ML20211R074

From kanterella
Jump to navigation Jump to search
Reactor Containment Bldg Integrated Leak Rate Test, Final Rept
ML20211R074
Person / Time
Site: Hatch Southern Nuclear icon.png
Issue date: 04/30/1986
From:
BECHTEL GROUP, INC.
To:
Shared Package
ML20211R058 List:
References
NUDOCS 8607280091
Download: ML20211R074 (83)


Text

O Georgia Power Company Edwin L Hatch Nuclear Plant Unit 1 o

.- Reactor Containment Building Integrated Leak Rate Test Final Report April 1986 l

Bechtel Power Corporation O

g2?$ck Obh?

j

S GEORGIA POWER COMPANY EDWIN I. HATCH NUCLE AR PLANT UNIT.1 DOCKET NUM BER 50-321 REACTOR CONTAINMENT BUILDIN G INTEGRATED LEAK RATE TEST FINAL REPORT l

Prepared by Bechtel Power Corporation San Francisco April 1986

1 TABLE OF CONTENTS i

f.aj(e i

1. INTRODUCTION 1
2.

SUMMARY

2 1

Test Data Summary Table

3 TEST SYNOPSIS 5
h. INSTRUMENT ATION AND D ATA AC QUISITION 7 5 TEST METHOD 9 l APPENDICES A. Description of Bechtel ILRT Program B. Stabilization Summary Data C. ILRT Trend Report D. ILRT Summary Data; Mass Point; Total Time E. ILRT and Verification Plots 1

j F. Verification Flov Summary and Data i

l G. ISG C alculations H. LLRT Report i

i I

O i

)

1.0 INTRODUCTION

(%j

, The reactor c ontain m ent buildin g Integrated Leakage Rate Test V (Type A) is performed to demonstrate that leakage through the primary reactor containment and systems and components penetrating primary c ontain m ent does not exceed the allovable leakage rate s pecified in the Edwin I. Hatch Unit 1 Technical Specifications.

The successful periodic Type A and supplemental verification tests were performed according to the requirements of the Unit 1 Technical Specifications and 10CFR50, Appendix J. The Type A test method used is the absolute method described in AN S I/N h 5.h -197 2,

" Leakage Rate Testing of Containment Structures for Nuclear Reactors", and ANSI /ANS 56.8-1981, " C ontain m ent System Leakage Testing Requirements". The leakage rate was c alculated by both the mass point and the total time methods using formulae from ANSI /ANS 56.8-1981 and Reference h respectively.

The mass point an alysis m eth od calculat es air mass at each time step as a function of absolute t e m p eratur e and dry air pressure.

Total time leakage rate is computed from initial values for free air v olu m e, containment d ry bulb t e m p erature, the partial pressure of dry air, and the .most recent values of the same parameters and time. A lin ear regression of corresponding leakage rate and time valu es yields the curve for leakage rate. A 95 percent upper c onfid enc e limit is calculat ed to assure a 95 percent probability that the calculated leakage rate is within acceptance li mit s.

g Followin g the ILRT, the verification test leakage was calculated using the same methods.

The followin g documents contain the test requirements and acceptance criteria for this ILRT:

1. E. I. Hatch Unit 1 Technical Specifications.
2. ANSI N h 5. h-19 7 2, " Leakage Rate Testing of Containment Structures for Nuclear Reactors."
3. Appendix J to 10CFR Part 50, " Reactor Containment Leakage Testing for W at er Cooled Power Reactors".
h. Bechtel Topical Report BN-TOP-1, " Testing C rit eria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Pow er Plants".

5 ANSI /ANS 56.8-1981, " Containment System Leakage Testing l

R e quir e m ent s."

l 6. E. I. Hatch Nuclear Plant Procedure h2SP-TET-003-lS, " Primary Reactor C o ntain m ent Integrated Leakage Rate Test Procedure".

1 O

2.0

SUMMARY

. O The containment buildin g Integrated Leakage Rate Test (Type A) was succ es s fully completed meeting all acceptance criteria set forth in the governing documents. The test res ults are reported in accordance with the requirements of 10CFR50, Appendix J, S ection V.B.3.

The followin g is a summary of test res ults for the successful ILRT and verification tests c om pleted on Edwin I. Hatch Unit 1 on April 19,1986 (values are vt.%/ day):

Test R es ults Acceptance C alculation M eth od C rit eria Mass Point Total Time C alculated Leakage Rate 0.h 17 0.h h 1 0.900 95% Upper Confidence Limit 0.428 0.611 0.900 Verification Test 1.567 -

1.312 to 1.912 1.578 1.3 3 6 t o 1.9 36 Values for calculated leakage and 95% UCL includ e a p enalty of O 0.00h vt.%/ day for systems not in their post-LOC A alignments.

b Test Data Summary i A. Plant Information Owner Georgia Power Company Plant Edvin I. Hatch Nuclear Plant Unit 1 Location Baxley, Georgia Containment Type Mark I, BWR Date Test C ompleted April 19,1986 B. Technical Data

1. Containment Net Free Air 258,910 cu. ft Volu m e
2. Design Pressure 56 psig
3. Design Temperature 3h0 deg. F
h. Containment ILRT Average 50-120 deg. F i Temperature Limits

C. Test Results - Type A Test O

'%d 1. Test M eth od Abs olut e

2. Data Analysis Techniques Leakage Rate: Total Time (per BN-TOP-1) and Mass Point (per ANS 56.8-1981)
3. Peak Test Pressure 59 0 psig ( +1.0, -0 )
h. Maximum Allowable Leakage 1.2 vt.%/ day R at e, L, ,.

1

5. 75% of L, 0.9 vt.%/ day
6. Integrated Leakage Rate Leakage Rate, vt.%/ day From Regression At Upper 95%

Line (L ) Confidence Limit

a. Mass Point Analysis 0.k1T** 0.k28**
b. Total Time Analysis 0.h41** 0.611**
    • Includes 0.004 v.%/ day for systems not in post-LO C A allignment.

.,) 7. Verification Test Imposed 10.8 s c fm Leakage Rate, L g 1.2 vt.%/ day

8. Verification Test Result Leakage Rate, vt.%/ day
a. Mass Point Analysis 1.567
b. Total Time Analysis 1.578 9 Verification Test Limits Test Li m it, vt.% /d ay
a. Mass Point analysis (1) Upper Limit (L + 0.2 5 L ) 1.912 (2) Lover Limit (L ig ++ LL ",", - 0 . 2 5 L ",) 1.312
b. Total Time Analysis (1) Upper Limit (L +L + 0.2 5 L ) 1.936 (2) Lower Limit (L + L"," - 0 . 2 5 L ",) 1.336

- 3 f

^

b

D. Local Leakage Rate Test Results - Type "B" and "C" Tests

1. R esults for Local Leakage Rate Tests performed since the previous (February 1983) ILRT are presented in Appendix H.
2. Leakage of penetrations not in post-LOCA lin eup during this ILRT (Minimum Pathway Leakage)

Penetration Description " A s Le ft" X-12 RHR shutdown cooling 136 ACCM X-13B RHR shutdown cooling 55 ACCM X-28F H 2

&0 2

analy zer 0 X-35B TIP drive 0 X-42 Standby liquid control 0 6X-220 H & O analy z er 0 2 2 TOTAL 190 ACCM

( 0.00 37 5 vt.5 /d ay) i O

1 1

f u

l O

I

~

3.0 TEST SYNOPSIS Valv e lin eups were performed on all sytems to establis h Ox post-accident conditions except for the liquik H

c&

0 2

ontrol analyzer system system (X-h2),

(penetrations X-28F, X-220), standby traversing incore probe (X-35), and RHR shutdown coolin g (X-12, X-13 B). During the inspection of the c ont ain m ent'n interior and exterior surfaces prior to pressurization, no evidence of  ;

structural deterioration which w ould affect either the strength or leak tightness of the containment was found.

Pressurization of the contain m ent was started at 0507 on April 18 and stopped briefly from 0630 to 0700 to investigate an unexplained pressure differential across the d ryv ell to torus boundary. The apparent differential was traced to water in the pressure sensing lin e coming from the torus. The lin e was drained and pressurization resumed. Pressurization was performed by four trailer mounted 300 psig compressors adjusted to unload at 130 psig. Air drying was ac c o mplis h ed by two air cooled electric ally driven air dryers. Dryv ell fans and coolin g water remained on during pressurization. ILRT data (containment air pressure, temperature, and d ew point temperature) were taken using the instrumentation described in Section 4 of this report.

A ft er a four-hour stabilization period the ILRT portion of the test was started at 1715 on April 18. At approximately 17:4 5 devpoint temperature sensor number 2 (ME -

N007 B) began behaving erractically. Investigation showed one phototransistor in its 9 control circuit to have failed. The temperature survey showed a uniform distribution of humidity at the elevation of this sensor (and at other elevations). Since devpoint sensor number 4 was at this elevation, the volu m e fraction for sensor 2 was assigned to sensor 4. For c os m etic purposes in the data recording, the failed phototran sist or was bypassed, but data from sensor 2 were not used in the calculations. See the plot of d ev point t e m p erature versus time for sensor 2 in Appendix E.

Then, at ap pro ximat ely 18:15, pressure sensor number 2 began behaving erractically. Adjusting the gain on the servo in the control loop s mooth ed the erratic behavior, but the data fom this sensor vere not used in the c alc ulatio n s. Data obtained from pressure sensor 2 are presented in the plot of pressure versus time for that sensor in Appendix E. One additional pro ble m with instrumentation d evelop ed during the test. Temperature sensors (RTDs) 8 and 9 (TE N006H and TE N006I) exceeded the upper calib ration te mperature of 120 F. Experience had shown this type of senser to be lin ear in temperature range experienced, so the data were used as taken. After the test was c o m plet ed, c alibration checks of both these RTDs showed that their indicated temperatures were correct for the t e m p eratu re range experienced during the test. Plots of temperature versus time for RTDs 8 and 9 sre given in Appendix E.

A leakage rate of 0.h37 vt.%/ day was c alculat ed during the eight-hour period ending 0115 on 19 April.

5

Cont'd TEST SYNOPSIS I

O Followin g the ILRT, a leakage of 10.808 SCFM (L was imposed to verify the instrumentation. During the tesE) period reactor coolant level decreased. , Changes in dryv ell sumps' lev els corresponded to the change in vessel level, so there was no leak outside the c ontain m ent boundary. A fter verification flow was initiated, the reactor vessel level was raised approximat ely 10 inches to restore it to its desired level This caused containment pressure to increase as shown in the containment pressure versus time plot (for dry air) in Appendix E. Followin g the one-hour period to allow the imposed flow to stabiliz e, the four-hour v erification test was performed. The calculated v erific ation test leakage rate of 1.578 vt.%/ day fell within the acceptance limits of 1.3 36 to 1.9 3 6 vt.%/ day.

Depressurization of the containment was accomplished by venting to the standby gas tr e at m ent system (SGTS). At a reduced containment pressure venting was switched to the reactor buildin g. Continuous radiation monitoring was in effect during this portion of venting. Followin g depressurization, an assessment of liquid level changes was made and it was determined that no liquid level changes requiring adjustments to the leakage rates had occurred during the ILRT.

SUMM ARY OF TEST PERIODS:

[

\

  • TEST PHASE TIM E DURATION (HRS) DATE Begin Pressurization 05:07-06:30 1.38 April 18 Cnvestigate apparent dry v ell to torus pressure differential 06:30-07:00 0.5 April 18 C o m plet e Pressurization 07:00-13:15 6.25 April 18 Stabilization 13:15-17:15 4 April 18 ILRT 17:15-01:15 8 April 18-19 E stablis h and stabilize v e rific atio n flov 01:15-02:30 h April 19 Verification 02:30-06:30 4 Avril 19 Review test res ult s prior to start of Devressurization 06:30-07:00 0.5 April 19 Depressurization 07:00-13:00 6 (antx) April 19 i

6

(~') .

h.0 In stru m entation and Data Acquisition DV The following instrument system was used:

N o. Required Description Date A. Absolute Pressure 2 Precision Pressure Gauge Range: 0 - 10 0 psia Mensor Model 10100-001 Accuracy: 1 0.0 2 % F.S. .

S ensitivity: .001 psia R epeatability: .0 0 0 0 % F.S.

Calibration Date: 2/25/86 B. Drybulb Temperature lh Temperature sensors, Range: 0 - 15 0 F Rosemount 10 0 oh m, Accuracy: + 0.10 F Platinum Model 79-65-17 S ensitivity: 0.01 F R ep eatability: 0.000 F Calibration Dat e: 2/26/86 C. D ev point T e m peratur e 6 D ew point Detectors, Calibrated Range: h 0 -10 0 F E G& G, Model 660-5 2 Accuracy: 1 5h F

,i S ensitivity: 0.10 F

,. (d R epeatability:

Calibration Date:

0.00# F 2/18 /8 6 D. Flow M et ers 2 Mass Flov m et er, Range: 0 - 10 scfm Model 500-9 Accuracy: + 1% F.S.

S ensitivity: 1% F.S.

R epeatability: 0.1 s c f m C alibration Date: 3/3/86 7

O

DRYBULB AND DEWPOINT TEMPER ATURE SENSOR LOCATIONS (M

b] TE Tag No. Elevation Azimuth Distance Volu m e Fractions No (Ft) (Degrees) From Center ILRT 1 TE N006A 120 3h5 28 0.050 2 TE N006B 120 165 28 0.050 3 TE N006C 130 90 28 0.021 h TE N006D 13h 205 2h 0.099 5 TE N006E 13 4 345 20 0.099 6 TE N006F 15 4 35 24 0.0 h 8 7 TE N006G 15 h 270 20 0.0 h 8 8 TE N006H 195 115 13 0.078 9 TE N006I 195 295 13 0.078 10 ' TE N006J 108 250 65 0.086 11* TE N006K 10 8 25 65 0.086 12* TE N006L 10 8 90 65 0.086 13 ' TE N006M 10 8 17 0 65 0.086 1h

  • TE N006N 10 8 3 15 65 0.085 1.000 ME N o.

1 ME N007A 120 330 28 0.111 2 ME N007B 13 h 16 5 2h 0.000

') 3 ME N007C 15 h 3h5 24 0.097 h ME N00TD 13 h 270 20 0.206 5 ME N007E 195 40 13 0.15 7 6* ME N007F 10 8 135 65 0.h 2 9 1.000

" Pressure suppression chamber ME N o. 2 became inoperable around 17:30 on A pril 18 due to a failed phototransistor. This deveell was on the same elevation as ME N o. h.

The pretest temperature survey showed similar d ev points for the two sensors, so the volume fraction for No. 2 was assigned to No. h.

The overall Instrumentation S election Guide (IS G) value was c alculat ed (see Appendix G) in accordance with ANSI /ANS 5 6.8-1981 bas ed on the above instrumentation and on an eight hour minimum test duration. The c alculated ISG is .0069 which is less then 0.25L (0.3 vt.5/ day).

The elimination of one of the two pressure gauges di"d not change the IS G significantly.

The ILRT data c ollection system, consisting of drybulb and d ev point t e m perature sensors and precision pressure gauges, was connected to a Volu m etric s Data A quisitio n System (DAS). Pressure gauges were n installed in the DAS panel and connected to the d ry v ell and torus through flexible copper tubing. The DAS panel was provided with an automatic scanner and the measured data vere printed by computer. The data were processed and the leakage rate calculated by a micro 8

computer, Model IBM /PC via direct data input from the DAS panel through an RS232 circuit board. An electronic mass flow meter provided the imposed leakage for the verification flow.

During the stabilization and test periods, data were recorded every 15 minutes.

5.0. TEST METHOD The containment leakage rate testing method applied is the A bs olute M ethod as described in ANSI /ANS 5 6.8-19 8 L This is a direct application of the ideal gas lav, PV=WRT. Two data analysis techniques were used:

l. The Mass Point Analysis Technique This technique calculates the containment air mass at each time interval. A straight lin e least squares analysis is used, and the slo pe of the regression lin e represents the rate of change of air mass with respect to time, which is the leakage rate.
2. The Total Time Analysis Technique This technique calculates leakag e rate based on the most recent data point and the data point taken at the start of 1 the test. The overall leakage rate is d et er min ed by applyin g lin ear regression analysis to the leakage rates at 2

each time point.

, A 95% upper confidence level was calculated for leak rate data as required by ANSI /ANS 5 8.6 -19 8 L This is to assure a 95%

pro bability that the calculated leak rate valu e is within the acceptance limit s. All calculations were done with B ec ht el's ILRT computer program described in Appendix A.

The temperature and pressure history and the containment air mass variations were plotted by the computer program. These plots are in Appendix E.

l l

i 4

I u

0 APPENDIX A DESCRIPTION OF BECHTEL ILRT COMPUTER PROGRAM O

l l

l l

APPENDIX A DESCRIPTION OF BECHTEL ILRT COMPlTIER PROGRAM A. Program and Report Description

1. The Bechtel ILRT computer program is u.'ad to determine the inte-grated leakage rate of a nuclear primsry containment structure.

The program is used to compute leakage rate based on input values of time, free air volume, containment atmosphere total pressure, drybulb temperature, and dewpoint temperature (water vapor pressure).

Leakage rate is computed using the Absolute Method as defined in ANSI /ANS 56.8-1981, " Containment Systen Leakage Testiag Requirements" and BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants".

The program is designed to allow the user to evaluate containment leakage rate test results at the jobsite during containment leakage testing. Current leakage rate values may be obtained at any time during the testing period using one of two computations 1 methods, yielding three dif ferent report printouts.

2. In the first printout, the Total Time Report, leakage rate is com-puted from initial values of free air volume, containment atmosphere drybulb temperature and partial pressure of dry air, the latest es values of the same parameters, and elapsed time. These individually

( l computed leakage rates are statistically averaged using linear re-

\- ' gression by the nethod of least squares. The Total Time Method is the computational technique upon which the short duration test criteria of BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plant," are based.

3. The second princout is the Mass Point Report and is based on the Mass Point Analysis Technique described in ANSI / ANS 56.8-1981,

" Containment System Leakage Testing Requirements." The mass of dry air in the containment is computed at each data point (time) using the Equation of State, from current values of containment atmosphere drybulb temperature and partial pressure of dry air. Contained mass is " plotted" versus time and a regression line is fit to the data using the method of least squares. Leakage race is determined from the statistically derived slope and intercept of the regression Line.

4 The third printout, the Trend Report, is a summary of leakage rate values based on Total time and Mass Poinc computations presented as a function of number of data points and elapsed time (test dura-tion). The Trend Repo rt provides all leakage rate values required for comparision to the acceptance criteria of BN-TOP-L for conduct of a short duration test.

\s SU-043 A-1

,,__,_,___.--_._,._.___,__,_,-,~.,..,_.,,_,____-.,_.-__---.--__.--_,_-___--__.-_---._~_.-_-,cr. __ _ -._-, ,

1 1

l

, 5. The program generates a predictor report based on Reference 7. The j " predictor" is an estimate of the upper bound on the change in mass point calculated leakage rate which will occur during the next four hours. The estimate is based on the mass point calculated leakage rates and 95% UCLs during the previous four hours.
6. The program is written in a high level language and is designed i

for use on a micro-computer with direct data input from the data acquisition system. Brief descriptions of program use, formulae t used for leakage rate camputations, and program logic are provided in the following paragraphs.

B. Explanation of Program l 1. The Bechtel ILRT computer program is written, for use by experi-

, enced ILRT personnel, to determine containment integrated leakage i rates based on the Absolute Method described in ANSI /ANS 56.8-4 1981 and BN-TOP-1.

2. Information loaded into the program prior to or at the start of the
test
a. Number of containment atmosphere drybulb temperature sensors, dewpoint temperature (water vapor pressure) sensors and pressure gages to be used in leakage rate computations for the specific test
b. Volume fraccions assigned to each of the above sensors
c. Calibration data for above sensors
d. Test title
e. Test pressure 1 f. Maximum allowable leakage rate at test pressure
3. Data received from the data acquistion system during the test, and used to compute leakage rates:
a. Time and date
b. Containment atmosphere drybulb temperatures

! c. Containment atmosphere pressure (s) i d. Containment atmosphere dewpoint tempe ra tures J

e. Containment free air volume.

l 4 Af ter all data at a given time are received , a Summary of Measured j Data report (refer to " Program Logic," Paragraph D, " Data" option l command) is printed.

i i

'U-043 A-2 l

1

.---,-n -, c . c _ v, . - - ,. , ,. -

5. If drybulb and dewpoint temperature sensors should f ail during the p test, the data tros the sensor (s) are not usad. The volume frac-

, tioca for the remaining sensors are recomputed and reloaded into the program for use in ensuing leakage rate computations. .

C. Leakage Rate Formulae

1. Computation Using the Total Time Method:
a. Measured leakage rate from data:

pvt t = W tRTL (1) pvt i = W tRTt {2) 2400 (W1-W) 1 Lg = (3) a tt Wt Solving for Wt and Wt and substituting equations (1) and (2) into (3) yields:

2400 TPVt t i)

Lt =

1(1 - l (4) aC1 ( TPVt t t) where f) W,Wi t = Weight of contained mass of dry air at times et and (d tt, respectively, lbs.

I,Tt t = Contairanent atmosphere drybulb temperature at times et and ti, respectively, *R.

P,Pg t = Partial precsure of the dry air component of the con-tainment atmosphere at times et and ti, res pe ct ively, 4

psia.

V,Vt t = Containment free air volume at times tt and ti, respec-tively (constant or variable during the test), ft. 3 l

et, et = Time at 1st and i ch data points respectively, hr.

4 att = Elapsed time from tt to tt, hr.

R = Specific gas constant fo r air = 5 3.35 f t. lbf /lbm.*R.

Lt = Measured leakage rate computed during time interval et to ti, wt.%/ day.

To reduce truncation error, the computer program uses the following equivalent fo rmulation:

-2400 iW1 N-n(d Sti (W1)

SU-043 A-3

l i

f i

, where S Wg

=

Wi-W1 4

j W1 W1 SPt V At aPgVg $t T i e v -

l .

Pt V.1 PV1i T1 l 1 + STi j Tg i apt =Pi-Pi i

aVi=Vt-Vt i j aTi=Ti-T1 4

j b. Calculated leakage rate from regression analysis:

L=a+ bats (5) i where

! L = Calculated leakage rate, we.%/ day, as determined f rom the regression line. ,

a = (gLt - ba tt)/N (6)

I a N(gl ie s t) - (gL t)(n et)

< b= (7) l N(n tg2 ) - (m tt)2 i

j N = Number of data points

', N l tt i=1

! c. 957. upper confidence limit on the calculated leakage rate:

i, l UCL = a + b atg + S_ (8) l L t

! where i

i j UCL = 957. upper confidence limit we.*/ day, at elapsed time stN*

i f SU-043 A-4 i

i For atg < 24 s_ = to.025;N-2 [(ILt 2 - agLg - brLi stt)/(N-2)]l/2 x [ t + t_N + (,e s_g) 2f (9,)

L (gt 2g _ (g3ei)2/N)]l/2 where to.025;N-2 = 1.95996 + 2.37226 + 2.82250 ;

N-2 (N-2)Z For atg > 24 S = to.025;N-2 [(rLg 2 - atLt - bgLg et)/(N-2)]1/2 x Q +(aty - 3)2/ (9b) r N (mti 2 . (t e t)2fg)}l/2 i 1.6449(N-2)2 + 3.5283(N-2) + 0.85602 1

0

  • W4 " (N-2)2 + 1.2209(N-2) - 1.5162 I= t Calculated leakage rate computed using equation (5) at total elapsed time 3 tt, %/ day.

_ ta t i a** -

2. Computation using the Mass Point Method
a. Contained mass of dry air from data:

i Wi = 144 PeV 4 RIt (10) j where All symbols as previously defined.

l b. Calculated leakage rate from regression analysis, W = a + b 3t I

I - b L = -2400 - (11)'

. a l

where E = Calculated le skage rate, we.%/ day, as de termined f rom t he regression line.

I i

SJ-043 A-5 i

I

' . . - __ - . - . , _ ~ , _ , _ . . , . . . _ . , _ , _ _ _ _ , _ . _ _ _ _ _ . . _ _ _ _ _ . _ _ _ _ _ .., , _ _ . . _ _ _ _ , . _ _ _ _ _ _ _ _ _ . _ _ _

l 1

i

)

l .

a = (IWi -bm et)/N (12) ,

N(EW i at t ) - (EWg)(m eg) i b = (13)

A N(TA tg ) - (M tg)2 1

ch atg = Total elapsed time at time of i data point, hr N = Number of data points Wg = Contained mass of dry air at ich data point, Iba, as computed f rom equation (10).

N E"E i=1 To reduce truncation error, tne computer program uses the following equivalent fo rmulation:

aWi b a= Wg i + (E - E atg)/N (14)

W1 W1

O -

. AWi SW1 .

N (E acg ) - E E at g Wi Wi

, b= W I

(15) 2

2) _ (

! AWi

! where is as previously defined.

1 W1 l

c. 95% upper confidence limit.

-2400 7

UCL = .(b - S b) (16) a

where UCL = 95% u ppe r conf ide nce limit , wt . ,*. /da y .

1 i

l SU-043 A-6

O SN Sb"20 025;N-2 [NM egZ - (h tt)'] * (17) where t0 .025;N-2 ,1.6449(N-2)2 + 3.5283 (N-2) + 0.85602 (N-2)2 + 1.2209 (N-2) - 1.5162

~

2 1/2 I(wt - (a + b a tt)l N-2

! I 1 -

=w t I(awt/w t

)2 . [g(3gtjg1);2fg _

N-2 .

i

[I(awt/w t ) aet - I(aw t/wt)(m et )/N]2.

il/2 (18) r(a t t 2) _ (gag )2/N t I

d. Predictor

2[( UCL-L) + 4 ( l A l + 2 SA )I

100 La where UCL = 95% upper ccnfidence limit of mass point calculated leakage rate i at end of test i La = mass point calculated leakage rate at end of test A = value of linear regression analysis slope of mass point calculated i leakage rate vs. time for last 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> of test data l

l SA = linear regression analysis standard deviation of slope l

La = allowable leakage rate In terms of elasped time, it and mass point calculated leakage rate Ch

! Lat calculated at the end of i time interval.

1 O

U-043 A-7 l

8

)

i  !

- i

_1 I 121-BE att A =

M .. 4 hr 4 hr .

(19) l Nr Lataet - t tat I4 a et (20) 4 hr 4 hr hr B =

att 2-E4 hrati ME 4 hr I lai - A z Ing - B t Lag a tt t 4 hr 4 hr 4 hr (21)

S =

I A

[M-21 [M z att - (I act)2; i 4 hr 4 hr

Lag = mass point calculated leakage rate evaluated using data up to i

i time att. .

I' E

l 4 hr = summation over last 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> of test data.

1

, N 2

N-Mt1 M = number of data points for last 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> of test.

L i

i l

i e

i I

l.

l l SU-043 A-8 i

- - - - - - - , - . - - - ,.,,,n- ---,.n,,-,-n-. _ .--,-,--,.--.,,,..---.,n--, . $~ _

'V D. Program Logic

1. The Bechtel IIAT computer program logic flow is controlled by a set of user options. The user options and a brief description of their associated function are presented below.

OPTION C0!eULND FUNCTION Af ter starting the program execution, the user sicher enters the name of the file containing previously entered data or initializes a new data file.

DATA Enables user to enter raw data. When the syste requests values of time, volume, temperature, pressure and vapor pressure, the user enters the appropriate data. Af ter completing the data entry, a sumanry is printed out. The user then verifies that the data were entered correctly. If errors are detected, the user will then be given the opportunity to correct the errors. Af ter the user verifies that the data were entered correctly, a Corrected Data Summary Report of time, data, average temperature, partial pressure of dry air, and water vapor pressure is printed.

TREND A Trend Report is printed.

TOTAL A Total Time Report is printed. ,

MASS A Mass Point Report is printed.

TERM Enables user to sign-of f temporarily or permanently.

All data is saved on a file for restarting.

CORR Enables user to correct previously entered data.

LIST A Summary Data Report is printed.

READ Enable the computer to receive the next set of data from the data acquisition system directly.

PLOT Enables user to plot summary data, individual sensor data or air mass versus time.

DELETE Enables user to delete a data point.

l INSERT Enables user to reinstate a previously deleted data point.

VOLFRA Enable user to change volume fractions.

PRED A predictor report is printed.

iU-04 3 A.9

OPTION COMMAND FUNCTION TIME Enable the user to specify the time interval for a report or plot.

VERF Enable the user to input imposed leakage . rate and calcaluted ILRT leaka.e rates at start of verification test.

E. COMPUTER REPORT AND DATA PRINTOUT MASS POINT REPORT The Mass Point Report presents leakage rate data (wt%/ day) as deter-mined by the Mass Point Method. The " Calculated Leakage Rate" is the value determined from the regression analysis. The " Containment Air Mass" values are the assses of dry air in the containment (lba).

These air masses, determined from the Equation of State, are used in the regression analysis.

TOTAL TIME REPORT The Total Time Report presents data leakage rate (wt%/ day) as deter-mined by the Total Time Method. The " Calculated Leakage Rate" is the C) value determined f rom the regression analysis. The " Measured Leakage Rates" are the leakage rate values determined using Total Time calcu-lations. These values of leakage rate are used in the regression analysis.

TREND REPORT The Trend Report presents leakage rates as determined by the Mass Point and Total Time methods in percent of the initial contained mass of dry air per day (wt%/ day), versus elapsed time (hours) and number of data points.

PREDICTOR REPORT The predictor reports presents a predicted upper bound on the change in calculated mass point leakage rate over the next four hours.

SUMMARY

DATA REPORT The Summary Data esport presents the actual data used to calculate leakage rates by the various methods described in the " Computer Program" section of this report. The sLx column headings are TIME, DATE, TEMP, PRESSURE, VPRS, and VOLUME and contain data defined as follows:

SU-043 A-to

1. TIME : Time in 24-hour notations (hours and minutes).
2. DATE: Calendar date (month and day).
3. TEMP: Containment weighted-average drybulb temperature in absolute units, degrees Rankine (*R).
4. PRESSURE: Partial pressure of the dry air component of the con-tainment atmosphere in absolute units (psia).
5. VPRS: Partial pressure of water vapor of the containment atmosphere in absolute units (psia).
6. VOLUME: Cont ainme nt free air volume (cu. f t.).

F.

SUMMARY

OF MEASURED DATA AND

SUMMARY

OF CORRECTED DATA The Summary of Measured Data presents the individual contaiment atmosphere drybulb temperatures, dewpoint temperatures, absolute total pressure and f ree air volume measured at the time and date.

1. TEMP 1 through TEMP N are the drybulb temperatures, where N = No . o f RTD ' s . The values in the right-hand column are temperatures (*F), multiplied by 100, as read from the data acquisition system (DAS). The values in the lef t-hand column V are the corrected temperatures expressed in absolute units

(*R).

2. PRES 1 through PRES N are the total pressures, absolute, sere N = No.

of pressure sensors. The right-hand value, in parentheses, is a number in counts as read f rom the DAS. This count value is converted to a value in psia by the computer via the instrument's calibration table, counts versus psia. The lef t-hand column is the absolute total pressure, psia.

3. VPRS 1 through VPRS N are the dewpoint temperatures (water vapor pressures), where N = No. of dewpoint se n so r s . The values in the right-hand column are temperatures (*F), multi-plied by 100 as read from the DAS. The values in the left-

, hand column are the water vapor pressures (psia) from the 3

steam tables for saturated steam corresponding to the dewpoint (saturation) temperatures in the center column.

The Summary of Corrected Data presents corrected temperature and pressure values and calculated air mass determined as follows:

1. TEMPERATURE (*R) is the volume weighted average containment atmosphere drybulb temperature derived f rom TEMP 1 through TEMP N.

DH-165 A-11

2. CORRECED PRESSURE (psia) is the partial pressure of the dry air component of the containment atmosphere, absolute. The volume weighted average contairunent atmosphere water vapor pressure is subtracted from the volume weighted avetage total pressure, yielding the partial pressure of the dry air.
3. VAPOR PRESSURE (psia) is the volume weighted average contain-

, rent atasphere water vapor pressure, absolute derived f ra VPRS 1 through VPRS N.

4. VOLUME (cu. f t.) is the contairment free air volume.
5. CONTAINNDrf AIR MASS (lba) is the calculated asas of dry air in the containment. The mass of dry air is calculated using

, the containasnt free air volume and the above TEMPERATURE and CORRRECIED PRESSURE of the dry air.

4 i

i i

i l

l iU-043 A-12

e--u4A an

  • a>m-m - -. ----s_4ea

- A a m- a._-amm- o--E *+-4M.m.-= .Lw*aeae==..- a & -.L4*-Wa4h'.mh-A-h .A-a.m.__ - .A-_ _ . _ -A.. _2a_a__A.a.h% 4a _m .- &_m. , m A

i f

O i

1 i

I k

I APPENDIX B

\

i j STA BILIZ ATION SUMM ARY DATA t

1 l

1 i

1 1

i l

l 1

i I

I l

l t

l I

1 I

, -w- - - - ~~~w

E. I. HATCH UNIT 1 ILRT - APRIL 1986 O'-

SUMMARY

DATA ALMAX = 1.200 VOLUME = 260000.

VRATET = 1.603 VRATEM =1.592 TIME DATE TEMP PRESSURE VPRS VOLUME 1315 418 553.498 73.6689 .4558 260000.

1330 418 553.363 73.6661 .4546 260000.

1345 418 553.401 73.6643 .4554 260000.

1400 418 553.388 73.6626 .4561 260000.

1415 418 553.390 73.6616 .4571 260000.

1430 418 553.397 73.6604 .4583 260000.

1445 418 553.435 73.6597 .4590 260000.

1500 418 553.449 73.6572 .4606 260000.

1515 418 553.443 73.6549 .4628 260000.

1530 418 553.445 73.6529 .4649 260000.

1545 418 553.461 73.6515 .4662 260000.

1600 418 553.485 73.6505 .4672 260000.

1615 418 553.501 73.6478 .4699 260000.

1630 418 553.526 73.6464 .4713 260000.

1645 418 553.521 73.6457 .4720 260000.

1700 418 553.552 73.6431 .4746 260000.

1715 418 553.527 73.6407 .4770 260000.

O

E. I. HATCH UNIT 1 ILRT - APRIL 1986 O' TEMPERATURE STABILIZATION FROM A STARTING TIME AND DATE OF: 1315 A18 1986 TIME TEMP ANSI BN-TOP-1 (HOURS) ( R) AVE T AVE T DIFF AVE T (4 HRS) (1HR) (2 HRS)

.00 553.50

.25 553.36

.50 553.40

.75 553.39 1.00 553.39 1.25 553.40 1.50 553.43 1.75 553.45 2.00 553.44 .027*

2.25 553.45 .041*

2.50 553.46 . .030*

2.75 553.49 .049*

3.00 553.50 .055*

3.25 553.53 .064*

3.50 553.52 .043*

3.75 553.55 .052*

4.00 553.53 .007 .026 .02* .042*

O

  • INDICATES TEMPERATURE STABILIZATION HAS BEEN SATISFIED O

O

r

!I e

.I

.I i

I i APPENDIX C

! ILRT TREND REPORT 1

6 b

l

]

i I

I I

4 4

I

.i 5

l l

E. I. HATCH UNIT 1 ILRT - APRIL 1986

)

TREND REPORT J

TIME AND DATE AT START OF TEST: 1715 418 1986 NO. END TOTAL TIME ANALYSIS MASS POINT ANALYSIS PTS TIME MEAS. CALCULATED UCL CALCULATED UCL

___________________- =

4 1800 .199 .101 2.426 .140 .508 5 1815 .460 .306 1.621 .377 .740 6 1830 .407 .366 1.208 419 .640 7 1845 .423 .405 1.040 .442 .593 8 1900 .437 .433 .953 .459 .568 9 1915 .398 .433 .882 .444 .529 10 1930 .397 .432 .832 .434 .501 11 1945 .450 .449 .810 .450 .507 '

12 2000 .474 .468 .799 470 .521 13 2015 .419 .466 .775 .460 .504 14 2030 .443 .470 .760 .462 .499 15 2045 437 .471 .746 461 .493 16 2100 .458 .477 .738 .466 .494 17 2115 .417 .472 .723 .457 .483 18 2130 .434 .471 .713 .455 .478 19 2145 435 .471 .703 453 .474 20 2200 .418 .467 .693 .447 467 21 2215 .441 .468 .686 .448 .466 22 2230 .439 .468 .680 .448 .465 O 23 24 25 2245 2300 2315

.405

.432

.423

.462

.462

.460

.670

.663

.657

.440

.440

.438

.457

.456

.452 26 2330 .419 .458 .650 .435 .449 27 2345 .420 .456 .644 .433 .446 28 0 .400 .451 .636 .427 .44O 29 15 .412 .448 .630 .425 .437 30 30 .407 .446 .624 .422 .434 31 45 .407 .443 .618 .419 .430 32 100 .407 .441 .613 .417 .428 33 115 .397 .437 .607 .413 .424 l.

^ - - - - - - , - - _ _ _ _ _ _ _ _ _ _ _

l O

APPENDIX D ILRT SUMM ARY DATA; M ASS POINT; TOT AL TIME O

O

1 i

i l

p

(,) E. I. HATCH UNIT 1 ILRT - APRIL 1986

SUMMARY

DATA ALMAX = 1.200 VOLUME = 260000.

VRATET = 1.603 VRATEM =1.592 TIME DATE TEMP PRESSURE VPRS VOLUME 1715 418 S53.527 73.6407 .4770 260000.

1730 418 553.540 73.6385 .4792 260000.

1745 418 553.495 73.6356 .4812 260000.

1800 418 553.515 73.6346 .4831 260000.

1815 418 553.577 73.6333 .4844 260000.

1830 418 553.587 73.6331 .4856 260000.

1845 418 553.607 73.6320 .4867 260000.

1900 418 553.634 73.6316 .4881 260000.

1915 418 553.636 73.6308 .4899 260000.

1930 418 553.651 73.6299 .4908 260000.

1945 418 553.692 73.6282 .4935 260000.

2000 418 553.731 73.6279 .4938 260000.

2015 418 553.722 73.6282 .4955 260000.

2030 418 553.770 73.6290 .4957 260000.

2045 418 553.787 73.6284 .4973 260000.

2100 418 553.827 73.6280 .4987 260000.

2115 418 553.817 73.6282 .4995 260000.

2130 418 553.858 73.6282 .5005 260000.

w 2145 418 553.879 73.6275 .5022 260000.

() 2200 2215 418 418 553.889 553.937 73.6279 73.6277

.5028

.5040 260000.

260000.

2230 418 553.961 73.6278 .5048 260000.

2245 418 553.954 73.6292 .5055 260000.

2300 418 554.011 73.6289 .5067 260000.

2315 418 554.018 73.6282 .5085 260000.

2330 418 554.044 73.6291 .5086 260000.

2345 418 554.053 73.6268 .5108 260000.

O 419 554.065 73.6293 .5103 260000.

15 419 554.095 73.6277 .5120 260000.

30 419 554.114 73.6281 .5126 260000.

45 419 554.143 73.6290 .5137 260000.

100 419 554.169 73.6292 .5144 260000.

115 419 554.174 73.6293 .5153 260000.

i i

l l U-~

~ '

E. I. HATCH UNIT 1 ILRT - APRIL 1986 LEAKAGE RATE (WEIGHT PERCENT / DAY)

MASS POINT ANALYSIS TIME AND DATE AT START OF TEST: 1715 418 1986 TEST DURATION: 8.00 HOURS TIME TEMP PRESSURE CTMT. AIR MASS LOSS AVERAGE MASS (R) (PSIA) MASS (LBM) (LBM) LOSS (LBM/HR) 1715 553.527 73.6407 93364.

1730 553.540 73.6385 93359. 5. 0 19.9 1745 553.495 73.6356 93363. -3.8 2. 4 1800 553.515 73.6346 93359. 4. 6 7. 7 1815 553.577 73.6333 93347. 12.1 17.9 1830 553.587 73.6331 93345. 1. 9 15.8 1845 553.607 73.6320 93340. 4. 9 16.4 1900 553.634 73.6316 93335. 5.1 17.0 1915 553.636 73.6308 93333. 1. 3 15.5 1930 553.651 73.6299 93330. 3. 7 15.4 1945 553.692 73.6282 93321. 9. 0 17.5 2000 553.731 73.6279 93314. 7. 0 18.4 2015 553.722 73.6282 93316. -1. 9 16.3 2030 553.770 73.6290 93308. 7.1 17.2 2045 553.787 73.6284 93305. 3. 6 17.0 2100 553.827 73.6280 93298. 7. 3 17.8 02 2115 553.817 73.6282 93300. -1.9 16.2 2130 553.858 73.6282 93293. 6. 9 16.9 2145 553.879 73.6275 93288. 4. 4 16.9 2200 553.889 73.6279 93287. 1.1 16.3 2215 553.937 73.6277 93279. 8. 5 17.2 2230 553.961 73.6278 93275. 3. 8 17.1 2245 553.954 73.6292 93278. -3.0 15.7 2300 554.011 73.6289 93268. 10.0 16.8 2315 554.018 73.6282 93266. 2.1 16.5 2330 554.044 73.6291 93262. 3. 3 16.3 2345 554.053 73.6268 93258. 4. 3 16.4 0 554.065 73.6293 93259. -1.2 15.6 15 554.095 73.6277 93252. 7. 1 16.0 30 554.114 73.6281 93250. 2. 7 15.9 45 554.143 73.6290 93246, 3. 8 15.8 100 554.169 73.6292 93242. 4. 0 15.8 115 554.174 73.6293 93241. .8 15.4 FREE AIR VOLUME USED (CU. FT.) = 260000.

REGRESSION LINE INTERCEPT (LBM) = 93364.

SLOPE (LBM/HR) = -16.1 MAXIMUM ALLOWABLE LEAKAGE RATE = 1.200 75% OF MAXIMUM ALLOWABLE LEAKAGE RATE = .900 THE UPPER 95% CONFIDENCE LIMIT = .424

THE CALCULATED LEAKAGE RATE = .413

\

s .

_ , - . - . , - , , _ _ , . _ . . . . - - y-_m. , . . _ , . . - - - ._

I l

(en  ;

E. I. HATCH UNIT 1 ILRT - APRIL 1986 LEAKAGE RATE (WEIGHT PERCENT / DAY)

TOTAL TIME ANALYSIS TIME AND DATE AT START OF TEST: 1715 418 1986 TEST DURATION: 8.00 HOURS TIME TEMP PRESSURE MEASURED (R) (PSIA) LEAKAGE RATE

= _- - -_ ----------

1715 553.527 73.6407 1730 553.540 73.6385 .511 1745 553.495 73.6356 .061 1800 553.515 73.6346 .199 1815 553.577 73.6333 .460 1830 553.587 73.6331 .407 1845 553.607 73.6320 .423 1900 553.634 73.6316 .437 1915 553.636 73.6308 .398 1930 553.651 73.6299 .397 1945 553'.692 73.6282 .450 2000 553.731 73.6279 .474 2015 553.722 73.6282 .419 2030 553.770 73.6290 .443 2045 553.787 73.6284 .437

(g 2100 553.827 73.6280 .458

(_j/ 2115 553.817 73.6282 .417 2130 553.858 73.6282 .434 2145 553.879 73.6275 .435 2200 553.889 73.6279 .418 2215 553.937 73.6277 .441 2230 553.961 73.6278 .439 2245 553.954 73.6292 .405 2300 554.011 73.6289 .432 2315 554.018 73.6282 .423 ,

2330 554.044 73.6291 .419 2345 554.053 73.6268 .420 0 554.065 73.6293 .400 15 554.095 73.6277 .412 30 554.114 73.6281 .407 45 554.143 73.6290 .407 l' 100 554.169 73.6292 .407 115 554.174 73.6293 .397 MEAN OF THE MEASURED LEAKAGE RATES = 409 MAXIMUM ALLOWABLE LEAKAGE RATE = 1.200 75% OF MAXIMUM ALLOWABLE LEAKAGE RATE = .900 THE UPPER 95% CONFIDENCE LIMIT = .607 THE CALCULATED LEAKAGE RATE = .437

'O

O APPENDIX E ILRT AND VERIFICATION PLOTS O

O

l O O O E. I. HATCH UNIT 1 ILRT -

APRIL 1986 TEMPERATURE DEGREES F l 94.9OO /~,,.,

l ,

/~/,/

94.650" l

i -

/,,#y y

94.400" g e

i

/'

94.150" /

i/<J f

l

. ,e k

l 93.900" /%s)_/'s

\

y f>,,_ -

! 93.650 . . . . . . . . . . . . . . .

i  :.315 418 TIME H0llHS 63g 2 d ?(_

! START TIME DATE END TIME DATE

i O O O

! E. I. HATCH UNIT 1 ILRT -

APRIL 1986

PRESSURE PSIA (DRY AIR) 73.700 l .

73.650'

'~~'^

-,_,___ ______ ['N

\

l 73.600 \

\

73.559 \

\

\

\

73.500" 'g

\

73.450 . . . . . . . . . . . . , . . .

. 315 418 TIME HOURS 63g 2 d, 9 START TIME DATE END TIME DATE

E. I. HATCH UNIT 1 ILRT -

APRIL 1986 UAPOR PRESSURE PSIA

.530 e'

___,j

.515 a,.

/, .s s',

l'

.500 ,_/

r

.485

. ,l' r'/

l '

J

, .470" /

/

,i START Ild'4I8 TIME DATE T HI-k6(IRIT- '- T3O END TI.ME DATE 419 i

i O O O I

E. I. HATCH UNIT 1 ILRT -

APRIL 1986

! AIRMASS LBM X 1000 AND REGRESSION LINE l 93.460  !

! r- s___

~~ '

__s_ __

' ~

93.338" .

~~

j _.,._,

l 93.216" 1 -

'\ \'s 93.094"

. \.\.

s.~.

92.972" 92.850 . . . . . . . . . . . . , . . .m_

.315 418 TIME HOURS 630 419 i START TIME DATE END TIME DATE i

i m _ _ _ _ _ _ _ _ _ _ _

4 O O O E. I. HATCH UNIT 1 ILRT -

APRIL 1986 AIRMASS LBM X 1000 AND REGRESSION LINE 93.400

%N.3

93.320 ~. ,  %

l '

l  %

i 93.240 o.,s t ',.._.

, ss 93.160 ,

' ~.

.'~,.

l "

I 93.080 l .

93.000 . . . . " ' .

.715 418 TIME H6HilS 115 419 START TIME DATE END TIME DATE i _. __ _ _ _ - _ _ J

O O O

! E. I. HATCH UNIT 1 ILRT -

APRIL 1986 l TOTAL TIME LEAHAGE RATE AND UCL -

X/ DAY 1

l 2.500 lI l

2.900" i,

l 1.500" UCL

(

1.000" ' ' -- "'"

~-- -.

i ---

.500" -

g te m ce aire l/

! .000 . . . . . . .

! . .715 418 TIME HOURS 115 419 START TIME DATE END TINE DATE

i O O O E. I. HATCH UNIT 1 ILRT -

APRIL 1986 l MASS POINT LEAHAGE RATE AND UCL -

X/ DAY i

1.200 i

,96Q o.75 La

\ "

! *730 ~

i }

i i

l r.\ ____'uct

'~~-

:- --~: .- .,.=--

.480 .

.__.__====--c=c= =====

ta o*"""

[/~_-~__7

,240 l

\ i j .

! .000- _ . . . ,

I  :.715 418 TIME IT5[ INS 115 419

) START TIME DATE END TIME DATE i

l

o o o E. I. HATCH UNIT 1 ILRT -

APRIL 1986 AIRMASS LBM X 1000 AND REGRESSION LINE

~93.220

.%'s__,.

j 93,16B

" 's ' s .'-

i j ' w ,'<=x%qs. , LGJER LIMIT 93.100

'ss,. ~

s,

'N ..

~_

UPPER LIMIT ~-

j "

~' s ,. k

,,,~

93.040 ss

~_..

j N,

92.980 s, 'N '

\ ,. s j

- ., s

! 92.920 . . . . '%

230 419 TIME HOURS 639 419 START TIltE DATE END TIME DATE

- _ _ _ _ _ _ _ - _ _ - _ _ _ _ - _ _ _ _ - J

! E. I. HATCH UNIT 1 ILRT -

APRIL 1986

! TOTAL TIME LEAHAGE RATE -

X/ DAY l

2.000

. VERIFICATION UPPER LIMIT

,1

! . tE m CE RITE ____

1.600 ,._- - _

I '

/

=-

l = = VERIFICATION IDWER LIMIT I

! . 800 3

. 000 . , , .

230 419 TIME HOURS 630 419 l

START TIME DATE END TIME DATE i

.-- _A

! O O O l

E. I. HATCH UNIT 1 ILRT -

APRIL 1986 i MASS POINT LEAHAGE RATE -

X/ DAY 2.000 VERIFICNTION UPPER LIMIT

"^"""^"

l 1.600 -

! ,,r ~s m

""'"c^="""'""""

i 1.200 l -

.800" i

l .400" i

.000 . . ,

230 419 TIME HOLIR5i 6910 419

, START TIME DATE END TINE DATE i

i - _ - . .

O O O

E. I. HATCH UNIT 1 ILRT -

APRIL 1986 DEWPOINT TEMPERATURE SENSOR 2 DEG. F i 150.90 e,c4,\_

l .

~~~~~~~~~

j ___ _ r ___ _/

l 50.900" -

I

-50.0"

! -150.0"

! -250.0" i

l -350.0 . . . . . . . . . . . . . . . . ,

! .315 418 TIME HOURS 630 419 l

START TIME DATE END TIME DATE 9

O O O E. I. HATCH UNIT 1 ILRT -

APRIL 1986 PRESSURE SENSOR 2 PSIA 74.200

- -~,- \

g

_g__,_,,,f%A 74.150 _

s_ ,-sy g~\  ;

74.100 ..

i

\,

\\

74.050" s,.

74.000" '-

73.950- -. . . . . . .. . . . , . . . .;

.315 418 IIME ilDURS 639 419 START TIME DATE END TIME DATE

1 i

O O O

E. I. HATCH HNIT 1 ILRT -

APRIL 1986

i TEMPERATURE SENSOR 8 DEGREES F i 125.50

! _ _ / - ,. /

! w '~

l 123.90" , /d

,d 122.30" /

M l -

/

120.70" [',_ ._/

/"

l'-

j i 119.10" /

f

/

117.50 . . . . . . . . .- . . . , . . . .

i '.315 418 TIME HOURS 630 419 START TIME DATE END TIME DATE i

2

l 1

O O O l E. I. HATCH UNIT 1 ILRT -

APRIL 1986 i TEMPERATURE SENSOR 9 DEGREES F 122.90

/q,,/^\/

l 120.60" r

~/ -f\

\

f. I

) 119.20" l: -

_A/p[

i 117.80" ,_/N

/

(

116.40"

.r )

115.00 ). . ..........,.... .

! .315 418 TIME HOURS 630 419 L

START TIME DATE END TIME DATE .

p O

APPENDIX F VERIFICATION FLOW

SUMMARY

AND DATA O

O

f E. I. HATCH UNIT 1 ILRT - APRIL 1986

SUMMARY

DATA ALMAX = 1.200 VOLUME = 260000.

VRATET = 1.603 VRATEM =1.592 TIME DATE TEMP PRESEURE VPRS VOLUME 230 419 554.274 73.6215 .5202 260000.

245 419 554.299 73.6132 .5205 260000.

300 419 554.285 73.6037 .5210 260000.

315 419 554.319 73.5943 .5214 260000.

330 419 554.356 73.5855 .5223 260000.

345 419 554.348 73.5768 .5219 260000.

400 419 554.384 73.5664 .5234 260000.

415 419 554.381 73.5565 .5243 260000.

430 419 554.410 73.5472 .5247 260000.

445 419 554.436 73.5374 .5255 260000.

500 419 554.466 73.5285 .5255 260000.

515 419 554.495 73.5180 .5260 260000.

530 419 554.486 73.5077 .5273 260000.

545 419 554.498 73.4982 .5268 260000.

600 419 554.525 73.4865 .5285 260000.

615 419 554.507 73.4766 .5294 260000.

630 419 554.546 73.4672 .5299 260000.

-w .

V O

f '}

E. I. HATCH UNIT 1 ILRT - APRIL 1986 LEAKAGE RATE (WEIGHT PERCENT / DAY)

TOTAL TIME ANALYSIS TIME AND DATE AT START OF TEST: 230 419 1986 TEST DURATION: 4.00 HOURS TIME TEMP PRESSURE MEASURED (R) (PSIA) LEAKAGE RATE

--- - - - - - _ =----_- --- -- --------

230 554.274 73.6215 245 554.299 73.6132 1.513 300 554.285 73.6037 1.256 315 554.319 73.5943 1.442 330 554.356 73.5855 1.527 345 554.348 73.5768 1.421 400 554.384 73.5664 1.513 415 554.381 73.5565 1.475 430 554.410 73.5472 1.505 445 554.436 73.5374 1.529 500 554.466 73.5285 1.545 515 554.495 73.5180 1.574 530 554.486 73.5077 1.543 545 554.498 73.4982 1.534 600 554.525 73.4865 1.567

'f-% 615 554.507 73.4766 1.528 t

'~ 630 554.546 73.4672 1.550 MEAN OF THE MEA 5URED LEAKAGE RATES = 1.501 VERIFICATION TEST LEAKAGE RATE UPPER LIMIT = 1.936 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT = 1.336 THE CALCULATED LEAKAGE RATE = 1.578 I

, - - . - , . - - - . , . , - -- . - - , ~ . .-,...,,,,...nn., -,,n------.-

7- m k

E. I. HATCH UNIT 1 ILRT - APRIL 1986 LEAKAGE RATE (WEIGHT PERCENT / DAY)

MASS POINT ANALYSIS TIME AND DATE AT START OF TEST: 230 419 1986 TEST DURATION: 4.00 HOURS TIME TEMP PPESSURE CTMT. AIR MASS LOSS AVERAGE MASS (R) (PSIA) MASS (LBM) (LBM) LOSS (LBM/HR) 230 554.274 73.6215 93214.

245 554.299 73.6132 93199. 14.7 58.7 300 554.285 73.6037 93190. 9. 7 48.8 315 554.319 73.5943 93172. 17.6 56.0 330 554.356 73.5855 93155. 17.3 59.3 345 554.348 73.5768 93145. 9. 7 55.2 400 554.384 73.5664 93126. 19.2 58.8 415 554.381 73.5565 93114. 12.1 57.3 430 554.410 73.5472 93097.i 16.7 58.5 445 554.436 73.5374 93081. 16.7 59.4 500 554.466 73.5285 93064. 16.4 60.O 515 554.495 73.5180 93046. 18.1 61.1 530 554.486 73.5077 93034. 11.7 59.9 545 554.498 73.4982 93021. 13.9 59.6 600 554.525 73.4865 93001. 19.4 60.9 615 554.507 73.4766* 92992. 9. 5 59.3 630 554.546 73.4672 92973. 18.3 60.2 FREE AIR VOLUME USED (CU. FT.) = 260000.

REGRESSION LINE INTERCEPT (LBM) = 93217.

SLOPE (LBM/HR) = -60.9 VERIFICATION TEST LEAKAGE RATE UPPER LIMIT = 1.912 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT = 1.312 THE CALCULATED LEAKAGE RATE = 1.567 0

l l

APPENDIX G ISG CALCULATIONS O -

h V

ISG CALCULATION (ANSI /ANS 56.8 - 1981)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = . . . . . . . . . . . . . . . . . ,

CALIBRATION DATA .

  1. OF SENSORS SENSITIVITY (E) R EP E AT A BILITY(r)

TEMPER ATUR E(t) 1h ,

0.0100 deg. F 0.0000 deg. F PRESSURE (P) ~['1,. ,

0.0010 psia 0.0000 psia

~

VAPOR PRESS (Pv) +5 ,' O.10 0 0 d e g F 0.0000 deg. F x m Length of Test (t) 8.0 hrs Test Pressure (P)_ 5 9.3 psig == T h.0 psia From steam Table 0.012h psi /deg. F'(at 70 deg. F)

La , 1.2000 vt%/ day INSTRUMENT MEASUREMENT ERRORS eT = [(ET) + (rT) ;] / [# of sensors}

eT = 0.0027 deg. F eP = [(EP) + (rP) ] /[# of sensors]

eP = 0.0010 psia ePv = [(EPv) + (rPv)2 )l/2 /[# of sensors]I!

I ePv = 0.0006 psia t

INSTRUMENT SELECTION GUID E 1

1 ISO = 2h00/t[ 2(eP/P) + 2(ePv/P)2 + 2(eT/T)2 )1/2 ISG = 0.0069 vt%/ day 25% of La 0.300 sv%/ day

\

========================================_====================

1

~

_-_a m - -p - . - a - - _ _- ,- - ,

b 4

e APPENDIX H LLRT REPORT i

f i

I

, 0 ww., e w w w , g

I  ?

l l

SUMM ARY OF LOC AL LE AKAGE RATE TESTING

1. General The major prerequisite to the containment Integrated Leakage Rate ;est is the satisfactory completion of a series of local leakage rate tests. This involves subjecting potential leakage l paths through the contain m ent boundary, i. e . , c ontain m ent i penetrations, to the same test c onditions occurring during the )

integrated leakage rate test. Conducting Type B, Type C, and '

S pecial Isolation Valv e Tests as defined in 10 C FR Part 50, Appendix J, Article III.C., permits discovery and elimination of leakage paths through the containment without pressurizing the entire containment structure (Type A test).

2. Acceptance C rit eria A. The combined leakage rate of components subject to Type B and C tests (except for MSIVs) shall not exceed 0.60 L a.

B. The main steam isolation valve leakage rate s hall not exceed 11.5 scfh for any one valve. Total leakage is excluded from 0.60 L a.

C. The Personnel Air Lock leakage rate shall not exceed 0.05 La (Lock Barrel Test Total Leakage).

n 3. Test Pressures A. Test pressure for all Type B and C tests shall be 59.0 (+1,

-0) psig except as noted in the items below.

B. Test pressure for isolation valves tested with w at er s hall be at a pressure equal to the height of the highest opposing water column plus 64.9 psig (1.10Pa), +1, -0.

C. Main steam isolation valves are tested at 28.0 psig.

D. Dryv ell personnel air lock double "O" ring door seals are tested at 10 psig.

E. Air lock barrel is tested at 59.0 psig.

h. R es ult s A. Measured Leakage Rate of Type B and C Tests.

18,0 0 0 ace m.

O

Allowable Limit: (.6 La) = 0.72 vt.5/ day The sum of Type B and C leakage rate is limited to .60La

.60La = (.6) (L2%) (Containment Free Air

= (.6) (.012) (25 8,910)/2h = 77.67 Ft}olume)/1

/hr day

= 3 6,6 6 2 ac e m The required limits per Appendix J are s atis fied, since 18,000 acem < 36,662 acem.

B. Measured Leakage Rate of Main Steam Isolation Valves

! Penetration T A = 10.5 sefh Penetration T B = 0.0 scfh Penetration T C = 7 scfh Penetration T D = L2 scfh Allowable Limit: (1L5 scfh/ valve)

The leakage rate of each valve is limited to 1L5 scfh.

The required limits are satisfied.

C. Measured Leakage Rate of the Personnel Air Lock i 600 acem = .019 %/ day = .0099 La A11ovable Limit: (0.05 La) 3

.05 La = (.05)(.012)(258910)/2h = 6.h7 ft /hr

= 3053 acem The required limit is satisfied since .0099 La < .05 La.

I l

I

l TYPE B LEAKAGE HISTORY TO LAST ILRT (Spring 1983)

O Penetration Test Description Date Performed Leakage 1A Equip Hatch 12-21-8h 0 T-29-85 0 11-30-85 0 1B Equip Hatch 1-5-85 0 3-21-85 0 8-3-85 0 11-30-85 0 2 Personnel Lock (0- rings) 1-6-85 0 1-T-85 0 1-12-85 0 2-19-85 0 2-22-85 0 3-22-85 0 6-18-85 0 T-31-85 0 8-h-85 0 9-22-85 0 9-23-85 0. .

11-27-85 0 2-18-86 0 h-18-86 0 h-27-86 0 t 5-1-86 0 k 2 Personnel Lock Innerspace 1-29-83 1500 6-18-83 1700 12-8-83 1300 3-2-8h 200 6-9-8h 80 1-6-85 0 6-19-85 0 11-27-85 612 h-27-86 h03 h Head Access Hatch 1-2-85 0 11-28-85 0 h-17-86 0 6 CRD Removal Hatch 12-20-84 0 12-h-85 0 3-15-86 0 TA Main Steam Bellows Inner 10-h-84 0 Outer 10-h-8h <20 Inner 12-3-85 0 Outer 12-3-85 0 TB Main Steam Bellows Inner 10-1-8h 0 Outer 10-1-84 0 Inner 12-5-85 202.h Outer 12-5-85 552 Inner 1-21-86 20 x Outer h-16-86 0 i

SUM 013:9

Penetration Test Description Date Performed Leakage Ns

TC Main Steam Bellows Inner 10-h-8h 120 Outer 10-h-8h <20 Inner 12-h-85 123.3 Outer 12-h-85 0 TD Main Steam Bellows Inner 10-1-8h 0 Outer 10-1-8h 120 Inner 12-h-85 0 Outer 12-h-85 0 8 Condensate Bellows Inner 10-4-8h 0 Outer 10-4-8h 0 Inner 12-5-85 20 Outer 12-5-85 20 9A Feedwater Bellows Inner 10-h-8h 0 Outer 10-h-84 (20 Inner 12-5-85 0 Outer 12-5-85 20 9B Feedwater Bellows Inner 10-h-8h 0 Outer 10-h-8h 0 Inner 12-5-85 0 Outer 12-5-85 0

\- 10 RCIC Steam Bellows Inner 10-h-8h 0 Outer 10-h-8h 0 Inner 12-6-85 0 Outer 12-6-85 0 11 HPCI Steam Bellows Inner 10-6-8h <20 Outer 10-6-8h <20 Inner 12-5-85 0 Outer 12-5-85 0 12 RHR Suction Bellows Inner 10-5-8h 0 Outer 10-5-8h 0 Inner 12-12-85 0 Outer 12-12-85 21 13A RER Return Bellows Inner 10-5-8h 0 Outer 10-5-8h 0 Inner 12-5-85 0 Outer 12-5-85 0 13B RHR Return Bellows ,

Inner 10-h-8h 0 Outer 10-h-8h 0 Inner 12-5-85 0

- Outer 12-5-85 19 SUM 013:10

PInetration Test Description Data Performed Leakaga 1h RWCU Supply Bellows

(])

/

Inner 10-6-8h <20 Outer 10-6-8h <20 Inner 12-5-85 20 Outer 12-5-85 20 16A Core Spray Bellows Inner 10-6-8h <20 Outer 10-6-8h <20 Inner 12-5-85 0 Outer 12-5-85 0 16B Core Spray Bellows Inner 10-6-8h <20 Outer 10-6-8h <20 Inner 12-5-85 0 Outer 12-5-85 0 17 RPV Head Spray Bellows Inner 10-6-8h <20 Outer 10-6-8h <20 Inner 12-1-85 0 Outer 12-1-85 28 25 Purge Supply Th8-F309 0-rings 10-8-8h 250 Th8-F307 0-rings 10-10-8h <20 Th8-F103 0-rings 10-10-8h <20 Th8-F308 0-rings 10-10-8h 30 Th8-F324 0-rings 10-10-8h 0 Th8-F324 0-rings 10-2h-8h 0

,Q 10-26-8h o

() Th8-F309 0-rings Th8-F32h Shaft 0-rings 1-3-86 0 Th8-F32h Flange 0-rings Inboard 1-3-86 0 Outboard 1-3-86 19 Th8-F309 Shaft 0-rings 1-3-86 0 Th8-F309 Flange 0-rings 1-3-86 0 Th8-F308 0-rings 1-3-86 0 Th8-F307 0-rings 1-3-86 0 Th8-F103 0-rings 1-3-86 0 Th8-F103 0-rings 3-10-86 0 Th8-F309 0-rings 3-10-86 0 Th8-F308 0-rings 3-10-86 0 Th8-F307 0-rings 3-10-86 0 Th8-F32h 0-rings 3-10-86 0 26 Purge Exhaust Th8-F319 0-rings 10-8-84 0 Th8-F320 0-rings 10-8-84 >220 Th8-F320 0-rings 12-18-8h o Th8-F320 0-rings 12-26-85 0 Th8-F319 0-rings 12-26-85 0 T48-F319 0-rings 3-10-86 80 Th8-F320 0-rings 3-12-86 81 TIP Drives & N Purge 10-13-8h o 35A 2 12-17-85 0 0

SUM 013:11

Penetration Test Description Date Prrformed Leakaga 10-13-8h 0 f)

\/

35B TIP Drives & N Purge 2

12-17-85 0 35C TIP Drives & N Purge 10-13-84 0 2 0 12-17-85 35D TIP Drives & N Purge 10-13-8h 0  ;

2 0 12-17-85 35E TIP Drives & N Purge 10-13-8h 0 2 0 12-17-85 h3 Drywell Test 12-21-84 0 12-h-85 0 3-22-86 0 100A Electrical 9-24-8h 0 11-18-85 0 100B Electrical 9-24-84 0 11-18-85 0 100D Electrical 10-h-8h 0 11-22-85 0 100E Electrical 10-h-84 0 11-22-85 0 101A Electrical 9-25-8h 0 11-21-85 0 101B Electrical 9-26-8h 0 11-21-85 0 101C Electrical 9-26-8h 0 11-28-85 0 101D Electrical 9-26-8h 0 O

C/ 101E Electrical 11-28-85 9-26-85 0

11-22-85 0 101F Electrical 9-26-8h 0 11-22-85 0 102A Electrical 9-25-8h 0 11-20-85 0 103A Electrical 9-25-8h 0 11-22-85 0

! 10hA Electrical 9-2h-8h 0 11-20-85 0 10hB Electrical 9-25-84 0 4

11-20-8h 0 10hC Electrical 9-25-8h 0 11-20-85 0 10hF Electrical 10-h-8h 0 11-21-85 0 10hG Electrical 10-h-8h 0 11-21-85 0 10hH Electrical 10-h-8h 0 11-21-85 0 Electrical 9-25-8h 0 105A 11-21-85 0 Electrical 9-26-84 0 105C 11-22-85 0 106B Electrical 10-9-8h 0

' O 11-22-85 0 U

SUM 013:12

Penetr tion Test Description DTta Prrformed Leaksg7 A 200A Torus Access Hatch ~11-19-8h 0 U 12-28-8h T-26-85 0

0 8-3-85 0 11-27-85 20 h-15-86 0 h-27-86 0 2000 Torus Access Hatch 11-19-8h 0 11-27-85 0 h-15-86 0 201A Vent Line Bellows 10-6-8h 0 12-5-85 0 201B Vent Line Bellows Inner 10-6-8h Offscale outer 10-6-8h 0 Inner 12-23-8h 0 Inner / Outer 12-5-85 0 201C Vent Line Bellows 10-6-8h 0 12-5-85 0 201D Vent Line Bellows 10-9-8h 0 12-5-85 0 201E Vent Line Bellows 10-9-8h 0 12-5-85 0 201F Vent Line Bellows 10-9-8h 0 12-5-85 0 201G Vent Line Bellows 10-9-8h 0 0

j]

(j 201H Vent Line Bellows 12-5-85 10-6-8h 0 12-5-85 0 202 Electrical 10-9-8h 0 12-9-85 0 205 Vacuum Relief / Torus Purge Th8-F310 0-rings 10-8-84 0 Th8-F311 0-rings 10-8-8h TO Th8-F310 Flange 0-rings 12-7-85 0 Th8-F310 Shaft 0-rings 12-T-85 0 Th8-F311 Shaft 0-rings 12-9-85 0 Th8-F311 Flange 0-rings 12-9-85 0 218B Construction Drain 10-11-8h 0 11-29-85 0 220 Purge Exhaust Th8-F318 0-rings 10-11-8h 50 Th8-F32t 0-rings 10-11-84 35 Th8-F326 0-rings 1-3-85 0 T48-F318 0-rings 1-3-85 0 Th8-F326 0-rings 12-27-85 20 Th8-F318 0-rings 12-27-85 14,58h Th8-F318 Shaft 0-rings 3-9-86 20 Th8-F318 Shaft 0-rings 3-9-86 20 Th8-F318 Flange 0-rings 3-9-86 20 Th8-F318 Flange 0-rings 3-9-86 20 Th8-F326 Shart 0-rings 3-9-86 20 Th8-F326 Shaft 0-rings 3-9-86 20 Q(,/ Th8-F326 Flange 0-rings 3-9-86 20 Th8-F326 Flange 0-rings 3-9-86 20 SUM 013:13

Penetration Test Description Date Performed Leakage

%j Dryvell Head Flange 1-2-85 0 11-28-85 20 h-17-86 0 RPV Stabilizer Hatches Azimuth 0 degrees 10-lh-84 0 Azimuth h5 degrees 10-lh-8h 0 Azimuth 90 degrees 10-14-84 0 Azimuth 135 degrees 10-14-8h 0 l

Azimuth 180 degrees 10-lh-85 0 Azimuth 225 degrees 10-14-84 0 Azimuth 270 degrees 10-lh-84 0 Azimuth 315 degre-s 10-lh-85 0 Azimuth 0 degrees 12-17-85 0 Azimuth 45 degrees 12-18-85 0 Azimuth 90 degrees 12-18-85 0 Azimuth 135 degrees 12-17-85 0 Azimuth 180 degrees 12-18-85 0 Azimuth 225 degrees 12-18-85 0 Azimuth 270 degrees 12-17-85 0 Azimuth 315 degrees 12-17-85 0

O l

l O

SUM 013:1h E

,.-.- - , , , - - . - , _ - ~ _ _ . _ , _ _ - , - _ _ . , - , . . - _ -,-,_..__..r_.-_. -_-,,-,w,,-.y._,,_ - . _ , ,,,,y , - - - - - _ - , - - . - , - . - , - _ . . - - ,- -

TYPE C LEAKAGE HISTORY TO LAST ILRT (SPRING 1983)

Penetration Valve No. Date Performed Leakage (ACCM except where noted)

TA B21-F022A 10-2-8h Offseale B21-F028A 1-2-85 11. SCFH 8-3-85 11.h3 SCFH 12-1-85 64.2 SCFH 12-2-85 0 3-5-86 10.5 SCFH TB B21-F022B 10-1-84 0 B21-F028E 10-2-8h Offscale 12-29-8h kl. SCFH 1-4-85 10.5 SCFH 12-1-85 117.2 SCFH 12-2-85 75. SCFH 3-12-86 0 TC B21-F022C 10-1-8h 15.09 SCFH B21-M28C 12-2-8h Offscale 1-2-85 3. SCFH 12-2-85 14. SCFH 12-2-85 0 + 050.SCFH(vet) 3-1-86 7. SCFH TD B21-F022D 10-1-84 6.h SCFH

'; B21-F028D 12-2-8h Offscale 12-16-8h T.63 SCFH 12-2-85 13. SCFH 12-2-85 12. SCFH(vet) 3-3-86 1.2 SCFH 8 B21-F016 10-7-8h Offscale B21-M19 12-6-8h 35.

12-13-85 3676.

3-7-86 20.

9A

  • B21-F032B 10-17-8h 302.

G31-F203 2-20-86 0 9A

  • B21-M10B 10-17-8h h50.

1-20-86 0.

9A

  • Ehl-F006 10-15-8h Offscale Ehl-F0OT 10-12-8h 30.

Ehl-4008 12-1-85 0.

h-h-86 21.

9B

  • G31-F039 10-17-84 50.

2-11-86 5831.

3-1-86 0 9B

  • B21-F010A 10-17-8h 50.

12-4-85 52.

2-h-86 Sh.

9B

  • G31-F0h2 10-17-8h Offscale C11-F083 12-29-8h 0 1-19-86 kl.
  • Hydraulic leakage SUM 013:15

Penetration Valve No. Date Performed Leakage (ACCM)

O V 9B

  • E51-M 13 B21-F032A 10-17-84 1-h-85 1h10.

offseale 3-5-86 73h8.

h-20-86 0 9B E51-M 12 10-16-8h 0 E51-F022 1-20-86 0 10 E51-M07 12-16-84 125 E51-M08 12-12-85 24.

h-9-86 <20.

11 Ek1-F002 12-12-8h >2200.

Ehl-M03 12-20-8h 20.

1-8-86 1211.

3-23-86 0 h-3-86 0 h-26-86 20.

12 211-F008 10-15-8h 200.

12-13-85 0 2-17-86 282.

12 E11-M09 10-15-84 60.

12-13-85 131.

12-17-86 136.

13A E11-F015A 10-17-84 1000.

12-2-8h 200.

12-12-85 <200.

13A E11-M 17A 10-17-8h 200.

p v 13A E11-M50A 12-2-85 10-1-8h 115.

600.

(ASME) 12-2-85 59 13B E11-M15B 10-8-84 50.

12-7-85 1h10.

2-1-86 55 13B E11-M 17B 10-8-8h 350.

12-9-85 1765 2-1-86 323 13B E11-F050B 6-9-84 3900.

(ASME) 10-5-8h 300.

12-6-85 <200.

14 G31-F001 10-18-8h 0 1-20-86 2664.

2-10-86 0 3-2T-86 20.

Ik G31-F00h 10-18-8h 0 1-19-86 0 3-27-86 25 16A E21-M0hA 10-14-8h 0 2-18-86 21.

16A E21-F005A 10-8-84 20.

2-15-86 h6.

16A E21-F006A 10-3-8h 350.

(ASME) 12-27-85 36.

2-lh-86 232.

h-17-86 25 O

SUM 013:16

Peretration Valve No. Date Performed Leakage (ACCM)

(

( 16B E21-E0hB 10-lh-84 0 2-13-86 21 16B E21-WO5B 10-8-8k 20 2-11-86 0 16B E21-M06B 10-3-8h 0 (ASME) 12-4-85 0 17 E11-M22 10-19-8k 0 E11-M23 12-3-85 0 2-21 86 20 18 G11-F019 10-5-64 0ffseale 12-19-84 0 12-10-85 1513 1-18-86 <20 18 G11-F020 12-17-84 160 12-19-8h 70 12-13-85 0 19 G11-F003 10-23-8h 0 12-18-85 0 19 G11-F00h 10-23-84 <20 12-19-85 0 20 Phl-F0h9 10-18-84 800 11-18-8h 120 20/hk 12-16-85 5953 Phl-Wh9 3-25-86 0 Phl-M50 3-26-86 <20 O 21 P51-F513 11-18-8h h0 Cl P51-F51h 12-14-85 0 22 P70-N04 11-16-8h (20 12-13-85 0 3-30-86 22 X22 P70-W05 11-16-84 0 12-13-85 0 3-31-86 20 X23

  • Ph2-N51 11-5-84 0 2-20-86 0 3-28-86 21.*

X2h

  • Ph2-M52 11-5-84 0 X25 Th8-n03 10-12-84 >hh00 Th8-F307 12-18-84 1600 Th8-F308 12-29-8h 1853 Th8-F309 1-3-85 625 Th8-F324 12-27-85 0 3-10-86 0 X25 Th8-n13 11-12-8h <20 Th8-F321 11-15-8h 30 Th8-nik 1-23-86 <20 Th8-F322 1-23-86 21 X25/205 Th8-nok 11-18-8h 75 Th8-n18A 2-17-86 0 Th8-n18B 2-28-86 20 O

SUM 013:17

Penetration Valve No. Date Performed Leakage (ACCM) f~

b X26 Th8-F319 10-23-8h 1-3-85 2h Ortscale Th8-F320 12-19-85 >28,090 2-12-86 23,h92 3-10-86 86 X 26 Th8-F33hA 10-24-84 160 Th8-F335A 12-22-84 h5 2-13-86 27 3-10-86 31 X26 Tk8-F33kB 10-23-84 205 Th8-F335B 12-26-84 <20 2-12-86 0 3-3-86 20 X26 Th8-F3ho 10-23-84 1100 Th8-F341 12-18-8h 0 12-26-85 0 X25 P33-WO2 10-30-8h 0 P33-M10 12-6-85 0 X27A D11-F051 h-16-86 0 X27A D11-M53 h-16-86 20 X27F P70-W66 3-9-86 <20 X27F P70-M67 3-30-86 30 X28A B31-F019 10-T-84 25 B31-F020 12-9-85 117 1-20-86 <20 X28F P33-m03 10-22-8h 0

'v P33-M11 (P33-F003) 12-h-85 0 (P33-M11) 12-6-85 0 X31D P33-F00h 10-30-84 0 P33-M12 1-22-86 0 X31F B31-M 13A 12-11-84 0 12-2-85 0 X31F B31-M 17A 11-15-8h 218 1 12-13-84 0 12-12-85 0 X33C D11-N50A h-lh-86 <20 X33C D11-F052 h-14-86 <20 X3hA C51-TIP BALL VLV 10-26-8h 2165 11-16-8h 0 12-17-85 0 X35B C51-TIP BALL VLV 10-26-8h 20 12-17-85 0 X350 C51-TIP EALL VLV 10-26-8h >2200

! 11-16-8h 0 12-17-85 0 -

X35D C51-TIP BALL VLV 10-26-8h 65 11-16-84 0 12-17-85 0 X35E C51-TIP BALL VLV 10-25-8h 0 12-17-85 0 O

SUM 013:18

Penetration Valve No. Date Perfor:aed Leakage (ACCM)

O X39A E11-P016A 10-18-8h 20 12-3-85 0 X39B E11-F016B 10-8-8h Offscale 12-h-84 120 12-18-85 47 IkOC P70-F002 10-20-8h 0 P70-M03 1-lh-86 0 Xh2 Chl-m0T 10-1h-84 0 12-13-85 60 Xh2 Chi-m06 10-16-84 0 1-T-86 1215 1-28-86 0 Xhh

  • Phl- M50 10-18-84 TOO.*

12-15-8h 126.*

X45F T23-M0h 10-20-84 0 T23-F005 12-17-85 0 Xh6 P21-F353 11-18-84 60 P21-Fh06 12-1k-8h 5T3 P21-Fh20 1-17-86 <20 X52F B21-F111 h-12-86 0 X52F B21-F112 h-12-86 <20 X59A B31-M 13B 11-15-8h >2200 12-9-84 0 12-10-85 1009 1-9-86 23 X59A B31-M1TB 11-15-84 1100 (mV) 12-9-8h 0 12-19-85 1611 1-9-86 10T2 2-12-86 31 X203

  • E51-F031 10-4-8h 30 E51-F003 12-6-85 65.2*

X20hA

  • Ell-M0hA 9-30-8h 1050.*

E11-F065A 12-11-8h 327.*

E11-N 30A 12-3-85 30h1.*

h-T-86 1320.*

X20hA

  • E11-F065 12-11-84 332T.*

X20hB

  • E11-F065B 10-5-8h 600.*

E11-F004B 12-6-85 20h9.*

i E11-F030B 2-11-86 855.*

h-27-86 875.*

X20hc

  • E11-F065C 9-30-84 h00.*

E11-F00hc 12-14-85 329.*

E11-PV300 3-13-86 h00.*

h-5-86 900.*

X20hD

  • E11-W65D 10-5-84 110.*

E11-FV0hD 12-13-85 120.*

E11-F030D h-21-86 (20.*

X205 Th8-F310 10-12-84 500 Th8-F328 3-19-86 13T O

SUM 013:19

Penetrntion Valve No. Data Prrformed Leaksg2 (ACCM)

X205 Th8-F311 ~0-12-8h >2200 (b'

Tk8-F328B 12-28-8h <20 7-27-85 <20 12-7-85 0 3-19-86 20 X205 Th8-F115 11-9-8h <20 Th8-F116 1-2-86 0 4

X205 Th8-F325 11-15-84 0 Th8-F327 1-2h-86 <20 X206A Ehl-F121 h-17-86 20 X206A Ehl-F122 h-17-86 20 X207

  • Ehl-F0h2 10-3-8h 0.*

X208A

  • E21-F001A 10-10-8h Offscale E21-M19A 12-2-8h 110.*

- 12-T-85 170.*

3-9-86 110.*

X208B

  • E21-F001B 10-9-8h Offseale E21-M19B 12-2-8h 150 12-9-85 75,712.*

2-13-86 0 X210A

  • E11-M55A 10-16-84 1500.*

E11-F103A 12-4-84 550.*

3-3-86 0 X210A

  • E11-F025A 10-1-8h 0 12-19-85 709.*

1-25-86 0 O

3-2h-86 <20.*

V X210A

  • E11-F011A 10-2-8h 150.*

, E11-F026A 12-6-8h 120.*

12-19-85 106.*

X210A E11-F007A 3-2-8h 1200 3-3-8h 25 10-18-8h ho 11-31-85 2200 3-11-86 81 X210A E51-F019 10-11-8h o

E51-F021 12-10-85 0 X210A E11-W2hA 10-lh-84 Offscale E11-F027A 12-13-8h 211 E11-W28A 12-3-85 12,042 2-19-86 0 h-3-86 29h X210A E21-WhhA 10-10-8h 0 12-11-85 0 X210A E21-F031A 2-2h-8h 3-h-84 1h50 12-11-84 >2200 12-22-8h <20 12-10-85 3833 h-19-86 79 b

SUM 013:20

Penetration Valve No. Date Performed Leakage (ACCM)

X201A

  • E21-F015A 10-2-8h 80.*

12-2-85 0."

X210A E11-F029 10-22-8h 30 1-8-86 0 X210B

  • E11-F055B 10-4-8h 900.*

E11-F103B 12-7-85 958h.*

2-20-86 653.*

(E11-M55B) 4-21-86 <20.*

X210B

  • E11-PV15B 10-2-8h h5.*

12-1-85 <20.*

X210B

  • E11-F011B 10-6-8h Offscale E11-FV26B 10-12-8h 250."

12-10-85 96.*

X210B

  • E11-FV97 10-6-84 220.*

11-5-8h <20 12-5-85 0 X210B Ell-FVOTB 3-3-84 30 10-7-8h >2200 12-9-8h 0 12-13-8h 0 12-22-8h 251 12-5-85 31,602 2-11-86 20 X210B E21-PVh4B 10-11-84 0 12-6-85 (10

\ X210B Ehl-F012 10-12-84 300 Eh1-FVh6 12-17-85 h99 1-29-86 303 X210B E11-F02hB 10-7-8h 2200 E11-FV27B 12-13-8h 200 E11-F028B 12-T-85 7100 2-20-86 292 X210B E21-F031B 12-5-84 0}

12-5-85 h6 2-19-86 20 X212 E51-F001 11-14-8h Offseale E51-PVh0 12-15-8h 130 12-4-85 105 X213 E51-PV02 10-12-84 0 E51-PV28 12-10-85 h173 1-23-86 86 X21h Ehl-F021 11-2h-84 Shh Ehl-FVh9 1-28-85 Offscale 1-29-85 621 12-h-85 95,703 1 2-15-86 0 X215 Ehl-FV22 10-12-84 30 Ehl-F0h0 12-9-85 0 O

SUM 013:21

Penetration Valve No. Date Performed Leakage (ACCM)

)

\._/

X217 P33-P007 10-22-84 0 P33-PU15 12-4-85 300 (P33-P015) 12-6-85 0 (P33-P007) 3-18-86 20 X218A

  • G51-P012 10-14-8h 50.*

12-23-85 0 X218A

  • G51-F011 10-lh-84 0 12-11-85 <20.*

X218A

  • G51-PV02 10-13-84 0 12-9-85 31.*

X218A

  • G51-D001 10-13-8h 0 (BLIND FLANGE) 12-9-85 0 X220 P33-P006 10-22-84 Ortscale P33-PU1h 12-h-8h 0 12-6-85 0 X220 Th8-F318 11-16-8h 2000 Th8-F326 1-3-84 0 12-19-85 70 3-8-86 806 h-15-86 83 X220 Th8-F332A 12-15-8h 0 Th8-F333A 2-2-86 0 X220 Th8-F332B 12-15-8h <20 Th8-F333B 2-5-86 20 0 X220 Th8-F338 Th8-339 12-15-84 12-16-85 h-3-86 0

<20 0

X221C E51- R0h 10-11-8h 570 E51-n05 12-8-8k 60 12-10-85 <20 2-11-86 37 X222A Ehl-n11 9-21-84 25 Ehl-n04 12-9-85 26 3-14-86 51 X223A Th8-F3h20 11-5-84 <20 12-12-85 0 X223A Th8-AIR CYLINDER "G" 11-2-8h 0 12-13-85 0 2-h-86 1h1 X223A Th8-F3h2H 11-5-8h 0 12-12-85 0 l X223A Th8-AIR CYLINDER "H" 11-2-84 0 12-13-85 0

> 2-4-86 <20 X223A Th8-F3h2I 11-5-84 0 12-12-85 0 X223A Th8-AIR CYLINDER "I" 11-2-8h 0 12-13-85 166 2-4-86 20 X223A Th8-F3h2J 11-5-8h 0 12-12-85 0 SUM 013:22 L

l Penetration Valve No. Date Performed Leakage (ACCM)

X223A Th8-AIR CYLINDER "J" 11-2-8h 0 12-13-85 0 2-h-86 <20 X223 Tk8-F342K 11-5-84 0 12-12-85 0 X223A Th8-CYLINDER "K" 11-2-84 0 12-13-85 19 2-h-86 116 X223A Th8-F342L 11-5-84 0 12-12-85 0 X223A Th8-CYLINDER "L" 11-2-8h 0 12-13-85 <20 2-4-86 <20 X223B Th8-F3h2A 11-6-8h 0 12-12-85 0 X223B Th8-AIR CYLINDER "A" 11-1-8h 0 12-12-85 28 2-h-86 <20 X223B Th8-F3h2B 11-6-84 0 12-12-85 0 X223B Th8-AIR CYLINDER "B" 11-1-8h 0 12-12-85 0 2-h-86 166 X223B Th'8-F3h2C 11-6-8h 0 12-12-85 0

./ X223B Th8-AIR CYLINDER "C" 11-1-8h 0 12-26-8k h6 12-12-85 0 2-4-86 230 X223B Tk8-F3h2D 11-6-84 0 12-12-85 0 X223B Th8-AIR CYLINDER "D" 11-1-8h 0 12-12-85 0 2-h-86 23 X223B Th8-F3h2E 11-6-84 0 12-12-85 0 X223B Th8-AIR CYLINDER "E" 11-2-84 0 12-26-8h 81 12-12-85 0 2-h-86 37 X223B Th8-F3h2F 11-6-8h 0 12-12-85 0 X223B Th8-AIR CYLINDER "F" 11-2-8h 0 12-26-8h h8 12-12-85 165 2-h-86 <20 O

g SUM 013:23