ML18151A243

From kanterella
Jump to navigation Jump to search
Evaluation of Potential Severe Accidents During LOW Power and Shutdown Operations at Surry, Unit 1.Evaluation of Severe Accident Risk During Mid-Loop Operations.Appendices
ML18151A243
Person / Time
Site: Surry Dominion icon.png
Issue date: 05/31/1995
From: Jo J, Lin C, Mubayi V, Neymotin L
BROOKHAVEN NATIONAL LABORATORY
To:
NRC OFFICE OF NUCLEAR REGULATORY RESEARCH (RES)
References
CON-FIN-L-1680 BNL-NUREG-52399, NUREG-CR-6144, NUREG-CR-6144-V06-P2, NUREG-CR-6144-V6-P2, NUDOCS 9507120287
Download: ML18151A243 (244)


Text

    • NUREG/CR-6144 BNL-NUREG-52399 Vol. 6, Part 2 Evaluation of Potential Severe Accidents During Low Power and Shutdown Operations at Surry, Unit 1 valuation of Severe Accident Risk uring Mid-Loop Operations Appendices Prepared by J. Jo, C. C. Lin, L. Neymotin, V. Mubayi

~rookhaven National Laboratory Prepared for U.S. Nuclear Regulatory Commission

- -9507120287- 950531 P

PDR ADOCK 05000280 PDR

AVAILABILITY NOTICE Availability of Reference Materials Cited in NRC Publications Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room. 2120 L Street. NW., Lower Level. Washington. DC 20555-0001
2. The Superintendent of Documents. U.S. Government Printing Office. P. O. Box 37082, Washington, DC 20402-9328
3. The National Technical Information Service, Springfield, VA 22161-0002 Although the listing that follows represents the majority of documents cited in NRC publications. it is not in-tended to be exhaustive.

Referenced documents avallable for Inspection and copying for a fee from the NRC Public Document Room Include NRC correspondence and internal NRC memoranda: NRC bulletins. circulars. information notices. in-spection and Investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents In the NU REG series are available for purchase from the Government Printing Office:

formal NRC staff and contractor reports, NRG-sponsored conference proceedings, international agreement reports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides, NRC regula-tions In the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NU REG-series reports and tech-nical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items. such as books.

Journal articles, and transactions. Federal Register notices. Federal and State legislation. and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations. foreign reports and translations. and non-NRC conference pro-ceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free. to the extent of supply. upon written request to the Office of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission, Washington.

DC 20555-0001.

Coples of Industry codes and standards used in a substantive manner in the NRC regulatory process are main-tained at the NRC Library, Two White Flint North. 11545 Rockville Pike. Rockville. MD 20852-2738. for use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organiza-tion or, If they are American National Standards. from the American National Standards Institute. 1430 Broad-way, New York, NY 10018-3308.

DISCLAIMER NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government.

Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

NUREG/CR-6144 BNL-NUREG-52399 Vol. 6, Part 2 Evaluation of Potential Severe Accidents During Low Power and Shutdown Operations at Surry, Unit 1 Evaluation of Severe Accident Risk During Mid-Loop Operations Appendices Manuscript Completed: October 1994 Date Published: May 1995 Prepared by J. Jo, C. C. Lin, L. Neymotin, V. Mubayi Brookhaven National Laboratory Upton, NY 11973 Prepared for Division of Systems Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 NRC Job Code Ll680

ABSTRACT Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analysis that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk.

During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied.

The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program includes that of a level-3 PRA.

A phased approach was used in the level-1 program. In phase 1 which was completed in Fall 1991, a coarse screening analysis including internal fire and flood was performed for all plant operational states (POSs) .

The objective of the phase 1 study was to identify potential vulnerable plant configurations, to characterize a

(on high, medium, or low basis) the potential core damage accident scenarios, and to provide a foundation for a detailed phase 2 analysis.

In phase 2, mid-loop operation was selected as the plant configuration to be analyzed based on the results of the phase 1 study. The objective of the phase 2 study is to perform a detailed analysis of the potential accident scenarios that may occur during mid-loop operation, and compare the results with those of NUREG-1150. Volume 1 summarizes the results of the study. The scope of the level-1 study includes plant damage state analyses, and uncertainty analysis. The internal event analysis is documtmted in Volume 2. The internal fire and internal flood analysis are documented in Volumes 3 and 4, respectively. A separate study on seismic analysis, documented in Volume 5, was performed for the NRC by Future Resources Associated, Inc.

A phased approach was also used in the level 2/3 program however both phases addressed the risk from only mid-loop operation. The first phase of the level 2/3 PRA was initiated in late 1991 and consisted of an Abridged Risk Study. This study was completed in May 1992 and was focused on accident progression and consequences, conditional on core damage. Phase 2 is a more detailed study in which an evaluation of risk during mid-loop operation was performed. The results of the phase 2 level 2/3 study are the subject of this volume of NUREG/CR-6144, Volume 6.

The offsite risk estimates for latent health effects of accidents during mid-loop operation were similar to the risk estimates for full power operation. The early health consequences are much lower than the full power results primarily due to the long time after shutdown when the accidents occur in mid-loop operation (i.e.,

because of the natural decay of the short-lived isotopes of iodine and tellurium, which are primarily associated with early health effects). The uncertainties in risk for accidents during mid-loop operating are largely due to uncertainties associated with isolating the containment and achieving a pressure retaining capability.

Vol. 6, Part 2 - iii - NUREG/CR-6144

CONTENTS Section Page APPENDIX A SUPPORTING INFORMATION FOR TIIE PDS ANALYSIS Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5 APPENDIX B SUPPORTING INFORMATION FOR TIIE ACCIDENT PROGRESSION ANALYSIS Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5 B.1 Description of the Accident Progression Event Tree ............................... B-5 B.2 Listing of the Accident Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-33 B.3 Characteristics of the Surry Binner ............................................ B-47 B.4 Listing of the Binner for the Surry Shutdown Risk Study ............................. B-56 APPENDIX C SUPPORTING INFORMATION FOR TIIE SOURCE TERM ANALYSIS C.1 Introduction ................................................... *. . . . . . . . . . C-7 C.2 Source Term Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-7 C.2.1 Description of Parametric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-7 C.2.2 Source Term Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-8 C.3 Source Term Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-8 C.3.1 Calculation of Early Fatality He.alth Weight, EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-9 C.3.2 Calculation of Latent Cancer Fatality Health Weight, LH . . . . . . . . . . . . . . . . . . . . . . . . .C-9 C.3.3 Result of Source Term Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-10 C.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-11 APPENDIX D SUPPORTING INFORMATION FOR TIIE CONSEQUENCE ANALYSIS D.1 ATMOS Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-5 D.2 EARLY Input File ....................................................... D-15 D.3 CHRONC Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-22 D.4 SITE Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . D-32 APPENDIX E SUPPORTING INFORMATION FOR TIIE MELCOR ANALYSIS E.1 Plant Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-7 E.2 Sequence Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-7 E.3 MELCOR Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-7 E.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-8 Vol. 6, Part 2 - V - NUREG/CR-6144

FIGURES Section Page C.l(a) Exceedance Frequencies for Release Fractions of Iodine Group ...................... C-13 C.l(b) Exceedance Frequencies for Release Fractions of Cesium Group ..................... C-14 C.l(c) Exceedance Frequencies for Release Fractions of Tellurium Group ................... C-15 C.l(d) Exceedance Frequencies for Release Fractions of Lanthanum Group .................. C-16 C.2 Prediction of Early Fatalities vs. Equivalent 1-131 Release . . . . . . . . . . . . . . . . . . . . . . . . . . C-17 E.1 MELCOR Nodalization ..................................................... E-11 E.2 RCS Pressure for Case 1 ... ; ................................................ E-12 E.3 RCS Temperature for Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-13 E.4 Lower Head Penetration Temperature for Case 1 .................................. E-14 E.5 Liquid Levels in Cavity and Basement for Case 1 ........................... , . . . . . . E-15 E.6 Cavity Concrete Erosion for Case 1 ........................................... ; E-16 E.7 Containment Pressure for Case 1 .............................................. E-17 E.8 Containment Gas Temperature for Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-18 E.9 In-vessel Hydrogen Generation for Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-19 E.10 Hydrogen Distribution in Containment for Case 1 .......................... ; ...... E-20 E.11 Total Mass of Active Vapor for Case 1 . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-21 E.12 Total Mass of Active Aerosols for Case 1 ........................................ E-22 E.13 RCS Pressure for Case 2 .................................................... E-23 E.14 RCS Temperature for Case 2 ................................................ *. E-24 E.15 Lower Head Penetration Temperature for Case 2 E-25 E.16 Liquid Levels in Cavity and Basement for Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-26 E.17 Cavity Concrete Erosion for Case 2 ........................................... . E-27 E.18 Containment Pressure for Case 2 ............................................. . E-28 E.19 Containment Gas Temperature for Case 2 ...................................... . E-29 E.20 In-vessel Hydrogen Generation for Case 2 ...................................... . E-30 E.21 Hydrogen Distribution in Containment for Case 2 ................................ . E-31 E.22 Total Mass of Active Vapor for Case 2 ...................... , ................. . E-32 E.23 Total Mass of Active Aerosols for Case 2 ....................................... . E-33 E.24 RCS Pressure for Case 3 ................................ ; .................. . E-34 E.25 RCS Temperature for Case 3 ................................................ . E-35 E.26 Lower Head Penetration Temperature for Case 3 ................................. . E-36 E.27 E.28 Liquid Levels in Cavity and Basement for Case 3 ................................. .

Cavity Concrete Erosion for Case 3 ........................................... .

NUREG/CR-6144 - vi -

E-37 E-38 Vol. 6, Part 2

FIGURES (continued)

Section Page E.29 Containment Pressure for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-39 E.30 Containment Gas Temperature for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-40 E.31 In-vessel Hydrogen Generation for Case 3 ....................................... E-41 E.32 Hydrogen Distribution in Containment for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-42 E.33 Total Mass of Active Vapor for Case 3 ......................................... E-43 E.34 Total Mass of Active Aerosols for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-44 E.35 RCS Pressure for Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-45 E.36 RCS Temperature for Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-46 E.37 Lower Head Penetration Temperature for Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-47 E.38 Liquid Levels in Cavity and Basement for Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-48 E.39 Cavity Concrete Erosion for Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-49 E.40 Containment Pressure for Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-50 E.41 Containment Gas Temperature for Case 4 ....................................... E-51 E.42 In-vessel Hydrogen Generation for Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-52 E.43 Hydrogen Distribution in Containment for Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-53 E.44 Total Mass of Active Vapor for Case 4 ......................................... E-54 E.45 Total Mass of Active Aerosols for Case 4 ........................................ E-55 E.46 Containment Spray for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-56 E.47 RCS Pressure for Case 5 .................................................... E-57 E.48 RCS Temperature for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-58 E.49 Lower Head Penetration Temperature for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-59 E.50 Liquid Levels in Cavity and Basement for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-60 E.51 Cavity Concrete Erosion for Case 5 ............................................ E-61 E.52 Containment Pressure for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-62 E.53 Containment Gas Temperature for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-63 E.54 In-vessel Hydrogen Generation for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-64 E.55 Hydrogen Distribution in Containment for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-65 E.56 Total Mass of Active Vapor for Case 5 ......................................... E-66 E.57 Total Mass of Active Aerosols for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-67 E.58 RCS Pressure for Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-68 E.59 RCS Temperature for Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-69 E.60 Lower Head Penetration Temperature for Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-70 E.61 Liquid Levels in Cavity and Basement for Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-71 E.62 Cavity Concrete Erosion for Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-72 E.63 Containment Pressure for Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-73 Vol. 6, Part 2 - vii - NUREG/CR-6144

FIGURES (continued)

Section Page E.64 Containment Gas Temperature for Case 6 ....................................... E-74 E.65 In-vessel Hydrogen Generation for Case 6 ....................................... E-75 E.66 Hydrogen Distribution in Containment for Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-76 E.67 Total Mass of Active Vapor for Case 6 ......................................... E-77 E.68 Total Mass of Active Aerosols for Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-78 NUREG/CR-6144 - viii - Vol. 6, Part 2

TABLES Section Page A.l PDS Definition A-7 A.2 Plant Damage State Assignment of the Dominant Cutsets . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8 A.3 Results of Plant Damage State Uncertainty Analysis (per reactor year) .................. A-11 A.4 Grouping of 48 PDSs into Four PDS Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-13 A.5 Frequencies of PDS Groups for Each Time Window for the 100 Observations . . . . . . . . . . . . A-15 C.1 Parameters Used in the SURSOR Code ......................................... C-18 C.2 APB Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-19 C.3 Frequency-Weighted Release Fractions and Frequencies ............................. C-22*

C.4 Isotope Inventories for Four Time Windows (Bq) ................................. C-27 C.5 Equivalent 1-131 Inventory for Four Time Windows (Bq) ............................ C-30 C.6 Numbers of Latent Health Effects Predicted in the LH Weight Calculations .............. C-31 C.7 Windows Inventories Relative to Inventory of Window 1 ............................ C-32

  • C.8 Preliminary Partitioning of Source Terms With Non-Zero Early Fatalities and Non-Zero Latent Fatalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-33 C.9 Final Partitioning of Source Terms With Non-Zero Early Fatalities and Non-Zero Latent Fatalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-33 C.10 Partitioning of Source Terms With Zero Early Fatalities and Non-Zero Latent Fatalities .... C-34 C.11 Release Fractions for 25 Mean Source Term Partition Groups * ........................ C-35 E.1 MELCOR 24-Node Compartment Description .................................... E-79 E.2 MELCOR 52 Inter-compartment Flow Paths Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-80 E.3 Summary of Accident Sequences Analyzed by MELCOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-81 E.4 Sequence of Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-82 E.5 Distribution of Radioactive Species at 24 Hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-83

APPENDIX A

  • SUPPORTING INFORMATION FOR THE PDS ANALYSIS

CONTENTS Section Page Introduction A-5 TABLES A.1 PDS Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7 A.2 Plant Damage State Assignment of the Dominant Cutsets . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8 A.3 Results of Plant Damage State Uncertainty Analysis ............................... A-11 A.4 Grouping of 48 PDSs into Four PDS Group ..................................... A-13 A.5 Frequencies of PDS Groups for Each Time Window for the 100 Observations . . . . . . . . . . . . A-15 Vol. 6, Part 2 A-3 NUREG/CR-6144

APPENDIX A SUPPORTING INFORMATION FOR THE PDS ANALYSIS Introduction Appendix A presents additional information on how the 2186 core damage frequency cutsets were grouped together into a smaller number of plant damage states. The process is described in Sections 5.2 and 5.3 of Part 1 of this volume and that material will not be repeated here.

Initially seven characteristics were defined that largely determine the progression of the accident. These seven characteristics (refer to Table A.1) were then used to allocate each of the 2186 cutsets to a PDS. The PDS designators of the 82 highest frequency cutsets are given in Table A.2. Only cutsets with frequencies higher than 10-8 per year are included in the table. These 82 cutsets comprise about 70% of the core damage frequency. However, the remaining 2104 cutsets with frequencies lower than 10-8 per year were all allocated to PDS designators and included in the subsequent accident progression analysis.

Many of the cutsets in Table A.2 have similar PDS designators. When all of the cutsets with the same PDS designators were combined, 48 individual plant damage states resulted. The 48 PDSs are listed in Table A.3.

An uncertainty analysis described in Chapter 12 of Volume 2 of this report was performed for the 48 PDSs.

Four statistical measures of the distribution obtained for each PDS are also included in Table A.3.

The 48 PDSs listed in Table A.3 were regrouped into four PDS groups to be processed by the accident progression event tree (refer to Appendix B). Table A.4 indicates how the 48 PDSs were placed into four more general PDS groups.

An uncertainty analysis was performed for the four PDS groups using 100 samples. The PDS group frequencies for each of the 100 samples are given in Table A.5, which also provides the frequencies for the four time windows. The information in Table A.5 was used to obtain the uncertainty in the PDS and Time Window frequencies. Four statistical measures of the PDS and Time Window frequency distributions are presented in Table 5.5 of Part 1 of this volume.

Vol. 6, Part 2 A-5 NUREG/CR-6144

Appendix A Supporting Information for the PDS Analysis Table A.1 PDS Definition

1. Time of Accident Initiation 1: Window 1 2: Window 2 3: Window 3 4: Window 4
2. ACPower Y: Available U: Unrecoverable blackout B: Blackout (recoverable by recovery of off-site power)

F: Loss of 4 kV Bus

3. Human Error N: No human error or non-recoverable human error D: Diagnosis error A: Action error
4. RCS Status at Onset of Core Damage L: Low pressure G: Intermediate pressure
5. ECCS Status U: Unrecoverable hardware failure R: Recoverable if human error, LOSP, or 4 kV is recovered C: Failure of recirculation
6. Recirculation Spray Status R: Recoverable U: Unrecoverable
7. RWST Status Y: Injected R: Not injected but recoverable N: Not injected and not recoverable

Appendix A Supporting Information for the PDS Analysis Table A.2 Plant Damage State Assignment of the Dominant Cutsets Cutset Number* PDS Designator Frequency per Reactor Year 1 2YDLRRR 2.20E-07 2 3YDLRRR 2.0?E-07 3 2YDLRRR l.70E-07 4 lYNGCUY l.46E-07 5 3YDLRRR l.46E-07 6 lYDGRRR l.24E-07 7 2YDLRRR l.22E-07 8 lYNGCUY l.08E-07 9 3YDLRRR 9.52E-08 10 2YDLRRR 9.37E-08 11 12 13 14 lYDGRRR lYDGRRR 2YDLRRR lBNGRRR 9.04E-08 8.73E-08 7.74E-08 7.38E-08 15 3YDLRRR 6.70E-08 16 lYDGRRR 5.82E-08 17 lFNGRRY 5.41E-08 18 2YDLRRR 5.38E-08 19 3YDLRRR 5.29E-08 20 3YDLRRR 5.07E-08 21 3YDLRRR 4.86E-08 22 2BNLRRR 4.75E-08 23 lYNGCYY 4.39E-08 24 2YDLRRR 4.27E-08 25 4BNLRRR 4.07E-08 26 4YDLRRR 3.91E-08 27 lBNGRRR 3.63E-08 NUREG/CR-6144 A-8 Vol. ,6, Part 2

Appendix A Supporting Information for the PDS Analysis Table A.2 (continued)

Cutset Number* PDS Designator Frequency per Reactor Year 28 2YDLRRR 3.39E-08 29 2UDLRUR 3.38E-08 30 2YDLRRR 3.36E-08 31 2YDLRRR 3.30E-08 32 lBNGRRR 3.27E-08 33 lYNGCYY 3.23E-08 34 2YDLRRR 2.97E-08 35 lYNGCUY 2.95E-08 36 3YDLRRR 2.92E-08 37 2YDLRRR 2.91E-08 38 3UDLRUR 2.91E-08 39 3YDLRRR 2.89E-08 40 2BNLRRR 2.62E-08 41 lFNGRRY 2.52E-08 42 lYNGCUY 2.47E-08 43 3YDLRRR 2.33E-08 44 3YDLRRR 2.23E-08 45 lYNGCUY 2.17E-08 46 3BNLRRR 2.13E-08 47 2YALRUY 2.llE-08 48 2YDLRRR 2.0lE-08 49 2YDLRRR 1.89E-08 50 2YDLRRR 1.87E-08 51 2UDLRUR 1.87E-08 52 2YDLRRR 1.86E-08 53 lYNGCUY 1.83E-08

    • Vol. 6, Part 2 54 55 3YDLRRR lYDGRRR A-9 1.83E-08 1.79E-08 NUREG/CR~6144

Appendix A Supporting Information for the PDS Analysis Table A.2 (continued)

Cutset Number* PDS Designator Frequency per Reactor Year 56 lYDGRRR l.75E-08 57 lYDGRRR l.73E-08 58 3YDLRRR l.73E-08 59 lBNGRRR l.68E-08 60 4YDLRRR l.68E-08 61 2YDLRRR l.61E-08 62 lYDGRRR l.60E-08 63 lYNGCYY l.53E-08 64 lYAGCRY 1.46E-08 65 lYNGCUY l.35E-08 66 3YDLRRR l.34E-08 67 68 69 70 3UDLRUR 3YDLRRR 2YDLRRR 2FALRRY l.34E-08 l.33E-08 l.29E-08 l.26E-08 71 lYNGCYY l.19E-08 72 lYNGCYY l.19E-08 73 3YDLRRR l.19E-08 74 lFNGRRY l.15E-08 75 lYNGCUY l.13E-08 76 2YDLRRR l.llE-08 77 lFNGRRY l.09E-08 78 lYAGCRY l.08E-08 79 3YDLRRR l.07E-08 80 4YDLRRR l.07E-08 81 3YDLRRR l.06E-08 82 2YDLRRR l.04E-08

  • Defined in Table 10.50 of Volume 2 of this report.

NUREG/CR-6144 A-10 Vol. 6, Part 2

Appendix A Supporting Information for the PDS Analysis Table A.3 Results of Plant Damage State Uncertainty Analysis (per reactor year)

PDS MEAN 5th 50th 95th Percentile Percentile Percentile lBNGCRY 2.95E-09 5.90E-ll 7.48E-10 l.llE-08 lBNGRRR l.71E-07 4.07E-09 4.40E-08 6.35E-07 lBNLCRY l.43E-10 3.93E-13 l.40E-11 4.70E-10 lFAGRRY 9.07E-09 l.39E-10 2.12E-09 3.31E-08 lFNGRRR 4.78E-10 6.02E-12 9.57E-11 l.73E-09 lFNGRRY l.25E-07 2.69E-09 3.43E-08 4.62E-07 lUAGCUY l.89E-10 l.27E-12 2.92E-11 7.31E-10 lUDGUUR 8.29E-09 7.73E-12 4.40E-10 2.SlE-08 lUDLCUY 6.08E-10 8.79E-13 4.23E-11 l.86E-09 lYAGCRY 8.llE-08 4.12E-09 2.84E-08 2.76E-07 lYAGCUY 2.12E-08 5.18E-10 5.48E-09 7.93E-08 lYAGRRR 2.75E-09 l.46E-10 l.04E-09 9.32E-09 lYDGRRR 4.64E-07 l.22E-08 l.19E-07 l.68E-06 lYNGCUY 5.41E-07 l.29E-08 l.28E-07 l.96E-06 lYNGCYY 3.lSE-07 l.90E-08 l.08E-07 l.OlE-06 lYNGUUR l.49E-09 2.67E-ll 3.54E-10 5.SOE-09 lYNGUYR 8.84E-09 6.17E-10 3.93E-09 3.03E-08 lYNLCUY 2.22E-09 2.91E-12 l.30E-10 6.00E-09 lYNLCYY 7.02E-10 2.lSE-12 7.03E-11 2.45E-09 2BNLCRY 3.34E-08 9.03E-10 9.76E-09 l.18E-07 2BNLCUY 2.99E-09 l.12E-11 4.46E-10 l.09E-08 2BNLRRR l.OSE-07 4.0lE-09 3.57E-08 3.75E-07 2FALRRR l.46E-08 2.44E-10 3.57E-09 5.48E-08 2FALRRY 4.31E-08 l.17E-09 l.41E-08 l.62E-07 2FNLRRR 2.75E-08 7.12E-10 8.llE-09 9.97E-08 2UALRUY l.17E-10 l.26E-12 2.40E-ll 4.19E-10 2UDLRUR 5.12E-08 l.08E-10 4.21E-09 1.68E-07 Vol. 6, Part 2 A-11 NUREG/CR-6144

Appendix A Supporting Information for the PDS Analysis Table A.3 (continued)

PDS MEAN 5th 50th 95th Percentile Percentile Percentile 2YALRRR 7.30E-09 4.48E-10 3.08E-09 2.58E-08 2YALRRY 8.72E-09 5.40E-10 3.78E-09 3.02E-08 2YALRUR l.SOE-08 8.43E-10 5.81E-09 5.20E-08 2YALRUY 4.93E-08 2.0SE-09 1.61E-08 l.85E-07 2YALRYR 7.06E-08 1.14E-08 4.llE-08 2.06E-07 2YDLRRR l.OBE-06 3.lOE-08 2.80E-07 3.62E-06 2YNLCUY 4.84E-08 l.12E-09 1.28E-08 l.59E-07 2YNLCYY l.94E-08 1.39E-09 8.llE-09 6.61E-08 3BDLRRR 2.39E-10 2.31E-13 l.30E-11 6.68E-10 3BNLRRR 4.18E-08 l.65E-09 1.38E-08 1.40E-07 3UDLRUR 4.24E-08 9.48E-11 3.49E-09 l.34E-07 3YALRRR 5.31E-09 4.18E-10 2.41E-09 l.80E-08 3YALRUR 2.SSE-08 l.53E-09 l.OSE-08 8.64E-08 3YALRYR 4.38E-08 6.96E-09 2.57E-08 l.30E-07 3YDLRRR 9.lSE-07 2.SlE-08 2.42E-07 3.19E-06 4BNLRRR 5.81E-08 7.00E-10 8.98E-09 l.96E-07 4UDLRUR l.16E-08 l.47E-11 6.35E-10 3.37E-08 4YALRRR 2.75E-09 l.37E-11 3.86E-10 9.32E-09 4YALRUR 2.28E-08 3.76E-10 4.85E-09 7.SSE-08 4YALRYR 8.06E-08 3.34E-09 2.95E-08 2.54E-07 4YDLRRR l.28E-07 l.42E-09 l.81E-08 3.85E-07 NUREG/CR-6144 A-12 Vol. 6, Part 2

Appendix A Supporting Information for the PDS Analysis Table A.4 Grouping of 48 PDSs into Four PDS Groups PDS Group Number Group Description PDS 1 Station Blackout lBNGRRR 2BNLRRR 3BDLRRR 3BNLRRR 4BNLRRR 2 Human Error lYAGRRR lYDGRRR 2UALRUY 2UDLRUR 2YALRRR 2YALRRY

  • 2YALRUR 2YALRUY 2YALRYR 2YDLRRR 3UDLRUR 3YALRRR 3YALRUR 3YALRYR 3YDLRRR 4UDLRUR 4YALRRR 4YALRUR 4YALRYR 4YDLRRR 3 Recirculation Failure lBNGCRY

Appendix A Supporting Information for the PDS Analysis Table A.4 (continued)

PDS Group Number Group Description PDS lUDGUUR lUDLCUY lYAGCRY lYAGCUY lYNGCUY lYNGCYY lYNGUUR lYNGUYR lYNLCUY lYNLCYY 2BNLCRY 2BNLCUY 2YNLCUY 2YNLCYY 4 Loss of 4 kV Bus lFAGRRY lFNGRRR lFNGRRY 2FALRRR 2FALRRY 2FNLRRR NUREG/CR-6144 A-14 Vol. 6, Part 2

Appendix A Supporting Information for the PDS Analysis Table A.5 Frequencies of PDS Groups for Each Time Window for the 100 Observations OBS 1 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.35938E-07 0.76949E-08 0.31299E-07 0.72024E-08 0.82134E-07 25.85 Window 2 0 .12034E-07 0.12130E-06 0.60941E-08 0.10525E-07 0.14995E-06 47 .19 Window 3 0 .18983E-08 0.74006E-07 O.OOOOOE+OO O.OOOOOE+OO 0.75904E-07 23.89 Window 4 0.61907E-10 0.96789E-08 O.OOOOOE+OO O.OOOOOE+OO 0.97408E-08 3.07 PDS Tot 0.49933E-07 0.21268E-06 0.37393E-07 0 .17728E-07 0.31773E-06

% 15.72 66.94 11.77 5.58 OBS 2 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.21056E-06 0.93224E-06 0.32112E-05 0.38126E-07 0.43921E-05 65.36 Window 2 0.28091E-07 0.99648E-06 0.57716E-07 0.50233E-07 0.11325E-05 16.85 Window 3 0.78191E-08 0.90320E-06 O.OOOOOE+OO O.OOOOOE+OO 0.91102E-06 13.56 Window 4 0.25194E-08 0.28164E-06 O.OOOOOE+OO O.OOOOOE+OO 0.28416E-06 4.23 PDS Tot 0.24899E-06 0.31136E-05 0.32689E-05 0.88359E-07 0.67198E-05

% 3.71 46.33 48.65 1. 31 OBS 3 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.50705E-06 0.31922E-05 0.71610E-06 0.54813E-07 0.44702E-05 79.14 Window 2 0.28312E-06 0.33085E-06 0.35390E-07 0.68466E-07 0.71783E-06 12. 71 Window 3 0 .15038E-06 0.26066E-06 O.OOOOOE+OO O.OOOOOE+OO 0.41105E-06 7.28 Window 4 0 .12308E-07 0.37336E-07 O.OOOOOE+OO O.OOOOOE+OO 0.49645E-07 0.88 PDS Tot 0.95286E-06 0.38210E-05 0.75149E-06 0.12328E-06 0.56487E-05

% 16.87 67.64 13.30 2.18 OBS 4 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.79522E-07 0.10539E-06 0.45254E-06 0.35306E-06 0.99052E-06 49.19 Window 2 0 .15084E-06 0.28002E-06 0.83831E-07 0.20553E-06 0.72022E-06 35.77 Window 3 0.37971E-07 0.21401E-06 O.OOOOOE+OO O.OOOOOE+OO 0.25198E-06 12.51 Window 4 0.43635E-08 0.46370E-07 O.OOOOOE+OO O.OOOOOE+OO 0.5733E-07 2.52 PDS Tot 0.27270E-06 0.64579E-06 0.53637E-06 0.55860E-06 0.20135E-05

% 13.54 32.07 26.64 27.74 OBS 5 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.63809E-07 0.31048E-07 0.33797E-06 0.63118E-07 0.49594E-06 15.09 Window 2 0~29902E-07 0.67669E-06 0.29259E-07 0.45196E-07 0.78104E-06 23.77 Window 3 0.25323E-07 0.82070E-06 O.OOOOOE+OO O.OOOOOE+OO 0.84602E-06 25.75 Window 4 0.32023E-06 0.84242E-06 O.OOOOOE+OO O.OOOOOE+OO 0.11626E-05 35.39 PDS Tot 0.43926E-06 0.23708E-05 0.36723E-06 0.10831E-06 0.32856E-05

% 13.37 72 .16 11 .18 3.30 OBS 6 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.11972E-07 0.17025E-07 0.71249E-07 0.28420E-08 0 .10309E-06 49.82 Window 2 0.13055E-07 0.37166E-07 0.41381E-08 0.10939E-07 0.65299E-07 31.56 Window 3 0.32327E-08 0.29396E-07 O.OOOOOE+OO O.OOOOOE+OO 0.32628E-07 15. 77 Window 4 0.11984E-08 0.47143E-08 O.OOOOOE+OO O.OOOOOE+OO 0.59126E-08 2.86 PDS Tot 0.29458E-07 0.88301E-07 0.75387E-07 0.13781E-07 0.20693E-06

% 14.24 42.67 36.43 6.66 OBS 7 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.25172E-07 0.31924E-06 0.21624E-06 0.21064E-06 0.77128E-06 65.49 Window 2 0.81922E-08 0.25981E-06 0.77212E-08 0.12843E-07 0.28856E-06 24.50 Window 3 0.90263E-08 0.81781E-07 O.OOOOOE+OO O.OOOOOE+OO 0.90808E-07 7.71 Window 4 0.88940E-09 0.26203E-07 O.OOOOOE+OO O.OOOOOE+OO 0.27093E-07 2.30 PDS Tot 0.43280E-07 0.68703E-06 0.22396E-06 0.22348E-06 0. 11777E -05

% 3.67 58.33 19.02 18.98 OBS 8 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.21966E-07 0.81915E-07 0.55854E-07 0.54081E-09 0 .16028E-06 26.27 Window 2 0.63433E-08 0.14400E-06 0.99062E-08 0.15010E-08 0.16175E-06 26.51 Window 3 0.23911E-08 0.20266E-06 O.OOOOOE+OO O.OOOOOE+OO 0.20505E-06 33.60 Window 4 0.32022E-07 0.51110E-07 O.OOOOOE+OO O.OOOOOE+OO 0.83132E-07 13.62 PDS Tot 0.62722E-07 0.47968E-06 0.65760E-07 0.20418E-08 0.61020E-06

% 10.28 78.61 10. 78 0.33 Vol. 6, Part 2 A-15 NUREG/CR-6144

Appendix A Supporting Information for the PDS Analysis Table A.5 (continued)

OBS 9 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.83072E-07 0.12362E-06 0. 15289E -05 0.28536E-07 0 .17642E-05 37.03 Window 2 0 .16202E-06 0 .14201 E-05 0.15041E-06 0.24041E-07 0. 17566E- 05 36.87 Window 3 0.49724E-07 0.11195E-05 O.OOOOOE+OO O.OOOOOE+OO 0 .11692E-05 24.54 Window 4 0.20709E-07 0.54141E-07 O.OOOOOE+OO O.OOOOOE+OO 0.74849E-07 1.57 PDS Tot 0.31552E-06 0.27174E-05 0.16794E-05 0.52577E-07 0.47648E-05

% 6.62 57.03 35.24 1.10 OBS 10 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.46735E-07 0.22160E-06 0.99369E-06 0.21884E-06 0 .14809E-05 58.50 Window 2 0.42169E-07 0.26825E-06 0.53158E-07 0.21655E-06 0.58013E-06 22.92 Window 3 0.68925E-08 0.40504E-06 O.OOOOOE+OO O.OOOOOE+OO 0.41194E-06 16.27 Window 4 0.25548E-07 0.33062E-07 O.OOOOOE+OO O.OOOOOE+OO 0.58609E-07 2.32 PDS Tot 0.12134E-06 0.92796E-06 0.10469E-05 0.43539E-06 0.25315E-05

% 4.79 36.66 41.35 17 .20 OBS 11 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.37537E-07 0 .14091 E-07 0.41051E-06 0.82066E-08 0.47034E-06 23.97 Window 2 0.33626E-06 0.40611E-06 0. 77910E-07 0.10314E-06 0.92342E-06 47 .06

  • Window 3 0.37749E-07 0.31835E-06 O.OOOOOE+OO O.OOOOOE+OO 0.35610E-06 18 .15 Window 4 0.64349E-07 0.14786E-06 O.OOOOOE+OO O.OOOOOE+OO 0.21221E-06 10.82 PDS Tot 0.47590E-06 0.88641E-06 0.48842E-06 0.11135E-06 0 . 19621 E-05

% 24.25 45.18 24.89 5.67 OBS 12 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.36364E-07 0.13442E-07 0.29476E-06 0.57167E-07 0.40173E-06 30.62 Window 2 0.50758E-07 0.37000E-06 0.74044E-07 0.36845E-07 0.53165E-06 40.52 Window 3 0.26202E-07 0.30857E-06 O.OOOOOE+OO O.OOOOOE+OO 0.33477E-06 25.52 Window 4 0.62415E-08 0.37592E-07 O.OOOOOE+OO O.OOOOOE+OO 0.43833E-07 3.34 PDS Tot 0. 11956E -06 0.72961E-06 0.36880E-06 0.94012E-07 0.13120E-05

% 9 .11 55.61 28.11 7 .17 OBS 13 PDS Group 1 PDS Group 2 . PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.47102E-07 0.63613E-07 0.15245E-06 0.18551E-06 0.44868E-06 45.28 Window 2 0 .10588E-07 0.12628E-06 0.81105E-07 0.59365E-07 0.27734E-06 27.99 Window 3 0.23891E-07 0.78852E-07 O.OOOOOE+OO O.OOOOOE+OO 0.10274E-06 10.37 Window 4 0.14112E-07 0 .14802E-06 O.OOOOOE+OO O.OOOOOE+OO 0.16213E-06 16.36 PDS Tot 0.95693E-07 0.41677E-06 0.23356E-06 0.24487E-06 0.99089E-06

% 9.66 42.06 23.57 24.71 OBS 14 . PDS Group 1 PDS Group 2 PDS Group 3 PDS Group,4 Window Total  %

Window 1 0.10893E-06 0.90293E-07 0.39536E-06 0.44081E-07 0.63866E-06 46.82 Window 2 0.26616E-07 0.16602E-06 0 .12849E-06 0.45216E-07 0.36634E-06 26.86 Window 3 0 .14086E-07 0.14014E-06 O.OOOOOE+OO O.OOOOOE+OO 0.15423E-06 11 . 31 Window 4 0 .15300E-07 0 .18941 E-06 O.OOOOOE+OO O.OOOOOE+OO 0.20471E-06 15.01 PDS Tot 0.16493E-06 0.58587E-06 0.52384E-06 0.89297E-07 0. 13639E -05

% 12.09 42.95 38.41 6.55 OBS 15 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.13345E-07 0.74152E-08 0.54946E-06 0.38349E-07 0.60856E-06 59.03 Window 2 0.78420E-08 0.20428E-06 0.71637E-07 0.11974E-07 0.29573E-06 28.69 Window 3 0.50995E-08 0 .11308E-06 O.OOOOOE+OO O.OOOOOE+OO 0.11818E-06 11 .46 Window 4 0.59663E-09 0.77934E-08 O.OOOOOE+OO O.OOOOOE+OO 0.83901E-08 0.81 PDS Tot 0.26883E-07 0.33256E-06 0.62109E-06 0.50323E-07 0.10309E-05

% 2.61 32.26 60.25 4.88 OBS 16 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.42251E-05 0.16963E-05 0.32839E-05 0.14038E-05 0 . 10609E -04 53 .91 Window 2 0.11232E-05 0.38026E-05 0.20560E-05 0.55104E-06 0.75329E-05 38.27 Window 3 0.13018E-06 0 .12824E-05 O.OOOOOE+OO O.OOOOOE+OO 0 .14126E-05 7 .18 Window 4 0.39241E-07 0.87204E-07 O.OOOOOE+OO O.OOOOOE+OO 0 . 12644E -06 0.64 PDS Tot 0.55177E-05 0.68685E-05 0.53399E-05 0.19548E-05 0 .19681 E-04

% 28.04 34.90 27 .13 9.93 NUREG/CR-6144 A-16 Vol. 6, Part 2

Appendix A Supporting Information for the PDS Analysis Table A.5 (continued)

OBS 17 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.33350E-07 0.55349E-07 0.46075E-07 0.79535E-08 0 .14273E-06 42.57 Window 2 0 .17503E-07 0.62886E-07 0.96159E-08 0.29756E-08 0.92980E-07 27.73 Window 3 0.46633E-08 0.47898E-07 O.OOOOOE+OO O.OOOOOE+OO 0.52562E-07 15.68 Window 4 0.60529E-08 0.40924E-07 O.OOOOOE+OO O.OOOOOE+OO 0.46977E-07 14. 01 PDS Tot 0.61569E-07 0.20706E-06 0.55691E-07 0.10929E-07 0.33525E-06

% 18.37 61.76 16.61 3.26 OBS 18 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.24249E-08 0.80289E-08 0.73129E-07 0.17586E-07 0 .10117E-06 22.35 Window 2 0.44791E-08 0 . 17859E -06 0.51859E-07 0.26759E-07 0.26169E-06 57.82 Window 3 0.26321E-08 0.75559E-07 O.OOOOOE+OO O.OOOOOE+OO 0.78191E-07 17.28 Window 4 0 .13179E-08 0.10196E-07 O.OOOOOE+OO O.OOOOOE+OO 0.11513E-07 2.54 PDS Tot 0.10854E-07 0.27238E-06 0.12499E-06 0.44344E-07 0.45256E-06

% 2.40 60.19 27.62 9.80 OBS 19 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.82271E-07 0 .14032E-05 0.16582E-05 0.10652E-05 0.42089E-05 33.76 Window 2 0 .18008E-06 0.34601E-05 0.62249E-07 0.27486E-06 0.39772E-05 31.90 Window 3 0.30052E-07 0.41418E-05 O.OOOOOE+OO O.OOOOOE+OO 0.41718E-05 33.46 Window 4 0.34287E-08 0.10630E-06 O.OOOOOE+OO O.OOOOOE+OO 0.10973E-06 0.88 PDS Tot 0.29583E-06 0.91114E-05 0.17204E-05 0.13401E-05 0 .12468E-04

% 2.37 73.08 13.80 10.75 OBS 20 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.32259E-07 0.54201E-06 0.61333E-06 0.10323E-06 0.12908E-05 46.94 Window 2 0. 14641 E- 07 0.29599E-06 0.87619E-07 0.21570E-07 0.41982E-06 15.27.

Window 3 0 .11395E-07 0.34336E-06 O.OOOOOE+OO O.OOOOOE+OO 0.35476E-06 12.90 Window 4 0.14688E-06 0.53761E-06 O.OOOOOE+OO O.OOOOOE+OO 0.68448E-06 24.89 PDS Tot 0.20517E-06 0.17190E-05 0.70095E-06 0.12479E-06 0.27499E-05

% 7.46 62.51 25.49 4.54 OBS 21 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.77878E-08 0 .10114E-06 0.15887E-06 0.67902E-07 0.33570E-06 35.43 Window 2 0.17497E-07 0.11154E-06 0.38468E-07 0.70508E-07 0.23802E-06 25.12 Window 3 0.76891E-08 0.89199E-07 O.OOOOOE+OO O.OOOOOE+OO 0.96888E-07 10.22 Window 4 0.27799E-07 0.24919E-06 O.OOOOOE+OO O.OOOOOE+OO 0.27699E-06 29.23 PDS Tot 0.60774E-07 0.55108E-06 0 .19734E-06 0. 13841 E-06 0.94760E-06

% 6.41 58.15 20.83 14.61 OBS 22 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.34908E-07 0.51489E-06 0.80669E-06 0.13216E-06 0.14887E-05 22.87 Window 2 0 .14466E-07 0.20647E-05 0.90815E-06 0. 45105E-07 0.30324E-05 46.59 Window 3 0.45689E-08 0 .19552E-05 O.OOOOOE+OO O.OOOOOE+OO 0.19597E-05 30.11 Window 4 0 .13385E-08 0.26343E-07 O.OOOOOE+OO O.OOOOOE+OO 0.27682E-07 0.43 PDS Tot 0.55282E-07 0.45611E-05 0.17148E-05 0 .17727E-06 0.65085E-05

% 0.85 70.08 26.35 2.72 OBS 23 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.11154E-05 0.51635E-06 0 . 10823 E-05 0.24442E-06* o*. 29585E-05 33.75 Window 2 0.10560E-05 0.25170E-05 0.23429E-06 0.77115E-07 0.38844E-05 44.31 Window 3 0.14815E-06 0 .16792E-05 O.OOOOOE+OO O.OOOOOE+OO 0.18273E-05 20.84 Window 4 0.60064E-07 0.36527E-07 O.OOOOOE+OO O.OOOOOE+OO 0.96591E-07 1.10 PDS Tot 0.23796E-05 0.47491E-05 0.13166E-05 0.32154E-06 0.87669E-05

% 27 .14 54.17 15.02 3.67 OBS 24 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.46696E-07 0 .18501 E-06 0.23757E-06 0.86890E-07 0.55616E-06 42.08 Window 2 0 .16853E-07 0.35502E-06 0 .15536E-07 0.14312E-07 0.40172E-06 30.40 Window 3 0.11106E-07 0.27640E-06 O.OOOOOE+OO O.OOOOOE+OO 0.28750E-06 21.76 Window 4 0.68140E-08 0.69350E-07 O.OOOOOE+OO O.OOOOOE+OO 0.76164E-07 5.76 PDS Tot 0.81468E-07 0.88578E-06 0.25310E-06 0.10120E-06 0.13216E-05

% 6.16 67.03 19.15 7.66 Vol. 6, Part 2 A-17 NUREG/CR-6144

Appendix A Supporting Information for the PDS Analysis Table A.5 (continued)

OBS 25 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0 .14866E-07 0.57564E-07 0.91206E-07 0.88289E-08 0.17246E-06 26.46 Window 2 0 .13227E-07 0.22690E-06 0.24158E-07 0.89934E-08 0.27328E-06 41.93 Window 3 0 . 19867E -08 0 .19837E-06 O.OOOOOE+OO O.OOOOOE+OO 0.20035E-06 30.74 Window 4 0.14140E-08 0.42417E-08 O.OOOOOE+OO O.OOOOOE+OO 0.56557E-08 0.87 PDS Tot 0.31494E-07 0.48707E-06 0.11536E-06 0 .17822E-07 0.65175E-06

% 4.83 74.73 17.70 2.73 OBS 26 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.16144E-08 0.14942E-07 0.96896E-07 0.21278E-08 0 .11558E-06 10.62 Window 2 0.52671E-08 0.55696E-06 0.10490E-07 0.66981E-08 0.57942E-06 53.24 Window 3 0 .11524E-08 0.31763E-06 O.OOOOOE+OO O.OOOOOE+OO 0.31878E-06 29.29 Window 4 0.72645E-08 0.67367E-07 O.OOOOOE+OO O.OOOOOE+OO 0.74631E-07 6.86 PDS Tot 0.15298E-07 0.95690E-06 0.10739E-06 0.88259E-08 0 .10884E-05

% 1. 41 87.92 9.87 0.81 OBS 27 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.25138E-07 0.52702E-07 0.19857E-06 0.16185E-07 0.29259E-06 25.64 Window 2 0.57331E-07 0.37851E-06 0.73091E-07 0.45340E-07 0.55427E-06 48.57 Window 3 0 .18226E-07 0.21518E-06 O.OOOOOE+OO O.OOOOOE+OO 0.23341E-06 20.45 Window 4 0.30602E-07 0.30281E-07 O.OOOOOE+OO O.OOOOOE+OO 0.60883E-07 5.34 PDS Tot 0.13130E-06 0.67668E-06 0.27166E-06 0.61526E-07 0.11412E-05

% 11. 51 59.30 23.81 5.39 OBS 28 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0 . 10236E -06 0.21537E-05 0.10008E-05 0 .17265E-06 0.34296E-05 53.36 Window 2 0.27397E-07 0 . 15281 E-05 0.64212E-07 0 .14064E-07 0.16338E-05 25.42 Window 3 0.70735E-08 0.12454E-05 O.OOOOOE+OO O.OOOOOE+OO 0.12525E-05 19.49 Window 4 0.47035E-07 0.64730E-07 O.OOOOOE+OO O.OOOOOE+OO 0.11177E-06 1. 74 PDS Tot 0.18387E-06 0.49920E-05 0.10650E-05 0 .18672E-06 0.64276E-05

% 2.86 77.66 16.57 2.90 OBS 29 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.25486E-07 0.41389E-07 0.13592E-06 0.18062E-07 0.22086E-06 27.72 Window 2 0.30897E-07 0.22824E-06 0.35102E-07 0.36370E-08 0.29788E-06 37.39 Window 3 0.53659E-08 0.16423E-06 O.OOOOOE+OO O.OOOOOE+OO 0.16959E-06 21.28 Window 4 0.20382E-07 0.88057E-07 O.OOOOOE+OO O.OOOOOE+OO 0.10844E-06 13. 61 PDS Tot 0.82131E-07 0.52192E-06 0.17102E-06 0.21699E-07 0.79677E-06

% 10.31 65.50 21 .46 2.72 ass* 30 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.30604E-06 0.27878E-06 0.38808E-05 0.53605E-06 0.50017E-05 16.22 Window 2 0.78809E-07 0.13723E-04 0.20206E-07 0.34636E-07 0.13857E-04 44.93 Window 3 0.35369E-07 0.11800E-04 O.OOOOOE+OO O.OOOOOE+OO 0.11836E-04 38.38 Window 4 0.27092E-07 0.12084E-06 O.OOOOOE+OO O.OOOOOE+OO 0.14793E-06 0.48 PDS Tot 0.44731E-06 0.25923E-04 0.39010E-05 0.57068E-06 0.30842E-04

% 1 .45 84.05 12.65 1.85 OBS 31 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.26224E-06 0.61781E-06 0.25586E-05 0.10504E-06 0.35437E-05 36.80 Window 2 0 :52281 E-07 0.19727E-05 0 .14627E-06 0.18506E-06 0.23563E-05 24.47 Window 3 0.39184E-07 0.36200E-05 O.OOOOOE+OO O.OOOOOE+OO 0.36592E-05 38.00 Window 4 0.51364E-08 0.65540E-07 O.OOOOOE+OO O.OOOOOE+OO 0.70677E-07 0.73 PDS Tot 0.35884E-06 0.62761E-05 0.27049E-05 0.29011E-06 0.96299E-05

% 3.73 65.17 28.09 3.01 OBS 32 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.78507E-08 0.23845E-07 0.27573E-07 0.11404E-08 0.60409E-07 13.87 Window 2 0.34414E-07 0.13923E-06 0.25689E-07 0.10566E-07 0.20990E-06 48.19 Window 3 0.68439E-08 0.12210E-06 O.OOOOOE+OO O.OOOOOE+OO 0 .12894E-06 29.60 Window 4 0.47913E-08 0.31546E-07 O.OOOOOE+OO O.OOOOOE+OO 0.36337E-07 8.34 PDS Tot 0.53900E-07 0.31672E-06 0.53263E-07 0.11706E-07 0.43558E-06

% 12.37 72.71 12.23 2.69 NUREG/CR-6144 A-18 Vol. 6, Part 2

Appendix A Supporting Information for the PDS Analysis Table A.5 (continued)

OBS 33 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.19401E-05 0 .15312E-05 0.37487E-05 0 .19180E-06 0.74118E-05 26.02 Window 2 0.77805E-06 0.17574E-04 0.44049E-06 0.12604E-05 0.20053E-04 70.40 Window 3 0 .12626E-06 0.67061E-06 O.OOOOOE+OO O.OOOOOE+OO 0.79687E-06 2.80 Window 4 0.56244E-07 0.16564E-06 O.OOOOOE+OO O.OOOOOE+OO 0.22188E-06 0.78 PDS Tot 0.29006E-05 0 . 19941 E-04 0.41892E-05 0 .14522E-05 0.28483E-04

% 10.18 70.01 14. 71 5.10 OBS 34 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.25391E-06 0.43575E-06 0.87454E-06 0.31713E-06 0.18813E-05 24.07 Window 2 0.12713E-06 0 .16870E-05 0.74579E-07 0.14190E-06 0.20306E-05 25.98 Window 3 0 .11929E-06 0.36592E-05 O.OOOOOE+OO O.OOOOOE+OO 0.37785E-05 48.35 Window 4 0.13973E-07 0.11106E-06 O.OOOOOE+OO O.OOOOOE+OO 0.12503E-06 1 .60 PDS Tot 0.51430E-06 0.58930E-05 0.94912E-06 0.45903E-06 0.78154E-05

% 6.58 75.40 12.14 5.87 OBS 35 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0 .12899E-07 0.16241E-06 0.12518E-06 0 .19135E-07 0.31963E-06 33.89 Window 2 0.26843E-07 0.18572E-06 0 .13226E-06 0.8492~E-08 0.35332E-06 37.46 Window 3 0 .14604E-07 0.70245E-07 O.OOOOOE+OO O.OOOOOE+OO 0.84849E-07 9.00 Window 4 0.43283E-07 0.14210E-06 O.OOOOOE+OO O.OOOOQE+OO 0.18539E-06 19.66 PDS Tot 0.97629E-07 0.56049E-06 0.25744E-06 0.27627E-07 0.94319E-06

% 10.35 59.42 27.30 2.93 OBS 36 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.93856E-06 0.36185E-06 0.16123E-05 0.38026E-06 0.32930E-05 45.76 Window 2 0.40865E-06 0.13970E-05 0.48794E-06 0.23517E-06 0.25288E-05 35.14 Window 3 0 .15098E-06 0.11021E-05 O.OOOOOE+OO O.OOOOOE+OO 0. 12531 E- 05 17.42 Window 4 0.30663E-07 0.89998E-07 O.OOOOOE+OO O.OOOOOE+OO 0.12066E-06 1 .68 PDS Tot 0.15289E-05 0.29510E-05 0.21002E-05 0.61542E-06 0.71955E-05

% 21.25 41.01 29.19 8.55 OBS 37 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.11861E-06 0.65170E-06 0.31487E-06 0.72920E-07 0.11581E-05 53.64 Window 2 0.10718E-06 0.27052E-06 0.25563E-07 0.18220E-07 0.42148E-06 19.52 Window 3 0.20599E-06 0.28324E-06 O.OOOOOE+OO O.OOOOOE+OO 0.48923E-06 22.66 Window 4 0 .10203E-07 0.79904E-07 O.OOOOOE+OO O.OOOOOE+OO 0.90107E-07 4.17 PDS Tot 0.44199E-06 0 .12854E-05 0.34044E-06 0.91140E-07 0.21589E-05

% 20.47 59.54 15. 77 4.22 OBS 38 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.74179E-07 0 . 14189E -06 0.42023E-06 0.49810E-08 0.64128E-06 19.64 Window 2 0.77507E-07 0.11006E-05 0.47376E-07 0.11992E-07 0.12375E-05 37.89 Window 3 0.15305E-07 0.10112E-05 O.OOOOOE+OO O.OOOOOE+OO 0.10265E-05 31.43 Window 4 0.14399E-07 0.34603E-06 O.OOOOOE+OO O.OOOOOE+OO 0.36043E-06 11. 04 PDS Tot 0.18139E-06 0.25998E-05 0.46761E-06 0.16973E-07 0.32657E-05

% 5.55 79.61 14.32 0.52 OBS 39 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.21384E-07 0.28264E-07 0.25109E-06 0 .13638E-07 0.31438E-06 14.08 Window 2 0.61960E-07 0.98408E-06 0.12448E-06 0.34987E-07 O.t2055E-05 53.99 Window 3 0.73769E-08 0.66571E-06 O.OOOOOE+OO O.OOOOOE+OO 0.67309E-06 30.14 Window 4 0.51139E-08 0.34946E-07 O.OOOOOE+OO O.OOOOOE+OO 0.40060E-07 1. 79 PDS Tot 0.95835E-07 0 .17130E-05 0.37557E-06 0.48624E-07 0.22330E-05

% 4.29 76.71' 16.82 2.18 OBS 40 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.32237E-08 0.18701E-07 0.59516E-07 0.14406E-07 0.95847E-07 14.72 Window 2 0 .11946E-07 0.26851E-06 0.11577E-07 0.22890E-07 0.31492E-06 48.36 Window 3 0.59082E-08 0 .19637E-06 O.OOOOOE+OO O.OOOOOE+OO 0.20228E-06 31.06 Window 4 0 .14975E-08 0.36617E-07 O.OOOOOE+OO O.OOOOOE+OO 0.38114E-07 5.85 PDS Tot 0.22576E-07 0.52020E-06 0.71093E-07 0.37~96E-07 0.65116E-06

% 3.47 79.89 10.92 5.73 Vol. 6, Part 2 A-19 NUREG/CR-6144

Appendix A Supporting Information for the PDS Analysis Table A.5 (continued)

OBS 41 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.58141E-07 0.61548E-07 0.12868E-06 0.24739E-07 0.27311E-06 45.35 Window 2 0.26049E-07 0 .10154E-06 0.46036E-07 0 .17861 E-07 0.19149E-06 31.80 Window 3 0.52189E-08 0.77478E-07 O.OOOOOE+OO O.OOOOOE+OO 0.82697E-07 13.73 Window 4 0.46007E-08 0.50274E-07 O.OOOOOE+OO O.OOOOOE+OO 0.54875E-07 9 .11 PDS Tot 0.94010E-07 0.29084E-06 0.17472E-06 0.42600E-07 0.60217E-06

% 15. 61 48.30 29.01 7.07 OBS 42 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.15083E-07 0.95170E-07 0.15610E-06 0 .12427E-07 0.27878E-06 30.25 Window 2 0.15098E-07 0.25858E-06 0.89119E-07 0.29653E-07 0.39245E-06 42.59 Window 3 0.62891E-08 0 .15304E-06 O.OOOOOE+OO O.OOOOOE+OO 0 .15933E-06 17.29 Window 4 0.26731E-07 0.64229E-07 O.OOOOOE+OO O.OOOOOE+OO 0.90961E-07 9.87 PDS Tot 0.63202E-07 0.57102E-06 0.24522E-06 0.42081E-07 0.92152E-06

% 6.86 61.96 26.61 4.57 OBS 43 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.41934E-08 0.33763E-07 0.34780E-06 0.16917E-07 0.40267E-06 7.22 Window 2 0.10930E-07 0.21486E-05 0.61672E-07 0 . 13541 E-07 0.22348E-05 40.06 Window 3 0.11913E-07 0 .16576E-05 O.OOOOOE+OO O.OOOOOE+OO 0.16696E-05 29.92 Window 4 0.41914E-07 0.12303E-05 O.OOOOOE+OO O.OOOOOE+OO 0 .12722E-05 22.80 PDS Tot 0.68951E-07 0.50703E-05 0.40947E-06 0.30459E-07 0.55792E-05

% 1.24 90.88 7.34 0.55 OBS 44 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0 . 14481 E-06 0.21372E-06 0.24253E-06 0 .11590E-06 0.71695E-06 52.52 Window 2 0.18705E-07 0.24634E-06 0.49173E-07 0.70813E-08 0.32129E-06 23.53

  • Window 3 0.15829E-07 0.29390E-06 O.OOOOOE+OO O.OOOOOE+OO 0.30972E-06 22.69 Window 4 0.36783E-08 0. 13559E- 07 O.OOOOOE+OO O.OOOOOE+OO 0 .17237E-07 1 .26 PDS Tot 0.18302E-06 0.76751E-06 0.29170E-06 0.12298E-06 0 .13652E-05

% 13 .41 56.22 21.37 9.01 OBS 45 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.93795E-06 0.16155E-06 0.30532E-06 0.41719E-07 0.14465E-05 57.30 Window 2 0.12886E-06 0.32266E-06 0.16283E-06 0.50692E-07 0.66504E-06 26.34 Window 3 0 .10038E-06 0.24228E-06 O.OOOOOE+OO O.OOOOOE+OO 0.34266E-06 13.57 Window 4 0 . 12931 E-07 0.57250E-07 O.OOOOOE+OO O.OOOOOE+OO 0.70182E-07 2.78 PDS Tot 0.11801E-05 0.78374E-06 0.46814E-06 .0.92411E-07 0.25244E-05

% 46.75 31.05 18.54 3.66 OBS 46 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.58814E-07 0.69448E-06 0.62466E-06 0.79770E-06 0.21757E-05 22.80 Window 2 0.27648E-06 0.29718E-05 0 .-24096E- 06 0 .11709E-05 0.46602E-05 48.84 Window 3 0.65370E-07 0.24768E-05 O.OOOOOE+OO O.OOOOOE+OO 0.25422E-05 26.64 Window 4 0.30451E-07 0. 13324E -06 O.OOOOOE+OO O.OOOOOE+OO 0.16369E-06 1. 72 PDS Tot 0.43112E-06 0.62764E-05 0.86563E-06 0. 19686E -05 0.95417E-05

% 4.52 65.78 9.07 20.63 OBS 47 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0 .15554E-07 0. 13802E -06 0.12609E-06 0.37916E-07 0.31758E-06 38.22 Window 2 0.24935E-08 0.27703E-06 0.58859E-08 0.83436E-08 0.29375E-06 35.35 Window 3 0.90438E-09 0.20914E-06 O.OOOOOE+OO O.OOOOOE+OO 0.21005E-06 25.28 Window 4 0.50584E-09 0.90858E-08 O.OOOOOE+OO O.OOOOOE+OO 0.95916E-08 1 ;15 PDS Tot 0.19458E-07 0.63328E-06 0.13198E-06 0.46260E-07 0.83097E-06

% 2.34. 76.21 15.88 5.57 OBS 48 POS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0 .16865E-07 0.76815E-07 0.18108E-06 0.38658E-08 0.27863E-06 16.34 Window 2 0.44769E-08 0.11555E-06 0.24122E-07 0.84533E-08 0.15261E-06 8.95 Window 3 0.13447E-07 0.87637E-07 O.OOOOOE+OO O.OOOOOE+OO 0.10108E-06 5.93 Window 4 0.18435E-06 0.98825E-06 O.OOOOOE+oo* O.OOOOOE+OO 0.11726E-05 68.78 PDS Tot 0.21914E-06 0.12683E-05 0.20520E-06 0.12319E-07

  • 0.17049E-05

% 12.85 74.39 12.04 0.72 NUREG/CR-6144 A-20 Vol. 6, Part 2

Appendix A Supporting Information for the PDS Analysis Table A.5 (continued)

OBS 49 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.76929E-08 0.28022E-07 0.79731E-07 0.57275E-08 0 .12117E-06 11.44 Window 2 0.16730E-08 0.38054E-07 0.10420E-07 0.89391E-08 0.59086E-07 5.58 Window 3 0.26159E-08 0.46905E-07 O.OOOOOE+OO O.OOOOOE+OO 0.49521E-07 4.67 Window 4 0.84576E-07 0.74512E-06 O.OOOOOE+OO O.OOOOOE+OO 0.82970E-06 78.31 PDS Tot 0.96558E-07 0.85810E-06 0.90151E-07 0 .14667E-07 0.10595E-05

% 9 .11 80.99 8.51 1.38 OBS 50 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.63547E-07 0.28974E-07 0.21947E-06 0.21673E-07 0.33367E-06 41.76 Window 2 0.38289E-07 0.20731E-06 0.88753E-08 0.13671E-07 0.26814E-06 33.56 Window 3 0.10276E-07 0. 16490E -06 O.OOOOOE+OO O.OOOOOE+OO 0.17518E-06 21.92 Window 4 0.38599E-08 0.18172E-07 O.OOOOOE+OO O.OOOOOE+OO 0.22032E-07 2.76 PDS Tot 0.11597E-06 0.41935E-06 0.22835E-06 0.35344E-07 0.79902E-06

% 14.51 52.48 28.58 4.42 OBS 51 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.12539E-06 0.48745E-07 0.24002E-06 0.28015E-07 0.44217E-06 13.23 Window 2 0.56009E-07 0 .12033E-05 0.21601E-07 0.99594E-08 0 .12909E-05 38.62 Window 3 0.22133E-07 0 .15024E-05 O.OOOOOE+OO O.OOOOOE+OO 0 .15246E-05 45.61 Window 4 0.46039E-08 0.80266E-07 O.OOOOOE+OO O.OOOOOE+OO 0.84870E-07 2.54 PDS Tot 0.20813E-06 0.28348E-05 0.26162E-06 0.37974E-07 0.33425E-05

% 6.23 84.81 7.83 1.14 OBS 52 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %*

Window 1 0.14761E-07 0 .15837E-07 0.11946E-06 0.23745E-07 0 .17380E-06 26.49 Window 2 0.30749E-07 0.17133E-06 0.42234E-07 0.30507E-07 0.27482E-06 41.88 Window 3 0.96681E-08 0.11686E-06 O.OOOOOE+OO O.OOOOOE+OO 0.12652E-06 19.28 Window 4 0.32757E-07 0.48284E-07 O.OOOOOE+OO O.OOOOOE+OO 0.81041E-07 12.35 PDS Tot 0.87935E-07 0.35230E-06 0.16169E-06 0.54252E-07 0.65618E-06

% 13.40 53.69 24.64 8.27 OBS 53 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.17478E-07 0 .19359E-06 0.55767E-06 0.45395E-07 0.81413E-06 *21.68 Window 2 0.34511E-07 0. 15485E -05 0.58945E-07 0.51193E-07 0 . 16931 E-05 45.09 Window 3 0.83719E-08 0 .10665E-05 O.OOOOOE+OO O.OOOOOE+OO 0.10749E-05 28.63 Window 4 0 .12033E-08 0.17157E-06 O.OOOOOE+OO O.OOOOOE+OO 0 .17277E-06 4.60 PDS Tot 0.61564E-07 0.29801E-05 0.61662E-06 0.96588E-07 0.37549E-05

% 1.64 79.37 16.42 2.57 OBS 54 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.60314E-07 0.91655E-07 0.62512E-06 0.41118E-07 0.81821E-06 20.47 Window 2 0.94891E-07 0.15'896E-05 0.10250E-06 0.11519E-06 0 . 19021 E- 05 47.58 Window 3 0.32138E-07 0.12219E-05 O.OOOOOE+OO O.OOOOOE+OO 0.12541E-05 31.37 Window 4 0.72031E-08 0.16457E-07 O.OOOOOE+OO O.OOOOOE+OO 0.23660E-07 0.59 PDS Tot 0.19455E-06 0.29196E-05 0.72762E-06 0 . 15631 E-06 0.39981E-05

% 4.87 73.02 18.20 3.91 OBS 55 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4. Window Total  %

Window 1 0.41413E-06 0.23124E-05 0. 96024E- 06 . 0.54511E-06 0.42319E-05 73.34 Window 2 0.26056E-06 0.35535E-06 0.86437E-07 0.12894E-06 0.83129E-06 14.41 Window 3 0.16033E-06 0.27444E-06 O.OOOOOE+OO O.OOOOOE+OO 0.43477E-06 7.53

  • Window 4 Q;69169E-07 0.20339E-06 O.OOOOOE+OO O.OOOOOE+OO 0.27256E-06 4.72 PDS Tot 0.90419E-06 0.31456E-05 0.10467E-05 . 0.67405E-06 0.57705E-05

% 15.67 54.51 18 .14 11.68 OBS 56 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4

  • Window Total  %

Window 1 0.72928E-08 0.16151E-07 0.87974E-07 0 .16956E-07 0.12837E-06 15 .16 Window 2 0.95997E-08 0.30526E-06 . 0 .18945E-07 0 .15689E-07 0.34949E-06 41.27 Window 3 0.29723E-08 0.28319E-06 O.OOOOOE+OO O.OOOOOE+OO 0.28616E~06 33.79 Window 4 0 .14344E-07 0.68554E.-07 .. 0.00000E+OO

  • O.OOOOOE+OO 0.82897E-07 9.79
  • PDS Tot 0.34209E-07 0.67315E-06 0. 10692E.-06 0.32646E-07 0.84692E-06

% 4.04 79.48 12.62 3.85 Vol. 6, Part 2 A-21 NUREG/CR-6144

Appendix A Supporting Information for the PDS Analysis Table A.5 (continued)

OBS 57 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.23469E-07 0.63326E-08 0.11031E-06 0.10218E-07 0.15033E-06 46.51 Window 2 0.48986E-08 0.60541E-07 0.18432E-07 0.38819E-08 0.87753E-07 27 .15 Window 3 0 .15825E-08 0.50037E-07 O.OOOOOE+OO O.OOOOOE+OO 0.51619E-07 15.97 Window 4 0.14789E-08 0.32056E-07 O.OOOOOE+OO O.OOOOOE+OO 0.33535E-07 10.37 PDS Tot 0.31429E-07 0 .14897E-06 0.12874E-06 0.14100E-07 0.32323E-06

% 9.72 46.09 39.83 4.36 OBS 58 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0 .12735E-05 0.83973E-05 0 .15441 E-05 0.22111E-05 0.13426E-04 67.46 Window 2 0 .17221 E-05 0.21541E-05 0.15878E-06 0.39329E-07 0.40743E-05 20.47 Window 3 0.84233E-07 0.20102E-05 O.OOOOOE+OO O.OOOOOE+OO 0.20944E-05 10.52 Window 4 0.16775E-07 0.29060E-06 O.OOOOOE+OO O.OOOOOE+OO 0.30738E-06 1.54 PDS Tot 0.30966E-05 0 .12852E-04 0 .17028E-05 0.22505E-05 0 .19902E-04

% 15.56 64.58 8.56 11 .31 OBS 59 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.29626E-07 0.18118E-06 0.36889E-06 0.29453E-07 0.60914E-06 51.53 Window 2 0.66405E-07 0.21055E-06 0.36993E-07 0.93745E-08 0.32332E-06 27.35 Window 3 0.31837E-08 0.22064E-06 O.OOOOOE+OO O.OOOOOE+OO 0.22383E-06 18.94 Window 4 0.48332E-08 0.20947E-07 O.OOOOOE+OO O.OOOOOE+OO 0.25780E-07 2.18 PDS Tot 0.10405E-06 0.63332E-06 0.40588E-06 0.38827E-07 0.11821E-05

% 8.80 53.58 34.34 3.28 OBS 60 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.91393E-07 0.37484E-06 0 .13631 E-06 0 .16246E-07 0.61879E-06 44.55 Window 2 0.38049E-07 0.27913E-06 0.36746E-07 0.11688E-07 0.36561E-06 26.32 Window 3 0.23407E-07 0.20379E-06 O.OOOOOE+OO O.OOOOOE+OO 0.22719E-06 16.36 Window 4 0.54646E-08 0.17195E-06 O.OOOOOE+OO O.OOOOOE+OO 0.17742E-06 12. 77 PDS Tot 0.15831E-06 0 . 10297E - 05 0.17305E-06 0.27935E-07 0.13890E-05

% 11 .40 74.13 12.46 2.01 OBS 61 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.25778E-07 0 .15020E-06 0.53609E-07 0.57093E-07 0.28668E-06 20.77 Window 2 0.54616E-07 0.44837E-06 0.43292E-07 0.11423E-06 0.66051E-06 47.85 Window 3 0 .14462E-07 0.35532E-06 O.OOOOOE+OO O.OOOOOE+OO 0.36979E-06 26.79 Window 4 0.96452E-08 0.53835E-07 O.OOOOOE+OO O.OOOOOE+OO 0.63480E-07 4.60 PDS Tot 0 .10450E-06 0.10077E-05 0.96900E-07 0.17132E-06 0.13804E-05

% 7.57 73.00 7.02 12.41 OBS 62 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.34340E-08 0.49196E-07 0.91266E-07 0 .15536E-07 0.15943E-06 20.80 Window 2 0.17813E-08 0.23976E-06 0.73553E-08 0.91610E-08 0.25806E-06 33.67 Window 3 0 .10466E-08 0.27030E-06 O.OOOOOE+OO O.OOOOOE+OO 0.27134E-06 35.41 Window 4 0.41908E-08 0.73316E-07 O.OOOOOE+OO O.OOOOOE+OO 0.77507E-07 10. 11 PDS Tot 0 .10453E-07 0.63257E-06 0.98622E-07 0.24697E-07 0.76634E-06

% 1.36 82.54 12.87 3.22 OBS 63 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.13869E-06 0.64465E-06 0.47450E-06 0.23176E-06 0.14896E-05 34.14 Window 2 0.60832E-06 0.11052E-05 0.81815E-07 0.20980E-07 0.18163E-05 41.63 Window 3 0 .10900E-06 0.92734E-06 O.OOOOOE+OO O.OOOOOE+OO 0 .10363E-05 23.75 Window 4 0 .10476E-07 0.10479E-07 O.OOOOOE+OO O.OOOOOE+OO 0.20955E-07 0.48 PDS Tot 0.86648E-06 0.26876E-05 0.55632E-06 0.25274E-06 0.43632E-05

% 19.86 61.60 12.75 5.79 OBS 64 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.30405E-07 0.53977E-07 0.50448E-07 0 .10630E-07 0.14546E-06 18 .10 Window 2 0.32524E-07 0.24804E-06 0.43441E-07 0.42697E-09 0.32443E-06 40.36 Window 3 0. 12239E -07 0.20909E-06 O.OOOOOE+OO O.OOOOOE+OO 0.22133E-06 27.53 Window 4 0.30397E-07 0.82221E-07 O.OOOOOE+OO O.OOOOOE+OO 0.11262E-06 14.01 PDS Tot 0 .10557E-06 0.59333E-06 0.93889E-07 0.11057E-07 0.80384E-06

% 13 .13 73.81 11 .68 1 .38 NUREG/CR-6144 A-22 Vol. 6, Part 2

Appendix A Supporting Information for the PDS Analysis Table A.5 (continued)

OBS 65 PDS Group 1

  • PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.55681E-08 0.94198E-07 0.28449E-06 0 .17233E-07 0.40149E-06 19. 71 Window 2 0.90457E-08 0.77170E-06 0.85981E-08 0.54350E-07 0.84370E-06 41.42 Window 3 0.24745E-08 0.78120E-06 O.OOOOOE+OO O.OOOOOE+OO 0.78368E-06 38.47 Window 4 0.15251E-08 0.67634E-08 O.OOOOOE+OO O.OOOOOE+OO 0.82885E-08 0.41 PDS Tot 0.18613E-07 0 .16539E-05 0.29309E-06 0.71583E-07 0.20372E-05

% 0.91 81 .19 14.39 3.51 OBS 66 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.10183E-07 0.16570E-07 0 .14319E-06 0.12818E-07 0 .18276E-06 28.80 Window 2 0.13742E-07 0.19404E-06 0 .12826E-07 0.67652E-08 0.22737E-06 35.83 Window 3 0.90819E-08 0.13573E-06 O.OOOOOE+OO O.OOOOOE+OO 0.14481E-06 22.82 Window 4 0.51716E-08 0.74533E-07 O.OOOOOE+OO O.OOOOOE+OO 0.79704E-07 12.56 PDS Tot 0.38179E-07 0.42087E-06 0 . 15601 E-06 0.19583E-07 0.63465E-06

% 6.02 66.32 24.58 3.09 OBS 67 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.62776E-08 0.30465E-07 0.13110E-07 0.13356E-08 0.51189E-07 20.69 Window 2 0.30364E-08 0.98555E-07 0.80035E-08 0.13503E-08 0.11095E-06 44.83 Window 3 0.30182E-09 0.69959E-07 O.OOOOOE+OO O.OOOOOE+OO 0.70261E-07 28.39 Window 4 0.29393E-08 0.12121E-07 O.OOOOOE+OO O.OOOOOE+OO 0.15061E-07 6.09 PDS Tot 0.12555E-07 0.21110E-06 0.21114E-07 0.26858E-08 0.24746E-06

% 5.07 85.31 8.53 1.09 OBS 68 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.52499E-07 0 .13354E-06 0.42533E-06 0.33938E-07 0.64530E-06 40.34 Window 2 0.13503E-06 0.17300E-06 0.37197E-07 0.11866E-07 0.35709E-06 22.32 Window 3 0.11327E-07 0.37293E-06 O.OOOOOE+OO O.OOOOOE+OO 0.38426E-06 24.02 Window 4 0.93679E-07 0.11930E-06 O.OOOOOE+OO O.OOOOOE+OO 0.21298E-06 13.31 PDS Tot 0.29253E-06 0.79877E-06 0.46252E-06 0.45804E-07 0.15996E-05

% 18.29 49.93 28.91 2.86 OBS 69 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.72885E-07 0 . 14164E -06 0.75266E-06 0.55938E-07 0 . 10231 E- 05 48.95 Window 2 0.50696E-07 0.47515E-06 0.15503E-07 0.91195E-08 0.55047E-06 26.34 Window 3 0.21768E-07 0.45087E-06 O.OOOOOE+OO O.OOOOOE+OO 0.47264E-06 22.61 Window 4 0.61882E-08 0.37683E-07 O.OOOOOE+OO O.OOOOOE+OO 0.43871E-07 2.10 PDS Tot 0.15154E-06 0 .11053E-05 0.76817E-06 0.65057E-07 0.20901E-05

% 7.25 52.88 36.75 3 .11 OBS 70 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0 .11033E-07 0.11215E-07 0.22889E-06 0.86305E-09 0.25200E-06 18.87 Window 2 0.10109E-07 0.39810E-06 0.40611E-07 0.12634E-08 0.45009E-06 33.70 Window 3 0.60063E-08 0.24491E-06 O.OOOOOE+OO O.OOOOOE+OO 0.25092E-06 18.79 Window 4 0.24814E-07 0.35791E-06 O.OOOOOE+OO O.OOOOOE+OO 0.38272E-06 28.65 PDS Tot 0.51963E-07 0.10121E-05. 0.26950E-06 0.21264E-08 0.13357E-05

% 3.89 75.77 20.18 0.16 OBS 71 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.22206E-06 0.74781E-07 0.70380E-06 0.73215E-07 0.10739E-05 35.71 Window 2 0.15917E-06 0.40150E-06 0.25370E-06 0 .12002E-06 0.93440E-06 31.08 Window 3 0 . 18641 E-06 0.54071E-06 O.OOOOOE+OO O.OOOOOE+OO 0.72712E-06 24.18 Window 4 0 .12955E-07 0.25851E-06 O.OOOOOE+OO O.OOOOOE+OO 0.27147E-06 9.03 PDS Tot 0;58059E-06 0.12755E-05 0.95751E-06 0.19323E-06 0.30068E-05

% 19.31 42.42 31 .84 6.43 OBS 72 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0 .15533E-06 0.35136E-05 0.59382E-06 0.65710E-07 0.43285E-05 64.33 Window 2 0 .18610E-06 0 .12715E-05 0.23267E-07 0.19074E-07 0 .14999E-05 22.29 Window 3 0.37826E-07 0.83411E-06 O.OOOOOE+OO O.OOOOOE+OO 0.87194E-06 12.96 Window 4 0.11300E-07 0.17070E-07 O.OOOOOE+OO O.OOOOOE+OO 0.28370E-07 0.42 PDS Tot 0.39055E-06 0.56363E-05 0.61708E-06 0.84783E-07 0.67287E-05

% 5.80 83.76 9.17 1.26 Vol. 6, Part 2 A-23 NUREG/CR-6144

Appendix A Supporting Information for the PDS Analysis Table A.5 (continued)

OBS 73 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.62543E-06 0.14577E-05 0.29281E-05 0.13862E-06 0.51498E-05 38.63 Window 2 0.34170E-06 0.10427E-05 0.81971E-07 0.78150E-07 0 .15446E-05 11. 59 Window 3 0.18949E-06 0.91578E-06 O.OOOOOE+OO O.OOOOOE+OO 0 .11053E-05 8.29 Window 4 0.40077E-07 0.54911E-05 O.OOOOOE+OO O.OOOOOE+OO 0.55312E-05 41.49 PDS Tot 0.11967E-05 0.89073E-05 0.30101E-05 0.21677E-06 0. 13331 E-04

% 8.98 66.82 22.58 1 .63 OBS 74 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.51235E-07 0.90600E-07 0.25250E-07 0.33269E-08 0 . 17041 E-06 57.96 Window 2 0 .10931 E-07 0.51893E-07 0.14477E-07 0.21960E-08 0.79497E-07 27.04 Window 3 0.23571E-08 0.34379E-07 O.OOOOOE+OO O.OOOOOE+OO 0.36736E-07 12.49 Window 4 0.69209E-09 0.66797E-08 O.OOOOOE+OO O.OOOOOE+OO 0.73718E-08 2.51 PDS Tot 0.65215E-07 0 .18355E-06 0.39728E-07 0.55228E-08 0.29402E-06

% 22.18 62.43 13.51 1 .88 OBS 75 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.64968E-07 0.57830E-06 0.12629E-05 0.10575E-06 0.20119E-05 18.47 Window 2 0.26932E-07 0.48284E-05 0.23726E-06 0 .16900E-06 0.52616E-05 48.31 Window 3 . 0.25384E-07 0.35604E-05 O.OOOOOE+OO O.OOOOOE+OO 0.35858E-05 32.92 Window 4 0.49639E-08 0.27937E-07 O.OOOOOE+OO O.OOOOOE+OO 0.32901E-07 0.30 PDS Tot 0 .12225E-06 0.89951E-05 0.15002E-05 0.27475E-06 0.10892E-04

% 1.12 82.58 13.77 2.52 OBS 76 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.84614E-07. 0.51575E-07 0.62421E-06 0.77025E-07 0.83742E-06 22.27 Window 2 0.60877E-07 0 .10540E-05 0.14611E-06 0.35698E-06 0.16179E-05 43.02 Window 3 0.26175E-07 0.80670E-06 O.OOOOOE+OO O.OOOOOE+OO 0.83288E-06 22.15 Window 4 0.36514E-08 0.46877E-06 O.OOOOOE+OO O.OOOOOE+OO 0.47243E-06 12.56 PDS Tot 0 .17532E-06 0.23810E-05 0.77032E-06 0.43400E-06 0.37606E-05

% 4.66 63.31 20.48 11.54 OBS 77 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0. 15036E -06 0.26844E-06 0.33068E-06 0.69341E-07 0.81882E-06 53.85 Window 2 0.17404E-06 0.16091E-06 0.14094E-06 0.31758E-07 0.50764E-06 33.39 Window 3 0.40077E-07 0.12088E-06 O.OOOOOE+OO O.OOOOOE+OO 0 .16095E-06 10.59 Window 4 0.13014E-07 0.20136E-07 O.OOOOOE+OO O.OOOOOE+OO 0.33149E-07 2 .18 PDS Tot 0.37749E-06 0.57036E-06 0.47161E-06 0.10110E-06 0.15206E-05

% 24.83 37.51 31.02 6.65 OBS 78 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.90264E-07 0.16212E-06 0.11842E-05 0.30755E-07 0 .14673E-05 9.81 Window 2 0.61020E-07 0.73810E-05 0.11686E-06 0.21408E-07 0.75803E-05 50.70 Window 3 0.26578E-07 0.58066E-05 O.OOOOOE+OO O.OOOOOE+OO 0.58332E-05 39.01 Window 4 0.44657E-08 0.67027E-07 O.OOOOOE+OO O.OOOOOE+OO 0.71492E-07 0.48 PDS Tot 0.18233E-06 0. 13417E -04 0.13010E-05 0.52163E-07 0.14952E-04

% 1. 22 89.73 8.70 0.35 OBS 79 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.82739E-07 0.55237E-06 0.21718E-05 0.43239E-06 0.32393E-05 16 .14 Window 2 0.21596E-07 0.90277E-05 0.45098E-07 0.34314E-07 0.91287E-05 45.49 Window 3 0.13704E-07 0.76259E-05 O.OOOOOE+OO O.OOOOOE+OO 0.76396E-05 38.07 Window 4 0. 11180E- 08 0.57830E-07 O.OOOOOE+OO O.OOOOOE+OO 0.58949E-07 0.29 PDS Tot 0 .11916E-06 0.17264E-04 0.22169E-05 0.46671E-06 0.20067E-04

% 0.59 86.03 11. 05 2.33 OBS 80 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.69809E-07 0.67363E-07 .0. 70820E- 06 0 . 18601 E-06 0 .10314E-05 29.67 Window 2 0.64455E-07 0 .91717E-0.6 0.11100E-06 0.47643E-07 0.11403E-05 32.80 Window 3 0 .15446E-07 0. 12421 E-.:05 O.OOOOOE+OO O.OOOOOE+OO 0 .12576E-05 36.18 Window 4 0.32608E-08 0.43407E-07 O.OOOOOE+OO O.OOOOOE+OO 0.46668E-07 1 .34 PDS Tot 0.15297E-06 0.22701E-05 0.81920E-06 0.23365E-06 0.34759E-05

% 4.40 65.31 23.57 6.72 NUREG/CR-6144 A-24 Vol. 6, Part 2

Appendix A Supporting Information for the PDS Analysis Table A.5 (continued)

OBS 81 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.43633E-07 0.36242E-07 0.43530E-06 0.77243E-08 0.52290E-06 50.24 Window 2 0.46900E-07 0.23190E-06 0.15489E-07 0.24745E-07 0.31903E-06 30.66 Window 3 0.14107E-07 0. 16257E -06 O.OOOOOE+OO O.OOOOOE+OO 0 .17667E-06 16.98 Window 4 0.68063E-08 0. 15299E -07 O.OOOOOE+OO O.OOOOOE+OO 0.22105E-07 2 .12 PDS Tot 0.11145E-06 0.44600E-06 0.45079E-06 0.32469E-07 0.10407E-05

% 10.71 42.86 43.32 3.12 OBS 82 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.54438E-06 0.28379E-06 0.18070E-05 0.21789E-06 0.28530E-05 39.39 Window 2 0.22426E-06 0.23692E-05 0.84734E-07 0.45994E-07 0.27241E-05 37.61 Window 3 0.20015E-06 0.13217E-05 O.OOOOOE+OO O.OOOOOE+OO 0.15219E-05 21.01 Window 4 0.24860E-07 0.11889E-06 O.OOOOOE+OO O.OOOOOE+OO 0.14375E-06 1 .98 PDS Tot 0.99365E-06 0.40936E-05 0.18917E-05 0.26388E-06 0.72428E-05

% 13.72 56.52 26.12 3.64 OBS 83 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.80377E-08 0.78094E-06 0.30604E-07 0.56060E-08 0.82519E-06 29.69 Window 2 0.80940E-08 0.10496E-05 0.34420E-07 0.98912E-07 0.11910E-05 42.85 Window 3 0.18458E-08 0.74273E-06 O.OOOOOE+OO O.OOOOOE+OO 0.74457E-06 26.79 Window 4 0 .14334E-08 0.17290E-07 O.OOOOOE+OO O.OOOOOE+OO 0 .18723E-07 0.67 PDS Tot 0. 19411 E-07 0.25906E-05 0.65024E-07 0.10452E-06 0.27795E-05

% 0.70 93.20 2.34 3.76 OBS 84 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %*

Window 1 0.75585E-08 0.49385E-06 0. 12416E -06 0.65013E-07 0.69057E-06 36. 71 Window 2 0.28588E-07 0.51749E-06 0.33993E-07 0.69116E-07 0.64919E-06 34.51

  • Window 3 Window 4 PDS Tot OBS 85 Window 1 Window 2 0.10019E-07 0.15288E-08 0.47693E-07 2.54 PDS Group 1 0.22045E-07 0.28284E-07 0.52259E-06 0.74786E-08 0.15414E-05 81.93 PDS Group 2 0.70328E-07 0.49845E-06 O.OOOOOE+OO O.OOOOOE+OO 0.15815E-06 8.41 PDS Group 3 0 .17291 E-06 0.10147E-07 O.OOOOOE+OO 0.53261E-06 28.31 O.OOOOOE+OO 0.90074E-08 0.13413E-06 0.18814E-05 7 .13 PDS Group 4 Window Total 0.43878E-07 0.30916E-06 26.76 0.30852E-08 0.53997E-06 46.73 0.48 Window 3 0.80781E-08 0.25912E-06 O.OOOOOE+OO O.OOOOOE+OO 0.26720E-06 23.13 Window 4 0.10066E-07 0.29011E-07 O.OOOOOE+OO O.OOOOOE+OO 0.39077E-07 3.38 PDS Tot 0.68473E-07 0.85691E-06 0.18306E-06 0.46963E-07 0.11554E-05

% 5.93 74.17 15.84 4.06 OBS 86 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 . Window Total  %

Window 1 0.18292E-06 0.21635E-06 0.59112E-06 0.72247E-07 0 .10626E-05 48.44 Window 2 0.53354E-07 0.33909E-06 0.20017E-06 0.41007E-07 0.63362E-06 28.88 Window 3 0.76944E-07 0.24734E-06 O.OOOOOE+OO O.OOOOOE+OO 0.32428E-06 14.78 Window 4 0.37848E-07 0. 13528E -06 O.OOOOOE+OO O.OOOOOE+OO 0.17313E-06 7.89 PDS Tot 0.35106E-06 0.93805E-06 0.79129E-06 0.11325E-06 0.21937E-05

% 16.00 42.76 36.07 5 .16 OBS 87 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.79965E-08 0.23201E-05 0.84755E-06 0.22672E-07 0.31983E-05 87.00 Window 2 0.93829E-08 0.13161E-06 0.27806E-07 0.32056E-07 0.20085E-06 5.46 Window 3 0.34871E-08 0.73856E-07 O.OOOOOE+OO O.OOOOOE+OO 0.77343E-07 2.10 Window 4 0.22886E-07 0 . 17697E -06 O.OOOOOE+OO O.OOOOOE+OO 0.19986E-06 5.44 PDS Tot 0.43753E-07 0.27025E-05 0.87536E-06 0.54728E-07 0.36764E-05

% 1 .19 73.51 23.81 1 .49 OBS 88 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.90728E-08 0 .14437E-07 0.10373E-06 0.25153E-07 0.15239E-06 20.16 Window 2 0.24435E-07 0.27771E-06 0.30815E-07 0.26642E-08 0.33562E-06 44.41 Window 3 0.79787E-08 0. 19206E -06 O.OOOOOE+OO O.OOOOOE+OO 0.2004E-06 26.47 Window 4 0.14371E-07 0.53342E-07 O.OOOOOE+OO O.OOOOOE+OO 0.67713E-07 8.96 PDS Tot 0.55857E-07 0.53754E-06 0.13454E-06 0.27817E-07 0.75576E-06

% 7.39 71 .13 17 .80 3.68 Vol. 6, Part 2 A-25 NUREG/CR-6144

Appendix A Supporting Information for the PDS Analysis Table A.5 (continued)

OBS 89 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.60471E-06 0.26523E-05 0.14790E-06 0.52810E-07 0.34578E-05 69.52 Window 2 0.16228E-06 0.39619E-06 0.76690E-07 0.42465E-06 0.10598E-05 21 .31 Window 3 0.37468E-07 0.27508E-06 O.OOOOOE+OO O.OOOOOE+OO 0.31255E-06 6.28 Window 4 0 .10836E-07 0 .13291 E-06 O.OOOOOE+OO O.OOOOOE+OO 0.14375E-06 2.89 PDS Tot 0.81529E-06 0.34565E-05 0.22459E-06 0.47746E-06 0.49739E-05

% 16.39 69.49 4.52 9.60 OBS 90 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.52302E-06 0 .10148E-05 0.14635E-05 0.16188E-06 0.31631E-05 32.68 Window 2 0.78096E-06 0.27277E-05 0.40089E-07 0.82071E-07 0.36308E-05 37.52 Window 3 0.32763E-06 0.24902E-05 O.OOOOOE+OO O.OOOOOE+OO 0.28179E-05 29.12 Window 4 0.17598E-07 0.48744E-07 O.OOOOOE+OO O.OOOOOE+OO 0.66342E-07 0.69 PDS Tot 0.16492E-05 0.62815E-05 0 .15036E-05 0.24395E-06 0.96782E-05

% 17 .04 64.90 15.54 2.52 OBS 91 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.36988E-07 0.11059E-06 0.17646E-05 0.93936E-07 0.20061E-05 54.42 Window 2 0 .15049E-06 0.75491E-06 0.13649E-06 0.49630E-07 0.10915E-05 29.61 Window 3 0.27207E-07 0.45563E-06 O.OOOOOE+OO O.OOOOOE+OO 0.48284E-06 13 .10 Window 4 0 .10390E-07 0.95197E-07 O.OOOOOE+OO O.OOOOOE+OO 0.10559E-06 2.86 PDS Tot 0.22507E-06 0.14163E-05 0.19011E-05 0.14357E-06 0.36861E-05

% 6 .11 38.42 51.58 3.89 OBS 92 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.40497E-07 0.70165E-06 0.10256E-05 0.28733E-07 0.17965E-05 63.41 Window 2 0.20574E-07 0.23511E-06 0.33443E-06 0.63874E-07 0.65399E-06 23.08 Window 3 0.16998E-07 0.33085E-06 O.OOOOOE+OO . 0. OOOOOE+OO 0.34785E-06 12.28 Window 4 0.31661E-08 0.31796E-07 O.OOOOOE+OO O.OOOOOE+OO 0.34962E-07 1.23 PDS Tot 0.81235E-07 0 .12994E-05 0.13600E-05 0.92607E-07 0.28333E-05

% 2.87 45.86 48.00 3.27 OBS 93 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.16905E-06 0.12956E-06 0.52774E-06 0.38803E-07 0.86515E-06 60.49 Window 2 0.57265E-07 0.15367E-06 0.28422E-07 0 .12486E-07 0.25184E-06 17. 61 Window 3 0.20805E-07 0.16568E-06 O.OOOOOE+OO O.OOOOOE+OO 0.18649E-06 13.04 Window 4 0 .17991 E-07 0 .10873E-06 O.OOOOOE+OO O.OOOOOE+OO 0.12673E-06 8.86 PDS Tot 0.26511E-06 0.55765E-06 0.55616E-06 0.51289E-07 0 .14302E-05

% 18.54 38.99 38.89 3.59 OBS 94 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0 .12508E-06 0.37938E-06 0.41910E-06 0.31583E-07 0.95514E-06 46.32 Window 2 0.41346E-07 0.40101E-06 0.46777E-07 0.20724E-06 0.69637E-06 33.77 Window 3 0 .10495E-07 0.27475E-06 O.OOOOOE+OO O.OOOOOE+OO 0.28524E-06 13.83 Window 4 0.32798E-08 0.12221E-06 O.OOOOOE+OO O.OOOOOE+OO 0.12549E-06 6.09 PDS Tot 0 .18020E-06 0.11773E-05 0.46587E-06 0.23882E-06 0.20622E-05

% 8.74 57.09 22.59 11.58 OBS 95 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.33419E-07 0.11146E-06 0.28315E-06 0.22544E-07 0.45057E-06 23.34 Window 2 0 .11732E-07 0.74892E-06 0.34095E-07 0. 17881 E- 07 0.81263E-06 42.10 Window 3 0.61220E-08 0.60094E-06 O.OOOOOE+OO O.OOOOOE+OO 0.60706E-06 31.45 Window 4 0.85457E-09 0.59202E-07 O.OOOOOE+OO O.OOOOOE+OO 0.60056E-07 3 .11 PDS Tot 0.52127E-07 0.15205E-05 0.31724E-06 0.40425E-07 0 .19303E-05

% 2.70 78.77 16.43 2.09 OBS 96 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.91322E-06 0 .12728E-05 0.33461E-05 0.45621E-07 0.55778E-05 74.10 Window 2 0.61304E-07 0.52757E-06 0.39511E-06 0.50319E-07 0.10343E-05 13.74 Window 3 0.20782E-06 0.46883E-06 O.OOOOOE+OO O.OOOOOE+OO 0.67665E-06 8.99 Window 4 0 .12334E-07 0.22637E-06 O.OOOOOE+OO .0.00000E+OO 0.23871E-06 3.17 PDS Tot 0 .11947E-05 0.24956E-05 0.37412E-05 0.95940E-07 0.75274E-05

% 15.87 33.15 49.70 1 .27 NUREG/CR-6144 A-26 Vol. 6, Part 2

Appendix A Supporting Information for the PDS Analysis Table A.5 (continued)

OBS 97 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.33112E-08 0.26705E-08 0.92293E-08 0.21753E-08 0.17386E-07 7 .10 Window 2 0 .14972E-07 0.36432E-07 0.28933E-08 0.74878E-08 0.61785E-07 25.24 Window 3 0.28184E-08 0.22234E-07 O.OOOOOE+OO O.OOOOOE+OO 0.25053E-07 10.24 Window 4 0.57910E-07 0.82642E-07 O.OOOOOE+OO O.OOOOOE+OO 0 .14055E-06 57.42 PDS Tot 0.79012E-07 0.14398E-06 0 .12123E-07 0.96631E-08 0.24478E-06

% 32.28 58.82 4.95 3.95 OBS 98 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0 .13051 E-06 0 .18870E-06 0.47275E-06 0.35666E-06 0 .11486E-05 7.93 Window 2 0 .12056E-05 0.61325E-05 0.37643E-06 0.66732E-06 0.83818E-05 57.89 Window 3 0.20899E-06 0.46179E-05 O.OOOOOE+OO O.OOOOOE+OO 0.48269E-05 33.34 Window 4 0.88871E-07 0.33032E-07 O.OOOOOE+OO O.OOOOOE+OO 0 .12190E-06 0.84 PDS Tot 0 .16340E-05 0.10972E-04 0.84918E-06 0.10240E-05 0 .14479E-04

% 11 .28 75.78 5.86 7.07 OBS 99 PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.11782E-08 0.51819E-07 0.14185E-06 0.32448E-07 0.22730E-06 17 .12 Window 2 0.24906E-08 0 .15408E-06 0.40274E-07 0.21677E-07 0.21852E-06 16.46 Window 3 0.91693E-08 0.11616E-06 O.OOOOOE+OO O.OOOOOE+OO 0.12533E-06 9.44 Window 4 0.57074E-07 0.69969E-06 O.OOOOOE+OO O.OOOOOE+OO 0.75676E-06 56.99 PDS Tot 0.69912E-07 0. 10217E-05 0.18213E-06 0.54125E-07 0.13279E-05

% 5.26 76.94 13. 72 4.08 OBS 100 PDS Group 1 PDS Group 2 PDS Group.3 PDS Group 4 Window Total  %

Window 1 0.32671E-07 0.53852E-07 0. 16999E -06 0 .18437E-07 0.27495E-06 34.37 Window 2 0.16401E-07 0.21093E-06 0.57429E-07 0.79370E-08 0.29269E-06 36.59 Window 3 0.72367E-08 0 .13707E-06 O.OOOOOE+OO O.OOOOOE+OO 0 .14431 E-06 18.04 Window 4 0.12722E-07 0.75196E-07 O.OOOOOE+OO O.OOOOOE+OO 0.87918E-07 10.99 PDS Tot 0.69032E-07 0.47705E-06 0.22742E-06 0.26374E-07 0.79987E-06

% 8.63 59.64 28.43 3.30 Mean PDS Group 1 PDS Group 2 PDS Group 3 PDS Group 4 Window Total  %

Window 1 0.19791E-06 0.49014E-06 0.66870E-06 0.13326E-06 0.14900E-05 35.31 Window 2 0.13327E-06 0.12362E-05 0.10835E-06 0.88147E-07 0.15660E-05 37 .11 Window 3 0.40498E-07 0.91445E-06 O.OOOOOE+OO O.OOOOOE+OO 0.95495E-06 22.63 Window 4 0.23813E-07 0.18529E-06 O.OOOOOE+OO O.OOOOOE+OO 0.20911E-06 4.96 PDS Tot 0.39548E-06 0.28261E-05 0.77705E-06 0.22140E-06 0.42201E-05

% 9.37 66.97 18.41 5.25

APPENDIX B

  • SUPPORTING INFORMATION FOR THE ACCIDENT PROGRESSION ANALYSIS

CONTENTS Section Page Introduction

  • o e
  • e e o o o o O o o o o o o o o o IO o o o o o O o o o o o O o o o O O o o o o o o o o o o o o o O o o O o O o o o o o o o o B-5 B.1 Description of the Accident Progression Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5 B.2 Listing of the Accident Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-33 B.3 Characteristics of the Surry Binner ............................................. B-47 B.4 Listing of the Binner for the Surry Shutdown Risk Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-56

APPENDIX B SUPPORTING INFORMATION FOR THE ACCIDENT PROGRESSION ANALYSIS Introduction Appendix B contains a detailed description and listing of the Accident Progression Event Tree (APET) and the binner that groups the outcomes of evaluating the APET.

A brief description of the Surry Low Power APET is given in Section 6.1, and the binner is treated in Section 6.4. The material in these sections is not repeated here. The 40 questions in the APET are listed concisely in Table 6.1. This appendix consists of four subsections. Subsection B.1 contains a discussion of each question in the APET. The event tree itself is too large to be depicted graphically and exists only in computer input format, which appears in subsection B.2. Subsection B.3 is a detailed discussion of the binner, and subs~ction B.4 contains a listing of the binner .

B.1 Description of the Accident Progression Event Tree Question 1. Time Window 4 Branches, Type 1, 1 Case The Branches for this question are:

1. Win-1 The core damage accident was initiated at Time Window 1.
2. Win-2 The core damage accident was initiated at' Time Window 2.
3. Win-3 The core damage accident was initiated at Time Window 3.
4. Win-4 The core damage accident was initiated at Time Window 4.

The branch taken in this question depends solely upon the first PDS characteristic. For each PDS group, fractions of frequencies of PDSs belonging to each time window are assigned into each time window branch of this question.

Question 2. Size of the RCS Break when the Core Uncovers?

2 Branches, Type 2

  • The branches for this question are:
1. Large Sufficient break area is available to maintain the RCS pressure below 500 psia.

Vol. 6, Part 2 B-5 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis

2. Small The break area is too small to maintain the RCS pressure below 500 psia.

The branch taken in this question depends on the time window of the first question and the fourth PDS characteristic. The Level 1 analysis on success criteria indicates that the RCS pressure will remain below 500 psi for all time windows except Time Window 1 if at least one PORV is open. For Time Window l, the RCS pressure will continue to rise if only one PORV is open until it reaches 650 psi, the rupture pressure of the RHR vent valve. Once the RHR vent valve is ruptured, the RCS pressure will drop below 500 psia.

Case 1: For Time Window 1, only one PORV is available. The RCS pressure may not reach the rupture pressure of RHR vent valve before vessel failure. This branch probability was determined internally by BNL staff.

Branch 1: 0.95 Branch 2: 0.05 Case 2: For all other time windows, 1 PORV is always open and the pressure does not rise above 500 psi.

Branch 1: 1.00 Branch 2: 0.00 Question 3. Is the RCS depressurized before Breach by Opening the Pressurizer PORVs?

2 Branches, Type 2, 2 Cases The branches for this question are:

1. VDep The pressurizer PORVs are already open or the operators open the pressurizer PORVs and depressurize the RCS successfully before vessel breach.
2. noVDep The operators do not open sufficient number of pressurizer PORVs.

This question was quantified internally. The branch taken at this question depends upon the branch previously taken at Questions 1 and 2.

The pressure in the RCS may be reduced directly if the operators open more than one PORVs on the pressurizer in Time Window 1. In all other time windows, the RCS is already at low pressure and depressurization is not necessary.

Case 1: At Time Window 1, only one PORV was open at core damage.

Branch 1: VDep - 0.80 Branch 2: noVDep - 0.20 Case 2: Other time windows or more than PORV is already available.

Branch 1: VDep - 1.0 Branch 2: noVDep - 0.0 NUREG/CR-6144 B-6 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis Question 4. Status of AC Power?

3 Branches, Type 1 The branches for this question are:

1. AC AC electrical power is available from offsite or from the DGs throughout the accident.
2. No-AC AC electrical power is not available due to loss of offsite power and DGs (SBO), but may be recovered.
3. No4KV AC electrical power is not available to the injection pumps because of loss of a 4 kV bus.

The branch taken depends upon the second PDS characteristic.

Loss of offsite power and failure of the diesel generators to start (SBO) leads to the second branch since offsite power may always be restored. AC power available when the ECCS and sprays are failed means that an ignition source is likely to be present in the containment when a significant amount of hydrogen has accumulated after VB.

Question 5. Is the core damage accident due to human errors?

3 Branches, Type 2

  • The branches for this question are:
1. No-HX
2. HXA Accident is not due to human errors.

Operators fail to take correct actions after loss of RHR cooling. AC electrical power is available throughout.

3. HXD Operators fail to diagnose loss of core cooling. AC electrical power is available throughout.

The branch taken depends upon the third PDS characteristic.

For internal initiators, accidents begin with loss of RHR cooling during shutdown. Operators either fail to recognize the accident, make a wrong diagnosis, or take a wrong action. Consequently, the core cooling is not restored and the accident progresses to core damage. AC power is available throughout the accident; recovery of core cooling and termination of the accident depends solely on the recovery from the human error.

Question 6. Status of ECCS?

5 Branches, Type 1 The branches for this question are:

1. ECCSf4KV The ECCS are available and can operate when the 4 kV bus to the injection pumps is restored.
2. ECCSfAC The ECCS are available and can operate when offsite electric power is restored .
  • 3. ECCSfHX The ECCS are available and can operate when human errors are corrected.
4. ECCSfHW The ECCS is failed, and is not recoverable.

Vol. 6, Part 2 B-7 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis

5. ECCSfREC The ECCS have worked in the injection mode from RWST, but is failed in the recirculation mode.

The branch taken depends upon the fifth PDS characteristic.

The first branch is chosen in situations where the ECCS are available, but not operating because of the loss of the 4 kV bus; if or when the 4 kV bus is restored, the ECCS will function. The second branch is chosen in blackout situations with no ECCS failures; if or when power is recovered, the ECCS will function. The third branch is chosen when core damage occurs because of human errors but ECCS is available; if or when the human error is corrected, the ECCS will function. The fourth branch is selected when the failures are in the ECCS themselves, and there is no recovery within the time frame of this analysis. Since the period in which the ECCS operate in the injection mode occurs before the uncovering of the core, this branch is chosen for those PDS's in which the ECCS never operate. For those PDS's in which the ECCS operate in the injection mode and fail in the recirculation mode, the fifth branch is chosen.

  • Question 7. Status of Sprays?

6 Branches, Type 2, 2 Cases.

The branches for this question are:

1. SP The containment sprays are operating or are operable in the recirculation mode prior to vessel failure.
2. SPfAC The containment sprays are available and can operate when offsite electric power is restored.
3. SPfHX The containment sprays are available and can operate when human error is corrected.
4. SPfHW The sprays themselves are not operable, and not recoverable.
5. SPfREC The containment sprays are failed in the recirculation mode and are not recoverable.
6. SPf4KV The containment sprays are available and can operate when the 4 kV bus is restored.

The branch taken depends upon the sixth PDS characteristic, and upon the branches taken at Question 1.

This question concerns the sprays during the period of core degradation, and has impact on the source term calculations. The second or sixth branches are chosen in situations where the sprays are available, but not operating because of SBO or the loss of the 4 kV bus respectively; if or when power is recovered, or the 4 kV bus is restored, the spray will function. The third branch is chosen when core damage occurs because of human errors but spray is available; if or when the human error is corrected, the spray will function. The fourth branch is selected when the failures are in the sprays themselves, and there is no recovery within the time frame of this analysis. For those PDS's in which the ECCS operate in the fojection mode and fail in the recirculation mode, the fifth branch is chosen.

Question 8. RWST Injected into Containment?

4 Branches, Type 2, 2 Cases.

NUREG/CR-6144 B-8 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis The branches for this question are:

1. RWST-In The contents of the refueling water storage tank have been injected into the containment.
2. RWSTfAC The contents of the RWST have not been injected into the containment, but can be injected if offsite power is recovered or the 4 kV bus is restored.
3. RWSTfHX The contents of the RWST have not been injected into the containment, but can be injected if human error is corrected.
4. RWSTfln The contents of the RWST have not been injected into the containment, and cannot be injected even if power is recovered or human error is corrected.

The branch taken depends upon the seventh PDS characteristic and upon the branch taken at Questions 6 and 7.

The branch taken in this question is used to determine whether the reactor cavity is full of water.

Question 9. Initial Containment Isolation Failure?

2 Branches, Type 1 The branches for this questions are:

  • 1. ClsdCI Prior to the accident, the containment is isolated.
2. noClsdCI At the time of accident initiation, the containment is open.

This question addresses whether the containment is closed at the time of accident initiation. This question was included in this APET because the Surry personnel indicated in a discussion that they may consider to close containment before entering the Mid-loop operation. However, since subsequent discussions did not provide any further information on this subject, the second branch is taken for all PDS's in this phase of analysis.

Question 10. Is containment closed before core damage?

2 Branches, Type 2, 6 Cases.

The branches for this questions are:

1. ClsdCD The containment is successfully isolated before core damage.
2. noClsdCD The containment is not isolated before core damage.

This question addresses whether the containment is successfully closed before core damage; it does not determine whether the containment leaks even if it is closed. The branch taken in this question depends on the first, fifth and ninth questions. The split fractions in this questions were sampled and their distributions are determined internally by BNL staff.

Case 1: The containment is closed at the initiation of accident. The split fraction of the first branch is 1.0.

Vol. 6, Part 2 B-9 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis Case 2: The core damage accident occurs because operators fail to recognize the accident or fail to make correct diagnosis. Under this circumstance, it is not very likely for operators to close the containment in time. The split fraction of the second branch is 1.0.

Case 3 through 6: Operators recognize a potential core damage accident and attempt to close the containment. The success probability of containment closure depends on the available time before onset of core damage; it increases with increasing time window. Since Surry has prepared a detailed procedure to perform this closure, the probability that the containment is successfully isolated is considered high. The mean split fractions for the first branch are 0.8, 0.9, 0.95 and 1.0 for time windows 1, 2, 3 and 4, resRectively.

Question 11. Containment Pressure Capability.

3 Branches, Type 2, 3 Cases The branches for this question are:

1. CP126p The mean containment failure pressure is 126 psig.
2. CP45p The mean containment failure pressure is 45 psig.
3. CP2p The mean containment failure pressure is 2 psig.

This question determines the mean containment failure pressure. The Surry containment closure procedure during POS 6 would provide a barrier capable of withstanding 45 psig, which is the design pressure of the containment during the full power operation. The mean failure pressure was estimated to be 126 psig in the NUREG-1150 study. However, it is not clear whether the containment during POS 6 can also provide 126 psig of failure pressure. Therefore, it was assumed in the base case analysis that the mean failure pressure is 45 psig when the containment is successfully isolated. A sensitivity analysis also performed where the failure pressure is 126 psig. The third branch is taken when the containment is not successfully isolated or leaks even after isolated. This question does not provide the distribution of the failure pressure itself; it is addressed in Question 23.

Case 1: The containment is closed when the mid-loop operation begins. The probability that the containment is successfully isolated and does not leak is very high. The probability of containment leak after isolation was 0.0002 in the NUREG-1150. This value is increased to 0.01 in this study.

The rest (0.99) is assigned to Branch 2 (CP45p) for the base case and to Branch 1 (CP126p) for the sensitivity case, respectively.

Case 2: The containment is open when the mid-loop operation begins, but successfully closed before core damage. The probability that the containment may leak is higher than Case 1. This value is increased to 0.1. The rest (0.9) is assigned to Branch 2 (CP45p) for the base case and to Branch 1 (CP126p) for the sensitivity case, respectively.

Case 3: The containment fails to close. The split fraction for Branch 3 is 1.00.

Question 12. Is AC Power Available Early?

2 Branches, Type 2, 9 Cases NUREG/CR-6144 B-10 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis The branches for this question are:

1. ERAC AC power is available in this time period.
2. NoERAC AC power is not available in this time period.

This question addresses the recovery of electric power to the injection pumps before the vessel breach for the cases where either off-site power or 4 kV bus was not available. Cases 1 through 8 of this question are sampled; the distributions were obtained from an analysis of data on offsite power recovery and restoration of the 4 kV bus for the Surry plant. These data are available in Vol. 1 of this report. The branching at this question depends upon the branches taken at Questions 1 and 4.

Probability of power recovery means the probability that offsite electrical power is recovered, or the 4 kV bus is restored in a specified period given that power was not recovered prior to the start of the period. These time periods available to recover power before vessel breach vary depending on the time window. The time periods used in Cases 1 through 8 are listed in Section 6.1 of this report. These time periods are derived from the results of MELCOR calculations which are presented in Appendix F of this report.

Case 1 through 4: Offsite power was not available at the start of the accident which occurred in Time Windows 1, 2, 3 and 4, respectively. The probability of power recovery before vessel breach is calculated based on the recovery distribution and is assigned to the first branch.

Case 5 through 8: Injection pumps were not operating because of loss of 4 kV bus to the available injection pumps at the start of the accident which occurred in Time Windows 1, 2, 3 and 4, respectively. The probability of restoring the 4 kV bus before vessel breach is assigned to the first branch.

Case 9: Power was available at the start of the accident and remains available. The quantification for this case is:

Branch 1: ERAC - 1.0 Branch 2: NoERAC - 0.0 Question 13. Recovered from human errors early?

2 Branches, Type 2, 9 Cases The branches for this question are:

1. ERHX Operators recover from previous error.
2. NoERHX Operators do not recover from the previous error.

This question addresses the recovery from operator errors for the accidents where the core damage occurred because of inadequate operator actions following the loss of RHR cooling. Cases 1 through 8 of this question are sampled; the distributions were obtained from "Handbook of HRA," (Reference 6.6 of this report). The branching at this question depends upon the branches taken at Questions 1 and 5.

.App~ndix B Supporting Information for the Accid.ent Progression Analysis The meaning of probability of recovery in this question is similar to that of Question. 12,: except that it concerns recovery from erroneous operator decisions in tp.is question:. The. tiJ?e period~ in tpis question are identical to those of Question 12. * * * ** * * * *

  • Question 14:C: Is Core Damage Arrested? Ne> Vessel Breach?'
  • *:t-B.r~nch~~;,Type 2, 4.C;~_es**.

The brariche~ for.this questi6fare: .*  ::'. t**:':;;r

1. noVB The process of core degradation is arrested and a safe stable state is reached with the vessel intact.

2.* VB .*

  • Core* degradati01fcontinues*,'i*e~ultingiri core*melt arid vessel breach.

The branching at-this question deperids*'upon the 'branches previously faken at Questions 6;* 12 *arid 13... *.

;"'I, I.'!*,:' *. * ';*: ;*

Case 1: ECCS were* not; available because* of: h~dware* error of injedioo* j:n1riips, or-they failed***during recirculation. In both cases, the ECCS are not recoverable and accident progress to vessel breach .

. The* quantification:for*this case is:* .  ; '

Bra~ch 1: *o.O. *. . . .. . x* ' '

.. *;*1  ;.i.:::":: ',...

Case 2: *.*: :ECCS ~e;e not' av~iiabl~"ciue ;6 1bs's 'bf. ~ith~~ 6ffsite *pdw~i* ot 4 kV his . ~ey *ar~ htit\~cover~d

. .. . *cftµ"ing'ttiis'H~iperiod. 'Th~ qti~r:ttificitidri for*thi*~'ca~~ i~?

1 il~:~ch'li;Q:0 L,.'s ., ....  ; .', , ., .. , ..... ,,, : .***** i'*. , ' '**,: . . *;,: , .,:,'

Branch 2: 1.0

, .. , .- ! : . ,  ;.' . . ._*, ...**: . -~".'. 'r . ; i ""._ , : * ' ::.  :* /,.~* :: .. -~- ,;;' -~*:

Case 3: ECCS were not available due to operator errors. They are no_tPW?V~~e<;l during this time period.

The quantification for this case is:

Branch 1: 0.0 Branch 2: 1.0 Case 4: ECCS are recovered either due to recovery of povver or recovery frQm .,operatqr eqors during this time period. The quantification for this case is:'* * * * *. * * * *** * * " * * * * * * ** * * *"

-~: .*. ,._' \ ~-:* .

Branch 1: 1.0 Branch 2: 0.0 Question 15. Vessel Pressure just before Breach? ~- ,*-.: '. .:* *. -:::,:_.

2 ~ranches, Type 2'.. 2 Cas~s Th:e branches 'tot this* qUestiOD Je::'t.~:,.. *; ** ~ *.*.

i ... ~-lmPr . -The vessd is at i11t~r~edi~te pres~ure before br~ach,: abo"Qt 500 tQ. 1000 .pS:i~.'*

  • , * ** ,,:'*,* * ._ *, * * ' * * ** ' ' *' '. .. * ; ' I *,' ** '* ** ) * *.  ; * * * '*'
2. 1-LoPr The vessel is at low pressure before breach, about 500 psia or less.

NUREG/CR~6144 B-12 Vol. 6, Part 2

Appendix .J3 .. Supporting Information for the Accident *Progression. Analysis During mid-loop operation, at least one PORV is kept open. One PORV'is sufficient t9: keep the RCS pressure below 500 psia at all time windows except Time Window) .. for ~ime, :Window J, th~ RCS pressure can increase to 650 psia, which is the vent pressure of the RHR system. In *any time windows, the RCS pressure would not increase to "high Pressure" range which is above 1000..psia.. .. _: ,'. .,i.

2; 4;'

Case '1: ..*Accid~nts occur d.ther' ii Windows' j\,r' riiord 'than' 1 POR\i'is:op~n;:* or operator sucd~s~fully depressurize by opening additional PORV's. * :'

Brarich:1::'ImPr --.. 0.00' - ' .. '.. ,:"* ,- *: :*, ..:,:, ,'.,*,,: * ,*: -

Branch 2: .LoPr. ~-.. 1.00 ** *.:!":**, ::, - ' .** ~ ._ .. ;. ' ,_:_,:.i::' **:.1,:;

Case 2: Accidents occur in Window 1, on1~\~e:,*PORV is *open and operatoi'fails :;~'-~pen additional PORVs. - ;,* *-.: .

.. ;Branch 1: Irrµ>r ~ 1.00 __ ... '.'>*,

. _ l:3ranc~_2: LoPr . - o:oo ...*; i *:' .....' ~., ;:,'": '

  • ' - I ~
  • .; r *, * . :.: .~ , .- ' . '

Question 16. Does an Alpha Mode Event Fail both the Vessel and the: C~rii~i~rrieiitf.

.. ... -. > "* ,_.2 .Brap.~hes, Type 2, 2 ~ases .

_. \ ........ **. ' - **..  : * \ l. * --* *- " .. *

',_ ,;';,. *.,,:. ; {t,,, / .)'~~:  !*:I_.:  : : .. '; ; ~ *,_  :.. : ....

Th~ br~ns~esfo~ t~i~ ql;}es,t,ioI1,are:--: ,::. ' ~:- .,* ': _-, ,. .. .,

.l,: ':Alpha,, ; ::Avery*energetic molten fu'ekoolantinteraction: (steam explosio'liyin>the vessel fails the'~essel

' . '_.* :.'and generates a,niissile which fails the contailimertt as well;, *.:* ,_.,{ ' r *.,' '

This question is sampled; the distribution used was taken from NUREG-1150, which ;~{ d~vf Iri~~d fioci opinio11s express~d by the Steam Explosion Revie~ Group (SERG) and can be found in Volume. 2, Part 6 of NU'.REdtcR:4ss*1. * *n;~; *i,r~rich taken**"at thi~- 'qiiestidri

  • d~penH~' rtpriii* t11e' 'bt~ric.~~i{ 'pr¥!9~~ly tak~ii'at Questions 14 and 15. ': *

~' .

/.,.,. ,. -*

Case 1: There is vessel breach and the RCS was at low pressure. Steam' explosfons:'.are in.ore* likely when the RCS is at low pressure than when the RCS is at som~' *highe{ pres'sur~:'* The' aggregate distribution developed from distribution in the SERG was used for this'disef* *This: distribution covers many orders of magnitude. Based on the mean value of"the *disfributio~,'- the :quantification for this case is:

  • . Br~ri~h f 'Alph~ c; :~ \)'.Oos'* ' . ;,, '<<.i ;:

....: ;*~

Branch 2: noAlpha - 0.992

~ \ ' < ,

Case 2: This case includes two different groups of accidents. In the first gtoup, theoore degradation process has been arrested and there is no vessel breach. In the second group, tht!re is've~sel'breach and the RCS was not at low pressure. In the latter group, steam explosifuns a:re possible:t,tffless :jikely when the RCS is not at low pressure. In NUREG-1150, this probability was*~set ilt 1710 t>f the low pressure case, i.e., 0.0008. Since the fractions of accidents at intermediate pressure or higher is very smalfin this stuliy, this probability is igriofod;'.*Jn both groups/the qiiantificatioit'is: :* i - .. ,*.

  • Vol. 6,.Pait 2

'13r~rich* 1: "Alp~~

Branch 2: noAlpha - 1.0

, o:o * ' . - ;(; ....

B-13 NUREG/CR-'6144

Appendix B Supporting Information for the Accident Progression Analysis Question 17. Type of Vessel Breach?

5 Branches, Type 2, 4 Cases The branches for this question are:

1. PrEj The molten core material is ejected under considerable pressure from a hole in the bottom of the vessel.
2. Pour The molten core material pours slowly from the vessel, primarily driven by gravity.
3. BtmHd A large portion of the bottom head fails, perhaps due to a circumferential failure.
4. noVB There is no failure of the reactor pressure vessel.
5. Alpha An alpha mode failure has occurred.

The branch taken at this question depends upon the branches previously taken at Questions 1_4, 15 and 16.

The type of vessel breach was taken from NUREG-1150 which was determined by the In-Vessel Expert Panel.

The conclusions of the Experts and their aggregate distributions are presented in Volume 2, Part 1, of NUREG/CR-4551. Case 3 is sampled.

The pressurized ejection failure mode requires that the RCS be at intermediate to high pressure when the vessel fails. The pour failure mode is considered to occur only with the RCS at low pressure. Since there could be a small driving force due to the gas pressure in the RCS, the Pour failure mode is distinguished by

.the fact that gravity is the primary force causing the molten core debris to leave the vessel. The bottom head failure mode can occur at any RCS pressure; the failure could be a circumferential failure in which the whole bottom head falls into the cavity or some other failure in which a substantial portion of the bottom head fails.

The fourth branch is used when there is no vessel breach. The fifth branch is specified when the vessel failed in the Alpha mode.

Case 1: The core degradation process has been arrested and there is no vessel breach. The quantification for this case is:

Branch 1: PrEj - 0.0 Branch 2: Pour - 0.0 Branch 3: BtmHd - 0.0 Branch 4: noVB 1.0 Branch 5: Alpha - 0.0 Case 2: An alpha mode failure of both the vessel and the containment has occurred. The quantification for this case is:

Branch 1: PrEj - 0.0 Branch 2: Pour - 0.0

. Branch 3: BtmHd - 0.0 Branch 4: noVB - 0.0 Branch 5: Alpha - 1.0 Case 3: The vessel fails when the RCS is at intermediate pressure. The most likely failure mode is penetration failure leading to HPME. Based on the mean value of the distribution provided by the Experts, the quantification is:

NUREG/CR-6144 B-14 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis Branch 1: PrEj - 0.60 Branch 2: Pour - 0.27 Branch 3: BtmHd - 0.13 Branch 4: noVB - 0.0 Branch 5: Alpha - 0.0 Case 4: The vessel fails when the RCS is at low pressure. The failure mode is gravity pour. The quantification for this case is:

Branch 1: PrEj - 0.0 Branch 2: Pour - 1.0 Branch 3: BtmHd - 0.0 Branch 4: noVB - 0.0 Branch 5: Alpha - 0.0 Question 18. Early Sprays?

4 Branches, Type 2, 5 Cases The branches for this question are:

1. E-Sp The containment sprays are operating.
2. ESPfAC The containment sprays are available to operate if power is recovered.
3. ESPfHX The containment sprays are available to operate if operators recover from previous error.
4. ESPf The containment sprays are failed and cannot be recovered.

This question is not sampled; the branch chosen depends directly upon the branches taken at previous questions. The branch chosen for this question depends upon the branches taken at Questions 7, 12 and 13.

If the sprays were initially in the "available" state, the sprays will operate in this period, when power has been recovered, the 4 kV bus has been restored, or operators have recovered from previous errors, depending on what led to the core damage. If power is recovered and the sprays operate, the contents of the RWST will be transferred to the containment and the cavity will fill up with water.

Case 1: The sprays were available at the start of the accident. The quantification for this case is:

Branch 1: E-Sp - 1.0 Branch 2: ESPfAC - 0.0 Branch 3: ESPfHX - 0.0 Branch 4: ESPf - 0.0 Case 2: The sprays were failed at the start of the accident, and no recovery is possible, so the sprays remain failed. The quantification for this case is:

Branch 1: E-Sp - 0.0 Branch 2: ESpfAC - 0.0

  • Branch 3:

Branch 4:

Vol. 6, Part 2 ESPfHX ESPf 0.0 1.0 B-15 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis Case 3: The sprays were available to operate at the start of the accident, but power or the 4 kV bus has not been recovered so the sprays remain available to operate in the future when power or 4 kV bus is recovered. The quantification for this case is:

Branch 1: E-Sp - 0.0 Branch 2: ESPfAC - 1.0 Branch 3: ESPfHX - 0.0 Branch 4: ESPf - 0.0 Case 4: The sprays were available to operate at the start of the accident, but operators have not recovered from previous errors so the sprays remain available to operate in the future when the operator error is corrected. The quantification for this case is:

  • Branch 1: E-Sp - 0.0 Branch 2: ESPfAC - 0.0 Branch 3: ESPfHX - 1.0 Branch 4: ESPf - 0.0 Case 5: The sprays were available to operate at the start of the accident. The sprays now operate because power has been recovered, the 4 kV bus has been restored, or operators have recovered from previous errors, depending on what led to the core damage. The quantification for this case' is:
  • Branch 1: E-Sp - 1.0 Branch 2: ESpfAC . - 0.0 Branch 3: ESPfHX - 0.0 Branch4: ESPf - 0.0 Question 19. Amount of Water in the Reactor Cavity at Vessel Breach?

2 Branches, Type 2, 4 Cases The branches for this question are: '

1. RC~\\'et . The reactor cavity is full or nearly full of water.
2. RC-Dry The reactor cavity contains little or no water.

This question* is not sampled; the amount of water in the reactor cavity may be reliably deduced from the information available about the injection of the RWST water into the containment;and the operation of the sprays. The branch taken at this question depends upon the branches previously taken at Questions 8, 12 and 13.

What is of interest here is the presence of water for the direct containment heating (DCH) and ex-vessel steam explosion:(EV~E) events. The magnitude of the pre~sure rise due.to DCH depends upon whether there is water in the cavity. Whether an EVSE occurs also depends upon whether there is water in the cavity.

Case 1: The RWST was injected into the containment before breach or the sprays operated be'!ore breach; the reactor cavity is full of water at breach. The quantification for this case is:

Branch 1: RC-Wet - 1.0 Branch 2: RC-Dry - 0.0 NUREG/CR-.6144 VoL 6, Part 2

Appendix B Supporting Information for the Accident Progressfon 'Analysis Case 2: The RWST was not injected into the containment before breach, but- the sprays operate before breach because of power recovery; the reactor cavity full of water at b.reach. The quantification for this case is:

Branch 1: RC-Wet 1.0 Branch 2: RC-Dry - 0.0 Case 3: The RWST was not injected into the containment before breach, but the sprays operate before breach because of recovery from operator errors; the reactor cavity full of water at breach. The

  • quantification,for. this case is: ,
  • Branch i':
  • RC-Wet* - :i:.o *
  • Braricli 2: RCiDry -, b.o * .

Case 4: The RWST was not injected into the containment before breach, and the sprays never operate before breach; the reactor' cavity contains little: no water* at breach. The *quantification foi' thisor case is:

Branen 1: RC-Wet - 0.0 ijranch 2:, -~C-:i;:>ry 1.0 Question

'.';~ *.. ** ':-. . ~'

20. Baseline Containment Pressure just before Vessel Breach?,, .
l. ' ' ' . -~*, .:* ' ..* } , - * ' *. *.'.' ., ** . ' .** '. :_. ;_: .: ._' . .' ; ' *' ' * ,'

1 Branch, Type 4, 3 Cases The ~ingl_e branch _has the same name as the param~ter read in at this question:

  • pi:* IPBase
  • The bitseline 'pressure in,-the cohtaiiurteht is, read in as Parameter 1. **

This question is not sampled; the baseline pressure before VB is a direct function of whe.ther there is bfowdown' to the coritaintilent, vvhether there i~' containment heat'removal, ~nd whether the containment is successfully isolated. *,The available codes are in reasonable agreement about the value of the pressure in the containment before vessel breach for the full power cases, and it is believed that they similarly provide reasonable value of pressure for the lower power cases. Several calculations have been performed using the MELCOR codes to obtain the containment pressure .. R~sults' bf these calculations are reported i~ Appendix F of this volume. The cases for this question depend upon the branches taken* at Questions 11 and 17.

Case 1: The containment is not successfully isolated and does not have pressure retaining capability. The

, CQn,~a_i,nll).en,t .i~, ~ear,n?i:miiL q~eratiJ,J.g pressq~e-, '.fhex~l~e.pf,IfB,<J,~~' is 17 psiii. , *,

Case 2:

  • The confainme'nt is successfully isolated. There is no* hlowdbwn containmeb.t, or the ~~~e :damage to has been arrested. The containment is near normal operating pressure. The value of IPBase is 17

-* ,.' .* , .* *- . " - 7; *. ,* - -.

  • ..:,* psia; ,.

-**- / ..

Case 3: The containment is successfully isolated. There is no containment heat removal, and there* is blowdown to the containment from PORV's and/or SRV's. The MELCOR results show

  • *, : : ~ I .*_. ',
  • containment pressures' at about 19 'psia. * ,_ ..

,,*~'

\,"'

(',':*r,  :** . ~ ' .. I ;_~

Vol: 6, Patt 2 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis Question 21. Pressure Rise at Vessel Breach?

1 Branch, Type 4, 5 Cases A parameter is read in at this question:

P4. DP-VB The total containment pressure rise due to all the events that occur at vessel breach is read in as Parameter 4.

Cases 3 through 5 are sampled. Distributions for the pressure rise at vessel breach are taken from the results of MELCOR calculations for low RCS pressure cases. Distributions for intermediate RCS pressure cases are taken from NUREG-1150. The branch taken at this question depends upon the branches previously taken at Questions 15, 17 and 19.

Case 1: There is no vessel breach, or alpha mode failure of the containment. The pressure rise is set to zero.

Case 2: There is an Alpha mode failure of the vessel and the containment. The pressure rise at vessel breach is set to an arbitrary high value to ensure that containment failure occurs in Question 24.

Case 3: At breach, the RCS is at low pressure, or the molten core debris pours out of the vessel under the influence primarily of gravity alone. The mean value of the aggregate distribution of the pressure rise for this case is 5.0 psi.

Case 4: The vessel fails with intermediate pressure in the RCS and there is water in the reactor cavity. The fraction of the core ejected is medium. The mean value of the aggregate distribution of the pressure rise for this case is 57.7 psi.

Case 5: The vessel fails with intermediate pressure in the RCS and there is little or no water in the reactor cavity. The mean value of the aggregate distribution of the pressure rise for this case is 64.7 psi.

Question 22. Does a Significant Ex-Vessel Steam Explosion occur?

2 Branches, Type 2, 2 Cases The branches for this question are:

1. EVSE An energetic molten fuel-coolant interaction occurs in the reactor cavity upon vessel breach.
2. noEVSE No energetic molten fuel-coolant interaction occurs in the reactor cavity upon vessel breach.

This question is not sampled. The branch fractions were taken from NUREG-1150 which were quantified internally. The branch taken at this question depends upon the branches previously taken at Questions 17 and 19.

The dropping of hot metal into water has been observed to cause energetic and violent reactions which are commonly known as steam explosions. They appear to be more likely when the water is considerably below

  • the saturation temperature. In a severe reactor accident, a steam explosion may occur when the core slumps into the lower head of the vessel, known as an in-vessel steam explosion (IVSE), or when the lower head of NUREG/CR-6144 B-18 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis the vessel fails and the core falls or is expelled into water in the reactor cavity beneath the vessel. This latter event is known as an ex-vessel steam explosion (EVSE). While IVSEs were explicitly considered for the BWR APETs, the probability of a PWR vessel failure by an IVSE was judged to be negligible. Thus IVSEs are not considered in this analysis for Surry.

The effects of EVSEs are considered in two places in this APET. If the RCS is at intermediate pressure at VB, the effects of an EVSE at VB are considered in Question 21. The experts who considered pressure rise at VB included the pressure rise due to EVSEs in their distributions for total pressure rise. The other effects of an EVSE are considered to be small compared with the effects of HPME. This question considers the effects of EVSEs when the vessel fails at low pressure or the molten debris pours from the vessel due to gravity alone. Whether an EVSE occurs following a low pressure VB also determines whether the debris bed in the reactor cavity after VB is in a coolable configuration and the amount of core involved in CCI.

Case 1: The vessel failure resulted in the melt pouring out, driven primarily by gravity, and there was water in the cavity when this occurred. This is the only situation in which an ex-vessel steam explosion is of interest. Not all steam explosions are "significant" in context used here. The fraction of the time that a pour of hot metal into water results in a significant EVSE is thought to be between 0.1 and 0.9. The state of knowledge in this area is such that, at this time, it is not possible to do a great deal better than assigning a probability of 0.50 to the probability for a significant EVSE. Thus, the quantification for this case is:

Branch 1: EVSE - 0.50 Branch 2: noEVSE - 0.50 Case 2: There was no vessel breach, or the cavity was dry at breach, or the vessel failed by an alpha mode event or by pressurized ejection of the melt. An ex-vessel steam explosion is not of interest or is not credible. The quantification for this case is:

Branch 1: EVSE - 0.0 Branch 2: noEVSE - 1.0 Question 23. Containment Failure Pressure?

1 Branch, Type 4, 3 Cases A parameter is read in at this question:

P6. CF-Pr The containment failure pressure is read in as Parameter 6.

This question reads in the failure pressure of the containment. The comparison of the failure pressure with the load pressure, and the determination of the mode of failure, take place in the next question. Two distributions of the failure pressure are read in this question, depending on the nominal containment pressure which was discussed in Question 11. The distribution when the mean value is 126 psig is taken from NUREG-1150 (which was provided by the Structural Expert Panel). The distribution when the mean value is 45 psig is obtained by scaling the above distribution proportionally.

Question 24. Containment Failure at VB?

2 Branches, Type 5, 1 Case Vol. 6, Part 2 B-19 NUREG/CR-6144

  • Appendix B *. Supporting Information for the Accident" Progression Analysis The ;branches*.for this question- are:* : '-.

' ' _;' ., '*, ' '*'" . ' ..: ) "' '",'; '.:*' *, .. ,, .. ..

~

t.' iCF~Rupt Th~ containment fails 'hy rupture.

  • . - ~.::.i . . . . i ~ *' ' : ' ' * '
2. no-ICF The containment does not *fail at vessel breach .

.The re_sult in this, question d_epeni::Is,upon the, branc~es p,reviously.take1;1 at Quc::stio11s 20, 21 :a_nd 23, ._ :, -:; *.

. E~,. ,-*.,**-*-.* r;_ ....**_\:,

This question adds, tp.e>P,r~!lsure::i:ise,l:!Lvessel-b,reach- (Paramet~r4, :01\VB) to Jlle base pressµre jn the c:ont~ipn;ie11t before .br~ach (Parameter. 1, IPI3ase) to ()qtain tl).e l<:>~d .pres~ure. - Tpis. is _tlie:n ql,:n.pared to the aggregate distributi9n o(co:ntainment -failure. pres~1,1re (Para~eter 6, CF.-1:'r),. to deterl,lJ.ine,wb,ether Jhe

.containment will fail or not. . . ., * /*c .* * . *,

. . )i* * * ',! .. -

Case 1: The containment is failed by an alpha mode event or a rocket event. Dummy values are used with the. cotnparis<,>µ. capability . o f f : ~ ,so tllatrupture, Bn,mch, 2, is selected:. . ,.: *

-* ~,; ..

Question. 25 .. Conta_igment- Status at; YB?, ..

  • 3 Branches; Type 2, 5 Case.* .':.I*..:*

The branches for this question are:

1. ICF-Rupt The containment is not successfully isolated at core damage, or fails at VB' *either by Alpha mode or rupture.  ;, .'.. *::: ***
2. !CF-Leak The containment is isolated, but leaks.

'  ; *:.: ~ . '.. '  :. ' . *-. \ .-** ' -*:". '. ' * . .. . . . ' ~;

3. .no~ICF.* .The :contllinment is s.ucces~fl!lly-isolated ~nd ~qes not fail. at vessel\:m~acb, .

This question summarizes the containment status based on the results of P!evious questions (Questions 10, 11, 17 and 24). ** * * '

  • Question 26. Is AC Power Available Late?

2 Branches, Type 2, 9 Cases The branches for this question are:

1. LRAC
2. noLRAC AC power is not available for this time period, but may be recovered in the future.

f:.** .:**_: r** . ',*.> ;,, ,: .

.The time period of.interest herei~ betwee1:1 vessel breach and the initial portion of CCI. This.time periodJor each Jiqie window is given Sectio1;1 6.1.. This question addresses the recovery ofelectric_power'to the injection p.umps during* this time period* for the..cases where either. off-:site power or 4 kV bus.was not available. The meaning of.recovery probability and :their distributions are the, same as *disc,ussed jn. Question, :12i 1 -The branching at this question depends upon the branches.taken at Questions *1, 4 ,and 12.

  • Cases l. through. 8 of this question are sampled.

Case 1 through 4: Offsite power was not available at the VB. The probability of power recovery during this period is calculated based on the recovery distribution . ' ~

and . -

is assigned ..to the first branch .

NUREG/CR-6144 B-20 Vol. 6, Part 2

Appendix B

  • Supporting Information for the Accident Progression Analysis Case 5 through 8: Injection pumps were not operating because of loss_of 4 kV bus to the available injection pumps at VB. The probability of restoring the 4 kV bus during this period is assigned to the first branch.

Case 9: Power was available at VB and remains*available. The quantification for*this case is:

Branch 1: ERAC 1.0 Branch 2: NoERAC - 0.0 Question 27. Recovered from human errors late?

2 Branches, Ty~e 2, 5 Case~

The branches for this question are:

1. LRHX Operators recover from previous error.
2. NoLRHX Operators do not recover from the previous error.

This question addresses the recovery from operator errors for the accidents where the VB occurred because

.of inadequate operator actions following the core damage. *The time period of interest is the same as Question 26: Cases_lthrough 4 of this qu~stion are sampled. The meaning of recovery probability and their distributions are the same as discussed in Question 13 .. The branching at this question depends upon the branches taken at Questions 1 and 13.

Question 28. Late Sprays?

4 Branches, Type 2, 5 Cases The branches for. this *question are:

1.: L-Sp *:*The containment sprays'ai-e operating during this period.

2. LSPfAC The containment sprays are available to operate and will operate when power is recovered.
3. LSPfHX The containment sprays are available to operate if operators recover from previous error.
4. LSPf The containment sprays are failed and cannot be recovered.

This question is not sampled. The branch chosen for this question depends directly upon the branches taken at Questions 18, 26 and 27. The time period of interest is the same as in the preceding question. If sprays are recovered during this period, the release from CCI will be considerably reduced. If the debris bed is coolable and water was present, but was not being replenished, spray recovery will prevent dryout and the start of CCI. If the sprays were in the "available" state before, the sprays will operate in this period, when power has been recovered, the 4 kV bus has been restored, or operators have recovered from previous errors, depending on what led to the core damage. If power is recovered and the sprays operate, the contents of the RWST will be transferred to the containment and the cavity will fill up with water.

Case 1: The sprays were available at the start of the accident. The quantification for this case is:

Branch 1: L-Sp - 1.0 Branch 2: LSPfAC - 0.0 VoL 6; Pa.rt 2 B-21

Appendix B Supporting Information for the Accident Progression Analysis Branch 3: LSPtHX - 0.0 Branch 4: LSPf - 0.0 Case 2: The sprays were failed at the start of the accident, and no recovery is possible, so the sprays remain failed. The quantification for this case is:

Branch 1: L-Sp - 0.0 Branch 2: LSPfAC - 0.0 Branch 3: LSPtHX - 0.0 Branch 4: LSPf - 1.0 Case 3: The sprays are available to operate during this time period, but power or the 4 kV bus has not been recovered so the sprays remain available to operate in the future when power or 4 kV bus is recovered. The quantification for this case is:

Branch 1: L-Sp - 0.0 Branch 2: LSPfAC - 1.0 Branch 3: LSPtHX - 0.0 Branch 4: LSPf - 0.0 Case 4: The sprays are available to operate at the start of the accident, but operators have not recovered from previous errors so the sprays remain available to operate in the future when the operator error is corrected. The quantification for this case is:

Branch 1: L-Sp - 0.0 Branch 2: LSPfAC - 0.0 Branch 3: LSPtHX - 1.0 Branch 4: LSPf - 0.0 Case 5: The sprays were available to operate during the previous time period. The sprays now operate because power has been recovered, the 4 kV bus has been restored, or operators have recovered from previous errors, depending on what led to the core damage. The quantification for this case is:

Branch 1: L-Sp - 1.0 Branch 2: LSPfAC - 0.0 Branch 3: LSPtHX - 0.0 Branch 4: LSPf - 0.0 NUREG/CR-6144 B-22 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis Question 29. Late Ignition 2 Branches, Type 2, 3 Cases The branches for this question are:

1. L-Ign Ignition of the hydrogen in the containment will occur during this period if the concentration is flammable.
2. noL-Ign Ignition of the hydrogen in the containment will not occur during this period even if the concentration is flammable.

This question determines whether conditions exist to ignite the hydrogen in the containment between VB and early part of CCI. The conditions that make hydrogen combustion capable of threatening the Surry containment in the late per~od are no prior failure, little or no combustion at VB, and absence of continuous electrical power and sprays. If the sprays do not operate in this period, the containment will be steam inert through this period and combustion is not possible. If power is recovered during this period and the sprays operate, then ignition is very likely.

Case 1: The containment is already failed. Ignition and burn at this time is jrrelevant. The quantification for this case is:

Branch 1:* L-lgn - 0.0 Branch 2: noL-Ign - 1.0 Case 2: Electrical power and spray operation were recovered during this period. Ignition is highly likely.

The quantification for this case is:

Branch 1: L-lgn - 0.99 Branch 2: noL2-Ign - 0.01 Case 3: Electric power is not recovered during this time period. The sprays do not operate, so the containment will remain inerted by the high steam concentration. The quantification for this case is:

Branch 1: L-Ign - 0.00

  • Branch 2: noL-Ign - 1.00 Question 30. Number of Holes in vessel?

2 Branches, Type 1, 1 Case The branches for this question are:

1. 1-Hole There 1s only one large hole in the RCS following VB.
2. 2-Hole There are two large holes in the RCS.

This question was intended to provide the information on the number of holes in the RCS to the source term code. However, source term analysis showed that this parameter does not make a significant contribution to the source term release fractions. Therefore, the this question is dummied out and take the first branch always.

Vol. 6, Part 2 B-23 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression .Analysis Question 31. Late Containment Failure due to hydrogen burning?

3 Branches, Type 2, 6 Cases The branches for this question are:

1. -LCF-Rupt The containment already Jailed; or ruptures due to hydrogen burning:during this period.*
2. LCF-Leak The containment already leaks. No hydrogen burning is possible, since* all hydrogen escaped the containment. '
3. no-LCF The containment does not fail during this period.

The time period of interest of this questioh is *same; as the previous' question: "This. question' determines th~

status of 'the* containment at the end: of this time period; *including' rupture by* hydrogen *burning during this period. This question is not sampled;* The branch cliose~ for this question depends directly upon the branches takeri at Questions *11;* 11, 18, 25, and: 29.

The pressure generated by hydrogen burning when ignited is not calculated fo-'th.is' analysis. -Caicrtlationitshow that the pressure generated by hydrogen burning is generally much higher than 45 psig, but substantially below 126 psig:* The probability of the co~ta.1.nntent faihire*by-hydrogen burriing i~ relatively small in this analysis since the dominating containment failure mode is initial isolation failure. Therefore; it has been assumed in this analysis that the containment would fail by hydrogen burning, when ignition occ:urred,* if the containment pressure capability is 45 psig, but would not if it is 126 psig.

  • Case.I:*- .The containmentalreadyifajled. 'The quantificationforthis case is:

Branch 1: LCF-Rupt 1.0 Branch 2: _LCF-Leak 0.0 Branch 3: no-LCF 0.0 ,-).).

Case 2: The containment already leaked. The quaritificationfor this*case is:

. . '~ ...*

Branch 1: LCF-Rupt 0.0 '

Branch 2: LCF-Leak - 1.0 Branch 3: no-LCF - 0.0 Case 3: Conditions do not exist for hydrogen ignition. The containment does not fail. The quantification for this case is:

Branch 1: LCF-Rupt 0.0 Branch 2: LCF-Leak 0.0 Branch 3: no-LCF - 1.0 Case 4: The containment failure pressur~. is 45_.:(>sig. _Conditiqns ~~st Jor hydre>gen ignit~on... HPME occurred at VB, and most of hydrogen released at VB did not burn. The quantification for this case is: :_ .-.. ,.-__ *- 'i ** - . *: - -'. , .-.._ - -_, _-** -_., - -,- , -' --_.. ~ -,_.

-~ra~ch 1: LCF-Rupt - .- 1.0

.Branch. 2: -LCF-Leak

,. ' . *, - 0.0 __

Branch-*3:' no-LCF - _0.0 NUREG/CR~6144 Vol. 6, Part 2

.Appendix B , Supporting Information for .the Accident Progression Analysis Case 5: The containment failure pressure is 45 psig. Conditions exist for hydrogen ignition. The core debris poured out of the vessel at VB. None of hydrogen released at VB burned. The quantification for this case is:

Branch 1:;*LCF-Rlipt - 1.0

  • Branch 2: LCF-Leak - 0.0 Branch 3: no-LCF - 0.0 **'**.;

Case 6: The containment does not fail either because the containment failure pressure is 126 psig, or sufficient amount of *hydrogen 'does not exist in the containment.' The quaritificatfon for this cas*e

  • .is:<:., ..

13r_anch 1: LCF.:Rupt. ,_ . 0.0, Branch 2:. LCF7Leak - . 0.0

  • . ,,._ *_B;~n~h 3:. no-LCF - 1.0
  • -- l * --** ** '.: ~ ~

Question 32. Is the Debris Bed in a Coolable Configuration?

2 Branches, Type 2, 5 Cases

  • Thebriuichedorthis 1qtiestforiate:. .:r-, . . , -- ): .* '.,, *"*c, *.'.'

f CDB Th~ ~ie~ris bed is coqiabie; ~~ 'c6 take~ plac~ asJoni~i t~~ a~p~is r~ril~iri.s co~eiJct with water.

  • * *. ; I ' * * : * *  : : ' * * .' * ~ ._' j ;, . *' _- * ' * ' / .. *' . . ' "
2. noCDB The debris bed_i~ _11ot coolable .. ,-Cq will begin:anoqn_ as _the melt reheats-whether water is present or not.

This question is not sampled and was quantified as for the NUREG-1150 analysis'. .The bra~ch taken at this questipn depend~ uppn the ibranclles previously taken at Q9e_stionsJ7a11d

    • ' ** , * ' ' ' ' - * ' l_ ' *' * ' - * * ** / ** *' ' *  :~. *' , ***: : ' ' \ * * ' ' ~. ~ \ * *
  • i2, .. , _.
  • ** ' ' ' i '. '*. * - . - .
. ~_*- ...... :--. ._.--. -~ *._* ..... _:. -~ .....~:* . . . . ., . -:::;*: .-.* *, '~.:: . ...... " .~--.. '~*. i:,,~) :.*;*-,,-.y: :~___ ;*-:.'/~::' .-:;;-*,* -::_

Core-cQncr.et!! Jntera~tiops ~11 n,ot, occur _if,t~e .debris bed is Jn !1 coolable cpqfigurati()n, and .if,tbere is water.-

p~esent to c~ol it.. '.fhls .ciµestipn ~et~rmines whetl)e~ tb~ ~ebrjs.~e.d is'.coolab1~:assum1~gtbat wat~~ is present

~he~* 'tne core. debris. ent~rs _the .~c1vjty a~dis co:0:tinuo~~IY:: i;~pieni~ll~:J i~~f~~ftet_.)Vllet~e; *\Vat~r is present is -~.ei~pirllled* in tlle *.riext qii,estion~ - the. poriioi1' -~' ~hf µ,iolt~,n, ,C~,)!y_ .th~( pa.rticipate~jn D(::l{ is 'unavailable '

for cti: *Thus the* ~cire"i:iebiis considered in. this question is..the debris: e~eli~d at* VB that remains in the cavity and the debris that leaves the vessel some time after VB. More\liscussion 9f deb'riscfooi~bility topic may be found in Volume 2, Part 6, of NUREG/CR-4551. * ** * * *- * ,*:

An Alpha event is likely to scatter at least some corium around the contaiI1me.µ1. If this._corium comes. to re.st in a thin uniform layer, air cooling will suffice. However, it is pos;ible* thai drifts of c6iium:* pa:tticles1rtight accumulate in corners, in the wall-floor angle, and so on, that would;belarge ehough,frnehiat and start CCI.

Debris coolability is very uncertain in scenarios such as these.

Case 1: The vessel has failed by an Alpha mo~~- ey~nt.,wbicb also .fl:l.ils. tpe contaJ11rn,ent: These ;~ve11.ts ax:e so energetic that a substantial portion of.the core _debris is likely-to be widely s"attered thrq_ugho~t the containment. However, vetj,, littie'. -kn~wi ~bdtlt .the~f events. is or -the *expect~d. cotium distribution. S,ince the A}pha mode failure of tb~ _containment _also fail the sprays, there is no _supply

  • of ~a.tei:Jo th~ ca~ify *:*arid cb ~l_f dcciir e~ehttiallYe;Jii ffth~ 'ciJbris* bed*1s h1iti~ily '~o6lable and

. :-s~111e water is 'pte;ent:* Thus th6 qti~riiificitioifr~t thi~ t:~~-e is: l~ig~lffu~fo~~:0:t. The ~liahtifi~ation for this case'is':*' ._., .'*, . , . *.',.,*..>.;: .. -' ;_>. *. - ':.-*:' ._:',.: .:L ' 1!7 ~\-:****,:.*--**,1- *,;;: ,_,n_,,, ;;;, ".** ... *....*,,. - .

Vol. 6, .Part 2 -B-25 ,NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis Branch 1: CDB - 0.85 Branch 2: noCDB - 0.15 Case 2: There was no vessel failure; CCI does not occur. The quantification of this case is:

Branch 1: CDB - 1.0 Branch 2: noCDB - 0.0 Case 3: The vessel failure resulted in HPME or gross bottom head failure at high pressure. The core debris involved in HPME but which does not participate in DCH is likely to be widely distributed throughout the containment. The state of the debris ejected at vessel failure which remains in the cavity is not well known. The debris that pours out of the vessel some time after vessel blowdown may assume a coolable form if it fragments into pieces that are neither too small nor too large. The quantification for this case is:

Branch 1: CDB - 0.80 Branch 2: noCDB - 0.20 Case 4: A gravity pour of the core debris resulted at vessel breach, and an EVSE occurred. The EVSE may spread a portion of the debris throughout the containment where it would be coolable. On the other hand, the EVSE may create fine particles that remain in the cavity and make the bulk of the core debris in the cavity noncoolable. The quantification for this case is:

Branch 1: CDB - 0.80 Branch 2: noCDB - 0.20 Case 5: The vessel has failed with a gravity pour resulting. No EVSE occ~ed. 'All of the core which exit~

the vessel should remain on the cavity floor. To form a coolable debris bed, the debris must fragment when it hits the water, the resulting particles must quench while falling through the water, and the size of the bulk of the particles must fall within a certain size range. Further, if a portion of the debris bed is noncoolable, the available evidence is that this portion of the bed will grow in

  • size until essentially the entire bed has become noncoolable. The quantification for this case is:

Branch 1: CDB - 0.35 Branch 2: noCDB - 0.65 Question 33. Does Prompt CCI occur*?

2 Branches, Type 2, 3 Cases The branches for this question are:

1. PrmptCCI CCI occurs promptly following vessel breach.
2. noPrmCCI CCI does not occur promptly after vessel breach.

This question is not sampled; whether prompt CCI occurs follows logically from the information available about the coolability of the core debris and the presence of water in the reactor cavity. *The branch taken at this question depends upon the branches previously taken at Questions 17, 19, and 32.

Appendix B Supporting Information for the Accident Progression Analysis Case 1: Vessel did not fail and there is no corium in the cavity floor. No CCI occurs. The quantification for this case is:

Branch 1: PrmptCCI - 0.0 Branch 2: noPrmCCI - 1.0 Case 2: The debris is coolable and there is water in the cavity. CCI does not begin promptly. The situation where the containment sprays operate only in the late period is not considered a sufficient water supply to prevent CCI from starting. Electrical power may be recovered any time in the period, so the sprays may not start until several hours after VB. Water must be continuously present from VB to prevent prompt CCI. The quantification for this case is:

Branch 1: PrmptCCI - 1.0 Branch 2: noPrmCCI - 0.0 Case 3: There is no water in the cavity, or the debris is not coolable. In either case, CCI begins promptly, either at once, if the debris is hot when it leaves the vessel, or as soon as the debris has reheated.

The quantification for this case is:

Branch 1: PrmptCCI - 1.0 Branch 2: noPrmCCI - 0.0

  • Question 34. Is AC Power Available Very Late?

2 Branches, Type 2, 9 Cases The branches for this question are:

1. L2RAC AC power is available Very Late?
2. noL2RAC AC power is not available for this time period, but may be recovered in the future.

The time period of interest here is from the initial portion of CCI to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. This time period for each time window is given Section 6.1. This question addresses the recovery of electric power to the injection pumps during this time period for the cases where either off-site power or 4 kV bus was not available. The meaning of recovery probability and their distributions are the same as discussed in Question 12. The branching at this question depends upon the branches taken at Questions 1, 4 and 26. Cases 1 through 8 of this question are sampled.

Case 1 through 4: Offsite power was not available at the end of the previous period. The probability of power recovery during this period is calculated based on the recovery distribution and is assigned to the first branch.

Case 5 through 8: Injection pumps were not operating because of loss of 4 kV bus to the available injection pumps at the end of the previous period. The probability of restoring the 4 kV bus during this period is assigned to the first branch .

Vol. 6, Part 2 B-27 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis Case 9: Power was available at the end of the previous period and remains available. The quantification for this case is:

Branch 1: ERAC - 1.0 Branch 2: NoERAC - 0.0 Question 35. Recovered from human errors very late?

2 Branches, Type 2, 5 Cases The branches for this question are:

1. L2RHX Operators recover from previous error during this time period.
2. NoL2RHX Operators do not recover from the previous error during this time period.

, This question addresses the recovery from operator errors for the accidents where. the VB occurred because of inadequate operator actions following the core damage. The time period of interest is the same as Question 34. Cases 1 through 4 of this question are sampled. The meaning of recovery probability and their distributions are the same as discussed in Question 27. The branching at this question depends upon the branches taken at Questions 1 and 27.

Question 36. Very Late Sprays?

2 Branches, Type 2, 5 Cases The branches for this question are:

1. L2-Sp The containment sprays are operating during this period.
2. L2SPf The containment sprays are not recovered.

This question is not sampled. The branch chosen for this question depends directly upon the branches taken at Questions 28, 34 and 35. The time period of interest is the same as in the preceding question, If sprays are recovered during this time period, steam condensation will de-inert the containment, making a hydrogen burn possible. If the debris bed is coolable, spray operation during this period is required to prevent dryout and concrete attack.

Case 1: The sprays were available in the previous period. The quantification for this case is:

Branch 1: L2-Sp - 1.0 Branch 2: LZSPf - 0.0 Case 2: The sprays were failed at the start of the accident, and no recovery is possible, so the sprays remain failed. The quantification for this case is:

Branch 1: L2-Sp - 0.0 Branch 2: L2Spf - 1.0 NUREG/CR-6144 B-28 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis Case 3: The sprays are available to operate during this time period, but power or the 4 kV bus has not been recovered so the sprays remain available to operate in the future when power or 4 kV bus is recovered. The quantification for this case is:

Branch 1: L2-Sp - 0.0 Branch 2: L2SPf - 1.0 Case 4: The sprays are available to operate at the start of the accident, but operators have not recovered from previous errors so the sprays remain available to operate in the future when the operator error is corrected. The quantification for this case is:

Branch 1: L2-Sp - 0.0 Branch 2: L2SPf - 1.0 Case 5: The sprays were available to operate during the previous time period. The sprays now operate because power has been recovered, the 4 kV bus has been restored, or operators have recovered from previous errors, depending on what led to the core damage. The quantification for this case is:

Branch 1: L2-Sp - 1.0 Branch 2: L2Spf - 0.0 Question 37. Does Delayed CCI Occur?

2 Branches, Type 2, 4 Cases The branches for this question are:

1. DldCCI CCI occurs after a delay to boil off the water in the cavity.
2. noDldCCI CCI does not occur after a delay to boil off the water in the cavity.

This question is not sampled; whether delayed CCI occurs follows logically from the information available about the coolability of the. core debris, *whether prompt CCI has occurred, .and whether the sprays are operating. The branch taken at this question depends upon the branches previously taken at Questions 17, 33, and 36.

Case 1: Vessel did not fail and there is no corium in the cavity floor. No CCI occurs. The quantification for this case is:

Branch 1: DldCCI - 0.0 Branch 2: noDldCCI - 1.0 Case 2: Prompt CCI occurred. Delayed CCI is not possible. The quantification for this case is:

Branch 1: DldCCI - 0.0 Branch 2: noDldCCI - 1.0 Case 3: Prompt CCI did not occur and the sprays are now operating. Prompt CCI must not have occurred since the debris bed have been coolable with water available. Since the sprays are now operating, Vol. 6, Part 2 B-29 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis the water cooling the debris bed is being replenished and delayed CCI will not take place. The quantification for this case is:

Branch 1: DldCCI - 0.0 Branch 2: noDldCCI - 1.0 Case 4: Prompt CCI did not occur, and the sprays are not operating. The debris bed must have been coolable, and there must have been some water present, or prompt CCI would have resulted. As the water being boiled off is not being replenished, delayed CCI will begin when the water is all boiled off. The quantification for this case is:

Branch 1: DldCCI - 1.0 Branch 2: noDldCCI - 0.0 Question 38. Does Very Late Ignition Occur?

2 Branches, Type 2, 5 Cases The branches for this question are:

1. L2-Ign Ignition of the hydrogen in the containment will occur during this period if the concentration is flammable.
2. noL2-Ign Ignition of the hydrogen in the containment will not occur during this period even if the
  • concentration is flammable.

This question is not sampled and was quantified as for the NUREG-1150 analysis. The applicable case depends upon the branches taken at Questions 26, 29, 31, 34 and 36.

This question determines whether conditions exist to ignite the hydrogen in the containment during the latter part of CCI. In the very late period, if no burns, containment failures, or bypasses have occurred, the hydrogen available is that produced in-vessel or at VB, the hydrogen produced by oxidizing all the remaining unoxidized Zr during the initial part of CCI, and the hydrogen produced in CCI in addition to that from oxidizing the rest of the zirconium. Significant combustion events during this period are negligible if electric power and containment sprays have been continuously available since the start of the accident. They may occur in this period when electric power and the sprays are recovered.

Case 1: The containment is already failed. Ignition and burn at this time is irrelevant. The quantification for this case is:

Branch 1: L2-Ign - 0.0 Branch 2: noL2-Ign - 1.0 Case 2: Ignition occurred in the previous time period, and most of hydrogen already burned. The quantification for this case is:

Branch 1: L2-Ign - 0.0 Branch 2: noL2-Ign - 1.0 Case 3:

  • Electrical power and spray operation were recovered during this period. Ignition is highly likely.
  • The quantification for this case is:

NUREG/CR-6144 B-30 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis Branch 1: L2-Ign - 0.99 Branch 2: noL2-Ign - 0.01 Case 4: Electric power is not recovered during the time frame of interest for this analysis. The sprays do not operate, so the containment will remain inerted by the high steam concentration for some time.

Eventually the steam concentration in the containment may drop to about 55%, and then ignition is possible if enough hydrogen is present. When no electrical power is available ignition appears to be a stochastic phenomenon. A similar case was considered by the experts considering hydrogen combustion events at Grand Gulf. They gave distributions for ignition probability which depended on the hydrogen concentration. This issue is summarized in Volume 2, Part 2, ofNUREG/CR-4551.

The mean values of their ignition probability distributions for concentrations of interest are about 0.30. This value (0.30) for the ignition probability also includes implicitly the probability that heat loss through the containment wall alone eventually causes enough wall condensation to reduce the steam concentration to about 55%. The quantification for this case is:

Branch 1: L2-Ign - 0.30 Branch 2: noL2-lgn - 0.70 Case 5: The concentration is not flammable or is steam-inert. Very late ignition cannot take place. The quantification for this case is: '.'i.

Branch 1: L2-lgn - 0.0 Branch 2: noL2-Ign - 1.0 Question 39. Very Late Containment Failure due to hydrogen burning?

3 Branches, Type 2, 5 Cases The branches for this question are:

1. L2CF-Rupt The containment already failed, or ruptures due to hydrogen burning during thi~ period.
2. L2CF-Leak The containment already leaks. No hydrogen burning is possible, since all hydrogen escaped the containment.
3. no-L2CF The containment does not fail during this period.

The time period of interest of this question is same as the previous question. This question determines the status of the containment at the end of this time period, including rupture by hydrogen burning during this period. This question is not sampled. The branch chosen for this question depends directly upon the branches taken at Questions 11, 31, 33, 37, and 38.

As in Question 31, the pressure generated by hydrogen burning when ignited is not calculated in this question and it is assumed that the containment would fail by hydrogen burning if the containment pressure capability is 45 psig, but would not if it is 126 psig.

Case 1: The containment already failed. The quantification for this case is:

Appendix B Supporting Information for the Accident Progression Analysis Case 2: The containment already leaked. The quantification for this case is:

Branch 1: L2CF-Rupt- 0.0 Branch 2: L2CF-Leak- 1.0 Branch 3: no-L2CF - 0.0 Case 3: Conditions do not exist for hydrogen ignition. The containment does not fail. The quantification for this case is:

Branch 1: L2CF-Rupt- 0.0 Branch 2: L2CF-Leak - 0.0 Branch 3: no-L2CF - 1.0 Case 4: The containment failure pressure is 45 psig. Conditions exist for hydrogen ignition. Prompt or delayed CCI occurred. The quantification for this case is:

Branch 1: L2CF-Rupt - 1.0 Branch 2: L2CF-Leak - 0.0 Branch 3: no-L2CF - 0.0 Case 5: The containment does not fail either because the containment failure pressure is 126 psig, or sufficient amount of hydrogen does not exist in the containment. The quantification for this case IS:

Branch 1: L2CF-Rupt - 0.0 Branch 2: L2CF-Leak- 0.0 Branch 3: no-L2CF - 1.0 Question 40. Final Containment Condition and Failure Time?

6 Branches, Type 2, 7 Cases The branches for this question are:

1. Leak-I The containment was initially isolated, but leaks.
2. Rupt-I The containment was not successfully isolated before the core damage.
3. Rupt-VB The containment failed at VB either because of Alpha mode failure, DCH or EVSE.
4. Rupt-L The containment failed late due to hydrogen burning.
5. Rupt-L2 The containment failed very late due to hydrogen burning.
6. No-CF The containment remains intact in 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

This question is not sampled. This question utilizes the results of many previous questions to summarize the state of the containment at the end of this event tree analysis. Only the most important condition in determining the releases is considered. The branches in this question depend upon the branches previously taken at Questions 11, 25, 31, and 39.

NUREG/CR-6144 B-32 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis B.2 Listing of the Accident Event Tree SURRY LPSD APET, Rev 10, Oct 21, 93 - Adapted from N1150 40 This input represent SPDS 1 / SBO (5 PDS).

1 1. $$ SBO SBO 1 Window $ PDS1 4 Win-1 Win-2 Win-3 Win-4 1 1 2 3 4 1 .000 0.000 0.000 0.000 2 Vessel Break Size $ PDS 4 2 Large Small 2 1 2 2 Cases 1 1 1

W1 0.95 0.05 Otherwise 1 .000 0.000 3 Depressurization before vessel breach?

2 Vdep No-Vdep 2 1 2 2 Cases 2 1 2 1

  • 2 W1 & 1PORV 0.800 0.200 Otherwise 1 .000 0.000 4 Status of AC at CD? $ PDS 2 3 AC No-AC No-4KV 1 1 2 3 0.000 1 .000 0.000 5 CD due to HX? $ PDS 3 3 No-HX HXA HXD 2 1 2 3 5 Cases 1 4 2

No-AC 1 .000 0.000 0.000 1

1 W1 1.000 0.000 0.000 1 1 2

W2 1 .000 0.000 0.000 1 1 3

W3 1 .000 0.000 0.000 Otherwise $(1/4 W4) 1 .000 0.000 0.000 $ Depends on Level 1 Vol. 6, Part 2 B-33 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis 6 Status of ECCS at CD? $ PDS 5 5 ECCSf4KV ECCSfAC ECCSfHX ECCSfHW ECCSfREC 1 1 2 3 4 5 0.000 0.000 0.000 0.000 1 .000 $..eve! 1 7 Spray at CD? $ PDS 6 6 SP SPfAC SPfHX SPfHW SPfREC SPf4KV 2 1 2 3 4 5 6 2 Cases 1 1 1

W1 0.000 0.000 0.000 0.000 0.000 1 .000 Otherwise 0.000 0.000 0.000 0.000 0.000 1 .000 8 RWST at CD $ PDS 8 4 RWST-In RWSTfAC RWSTfHX RWSTfin 2 1 2 3 4 2 Cases 2 6 7 4

  • 4 ECCSfHW & SPfHW 0.000 0.000 0.000 1 .000 Otherwise 1.000 0.000 0.000 0.000 9 Is containment closed at beginning of accident? $ PDSO 2 ClsdCI No-ClsdCI 1 1 2 0.000 1 .000 10 Is containment closed before core damage?

2 ClsdCD No-ClsdCD 2 1 2 6 Cases 1 9 1

ClsdCI 1.000 0.000 1 5 3

HXD 0.000 1.000 1 1 1

W1 0.800 0.200 1 1 2

W2 0.900 0.100 1 1 3

W3 0.950 0.050 Otherwise $ W4 1.000 0.000 NUREG/CR-6144 B-34 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis 11 Containment Pressure Capability 3 CP125p CP45p CP2p 2 1 2 3 3 Cases 1 9 1

ClsdCI 0.99 0.000 0.01 2 9 10 2

  • 1 No-ClsdCI & ClsdCD 0.900 0.000 0.100 Otherwise 0.000 0.000 1.000 12 AC recovered before VB? $ Conditional .. Power/4KV Recovery Curve 2 ERAC No-ERAC 2 1 2 9 Cases 2 1 4 1
  • 2 W1 & No-AC 0.800 0.200 2 1 4 2
  • 2 W2 & No-AC 0.850 0.150 2 1 4 3
  • 2 W3 & No-AC 0.900 0.100 2 1 4 4
  • 2 W4 & No-AC 0.950 0.050 2 1 4 1
  • 3 W1 & No-4KV 0.800 0.200 2 1 4 2
  • 3 W2 & No-4KV 0.850 0.150 2 1 4 3
  • 3 W3 & No-4KV 0.900 0.100 2 1 4 4
  • 3 W4 & No-4KV 0.950 0.050 Otherwise 1.000 0.000

Appendix B Supporting Information for the Accident Progression Analysis 13 Recovered from HX before VB?

2 ERHX No-ERHX 2 1 2 9 Cases 2 1 5 1

  • 2 W1 & HXA 0.500 0.500 2 1 5 1
  • 3 W1 & HXD 0.850 0.150 2 1 5 2
  • 2 W2 & HXA 0.600 0.400 2 1 5 2
  • 3 W2 & HXD 0.900 0.100 2 1 5 3
  • 2 W3 & HXA 0.700 0.300 2 1 5 3
  • 3 W3 & HXD 0.930 0.070 2 1 5 4
  • 2 W4 & HXA 0.800 0.200 2 1 5 4
  • 3 W4 & HXD 0.950 0.050 Otherwise 1.000 0.000 14 VB?

2 No-VB VB 2 1 2 4 Cases 2 6 6 4 + 5 ECCSfHW or Reef 0.000 1 .000 3 6 6 12

( 1 + 2 )

  • 2 (ECCSf4KV or ECCSfAC) & No-ERAC 0.000 1 .000 2 C, u 13 3
  • 2*

ECCSfHX & No-ERHX 0.000 1 .000 Otherwise 1 .000 0.000 NUREG/CR-6144 B-36 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis 15 Vessel Pressure just before Breach?

2 I-ImPr I-LoPr 2 1 2 2 Cases 1 3 1

VDEP 0.000 1 .000 Otherwise 1.000 0.000 16 ALPHA Mode Failure?

2 Alpha noAlpha 2 1 2 2 Cases 2 14 15 2

  • 2 VB & I-Lopr 0.0080 0.9920 Otherwise 0.0000 1.0000 17 Type of Vessel Breach? $ Summary .. Cumulative.

5 PrEj Pour BtmHd no VB ALPHA 2 1 2 3 4 5 4 Cases 1 14 1

noVB 0.000 0.000 0.000 1 .000 0.000 1 16 1

ALPHA 0.000 0.000 0.000 0.000 1 .000 2 14 15 2

  • 1 VB & I-ImPr 1.0000 0.0000 0.0000 0.0000 0.000 Otherwise - I-LoPr 0.0000 1.0000 0.0000 0.0000 0.000 18 Early Sprays before vb? $ Cumulative 4 E-Sp ESPfAC ESPfHX ESPf 2 1 2 3 4 5 Cases 1 7 1

Sp 1.000 0.000 0.000 0.000 2 7 7 4 + 5 SPfHW or Reef 0.000 0.000 0.000 1 .000 3 7 7 12 2 + 6

  • 2 SPfAC or SPf4KV & No-ERAC 0.000 1 .000 0.000 0.000 2 7 13 3

Appendix B Supporting Information for the Accident Progression Analysis SPfHX & No-ERHX 0.000 0.000 1 .000 0.000 Otherwise 1 .000 0.000 0.000 0.000 19 Amount of Water in the Reactor Cavity at Vessel Breach? $$X 2 RC-Wet RC-Dry 2 1 2 4 Cases 1 8 1

RWSTin 1.000 0.000 2 8 12 2

  • 1 RWSTfAC & ERAC 1 .000 0.000 2 8 13 3
  • 1 RWSTfHX & ERHX 1 .000 0.000 Otherwise 0.000 1 .000 20 Baseline Containment Pressure just before VB? $$X 1 IPBase 4 1 3 Cases 1

1 1

11 CP2p 3

1 .000 17.00 1 17 4

noVB 1 .000 1

1 17.00 Otherwise 1 .000 1

1 19.00 21 Pressure Rise at Vessel Breach? Large Hole Cases $$X 1 DP-VB 4 1 5 Cases 1 17 4

noVB 1 .000 1

4 0.00 17 1

5 Alpha 1 .000 NUREG/CR-6144 B-38 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis 1

4 777.00 2 15 17 2 + 2 I-LoPr or Pour 1.000 1

4 5.00 2 15 19 1

  • 1 I-ImPr & RC-Wet 1.000 1

4 57.70 Otherwise 1.000 1

4 64.70 22 Does a Significant Ex-Vessel Steam Explosion Occur? $$X 2 EVSE noEVSE 2 1 2 2 Cases 2 19 17 1

  • 2 RC-Wet & Pour 0.500 0.500 Otherwise -- No EVSE 0.000 1.000 23 Containment Failure Pressure? $$X 1 CF-Pr 4 1 3 Cases 1 11 1

CP125p 1.000 1

6 140 1 11 2

CP45p 1.000 1

6 59.70 Otherwise 1.000 1

6 16.70 24 Containment Rupture at VB?

2 ICF-Rupt no-ICF 5 1 2 3 1 4 -6 IPBase DP-VB CF-Pr

  • AND GETHRESH 1 0

!CF rupture if IPBase +(DP-VB)> CF-Pr Vol. 6, Part 2 B-39 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis 25 Containment Status at VB?

3 ICF-Rupt !CF-Leak no-ICF 2 1 2 3 5 Cases 2 10 11 1

  • 3 ClsdCD & CP2p 0.000 1.000 0.000 2 10 11 2
  • 3 NoClsdCD & CP2p 1 .000 0.000 0.000 1 17 5

Alpha 1 .000 0.000 0.000 1 24 1

ICF-R 1 .000 0.000 0.000 Otherwise 0.000 0.000 1.000 26 AC recovered after VB but before major CCI? $ Conditional 2 LRAC No-LRAC 2 1 2 9 Cases 3 12 1 4 2

  • 1
  • 2 NO-ERAC & W1 & No-AC 0.800 0.200 3 12 1 4 2
  • 2
  • 2 NO-ERAC & W2 & No-AC 0.850 0.150 3 12 1 4 2
  • 3
  • 2 NO-ERAC & W3 & No-AC 0.900 0.100 3 12 1 4 2
  • 4
  • 2 NO-ERAC & W4 & No-AC 0.950 0.050 3 12 1 4 2
  • 1
  • 3 NO-ERAC & W1 & No-4KV 0.800 0.200 3 12 1 4 2
  • 2
  • 3 NO-ERAC & W2 & No-4KV 0.850 0.150 3 12 1 4 2
  • 3
  • 3 NO-ERAC & W3 & No-4KV 0.900 0.100 3 12 1 4 2
  • 4

Appendix B Supporting Information for the Accident Progression Analysis NO-ERAC & W4 & No-4KV 0.950 0.050 Otherwise $ 12/1 1.000 0.000 27 Recovered from HX after VB but before major CCI? $Conditional 2 LRHX No-LRHX 2 1 2 5 Cases 2 13 1 2

  • 1 NO-ERHX & W1 0.800 0.200 2 13 1 2
  • 2 NO-ERHX & W2 0.850 0.150 2 13 1 2
  • 3 NO-ERHX & W3 0.900 0.100 2 13 1 2
  • 4 NO-ERHX & W4 0.950 0.050 Otherwise 1.000 0.000 28 Late Sprays (After VB but before major CCI)? $ Cumulative 4 L-Sp LSPfAC LSPfHX LSPf 2 1 2 3 4 5 Cases 1 18 1

E-Sp 1.000 0.000 0.000 0.000 1 18 4

ESPf 0.000 0.000 0.000 1 .000 2 18 26 2

  • 2 ESPfAC & No-LRAC 0.000 1.000 0.000 0.000 2 18 27 3
  • 2 ESPfHX & No-LRHX 0.000 0.000 1 .000 0.000 Otherwise 1.000 0.000 0.000 0.000 29 Does Late Ignition Occur?

2 L-Ign noL-Ign 2 1 2 3 Cases 2 25 25 1 + 2 C-Rupt or C-Leak 0.000 1.000 Vol. 6, Part 2 B-41 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis 3 12 26 28 2

  • 1
  • 1 noE-RAC & L-RAC & L-SP 0.990 0.010 Otherwise 0.000 1.000 30 DUMMY 2 Dummy1 Dummy2 1 1 2 1.000 0.000 31 Late Containment Failure due to H2 Burning? $(After VB but before CCI) 3 LCF-Rupt LCF-Leak no-LCF 2 1 2 3 6 Cases 1 25 1

ICF-Rupt 1 .000 0.000 0.000 1 25 2

!CF-Leak 0.000 1.000 0.000 1 29 2

NoL-Ign 0.000 0.000 1.000 4 11 18 17 17 2 * -1 * ( 1 + 3 C60p & NoE-Sp & PrEj BtmHd 1.000 0.000 0.000 2 11 17 2

  • 2 C60p & Pour 1.000 0.000 0.000 Otherwise 0.000 0.000 1.000 32 Is the Debris Bed in a Coolable Configuration?

2 CDB noCDB 2 1 2 5 Cases 1 17 5

Alpha 0.850 0.150 1 17 4

noVB 1 .000 0.000 2 17 17 1 + 3 PrEj or BtmHd 0.800 . 0.200 1 22 1

EVSE 0.800 0.200 NUREG/CR-6144 B-42 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis Otherwise - Pour & noEVSE 0.350 0.650 33 Does Prompt CCI Occur?

2 PrmptCCI noPrmCCI 2 1 2 3 Cases 1 17 4

noVB 0.000 1 .000 2 32 19 1

  • 1 CDB & RC-Wet 0.000 1 .000 Otherwise Not coolable or no water 1.000 0.000 34 AC rec before 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />? $ Conditional 2 L2RAC No-L2RAC 2 1 2 9 Cases 3 26 1 4 2
  • 1
  • 2 NO-LRAC & W1 & No-AC 0.800 0.200 3 26 1 4 2
  • 2
  • 2 NO-LRAC & W2 & No-AC 0.850 0.150 3 26 1 4 2
  • 3
  • 2 NO-LRAC & W3 & No-AC 0.900 0.100 3 26 1 4 2
  • 4
  • 2 NO-LRAC & W4 & No-AC 0.950 0.050 3 26 1 4 2
  • 1
  • 3 NO-LRAC & W1 & No-4KV 0.800 0.200 3 26 1 4 2
  • 2
  • 3 NO-LRAC & W2 & No-4KV 0.850 0.150 3 26 1 4 2
  • 3
  • 3 NO-LRAC & W3 & No-4KV 0.900 0.100 3 26 1 4 2
  • 4
  • 3 NO-LRAC & W4 & No-4KV 0.950 0.050 Otherwise $ 12/1 1.000 0.000 Vol. 6, Part 2 B-43 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis 35 Recovered from HX before 24 HOURS? $Conditional 2 L2RHX No-L2RHX 2 1 2 5 Cases 2 27 1 2

  • 1 NO-LRHX & W1 0.800 0.200 2 27 1 2
  • 2 NO-LRHX & W2 0.850 0.150 2 27 1 2
  • 3 NO-LRHX & W3 0.900 0.100 2 27 1 2
  • 4 NO-LRHX & W4 0.950 0.050 Otherwise 1.000 0.000 36 Very Late Sprays {BEFORE 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />)? $Cumulative 2 L2-Sp L2SPf 2 1 2 5 Cases 1 28 1

L-SP 1 .000 0.000 1 28 4

LSPf 0.000 1 .000 2 28 34 2

  • 2 LSPfAC & No-L2RAC 0.000 1.000 2 28 35 3
  • 2 LSPfHX & No-L2RHX 0.000 1 .000 Otherwise 1 .000 0.000 37 Does Delayed CCI Occur?

2 DldCCI noDldCCI 2 1 2 4 Cases 1 17 4

noVB 0.000 1.000 1 33 1

PrmptCCI 0.000 1.000 NUREG/CR-6144 B-44 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis 2 33 36 2 1 noPrmCCI LSp 0.000 1.000 Otherwise 1 .000 0.000 38 Does Very Late Ignition Occur (BEFORE 24 HRS)?

2 L2-Ign noL2-Ign 2 1 2 5 Cases 2 31 31 1 + 2 LCF-Rupt or LCF-Leak 0.000 1 .000 1 29 1

L-Ign 0.000 1.000 3 26 34 36 2

  • 1
  • 1 noL-RAC & L2RAC & L2-SP 0.990 0.010 2 34 36 2
  • 2 noL2RAC & NoL2-SP 0.300 0.700 Otherwise 0.000 1 .000 39 Very Late Containment Failure due to H2 Burning (Before 24Hrs)?

3 L2CF-Rupt L2CF-Leak no-L2CF 2 1 2 3 5 Cases 1 31 1

LCF-Rupt 1 .000 0.000 0.000 1 31 2

LCF-Leak 0.000 1 .000 0.000 1 38 2

NoL2-Ign 0.000 0.000 1 .000 3 11 33 37 2 * ( 1 + 1 C60p & ( P-CCI or D-CCI 1 .000 0.000 0.000 Otherwise 0.000 0.000 1.000 40 Final Containment Sondition and Failure Time?

6 Leak-I Rupt-I Rupt-VB Rupt-L Rupt-L2 No-CF 2 1 2 3 4 5 6 7 Cases 1 39 3

Vol. 6, Part 2 B-45 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis No-L2CF 0.000 0.000 0.000 0.000 0.000 1 .000 1 25 2

!CF-Leak 1 .000 0.000 0.000 0.000 0.000 0.000 2 11 25 3

  • 1 CP2p & ICF-Rupt 0.000 1.000 0.000 0.000 0.000 0.000 2 11 25

-3

  • 1 NoCP2p & ICF-Rupt 0.000 0.000 1.000 0.000 0.000 0.000 2 25 31 3
  • 1 No-ICF & LCF-Rupt 0.000 0.000 0.000 1 .000 0.000 0.000 2 31 39 3
  • 1 No-LCF & L2CF-Rupt 0.000 0.000 0.000 0.000 1.000 0.000 Otherwise 0.000 0.000 0.000 0.000 0.000 1.000 NUREG/CR-6144 B-46 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis B.3 Characteristics of the Surry Binner The binner is the computer input which instructs EVNTRE how to group the outcomes from evaluating the APET.

These outcomes constitute the interface with the subsequent source term analysis. There are too many outcomes for them all to be saved for analysis afterwards, so as each unique path through the event tree is evaluated, the probability of that path is added to the probability for the appropriate accident progression bin.

The term "binner" refers to the set of computer input that defines these bins.

Section 6.4 of this volume gives a general description of the accident progression bins and defines each attribute of each characteristic. That material is not repeated here. The binner itself, a computer input file read by EVNTRE, defines the accident progression bins and is listed in Section B.4. This section of Appendix B contains a case-by-case description of the binner. Since the format of this binner is designed to match the format requirement of the SURSOR code, some characteristics and attributes which are not specifically applicable to this study are included in the binning. The twelfth characteristic, "Time Window," is not required by the SURSOR code, but added to be passed to the consequence analysis.

Characteristic 1. CF-Time (Time of Containment Failure) 7 Attributes, 7 Cases The attributes for this characteristic are:

A. V-Dry Check valve failures resulted in a pipe break in an interfacing low pressure system. The break location was not underwater at the start of core degradation.

B. V-Wet Check valve failures resulted in a pipe break in an interfacing low pressure system. The break location was underwater at the start of core degradation.

C. Early-CF The containment failed before vessel breach. This characteristic represents isolation failures at the beginning of the accident.

D. CF-at-VB The containment failed at the time of vessel breach.

E. LNL-CF The containment failed in the late or very late period, including CCI.

F. Final-CF The containment failed during the final period.

G. No-CF The containment did not fail.

This characteristic primarily concerns the time of containment failure. In addition to four time periods in which the containment may fail, there is an attribute for no containment failure.

Case 1: This case defines the conditions for Attribute G, No-CF. For this characteristic, no containment failure is interpreted to mean successful isolation of containment initially, no failure of the containment pressure boundary later and no bypass by Event V. The size or type of containment failure is treated in Characteristic 10.

Vol. 6, Part 2 B-47 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis Case 2: This case defines the conditions for Attribute A, V-Dry. This attribute is not applicable to this analysis.

Case 3: This case defines the conditions for Attribute B, V-Wet. This attribute is not applicable to this analysis.

Case 4: This case defines the conditions for Attribute C, Early-CF. Early containment failure here means failure before vessel breach, which includes failure of initial isolation of the containment.

Case 5: This case defines the conditions for Attribute D, CF-at-VB. This is containment failure within a few minutes of vessel breach due to the events accompanying vessel failure.

Case 6: This case defines the conditions for Attribute E, Late or Very Late CF. This is containment failure which occurs after VB. It could occur anywhere from a few tens of minutes after VB to several hours after VB. The major cause of this failure is hydrogen burning.

Case 7: This case defines the conditions for Attribute F, Final-CF. Basemat melt-through (BMT) and eventual overpressure failure due to the inability to restore containment heat removal in the days following the accident were the failures that occurred in the Final period in the full power study. These failure modes were determined to be not credible for accidents during mid-loop operation and therefore this attribute was not used in this analysis.

Characteristic 2. Sprays (Operation of Containment Sprays) 8 Attributes, 8 Cases The attributes for this characteristic are:

A. Sp-Early The sprays operate only in the Early period, that is, before vessel breach.

B. Sp-E+I The sprays operate only in the Early and Intermediate periods, that is, before vessel breach and immediately after vessel breach.

C. Sp-E+I+L The sprays operate only in the Early, Intermediate, and Late periods, that is, from UTAF through the initial part of CCI.

D. SpAlways The sprays Always operate during the periods of interest for fission product removal, that is, for at least 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> starting at UTAF.

E. Sp-Late The sprays operate only in the Late period, that is, during the initial part of CCI.

F. Sp-L+VL The sprays operate only in the Late and Very Late periods, that is, from the start of CCI through the release of almost all the fission products from CCI.

G. Sp-VL H. Sp-Never NUREG/CR-6144 The sprays operate only in the Very Late period, that is, during the latter part of CCI.

The sprays Never operate during the accident.

B-48 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis This characteristic concerns the operation of the containment sprays. Spray operation implies containment heat removal and radionuclide scrubbing.

  • The division into the eight attributes is a straightforward sorting out of the various combinations of time periods. The final time period is of little consequence for the fission product release, but it must be included because there are cases where sprays operate only in this period and, for each characteristic, the binner must have a location in which to place every outcome.

Case 1: This case defines the conditions for Attribute A, Sp-Early. In this case, the sprays operate only in the period before vessel breach.

Case 2: This case defines the conditions for Attribute B, Sp-E+ I. In this case, the sprays operate only before and at vessel breach.

Case 3: This case defines the conditions for Attribute C, Sp-E+ I+ L. In this case, the sprays operate only from the start of the accident through the initial part of CCI.

Case 4: This case defines the conditions for Attribute D, SpAlways. In this case, the sprays operate continuously from UTAF for at least 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

Case 5: This case defines the conditions for Attribute E, Sp-Late. In this case, the sprays operate only during the initial part of CCI.

Case 6: This case defines the conditions for Attribute F, Sp-L+ VL. In this case, the sprays operate only in the Late and Very Late periods, that is, from the start of CCI through the release of almost all the fission products from CCI.

Case 7: This case defines the conditions for Attribute G, Sp-VL. In this case, the sprays operate only in during the latter part of CCI, which follows a hydrogen burn (if any).

Case 8: This case defines the conditions for Attribute H, Sp-Never. In this case, the containment sprays do not operate at all when they could contribute to fission product removal.

Characteristic 3. CCI (Core-Concrete Interactions) 6 Attributes, 6 Cases The attributes for this characteristic are:

A Prom-Dry CCI takes place promptly following vessel breach in a dry cavity. There is no overlying water pool to scrub the releases.

B. PromShlw CCI takes place promptly following vessel breach. The accumulators dump at vessel breach, so when CCI starts there is about 4.5 feet of water in the cavity.

C. No-CCI CCI does not take place.

  • D. PromDeep Vol. 6, Part 2 CCI takes place promptly following vessel breach. The cavity is full of water at this time; the pool is about 14 feet deep.

B-49 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis E. SDlyd-Dry CCI takes place after a short delay, in a dry cavity. The debris bed is coolable, but the water in the cavity is not replenished.

F. LDlyd-Dry CCI takes place after a long delay, in a dry cavity. The debris bed is coolable, but the water in the cavity is not replenished. The delay is the time needed to boil off the water in a full cavity..

This characteristic concerns the core-concrete interaction; if it takes place, when it takes place, and whether there is overlying pool of water to scrub the fission products released from the CCI.

Case 1: This case defines the conditions for Attribute A, Prom-Dry. CCI takes place promptly following vessel breach in a dry cavity. As there is no water in the cavity after VB, whether the debris bed is coolable is not relevant.

Case 2: This case defines the conditions for Attribute B, PromShlw. CCI takes place promptly following vessel breach. The cavity was dry just before vessel failure, but the accumulators discharge at vessel breach. Since accumulators are not operational during shutdown period, there is no accumulator discharge at vessel breach and this case is not applicable.

Case 3: This case defines the conditions for Attribute C, No-CCI. If neither prompt CCI nor delayed CCI takes place, there is no CCI. Either there was no vessel breach, or the debris is coolable, water was present at VB, and the water supply is continuously replenished by the containment sprays.

Case 4: This case defines the conditions for Attribute D, PromDeep. CCI takes place promptly following vessel breach, and the cavity is full of water when CCI commences.

Case 5: This case defines the conditions for Attribute E, SDiyd-Dry. CCI takes place after a short delay. The debris bed is initially coolable, and the cavity contains the accumulator water (only).

This case is not applicable to this analysis.

Case 6: This case defines the conditions for Attribute F, LDlyd-Dry. CCI takes place after a long delay.

The debris bed is initially coolable, and the cavity is full of water at vessel breach. After all the water is boiled away, CCI commences in a dry cavity.

Characteristic 4. RCS-Pres (RCS Pressure before Vessel Breach) 4 Attributes, 4 Cases The attributes for this characteristic are:

A. SSPr Just before vessel breach, the RCS is at system setpoint pressure, about 2500 psia. This pressure is determined by the setpoint of the PORVs.

B. HiPr NUREG/CR-6144 Just before vessel breach, the RCS is in the range denoted high pressure. The hole in the RCS pressure boundary is small enough that the pressure spike that follows core slump decays away relatively slowly. The pressure at vessel breach can range from 1000 to 2000 psia.

B-50 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis C. ImPr Just before vessel breach, the RCS is in the range denoted intermediate pressure. The hole in the RCS is larger than for Attribute B, so the pressure at breach is within the range of 500 to 1000 psia.

D. LoPr Just before vessel breach, the RCS is at low pressure, less than 500 psia.

This characteristic determines the pressure in the reactor coolant system just before the failure of the vessel.

This pressure, together with the mode of vessel breach, Characteristic 5, largely determines the events that take place in the containment immediately following vessel breach. The RCS pressure during most of the core degradation period for accidents in mid-loop were in the intermediate to low pressure range. Attributes A and B are therefore not used.

Case 1: This case defines the conditions for Attribute A, SSPr. The RCS is at system setpoint pressure, about 2500 psia, when the vessel fails. This attribute is not applicable to this analysis.

Case 2: This case defines the conditions for Attribute B, HiPr. The RCS is in the range denoted high pressure, 1000 to 2000 psia, when the vessel fails. This attribute is not applicable to this analysis.

Case 3: This case defines the conditions for Attribute C, ImPr. The RCS is in the range denoted intermediate pressure, 500 to 1000 psia, when the vessel fails.

Case 4: This case defines the conditions for Attribute D, LoPr. The RCS is at low pressure, less than 500 psia, when the vessel fails.

Characteristic 5. VB-Mode (Mode of Vessel Breach) 6 Attributes, 6 Cases The attributes for this characteristic are:

A. VB-HPME Vessel breach occurs when one or more penetration(s) fails and the vessel is above 500 psia. These conditions ensure High Pressure Melt Ejection.

B. VB-Pour Molten core material Pours out of the vessel at breach, driven primarily by the effects of gravity.

C. VB-BtmHd Either there is a circumferential failure of the Bottom Head, or a large portion of the Bottom Head of the vessel fails.

D. Alpha An Alpha mode failure occurs - resulting in containment failure as well as vessel failure.

E. Rocket A Rocket mode failure occurs - resulting in containment failure as well as vessel failure.

F. No-VB No Vessel Breach occurs.

  • This characteristic determines the mode of vessel failure. The mode of vessel failure and the pressure in the reactor coolant system just before the failure of the vessel, Characteristic 4, largely determine the events that Vol. 6, Part 2 B-51 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis take place in the containment immediately following vessel breach. In two of the failure modes, the failure of the vessel directly causes the failure of the containment as well.

Case 1: This case defines the conditions for Attribute A, VB-HPME. High Pressure Melt Ejection results when one or more penetration(s) fails and the vessel is in the intermediate to high pressure range.

Case 2: This case defines the conditions for Attribute B, VB-Pour. The molten core Pours out of the vessel, driven primarily by the effects of gravity. This mode of vessel failure always occurs if the vessel is at low pressure when it fails. It can also occur when the vessel is at higher pressures if the gases in the vessel escape before an appreciable amount of molten core material leaves the vessel.

Case 3: This case defines the conditions for Attribute C, VB-BtmHd. The vessel failure involves a substantial part of the Bottom Head.

Case 4: This case defines the conditions for Attribute D, Alpha. Alpha mode failure is defined to be a steam explosion in the vessel that fails the vessel and also results in containment failure.

Case 5: This case defines the conditions for Attribute E, Rocket. If the bottom head of the vessel fails and the vessel is at very high pressure, it is conceivable that the entire vessel could be propelled upward and somehow fail the containment. This mode of failure is not applicable in this analysis since it requires a high vessel pressure which is not possible for accidents during mid-loop operation.

Case 6: This case defines the conditions for Attribute F, No-VB. Core damage was arrested before vessel breach.

Characteristic 6. SGTR (Steam Generator Tube Rupture) 3 Attributes, 3 Cases Steam generator tube ruptures are not identified in the Level 1 analysis so that the attribute for this characteristic is always "No-SGTR." This characteristic is included only to match the SURSOR code requirement.

Characteristic 7. Amt-CCI (Amount of Core not in HPME available for CCI) 4 Attributes, 4 Cases The attributes for this characteristic are:

A. Lrg-CCI A Large amount of the Core (70-100%) not in HPME participates in the Core-Concrete Interaction.

B. Med-CCI A Medium amount of the Core (30-70%) not in HPME participates in the Core-Concrete Interaction.

NUREG/CR-6144 B-52 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis C. Sml-CCI A Small amount of the Core (0-30%) not in HPME participates in the Core-Concrete Interaction.

D. No-CCI There is no Core-Concrete Interaction.

This characteristic determines how much of the core that is not in HPME participates in the core-concrete interaction. Whether the CCI occurs at all, and the timing and the conditions of the CCI, are determined in Characteristic 3. The selection of one of the first three attributes in this characteristic implies that CCI occurs.

This characteristic was used in determining the amount of hydrogen produced during CCI and the likelihood of basemat melt-through. The primary use of this binning characteristic is to pass information on to SURSOR for the source term analysis.

Case 1: This case defines the conditions for Attribute C, Sml-CCI. A Small amount of the Core (0-30%) was determined to be available for CCI in the APET.

Case 2: This case defines the conditions for Attribute D, No-CCI. If there is no VB, or there is no prompt CCI and no delayed CCI, there is no Core-Concrete Interaction.

Case 3: This case defines the conditions for Attribute B, Med-CCI. A Medium amount of the Core (30-70%) was determined to be available for CCI in the APET.

  • Case4: This case defines the conditions for Attribute A, Lrg-CCI. Either a Large amount of the Core (70-100%) was determined to be available for CCI in the APET, or HPME occurred. Setting Characteristic 7 to Large here ensures that a large fraction of the core not involved in HPME is available for CCI. HPME is meant to include all the events in which core material leaves the vessel first under high gas pressure, followed by blowdown of the gas. The PrEj case in the APET includes only those cases where the hole in the vessel involves only a small fraction of the area of the bottom head. Thus the situation where the bottom head fails at any pressure above a few hundred psia has to be specifically included.

Characteristic 8. Zr-Ox (Zr Oxidation in-vessel) 2 Attributes, 2 Cases The attribute for this characteristics are:

A. Lo-ZrOx A low amount of the core Zirconium was oxidized in the vessel before VB. This implies a range from Oto 40% oxidizes, with a nominal value of 25%.

B. Hi-ZrOx A high amount of the core Zirconium was oxidized in the vessel before VB. This implies that more than 40% of Zr oxidized, with a nominal value of 25%.

This characteristic is considered to be not important for this analysis and is included only to match the SURSOR code requirement. Attribute B (Hi-ZrOx) is taken for all cases.

Vol. 6, Part 2 B-53 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis Characteristic 9. HPME (High Pressure Melt Ejection) 4 Attributes, 4 Cases The attributes for this characteristic are:

A. Hi-HPME A High fraction (> 40%) of the core was ejected under pressure from the vessel at failure.

B. Md-HPME A Moderate fraction (20 to 40%) of the core was ejected under pressure from the vessel at failure.

C. Lo-HPME A High fraction ( < 20%) of the core was ejected under pressure from the vessel at failure.

D. No-HPME There was no HPME at vessel failure.

This characteristic determines how much of the core participated in high pressure melt ejection.

Case 1: This case defines the conditions for attribute A, Hi-HPME. Since this case requires a high vessel pressure at vessel failure, it is not applicable to this study.

Case 2: This case defines the conditions for attribute B, Md-HPME. This case occurs when vessel fails at intermediate pressure with moderate amount of core melt ejection.

Case 3: This case defines the conditions for attribute C, Lo-HPME. This case occurs when vessel fails at intermediate pressure with low amount of core melt ejection.

Case 4: This case defines the conditions for attribute D, No-HPME. There was no HPME at vessel failure. This case includes the Pour mode of vessel failure, bottom head failure at low pressure, Alpha mode failures.

Characteristic 10. CF-Size (Containment Failure Size or Type) 4 Attributes, 4 Cases The attributes for this characteristic are:

A. Cat-Rupt The containment failed by catastrophic rupture, resulting in a very large hole and gross structural failure.

B. Rupture The containment failed by the development of a large hole or rupture; nominal hole size is 7 square feet.

C. Leak The containment failed by the development of a small hole or a leak; nominal hole size is 0.10 square foot.

  • D. No-CF The containment did not fail.

NUREG/CR-6144 B-54 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis This characteristic determines how the containment failed. The first three attributes define the hole size if the containment pressure boundary failed above ground. The fourth attribute indicates that the pressure boundary did not fail.

Case 1: This case defines the conditions for Attribute A, Cat-Rupt. The containment failed by catastrophic rupture or major structural failure. This can occur at vessel breach or due to a hydrogen burn after VB.

Case 2: This case defines the conditions for Attribute B, Rupture. The containment failed by the development of a large hole. This case includes the failure to isolate the containmemt initially at the beginning of the accident.

Case 3: This case defines the conditions for Attribute C, Leak. The containment failed by the development of a small hole, denoted a leak in this analysis. This case includes situations where operators successfully isolated the containment at the beginning of the accident, but the some temporary barrier failed.

Case 4: This case defines the conditions for Attribute D, No-CF. The containment did not fail above ground or below ground, and it was not bypassed.

Characteristic 11. RCS-Hole (Number of large holes in the RCS) 2 Attributes, 2 Cases The attributes for this characteristic are:

A 1-Hole There is only One large Hole in the RCS following VB, so there is no effective natural circulation through the vessel after breach.

B. 2-Hole There are two large Holes in the RCS following VB, so there will be effective natural circulation through the vessel after breach.

This characteristic is considered to be not important for this analysis and is included only to match the SURSOR code requirement. Attribute A (1-Hole) is taken for all cases.

Characteristic.12. Time Window 4 Attribute, 4 Cases The attributes for this characteristic are:

A Win-1 The core damage accident was initiated in Time Window 1.

B. Win-2 The core damage accident was initiated in Time Window 2.

C. Win-3 The core damage accident was initiated in Time Window 3.

The core damage accident was initiated in Time Window 4.

D. Win-4 This characteristic is solely determined by the first characteristic of PDS.

Vol. 6, Part 2 B-55 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis B.4 Listing of the Binner for the Surry Shutdown Risk Study Surry LP Binning - Rev. 1 - Sep 23, 93 - 11 Characteristics - PDSG-?

12 CF-Time Sprays CCI RCS-Pres VB-Mode SGTR Amt-CCI Zr-Ox HPME CF-Size RCS-Hole WINDOW 7 7 V-Dry V-Wet Early-CF CF-at-VB L/VLate-CF Final-CF No-CF 1 7 40 6

noCF 1 1 30 2

zero 1 2 30 2

zero 2 3 40 40 1 + 2 Leak-I or Rupt-I 1* 4 40 3

Rupt-VB 2 5 40 40 4 + 5 Rupt-L Rupt-VL 1 6 30 2

zero 8 8 Sp-Early Sp-E+I Sp-E+I+L SpAlways Sp-Late Sp-L+VL Sp-VL Sp-Never 3 1 18 28 36 1 * -1 * -1 E-Sp & noLSP & . noL2Sp 1 2 30 2

zero

3. 3 18 28 36 1
  • 1 * -1 E-Sp & LSp & noL2Sp 3 4 18 28 36 1
  • 1
  • 1 E-Sp & LSp & L2SP 3 5 18 28 36

-1

  • 1 * -1 noE-Sp & LSp & noL2SP 3 6 18 28 36

-1

  • 1
  • 1 noE-SP & LSP & L2SP 3 7 18 28 36

-1 * -1

  • 1 noE-SP & noL-SP & , L2-SP 1 8 36 2

No-L2SP 6 6 Promt-Dry PromtShlw No-CCI PromtDeep SDlyd-Dry LDlyd-Dry 2 1 33 19 NUREG/CR-6144 B-56 Vot 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis 1

  • 2 PrmptCCI RC-Dry 1 2 30 2

zero 2 3 33 37 2

  • 2 noPrmCCI & noDldCCI 2 4 33 19 1
  • 1 PrmptCCI & RC-Wet 1 6 30 2

zero 1 5 37 1

DelydCCI 4 4 SSPr HiPr ImPr LoPr 1 1 30 2

zero/I-SSPr 1 2 30 2

zero/I-HiPr 1 3 15 1

I-ImPr 1 4 15 2

I-LoPr 6 6 VB-HPME VB-Pour VB-BtmHd Alpha Rocket No-VB 1 1 17 1

PrEj 1 2 17 2

Pour 1 3 17 3

BtmHd 1 4 17 5

Alpha 1 5 30 2

zero/Rocket 1 6 17 4

noVB 3 3 SGTR SGTR-SRVO No-SGTR 1 1 30 2

zero/B-SGTR

  • 1 2 Vol. 6, Part 2 30 2

zero/B-SGTR B-57 NUREG/CR-6144

Appendix B Supporting Information for the Accident Progression Analysis 1 3 30 1

one/noB-SGTR 4 4 Lrg-CCI Med-CCI Sml-CCI No-CCI 1 3 30 2

zero 3 4 17 33 37 4 + { 2

  • 2 )

NO-VB or {NoPrmCCI & noDldCCI) 3 2 17 17 17 5 + 1 + 3 ALPHA or* PrEj . or BtmHd 1 1 17 2

pour 2 2 Lo-ZrOx Hi-ZrOx 1 1 30 2

zero 1 2 30 1

one 4 4 Hi-HPME Md-HPME Lo-HPME No-HPME 1 1 30 2

zero 2 2 17 17 1 + 3 PrEj or BtmHd 1 3 30 2

zero 3 4 17 17 17 2 + 4 + 5 Pour or noVB or ALPHA 4 4 Cat-Rupt Rupture Leak No-CF 3 1 40 40 40 3 + 4 + 5 Rupt-VB or Rupt-L or Rupt-L2 1 2 40 2

Rupt-I 1 3 40 1

Leak-I 1 4 40 6

noCF 2 2 1-Hole 2-Holes 1 1 30 1

one 1 2 30 2

zero NUREG/CR-6144 B-58 Vol. 6, Part 2

Appendix B Supporting Information for the Accident Progression Analysis 4 4 WIN1 WIN2 WIN3 WIN4 1 1 1 1

WIN-1 1 2 1 2

WIN-2 1 3 1 3

WIN-3 1 4 1 4

WIN-4

APPENDIX C I SUPPORTING INFORMATION FOR THE SOURCE TERM ANALYSIS

  • CONTENTS Section Page C.l INfRODUCTION C-7 C.2 SOURCE IBRM DEFINITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-7 C.2.1 Description of Parametric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-7 C.2.2 Source Term Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-8 C.3 SOURCE IBRM PARTITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-8 C.3.1 Calculation of Early Fatality Health Weight, EH ........................... C-9 C.3.2 Calculation of Latent Cancer Fatality Health Weight, LH . . . . . . . . . . . . . . . . . . . . C-9 C.3.3 Result of Source Term Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-10 C.4 REFERENCES C-11 Vol. 6, Part 2 C-3 NUREG/CR-6144

FIGURES Section Page C.l(a) Exceedance Frequencies for Release Fractions of Iodine Group ...................... C-13 C.l(b) Exceedance Frequencies for Release Fractions of Cesium Group ..................... C-14 C.l(c) Exceedance Frequencies for Release Fractions of Tellurium Group ................... C-15 C.l(d) Exceedance Frequencies for Release Fractions of Lanthanum Group .................. C-16 C.2 Prediction of Early Fatalities vs. Equivalent I-131 Release .......................... C-17 NUREG/CR-6144 C-4 Vol. 6, Part 2

TABLES Section Page C.1 Parameters Used in the SURSOR Code ....................................... C-18 C.2 APB Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-19 C.3 Frequency-Weighted Release Fractions and Frequencies ........................... C-22 C.4 Isotope Inventories for Four Time Windows (Bq) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-30 C.5 Equivalent 1-131 Inventory for Four Time Windows (Bq) .......................... C-33 C.6 Numbers of Latent Health Effects Predicted in the LH Weight Calculations ............ C-34 C.7 Windows Inventories Relative to Inventory of Window 1 . . . . . . . . . . . . . . . . . . . . . . . . . . C-35 C.8 Preliminary Partitioning of Source Terms With Non-Zero Early Fatalities and Non-Zero Latent Fatalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-36 C.9 Final Partitioning of Source Terms With Non-Zero Early Fatalities and Non-Zero Latent Fatalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-36 C.10 Partitioning of Source Terms With Zero Early Fatalities and Non-Zero Latent Fatalities . . C-37 C.11 Release Fractions for 25 Mean Source Term Partition Groups . . . . . . . . . . . . . . . . . . . . . . C-38 Vol. 6, Part 2 C-5 NUREG/CR-6144

APPENDIX C SOURCE TERM ANALYSIS C.1 Introduction Source term estimation for mid-loop operation at Surry was first investigated in the abridged study ci,cz. It was decided in the abridged study that the source terms should address uncertainty and, wherever possible,

  • the NUREG-1150 approach would be used to calculate the source terms from an accident during mid-loop operation. The parametric code, SURSORc3, that was developed in NUREG-1150C4 for Surry, was used to define the source terms in the abridged study. Two measures were taken to assure the adequacy of the source terms: The first involved comparing the calculations from MELCOR with the data used in and the results obtained from SURSOR. Second, the Source Term Advisory Group was established to provide guidance, and any additional information on modifying the SURSOR code for the study of mid-loop operation.

Based on the results of the previous abridged study, the SURSOR code *was used in the present study to predict the source terms for the accident progression bins obtained in the accident progression (Level 2) analysis. Since it is not practical to perform consequence calculations for all the source terms obtained in the present analysis (about 15,000), the source terms were partitioned (grouped according to their potential health effects). This partitioning process reduces the number of consequence code calculations required for calculating risk. The methods used for source term definition and partitioning are described in the following sections. Some of the source term calculational results are also provided in this Appendix for information.

C.2 Source Term Definition C.2.1 Description of Parametric Model The SURSOR code, along with its associated distributions from the NUREG-1150 study, was selected as the basis for source term estimation. This section provides a brief discussion of the SURSOR code, its evaluation (or modification, if required), and the final parametric model used.

SURSOR is a parametric computer code used in NUREG-1150 to predict source terms for full power operation. Table C.1 lists the parameters used in the SURSOR code, whose values were obtained in NUREG-1150 by expert elicitation. A distribution, instead of a single value, was assigned to each parameter to address uncertainty. It was assumed that the distributions for the parameters developed in the NUREG-1150 study could, in most cases, also be used in this study. 1 This assumption was based on guidance provided by an internal Source Term Advisory Group to provide guidance on the use of existing methods and data, to review the source term issues being treated and to identify any new issues that may be important to shutdown accidents. Guidance provided by this group was factored into this study. Guidance provided by the review 1 Here we are discussing the parameters that are used to determine the fraction of the inventory at the start of the accident that is released to the environment. By using the same parameters it is implied that for a similar accident, the release fractions for a full power accident and a shutdown accident will be the same. While the release fractions may be the same, the amount of radioactive material released to the environment will not be the same because of the differences in the radioactive inventories at the start of the accident.

Vol. 6, Part 2 C-7 NUREG/CR-6144

Appendix C Source Term Analysis group did not indicate that there was anything fundamentally different with these shutdown accidents, as compared to full power accidents, that would make the parametric approach unacceptable for its intended use.

Based on a review of the expected accidents and their associated phenomena as well as results from MELCOR calculations performed for these shutdown accidents, the review group guidance also suggested that it would be acceptable to use the source term parameters developed in the NUREG-1150 as a starting point for this study considering the large uncertainties already reflected by the distributions and the objectives of the study.

This guidance is supported by a comparison of selected results from a series of MELCOR calculations of shutdown accidents with the NUREG-1150 full power source term distributions which suggested that the two sets of information were in qualitative agreement. In most cases, the results from the MELCOR calculations fell within the large uncertainty bans of the NUREG-1150 source term distributions. While it was suggested that the NUREG-1150 distributions could _be used as a starting point, the guidance also warned that the distributions should be modified or new distributions should be added when the plant configuration or other characteristics of the accident were sufficiently different from the full power conditions that different initial conditions or phenomena would be introduced. The release fractions and source terms predicted by MELCOR were generally not used directly in this analysis because the models and data used in MELCOR present one view of a severe accident; alternative and conflicting views also exist. The distributions from NUREG-1150 are based on results from formal expert judgement elicitations that consider and account for these alternative views.

A review by the project staff of the POS 6 and ~OS 10 accidents indicated that the plant configuration and accident conditions associated with these accidents were sufficiently similar to the full power accidents that modifications to the NUREG-1150 distributions would not be necessary. Many of the source term parameters defined in the NUREG-1150 study depended on conditions in the containment and/or core and were not necessarily tied to specific accident sequences (e.g., FCOR depends on the amount of zirconium oxidized in the core).

C.2.2 Source Term Results In the present study, the SURSOR code was used to predict the source terms for all the APBs in each of the 100 observations. There are about 150 APBs in each observation. Although the total number of APBs (for the 100 observations) and thus the total number of source terms is 15,443, the number of APBs with different characteristics is only 360. Since the same APBs (i.e., APBs with the same characteristics) occur in different observations, the release fractions associated with the APBs in different observations are different because the LHS values vary from observation to observation. Table C.3 lists the 360 unique APBs, their characteristics (represented by their attribute strings), the frequency weighted mean release fractions (of the 100 observations) for the nine radionuclide groups, and their mean frequencies. The exceedance frequencies for the release fractions of the iodine, cesium, tellurium, and lanthanum radionuclide groups are presented in Figures C.l(a),

C.l(b), C.l(c), and C.l(d), respectively.

C.3 Source Term Partition The accident progression and source term analyses resulted in a total of 15,443 source terms for internally initiated accidents during mid-loop operation. It is computationally impractical to carry out a consequence calculation for each source term to obtain the integrated risk for the selected consequence measures. To create an interface between the source term analysis and the consequence calculation, the total number of NUREG/CR-6144 C-8 Vol. 6, Part 2

Appendix C Source Term Analysis source terms are grouped into a much smaller number of source term groups. The groups are created such that the source terms within each group have similar properties with respect to cons{:quences, i.e., their potential for causing early fatalities and latent cancer fatalities is similar. A frequency weighted mean source term is determined for each group and the consequence calculations are performed for the mean source term in four time windows.

The four core radionuclide inventories which were used in the partitioning consequence calculations for each of the four time windows are shown in Table C.4. These inventories were obtained by interpolation from the data published in Reference CS on the core inventories at Surry as a function of time after reactor shutdown.

The partitioning procedures described below consist of defining an early health effect weight, EH, and a latent health effect weight, LH, for each source term and grouping the source terms based on these weights.

C.3.1 Calculation of Early Fatality Health Weight, EH The early health effect weight was calculated by converting the radionuclide releases associated with the range of source terms into equivalentl-131 releases. Surry site-specific consequence calculations of the early health effects were performed in each of the time windows used in the analysis and the results were presented as a function of equivalent 1-131 release. This correlation of the estimated number of early health effects is the EH weight which was used in partitioning of all source terms.

The relationship between the early health effect weight and the equivalent 1-131 release is shown in Figure C.2. This relationship was produced by following the methodology used in the PARTITION code, References C.6 and C.7. Table C.5 shows the equivalent 1-131 inventories in four time windows for a range of source terms used to predict the EH weight.

Using the data displayed in Figure C.2 for the early health effects, 213 source terms with EH> 0 and LH >,;

0 were identified and grouped into four cells as discussed in section C.3.3 below.

C.3.2 Calculation of Latent Cancer Fatality Health Weight, LH The latent health effect weight, LH, was calculated by assuming a linear relationship between the number of latent cancer fatalities due to a particular radionuclide and the amount of release of that radionuclide.

The average release fractions for the nine radionuclide groups (averaged over all 15,433 source terms generated by SURSOR) were used in the LH weight calculations. Thirty six consequence calculations were performed, nine for each of the four time windows. Each of the nine calculations was run with only one of the nine radionuclide groups present in the source term while the release fractions of the remaining eight groups were set to zero. The results of the thirty six calculations for number of latent health effects are presented in Table C.6 (LH;,w, where i = 1,9 is the number of radionuclide groups and w = 1,4 is the number of time windows). The last column in Table C.6 contains the release fractions of the nine radionuclide groups averaged over all 15,433 source terms, RPI-The four corresponding values of latent health effects (LH) predicted by using the complete source terms

("complete" in the present context means that all radionuclide groups are non-zero) for four windows are Vol. 6, Part 2 C-9 NUREG/CR-6144

Appendix C Source Term Analysis (Lffw): 6.79E+02, 6.56E+02, 6.36E+02, and 6.25E+02, respectively. Summation of LH~w over nine groups for four windows in Table C.6 produces LJl!v for four windows (superscript "s" stands for "separate", i.e.,

calculation with only one non-zero radionuclide group): 9.61E+02, 9.19E+02, 8.78E+02, and 8.17E+02, respectively. An adjustment factor AFwis calculated as LII'.JLHw (7 .07E-Ol, 7.14E-Ol, 7.24E-01, and 7.65E-01) to be used in the final steps of the partitioning procedure.

The adjustment factor AFw is needed to take into account the effects of the counter-measures: population is relocated based on the projected individual dose level. These dose projections are made using the combined effect of all radionuclide groups. Therefore, the collective dose (and latent health effects) predicted for a "complete" source term will be lower than a sum of doses predicted in "separate" radionuclide group calculations because of a more extensive relocation of the population.

In addition, in order to account for the dependency of the health consequences on the decay of the core inventory, a window factor, WFw, defined as a ratio of the inventory of a particular radionuclide group in any window to its corresponding inventory in window 1, was also .calculated. It is shown in Table C.7.

Using the information presented in Tables C.6 and C.7, the number of latent health effects for all 15,443 source terms (i.e., L~w* where j = 1 to 15,443) can be estimated using the following correlation:

LH.JW = " *9 L....,I

[ _ _

LHi1 RFi a l x RF.I x WF.IW xAFW where RFi is the release fraction of the radionuclide group i and LHu is the corresponding latent health effect corresponding to the average source term RP; for the same radionuclide group i. Use of the window factor, WF;w is based on the assumption that the number of latent health effects is proportional to the magnitude of release.

Finally, 15,230 source terms with LH > 0 and EH = 0 were grouped into twenty one cells assuming a Max/Min ratio of 1.5 for each cell as discussed in section C.3.3 below.

C.3.3 Results of Source Terms Partitioning Using the data displayed in Figure C.2 for early fatalities and the correlation of section C.3.2 between the release fractions and time windows and the number of latent health effects, values of EHs and LHs for all 15,443 source terms were calculated and the source terms subdivided into three groups with the following population:

a) EH> O and LH > 0 (213 source terms or 1.3% of the total number),

b) EH= O and LH > 0 (15,230 source terms, 98.7% of the total number), and c) EH = 0, LH = 0 (no source terms).

Each of the above categories was treated separately for partitioning.

NUREG/CR-6144 C-10 Vol. 6, Part 2

Appendix C Source Term Analysis The logarithms of minimum and maximum predictions for the early and latent fatalities for group (a) are as follows:

Log10(Min EH) = -2.0; Log10(Max EH) = 0.6, Log10 (Min LH) = 3.6; Log10(Max LH) = 4.3.

The logarithms of minimum and maximum predictions for the latent fatalities for group (b) are as follows:

Log10(Min LH) = -0.9; Log10(Max LH) = 3.5.

Group (a) In the process of partitioning for the latent fatalities, all source terms in group (a) were placed into four groups defined such that the ratio of the maximum LH to minimum LH within the same group was 1.5. Similar ratio for the four groups used to partition source terms based on the number of the early health effects was 10. Partitioning of the source terms was performed in two steps. First, the source terms were assigned to the corresponding cells according to the health effect weights. Results of this preliminary partitioning for group (a) are shown in Table C.8.

Secondly, based on the number of source terms in each cell, the source terms were combined with adjacent cells carrying the higher number of source terms. Results of this final partitioning for group (a) are shown in Table C.9.

Group (b)

  • The one dimensional partitioning of the source terms in group (b) which contains source terms
  • with zero early health effects and non-zero latent health effects is shown in Table C.10.

As a result of partitioning, 25 source term groups were formed for further consequence calculations. A frequency weighted mean source term was then calculated by frequency averaging the source terms in each of these 25 partition groups. The resulting 25 mean source terms are shown in Table C.11.

C.4 References Cl. "Abridged Risk Study During Low Power/Shutdown Operation at Surry," J. Jo, et al., Brookhaven National Laboratory, Report to NRC, May 1993.

C2. "Analysis of Accidents During the Mid-Loop Operation State at a PWR," J. Jo, et al., Transactions of the Twentieth Water Reactor Safety Information Me~ting, Bethesda, MD, October, 1992.

C3. "XSOR Codes User's Manual," NUREG/CR-5360, Sandia National Laboratories, December 1989.

C4. "Severe Accident Risks: An Assessment for Five U. S. Nuclear Power Plants, Final Summary Report" NUREG-1150, U.S. Nuclear Regulatory Commission (USNRC), December 1990.

CS. R. S. Denning, et al., "Source Term Calculations for Assessing Radiation Dose to Equipment,"

NUREG/CR-4949, July 1989.

C6. R. J. Breeding, et al., "Evaluation of Severe Accident Risks: Surry Unit l," Sandia National Laboratories, NUREG/CR-4551, Vol. 3, Rev. 1, October 1990.

Vol. 6, Part 2 C-11 NUREG/CR-6144

Appendix C Source Term Analysis C7. R. L. Iman, et al., "PARTITION: A Program for Defining the Source Term/Consequence Analysis Interface in the NUREG-1150 Probabilistic Risk Assessments, User's Guide," Sandia National Laboratories, NUREG/CR-5253, May 1990.

Appendix C Source Term Analysis 1E - 0 4 - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ,

Mean

> ,. 1E-05 Median

~\...- ...

Q)

Q.

C" 95th \

Q)

LL

\

Q) I 0

C l

< \,.

- Median ~--*-*,*. ~ ..

a.

C" \

....Cl> 95th

~ 1E-06 0

C

\

\

i aS

"'C Q) 1------ 5th I Cl>

~

I' w 1E-07 1 E-08 ...Lr-T""T",.,...,,...----.-,""TTTT1~,....,..,..1'1Tffl"".....,...,"TTTT1rIT""""",-,-,,,mr-,-,-TTTTTrr.-,-,,,mr--.--r'm,m 1E-08 1 E-07 1 E-06 1 E-05 . 1 E-04 1 E-03 1 E-02

  • Release Fraction for Cs C.l(b) Exceedance Frequencies for Release Fractions of Cesium Group NUREG/CR-6144 C-14 Vol. 6, Part 2

Appendix C Source Term Analysis 1E - 0 4 - . - - - - - - - - - - - - - - - - - - - - - - - - - ,

Mean

-....Q)~

1E-05 a.

CT' Q)

Median 95th LL Q) 0 C

ell 5th "O

w Q)

Q) 0

-*--*--- ---*- ..\

\

\

\

\

\

\

1 E-08* -l-"T'""'T'"lr-T'TTTIT""""""'T--.-n'TTTTT"---r-T""TTTrm--r-,-TTTT1~r-rTTTT11T-.TTT1rrm----r1'"TTTT,rr--.+rnm1 1 E-08 1 E-07 1 E-06 1 E-05 1 E-04 1 E-03 Release Fraction for Te C.l(c) Exceedance Frequencies for Release Fractions of Tellurium Group Vol. 6, Part 2 C-15 NUREG/CR-6144

Appendix C Source Term Analysis 1E - 0 4 . . . . . - - - - - - - - - - - - - - - - - - - - - - ~

Mean

~ 1E-05

-Q) a.

Ci Q)

Median

'!;0 1 E-06~-----------------. 195th C

cu 1:J Q)

Q) *-****...

0 X *****,...____'\

w 1E-07

\ "*-----........_.

\ 5th

, __ \

1E-08 1 1 E-08 1 E-07 1 E-06 1 E-05 1 E-04 1E-03 1 E-02 1 E-01 1 E +00 Reiease Fraction for La C.l(d) Exceedance Frequencies for Release Fractions of Lanthanum Group NUREG/CR-6144 C-16 Vol. 6, Part 2

Appendix C Source Term Analysis 10 1 : == ==== :: : : :: : =;: ==: :: ::: ==: ::: =1=:: ====: :: ::: : : =~=::::::: =:::::: ~

- - - - - - - - - - - - - - - - - - - _ - - - - __ - - _I_ ____ - - - ___ - _ - __ L - - - - ____ - - ___ - -

- - - - - - - - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I- - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - -I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - L - - - - - - - - - - - - - - -

I I 1 I en ______________ I _______________ J ________________ I

~

~

a)

~

I I

I I

_::::::::::::::r:::::::::::::::J::::-- __ ::::::::c:::::::::::::::

I

~

~  :::::::::::::::1:::::::::::::::J:-:_::::::::::::c:::::::::::::::

-a


1-------------- ----------------L---------------


+---------- ----~----------------1----------------

- --------------! ------ - - - - - - - _I_ - - - - - - - - -- - - - - - ~---------------

~ I I

_____________ J ________________ L ______________ _

I c.+-4 0

$,.,f a) I

.D _:::::::-_:::::1:::::::::::::::J::::::::::::::::c:::::::::::::::

s

~

________ I _______________ J ________________ I


---------+---------------~----------------1----------------

z ---- ----------t---------------~----------------~---------------

-- ------------+---------------~----------------~---------------

- - - - - - - - - - - - - - _l _- - - - - - - - - - - - - - _I_ - - - - - - - - - - - - - - - L - - - - - - - - - - - - - - -

I I I

______________ J _______________ J ________________ L ______________ _

19 2* 10 19 3* 10 19 4* 10 Equivalent I-131 Release (Bq)

Figure C.2 Prediction of Early Fatalities vs. Equivalent 1-131 Release

Appendix C Source Term Analysis Table C.1 Parameters Used in the SURSOR Code FCOR Fraction of the radionuclide in the core released to the vessel before or at vessel breach (VB)

FVES Fraction of the radionuclide released from the vessel to the containment before or at VB VDF Decontamination factor for pool scrubbing for Event V (not used)

FCONV Fraction of the radionuclide in the containment from RCS release that is released from the containment in the absence of any mitigating effects FCCI Fraction release of radionuclide from corium during CCI FCONC Containment transport fraction for ex-vessel release SPRDF Decontamination factor for containment sprays LATE! Fraction of the iodine deposited in the containment which is revolatalized and released to the environment late in the accident FLATE Fractional release of material deposited in the RCS due to revaporization DST Fraction of core radionuclide released to the containment due to DCH at VB FISGFOSG Fraction of radionuclide released from the RCS to the steam generator, and from the steam generator to the environment (not used)

POOL-DF Decontamination factor for a pool of water overlying the core debris during CCI NUREG/CR-6144 C-18 Vol. 6, Part 2

  • Appendix C Source Term Analysis Table C.2 APB Characteristics Characteristic 1 Containment Failure Time A V-Dry Event V, Not used for mid-loop B V-Wet Event V, Not used for mid-loop C Early-CF Containment Failure before VB D CF-at-VB Containment Failure at VB E VLate-CF Late or Very Late Containment Failure (used for hydrogen combustion failure in mid-loop study)

F Final-CF Containment Failure in the Final Period (not used)

G No-CF No Containment Failure Characteristic Sprays A Sp-Early The sprays operate only in the Early period B Sp-E+I The sprays operate only in the Early and Intermediate periods C Sp-E+I+L The sprays operate only in the Early, Intermediate, and Late periods D Sp-Always The sprays Always operate during the periods of interest for fission product removal.

E Sp-Late The sprays operate only in the Late period.

F Sp-L+VL The sprays operate only in the Late and Very Late periods.

G Sp-VL The sprays operate only in the Very Late period.

H Sp-NonOp The sprays Never operate during the accident, or operate only during the Final period, which is not of interest for fission product removal.

Characteristic 3 Core-Concrete Interactions A Prmpt-Dry CCI takes place promptly following VB. There is no overlying water pool to scrub the releases.

B PrmptShlw CCI takes place promptly following VB. There is a shallow (about 4.5 ft) overlying water pool to scrub the releases.

C No-CCI CCI does not take place.

D PrmptDeep CCI takes place promptly following VB. There is a deep (about 14 ft) overlying water pool to scrub the releases.

E Sdlyd-Dry CCI takes place after a short delay. The debris bed is coolable, but the water in the cavity is not replenished. The delay is the time needed to boil off the accumulator water.

F LD1yd-Dry CCI takes place after a long delay. The debris bed is coolable, but the water in the cavity is not replenished. The delay is the time needed to boil off the water in a full cavity.

Characteristic 4 RCS Pressure Before Vessel Breach A SSPr System Setpoint Pressure (2500 psia) - Not used.

B HiPr High Pressure (1000 to 2000 psia) - Not used.

C ImPr Intermediate Pressure (200 to 1000 psia)

D LoPr Low Pressure (less than 200 psia)

Vol. 6, Part 2 C-19 NUREG/CR-6144

Appendix C Source Term Analysis Table C.2 (continued)

Characteristic 5 - Mode of Vessel Breach A VB-HPME HPME occurs - direct heating always occurs to some extent.

B VB-Pour The molten core Pours out of the vessel, driven primarily by the effects of gravity.

C VB-BtmHd Gross failure of a large portion of the Bottom Head of the vessel occurs, perhaps as a result of a circumferential failure.

D Alpha An'Alpha mode failure occurs resulting in containment failure as well as vessel failure.

E Rocket A Rocket mode failure occurs resulting in containment failure as well as vessel failure (not used).

F No-VB No Vessel Breach occurs Characteristic 6 Steam Generator Tube Rupture (the attribute of this characteristic was always C)

A SGTR A SGTR occurs. The SRVs on the secondary system are not stuck open - not used.

B SGTR-SRVO A SGTR occurs. The SRVs on the secondary system are stuck open - not used.

C No-SGRT A SGTR does not occur.

Characteristic 7 Amount of Core not in HPME available for CCI (Rebinned)

A Lrg-CCI A CCI occurs and involves a Large Amount of the Core (70-100% ).

B Med-CCI A CCI occurs and involves a Medium Amount of the Core (30-70% ).

C Sml-CCI A CCI occurs and involves a Small Amount of the Core (0-30% ).

D No-CCI No CCI occurs.

Characteristic 8 Zirconium Oxidation A Lo-ZrOx A Low amount of the core Zirconium was Oxidized in the vessel prior to vessel breach. This implies a range from O to 40% oxidized, with a nominal value of 25%.

B Hi-ZrOx A High amount of the core Zirconium was Oxidized in the vessel before VB.

This implies that more than 40% of the zirconium was oxidized, with a nominal value of 65%.

Characteristic 9 High Pressure Melt Ejection (HPME)

A Hi-HPME A High fraction(> 40%) of the core was ejected under pressure from the vessel at failure.

B Md-HPME A Moderate fraction (10 to 40%) of the core was ejected under pressure from the vessel at failure.

C Lo-HPME A Low fraction ( < 10%) of the core was ejected under pressure from the vessel at failure.

D No-HPME There was no HPME at vessel failure.

Characteristic 10 - Containment Failure Size A Cat-Rupt The containment failed by catastrophic rupture, resulting in a very large hole and gross structural failure.

B Rupture The containment failed by the development of a large hole or rupture; nominal hole size is 7 ft 2*

C Leak The containment failed by the development of a leak (nominal size 0.1 ft 2).

D No-CF The containment did not fail. It may have been bypassed.

NUREG/CR-6144 C-20 Vol. 6, Part 2

Appendix C Source Term Analysis Table C.2 (continued)

Characteristic 11 Holes in the RCS A 1-Hole There is only One large Hole in the RCS following vessel breach, so there is no effective natural circulation through the RCS after breach.

B 2-Holes There are Two large Holes in the RCS following vessel breach, so there will be effective natural circulation through the RCS after breach.

Characteristic 12 Time Window A Win-1 Accident occurs in Time Window 1 B Win-2 Accident occurs in Time Window 2 C Win-3 Accident occurs in Time Window 3 D Win-4 Accident occurs in Time Window 4 A typical bin might be GHEDBCABDDAA (the leading bin contributing to Window 1) which, using the information given above, is:

G No-CF No Containment Failure H Sp-NonOp Sprays do not operate E SDlyd-Dry CCI occurs. Water is not replenished D LoPr Primary system is at low pressure B VB-Poor Core material pours out of vessel C No-SGTR A SGTR does not occur A Lrg-CCI Large amount of core involved in CCI B Hi-ZrOx Large zirconium oxidation in vessel D No-HPME No high pressure melt ejection at vessel failure D No-CF Containment did not fail A 1-Hole One hole in vessel following vessel breach by core debris A Win-1 Accident occurs in time Window 1

~

g (1)

~ Table C.3 Frequency-Weighted Release Fractions and Frequencies ~

~ 1 CHADBCABDBAB 1.000E+OO 4.310E-01 3.884E-01 2.167E-01 6.362E-02 6.039E-03 7.747E-03 1 .149E-02 5.585E-02 4.174E-07 n

~ 2 CHADBCABDBAC 1.000E+OO 4.128E-01 3.649E-01 2.232E-01 7.863E-02 6.400E-03 9.742E-03 1 .348E-02 6.780E-02 2.994E-07 Cl.l

°'

...... 3 CDCDFCDBDBAB 8.433E-01 1.407E-01 1.136E-01 5.439E-02 1 .392E-02 2.890E-03 8.251E-04 3.671E-03 1 .484E-02 2.785E-07 g

.i:,.

.i:,. 4 CHCDFCDBDBAB 8.352E-01 1.334E-01 1.091E-01 4.728E-02 7.374E-03 1.965E-03 4.435E-04 2.038E-03 8.273E-03 2.280E-07 8 5 CDCDFCDBDBAC 8.122E-01 1.186E-01 8.812E-02 4.487E-02 1 .519E-02 2.874E-03 8.964E-04 3.953E-03 1 .600E-02 2.165E-07 (1) 6 GHEDBCABDDAA 5.000E-03 1.330E-04 6.603E-07 3.889E-07 1.400E-07 1.0SOE-08 1.562E-08 2.077E-08 1.175E-07 1.959E-07 ~

7 CHCDFCDBDBAC 8.099E-01 1.144E-01 8.780E-02 3.851E-02 7.339E-03 1.790E-03 4.282E-04 1 .888E-03 8.150E-03 1.741E-07 g 8 CHADBCABDBAA 1.000E+OO 5.015E-01 4.621E-01 2.631E-01 6.994E-02 7.239E-03 8.911E-03 1.245E-02 6.410E-02 1.595E-07 ~

9 CGADBCABDBAB 1.000E+OO 4.319E-01 3.849E-01 2.072E-01 7.240E-02 6.794E-03 8.520E-03 1.391E-02 6.372E-02 1 .580E-07 6" 10 GDCDBCDBDDAA 5.000E-03 9.194E-05 2.754E-09 1.472E-09 4.288E-10 8.350E-11 1.826E-11 7.210E-11 4.550E-10 1.484E-07 ~

11 GHDDBCABDDAA 5.000E-03 1.327E-04 3.668E-07 2.067E-07 4.025E-08 9.186E-09 2.334E-09 7.632E-09 4.386E-08 1.448E-07 '<

12 CDCDFCDBDBAA 8.244E-01 1.514E-01 1.281E-01 6.185E-02 1.093E-02 2.871E-03 5.880E-04 2.593E-03 1.228E-02 1.240E-07 ~-

13 GDDDBCABDDAA 5.000E-03 1.589E-04 3.685E-09 2.085E-09 6.088E-10 8.499E-11 4.091E-11 9.523E-11 5.813E-10 1.097E-07 14 CGADBCABDBAC 1.000E+OO 4.157E-01 3.645E-01 2.078E-01 8.569E-02 6.916E-03 1.016E-02 1.574E-02 7.392E-02 1.090E-07 15 CHCDFCDBDBAA 8.543E-01 1.556E-01 1.380E-01 6.381E-02 9.515E-03 2.657E-03 5.294E-04 2.443E-03 1.081E-02 1.069E-07 16 CFADBCABDBAB 1.000E+OO 4.335E-01 3.866E-Of 2.099E-01 7.333E-02 6.926E-03 8.636E-03 1.414E-02 6.461E-02 1.058E-07 17 CFADBCABDBAC 1.000E+OO 4.178E-01 3.657E-01 2.115E-01 8.768E-02 7.140E-03 1.040E-02 1.622E-02 7.576E-02 6.643E-08 18 GDCDFCDBDDAA 4.122E-03 4.994E-05 1.249E-09 6.411E-10 1.802E-10 3.583E-11 7.617E-12 2.963E-11 1.925E-10 6.250E-08 19 CGADBCABDBAA 1.000E+OO 5.024E-01 4.626E-01 2.584E-01 7.959E-02 6.887E-03 9.255E-03 1.302E-02 6.948E-02 5.947E-08 20 GDCDFCDBDDAB 4.106E-03 4.407E-05 9.361E-10 4.273E-10 5.702E-11 1.650E-11 2.495E-12 9.185E-12 6.519E-11 5.818E-08 n 21 GHCDFCDBDDAA 4.075E-03 6.148E-05 2.292E-07 9.753E-08 9.855E-09 3.339E-09 4.605E-10 1.654E-09 1.190E-08 5.234E-08 N 22 CFADBCABDBAA 1.000E+OO 5.069E-01 4.690E-01 2.647E-01 8.139E-02 7.085E-03 9.495E-03 1.328E-02 7.110E-02 5.118E-08 N 23 GHCDFCDBDDAB 3.972E-03 5.410E-05 1.977E-07 8.265E-08 8.523E-09 2.859E-09 4.253E-10 1.652E-09 1.028E-08 5.063E-08 24 CHADBCABDBAD 1.000E+OO 5.149E-01 4.855E-01 2.020E-01 5.555E-02 6.260E-03 5.606E-03 1.483E-02 4.965E-02 5.026E-08 25 GHADBCABDDAB 5.000E-03 2.019E-04 7.505E-07 4.117E-07 7.400E-08 7.269E-09 6.816E-09 1.056E-08 6.303E-08 4.666E-08 26 GDCDBCDBDDAB 5.000E-03 6.374E-05 2.128E-09 1.217E-09 4.166E-10 7.851E-11 1.850E-11 7.662E-11 4.391E-10 4.191E-08 27 CDCDFCDBDBAD 7.881E-01 1 .223E-01 8.641E-02 3.634E-02 1.100E-02 2.246E-03 8.266E-04 4.491E-03 1.168E-02 3.792E-08 28 GHADBCABDDAA 5.000E-03 1.535E-04 8.205E-07 3.689E-07 5.473E-08 6.945E-09 4.858E-09 7.129E-09 4.865E-08 3.695E-08 29 GDDDBCABDDAB 5.000E-03 1.460E-04 2.755E-09 1.580E-09 .5.167E-10 7.929E-11 3.219E-11 9.052E-11 5.112E-10 3.096E-08 30 GHADBCABDDAD 5.000E-03 1.541E-04 6.680E-07 4.291E-07 1.264E-07 9.041E-09 1.348E-08 2.235E-08 1.046E-07 2.205E-08 31 GHEDBCABDDAB 5.000E-03 1.580E-04 6.771E-07 3.987E-07 1.016E-07 8.457E-09 1.172E-08 1.610E-08 8.779E-08 2.194E-08 32 CHCDFCDBDBAD 8.242E-01 1.474E-01 1.181E-01 5.610E-02 1.670E-02 3.682E-03 1.366E-03 7.948E-03 1 .771E-02 2.138E-08 33 EFADBCABDAAA 1.000E+OO 2.723E-02 9.914E-04 6.034E-04 2.375E-04 1.074E-05 3.227E-05 3.671E-05 1.811E-04 2.005E-08 34 CHEDBCABDCAA 1 .OOOE+OO 2.662E-01 2.292E-01 1.157E-01 3.909E-02 5.046E-03 4.340E-03 6.879E-03 3.739E-02 1.975E-08 35 GHADBCABDDAC 5.000E-03 1.567E-04 7.054E-07 4.003E-07 8.568E-08 8.461E-09 7.645E-09 1.217E-08 7.313E-08 1.941E-08 36 CGADBCABDBAD 1 .OOOE+OO 5.164E-01 4.905E-01 1 .504E-01 4.385E-02 4.374E-03 4.590E-03 1 .080E-02 3.902E-02 1.900E-08 37 GDCDFCDBDDAC 4.152E-03 4.318E-05 1.405E-09 7.582E-10 2.264E-10 4.498E-11 9.630E-12 3.754E-11 2.416E-10 1.774E-08 38 CDCDBCDBDCAA 1.000E+OO 3.017E-02 1 .137E-02 6.805E-03 2.638E-03 4.737E-04 1 .116E-04 4.438E-04 2.765E-03 1 .695E-08 39 GHDDBCABDDAB 5.000E-03 1.577E-04 3.604E-07 1.981E-07 3.065E-08 6.619E-09 2.581E-09 6.946E-09 3.244E-08 1.622E-08 40 GDCDFCDBDDAD 4.398E-03 4.556E-05 1 .280E-09 6.287E-10 1 .605E-10 3.295E-11 6.879E-12 2.706E-11 1 .718E-10 1 .548E-08

~ 41 CHDDBCABDCAA 1.000E+OO 1.921E-01 1.392E-01 7.758E-02 1.951E-02 4.053E-03 1.158E-03 3.726E-03 2.092E-02 1 .460E-08

" 42 EGADBCABDAAA 1.000E+OO 9.420E-02 7.201E-02 4.092E-02 5.399E-03 7.792E-04 4.693E-04 8.176E-04 5.009E-03 1 .437E-08 12- 43 GHCDFCDBDDAC 4.078E-03 4.091E-05 1.694E-07 8.107E-08 1.361E-08 3.762E-09 6.857E-10 2.703E-09 1.575E-08 1.418E-08

~°' 44 GHCDFCDBDDAD 3.982E-03 3.677E-05 1.339E-07 5.869E-08 1.408E-08 3.012E-09 8.546E-10 4.024E-09 1 .527E-08 1 .388E-08

~ 45 CDDDBCABDCAA 1.000E+OO 4.722E-02 1.441E-02 8.087E-03 3.269E-03 4.843E-04 2.102E-04 5.421E-04 3.210E-03 1 .253E-08

~ 46 EFADBCABDAAB 1.000E+OO 3.493E-02 9.017E-04 6.967E-04 1.509E-04 7.240E-06 1.814E-05 1 .876E-05 1 .105E-04 9.497E-09

~ 47 CFADBCABDBAD 1.000E+OO 5.201E-01 4.957E-01 1.531E-01 4.557E-02 4.616E-03 4.794E-03 1.149E-02 4.071E-02 9.474E-o9*

~

~°' Table C.3 (continued)

'"d

~

N 48 GGADBCABDDAB 5.000E-03 1.596E-04 3.639E-09 1.983E-09 5.274E-10 5.553E-11 4.938E-11 7.484E-11 4.612E-10 8.610E-09 49 CDCDFCDBDCAA 7.922E-01 1.450E-02 4.516E-03 2.662E-03 9.703E-04 1.792E-04 4.099E-05 1.612E-04 1.022E-03 7.703E-09 50 CDCDBCDBDBAB 1.000E+OO 3.418E-01 2.736E-01 1.389E-01 4.756E-02 8.514E-03 2.724E-03 1.193E-02 4.952E-02 7.536E-09 51 CDCDFCDBDCAB 7.979E-01 1.163E-02 2.452E-03 1.153E-03 2.664E-04 5.680E-05 1.136E-05 4.405E-05 2.884E-04 7.102E-09 52 GGCDBCDBDDAA 5.000E-03 7.050E-05 1 .879E-09 8.524E-10 1 .284E-10 3.096E-11 5.530E-12 2.059E-11 1.441E-10 6.684E-09 53 EGADBCABDAAB 1.000E+OO 7.786E-02 4.262E-02 2.859E-02 3.651E-03 3.816E-04 3.507E-04 4.863E-04 3.094E-03 6.622E-09 54 CDCCFCDBDBAA 8.193E-01 1.320E-01 1 .137E-01 5.658E-02 1.127E-02 2.798E-03 6.793E-04 3.323E-03 1.240E-02 6.481E-09 55 CHACACBBBBAA 1.000E+OO 3.938E-01 3.563E-01 1.647E-01 3.329E-02 7.338E-03 5.373E-03 5.979E-03 3.235E-02 6.393E-09 56 CHCDFCDBDCAA 7.602E-01 9.325E-02 7.160E-02 2.960E-02 4.206E-03 1.248E-03 2.005E-04 7.359E-04 4.997E-03 6.109E-09 57 CDCDBCDBDBAC 1.000E+OO 3.090E-01 2.316E-01 1.254E-01 5.163E-02 8.680E-03 2.966E-03 1.301E-02 5.331E-02 6.085E-09 58 CHCDFCDBDCAB 7.534E-01 7.972E-02 5.865E-02 2.399E-02 3.356E-03 9.984E-04 1.713E-04 6.734E-04 3.993E-03 6.047E-09 59 CHCCFCDBDBAA 8.668E-01 1.496E-01 1 .374E-01 6.302E-02 9.936E-03 2.638E-03 6.403E-04 3.335E-03 1.102E-02 5.752E-09 60 CHADBCABDCAB 1.000E+OO 2.740E-01 2.278E-01 1.034E-01 1.950E-02 2.771E-03 1 .855E-03 3.324E-03 1.817E-02 5.744E-09 61 CDCDBCDBDCAB 1.000E+OO 2.035E-02 8.124E-03 5.165E-03 2.152E-03 3.854E-04 9.350E-05 3.821E-04 2.250E-03 5.673E-09 62 GFADBCABDDAB 5.000E-03 1.607E-04 3.656E-09 2.009E-09 5.377E-10 5.582E-11 5.083E-11 7.618E-11 4.690E-10 5.611E-09 63 DHECACBBBAAA 1 .OOOE+OO 4.018E-01 3.881E-01 1.686E-01 3.645E-02 1.822E-02 4.869E-03 7.092E-03 3.960E-02 5.572E-09 64 CDDDBCABDBAB 1.000E+OO 3.621E-01 2.858E-01 1.508E-01 4.947E-02 8.599E-03 3.028E-03 1.224E-02 5.099E-02 5.566E-09 65 GGADBCABDDAD 5.000E-03 1.401E-04 4.051E-09 2.693E-09 9.892E-10 8.741E-11 8.136E-11 1.358E-10 8.398E-10 5.219E-09 66 EGDDBCABDAAA 1.000E+OO 4.534E-02 1.508E-02 1.005E-02 1.633E-03 3.012E-04 9.543E-05 2.570E-04 1.681E-03 4.891E-09

,.... 67 CHADBCABDCAA 1 .OOOE+OO 3.763E-01 3.596E-01 1.157E-01 1.436E-02 2.640E-03 1.174E-03 2.182E-03 1.462E-02 4.873E-09

'J 68 GGADBCABDDAC 5.000E-03 1 .443E-04 3.976E-09 2.265E-09 6.089E-10 6.475E-11 5.224E-11 8.386E-11 5.305E-10 4.483E-09

~ 69 CDDDBCABDBAC 1.000E+OO 3.317E-01 2.462E-01 1 .385E-01 5.421E-02 8.800E-03 3.325E-03 1.343E-02 5.529E-02 4.470E-09 70 GGCDBCDBDDAB 5.000E-03 3.995E-05 1 .456E-09 7.294E-10 1 .621E-10 3.430E-11 6.898E-12 2.661E-11 1.745E-10 4.341E-09 71 DDCCACDBBAAA 1.000E+OO 1 .061E-01 8.857E-02 3.200E-02 5.481E-03 1.003E-02 2.195E-03 2.232E-03 7.930E-03 4.308E-09 72 CDDDBCABDCAB 1.000E+OO 4.066E-02 9.763E-03 5.975E-03 2.552E-03 3.896E-04 1.520E-04 4.412E-04 2.517E-03 4.182E-09 73 EFADBCABDAAC 1.000E+OO 3.231E-02 1 .364E-03 8.969E-04 2.948E-04 1.378E-05 3.911E-05 4.416E-05 2.226E-04 3.617E-09 74 CDCDBCDBDBAA 1.000E+OO 3.393E-01 2.854E-01 1.282E-01 1.923E-02 5.015E-03 9.914E-04 4.153E-03 2.159E-02 3.532E-09 75 CHEDBCABDBAA 1.000E+OO 4.889E-01 4.501E-01 3.005E-01 9.791E-02 8.326E-03 1 .103E-02 1.562E-02 8.456E-02 3.514E-09 76 EFCDBCDBDAAA 1.000E+OO 2.172E-02 7.518E-05 3.996E-05 2.836E-06 7;853E-07 1 .288E-07 4.704E-07 3.246E-06 3.327E-09 77 CHADDCBBDBAB 1.000E+OO 3.898E-01 3.174E-01 2.420E-01 1.406E-01 1.549E-02 1 .239E-02 3.173E-02 1.295E-01 3.229E-09 78 EGDDBCABDAAB 1.000E+OO 3.010E-02 1.104E-02 6.830E-03 1.345E-03 2.615E-04 6.819E-05 2.186E-04 1.409E-03 3.179E-09 >

79 GDCCFCDBDDAA 4.117E-03 4.568E-05 1.051E-09 5.478E-10 1.500E-10 2.965E-11 6.345E-12 2.474E-11 1.599E-10 3.165E-09 ::g 80 CHEDBCABDCAB 1.000E+OO 2.391E-01 1 .975E-01 1.050E-01 2.709E-02 3.544E-03 3.278E-03 4.879E-03 2.565E-02 2.926E-09 ~

81 GHCCFCDBDDAA 4.155E-03 6.595E-05 1 .986E-07 8.246E-08 7.450E-09 2.483E-09 3.480E-10 1.301E-09 8.850E-09 2.923E-09 [

82 GFADBCABDDAC 5.000E-03 1.433E-04 3.987E-09 2.294E-09 6.273E-10 6*.571E-11 5.428E-11 8.642E-11 5.455E-10 2.684E-09 ,-..

83 CFADBCABDCAA 1.000E+OO 2.579E-01 2.034E-01 9.584E-02 1.229E-02 3.863E-03 6.227E-04 2.057E-03 1.426E-02 2.630E-09 lJ 84 CDDDBCABDBAA 1.000E+OO 3.658E-01 3.015E-01 1.536E-01 2.495E-02 5.259E-03 1 .884E-03 5.061E-03 2.619E-02 2.602E-09 cn 85 CHDDBCABDBAA 1.000E+OO 3.177E-01 2.503E-01 1 .514E-01 2.642E-02 6.038E-03 1 .815E-03 6.346E-03 2.823E-02 2.595E-09 o Z 86 CHADDCBBDBAC 1.000E+OO 3.958E-01 3.214E-01 2.462E-01 1.480E-0.1 1 .667E-02 1 .304E-02 3.376E-02 1.372E-01 2.560E-09 ~

C:::: 87 GHECACBBBDAA 5.000E-03 4.836E-05 3.977E-07 2.385E-07 9.937E-08 1.046E-08 1.156E-08 1.663E-08 9.097E-08 2.559E-09 °

§ 88 GFADBCABDDAD 5.000E-03 1.369E-04 3.986E-09 2.668E-09 9.878E-10 8.638E-11 8.184E-11 1.357E-10 8.377E-10 2.520E-09 ~

89 CHADBCABDCAD 1 .OOOE+OO 2;645E-Oi 2.121E-01 1 .316E-01 3.432E-02 3.294E-03 3.004E-03 6.856E-03 2.964E-02 2.486E-09 ~

~ 90 EFDDBCABDAAA 1 .OOOE+OO 3.426E-02 4.274E-04 7.600E-04 1.693E-04 7.215E-06 2.411E-05 2.466E-05 1.263E-04 2.458E-09 S

'J 91 GDCCACDBBDAA 5.000E-03 5.277E-05 5.402E-09 3.537E-09 1.463E-09 2.568E-10 6.141E-11 2.432E-10 1.526E-09 2.259E-09 ~

~ 92 EGADBCABDAAC 1.000E+OO 8.071E-02 4.865E-02 3.108E-02 6.696E-03 8.038E-04 5.839E-04 1 .020E-03 6.027E-03 2.202E-09 ~

~ 93 CHADBCABDCAC 1.000E+OO 2.519E-01 2.056E 2 01 1.073E-01 2.333E-02 3.647E-03 1.975E-03 3.985E-03 2.239E-02 2.185E-09 '<

t i:!l.

rJJ

~ t "Cl I

(1)

Table C.3 (continued) ~

~ 94 GHECBCABDDM 5.000E-03 1.387E-04 7.097E-07 3.690E-07 8.469E-08 7.257E-09 7.472E-09 1 .010E-08 7.088E-08 2.176E-09 n

°' 95 CHDDBCABDCAB 1 .OOOE+OO 1 .786E-01 1.232E-01 6.187E-02 1 .021E-02 2.573E-03 6.784E-04 2.282E-03 1.128E-02 2.157E-09 l:ll

~ 96 CDCDFCDBDCAC 8.115E-01 1.537E-02 5.446E-03 3.239E-03 1.252E-03 2.253E-04 5.274E-05 2.081E-04 1 .314E-03 2.132E-09 8

~ 97 CGCDBCDBDBM 1.000E+OO 2.495E-01 2.042E-01 9.985E-02 1.595E-02 4.413E-03 8.931E-04 3.949E-03 1.851E-02 2.007E-09 Q 98 CGADBCABDCAB 1.000E+OO 2.583E-01 2.094E-01 9.191E-02 1 .904E-02 2.958E-03 1 .927E-03 3.670E-03 1 .831E-02 1.932E-09 "

99 CFADBCABDCAB 1.000E+OO 1 .845E-01 1.249E-01 5.643E-02 9.303E-03 2.486E-03 5.506E-04 2.037E-03 1.055E-02 1.901E-09 ~

100 CGADBCABDCM 1.000E+OO 3.886E-01 3.661E-01 1.360E-01 1.918E-02 3.694E-03 1 .557E-03 2.982E-03 1.925E-02 1.879E-09 ~

101 GDCCBCDBDDM 5.000E-03 4.602E-05 8.853E-10 3.599E-10 2.181E-11 7.959E-12 9.557E-13 3.161E-12 2.778E-11*1.837E-09 S 102 CHACBCABDBM 1.000E+OO 5.385E-01 5.294E-01 2.654E-01 5.045E-02 9.368E-03 3.256E-03 7.045E-03 5.068E-02 1.831E-09 5" 103 CGACACBBBBM 1.000E+OO 3.666E-01 3.291E-01 1.538E-01 4.383E-02 1.099E-02 6.671E-03 7.964E-03 4.194E-02 1.809E-09 ~

104 CHEDBCABDBAB 1.000E+OO 4.300E-01 3.966E-01 2.339E-01 6.810E-02 5.036E-03 7.204E-03 1.086E-02 5.686E-02 1.770E-09 '<

105 EFCDBCDBDMB 1 .OOOE+OO 1 .451E-02 5.924E-05 2.924E-05 9.029E-07 5.883E-07 5.0BOE-08 1.486E-07 1.314E-06 1.759E-09 ~-

106 CDCDFCDBDCAD 8.777E-01 1.384E-02 4.560E-03 2.510E-03 8.674E-04 1 .610E-04 3.703E-05 1 .472E-04 9.142E-04 1.678E-09 107 CGADDCBBDBAB 1.000E+OO 4.015E-01 3.110E-01 2.438E-01 1.752E-01 2.339E-02 1.541E-02 4.466E-02 1.707E-01 1.636E-09 108 CHCDFCDBDCAD 7.686E-01 7.074E-02 4.BOOE-02 2.000E-02 5.311E-03 1.076E-03 3.400E-04 1 .615E-03 5.746E-03 1 .636E-09 109 GHDCBCABDDM 5.000E-03 1.384E-04 3.086E-07 1.739E-07 2.484E-08 7.133E-09 1 .348E-09 3.925E-09 2.885E-08 1.607E-09 110 EHADBCABDAM 1.000E+OO 8.855E-02 6.007E-02 3.377E-02 4.323E-03 5.344E-04 3.752E-04 6.472E-04 3.931E-03 1.595E-09 111 CFACACBBBBM 1.000E+OO 3.679E-01 3.305E-01 1.550E-01 4.383E-02 1.104E-02 6.704E-03 7.966E-03 4.190E-02 1.577E-09 112 EHADBCABDMB 1.000E+OO 8.326E-02 3.499E-02 2.628E-02 2.810E-03 2.322E-04 2.492E-04 3.351E-04 2.272E-03 1.576E-09 113 CHCDFCDBDCAC 7.908E-01 8.159E-02 6.237E-02 3.155E-02 6.305E-03 1.638E-03 3.169E-04 1 .254E-03 7.202E-03 1.551E-09 n 114 CGDDBCABDBM 1.000E+OO 2.954E-01 2.291E-01 1.281E-01 2.130E-02 4.442E-03 1 .548E-03 4.623E-03 2.223E-02 1.482E-09

~ 115 CGCDBCDBDBAB 1.000E+OO 1.826E-01 1.303E-01 5.596E-02 8.207E-03 2.360E-03 5.060E-04 2.391E-03 9.456E-03 1.402E-09 116 DHDCACBBBAM 1.000E+OO 3.146E-01 2.809E-01 1.375E-01 2.761E-02 1 .821E-02 4.010E-03 6.228E-03 3.344E-02 1.392E-09 117 GDDCBCABDDM 5.000E-03 1.233E-04 1.729E-09 1.084E-09 2.278E-10 8.350E-12 2.396E-11 2.690E-11 1 .668E-10 1.356E-09 118 CHDDBCABDBAB 1.000E+OO 2.617E-01 1.947E-01 1.065E-01 1.862E-02 3.991E-03 1.418E-03 5.024E-03 1.942E-02 1.306E-09 119 EFDDBCABDMB 1.000E+OO 2.720E-02 2.366E-04 3.584E-04 3.112E-05 1.405E-06 3.336E-06 3.530E-06 2.141E-05 1.300E-09 120 EHEDBCABDMB 1.000E+OO 4.280E-02 2.479E-02 2.183E-02 3.403E-03 2.236E-04 2.794E-04 4.087E-04 2.785E-03 1.264E-09 121 CGADDCBBDBAC 1.000E+OO 4.072E-01 3.155E-01 2.489E-01 1.815E-01 2.419E-02 1.598E-02 4.632E-02 1.768E-01 1.217E-09 122 DHEDDCBBDAM 1.000E+OO 4.530E-01 3.669E-01 2.775E-01 1 .716E-01 1 .928E-02 1 .719E-02 4.031E-02 1 .591E-01 1 .205E-09 123 EHEDBCABDAM 1.000E+OO 6.515E-02 3.501E-02 3.325E-02 6.351E-03 2.855E-04 5.711E-04 7.270E-04 4.979E-03 1.176E-09 124 CFADDCBBDBAB 1.000E+OO 4.057E-01 3.141E-01 2.471E-01 1.778E-01 2.378E-02 1.560E-02 4.539E-02 1.732E-01 1.085E-09 125 DDDCACBBBAM 1 .OOOE+OO 1.155E-01 9.277E-02 3.381E-02 6.012E-03 1.004E-02 2.245E-03 2.285E-03 8.263E-03 1.074E-09 126 DDCDDCDBDAM 1.000E+OO 2.422E-02 3.969E-03 1.977E-03 4.676E-04 9.798E-05 2.550E-05 1 .086E-04 5.077E-04 1.040E-09 127 CGDDBCABDBAB 1.000E+OO 2.256E-01 1 .570E-01 8.602E-02 1.354E-02 2.383E-03 1.275E-03 3.172E-03 1.337E-02 1.035E-09 128 CFCDBCDBDBM 1.000E+OO 3.216E-01 2.735E-01 1.671E-01 3.551E-02 9.843E-03 2.117E-03 9.758E-03 4.066E-02 1.007E-09 129 CGACBCABDBM 1 .OOOE+OO 5.043E-01 4.874E-01 2.310E-01 3.643E-02 6.776E-03 2.493E-03 4.871E-03 3.592E-02 9.853E-10 130 EHDDBCABDMB 1.000E+OO 3.137E-02 1 .076E-02 6.964E-03 1.183E-03 2.203E-04 5.833E-05 1 .862E-04 1 .237E-03 9.324E-10 131 GDCCCCDBBDM 5.000E-03 4.457E-05 2.295E-10 1 .693E-10 9.476E-11 1.485E-11 4.328E-12 1 .807E-11 9.649E-11 9.106E-10 132 EHDDBCABDAM 1.000E+OO 4.851E-02 1.553E-02 1.033E-02 1.527E-03 2.714E-04 8.415E-05 2.350E-04 1 .575E-03 8.680E-10 133 DHACACBBBAM 1.000E+OO 5.054E-01 4.858E-01 1.963E-01 1 .127E-02 7.695E-03 1 .589E-03 1.956E-03 1 .298E-02 8.489E-i0

< 134 EGADBCABDMD 1.000E+OO 5.900E-02 2.997E-02 3.576E-02 8.874E-03 4.880E-04 9.788E-04 1.206E-03 6.779E-03 8.277E-10 e_. 135 CFACBCABDBM 1.000E+OO 5.174E-01 5.044E-01 2.423E-01 3.856E-02 7.286E-03 2.625E-03 5.198E-03 3.820E-02 8.251E-10 136 CFCDBCDBDBAB 1.000E+OO 2.208E-01 1 .703E-01 7.435E-02 1.123E-02 3.369E-03 7.375E-04 3.684E-03 1.290E-02 8.246E-10

~°' 137 CHECACBBBCM 1.000E+OO 1 .843E-01 1 .590E-01 8.108E~02 3.037E-02 9.238E-03 4.132E-03 5.948E-03 3.110E-02 8.208E-10

'"t1 138 GHECCCBBBDM 5.000E-03 7.330E-05 3.000E-07 2.320E-07 1.721E-07 2.053E-08 1.893E-08 4.411E-08 1.626E-07 8.155E-10 el 139 N

EFADBCABDMD 1 .OOOE+OO 2.774E-02 1.020E-03 1 .878E-03 5.024E-04 1 .382E-05 5.069E-05 5.190E-05 3.449E-04 7.917E-10

~

9' "C

Table C.3 (continued)

I))

..... 140 GHACBCABDDAA

"'1 5.000E-03 4.254E-05 8.175E-07 2.742E-07 2.800E-08 5.603E-09 1.701E-09 3.395E-09 2.804E-08 7.742E-10 N

141 CGADBCABDCAC 1.000E+OO 2.462E-01 1.966E-01 9.486E-02 2.157E-02 3.514E-03 1.817E-03 3.897E-03 2.097E-02 7.628E-10 142 CFDDBCABDBM 1.000E+OO 3.553E-01 2.937E-01 1.904E-01 4.165E-02 1 .003E-02 3.050E-03 1 .070E-02 4.541E-02 7.434E-10 143 CFADDCBBDBAC 1.000E+OO 4.139E-01 3.209E-01 2.536E-01 1.859E-01 2.482E-02 1.634E-02 4.757E-02 1.812E-01 7.401E-10 144 CFADBCABDCAC 1.000E+OO 2.044E-01 1.483E-01 7.616E-02 1.493E-02 3.692E-03 8.091E-04 2.940E-03 1.654E-02 7.119E-10 145 CGCDBCDBDCM 1.000E+OO 1.454E-01 1 .111E-01 5.372E-02 8 .. 951E-03 2.399E-03 4.109E-04 1.507E-03 1.035E-02 6.906E-10 146 CDCCACDBBCM 1.000E+OO 3.102E-02 1.317E-02 8.642E-03 3.488E-03 6.196E-04 1 .467E-04 5.799E-04 3.646E-03 6.600E-10 147 DDCCCCDBBAM 1.000E+OO 1.096E-01 9.759E-02 3.582E-02 3.850E-03 7.845E-03 1.769E-03 2.126E-03 5.234E-03 6.397E-10 148 GHDCACBBBDM 5.000E-03 4.822E-05 3.083E-07 1 .664E-07 4.681E-08 8.348E-09 2.516E-09 7.747E-09 4.868E-08 6.388E-10 149 CFDDBCABDBAB 1.000E+OO 2.565E-01 1.947E-01 1.065E-01 1 .684E-02 3.429E-03 1.624E-03 4.583E-03 1.720E-02 6.082E-10 150 CDCDBCDBDBAD 1.000E+OO 2.753E-01 1.950E-01 8.087E-02 1.590E-02 3.538E-03 1.233E-03 6.742E-03 1.715E-02 6.060E-10 151 CGADBCABDCAD 1.000E+OO 2.347E-01 1.702E-01 1.086E-01 3.955E-02 4.574E-03 3.574E-03 9.396E-03 3.595E-02 5.885E-10 152 GDDCACBBBDM 5.000E-03 6.992E-05 5.617E-09 3.729E-09 1.540E-09 2.606E-10 7.337E-11 2.557E-10 1.586E-09 5.628E-10 153 EHADBCABDMC 1.000E+OO 7.919E-02 4.248E-02 2.868E-02 5.292E-03 5.819E-04 4.505E-04 7.759E-04 4.673E-03 5.617E-10 154 CGCDBCDBDCAB 1.000E+OO 1.159E-01 8.293E-02 4.106E-02 6.233E-03 1.844E-03 2.901E-04 1.051E-03 7.259E-03 5.507E-10 155 GDCDBCDBDDAC 5.000E-03 8.655E-05 2.848E-09 1.552E-09 4.193E-10 8.160E-11 1 .770E-11 6.898E-11 4.460E-10 5.339E-10 156 CGDDBCABDCM 1.000E+OO 1.618E-01 1.151E-01 5.797E-02 9.715E-03 2.425E-03 5.164E-04 1 .599E-03 1.090E-02 5.088E-10 157 CHACCCBBBBM 1.000E+OO 3.990E-01 3.548E-01 2.386E-01 1 .578E-01 3.292E-02 1 .767E-02 8.514E-02 1.565E-01 4.531E-10 158 DHECCCBBBAM 1.000E+OO 4.881E-01 4.281E-01 2.502E-01 1 .241E-01 2.542E-02 1 .765E-02 5.049E-02 1.211E-01 4.495E-10

(')

159 CDDDBCABDBAD 1.000E+OO 3.013E-01 2.055E-01 8.628E-02 1.809E-02 3.409E-03 1 .542E-03 7.239E-03 1.847E-02 4.249E-10 I 160 CGDDBCABDCAB 1.000E+OO 1.263E-01 8.651E-02 4.310E-02 6.541E-03 1 .846E-03 3.278E-04 1.091E-03 7.466E-03 4.053E-10 N

Vt 161 GDCDBCDBDDAD 5.000E-03 9.119E-05 3.423E-09 1.567E-09 2.458E-10 5.918E-11 1.038E-11 3.949E-11 2.696E-10 4.047E-10 162 EHADBCABDMD 1.000E+OO 6.395E-02 3.408E-02 3.929E-02 6.943E-03 3.576E-04 7.210E-04 9.021E-04 5.246E-03 3.985E-10 163 EFACBCABDAM 1.000E+OO 8.582E-03 1 .605E-04 1.617E-04 2.585E-05 1 .015E-07 2.397E-06 2.434E-06 1.788E-05 3.823E-10 164 CDCCFCDBDCM 7.874E-01 1.217E-02 3.670E-03 2.263E-03 8.225E-04 1 .508E-04 3.477E-05 1.370E-04 8.647E-04 3.794E-10 165 GDDDBCABDDAC 5.000E-03 1.503E-04 4.038E-09 2.263E-09 6.027E-10 8.512E-11 3.287E-11 8.680E-11 5.642E-10 3.790E-10 166 CHADDCBBDBM 1.000E+OO 3.193E-01 2.590E-01 1 .958E-01 8.169E-02 8.711E-03 7.140E-03 1.717E-02 7.338E-02 3.619E-10 167 CFCDBCDBDCM 1.000E+OO 1.716E-01 1.287E-01 5.384E-02 8.653E-03 2.438E-03 4.434E-04 1 .696E-03 1.019E-02 3.526E-10 168 CFADBCABDCAD 1.000E+OO 1.610E-01 1.086E-01 5.901E-02 2.327E-02 3.997E-03 1.633E-03 7.065E-03 2.392E-02 3.127E-10 169 CHCCFCDBDCM 7.678E-01 7.683E-02 5.932E-02 2.484E-02 3.560E-03 1.008E-03 1.706E-04 6.413E-04 4.152E-03 2.966E-10 170 GDDDBCABDDAD 5.000E-03 1.455E-04 4.110E-09 2.812E-09 6.343E-10 5.731E-11 4.897E-11 7.728E-11 5.075E-10 2.907E-10 ~

171 EGACBCABDAM 1.000E+OO 9.355E-02 9.642E-02 4.576E-02 9.123E-04 9.819E-05 7.536E-05 8.276E-05 8.112E-04 2.856E-10 ~

172 CGACCCBBBBM 1.000E+OO 3.511E-01 2.891E-01 1.912E-01 1 .110E-01 2.217E-02 1 .176E-02 5.012E-02 1.096E-01 2.793E-10 g 173 DFACACBBBAM 1.000E+OO 3.184E-01 2.901E-01 1.005E-01 1.311E-02 1.218E-02 2.730E-03 3.373E-03 1.649E-02 2.742E-10 f;:

174 CFDDBCABDCM 1.000E+OO 1.852E-01 1 .307E-01 5.479E-02 9.369E-03 2.468E-03 5.688E-04 1.822E-03 1.076E-02 2.595E-10 ~

175 CHECBCABDCM 1.000E+OO 2.948E-01 2.754E-01 1.127E-01 1.592E-02 3.205E-03 9.723E-04 2.194E-03 1.642E-02 2.554E-10 (')

176 CDCCBCDBDCM 1.000E+OO 1.165E-02 2.306E-03 1.009E-03 8.826E-05 2.750E-05 3.889E-06 1.330E-05 1.080E-04 2.501E-10 Cl.l 177 EFACACBBBAM 1.000E+OO 2.634E-02 6.347E-04 5.910E-04 4.294E~04 3.350E-05 5.599E-05 7.234E-05 3.510E-04 2.492E-10 ~

178 CFACCCBBBBM 2.389E-10 Q

~ 179 1.000E+OO 3.537E-01 2.918E-01 1.937E-01 1.133E-01 2.253E-02 1.217E-02 5.054E-02 1.119E-01 GDDCCCBBBDM 5.000E-03 6.634E-05 3.317E-10 2.294E-10 1.045E-10 1 .488E-11 5.576E-12 1 .927E-11 1.023E-10 2.273E-10 "

2.078E-10 ~

?ii 180 181 CDCDDCDBDBAB DHDDDCBBDAM 1.000E+OO 1.000E+OO 4.368E-01 4.111E-01 3.392E-01 3.123E-01 2.616E-01 2.225E-01 1.817E-01 1.266E-01 2.751E-02 1.945E-02 1.051E-02 7.496E-03 4.647E-02 3.180E-02 1.840E-01 1.281E-01 2.064E-10 ,;

.Q 182 GHACACBBBDM 5.000E-03 5.751E-05 4.700E-07 2.796E-07 9.451E-08 1.206E-08 9.326E-09 1.542E-08 8.764E-08 2.062E-10 8

(')

.; 183 GHDCCCBBBDM 5.000E-03 7.329E-05 2.661E-07 2.097E-07 1 .353E-07 2.036E-08 7.964E-09 3.451E-08 1.366E-07 2.038E-10 5'° 0\

I 184 CFCDBCDBDCAB i.OOOE+OO 1.723E-01 1.315E-01 5.039E-02 3.708E-03 1.612E-03 1.850E-04 6.221E-04 4.894E-03 2.010E-10 I))

~

185 CHDCACBBBCM 1.000E+OO 1 .563E-01 1.238E-01 6.738E-02 1.935E-02 8.648E-03 2.146E-03 4.016E-03 -2.162E-02 2.010E-10 '<

!l *

~ -6"

't:l 0

Table C.3 (continued) 5.sa*

m 2.009E-10 n

~ 186 GFADBCABDDAA 5.000E-03 1.307E-04 4.002E-09 2.275E-09 9.200E-10 1.102E-10 7.447E-11 1.450E-10 8.544E-10

°'

r-'

187 188 CGADDCBBDBAA DGACACBBBAAA 1.000E+OO 1.000E+OO 2.947E-01 4.465E-01 2.312E-01 4.221E-01 1.898E-01 1.478E-01 1.021E-01 1.907E-02 1.172E-02 1.146E-02 9.248E-03 3.159E-03 2.235E-02 3.823E-03 9.513E-02 2.026E-02 2.007E-10 Cll 1.967E-10 g

~ 189 CHDCBCABDCAA 1.000E+OO 1.741E-01 1.312E-01 7.020E-02 1.100E-02 3.208E-03 5.. 389E-04 1.773E-03 1.303E-02 1.883E-10 ~

190 CDCDDCDBDBAC 1.000E+OO 4.384E-01 3.406E-01 2.628E-01 1 .827E-01 2.766E-02 1.057E-02 4.673E-02 1.850E-01 1.881E-10 ° 191 192 193 CDCCCCDBBCAA DHADDCBBDAAB CFADDCBBDBAA 1.000E+OO 1.000E+OO 1.000E+OO 1.608E-02 4.237E-01 2.917E-01 2.916E-03 3.717E-01 2.283E-01 1 .. 550E-03 2.512E-01 1.864E-01 7.128E-04 7.497E-02 9.862E-02 1.214E-04 1.305E-03 1.133E-02 3.894E-05 6.525E-03 8.921E-03 1.928E-04 7.347E-03 2.153E-02 7.319E-04 5.331E-02 9.183E-02 1.843E-10 1.804E-10 ~

a 1.880E-10 ""'3 194 DDDDDCBBDAAA 1 .OOOE+OO 2.910E-02 5.161E-03 2.915E-03 8.379E-04 9.481E-05 7.168E-05 1 .552E-04 7.450E-04 1.780E-10 5" 195 CDDCBCABDCAA 1 .OOOE+OO 2.549E-02 4.580E-03 2.067E-03 3.099E-04 2.871E-05 2.755E-05 3.828E-05 2.582E-04 1.778E-10 ~

196 GGCCBCDBDDAA 5.000E-03 2.470E-05 7.491E-10 3.020E-10 1.359E-11 5.678E-12 6.089E-13 1.935E-12 1.795E-11 1.695E-10 '<

197 DHEDDCBBDAAB 1.000E+OO 4.429E-01 3.922E-01 2.485E-01 8.863E-02 3.499E-03 8.421E-03 1.278E-02 6.826E-02 1.656E-10 ~-

198 CDCCACDBBBAA 1.000E+OO 3.051E-01 2.740E-01 1.029E-01 8.714E-03 7.904E-03 1 .504E-03 2.074E-03 1 .109E-02 1.621E-10 199 CDDCACBBBCAA 1.000E+OO 3.885E-02 1.473E-02 9.356E-03 4.041E-03 6.495E-04 2.309E-04 6.761E-04 4.084E-03 1.602E-10 200 EGACACBBBAAA 1.000E+OO 1.062E-01 7.803E-02 5.503E-02 t.332E-02 2.543E-03 1.001E-03 2.207E-03 1.330E-02 1.598E-10 201 DDDCCCBBBAAA 1.000E+OO 1.174E-01 1.002E-01 3.803E-02 4.927E-03 7.857E-03 1.947E-03 2.305E-03 6.074E-03 1.596E-10 202 CHECCCBBBCAA 1.000E+OO 1.927E-01 1.467E-01 9.258E-02 5.305E-02 9.881E-03 5.439E-03 1.597E-02 5.282E-02 1.552E-10 203 CFDDBCABDCAB 1.000E+OO 1.893E-01 1.339E-01 5.079E-02 3.611E-03 1.585E-03 1.886E-04 5.779E-04 4.760E-03 1.474E-10 204 CHEDDCBBDCAA 1.000E+OO 2.019E-01 1.511E-01 1.144E-01 6.464E-02 8.239E-03 4.645E-03 1.486E-02 6.174E-02 1.445E-10 205 GGADBCABDDAA 5.000E-03 1 .276E-04 4.076E-09 2.364E-09 9.660E-10 1 .171E-10 7.696E-11 1 .524E-10 8.985E-10 1 .431E-10 0 206 CDCDDCDBDCAA 1.000E+OO 2.142E-02 1.007E-03 4.761E-04 1.377E-04 2.633E-05 7.674E-06 3.270E-05 1.457E-04 1.378E-10

~ 207 CHACBCABDCAA 1.000E+OO 4.591E-01 4.825E-01 1.178E-01 6.053E-03 1.596E-03 3.495E-04 8.354E-04 7.063E-03 1.330E-10 208 EGDCBCABDAAA 1.000E+OO 2.538E-02 6.978E-03 5.502E-03 4.797E-04 4.553E-05 4.519E-05 5.895E-05 4.023E-04 1.244E-10 209 CHADDCBBDBAD 1.000E+OO 3.959E-01 3.574E-01 2.492E-01 8.797E-02 3.169E-03 8.180E-03 1.549E-02 6.539E-02 1.154E-10 210 DDCDDCDBDAAB 1.000E+OO 2.949E-02 7.836E-03 5.074E-03 1.035E-03 2.415E-04 6.006E-05 2.863E-04 1.138E-03 1.151E-10 211 DHDCCCBBBAAA 1.000E+OO 4.091E-01 3.412E-01 1.696E-01 6.982E-02 2.180E-02 8.536E-03 4.143E-02 7.307E-02 1.121E-10 212 DGCCACDBBAAA 1.000E+OO 3.778E-01 3.632E-01 1.826E-01 4.108E-02 1.694E-02 3.585E-03 7.972E-03 4.683E-02 1.091E-10 213 DFCCACDBBAAA 1 .OOOE+OO 4.084E-01 4.015E-01 1.459E-01 6.450E-03 6.517E-03 1.114E-03 1.372E-03 8.682E-03 9.156E-11 214 CHECBCABDBAA 1.000E+OO 4.921E-01 4.805E-01 2.997E-01 8.440E-02 7.969E-03 6.678E-03 1.038E-02 7.294E-02 8.772E-11 215 DHADDCBBDAAA 1.000E+OO 3.213E-01 2.577E-01 1.824E-01 6.705E-02 6.964E-03 6.161E-03 1.337E-02 5.953E-02 7.537E-11 216 CHACACBBBCAA 1.000E+OO 2.165E-01 1 .732E-01 8.910E-02 1 .928E-02 5.499E-03 2.111E-03 3.468E-03 1.977E-02 7.406E-11 217 DHADDCBBDAAC 1.000E+OO 4.814E-01 4.379E-01 2.873E-01 9.628E-02 1.146E-03 8.592E-03 9.754E-03 6.816E-02 7.385E-11 218 CHECACBBBBAA 1 .OOOE+OO 3.348E-01 2.935E-01 1.488E-01 3.024E-02 9.088E-03 5.111E-03 5.355E-03 2.767E-02 7.363E-11 219 GHACCCBBBDAA 5.000E-03 4.989E-05 2.495E-07 7.072E-09 1 .638E-11 4;282E-14 1.326E-13 1.567E-13 3.679E-11 6.633E-11 220 CHDCBCABDBAA 1.000E+OO 2.839E-01 2.338E-01 1.521E-01 3.368E-02 7.818E-03 1.785E-03 5.408E-03 3.719E-02 6.385E-11 221 CGCCBCDBDBAA 1 .OOOE+OO 1.695E-01 1.415E-01 8.234E-02 1.761E-02 4.596E-03 8.115E-04 2.906E-03 2.040E-02 6.274E-11 222 EFCCBCDBDAAA 1.000E+OO 4.301E-03 3.453E-05 1.770E-05 1.473E-07 6.021E-08 6.465E-09 2.109E-08 1.851E-07 6.113E-11 223 DHACCCBBBAAA 1.000E+OO 4.371E-01 3.786E-01 2.072E-01 7.719E-02 1.733E-02 9.746E-03 1.991E-02 7.320E-02 5.877E-11 224 DHADDCBBDAAD 1 .OOOE+OO 5.108E-01 4.530E-01 3.082E-01 9.995E-02 9.042E-04 8.839E-03 9.448E-03 7.026E-02 5.788E-11 225 CFACBCABDCAA 1.000E+OO 1.512E-01 1.096E-01 3.600E-02 4.011E-03 1.369E-03 1.906E-04 6.373E-04 5.172E-03 5.590E-11

< 226 CFACACBBBCAA 1.000E+OO 3.088E-01 2.691E-01 1.453E-01 1.927E-02 8.165E-03 1.421E-03 3.534E-03 2.224E-02 5.584E-11 o 227 DFADDCBBDAAA 1.000E+OO 3.345E-01 2.545E-01 1.534E-01 4.465E-02 9.472E-03 2.588E-03 1.099E-02 4.724E-02 5.395E-11

~ 228 CGCCACDBBBAA 1 .OOOE+OO 2.352E-01 1 .977E-01 7.868E-02 5.750E-03 1.070E-02 2.114E-03 2.565E-03 8.486E-03 4.692E-11

~°' 229 CDDCCCBBBCAA 1.000E+OO 2.187E-02 3.810E-03 1.988E-03 8.207E-04 1.243E-04 5.351E-05 2.081E-04 8.154E-04 4.678E-11

~ 230 CGDCBCABDBAA 1 .OOOE+OO 2.332E-01 1.776E-01 1 .066E-01 2.149E-02 4.608E-03 1.242E-03 3.359E-03 2.304E-02 4.623E-11

~ 231 EFDCBCABDAAA 1.000E+OO 1.383E-02 4.684E-04 7.934E-04 1.589E-04 1.638E-07 1.759E-05 1.820E-05 1.065E-04 4.501E-11 N

~

~a..

~

Table C.3 (continued)

~

"'1 232 GGDDBCABDDAA 5.000E-03 1.269E-04 3.719E-09 2.360E-09 6.868E-10 3.281E-11 6.940E-11 8.737E-11 5.234E-10 4.369E-11 N

233 DGADDCBBDAAA 1.000E+OO 3.472E-01 2.731E-01 2.094E-01 6.793E-02 9.647E-03 6.257E-03 1.520E-02 6.426E-02 4.116E-11 234 CGACBCABDCAA 1.000E+OO 4.531E-01 4.757E-01 1.126E-01 5.045E-03 1.305E-03 2.969E-04 6.864E-04 5.905E-03 4.072E-11 235 CDCDBCDBDCAC 1.000E+OO 3.422E-02 1.224E-02 7.491E-03 3.114E-03 5.463E-04 1.308E-04 5.170E-04 3.259E-03 3.924E-11 236 CDCCBCDBDBAA 1.000E+OO 3.960E-01 3.481E-01 1.701E-01 2.147E-02 7.073E-03 9.986E-04 3.453E-03 2.576E-02 3.907E-11

.237 CHDCCCBBBCAA 1.000E+OO 1.680E-01 1.213E-01 7.783E-02 4.352E-02 9.193E-03 3.324E-03 1.429E-02 4.431E-02 3.744E-11 238 CDDDDCBBDBAB 1.000E+OO 4.387E-01 3.415E-01 2.638E-01 1.841E-01 2.781E-02 1.076E-02 4.713E-02 1.863E-01 3.621E-11 239 DFACCCBBBAAA 1.000E+OO 4.238E-01 3.411E-01 1.718E-01 7.268E-02 2.554E-02 8.240E-03 1.969E-02 7.770E-02 3.592E-11 240 DFADDCBBDAAB 1.000E+OO 2.214E-01 1 .427E-01 7.593E-02 1 .923E-02 4.336E-03 1 .074E-03 4.395E-03 2.072E-02 3.522E-11 241 DGADDCBBDAAB 1.000E+OO 2.820E-01 1.990E-01 1.454E-01 2.870E-02 3.984E-03 2.139E-03 4.965E-03 2.631E-02 3.522E-11 242 CHEDDCBBDBAA 1.000E+OO 3.239E-01 2.611E-01 1.642E-01 3.628E-02 2.168E-03 3.001E-03 4.368E-03 2.787E-02 3.463E-11 243 CHADDCBBDCAB 1.000E+OO 1.668E-01 1.298E-01 1.041E-01 3.450E-02 4.320E-04 3.043E-03 3.272E-03 2.402E-02 3.427E-11 244 CDDDDCBBDBAC 1.000E+OO 4.391E-01 3.419E-01 2.641E-01 1.844E-01 2.785E-02 1.078E-02 4.719E-02 1.865E-01 3.293E-11 245 CFCCBCDBDBAA 1.000E+OO 2.651E-01 2.366E-01 1.571E-01 3.786E-02 9.678E-03 1.749E-03 6.290E-03 4.358E-02 3.189E-11 246 CFCCACDBBBAA 1.000E+OO 3.097E-01 2.673E-01 1.243E-01 8.608E-03 1.495E-02 2.703E-03 3.307E-03 1.330E-02 3.072E-11 247 DFCCCCDBBAAA 1 .OOOE+OO 4.445E-01 3.766E-01 1 .798E-01 2.920E-02 1.692E-02 3.541E-03 7.851E-03 3.690E-02 3.070E-11 248 EHECBCABDAAA 1.000E+OO 4.835E-02 2.654E-02 3.059E-02 5.538E-03 4.101E-05 5.412E-04 5.564E-04 3.959E-03 3.054E-11 249 GFCDBCDBDDAA 5.000E-03 1.120E-04 2.312E-09 9.876E-10 7.100E-11 2.811E-11 3.272E-12 1.063E-11 9.144E-11 2.937E-11 250 EHACBCABDAAA 1.000E+OO 9.711E-02 1.024E-01 4.782E-02 6.114E-04 9.904E-05 4.683E-05 5.489E-05 6.098E-04 2.898E-11 251 CGACACBBBCAA 1.000E+OO 3.437E-01 3.055E-01 1.717E-01 3.422E-02 9.548E-03 3.172E-03 6.052E-03 3.550E-02 2.831E-11 n 252 I DHDDDCBBDAAB 1.000E+OO 2.913E-01 2.019E-01 1.044E-01 2.552E-02 3.016E-03 1.818E-03 5.437E-03 2.417E-02 2.704E-11 N

-.J 253 DGDCACBBBAAA 1.000E+OO 3.986E-01 3.757E-01 1.888E-01 4.192E-02 1.701E-02 3.623E-03 8.088E-03 4.765E-02 2.677E-11 254 CHEDDCBBDCAB 1 .OOOE+OO 1.598E-01 1.259E-01 9.839E-02 3.324E-02 1.845E-04 2.959E-03 3.037E-03 2.281E-02 2.676E-11 255 CDDDBCABDCAC 1.000E+OO 5.424E-02 1.564E-02 8.764E-03 3.948E-03 6.106E-04 2.297E-04 6.596E-04 3.954E-03 2.584E-11 256 CHEDDCBBDBAB 1.000E+OO 3.262E-01 2.883E-01 1.905E-01 6.448E-02 2.104E-04 5.959E-03 6.072E-03 4.472E-02 2.552E-11 257 DGACCCBBBAAA 1.000E+OO 4.671E-01 3.945E-01 2.549E-01 1.407E-01 2.612E-02 1.914E-o2*3.193E-02 1.322E-01 2.551E-11 258 GGDDBCABDDAB 5.000E-03 6.899E-05 2.773E-09 1.463E-09 4.042E-10 3.886E-11 2.937E-11 5.423E-11 3.427E-10 2.519E-11 259 CDCDBCDBDCAD 1.000E+OO 2.824E-02 8.698E-03 3.308E-03 1.458E-04 7.523E-05 5.903E-06 1.808E-05 1.930E-04 2.449E-11 260 DGCCCCDBBAAA 1.000E+OO 4.970E-01 4.246E-01 2.200E-01 3.581E-02 1.848E-02 3.632E-03 8.429E-03 4.527E-02 2.449E-11 261 CHDDDCBBDCAA 1.000E+OO 1.862E-01 1.278E-01 9.414E-02 5.662E-02 8.636E-03 3.317E-03 1.431E-02 5.717E-02 2.370E-11 262 CFDCBCABDBAA 1.000E+OO 3.208E-01 2.681E-01 1.693E-01 3.925E-02 9.708E-03 1.893E-03 6.455E-03 4.457E-02 2.350E-11 ~

263 CDDCBCABDBAA 1.000E+OO 4.539E-01 4.131E-01 2.141E-01 2.699E-02 8.896E-03 1.257E-03 4.344E-03 3.223E-02 2.296E-11 -o 264 EFCCACDBBAAA 1.000E+OO 1.392E-02 7.406E-05 4.014E-05 1.434E-05 2.579E-06 6.041E-07 2.386E-06 1.500E-05 2.276E-11 § 265 CDDDDCBBDCAA 1.000E+OO 2.673E-02 1.352E-03 8.449E-04 2.937E-04 2.193E-05 2.475E-05 4.877E-05 2.378E-04 2.266E-11 ~

266 EHDCBCABDAAA 1.000E+OO 3.138E-02 7.382E-03 5.785E-03 3.942E-04 3.184E-05 3.816E-05 4.598E-05 3.221E-04 2.209E-11 267 DFDCACBBBAAA 1.000E+OO 4.240E-01 4.125E-01 1.497E-01 6.391E-03 6.045E-03 1.013E-03 1.251E-03 8.437E-03 2.198E-11 n 268 CDDCACBBBBAA 1.000E+OO 3.950E-01 3.687E-01 1.409E-01 3.921E-03 3.839E-03 5.749E-04 6.063E-04 5.212E-03 2.027E-11 en 269 GFDDBCABDDAA 5.000E-03 1.734E-04 3.409E-09 1.895E-09 4.176E-10 3.184E-11 5.538E-11 6.258E-113.449E-101.914E-11 o 270 CGCCBCDBDCAA

~ 271 1.000E+OO 8.685E-02 6.661E-02 3.159E-02 4.070E-03 1.385E-03 1.955E-04 6.623E-04 5.034E-03 1.891E-11 ~('1)

DDDDDCBBDAAB 1.000E+OO 3.413E-02 8.573E-03 5.582E-03 1.192E-03 2.464E-04 7.388E-05 3.160E-04 1.254E-03 1.854E-11

§ 272 273 CHDCACBBBBAA CDDDBCABDCAD 1.000E+OO 1.000E+OO 2;900E-01 3.748E-02 2.416E-01 1.161E-02 1.099E-01 8;513E-03 6.477E-03 2.600E-03 8.170E-03 8.404E-05 1.832E-03 2.003E-03 8.330E-03 1.747E-11 ~

2.377E-04 2.598E-04 1.730E-03 1.571E-11 a Q 274 GGCCACDBBDAA 5.000E-03 4.329E-05 8.486E-09 5.711E-09 2.389E-09 4.198E-10 1.004E-10 3.975E-10 2.491E-09 1.482E-11 ~

n 275 DFCDDCDBDAAA 1.000E+OO 4.733E-01 3.774E-01 2.696E-01 1.467E-01 2.453E-02 8.415E-03 3.662E-02 1.510E-01 1.432E-11 ~

~

a.. 276 CGDCBCABDCAA 1.000E+OO 8.700E-02 6.100E-02 2.843E-02 3.696E-03 1.004E-03 2.089E-04 5.705E-04 4.201E-03 1.330E-11 ~

I--' 277 CDCDDCDBDCAB 1.000E+OO 2.264E-02 2.114E-03 1.124E-03 1.452E-04 4.477E-05 6.735E-06 2.375E-05 1.709E-04 1.305E-11 '[

""" r,,

a

§

g 0

.Q Table C.3 (continued) 5.

~-

~ 278 CHADDCBBDCAA n

°'

~

279 280 CHADDCBBDCAC CGCCACDBBCAA 1.000E+OO 1.532E-01 1.000E+OO 1.834E-01 1.000E+OO 1.691E-01 1.007E-01 6.982E-02 2.121E-02 1.525E-01 1.302E-01 4.753E-02 1.463E-01 7.789E-02 2.169E-02 2.623E-03 2.030E-04 8.534E-03 1.566E-03 4.232E-03 1.859E-03 3.873E-03 4.540E-03 4.320E-03 1.906E-02 3.274E-02 2.429E-02 1.290E-11 1.289E-11 1.257E-11

(/)

§

.i:,. 281 CGDCACBBBBAA 1.000E+OO 2.511E-01 2.024E-01 8.469E-02 6.269E-03 1.043E-02 2.270E-03 2.626E-03 8.513E-03 1.104E-11 M 282 EFCCCCDBBAAA 1.000E+OO 1.275E-02 8.967E-06 8.382E-06 5.433E-07 8.223E-08 3.143E-08 1.390E-07 5.500E-07 1.053E-11 ° 283 CDCCCCDBBBAA 1.000E+OO 3.517E-01 2.887E-01 1.574E-01 3.598E-02 1.070E-02 2.738E-03 1 .207E-02 4.018E-02 1.036E-11 ~

284- CHADDCBBDCAD 1.000E+OO 1.829E-01 1.523E-01 1.302E-01 4.693E-02 2.832E-05 4.203E-03 4.286E-03 3.195E-02 1.030E-11 ~

285 CHACCCBBBCAA 1.000E+OO 1.649E-01 1.464E-01 5.462E-02 1.634E-02 6.079E-03 1.874E-03 4.183E-03 1.652E-02 1.013E-11 ~

286 GFCDBCDBDDAB 5.000E-03 8.537E-05 2.093E-09 8.975E-10 3.384E-11 2.466E-11 1 .633E-12 4.340E-12 5.013E-11 9.997E-12 5" 287 DGCDDCDBDAAA 1.000E+OO 4.526E-01 3.935E-01 1.875E-01 3.248E-02 8.438E-03 1.717E-03 6.640E-03 3.743E-02 9.910E-12 ~

288 CFADDCBBDCAA 1.000E+OO 2.167E-01 1.585E-018.988E-021.417E-02 4.286E-03 8.367E-04 3.394E-03 1.588E-02 9.738E-12 ~

289 CGCDDCDBDBAB 1.000E+OO 1.065E-01 6.064E-02 1.014E-02 2.068E-04 1.260E-04 5.653E-06 1.095E-05 3.632E-04 9.717E-12 ~-

290 CFCCACDBBCAA 1.000E+OO 1.451E-01 1 .178E-01 4.569E-02 2.388E-03 3.960E-03 7.306E-04 8.350E-04 3.613E-03 9.704E-12 291 CHECCCBBBBAA 1.000E+OO 5.092E-01 4.933E-01 4.098E-01 3.604E-01 6.751E-02 4.998E-02 1 .830E-01 3.582E-01 9.342E-12 292 CGADDCBBDBAD 1.000E+OO 2.529E-01 1.694E-01 1.084E-01 4.184E-02 1.794E-03 5.048E-03 5.900E-03 3.520E-02 9.197E-12 293 EHACACBBBAAA 1.000E+OO 1.059E-01 8.057E-02 5.878E-02 2.094E-02 3.445E-03 1.536E-03 3.517E-03 2.059E-02 8.228E-12 294 EFACCCBBBAAA 1.000E+OO 9.740E-03 3.473E-05 1 .484E-05 1.106E-08 1.043E-11 6.109E-09 4.663E-09 1.102E-08 7.549E-12 295 CFCCBCDBDCAA 1.000E+OO 1.440E-01 1.073E-01 3.816E-02 7.614E-03 1.907E-03 3.461E-04 1 .246E-03 8.992E-03 7.301E-12 296 CGCDDCDBDBAA- 1.000E+OO 1.757E-01 1.219E-01 4.083E-02 9.176E-04 5.995E-04 2.393E-05 4.413E-05 1.420E-03 7.298E-12 297* DFDCCCBBBAAA 1.000E+OO 4.576E-01 3.874E-01 1 .969E-01 3.544E-02 1 .779E-02 4.432E-03 8.814E-03 4.241E-02 7.083E-12

\1 298 CGADDCBBDCAA 1.000E+OO 1.491E-01 9.274E-02 6.002E-02 1.753E-02 3.203E-03 1.159E-03 4.033E-03 1.766E-02 6.911E-12

~ 299 CFCCCCDBBBAA 1.000E+OO 3.544E-01 3.162E-01 2.059E-01 1.547E-01 3.600E-02 1.717E-02 1.034E-01 1.563E-01 6.840E-12 300 GFDDBCABDDAB 5.000E-03 1.392E-04 2.884E-09 1.233E-09 6.712E-11 2.570E-11 4.431E-12 7.465E-12 7.199E-11 6.829E-12 301 DFADDCBBDAAC 1.000E+OO 2.744E-01 1.876E-01 1.211E-01 5.490E-02 9.733E-03 3.110E-03 1.335E-02 5.698E-02 6.705E-12 302 CfDCACBBBBAA 1.000E+OO 3.096E-01 2.616E-01 1.403E-01 1.451E-02 1.687E-02 3.918E-03 4.577E-03 1.875E-02 6.554E-12 303 CFADDCBBDCAB 1.000E+OO 1.288E-01 7.262E-02 3.577E-02 5.399E-03 1.751E-03 3.177E-04 1.256E-03 6.198E-03 6.328E-12 304 EGACCCBBBAAA 1.000E+OO 2.356E-02 1.464E-02 1.003E-03 1.479E-06 7.500E-09 1.350E-07 1.156E-07 3.025E-06 6.207E-12 305 DGDCCCBBBAAA 1 .OOOE+OO 5.054E-01 4.311E~01 2.279E-01 3.792E-02 1.800E-02 4.019E-03 7.033E-03 4.620E-02 5.936E-12 306 DGADDCBBDAAC 1.000E+OO 3.674E-01 2.478E-01 1.984E-01 6;929E-02 9.674E-03 6.104E-03 1.555E-02 6.667E-02 5.568E-12 307 DGCDDCDBDAAB 1.000E+OO 2.301E-01 1.780E-01 5.091E-02 1.337E-03 3.990E-04 3.197E-05 8.194E-05 1.969E-03 5.491E-12 308 CHDDDCBBDBAA 1.000E+OO 2.479E-01 1.630E-01 8.515E-02 4.338E-03 1 .059E-03 3.131E-04 3.636E-04 4.008E-03 5.393E-12 309 CDCDDCDBDBAA 1.000E+OO 1.352E-01 9.284E-02 5.451E-02 3.193E-02 4.841E-03 1.840E-03 8.127E-03 3.243E-02 5.390E-12 31 0 CFDCBCABDCAA - 1.000E+OO 1.462E-01 1.061E-01 3.802E-02 7.715E-03 1.935E-03 3.511E-04 1.264E-03 9.101E-03 5.315E-12 311 CGADDCBBDCAB 1.000E+OO 1.334E-01 7.993E-02 4.643E-02 7.238E-03 1.715E-03 4.467E-04 1.392E-03 7.394E-03 5.152E-12 312 EFDCACBBBAAA 1.000E+OO 1.826E-02 1.198E-04 2.977E-04 4.495E-04 5.988E-05 9.855E-05 9.854E-05 4.156E-04 5.017E-12 313 CFCDDCDBDBAB 1.000E+OO 1.170E-01 6.703E-02 9.288E-03 2.094E-04 2.032E-04 8.894E-06 1.898E-05 3.795E-04 4.722E-12 314 CFADDCBBDBAD 1.000E+OO 2.516E-01 1.687E-01 1.115E-01 4.416E-02 1.793E-03 5.349E-03 6.197E-03 3.696E-02 4.505E-12 315 CHDDDCBBDCAB 1.000E+OO 9.674E-02 4.548E-02 2.859E-02 3.252E-03 2.008E-05 3.126E-04 3.263E-04 2.283E-03 4.161E-12 316 CFACCCBBBCAA 1.000E+OO 1.655E-01 1 .142E-01 5.995E-02 2.668E-02 8.488E-03 2.526E-03 6.963E-03 2.838E-02 3.792E-12 317 DGADDCBBDAAD 1.000E+OO 5.438E-01 3.272E-01 2.890E-01 6.197E-02 6.532E-03 4.773E-03 8.314E-03 5.596E-02 3.599E-12

< 318 CHDDDCBBDBAB 1.000E+OO *2.009E-01 1.252E-01 6.217E-02 6.704E-03 2.811E-05 6.452E-04 6.717E-04 4.895E-03 3.593E-12 o 319 EGDCACBBBAAA 1.000E+OO 6.357E-02 4.396E-02 2.955E-02 1.122E-02 2.114E-03 5.576E-04 1.892E-03 1.170E-02 3.371E-12

--- 320 CFCCCCDBBCAA 1.000E+OO 1.653E-01 1.178E-01 6.757E-02 2.587E-02 7.214E-03 2.031E-03 6.534E-03 2.765E-02 3.367E-12 p, 321 CGCCCCDBBBAA 1.000E+OO 4.612E-01 4.217E-01 3.181E-01 2.523E-01 5.677E-02 2.747E-02 1 .680E-01 2.550E-01 2.868E-12

~ 322 CFCDDCDBDBAA 1.000E+OO 1.369E-01 8.080E-02 3.115E-02 1.005E-02 2.526E-03 1 .007E-03 6.362E-03 1.060E-02 2.813E-12

~ 323 DFCDDCDBDAAB 1.000E+OO 2.931E-01 2.200E-01 1.311E-01 5.823E-02 1.013E-02 3.360E-03 1.466E-02 5.996E-02 2.796E-12 N

[2.

~°'""d Table C.3 (continued)

~

"1*

.... 324 EHACCCBBBAAA 1.000E+OO 2.332E-02 1.462E-02 7.223E-04 1.253E-06 9.336E-10 1.908E-09 4.764E-10 2.865E-06 2.595E-12 N 325 CGDCACBBBCAA 1;000E+OO 1.925E-01 1.559E-01 8.373E-02 2.500E-02 9.275E-03 2.141E-03 4.893E-03 2.773E-02 2.592E-12 326 EFDCCCBBBAAA 1.000E+OO 1.405E-02 1.065E-05 8.741E-06 1.447E-06 8.596E-08 3.490E-07 4.225E-07 1.171E-06 2.571E-12 327 CGACCCBBBCAA 1 .OOOE+OO 1 .856E-01 1 .299E-01 7.715E-02 4.148E-02 9.345E-03 4.064E-03 1 .017E-02 4.179E-02 2.314E-12 328 CHDCCCBBBBAA 1.000E+OO 4.157E-01 3.824E-01 3.003E-01 2.656E-01 5.922E-02 2.907E-02 1.761E-01 2.666E-01 2.093E-12 329 CDDDDCBBDCAB 1.000E+OO 2.417E-02 1.780E-03 7.662E-04 9.895E-05 1.460E-05 8.581E-06 1.057E-05 8.050E-05 2.068E-12 330 DFDDDCBBDAAA 1.000E+OO 5.298E-01 4.289E-01 3.145E-01 1.801E-01 2.951E-02 1.035E-02 4.498E-02 1.847E-01 2.033E-12 331 DFADDCBBDAAD 1.000E+OO 2.946E-01 1.807E-01 1.354E-01 3.841E-02 8.545E-03 1.745E-03 6.371E-03 4.261E-02 1.580E-12 332 GGCCCCDBBDAA 5.000E-03 3.510E-05 8.834E-11 7.473E-11 1.935E-11 2.926E-12 1.119E-12 4.951E-12 1.960E-11 1.553E-12 333 CGDDDCBBDBAB 1.000E+OO 1.329E701 8.145E-02 3.547E-02 4.782E-03 1.795E-04 7.239E-04 7.377E-04 3.870E-03 1.427E-12 334 CFDCCCBBBBAA 1.000E+OO 3.569E-01 3.199E-01 2.215E-01 1.815E-01 3.995E-02 2.004E-02 1.234E-01 1.820E-01 1.421E-12 335 CGCCCCDBBCAA 1.000E+OO 2.104E-01 1 .582E-01 7.730E-02 1.155E-02 6.882E-03 1.320E-03 2.284E-03 1.499E-02 1.336E-12 336 CDDCCCBBBBAA 1.000E+OO 4.745E-01 4.052E-01 2.402E-01 3.489E-02 1.234E-02 1.795E-03 5.685E-03 4.295E-02 1.118E-12 337 EHECACBBBAAA 1.000E+OO 7.944E-02 6.096E-02 4.612E-02 2.349E-02 3.298E-03 1.519E-03 3.873E-03 2.281E-02 1.061E-12 338 CFCDDCDBDC::AA 1 .OOOE+OO 2.386E-01 1 .787E-01 1 .378E-01 9.622E-02 1 .456E-02 5.565E-03 2.461E-02 9.738E-02 1.056E-12 339 CFDCACBBBCAA 1.000E+OO 1.380E-01 1.113E-01 5.136E-02 4.402E-03 6.350E-03 1.542E-03 1.615E-03 6.152E-03 9.184E-13 340 OGDDDCBBDAAA . 1.000E+OO 4.332E-01 3.684E-01 2.149E-01 3.237E-02 1.107E-02 1.723E-o3*5.204E-03 3.938E-02 8.275E-13 341 CFDDDCBBDBAB 1.000E+OO 1.293E-01 7.713E-02 4.005E-02 6.317E-03 1.590E-04 1.007E-03 1.022E-03 5.016E-03 8.170E-13 342 CGDDDCBBDBAA 1.000E+OO 1 .887E-01 1.218E-01 5.509E-02 2.245E-03 7.899E-04 1.657E-04 1.970E-04 2.360E-03 7.984E-13 n* 343 DDCDDCDBDAAC 1.000E+OO 2.043E-02 1.520E-03 8.613E-04 5.092E-04 7.743E-05 2.933E-05 1 .296E-04 5.165E-04 6.573E-13 I 344 CGCDDCDBDCAB 1.000E+OO 6.826E-02 3.783E-02 9.678E-03 2.037E-04 1.081E-04 4.898E-06 9.255E-06 3.254E-04 5.895E-13

~ 345 DGDDDCBBDAAB 1.000E+OO 1 .691E-01 1.052E-01 3.593E-02 3.370E-03 9.769E-05 3.675E-04 3.790E-04 2.709E-03 5.582E-13 346 CFDCCCBBBCAA . 1.000E+OO 1.254E-01 7.911E-02 2.801E-02 4.220E-03 4.517E-03 1.133E-03 1 .135E-03 5.568E-03 3.970E-13 347 EHECCCBBBAAA 1.000E+OO 6.520E-02 4.328E-02 5.347E-02 3.567E-03 3.926E-08 1.710E-04 1.838E-04 2.225E-03 3.948E-13 348 CGCDDCDBDCAA 1.000E+OO 6.748E-02 3.820E-02 8.975E-03 1.716E-04 4.700E-05 2.215E-06 2.982E-06 2.701E-04 3.511E-13 349 DDCDDCDBDAAD 1 .OOOE+OO 1 .050E-01 5.475E-02 4.773E-02 9.739E-03 2.183E-03 4.366E-04 1 .622E-03 1 .083E-02 3.224E-13 350 EHDCACBBBAAA 1.000E+OO 8.544E-02 6.572E-02 4.622E-02 2.089E-02 3.591E-03 8.774E-04 3.482E-03 2.173E-02 2.426E-13 351 CGDCCCBBBBAA 1.000E+OO 8.349E-01 8.329E-01 8.284E-01 8.224E-01 1.698E-01 8.838E-02 5.605E-01 8.224E-01 2.124E-13 352 CFADDCBBDCAC 1.000E+OO 2.190E-01 1 .624E-01 1.227E-01 8.496E-02 1.286E-02 4.914E-03 2.173E-02 8.598E-02 1.957E-13 353 CFCDDCDBDCAB 1.000E+oo*6.807E-02 3.705E-02 1.223E-02 3.266E-04 3.191E-04 1 .419E-05 3.052E-05 5.108E-04 1.603E-13 354 CGADDCBBDCAC 1.000E+OO 2.386E-01 1.787E-01 1.396E-01 1 .008E-01 1.458E-02 6.972E-03 2.585E-02 1.006E-01 1.304E-13 ,6" 355 DFDDDCBBDAAB 1.000E+OO 1.156E-01 6.479E-02 2.142E-02 5.729E-04 5.577E-04 2.489E-05 5.344E-05 8.940E-04 1.106E-13 'O 356 EHDCCCBBBAAA 1.000E+OO 4.377E-02 1.583E-02 2.311E-02 6.845E-04 5.077E-09 2.971E-05 3.325E-05 4.073E-04 9.869E-14 g 357 CGDDDCBBDCAB 1.000E+OO 7.405E-02 4.046E-02 9.144E-03 1 .821E-04 5.307E-05 2.496E-06 3.362E-06 2.721E-04 6.606E-14 ~

358 CDCDDCDBDBAD 1.000E+OO 8.056E-02 4.654E-02 1 .191E-02 2.405E-04 5.101E-05 3.137E-06 4.061E-06 3.740E-04 6.564E-14 359 CGDDDCBBDCAA 1.000E+OO 7.405E-02 4.046E-02 9.144E-03 1.821E-04 5.307E-05 2.496E-06 3.362E-06 2.721E-04 5.074E-14 n 360 EGDCCCBBBAAA 1.000E+OO 3.595E-02 1 .560E-02 1 .543E-02 2.629E-06 3.522E-07 2.556E-07 9.770E-07 2.566E-06 3.691E-14 en 0

~- §

§ ~

Q § n

~ I

~

°'.....

.j:s.

.j:s.

'[

Appendix C Source Term Analysis Table C.4 Isotope Inventories for Four Time Windows (Bq)

Radionuclide Window 1 Window 2 Window 3 Window4 MACCS 48 hr 120 hr 288 hr 768 hr Group KR-88 1.6E+13 3.75E+05 O.OOE+OO O.OOE+OO 1 KR-87 6.2E+06 O.OOE+OO O.OOE+OO O.OOE+OO 1 XE-133 4.8E+18 3.36E+18 1.76E+18 9.68E+16 1 XE-135 2.9E+17 1.48E+15 O.OOE+OO O.OOE+OO 1 KR-85 l.8E+16 l.73E+16 1.73E+16 1.72E+16 1 KR-85M 4.4E+14 6.41E+09 O.OOE+OO O.OOE+OO 1 I-132 2.5E+18 1.33E+18 4.60E+17 4.27E+15 2 I-131 2.3E+18 1.76E+l8 1.14E+18 1.72E+17 2 I-133 1.1E+18 1.02E+17 1.86E+15 4.26E+07 2 I-134 7.7E+02 O.OOE+OO O.OOE+OO O.OOE+OO 2 I-135 3.3E+16 1.73E+13 O.OOE+OO O.OOE+OO 2 CS-136 8.1E+16 6.90E+16 5.29E+16 1.65E+16 3 CS-137 1.8E+17 1.81E+17 1.81E+17 1.80E+17 3 CS-134 2.1E+17 2.12E+17 2.11E+17 2.07E+17 3 RB-86 3.1E+15 2.82E+15 2.34E+15 1.03E+15 3 TE-127 2.2E+17 1.42E+17 7.86E+16 2.78E+l6 4 TE-127M 3.2E+16 3.21E+16 3.14E+16 2.75E+16 4 SB-127 2.0E+17 1.14E+ 17 4.63E+16 8.81E+14 4 SB-129 3.8E+14 3.68E+09 O.OOE+OO O.OOE+OO 4 TE-131M 1.3E+17 2.37E+16 1.48E+15 . 7.47E+09 4 TE-132 2.4E+18 1.29E+18 4.47E+17 4.14E+15 4 TE-129 7.7E+16 7.23E+16 6.52E+16 4.14E+16 4 TE-129M 1.2E+17 1.11E+17 1.00E+17 6.36E+16 4 SR-90 1.3E+17 1.34E+17 1.34E+17 1.34E+17 5 SR-91 1.0E+17 5.26E+14 O.OOE+OO O.OOE+OO 5 SR-92 1.7E+13 1.68E+05 O.OOE+OO O.OOE+OO 5 SR-89 2.6E+18 2.54E+18 2.37E+18 1.75E+18 5 NUREG/CR-6144 C-30 Vol. 6, Part 2

Appendix C Source Term Analysis Table C.4 (Continued)

Radionuclide Window 1 Window 2 Window 3 Window4 MACCS 48 hr 120 hr 288 hr 768 hr Group C0-58 2.26E+16 2.19E+16 2.06E+16 l.69E+16 6 C0-60 l.76E+16 l.76E+16 l.75E+ 16 l.74E+16 6 RU-103 3.8E+18 3.57E+18 3.27E+18 2.22E+18 6 TC-99M 2.8E+18 l.32E+18 3.74E+17 l.46E+15 6 M0-99 2.9E+18 l.37E+18 3.88E+17 l.52E+15 6 RU-105 l.5E+15 l.94E+10 O.OOE+OO O.OOE+OO 6 RH-105 l.1E+18 2.60E+17 2.48E+16 7.92E+ll 6 RU-106 9.2E+17 9.13E+17 9.04E+17 8.68E+17 6 LA-140 4.6E+18 4.03E+18 3.12E+18 9.53E+17 7 AM-241 2.90E+14 2.90E+14 2.90E+14 2.90E+14 7 CM-242 3.14E+16 3.11E+16 3.01E+16 2.77E+16 7 CM-244 l.86E+15 l.86E+15 1.85E+15 l.85E+15 7 ND-147 l.6E+18 l.29E+18 9.44E+17 2.38E+17 7 LA-141 l.OE+lS 3.11E+09 O.OOE+OO O.OOE+OO 7 LA-142 2.2E+09 O.OOE+OO O.OOE+OO O.OOE+OO 7 PR-143 4.0E+18 3.50E+18 2.74E+18 8.94E+17 7 Y-93 1.5E+17 1.llE+lS O.OOE+OO O.OOE+OO 7 Y-92 l.2E+15 9.48E+08 O.OOE+OO O.OOE+OO 7 ZR-95 4.4E+18 4.25E+18 4.02E+18 3.17E+18 7 NB-95 4.4E+18 4.36E+18 4.33E+18 4.06E+18 7 ZR-97 6.2E+17 3.26E+16 2.37E+14 9.34E+04 7 Y-91 3.4E+18 3.27E+18 3.08E+18 2.37E+18 7.

Y-90 l.4E+17 l.36E+17 1.35E+17 l.34E+17 7 PU-239 7.1E+14 7.11E+14 7.14E+14 7.15E+14 8 PU-241 2.0E+17 2.04E+17 2.04E+17 2.04E+17 8 PU-240 8.9E+14 8.94E+14 8.94E+14 8.94E+14 8 PU-238 2.8E+15 2.77E+15 2.78E+15 2.81E+15 8 CE-144 2.6E+18 2.56E+18 2.53E+18 2.39E+18 8 Vol. 6, Part 2 C-31 NUREG/CR-6144

Appendix C Source Term Analysis Table C.4 (Continued)

Radionuclide Window 1 Window 2 Window 3 Window 4 MACCS 48 hr 120 hr 288 hr 768 hr Group CE-143 l.5E+18 3.36E+17 2.70E+16 4.13E+ll 8 NP-239 2.9E+19 l.20E+19 2.76E+18 4.27E+15 8 CE-141 4.3E+18 4.07E+18 3.66E+18 2.29E+18 8 BA-140 4.2E+18 3.58E+18 2.73E+18 8.28E+17 9 BA-139 l.8E+08 O.OOE+OO O.OOE+OO O.OOE+OO 9 NUREG/CR-6144 C-32 Vol. 6, Part 2

Appendix C Source Term Analysis Table C.5 Equivalent 1-131 Inventory for Four Time Windows (Bq)

I Window 1 I Window 2 I Window 3 I Window 4 I

3.SSE+lS 1.85E+15 9.SOE+ 14 6.59E+13 1.85E+15 1.02E+17 5.27E+16 3.48E+15 9.50E+14 5.27E+16 5.85E+16 4.19E+15 6.59E+13 3.48E+15 4.19E+15 4.96E+15 2.59E+17 1.35E+17 6.90E+16 5.94E+15 3.08E+17 l.61E+17 8.23E+16 8.24E+15 2.90E+17 1.53E+17 7.86E+16 9.SlE+lS 5.08E+17 2.66E+17 1.34E+17 1.53E+16 4.36E+17 2.33E+17 1.21E+17 1.96E+16 2.64E+17 1.46E+17 8.06E+16 2.15E+16 3.59E+17 1.99E+17 1.11E+17 3.04E+16 5.27E+17 2.97E+17 1.68E+17 5.27E+16 6.23E+17 3.55E+17 2.03E+17 6.84E+16 9.92E+17 5.73E+17 3.26E+17 1.15E+17 1.22E+18 7.07E+17 4.06E+17 1.SOE+17 1.75E+18 1.02E+18 5.94E+17 2.33E+17 2.88E+18 l.71E+18 9.87E+17 3.98E+17 3.69E+18 2.32E+18 1.46E+18 6.68E+17 5.62E+18 3.44E+18 2.08E+18 9.0SE+17 7.34E+18 4.48E+18 2.72E+18 l.25E+18 l.17E+19 7.53E+18 4.82E+18 2.31E+18 l.76E+19 l.21E+19 8.25E+18 4.14E+18 2.62E+19 1.88E+19 l.35E+19 7.03E+l8 2.91E+19 2.09E+19 1.49E+19 7.80E+18 4.53E+19 3.04E+19 2.0SE+19 1.04E+19 Vol. 6, Part 2 C-33 NUREG/CR-6144

Appendix C Source Term Analysis Table C.6 Numbers of Latent Health Effects Predicted in the LH Weight Calculations MACCS Window 1 Window 2 Window 3 Window 4 Average Radionuclide Source Term Group Xe 3.98E-01 2.23E-Ol 1.17E-01 6.53E-03 0.77 I 3.99E+Ol 2.97E+Ol 2.02E+Ol 3.74E+OO 0.165 Cs 6.04E+02 6.03E+02 6.02E+02 6.02E+02 0.133 Te 4.37E+Ol 2.44E+Ol 9.84E+00 1.34E+OO 0.075 Sr 3.57E+Ol 3.53E+Ol 3.46E+Ol 3.30E+Ol 0.02 Ru 2.96E+Ol 2.88E+Ol 2.79E+Ol 2.53E+Ol 0.004 La 3.0lE+Ol 2.92E+Ol 2.78E+Ol 2.31E+Ol 0.002 Ce 1.21E+02 1.19E+02 1.17E+02 1.14E+02 0.006 Ba 5.64E+Ol 4.91E+Ol 3.89E+Ol 1.46E+Ol 0.02 NUREG/CR-6144 C-34 Vol. 6, Part 2

Appendix C Source Term Analysis Table C.7 Windows Inventories Relative to Inventory of Window 1 I I Window 1 I Window 2 I Window3 I Window4 I

Xe 1 0.664 0.349 0.022 I 1 0.538 0.271 0.030 Cs 1 0.973 0.936 0.848 Te 1 0.556 0.239 0.051 Sr 1 0.928 0.870 0.655 Ru 1 0.648 0.432 0.269 La 1 0.901 0.794 0.510 Ce 1 0.509 0.243 0.130 Ba 1 0.851 0.648 0.197 Vol. 6, Part 2 C-35 NUREG/CR-6144

Appendix C Source Term Analysis Table C.8 Preliminary Partitioning of Source Terms With Non-Zero Early Fatalities and Non-Zero Latent Fatalities Log EH (mid-point)

Number of 33 0.34 Source Terms 24 27 24 18 -0.72 60 17 4 6 -1.25 Table C.9 Final Partitioning of Source Terms with Non-Zero Early Fatalities and Non-Zero Latent Fatalities Log EH (mid-point)

Number of 57 0.34 Source Terms 44 28 -0.72 84 -1.25 Log LH (mid-point) 3.64 3.82 4.00 4.17 ST Group 22 23 24 25 NUREG/CR-6144 C-36 Vol. 6, Part 2

N Table C.10 Partitioning of Source Terms with Zero Early Fatalities and Non-Zero Latent Fatalities 4047 121 163 177 225 265 310 322 315 276 393 439 547 735 826 1036 946 1187 1109 1001 800 # of STs

-.30 0.10 0.27 0.45 0.63 0.81 0.98 1.16 1.34 1.52 1.69 1.87 2.05 2.22 2.40 2.58 2.76 2.93 3.11 3.29 3.47 Log LH I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 11,, 18 19 20 21 ST

Table C.11 Release Fractions for 25 Mean Source Term Partition Groups II Group Xe I Cs Te Sr Ru La Ce Ba 1 1.57E-02 1.36E-04 6.58E-07 3.20E-07 6.28E-08 6.77E-09 5.SOE-09 l.26E-08 5.74E-08 2 9.91E-Ol 4.29E-03 8.92E-05 2.48E-05 l.86E-06 2.82E-07 l.54E-07 4.89E-07 l.99E-06 3 9.83E-Ol 7.77E-03 l.51E-04 4.45E-05 2.llE-06 3.55E-07 l.67E-07 4.21E-07 2.28E-06 4 9.49E-01 l.07E-02 2.98E-04 l.15E-04 9.12E-06 2.07E-06 7.48E-07 2.23E-06 9.91E-06 5 9.29E-Ol 1.46E-02 4.50E-04 l.98E-04 l.62E-05 3.76E-06 8.78E-07 2.57E-06 l.SOE-05 6 9.62E-Ol 2.03E-02 8.04E-04 4.0lE-04 7.87E-05 l.03E-05 8.06E-06 l.42E-05 7.33E-05 7 8.45E-01 2.03E-02 1.86E-03 5.llE-04 3.87E-05 9.81E-06 2.49E-06 4.71E-06 4.26E-05 8 9.82E-01 4.76E-02 l.47E-03 9.09E-04 2,0lE-04 1.66E-05 2.0lE-05 2.76E-05 1.68E-04 9 9.61E-01 3.42E-02 4.04E-03 2.54E-03 3.91E-04 3.69E-05 4.67E-05 6.00E-05 3.30E-04 10 4.28E-Ol 2.35E-02 8.49E-03 9.90E-04 8.05E-05 l.14E-05 6.12E-06 l.04E-05 9.77E-05 11 6.48E-Ol 2.90E-02 1.21E-02 2.17E-03 1.21E-04 4.14E-05 l.29E-05 1.67E-05 1.37E-04 nI l.,l 00 12 7.61E-Ol 4.41E-02 2.22E-02 4.47E-03 2.22E-04 3.54E-05 l.30E-05 3.36E-05 2.70E-04 13 7.67E-01 5.20E-02 2.90E-02 6.79E-03 4.04E-04 l.23E-04 2.67E-05 4.90E-05 4.67E-04 14 9.22E-Ol 7.SOE-02 4.44E-02 1.97E-02 1.61E-03 7.SOE-04 8.72E-05 2.56E-04 2.20E-03 15 8.38E-Ol 1.0SE-01 6.51E-02 1.91E-02 1.00E-03 l.82E-04 4.69E-05 6.20E-05 l.OlE-03 16 8.57E-Ol 1.47E-Ol 1.00E-01 3.49E-02 2.13E-03 4.96E-04 l.36E-04 2.59E-04 2.33E-03 17 9.91E-01 1.95E-Ol l.49E-01 9.38E-02 9.79E-03 1.96E-03 5.58E-04 l.OOE-03 9.0lE-03 18 9.78E-01 2.llE-01 l.82E-Ol 1.06E-Ol 3.34E-02 2.41E-03 3.67E-03 4.70E-03 2.68E-02 19 9.96E-01 3.74E-Ol 2.93E-Ol 1.63E-01 3.51E-02 4.67E-03 2.41E-03 6.14E-03 3.24E-02 20 1.00E+OO 5.27E-01 5.07E-Ol 2.05E-01 2.46E-02 3.67E-03 l.91E-03 4.24E-03 2.24E-02 21 1.00E+OO 6.16E-01 5.82E-01 3.48E-01 1.28E-01 1.31E-02 1.24E-02 2.41E-02 1.14E-01 22 1.00E+OO 5.97E-Ol 5.58E-01 4.95E-Ol 3.22E-Ol 3.96E-02 3.98E-02 5.71E-02 2.98E-01 23 l.OOE+OO 5.82E-01 5.92E-Ol 6.66E-01 5.61E-01 4.40E-02 l.OlE-01 l.lOE-01 5.24E-01 24 l.OOE+OO 6.29E-Ol 6.44E-01 6.65E-01 6.05E-01 7.52E-02 1.lOE-01 l.66E-Ol 5.92E-01 25 l.OOE+OO 8.87E-Ol 8.86E-Ol 8.81E-Ol 8.86E-01 1.70E-Ol 9.25E-02 6.03E-Ol 8.86E-01

i APPENDIX D

  • SUPPORTING INFORMATION FOR THE CONSEQUENCE ANALYSIS
  • CONTENTS Section Page D.l ATMOS Input File ........................................................ D-5 D.2 EARLY Input File ....................................................... D-15 D.3 CHRONC Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-22 D.4 SITE Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-32
  • . Appendix D This appendix contains the input data files used in the MACCS calculations. The original files taken from the NUREG-1150 Surry study were modified where needed to reflect the specifics of the LP/SD study.

D.1 ATMOS Input File

  • GENERAL DESCRIPTIVE TITLE DESCRIBING THIS "ATMOS" INPUT RIATNAM1001 'SURRY ATMOS INPUT FOR FINAL NUREG-1150 CALCULATIONS'
  • FLAG TO INDICATE THAT THIS IS THE LAST PROGRAM IN THE SERIES TO BE RUN OCENDAT1001 .FALSE. (SET THIS VALUE TO .TRUE. TO SKIP EARLY AND CHRONC)
  • GEOMETRY DATA BLOCK, LOADED BY INPGEO, STORED IN /GEOM/
  • NUMBER OF RADIAL SPATIAL ELEMENTS GENUMRAD001 26
  • SPATIAL ENDPOINT DISTANCES IN MILES
  • END001 0.25 0.5 0.75 1.0 1.5
  • END002 2.0 2.5 3.0 3.5 5.0
  • END003 7.0 10 13 16 20
  • END004 25 30 40 50 70
  • END005 100 150 200 350 500
  • END006 1000 GESPAEND001 .16 .52 1.21 1.61 2.13 GESPAEND002 3.22 4.02 4.83 5.63 8.05 GESPAEND003 11.27 16.09 20.92 25.75 32.19 GESPAEND004 40.23 48.28 64.37 80.47 112. 65 GESPAEND005 160.93 241 .14 321.87 563.27 804.67 GESPAEND006 1609.34
  • NUCLIDE DATA BLOCK, LOADED BY INPISO, STORED IN /ISOGRP/, /ISONAM/
  • NUMBER OF NUCLIDES ISNUMIS0001 60
  • NUMBER OF NUCLIDE GROUPS ISMAXGRP001 9
  • WET AND DRY DEPOSITION FLAGS FOR EACH NUCLIDE GROUP
  • WETDEP DRYDEP ISDEPFLA001 . FALSE. .FALSE .

ISDEPFLA002 .TRUE. .TRUE.

ISDEPFLA003 .TRUE. .TRUE.

Vol. 6, Part 2 D-5 NUREG/CR-6144

Appendix D Supporting Information for the Consequence Analysis ISDEPFLA004 .TRUE. .TRUE.

ISDEPFLA005 .TRUE. .TRUE.

ISDEPFLA006 .TRUE. .TRUE.

ISDEPFLAOO? .TRUE. .TRUE.

ISDEPFLA008 .TRUE. .TRUE.

ISDEPFLA009 .TRUE. .TRUE.

  • NUCLIDE GROUP DATA FOR 9 NUCLIDE GROUPS
  • NUCNAM PARENT !GROUP HAFLIF IS0TPGRP001 C0-58 NONE 6 6.160E+06 IS0TPGRP002 C0-60 NONE 6 1.660E+08 IS0TPGRP003 KR-85 NONE 1 3.386E+08 IS0TPGRP004 KR-85M NONE 1 1.613E+04 IS0TPGRP005 KR-87 NONE 1 4.560E+03 IS0TPGRP006 KR-88 NONE 1 1.008E+04 IS0TPGRP007 RB-86 NONE 3 1.611E+06 IS0TPGRP008 SR-89 NONE 5 4.493E+06 IS0TPGRP009 SR-90 NONE 5 8.865E+08 IS0TPGRP010 SR-91 NONE 5 3.413E+04 ISOTPGRP011 SR-92 NONE 5 9.756E+03 NEW IS0TPGRP012 Y-90 SR-90 7 2.307E+05 IS0TPGRP013 Y-91 SR-91 7 5.080E+06 IS0TPGRP014 Y-92 SR-92 7 1.274E+04 NEW IS0TPGRP015 Y-93 NONE 7 3.636E+04 NEW IS0TPGRP016 ZR-95 NONE 7 5.659E+06 IS0TPGRP017 ZR-97 NONE 7 6;048E+04 IS0TPGRP018 NB-95 ZR-95 7 3.033E+06 IS0TPGRP019 M0-99 NONE 6 2.377E+05 IS0TPGRP020 TC-99M M0-99 6 2.167E+04 IS0TPGRP021 RU-103 NONE 6 3.421E+06 IS0TPGRP022 RU-105 NONE 6 1.598E+04 IS0TPGRP023 RU-106 NONE 6 3 .188E+07 IS0TPGRP024 RH-105 RU-105 6 1.278E+05 IS0TPGRP025 SB-127 . NONE 4 3.283E+05 IS0TPGRP026 SB-129 NONE 4 1.562E+04 IS0TPGRP027 TE-127 SB-127 4 3.366E+04 IS0TPGRP028 TE-127M NONE 4 9.418E+06 IS0TPGRP029 TE-129 SB-129 4 4.200E+03 IS0TPGRP030 TE-129M NONE 4* 2.886E+06 IS0TPGRP031 TE-131M NONE 4 1.080E+05 IS0TPGRP032 TE-132 NONE 4 2.808E+05 IS0TPGRP033 I-131 TE-131M 2 6.947E+05 IS0TPGRP034 I-132 TE-132 2 8.226E+03 ISOTPGRP035 I-133 NONE 2 7.488E+04 IS0TPGRP036 I-134 NONE 2 3 .156E+03 ISOTPGRP037 I-135 NONE 2 2.371E+04 IS0TPGRP038 XE-133 I-133 1 4.571E+05 IS0TPGRP039 XE-135 I-135 1 3.301E+04 IS0TPGRP040 CS-134 NONE 3 6.501E+07 IS0TPGRP041 CS-136 NONE 3 1.123E+06 IS0TPGRP042 CS-137 NONE 3 9.495E+08 IS0TPGRP043 BA-139 NONE 9 4.986E+03 NEW IS0TPGRP044 BA-140 NONE 9 1.105E+06 IS0TPGRP045 LA-140 BA-140 7 1.448E+05 NUREG/CR-6144 D-6 Vol. 6, Part 2

AppendixD Supporting Information for the Consequence Analysis ISOTPGRP046 LA-141 NONE 7 1.418E+04 NEW ISOTPGRP047 LA-142 NONE 7 5.724E+03 NEW ISOTPGRP048 CE-141 LA-141 8 2.811E+06 PARENT ADDED ISOTPGRP049 CE-143 NONE 8 1.188E+05 ISOTPGRP050 CE-144 NONE 8 2.457E+07 ISOTPGRP051 PR-143 CE-143 7 1 .173E+06 ISOTPGRP052 ND-147 NONE 7 9.495E+05 ISOTPGRP053 NP-239 NONE 8 2.030E+05 ISOTPGRP054 PU-238 CM-242 8 2.809E+09 ISOTPGRP055 PU-239 NP-239 8 7.700E+11 ISOTPGRP056 PU-240 CM-244 8 2 .133E+11 ISOTPGRP057 PU-241 NONE 8 4.608E+08 ISOTPGRP058 AM-241 PU-241 7 1.366E+10 ISOTPGRP059 CM-242 NONE 7 1.408E+07 ISOTPGRP060 CM-244 NONE 7 5.712E+08

  • WET DEPOSITION DATA BLOCK, LOADED BY INPWET, STORED IN /WETCON/
  • WASHOUT COEFFICIENT NUMBER ONE, LINEAR FACTOR WDCWASH1001 9.5E-5 (HELTON AFTER JONES, 1986)
  • WASHOUT COEFFICIENT NUMBER TWO, EXPONENTIAL FACTOR WDCWASH2001 0.8 (HELTON AFTER JONES, 1986)
  • DRY DEPOSITION DATA BLOCK, LOADED BY INPDRY, STORED IN /DRYCON/
  • NUMBER OF PARTICLE SIZE GROUPS DDNPSGRP001 1
  • DEPOSITION VELOCITY OF EACH PARTICLE SIZE GROUP (M/S)

DDVDEPOS001 0.01 (VALUE SELECTED BYS. ACHARYA, NRG)

  • DISPERSION PARAMETER DATA BLOCK, LOADED BY INPDIS, STORED IN /DISPY/, /DISPZ/
  • SIGMA= AX** B WHERE A AND B VALUES ARE FROM TADMOR AND GUR (1969)
  • LINEAR TERM OF THE EXPRESSION FOR SIGMA~Y, 6 STABILITY CLASSES
  • STABILITY CLASS: A B C D E F DPCYSIGA001 0.3658 0.2751 0.2089 0.1474 0.1046 0.0722
  • EXPONENTIAL TERM OF THE EXPRESSION FOR SIGMA-Y, 6 STABILITY CLASSES
  • STABILITY CLASS: A B C D E F DPCYSIGB001 .9031 .9031 .9031 .9031 .9031 .9031
  • LINEAR TERM OF THE EXPRESSION FOR SIGMA-Z, 6 STABILITY CLASSES

Appendix D Supporting Information for the Consequence Analysis DPC2SIGA001 2.5E-4 1.9E-3 .2 .3 .4 .2

  • EXPONENTIAL TERM OF THE EXPRESSION FOR SIGMA-2, 6 STABILITY CLASSES
  • STABILITY CLASS; A B C D E F DPC2SIGB001 2.125 1. 6021 .8543 .6532 .6021 .6020
  • LINEAR SCALING FACTOR FOR SIGMA-Y FUNCTION, NORMALLY 1 DPYSCALE001 1.
  • LINEAR SCALING FACTOR FOR SIGMA-2 FUNCTION,
  • NORMALLY USED FOR SURFACE ROUGHNESS LENGTH CORRECTION.
  • (21 / 20) ** 0.2, FROM CRAC2 WE HAVE (10 CM/ 3 CM) ** 0.2 = 1.27 DP2SCALE001 1.27
  • EXPANSION FACTOR DATA BLOCK, LOADED BY INPEXP, STORED IN /EXPAND/
  • TIMEBASE FOR EXPANSION FACTOR (SECONDS)

PMTIMBAS001 600. (10 MINUTES)

  • BREAKPOINT FOR FORMULA CHANGE (SECONDS)

PMBRKPNT001 PMXPFAC1001 3600.

0.2 (1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />)

  • EXPONENTIAL EXPANSION FACTOR NUMBER 1
  • EXPONENTIAL EXPANSION FACTOR NUMBER 2 PMXPFAC2001 0.25
  • PLUME RISE DATA BLOCK, LOADED BY INPLRS, STORED IN /PLUMAS/
  • SCALING FACTOR FOR THE CRITICAL WIND SPEED FOR ENTRAINMENT OF A BOUYANT PLUME
  • (USED BY FUNCTION CAUGHT)

PRSCLCRW001 1,

  • SCALING FACTOR FOR THE A-D STABILITY PLUME RISE FORMULA
  • (USED BY FUNCTION PLMRIS)

PRSCLADP001 1.

  • SCALING FACTOR FOR THE E-F STABILITY PLUME RISE FORMULA
  • (USED BY FUNCTION PLMRIS)

PRSCLEFP001 1.

  • WAKE EFFECTS DATA BLOCK, LOADED BY INPWAK, STORED IN /BILWAK/

NUREG/CR-6144 D-8 Vol. 6, Part 2

Appendix D Supporting Information for the Consequence Analysis

  • SITE GG PB SEQ SUR
  • WIDTH (M) 40 50 40 40
  • HEIGHT (M) 60 50 40 50
  • BUILDING WIDTH (METERS)

WEBUILDW001 40.

  • SURRY
  • BUILDING HEIGHT (METERS)

WEBUILDH001 50.

  • SURRY
  • 3412 MWTH PWR CORE INVENTORY, END-OF-CYCLE
  • SUPPLIED BY D.E. BENNETT, 5/14/86
  • replaced by SURRY LP/SD specific data
  • LPSD Window 1 inventory (48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br />) 12/7/93
  • NUCNAM CORINV(BQ)

RDCORINV001 C0-58 2.260E+16 RDCORINV002 C0-60 1. 760E+16 RDCORINV003 KR-85 1. 762E+16 RDCORINV004 KR-85M 4.410E+14 RDCORINV005 KR-87 6.194E+06 RDCORINV006 KR-88 1 .618E+13 RDCORINV007 RB-86 3 .148E+15 RDCORINV008 SR-89 2.647E+18 RDCORINV009 SR-90 1.343E+17 RDCORINV010 SR-91 1.006E+17 RDCORINV011 SR-92 1.669E+13 RDCORINV012 Y-90 1. 383E+17 RDCORINV013 Y-91 3.383E+18 RDCORINV014 Y-92 1. 211 E+15 RDCORINV015 Y-93 1.548E+17 RDCORINV016 ZR-95 4.385E+18 RDCORINV017 ZR-97 6.246E+17 RDCORINV018 NB-95 4.362E+18 RDCORINV019 M0-99 2.916E+18 RDCORINV020 TC-99M 2.807E+18 RDCORINV021 RU-103 3.770E+18 RDCORINV022 RU-105 1 .480E+15 RDCORINV023 RU-106 9.183E+17 RDCORINV024 RH-105 1.067E+18 RDCORINV025 SB-127 1.955E+17 RDCORINV026 SB-129 3.818E+14 RDCORINV027 TE-127 2.179E+17 RDCORINV028 TE-127M 3.229E+16 RDCORINV029 TE-129 7.733E+16 RDCORINV030 TE-129M 1.181E+17 RDCORINV031 TE-131M 1.252E+17 RDCORINV032 TE-132 2.449E+18 RDCORINV033 I-131 2.258E+18 RDCORINV034 I-132 2.525E+18 RDCORINV035 I-133 1.118E+18 RDCORINV036 I-134 7.748E+02 Vol. 6, Part 2 D-9 NUREG/CR-6144

Appendix D Supporting Information for the Consequence Analysis RDCORINV037 I-135 3.292E+16 RDCORINV038 XE-133 4.784E+18 RDCORINV039 XE-135 2.885E+17 RDCORINV040 CS-134 2 .130E+17 RDCORINV041 CS-136 8.081E+16 RDCORINV042 CS-137 1 .807E+17 RDCORINV043 BA-139 1. 805E+08 RDCORINV044 BA-140 4.207E+18 RDCORINV045 LA-140 4.581E+18 RDCORINV046 LA-141 1.015E+15 RDCORINV047 LA-142 2 .155E+09 RDCORINV048 CE-141 4.336E+18 RDCORINV049 CE-143 1.525E+18 RDCORINV050 CE-144 2.577E+18 RDCORINV051 PR-143 3.966E+18 RDCORINV052 ND-147 1.558E+18 RDCORINV053 NP-239 2.905E+19 RDCORINV054 PU-238 2.758E+15 RDCORINV055 PU-239 7.071E+14 RDCORINV056 PU-240 8.936E+14 RDCORINV057 PU-241 2.042E+17 RDCORINV058 AM-241 2.900E+14 RDCORINV059 CM-242 3 .140E+16 RDCORINV060 CM-244 1.860E+15 RDCORSCA001 1.0

  • PARTICLE SIZE DISTRIBUTION OF EACH NUCLIDE GROUP
  • YOU MUST SPECIFY A COLUMN OF DATA FOR EACH OF THE PARTICLE SIZE GROUPS RDPSDIST001 1.

RDPSDIST002 1.

RDPSDIST003 1.

RDPSDIST004 1.

RDPSDIST005 1.

RDPSDIST006 1.

RDPSDIST007 1.

RDPSDIST008 1.

RDPSDIST009 1.

  • OUTPUT CONTROL DATA BLOCK, LOADED BY INPOPT, STORED IN /ATMOPT/

OCIDEBUG001 0

  • NAME OF THE NUCLIDE TO BE LISTED ON THE DISPERSION LISTINGS OCNUCOUT001 CS-137
  • METEOROLOGICAL SAMPLING DATA BLOCK
  • METEOROLOGICAL SAMPLING OPTION CODE:
  • METCOD = 1, USER SPECIFIED DAY AND HOUR IN THE YEAR (FROM MET FILE),
  • 2, WEATHER CATEGORY BIN SAMPLING,
  • 3, 120 HOURS OF WEATHER SPECIFIED ON THE ATMOS USE~ INPUT FILE,
  • 4, CONSTANT MET (BOUNDARY WEATHER USED FROM THE START),

NUREG/CR-6144 D-10 Vol. 6, Part 2

Appendix D Supporting Information for the Consequence Analysis

  • 5, STRATIFIED RANDOM SAMPLES FOR EACH DAY OF THE YEAR.

M1METCOD001 2 M3ISTRDY001 1 M3ISTRHR001 1

  • LAST SPATIAL INTERVAL FOR MEASURED WEATHER M2LIMSPA001 25
  • BOUNDARY WEATHER, NO RAIN, WIND SPEED= 0.5 M/S, A-STABILITY,
  • MIXING HEIGHT= 1000 M, APPLIES TO THE LAST SPATIAL INTERVAL
  • (500 - 1000 MILES)
  • BOUNDARY WEATHER MIXING LAYER HEIGHT M2BNDMXH001 1000. (METERS)
  • BOUNDARY WEATHER STABILITY CLASS INDEX M2IBDSTB001 1 (A-STABILITY)
  • BOUNDARY WEATHER RAIN RATE M2BNDRAN001 0. (0 MM/ HOUR= NO RAIN)
  • BOUNDARY WEATHER WIND SPEED M2BNDWND001 0.5 (M / S)
  • NUMBER OF SAMPLES PER BIN M4NSMPLS001 4 (THIS NUMBER SHOULD BE SET TO 4 FOR RISK ASSESSMENT)
  • NUMBER OF RAIN DISTANCE INTERVALS FOR BINNING M4NRNINT001 6
  • ENDPOINTS OF THE RAIN DISTANCE INTERVALS (KILOMETERS)
  • NOTE: THESE MUST BE CHOSEN TO MATCH THE SPATIAL ENDPOINT DISTANCES
  • SPECIFIED FOR THE ARRAY SPAEND (10  % ERROR IS ALLOWED).
  • 2.0 3.5 7.0 13.0 25.0 50.0 MILES M4RNDSTS001 3.22 5.63 11.27 20.92 40.23 80.47 KM
  • NUMBER OF RAIN INTENSITIY BREAKPOINTS M4NRINTN001 3
  • RAIN INTENSITY BREAKPOINTS FOR WEATHER BINNING (MILLIMETERS PER HOUR)

M4RNRATE001 1. 2. 3.

  • INITIAL SEED FOR RANDOM NUMBER GENERATOR Vol. 6, Part 2 D-11 NUREG/CR-6144

Appendix D Supporting Information for the Consequence Analysis M4IRSEED001 1

                                            • RELEASE DATA BLOCK*************
  • WARNING TIME
  • 1 hr based on similarity to V-sequence in 1150 RDOALARM001 3.6E+3
  • SELECTION OF RISK DOMINANT PLUME RDMAXRIS001 1
  • REFERENCE TIME FOR DISPERSION AND RADIOACTIVE DECAY RDREFTIM001 0. .5
  • NUMBER OF PLUME SEGMENTS THAT ARE RELEASED RDNUMREL001 1
  • HEAT CONTENT OF THE RELEASE SEGMENTS (W}
  • A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENTS RDPLHEAT001 0.0
  • HEIGHT OF THE PLUME SEGMENTS AT RELEASE (M}
  • A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENTS
  • 12/7/93 hatch elevation: 27'5" approx. 8.4 m RDPLHITE001 8.4
  • DURATION OF THE PLUME SEGMENTS (S}
  • A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENTS RDPLUDUR001 21600.
  • TIME OF RELEASE FOR EACH PLUME (S AFTER SCRAM}
  • A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENTS
  • start of release 2hr based on MELCOR calculations RDPDELAY001 7.2E+3
  • RELEASE FRACTIONS FOR ISOTOPE GROUPS IN RELEASE
  • 25 Source Term Groups from Partitioning RDATNAM2001 'Group 1'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 1.6E-2 1.4E-4 6.6E-7 3.2E-7 6.3E-8 6.8E-9 5.8E-9 1.3E-8 5.7E-8 RDATNAM2001 'Group 2'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 9.9E-1 4.3E-3 8.9E-5 2.5E-5 1.9E-6 2.8E-7 1.5E-7 4.9E-7 2.0E-6 RDATNAM2001 'Group 3' NUREG/CR-6144 D-12 Vol. 6, Part 2

Appendix D Supporting Information for the Consequence Analysis

  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 9. BE-1 7.BE-3 1.5E-4 4.4E-5 2.1E-6 3.5E-7 1 .7E-7 4.2E-7 2.3E-6 RDATNAM2001 'Group 4'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 9.5E-1 1 .1E-2 3.0E-4 1.2E-4 9.1E-6 2.1E-6 7.5E-7 2.2E-6 9.9E-6 RDATNAM2001 'Group 5'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 9.3E-1 1.5E-2 4.5E-4 2.0E-4 1.6E-5 3.BE-6 8.BE-7 2.6E-6 1.BE-5 RDATNAM2001 'Group 6'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 9.6E-1 2.0E-2 8.0E-4 4.0E-4 7.9E-5 1.0E-5 8.1E-6 1.4E-5 7.3E-5 RDATNAM2001 'Group 7'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 8.4E-1 2.0E-2 1.9E-3 5.1E-4 3.9E-5 9.BE-6 2.5E-6 4.7E-6 4.3E-5 RDATNAM2001 'Group 8'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 9.BE-1 4.BE-2 1.5E-3 9.1E-4 2.0E-4 1.7E-5 2.0E-5 2.8E-5 1.7E-4 RDATNAM2001 'Group 9'
  • Xe I Cs Te Sr Ru La Ce Ba
  • RDRELFRC001 9.6E-1 3.4E-2 4.0E-3 2.5E-3 3.9E-4 3.7E-5 4.7E-5 6.0E-5 3.3E-4 RDATNAM2001 'Group 10'
  • Xe I Cs Te Sr Ru La RDRELFRC001 4.3E-1 2.3E-2 8.5E-3 9.9E-4 8.1E-5 1.1E-5 6.1E-6 1.0E-5 9.BE-5 RDATNAM2001 'Group 11' Ce Ba
  • Xe I Cs Te Sr Ru La . Ce Ba RDRELFRC001 6.5E-1 2.9E-2 1.2E-2 2.2E-3 1.2E-4 4.1E-5 1.3E-5 1.7E-5 1.4E-4 RDATNAM2001 'Group 12'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 7.6E-1 4.4E-2 2.2E-2 4.5E-3 2.2E-4 3.5E-5 1 .3E-5 3.4E-5 2.7E-4 RDATNAM2001 'Group 13'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 7.7E-1 5.2E-2 2.9E-2 6.BE-3 4.0E-4 1.2E-4 2.7E-5 4.9E-5 4.7E-4 RDATNAM2001 'Group 14'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 9.2E-1 7.5E-2 4.4E-2 2.0E-2 1.6E-3 7.BE-4 8.7E-5 2.6E-4 2.2E-3 RDATNAM2001 'Group 15'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 8 .4E-1 1.1E-1 6.5E-2 1.9E-2 1.0E-3 1.BE-4 4.7E-5 6.2E-5 *J .OE-3 RDATNAM2001 'Group 16' Xe Cs Sr Ru La Ce Ba
  • I Te RDRELFRC001 8.6E-1 1 . 5E-1 1.0E-1 3.5E-2 2.1E-3 5.0E-4 1 .4E-4 2.6E-4 2.3E-3 RDATNAM2001 'Group 17' Vol. 6,- Part 2 D-13 NUREG/CR-6144

Appendix D Supporting Information for the Consequence Analysis

  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 9. 9E-1 1 . 9E-1 1.SE-1 9.4E-2 9.BE-3 2.0E-3 5.6E-4 1 .OE-3 9.0E-3 RDATNAM2001 'Group 18'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 9.BE-1 2.1E-1 1 . BE-1 1.1E-1 3.3E-2 2.4E-3 3.?E-3 4.?E-3 2.7E-2 RDATNAM2001 'Group 19'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 1 .OE+OO 3. ?E-1 2.9E-1 1.6E-1 3.SE-2 4.?E-3 2.4E-3 6.1E-3 3.2E-2 RDATNAM2001 'Group 20'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 1.0E+OO 5.3E-1 5.1E-1 2.1E-1 2.SE-2 3.?E-3 1.9E-3 4.2E-3 2.2E-2 RDATNAM2001 'Group 21'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 1.0E+OO 6.2E-1 5.BE-1 3.SE-1 1 . 3E-1 1 .3E-2 1.2E-2 2.4E-2 1.1E-1 RDATNAM2001 'Group 22'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 1.0E+OO 6.0E-1 5.6E-1 4.9E-1 3.2E-1 4.0E-2 4.0E-2 5.?E-2 3.0E-1 RDATNAM2001 'Group 23'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 1.0E+OO 5.BE-1 5.9E-1 6.?E-1 5.6E-1 4.4E-2 1 . OE-1 1.1E-1 5.2E-1 RDATNAM2001 'Group 24'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 1.0E+OO 6.3E-1 6.4E-1 6.?E-1 6.0E-1 7.SE-2 1.1E-1 1. ?E-1 5. 9E-1 RDATNAM2001 'Group 25'
  • Xe I Cs Te Sr Ru La Ce Ba RDRELFRC001 1.0E+OO 8.9E-1 8.9E-1 8.BE-1 8.9E-1 1 . ?E-1 9.3E-2 6.0E-1 8.9E-1 NUREG/CR-6144 D-14 Vol. 6, Part 2

Appendix D Supporting Information for the Consequence Analysis

  • D.2 EARLY Input File
  • GENERAL DESCRIPTIVE TITLE DESCRIBING THIS "EARLY" INPUT FILE
  • Modified for MACCS Version 1.5.11.1 MIEANAM1001 'SURRY EARLY INPUT FOR FINAL NUREG-1150 CALCULATIONS'
  • FLAG TO INDICATE THAT THIS IS THE LAST PROGRAM IN THE SERIES TO BE RUN MIENDAT2001 .FALSE. (SET THIS VALUE TO .TRUE. TO SKIP CHRONC)
  • DISPERSION MODEL OPTION CODE: 1
  • STRAIGHT LINE
  • 2
  • WIND-SHIFT WITH ROTATION
  • 3
  • WIND-SHIFT WITHOUT ROTATION MIIPLUME001 2
  • NUMBER OF FINE GRID SUBDIVISIONS USED BY THE MODEL MINUMFIN001 7 (3, 5 OR 7 ALLOWED)
  • LEVEL OF DEBUG OUTPUT REQUIRED, NORMAL RUNS SHOULD SPECIFY ZERO MIIPRINT001 0
FLAG INDICATING IF WIND-ROSES FROM ATMOS ARE TO BE OVERRIDDEN
  • MIOVRRID001 .FALSE. (USE THE WIND ROSE CALCULATED FOR EACH WEATHER BIN)
  • LOGICAL FLAG SIGNIFYING THAT THE BREAKDOWN OF RISK BY WEATHER CATEGORY
  • BIN ARE TO BE PRESENTED TO SHOW THEIR RELATIVE CONTRIBUTION TO THE MEAN
  • RISBIN MIRISCAT001 .FALSE.
  • POPULATION DISTRIBUTION DATA BLOCK, LOADED BY INPOPU, STORED IN /POPDAT/

PDPOPFLG001 FILE

  • ORGAN DEFINITION DATA BLOCK, LOADED BY INORGA, STORED IN /EARDIM/ AND /ORGNAM/
  • NUMBER OF ORGANS DEFINED FOR HEALTH EFFECTS
  • SHIELDING AND EXPOSURE FACTORS, LOADED BY INDFAC, STORED IN /EADFAC/
  • THREE VALUES OF EACH PROTECTION FACTOR ARE SUPPLIED,
  • ONE FOR EACH TYPE OF ACTIVTY:
  • ACTIVITY TYPE:
  • 1 - EVACUEES WHILE MOVING
  • 2 - NORMAL ACTIVITY IN SHELTERING AND EVACUATION ZONE 3 - SHELTERED ACTIVITY Vol. 6, Part 2 D-15 NUREG/CR-6144

Appendix D Supporting Information for the Consequence Analysis

  • CLOUD SHIELDING FACTOR
  • SITE GG PB SEQ SUR ZION
  • SHELTERING 0.7 0.5 0.65 0.6 0.5
  • EVACUEES NORMAL SHELTER SECSFACT001 1. 0.75 0.6
  • SURRY SHELTERING VALUE
  • PROTECTION FACTOR FOR INHALATION SEPROTIN001 1. 0.41 0.33
  • VALUES FOR NORMAL ACTIVITY AND
  • SHELTERING SELECTED BYS. ACHARYA, NRC
  • BREATHING RATE (CUBIC METERS PER SECOND)

SEBRRATE001 2.66E-4 2.66E-4 2.66E-4

  • SKIN PROTECTION FACTOR SESKPFAC001 1 .o 0.41 0.33
  • VALUES FOR NORMAL ACTIVITY AND
  • SHELTERING SELECTED BYS. ACHARYA, NRC
  • GROUND SHIELDING FACTOR SITE SEGSHFAC001 GG SHELTERING 0.25 0.1 0.5 PB 0.33 SEQ 0.2 SUR 0.2 0.2 ZION 0.1
  • VALUE FOR NORMAL ACTIVITY SELECTED BY S. ACHARYA, NRC; SURRY SHELTERING VALUE
  • RESUSPENSION INHALATION MODEL CONCENTRATION COEFFICIENT (/METER)
  • RESCON = 1.E-4 IS APPROPRIATE FOR MECHANICAL RESUSPENSION BY VEHICLES.
  • RESHAF = 2.11 DAYS CAUSES 1.E-4 TO DECAY IN ONE WEEK TO 1.E-5, THE VALUE
  • OF RESCON USED IN THE FIRST TERM OF THE LONG-TERM RESUSPENSION EQUATION
  • USED IN CHRONC.

SERESCON001 1 .E-4 (RESUSPENSION IS TURNED ON)

  • RESUSPENSION CONCENTRATION COEFFICIENT HALF-LIFE (SEC)

SERESHAF001 1.82E5 (2.11 DAYS)

  • EVACUATION ZONE DATA BLOCK, LOADED BY EVNElW, STORED IN /NElWOR/, /EOPTIO/
  • THE TYPE OF WEIGHTING TO BE APPLIED TO THE EMERGENCY RESPONSE SCENARIOS
  • YOU MUST SUPPLY A VALUE OF 'TIME' OR 'PEOPLE' EZWTNAME001 'TIME'
  • SITE GG PB SEQ SUR CLDELAY (HR) 0.75 1.0 1.8 1. 5
  • ESPEED (M/S) 3.7 4.8 1 .4 1. 8

Appendix D Supporting Information for the Consequence Analysis

  • CLDELAY = DELAY BETWEEN WARNING OF PUBLIC TO BEGIN EVACUATION AND
  • TIME EVACUATION ACTUALLY BEGINS; VALUES USED ARE DEVELOPED
  • FROM SITE-SPECIFIC CLEAR TIME STUDIES
  • 0.5 HR= MEAN (EXPECTED) TIME FROM GENERAL EMERGENCY
  • CONDITIONS TO WARNING OF PUBLIC (SIRENS, BROADCAST)
  • RADIAL EVACUATION SPEED (M/S)

EZESPEED001 1. 8

  • SURRY
  • DURATION OF THE EMERGENCY PHASE (SECONDS FROM PLUME ARRIVAL)

SRENDEMP001 604800. (ONE WEEK)

  • CRITICAL ORGAN FOR RELOCATION DECISIONS SRCRIORG001 'EDEWBODY'
  • HOTSPOT RELOCATION TIME (SECONDS FROM PLUME ARRIVAL)

SRTIMHOT001 43200. (ONE-HALF DAY)

  • NORMAL RELOCATION TIME (SECONDS FROM PLUME ARRIVAL)

SRTIMNRM001 86400. (ONE DAY)

  • HOTSPOT RELOCATION DOSE CRITERION THRESHOLD (SIEVERTS)

SRDOSHOT001 0.5 (50 REM DOSE TO WHOLE BODY IN 1 WEEK TRIGGERS RELOCATION)

  • NORMAL RELOCATION DOSE CRITERION THRESHOLD (SIEVERTS)

SRDOSNRM001 0.25 (25 REM DOSE TO WHOLE BODY IN 1 WEEK TRIGGERS RELOCATION)

  • RESULT 1 OPTIONS BLOCK, LOADED BY INOUT1, STORED IN /INOUT1/
  • TOTAL NUMBER OF A GIVEN EFFECT (LATENT CANCER, EARLY DEATH, EARLY INJURY)
  • NUMBER OF DESIRED RESULTS OF THIS TYPE TYPE1NUMBER 2 TYPE10UT001 'ERL FAT/TOTAL' 1 19 (50 MILES)

TYPE10UT002 'CAN FAT/TOTAL' 1 19 CCDF

  • RESULT 2 OPTIONS BLOCK, LOADED BY INOUT2, STORED IN /INOUT2/
  • FURTHEST DISTANCE AT WHICH A GIVEN RISK OF EARLY DEATH IS EXCEEDED.
  • NUMBER OF DESIRED RESULTS OF THIS TYPE
  • TYPE2NUMBER 0
  • RESULT 3 OPTIONS BLOCK, LOADED BY INOUT3, STORED IN /INOUT3/

Vol. 6, Part 2 D-17 NUREG/CR-6144

Appendix D Supporting Information for the Consequence Analysis

  • NUMBER OF PEOPLE WHOSE ACUTE DOSE TO A GIVEN ORGAN EXCEEDS A GIVEN THRESHOLD.
  • NUMBER OF DESIRED RESULTS OF THIS TYPE TYPE3NUMBER 0
  • RESULT 4 OPTIONS BLOCK, LOADED BY INOUT4, STORED IN /INOUT4/
  • 360 DEGREE AVERAGE RISK OF A GIVEN EFFECT AT A GIVEN DISTANCE.
  • NUMBER OF DESIRED RESULTS OF THIS TYPE TYPE4NUMBER 0
  • RESULT 5 OPTIONS BLOCK, LOADED BY INOUT5, STORED IN /INOUT5/
  • TOTAL POPULATION DOSE TO A GIVEN ORGAN BETWEEN TWO DISTANCES.
  • NUMBER OF DESIRED RESULTS OF THIS TYPE TYPE5NUMBER 1 TYPE50UT001 'EDEWBODY' 1 19 CCDF (0-50 MILES)
  • RESULT 6 OPTIONS BLOCK, LOADED BY INOUT6, STORED IN /INOUT6/
  • CENTERLINE DOSE TO AN ORGAN VS DIST BY PATHWAY, PATHWAY NAMES ARE AS FOLLOWS:
  • NUMBER OF DESIRED RESULTS OF THIS TYPE TYPE6NUMBER 0
  • RESULT 7 OPTIONS BLOCK, LOADED BY INOUT7, STORED IN /INOUT7/
  • CENTERLINE RISK OF A GIVEN EFFECT VS DISTANCE
  • NUMBER OF DESIRED RESULTS OF THIS TYPE TYPE7NUMBER 0
  • RESULT 8 OPTIONS BLOCK, LOADED BY INOUT8, STORED IN /INOUT8/
  • POPULATION WEIGHTED FATALITY RISK BETWEEN 2 DISTANCES
  • NUMBER OF DESIRED RESULTS OF THIS TYPE TYPESNUMBER 0
  • copied from in2a.inp for MACCS Version 1.5.11.1
  • EARLY FATALITY MODEL PARAMETERS, LOADED BY INEFAT, STORED IN /EFATAL/
  • NUMBER OF EARLY FATALITY EFFECTS EFNUMEFA001 3
  • ORGNAM EFFACA EFFACB EFFTHR EFATAGRP001 'RED MARR' 3.8 5.0 1.5 EFATAGRP002 'LUNGS' 10.0 7.0 5.0 NUREG/CR-6144 D-18 Vol. 6, Part 2

Appendix D Supporting Information for the Consequence Analysis EFATAGRP003 'LOWER LI' 15.0 10.0 8.0

  • EARLY INJURY MODEL PARAMETERS, LOADED BY INEINJ, STORED IN /EINJUR/
  • NUMBER OF EARLY INJURY EFFECTS EINUMEIN001 7
  • EINAME ORGNAM EISUSC EITHRE EIFACA EIFACB EINJUGRP001 'PRODROMAL VOMIT' 'STOMACH' 1. .5 2. 3.

EINJUGRP002 'DIARRHEA' 'STOMACH' 1. 1. 3. 2.5 EINJUGRP003 'PNEUMONITIS' 'LUNGS' 1. 5. 10. 7.

EINJUGRP004 'SKIN ERYTHEMA' 'SKIN' 1. 3. 6. 5.

EINJUGRP005 'TRANSEPIDERMAL' 'SKIN' 1. 10. 20. 5.

EINJUGRP006 'THYROIDITIS' 'THYROIDH' 1. 40. 240. 2.

EINJUGRP007 'HYPOTHYROIDISM' 'THYROIDH' 1. 2. 60. 1. 3

  • ACUTE EXPOSURE CANCER PARAMETERS, LOADED BY INACAN STORED IN /ACANCR/.
  • NUMBER OF ACUTE EXPOSURE CANCER EFFECTS LCNUMACA001 7
  • THRESHOLD DOSE FOR APPLYING THE DOSE DEPENDENT REDUCTION FACTOR LCDDTHRE001 0.2 (LOWEST DOSE FOR WHICH DDREFA WILL BE APPLIED)
  • DOSE THRESHOLD FOR LINEAR DOSE RESPONSE (SV)

LCACTHRE001 0.0 (LINEAR-QUADRATIC MODEL IS NOT BEING USED)

  • ACNAME ORGNAM ACSUSC DOSEFA DOSEFB CFRISK CIRISK. DDREFA LCANCERS001 'LEUKEMIA' 'RED MARR' 1 .0 1.0 0.0 9.70E-3 9.70E-3 2.0 LCANCERS002 'BONE' 'BONE SUR' 1.0 1. 0 0.0 9.00E-4 9.00E-4 2.0 LCANCERS003 'BREAST' 'BREAST' 1.0 1. 0 0.0 5.40E-3 1.59E-2 1.0 LCANCERS004 'LUNG' 'LUNGS' 1.0 1. 0 0.0 1.55E-2 1.73E-2 2.0 LCANCERS005 'THYROID' 'THYROIDH' 1.0 1. 0 0.0 7.20E-4 7.20E-3 1 .0 LCANCERS006 'GI' 'LOWER LI' 1.0 1.0 0.0 3.36E-2 5.75E-2 2.0 LCANCERS007 'OTHER' 'BLAD WAL' 1.0 1.0 0.0 2.76E-2 5.52E-2 2.0 ODNUMORG001 10
  • NAMES OF THE ORGANS DEFINED FOR HEALTH EFFECTS ODORGNAM001 'SKIN', 'EDEWBODY', 'LUNGS', 'RED MARR', 'LOWER LI', 'STOMACH',

ODORGNAM002 'THYROIDH' , , 'BONE SUR' , 'BREAST' , 'BLAD WAL'

  • EMERGENCY RESPONSE SCENARIO EZEANAM2001 'EVACUATION WITHIN 10 MILES'
  • FRACTION OF THE TIME THIS SCENARIO AFFECTS EZWTFRAC001 .995 Vol. 6, Part 2 D-19 NUREG/CR-6144

Appendix D Supporting Information for the Consequence Analysis

  • LAST RING IN THE MOVEMENT ZONE EZLASMOV001 15
  • FIRST SPATIAL INTERVAL IN THE EVACUATION ZONE EZINIEVA001 1 (NO INNER SHELTER ZONE)
  • DISTANCE INTERVALS OF THE THREE EVACUATION ZONES EZLASEVA001 0 0 12
  • EVAC DELAY TIMES FOR THE THREE EVAC DELAY RINGS:
  • TIME FOR PEOPLE TO GET MOVING AFTER BEING WARNED EZEDELAY001 0. 0. 7200.
  • SHELTER RESPONSE DEFINITION
  • TIME TO TAKE SHELTER (INNER SHELTER ZONE) (S)

SRTTOSH1001 0.

  • SHELTER DURATION (INNER SHELTER ZONE) (S)

SRSHELT1001 0.

  • LAST RING (OUTER SHELTER ZONE)

SRLASHE2001 0

  • TIME TO TAKE SHELTER (OUTER SHELTER ZONE) (S)

SRTTOSH2001 0.

  • SHELTER DURATION (OUTER SHELTER ZONE) (S)

SRSHELT2001 0.

  • EMERGENCY RESPONSE SCENARIO EZEANAM2001 'NO EVACUATION'
  • FRACTION OF THE TIME THIS SCENARIO AFFECTS EZWTFRAC001 0.005
  • LAST RING IN THE MOVEMENT ZONE EZLASMOV001 0
  • FIRST SPATIAL INTERVAL IN THE EVACUATION ZONE EZINIEVA001 NUREG/CR-6144 1 (NO INNER SHELTER ZONE)

D-20 Vol. 6, Part 2

Appendix D Supporting Information for the Consequence Analysis

  • DISTANCE INTERVALS OF THE THREE EVACUATION ZONES EZLASEVA001 0 0 0
  • EVAC DELAY TIMES FOR THE THREE EVAC DELAY RINGS:
  • TIME FOR PEOPLE TO GET MOVING AFTER BEING WARNED EZEDELAY001 0. 0. 0.
  • SHELTER RESPONSE DEFINITION
  • TIME TO TAKE SHELTER (INNER SHELTER ZONE) (S)

SRTTOSH1001 0.

  • SHELTER DURATION (INNER SHELTER ZONE) (S)

SRSHELT1001 0.

  • LAST RING (OUTER SHELTER ZONE)

SRLASHE2001 0

  • TIME TO TAKE SHELTER (OUTER SHELTER ZONE) (S)

SRTTOSH2001 0.

  • SHELTER DURATION (OUTER SHELTER ZONE) (S)

SRSHELT2001 o.

Appendix D Supporting Information for the Consequence Analysis D.3 CHRONC Input File

  • GENERAL DESCRIPTIVE TITLE DESCRIBING THIS "CHRONC" INPUT FILE
  • Foodchain related data are copied from file IN3A.INP, MACCS Version 1 .5.11.1 CHCHNAME001 'SURRY CHRONC INPUT FOR FINAL NUREG-1150 CALCULATIONS'
  • EMERGENCY RESPONSE COST DATA BLOCK
  • EVACUATION COST (DOLLARS/PERSON-DAY)

CHEVACST001 27.00

  • RELOCATION DOST (DOLLARS/PERSON-DAY)

CHRELCST001 27.00

  • LONGTERM PROTECTIVE ACTION DATA BLOCK
  • END OF THE INTERMEDIATE PHASE PERIOD (SECONDS FROM ACCIDENT INITIATION)

CHTMIPND001 604800. (7 DAYS, NO INTERMEDIATE PHASE)

  • ACTION PERIOD (PROJECTION PERIOD) FROM THE START OF THE LONG TERM PHASE,
  • THE POINT AT WHICH THE LONG TERM DOSE CRITERION IS EVALUATED (SECONDS)

CHTMPACT001 1. 58E8 (5 YEARS)

  • DOSE CRITERION FOR INTERMEDIATE PHASE RELOCATION (SV)

CHDSCRTI001 1 .OE5 (NO INTERMEDIATE PHASE RELOCATION)

  • DOSE CRITERION FOR LONG TERM PHASE RELOCATION (SV)

CHDSCRLT001 0.04 (2 REM IN FIRST YEAR, 0.5 REM PER YEAR FOR YRS 2 - 5)

  • CRITICAL ORGAN NAME FOR LONG-TERM ACTIONS CHCRTOCR001 'EDEWBODY'
  • DECONTAMINATION PLAN DATA BLOCK
  • NUMBER OF LEVELS OF DECONTAMINATION CHLVLDEC001 2
  • DECONTAMINATION TIMES CORRESPONDING TO THE LVLDEC LEVELS OF DECONTAMINATION
  • (SECONDS)

CHTIMDEC001 5.184E6 1.0368E7 (60, 120 DAYS)

DOSE REDUCTION FACTORS CORRESPONDING TO THE LVLDEC LEVELS OF DECONTAMINATION
  • CHDSRFCT001 3. 15.

NUREG/CR-6144 D-22 Vol. 6, Part 2

Appendix D Supporting Information for the Consequence Analysis

  • COST OF FARM DECONTAMINATION PER UNIT AREA (DOLLARS/HECTARE)
  • FOR THE VARIOUS.LEVELS OF DECONTAMINATION CHCDFRM0001 562.5 1250.
  • COST OF NONFARM DECONTAMINATION PER PERSON
  • FOR THE VARIOUS LEVELS OF DECONTAMINATION (DOLLARS/PERSON)

CHCDNFRM001 3000. 8000.

  • FRACTION OF FARMLAND DECONTAMINATION COST DUE TO LABOR
  • FOR THE VARIOUS DECONTAMINATION LEVELS CHFRFDL0001 .3 .35
  • FRACTION OF NON-FARM DECONTAMINATION COST DUE TO LABOR
  • FOR THE VARIOUS DECONTAMINATION LEVELS CHFRNFDL001 .7 .5
  • FRACTION OF TIME WORKERS IN FARM AREAS SPEND IN DECONTAMINATION WORK
  • FOR THE VARIOUS DECONTAMINATION LEVELS CHTFWKF0001 .10 .33
  • FRACTION OF TIME WORKERS IN NON-FARM AREAS SPEND IN DECONTAMINATION WORK
  • FOR THE VARIOUS DECONTAMINATION LEVELS CHTFWKNF001 .33 .33
  • AVERAGE COST OF DECONTAMINATION LABOR (DOLLARS/MAN-YEAR)

CHDLBCST001 35000.

  • INTERDICTION COST DATA BLOCK
  • DEPRECIATION RATE DURING INTERDICTION PERIOD (PER YEAR)

CHDPRATE001 .20

  • SOCIETAL DISCOUNT RATE DURING INTERDICTION PERIOD (PER YEAR)

CHDSRATE001 .12

  • URBAN POPULATION REMOVAL COST (DOLLARS/PERSON)

CHPOPCST001 5000.

  • GROUNDSHINE WEATHERING DEFINITION DATA BLOCK
  • NUMBER OF TERMS IN THE GROUNDSHINE WEATHERING RELATIONSHIP (EITHER 1 OR 2)

~HNGWTRM001 2

  • GROUNDSHINE WEATHERING COEFFICIENTS Vol. 6, Part 2 :b-23 NUREG/CR-6144

Appendix D Supporting Information for the Consequence Analysis CHGWCOEF001 0.5 0.5 (GAYLE'S EQUATION)

  • HALF LIVES CORRESPONDING TO THE GROUNDSHINE WEATHERING COEFFICIENTS (S)

CHTGWHLF001 1.6E7 2.8E9 (GAYLE'S EQUATION)

  • RESUSPENSION WEATHERING DEFINITION DATA BLOCK
  • NUMBER OF TERMS IN THE RESUSPENSION WEATHERING RELATIONSHIP CHNRWTRM001 3
  • RESUSPENSION CONCENTRATION COEFFICIENTS (/ METER)
  • RELATIONSHIP BETWEEN GROUND CONCENTRATION AND INSTANTANEOUS AIR CONC.

CHRWCOEF001 1.0E-5 1.0E-7 1.0E-9

  • HALF-LIVES CORRESPONDING TO THE RESUSPENSION CONCENTRATION COEFFICIENTS (S)

CHTRWHLF001 1.6E7 1.6E8 1.6E9 (6 MONTHS, 5 YEARS, 50 YEARS)

  • SITE REGION DESCRIPTION DATA BLOCK
  • FRACTION OF AREA THAT IS LAND IN THE REGION CHFRACLD001 1.0E-35 (VALUE NOT USED SINCE SITE FILE PROVIDED)
  • FRACTION OF LAND DEVOTED TO FARMING IN THE REGION CHFRCFRM001 1.0E-35 (VALUE NOT USED SINCE SITE FILE PROVIDED)
  • AVERAGE VALUE OF ANNUAL FARM PRODUCTION IN THE REGION (DOLLARS/HECTARE)
  • (CASH RECEIPTS FROM FARMING PLUS VALUE OF HOME CONSUMPTION)/(LAND IN FARMS)

CHFRMPRD001 0. (VALUE NOT USED SINCE SITE FILE PROVIDED)

  • FRACTION OF FARM PRODUCTION RESULTING FROM DAIRY PRODUCTION IN THE REGION
  • (VALUE OF MILK PRODUCED)/(CASH RECEIPTS FROM FARMING PLUS VALUE OF HOME ... )

CHDPFRCT001 0. (VALUE NOT USED SINCE SITE FILE PROVIDED)

  • VALUE OF FARM WEALTH (DOLLARS/HECTARE)
  • * (AVERAGE VALUE PER HECTARE OF FARM LAND AND BUILDINGS TO 100 MILES)
  • SITE GG LS PB SEQ SUR ZION
  • VALWF ($/HECTARE) 2561 3305 3421 1855 2613 2897 CHVALWF0001 3975.
  • SURRY
  • FRACTION OF FARM WEALTH IN IMPROVEMENTS FOR THE REGION
  • SITE GG LS PB SEQ SUR ZION
  • FRFIM 0.3 0.19 0.25 0.27 0.25 0.49 CHFRFIM0001 NUREG/CR-6144 0.25
  • SURRY D-24 Vol. 6, Part 2

Appendix D Supporting Information for the Consequence Analysis

  • NON-FARM WEALTH, PROPERTY AND IMPROVEMENTS FOR THE REGION (DOLLARS/PERSON)
  • THE VALUE OF ALL RESIDENTIAL, BUSINESS, AND PUBLIC ASSETS WHICH WOULD BE
  • LOST IN THE EVENT OF PERMANENT INTERDICTION OF THE AREA
  • SITE GG PB SUR SEQ ZION
  • VALWNF ($K) 53 78 84 66 76 CHVALWNF001 123000.
  • SURRY AGT BNL 8-26-93
  • FRACTION OF NON-FARM WEALTH IN IMPROVEMENTS FOR THE REGION CHFRNFIM001 0.8
  • SPECIAL OPTIONS DATA BLOCK
  • DETAILED PRINT OPTION CONTROL SWITCHES, LOOK AT THE CODE BEFORE TURNING ON!!
  • (KCEPNT, KDFPNT, KDTPNT, KGCPNT, KLTPNT, KWTPNT, KSWRSK, KSWDSC)

CHKSWTCH001 0 0 0 0 0 0 0 0 0 0 0 0

  • WATER PATHWAY NUCLIDE DEFINITIONS FOR CHRONC
  • NUMBER OF NUCLIDES IN THE WATER INGESTION PATHWAY MODEL CHNUMWPI001 4
  • TABLE OF NUCLIDE DEFINITIONS IN THE WATER INGESTION PATHWAY MODEL
  • WATER PATHWAY NUCLIDES MUST BE A SUBSET OF THE INGESTION MODEL NUCLIDES
  • IF A SITE DATA FILE IS DEFINED, THE DATA DEFINING THE WATERSHED INGESTION
  • FACTOR IS SUPERSEDED BY THE CORRESPONDING DATA IN THE SITE DATA FILE
  • WINGF VALUES BY DRAINAGE SYSTEM
  • RIVER 5.0E-6 5.0E-6 5.0E-6 5.0E-6
  • GREAT LAKE 2.0E-7 2.0E-7 2.0E-6 4.0E-6.
  • OCEAN 0.0 0.0 0.0 0.0
  • ALL NUREG-1150 SITES HAVE RIVER DRAINAGE SYSTEMS EXCEPT LASALLE AND ZION
  • INITIAL ANNUAL INGESTION FACTOR
  • WATER WASHOFF WASHOFF ( (BQ INGESTED)/
  • NUCLIDE FRACTION RATE (BQ IN WATER))
  • NAMWPI WSHFRI WSHRTA WINGF CHWTRIS0001 SR-89 0.01 0.004 5.0E-6 CHWTRIS0002 SR-90 0.01 0.004 5.0E-6 CHWTRIS0003 CS-134 0.005 0.001 5.0E-6 CHWTRIS0004 CS-137 0.005 0.001 5.0E-6
  • CROP PATHWAY DEFINITIONS FOR CHRONC
  • MODIFIED 14 OCT BB, BY JLS, VALUES CHANGED TO THOSE DEVELOPED BY J. ROLLSTIN
  • NUMBER OF DEFINED CROPS IN THE CHRONC FOOD INGESTION MODEL Vol. 6, Part 2 D-25 NUREG/CR-6144

Appendix D Supporting Information for the Consequence Analysis CHNFICRP001 7 (UP TO 10 ALLOWED)

  • NOTE TO USER: THE CODE MAKES SPECIAL TREATMENT OF CROP NAMES BEGINNING WITH
  • 'PASTURE' DUE TO THE CONTINOUS NATURE OF THE HARVESTING PROCESS.
  • IF THE USER WISHES TO DEFINE A NEW CROP CATEGORY FOR RANGELAND PASTURE,
  • IT SHOULD BE CALLED 'PASTURE-RANGE' OR 'PASTURE-DRY'
  • TABLE OF CROP DEFINITIONS FOR THE CHRONC FOOD INGESTION MODEL
  • FRACTION OF CROP CONSUMED BY
  • DAIRY MEAT
  • CROP NAME MAN ANIMALS ANIMALS
  • NAMCRP FRCTCH FRCTCM FRCTCB CHCRPTBL001 'PASTURE ' 0.0 0.1 0.9 CHCRPTBL002 'STORED FORAGE '0.0 0.13 0.87 CHCRPTBL003 'GRAINS ' 0.35 0.040 0.61 CHCRPTBL004 'GRN LEAFY VEGETABLES' 1.0 0.0 0.0 CHCRPTBLOOS 'OTHER FOOD CROPS ' 1. 0 0.0 0.0 CHCRPTBL006 'LEGUMES AND SEEDS ' 0.24 0.046 0.714 CHCRPTBL007 'ROOTS AND TUBERS ' 1. 0 0.0 0.0
  • CHRONC INGESTION PATHWAY NUCLIDE DEFINITIONS
  • NUMBER OF NUCLIDES IN THE CHRONC FOOD INGESTION MODEL CHNFIIS0001 6 (UP TO 10 ALLOWED, BEWARE THAT.DAUGHTER BUILDUP IS NOT TREATED}
  • TABLE OF NUCLIDE DEFINITIONS IN THE CHRONC INGESTION PATHWAY MODEL
  • NUCLIDES THAT WERE DEFINED IN THE WATER PATHWAY DATA ABOVE MUST BE
  • A SUBSET OF THE CHRONC INGESTION FOOD PATHWAY NUCLIDES. THE WATER
  • PATHWAY NUCLIDES MUST BE LISTED FIRST IN THIS DATA BLOCK AND IN THE
  • SAME ORDER AS THEY WERE LISTED IN THE WATER PATHWAY DATA BLOCK
  • TRANSFER FACTORS
  • RETENTION FACTORS [(BQ TRANSFERED)/
  • INGESTION PROCESSING AND DECAY ( BO INGESTED) ]
  • NUCLIDE MILK/MAN MEAT/MAN MILK MEAT
  • NAMIPI DCYPMH DCYPBH TFMLK TFBF CHIS0DEF001 SR-89 0.66 0.77 0.022 0.00022 CHIS0DEF002 SR-90 1.0 1.0 0.022 0.00022 CHIS0DEF003 CS-134 1.0 1.0 0 .11 0.023 CHIS0DEF004 CS-137 1.0 1.0 0.11 0.024 CHI SODE FOOS I-131 0.28 0.18 0.13 0.0024 CHISODEF006 I-133 0.002 0.0 0.062 0.0011
  • TRANSFER FACTOR FROM SOIL TO PLANT BY ROOT-UPTAKE (AND BY SOIL INGESTION FOR
  • GRAZING ON PASTURE) INTEGRATED OVER ALL TIME [(BQ TRANSFERED)/(BQ DEPOSITED)]
  • GREEN OTHER LEGUMES ROOTS
  • STORED LEAFY FOOD AND AND
  • NUCLIDE PASTURE FORAGE GRAINS VEG CROPS SEEDS TUBERS NUREG/CR-6144 D-26 Vol. 6, Part 2

Appendix D Supporting Information for the Consequence Analysis

  • NAMISO TCROOT TCROOT TCROOT TCROOT TCROOT TCROOT TCROOT CHTCROOT001 SR-89 4.1E-4 1.3E-3 4.3E-5 1. 7E-4 8.6E-6 3.7E-4 1.1E-4 CHTCROOT002 SR-90 2.6E-2 9.0E-2 3.3E-3 1.3E-2 6.6E-4 2.8E-2 8.4E-3 CHTCROOT003 CS-134 1 .3E-3 7.1E-4 3.5E-5 1 .4E-5 1.1E-4 9.3E-5 5.6E-5 CHTCROOT004 CS-137 6.9E-3 1.5E-3 7.6E-5 3.0E-5 2.3E-4 2.0E-4 1.2E-4 CHTCROOT005 I-131 1 .6E-4 0.0 0.0 0.0 0.0 0.0 0.0 CHTCROOT006 I-133 1.7E-6 0.0 0.0 0.0 0.0 0.0 0.0
  • RADIOACTIVE DECAY RETENTION FACTORS (I.E., 1 - F WHERE F = FRACTION OF
  • RADIOACTIVITY LOST BY DECAY) FOR NUCLIDES IN CROPS FROM TIME OF HARVEST
  • TO TIME OF CONSUMPTION BY HUMANS {FRACTION RETAINED)
  • GREEN OTHER LEGUMES ROOTS
  • STORED LEAFY FOOD AND AND
  • NUCLIDE PASTURE FORAGE GRAINS VEG CROPS SEEDS TUBERS
  • NAMISO DCYPCH DCYPCH DCYPCH DCYPCH DCYPCH DCYPCH DCYPCH CHDCYPCH001 SR-89 0.0 0.0 0.18 0.67 0.21 0.18 0.18 CHDCYPCH002 SR-90 0.0 0.0 0.99 1 .0 0.99 0.99 0.99 CHDCYPCH003 CS-134 0.0 0.0 0.84 0.96 0.85 0.84. 0.84 CHDCYPCH004 CS-137 0.0 0.0 0.99 1. 0 0.99 0.99 0.99 CHDCYPCH005 I-131 0.0 0.0 0.0099 0.21 0.024 0.0099 0.0099 CHDCYPCH006 I-133 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  • CROP PROCESSING AND PREPARATION RETENTION FACTORS FOR NUCLIDES IN FOOD
  • CROPS CONSUMED BY HUMANS {FRACTION RETAINED). FACTORS REFLECT LOSS OF
  • NUCLIDES FROM FOODS DUE TO PROCESSING {E.G.*, WASHING OF FRUIT, PEELING
  • OF POTATOES, LOSSES DURING CANNING) AND FOOD PREPARATION {COOKING) FROM
  • THE TIME OF PROCESSING OF THE HARVESTED CROP TO THE TIME OF CONSUMPTION
  • BY HUMANS. FACTORS DO NOT REFLECT LOSSES DUE TO RADIOACTIVE DECAY.
  • GREEN OTHER LEGUMES ROOTS
  • STORED LEAFY FOOD AND AND
  • NUCLIDE PASTURE FO.RAGE GRAINS VEG CROPS SEEDS TUBERS
  • NAMISO FPLSCH FPLSCH FPLSCH FPLSCH FPLSCH FPLSCH FPLSCH CHFPLSCH001 SR-89 0.0 0.0 0.25 0.5 0.71 0.8 0.8 CHFPLSCH002 SR-90 0.0 0.0 0.25 0.5 0.71 0.8 0.8 CHFPLSCH003 CS-134 0.0 0.0 0.25 0,5 0.71 0.8 0.8 CHFPLSCH004 CS-137 0.0 0.0 0.25 0.5 0.71 0.8 0.8 CHFPLSCH005 I-131 0.0 0.0 0.33 0.5 0.71 0.8 0.8 CHFPLSCH006 I-133 0.0 0.0 0.33 0.5 0.71 0.8 0.8
  • RETENTION FACTORS FOR NUCLIDES IN CROPS FROM TIME OF HARVEST TO TIME OF
  • CONSUMPTION.BY MILK-PRODUCING ANIMALS {FRACTION RETAINED). FACTOR REFLECTS
  • LOSSES DUE TO RADIOACTIVE DECAY.
  • GREEN OTHER LEGUMES ROOTS
  • STORED LEAFY FOOD AND AND
  • NUCLIDE PASTURE FORAGE GRAINS VEG CROPS SEEDS TUBERS
  • NAMISO DCYPCM DCYPCM DCYPCM DCYPCM DCYPCM DCYPCM DCYPCM CHDCYPCM001 SR-89 1.0 0.37 0.20 0.0 0.0 0.20 0.0 CHDCYPCM002 SR-90 1.0 0.99 0.99 0.0 0.0 0.99 0.0 CHDCYPCM003 CS-134 1.0 0.92 0.85 0.0 0.0 0.85 0.0 Vol. 6, Part 2 D-27 NUREG/CR-6144

Appendix D Supporting Information for the Consequence Analysis CHDCYPCM004 CS-137 1.0 0.99 0.99 o.o 0.0 0.99 0.0 CHDCYPCM005 I-131 1.0 0.063 0.032 0.0 0.0 0.032 0.0 CHDCYPCM006 I-133 1 .0 0.0068 0.0034 o.o 0.0 0.0034 0.0

  • RETENTION FACTORS FOR NUCLIDES IN CROPS FROM TIME OF HARVEST TO TIME OF
  • CONSUMPTION BY MEAT-PRODUCING ANIMALS (FRACTION RETAINED). FACTOR REFLECTS
  • LOSSES DUE TO RADIOACTIVE DECAY.
  • GREEN OTHER LEGUMES ROOTS
  • STORED LEAFY FOOD AND AND
  • NUCLIDE PASTURE FORAGE GRAINS VEG CROPS SEEDS TUBERS
  • NAMISO DCYPCB DCYPCB DCYPCB DCYPCB DCYPCB DCYPCB DCYPCB CHDCYPCB001 SR-89 1.0 0.37 0.20 0.0 0.0 0.20 0.0 CHDCYPCB002 SR-90 1 .0 0.99 0.99 o.o 0.0 0.99 0.0 CHDCYPCB003 CS-134 1.0 0.92 0.85 0.0 0.0 0.85 0.0 CHDCYPCB004 CS-137 1 .o 0.99 0.99 0.0 0.0 0.99 0.0 CHDCYPCB005 I-131 1.0 0.063 0.032 0.0 0.0 0.032 0.0 CHDCYPCB006* I-133 1.0 0.0068 0.0034 0.0 0.0 0.0034 0.0
  • DEFINE THE DIRECT DEPOSITION TO CROPS TRANSFER FUNCTION
  • NUMBER OF TERMS IN THE DIRECT DEPOSITION TO CROPS TRANSFER FUNCTION CHNTRTRM001 2
  • LOSSES DUE TO WEATHERING FROM PLANT SURFACES AND DURING TRANSLOCATION
  • FROM PLANT SURFACES TO INTERIOR EDIBLE PORTIONS OF PLANTS ARE MODELLED
  • USING THE FOLLOWING EQUATION:
  • FRACTION RETAINED= CTCOEF1*EXP(-LN2/CTHALF1) + CTCOEF2*EXP(-LN2/CTHALF2)
  • FOR PASTURE, STORED FORAGE, GREEN LEAFY VEGETABLES, AND OTHER FOOD CROPS,
  • THIS EQUATION IS USED AS A TWO TERM WEATHERING EQUATION. FOR GRAINS,
  • LEGUMES AND SEEDS, AND ROOTS AND TUBERS WHERE RADIOACTIVITY IS CONSUMED
  • ONLY IF TRANSLOCATED TO EDIBLE PORTIONS OF THE PLANT, THIS EQUATION IS
  • REDUCED TO A TRANSLOCATION TRANSFER FACTOR BY SETTING CTCOEF2 TO ZERO,
  • CTHALF2 TO ONE SECOND, AND CTHALF1 TO ABOUT ONE MILLION YEARS (1E13
  • SECONDS). WHEN USED TO MODEL TRANSLOCATION, THE VALUE OF THE TRANSLOCATION
  • TRANSFER FACTOR IS DEVELOPED FROM FALLOUT DATA AND IS INPUT AS THE VALUE
  • OF CTCOEF1.
  • TWO TIME PERIODS ARE USED FOR WEATHERING, THE FIRST IS 14 DAYS LONG (1.21E6
  • SECONDS) AND THE SECOND IS 50 DAYS LONG (4.32E6 SECONDS).
  • DIRECT DEPOSITION TRANSFER COEFFICIENTS BY CHRONC INGESTION MODEL NUCLIDE
  • ((BQ TRANSFERED)/(BQ DEPOSITED))
  • GREEN OTHER LEGUMES ROOTS
  • STORED LEAFY FOOD AND AND
  • TERM 1 NUCLIDE PASTURE FORAGE GRAINS VEG CROPS SEEDS TUBERS CHCTCOEF101 SR-89 0.3 0.2 0.01 0.24 0.2 0.005 0.0006 CHCTCOEF102 SR-90 0.3 0.2 0.01 0.24 0.2 0.005 0.0006 CHCTCOEF103 CS-134 0.3 0.2 0.05 0.24 0.2 0.01 0.025 CHCTCOEF104 CS-137 0.3 0.2 0.05 0.24 0.2 0.01 0.025 CHCTCOEF105 I-131 0.3 0.2 0.0 0.24 0.2 o.o 0.0 CHCTCOEF106 I-133 0.3 0.2 0.0 0.24 0.2 0.0 0.0 NUREG/CR-6144 D-28 Vol. 6, Part 2

AppendixD Supporting Information for the Consequence Analysis

  • TERM 2 CHCTCOEF201 SR-89 0.076 0.05 0.0 0.06 0.05 0.0 0.0 CHCTCOEF202 SR-90 0.076 0.05 0.0 0.06 0.05 0.0 0.0 CHCTCOEF203 CS-134 0.076 0.05 0.0 0.06 0.05 0.0 0.0 CHCTCOEF204 CS-137 0.076 0.05 0.0 0.06 0.05 0.0 0.0 CHCTCOEF205 I-131 0.076 0.05 0.0 0.06 0.05 0.0 0.0 CHCTCOEF206 I-133 0.076 0.05 0.0 0.06 0.05 0.0 0.0
  • CROP TRANSFER HALF-LIVES BY CHRONC INGESTION MODEL NUCLIDE (SECONDS)
  • GREEN OTHER LEGUMES ROOTS
  • STORED LEAFY FOOD AND AND
  • TERM 1 NUCLIDE PASTURE FORAGE GRAINS VEG CROPS SEEDS TUBERS CHCTHALF101 SR-89 1. 21 E6 1. 21 E6 1E13 1. 21 E6 1.21E6 1E13 1E13 CHCTHALF102 SR-90 1.21E6 1. 21 E6 1E13 1. 21 E6 1. 21 E6 1E13 1E13 CHCTHALF103 CS-134 1. 21 E6 1.21E6 1E13 1.21E6 1.21E6 1 E13 1E13 CHCTHALF104 CS-137 1. 21 E6 1. 21 E6 1E13 1 . 21 E6 1.21E6 1E13 1E13 CHCTHALF105 I-131 1.21E6 1. 21 E6 1.0 1.21E6 1.21E6 1.0 1 .0 CHCTHALF106 I-133 1. 21 E6 1.21E6 1.0 1.21E6 1.21E6 1.0 1. 0
  • TERM2 CHCTHALF201 SR-89 4.32E6 4.32E6 1 .0 4.32E6 4.32E6 1.0 1.0 CHCTHALF202 SR-90 4.32E6 4.32E6 1.0 4.32E6 4.32E6 1.0 1.0 CHCTHALF203 CS-134 4.32E6 4.32E6 1.0 4.32E6 4.32E6 1.0 1.0 CHCTHALF204 CS-137 4.32E6 4.32E6 1.0 4.32E6 4.32E6 1.0 1.0 CHCTHALF205 I-131 4.32E6 4.32E6 1.0 4.32E6 4.32E6 1.0 1.0 CHCTHALF206 I-133 4.32E6 4.32E6 1 .0 4.32E6 4.32E6 1.0 1.0
  • TABLE OF CROP DATA (GROWING SEASON AND FARMLAND SHARE) IN THE REGION.
  • IF A SITE DATA FILE IS BEING USED (AS SPECIFIED ON THE EARLY USER INPUT FILE),
  • THEN DATA FROM THE SITE FILE (AND NOT THE DATA BELOW) IS USED FOR THE
  • CALCULATION OF DOSES AND COSTS FROM THE AGRICULTURE MODEL AND THE NUMBERS
  • BELOW ARE IGNORED.
  • IF A SITE DATA FILE IS NOT BEING USED, THE DATA BELOW IS USED IN ITS STEAD.
  • FARMLAND SHARE VALUES (FRCTFL) BY SITE AND CROP CATEGORY
  • SITE GG LS PB SEQ SUR ZION
  • PASTURE 0.70 0.47 0.38 0.69 0.41 0.45
  • STORED FORAGE 0.05 0.10 0.13 0.006 0.13 0 .11
  • GRAINS 0.18 0.26 0.23 0.16 0.21 0.26
  • GRN LEAFY VEGETABLES 0.0005 o*.0003 0.002 0.0007 0.002 0.0004
  • OTHER FOOD CROPS 0.004 0.001 0.004 0.005 0.004 0.001
  • LEGUMES AND SEEDS 0.13 0.13 0.16 0.15 0.15 0.13
  • ROOTS AND TUBERS 0.0008 0.002 0.004 0.001 0.003 0.002
  • GROWING
  • SEASON (DAYS) FARMLAND
  • CROP NAME START END SHARE
  • NAMCRP TGSBEG TGSEND FRCTFL CHCRPRGN001 'PASTURE 90. 270. 0.41 CHCRPRGN002 'STORED FORAGE ' 150. 240. 0 . 13 CHCRPRGN003 'GRAINS ' 150. 240. 0.21 Vol. 6, Part 2 D-29 NUREG/CR-6144

Appendix D Supporting Information for the Consequence Analysis CHCRPRGN004 'GRN LEAFY VEGETABLES' 150. 240. 0.002 CHCRPRGN005 'OTHER FOOD CROPS ' 150. 240. 0.004 CHCRPRGN006 'LEGUMES AND SEEDS ' 150. 240. 0.15 CHCRPRGN007 'ROOTS AND TUBERS ' 150. 240. 0.003

  • PROTECTIVE ACTION GUIDES FOR THE DIRECT DEPOSITION PATHWAY TO
  • MILK AND ITS PRODUCTS AND TO OTHER CROPS AND THEIR PRODUCTS
  • BY FOOD INGESTION MODEL NUCLIDE (PERMISSIBLE SURFACE
  • CONCENTRATION IN BECQUERELS PER SQUARE METER)
  • PERMISSIBLE SURFACE CONCENTRATIONS WERE DERIVED BY INVERTING
  • THE FOOD PATHWAY MODEL THEREBY MAKING THE DOSE TO AN ORGAN THE
  • INDEPENDENT VARIABLE AND GROUND CONCENTRATION THE DEPENDENT
  • VARIABLE. PERMISSIBLE GROUND CONCENTRATIONS WERE CALCULATED
  • ASSUMING (1) ALLOWABLE FIRST YEAR (I.E., DIRECT DEPOSITION)
  • ORGAN DOSES OF 15 REM PER YEAR TO THYROID AND 5 REM PER YEAR
  • TO ANY OTHER ORGAN; AND (2) ALLOWABLE DOSES IN SUBSEQUENT YEARS
  • (I.E., ROOT UPTAKE PATH) OF 1.5 REM TO THYROID AND 0.5 REM TO
  • ANY OTHER ORGAN.
  • MILK AND OTHER CROPS
  • NUCLIDE PRODUCTS AND PRODUCTS
  • NAMIPI PSCMLK PSCOTH
  • PROTECTIVE ACTION GUIDES FOR LONG-TERM TRANSFER TO FARM CROPS
  • FROM ROOT AND OTHER SOIL UPTAKE FROM SURFACE CONTAMINATION
  • BY CHRONC INGESTION MODEL NUCLIDE (PERMISSIBLE SURFACE
  • CONCENTRATION IN BEQUERELS PER SQUARE METER) AND THE ASSOCIATED
  • ANNUAL DEPLETION RATE FOR THE NUCLIDE IN THE SOIL.
  • PERMISSIBLE ANNUAL
  • SURFACE DEPLETION
  • NUCLIDE CONCENTRATION RATE
  • NAMIPI GCMAXR QROOT
  • DEFINE THE TYPE 9 RESULTS
  • LONG-TERM POPULATION DOSE IN A GIVEN REGION BROKEN DOWN BY THE 12 PATHWAYS
  • NUMBER OF RESULTS OF THIS TYPE THAT ARE BEING REQUESTED
  • FOR EACH RESULT YOU REQUEST, THE CODE WILL PRODUCE A SET OF 12 TYPE9NUMBER 1
  • TYPE90UT001 'EDEWBODY' 1 26 (0-1000 MILES)

TYPE90UT001 'EDEWBODY' 1 19 (0-50 MILES)

  • ECONOMIC COST RESULTS IN A REGION BROKEN DOWN BY 12 TYPES OF COSTS
  • NUMBER OF RESULTS OF THIS TYPE THAT ARE BEING REQUESTED
  • FOR EACH RESULT YOU REQUEST, THE CODE WILL PRODUCE A SET OF 12 TYP10NUMBER 0 (UP TO 10 ALLOWED)

Appendix D Supporting Information for the Consequence Analysis

  • TYP100UT001 1 26 (0-1000 MILES}
  • TYP100UT002 1 21 (0-100 MILES}
  • TYP100UT003 1 19 (0-50 MILES}
  • TYP100UT004 1 12 (0-10 MILES}
  • DEFINE A FLAG THAT CONTROLS THE PRODUCTION OF THE ACTION DISTANCE RESULTS
  • SPECIFYING A VALUE OF .TRUE. TURNS ON ALL 8 OF THE ACTION DISTANCE RESULTS,
  • A VALUE OF .FALSE. WILL ELIMINATE THE ACTION DISTANCE RESULTS FROM THE OUTPUT.

TYP11 FLAG11 . FALSE.

  • IMPACTED AREA/POPULATION RESULTS IN A REGION BROKEN DOWN BY 6 TYPES OF IMPACTS
  • NUMBER OF RESULTS OF THIS TYPE THAT ARE BEING REQUESTED
  • FOR EACH RESULT YOU REQUEST, THE CODE WILL PRODUCE A SET OF 8 TYP12NUMBER 0 (UP TO 10 ALLOWED)
  • Data below are copied from file IN3A. INP, MACCS version 1.5.11.1 CHCOUPLD001 .FALSE.
  • NAMIPI PSCMLK PSCOTH CHPAGMCP001 SR-89 2.2E07 2.2E07 CHPAGMCP002 SR-90 2.4E05 2.4E05 CHPAGMCP003 CS-134 2.2E05 2.2E05 CHPAGMCP004 CS-137 2.7E05 2.7E05 CHPAGMCP005 I -131 1 .3E06 8.0E06 CHPAGMCP006 I-133 1 . 1E10 1. OE20
  • NAMIPI GCMAXR OROOT CHPAGLTS001 SR-89 1 .8E8 4.9 CHPAGLTS002 SR-90 3.7E4 0.065 CHPAGLTS003 CS-134 4.1E6 0.59 CHPAGLTS004 CS-137 1 .8E6 0.28 CHPAGLTS005 I -131 1. E20 32.0 CHPAGLTS006 I-133 1 .E20 290.0

Appendix D Supporting Information for the Consequence Analysis D.4 SITE Input File (Note: NUREG-1150 input)

MACCS SITE DATA FILE FOR SURRY (JLS, 11/10/88)

SECPOP POP DISTRIBUTION FROM 1980 CENSUS DATA ALTERED USING 0-10 MI NRC DATA 26 SPATIAL INTERVALS 16 WIND DIRECTIONS 7 CROP CATEGORIES 4 WATER PATHWAY ISOTOPES 2 WATERSHEDS 59 ECONOMIC REGIONS SPATIAL DISTANCES 0.16 0.52 1.21 1 .61 2.13 3.22 4.02 4.83 5.63 8.05 11 .27 16.09 20.92 25.75 32.19 40.23 48.28 64.37 80.47 112.65 160.93 241 .14 321.87 563.27 804.67 1609.34 POPULATION

0. 0. 0. 0. 0. 0. 4. 5.
6. 25. 3341. 7107. 2173. 0. 1305. 474.

2252. 2945. 5403. 20169. 112004. 3431358. 1355700. 2742710.

2487346. 104331.

0. o. 0. 0. 1. 2. 9. 13.
15. 63. 1667. 3550. 1330. 1072. 3198. 2425.

515. 9469. 5317. 7120. 13586. 198785. 1058744. 20508438.

3290082. 830354.

0. 0. 0. o. o. 0. 5. 6.
8. 31. 822. 1752. 4543. 1713. 1597. 2296.

6535. 1775. 0. 8555. 48596. 119411 . 233382. 3003954.

7620063. 1169436.

0. o. 0. 0. 0. 0. 1. 1.
2. 11. 543. 1157. 3820. 1621. 3364. o.
0. 129. 6679. 11858. 0. 0. 0. 0.
0. 0.
0. 0. 0. 0. 0. o. 0. 0.
0. 0. 4798. 10202. 10348. 10480. 9570. 0.
0. 2317. 1756. o. o. 0. 0. 0.
0. o.
0. 0. 0. 0. 0. 0. 1. 1.
1. 7. 8316. 17684. 16340. 30419. 39474. 74998.

24195. 80412. 57477. 0. o. 0. 0. o.

0. 0.
0. o. o. 0. 0. 0. o. 0.
o. 0. 0. o. 1722. 6433. 36763. 20632.

126203. 372471. 68327. 8599. 6339. 1057. o. 0.

o. 0.
o. o. o. 0. o. 0. 2. 2.
3. 13. 127. 273. 1649. 4571. 3441. 7838.

11747. 19019. 3360. 36387. 10447. 12402. 0. 0.

o. 0.
o. 0. 5. 4. 8. 23. 14. 20.
23. 93. 301. 650. 0. 0. 1264. 4065.

1106. 14665. 4071. 18006. 37417. 89072. 81626. o.

0. o.
0. 0. 0. 0. 0. 0. 19. 25.
29. 117. 45. 105. 0. 510. 951. 1521.

NUREG/CR-6144 D-32 Vol. 6, Part 2

Appendix D Supporting Information for the Consequence Analysis 1223 . 17636 . 4926. 30765. 53265. 289674. 216165. 479431.

280809. 8801784.

0. o. o. 0. 1. 2. 14. 20.
23. 93. 155. 338. 125. 1079. o. 1355.

2765. 154. 5296. 21409. 62228 .. 523803. 479588. 1538059.

1526840. 3099458.

0. o. o. 0. 1. 2. 14. 20.
23. 93. 110. 240. 1056. o. 50. 1396.

915. 3153. 4132'. 16295. 35596. 239712. 709522. 2845970.

3957581. 10560254.

0. 0. o. 0. o. 0. 25. 33.
38. 154. 30. 70. 450. o. 980. 517.

155. 66531. 40902. 9557. 44818. 194801. 376828. 1492286.

2250273. 12145932.

o. 0. o. o. o. 0. 7. 9.
12. 47. 31. 69. 0. 380. 281. 445.

1986. 32459. 183133. 193630. 30369. 203275. 94113. 1328987.

5086913. 19537940.

0. 0. 0. 0. o. o. 0. 0.
0. o. 223. 477. o. 1026. 609. 2575.

2794. 6593. 96857. 107328. 47585. 156826. 101785. 4175263.

7535605. 9667977.

o. o. 0. 0. 0. 0. 15. 20.
23. 92. 2503. 5326. 3508. 1826. 1884. 275.

3965. 2084. 6270. 10765. 103787. 970659. 472558. 1396088.

1969210. 73968.

LAND FRACTION*

1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 1.00 1.00 0.95 0.75 0.70 0.85 1.00 0.85 0.70 0.75 0.55 0.70 0.60 1.00 1.00 0.95 1.00 1.00 1.00 1.00 o.9o 0.10 o.40 o.oo o.ooo.45 1.00 o.95 o.40 0~60 1.00 1.00 0.90 0.45 0.60 0.20 0.50 0.50 0.30 0.25 0.50 0.60 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.05 1.00 1.00 0.20 1.00 0.70 0.30 0.85 0.20 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.80 0.10 0.00 0.00 0.00 1.00 1.00 0.75 0.30 0.40 0.00 0.15 0.00 0.45 0.30 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.60 0.00 0.00 0.00 0.00 0.95 1.00 1.00 0.70 0.40 0.10 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.70 0.00 0.00 0.00 0.80 0.90 0.75 0.85 1.00 1.00 0.70 0.15 0.25 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.55 0.50 0.25 0.15 0.00 0.10 0.00 0.10 0.50 0.60 0.85 1.00 1.00 0.40 0.40 0.05 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.35 0.40 0.80 1.00 1.00 1 .00 1.00 1.00 1.00 1.00 0.95 0.20 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.40 0.00 0.00 0.20 .

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1~00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.50 0.40 1.00 1.00 0.70 0.40 0.20 0.75 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 0.80 1.00 1.00 0.00 0.00 0.00 0.00 0.05 0.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.90 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.15 0.70 0.90 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.50 0.40 0.30 0.25 0.75 0.80 0.85 0.85 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.85 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.15 0.80 0.75 0.80 0.85 0.95 1.00 1.00 1.00 Vol. 6, Part 2 D-33 NUREG/CR-6144

Appendix D Supporting Information for the Consequence Analysis 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.45 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 1 .00 1.00 1.00 1 .00 ., .00 1.00 1.00 1.00 1.00 0.95 0.80 0.85 1.00 1.00 0.55 0.95 REGION INDEX 44445050505050505044444444444444444444441818 7283054 444444444444445050444444444444444444444418 728301917 4444444444445050504444444444444444445044185050505050 4444444444444450505044444444445044504444505050505050 4444444444445050505044444444444450445050505050505050 4444444444445050504444444444444444444450505050505050 4444444444444444444450445044444444444444313150505050 4444444444444444444444444444444444444431313150505050 44444444444444444444444444444444444431313131315050 8 444444444444444444444444444444444444443131313138 9 8 444444444444444444444444444444444444444431313138 9 1 4444505050504444444444444444444444444444444444314040 4444505050505044444444444444444444444444444444461511 4444505050505050444444444444444444444444444444463347 4444505050505044444444444444444444444444444444365320 4444505050505050504444444444444444444444441818363053 WATERSHED INDEX 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 1 2 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 *1 2 2 2 2 1 1 2 1 1 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 11111111111111111111112222 11111111111111111111111122 11122111111111111111111111 11222221111111111111111111 11222222111111111111111111 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 222,221 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CROP SEASON AND SHARE 1 PASTURE 90. 270. 0.41 2 STORED FORAGE 150. 240. 0. 13 3 GRAINS 150. 240. 0.21 4 GAN LEAFY VEGETABLES 150. 240. 0.002 5 OTHER FOOD CROPS 150. 240. 0.004 6 LEGUMES AND SEEDS 150. 240. 0.15 7 ROOTS AND TUBERS 150. 240. 0.003 WATERSHED DEFINITION INITIAL AND ANNUAL WASHOFF AND INGESTION FACTORS 1 SR-89 5.0E-6 0.0 2 SR-90 5.0E-6 0.0 3 CS-134 5.0E-6 0.0 4 CS-137 5.0E-6 0.0 REGIONAL ECONOMIC DATA 1 AL .308 .027 676. 2302. 93617.

2 AZ .495 .127 128. 879. 99909.

3 AR .480 .026 657. 2082. 88486.

4 CA .311 .139 1502. 4438. 129140.

5 co .497 .047 315. 1114. 117723.

NUREG/CR-6144 D-34 Vol. 6, Part 2

Appendix D Supporting Information for the Consequence Analysis 6 CT .129 .173 2754. 11140. 158515.

7 DE .480 .031 2651. 5809. 125432.

8 FL .318 .070 1'281. 5380. 115720.

9 GA .351 .060 730. 2729. 106394.

10 ID .264 .128 517. 1862. 95190.

11 IL .815 .045 676. 3660. 127604.

12 IN .697 .062 761. 3302. 105620.

13 IA .951 . 054 749 . 2951. 107992 .

14 KS . 917 .022 360. 1371. 113004.

15 KY .551 .095 546. 2653. 93579.

16 LA .323 . 072 527. 2490. 90683 .

17 ME .071 . 207 811. 2746. 107255 .

18 MD .352 .150 1510. 6207 . 136430.

19 MA . 140 . 181 1474. 9524. 140787.

20 MI .303 .226 714. 2712. 114715.

21 MN .589 .181 577 . 2218. 116918.

22 MS . 433 .044 462. 2028. 80084.

23 MO .680 .098 324. 1907. 109103.

24 MT .655 .027 65. 817. 95527.

25 NE .955 .018 464. 1588. 109172.

26 NV .128 .131 91. 709. 118903.

27 NH .087 .349 662. 5755. 129664.

28 NJ .168 .079 1997. 11676. 155306.

29 NM .579 .177 83. 714. 88973.

30 NY .265 .518 928. 2635. 138128.

31 NC .321 .045 1202. 3349 . 101532.

32 ND . 929 .048 152. 1069. 95845.

33 OH .610 .151 644. 3203. 109659.

34 OK .751 .047 266. 1457. 96444.

35 OR .293 .099 317. 1640. 107249.

36 PA .279 .398 1163 . 4693. 116593.

37 RI . 150 .066 1753. 12649. 117405.

38 SC .259 .051 580 . 2475. 94509.

39 SD . 906 .063 188 . 1040. 99185.

40 TN .455 . 150 419 . 2690. 99047.

41 TX . 787 .064 224 . 1452. 104347.

42 UT . 209 .229 169. 1190. 87294.

43 VT .237 .777 788. 3169. 109272.

44 VA .355 .139 581. 3974. 122973.

45 WA .375 .170 589. 2154. 117205.

46 WV .259 .110 208. 1744. 85789.

47 WI .518 .556 783 . 2213. 109796.

48 WY .563 . 017 54. 598. 101638.

49 BRIT COL . 377 .154 476 . 1948. 60000.

50 OCEAN .0 .0 0. o. 0.

51 SASKAT . 657 .030 61 . 563. 60000.

52 MANITOBA . 924 .048 164 . 948. 60000.

53 ONTARIO . 597 .223 516 . 2111 . 60000.

54 QUEBEC .310 .589 711. 1378. 60000.

55 NOVA SCOT .079 .260 662. 1133. 60000.

56 BAJA CAL . 330 .144 1022 . 4394. 10000.

57 SONORA . 516 .104 110 . 682. 10000.

58 CHIHUAHUA . 590 .144 53 . 473. 10000.

59 COAHUILA . 816 .064 164. 1492. 10000 .

END Vol. 6, Part 2 D-35 NUREG/CR-6144

APPENDIX E

  • SUPPORTING INFORMATION FOR THE MELCOR ANALYSIS
  • CONTENTS Section Page E.1 Plant Model .............................................................. E-7 E.2 Sequence Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-7 E.3 MELCOR Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . E-7 E.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-8 Vol. 6, Part 2 E-3 NUREG/CR-6144

Section

  • FIGURES Page E.1 MELCOR Nodalization E-11 E.2 RCS Pressure for Case 1 .................................................... E-12 E.3 RCS Temperature for Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-13 E.4 Lower Head Penetration Temperature for Case 1 ................................. E-14 E.5 Liquid Levels in Cavity and Basement for Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-15 E.6 Cavity Concrete Erosion for Case 1 ............................................ E-16 E.7 Containment Pressure for Case 1 .............................................. E-17 E.8
  • Containment Gas Temperature for Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-18 E.9 In-vessel Hydrogen Generation for Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-19 E.10 Hydrogen Distribution in Containment for Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-20 E.11 Total Mass of Active Vapor for Case 1 ......................................... E-21 E.12 Total Mass of Active Aerosols for Case 1 E-22 E.13 RCS Pressure for Case 2 .................................................... E-23 E.14 RCS Temperature for Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-24 E.15 Lower Head Penetration Temperature for Case 2 ................................. E-25 E.16 Liquid Levels in Cavity and Basement for Case 2 .................................. E-26 E.17 Cavity Concrete Erosion for Case 2 ............................................ E-27 E.18 Containment Pressure for Case 2 .............................................. E-28 E.19 Containment Gas Temperature for Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-29 E.20 In-vessel Hydrogen Generation for Case 2 ....................................... E-30 E.21 Hydrogen Distribution in Containment for Case 2 ................................. E-31 E.22 Total Mass of Active Vapor for Case 2 ......................................... E-32 E.23 Total Mass of Active Aerosols for Case 2 .............. *. . . . . . . . . . . . . . . . . . . . . . . . . E-33 E.24 RCS Pressure for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-34 E.25 RCS Temperature for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-35 E.26 Lower Head Penetration Temperature for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-36 E.27 Liquid Levels in Cavity and Basement for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-37 E.28 Cavity Concrete Erosion for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-38 E.29 Containment Pressure for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-39 E.30 Containment Gas Temperature for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-40 E.31 In-vessel Hydrogen Generation for Case 3 ....................................... E-41 E.32 Hydrogen Distribution in Containment for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-42 E.33 Total Mass of Active Vapor for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-43 E.34 Total Mass of Active Aerosols for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-44 E.35 RCS Pressure for Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-45 E.36 RCS Temperature for Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-46 NUREG/CR-6144 E-4 Vol. 6, Part 2
  • Section FIGURES (continued)

Page E.37 Lower Head Penetration Temperature for Case 4 E-47 E.38 Liquid Levels in Cavity and Basement for Case 4 E-48 E.39 Cavity Concrete Erosion for Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-49 E.40 Containment Pressure for Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-50 E.41 Containment Gas Temperature for Case 4 ....................................... E-51 E.42 In-vessel Hydrogen Generation for Case 4 ................................ ., . . . . . . E-52 E.43 Hydrogen Distribution in Containment for Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-53 E.44 Total Mass of Active Vapor for Case 4 ......................................... E-54 E.45 Total Mass of Active Aerosols for Case 4 ....................................... E-55 E.46 Containment Spray for Case 5 ................................................ E-56 E.47 RCS Pressure for Case 5 .................................................... E-57 E.48 RCS Temperature for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-58 E.49 Lower Head Penetration Temperature for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-59 E.50 Liquid Levels in Cavity and Basement for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-60 E.51 Cavity Concrete Erosion for Case 5 ............................................ E-61 E.52 Containment Pressure for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-62 E.53 Containment Gas Temperature for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-63 E.54 In-vessel Hydrogen Generation for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-64 E.55 Hydrogen Distribution in Containment for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-65 E.56 Total Mass of Active Vapor for Case 5 ......................................... E-66 E.57 Total Mass of Active Aerosols for Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-67 E.58 RCS Pressure for Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-68 E.59 RCS Temperature for Case 6 .............................................. , . . . E-69 E.60 Lower Head Penetration Temperature for Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-70 E.61 Liquid Levels in Cavity and Basement for Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-71 E.62 Cavity Concrete Erosion for Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-72 E.63 Containment Pressure for Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-73 E.64 Containment Gas Temperature for Case 6 ....................................... E-74 E.65 In-vessel Hydrogen Generation for Case 6 .. *. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-75 E.66 Hydrogen Distribution in Containment for Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-76 E.67 Total Mass of Active Aerosols for Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-77 E.68 Total Mass of Active Vapor for Case 6 ......................................... E-78 Vol. 6, Part 2 E-5 NUREG/CR-6144

TABLES

  • Section Page E.1 MELCOR 24-Node Compartment Description .................................... E-79 E.2 MELCOR 52 Inter-compartment Flow Paths Description . . . . . . . . . . . . . . . . . . . . . . . . . . . E-80 E.3 Summary of Accident Sequences Analyzed by MELCOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-81 E.4 Sequence of Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-82 E.5 Distribution of Radioactive Species at 24 Hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-83 NUREG/CR-6144 E-6 Vol. 6, Part 2
  • APPENDIX E MELCOR CODE CALCULATIONS E.1 Plant Model The MELCOR nodalization scheme for the Surry plant is shown in Figure E.l. The reactor vessel is divided into six nodes representing the downcomer, lower plenum, core, core bypass, upper plenum and the upper head regions. In the core and lower plenum regions, fuel and structures are represented by 39 cells. There are three radial rings and 13 axial sections in each ring. Among the 13 axial sections, 10 are fuel elements and 3 are lower core plate and lower plenum nodes. Penetration tubes located on the lower head wall are modeled for each radial ring. The failure of the penetration tube indicates vessel breach.

Surry is a 3-loop PWR plant. Each loop is represented by a hot-leg and a cold-leg. The pressurizer, pressurizer surge tank, RHR and RWST are modeled as separate volumes in the MELCOR nodalization. The RHR was used to establish the steady-state condition for the MELCOR analysis.

The Surry containment is divided into seven nodes representing the basement, cavity, cubicles of the three steam generators, pressurizer room and the dome area. Environment is modeled as an additional node.

The 24 nodes are inter-connected by 52 flow paths. The descriptions of the control volumes and flow paths are given in Tables E.1 and E.2, respectively. It is believed that the MELCOR nodalizarion provides a reasonable representation of the Surry plant. . I E.2 Sequence Description A total of 6 calculations were performed in support of this study as summarized in Table E.3. The 'tiine window' approach was based on a set of representative decay heat levels. The first three MELCOR sequences assumed decay power levels of 13.2, 7 and 5 MW, respectively. These power levels correspond to that defined in windows 1, 3 and 4, respectively, as described in the main report. In these sequences, it was assumed that the ECCS is not available and the containment is closed during the entire transient.

Sensitivity studies were performed to evaluate the effects of containment leakage, actuation of containment sprays and the restoration ECCS. The sensitivity studies were performed using the decay power level corresponding to that defined in window 1.

E.3 MELCOR Analysis The analysis was based on mid-loop operation with the primary system open to the atmosphere. All six loop isolation valves were closed to minimize the primary system inventory and to preclude the use of reflux cooling Vol. 6, Part 2 NUREG/CR-6144

Appendix E MELCOR Code Calculations as a recovery procedure. A Tygon tube connects the upper head vent to the pressurizer relief tank, and at least one pressurizer SRV is assumed to have been removed which provides a vent path to the containment.

All calculations commenced with a period of 5000 seconds running in quasi-steady state conditions with the actuation of RHR. This method was sufficient for the MELCOR model to approach a close approximation to a steady state condition prior to initiating the transient. The initial conditions in each control volume including the atmospheric pressure, temperature, compo~ition and wat.er pool mass and temperature are included in Table E.1.

  • The transient was initiated by closing off the RHR flow paths to simulate a loss of RHR. All timings referred to in this discussion are measured relative to* this time in the calculation. Transient analyses were focused on the occurrence of major events, such as the timing of core uncovery, gap release, failure of the core support plate and vessel breach. Core uncovery is defined as the depletion of water in the upper plenum of the reactor vessel. The gap release occurs when the clad reaches 1173 K, at which temperature all inventories of fission products in the gap region are released instantaneously to the core channel control volume. The failure of core support plate and penetration tubes attached to the lower head wall are determined by the user specified failure temperatures (default values are 1273 K). The failure of penetration tubes indicates the breach of the reactor vessel.

The standard ANS decay power curve, as programmed into MELCOR, was used throughout these calculations to provide a best-estimate heat generation rate. The selection of the initial decay power levels was determined by the 'time window' approach described in the *main volume of this report.

The latest release of MELCOR, version 1.8.2, was used throughout this analysis. This version includes several major improvements and corrections, particularly in the areas of core melting, relocation and interaction in the lower plenum.

E.4 Results This 1s the case with the highest decay power level (13.2 MW) corresponding to that defined in window 1. The failure of ECCS was assumed and the* containment was closed. The loss of RHR leads to core uncovery at about 5280 seconds. The boil-off of water causes an increase of pressure and temperature in the RCS as shown in Figures E.2 to E.3. The fuel clad temperatures reach the criterion of gap release between about 5600 to 7500 seconds for fuels in the three radial rings. Continued loss of coolant and core heating eventually cause the failure of core support plate at about 12900 to 13900 seconds. The relocation of corium into the lower plenum and the rapid heating of the penetration tubes (Figure E.4) result the failure of the reactor vessel.

Large quantities of water and corium are discharged into the cavity following the vessel breach. The corium/water interaction in the cavity gradually vaporizes all the water remained in the cavity as shown in Figure E.5. This interaction has two effects on containment performance: containment pressurization due to steam addition and reduction of corium/concrete interaction due to the cooling of core debris. A limestone/common sand concrete was assumed for the analysis. Figure E.6 shows the radial and axial concrete erosion in the cavity. The axial erosion distance is about 0.75 meters at the end of 120,000 seconds. This is NUREG/CR-6144 E-8 Vol. 6, Part 2

Appendix E MELCOR Code Calculations about 25% of the concrete floor thickness. It appears that thermal attack of the cavity concrete floor is not a severe challenge to the Surry containment for accidents during mid-loop operation.

The MELCOR predicted containment pressures and temperatures are illustrated in Figures E.7 and E.8, respectively. There is a continuous pressure increase in the containment. The two pressure spikes at about 40,000 and 80,000 seconds are caused by hydrogen burn in the containment dome and basement area. Within the time period of 120,000 seconds, the pressure does not threaten the containment integrity. However, high temperatures occur in the cavity region over a very long period of time. This severe thermal condition could cause damage in that area.

The in-vessel hydrogen generation and hydrogen distribution in containment are shown in Figures E.9 to E.10.

The sudden reduction of hydrogen mass at about 40,000 seconds in the dome and basement region, and at about 80,000 seconds in the dome area indicates deflagrations in the containment. They are reflected as pressure and temperature spikes in Figures E.7 and E.8.

MELCOR calculates radionuclides in two forms: vapor and aerosol. The distributions of active aerosols and vapor in various containment regions are given in Figures E.11 and E.12. Most of the active aerosols and vapor are accumulated in the dome and basement regions. The distributions of Cs and I elements at the end of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> are summarized in Table E.S. Because the containment is assumed to be closed, there is no environmental release.

This case is similar to Case 1, but with the decay power level reduced to 7 MW corresponding to that defined in window 2. With a lower decay power the occurrence of major events are delayed by 2 to 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> as shown in Table E.4. The results of the transient calculation are given in Figures E.13 to E.23. Similar to Case 1, hydrogen generation, hydrogen burn, concrete erosion and containment pressurization do not threaten the containment integrity within a time period of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after the initiation of accident. The high temperatures in the cavity still present a severe challenge to the containment integrity. The distributions of Cs and I elements are about the same as in Case 1 as shown in Table E.S.

The decay power level is further reduced to 5 MW in this case. The transient behavior shown in Figures E.24 to E.34 are similar to that of Cases 1 and 2. However, at such a low level of decay power, the occurrence of major events are delayed considerably in comparison with that of Case 1 as summarized in Table E.4.

This case is similar to Case 1 but with the assumption of containment leakage initiated at the beginning of the accident. The leak area is assumed to be 1 square ft and is located in the dome area. The MELCOR predicted

  • transient behavior and results are given in Figures E.35 to E.45, and in Tables E.4 and E.S.

Vol. 6, Part 2 E-9 NUREG/CR-6144

Appendix E MELCOR Code Calculations The leakage in containment does not have any major impact on transient behavior in the reactor vessel. Only the in-vessel hydrogen production is reduced by about 10% in comparison with Case 1. In the containment, the pressure is generally at atmospheric level. The gas temperature in the cavity region is still at an elevated level of about 1700 K (Figure E.41). It is noted that both the radial and axial concrete erosion in the cavity region (Figure E.39) are much stronger than that in the base case (i.e. Case 1). This strong erosion of concrete would release more gases from the concrete, which could become a driving force to discharge gases and aerosols into the environment. Figures E.44 and E.45 show that large quantities of active vapor and aerosols are released into the environment. The distributions of Cs, I elements and other species, summarized in Table E.5 indicate that about 20%, 87% and 53% of the total releases of Cs, I and all species are released to the environment, respectively.

This *case is similar to Case 4 but with the actuation of the containment sprays after vessel failure. The flow rate of the sprays is about 0.19 Kg/s as illustrated in Figure E.46. The spray heads are located in the dome area. Actuation of sprays after vessel failure has no effect on transient behavior in the reactor vessel as shown in Figures E.47 to E.49 and in Table E.4.

Figure E.50 shows that spray water is collected in the cavity and basement area. The cavity is completely filled with water in about 9.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> after the actuation of sprays. The presence of such a large water pool in the cavity reduced the concrete erosion rate as shown in Figures E.51. According to the MELCOR model, core debris in the cavity never reached a coolable configuration which could terminate the concrete erosion. As one expected, sprays eliminated high temperatures in containment (Figure E.53) and greatly reduced the releases of active aerosols and vapor to the environment (Figures E.56 and E.57). Table E.5 indicates that releases of radioactive species to the environment at the end of 73,515 seconds are negligible.

NUREG/CR-6144 E-10 Vol. 6, Part 2

1 Environment N

50 Dome 500 RHR To 400 20 30 40 41 410 To 140 To 100 To 1 150 QJ PZR Upper Head

~

u c:(

  • U

~

QJ L') *r-

. .Q O'.l

  • U

~

QJ L.-, *,-

.Q u

  • U

~

QJ

<.!) *~

. u::,

.Q

.Q u

0:::

450 PZR Surge 140 Upper Plenum 200 Hot Leg 300 Hot Leg Loop B t:~: 140 15ll

, N tT.1 U') u U'lU U') c...

Loop A I

Tank To 5 To 5 V, V, s... 340 To l!:>O

<tl Cl.

QJ E

Cold Leg To 11 QJ O'.l 0

u 240 s... Cold Le 1400 Hot Leg

~ To 140 u 0

0 QJ s...

0 To 150 0 u 0 N

0 0 To 150

...... (Y)

...... 0 Loop C 600 To 100 110 RWST To 150 Lower Plenum To 440 To 1 10 Basemat Cavity To 50 To 50 Figure E.1 MELCOR Nodalization

z -6" c::

"C

('D trl =

0.

~,::,

trl I

0\

350 ~

trl Steam Dome R 325 0

......... Core n

0 300 Pressurizer 0.

('D n

~

275 n C:

0 0....

250 s*

=

C)

__... 225

....trl N

I L..&..J a:::

, 200 V)

V)

L..&..J a:::

0....

17 5 15 0 12 5 10 0 75 0 5 10 15 20 25 30 35

< TIME (10 3 s)

~

~°'

"ti

~

N Figure E.2 RCS Pressure For Case 1

N

2. 4 2 2 Core Vapor Temp
  • * * * * * * *
  • U.P. Vapor Temp 2 0
  • H.L. C Vapor Temp

- *- *- *- Pressurizer Vapor Temp

- ~

C) 1 .8 1 .6 1 4 L..&.J a:::

=>

1--

<C a:::

L..&.J 0..

i::

L..&.J 1 2 1 .0

__ - - .. .:..:..:.*. ~-:~L-:*:**:*~*~*~*: *: *~*:. *.:*: *

.. ******************** =*=-*:...*-=-*;;;;'* - * - - * - * - :

1--

0 8 l -*-* *-*-*-*-*-*- *-*-*-*

1

    • l.*tit .,. _ _ _ _ _ _ _ _ _ _ _

I* \, *-*-*-*

0 6 I

(

0 4 z 0 2 C 0 20 40 60 80 100 120

~

TIME (10 3 s)

~....

I

°' Figure E.3 RCS Temperature For Case 1 t

z t C "C

~

tT1 g

.Q n~ ~-

C.

til

-t 0\

I 1 . 5 3::

.:::: 1 . 4 Ring 1

.I '\ R 0

~

......, I *'

  • Ring 2 c::, Q

....__ I  :* -*-*-._

(/)

L..a..J 1 . 3 Ring 3 -*- ---.......:....:....:,

C.

(D n

~

n::: 1 . 2 1--

-*- [

0 i:::

<C n:::

L..a..J 1 . 1 o*

c.... "'

~

L..a..J 1--

1 . 0 tT1 I

z:

0 1--

<C n:::

1--

0.9 0.8 L..a..J

z:

L..a..J c.... 0.7 c:::::::i

<t L..a..J O. 6

r:

n::: 0.5 ..

L..a..J 3=

0

__J 0.4

__, ~

0.3 0 5 10 15 20 25 30 35 i~°' TIME (10 3 s)

'"O

~

Figure E.4 Lower Head Penetration Temperature For Case 1 N

N

-3.0 Liquid Level in Cavity Liquid Level in Basement

-3.2

-3 .4

(/)

__J LLJ LLJ -3 .6

__J tTl I

'JI Cl 0

i -3 . 8

-4 . 0

-4.2

-4 .4 A

0 5 10 15 2 0 25 30 35 TIME (10 3 s)

Figure E.5 Liquid Levels In Cavity And Basement For Case 1

Appendix E MELCOR Code Calculations II) CD

, "U

.I 0

, N "U +- ......

C +-

I..

0

.II E E I

  • -E X

C E

C .

I 0

0

E :::E I

I I

I

. 0 """'CII

.I CX) u=

in I ,-...

I

. ,,.,(/) ~

.2=

I 0

.\ 0

'-" in e

I. w ~

<.O

I

.\ \ ~

fy

. I-u=

=

.\ \ Q

  • 5:

. u=

\ 0

""q"

.\ ~

\

. ~

f

\

. =

I ~

'I 0

.I N 0

0 L() 0 L() 0 L() 0 L() 0 L() 0 I!) 0 I!) 0 N o* I!) N 0 K lO N 0 K LO N 0 LO

""q" ""q" ""q" I") I") I") I") N N N N ...... ...... ...... ......

NUREG/CR-6144 (w) SN01SN3~IO AllAV'J E-16 Vol. 6, Part 2

375 350 Contain ent dome

- * - *- * - Cavity 325 300

..--.. 275 C

a...

~

C) 250 La..J 225 0::::

U')

(/) 200 La..J a:::

a... 17 5 150 12 5 100 75 0 20 40 60 80 100 120 TIME (10 3 s)

Figure E.7 Containment Pressure For Case 1

Appendix E MELCOR Code Calculations 0

N 0

0

.... 0 CX) r--.

(I)

I')

0 0

tO w

~

Q) I-E 0

"U 7111TSrnna1************~*-

0

-.;I*

~:.;*~~:=:=:=:=:=~=:=~=~=~=~~

i.;:..*-*-*-*-*-*-*-*-*-*-*-*-*>

-*-*-*-*-*-*-**1*1*1a1:1:1:1~

0 N

0 N 0 CX) tO N 0 CX) tO N N N N ,.... ,.... ,.... ,.... ,.... 0 0 0 0

(~ rm) S3Mnl VM3d~31 MnOdV A NUREG/CR-6144 E-18 Vol. 6, Part 2

~

~a..

""C1 Ill

'"I N

COR-DMH2-TOT 225 200 17 5

~

C')

150

z:

C) t-e:::: 125 trl Lu I  ::z:

Lu

\C (!)

100

z:

Lu

(.!)

C) a::::

Cl 75

c 50 25 Integrated H2 production in core 0

0 20 40 60 80 100 120 TIME (10 3 s)

Figure E.9 In-vessel Hydrogen Generation For Case 1

.)

z c::

m Q

n I

°'

'""" 180 t ,.,,

'I "-'- -* BASEMENT I

1 *5 0 I


DOME I

I I ___ ___ .,

CAVITY 140 " SG CUBICLE A

__, SG CUBICLE B 120 " "" SG CUBICLE C O')

I

.:!I:.

I .-.-:- PRESSURIZER CUBICLE I

u, i'  ;

~----- --- ---

u, 100 I  ;

< I  ;

mI

E I

I  ;

N  ::z: I 0 I I LL.I

(.!) 80 I I 0 I I a:::

c::::i

c qO 40 20 0

0 20 40 60 80 100 12 0

~ TIME (10 3 s)

~°'

lood

~

"1 N

Figure E.10 Hydrogen Distribution In Containment For Case 1

16 0 I, - -.II." ... ..,,_ -1 ,,_ BASEMENT 140 I I

, It

~

t

- - - - - - I- -

--.-::~~-DOM£---------

0, I

I T CAVITY

~ I - * - * -Ii. - SG CUBICLE A 120 I t 0:::: I - *- *- *- SG CUBICLE B 0 I a... I -*-*-*- SG CUBICLE C

<( I

> 100 I ****** PRESSURIZER CUBICLE I

Lu I

> - - ENVIRONMENT j::= I u<( I 80 I I

L.,.._ I 0 I I

(/)

(/) 60 I

<( I

1:: I I

_J I

<( 40 I 1-- I C) I 1-- I I

20 I I

I.

~~~~~~~~-~-~~~~~~~~~~~~~~~~~

                              • 0 ***************************************************

0 0 20 40 60 80 100 12 0 TIME (10 3 s)

Figure E.11 Total Mass Of Active Vapor For Case 1

z -6" c:: 'O

~

m g

.Q n ~-

C.

~ tr1 I

0\

~

t 30 0 tr1 t""

BASEMENT n

27 5 0

-~

0,

25. 0 l,.,,

I~

I \

DOME CAVITY SG CUBICLE A n

~

n0 C.

(!)

(.11 22 5 I I I I

~

__J C>

I I I I

-*-*-*- SG CUBICLE B i::

(.11 C> 20 0 I

\

I I

I I I -*-*-*- SG CUBICLE C ...o*

I 0::::

LL.J

\

I I \ ......... PRESSURIZER CUBICLE =

<( I \

LL.J 17 5 I

\

\

I I

\

\

- - - ENVIRONMENT

> \ I \

m 1--

u 15 0 \ I \

N N

I

-<( '\ \ I I.

\

\

L,_

C) 12 5 \

I I

\

'II I I

(.11

(.11

-<(

10 0 I

I ' \

\

\

7 5 ' .... ,

\

I

\ I

__J

-<( I 1--

'1 C>

1--

5 0

-... ... -... ,,"II 2 5 _,

I \

\

0 0

-:-:"-~ .........

0 20 40 60 80 10 0 12 0 i~°' TIME (10 3 s)

"C

~

N Figure E.12 Total Mass Of Active Aerosols For Case 1

~

~a..

"'tl

~

N 300 Steam Dome 280 ........ Core Pressurizer 260 240 C

a... 220 tTl N

vJ I

- C)

La.J ct::

(/)

200 180

(/)

La.J ct:: 16 0 a... 4

'O g

140

~-p.

tTl 120

~

tTl 100 h 0

,:j ze 80 ()

0 p.

,:j tTl 0 5 10 15 20 25 30 35 (I)

.Q ()

() TIME (10 3 s) 6"i::

,:j

~

~

I a..

Figure E.13 RCS Pressure For Case 2 as*

="'

,/

i-

( \\

1 . 7

\\

Core Vapor Temp I \ \

U.P. Vapor Temp 1 . 5 H.L. C Vapor Temp Pressurizer Vapor Temp 1 . 3

\

\

1 . 1 \

0.9 0.7 0.5

~~*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

0.3 0 5 10 15 2 0 25 30 35 TIME (10 3 s)

Figure E.14 RCS Temperature For Case 2

Appendix E MELCOR Code Calculations C

,=

...;- 0 t")

' ....... \, ...

............., *, L()

N 0 Cl)

N I')

0

~

w

~

L()

...... I-0 L()

0

...- ...- ...- ...- ...- ...- ...- 0 0 0 0 0 0 0

  • Vol. 6, Part 2

(~£m) S3~nrv~3dri3! NOi! V~!3N3d OV3H ~3M01 E-25 NUREG/CR-6144

z e

m 0

n,::,

°'

t I

45 CVH-MASS.1.10 40 35

~

0) 30 1--

25 mI u

N

°' :z: 20 Cl 0

___J 15 10 5

0 0 5 10 15 2 0 25 30 35 TIME (10 3 s)

N Figure E.16 Liquid Levels In Cavity And Basement For Case 2

~

~°'"'d Q)

N

4. 50
4. 25 Maximum radius 4.00 -*-*-*- Minimum altitude 3 .75 V)

E

3. 50 3 25
z:

C) 3. 00 V) tTl :z:

N I

L.L.J 2 75

-..J  ::::l!:

0 2 .50

=-

1--

> 2 25

<(

u t

'tl 2 .00 ~

=

~-c..

1 .75 tTl 1 .50 ~

1 .25 . - .- . -*-* -*- *-*-*-*-*-*- tTl r

n

.- .- . *-*-* *-*-*- *- *-*- 0

~

z 1 00 {;

C 0 20 40 60 80 100 120 0

~ c..

~

tTl

.Q TIME (10 3 s) n Q) n 0

~ =

°'

.i,..

.i,..

Figure E.17 Cavity Concrete Erosion For Case 2

....~

s*

"'=

zc:::

~

m Q

('j

~

-tI O'I 230 220 Containment dome

- *- *- *- Cavity 2 10 2 0.0 190 C 180 a..

- 170

~

C) m I LLJ 160 N

00 c::

en 150 en LLJ c:: 140 a..

130 120 1 10 1 0. 0 90 0 20 40 60 80 100 120

~ TIME (10 3 s) 9'

~

II,)

Figure E.18 Containment Pressure For Case 2 N

Appendix E MELCOR Code Calculations

  • 0 N

0 0

. 0

.. CX)

,,.,V)

'*' 0 0

U) w

~

G) I-E 0

____________ __~*-*-*-*-*-*-

iJ ..... _

C

  • -*-*-*-*-*, 0 "q"

E G) -

C C G>

. o. . =>-> E C

G) ui 0 C C o um 0 N

0 N 0 CX) <.O N 0 CX) <.O N N ,- ,- ,- ,- ,- 0 0 0 0 N N Vol. 6, Part 2 E-29 NUREG/CR-6144

t "O

0 m

~-=

C.

COR-DMH2-TOT 225 ~

m R0 200  ::0

(')

0 C.

0 17 5

(')

II>

C, n

c::

..::tt. [

150 s*

z:

C) "'=

I--

<(

e::::: 125 m La..J w

0

z:

La..J

(.!)

100

z:

La..J

(.!)

C) e::::: 75 Cl

c 50 25 Integrated H2 production in core 0

0 20 40 60 80 100 120 TIME (10 3 s)

Figure E.20 In-vessel Hydrogen Generation For Case 2

~

~a,..

"'C ll)

"'1 N

180 BASEMENT 16 0 " DOME

,,,, I "

" "" CAVITY

,,,, ., I ,.., ,,,,

140 ,,,, ,,,, I / SG CUBICLE A SG CUBICLE B___ _

-- 1, Ir - I1 C)

..::::t!

120 IJ I

I1 11 ,,------- -----

- * - * - * - SG CUBICL,.~ -C

(/')

,J II 11 ' * * * * * * * * * *p~r-ssURIZER CUBICLE

(/')

<C 1 0.0 ~

tTl  :::::!: I I

I

\,.l

z:: I I.J..I

(.!) 80 I C) I a:::: I Cl

>- 60

I:

40 20

,,:._...-:;:---...~~~~~~~~~~~~~~~~~~~~~~~~~~ . . . . .. . ....................... .

z 0 c::: 0 20 40 60 80 100 120 tTl

~

(')

TIME (10 3 s)

I a,..

..... Figure E.21 Hydrogen Distribution In Containment For Case 2 t

zC

~

.Q (j

-t

°'

I 160 I II

\

BASEMENT 140 J u - - - - - DOME I I

............ I I CAVITY O') I

~ I.._

-..., I SG CUBICLE A 120 I e:::: I SG CUBICLE B C) a... I

-<( I SG CUBICLE C

> 100 I I

PRESSURIZER CUBICLE La...J I

> I ENVIRONMENT 1-- I m I u

-<( 80 I w I N I La....

C) I I

u, 60 I u, I

-<( I

E I I

.....J

-<( 40 I I

1--

C) I 1--

  • I 20 I I

I I

0 0 20 40 60 80 100 120

~ TIME (10 3 s)

~°'

~

~

N Figure E.22 Total Mass Of Active Vapor For Case 2

N 25.0 BASEMENT

22. 5

~

C')

( /)

20 0 DOM~

CAV/'fY SG ,'~UBICLE A

_J C> SG ,' c'µBICLE 8

(/) 17 5 C> SG,' C\_JBICLE C a:::

L&.J P~S~URIZER CUBICLE

<C 1 5 .0 L&.J E~VIR~NMENT i== 12 . 5 I

(..) I

<C I I

La...

C) 10 . 0 I

\

(/) \

(/) \

<C

7. 5 \

\

\

_J \

<C

...... 5 0

C>

2 5 '

0.0 z 0 20 40 60 80 100 12 0 e

~ TIME (10 3 s)

.Q n

~

-t I

0\

Figure E.23 Total Mass Of Active Aerosols For Case 2

z c::

~

-6"

'O m ~

=

.Q Q.

s:a*

n

~ I m

O'I a::

t m 320 h

0 300 Steam Dome ~

......... Core Q Q.

280 Pressurizer ~

n

~

260 i::

o*a C

240 =

0-

,.,., 220 m I C)

~

.i:,.

LLJ 200 0:::

=>

V)

V) 18 0 LLJ e::::

0- 16 0 140 120 10 0 80 0 5 10 15 20 25 30 35

~

~°' TIME (10 3 s)

"'d

~

Figure E,24 RCS Pressure For Case 3 N

N 2 .0 Core Vapor Temp 1 8 * * * * * * * *

  • U.P. Vapor Temp H.L. C Vapor Temp 1 .6 * - * - * - Pressurizer Vapor Temp

~

1 4 0

~

-~

L..L.J 1 2 ...*,

/"':,

a::

I-

... .. l*f* : ....

\ v :*::::

<: 1 0 *.:.

a::

L..L.J a...

L..L.J I- 0 8 0 6 0 4

~=~------*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*---*-*-*-*-*-*-*-*

-'---""'.:l~ ~ - - - -

  • I 0 2 0 5 10 15 2 0 25 30 35 TIME (10 3 s)

Figure E.25 RCS Temperature For Case 3

z ~

C: 't:I

~

m g Q

n

~-

m C.

~

-t 0\

I 1 . 6 ~

m h

_..._ 1. 5 Ring 1

,.,,:::.::::: ......... . 0

~

0

.....- 1 . 4 Ring 2 .... n 0

V')

-*-*-*- Ring 1 3 .

C.

CD

("')

La..J 1 . 3  : i ~

e::::

> .. c::

I-1 . 2 ..

  • I  ;-'

0:::

I s*

La..J a....

  • I =
E 1 1 La..J I-
z:

1 0 tr1 I C)

\,J 0\ I-0 9 e::::

I-La..J 0.8

z:

La..J a.... 0.7 Cl

< La..J

c 0.6 e::::

La..J 0.5

s:

C)

_J 0.4 0 3 0 5 10 15 20 25 30 35

~ TIME (10 3 s)

VO\

>,:I Q)

Figure E.26 Lower Head Penetration Temperature For Case 3 N

-2 2 Cavity

-2 4

- * - *- * - Basement

-2 6

-2 8 E -3 0

(/')

_J -3 2 Lu Lu

_J -3 4 Cl CY -3. 6

_J

-3. 8

-4 0

-4 2

-4 4 0 20 40 60 80 10 0 12 0 TIME (10 3 s)

Figure E.27 Liquid Levels In Cavity And Basement For Case 3

z c::

~

m ig

.Q Q.

n

c s
a*

I m O'I 4.50 t ~

4.25 Maximum radius ~

0 4.00 - *- *- *- Minimum altitude ~

g 3.75 ~

Q

---E 3.50 3.25 g

[

s*

(/)

z: =

c:,,

0 3.00 tn

z:

m Li...J 2.75 I

\>.)  ::::::E 00 c:::l 2.50 f,-

> 2.25

<C u 2.00

  • 1 . 7 5 r.so 1 . 25 1 . 00 ~ - .-** - . - . *-*-*-*-*-*-*-*-*-

0 20 40 60 80 10 0 12 0

~ TIME (10 3 s)

WO'I "C

II>

"1

,-+

N Figure E.28 Cavity Concrete Erosion For Case 3

i

~°'

"'C Ill N

2 s*o Containment dome 260

- *- *- *- Cavity 240 220 C

a_

I"')

200 C>

tI1 I Lu 18 0

!.;.l

'-0 c::::

=>

V)

V)

Lu 16 0 c::::

a_

140 1.2 0 10 0 80 z

e 0 20 40 60 80 100 12 0

i::i tTl

.Q TIME (10 3 s)

('"j

i::i I

0\

Figure E.29 Containment Pressure For Case 3 t

z e 4

,:j "O tTl g 0.

.Q 5<"

n

t
l rr:l I

C\ 2.4 3::

~

~ I tTl i

2.2 Containment dome Cavity I

§

,:j 2.0 Basement Q 0.

I

('1)

~

1 . 8 n

.,, e:.

C)

I C')

=

(/)

1 . 6 I

I I I I I

I -=

S' a*

LL.J a::::  !~ I t "'

)

1 . 4 I ~ I I I .. I ~IIJ.r.~

  • ~}~~s / *11 !

I-

<C a:::: I tTl I

LL.J a_ 1 . 2 I . .l,i!rI  ! I 1'

~ " *I I I

.I I

!: ,.I l'. t*

LL.J I I-

  • I 1 . 0 J" ... i I a:::: .,, I

" I I

)

C)

'  ! I a_

<C 0.8 ' ~,I

> I 0.6 I

  • I ,.._._..;

~

~ .I 0.4 [  !\.

J . *-* ********! ' . ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

,:c:,=*-=* cw.

0.2 0 20 40 60 80 10 0 12 0 TIME (10 3 s)

~

~°'

~

~

l. Figure E.30 Containment Gas Temperature For Case 3 N

COR-DMH2-TOT 250 225 200 C">

...:::s:. 17 5

z:

0 1-- 15 0

<(

a::::

l..L.I

z::

l..L.I 125

(.!)

z::

l..L.I 100 c...'.)

C) 0:::

0

>- 75 I

50 25 Integrated H2 production in core 0

0 20 40 60 80 10 0 120 TIME (10 3 s)

Figure E.31 In-vessel Hydrogen Generation For Case 3

zc::

,::I tr.I Q

n

,::I I

°' 180 t ,

, _, . . I BASEMENT 16 0 ,.... - - - DOME

,' I

, .... ' CAVITY 140 ,...

I .., - ------ -1*I - *- *-

I SG CUBICLE A 1

I -r-*-*-

I SG CUBICLE B

...-- -r-*-*-

0, 12 0 I SG CUBICLE ,,.C

~

...__ ~

1 I

PRESSU13JiER: CUBICLE U") ...I I ,,,, I -----

I U")

<( 10 0 I ,,. ,,.

,,.- I I II

E I ,,. ,,. It tr.I I ,,. u I
z:: I t3 LJ...I 80 I

,,,"' I C..':>

C)

I I I "

a::::

0 I

c 60 I I

I I

I 40 I I

I I

20 I I

I I ...~.,~_,.__.Jt

....,.,..re~..,.__..,.__...,.__..,.__._.__..,__._.__.

. ........................ "Pl" 0

0 20 40 60 80 10 0 12 0

< TIME (10 3 s) 12-

~°'

""d

~

N Figure E.32 Hydrogen Distribution In Containment For Case 3

16 0

,,I -I,- .... - - -BASEMENT,"

- - - - - "' -1,,--

140 I -,- - - - DOME , .

I CJ) t., CAVITY )

_::::it. I

........... - *- *- *- SG CUBICLE A 12 0 I I

e:::: -*-*-*- SG CUBICLE 8 C) I 0.... I

-<( I

-*-*-*- SG CUBICLE C

> 10 0 I

  • * * * * * * *
  • PRESSURIZER CUBICL~

I LL.J I

> I 1-- I

(...)

-<( 80 I I

....._ I C) I I

(/')

(/') 60 I I

-<(

I

E I

__J I

-<( 40 I 1-- I C) I 1-- I I

20 I I

I 0

I

  • ~~~

- J.._..

..................... ~-

....... .._..._..._..._. ....... .._......::::a *.___"-=-,..__"'-'\..:I0.-.'1,.=,,wa.,'-=-~*......_.-=-*-=

0 20 40 60 80 10 0 12 0 TIME (10 3 s)

Figure E.33 Total Mass Of Active Vapor For Case 3

35 ""',

I I I \ BASEMENT I I I I DOME

.....--... I I C')

~ I I CAVITY 30 I I

\ SG CUBICLE A U1 - I \

__J

--1 \ SG CUBICLE B C) - I_ \

U1 C) 25 I -- \ SG CUBICLE C a::: I- \

L..i.J 1-_ - \ PRESSURIZER CUBICLE

<( I - \

I \ ENVIRONMENT L..i.J I \

> 20 I \

t-- I I mI u I \

<(

""' L,_

I I

I I

C) 15 I I I \

U1 I \

U1 I \

<(

I \

~

10 I \ i,

__J

<(  : '\ I\ ~

t-- ' I \

J\'

C) I ' I t--

5  :

I

' ... I ' - -1

,- ', -~-..

I ' .......... _ _ _ ,, I '- --

0 0 20 40 60 80 100 12 0 TIME (10 3 s)

Figure E.34 Total Mass Of Active Aerosols For Case 3

~

9'-

~

~

N 425 400 t- I I Steam Dome I ********* Core 375 350 I I Pressurizer 325 C

c..

300 t<")

0 275 trl I

.;:.. L&.J 250 Vi 0:::

=>

(/) 225

(/)

L&.J 0:::

c.. 200 17 5 ~ _.! -,'J -y~~ll I J -6' "C

(I)

=

~-

C.

~ /1 15 0 125 100 1,L-1 I

~.....___,-Le r'\.l.t L l

__l\jL.. l

-I trl

~

trl t""

n 0

75 n z 0 5 10 15 20 25 30 35 0 C C.

,::, (I) trl n TIME (10 3 s)

~,::,

~

ni::

[

-t O'I I

Figure E.35 RCS Pressure For Case 4 s*

=en

2 2 Core Vapor Temp 2 0

  • * * * * * * *
  • U.P. Vapor Temp H.L. C Vapor Temp 1 8

- * - * - * - Pressurizer Vapor Temp

..-- 1 6 C)

....- 1 4 u...J 0:::

, 1 2 tT.1 I

I--

-<C C1\ 0:::

1 0 u...J a_

~

u...J I--

0 8 0 6 0 4 ~-,. - .- . - . - .- . - .- .-*- .-* . - *- *'

0.2 0 5 10 15 2 0 .2 5 30 35 TIME (10 3 s)

Figure E.36 RCS Temperature For Case 4

~

~°'

""C

~

'"I N

1 . 5

..--... 1 4 Ring 1  ;: I~

. ..., * ** I

. 1 .

......... Ring 2 ,. \

0 V) 1 3 -*-*-*- Ring', 3 i *... \

Lu a::: 1 .2 I-I * * * * * *

-~

  • - I

<(

a:::

Lu 1 .1 ... *...... -.... . .

a...

i!:

Lu 1 0 I-

z: ~- *-

tT1 I

0 0 9 I t I-

<(

I a::: 0 8 I-LL.J

z::

Lu a... 0 7  ?

"Cl Cl ~

<(

0.6 =

Lu

r: ~-

0.

tT1 a:::

Lu 0.5 3:: a::

0 tT1

__J 0.4 h 0

0 3 n z 0 5 10 15 20 25 30 35 0 e

0.

~

tT1 TIME ( 10 s) 3 n e:..

~,:::, C'l

°'

I-'

~

I Figure E.37 Lower Head Penetration Temperature For Case 4 -=sr=s*

~ "'

-2 . 6 Cavity

-2 . 8 - *- *- *- Basement

-3 0

...--... -3 2 E

(/)

__J

-3 4 L.LJ tTl I >

L.LJ 00 __J

-3 6 0

=>

0

__J -3 8

-4 0

-4 2

-4. 4 0 20 40 60 80 10 0 12 0 TIME (10 3 s)

Figure E.38 Liquid Levels In Cavity And Basement For Case 4

~

9--

""C II)

N 5 .'O.

Maximum radius 4 . ".5 - *- *- *- Minimum altitude 4 . 0 E

en 3 .5

z:

C) u5 tTl :z:

I

.j::,,. LL.I 3 ... 0

\0  :::::::'!:

cS 1--

2 .5

<C

(._)

2 .0 ____ ...... - *-* -*- *-* -*-

1 .. 5 I

z 1 .. 0 e,:::l 0 20 40 60 80 100 120 tTl

.Q TIME (10 3 s)

(J

,:::l

-t 0\

I Figure E.39 Cavity Concrete Erosion For Case 4


:,.....~

2 3.0 Cont inment dome

- *- *- *- Ccvi 2ro 0

t 9, 0 a..

~

C>

__.. 170 trl I LLJ VI c:::

0  :::::,

(/)

(/)

LLJ 15 0 c::

a...

13 0 1 t0 90 0 20 40 60 80 100 120 TIME (10 3 s)

Figure E.40 Containment Pressure For Case 4

2.4 2 2 dome 2 0 1 8

(/)

1 6 LLJ 0:::

I-- 1 4 I m I 0::: ii V'o LLJ o._

E 1 2 I LL.I 1--

0:::

1 0 C) o._

< 0 8 0 6 0.4 0 2 0 20 40 60 80 10 0 12 0 TIME (10 3 s)

Figure E.41 Containment Gas Temperature For Case 4

~

'ti CD

=

~-

C.

tr:l COR-DMH2-TOT 200 a::

tr:l t""'

n 180 0

i.
i n

0 16 0 C.

CD C">

~ 140 n

~

i:::

5r

z:: s*

C>

1-- 120 =

C/.l

<(

c::::

LL.I

z:: 10 0 LL.I c.!:)
z::

LL.I c.!:)

80 C>

c::::

Cl

>- 60

I:

40 20 Integrated H2 production in core 0

0 20 40 60 80 100 120 TIME (10 3 s)

Figure E.42 In-vessel Hydrogen Generation For Case 4

12-

~~

"'d

.......Ill N

16 0 BASEMENT 140

,,,*J DOME

....~-"tAVITY'

...._-: - * - * - SG CUBICL'E:, A 120 SG CUBICLE ' 8",

--- O')

,,,,,, SG CUBICLE C ' ',

..:::s:.

___. 10 0 ,,,, PRESSURIZER CUBICLE U')

U') ,,

,I

<C ,, ...... _

L \

mI Ul

\,.)

E
z l.J..J c.!)

80

I I

I - -JI I I/

IJ C) a::: 60 Cl I

40 20 0

0 20 40 60 80 10 0 12 0 TIME (10 3 s)

Figure E.43 Hydrogen Distribution In Containment For Case 4

z c:::

,::J

?

"O I")

tT1 =

.Q n ~-

Q.

,::J tT1 I

0\

I-'

250 a::

tT1 h

225 BASEMENT

- - - - 0

,::J

- - -==- -DOME-CAVITY n

0 Q.

Cl>

O') 200 n

~

SG CUBICLE A

~

0:: -*-*-*- SG CUBICLE B i:::

0 a...

17 5 /

-*-*-*- SG CUBICLE C E:;""

s*

< /

=

> / ......... PRESSURIZER CUBICLE "'

15 0 L......J r'

I

- - - ENVIRONMENT 1--

tT1 u 12 5 (JI I

I. r I I

L,_

0 1' I

(/)

10 0 ,\, \ I

' ,.J, I

(/)

I r

< I I

~

75 I I 1

  • < I 1--

0 50 I .... ....

I ....

1--

I I

I -- --- --- -- --- ---

25 I

I I

0 0 20 40 60 80 10 0 12 0

~ TIME (10 3 s)

~°'

"O N

Figure E.44 Total Mass Of Active Vapor For Case 4

55 O")

50 45 _.,,,

BASEMENT DO~- -

CAVITY

.::tt.

/

-*r*-*- SG CUBICLE A

<.n 40 /

C> SG CUBICLE B I' -

<.n C> - * - *- * - SG CUBICLE C e:::: 35 LJ..J * * * * * * *** PRESSURIZER CUBICLE

<C LLJ - - - ENVIRONMENT

> 30 I--

u

<C 25 L...,_

C>

<.n V>

20 ,,

<C I \

~ I \

15 I \

__J I \

<C I ',

I--

C> 10 I '

I-- I '

I '

5

... "' /

I I

~----~

0 0 20 40 60 80 10 0 12 0 TIME (10 3 s)

Figure E.45 Total Mass Of Active Aerosols For Case 4

Appendix E MELCOR Code Calculations 0

N 0

0 0

00 Ill

~

,,,---en

<ll u=

0

,..... ~

'0"'

""-J ~

0 E C.

w

<.D

.'2: ...

00 e=

~

I-

]=

0 u

=

0

"'q" I,=

r..;i f

=

ell

~

0 N

_J LL I

0::

a.

(/)

0 0 00 <.D "'q" N 0 00 <.D ,q- N 0 N ,..... ,..... ,..... ,..... ,..... 0 0 0 0 0 (s/6~1_m) 31V~ MOll 1'V~dS NUREG/CR-6144 E-56 Vol. 6, Part 2

~

~°'""d

~

N 425 400 Steam Dome

......... Core 375 Pressurizer 350 325

---.C 300 a...

,.,, 275 c:>

trl La..J 250 VI I

a:::

-...J =>

U') 225 U')

La..J a:::

a... 200

-6" 17 5 "d

~

i 15 0 ~-

0..

trl 125 ~

trl 10 0 t""'

n 0

75  :;:::,

z 0 5 10 15 20 25 30 35 n 0

e :;:::,

0..

~

trl TIME (10 3 s) n

~

~:;:::, c::

0\

I Figure E.47 RCS Pressure For Case S ,r...55'"

i

.j::.

.j::. "'

z t c::

.
:, 'tl

~

trJ  ::,

f?n ~-

0.

.
:, trJ I

°'.....

.i,..

.i,.. 2 .2 ~

trJ Core Vapor Temp R0 2 0 .........  :;.::,

U.P. Vapor Temp n 0

H.L. C Vapor Temp 0.

~

1 8 n::,,

-*-*-*- Pressurizer Vapor Temp i'i i::

............ 1 6 ....55"

~ o*

..,., IZl C) 1 4 LJ..J trJ

'Ji I

0:::::

, 1 2 00 1--

<t::

0:::::

LJ..J a... 1 0

i:

LJ..J 1--

0 8 0 6 I

\.l 0 4 0.2 0 5 10 15 20 25 30 35

~ TIME (10 3 s)

~°'

"O

.......::,, Figure E.48 RCS Temperature For Case 5 N

~

~°'

"'O II)

"1 N

1 5

~,.
x::: 1 4 Ring 1 .*.:r.,

I"")

  • I "*j Ring 2
  • I '

C>

...__.... 1 3  :. ".*,.* :...,***....,

Ring** 3

  • I

(/)

u..J 0:::

1 . 2 1--

<( "*::,..

0:::

u..J o_

1 1 -~.

"'.\

E u..J 1 0 **:,

1-- ...

\

z:

I

  • . \

m I C) 0. 9 I \

Vt 1-- I

'Cl <( \

0::::

1-- 0 8 \

u..J

z: \

u..J 0 7 I o_

I -6' "O

Cl I Cl>

<(

u..J 0 6 . I

s 0.

>d.

c I 0:::: 0.5 I m

L,.J 3: ~

C)

_J 0.4 m h

0 0 3  ;.::J z 0 5 10 15 2 0 25 30 35 Q C: 0.

.
:J Cl>

m TIME (10 s) 3 n Q II) ni::

n

.
:J

°'

I

~

~

Figure E.49 Lower Head Penetration Temperature For Case 5 -o*

s

z -6" e

,;:l "O

~

tr1 =

.Q ~-

Q.

n tr1

,;:l I

O'I 14 ~

t tr1

,. Cavity* h 12

., . 0

,;:l

., -*-*-*- Basement n

0 Q.

10 ,. ~

n

~

i::

8  ;-

---. 5*

E

=

Cll 6

(.I")

__J u.J tr1 > 4 I

O'I u.J

__J 0

Cl s 2 cs

__J 0

I I

-2

-4

-6 0 20 40 60 80 100 120

<: TIME (10 3 s)

~

~°'

"'t:l

~

"1 Figure E.SO Liquid Levels In Cavity And Basement For Case S N

4.50 4.25 Maximum radius

- *- *- *- Minimum altitude 4.00 3 .75 E

3. 50 3 25 V')
z:

C) 3. 00 vi

z: 2 .75 u.J trl I ~

0\

25 2 50 1--

> 2 25

<(

u 2 00 1 75 1 .50 1 .25 I

1 00 *-*-*

z 0 20 40 60 80 10 0 12 0 c:::

trl TIME (10 3 s)

~:,;:,

I 0\ Figure E.51 Cavity Concrete Erosion For Case 5 t

280 Contai ment dome 260

- *- *- *- Cavity 240 220 0

a...

I"")

200 C) tT1 LL.I 18 0 I

0\ e::::

N  :::::::>

(/')

(/')

LL.I 16 0 e::::

Cl... ti,~

14 0

. Jr 12 0 ,,.

I 10 0 80 --==

0 20 40 60 80 10 0 12 0 TIME (i0 3 s)

Figure E.52 Containment Pressure For Case 5

1 3 1 2 Contairfiment dome

- *- *- *- Cavity l 1 1 ** ******

  • Basem nt

,.,, 1 0 C)

(/)

0 9 La..J c:::

1-- 0 8

<(

c:::

LL.J 0.... 0 7

E LL.J 1--

c:::

0. 6 0

0....

<(

0 5 0 .4 0 3 0 2 z 0 20 40 60 80 10 0 12 0 C:

,:, TIME (10 3 s) t'r.1

~,:,

-t 0\

I Figure E.53 Containment Gas Temperah:re For Case 5

COR-DMH2-TOT 200 18 0 16 0 C')

..::,e, 140

z:

0 i== 120

<(

e:::::

l.J...I tr.I I

0\

z:

l.J...I 100

.j::. (!)

z:

l.J...I

(!)

80 C) e:::::

Cl

>- 60

=x:

40 20 Integrated H2 production in core 0

0 20 40 60 80 100 120 TIME (10 3 s)

Figure E.54 In-vessel Hydrogen Generation For Case 5

<0 s~,

'"d

~

"1 N

18 0

,, BASEMENT 16 0 I - - - - - DOME I

I CAVITY I

140 I -*-*-*- SG CUBICLE A I

- *- *- *- SG CUBICLE B I

I C'> 120 I - *- *- *- SG CUBICLE C

~ ,,._/,,1

            • *** PRESSURIZER CUBICLE

(/) ., ,.. " "

(/)

<C 100 /

ii: ,.*

tr.I 0\

Vt I :z:

Li..J 80

. ," .I

/- -- - -

(.!) I .I C) a:::: I I

., I c::) I  ;'

>- 60 I .I

c I I I I I

40 I I

., .I I I I

I 20 z

c::

0 0 20 40

-- 60 80 100 120

~

tr.I TIME (10 3 s)

~~

I 0\

.i::,.

Figure E.55 Hydrogen Distribution In Containment For Case S

.i::,.

~

~

~::0 13 I

0\

~ I

.j::,,.

.j::,,. 12 I BASEMENT I

~

C')

1 1 10 I

I I

I I

DOME CAVITY SG CUBICLE A

~

(/)

__J C) - * - *- *- SG CUBICLE B

~

(/) 9 11 C) - *- *- *- SG CUBICLE C 0::::: 11 L..i..J 11* * * * * * * * *

  • PRESSURIZER CUBICLE

<( 8 A,1 L..i..J

> 7 1,~1 - - - ENVIRONMENT 1---- ' II

(..)

I

<( 6 I m I LL- I 0\ I C) 0\

5 I

(/)

(/) r-

<(

. :::::::::E 4 ...J

__J

<( 3 I 1----

C) ./

1---- 2 .)

1 0

0 20 40 60 80 100 12 0 TIME (10 3 s)

~

~°'

'"ti

~

>1 Figure E.56 Total Mass Of Active Aerosols For Case 5

..+

N

~

~°'

"'C ii,

>-1 N 1~ 0 BASEMENT O'>

~

140 12 0 1 I"

I I

' I I

\\

I

- DOME CAVITY SG CUBICLE A I I e::: I \o*I ,- SG CUBICLE B C> 1 I )

CL I \ SG CUBICLE C

< I "1 ./

> 10 0 I i_ PRESSURIZER CUBICLE Li...J I J " \.._ __

> ENVIRONMENT 1-u t I "- - - - - -'--=---------------'

< 80 I I

I trlI LL.. I r

°'

......1 C> I I

(/')

(/') 60 I I

< I

!E I

__J I

< 40 I 1-- I C> I 1-- I I /

20 I /

I ,J I I

  • .:r.:.~~~~

0 0 20 40 60 80 100 12 0

~

~ TIME (10 3 s)

.Q n

7,:l I

°'

f-'

.i,.

Figure E.57 Total Mass Of Active Vapor For Case 5

.i,.

zC tI1

~:;;:,

I 650

°'....t s o*o Steam Dome

  • * * * * * * *
  • Core 550 Pressurizer 500

- C a...

450 400 tI1 I

0 LLJ c:::

350

°'

00 (/)

(/)

300 LLJ c:::

a...  : ............. : .................................... .

250 200 15 0 1 o*o 50 0 5 10 15 2 0 25 30 35 TIME (10 3 s)

~

~°'

""O Figure E.58 RCS Pressure For Case 6

~

N

2 .2 Core Vapor Temp

2. 0
  • * * * * * * *
  • U.P. aper Temp H.L. Vapor Temp 1 .8

-*-*-*- Pre urizer Vapor Temp

....-- 1 6

.i:::::

C)

....__ 1 .4 L..&.J 0:::

, 1 2 I--

-<(

0:::

L..&.J a... 1 0

E L..&.J I--

0 .8 0 6 0 4

0. 2 0 5 10 15 20 25 30 35 TIME (10 3 s)

Figure E.59 RCS Temperature For Case 6

z t c:: "Q

~ g Q

(j

~-

C.

c . tT:1 I

°'

lo-'

400 3:::

t

--... 390 R

0

~

__...  ::c

(/)

Q C.

LLJ e:::

380 ~

=>

I--

<(

e:::

LLJ 370 i E

a_ s*

E LLJ

=

I-- 360

z:

C) tT1 I-- 350

~

<(

e:::

I--

LLJ

z: 340 LLJ a_ ..

Cl

<(

330 LLJ

c e:::

LLJ 320 3:

C)

_J 3 10 300 0 5 10 15 20 25 30 35

~ TIME (10 3 s)

~°'

'ti .

~

l . Figure E.60 Lower Head Penetration Temperature For Case 6 N

N

- 1 . -5 0 75 ..

- 1 I

.I Cavity Basement

-2 .: 0 0 I

.I I

-2 25 I

.I E-2. 50 I

.I

..___2 75 I

(/)

__J Lu

>-3 Lu

.00

__J Cl...,. 3 25 CY

__J - 3 .50

-3 75

-4 *. 00

-4 25

-4. 50 zc:: . 0 20 40 60 80 100 12 0

~ TIME (10 3 s)

~:;ti I

0\ Figure E.61 Liquid Levels In Cavity And Basement For Case 6 I-"

t

~

ig tr.I Q.

Q s:1*

(""'.j tr.I

,::,I Cl\

~

4:50 a::

t tr.I 4.25 Maximum radius h

0 4.00 - *- *- *- Minimum altitude Q

~

3.75

........... 3.50 E

i

[

..__ 5*

3.25 =

rn

(/)

z::

C) 3.00

(/)

z::

tr.I LW 2.75 I

...J

i:

N 2S 2.50 1--

> 2.25

<(

u 2.00

1. 75
1. 50 1
  • 2 5 1 . 0 0 0 20 40 60 80 100 120

< TIME (10 3 s)

~

~°'

"ti

~

Figure E.62 Cavity Concrete Erosion For Case 6 N

0

~(j\

"'d

~

N 104 0 103 .5 Containment dome

  • - *- *- Cavity 10 3 . 0 10 2 5

..-..102 0 a

0..

,.,, 1 0 1 5 c::,

tI1 I

LL.J101 0:::

0

....J

\;.) =>

V>100

(/) 5 LL.J c::::

o.. 100 0 99 .5

99. 0

~-. - . - .- .- .- . -..-

98 5

98. 0 z

C 0 20 40 60 80 10 0 120

~

trl TIME (10 3 s)

~~

I (j\

Figure E.63 Containment Pressure For Case 6 t

340 0 337 5 Containment dome Cavity 335 0 Basement 332 5

~

__..3 3 0 0

(/')

LLJ327 a::: 5

~325 a:::

0 .

L,.J

~322 Lu I--

5 . .,..... _.--*-*-*-*-*--

I a:::320 0 i

~3 1 7 5

. I

<t: I

> I 3 15 . 0 I

I 3 12 5 I*

3 10 0 307 5 0 20 40 60 80 10 0 12 0 TIME (10 3 s)

Figure E.64 Containment Gas Temperature For Case 6

N COR-DMH2-TOT 55 50 45 en

...':::ii:

40

z:

C) 35 1--

<(

~

Lu 30 m  ::z:

I Lu

-..J Vt

~

25

z:

Lu

~

C) 20

~

Cl

r: 15

-6' "O

g C.

S<"

10 m 5

0 u 0 20 40 60 Integrated H2 production in core 80 10 0 120 TIME (10 3 s)

Figure E.6S In-vessel Hydrogen Generation For Case 6

z e:;.::I tr.1

.Q n

.
:I O'I I

35 0 t 32 5 BASEMENT 30 27 0

5 I

~, \ - - - - - - -i -- - -

- - - - - DOME CAVITY

- *- * - *- SG CUBICLE A 25 0 - *- * - *- SG CUBICLE 8

.....--... - *- *- *- SG CUBICLE C en

~

...__., 22 5

    • *** **** PRESSURIZER CUBICLE

(/)

(/) 20 0

<C

~

17 5 tr.1 I

z:

....J Lu O'I <..'.)

C) 15 0 0::::

Cl

>- 12 5

c 10 0 7 5 5 0 2

0 5

0 1

0 20 40 60 80 100 12 0

< TIME (10 3 s)

?-

~°'

""t:I

~ Figure E.66 Hydrogen Distribution In Containment For Case 6 N

~

JJ\

"O

~

N 5 0 I\.

... --------- BASEMENT 4 5 I ----- DOME f'

--.. CAVITY

~

0) 0 ::

C)

CL 4

3 0

5 SG CUBICLE A SG CUBICLE B SG CUBICLE C

-<(

> ......... PRESSURIZER CUBICLE 3 0 L,.J

> - - - ENVIRONMENT 1--

u

-<( 2 .5 tTl I

--:i L,_

--:i C)

(/')

2 0

(/')

-<(

~

1 5 >

"O

__J "O

(',

-<(  ::s 1-- 0.

C) 1 0 5<*

1-- tTl 0 5 - - - ~

tTl t""'

("')

0 0 0  :;.:,

z 0 20 40 60 80 10 0 120 ("')

0 c::: 0.

o (',

tTl TIME (10 3 s) ("')

~:;o

~

ni::

I Si O'\

~

Figure E.67 Total Mass Of Active Vapor For Case 6 o*

s

~ en

1 .0 0 9 I BASEMENT

..-- I

0) I DOME

~ I CAVITY I

0. 8 I C)

SG CUBICLE A II V ')

II SG CUBICLE B

__J 0

0 7 II V') I~ SG CUBICLE C 0 I I

~

0 .6 PRESSURIZER CUBICLE Lu

  • 1 I I

<C I I ENVIRONMENT Lu I I tTl > 0 *. 5 I

  • I I

.!.) i'.= :I I 00 (_)

<.:C I I I I L,_

0 4 I I 0 I I I I V') I V') 0 ,* 3 I

<.:C \--

E \

\

__J

<C 0 2 \

I- \

0 \

I- \

0 1 \

0 0 0 20 40 60 80 100 120 TIME (10 3 s)

Figure E.68 Total Mass Of Active Aerosols For Case 6

Appendix E MELCOR Code Calculations Table E-1 MELCOR 24-Node Compartment Description I Volume No.

I Name I Volume (m3) l 1 Environment 1.0ElO 5 Basement 1.52E4 10 Cavity 157.1 20 Steam Generator A Cubicle 1268.1 30 Steam Generator B Cubicle 1118.1 40 Steam Generator C Cubicle 1118.1 41 Pressurizer Cubicle 823.7 50 Upper Dome 29513.0 100 Downcomer 17.78 110 Lower Plenum 20.90 120 Core 14.56 130 Core Bypass 5.39 140 Upper Plenum 29.12 150 Upper Head 14.16 200 Hot Leg A 3.07 240 Cold Leg A 4.37 300 Hot Leg B 3.07 340 Cold Leg B 4.37 400 Hot Leg C 3.07 410 Pressurizer 37.84 440 Cold Leg C 4.37 450 Pressurizer Surge Tank 36.82 500 RHR 1.0E5 600 RWST 1465.5 Vol. 6, Part 2 E-79 NUREG/CR-6144

Appendix E MELCOR Code Calculations Table E-2 MELCOR 52 Inter-Compartment Flow Paths Description

  • *** NAME AND CONNECTION DATA ***
  • PATH FLNAME KCVFM KCVTO ZFM ZTO FL10300 'DCOMER TOP' 100 150 10.18307 10.18307 FL10500 'DCOMER BOT' 100 110 1. 74550 1.74550 FL10700 'NOZZLE LEAK' 100 140 8.08917 8.08917 FL11300 'BYPASS INLET' 110 130 3.06437 3.06437 FL11500 'CORE INLET' 110 120 3.06437 3.06437 FL12500 'CORE OUTLET A' 120 140 6. 72197 6.72197 FL13500 'BYPASS OUTLET' 130 140 6.72197 6.72197 FL15300 'CRD HOUSINGS A' 150 140 10.18307 B.0892 FL15500 'UPPER HEAD*LEAK' 150 4*50 12.02379 6.2 FL15600 'UH LEAK BURST' 150 so 12.02379 13.02379 FL16000 'UP PLEN BLEED' 140 150 10.18307 12.02379 FL16500 'DWNCMR BLEED' 100 150 10.18307 12.02379 FL17000 'CORE BLEED' 120 150 6.72197 12.02379 FL20100 'UP TO HL A' 140 200 8.0892 B.0892 FL20300 'HL A BLEED LINE' 200 150 8.4575 12.0 FL24200 'CL A TO VESSEL' 240 100 B.0892 8.0892 FL24400 'CL A BLEED LINE' 240 150 8.4386 12.0 FL30100 'UP TO HL B' 140 300 8.0892 B.0892 FL30300 'HL B BLEED' 300 150 8.4575 12.0 FL34200 'CL B TO VESSEL' 340 100 8.0892 8.0892 FL34400 'CL B BLEED' 340 150 8.4386 12.0 FL40100 'UP TO HL C' 140 400 B*.0892 8.0892 FL40300 'HL C BLEED' 400 150 8.4575 12.0 FL41100 'PZR TO HL C' 410 400 8.0892 B.0892 FL41200 ' PRIMARY PORV' 410 450 23.2600 6.2 FL41300 ' PRIMARY SRV' 410 41 23.2600 23.2600 FL44200 'CL C TO VESSEL' 440 100 B.0892 B.0892 FL44400 'CL C BLEED' 440 150 B.4386 12.0 FL45000 'SURGE TANK' 450 1 7.725 7. 7971 FL45100 'BURST DISC' 450 41 7.725 7.735 FLSOlOO 'UPPR PLEN TO RHR' 140 500 7. 7971 7. 7971 FLSllOO 'RHR TO DOWNCOMER' soo* 100 7. 7971 7. 7971 FLS2100 'RHR TO DOWNCOMER' 500 100 7.7971 7. 7971 FLS2200 'RHR TO ENVIRONS' 500 1 7. 7971 7. 7971 FL60100 'RWST - LOOP A CL' 600 240 12.57 8.0892 FL60200 'RWST - LOOP B CL' 600 340 12.57 8.0892 FL60300 **RWST 0 LOOP*C CL' 600 440 12.57 B.0892 FL61100 'RWST - ENVIRON' 600 1 26.44 36.44 FLOOlOO 'DOMB-ENVIRONS' 050 001 19.08 19.08 FL00500 'BASEMENT-DOME' 005 050 19 .OB 19.08 FLOllOO 'CAVITY-BASEMENT' 010 005 -0.14 -0.14 FL01200 'CAVITY-DOME' 010 050 7.21 7.21 FL02100 'SGA-BASEMENT' 020 005 10.0 *10 .o FL02200 'SGA-DOME' 020 050 19 .OB 19.08 FL03100 'SGB-BASEMENT' 030 005 10.0 10.0 FL03200 'SGA-DOME' 030 050 19 .OB 19.08 FL04100 'SGC-BASEMENT' 040 005 10 .*o 10.0 FL04200 'SGA-DOME' 040 050 19.08 19.08 FL04300 'PRESS-BASEMENT' 041 005 9.02 9.02 FL04400 'PRBSS-SGC' 041 040 14.4 14.4 FL04500 'PRESS-SGB' 041 030 17.9 17.9 FL04600 'PRESS-DOME' 041 050 19 .OB 19.08 NUREG/CR-6144 E-80 Vol. 6, Part 2

Appendix E MELCOR Code Calculations

  • Sequence No.

Table E-3 Summary of Accident Sequences Analyzed by MELCOR Decay Heat (MW)

Containment ECCS Vessel Failure 1 13.2 Closed None Yes 2 7.0 Closed None Yes 3 5.0 Closed None Yes 4 13.2 Leak* None Yes 5 13.2 Leak Spray after VB Yes

  • Leak area = 1.0 ft2, Leak location = dome

Table E-4 Sequence of Events Sequence Core Gap Release Core Support Plate Failure Vessel Bre1,1ch No. Uncovery* (s) (s)

(s)

Ring 1 Ring 2 Ring3 Ring 1 Ring 2 Ring 3 Ring 1 Ring 2 Ring3 1 5280 5598 6142 7504 12900 13018 13941 12949 13358 14129 2 10210 13769 14330 15734 22978 23153 25330 23030 23458 24905 3 14220 19803 20506 22276 31495 31588 31724 31550 31860 32056 4 5470 5424 5922 7285 11971 12215 12479 12016 12479 13362 tTl I

00 N 5 5470 5424 5922 7285 11971 12215 12479 12016 12479 13362

  • Defined as Dry-out of Upper Plenum

~

~°'

"'l:l

~

N Table E-5 Distribution of Radioactive Species at 24 Hours Case Total Releases (Kg) Containment (Kg) Environment (Kg)

Number cs I All Species cs I All Species cs I All Species 1 138.2 9.14 493.4 121.1 9.12 462.2 0.0 0.0 0.0 2 138.9 8.47 445.0 126.3 8.45 427.9 0.0 0.0 0.0 3 138.9 8.47 449.6 124.7 8.45 430.2 0.0 0.0 0.0 4 138.9 8.48 491.1 95.0 1.09 204.9 28.6 7.39 261.0 5* 138.8 8.53 457.4 122.4 4.20 287.0 0.65 4.3 143.7

~

00 w

  • Results at 73515 s.

t "O

(1) 5.

~-

m

~

(")

0

d Q

~

.Q 0.

(1)

(")

~

(") g_

~ ;_

°'

I-' 0 t ~

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER (2-89) (A11lgned by NRC, Add Vol., Supp,, Rev.,

NRCM 1102, end Addendum Numbers, If env.l 3201, 3202 BIBLIOGRAPHIC DATA SHEET NUREG/CR-6144 (See instructions on the reverse)

BNL-NUREG-52399 TLE AND SUBTITLE Vol. 6, Part 2 Evaluation of Potential Severe Accidents During Low Power and Shutdown Operations at Surry, Unit 1: Evaluation of Severe 3. DATE REPORT PUBLISHED Accident Risk During Mid-Loop Operations MONTH YEAR May 1995 Appendices 4. FIN OR GRANT NUMBER L1680

5. AUTHOR(S) 6. TYPE OF REPORT J. Jo, C.C. Lin, L. Neymotin, V. Mubayi
7. PERIOD COVERED (Inclusive Dates/

B. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address; if contractor, provide name and mailing address,.)

Brookhaven National Laboratory Upton, NY 11973-5000

9. SPONSOR I NG ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above": if contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address.}

Division of Systems Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission ashington, DC 20555-0001 UPPLEMENTARY NOTES 11 . ABSTRACT (200 words or less)

This document contains the accident progression analysis of internally initiated events for Surry, Unit 1 as it operates in mid-loop operation during drained maintenance or a refueling outage. The report documents the methodology used during the analysis, describes the results from the application of the methodology, and compares the results with the results from a full power analysis performed on Surry as a part of the Nureg~1150 study.

12. KEY WORDS/DESCR:PTORS (List words or phrases that will assist researchers in locating the report.} 13. I.VAILABILITY STATEMENT reactor accidents-evaluations, reactor operation-risk assessment, unlimited Surry, Unit 1, after-heat removal, failure mode analysis, heat 14. SECURITY CLASSIFICATION transfer, maintenance, outages~ probabilistic estimation, (This Page) eactor core disruption, reactor start-up, reactor shutdown, unclassified stems analysis (This Report) unclassified
15. NUMBER OF PAGES
16. PRICE NRC FORM 335 12-89)

Printed on recycled paper

  • Federal Recycling Program

UNITED STATES -CLASS RATE NUCL EGULATORY COMMISSION POSTAG. EES PAID TON, D.C. 20555-0001

. G-67 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, $300 120555139531 1 lAN US NRC-OADM DIV FOIA & PUBLICATIONS SVCS TPS-PDR-NUREG 2WFl\l-6E7 WASHINGTON DC 20555