802 . OEP-DGN-MA-0803

  • PPS-S0V-00-1455C
  • IQS-SBO
  • 58 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

NRAC-1HR

  • OEP-DGN-FS-0801 .*

59 18 10 8.45E-10 0.97712 IE-T1 OEP-DGN-FS-DG03 .* NOTL-SBOU1U2 OEP-DGN-MA-0002

  • PPS-SOV-00-1456 . IQS-SBO 60 REC-XHE-FO-DGEN . SBO-PORV-DMD +

61 62 26 11 7.59E-10 0.97931 BETA-208 . IE-T1

  • NOTDG-CCF
  • NOTL-S80U1U2
  • NRAC-1HR
  • OEP-DGN-FS
  • OEP-DGN-MA-0002
  • PPS-SOV-00-1456
  • 63 64 65 25 11 7.59E-10 0.98150

/QS-SBO BETA-208 ..* REC-XHE-FO-DGEN IE-T1 OEP-DGN-FS SBO-PORV-DMD NOTDG-CCF OEP-DGN-MA-0001

+

. NOTL-SBOU1U2 PPS-SOV-00-1456 66 67 NRAC-1HR

/QS-SBO . REC-XHE-FO-DGEN SBO-PORV-DMD +

11 7.59E-10 0.98370 BETA-2DG

  • IE-T1
  • NOTDG-CCF
  • 68 24 OEP-DGN-MA-0803
  • PPS-SOV-00-1456
  • 69 NRAC-1HR
  • OEP-DGN-FS
  • IQS-SBO REC-XHE-FO-DGEN
  • SBO-PORV-DMD +.

70 BETA-2DG .*

IE-T1

  • NOTDG-CCF NOTL-S80U1U2
  • 71 72 23 11 7.59E-10 0.98589 NRAC-1HR . OEP-DGN-FS *

. OEP-DGN-MA-0801

  • PPS-S0V-00-1455C
  • 73 /QS-SBO .* REC-XHE-FO-DGEN SBO-PORV-DMD NOTDG-CCF .

+

NOTL-S80U1U2 .

trj 74 22 11 7.59E-10 0.98808 BETA-208 . IE-T1 .*

OEP-DGN-MA-DG02

  • PPS-S0V-00-1455C
  • I N) 75 78 NRAC-1HR IQS-SBO
  • OEP-DGN-FS REC-XHE-FO-DGEN . SBO-PORV-DMD +

NOTL-S80U1U2

  • 0 N) 77 21 11 7.59E-10 0.99027 BETA-200 NRAC-1HR IE-T1 OEP-DGN-FS NOTDG-CCF OEP-DGN-MA-0803 .

PPS-S0V-00-1455C

  • 78 REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

79 /QS-SBO

80 30 11 5.61E-10 0.99189 BETA-2DG NRAC-1HR .* IE-T1 OEP-DGN-FR-8HDG1

  • .. NOTDG-CCF OEP-DGN-FS .

PPS-SOV-00-1456 81 82 11 5.61E-10 0.99351 QS-SBO BETA-2DG REC-XHE-FO-DGEN IE-T1 . SBO-PORV-DMD NOTDG-CCF

+

.. NOTL-S80U1U2 .

83 29 OEP-DGN-FS PPS-S0V-00-1455C

  • 84 NRAC-1HR
  • OEP-DGN-FR-6HDG3
  • 85 11 5.61E-10 0.99514 QS-SBO BETA-200 .* REC-XHE-FO-DGEN IE-T1 SBO-PORV-DMD NOTDG-CCF

+

  • NOTL-S80U1U2 .

86 28 OEP-DGN-FS

  • PPS-S0V-00-1455C
  • 87 NRAC-1HR *. OEP-DGN-FR-6HD82 .

SBO-PORV-DMD .

+ .

88 89 31 11 5.81E-10 0.99676 QS-SBO BETA-2DG . REC-XHE-FO-DGEN IE-T1 . NOTDG-CCF . N0TL-S80U1U2 OEP-DGN-FS PPS-SOV-00-1466

  • 90 91 NRAC-1HR QS-SBO
  • . OEP-DGN-FR-6HD83 REC-XHE-FO-DGEN .* SBO-PORV-DMD +. .

11 5.61E-10 0.99838 BETA-2DG

  • IE-T1
  • NOTDG-CCF NOTL-S80U1U2 .

92 27 OEP-DGN-FR-6HD81 OEP-DGN-FS

  • PPS-S0V-00-1455C 93 NRAC-1HR *
  • 94 QS-SBO
  • REC-XHE-FO-DGEN
  • SBO-PORV-DMD +

95 32 11 5.61E-10 1.00000 BETA-2DG NRAC-1HR IE-T1 OEP-DGN-FR-6HDG2 ..

  • NOTDG-CCF OEP-DGN-FS NOTL-S80U1U2 PPS-SOV-00-1458 .*

96 SBO-PORV-DMD 97 QS-SBO

  • REC-XHE-FO-DGEN

SEQUENCE A-D8 TOP EVENT A-D6-CU CONTAINS 13 EVENTS IN 13 CUT SETS THE FREQUENCY OF TOP EVENT A-D8-CM IS 4.89E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT A-D8-CM N 1000 MEAN 3.10E-07 STD DEV 7.28E-07 LOWER 6% 2.10E-08 LOWER 25% 5.79E-08 MEDIAN 1.20E-07 UPPER 25% 2.83E-07 UPPER 5% 1.13E-08 901(. UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND lNITIATING EVENTS:

RISK REDUCTION~ PD x EV(J)

= TEF - T~F(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

m TEF(EVALUATED WITH EV(J) m 1) - TEF

SEQUENCE A-D8 RISK REDUCTION av BASE EVENT {WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5% UPPER 5'l' BETA-LPI 1 1.50E-01 ( 1. 0) 2 .. 25E-07 ( 1.5) 3.50E-09 8.83E-07 LPI-MDP-FS 1 3.00E-03 ( 3.0) 2.25E-07 ( 1. 5) 3.50E-09 8.63E-07 LPI-MOV-PG-1890C 1 4.40E-04 ( 11. 0) 2.20E-07 ( 3.0) 8.87E-09 1.48E-07 LPI -MDP-FS-SI 1A 4 3.00E-03 ( 3.0) 1.14E-08 ( 4.5) 1.10E-10 8.82E-08 LPI -MDP-FS-SI 18 4 3.00E-03 ( 3.0) 1.14E-08 ( 4.5) 1. 1OE-10 8.82E-08 SIS-ACT-FA-SI SB 3 1.&0E-03 ( 7.5) 5.28E-09 ( 6.5) 1.20E-10 2.78E-08 SIS-~CT-FA-SISA 3 1.80E-03 ( 7.5) 5.28E-09 ( 8.5) 1.20E-10 2.78E-08 LPI -MDP-MA-SI 1A 2 2.00E-03 ( 5.5) 4.&0E-09 ( 8.5) 4.45E-11 1.69E-08 LPI -UDP-MA-SI 18 2 2.00E-03 ( 5.5) 4.&0E-09 ( 8.5) 4.45E-11 1.69E-08 LPI-CKV-OO-CV58 1 1.00E-03 ( 9.5) 1.50E-09 ( 10.5) 2.51E-11 6.31E-09 LPI -CKV-OO-CV50 1 1.00E-03 ( 9.5) 1.50E-09 ( 10.5) 2.51E-11 6.31E-09 RWT-TNK-LF-RWST 1 2.70E-06 ( 12.0) 1.35E-09 ( 12.0) 2. 77E-11 5.10E-09 RISK REDUCTION BV INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS) t:zj RISK I II\! I T EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5'l' N) 0 IE-A 13 5.00E-04 ( 1. 0) 4.69E-07 ( 1. 0) 2 .10E-08 1.13E-06

SEQUENCE A-08 RISK INCREASE BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

RWT-TNK-LF-RWST 1 2 . 70E - 08 ( 12 . 0) 5.00E-04 ( 1. 0) 1.33E-04 1.*20E-03 LPI-MOV-PG-1890C 1 4. 4.0E-04 ( 11 . 0) 5.00E-04 ( 2.0) 1.33E-04 1.20E-03 LPI-MDP-FS 1 3.00E-03 ( 3.0) 7.48E-05 ( 3.0) 9.95E-06 2.12E-04 LPI -MDP-FS-SI 1A 4 3.00E-03 ( 3.0) 3.79E-06 ( 4.5) 5.09E-07 1.17E-05 LPI -MDP-FS-SI 18 4 3.00E-03 ( 3.0) 3.79E-06 ( ... 5) 5.0SE-07 1.17E-05 SIS-ACT-FA-SI SB 3 1.60E-03 ( 7.5) 3.29E-06 ( 6.5) 3.25E-07 1.12E-05 SIS-ACT-FA-SI SA 3 1. 60E-03 ( 7.5) 3.29E-08 ( 8.5) 3.25E-07 1.12E-05 LPI -MDP-MA-SI 1A 2 2.00E-03 ( 5.5) 2.30E-06 ( 8.5) 1.65E-07 7.84E-06 LPI -MDP-MA-SI 18 2 2.00E-03 ( 5.5) 2.30E-06 ( 8.5) 1.65E-07 7.64E-06 LPI-CKV-00-CV58 1 1.00E-03 ( 9.5) 1.50E-06 ( 10.5) 3.32E-08 5.90E-06 LP I -CKV-OO-CV50 1 1.00E-03 ( 9.5) 1 . 50E - 06 ( 10. 5) 3.32E-08 5.90E-06 11EiA-LPI 1 1.50E-01 ( 1. 0) 1.28E-08 ( 12.0) 2.85E-08 4.90E-08

..~

~

0 CJl

SEQUENCE A-DS UNCERTAINTY. IMPORTANCE BY BASE EVENT "REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK) Y.05/TE.05* Y.95/TE.95*

LPI-MDP-FS-Sl1B 4 3.00E-03 ( 3.0) 52.9 ( 2.0) 2.47 0.73 LPI-MDP-FS-St1A 4 3.00E-03 ( 3.0) 52.9 ( 2.0) 2.47 0.73 LPI-MDP-FS 1 3.00E-03 ( 3.0) 52.9 ( 2.0) 2.47 0.73 BETA-LP I 1 1.50E-01 ( 1. 0) 8.0 ( 4.0) 1. 11 1. 03 LPI-MOV-PG-1890C 1 4.40E-04 ( 11.0) 4.9 ( 5.0) 3.76 1. 26 LP1-MDP-MA-Sl1A 2 2.00E-03 ( 5.5) 1. 2 ( 6.5) 1. 02 1. 02 LPI-MDP-MA-Sl1B 2 2.00E-03 ( 5.5) 1. 2 ( 8.5) 1. 02 1. 02 SIS-ACT-FA-SI SB 3 1.SOE-03 ( 7.5) 0.6 ( 8.5) 0.97 1. 02 SIS-ACT-FA-Sf SA 3 1.&0E-03 ( 7.5) 0.6 ( 8.5) 0.97 1. 02 LPI-CKV-OO-CV58 1 1.00E-03 ( 9.5) 0.4 ( 10.5)

LPI-CKV-OO-CV50 1 1.00E-03 ( 9.5) 0.4 ( 10.5)

RWT-TNK-LF-RWST 1 2.70E-06 ( 12.0) o.o ( 12.0)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT "REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y.05/TE.05* Y.95/TE.95*

IE-A 13 5.00E-04 ( 1.0) 30.7 ( 1.0) 1. 98 0.91

  • Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS NOT HELD CONSTANT

SEQUENCE A-D6 CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT A-D6-CM WITH TOP EVENT FREQUENCY 4.69E-07 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 1 3 2.25E-07 0.47961 ETA-LPI .* IE-A LPI-MOV-P8-1890C +

  • LPI-MDP-FS +

3 2 2 2.20E-07 0.94858 E-A .

E-A LP I -MOP-FS-S 11 A LP I -MOP-FS-S 11 B +

4 3 3 4.50E-09 0.95816 0.96455 . LPI-MDP-FS-S11A LPI -MOP-MA-SI 18 +

5 5 3 3.00E-09 E-A E-A . LPI -MDP-FS-SI 18

.. LPI -MOP-MA-SI 1A +

6 4 3 3.00E-09 0.97095

. LPI -MOP-FS-SI 18 SIS-ACT-FA-SI SA +

7 8

7 s

3 3

2.40E-09 2.40E-09 0.97606

0. 98118 E-A E-A .. LPI-MOP-FS-S11A .* SIS-ACT-FA-SI SB +

SIS-ACT-FA-SI SB +

9 10 9

8 3

3

1. SOE-09 1.SOE-09 0.98459 0.98800 E-A E-A .. LPI -MOP-MA-SI 1A LPI -MOP-MA-SI 18 . SIS-ACT-FA-SI SA +

0.99120 E-A LP I -CKV-OO-CV58 LPI-MDP-FS-S11A +

11 12 11 10 3

3 1.50E-09 1.50E-09 0.99439 E-A . LPI-CKV-OO-CV50

  • LPI -MDP-FS-SI 18 +

13 12 2 1.35E-09 0.99727 E-A . RWT-TNK-LF-RWST +

t:rj 14 13 3 1.28E-09 1.00000 E-A

  • SIS-ACT-FA-SI SA SIS-ACT-FA-SI SB I

N) 0

-1

SURRY STEAM GENERATOR TUBE RUPTURE SEQUENCE T7-D1-0D TOP EVENT T7-D1-0D CONTAINS 22 EVENTS IN 12 CUT SETS THE FREQUENCY OF TOP EVENT T7-D1-0D IS 1.95E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT T7~D1-0D N 1000 MEAN 2.13E-07 STD DEV 8.64E-07 LOWER 5% 6.57E-09 LOWER 25% 2.76E-08 MEDIAN 7.03E-08 UPPER 25% 1.91E-07 UPPER 5% 7.72E-07 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN) 5% = 6.57E-09 ***LOG SCALE*** 95% = 7.72E-07 l-------------------~----------[--------------------*--------------------]NM----------------------------1 tI:l I NOMENCLATURE:

N>

0 00 PD PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILfTY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION= PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION PD x (1 - EV(J))

= TEF(EVALUATED WITH EV(J) = 1) - TEF

SURRY STEAM GENERATOR TUBE RUPTURE SEQUENCE T7-D1-0D RISK REDUCTION BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

RCS-XHE-FO-DPT7D 12 4.00E-01 ( 1 . 0) 1.95E-07 ( 1 . 0) 6.57E-09 7.72E-07 BETA-2MOV 2 8.80E-02 ( 3.0) 1.25E-07 ( 2.5) 5.68E-10 4.34E-07 HPI -MOV-FT 2 3.00E-03 ( 8.5) 1.25E-07 ( 2.5) 5.68E-10 4.34E-07 HP1-XHE-F0-UN2S3 5 4.40E-02 ( 6.0) 8.93E-08 ( 4.0) 2.29E-09 3.46E-07 HPI-XHE-FO-ALTS3 1 7.40E-02 ( 4.0) 7.81E-08 ( 5.0) 3.04E-10 2.88E-07 HPI-CKV-FT-CV410 1 1.00E-04 ( 16.0) 1.76E-08 ( 6.5) 4.92E-10 7.05E-08 HPI-CKV-FT-CV25 1 1.00E-04 ( 16.0) 1.76E-08 ( 6.5) 4.92E-10 7.05E-08 RWT-TNK-LF-RWST 1 2.70E-06 ( 21.0) 1.0BE-08 ( 8.0) 1.23E-10 3.98E-08 SIS-ACT-FA-SI SA 1 1.60E-03 ( 10.5) 1.02E-08 ( 9.5) 5.74E-11 1.06E-07 SIS-ACT-FA-SI SB 1 1.60E-03 ( 10.5) 1.02E-08 ( 9.5) 5.74E-11 1.06E-07 HPI-XVM-PG-XV24 1 4.00E-05 ( 20.0) 7.04E-09 ( 11. 0) 1.70E-10 2.77E-08 HPI-XHE-FO-ALTIN 1 5.70E-03 ( 7.0) 2.28E-09 ( 12.5) 1.94E-11 8.89E-09 HPI-CKV-FT-CV225 1 1.00E-04 ( 16.0) 2.28E-09 ( 12.5) 1.94E-11 8.89E-09 HPI-MOV-FT-1867D 2 3.00E-03 ( 8.5) 2.16E-09 ( 14.0) 9.64E-12 7.91E-09 HPI-MDP-FR-1A6HR 1 4.00E-04 ( 13.0) 1.SOE-09 ( 15.5) 5.94E-11 5.71E-09 HPI-CKV-00-CV258 1 1.00E-03 ( 12.0) 1.60E-09 ( 15.5) 5.94E-11 5.71E-09 t:lj ACP-BAC-ST-1H1 1 9.00E-05 ( 18.5) 1.0BE-09 ( 17.5) 4.82E-12 3.96E-09 I ACP-BAC-ST-4KV1H 1 9.00E-05 ( 18.5) 1.0BE-09 ( 17. 5) 4.82E-12 3.96E-09 t-=> CPC-XHE-FO-REALN 1 0

7.00E-02 ( 5.0) 5.83E-10 ( 20.0) 6.47E-12 2.27E-09 c:o CPC-STR-PG-6HR 1 1.80E-04 ( 14.0) 5.83E-10 ( 20.0)

BETA-STR 1 2.63E-01 ( 2.0) 5.83E-10 ( 20.0) 6.47E-12 2.27E-09 RISK REDUCTION BY INITIATING EVENT (WI TH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-T7 12 1.00E-02 1. 0) 1.95E-07 ( 1. 0) 6.57E-09 7.72E-07

SURRY STEAM 8ENERATOR TUBE RUPTURE SEQUENCE T7-D1 -OD RISK INCREASE BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

RWT-TNK-LF-RWST 1 2.70E-06 ( 21. 0) 4.00E-03 ( 1. 0) 3.87E-04 1.20E-02 HPI-XVM-PG-XV24 1 4.00E-05 ( 20.0) 1.76E-04 ( 2.0) 7.23E-06 6.23E-04 HPI-CKV-FT-CV410 1 1.00E-04 ( 16.0) 1.76E-04 ( 3.5) 7.23E-06 6.23E-04 HPI-CKV-FT-CV25 .1 1.00E-04 ( 16.0) 1.76E-04 ( 3.5) 7.23E-06 6.23E-04 HPI -MOV-FT 2 3.00E-03 ( 8.5) 4.14E-05 ( 5.0) 1.28E-06 1.62E-04 HPI-CKV-FT-CV225 1 1.00E-04 ( 16.0) 2.28E-05 ( 6.0) 3.25E-07 9.25E-05 ACP-BAC-ST-4KV1H 1 9.00E-05 ( 18.5) 1.20E-05 ( 7.5) 1.38E-07 4.21E-05 ACP-BAC-ST-1H1 1 9.00E-05 ( 18.5) 1.20E-05 ( 7.5) 1.38E-07 4.21E-05 SIS-ACT-FA-SI SB 1 1.60E-03 ( 10.5) 6.39E-06 ( 9.5) 2. 14E-07 2.60E-05 SIS-ACT-FA-SI SA 1 1.60E-03 ( 10.5) 6.39E-06 ( 9.5) 2.14E-07 2.60E-05 HPI-MDP-FR-1A6HR 1 4.00E-04 ( 13.0) 4.00E-06 ( 11. 0) 2.30E-07 1.29E-05 CPC-STR-PG-6HR 1 1.BOE-04 ( 14.0) 3.24E-06 ( 12.0)

HPI-XHE-FO-UN2S3 5 4.40E-02 ( 6.0) 1.94E-06 ( 13.0) 1.0SE-07 6.54E-06 HPI -CKV-00-CV258 1 1.00E-03 ( 12.0) 1.60E-06 ( 14.0) 9.92E-08 5.32E-06 BETA-2MOV 2 8.BOE-02 ( 3.0) 1.29E-06 ( 15.0) 1.12E-08 4.95E-06 HPI-XHE-FO-ALTS3 1 7.40E-02 ( 4.0) 9.78E-07 ( 16.0) 8.92E-09 3.75E-06 HPI-MOV-FT-1867D 2 3.00E-03 ( 8.5) 7.18E-07 ( 17.0) 2.51E-08 2.63E-06 t:rj HPI-XHE-FO-ALTIN 1 5.70E-03 ( 7.0) 3.98E-07 ( 18.0) 2.31E-08 1.41E-06 I

Nl RCS-XHE-FO-DPT7D 12 4.00E-01 ( 1. 0) 2.92E-07 ( 19.0) 1.07E-08 1.0SE-06

...... CPC-XHE-FO-REALN 1 7.00E-02 ( 5.0) 7.75E-09 ( 20.0) 2.31E-10 2.70E-08 0

BETA-STR 1 2.63E-01 ( 2.0) 1.63E-09 ( 21.0) 2.37E-11 6.76E-09

SURRY STEAM GENERATOR TUBE RUPTURE SEQUENCE T7-D1-0D UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK} OF LOG RISK (RANK) V.05/TE.05* V. 95/TE. 95*

RCS-XHE-FO-DPT7D 12 4.-00E-01 ( 1. 0} 32.9 ( 1. 0) 2.01 0.82 HPI-MOV-FT-1867D 2 3.00E-03 ( '8. 5} 19.2 ( 2.5) 1. 61 1. 00 HPI-MOV-FT 2 3.00E-03 ( 8.5} 19.2 ( 2.5) 1. 61 1. 00 HPI-XHE-FO-UN2S3 5 4.40E-02 ( 6.0} 8.7 ( 4.0) 1.31 0.97 SIS-ACT-FA-SI SA 1 1.60E-03 ( 10.5} 6.3 { 5.5) 1 . 11 0.90 SIS-ACT-FA-SI SB 1 1.60E-03 ( 10.5} 6.3 ( 5.5} 1. 11 0.90 BETA-2MOV 2 8.80E-02 ( 3.0} 4.8 ( 7.0) 1.03 0.95 HPI-XHE-FO-ALTS3 1 7.40E-02 ( 4.0} 3. 1 ( 8.0) 1. 09 1.02 HPI-CKV-FT-CV225 1 1.00E-04 ( 16.0} 2.2 ( 10.0) 1.12 0.97 HPI-CKV-FT-CV410 1 1.00E-04 ( 16.0} 2.2 ( 10.0) 1.12 0.97 HPI-CKV-FT-CV25 1 1.00E-04 ( 16.0} 2.2 ( 10.0) 1.12 0.97 RWT-TNK-LF-RWST 1 2.70E-06 ( 21.0} 1. 7 ( 12.0) 1. 05 1.01 ACP-BAC-ST-4KV1H 1 9.00E-05 ( 18.5} 0.8 ( 13.5) 1. 00 1. 00 ACP-BAC-ST-1H1 1 9.00E-05 ( 18.5} 0.8 ( 13.5) 1. 00 1.00 HPI-CKV-00-CV258 1 1.00E-03 ( 12.0) 0.6 ( 15.0) 1.01 1. 00 HPI-XHE-FO-ALTIN 1 5.70E-03 ( 7.0) 0.6 ( 16.0) 1. 00 1. 01 HPI-MDP-FR-1A6HR 1 4.00E-04 ( 13.0) 0.5 ( 17.0)

CPC-XHE-FO-REALN 1 7.00E-02 ( 5.0} o.o ( 19.0)

HPI-XVM-PG-XV24 1 4.00E-05 ( 20.0} o.o ( 19.0)

BETA-STR 1 2.63E-01 ( 2.0} o.o ( 19.0)

CPC-STR-PG-6HR 1 1.80E-04 ( 14.0}

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y.05/TE.05* V. 95/TE. 95*

IE-T7 12 1.00E-02 ( 1.0} 23.4 ( 1.0) 1.73 0.87

  • Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS NOT HELD CONSTANT

SURRY STEAM GENERATOR TUBE RUPTURE SEQUENCE T7-D1-0D CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT T7-D1-0D WITH TOP EVENT FREQUENCY 1.95E-07 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 1 5 7.81E-08 0.40175 BETA-2MOV . HPI -MOV-FT . HPI-XHE-FO-ALTS3 . I E-T7 .

3 4 2 5 4.65E-08 0.64062 RCS-XHE-FO-DPT7D BETA-2MOV

+

. HPI-MOV-FT . HP1-XHE-F0-UN2S3 . IE-T7 .

5 6 3 4 1.76E-08 0.73110 RCS-XHE-FO-DPT7D HPI-CKV-FT-CV410

+

. HP1-XHE-FO-UN2S3 .. IE-T7 RCS-XHE-FO-DPT7D +

7 8

4 5

4 3

4 1.76E-08 1.0SE-08 0.82159 0.87711 0.92976 HPI -CKV-FT-CV25 I E-T7 IE-T7

. HPI-XHE-FO-UN2S3 RCS-XHE-FO-DPT7D RCS-XHE-FO-DPT7D ..

I E-T7 RWT-TNK-LF-RWST SIS-ACT-FA-SI SA

+

  • RCS-XHE-FO-DPT7D +

9 6 1.02E-08 SIS-ACT-FA-SI SB +

10 11 7

8 4

4 7.04E-09 2.28E-09 0.96595

0. 97767 HPI-XHE-FO-UN2S3 HPI-CKV-FT-CV225 HPI-XVM-PG-XV24
  • HPI-XHE-FO-ALTIN
  • IE-T7 IE-T7 ..* RCS-XHE-FO-DPT7D RCS-XHE-FO-DPT7D

+

+

12 9 4 1.BOE-09 0.98590 HPI-CKV-OO-CV258 HPI-MDP-FR-1A6HR IE-T7

. RCS-XHE-FO-DPT7D +

13 11 4 1.0BE-09 0.99145 ACP-BAC-ST-4KV1H

  • HPI-MOV-FT-1867D
  • IE-T7 RCS-XHE-FO-DPT7D +

14 10 4 1.0BE-09 0.99700 ACP-BAC-ST-1H1

  • HPI-MOV-FT-1867D IE-T7 RCS-XHE-FO-DPT7D +

tzj I

15 16 12 6 5.83E-10 1.00000 BETA-STR IE-T7 .

  • CPC-STR-PG-6HR RCS-XHE-FO-DPT7D CPC-XHE-FC-REALN
  • HP1-XHE-FO-UN2S3
  • NI I-'

NJ

  • SEQUENCE T5A-L-P TOP EVENT T5A-L-P CONTAINS 22 EVENTS IN 25 CUT SETS THE FREQUENCY OF TOP EVENT T5A-L-P IS 1.38E-07 DESCRIPTIVE STATISTICS FOR THE FREQUENCY OF TOP EVENT T5A-L-P N 1000 MEAN 1.31E-07 STD DEV 5.85E-07 LOWER 5% 1.12E-09 LOWER 25% 7.40E-09 MEDIAN 2.62E-08 UPPER 25% 8.85E-08 UPPER 5% 4.52E-07 90% UNCERTAINTY INTERVAL FOR- TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS

= FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION s PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RISK INCREASE = PD - RISK REDUCTION

= PD x (1 - EV(J))

  • TEF(EVALUATED WITH EV(J) = 1) - TEF

SEQUENCE T5A-L-P RISK REDUCTION BY BASE EVENT {WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB {RANK) REDUCTION {RANK) LOWER 5% UPPER 5%

AFW-CCF-LK-STMBD 1 1.00E-04 ( 16.5) 5.14E-05 ( 2.0) 8.01E-12 3.45E-08 AFW-PSF-FC-XCONN 1 1.SOE-04 ( 15.0) 5.14E-05 ( 2.0) 2.85E-10 9.44E-08 AFW-TNK-VF-CST 1 1.00E-06 ( 21. 0) 5. 14E-05 ( 2.0) 1.60E-12 6.54E-10 AFW-MDP-FS-FW3B 4 6.30E-03 ( 7.0) 3.42E-06 ( 4.0) 2.43E-10 1.78E-07 AFW-MDP-MA-FW3B 3 2.00E-03 ( 9.0) 3.36E-06 { 6.0) 2.60E-11 5.29E-08 AFW-MDP-FR-3B6HR 3 1.SOE-04 ( 14.0) 3.3SE-06 ( 6.0) 1.83E-12 4.44E-09 AFW-ACT-FA-PMP3B 3 6.00E-04 ( 13.0) 3.36E-06 ( 6.0) 1.69E-11 1.60E-08 AFW-XHE-FO-UNIT2 25 3.60E-02 ( 2.0) 2.34E-06 ( 8.0) 1.20E-09 4.52E-07 AFW-CKV-OO-CV142 1 1.00E-03 ( 11.0) 1.65E-06 ( 9.0) 3.34E-12 6.10E-09 AFW-TDP-FS-FW2 6 1.10E-02 ( 4.0) 8.91E-07 ( 10.0) 4.50E-11 6.70E-08 DCP-BDC-ST-BUS1B 1 9.00E-05 ( 18.5) 8.88E-07 ( 12.5) 5.67E-13 1.45E-09 ACP-BAC-ST-4KV1J 1 9.00E-05 ( 18.5) 8.88E-07 ( 12.5) 5.67E-13 1.45E-09 AFW-XVM-PG-XV183 1 4.00E-05 ( 20.0) 8.88E-07 ( 12.5) 4.05E-13 6.29E-10 AFW-CKV-FT-CV172 1 1.00E-04 ( 16.5) 8.88E-07 ( 12.5) 1. 01E-12 1.SOE-09 AFW-TDP-FR-2P6HR 9 3.00E-02 ( 3.0) 8.40E-07 ( 15.0) 9.46E-11 1.59E-07 AFW-TDP-MA-FW2 5 1.00E-02 ( 5.0) 8.27E-07 ( 16.0) 3.59E-11 5.68E-08 AFW-CKV-OO-CV172 1 1.00E-03 ( 11. 0) 7.55E-07 ( 17. 5) 6.59E-12 4.29E-09 t:rj AFW-CKV-OO-CV157 1 1. OOE.-03 ( 11. 0) 7.55E-07 ( 17.5) 6.59E-12 4.29E-09 I AFW-MDP-FS 3 8.30E-03 ( 7.0) 1. 42E-07 ( 19.0) 8.28E-12 1.02E-08 N)

I-' AFW-MDP-FS-FW3A 1 6.30E-03 ( 7.0) 6.40E-08 ( 20.0) 6.59E-12 4.29E-09

.i::,. BETA-AFW 3 5.80E-02 ( 1. 0) 4.93E-08 ( 21. 0) 8.28E-12 1. 02E-08 RISK REDUCTION BY INITIATING EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK INIT EVENT OCCUR FREQ (RANK) REDUCTION (RANK) LOWER 5% UPPER 5%

IE-T5A 25 5.00E-03 1. 0) 4.0BE-05 ( 1. 0) 1.20E-09 4.52E-07

SEQUENCE T5A-L-P RISK INCREASE BY BASE EVENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) INCREASE (RANK) LOWER 5% UPPER 5%

AFW-XHE-FO-UNIT2 25 3.60E-02 ( 2.0) 7.01E-08 ( 1. 0) 6. 18E-08 1.17E-05 AFW-MDP-FS-FW3B 4 6.30E-03 ( 7.0) 5_. 02E-08 ( 2.0) 6.88E-08 2.96E-05 AFW-TDP-FS-FW2 6 1.10E-02 ( 4.0) 2.86E-08 ( 3.0) 2.42E-08 6.48E-06 AFW-TDP-FR-2P6HR 9 3.00E-02 ( 3.0) 1.45E-08 ( 4.0) 2.03E-08 5.78E-06 AFW-TDP-MA-FW2 5 1.00E-02 ( 5.0) 1.32E-08 ( 5.0) 1.88E-08 5.94E-06 AFW-PSF-FC-XCONN 1 1.50E-04 ( 15.0) 1.08E-08 ( 6.0) 2.78E-06 6.24E-04 BETA-AFW 3 5.SOE-02 ( 1.0) 2.09E-09 ( 7.5) 2.10E-10* 1. SOE-07 AFW-MDP-FS 3 6.SOE-03 ( 7.0) 2.09E-09 ( 7.5) 2.44E-09 1.51E-06 AFW-UDP-UA-FWSB 3 2.00E-03 ( 9.0) 2.0SE-09 ( 9.0) 6.31E-08 2.95E-05 AFW-CKV-OO-CV142 1 1.00E-03 ( 11. 0) 2.06E-09 ( 10.0) 4.97E-09 6.31E-06 AFW-CCF-LK-STMBD 1 1.00E-04 ( 16.5) 1.07E-09 ( 11. 0) 2.78E-06 6.24E-04 AFW-CKV-OO-CV172 1 1.00E-03 ( 11 . 0) 9.40E-10 ( 13.0) 1.14E-08 4.10E-06 AFW-CKV-OO-CV157 1 1.00E-03 ( 11. 0) 9.40E-10 ( 13.0) 1.14E-08 4.10E-06 AFW-MDP-FS-FWSA 1 6.30E-03 ( 7.0) 9.40E-10 ( 13.0) 1.63E-09 6.71E-07 AFW-MDP-FR-3B6HR 3 1.80E-04 ( 14.0) 4.30E-10 ( 15.0) 6.33E-08 2.95E-05 AFW-ACT-FA-PMP3B 3 6.00E-04 ( 13.0) 1.75E-10 *c 16.0) 6.33E-08 2.95E-05 AFW-CKV-FT-CV172 1 1.00E-04 ( 16.5) 1.69E-10 ( 17.0) 1.45E-08 1.81E-05 AFW-XVM-P0-XV183 1 4.00E-05 ( 20.0) 3.84E-11 ( 18.0) 1.45E-08 1.81E-05 t,:j 6.24E-04 I AFW-TNK-VF-CST 1 1.00E-06 ( 21.0) 1.86E-11 ( 19.0) 2.78E-06 N)

DCP-BDC-ST-BUS1B 1 9.00E-05 ( 18.5) 2.96E-12 ( 20.5) 1.45E-08 1.81E-05 f--1 1:11 ACP-BAC-ST-4KV1J 1 9.00E-05 ( 18.5) 2.96E-12 ( 20.5) 1.45E-08 1.81E-05

SEQUENCE T5A-L-P UNCERTAINTY IMPORTANCE BY BASE EVENT

% REDUCTION IN THE UNCERTAINTY BASE EVENT OCCUR PROB (RANK) OF LOG RISK (RANK) Y.05ITE.05* Y. 951TE. 95*

AFW-XHE-FO-UNIT2 25 3.80E-02 ( 2.0) 25.3 ( 1. 0) 2.02 0.95 AFW-TDP-FR-2P8HR 9 3.00E-02 ( 3.0) 7.3 ( 2.0) 1.35 1. 04 AFW-MDP-FS-FW3B 4 8.30E-03 ( 7.0) 2.5 ( 4.0) 1.20 1. 10 AFW-MDP-FS 3 a.30E-03 ( 7.0) 2.5 ( 4.0) 1.20 1.10 AFW-MDP-FS-FW3A 1 6.30E-03 ( 7.0) 2.5 ( 4.0) 1.20 1.10 AFW-TDP-FS-FW2 6 1.10E-02 ( 4.0) 2.5 ( 6.0) 1. 08 0.98 AFW-PSF-FC-XCONN 1 1.50E-04 ( 15.0) 2.4 ( 7.0) 1.13 0.93 AFW-CCF-LK-STMBD 1 1.00E-04 ( 18.5) 1. 8 ( 8.0) 1.28 1. 00 AFW-TDP-MA-FW2 5 1.00E-02 ( 5.0) 1. 5 ( 9.0) 1.13 0.99 AFW-MDP-MA-FW3B 3 2.00E-03 ( 9.0) 1. 0 ( 10.0) 1. 04 1. 06 AFW-CKV-FT-CV172 1 1.00E-04 ( 18.5) 0.9 ( 11.0) 1. 07 1. 00 AFW-MDP-FR-3B8HR 3 1.80E-04 ( 14.0) 0.4 ( 12.0)

AFW-CKV-00-CV172 1 1.00E-03 ( 11.0) 0.4 ( 14.0)

AFW-CKV-00-CV157 1 1.00E-03 ( 11.0) 0.4 ( 14.0)

AFW-CKV-OO-CV142 1 1.00E-03 ( 11.0) 0.4 ( 14.0)

AFW-ACT-FA-PMP3B 3 6 .. OOE-04 ( 13.0) 0.2 ( 16.0)

DCP-BDC-ST-BUS1B 1 9.00E-05 ( 18.5) o.o ( 19.0)

BETA-AFW 3 5.80E-02 ( 1. 0) o.o ( 19.0)

AFW-XVM-PG-XV183 1 4.00E-05 ( 20.0) o.o ( 19.0)

AFW-TNK-VF-CST 1 1.00E-06 ( 21. 0) o.o ( 19.0)

ACP-BAC-ST-4KV1J 1 9.00E-05 ( 18.5) o.o ( 19.0)

UNCERTAINTY IMPORTANCE BY INITIATING EVENT

% REDUCTION IN THE UNCERTAINTY INIT EVENT OCCUR FREQ (RANK) OF LOG RISK (RANK) Y.05ITE.05* Y. 951TE. 95" IE-T5A 25 5.00E-03 ( 1.0) 57.0 ( 1.0) 7.86 0.96

  • Y.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS HELD CONSTANT AT ITS MEAN VALUE TE.xx IS THE .xx QUANTILE OF THE TOP EVENT FREQUENCY WHEN THE EVENT IS NOT HELD CONSTANT

SURRY SEQUENCE T5A-L-P CUT SET NUMBERS, CUT SET ORDERS, CUT SET FREQUENCIES, CUMULATIVE NORMALIZED CUT SET FREQUENCIES AND CUT SETS FOR TOP EVENT T5A-L-P WITH TOP EVENT FREQUENCY 1.38E-07 (THE FIRST COLUMN OF NUMBERS IS THE LINE NUMBERS FOR THE FILE TEMACSETS.DNF) 2 3

1 2

4 3.40E-08 2.70E-08 0.24697 0.44298 AFW-MDP-FS-FW3B .

. AFW-TDP-FR-2P6HR .. AFW-XHE-FO-UNIT2 . IE-T5A +

4 3 3

3 1.80E-08 0.57365 AFW-PSF-FC-XCONN AFW-CCF-LK-STMBD .. AFW-XHE-FO-UNIT2 AFW-XHE-FO-UNIT2 . .

IE-T5A IE-T5A

+

+ .

5 4 4 1.26E-08 0.66421 AFW-MDP-FS-FW3B AFW-TDP-FS-FW2 6 5 4 1.13E-08 0.74653 AFW-MDP-FS-FW3B . AFW-TDP-MA-FW2

  • AFW-XHE-FO-UNIT2 AFW-XHE-FO-UNIT2 ".

IE-T5A IE-T5A

+

+

7 6 4 1.0SE-08 0.82493 AFW-MDP-MA-FW3B

  • AFW-TDP-FR-2P6HR
  • AFW-XHE-FO-UNIT2 IE-T5A 8 7 4 3.9GE-09 0.85368 AFW-MDP-MA-FW3B . AFW-TDP-FS-FW2 . AFW-XHE-FO-UNIT2 . IE-T5A

+

.. +

9 10 11 8

9 10 4

4 4

3.60E-09 3.24E-09 1.98E-09 0.87982 0.90334 0.91771 AFW-MDP-MA-FW3B AFW-ACT-FA-PMP3B AFW-CKV-00-CV142 AFW-TDP-MA-FW2 t',FW* TDP-FR- 2P6HR

.A.FW-TDP-FS- FW2 AFW-XHE-FO-UNIT2 AFW-XHE-FO-UNIT2 AFW-XHE-FO-UNIT2

.* IE-T5A IE-T5A

+

+

. IE-T5A

~

  • +

12 11 5 1.91E-09 0.93154 AFW-MDP-FS AFW-TOP-FR-2P6HR

  • Ai'W- )<:HE- FO- UN IT 2 131:TA-AFW .

13 14 12 4 1.19E-09 0.94017 iE-T5A AFW-ACT-FA-PMP3B

.. " AFW-TDP-FS-FW2 . AFW-XHE-FC UNIT2 . !E-T5A AFW-XHc-F0-UN112 .

+

15 14 4 1.13[-09 0.94840 AFW-CKV-OO-CV157 AFW-MDP-FS-FW3A * !E-T5A 16 13 4 1.13E-09 0.95663 AFW-CKV-OO-CV172

.. AF1N-MDP-FS-FW3B . AFW-liHE-FO-UNIT2 . I E-T5A

+

+

tz::I 17 18 19 15 16 17 4

4 5

1.0SE-09 9.72E-10 6.99E-10 0.96447 0.97153 0.97660 AFW-ACT-FA-PMP3B AFW-MDP-FR-3B6HR AFW-MDP-FS AFW-TDP-MA-FW2 AFW-TDP-FR-2P6HR AFW-TDP-FS-FW2

  • AFW-XHE FO UNIT2
  • AFW-XHE-FO-UNIT2
  • AFW-XHE-FO-UNIT2 .

IE-T5A IE-T5A

+

+

BETA-AFW I

  • N 20 IE-T5A +

........ 21 18 5 6.35E-10 0.98121 AFW-MDP-FS AFW-TDP-MA-FW2 . AFW-XHE-FO-UNIT2

  • BETA-AFW  ;.

22 IE-T6A +

23 18 4 5.40E-10 0.98513 AFW-CKV-FT-CV172

  • AFW-TDP-FR-2P8HR
  • AFW-XHE-FO-UNIT2
  • IE-T5A 24 20 4 4.88E-10 0.88888 AFW-TDP-FR-2P6HR

.* AFW-XHE-FO-UNIT2 *

. DCP-BDC-ST-BUS1B . IE-TSA

+

+

25 21 4 4.88E-10 0.99218 ACP-BAC-ST-4KV1J AFW-TDP-FR-2P8HR AFW-XHE-FO-UNIT2

  • IE-T6A
28. 22 4 3.58E-10 0,'99477 AFW-MDP-FR-SBSHR *. AFW-TDP-FS-FW2
  • AFW-XHE-FO-UNIT2 . IE-T6A

+

+

27 28 29 23 24 25 4

4 3

3.24E-10

2. 16E-10 1.SOE-10 0.99713 0.99889 1.00000 AFW-MDP-FR-3B6HR AFW-TDP-FR-2P6HR AFW-TNK-VF-CST ..

AFW-TDP-MA-FW2 AFW-XHE-FO-UNIT2 AFW-XHE-FO-UNIT2 *

  • AFW-XHE-FO-UNIT2
  • AFW-XVM-P8-XV183 IE-TSA

. IE-T5A IE-T5A

+

+

SEQUENCE T5B-L-P TOP EVENT T5B-L-P CONTAINS 22 EVENTS IN 25 CUT SETS THE FREQUENCY OF TOP EVENT T5B-L-P IS 1.38E-07 DESCRIPTIVE STATASTICS FOR THE FREQUENCY OF TOP EVENT T5B-L-P

  • N 1000 MEAN 1/ 31E-07 STD DEV 51* 85E-07 LOWER 5% 1.12E-09 LOWER 25% 7.40E-09 MEDIAN 2.62E-08 UPPER 25% 8.85E-08 UPPER 5% 4.52E-07 90% UNCERTAINTY INTERVAL FOR TOP EVENT FREQUENCY (INNERMOST BRACKETS DENOTE INTERQUARTILE RANGE, ASTERISK DENOTES MEDIAN, N DENOTES NOMINAL VALUE AND M DENOTES MEAN)

NOMENCLATURE:

PD = PARTIAL DERIVATIVE TEF = FREQUENCY OF THE TOP EVENT EV(J) = PROBABILITY OF EVENT J FOR BASE EVENTS z FREQUENCY OF EVENT J FOR INITIATING EVENTS MEASURES:

1. FOR BASE EVENTS AND INITIATING EVENTS:

RISK REDUCTION= PD x EV(J)

= TEF - TEF(EVALUATED WITH EV(J) = 0)

2. FOR BASE EVENTS ONLY:

RI SK INCREASE* = PD - RI SK REDUCT I ON

= PD x (1 - EV(J))

= TEF(EVALUATED WITH EV(J) = 1) - TEF

  • SEQUENCE T5B-L-P RISK REDUCTION BY BASE EV.ENT (WITH ASSOCIATED UNCERTAINTY INTERVALS)

RISK BASE EVENT OCCUR PROB (RANK) REDUCTION (RANK) LOWER 5% UPPER 5" AFW-CCF-LK-STMBD 1 1 . OOE- 04 ( 16. 5) 5.14E-05 ( 2.0) 8.01E-12 3.45E-08 AFW-TNK-VF-CST 1 1.00E-06 ( 21.0) 5.14E-05 ( 2.0) 1.60E-12 6.54E-10 AFW-PSF-FC-XCONN 1 1. 50E-04 ( 15. 0) 5.14E-05 ( 2.0) 2.85E-10 9.44E-08 AFW-MDP-FS-FW3A 4 6.30E-03 ( 7.0) 3.42E-06 ( 4.0) 2.43E-10 1.78E-07 AFW-MDP-MA-FW3A 3 2.00E-03 ( 9.0) 3.36E-06 ( 6.0) 2.60E-11 5.29E-08 AFW-ACT-FA-PMP3A 3 6.00E-04 ( 13.0) 3.36E-06 ( 6.0) 1.69E-11 1.60E-08 AFW-MDP-FR-3A6HR 3 1.&0E-04 ( 14.0) 3.36E-06 ( 6.0) 1.83E-12 4.44E-09 AFW-XHE-FO-UNIT2 25 3.60E-02 ( 2.0) 2.34E-06 ( 8.0) 1.20E-09 4.52E-07 AFW-CKV-OO-CV142 1 1.00E-03 ( 11.0) 1.65E-06 ( 9.0) 3.34E-12 6.10E-09 AFW-TDP-FS-FW2 6 1.10E-02 ( 4.0) 8.91E-07 ( 10.0) 4.50E-11 6. 7.0E-08 DCP-BDC-ST-BUS1A 1 9.00E-05 ( 18.5) 8.88E-07 ( 12.5) 5.67E-13 1.45E-09 ACP-BAC-ST-4KV1H 1 9.00E-05 ( 18.5) 8.88E-07 ( 12.5) 5.67E-13 1.45E-09 AFW-XVM-PG-XV168 1 4.00E-05 ( 20.0) 8.88E-07 ( 12.5) 4.05E-13 6.29E-10 AFW-CKV-FT-CV157 1 1.00E-04 ( 16.5) 8.88E-07 ( 12.5) 1.01E-12 1.SOE-09 AFW-TDP-FR-2P6HR 9 3.00E-02 { 3.0) 8.40E-07 ( 15.0) 9.46E-11 1.59E-07 AFW-TDP-MA-FW2 5 1. OOE-02 ( 5.0) 8.27E-07 ( 16.0) 3.59E-11 5.68E-08 AFW-CKV-OO-CV172 1 1.00E-03 ( 11.0) 7.55E-07 ( 17.5) 6.59E-12 4.29E-09 t:r:I AFW-CKV-OO-CV157 1 1 . OOE - 03 ( 11 . 0) 7.55E-07 ( 17.5) 6.59E-12 4.29E-09 N)

I AFW-MDP-FS 3 8.30E-03 ( 7.0) 1.42E-07 ( 19.0) 8.28E-12 1.02E-08 1--' AFW-MDP-FS-FW3B 1 6.30E-03 ( 7.0) 6.40E-08 ( 20.0) 6.59E-12 4.29E-09