ML18016A710
| ML18016A710 | |
| Person / Time | |
|---|---|
| Site: | Harris |
| Issue date: | 11/03/1998 |
| From: | STRUCTURAL INTEGRITY ASSOCIATES, INC. |
| To: | |
| Shared Package | |
| ML18016A709 | List: |
| References | |
| SIC-98-108, SIC-98-108-R, SIC-98-108-R00, NUDOCS 9811120034 | |
| Download: ML18016A710 (31) | |
Text
c Nov-03-98 18 16 STR+RAL INTEGRITY(408) 403T8 8964 P 03 S'I'RVCTURAL.
IN'I'F.GMTY Associates, Inc.
CAI.CULA.TION PACKA.GE FO.E No: RVSI433Q-302 PROJECT No: %VSI-33Q PROJFCT NAMF.: Lower Canopy Seal Weld Repairs for Sheanon Harris CLIFNT: Welding Services CAI CUI.ATI()N'I'ITI.F.: Evaluation of Lin>itingFlaws for Structural Adequacy in Ia>wcr Canopy Seal Repairs at Shearon llarris Nuclear Plant PROBI.FM S'I'A'CEMENT QR OBJECTIVE OF THE CAI.CULATION:
Demonstrate that thc through wall flaw size detectable by visual examination i>> less than the critical flaw size for both axially angnahtres 8c Date
)I
~c cc/p/ye SIC-98-108 k'ag<<J nf 7 98iii20034 98ii04 PDR ADQCK 05000400 8
0Nov-03-98 18= 16 STRU RAL INTEGRXTY(408) 40 78 8964 P 04 I.O INVuODUCVrOr At the request of thc NR(: and in support of the use ol'isual exan)ination rather than dye p< netlant examination ol the, completed weld overlay repair to thc lower canopy seal weld at Shearon Harris, Structural Integrity Associates (SI) performed several analyses to determine the critical llaw size in the repaired location. 'l'he purpose of these, analyses is to demonstrate, that a through wall Aaw could be detected by visual examination having a size wllich is sulficicntly smaller than the critical tiaw size, thus assuring sufficient safety margins.
CPA't willreview the critical flaw sizes determined in this calculation to confirm that the resulting sixes arc detectahlc with margin by the visual technique.
2.0 GE()METRY Thc design geometry of the repair is illustrated in Figure l. For the purpose of the present evaluation, thc component was modeled as a pipe with outside radius equal to the distance from the drive centerline to thc canopy seal weld (3.225 inches) and wall thickness equal to the minimum anticipated overlay thich>ess (0.36 inches), as shown on Figurc ]. 'l'hrough eall axial and circurnfcrcntial flaw>> werc evaluated.
These geometries are considered to he reasonable representation>> of the actual design geometry.
The model geometries are shown in I-igure 2.
3.0 APPLIE<D STRL<'SSES For conservatism, the applied stress was assumed to act a>> a rncrnbrane stress at the Code, allowable mcmb<ane stress magnitude (Pm = Srn).
t4> disrinction was made hetwccn the hoop and axial directions in this regard, although realistically, the axial direction should be half of thi>>
value. Based upon discussions with plant personnel, there arc no bending loads prescnr.
Therefore, bending stresses were not considered.
Revision Preparer/Date Q <'IsA<<
Checker/Date f-ile No. WSl-33
-302 Pa~e 2 of 7
Nov-03-98 18-15 STRU RAL INTEGRITY(408) 40 78 8964 I
P 05 4.0 MA'I'FMALPROPFRTIES Thc allowable stress, Sn), wa>> taken to be 16.2 ksi at 650 F which is typical of 304 stainless steel.
The Alloy625 to bc used in the, weld overlay repair has a significantly higher allowable stress at this temperature so use of t.he stainless steel value is conservative.
l'he flow stress for thi>>
component was taken as 3 Sm.
For linear clastic fracture mechanics evaluations, the Kr,. was taken as 135 ksi ~in, which i>> very conservative f'rthis material at this temperature (the weld metal willbe applied using an automated gas shielded process).
5.0 ANALY'I'ICALAPPROACH Two analysi>> methodologies were employed.
The limit load (net section collapse) rnctlrod is considered most appropriate for evaluation of through wall flaws in this very ductile rnatcrial.
I'hi>> method is described in Appendix C of ASME Section XI [1]. For comparison, linear clastic fracture mechanics (LEFM) method>> were also applied. Thi>> <<pproach is very conservative for thi>> material, duc to its ductile hchavior.
Four cases were studied.
These were:
1.
Through wall axial llaw: Limitload.
2.
Through wall axial flaw: I.EFM 3.
Through wall circumferential llaw: Limit load.
4.
I'hrough wall circumferential flaw: 1.L'FM.
No Code salcty margins were ir>eluded in thi>> evaluation, since thc objective is to gct a reasonable view of thc relationship between dctcctab1e and critical flaw>>ice>>.
Revision Prcparcr/Date 0
Checker/Date +
r rJ3/~<
File No. XVSI-33Q-302 Pa<e 3 of 7
Nav C}G-98 18: 18 STRLIIRAL ZNTSGRZTY(408) AolTG GGGA P 06 The results Irom each case are summarized helow.
6.0 RES UL,TS 6.l Through Well AxialI}law: LimitI.oad This case follows the methodology underlying ASMESection XI, IWB-364] and Appendix C.
Thc Sl program pc-CRACK [2] was used to p<<rform the analysis.
The pc-CRACK result( arc attached in Appendix A to thi>> rcport. 'I'he conclusion is that an axial flaw could be at least 4.8 inches long h<<fore leading to incipient collapse. Thi>> i>> much longer than is physically achievahlc, since cracking would be expected to he confmed to the weld overlay material and vicinity, which, in thc axial direction, extends approximately 1 inch.
6.2 Through Wall Axial l}law: LEFM i'his analysis assume>> that brittlo failure is thc operative mechanism.
Thc pc-CRACK program is used with this analy>>is. A fracture, rncchanics rood<<l of a through wall crack in a. cylinder under internal pressure was used, together with an assumed fracture toughness K<}-. 135 ksi gin. Thc pc-CRACK results are shown in Appendix B. '1'he <<onclusinn i>> that for this set ol a>>sun>ption>>,
thc critical Aaw length is greater than 5.05 inches.
6.3 Thrnugh Wall Circumferential Flaw: Lhnit Load This analysis used hand calculations using the methods of Section XIAppendix C. The SI program ANSC was also used to pctform a s<<parate analysis of the same configuration. The analysi>> assumed a through wall circumferential flaw, and determined the critical flaw length using limitload technique>>.
Thc conclu>>ion is that such a flaw could be l32 around the cylinder Revision Preparer/Date Checker/Date 0
~/~/ss i'ile No. WSI-33Q-302 Pac 4 of 7
Nov-03-98 18 15 STRU RAL INTEGRITY(408) 40 78 8964 l
P 07 before rcachingtr critical size. This corresponds to a flAwapploxilnately 7.43 inches l<)ng.
Computer output is included in Appendix C of this rcport.
6.4 Through %Vali Circumferential I<law: LI'f<M This analysis assumed that the failure mode was brittle I'ailurc. 'I'he pc-CRACK program was used with a through wall circurnfcrential llaw in a cylinder under remote tension fracture mechanics model. A KI, l35 ksi Jin was conservatively assun>cd.
l'he conclusion of this analysis was that the critical flaw length for this sct of assumpl.ions was approxitnately 7.3 l inches. The computer output is included in Appendix D.
7.0 CONCLVSIONS The above results demonstrate that, under a variety ofconservalivc assumptions, the, critical flaw size predicted for thc repair geometry is in all cases significantly longer than thc flaw length which is expected to be detectahlc by a visual exatnination under magnification, as proposed by COL.
Thi>> will bc confirmed by CPKL.
8.0 RE&'ERENCrS ASMt." Boiler and Pressure Vessel Code, Section Xl, l989 Edition, No Addenda.
2.
Structural Integrity Associates, pc-CRACK, for Windo>vs, Version 3.0, March 1997.
Revision Prc parer/Date Checker/Date Pile No. WSI-33Q-302 Pa~e 5
of 7
l I
i Nav-03-98 1.8= 16 STRU RAL INTEGRITY(408) 40 78 8964 P 08 r
I 0.07 to 0.08 l5 Bleaet late Ihteteee Seeaea lte Steaea 0~ heQ I
I 0.155 to 0.1RYR ttetet tea L tea
. ~ iat~~~
cM".iKK8,'
e eetet&eÃp"e'~ ~y'he'.~
M" 5.550 O~
0.I5e te 0.15tett 0a0 040 W~ +te 55e~ Scca~
ha Shorn Figure I. Weld Overlay Design Revision Preparer/Date Checker/Date 0
I-'ile No. WSI-33Q-302 Pa e
Ci of 7
Nov-03-98 18= l6 STRU RAL INTEGRITY(408) 40 78 8964 P 09 t = 0.36" I
t= 036 I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I,
rl I
I I
I I
I I
I I
I I
I I
I I
I I
Ilr I
I I
I I
I I
I 95I88n)
Figure 2 Revision Preparer/Date Checker/I3ate z/
1
<</oh['ile No. WSl-33
-302 Ptr ~<<7 of 7
Nov-03-98 18. 16 STR RAL INTEGRITY(408) 40 78 8964 P
10 Appendix A Throt)gh Wall Axial Flaws, LimitLoad Revision Preparer/Date Cl)eel'er/Date Vile No. WSI;33Q-302 Pa e A-0 of A-1
~ ~
Nov-CL3-98 18 16 STRU RAL INTEGRITY(408) 40 78 8964 tm pc-CRACK for Window" Version 3.0, Mar. 27, 1997 (C) CopyrighC '84 -
~ 97 Structural Integrity Associates, Inc.
3315 Almaden Expressway, Suite 24 San Gose, CA 95118-1557 Voice:
408-978-8200 Fax:
408-978-8964 E-mail.: infoc@scructint. corn Date:
Tue Nov 03 16:52:28 1998 Pile:
WSI33Q-l..CNS Allowable Flaw Size Evaluation Using ASME Section XI, IWB-3640/50 Procedures and Criteria For Axial Crack in Stainless Sceel Piping WSI-33Q:
NSCC OF AXIAL FLAW Material i specified as Gas Tungsten-Arc Weld (GTAw)
Material properties:
Design stress
=
16.2000 Flow stress
=
48.6000 Pipe geomecry:
Outer diameter Wa31 chickness 6.4500 0.3600 Crack geometry:
Crack depth
=
Crack lengch 0.2000 1.0000 The flawed pipe is assumed to fail under limit load condition.
The allowable flaw size is determined using code formulas.
and user specified safecy factors.
Membrane tress (Pm)
Design scress Pm/
Sm
" Stress ratio a/c 1/sqrc(Rt) crit. 1/ qrt(Rc) ~
allowable a/c 16.2000 (safety factor a
16.2000 1.0000 1.0000 (Includes S. F.)
0.5556 0.9551 4.4542 0.7500 1.OOOO) 1/sgrc(Rt)
Allowable a/t 0.00 0.50 1.00 2.00 3.00 4.00 5.00 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.1000 Allowable a/t 6.00 7.00 8.00 9.00 10.00 11.00 12.00 0.1000 0.1000 0.3.000 0.1000 0.1000 0.3.000 0.1000
Nov-Ai3-98 18= 17 STRU RAL INTEGRITY(408) 40 78 8964 Appendix 8 Thrcugh Wall Axial Flaws, LEIM Revision Prop arcr/Date Checker/Date File N(). WSI-33
-302 Pa c
H-O ()f B-4
1 Nov-08-98 18: 17 ETRuJRAL ZNTEGRZTV(498) 40+IB 8964 tm pc-CRACK for Windows Version 3.0, Mar. 27, 1997 (C) Copyright '84
'97 St4ruCtural Integrity Associates, Inc.
3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice:
408-978-8200 Fax:
408-978-8964 Y.-maiI: infoestructint. corn Linear Elastic Fracture t1echanics Date:
Tue Nov 03 16:53:36 1998 File: WST33Q-2. LFM
Title:
ttSI-33Q:
ALLOWABLE FLAW IH CANOPY SEAL, AXIAL, LEFH Load Cases:
Case 1D Membrane Stress Coefficients CO Cl
- 16. 2 C2 C3 Type 0
Coeif Crack Model: Through-Wall Axial Crack in Pressurized Cylinder Crack Parameters-Wall thickness:
Out:side diameter (Rm/t>-10):
HalE crack length(max a< 10(Rmt)"0.5):
Stress due to pressure:
CO in load case."..
- 0. 3600
- 6. 4500 5.0000 Crack Size Case Membrane Stress Intensi t:y Factor 0.1000 0.2000 0 '000 0.4000 0.5000 0.6000 0.7000 0.8000 9.35456 13.746 17.6058 21.3552 25.1509 29.0652 33.1333 37.3717
Nov-93-98 18. 17 STRU RAL INTEGRITY(408) 40 78 8964 P.14 0.9000
- 1. DDOOr 1.1000 1.7DOO 1.3DOO 1.4000 3.5000 1.6000 1.7000 1.8000 1.9000 2.0000 2.1000 2.2000 2.3000 2.4000 2.5000 2.6000 2.7000 2.8000 2.9000 3.0000, 3.looo 3.2000 3.3000 3.4000 3.5000 3.60OD 3.7000 3.8000 3.9000 4.oooo 4.1000 4.2000 4.3000 4.4000 g.bODO 4.6000 4.7000 4.80OO 4.900n 5.0000 41.7S69
'6.3794 51.1465 56.0837 61.1853 44r~4
- 71. 8576
- 17. 4'156 83.1134 88.9449 94.904&
100.987 107 '86 113.497 119. 916 126.437 133.056 139.769 146.572 153 461 160.431 167.48 174.603 181.797 189.059 196.386 203.774 211. 22 218.722 226.276 233.879 241.529 249.223 756 95 264.733 272.543 280.387 288.262 296. 166 304. 095 31.2.049 320.024 Material fracture Laughncss:
MatexiaJ.
ZD: Klc Dept:h Klc
Nov-03-98 18. 17 STRU RAL INTEGRITY{408) 40 78 8964 0.0000 0,2000'.8000 135. 0000 135.0000 135 F 0000 Load combirxation for critical crack size:
Load Case Scale I"actor Membrane 1.0000 Crack Size
'1otal K
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
2.1 2.2 2.3 2.4 2.5 2.6
- 2. /
2.8 2.9 3
3.1 3.2 3.3 3.4 3.5 3.6 3.7 9.35456 13.746 17.6058 21-3552 25.1509 29.0652 33.1333 3/. 3717
- 41. 7869 46.3794 51.1465 b6.0837
- 61. 'I. 853 66.4454 71.8576 77.4156 83.1134 88.9449 94.904b 100.987 107.186 1l3.497 119.916 126.437 133.056 139.769 146. b'/2 l53. 461 160.433 16/. 48 174.603 101.797 189.059 196.386 203. 7 /4 211.22 21.8.722 135 135 13b 135
'l. 35 135 135 135 135 135 135 135 l35 13b 135 135 135 135 13 r5 135 135 135 135 135 l35 135 135
'I 35 135
'l3 5 135 135 135 135 1 35 135 135
'Nov-Q3-98 18= 17 STRU RAL INTEGRITY(408) 40 78 8964 3.8 3.9 4.1 4.2 4.3 F 4 4.5 4.7 1.0 4.9 226.276
'.233.879 241.529 249.223 256.959 264.733 272.543 280.387 200.262 296.166 304.095 312.049 320.024 135 135 135 135 135 135 135 135 135 135 1 3ri 135 135 Critic+1 exec:k sire 2.5294
~,Nav 08-98 18: 18 STRUJRAL INTEGRITY(408) 40l78 8964 P. 17 Appendix C Through Wall Circumference.ial Flaws, l.imitLoad Revision Preparer/Date Checker/Date g
~
!j/<'ilo No. WSI-33Q-302 Pa Tc C-0 of C-3' Q
li)q)8
i i i aluation NOTE: Inprrls are highlighted in the output below.
Case N: The neutral axis is located such that a + p ( n (this is checked below)
(n - adit) - (Pjoi)n I
I P,'= (2'vries) '(2 sinI3-dlt sin a)
(
Reference:
"Engineering Methods for the Assessment of Ductile Fracture Margin in Nuclear Power Plant Piping," S. Ranganath and H.S. Mehta, 1983.)
input:
Pm=
Pb Safety Factor, SF =
Pm*SF =
Pb'SF =
Sm=
3Sm =
16,200 48,600 65.755
, PSl PSI psi PSL PSI psi= or Enter the input in the shaded regions and click on the buffon above to solve.
1.147636014 radians, so crit. flaw size 132 z
trl Gl 0
D3 r
Results:
P =
1.570796327 0.573818007 dft-30939.72094
~
- dit sin (
1.147636014 3
0.5236
[1]
f2]
Solving by trial and error:
dit I3 from f1]
(radians)
Pb'rom f2]
(psi)
Difference P
Computed Pb (Pb Pm)*SF+Pm
(')
a I
n SF 0A7338
-0.07 27.1 YES
~
1.000 Fite = Lirn-toad.xls (Case rt1i 11/3/98
Nov-03-98 18.18 STRU RAL INTEGRITY(408) 40 78 8964 P
19 Appendix D
'hrough Wall Circutnferen(ial flaws, f.EFM Revision Pre parer/Date 0
gg)g ij t.".hecker/Date ~l(
] r /~ ~
File No. WSI-33Q-302 Pa e
D-O ol 0-4
Nov-0P-98 18 18 STRU RAL INTEGRITY(408) 408 8 8964 tm pc-CRACK for Windows Version 3 0, Mar.
2 !,
1997 (C) Copyright '84
'97 Structural Integri t.y Associates, Inc.
3315 Almaden Expressway,
.uite 24 San Jose, CA 951]8-1557 Voice:
408-978-8200 l'ax:
408-978-8964 E-mail:infoostructint. corn Linear Elastic l'racture Mechanics Date:
Tue Nov 03 16:54:05 1998 File: WST33Q-4.LFH Title; wSX-33Q:
ALLOWABLE FLihl< IH CANOPY SEAL,
- CTRC, LEFH Load
( ases
'ase ID MEMBRANE Stre" Coefficient Cp C'l
- 16. 2 C2 C3 Type 0
CoeEE Crack Model: Through-Wall Circ. Crark in Cylinder Under Tension And Bending Crack f'arametors:
Wa11 thlcknes.",:
Out.".ide diameter:
HalE rrack length:
Poisson ratio:
0.3600 6.4500 4.4532 0.3000 Crack Size Case MEMBRANE stress Intensity Factor-
- 0. 0891 0.1781 0.2672 0.3563 0
0 r,344
- 0. 6234
- 0. 712!>
- 8. 57925
- 12. 1753
- 14. 9978
- 17. 4568 19
~ 7162
- 21. 8632 23.952'l 26.0199
I Nov-03-98 18: 18 STRU RAL INTEGRITY(408) 40 78 8964 0.80]6 0.8906 0.9797 1.0688 1.1570 1.2469 I.3360 1.4250 1.5141
].6032
].6922
'L.7813 1.8703 1 9594 2.0485
- 2. 'l375 2.2266 2.3157 2.4047 2.4938 2.5829 2.6719 2.7610 2.8501 2.9391 3.0282 3.1172 3.2063 3.29b4 3.3044 3.4735
- 3. 5626
- 3. 6bl6 3.'I,407
- 3. 8298
- 3. 9188
- 4. 0079
- 4. 0970
- 4. 1860 4.2751
- 4. 3641 4.4b32 28.0936
- 30.1938 32.3366 34.5352 36 '953
- 39. 0677 41.3952 43.7787 46.2202 48.722 b1.2869 b3.9183 56.6198 59.39b6 62.2501 6b.188]
68.2147 71.3354 74 5563 77.8834 8]..3234 84.8837 88.571b 92.3951
- 96. 3631 1OO.484 104.769
]09.227 113.87
'118.71 123.759 1.29. 031 l34.54 l40.303 146.336
],52.658
'159.288
].66.247
]73.558
],81.247 189.339 197.865 Materi.al fracture toughness:
material ID: K1C Depth Klc
Nov-03-98 18= 19 STRU RAL INTEGRITY(408) 40 78 8964 P 22 0.0000 0.2000'.9ooo 135.0000
'lar)
OOOO 135.0000 Load combination tor critical crack size:
Load case Scale Factor HEI IBRANE 1.0000 crack Size 0.0890642
- 0. 'I.78128
- 0. 267193 0.356257 o.nns32]
0 534385
- 0. 623449 0.712sln
- 0. 8015/8 0.090642 0.979706
- 1. 068'/7
- 1. lb'/83 1.2469 1.33596 1.42503
'I. 5'1409 1.60316 1.69222 1.'/8j28
'1.87035 1.95941 2.04848 2.13754
- 2. 2266
- 2. 31567 2.40473 2.4930 2.58286 2.67193 2.76099 2.05005 2.93912 3.02018 F 11'/25 3.20631 3 '9538 Total.
K 8.57925
'I2.1753 14.9970 17.4560 19.7162 21.8632 23.9521 26.0199 28.0936 30.1938 32.3366 34.5352 36 7953
- 39. 06'/7 41.3952 43.7787 46.2202 48.722 51.2069 53.9183 56.6198 59.3956 62.250L 65.1881 68.2l47 71.3354 5563 77.883n 01.3234 84.8837 88.5715 92.3951 96.3631 100.404 ion.-/69 109.227 113.87 Klc 135 135 135 id'35
'1 35 l35 135 135 135 13S 135 135 135 135 135 135 135 135 135 135
- I 35 13 )
l35 135 135
'L35 l35 135 135 135 135 135 135 135 135 135
Nov-03-98 18= 19 STRU RAL INTEGRITY(408) 40 78 8964 P 23 3.38444 3.473/
3.56257 3.65163 3.7407 3 '2976 3.91882 4.00789 4.09695 4.18602 4.27508 4.36415 4.45321 118.71
~,123 759 129.031 134.54 140.303 146.336 152.658 1,59.288 166.247 173.558
'181.247 189.339 197.865 13r 135 l35 13r5 1 Rr5
'135 135 135 135 135 13b 135 135 Critical cr<~ck size 3.6591
Nov-03-98 18= 19 STRU RAL INTEGRITY(408) 40 78 8964 P 24 STRl.JCTVRAL INTEGRITV Associates, lnc.
c<LCUr.axrON PACKA.GE FILE No: iVSI-33Q-301 PROJEC'1'o: WSI-33Q PROJF CT NA5IL<:Repair ol Sl>caron Ilarris Part Length CRDM lower Canopy Seal Weld CLIENT: Welding Services CALCVLATIONTITLK:Weld Overlay Design Lower Canopy Seal Weld Overlay Repair PROBLEM STA'I'EMENTOR OLIL<'CTIVROF THE CALCULATION:
See next page.
Document Revision Affected Pages l-6 Revision Description Original Issue Project Mgr.
Approval Signature 8c Date li 3/qP Preparer(s) A Checker(s)
Signatures S Date ii p/pa ii/~gy SIC l07 Page~ of
Nov-03-98 18= 19 STRU RAL INTEGRITY(408) 40 78 8964 P 25 1.0 INTROP[JCTION A tower canopy seal weld (CSW) on a part length drive penetration at Shcaron 1larris h<<s developed a leak. Leaks have previously beer) identified at numerous other PNRs.
The leak l<)cation will he repaired by applying a weld overlay repair. Such a repair restores the, prcssure integrity of the lrr<<ation, restores thc full desigrr load carrying capability of the rrrigir>al conrponcnt. and adds additronal material to allow lor continued crack growth, assumirrg an aggressive Aaw prop rgation mechanism.
The weld overlay repair has been applied to nuclear plant austcnitic stainless srccl prcssure retaining cornponcnts
<<t. over 700 locationssillcc 1983. Thi>> repair technique was iAcorpor<<ted into rlrc ASME Code by ASME Sectirrn XICode Case N-504 f'l l. This code case was <<ccepted by tfre NRC in Regul<<tory Guide 1.147 Revision 11 [2].
2.0 MA'1'ERIAT.S Thc original canopy seal weld and adjacent CRDM rnatcrial are <<ornposcd of'I'ype 304 stainless steel. Thc weld overlay willbc applied using thc austenitic nickel based Alloy625. This material is suitable for welding on Type 304, is highly resistant ro ntcchanisms such as intergranular stress corrosion cracking (to which stainless steel Type,304 is generally susceptible), <<nd has higher strength than the Type 304 material of the original components. I or the purpose ofdesigning thc wc)d overlay, thu S
= 16.2 ksi at 650"F forType 304 St<<inless Steel willconscrvativcly used, rather than the higher S, = 23.3 ksi ofAlloy625 [3].
Revision Preparer/Date C:hecker/Date 0
4 "l~ f~
File No. WS]-26Q-301 Pa~e 2 of 6
1 Nov-03-98 l8=20 STRU RAL INTEGRITY(408) 40 78 8964 3.0 A.PPLIHD STRFSS Thc design hasi>> for the original canopy seal weld wa>> a limiting membrane stress of P, > assurncd that P
=S, =162Ksi 4.0 WL<f.DOVERLaY DESTCN THICKNFSS Thc Structural Integrity Associates fracture mechanics computer program pc-CRACK [4] willbc used to deter<<nine the n>inimum required thickne>>s. This program incorporates the analysis rncthod>>
of ASME Section XI, TWB-3640 and Appendix C l5J, which arc endorsed hy Code Case N-504 and NUREG-03 I3, Revision 2 [6].
I'he pc-CRACK. output is included as Table 1. Thc analy>>is detcrniined that a mininiuin overlay thickness of.0511 inches is required to restore the structural integrity of the cornponcnt.
5.0 WELD OVERI.AY LIFE ASSESSMLNT Tn addition to thickness of thc weld overlay repair required for structural integrity (.0511 inches), an allowance is require<<I to account for the potential for c<<intinucd crack growth. A total weld overlay thickness of 0.36 inches or greater is to bc applied, to provide this extra assurance as shown in f'igure 1.
Separate calculations 17, 8i, docwncnt the component specific residual stress analysis and the detailed repair lifcasse>>>>ment, considering coniinuing crack growth by an aggressive IGSCC mechaiiisni. The crack growth predicted duc to IGSCC'. willconservatively bound po>>sible Ilaw growth due to other, much slower mechanisms such as fatigue.
Revision Preparer/Date Checker/Date D.b
//s/>0 8P %/e File. No. XVSI-2(iQ-301 Pa c 3 of 6
Nov-03-98 18 20 STRU RAL INTEGRITY(408) 40 78 8964 P 27 ft is cxpccted that the effective service lil'e of this repair willbe in excess of 40 years, based upon similar analyses pcrforrned for other planLs.
6'HFERFNCHS AS ME Section XICode Case, N-S04 USNRC Regulatory Guide 1.147, Revision 11 ASME Section IIIAppendices, 1989 Edition 4.
Structural Integrity Associates, c-CRACI< for Windows, version 3.0, March 27, 1997 5.
ASMI=.Section XI, 1989 Edition 6.
NUREG-0313, Revision 2, issued with Generic letter 88-01, 1988 7.
SI Calculation WSI-33Q-303 (forthcoming) 8.
Sl Calculation WSI-26Q-304 (forthcon)ing)
Revision Preparer/Date
(:hecker/Date L0D ~/~/N File No. WSI-2(rQ-301 Pa ie 4 of 6
J Nov-03-98 18= 20 STRU JRAL INTEGRITY(408) 40 78 8964 P 28 0.07 to 0.08 ~
15 Blrmd Into Minter Sc~
As Shayn 0.~ tnt 0.155 to O.l~
P'hRtR t I
~Ill rXu~a.
+ g <htg'4j Q. af OrLg~l Weld g g/I w~~ ~y'Ihtdmess + M5
>>/~/ps O.SSa to Q.IRPR hcQ Bknd Into Ttttekcr '~u hs Shawn l'igure 1. Weld Overlay Design Revision Preparer/Date Checker/Date
'I/9/zt (7 R"%/y File Nn. WSI-26Q-30 I Pa~e 5
oF 6
Nov-03-98 18=20 STRU RAL INTEGRITY(408) 40 78 8964 P 29 Table l PO-CRACK OutPut, Weld OVerlay f3esign Tm pc-CRACK for Window Version 3.0, Mar. 27, 1997 (C) Copyright
'84 - '97 Strucrural Integrity A"sociates, Inc.
3315 Almaden Expressway, Suite 24 San Pose, Ch. 95118-1557 Voice:
408-978-8200 Fax:
408-978 8964 E-mail: infoustructint.corn Structural Reinforcement Sizing Evaluation
- 34: 40 1998 Date:
Tue Nov 03 l4 File: ~ Waiflw D6 n/gt'ys wsiflw wall thickness Membrane tress Bending scress Scres Ratio Allowable stress Flow stress 0.0750 16.2000 0.0000 3.0000 16.2000 48.6000 Safety factor Safecy factor
~
3.0000 1.0000 Final a/c Reinforcement thick.
L/Circum 0.00 0.10 0.20 0.30 0.40 0.50 0.60 1.0000 1.0000 0.8955 0.7744 0.6963 0.6475 0.6182 0.0000 0.0000 0.0088 0.0218 0.0327 0.0408 0.0463 Final a/t Reinforcement thick.
0.70 0.80 0.90 1.00 0.6025 0.5967 0.5947 0.5947 0.0495 0.0507 0.0511 0.0511 Revision preparer/Date Ct>eeker/Date I'ile No. WSI-26Q-30 l lt/3/f g Pa e
6 of 6
'ttachment 2 to SERIAL: HNP-98-161 SHEARON HARRIS NUCLEARPOWER PLANT DOCKET NO. 50-400/LICENSE NO. NPF-63
SUMMARY
OF CAMERATESTING WELDINGSERVICES INCORPORATED
Mr. Ed Black Carolina Power and Light Shearon Harris Power Plant New Hill,NC Phone 919-362-2335 FAX 919-362-2375 Email edwin.black@epic.corn We(ding Services, Inc.
2225 Skyland Ct.
Norcross, GA 300?1 Telephone (770) 4524005 Fax (770) 7294242 Re: 8X Camera System 11/3/98
Dear Mr. Black,
To support your CRDM repair project during the Shearon Harris RF08 refueling outage, WSI is providing remote video equipment. This remote video system used on the CRDM overlay is equivalent to the systems used at the followingsites for similar repairs:
Prairie Island 1995 North Anna 1998 Point Beach 1998 1997 1998 It is an 8-power video camera and monitor system capable of providing suitable remote visual inspection of the Control Rod Drive Mechanism canopy seal weld overlay.
Attached is a copy ofa letter sent to the Prairie Island project.
Ifyou have any further questions I may be reached at:
919-362-2978 919-362-2801 Sincerely, John Dickson QA Site Manager
~
~
Mr. Dick Cooper Northern States Power Company 1717 'iVakonade Drive East Welch, MN 5S089 FAX: 612-330-7603 2225 SO'lAND COO AT NOAOAOOS. QCOHGtA XN71 TELEPHONE (404) 4524005 FAX(404) 12&8242 June 21, 1995 SUB JLCT:
Prairie Island Nuclear Plant
%'Sl ReSerence No.: 35049-2 Dear Mr. Cooper.
Pcr your request, we have performed several tests to evaluate the capabiTities of thc camera systcnt used inthe perfonnance ofthe acid repair ofPrairie Islands CROM Seals. The intent of this testing is to provide data to be used by NSP to evaluate thc adaIuacy ofthis camera for the performance of adequate visual inspection ofthe veld. overlay.
The testing described was not perfoancd as a safety relauxi procedure, 'I'he tcstino was performed as foliose:
- 1. 'Hm video fmnt end ofthe 7/SI vreId head eras connected to aVCR and monitor ofthc same make and tnodcl as thc system used on site.
- 2. A mockup ofa canopy scat housing simila in configuration to thc Prairie Island design vras overlayed in a similar conGguration as the repair performed at the site, A.0005 inch diameter wire and a.00l inch diameter wire each, Ainches Iong, werc taped to thc surface of the weld overlay on thc housing.
4.
WSl's site QC representative, GmJJ Caul, reviewed the tape and eras able to see both wit's on the surface ofthe veld.
A copy of the tape, samples of thc two wires used, and additional camea information ate included with this letter foryour review. Please lct mc liowifyou need additional information.
Sincerely, Pedro I:. Arnador Senior Project Manager 3'2DOC
t ~. ~
\\
1t 0
1 I