ML18010A833: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 34: Line 34:
RPM: Volts: 10 1700 460 AC Manufacturer:
RPM: Volts: 10 1700 460 AC Manufacturer:
Valve Size&Type: Valve Pressure Class: Mean Contact Seat Diameter: Stem Configuration:
Valve Size&Type: Valve Pressure Class: Mean Contact Seat Diameter: Stem Configuration:
Stroke Length: Velan 2-inch, globe 1500 psig 1.875 1.125D-1/3P-2/3L 1.5 inches 1-Walkdown Data"Motor-Operated-Valve Data Form" 2-NED Design Guide I.11 (Reference 2.1)3-Limitorque Order Sheet (Reference 2.17)4-Emdrac Print (Reference 2.7)~~~3.1.1 Cross-reference Number s The Ebasco (construction identification) tag number for this valve is 2CS-V757SA-1.
Stroke Length: Velan 2-inch, globe 1500 psig 1.875 1.125D-1/3P-2/3L
 
===1.5 inches===
1-Walkdown Data"Motor-Operated-Valve Data Form" 2-NED Design Guide I.11 (Reference 2.1)3-Limitorque Order Sheet (Reference 2.17)4-Emdrac Print (Reference 2.7)~~~3.1.1 Cross-reference Number s The Ebasco (construction identification) tag number for this valve is 2CS-V757SA-1.
The Westinghouse Identification Number and Location are 2TM78FNM and 8489A respectively.
The Westinghouse Identification Number and Location are 2TM78FNM and 8489A respectively.
3.2 Valve Function and Control Confi ration 3.2.1 Valve Function The alternate mini-flow line is for dead head protection of the CSIP's during safety injection (specifically the injection phase of the SIS operation).
 
===3.2 Valve===
Function and Control Confi ration 3.2.1 Valve Function The alternate mini-flow line is for dead head protection of the CSIP's during safety injection (specifically the injection phase of the SIS operation).
Valves 1CS-746 and 1CS-752 are designed to open automatically upon high RCS pressure (2300 psig)coincident with an"S" signal and will automatically close at the reset pressure of 1750 psig (Reference 2.18).These valves are located in parallel on the two alternate mini-flow lines which relieve to the RWST.I 1C8-746 Page No: 5 Prepared By: Checked By: Calo.IDs*CS-0021 Revision: 2 3.2.2 Control Confi ration The following statements are derived from references 2.4, 2.5 and 2~18~This MOV automatically opens upon high RCS pressure (2300 psig)coincident with an"S" signal and will close at the reset pressure of 1750 psig.Under normal conditions this MOV can only open if valves 1RH-25, 1RH-63 and either 1CS-165, 1CS-166 or 1CS-745 are closed.This MOV trips out via the torque switch in the closing direction and is electrically de-energized by the open limit switch, in the opening direction.
Valves 1CS-746 and 1CS-752 are designed to open automatically upon high RCS pressure (2300 psig)coincident with an"S" signal and will automatically close at the reset pressure of 1750 psig (Reference 2.18).These valves are located in parallel on the two alternate mini-flow lines which relieve to the RWST.I 1C8-746 Page No: 5 Prepared By: Checked By: Calo.IDs*CS-0021 Revision: 2 3.2.2 Control Confi ration The following statements are derived from references 2.4, 2.5 and 2~18~This MOV automatically opens upon high RCS pressure (2300 psig)coincident with an"S" signal and will close at the reset pressure of 1750 psig.Under normal conditions this MOV can only open if valves 1RH-25, 1RH-63 and either 1CS-165, 1CS-166 or 1CS-745 are closed.This MOV trips out via the torque switch in the closing direction and is electrically de-energized by the open limit switch, in the opening direction.
The open torque switch and thermal overloads are automatically bypassed on loss of offsite power or a safety injection actuation.
The open torque switch and thermal overloads are automatically bypassed on loss of offsite power or a safety injection actuation.
1)The minimum torque delivered by the actuator motor is assumed to be 5.9 ft-lbs per reference 2.3.2)The maximum torque delivered by the actuator motor is assumed to be 11.3 ft-lbs per reference 2.3.3)The Stem Factor for a coefficient of friction of 0.15 is 0.0156 and a coefficient of friction of 0.2 is 0.0179 (reference 2.1).4)The flow limiting component in the alternate mini-flow line is the fixed orifice.The flow capacity of this orifice is 60 gpm nominally (reference 2.18).5)The maximum operating temperature and design temperature for line number 2CS2-785SN-1 is 130 F and 200 F respectively (reference 2.12).6)Piping frictional losses are ignored when calculating differential pressure at the valve.7)The 0.433 psig/ft conversion factor used in this calculation is based on water at 60 F (reference 2.10).XCS-746 Page No: 6 Prepared By: Checked By: Calc.ID:*CS>>0021 Revision: 2 4'CALCULATIONS 4.1 Generic Letter 89-10 A licabilit Valve 1CS-746 is located in the CSIP alternate mini-flow line and is designed to open automatically upon high RCS pressure coincident with an"S" signal and automatically close at the reset pressure (Reference 2.18).The alternate mini-flow line is for dead head protection of the CSIP's during safety injection (specifically the injection phase of the SIS operation).
1)The minimum torque delivered by the actuator motor is assumed to be 5.9 ft-lbs per reference 2.3.2)The maximum torque delivered by the actuator motor is assumed to be 11.3 ft-lbs per reference 2.3.3)The Stem Factor for a coefficient of friction of 0.15 is 0.0156 and a coefficient of friction of 0.2 is 0.0179 (reference 2.1).4)The flow limiting component in the alternate mini-flow line is the fixed orifice.The flow capacity of this orifice is 60 gpm nominally (reference 2.18).5)The maximum operating temperature and design temperature for line number 2CS2-785SN-1 is 130 F and 200 F respectively (reference 2.12).6)Piping frictional losses are ignored when calculating differential pressure at the valve.7)The 0.433 psig/ft conversion factor used in this calculation is based on water at 60 F (reference 2.10).XCS-746 Page No: 6 Prepared By: Checked By: Calc.ID:*CS>>0021 Revision: 2 4'CALCULATIONS
 
===4.1 Generic===
Letter 89-10 A licabilit Valve 1CS-746 is located in the CSIP alternate mini-flow line and is designed to open automatically upon high RCS pressure coincident with an"S" signal and automatically close at the reset pressure (Reference 2.18).The alternate mini-flow line is for dead head protection of the CSIP's during safety injection (specifically the injection phase of the SIS operation).
Based on the preceding paragraph and the guidance provided in reference 2.2, the requirements of Generic Letter 89-10 are a licable to this MOV.4.2 Desi n Differential Pressure Evaluation 4~2~1 S stem Inlet Pressure Upstream.pressure will be assumed to be equal to the shutoff head of the CSIPs plus the static head of the RWST at its maximum level.CSIP shutoff head: 6200 feet (ref.2.7)*0.433 psig/foot=2,684 psig Static Head: RWST Maximum Level=301 ft.(ref.2.15)Valve Elevation=249 ft.(ref.2.16)(301 ft.-249 ft.)*0.433 psig/ft 23 s'pstream Pressure is equal to: 2,707 psig 4.2.2 Differential Pressure The maximum differential pressure (dP)occurs when maximizing the upstream and minimizing the downstream pressure.To maximize dP, it is assumed that the downstream pressure is 0 psig.Therefore, the maximum differential pressure is 2,707 psid.1CS-746 Page No: 7 Prepared By: Checked By: Calo.ID:*CS-0021 Revision: 2 4.2.2 Differential Pressure Continued I Note: The subject MOV is a pressure under the seat globe valve.The most conservative opening differential pressure assumption is to assume 0 psid since any line pressure would assist the valve in opening.For this reason opening upstream pressure and differential pressure are not calculated.
Based on the preceding paragraph and the guidance provided in reference 2.2, the requirements of Generic Letter 89-10 are a licable to this MOV.4.2 Desi n Differential Pressure Evaluation 4~2~1 S stem Inlet Pressure Upstream.pressure will be assumed to be equal to the shutoff head of the CSIPs plus the static head of the RWST at its maximum level.CSIP shutoff head: 6200 feet (ref.2.7)*0.433 psig/foot=2,684 psig Static Head: RWST Maximum Level=301 ft.(ref.2.15)Valve Elevation=249 ft.(ref.2.16)(301 ft.-249 ft.)*0.433 psig/ft 23 s'pstream Pressure is equal to: 2,707 psig 4.2.2 Differential Pressure The maximum differential pressure (dP)occurs when maximizing the upstream and minimizing the downstream pressure.To maximize dP, it is assumed that the downstream pressure is 0 psig.Therefore, the maximum differential pressure is 2,707 psid.1CS-746 Page No: 7 Prepared By: Checked By: Calo.ID:*CS-0021 Revision: 2 4.2.2 Differential Pressure Continued I Note: The subject MOV is a pressure under the seat globe valve.The most conservative opening differential pressure assumption is to assume 0 psid since any line pressure would assist the valve in opening.For this reason opening upstream pressure and differential pressure are not calculated.
4.3 Valve Thrust 4.3.1 Valve Thrust Re ired at Maximum dP The maximum thrust requirements for the operation of this pressure under the seat globe valve may be determined by the following equations, which are provided by reference 2.1.CLOSING THRUST=(dp*A*FV)+SBL+[SA*(P-dP))
 
===4.3 Valve===
Thrust 4.3.1 Valve Thrust Re ired at Maximum dP The maximum thrust requirements for the operation of this pressure under the seat globe valve may be determined by the following equations, which are provided by reference 2.1.CLOSING THRUST=(dp*A*FV)+SBL+[SA*(P-dP))
OPENING THRUST=SBL-(dP*A)-[SA*(P-dP))
OPENING THRUST=SBL-(dP*A)-[SA*(P-dP))
where: THRUST=The required stem thrust, in pounds-force.
where: THRUST=The required stem thrust, in pounds-force.
Line 56: Line 66:
Thus, MINIMUM CLOSING DIAGNOSTIC THRUST=REQUIRED THRUST*1.15 8,848*1.15 10,175 pounds 1CS-746 Page No: 10
Thus, MINIMUM CLOSING DIAGNOSTIC THRUST=REQUIRED THRUST*1.15 8,848*1.15 10,175 pounds 1CS-746 Page No: 10
* Prepared By: Checked By: Calc.ID:*CS-0021 Revisian: 2 4''Minimum Allowed Dia astic Thrust Continued MINIMUM OPENING DIAGNOSTIC THRUST=REQUIRED THRUST*1.20 1,500*1.20 1,800 pounds 4.i Recommended Minimum Tor e Switch Settin s The input torque (actuator torque)required to produce the thrust values calculated in section 4.3, may be calculated using the following equation (reference 2.1).ACTUATOR TORQUE=THRUST*STEM FACTOR Based on the stem factors given in section 3.3, Assumption 3, the actuator torque for the normal opening and closing conditions may be calculated as follows: MINIMUM CLOSING TORQUE=10,175*0.0179=182 ft-lbs MINIMUM OPENING TORQUE=1,800*0.0179 32 ft-lbs i.5 Motor Ca acit Limits The available motor torque at degraded-voltage conditions limits the available actuator torque.If a torque switch is set above the minimum available torque, there is a possibility of stalling the motor before the torque switch can actuate.In order to prevent this situation, the maximum torque switch setting value shall not exceed the minimum available torque provided by the motor at degraded-voltage conditions.
* Prepared By: Checked By: Calc.ID:*CS-0021 Revisian: 2 4''Minimum Allowed Dia astic Thrust Continued MINIMUM OPENING DIAGNOSTIC THRUST=REQUIRED THRUST*1.20 1,500*1.20 1,800 pounds 4.i Recommended Minimum Tor e Switch Settin s The input torque (actuator torque)required to produce the thrust values calculated in section 4.3, may be calculated using the following equation (reference 2.1).ACTUATOR TORQUE=THRUST*STEM FACTOR Based on the stem factors given in section 3.3, Assumption 3, the actuator torque for the normal opening and closing conditions may be calculated as follows: MINIMUM CLOSING TORQUE=10,175*0.0179=182 ft-lbs MINIMUM OPENING TORQUE=1,800*0.0179 32 ft-lbs i.5 Motor Ca acit Limits The available motor torque at degraded-voltage conditions limits the available actuator torque.If a torque switch is set above the minimum available torque, there is a possibility of stalling the motor before the torque switch can actuate.In order to prevent this situation, the maximum torque switch setting value shall not exceed the minimum available torque provided by the motor at degraded-voltage conditions.
1CS-746 Page No: 11 Prepared By: Checked By: Calc.ZD:*CS-0021 Revision: 2 4.5.1 Closin Actuator Tor e as Limited b Motor Ca acit According to reference 2.1, the closing actuator torque that will be developed by the minimum available motor torque (reference 2.3)is calculated as follows.ACTUATOR TORQUE=MOTOR TORQUE*UNIT RATIO*RUNNING EFF.*0.9 5.9*82.0*0.50*0.9 218 foot-pounds 4.5.2 0 enin Actuator Tor e as Limited b Motor Ca ac t According to reference 2.1, the opening actuator torque that will be developed by the minimum available motor torque (reference 2.3)is calculated by: ACTUATOR TORQUE=MOTOR TORQUE*UNIT RATIO*PULLOUT EFF.*APPLICATION FACTOR 5.9*82.0*0.4*0.9 174 foot-pounds 4.6 Allowable 0 eratin Ran es 4.6.1 Maximum Thrust and Tor e Limits Thrust Limits The allowable thrust limits of the actuator and valve are shown below.The limiting components in the opening and closing directions define the maximum allowable continuous thrust setting.COMPONENT ACTUATOR VALVE CLOSING VALVE OPENING LIMIT POUNDS*12 600**12 989**12,989 SOURCE REF.2.1 Attachment B Attachment B This limit is 904 of the Limitorque qualified continuous rating.These limits represent 904 of the Velan continuous duty ratings as provided in attachment B.1CS-746 Page No: 12 Prepared By: Checked By: Calc.XD:*CS-0021 Revision: 2 4.6.1 Maximum Thrust and Tar e Limits Cantinued Tar e Limits The allowable torque limits of the actuator and valve are shown below.The limiting component defines the maximum allowable continuous torque setting.COMPONENT MOTOR CLOSING MOTOR OPENING ACTUATOR SPRINGSET PACK LIMIT FOOT-POUNDS 218 174*225 250 SOURCE SECTION 4.4 SECTION 4.4 REF.2.1 REF.2.11*This limit is 904 of the Limitorque qualified continuous rating.4.6.2 E ivalent Varmshaft Tar e From reference 2.1, the wormshaft torque that must be applied to achieve a required output torque may be calculated by: WORMSHAFT TORQUE=RE UIRED OU PUT TOR U WS RATIO*WS EFFICIENCY 4.6.2.1 Clasin Warmshaft Tar e The equivalent wormshaft torque is provided for the purpose of verifying the closed torque switch setting with a torque wrench.MINIMUM WORMSHAFT TORQUE MAXIMUM WORMSHAFT TORQUE 182 45*0.36 135 INCH-POUNDS 2 8 45*0.36 162 INCH-POUNDS 11.23 FOOT-POUNDS 13.46 FOOT-POUNDS 1CS-746 Page No>13  
1CS-746 Page No: 11 Prepared By: Checked By: Calc.ZD:*CS-0021 Revision: 2 4.5.1 Closin Actuator Tor e as Limited b Motor Ca acit According to reference 2.1, the closing actuator torque that will be developed by the minimum available motor torque (reference 2.3)is calculated as follows.ACTUATOR TORQUE=MOTOR TORQUE*UNIT RATIO*RUNNING EFF.*0.9 5.9*82.0*0.50*0.9 218 foot-pounds 4.5.2 0 enin Actuator Tor e as Limited b Motor Ca ac t According to reference 2.1, the opening actuator torque that will be developed by the minimum available motor torque (reference 2.3)is calculated by: ACTUATOR TORQUE=MOTOR TORQUE*UNIT RATIO*PULLOUT EFF.*APPLICATION FACTOR 5.9*82.0*0.4*0.9 174 foot-pounds
 
===4.6 Allowable===
0 eratin Ran es 4.6.1 Maximum Thrust and Tor e Limits Thrust Limits The allowable thrust limits of the actuator and valve are shown below.The limiting components in the opening and closing directions define the maximum allowable continuous thrust setting.COMPONENT ACTUATOR VALVE CLOSING VALVE OPENING LIMIT POUNDS*12 600**12 989**12,989 SOURCE REF.2.1 Attachment B Attachment B This limit is 904 of the Limitorque qualified continuous rating.These limits represent 904 of the Velan continuous duty ratings as provided in attachment B.1CS-746 Page No: 12 Prepared By: Checked By: Calc.XD:*CS-0021 Revision: 2 4.6.1 Maximum Thrust and Tar e Limits Cantinued Tar e Limits The allowable torque limits of the actuator and valve are shown below.The limiting component defines the maximum allowable continuous torque setting.COMPONENT MOTOR CLOSING MOTOR OPENING ACTUATOR SPRINGSET PACK LIMIT FOOT-POUNDS 218 174*225 250 SOURCE SECTION 4.4 SECTION 4.4 REF.2.1 REF.2.11*This limit is 904 of the Limitorque qualified continuous rating.4.6.2 E ivalent Varmshaft Tar e From reference 2.1, the wormshaft torque that must be applied to achieve a required output torque may be calculated by: WORMSHAFT TORQUE=RE UIRED OU PUT TOR U WS RATIO*WS EFFICIENCY 4.6.2.1 Clasin Warmshaft Tar e The equivalent wormshaft torque is provided for the purpose of verifying the closed torque switch setting with a torque wrench.MINIMUM WORMSHAFT TORQUE MAXIMUM WORMSHAFT TORQUE 182 45*0.36 135 INCH-POUNDS 2 8 45*0.36 162 INCH-POUNDS 11.23 FOOT-POUNDS 13.46 FOOT-POUNDS 1CS-746 Page No>13  


Prepared By: Checked By: Calc.ZD:~CS-0021 Revision: 2 4.6.2.2 0 enin Wormshaft Tor e For this valve the recommended minimum opening torque setting is 32 foot-pounds, and the maximum allowable open torque setting is 174 foot-pounds.
Prepared By: Checked By: Calc.ZD:~CS-0021 Revision: 2 4.6.2.2 0 enin Wormshaft Tor e For this valve the recommended minimum opening torque setting is 32 foot-pounds, and the maximum allowable open torque setting is 174 foot-pounds.
Line 62: Line 75:
According to reference 2.1, the stall torque of the operator may be calculated by: ACTUATOR STALL TORQUE MAXIMUM MOTOR TORQUE*UNIT RATIO*STALL EFFICIENCY 11.3*82.0*.50=463 FOOT-POUNDS The corresponding stall thrust may be calculated as follows (reference 2.1): Note: The stem factorfor a coefficient of friction of 0.15 is used for conservatism (see section 3.3).STEM FACTOR~63'=29,679 POUNDS 0 0156 The one-time limits of the valve and actuator are as follows: COMPONENT ACTUATOR TORQUE ACTUATOR THRUST VALVE CLOS ING VALVE OPENING LIMIT 500 FOOT-POUNDS 35 000 POUNDS 35 616 POUNDS 35,616 POUNDS SOURCE REF.2.1 REF.2.1 ATTACHMENT B ATTACHMENT B 1CS-746 Page No: 14 Prepared By: Checked By: Calc.ZD:*CS<<0021 Revision: 2 4.7 Stall Bvaluation Continued The calculated stall forces for this Motor Operated Valve (MOV)indicate that the potential does not exist for damage to the actuator and valve power train and load-bearing components.
According to reference 2.1, the stall torque of the operator may be calculated by: ACTUATOR STALL TORQUE MAXIMUM MOTOR TORQUE*UNIT RATIO*STALL EFFICIENCY 11.3*82.0*.50=463 FOOT-POUNDS The corresponding stall thrust may be calculated as follows (reference 2.1): Note: The stem factorfor a coefficient of friction of 0.15 is used for conservatism (see section 3.3).STEM FACTOR~63'=29,679 POUNDS 0 0156 The one-time limits of the valve and actuator are as follows: COMPONENT ACTUATOR TORQUE ACTUATOR THRUST VALVE CLOS ING VALVE OPENING LIMIT 500 FOOT-POUNDS 35 000 POUNDS 35 616 POUNDS 35,616 POUNDS SOURCE REF.2.1 REF.2.1 ATTACHMENT B ATTACHMENT B 1CS-746 Page No: 14 Prepared By: Checked By: Calc.ZD:*CS<<0021 Revision: 2 4.7 Stall Bvaluation Continued The calculated stall forces for this Motor Operated Valve (MOV)indicate that the potential does not exist for damage to the actuator and valve power train and load-bearing components.
4.8 Re ired Limit Switch Settin s As shown in reference 2.4, the actuator is equipped with a four train limit switch assembly, arranged in the following manner: 4.8.1 Bases of Limit Switch Set oint Re irements~Rotor 1 Rotor gl acts as the open limit switch, in order to stop the motor after the valve has traveled to the full open position.It provides position indication (it turns off the green indicator lamps when the valve is full open).In addition, rotor N1 provides a bypass around the closing torque switch as the valve starts closed.The practice at SHNPP has been to set the open limit switches to actuate when the disc is at 96%of full open position unless otherwise specified on the control wiring diagram (reference 2.5).Operating experience has shown that this setting provides for proper flow rate, however, RF03 testing of a sister valve identified that the valve stem was coasting into the backseat.Thus, a setpoint of 96%may not be adequate and therefore, a setpoint of 90%is recommended (see Attachment A for justification).
4.8 Re ired Limit Switch Settin s As shown in reference 2.4, the actuator is equipped with a four train limit switch assembly, arranged in the following manner: 4.8.1 Bases of Limit Switch Set oint Re irements~Rotor 1 Rotor gl acts as the open limit switch, in order to stop the motor after the valve has traveled to the full open position.It provides position indication (it turns off the green indicator lamps when the valve is full open).In addition, rotor N1 provides a bypass around the closing torque switch as the valve starts closed.The practice at SHNPP has been to set the open limit switches to actuate when the disc is at 96%of full open position unless otherwise specified on the control wiring diagram (reference 2.5).Operating experience has shown that this setting provides for proper flow rate, however, RF03 testing of a sister valve identified that the valve stem was coasting into the backseat.Thus, a setpoint of 96%may not be adequate and therefore, a setpoint of 90%is recommended (see Attachment A for justification).
Rotor 2 When the valve is given a signal to close, the motor runs in the closing direction until the torque switch is actuated, which stops the motor.Rotor 42 is wired to provide a bypass around the open torque switch until the valve is unwedged.In addition, rotor g2 provides valve position indication (it turns off the red indicator lamps when the valve is fully closed).1CS-746 Page No: 15 Prepared By: Checked By: Calc.ID:*CS-0021 Revision: 2 4.8.1 Bases of Limit 8witch Set oint Re irements Cont.In order to assure proper position indication in the close direction, the close limit switch should be adjusted to indicate a closed condition only after the disc has covered the valve seat.The practice at SHNPP has been to set the close limit switches to actuate when the disc is at the 4%position unless otherwise specified on the control wiring diagram (reference 2.5).Operating experience indicates that 4%from fully closed is adequate to meet the setpoint requirements for rotor N2.Thus, 4%is an acceptable setting, and can be retained.Rotor 3 Rotor 43 is not used.Rotor 4 Rotor 44 provides position indication to the main termination board.It also provides a permissive which allows valve 1RH-25 to open provided valve 1CS-746 is closed and other conditions are met.order to assure proper position indication in the close direction, the close limit switch should be adjusted to indicate a closed condition only after the disc has covered the valve seat.The practice at SHNPP has been to set the close limit switches to actuate when the disc is at the 4%position unless otherwise specified on the control wiring diagram (reference 2.5).Operating experience indicates that 4%from fully closed is adequate to meet the setpoint requirements for rotor N4.Thus, 4%is an acceptable setting, and can be retained.4.8.2 Limit Switch Settin Re irements Limit Switch Rotor Settin s In this case, the various limit switch rotors are required to be set as follows: ROTOR 01: ROTOR 42: ROTOR$3 ROTOR 44: 90%of full open 4%of full open NA 4%of full open 1CS-746 Page No: 16 Prepared By: Checked By-Calc.ZD:*CS-0021 Revision: 2 4.8~2 Limit Switch Settin Re irements Continued The preferred method for setting limit switches is to determine the number of handwheel turns needed for a full stroke, and then to set the switches at the required percentages based upon that.The total number of handwheel turns needed to stroke the valve may be determined if the stroke length, thread lead, and handwheel ratio are all known.The total handwheel(HW) turns to fully stroke the valve is calculated as follows: TURNS~=VALVE STROKE/THREAD LEAD*HANDWHEEL RATIO 1.5 inches/.667 inches*4.38 9.85 handwheel turns 44 of 9.85 handwheel turns is equal to 3/8 handwheel turn.104 of 9.85 handwheel turns is equal to 1 handwheel turn.4.9 Nominal 0 eratin Time motor RPMs can va with a lied load.With the information provided in section 3.1, the stem nut revolutions per valve stroke and the stem nut revolutions per minute can be determined as follows:/*=EGZK-LEAD STROKE'ominal o eratin time is rovided for i o atio o as actual 1.5 0.667 2.25 STEM NUT REVOLUTIONS/MINUTE MOTOR RP OVERALL UNIT RATIO 1700 82.0 20'3 1CS-746 Page No: 17 Prepared By: Checked Byt Calc.ZD:*CS-0021 Revision: 2 i.9 Nominal 0 eratin Time Continued With these calculated values the nominal expected operating time of this valve can be calculated using the following equation: STROKE TIME=STEM NU OLUTI S VALVE STRO STEM NUT REVOLUTIONS/MINUTE 2.25 20'3 0'1 MINUTES/VALVE STROKE 6.5 SECONDS/VALVE STROKE This valve has no specific stroke time requirements other than the generic 10 second maximum stroke time required by reference 2.13.1CS-746 Page No: 18 Prepared By: Checked By: Calc.ID!*CS-0021 Revision: 2 5'RESULTS CONCLUSIONS AND RECOMMENDATIONS 5.1 Results and Conclusions 1)The actuator torque switch and limit switch ranges shall be established as shown in table 5.1.TABLE 5 e 1 BASIC DATA AND SETO RE UZREMENTS CLOSING THRUST RANGE (POUNDS)MINIMUM MAXIMUM OPENING THRUST RANGE (POUNDS)MINIMUM MAXIMUM 10 175 12 600 1 800 12 600 RECOMMENDED CLOSE TORQUE SWITCH SETTINGS MINIMUM~MAXIMUM RECOMMENDED OPEN TORQUE SWITCH SETTINGS MINIMUM MAXIMUM 182 FT-LBS 218 FT-LBS 32 FT-LBS 174 FT-LBS EQUIVALENT CLOSE WORMSHAFT TORQUE MINIMUM MAXIMUM EQUIVALENT OPEN TORQUE SWITCH DIAL SETTING MINIMUM MAXIMUM 135 IN-LBS ROTOR&#xb9;1 90%1 HW TURN FROM FULL OPEN 162 IN-LBS LIMIT SWITCH SETTINGS ROTOR&#xb9;2 ROTOR&#xb9;3 N/A 3/8 HW TURN FROM FULL CLOSED ROTOR&#xb9;4 4%3/8 HW TURN FROM FULL CLOSED 5.2 Recommendations It is recommended that this valve be retested at maximum achievable differential pressure and flow upon completion of PCR-6547.The test results will be evaluated to confirm the setup ranges established in this calculation are acceptable.
Rotor 2 When the valve is given a signal to close, the motor runs in the closing direction until the torque switch is actuated, which stops the motor.Rotor 42 is wired to provide a bypass around the open torque switch until the valve is unwedged.In addition, rotor g2 provides valve position indication (it turns off the red indicator lamps when the valve is fully closed).1CS-746 Page No: 15 Prepared By: Checked By: Calc.ID:*CS-0021 Revision: 2 4.8.1 Bases of Limit 8witch Set oint Re irements Cont.In order to assure proper position indication in the close direction, the close limit switch should be adjusted to indicate a closed condition only after the disc has covered the valve seat.The practice at SHNPP has been to set the close limit switches to actuate when the disc is at the 4%position unless otherwise specified on the control wiring diagram (reference 2.5).Operating experience indicates that 4%from fully closed is adequate to meet the setpoint requirements for rotor N2.Thus, 4%is an acceptable setting, and can be retained.Rotor 3 Rotor 43 is not used.Rotor 4 Rotor 44 provides position indication to the main termination board.It also provides a permissive which allows valve 1RH-25 to open provided valve 1CS-746 is closed and other conditions are met.order to assure proper position indication in the close direction, the close limit switch should be adjusted to indicate a closed condition only after the disc has covered the valve seat.The practice at SHNPP has been to set the close limit switches to actuate when the disc is at the 4%position unless otherwise specified on the control wiring diagram (reference 2.5).Operating experience indicates that 4%from fully closed is adequate to meet the setpoint requirements for rotor N4.Thus, 4%is an acceptable setting, and can be retained.4.8.2 Limit Switch Settin Re irements Limit Switch Rotor Settin s In this case, the various limit switch rotors are required to be set as follows: ROTOR 01: ROTOR 42: ROTOR$3 ROTOR 44: 90%of full open 4%of full open NA 4%of full open 1CS-746 Page No: 16 Prepared By: Checked By-Calc.ZD:*CS-0021 Revision: 2 4.8~2 Limit Switch Settin Re irements Continued The preferred method for setting limit switches is to determine the number of handwheel turns needed for a full stroke, and then to set the switches at the required percentages based upon that.The total number of handwheel turns needed to stroke the valve may be determined if the stroke length, thread lead, and handwheel ratio are all known.The total handwheel(HW) turns to fully stroke the valve is calculated as follows: TURNS~=VALVE STROKE/THREAD LEAD*HANDWHEEL RATIO 1.5 inches/.667 inches*4.38 9.85 handwheel turns 44 of 9.85 handwheel turns is equal to 3/8 handwheel turn.104 of 9.85 handwheel turns is equal to 1 handwheel turn.4.9 Nominal 0 eratin Time motor RPMs can va with a lied load.With the information provided in section 3.1, the stem nut revolutions per valve stroke and the stem nut revolutions per minute can be determined as follows:/*=EGZK-LEAD STROKE'ominal o eratin time is rovided for i o atio o as actual 1.5 0.667 2.25 STEM NUT REVOLUTIONS/MINUTE MOTOR RP OVERALL UNIT RATIO 1700 82.0 20'3 1CS-746 Page No: 17 Prepared By: Checked Byt Calc.ZD:*CS-0021 Revision: 2 i.9 Nominal 0 eratin Time Continued With these calculated values the nominal expected operating time of this valve can be calculated using the following equation: STROKE TIME=STEM NU OLUTI S VALVE STRO STEM NUT REVOLUTIONS/MINUTE 2.25 20'3 0'1 MINUTES/VALVE STROKE 6.5 SECONDS/VALVE STROKE This valve has no specific stroke time requirements other than the generic 10 second maximum stroke time required by reference 2.13.1CS-746 Page No: 18 Prepared By: Checked By: Calc.ID!*CS-0021 Revision: 2 5'RESULTS CONCLUSIONS AND RECOMMENDATIONS
 
===5.1 Results===
and Conclusions 1)The actuator torque switch and limit switch ranges shall be established as shown in table 5.1.TABLE 5 e 1 BASIC DATA AND SETO RE UZREMENTS CLOSING THRUST RANGE (POUNDS)MINIMUM MAXIMUM OPENING THRUST RANGE (POUNDS)MINIMUM MAXIMUM 10 175 12 600 1 800 12 600 RECOMMENDED CLOSE TORQUE SWITCH SETTINGS MINIMUM~MAXIMUM RECOMMENDED OPEN TORQUE SWITCH SETTINGS MINIMUM MAXIMUM 182 FT-LBS 218 FT-LBS 32 FT-LBS 174 FT-LBS EQUIVALENT CLOSE WORMSHAFT TORQUE MINIMUM MAXIMUM EQUIVALENT OPEN TORQUE SWITCH DIAL SETTING MINIMUM MAXIMUM 135 IN-LBS ROTOR&#xb9;1 90%1 HW TURN FROM FULL OPEN 162 IN-LBS LIMIT SWITCH SETTINGS ROTOR&#xb9;2 ROTOR&#xb9;3 N/A 3/8 HW TURN FROM FULL CLOSED ROTOR&#xb9;4 4%3/8 HW TURN FROM FULL CLOSED 5.2 Recommendations It is recommended that this valve be retested at maximum achievable differential pressure and flow upon completion of PCR-6547.The test results will be evaluated to confirm the setup ranges established in this calculation are acceptable.
1CS-746 Page No: 19 TELE CON BETWEEN: MECHANICAL ENGINEER CAROLINA POWER&LIGHT AND: MR.MANAGER OF ENGINEERING VELAN INC.Attachment A Calc.No.CS~1 Revision 2 Valve No.1CS-746 Page 1 of 1 DATE: JANUARY 6, 1992 TIME: 2:35PM  
1CS-746 Page No: 19 TELE CON BETWEEN: MECHANICAL ENGINEER CAROLINA POWER&LIGHT AND: MR.MANAGER OF ENGINEERING VELAN INC.Attachment A Calc.No.CS~1 Revision 2 Valve No.1CS-746 Page 1 of 1 DATE: JANUARY 6, 1992 TIME: 2:35PM  



Revision as of 10:11, 18 October 2018

Rev 2 to Calculation CS-0021, Mechanical Analysis & Calculations for 1CS-746 Charging Pump a to Refueling Water Storage Tank Isolation Valve. Info Applicable to GL 89-10
ML18010A833
Person / Time
Site: Harris Duke Energy icon.png
Issue date: 10/09/1992
From:
CAROLINA POWER & LIGHT CO.
To:
Shared Package
ML18010A832 List:
References
CS-0021, CS-0021-R02, CS-21, CS-21-R2, GL-89-10, NUDOCS 9210280060
Download: ML18010A833 (194)


Text

8210280060 ggg009 PDR'ADQCK 05000400 P PDR Carolina Power&Light Company PO Box 1551 Raleigh, North Carolina 27602 Shearon Harris Nuclear Power Plant Unit 1 Mechanical Analysis and Calculations for 1CS-746 Charging Pump A to Refueling Water Storage Tank Isolation Valve%II ISA MIIIIL"Il IJ.IlGeneric Letter 89-10 Applicable:~Yes No Valve Classification:

Nuclear-Safety Related Calculation Number*CS-0021 Revision Reason Reason Prepared By/Date Verified By/Date Project Engineer/Date Signatures on file Signatures on file incorporation of Electrical Calculation E5-001, Revision 1 10/I/92 Incorporation of PC%.6562, Raviaion I Prin.or Res.Eng./Date Reason Prepared By: Checked By: Calc.ID!*CS-0021 Revision: 2 pacae 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 List of Effective Pa es prevision Attachment Attachment Attachment Attachment Attachment Attachment

Attachment:

A B C D E F G Telecon w/Velan Inc.Fax from of Velan Flow Isolation/Seating Thrust Average Closing Packing Load Final Thrust Due to Inertia Thrust at Torque Switch Trip Design Verification Record 1CS-746 Page No: 1 Prepared By: Checked By: Calc.ID!*CS-0021 Revision: 2 TABLE OF CONTENTS Section Descri tion Pacae 1~0 2.0 3.0 4.0 3.1 3'3'Purpose References Bases and Assumptions Analyzed Configuration Valve Function and Control Configuration Assumptions Calculations 4.1 4.2 4.3 Generic Letter 89-10 Applicability Design Differential Pressure Evaluation 7 Valve Thrust 4~4 Recommended Minimum Torque Switch Setting 11 4.5 4.6 Motor Capacity Limits Allowable Operating Ranges 12 4.7.Stall Evaluation 14 5.0 4.8 4.9 Required Limit Switch Settings Nominal Operating Time Results, Conclusions and Recommendations 15 17 19 Attachment A Attachment B Attachment C Attachment D Attachment E Attachment F Attachment G Telecon w/Velan Inc.Fax from of Velan Flow Isolation/Seating Thrust Average Closing Packing Load Final Thrust Due to Inertia Thrust at Torque Switch Trip Design Verification Record 1 page 3 pages 1 page 1 page 1 page 1 page 2 pages 1CS-746 Page No: 2 Prepared By: Checked By: Calc.ID:*CS-0021 Revision: 2 1~0 PURPOSE 1.1 Pu ose of this Re ort The purpose of this report is to document various parameters pertaining to the subject motor-operated valve.This report: reviews the design differential pressure against which the valve may have to operate calculates the MOV thrust/torque requirements evaluates the limitations of the actuator, motor, and valve (evaluation includes effects of a motor stall)evaluates the actuator limit switch settings 1.2 Reason for Revision PCR-6547, Revision 1, removed the Alternate Mini-flow Relief Valves and installed restricting orifices upstream of motor-operated valves 1CS-746 and 1CS-752.The control logic for these motor-operated valve will be modified such that they will automatically open upon high RCS pressure (2300 psig)coincident with an"S" signal and will automatically close at the reset pressure of 1750 psig.The reason for this revision, is to incorporate the changes made by PCR-6547, Revision 1.2'RERERENCES 2.1 NED Design Guide DG-I.11,"Q-List Motor-Operated Valve Mechanical Evaluations", Revision 4.2'NED Scope Document{}9-M0-002, Revision 2.2.3"Analysis of Overload Protection and Motor Torque Output for AC Motor Operated Valves" E5-001, Sub-Calculation CPL-MOV-051, Revision 2.2.4 Control Wiring Diagram CAR 2166-B-401 Sheet 317, Revision 5.2.5 2.6 Corrective Maintenance Procedure CM-I0002, Revision 4.Valve Vendor Print-1364-53850, Revision 1.Technical Manual ISP, Volume 2, Revision 18.1CS-746 Page No: 3 Prepared By: Checked By: Calc.IDs*CS-0021 Revision: 2

2.0 REFERENCES

Continued 2.8 2.9 2.10 2~11 2.12 2.13 2~14 2.15a.zs 2~17 2.18 Chemical&Volume Control Piping, Reactor Auxiliary Building, Plans, CAR-2165-G-140, Revision 23.Chemical and Volume Control System Description, SD-107, Revision 2.Crane Technical Paper No.410, Nineteenth Printing-1980.Technical Memorandum"Performance and Properties of Limitorque Components", Number TM-G-XXXX-001, Rev.0.Piping Line List, CAR-1364-B-0070, Revision 44.Westinghouse E-Spec.No.G-678852, Revision 2.Design Basis Document DBD-104, Revision 0.RAB Tank Area Sections, CAR-2165-G-251, Revision 18.Piping Isometric 1-CS-651, Revision 5.Limitorque Order Sheet 3D0652-D PCR-6547, Revision 1,"Alternate Mini-Flow Re-Design" 3'BASES AND ASSUMPTIONS 3.1 Anal zed Confi ration The configuration assumed when performing this analysis is as follows: Actuator Dat Limitorque Order Number: Actuator Size&Type: Overall Unit Ratio: Handwheel Ratio: Handwheel Efficiency:

Worm Set/Gear Ratio: Worm Set Efficiency:

Applications Factor: Installed Spring Pack: Pullout Efficiency:

Run Efficiency:

Stall Efficiency:

3D0652-D SMB-00 1 82~0:1 4~3P:1'5%45:p 36%0.9 60-600-0047-1 40%50%50%1CS-746 Page No: 4 Prepared By: Checked By: Calc.ID:*C8-0021 Revision: 2 3.1 Anal sed Confi ration Continued Motor Data Foot-Pounds:

RPM: Volts: 10 1700 460 AC Manufacturer:

Valve Size&Type: Valve Pressure Class: Mean Contact Seat Diameter: Stem Configuration:

Stroke Length: Velan 2-inch, globe 1500 psig 1.875 1.125D-1/3P-2/3L

1.5 inches

1-Walkdown Data"Motor-Operated-Valve Data Form" 2-NED Design Guide I.11 (Reference 2.1)3-Limitorque Order Sheet (Reference 2.17)4-Emdrac Print (Reference 2.7)~~~3.1.1 Cross-reference Number s The Ebasco (construction identification) tag number for this valve is 2CS-V757SA-1.

The Westinghouse Identification Number and Location are 2TM78FNM and 8489A respectively.

3.2 Valve

Function and Control Confi ration 3.2.1 Valve Function The alternate mini-flow line is for dead head protection of the CSIP's during safety injection (specifically the injection phase of the SIS operation).

Valves 1CS-746 and 1CS-752 are designed to open automatically upon high RCS pressure (2300 psig)coincident with an"S" signal and will automatically close at the reset pressure of 1750 psig (Reference 2.18).These valves are located in parallel on the two alternate mini-flow lines which relieve to the RWST.I 1C8-746 Page No: 5 Prepared By: Checked By: Calo.IDs*CS-0021 Revision: 2 3.2.2 Control Confi ration The following statements are derived from references 2.4, 2.5 and 2~18~This MOV automatically opens upon high RCS pressure (2300 psig)coincident with an"S" signal and will close at the reset pressure of 1750 psig.Under normal conditions this MOV can only open if valves 1RH-25, 1RH-63 and either 1CS-165, 1CS-166 or 1CS-745 are closed.This MOV trips out via the torque switch in the closing direction and is electrically de-energized by the open limit switch, in the opening direction.

The open torque switch and thermal overloads are automatically bypassed on loss of offsite power or a safety injection actuation.

1)The minimum torque delivered by the actuator motor is assumed to be 5.9 ft-lbs per reference 2.3.2)The maximum torque delivered by the actuator motor is assumed to be 11.3 ft-lbs per reference 2.3.3)The Stem Factor for a coefficient of friction of 0.15 is 0.0156 and a coefficient of friction of 0.2 is 0.0179 (reference 2.1).4)The flow limiting component in the alternate mini-flow line is the fixed orifice.The flow capacity of this orifice is 60 gpm nominally (reference 2.18).5)The maximum operating temperature and design temperature for line number 2CS2-785SN-1 is 130 F and 200 F respectively (reference 2.12).6)Piping frictional losses are ignored when calculating differential pressure at the valve.7)The 0.433 psig/ft conversion factor used in this calculation is based on water at 60 F (reference 2.10).XCS-746 Page No: 6 Prepared By: Checked By: Calc.ID:*CS>>0021 Revision: 2 4'CALCULATIONS

4.1 Generic

Letter 89-10 A licabilit Valve 1CS-746 is located in the CSIP alternate mini-flow line and is designed to open automatically upon high RCS pressure coincident with an"S" signal and automatically close at the reset pressure (Reference 2.18).The alternate mini-flow line is for dead head protection of the CSIP's during safety injection (specifically the injection phase of the SIS operation).

Based on the preceding paragraph and the guidance provided in reference 2.2, the requirements of Generic Letter 89-10 are a licable to this MOV.4.2 Desi n Differential Pressure Evaluation 4~2~1 S stem Inlet Pressure Upstream.pressure will be assumed to be equal to the shutoff head of the CSIPs plus the static head of the RWST at its maximum level.CSIP shutoff head: 6200 feet (ref.2.7)*0.433 psig/foot=2,684 psig Static Head: RWST Maximum Level=301 ft.(ref.2.15)Valve Elevation=249 ft.(ref.2.16)(301 ft.-249 ft.)*0.433 psig/ft 23 s'pstream Pressure is equal to: 2,707 psig 4.2.2 Differential Pressure The maximum differential pressure (dP)occurs when maximizing the upstream and minimizing the downstream pressure.To maximize dP, it is assumed that the downstream pressure is 0 psig.Therefore, the maximum differential pressure is 2,707 psid.1CS-746 Page No: 7 Prepared By: Checked By: Calo.ID:*CS-0021 Revision: 2 4.2.2 Differential Pressure Continued I Note: The subject MOV is a pressure under the seat globe valve.The most conservative opening differential pressure assumption is to assume 0 psid since any line pressure would assist the valve in opening.For this reason opening upstream pressure and differential pressure are not calculated.

4.3 Valve

Thrust 4.3.1 Valve Thrust Re ired at Maximum dP The maximum thrust requirements for the operation of this pressure under the seat globe valve may be determined by the following equations, which are provided by reference 2.1.CLOSING THRUST=(dp*A*FV)+SBL+[SA*(P-dP))

OPENING THRUST=SBL-(dP*A)-[SA*(P-dP))

where: THRUST=The required stem thrust, in pounds-force.

The differential pressure across the valve.The seat area of the valve, which is 2.76 square inches based on contact seat diameter (Section 3 1)An empirical valve factor, which is 1.1 per reference 2.1.SBL The stuffing box load, or packing drag, expressed in pounds-force.

This is 1500 pounds per reference 2.1.SA The area of the stem, in square inches.For the stem diameter given in section 3.1, this area is 0.99 square inches.The inlet system pressure.1CS-746 Page No: 8 Prepared By: Checked By: Calo.ZD!*CS-0021 Revision: 2 4.3.1 Valve Thrust Re ired at Maximum dP cont.From the information given above, the closing thrust may be calculated.

CLOSING THRUST (2 i 707*2~76*1~1)+1 i 500+[0~99*(2 i 707 2 i 707]8i218+li500+0=9,718 pounds The value of 9,718 pounds includes a conservatism of approximately 10%due to the assumed valve factor of 1.1, and an additional conservatism of approximately 500 to 1,000 pounds due to the assumed packing load of 1,500 pounds (see attachment D).In addition, normal CP&L practice is to multiply the calculated closing thrust by 1.15 in order to account for possible VOTES measurement errors and torque switch repeatability.

Thus, the theoretical calculated closing thrust is 11,176 pounds.NOTE: Liberty Technologies issued a 10CFR21 notification on 10/2/92 which documents potential thrust measurement inaccuracies due to torsional effects on small stems.A review of the design of 1CS-746 has confirmed that the anti-rotation device is located in the yoke flange, above that portion of the stem where the VOTES calibrator was installed.

Thus, the subject 10CFR21 notification does not apply to this valve.The calculated minimum allowable closing thrust of 11,176 pounds is within the thrust capabilities and ratings of the valve and actuator, which are 14,432 and 14,000 pounds, respectively.

However, there is a concern that inertial effects may cause the final thrust to exceed the continuous ratings of the actuator and valve.A review of differential pressure test data for 1CS-752 (a sister valve), which was tested at approximately 2,730 psid, indicates that thrust at torque switch trip was 11,131 pounds (attachment F).Final seating thrust due to inertia was 13,432 pounds (attachment E), which represents a thrust increase of 21%.Since the assumed VOTES measurement error is+10%, the actual final thrust may exceed the continuous thrust ratings of the actuator and valve.Thus, it is desireable, if possible, to adjust the torque switch to trip at a lower value of thrust.1CS-746 Page No: 9 Prepared By!Checked By!Calo.ID:*CS-0021 Revision: 2 4.3.1 Valve Thrust Re ired at Maximum dP cont.Test data for 1CS-752 indicates that flow isolation was achieved at 7,804 pounds (attachment C)of thrust at an indicated test dP of 2730 psid.This test was performed with a spool piece installed in lieu of the relief valve.The proposed configuration of multiple orifices installed upstream of the MOVs will reduce upstream pressure at the valve, thereby making the results of this previous test conservative.

The average closing packing load during the RF03 test of 1CS-752 was 456 pounds (attachment D).This packing load is included in the 7,804 pounds of thrust at flow isolation; therefore, the thrust required to overcome differential pressure is equal to 7,348 pounds.In order to allow for variations in packing, a packing load of 1500 pounds will be assumed.From the information given above, the expected closing thrust may be calculated.

CLOSING THRUST=7,348+1,500+[0.99*(2,707-2,707]

7i348+li500+0=8,848 pounds A differential pressure and line pressure of zero is assumed to provide for the most conservative opening thrust.OPENING THRUST=1,500-(0*2.76)-I'0.99*(0-0)]

1,500-0-0=1,500 pounds i.3.2 Minimum Allowed Dia ostic Th st The minimum allowable closing/opening thrust at torque switch trip shall be 1.15 times the calculated required thrust when actuator torque is>50 foot-pounds and 1.20 when actuator torque is (50 foot-pounds, in order to account for possible measurement errors and torque switch repeatability.

Thus, MINIMUM CLOSING DIAGNOSTIC THRUST=REQUIRED THRUST*1.15 8,848*1.15 10,175 pounds 1CS-746 Page No: 10

  • Prepared By: Checked By: Calc.ID:*CS-0021 Revisian: 2 4Minimum Allowed Dia astic Thrust Continued MINIMUM OPENING DIAGNOSTIC THRUST=REQUIRED THRUST*1.20 1,500*1.20 1,800 pounds 4.i Recommended Minimum Tor e Switch Settin s The input torque (actuator torque)required to produce the thrust values calculated in section 4.3, may be calculated using the following equation (reference 2.1).ACTUATOR TORQUE=THRUST*STEM FACTOR Based on the stem factors given in section 3.3, Assumption 3, the actuator torque for the normal opening and closing conditions may be calculated as follows: MINIMUM CLOSING TORQUE=10,175*0.0179=182 ft-lbs MINIMUM OPENING TORQUE=1,800*0.0179 32 ft-lbs i.5 Motor Ca acit Limits The available motor torque at degraded-voltage conditions limits the available actuator torque.If a torque switch is set above the minimum available torque, there is a possibility of stalling the motor before the torque switch can actuate.In order to prevent this situation, the maximum torque switch setting value shall not exceed the minimum available torque provided by the motor at degraded-voltage conditions.

1CS-746 Page No: 11 Prepared By: Checked By: Calc.ZD:*CS-0021 Revision: 2 4.5.1 Closin Actuator Tor e as Limited b Motor Ca acit According to reference 2.1, the closing actuator torque that will be developed by the minimum available motor torque (reference 2.3)is calculated as follows.ACTUATOR TORQUE=MOTOR TORQUE*UNIT RATIO*RUNNING EFF.*0.9 5.9*82.0*0.50*0.9 218 foot-pounds 4.5.2 0 enin Actuator Tor e as Limited b Motor Ca ac t According to reference 2.1, the opening actuator torque that will be developed by the minimum available motor torque (reference 2.3)is calculated by: ACTUATOR TORQUE=MOTOR TORQUE*UNIT RATIO*PULLOUT EFF.*APPLICATION FACTOR 5.9*82.0*0.4*0.9 174 foot-pounds

4.6 Allowable

0 eratin Ran es 4.6.1 Maximum Thrust and Tor e Limits Thrust Limits The allowable thrust limits of the actuator and valve are shown below.The limiting components in the opening and closing directions define the maximum allowable continuous thrust setting.COMPONENT ACTUATOR VALVE CLOSING VALVE OPENING LIMIT POUNDS*12 600**12 989**12,989 SOURCE REF.2.1 Attachment B Attachment B This limit is 904 of the Limitorque qualified continuous rating.These limits represent 904 of the Velan continuous duty ratings as provided in attachment B.1CS-746 Page No: 12 Prepared By: Checked By: Calc.XD:*CS-0021 Revision: 2 4.6.1 Maximum Thrust and Tar e Limits Cantinued Tar e Limits The allowable torque limits of the actuator and valve are shown below.The limiting component defines the maximum allowable continuous torque setting.COMPONENT MOTOR CLOSING MOTOR OPENING ACTUATOR SPRINGSET PACK LIMIT FOOT-POUNDS 218 174*225 250 SOURCE SECTION 4.4 SECTION 4.4 REF.2.1 REF.2.11*This limit is 904 of the Limitorque qualified continuous rating.4.6.2 E ivalent Varmshaft Tar e From reference 2.1, the wormshaft torque that must be applied to achieve a required output torque may be calculated by: WORMSHAFT TORQUE=RE UIRED OU PUT TOR U WS RATIO*WS EFFICIENCY 4.6.2.1 Clasin Warmshaft Tar e The equivalent wormshaft torque is provided for the purpose of verifying the closed torque switch setting with a torque wrench.MINIMUM WORMSHAFT TORQUE MAXIMUM WORMSHAFT TORQUE 182 45*0.36 135 INCH-POUNDS 2 8 45*0.36 162 INCH-POUNDS 11.23 FOOT-POUNDS 13.46 FOOT-POUNDS 1CS-746 Page No>13

Prepared By: Checked By: Calc.ZD:~CS-0021 Revision: 2 4.6.2.2 0 enin Wormshaft Tor e For this valve the recommended minimum opening torque setting is 32 foot-pounds, and the maximum allowable open torque setting is 174 foot-pounds.

However, it is not practical to set the opening torque switch with a torque wrench because this would cause the stem to be forced against the backseat.Therefore, the open torque switch shall be adjusted to a setting of"1" (Reference 2~11).4.7 Stall Evaluation According to electrical analysis (reference 2.3)performed for this valve, the maximum available motor torque at the most favorable conditions is 11.3 foot-pounds.

According to reference 2.1, the stall torque of the operator may be calculated by: ACTUATOR STALL TORQUE MAXIMUM MOTOR TORQUE*UNIT RATIO*STALL EFFICIENCY 11.3*82.0*.50=463 FOOT-POUNDS The corresponding stall thrust may be calculated as follows (reference 2.1): Note: The stem factorfor a coefficient of friction of 0.15 is used for conservatism (see section 3.3).STEM FACTOR~63'=29,679 POUNDS 0 0156 The one-time limits of the valve and actuator are as follows: COMPONENT ACTUATOR TORQUE ACTUATOR THRUST VALVE CLOS ING VALVE OPENING LIMIT 500 FOOT-POUNDS 35 000 POUNDS 35 616 POUNDS 35,616 POUNDS SOURCE REF.2.1 REF.2.1 ATTACHMENT B ATTACHMENT B 1CS-746 Page No: 14 Prepared By: Checked By: Calc.ZD:*CS<<0021 Revision: 2 4.7 Stall Bvaluation Continued The calculated stall forces for this Motor Operated Valve (MOV)indicate that the potential does not exist for damage to the actuator and valve power train and load-bearing components.

4.8 Re ired Limit Switch Settin s As shown in reference 2.4, the actuator is equipped with a four train limit switch assembly, arranged in the following manner: 4.8.1 Bases of Limit Switch Set oint Re irements~Rotor 1 Rotor gl acts as the open limit switch, in order to stop the motor after the valve has traveled to the full open position.It provides position indication (it turns off the green indicator lamps when the valve is full open).In addition, rotor N1 provides a bypass around the closing torque switch as the valve starts closed.The practice at SHNPP has been to set the open limit switches to actuate when the disc is at 96%of full open position unless otherwise specified on the control wiring diagram (reference 2.5).Operating experience has shown that this setting provides for proper flow rate, however, RF03 testing of a sister valve identified that the valve stem was coasting into the backseat.Thus, a setpoint of 96%may not be adequate and therefore, a setpoint of 90%is recommended (see Attachment A for justification).

Rotor 2 When the valve is given a signal to close, the motor runs in the closing direction until the torque switch is actuated, which stops the motor.Rotor 42 is wired to provide a bypass around the open torque switch until the valve is unwedged.In addition, rotor g2 provides valve position indication (it turns off the red indicator lamps when the valve is fully closed).1CS-746 Page No: 15 Prepared By: Checked By: Calc.ID:*CS-0021 Revision: 2 4.8.1 Bases of Limit 8witch Set oint Re irements Cont.In order to assure proper position indication in the close direction, the close limit switch should be adjusted to indicate a closed condition only after the disc has covered the valve seat.The practice at SHNPP has been to set the close limit switches to actuate when the disc is at the 4%position unless otherwise specified on the control wiring diagram (reference 2.5).Operating experience indicates that 4%from fully closed is adequate to meet the setpoint requirements for rotor N2.Thus, 4%is an acceptable setting, and can be retained.Rotor 3 Rotor 43 is not used.Rotor 4 Rotor 44 provides position indication to the main termination board.It also provides a permissive which allows valve 1RH-25 to open provided valve 1CS-746 is closed and other conditions are met.order to assure proper position indication in the close direction, the close limit switch should be adjusted to indicate a closed condition only after the disc has covered the valve seat.The practice at SHNPP has been to set the close limit switches to actuate when the disc is at the 4%position unless otherwise specified on the control wiring diagram (reference 2.5).Operating experience indicates that 4%from fully closed is adequate to meet the setpoint requirements for rotor N4.Thus, 4%is an acceptable setting, and can be retained.4.8.2 Limit Switch Settin Re irements Limit Switch Rotor Settin s In this case, the various limit switch rotors are required to be set as follows: ROTOR 01: ROTOR 42: ROTOR$3 ROTOR 44: 90%of full open 4%of full open NA 4%of full open 1CS-746 Page No: 16 Prepared By: Checked By-Calc.ZD:*CS-0021 Revision: 2 4.8~2 Limit Switch Settin Re irements Continued The preferred method for setting limit switches is to determine the number of handwheel turns needed for a full stroke, and then to set the switches at the required percentages based upon that.The total number of handwheel turns needed to stroke the valve may be determined if the stroke length, thread lead, and handwheel ratio are all known.The total handwheel(HW) turns to fully stroke the valve is calculated as follows: TURNS~=VALVE STROKE/THREAD LEAD*HANDWHEEL RATIO 1.5 inches/.667 inches*4.38 9.85 handwheel turns 44 of 9.85 handwheel turns is equal to 3/8 handwheel turn.104 of 9.85 handwheel turns is equal to 1 handwheel turn.4.9 Nominal 0 eratin Time motor RPMs can va with a lied load.With the information provided in section 3.1, the stem nut revolutions per valve stroke and the stem nut revolutions per minute can be determined as follows:/*=EGZK-LEAD STROKE'ominal o eratin time is rovided for i o atio o as actual 1.5 0.667 2.25 STEM NUT REVOLUTIONS/MINUTE MOTOR RP OVERALL UNIT RATIO 1700 82.0 20'3 1CS-746 Page No: 17 Prepared By: Checked Byt Calc.ZD:*CS-0021 Revision: 2 i.9 Nominal 0 eratin Time Continued With these calculated values the nominal expected operating time of this valve can be calculated using the following equation: STROKE TIME=STEM NU OLUTI S VALVE STRO STEM NUT REVOLUTIONS/MINUTE 2.25 20'3 0'1 MINUTES/VALVE STROKE 6.5 SECONDS/VALVE STROKE This valve has no specific stroke time requirements other than the generic 10 second maximum stroke time required by reference 2.13.1CS-746 Page No: 18 Prepared By: Checked By: Calc.ID!*CS-0021 Revision: 2 5'RESULTS CONCLUSIONS AND RECOMMENDATIONS

5.1 Results

and Conclusions 1)The actuator torque switch and limit switch ranges shall be established as shown in table 5.1.TABLE 5 e 1 BASIC DATA AND SETO RE UZREMENTS CLOSING THRUST RANGE (POUNDS)MINIMUM MAXIMUM OPENING THRUST RANGE (POUNDS)MINIMUM MAXIMUM 10 175 12 600 1 800 12 600 RECOMMENDED CLOSE TORQUE SWITCH SETTINGS MINIMUM~MAXIMUM RECOMMENDED OPEN TORQUE SWITCH SETTINGS MINIMUM MAXIMUM 182 FT-LBS 218 FT-LBS 32 FT-LBS 174 FT-LBS EQUIVALENT CLOSE WORMSHAFT TORQUE MINIMUM MAXIMUM EQUIVALENT OPEN TORQUE SWITCH DIAL SETTING MINIMUM MAXIMUM 135 IN-LBS ROTOR¹1 90%1 HW TURN FROM FULL OPEN 162 IN-LBS LIMIT SWITCH SETTINGS ROTOR¹2 ROTOR¹3 N/A 3/8 HW TURN FROM FULL CLOSED ROTOR¹4 4%3/8 HW TURN FROM FULL CLOSED 5.2 Recommendations It is recommended that this valve be retested at maximum achievable differential pressure and flow upon completion of PCR-6547.The test results will be evaluated to confirm the setup ranges established in this calculation are acceptable.

1CS-746 Page No: 19 TELE CON BETWEEN: MECHANICAL ENGINEER CAROLINA POWER&LIGHT AND: MR.MANAGER OF ENGINEERING VELAN INC.Attachment A Calc.No.CS~1 Revision 2 Valve No.1CS-746 Page 1 of 1 DATE: JANUARY 6, 1992 TIME: 2:35PM

SUBJECT:

2n AND SMALLER VELAN GLOBE VALVES MR.STATED THAT 90\OF FULL OPEN STROKE WOULD ALLOW FULL DESIGN FLOW.

Attachment B Calc.No.'CS4)021 Revision 2 Valve No.1CS-746 Page I of 3 YIA FAX Number of pages including this page: Q Please reply by FAX to: Q Head Office and Plant No, 1 (514)748-8635 Q Marketing (514)748-7592 Q Plant No.2 (514)341-3032 Q Spare Parts (514)342-2311 Q Plant No.3 (802)862-4014 Q Plant No.4 (514)378-6865 Message No.:<'a~8 Oate;8 9Q From: To: Attention:

Copies to: Subject/

Reference:

/~am nyk~W uaduaa.~+.

~.45.0'F...,.......

~~yga~imrm GLOBE VALVE-2 in STEM ANALYSIS Attachment B Calc.No.*CS4021 Revision 2 Valve No.1CS-746 Page 2 of 3 UTILITY: CAROLZNA POWER AND LIGHT W.I~D.4: 2TM78FNM VALVE DWG: E73-62S STEM DWG.7913-22 Order no.P9-Design Temp.Pressure Class 125 deg F 1500 lb STEM THRD.1 1/8-3 ACME double lead STEM MAT.SS 630 A 564 sa=45950 Psi Code Case N-62-4 STEM DATA dl d2 0 917 in-0.425 in.0.396 in.0.792 in.root.dia of thread dim.at.sec.d2 dim.at sec.k rad.d/2 0.016 ft.lb./lb thread.fact:or a3 0.492 in."2 0.660 in.2 1.224 in."2 0.039 in 4 0 in.0 in.0.019 in."4 root area of thread area of sec.d2 area at d2 in shear polar moment of iner-t'.a ov: scam thread eff.length of stem torcpze arm radius Moment of Inertia Er2'd TT'E2 2>E t TS 2d SLHd 3HUdS NU'Hah 9tST 26r$8 lDO GLOBE VALVE-2 in STEM ANALYSZS Attachment B Calc.No.'CS-0021 Revision 2 Valve No.1CS-746 Page 3 of 3 UTZLZTY: CAROXZNA POWER AND LIGHT Order no.P9-W.I'D.2TM78FNM VALVE DWG: E73-62S STEM DWG 7913-22 Design Temp.Pressure Class 125 deg F 1500 lb STEM THRD.1 1/8-3 ACME double lead STEM MAT.SS 630 A 564 Sy~, 113396 Psi Code Case N-62-4 STEM CALCULATION At Section d1 Max Tr At Section d2 14432 lbs.f rom Eq.(19)Max Tr At Section k 30347 lbs.from Eq.(20)Max Tr 33756 lbs.from Eq.(21)MAX Thrust/Torque CLOSZNG OPENING Tr./lbs.Tor./lb-ft Tr./lbs.Tor./lb-xt CONTINUOUS DUTY ONE TIME 14432 35616 224 14432 554 35616 224 554 ErE'd 7 TK2 2IE ITS 2d SJ.Hd 3HUdS NU l3h Z1: ST 26 w 88 J.DO AITACHMENT C<<CS4021, Rev.2 Page 1 of 1 Test: 4 3/23/3i 22'49'i VOTES 8ENSOR 5000 Tag: iCS-752-ioooo oIce=-7SM (Ihs)-isooo.20000 52997 53997 5%997 55997 55897 57997 SWITCH A SWITCH B SWITCH C SWITCH D 52997 53997 Tin: im Seconds 55.397 5%997 55997 55997 57997 1CS-752: Flow Isolation/Seating Thrust2730 PSID ATI'ACHMENT D*CS4021, Rev.2 Page 1 of 1 Test: i 3(23/3i 22'25'45 VERS SENSOR.%50-%60 Tag: iCS-752 orce=-456 (1hS)-%~0-%80 25209 25309 25%09 25509 25609 25709 OLS 25209 25309 25%09 25509 25C09 25709 Tiae in Seconds 25.453 Y-EXPO ON 1CS-752: Average Closing Packing Load, Static Conditions ATl ACHMENT E'CS4021, Rev2 Page 1 of 1 Ted: 4 3(23/3i 22'49'i Tag: iCS-752 VOTES BEMOR orce=-i3432 (Ih)-i5000-20000 5530%55%0%5550%556 5570%5580%SMITCH A SMITCH B SMITCH C SMITCH D 5530%55%0%Tiae im Seconds 55.688 5550'}SS6 SP0%SSS0%Y-EKPND ON 1CS-752, Final Thrust Due to Inertia A1TACHMENT F CS-0021, Rev.2 Page 1 of 1 Test'3/23/3i 22'49'i V jTES SENSOR-F0000 Tag'C8-752 orce=-iii3i)15000.20000 5550%55%0%550'f 5560'I 5570%5580%SWITCH A SMITCH B SWITCH C SWITCH 9 5530'f 55%0%Time in Seconds 55.488 550't 5560%5570'f 5580%'Il'-m'll ox 1CS-752, Thrust At Torque Switch Trip E DES>~~ER3:mumm RzcoR]]I~~f~to Verification PcrscÃ%%tl Attachment G Calc.No.'CS~1 Revision 2 Valve No.1CS-746 Page 1 of 2 Plant Project Fflc No.Oocuncnt No.C-0 I Rev 4 Level g 4 (Class A)(]Seismic (Class B)(]FP 4 (Class 0)(]Other Ocsign verification should be done in accordance ufth ANSI N45,p I), Scctfon 6, as amended by Regulatory Guide 1.64, Rev.2.Special instructions:

Oisciplinc Project Engineer II.Veri f Icatf cn Oo~tatf cn Appl f cabf l I ty Ofsci t inc Necnanf ca L HVAC ELectricaL fSC Other X]Ofsci fne Civil Structural Seismic Eaufp.Oual.Civil Stress F f re Protect Ion Envirormantai Oual if fcation Humn Factors Naterials (](](](](][](](][]Verification Nethods Used: Oesign Review (]Alternate Calculations

[]oualfffcation testing Ocsign Oocunent Acccetable:

~Y~No (].ccaaants attached.Ocsign verifier oats'~V4 Ackncwlcdgcment okgerfff~tfm+

~(OPE)oats III.Rcsolutfm at Ccmmnst Cazeants Resolved (See Attached): (RE)Action taken makes Ocsign Oocusents Acceptable:

Oesign veriffer Oate Oats (OPE)Oate Proc.3.3 Rev.38 OISCIPLIRE OESICS VERIFIClTIM RSXRO CA%EST SHEET Attachment G Calc.No.CS4021 Revision 2 Ualve No.1CS-746 Page 2 of 2 Plant Pr oieot File Qo.Oocmmn Mo.~S&oZl a Z This sheet is catv recaired Men coocaents are, bein%nba.Cccooant Mo Resolution Resolved lnitfatlOate

~V 1~".;ev.>>'0 Eeet.osuRa 2

SUMMARY

OF EVALUATION FOR SUPPORTS AND PIPE SUPPORT CALCULATIONS FOR REDESIGNED ANCHORS PIPE SUPPORT EVALUATION The Civil Engineering pipe support effort for this modification consisted of the redesign of pipe hanger anchors CS-H-4400, CS-H-4403, and CS-H-4406, as well as the review of 29 other hangers for load changes.The anchors were redesigned due to new anchor locations.

All support impact resulted from changing the piping model by removing the relief valves, adding flow orifices and adding strainers.

The three anchors referred to above were redesigned and new calculations were created.A copy of the calculations are attached.The 29 hanger calculations were reviewed for load changes and the new loads were compared to the loads used in the existing analysis.The load comparison evaluation showed that the minor load changes on all of the 29 hangers were within the design margin of the existing calculations.

Therefore, these hangers were found to be acceptable without modification.

324~cM OTY PART NO.0 STATUS DESCRIPTION 4".~~IV&X O-~"Ir.5A55.TP504~t TOhuII)0CI a: f)iz&vfQV5 Wl&7.ggPW~C%H-~C4j g&/$0-M3 CLc" LOCATION PLAN REFERENCE DOCUMENTS PROI'ESSIONAL ENCIIIEER FI.:fY l2ELhTEU&&ISHIC PIPE DWG'2I--~gE,V, M MECH.DWG.Cr STRESS CALC.-I~SuPPORT CANC.r CAROLINA POWER 8c LIGHT COM ANY NUCLEAR ENGINEERING DEPARTMENT l PLANT: HARRIS NUCLEAR PROJECT-UIIIT I SCALE l l I"'"E: C'4&Iv(ICOSI k~dM&CO~MI lZQ~Og.AUXILI~54~.&..2 2&-~IlaZ.MF PeP<Io g.fg g&lISQIr I%6M I Ie~P8L Rg.&541.I DESCRIPTION wNIDSN~CHK~

DV DPE DPPE REV DAT A,-8-28&-l-c5.H-REVVED s~T I or 8 SKETCH NO.~W&W f-C lŽ8 I 32i043 g"0 PIPGp 2:Aptp5 rl/G4AQ&lr4Cr PLIM&'OHl PLY!RagaC.~IN&K, o.P.cog",(Ra-,)

L I TJF.'4'0 vhHf'am (~)(N2+<~)PROFESSIONAL ENGINEER~h~l2E.~~~IQQIC, CAROLINA POWER 8c LIGHT COMPANY NUCLEAR ENGINEERING DEPARTMENT PIANT: MRIS NUCL842 KbHT'CALE'M IO.2-ff 5fS QADI S~SAT I DATE OESCRIPTION WN OSN CH OV OPE OPPE yg NO/.Q-'gg(jt I.6+-405 RgIA SHT: g Qr'2 qynrp ga 5<&94 I-C-tGe75 S+T.g."r 8 Mod Number~cg-g~yp FR Number Calculation Affected Drawing Affected Reason for Change:@i~~~w<a~esrez~~~zz~g roan+i mo~ra VZ<Z<~<~2 Z rZ STOCK/A'YEjV)cr/'/.

Justification for Change Approval: Minor Change (i.e., editorial, reference dimension, etc.), Calculations are not attached.Supplementary Other (provide basis, attach supplementary calculations) su/<7/7 U7/~/8 ACCT~E'C, EE~V$6 pIdP SEC7/OAJ OFBP7/DS 7+9~7X O'X4 X~cP.DPE*r CI*Signatures indicate design verification has been performed in accordance with NED Procedure 3.3.This form serves as the design verification record.

334943 4I~v~PAR I NO Q STATS DE SCRIP TION I I i A, T5 C"~4".5oo~I'IOL,C.(AOCeC;Z.b) 4)4"4I'~~II&X O'-9"L&.('5~5I~0'P804 GVl 1O 3LjiC)i 8<"~~a.-~o'->"4'w.(Aw)E ic"~s0"~0'-~~" L&Qec.Nore.:~l i2&vfDv&Qi&T.gyp'@CS 6-44gg gal.~-gy CLEAD<0 I Qs!I" ATION PLAN=-"-."w" CA.C.RT CALC REFERENCE DOCUMENTS-po QE.v.2k!~.A PROFESSIONAL EI GINEER'~Re~~+ai~wic CAROLINA POWER ac LIGHT COM ANV NUCLEAR ENGINEERING

~"PAR MES.Io-g.tZIIFE4<ggm

!f6,%I c~.g jl&~~~.&541 CESCRiPTION i i I I QwNlosNICHKI ov jopE loppE PLANT HARRIS NUCLEAR PRO'ECT-UNIT I SCA" E O'0&tv(ICAl k~dM&CDhtTML ga~~Au/IL.I~M~.~.2%C-0~isa@.MF'P'oa<gp A 8'8&.l-CS.H.~RE!r

%I!I s~T I or 2 S~:-TCH e)54-9Q'T-C-ICt7$

32444j PROFESSIONAL ENGINEER;GhF~Qa,&Ted 5EtsMic, CAROLINA POWER dc LIGHT COMPANY NUCLEAR ENGINEERING DEPARTMENT PlPNT: kRR6 AU~~KbnlT SCALE: Q~$IIO.2-1Z 259k--yI~AT-565 PtkW I Seemr I DESCRIPTION WN DSNIC" DV DPEIDPPE"'"': CHavi~I$VDL.UH&~rlZOI ca~a-hdXII t~~B.m.&.284-O 9%~4%R,+u~a.T os'Nop).gR-I.A-)-4405 REvgw SI T;2 or'2 SKETCH gp 5'-(at&A 1-C-I~5 S~T.2 or 8 i DE Mod Number~R-4~+7 FR Number Calculation Affected C-CS-8-~D Drawing Affected Reason for Change: SUPP&RE'-ld'r~Zg R PHrrsuu N&J" SZ chz<CWK PU~P Wrml FLouJ PzczRc.57RHxnJE'ustification for Change Approval: Minor Change (i.e., editorial, reference d'mension, etc.).Calculations are not attached.~Other (provide basis, attach supplementary calculations)

CdC.c~drzach'C2-Supplementary Pr r DPE**Signatures indicate design verification has been performed in accordance with NED Procedure 3.3.This form serves as the design verification record.

CALCULATION NO PAGE t REV/LIST OF EFFECTIVE PAGES PAGE REV PAGE REV PAGE REV ATTACHMENTS NED Guideline E-4 ATTACHMENT D CALCULATION NO~+"~'H-+SO PAGE REV/TABLE OF CONTENTS List of Effective Pages Table of Contents Purpose List of References Body of Calculation Conclusions Page No.Attachments HEo><gwwg8~Q7: 7-Zz-<2 WEo=~pacer Rn 2r.p-Zz-Z-c~@4 Hc-/dp Page(s)gage.g:0 ZW./g/8 Z4.

FORT.1 NO.18055 REV.10I85 Commuted by: Date: CAROLINA POWER&LIGHT COMPANY Calculation ID: c-cz-H-0+oz Checked by: Date: Tar/PID No.: Project Title: CALCULATION SHEET Pg.of Rev.File: Calculation Title: Status: Prelim.Q Final~Void Q PuRpo<E 7o Prov'/kE4'ArcffoR s ppdg7-784/~Z~~i~-.//~~A oA Pe~~r~us<.)34'+-og<8+Z.wo2:.k'.A5.Sg-g cw7-N.Poop.7-+/~rpwcpo~28/dw 4~4-$88>8=/FZ g p'RR+hC-4')~IScu=/onj///2 PpZ'r/ouc-up//r?8-3-ZZ4-/-C=-h'o=

Pc.%'o-~=/5 yo gi/T,Eaovfi Fpg~F/peg..7+9 Ag~cr F/P'cHoA.88 C/8 ZZ/7'ACHE'/gee 7<y 7.O 7hZ 8'EZZio.'EWE>

/I/8>>2 6SIC/i CO/7c!I/SR+PRO'//CIECI/c g</6 CHC C./~'/"'7'-C>-g2.PT-/</'~~g+C/)mco=c oI/7/o7 Z,r.y-Zs-7z-(/I77oc//.

'w)8)//7C.O~S OG'7/I/T Z)T.7 ZZ-72.(Pr7+C~,'~')3)ACCT'TC//I CO/I/CT+~JC7/OAJ

-ZCS/CAJ Q7/7 J//7gu A'E'idols S 7 ub NEcbWK 2/>/-/~nl+)mat~//c-e,y (a7~~ch.'C')Z)+4 c~cc<)~/yZ a7: S-Z7-n.-SKZTC///I/O.SK-C'S+7-C-/OOZ ke'/./7 (/'C"'/

CAROLIHA POWER fi LIGHT COHPANY PLANT HARRIS NUCLEAR PLANT CALCULATION NUMB EII 141-1A PCH/HD NUMBER PCR-6547 PAOE REVISION SUBJECf SI CHARGING PUMP ALTERNATE MINI-FLOW LINE, RELIEF VALVES REMOVED, FLOW ORIFICES AND STRAINERS ADDED WITH LEAD'BLANKETS.

Q~emeu'Leou Vev ('ave.f.eL-N LQL-2 0~a 14'..nornmivnu>s wrrlALs/DATE CHECKER'S INIITALS/DATE

~y HANGER NO.CS--4 03 NODE PT.ISO NO>-36-CS-59 SUPPORT SYSTEM CONDITION Fx (LBS)Fy (LBS)Bf.-1 LR L-Z,~Q Fg (LBS)Xx (FT-LBS)Ãy (FT-LBS)Rz (FT-LBS)t4o<L 2 DEADWEIGHT THERMAL I THERMAL II (E)E.Nc.a cue~<I.~5 THERMAL III PAD&TAD Lola 104.(l.ml-~MS Nn-406.-35'ob,~0.-Sn 8 2~Qalh.,uS I=Z,(Dto n1 (Lhasa)-51 I.-7 l.5 l-Z.Z 5h 26.I'I3 PP I-43~(>i:'>Iso DBE SAM OBE(Inertia DBE(Inertia)

UPSET (+)UPSET (-)EMERGENCY+EMERGENCY(-)

86.'L3 Q1 138.$05 l 1 ZZ 162.286.ISR 159.H Z'I'I 258.sb 30 Lo IZ.101.92."I I 161.'I4 141.2.2.D Lo 341 45.THERMAL I (NakMAL)THERMAL IZ THERMAL III II>tNT ACCUKÃl)0.00 DI SPLACEMENTS Y (in)0.00 0.00 LCM<44.0 Pil4l Mc LoaQS'>('u.: 1 SL-l.Q 2u 8-23-%Z,8 W'O'.OK (QV'AL-L Ou Q:31-M 0 Lan.l l&X Ou I LE>K 8 LZ:31o,v.NOTES: l.+X~NORTH,+Y~UP,+2~EAST.2.Sate.5mms C av.XQi,-2 Voc Geo Qz~*v~~, 3~

FORI>I No, 7d 055 REV, 10/b5 Computed by: Date: CAROLINA POWER 6 LIGHT COMPANY Calculation ID: c-cs-h'-4+0=Checked by: Tar/PID No,: Pro)ect Title: Date: CALCULATION SHEET Pg.of Rev.File: Calculation Title: Status: Prelim.Q Final$f Void~odE U I i+<~PA/A'7 Conz-Q/+'cS WCh'Q~+)+(ia)=//o=++>y(jo).=

z<z+3os(/a)i-Z2+(/o)Pr.A'x=ay=+x=4y=>HTfo r Z4.Z.Fu>SPICA'7 C,o/hd Fz: 3/oso/>>>-/.gc c o<<8'+//s dzcaosE w/o Reredos'o~.2)I.'3 gyCZ~7/)+'Hi(g M-c'//v'oR EF'FZC7;Ai++E'/,~AC/EB.4~Egg~ro 9E<PZ<KEQ.

FOR'8 NO.78055 REV.10/85 Comnuted bv: Date: CAROLINA POWER 6 LIGHT CO~~Calculation ID: C-CS-h'-++o2 Checked bv: Tar/PID No.: Pro)ect Title: Date: CALCULATION SHEET Pg.of Rev.File: Calculation Title: Status: Prelim.Q Final Q Void TYPE'-z~a.W 8"x/"-n F-6 Zm8.4 8 x/TS4'>cdX 4 P/PC CFEVER o.@1'-2.'(RCi=.Fiwiiiii, o y Y (v/)Z h/ORE ufo<<<cA56 4/(~8'77wc~~')HP.g AC!O<AEK CO~b~z3.3-/8.og (4ooo Psi comas>>)7puu AEooh/ET'o'47+/oo'pEF.

3)/5" p~c/n/4 RE'gc/c7/0%

<Z.S" n pe~sr.erne RCZI<7>>4>(Z.5" 7o PEVO7: WOE'okuOVIO<i

)<AC,CO~<gyp F2 Checked by: Date: Tar/PID No.: Project Title: Calculation Title: FOFE II No.78055 REV.10/$5 Commuted.by: Date: CAROLINA POWER 6 LIGHT CP~~CALCULATION SHEET Calculation ID: C'-cs-+~g Pg.of Rev.File: Status: Prelim.Q Final Void Q>~/Pc~T~E-~=ZWZc Ps]c'.r5 (Zd,doc j z)HE'r..rP 77a<g.g Zca5 C~~+Z~7M';f/r7C/ryCrZorv'

.78$(/o OR~77A~CH.'A'ZHP.Cg g>2~dL d>b'Eg, 3 E'<V CHECK 4/8 dg, Zp'dwrrtR/-

<4 V)Ca<Ca'ag~g~gpp~g-P-234-I-C~-h'-4QY<.ger'g j'd CA'ZC (-C5-+-4+>~PP Q7, CAC.C~FOg.C.-+-<Wd HZE Cdnr~ER y.F~R C c-i:--+~~=CALCU)dr./SJrgdF 7/5 HCC+$739$+

NE035/11 DATE 92.09.25 PAGE 1 1~1 1~1~1 1~1 1 1 1~1~1~1 1~~~~~1*~1 1 1~1 1 t 1 PROJECT JOB NO.CALC NO.4-CS'-ff-4+0~SNT NO.CALC ID'TtACHMENT" F-OF PREPARED BY*DATE CHECKED BY DATE 1**1111****

~1~11~1111~1**~11~~~~1 1 t~1111~~c~se>f F~E 4 3c"W.EEEEEEEEE EE E EE EEEE EE EE E EEEEEEEEE 0000000 00 00 00 00 00 00 00 00 00 00 0000000 33333333 33 33 3333333 33 33 33333333 55555555 55.55 55555555 55 55 55555555 VERS ION LEASED AUGUST 1989 SER NANUAL VERSION 8 THEORETICAL NAKUAL VERSION: 8 VER I F I CAT ION NANUAL VERS I ON: 10 1~~~1~1 1 1~1~1*1~1 1~1 1 1 1 1 1~1 1 1~1~*IN CASE OF PROBLEHS MITH NE035, CONTACT THE~BASEPLATE USER REPRESENTATIVES

  • LOCATION EXTENSION 1~11~~~~11~1~11~~*~1~~1~1*1~~~1111 1 1 1~1 1~1 1~1~~~1~1~~1 1 1 1 1 1~1 1 1~~1~COPYRIGHT 1984,1987 BECHTEL POMER CORP.ALL RIGHTS RESERVED.~~1 1 1 1~1 1~1~1 1 1~1*1 1 1~1 1 1 1 1 1 1~~1 1 1 1~1~1 1 1 HE035/11 DATE 92 09 25 PAaE 2 tIOPt404tt 0~0~%1tlltO+yyyygy~OtlttOtOOOtlt1ttlt001P PREPROCESSOR lNPUT DATA CARDS 111I110ltltOttt1tlltttttt11WtfO~lt011fttttlttlt1111*liteeeltttt1ttfll0001tototll CARD 1 2--3 4 5 6 7 8 NO 12345678901234567890123456789012345678901234567890123456789012345678901234567890 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 23 24 25 26 27 28 29 30 31 1)CASE 1 CS.H.4403 3 FlLEKAHE>HHPBP24 TYPE F-2 EHBED PLATE (BX SIT g~g 1/COH~g g@4000/PLA 6,11~gd,30/1/29/

BPR~, 1,d,dE5,1.25E6,5987,3473/

BOL 3,2,1,1.5,3/

BOL 3y6g 1~1~5~15/BOt.3,10,1,1.5,27/

BOL 5,2,1,6.5,3/

BOL 5/6/1,6.5,15/

BOL 5,10,1,6.5,27/

END/ATT 4,63.5,15/

JST 4,6,3,2,180/

JST 3,6,2,1~180/1ST 2,6,7,3/90/

JST 2,7,3'/0/JST 3/7/4/2,0/

JST 4,7,5,3,0/

T 5,7,5,6,270/

T 5,5,4,3,180/

ST 4,5,3,2, 180/JST 3,5,2,1~180/1ST 2,5,6,3,90/

END/END/POl 4,6/LOA1,550,-794,990,19120,-31056, 12512/LOA2,-550,794,990,-19120,31056,-12512/EKD/EHD OF JOB*~END OF lNPUT DATA~

I%035/11 DATE 92-09-25 PAGE 3>>>>tt>>~>>>>t>>t>>t>>>>>>>>ttt>>tttt>>>>t>>>>ttttttttt>>

PREPROCESSOR INPUT DATA CARDS~>>tttttttttt>>tttt>>>>t>>ttt>>>>>>>>>>>>>>>>1>>>>tt>>>>>>ttt>>ttltttttttttttttttt>>ttttttttttttttttttttt CARD 1 2-4 5 6 7 8 NO 12345678901234567890123456789012345678901234567890123456789012345678901234567890 1 3 F ILENANE>>HKPBP24 2 OJT 0>>0 3 CON 0 0 4 PLA 6>>11 5 BPR 0>>0 6 BOL 3>>2 7 BOL 3>>6 8 BOL 3>>10 9 BOL 5>>2 10 BOL 5>>6 11 BOL 5>>10 12 END 13 ATT 4>>6 14 JST 4>>6 15 JST 3>>6 16 1ST 2 6 17 JST 2>>7 18 JST 3>>7 JST 4>>7 T 5>>7 5>>JST 4>>5 23 JST 3>>5 24 IST 2 5 25 END 26 END 27 POI 4>>6 28 LOA 0 0 29 LOA 0 0 30 END 31 END OF JOB TTPE F-2 EHBED PLATE (8X1)CASE 1 0>>1 0 0 0.000 4000.000 0.000 0 8.000 30.000 1.MO 1>>.880E+06>>.125E+07.599E+04>>1>>1.500 3.000 0.000>>1>>1.500 15.000 0.000>>1>>1.500 27.000 0.000>>1>>6.500 3.000 0.000>>1*6.500>>15.000>>0.000>>1>>6.500 27.000 0.000 CS.H.4403 0.000 29.000.347E+04>>0.000 0.000>>0.000 0.000>>p pppt 0.000>>0.000 0+000 0.0 0.000>>O.OM>>0.000 0.0M>>0.000 0.000 0.000 0.000 0.0 0.000 0.000 0.0M 0.000 0.000 0.000 3>>2 r 3>>4>>5>>5>>4>>3>>2 6>>3.500 2.000 1.MD>>3.0M>>1.000 2.MP>>3.MO 6.000>>3.000>>2.000 1.000>>3.000*15.000 180.M0>>180.000 90.000 0.000 0.000 0.000 270.000 180.000>>180.000 180.000 90.000 0.000 0.000 0.000 0.000 0.0M 0.000 0 000>>0 000>>0.000>>0.000>>0.000.0.000>>0.000 0 0.000 0.000 1>>550.0-794.0 2>>.550.0>>794.0>>~END Of INPUT DATA DECK~0.000 0.000 0.000 990.0 19120.0.31056.0 12512.0 990.0-19120.0 31056.0-12512.0

NE 035/11 DATE 92-09-25 PAGE 4 ttttttttttttttttttttttttttttttttttttttlttttttttttttttttttttttttttttttttttttttt FlLENANEtHNPBP24 TTPE F-2 ENBED PLATE (8X1)CASE 1 CS H.4403 ttttttttttttttttttttttttt1tttttttt1tttttttttt11tttttt1*ttt11tttttttttttt11ttttttttttt 1NPUT PARANETERS PLATE THlCKNESS......~..PLATE X DlllENSlON

~~~~~~~Y-DlNENSlON

..NODULUS OF ELASTlClTY

~~CONCRETE NODULUS.." CONC.C(WP.STRENGTH~~~~1.000 8.000 30.000.290E+08.360E+07 4000.0 BOLT LOCATlONS BOLT l J NODE X.COORD.Y.COORD.1 3 2 2 3 6 3 310 4 5 2 5 5 6 6 510 24 1.500 3.000 28 1.SOO 1S.OOO 32 1.500 27.000 46 6.500 3.000 50 6.500 15.000 54 6.500 27.000 BOLT PROPERTIES BOLT STIFFNESS (LB/lN.)ALLOMABLE FORCE (LB)TENS lON SHEAR TEN SlON SHEAR.MOE+06.BME+06.8ME+06.880E+06.880E+06.880E+06.125E+07.125E+07.125E+07.125E+07.125&07.125 E+07 5987.5987.5987.5987.5987.5987.3473.3473.3473.3473.3473.3473.

NE 035/11 DATE 92 09 25 PAGE 5)ttttttttttttttttttttt'tt*tt'

't'ttttttttttttttttttttttttttttttttttttttttttttfttftf t t FILENANEtHNPBP24 TYPE F-2 ENBED PLATE (8X1)CASE 1 CS H 4403 ttttttt1ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt1ttttttttttttttt NON STANDARD ATTACHHENT DATA ATTACHNENT NLNBER 1 SEGHENT NIWBER...TYPE~~~~~~~~~~~~~HE I 0HT~~~~~~~~~~~DISTANCE~~~~~~~~~ORIENTATION ANGLE THICKNESS~~.~.~~~1 JST 0.000 2.000 180.0 0.000 SEGNENT NWBER...TYPE~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~D I STANCE~~~~~~~~~ORIENTATION ANGLE THICKNESS~~~~~~~~2.JST 0.000 1.000 180.0 0.000 SEGHENT NIWBER...TYPE~~~~~~~~~~~HEIGHI'~~~~~~~~~~DISTANCE~~~~~~~~~ORIENTATION ANGLE THICKNESS~~~~~~~~3 IST 0.000 3.000 90.0 0.000 SEGHENT NUHBER...TYPE~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~DISTANCE~~~~~~~~~ORIENTATION ANGLE THICKNESS~~~~~~~~4 JST 0.000 1.000 0.0 0.000 SEGNENT HISSER".TYPE~~~~~~~~~~~~e HEIGHT~~~~~~~~~~~0 I STANCE~~~~~~~~~OR I ENTAT ION ANGLE THICKNESS~~~~~~~~5 JST 0.000 2.000 0.0 0.000 NE 035/11 DATE 92 09.25 PAGE 6 tttttttttttttttttttttttttttt~ttttttttttttttttttttttttttttt'ttttttt1*tttttt FILEMANEtHNPBP24 TYPE P-2 EMBED PLATE (8X1)CASE 1 CS H 4403 ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt NON.STNNARD ATTACHMENT DATA SEGMENT NWBER~...TYPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~~~~~~~0 I STANCE~~~~~~~~~~~~~~~ORIENTATION ANGLE......THICKNESS~~~~~~~~~~~~~~6 JST 0.000 3.000 0.0 0.000 SEGMENT ROBER~~...~~~TYPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~~~~~~~DISTANCE~~~~~~~~~~~~~~~ORIENTATION ANGLE......THICKNESS~~~~~~~~~~~~~~7 IST 0.000 6.000 270.0 0.000 SEGMENT NBER~~~~~~~~~TYPE~~~~~~~~~~~~~~~~~~~HEIGHT....""......".

DISTANCE~~~~~~~~~~~o~~~ORIENTATION ANGLE~~~~~~THICKNESS~~~~~~~~~~~~~~8 JST 0.000 3.000 180.0 0.000 SEGMENT NNBER....."" TYPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~~~~~~~DISTANCE~~~~~~~~~~~~~~~ORIENTATION ANGLE..THICKNESS~~~~~~~~~~~~~~9 JST 0.000 2.000 180.0 0.000 SEGMENT MQIBER~~~~~~~~~TYPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~o~~~~~DISTANCE~~~~~~~~~~~~~~~ORIENTATION ANGLE~~~~~~THICKNESS~~~~~~~~~~~~~~10 JST 0.000 1.000 180.0 0'000 SEGMENT IQSER o....o.o.TYPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~~~~~~o~~~~~~~~DISTANCE~~~~~~~~~~~~~~~ORIEMTATIQI ANGLE..THICKNESS~~~~~~~~~~~~~11 IST 0.000 3.000 90.0 0.000 NE 035/11 DATE 92-09.25 PAGE 7 tttttttttttttttt~~t~

~~ttttttttttttttttttttttttt' t't'ttttttttttttt FLLENANEtHNPSP24 TYPE F-2 9$ED PLATE (8X1)CASE 1 CS H 4403 ttt1ttt1tttttttttttt1tttttttttttttttttttttttttttttttt*ttttt1tttt*tttttttttttt1ttttttt LOAD lKQ COND I T IONS LOADlNQ CASE NO.t 1 LOADINGS APPLlED AT NODE t 67 FMCE FX t 550.00 FORCE FY~-794.00 FORCE FZ<990.00 IDENT NX t 19120.00 NCKENT NY<-31056.00 IDENT NZ~12512.00 LOADlkG CASE kO.~2 LOADlkGS APPLIED AT NIXIE t 67 FMCE FX~-550.00 FMCE FY~.794.00 FMCE FZ t 990.00 NCIIENT HX~-19120.00 NCKENT NY~31056.00 NOHENT NZ~-12512.00 NE 035/11 DATE 92-09 25 PAGE 8~tltttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttfttt FILENANEtHNPBP24 TYPE F 2 EKBED PLATE (8X1)CASE 1 CS-H-4403~ttt1tttt11ttttttttttttttt1t11ttttt1ttttttttttttt1tttttttt1ttttttttt1t1ttt1tttttttttt BASEPLATE CONNECTlVITY ELEKENT KO.KQ)E JA JB JC JD ELEKENT KO KCDE JA JB JC JD 1 1 12 13 2 3 3 14 15 4 5 5 16 17 6 2 2 13 14 3 4 4 15 16 5 6 6 17 18 7 7 7 18 19 8 9 9 20 21 10 11 12 23 24 13 8 8 19 20 9 10 10 21 22 11 12 13 24 25'4 13 14 25 26 15 15 16 27 28 17 17 18 29 30 19 14 15 26 27 16 16 17 28 29 18 18 19 30 31 20 19 20 31., 32 21 21 23 34 35 24 23 25 36 37 26 25 27 38 39 28 27 29 40 41 30 29 31 42 43 32 20 21 32 33 22 22 24 35 36 25 24 26 37 38 27 26 28 39 40 29 28 30 41 42 31 30 32 43 44 33 31 34 45 46 35 33 36 47 48 37 35 38 49 50 39 32 35 46 47 36 34 37 48 49 38 36 39 50 51 40 37 40 51 52 41 39 42 53 54 43 41 45 56 57 46 38 41 52 53 42 40 43 54 55 44 42 46 57 58 47 43 47 58 59 48 45 49 60 61 50 47 51 62 63 52 44 48 59 60 49 46 50 61 62 51 48 52 63 64 53 49 53 64 65 54 50 54 65 66 55 HE035/11 DATE 92.09.25 PAGE 9~tttttl*tltttttttttttllt'1'

'll'll'1'll'1~tlttlttttttl*lltttltllttlltttltlltlttttlll1 FILENANE1HNPSP24 TYPE F-2 EHSED PLATE (SXT)CASE 1 CS-H 4403 1 1*tttttt111111111***1*tltlttttttttlttlllltlltttttttttltttlttt**tttttt'ttttttltlttttttt NODAL COORD I NATES I J F RAKE LINE LINE NCOE NODE X Y 2 COORDINATE COORDINATE COORDINATE 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 5 6 7 8 9 10 11 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000.500.500.500.500.500.500.500.500.500.500.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 3.500 3.500 3.500 3.500 3.500 3.500 0.000 3.000 6.000 9.000 12.000 15.000 18.000 21.000 24.000 27.000 30.000 0.000 3.000 6.000 9.000 12.000 15.000 18.000 21.000 24.000 27.000 30.000 0.000 3.000 6.00D 9.000 12.000 15.000 1S.OOO 21.000 24.000 27.000 30.000 0.000 3.000 6.000 9.000 12.000 15.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.OOD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 KE 035/11 DATE 92.09.25 pACE 10~tttt*ttttttttttttt*lttttttttttttttlttttttttttttttttttttttttttttttttttttttttttt FILENANEaNNPBP24 TYPE F 2 ENSED PLATE (8X1)CASE 1 CS-H.4403*~ttttttttttttkttttt1t1tttttttt1tttttttttttttttttttttttttttttttttttttt1ttttttttt1tttt NODAL COORDINATES I J FRANE NQ)E X Y 2 LIKE LINE KCOE COORD I NATE COORD I NATE COORD I KATE 6 6 6 6 6 6 6 6 6 6 6 NODES AT 4 7 40 8 41 9 42 10 43 11 44 1 45 2'6 3 47 4 48 5 49 6 50 7 51 8.52 9 53 10 54 11 55 1 56 2 57 3 58 59 5 60 6 61 7 62 8 63 9 64 10 65 11 66 APPLICATION OF LOADS 6(OFFSET)67 3.500 3.500 3.500 3.500 3.500 6.500 6.500 6.500 6.500 6.500 6.500 6.500 6.500 6.500 6.500 6.500 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 18.000 21.000 24.000 27.000 30.000 0.000 3.000 6.000 9.000 12.000 15.000 18.000 21.000 24.000 27.000 30.000 0.000 3.000 6.000 9.000 12.000 15.000 18.000 21.000 24.000 27.000 30.000 3.500 15.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000.500 NE035/11 DATE 92 09 25 PAGE 11~~~~~yyyyygyygggg~)))~~gyp(gyp'~tHOIIIOlttt11tlttOOOllt FlLENANEsNNPBP24 TYPE F 2 ENBED PLATE (8XT)CASE 1 CS.H 4403 1~Ot10111111l110&l1f t11t1ttt~ttŽW1114lltlt00011tttt1*11t1OPttttl1ttlttt11t1 CONCRETE STlFFNESS DATA NODE EFFECTlVE AREA CONCRETE ST l F FNESS NODE EFFECT lVE CONCRETE AREA STlFFNESS 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55.57 59 61 63 65~375.750.750.750.750.375 2.250 2.250 2.250 2.250 2.250 2.250 4.500 4.500 4.500 4.500 2.250 7.500 7.500 7.500 7.500 7.500 3.375 6.750 6.750 6.750 6.750 3.375 2.250 2.250 2.250 2.250 2.250.104E+06.208E+06.208E+06.2ME+06.208E+06.104E+06.625E+06.625E+06.625E+06.625E+06.625E+06.625E+06~.125E+07.125E+07.125E+07.125E+07.625E+06.208E+07.208E+07.208E+07.208E+07.2m+07.937K+06.187E+07.187E+07.187E+07.187E+07.937K+06.625E+06.625E+06.625E+06.625E+06.625E+06 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66.750.750.750.750.750 1.125 2.250 2.250 2.250 2.250 1.125 4.500 4.500 4.500 4.500 4.500 3.750 7.500 7.500 7.500 7.500 3.750 6.750 6.750 6.750 6.750 6.750 1.125 2.250 2.250 2.250 2.250 1.125.208E+06.208E+06.208E+06.208E+06.208E+06.312E+06.625E+06.625E+06.625E+06.625E+06.312E+06.125E+07.125E+07.125E+07.125E+07.125E+07.104E+07.208E+07.208E+07.208E+07.208Ei07.104Et07.187E+07.187E+07.187K+07.187E+07.187E+07.312E+06.625E+06.625E+06.625E+06.625E+06.312E+06 QltlATION OF EFFECTlVE AREAS>240.000 PLATE AREA 240.000 TOTAL CONCRETE STTFFNESS a.666Et08

%03j/11 BATE 92 O9-25 PAGE 12 PLOT PLAN VIEM OF THE BASEPLATE MHERE THE X AXIS (CONSTANT J LINES)ARE NORIZONTAL

~AHO THE Y AXIS (CONSTANT I LINES)ARE VERTICAL.NJJJKJJJJJJJJNJJJJJJJJJJJJ44hfAIJNJJJJJJJJJJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJN I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I B I 8 I NJJJNJJJJJJJBBBJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJJJJJJJJJBBBJJJJJJJJJJJJN I I B I B I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I~I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I NJJJNJJJJJJJJNJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJN I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I'I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I KJJJNJJJJJJJJNJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJN I I I I I I I I I I I I I I I I I I J I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I JJ A A A A A A A A A A A A A A A A A A JJJJJJJJJJJN A A A A A A A A A A A A A A A A A JJ I I I I I I I I I I JJJJJJJJJJJN I I I I I I I I I I JJJJJJJJJJJJJJJJJJJJJJJJJJJAJJJJJJJJJJJJJN I I I I I I I'.I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I NJJJNJJJJJJJJNJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJN I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I'I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I~I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I NJJJNJJJJJJJJNJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJN I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I S I B I NJJJNJJJJJJJSBBJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJJJJJJJJJBSBJJJJJJJJJJJJN I I S I 8 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I"I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I NJJJNJJJJJJJJNJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJN PROaRAN: NE035 RASEPLATE SIR+-S9601 0110 AAN 8014 REI.EASE 11 KOS/VE DATE-92.09-25 TINE: 10:53:07 PAGE t 13 ttttttttttttttttttttttttttttttttttttttttttttt

~SEQ IN SOLUT ION P RASE LOAD CASE NO: ttttttttttttttttttttttttttttttttttttttttttttt TITLE: FILEKAHEtKKPSP24 TYPE F-2 EHSED PLATE (8XI)CASE 1 CS.N.4403 LOAD CASE KO.(T 0 P I'N V A L U E S)D I SPLACEHE NTS KODE 62 63 61 51 60 52 50 64 49 59 0 I SPL..685353E-02

.620190E-02

.609194E.02

.550537E-02

.526031E-02

.506041E-02.C72195E-02

.397056E.02

.395085 E-02.394491E-02 KCOE 5 16 4 6 15 17 27 3 11 7 DISPL.-.191326E-02

-.147032E.02

-.129075E.02

-.114674E-02

.978655E-03

..691929E-03

-.566160E-03

-.477061E-03

-.394188E-03

-.361038E 03 QUADR I LATERAL PLATE PRINCIPAL STRESSES ELENENTS+2 FACE ELEN SI QW ELEH Sl QW ELEH SI QIA ELBI SIQW 4-3846.14-3801.C7 3647.37 3359.24-2917.27 2489.17 2097.48 1944.38 1933.28 1837.E L E N E N T S-2 FACE EL EN S I QW ELEN S I QW ELEN Sl QW ELEN Sl QW 47-3954.24 2841.13-1952.37-3379.27-2190.38-1834.14 3351.48 2049.4 3057.3-2022.CON CR ET E LOAD S K(OE 2-PRESS NODE 2-PRESS IKSE 2-PRESS NCOE 2-PRESS 5-531.16-408.4-358.6-318.15-272 17-192.27-157.11-109.26-99.22-94.

PROGRANs NE035 BASEPLATE SNN:$9601 0110 AAH 8014 DATE: 92-09-25 RELEASE 11 NOS/VE 1.5.3 L765 TINE!10:54:32 PAGE 14 BOLT LOADS NODE X SHEAR Y-SHEAR SRSS TENSION 24 28 32 46 50 54 323.129.'177.324.128.-178.-156.-234.-181.-102.-46.-75.359.268.253.340.136.193.21.194.184.628.4155.1111.BOLT INTERACTION EOUAT ION EQUATION>((TENSION/TALLN)~

1.000+(SHEAR/SALL%)~~

1.000))~1.000 NODE TENSION ALLOM SHEAR ALLOJ TENSION RATIO SHEAR RATIO INTERACT RATIO SAFETY FACTOR 24 32 46si 5990.5990.5990.5990.5990.5990.3470.3470.3470.3470.3470.3470..003.032.031.105.694.185.103.077.073.098.039.056.107.109.104.203.733.24'I 9.360 9.138 9.642 4.930 1.364 4.148 tH01111ilt1101411110001I011111000I000110IIII 0 E N D LOAD CASE PROGRAN: NE035 QASEPLATE SINAI: S9601 0110 AAN 8014 RELEASE 11 NOS/VE 1.5.3 L765 tttttttttttlttttttttttttttttttttttttttttttttt SEGlN SOLUT lON PHASE~LOAD CASE NO ttttttttttttttttttttttttttttttttttttttttt*tt' DATE: 92 09-25 TlNE: 10:54:32 PAGE: 15 TlTLE: FlLENANEtHNPBP24 TYPE F 2 ENSED PLATE (F1)CASE 1 CS N.4403 LOAD CASE NO.(T 0 P T E N V A L U E S)D l S P L A C E N E N T S NODE 5 16 6 15 17 27 7 26 18 DISPL..702977E 02.656655E-02

.643646E.02

.621388E-02

.602761E.02

.574981E.02

.564397E-02

.539708E.02

.522830E.02

+494210E.02 HQ)E 62 63 61 51 56 64 52 60 45 34 D lSPL~-.173157E-02

-.109723E 02.106081E.02

-.568531E.03

-.379196E-03

-.365284E.03

-.319490E.03

-.259792E.03

-.254871 E.03-.149459E.03 QUADR l LATERAL PLATE PR 1NCI PAL STRESSES ELENENTS+Z FACE ELEN Sl QIA ELEN Sl QIA ELEN SlGHA ELEN SlGNA 4 4606.37.2M8.23 1902.14 4472.34 2430.12-1691.24 3760.3 2330.47-3124.13 2204.E L E N E N T S-2 FACE ELBI SlQIA ELHI SlQIA ELBI SlQIA ELEN SlGNA 14-3800.37 2755.3-1941.4-3682.34-2742.23-1906 24-3512.12 1975.47 3356.13-1964.CONCRETE LOADS NCOE 2 PRESS NODE Z PRESS N(mE Z PRESS IIODE Z-PRESS 62.481~56-105.45.71.63.305.61-295.64-101.52-89.34.41.51-158.60-72.

PROGRAN: NE035 SASEPLATE SM: S9601 0110 AAH 8014 DATE: 92-09.25 RELEASE 11 NOS~1.5.3 L765 TIKE: 10:55:09 PAGE: SOLT LOADS 0\0 Ng)E)(SHEAR T SHEAR SRSS TENSION 24 28 32 46 50 54-323.-129.177-324.-128.178.156.234.181.102.46.75.359.268.253.340.136.193.1153+4241.&23.208.206.8.eOL T I N T ERIC T ION EauA T ION E(NIATION ((TENSION/TALLOJ)tt 1.000+(SHEAR/SALLOM) 1.000))*t 1.000 K(mE TENS IOI ALLOM SHEAR ALLOM TENSION RATIO SHEAR RAT10 INTERACT RAT10 SAFETT FACTOR 24 28 32 46si 5990.5990.5990.5990.5990.5990.3470.3470.3470.3470.3470.3470..193.708.104.035.034.001.103.077~073.098.039.056 77.133.074.057 3.379 1.274 5.654 7.534 13.584 17.567 ttttttltttttttttttttttttttttttttttttttttttttt

  • E N D LOAD CASE 2~tttttttttttttttttttttttttttttttttttttttttttt

~tttttttttttttttttttttttttt*ttttttttttttttttt END POSTPROCESS I NG ttttttttttttttttttttttttttttttttttttttttttttt NE035/11 t I I I I I~I I I I I~I I I t~I I I I t PROJECT JOB NO.gF/S'I I I I I I I I PATE 9P 09 P5 PAGE 1 CALC ID ATTACHMENT

" AAE-CALC NO.*PREPARED BY*C-C H-++DZ SHT NO.DATE CHECKED BY DATE~I I~~t t I*I*I I I I I I I I I I I I~I I I~I I I I~~EEEEEEEEE EE E EE EEEE EE EE E EEEEEEEEE 0000000 00 00 00 00 00 00 00 00 00 00 0000000 33333333 33 33 3333333 33 33 33333333 55555555 55 55 55555555 55 55 55555555 VERS I ON LEASED AUGUST 1989 USER NANUAL VERS ION 8 THEORET ICAL NANUAL VERSION: 8 VER IF ICATION NANUAL VERSION: 10 I I I I~I*I*~I I I I I*I I I I I I I I IN CASE OF PROBLENS NITH NE035, COHTACT THE*BASEPLATE USER REPRESENTATIVES:

NANE LOCATIOH EXTENSION I*I*I>>~I I I I I t I*I~I I~I I t I I I I I*I I I I I I I I I I I~I I I I~*I I**I I I I I I I I~I I I I*COPYRIGHT 1984,1987 BECHTEL POMER CORP.ALL RIGHTS RESERVED.111111*1~*I~111~111~I I t**1*111111111

~11 HE035/11 DATE 92 09 25 PAGE 2~~gff+f f g~gg*ggff tttltt111lt**01101ttlteyyygg~f Q*f f yttt0t1t0t0f 00 If ttt0t00 0l1t PREPROCESSOR lHPUT DATA CARDS~ii*1014111111*1fO~~iiiii~yiiitiOiOititOOt040i*iiitkti11ii01t

          • CARD 1 6 7 8 HO 12345678901234567890123456789012345678901234567890123456789012345678901234567890 1 3 F1LENANEQHNPBP25 TYPE F-2 EHBED PLATE (8X1)CASE 2 CS-H-4403 2 OUT~gg1/3 CON g~g~4000/4 PLA 5,78,18,1,29/

5 APR1,6,6,.25,.25/

6 BPR gt1g8.8E5,1.25E6,5987,8100/

7 BOL 2,2, 1, 1.5,3/8 BOL 2,6,1,1.5,15/

9 BOL 4,2, 1,6.5,3/10 BOL 4,6,1,6.5,15/

11 EHD/12 TUB 3,4,1,3.5,9/

13 EHD/14 POl 3,4/15 LOA~~1~550'94e990

~19120r 31056e12512/

16 LOA2,.550,794,990,.19120,31056,-12512/17 END/18 END OF JOB~~*END OF INPUT DATA*~~

HE035/11 PATE 92.09-25 PAGE 3 PREPROCESSOR INPUT DATA CARDS**>>**i>>i>>i>>>>>>>>>>>>>>ti*>>1>>>>>>i>>>>>>>>>>>>i>>11>>>>1>>i>>iii>>11>>ii>>*>>it>>1>>ii>>>>>>t>>>>i*i>>>>i>>i>>it

>>>>1*11>>>>>>>>>>it>>11*>>1>>111>>i>>*i>>i*ii**1111>>>>1>>>>1>>>>>>>>>>i>>i>>>>>>1>>i>>i>>i>>i>>i>>i>>i>>i>>i>>>>i>>i>>i>>i>>i>>

CARD 1 2 3 4 5 6 7 8 NO 12345678901234567890123456789012345678901234567890123456789012345678901234567890 1 3 FlLEHAHE>>HNPBP25 2 OUT 0*0 3 CON 0>>0 4 PLA 5*7 5 APR 0>>0 6 BPR 0>>0 7 BOL 2.2 8 BOL 2>>6 9 BOL 4*2 10 BOL 4>>6 11 END 12 TUB 3*4 13 END 14 Ppl 3>>4 15 LOA 0>>0 16 LOA 0>>0 17 END 18 EHD OF JOB TYPE F-2 EHBED PLATE (BX1)CASE 2 CS-H-4403 p>>0*0.000>>4000.000>>0.000>>0.000>>0>>8.000*18.000>>1.000>>29.000*1*6 000>>6 000>>250>>250 1>>.880E+06>>.125E+07.599E+04*.810E+04>>1*1.500>>3.000*0.000>>0.000*1>>1 500>>15 000>>0.000>>0 000*6.500.3.000>>0.000>>0.000.1>>6 500>>15 000>>0 000>>0 000>>0.000>>0.000>>0.000*0.0>>0.000*0.000>>0.000>>0.000>>0.000 0.000 0.000 0.0 0.000 0.000 0.000 0.000 1>>3.500>>9.000>>0.000>>0.000>>**>>EHD OF 1HPUT DATA DECK**i p>>p ppp>>p ppp>>p ppp>>p ppp>>p ppp>>1>>550.0>>.794.0>>990.0>>19120.0>>.31056.0>>12512.0 2>>-550.0*794.0>>990.0>>-19120.0>>31056.0>>-12512.0 HE035/11 DATE 92-09-25 PAGE 4 tttttttttttttttttttt'ttttttttttttttttttttt*ttttttttt*ttttttttttttttttttttt*ttttt FILENAHE HNPBP25 TYPE F-2 EHBED PLATE (BX1)CASE 2 CS-H 4403 t tttttttttttttttttttttttttttttttttt'tt'tttttttttttttttt*tttt*ttttttttttttttttttttttttltt INPUT PARAHETERS PLATE THICKNESS.........PLATE X-DIHEHSION

.......Y-DIHENSION NODULUS OF ELASTICITY

...CONCRETE NODULUS."....~CONC.COND STRENGTH 1.000 8.000 18.000.290E+08.360E+07 4000.0 BOLT LOCATIONS BOLT I J NODE X-COORD.Y.COORD.1 2 2 9 1.500 3.000 2 2 6 13 1.500 15.000 3 4 2 23 6.500 3.000 4 4 6 27 6.500 15.000 BOLT PROPERTIES BOLT STIFFNESS (LB/IK.)ALLOMABLE FORCE (LB)TENSION SHEAR TENSION SHEAR.880Ei06.880E+06.880E+06.880E+06.125E+07.125E+07.125E+07.125E+07 5987.5987.5987.5987.8100.8100.8100.8100.

ME035/11 BATE 92-09.25 PAGE 5 Itttttti**tttttt*ttttttttttttttttittti*tttiiiittt*ttit**tttttttttttttttttitttit FILENAMEtHHPBP25 TYPE F-2 EMBED PLATE (BX1)CASE 2 CS H-4403~tttttttttttttttttttttittttiitttttttttttttttltttttttt*tttttt*t*tttttttt'tttttttttttttt ATTACHMENT DATA ATTACHMENT NUMBER TYPE~~~~~~~~~~~~0 DIMENSION.~..~8 OIMENSIOH.....HEIGHT~~~~~~~~~~THICKNESS (71)" THICKNESS (72)" 1 TUB 6.000 6.000 0.000.250.250 PROPERTY NUMBER....1 I LINE NUMBER~.....3 J LINE NUMBER......4 X.COOROINATE

.......3.500 Y COORDIHATE

.......9.000 ORIENTATIOH ANGLE..0.0 HE035/11 DATE 92-09-25 PAGE 6 1111t**ttttttttttttt'tt't'tt'

't'tttttttttt*ttttttttttttt*tttt'ttttttt*ttttttttttt 1 FILENAME=NMPBP25 TYPE F-2 EMBED PLATE (BXI)CASE 2 CS H-4403*~tttttt*tttttttttttttttttttttttt***tttttttttttttttttttttttttttttttttttttttt*ttttttttt LOADING CONDITIONS LOADIMG CASE MO.~1 LOADINGS APPLIED AT NODE~36 FORCE FX%550.00 FORCE FY i-794.00 FORCE FZ~990.00 HOHEMT HX~19120.00 HOHEMT HY~-31056.00 HOHEMT HZ>12512 F 00 LOADING CASE NO.~2 LOADINGS APPLIED AT MODE i 36 FORCE FX>-550.00 FORCE FY t 794.00 FORCE FZ i 990.00 HCHENT HX~.19120.00 HOHENT HY>31056.00 HOHENT HZ>-12512.00 HE035/11 DATE 92-09.25 PAGE 7 itllti1I11ilttttt1tt1PiltlOiiOililiOOllg*yyy*g*ytt11POOOlii1tttt10iitti1111111t FlLENAHEsNNPBP25 TYPE F-2 EHBED PLATE (BX1)CASE 2 CS-N 4403*~ttt00114ittS*1*ttitttt1tt1t*it1iit'

'+++Otltlt110*ti10t00100t10$

  • tti11*4111*tP1%14111 BASEPLATE CONNECTlVlTY ELEHENT NO.KOOE JA JB JC JD ELEHEN'T NODE KO.JA JB JC JD 1 1 8 9 2 3 3 10 11 4 5 5 12 13 6 2 2 9 10 3 4 4 11 12 5 6 6 13 14 7 7 8 15 16 9 9 10 17 18 11 11 12 19 20 13 8 9 16 17 10 10 11 18 19 12 12 13 20 21 14 13 15 22 23 16 15 17 24 25 18" 17 19 26 27 20 14 16 23 24 17 16 18 25 26 19 18 20 27 28 21 19 22 29 30 23 21 24 31 32 25 23 26 33 34 27 20 23 30 31 24 22'5 32 33 26 24 27 34 35 28 HE035/11 OATE 92-09 25 PAQE 8~ttttttttttt*tttttttttttttttttttt*tttttttttttt**t*ttttttttttttt*tttttttttttttt t FILEHAHEtHNPBP25 TYPE F-2 EMBED PLATE (8X1)CASE 2 CS.H-4403~tttttttttttttttlttt1*ttltl1tttttt1t1ttttttt1ttttttttt1ttttttttt1ttttttttttttttttt1**

NCOAL COORDINATES I J LIME LINE FRAME NOOE X Y 2 COORDINATE COORDINATE COORDINATE 3 3 3 3 3 4 4'4 4 5 5 5 5 5 5 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 0.000 0~000 0.000 0.000 0.000 0.000 0.000 1.500 1.500.500.500.500 1.500 1.500 3.500 3.500 3.500 3.500 3.500 3.500 3~500 6.500 6.500 6.500 6.500 6.500 6.500 6.500 8.000 8.000 8.000 8.000 8.000 8.000 8.000 0.000 3.000 6.000 9.000 12.000 15.000 18.000 0.000 3.000 6.000 9.000 12 F 000 15.000 18.000 0.000 3.000 6.000 9.000 12.000 15.000 18.000 0.000 3.000 6.000 9.000 12.000 15.000 18.000 0.000 3.000 6.000 9.000 12.000 15.000 18.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 F 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NODES AT 3 APPL I CAT IOH 4(OFFSE OF LOAOS T)36 3.500 9.000 F 500 HE035/11 DATE 92-09-25 PAGE~1t*tttlttkttlt1tltll41IPIII1111110010layyyyygyygyPtt01lt0011tttt100110ty+)jggf FILEHAKEsKHPBP25 TYPE F 2 EHBEO PLATE (BX1)CASE 2 CS-K-4403+'+I**000tl1tk*tt000**tttt*OP10tttlttt'

'+~'+1ltf1100tktttOOtttk*1f tt001tllf'tlat ttttltttel CONCRETE STIFFNESS DATA NODE EFFECTIVE CONCRETE AREA STIFFNESS NODE EFFECTIVE COHCRETE AREA STIFFNESS 1 3 5 7 9 11 13 15 17'19 21 23 25 33 35 1.125 1.125 1.125 1.125 5.250 5.250.5.250 3.750 8.625 8.625 3.750 6.750 6.750 6.750 1.125 2.250 2.250 1.125.380E+06.380E+06.380E+06.380E+06~177E+07.177E+07.177E+07.127E+07.291E+07.291E+07.127E+07..228E+07.228E+07'.228E+07.380E+06.760E+06.760E+06.380E+06 2 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 1.875.750 1.875 2.625 5.250 5.250 2.625 7.875 9.000 7.875 3.375 6.750 6.750 3.375 2.250 2.250 2.250.633E+06.253E+06~633E+06.887E+06.177E+07.177E+07.887E+06.266E+07.304E+07.266E+07.114E+07.228E+07.228E+07.114E+07.760E+06.760E+06.760E+06 1 SUHMATIOH OF EFFECTIVE AREAS m 144.000 PLATE AREA~144.000 TOTAL CONCRETE STIFFNESS>.486E+08~**INPUT DATA PROCESSING CONPLETE.~~~

NE035/11 DATE 92-09 25 PAGE 10 R PLOT PI.AH VIEM OF THE BASEPLATE, MHERE ANIS (CONSTANT J LINES)ARE HORIZONTAL

~AND THE T ANIS (CONSTANT I LINES)ARE VERTICAL~" NJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJH I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 8 I B I NJJJJJJJJJJJBBBJJJJJJJJJJJJJJJJJJHJJJJJJJJJJJJJJJJJJJJJJJJJJJBBBJJJJJJJJJJJJH I 8 I I I I I I I I I-I I I I I I I I I I HJJJ I A I A I A I A I A I A I A I A A I A I A I A I A I JJJJJJJJJJJJJH I I A HJJJ JJJJJJJJJJJJJJJJJJJJJJJJJJJJAJJJJJJJJJJJJJH A I A I A I A I A I A I A I A I A I A I A I A NJJJ I I I I I I I I I I I I I I I I I I I I I I NJJJJJJJJJJJBB I 8 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I NJJJJJJJJJJJJNJ JJJJJJJJJJJJJN I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 8 I BJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJJJJJJJJJBBBJJJJJJJJJJJJN I 8 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I JJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJN PROGRAH: KE035 BASEPLATE SNUH: S9601 0110 AAN 8015 RELEASE 11 NOS/VE 1',3 L765 01 11 1PP1011000tt10*f tt+*yyygyyyyyyy*

jtPlii1tl DATE: 92.09-25 TIKE: 10:55:44 PAGE: 11~BEGIN SOLUT ION*LOAD CASE NO: PHASE 1~yygP1*iiikii11t1*00t01111t010i1i11i00i++++*+

FILENAKE~NNPBP25 TYPE F-2 EHBED PLATE (BX1)CASE 2 CS N 4403 LOAD CASE NO, 1 (T 0 P T E N V A L U E S)D I S P L A C E H E N T S NCOE 33 32 31 26 25 34 24 27 30 23 DISPL..620874E-02

.582501E 02.527734E-02

.500365E.02

.454502E-02

.454058E 02.408283E.02

.357956E 02.349911E.02

.258474E-02 NODE 3 2 10 4 7 1 11 5 6 9 D ISPL.-.135401E.02

-.959458E-03

.941597E.03

.897977E-03

..590503E.03

-.530048E-03

.477146E-03

.429463E.03

..243172E-03

-.137765E-03 1 U A 0 R I L A T E R A L PLATE PRINCIPAL STRESSES ELEHENTS+Z FACE ELEH SIGNA ELEH S I GHA ELEH SIGNA ELEH SIGHA 17 4741.14 2366.24.1889.23 4312.20 2342.8-1546.11 3014.5 2062.2-2867.19.1918.ELEHENTS-2 FACE ELEH Sl GHA ELEH Sl GHA ELEH S IGHA ELEH SIGMA 17-4605.2 2661.8 1701.23.4443.14.2683.20-2198.24 1899.5-1602.11-2675.19 1890.CONCRETE LOADS NODE 2 PRESS NODE Z PRESS NODE 2-PRESS NODE Z-PRESS 3-457.7-199.14-11.2.324.10-317.11-161.9.46.12.6.4-303.8-44.

PROGRAN: NE035 BASEPLATE SNUN:$9601 0110 AAH 8015 DATE: 92 09-25 RELEASE 11 NOS/VE 1.5,3 L765 TINE: 10:56:02 PAGE: 12 BOL*-T LOADS NODE X.SHEAR Y-SHEAR SRSS TENSION 9 594.-391'11.0.13-319,.396.508.588.23 593..7.593.2275.27-319.0.319.3150.BOLT INTERACT ION EOUAT ION EQUATIONt((TENSION/TALLOM)tt 1.000+(SHEAR/SALLOM)tt 1.000))tt F 000 NCOE TENSION SHEAR TENSION ALLOM ALLOll RATIO SHEAR INTERACT SAFETY RATIO RATIO FACTOR 9 5990.8100..001 13 5990.8100~.098 23 5990.8100..380 27 5990.8100..526.088.089 11.263.063.161 6.211.0?3.453 2.208.039.565 1.769 ttitttitttt**ttttttttttttttittt*tttitttttittt t E N D L 0 A 0 CASE 1~ttttttttittttttttttitttttttttt*iittttttttttt PROGRAH: HE035 BASEPLATE SMUH:$9601 0110 AAH 8015 RELEASE 11 MOS/VE 1.5.3 L765 111000110111111100100000000011111*00011100010 DATE: 92-09-25 TIHE: 10:56:02 PAGE: 13 BEGIN SOLUT ION LOAD CASE MO: PHASE*10000*10101001001*00000*0*0001100000000000000 TITLE~FII.EHAHE0HHPBP25 TYPE F.2 EHBED PLATE (SX1)CASE 2 CS-H-4403 LOAD CASE HO.2 (T 0 P T E M V A L U E S)0 I SPLACEHE HTS NODE 3 10 4 11 5 12 2 9 6 17 DISPL..645676E-02

.600036E 02~594732E-02

.549689E-02

.543703E.02

.498749E.02

.492961E-02

.377422E.02

.371726E-02

.330949E 02 NODE 33 32 34 29 31 35 26 30 27 28 DISPL..1C7581E-02

.109617E-02

.905492E-03

-.588216E-03

-.579969E-03

..430385E.03

-.368S69E-03

-.305957E-03

-.203192E-03

..117708E-03 Q U A 0 R I L A T E R A L PLATE PRINCIPAL STRESSES ELEHENTS+2 FACE ELEH SIGMA ELEH S I GHA ELEH S IGHA ELEH SIGMA 2 SC25.8 4462.1C 3132.5 2731.23-2643.17-2201.1-2196.11 2178.6.2101~22-1850.ELEHENTS-2 FACE ELEH S IGHA ELEH SIGHA ELEH SIGNA ELEH SIGHA 2.4903.23 2621.17 2006.S.4399.11-2226.20.1828.14.343C.1 2196.5.3038.6 2088.C 0 N C R E T E LOAD S NODE Z-PRESS NODE 2-PRESS NCOE Z.PRESS NXE Z.PRESS33-498.31-196.27-69.32-370.34.306.35-145.26-125.28.40.29-199.30-103.

PROGRAN: NE035 BASEPLATE SlQI: S9601 0110 AAH 8015 DATE: 92-09-25 RELEASE 11 NOS/VE 1.5.3 I.765 TIKE: 10:56:12 PAGE: 14 BOLT LOADS NODE X-SHEAR Y-SHEAR SRSS TENSION 9-594,-391.711.3321.13 319.396.508.2327.23-593.7.593.524.27 319.0.319.0.BOLT INTERACT ION EOUAT ION EOUATIONq((TENSION/TALLOllee 1 000~(SHEAR/SALLN)*e 1 000lloo 1~000 NODE TENSION SHEAR TENSION ALLOI ALLON RATIO SHEAR RATIO INTERACT RAT!0 SAFETY FACTOR 9 5990.8100..554 13 5990.8100..388 23 5990.8100..087 27 5990.8100..001.088.063.073.039.642.451.161.040 1.557 2.216 6.224 24.790 411141PIOOPIPOOIIIP11100000i0100000100I100111

  • E N D LOAD CASE~IOIOIP11011011t1111111111111**1111*11111**11 11144I110110*000**100001110100*ttOP1010110110 E N D P 0 S T P R 0 C E S S I N 0 10100itPOOOI j0104PO jPP010000000001010410140it File P I l II a I II W~IIe Patt~of 33 3 C.a HC~'Z~,.'!i.~;<lT 4ALl LU'~KHMEN" oA()p OF~1~l\aa4~J 4 4 NED INTERDISCIPLZNE REVIEW REQUEST (ZRR)Too Fromm IRR g'e leal/Unit/Subunit V U Unit/Subunit u d ov d c v M d Plant~H Details of Review Request: REFERENCE-PCR-6547, DELETION OF RELIEF VALVES AND ADDITION OF ORIFICES AND STRAZNERS~ATTACHED ARE THE SIGNED OFF SUPPORT LOAD SHEETS FOR PCR-6547 AS WE KNOW IT AS OF 12:00 P.M.ON SEPTEMBER 25,1992.PLEASE USE THESE LOADS IN YOUR SUPPORT DESIGNS AND EVALUATIONS FOR THE ABOVE MENTIONED PCR.THESE LOADS ARE AS GOOD AS THE INFORMATION USED TO DEVELOP THEM SINCE NO APPROVED DRAWINGS HAVE BEEN RECEIVED AS OF THIS WRZTZNG.IF THERE ARE ANY QUESTIONS PLEASE CONTACT JOHN HOPKINS AT X-6734~e e tt sponse Required By: thorized Man<<hours MAPS Project No.: C-6 47 Responsible Supervisor/Dat~n Charge Number Phase: Act ivity a Response/Justifications Attachments (list): Responsible Supervisor/Date Actual Man-hours expended Distribution:

NED Guideline No.E-24 Revision 4 (EG66f re I TEM NO.QTY PART NO.0 STATUS , A DE SCRIP TION TS~C"~oo'~8-O"u.(A~M.O)(Cur fO Sulf)g, lz'xo'z'x u'-c la" m.(A+c)SCQ.gO RPe~I'-O"m.(men.

T'e%W gut-m+ul5 g p">'9+y"~Ol-Op"LC.(AeC 4cfas;I)MOVa@CIST.'UPF5L7 Cr-8-4Au LOCATION PLAN REFERENCE DOCUMENTS PIPE CWG MECa.OWG.--I-ooI I=V A STRESS CA'.-z~I-4 SI PPQRT CALC.C g a.g->86~ISGC I<6NI I 4 0zs)REV OA E IWueo Pea RR~0<SCRIP'tIOM IDWhIDSNICHvI Dv IDPE DPPE PROI'ESSIOt44L ENCINEER OLIALITY LEVEL: P&TY RE=LATEO Sal&41IC CAROLINA POWER 4 LIGHT COMPANY NUCLEAR ENGINEERING DEPARTMENT PLANT: HARRIS NUCLEAR PROJECT-UNIT I ISCALE.'i'h&IVIICAL

$&40I Ubl&CENT~g~7~g.Wp4I~Y'~&.gg-o+~IREE.~PFda<0<NO),g.gg,-)-$

5+I-$48&REV$0 Ml SHT;I Or 2 SETCNO~-(Pgd f-C-IOOI IS~T I.r~

32i043)~l~>>II 5$jGk4LQColtJ&

plkAPS tAlhll FMW~~~RRC IQC.~i ARAIN faR&.D.=Cia%'QRSF)

PLdkl sic a5 4"kv5M WoM (tea)O 4 f&..24'8'SFj<bema w~ice.)~7'e g'4 T L F'L.&L.941 0"~))~5 S(wz)SxiST Q&,F.~l+5-&-i%%Sc1.PROFESSCNAL ENGlNEER SAFETY~&~750 GEISQIC CAROLINA POWER 8c LIGHT COMPANY NUCLEAR ENGINEERING DEPARTMENT PLANT: usus.iw gus~~Hf SCALE: N'PS>qq ME,+~1 RabcWL 4U>C ILg,ay'P&,+T~ieea euW~T CHBhAl~gVC I UhA&GQHTI2OI~2R M DATE DESCRIPTION WN OSN CHg OV DPE OPPE yg ND 4-3-f5&-I-CS 0-44O(RCV&Ml SHT: '2 Or 2 SXCtu NO.+<->~4 i-<->~1 ISHT;2 cr Mod Number FR Number Calculation Affected<-CS-8'-++OCc Reason for Change: Drawing Affected C~-~-+A+A'EcPuE$7ED cFfWd'2 o8/72m/Ewe 7s dxgx>a ro 7S dad~'z.Bury n WcK r'Arlr&/7d~-

Justification for Change Approval: Minor Change (i.e., editorial,.reference dimension, etc.).Supplementary Calculations are not attached.~Other (provide basis, attach supplementary calculations) su/5 T~7u7/o~~~HccEP78/~8E<rku'SE 7 S 4 X4 8<i k4$Pr<m SZCrr~nJ PA'oP&'re recur 75 4XNX->8 DPE*lg Signatures indicate design verification has been performed in accordance with NED Procedure 3.3.This form serves as the design verification record.

OTY 40 PART NO.0 STATUS DE SCRIP TION~,(A g, IC'~9'n'X a'-C'a" u.QSC 3.)(crT s r)~iI I 4" SCrkgQ PIPS x I'-O"L&.(%ASIA, TP%74~l W Sglg g p->r~~"~Oi-Op"u.(W~c.)r4cnas;I)MOVE MIST;OuPPng CS-0-AkX LOI ATION PLAN REFERENCE DOCUMENTS.PE=.W: eI~S-~-CygQ-T-oOI&/'STRESS Ca C.->-~I-A S'>PORT CALC.<ro.Z-t~~E~i56~

Issue I$,~9/I AIJQO AR Rk~i REV'A E I DESCRiPTION IDiNNIDSNtCHQ DV IDPEIDPPE PROFESSiONAL ENGINEER DUALITY LEVEL.P&TY lz&-ATED Sa I&b1lc CAROLINA POWER&LIGHT COMPANY NUCLEAR ENGINEERING DEPARTMENT

>LANT.HARRIS NUCLEAR PRO'ECT-UNIT I SCALE.NT5~HICAI gVeI LIMa CQ>T~~@~+OR Au/IUbJ2-g ERG~&.2%a-o%~Idea.~t Ft aW O~~~As 2C-I-CS-H-4@X REV504ll SHT'=I 5'S<ETCH NO StC-&Od I-C-IMI IIOO 5HT I OF 3 4943 88~I (ax-.)MOI2.T4 PIPS (t'S Me.g'I 5f/GHAQ&IIJ&

PUDP5 XIIII I LDW~~~~RSClaC.%T'Rh,IN'.D.=

4 IF (IZSF)tvp.4%IPSE A"kVgHT WoM (TVI)I, c C'J PIPZ ga..zo'.s'sp)I I I I I I I I I I 4'4'e 4 4'APIP&W SIa.)FL.&L,.94 I'-0"~)T)&ng e(PZ)&CIA Q&F.~b>8-C-IO5 Su]PROFESSIONAL ENCINEER: QUALITY LEVEL: ShF&rY~~~T59 SE'ISgIC CAROLINA POWER 4 LIGHT COMPANY NUCLEAR ENGINEERING DEPARTMENT PuNT:446?I2IQ NLIGL&62~51 SCALE: N~RPyI OA r ME,+Wl OESCRrPTION WN(OSN(CH OV jOPE[OPPE'CHB1VII~L 3 V&I JET&'TI2Ol Z~ma WuxILg,aV@i~.m.2~'-o eT~IN&a.+ueeaaT~~'NOA-3-85&-I-C5 0-WOCn REVWNII S':,'2 o 2~@~Np+A-&+4 1-Q-1~)'S-T, 2 or'g I Mod Number CR 454 7 FR Number JA Calculation Affected<-~S-h'-~OCn Reason for Change: Drawing Affected~>+-~>d>U+Pd+7~FX4~E8 7-~SrW+Zn/PEur" S<CZamruZ Un78 Wfn//Fdd~PM/RC~4'~HA'IA'EA

" Justification for Change Approval: Minor Change (i.e., editor:al, reference dimension, etc.).Calculations are not attached.Other (provide basis, attach supplementary calculations)

CASES 8-Tach'Eh Supplementary DPE*+Signatures indicate design verification has been performed in accordance with NED Procedure 3.3.This form serves as the design verification record.

CALC~TION NO.PAGE/REV/LIST OF EFFECTIVE PAGES PAGE REV PAGE REV PAGE REV ATTACHMENTS ATTACHMEÃT D CALCULATION NO.4-CS'-/Y-~Oh PAGE I I REV/TABLE OF CONTENTS List of Effective Pages Table of Contents Pu rp o s e~~~~~List of References Body of Calculation Conclusions Page No.Attachments A%7 S'7Rubc F/oem~8 WzoSS-PZ~~~~2r c kg++c-ldll Page(s)/4/~a9c 0pv, (E~.i&/

Ccgyute4 bv: Date:-Z5-gZ-FORM No.74055 REV 10/$5 CAROLINA POSER 6 LIGHT COMPANY Calculation ID: C-cs-8-Wo4 Ter/PID No.: Date: 9-z S.9z.CALCULATION SHEET Pg.'f Rev.I File: Pro)ect Title: Calculation Title: Status: Prelim.Q Final~Void PuRPoSE'0 PRD V/c?)E'A'n/CHOR 5" U/j'OR 7 2)8S/4/U A 7 7rPCP'2'D 7o H 5'7+9/AE4 85'8ocuN W'&N 7 3W4'./3 4+-o P4 8++adh.SE.A'0 XK-dS+/-P-ZOoZ.7A'/S A/t/c//oR Z>CS/4'nl dude R&O8ST88 gP'/g+6'C-/$9 8/5C AS/Oh!PRE I//os'uFPo<T 9-2-Z34,-1-CS'-8'-+506 EE'lr.$0-Pl t/5 7o d'E PE&o'/'E5 Si@m glFC 5.PkE'FccJ HA/CrYorC SrrWHZ~Z>beZC rZ y rn res Wr?Z~~c~a 5%8//t/ER.

NZ~8W/dn//Odds NEPE'9('OV/8 N/FR.sA~bc./+z-/a 2r.9-23-92.~ZFEREA'CE5 y)scuba ourFur br 9's 9'z..--(RTTRC8.B')2)~EO35 ourkur bI'.9-25-92 3)8Es/<Af oFuEL4Eb 57RuoruA'Es By o.ur, JcohfEr7-+)8'/5'DT'S'EQ c'oks 7<u'cps'y+~g~ugg 7++J'.~)AELsov s7ub coNstRuor/o&

-bES/c~dorR, B)'8lu nrE/-AN S/u4 urE'L5//t/g 3/V/5/o Q 4)~4k~/r'C/49-7)/R~ac.~/+/-/A hr 9-23-92 8)skETcg+o.sg-os+9-c-/ool 3'EY.B (REvxoot>ouoho<)c D/VcC US/DPI/~>PPoR7 P<8ES/dnJ/'5 8'CCZ/788'C6/cR</t Zg C dRBS.

CAROZ,ZgA PO%ER 6 Z,Z~CQXPMPL HARRIS NUCLEAR PLANT paVPQ)NUMIER PCR-6547 SUBJECT SI CHARGING PUMP ALTERNATE MINI-FLOW LINE/RELIEF VALV~KEMOVED t FLOW ORIF I CES AND STRAINERS ADDED WITH LEAD BLANKETS.Lnshsoc 0 Los%Wacs.C~.ill-lA 19'-l 4o CALCULATION NUMBERS 14 1-1A PAGE ORIGINATOR'S INIIIALS/DATE

-23 l~a;marco e!IIALS/DATE IJTgi)~HANGER NO.NODE PT ISO NO.SUPPORT SYSTEM CONDITION DEAD WE ZGHT Fg (LBS)r(LBS)SI S-406.FS (LBS)ling (FT LBS)SL EO My (FT-LBS)u (FT-LBS)-24.THERMAL I THERMAL II E.aTHERMAL I h f PAD Cc TAD DBE SAM OBE Inertia DBE(Inertia)

UPSET (+)UPSET)7~84.\136.3 161.Qg I lgR 100~54.Bl 27'3 IQ 300 EK Enh IO 285.173.93.47.(bed Z.Cs 50 M-Zlo S(o-45.83.17.-25.-48.43'51 70'MERGENCY(+)

EMERGENCY (-)X (iss)0.00 DZ SPLACLllEllTS 0.00 5 in)0 F 00 Merc~c.c Our~c L.oaci CAu.'Al N Ou 4-+34>O'D.Oe LAW'61-l.Oas'.3l.&~~4 3'3 r w C.4,LSL Z.Ou 0-Lh 56 i+'I',3'I".'r.P, 4,~.THERMAL II/ACCIDEYt)

THERMAL ZZI POD ACCsDQCI NOTESs 1+X~NORTH<+Y~UP,+5~EAST, 3.

FORM NO.14055 REV.l0/05 I'~niited bv: Date: 9-Zs'-PL Dat,e: 9-2s-9~Tar I PID No.: Px'o)ect Title: CAROLINA POWER&LIGHT COMPANY CALCULATION SHEET Calculation ID: C-cs-H-~Pg.of Rev.File: Calculation Title: Status: Prelim.Q Final Uoid Q s'7Ru3g~ogpu 2Z.4'ogg.3F//o JO/N7 Cuogg./D e o o zo o 2 Z.ZO7 ZO j.W3/2 14$Zo 5/0 Ze/S (0/o~o)4R/<i4 C//VMS 7S 444X+8'Em.Q3+p 5'Ck.8Q Hnr~~~=2~-~'~~O/c.o4pg ca py-~~.?4L Z/3/y=8'3P w=?+?(/?.3=zygo/"~//y=>>~6~)=zest.4=sp+(]~)=p/Zp/ooZ Fz=>Zg/h-ZZg (/Z 3=3M'=39/Ca}=Wfz~=>xi C'i?.>/=//oso FORM NO.15055 REV.10/45 P.runner~hv: Date: 9-zs'-)2 CAROLINA POWER&LIGHT CO~ANY Calculation ID: Date: 9~X5 0a.Tar/PID No.: Pro)ect Title: CALCULATION SHEET Pg.of Rev.File: Calculation Title: Status: Prel3m.Q Final~Void Q m~~e-~7r.<

Cw~.J7.5 , oo8" Qy=, 0/+".8//If (Y/@75 4xp X~8 C+zoo~.j(ao)z.z)~ro (<,ooo)Sy=~CeO/S I F~=2C, 2/o js~PSf Co&SFRV.wA'y-hoR~Rc.57/G5=/+5/D/Ea.4 w z4,2/o Ps/04 t+0+8/+/83/0 v q z z (sszs)'(~>s')

W,ooo)bVZrg.=+'~'1-..g/C//0 m,WO i/~c r'k'4+4 so/I.Bo PfFE ($83/2.TP3o+)/y=~d<~A/W/oo F F>=2/Zoo Ps/H 23s'F ar srvfovvv~(sr~~oc Jr.+)=oc g R>>=zo,zoo(~Q=4,zsg ps~(3o,ooo)=/BiOOf3 PS)(2+Zoo)=A,526)ps)&JT.JVo TQ:~U'7EinP.b1/rRu/1/~/O/J RZ8U4ZS ZP'dO F'gal/A/CH 8/5'74/f/4'8 H~A P'RI/~>r FORM NO.7IOSS REV.10/SS P~euetoR hVS Date: 5-Zs-9 Date: Tat/PI&nO.: Pro)ect Title: Calculation Title: CAROL~PO~&LXGBT COMPANY CALCULATION SHEET Calculation Q): c-cs-z-~c pg.of Rev.File: Status: Prelim.Q Final Void Q w/qg.Ao/m~c, spazzy~B J7;p=7g~y (/lo//'++A")'Bo+>Z.zz)v-z.>><()ti)///Tz//Ao7/a//

=-p (7')I la3s r~SZo (.Stoa CoAsERg Ps/'AS'2Q gs/=/st Fs/(.+(/'+$2o)=~oQ CJK gQ (/.c)oK<~~~&~~xC~>rs oK 8'P'amW~Zon/

dF~gg+C/OWNS FS Dud 7n Pldj'g//py

~<cd~M os X/3~+g Pl~oN e7-~808'Lp 7o~EJn./, J7:/C~wgs;F~=rocz~&,-laaio/Wy~=3/Zro<~=ei+n,=q~~a~s=M J=ZZB./3"~lgy gl/s+ass A)i<as+izt c')j]'8~4 z+z88->o/(/oooo)

FOAM No.74055 AEV.10/4S Comouted bv: Tar/PID No.: Date: 9-ZS-9 Date: '3 P-f~0>CAROLINA POWER&LIGHT COMPANY CALCULATION SHEET Calculation ID: C-c's'-p-~b Pg.of Rev.File: Project Title: Calculation Title: Status: Prelim.Q Final Void Q wELh+PIPE ro Pw~Jr.3 zoW2s:/zan o+z=Z5780 s=rag J///g/g~(/S~g bc?3/BQ))/(/Olg+8/+)80+)(Z.ZS)

)//5, 9+/'7/.g.~o>P/s,oooo o TIIER cuELM eke oK dg cowWR/sD//

i'//azoVE M/C Camnutad hv: Tar/PID No.: Date:$'-Z.5-5'2-Date: e.~s'9z.Pro)ect Title: Calculation Title: FORM NO.70055 REV.LO/05 CAROLINA POWER&LIGHT COMPANY CALCULATION SHEET Calculation ID: C-c'z-A'-Mo (Pg.of Rev.File: Status: Preliin.Q Final~Void Q Km$.4 cbecK, Q oo 7x'4'x/8 3oO~Ur~QQ~d'8Q X'iVECSonl STub 7'//PE'3+C<c..=44)CTVa)i%4 83'I Tree P-2~E.A 8'~i'/oRT/l PdrFN V/ZMJ&OOO/T/Co O/CC+TC)/lccoouaoTcoo Cou9ds'oR Tt;u///&co//cru/os c/rr//coo, (/E'F: S 7+/f0~2 Z.8to-7.+P 2-I.z-O9.Z/BOO.Z (ZS" Sauk Clo/OCulo Rb/OCT/OO/)(Zg" grus z/olcuoc/aucr/o//)

23.30 J/CZ Z3 9D EB.4/r///y./c/lre sz~esz=9z9o ps/~.>s.(2c,oooo Psl)Con/SE+Y.sT un r~rzggcT/ok

=.c/'+~l.o ok.(.4r, z, scow/8c~)R~F.HTrgCZ.'B Zg.C Ma&Se GTICES 3.3Q WHO'D/25.1OA1.08.PAGE 1 CALC ID'TTACHMENT" PAGE P OF ttttttttttttttttttttttt 100ttt tt tt ttttttttttt tt tttt1111*111ttttttt*111 GEORGIA INSTITUTE Of TECINOLOGY INTEGRATED CCNPUTER ENGINEERING SYSTEH GTICES 3.3$-GEORGIA TECN PRIÃERIETARY PRQNICT GENERATEO 88/02/16.15.25.46.DATE~92/09/25.

NPUT>>L~>>PLo99999>>~e Bf o4>>PDA>>LT~>>S1 oSDATA>>QA>>NC, P~->>CALC NO NNP-PCR-6547>>

>>PN~7>>FILQA%CS-N-4406>>

GTI CES 3.3B'2/09/25.

10.41.08.PAGE 2.ttttt 1 1 tt tOOt 111 t'1 tt OOOO 1 1 GTSTRUDL 11111 11 11 OOOOO OO 1~11 OOOttttttl OOOOOO OOOOOO OOOOOO tt 11 AttN 1 tO OOOOOOOOOO 11 1*11**11 t OOOOOOOOOO

  • tttttt tt~1 OOOOOO tt tt 11 1O 11 11 11 11 11 11 11 11 11 11*111 t tttt t 1 11 11 1111 1*111 111111~RELEASE DATE KARCH 1988 1~ttttttt11t11111111111 VERSIOI 8701CDC ttttttttttttttttttttttttttt SHIED BY AND PROPRIETARY TO THE GEORGIA TECH RESEARCH CORPORATIOI 1 Ne LEVEL CQtPLET ION NO.0 2180/85 1111 ACTIVE UNITS-LENGTH INSIGHT ANGLE TEKPERATURE TIKE 1111 ASSWED TO BE INCH PING RADIAN FAHRENHEIT SECOND 00.00 S 00.00 1.403 5.672 7.00 TYP SPA FRA UNIT IN LBS DEG JOI COO 1 00.00 00.00 2 00.00 20.00 3 3.207 20.00 4 12.965 20.00.5 16.00 20.00 KEK INC 11 2 I 223 I 334 F445 KEK PROP 1 T'TUBE80'TS6X6X6' T'AISCPIPE'P4.00XS'EK PROP PRIS 2 4 AX 10 AY 10 AZ 10 IX 100 IY 100 IZ 100 SY 100 SZ 100 CONSTANTS E 29.00Eb ALL G 11.15E6 ALL DEN 0.283 ALL BUT 0.0%N 2 4 BETA 0.ALL BUT 23.6%N 1 POI 0.300 ALL S CALC NO NNP-PCR-6547 GTICES 3.3Q 92/09/25.10.41.14.PAGE 3.cc<cccccccccccccccccccccc<<ccccccccco>>i>>>jj>M>>>i>>>>>>>>>>j>>>jj>j>>>>>

c ACTIVE UNITS MEME:LS LENGTN INCH c TOTAL LENGTH, MEIGHT ANO VOLTE FOR SPECIFED HEHSERS LENGTH~3.7464E+01 iKIGHT~5.8992E+01 VOL Mf s 2.765SE+02 c c ccc<ccccccccccccccccccccc<<cc<ccccc<~M ip>i jpixppphhpppp0phpM ipi jiiiiiiii PLOT DEVICE PRINTER LEN 6 PLOT PLANE XY PROJ JOI 1 2 5 ClLC NO NNP-PCR.6547 TIW: WWIZONTAL SCALE~2 50OQ IN WITS PER IKCN GT I CES 3.3$92/N/25.10.41.16.PAGE 4 VERTICAL SCALE~2.6667 IN UNITS PER INCH a T 5 X tNtttt+t)tttttttlttttttttttttttttttS PLOT I NTERPRETATIOI t SIDE SELOIGING TO INIE ELBKNT SIDE SELLING TO TlO OR NORE ELEMENTS REE JOINT LOCATIONS T JOINT LOCATIOIS R CALC NO HNP.PCR.6547 GTICES 3.38 92/09/25.10.41.16.PAGE 5 2 LOADS FOR JOINT 5 LOAD 1 JOI 5 LQA FOR X 213 LOAD 2 JOI 5 LOA FOR Y 839 LOAD 3 JOI 5 LOA FOR Z 540 LOAD 4 JOI 5 LOA NCN X 2964 LOAD 5 JOI 5 LOA NQI Y 2352 LOAD 6 JOI 5 LOA NN Z 7128 S S EQ.6 LOADS FOR JOINT 5 S LOAD 7 JOI 5 LOA FOR X 383 LOAD 8 JOI 5 LOA FOR Y 1003 LOAD 9 JOI 5 LOA FOR Z 721 LOAD 10 JOI 5 LOA NOI X 3948 LOAD 11 JOI 5 LOA NCN Y 4092 L 12 LOA NCN 2 11052 D OA 13 DIR-Y ALL NEN STIFFNESS ANALYSIS TINE FOR CONSISTENCY CHECKS FOR 4 NENSERS TINE FOR BANDMIDTH REDUCTION TINE TO GENERATE 4 ELENENT STIF.NATRICES TINE TO PROCESS 4 KENBER LOADS TINE TO ASSEKBLE THE STIFFNESS NATRIX TIKE TO PROCESS 5 JOINTS TINE TO SOLVE lllTH 2 PARTITIONS TINE TO PROCESS 5 JOINT DISPLACEKENTS TIKE TO PROCESS 4 ELENENT DISTORTIOIS TIKE FOR STATICS CHECK S CREATE PEAK LOAD'EG.2'RCN 1 2 3 4 5 6 13 CREATE PEAK LOAD'EO.6'RON 7 8 9 10 11 12 13 LOAD LIST'EG.2'EO.6'UTPUT DEC 1 IXJTPUT SY NEN LIST FOR, REA ALL.3l SECONDS~00 SECONDS.18 SECONDS.12 SECONDS.17 SECONDS.04 SECONDS ,26 SECONDS.12 SECONDS.36 SECONDS.29 SECONDS CALC NO HNP-PCR-6547 Gl'ICES 3.38 92/09/25.10.41.25.PAGE 6 t tIOOtt*01l RESULTS OF LATEST ANAL'YSEB~s et te te tsaa~atmot~ot PROBLEH PROJ>PCR TITI.E F ILENAHE<CS H 4406 ACTIVE WITS INCH LB DEG DEGF SEC HEHBER FORCES HEHBER LOADING JOINT/-AXIAL FORCE---~~--~---~-~------//------


HNENT-SHEAR 2 TORSIONAL BENDING Y SHEAR T/BENDING 2 1 EO.2 1 2 EO.6 1 2 2 EQ.2 2 3 EO.6 2 3 898.0 852.3 1062.0 1016.3 411.6 411.6 639.9 639.9 411.4 411.4 639.6 639.6 852.3 852.3 1016.3 1016.3 580.1 580.1 814.0 814.0 580.1 580.1 814.1 814.1 12483.0 12483.0 15309.0 18309.0 5572.7 5572.7 8047.0 8047.0 2S014.1 16411.9 37267.7'0987.1 12483.0 10452.4 18309.0 15459.4 25975.6 17748.1 36475.2 23682.8 22488.2 19504.8 29341.7 25784.2 EO.2 3 4 EQ.6 3 4 EQ.2 4 5 EQ.6 4 5 411.6 411.6 639.9 639.9 411.6 411.6 639.9 639.9 852.3 839.0 1016.3 1003.0 839.0 839.0 1003.0 1003.0 580.1 580.1 514+1 814.1 580.1 580.1 814.1 814.1 5572.6 5572.6 8047.0 8047.0 5572.5 5572.8 8047.3 8047.3 10452.4 4273.8 15459.4 6788.9 4273.5 2352.0 678S.9 4092.0 19504.8 10497.9 25784.2 15030.6 10497.8 7718.4 15030.5 11707.8 RESULTANT JOINT LOADS QPPOtTS JOINT LOADING/-X FORCE 0LISAL-FORCE-Y FORCE 2 FORCE-//--------------------HOHENT-----------


"/X IKNENT Y IDENT 2 HOHENT EQ.2 EQ, 6 213.0 3S3.0 898.0 1062.0 540.0 721.0 19684.0 25436.0 12483.0 18309.0 24919.4 34867.4 CALC NO HO PCS 654l GTlCES 3.38 M09/25.10.41.26.PAGE 7.DEC 3 L lSP ALL CALC NO HHP.PCR 6547 GTICES 3.38 92/09/25.10.41.26.PAGE d 1111111 RESULTS OF LATEST ANALYSES1 tttttttttttttttttltttttttttt PROBLEK-PROJ1PCR TITLE-FILENAKECS H 4406 ACTIVE UNITS INCH LB DEG DEGF SEC RESUI.TANT JOINT DISPLACEKENTS SUPPORTS JOINT LOADING/-------------

--DISPLACEKENT---


//---------------

ROTATION---"-----------"/

X DISP, Y DISP.Z DISP.X ROT Y ROT~Z ROT.GLOBAL EQo 2 EQ.6.000.000.000.000.000.000.000.000.000.000.000.OOO LTANT JOINT DISPLACEKENTS FREE JOINTS JOINT GLOBAL LOADING----------------

DISPLACEKENT-


//-----------------ROTATION------------

--""//X DISP Y DISP.Z DISP X ROT~Y ROT.Z ROT.EQ.2 EQ, 6 GLOBAL EQ.2 EQ.6 GLOBAL EQ.2 EQ+6 GLOBAL EQ.2 EQo 6.004.006.004.006.007.010.005.011.000.000.002.002.010.014.014.019.003.004.004.005.009.013.011.016.014.017.015.019.031.040.032.041.019.027.019.028.036.053.036.053.022.029.023.032.055.075.056.077 CALC NO HKP PCR 6547 GT lCES 3.3S%/09/25.10.41.26.PACE 9.DEC 1 1ST'EQ.2i LlST MAX STR ALL KEN SEC FRA KS 3 0.0 0.5 1.0 CALC HO HHP.PCR-6547 GTI CES 3.38 92/09/25.10.41.26, PAGE 10*RESVLTS Of LATEST ANALYSES t tNf HOOAO~OOt~~

PROBLEN-PROJWPCR TITLE-FILEHANECS.H.4406 ACTIVE VHITS INCH LB DEG DEGF SEC INTERNAL IKÃBER RESVLTS NENSER NAXIIRSI STRESS/o NOSER NAX HORNAL AT 1 4005.7 390.9 7106.9 188.9 SECTION.000 FR.000 FR.000 FR.000 FR LOAD EQ.2 EQ.2 EQ.2 EQ.2 STRESS Nlk HORNAL-3783.3-308.6-6920.2-106.6 AT SECTION 000 FR.000 FR.000 FR.000 FR LOAD EQ 2 EQ.2 EQ.2 EQ.2 eeoc@/

CALC NO INP PCS 6547 GT!CES 3.3S 92/00/25.10.41.27.PAGE 11.Sf'EO.4~L STR ALL ION SEC Rtj IS 3 Oe0 0 5 1,0 CALC NO NNP-PCR-6547 I GT I CES 3,38 92/09/25.10.41.28.PAGE 12 ttttt t*tttttttt ttttttttttttt RESULTS OF LATEST ANALYSES tttttttttttttttttttttttttttt PROBLEN-PROJtPCR TITLE-F1LENANEtCS H 4406 ACTIVE UNlTS lNCH LS DEG DEGF SEC INTERNAL NENSER RESULTS NORNAL 5450.9 540.5 9801.1 282.2 NENSER NAXIIRNI STRESS/oooo MENSE R KAX 1 AT SECTTQI~000 FR~000 FR.000 FR 000 FR LOAD EGo 6 EG 6 Eoo 6 EG.6 STRESS MIN KOOQL o 5187.9 412.5 o9510.7 o154.2 AT SECTlON.000 FR~000 FR.000 FR.000 FR LOAD EGo 6 EO.6 EQ.6 EO.6 o/

CANC N HNP KR 647 GT1ggg g,38 92/09/2S 10A1.20.PAGE 1X

.CALC NO NNP.PCR.&547 DYNANIC AREA 5QOQRY STATISTICS, QT ICES 3.3B 92/09/25.10.41.28.PAGE 14 INITIAL POX.SI2E POOL SIZE INCRENENT kWBER Of DATA POOL NOVES DATA CON'ACTIONS LOI RELEASED HIGH RELEASED L(M UNRELEASED LOI NmULES HI GN lkmULES 4091 4091 207 2 0 0 0 1 0 BLOtXS READ FROI DISK BLOCKS READ FROI ECS SEQUENTIAL READ-AHEADS INITIATED BLOCKS READ AHEAD DISCARDED ONE-PRU READ CNNT ONE-PRLI lWITE CtXHIT BLOCKS IBIITTEN TO DISK ONE.IRWD KOATES IN ECS BLOtXS REIBIITTEN TO ECS 87 10 0 0 0 4 0 0 0 NAXWBI IRBWER OF ALLOCATED 1JDRDS NAXIIRBI F IELD LENGTH ATTAINEO IRWBER OF CRASHES IRWBER Of FIELD LENGTH!kCREASES NOSER OF FIELD LENQTN DECREASES R OF OVERFLON.ACTION CALLS 271250 366400 49 48 5 3 KE035/11 DATE 92-09-25 PAGE 1 1~~t 0~~~0~~1 0 t 0~0~0 0~1**1 0~~~1~1~0 1~PROJECT JOB NO.*CALC NO.++4 8++~+SHT NO.ATTACHMENT

"@lif I OF PREPARED BY DATE CHECKED BY DATE~~*01~~**00~0*101101~tt~~~00~000~1000~0~EEEEEEEEE EE E EE EEEE EE EE E EEEEEEEEE 0000000 00 00 00 00 00 00 00 00 00 00 0000000 33333333 33 33 3333333 33 33 33333333 55555555 55 55 55555555 55 55 55555555 VERSION LEASED AUGUST 1989 SER HANUAL VERSION 8 THEORET ICAL HANUAL VERSION: 8 VER IF I CAT ION HANUAL VERSION: 10 0~0 1 0 1 t0~1**111*10**11*0001*1**1 1 IH CASE OF PROBLEHS IIITH KE035, CONTACT THE 1 BASEPLATE USER REPRESENTATIVES:

  • t AHN ARBOR GAITHERSBURG HOUSTON NORIIALK SAN FRANCISCO HAKE LOCATIOH EXTENSION 0 EPD(AAAO)EPD 8-4084 HO 5-4215 IIPO'NPD(SFAO)8 4362 0~0001100~10~0000~~~010000110 0 PROGRAH SPONSOR 0 TECHNICAL SPECIALIST-SF 45/4 8.7706 SF 45/4 8-2265 1 1 0 0~0*0 t 0~***0~0 0 t~0 1*0 1**1 1 1 1 1 COPYRIGHT 1984,1987 BECHTEL POIIER CORP.ALL RIGHTS RESERVED.0~1~0~~~1~0 0~0 0 0 0~~0~0~0 0 1 0~0~0 0 1~0 0~0 1 1*

HE035/11 DATE 92 09 25 PAGE 2 yyyyyiIiytPP01ttlt114111111101014t0111tOt1ttOPII10tt1t41141lllt11*t100l001tPPO PREPROCESSOR INPUT DATA CARDS 0*1****411~i0100000tlt*tl*1t*1110I1101t0011011***010000*tie*1t1POfltt00111000tl101t01 CARD 1 2 3 4 5 6 7 8 NO 123456789012345678901234Y&89012345678901234567890123456789012345678901234567890 1 3 FILEHAHEsHNPBP26 TYPE F-2 EHBED PLATE (8XI)CS.H.4406 2 KIT~gg1/3 COH~~g g 4000/4 PLA 7$7g~18,8,1@29/

5 BPR1,8.8E5,1.25E6,8210,11650/

6 BOL 2,3,1,3,1.5/

7 BOL 2,5,1,3,6.5/

8 BOL 6/3,1/15/1.5/

9 BOL 6,5, 1 g 15/6.5/10 END/11 ATT 3,'46,4/12 JST 3,4,2,3,180/

13 I ST 2,4,5,2.5,90/

14 IST 2,5$6t 5/90/15 JST 2,6,4,6,0/

16 IST 4,6,5,.5,270/

17 IST 4,5,4,2.5,270/

18 IST 4,4,3,2.5,270/

19 IST 4,3,2,.5,270/

4,2,2,6,180/

2 ST 2,3,4,2.5,90/

23 EHD/24 END/25 POI 3,4/26 LOA1,383,-721,1062,25436,-34867,18309/

27 LOA2,-383,721,1062,-25436,34867,.18309/

28 EHD/29 EHD OF JOB~~*END OF INPUT DATA~~*

HE 035/11 DATE 92-09-25 PAGE 3~)))))))t)>>>>t)))>>>>t>>))>>>>>>>>)))>>)))>>)))>>))t)>>>>)))>>))))1))))))))))t))>>>>))))))))))

)PREPROCESSOR INPUT DATA CARDS I))))))*>>)))))))))))))1))*)1*)))>>)))1))))))))))))I)))))>>))))))))*)))))))))))1)>>))))))

CARD 1 2 3 4 5 6 7 8 NO 12345678901234567890123456789012345678901234567890123456789012345678901234567890 1 3 FILENAHE>>HHPBP26 2 OUT 0>>0 3 CON 0>>0 4 PLA 7>>7 5 BPR 0*0 6 BOL 2>>3 7 BOL 2>>5 8 BOL 6*3 9 BOL 6>>5 10 ENO'l1 ATT 12 JST 13 I ST 14 1ST 15 JST 16 IST 17 1ST 18 I ST 19 1ST" T 0.000*0.000*0.0*0 000*0.000>>0.000>>0.000*0.000 0.000 0.0 0.000 0.000 0.000 0.000 4 o.6 ooo>>4 2>>3.000>>4 5>>2.500>>5 6>>.500 6 4>>F 000>>6 5 o 500 5 4>>2.500>>4 3>>2.500*3 2.500 2 2 6.000 2 3>>.500 3 4>>2.500>>0 000>>0 000 0 000*o.ooo.0 000>>0 000>>0.000*0.000>>0.000 0.000>>0.000*0.000>>0 000>>3)3)2>>2)2)4)4>>4)4)4>>4.000>>180.000>>90 000)90.000 0.000>>270.000 270.000>>270.000 270.000*180.000 90 000>>90 000)2 IST 2 23 END 24 END 25 POI 26 LOA 27 LOA 28 EHD 29 END OF JOB 0 000*0 000*0 000>>1062.0*25436.0*-34867.0)18309.0 1062.0>>-25436.0>>34867.0*.18309.0 3)0*0)4 0*0.000>>0 1>>383.0>>0 2*-383.0*0.000>>-721.0>>721 0****END OF INPUT DATA DECK>>*>>TYPE F-2 EHBED PLATE (BX1)CS-H-4406 0*1 0 0*0.000>>4000.000>>0.000*0.000>>0*18 000>>8 000)1.000>>29 000>>1*.880E+06>>.125E+07.821E+04>>.117E+05>>1>>3.000>>1.500>>0.000>>0.000>>1>>3.000 6.500 0.000*0.000>>1>>15.000 1.500 0.000>>0.000>>1~15 000>>6 500*0 000)0 000)

NE035/11 DATE 92.09-25 PACE 4 tttttttttttttttttttttttt**tt*tttttttt*tttt*ttttttttt*ttt***ttt*t*tttt*ftttf*ft FlLEHAHEtHNPBP26 TYPE F-2 ENBED PLATE (BX1)CS.H.4406 1 F 11*11*11ttttttttt1tttttt1t1tt*tttttt1tttttttt1ttttt1tttttttttttttttttttttttttttttttt lNPUT PARANETERS PLATE THlCKNESS"" PLATE X DlHEHSION~Y DlNENSlOH~.~~~~~NODULUS OF ELASTlClTY

...CONCRETE NODULUS.~......CONC.COKP.STRENGTH.1.000 18.000 8.000.290E+08.360E+07 4000.0 BOLT LOCAT lONS BOLT l J NODE X-COORD.Y.COORD.1 2 3 10 3.000 2 2 5 12 3.000 3 6 3 38 15.000 4 6 5 40 15.000 1.500 6.500 1.500 6.500 BOLT PROPERTlES BOLT STlFFHESS (LB/1N.)ALLONABLE FORCE (LB)TEHSlOH SHEAR TENS lON SHEAR.880E+06.880E+06.880E+06.MOE+06~125 E+07.125E+07.125E+07.125E+07 8210.8210.8210.8210.11650.11650.11650.11650.

ME035/11 DATE 92-09.25 PAGE 5 ttttttttttttttttttttttttttttttt**ttttttttttttttttttttttttttttttttttttttffttttt t t*FILEHAMEtHNPBP26 TYPE F 2 EMBED PLATE (SX1)CS.H-4406~ttttt1ttt1tttttttttttttttttttttttttttttttttttttt1t1ttttttttttttttttttttt1ttttttttttt NON STANDARD ATTACHMENT DATA ATTACKHENT NINBER 1 SEGMENT HlllBER..~~~~~~~TYPE~~~~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~~~~~~~DISTANCE~~~~~~~~~~~~~~~ORIENTATION ANGLE." o" THICKHESS e~~~~~~~o~o~~~JST 0.000 3.000 180.0 0.000 SEGMENT NUMBER"""".TYPE~~~~~~~~~~~~~~~~~~~HEIGHT.~~~~~~~~~~~~~...DISTAHCE~~~~~~~~~~~~~~~ORIENTATION ANGLE~"...THICKNESS~~~~~~~~~~~~~~2 IST 0.000 2.500 90.0 0.000 SEGMENT HISSER".o TYPE~~~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~~~0 I STANCE~~~~~~~~~~~ORIENTATION ANGLE~~THICKNESS~~~~~~~~~~3 IST 0.000.500 90.0 0.000 SEGMENT NUMBER".""" TYPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~~~~~~~DISTANCE~~~~~~~~~~~~~~~ORIENTATIOH ANGLE...~THICKNESS~~~~~~~~~~~~~~JST 0.000 6.000 0.0 0.000 SEGMENT NUMBER~~~~~~~~~T YPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~~~~~~~DISTANCE~~~~~~~~~~~~~~~ORIENTATIOH ANGLE~~~~~~THICKNESS~~~~~~~~~~~~~~5 IST 0.000.500 2?0.0 0.000 NE035/11 DATE 92 09-25 PAGF.6 ttttttttttttttttttttttttttttttttltttt\tttttttttttttttttttttttttttttttttttttttt FILEHANEtHHPBP26 TYPE F-2 ENBED PLATE (8X1)CS-H-4406~ttttttttttt**1*tttttttttttttttttttttttttttttttt*tttttttttttttttttttttttttttttttttttt NON STANDARD ATTACHHENT DATA SEGNEHT HUNBER~...~~~.~TYPE~~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~~~~~~~DISTANCE o.oooo.oooo.oo ORIENTATIOH ANGLE.~~~.~THICKNESS~~~~~~~~~~~~~~6 IST 0.000 2.500 270.0 0.000 SEGNENT NUNBER~~~~.~..~TYPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~~o~~~~~~~~~~~~DISTANCE~~~~~~~~~~~~~~~ORIENTATION ANGLE......THICKHESS oo.ooooooo."o 7 IST 0.000 2.500 270.0 0.000 SEGNEHT NUHBER.~...T'YPE~~~~~~~~~o.~~~~~HEIGHT~~~~~~~~~~~~~DISTANCE~~~~~~~~~~~ORIENTATIOH ANGLE..THICKNESS~~~~~~~~~~8 IST 0.000.500 270.0 0.000 SEGNENT NUNBER.........TYPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~~~~~~~DISTANCE~~~~~~~~~~~~~~~ORIENTATIOH ANGLE......THICKNESS ,oooo,~~~~~~~~9 JST 0.000 6.000 180.0 0.000 SEGNENT NWBER".""" T YPE~~~~~~~~~~~~~~~~~~~HEIGHT.................

DISTANCE~~~~~~~~~~~~~~~ORIENTATION ANGLE.."" THICKNESS o.~.~~~~~~~~~~10 IST 0.000.500 90.0 0.000 SEGNEHT NUNBER.........TYPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~~~~~~~DISTANCE~~~~~~~~~~~~~~~ORIENTATION ANGLE...~..THICKNESS~~o~~~~~~~~~~~11 1ST 0.000 2.500 90.0 0.000 KE035/11 DATE 92-09 25 PAGE 7~tttttt**tttttttttttttttttttttt'tttt*tttttttttttttttttt*ttttt'tt'ttttttt*tttttttt FILENAHEtHNPBP26 TYPE F.2 EHBED PLATE (8X1)CS-H.4406 ttttttttttt*tttttttttttttttttttttttttt*ttttttttttttttttttttttttt*ttttttttttttttt*t*)t LOADING CONDITIONS LOADING CASE NO.t 1 LOADINGS APPLIED AT NODE~50 FORCE FX t 383.00 FORCE FY~-721.00 FORCE FZ~1062.00 IKWENT HX>25436.00 HOHENT HY~-34867.00 HOHENT HZ~18309.00 LOADING CASE NO~2 LOADIKGS APPLIED AT NCOE>50 FORCE FX t-383.00 FORCE FY~721.00 FORCE FZ t'062.00 HOHENT HX t-25436.00 INNOCENT HY t 34867.00 HCHENT HZ~.18309.00 HE035/11 DATE 92 09 25 PACE 8*tt00011ltl00*t*04t111*N*014t*10tietiaOit400t*tillt4114telgyygtit0011lt111ttf1 FlLENAHEsHNPBP26 TYPE F 2 EHBED PLATE (BX1)CS H 4406~OoioliStiOiPOOi1IO*1101IPOO'I'lI'I'P*i4010ioiioiOP000110i04iioiioi*4100000itf*ii11011001 BASEPLATE CONNECTlVlTY ELENEHT NO.NDDE JA JB JC JD ELEHEHT KDDE ND.JA JB JC JD 1 1 8 9 2 3 3 10 11 4 5 5 12 13 6 2 2 9 10 3 4 4 11 12 5 6 6 13 14 7 7 8 15 16 9 9 10 17 18 11 11 12 19 20 13 8 9 16 17 10 10 11 18 19 12 12 13 20 21 14 13 15 22 23 16 15 17 24 25 18 17 19 26 27 20 14 16 18 16 23 24 17 18 25 26 19 20 27 28 21 19a 27 29 22 29 30 23 24 31 32 25 26 33 34 27 29 36 37 30 31 38 39 32 33 40 4'1 34 20 22 24 26 28 30 23 30 31 24 25 32 33 26 27 34 35 28 30 37 38 31 32 39 40 33 34 41 42 35 31 36 43 44 37 33 38 45 46 39 35 40 47 48 41 32 34 36 37 44 45 38 39 46 47 40 41 48 49 42 HE035/11 DATE 92.09-25 PABE 9 tttttttttjttjjttttttttttttttttttttjttjtjj*ttjttjtttttjttttjjjjjttjtjfjjjtjfjt FILENANE*HNPBP26 TYPE F-2 EHBED PLATE (BX1)CS.H-4406 t~jjttjj*ttttjtttjjjjtjtj*tttttttttttttttttttttttltjjttttt*tjt*tttjjtjjttjjtt**tjt*jtt NODAL COORDINATES J'RANE L 1NE L1KE NODE NODE X Y 2 COORD!NATE COORD1NATE COORD I NATE 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 5 6 7 1 2 3 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 15.000 15.000 15.000 15.000 0.000 1.000 1.500 4.000 6.500 7.000 8.000 0.000'1.000 1.500 4.000 6.500 7.000 8.000 0.000 1.000 1.500 4.000 6.500 7.000 8.000 0.000 1.000 1.500 4.000 6.500 7.000 8.000 0.000 1.000 1.500 4.000 6.500 7.000 8.000 0.000 1.000 1.500 4.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NE035/11 DATE 92-09-25 PAGE 10 Q Q Q Q f$Q Q~Q Q Q Q'g y y 0 l t P l l 0 0 I l 1***i 1 I t t l 0 0 t 0 0 t t l 1 t 0 4 1 0 l t I 0 t t I 1 1 l t t 0 0 t t 0 t I t 0 l 1 l 1 1 1 I 0~FILENAHE~HNPSP26 TYPE F 2 EHBED PLATE (8X1)CS.H-4406***001140001*01*1000t010101*0110001tt11IPtttOI0101*000001001*I010100001101*0011111001 NODAL COORDINATES I J FRANE NODE X Y 2 L I HE L I HE KCOE COORDINATE COORDINATE COORD IHATE 6 5 40 6 6 41 6 7 42 7 1 43 7 2 44 7 3 45 7 4 46 7 5 47 7 6 48 7 7 49 NODES AT APPLICATION OF LOADS 3 4(OFFSET)50 15 F 000 15.000 15.000 18.000 18.000 18.000 1e.ooo 1e.ooo 18.000 18.000 6.000 6.500 7.000 8.000 0.000 1.000 1.500 4.000 6.500 7.000 8.000 4.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000.500 NE035/11 DATE 92-09-25 PACE*~~~y11itl1011t111111101llfllt11llttittiffg~f4f*f*+1ttt44410ttt000tttt1tttf*gg FILENANE*HNPBP26 TTPE F-2 ENBED PLATE (8X1)CS-H-4406~eeaattiagyq*qaet1titttttI11t11f1itt1fIaIt11HiiiIitItpitatti4itteeaaaleaetfttt1tePai CONCRETE STIFFNESS DATA NODE EFFECTIVE CONCRETE AREA STIFFNESS KOOE EFFECTIVE CONCRETE AREA STIFFNESS 1 5 7 9 11'13 15 17 19 21;", 33 35 37 39 41 43 45 47 49.750 2.250 2.250.750 2.250 7.500 2.250 1.500 4.500 4.500 1.500 2.250 7.500 2.250 1.500 4.500 4.500 1.500 2.250 r.soo 2.250.750 2.250 2.250.750.253E+06.760E+06.760E+06.253E+06.760E+06.253E+07.760E+06.507E+06.152E+07.152E+07.507E+06.760E+06.253E+07.760E+06.507E+06.152E+07.152E+07.507E+06.760E+06.253E+07.760E+06.253E+06.760E+06.760E+06.253E+06 2 1.125 4 3.750 6 1.125 8 1.500 10 4.500 12 4.500 14 1.500 16 2.250 18 7.500 20 2.250 22 1.500 24 4.500 26 4.500 28 1.500 30 2.250 32 7.500 34 2'50 36 1.500 38 4.500 40 4.500 42 , 1.500 44 1.125 46 3.750 48 1.125.380E+06.127E+07.380E+06.507E+06.152E+07.152E+07.507E+06.760E+06.253Eior.760E+06.507E+06.152E+07.152E+07.507E+06.760E+06.253E+07.760E+06.507E+06.152E+07.152E+07.507E+06.380E+06.127E+07.380E+06 SUNNAT ION OF EFFECTIVE AREAS~144.000 PLATE AREA~144.000 TOTAL CONCRETE STIFFNESS~.486E+08~**INPUT DATA PROCESSING COHPLETE~**~

HE035/11 DATE 92-09.23 PAGE 12 PLOT PLAN VIEN OP T"E BASEPLATE'HERE THE X AXIS (CONSTANT J LINES)ARE HORIZONTAL, AHD THE Y AXIS (COHSTANT I LINES)ARE VERTICAL.HJJJJJJJJJJJNJJJJJJJJJJJJNJJJJJJJJJJJJNJJJJJJJJJJJHJJJJJJJJJJJJNJJJJJJJJJJJJN I I I I I I I HJJJJJJJJJJJ JJJJJJJJJJJHJJJJJJJJJJJJBJJJJJJJJJJJJN NJJJJJJJJJJJAJJJJJJJJJJJJKJJJJJJJJJJJJAJJJJJJJJJJJNJJJJJJJJJJJBBBJJJJJJJJJJJN I A I A I B I I A I A I I I I A I A I I I I A I A I I I I A I A I I I I A I A I~I I HJJJJJJJJJJJAAAAAAAAAAAAAAJJJJJJJJJJJJAJJJJJJJJJJJHJJJJJJJJJJJJHJJJJJJJJJJJJH I A I A I I I I A I A I I I I A I A I I I I A I A I I I I A I A I I I I A I A I B I NJJJJJJJJJJJAJJJJJJJJJJJJNJJJJJJJJJJJJAJJJJJJJJJJJHJJJJJJJJJJJBBBJJJJJJJJJJJN NJJJJJJJJJJJ JJJJJJJJJJJNJJJJJJJJJJJJBJJJJJJJJJJJJH I I I I I I I I I I I I I I HJJ JJJJJJJJKJJJJJJJJJJJJHJJJJJJJJJJJJNJJJJJJJJJJJHJJJJJJJJJJJJKJJJJJJJJJJJJH PROGRAH: HE035 BASEPLATE SNOI:$9601 0110 AAN 8025 RELEASE 11 NOS/VE 1.5.3 L765~t*t**tttttttttttttttttttttttttttttttt BEGIN SOLUT ION PHASE LOAD CASE NO: t~tttt**tttttttttttt*ttttttttttttttttttttttttt DATE: 92.09.25 TIKE: 11:42:03 PAGE: 13 TITLE: FILENAMEtNNPBP26 TYPE F-2 EMBED PLATE (BX1)CS.N-4406 LOAD CASE NO.-1--(T 0 P T E N V A L U E S)0 I S P L A C E H E N T S NODE 28 27 35 26 34 33 21 20 25 19 DISPL~.845128E.02

.766563E-02

.746633E.02

.728577E 02.680186E 02~649039E 02.639193E.02

.562270E 02.537901E.02

.524436E.02 N(OE 1 8 2 3 9 10 43 44 45 46 0ISPL.-.207719E 02-.171645E 02-.148922E 02-.120377E.02

-.991198E.03

-.612182E-03

..588561E.03

..428321E.03

-.366745E-03

..211471E.03 QUADRILATERAL PLATE PRINCIPAL STRESSES ELEHENTS+2 FACE ELEH SIGHA ELEH SIGMA ELEH SIGMA ELEH Sl GHA 23 9290.20 5860.3.3933.24 9258.22 8450.21 6883.19 5361.1 4164.2-4156.35.2405.E L E H E N T S-2 FACE ELEM SIGMA ELEH SIGHA ELEH SIGMA ELEH SIGHA 23.8602.20.6786.3 3933.24-8373.19-6331.35 2450.22.8255.1 4163.21-7379.2 4157.CONCRETE LOADS NODE Z.PRESS K(eE Z.PRESS KIX)E Z.PRESS N(X)E Z.PRESS 1-701.8-580.3-407.10-207.43-199.44-145.46-72.47-42.9-335.45-124.

PROGRAN: NE035 BASEPLATE SKI: S9601 0110 AAH 8025 DATE: 92 09-25 RELEASE 11 NOS/YE 1,5,3 L765 TINE: 11:42,31 PACE: 14 BOLT LOADS NODE H-SHEAR Y SHEAR SRSS TENSION 10 12 38 40 446.-247.366.-182.-904.-904.543.543.1008.937.655.573.0.2810.1308.2563.BOLT INTERACTION EQUATION EQUATIONt((TENSION/TALLSI)tt 1.000+(SHEAR/SALLOM)tt 1.000))*t 1.000 HME TENSION SHEAR TENSION SHEAR ALLOI ALLOJ RATIO RATIO INTERACT RATIO SAFETY FACTOR 10 8210.11700..001.086 12 8210.11700..342.080 38 8210.11700.,159

.056 40 8210.11700..312

.049.087.422.215.361 11.478 2.368 4.645 2.769 tttttttttt*1*ttttt*tttttttttttttttttttttttttt E N 0 LOAD CASE tttttttttttt*t*tttt*t*ttt*ttt*tttt*tttttttttt PROGRAH!HE035 BASEPLATE SNNI:$9601 0110 AAH 8025 RELEASE 11 NOS/VE 1.5.3 L765 DATE: 92-09-25 TINE: 11!42:31 PAGE: 15 00010010101110000010*110100010100000010010*11 BEGIN SOLUT ION PHASE**LOAD CASE NO:~0000111101110000*010011*11110111000001000000 TITLE: FILENAHEIHNPBP26 TYPE F-2 EHBED PLATE (SXI)CS H.4406 LOAD CASE NO.2 (T 0 P T E M V A L U E S)0 I S P L A C E H E N T S NME 1 2 3 8 9 10 15 4 16 17 DISPL..706320E-02

.637827E-02

.603626E.02

.595421E 02.526936E-02

.492677E 02.485091E-02

.432928E-02

.416782E 02.382673E.02 NME 28 35 27 34 26 21 33 42 41 40 DISPL.-.163211E-02

-.110677E.02

-.100326E.02

.708989E 03..666366E.03

..589303E-03

-.505115E.03

-.313510E-03

-.171125E-03

-.977272E.04 0 U A D R I L A T E R A L PLATE PRINCIPAL STRESSES ELEHEKTS+Z FACE ELEH SIGNA ELEH SIGNA ELEH Sl GHA ELEH S IQIA 24.4210.30 1446.19 1120.23-4102.29 1445.32-1100.22-3311.27-1348.21.1496.26.1329.ELEHENTS Z FACE ELEH SI QIA ELEH SI QIA ELEH Sl GHA ELEII SIGNA 23 3701.29-1934.25 1498.24 3452.26 1868.20 1321.22 3394.30-1832.21 2108.27 1706.COKCRETE LOADS NME Z-PRESS NME Z PRESS KME Z PRESS NODE Z PRESS28-552.35-374.27-339.26-225.21-199.33.171.41-58.40-33.34-239.42-106.

PROGRAN: NE035 BASEPLATE SNLI:$9601 0110 AAH 8025 DATE: 92-09-25 RELEASE 11 NOS/VE 1.5.3 L765 TINE: 11:42:49 PAGE: 16 8 0 L T LOAD S NCOE X SHEAR Y-SHEAR SRSS TENSION 10 12 38 40~.446.247..366.182.904.1008.904.937.543.655.-543.573.4336.1333.645.0.BOLT INTERACT ION EQUAT ION EQUATION ((TENSION/TALLOM)~~

1.000+(SHEAR/SALLOM)*~

F 000))~1.000 N(X)E TENSION SHEAR TENSION ALLOM ALL(Q RATIO SHEAR INTERACT SAFETY RATIO RAT10 FAC'TOR 10 8210.11700..528 12 8210.11700..162 38 8210.11700..079 40 8210.11700..001.086.080.056.049.614 1.628.242 4.125.134 7.435.050 20.008 111111I111*I11f*III4111000011141P4fi*11jlSOti E N 0 LOAD CASE 0~Ilt1111104tll000410IPllkillt14110ltl1PCOI110

~IOitiiil1011111111100111I1110000011010114011 END POSTPROCESS I NG~1001010IPOPOIOPI1114I11044110011011011101111 32I043 I TEM PTY NO 2 I 3 I 5 I I PART NO E,XI 5 T.BX I ST.E,xl 5'f.6 XlST-EX I ST.0 STATUS DE SCRIP TION T5 5 ILL IL.25o x I'-4 LG.(p.5 o o a a s)TS 5 x 5 I.2,50<I'-10 LCI.(C,LI'T TO 5LIIZ)(Ih 500 CIR 5)L I 2 x 4 x)-C L6 (C.U'T TO 5UIT)(O 3lcE7 (Ih,>>)B X I 5 T.a'X I 5T.x I>0'-g ASCII A R>8 X+I2 x, 0'-+IZ iC.(5s Sc)(A~a)TS 9 x (y a.p 50 X I-IE5'2 LCI.(C UT TO 5U IT)(h~C a.e)A TS 4 x,4 x~250 w 0'-5I2 I g A k 3~~Sip x OI-I2 LC.(A&00 GR 5)(AS~EP)4"4 55.Sc.H.So'IPE Q'-Ic3 I 6 (C.LIT TO SU I'T (5h 3I2 Tp 304)E.lt I4 x 5 y x 0'-3 4 L6, (A P EE')EMBED It 2.Z.)R I" x Iga OLIO 8>s QA 2'-3 BN5ED'It gYes r-z)8-6-I55 50 I 5 I4VENY HOLE 0 yI.'1 I I I Il I il I'l II'I I t~57L FROM CS-H 42 J5 I.g I II&-3(REEI IO I I I SL--~-J MIN Qs F.P.5 C~aI~~Pu~P I Ml I FLOW RB C.IRC,.EE N~QEE 5TRAII45R PLAN LOCATION PLAN I f~I TO 66 RKMOYEP SEE NOTE 2 SH.2 REFERENCE DOCUMENTS pipE r wG-6-4 0 RE.V.2.5 CIYE NEO(OWG.STRESS CA'.-I I I-~<8 92 S'PPORT CALC.C.CS-H-4 RSV.-200 I RE%I-I eS PROFESSiONAL EhCINEER: SARSEN Y R6 VAT KP/56ISWIC.CAROLINA POWER 8c LIGHT COMPANY NUCLEAR ENGINEERING GEPARTMENT PLANT: HARRIS NUCLEAR PROJECT-UNIT I SCALE.NONE ISSIIE PSR PCR Co547 REV GATE OE SCRIPTION CHEMICAL.$VOI UlrtS COhLTIEE OL RAB E.L..2.34'-0 STa,wi~sa, sUppORV'wC.

NO A-3 234-I<5-H-4~RCV~II+5 S T I oI 2 SIIETCH NO 5K-65+7" C-l00 2.I SHT I 324943 l2 I 0 11 SEE NOTE, 5 2"~5T EE.L I IC,ON Ii il CS-H-4 2.35 I J I LR,.EC.2+1LO I I l fi8 I (REF)/I I I I 0 I<VEN T HOI K E'b.4$52.2)I"X.IO 2L Oi IO?-3 SECT B-B R.(T Y P E F a.')8-0" l 55501 B..248-0 iO 4 I I I I ly f I TYP.4 IS i" SIOES 35IDE5rS ly Vl 3lh NOTK5: f.(RSF)WHKN USED ALLOWS i (o'2.ITEMS 1 (QTY.2.)iS TO Sa RKMOVEP.3.PELSTK ITEN 3 4.IH5TAl L ITEMS 8 THRU IK A'5Žow OH SH.I 42.~5, FIEL.P HAS OPTION TRIM A5 REQ'0 iTEMS lo(2, iF INVEaFEaaHC.a P gl 5T AT TIME 0 F I N 5ThLL AT I 0 N.REV DATE T.S, 8 EM&.SE.C A-A, IssvE PER PC.R&547 i DESCRIPTION WNiOSN CH OV OPE OPPE PROFESSIONAL ENGINEER SAFER Y RGLA PEP/55l5QlC.CAROLINA POWER&LIGHT COMPANY NUCLEAR ENGINEERING DEPARTMENT PLANT: HARRIS HUCLKhR&OPEC'UIIIT I SCALE: NOHS CHfhhlCA,L g VOl LjMG.C,OAT ROL, RAP E.l.Z3ro-CI sT~>o E, R, S U P P 0 R.Y'P A-3-2%-I-C5-H-4400 REVS~8 S': 2 or Z SKETCH Np SK Ccr5%7 C i<Os'SHT: 2 or Z Mod Number C FR Number Calculation Affected+~~+~~~~~~<~Drawing Affected S<~<+><>LC.Reason for Change:~crt deW r'I sd To I de SVPrb Ia Justification for Change Approval:~Minor Change (i.e., editorial, reference dimension, etc.), Supplementary Calculations are not attached.I-I Other (provide basis, attach supplementary calculations)

DPE*%at*Signatures indicate design verification has been performed in accordance with NED Procedure 3.3.This form serves as the design verification record.RQv.(C go PP(/P~

CALCULATION NO.3 Z94 PAGE REV LIST OF EFFECTIVE PAGES PAGE L Lc REV PAGE REV PAGE REV ATTACHMENTS Rev.2 (E.C.F&/rlj)

CALCULATION NO PAGE REV TABLE OF CONTENTS List of Effective Pages~~~~~~~~~Page No.Table of Contents Purpose List of References Body of Calculation Conclusions Attachments

.......................Page(s)(GWlibcD.Ft fici 0 CK,/LP tbu7)C+Tauo~)(gF oSS)7f Pg X NR>P R, (.mc-.+5')

pme.0-aypa S~'2 E Lxaw-pc-I(q)PIC c Rev.rC-C.Pnllr!

FORM NO.10055 REV.10/15 Commuted by>.Cheeked Py<r I PID No.: Date:%25'-wz Date: f-zz-y CAROLINA POWER&LIGHT COMPANY~CALCULATION SHEET Calculation ID: Pg.of Pile: Rev.Pro)ect Title: Calculation Title: Status: Prelim.~Final Q Void Q//II 7D PXoV/4>c A N AN<'H'Og S yC'Pe<T~OX 8~gA/ucg WS Z+~ive d/J AAN7'~Y(~.

I36 (I'09'6 t4Z Wa, ZP.uO.SP-gS<7<-q~Z,~~4+4~<GT 8 PE R wkly" Hc-16'9 as C/l;C'Zo<~e 4g A-~-2~4-I-CS-F/.4)0<

So-AfF&'RS 8 c<Icriou Avcao<~/7'/I/~1~F THc WDI'Mc D LOuSTIOnJ OI=Sr/WINERY, RRII5FD PZPE STHEDS Bulla>SIS (IDI IW)8'cBLlidiS IIACHD<Siii0Dcrlj Di=srIIi<<EQ, I IA STIES 8/JAI-$5/5 QQg Qgg 70 7HF g~dVAL yp AcLIEF VXIV'C+I+4DQI7ld Al dF d~I I-ICE'5.77/8'TRAI+EX

+Z8I7lbAI I4 70 CdA3781+I 4 Ap'c 8giz 7HH7&4//HE+E'5847 7a+EyEpJ7~e Bc>'MA6c bI=T88 40IFICC$,/E Fi/ENC c5I.STSIIDI.iDUT/iir DRr=D pz/Dg/2 g DB.JI 35/II r7 c (IIcDzg D>sr~g yz-oy zq&g Iz rye-D~(err.c)Z.iree OZD'iR~ID'V2~D'9'29, ZIH8, 4 rr cS2 Z (Irl'>)4>~-~T+TltE IC4'ITcRJI F'dg STA?OC7VRRL HW<I~ATla~S S TC C L 70/1 W4 I4 WQ Pi+8y'//7g 5.~4R 8 Hc-/8'g////4~Dc.S J6 AJ D 4 QFL Qe.Q$74 UC70<E5 8p 7.A C~LC.+/4/-/~$7.0-ZS-eZ 8.Sk~vc/-I eD.Sg-8547-C-/doZ Zc v.'~005~<UCTl0~

bc.-S/t5 M 8/lTA ARP Tdv/WEC.SOa S7VD 4tcLD/W4~/VI5IOAl FORM No.74055 REV.10/45 Computed bv: Chepjced bZ: J r/PID No.: Pro)ect Title: Date:/-2e.1>Date: CAROLINA POWER&LIGHT COMPANY CALCULATION SHEET Calculation ID: Pg.of File.'ev.Calculation Title: Status: Prelim~Final Q Void Q MopaL'SjgI C+-g/gag II@g5 l5 l4 I Il IO I2 IZ ZT S ME~~4 PlZojpggt-g I,Z~s.<~r-x~~~, I~~.~.~~4 x I<5f 1>/1I I2 (I+T.5.Q p(Q~4 II 4 d PtPc cc H.ga I/~r>I I5 gigolo umiak 46x I Pcj, (fz8P, 7)

Cmor.Zm POSER 4 LIST CCSnaSY HARRIS NUCLEAR PLANT ting/tjD NUMIHR PCR-6547 FAOB 14 1-1A SI CHARGING PUMP ALTERNATE MINI-PLOW LINE, RELIEF VALVES~OVED, FLOW ORIFICES AND STRAINERS ADDED WITH LEAD BLANKETS.C oehzoc.O LoAoh Fvelash iÃl.-LR fHL-i Ave LA1-c.ORRHÃhTOR'S NITIALSIDATE

',;.i-z.~-~z, aIBCKER'$INIALSI DATE R)I)jR~HhNCER NO NODE PTo ISO NO SUPPORT SYSTEH CONDITION Pz LES)LAi:Z.LBS tz ZsaS lip (PT LBS)Hg (PT LBS)0 DEhDWEICHT 2~+5'364.53'3'.0-21.4 THERHhL I 93'HERHhL II (ah l4CKC-E~~v%L.~-0 Si-42'45.284'u>='(lD 318 4Ckll SX~~m\'l p1-36.>~L~S'4l l DBE ShH OBE Inertia 84.167 284.212.l 3 214.74l DBE(Inertia) 135.UPSET (+)UPSET EHERCENCY+EHERCENCY ()Sh 290 413..303 LO 302.3.0'l1 110.DISPLhCENEÃTS t OMhslXLQ OQc SORY LoRQb: Can:.%%i;L,O oe 0 Z3+Z,.K".).Y.Q~L~l.a-4 Ou H:ax-H 4 0'ss 7~t'au;.LW-C O~0-e-SSa LZ:.~1 Kr 0.00 0.00 0 F 00 THERHhL II QCCIDClm TiiERHhL III oecrmcamm NOTES<l.+X~NORTH,+Y~UP,+E~EhST.2.5c.c.S~C.axe, KHAN.-2.Cnc.E.eaax~ocae.

3~

FORM t40.7$0SS REV.10/4$ComPuted by: Date: 9 is.5>Check@~b~-'ate: P-zw-yz.IPID No'ro)ect Title: Calculation Title: CAROLINA POWER&LIGHT CO~ANY CALCULATION SHEET Calculation ID: Pg.of Pile: Rev.Status1 PrelimFinal Q Void Q To8Z Z.rcpt C CRc/k F~=25.$4s/&a~/3/=///5 JZ g/4, 5'y 3 Ps./O4C C C/f 7//ff g~TO FAC//-/7/q 7 E Cafe~/h/g CO<</~~)Hu>COwM<i~ZN.2 Al864JAZdc T5 CO/0L>S TQ SWq4'4'c57 5'/pg/.5, P4//4X'~rg)

+E//arE/-OPF 44}$pp~cyg AuaO/08dc5 tc'/0)PRf 5r.8855=ll Oft/ssf (RCRtBO//O/

rroW Ig 4t4X4)f/=44>5f/1 d<ks/c's Zws/fc~-,$(std).-Zj g/o=W z)"-5 Ssks ((Acr 4).Kf.-,4/44)'l8,4

/772+/5/g 25/on Z t.'z vr)i PC Z./C//)/I'0 0+/, fur.-oRcrfofJ

=-o (~>=,53</0/8.4+(~f 4)J 5.5.fosrm rfz G4'.zo4l(rrs~~fj)red C0 n484'Z S 44-y=~Q PS/~/Ob r r~--F4'.2/S/e/ZSr-"'(WhX.FA///.kg 7"c fof)<(z,/C/g3-co s.r~=/7 8 CfloCK@.p Sc/I.gQ fC/Pg NR//SMcss=1 Pks/<I4.5 ks/2,zo I~pc/4=2'VS Ps/(9 7/:s/dl~Zo.7F=/7.Z P5'/Fg=.g pp.2)=/4.5'y~,4(zg.2).-5Z 9~/Zie 2 oO ck.IforroRorfoof fo,5" g.44)7d Frf////7AT4-" CP/C CK/4 (g LdWb/Ncj/4plQ 84.2 4<l.owwa//5 fy o4'o Ks l (cof s&'f.F'o R S441 ofofo@PC)

ChectR~by: Tar/PID No.: Date: f 27~Pro)ect Title: Calculation Title: FORM No.100SS REV.10/SS Computed by: Date: C1"-i 9 25 9g CAROLINA POWER&LIGHT CO~ANT CALCULATION SHEET Calculation ID: c-cs-4-e~Pg.of Rev.File: Status: Prel3sa Q Final Q Void Q EC 8 O'Mz/F/CA T/o Q 4" P]0/PZ To/'Ac'pi>4T>

~CCK/A C ZdAbS<~~/4 Zf./5'c'~p/)Wx=SOO+Fy=&SCAN/~i~/I-+Mg=//240/F)y.ZZ700 P1g=/8arC)CcZE~A.4 Lor44$E'Q,P Aggytgisqggz I Au-I4.l h'g lg.Z~q" JQ tl kin>l~/'~'~~0')<WXt Z.Z>)7/.C (0'bo<q]4'fg~g~~//zclo (g.gg-)g-~//f)V/9,/Fx (w~zi We,z)~g 78-/AV~5/J>ca+(Zzyoo y I$'d3o)4.t~/5,=(4z t 4 2)~=(op v/7og~)~/'gc 6<i~/968~in<~-Pd/sss~70'7 P/8oo o)+da 4 IQ~~c.~~~6,>tE/n Iu T~II FORM No.70055 REV.10/05 Computed by: Date: Checked lgr:.r/PID No.: Pro]ect Title: Calculation Title: CAROLINA POWER&LIGHT C~ANT CALCULATION SHEET Calculation ID: PS.of Pile: Rev.Status: PrelifII.~Final Q Void Q QEI 0 AEc.K Ll&B Lc>mDs c 5UPM+<['wR 7T<r1 g C Jr,>2, denim iz)4 WI-Ie,<=I&+5+I7$O x g'g'<Lo P ac mr q,r~P.m.g Az=IS n FORM NO.74055 REV.10/$5 Computed by: Che~'-<bw:.Tar f PID No.: Prospect Title: Date: W 5SR1.Date:-Z~P CAROLINA POWER 6 LIGBZ COMPANY CALCULATION SHEET Calculation ID: Pg.of File: Rev.Calculation Title: Status: Prelim~Final Q Void Q I get c'I~w~l 4 k,gI.cTkcW UBQ5 AQS bk c'o~f~s~d A,L40W a gg I/I br=9"'4y"~e)'(>57+leel+~os)Roe7'in e~c.woe.*tuuJ>>e>J=~~~'0 l ((8 ee(g)6 IN It&, Zf.4, (fYlI pj.I)0%XTE~LGd P5 Z~F.MTcool F h.~4LLow Abbe&Sx=IISo Wy=I211 Pg=Iu%b thy.)2>co gy r I=4+go Z2.bg,~zs tL-t 4g vp+()~~&2l ZS-5(-7 4)Tate(c)'o e4l I 5/PF O~~iTK gVQ eaO~S/II 9+<<~Z~e Z>5-5 5 f-II'C l)+TED~2-~-24 (gee,~'C)&Ac<(6)=ZS S-0 lf Il 9 jM RGP~(LOA'05 Q<Ttl E Q,2 ALL~P SU&j,g pL'-r<~nseee A<<ok.+~E~~e~404+I e"A&a JPJTct<CTIy A CQ,=~954 o~4k-T/PK,~+TeIF'~~

FORM NO.7$055 REV.10/$5 Computed by'T Checked I~-'r/PID No.: Prospect Title: Date: lt Date: 9-2.7 P CAROLINA POWER ItT LIGHT COMPANY CALCULATTON SHEET Calculation ID: Pg,(of File.'ev.Calculation Title: Status: PreliIIr,+Final Q Void Q~T.B NIZ 3T.lZ~<ZTZ~f Ft~e S,Z.Z fx-i&&5 Fy=l185 pp y fAx"-lo7<a fYlz-%oh')M~>o Err.~runt, RE.'I As-P vice LocAq lo<RcF.Al'T.A;YXLT.='.O5 (Z)25 T5~'%l Xz.FZWI.55IXX~ox)X gx)iS SXW,~Z5~'Z.S.z.t (')WB,F'.W~ga K a~A O~.O>S/II z zx Tzzx vz.~o s.zg (IRF g ATY.Tx)~Sou.'+>>TZ~'(41 ('1 I'5 EQ.N I.oyzT0's Q)T<p'Q.Q AI.t ovyz RTL<S SVkiSS AuF'C (dO457 CD5i IQT~~C fi0<=,759<I.0 0 e FL vpj, sz z~K (XTXTXI (IXuAT TTE5O<'[IXM5 g<Qb pc%5HcWc.50i 70 KD6E, T)IST,'O P~PPPy0a-gCP RTf.F 0g.RC-'QAI-I y5'(OUT.

FORM No.70055 REV.10/$5 ComPuted by: Date:~"-ala Checked bg:.Date:-~Y'-',~-s~r/PlD No.: Project Title: Calculation Title: CAROLINA POWER 6 LIGHT COMPANY CAL'CULATION SHEET Calculation ID: Pg.of File: Reve Status: Prelim~Final Q Void Q sw XpMe 7 lo 7 R+~'7 X&-l LA.lo-8.~&" x'3z so-d'z L~~.W TF~7 I 5 cog a caTc 0 To w4.4X4 o~o~c.s>oc, a I kcF.6k, F0R.5obl+b~~I-

>+-<X lr O~THa OTgce.Fo NO gl4u iCIC~T~cMDI&g U>t I.~RE P ACE~T~1 IO)5 Mwwc,c7cD To 7'5, 4X4 (mi~.)0~yuE S I Dc Q 4 f C4'4>>)dw THc.6THiR., SA5 Q OQ THc~AH H KR.tM 4d I+ICH: THc PLA fC IS 5'7I P'Fg~cD I P>f AT'Te CH C7, Mi=.Mt3cR.S gglt.RQIDmO IJCLDS vsEO)HO SIAM>G>C>

NT BWMCg Q)t g'TA k5.K>Cc ITEM+7 (co c IC',~~we<(~J 4f>x~oJ F C l2P 5TRUDL 5x~o c'lg~P.OZZ 4 FORM NQ.$0071 REV.I/00 R/PW/PHP NO.OWNG.NO.CPhL-HPES CALCULATION SHEET 0 REV.BY:, DATE:~+5 CHK:DATE:~/~i~~SUBJECT'4HL'V>>ATTACHMENT

" 0 0 0 GT1CES 3.38 92/N/24.N.36.35.PAGE 1~t;ALC lf)'TrACHMENT" PNIE OF tttttttttttttt1tttttttt1tttt1tt1tttttttttttttttttttttttt1ttttttttttttttt1111ttltttltt GEORGlA lNSTlTUTE OF TECQOLOGY lNTEGRATED COMPUTER ENGlKEERlNG STSTEN GTl CES 3.38 GEORGlA TECN PRQ%lETARY PRUCT GENERATED 88/02/16.15.25.46 DATE~92/N/24.

GTICES 3o3$'2J09/24.09.36.3$.PAGE 2 NPUT~L~PUT>>PL~>>~>>SF 4 PD 8>>LT$8,S1SDATA,OA,NC,~P.

~~~~~~~~~~'CALC NO NNP PCR 6547>>S>>PROJOPCR6$

47>>>>PILSAR~.N.4400>>

~ttlltttttOIOIOIOOOIIOOOtl~tttt

    • Ill tll Ill OOIOO t 11 11 GTSTRUOL~1*tltttllttl

~litt tO tt It Ill I I tttttttt OIIIIO OIOIOI 1111 tt 11 11 OIOIIO It I~11 Otlllllttt 11 11 Ot tt 11 11 11 11 IIIIOIIOII I ttt1 tt I OIOOII 11 tt 11 11 11 11 11111**11 11 11 11 I tt tt tl lt 11 tttllt IOOOIO OOIOIO~11111 11 11 tt ttlt 11111 IttltO~QNED SY AND PROPRIETARY TO TNE GEORGIA TECN RESEARCN CNIPORAT I ON RELEASE DATE HARCK 1988 VERSlON 8701 CDC NM LEVEL 0 CCNPLET I ON NO.2180 jbs~ttttttttttttttttttttttttttttttttttttttt 1111 ACTiVE UNITS-LENGTN tttl ASS%ED TO SE INCH lKIGNT ANGLE TENPERATURE Tile PtRJle RAD I AN FAHRENHEIT SECOND TYP SPA UNIT IN JOI COO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15'6 NEN INC 1127 778;FRA LSS DEG'i 00.00 00.00 00.00-6.00.6.00 00.00 9.375 9.375 9.375 00.00 00.00 00.00 00.00 00.00 2.875 10.00 00.00'00.00 00.00 00.00 00.00 14.375 14.375 17.375 20.37$20.375 27.00 27.N S 26.375 26.375 26.375 26.375 00.00 12.00 20.80 20.M 24.00 12.00 12.00 12.00 12.00 12.00 12.00 00.00 12.00 18.00 18.00 18.00 223;334;445;$

26;667 8 8 9;9 9 10 7 10 6 10;11 10 13 g 12 11 12 CALC NO HNP-PCR-6547 11 I 14 13 14 I 15'l4'15 I 16 1$'l6 GT I CES 3.3B 92/09/24.09.36.36.PAGE 3 1'TUSESO<<TS6X6X4' 14 T<TlaaaO>>TS4X4X4>

5 10 11 12 13 T'TISE80<<TS5X5X4'6 T iAISCPIPEi

>P4.00XS<NEN PRa PRIS 4 6 TO 9 15 AX 10 AY 10 AZ-10-IX 100 1Y 100 IZ 100 SY'100 SZ 100 CONSTANTS E 29+OOE6 ALL G 11.15E6 ALL OEN 0.203 ALL QVT 0.0 NEH 4 6 TO 9 15 BETA 0 ALL POI 0.300 ALL S STEEL ccccccccccccccccccccccccccccccccccccc>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

ACT 1VE LNITS ikIGNT LS LENGTH INCll c TOTAL LENGTH, lklGHT Ale VOLQK FOR SPECIFED HEHBERS c LENGTN>1.0975E+02 RIGHT>1.0462E+02 VOL SE~6.7795E+02 cccccccccccccccccccccccccccccccccc>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

PLOT DEVICE PRINTER LEN 6 PLOT PLANE XY THRV 1

CAI.C N NP-PCE-4547 TCE PRLIITEE LQI 4 YZ TIRU 1 CT I CE$3.3$%/N/24.09.36.38.PACE 5 CALC NO NNP.PCR 6547 GT I CES 3+38 92/09/24.09.36.39.PAGE 6 T I(NI;Y T t N(aIZONTAL SCALE~3.375D IN UNITS PER INCH*tttt2 VERTICAL SCALE~3.4667 IN UNITS PER INCH a T 3 X t 14 X t 14 t 6 10 1311~tttttttt5ttttttttttttttttttttttttttttXttttIOttttttttttXtttt11tttttttttttQ(12 t 12 S PLOT INTERPRETATION:

t*ttt SiDE SELONGIKG TO ONE ELENENT SlDE SELONGIKG TO TlQ OR NORE ELENENTS FREE JOINT LOCATIONS SUPP(X(T JOINT LOCATlONS CAI.C N0 eu-PCN-647 ICE PRINTEN LEN 4 XZ TIRU 10 GTICES 3.38%l09/24.09.36.39+PAGE CALC NO NS PCR.454T QT1CES 3-3S 92/09/24.09.36.39.PAGE S ATIINls X o~e 2 2500 lN UNlTS PER lKCN VERT1CAL SCALE~2.2500 1N 011TS PER 1NCN 7 S 9 XttttytttttttX t 2 Xtttttttetteetttttttt5eet 6 10 13 11 tteetttttttettttttttttttXttttete[

01ttttttttttttttttXttttttl ftttttttttttttttttX3*X PLOT 1NTERPRETATlINI'1DE SELOKGlKQ TO OKE ELEIKNT+++++S1DE SELIXIQlKQ TO TM OR ICRE ELEIKMTS X FREE AlNT LOCATLONS S SUPPORT JOlNT LOCAT 1ISS CALC lO OP.PO.6S47 QtlCEI 3.3$92/09/24.09.36AO.PAGE 9 lCE PRlllYER LKN 4 XY FANS 15 CALC NO NNP.PCR-6547 TIOIs Y NOIIZONTAL SCALE a 1~0000 IN INIITS PER IKCN QTICES 3.38 92/N/24, 09.36.40.PAGE 18 VERTICAL SCALE~1.0000 IN LNITS PER INCR 14 15 16 Xt tt ttt tt 1 5 t t ttttt1 t tttttttttNttttttt ttttttttttttttt 1 6tttttttttttttt 1 tttttttttttttt ttttttt tt 1ttt t t ttg 114 t 13 X PLOT INTERPRETATION!

SIDE BELONGING TO ONE ELECT SIDE QELONQINQ TO TMO OR NORE ELEKENTS FREE JOINT LOCATIONS SEAPORT JOINT LOCATIONS CALC NO NNP.PCR 654'7 GTICES 3+3$92/09/24.09.36.40.PAGE 1%LOADS FOR JOINT 5 LOAD'I JOI 5 LOA fOR X 174 LOAD 2 JOI 5 LOA FOR Y 341 LOAD 3 JOI 5 LOA FOR 2 154 S t EQ.6 LOADS FOR JOINT 5 LOAD 4 JOI 5 LOA fOR X 200 LOAD 5 JOI 5 LOA FOR Y 393 LOAD 6 JOI 5 LOA FOR 2 172 t S S EQ.2 LOADS FOR JOINT JS'L4 t LOAD 7 JOI 16 LOA FOR X 270 LOAD 8 JOI 16 LOA FOR Y 832 LOAD 9 JOI 16 LOA FIXI 2 985 L J OA NQI X 7800 L JOI 16 LOA HOI Y 8088 LOAD 12 JOI 16 LOA IKN 2 6780 S S EQ.6 LOADS FOR JOINT~lit t LOAD 13 JOI 16 LOA FOR X 500 LOAD 14 JOI 16 LOA FOR T 971 LOAD 15 JOI 16 LOA FOR'1516 LOAD 16 JOI 16 LOA IKNI X 11244 LOAD 17 JOI 16 LOA IKW Y 12924 LOAD 18 JOI 16 LOA NOI 2 11076 S DEA LOA 19 DIR Y ALL NEN S STIFFNESS ANALYSIS SANDMIDTN INFORNATIINI BEFORE RENLWBERINQ.

CALC NO HNP-PCR 6547 GT ICES 3.38 92/09/24.09.36.41.PAGE 12 WHI SANDMIDTN IS 4 AIS OCCURS AT JOINT 6 THE AVERAGE QANDMIOTN IS 1.357 THE STNSARO DEVIATION OF TNE SANDMIDTN IS 1~172 2.529 BNSMIDTH INFORNAT ION AFTER RENQOIERING.

THE NAXIJRHI SANDMIDTH IS 3 AIS OCCURS AT JOINT 6 THE AVERAGE QANDMIDTH IS 1.143 THE STANDARD DEVIATION OF THE 8ANDMIDTH IS+833 0 1,976 THE PSEISO.DIA%TER OF THE STRUCTURE IS 10 SETMEEN JOINTS 5 AJS 16 T1%FOR CONSISTENCY CHECKS FOR 16%NBERS T1%FOR QAJSMIDTH REDUCTION TINE TO GENERATE 16 ELENENT STIF.NATRICES TIHE TO PROCESS 16 HOSER LOADS TINE TO ASSENSLE THE STIFFNESS HATRIX PROCESS 16 JOINTS SOLVE MITH 7 PART ITIINIS T 0 PROCESS 16 JOINT DISPLACE%NTS T1%TO PROCESS 16 ELE%NT DISTORTIOIS T1%FOR STATiCS CHECK S CREATE PEAK LOAD iEO.2'ROI 1 2 3 7 8 9 10 11 CREATE PEAK LOAD'EQ.O'ROI 4 5 6 13 14 15 16 LOAD LIST'EQ.2'EO.6'XJTPUT DEC 1 IXJTPUT SY NEH LIST FOR, REA ALL.44 SECONDS.21 SECONDS.30 SECONDS~63 SECONDS~45 SECONDS~09 SECONDS.96 SECOSS~64 SECOSS 2.20 SECONDS 1.36 SECONDS 12 19 17 18 19 CALC NO HKP.PCR-6547 GT1 CES 3.38 92/09/24 09.36.45.PAGE 13 Otter&~RESULTS OF LATEST ANALYSES aaaeaaaeeaa PRDBLEH-PROJACR TlTLE F lLENA%44 H 4400 ACTlVE OtlTS 1NCH LB DEG DEGF SEC HEHBER FORCES NEHBER LOADTKG JOlNT/--------.----FORCE-------------------

//---------


NNENT-AXIAL SHEAR-Y SHEAR-2 TDRSlDNAL BEND lKG-T-/BENDlNQ 2 1 EO.2 1 2 EO, 6 1 2 2 EO.2 2 3 EO.6 2 3 EO.2 3 4 EO.6 3 4 965.3 946.3 1271.9 1253.0 361.0 347.1 413.0 399.1 174.0 174.0 200.0 200,0 787.1 787.1 1150.4 1150.4 174.0 174.0 200.0 200.0 347.1 341.0 399.1 393.0 970.2 970.2 1444.7 1444.7 154.0 154.0 172.0'72.0 154.0 154.0 172.0 172.0 3216.3 3216.3 4590.6 4590.6 924.0 92C.O 1032.0 1032.0 492.8 C92.$550.4 550.4 8520.9 5227.4 12322.8 7418.8 1848.0 492.8 2064.0 550.4 924.0.0 1032.0.0 15872.7 8721.8 22019.0 11708.5 4152.3 2621.1 4776.3 3016.3 2621.1 556.8 3016.3 640.0 EO.2 4 5 EO.6 4 5 3C1,0 341.0 393+0 393.0 174.0 174.0 200.0 200.0 154.0 154.0 172.0 172.0.0.0.0.0 492.8.0 550.4.0 556.8.0 640.0.0 EO.2 2 6 EO.6 2 ,6 1024.3 1024.3 15OS.O 1SOSA 589.2 571.3 844.5 826.6 64C.S 644.S 986.5 986.5 5773.2 5773.2 8312.9 8312.9 3219.0 6648.8 4593.7 10301.6 5338.3 3398.3 7542.6 4920.5 EO 2 6 7 EO.6 6 7 403.3 403.3 617.3 617.3 403.9 403.9 584.0 584.0 572.8 572.8 891.9 891.9 1995.$1995.8 2914.6 2914.6 5182.8 860.0 8047.8 1249.6 4593.4 241$.2 6633.4 3470.7572.$403.9 403.3 2418.2 860.0 1995.8 CALC KO KKP.PCR&547 GTtCES 3.38 92/09/24.09.36.45.PAGEaa.s 8 N.2 N.6 snA 891,9 891.9 572.8 572.4 891o9 891.9 403.9 584.0 584.0 403.9 403.9 584.0 5S4.0 403.3 617.3 617.3 403.3 403.3 617.3 617.3 2418.2 3470.7 3470 7 2418.2 2418.2 3470.7 3470.7 1163.9 1249.6 1768.3 1163.9 2304.7 1768.3 3542.6 1873.3 2914.6 2756.2 1873.3 3050.1 2756.2 4465.7 EQ.2 EQ.6 9 10 9 10 403.3 403.3 617.3 617.3 403.9 403.9 584.0 584.0 sn.8 sn.8 891.9 891.9 3050.1 3050.1 4465.7 4465.7 2304.7 7384.2 3542.6 11491.9 2418.2 4593.4 3470.7 6633.4 10 N.2 EQ.6 6 10 6 10 903.1 903.1 1333.0 1333.0 577.8 585.4 838.9 846.4 241.2 241i2 369.2 369.2 1561.3 1561.3 2227.4 2227.4 1567.3 2S12.7 2402.3 4361.6 2644.7 4358.6 3807.5 6460.4 11 N.2 EQ.6 10 13 10 13 1024.3 1024.3 1505.0 1505.0 579.1 586.9 834.4 842.2 644.5 644.5 986.5 986.5 5773.2 5773.2 8312.9 8312.9 10106.2 13779.1 15722.7 21425.0 6413.3 9827.4 9420.3 14363.6 12 N.2 EQ.6E0.2 EQ.6 11 12 11 12 13 11 13 11 1386.2 1401.8 1772.4 1788.0 639o4 639e4 912,7 912.7 843o4 843.4 1354.9 1354.9 1385.4 13S6.2 1771.6 1772 o4 639.4 639.4 912.7 912.7 843o4 843.4 1354.9 1354.9 7008.2 7008.2 10763.3 10763.3 14354.1 14354.1 20252.5 20252.5 5277.$6445.9 7480.6 9485.9 7383.9 7008.2 11413.9 10763.3 14354.1 2%03.9 20252.5 30536.9 5807.1 5277.5 8203.7 7480.6 14 15 EQ.2 EQ, 6 EQ.2 EQ.6 13 14 13 14 14 15 14 15 847.0 840.9 986.0 979.9 270.0 270.0 500o0 500.0 270.0 270.0 500.0 500.0 840.9 840.9 979.9 979.9 985.0 985.0 1516.0 1516.0 985,0 985.0 1516.0 1516.0 17938.0 17938.0 28084.0~28084 7800.0 7800.0 11244.0 11244.0 13710.0 7800.0 20340.0 11244.0 17938.0 15106.1 28084.0 23725.5 16777.2 15157.2 23843.2 20843.2 15157.2 12739.7 20843.2 18026.0 16 EQ.2 EQ.6 15 16 15 16 270.0 270.0 500.0 500.0 840.9~832.0 979.9 971.0 98$.0'85.0 1516.0 1516.0 7800.0 7800.0 11244.0 11244.0 15106.1 8088.0 23725.5 12924.0 12739.'7 6780.0 1S026.0 11076.0 RESULTAKT JOlKT LOADS QFPOtTS JO!KT LOAD I KG/-X FORCE-FORCE-Y FORCE 2 FORCE e//o o oeeeo og+KT/X HOtEKT Y NOKKT 2 IKNEKT GLOBAL EQ.2 787.1 970.2 8520.9 3216.3 15872.7 CALC NO NSP.PCS-6547 0T I CE$3+38 92/09/24.09.36.45 PAGE 15 1150.4 1271.9 1444.7 12322.8 4590.6 22019.0 E0.6 843.4 1354.9 1401.8 1788.0 639.4 912.7 6445.9 9485.9 7008.2 10763.3 20403.9 30536.9 CALC N OP.PCS 6547 CT ICES 3.3Q'9'/24.09.36.45 PAGE 16 EC 3 L 1SP ALL CALC NO NNP-PCR.6547 QT I CES 3,3B 92/09/24.09,36.45.PAGE 12 eeeaseeeeaaoa

  • RESULTS OF LATEST ANALYSES&101~*11 PROBLEN-PROJsPCR TITLE-FILENANE~" 4400 ACTIVE UNITS INCH LB DEG DEGF SEC RESULTANT JOINT DISPLACENENTS SUPPORTS JOINT LOADING/----------------

DISPLACENENT--------

X DISPEL Y DISP.2 Dl//------ROTATION-------------.-.-.-/

SP X ROT~Y ROT.Z ROT 12 GLOBAL E4.2 EQ.6 GLOBAL E4.2 EQ.6 ,000.000.000.000.000.000.OOD.000.000~000.000.000~000~000.000.000.000.000.000.000~000~000.000.000 RESULTANT JOINT DISPLACENENTS FREE JOINTS JOINT LOADING/----------------

DISPLACEMENT----------------

//-----------------ROTATION-------------------/

X DISP.Y DISP~2 DISP.X ROT.Y ROT.2 ROT.GLOBAL EQ.2 EQ.6 GLOBAL EQ.2 EO 6 GLOBAL EQ+2 EQ.6 GLCNAL E4.2 E4.6 GLOBAL EQo 2 EO.6 GLOBAL EO.2 EQ.6 ,001~002.Na.004.003.004.004~005.002.003.002.003.000.000.000.000.001.002.001.002.001.001.004.005.001~001.001.002.002.003.002.003.001.001.002.003.002.003.003.004.004.005.004.005.001.001.002.002.004.006.005.007.006.008.006 F005.008.012.009.013.009.012.011.014.013.017.013.017.018.026.018.026 EQ.2 EQo 6.002.003.004.005.002.003~002.003.009.013.019.027 CALO BO NO.PCB.6547 mrCES 3.3B 92/09I24.09.36.45.ADAGE 1S10 13 14 15 16 EQ 2 EQ.6 GLOBAL EQo 2 EQ.6 EQ.2 EQ, 6 GLOBAL EQo 2 EQ.6 GLOBAL EQ.2 EQo 6 GLOBAL EQ.2 EQ.6.002.003.002~003 ,003.004.003.004.007~010.007.010.007.010.004.005.001.001.000~000+000.000.000.000.003.004.010.014.002.003.001.001.001.001.001.001.003.004.006.009.014.022+002.003.003.004.007.011.008.011.023.034.024.036.039.057.009~013.010.014.016.024.016.025.057.ON.058.090.075.117.019.027.019.027.023.033.024.035.047.067.048.069.062.090 CALC N OP-KR.6547 CTICRS 3.3e 92I09IZC.NIaS.AS.I uZ DEC 1 L lST'N.2'lST IIAX STR ALL I%II SEC FRA IN 3 0.0 0.5 1.0 CALC NO NNP.PCR-6547 OT I CES 3.3$92/09/24.09.36.45 PACE 20 RESULTS OF LATEST ANALTSES tttt t t ttt 1 t tt t tttttttttttttt PROBLEN-PROJtPCR TITLE-F ILENANEtCS-N.4400 ACTIVE UNITS INCR LB DEG DEQF SEC INTERNAL NOSER RESULTS IKN8ER NAXIIRM/-NENSER 1 5 6 7 9 10 11 12 13 14 15 16 STRESS NAX NORNAL 2584.6 657.9 911.5 44.6 1705.6 138.1 87.7 110.8 160.1 1254.9 3706.2 4267.0 2085.6 7658.2 358.0 6580.5 A'I SECTION.000 FR~000 fR.000 FR.000 FR 1.000 FR.000 FR 1.000 FR 1.000 FR 1.000 FR 1.000 FR 1.000 fR 1.000 FR.000 FR 000 fR 000 fR~000 FR.LOAD EQ.2 EQ.2 EQ.2 EO.2 EQ 2 EO.2 EQ.2 EQ.2 EQ.2 EO.2 EO.2 EO.2 EQ.2 EQ.2 EQ.2 EO.2 STRESS MIN NQRNAL-2239.1-528.7-814.6 23.6-1259.2.57.4 26.9 3.7-79.5.861.3-3259.8-3656.1-1806.9-7186.2-304.0.6458.0 AT SECTION.000 FR.000 FR~000 FR F 000 FR 1.000 FR.000 FR 1.000 FR 1.000 FR 1 000 FR 1.000 FR 1.000 FR 1.000 FR.000 fR.000 FR.000 fR.000 FR LDID EQ.2 EQ.2 EO 2 EO.2 EO 2 EQ.2 EO.2 EQ.2 EQ.2 EO.2 EQ.2 EO.2 EQ.2 EQ.2 EQ.2 EO.2 CALC R0 RRP-PCR-65Ar IST'EQ.6'IST IIAX STR ALL INN SEC SRA IN 3 0+0 0.5 1,0 GT l CES 3.38 92/09/24.09.36.45~PAGE 2T CALC RO RXP.PCR-6547 GT I CES 3.38 92/09/24.09.36.47.PAGE 22 1t11*HIHI1NOIP~~4+

+RESULTS OF LATEST ANALySES 4441440tOOO~OM4140tttt+

PROBLEN-PROJPCR TITLE-FILERANCS N-4400 ACTIVE UNITS IKCH LS DM DEGF SEC INTERRAL IKNER RESULTS NORMAL 3623.0 750.2 1041.3 51.2 2573.9 208.5 134.4 169.3 243.0 1887.2 5608.4 6294.8 3093.4 11031.3 539.3 9888.3 5 6 7 8 9 10 11 12 13 14 15 16 NBSER KAX II%A STRESS/e ONER MAX 1 AT SECTION.000 FR.000 FR.000 FR.000 fR 1.000 fR.000 FR 1.000 FR 1+000 fR 1.000 fR 1.000 FR 1.000 fR 1 000 FR.000 fR~000 fR.000 FR.000 FR LOAD EQ.6 N.6 EQ.6 EQ.6 EO 6 N.6 EO+6 EQ.6 EQ.6 EO'6 EO.6 EO.6 M 6 EOo 6 N.6 N.6 STRESS NIN RORHAL-3167.9.602.4-929.8 27.4-1918.0.85.1 43.9 9.1-119,5-1306.3-4952.5.5515.6-2695.6-10481.8-439.3-9661.4 AT SECTION.000 FR.000 FR~000 FR~000 FR 1.000 FR.000 FR 1.000 FR 1.000 FR 1.000 FR 1.000 FR 1.000 FR 1.000 FR~000 FR+000 FR.000 FR.000 FR LOAD M.6 E4.6 EO, 6 EQo 6 N, 6 EO.6 EOo 6 EO.6 E4, 6 EO 6 EQ 6 EQ.6 EQ+6 EQ, 6 E4.6 N.6 CALC NO IW.PCR.6547 GTtCES 3.38 92/09/24.tN.36.47.PAGE 23 CALC NO NNP-PCR-6547 GT I CES 3,3B 92/09/24.09.36,48.PAGE 24 DYNAMIC AREA CUWARY STATISTICS.

INITIAL POOL SIZE POOL SI2E INCRENENT NNQER OF DATA POOL INVES DATA CNPACT IONS LOU RELEASED HIGH RELEASED LQI UNRELEASED LOM NCOULES HIGH NCOULES 4091 4091 255 6 0 0 0 2 0 BLOCKS READ FROI DISK BLOCKS READ FRQI ECS SEtNJENTIAL READ AHEADS INI TIATED BLOXS READ AHEAD DISCARDED ONE-PRU READ CQJNT ONE-PRU IAIITE CRNT BLOXS IRITTEN TO DISK ONE-RID UPDATES IN ECS BLOCKS RENRITTEN TO ECS 89 20 0 0 0 4 0 0 0 NAXIIRM NNGIER OF ALLOCATED lORDS NAXWM flELD LENGTH ATTAINED NOSER OF CRASHES NNGIER Of FIELD LENGTN INCREASES NLSSER Of FIELD LENGTH DECREASES ER OF OVERFLY-ACTION CALLS S 267166 36&200 sr 42 8 6 NE035/11 ALU IO'TTACHMENT" DATE 92 09 24 PAGE O*OO~~~0~0~~II@~~~~~~~~0~P~PROJECT JOB NO.~~0~~0~1~A gpss g STiRIP CALC NO.0 PREPARED BY 0 SHT NO+DATE CHECKED BY DATE 0 0 fNchrt&i~wcPC (~t t~~~I~I~1 0~~~I~~0 0~0 1 1 1*0 l~0~0~~~~~~~0~EEEEEEEEE EE E EE EEEE EE EE E EEEEEEEEE 55555555 55 55 55555555 55 55 55555555 VERSION E A S E D AUGUST 1989 USER NANUAL VERSION THEORETICAL NANUAL VERSION: 8 VERI F ICATION NANUAL VERSION: 10 000010~I~~0~~0~10000~01~0~IO~~~IN CASE OF PROBLENS MITH I%035, CONTACT THE~BASEPLATE USER REPRESENTATIVES:

0 i COPYRIGHT 1984,1987 BECHTEL PQIER CORP.ALL RIGHTS RESERVED.11~OO~OIOO~~~~~0~0~~~~~~~~~~0~~~~0~~0~~~

IKQRi/11 OATE 92 09-24 PACE 2~ioeeeetee~~ii~tatoeaea~

NKPROCESQR

@PUT DATA CARDS*l*tttttP1ttttOOHtltN1ttetf He%CARO 1 2=--~3 4 5 6 7 8 KO 12345678901234567890123456789012345678901234567890123456789012345678901234567890 1 3 FTLENA%~INPBP27 2 OJT Jg~1/3 CCN g~~g 3000/4 PLA 5glggbt14$

1$29/6 BPR1,8.8E5,1.25E6,8200/8680/

7 BOL 2,2,1,1.5,1.5/

8 BOL 2,6,1~1.5,12.5/9 BOL 4,2,1,6.5,1.5/

10 BOL 4/6/1,6.5,12.5/

11 ERO/12 TUB 3,4,1,3.5,7.5/

13 Ele/14 POI 3,4/15 LOA,~1,1445,-1150,1272,22019,12323,-4591/

16 EIN/17 ERO OF JOB~~ERO OF INPUT DATA~

I%035/11 DATE 92-09-24 PACE ttttttttttttttttttttttttttt ttttlllttlll*tttlllltt

  • PREPROCELNR lNPIJT DATA CARDS 1 t>>>>ttttttttttttt>>ttttttttttttttttltttltlttttlt CARD 3 4 5 6 7 NO 12345678901234567890123456789012345678901234567890123456789012345678901234567890 1 3 F ILENANEtNNPSP27 2 OJT 0 0 3 CON 0 0 0 4 PLA 51 7 0 5 APR 0 0 1>>6 SPR 0 0 11 7 aOL 2 2 8 ROL 2 6 11 9 ROL 4>>2 1>>10 ROL 4>>6 11 11 END 12 TIN 3>>4 1>>13 END 14 POl 3>>4 0 15 LOI 0 0 1*16 END 17 END OF JM 1 0.000 8.000 6.000>>.880E+061 1.500'1.500 6.500 6.500 3000.000 14.000 6.000.125 E+071 1.500 12.500 1.500 12.500 0.000 1.000>>~2501~820E+04>>0.000>>0.000>>0.000 0.000 0.000 29.0001.2501.868E+04*0.000>>0.000 0.000>>0.000 0.000>>0.000 0.000>>0.01 0.000>>0.000>>0.000>>0.000>>0.000 0.000 0+000 0.0 0.000 0.000 0.000 0.000 0.000>>0.000 1445.0>>Ž1150.01 0.000>>0.000 0.000>>1272.0 22019.0 12323.0-4591.0~END OF lNPUT DATA DECK~3.SDO>>7.SDO 0.000 0.000>>

m035/11 DATE 92 09e24 PAGE 4 ttt t t t tttttttt t 1 tt t ttt t tttttttttttt F ILEXA%tHHPQP27 ttt tttttttttttt*ttt tttttttttttttttttttttttttttttttttttttttttt INPUT PARANETERS PLATE THICKNESS...".

~PLATE X DIHENSION.""~.Y DINENSION~~~~~~~IRSULUS OF ELASTICITY

".C(RICHE T E IHmULUS~~~~~~~~CONCo CON~STRENGTH~~~~1.000 8.000 14.000.290E+08.312E+07 3000.0 BOLT LOCATIONS BOLT I J NCOE X-COM..Y.COORD 1 2 2 9 1.500 1.500 2 2 6 13 1.500 12.500 3 4 2 23 6.500 1.500 4 4 6 27 6.500 12.500 BOLT PROPERTIES BOLT STIFFNESS (LB/IN.)eeoeeeoo eo e TENSION SHEAR TENSION SHEAR ALLOMABLE FORCE (LB)~880E+06.125E+07 2.880E+06.125E+07 3.NOE+06.125E+07 4.880E+06.125E+07 8200.8200.8200.8200.868D.8680.8680.8680.

1 F ILENANEtHNPSP27 I%035/11 DATE 92 09 24 PAGE 5~ttttttttttttttttttttttttttttttttttt

~<ttttttttttttttttttttt t*tttttttttttttttttttttttttttttttttt ATTACHNENT DATA TLS 6.000 6.000 0.000.250.250 ATTACIWENT NOSER TTPE~~~~~~~~~~~~D DINENSION~~~~~I DINEKSION"o~HEIGHT~~~~~~~~~~THICKNESS (T1)~~THICKNESS (T2).o PROPERTY NOSER I LINE WOOER~~~~~~J LINE NIWQER."".X COORD I NATE~~~~~~~Y~COORDINATE

~~~~~~~ORIENTATION ANGLE" 1 5 4 3.500 7.500 0.0 I%035/11 DATE 92-09-24 t tt t tttttttttttttttttttttettttttatto F lLENANEtNKPSP27 tt tt ttttttttttttttttt ttttttttttttttttttttttttttttttttttttttttttttttt LOAD 1KG COND 1T lONS LOADlNG CASE NO.t 1 LOADlNGS APPLlED AT INmE<36 FOICE FX t 1445.00 FQtCE FY>-1150+00 FMCE F2 t 1272.00 NUGENT NX t 22019.00 I@KENT NY t 12323.00 INWENT NZ t-4591.00

-f LLENA%~27%035/11 DATE 92.09.24 PACE 7~ftttnttlttttt*f14ettlit~i~

014t101ttt404~

HOltl4tttt44ttlttlttOttftttllNtlttO BASEPLATE CONNECT i VITY ELENENT NO.JA JB JC J0 ELENENT NO.ICE JA JQ JC JO 1 1 8 9 2 3 3 10 11 4 5 5 12 13 6 2 2 9 10 3 4 4 11 12 5 6 6 13 14 7 7 8 15 16 9 9 10 17 18 11 11 12 19 20 13 8 9 16 17 10 10 11 18 19 12 12 13 20 21 14 13 15 22 23 16 15 17 24 25 18 17 19 26 27 20 14 16 23 24 17 16 18 25 26 19 18 20 27 28 21 19 22 29 30 23 21 24 31~32 25 23 26 33 34 27 20 23 30 31 24 22 25 32 33 26 24 27 34 35 28 I%035/11 DATE 92-09-24 PACE 8 ttttttttttttttttttttttttttttttttttttt F 1LENA%oNXPSP27

~ttttt1111111tttt Ottttttttttttttttttttttttttttttt KODAL COORD 1 NATES 1 J F RANE L1NE L1NE NME QBE X COORD 1 NATE T 2 COORD 1 NATE COORD1MATE 1 2 3 4 5 6 7 1 2 3 4 5 6 7 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 5 6 7 1 2 3 5 6 7 9 10.11 12 13 14 15 16 17 18 19 21 22 24 25 26 27 28 29 30 31 32 33 34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.500 1.500.500.500.500 1.SOO 1.500 3~500 3.500 3.500 3.500 3.500 3.500 3.500 6.SOO 6.500 6.500 6.SOO 6.500 6.500 6.500 8.000$,000 8.000 8.000 8 000 8 000$.000 0.000 1.500 4.500 7.500 10.500 12.500 14.000 0.000 1.500 4.500 7.5N 10.500 12.500 14.000 0.000 1.500 4.500 7.500 10.500 12.5N.14.000 0.000 1.500 4.5N 7.500 10.500 12.500 14.000 0.000 1.500 4.500 7.500 10.500 12.500 14.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.NO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.ON 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 IKSES AT 3 APPL1 CA 4(0 TlON OF LOADS FFSET)36 3.500 7.5N 500

%035/11 DATE 92-09-24 PACE 9 fQf fQf~1 tilt*1t1**ttlttttttatlltO F lLENA%<NNPSP27 OIIO~t&Atll&Ntf Pt1ltt~t1tHtkHNPIP CONCRETE STlFFNESS DATA NODE EFFECT lVE CONCRETE AREA STl FF NESS NXIE EFFECTlVE CONCRETE AREA STTFfNESS 1.562 3 1.125 5.875 7.562 9 3.937 11'.250 13 3.062 15 1.875 17 8.625 19 7.250 21 1.875 23 5.062 25 6.750 27 3.937 29.562 31 2.250 33 1.875 35.562.183E+06.365 E+06.284E+06.183E+06~128E+07.170E+07.994E+06.608E+06.280E&7.235E+07.608E+06.164E+07.219E+07.128E+07.183E+06.730E+06.608E+OS.183E+06 2 1.312 4.750 6 1.062 8 1.312 10 5.250 12 4.375 14 1.312 16 6.000 18 9.000 20 4.625 22 1.687 24 6.750 26 5.625 28 1.687 30 1.687 32 2.250 34 1.312.426E+06.243E+06.345 E+06.426E+06~170 E+07~142E+07.426E+06.195E+07.292E+07~150E+07.548E+06.219E+07.183E+07.548E+06.548E+06 730E+06.426E+06 SQNAT1ON OF EffECTlVE AREAS>112.000 PLATE AREA~112.000 TOTAL COlCRETE STlFfNESS~363E+05~1NPUT DATA PROCESSlNO CNPLETE+*~

I%035/IT PLOT PLAN VIEM Of TNE BASEPLATE, MNERE DATE 92 09.24 PACE TNE X AXIS (CONSTANT J LINES)ARE IKNIZONTAL, ANO TNE Y AXIS (CONSTANT I LINES)ARE VERTICAL, NJJJJJJJJJJJJNJJJJJJJJJJJJ~JNJJJJJJJJJJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJN I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I B I B I NJJJJJJJJJJJBBSJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJJJJJJJJJBBBJJJJJJJJJJJJN I I I I I I I I I I I I I I I I I I I I I I I N JJJJJJJJJJJJJN I A I A I A I A I A I A I A I A I A I A I A I A I A I A I A NJJJ I A I A I A I A I A I A I A I A I A A JJJJJJJJJJJJJJJJJJJJJJJJJJJAJJJJJJJJJJJJJN 1.'1 A 1 I A 1 A 1 KJ JJJJJJJJJJJJJN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.=1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 I 1 NJJJJJJJJJJJQBSJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJJJJJJJJJSSSJJJJJJJJJJJJN 1 I 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 NJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJN PROGRAN: NE035 SASKPLATE OMIT S9601 0110 AAH 7083 RELEASE 11 NOS/VK 1.5.3 L765 DATE<92-09-24 TINE: 13:20:08 PAGE<tttttttttttttttttt RESIN SOLUTION PNASE t LOA~CASK NOq 1 ttttttttttttttttttttttttttt TITLE: F ILERANE&RPBP27 LOAD CASE RO.(TOP TEN VALUES)DISPLACENENTS KODE 5 6 12 7 4 13 11 14 3 20 DISPL..336246E.02

.328099E.02

.316537E-02

.295519E-02

.274493E.02

.267462E-02

.255237E.02

.241440E-02

.212472E.02

.204698E-02 IRSE 31 30 24 29 23 32 22 15 16 25 0 ISPL~-.809196E-03

-.573565K-03

-.351397K-03

.347650K-03

.324636K.03

-.285248K-03

-.212485K-03

.345179K-04

.250957E.03

.256206E.03 OUADR I LATERAL PLATE PR I NC I PAL STRESSES ELENENTS+Z FACE ELEN SIGNA ELEN SIGNA EL EN SIGNA ELEN SIGNA 5 3119.23 1900.7-952.11 2907.14-1848.1-871.17 2324.6-1181.20-1905.13-1052.KLENENTS Z FACE EL EN SIGNA ELEN S1GNA ELEN SIGNA EL EN SIGNA 5-3309.14 1608.13 988.11-2695.17-2093.23-1490.6 1222.1 881.20 1775.7 1039.CONCRETE LOADS Nmf Z.PRESS RODE 2 PRESS IKOE Z PRESS NCOE 2 PRESS31-263.30-186.24-114.29-113.23-105.32.93.22-69.35 0.34 0.33 0.

PROGRANs NE035 SASEPLATE Sos S9601 0110 AAll 7083 DATEs 92-09-24 RELEASE 11 NOS/VE 1.5.3 L765 TlNEs 13s20s28 PAGEs 12 NOLT LOADS N(eE X-SHEAR Y SHEAR SRSS TENS lON 9 13 23 27 183.543.185.539.-201.-211.-373.-3&5 272.582.416.651.660.2354.0.851~DOLT lNTERACTlON EQIJATlON ENAT10Nt((TENSlON/TALL%)tt 1.000+(SHEAR/SALLOM)tt 1.000))tt 1o000 N(XSE TENS!ON ALLOM SHEAR TENSTON ALLOI RAT10 SHEAR RAT lO INTERACT RAT10 SAFETY FACTOR 9 8200.8680..081 13 8200.8680..287 23 8200.8680..001 27 8200.8680..104.031.067.048.075.112.354~049.179 8.940 2.824 20.432 5.592~tttttttttttttttttttttttttttttttttttttttltttt t E N D L 0 A 0 CASE t ttttttttttttttttttttttttttttttttttttttttt*ttt

~tttttttttttttttttttttttttttttttttttttttttttt t END POSTPROCESS l NQ t ttttttttttttttttttttttttttttttttttttttttttttt IKISS/11 CALC I'ATE 9Z-09-ZC PAGE 1 ATfAMNT" OF~~~~~~~~~~~t~~~~I~~~0~~~~0~I~~~~0~~~~~PROJECT JOB NO CALC NO.PREPARED BY e SHT NO.DATE CHECKED BY DATE 4~0~1 4~P P 1 0 0 0~0 0 0 0 t 1 0~I~~~~0~0~1 1~EEEEEEEEE EE E EE EEEE EE EE E EEEEEEEEE 55555555 55 55 55555555 55 55 55555555 VERSION LEASED AUGUST 1989 USER NANUAL VERS ION THEORETICAL NANUAL VERSION: 8 VER IF ICATION NANUAL VERSION: 10~~1~010010~OO~IO~~~~~~~OOO~~OOO~IN CASE OF PROBLEHS MITII%035/CONTACT THE*BASEPLATE USER REPRESENTATIVES'

  • ~COPYRIGHT 1984,1987 BECHTEL POUER CORP.ALL RIGHTS RESERVED.*~010~01*~0~011101IOO~0~OO~0~~11000~~*

IIE035/11 DATE 92 09 24 tttttttttttttttttttttttttttttttttt PREPROCESSOR lNPUT DATA CARDS tttttt*tttttttttttttttt tttttttttttttt tlttttttttttt tttt CARD 3 4 5 6 7 8 NO 12345678901234567890123456789012345678901234567890123456789012345678901234567890 1 3 FlLENANEtHNPBP28 2 OIT~~~1/3 CON g g~g 3000/4 PLA 6,7,$10,10/1/29/

5 SPR g~1/8.8E5,1.25E6,6020,5210/

9 SOL 5,5,1,8,8/

10 END/11 ATT 3$4gg4.5,6.25/

12 JST 3,4,2,2.5,180/

13 lST 2,4,5,1,75/90/

14 1ST 2$5$6$75 90/15 JST 2,6,4,5,0/

16 1ST 4,6,5,e75g270/

17 1ST 4,5,4,1.75,270/

18 lST 4,4,3,2.5,270/

1 JST 4,3,2,5,180/

T 2,3,4,2.5,90/

/END/23 POl 3,4/24 LOA1,913,-1355,1788,30537,9486,10763/

25 END/26 END OF J08 t END OF 1NPUT DATA~

%035/11 DATE 92 09.24 PACE 3 ttttt>>>>tttttttt>>tttt>>tttttt>>ttt>>>>

PREPROCESQS INPVT DATA CARDS ttt>>t1*ttttttt t>>tttt>>1111*11111>>ttttttttttttttt>>

CARO 1 2=---3 4 5 6 7 8 No 12345678901234567890123456789012345678901234567890123456789012345678901234567890 1 3 FILE 2 OJT 3 CQI 4 PLA 5 BPR 6 BOL 7 BOL 8 BOL 9 BOL 10 ENO 11 ATT 12 JST 13 IST 14 IST 15 JST 16 I ST 17 IST 18 1ST 1 T NAKE>>KNPBP28 0 0 0 0 6>>7 0 0 2 2 2 5 5>>2 5'>>5 31 4 3>>4 4 2 5 6 4 6 4 5 4>>4 4 2 3 1 0 0.000 10.000 1>>.880E+06>>1>>2.000 1>>2.000 1>>8.000 11 8,000 4.500 2.500 5 1+750>>6>>.75O 41 5.000 5>>.7501 4*1.750>>3>>2.500 5.000>>4>>2,500 3000.000 10.000.125 E+071 2.000 8.000 2+000 8.000 6.250 180.000 90.000 90.000 0.000 270.000 270.000 270.000 180.000 90.000 0.000 1~000>>.602E+04>>0.000 0.000 0.000 0.000 0.000>>0.000 0.0001 0,000 0.000 0.000 O.OOO>>0.000 0.000 0.000>>0,000 29.000.521 E+04'.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0 0.000 0,000 0.000 0.000 0.000 0.000 0.0 0.000 0.000 0.000 0.000 3*4 0 0 22 END 23 Pol 24 LOA 25 END 26 END OF JOB 0 0.000 0.000 0.000 0.000 0.000 1>>913.0.1355.0 1788.0 30537.01 9486.0 10763.0~ENO OF INPUT DATA DECK~

NE 035/11 DATE 92-09-24 PAGE 4~ttttttttttttttttttttttttttttttttttt F ILENA%tHHPQP28 t tttttttet tttttttttttttttttttttttttttttttttt INPUT PARAHETERS PLATE THICKNESS~~~~~~~~PLATE X-DIHENSION

.......Y OIHENSION......NCOULUS OF ELASTICITY

...CONCRETE INmULUS~~~~~~~~CONC.CSP.STRENGTH o." 1.000 10.000 10.MO~290E+08.312E+07 3000.0 BOLT LOCATIONS BOLT I J NME X-COORD., Y-COORD.1 2 2 9 2.000 2.000 2 2 5 12 2.000 8.000 3 5 2 30 8.000 2.000 4 5 5 33 8.000 8.000 BOLT PROPERTIES BOLT STIFFNESS<LB/IN.)ALLOIABLE FORCE (LB)TENSION SHEAR TENSION SHEAR 1 2 3.880E+06.880E+06.880E+06.880E+06.125E+07.125E+07.125E+07.125E+07 6020.6020.6020.6020.5210.5210.5210.5210.

I%035/11 DATE 92 09-24 PAQK 5 tttttttttttttttttttttttttttttttttttt F ILENA%iHNPSP28 t*ttt tt tttt ttttttlttttttttttttttttttttttttttttt ISN.STANDARD ATTACHHENT DATA ATTACHHENT IRNSER 1 SEGHENT NOBER~~~~~~~~~TYPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~~~~~o~~~~~~~~~D I STANCE~~~~~~~~~~~~~~~ORIENTATION ANGLE."".THICOESS~o~~o~~~~~~~~~1 JST 0.000 2.500 180e0 0.000 SKQNKNT NQIER~~~~~~~~~TYPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~~~~~~~D I STANCE~~~~~~~~~~~~~~~ORIENTATION ANGLE..o" THINESS~~~~~~~~~~~~~~2 IST 0.000 1.750 90.0 0.000 SEGNENT NSER~~~~~~~~~TYPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~e~~~~~~~~~~~~~DISTANCE~~~~~~~~~~~~~~~ORIENTATION ANGLE~~~~~~THICOESS~~~~~~~o~~~~~~3 IST 0.000.750 90.0 0,000 SEQNENT NNSER~~~~~~~~~TYPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~~~~~~~DISTANCE~~~~~~~~~~~~~~~OR!ENTATION ANGLE.".~THICOESS~~~~~~~~~~~~~~4 JST 0.000 5.000 0.0 0,000 SEGHENT IRNSER~~~~oooo~TYPE~~~~~~~o~ooo~~~~~~~HEIGHT~~~~~oooooee~oooo DISTANCE~~eeo~~ooo~~~~~ORIENTATION ANGLE THICOESS~~~~~ooo~~~o~e 5 IST 0.000.750 270.0 0.000 I%035/11 DATE 92 09-24 PACK 6~ttttt 1 1 1 1 1 1 1 11 1 1 1 1 t tt 1 t t t 1 ttt tt t ttt t 1 1 t t 1~P ILENA%tHNPSP25 1 1 ttt1ttttttktt1111 ttttttttttttttttttttttttttttttttttttttttttttt NON STANDARD ATTACHNENT DATA SKGNKNT NQSER"....." TYPE~~~~~~~~~~~~~~~~o~~HEIGHT~~~~~~~~~~~~~~~~~DISTANCE~~~~~~~~~~~~~~~ORIENTATION ANGLE..TNINESS~~~~~~~~~~oo~~6 IST 0.000 1.750 270.0 0 000 SKINT NSER~~~~~~~~~TYPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~~~~~~~~~~~~~~~DISTANCE~~~~~~~~~~~~~~~ORIENTATION ANGLE."...THINESS~~~~~~~~~~~~~~7 IST 0.000 2.500 270.0 0.000 SKGHKNT NQSER~~~~~~~~~TYPE~~~~~~~o~~~~~~~~~~~NKIGHT~~~~~~~~~~~~~o~~~DISTANCE~~~~~~~~~~~~~~~ORIENTATION ANGLE....THINESS~~~~~~~~~~~~~~8 JST 0.000 5.000 1SO.O 0.000 SECANT NLSOER~~~~~~~~~TYPE~~~~~~~~~~~~~~~~~~~HEIGHT~~~~~~~~~~o~~~~~~DISTANCE~~~~~~~~~~~~~~~ORIENTATION ANGLE."...THICQIESS~~~~~~~~~~~~~~9 IST 0.000 2.500 90.0 0.000 NE 035/11 DATE 92 09 24 PAGEF lLENANE<NNPBP28 y*~y~~yyyyiiilOPOPteltll11*OIOOtOtlOtttlOO

~PIIIIOIOIIPIOI

~&Ottt101111&OIPP14100111111110fii101t LOADlNG CONDlTlONS LQADlNG CASE NO.~1 LOADlNGS APPLIED AT NODE~43 FORCE FX>913.00 FORCE FY~-1355.00 FORCE F2~1788.00 NOIENT NX~30537.00 NINENT NY~9486.00 lKNENT NZ~10763.00 NE035/1'1 DATE 92-09-24 PACE 8 11I I ttttttlttt ttttlttltllttttltl*lltltlllttttttt F l LENA%I HNPQP28 I Itltllltttltttt

~tttttttttttttttttlttttttttttttttttttttttttt BASEPLATE CONNECT lVl TY ELENENT NO.CIE JA JS JC JD ELEKENT SSE NO.JA JB JC JD 1 1 8 9 2 3 3 10 11 4 5 5 12 13 6 2 2 9 10 3 4 4 11 12 5 6 6 13 14 7 7 8 15 16 9 9 10 17 18 11 11 12 19 20 13 8 9 16 17 10 10 11 18 19 12 12 13 20 21 14 13 15 22 23 16 15 17 24 25 1d 17 19 26 27 20 14 16 23 24 17 16 1d 25 26 19 18 20 27 28 21 19 22~a 27 31 29 33 29 30 23 31.32 25 33 34 27 36 37 30 38 39 32 40 41 34 20 23 30 31 24 22 25 32 33 26 24 27 34 35 28 26 30 37 38 31 28 32 39 40 33 30 34 41 42 35 NE 035/11 DATE 92-09-24 PAGE 9 ititiieiii t F ILENANEtHNPSP28 t~titttttttttt*tttttttt

~tttttttttttttttttttttttttttttttttttttttttttttt ttttt*ttttttttttttt*ttttttititttit*tttt**tt*ttt lNSAL COOS I NATES I J FRANK LINE LINE INSE IKSE X Y 2 COORDINATE COORD I NATE COORDINATE 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 5 6 7 1 2 3 5 6 7 1 2 3 4 5 6 7 1 2 3 4 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 31 32 33 34 35 36 37 38 39 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 4.500 4.500 4.500 4.500 4.500 4.500 4.500 7.000 7.000 7.000 7 000 7.000 7.000 7.000 d.000 d.000 d.000 8.000 8.000 8.000 8.000 10.000 10.000 10.000 10.000 D.DDD 2.000 3.750 6.250 8.000 8.750 10.000 0.000 2.000 3.750 6.250 8.000 8.750 10.000 0.000 2.000 3.750 6.250 8.000 8.750 10.000 0.000 2.000 3.750 6.250 d.000 8.750 10.000 0.000 2.000 3.750 6.250 8.000 8.750 10.000 0.000 2.000 3.750 6.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 I%035/11 OATE 92-09-24 PACE 10 t tttt t ttttttt tt t t t t t t t t t t 1 t ttt 1 t t t t t F TLEXA%tNNPSP28

  • ttttttttttttttttttttttttttttttttttttttttttt11ttttttttttttt1tttttttttttttt11tttttttttt INSAL CXRD I NATES l J FRAIS INBE X Y 2 L 1NE L lKE NME COOS l NATE COORD l NATE COOROl NATE 6 5 40 6 6 41 6 7 42 INSES AT APPLlCATlON OF LOADS 3 4(OFFSET)43 4.500 6.250.500 10.000 8.000 0.000 10.000 8.750 0.000 10.000 10.000 0.000 m 035/11 DATE 92-09-24 PACK 11 MOO*~yrtOOot4tOt1t11000t10tttOW1 f ILENA%<NNPSP28

~t0110lttlttltOtt~tt&

&ttOI1**1111t1tiltt1111114ttt11tOOtttttt1tt CONCRETE STIFFNESS DATA INSE EF FECT IVE CONCRETE AREA STIFFNESS INSE KFFECT I VE CONCRETE AREA STIFFNESS 1 3 5 7 9 11 13 15 17 19 21 23 31 33 35 37 39 41 1.000 2.125 1.250.625 4.219.4.78'I 2.250 2.500 5.312 3.125 1.562 3.281 3.719 1.750 1.500 3.187 1.875.937 1.875 2.125 1.000.336E+06.714E+06.420E+06.21 DE+06.142E+07.161E+07.756E+06.840E+06.179K+07.105E+07.525E+06.110K+07.125K+07.588K+06.504E+06.107E+07.630E+06.315K+06.630K+06.714E+06.336E+06 2 1.875 4 2.125 6 1.000 8 2.250 10 4.781 12 2.812 14 1.406 16 4.687 1d 5.312 20 2.500 22 1.750 24 3.719 26 2.1d7 28 1.094 30 2.812 32 3.187 34 1.500 36 1.000 38 2.125 40 1.250 42.625.630E+06.714E+06.336E+06.756E+06.161E+07.946E+06.473K+06.158E+07.179E+07.840E+06.5ME+06.125E+07.735E+06.368E+06.946Ei06.107E+07.504E+06.336E+06.714E+06.420E+06.210E+06 SLNIATION Of EFFECTIVE AREAS~100.000 PLATE AREA~100.000 TOTAL CONCRETE STIFFNESS~.336E+08~INPIIT DATA PROCESSINQ CCHPLETE.~

I%035/11 P PLOT PLAN VIEN Of TME BASEPLATE'WE DATE 92 N.24 PACE THE X AXIS (CONSTANT J LINES)ARE IKNI?OITAL, AMD THE Y AXIS (CONSTANT I LINES)ARE VERTICAL.NJJJJJJJJJJJJJNJJJJJJJJJJJJ 4444JJKJJJJJJJJJJJJJJJJJJNJJJJJJJMJJJJJJJJJJJJJJN I I I I I I I I I I I I I I I I I I I I I I NJJJJJJJJJJJJJ JJJJJJJNJJJJJJJJJJJJJJM I A I A I I I A I A I I I A I A 8 I NJJJJJJJJJJJJJAJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJAJJJJJJSBBJJJJJJJJJJJJJM I A I A 8 I I A I A I I I A I A I I I A I A I I I A I A I I I A A I I A I A I I I A I A I I NJJJJJJJJJJJJ JJJJJJJJJJJJJJJJJAJJJJJJJNJJJJJJJJJJJJJJN I A I A I I I A I A I I I A A I I I A I A I I I A A I I I A I A I I I A I A I I I A I A I I I A I A I I I A I A I I I A I A I I NJJJJJJJJJJJJJ JJJJJJJMJJJJJJJJJJJJJJN I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 8 I I 8 I NJJJJJJJJJJJJSSSJJJJJJJJJJJJJJJJJJMJJJJJJJJJJJJJJJJJJMJJJJJJBSSJJJJJJJJJJJJJM I 8 I I 8 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I NJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJJNJJJJJJJJJJJJJJJJJJNJJJJJJJNJJJJJJJJJJJJJJM PROGRAN: NE035 SASEPLATE SNQI: S9601 0110 AAII 7081 RELEASE 11 NOS/VE 1.5.3 L765 DATE: 92.09-24 TINE: 12:34)25 PAGE: 13 1111111111111111

~E 0 I N S 0 L U T I 0 N P N A S E L 0 A 0 C A S E N 0:~~~ttttttttttttttttttttttttttttt1111tt TITLE: FILENANEtHMPSP28 LOAD CASE NO.(TOP TEN VALUES)0 I S P L A C E N E N T S NME 7 14 6 21 13 5 28 35 12 20 0ISPL..60'l470E.02

.557485E.02

.509943E.02

.501649E.02

.466271Ee02

.454994Eo02

~445364E-02

.416473E-02

.411625E.02

.410428E.02 NtIE 22 15 23 30 29 37 36 8 16 1 0 ISPL~-.643703E 03 e.637019E.03 e.621235E 03-.617772E.03

-.587693E.03

-.526119E-03

-.474248E.03 e.441528E 03 e.320971E.03 e.218181E 03 QUADR I LATERAL PLATE PRINCIPAL STRESSES ELENENTS+Z FACE ELEN SIGNA ELEN SIGNA ELEN SIGNA ELEN SIGNA 20.5840.2 e 2977.24 1687.14 5409.23 1986.22 1555.8.4144.13 e 1973.26 e 3632.27 e 1963 ELENENTS 2 FACE ELEN SIGNA ELEN SIGNA ELEN SIGNA ELEN SIGNA ee oooo ooo 20 5998.14 S369.26 3725.8 3655.2 2464.27 2092.13 1858.23 o 1694.24 e 1548.7 1533.CONCRETE LOADS NtOE ZoPRESS SSE 2 PRESS NRE ZePRESS INOE Z.PRESS 22 e 216.1S-214.23 e 208.29 e197.37 e177.36 e 159.16.108.38 e73.30 e208.8 e 148.

PROGRAN!NESS SASEPLATE SIRRII S9601 0110 AAN 7081 DATE: 92-09 24 RELEASE 11 NOS/VE 1.5.3 L765 T INE: 12:34 46 PAGE: 14 a 0 L T LOADS N(HIE X SHEAR T SHEAR SRSS TENSlON 9 12 30 33 654.-199.652.-194.-761.1004.-792, 817.91.658.102.219.96.3622.0.2372.80LT INTERACT lON EOUAT lON EGUATlONt((TENSlON/TALL(N)tt 1.000+(SHEAR/SALLOI)tt 1.000))tt 1.000 IKCE TENS lON SHEAR TENS lON ALL(HI AL LCM RATIO SHEAR RATIO INTERACT RAT10 SAFETY FACTOR 9 6020.5210..016 12 6020.5210..602 30 6020.5210..001 33 6020.5210..394.193.157.126.042.209.759.127.436 4.795 1.318 7.853 2.293~ttttttttkttttttttttttttttttttttttttttttttttt END LOAD CASE ttttttttttttttttttttttttttttttttttttttttttttt

~tttttttttttttttttttt*tttt**tt**tt*tttttttttt

  • END POSTPROCESS l NG 11***tttttttttt*t*t*tt*tttt*tttt*t*tttttttttt Pile f CP!tL uNn f G93 CALC ID TTACHMENT NED ZNTERDZSCZPLZNE REVIEW REQUEST (ZRR)Tos Froms j ZRR fs~>/RET/ggggPCN Ps'nit/Subunit.t/Subunit, Plant~~Details of Review Requests REFERENCE-PCR-6547, DELETION OP RELIEF VALVES AND ADDITION OP ORIPZCES AND STRAINERS~ATTACHED ARE THE SIGNED OFF SUPPORT LOAD SHEETS POR PCR-6547 AS WE KNOW IT AS OP 12s00 P.M.ON SEPTEMBER 25, 1992~PLEASE USE THESE LOADS IN YOUR SUPPORT DESIGNS AND EVALUATIONS FOR THE ABOVE MENTIONED PCR.THESE, LOADS ARE AS GOOD AS THE INFORMATION USED TO DEVELOP THEM SINCE NO APPROVED DRAWINGS HAVE BEEN RECEIVED AS OP THIS WRITING+IP THERE ARE ANY QUESTIONS PLEASE CONTACT JOHN HOPKINS AT X-6734~sponse Required Bys Authorised Man-hours MAPS Project No.s-7 Responsible Supervisor/Data Charge Number Phases Activity: Response/Justifications Attachments (liat)s Responsible Supervisor/Date Actual Man-hours expended Distributions NED Guideline No.E-24 Revision 4 (EO6d/rlj