ML21271A259

From kanterella
Jump to navigation Jump to search
License Amendment Request (LAR) 21-01, Copy of Calculations in Support of FCS LTP Chapter 6 Revision 0
ML21271A259
Person / Time
Site: Fort Calhoun Omaha Public Power District icon.png
Issue date: 08/03/2021
From:
Omaha Public Power District
To:
Office of Nuclear Reactor Regulation
Shared Package
ML21271A178 List: ... further results
References
LIC-21-0005
Download: ML21271A259 (21)


Text

Inputs to Calculation Irrigation rate 0.19 m3/y Household water use family of 4 328.7 m3/y meat and dairy cow water ingestion (1 dairy, 1 meat) 110 L/d Drinking Water per person 478 l/y Well Pumping Rate No Irrigation, No Garden, Irrigation of Irrigation of 2

No Livestock 22,000 m 40,000 m2 Household Water Use (m3/yr) 328.7 328.7 328.7 Meat and Dairy Cow (m3/yr) 0.0 40.2 40.2 Irrigation (m3/yr) 0.0 4180.0 7600.0 Drinking Water (family of 4) (m3/yr) 1.9 1.9 1.9 Well Pumping Rate (m3/yr) 330.6 4550.8 7970.8

Non Radionuclide Specific 25th 50th 75th Cover erosion rate 7.59E-04 1.49E-03 2.92E-03 Contaminated zone erosion rate 7.59E-04 1.49E-03 2.92E-03 Contaminated zone b parameter 2.87 3.60 4.50 Evapotranspiration 0.62 0.75 0.87 Wind speed 3.27 3.75 4.22 Runoff coefficient 0.28 0.45 0.63 Well pump intake depth 21.40 34.80 59.00 b parameter of unstaurated zone 2.87 3.60 4.50 mass loading for inhalation 1.84E-05 2.35E-05 2.87E-05 Indoor dust filtration factor 0.35 0.55 0.75 Depth of soil mixing layer 0.15 0.23 0.34 Depth of roots 1.23 2.15 3.08 Wet weight crop yield of fruit grain and non leafy vegetables 1.27 1.75 2.42 Weathering removal constant of all vegetation 21.50 33.00 47.90 Wet foliar interception fraction of leafy vegetables 0.43 0.58 0.70 Humidity in air 5.79 7.24 9.07 DCH 2015 2.13.1 Sand Soil Type log mea std dev 25th 50th 75th Am-241 6.91 1.95 2.69E+02 1.00E+03 3.73E+03 C-14 2.4 3.22 1.26E+00 1.10E+01 9.67E+01 Ce-144 5.99 1.00E-04 3.99E+02 3.99E+02 3.99E+02 Cm-243/ 244 8.13 2.64 5.72E+02 3.39E+03 2.01E+04 Co-58 5.56 2.89 3.70E+01 2.60E+02 1.82E+03 Co-60 5.56 2.89 3.70E+01 2.60E+02 1.82E+03 Cs-134 6.27 1.79 1.58E+02 5.28E+02 1.77E+03 Cs-137 6.27 1.79 1.58E+02 5.28E+02 1.77E+03 Eu-152 6.72 3.22 9.45E+01 8.29E+02 7.27E+03 Eu-154 6.72 3.22 9.45E+01 8.29E+02 7.27E+03 Eu-155 6.72 3.22 9.45E+01 8.29E+02 7.27E+03 Fe-55 5.77 1.00E-04 3.21E+02 3.21E+02 3.21E+02 H-3 -2.81 0.5 4.30E-02 6.02E-02 8.44E-02 Ni-59 4.87 2.3 2.76E+01 1.30E+02 6.15E+02 Ni-63 4.87 2.3 2.76E+01 1.30E+02 6.15E+02 Np-237 2.64 1.39 5.49E+00 1.40E+01 3.58E+01 Pu-238 5.99 1.39 1.56E+02 3.99E+02 1.02E+03 Pu-239/ 240 5.99 1.39 1.56E+02 3.99E+02 1.02E+03 Pu-241 5.99 1.39 1.56E+02 3.99E+02 1.02E+03 Sb-125 2.83 1.79 5.07E+00 1.69E+01 5.67E+01 Sr-90 3.09 1.79 6.57E+00 2.20E+01 7.35E+01 Tc-99 -3.22 1.1 1.90E-02 4.00E-02 8.39E-02 Radionuclide Specific - Kd DCH 2015 Table 2.13.2, Loam Soil Type log mea std dev 25th 50th 75th Am-241 8.34 1.79 1.25E+03 4.19E+03 1.40E+04 C-14 2.4 3.22 1.26E+00 1.10E+01 9.67E+01 Ce-144 8.01 1.1 1.43E+03 3.01E+03 6.32E+03 Cm-243/ 244 9.85 0.69 1.19E+04 1.90E+04 3.02E+04 Co-58 6.7 2.71 1.31E+02 8.12E+02 5.05E+03 Co-60 6.7 2.71 1.31E+02 8.12E+02 5.05E+03 Cs-134 8.16 1.39 1.37E+03 3.50E+03 8.93E+03 Cs-137 8.16 1.39 1.37E+03 3.50E+03 8.93E+03 Eu-152 6.72 3.22 9.45E+01 8.29E+02 7.27E+03 Eu-154 6.72 3.22 9.45E+01 8.29E+02 7.27E+03 Eu-155 6.72 3.22 9.45E+01 8.29E+02 7.27E+03 Fe-55 6.79 0.69 5.58E+02 8.89E+02 1.42E+03 H-3 -2.81 0.5 4.30E-02 6.02E-02 8.44E-02 Ni-59 5.19 1.61 6.06E+01 1.79E+02 5.32E+02 Ni-63 5.19 1.61 6.06E+01 1.79E+02 5.32E+02 Np-237 3.14 1.39 9.05E+00 2.31E+01 5.90E+01 Pu-238 6.86 1.39 3.73E+02 9.53E+02 2.43E+03 Pu-239/ 240 6.86 1.39 3.73E+02 9.53E+02 2.43E+03 Pu-241 6.86 1.39 3.73E+02 9.53E+02 2.43E+03 Sb-125 4.11 1.1 2.90E+01 6.09E+01 1.28E+02 Sr-90 4.04 1.61 1.92E+01 5.68E+01 1.68E+02 Tc-99 -2.66 1.1 3.33E-02 6.99E-02 1.47E-01

Penetration Effective Basement Surface Area Input to Calculation Conversion Factor 2.540E02 m/in Effective Penetration Surface Area Wall/Floor Surface Penetration Effective Fraction 1

Basement Internal Surface Area Internal Volume1 SA/V Area2 of Surface Area 2

(m ) (m2)

Auxiliary 4.41 0.56 7.9 5352.00 0.001 Containment 43.70 6.28 7.0 2361.00 0.019 Turbine 12.64 1.28 9.9 4013.00 0.0031 Intake Structure 57.56 25.07 2.3 2235.00 0.026

1) OPPD, FC210002, Description of Embedded Piping, Penetrations, and Buried Pipe to Remain in Fort Calhoun End State
2) OPPD, FC20006, FCSBldg End State Concrete Surface Areas & Volumes

Soil DCGL Radionuclide DCGL (pCi/g) DCGL (pCi/g) 0.15 m 1.0 m Am241 1.402E+02 3.053E+01 C14 5.996E+01 1.019E+01 Ce144 2.746E+02 2.319E+02 Cm243 6.747E+01 3.060E+01 Cm244 2.944E+02 5.766E+01 Co58 3.631E+01 3.128E+01 Co60 3.970E+00 3.086E+00 Cs134 6.424E+00 4.237E+00 Cs137 1.374E+01 7.656E+00 Eu152 8.857E+00 7.748E+00 Eu154 8.220E+00 7.168E+00 Eu155 3.081E+02 3.027E+02 Fe55 3.660E+04 2.122E+04 H3 1.195E+04 8.655E+02 Ni59 1.128E+04 2.307E+03 Ni63 4.120E+03 8.424E+02 Np237 4.723E+00 7.619E01 Pu238 1.752E+02 3.536E+01 Pu239 1.578E+02 3.184E+01 Pu240 1.578E+02 3.185E+01 Pu241 5.666E+03 1.040E+03 Sb125 2.662E+01 2.348E+01 Sr90 1.111E+01 1.731E+00 Tc99 1.356E+02 1.542E+01

BFM insitu DCGL Calculation Inputs to Calculation LTP Chapter 6 Equation 63 unit activity over 1 m2 of concrete 1 pCi unit volume of fill 1m 3

3 3

, 1106 conversion factor 1.00E+06 cm per m 3

bulk density of fill 1.49 g/cm 25 mrem/yr Dose Criterion 25 mrem/yr Cf,u = unit concentration in fill (pCi/g per pCi/m2)

Ac,u = unit activity of 1 pCi over a 1 m2 area of concrete (pCi)

Calculation Vf,u = unit fill volume of 1 m3 unit concentraton in fill LTP Conversion Factor = 1x106 cm3 per m3 Chapter 6 Equation 63 6.71E07 pCi/g per pCi/m 2

f = bulk density of fill (assumed to be sand)

BFM insitu DCGL Calculation BFM insitu DCGL (DCGLi)

BFM insitu DSR LTP Chapter 6 Equation 64 LTP Chapter 6 Equation 64 mrem/yr per pCi/g pCi/m2 25 Am241 8.025E+00 4.642E+06 ,

C14 1.591E+00 2.341E+07 , ,

Ce144 2.441E02 1.526E+09 where:

Cm243 2.800E+00 1.330E+07 DCGLi,j = insitu scenario DCGL for radionuclide j (pCi/m2)

Cm244 2.238E+00 1.664E+07 Ci,u = unit concentration in fill (pCi/g per pCi/m2) from Equation 6-3 Co58 5.019E02 7.422E+08 DSRi,j = BFM insitu dose to source ratio for radionuclide j (mrem/yr per pCi/g)

Co60 1.299E+00 2.868E+07 25 = 25 mrem/yr dose criterion Cs134 1.854E+00 2.009E+07 Cs137 1.472E+00 2.531E+07 Eu152 4.061E02 9.173E+08 Eu154 5.906E02 6.307E+08 Eu155 9.177E03 4.059E+09 Fe55 1.382E03 2.695E+10 H3 1.366E01 2.727E+08 Ni59 1.852E02 2.011E+09 Ni63 5.072E02 7.344E+08 Np237 4.406E+02 8.454E+04 Pu238 1.173E+01 3.176E+06 Pu239 1.302E+01 2.861E+06 Pu240 1.302E+01 2.861E+06 Pu241 2.577E01 1.445E+08 Sb125 3.042E01 1.225E+08 Sr90 2.694E+01 1.383E+06 Tc99 4.512E+00 8.256E+06 WI meat and milk correction factor 1.078E01 DSR WI Meat WI Milk WI Sum WI Corrected Corrected DSR DCGL Overestimate Am241 C14 Ce144 Cm243 Cm244 Co58 Co60 Cs134 Cs137 2.623E01 4.573E01 7.196E01 7.756E02 6.420E01 0.000E+00 Eu152 Eu154 Eu155 Fe55 H3 Ni59 Ni63 Np237 Pu238 Pu239 Pu240 Pu241 Sb125 Sr90 Tc99

995.5' Elevation: Basement Fill Model Drilling Spoils Scenario Assumptions and Unit Conversion Factors Diameter Borehole 8.00 in Drilling Depth Ground to floor 8.50 ft LTP Chapter 6 Equation 65 Drilling depth into floor concrete 1.00 in Fill Density 1.49 g/cm3 2

Unit activity in drilling spoils 1.00 pCi/g where:

Depth of drilling spoils spread on ground 0.15 m Vds = volume of the drilling spoils on ground surface (m3) conversion factor 1.00E+06 cm3/m3 = pi constant conversion factor 12.00 in/ft r = radius of borehole (m) conversion factor 0.3048 m/ft Dbh = depth of borehole (m) conversion factor 0.0254 m/in Calculations LTP Chapter 6 Equation 66 Diameter Borehole 0.2032 m 1106 ,

Total drilling depth 2.62E+00 m ,

3 2 Drilling Spoils Volume (LTP Chapter 6 Equation 65) 8.48E02 m Concrete Concentration pCi/m2 per 1 pCi/g in spoils where:

(LTP Chapter 6 Equation 66) 2 3.90E+06 pCi/m per pCi/g Cc,u = concrete concentration (pCi/m2) required to produce a unit concentration of 1 pCi/g concentration in drilling spoils (pCi/m2 per pCi/g)

Vds = volume of drilling spoils calculated by Equation 6-4(m3) 1x106 = conversion factor cm3/m3 f = density of fill (drilling spoils) (g/cm3)

Calculation of BFM Drilling Spoils DCGLs (pCi/m 2 ) Cds,u = unit concentration in drilling spoils (1 pCi/g)

= pi constant r = radius of borehole (m)

Radionuclide BFM Drilling Spoils DCGL Drilling Spoils DSR (pCi/m2)

(mrem/yr per pCi/g) LTP Chapter 6 Equation 67 Am241 3.627E03 2.687E+10 LTP Chapter 6 Equation 67 C14 6.142E07 1.587E+14 Ce144 4.556E03 2.139E+10 25 ,

Cm243 1.636E02 5.957E+09 Cm244 1.169E03 8.336E+10 where:

Co58 3.390E02 2.875E+09 DCGLds,i = drilling spoils DCGL for radionuclide i (pCi/m2)

Co60 2.902E01 3.358E+08 Cc,u = concrete concentration required to produce 1 pCi/g average concentration in drilling spoils (Equation 6-4) (pCi/m2 per pCi/g)

Cs134 1.698E01 5.739E+08 DSRi = dose to source ratio for radionuclide i (mrem/yr per pCi/g)

Cs137 7.161E02 1.361E+09 25 = 25 mrem/yr dose criterion Eu152 1.371E01 7.108E+08 Eu154 1.460E01 6.675E+08 `

Eu155 5.241E03 1.859E+10 Fe55 4.148E08 2.349E+15 H3 8.452E07 1.153E+14 Ni59 2.433E07 4.005E+14 Ni63 6.613E07 1.474E+14 Np237 3.059E02 3.186E+09 Pu238 1.874E03 5.200E+10 Pu239 2.061E03 4.728E+10 Pu240 2.058E03 4.735E+10 Pu241 8.992E05 1.084E+12 Sb125 4.713E02 2.068E+09 Sr90 1.380E03 7.062E+10 Tc99 9.713E05 1.003E+12

BFM Concrete and Liner Excavation Scenario DCGL Inputs to Calculation unit activity over a 1 m2 area of concrete 1 pCi minimum wall thickness in all basements 2 ft conversion factor 30.48 cm/ft unit area of concrete wall 1 m2 2 2 conversion factor 1.00E+04 cm /m 3

concrete density 2.2 g/cm Calculation unit concentration in excavated concrete 2

LTP Chapter 6, Equation 68 7.46E07 pCi/g per pCi/m BFM Concrete Excavation Scenario DCGL Concrete Liner Excavation Excavation Soil DCGL 1.0 m (pCi/g) DCGL DCGL (DCGLe,c)1 (DCGLe,l) 2 pCi/m pCi/m2 Am241 3.053E+01 4.094E+07 3.155E+07 C14 1.019E+01 1.367E+07 1.349E+07 Ce144 2.319E+02 3.110E+08 6.179E+07 Cm243 3.060E+01 4.104E+07 1.518E+07 Cm244 5.766E+01 7.733E+07 6.624E+07 Co58 3.128E+01 4.195E+07 8.170E+06 Co60 3.086E+00 4.139E+06 8.933E+05 Cs134 4.237E+00 5.682E+06 1.445E+06 Cs137 7.656E+00 1.027E+07 3.092E+06 Eu152 7.748E+00 1.039E+07 1.993E+06 Eu154 7.168E+00 9.613E+06 1.850E+06 Eu155 3.027E+02 4.060E+08 6.932E+07 Fe55 2.122E+04 2.846E+10 8.235E+09 H3 8.655E+02 1.161E+09 1.298E+09 Ni59 2.307E+03 3.094E+09 2.538E+09 Ni63 8.424E+02 1.130E+09 9.270E+08 Np237 7.619E01 1.022E+06 1.063E+06 Pu238 3.536E+01 4.742E+07 3.942E+07 Pu239 3.184E+01 4.270E+07 3.551E+07 Pu240 3.185E+01 4.271E+07 3.551E+07 Pu241 1.040E+03 1.395E+09 1.275E+09 Sb125 2.348E+01 3.149E+07 5.990E+06 Sr90 1.731E+00 2.321E+06 2.500E+06 Tc99 1.542E+01 2.068E+07 2.313E+07

1) LTP Chapter 6, Equation 69

Sensitivity Analysis and DCGL Calculation for Liner Excavation Inputs to calculation unit activity of 1 pCi over a liner area of 1 m2 1 pCi 0.15 m thickness of soil mixing zone 1.00 m unit area of liner and underlying soil 1 m2 3 3 conversion factor 1.00E+06 cm /m 3

soil density 1.50 g/cm Calculation unit concentration in soil for 0.15 m soil thickness 2

LTP Chapter 6 Equation 610 4.44E06 pCi/g per pCi/m unit concentration in soil for 1 m soil thickness LTP Chapter 6 Equation 610 6.67E07 pCi/g per pCi/m2 Liner Soil DCGL 0.15 m Soil 1.0 m DCGL 2 Liner DCGL2 0.15 m < 1.0 m?

Liner DCGL Excavation (pCi/g) (pCi/g) 0.15 m 1.00 m DCGL 2 2 (pCi/m ) (pCi/m ) (DCGLe,l)

Am241 1.402E+02 3.053E+01 3.155E+07 4.580E+07 TRUE 3.155E+07 C14 5.996E+01 1.019E+01 1.349E+07 1.529E+07 TRUE 1.349E+07 Ce144 2.746E+02 2.319E+02 6.179E+07 3.479E+08 TRUE 6.179E+07 Cm243 6.747E+01 3.060E+01 1.518E+07 4.590E+07 TRUE 1.518E+07 Cm244 2.944E+02 5.766E+01 6.624E+07 8.649E+07 TRUE 6.624E+07 Co58 3.631E+01 3.128E+01 8.170E+06 4.692E+07 TRUE 8.170E+06 Co60 3.970E+00 3.086E+00 8.933E+05 4.629E+06 TRUE 8.933E+05 Cs134 6.424E+00 4.237E+00 1.445E+06 6.356E+06 TRUE 1.445E+06 Cs137 1.374E+01 7.656E+00 3.092E+06 1.148E+07 TRUE 3.092E+06 Eu152 8.857E+00 7.748E+00 1.993E+06 1.162E+07 TRUE 1.993E+06 Eu154 8.220E+00 7.168E+00 1.850E+06 1.075E+07 TRUE 1.850E+06 Eu155 3.081E+02 3.027E+02 6.932E+07 4.541E+08 TRUE 6.932E+07 Fe55 3.660E+04 2.122E+04 8.235E+09 3.183E+10 TRUE 8.235E+09 H3 1.195E+04 8.655E+02 2.689E+09 1.298E+09 FALSE 1.298E+09 Ni59 1.128E+04 2.307E+03 2.538E+09 3.461E+09 TRUE 2.538E+09 Ni63 4.120E+03 8.424E+02 9.270E+08 1.264E+09 TRUE 9.270E+08 Np237 4.723E+00 7.619E01 1.063E+06 1.143E+06 TRUE 1.063E+06 Pu238 1.752E+02 3.536E+01 3.942E+07 5.304E+07 TRUE 3.942E+07 Pu239 1.578E+02 3.184E+01 3.551E+07 4.776E+07 TRUE 3.551E+07 Pu240 1.578E+02 3.185E+01 3.551E+07 4.778E+07 TRUE 3.551E+07 Pu241 5.666E+03 1.040E+03 1.275E+09 1.560E+09 TRUE 1.275E+09 Sb125 2.662E+01 2.348E+01 5.990E+06 3.522E+07 TRUE 5.990E+06 Sr90 1.111E+01 1.731E+00 2.500E+06 2.597E+06 TRUE 2.500E+06 Tc99 1.356E+02 1.542E+01 3.051E+07 2.313E+07 FALSE 2.313E+07

2) LTP Chapter 6, Equation 611

LTP Chapter 6, Equation 68 30.48 1104 where:

Cec,u = unit concentration in excavated concrete (pCi/g per pCi/m2)

Ac,u = unit activity of 1 pCi over a 1 m2 area of concrete (pCi) tw = minimum wall thickness in all basements (ft) 30.48 = cm/ft UAc = unit area of concrete wall (1 m2) 1x104 = cm2/m2 c = density of concrete (2.2 g/cm2)

LTP Chapter 6, Equation 69 where:

DCGLec,i = concrete excavation DCGL for radionuclide i (pCi/m2)

DCGLs,i = soil DCGL ( 1 m thickness) for radionuclide i (pCi/g)

Cec,u = unit concentration in excavated concrete from Equation 6-7 (pCi/g per pCi/m2)

LTP Chapter 6, Equation 610 1106 where:

Cs,t,u = unit concentration in soil for thickness t (pCi/g per pCi/m2)

Au = unit activity of 1 pCi over a liner area of 1 m2 (1 pCi) t = thickness of soil mixing zone (0.15 m or 1 m)

UAl = unit area of liner and underlying soil (1 m2) 1x106 = cm3/m3 s = density of soil (1.5 g/cm3)

LTP Chapter 6, Equation 611 where:

DCGLel,i = liner excavation DCGL for radionuclide i (pCi/m2)

DCGLs,t,i = soil DCGL for thickness t (0.15 or 1 m) for radionuclide i (pCi/g)

Cs,t,u = unit concentration in soil for thickness t (0.15 m or 1.0 m) from Equation 6-10 (pCi/g per pCi/m2)

BFM Wall/Floor DCGL (No IC Dose Correction)

BFM Wall/Floor DCGL (Auxiliary, Turbine, Circulating Water BFM Wall/Floor DCGL BFM insitu BFM Drilling Spoils BFM Concrete Excavation BFM Liner Excavation Tunnels, Intake Structure) LTP (Containment)

DCGLi DCGLds DCGLec DCGLel Chapter 6 Equation 613 LTP Chapter 6 Equation 613 LTP Chapter 6 Equation 613 pCi/m 2

pCi/m2 pCi/m2 pCi/m2 pCi/m2 pCi/m2 1 Am241 4.642E+06 2.687E+10 4.094E+07 3.155E+07 4.168E+06 4.046E+06 1 1 1 C14 2.341E+07 1.587E+14 1.367E+07 1.349E+07 8.629E+06 8.559E+06 Ce144 1.526E+09 2.139E+10 3.110E+08 6.179E+07 2.553E+08 5.922E+07 where:

Cm243 1.330E+07 5.957E+09 4.104E+07 1.518E+07 1.003E+07 7.082E+06 DCGLwf = BFM wall/floor DCGL Cm244 1.664E+07 8.336E+10 7.733E+07 6.624E+07 1.369E+07 1.330E+07 DCGLi = BFM insitu scenario DCGL Co58 7.422E+08 2.875E+09 4.195E+07 8.170E+06 3.916E+07 8.058E+06 DCGLds = BFM drilling spoils scenario DCGL Co60 2.868E+07 3.358E+08 4.139E+06 8.933E+05 3.578E+06 8.640E+05 DCGLe = BFM excavation scenario DCGL Cs134 2.009E+07 5.739E+08 5.682E+06 1.445E+06 4.396E+06 1.345E+06 Cs137 2.531E+07 1.361E+09 1.027E+07 3.092E+06 7.265E+06 2.749E+06 Eu152 9.173E+08 7.108E+08 1.039E+07 1.993E+06 1.013E+07 1.983E+06 Eu154 6.307E+08 6.675E+08 9.613E+06 1.850E+06 9.336E+06 1.839E+06 Eu155 4.059E+09 1.859E+10 4.060E+08 6.932E+07 3.619E+08 6.791E+07 Fe55 2.695E+10 2.349E+15 2.846E+10 8.235E+09 1.384E+10 6.308E+09 H3 2.727E+08 1.153E+14 1.161E+09 1.298E+09 2.208E+08 2.254E+08 Ni59 2.011E+09 4.005E+14 3.094E+09 2.538E+09 1.219E+09 1.122E+09 Ni63 7.344E+08 1.474E+14 1.130E+09 9.270E+08 4.451E+08 4.098E+08 Np237 8.454E+04 3.186E+09 1.022E+06 1.063E+06 7.808E+04 7.831E+04 Pu238 3.176E+06 5.200E+10 4.742E+07 3.942E+07 2.976E+06 2.939E+06 Pu239 2.861E+06 4.728E+10 4.270E+07 3.551E+07 2.681E+06 2.647E+06 Pu240 2.861E+06 4.735E+10 4.271E+07 3.551E+07 2.681E+06 2.647E+06 Pu241 1.445E+08 1.084E+12 1.395E+09 1.275E+09 1.310E+08 1.298E+08 Sb125 1.225E+08 2.068E+09 3.149E+07 5.990E+06 2.475E+07 5.694E+06 Sr90 1.383E+06 7.062E+10 2.321E+06 2.500E+06 8.666E+05 8.903E+05 Tc99 8.256E+06 1.003E+12 2.068E+07 2.313E+07 5.900E+06 6.084E+06

Embedded Pipe DCGL Inputs to Calculation Embedded Pipe Internal Surface Floor Area (ft2)

Area (ft2)

Auxiliary Floor 971' elevation 6334 260 Auxiliary Floor 989' elevation 25,109 1320 Turbine Floor 990' elevation 26,235 2009 Unit Activity in Embedded Pipe 1 pCi/m2 conversion factor 0.0929 m2/ft2 mix distance in fill 1 m conversion factor 1.00E+06 cm3/m3 bulk density 1.49 g/cm3 Dose Criterion 25 mrem/yr Unit Fill Concentration LTP Chapter 6 Equation 615 2

Auxiliary Floor 971' elevation 2.75E08 pCi/g per pCi/m 2

Auxiliary Floor 989' elevation 3.53E08 pCi/g per pCi/m 2

Turbine Floor 990' elevation 5.14E08 pCi/g per pCi/m Embedded Pipe DCGL Calculation DSR DCGL Auxiliary Floor Auxiliary Floor Turbine Floor 971' elevation 989' elevation 990' elevation LTP Chapter 6 Equation 616 LTP Chapter 6 Equation 616 LTP Chapter 6 Equation 616 mrem/yr per pCi/g pCi/m2 pCi/m2 pCi/m2 Am241 1.851E+00 4.90E+08 3.83E+08 2.63E+08 C14 5.787E01 1.568E+09 1.224E+09 8.406E+08 Ce144 4.811E03 1.886E+11 1.473E+11 1.011E+11 Cm243 5.938E01 1.528E+09 1.193E+09 8.192E+08 Cm244 4.747E01 1.912E+09 1.493E+09 1.025E+09 Co58 6.528E03 1.390E+11 1.085E+11 7.452E+10 Co60 1.691E01 5.366E+09 4.190E+09 2.877E+09 Cs134 1.365E01 6.648E+09 5.191E+09 3.564E+09 Cs137 1.084E01 8.371E+09 6.537E+09 4.487E+09 Eu152 9.568E03 9.484E+10 7.406E+10 5.084E+10 Eu154 1.392E02 6.519E+10 5.090E+10 3.495E+10 Eu155 2.164E03 4.193E+11 3.274E+11 2.248E+11 Fe55 3.283E04 2.764E+12 2.158E+12 1.482E+12 H3 3.725E02 2.436E+10 1.902E+10 1.306E+10 Ni59 4.373E03 2.075E+11 1.620E+11 1.112E+11 Ni63 8.698E03 1.043E+11 8.146E+10 5.593E+10 Np237 1.476E+02 6.148E+06 4.801E+06 3.296E+06 Pu238 2.796E+00 3.246E+08 2.534E+08 1.740E+08 Pu239 4.086E+00 2.221E+08 1.734E+08 1.190E+08 Pu240 3.782E+00 2.399E+08 1.874E+08 1.286E+08 Pu241 6.079E02 1.493E+10 1.166E+10 8.002E+09 Sb125 6.833E02 1.328E+10 1.037E+10 7.119E+09 Sr90 4.010E+00 2.263E+08 1.767E+08 1.213E+08 Tc99 1.151E+00 7.884E+08 6.156E+08 4.226E+08

LTP Chapter 6 Equation 615

, , 0.0929

, 0.0929 1106 where:

Cf,ei = concentration in fill from release of activity from embedded pipe at floor elevation i (pCi/g per pCi/m2)

Aep,u = unit activity in embedded pipe (1 pCi per m2),

SAep,ei = embedded pipe internal surface area in floor elevation i (ft2),

0.0929 = Conversion Factor (m2/ft2)

SAf,ei = floor surface area at elevation i (ft2),

Dm = mix distance in fill (1 m) 1x106 = Conversion factor (g/cm3) f = bulk density of fill (assumed to be sand) (g/cm3)

LTP Chapter 6 Equation 616 25 Where:

DCGLep,ei,j = embedded pipe DCGL at floor elevation i for radionuclide j (pCi/m2) 25 = 25 mrem/yr dose criterion DSRep,j = embedded pipe DSR for radionuclide j (mrem/yr per pCi/g)

Cf,ei = concentration in fill from release of activity from embedded pipe at floor elevation i (Equation 6-15) (pCi/g per pCi/m2) 16 sv/y per Bq/g Steel scrap mass 14657 t conversion factor 1000 kg/t Nureg1640 surface dose factoe 3.2 Sv/yr per Bq/cm2 Conversion Factor 0.0037 (mrem/yr per pCi/cm2) per (Sv/yr per Bq/cm2)

Nureg1640 steel mass/surface ra 5.1 g/cm2 conversion factor 1.00E+04 cm2/m2 Calculation NUREG1640 surface dose factor 0.01184 mrem/yr per pCi/cm2 NUREG1640 surface dose factor 1.18E06 mrem/yr per pCi/m2 25 mrem/yr limit 2.11E+07 pCi/m2 per 25 mrem/yr in 4.5 OD 0.035908404 in 4.03 ID 0.032157971 length 435 m 0.003750433 8053 kg/m3 0.391545238 m3 mass of aux embedd pipe 3153.113798 kg pipe mass/surface area #DIV/0! g/cm2 pipe specific surface dose factor #DIV/0! Sv/yr per Bq/cm2 25 mrem/yr limit pipe specific #DIV/0! mrem/yr per pCi/g mass corrected 25 mrem pipe spe #DIV/0! mrem/yr per pCi/g

Buried Pipe DCGL Calculation Buried Pipe Excavation and insitu Scenario DCGL calculation Inputs to Calculation unit activity in pipe over a 1 cm2 area 1 dpm conversion factor 2.22 dpm/pCi 2

unit surface area of pipe (and underlying soil) 1 cm excavation scenario 100 cm thickness of soil mixing zone excavation scenario 15 cm insitu scenario 2.54 cm 3

excavation scenario 1.5 g/cm density of soil 3 insitu scenario 1.49 g/cm 2

Multiplication factor to calulate dpm/100 cm2DCGL 100 cm Dose Criterion 25 mrem/yr Calculation 0.15 m mix unit soil concentration buried pipe 2

LTP Chapter 6 Equation 617 2.00E02 pCi/g per dpm/cm 1.0 m mix unit soil concentration buried pipe 2

LTP Chapter 6 Equation 617 3.00E03 pCi/g per dpm/cm Buried Pipe Excavation Scenario DCGL DCGL DCGL 1.0 DCGL DSR DSR 0.15 m thickness m thickness Is 0.15 m Thickness DCGL less Buried Pipe Excavation Scenario 0.15 m Mix Thickness 1.0 m Mix Thickness LTP Chapter 6 Equation 619 LTP Chapter 6 Equation 619 Than 1.0 m Thickness DCGL?

mrem/yr per pCi/g mrem/yr per pCi/g (dpm/100 cm2) (dpm/100 cm2) (dpm/100 cm2)

Am241 1.678E01 8.030E01 7.442E+05 1.037E+06 TRUE 7.442E+05 C14 3.386E02 2.315E01 3.688E+06 3.596E+06 FALSE 3.596E+06 Ce144 8.733E02 1.011E01 1.430E+06 8.234E+06 TRUE 1.430E+06 Cm243 3.557E01 7.916E01 3.511E+05 1.052E+06 TRUE 3.511E+05 Cm244 8.069E02 4.268E01 1.548E+06 1.951E+06 TRUE 1.548E+06 Co58 6.581E01 7.240E01 1.898E+05 1.150E+06 TRUE 1.898E+05 Co60 5.938E+00 7.137E+00 2.103E+04 1.166E+05 TRUE 2.103E+04 Cs134 3.403E+00 4.209E+00 3.670E+04 1.978E+05 TRUE 3.670E+04 Cs137 1.481E+00 2.028E+00 8.432E+04 4.105E+05 TRUE 8.432E+04 Eu152 2.709E+00 3.010E+00 4.610E+04 2.766E+05 TRUE 4.610E+04 Eu154 2.916E+00 3.252E+00 4.282E+04 2.560E+05 TRUE 4.282E+04 Eu155 7.751E02 7.738E02 1.611E+06 1.076E+07 TRUE 1.611E+06 Fe55 9.315E05 2.301E04 1.341E+09 3.618E+09 TRUE 1.341E+09 H3 8.727E04 1.539E02 1.431E+08 5.409E+07 FALSE 5.409E+07 Ni59 5.204E04 3.036E03 2.400E+08 2.742E+08 TRUE 2.400E+08 Ni63 1.425E03 8.314E03 8.763E+07 1.001E+08 TRUE 8.763E+07 Np237 3.157E+00 1.994E+01 3.955E+04 4.175E+04 TRUE 3.955E+04 Pu238 1.304E01 6.873E01 9.576E+05 1.211E+06 TRUE 9.576E+05 Pu239 1.448E01 7.633E01 8.624E+05 1.091E+06 TRUE 8.624E+05 Pu240 1.447E01 7.633E01 8.630E+05 1.091E+06 TRUE 8.630E+05 Pu241 4.138E03 2.354E02 3.018E+07 3.537E+07 TRUE 3.018E+07 Sb125 9.037E01 9.851E01 1.382E+05 8.451E+05 TRUE 1.382E+05 Sr90 1.543E+00 1.019E+01 8.093E+04 8.170E+04 TRUE 8.093E+04 Tc99 1.550E01 1.402E+00 8.056E+05 5.938E+05 FALSE 5.938E+05 Buried Pipe Insitu Scenario DCGL Calculation 0.15 m mix unit soil concentration buried pipe LTP Chapter 6 Equation 615 1.19E01 pCi/g per dpm/cm2 DSR DCGL 0.0254 m Mix Buried Pipe insitu Scenairo Thickness LTP Chapter 6 Equation 616 mrem/yr per pCi/g Am241 2.657E02 7.905E+05 C14 2.367E03 8.874E+06 Ce144 1.731E04 1.213E+08 Cm243 1.514E02 1.387E+06 Cm244 1.210E02 1.736E+06 Co58 4.426E04 4.746E+07 Co60 1.144E02 1.836E+06 Cs134 1.697E02 1.238E+06 Cs137 1.348E02 1.558E+06 Eu152 7.917E05 2.653E+08 Eu154 1.150E04 1.826E+08 Eu155 1.772E05 1.185E+09 Fe55 3.929E06 5.346E+09 H3 3.260E04 6.443E+07 Ni59 7.457E05 2.817E+08 Ni63 2.042E04 1.029E+08 Np237 1.057E+00 1.987E+04 Pu238 2.854E02 7.360E+05 Pu239 3.170E02 6.626E+05 Pu240 3.170E02 6.626E+05 Pu241 7.593E04 2.766E+07 Sb125 1.038E03 2.024E+07 Sr90 2.537E01 8.279E+04 Tc99 1.424E02 1.475E+06

Buried Pipe DCGL Calculation LTP Chapter 6 Equation 620 LTP Chapter 6 Equation 620 Buried Pipe DCGL 1 Am241 3.833E+05 ,

1 1 C14 2.559E+06 , ,

Ce144 1.413E+06 where:

Cm243 2.802E+05 DCGLbp,i = Buried pipe DCGL for radionuclide i Cm244 8.182E+05 DCGLbpi,i = Buried pipe insitu scenario DCGL for radionuclide i Co58 1.890E+05 DCGLbpe,i = Buried pipe excavation scenario DCGL for radionuclide i Co60 2.079E+04 Cs134 3.564E+04 Cs137 7.999E+04 Eu152 4.609E+04 Eu154 4.281E+04 Eu155 1.609E+06 Fe55 1.072E+09 H3 2.941E+07 Ni59 1.296E+08 Ni63 4.732E+07 Np237 1.323E+04 Pu238 4.161E+05 Pu239 3.747E+05 Pu240 3.748E+05 Pu241 1.443E+07 Sb125 1.372E+05 Sr90 4.093E+04 Tc99 4.234E+05

LTP Chapter 6 Equation 617

,, 2.22 where:

Cs,u.i = unitized soil concentration for buried pipe scenario i (pCi/g per dpm/cm2)

Abp,u = unit activity in pipe over a 1 cm2 area (1 dpm) 2.22 = conversion factor (dpm/pCi)

SAbp,u = unit surface area of buried pipe (1 cm2) tm,i = thickness of soil mixing zone for buried pipe scenario i (insitu scenario 2.54 cm or excavation scenario 15 cm and 100 cm) s = density of soil (g/cm3)

LTP Chapter 6 Equation 619 25

,, 100 where:

DCGLbp,s,i = buried pipe DCGL for scenario s and radionuclide i (dpm/100 cm2) 25 = 25 mrem/yr dose criterion Cbp,u,s = unitized soil concentration for buried pipe scenario s calculated using Equation 6-17 (pCi/g per dpm/cm2)

DSRbp,i = buried pipe DSR for radionuclide i (mrem/yr per pCi/g) 100 = 100 cm2 to calculate the DCGL in units of dpm/100 cm2.

ROC DCGL Adjusted for IC Radionuclide Dose Contribution Inputs to Calculation IC Dose contribution fraction for BFM wall/floor, soil, buried pipe, and above ground building 0.05 IC dose adjustment fraction for BFM wall/floor, soil, buried pipe, and above ground building 0.95 IC dose contribution Fraction for embedded pipe and fill 0.1 IC dose adjustment factor for embedded pipe and fill 0.9 IC Adjusted ROC Soil DCGL (pCi/g)

ROC IC Adjusted 0.15 m 1.0 m C14 5.70E+01 9.68E+00 Co60 3.77E+00 2.93E+00 Cs137 1.31E+01 7.27E+00 Eu152 8.41E+00 7.36E+00 2

ROC BFM Wall/Floor DCGL (pCi/m ) IC Adjusted Auxiliary, Turbine, Circulating Water Tunnels, Containment Intake Structure C14 8.20E+06 8.13E+06 Co60 3.40E+06 8.21E+05 Cs137 6.90E+06 2.61E+06 Eu152 9.62E+06 1.88E+06 Sr90 8.23E+05 8.46E+05 Embedded Pipe DCGL (pCi/m2)

ROC IC Adjusted Auxiliary Floor Auxiliary Floor Turbine Floor 971' elevation 989' elevation 990' elevation (pCi/m2) (pCi/m2) (pCi/m2)

C14 1.41E+09 1.10E+09 7.57E+08 Co60 4.83E+09 3.77E+09 2.59E+09 Cs137 7.53E+09 5.88E+09 4.04E+09 Eu152 8.54E+10 6.67E+10 4.58E+10 Sr90 2.04E+08 1.59E+08 1.09E+08 Buried Pipe DCGL 2

ROC (dpm/100 cm )

IC Adjusted C14 2.43E+06 Co60 1.98E+04 Cs137 7.60E+04 Eu152 4.38E+04 Above Ground Above Ground 1 Building DCGL ROC Building DCGL 2 2 (dpm/100 cm )

(dpm/100 cm )

IC Adjusted C14 3.70E+06 3.52E+06 Co60 7.10E+03 6.75E+03 Cs137 2.80E+04 2.66E+04 2

Eu152 1.27E+04 1.21E+04

1) Screening Values NUREG1757, Vol 2, Table H1
2) Eu152 screening value is the P crit 0.90 from Table 5.19 of NUREG/CR5512, Volume 3 Fill DCGL (pCi/g)

ROC IC Adjusted C14 1.29E+01 Co60 1.59E+01 Cs137 1.36E+01 Eu152 5.50E+02

Existing Groundwater Dose Conversion Factors Water Dependent 1 Exisiting Groundwater Dose Well Water Concentration Conversion Factor ROC Dose1 at t=1 yr at t = 1 yr (mrem/yr per pCi/L)

(mrem/yr) (pCi/L) LTP Chapter 6 Equation 621 LTP Chapter 6 Equation 621 C14 0.45 1.663E+02 2.68E03 Co60 0.15 5.886E+00 2.52E02 ,

Cs137 0.11 1.544E+00 6.86E02 ,,

Eu152 0.01 2.505E+00 3.63E03 where:

Sr90 3.95 3.585E+01 1.10E01 DCFegw,i = dose conversion factor for radionuclide i (mrem/yr per pCi/L)

1) RESRAD File "FCS Embedded Pipe DSR" Dwd,t,i = water dependent dose at time t for radionuclide i (mrem/yr)

Cww,t,i = well water concentration at time t for radionuclide i (pCi/L)

Basment Backfill DCGL BFM insitu Fill DCGL mrem/yr per pCi/g Am241 3.115E+00 C14 1.433E+01 Ce144 1.023E+03 Cm243 8.928E+00 Cm244 1.117E+01 Co58 4.575E+02 Co60 1.767E+01 Cs134 1.197E+01 Cs137 1.508E+01 Eu152 6.108E+02 Eu154 4.200E+02 Eu155 2.703E+03 Fe55 1.716E+04 H3 1.733E+02 Ni59 1.190E+03 Ni63 4.345E+02 Np237 5.655E02 Pu238 2.131E+00 Pu239 1.919E+00 Pu240 1.919E+00 Pu241 9.916E+01 Sb125 8.165E+01 Sr90 8.859E01 Tc99 5.399E+00

Soil Area Factors Input to Calculation 1 m2 LPAF 1.00 m 2 m2 LPAF 1.41 5 m2 LPAF 2.24 10 m2 LPAF 3.16 2

100 m LPAF 10.00 143 m2 LPAF 11.96 Soil Area Factor DCGL 0.15 m (pCi/m2) Soil Area Factor 0.15 m (pCi/m2) 1 m2 2 m2 5 m2 10 m2 100 m2 142 m2 1 m2 2 m2 5 m2 10 m2 100 m2 143 m2 C14 2.048E+07 8.550E+06 2.531E+06 9.712E+05 3.529E+04 2.085E+04 C14 3.42E+05 1.43E+05 4.22E+04 1.62E+04 5.89E+02 3.48E+02 Co60 4.876E+01 2.772E+01 1.493E+01 9.826E+00 5.117E+00 4.925E+00 Co60 1.23E+01 6.98E+00 3.76E+00 2.48E+00 1.29E+00 1.24E+00 Cs137 1.976E+02 1.133E+02 6.136E+01 4.045E+01 2.144E+01 2.066E+01 Cs137 1.44E+01 8.25E+00 4.47E+00 2.94E+00 1.56E+00 1.50E+00 Eu152 1.032E+02 5.885E+01 3.177E+01 2.092E+01 1.104E+01 1.064E+01 Eu152 1.17E+01 6.64E+00 3.59E+00 2.36E+00 1.25E+00 1.20E+00 Ni63 2.177E+07 1.102E+07 4.445E+06 2.229E+06 2.236E+05 1.564E+05 Ni63 5.28E+03 2.67E+03 1.08E+03 5.41E+02 5.43E+01 3.80E+01 Sr90 1.027E+04 5.402E+03 2.383E+03 1.282E+03 1.588E+02 1.128E+02 Sr90 9.24E+02 4.86E+02 2.14E+02 1.15E+02 1.43E+01 1.02E+01 Soil Area Factor DCGL 1.0 m (pCi/m2) Soil Area Factor 1.0 m (pCi/m2) 1 m2 2 m2 5 m2 10 m2 100 m2 143 m2 1 m2 2 m2 5 m2 10 m2 100 m2 143 m2 C14 1.719E+06 7.712E+05 2.536E+05 1.052E+05 4.607E+03 2.773E+03 C14 1.69E+05 7.57E+04 2.49E+04 1.03E+04 4.52E+02 2.72E+02 Co60 3.427E+01 2.020E+01 1.113E+01 7.390E+00 4.279E+00 4.147E+00 Co60 1.11E+01 6.55E+00 3.61E+00 2.39E+00 1.39E+00 1.34E+00 Cs137 1.495E+02 8.897E+01 4.929E+01 3.277E+01 1.876E+01 1.798E+01 Cs137 1.95E+01 1.16E+01 6.44E+00 4.28E+00 2.45E+00 2.35E+00 Eu152 7.513E+01 4.444E+01 2.454E+01 1.631E+01 9.537E+00 9.273E+00 Eu152 9.70E+00 5.74E+00 3.17E+00 2.11E+00 1.23E+00 1.20E+00 Ni63 3.600E+06 1.806E+06 7.237E+05 3.621E+05 3.624E+04 2.534E+04 Ni63 4.27E+03 2.14E+03 8.59E+02 4.30E+02 4.30E+01 3.01E+01 Sr90 2.252E+03 1.146E+03 4.705E+02 2.394E+02 2.502E+01 1.754E+01 Sr90 1.30E+03 6.62E+02 2.72E+02 1.38E+02 1.45E+01 1.01E+01

Inputs to Calculation Conversion factor 0.0037 (mrem/yr per pCi/cm2) per (Sv/yr per Bq/cm2)

Conversion factor 1.00E+04 cm2 per m2 dose criterion 25 mrem/yr years before excavatiuon occurs 30 yr LLBP Offsite Recycle/Disposal Concentrations NUREG1640, Table 2.1 Effective Dose Equivalent That Result in 25 mrem/yr LTP Chapter 6, Equation 625 BFM Wall/Floor DCGL Auxiliary BFM Containment BFM (Auxiliary, Turbine, Circulating BFM Wall/Floor DCGL Wall/Floor DCGL less Wall/Floor DCGL less HalfLife Concrete Steel Concrete Steel Water Tunnels, Intake (Containment) than concrete than steel Structure) recycle/disposal? recycle/disposal?

Sv/yr per Bq/cm2 Sv/yr per Bq/cm2 pCi/m2 per 25 mrem/yr pCi/m2 per 25 mrem/yr Am241 432.2 2.20E03 9.40E+00 3.22E+10 7.54E+06 4.168E+06 4.046E+06 TRUE TRUE C14 5730 4.10E04 6.30E03 1.654E+11 1.076E+10 8.629E+06 8.559E+06 TRUE TRUE Ce144 0.7784 1.90E02 2.00E01 1.414E+21 1.343E+20 2.553E+08 5.922E+07 TRUE TRUE Cm243 28.5 1.10E01 6.60E+00 1.274E+09 2.123E+07 1.003E+07 7.082E+06 TRUE TRUE Cm244 18.11 6.40E02 5.20E+00 3.328E+09 4.095E+07 1.369E+07 1.330E+07 TRUE TRUE Co58 0.19 2.70E01 3.30E+00 3.007E+55 2.460E+54 3.916E+07 8.058E+06 TRUE TRUE Co60 5.271 1.00E+00 1.00E+01 3.489E+09 3.489E+08 3.578E+06 8.640E+05 TRUE TRUE Cs134 2.062 5.80E01 8.60E+00 2.787E+12 1.879E+11 4.396E+06 1.345E+06 TRUE TRUE Cs137 30 2.20E01 3.20E+00 6.142E+08 4.222E+07 7.265E+06 2.749E+06 TRUE TRUE Eu152 13.33 4.40E01 4.30E+00 7.305E+08 7.475E+07 1.013E+07 1.983E+06 TRUE TRUE Eu154 8.8 4.90E01 4.30E+00 1.464E+09 1.668E+08 9.336E+06 1.839E+06 TRUE TRUE Eu155 4.96 1.10E02 8.80E02 4.062E+11 5.077E+10 3.619E+08 6.791E+07 TRUE TRUE Fe55 2.7 7.60E06 9.10E05 1.963E+16 1.640E+15 1.384E+10 6.308E+09 TRUE TRUE H3 12.35 2.40E04 3.80E03 1.516E+12 9.573E+10 2.208E+08 2.254E+08 TRUE TRUE Ni59 7.50E+04 7.60E06 9.10E05 8.893E+12 7.427E+11 1.219E+09 1.122E+09 TRUE TRUE Ni63 96 7.40E06 9.40E05 1.134E+13 8.926E+11 4.451E+08 4.098E+08 TRUE TRUE Np237 2.14E+06 3.80E+00 6.20E+01 1.778E+07 1.090E+06 7.808E+04 7.831E+04 TRUE TRUE Pu238 87.74 1.00E01 6.10E+00 8.563E+08 1.404E+07 2.976E+06 2.939E+06 TRUE TRUE Pu239 2.41E+04 1.10E01 6.60E+00 6.148E+08 1.025E+07 2.681E+06 2.647E+06 TRUE TRUE Pu240 6.54E+03 1.10E01 6.60E+00 6.162E+08 1.027E+07 2.681E+06 2.647E+06 TRUE TRUE Pu241 1.44E+01 2.20E03 1.10E01 1.301E+11 2.602E+09 1.310E+08 1.298E+08 TRUE TRUE Sb125 2.77E+00 1.50E01 1.40E+00 8.189E+11 8.773E+10 2.475E+07 5.694E+06 TRUE TRUE Sr90 29.12 5.20E03 1.20E01 2.653E+10 1.150E+09 8.666E+05 8.903E+05 TRUE TRUE Tc99 2.13E+05 2.20E02 3.20E01 3.072E+09 2.112E+08 5.900E+06 6.084E+06 TRUE TRUE LTP Chapter 6, Equation 625 25 1104

, 30

, 0.0037 where:

Cm,i = concentration in material m (concrete or steel) for radionuclide i that results in a recycle/disposal dose of 25 mrem/yr (pCi/m2) 25 = 25 mrem/yr dose criterion 1x104 = conversion factor (cm2/m2)

DFm,i = NUREG-1640, Table 2,1 dose factor for material m and radionuclide i (Sv/yr per Bq/cm2) 0.0037 = conversion factor (mrem/yr per pCi/cm2 per Sv/yr per Bq/cm2) i = radioactive decay constant for radionuclide i (.693/t1/2) 30 = time after license termination that large-scale excavation occurs (yr)

LLBP Embedded Pipe Drilling Spoils Assumptions and Unit Conversion Factors LTP Chapter 6, Equation 622 Diameter Borehole 8 in Drilling Depth (bgs) 21.4 m 0.0254/2 2 Concrete foundation depth 12 ft where:

Embedded Pipe Internal Diameter Vds = volume of the drilling spoils on ground surface (m3)

Auxiliary 4.03 in = pi constant 18.81 in 0.0254 = conversion factor m/in Turbine (max Turbine EP ID) 9.4 in d = diameter of borehole (in) = 8 in Fill and soil density 1.5 g/cm 3 Dbh = depth of borehole (m) = 21.4 m Unit activity in drilling spoils 1 pCi/g LTP Chapter 6, Equation 623 Depth of drilling spoils spread on ground 0.15 m 1106 / ,

conversion factor 1.00E+06 cm3/m3 ,

conversion factor 0.0254 m/in conversion factor 6.45E04 2 m /in 2

where:

dose criterion 25 mrem/yr Cep,u = embedded pipe concentration (pCi/m2) required to produce a unit concentration of 1 pCi/g Years after license termination 30 yr concentration in drilling spoils (pCi/m2 per pCi/g)

Drilling spoils spread depth on ground surface 0.15 m Vds = volume of drilling spoils calculated by Equation 6-22 (m3) 1x106 = conversion factor cm3/m3 Calculations f/s = density of fill/soil (g/cm3)

Drilling Spoils Volume 3 Cds,u = unit concentration in drilling spoils (1 pCi/g) 0.69 m Aep = internal surface area of embedded pipe contacted by drill (m2)

LTP Chapter 6, Equation 622 Spread Area 4.63 m2 and:

Length Parallel to Aquifer Flow 2.15 m 4

,4.03 4.03 6.4510 Aux EP 4.03 in concentration pCi/m2 per 1 pCi/g in spoils 1.59E+07 2 pCi/m per pCi/g

,18.81 2 /2 2 6.4510 4 LTP Chapter 6, Equation 623

,9.4 9.4 6.4510 4 Aux EP 18.81 in concentration pCi/m2 per 1 pCi/g in spoils 2 1.61E+07 pCi/m per pCi/g LTP Chapter 6, Equation 623 where:

Turbine EP 9.4 in concentration pCi/m2 per 1 pCi/g in spoils 6.83E+06 2 pCi/m per pCi/g Aep,4.03 = internal surface area of 4.03 inch internal diameter pipe that is contacted by 8 in diameter drill LTP Chapter 6, Equation 623 d = diameter of drill borehole = 8 in 6.45x10-4 = conversion factor m2/in2 Aep,18.81 = internal surface area of 18.81inch internal diameter pipe that is contacted by 8 inch diameter drill Aep,9.4 = internal surface area of 9.4 inch internal diameter pipe that is contacted by 8 inch diameter drill LLBP Embedded Pipe Drilling Spoils Concentration That Results in 25 mrem/yr (pCi/m2)

Auxiliary Basement Turbine Basement Auxiliary EP 4.03 in ID Auxiliary EP 18.81 in ID Turbine EP 9.4 in ID Dose From EP LLBP Drilling Spoils at BFM Embedded Pipe DCGL Dose From EP LLBP Drilling Spoils at BFM Embedded Pipe DCGL Concentration EP LLBP Drilling Spoils EP LLBP Drilling Spoils EP LLBP Drilling Spoils 1 Drilling Spoils DSR 2 2 2 Radionuclide Halflife Concentration (pCi/m ) LTP Concentration (pCi/m ) Concentration (pCi/m ) 4.03/971 4.03/989 18.81/971 18.81/989 9.4/990 (mrem/yr per pCi/g)

Chapter 6, Equation 624 LTP Chapter 6, Equation 624 LTP Chapter 6, Equation 624 Am241 432.2 1.028E02 4.066E+10 4.10E+10 1.743E+10 0.01 0.01 0.01 0.01 0.02 LTP Chapter 6, Equation 624 C14 5730 8.899E06 4.493E+13 4.526E+13 1.926E+13 0.00 0.00 0.00 0.00 0.00 Ce144 0.7784 2.448E02 6.470E+21 6.518E+21 2.774E+21 0.00 0.00 0.00 0.00 0.00 25 ,

Cm243 28.5 8.099E02 1.020E+10 1.028E+10 4.374E+09 0.15 0.12 0.15 0.12 0.19 Cm244 18.11 1.795E03 6.995E+11 7.047E+11 2.999E+11 0.00 0.00 0.00 0.00 0.00 where:

Co58 0.19 1.838E01 2.604E+56 2.623E+56 1.116E+56 0.00 0.00 0.00 0.00 0.00 Cep,i = concentration in embedded pipe that results in 25 mrem/yr through the LLBP drilling spoils Co60 5.271 1.595E+00 1.290E+10 1.299E+10 5.529E+09 0.42 0.32 0.41 0.32 0.52 scenario for radionuclide i (pCi/m2)

Cs134 2.062 9.205E01 1.035E+13 1.043E+13 4.438E+12 0.00 0.00 0.00 0.00 0.00 Cep,u = embedded pipe concentration required to produce 1 pCi/g average concentration in drilling Cs137 30 3.883E01 2.052E+09 2.067E+09 8.795E+08 4.08 3.19 4.05 3.16 5.10 spoils (Equation 6-23) (pCi/m2 per pCi/g)

Eu152 13.33 7.499E01 2.527E+09 2.546E+09 1.083E+09 37.53 29.31 37.25 29.09 46.93 DSRi = dose to source ratio for radionuclide i (mrem/yr per pCi/g)

Eu154 8.8 7.990E01 5.294E+09 5.333E+09 2.269E+09 12.32 9.62 12.22 9.54 15.40 25 = 25 mrem/yr dose criterion Eu155 4.96 2.599E02 1.014E+12 1.021E+12 4.345E+11 0.41 0.32 0.41 0.32 0.52 Fe55 2.7 2.638E07 3.335E+18 3.360E+18 1.430E+18 0.00 0.00 0.00 0.00 0.00 H3 12.35 5.798E06 3.699E+14 3.727E+14 1.586E+14 0.00 0.00 0.00 0.00 0.00 Ni59 7.50E+04 1.905E06 2.092E+14 2.107E+14 8.968E+13 0.00 0.00 0.00 0.00 0.00 Ni63 96 5.210E06 9.495E+13 9.566E+13 4.071E+13 0.00 0.00 0.00 0.00 0.00 Np237 2.14E+06 1.568E01 2.541E+09 2.560E+09 1.089E+09 0.00 0.00 0.00 0.00 0.00 Pu238 87.74 2.872E03 1.758E+11 1.771E+11 7.537E+10 0.00 0.00 0.00 0.00 0.00 Pu239 2.41E+04 3.172E03 1.257E+11 1.266E+11 5.389E+10 0.00 0.00 0.00 0.00 0.00 Pu240 6.54E+03 3.157E03 1.266E+11 1.275E+11 5.427E+10 0.00 0.00 0.00 0.00 0.00 Pu241 1.44E+01 2.688E04 6.279E+12 6.326E+12 2.692E+12 0.00 0.00 0.00 0.00 0.00 Sb125 2.77E+00 2.555E01 2.834E+12 2.856E+12 1.215E+12 0.00 0.00 0.00 0.00 0.01 Sr90 29.12 9.795E03 8.305E+10 8.367E+10 3.561E+10 0.00 0.00 0.00 0.00 0.00 Tc99 2.13E+05 7.804E04 5.105E+11 5.143E+11 2.189E+11 0.00 0.00 0.00 0.00 0.00

1) RESRAD Users Manual Version 6 Table 3.1 Is BFM Embedded Pipe DCGL less than Embedded Pipe LLBP Drilling Spoils Concentration?